gt
stringclasses
1 value
context
stringlengths
2.49k
119k
from kivy.app import App from kivy.event import EventDispatcher from kivy.clock import Clock from kivy.properties import DictProperty from kivy.logger import Logger import netcheck import toast from jnius import autoclass, PythonJavaClass, java_method, cast from android import activity from functools import partial context = autoclass('org.renpy.android.PythonActivity').mActivity IabHelper = autoclass('org.kivy.billing.IabHelper') IabResults = autoclass('org.kivy.billing.IabResult') Inventory = autoclass('org.kivy.billing.Inventory') Purchase = autoclass('org.kivy.billing.Purchase') ''' There is a big difference between the twitter module. All twitter callbacks return through one listener that implements an interface. There are many fewer places where an object can call back from Java to an object that was already CG'd in Python. Either sync the Python GC and Java GC or be sure to follow the Twitter4J style all-in-one listener architecture when implementing Java objects. This is my advice for writing PyJNIus integrations for now. Since every callback is it's own object here and there is no error callback, every callback has to be stored in _refs to keep it alive when it goes out of the scope where it was created ''' # constants TIMEOUT = 120.0 # seconds to either succeed or fail #implement save if you purchase (and consume) things without #using them. Alternatively implement the inventory without #consuming items until the user uses them. #SAVE_PATH = './billing.json' DEBUG=True # since our callbacks from Java don't keep their Python # from getting GC'd, we have to keep refs _refs = [] # we remove refs when they are called to allow gc def _allow_gc(fn): def checked(self, *args, **kwargs): fn(self, *args, **kwargs) _refs.remove(self) return checked def _protect_callback(new_callback): '''increment counter and attach to new callback object''' _refs.append(new_callback) # Java callbacks that call back into the provided Python callbacks class _OnIabSetupFinishedListener(PythonJavaClass): __javainterfaces__ = ['org.kivy.billing.IabHelper$OnIabSetupFinishedListener'] __javacontext__ = 'app' def __init__(self, callback): self.callback = callback super(_OnIabSetupFinishedListener, self).__init__() @java_method('(Lorg/kivy/billing/IabResult;)V') @_allow_gc def onIabSetupFinished(self, result): self.callback(result) class _QueryInventoryFinishedListener(PythonJavaClass): __javainterfaces__ = ['org.kivy.billing.IabHelper$QueryInventoryFinishedListener'] __javacontext__ = 'app' def __init__(self, callback): self.callback = callback super(_QueryInventoryFinishedListener, self).__init__() @java_method('(Lorg/kivy/billing/IabResult;Lorg/kivy/billing/Inventory;)V') @_allow_gc def onQueryInventoryFinished(self, result, inventory): self.callback(result, inventory) class _OnPurchaseFinishedListener(PythonJavaClass): ''' This one seems to blow up inside the IabHelper OnActivityResult''' __javainterfaces__ = ['org.kivy.billing.IabHelper$OnIabPurchaseFinishedListener'] __javacontext__ = 'app' def __init__(self, callback): self.callback = callback super(_OnPurchaseFinishedListener, self).__init__() @java_method('(Lorg/kivy/billing/IabResult;Lorg/kivy/billing/Purchase;)V') @_allow_gc def onIabPurchaseFinished(self, result, purchase): self.callback(result, purchase) class _OnConsumeFinishedListener(PythonJavaClass): __javainterfaces__ = ['org.kivy.billing.IabHelper$OnConsumeFinishedListener'] __javacontext__ = 'app' def __init__(self, callback): self.callback = callback super(_OnConsumeFinishedListener, self).__init__() @java_method('(Lorg/kivy/billing/Purchase;Lorg/kivy/billing/IabResult;)V') @_allow_gc def onConsumeFinished(self, purchase, result): self.callback(purchase, result) class AndroidBilling(EventDispatcher): consumed = DictProperty() def __init__(self, app_public_key, skus, auto_check_inventory=10, toasty=True, **kwargs): self.app_public_key = app_public_key self.skus = skus self.toasty = toasty # This shouldn't collide, but I will pay you $2 if it does # for the first occurrence ever. After that, you should fix # the code to something more unique =) self.r_code = abs(hash('org.kivy.billing')) # interal state initialize self.purchase_requested = None self.syncing = False self.setup_complete = False self.error_msg = 'there was an error' if auto_check_inventory >= 0: Clock.schedule_once(self._setup, auto_check_inventory) def purchase(self, sku): # Really need to move these debug settings to a global # settings file. Oh and they say that global settings files are bad. # Let's get to the bottom of it. if DEBUG: self.debug_sku = sku sku = 'android.test.purchased' if sku not in self.skus: self.skus.append(sku) Logger.warning('IAB is running in DEBUG mode and won\'t buy anything!') if self.purchase_requested is not None: self._toast('purchase already in progress') return False elif self.syncing: self.purchase_requested = sku Clock.schedule_once(self._fail, TIMEOUT) self._toast('will start purchase shortly') return True else: Logger.info('Purchasing ' + sku) if not self.setup_complete: self._toast('will start purchase shortly') else: self._toast('purchase started') self.purchase_requested = sku Clock.schedule_once(self._fail, TIMEOUT) self._process_purchase() return True def retry_prompt(self, callback): ''' Monkey patch here to implement a real prompt''' callback(False) def set_retry_prompt(self, fn): ''' Or use this handy public setter if you really like Java.''' self.retry_prompt = fn ################# # Private Methods ################# # Bound in _setup_callback to activity.on_activity_result def _on_activity_result(self, requestCode, responseCode, Intent): if DEBUG: Logger.info('Request Code: ' + str(requestCode)) Logger.info('Expected Code: ' + str(self.r_code)) if requestCode == self.r_code: Logger.info('Passing result to IAB helper') if self.helper.handleActivityResult(requestCode, responseCode, Intent): Logger.info('Helper completed the request.') self._get_inventory() return True def _setup(self, *args): Clock.unschedule(self._setup) if not self.syncing and not \ (hasattr(self, 'helper') and self.helper.mSetupDone) and \ netcheck.connection_available(): self.syncing = True Logger.info('Attempting startup') k = self.app_public_key c = cast('android.app.Activity', context) self.helper = helper = IabHelper(c, k) # prints a lot of useful messages that might # not make it back to python space helper.enableDebugLogging(DEBUG) s = _OnIabSetupFinishedListener(self._setup_callback) _protect_callback(s) self.helper.startSetup(s) def _setup_callback(self, result): if result.isSuccess() and self.helper.mSetupDone: Logger.info('Setup complete. Scheduling inventory check') self.setup_complete = True a = App.get_running_app() a.bind(on_stop=self._dispose) activity.bind(on_activity_result=self._on_activity_result) self._get_inventory() else: Logger.info('There was a problem with setup') self.error_msg = 'could not connect to play store' self._fail() def _get_inventory(self, *args): Logger.info('Getting Inventory') q = _QueryInventoryFinishedListener(self._got_inventory_callback) _protect_callback(q) self.helper.queryInventoryAsync(q) def _got_inventory_callback(self, result, inventory): if result.isSuccess(): Logger.info('Got Inventory') self.inventory = inventory # Inventory has some map methods that might be slightly more # straightforward but this is fast already purchases = list() for s in self.skus: Logger.info('Checking for ' + s + ' in the inventory') if inventory.hasPurchase(s): purchases.append(inventory.getPurchase(s)) Logger.info(s + ' is ready for consumption') self.purchases = purchases if len(self.purchases): self.syncing = True else: self.syncing = False self.inventory_checked = True self._process_inventory() else: self.error_msg = 'Could not check inventory' self._fail() def _process_purchase(self): Logger.info('in purchase') if not netcheck.connection_available(): Logger.info('no net avaiable') netcheck.ask_connect(self._connection_callback) elif not self.setup_complete: Logger.info('setup not complete') self._setup() else: Logger.info('doing the purchase') Logger.info(str(self.purchase_requested)) if self.purchase_requested is not None: sku = self.purchasing = self.purchase_requested else: self.purchasing = self.purchase_requested = None Logger.info('returning for no good reason') return if sku not in self.skus: raise AttributeError('The sku is not in the skus you initialized with') Logger.info('Starting purchase workflow for ' + sku) c = cast('android.app.Activity', context) r = self.r_code p = _OnPurchaseFinishedListener(self._purchase_finished) _protect_callback(p) self.helper.launchPurchaseFlow(c, sku, r, p) def _purchase_finished(self, result, purchase): Logger.info('Result was ' + str(result.isSuccess()) + ' for ' + purchase.getSku()) if result.isSuccess(): self._consume(purchase) def _process_inventory(self): if len(self.purchases): self._consume(self.purchases[0]) else: # if we're done with inventory, we go back to purchasing self._process_purchase() def _consume(self, purchase): Logger.info('Consuming ' + purchase.getSku()) c = _OnConsumeFinishedListener(self._consume_finished) _protect_callback(c) self.helper.consumeAsync(purchase, c) def _consume_finished(self, purchase, result): try: s = str(purchase.getSku()) except: s = 'unknown sku' if result.isSuccess(): if DEBUG: s = self.debug_sku # Since we are faking the sku passed in for debug mode, # there's no way to know if the consumption happened -really- # for purchase.getSku() or for debug_sku. The information # is gone. It's in the air. You can never capture it again. self.purchase_requested = None Clock.unschedule(self._fail) self.consumed[s] = self.consumed.get(s, 0) + 1 Logger.info(s + ' was successfully purchased. Time to get rich!') self.purchases.remove(purchase) if s == self.purchase_requested: self.purchase_requested = None Clock.unschedule(self._fail) self._process_inventory else: Logger.info('There was a problem consuming ' + s) self._fail() ###################################### # Managing timeouts and retry workflow ###################################### def _fail(self, *args): Clock.unschedule(self._fail) # since the setup and everything in between can fail, # we don't want to prompt the user for background stuff if self.purchase_requested is not None: self._toast(self.error_msg) self._ask_retry() def _retry_callback(self, retry): if retry: self._process_purchase() else: self._processing=False self._purchase_requested = None self._tries = 0 def _ask_retry(self): self.retry_prompt(self._retry_callback) def _connection_callback(self, connected): Logger.info('in billing connection callback: ' + str(connected)) if connected: self._process_purchase() else: self._fail() def _dispose(self, *args): ''' Let all callbacks be GC'd and destroy helper''' self.helper.dispose() global _refs _refs = [] def _toast(self, text, length_long=False): if self.toasty: toast.toast(text, length_long)
# kcell.py # python3 import matplotlib.pyplot as plt import pandas as pd from sklearn import model_selection, svm, metrics, cluster, tree import kkeras import numpy as np import seaborn as sns def GET_clsf2_by_clst( nb_classes): def clsf2_by_clst( Xpart_cf, Xpart_ct): """ Clustering is performed and then, classification performed by clustered indices. """ cl_model = cluster.KMeans(n_clusters=nb_classes) cl_model.fit(Xpart_ct) yint = cl_model.predict( Xpart_ct) X_train, X_test, y_train, y_test = \ model_selection.train_test_split( Xpart_cf, yint, test_size = 0.2) model = tree.DecisionTreeClassifier() model.fit( X_train, y_train) dt_score = model.score( X_test, y_test) print( "DT-C:", dt_score) model = svm.SVC( kernel = 'linear') model.fit( X_train, y_train) sv_score = model.score( X_test, y_test) print( "SVC:", sv_score) model = kkeras.MLPC( [Xpart_cf.shape[1], 30, 10, nb_classes]) model.fit( X_train, y_train, X_test, y_test, nb_classes) mlp_score = model.score( X_test, y_test) print( "MLP:", mlp_score) return dt_score, sv_score, mlp_score return clsf2_by_clst def GET_clsf2_by_yint( nb_classes): def clsf2_by_yint( X1part, yint): """ classification is performed by yint """ X_train, X_test, y_train, y_test = \ model_selection.train_test_split( X1part, yint, test_size = 0.2) model = tree.DecisionTreeClassifier() model.fit( X_train, y_train) dt_score = model.score( X_test, y_test) print( "DT:", dt_score) model = svm.SVC( kernel = 'linear') model.fit( X_train, y_train) sv_score = model.score( X_test, y_test) print( "SVC:", sv_score) model = kkeras.MLPC( [X1part.shape[1], 30, 10, nb_classes]) model.fit( X_train, y_train, X_test, y_test, nb_classes) mlp_score = model.score( X_test, y_test) print( "MLP:", mlp_score) return dt_score, sv_score, mlp_score return clsf2_by_yint def pd_clsf2_by_clst( ix, Xpart_ct, Xpart_cf, nb_classes): VI = {1:"Velocity", 2:"Intensity", 12:"Combined"} print( "Type", ix, "- Clustering:", ix[1], "Classification:", ix[0]) s_l = GET_clsf2_by_clst(nb_classes)(Xpart_cf, Xpart_ct) df_i = pd.DataFrame() df_i["Type"] = ["KMenas: " + str( ix)] * 3 df_i["Clustering"] = [ VI[ix[0]]] * 3 df_i["Classification"] = [ VI[ix[1]]] * 3 df_i["Clustering method"] = [ "KMeans"] * 3 df_i["Classification method"] = [ "DT", "SVC", "DNN"] df_i["Pc"] = s_l return df_i def pd_clsf2_by_yint( ix, yint, Xpart_cf, nb_classes): VI = {1:"Velocity", 2:"Intensity", 12:"Combined"} print( "Type", ix, "- Clustering:", ix[1], "Classification:", ix[0]) s_l = GET_clsf2_by_yint(nb_classes)(Xpart_cf, yint) df_i = pd.DataFrame() df_i["Type"] = ["Science: "+str( ix)] * 3 df_i["Clustering"] = [ VI[ix[0]]] * 3 df_i["Classification"] = [ VI[ix[1]]] * 3 df_i["Clustering method"] = [ "Sceince method"] * 3 df_i["Classification method"] = [ "DT", "SVC", "DNN"] df_i["Pc"] = s_l return df_i class _Subclustering_r0(): def __init__(self, X1part, X2part, y, cell, X1_ylim = [-1.5, 1.5], X2_ylim = [-2, 4], cmethod = "KMenas", cparam_d = {"n_clusters": 2}): self.X1part = X1part self.X2part = X2part self.y = y self.cell = cell self.X1_ylim = X1_ylim self.X2_ylim = X2_ylim self.cmethod = cmethod self.cparam_d = cparam_d def show_both( self, c): X1part = self.X1part X2part = self.X2part y = self.y cell = self.cell X1_ylim = self.X1_ylim X2_ylim = self.X2_ylim cmethod = self.cmethod cparam_d = self.cparam_d #print("Cluster:", c) X3_int = X2part[ np.where(y==c)[0],:] X3_vel = X1part[ np.where(y==c)[0],:] #km = cluster.KMeans(2) #km = getattr(cluster, cmethod)(2) km = getattr(cluster, cmethod)(**cparam_d) y3 = km.fit_predict( X3_int) plt.figure(figsize=(9,4)) plt.subplot(1,2,1) #print("Intensity") n_0 = X3_int[ np.where( y3==0)[0]].shape[0] n_1 = X3_int[ np.where( y3==1)[0]].shape[0] sns.tsplot( X3_int[ np.where( y3==0)[0],:], color="blue") sns.tsplot( X3_int[ np.where( y3==1)[0],:], color="green") plt.ylim(X2_ylim) plt.title("Cluster{0}:X2 {1}:{2}".format(c, n_0, n_1)) #plt.show() plt.subplot(1,2,2) #print("Velocity") sns.tsplot( X3_vel[ np.where( y3==0)[0],:], color="blue") sns.tsplot( X3_vel[ np.where( y3==1)[0],:], color="green") plt.ylim(X1_ylim) plt.title("Cluster{0}:X1 {1}:{2}".format(c, n_0, n_1)) plt.show() cell3 = cell[ np.where(y==c)[0]] plt.subplot(1,2,1) plt.stem( cell3[np.where( y3==0)[0]], linefmt='b-', markerfmt='bo') plt.title("Cell Index - Subcluster 1") plt.subplot(1,2,2) plt.stem( cell3[np.where( y3==1)[0]], linefmt='g-', markerfmt='go') plt.title("Cell Index - Subcluster 2") plt.show() return y3 def show_both_cell( self, c, cell_id): X1part = self.X1part X2part = self.X2part y = self.y cell = self.cell X1_ylim = self.X1_ylim X2_ylim = self.X2_ylim cmethod = self.cmethod X3_int = X2part[ np.where(y==c)[0],:] X3_vel = X1part[ np.where(y==c)[0],:] cell3 = cell[ np.where(y==c)[0]] #km = cluster.KMeans(2) #km = getattr(cluster, cmethod)(2) km = getattr(cluster, cmethod)(**cparam_d) y3 = km.fit_predict( X3_int) # redefine based on cell_id X3_int = X3_int[ np.where(cell3==cell_id)[0],:] X3_vel = X3_vel[ np.where(cell3==cell_id)[0],:] y3 = y3[np.where(cell3==cell_id)[0]] n_0 = X3_int[ np.where( y3==0)[0]].shape[0] n_1 = X3_int[ np.where( y3==1)[0]].shape[0] plt.figure(figsize=(9,4)) plt.subplot(1,2,1) if n_0 > 0: sns.tsplot( X3_int[ np.where( y3==0)[0],:], color="blue") if n_1 > 0: sns.tsplot( X3_int[ np.where( y3==1)[0],:], color="green") plt.ylim(X2_ylim) plt.title("Cluster{0}:Intensity {1}:{2}".format(c, n_0, n_1)) #plt.show() plt.subplot(1,2,2) #print("Velocity") if n_0 > 0: sns.tsplot( X3_vel[ np.where( y3==0)[0],:], color="blue") if n_1 > 0: sns.tsplot( X3_vel[ np.where( y3==1)[0],:], color="green") plt.ylim(X1_ylim) plt.title("Cluster{0}:Velocity {1}:{2}".format(c, n_0, n_1)) plt.show() class Subclustering(): def __init__(self, X1part, X2part, y, cell, X1_ylim = [-1.5, 1.5], X2_ylim = [-2, 4], cmethod = "KMenas", cparam_d = {"n_clusters": 2}): self.X1part = X1part self.X2part = X2part self.y = y self.cell = cell self.X1_ylim = X1_ylim self.X2_ylim = X2_ylim self.cmethod = cmethod self.cparam_d = cparam_d def show_both( self, c): X1part = self.X1part X2part = self.X2part y = self.y cell = self.cell X1_ylim = self.X1_ylim X2_ylim = self.X2_ylim cmethod = self.cmethod cparam_d = self.cparam_d #print("Cluster:", c) X3_int = X2part[ np.where(y==c)[0],:] X3_vel = X1part[ np.where(y==c)[0],:] #km = cluster.KMeans(2) #km = getattr(cluster, cmethod)(2) km = getattr(cluster, cmethod)(**cparam_d) y3 = km.fit_predict( X3_int) plt.figure(figsize=(9,4)) plt.subplot(1,2,1) #print("Intensity") n_0 = X3_int[ np.where( y3==0)[0]].shape[0] n_1 = X3_int[ np.where( y3==1)[0]].shape[0] sns.tsplot( X3_int[ np.where( y3==0)[0],:], color="blue") sns.tsplot( X3_int[ np.where( y3==1)[0],:], color="green") plt.ylim(X2_ylim) plt.title("Cluster{0}:X2 {1}:{2}".format(c, n_0, n_1)) #plt.show() plt.subplot(1,2,2) #print("Velocity") sns.tsplot( X3_vel[ np.where( y3==0)[0],:], color="blue") sns.tsplot( X3_vel[ np.where( y3==1)[0],:], color="green") plt.ylim(X1_ylim) plt.title("Cluster{0}:X1 {1}:{2}".format(c, n_0, n_1)) plt.show() cell3 = cell[ np.where(y==c)[0]] plt.subplot(1,2,1) plt.stem( cell3[np.where( y3==0)[0]], linefmt='b-', markerfmt='bo') plt.title("Cell Index - Subcluster 1") plt.subplot(1,2,2) plt.stem( cell3[np.where( y3==1)[0]], linefmt='g-', markerfmt='go') plt.title("Cell Index - Subcluster 2") plt.show() return y3 def show_both_cell( self, c, cell_id): X1part = self.X1part X2part = self.X2part y = self.y cell = self.cell X1_ylim = self.X1_ylim X2_ylim = self.X2_ylim cmethod = self.cmethod X3_int = X2part[ np.where(y==c)[0],:] X3_vel = X1part[ np.where(y==c)[0],:] cell3 = cell[ np.where(y==c)[0]] km = getattr(cluster, cmethod)(**cparam_d) y3 = km.fit_predict( X3_int) # redefine based on cell_id X3_int = X3_int[ np.where(cell3==cell_id)[0],:] X3_vel = X3_vel[ np.where(cell3==cell_id)[0],:] y3 = y3[np.where(cell3==cell_id)[0]] n_0 = X3_int[ np.where( y3==0)[0]].shape[0] n_1 = X3_int[ np.where( y3==1)[0]].shape[0] plt.figure(figsize=(9,4)) plt.subplot(1,2,1) if n_0 > 0: sns.tsplot( X3_int[ np.where( y3==0)[0],:], color="blue") if n_1 > 0: sns.tsplot( X3_int[ np.where( y3==1)[0],:], color="green") plt.ylim(X2_ylim) plt.title("Cluster{0}:Intensity {1}:{2}".format(c, n_0, n_1)) #plt.show() plt.subplot(1,2,2) #print("Velocity") if n_0 > 0: sns.tsplot( X3_vel[ np.where( y3==0)[0],:], color="blue") if n_1 > 0: sns.tsplot( X3_vel[ np.where( y3==1)[0],:], color="green") plt.ylim(X1_ylim) plt.title("Cluster{0}:Velocity {1}:{2}".format(c, n_0, n_1)) plt.show() def show_both_kmeans( self, c): X1part = self.X1part X2part = self.X2part y = self.y cell = self.cell X1_ylim = self.X1_ylim X2_ylim = self.X2_ylim cmethod = self.cmethod cparam_d = self.cparam_d nc = cparam_d["n_clusters"] #print("Cluster:", c) X3_int = X2part[ y==c,:] X3_vel = X1part[ y==c,:] #km = cluster.KMeans(2) #km = getattr(cluster, cmethod)(2) assert cmethod == "KMeans" km = cluster.KMeans( nc) y3 = km.fit_predict( X3_int) plt.figure(figsize=(9,4)) plt.subplot(1,2,1) #print("Intensity") n_l = [ X3_int[ y3==i].shape[0] for i in range(nc)] for i in range(nc): sns.tsplot( X3_int[ y3==i,:], color=plt.cm.rainbow(i/nc)) plt.ylim(X2_ylim) plt.title("Cluster{0}:X2 {1}".format(c, n_l)) #plt.show() plt.subplot(1,2,2) #print("Velocity") for i in range(nc): sns.tsplot( X3_vel[ y3==i,:], color=plt.cm.rainbow(i/nc)) plt.ylim(X1_ylim) plt.title("Cluster{0}:X1 {1}".format(c, n_l)) plt.show() return y3
""" tests.test_component_group ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Tests the group compoments. """ # pylint: disable=protected-access,too-many-public-methods import unittest import logging import homeassistant as ha from homeassistant.const import STATE_ON, STATE_OFF, STATE_HOME, STATE_UNKNOWN import homeassistant.components.group as group def setUpModule(): # pylint: disable=invalid-name """ Setup to ignore group errors. """ logging.disable(logging.CRITICAL) class TestComponentsGroup(unittest.TestCase): """ Tests homeassistant.components.group module. """ def setUp(self): # pylint: disable=invalid-name """ Init needed objects. """ self.hass = ha.HomeAssistant() self.hass.states.set('light.Bowl', STATE_ON) self.hass.states.set('light.Ceiling', STATE_OFF) test_group = group.Group( self.hass, 'init_group', ['light.Bowl', 'light.Ceiling'], False) self.group_entity_id = test_group.entity_id def tearDown(self): # pylint: disable=invalid-name """ Stop down stuff we started. """ self.hass.stop() def test_setup_group_with_mixed_groupable_states(self): """ Try to setup a group with mixed groupable states """ self.hass.states.set('device_tracker.Paulus', STATE_HOME) group.setup_group( self.hass, 'person_and_light', ['light.Bowl', 'device_tracker.Paulus']) self.assertEqual( STATE_ON, self.hass.states.get( group.ENTITY_ID_FORMAT.format('person_and_light')).state) def test_setup_group_with_a_non_existing_state(self): """ Try to setup a group with a non existing state """ grp = group.setup_group( self.hass, 'light_and_nothing', ['light.Bowl', 'non.existing']) self.assertEqual(STATE_ON, grp.state.state) def test_setup_group_with_non_groupable_states(self): self.hass.states.set('cast.living_room', "Plex") self.hass.states.set('cast.bedroom', "Netflix") grp = group.setup_group( self.hass, 'chromecasts', ['cast.living_room', 'cast.bedroom']) self.assertEqual(STATE_UNKNOWN, grp.state.state) def test_setup_empty_group(self): """ Try to setup an empty group. """ grp = group.setup_group(self.hass, 'nothing', []) self.assertEqual(STATE_UNKNOWN, grp.state.state) def test_monitor_group(self): """ Test if the group keeps track of states. """ # Test if group setup in our init mode is ok self.assertIn(self.group_entity_id, self.hass.states.entity_ids()) group_state = self.hass.states.get(self.group_entity_id) self.assertEqual(STATE_ON, group_state.state) self.assertTrue(group_state.attributes[group.ATTR_AUTO]) def test_group_turns_off_if_all_off(self): """ Test if the group turns off if the last device that was on turns off. """ self.hass.states.set('light.Bowl', STATE_OFF) self.hass.pool.block_till_done() group_state = self.hass.states.get(self.group_entity_id) self.assertEqual(STATE_OFF, group_state.state) def test_group_turns_on_if_all_are_off_and_one_turns_on(self): """ Test if group turns on if all devices were turned off and one turns on. """ # Make sure all are off. self.hass.states.set('light.Bowl', STATE_OFF) self.hass.pool.block_till_done() # Turn one on self.hass.states.set('light.Ceiling', STATE_ON) self.hass.pool.block_till_done() group_state = self.hass.states.get(self.group_entity_id) self.assertEqual(STATE_ON, group_state.state) def test_is_on(self): """ Test is_on method. """ self.assertTrue(group.is_on(self.hass, self.group_entity_id)) self.hass.states.set('light.Bowl', STATE_OFF) self.hass.pool.block_till_done() self.assertFalse(group.is_on(self.hass, self.group_entity_id)) # Try on non existing state self.assertFalse(group.is_on(self.hass, 'non.existing')) def test_expand_entity_ids(self): """ Test expand_entity_ids method. """ self.assertEqual(sorted(['light.ceiling', 'light.bowl']), sorted(group.expand_entity_ids( self.hass, [self.group_entity_id]))) def test_expand_entity_ids_does_not_return_duplicates(self): """ Test that expand_entity_ids does not return duplicates. """ self.assertEqual( ['light.bowl', 'light.ceiling'], sorted(group.expand_entity_ids( self.hass, [self.group_entity_id, 'light.Ceiling']))) self.assertEqual( ['light.bowl', 'light.ceiling'], sorted(group.expand_entity_ids( self.hass, ['light.bowl', self.group_entity_id]))) def test_expand_entity_ids_ignores_non_strings(self): """ Test that non string elements in lists are ignored. """ self.assertEqual([], group.expand_entity_ids(self.hass, [5, True])) def test_get_entity_ids(self): """ Test get_entity_ids method. """ self.assertEqual( ['light.bowl', 'light.ceiling'], sorted(group.get_entity_ids(self.hass, self.group_entity_id))) def test_get_entity_ids_with_domain_filter(self): """ Test if get_entity_ids works with a domain_filter. """ self.hass.states.set('switch.AC', STATE_OFF) mixed_group = group.Group( self.hass, 'mixed_group', ['light.Bowl', 'switch.AC'], False) self.assertEqual( ['switch.ac'], group.get_entity_ids( self.hass, mixed_group.entity_id, domain_filter="switch")) def test_get_entity_ids_with_non_existing_group_name(self): """ Tests get_entity_ids with a non existing group. """ self.assertEqual([], group.get_entity_ids(self.hass, 'non_existing')) def test_get_entity_ids_with_non_group_state(self): """ Tests get_entity_ids with a non group state. """ self.assertEqual([], group.get_entity_ids(self.hass, 'switch.AC')) def test_group_being_init_before_first_tracked_state_is_set_to_on(self): """ Test if the group turns on if no states existed and now a state it is tracking is being added as ON. """ test_group = group.Group( self.hass, 'test group', ['light.not_there_1']) self.hass.states.set('light.not_there_1', STATE_ON) self.hass.pool.block_till_done() group_state = self.hass.states.get(test_group.entity_id) self.assertEqual(STATE_ON, group_state.state) def test_group_being_init_before_first_tracked_state_is_set_to_off(self): """ Test if the group turns off if no states existed and now a state it is tracking is being added as OFF. """ test_group = group.Group( self.hass, 'test group', ['light.not_there_1']) self.hass.states.set('light.not_there_1', STATE_OFF) self.hass.pool.block_till_done() group_state = self.hass.states.get(test_group.entity_id) self.assertEqual(STATE_OFF, group_state.state) def test_setup(self): """ Test setup method. """ self.assertTrue( group.setup( self.hass, { group.DOMAIN: { 'second_group': ','.join((self.group_entity_id, 'light.Bowl')) } })) group_state = self.hass.states.get( group.ENTITY_ID_FORMAT.format('second_group')) self.assertEqual(STATE_ON, group_state.state) self.assertFalse(group_state.attributes[group.ATTR_AUTO]) def test_groups_get_unique_names(self): """ Two groups with same name should both have a unique entity id. """ grp1 = group.Group(self.hass, 'Je suis Charlie') grp2 = group.Group(self.hass, 'Je suis Charlie') self.assertNotEqual(grp1.entity_id, grp2.entity_id)
from __future__ import unicode_literals from calendar import timegm from django.conf import settings from django.contrib.sites.shortcuts import get_current_site from django.core.exceptions import ImproperlyConfigured, ObjectDoesNotExist from django.http import Http404, HttpResponse from django.template import TemplateDoesNotExist, loader from django.utils import feedgenerator, six from django.utils.encoding import force_text, iri_to_uri from django.utils.html import escape from django.utils.http import http_date from django.utils.timezone import get_default_timezone, is_naive, make_aware def add_domain(domain, url, secure=False): protocol = 'https' if secure else 'http' if url.startswith('//'): # Support network-path reference (see #16753) - RSS requires a protocol url = '%s:%s' % (protocol, url) elif not url.startswith(('http://', 'https://', 'mailto:')): url = iri_to_uri('%s://%s%s' % (protocol, domain, url)) return url class FeedDoesNotExist(ObjectDoesNotExist): pass class Feed(object): feed_type = feedgenerator.DefaultFeed title_template = None description_template = None def __call__(self, request, *args, **kwargs): try: obj = self.get_object(request, *args, **kwargs) except ObjectDoesNotExist: raise Http404('Feed object does not exist.') feedgen = self.get_feed(obj, request) response = HttpResponse(content_type=feedgen.content_type) if hasattr(self, 'item_pubdate') or hasattr(self, 'item_updateddate'): # if item_pubdate or item_updateddate is defined for the feed, set # header so as ConditionalGetMiddleware is able to send 304 NOT MODIFIED response['Last-Modified'] = http_date( timegm(feedgen.latest_post_date().utctimetuple())) feedgen.write(response, 'utf-8') return response def item_title(self, item): # Titles should be double escaped by default (see #6533) return escape(force_text(item)) def item_description(self, item): return force_text(item) def item_link(self, item): try: return item.get_absolute_url() except AttributeError: raise ImproperlyConfigured( 'Give your %s class a get_absolute_url() method, or define an ' 'item_link() method in your Feed class.' % item.__class__.__name__ ) def item_enclosures(self, item): enc_url = self._get_dynamic_attr('item_enclosure_url', item) if enc_url: enc = feedgenerator.Enclosure( url=force_text(enc_url), length=force_text(self._get_dynamic_attr('item_enclosure_length', item)), mime_type=force_text(self._get_dynamic_attr('item_enclosure_mime_type', item)), ) return [enc] return [] def _get_dynamic_attr(self, attname, obj, default=None): try: attr = getattr(self, attname) except AttributeError: return default if callable(attr): # Check co_argcount rather than try/excepting the function and # catching the TypeError, because something inside the function # may raise the TypeError. This technique is more accurate. try: code = six.get_function_code(attr) except AttributeError: code = six.get_function_code(attr.__call__) if code.co_argcount == 2: # one argument is 'self' return attr(obj) else: return attr() return attr def feed_extra_kwargs(self, obj): """ Returns an extra keyword arguments dictionary that is used when initializing the feed generator. """ return {} def item_extra_kwargs(self, item): """ Returns an extra keyword arguments dictionary that is used with the `add_item` call of the feed generator. """ return {} def get_object(self, request, *args, **kwargs): return None def get_context_data(self, **kwargs): """ Returns a dictionary to use as extra context if either ``self.description_template`` or ``self.item_template`` are used. Default implementation preserves the old behavior of using {'obj': item, 'site': current_site} as the context. """ return {'obj': kwargs.get('item'), 'site': kwargs.get('site')} def get_feed(self, obj, request): """ Returns a feedgenerator.DefaultFeed object, fully populated, for this feed. Raises FeedDoesNotExist for invalid parameters. """ current_site = get_current_site(request) link = self._get_dynamic_attr('link', obj) link = add_domain(current_site.domain, link, request.is_secure()) feed = self.feed_type( title=self._get_dynamic_attr('title', obj), subtitle=self._get_dynamic_attr('subtitle', obj), link=link, description=self._get_dynamic_attr('description', obj), language=settings.LANGUAGE_CODE, feed_url=add_domain( current_site.domain, self._get_dynamic_attr('feed_url', obj) or request.path, request.is_secure(), ), author_name=self._get_dynamic_attr('author_name', obj), author_link=self._get_dynamic_attr('author_link', obj), author_email=self._get_dynamic_attr('author_email', obj), categories=self._get_dynamic_attr('categories', obj), feed_copyright=self._get_dynamic_attr('feed_copyright', obj), feed_guid=self._get_dynamic_attr('feed_guid', obj), ttl=self._get_dynamic_attr('ttl', obj), **self.feed_extra_kwargs(obj) ) title_tmp = None if self.title_template is not None: try: title_tmp = loader.get_template(self.title_template) except TemplateDoesNotExist: pass description_tmp = None if self.description_template is not None: try: description_tmp = loader.get_template(self.description_template) except TemplateDoesNotExist: pass for item in self._get_dynamic_attr('items', obj): context = self.get_context_data(item=item, site=current_site, obj=obj, request=request) if title_tmp is not None: title = title_tmp.render(context, request) else: title = self._get_dynamic_attr('item_title', item) if description_tmp is not None: description = description_tmp.render(context, request) else: description = self._get_dynamic_attr('item_description', item) link = add_domain( current_site.domain, self._get_dynamic_attr('item_link', item), request.is_secure(), ) enclosures = self._get_dynamic_attr('item_enclosures', item) author_name = self._get_dynamic_attr('item_author_name', item) if author_name is not None: author_email = self._get_dynamic_attr('item_author_email', item) author_link = self._get_dynamic_attr('item_author_link', item) else: author_email = author_link = None tz = get_default_timezone() pubdate = self._get_dynamic_attr('item_pubdate', item) if pubdate and is_naive(pubdate): pubdate = make_aware(pubdate, tz) updateddate = self._get_dynamic_attr('item_updateddate', item) if updateddate and is_naive(updateddate): updateddate = make_aware(updateddate, tz) feed.add_item( title=title, link=link, description=description, unique_id=self._get_dynamic_attr('item_guid', item, link), unique_id_is_permalink=self._get_dynamic_attr( 'item_guid_is_permalink', item), enclosures=enclosures, pubdate=pubdate, updateddate=updateddate, author_name=author_name, author_email=author_email, author_link=author_link, categories=self._get_dynamic_attr('item_categories', item), item_copyright=self._get_dynamic_attr('item_copyright', item), **self.item_extra_kwargs(item) ) return feed
import json import pickle from binascii import b2a_hex from django.contrib.gis.gdal import ( CoordTransform, GDALException, OGRGeometry, OGRGeomType, SpatialReference, ) from django.template import Context from django.template.engine import Engine from django.test import SimpleTestCase from ..test_data import TestDataMixin class OGRGeomTest(SimpleTestCase, TestDataMixin): "This tests the OGR Geometry." def test_geomtype(self): "Testing OGRGeomType object." # OGRGeomType should initialize on all these inputs. OGRGeomType(1) OGRGeomType(7) OGRGeomType('point') OGRGeomType('GeometrycollectioN') OGRGeomType('LINearrING') OGRGeomType('Unknown') # Should throw TypeError on this input with self.assertRaises(GDALException): OGRGeomType(23) with self.assertRaises(GDALException): OGRGeomType('fooD') with self.assertRaises(GDALException): OGRGeomType(9) # Equivalence can take strings, ints, and other OGRGeomTypes self.assertEqual(OGRGeomType(1), OGRGeomType(1)) self.assertEqual(OGRGeomType(7), 'GeometryCollection') self.assertEqual(OGRGeomType('point'), 'POINT') self.assertNotEqual(OGRGeomType('point'), 2) self.assertEqual(OGRGeomType('unknown'), 0) self.assertEqual(OGRGeomType(6), 'MULtiPolyGON') self.assertEqual(OGRGeomType(1), OGRGeomType('point')) self.assertNotEqual(OGRGeomType('POINT'), OGRGeomType(6)) # Testing the Django field name equivalent property. self.assertEqual('PointField', OGRGeomType('Point').django) self.assertEqual('GeometryField', OGRGeomType('Geometry').django) self.assertEqual('GeometryField', OGRGeomType('Unknown').django) self.assertIsNone(OGRGeomType('none').django) # 'Geometry' initialization implies an unknown geometry type. gt = OGRGeomType('Geometry') self.assertEqual(0, gt.num) self.assertEqual('Unknown', gt.name) def test_geomtype_25d(self): "Testing OGRGeomType object with 25D types." wkb25bit = OGRGeomType.wkb25bit self.assertEqual(OGRGeomType(wkb25bit + 1), 'Point25D') self.assertEqual(OGRGeomType('MultiLineString25D'), (5 + wkb25bit)) self.assertEqual('GeometryCollectionField', OGRGeomType('GeometryCollection25D').django) def test_wkt(self): "Testing WKT output." for g in self.geometries.wkt_out: geom = OGRGeometry(g.wkt) self.assertEqual(g.wkt, geom.wkt) def test_ewkt(self): "Testing EWKT input/output." for ewkt_val in ('POINT (1 2 3)', 'LINEARRING (0 0,1 1,2 1,0 0)'): # First with ewkt output when no SRID in EWKT self.assertEqual(ewkt_val, OGRGeometry(ewkt_val).ewkt) # No test consumption with an SRID specified. ewkt_val = 'SRID=4326;%s' % ewkt_val geom = OGRGeometry(ewkt_val) self.assertEqual(ewkt_val, geom.ewkt) self.assertEqual(4326, geom.srs.srid) def test_gml(self): "Testing GML output." for g in self.geometries.wkt_out: geom = OGRGeometry(g.wkt) exp_gml = g.gml self.assertEqual(exp_gml, geom.gml) def test_hex(self): "Testing HEX input/output." for g in self.geometries.hex_wkt: geom1 = OGRGeometry(g.wkt) self.assertEqual(g.hex.encode(), geom1.hex) # Constructing w/HEX geom2 = OGRGeometry(g.hex) self.assertEqual(geom1, geom2) def test_wkb(self): "Testing WKB input/output." for g in self.geometries.hex_wkt: geom1 = OGRGeometry(g.wkt) wkb = geom1.wkb self.assertEqual(b2a_hex(wkb).upper(), g.hex.encode()) # Constructing w/WKB. geom2 = OGRGeometry(wkb) self.assertEqual(geom1, geom2) def test_json(self): "Testing GeoJSON input/output." for g in self.geometries.json_geoms: geom = OGRGeometry(g.wkt) if not hasattr(g, 'not_equal'): # Loading jsons to prevent decimal differences self.assertEqual(json.loads(g.json), json.loads(geom.json)) self.assertEqual(json.loads(g.json), json.loads(geom.geojson)) self.assertEqual(OGRGeometry(g.wkt), OGRGeometry(geom.json)) # Test input with some garbage content (but valid json) (#15529) geom = OGRGeometry('{"type": "Point", "coordinates": [ 100.0, 0.0 ], "other": "<test>"}') self.assertIsInstance(geom, OGRGeometry) def test_points(self): "Testing Point objects." OGRGeometry('POINT(0 0)') for p in self.geometries.points: if not hasattr(p, 'z'): # No 3D pnt = OGRGeometry(p.wkt) self.assertEqual(1, pnt.geom_type) self.assertEqual('POINT', pnt.geom_name) self.assertEqual(p.x, pnt.x) self.assertEqual(p.y, pnt.y) self.assertEqual((p.x, p.y), pnt.tuple) def test_multipoints(self): "Testing MultiPoint objects." for mp in self.geometries.multipoints: mgeom1 = OGRGeometry(mp.wkt) # First one from WKT self.assertEqual(4, mgeom1.geom_type) self.assertEqual('MULTIPOINT', mgeom1.geom_name) mgeom2 = OGRGeometry('MULTIPOINT') # Creating empty multipoint mgeom3 = OGRGeometry('MULTIPOINT') for g in mgeom1: mgeom2.add(g) # adding each point from the multipoints mgeom3.add(g.wkt) # should take WKT as well self.assertEqual(mgeom1, mgeom2) # they should equal self.assertEqual(mgeom1, mgeom3) self.assertEqual(mp.coords, mgeom2.coords) self.assertEqual(mp.n_p, mgeom2.point_count) def test_linestring(self): "Testing LineString objects." prev = OGRGeometry('POINT(0 0)') for ls in self.geometries.linestrings: linestr = OGRGeometry(ls.wkt) self.assertEqual(2, linestr.geom_type) self.assertEqual('LINESTRING', linestr.geom_name) self.assertEqual(ls.n_p, linestr.point_count) self.assertEqual(ls.coords, linestr.tuple) self.assertEqual(linestr, OGRGeometry(ls.wkt)) self.assertNotEqual(linestr, prev) msg = 'Index out of range when accessing points of a line string: %s.' with self.assertRaisesMessage(IndexError, msg % len(linestr)): linestr.__getitem__(len(linestr)) prev = linestr # Testing the x, y properties. x = [tmpx for tmpx, tmpy in ls.coords] y = [tmpy for tmpx, tmpy in ls.coords] self.assertEqual(x, linestr.x) self.assertEqual(y, linestr.y) def test_multilinestring(self): "Testing MultiLineString objects." prev = OGRGeometry('POINT(0 0)') for mls in self.geometries.multilinestrings: mlinestr = OGRGeometry(mls.wkt) self.assertEqual(5, mlinestr.geom_type) self.assertEqual('MULTILINESTRING', mlinestr.geom_name) self.assertEqual(mls.n_p, mlinestr.point_count) self.assertEqual(mls.coords, mlinestr.tuple) self.assertEqual(mlinestr, OGRGeometry(mls.wkt)) self.assertNotEqual(mlinestr, prev) prev = mlinestr for ls in mlinestr: self.assertEqual(2, ls.geom_type) self.assertEqual('LINESTRING', ls.geom_name) msg = 'Index out of range when accessing geometry in a collection: %s.' with self.assertRaisesMessage(IndexError, msg % len(mlinestr)): mlinestr.__getitem__(len(mlinestr)) def test_linearring(self): "Testing LinearRing objects." prev = OGRGeometry('POINT(0 0)') for rr in self.geometries.linearrings: lr = OGRGeometry(rr.wkt) # self.assertEqual(101, lr.geom_type.num) self.assertEqual('LINEARRING', lr.geom_name) self.assertEqual(rr.n_p, len(lr)) self.assertEqual(lr, OGRGeometry(rr.wkt)) self.assertNotEqual(lr, prev) prev = lr def test_polygons(self): "Testing Polygon objects." # Testing `from_bbox` class method bbox = (-180, -90, 180, 90) p = OGRGeometry.from_bbox(bbox) self.assertEqual(bbox, p.extent) prev = OGRGeometry('POINT(0 0)') for p in self.geometries.polygons: poly = OGRGeometry(p.wkt) self.assertEqual(3, poly.geom_type) self.assertEqual('POLYGON', poly.geom_name) self.assertEqual(p.n_p, poly.point_count) self.assertEqual(p.n_i + 1, len(poly)) msg = 'Index out of range when accessing rings of a polygon: %s.' with self.assertRaisesMessage(IndexError, msg % len(poly)): poly.__getitem__(len(poly)) # Testing area & centroid. self.assertAlmostEqual(p.area, poly.area, 9) x, y = poly.centroid.tuple self.assertAlmostEqual(p.centroid[0], x, 9) self.assertAlmostEqual(p.centroid[1], y, 9) # Testing equivalence self.assertEqual(poly, OGRGeometry(p.wkt)) self.assertNotEqual(poly, prev) if p.ext_ring_cs: ring = poly[0] self.assertEqual(p.ext_ring_cs, ring.tuple) self.assertEqual(p.ext_ring_cs, poly[0].tuple) self.assertEqual(len(p.ext_ring_cs), ring.point_count) for r in poly: self.assertEqual('LINEARRING', r.geom_name) def test_polygons_templates(self): # Accessing Polygon attributes in templates should work. engine = Engine() template = engine.from_string('{{ polygons.0.wkt }}') polygons = [OGRGeometry(p.wkt) for p in self.geometries.multipolygons[:2]] content = template.render(Context({'polygons': polygons})) self.assertIn('MULTIPOLYGON (((100', content) def test_closepolygons(self): "Testing closing Polygon objects." # Both rings in this geometry are not closed. poly = OGRGeometry('POLYGON((0 0, 5 0, 5 5, 0 5), (1 1, 2 1, 2 2, 2 1))') self.assertEqual(8, poly.point_count) with self.assertRaises(GDALException): poly.centroid poly.close_rings() self.assertEqual(10, poly.point_count) # Two closing points should've been added self.assertEqual(OGRGeometry('POINT(2.5 2.5)'), poly.centroid) def test_multipolygons(self): "Testing MultiPolygon objects." OGRGeometry('POINT(0 0)') for mp in self.geometries.multipolygons: mpoly = OGRGeometry(mp.wkt) self.assertEqual(6, mpoly.geom_type) self.assertEqual('MULTIPOLYGON', mpoly.geom_name) if mp.valid: self.assertEqual(mp.n_p, mpoly.point_count) self.assertEqual(mp.num_geom, len(mpoly)) msg = 'Index out of range when accessing geometry in a collection: %s.' with self.assertRaisesMessage(IndexError, msg % len(mpoly)): mpoly.__getitem__(len(mpoly)) for p in mpoly: self.assertEqual('POLYGON', p.geom_name) self.assertEqual(3, p.geom_type) self.assertEqual(mpoly.wkt, OGRGeometry(mp.wkt).wkt) def test_srs(self): "Testing OGR Geometries with Spatial Reference objects." for mp in self.geometries.multipolygons: # Creating a geometry w/spatial reference sr = SpatialReference('WGS84') mpoly = OGRGeometry(mp.wkt, sr) self.assertEqual(sr.wkt, mpoly.srs.wkt) # Ensuring that SRS is propagated to clones. klone = mpoly.clone() self.assertEqual(sr.wkt, klone.srs.wkt) # Ensuring all children geometries (polygons and their rings) all # return the assigned spatial reference as well. for poly in mpoly: self.assertEqual(sr.wkt, poly.srs.wkt) for ring in poly: self.assertEqual(sr.wkt, ring.srs.wkt) # Ensuring SRS propagate in topological ops. a = OGRGeometry(self.geometries.topology_geoms[0].wkt_a, sr) b = OGRGeometry(self.geometries.topology_geoms[0].wkt_b, sr) diff = a.difference(b) union = a.union(b) self.assertEqual(sr.wkt, diff.srs.wkt) self.assertEqual(sr.srid, union.srs.srid) # Instantiating w/an integer SRID mpoly = OGRGeometry(mp.wkt, 4326) self.assertEqual(4326, mpoly.srid) mpoly.srs = SpatialReference(4269) self.assertEqual(4269, mpoly.srid) self.assertEqual('NAD83', mpoly.srs.name) # Incrementing through the multipolygon after the spatial reference # has been re-assigned. for poly in mpoly: self.assertEqual(mpoly.srs.wkt, poly.srs.wkt) poly.srs = 32140 for ring in poly: # Changing each ring in the polygon self.assertEqual(32140, ring.srs.srid) self.assertEqual('NAD83 / Texas South Central', ring.srs.name) ring.srs = str(SpatialReference(4326)) # back to WGS84 self.assertEqual(4326, ring.srs.srid) # Using the `srid` property. ring.srid = 4322 self.assertEqual('WGS 72', ring.srs.name) self.assertEqual(4322, ring.srid) # srs/srid may be assigned their own values, even when srs is None. mpoly = OGRGeometry(mp.wkt, srs=None) mpoly.srs = mpoly.srs mpoly.srid = mpoly.srid def test_srs_transform(self): "Testing transform()." orig = OGRGeometry('POINT (-104.609 38.255)', 4326) trans = OGRGeometry('POINT (992385.4472045 481455.4944650)', 2774) # Using an srid, a SpatialReference object, and a CoordTransform object # or transformations. t1, t2, t3 = orig.clone(), orig.clone(), orig.clone() t1.transform(trans.srid) t2.transform(SpatialReference('EPSG:2774')) ct = CoordTransform(SpatialReference('WGS84'), SpatialReference(2774)) t3.transform(ct) # Testing use of the `clone` keyword. k1 = orig.clone() k2 = k1.transform(trans.srid, clone=True) self.assertEqual(k1, orig) self.assertNotEqual(k1, k2) prec = 3 for p in (t1, t2, t3, k2): self.assertAlmostEqual(trans.x, p.x, prec) self.assertAlmostEqual(trans.y, p.y, prec) def test_transform_dim(self): "Testing coordinate dimension is the same on transformed geometries." ls_orig = OGRGeometry('LINESTRING(-104.609 38.255)', 4326) ls_trans = OGRGeometry('LINESTRING(992385.4472045 481455.4944650)', 2774) prec = 3 ls_orig.transform(ls_trans.srs) # Making sure the coordinate dimension is still 2D. self.assertEqual(2, ls_orig.coord_dim) self.assertAlmostEqual(ls_trans.x[0], ls_orig.x[0], prec) self.assertAlmostEqual(ls_trans.y[0], ls_orig.y[0], prec) def test_difference(self): "Testing difference()." for i in range(len(self.geometries.topology_geoms)): a = OGRGeometry(self.geometries.topology_geoms[i].wkt_a) b = OGRGeometry(self.geometries.topology_geoms[i].wkt_b) d1 = OGRGeometry(self.geometries.diff_geoms[i].wkt) d2 = a.difference(b) self.assertEqual(d1, d2) self.assertEqual(d1, a - b) # __sub__ is difference operator a -= b # testing __isub__ self.assertEqual(d1, a) def test_intersection(self): "Testing intersects() and intersection()." for i in range(len(self.geometries.topology_geoms)): a = OGRGeometry(self.geometries.topology_geoms[i].wkt_a) b = OGRGeometry(self.geometries.topology_geoms[i].wkt_b) i1 = OGRGeometry(self.geometries.intersect_geoms[i].wkt) self.assertTrue(a.intersects(b)) i2 = a.intersection(b) self.assertEqual(i1, i2) self.assertEqual(i1, a & b) # __and__ is intersection operator a &= b # testing __iand__ self.assertEqual(i1, a) def test_symdifference(self): "Testing sym_difference()." for i in range(len(self.geometries.topology_geoms)): a = OGRGeometry(self.geometries.topology_geoms[i].wkt_a) b = OGRGeometry(self.geometries.topology_geoms[i].wkt_b) d1 = OGRGeometry(self.geometries.sdiff_geoms[i].wkt) d2 = a.sym_difference(b) self.assertEqual(d1, d2) self.assertEqual(d1, a ^ b) # __xor__ is symmetric difference operator a ^= b # testing __ixor__ self.assertEqual(d1, a) def test_union(self): "Testing union()." for i in range(len(self.geometries.topology_geoms)): a = OGRGeometry(self.geometries.topology_geoms[i].wkt_a) b = OGRGeometry(self.geometries.topology_geoms[i].wkt_b) u1 = OGRGeometry(self.geometries.union_geoms[i].wkt) u2 = a.union(b) self.assertEqual(u1, u2) self.assertEqual(u1, a | b) # __or__ is union operator a |= b # testing __ior__ self.assertEqual(u1, a) def test_add(self): "Testing GeometryCollection.add()." # Can't insert a Point into a MultiPolygon. mp = OGRGeometry('MultiPolygon') pnt = OGRGeometry('POINT(5 23)') with self.assertRaises(GDALException): mp.add(pnt) # GeometryCollection.add may take an OGRGeometry (if another collection # of the same type all child geoms will be added individually) or WKT. for mp in self.geometries.multipolygons: mpoly = OGRGeometry(mp.wkt) mp1 = OGRGeometry('MultiPolygon') mp2 = OGRGeometry('MultiPolygon') mp3 = OGRGeometry('MultiPolygon') for poly in mpoly: mp1.add(poly) # Adding a geometry at a time mp2.add(poly.wkt) # Adding WKT mp3.add(mpoly) # Adding a MultiPolygon's entire contents at once. for tmp in (mp1, mp2, mp3): self.assertEqual(mpoly, tmp) def test_extent(self): "Testing `extent` property." # The xmin, ymin, xmax, ymax of the MultiPoint should be returned. mp = OGRGeometry('MULTIPOINT(5 23, 0 0, 10 50)') self.assertEqual((0.0, 0.0, 10.0, 50.0), mp.extent) # Testing on the 'real world' Polygon. poly = OGRGeometry(self.geometries.polygons[3].wkt) ring = poly.shell x, y = ring.x, ring.y xmin, ymin = min(x), min(y) xmax, ymax = max(x), max(y) self.assertEqual((xmin, ymin, xmax, ymax), poly.extent) def test_25D(self): "Testing 2.5D geometries." pnt_25d = OGRGeometry('POINT(1 2 3)') self.assertEqual('Point25D', pnt_25d.geom_type.name) self.assertEqual(3.0, pnt_25d.z) self.assertEqual(3, pnt_25d.coord_dim) ls_25d = OGRGeometry('LINESTRING(1 1 1,2 2 2,3 3 3)') self.assertEqual('LineString25D', ls_25d.geom_type.name) self.assertEqual([1.0, 2.0, 3.0], ls_25d.z) self.assertEqual(3, ls_25d.coord_dim) def test_pickle(self): "Testing pickle support." g1 = OGRGeometry('LINESTRING(1 1 1,2 2 2,3 3 3)', 'WGS84') g2 = pickle.loads(pickle.dumps(g1)) self.assertEqual(g1, g2) self.assertEqual(4326, g2.srs.srid) self.assertEqual(g1.srs.wkt, g2.srs.wkt) def test_ogrgeometry_transform_workaround(self): "Testing coordinate dimensions on geometries after transformation." # A bug in GDAL versions prior to 1.7 changes the coordinate # dimension of a geometry after it has been transformed. # This test ensures that the bug workarounds employed within # `OGRGeometry.transform` indeed work. wkt_2d = "MULTILINESTRING ((0 0,1 1,2 2))" wkt_3d = "MULTILINESTRING ((0 0 0,1 1 1,2 2 2))" srid = 4326 # For both the 2D and 3D MultiLineString, ensure _both_ the dimension # of the collection and the component LineString have the expected # coordinate dimension after transform. geom = OGRGeometry(wkt_2d, srid) geom.transform(srid) self.assertEqual(2, geom.coord_dim) self.assertEqual(2, geom[0].coord_dim) self.assertEqual(wkt_2d, geom.wkt) geom = OGRGeometry(wkt_3d, srid) geom.transform(srid) self.assertEqual(3, geom.coord_dim) self.assertEqual(3, geom[0].coord_dim) self.assertEqual(wkt_3d, geom.wkt) # Testing binary predicates, `assertIs` is used to check that bool is returned. def test_equivalence_regression(self): "Testing equivalence methods with non-OGRGeometry instances." self.assertIsNotNone(OGRGeometry('POINT(0 0)')) self.assertNotEqual(OGRGeometry('LINESTRING(0 0, 1 1)'), 3) def test_contains(self): self.assertIs(OGRGeometry('POINT(0 0)').contains(OGRGeometry('POINT(0 0)')), True) self.assertIs(OGRGeometry('POINT(0 0)').contains(OGRGeometry('POINT(0 1)')), False) def test_crosses(self): self.assertIs(OGRGeometry('LINESTRING(0 0, 1 1)').crosses(OGRGeometry('LINESTRING(0 1, 1 0)')), True) self.assertIs(OGRGeometry('LINESTRING(0 0, 0 1)').crosses(OGRGeometry('LINESTRING(1 0, 1 1)')), False) def test_disjoint(self): self.assertIs(OGRGeometry('LINESTRING(0 0, 1 1)').disjoint(OGRGeometry('LINESTRING(0 1, 1 0)')), False) self.assertIs(OGRGeometry('LINESTRING(0 0, 0 1)').disjoint(OGRGeometry('LINESTRING(1 0, 1 1)')), True) def test_equals(self): self.assertIs(OGRGeometry('POINT(0 0)').contains(OGRGeometry('POINT(0 0)')), True) self.assertIs(OGRGeometry('POINT(0 0)').contains(OGRGeometry('POINT(0 1)')), False) def test_intersects(self): self.assertIs(OGRGeometry('LINESTRING(0 0, 1 1)').intersects(OGRGeometry('LINESTRING(0 1, 1 0)')), True) self.assertIs(OGRGeometry('LINESTRING(0 0, 0 1)').intersects(OGRGeometry('LINESTRING(1 0, 1 1)')), False) def test_overlaps(self): self.assertIs( OGRGeometry('POLYGON ((0 0, 0 2, 2 2, 2 0, 0 0))').overlaps( OGRGeometry('POLYGON ((1 1, 1 5, 5 5, 5 1, 1 1))') ), True ) self.assertIs(OGRGeometry('POINT(0 0)').overlaps(OGRGeometry('POINT(0 1)')), False) def test_touches(self): self.assertIs( OGRGeometry('POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))').touches(OGRGeometry('LINESTRING(0 2, 2 0)')), True ) self.assertIs(OGRGeometry('POINT(0 0)').touches(OGRGeometry('POINT(0 1)')), False) def test_within(self): self.assertIs( OGRGeometry('POINT(0.5 0.5)').within(OGRGeometry('POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))')), True ) self.assertIs(OGRGeometry('POINT(0 0)').within(OGRGeometry('POINT(0 1)')), False) def test_from_gml(self): self.assertEqual( OGRGeometry('POINT(0 0)'), OGRGeometry.from_gml( '<gml:Point gml:id="p21" srsName="http://www.opengis.net/def/crs/EPSG/0/4326">' ' <gml:pos srsDimension="2">0 0</gml:pos>' '</gml:Point>' ), ) def test_empty(self): self.assertIs(OGRGeometry('POINT (0 0)').empty, False) self.assertIs(OGRGeometry('POINT EMPTY').empty, True) def test_empty_point_to_geos(self): p = OGRGeometry('POINT EMPTY', srs=4326) self.assertEqual(p.geos.ewkt, p.ewkt)
from __future__ import unicode_literals import datetime from decimal import Decimal import re from django.db import connection from django.db.models import Avg, Sum, Count, Max, Min from django.test import TestCase, Approximate from django.test.utils import CaptureQueriesContext from .models import Author, Publisher, Book, Store class BaseAggregateTestCase(TestCase): fixtures = ["aggregation.json"] def test_empty_aggregate(self): self.assertEqual(Author.objects.all().aggregate(), {}) def test_single_aggregate(self): vals = Author.objects.aggregate(Avg("age")) self.assertEqual(vals, {"age__avg": Approximate(37.4, places=1)}) def test_multiple_aggregates(self): vals = Author.objects.aggregate(Sum("age"), Avg("age")) self.assertEqual(vals, {"age__sum": 337, "age__avg": Approximate(37.4, places=1)}) def test_filter_aggregate(self): vals = Author.objects.filter(age__gt=29).aggregate(Sum("age")) self.assertEqual(len(vals), 1) self.assertEqual(vals["age__sum"], 254) def test_related_aggregate(self): vals = Author.objects.aggregate(Avg("friends__age")) self.assertEqual(len(vals), 1) self.assertAlmostEqual(vals["friends__age__avg"], 34.07, places=2) vals = Book.objects.filter(rating__lt=4.5).aggregate(Avg("authors__age")) self.assertEqual(len(vals), 1) self.assertAlmostEqual(vals["authors__age__avg"], 38.2857, places=2) vals = Author.objects.all().filter(name__contains="a").aggregate(Avg("book__rating")) self.assertEqual(len(vals), 1) self.assertEqual(vals["book__rating__avg"], 4.0) vals = Book.objects.aggregate(Sum("publisher__num_awards")) self.assertEqual(len(vals), 1) self.assertEqual(vals["publisher__num_awards__sum"], 30) vals = Publisher.objects.aggregate(Sum("book__price")) self.assertEqual(len(vals), 1) self.assertEqual(vals["book__price__sum"], Decimal("270.27")) def test_aggregate_multi_join(self): vals = Store.objects.aggregate(Max("books__authors__age")) self.assertEqual(len(vals), 1) self.assertEqual(vals["books__authors__age__max"], 57) vals = Author.objects.aggregate(Min("book__publisher__num_awards")) self.assertEqual(len(vals), 1) self.assertEqual(vals["book__publisher__num_awards__min"], 1) def test_aggregate_alias(self): vals = Store.objects.filter(name="Amazon.com").aggregate(amazon_mean=Avg("books__rating")) self.assertEqual(len(vals), 1) self.assertAlmostEqual(vals["amazon_mean"], 4.08, places=2) def test_annotate_basic(self): self.assertQuerysetEqual( Book.objects.annotate().order_by('pk'), [ "The Definitive Guide to Django: Web Development Done Right", "Sams Teach Yourself Django in 24 Hours", "Practical Django Projects", "Python Web Development with Django", "Artificial Intelligence: A Modern Approach", "Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp" ], lambda b: b.name ) books = Book.objects.annotate(mean_age=Avg("authors__age")) b = books.get(pk=1) self.assertEqual( b.name, 'The Definitive Guide to Django: Web Development Done Right' ) self.assertEqual(b.mean_age, 34.5) def test_annotate_m2m(self): books = Book.objects.filter(rating__lt=4.5).annotate(Avg("authors__age")).order_by("name") self.assertQuerysetEqual( books, [ ('Artificial Intelligence: A Modern Approach', 51.5), ('Practical Django Projects', 29.0), ('Python Web Development with Django', Approximate(30.3, places=1)), ('Sams Teach Yourself Django in 24 Hours', 45.0) ], lambda b: (b.name, b.authors__age__avg), ) books = Book.objects.annotate(num_authors=Count("authors")).order_by("name") self.assertQuerysetEqual( books, [ ('Artificial Intelligence: A Modern Approach', 2), ('Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp', 1), ('Practical Django Projects', 1), ('Python Web Development with Django', 3), ('Sams Teach Yourself Django in 24 Hours', 1), ('The Definitive Guide to Django: Web Development Done Right', 2) ], lambda b: (b.name, b.num_authors) ) def test_backwards_m2m_annotate(self): authors = Author.objects.filter(name__contains="a").annotate(Avg("book__rating")).order_by("name") self.assertQuerysetEqual( authors, [ ('Adrian Holovaty', 4.5), ('Brad Dayley', 3.0), ('Jacob Kaplan-Moss', 4.5), ('James Bennett', 4.0), ('Paul Bissex', 4.0), ('Stuart Russell', 4.0) ], lambda a: (a.name, a.book__rating__avg) ) authors = Author.objects.annotate(num_books=Count("book")).order_by("name") self.assertQuerysetEqual( authors, [ ('Adrian Holovaty', 1), ('Brad Dayley', 1), ('Jacob Kaplan-Moss', 1), ('James Bennett', 1), ('Jeffrey Forcier', 1), ('Paul Bissex', 1), ('Peter Norvig', 2), ('Stuart Russell', 1), ('Wesley J. Chun', 1) ], lambda a: (a.name, a.num_books) ) def test_reverse_fkey_annotate(self): books = Book.objects.annotate(Sum("publisher__num_awards")).order_by("name") self.assertQuerysetEqual( books, [ ('Artificial Intelligence: A Modern Approach', 7), ('Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp', 9), ('Practical Django Projects', 3), ('Python Web Development with Django', 7), ('Sams Teach Yourself Django in 24 Hours', 1), ('The Definitive Guide to Django: Web Development Done Right', 3) ], lambda b: (b.name, b.publisher__num_awards__sum) ) publishers = Publisher.objects.annotate(Sum("book__price")).order_by("name") self.assertQuerysetEqual( publishers, [ ('Apress', Decimal("59.69")), ("Jonno's House of Books", None), ('Morgan Kaufmann', Decimal("75.00")), ('Prentice Hall', Decimal("112.49")), ('Sams', Decimal("23.09")) ], lambda p: (p.name, p.book__price__sum) ) def test_annotate_values(self): books = list(Book.objects.filter(pk=1).annotate(mean_age=Avg("authors__age")).values()) self.assertEqual( books, [ { "contact_id": 1, "id": 1, "isbn": "159059725", "mean_age": 34.5, "name": "The Definitive Guide to Django: Web Development Done Right", "pages": 447, "price": Approximate(Decimal("30")), "pubdate": datetime.date(2007, 12, 6), "publisher_id": 1, "rating": 4.5, } ] ) books = Book.objects.filter(pk=1).annotate(mean_age=Avg('authors__age')).values('pk', 'isbn', 'mean_age') self.assertEqual( list(books), [ { "pk": 1, "isbn": "159059725", "mean_age": 34.5, } ] ) books = Book.objects.filter(pk=1).annotate(mean_age=Avg("authors__age")).values("name") self.assertEqual( list(books), [ { "name": "The Definitive Guide to Django: Web Development Done Right" } ] ) books = Book.objects.filter(pk=1).values().annotate(mean_age=Avg('authors__age')) self.assertEqual( list(books), [ { "contact_id": 1, "id": 1, "isbn": "159059725", "mean_age": 34.5, "name": "The Definitive Guide to Django: Web Development Done Right", "pages": 447, "price": Approximate(Decimal("30")), "pubdate": datetime.date(2007, 12, 6), "publisher_id": 1, "rating": 4.5, } ] ) books = Book.objects.values("rating").annotate(n_authors=Count("authors__id"), mean_age=Avg("authors__age")).order_by("rating") self.assertEqual( list(books), [ { "rating": 3.0, "n_authors": 1, "mean_age": 45.0, }, { "rating": 4.0, "n_authors": 6, "mean_age": Approximate(37.16, places=1) }, { "rating": 4.5, "n_authors": 2, "mean_age": 34.5, }, { "rating": 5.0, "n_authors": 1, "mean_age": 57.0, } ] ) authors = Author.objects.annotate(Avg("friends__age")).order_by("name") self.assertEqual(len(authors), 9) self.assertQuerysetEqual( authors, [ ('Adrian Holovaty', 32.0), ('Brad Dayley', None), ('Jacob Kaplan-Moss', 29.5), ('James Bennett', 34.0), ('Jeffrey Forcier', 27.0), ('Paul Bissex', 31.0), ('Peter Norvig', 46.0), ('Stuart Russell', 57.0), ('Wesley J. Chun', Approximate(33.66, places=1)) ], lambda a: (a.name, a.friends__age__avg) ) def test_count(self): vals = Book.objects.aggregate(Count("rating")) self.assertEqual(vals, {"rating__count": 6}) vals = Book.objects.aggregate(Count("rating", distinct=True)) self.assertEqual(vals, {"rating__count": 4}) def test_fkey_aggregate(self): explicit = list(Author.objects.annotate(Count('book__id'))) implicit = list(Author.objects.annotate(Count('book'))) self.assertEqual(explicit, implicit) def test_annotate_ordering(self): books = Book.objects.values('rating').annotate(oldest=Max('authors__age')).order_by('oldest', 'rating') self.assertEqual( list(books), [ { "rating": 4.5, "oldest": 35, }, { "rating": 3.0, "oldest": 45 }, { "rating": 4.0, "oldest": 57, }, { "rating": 5.0, "oldest": 57, } ] ) books = Book.objects.values("rating").annotate(oldest=Max("authors__age")).order_by("-oldest", "-rating") self.assertEqual( list(books), [ { "rating": 5.0, "oldest": 57, }, { "rating": 4.0, "oldest": 57, }, { "rating": 3.0, "oldest": 45, }, { "rating": 4.5, "oldest": 35, } ] ) def test_aggregate_annotation(self): vals = Book.objects.annotate(num_authors=Count("authors__id")).aggregate(Avg("num_authors")) self.assertEqual(vals, {"num_authors__avg": Approximate(1.66, places=1)}) def test_filtering(self): p = Publisher.objects.create(name='Expensive Publisher', num_awards=0) Book.objects.create( name='ExpensiveBook1', pages=1, isbn='111', rating=3.5, price=Decimal("1000"), publisher=p, contact_id=1, pubdate=datetime.date(2008,12,1) ) Book.objects.create( name='ExpensiveBook2', pages=1, isbn='222', rating=4.0, price=Decimal("1000"), publisher=p, contact_id=1, pubdate=datetime.date(2008,12,2) ) Book.objects.create( name='ExpensiveBook3', pages=1, isbn='333', rating=4.5, price=Decimal("35"), publisher=p, contact_id=1, pubdate=datetime.date(2008,12,3) ) publishers = Publisher.objects.annotate(num_books=Count("book__id")).filter(num_books__gt=1).order_by("pk") self.assertQuerysetEqual( publishers, [ "Apress", "Prentice Hall", "Expensive Publisher", ], lambda p: p.name, ) publishers = Publisher.objects.filter(book__price__lt=Decimal("40.0")).order_by("pk") self.assertQuerysetEqual( publishers, [ "Apress", "Apress", "Sams", "Prentice Hall", "Expensive Publisher", ], lambda p: p.name ) publishers = Publisher.objects.annotate(num_books=Count("book__id")).filter(num_books__gt=1, book__price__lt=Decimal("40.0")).order_by("pk") self.assertQuerysetEqual( publishers, [ "Apress", "Prentice Hall", "Expensive Publisher", ], lambda p: p.name, ) publishers = Publisher.objects.filter(book__price__lt=Decimal("40.0")).annotate(num_books=Count("book__id")).filter(num_books__gt=1).order_by("pk") self.assertQuerysetEqual( publishers, [ "Apress", ], lambda p: p.name ) publishers = Publisher.objects.annotate(num_books=Count("book")).filter(num_books__range=[1, 3]).order_by("pk") self.assertQuerysetEqual( publishers, [ "Apress", "Sams", "Prentice Hall", "Morgan Kaufmann", "Expensive Publisher", ], lambda p: p.name ) publishers = Publisher.objects.annotate(num_books=Count("book")).filter(num_books__range=[1, 2]).order_by("pk") self.assertQuerysetEqual( publishers, [ "Apress", "Sams", "Prentice Hall", "Morgan Kaufmann", ], lambda p: p.name ) publishers = Publisher.objects.annotate(num_books=Count("book")).filter(num_books__in=[1, 3]).order_by("pk") self.assertQuerysetEqual( publishers, [ "Sams", "Morgan Kaufmann", "Expensive Publisher", ], lambda p: p.name, ) publishers = Publisher.objects.annotate(num_books=Count("book")).filter(num_books__isnull=True) self.assertEqual(len(publishers), 0) def test_annotation(self): vals = Author.objects.filter(pk=1).aggregate(Count("friends__id")) self.assertEqual(vals, {"friends__id__count": 2}) books = Book.objects.annotate(num_authors=Count("authors__name")).filter(num_authors__ge=2).order_by("pk") self.assertQuerysetEqual( books, [ "The Definitive Guide to Django: Web Development Done Right", "Artificial Intelligence: A Modern Approach", ], lambda b: b.name ) authors = Author.objects.annotate(num_friends=Count("friends__id", distinct=True)).filter(num_friends=0).order_by("pk") self.assertQuerysetEqual( authors, [ "Brad Dayley", ], lambda a: a.name ) publishers = Publisher.objects.annotate(num_books=Count("book__id")).filter(num_books__gt=1).order_by("pk") self.assertQuerysetEqual( publishers, [ "Apress", "Prentice Hall", ], lambda p: p.name ) publishers = Publisher.objects.filter(book__price__lt=Decimal("40.0")).annotate(num_books=Count("book__id")).filter(num_books__gt=1) self.assertQuerysetEqual( publishers, [ "Apress", ], lambda p: p.name ) books = Book.objects.annotate(num_authors=Count("authors__id")).filter(authors__name__contains="Norvig", num_authors__gt=1) self.assertQuerysetEqual( books, [ "Artificial Intelligence: A Modern Approach", ], lambda b: b.name ) def test_more_aggregation(self): a = Author.objects.get(name__contains='Norvig') b = Book.objects.get(name__contains='Done Right') b.authors.add(a) b.save() vals = Book.objects.annotate(num_authors=Count("authors__id")).filter(authors__name__contains="Norvig", num_authors__gt=1).aggregate(Avg("rating")) self.assertEqual(vals, {"rating__avg": 4.25}) def test_even_more_aggregate(self): publishers = Publisher.objects.annotate(earliest_book=Min("book__pubdate")).exclude(earliest_book=None).order_by("earliest_book").values() self.assertEqual( list(publishers), [ { 'earliest_book': datetime.date(1991, 10, 15), 'num_awards': 9, 'id': 4, 'name': 'Morgan Kaufmann' }, { 'earliest_book': datetime.date(1995, 1, 15), 'num_awards': 7, 'id': 3, 'name': 'Prentice Hall' }, { 'earliest_book': datetime.date(2007, 12, 6), 'num_awards': 3, 'id': 1, 'name': 'Apress' }, { 'earliest_book': datetime.date(2008, 3, 3), 'num_awards': 1, 'id': 2, 'name': 'Sams' } ] ) vals = Store.objects.aggregate(Max("friday_night_closing"), Min("original_opening")) self.assertEqual( vals, { "friday_night_closing__max": datetime.time(23, 59, 59), "original_opening__min": datetime.datetime(1945, 4, 25, 16, 24, 14), } ) def test_annotate_values_list(self): books = Book.objects.filter(pk=1).annotate(mean_age=Avg("authors__age")).values_list("pk", "isbn", "mean_age") self.assertEqual( list(books), [ (1, "159059725", 34.5), ] ) books = Book.objects.filter(pk=1).annotate(mean_age=Avg("authors__age")).values_list("isbn") self.assertEqual( list(books), [ ('159059725',) ] ) books = Book.objects.filter(pk=1).annotate(mean_age=Avg("authors__age")).values_list("mean_age") self.assertEqual( list(books), [ (34.5,) ] ) books = Book.objects.filter(pk=1).annotate(mean_age=Avg("authors__age")).values_list("mean_age", flat=True) self.assertEqual(list(books), [34.5]) books = Book.objects.values_list("price").annotate(count=Count("price")).order_by("-count", "price") self.assertEqual( list(books), [ (Decimal("29.69"), 2), (Decimal('23.09'), 1), (Decimal('30'), 1), (Decimal('75'), 1), (Decimal('82.8'), 1), ] ) def test_dates_with_aggregation(self): """ Test that .dates() returns a distinct set of dates when applied to a QuerySet with aggregation. Refs #18056. Previously, .dates() would return distinct (date_kind, aggregation) sets, in this case (year, num_authors), so 2008 would be returned twice because there are books from 2008 with a different number of authors. """ dates = Book.objects.annotate(num_authors=Count("authors")).dates('pubdate', 'year') self.assertQuerysetEqual( dates, [ "datetime.date(1991, 1, 1)", "datetime.date(1995, 1, 1)", "datetime.date(2007, 1, 1)", "datetime.date(2008, 1, 1)" ] ) def test_values_aggregation(self): # Refs #20782 max_rating = Book.objects.values('rating').aggregate(max_rating=Max('rating')) self.assertEqual(max_rating['max_rating'], 5) max_books_per_rating = Book.objects.values('rating').annotate( books_per_rating=Count('id') ).aggregate(Max('books_per_rating')) self.assertEqual( max_books_per_rating, {'books_per_rating__max': 3}) def test_ticket17424(self): """ Check that doing exclude() on a foreign model after annotate() doesn't crash. """ all_books = list(Book.objects.values_list('pk', flat=True).order_by('pk')) annotated_books = Book.objects.order_by('pk').annotate(one=Count("id")) # The value doesn't matter, we just need any negative # constraint on a related model that's a noop. excluded_books = annotated_books.exclude(publisher__name="__UNLIKELY_VALUE__") # Try to generate query tree str(excluded_books.query) self.assertQuerysetEqual(excluded_books, all_books, lambda x: x.pk) # Check internal state self.assertIsNone(annotated_books.query.alias_map["aggregation_book"].join_type) self.assertIsNone(excluded_books.query.alias_map["aggregation_book"].join_type) def test_ticket12886(self): """ Check that aggregation over sliced queryset works correctly. """ qs = Book.objects.all().order_by('-rating')[0:3] vals = qs.aggregate(average_top3_rating=Avg('rating'))['average_top3_rating'] self.assertAlmostEqual(vals, 4.5, places=2) def test_ticket11881(self): """ Check that subqueries do not needlessly contain ORDER BY, SELECT FOR UPDATE or select_related() stuff. """ qs = Book.objects.all().select_for_update().order_by( 'pk').select_related('publisher').annotate(max_pk=Max('pk')) with CaptureQueriesContext(connection) as captured_queries: qs.aggregate(avg_pk=Avg('max_pk')) self.assertEqual(len(captured_queries), 1) qstr = captured_queries[0]['sql'].lower() self.assertNotIn('for update', qstr) forced_ordering = connection.ops.force_no_ordering() if forced_ordering: # If the backend needs to force an ordering we make sure it's # the only "ORDER BY" clause present in the query. self.assertEqual( re.findall(r'order by (\w+)', qstr), [', '.join(forced_ordering).lower()] ) else: self.assertNotIn('order by', qstr) self.assertEqual(qstr.count(' join '), 0)
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import with_statement import os import sys import inspect from collections import OrderedDict from os.path import join as pjoin this_dir = os.path.abspath(os.path.split(__file__)[0]) sys.path.insert(0, os.path.join(this_dir, '../')) from libcloud.compute .base import NodeDriver from libcloud.compute.providers import get_driver as get_compute_driver from libcloud.compute.providers import DRIVERS as COMPUTE_DRIVERS from libcloud.compute.types import Provider as ComputeProvider from libcloud.loadbalancer.base import Driver as LBDriver from libcloud.loadbalancer.providers import get_driver as get_lb_driver from libcloud.loadbalancer.providers import DRIVERS as LB_DRIVERS from libcloud.loadbalancer.types import Provider as LBProvider from libcloud.storage.base import StorageDriver from libcloud.storage.providers import get_driver as get_storage_driver from libcloud.storage.providers import DRIVERS as STORAGE_DRIVERS from libcloud.storage.types import Provider as StorageProvider from libcloud.dns.base import DNSDriver from libcloud.dns.providers import get_driver as get_dns_driver from libcloud.dns.providers import DRIVERS as DNS_DRIVERS from libcloud.dns.types import Provider as DNSProvider REQUIRED_DEPENDENCIES = [ 'pysphere' ] for dependency in REQUIRED_DEPENDENCIES: try: __import__(dependency) except ImportError: msg = 'Missing required dependency: %s' % (dependency) raise ImportError(msg) HEADER = ('.. NOTE: This file has been generated automatically using ' 'generate_provider_feature_matrix_table.py script, don\'t manually ' 'edit it') BASE_API_METHODS = { 'compute_main': ['list_nodes', 'create_node', 'reboot_node', 'destroy_node', 'list_images', 'list_sizes', 'deploy_node'], 'compute_image_management': ['list_images', 'get_image', 'create_image', 'delete_image', 'copy_image'], 'compute_block_storage': ['list_volumes', 'create_volume', 'destroy_volume', 'attach_volume', 'detach_volume', 'list_volume_snapshots', 'create_volume_snapshot'], 'compute_key_pair_management': ['list_key_pairs', 'get_key_pair', 'create_key_pair', 'import_key_pair_from_string', 'import_key_pair_from_file', 'delete_key_pair'], 'loadbalancer': ['create_balancer', 'list_balancers', 'balancer_list_members', 'balancer_attach_member', 'balancer_detach_member', 'balancer_attach_compute_node'], 'storage_main': ['list_containers', 'list_container_objects', 'iterate_containers', 'iterate_container_objects', 'create_container', 'delete_container', 'upload_object', 'upload_object_via_stream', 'download_object', 'download_object_as_stream', 'delete_object'], 'storage_cdn': ['enable_container_cdn', 'enable_object_cdn', 'get_container_cdn_url', 'get_object_cdn_url'], 'dns': ['list_zones', 'list_records', 'iterate_zones', 'iterate_records', 'create_zone', 'update_zone', 'create_record', 'update_record', 'delete_zone', 'delete_record'] } FRIENDLY_METHODS_NAMES = { 'compute_main': { 'list_nodes': 'list nodes', 'create_node': 'create node', 'reboot_node': 'reboot node', 'destroy_node': 'destroy node', 'list_images': 'list images', 'list_sizes': 'list sizes', 'deploy_node': 'deploy node' }, 'compute_image_management': { 'list_images': 'list images', 'get_image': 'get image', 'create_image': 'create image', 'copy_image': 'copy image', 'delete_image': 'delete image' }, 'compute_block_storage': { 'list_volumes': 'list volumes', 'create_volume': 'create volume', 'destroy_volume': 'destroy volume', 'attach_volume': 'attach volume', 'detach_volume': 'detach volume', 'list_volume_snapshots': 'list snapshots', 'create_volume_snapshot': 'create snapshot' }, 'compute_key_pair_management': { 'list_key_pairs': 'list key pairs', 'get_key_pair': 'get key pair', 'create_key_pair': 'create key pair', 'import_key_pair_from_string': 'import public key from string', 'import_key_pair_from_file': 'import public key from file', 'delete_key_pair': 'delete key pair' }, 'loadbalancer': { 'create_balancer': 'create balancer', 'list_balancers': 'list balancers', 'balancer_list_members': 'list members', 'balancer_attach_member': 'attach member', 'balancer_detach_member': 'detach member', 'balancer_attach_compute_node': 'attach compute node' }, 'storage_main': { 'list_containers': 'list containers', 'list_container_objects': 'list objects', 'create_container': 'create container', 'delete_container': 'delete container', 'upload_object': 'upload object', 'upload_object_via_stream': 'streaming object upload', 'download_object': 'download object', 'download_object_as_stream': 'streaming object download', 'delete_object': 'delete object' }, 'storage_cdn': { 'enable_container_cdn': 'enable container cdn', 'enable_object_cdn': 'enable object cdn', 'get_container_cdn_url': 'get container cdn URL', 'get_object_cdn_url': 'get object cdn URL', }, 'dns': { 'list_zones': 'list zones', 'list_records': 'list records', 'create_zone': 'create zone', 'update_zone': 'update zone', 'create_record': 'create record', 'update_record': 'update record', 'delete_zone': 'delete zone', 'delete_record': 'delete record' }, } IGNORED_PROVIDERS = [ 'dummy', 'local', # Deprecated constants 'cloudsigma_us', 'cloudfiles_swift' ] def get_provider_api_names(Provider): names = [key for key, value in Provider.__dict__.items() if not key.startswith('__')] return names def generate_providers_table(api): result = {} if api in ['compute_main', 'compute_image_management', 'compute_block_storage', 'compute_key_pair_management']: driver = NodeDriver drivers = COMPUTE_DRIVERS provider = ComputeProvider get_driver_method = get_compute_driver elif api == 'loadbalancer': driver = LBDriver drivers = LB_DRIVERS provider = LBProvider get_driver_method = get_lb_driver elif api in ['storage_main', 'storage_cdn']: driver = StorageDriver drivers = STORAGE_DRIVERS provider = StorageProvider get_driver_method = get_storage_driver elif api == 'dns': driver = DNSDriver drivers = DNS_DRIVERS provider = DNSProvider get_driver_method = get_dns_driver else: raise Exception('Invalid api: %s' % (api)) names = get_provider_api_names(provider) result = OrderedDict() for name in names: enum = getattr(provider, name) try: cls = get_driver_method(enum) except: # Deprecated providers throw an exception continue # Hack for providers which expose multiple classes and support multiple # API versions # TODO: Make entry per version if name.lower() == 'cloudsigma': from libcloud.compute.drivers.cloudsigma import \ CloudSigma_2_0_NodeDriver cls = CloudSigma_2_0_NodeDriver elif name.lower() == 'opennebula': from libcloud.compute.drivers.opennebula import \ OpenNebula_3_8_NodeDriver cls = OpenNebula_3_8_NodeDriver elif name.lower() == 'digital_ocean' and api.startswith('compute'): from libcloud.compute.drivers.digitalocean import \ DigitalOcean_v2_NodeDriver cls = DigitalOcean_v2_NodeDriver if name.lower() in IGNORED_PROVIDERS: continue driver_methods = dict(inspect.getmembers(cls, predicate=inspect.ismethod)) base_methods = dict(inspect.getmembers(driver, predicate=inspect.ismethod)) base_api_methods = BASE_API_METHODS[api] result[name] = {'name': cls.name, 'website': cls.website, 'constant': name, 'module': drivers[enum][0], 'class': drivers[enum][1], 'methods': {}} for method_name in base_api_methods: base_method = base_methods[method_name] driver_method = driver_methods[method_name] if method_name == 'deploy_node': features = getattr(cls, 'features', {}).get('create_node', []) is_implemented = len(features) >= 1 else: is_implemented = (id(driver_method.im_func) != id(base_method.im_func)) result[name]['methods'][method_name] = is_implemented return result def generate_rst_table(data): cols = len(data[0]) col_len = [max(len(r[i]) for r in data) for i in range(cols)] formatter = ' '.join('{:<%d}' % c for c in col_len) header = formatter.format(*['=' * c for c in col_len]) rows = [formatter.format(*row) for row in data] result = header + '\n' + rows[0] + '\n' + header + '\n' +\ '\n'.join(rows[1:]) + '\n' + header return result def generate_supported_methods_table(api, provider_matrix): base_api_methods = BASE_API_METHODS[api] data = [] header = [FRIENDLY_METHODS_NAMES[api][method_name] for method_name in base_api_methods if not method_name.startswith('iterate_')] data.append(['Provider'] + header) for provider, values in sorted(provider_matrix.items()): provider_name = '`%s`_' % (values['name']) row = [provider_name] # TODO: Make it nicer # list_* methods don't need to be implemented if iterate_* methods are # implemented if api == 'storage_main': if values['methods']['iterate_containers']: values['methods']['list_containers'] = True if values['methods']['iterate_container_objects']: values['methods']['list_container_objects'] = True elif api == 'dns': # list_zones and list_records don't need to be implemented if if values['methods']['iterate_zones']: values['methods']['list_zones'] = True if values['methods']['iterate_records']: values['methods']['list_records'] = True for method in base_api_methods: # TODO: ghetto if method.startswith('iterate_'): continue supported = values['methods'][method] if supported: row.append('yes') else: row.append('no') data.append(row) result = generate_rst_table(data) result += '\n\n' for provider, values in sorted(provider_matrix.items()): result += '.. _`%s`: %s\n' % (values['name'], values['website']) return result def generate_supported_providers_table(api, provider_matrix): data = [] header = ['Provider', 'Documentation', 'Provider constant', 'Module', 'Class Name'] data.append(header) for provider, values in sorted(provider_matrix.items()): name_str = '`%s`_' % (values['name']) module_str = ':mod:`%s`' % (values['module']) class_str = ':class:`%s`' % (values['class']) params = {'api': api, 'provider': provider.lower()} driver_docs_path = pjoin(this_dir, '../docs/%(api)s/drivers/%(provider)s.rst' % params) if os.path.exists(driver_docs_path): docs_link = ':doc:`Click </%(api)s/drivers/%(provider)s>`' % params else: docs_link = '' row = [name_str, docs_link, values['constant'], module_str, class_str] data.append(row) result = generate_rst_table(data) result += '\n\n' for provider, values in sorted(provider_matrix.items()): result += '.. _`%s`: %s\n' % (values['name'], values['website']) return result def generate_tables(): apis = BASE_API_METHODS.keys() for api in apis: result = generate_providers_table(api) docs_dir = api if api.startswith('compute'): docs_dir = 'compute' elif api.startswith('storage'): docs_dir = 'storage' supported_providers = generate_supported_providers_table(docs_dir, result) supported_methods = generate_supported_methods_table(api, result) current_path = os.path.dirname(__file__) target_dir = os.path.abspath(pjoin(current_path, '../docs/%s/' % (docs_dir))) file_name_1 = '_supported_providers.rst' file_name_2 = '_supported_methods.rst' if api == 'compute_main': file_name_2 = '_supported_methods_main.rst' elif api == 'compute_image_management': file_name_2 = '_supported_methods_image_management.rst' elif api == 'compute_block_storage': file_name_2 = '_supported_methods_block_storage.rst' elif api == 'compute_key_pair_management': file_name_2 = '_supported_methods_key_pair_management.rst' elif api == 'storage_main': file_name_2 = '_supported_methods_main.rst' elif api == 'storage_cdn': file_name_2 = '_supported_methods_cdn.rst' supported_providers_path = pjoin(target_dir, file_name_1) supported_methods_path = pjoin(target_dir, file_name_2) with open(supported_providers_path, 'w') as fp: fp.write(HEADER + '\n\n') fp.write(supported_providers) with open(supported_methods_path, 'w') as fp: fp.write(HEADER + '\n\n') fp.write(supported_methods) generate_tables()
from flask import render_template, Blueprint, jsonify, request, abort, Response, current_app from paramiko.client import SSHClient, AutoAddPolicy import sys import random views = Blueprint("views", __name__, template_folder="templates") def _exec_command(command, switch_name=''): if not switch_name: switch_name = [s for s in current_app.config['switches']][0] current_app.logger.info('running on %s: %s' % (switch_name, command)) client = SSHClient() client.set_missing_host_key_policy(AutoAddPolicy()) client.connect(current_app.config['switches'][switch_name]['address'], username=current_app.config['switches'][switch_name]['user'], key_filename=current_app.config['switches'][switch_name]['key']) sin, sout, serr = client.exec_command(command) output = sout.read().decode('ascii') errout = serr.read().decode('ascii') client.close() if errout or 'Cmd exec error' in output: abort(500, "Error executing '%s' on %s" % (command, switch_name)) current_app.logger.info('output from %s: %s' % (switch_name, output)) return output, errout def _encode_mac(mac): # turns 0A:1b:2c:3D:4e:5F or 0A1b2C3d4E5f into 0a1b.2c3d.4e5f (switch format) if ':' in mac: mac = mac.lower().replace(':','') return '%s.%s.%s' % (mac[0:4], mac[4:8], mac[8:12]) return mac def _decode_mac(mac): # turns 0a1b.2c3d.4e5f (switch format) into 0a:1b:2c:3d:4e:5f mac = mac.lower().replace('.','') return '%s:%s:%s:%s:%s:%s' % (mac[0:2], mac[2:4], mac[4:6], mac[6:8], mac[8:10], mac[10:12]) @views.route("/") def index(): verb = current_app.config['verbs'][random.randint(0,len(current_app.config['verbs'])-1)] noun = current_app.config['nouns'][random.randint(0,len(current_app.config['nouns'])-1)] return Response('a LANister always %s their %s' % (verb, noun), mimetype='text/plain') @views.route("/api/<switch_name>/interfaces/", methods=['GET']) def interface_list(switch_name): if 'macs' in request.args: macs = [_encode_mac(mac) for mac in request.args['macs'].split(',') if mac] output, errout = _exec_command('show mac address-table | i "%s"' % ('|'.join(macs)), switch_name) ports = {} for port in [i for i in output.strip().split('\n') if i]: port = port.split() if 'Eth' in port[-1]: ports[_decode_mac(port[2].strip())] = port[-1].strip() return jsonify(dict(ports=ports)) if 'descriptions' in request.args: descriptions = [i for i in request.args['descriptions'].split(',') if i] output, errout = _exec_command('show interface description | i %s' % ('|'.join(descriptions)), switch_name) ports = {} for port in [i for i in output.strip().split('\n') if i]: port = port.split() ports[port[-1].strip()] = port[0].strip() return jsonify(dict(ports=ports)) output, errout = _exec_command('show interface brief', switch_name) #TODO: parse this to json return Response(output, mimetype='text/plain') @views.route("/api/<switch_name>/interfaces/<interface_name>/", methods=['PUT','GET']) def interface(switch_name, interface_name): interface_name = interface_name.replace('_','/') if request.method == 'PUT': data = request.get_json(force=True) if 'bind' in data: # bind can be a channel or None command = '' if data['bind']: command = 'channel-group %s mode active' % (data['bind']) else: command = 'no channel-group' output, errout = _exec_command('config t ; interface %s ; %s ; exit' % (interface_name, command), switch_name) if 'state' in data: command = '' if data['state'] == 'down': command = 'shutdown' elif data['state'] == 'up': command = 'no shutdown' else: abort(400, '"state" must be "up" or "down" in interface configuration') ifname = interface_name.replace('Eth','') output, errout = _exec_command('config ; interface ethernet %s ; %s ; exit ; exit' % (ifname, command), switch_name) output, errout = _exec_command('show running-config interface %s' % (interface_name), switch_name) config = [i.strip() for i in output.split(interface_name.replace('Eth',''))[-1].strip().split('\n')] return jsonify(dict(name=interface_name, config=config)) @views.route("/api/<switch_name>/channels/<channel_name>/", methods=['POST','GET','DELETE']) def channel(switch_name, channel_name): if request.method == 'POST': output, errout = _exec_command('show interface brief | i Po%s' % (channel_name), switch_name) if output: abort(400, 'Channel group Po%s already exists' % (channel_name)) data = request.get_json(force=True, silent=True) command = 'config t ; interface port-channel %s' % (channel_name) if data and 'config' in data: command += ' ; %s' % (' ; '.join(data['config'])) if data and 'description' in data: command += ' ; %s' % (data['description']) output, errout = _exec_command(command, switch_name) else: output, errout = _exec_command('show interface brief | i Po%s' % (channel_name), switch_name) if not output: abort(404, 'No such channel group %s' % (channel_name)) if request.method == 'DELETE': output, errout = _exec_command('config t ; no interface port-channel %s ; exit' % (channel_name), switch_name) return Response(output, mimetype='text/plain') output, errout = _exec_command('show running-config interface port-channel%s' % (channel_name), switch_name) config = [i.strip() for i in output.split('port-channel%s' % (channel_name))[-1].strip().split('\n')] return jsonify(dict(name='port-channel%s' % (channel_name), config=config)) @views.route("/api/<switch_name>/macaddresses/", methods=['GET']) def mac_addresses(switch_name): output, errout = _exec_command('show mac address-table | i Eth', switch_name) output_desc, errout = _exec_command('show interface description | i Eth', switch_name) interfaces = {} for desc_line in [i for i in output_desc.strip().split('\n') if i]: interfaces[desc_line.split()[0].strip()] = desc_line.split()[-1].strip() macs = {} for line in [i for i in output.strip().split('\n') if i]: line = line.split() interface_description = line[-1].strip() macs[_decode_mac(line[2].strip())] = dict(interface=line[-1].strip(), description=interfaces[line[-1].strip()]) return jsonify(dict(macs=macs)) @views.route("/api/<switch_name>/macaddresses/<mac_address>/", methods=['GET']) def mac_address(switch_name, mac_address): mac_addresses = [_encode_mac(mac_address)] output, errout = _exec_command('show mac address-table | i "%s"' % ('|'.join(mac_addresses)), switch_name) macs = {} for line in [i for i in output.strip().split('\n') if i]: line = line.split() if 'Eth' in line[-1]: interface_description = line[-1].strip() output_desc, errout = _exec_command('show interface description | i %s' % (interface_description), switch_name) for desc_line in [i for i in output_desc.strip().split('\n') if i]: desc_line = desc_line.split() macs[_decode_mac(line[2].strip())] = dict(interface=line[-1].strip(), slot=desc_line[-1].strip()) return jsonify(dict(macs=macs)) @views.route("/api/<switch_name>/slots/", methods=['GET']) def slots(switch_name): output_macs, errout = _exec_command('show mac address-table | i Eth', switch_name) output_desc, errout = _exec_command('show interface description | i Eth', switch_name) interfaces = {} for mac_line in [i for i in output_macs.strip().split('\n') if i]: interfaces[mac_line.split()[-1].strip()] = _decode_mac(mac_line.split()[2].strip()) slots = {} for line in [i for i in output_desc.strip().split('\n') if i]: line = line.split() if 'SLOT' in line[-1] and len(line[-1].split('.')) in [2,3,4] and 'SLOT' in line[-1].split('.')[0]: slot_name, component = _parse_description(line[-1]) interface = line[0].strip() if not slot_name in slots: slots[slot_name] = dict(interfaces=[]) slots[slot_name]['interfaces'].append(dict(interface=interface, component=component, mac_address=interfaces[interface] if interface in interfaces else '')) return jsonify(dict(slots=slots)) @views.route("/api/<switch_name>/slots/<slot_name>/", methods=['GET']) def slot(switch_name, slot_name): output, errout = _exec_command('show interface description | i %s' % (slot_name), switch_name) slots = {} for line in [i for i in output.strip().split('\n') if i]: line = line.split() if 'Eth' in line[0]: slot_name, component = _parse_description(line[-1]) interface = line[0].strip() output_mac, errout = _exec_command('show mac address-table | i %s' % (interface), switch_name) for mac_line in [i for i in output_mac.strip().split('\n') if i]: mac_line = mac_line.split() if not slot_name in slots: slots[slot_name] = dict(interfaces=[]) slots[slot_name]['interfaces'].append(dict(interface=interface, component=component, mac_address=_decode_mac(mac_line[2].strip()))) return jsonify(dict(slots=slots)) def _parse_description(interface_description): slot_name = interface_description.split('.')[0].strip() if len(interface_description.split('.')) == 2: component = interface_description.split('.')[-1].strip() elif len(interface_description.split('.')) == 3: if interface_description.split('.')[-1].strip() in ['1ST', '2ND', '3RD', '4TH', '5TH', '6TH']: slot_name = ".".join([slot_name, interface_description.split('.')[-1].strip()]) component = interface_description.split('.')[-2].strip() else: component = ".".join(interface_description.split('.')[-2:]) else: if interface_description.split('.')[-1].strip() in ['1ST', '2ND', '3RD', '4TH', '5TH', '6TH']: slot_name = ".".join([slot_name, interface_description.split('.')[-1].strip()]) component = ".".join(interface_description.split('.')[-3:-1]) else: component = ".".join(interface_description.split('.')[-3:]) return slot_name, component
import pytest from itertools import chain, combinations, product import networkx as nx tree_all_pairs_lca = nx.tree_all_pairs_lowest_common_ancestor all_pairs_lca = nx.all_pairs_lowest_common_ancestor def get_pair(dictionary, n1, n2): if (n1, n2) in dictionary: return dictionary[n1, n2] else: return dictionary[n2, n1] class TestTreeLCA(object): @classmethod def setup_class(cls): cls.DG = nx.DiGraph() edges = [(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)] cls.DG.add_edges_from(edges) cls.ans = dict(tree_all_pairs_lca(cls.DG, 0)) gold = dict([((n, n), n) for n in cls.DG]) gold.update(dict(((0, i), 0) for i in range(1, 7))) gold.update({(1, 2): 0, (1, 3): 1, (1, 4): 1, (1, 5): 0, (1, 6): 0, (2, 3): 0, (2, 4): 0, (2, 5): 2, (2, 6): 2, (3, 4): 1, (3, 5): 0, (3, 6): 0, (4, 5): 0, (4, 6): 0, (5, 6): 2}) cls.gold = gold @staticmethod def assert_has_same_pairs(d1, d2): for (a, b) in ((min(pair), max(pair)) for pair in chain(d1, d2)): assert get_pair(d1, a, b) == get_pair(d2, a, b) def test_tree_all_pairs_lowest_common_ancestor1(self): """Specifying the root is optional.""" assert dict(tree_all_pairs_lca(self.DG)) == self.ans def test_tree_all_pairs_lowest_common_ancestor2(self): """Specifying only some pairs gives only those pairs.""" test_pairs = [(0, 1), (0, 1), (1, 0)] ans = dict(tree_all_pairs_lca(self.DG, 0, test_pairs)) assert (0, 1) in ans and (1, 0) in ans assert len(ans) == 2 def test_tree_all_pairs_lowest_common_ancestor3(self): """Specifying no pairs same as specifying all.""" all_pairs = chain(combinations(self.DG, 2), ((node, node) for node in self.DG)) ans = dict(tree_all_pairs_lca(self.DG, 0, all_pairs)) self.assert_has_same_pairs(ans, self.ans) def test_tree_all_pairs_lowest_common_ancestor4(self): """Gives the right answer.""" ans = dict(tree_all_pairs_lca(self.DG)) self.assert_has_same_pairs(self.gold, ans) def test_tree_all_pairs_lowest_common_ancestor5(self): """Handles invalid input correctly.""" empty_digraph = tree_all_pairs_lca(nx.DiGraph()) pytest.raises(nx.NetworkXPointlessConcept, list, empty_digraph) bad_pairs_digraph = tree_all_pairs_lca(self.DG, pairs=[(-1, -2)]) pytest.raises(nx.NodeNotFound, list, bad_pairs_digraph) def test_tree_all_pairs_lowest_common_ancestor6(self): """Works on subtrees.""" ans = dict(tree_all_pairs_lca(self.DG, 1)) gold = dict((pair, lca) for (pair, lca) in self.gold.items() if all(n in (1, 3, 4) for n in pair)) self.assert_has_same_pairs(gold, ans) def test_tree_all_pairs_lowest_common_ancestor7(self): """Works on disconnected nodes.""" G = nx.DiGraph() G.add_node(1) assert {(1, 1): 1} == dict(tree_all_pairs_lca(G)) G.add_node(0) assert {(1, 1): 1} == dict(tree_all_pairs_lca(G, 1)) assert {(0, 0): 0} == dict(tree_all_pairs_lca(G, 0)) pytest.raises(nx.NetworkXError, list, tree_all_pairs_lca(G)) def test_tree_all_pairs_lowest_common_ancestor8(self): """Raises right errors if not a tree.""" # Cycle G = nx.DiGraph([(1, 2), (2, 1)]) pytest.raises(nx.NetworkXError, list, tree_all_pairs_lca(G)) # DAG G = nx.DiGraph([(0, 2), (1, 2)]) pytest.raises(nx.NetworkXError, list, tree_all_pairs_lca(G)) def test_tree_all_pairs_lowest_common_ancestor9(self): """Test that pairs works correctly as a generator.""" pairs = iter([(0, 1), (0, 1), (1, 0)]) some_pairs = dict(tree_all_pairs_lca(self.DG, 0, pairs)) assert (0, 1) in some_pairs and (1, 0) in some_pairs assert len(some_pairs) == 2 def test_tree_all_pairs_lowest_common_ancestor10(self): """Test that pairs not in the graph raises error.""" lca = tree_all_pairs_lca(self.DG, 0, [(-1, -1)]) pytest.raises(nx.NodeNotFound, list, lca) def test_tree_all_pairs_lowest_common_ancestor11(self): """Test that None as a node in the graph raises an error.""" G = nx.DiGraph([(None, 3)]) pytest.raises(nx.NetworkXError, list, tree_all_pairs_lca(G)) pytest.raises(nx.NodeNotFound, list, tree_all_pairs_lca(self.DG, pairs=G.edges())) def test_tree_all_pairs_lowest_common_ancestor12(self): """Test that tree routine bails on DAGs.""" G = nx.DiGraph([(3, 4), (5, 4)]) pytest.raises(nx.NetworkXError, list, tree_all_pairs_lca(G)) def test_not_implemented_for(self): NNI = nx.NetworkXNotImplemented G = nx.Graph([(0, 1)]) pytest.raises(NNI, tree_all_pairs_lca, G) pytest.raises(NNI, all_pairs_lca, G) pytest.raises(NNI, nx.lowest_common_ancestor, G, 0, 1) G = nx.MultiGraph([(0, 1)]) pytest.raises(NNI, tree_all_pairs_lca, G) pytest.raises(NNI, all_pairs_lca, G) pytest.raises(NNI, nx.lowest_common_ancestor, G, 0, 1) G = nx.MultiDiGraph([(0, 1)]) pytest.raises(NNI, tree_all_pairs_lca, G) pytest.raises(NNI, all_pairs_lca, G) pytest.raises(NNI, nx.lowest_common_ancestor, G, 0, 1) def test_tree_all_pairs_lowest_common_ancestor13(self): """Test that it works on non-empty trees with no LCAs.""" G = nx.DiGraph() G.add_node(3) ans = list(tree_all_pairs_lca(G)) assert ans == [((3, 3), 3)] class TestDAGLCA: @classmethod def setup_class(cls): cls.DG = nx.DiGraph() nx.add_path(cls.DG, (0, 1, 2, 3)) nx.add_path(cls.DG, (0, 4, 3)) nx.add_path(cls.DG, (0, 5, 6, 8, 3)) nx.add_path(cls.DG, (5, 7, 8)) cls.DG.add_edge(6, 2) cls.DG.add_edge(7, 2) cls.root_distance = nx.shortest_path_length(cls.DG, source=0) cls.gold = {(1, 1): 1, (1, 2): 1, (1, 3): 1, (1, 4): 0, (1, 5): 0, (1, 6): 0, (1, 7): 0, (1, 8): 0, (2, 2): 2, (2, 3): 2, (2, 4): 0, (2, 5): 5, (2, 6): 6, (2, 7): 7, (2, 8): 7, (3, 3): 8, (3, 4): 4, (3, 5): 5, (3, 6): 6, (3, 7): 7, (3, 8): 8, (4, 4): 4, (4, 5): 0, (4, 6): 0, (4, 7): 0, (4, 8): 0, (5, 5): 5, (5, 6): 5, (5, 7): 5, (5, 8): 5, (6, 6): 6, (6, 7): 5, (6, 8): 6, (7, 7): 7, (7, 8): 7, (8, 8): 8} cls.gold.update(((0, n), 0) for n in cls.DG) def assert_lca_dicts_same(self, d1, d2, G=None): """Checks if d1 and d2 contain the same pairs and have a node at the same distance from root for each. If G is None use self.DG.""" if G is None: G = self.DG root_distance = self.root_distance else: roots = [n for n, deg in G.in_degree if deg == 0] assert(len(roots) == 1) root_distance = nx.shortest_path_length(G, source=roots[0]) for a, b in ((min(pair), max(pair)) for pair in chain(d1, d2)): assert (root_distance[get_pair(d1, a, b)] == root_distance[get_pair(d2, a, b)]) def test_all_pairs_lowest_common_ancestor1(self): """Produces the correct results.""" self.assert_lca_dicts_same(dict(all_pairs_lca(self.DG)), self.gold) def test_all_pairs_lowest_common_ancestor2(self): """Produces the correct results when all pairs given.""" all_pairs = list(product(self.DG.nodes(), self.DG.nodes())) ans = all_pairs_lca(self.DG, pairs=all_pairs) self.assert_lca_dicts_same(dict(ans), self.gold) def test_all_pairs_lowest_common_ancestor3(self): """Produces the correct results when all pairs given as a generator.""" all_pairs = product(self.DG.nodes(), self.DG.nodes()) ans = all_pairs_lca(self.DG, pairs=all_pairs) self.assert_lca_dicts_same(dict(ans), self.gold) def test_all_pairs_lowest_common_ancestor4(self): """Graph with two roots.""" G = self.DG.copy() G.add_edge(9, 10) G.add_edge(9, 4) gold = self.gold.copy() gold[9, 9] = 9 gold[9, 10] = 9 gold[9, 4] = 9 gold[9, 3] = 9 gold[10, 4] = 9 gold[10, 3] = 9 gold[10, 10] = 10 testing = dict(all_pairs_lca(G)) G.add_edge(-1, 9) G.add_edge(-1, 0) self.assert_lca_dicts_same(testing, gold, G) def test_all_pairs_lowest_common_ancestor5(self): """Test that pairs not in the graph raises error.""" pytest.raises(nx.NodeNotFound, all_pairs_lca, self.DG, [(-1, -1)]) def test_all_pairs_lowest_common_ancestor6(self): """Test that pairs with no LCA specified emits nothing.""" G = self.DG.copy() G.add_node(-1) gen = all_pairs_lca(G, [(-1, -1), (-1, 0)]) assert dict(gen) == {(-1, -1): -1} def test_all_pairs_lowest_common_ancestor7(self): """Test that LCA on null graph bails.""" pytest.raises(nx.NetworkXPointlessConcept, all_pairs_lca, nx.DiGraph()) def test_all_pairs_lowest_common_ancestor8(self): """Test that LCA on non-dags bails.""" pytest.raises(nx.NetworkXError, all_pairs_lca, nx.DiGraph([(3, 4), (4, 3)])) def test_all_pairs_lowest_common_ancestor9(self): """Test that it works on non-empty graphs with no LCAs.""" G = nx.DiGraph() G.add_node(3) ans = list(all_pairs_lca(G)) assert ans == [((3, 3), 3)] def test_all_pairs_lowest_common_ancestor10(self): """Test that it bails on None as a node.""" G = nx.DiGraph([(None, 3)]) pytest.raises(nx.NetworkXError, all_pairs_lca, G) pytest.raises(nx.NodeNotFound, all_pairs_lca, self.DG, pairs=G.edges()) def test_lowest_common_ancestor1(self): """Test that the one-pair function works on default.""" G = nx.DiGraph([(0, 1), (2, 1)]) sentinel = object() assert (nx.lowest_common_ancestor(G, 0, 2, default=sentinel) is sentinel) def test_lowest_common_ancestor2(self): """Test that the one-pair function works on identity.""" G = nx.DiGraph() G.add_node(3) assert nx.lowest_common_ancestor(G, 3, 3) == 3
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import logging import operator import os import subprocess import tempfile from luigi import six import luigi import luigi.hadoop from luigi.target import FileAlreadyExists, FileSystemTarget from luigi.task import flatten if six.PY3: unicode = str logger = logging.getLogger('luigi-interface') class HiveCommandError(RuntimeError): def __init__(self, message, out=None, err=None): super(HiveCommandError, self).__init__(message, out, err) self.message = message self.out = out self.err = err def load_hive_cmd(): return luigi.configuration.get_config().get('hive', 'command', 'hive') def get_hive_syntax(): return luigi.configuration.get_config().get('hive', 'release', 'cdh4') def run_hive(args, check_return_code=True): """ Runs the `hive` from the command line, passing in the given args, and returning stdout. With the apache release of Hive, so of the table existence checks (which are done using DESCRIBE do not exit with a return code of 0 so we need an option to ignore the return code and just return stdout for parsing """ cmd = [load_hive_cmd()] + args p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if check_return_code and p.returncode != 0: raise HiveCommandError("Hive command: {0} failed with error code: {1}".format(" ".join(cmd), p.returncode), stdout, stderr) return stdout def run_hive_cmd(hivecmd, check_return_code=True): """ Runs the given hive query and returns stdout. """ return run_hive(['-e', hivecmd], check_return_code) def run_hive_script(script): """ Runs the contents of the given script in hive and returns stdout. """ if not os.path.isfile(script): raise RuntimeError("Hive script: {0} does not exist.".format(script)) return run_hive(['-f', script]) @six.add_metaclass(abc.ABCMeta) class HiveClient(object): # interface @abc.abstractmethod def table_location(self, table, database='default', partition=None): """ Returns location of db.table (or db.table.partition). partition is a dict of partition key to value. """ pass @abc.abstractmethod def table_schema(self, table, database='default'): """ Returns list of [(name, type)] for each column in database.table. """ pass @abc.abstractmethod def table_exists(self, table, database='default', partition=None): """ Returns true if db.table (or db.table.partition) exists. partition is a dict of partition key to value. """ pass @abc.abstractmethod def partition_spec(self, partition): """ Turn a dict into a string partition specification """ pass class HiveCommandClient(HiveClient): """ Uses `hive` invocations to find information. """ def table_location(self, table, database='default', partition=None): cmd = "use {0}; describe formatted {1}".format(database, table) if partition is not None: cmd += " PARTITION ({0})".format(self.partition_spec(partition)) stdout = run_hive_cmd(cmd) for line in stdout.split("\n"): if "Location:" in line: return line.split("\t")[1] def table_exists(self, table, database='default', partition=None): if partition is None: stdout = run_hive_cmd('use {0}; show tables like "{1}";'.format(database, table)) return stdout and table.lower() in stdout else: stdout = run_hive_cmd("""use %s; show partitions %s partition (%s)""" % (database, table, self.partition_spec(partition))) if stdout: return True else: return False def table_schema(self, table, database='default'): describe = run_hive_cmd("use {0}; describe {1}".format(database, table)) if not describe or "does not exist" in describe: return None return [tuple([x.strip() for x in line.strip().split("\t")]) for line in describe.strip().split("\n")] def partition_spec(self, partition): """ Turns a dict into the a Hive partition specification string. """ return ','.join(["{0}='{1}'".format(k, v) for (k, v) in sorted(six.iteritems(partition), key=operator.itemgetter(0))]) class ApacheHiveCommandClient(HiveCommandClient): """ A subclass for the HiveCommandClient to (in some cases) ignore the return code from the hive command so that we can just parse the output. """ def table_schema(self, table, database='default'): describe = run_hive_cmd("use {0}; describe {1}".format(database, table), False) if not describe or "Table not found" in describe: return None return [tuple([x.strip() for x in line.strip().split("\t")]) for line in describe.strip().split("\n")] class MetastoreClient(HiveClient): def table_location(self, table, database='default', partition=None): with HiveThriftContext() as client: if partition is not None: partition_str = self.partition_spec(partition) thrift_table = client.get_partition_by_name(database, table, partition_str) else: thrift_table = client.get_table(database, table) return thrift_table.sd.location def table_exists(self, table, database='default', partition=None): with HiveThriftContext() as client: if partition is None: return table in client.get_all_tables(database) else: return partition in self._existing_partitions(table, database, client) def _existing_partitions(self, table, database, client): def _parse_partition_string(partition_string): partition_def = {} for part in partition_string.split("/"): name, value = part.split("=") partition_def[name] = value return partition_def # -1 is max_parts, the # of partition names to return (-1 = unlimited) partition_strings = client.get_partition_names(database, table, -1) return [_parse_partition_string(existing_partition) for existing_partition in partition_strings] def table_schema(self, table, database='default'): with HiveThriftContext() as client: return [(field_schema.name, field_schema.type) for field_schema in client.get_schema(database, table)] def partition_spec(self, partition): return "/".join("%s=%s" % (k, v) for (k, v) in sorted(six.iteritems(partition), key=operator.itemgetter(0))) class HiveThriftContext(object): """ Context manager for hive metastore client. """ def __enter__(self): try: from thrift import Thrift from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol # Note that this will only work with a CDH release. # This uses the thrift bindings generated by the ThriftHiveMetastore service in Beeswax. # If using the Apache release of Hive this import will fail. from hive_metastore import ThriftHiveMetastore config = luigi.configuration.get_config() host = config.get('hive', 'metastore_host') port = config.getint('hive', 'metastore_port') transport = TSocket.TSocket(host, port) transport = TTransport.TBufferedTransport(transport) protocol = TBinaryProtocol.TBinaryProtocol(transport) transport.open() self.transport = transport return ThriftHiveMetastore.Client(protocol) except ImportError as e: raise Exception('Could not import Hive thrift library:' + str(e)) def __exit__(self, exc_type, exc_val, exc_tb): self.transport.close() def get_default_client(): if get_hive_syntax() == "apache": return ApacheHiveCommandClient() else: return HiveCommandClient() client = get_default_client() class HiveQueryTask(luigi.hadoop.BaseHadoopJobTask): """ Task to run a hive query. """ # by default, we let hive figure these out. n_reduce_tasks = None bytes_per_reducer = None reducers_max = None @abc.abstractmethod def query(self): """ Text of query to run in hive """ raise RuntimeError("Must implement query!") def hiverc(self): """ Location of an rc file to run before the query if hiverc-location key is specified in client.cfg, will default to the value there otherwise returns None. Returning a list of rc files will load all of them in order. """ return luigi.configuration.get_config().get('hive', 'hiverc-location', default=None) def hiveconfs(self): """ Returns an dict of key=value settings to be passed along to the hive command line via --hiveconf. By default, sets mapred.job.name to task_id and if not None, sets: * mapred.reduce.tasks (n_reduce_tasks) * mapred.fairscheduler.pool (pool) or mapred.job.queue.name (pool) * hive.exec.reducers.bytes.per.reducer (bytes_per_reducer) * hive.exec.reducers.max (reducers_max) """ jcs = {} jcs['mapred.job.name'] = self.task_id if self.n_reduce_tasks is not None: jcs['mapred.reduce.tasks'] = self.n_reduce_tasks if self.pool is not None: # Supporting two schedulers: fair (default) and capacity using the same option scheduler_type = luigi.configuration.get_config().get('hadoop', 'scheduler', 'fair') if scheduler_type == 'fair': jcs['mapred.fairscheduler.pool'] = self.pool elif scheduler_type == 'capacity': jcs['mapred.job.queue.name'] = self.pool if self.bytes_per_reducer is not None: jcs['hive.exec.reducers.bytes.per.reducer'] = self.bytes_per_reducer if self.reducers_max is not None: jcs['hive.exec.reducers.max'] = self.reducers_max return jcs def job_runner(self): return HiveQueryRunner() class HiveQueryRunner(luigi.hadoop.JobRunner): """ Runs a HiveQueryTask by shelling out to hive. """ def prepare_outputs(self, job): """ Called before job is started. If output is a `FileSystemTarget`, create parent directories so the hive command won't fail """ outputs = flatten(job.output()) for o in outputs: if isinstance(o, FileSystemTarget): parent_dir = os.path.dirname(o.path) if parent_dir and not o.fs.exists(parent_dir): logger.info("Creating parent directory %r", parent_dir) try: # there is a possible race condition # which needs to be handled here o.fs.mkdir(parent_dir) except FileAlreadyExists: pass def run_job(self, job): self.prepare_outputs(job) with tempfile.NamedTemporaryFile() as f: query = job.query() if isinstance(query, unicode): query = query.encode('utf8') f.write(query) f.flush() arglist = [load_hive_cmd(), '-f', f.name] hiverc = job.hiverc() if hiverc: if isinstance(hiverc, str): hiverc = [hiverc] for rcfile in hiverc: arglist += ['-i', rcfile] if job.hiveconfs(): for k, v in six.iteritems(job.hiveconfs()): arglist += ['--hiveconf', '{0}={1}'.format(k, v)] logger.info(arglist) return luigi.hadoop.run_and_track_hadoop_job(arglist) class HiveTableTarget(luigi.Target): """ exists returns true if the table exists. """ def __init__(self, table, database='default', client=None): self.database = database self.table = table self.hive_cmd = load_hive_cmd() if client is None: client = get_default_client() self.client = client def exists(self): logger.debug("Checking Hive table '%s.%s' exists", self.database, self.table) return self.client.table_exists(self.table, self.database) @property def path(self): """ Returns the path to this table in HDFS. """ location = self.client.table_location(self.table, self.database) if not location: raise Exception("Couldn't find location for table: {0}".format(str(self))) return location def open(self, mode): return NotImplementedError("open() is not supported for HiveTableTarget") class HivePartitionTarget(luigi.Target): """ exists returns true if the table's partition exists. """ def __init__(self, table, partition, database='default', fail_missing_table=True, client=None): self.database = database self.table = table self.partition = partition if client is None: client = get_default_client() self.client = client self.fail_missing_table = fail_missing_table def exists(self): try: logger.debug("Checking Hive table '{d}.{t}' for partition {p}".format(d=self.database, t=self.table, p=str(self.partition))) return self.client.table_exists(self.table, self.database, self.partition) except HiveCommandError: if self.fail_missing_table: raise else: if self.client.table_exists(self.table, self.database): # a real error occurred raise else: # oh the table just doesn't exist return False @property def path(self): """ Returns the path for this HiveTablePartitionTarget's data. """ location = self.client.table_location(self.table, self.database, self.partition) if not location: raise Exception("Couldn't find location for table: {0}".format(str(self))) return location def open(self, mode): return NotImplementedError("open() is not supported for HivePartitionTarget") class ExternalHiveTask(luigi.ExternalTask): """ External task that depends on a Hive table/partition. """ database = luigi.Parameter(default='default') table = luigi.Parameter() # since this is an external task and will never be initialized from the CLI, partition can be any python object, in this case a dictionary partition = luigi.Parameter(default=None, description='Python dictionary specifying the target partition e.g. {"date": "2013-01-25"}') def output(self): if self.partition is not None: assert self.partition, "partition required" return HivePartitionTarget(table=self.table, partition=self.partition, database=self.database) else: return HiveTableTarget(self.table, self.database)
# Copyright 2010 Jacob Kaplan-Moss # Copyright 2011 OpenStack Foundation # Copyright 2012 Grid Dynamics # Copyright 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Base utilities to build API operation managers and objects on top of. """ ######################################################################## # # THIS MODULE IS DEPRECATED # # Please refer to # https://etherpad.openstack.org/p/kilo-oslo-library-proposals for # the discussion leading to this deprecation. # # We recommend checking out the python-openstacksdk project # (https://launchpad.net/python-openstacksdk) instead. # ######################################################################## # E1102: %s is not callable # pylint: disable=E1102 import abc import copy from oslo_utils import strutils import six from six.moves.urllib import parse from openstack.common._i18n import _ from openstack.common.apiclient import exceptions def getid(obj): """Return id if argument is a Resource. Abstracts the common pattern of allowing both an object or an object's ID (UUID) as a parameter when dealing with relationships. """ try: if obj.uuid: return obj.uuid except AttributeError: pass try: return obj.id except AttributeError: return obj # TODO(aababilov): call run_hooks() in HookableMixin's child classes class HookableMixin(object): """Mixin so classes can register and run hooks.""" _hooks_map = {} @classmethod def add_hook(cls, hook_type, hook_func): """Add a new hook of specified type. :param cls: class that registers hooks :param hook_type: hook type, e.g., '__pre_parse_args__' :param hook_func: hook function """ if hook_type not in cls._hooks_map: cls._hooks_map[hook_type] = [] cls._hooks_map[hook_type].append(hook_func) @classmethod def run_hooks(cls, hook_type, *args, **kwargs): """Run all hooks of specified type. :param cls: class that registers hooks :param hook_type: hook type, e.g., '__pre_parse_args__' :param args: args to be passed to every hook function :param kwargs: kwargs to be passed to every hook function """ hook_funcs = cls._hooks_map.get(hook_type) or [] for hook_func in hook_funcs: hook_func(*args, **kwargs) class BaseManager(HookableMixin): """Basic manager type providing common operations. Managers interact with a particular type of API (servers, flavors, images, etc.) and provide CRUD operations for them. """ resource_class = None def __init__(self, client): """Initializes BaseManager with `client`. :param client: instance of BaseClient descendant for HTTP requests """ super(BaseManager, self).__init__() self.client = client def _list(self, url, response_key=None, obj_class=None, json=None): """List the collection. :param url: a partial URL, e.g., '/servers' :param response_key: the key to be looked up in response dictionary, e.g., 'servers'. If response_key is None - all response body will be used. :param obj_class: class for constructing the returned objects (self.resource_class will be used by default) :param json: data that will be encoded as JSON and passed in POST request (GET will be sent by default) """ if json: body = self.client.post(url, json=json).json() else: body = self.client.get(url).json() if obj_class is None: obj_class = self.resource_class data = body[response_key] if response_key is not None else body # NOTE(ja): keystone returns values as list as {'values': [ ... ]} # unlike other services which just return the list... try: data = data['values'] except (KeyError, TypeError): pass return [obj_class(self, res, loaded=True) for res in data if res] def _get(self, url, response_key=None): """Get an object from collection. :param url: a partial URL, e.g., '/servers' :param response_key: the key to be looked up in response dictionary, e.g., 'server'. If response_key is None - all response body will be used. """ body = self.client.get(url).json() data = body[response_key] if response_key is not None else body return self.resource_class(self, data, loaded=True) def _head(self, url): """Retrieve request headers for an object. :param url: a partial URL, e.g., '/servers' """ resp = self.client.head(url) return resp.status_code == 204 def _post(self, url, json, response_key=None, return_raw=False): """Create an object. :param url: a partial URL, e.g., '/servers' :param json: data that will be encoded as JSON and passed in POST request (GET will be sent by default) :param response_key: the key to be looked up in response dictionary, e.g., 'server'. If response_key is None - all response body will be used. :param return_raw: flag to force returning raw JSON instead of Python object of self.resource_class """ body = self.client.post(url, json=json).json() data = body[response_key] if response_key is not None else body if return_raw: return data return self.resource_class(self, data) def _put(self, url, json=None, response_key=None): """Update an object with PUT method. :param url: a partial URL, e.g., '/servers' :param json: data that will be encoded as JSON and passed in POST request (GET will be sent by default) :param response_key: the key to be looked up in response dictionary, e.g., 'servers'. If response_key is None - all response body will be used. """ resp = self.client.put(url, json=json) # PUT requests may not return a body if resp.content: body = resp.json() if response_key is not None: return self.resource_class(self, body[response_key]) else: return self.resource_class(self, body) def _patch(self, url, json=None, response_key=None): """Update an object with PATCH method. :param url: a partial URL, e.g., '/servers' :param json: data that will be encoded as JSON and passed in POST request (GET will be sent by default) :param response_key: the key to be looked up in response dictionary, e.g., 'servers'. If response_key is None - all response body will be used. """ body = self.client.patch(url, json=json).json() if response_key is not None: return self.resource_class(self, body[response_key]) else: return self.resource_class(self, body) def _delete(self, url): """Delete an object. :param url: a partial URL, e.g., '/servers/my-server' """ return self.client.delete(url) @six.add_metaclass(abc.ABCMeta) class ManagerWithFind(BaseManager): """Manager with additional `find()`/`findall()` methods.""" @abc.abstractmethod def list(self): pass def find(self, **kwargs): """Find a single item with attributes matching ``**kwargs``. This isn't very efficient: it loads the entire list then filters on the Python side. """ matches = self.findall(**kwargs) num_matches = len(matches) if num_matches == 0: msg = _("No %(name)s matching %(args)s.") % { 'name': self.resource_class.__name__, 'args': kwargs } raise exceptions.NotFound(msg) elif num_matches > 1: raise exceptions.NoUniqueMatch() else: return matches[0] def findall(self, **kwargs): """Find all items with attributes matching ``**kwargs``. This isn't very efficient: it loads the entire list then filters on the Python side. """ found = [] searches = kwargs.items() for obj in self.list(): try: if all(getattr(obj, attr) == value for (attr, value) in searches): found.append(obj) except AttributeError: continue return found class CrudManager(BaseManager): """Base manager class for manipulating entities. Children of this class are expected to define a `collection_key` and `key`. - `collection_key`: Usually a plural noun by convention (e.g. `entities`); used to refer collections in both URL's (e.g. `/v3/entities`) and JSON objects containing a list of member resources (e.g. `{'entities': [{}, {}, {}]}`). - `key`: Usually a singular noun by convention (e.g. `entity`); used to refer to an individual member of the collection. """ collection_key = None key = None def build_url(self, base_url=None, **kwargs): """Builds a resource URL for the given kwargs. Given an example collection where `collection_key = 'entities'` and `key = 'entity'`, the following URL's could be generated. By default, the URL will represent a collection of entities, e.g.:: /entities If kwargs contains an `entity_id`, then the URL will represent a specific member, e.g.:: /entities/{entity_id} :param base_url: if provided, the generated URL will be appended to it """ url = base_url if base_url is not None else '' url += '/%s' % self.collection_key # do we have a specific entity? entity_id = kwargs.get('%s_id' % self.key) if entity_id is not None: url += '/%s' % entity_id return url def _filter_kwargs(self, kwargs): """Drop null values and handle ids.""" for key, ref in six.iteritems(kwargs.copy()): if ref is None: kwargs.pop(key) else: if isinstance(ref, Resource): kwargs.pop(key) kwargs['%s_id' % key] = getid(ref) return kwargs def create(self, **kwargs): kwargs = self._filter_kwargs(kwargs) return self._post( self.build_url(**kwargs), {self.key: kwargs}, self.key) def get(self, **kwargs): kwargs = self._filter_kwargs(kwargs) return self._get( self.build_url(**kwargs), self.key) def head(self, **kwargs): kwargs = self._filter_kwargs(kwargs) return self._head(self.build_url(**kwargs)) def list(self, base_url=None, **kwargs): """List the collection. :param base_url: if provided, the generated URL will be appended to it """ kwargs = self._filter_kwargs(kwargs) return self._list( '%(base_url)s%(query)s' % { 'base_url': self.build_url(base_url=base_url, **kwargs), 'query': '?%s' % parse.urlencode(kwargs) if kwargs else '', }, self.collection_key) def put(self, base_url=None, **kwargs): """Update an element. :param base_url: if provided, the generated URL will be appended to it """ kwargs = self._filter_kwargs(kwargs) return self._put(self.build_url(base_url=base_url, **kwargs)) def update(self, **kwargs): kwargs = self._filter_kwargs(kwargs) params = kwargs.copy() params.pop('%s_id' % self.key) return self._patch( self.build_url(**kwargs), {self.key: params}, self.key) def delete(self, **kwargs): kwargs = self._filter_kwargs(kwargs) return self._delete( self.build_url(**kwargs)) def find(self, base_url=None, **kwargs): """Find a single item with attributes matching ``**kwargs``. :param base_url: if provided, the generated URL will be appended to it """ kwargs = self._filter_kwargs(kwargs) rl = self._list( '%(base_url)s%(query)s' % { 'base_url': self.build_url(base_url=base_url, **kwargs), 'query': '?%s' % parse.urlencode(kwargs) if kwargs else '', }, self.collection_key) num = len(rl) if num == 0: msg = _("No %(name)s matching %(args)s.") % { 'name': self.resource_class.__name__, 'args': kwargs } raise exceptions.NotFound(404, msg) elif num > 1: raise exceptions.NoUniqueMatch else: return rl[0] class Extension(HookableMixin): """Extension descriptor.""" SUPPORTED_HOOKS = ('__pre_parse_args__', '__post_parse_args__') manager_class = None def __init__(self, name, module): super(Extension, self).__init__() self.name = name self.module = module self._parse_extension_module() def _parse_extension_module(self): self.manager_class = None for attr_name, attr_value in self.module.__dict__.items(): if attr_name in self.SUPPORTED_HOOKS: self.add_hook(attr_name, attr_value) else: try: if issubclass(attr_value, BaseManager): self.manager_class = attr_value except TypeError: pass def __repr__(self): return "<Extension '%s'>" % self.name class Resource(object): """Base class for OpenStack resources (tenant, user, etc.). This is pretty much just a bag for attributes. """ HUMAN_ID = False NAME_ATTR = 'name' def __init__(self, manager, info, loaded=False): """Populate and bind to a manager. :param manager: BaseManager object :param info: dictionary representing resource attributes :param loaded: prevent lazy-loading if set to True """ self.manager = manager self._info = info self._add_details(info) self._loaded = loaded def __repr__(self): reprkeys = sorted(k for k in self.__dict__.keys() if k[0] != '_' and k != 'manager') info = ", ".join("%s=%s" % (k, getattr(self, k)) for k in reprkeys) return "<%s %s>" % (self.__class__.__name__, info) @property def human_id(self): """Human-readable ID which can be used for bash completion. """ if self.HUMAN_ID: name = getattr(self, self.NAME_ATTR, None) if name is not None: return strutils.to_slug(name) return None def _add_details(self, info): for (k, v) in six.iteritems(info): try: setattr(self, k, v) self._info[k] = v except AttributeError: # In this case we already defined the attribute on the class pass def __getattr__(self, k): if k not in self.__dict__: # NOTE(bcwaldon): disallow lazy-loading if already loaded once if not self.is_loaded(): self.get() return self.__getattr__(k) raise AttributeError(k) else: return self.__dict__[k] def get(self): """Support for lazy loading details. Some clients, such as novaclient have the option to lazy load the details, details which can be loaded with this function. """ # set_loaded() first ... so if we have to bail, we know we tried. self.set_loaded(True) if not hasattr(self.manager, 'get'): return new = self.manager.get(self.id) if new: self._add_details(new._info) self._add_details( {'x_request_id': self.manager.client.last_request_id}) def __eq__(self, other): if not isinstance(other, Resource): return NotImplemented # two resources of different types are not equal if not isinstance(other, self.__class__): return False if hasattr(self, 'id') and hasattr(other, 'id'): return self.id == other.id return self._info == other._info def is_loaded(self): return self._loaded def set_loaded(self, val): self._loaded = val def to_dict(self): return copy.deepcopy(self._info)
''' /****************************************************************** * * Copyright 2018 Samsung Electronics All Rights Reserved. * * * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************/ ''' import re import os import operator from itertools import takewhile from ite.config import * from ite.util import * class RobotTCAnalyzer: FILE_PATTERN = re.compile(r'(?P<testsuite>\w+)\.\w+') TESTSUITE_PATTERN = re.compile(r'(?P<service>\w+)_(?P<testarea>\w+)_(?P<module>\w+)_(?P<objective>\w+)') TC_HEADER_PATTERN = re.compile(r'\*\*\* Test Cases \*\*\*', re.DOTALL) SECTION_PATTERN = re.compile(r'\*\*\*.+\*\*\*', re.DOTALL) TC_NAME_PATTERN = re.compile(r'^(?P<testcase>\w+.*)') DOCUMENTATION_PATTERN = re.compile(r'\[Documentation\]') TAG_PATTERN = re.compile(r'\[Tags\]') def count_file_bytes(self, iterable): file_bytes = 0 for item in iterable: file_bytes += len(item) yield file_bytes def get_line_number(self, path, pos): file = open_read_file(path); if file == None: return 0 line = 1+len(list(takewhile(lambda x: x <= pos, self.count_file_bytes(file)))) file.close() return line def get_testsuite_info(self, path): match = self.FILE_PATTERN.search(path) if match == None: return None, None, None testsuite = match.group('testsuite') match = self.TESTSUITE_PATTERN.search(testsuite) if match == None: return None, None, None module = match.group('module') objective = match.group('objective') platform = '' for candidate in TEST_PLATFORM: if candidate.lower() in objective.lower(): platform = candidate.upper() break; return testsuite, platform, module def get_testcase_section(self, source): header_match = self.TC_HEADER_PATTERN.search(source) if header_match == None: return '' header_pos = header_match.end() testcase_section = source[header_pos:] end_match = self.SECTION_PATTERN.search(testcase_section) if end_match != None: testcase_section = testcase_section[:end_match.start()] return testcase_section, header_pos def get_comments_area(self, tc_area): doc_match = self.DOCUMENTATION_PATTERN.search(tc_area) tag_match = self.TAG_PATTERN.search(tc_area) if doc_match == None: return '', '' comments = tc_area[doc_match.start():] tag = '' if not tag_match == None: comments = tc_area[doc_match.start():tag_match.start()] tag = tc_area[tag_match.end():].splitlines()[0].strip() return comments.strip(), tag.strip() def get_tc_info(self, path): source = read_file(path) if source == '': return testsuite, platform, module = self.get_testsuite_info(path) testcase_section, pos = self.get_testcase_section(source) comments = '' comment = '' testcase = '' line = 0 line_count = self.get_line_number(path, pos) tag = '' for strline in testcase_section.splitlines(): line_count += 1 match = self.TC_NAME_PATTERN.search(strline) if match == None: comments += strline + '\n' continue if not testcase == '': comment, tag = self.get_comments_area(comments) yield line, platform, module, testsuite, testcase, comment, tag testcase = strline line = line_count - 1 comments = '' comment, tag = self.get_comments_area(comments) yield line, platform, module, testsuite, testcase, comment, tag def analyze_tc_file(self, path): if (os.path.isfile(path) == False): return print("### Start to analyze test case file: " + path) test_data = list() invalid_tc = list() for line, platform, module, suite, name, comments, tag in self.get_tc_info(path): #print("line: %d, platform: %s, moudle: %s, testsuite: %s, testcase: %s, tag: %s, comments: %s" % # (line, platform, module, suite, name, tag, comments)) spec = TestSpec(line, suite, name) success, message = spec.check_tc_naming_rule() if (success == False): invalid_tc.append((line, suite, name, message)) continue if len(comments) == 0: invalid_tc.append((line, suite, name, 'Cannot Find TC Comments')) continue if len(tag) == 0: invalid_tc.append((line, suite, name, 'Cannot Find TC Tag')) continue if not 'positive' in tag.lower() and not 'negative' in tag.lower(): invalid_tc.append((line, suite, name, 'TC Tag do not include (Positive|Negative) Category: ' + tag)) continue success, message = spec.parse_comment(comments) if (success == False): invalid_tc.append((line, suite, name, message)) continue if not platform in TEST_PLATFORM: invalid_tc.append((line, suite, name, 'Invalid Platform Definition: ' + platform)) continue test_data.append((platform, module, spec)) #print("test spec: " + spec.to_string()) return test_data, invalid_tc class TestSpec: COMMENT_PATTERN = re.compile('\|(?P<tag>.*)\|(?P<description>.*)\|') def __init__(self, line, suite, name): self.line = line self.suite = suite self.name = name for tag in list(TAG_DIC): self.__dict__[tag] = '' def to_string(self): result = "%s.%s(line: %d)\n" %(self.suite, self.name, self.line) for key, title in sorted(TAG_DIC.items(), key=operator.itemgetter(1)): if (self.__dict__[key] == None or title[1] == ''): continue result += "\t%-15s : %s\n" %(title[1], self.__dict__[key].replace("\n", "\t\n ")) return result def check_tc_naming_rule(self): if (self.suite == '' or self.name == ''): return False, 'Empty Test Suite Name or Empty Test Case Name' return True, ''; def parse_comment(self, comments): tag = '' description = '' prev_tag = '' for match in self.COMMENT_PATTERN.finditer(comments): tag = match.group('tag').strip() description = match.group('description').strip() if tag == '': tag = prev_tag if (tag in self.__dict__): self.__dict__[tag] = '\n'.join([self.__dict__[tag], description]).strip() prev_tag = tag return True, ''
#!/usr/bin/env python """ map.py State Estimation and Analysis for PYthon Utilities for dealing with basemap plotting. These routnes are simply abstractions over the existing basemap to make it quicker for generating basemap plots and figures. Examples ------- Assume you have longitude, latitude, and sst values: >>> m=seapy.mapping.map(llcrnrlon=lon[0,0],llcrnrlat=lat[0,0], >>> urcrnrlon=lon[-1,-1],urcrnrlat=lat[-1,-1],dlat=2,dlon=2) >>> m.pcolormesh(lon,lat,sst,vmin=22,vmax=26,cmap=plt.cm.bwr) >>> m.land() >>> m.colorbar(label="Sea Surface Temp [$^\circ$C]",cticks=[22,23,24,25,26]) >>> m.ax.patch.set_facecolor("aqua") >>> m.ax.patch.set_alpha(1) >>> m.fig.patch.set_alpha(0.0) >>> m.fig.savefig("sst.png",dpi=100) Written by Brian Powell on 9/4/14 Copyright (c)2017 University of Hawaii under the MIT-License. """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from seapy.model import asgrid def gen_coastline(lon, lat, bathy, depth=0): """ Given lon, lat, and bathymetry, generate vectors of line segments of the coastline. This can be exported to matlab (via savemat) to be used with the 'editmask' routine for creating grid masks. Input ----- lon : array, longitudes of bathymetry locations lat : array, latitudes of bathymetry locations bathy : array, bathymetry (negative for ocean, positive for land) values depth : float, depth to use as the definition of the coast Returns ------- lon : ndarray, vector of coastlines, separated by nan (matlab-style) lat : ndarray, vector of coastlines, separated by nan (matlab-style) """ CS = plt.contour(lon, lat, bathy, [depth - 0.25, depth + 0.25]) lon = list() lat = list() for col in CS.collections: for path in col.get_paths(): lon.append(path.vertices[:, 0]) lon.append(np.nan) lat.append(path.vertices[:, 1]) lat.append(np.nan) return (np.hstack(lon), np.hstack(lat)) class map(object): def __init__(self, grid=None, llcrnrlon=-180, llcrnrlat=-40, urcrnrlon=180, urcrnrlat=40, proj='lcc', resolution='c', figsize=(8., 6.), dlat=1, dlon=2, fig=None, ax=None, fill_color="aqua"): """ map class for abstracting the basemap methods for quick and easy creation of geographically referenced data figures Parameters ---------- grid: seapy.model.grid or string, optional: grid to use to define boundaries llcrnrlon: float, optional longitude of lower, left corner llcrnrlat: float, optional latitude of lower, left corner urcrnrlon: float, optional longitude of upper, right corner urcrnrlat: float, optional latitude of upper, right corner proj: string, optional projection to use for map resolution: character resolution to use for coastline, etc. From Basemap: 'c' (crude), 'l' (low), 'i' (intermediate), 'h' (high), 'f' (full), or None figsize: list, optional dimensions to use for creation of figure dlat: float, optional interval to mark latitude lines (e.g., if dlat=0.5 every 0.5deg mark) dlon: float, optional interval to mark longitude lines (e.g., if dlon=0.5 every 0.5deg mark) fig: matplotlib.pyplot.figure object, optional If you want to plot on a pre-configured figure, pass the figure object along with the axis object. ax: matplotlib.pyplot.axis object, optional If you want to plot on a pre-configured figure, pass the axis object along with the figure object. fill_color: string, optional The color to use for the axis background Returns ------- None """ if grid is not None: grid = asgrid(grid) llcrnrlat = np.min(grid.lat_rho) urcrnrlat = np.max(grid.lat_rho) llcrnrlon = np.min(grid.lon_rho) urcrnrlon = np.max(grid.lon_rho) self.basemap = Basemap(llcrnrlon=llcrnrlon, llcrnrlat=llcrnrlat, urcrnrlon=urcrnrlon, urcrnrlat=urcrnrlat, projection=proj, lat_0=urcrnrlat - (urcrnrlat - llcrnrlat) / 2., lon_0=urcrnrlon - (urcrnrlon - llcrnrlon) / 2., resolution=resolution, area_thresh=0.0, ax=ax) self.figsize = figsize self.dlon = dlon self.dlat = dlat self.fig = fig self.ax = ax self.fill_color = fill_color reset = True if fig is None else False self.new_figure(reset=reset) def new_figure(self, fill_color=None, reset=False, dpi=150): """ Create or update a figure for plotting Parameters ---------- fill_color: string, optional Color to fill the background of the axes with reset: bool, optional Reset the figure """ if reset: if self.ax: self.ax.set_axis_off() self.ax = None if self.fig: self.fig.clf() self.fig = None if self.fig is None or self.ax is None: self.fig = plt.figure(figsize=self.figsize, dpi=dpi) self.ax = self.fig.add_axes([-0.01, 0.25, 1.01, 0.7]) if fill_color is None: fill_color = self.fill_color self.basemap.drawmapboundary(fill_color=fill_color) # Create the longitude lines nticks = int((self.basemap.urcrnrlon - self.basemap.llcrnrlon) / self.dlon) md = np.mod(self.basemap.llcrnrlon, self.dlon) if md: slon = self.basemap.llcrnrlon + self.dlon - md else: slon = self.basemap.llcrnrlon nticks += 1 lon_lines = np.arange(nticks) * self.dlon + slon self.basemap.drawmeridians(lon_lines, color="0.5", linewidth=0.25, dashes=[1, 1, 0.1, 1], labels=[0, 0, 0, 1], fontsize=12) # Create the latitude lines nticks = int((self.basemap.urcrnrlat - self.basemap.llcrnrlat) / self.dlat) md = np.mod(self.basemap.llcrnrlat, self.dlat) if md: slat = self.basemap.llcrnrlat + self.dlat - md else: slat = self.basemap.llcrnrlat nticks += 1 lat_lines = np.arange(nticks) * self.dlat + slat self.basemap.drawparallels(lat_lines, color="0.5", linewidth=0.25, dashes=[1, 1, 0.1, 1], labels=[1, 0, 0, 0], fontsize=12) def land(self, color="black"): """ Draw the land mask Parameters ---------- color: string, optional color to draw the mask with """ self.basemap.drawcoastlines() self.basemap.drawcountries() self.basemap.fillcontinents(color=color) def zoom(self, xrange, yrange): """ zoom the figure to a specified lat, lon range Parameters ---------- xrange: array minimum and maximum longitudes to display yrange: array minimum and maximum latitudes to display """ x, y = self.basemap(xrange, yrange) self.ax.set_xlim(x) self.ax.set_ylim(y) self.fig.canvas.draw() def pcolormesh(self, lon, lat, data, **kwargs): """ pcolormesh field data onto our geographic plot Parameters ---------- lon: array Longitude field for data lat: array Latitude field for data data: array data to pcolor **kwargs: arguments, optional additional arguments to pass to pcolor """ # Pcolor requires a modification to the locations to line up with # the geography dlon = lon * 0 dlat = lat * 0 dlon[:, 0:-1] = lon[:, 1:] - lon[:, 0:-1] dlat[0:-1, :] = lat[1:, :] - lat[0:-1, :] x, y = self.basemap(lon - dlon * 0.5, lat - dlat * 0.5) self.pc = self.ax.pcolormesh(x, y, data, **kwargs) def scatter(self, lon, lat, data, **kwargs): """ scatter plot data onto our geographic plot Parameters ---------- lon: array Longitude field for data lat: array Latitude field for data data: array data to pcolor **kwargs: arguments, optional additional arguments to pass to pcolor """ x, y = self.basemap(lon, lat) self.pc = self.ax.scatter(x, y, c=data, **kwargs) def colorbar(self, label=None, cticks=None, **kwargs): """ Display a colorbar on the figure Parameters ---------- label: string, optional Colorbar label title cticks: array, optional Where to place the tick marks and values for the colorbar **kwargs: arguments, optional additional arguments to pass to colorbar """ self.cax = self.fig.add_axes([0.25, 0.16, 0.5, 0.03]) self.cb = plt.colorbar(self.pc, cax=self.cax, orientation="horizontal", ticks=cticks, **kwargs) self.basemap.set_axes_limits(ax=self.ax) if label is not None: self.cb.set_label(label)
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os from hashlib import sha1 from six import string_types from pants.backend.core.wrapped_globs import FilesetWithSpec from pants.base.address import Addresses, SyntheticAddress from pants.base.build_environment import get_buildroot from pants.base.exceptions import TargetDefinitionException from pants.base.fingerprint_strategy import DefaultFingerprintStrategy from pants.base.hash_utils import hash_all from pants.base.payload import Payload from pants.base.payload_field import DeferredSourcesField, SourcesField from pants.base.source_root import SourceRoot from pants.base.target_addressable import TargetAddressable from pants.base.validation import assert_list class AbstractTarget(object): @classmethod def subsystems(cls): """The subsystems this target uses. Targets always use the global subsystem instance. They have no notion of any other scope. :return: A tuple of subsystem types. """ return tuple() @property def has_resources(self): """Returns True if the target has an associated set of Resources.""" return hasattr(self, 'resources') and self.resources @property def is_exported(self): """Returns True if the target provides an artifact exportable from the repo.""" # TODO(John Sirois): fixup predicate dipping down into details here. return self.has_label('exportable') and self.provides # DEPRECATED to be removed after 0.0.29 # do not use this method, use isinstance(..., JavaThriftLibrary) or a yet-to-be-defined mixin @property def is_thrift(self): """Returns True if the target has thrift IDL sources.""" return False # DEPRECATED to be removed after 0.0.29 # do not use this method, use an isinstance check on a yet-to-be-defined mixin @property def is_jvm(self): """Returns True if the target produces jvm bytecode.""" return self.has_label('jvm') # DEPRECATED to be removed after 0.0.29 # do not use this method, use an isinstance check on a yet-to-be-defined mixin @property def is_codegen(self): """Returns True if the target is a codegen target.""" return self.has_label('codegen') # DEPRECATED to be removed after 0.0.29 # do not use this method, use an isinstance check on a yet-to-be-defined mixin @property def is_java(self): """Returns True if the target has or generates java sources.""" return self.has_label('java') # DEPRECATED to be removed after 0.0.29 # do not use this method, use an isinstance check on a yet-to-be-defined mixin @property def is_python(self): """Returns True if the target has python sources.""" return self.has_label('python') # DEPRECATED to be removed after 0.0.29 # do not use this method, use an isinstance check on a yet-to-be-defined mixin @property def is_scala(self): """Returns True if the target has scala sources.""" return self.has_label('scala') # DEPRECATED to be removed after 0.0.29 # do not use this method, use an isinstance check on a yet-to-be-defined mixin @property def is_scalac_plugin(self): """Returns True if the target builds a scalac plugin.""" return self.has_label('scalac_plugin') # DEPRECATED to be removed after 0.0.29 # do not use this method, use an isinstance check on a yet-to-be-defined mixin @property def is_test(self): """Returns True if the target is comprised of tests.""" return self.has_label('tests') # DEPRECATED to be removed after 0.0.29 # do not use this method, use an isinstance check on a yet-to-be-defined mixin @property def is_android(self): """Returns True if the target is an android target.""" return self.has_label('android') class Target(AbstractTarget): """The baseclass for all pants targets. Handles registration of a target amongst all parsed targets as well as location of the target parse context. """ class WrongNumberOfAddresses(Exception): """Internal error, too many elements in Addresses""" class UnknownArguments(TargetDefinitionException): """Unknown keyword arguments supplied to Target.""" class IllegalArgument(TargetDefinitionException): """Argument that isn't allowed supplied to Target.""" LANG_DISCRIMINATORS = { 'java': lambda t: t.is_jvm, 'python': lambda t: t.is_python, } @classmethod def lang_discriminator(cls, lang): """Returns a tuple of target predicates that select the given lang vs all other supported langs. The left hand side accepts targets for the given language; the right hand side accepts targets for all other supported languages. """ def is_other_lang(target): for name, discriminator in cls.LANG_DISCRIMINATORS.items(): if name != lang and discriminator(target): return True return False return (cls.LANG_DISCRIMINATORS[lang], is_other_lang) @classmethod def get_addressable_type(target_cls): class ConcreteTargetAddressable(TargetAddressable): @classmethod def get_target_type(cls): return target_cls return ConcreteTargetAddressable @property def target_base(self): """:returns: the source root path for this target.""" return SourceRoot.find(self) @classmethod def identify(cls, targets): """Generates an id for a set of targets.""" return cls.combine_ids(target.id for target in targets) @classmethod def maybe_readable_identify(cls, targets): """Generates an id for a set of targets. If the set is a single target, just use that target's id.""" return cls.maybe_readable_combine_ids([target.id for target in targets]) @staticmethod def combine_ids(ids): """Generates a combined id for a set of ids.""" return hash_all(sorted(ids)) # We sort so that the id isn't sensitive to order. @classmethod def maybe_readable_combine_ids(cls, ids): """Generates combined id for a set of ids, but if the set is a single id, just use that.""" ids = list(ids) # We can't len a generator. return ids[0] if len(ids) == 1 else cls.combine_ids(ids) def __init__(self, name, address, build_graph, payload=None, tags=None, description=None, **kwargs): """ :param string name: The name of this target, which combined with this build file defines the target address. :param dependencies: Other targets that this target depends on. :type dependencies: list of target specs :param Address address: The Address that maps to this Target in the BuildGraph :param BuildGraph build_graph: The BuildGraph that this Target lives within :param Payload payload: The configuration encapsulated by this target. Also in charge of most fingerprinting details. :param iterable<string> tags: Arbitrary string tags that describe this target. Usable by downstream/custom tasks for reasoning about build graph. NOT included in payloads and thus not used in fingerprinting, thus not suitable for anything that affects how a particular target is built. :param string description: Human-readable description of this target. """ # dependencies is listed above; implementation hides in TargetAddressable self.payload = payload or Payload() self.payload.freeze() self.name = name self.address = address self._tags = set(tags or []) self._build_graph = build_graph self.description = description self.labels = set() self._cached_fingerprint_map = {} self._cached_transitive_fingerprint_map = {} if kwargs: error_message = '{target_type} received unknown arguments: {args}' raise self.UnknownArguments(address.spec, error_message.format( target_type=type(self).__name__, args=''.join('\n {} = {}'.format(key, value) for key, value in kwargs.items()) )) @property def tags(self): return self._tags @property def num_chunking_units(self): return max(1, len(self.sources_relative_to_buildroot())) def assert_list(self, maybe_list, expected_type=string_types, key_arg=None): return assert_list(maybe_list, expected_type, key_arg=key_arg, raise_type=lambda msg: TargetDefinitionException(self, msg)) def compute_invalidation_hash(self, fingerprint_strategy=None): """ :param FingerprintStrategy fingerprint_strategy: optional fingerprint strategy to use to compute the fingerprint of a target :return: a fingerprint representing this target (no dependencies) :rtype: string """ fingerprint_strategy = fingerprint_strategy or DefaultFingerprintStrategy() return fingerprint_strategy.fingerprint_target(self) def invalidation_hash(self, fingerprint_strategy=None): fingerprint_strategy = fingerprint_strategy or DefaultFingerprintStrategy() if fingerprint_strategy not in self._cached_fingerprint_map: self._cached_fingerprint_map[fingerprint_strategy] = self.compute_invalidation_hash(fingerprint_strategy) return self._cached_fingerprint_map[fingerprint_strategy] def mark_extra_invalidation_hash_dirty(self): pass def mark_invalidation_hash_dirty(self): self._cached_fingerprint_map = {} self._cached_transitive_fingerprint_map = {} self.mark_extra_invalidation_hash_dirty() def transitive_invalidation_hash(self, fingerprint_strategy=None): """ :param FingerprintStrategy fingerprint_strategy: optional fingerprint strategy to use to compute the fingerprint of a target :return: A fingerprint representing this target and all of its dependencies. The return value can be `None`, indicating that this target and all of its transitive dependencies did not contribute to the fingerprint, according to the provided FingerprintStrategy. :rtype: string """ fingerprint_strategy = fingerprint_strategy or DefaultFingerprintStrategy() if fingerprint_strategy not in self._cached_transitive_fingerprint_map: hasher = sha1() def dep_hash_iter(): for dep in self.dependencies: dep_hash = dep.transitive_invalidation_hash(fingerprint_strategy) if dep_hash is not None: yield dep_hash dep_hashes = sorted(list(dep_hash_iter())) for dep_hash in dep_hashes: hasher.update(dep_hash) target_hash = self.invalidation_hash(fingerprint_strategy) if target_hash is None and not dep_hashes: return None dependencies_hash = hasher.hexdigest()[:12] combined_hash = '{target_hash}.{deps_hash}'.format(target_hash=target_hash, deps_hash=dependencies_hash) self._cached_transitive_fingerprint_map[fingerprint_strategy] = combined_hash return self._cached_transitive_fingerprint_map[fingerprint_strategy] def mark_transitive_invalidation_hash_dirty(self): self._cached_transitive_fingerprint_map = {} self.mark_extra_transitive_invalidation_hash_dirty() def mark_extra_transitive_invalidation_hash_dirty(self): pass def inject_dependency(self, dependency_address): self._build_graph.inject_dependency(dependent=self.address, dependency=dependency_address) def invalidate_dependee(dependee): dependee.mark_transitive_invalidation_hash_dirty() self._build_graph.walk_transitive_dependee_graph([self.address], work=invalidate_dependee) def has_sources(self, extension=''): """ :param string extension: suffix of filenames to test for :return: True if the target contains sources that match the optional extension suffix :rtype: bool """ sources_field = self.payload.get_field('sources') if sources_field: return sources_field.has_sources(extension) else: return False def sources_relative_to_buildroot(self): if self.has_sources(): return self.payload.sources.relative_to_buildroot() else: return [] def sources_relative_to_source_root(self): if self.has_sources(): abs_source_root = os.path.join(get_buildroot(), self.target_base) for source in self.sources_relative_to_buildroot(): abs_source = os.path.join(get_buildroot(), source) yield os.path.relpath(abs_source, abs_source_root) def globs_relative_to_buildroot(self): sources_field = self.payload.get_field('sources') if sources_field: return sources_field.filespec @property def derived_from(self): """Returns the target this target was derived from. If this target was not derived from another, returns itself. """ return self._build_graph.get_derived_from(self.address) @property def derived_from_chain(self): """Returns all targets that this target was derived from. If this target was not derived from another, returns an empty sequence. """ cur = self while cur.derived_from is not cur: cur = cur.derived_from yield cur @property def concrete_derived_from(self): """Returns the concrete target this target was (directly or indirectly) derived from. The returned target is guaranteed to not have been derived from any other target, and is thus guaranteed to be a 'real' target from a BUILD file, not a programmatically injected target. """ return self._build_graph.get_concrete_derived_from(self.address) @property def traversable_specs(self): """ :return: specs referenced by this target to be injected into the build graph :rtype: list of strings """ return [] @property def traversable_dependency_specs(self): """ :return: specs representing dependencies of this target that will be injected to the build graph and linked in the graph as dependencies of this target :rtype: list of strings """ # To support DeferredSourcesField for name, payload_field in self.payload.fields: if isinstance(payload_field, DeferredSourcesField) and payload_field.address: yield payload_field.address.spec @property def dependencies(self): """ :return: targets that this target depends on :rtype: list of Target """ return [self._build_graph.get_target(dep_address) for dep_address in self._build_graph.dependencies_of(self.address)] @property def dependents(self): """ :return: targets that depend on this target :rtype: list of Target """ return [self._build_graph.get_target(dep_address) for dep_address in self._build_graph.dependents_of(self.address)] @property def is_synthetic(self): """ :return: True if this target did not originate from a BUILD file. """ return self.concrete_derived_from.address != self.address @property def is_original(self): """Returns ``True`` if this target is derived from no other.""" return self.derived_from == self @property def id(self): """A unique identifier for the Target. The generated id is safe for use as a path name on unix systems. """ return self.address.path_safe_spec @property def identifier(self): """A unique identifier for the Target. The generated id is safe for use as a path name on unix systems. """ return self.id def walk(self, work, predicate=None): """Walk of this target's dependency graph, DFS preorder traversal, visiting each node exactly once. If a predicate is supplied it will be used to test each target before handing the target to work and descending. Work can return targets in which case these will be added to the walk candidate set if not already walked. :param work: Callable that takes a :py:class:`pants.base.target.Target` as its single argument. :param predicate: Callable that takes a :py:class:`pants.base.target.Target` as its single argument and returns True if the target should passed to ``work``. """ if not callable(work): raise ValueError('work must be callable but was {}'.format(work)) if predicate and not callable(predicate): raise ValueError('predicate must be callable but was {}'.format(predicate)) self._build_graph.walk_transitive_dependency_graph([self.address], work, predicate) def closure(self, bfs=False): """Returns this target's transitive dependencies. The walk will be depth-first in preorder, or breadth first if bfs=True is specified. """ if bfs: return self._build_graph.transitive_subgraph_of_addresses_bfs([self.address]) else: return self._build_graph.transitive_subgraph_of_addresses([self.address]) # TODO(Eric Ayers) As of 2/5/2015 this call is DEPRECATED and should be removed soon def add_labels(self, *label): self.labels.update(label) # TODO(Eric Ayers) As of 2/5/2015 this call is DEPRECATED and should be removed soon def remove_label(self, label): self.labels.remove(label) # TODO(Eric Ayers) As of 2/5/2015 this call is DEPRECATED and should be removed soon def has_label(self, label): return label in self.labels def __lt__(self, other): return self.address < other.address def __eq__(self, other): return isinstance(other, Target) and self.address == other.address def __hash__(self): return hash(self.address) def __ne__(self, other): return not self.__eq__(other) def __repr__(self): addr = self.address if hasattr(self, 'address') else 'address not yet set' return "{}({})".format(type(self).__name__, addr) def create_sources_field(self, sources, sources_rel_path, address=None, key_arg=None): """Factory method to create a SourcesField appropriate for the type of the sources object. Note that this method is called before the call to Target.__init__ so don't expect fields to be populated! :return: a payload field object representing the sources parameter :rtype: SourcesField """ if isinstance(sources, Addresses): # Currently, this is only created by the result of from_target() which takes a single argument if len(sources.addresses) != 1: raise self.WrongNumberOfAddresses( "Expected a single address to from_target() as argument to {spec}" .format(spec=address.spec)) referenced_address = SyntheticAddress.parse(sources.addresses[0], relative_to=sources.rel_path) return DeferredSourcesField(ref_address=referenced_address) elif isinstance(sources, FilesetWithSpec): filespec = sources.filespec else: sources = sources or [] assert_list(sources, key_arg=key_arg) filespec = {'globs' : [os.path.join(sources_rel_path, src) for src in (sources or [])]} return SourcesField(sources=sources, sources_rel_path=sources_rel_path, filespec=filespec)
# Copyright 2015 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class to represent a DigitalOcean Virtual Machine object (Droplet). """ import json import logging import time from perfkitbenchmarker import disk from perfkitbenchmarker import errors from perfkitbenchmarker import flags from perfkitbenchmarker import linux_virtual_machine from perfkitbenchmarker import virtual_machine from perfkitbenchmarker import vm_util from perfkitbenchmarker.providers.digitalocean import digitalocean_disk from perfkitbenchmarker.providers.digitalocean import util from perfkitbenchmarker import providers FLAGS = flags.FLAGS UBUNTU_IMAGE = 'ubuntu-14-04-x64' # DigitalOcean sets up the root account with a temporary # password that's set as expired, requiring it to be changed # immediately. This breaks dpkg postinst scripts, for example # running adduser will produce errors: # # # chfn -f 'RabbitMQ messaging server' rabbitmq # You are required to change your password immediately (root enforced) # chfn: PAM: Authentication token is no longer valid; new one required # # To avoid this, just disable the root password (we don't need it), # and remove the forced expiration. CLOUD_CONFIG_TEMPLATE = '''#cloud-config users: - name: {0} ssh-authorized-keys: - {1} sudo: ['ALL=(ALL) NOPASSWD:ALL'] groups: sudo shell: /bin/bash runcmd: - [ passwd, -l, root ] - [ chage, -d, -1, -I, -1, -E, -1, -M, 999999, root ] ''' # HTTP status codes for creation that should not be retried. FATAL_CREATION_ERRORS = set([ 422, # 'unprocessable_entity' such as invalid size or region. ]) # Default configuration for action status polling. DEFAULT_ACTION_WAIT_SECONDS = 10 DEFAULT_ACTION_MAX_TRIES = 90 def GetErrorMessage(stdout): """Extract a message field from JSON output if present.""" try: return json.loads(stdout)['message'] except (ValueError, KeyError): return stdout class DigitalOceanVirtualMachine(virtual_machine.BaseVirtualMachine): """Object representing a DigitalOcean Virtual Machine (Droplet).""" CLOUD = providers.DIGITALOCEAN # Subclasses should override the default image. DEFAULT_IMAGE = None def __init__(self, vm_spec): """Initialize a DigitalOcean virtual machine. Args: vm_spec: virtual_machine.BaseVirtualMachineSpec object of the vm. """ super(DigitalOceanVirtualMachine, self).__init__(vm_spec) self.droplet_id = None self.max_local_disks = 1 self.local_disk_counter = 0 self.image = self.image or self.DEFAULT_IMAGE def _Create(self): """Create a DigitalOcean VM instance (droplet).""" with open(self.ssh_public_key) as f: public_key = f.read().rstrip('\n') stdout, ret = util.RunCurlCommand( 'POST', 'droplets', { 'name': self.name, 'region': self.zone, 'size': self.machine_type, 'image': self.image, 'backups': False, 'ipv6': False, 'private_networking': True, 'ssh_keys': [], 'user_data': CLOUD_CONFIG_TEMPLATE.format( self.user_name, public_key) }) if ret != 0: msg = GetErrorMessage(stdout) if ret in FATAL_CREATION_ERRORS: raise errors.Error('Creation request invalid, not retrying: %s' % msg) raise errors.Resource.RetryableCreationError('Creation failed: %s' % msg) response = json.loads(stdout) self.droplet_id = response['droplet']['id'] # The freshly created droplet will be in a locked and unusable # state for a while, and it cannot be deleted or modified in # this state. Wait for the action to finish and check the # reported result. if not self._GetActionResult(response['links']['actions'][0]['id']): raise errors.Resource.RetryableCreationError('Creation failed, see log.') def _GetActionResult(self, action_id, wait_seconds=DEFAULT_ACTION_WAIT_SECONDS, max_tries=DEFAULT_ACTION_MAX_TRIES): """Wait until a VM action completes.""" for _ in xrange(max_tries): time.sleep(wait_seconds) stdout, ret = util.RunCurlCommand('GET', 'actions/%s' % action_id) if ret != 0: logging.warn('Unexpected action lookup failure.') return False response = json.loads(stdout) status = response['action']['status'] logging.debug('action %d: status is "%s".', action_id, status) if status == 'completed': return True elif status == 'errored': return False # If we get here, waiting timed out. Treat as failure. logging.debug('action %d: timed out waiting.', action_id) return False @vm_util.Retry() def _PostCreate(self): """Get the instance's data.""" stdout, _ = util.RunCurlCommand( 'GET', 'droplets/%s' % self.droplet_id) response = json.loads(stdout)['droplet'] for interface in response['networks']['v4']: if interface['type'] == 'public': self.ip_address = interface['ip_address'] else: self.internal_ip = interface['ip_address'] def _Delete(self): """Delete a DigitalOcean VM instance.""" stdout, ret = util.RunCurlCommand( 'DELETE', 'droplets/%s' % self.droplet_id) if ret != 0: if ret == 404: return # Assume already deleted. raise errors.Resource.RetryableDeletionError('Deletion failed: %s' % GetErrorMessage(stdout)) # Get the droplet's actions so that we can look up the # ID for the deletion just issued. stdout, ret = util.RunCurlCommand( 'GET', 'droplets/%s/actions' % self.droplet_id) if ret != 0: # There's a race condition here - if the lookup fails, assume it's # due to deletion already being complete. Don't raise an error in # that case, the _Exists check should trigger retry if needed. return response = json.loads(stdout)['actions'] # Get the action ID for the 'destroy' action. This assumes there's only # one of them, but AFAIK there can't be more since 'destroy' locks the VM. destroy = [v for v in response if v['type'] == 'destroy'][0] # Wait for completion. Actions are global objects, so the action # status should still be retrievable after the VM got destroyed. # We don't care about the result, let the _Exists check decide if we # need to try again. self._GetActionResult(destroy['id']) def _Exists(self): """Returns true if the VM exists.""" _, ret = util.RunCurlCommand( 'GET', 'droplets/%s' % self.droplet_id, suppress_warning=True) if ret == 0: return True if ret == 404: # Definitely doesn't exist. return False # Unknown status - assume it doesn't exist. TODO(klausw): retry? return False def CreateScratchDisk(self, disk_spec): """Create a VM's scratch disk. Args: disk_spec: virtual_machine.BaseDiskSpec object of the disk. """ if disk_spec.disk_type != disk.STANDARD: # TODO(klausw): support type BOOT_DISK once that's implemented. raise errors.Error('DigitalOcean does not support disk type %s.' % disk_spec.disk_type) if self.scratch_disks: # We have a "disk" already, don't add more. TODO(klausw): permit # multiple creation for type BOOT_DISK once that's implemented. raise errors.Error('DigitalOcean does not support multiple disks.') # Just create a local directory at the specified path, don't mount # anything. self.RemoteCommand('sudo mkdir -p {0} && sudo chown -R $USER:$USER {0}' .format(disk_spec.mount_point)) self.scratch_disks.append(digitalocean_disk.DigitalOceanDisk(disk_spec)) class ContainerizedDigitalOceanVirtualMachine( DigitalOceanVirtualMachine, linux_virtual_machine.ContainerizedDebianMixin): DEFAULT_IMAGE = UBUNTU_IMAGE class DebianBasedDigitalOceanVirtualMachine(DigitalOceanVirtualMachine, linux_virtual_machine.DebianMixin): DEFAULT_IMAGE = UBUNTU_IMAGE class RhelBasedDigitalOceanVirtualMachine(DigitalOceanVirtualMachine, linux_virtual_machine.RhelMixin): pass
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A custom module for some common operations used by NASNet. Functions exposed in this file: - calc_reduction_layers - get_channel_index - get_channel_dim - global_avg_pool - factorized_reduction - drop_path Classes exposed in this file: - NasNetABaseCell - NasNetANormalCell - NasNetAReductionCell """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf arg_scope = tf.contrib.framework.arg_scope slim = tf.contrib.slim DATA_FORMAT_NCHW = 'NCHW' DATA_FORMAT_NHWC = 'NHWC' INVALID = 'null' def calc_reduction_layers(num_cells, num_reduction_layers): """Figure out what layers should have reductions.""" reduction_layers = [] for pool_num in range(1, num_reduction_layers + 1): layer_num = (float(pool_num) / (num_reduction_layers + 1)) * num_cells layer_num = int(layer_num) reduction_layers.append(layer_num) return reduction_layers @tf.contrib.framework.add_arg_scope def get_channel_index(data_format=INVALID): assert data_format != INVALID axis = 3 if data_format == 'NHWC' else 1 return axis @tf.contrib.framework.add_arg_scope def get_channel_dim(shape, data_format=INVALID): assert data_format != INVALID assert len(shape) == 4 if data_format == 'NHWC': return int(shape[3]) elif data_format == 'NCHW': return int(shape[1]) else: raise ValueError('Not a valid data_format', data_format) @tf.contrib.framework.add_arg_scope def global_avg_pool(x, data_format=INVALID): """Average pool away the height and width spatial dimensions of x.""" assert data_format != INVALID assert data_format in ['NHWC', 'NCHW'] assert x.shape.ndims == 4 if data_format == 'NHWC': return tf.reduce_mean(x, [1, 2]) else: return tf.reduce_mean(x, [2, 3]) @tf.contrib.framework.add_arg_scope def factorized_reduction(net, output_filters, stride, data_format=INVALID): """Reduces the shape of net without information loss due to striding.""" assert data_format != INVALID if stride == 1: net = slim.conv2d(net, output_filters, 1, scope='path_conv') net = slim.batch_norm(net, scope='path_bn') return net if data_format == 'NHWC': stride_spec = [1, stride, stride, 1] else: stride_spec = [1, 1, stride, stride] # Skip path 1 path1 = tf.nn.avg_pool( net, [1, 1, 1, 1], stride_spec, 'VALID', data_format=data_format) path1 = slim.conv2d(path1, int(output_filters / 2), 1, scope='path1_conv') # Skip path 2 # First pad with 0's on the right and bottom, then shift the filter to # include those 0's that were added. if data_format == 'NHWC': pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]] path2 = tf.pad(net, pad_arr)[:, 1:, 1:, :] concat_axis = 3 else: pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]] path2 = tf.pad(net, pad_arr)[:, :, 1:, 1:] concat_axis = 1 path2 = tf.nn.avg_pool( path2, [1, 1, 1, 1], stride_spec, 'VALID', data_format=data_format) # If odd number of filters, add an additional one to the second path. final_filter_size = int(output_filters / 2) + int(output_filters % 2) path2 = slim.conv2d(path2, final_filter_size, 1, scope='path2_conv') # Concat and apply BN final_path = tf.concat(values=[path1, path2], axis=concat_axis) final_path = slim.batch_norm(final_path, scope='final_path_bn') return final_path @tf.contrib.framework.add_arg_scope def drop_path(net, keep_prob, is_training=True): """Drops out a whole example hiddenstate with the specified probability.""" if is_training: batch_size = tf.shape(net)[0] noise_shape = [batch_size, 1, 1, 1] random_tensor = keep_prob random_tensor += tf.random_uniform(noise_shape, dtype=tf.float32) binary_tensor = tf.cast(tf.floor(random_tensor), net.dtype) keep_prob_inv = tf.cast(1.0 / keep_prob, net.dtype) net = net * keep_prob_inv * binary_tensor return net def _operation_to_filter_shape(operation): splitted_operation = operation.split('x') filter_shape = int(splitted_operation[0][-1]) assert filter_shape == int( splitted_operation[1][0]), 'Rectangular filters not supported.' return filter_shape def _operation_to_num_layers(operation): splitted_operation = operation.split('_') if 'x' in splitted_operation[-1]: return 1 return int(splitted_operation[-1]) def _operation_to_info(operation): """Takes in operation name and returns meta information. An example would be 'separable_3x3_4' -> (3, 4). Args: operation: String that corresponds to convolution operation. Returns: Tuple of (filter shape, num layers). """ num_layers = _operation_to_num_layers(operation) filter_shape = _operation_to_filter_shape(operation) return num_layers, filter_shape def _stacked_separable_conv(net, stride, operation, filter_size): """Takes in an operations and parses it to the correct sep operation.""" num_layers, kernel_size = _operation_to_info(operation) for layer_num in range(num_layers - 1): net = tf.nn.relu(net) net = slim.separable_conv2d( net, filter_size, kernel_size, depth_multiplier=1, scope='separable_{0}x{0}_{1}'.format(kernel_size, layer_num + 1), stride=stride) net = slim.batch_norm( net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, layer_num + 1)) stride = 1 net = tf.nn.relu(net) net = slim.separable_conv2d( net, filter_size, kernel_size, depth_multiplier=1, scope='separable_{0}x{0}_{1}'.format(kernel_size, num_layers), stride=stride) net = slim.batch_norm( net, scope='bn_sep_{0}x{0}_{1}'.format(kernel_size, num_layers)) return net def _operation_to_pooling_type(operation): """Takes in the operation string and returns the pooling type.""" splitted_operation = operation.split('_') return splitted_operation[0] def _operation_to_pooling_shape(operation): """Takes in the operation string and returns the pooling kernel shape.""" splitted_operation = operation.split('_') shape = splitted_operation[-1] assert 'x' in shape filter_height, filter_width = shape.split('x') assert filter_height == filter_width return int(filter_height) def _operation_to_pooling_info(operation): """Parses the pooling operation string to return its type and shape.""" pooling_type = _operation_to_pooling_type(operation) pooling_shape = _operation_to_pooling_shape(operation) return pooling_type, pooling_shape def _pooling(net, stride, operation): """Parses operation and performs the correct pooling operation on net.""" padding = 'SAME' pooling_type, pooling_shape = _operation_to_pooling_info(operation) if pooling_type == 'avg': net = slim.avg_pool2d(net, pooling_shape, stride=stride, padding=padding) elif pooling_type == 'max': net = slim.max_pool2d(net, pooling_shape, stride=stride, padding=padding) else: raise NotImplementedError('Unimplemented pooling type: ', pooling_type) return net class NasNetABaseCell(object): """NASNet Cell class that is used as a 'layer' in image architectures. Args: num_conv_filters: The number of filters for each convolution operation. operations: List of operations that are performed in the NASNet Cell in order. used_hiddenstates: Binary array that signals if the hiddenstate was used within the cell. This is used to determine what outputs of the cell should be concatenated together. hiddenstate_indices: Determines what hiddenstates should be combined together with the specified operations to create the NASNet cell. """ def __init__(self, num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps): self._num_conv_filters = num_conv_filters self._operations = operations self._used_hiddenstates = used_hiddenstates self._hiddenstate_indices = hiddenstate_indices self._drop_path_keep_prob = drop_path_keep_prob self._total_num_cells = total_num_cells self._total_training_steps = total_training_steps def _reduce_prev_layer(self, prev_layer, curr_layer): """Matches dimension of prev_layer to the curr_layer.""" # Set the prev layer to the current layer if it is none if prev_layer is None: return curr_layer curr_num_filters = self._filter_size prev_num_filters = get_channel_dim(prev_layer.shape) curr_filter_shape = int(curr_layer.shape[2]) prev_filter_shape = int(prev_layer.shape[2]) if curr_filter_shape != prev_filter_shape: prev_layer = tf.nn.relu(prev_layer) prev_layer = factorized_reduction( prev_layer, curr_num_filters, stride=2) elif curr_num_filters != prev_num_filters: prev_layer = tf.nn.relu(prev_layer) prev_layer = slim.conv2d( prev_layer, curr_num_filters, 1, scope='prev_1x1') prev_layer = slim.batch_norm(prev_layer, scope='prev_bn') return prev_layer def _cell_base(self, net, prev_layer): """Runs the beginning of the conv cell before the predicted ops are run.""" num_filters = self._filter_size # Check to be sure prev layer stuff is setup correctly prev_layer = self._reduce_prev_layer(prev_layer, net) net = tf.nn.relu(net) net = slim.conv2d(net, num_filters, 1, scope='1x1') net = slim.batch_norm(net, scope='beginning_bn') split_axis = get_channel_index() net = tf.split(axis=split_axis, num_or_size_splits=1, value=net) for split in net: assert int(split.shape[split_axis] == int(self._num_conv_filters * self._filter_scaling)) net.append(prev_layer) return net def __call__(self, net, scope=None, filter_scaling=1, stride=1, prev_layer=None, cell_num=-1, current_step=None): """Runs the conv cell.""" self._cell_num = cell_num self._filter_scaling = filter_scaling self._filter_size = int(self._num_conv_filters * filter_scaling) i = 0 with tf.variable_scope(scope): net = self._cell_base(net, prev_layer) for iteration in range(5): with tf.variable_scope('comb_iter_{}'.format(iteration)): left_hiddenstate_idx, right_hiddenstate_idx = ( self._hiddenstate_indices[i], self._hiddenstate_indices[i + 1]) original_input_left = left_hiddenstate_idx < 2 original_input_right = right_hiddenstate_idx < 2 h1 = net[left_hiddenstate_idx] h2 = net[right_hiddenstate_idx] operation_left = self._operations[i] operation_right = self._operations[i+1] i += 2 # Apply conv operations with tf.variable_scope('left'): h1 = self._apply_conv_operation(h1, operation_left, stride, original_input_left, current_step) with tf.variable_scope('right'): h2 = self._apply_conv_operation(h2, operation_right, stride, original_input_right, current_step) # Combine hidden states using 'add'. with tf.variable_scope('combine'): h = h1 + h2 # Add hiddenstate to the list of hiddenstates we can choose from net.append(h) with tf.variable_scope('cell_output'): net = self._combine_unused_states(net) return net def _apply_conv_operation(self, net, operation, stride, is_from_original_input, current_step): """Applies the predicted conv operation to net.""" # Dont stride if this is not one of the original hiddenstates if stride > 1 and not is_from_original_input: stride = 1 input_filters = get_channel_dim(net.shape) filter_size = self._filter_size if 'separable' in operation: net = _stacked_separable_conv(net, stride, operation, filter_size) elif operation in ['none']: # Check if a stride is needed, then use a strided 1x1 here if stride > 1 or (input_filters != filter_size): net = tf.nn.relu(net) net = slim.conv2d(net, filter_size, 1, stride=stride, scope='1x1') net = slim.batch_norm(net, scope='bn_1') elif 'pool' in operation: net = _pooling(net, stride, operation) if input_filters != filter_size: net = slim.conv2d(net, filter_size, 1, stride=1, scope='1x1') net = slim.batch_norm(net, scope='bn_1') else: raise ValueError('Unimplemented operation', operation) if operation != 'none': net = self._apply_drop_path(net, current_step=current_step) return net def _combine_unused_states(self, net): """Concatenate the unused hidden states of the cell.""" used_hiddenstates = self._used_hiddenstates final_height = int(net[-1].shape[2]) final_num_filters = get_channel_dim(net[-1].shape) assert len(used_hiddenstates) == len(net) for idx, used_h in enumerate(used_hiddenstates): curr_height = int(net[idx].shape[2]) curr_num_filters = get_channel_dim(net[idx].shape) # Determine if a reduction should be applied to make the number of # filters match. should_reduce = final_num_filters != curr_num_filters should_reduce = (final_height != curr_height) or should_reduce should_reduce = should_reduce and not used_h if should_reduce: stride = 2 if final_height != curr_height else 1 with tf.variable_scope('reduction_{}'.format(idx)): net[idx] = factorized_reduction( net[idx], final_num_filters, stride) states_to_combine = ( [h for h, is_used in zip(net, used_hiddenstates) if not is_used]) # Return the concat of all the states concat_axis = get_channel_index() net = tf.concat(values=states_to_combine, axis=concat_axis) return net @tf.contrib.framework.add_arg_scope # No public API. For internal use only. def _apply_drop_path(self, net, current_step=None, use_summaries=False, drop_connect_version='v3'): """Apply drop_path regularization. Args: net: the Tensor that gets drop_path regularization applied. current_step: a float32 Tensor with the current global_step value, to be divided by hparams.total_training_steps. Usually None, which defaults to tf.train.get_or_create_global_step() properly casted. use_summaries: a Python boolean. If set to False, no summaries are output. drop_connect_version: one of 'v1', 'v2', 'v3', controlling whether the dropout rate is scaled by current_step (v1), layer (v2), or both (v3, the default). Returns: The dropped-out value of `net`. """ drop_path_keep_prob = self._drop_path_keep_prob if drop_path_keep_prob < 1.0: assert drop_connect_version in ['v1', 'v2', 'v3'] if drop_connect_version in ['v2', 'v3']: # Scale keep prob by layer number assert self._cell_num != -1 # The added 2 is for the reduction cells num_cells = self._total_num_cells layer_ratio = (self._cell_num + 1)/float(num_cells) if use_summaries: with tf.device('/cpu:0'): tf.summary.scalar('layer_ratio', layer_ratio) drop_path_keep_prob = 1 - layer_ratio * (1 - drop_path_keep_prob) if drop_connect_version in ['v1', 'v3']: # Decrease the keep probability over time if current_step is None: current_step = tf.train.get_or_create_global_step() current_step = tf.cast(current_step, tf.float32) drop_path_burn_in_steps = self._total_training_steps current_ratio = current_step / drop_path_burn_in_steps current_ratio = tf.minimum(1.0, current_ratio) if use_summaries: with tf.device('/cpu:0'): tf.summary.scalar('current_ratio', current_ratio) drop_path_keep_prob = (1 - current_ratio * (1 - drop_path_keep_prob)) if use_summaries: with tf.device('/cpu:0'): tf.summary.scalar('drop_path_keep_prob', drop_path_keep_prob) net = drop_path(net, drop_path_keep_prob) return net class NasNetANormalCell(NasNetABaseCell): """NASNetA Normal Cell.""" def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells, total_training_steps): operations = ['separable_5x5_2', 'separable_3x3_2', 'separable_5x5_2', 'separable_3x3_2', 'avg_pool_3x3', 'none', 'avg_pool_3x3', 'avg_pool_3x3', 'separable_3x3_2', 'none'] used_hiddenstates = [1, 0, 0, 0, 0, 0, 0] hiddenstate_indices = [0, 1, 1, 1, 0, 1, 1, 1, 0, 0] super(NasNetANormalCell, self).__init__(num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps) class NasNetAReductionCell(NasNetABaseCell): """NASNetA Reduction Cell.""" def __init__(self, num_conv_filters, drop_path_keep_prob, total_num_cells, total_training_steps): operations = ['separable_5x5_2', 'separable_7x7_2', 'max_pool_3x3', 'separable_7x7_2', 'avg_pool_3x3', 'separable_5x5_2', 'none', 'avg_pool_3x3', 'separable_3x3_2', 'max_pool_3x3'] used_hiddenstates = [1, 1, 1, 0, 0, 0, 0] hiddenstate_indices = [0, 1, 0, 1, 0, 1, 3, 2, 2, 0] super(NasNetAReductionCell, self).__init__(num_conv_filters, operations, used_hiddenstates, hiddenstate_indices, drop_path_keep_prob, total_num_cells, total_training_steps)
import numpy as np import os import sys import copy import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D sys.path.append(os.path.join(os.path.dirname(__file__),"../")) from crowdsourcing.annotation_types.classification import * def combine_dicts(ds): v = {} for d in ds: for k in d: v[k] = d[k] return v # Defining a useful suite of lesion study experiments and standardized plot styles across different annotation types #------------------------------------------------------- DEFAULT_PLOT_PARAMS = {'line-width':3, 'bar-color':'g', 'bar-width':0.8, 'axis-font-size':20, 'title-font-size':30, 'tick-font-size':16, 'legend-font-size':14} PROB_WORKER_IMAGE_CV_ONLINE = {'name':'prob-worker-cv-online', 'line_style':'-', 'color':'r', 'use_computer_vision':True, 'online':True, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'naive_computer_vision':False, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER_IMAGE_CV_NAIVE_ONLINE = {'name':'prob-worker-cv-naive-online', 'line_style':'-', 'color':'c', 'use_computer_vision':True, 'online':True, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'naive_computer_vision':True, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER_IMAGE_ONLINE = {'name':'prob-worker-online', 'line_style':'-', 'color':'g', 'use_computer_vision':False, 'online':True, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'batch_size':1000, 'sort_method':'num_annos'} PROB_ONLINE = {'name':'prob-online', 'line_style':'-', 'color':'b', 'use_computer_vision':False, 'online':True, 'simple_crowdsourcing':False, 'learn_worker_params':False, 'learn_image_params':False, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER_IMAGE_CV_ONLINE_0005 = combine_dicts([PROB_WORKER_IMAGE_CV_ONLINE, {'name':'prob-worker-cv-online-.005', 'min_risk':0.005, 'color':'#FF0000'}]) PROB_WORKER_IMAGE_CV_ONLINE_001 = combine_dicts([PROB_WORKER_IMAGE_CV_ONLINE, {'name':'prob-worker-cv-online-.01', 'min_risk':0.01, 'color':'#BB0000'}]) PROB_WORKER_IMAGE_CV_ONLINE_002 = combine_dicts([PROB_WORKER_IMAGE_CV_ONLINE, {'name':'prob-worker-cv-online-.02', 'min_risk':0.02, 'color':'#770000'}]) PROB_WORKER_IMAGE_CV = {'name':'prob-worker-cv', 'line_style':'-.s', 'color':'r', 'use_computer_vision':True, 'online':False, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'naive_computer_vision':False, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER_IMAGE = {'name':'prob-worker', 'line_style':'-.o', 'color':'g', 'use_computer_vision':False, 'online':False, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':True, 'batch_size':1000, 'sort_method':'num_annos'} PROB_WORKER = {'name':'prob-worker-noim', 'line_style':'-.o', 'color':'k', 'use_computer_vision':False, 'online':False, 'simple_crowdsourcing':False, 'learn_worker_params':True, 'learn_image_params':False, 'batch_size':1000, 'sort_method':'num_annos'} PROB = {'name':'prob', 'line_style':'-.*', 'color':'b', 'use_computer_vision':False, 'online':False, 'simple_crowdsourcing':False, 'learn_worker_params':False, 'learn_image_params':False, 'batch_size':1000, 'sort_method':'num_annos'} SIMPLE_CROWDSOURCING = {'name':'majority-vote', 'line_style':'-.v', 'color':'m', 'use_computer_vision':False, 'online':False, 'simple_crowdsourcing':True, 'learn_worker_params':False, 'learn_image_params':False, 'batch_size':1000, 'sort_method':'num_annos'} ALL_METHODS_NO_CV = [PROB_WORKER_IMAGE_ONLINE, PROB_ONLINE, PROB_WORKER_IMAGE, PROB_WORKER, PROB, SIMPLE_CROWDSOURCING] ALL_PLOTS_NO_CV = [combine_dicts([{'title':'Method Comparison', 'name':'method_comparison_semilog', 'type':'semilog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Method Comparison', 'name':'method_comparison_loglog', 'type':'loglog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image #', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Method Comparison', 'name':'method_comparison', 'type':'plot', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation_semilog', 'type':'semilog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation_loglog', 'type':'loglog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation', 'type':'plot', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Worker Skill', 'name':'worker_skill', 'type':'skill', 'methods':[{'name':PROB_WORKER_IMAGE['name']}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Num Annotations', 'name':'num_annotations', 'type':'hist', 'xlabel':'Annotations Per Image', 'ylabel':'Image Count', 'methods':[{'name':PROB_WORKER_IMAGE_ONLINE['name'], 'x':'num_annos', 'y':'num_annos_bins'}]}, DEFAULT_PLOT_PARAMS]) ] ALL_METHODS = [PROB_WORKER_IMAGE_CV_ONLINE_002, PROB_WORKER_IMAGE_CV_ONLINE_001, PROB_WORKER_IMAGE_CV_ONLINE_0005, PROB_WORKER_IMAGE_CV_NAIVE_ONLINE, PROB_WORKER_IMAGE_ONLINE, PROB_ONLINE, PROB_WORKER_IMAGE_CV, PROB_WORKER_IMAGE, PROB, SIMPLE_CROWDSOURCING] ALL_PLOTS = [combine_dicts([{'title':'Method Comparison', 'name':'method_comparison_semilog', 'type':'semilog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV_ONLINE_002['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_ONLINE_0005['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_NAIVE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Method Comparison', 'name':'method_comparison_loglog', 'type':'loglog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV_ONLINE_002['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_ONLINE_0005['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_NAIVE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Method Comparison', 'name':'method_comparison', 'type':'plot', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV_ONLINE_002['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_ONLINE_0005['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV_NAIVE_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_ONLINE['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE_CV['name'],'x':'num', 'y':'err'}, {'name':PROB_WORKER_IMAGE['name'],'x':'num', 'y':'err'}, {'name':PROB['name'],'x':'num', 'y':'err'}, {'name':SIMPLE_CROWDSOURCING['name'],'x':'num', 'y':'err'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation_semilog', 'type':'semilog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation_loglog', 'type':'loglog', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Risk Estimation', 'name':'risk_estimation', 'type':'plot', 'legend':True, 'xlabel':'Avg Number of Human Workers Per Image', 'ylabel':'Error', 'methods':[{'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'err', 'title':'Actual Error', 'line_style':'b-'}, {'name':PROB_WORKER_IMAGE_CV['name'], 'x':'num', 'y':'risk', 'title':'Estimated Error', 'line_style':'g-'}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Worker Skill', 'name':'worker_skill', 'type':'skill', 'methods':[{'name':PROB_WORKER_IMAGE['name']}]}, DEFAULT_PLOT_PARAMS]), combine_dicts([{'title':'Num Annotations', 'name':'num_annotations', 'type':'hist', 'xlabel':'Annotations Per Image', 'ylabel':'Image Count', 'methods':[{'name':PROB_WORKER_IMAGE_CV_ONLINE['name'], 'x':'num_annos', 'y':'num_annos_bins'}]}, DEFAULT_PLOT_PARAMS]) ] #------------------------------------------------------- class SimulatedCrowdsourcer(object): def __init__(self, full_dataset, expert_dataset=None, save_prefix=None, output_dir='output', online=True, simple_crowdsourcing=False, learn_worker_params=True, learn_image_params=True, use_computer_vision=False, naive_computer_vision=False, batch_size=1000, num_rand_perms=1, sort_method='num_annos', name=None, line_style='-', color='r', save_all_perms=False, min_risk=0.005): self.full_dataset, self.expert_dataset = full_dataset, expert_dataset self.online, self.simple_crowdsourcing = online, simple_crowdsourcing self.learn_worker_params, self.learn_image_params = learn_worker_params, learn_image_params self.use_computer_vision, self.batch_size = use_computer_vision, (batch_size if online else len(full_dataset.images)) self.naive_computer_vision = naive_computer_vision self.num_rand_perms, self.sort_method = num_rand_perms, sort_method self.save_prefix, self.output_dir = save_prefix, output_dir self.max_workers_per_image, self.save_all_perms = 1, save_all_perms self.min_risk = min_risk def run(self): if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) sum_plot_data, num_plot_data, fnames = [], [], [] all_plot_data = {} for rand_perm in range(self.num_rand_perms): plot_data = {'num':[], 'err':[], 'risk':[]} iter = 0 self.rand_perms = {} #if self.full_dataset.computer_vision_predictor and hasattr(self.full_dataset.computer_vision_predictor, 'iteration'): # self.full_dataset.computer_vision_predictor.iteration = 0 self.dataset = self.full_dataset.__class__(debug=0, learn_worker_params=self.learn_worker_params, learn_image_params=self.learn_image_params, computer_vision_predictor=(self.full_dataset.computer_vision_predictor if self.use_computer_vision else None), naive_computer_vision=self.naive_computer_vision, min_risk=self.min_risk) self.dataset.copy_parameters_from(self.full_dataset, full=False) for i in self.full_dataset.images: self.dataset.images[i] = self.full_dataset._CrowdImageClass_(i, self.dataset) self.dataset.images[i].copy_parameters_from(self.full_dataset.images[i], full=False) for w in self.full_dataset.workers: self.dataset.workers[w] = self.full_dataset._CrowdWorkerClass_(w, self.dataset) self.dataset.workers[w].copy_parameters_from(self.full_dataset.workers[w], full=False) while self.dataset.num_unfinished(full_dataset=self.full_dataset) > 0: if self.simple_crowdsourcing: self.dataset.crowdsource_simple() else: self.dataset.estimate_parameters(avoid_if_finished=True) self.dataset.check_finished_annotations(set_finished=self.online) if self.expert_dataset: err,num = self.dataset.compute_error(self.expert_dataset), self.dataset.num_annotations() if not self.simple_crowdsourcing: plot_data["risk"].append(self.dataset.risk()) plot_data["num"].append(float(num)/len(self.dataset.images)) plot_data["err"].append(err) if self.save_prefix and rand_perm==0 or self.save_all_perms: fname = self.output_dir+'/'+self.save_prefix+str(rand_perm)+'_'+str(iter)+'.json' self.dataset.save(fname) fnames.append({str(rand_perm)+'_'+str(iter):fname}) self.augment_annotations_if_necessary() iter += 1 if hasattr(self.dataset, 'parts'): plot_data["num_annos"] = [] for p in range(len(self.dataset.parts)): plot_data["num_annos"] += [self.dataset.parts[p].images[i].num_annotations() for i in self.dataset.parts[p].images] else: plot_data["num_annos"] = [self.dataset.images[i].num_annotations() for i in self.dataset.images] plot_data["num_annos_bins"] = np.arange(-.5, np.asarray(plot_data["num_annos"]).max()+.5, 1).tolist() if hasattr(self.dataset.workers[w],'skill') and self.dataset.workers[w].skill: for s in range(len(self.dataset.workers[self.dataset.workers.keys()[0]].skill)): plot_data["skill"+str(s)] = [self.dataset.workers[w].skill[s] for w in self.dataset.workers] if self.dataset.cv_worker: plot_data["skill_cv"+str(s)] = [self.dataset.cv_worker.skill[s]] plot_data["worker_num_annos"] = [len(self.dataset.workers[w].images) for w in self.dataset.workers] for k in plot_data: if not k in all_plot_data: all_plot_data[k] = [] all_plot_data[k].append(plot_data[k]) plot_data = {} for k in all_plot_data: ml = int(np.asarray([len(c) for c in all_plot_data[k]]).max()) a = np.zeros((self.num_rand_perms, ml)) valid = np.zeros((self.num_rand_perms, ml)) for i in range(self.num_rand_perms): a[i,:len(all_plot_data[k][i])] = all_plot_data[k][i] valid[i,:len(all_plot_data[k][i])] = 1 if k == 'num_annos': plot_data[k] = a.flatten().tolist() else: plot_data[k] = (a.sum(axis=0) / valid.sum(axis=0)).tolist() plot_data[k+'_var'] = ((((a-plot_data[k])**2)*valid).sum(axis=0) / valid.sum(axis=0)).tolist() return plot_data, fnames, all_plot_data def augment_annotations_if_necessary(self): processed = [] num = 0 image_ids = self.dataset.choose_images_to_annotate_next(max_workers_per_image=self.max_workers_per_image, sort_method=self.sort_method, full_dataset=self.full_dataset) for i in image_ids: processed.append(i) workers = self.full_dataset.images[i].workers if not i in self.rand_perms: self.rand_perms[i] = np.random.permutation(len(self.full_dataset.images[i].z)) #print str(i) + " " + str(len(workers)) + " " + str(workers) has_cv = (1 if (self.dataset.cv_worker and self.dataset.cv_worker.id in self.dataset.images[i].z) else 0) fd_has_cv = (1 if (self.full_dataset.cv_worker and self.full_dataset.cv_worker.id in self.full_dataset.images[i].z) else 0) for j in range(len(self.dataset.images[i].z)-has_cv, min(len(self.dataset.images[i].z)-has_cv+self.max_workers_per_image, len(self.full_dataset.images[i].z)-fd_has_cv)): w = workers[self.rand_perms[i][j]] if not self.dataset.images[i].finished: assert not w in self.dataset.images[i].z, "Duplicate worker " + str(w) + " for image " + str(i) + " calling augment_annotations()" z = self.dataset._CrowdLabelClass_(self.dataset.images[i], self.dataset.workers[w]) z.parse(self.full_dataset.images[i].z[w].raw_data) self.dataset.images[i].z[w] = z self.dataset.images[i].workers.append(w) self.dataset.workers[w].images[i] = self.dataset.images[i] num += 1 if num >= self.batch_size: break ''' if self.use_computer_vision: for i in processed: self.dataset.images[i].predict_true_labels(avoid_if_finished=True) # Initialize training label for computer vision self.dataset.synch_computer_vision_labels() ''' def RunSimulatedExperiments(full_dataset, methods, output_dir, plots, expert_dataset=None, title=None, num_rand_perms=5, force_compute=False, show_intermediate_results=True): results, fnames, methods_d, all_plot_data = {}, {}, {}, {} fnames_i = [] for a in methods: m = a['name'] if not os.path.exists(os.path.join('output', output_dir, 'plot_data_'+m+'.json')) or force_compute: sc = SimulatedCrowdsourcer(full_dataset, expert_dataset=(expert_dataset if expert_dataset else full_dataset), num_rand_perms=num_rand_perms, output_dir='output/'+output_dir, save_prefix=m, **a) results[m], fnames[m], all_plot_data[m] = sc.run() with open(os.path.join('output', output_dir, 'plot_data_'+m+'.json'), 'w') as f: json.dump({'results':results[m], 'fnames':fnames[m], 'all_plot_data':all_plot_data[m]}, f) else: with open(os.path.join('output', output_dir, 'plot_data_'+m+'.json')) as f: data = json.load(f) results[m], fnames[m], all_plot_data[m] = data['results'], data['fnames'], data['all_plot_data'] methods_d[m] = a fnames_c = [] for f in fnames[a['name']]: fnames_c.append({f.keys()[0] : f[f.keys()[0]][len('output/'):]}) fnames_i.append({'name':a['name'], 'files':fnames_c}) if show_intermediate_results: GeneratePlotResults(full_dataset, methods, output_dir, plots, results, methods_d, fnames_i, title) GeneratePlotResults(full_dataset, methods, output_dir, plots, results, methods_d, fnames_i, title) def GeneratePlotResults(full_dataset, methods, output_dir, plots, results, methods_d, fnames_i, title): plot_files = [] for i in range(len(plots)): handles, labels = [], [] fig = plt.figure(i+1) plt.clf() plot = plots[i] if 'xlim' in plot: plt.xlim(plot['xlim'][0], plot['xlim'][1]) if 'ylim' in plot: plt.ylim(plot['ylim'][0], plot['ylim'][1]) for a in plots[i]['methods']: m = a['name'] if not m in methods_d: continue print str(i) + ' ' + str(m) line_style = a['line_style'] if 'line_style' in a else methods_d[m]['line_style'] color = a['color'] if 'color' in a else methods_d[m]['color'] if plot['type'] == 'skill': plot = copy.deepcopy(plots[i]) plot['type'] = 'scatter' if len(full_dataset.skill_names) <= 2 else 'scatter3d' if not 'xlabel' in plot: plot['xlabel'] = full_dataset.skill_names[0] if not 'ylabel' in plot: plot['ylabel'] = full_dataset.skill_names[1] if not 'zlabel' in plot and len(full_dataset.skill_names) > 2: plot['zlabel'] = full_dataset.skill_names[2] if not 'x' in a: a['x'] = 'skill0' if not 'y' in a: a['y'] = 'skill1' if not 'z' in a and len(full_dataset.skill_names) > 2: a['z'] = 'skill2' if plot['type'] == 'semilog': print str(len(results[m][a['x']])) + ' ' + str(len(results[m][a['y']])) h = plt.semilogy(results[m][a['x']], results[m][a['y']], line_style, lw=plot["line-width"], color=color) handles.append(h[0]) elif plot['type'] == 'loglog': h = plt.loglog(results[m][a['x']], results[m][a['y']], line_style, lw=plot["line-width"], color=color) handles.append(h[0]) elif plot['type'] == 'plot': h = plt.plot(results[m][a['x']], results[m][a['y']], line_style, lw=plot["line-width"]) handles.append(h[0]) elif plot['type'] == 'hist': if 'y' in a: h = plt.hist(results[m][a['x']], results[m][a['y']], histtype='bar', rwidth=plot["bar-width"], color=plot["bar-color"]) else: h = plt.hist(results[m][a['x']], histtype='bar', rwidth=plot["bar-width"], color=plot["bar-color"]) handles.append(h[0]) elif plot['type'] == 'scatter': h = plt.scatter(results[m][a['x']], results[m][a['y']], c='r', marker='o') handles.append(h) elif plot['type'] == 'scatter3d': ax = fig.add_subplot(111, projection='3d') h = ax.scatter(results[m][a['x']], results[m][a['y']], results[m][a['z']], c='r', marker='o') handles.append(h) labels.append(a['title'] if 'title' in a else m) if plot['type'] == 'scatter3d': if 'xlabel' in plot: ax.set_xlabel(plot['xlabel'], fontsize=plot['axis-font-size']) if 'ylabel' in plot: ax.set_ylabel(plot['ylabel'], fontsize=plot['axis-font-size']) if 'zlabel' in plot: ax.set_zlabel(plot['zlabel'], fontsize=plot['axis-font-size']) else: if 'xlabel' in plot: plt.xlabel(plot['xlabel'], fontsize=plot['axis-font-size']) if 'ylabel' in plot: plt.ylabel(plot['ylabel'], fontsize=plot['axis-font-size']) if 'zlabel' in plot: plt.zlabel(plot['zlabel'], fontsize=plot['axis-font-size']) if 'title' in plot: plt.title(plot['title'], fontsize=plot['title-font-size']) plt.tick_params(axis='both', which='major', labelsize=plot['tick-font-size']) plt.tick_params(axis='both', which='minor', labelsize=plot['tick-font-size']) if 'legend' in plot: plt.legend(handles, labels, prop={'size':plot['legend-font-size']}) plt.savefig(os.path.join('output', output_dir, plot['name']+'.pdf')) plt.savefig(os.path.join('output', output_dir, plot['name']+'.png')) plot_files.append(output_dir + '/' + plot['name']+'.png') with open(os.path.join('output', output_dir, 'galleries.json'), 'w') as f: json.dump({'plots':plot_files, 'methods':fnames_i, 'title':title}, f)
#!/usr/bin/env python3 # Copyright (c) 2015-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Perform basic ELF security checks on a series of executables. Exit status will be 0 if successful, and the program will be silent. Otherwise the exit status will be 1 and it will log which executables failed which checks. Needs `readelf` (for ELF) and `objdump` (for PE). ''' import subprocess import sys import os READELF_CMD = os.getenv('READELF', '/usr/bin/readelf') OBJDUMP_CMD = os.getenv('OBJDUMP', '/usr/bin/objdump') NONFATAL = {'HIGH_ENTROPY_VA'} # checks which are non-fatal for now but only generate a warning def check_ELF_PIE(executable): ''' Check for position independent executable (PIE), allowing for address space randomization. ''' p = subprocess.Popen([READELF_CMD, '-h', '-W', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') ok = False for line in stdout.splitlines(): line = line.split() if len(line)>=2 and line[0] == 'Type:' and line[1] == 'DYN': ok = True return ok def get_ELF_program_headers(executable): '''Return type and flags for ELF program headers''' p = subprocess.Popen([READELF_CMD, '-l', '-W', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') in_headers = False count = 0 headers = [] for line in stdout.splitlines(): if line.startswith('Program Headers:'): in_headers = True if line == '': in_headers = False if in_headers: if count == 1: # header line ofs_typ = line.find('Type') ofs_offset = line.find('Offset') ofs_flags = line.find('Flg') ofs_align = line.find('Align') if ofs_typ == -1 or ofs_offset == -1 or ofs_flags == -1 or ofs_align == -1: raise ValueError('Cannot parse elfread -lW output') elif count > 1: typ = line[ofs_typ:ofs_offset].rstrip() flags = line[ofs_flags:ofs_align].rstrip() headers.append((typ, flags)) count += 1 return headers def check_ELF_NX(executable): ''' Check that no sections are writable and executable (including the stack) ''' have_wx = False have_gnu_stack = False for (typ, flags) in get_ELF_program_headers(executable): if typ == 'GNU_STACK': have_gnu_stack = True if 'W' in flags and 'E' in flags: # section is both writable and executable have_wx = True return have_gnu_stack and not have_wx def check_ELF_RELRO(executable): ''' Check for read-only relocations. GNU_RELRO program header must exist Dynamic section must have BIND_NOW flag ''' have_gnu_relro = False for (typ, flags) in get_ELF_program_headers(executable): # Note: not checking flags == 'R': here as linkers set the permission differently # This does not affect security: the permission flags of the GNU_RELRO program header are ignored, the PT_LOAD header determines the effective permissions. # However, the dynamic linker need to write to this area so these are RW. # Glibc itself takes care of mprotecting this area R after relocations are finished. # See also http://permalink.gmane.org/gmane.comp.gnu.binutils/71347 if typ == 'GNU_RELRO': have_gnu_relro = True have_bindnow = False p = subprocess.Popen([READELF_CMD, '-d', '-W', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') for line in stdout.splitlines(): tokens = line.split() if len(tokens)>1 and tokens[1] == '(BIND_NOW)' or (len(tokens)>2 and tokens[1] == '(FLAGS)' and 'BIND_NOW' in tokens[2:]): have_bindnow = True return have_gnu_relro and have_bindnow def check_ELF_Canary(executable): ''' Check for use of stack canary ''' p = subprocess.Popen([READELF_CMD, '--dyn-syms', '-W', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') ok = False for line in stdout.splitlines(): if '__stack_chk_fail' in line: ok = True return ok def get_PE_dll_characteristics(executable): ''' Get PE DllCharacteristics bits. Returns a tuple (arch,bits) where arch is 'i386:x86-64' or 'i386' and bits is the DllCharacteristics value. ''' p = subprocess.Popen([OBJDUMP_CMD, '-x', executable], stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE, universal_newlines=True) (stdout, stderr) = p.communicate() if p.returncode: raise IOError('Error opening file') arch = '' bits = 0 for line in stdout.splitlines(): tokens = line.split() if len(tokens)>=2 and tokens[0] == 'architecture:': arch = tokens[1].rstrip(',') if len(tokens)>=2 and tokens[0] == 'DllCharacteristics': bits = int(tokens[1],16) return (arch,bits) IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA = 0x0020 IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE = 0x0040 IMAGE_DLL_CHARACTERISTICS_NX_COMPAT = 0x0100 def check_PE_DYNAMIC_BASE(executable): '''PIE: DllCharacteristics bit 0x40 signifies dynamicbase (ASLR)''' (arch,bits) = get_PE_dll_characteristics(executable) reqbits = IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE return (bits & reqbits) == reqbits # On 64 bit, must support high-entropy 64-bit address space layout randomization in addition to DYNAMIC_BASE # to have secure ASLR. def check_PE_HIGH_ENTROPY_VA(executable): '''PIE: DllCharacteristics bit 0x20 signifies high-entropy ASLR''' (arch,bits) = get_PE_dll_characteristics(executable) if arch == 'i386:x86-64': reqbits = IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA else: # Unnecessary on 32-bit assert(arch == 'i386') reqbits = 0 return (bits & reqbits) == reqbits def check_PE_NX(executable): '''NX: DllCharacteristics bit 0x100 signifies nxcompat (DEP)''' (arch,bits) = get_PE_dll_characteristics(executable) return (bits & IMAGE_DLL_CHARACTERISTICS_NX_COMPAT) == IMAGE_DLL_CHARACTERISTICS_NX_COMPAT CHECKS = { 'ELF': [ ('PIE', check_ELF_PIE), ('NX', check_ELF_NX), ('RELRO', check_ELF_RELRO), ('Canary', check_ELF_Canary) ], 'PE': [ ('DYNAMIC_BASE', check_PE_DYNAMIC_BASE), ('HIGH_ENTROPY_VA', check_PE_HIGH_ENTROPY_VA), ('NX', check_PE_NX) ] } def identify_executable(executable): with open(filename, 'rb') as f: magic = f.read(4) if magic.startswith(b'MZ'): return 'PE' elif magic.startswith(b'\x7fELF'): return 'ELF' return None if __name__ == '__main__': retval = 0 for filename in sys.argv[1:]: try: etype = identify_executable(filename) if etype is None: print('%s: unknown format' % filename) retval = 1 continue failed = [] warning = [] for (name, func) in CHECKS[etype]: if not func(filename): if name in NONFATAL: warning.append(name) else: failed.append(name) if failed: print('%s: failed %s' % (filename, ' '.join(failed))) retval = 1 if warning: print('%s: warning %s' % (filename, ' '.join(warning))) except IOError: print('%s: cannot open' % filename) retval = 1 sys.exit(retval)
""" Test the hashing module. """ # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Copyright (c) 2009 Gael Varoquaux # License: BSD Style, 3 clauses. import time import hashlib import sys import gc import io import collections import itertools import pickle import random from decimal import Decimal from joblib.hashing import hash from joblib.func_inspect import filter_args from joblib.memory import Memory from joblib.testing import raises, skipif, fixture, parametrize from joblib.test.common import np, with_numpy from joblib.my_exceptions import TransportableException from joblib._compat import PY3_OR_LATER try: # Python 2/Python 3 compat unicode('str') except NameError: unicode = lambda s: s ############################################################################### # Helper functions for the tests def time_func(func, *args): """ Time function func on *args. """ times = list() for _ in range(3): t1 = time.time() func(*args) times.append(time.time() - t1) return min(times) def relative_time(func1, func2, *args): """ Return the relative time between func1 and func2 applied on *args. """ time_func1 = time_func(func1, *args) time_func2 = time_func(func2, *args) relative_diff = 0.5 * (abs(time_func1 - time_func2) / (time_func1 + time_func2)) return relative_diff class Klass(object): def f(self, x): return x class KlassWithCachedMethod(object): def __init__(self, cachedir): mem = Memory(cachedir=cachedir) self.f = mem.cache(self.f) def f(self, x): return x ############################################################################### # Tests input_list = [1, 2, 1., 2., 1 + 1j, 2. + 1j, 'a', 'b', (1,), (1, 1,), [1, ], [1, 1, ], {1: 1}, {1: 2}, {2: 1}, None, gc.collect, [1, ].append, # Next 2 sets have unorderable elements in python 3. set(('a', 1)), set(('a', 1, ('a', 1))), # Next 2 dicts have unorderable type of keys in python 3. {'a': 1, 1: 2}, {'a': 1, 1: 2, 'd': {'a': 1}}] @parametrize('obj1', input_list) @parametrize('obj2', input_list) def test_trivial_hash(obj1, obj2): """Smoke test hash on various types.""" # Check that 2 objects have the same hash only if they are the same. are_hashes_equal = hash(obj1) == hash(obj2) are_objs_identical = obj1 is obj2 assert are_hashes_equal == are_objs_identical def test_hash_methods(): # Check that hashing instance methods works a = io.StringIO(unicode('a')) assert hash(a.flush) == hash(a.flush) a1 = collections.deque(range(10)) a2 = collections.deque(range(9)) assert hash(a1.extend) != hash(a2.extend) @fixture(scope='function') @with_numpy def three_np_arrays(): rnd = np.random.RandomState(0) arr1 = rnd.random_sample((10, 10)) arr2 = arr1.copy() arr3 = arr2.copy() arr3[0] += 1 return arr1, arr2, arr3 def test_hash_numpy_arrays(three_np_arrays): arr1, arr2, arr3 = three_np_arrays for obj1, obj2 in itertools.product(three_np_arrays, repeat=2): are_hashes_equal = hash(obj1) == hash(obj2) are_arrays_equal = np.all(obj1 == obj2) assert are_hashes_equal == are_arrays_equal assert hash(arr1) != hash(arr1.T) def test_hash_numpy_dict_of_arrays(three_np_arrays): arr1, arr2, arr3 = three_np_arrays d1 = {1: arr1, 2: arr2} d2 = {1: arr2, 2: arr1} d3 = {1: arr2, 2: arr3} assert hash(d1) == hash(d2) assert hash(d1) != hash(d3) @with_numpy @parametrize('dtype', ['datetime64[s]', 'timedelta64[D]']) def test_numpy_datetime_array(dtype): # memoryview is not supported for some dtypes e.g. datetime64 # see https://github.com/joblib/joblib/issues/188 for more details a_hash = hash(np.arange(10)) array = np.arange(0, 10, dtype=dtype) assert hash(array) != a_hash @with_numpy def test_hash_numpy_noncontiguous(): a = np.asarray(np.arange(6000).reshape((1000, 2, 3)), order='F')[:, :1, :] b = np.ascontiguousarray(a) assert hash(a) != hash(b) c = np.asfortranarray(a) assert hash(a) != hash(c) @with_numpy @parametrize('coerce_mmap', [True, False]) def test_hash_memmap(tmpdir, coerce_mmap): """Check that memmap and arrays hash identically if coerce_mmap is True.""" filename = tmpdir.join('memmap_temp').strpath try: m = np.memmap(filename, shape=(10, 10), mode='w+') a = np.asarray(m) are_hashes_equal = (hash(a, coerce_mmap=coerce_mmap) == hash(m, coerce_mmap=coerce_mmap)) assert are_hashes_equal == coerce_mmap finally: if 'm' in locals(): del m # Force a garbage-collection cycle, to be certain that the # object is delete, and we don't run in a problem under # Windows with a file handle still open. gc.collect() @with_numpy @skipif(sys.platform == 'win32', reason='This test is not stable under windows' ' for some reason') def test_hash_numpy_performance(): """ Check the performance of hashing numpy arrays: In [22]: a = np.random.random(1000000) In [23]: %timeit hashlib.md5(a).hexdigest() 100 loops, best of 3: 20.7 ms per loop In [24]: %timeit hashlib.md5(pickle.dumps(a, protocol=2)).hexdigest() 1 loops, best of 3: 73.1 ms per loop In [25]: %timeit hashlib.md5(cPickle.dumps(a, protocol=2)).hexdigest() 10 loops, best of 3: 53.9 ms per loop In [26]: %timeit hash(a) 100 loops, best of 3: 20.8 ms per loop """ rnd = np.random.RandomState(0) a = rnd.random_sample(1000000) if hasattr(np, 'getbuffer'): # Under python 3, there is no getbuffer getbuffer = np.getbuffer else: getbuffer = memoryview md5_hash = lambda x: hashlib.md5(getbuffer(x)).hexdigest() relative_diff = relative_time(md5_hash, hash, a) assert relative_diff < 0.3 # Check that hashing an tuple of 3 arrays takes approximately # 3 times as much as hashing one array time_hashlib = 3 * time_func(md5_hash, a) time_hash = time_func(hash, (a, a, a)) relative_diff = 0.5 * (abs(time_hash - time_hashlib) / (time_hash + time_hashlib)) assert relative_diff < 0.3 def test_bound_methods_hash(): """ Make sure that calling the same method on two different instances of the same class does resolve to the same hashes. """ a = Klass() b = Klass() assert (hash(filter_args(a.f, [], (1, ))) == hash(filter_args(b.f, [], (1, )))) def test_bound_cached_methods_hash(tmpdir): """ Make sure that calling the same _cached_ method on two different instances of the same class does resolve to the same hashes. """ a = KlassWithCachedMethod(tmpdir.strpath) b = KlassWithCachedMethod(tmpdir.strpath) assert (hash(filter_args(a.f.func, [], (1, ))) == hash(filter_args(b.f.func, [], (1, )))) @with_numpy def test_hash_object_dtype(): """ Make sure that ndarrays with dtype `object' hash correctly.""" a = np.array([np.arange(i) for i in range(6)], dtype=object) b = np.array([np.arange(i) for i in range(6)], dtype=object) assert hash(a) == hash(b) @with_numpy def test_numpy_scalar(): # Numpy scalars are built from compiled functions, and lead to # strange pickling paths explored, that can give hash collisions a = np.float64(2.0) b = np.float64(3.0) assert hash(a) != hash(b) def test_dict_hash(tmpdir): # Check that dictionaries hash consistently, eventhough the ordering # of the keys is not garanteed k = KlassWithCachedMethod(tmpdir.strpath) d = {'#s12069__c_maps.nii.gz': [33], '#s12158__c_maps.nii.gz': [33], '#s12258__c_maps.nii.gz': [33], '#s12277__c_maps.nii.gz': [33], '#s12300__c_maps.nii.gz': [33], '#s12401__c_maps.nii.gz': [33], '#s12430__c_maps.nii.gz': [33], '#s13817__c_maps.nii.gz': [33], '#s13903__c_maps.nii.gz': [33], '#s13916__c_maps.nii.gz': [33], '#s13981__c_maps.nii.gz': [33], '#s13982__c_maps.nii.gz': [33], '#s13983__c_maps.nii.gz': [33]} a = k.f(d) b = k.f(a) assert hash(a) == hash(b) def test_set_hash(tmpdir): # Check that sets hash consistently, even though their ordering # is not guaranteed k = KlassWithCachedMethod(tmpdir.strpath) s = set(['#s12069__c_maps.nii.gz', '#s12158__c_maps.nii.gz', '#s12258__c_maps.nii.gz', '#s12277__c_maps.nii.gz', '#s12300__c_maps.nii.gz', '#s12401__c_maps.nii.gz', '#s12430__c_maps.nii.gz', '#s13817__c_maps.nii.gz', '#s13903__c_maps.nii.gz', '#s13916__c_maps.nii.gz', '#s13981__c_maps.nii.gz', '#s13982__c_maps.nii.gz', '#s13983__c_maps.nii.gz']) a = k.f(s) b = k.f(a) assert hash(a) == hash(b) def test_set_decimal_hash(): # Check that sets containing decimals hash consistently, even though # ordering is not guaranteed assert (hash(set([Decimal(0), Decimal('NaN')])) == hash(set([Decimal('NaN'), Decimal(0)]))) def test_string(): # Test that we obtain the same hash for object owning several strings, # whatever the past of these strings (which are immutable in Python) string = 'foo' a = {string: 'bar'} b = {string: 'bar'} c = pickle.loads(pickle.dumps(b)) assert hash([a, b]) == hash([a, c]) @with_numpy def test_dtype(): # Test that we obtain the same hash for object owning several dtype, # whatever the past of these dtypes. Catter for cache invalidation with # complex dtype a = np.dtype([('f1', np.uint), ('f2', np.int32)]) b = a c = pickle.loads(pickle.dumps(a)) assert hash([a, c]) == hash([a, b]) @parametrize('to_hash,expected', [('This is a string to hash', {'py2': '80436ada343b0d79a99bfd8883a96e45', 'py3': '71b3f47df22cb19431d85d92d0b230b2'}), (u"C'est l\xe9t\xe9", {'py2': '2ff3a25200eb6219f468de2640913c2d', 'py3': '2d8d189e9b2b0b2e384d93c868c0e576'}), ((123456, 54321, -98765), {'py2': '50d81c80af05061ac4dcdc2d5edee6d6', 'py3': 'e205227dd82250871fa25aa0ec690aa3'}), ([random.Random(42).random() for _ in range(5)], {'py2': '1a36a691b2e2ba3a9df72de3dccf17ea', 'py3': 'a11ffad81f9682a7d901e6edc3d16c84'}), ([3, 'abc', None, TransportableException('foo', ValueError)], {'py2': 'adb6ba84990ee5e462dc138383f11802', 'py3': '994f663c64ba5e64b2a85ebe75287829'}), ({'abcde': 123, 'sadfas': [-9999, 2, 3]}, {'py2': 'fc9314a39ff75b829498380850447047', 'py3': 'aeda150553d4bb5c69f0e69d51b0e2ef'})]) def test_hashes_stay_the_same(to_hash, expected): # We want to make sure that hashes don't change with joblib # version. For end users, that would mean that they have to # regenerate their cache from scratch, which potentially means # lengthy recomputations. # Expected results have been generated with joblib 0.9.2 py_version_str = 'py3' if PY3_OR_LATER else 'py2' assert hash(to_hash) == expected[py_version_str] @with_numpy def test_hashes_are_different_between_c_and_fortran_contiguous_arrays(): # We want to be sure that the c-contiguous and f-contiguous versions of the # same array produce 2 different hashes. rng = np.random.RandomState(0) arr_c = rng.random_sample((10, 10)) arr_f = np.asfortranarray(arr_c) assert hash(arr_c) != hash(arr_f) @with_numpy def test_0d_array(): hash(np.array(0)) @with_numpy def test_0d_and_1d_array_hashing_is_different(): assert hash(np.array(0)) != hash(np.array([0])) @with_numpy def test_hashes_stay_the_same_with_numpy_objects(): # We want to make sure that hashes don't change with joblib # version. For end users, that would mean that they have to # regenerate their cache from scratch, which potentially means # lengthy recomputations. rng = np.random.RandomState(42) # Being explicit about dtypes in order to avoid # architecture-related differences. Also using 'f4' rather than # 'f8' for float arrays because 'f8' arrays generated by # rng.random.randn don't seem to be bit-identical on 32bit and # 64bit machines. to_hash_list = [ rng.randint(-1000, high=1000, size=50).astype('<i8'), tuple(rng.randn(3).astype('<f4') for _ in range(5)), [rng.randn(3).astype('<f4') for _ in range(5)], { -3333: rng.randn(3, 5).astype('<f4'), 0: [ rng.randint(10, size=20).astype('<i8'), rng.randn(10).astype('<f4') ] }, # Non regression cases for https://github.com/joblib/joblib/issues/308. # Generated with joblib 0.9.4. np.arange(100, dtype='<i8').reshape((10, 10)), # Fortran contiguous array np.asfortranarray(np.arange(100, dtype='<i8').reshape((10, 10))), # Non contiguous array np.arange(100, dtype='<i8').reshape((10, 10))[:, :2], ] # These expected results have been generated with joblib 0.9.0 expected_dict = {'py2': ['80f2387e7752abbda2658aafed49e086', '0d700f7f25ea670fd305e4cd93b0e8cd', '83a2bdf843e79e4b3e26521db73088b9', '63e0efd43c0a9ad92a07e8ce04338dd3', '03fef702946b602c852b8b4e60929914', '07074691e90d7098a85956367045c81e', 'd264cf79f353aa7bbfa8349e3df72d8f'], 'py3': ['10a6afc379ca2708acfbaef0ab676eab', '988a7114f337f381393025911ebc823b', 'c6809f4b97e35f2fa0ee8d653cbd025c', 'b3ad17348e32728a7eb9cda1e7ede438', '927b3e6b0b6a037e8e035bda134e0b05', '108f6ee98e7db19ea2006ffd208f4bf1', 'bd48ccaaff28e16e6badee81041b7180']} py_version_str = 'py3' if PY3_OR_LATER else 'py2' expected_list = expected_dict[py_version_str] for to_hash, expected in zip(to_hash_list, expected_list): assert hash(to_hash) == expected def test_hashing_pickling_error(): def non_picklable(): return 42 with raises(pickle.PicklingError) as excinfo: hash(non_picklable) excinfo.match('PicklingError while hashing')
# -*- coding: utf-8 -*- ''' Module for managing windows systems. :depends: - win32net Support for reboot, shutdown, etc ''' from __future__ import absolute_import # Import python libs import logging from datetime import datetime # Import 3rd Party Libs try: import pythoncom import wmi import win32net import win32api import win32con import pywintypes from ctypes import windll HAS_WIN32NET_MODS = True except ImportError: HAS_WIN32NET_MODS = False # Import salt libs import salt.utils import salt.utils.locales from salt.modules.reg import read_value # Set up logging log = logging.getLogger(__name__) # Define the module's virtual name __virtualname__ = 'system' def __virtual__(): ''' Set the system module of the kernel is Windows ''' if HAS_WIN32NET_MODS and salt.utils.is_windows(): return __virtualname__ return False def _convert_minutes_seconds(timeout, in_seconds=False): ''' convert timeout to seconds ''' return timeout if in_seconds else timeout*60 def halt(timeout=5, in_seconds=False): ''' Halt a running system. :param int timeout: Number of seconds before halting the system. Default is 5 seconds. :return: True is successful. :rtype: bool timeout The wait time before the system will be shutdown. in_seconds Whether to treat timeout as seconds or minutes. .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt '*' system.halt 5 ''' return shutdown(timeout=timeout, in_seconds=in_seconds) def init(runlevel): ''' Change the system runlevel on sysV compatible systems CLI Example: .. code-block:: bash salt '*' system.init 3 ''' #cmd = ['init', runlevel] #ret = __salt__['cmd.run'](cmd, python_shell=False) #return ret # TODO: Create a mapping of runlevels to # corresponding Windows actions return 'Not implemented on Windows at this time.' def poweroff(timeout=5, in_seconds=False): ''' Power off a running system. :param int timeout: Number of seconds before powering off the system. Default is 5 seconds. :return: True if successful :rtype: bool timeout The wait time before the system will be shutdown. in_seconds Whether to treat timeout as seconds or minutes. .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt '*' system.poweroff 5 ''' return shutdown(timeout=timeout, in_seconds=in_seconds) def reboot(timeout=5, in_seconds=False): ''' Reboot a running system. :param int timeout: Number of seconds before rebooting the system. Default is 5 minutes. :param bool in_seconds: Whether to treat timeout as seconds or minutes. .. versionadded:: 2015.8.0 :return: True if successful :rtype: bool CLI Example: .. code-block:: bash salt '*' system.reboot 5 ''' return shutdown(timeout=timeout, reboot=True, in_seconds=in_seconds) def shutdown(message=None, timeout=5, force_close=True, reboot=False, in_seconds=False): ''' Shutdown a running system. :param str message: A message to display to the user before shutting down. :param int timeout: The length of time that the shutdown dialog box should be displayed, in seconds. While this dialog box is displayed, the shutdown can be stopped by the shutdown_abort function. If timeout is not zero, InitiateSystemShutdown displays a dialog box on the specified computer. The dialog box displays the name of the user who called the function, displays the message specified by the lpMessage parameter, and prompts the user to log off. The dialog box beeps when it is created and remains on top of other windows in the system. The dialog box can be moved but not closed. A timer counts down the remaining time before a forced shutdown. If timeout is zero, the computer shuts down without displaying the dialog box, and the shutdown cannot be stopped by shutdown_abort. Default is 5 minutes :param bool in_seconds: Whether to treat timeout as seconds or minutes. .. versionadded:: 2015.8.0 :param bool force_close: True to force close all open applications. False displays a dialog box instructing the user to close the applications. :param bool reboot: True restarts the computer immediately after shutdown. False caches to disk and safely powers down the system. :return: True if successful :rtype: bool CLI Example: .. code-block:: bash salt '*' system.shutdown 5 ''' seconds = _convert_minutes_seconds(timeout, in_seconds) if message: message = message.decode('utf-8') try: win32api.InitiateSystemShutdown('127.0.0.1', message, timeout, force_close, reboot) return True except pywintypes.error as exc: (number, context, message) = exc log.error('Failed to shutdown the system') log.error('nbr: {0}'.format(number)) log.error('ctx: {0}'.format(context)) log.error('msg: {0}'.format(message)) return False def shutdown_hard(): ''' Shutdown a running system with no timeout or warning. :return: True if successful :rtype: bool CLI Example: .. code-block:: bash salt '*' system.shutdown_hard ''' return shutdown(timeout=0) def shutdown_abort(): ''' Abort a shutdown. Only available while the dialog box is being displayed to the user. Once the shutdown has initiated, it cannot be aborted :return: True if successful :rtype: bool ''' try: win32api.AbortSystemShutdown('127.0.0.1') return True except pywintypes.error as exc: (number, context, message) = exc log.error('Failed to abort system shutdown') log.error('nbr: {0}'.format(number)) log.error('ctx: {0}'.format(context)) log.error('msg: {0}'.format(message)) return False def lock(): ''' Lock the workstation. :return: True if successful :rtype: bool ''' return windll.user32.LockWorkStation() def set_computer_name(name): ''' Set the Windows computer name :param str name: The new name to give the computer. Requires a reboot to take effect. :return: Returns a dictionary containing the old and new names if successful. False if not. CLI Example: .. code-block:: bash salt 'minion-id' system.set_computer_name 'DavesComputer' ''' if name: name = name.decode('utf-8') if windll.kernel32.SetComputerNameExW(win32con.ComputerNamePhysicalDnsHostname, name): ret = {'Computer Name': {'Current': get_system_info()['name']}} pending = get_pending_computer_name() if pending not in (None, False): ret['Computer Name']['Pending'] = pending return ret return False def get_pending_computer_name(): ''' Get a pending computer name. If the computer name has been changed, and the change is pending a system reboot, this function will return the pending computer name. Otherwise, ``None`` will be returned. If there was an error retrieving the pending computer name, ``False`` will be returned, and an error message will be logged to the minion log. :return: Returns the pending name if pending restart. Returns none if not pending restart. CLI Example: .. code-block:: bash salt 'minion-id' system.get_pending_computer_name ''' current = get_computer_name() pending = read_value('HKLM', r'SYSTEM\CurrentControlSet\Control\ComputerName\ComputerName', 'ComputerName')['vdata'] if pending: return pending if pending != current else None return False def get_computer_name(): ''' Get the Windows computer name :return: Returns the computer name if found. Otherwise returns False CLI Example: .. code-block:: bash salt 'minion-id' system.get_computer_name ''' name = get_system_info()['name'] return name if name else False def set_computer_desc(desc=None): ''' Set the Windows computer description :param str desc: The computer description :return: False if it fails. Description if successful. CLI Example: .. code-block:: bash salt 'minion-id' system.set_computer_desc 'This computer belongs to Dave!' ''' # Make sure the system exists # Return an object containing current information array for the computer system_info = win32net.NetServerGetInfo(None, 101) # If desc is passed, decode it for unicode if desc: system_info['comment'] = desc.decode('utf-8') else: return False # Apply new settings try: win32net.NetServerSetInfo(None, 101, system_info) except win32net.error as exc: (number, context, message) = exc log.error('Failed to update system') log.error('nbr: {0}'.format(number)) log.error('ctx: {0}'.format(context)) log.error('msg: {0}'.format(message)) return False return {'Computer Description': get_computer_desc()} set_computer_description = salt.utils.alias_function(set_computer_desc, 'set_computer_description') def get_system_info(): ''' Get system information. :return: Returns a Dictionary containing information about the system to include name, description, version, etc... :rtype: dict ''' system_info = win32net.NetServerGetInfo(None, 101) return system_info def get_computer_desc(): ''' Get the Windows computer description :return: Returns the computer description if found. Otherwise returns False CLI Example: .. code-block:: bash salt 'minion-id' system.get_computer_desc ''' desc = get_system_info()['comment'] return desc if desc else False get_computer_description = salt.utils.alias_function(get_computer_desc, 'get_computer_description') def _lookup_error(number): ''' Lookup the error based on the passed number .. versionadded:: 2015.5.7 .. versionadded:: 2015.8.2 :param int number: Number code to lookup :return: The text that corresponds to the error number :rtype: str ''' return_values = { 2: 'Invalid OU or specifying OU is not supported', 5: 'Access is denied', 53: 'The network path was not found', 87: 'The parameter is incorrect', 110: 'The system cannot open the specified object', 1323: 'Unable to update the password', 1326: 'Logon failure: unknown username or bad password', 1355: 'The specified domain either does not exist or could not be contacted', 2224: 'The account already exists', 2691: 'The machine is already joined to the domain', 2692: 'The machine is not currently joined to a domain', } return return_values[number] def join_domain(domain, username=None, password=None, account_ou=None, account_exists=False, restart=False): ''' Join a computer to an Active Directory domain. Requires reboot. :param str domain: The domain to which the computer should be joined, e.g. ``example.com`` :param str username: Username of an account which is authorized to join computers to the specified domain. Need to be either fully qualified like ``user@domain.tld`` or simply ``user`` :param str password: Password of the specified user :param str account_ou: The DN of the OU below which the account for this computer should be created when joining the domain, e.g. ``ou=computers,ou=departm_432,dc=my-company,dc=com`` :param bool account_exists: Needs to be set to ``True`` to allow re-using an existing account :param bool restart: Restarts the computer after a successful join .. versionadded:: 2015.5.7 .. versionadded:: 2015.8.2 :returns: Returns a dictionary if successful. False if unsuccessful. :rtype: dict, bool CLI Example: .. code-block:: bash salt 'minion-id' system.join_domain domain='domain.tld' \\ username='joinuser' password='joinpassword' \\ account_ou='ou=clients,ou=org,dc=domain,dc=tld' \\ account_exists=False, restart=True ''' status = get_domain_workgroup() if 'Domain' in status: if status['Domain'] == domain: return 'Already joined to {0}'.format(domain) if username and '\\' not in username and '@' not in username: username = '{0}@{1}'.format(username, domain) if username and password is None: return 'Must specify a password if you pass a username' # remove any escape characters if isinstance(account_ou, str): account_ou = account_ou.split('\\') account_ou = ''.join(account_ou) NETSETUP_JOIN_DOMAIN = 0x1 NETSETUP_ACCOUNT_CREATE = 0x2 NETSETUP_DOMAIN_JOIN_IF_JOINED = 0x20 join_options = 0x0 join_options |= NETSETUP_JOIN_DOMAIN join_options |= NETSETUP_DOMAIN_JOIN_IF_JOINED if not account_exists: join_options |= NETSETUP_ACCOUNT_CREATE pythoncom.CoInitialize() c = wmi.WMI() comp = c.Win32_ComputerSystem()[0] err = comp.JoinDomainOrWorkgroup(Name=domain, Password=password, UserName=username, AccountOU=account_ou, FJoinOptions=join_options) # you have to do this because JoinDomainOrWorkgroup returns a strangely # formatted value that looks like (0,) if not err[0]: ret = {'Domain': domain, 'Restart': False} if restart: ret['Restart'] = reboot() return ret log.error(_lookup_error(err[0])) return False def unjoin_domain(username=None, password=None, domain=None, workgroup='WORKGROUP', disable=False, restart=False): r''' Unjoin a computer from an Active Directory Domain. Requires restart. :param username: Username of an account which is authorized to manage computer accounts on the domain. Need to be fully qualified like ``user@domain.tld`` or ``domain.tld\user``. If domain not specified, the passed domain will be used. If computer account doesn't need to be disabled, can be None. :param str password: Password of the specified user :param str domain: The domain from which to unjoin the computer. Can be None :param str workgroup: The workgroup to join the computer to. Default is ``WORKGROUP`` .. versionadded:: 2015.5.7 .. versionadded:: 2015.8.2 :param bool disable: Disable the user account in Active Directory. True to disable. :param bool restart: Restart the computer after successful unjoin .. versionadded:: 2015.5.7 .. versionadded:: 2015.8.2 :returns: Returns a dictionary if successful. False if unsuccessful. :rtype: dict, bool CLI Example: .. code-block:: bash salt 'minion-id' system.unjoin_domain restart=True salt 'minion-id' system.unjoin_domain username='unjoinuser' \\ password='unjoinpassword' disable=True \\ restart=True ''' status = get_domain_workgroup() if 'Workgroup' in status: if status['Workgroup'] == workgroup: return 'Already joined to {0}'.format(workgroup) if username and '\\' not in username and '@' not in username: if domain: username = '{0}@{1}'.format(username, domain) else: return 'Must specify domain if not supplied in username' if username and password is None: return 'Must specify a password if you pass a username' NETSETUP_ACCT_DELETE = 0x2 unjoin_options = 0x0 if disable: unjoin_options |= NETSETUP_ACCT_DELETE pythoncom.CoInitialize() c = wmi.WMI() comp = c.Win32_ComputerSystem()[0] err = comp.UnjoinDomainOrWorkgroup(Password=password, UserName=username, FUnjoinOptions=unjoin_options) # you have to do this because UnjoinDomainOrWorkgroup returns a # strangely formatted value that looks like (0,) if not err[0]: err = comp.JoinDomainOrWorkgroup(Name=workgroup) if not err[0]: ret = {'Workgroup': workgroup, 'Restart': False} if restart: ret['Restart'] = reboot() return ret else: log.error(_lookup_error(err[0])) log.error('Failed to join the computer to {0}'.format(workgroup)) return False else: log.error(_lookup_error(err[0])) log.error('Failed to unjoin computer from {0}'.format(status['Domain'])) return False def get_domain_workgroup(): ''' Get the domain or workgroup the computer belongs to. .. versionadded:: 2015.5.7 .. versionadded:: 2015.8.2 :return: The name of the domain or workgroup :rtype: str ''' pythoncom.CoInitialize() c = wmi.WMI() for computer in c.Win32_ComputerSystem(): if computer.PartOfDomain: return {'Domain': computer.Domain} else: return {'Workgroup': computer.Domain} def _get_date_time_format(dt_string): ''' Function that detects the date/time format for the string passed. :param str dt_string: A date/time string :return: The format of the passed dt_string :rtype: str ''' valid_formats = [ '%I:%M:%S %p', '%I:%M %p', '%H:%M:%S', '%H:%M', '%Y-%m-%d', '%m-%d-%y', '%m-%d-%Y', '%m/%d/%y', '%m/%d/%Y', '%Y/%m/%d' ] for dt_format in valid_formats: try: datetime.strptime(dt_string, dt_format) return dt_format except ValueError: continue return False def get_system_time(): ''' Get the system time. :return: Returns the system time in HH:MM AM/PM format. :rtype: str ''' return datetime.strftime(datetime.now(), "%I:%M %p") def set_system_time(newtime): ''' Set the system time. :param str newtime: The time to set. Can be any of the following formats. - HH:MM:SS AM/PM - HH:MM AM/PM - HH:MM:SS (24 hour) - HH:MM (24 hour) :return: Returns True if successful. Otherwise False. :rtype: bool ''' # Parse time values from new time time_format = _get_date_time_format(newtime) dt_obj = datetime.strptime(newtime, time_format) # Set time using set_system_date_time() return set_system_date_time(hours=int(dt_obj.strftime('%H')), minutes=int(dt_obj.strftime('%M')), seconds=int(dt_obj.strftime('%S'))) def set_system_date_time(years=None, months=None, days=None, hours=None, minutes=None, seconds=None): ''' Set the system date and time. Each argument is an element of the date, but not required. If an element is not passed, the current system value for that element will be used. For example, if you don't pass the year, the current system year will be used. (Used by set_system_date and set_system_time) :param int years: Years digit, ie: 2015 :param int months: Months digit: 1 - 12 :param int days: Days digit: 1 - 31 :param int hours: Hours digit: 0 - 23 :param int minutes: Minutes digit: 0 - 59 :param int seconds: Seconds digit: 0 - 59 :return: True if successful. Otherwise False. :rtype: bool CLI Example: .. code-block:: bash salt '*' system.set_system_date_ time 2015 5 12 11 37 53 ''' # Get the current date/time try: date_time = win32api.GetLocalTime() except win32api.error as exc: (number, context, message) = exc log.error('Failed to get local time') log.error('nbr: {0}'.format(number)) log.error('ctx: {0}'.format(context)) log.error('msg: {0}'.format(message)) return False # Check for passed values. If not passed, use current values if not years: years = date_time[0] if not months: months = date_time[1] if not days: days = date_time[3] if not hours: hours = date_time[4] if not minutes: minutes = date_time[5] if not seconds: seconds = date_time[6] # Create the time tuple to be passed to SetLocalTime, including day_of_week time_tuple = (years, months, days, hours, minutes, seconds, 0) try: win32api.SetLocalTime(time_tuple) except win32api.error as exc: (number, context, message) = exc log.error('Failed to set local time') log.error('nbr: {0}'.format(number)) log.error('ctx: {0}'.format(context)) log.error('msg: {0}'.format(message)) return False return True def get_system_date(): ''' Get the Windows system date :return: Returns the system date. :rtype: str CLI Example: .. code-block:: bash salt '*' system.get_system_date ''' return datetime.strftime(datetime.now(), "%a %m/%d/%Y") def set_system_date(newdate): ''' Set the Windows system date. Use <mm-dd-yy> format for the date. :param str newdate: The date to set. Can be any of the following formats - YYYY-MM-DD - MM-DD-YYYY - MM-DD-YY - MM/DD/YYYY - MM/DD/YY - YYYY/MM/DD CLI Example: .. code-block:: bash salt '*' system.set_system_date '03-28-13' ''' # Parse time values from new time date_format = _get_date_time_format(newdate) dt_obj = datetime.strptime(newdate, date_format) # Set time using set_system_date_time() return set_system_date_time(years=int(dt_obj.strftime('%Y')), months=int(dt_obj.strftime('%m')), days=int(dt_obj.strftime('%d'))) def start_time_service(): ''' Start the Windows time service :return: True if successful. Otherwise False :rtype: bool CLI Example: .. code-block:: bash salt '*' system.start_time_service ''' return __salt__['service.start']('w32time') def stop_time_service(): ''' Stop the Windows time service :return: True if successful. Otherwise False :rtype: bool CLI Example: .. code-block:: bash salt '*' system.stop_time_service ''' return __salt__['service.stop']('w32time')
import logging from pip._vendor.packaging.utils import canonicalize_name from pip._internal.exceptions import ( DistributionNotFound, InstallationError, InstallationSubprocessError, MetadataInconsistent, UnsupportedPythonVersion, UnsupportedWheel, ) from pip._internal.models.wheel import Wheel from pip._internal.req.req_install import InstallRequirement from pip._internal.utils.compatibility_tags import get_supported from pip._internal.utils.hashes import Hashes from pip._internal.utils.misc import ( dist_in_site_packages, dist_in_usersite, get_installed_distributions, ) from pip._internal.utils.typing import MYPY_CHECK_RUNNING from pip._internal.utils.virtualenv import running_under_virtualenv from .base import Constraint from .candidates import ( AlreadyInstalledCandidate, EditableCandidate, ExtrasCandidate, LinkCandidate, RequiresPythonCandidate, ) from .found_candidates import FoundCandidates from .requirements import ( ExplicitRequirement, RequiresPythonRequirement, SpecifierRequirement, UnsatisfiableRequirement, ) if MYPY_CHECK_RUNNING: from typing import ( Dict, FrozenSet, Iterable, Iterator, List, Optional, Sequence, Set, Tuple, TypeVar, ) from pip._vendor.packaging.specifiers import SpecifierSet from pip._vendor.packaging.version import _BaseVersion from pip._vendor.pkg_resources import Distribution from pip._vendor.resolvelib import ResolutionImpossible from pip._internal.cache import CacheEntry, WheelCache from pip._internal.index.package_finder import PackageFinder from pip._internal.models.link import Link from pip._internal.operations.prepare import RequirementPreparer from pip._internal.resolution.base import InstallRequirementProvider from .base import Candidate, Requirement from .candidates import BaseCandidate C = TypeVar("C") Cache = Dict[Link, C] VersionCandidates = Dict[_BaseVersion, Candidate] logger = logging.getLogger(__name__) class Factory(object): def __init__( self, finder, # type: PackageFinder preparer, # type: RequirementPreparer make_install_req, # type: InstallRequirementProvider wheel_cache, # type: Optional[WheelCache] use_user_site, # type: bool force_reinstall, # type: bool ignore_installed, # type: bool ignore_requires_python, # type: bool py_version_info=None, # type: Optional[Tuple[int, ...]] ): # type: (...) -> None self._finder = finder self.preparer = preparer self._wheel_cache = wheel_cache self._python_candidate = RequiresPythonCandidate(py_version_info) self._make_install_req_from_spec = make_install_req self._use_user_site = use_user_site self._force_reinstall = force_reinstall self._ignore_requires_python = ignore_requires_python self._build_failures = {} # type: Cache[InstallationError] self._link_candidate_cache = {} # type: Cache[LinkCandidate] self._editable_candidate_cache = {} # type: Cache[EditableCandidate] self._installed_candidate_cache = { } # type: Dict[str, AlreadyInstalledCandidate] if not ignore_installed: self._installed_dists = { canonicalize_name(dist.project_name): dist for dist in get_installed_distributions(local_only=False) } else: self._installed_dists = {} @property def force_reinstall(self): # type: () -> bool return self._force_reinstall def _make_candidate_from_dist( self, dist, # type: Distribution extras, # type: FrozenSet[str] template, # type: InstallRequirement ): # type: (...) -> Candidate try: base = self._installed_candidate_cache[dist.key] except KeyError: base = AlreadyInstalledCandidate(dist, template, factory=self) self._installed_candidate_cache[dist.key] = base if extras: return ExtrasCandidate(base, extras) return base def _make_candidate_from_link( self, link, # type: Link extras, # type: FrozenSet[str] template, # type: InstallRequirement name, # type: Optional[str] version, # type: Optional[_BaseVersion] ): # type: (...) -> Optional[Candidate] # TODO: Check already installed candidate, and use it if the link and # editable flag match. if link in self._build_failures: # We already tried this candidate before, and it does not build. # Don't bother trying again. return None if template.editable: if link not in self._editable_candidate_cache: try: self._editable_candidate_cache[link] = EditableCandidate( link, template, factory=self, name=name, version=version, ) except (InstallationSubprocessError, MetadataInconsistent) as e: logger.warning("Discarding %s. %s", link, e) self._build_failures[link] = e return None base = self._editable_candidate_cache[link] # type: BaseCandidate else: if link not in self._link_candidate_cache: try: self._link_candidate_cache[link] = LinkCandidate( link, template, factory=self, name=name, version=version, ) except (InstallationSubprocessError, MetadataInconsistent) as e: logger.warning("Discarding %s. %s", link, e) self._build_failures[link] = e return None base = self._link_candidate_cache[link] if extras: return ExtrasCandidate(base, extras) return base def _iter_found_candidates( self, ireqs, # type: Sequence[InstallRequirement] specifier, # type: SpecifierSet hashes, # type: Hashes prefers_installed, # type: bool ): # type: (...) -> Iterable[Candidate] if not ireqs: return () # The InstallRequirement implementation requires us to give it a # "template". Here we just choose the first requirement to represent # all of them. # Hopefully the Project model can correct this mismatch in the future. template = ireqs[0] name = canonicalize_name(template.req.name) extras = frozenset() # type: FrozenSet[str] for ireq in ireqs: specifier &= ireq.req.specifier hashes &= ireq.hashes(trust_internet=False) extras |= frozenset(ireq.extras) # Get the installed version, if it matches, unless the user # specified `--force-reinstall`, when we want the version from # the index instead. installed_candidate = None if not self._force_reinstall and name in self._installed_dists: installed_dist = self._installed_dists[name] if specifier.contains(installed_dist.version, prereleases=True): installed_candidate = self._make_candidate_from_dist( dist=installed_dist, extras=extras, template=template, ) def iter_index_candidates(): # type: () -> Iterator[Candidate] result = self._finder.find_best_candidate( project_name=name, specifier=specifier, hashes=hashes, ) icans = list(result.iter_applicable()) # PEP 592: Yanked releases must be ignored unless only yanked # releases can satisfy the version range. So if this is false, # all yanked icans need to be skipped. all_yanked = all(ican.link.is_yanked for ican in icans) # PackageFinder returns earlier versions first, so we reverse. versions_found = set() # type: Set[_BaseVersion] for ican in reversed(icans): if not all_yanked and ican.link.is_yanked: continue if ican.version in versions_found: continue candidate = self._make_candidate_from_link( link=ican.link, extras=extras, template=template, name=name, version=ican.version, ) if candidate is None: continue yield candidate versions_found.add(ican.version) return FoundCandidates( iter_index_candidates, installed_candidate, prefers_installed, ) def find_candidates( self, requirements, # type: Sequence[Requirement] constraint, # type: Constraint prefers_installed, # type: bool ): # type: (...) -> Iterable[Candidate] explicit_candidates = set() # type: Set[Candidate] ireqs = [] # type: List[InstallRequirement] for req in requirements: cand, ireq = req.get_candidate_lookup() if cand is not None: explicit_candidates.add(cand) if ireq is not None: ireqs.append(ireq) # If none of the requirements want an explicit candidate, we can ask # the finder for candidates. if not explicit_candidates: return self._iter_found_candidates( ireqs, constraint.specifier, constraint.hashes, prefers_installed, ) return ( c for c in explicit_candidates if constraint.is_satisfied_by(c) and all(req.is_satisfied_by(c) for req in requirements) ) def make_requirement_from_install_req(self, ireq, requested_extras): # type: (InstallRequirement, Iterable[str]) -> Optional[Requirement] if not ireq.match_markers(requested_extras): logger.info( "Ignoring %s: markers '%s' don't match your environment", ireq.name, ireq.markers, ) return None if not ireq.link: return SpecifierRequirement(ireq) if ireq.link.is_wheel: wheel = Wheel(ireq.link.filename) if not wheel.supported(self._finder.target_python.get_tags()): msg = "{} is not a supported wheel on this platform.".format( wheel.filename, ) raise UnsupportedWheel(msg) cand = self._make_candidate_from_link( ireq.link, extras=frozenset(ireq.extras), template=ireq, name=canonicalize_name(ireq.name) if ireq.name else None, version=None, ) if cand is None: # There's no way we can satisfy a URL requirement if the underlying # candidate fails to build. An unnamed URL must be user-supplied, so # we fail eagerly. If the URL is named, an unsatisfiable requirement # can make the resolver do the right thing, either backtrack (and # maybe find some other requirement that's buildable) or raise a # ResolutionImpossible eventually. if not ireq.name: raise self._build_failures[ireq.link] return UnsatisfiableRequirement(canonicalize_name(ireq.name)) return self.make_requirement_from_candidate(cand) def make_requirement_from_candidate(self, candidate): # type: (Candidate) -> ExplicitRequirement return ExplicitRequirement(candidate) def make_requirement_from_spec( self, specifier, # type: str comes_from, # type: InstallRequirement requested_extras=(), # type: Iterable[str] ): # type: (...) -> Optional[Requirement] ireq = self._make_install_req_from_spec(specifier, comes_from) return self.make_requirement_from_install_req(ireq, requested_extras) def make_requires_python_requirement(self, specifier): # type: (Optional[SpecifierSet]) -> Optional[Requirement] if self._ignore_requires_python or specifier is None: return None return RequiresPythonRequirement(specifier, self._python_candidate) def get_wheel_cache_entry(self, link, name): # type: (Link, Optional[str]) -> Optional[CacheEntry] """Look up the link in the wheel cache. If ``preparer.require_hashes`` is True, don't use the wheel cache, because cached wheels, always built locally, have different hashes than the files downloaded from the index server and thus throw false hash mismatches. Furthermore, cached wheels at present have nondeterministic contents due to file modification times. """ if self._wheel_cache is None or self.preparer.require_hashes: return None return self._wheel_cache.get_cache_entry( link=link, package_name=name, supported_tags=get_supported(), ) def get_dist_to_uninstall(self, candidate): # type: (Candidate) -> Optional[Distribution] # TODO: Are there more cases this needs to return True? Editable? dist = self._installed_dists.get(candidate.name) if dist is None: # Not installed, no uninstallation required. return None # We're installing into global site. The current installation must # be uninstalled, no matter it's in global or user site, because the # user site installation has precedence over global. if not self._use_user_site: return dist # We're installing into user site. Remove the user site installation. if dist_in_usersite(dist): return dist # We're installing into user site, but the installed incompatible # package is in global site. We can't uninstall that, and would let # the new user installation to "shadow" it. But shadowing won't work # in virtual environments, so we error out. if running_under_virtualenv() and dist_in_site_packages(dist): raise InstallationError( "Will not install to the user site because it will " "lack sys.path precedence to {} in {}".format( dist.project_name, dist.location, ) ) return None def _report_requires_python_error( self, requirement, # type: RequiresPythonRequirement template, # type: Candidate ): # type: (...) -> UnsupportedPythonVersion message_format = ( "Package {package!r} requires a different Python: " "{version} not in {specifier!r}" ) message = message_format.format( package=template.name, version=self._python_candidate.version, specifier=str(requirement.specifier), ) return UnsupportedPythonVersion(message) def get_installation_error(self, e): # type: (ResolutionImpossible) -> InstallationError assert e.causes, "Installation error reported with no cause" # If one of the things we can't solve is "we need Python X.Y", # that is what we report. for cause in e.causes: if isinstance(cause.requirement, RequiresPythonRequirement): return self._report_requires_python_error( cause.requirement, cause.parent, ) # Otherwise, we have a set of causes which can't all be satisfied # at once. # The simplest case is when we have *one* cause that can't be # satisfied. We just report that case. if len(e.causes) == 1: req, parent = e.causes[0] if parent is None: req_disp = str(req) else: req_disp = '{} (from {})'.format(req, parent.name) logger.critical( "Could not find a version that satisfies the requirement %s", req_disp, ) return DistributionNotFound( 'No matching distribution found for {}'.format(req) ) # OK, we now have a list of requirements that can't all be # satisfied at once. # A couple of formatting helpers def text_join(parts): # type: (List[str]) -> str if len(parts) == 1: return parts[0] return ", ".join(parts[:-1]) + " and " + parts[-1] def describe_trigger(parent): # type: (Candidate) -> str ireq = parent.get_install_requirement() if not ireq or not ireq.comes_from: return "{}=={}".format(parent.name, parent.version) if isinstance(ireq.comes_from, InstallRequirement): return str(ireq.comes_from.name) return str(ireq.comes_from) triggers = set() for req, parent in e.causes: if parent is None: # This is a root requirement, so we can report it directly trigger = req.format_for_error() else: trigger = describe_trigger(parent) triggers.add(trigger) if triggers: info = text_join(sorted(triggers)) else: info = "the requested packages" msg = "Cannot install {} because these package versions " \ "have conflicting dependencies.".format(info) logger.critical(msg) msg = "\nThe conflict is caused by:" for req, parent in e.causes: msg = msg + "\n " if parent: msg = msg + "{} {} depends on ".format( parent.name, parent.version ) else: msg = msg + "The user requested " msg = msg + req.format_for_error() msg = msg + "\n\n" + \ "To fix this you could try to:\n" + \ "1. loosen the range of package versions you've specified\n" + \ "2. remove package versions to allow pip attempt to solve " + \ "the dependency conflict\n" logger.info(msg) return DistributionNotFound( "ResolutionImpossible: for help visit " "https://pip.pypa.io/en/latest/user_guide/" "#fixing-conflicting-dependencies" )
#!/usr/bin/python # # Copyright (C) 2008 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """HttpClients in this module use httplib to make HTTP requests. This module make HTTP requests based on httplib, but there are environments in which an httplib based approach will not work (if running in Google App Engine for example). In those cases, higher level classes (like AtomService and GDataService) can swap out the HttpClient to transparently use a different mechanism for making HTTP requests. HttpClient: Contains a request method which performs an HTTP call to the server. ProxiedHttpClient: Contains a request method which connects to a proxy using settings stored in operating system environment variables then performs an HTTP call to the endpoint server. """ __author__ = 'api.jscudder (Jeff Scudder)' import types import os import http.client import atom.url import atom.http_interface import socket import base64 import atom.http_core ssl_imported = False ssl = None try: import ssl ssl_imported = True except ImportError: pass class ProxyError(atom.http_interface.Error): pass class TestConfigurationError(Exception): pass DEFAULT_CONTENT_TYPE = 'application/atom+xml' class HttpClient(atom.http_interface.GenericHttpClient): # Added to allow old v1 HttpClient objects to use the new # http_code.HttpClient. Used in unit tests to inject a mock client. v2_http_client = None def __init__(self, headers=None): self.debug = False self.headers = headers or {} def request(self, operation, url, data=None, headers=None): """Performs an HTTP call to the server, supports GET, POST, PUT, and DELETE. Usage example, perform and HTTP GET on http://www.google.com/: import atom.http client = atom.http.HttpClient() http_response = client.request('GET', 'http://www.google.com/') Args: operation: str The HTTP operation to be performed. This is usually one of 'GET', 'POST', 'PUT', or 'DELETE' data: filestream, list of parts, or other object which can be converted to a string. Should be set to None when performing a GET or DELETE. If data is a file-like object which can be read, this method will read a chunk of 100K bytes at a time and send them. If the data is a list of parts to be sent, each part will be evaluated and sent. url: The full URL to which the request should be sent. Can be a string or atom.url.Url. headers: dict of strings. HTTP headers which should be sent in the request. """ all_headers = self.headers.copy() if headers: all_headers.update(headers) # If the list of headers does not include a Content-Length, attempt to # calculate it based on the data object. if data and 'Content-Length' not in all_headers: if isinstance(data, str): all_headers['Content-Length'] = str(len(data)) else: raise atom.http_interface.ContentLengthRequired('Unable to calculate ' 'the length of the data parameter. Specify a value for ' 'Content-Length') # Set the content type to the default value if none was set. if 'Content-Type' not in all_headers: all_headers['Content-Type'] = DEFAULT_CONTENT_TYPE if self.v2_http_client is not None: http_request = atom.http_core.HttpRequest(method=operation) atom.http_core.Uri.parse_uri(str(url)).modify_request(http_request) http_request.headers = all_headers if data: http_request._body_parts.append(data) return self.v2_http_client.request(http_request=http_request) if not isinstance(url, atom.url.Url): if isinstance(url, str): url = atom.url.parse_url(url) else: raise atom.http_interface.UnparsableUrlObject('Unable to parse url ' 'parameter because it was not a string or atom.url.Url') connection = self._prepare_connection(url, all_headers) if self.debug: connection.debuglevel = 1 connection.putrequest(operation, self._get_access_url(url), skip_host=True) if url.port is not None: connection.putheader('Host', '%s:%s' % (url.host, url.port)) else: connection.putheader('Host', url.host) # Overcome a bug in Python 2.4 and 2.5 # httplib.HTTPConnection.putrequest adding # HTTP request header 'Host: www.google.com:443' instead of # 'Host: www.google.com', and thus resulting the error message # 'Token invalid - AuthSub token has wrong scope' in the HTTP response. if (url.protocol == 'https' and int(url.port or 443) == 443 and hasattr(connection, '_buffer') and isinstance(connection._buffer, list)): header_line = 'Host: %s:443' % url.host replacement_header_line = 'Host: %s' % url.host try: connection._buffer[connection._buffer.index(header_line)] = ( replacement_header_line) except ValueError: # header_line missing from connection._buffer pass # Send the HTTP headers. for header_name in all_headers: connection.putheader(header_name, all_headers[header_name]) connection.endheaders() # If there is data, send it in the request. if data: if isinstance(data, list): for data_part in data: _send_data_part(data_part, connection) else: _send_data_part(data, connection) # Return the HTTP Response from the server. return connection.getresponse() def _prepare_connection(self, url, headers): if not isinstance(url, atom.url.Url): if isinstance(url, str): url = atom.url.parse_url(url) else: raise atom.http_interface.UnparsableUrlObject('Unable to parse url ' 'parameter because it was not a string or atom.url.Url') if url.protocol == 'https': if not url.port: return http.client.HTTPSConnection(url.host) return http.client.HTTPSConnection(url.host, int(url.port)) else: if not url.port: return http.client.HTTPConnection(url.host) return http.client.HTTPConnection(url.host, int(url.port)) def _get_access_url(self, url): return url.to_string() class ProxiedHttpClient(HttpClient): """Performs an HTTP request through a proxy. The proxy settings are obtained from enviroment variables. The URL of the proxy server is assumed to be stored in the environment variables 'https_proxy' and 'http_proxy' respectively. If the proxy server requires a Basic Auth authorization header, the username and password are expected to be in the 'proxy-username' or 'proxy_username' variable and the 'proxy-password' or 'proxy_password' variable, or in 'http_proxy' or 'https_proxy' as "protocol://[username:password@]host:port". After connecting to the proxy server, the request is completed as in HttpClient.request. """ def _prepare_connection(self, url, headers): proxy_settings = os.environ.get('%s_proxy' % url.protocol) if not proxy_settings: # The request was HTTP or HTTPS, but there was no appropriate proxy set. return HttpClient._prepare_connection(self, url, headers) else: proxy_auth = _get_proxy_auth(proxy_settings) proxy_netloc = _get_proxy_net_location(proxy_settings) if url.protocol == 'https': # Set any proxy auth headers if proxy_auth: proxy_auth = 'Proxy-authorization: %s' % proxy_auth # Construct the proxy connect command. port = url.port if not port: port = '443' proxy_connect = 'CONNECT %s:%s HTTP/1.0\r\n' % (url.host, port) # Set the user agent to send to the proxy if headers and 'User-Agent' in headers: user_agent = 'User-Agent: %s\r\n' % (headers['User-Agent']) else: user_agent = 'User-Agent: python\r\n' proxy_pieces = '%s%s%s\r\n' % (proxy_connect, proxy_auth, user_agent) # Find the proxy host and port. proxy_url = atom.url.parse_url(proxy_netloc) if not proxy_url.port: proxy_url.port = '80' # Connect to the proxy server, very simple recv and error checking p_sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) p_sock.connect((proxy_url.host, int(proxy_url.port))) p_sock.sendall(proxy_pieces) response = '' # Wait for the full response. while response.find("\r\n\r\n") == -1: response += p_sock.recv(8192) p_status = response.split()[1] if p_status != str(200): raise ProxyError('Error status=%s' % str(p_status)) # Trivial setup for ssl socket. sslobj = None if ssl_imported: sslobj = ssl.wrap_socket(p_sock, None, None) else: sock_ssl = socket.ssl(p_sock, None, None) sslobj = http.client.FakeSocket(p_sock, sock_ssl) # Initalize httplib and replace with the proxy socket. connection = http.client.HTTPConnection(proxy_url.host) connection.sock = sslobj return connection else: # If protocol was not https. # Find the proxy host and port. proxy_url = atom.url.parse_url(proxy_netloc) if not proxy_url.port: proxy_url.port = '80' if proxy_auth: headers['Proxy-Authorization'] = proxy_auth.strip() return http.client.HTTPConnection(proxy_url.host, int(proxy_url.port)) def _get_access_url(self, url): return url.to_string() def _get_proxy_auth(proxy_settings): """Returns proxy authentication string for header. Will check environment variables for proxy authentication info, starting with proxy(_/-)username and proxy(_/-)password before checking the given proxy_settings for a [protocol://]username:password@host[:port] string. Args: proxy_settings: String from http_proxy or https_proxy environment variable. Returns: Authentication string for proxy, or empty string if no proxy username was found. """ proxy_username = None proxy_password = None proxy_username = os.environ.get('proxy-username') if not proxy_username: proxy_username = os.environ.get('proxy_username') proxy_password = os.environ.get('proxy-password') if not proxy_password: proxy_password = os.environ.get('proxy_password') if not proxy_username: if '@' in proxy_settings: protocol_and_proxy_auth = proxy_settings.split('@')[0].split(':') if len(protocol_and_proxy_auth) == 3: # 3 elements means we have [<protocol>, //<user>, <password>] proxy_username = protocol_and_proxy_auth[1].lstrip('/') proxy_password = protocol_and_proxy_auth[2] elif len(protocol_and_proxy_auth) == 2: # 2 elements means we have [<user>, <password>] proxy_username = protocol_and_proxy_auth[0] proxy_password = protocol_and_proxy_auth[1] if proxy_username: user_auth = base64.encodestring('%s:%s' % (proxy_username, proxy_password)) return 'Basic %s\r\n' % (user_auth.strip()) else: return '' def _get_proxy_net_location(proxy_settings): """Returns proxy host and port. Args: proxy_settings: String from http_proxy or https_proxy environment variable. Must be in the form of protocol://[username:password@]host:port Returns: String in the form of protocol://host:port """ if '@' in proxy_settings: protocol = proxy_settings.split(':')[0] netloc = proxy_settings.split('@')[1] return '%s://%s' % (protocol, netloc) else: return proxy_settings def _send_data_part(data, connection): # Check to see if data is a file-like object that has a read method. if hasattr(data, 'read'): # Read the file and send it a chunk at a time. while 1: binarydata = data.read(100000) if binarydata == '': break connection.send(binarydata) return else: # The data object was not a file. # Try to convert to a string bytes and send the data. connection.send(bytes(data, "UTF-8")) return
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time import wave from glob import glob import os import pyee from os.path import dirname, join from speech_recognition import AudioSource from mycroft.client.speech.listener import RecognizerLoop from mycroft.client.speech.mic import ResponsiveRecognizer def to_percent(val): return "{0:.2f}".format(100.0 * val) + "%" class FileStream: MIN_S_TO_DEBUG = 5.0 # How long between printing debug info to screen UPDATE_INTERVAL_S = 1.0 def __init__(self, file_name): self.file = wave.open(file_name, 'rb') self.size = self.file.getnframes() self.sample_rate = self.file.getframerate() self.sample_width = self.file.getsampwidth() self.last_update_time = 0.0 self.total_s = self.size / self.sample_rate / self.sample_width if self.total_s > self.MIN_S_TO_DEBUG: self.debug = True else: self.debug = False def calc_progress(self): return float(self.file.tell()) / self.size def read(self, chunk_size): progress = self.calc_progress() if progress == 1.0: raise EOFError if self.debug: cur_time = time.time() dt = cur_time - self.last_update_time if dt > self.UPDATE_INTERVAL_S: self.last_update_time = cur_time print(to_percent(progress)) return self.file.readframes(chunk_size) def close(self): self.file.close() class FileMockMicrophone(AudioSource): def __init__(self, file_name): self.stream = FileStream(file_name) self.SAMPLE_RATE = self.stream.sample_rate self.SAMPLE_WIDTH = self.stream.sample_width self.CHUNK = 1024 def close(self): self.stream.close() class AudioTester: def __init__(self, samp_rate): print() # Pad debug messages self.ww_recognizer = RecognizerLoop().create_mycroft_recognizer( samp_rate, 'en-us') self.listener = ResponsiveRecognizer(self.ww_recognizer) print() def test_audio(self, file_name): source = FileMockMicrophone(file_name) ee = pyee.EventEmitter() class SharedData: times_found = 0 def on_found_wake_word(): SharedData.times_found += 1 ee.on('recognizer_loop:record_begin', on_found_wake_word) try: while True: self.listener.listen(source, ee) except EOFError: pass return SharedData.times_found class Color: BOLD = '\033[1m' NORMAL = '\033[0m' GREEN = '\033[92m' RED = '\033[91m' def bold_str(val): return Color.BOLD + str(val) + Color.NORMAL def get_root_dir(): return dirname(dirname(__file__)) def get_file_names(folder): query = join(folder, '*.wav') root_dir = get_root_dir() full_path = join(root_dir, query) file_names = sorted(glob(full_path)) if len(file_names) < 1: raise IOError return file_names def test_audio_files(tester, file_names, on_file_finish): num_found = 0 for file_name in file_names: short_name = os.path.basename(file_name) times_found = tester.test_audio(file_name) num_found += times_found on_file_finish(short_name, times_found) return num_found def file_frame_rate(file_name): wf = wave.open(file_name, 'rb') frame_rate = wf.getframerate() wf.close() return frame_rate def print_ww_found_status(word, short_name): print("Wake word " + bold_str(word) + " - " + short_name) def test_false_negative(directory): file_names = get_file_names(directory) # Grab audio format info from first file tester = AudioTester(file_frame_rate(file_names[0])) def on_file_finish(short_name, times_found): not_found_str = Color.RED + "Not found" found_str = Color.GREEN + "Detected " status_str = not_found_str if times_found == 0 else found_str print_ww_found_status(status_str, short_name) num_found = test_audio_files(tester, file_names, on_file_finish) total = len(file_names) print print("Found " + bold_str(num_found) + " out of " + bold_str(total)) print(bold_str(to_percent(float(num_found) / total)) + " accuracy.") print def test_false_positive(directory): file_names = get_file_names(directory) # Grab audio format info from first file tester = AudioTester(file_frame_rate(file_names[0])) def on_file_finish(short_name, times_found): not_found_str = Color.GREEN + "Not found" found_str = Color.RED + "Detected " status_str = not_found_str if times_found == 0 else found_str print_ww_found_status(status_str, short_name) num_found = test_audio_files(tester, file_names, on_file_finish) total = len(file_names) print print("Found " + bold_str(num_found) + " false positives") print("in " + bold_str(str(total)) + " files") print def run_test(): directory = join('audio-accuracy-test', 'data') false_neg_dir = join(directory, 'with_wake_word', 'query_after') false_pos_dir = join(directory, 'without_wake_word') try: test_false_negative(false_neg_dir) except IOError: print(bold_str("Warning: No wav files found in " + false_neg_dir)) try: test_false_positive(false_pos_dir) except IOError: print(bold_str("Warning: No wav files found in " + false_pos_dir)) print("Complete!") if __name__ == "__main__": run_test()
import unittest import numpy as np from . import defHeaders from pycqed.analysis.tools import data_manipulation as dm_tools CBox = None class CBox_tests(unittest.TestCase): ''' This is a test suite for testing the QuTech_ControlBox Instrument. It is designed to provide a test function for each function as well as for general things such as testing if the com s are working. ''' @classmethod def setUpClass(self): self.CBox = CBox def test_firmware_version(self): v = CBox.get('firmware_version') self.assertTrue(int(v[1]) == 2) # major version self.assertTrue(int(int(v[3:5])) > 13) # minor version def test_setting_mode(self): for i in range(6): self.CBox.set('acquisition_mode', i) self.assertEqual(self.CBox.get('acquisition_mode'), defHeaders.acquisition_modes[i]) self.CBox.set('acquisition_mode', 0) self.assertEqual(self.CBox.get('acquisition_mode'), defHeaders.acquisition_modes[0]) for i in range(2): self.CBox.set('run_mode', i) self.assertEqual(self.CBox.get('run_mode'), defHeaders.run_modes[i]) self.CBox.set('run_mode', 0) for j in range(3): for i in range(3): self.CBox.set('AWG{}_mode'.format(j), i) self.assertEqual(self.CBox.get('AWG{}_mode'.format(j)), defHeaders.awg_modes[i]) self.CBox.set('AWG{}_mode'.format(j), 0) def test_codec(self): # codec is CBox.c encoded_128 = self.CBox.c.encode_byte(128, 7) self.assertTrue(type(encoded_128) == bytes) self.assertTrue(len(encoded_128) == 2) self.assertTrue(bytes_to_binary(encoded_128) == '1000000110000000') encoded_128 = self.CBox.c.encode_byte(128, 4) self.assertTrue(type(encoded_128) == bytes) self.assertTrue(len(encoded_128) == 2) self.assertTrue(bytes_to_binary(encoded_128) == '1000100010000000') # Encoding using 4 bits per byte encoded_546815 = self.CBox.c.encode_byte(546815, 4, 6) self.assertEqual(type(encoded_546815), bytes) self.assertEqual(len(encoded_546815), 6) sub_str = bytes([encoded_546815[0], encoded_546815[-1]]) self.assertTrue(bin(sub_str == '1000100010001111')) self.assertEqual(CBox.c.decode_byte(encoded_546815, 4), 546815) # encoding using 7 bits per byte encoded_546815 = self.CBox.c.encode_byte(546815, 7, 4) self.assertEqual(CBox.c.decode_byte(encoded_546815, 7), 546815) # encoding using 7 bits per byte encoded_neg235 = self.CBox.c.encode_byte(-235, 7, 4) self.assertEqual(CBox.c.decode_byte(encoded_neg235, 7), -235) # Encoding and decoding array x = np.random.randint(0, 2565, 20) data_bytes = CBox.c.encode_array(x, 7, 2) message = CBox.c.create_message(data_bytes=data_bytes) x_dec = CBox.c.decode_message(message, 7, 2) self.assertEqual(x.all(), x_dec.all()) def test_sig_del(self): s_del = self.CBox.get('signal_delay') self.CBox.set('signal_delay', 0) self.assertEqual(self.CBox.get('signal_delay'), 0) self.CBox.set('signal_delay', 124) self.assertEqual(self.CBox.get('signal_delay'), 124) self.CBox.set('signal_delay', s_del) def test_integration_length(self): s_del = self.CBox.get('integration_length') self.CBox.set('integration_length', 50) self.assertEqual(self.CBox.get('integration_length'), 50) self.CBox.set('integration_length', 124) self.assertEqual(self.CBox.get('integration_length'), 124) self.CBox.set('integration_length', s_del) def test_set_signal_threshold(self): for i in range(2): t = self.CBox.get('sig{}_threshold_line'.format(i)) self.CBox.set('sig{}_threshold_line'.format(i), 124) self.assertEqual( self.CBox.get('sig{}_threshold_line'.format(i)), 124) self.CBox.set('sig{}_threshold_line'.format(i), t) def test_adc_offset(self): offs = self.CBox.get('adc_offset') self.CBox.set('adc_offset', 123) self.assertEqual(self.CBox.get('adc_offset'), 123) self.CBox.set('adc_offset', -123) self.assertEqual(self.CBox.get('adc_offset'), -123) self.CBox.set('adc_offset', offs) def test_dac_offset(self): for i in range(3): for j in range(2): initial_val = self.CBox.get('AWG{}_dac{}_offset'.format(i, j)) self.CBox.set('AWG{}_dac{}_offset'.format(i, j), 200) self.assertEqual( self.CBox.get('AWG{}_dac{}_offset'.format(i, j)), 200) self.CBox.set('AWG{}_dac{}_offset'.format(i, j), initial_val) def test_tape(self): for i in range(3): tape = [2, 4, 5, 1, 0, 3] initial_val = self.CBox.get('AWG{}_tape'.format(i)) self.CBox.set('AWG{}_tape'.format(i), tape) # TODO: This part of test should be rewritten # stored_conventional_tape = self.CBox.get('AWG{}_tape'.format(i)) # conventional_tape = [sample/2 for sample in # stored_conventional_tape] # self.assertEqual(conventional_tape, tape) self.CBox.set('AWG{}_tape'.format(i), initial_val) def test_log_length(self): initial_val = self.CBox.get('log_length') self.CBox.set('log_length', 2) self.assertEqual(self.CBox.get('log_length'), 2) self.CBox.set('log_length', 7500) self.assertEqual(self.CBox.get('log_length'), 7500) self.CBox.set('log_length', initial_val) def test_lin_trans_coeffs(self): initial_val = self.CBox.get('lin_trans_coeffs') self.CBox.set('lin_trans_coeffs', [1, .4, 0, 1.33]) self.assertEqual(self.CBox.get('lin_trans_coeffs'), [1, .4, 0, 1.33]) self.CBox.set('lin_trans_coeffs', [1, .4, .2, 1]) self.assertEqual(self.CBox.get('lin_trans_coeffs'), [1, .4, .2, 1]) self.CBox.set('lin_trans_coeffs', initial_val) def test_averaging_parameters(self): initial_val = self.CBox.get('nr_samples') self.CBox.set('nr_samples', 2) self.assertEqual(self.CBox.get('nr_samples'), 2) self.CBox.set('nr_samples', 1564) self.assertEqual(self.CBox.get('nr_samples'), 1564) self.CBox.set('nr_samples', initial_val) initial_val = self.CBox.get('nr_averages') self.CBox.set('nr_averages', 2) self.assertEqual(self.CBox.get('nr_averages'), 2) self.CBox.set('nr_averages', 2**15) self.assertEqual(self.CBox.get('nr_averages'), 2**15) self.CBox.set('nr_averages', initial_val) def test_measurement_timeout(self): initial_val = self.CBox.get('measurement_timeout') self.CBox.set('measurement_timeout', 123) self.assertEqual(self.CBox.get('measurement_timeout'), 123) self.CBox.set('measurement_timeout', -123) self.assertEqual(self.CBox.get('measurement_timeout'), -123) self.CBox.set('measurement_timeout', initial_val) def test_Integration_logging(self): ''' Test for mode 1 integration logs. Only tests on length of data ''' log_length = 8000 self.CBox.set('acquisition_mode', 0) self.CBox.set('log_length', log_length) self.CBox.set('signal_delay', 20) self.CBox.set('integration_length', 255) self.CBox.set('nr_averages', 4) self.CBox.set('nr_samples', 10) self.CBox.set('adc_offset', 1) weights0 = np.ones(512) weights1 = np.ones(512) self.CBox.set('sig0_integration_weights', weights0) self.CBox.set('sig1_integration_weights', weights1) self.CBox.set('acquisition_mode', 1) [InputAvgRes0, InputAvgRes1] = self.CBox.get_integration_log_results() self.CBox.set('acquisition_mode', 0) self.assertEqual(len(InputAvgRes0), log_length) self.assertEqual(len(InputAvgRes1), log_length) def test_state_logging_and_counters(self): ''' Test uses mode 1 integration logging. Checks if the results for the integration shots, states and state counters produce the same results for a given threshold. Does not do this using a dedicated sequence. ''' log_length = 50 self.CBox.set('acquisition_mode', 0) self.CBox.set('log_length', log_length) weights0 = np.ones(512) weights1 = np.ones(512) self.CBox.set('sig0_integration_weights', weights0) self.CBox.set('sig1_integration_weights', weights1) self.CBox.set('acquisition_mode', 1) [IntLog0, IntLog1] = self.CBox.get_integration_log_results() self.CBox.set('acquisition_mode', 0) threshold = int(np.mean(IntLog0)) self.CBox.sig0_threshold_line.set(threshold) self.CBox.sig1_threshold_line.set(threshold) self.CBox.set('acquisition_mode', 1) log = self.CBox.get_integration_log_results() counters = self.CBox.get_qubit_state_log_counters() self.CBox.set('acquisition_mode', 0) digi_shots = dm_tools.digitize( log, threshold=CBox.sig0_threshold_line.get()) software_err_fracs_0 = dm_tools.count_error_fractions(digi_shots[0]) software_err_fracs_1 = dm_tools.count_error_fractions(digi_shots[1]) # Test if software analysis of the counters and CBox counters are the # same self.assertTrue((software_err_fracs_0 == counters[0]).all()) self.assertTrue((software_err_fracs_1 == counters[1]).all()) def test_integration_average_mode(self): self.CBox.set('acquisition_mode', 0) NoSamples = 60 weights0 = np.ones(512) * 1 weights1 = np.ones(512) * 0 self.CBox.set('sig0_integration_weights', weights0) self.CBox.set('sig1_integration_weights', weights1) self.CBox.set('nr_averages', 4) self.CBox.set('nr_samples', NoSamples) self.CBox.set('acquisition_mode', 4) [InputAvgRes0, IntAvgRes1] = self.CBox.get_integrated_avg_results() self.CBox.set('acquisition_mode', 0) # Test signal lengths set correctly self.assertEqual(len(InputAvgRes0), NoSamples) # Test if setting weights to zero functions correctly self.assertTrue((IntAvgRes1 == np.zeros(NoSamples)).all()) weights1 = np.ones(512) * 1 self.CBox.set('sig1_integration_weights', weights1) self.CBox.set('lin_trans_coeffs', [0, 0, 0, 1]) self.CBox.set('acquisition_mode', 4) [InputAvgRes0, IntAvgRes1] = self.CBox.get_integrated_avg_results() self.CBox.set('acquisition_mode', 0) # Test if setting lin trans coeff to zero functions correctly self.assertTrue((InputAvgRes0 == np.zeros(NoSamples)).all()) self.assertFalse((IntAvgRes1 == np.zeros(NoSamples)).all()) # def test_streaming_mode(self): # self.CBox.set('acquisition_mode', 0) # NoSamples = 1e3 # self.CBox.set('acquisition_mode', 5) # data = self.CBox.get_streaming_results(NoSamples) # self.CBox.set('acquisition_mode', 0) # self.assertTrue(len(data[0]) > NoSamples) # self.assertTrue(len(data[0]) == len(data[1])) def test_set_awg_lookuptable(self): length = np.random.randint(1, 128) random_lut = np.random.randint(-1000, 1000, length) self.assertTrue(self.CBox.set_awg_lookuptable(0, 4, 0, random_lut)) def test_DacEnable(self): for awg in range(3): self.assertTrue(self.CBox.enable_dac(awg, 0, True)) self.assertTrue(self.CBox.enable_dac(awg, 0, False)) self.assertTrue(self.CBox.enable_dac(awg, 1, True)) self.assertTrue(self.CBox.enable_dac(awg, 1, False)) def test_DacOffset(self): for awg in range(3): self.assertTrue(self.CBox.set_dac_offset(awg, 0, True)) self.assertTrue(self.CBox.set_dac_offset(awg, 0, False)) self.assertTrue(self.CBox.set_dac_offset(awg, 1, True)) self.assertTrue(self.CBox.set_dac_offset(awg, 1, False)) def test_input_avg_mode(self): self.CBox.set('acquisition_mode', 0) NoSamples = 250 self.CBox.set('nr_samples', NoSamples) self.CBox.set('nr_averages', 2) self.assertEqual(self.CBox.get('nr_samples'), NoSamples) self.CBox.set('acquisition_mode', 3) [InputAvgRes0, InputAvgRes1] = self.CBox.get_input_avg_results() self.CBox.set('acquisition_mode', 0) # Only checks on lenght of signal as test # No check if averaging or signal delay works self.assertEqual(len(InputAvgRes0), NoSamples) self.assertEqual(len(InputAvgRes1), NoSamples) # def test_SigDelay(self): # val = np.random.randint(0, 256) # stat = self.CBox.set_signal_delay(val) # self.assertTrue(stat) # self.assertEqual(val, self.CBox.get_signal_delay(val)) # def test_IntegrationLength(self): # val = np.random.randint(0, 255) # # Real bound is 512 but currently exception in protocol # stat = self.CBox.set_integration_length(val) # self.assertTrue(stat) # self.assertEqual(val, self.CBox.get_integration_length(val)) def bytes_to_binary(bytestring): ''' used as a convenience function in codec testing ''' s = '' for n in bytestring: s += ''.join(str((n & (1 << i)) and 1) for i in reversed(range(8))) return s if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(CBox_tests) unittest.TextTestRunner(verbosity=2).run(suite)
# encoding: utf-8 import curses import _curses import weakref from .editloop import FormDefaultEditLoop, FormNewEditLoop from .screen import ScreenArea from ..widget import button from ..widget import widget #import Menu from .. import util_viewhelp from ..globals import DISABLE_RESIZE_SYSTEM from .. import global_options from ..utils import InputHandler, _LinePrinter class _FormBase(ScreenArea, InputHandler, _LinePrinter): BLANK_COLUMNS_RIGHT = 2 BLANK_LINES_BASE = 2 OK_BUTTON_TEXT = 'OK' OK_BUTTON_BR_OFFSET = (2, 6) OKBUTTON_TYPE = button.MiniButton DEFAULT_X_OFFSET = 2 #Preserve cursor location between displays? PRESERVE_SELECTED_WIDGET_DEFAULT = False FRAMED = True ALLOW_RESIZE = True FIX_MINIMUM_SIZE_WHEN_CREATED = True def __init__(self, name=None, parent_app=None, framed=None, help=None, color='FORMDEFAULT', widget_list=None, cycle_widgets=False, *args, **kwargs): super(_FormBase, self).__init__(*args, **kwargs) self.preserve_selected_widget = self.__class__.PRESERVE_SELECTED_WIDGET_DEFAULT if parent_app: try: self.parent_app = weakref.proxy(parent_app) except: self.parent_app = parent_app try: self.keypress_timeout = self.parent_app.keypress_timeout_default except AttributeError: pass if framed is None: self.framed = self.__class__.FRAMED else: self.framed = framed self.name = name self.editing = False ## OLD MENU CODE REMOVED self.__menus = [] self._clear_all_widgets() self.help = help self.color = color self.cycle_widgets = cycle_widgets self.set_up_handlers() self.set_up_exit_condition_handlers() if hasattr(self, 'initialWidgets'): self.create_widgets_from_list(self.__class__.initialWidgets) if widget_list: self.create_widgets_from_list(widget_list) self.create() if self.FIX_MINIMUM_SIZE_WHEN_CREATED: self.min_l = self.lines self.min_c = self.columns def resize(self): pass def _clear_all_widgets(self, ): self._widgets__ = [] self._widgets_by_id = {} self._next_w_id = 0 self.nextrely = self.DEFAULT_NEXTRELY self.nextrelx = self.DEFAULT_X_OFFSET self.editw = 0 # Index of widget to edit. def create_widgets_from_list(self, widget_list, **kwargs): #This code is currently experimental, and the API may change in future #releases # (npyscreen.TextBox, {'rely': 2, 'relx': 7, 'editable': False}) for line in widget_list: w_type = line[0] kwargs = line[1] self.add_widget(w_type, **kwargs) def set_value(self, value): self.value = value for _w in self._widgets__: if hasattr(_w, 'when_parent_changes_value'): _w.when_parent_changes_value() def _resize(self, *args): global DISABLE_RESIZE_SYSTEM if DISABLE_RESIZE_SYSTEM: return False if not self.ALLOW_RESIZE: return False if hasattr(self, 'parent_app'): self.parent_app.resize() self._create_screen() self.resize() for w in self._widgets__: w._resize() self.DISPLAY() def create(self): """ Programmers should over-ride this in derived classes, creating widgets here. """ pass def set_up_handlers(self): self.complex_handlers = [] self.handlers = {curses.KEY_F1: self.h_display_help, "KEY_F(1)": self.h_display_help, "^O": self.h_display_help, "^L": self.h_display, curses.KEY_RESIZE: self._resize} def set_up_exit_condition_handlers(self): # What happens when widgets exit? # each widget will set it's how_exited value: this should # be used to look up the following table. self.how_exited_handers = { widget.EXITED_DOWN: self.find_next_editable, widget.EXITED_RIGHT: self.find_next_editable, widget.EXITED_UP: self.find_previous_editable, widget.EXITED_LEFT: self.find_previous_editable, widget.EXITED_ESCAPE: self.do_nothing, True: self.find_next_editable, # A default value widget.EXITED_MOUSE: self.get_and_use_mouse_event, False: self.do_nothing, None: self.do_nothing, } def handle_exiting_widgets(self, condition): self.how_exited_handers[condition]() def do_nothing(self, *args, **kwargs): pass def exit_editing(self, *args, **kwargs): self.editing = False try: self._widgets__[self.editw].entry_widget.editing = False except: pass try: self._widgets__[self.editw].editing = False except: pass def adjust_widgets(self): """ This function is called when editing any widget (as opposed to the `while_editing` method, which may only be called when moving between widgets). Override this function to add custom function. It is called for every keypress, and perhaps more, be careful when selecting what should be done here*. * What consequences might there be? UI lag? Crashing? """ pass def while_editing(self, *args, **kwargs): """ This function gets called once during each iteration of the `edit` loop. Override this function to add custom loop activity. A proxy to the currently selected widget is passed to the function. """ pass def on_screen(self): # is the widget in editw on sreen at the moment? # if not, alter screen so that it is. w = weakref.proxy(self._widgets__[self.editw]) max_y, max_x = self._max_physical() w_my, w_mx = w.calculate_area_needed() # always try to show the top of the screen. self.show_from_y = 0 self.show_from_x = 0 while w.rely + w_my - 1 > self.show_from_y + max_y: self.show_from_y += 1 while w.rely < self.show_from_y: self.show_from_y -= 1 while w.relx + w_mx - 1 > self.show_from_x + max_x: self.show_from_x += 1 while w.relx < self.show_from_x: self.show_from_x -= 1 def h_display_help(self, input): if self.help == None: return if self.name: help_name = "%s Help" %(self.name) else: help_name = None curses.flushinp() util_viewhelp.view_help(self.help, title=help_name) #select.ViewText(self.help, name=help_name) self.display() return True def DISPLAY(self): self.curses_pad.redrawwin() self.erase() self.display() self.display(clear=False) if self.editing and self.editw is not None: self._widgets__[self.editw].display() def h_display(self, input): self._resize() self.DISPLAY() def safe_get_mouse_event(self): try: mouse_event = curses.getmouse() return mouse_event except _curses.error: return None def get_and_use_mouse_event(self): mouse_event = self.safe_get_mouse_event() if mouse_event: self.use_mouse_event(mouse_event) def use_mouse_event(self, mouse_event): wg = self.find_mouse_handler(mouse_event) if wg: self.set_editing(wg) if hasattr(wg, 'handle_mouse_event'): wg.handle_mouse_event(mouse_event) else: curses.beep() def find_mouse_handler(self, mouse_event): #mouse_id, x, y, z, bstate = mouse_event for wd in self._widgets__: try: if wd.intersted_in_mouse_event(mouse_event) == True: return wd except AttributeError: pass return None def set_editing(self, wdg): try: self.editw = self._widgets__.index(wdg) except ValueError: pass def find_next_editable(self, *args): if not self.editw == len(self._widgets__): if not self.cycle_widgets: r = list(range(self.editw + 1, len(self._widgets__))) else: r = list(range(self.editw + 1, len(self._widgets__))) + list(range(0, self.editw)) for n in r: if self._widgets__[n].editable and not self._widgets__[n].hidden: self.editw = n break self.display() def find_previous_editable(self, *args): if not self.editw == 0: # remember that xrange does not return the 'last' value, # so go to -1, not 0! (fence post error in reverse) for n in range(self.editw - 1, -1, -1): if self._widgets__[n].editable and not self._widgets__[n].hidden: self.editw = n break #def widget_useable_space(self, rely=0, relx=0): # #Slightly misreports space available. # mxy, mxx = self.lines-1, self.columns-1 # return (mxy-1-rely, mxx-1-relx) def center_on_display(self): my, mx = self._max_physical() if self.lines < my: self.show_aty = (my - self.lines) // 2 else: self.show_aty = 0 if self.columns < mx: self.show_atx = (mx - self.columns) // 2 else: self.show_atx = 0 def display(self, clear=False): #APPLICATION_THEME_MANAGER.set_theme(self) if curses.has_colors() and not global_options.DISABLE_ALL_COLORS: self.curses_pad.attrset(0) color_attribute = self.theme_manager.findPair(self, self.color) self.curses_pad.bkgdset(' ', color_attribute) self.curses_pad.attron(color_attribute) self.curses_pad.erase() self.draw_form() for w in [wg for wg in self._widgets__ if wg.hidden]: w.clear() for w in [wg for wg in self._widgets__ if not wg.hidden]: w.update(clear=clear) self.refresh() def draw_title_and_help(self): try: if self.name: _title = self.name[:(self.columns - 4)] _title = ' ' + str(_title) + ' ' #self.curses_pad.addstr(0,1, ' '+str(_title)+' ') if isinstance(_title, bytes): _title = _title.decode('utf-8', 'replace') self.add_line(0, 1, _title, self.make_attributes_list(_title, curses.A_NORMAL), self.columns - 4) except: pass if self.help and self.editing: try: help_advert = " Help: F1 or ^O " if isinstance(help_advert, bytes): help_advert = help_advert.decode('utf-8', 'replace') self.add_line( 0, self.curses_pad.getmaxyx()[1]-len(help_advert)-2, help_advert, self.make_attributes_list(help_advert, curses.A_NORMAL), len(help_advert) ) except: pass def draw_form(self): if self.framed: if curses.has_colors() and not global_options.DISABLE_ALL_COLORS: self.curses_pad.attrset(0) self.curses_pad.bkgdset(' ', curses.A_NORMAL | self.theme_manager.findPair(self, self.color)) self.curses_pad.border() self.draw_title_and_help() def add_widget(self, widget_class, w_id=None, max_height=None, rely=None, relx=None, *args, **kwargs): """ Add a widget to the form. The form will do its best to decide on placing, unless you override it. The form of this function is add_widget(widget_class, ....) with any arguments or keywords supplied to the widget. The wigdet will be added to self._widgets__ It is safe to use the return value of this function to keep hold of the widget, since that is a weak reference proxy, but it is not safe to keep hold of self._widgets__ """ if rely is None: rely = self.nextrely if relx is None: relx = self.nextrelx if max_height is False: max_height = self.curses_pad.getmaxyx()[0] - rely - 1 _w = widget_class(self, rely=rely, relx=relx, max_height=max_height, *args, **kwargs) self.nextrely = _w.height + _w.rely self._widgets__.append(_w) w_proxy = weakref.proxy(_w) if not w_id: w_id = self._next_w_id self._next_w_id += 1 self._widgets_by_id[w_id] = w_proxy return w_proxy def get_widget(self, w_id): return self._widgets_by_id[w_id] add = add_widget class FormBaseNew(FormNewEditLoop, _FormBase): # use the new-style edit loop. pass class Form(FormDefaultEditLoop, _FormBase): #use the old-style edit loop pass def resize(self): super(Form, self).resize() self.move_ok_button() class FormBaseNewExpanded(FormNewEditLoop, _FormBase): BLANK_LINES_BASE = 1 OK_BUTTON_BR_OFFSET = (1, 6) # use the new-style edit loop. pass class FormExpanded(FormDefaultEditLoop, _FormBase): BLANK_LINES_BASE = 1 OK_BUTTON_BR_OFFSET = (1, 6) #use the old-style edit loop pass class TitleForm(Form): """A form without a box, just a title line""" BLANK_LINES_BASE = 1 DEFAULT_X_OFFSET = 1 DEFAULT_NEXTRELY = 1 BLANK_COLUMNS_RIGHT = 0 OK_BUTTON_BR_OFFSET = (1, 6) #OKBUTTON_TYPE = button.MiniButton #DEFAULT_X_OFFSET = 1 def draw_form(self): MAXY, MAXX = self.curses_pad.getmaxyx() self.curses_pad.hline(0, 0, curses.ACS_HLINE, MAXX) self.draw_title_and_help() class TitleFooterForm(TitleForm): BLANK_LINES_BASE = 1 def draw_form(self): MAXY, MAXX = self.curses_pad.getmaxyx() if self.editing: self.curses_pad.hline(MAXY - 1, 0, curses.ACS_HLINE, MAXX - self.__class__.OK_BUTTON_BR_OFFSET[1] - 1) else: self.curses_pad.hline(MAXY - 1, 0, curses.ACS_HLINE, MAXX - 1) super(TitleFooterForm, self).draw_form() class SplitForm(Form): MOVE_LINE_ON_RESIZE = False """Just the same as the Title Form, but with a horizontal line""" def __init__(self, draw_line_at=None, *args, **kwargs): super(SplitForm, self).__init__(*args, **kwargs) if not hasattr(self, 'draw_line_at'): #if draw_line_at != None: if draw_line_at is not None: self.draw_line_at = draw_line_at else: self.draw_line_at = self.get_half_way() def draw_form(self,): MAXY, MAXX = self.curses_pad.getmaxyx() super(SplitForm, self).draw_form() self.curses_pad.hline(self.draw_line_at, 1, curses.ACS_HLINE, MAXX - 2) def get_half_way(self): return self.curses_pad.getmaxyx()[0] // 2 def resize(self): super(SplitForm, self).resize() if self.MOVE_LINE_ON_RESIZE: self.draw_line_at = self.get_half_way()
#!/usr/bin/env python # # Sybil - Python Profile Manager # Copyright (c) 2008, Patrick Kennedy # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import with_statement import datetime import logging import os import random import sys import urllib import wsgiref.handlers import sys from google.appengine.api import users, memcache from google.appengine.ext import gql, db from google.appengine.ext import webapp from google.appengine.ext.webapp import template from common import counter, stores, utils, framework from common.stores import UserData from common.stores import Profile, World, Comment, WorldMember class Index(framework.BaseRequestHandler): def get(self): len_ = self.request.get_range('length', min_value=3, max_value=10, default=6) names = self.get_name_list(5, len_) get = self.request.get refresh_cache = get('refresh_cache', False) is not False if get('logit', False) is not False: from google.appengine.api.labs import taskqueue taskqueue.add(url='/tasks/logging/') context = self.context context['len_'] = len_ context['names'] = names sterile_url = framework.sterilize_url(self.request.url) @framework.memoize(sterile_url, 'profile_listing', refresh=refresh_cache) def __fetch_profile_data(): query = stores.Profile.all() query.filter('public =', True) query.order('-updated') return query.fetch(5) @framework.memoize(sterile_url, 'world_listing', refresh=refresh_cache) def __fetch_world_data(): query = World.all() query.filter('public =', True) query.order('-created') return query.fetch(5) context['profile_data'] = { 'profiles': __fetch_profile_data(), 'list_author': True } context['world_data'] = { 'worlds': __fetch_world_data(), 'list_author': True, } profile_count = counter.Counter('TotalProfiles').get_count(refresh_cache) world_count = counter.Counter('TotalWorlds').get_count(refresh_cache) user_count = counter.Counter('TotalUsers').get_count(refresh_cache) context['profile_count'] = profile_count context['world_count'] = world_count context['user_count'] = user_count self.render(['index', 'index']) def post(self): self.redirect('/' + self.args_to_url()) class PrintEnviron(webapp.RequestHandler): def get(self): for name in os.environ.keys(): self.response.out.write("<b>%s</b> = %s<br />\n" % (name, os.environ[name])) class ChangeLog(framework.BaseRequestHandler): def get(self): self.render(['index', 'changelog']) class EditProfile(framework.BaseRequestHandler): def get(self, username, name): adata = UserData.load_from_nickname(username) author = adata.user page_admin = self.page_admin(author) name = urllib.unquote_plus(urllib.unquote(name)) unix_name = utils.unix_string(name) context = self.context context['author'] = author context['page_author'] = adata context['page_admin'] = page_admin # Check to see if we already have a profile for that character. # profile = Profile.gql('WHERE unix_name = :name AND author = :author', # name=unix_name, author=adata).get() profile = Profile.get_by_key_name( stores.Profile.key_name_form % (unix_name, adata.key_name) ) # If we can't find that character and we're the author we may want to # make it, other wise we should move the user back to the user page. if not profile or (not profile.public and not page_admin): self.flash.msg = "Unknown Profile: %s" % name if author == self.user: self.redirect('/create/profile/?name=%s' % name) else: self.redirect(adata.url) return context['profile'] = profile self.render(['edit', 'editprofile']) def post(self, username, name): adata = UserData.load_from_nickname(username) author = adata.user get = self.request.get public = get('public', 'True') == 'True' markup = get('markup', 'Textile') key_name = get('key_name') profile = stores.Profile.get_by_key_name(key_name) if not profile: self.redirect('/create/profile/%s' % self.args_to_url()) return if get("submit_action", "Cancel") == "Cancel": self.flash.msg = '%s: Not Updated' % profile.name self.redirect(profile.url) return # Only let admins and the author edit a profile if not self.page_admin(author): self.flash.msg = "Access Denied." self.redirect(profile.url) return changed = [] def txn(): new_args = self.args_to_dict() new_args.update({ 'public':public,'markup':markup, 'updated':datetime.datetime.now() }) if 'name' in new_args: del new_args['name'] # Make it impossible to change the name. for arg in profile.properties(): if arg not in new_args: continue new_arg = new_args.get(arg) if new_arg == getattr(profile, arg): continue changed.append(arg) setattr(profile, arg, new_arg) profile.word_count = utils.word_count( profile.apperence, profile.background, profile.extra_info ) profile.put() db.run_in_transaction(txn) logging.info("User (%s) has made changes (%s) to a Profile (%s)" % (self.user.email(), ' | '.join(changed), profile.name)) # Clear the profile from the memcache. #Profile.unload(adata.key_name, profile.unix_name) # Update the latest profiles list on the front page. framework.unmemoize('/', 'profile_listing') self.flash.msg = "%s: Updated" % profile.name self.redirect(profile.url) class DeleteProfile(framework.BaseRequestHandler): def get(self, username, name): adata = UserData.load_from_nickname(username) author = adata.user page_admin = self.page_admin(author) name = urllib.unquote_plus(urllib.unquote(name)) unix_name = utils.unix_string(name) context = self.context context['author'] = author context['page_author'] = adata context['page_admin'] = page_admin # Check to see if we already have a profile for that character. profile = Profile.get_by_key_name( stores.Profile.key_name_form % (unix_name, adata.key_name) ) # If we can't find that character and we're the author we may want to # make it, other wise we should move the user back to the user page. if not profile or (not profile.public and not page_admin): self.flash.msg = "Unknown Profile: %s" % name self.redirect(Profile.get_url(username)) return context['profile'] = profile self.render(['delete', 'deleteprofile'], context) def post(self, username, name): adata = UserData.load_from_nickname(username) author = adata.user choice = self.request.get('choice') name_check = self.request.get('name_check') profile_key = self.request.get('profile_key', '') profile = Profile.get(profile_key) if not profile: self.flash.msg = "Unknown Profile" self.redirect(adata.url) return # Only let admins and the author delete a profile if not self.page_admin(self.user): self.flash.msg = "Access Denied." self.redirect(profile.url) return if name_check != profile.name or choice != 'Confirm': self.flash.msg = "%s: Preserved" % profile.name self.redirect(profile.url) return query = Comment.all() query.filter('host =', profile) for comment in query: comment.delete() for conn in profile.worldconnection_set: conn.delete() # Clear the profile from the memcache. #Profile.unload(adata.key_name, profile.unix_name) profile.delete() c = counter.Counter('TotalProfiles') c.increment(-1) c = counter.Counter('%sProfiles' % profile.author.key_name, 1) c.increment(-1) logging.info("%s(%s) deleted %s's Profile (%s)." % ( self.user.email(), self.udata.nickname, profile.author.user.email(), profile.name )) framework.unmemoize('/manage/', 'profile_listing', adata.nickname) framework.unmemoize('/', 'profile_listing') framework.unmemoize('/discover/', 'profile_listing') framework.unmemoize('/discover/', 'profile_feed') framework.unmemoize(profile.author.url, 'profile_listing') framework.unmemoize(profile.author.url, 'profile_feed') self.flash.msg = "%s Deleted Sucessfully" % profile.name self.redirect(profile.author.url) class ViewProfile(framework.BaseRequestHandler): def get(self, username, name): adata = UserData.load_from_nickname(username) author = adata.user get = self.request.get if name is None: name = get('name', '') output = get('output', '') # If we're loading the user's public page and not a profile if not name: if output in ["rss", "atom"]: self.render_feed(user, author, adata, output) else: self.render_user(user, author, adata) return name = urllib.unquote_plus(urllib.unquote(name)) unix_name = utils.unix_string(name) page_admin = self.page_admin(author) action = get('action') refresh_cache = get('refresh_cache', False) is not False sterile_url = framework.sterilize_url(self.url) context = self.context context['author'] = author context['page_author'] = adata context['page_admin'] = page_admin # Check to see if we already have a profile for that character. # profile = Profile.gql('WHERE unix_name = :name AND author = :author', # name=unix_name, author=adata).get() profile = stores.Profile.get_by_key_name( stores.Profile.key_name_form % (unix_name, adata.key_name) ) # If we can't find that character and we're the author we may want to # make it, other wise we should move the user back to the user page. if not profile or (not profile.public and not page_admin): self.flash.msg = "Unknown Profile: %s" % name if author == self.user: self.redirect('/create/profile/name=%s' % name) else: self.redirect(adata.url) return # Check for actions if action: if action == 'edit': self.render(['edit', 'editprofile'], locals()) elif action == 'delete': self.render(['delete', 'deleteprofile'], locals()) return @framework.memoize(sterile_url, 'world_listing', refresh=refresh_cache) def __fetch_world_data(): # This bit of hackery is used to fetch the actual world objects # as opposed to the connection, which don't fetch their references # when called inside the html. return [conn.world for conn in profile.worldconnection_set.fetch(5)] def __build_comment_data(): page = self.request.get_range('comments_page', min_value=1, default=1) items_per_page = self.request.get_range( 'comments_items', min_value=1, max_value=25, default=6 ) offset = ((page - 1) * items_per_page) last_page = True key = profile.key() q = Comment.all() q.filter('host =', key) q.order('-created') comments = q.fetch((items_per_page + 1), offset) if len(comments) > items_per_page: last_page = False comments.pop() @framework.memoize(sterile_url, 'comment_listing', refresh=refresh_cache) def fetch(): return comments return {'comments': fetch(), 'host': key, 'host_type': 'profile', 'page': page, 'last_page': last_page} context['world_data'] = { 'worlds': __fetch_world_data(), 'list_author': True, } context['comment_data'] = __build_comment_data() if refresh_cache: memcache.delete('markup:%s' % profile.key_name) self.render(['view', 'viewProfile'], locals()) class ViewUser(framework.BaseRequestHandler): def get(self, username): get = self.request.get name = get('name') if name: # Redriect people to the updated url format. self.redirect(Profile.get_url(username, urllib.quote_plus(name)), permanent=True) return adata = UserData.load_from_nickname(username) if not adata: self.redirect('/404/') return author = adata.user page_admin = self.page_admin(author) get = self.request.get action = get('action') refresh_cache = get('refresh_cache', False) is not False sterile_url = framework.sterilize_url(self.request.url) context = self.context context['author'] = author context['adata'] = adata context['page_admin'] = page_admin def __build_profile_data(): order = get('order', 'created').lower() page = self.request.get_range('profiles_page', min_value=1, default=1) # Allow page numbers to be more natural items_per_page = self.request.get_range('profiles_items', min_value=1, max_value=25, default=10) offset = ((page - 1) * items_per_page) last_page = True # Orders the profiles most recently created first. query = Profile.all() query.filter('author =', adata) if not page_admin: query.filter('public =', True) if order == 'alpha': query.order('name') else: query.order('-created') profiles = query.fetch((items_per_page + 1), offset) # Since each page is 6 items long if there are 7 items then we # know that there is at least one more page. if len(profiles) > items_per_page: last_page = False profiles.pop() @framework.memoize(sterile_url, 'profile_listing', refresh=refresh_cache) def fetch(): return profiles return {'profiles':fetch(), 'page':page, 'last_page':last_page} @framework.memoize(sterile_url, 'world_listing', refresh=refresh_cache) def __fetch_world_memberships(): query = WorldMember.all() query.filter('user =', adata) return [membership.world for membership in query.fetch(10)] context['profile_data'] = __build_profile_data() context['profile_data']['partial_listing'] = True context['profile_data']['list_edit'] = True context['profile_data']['list_pages'] = True context['world_data'] = { 'worlds': __fetch_world_memberships(), 'list_author': True, } c = counter.Counter('%sProfiles' % adata.key_name, 1) context['profile_count'] = c.get_count(refresh_cache) c = counter.Counter('%sWorlds' % adata.key_name, 1) context['world_count'] = c.get_count(refresh_cache) c = counter.Counter('%sTotalWords' % adata.key_name, 1) context['total_word_count'] = c.get_count(refresh_cache) self.render(['view', 'viewUser']) return class UserFeed(framework.BaseRequestHandler): def get(self, username, output): adata = UserData.load_from_nickname(username) author = adata.user page_admin = self.page_admin(author) get = self.request.get refresh_cache = get('refresh_cache', False) is not False sterile_url = framework.sterilize_url(self.request.url) self.context['author'] = author self.context['adata'] = adata self.context['page_admin'] = page_admin @framework.memoize(sterile_url, 'profile_feed', refresh=refresh_cache) def __fetch_feed_data(): # Orders the profiles most recently created first. q = adata.profile_set q.order('-created') return q.fetch(12) profile_data = {'profiles': __fetch_feed_data()} self.render(['feed', 'userprofiles'], output=output) return # Map URLs to our RequestHandler classes above _URLS = [ ('^/', Index), ('^/changelog/', ChangeLog), ('^/env/', PrintEnviron), ('^/([^/]+)/(rss|atom|feed)/?', UserFeed), ('^/([^/]+)/([^/]+)/edit/?', EditProfile), ('^/([^/]+)/([^/]+)/delete/?', DeleteProfile), ('^/([^/]+)/([^/]+)/?', ViewProfile), ('^/([^/]+)/?', ViewUser), ] def main(): if not random.randint(0, 25): framework.profile_main(_URLS) else: framework.real_main(_URLS) if __name__ == '__main__': main()
from typing import TYPE_CHECKING from eth_utils import to_bytes, to_canonical_address, to_checksum_address, to_hex from raiden.constants import UINT256_MAX from raiden.transfer.architecture import ( ContractSendEvent, ContractSendExpirableEvent, Event, SendMessageEvent, ) from raiden.transfer.identifiers import CanonicalIdentifier from raiden.utils import pex, serialization, sha3 from raiden.utils.serialization import deserialize_bytes, serialize_bytes from raiden.utils.typing import ( Address, Any, BlockExpiration, BlockHash, ChannelID, Dict, InitiatorAddress, MessageID, Optional, PaymentAmount, PaymentID, PaymentNetworkID, Secret, SecretHash, T_Secret, TargetAddress, TokenAmount, TokenNetworkAddress, TokenNetworkID, ) if TYPE_CHECKING: # pylint: disable=unused-import from raiden.transfer.state import BalanceProofSignedState # pylint: disable=too-many-arguments,too-few-public-methods class ContractSendChannelClose(ContractSendEvent): """ Event emitted to close the netting channel. This event is used when a node needs to prepare the channel to unlock on-chain. """ def __init__( self, canonical_identifier: CanonicalIdentifier, balance_proof: Optional["BalanceProofSignedState"], triggered_by_block_hash: BlockHash, ) -> None: super().__init__(triggered_by_block_hash) self.canonical_identifier = canonical_identifier self.balance_proof = balance_proof def __repr__(self) -> str: return ( "<ContractSendChannelClose channel:{} token:{} token_network:{} " "balance_proof:{} triggered_by_block_hash:{}>" ).format( self.canonical_identifier.channel_identifier, pex(self.canonical_identifier.token_network_address), self.balance_proof, pex(self.triggered_by_block_hash), ) def __eq__(self, other: Any) -> bool: return ( super().__eq__(other) and isinstance(other, ContractSendChannelClose) and self.canonical_identifier == other.canonical_identifier and self.balance_proof == other.balance_proof ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) @property def token_network_identifier(self) -> TokenNetworkID: return TokenNetworkID(self.canonical_identifier.token_network_address) @property def channel_identifier(self) -> ChannelID: return self.canonical_identifier.channel_identifier def to_dict(self) -> Dict[str, Any]: result = { "canonical_identifier": self.canonical_identifier.to_dict(), "balance_proof": self.balance_proof, "triggered_by_block_hash": serialize_bytes(self.triggered_by_block_hash), } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "ContractSendChannelClose": restored = cls( canonical_identifier=CanonicalIdentifier.from_dict(data["canonical_identifier"]), balance_proof=data["balance_proof"], triggered_by_block_hash=BlockHash(deserialize_bytes(data["triggered_by_block_hash"])), ) return restored class ContractSendChannelSettle(ContractSendEvent): """ Event emitted if the netting channel must be settled. """ def __init__( self, canonical_identifier: CanonicalIdentifier, triggered_by_block_hash: BlockHash ): super().__init__(triggered_by_block_hash) canonical_identifier.validate() self.canonical_identifier = canonical_identifier @property def token_network_identifier(self) -> TokenNetworkAddress: return TokenNetworkAddress(self.canonical_identifier.token_network_address) @property def channel_identifier(self) -> ChannelID: return self.canonical_identifier.channel_identifier def __repr__(self) -> str: return ( "<ContractSendChannelSettle channel:{} token_network:{} " "triggered_by_block_hash:{}>".format( self.channel_identifier, pex(self.token_network_identifier), pex(self.triggered_by_block_hash), ) ) def __eq__(self, other: Any) -> bool: return ( super().__eq__(other) and isinstance(other, ContractSendChannelSettle) and self.canonical_identifier == other.canonical_identifier ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "canonical_identifier": self.canonical_identifier.to_dict(), "triggered_by_block_hash": serialize_bytes(self.triggered_by_block_hash), } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "ContractSendChannelSettle": restored = cls( canonical_identifier=CanonicalIdentifier.from_dict(data["canonical_identifier"]), triggered_by_block_hash=BlockHash(deserialize_bytes(data["triggered_by_block_hash"])), ) return restored class ContractSendChannelUpdateTransfer(ContractSendExpirableEvent): """ Event emitted if the netting channel balance proof must be updated. """ def __init__( self, expiration: BlockExpiration, balance_proof: "BalanceProofSignedState", triggered_by_block_hash: BlockHash, ) -> None: super().__init__(triggered_by_block_hash, expiration) self.balance_proof = balance_proof @property def token_network_identifier(self) -> TokenNetworkAddress: return TokenNetworkAddress(self.balance_proof.canonical_identifier.token_network_address) @property def channel_identifier(self) -> ChannelID: return self.balance_proof.channel_identifier def __repr__(self) -> str: return ( "<ContractSendChannelUpdateTransfer channel:{} token_network:{} " "balance_proof:{} triggered_by_block_hash:{}>" ).format( self.channel_identifier, pex(self.token_network_identifier), self.balance_proof, pex(self.triggered_by_block_hash), ) def __eq__(self, other: Any) -> bool: return ( isinstance(other, ContractSendChannelUpdateTransfer) and self.balance_proof == other.balance_proof and super().__eq__(other) ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "expiration": str(self.expiration), "balance_proof": self.balance_proof, "triggered_by_block_hash": serialize_bytes(self.triggered_by_block_hash), } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "ContractSendChannelUpdateTransfer": restored = cls( expiration=BlockExpiration(int(data["expiration"])), balance_proof=data["balance_proof"], triggered_by_block_hash=BlockHash(deserialize_bytes(data["triggered_by_block_hash"])), ) return restored class ContractSendChannelBatchUnlock(ContractSendEvent): """ Event emitted when the lock must be claimed on-chain. """ def __init__( self, canonical_identifier: CanonicalIdentifier, participant: Address, triggered_by_block_hash: BlockHash, ) -> None: super().__init__(triggered_by_block_hash) self.canonical_identifier = canonical_identifier self.participant = participant @property def token_network_identifier(self) -> TokenNetworkAddress: return TokenNetworkAddress(self.canonical_identifier.token_network_address) @property def channel_identifier(self) -> ChannelID: return self.canonical_identifier.channel_identifier def __repr__(self) -> str: return ( "<ContractSendChannelBatchUnlock token_network_id:{} " "channel:{} participant:{} triggered_by_block_hash:{}" ">" ).format( pex(self.token_network_identifier), self.channel_identifier, pex(self.participant), pex(self.triggered_by_block_hash), ) def __eq__(self, other: Any) -> bool: return ( super().__eq__(other) and isinstance(other, ContractSendChannelBatchUnlock) and self.canonical_identifier == other.canonical_identifier and self.participant == other.participant ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "canonical_identifier": self.canonical_identifier.to_dict(), "participant": to_checksum_address(self.participant), "triggered_by_block_hash": serialize_bytes(self.triggered_by_block_hash), } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "ContractSendChannelBatchUnlock": restored = cls( canonical_identifier=CanonicalIdentifier.from_dict(data["canonical_identifier"]), participant=to_canonical_address(data["participant"]), triggered_by_block_hash=BlockHash(deserialize_bytes(data["triggered_by_block_hash"])), ) return restored class ContractSendSecretReveal(ContractSendExpirableEvent): """ Event emitted when the lock must be claimed on-chain. """ def __init__( self, expiration: BlockExpiration, secret: Secret, triggered_by_block_hash: BlockHash ) -> None: if not isinstance(secret, T_Secret): raise ValueError("secret must be a Secret instance") super().__init__(triggered_by_block_hash, expiration) self.secret = secret def __repr__(self) -> str: secrethash: SecretHash = SecretHash(sha3(self.secret)) return ("<ContractSendSecretReveal secrethash:{} triggered_by_block_hash:{}>").format( secrethash, pex(self.triggered_by_block_hash) ) def __eq__(self, other: Any) -> bool: return ( isinstance(other, ContractSendSecretReveal) and self.secret == other.secret and super().__eq__(other) ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "expiration": str(self.expiration), "secret": serialization.serialize_bytes(self.secret), "triggered_by_block_hash": serialize_bytes(self.triggered_by_block_hash), } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "ContractSendSecretReveal": restored = cls( expiration=BlockExpiration(int(data["expiration"])), secret=Secret(serialization.deserialize_bytes(data["secret"])), triggered_by_block_hash=BlockHash(deserialize_bytes(data["triggered_by_block_hash"])), ) return restored class EventPaymentSentSuccess(Event): """ Event emitted by the initiator when a transfer is considered successful. A transfer is considered successful when the initiator's payee hop sends the reveal secret message, assuming that each hop in the mediator chain has also learned the secret and unlocked its token off-chain or on-chain. This definition of successful is used to avoid the following corner case: - The reveal secret message is sent, since the network is unreliable and we assume byzantine behavior the message is considered delivered without an acknowledgement. - The transfer is considered successful because of the above. - The reveal secret message was not delivered because of actual network problems. - The lock expires and an EventUnlockFailed follows, contradicting the EventPaymentSentSuccess. Note: Mediators cannot use this event, since an off-chain unlock may be locally successful but there is no knowledge about the global transfer. """ def __init__( self, payment_network_identifier: PaymentNetworkID, token_network_identifier: TokenNetworkID, identifier: PaymentID, amount: PaymentAmount, target: TargetAddress, secret: Secret = None, ) -> None: self.payment_network_identifier = payment_network_identifier self.token_network_identifier = token_network_identifier self.identifier = identifier self.amount = amount self.target = target self.secret = secret def __repr__(self) -> str: return ( "<" "EventPaymentSentSuccess payment_network_identifier:{} " "token_network_identifier:{} " "identifier:{} amount:{} " "target:{} secret:{} " ">" ).format( pex(self.payment_network_identifier), pex(self.token_network_identifier), self.identifier, self.amount, pex(self.target), to_hex(self.secret), ) def __eq__(self, other: Any) -> bool: return ( isinstance(other, EventPaymentSentSuccess) and self.identifier == other.identifier and self.amount == other.amount and self.target == other.target and self.payment_network_identifier == other.payment_network_identifier and self.token_network_identifier == other.token_network_identifier and self.secret == other.secret ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "payment_network_identifier": to_checksum_address(self.payment_network_identifier), "token_network_identifier": to_checksum_address(self.token_network_identifier), "identifier": str(self.identifier), "amount": str(self.amount), "target": to_checksum_address(self.target), } if self.secret is not None: result["secret"] = to_hex(self.secret) return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "EventPaymentSentSuccess": if "secret" in data: secret = to_bytes(hexstr=data["secret"]) else: secret = None restored = cls( payment_network_identifier=to_canonical_address(data["payment_network_identifier"]), token_network_identifier=to_canonical_address(data["token_network_identifier"]), identifier=PaymentID(int(data["identifier"])), amount=PaymentAmount(int(data["amount"])), target=to_canonical_address(data["target"]), secret=secret, ) return restored class EventPaymentSentFailed(Event): """ Event emitted by the payer when a transfer has failed. Note: Mediators cannot use this event since they don't know when a transfer has failed, they may infer about lock successes and failures. """ def __init__( self, payment_network_identifier: PaymentNetworkID, token_network_identifier: TokenNetworkID, identifier: PaymentID, target: TargetAddress, reason: str, ) -> None: self.payment_network_identifier = payment_network_identifier self.token_network_identifier = token_network_identifier self.identifier = identifier self.target = target self.reason = reason def __repr__(self) -> str: return ( "<" "EventPaymentSentFailed payment_network_identifier:{} " "token_network_identifier:{} " "id:{} target:{} reason:{} " ">" ).format( pex(self.payment_network_identifier), pex(self.token_network_identifier), self.identifier, pex(self.target), self.reason, ) def __eq__(self, other: Any) -> bool: return ( isinstance(other, EventPaymentSentFailed) and self.payment_network_identifier == other.payment_network_identifier and self.token_network_identifier == other.token_network_identifier and self.identifier == other.identifier and self.target == other.target and self.reason == other.reason ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "payment_network_identifier": to_checksum_address(self.payment_network_identifier), "token_network_identifier": to_checksum_address(self.token_network_identifier), "identifier": str(self.identifier), "target": to_checksum_address(self.target), "reason": self.reason, } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "EventPaymentSentFailed": restored = cls( payment_network_identifier=to_canonical_address(data["payment_network_identifier"]), token_network_identifier=to_canonical_address(data["token_network_identifier"]), identifier=PaymentID(int(data["identifier"])), target=to_canonical_address(data["target"]), reason=data["reason"], ) return restored class EventPaymentReceivedSuccess(Event): """ Event emitted when a payee has received a payment. Note: A payee knows if a lock claim has failed, but this is not sufficient information to deduce when a transfer has failed, because the initiator may try again at a different time and/or with different routes, for this reason there is no correspoding `EventTransferReceivedFailed`. """ def __init__( self, payment_network_identifier: PaymentNetworkID, token_network_identifier: TokenNetworkID, identifier: PaymentID, amount: TokenAmount, initiator: InitiatorAddress, ) -> None: if amount < 0: raise ValueError("transferred_amount cannot be negative") if amount > UINT256_MAX: raise ValueError("transferred_amount is too large") self.identifier = identifier self.amount = amount self.initiator = initiator self.payment_network_identifier = payment_network_identifier self.token_network_identifier = token_network_identifier def __repr__(self) -> str: return ( "<" "EventPaymentReceivedSuccess payment_network_identifier:{} " "token_network_identifier:{} identifier:{} " "amount:{} initiator:{} " ">" ).format( pex(self.payment_network_identifier), pex(self.token_network_identifier), self.identifier, self.amount, pex(self.initiator), ) def __eq__(self, other: Any) -> bool: return ( isinstance(other, EventPaymentReceivedSuccess) and self.identifier == other.identifier and self.amount == other.amount and self.initiator == other.initiator and self.payment_network_identifier == other.payment_network_identifier and self.token_network_identifier == other.token_network_identifier ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "payment_network_identifier": to_checksum_address(self.payment_network_identifier), "token_network_identifier": to_checksum_address(self.token_network_identifier), "identifier": str(self.identifier), "amount": str(self.amount), "initiator": to_checksum_address(self.initiator), } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "EventPaymentReceivedSuccess": restored = cls( payment_network_identifier=to_canonical_address(data["payment_network_identifier"]), token_network_identifier=to_canonical_address(data["token_network_identifier"]), identifier=PaymentID(int(data["identifier"])), amount=TokenAmount(int(data["amount"])), initiator=to_canonical_address(data["initiator"]), ) return restored class EventInvalidReceivedTransferRefund(Event): """ Event emitted when an invalid refund transfer is received. """ def __init__(self, payment_identifier: PaymentID, reason: str) -> None: self.payment_identifier = payment_identifier self.reason = reason def __repr__(self) -> str: return ( f"<" f"EventInvalidReceivedTransferRefund " f"payment_identifier:{self.payment_identifier} " f"reason:{self.reason}" f">" ) def __eq__(self, other: Any) -> bool: return ( isinstance(other, EventInvalidReceivedTransferRefund) and self.payment_identifier == other.payment_identifier and self.reason == other.reason ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = {"payment_identifier": str(self.payment_identifier), "reason": self.reason} return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "EventInvalidReceivedTransferRefund": restored = cls( payment_identifier=PaymentID(int(data["payment_identifier"])), reason=data["reason"] ) return restored class EventInvalidReceivedLockExpired(Event): """ Event emitted when an invalid lock expired message is received. """ def __init__(self, secrethash: SecretHash, reason: str) -> None: self.secrethash = secrethash self.reason = reason def __repr__(self) -> str: return ( f"<" f"EventInvalidReceivedLockExpired " f"secrethash:{pex(self.secrethash)} " f"reason:{self.reason}" f">" ) def __eq__(self, other: Any) -> bool: return ( isinstance(other, EventInvalidReceivedLockExpired) and self.secrethash == other.secrethash and self.reason == other.reason ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "secrethash": serialization.serialize_bytes(self.secrethash), "reason": self.reason, } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "EventInvalidReceivedLockExpired": restored = cls( secrethash=serialization.deserialize_secret_hash(data["secrethash"]), reason=data["reason"], ) return restored class EventInvalidReceivedLockedTransfer(Event): """ Event emitted when an invalid locked transfer is received. """ def __init__(self, payment_identifier: PaymentID, reason: str) -> None: self.payment_identifier = payment_identifier self.reason = reason def __repr__(self) -> str: return ( f"<" f"EventInvalidReceivedLockedTransfer " f"payment_identifier:{self.payment_identifier} " f"reason:{self.reason}" f">" ) def __eq__(self, other: Any) -> bool: return ( isinstance(other, EventInvalidReceivedLockedTransfer) and self.payment_identifier == other.payment_identifier and self.reason == other.reason ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = {"payment_identifier": str(self.payment_identifier), "reason": self.reason} return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "EventInvalidReceivedLockedTransfer": restored = cls( payment_identifier=PaymentID(int(data["payment_identifier"])), reason=data["reason"] ) return restored class EventInvalidReceivedUnlock(Event): """ Event emitted when an invalid unlock message is received. """ def __init__(self, secrethash: SecretHash, reason: str) -> None: self.secrethash = secrethash self.reason = reason def __repr__(self) -> str: return ( f"<" f"EventInvalidReceivedUnlock " f"secrethash:{pex(self.secrethash)} " f"reason:{self.reason}" f">" ) def __eq__(self, other: Any) -> bool: return ( isinstance(other, EventInvalidReceivedUnlock) and self.secrethash == other.secrethash and self.reason == other.reason ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "secrethash": serialization.serialize_bytes(self.secrethash), "reason": self.reason, } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "EventInvalidReceivedUnlock": restored = cls( secrethash=serialization.deserialize_secret_hash(data["secrethash"]), reason=data["reason"], ) return restored class SendProcessed(SendMessageEvent): def __repr__(self) -> str: return ("<SendProcessed confirmed_msgid:{} recipient:{}>").format( self.message_identifier, pex(self.recipient) ) def __eq__(self, other: Any) -> bool: return isinstance(other, SendProcessed) and super().__eq__(other) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def to_dict(self) -> Dict[str, Any]: result = { "recipient": to_checksum_address(self.recipient), "channel_identifier": str(self.queue_identifier.channel_identifier), "message_identifier": str(self.message_identifier), } return result @classmethod def from_dict(cls, data: Dict[str, Any]) -> "SendProcessed": restored = cls( recipient=to_canonical_address(data["recipient"]), channel_identifier=ChannelID(int(data["channel_identifier"])), message_identifier=MessageID(int(data["message_identifier"])), ) return restored
# # This file is part of GreatFET # from enum import IntEnum from warnings import warn from ..interface import GreatFETInterface # TODOs: # - XXX: Overhaul the GPIO(Collection) class to be more efficient # - More cleanup to use the GPIOPin model. # - Support ranges of pins from the same port (GPIOPort objects?) # - Implement a release function so if e.g. an I2C device is no longer in use # it releases its pins back to the GPIO pool. class Directions(IntEnum): IN = 0 OUT = 1 # Legacy convenience constants. DIRECTION_IN = Directions.IN DIRECTION_OUT = Directions.OUT class GPIOProvider(GreatFETInterface): """ Base class for an object that provides access to GPIO pins. """ # For convenience. DIRECTION_IN = Directions.IN DIRECTION_OUT = Directions.OUT # If the subclass has a fixed set of pins, it can override this mapping to # specify the fixed pin names to be automatically registered. FIXED_GPIO_PINS = {} # If the subclass doesn't want to allow external sources to register GPIO pins ALLOW_EXTERNAL_REGISTRATION = True def __init__(self, name_mappings=None): """ Sets up the basic fields for a GPIOProvider. Parameters: name_mappings -- Allows callers to rename the local / fixed GPIO pin names. Optional; accepts a dictionary mapping their fixed names to their new names, or to None to remove the relevant pin from the list of available pins. This allows instantiators to give a given GPIO collection more specific names, or to hide them from general API display/usage. """ if name_mappings is None: name_mappings = {} # Set up our basic tracking parameters, which track which GPIO pins # are available and in use. self.pin_mappings = {} self.active_gpio = {} self.available_pins = [] # Add all of our fixed pins as acceptable GPIO. for name, line in self.FIXED_GPIO_PINS.items(): # If we've been asked to rename the given pin, register it under # the new name, rather than under the provided name, if name in name_mappings: name = name_mappings[name] # If our name field winds up remapping to 'None', the instantiator # is trying to hide the relevant pin. Skip registering it. if name is None: continue # Register each fixed GPIO. self.__register_gpio(name, line) def register_gpio(self, name, line, used=False): """ Registers a GPIO pin for later use. Usually only used in board setup. Args: name -- The name for the GPIO, usually expressed as a position on a GreatFET header. line -- An abstract argument passed to subclass methods that serves to identify the pin. Subclasses often use this to store e.g. port and pin numbers. """ # If this class doesn't allow pin registration, raise an error. if not self.ALLOW_EXTERNAL_REGISTRATION: raise NotImplementedError("This GPIO collection does not allow registration of new pins.") # Otherwise, delegate to our internal registration method. self.__register_gpio(name, line, used) def __register_gpio(self, name, line, used=False): """ Registers a GPIO pin for later use. Usually only used in board setup. Args: name -- The name for the GPIO, usually expressed as a position on a GreatFET header. line -- An abstract argument passed to subclass methods that serves to identify the pin. Subclasses often use this to store e.g. port and pin numbers. """ # Store the full name in our pin mappings. self.pin_mappings[name] = line if not used: self.mark_pin_as_unused(name) def mark_pin_as_used(self, name): """ Marks a pin as used by another peripheral. """ if name not in self.pin_mappings: raise ValueError("Unknown GPIO pin {}".format(name)) self.available_pins.remove(name) def mark_pin_as_unused(self, name): """ Mark a pin as no longer used by another peripheral. """ if name not in self.pin_mappings: raise ValueError("Unknown GPIO pin {}".format(name)) if name not in self.available_pins: self.available_pins.append(name) def get_available_pins(self, include_active=True): """ Returns a list of available GPIO names. """ available = self.available_pins[:] available.extend(self.active_gpio.keys()) return available def get_pin(self, name, unique=False): """ Returns a GPIOPin object by which a given pin can be controlled. Args: name -- The GPIO name to be used. unique -- True if this should fail if a GPIO object for this pin already exists. """ # If we already have an active GPIO pin for the relevant name, return it. if name in self.active_gpio and not unique: return self.active_gpio[name] # If the pin's available for GPIO use, grab it. if name in self.available_pins: port = self.pin_mappings[name] self.active_gpio[name] = GPIOPin(self, name, port) self.mark_pin_as_used(name) return self.active_gpio[name] # If we couldn't create the GPIO pin, fail out. raise ValueError("No available GPIO pin {}".format(name)) def get_port(self, *pin_names): """ Creates a GPIOPort object that can set multiple pins to a binary value. Arguments are a list of pin names to conglomerate into a port, MSB first. This may result in a GPIOPort object, or in a derivative class such as a VirtualGPIOPort, depending on the pin locations. """ pins = [] # Convert each of the header pin names to a GPIOPin object. for name in pin_names: pins.append(self.get_pin(name)) # FIXME: apply an optimization for when each pin is on the same logical port: return VirtualGPIOPort(pins) def release_pin(self, gpio_pin): """ Releases a GPIO pin back to the system for re-use, potentially not as a GPIO. """ if gpio_pin.name not in self.active_gpio: raise ValueError("Trying to release a pin we don't own!") # Mark the pin as an input, placing it into High-Z mode. # TODO: Disable any pull-ups present on the pin. gpio_pin.set_direction(DIRECTION_IN) # Remove the GPIO pin from our active array, and add it back to the # available pool. del self.active_gpio[gpio_pin.name] self.mark_pin_as_unused(gpio_pin.name) def set_up_pin(self, line, direction, initial_value=False): """ Configure a GPIO line for use as an input or output. This must be called before the line can be used by other functions. Parameters: line -- A unique identifier for the given pin that has meaning to the subclass. direction -- Directions.IN (input) or Directions.OUT (output) """ pass def set_pin_state(self, line, state): """ Set the state of an output line. The line must have previously been configured as an output using setup(). Parameters: line -- A unique identifier for the given pin that has meaning to the subclass. state -- True sets line high, False sets line low """ pass def read_pin_state(self, line): """ Get the state of an input line. The line must have previously been configured as an input using setup(). Args: line -- A unique identifier for the given pin that has meaning to the subclass. Return: bool -- True if line is high, False if line is low """ pass def get_pin_direction(self, line): """ Gets the direction of a GPIO pin. Args: line -- A unique identifier for the given pin that has meaning to the subclass. Return: bool -- True if line is an output, False if line is an input """ pass def get_pin_port(self, line): """ Returns the 'port number' for a given GPIO pin. For providers for which 'port' isn't a valid semantic concept, this should return the same identifier for every pin that can be logically written in a single operation. """ pass def get_pin_identifier(self, line): """ Returns the 'pin number' for a given GPIO pin. This number is typically the 'bit number' in a larger, organized port. For providers in which this isn't a valid semantic concept, any convenient semantic identifier (or None) is acceptable. """ pass class GPIO(GPIOProvider): """ Work with the GPIO directly present on the GreatFET board. """ def __init__(self, board): """ Args: board -- GreatFET board whose GPIO lines are to be controlled """ # Set up our basic fields... super(GPIO, self).__init__() # ... and store information about the our low-level connection. self.board = board self.api = self.board.apis.gpio # TODO: provide functionality to restore GPIO state on reconnect? def set_up_pin(self, line, direction, initial_value=False): """ Configure a GPIO line for use as an input or output. This must be called before the line can be used by other functions. Args: line -- (port, pin); typically a tuple from J1, J2, J7 below direction -- Directions.IN (input) or Directions.OUT (output) TODO: allow pull-up/pull-down resistors to be configured for inputs """ self.api.set_up_pin(line[0], line[1], direction, initial_value) def set_pin_state(self, line, state): """ Set the state of an output line. The line must have previously been configured as an output using setup(). Args: line -- (port, pin); typically a tuple from J1, J2, J7 below state -- True sets line high, False sets line low """ # TODO: validate GPIO direction? single_write = (line[0], line[1], state,) self.api.write_pins(single_write) def read_pin_state(self, line): """ Get the state of an input line. The line must have previously been configured as an input using setup(). Args: line -- (port, pin); typically a tuple from J1, J2, J7 below Return: bool -- True if line is high, False if line is low """ values = self.api.read_pins(line) return values[0] def get_pin_direction(self, line): """ Gets the direction of a GPIO pin. Args: line -- (port, pin); typically a tuple from J1, J2, J7 below Return: bool -- True if line is an output, False if line is an input """ directions = self.api.get_pin_directions(line) return directions[0] def get_pin_port(self, line): """ Returns the 'port number' for a given GPIO pin.""" return line[0] def get_pin_identifier(self, line): """ Returns the 'pin number' for a given GPIO pin. """ return line[1] # # Deprecated methods. # def output(self, line, state): warn("GPIO.output is deprecated; prefer set_pin_state.", DeprecationWarning) self.set_pin_state(line, state) def input(self, line): warn("GPIO.input is deprecated; prefer read_pin_state.", DeprecationWarning) return self.read_pin_state(line) def setup(self, line, direction): warn("GPIO.setup is deprecated; prefer set_up_pin.", DeprecationWarning) self.set_up_pin(line, direction) class GPIOPin(object): """ Class representing a single GPIO pin. """ def __init__(self, gpio_provider, name, line): """ Creates a new object representing a GPIO Pin. Usually instantiated via a GPIO object. Args: gpio_provider -- The GPIO object to which this pin belongs. name -- The name of the given pin. Should match a name registered in its GPIO collection. line -- The pin's 'line' information, as defined by the object that created this GPIO pin. This variable has semantic meaning to the GPIO collection; but doesn't have any semantic meaning to this class. """ self.name = name self._parent = gpio_provider self._line = line # For convenience: self.DIRECTION_IN = Directions.IN self.DIRECTION_OUT = Directions.OUT # Set up the pin for use. Idempotent. self._parent.set_up_pin(self._line, self.get_direction(), self.read()) def set_direction(self, direction, initial_value=False): """ Sets the GPIO pin to use a given direction. """ self._parent.set_up_pin(self._line, direction, initial_value) def get_direction(self): """ Returns the pin's direction; will be either Directions.IN or Directions.OUT """ return self._parent.get_pin_direction(self._line) def is_input(self): """ Convenience function that returns True iff the pin is configured as an input. """ return (self.get_direction() == self.DIRECTION_IN) def is_output(self): """ Convenience function that returns True iff the pin is configured as an output. """ return (self.get_direction() == self.DIRECTION_OUT) def read(self, high_value=True, low_value=False, check_pin_direction=False, set_pin_direction=False): """ Convenience alias for get_state.""" return self.get_state(high_value, low_value, check_pin_direction, set_pin_direction) def input(self, high_value=True, low_value=False): """ Convenience function that sets the pin to an input and reads its value. """ return self.read(set_pin_direction=True, high_value=high_value, low_value=low_value) def get_state(self, high_value=True, low_value=False, check_pin_direction=False, set_pin_direction=False): """ Returns the value of a GPIO pin. """ # If we're setting the pin direction while we're getting the state, set it. if set_pin_direction: self.set_direction(self.DIRECTION_IN) # Otherwise, enforce the direction, if desired. elif check_pin_direction and not self.is_input(): raise ValueError("Trying to read from a non-input pin {}! Set up the pin first with set_direction.".format(self.name)) # Finally, read the pin's state. raw = self._parent.read_pin_state(self._line) return high_value if raw else low_value def write(self, high, check_direction=False): """ Convenience alias for set_state.""" self.set_state(high, check_direction) def set_state(self, high, check_direction=True): """ Write a given value to the GPIO port. Args: high -- True iff the pin should be set to high; the pin will be set to low otherwise. """ if check_direction and not self.is_output(): raise ValueError("Trying to write to a non-output pin {}! Set up the pin first with set_direction.".format(self.name)) self._parent.set_pin_state(self._line, high) def high(self): """ Convenience function that sets the given GPIO pin to both output mode and high, at once. """ # Note that we can't rely on initial_direction to set the actual port value; as some # GPIOProviders may not support that. self.set_direction(self.DIRECTION_OUT, True) self.write(True) def low(self): """ Convenience function that sets the given GPIO pin to both output mode and low, at once. """ # Note that we can't rely on initial_direction to set the actual port value; as some # GPIOProviders may not support that. self.set_direction(self.DIRECTION_OUT, False) self.write(False) def get_port(self): """ Returns device's port number, if possible. """ return self._parent.get_pin_port(self._line) def get_pin(self): """ Returns pin's pin number within its port, if possible. """ return self._parent.get_pin_identifier(self._line) # TODO: Toggle-- we have the hardware for this :) # TODO: handle pulldowns/pull-ups, etc. class VirtualGPIOPort(object): """ An object that represents a "virtually contiguous" group of GPIO pins. """ def __init__(self, *pin_arguments): """ Creates a virtual GPIO Port from GPIOPin-compatible objects. pins -- A list of pins to be coalesced into a virtual port; with the MSB first. For convenience, pins (or lists) can also be provided as variadic arguments. Pins should already have their directions / resistors set. """ pins = [] # Take each of our passed in pins/objects, and add them to our ordered list. for pin in pin_arguments: if isinstance(pin, list): pins.extend(pin) else: pins.append(pin) # Reverse the order of our list, so element 0 corresponds to bit zero. self.pins = pins[::-1] def set_direction(self, word, initial_value=0): """ Sets the direction of each individual pin. Parameters: word -- A number whose bits contain 1s for each bit that should be an output, and zeroes for each bit that should be an input. """ for bit, pin in enumerate(self.pins): direction = DIRECTION_OUT if (word & (1 << bit)) else DIRECTION_IN initial_value = bool(initial_value & (1 << bit)) pin.set_direction(direction, initial_value=initial_value) def all_output(self, initial_value=False): """ Sets all of the pins in this port to output mode. Parameters: initial_value -- Optional; the start value to apply to each pin. """ for pin in self.pins: pin.set_direction(DIRECTION_OUT, initial_value) def all_input(self): """ Sets all of the pins in this port to output mode. """ for pin in self.pins: pin.set_direction(DIRECTION_IN) def read(self): """ Returns the integer value of the relevant port. """ value = 0 # Iterate over each of the contained pins, and add it to our value. for bit, pin in enumerate(self.pins): # If this pin reads as true, add it to our composite. if pin.read(): value |= (1 << bit) return value def write(self, value): """ Writes a given integer value to the port. """ for bit, pin in enumerate(self.pins): new_value = bool(value & (1 << bit)) pin.write(new_value)
# This file includes the definition of a mix-in class that provides the low- # and high-level WCS API to the astropy.wcs.WCS object. We keep this code # isolated in this mix-in class to avoid making the main wcs.py file too # long. import warnings import numpy as np from astropy import units as u from .low_level_api import BaseLowLevelWCS from .high_level_api import HighLevelWCSMixin from .sliced_low_level_wcs import SlicedLowLevelWCS __all__ = ['custom_ctype_to_ucd_mapping', 'SlicedFITSWCS', 'FITSWCSAPIMixin'] # Mapping from CTYPE axis name to UCD1 CTYPE_TO_UCD1 = { # Celestial coordinates 'RA': 'pos.eq.ra', 'DEC': 'pos.eq.dec', 'GLON': 'pos.galactic.lon', 'GLAT': 'pos.galactic.lat', 'ELON': 'pos.ecliptic.lon', 'ELAT': 'pos.ecliptic.lat', 'TLON': 'pos.bodyrc.lon', 'TLAT': 'pos.bodyrc.lat', 'HPLT': 'custom:pos.helioprojective.lat', 'HPLN': 'custom:pos.helioprojective.lon', 'HGLN': 'custom:pos.heliographic.stonyhurst.lon', 'HGLT': 'custom:pos.heliographic.stonyhurst.lat', 'CRLN': 'custom:pos.heliographic.carrington.lon', 'CRLT': 'custom:pos.heliographic.carrington.lat', # Spectral coordinates (WCS paper 3) 'FREQ': 'em.freq', # Frequency 'ENER': 'em.energy', # Energy 'WAVN': 'em.wavenumber', # Wavenumber 'WAVE': 'em.wl', # Vacuum wavelength 'VRAD': 'spect.dopplerVeloc.radio', # Radio velocity 'VOPT': 'spect.dopplerVeloc.opt', # Optical velocity 'ZOPT': 'src.redshift', # Redshift 'AWAV': 'em.wl', # Air wavelength 'VELO': 'spect.dopplerVeloc', # Apparent radial velocity 'BETA': 'custom:spect.doplerVeloc.beta', # Beta factor (v/c) # Time coordinates (https://www.aanda.org/articles/aa/pdf/2015/02/aa24653-14.pdf) 'TIME': 'time', 'TAI': 'time', 'TT': 'time', 'TDT': 'time', 'ET': 'time', 'IAT': 'time', 'UT1': 'time', 'UTC': 'time', 'GMT': 'time', 'GPS': 'time', 'TCG': 'time', 'TCB': 'time', 'TDB': 'time', 'LOCAL': 'time' # UT() and TT() are handled separately in world_axis_physical_types } # Keep a list of additional custom mappings that have been registered. This # is kept as a list in case nested context managers are used CTYPE_TO_UCD1_CUSTOM = [] class custom_ctype_to_ucd_mapping: """ A context manager that makes it possible to temporarily add new CTYPE to UCD1+ mapping used by :attr:`FITSWCSAPIMixin.world_axis_physical_types`. Parameters ---------- mapping : dict A dictionary mapping a CTYPE value to a UCD1+ value Examples -------- Consider a WCS with the following CTYPE:: >>> from astropy.wcs import WCS >>> wcs = WCS(naxis=1) >>> wcs.wcs.ctype = ['SPAM'] By default, :attr:`FITSWCSAPIMixin.world_axis_physical_types` returns `None`, but this can be overridden:: >>> wcs.world_axis_physical_types [None] >>> with custom_ctype_to_ucd_mapping({'SPAM': 'food.spam'}): ... wcs.world_axis_physical_types ['food.spam'] """ def __init__(self, mapping): CTYPE_TO_UCD1_CUSTOM.insert(0, mapping) self.mapping = mapping def __enter__(self): pass def __exit__(self, type, value, tb): CTYPE_TO_UCD1_CUSTOM.remove(self.mapping) class SlicedFITSWCS(SlicedLowLevelWCS, HighLevelWCSMixin): pass class FITSWCSAPIMixin(BaseLowLevelWCS, HighLevelWCSMixin): """ A mix-in class that is intended to be inherited by the :class:`~astropy.wcs.WCS` class and provides the low- and high-level WCS API """ @property def pixel_n_dim(self): return self.naxis @property def world_n_dim(self): return len(self.wcs.ctype) @property def array_shape(self): if self._naxis == [0, 0]: return None else: return tuple(self._naxis[::-1]) @array_shape.setter def array_shape(self, value): if value is None: self._naxis = [0, 0] else: if len(value) != self.naxis: raise ValueError("The number of data axes, " "{}, does not equal the " "shape {}.".format(self.naxis, len(value))) self._naxis = list(value)[::-1] @property def pixel_shape(self): if self._naxis == [0, 0]: return None else: return tuple(self._naxis) @pixel_shape.setter def pixel_shape(self, value): if value is None: self._naxis = [0, 0] else: if len(value) != self.naxis: raise ValueError("The number of data axes, " "{}, does not equal the " "shape {}.".format(self.naxis, len(value))) self._naxis = list(value) @property def pixel_bounds(self): return self._pixel_bounds @pixel_bounds.setter def pixel_bounds(self, value): if value is None: self._pixel_bounds = value else: if len(value) != self.naxis: raise ValueError("The number of data axes, " "{}, does not equal the number of " "pixel bounds {}.".format(self.naxis, len(value))) self._pixel_bounds = list(value) @property def world_axis_physical_types(self): types = [] # TODO: need to support e.g. TT(TAI) for ctype in self.wcs.ctype: if ctype.startswith(('UT(', 'TT(')): types.append('time') else: ctype_name = ctype.split('-')[0] for custom_mapping in CTYPE_TO_UCD1_CUSTOM: if ctype_name in custom_mapping: types.append(custom_mapping[ctype_name]) break else: types.append(CTYPE_TO_UCD1.get(ctype_name, None)) return types @property def world_axis_units(self): units = [] for unit in self.wcs.cunit: if unit is None: unit = '' elif isinstance(unit, u.Unit): unit = unit.to_string(format='vounit') else: try: unit = u.Unit(unit).to_string(format='vounit') except u.UnitsError: unit = '' units.append(unit) return units @property def world_axis_names(self): return list(self.wcs.cname) @property def axis_correlation_matrix(self): # If there are any distortions present, we assume that there may be # correlations between all axes. Maybe if some distortions only apply # to the image plane we can improve this? if self.has_distortion: return np.ones((self.world_n_dim, self.pixel_n_dim), dtype=bool) # Assuming linear world coordinates along each axis, the correlation # matrix would be given by whether or not the PC matrix is zero matrix = self.wcs.get_pc() != 0 # We now need to check specifically for celestial coordinates since # these can assume correlations because of spherical distortions. For # each celestial coordinate we copy over the pixel dependencies from # the other celestial coordinates. celestial = (self.wcs.axis_types // 1000) % 10 == 2 celestial_indices = np.nonzero(celestial)[0] for world1 in celestial_indices: for world2 in celestial_indices: if world1 != world2: matrix[world1] |= matrix[world2] matrix[world2] |= matrix[world1] return matrix def pixel_to_world_values(self, *pixel_arrays): world = self.all_pix2world(*pixel_arrays, 0) return world[0] if self.world_n_dim == 1 else tuple(world) def array_index_to_world_values(self, *indices): world = self.all_pix2world(*indices[::-1], 0) return world[0] if self.world_n_dim == 1 else tuple(world) def world_to_pixel_values(self, *world_arrays): pixel = self.all_world2pix(*world_arrays, 0) return pixel[0] if self.pixel_n_dim == 1 else tuple(pixel) def world_to_array_index_values(self, *world_arrays): pixel_arrays = self.all_world2pix(*world_arrays, 0)[::-1] array_indices = tuple(np.asarray(np.floor(pixel + 0.5), dtype=np.int_) for pixel in pixel_arrays) return array_indices[0] if self.pixel_n_dim == 1 else array_indices @property def world_axis_object_components(self): return self._get_components_and_classes()[0] @property def world_axis_object_classes(self): return self._get_components_and_classes()[1] @property def serialized_classes(self): return False def _get_components_and_classes(self): # The aim of this function is to return whatever is needed for # world_axis_object_components and world_axis_object_classes. It's easier # to figure it out in one go and then return the values and let the # properties return part of it. # Since this method might get called quite a few times, we need to cache # it. We start off by defining a hash based on the attributes of the # WCS that matter here (we can't just use the WCS object as a hash since # it is mutable) wcs_hash = (self.naxis, list(self.wcs.ctype), list(self.wcs.cunit), self.wcs.radesys, self.wcs.equinox, self.wcs.dateobs, self.wcs.lng, self.wcs.lat) # If the cache is present, we need to check that the 'hash' matches. if getattr(self, '_components_and_classes_cache', None) is not None: cache = self._components_and_classes_cache if cache[0] == wcs_hash: return cache[1] else: self._components_and_classes_cache = None # Avoid circular imports by importing here from astropy.wcs.utils import wcs_to_celestial_frame from astropy.coordinates import SkyCoord, EarthLocation from astropy.time.formats import FITS_DEPRECATED_SCALES from astropy.time import Time, TimeDelta components = [None] * self.naxis classes = {} # Let's start off by checking whether the WCS has a pair of celestial # components if self.has_celestial: try: frame = wcs_to_celestial_frame(self) except ValueError: # Some WCSes, e.g. solar, can be recognized by WCSLIB as being # celestial but we don't necessarily have frames for them. pass else: kwargs = {} kwargs['frame'] = frame kwargs['unit'] = u.deg classes['celestial'] = (SkyCoord, (), kwargs) components[self.wcs.lng] = ('celestial', 0, 'spherical.lon.degree') components[self.wcs.lat] = ('celestial', 1, 'spherical.lat.degree') # We can then make sure we correctly return Time objects where appropriate # (https://www.aanda.org/articles/aa/pdf/2015/02/aa24653-14.pdf) if 'time' in self.world_axis_physical_types: multiple_time = self.world_axis_physical_types.count('time') > 1 for i in range(self.naxis): if self.world_axis_physical_types[i] == 'time': if multiple_time: name = f'time.{i}' else: name = 'time' # Initialize delta reference_time_delta = None # Extract time scale scale = self.wcs.ctype[i].lower() if scale == 'time': if self.wcs.timesys: scale = self.wcs.timesys.lower() else: scale = 'utc' # Drop sub-scales if '(' in scale: pos = scale.index('(') scale, subscale = scale[:pos], scale[pos+1:-1] warnings.warn(f'Dropping unsupported sub-scale ' f'{subscale.upper()} from scale {scale.upper()}', UserWarning) # TODO: consider having GPS as a scale in Time # For now GPS is not a scale, we approximate this by TAI - 19s if scale == 'gps': reference_time_delta = TimeDelta(19, format='sec') scale = 'tai' elif scale.upper() in FITS_DEPRECATED_SCALES: scale = FITS_DEPRECATED_SCALES[scale.upper()] elif scale not in Time.SCALES: raise ValueError(f'Unrecognized time CTYPE={self.wcs.ctype[i]}') # Determine location trefpos = self.wcs.trefpos.lower() if trefpos.startswith('topocent'): # Note that some headers use TOPOCENT instead of TOPOCENTER if np.any(np.isnan(self.wcs.obsgeo[:3])): warnings.warn('Missing or incomplete observer location ' 'information, setting location in Time to None', UserWarning) location = None else: location = EarthLocation(*self.wcs.obsgeo[:3], unit=u.m) elif trefpos == 'geocenter': location = EarthLocation(0, 0, 0, unit=u.m) elif trefpos == '': location = None else: # TODO: implement support for more locations when Time supports it warnings.warn(f"Observation location '{trefpos}' is not " "supported, setting location in Time to None", UserWarning) location = None reference_time = Time(np.nan_to_num(self.wcs.mjdref[0]), np.nan_to_num(self.wcs.mjdref[1]), format='mjd', scale=scale, location=location) if reference_time_delta is not None: reference_time = reference_time + reference_time_delta def time_from_reference_and_offset(offset): if isinstance(offset, Time): return offset return reference_time + TimeDelta(offset, format='sec') def offset_from_time_and_reference(time): return (time - reference_time).sec classes[name] = (Time, (), {}, time_from_reference_and_offset) components[i] = (name, 0, offset_from_time_and_reference) # Fallback: for any remaining components that haven't been identified, just # return Quantity as the class to use for i in range(self.naxis): if components[i] is None: name = self.wcs.ctype[i].split('-')[0].lower() if name == '': name = 'world' while name in classes: name += "_" classes[name] = (u.Quantity, (), {'unit': self.wcs.cunit[i]}) components[i] = (name, 0, 'value') # Keep a cached version of result self._components_and_classes_cache = wcs_hash, (components, classes) return components, classes
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import functools import sys import weakref from keystoneclient import auth from keystoneclient.auth.identity import v2 from keystoneclient.auth.identity import v3 from keystoneclient import exceptions from keystoneclient import session from oslo_config import cfg import six from heat.common import config from heat.common.i18n import _ class ExceptionFilter(object): """A context manager that prevents some exceptions from being raised. For backwards compatibility, these objects can also be called with the exception value as an argument - any non-matching exception will be re-raised from this call. We attempt but cannot guarantee to keep the same traceback; the context manager method is preferred for this reason except in cases where the ignored exception affects control flow. Use this class as a decorator for a function that returns whether a given exception should be ignored. e.g. >>> @ExceptionFilter >>> def ignore_assertions(ex): ... return isinstance(ex, AssertionError) and then use it as a context manager: >>> with ignore_assertions: ... assert False or call it: >>> try: ... assert False ... except Exception as ex: ... ignore_assertions(ex) """ def __init__(self, should_ignore_ex): self._should_ignore_ex = should_ignore_ex functools.update_wrapper(self, should_ignore_ex) def __get__(self, obj, owner): return type(self)(six.create_bound_method(self._should_ignore_ex, obj)) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): if exc_val is not None: return self._should_ignore_ex(exc_val) def __call__(self, ex): """Re-raise any exception value not being filtered out. If the exception was the last to be raised, it will be re-raised with its original traceback. """ if not self._should_ignore_ex(ex): exc_type, exc_val, traceback = sys.exc_info() if exc_val is ex: six.reraise(exc_type, exc_val, traceback) else: raise ex @six.add_metaclass(abc.ABCMeta) class ClientPlugin(object): # Module which contains all exceptions classes which the client # may emit exceptions_module = None # supported service types, service like cinder support multiple service # types, so its used in list format service_types = [] def __init__(self, context): self._context = weakref.ref(context) self._clients = weakref.ref(context.clients) self._client = None self._keystone_session_obj = None @property def context(self): ctxt = self._context() assert ctxt is not None, "Need a reference to the context" return ctxt @property def clients(self): return self._clients() _get_client_option = staticmethod(config.get_client_option) @property def _keystone_session(self): # FIXME(jamielennox): This session object is essentially static as the # options won't change. Further it is allowed to be shared by multiple # authentication requests so there is no reason to construct it fresh # for every client plugin. It should be global and shared amongst them. if not self._keystone_session_obj: o = {'cacert': self._get_client_option('keystone', 'ca_file'), 'insecure': self._get_client_option('keystone', 'insecure'), 'cert': self._get_client_option('keystone', 'cert_file'), 'key': self._get_client_option('keystone', 'key_file')} self._keystone_session_obj = session.Session.construct(o) return self._keystone_session_obj def invalidate(self): """Invalidate/clear any cached client.""" self._client = None def client(self): if not self._client: self._client = self._create() elif (cfg.CONF.reauthentication_auth_method == 'trusts' and self.context.auth_plugin.auth_ref.will_expire_soon( cfg.CONF.stale_token_duration)): # If the token is near expiry, force creating a new client, # which will get a new token via another call to auth_token # We also have to invalidate all other cached clients self.clients.invalidate_plugins() self._client = self._create() return self._client @abc.abstractmethod def _create(self): """Return a newly created client.""" pass @property def auth_token(self): # NOTE(jamielennox): use the session defined by the keystoneclient # options as traditionally the token was always retrieved from # keystoneclient. return self.context.auth_plugin.get_token(self._keystone_session) def url_for(self, **kwargs): def get_endpoint(): auth_plugin = self.context.auth_plugin return auth_plugin.get_endpoint(self._keystone_session, **kwargs) # NOTE(jamielennox): use the session defined by the keystoneclient # options as traditionally the token was always retrieved from # keystoneclient. try: kwargs.setdefault('interface', kwargs.pop('endpoint_type')) except KeyError: pass reg = self.context.region_name or cfg.CONF.region_name_for_services kwargs.setdefault('region_name', reg) url = None try: url = get_endpoint() except exceptions.EmptyCatalog: kc = self.clients.client('keystone').client auth_plugin = self.context.auth_plugin endpoint = auth_plugin.get_endpoint(None, interface=auth.AUTH_INTERFACE) token = auth_plugin.get_token(None) project_id = auth_plugin.get_project_id(None) if kc.version == 'v3': token_obj = v3.Token(endpoint, token, project_id=project_id) catalog_key = 'catalog' access_key = 'token' elif kc.version == 'v2.0': endpoint = endpoint.replace('v3', 'v2.0') token_obj = v2.Token(endpoint, token, tenant_id=project_id) catalog_key = 'serviceCatalog' access_key = 'access' else: raise exceptions.Error(_("Unknown Keystone version")) auth_ref = token_obj.get_auth_ref(self._keystone_session) if catalog_key in auth_ref: access_info = self.context.auth_token_info[access_key] access_info[catalog_key] = auth_ref[catalog_key] self.context.reload_auth_plugin() url = get_endpoint() # NOTE(jamielennox): raising exception maintains compatibility with # older keystoneclient service catalog searching. if url is None: raise exceptions.EndpointNotFound() return url def is_client_exception(self, ex): """Returns True if the current exception comes from the client.""" if self.exceptions_module: if isinstance(self.exceptions_module, list): for m in self.exceptions_module: if type(ex) in six.itervalues(m.__dict__): return True else: return type(ex) in six.itervalues( self.exceptions_module.__dict__) return False def is_not_found(self, ex): """Returns True if the exception is a not-found.""" return False def is_over_limit(self, ex): """Returns True if the exception is an over-limit.""" return False def is_conflict(self, ex): """Returns True if the exception is a conflict.""" return False @ExceptionFilter def ignore_not_found(self, ex): """Raises the exception unless it is a not-found.""" return self.is_not_found(ex) @ExceptionFilter def ignore_conflict_and_not_found(self, ex): """Raises the exception unless it is a conflict or not-found.""" return self.is_conflict(ex) or self.is_not_found(ex) def _get_client_args(self, service_name, service_type): endpoint_type = self._get_client_option(service_name, 'endpoint_type') endpoint = self.url_for(service_type=service_type, endpoint_type=endpoint_type) args = { 'auth_url': self.context.auth_url, 'service_type': service_type, 'project_id': self.context.tenant_id, 'token': lambda: self.auth_token, 'endpoint_type': endpoint_type, 'os_endpoint': endpoint, 'cacert': self._get_client_option(service_name, 'ca_file'), 'cert_file': self._get_client_option(service_name, 'cert_file'), 'key_file': self._get_client_option(service_name, 'key_file'), 'insecure': self._get_client_option(service_name, 'insecure') } return args # FIXME(kanagaraj-manickam) Update other client plugins to leverage # this method (bug 1461041) def does_endpoint_exist(self, service_type, service_name): endpoint_type = self._get_client_option(service_name, 'endpoint_type') try: self.url_for(service_type=service_type, endpoint_type=endpoint_type) return True except exceptions.EndpointNotFound: return False
import os from collections import OrderedDict from typing import Union import casadi as ca # noinspection PyPackageRequirements from lxml import etree from .model import HybridDae FILE_PATH = os.path.dirname(os.path.abspath(__file__)) SCHEMA_DIR = os.path.join(FILE_PATH, 'ModelicaXML', 'schemas') class XMLParser: def __init__(self, schema_dir, schema_file): orig_path = os.path.abspath(os.curdir) os.chdir(schema_dir) with open(schema_file, 'r') as f: schema = etree.XMLSchema(etree.XML(f.read().encode('utf-8'))) os.chdir(orig_path) self._parser = etree.XMLParser( schema=schema, remove_comments=True, remove_blank_text=False) def parse(self, txt: str): if not isinstance(txt, str): raise ValueError('txt must be a str') xml_file = txt.encode('utf-8') return etree.fromstring(xml_file, self._parser) Sym = Union[ca.MX, ca.SX] # noinspection PyProtectedMember,PyPep8Naming class ModelListener: """ Converts ModelicaXML file to Hybrid DAE""" def __init__(self, sym: Sym = ca.SX, verbose=False): self.depth = 0 self.model = {} self.scope_stack = [] self.verbose = verbose self.sym = sym # Define an operator map that can be used as # self.op_map[n_operations][operator](*args) self.op_map = { 1: { 'der': self.der, '-': lambda x: -1 * x, 'abs': ca.fabs, 'sin': ca.sin, 'cos': ca.cos, 'tan': ca.tan, }, 2: { '+': lambda x, y: x + y, '-': lambda x, y: x - y, '*': lambda x, y: x * y, '/': lambda x, y: x / y, '^': lambda x, y: ca.power(x, y), '>': lambda x, y: x > y, '<': lambda x, y: x < y, '<=': lambda x, y: x <= y, '>=': lambda x, y: x >= y, 'reinit': self.reinit, 'sample': self.sample, 'and': ca.logic_and, 'or': ca.logic_or, 'not': ca.logic_not, 'noise_gaussian': lambda mean, std: self.noise_gaussian(mean, std), 'noise_uniform': lambda lower, upper: self.noise_uniform(lower, upper), }, } @property def scope(self): return self.scope_stack[-1] def call(self, tag_name: str, *args, **kwargs): """Convenience method for calling methods with walker.""" if hasattr(self, tag_name): getattr(self, tag_name)(*args, **kwargs) # ------------------------------------------------------------------------ # OPERATORS # ------------------------------------------------------------------------ def der(self, x: Sym): """Get the derivative of the variable, create it if it doesn't exist.""" name = 'der({:s})'.format(x.name()) if name not in self.scope['dvar'].keys(): self.scope['dvar'][name] = self.sym.sym(name, *x.shape) self.scope['states'].append(x.name()) return self.scope['dvar'][name] def cond(self, expr): c = self.sym.sym('c_{:d}'.format(len(self.scope['c']))) self.scope['c'][c] = expr return c def pre_cond(self, x: Sym): name = 'pre({:s})'.format(x.name()) if name not in self.scope['pre_c'].keys(): self.scope['pre_c'][name] = self.sym.sym(name, *x.shape) return self.scope['pre_c'][name] def edge(self, c): """rising edge""" return ca.logic_and(c, ca.logic_not(self.pre_cond(c))) @staticmethod def reinit(x_old, x_new): return 'reinit', x_old, x_new @staticmethod def sample(t_start, period): print('sample', t_start, period) return 'sample', t_start, period def noise_gaussian(self, mean, std): """Create a gaussian noise variable""" assert std > 0 ng = self.sym.sym('ng_{:d}'.format(len(self.scope['ng']))) self.scope['ng'].append(ng) return mean + std*ng def noise_uniform(self, lower_bound, upper_bound): """Create a uniform noise variable""" assert upper_bound > lower_bound nu = self.sym.sym('nu_{:d}'.format(len(self.scope['nu']))) self.scope['nu'].append(nu) return lower_bound + nu*(upper_bound - lower_bound) # ------------------------------------------------------------------------ # Helpers # ------------------------------------------------------------------------ @staticmethod def get_attr(e, name, default): if name in e.attrib.keys(): return e.attrib[name] else: return default def get_var(self, name): """Get the variable in the current scope""" if name == 'time': return self.scope['time'] else: return self.scope['var'][name] def log(self, *args, **kwargs): """Convenience function for printing indenting debug output.""" if self.verbose: print(' ' * self.depth, *args, **kwargs) # ------------------------------------------------------------------------ # Listener Methods # ------------------------------------------------------------------------ def enter_every_before(self, tree: etree._Element): # initialize model to None self.model[tree] = None # print name to log self.log(tree.tag, '{') # increment depth self.depth += 1 def exit_every_after(self, tree: etree._Element): # decrement depth self.depth -= 1 # self.log('tree:', etree.tostring(tree)) # print model if self.model[tree] is not None: self.log('model:', self.model[tree]) # print name to log self.log('}', tree.tag) # noinspection PyUnusedLocal def enter_classDefinition(self, tree: etree._Element): # we don't know if variables are states # yet, we need to wait until equations are parsed self.scope_stack.append({ 'time': self.sym.sym('time'), 'sample_times': [], 'var': OrderedDict(), # variables 'states': [], # list of which variables are states (based on der call) 'dvar': OrderedDict(), # derivative of variables 'eqs': [], # equations 'when_eqs': [], # when equations 'c': {}, # conditions 'pre_c': {}, # pre conditions 'p': [], # parameters and constants 'prop': {}, # properties for variables 'ng': [], # gaussian 'nu': [], # uniform }) def exit_classDefinition(self, tree: etree._Element): # noqa: too-complex dae = HybridDae() dae.t = self.scope['time'] self.model[tree] = dae # handle component declarations for var_name, v in self.scope['var'].items(): variability = self.scope['prop'][var_name]['variability'] if variability == 'continuous': if var_name in self.scope['states']: dae.x = ca.vertcat(dae.x, v) dae.dx = ca.vertcat(dae.dx, self.der(v)) else: dae.y = ca.vertcat(dae.y, v) elif variability == 'discrete': dae.m = ca.vertcat(dae.m, v) elif variability == 'parameter': dae.p = ca.vertcat(dae.p, v) elif variability == 'constant': dae.p = ca.vertcat(dae.p, v) else: raise ValueError('unknown variability', variability) for eq in self.scope['eqs']: if isinstance(eq, self.sym): dae.f_x = ca.vertcat(dae.f_x, eq) # build reinit expression and discrete equations dae.f_i = dae.x dae.f_m = dae.m for eq in self.scope['when_eqs']: w = eq['cond'] for then_eq in eq['then']: if isinstance(then_eq, tuple): if then_eq[0] == 'reinit': sub_var = then_eq[1] sub_expr = ca.if_else(self.edge(w), then_eq[2], sub_var) dae.f_i = ca.substitute(dae.f_i, sub_var, sub_expr) elif isinstance(then_eq, self.sym): # this is a discrete variable assignment # so it should be a casadi subtraction y = x assert then_eq.is_op(ca.OP_SUB) and then_eq.n_dep() == 2 sub_var = then_eq.dep(0) sub_expr = ca.if_else(self.edge(w), then_eq.dep(1), sub_var) dae.f_m = ca.substitute(dae.f_m, sub_var, sub_expr) dae.t = self.scope['time'] dae.prop.update(self.scope['prop']) c_dict = self.scope['c'] for k in c_dict.keys(): dae.c = ca.vertcat(dae.c, k) dae.pre_c = ca.vertcat(dae.pre_c, self.pre_cond(k)) dae.f_c = ca.vertcat(dae.f_c, c_dict[k]) for l, r in [('f_c', 'c'), ('c', 'pre_c'), ('dx', 'x'), ('f_m', 'm')]: vl = getattr(dae, l) vr = getattr(dae, r) if vl.shape != vr.shape: raise ValueError( '{:s} and {:s} must have the same shape:' '\n{:s}: {:s}\t{:s}: {:s}'.format( l, r, l, str(dae.f_m), r, str(dae.m))) dae.ng = ca.vertcat(*self.scope['ng']) dae.nu = ca.vertcat(*self.scope['nu']) n_eq = dae.f_x.shape[0] + dae.f_m.shape[0] n_var = dae.x.shape[0] + dae.m.shape[0] + dae.y.shape[0] if n_eq != n_var: raise ValueError( 'must have equal number of equations ' '{:d} and unknowns {:d}\n:{:s}'.format( n_eq, n_var, str(dae))) self.scope_stack.pop() def enter_component(self, tree: etree._Element): self.model[tree] = { 'start': None, 'fixed': None, 'value': None, 'variability': self.get_attr(tree, 'variability', 'continuous'), 'visibility': self.get_attr(tree, 'visibility', 'public'), } self.scope_stack.append(self.model[tree]) def exit_component(self, tree: etree._Element): var_scope = self.scope_stack.pop() name = tree.attrib['name'] shape = (1, 1) sym = self.sym.sym(name, *shape) self.scope['prop'][name] = var_scope self.scope['var'][name] = sym def exit_local(self, tree: etree._Element): name = tree.attrib['name'] self.model[tree] = self.get_var(name) def exit_operator(self, tree: etree._Element): op = tree.attrib['name'] self.model[tree] = self.op_map[len(tree)][op](*[self.model[e] for e in tree]) def exit_if(self, tree: etree._Element): assert len(tree) == 3 cond = self.model[tree[0]] then_eq = self.model[tree[1]] else_eq = self.model[tree[2]] c = self.cond(cond) if len(then_eq) != len(else_eq): raise SyntaxError("then and else equations must have same number of statements") self.model[tree] = ca.if_else(c, then_eq[0], else_eq[0]) def exit_apply(self, tree: etree._Element): op = tree.attrib['builtin'] self.model[tree] = self.op_map[len(tree)][op](*[self.model[e] for e in tree]) def exit_equal(self, tree: etree._Element): assert len(tree) == 2 self.model[tree] = self.model[tree[0]] - self.model[tree[1]] def exit_equation(self, tree: etree._Element): self.model[tree] = [self.model[c] for c in tree] self.scope['eqs'].extend(self.model[tree]) def exit_modifier(self, tree: etree._Element): props = {} for e in tree: props.update(self.model[e]) self.model[tree] = props self.scope.update(props) def exit_item(self, tree: etree._Element): assert len(tree) == 1 self.model[tree] = { tree.attrib['name']: self.model[tree[0]] } def exit_real(self, tree: etree._Element): self.model[tree] = float(tree.attrib["value"]) def exit_true(self, tree: etree._Element): self.model[tree] = True def exit_false(self, tree: etree._Element): self.model[tree] = False def exit_modelica(self, tree: etree._Element): # get all class definitions as a list self.model[tree] = [self.model[c] for c in tree[0]] def exit_when(self, tree: etree._Element): assert len(tree) == 2 cond = self.model[tree[0]] then = self.model[tree[1]] self.model[tree] = { 'cond': self.cond(cond), 'then': then } self.scope['when_eqs'].append(self.model[tree]) def exit_cond(self, tree: etree._Element): assert len(tree) == 1 self.model[tree] = self.model[tree[0]] def exit_then(self, tree: etree._Element): self.model[tree] = [self.model[c] for c in tree] def exit_else(self, tree: etree._Element): self.model[tree] = [self.model[c] for c in tree] # noinspection PyProtectedMember def walk(e: etree._Element, l: ModelListener) -> None: tag = e.tag l.call('enter_every_before', e) l.call('enter_' + tag, e) l.call('enter_every_after', e) for c in e.getchildren(): walk(c, l) l.call('exit_every_before', e) l.call('exit_' + tag, e) l.call('exit_every_after', e) def parse(model_txt: str, verbose: bool = False) -> HybridDae: parser = XMLParser(SCHEMA_DIR, 'Modelica.xsd') root = parser.parse(model_txt) listener = ModelListener(verbose=verbose) walk(root, listener) return listener.model[root][0] def parse_file(file_path: str, verbose: bool = False) -> HybridDae: with open(file_path, 'r') as f: txt = f.read() return parse(txt, verbose)
"""Generic resource pool implementation.""" from __future__ import absolute_import, unicode_literals import os from collections import deque from . import exceptions from .five import Empty, LifoQueue as _LifoQueue from .utils.compat import register_after_fork from .utils.functional import lazy def _after_fork_cleanup_resource(resource): try: resource.force_close_all() except Exception: pass class LifoQueue(_LifoQueue): """Last in first out version of Queue.""" def _init(self, maxsize): self.queue = deque() class Resource(object): """Pool of resources.""" LimitExceeded = exceptions.LimitExceeded close_after_fork = False def __init__(self, limit=None, preload=None, close_after_fork=None): self._limit = limit self.preload = preload or 0 self._closed = False self.close_after_fork = ( close_after_fork if close_after_fork is not None else self.close_after_fork ) self._resource = LifoQueue() self._dirty = set() if self.close_after_fork and register_after_fork is not None: register_after_fork(self, _after_fork_cleanup_resource) self.setup() def setup(self): raise NotImplementedError('subclass responsibility') def _add_when_empty(self): if self.limit and len(self._dirty) >= self.limit: raise self.LimitExceeded(self.limit) # All taken, put new on the queue and # try get again, this way the first in line # will get the resource. self._resource.put_nowait(self.new()) def acquire(self, block=False, timeout=None): """Acquire resource. Arguments: block (bool): If the limit is exceeded, then block until there is an available item. timeout (float): Timeout to wait if ``block`` is true. Default is :const:`None` (forever). Raises: LimitExceeded: if block is false and the limit has been exceeded. """ if self._closed: raise RuntimeError('Acquire on closed pool') if self.limit: while 1: try: R = self._resource.get(block=block, timeout=timeout) except Empty: self._add_when_empty() else: try: R = self.prepare(R) except BaseException: if isinstance(R, lazy): # not evaluated yet, just put it back self._resource.put_nowait(R) else: # evaluted so must try to release/close first. self.release(R) raise self._dirty.add(R) break else: R = self.prepare(self.new()) def release(): """Release resource so it can be used by another thread. Warnings: The caller is responsible for discarding the object, and to never use the resource again. A new resource must be acquired if so needed. """ self.release(R) R.release = release return R def prepare(self, resource): return resource def close_resource(self, resource): resource.close() def release_resource(self, resource): pass def replace(self, resource): """Replace existing resource with a new instance. This can be used in case of defective resources. """ if self.limit: self._dirty.discard(resource) self.close_resource(resource) def release(self, resource): if self.limit: self._dirty.discard(resource) self._resource.put_nowait(resource) self.release_resource(resource) else: self.close_resource(resource) def collect_resource(self, resource): pass def force_close_all(self): """Close and remove all resources in the pool (also those in use). Used to close resources from parent processes after fork (e.g. sockets/connections). """ if self._closed: return self._closed = True dirty = self._dirty resource = self._resource while 1: # - acquired try: dres = dirty.pop() except KeyError: break try: self.collect_resource(dres) except AttributeError: # Issue #78 pass while 1: # - available # deque supports '.clear', but lists do not, so for that # reason we use pop here, so that the underlying object can # be any object supporting '.pop' and '.append'. try: res = resource.queue.pop() except IndexError: break try: self.collect_resource(res) except AttributeError: pass # Issue #78 def resize(self, limit, force=False, ignore_errors=False, reset=False): prev_limit = self._limit if (self._dirty and 0 < limit < self._limit) and not ignore_errors: if not force: raise RuntimeError( "Can't shrink pool when in use: was={0} now={1}".format( self._limit, limit)) reset = True self._limit = limit if reset: try: self.force_close_all() except Exception: pass self.setup() if limit < prev_limit: self._shrink_down(collect=limit > 0) def _shrink_down(self, collect=True): class Noop: def __enter__(self): pass def __exit__(self, type, value, traceback): pass resource = self._resource # Items to the left are last recently used, so we remove those first. with getattr(resource, 'mutex', Noop()): while len(resource.queue) > self.limit: R = resource.queue.popleft() if collect: self.collect_resource(R) @property def limit(self): return self._limit @limit.setter def limit(self, limit): self.resize(limit) if os.environ.get('KOMBU_DEBUG_POOL'): # pragma: no cover _orig_acquire = acquire _orig_release = release _next_resource_id = 0 def acquire(self, *args, **kwargs): # noqa import traceback id = self._next_resource_id = self._next_resource_id + 1 print('+{0} ACQUIRE {1}'.format(id, self.__class__.__name__)) r = self._orig_acquire(*args, **kwargs) r._resource_id = id print('-{0} ACQUIRE {1}'.format(id, self.__class__.__name__)) if not hasattr(r, 'acquired_by'): r.acquired_by = [] r.acquired_by.append(traceback.format_stack()) return r def release(self, resource): # noqa id = resource._resource_id print('+{0} RELEASE {1}'.format(id, self.__class__.__name__)) r = self._orig_release(resource) print('-{0} RELEASE {1}'.format(id, self.__class__.__name__)) self._next_resource_id -= 1 return r
#!/usr/bin/env python import numpy as np import time import json import copy from sklearn.metrics import confusion_matrix from multiclass_confidence_weighted_var_diag import MCWVarDiag from multiclass_soft_confidence_weighted_1_diag import MSCWIDiag from multiclass_soft_confidence_weighted_2_diag import MSCWIIDiag from sklearn.svm import LinearSVC # file path filepath = "./evaluate_small_data_results.json" # data cnofiguration data_config = { "abalone": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/abalone.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/abalone.csv", }, "transfusion": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/transfusion.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/transfusion.csv", }, "gisette": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/gisette.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/gisette.csv", }, "iris": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/iris.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/iris.csv", }, "glass": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/glass.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/glass.csv", }, "breast_cancer": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/breast_cancer.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/breast_cancer.csv", }, "car": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/car.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/car.csv", }, "creadit": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/credit.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/credit.csv", }, "usps": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/usps.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/usps.csv", }, "liver": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/liver.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/liver.csv", }, "haberman": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/haberman.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/haberman.csv", }, "pima": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/pima.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/pima.csv", }, "ionosphere": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/ionosphere.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/ionosphere.csv", }, "isolet": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/isolet.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/isolet.csv", }, "magicGamaTelescope": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/magicGamaTelescope.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/magicGamaTelescope.csv", }, "mammographic": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/mammographic.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/mammographic.csv", }, "yeast": { "train": "/home/k_yoshiyama/datasets/uci_csv_train/yeast.csv", "test": "/home/k_yoshiyama/datasets/uci_csv_test/yeast.csv", }, } # results results = { "abalone": { }, "transfusion": { }, "gisette": { }, "iris": { }, "glass": { }, "breast_cancer": { }, "car": { }, "creadit": { }, "usps": { }, "liver": { }, "haberman": { }, "pima": { }, "ionosphere": { }, "isolet": { }, "magicGamaTelescope": { }, "mammographic": { }, "yeast": { }, } # model config models = [MCWVarDiag, MSCWIDiag, MSCWIIDiag] model_class_name_map = { MCWVarDiag: "MCWVarDiag", MSCWIDiag: "MSCWIDiag", MSCWIIDiag: "MSCWIIDiag", } # results result_per_data = { "MCWVarDiag": { "acc": [], # per epoch "elapsed": [], # per epoch }, "MSCWIDiag": { "acc": [], "elapsed": [], }, "MSCWIIDiag": { "acc": [], "elapsed": [], }, "LinearSVC": { "acc": [], "elapsed": [], }, } # results for each data for data in results: results[data] = copy.deepcopy(result_per_data) pass # run experiment epochs = xrange(1, 51) for data in data_config: print "data %s is processing..." % data # train/test data_train = np.loadtxt(data_config[data]["train"], delimiter=" ") X_train = data_train[:, 1:] y_train = data_train[:, 0] data_test = np.loadtxt(data_config[data]["test"], delimiter=" ") X_test = data_test[:, 1:] y_test = data_test[:, 0] # evaluate for model in models: # foreach __main__.class # init print "model is %s" % str(model) model_ = model(epochs=1) print "model is %s." % model_class_name_map[model] # epoch for epoch in epochs: print "the number of epochs is %d" % epoch # warm start if not epoch == 1: mu = model_.model["mu"] S = model_.model["S"] model_.init_params(mu, S) pass # learn st = time.time() model_.epochs = 1 model_.learn(X_train, y_train) et = time.time() # elapsed time results[data][model_class_name_map[model]]["elapsed"].append(et - st) # predict y_pred = [] for x in X_test: y_pred.append(model_.predict(x)) pass cm = confusion_matrix(y_test, y_pred) # accuracy results[data][model_class_name_map[model]]["acc"].append(np.sum(cm.diagonal()) * 100.0 / np.sum(cm)) pass pass # Linear SVC print "model is LinearSVC." model_ = LinearSVC() st = time.time() model_.fit(X_train, y_train) et = time.time() y_pred = model_.predict(X_test) cm = confusion_matrix(y_test, y_pred) acc = np.sum(cm.diagonal()) * 100.0 / np.sum(cm) elapsed_time = et - st for epoch in epochs: # add the same results to all epochs results[data]["LinearSVC"]["acc"].append(acc) results[data]["LinearSVC"]["elapsed"].append(elapsed_time) pass with open(filepath, "w") as fpout: json.dump(results, fpout) pass
"""Functions to generate example data, e.g. example images or segmaps. Added in 0.5.0. """ from __future__ import print_function, division, absolute_import import os import json import imageio import numpy as np # filepath to the quokka image, its annotations and depth map # Added in 0.5.0. _FILE_DIR = os.path.dirname(os.path.abspath(__file__)) # Added in 0.5.0. _QUOKKA_FP = os.path.join(_FILE_DIR, "quokka.jpg") # Added in 0.5.0. _QUOKKA_ANNOTATIONS_FP = os.path.join(_FILE_DIR, "quokka_annotations.json") # Added in 0.5.0. _QUOKKA_DEPTH_MAP_HALFRES_FP = os.path.join( _FILE_DIR, "quokka_depth_map_halfres.png") def _quokka_normalize_extract(extract): """Generate a normalized rectangle for the standard quokka image. Added in 0.5.0. (Moved from ``imgaug.imgaug``.) Parameters ---------- extract : 'square' or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage Unnormalized representation of the image subarea to be extracted. * If ``str`` ``square``, then a squared area ``(x: 0 to max 643, y: 0 to max 643)`` will be extracted from the image. * If a ``tuple``, then expected to contain four ``number`` s denoting ``(x1, y1, x2, y2)``. * If a :class:`~imgaug.augmentables.bbs.BoundingBox`, then that bounding box's area will be extracted from the image. * If a :class:`~imgaug.augmentables.bbs.BoundingBoxesOnImage`, then expected to contain exactly one bounding box and a shape matching the full image dimensions (i.e. ``(643, 960, *)``). Then the one bounding box will be used similar to ``BoundingBox`` above. Returns ------- imgaug.augmentables.bbs.BoundingBox Normalized representation of the area to extract from the standard quokka image. """ # TODO get rid of this deferred import from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage if extract == "square": bb = BoundingBox(x1=0, y1=0, x2=643, y2=643) elif isinstance(extract, tuple) and len(extract) == 4: bb = BoundingBox(x1=extract[0], y1=extract[1], x2=extract[2], y2=extract[3]) elif isinstance(extract, BoundingBox): bb = extract elif isinstance(extract, BoundingBoxesOnImage): assert len(extract.bounding_boxes) == 1, ( "Provided BoundingBoxesOnImage instance may currently only " "contain a single bounding box.") assert extract.shape[0:2] == (643, 960), ( "Expected BoundingBoxesOnImage instance on an image of shape " "(643, 960, ?). Got shape %s." % (extract.shape,)) bb = extract.bounding_boxes[0] else: raise Exception( "Expected 'square' or tuple of four entries or BoundingBox or " "BoundingBoxesOnImage for parameter 'extract', " "got %s." % (type(extract),) ) return bb # TODO is this the same as the project functions in augmentables? def _compute_resized_shape(from_shape, to_shape): """Compute the intended new shape of an image-like array after resizing. Added in 0.5.0. (Moved from ``imgaug.imgaug``.) Parameters ---------- from_shape : tuple or ndarray Old shape of the array. Usually expected to be a ``tuple`` of form ``(H, W)`` or ``(H, W, C)`` or alternatively an array with two or three dimensions. to_shape : None or tuple of ints or tuple of floats or int or float or ndarray New shape of the array. * If ``None``, then `from_shape` will be used as the new shape. * If an ``int`` ``V``, then the new shape will be ``(V, V, [C])``, where ``C`` will be added if it is part of `from_shape`. * If a ``float`` ``V``, then the new shape will be ``(H*V, W*V, [C])``, where ``H`` and ``W`` are the old height/width. * If a ``tuple`` ``(H', W', [C'])`` of ints, then ``H'`` and ``W'`` will be used as the new height and width. * If a ``tuple`` ``(H', W', [C'])`` of floats (except ``C``), then ``H'`` and ``W'`` will be used as the new height and width. * If a numpy array, then the array's shape will be used. Returns ------- tuple of int New shape. """ from . import imgaug as ia if ia.is_np_array(from_shape): from_shape = from_shape.shape if ia.is_np_array(to_shape): to_shape = to_shape.shape to_shape_computed = list(from_shape) if to_shape is None: pass elif isinstance(to_shape, tuple): assert len(from_shape) in [2, 3] assert len(to_shape) in [2, 3] if len(from_shape) == 3 and len(to_shape) == 3: assert from_shape[2] == to_shape[2] elif len(to_shape) == 3: to_shape_computed.append(to_shape[2]) is_to_s_valid_values = all( [v is None or ia.is_single_number(v) for v in to_shape[0:2]]) assert is_to_s_valid_values, ( "Expected the first two entries in to_shape to be None or " "numbers, got types %s." % ( str([type(v) for v in to_shape[0:2]]),)) for i, from_shape_i in enumerate(from_shape[0:2]): if to_shape[i] is None: to_shape_computed[i] = from_shape_i elif ia.is_single_integer(to_shape[i]): to_shape_computed[i] = to_shape[i] else: # float to_shape_computed[i] = int(np.round(from_shape_i * to_shape[i])) elif ia.is_single_integer(to_shape) or ia.is_single_float(to_shape): to_shape_computed = _compute_resized_shape( from_shape, (to_shape, to_shape)) else: raise Exception( "Expected to_shape to be None or ndarray or tuple of floats or " "tuple of ints or single int or single float, " "got %s." % (type(to_shape),)) return tuple(to_shape_computed) def quokka(size=None, extract=None): """Return an image of a quokka as a numpy array. Added in 0.5.0. (Moved from ``imgaug.imgaug``.) Parameters ---------- size : None or float or tuple of int, optional Size of the output image. Input into :func:`~imgaug.imgaug.imresize_single_image`. Usually expected to be a ``tuple`` ``(H, W)``, where ``H`` is the desired height and ``W`` is the width. If ``None``, then the image will not be resized. extract : None or 'square' or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage Subarea of the quokka image to extract: * If ``None``, then the whole image will be used. * If ``str`` ``square``, then a squared area ``(x: 0 to max 643, y: 0 to max 643)`` will be extracted from the image. * If a ``tuple``, then expected to contain four ``number`` s denoting ``(x1, y1, x2, y2)``. * If a :class:`~imgaug.augmentables.bbs.BoundingBox`, then that bounding box's area will be extracted from the image. * If a :class:`~imgaug.augmentables.bbs.BoundingBoxesOnImage`, then expected to contain exactly one bounding box and a shape matching the full image dimensions (i.e. ``(643, 960, *)``). Then the one bounding box will be used similar to ``BoundingBox`` above. Returns ------- (H,W,3) ndarray The image array of dtype ``uint8``. """ from . import imgaug as ia img = imageio.imread(_QUOKKA_FP, pilmode="RGB") if extract is not None: bb = _quokka_normalize_extract(extract) img = bb.extract_from_image(img) if size is not None: shape_resized = _compute_resized_shape(img.shape, size) img = ia.imresize_single_image(img, shape_resized[0:2]) return img def quokka_square(size=None): """Return an (square) image of a quokka as a numpy array. Added in 0.5.0. (Moved from ``imgaug.imgaug``.) Parameters ---------- size : None or float or tuple of int, optional Size of the output image. Input into :func:`~imgaug.imgaug.imresize_single_image`. Usually expected to be a ``tuple`` ``(H, W)``, where ``H`` is the desired height and ``W`` is the width. If ``None``, then the image will not be resized. Returns ------- (H,W,3) ndarray The image array of dtype ``uint8``. """ return quokka(size=size, extract="square") def quokka_heatmap(size=None, extract=None): """Return a heatmap (here: depth map) for the standard example quokka image. Added in 0.5.0. (Moved from ``imgaug.imgaug``.) Parameters ---------- size : None or float or tuple of int, optional See :func:`~imgaug.imgaug.quokka`. extract : None or 'square' or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage See :func:`~imgaug.imgaug.quokka`. Returns ------- imgaug.augmentables.heatmaps.HeatmapsOnImage Depth map as an heatmap object. Values close to ``0.0`` denote objects that are close to the camera. Values close to ``1.0`` denote objects that are furthest away (among all shown objects). """ # TODO get rid of this deferred import from . import imgaug as ia from imgaug.augmentables.heatmaps import HeatmapsOnImage img = imageio.imread(_QUOKKA_DEPTH_MAP_HALFRES_FP, pilmode="RGB") img = ia.imresize_single_image(img, (643, 960), interpolation="cubic") if extract is not None: bb = _quokka_normalize_extract(extract) img = bb.extract_from_image(img) if size is None: size = img.shape[0:2] shape_resized = _compute_resized_shape(img.shape, size) img = ia.imresize_single_image(img, shape_resized[0:2]) img_0to1 = img[..., 0] # depth map was saved as 3-channel RGB img_0to1 = img_0to1.astype(np.float32) / 255.0 img_0to1 = 1 - img_0to1 # depth map was saved as 0 being furthest away return HeatmapsOnImage(img_0to1, shape=img_0to1.shape[0:2] + (3,)) def quokka_segmentation_map(size=None, extract=None): """Return a segmentation map for the standard example quokka image. Added in 0.5.0. (Moved from ``imgaug.imgaug``.) Parameters ---------- size : None or float or tuple of int, optional See :func:`~imgaug.imgaug.quokka`. extract : None or 'square' or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage See :func:`~imgaug.imgaug.quokka`. Returns ------- imgaug.augmentables.segmaps.SegmentationMapsOnImage Segmentation map object. """ # pylint: disable=invalid-name import skimage.draw # TODO get rid of this deferred import from imgaug.augmentables.segmaps import SegmentationMapsOnImage with open(_QUOKKA_ANNOTATIONS_FP, "r") as f: json_dict = json.load(f) xx = [] yy = [] for kp_dict in json_dict["polygons"][0]["keypoints"]: x = kp_dict["x"] y = kp_dict["y"] xx.append(x) yy.append(y) img_seg = np.zeros((643, 960, 1), dtype=np.int32) rr, cc = skimage.draw.polygon( np.array(yy), np.array(xx), shape=img_seg.shape) img_seg[rr, cc, 0] = 1 if extract is not None: bb = _quokka_normalize_extract(extract) img_seg = bb.extract_from_image(img_seg) segmap = SegmentationMapsOnImage(img_seg, shape=img_seg.shape[0:2] + (3,)) if size is not None: shape_resized = _compute_resized_shape(img_seg.shape, size) segmap = segmap.resize(shape_resized[0:2]) segmap.shape = tuple(shape_resized[0:2]) + (3,) return segmap def quokka_keypoints(size=None, extract=None): """Return example keypoints on the standard example quokke image. The keypoints cover the eyes, ears, nose and paws. Added in 0.5.0. (Moved from ``imgaug.imgaug``.) Parameters ---------- size : None or float or tuple of int or tuple of float, optional Size of the output image on which the keypoints are placed. If ``None``, then the keypoints are not projected to any new size (positions on the original image are used). ``float`` s lead to relative size changes, ``int`` s to absolute sizes in pixels. extract : None or 'square' or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage Subarea to extract from the image. See :func:`~imgaug.imgaug.quokka`. Returns ------- imgaug.augmentables.kps.KeypointsOnImage Example keypoints on the quokka image. """ # TODO get rid of this deferred import from imgaug.augmentables.kps import Keypoint, KeypointsOnImage left, top = 0, 0 if extract is not None: bb_extract = _quokka_normalize_extract(extract) left = bb_extract.x1 top = bb_extract.y1 with open(_QUOKKA_ANNOTATIONS_FP, "r") as f: json_dict = json.load(f) keypoints = [] for kp_dict in json_dict["keypoints"]: keypoints.append(Keypoint(x=kp_dict["x"] - left, y=kp_dict["y"] - top)) if extract is not None: shape = (bb_extract.height, bb_extract.width, 3) else: shape = (643, 960, 3) kpsoi = KeypointsOnImage(keypoints, shape=shape) if size is not None: shape_resized = _compute_resized_shape(shape, size) kpsoi = kpsoi.on(shape_resized) return kpsoi def quokka_bounding_boxes(size=None, extract=None): """Return example bounding boxes on the standard example quokke image. Currently only a single bounding box is returned that covers the quokka. Added in 0.5.0. (Moved from ``imgaug.imgaug``.) Parameters ---------- size : None or float or tuple of int or tuple of float, optional Size of the output image on which the BBs are placed. If ``None``, then the BBs are not projected to any new size (positions on the original image are used). ``float`` s lead to relative size changes, ``int`` s to absolute sizes in pixels. extract : None or 'square' or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage Subarea to extract from the image. See :func:`~imgaug.imgaug.quokka`. Returns ------- imgaug.augmentables.bbs.BoundingBoxesOnImage Example BBs on the quokka image. """ # TODO get rid of this deferred import from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage left, top = 0, 0 if extract is not None: bb_extract = _quokka_normalize_extract(extract) left = bb_extract.x1 top = bb_extract.y1 with open(_QUOKKA_ANNOTATIONS_FP, "r") as f: json_dict = json.load(f) bbs = [] for bb_dict in json_dict["bounding_boxes"]: bbs.append( BoundingBox( x1=bb_dict["x1"] - left, y1=bb_dict["y1"] - top, x2=bb_dict["x2"] - left, y2=bb_dict["y2"] - top ) ) if extract is not None: shape = (bb_extract.height, bb_extract.width, 3) else: shape = (643, 960, 3) bbsoi = BoundingBoxesOnImage(bbs, shape=shape) if size is not None: shape_resized = _compute_resized_shape(shape, size) bbsoi = bbsoi.on(shape_resized) return bbsoi def quokka_polygons(size=None, extract=None): """ Returns example polygons on the standard example quokke image. The result contains one polygon, covering the quokka's outline. Added in 0.5.0. (Moved from ``imgaug.imgaug``.) Parameters ---------- size : None or float or tuple of int or tuple of float, optional Size of the output image on which the polygons are placed. If ``None``, then the polygons are not projected to any new size (positions on the original image are used). ``float`` s lead to relative size changes, ``int`` s to absolute sizes in pixels. extract : None or 'square' or tuple of number or imgaug.augmentables.bbs.BoundingBox or imgaug.augmentables.bbs.BoundingBoxesOnImage Subarea to extract from the image. See :func:`~imgaug.imgaug.quokka`. Returns ------- imgaug.augmentables.polys.PolygonsOnImage Example polygons on the quokka image. """ # TODO get rid of this deferred import from imgaug.augmentables.polys import Polygon, PolygonsOnImage left, top = 0, 0 if extract is not None: bb_extract = _quokka_normalize_extract(extract) left = bb_extract.x1 top = bb_extract.y1 with open(_QUOKKA_ANNOTATIONS_FP, "r") as f: json_dict = json.load(f) polygons = [] for poly_json in json_dict["polygons"]: polygons.append( Polygon([(point["x"] - left, point["y"] - top) for point in poly_json["keypoints"]]) ) if extract is not None: shape = (bb_extract.height, bb_extract.width, 3) else: shape = (643, 960, 3) psoi = PolygonsOnImage(polygons, shape=shape) if size is not None: shape_resized = _compute_resized_shape(shape, size) psoi = psoi.on(shape_resized) return psoi
# -*- coding: utf-8 -*- import logging import re import sys import pytest import cloudpickle import six from google.protobuf import json_format import verta from verta.environment import ( Python, ) from verta._internal_utils._pip_requirements_utils import ( SPACY_MODEL_PATTERN, get_pip_freeze, pin_verta_and_cloudpickle, ) def assert_parsed_reqs_match(parsed_reqs, original_reqs): """Assert that requirements match as expected ``pip freeze`` can return ``black==21.6b0`` while our parsing yields ``black==21.6.0b0``, though these are equivalent. Parameters ---------- parsed_reqs : list of str e.g. ``Python.requirements`` original_reqs : list of str e.g. ``Python.read_pip_environment()`` """ parsed_reqs = set(parsed_reqs) original_reqs = set(original_reqs) parsed_mapping = { req.split("==")[0]: Python._req_spec_to_msg(req) for req in parsed_reqs } original_mapping = { req.split("==")[0]: Python._req_spec_to_msg(req) for req in original_reqs } assert parsed_mapping == original_mapping class TestObject: def test_repr(self): requirements = ["pytest=={}".format(pytest.__version__)] constraints = ["six=={}".format(six.__version__)] env_vars = ["HOME"] env = Python( requirements=requirements, constraints=constraints, env_vars=env_vars, ) requirements = pin_verta_and_cloudpickle(requirements) for line in requirements: assert line in repr(env) for line in constraints: assert line in repr(env) for line in env_vars: assert line in repr(env) def test_raw_repr(self): requirements = [ "-e git+https://github.com/matplotlib/matplotlib.git@master#egg=matplotlib", ] constraints = ["pytest > 6; python_version >= '2.7'"] env = Python( requirements=requirements, constraints=constraints, ) assert env._msg.python.raw_requirements assert env._msg.python.raw_constraints requirements = pin_verta_and_cloudpickle(requirements) for line in requirements: assert line in repr(env) for line in constraints: assert line in repr(env) def test_no_autocapture(self): env_ver = Python(requirements=[], _autocapture=False) # protobuf message is empty assert not json_format.MessageToDict( env_ver._msg, including_default_value_fields=False, ) class TestReadPipEnvironment: @pytest.mark.skipif( not any(re.match(SPACY_MODEL_PATTERN + "==", req) for req in get_pip_freeze()), reason="requires spaCy model pinned in environment (`python -m spacy download en_core_web_sm` with pip<20)", ) def test_skip_spacy_models(self): pattern = SPACY_MODEL_PATTERN + "==" requirements = Python.read_pip_environment() assert not any(re.match(pattern, req) for req in requirements) class TestPythonVersion: def test_py_ver(self): env = Python(requirements=[]) assert env._msg.python.version.major == sys.version_info.major assert env._msg.python.version.minor == sys.version_info.minor assert env._msg.python.version.patch == sys.version_info.micro class TestAptPackages: def test_apt_packages(self): env = Python([]) assert len(env.apt_packages) == 0 proto_with_empty_apt = env._as_env_proto() assert len(proto_with_empty_apt.apt.packages) == 0 env.apt_packages = ["opencv"] assert env.apt_packages == ["opencv"] proto = env._as_env_proto() assert list(proto.apt.packages) == ["opencv"] env.apt_packages = None proto_with_empty_apt = env._as_env_proto() assert len(proto_with_empty_apt.apt.packages) == 0 env_initialized = Python([], apt_packages=["opencv"]) assert env_initialized.apt_packages == ["opencv"] class TestParsedRequirements: def test_from_env(self): reqs = Python.read_pip_environment( skip_options=True, ) env = Python(requirements=reqs) assert env._msg.python.requirements assert not env._msg.python.raw_requirements reqs = pin_verta_and_cloudpickle(reqs) assert_parsed_reqs_match(env.requirements, reqs) def test_from_files(self, requirements_file): reqs = Python.read_pip_file(requirements_file.name) env = Python(requirements=reqs) assert env._msg.python.requirements assert not env._msg.python.raw_requirements reqs = pin_verta_and_cloudpickle(reqs) assert_parsed_reqs_match(env.requirements, reqs) def test_legacy_no_unsupported_lines(self, requirements_file_with_unsupported_lines): """Unsupported lines are filtered out with legacy `skip_options=True`""" reqs = Python.read_pip_file( requirements_file_with_unsupported_lines.name, skip_options=True, ) env = Python(requirements=reqs) requirements = {req.library for req in env._msg.python.requirements} # only has injected requirements assert requirements == {"verta", "cloudpickle"} def test_from_file_no_versions(self, requirements_file_without_versions): reqs = Python.read_pip_file(requirements_file_without_versions.name) env = Python(requirements=reqs) assert env._msg.python.requirements assert not env._msg.python.raw_requirements parsed_libraries = set(req.split("==")[0] for req in env.requirements) assert parsed_libraries == set(reqs) | {"verta", "cloudpickle"} def test_torch_no_suffix(self): # NOTE: this test takes too long for Hypothesis requirement = "torch==1.8.1+cu102" env_ver = Python([requirement]) assert requirement not in env_ver.requirements assert requirement.split("+")[0] in env_ver.requirements def test_torch_no_suffix_autocapture(self): torch = pytest.importorskip("torch") version = torch.__version__ if "+" not in version: pytest.skip("no metadata on version number") requirement = "torch=={}".format(version) env_ver = Python(["torch"]) assert requirement not in env_ver.requirements assert requirement.split("+")[0] in env_ver.requirements def test_inject_verta_cloudpickle(self): env = Python(requirements=["pytest"]) requirements = {req.library for req in env._msg.python.requirements} assert "verta" in requirements assert "cloudpickle" in requirements class TestRawRequirements: def test_unsupported_lines( self, requirements_file_with_unsupported_lines, caplog ): """Requirements with unsupported lines get logged raw.""" reqs = Python.read_pip_file(requirements_file_with_unsupported_lines.name) # each line gets logged raw for req in reqs: with caplog.at_level(logging.INFO, logger="verta"): env = Python(requirements=[req]) assert "failed to manually parse requirements; falling back to capturing raw contents" in caplog.text caplog.clear() assert not env._msg.python.requirements assert env._msg.python.raw_requirements expected_reqs = pin_verta_and_cloudpickle([req]) assert env.requirements == expected_reqs def test_inject_verta_cloudpickle(self): reqs = [ "--no-binary :all:", ] env = Python(requirements=reqs) assert not env._msg.python.requirements assert env._msg.python.raw_requirements assert env.requirements == reqs + [ "verta=={}".format(verta.__version__), "cloudpickle=={}".format(cloudpickle.__version__), ] class TestParsedConstraints: def test_from_file(self, requirements_file): reqs = Python.read_pip_file(requirements_file.name) env = Python(requirements=[], constraints=reqs) assert env._msg.python.constraints assert not env._msg.python.raw_constraints assert_parsed_reqs_match(env.constraints, reqs) class TestRawConstraints: def test_unsupported_lines( self, requirements_file_with_unsupported_lines, caplog ): """Constraints with unsupported lines get logged raw.""" constraints = Python.read_pip_file(requirements_file_with_unsupported_lines.name) # each line gets logged raw for constraint in constraints: with caplog.at_level(logging.INFO, logger="verta"): env = Python(requirements=[], constraints=[constraint]) assert "failed to manually parse constraints; falling back to capturing raw contents" in caplog.text caplog.clear() assert not env._msg.python.constraints assert env._msg.python.raw_constraints expected_constraints = [constraint] assert env.constraints == expected_constraints def test_from_file_no_versions( self, requirements_file_without_versions, caplog ): constraints = Python.read_pip_file(requirements_file_without_versions.name) with caplog.at_level(logging.INFO, logger="verta"): env = Python(requirements=[], constraints=constraints) assert "failed to manually parse constraints; falling back to capturing raw contents" in caplog.text assert "missing its version specifier" in caplog.text assert not env._msg.python.constraints assert env._msg.python.raw_constraints assert env._msg.python.raw_constraints == requirements_file_without_versions.read() assert set(env.constraints) == set(constraints) class TestVCSInstalledVerta: @pytest.mark.parametrize( "requirements", [ ["-e git+git@github.com:VertaAI/modeldb.git@master#egg=verta&subdirectory=client/verta"], ["-e git+https://github.com/VertaAI/modeldb.git@master#egg=verta&subdirectory=client/verta"], ["-e git+ssh://git@github.com/VertaAI/modeldb.git@master#egg=verta&subdirectory=client/verta"], ], ) def test_vcs_installed_verta(self, requirements): vcs_verta_req = requirements[0] pinned_verta_req = "verta=={}".format(verta.__version__) env = Python(requirements=requirements) assert vcs_verta_req not in env.requirements assert pinned_verta_req in env.requirements
from JumpScale import j import os import time import stat from tarfile import filemode as _filemode _months_map = {1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'} class FilesystemBase(object): def __init__(self, root, cmd_channel): """ - (str) root: the user "real" home directory (e.g. '/home/user') - (instance) cmd_channel: the FTPHandler class instance """ # Set initial current working directory. # By default initial cwd is set to "/" to emulate a chroot jail. # If a different behavior is desired (e.g. initial cwd = root, # to reflect the real filesystem) users overriding this class # are responsible to set _cwd attribute as necessary. self.cwd = '/' self.root = root self.ftproot = root self.cmd_channel = cmd_channel self.handler = None # --- Pathname / conversion utilities def realpath(self, path): return self.ftp2fs(path) def joinPaths(self, *args): out = "" for arg in args: out += "%s/" % arg out = out.replace("//", "/") out = out.replace("//", "/") if len(out) > 2: out = out.rstrip("/") return out def ftpnorm(self, ftppath): if ftppath.strip() == "": ftppath = self.joinPaths(self.ftproot, self.cwd) ftppathn = os.path.normpath(ftppath) ftppathn = ftppathn.replace("\\", "/").strip() # print "%s -> %s" % (ftppath,ftppathn) if ftppathn[0] != "/": ftppathn = self.joinPaths(self.ftproot, self.cwd, ftppathn) return ftppathn def _removeFtproot(self, ftppath): if ftppath.find(self.ftproot) == 0: ftppath = ftppath[len(self.ftproot) + 1:] elif ftppath.find(self.ftproot) != -1: ftppath = self.fs2ftp(ftppath) ftppath = ftppath[len(self.ftproot) + 1:] else: import ipdb ipdb.set_trace() raise RuntimeError("ftppath needs to start with self.ftproot") return ftppath def ftp2fs(self, ftppath): ftppath = self.ftpnorm(ftppath) ftppath = self._removeFtproot(ftppath) # print "REMOVEROOT:%s"%ftppath result = j.system.fs.joinPaths(self.root, ftppath) # print "ISDIRPOST:%s"%result return result # if os.path.normpath(self.root) == os.sep: # return os.path.normpath(self.ftpnorm(ftppath)) # else: # p = self.ftpnorm(ftppath)[1:] # return os.path.normpath(os.path.join(self.root, p)) # def ftpnorm(self, ftppath): # """Normalize a "virtual" ftp pathname (tipically the raw string # coming from client) depending on the current working directory. # Example (having "/foo" as current working directory): # >>> ftpnorm('bar') # '/foo/bar' # Note: directory separators are system independent ("/"). # Pathname returned is always absolutized. # """ # if os.path.isabs(ftppath): # p = os.path.normpath(ftppath) # else: # p = os.path.normpath(os.path.join(self.cwd, ftppath)) # normalize string in a standard web-path notation having '/' # as separator. # p = p.replace("\\", "/") # os.path.normpath supports UNC paths (e.g. "//a/b/c") but we # don't need them. In case we get an UNC path we collapse # redundant separators appearing at the beginning of the string # while p[:2] == '//': # p = p[1:] # Anti path traversal: don't trust user input, in the event # that self.cwd is not absolute, return "/" as a safety measure. # This is for extra protection, maybe not really necessary. # if not os.path.isabs(p): # raise RuntimeError("ftpnorm error, possible security breach") # p = "/" # return p # def ftp2fs(self, ftppath): # """Translate a "virtual" ftp pathname (tipically the raw string # coming from client) into equivalent absolute "real" filesystem # pathname. # Example (having "/home/user" as root directory): # >>> ftp2fs("foo") # '/home/user/foo' # Note: directory separators are system dependent. # """ # raise NotImplementedError # def fs2ftp(self, fspath): # """Translate a "real" filesystem pathname into equivalent # absolute "virtual" ftp pathname depending on the user's # root directory. # Example (having "/home/user" as root directory): # >>> fs2ftp("/home/user/foo") # '/foo' # As for ftpnorm, directory separators are system independent # ("/") and pathname returned is always absolutized. # """ # raise NotImplementedError def validpath(self, path): """ """ raise RuntimeError("not implemented") def openfile(self, filename, mode): """Open a file returning its handler""" raise RuntimeError("not implemented") def mkstemp(self, suffix='', prefix='', dir=None, mode='wb'): """A wrap around tempfile.mkstemp creating a file with a unique name. Unlike mkstemp it returns an object with a file-like interface. """ raise RuntimeError("not implemented") def chdir(self, ftppath): """Change the current directory.""" raise RuntimeError("not implemented") def mkdir(self, ftppath): """Create the specified directory.""" raise RuntimeError("not implemented") def listdir(self, path): """List the content of a directory.""" raise RuntimeError("not implemented") def rmdir(self, path): """Remove the specified directory.""" raise RuntimeError("not implemented") def remove(self, path): """Remove the specified file.""" raise RuntimeError("not implemented") def rename(self, src, dst): """Rename the specified src file to the dst filename.""" raise RuntimeError("not implemented") def chmod(self, path, mode): """Change file/directory mode.""" raise NotImplementedError def stat(self, path): """Perform a stat() system call on the given path.""" return os.stat(path) def lstat(self, path): """Like stat but does not follow symbolic links.""" raise NotImplementedError if not hasattr(os, 'lstat'): lstat = stat # --- Wrapper methods around os.path.* calls def isfile(self, path): """Return True if path is a file.""" raise NotImplementedError def islink(self, path): """Return True if path is a symbolic link.""" raise NotImplementedError def isdir(self, path): """Return True if path is a directory.""" raise NotImplementedError def getsize(self, path): """Return the size of the specified file in bytes.""" raise NotImplementedError def getmtime(self, path): """Return the last modified time as a number of seconds since the epoch.""" raise NotImplementedError # def realpath(self, path): #"""Return the canonical version of path eliminating any # symbolic links encountered in the path (if they are # supported by the operating system). #""" # return os.path.realpath(path) def lexists(self, path): """Return True if path refers to an existing path, including a broken or circular symbolic link. """ return os.path.lexists(path) def get_user_by_uid(self, uid): """Return the username associated with user id. If this can't be determined return raw uid instead. On Windows just return "owner". """ raise NotImplementedError def get_group_by_gid(self, gid): """Return the groupname associated with group id. If this can't be determined return raw gid instead. On Windows just return "group". """ raise NotImplementedError def readlink(self, path): """Return a string representing the path to which a symbolic link points. """ raise NotImplementedError def get_list_dir(self, path): """"Return an iterator object that yields a directory listing in a form suitable for LIST command. """ if self.isdir(path): listing = sorted(self.listdir(path)) return self.format_list(path, listing) # if path is a file or a symlink we return information about it else: basedir, filename = os.path.split(path) self.lstat(path) # raise exc in case of problems return self.format_list(basedir, [filename]) def format_list(self, basedir, listing, ignore_err=True): """Return an iterator object that yields the entries of given directory emulating the "/bin/ls -lA" UNIX command output. - (str) basedir: the absolute dirname. - (list) listing: the names of the entries in basedir - (bool) ignore_err: when False raise exception if os.lstat() call fails. On platforms which do not support the pwd and grp modules (such as Windows), ownership is printed as "owner" and "group" as a default, and number of hard links is always "1". On UNIX systems, the actual owner, group, and number of links are printed. This is how output appears to client: -rw-rw-rw- 1 owner group 7045120 Sep 02 3:47 music.mp3 drwxrwxrwx 1 owner group 0 Aug 31 18:50 e-books -rw-rw-rw- 1 owner group 380 Sep 02 3:40 module.py """ if self.cmd_channel.use_gmt_times: timefunc = time.gmtime else: timefunc = time.localtime now = time.time() for basename in listing: file = os.path.join(basedir, basename) try: st = self.lstat(file) except OSError: if ignore_err: continue raise perms = _filemode(st.st_mode) # permissions nlinks = st.st_nlink # number of links to inode if not nlinks: # non-posix system, let's use a bogus value nlinks = 1 size = st.st_size # file size uname = self.get_user_by_uid(st.st_uid) gname = self.get_group_by_gid(st.st_gid) mtime = timefunc(st.st_mtime) # if modificaton time > 6 months shows "month year" # else "month hh:mm"; this matches proftpd format, see: # http://code.google.com/p/pyftpdlib/issues/detail?id=187 if (now - st.st_mtime) > 180 * 24 * 60 * 60: fmtstr = "%d %Y" else: fmtstr = "%d %H:%M" try: mtimestr = "%s %s" % (_months_map[mtime.tm_mon], time.strftime(fmtstr, mtime)) except ValueError: # It could be raised if last mtime happens to be too # old (prior to year 1900) in which case we return # the current time as last mtime. mtime = timefunc() mtimestr = "%s %s" % (_months_map[mtime.tm_mon], time.strftime("%d %H:%M", mtime)) # if the file is a symlink, resolve it, e.g. "symlink -> realfile" if stat.S_ISLNK(st.st_mode) and hasattr(self, 'readlink'): basename = basename + " -> " + self.readlink(file) # formatting is matched with proftpd ls output yield "%s %3s %-8s %-8s %8s %s %s\r\n" % (perms, nlinks, uname, gname, size, mtimestr, basename) def format_mlsx(self, basedir, listing, perms, facts, ignore_err=False): """Return an iterator object that yields the entries of a given directory or of a single file in a form suitable with MLSD and MLST commands. Every entry includes a list of "facts" referring the listed element. See RFC-3659, chapter 7, to see what every single fact stands for. - (str) basedir: the absolute dirname. - (list) listing: the names of the entries in basedir - (str) perms: the string referencing the user permissions. - (str) facts: the list of "facts" to be returned. - (bool) ignore_err: when False raise exception if os.stat() call fails. Note that "facts" returned may change depending on the platform and on what user specified by using the OPTS command. This is how output could appear to the client issuing a MLSD request: type=file;size=156;perm=r;modify=20071029155301;unique=801cd2; music.mp3 type=dir;size=0;perm=el;modify=20071127230206;unique=801e33; ebooks type=file;size=211;perm=r;modify=20071103093626;unique=801e32; module.py """ try: # print "format_mlsx:%s"%basedir if self.cmd_channel.use_gmt_times: timefunc = time.gmtime else: timefunc = time.localtime permdir = ''.join([x for x in perms if x not in 'arw']) permfile = ''.join([x for x in perms if x not in 'celmp']) if ('w' in perms) or ('a' in perms) or ('f' in perms): permdir += 'c' if 'd' in perms: permdir += 'p' basedir2 = self.ftp2fs(basedir) for basename in listing: file = os.path.join(basedir2, basename) retfacts = dict() # in order to properly implement 'unique' fact (RFC-3659, # chapter 7.5.2) we are supposed to follow symlinks, hence try: st = os.stat(file) except OSError: if ignore_err: print "error for %s, cannot list (stat)" % file continue raise # type + perm if stat.S_ISDIR(st.st_mode): if 'type' in facts: if basename == '.': retfacts['type'] = 'cdir' elif basename == '..': retfacts['type'] = 'pdir' else: retfacts['type'] = 'dir' if 'perm' in facts: retfacts['perm'] = permdir else: if 'type' in facts: retfacts['type'] = 'file' if 'perm' in facts: retfacts['perm'] = permfile if 'size' in facts: retfacts['size'] = st.st_size # file size # last modification time if 'modify' in facts: try: retfacts['modify'] = time.strftime("%Y%m%d%H%M%S", timefunc(st.st_mtime)) # it could be raised if last mtime happens to be too old # (prior to year 1900) except ValueError: pass if 'create' in facts: # on Windows we can provide also the creation time try: retfacts['create'] = time.strftime("%Y%m%d%H%M%S", timefunc(st.st_ctime)) except ValueError: pass # UNIX only if 'unix.mode' in facts: retfacts['unix.mode'] = oct(st.st_mode & 0o777) if 'unix.uid' in facts: retfacts['unix.uid'] = st.st_uid if 'unix.gid' in facts: retfacts['unix.gid'] = st.st_gid # We provide unique fact (see RFC-3659, chapter 7.5.2) on # posix platforms only; we get it by mixing st_dev and # st_ino values which should be enough for granting an # uniqueness for the file listed. # The same approach is used by pure-ftpd. # Implementors who want to provide unique fact on other # platforms should use some platform-specific method (e.g. # on Windows NTFS filesystems MTF records could be used). if 'unique' in facts: retfacts['unique'] = "%xg%x" % (st.st_dev, st.st_ino) # facts can be in any order but we sort them by name factstring = "".join(["%s=%s;" % (x, retfacts[x]) for x in sorted(retfacts.keys())]) # print "FACT:%s" % factstring+" "+basename yield "%s %s\r\n" % (factstring, basename) except Exception as err: print err
# Copyright (c) 2004-2010 LOGILAB S.A. (Paris, FRANCE). # http://www.logilab.fr/ -- mailto:contact@logilab.fr # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """diagram objects """ from logilab import astng from pylint.pyreverse.utils import is_interface, FilterMixIn def set_counter(value): """Figure counter (re)set""" Figure._UID_COUNT = value class Figure: """base class for counter handling""" _UID_COUNT = 0 def __init__(self): Figure._UID_COUNT += 1 self.fig_id = Figure._UID_COUNT class Relationship(Figure): """a relation ship from an object in the diagram to another """ def __init__(self, from_object, to_object, relation_type, name=None): Figure.__init__(self) self.from_object = from_object self.to_object = to_object self.type = relation_type self.name = name class DiagramEntity(Figure): """a diagram object, i.e. a label associated to an astng node """ def __init__(self, title='No name', node=None): Figure.__init__(self) self.title = title self.node = node class ClassDiagram(Figure, FilterMixIn): """main class diagram handling """ TYPE = 'class' def __init__(self, title, mode): FilterMixIn.__init__(self, mode) Figure.__init__(self) self.title = title self.objects = [] self.relationships = {} self._nodes = {} self.depends = [] def add_relationship(self, from_object, to_object, relation_type, name=None): """create a relation ship """ rel = Relationship(from_object, to_object, relation_type, name) self.relationships.setdefault(relation_type, []).append(rel) def get_relationship(self, from_object, relation_type): """return a relation ship or None """ for rel in self.relationships.get(relation_type, ()): if rel.from_object is from_object: return rel raise KeyError(relation_type) def get_attrs(self, node): """return visible attributes, possibly with class name""" attrs = [] for node_name, ass_nodes in node.instance_attrs_type.items() + \ node.locals_type.items(): if not self.show_attr(node_name): continue names = self.class_names(ass_nodes) if names: node_name = "%s : %s" % (node_name, ", ".join(names)) attrs.append(node_name) return attrs def get_methods(self, node): """return visible methods""" return [m for m in node.values() if isinstance(m, astng.Function) and self.show_attr(m.name)] def add_object(self, title, node): """create a diagram object """ assert node not in self._nodes ent = DiagramEntity(title, node) self._nodes[node] = ent self.objects.append(ent) def class_names(self, nodes): """return class names if needed in diagram""" names = [] for ass_node in nodes: if isinstance(ass_node, astng.Instance): ass_node = ass_node._proxied if isinstance(ass_node, astng.Class) \ and hasattr(ass_node, "name") and not self.has_node(ass_node): if ass_node.name not in names: ass_name = ass_node.name names.append(ass_name) return names def nodes(self): """return the list of underlying nodes """ return self._nodes.keys() def has_node(self, node): """return true if the given node is included in the diagram """ return node in self._nodes def object_from_node(self, node): """return the diagram object mapped to node """ return self._nodes[node] def classes(self): """return all class nodes in the diagram""" return [o for o in self.objects if isinstance(o.node, astng.Class)] def classe(self, name): """return a class by its name, raise KeyError if not found """ for klass in self.classes(): if klass.node.name == name: return klass raise KeyError(name) def extract_relationships(self): """extract relation ships between nodes in the diagram """ for obj in self.classes(): node = obj.node obj.attrs = self.get_attrs(node) obj.methods = self.get_methods(node) # shape if is_interface(node): obj.shape = 'interface' else: obj.shape = 'class' # inheritance link for par_node in node.ancestors(recurs=False): try: par_obj = self.object_from_node(par_node) self.add_relationship(obj, par_obj, 'specialization') except KeyError: continue # implements link for impl_node in node.implements: try: impl_obj = self.object_from_node(impl_node) self.add_relationship(obj, impl_obj, 'implements') except KeyError: continue # associations link for name, values in node.instance_attrs_type.items() + \ node.locals_type.items(): for value in values: if value is astng.YES: continue if isinstance( value, astng.Instance): value = value._proxied try: ass_obj = self.object_from_node(value) self.add_relationship(ass_obj, obj, 'association', name) except KeyError: continue class PackageDiagram(ClassDiagram): """package diagram handling """ TYPE = 'package' def modules(self): """return all module nodes in the diagram""" return [o for o in self.objects if isinstance(o.node, astng.Module)] def module(self, name): """return a module by its name, raise KeyError if not found """ for mod in self.modules(): if mod.node.name == name: return mod raise KeyError(name) def get_module(self, name, node): """return a module by its name, looking also for relative imports; raise KeyError if not found """ for mod in self.modules(): mod_name = mod.node.name if mod_name == name: return mod #search for fullname of relative import modules package = node.root().name if mod_name == "%s.%s" % (package, name): return mod if mod_name == "%s.%s" % (package.rsplit('.', 1)[0], name): return mod raise KeyError(name) def add_from_depend(self, node, from_module): """add dependencies created by from-imports """ mod_name = node.root().name obj = self.module( mod_name ) if from_module not in obj.node.depends: obj.node.depends.append(from_module) def extract_relationships(self): """extract relation ships between nodes in the diagram """ ClassDiagram.extract_relationships(self) for obj in self.classes(): # ownership try: mod = self.object_from_node(obj.node.root()) self.add_relationship(obj, mod, 'ownership') except KeyError: continue for obj in self.modules(): obj.shape = 'package' # dependencies for dep_name in obj.node.depends: try: dep = self.get_module(dep_name, obj.node) except KeyError: continue self.add_relationship(obj, dep, 'depends')
from sympy import AccumBounds, Symbol, floor, nan, oo, E, symbols, ceiling, pi, \ Rational, Float, I, sin, exp, log, factorial, frac from sympy.utilities.pytest import XFAIL x = Symbol('x') i = Symbol('i', imaginary=True) y = Symbol('y', real=True) k, n = symbols('k,n', integer=True) def test_floor(): assert floor(nan) == nan assert floor(oo) == oo assert floor(-oo) == -oo assert floor(0) == 0 assert floor(1) == 1 assert floor(-1) == -1 assert floor(E) == 2 assert floor(-E) == -3 assert floor(2*E) == 5 assert floor(-2*E) == -6 assert floor(pi) == 3 assert floor(-pi) == -4 assert floor(Rational(1, 2)) == 0 assert floor(-Rational(1, 2)) == -1 assert floor(Rational(7, 3)) == 2 assert floor(-Rational(7, 3)) == -3 assert floor(Float(17.0)) == 17 assert floor(-Float(17.0)) == -17 assert floor(Float(7.69)) == 7 assert floor(-Float(7.69)) == -8 assert floor(I) == I assert floor(-I) == -I e = floor(i) assert e.func is floor and e.args[0] == i assert floor(oo*I) == oo*I assert floor(-oo*I) == -oo*I assert floor(2*I) == 2*I assert floor(-2*I) == -2*I assert floor(I/2) == 0 assert floor(-I/2) == -I assert floor(E + 17) == 19 assert floor(pi + 2) == 5 assert floor(E + pi) == floor(E + pi) assert floor(I + pi) == floor(I + pi) assert floor(floor(pi)) == 3 assert floor(floor(y)) == floor(y) assert floor(floor(x)) == floor(floor(x)) assert floor(x) == floor(x) assert floor(2*x) == floor(2*x) assert floor(k*x) == floor(k*x) assert floor(k) == k assert floor(2*k) == 2*k assert floor(k*n) == k*n assert floor(k/2) == floor(k/2) assert floor(x + y) == floor(x + y) assert floor(x + 3) == floor(x + 3) assert floor(x + k) == floor(x + k) assert floor(y + 3) == floor(y) + 3 assert floor(y + k) == floor(y) + k assert floor(3 + I*y + pi) == 6 + floor(y)*I assert floor(k + n) == k + n assert floor(x*I) == floor(x*I) assert floor(k*I) == k*I assert floor(Rational(23, 10) - E*I) == 2 - 3*I assert floor(sin(1)) == 0 assert floor(sin(-1)) == -1 assert floor(exp(2)) == 7 assert floor(log(8)/log(2)) != 2 assert int(floor(log(8)/log(2)).evalf(chop=True)) == 3 assert floor(factorial(50)/exp(1)) == \ 11188719610782480504630258070757734324011354208865721592720336800 assert (floor(y) <= y) == True assert (floor(y) > y) == False assert (floor(x) <= x).is_Relational # x could be non-real assert (floor(x) > x).is_Relational assert (floor(x) <= y).is_Relational # arg is not same as rhs assert (floor(x) > y).is_Relational def test_ceiling(): assert ceiling(nan) == nan assert ceiling(oo) == oo assert ceiling(-oo) == -oo assert ceiling(0) == 0 assert ceiling(1) == 1 assert ceiling(-1) == -1 assert ceiling(E) == 3 assert ceiling(-E) == -2 assert ceiling(2*E) == 6 assert ceiling(-2*E) == -5 assert ceiling(pi) == 4 assert ceiling(-pi) == -3 assert ceiling(Rational(1, 2)) == 1 assert ceiling(-Rational(1, 2)) == 0 assert ceiling(Rational(7, 3)) == 3 assert ceiling(-Rational(7, 3)) == -2 assert ceiling(Float(17.0)) == 17 assert ceiling(-Float(17.0)) == -17 assert ceiling(Float(7.69)) == 8 assert ceiling(-Float(7.69)) == -7 assert ceiling(I) == I assert ceiling(-I) == -I e = ceiling(i) assert e.func is ceiling and e.args[0] == i assert ceiling(oo*I) == oo*I assert ceiling(-oo*I) == -oo*I assert ceiling(2*I) == 2*I assert ceiling(-2*I) == -2*I assert ceiling(I/2) == I assert ceiling(-I/2) == 0 assert ceiling(E + 17) == 20 assert ceiling(pi + 2) == 6 assert ceiling(E + pi) == ceiling(E + pi) assert ceiling(I + pi) == ceiling(I + pi) assert ceiling(ceiling(pi)) == 4 assert ceiling(ceiling(y)) == ceiling(y) assert ceiling(ceiling(x)) == ceiling(ceiling(x)) assert ceiling(x) == ceiling(x) assert ceiling(2*x) == ceiling(2*x) assert ceiling(k*x) == ceiling(k*x) assert ceiling(k) == k assert ceiling(2*k) == 2*k assert ceiling(k*n) == k*n assert ceiling(k/2) == ceiling(k/2) assert ceiling(x + y) == ceiling(x + y) assert ceiling(x + 3) == ceiling(x + 3) assert ceiling(x + k) == ceiling(x + k) assert ceiling(y + 3) == ceiling(y) + 3 assert ceiling(y + k) == ceiling(y) + k assert ceiling(3 + pi + y*I) == 7 + ceiling(y)*I assert ceiling(k + n) == k + n assert ceiling(x*I) == ceiling(x*I) assert ceiling(k*I) == k*I assert ceiling(Rational(23, 10) - E*I) == 3 - 2*I assert ceiling(sin(1)) == 1 assert ceiling(sin(-1)) == 0 assert ceiling(exp(2)) == 8 assert ceiling(-log(8)/log(2)) != -2 assert int(ceiling(-log(8)/log(2)).evalf(chop=True)) == -3 assert ceiling(factorial(50)/exp(1)) == \ 11188719610782480504630258070757734324011354208865721592720336801 assert (ceiling(y) >= y) == True assert (ceiling(y) < y) == False assert (ceiling(x) >= x).is_Relational # x could be non-real assert (ceiling(x) < x).is_Relational assert (ceiling(x) >= y).is_Relational # arg is not same as rhs assert (ceiling(x) < y).is_Relational def test_frac(): assert isinstance(frac(x), frac) assert frac(oo) == AccumBounds(0, 1) assert frac(-oo) == AccumBounds(0, 1) assert frac(n) == 0 assert frac(nan) == nan assert frac(Rational(4, 3)) == Rational(1, 3) assert frac(-Rational(4, 3)) == Rational(2, 3) r = Symbol('r', real=True) assert frac(I*r) == I*frac(r) assert frac(1 + I*r) == I*frac(r) assert frac(0.5 + I*r) == 0.5 + I*frac(r) assert frac(n + I*r) == I*frac(r) assert frac(n + I*k) == 0 assert frac(x + I*x) == frac(x + I*x) assert frac(x + I*n) == frac(x) assert frac(x).rewrite(floor) == x - floor(x) def test_series(): x, y = symbols('x,y') assert floor(x).nseries(x, y, 100) == floor(y) assert ceiling(x).nseries(x, y, 100) == ceiling(y) assert floor(x).nseries(x, pi, 100) == 3 assert ceiling(x).nseries(x, pi, 100) == 4 assert floor(x).nseries(x, 0, 100) == 0 assert ceiling(x).nseries(x, 0, 100) == 1 assert floor(-x).nseries(x, 0, 100) == -1 assert ceiling(-x).nseries(x, 0, 100) == 0 @XFAIL def test_issue_4149(): assert floor(3 + pi*I + y*I) == 3 + floor(pi + y)*I assert floor(3*I + pi*I + y*I) == floor(3 + pi + y)*I assert floor(3 + E + pi*I + y*I) == 5 + floor(pi + y)*I
# This code was mostly based on ipaddr-py # Copyright 2007 Google Inc. http://code.google.com/p/ipaddr-py/ # Licensed under the Apache License, Version 2.0 (the "License"). from django.core.exceptions import ValidationError from django.utils.six.moves import range from django.utils.translation import ugettext_lazy as _ def clean_ipv6_address(ip_str, unpack_ipv4=False, error_message=_("This is not a valid IPv6 address.")): """ Cleans an IPv6 address string. Validity is checked by calling is_valid_ipv6_address() - if an invalid address is passed, ValidationError is raised. Replaces the longest continuous zero-sequence with "::" and removes leading zeroes and makes sure all hextets are lowercase. Args: ip_str: A valid IPv6 address. unpack_ipv4: if an IPv4-mapped address is found, return the plain IPv4 address (default=False). error_message: An error message used in the ValidationError. Returns: A compressed IPv6 address, or the same value """ best_doublecolon_start = -1 best_doublecolon_len = 0 doublecolon_start = -1 doublecolon_len = 0 if not is_valid_ipv6_address(ip_str): raise ValidationError(error_message, code='invalid') # This algorithm can only handle fully exploded # IP strings ip_str = _explode_shorthand_ip_string(ip_str) ip_str = _sanitize_ipv4_mapping(ip_str) # If needed, unpack the IPv4 and return straight away # - no need in running the rest of the algorithm if unpack_ipv4: ipv4_unpacked = _unpack_ipv4(ip_str) if ipv4_unpacked: return ipv4_unpacked hextets = ip_str.split(":") for index in range(len(hextets)): # Remove leading zeroes hextets[index] = hextets[index].lstrip('0') if not hextets[index]: hextets[index] = '0' # Determine best hextet to compress if hextets[index] == '0': doublecolon_len += 1 if doublecolon_start == -1: # Start of a sequence of zeros. doublecolon_start = index if doublecolon_len > best_doublecolon_len: # This is the longest sequence of zeros so far. best_doublecolon_len = doublecolon_len best_doublecolon_start = doublecolon_start else: doublecolon_len = 0 doublecolon_start = -1 # Compress the most suitable hextet if best_doublecolon_len > 1: best_doublecolon_end = (best_doublecolon_start + best_doublecolon_len) # For zeros at the end of the address. if best_doublecolon_end == len(hextets): hextets += [''] hextets[best_doublecolon_start:best_doublecolon_end] = [''] # For zeros at the beginning of the address. if best_doublecolon_start == 0: hextets = [''] + hextets result = ":".join(hextets) return result.lower() def _sanitize_ipv4_mapping(ip_str): """ Sanitize IPv4 mapping in an expanded IPv6 address. This converts ::ffff:0a0a:0a0a to ::ffff:10.10.10.10. If there is nothing to sanitize, returns an unchanged string. Args: ip_str: A string, the expanded IPv6 address. Returns: The sanitized output string, if applicable. """ if not ip_str.lower().startswith('0000:0000:0000:0000:0000:ffff:'): # not an ipv4 mapping return ip_str hextets = ip_str.split(':') if '.' in hextets[-1]: # already sanitized return ip_str ipv4_address = "%d.%d.%d.%d" % ( int(hextets[6][0:2], 16), int(hextets[6][2:4], 16), int(hextets[7][0:2], 16), int(hextets[7][2:4], 16), ) result = ':'.join(hextets[0:6]) result += ':' + ipv4_address return result def _unpack_ipv4(ip_str): """ Unpack an IPv4 address that was mapped in a compressed IPv6 address. This converts 0000:0000:0000:0000:0000:ffff:10.10.10.10 to 10.10.10.10. If there is nothing to sanitize, returns None. Args: ip_str: A string, the expanded IPv6 address. Returns: The unpacked IPv4 address, or None if there was nothing to unpack. """ if not ip_str.lower().startswith('0000:0000:0000:0000:0000:ffff:'): return None return ip_str.rsplit(':', 1)[1] def is_valid_ipv6_address(ip_str): """ Ensure we have a valid IPv6 address. Args: ip_str: A string, the IPv6 address. Returns: A boolean, True if this is a valid IPv6 address. """ from django.core.validators import validate_ipv4_address # We need to have at least one ':'. if ':' not in ip_str: return False # We can only have one '::' shortener. if ip_str.count('::') > 1: return False # '::' should be encompassed by start, digits or end. if ':::' in ip_str: return False # A single colon can neither start nor end an address. if ((ip_str.startswith(':') and not ip_str.startswith('::')) or (ip_str.endswith(':') and not ip_str.endswith('::'))): return False # We can never have more than 7 ':' (1::2:3:4:5:6:7:8 is invalid) if ip_str.count(':') > 7: return False # If we have no concatenation, we need to have 8 fields with 7 ':'. if '::' not in ip_str and ip_str.count(':') != 7: # We might have an IPv4 mapped address. if ip_str.count('.') != 3: return False ip_str = _explode_shorthand_ip_string(ip_str) # Now that we have that all squared away, let's check that each of the # hextets are between 0x0 and 0xFFFF. for hextet in ip_str.split(':'): if hextet.count('.') == 3: # If we have an IPv4 mapped address, the IPv4 portion has to # be at the end of the IPv6 portion. if not ip_str.split(':')[-1] == hextet: return False try: validate_ipv4_address(hextet) except ValidationError: return False else: try: # a value error here means that we got a bad hextet, # something like 0xzzzz if int(hextet, 16) < 0x0 or int(hextet, 16) > 0xFFFF: return False except ValueError: return False return True def _explode_shorthand_ip_string(ip_str): """ Expand a shortened IPv6 address. Args: ip_str: A string, the IPv6 address. Returns: A string, the expanded IPv6 address. """ if not _is_shorthand_ip(ip_str): # We've already got a longhand ip_str. return ip_str new_ip = [] hextet = ip_str.split('::') # If there is a ::, we need to expand it with zeroes # to get to 8 hextets - unless there is a dot in the last hextet, # meaning we're doing v4-mapping if '.' in ip_str.split(':')[-1]: fill_to = 7 else: fill_to = 8 if len(hextet) > 1: sep = len(hextet[0].split(':')) + len(hextet[1].split(':')) new_ip = hextet[0].split(':') for __ in range(fill_to - sep): new_ip.append('0000') new_ip += hextet[1].split(':') else: new_ip = ip_str.split(':') # Now need to make sure every hextet is 4 lower case characters. # If a hextet is < 4 characters, we've got missing leading 0's. ret_ip = [] for hextet in new_ip: ret_ip.append(('0' * (4 - len(hextet)) + hextet).lower()) return ':'.join(ret_ip) def _is_shorthand_ip(ip_str): """Determine if the address is shortened. Args: ip_str: A string, the IPv6 address. Returns: A boolean, True if the address is shortened. """ if ip_str.count('::') == 1: return True if any(len(x) < 4 for x in ip_str.split(':')): return True return False
from __future__ import print_function import os import sys from rosdistro import get_distribution_cache from rosdistro import get_index from ros_buildfarm.common import get_binarydeb_job_name from ros_buildfarm.common import get_debian_package_name from ros_buildfarm.common import get_github_project_url from ros_buildfarm.common import get_release_binary_view_name from ros_buildfarm.common import get_release_binary_view_prefix from ros_buildfarm.common import get_release_job_prefix from ros_buildfarm.common import get_release_source_view_name from ros_buildfarm.common import get_release_view_name from ros_buildfarm.common \ import get_repositories_and_script_generating_key_files from ros_buildfarm.common import get_sourcedeb_job_name from ros_buildfarm.common import JobValidationError from ros_buildfarm.common import write_groovy_script_and_configs from ros_buildfarm.config import get_distribution_file from ros_buildfarm.config import get_index as get_config_index from ros_buildfarm.config import get_release_build_files from ros_buildfarm.git import get_repository from ros_buildfarm.jenkins import configure_job from ros_buildfarm.jenkins import configure_management_view from ros_buildfarm.jenkins import configure_view from ros_buildfarm.jenkins import connect from ros_buildfarm.jenkins import remove_jobs from ros_buildfarm.templates import expand_template def configure_release_jobs( config_url, rosdistro_name, release_build_name, groovy_script=None): """ Configure all Jenkins release jobs. L{configure_release_job} will be invoked for every released package and target which matches the build file criteria. Additionally a job to import Debian packages into the Debian repository is created. """ config = get_config_index(config_url) build_files = get_release_build_files(config, rosdistro_name) build_file = build_files[release_build_name] index = get_index(config.rosdistro_index_url) # get targets platforms = [] for os_name in build_file.targets.keys(): for os_code_name in build_file.targets[os_name].keys(): platforms.append((os_name, os_code_name)) print('The build file contains the following targets:') for os_name, os_code_name in platforms: print(' - %s %s: %s' % (os_name, os_code_name, ', '.join( build_file.targets[os_name][os_code_name]))) dist_file = get_distribution_file(index, rosdistro_name, build_file) if not dist_file: print('No distribution file matches the build file') return pkg_names = dist_file.release_packages.keys() filtered_pkg_names = build_file.filter_packages(pkg_names) explicitly_ignored_pkg_names = set(pkg_names) - set(filtered_pkg_names) if explicitly_ignored_pkg_names: print(('The following packages are being %s because of ' + 'white-/blacklisting:') % ('ignored' if build_file.skip_ignored_packages else 'disabled')) for pkg_name in sorted(explicitly_ignored_pkg_names): print(' -', pkg_name) dist_cache = None if build_file.notify_maintainers or \ build_file.abi_incompatibility_assumed or \ explicitly_ignored_pkg_names: dist_cache = get_distribution_cache(index, rosdistro_name) if explicitly_ignored_pkg_names: # get direct dependencies from distro cache for each package direct_dependencies = {} for pkg_name in pkg_names: direct_dependencies[pkg_name] = _get_direct_dependencies( pkg_name, dist_cache, pkg_names) or set([]) # find recursive downstream deps for all explicitly ignored packages ignored_pkg_names = set(explicitly_ignored_pkg_names) while True: implicitly_ignored_pkg_names = _get_downstream_package_names( ignored_pkg_names, direct_dependencies) if implicitly_ignored_pkg_names - ignored_pkg_names: ignored_pkg_names |= implicitly_ignored_pkg_names continue break implicitly_ignored_pkg_names = \ ignored_pkg_names - explicitly_ignored_pkg_names if implicitly_ignored_pkg_names: print(('The following packages are being %s because their ' + 'dependencies are being ignored:') % ('ignored' if build_file.skip_ignored_packages else 'disabled')) for pkg_name in sorted(implicitly_ignored_pkg_names): print(' -', pkg_name) filtered_pkg_names = \ set(filtered_pkg_names) - implicitly_ignored_pkg_names jenkins = connect(config.jenkins_url) configure_import_package_job( config_url, rosdistro_name, release_build_name, config=config, build_file=build_file, jenkins=jenkins) configure_sync_packages_to_main_job( config_url, rosdistro_name, release_build_name, config=config, build_file=build_file, jenkins=jenkins) for os_name, os_code_name in platforms: for arch in sorted(build_file.targets[os_name][os_code_name]): configure_sync_packages_to_testing_job( config_url, rosdistro_name, release_build_name, os_code_name, arch, config=config, build_file=build_file, jenkins=jenkins) targets = [] for os_name, os_code_name in platforms: targets.append((os_name, os_code_name, 'source')) for arch in build_file.targets[os_name][os_code_name]: targets.append((os_name, os_code_name, arch)) views = configure_release_views( jenkins, rosdistro_name, release_build_name, targets) if groovy_script is not None: # all further configuration will be handled by the groovy script jenkins = False all_source_job_names = [] all_binary_job_names = [] all_job_configs = {} for pkg_name in sorted(pkg_names): pkg = dist_file.release_packages[pkg_name] repo_name = pkg.repository_name repo = dist_file.repositories[repo_name] is_disabled = pkg_name not in filtered_pkg_names if is_disabled and build_file.skip_ignored_packages: print("Skipping ignored package '%s' in repository '%s'" % (pkg_name, repo_name), file=sys.stderr) continue if not repo.release_repository: print(("Skipping package '%s' in repository '%s': no release " + "section") % (pkg_name, repo_name), file=sys.stderr) continue if not repo.release_repository.version: print(("Skipping package '%s' in repository '%s': no release " + "version") % (pkg_name, repo_name), file=sys.stderr) continue for os_name, os_code_name in platforms: try: source_job_names, binary_job_names, job_configs = \ configure_release_job( config_url, rosdistro_name, release_build_name, pkg_name, os_name, os_code_name, config=config, build_file=build_file, index=index, dist_file=dist_file, dist_cache=dist_cache, jenkins=jenkins, views=views, generate_import_package_job=False, generate_sync_packages_jobs=False, is_disabled=is_disabled, groovy_script=groovy_script) all_source_job_names += source_job_names all_binary_job_names += binary_job_names if groovy_script is not None: print('Configuration for jobs: ' + ', '.join(source_job_names + binary_job_names)) all_job_configs.update(job_configs) except JobValidationError as e: print(e.message, file=sys.stderr) groovy_data = { 'expected_num_jobs': len(all_job_configs), 'job_prefixes_and_names': {}, } # delete obsolete binary jobs for os_name, os_code_name in platforms: for arch in build_file.targets[os_name][os_code_name]: binary_view = get_release_binary_view_name( rosdistro_name, release_build_name, os_name, os_code_name, arch) binary_job_prefix = '%s__' % binary_view excluded_job_names = set([ j for j in all_binary_job_names if j.startswith(binary_job_prefix)]) if groovy_script is None: print("Removing obsolete binary jobs with prefix '%s'" % binary_job_prefix) remove_jobs( jenkins, binary_job_prefix, excluded_job_names) else: binary_key = 'binary_%s_%s_%s' % (os_name, os_code_name, arch) groovy_data['job_prefixes_and_names'][binary_key] = \ (binary_job_prefix, excluded_job_names) # delete obsolete source jobs # requires knowledge about all other release build files for os_name, os_code_name in platforms: other_source_job_names = [] # get source job names for all other release build files for other_release_build_name in [ k for k in build_files.keys() if k != release_build_name]: other_build_file = build_files[other_release_build_name] other_dist_file = get_distribution_file( index, rosdistro_name, other_build_file) if not other_dist_file: continue if os_name not in other_build_file.targets or \ os_code_name not in other_build_file.targets[os_name]: continue if other_build_file.skip_ignored_packages: filtered_pkg_names = other_build_file.filter_packages( pkg_names) else: filtered_pkg_names = pkg_names for pkg_name in sorted(filtered_pkg_names): pkg = other_dist_file.release_packages[pkg_name] repo_name = pkg.repository_name repo = other_dist_file.repositories[repo_name] if not repo.release_repository: continue if not repo.release_repository.version: continue other_job_name = get_sourcedeb_job_name( rosdistro_name, other_release_build_name, pkg_name, os_name, os_code_name) other_source_job_names.append(other_job_name) source_view_prefix = get_release_source_view_name( rosdistro_name, os_name, os_code_name) source_job_prefix = '%s__' % source_view_prefix excluded_job_names = set([ j for j in (all_source_job_names + other_source_job_names) if j.startswith(source_job_prefix)]) if groovy_script is None: print("Removing obsolete source jobs with prefix '%s'" % source_job_prefix) remove_jobs(jenkins, source_job_prefix, excluded_job_names) else: source_key = 'source_%s_%s' % (os_name, os_code_name) groovy_data['job_prefixes_and_names'][source_key] = ( source_job_prefix, excluded_job_names) if groovy_script is not None: print("Writing groovy script '%s' to reconfigure %d jobs" % (groovy_script, len(all_job_configs))) content = expand_template( 'snippet/reconfigure_jobs.groovy.em', groovy_data) write_groovy_script_and_configs( groovy_script, content, all_job_configs) def _get_downstream_package_names(pkg_names, dependencies): downstream_pkg_names = set([]) for pkg_name, deps in dependencies.items(): if deps.intersection(pkg_names): downstream_pkg_names.add(pkg_name) return downstream_pkg_names # Configure a Jenkins release job which consists of # - a source deb job # - N binary debs, one for each archicture def configure_release_job( config_url, rosdistro_name, release_build_name, pkg_name, os_name, os_code_name, config=None, build_file=None, index=None, dist_file=None, dist_cache=None, jenkins=None, views=None, generate_import_package_job=True, generate_sync_packages_jobs=True, is_disabled=False, groovy_script=None, filter_arches=None): """ Configure a Jenkins release job. The following jobs are created for each package: - M source jobs, one for each OS node name - M * N binary jobs, one for each combination of OS code name and arch """ if config is None: config = get_config_index(config_url) if build_file is None: build_files = get_release_build_files(config, rosdistro_name) build_file = build_files[release_build_name] if index is None: index = get_index(config.rosdistro_index_url) if dist_file is None: dist_file = get_distribution_file(index, rosdistro_name, build_file) if not dist_file: raise JobValidationError( 'No distribution file matches the build file') pkg_names = dist_file.release_packages.keys() if pkg_name not in pkg_names: raise JobValidationError( "Invalid package name '%s' " % pkg_name + 'choose one of the following: ' + ', '.join(sorted(pkg_names))) pkg = dist_file.release_packages[pkg_name] repo_name = pkg.repository_name repo = dist_file.repositories[repo_name] if not repo.release_repository: raise JobValidationError( "Repository '%s' has no release section" % repo_name) if not repo.release_repository.version: raise JobValidationError( "Repository '%s' has no release version" % repo_name) if os_name not in build_file.targets.keys(): raise JobValidationError( "Invalid OS name '%s' " % os_name + 'choose one of the following: ' + ', '.join(sorted(build_file.targets.keys()))) if os_code_name not in build_file.targets[os_name].keys(): raise JobValidationError( "Invalid OS code name '%s' " % os_code_name + 'choose one of the following: ' + ', '.join(sorted(build_file.targets[os_name].keys()))) if dist_cache is None and \ (build_file.notify_maintainers or build_file.abi_incompatibility_assumed): dist_cache = get_distribution_cache(index, rosdistro_name) if jenkins is None: jenkins = connect(config.jenkins_url) if views is None: targets = [] targets.append((os_name, os_code_name, 'source')) for arch in build_file.targets[os_name][os_code_name]: targets.append((os_name, os_code_name, arch)) configure_release_views( jenkins, rosdistro_name, release_build_name, targets) if generate_import_package_job: configure_import_package_job( config_url, rosdistro_name, release_build_name, config=config, build_file=build_file, jenkins=jenkins) if generate_sync_packages_jobs: configure_sync_packages_to_main_job( config_url, rosdistro_name, release_build_name, config=config, build_file=build_file, jenkins=jenkins) for arch in build_file.targets[os_name][os_code_name]: configure_sync_packages_to_testing_job( config_url, rosdistro_name, release_build_name, os_code_name, arch, config=config, build_file=build_file, jenkins=jenkins) source_job_names = [] binary_job_names = [] job_configs = {} # sourcedeb job source_job_name = get_sourcedeb_job_name( rosdistro_name, release_build_name, pkg_name, os_name, os_code_name) job_config = _get_sourcedeb_job_config( config_url, rosdistro_name, release_build_name, config, build_file, os_name, os_code_name, pkg_name, repo_name, repo.release_repository, dist_cache=dist_cache, is_disabled=is_disabled) # jenkinsapi.jenkins.Jenkins evaluates to false if job count is zero if isinstance(jenkins, object) and jenkins is not False: configure_job(jenkins, source_job_name, job_config) source_job_names.append(source_job_name) job_configs[source_job_name] = job_config dependency_names = [] if build_file.abi_incompatibility_assumed: dependency_names = _get_direct_dependencies( pkg_name, dist_cache, pkg_names) # if dependencies are not yet available in rosdistro cache # skip binary jobs if dependency_names is None: print(("Skipping binary jobs for package '%s' because it is not " + "yet in the rosdistro cache") % pkg_name, file=sys.stderr) return source_job_names, binary_job_names, job_configs # binarydeb jobs for arch in build_file.targets[os_name][os_code_name]: if filter_arches and arch not in filter_arches: continue job_name = get_binarydeb_job_name( rosdistro_name, release_build_name, pkg_name, os_name, os_code_name, arch) upstream_job_names = [source_job_name] + [ get_binarydeb_job_name( rosdistro_name, release_build_name, dependency_name, os_name, os_code_name, arch) for dependency_name in dependency_names] job_config = _get_binarydeb_job_config( config_url, rosdistro_name, release_build_name, config, build_file, os_name, os_code_name, arch, pkg_name, repo_name, repo.release_repository, dist_cache=dist_cache, upstream_job_names=upstream_job_names, is_disabled=is_disabled) # jenkinsapi.jenkins.Jenkins evaluates to false if job count is zero if isinstance(jenkins, object) and jenkins is not False: configure_job(jenkins, job_name, job_config) binary_job_names.append(job_name) job_configs[job_name] = job_config return source_job_names, binary_job_names, job_configs def configure_release_views( jenkins, rosdistro_name, release_build_name, targets): views = [] # generate view aggregating all binary views if len([t for t in targets if t[2] != 'source']) > 1: view_prefix = get_release_binary_view_prefix( rosdistro_name, release_build_name) views.append(configure_view( jenkins, view_prefix, include_regex='%s_.+__.+' % view_prefix, template_name='dashboard_view_all_jobs.xml.em')) for os_name, os_code_name, arch in targets: view_name = get_release_view_name( rosdistro_name, release_build_name, os_name, os_code_name, arch) if arch == 'source': include_regex = '%s__.+__%s_%s__source' % \ (view_name, os_name, os_code_name) else: include_regex = '%s__.+__%s_%s_%s__binary' % \ (view_name, os_name, os_code_name, arch) views.append(configure_view( jenkins, view_name, include_regex=include_regex, template_name='dashboard_view_all_jobs.xml.em')) return views def _get_direct_dependencies(pkg_name, dist_cache, pkg_names): from catkin_pkg.package import parse_package_string if pkg_name not in dist_cache.release_package_xmls: return None pkg_xml = dist_cache.release_package_xmls[pkg_name] pkg = parse_package_string(pkg_xml) depends = set([ d.name for d in ( pkg.buildtool_depends + pkg.build_depends + pkg.buildtool_export_depends + pkg.build_export_depends + pkg.exec_depends + pkg.test_depends) if d.name in pkg_names]) return depends def _get_sourcedeb_job_config( config_url, rosdistro_name, release_build_name, config, build_file, os_name, os_code_name, pkg_name, repo_name, release_repository, dist_cache=None, is_disabled=False): template_name = 'release/sourcedeb_job.xml.em' repository_args, script_generating_key_files = \ get_repositories_and_script_generating_key_files(build_file=build_file) sourcedeb_files = [ 'sourcedeb/*.debian.tar.gz', 'sourcedeb/*.debian.tar.xz', 'sourcedeb/*.dsc', 'sourcedeb/*.orig.tar.gz', 'sourcedeb/*_source.changes', ] maintainer_emails = get_maintainer_emails(dist_cache, repo_name) \ if build_file.notify_maintainers \ else set([]) job_data = { 'github_url': get_github_project_url(release_repository.url), 'job_priority': build_file.jenkins_source_job_priority, 'node_label': build_file.jenkins_source_job_label, 'disabled': is_disabled, 'ros_buildfarm_repository': get_repository(), 'script_generating_key_files': script_generating_key_files, 'rosdistro_index_url': config.rosdistro_index_url, 'rosdistro_name': rosdistro_name, 'release_build_name': release_build_name, 'pkg_name': pkg_name, 'os_name': os_name, 'os_code_name': os_code_name, 'repository_args': repository_args, 'sourcedeb_files': sourcedeb_files, 'import_package_job_name': get_import_package_job_name(rosdistro_name), 'debian_package_name': get_debian_package_name( rosdistro_name, pkg_name), 'notify_emails': build_file.notify_emails, 'maintainer_emails': maintainer_emails, 'notify_maintainers': build_file.notify_maintainers, 'timeout_minutes': build_file.jenkins_source_job_timeout, 'credential_id': build_file.upload_credential_id, } job_config = expand_template(template_name, job_data) return job_config def _get_binarydeb_job_config( config_url, rosdistro_name, release_build_name, config, build_file, os_name, os_code_name, arch, pkg_name, repo_name, release_repository, dist_cache=None, upstream_job_names=None, is_disabled=False): template_name = 'release/binarydeb_job.xml.em' repository_args, script_generating_key_files = \ get_repositories_and_script_generating_key_files(build_file=build_file) binarydeb_files = [ 'binarydeb/*.changes', 'binarydeb/*.deb', ] sync_to_testing_job_name = [get_sync_packages_to_testing_job_name( rosdistro_name, os_code_name, arch)] maintainer_emails = get_maintainer_emails(dist_cache, repo_name) \ if build_file.notify_maintainers \ else set([]) job_data = { 'github_url': get_github_project_url(release_repository.url), 'job_priority': build_file.jenkins_binary_job_priority, 'node_label': build_file.jenkins_binary_job_label, 'disabled': is_disabled, 'upstream_projects': upstream_job_names, 'ros_buildfarm_repository': get_repository(), 'script_generating_key_files': script_generating_key_files, 'rosdistro_index_url': config.rosdistro_index_url, 'rosdistro_name': rosdistro_name, 'release_build_name': release_build_name, 'pkg_name': pkg_name, 'os_name': os_name, 'os_code_name': os_code_name, 'arch': arch, 'repository_args': repository_args, 'append_timestamp': build_file.abi_incompatibility_assumed, 'binarydeb_files': binarydeb_files, 'import_package_job_name': get_import_package_job_name(rosdistro_name), 'debian_package_name': get_debian_package_name( rosdistro_name, pkg_name), 'child_projects': sync_to_testing_job_name, 'notify_emails': build_file.notify_emails, 'maintainer_emails': maintainer_emails, 'notify_maintainers': build_file.notify_maintainers, 'timeout_minutes': build_file.jenkins_binary_job_timeout, 'credential_id': build_file.upload_credential_id, } job_config = expand_template(template_name, job_data) return job_config def configure_import_package_job( config_url, rosdistro_name, release_build_name, config=None, build_file=None, jenkins=None): if config is None: config = get_config_index(config_url) if build_file is None: build_files = get_release_build_files(config, rosdistro_name) build_file = build_files[release_build_name] if jenkins is None: jenkins = connect(config.jenkins_url) job_name = get_import_package_job_name(rosdistro_name) job_config = _get_import_package_job_config(build_file) # jenkinsapi.jenkins.Jenkins evaluates to false if job count is zero if isinstance(jenkins, object) and jenkins is not False: configure_management_view(jenkins) configure_job(jenkins, job_name, job_config) def get_import_package_job_name(rosdistro_name): view_name = get_release_job_prefix(rosdistro_name) return '%s_import-package' % view_name def _get_import_package_job_config(build_file): template_name = 'release/import_package_job.xml.em' job_data = { 'abi_incompatibility_assumed': build_file.abi_incompatibility_assumed, 'notify_emails': build_file.notify_emails, } job_config = expand_template(template_name, job_data) return job_config def configure_sync_packages_to_testing_job( config_url, rosdistro_name, release_build_name, os_code_name, arch, config=None, build_file=None, jenkins=None): if config is None: config = get_config_index(config_url) if build_file is None: build_files = get_release_build_files(config, rosdistro_name) build_file = build_files[release_build_name] if jenkins is None: jenkins = connect(config.jenkins_url) job_name = get_sync_packages_to_testing_job_name( rosdistro_name, os_code_name, arch) job_config = _get_sync_packages_to_testing_job_config( config_url, rosdistro_name, release_build_name, os_code_name, arch, config, build_file) # jenkinsapi.jenkins.Jenkins evaluates to false if job count is zero if isinstance(jenkins, object) and jenkins is not False: configure_management_view(jenkins) configure_job(jenkins, job_name, job_config) def get_sync_packages_to_testing_job_name( rosdistro_name, os_code_name, arch): view_name = get_release_job_prefix(rosdistro_name) return '%s_sync-packages-to-testing_%s_%s' % \ (view_name, os_code_name, arch) def _get_sync_packages_to_testing_job_config( config_url, rosdistro_name, release_build_name, os_code_name, arch, config, build_file): template_name = 'release/sync_packages_to_testing_job.xml.em' repository_args, script_generating_key_files = \ get_repositories_and_script_generating_key_files(build_file=build_file) job_data = { 'ros_buildfarm_repository': get_repository(), 'script_generating_key_files': script_generating_key_files, 'config_url': config_url, 'rosdistro_name': rosdistro_name, 'release_build_name': release_build_name, 'os_code_name': os_code_name, 'arch': arch, 'repository_args': repository_args, 'notify_emails': build_file.notify_emails, } job_config = expand_template(template_name, job_data) return job_config def configure_sync_packages_to_main_job( config_url, rosdistro_name, release_build_name, config=None, build_file=None, jenkins=None): if config is None: config = get_config_index(config_url) if build_file is None: build_files = get_release_build_files(config, rosdistro_name) build_file = build_files[release_build_name] if jenkins is None: jenkins = connect(config.jenkins_url) job_name = get_sync_packages_to_main_job_name( rosdistro_name) job_config = _get_sync_packages_to_main_job_config( rosdistro_name, build_file) # jenkinsapi.jenkins.Jenkins evaluates to false if job count is zero if isinstance(jenkins, object) and jenkins is not False: configure_management_view(jenkins) configure_job(jenkins, job_name, job_config) def get_sync_packages_to_main_job_name(rosdistro_name): view_name = get_release_job_prefix(rosdistro_name) return '%s_sync-packages-to-main' % view_name def _get_sync_packages_to_main_job_config(rosdistro_name, build_file): template_name = 'release/sync_packages_to_main_job.xml.em' job_data = { 'rosdistro_name': rosdistro_name, 'notify_emails': build_file.notify_emails, } job_config = expand_template(template_name, job_data) return job_config def get_maintainer_emails(dist_cache, repo_name): maintainer_emails = set([]) if dist_cache and repo_name in dist_cache.distribution_file.repositories: from catkin_pkg.package import parse_package_string # add maintainers listed in latest release to recipients repo = dist_cache.distribution_file.repositories[repo_name] if repo.release_repository: for pkg_name in repo.release_repository.package_names: if pkg_name not in dist_cache.release_package_xmls: continue pkg_xml = dist_cache.release_package_xmls[pkg_name] pkg = parse_package_string(pkg_xml) for m in pkg.maintainers: maintainer_emails.add(m.email) return maintainer_emails
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from tempest import auth from tempest import clients from tempest.common.utils import data_utils from tempest import config from tempest import exceptions from tempest.openstack.common import log as logging CONF = config.CONF LOG = logging.getLogger(__name__) class IsolatedCreds(object): def __init__(self, name, tempest_client=True, interface='json', password='pass', network_resources=None): self.network_resources = network_resources self.isolated_creds = {} self.isolated_net_resources = {} self.ports = [] self.name = name self.tempest_client = tempest_client self.interface = interface self.password = password self.identity_admin_client, self.network_admin_client = ( self._get_admin_clients()) def _get_admin_clients(self): """ Returns a tuple with instances of the following admin clients (in this order): identity network """ if self.tempest_client: os = clients.AdminManager(interface=self.interface) else: os = clients.OfficialClientManager( auth.get_default_credentials('identity_admin') ) return os.identity_client, os.network_client def _create_tenant(self, name, description): if self.tempest_client: resp, tenant = self.identity_admin_client.create_tenant( name=name, description=description) else: tenant = self.identity_admin_client.tenants.create( name, description=description) return tenant def _get_tenant_by_name(self, name): if self.tempest_client: resp, tenant = self.identity_admin_client.get_tenant_by_name(name) else: tenants = self.identity_admin_client.tenants.list() for ten in tenants: if ten['name'] == name: tenant = ten break else: raise exceptions.NotFound('No such tenant') return tenant def _create_user(self, username, password, tenant, email): if self.tempest_client: resp, user = self.identity_admin_client.create_user(username, password, tenant['id'], email) else: user = self.identity_admin_client.users.create(username, password, email, tenant_id=tenant.id) return user def _get_user(self, tenant, username): if self.tempest_client: resp, user = self.identity_admin_client.get_user_by_username( tenant['id'], username) else: user = self.identity_admin_client.users.get(username) return user def _list_roles(self): if self.tempest_client: resp, roles = self.identity_admin_client.list_roles() else: roles = self.identity_admin_client.roles.list() return roles def _assign_user_role(self, tenant, user, role): if self.tempest_client: self.identity_admin_client.assign_user_role(tenant, user, role) else: self.identity_admin_client.roles.add_user_role(user, role, tenant=tenant) def _delete_user(self, user): if self.tempest_client: self.identity_admin_client.delete_user(user) else: self.identity_admin_client.users.delete(user) def _delete_tenant(self, tenant): if self.tempest_client: self.identity_admin_client.delete_tenant(tenant) else: self.identity_admin_client.tenants.delete(tenant) def _create_creds(self, suffix="", admin=False): """Create random credentials under the following schema. If the name contains a '.' is the full class path of something, and we don't really care. If it isn't, it's probably a meaningful name, so use it. For logging purposes, -user and -tenant are long and redundant, don't use them. The user# will be sufficient to figure it out. """ if '.' in self.name: root = "" else: root = self.name tenant_name = data_utils.rand_name(root) + suffix tenant_desc = tenant_name + "-desc" tenant = self._create_tenant(name=tenant_name, description=tenant_desc) username = data_utils.rand_name(root) + suffix email = data_utils.rand_name(root) + suffix + "@example.com" user = self._create_user(username, self.password, tenant, email) if admin: role = None try: roles = self._list_roles() admin_role = CONF.identity.admin_role if self.tempest_client: role = next(r for r in roles if r['name'] == admin_role) else: role = next(r for r in roles if r.name == admin_role) except StopIteration: msg = "No admin role found" raise exceptions.NotFound(msg) if self.tempest_client: self._assign_user_role(tenant['id'], user['id'], role['id']) else: self._assign_user_role(tenant.id, user.id, role.id) return self._get_credentials(user, tenant) def _get_credentials(self, user, tenant): if self.tempest_client: user_get = user.get tenant_get = tenant.get else: user_get = user.__dict__.get tenant_get = tenant.__dict__.get return auth.get_credentials( username=user_get('name'), user_id=user_get('id'), tenant_name=tenant_get('name'), tenant_id=tenant_get('id'), password=self.password) def _create_network_resources(self, tenant_id): network = None subnet = None router = None # Make sure settings if self.network_resources: if self.network_resources['router']: if (not self.network_resources['subnet'] or not self.network_resources['network']): raise exceptions.InvalidConfiguration( 'A router requires a subnet and network') elif self.network_resources['subnet']: if not self.network_resources['network']: raise exceptions.InvalidConfiguration( 'A subnet requires a network') elif self.network_resources['dhcp']: raise exceptions.InvalidConfiguration('DHCP requires a subnet') data_utils.rand_name_root = data_utils.rand_name(self.name) if not self.network_resources or self.network_resources['network']: network_name = data_utils.rand_name_root + "-network" network = self._create_network(network_name, tenant_id) try: if not self.network_resources or self.network_resources['subnet']: subnet_name = data_utils.rand_name_root + "-subnet" subnet = self._create_subnet(subnet_name, tenant_id, network['id']) if not self.network_resources or self.network_resources['router']: router_name = data_utils.rand_name_root + "-router" router = self._create_router(router_name, tenant_id) self._add_router_interface(router['id'], subnet['id']) except Exception: if router: self._clear_isolated_router(router['id'], router['name']) if subnet: self._clear_isolated_subnet(subnet['id'], subnet['name']) if network: self._clear_isolated_network(network['id'], network['name']) raise return network, subnet, router def _create_network(self, name, tenant_id): if self.tempest_client: resp, resp_body = self.network_admin_client.create_network( name=name, tenant_id=tenant_id) else: body = {'network': {'tenant_id': tenant_id, 'name': name}} resp_body = self.network_admin_client.create_network(body) return resp_body['network'] def _create_subnet(self, subnet_name, tenant_id, network_id): if not self.tempest_client: body = {'subnet': {'name': subnet_name, 'tenant_id': tenant_id, 'network_id': network_id, 'ip_version': 4}} if self.network_resources: body['enable_dhcp'] = self.network_resources['dhcp'] base_cidr = netaddr.IPNetwork(CONF.network.tenant_network_cidr) mask_bits = CONF.network.tenant_network_mask_bits for subnet_cidr in base_cidr.subnet(mask_bits): try: if self.tempest_client: if self.network_resources: resp, resp_body = self.network_admin_client.\ create_subnet( network_id=network_id, cidr=str(subnet_cidr), name=subnet_name, tenant_id=tenant_id, enable_dhcp=self.network_resources['dhcp'], ip_version=4) else: resp, resp_body = self.network_admin_client.\ create_subnet(network_id=network_id, cidr=str(subnet_cidr), name=subnet_name, tenant_id=tenant_id, ip_version=4) else: body['subnet']['cidr'] = str(subnet_cidr) resp_body = self.network_admin_client.create_subnet(body) break except exceptions.BadRequest as e: if 'overlaps with another subnet' not in str(e): raise else: e = exceptions.BuildErrorException() e.message = 'Available CIDR for subnet creation could not be found' raise e return resp_body['subnet'] def _create_router(self, router_name, tenant_id): external_net_id = dict( network_id=CONF.network.public_network_id) if self.tempest_client: resp, resp_body = self.network_admin_client.create_router( router_name, external_gateway_info=external_net_id, tenant_id=tenant_id) else: body = {'router': {'name': router_name, 'tenant_id': tenant_id, 'external_gateway_info': external_net_id, 'admin_state_up': True}} resp_body = self.network_admin_client.create_router(body) return resp_body['router'] def _add_router_interface(self, router_id, subnet_id): if self.tempest_client: self.network_admin_client.add_router_interface_with_subnet_id( router_id, subnet_id) else: body = {'subnet_id': subnet_id} self.network_admin_client.add_interface_router(router_id, body) def get_primary_network(self): return self.isolated_net_resources.get('primary')[0] def get_primary_subnet(self): return self.isolated_net_resources.get('primary')[1] def get_primary_router(self): return self.isolated_net_resources.get('primary')[2] def get_admin_network(self): return self.isolated_net_resources.get('admin')[0] def get_admin_subnet(self): return self.isolated_net_resources.get('admin')[1] def get_admin_router(self): return self.isolated_net_resources.get('admin')[2] def get_alt_network(self): return self.isolated_net_resources.get('alt')[0] def get_alt_subnet(self): return self.isolated_net_resources.get('alt')[1] def get_alt_router(self): return self.isolated_net_resources.get('alt')[2] def get_credentials(self, credential_type): if self.isolated_creds.get(credential_type): credentials = self.isolated_creds[credential_type] else: is_admin = (credential_type == 'admin') credentials = self._create_creds(admin=is_admin) self.isolated_creds[credential_type] = credentials # Maintained until tests are ported LOG.info("Acquired isolated creds:\n credentials: %s" % credentials) if CONF.service_available.neutron: network, subnet, router = self._create_network_resources( credentials.tenant_id) self.isolated_net_resources[credential_type] = ( network, subnet, router,) LOG.info("Created isolated network resources for : \n" + " credentials: %s" % credentials) return credentials def get_primary_creds(self): return self.get_credentials('primary') def get_admin_creds(self): return self.get_credentials('admin') def get_alt_creds(self): return self.get_credentials('alt') def _clear_isolated_router(self, router_id, router_name): net_client = self.network_admin_client try: net_client.delete_router(router_id) except exceptions.NotFound: LOG.warn('router with name: %s not found for delete' % router_name) def _clear_isolated_subnet(self, subnet_id, subnet_name): net_client = self.network_admin_client try: net_client.delete_subnet(subnet_id) except exceptions.NotFound: LOG.warn('subnet with name: %s not found for delete' % subnet_name) def _clear_isolated_network(self, network_id, network_name): net_client = self.network_admin_client try: net_client.delete_network(network_id) except exceptions.NotFound: LOG.warn('network with name: %s not found for delete' % network_name) def _cleanup_ports(self, network_id): # TODO(mlavalle) This method will be removed once patch # https://review.openstack.org/#/c/46563/ merges in Neutron if not self.ports: if self.tempest_client: resp, resp_body = self.network_admin_client.list_ports() else: resp_body = self.network_admin_client.list_ports() self.ports = resp_body['ports'] ports_to_delete = [ port for port in self.ports if (port['network_id'] == network_id and port['device_owner'] != 'network:router_interface' and port['device_owner'] != 'network:dhcp') ] for port in ports_to_delete: try: LOG.info('Cleaning up port id %s, name %s' % (port['id'], port['name'])) self.network_admin_client.delete_port(port['id']) except exceptions.NotFound: LOG.warn('Port id: %s, name %s not found for clean-up' % (port['id'], port['name'])) def _clear_isolated_net_resources(self): net_client = self.network_admin_client for cred in self.isolated_net_resources: network, subnet, router = self.isolated_net_resources.get(cred) LOG.debug("Clearing network: %(network)s, " "subnet: %(subnet)s, router: %(router)s", {'network': network, 'subnet': subnet, 'router': router}) if (not self.network_resources or self.network_resources.get('router')): try: if self.tempest_client: net_client.remove_router_interface_with_subnet_id( router['id'], subnet['id']) else: body = {'subnet_id': subnet['id']} net_client.remove_interface_router(router['id'], body) except exceptions.NotFound: LOG.warn('router with name: %s not found for delete' % router['name']) self._clear_isolated_router(router['id'], router['name']) if (not self.network_resources or self.network_resources.get('network')): # TODO(mlavalle) This method call will be removed once patch # https://review.openstack.org/#/c/46563/ merges in Neutron self._cleanup_ports(network['id']) if (not self.network_resources or self.network_resources.get('subnet')): self._clear_isolated_subnet(subnet['id'], subnet['name']) if (not self.network_resources or self.network_resources.get('network')): self._clear_isolated_network(network['id'], network['name']) def clear_isolated_creds(self): if not self.isolated_creds: return self._clear_isolated_net_resources() for creds in self.isolated_creds.itervalues(): try: self._delete_user(creds.user_id) except exceptions.NotFound: LOG.warn("user with name: %s not found for delete" % creds.username) try: self._delete_tenant(creds.tenant_id) except exceptions.NotFound: LOG.warn("tenant with name: %s not found for delete" % creds.tenant_name)
# The MIT License (MIT) # Copyright (c) 2016, 2017 by the ESA CCI Toolbox development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import fnmatch import os import os.path import re import sys import urllib.parse from collections import OrderedDict from contextlib import contextmanager from datetime import datetime, date, timedelta from io import StringIO from typing import Union, Tuple, Sequence, Optional, Iterable, Any import numpy as np from .sround import sround from .undefined import UNDEFINED __author__ = "Norman Fomferra (Brockmann Consult GmbH)" def qualified_name_to_object(qualified_name: str, default_module_name='builtins'): """ Convert a fully qualified name into a Python object. It is true that ``qualified_name_to_object(object_to_qualified_name(obj)) is obj``. >>> qualified_name_to_object('unittest.TestCase') <class 'unittest.case.TestCase'> See also :py:func:`object_to_qualified_name`. :param qualified_name: fully qualified name of the form [<module>'.'{<name>'.'}]<name> :param default_module_name: default module name to be used if the name does not contain one :return: the Python object :raise ImportError: If the module could not be imported :raise AttributeError: If the name could not be found """ parts = qualified_name.split('.') if len(parts) == 1: module_name = default_module_name else: module_name = parts[0] parts = parts[1:] value = __import__(module_name) for name in parts: value = getattr(value, name) return value def object_to_qualified_name(value, fail=False, default_module_name='builtins') -> Union[str, None]: """ Get the fully qualified name of a Python object. It is true that ``qualified_name_to_object(object_to_qualified_name(obj)) is obj``. >>> from unittest import TestCase >>> object_to_qualified_name(TestCase) 'unittest.case.TestCase' See also :py:func:`qualified_name_to_object`. :param value: some Python object :param fail: raise ``ValueError`` if name cannot be derived. :param default_module_name: if this is the *value*'s module name, no module name will be returned. :return: fully qualified name if it can be derived, otherwise ``None`` if *fail* is ``False``. :raise ValueError: if *fail* is ``True`` and the name cannot be derived. """ try: module_name = value.__module__ except AttributeError: module_name = None if module_name == default_module_name: module_name = None try: name = value.__name__ except AttributeError: name = None if name: return module_name + '.' + name if module_name else name elif fail: raise ValueError("missing attribute '__name__'") else: return str(value) @contextmanager def fetch_std_streams(): """ A context manager which can be used to temporarily fetch the standard output streams ``sys.stdout`` and ``sys.stderr``. Usage::: with fetch_std_streams() as stdout, stderr sys.stdout.write('yes') sys.stderr.write('oh no') print('fetched', stdout.getvalue()) print('fetched', stderr.getvalue()) :return: yields ``sys.stdout`` and ``sys.stderr`` redirected into buffers of type ``StringIO`` """ sys.stdout.flush() sys.stderr.flush() old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = StringIO() sys.stderr = StringIO() try: yield sys.stdout, sys.stderr finally: sys.stdout.flush() sys.stderr.flush() sys.stdout = old_stdout sys.stderr = old_stderr def encode_url_path(path_pattern: str, path_args: dict = None, query_args: dict = None) -> str: """ Return an URL path with an optional query string which is composed of a *path_pattern* that may contain placeholders of the form ``{name}`` which will be replaced by URL-encoded versions of the corresponding values in *path_args*, i.e. ``urllib.parse.quote_plus(path_args[name])``. An optional query string is composed of the URL-encoded key-value pairs given in *query_args*, i.e. ``urllib.parse.urlencode(query_args)``. :param path_pattern: The path pattern which may include any number of placeholders of the form ``{name}`` :param path_args: The values for the placeholders in *path_pattern* :param query_args: The query arguments :return: an URL-encoded path """ path = path_pattern if path_args: quoted_pattern_args = dict(path_args) for name, value in path_args.items(): quoted_pattern_args[name] = urllib.parse.quote_plus(str(value)) if value is not None else '' path = path_pattern.format(**quoted_pattern_args) query_string = '' if query_args: query_string = '?' + urllib.parse.urlencode(query_args) return path + query_string def to_datetime_range(start_datetime_or_str: Union[datetime, date, str, None], end_datetime_or_str: Union[datetime, date, str, None], default=None) -> Tuple[datetime, datetime]: if not start_datetime_or_str and not end_datetime_or_str: return default if not end_datetime_or_str: if not start_datetime_or_str: raise ValueError('start_datetime_or_str argument must be given') end_datetime_or_str = start_datetime_or_str start_datetime = to_datetime(start_datetime_or_str, upper_bound=False) end_datetime = to_datetime(end_datetime_or_str, upper_bound=True) return start_datetime, end_datetime def to_datetime(datetime_or_str: Union[datetime, date, str, None], upper_bound=False, default=None) -> datetime: if datetime_or_str is None: return default elif isinstance(datetime_or_str, str): if datetime_or_str.strip() == '': return default format_to_timedelta = [("%Y-%m-%dT%H:%M:%S", timedelta()), ("%Y-%m-%d %H:%M:%S", timedelta()), ("%Y-%m-%d", timedelta(hours=24, seconds=-1)), ("%Y-%m", timedelta(weeks=4, seconds=-1)), ("%Y", timedelta(days=365, seconds=-1)), ] for f, td in format_to_timedelta: try: dt = datetime.strptime(datetime_or_str, f) return dt + td if upper_bound else dt except ValueError: pass raise ValueError('Invalid date/time value: "%s"' % datetime_or_str) elif isinstance(datetime_or_str, datetime): return datetime_or_str elif isinstance(datetime_or_str, date): return datetime(datetime_or_str.year, datetime_or_str.month, datetime_or_str.day, 12) else: raise TypeError('datetime_or_str argument must be a string or instance of datetime.date') def to_list(value, dtype: type = str, name: str = None, nullable: bool = True, csv: bool = True, strip: bool = True): """ Convert *value* into a list of items of type *dtype*. :param value: Some value that may be a sequence or a scalar :param dtype: The desired target type :param name: An (argument) name used for ``ValueError`` messages :param nullable: Whether *value* can be None. :param csv: Whether to split *value* if it is a string containing commas. :param strip: Whether to strip CSV string values, used only if *csv* is True. :return: A list with elements of type *dtype* or None if *value* is None and *nullable* is True """ if value is None: if not nullable: raise ValueError('%s argument must not be None' % (name or 'some')) return value if csv and isinstance(value, str): items = value.split(',') return [dtype(item.strip() if strip else item) for item in items] if isinstance(value, dtype): return [value] # noinspection PyBroadException try: return [dtype(item) for item in value] except Exception: return [dtype(value)] _PYTHON_QUOTE_CHARS = ['"', "'"] def to_str_constant(s: str, quote="'") -> str: """ Convert a given string into another string that is a valid Python representation of a string constant. :param s: the string :param quote: the quote character, either a single or double quote :return: """ if s is None: raise ValueError() if quote not in _PYTHON_QUOTE_CHARS: raise ValueError() return quote + s.replace('\\', '\\\\').replace(quote, "\\%s" % quote) + quote def is_str_constant(s: str) -> bool: """ Test whether a given string is a Python representation of a string constant. :param s: the string :return: True, if so. """ return s and len(s) >= 2 and s[0] == s[-1] and s[0] in _PYTHON_QUOTE_CHARS @contextmanager def cwd(path: str): """ A context manager which can be used to temporarily change the current working directory to *path*. Usage::: print(os.getcwd()) with cwd('./test'): print(os.getcwd()) print(os.getcwd()) :return: yields the new working directory (absolute *path* passed in) """ if path is None: raise ValueError('path argument must be given') old_dir = os.getcwd() try: os.chdir(path) yield os.getcwd() finally: os.chdir(old_dir) _DATETIME64 = np.dtype('datetime64') _ZERO_THMS_POSTFIX = 'T00:00:00' _ZERO_MICR_POSTFIX = '.000000000' def date_to_simple_str(v): time_str = str(v) if time_str.endswith(_ZERO_MICR_POSTFIX): time_str = time_str[0: -len(_ZERO_MICR_POSTFIX)] if time_str.endswith(_ZERO_THMS_POSTFIX): time_str = time_str[0: -len(_ZERO_THMS_POSTFIX)] return time_str def to_json(v): if v is None: return v t = type(v) if t in {bool, int, float, str}: return v if t == complex: return [v.real, v.imag] if isinstance(v, type): return object_to_qualified_name(v) # TODO (forman): handle dtype=uint64/int64 here, as JSON does not support 64-bit ints is_datetime64 = False try: is_datetime64 = np.issubdtype(v.dtype, np.datetime64) except AttributeError: pass if is_datetime64: # Convert time values to time strings is_scalar = False try: is_scalar = v.size == 1 and len(v.shape) == 0 except AttributeError: pass if is_scalar: return date_to_simple_str(v) else: li = [] for vi in v: li.append(date_to_simple_str(vi)) return li if isinstance(v, np.ndarray) and not np.issubdtype(v.dtype, np.datetime64): try: return v.tolist() except AttributeError: pass try: return v.item() except (AttributeError, ValueError): pass try: d = OrderedDict() for ki, vi in v.items(): d[str(ki)] = to_json(vi) return d except AttributeError: pass try: li = [] for vi in v: li.append(to_json(vi)) return li except TypeError: pass return str(v) def filter_fileset(names: Sequence[str], includes: Optional[Sequence[str]] = None, excludes: Optional[Sequence[str]] = None) -> Sequence[str]: """ Filter a fileset given by the sequence *names* using the wildcard patterns in *includes* and *excludes*. :param names: The names of the fileset :param includes: Wildcard patterns that select the file names to be included, :param excludes: Wildcard patterns that select the file names to be excluded, :return: The filtered fileset """ if includes is not None: filtered_names = set() for pattern in includes: filtered_names.update(fnmatch.filter(names, pattern)) if excludes is not None: filtered_names_old = filtered_names filtered_names = set(filtered_names) for pattern in excludes: filtered_names.difference_update(fnmatch.filter(filtered_names_old, pattern)) elif excludes is not None: filtered_names = set(names) for pattern in excludes: filtered_names.difference_update(fnmatch.filter(filtered_names, pattern)) else: filtered_names = names return filtered_names def new_indexed_name(names: Iterable[str], pattern: str) -> str: """ Return a new name that is unique in *names* and that conforms to *pattern*. The argument *pattern* must contain a single ``"{index}"`` substring. :param names: Sequence of names :param pattern: Naming pattern, e.g. "var_{index}" :return: a new name, e.g. "var_3" """ if "{index}" not in pattern: raise ValueError('pattern must contain "{index}"') re_pattern = re.compile(pattern.replace("{index}", "(\d+)")) max_index = 0 for name in names: match_result = re_pattern.match(name) if match_result and match_result.group(1): max_index = max(max_index, int(match_result.group(1))) new_index = max_index + 1 while True: new_name = pattern.replace("{index}", str(new_index)) if not new_name.isidentifier(): raise ValueError('pattern does not yield a valid name') if new_name not in names: return new_name new_index += 1 NoneType = type(None) # noinspection PyBroadException def to_scalar(value: Any, nchars=None, ndigits=None, stringify=False) -> Any: """ Convert the given *value* into a JSON-serializable, scalar value. If the conversion fails, UNDEFINED is returned. :param value: Any value. :param nchars: If not None and greater zero, text values will be limited to *nchars* characters. :param ndigits: If not None, floating point values will be rounded to *ndigits* significant digits. :param stringify: If True, non-primitive values will be converted to strings. :return: A JSON-serializable, scalar value or UNDEFINED, if the conversion fails. """ is_float = False is_str = False if isinstance(value, (int, bool, NoneType)): return value elif isinstance(value, float): is_float = True elif isinstance(value, str): is_str = True elif hasattr(value, 'shape') and hasattr(value, 'dtype'): try: shape = value.shape dtype = value.dtype ndim = len(shape) size = 1 for dim in shape: size *= dim if size > 1: return UNDEFINED if ndim >= 1: index = 0 if ndim == 1 else (0,) * ndim try: value = value[index] except BaseException: pass if np.issubdtype(dtype, np.integer): return int(value) elif np.issubdtype(dtype, np.bool_): return bool(value) elif np.issubdtype(dtype, np.floating): value = float(value) is_float = True elif np.issubdtype(dtype, np.str_) or stringify: value = str(value) is_str = True else: return UNDEFINED except BaseException: return UNDEFINED elif stringify: value = str(value) is_str = True else: return UNDEFINED if is_float: if ndigits is not None: return sround(value, ndigits=ndigits) return value if is_str: if nchars is not None and len(value) > nchars: return value[0: nchars] + '...' return value return UNDEFINED
"""HTML5 Push Messaging notification service.""" from datetime import datetime, timedelta from functools import partial from urllib.parse import urlparse import json import logging import time import uuid from aiohttp.hdrs import AUTHORIZATION import voluptuous as vol from voluptuous.humanize import humanize_error from homeassistant.components import websocket_api from homeassistant.components.frontend import add_manifest_json_key from homeassistant.components.http import HomeAssistantView from homeassistant.const import ( HTTP_BAD_REQUEST, HTTP_INTERNAL_SERVER_ERROR, HTTP_UNAUTHORIZED, URL_ROOT, ) from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers import config_validation as cv from homeassistant.util import ensure_unique_string from homeassistant.util.json import load_json, save_json from homeassistant.components.notify import ( ATTR_DATA, ATTR_TARGET, ATTR_TITLE, ATTR_TITLE_DEFAULT, DOMAIN, PLATFORM_SCHEMA, BaseNotificationService, ) _LOGGER = logging.getLogger(__name__) REGISTRATIONS_FILE = "html5_push_registrations.conf" SERVICE_DISMISS = "html5_dismiss" ATTR_GCM_SENDER_ID = "gcm_sender_id" ATTR_GCM_API_KEY = "gcm_api_key" ATTR_VAPID_PUB_KEY = "vapid_pub_key" ATTR_VAPID_PRV_KEY = "vapid_prv_key" ATTR_VAPID_EMAIL = "vapid_email" def gcm_api_deprecated(value): """Warn user that GCM API config is deprecated.""" if value: _LOGGER.warning( "Configuring html5_push_notifications via the GCM api" " has been deprecated and will stop working after April 11," " 2019. Use the VAPID configuration instead. For instructions," " see https://www.home-assistant.io/components/notify.html5/" ) return value PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(ATTR_GCM_SENDER_ID): vol.All(cv.string, gcm_api_deprecated), vol.Optional(ATTR_GCM_API_KEY): cv.string, vol.Optional(ATTR_VAPID_PUB_KEY): cv.string, vol.Optional(ATTR_VAPID_PRV_KEY): cv.string, vol.Optional(ATTR_VAPID_EMAIL): cv.string, } ) ATTR_SUBSCRIPTION = "subscription" ATTR_BROWSER = "browser" ATTR_NAME = "name" ATTR_ENDPOINT = "endpoint" ATTR_KEYS = "keys" ATTR_AUTH = "auth" ATTR_P256DH = "p256dh" ATTR_EXPIRATIONTIME = "expirationTime" ATTR_TAG = "tag" ATTR_ACTION = "action" ATTR_ACTIONS = "actions" ATTR_TYPE = "type" ATTR_URL = "url" ATTR_DISMISS = "dismiss" ATTR_PRIORITY = "priority" DEFAULT_PRIORITY = "normal" ATTR_TTL = "ttl" DEFAULT_TTL = 86400 ATTR_JWT = "jwt" WS_TYPE_APPKEY = "notify/html5/appkey" SCHEMA_WS_APPKEY = websocket_api.BASE_COMMAND_MESSAGE_SCHEMA.extend( {vol.Required("type"): WS_TYPE_APPKEY} ) # The number of days after the moment a notification is sent that a JWT # is valid. JWT_VALID_DAYS = 7 KEYS_SCHEMA = vol.All( dict, vol.Schema( {vol.Required(ATTR_AUTH): cv.string, vol.Required(ATTR_P256DH): cv.string} ), ) SUBSCRIPTION_SCHEMA = vol.All( dict, vol.Schema( { # pylint: disable=no-value-for-parameter vol.Required(ATTR_ENDPOINT): vol.Url(), vol.Required(ATTR_KEYS): KEYS_SCHEMA, vol.Optional(ATTR_EXPIRATIONTIME): vol.Any(None, cv.positive_int), } ), ) DISMISS_SERVICE_SCHEMA = vol.Schema( { vol.Optional(ATTR_TARGET): vol.All(cv.ensure_list, [cv.string]), vol.Optional(ATTR_DATA): dict, } ) REGISTER_SCHEMA = vol.Schema( { vol.Required(ATTR_SUBSCRIPTION): SUBSCRIPTION_SCHEMA, vol.Required(ATTR_BROWSER): vol.In(["chrome", "firefox"]), vol.Optional(ATTR_NAME): cv.string, } ) CALLBACK_EVENT_PAYLOAD_SCHEMA = vol.Schema( { vol.Required(ATTR_TAG): cv.string, vol.Required(ATTR_TYPE): vol.In(["received", "clicked", "closed"]), vol.Required(ATTR_TARGET): cv.string, vol.Optional(ATTR_ACTION): cv.string, vol.Optional(ATTR_DATA): dict, } ) NOTIFY_CALLBACK_EVENT = "html5_notification" # Badge and timestamp are Chrome specific (not in official spec) HTML5_SHOWNOTIFICATION_PARAMETERS = ( "actions", "badge", "body", "dir", "icon", "image", "lang", "renotify", "requireInteraction", "tag", "timestamp", "vibrate", ) def get_service(hass, config, discovery_info=None): """Get the HTML5 push notification service.""" json_path = hass.config.path(REGISTRATIONS_FILE) registrations = _load_config(json_path) if registrations is None: return None vapid_pub_key = config.get(ATTR_VAPID_PUB_KEY) vapid_prv_key = config.get(ATTR_VAPID_PRV_KEY) vapid_email = config.get(ATTR_VAPID_EMAIL) def websocket_appkey(hass, connection, msg): connection.send_message(websocket_api.result_message(msg["id"], vapid_pub_key)) hass.components.websocket_api.async_register_command( WS_TYPE_APPKEY, websocket_appkey, SCHEMA_WS_APPKEY ) hass.http.register_view(HTML5PushRegistrationView(registrations, json_path)) hass.http.register_view(HTML5PushCallbackView(registrations)) gcm_api_key = config.get(ATTR_GCM_API_KEY) gcm_sender_id = config.get(ATTR_GCM_SENDER_ID) if gcm_sender_id is not None: add_manifest_json_key(ATTR_GCM_SENDER_ID, config.get(ATTR_GCM_SENDER_ID)) return HTML5NotificationService( hass, gcm_api_key, vapid_prv_key, vapid_email, registrations, json_path ) def _load_config(filename): """Load configuration.""" try: return load_json(filename) except HomeAssistantError: pass return {} class HTML5PushRegistrationView(HomeAssistantView): """Accepts push registrations from a browser.""" url = "/api/notify.html5" name = "api:notify.html5" def __init__(self, registrations, json_path): """Init HTML5PushRegistrationView.""" self.registrations = registrations self.json_path = json_path async def post(self, request): """Accept the POST request for push registrations from a browser.""" try: data = await request.json() except ValueError: return self.json_message("Invalid JSON", HTTP_BAD_REQUEST) try: data = REGISTER_SCHEMA(data) except vol.Invalid as ex: return self.json_message(humanize_error(data, ex), HTTP_BAD_REQUEST) devname = data.get(ATTR_NAME) data.pop(ATTR_NAME, None) name = self.find_registration_name(data, devname) previous_registration = self.registrations.get(name) self.registrations[name] = data try: hass = request.app["hass"] await hass.async_add_job(save_json, self.json_path, self.registrations) return self.json_message("Push notification subscriber registered.") except HomeAssistantError: if previous_registration is not None: self.registrations[name] = previous_registration else: self.registrations.pop(name) return self.json_message( "Error saving registration.", HTTP_INTERNAL_SERVER_ERROR ) def find_registration_name(self, data, suggested=None): """Find a registration name matching data or generate a unique one.""" endpoint = data.get(ATTR_SUBSCRIPTION).get(ATTR_ENDPOINT) for key, registration in self.registrations.items(): subscription = registration.get(ATTR_SUBSCRIPTION) if subscription.get(ATTR_ENDPOINT) == endpoint: return key return ensure_unique_string(suggested or "unnamed device", self.registrations) async def delete(self, request): """Delete a registration.""" try: data = await request.json() except ValueError: return self.json_message("Invalid JSON", HTTP_BAD_REQUEST) subscription = data.get(ATTR_SUBSCRIPTION) found = None for key, registration in self.registrations.items(): if registration.get(ATTR_SUBSCRIPTION) == subscription: found = key break if not found: # If not found, unregistering was already done. Return 200 return self.json_message("Registration not found.") reg = self.registrations.pop(found) try: hass = request.app["hass"] await hass.async_add_job(save_json, self.json_path, self.registrations) except HomeAssistantError: self.registrations[found] = reg return self.json_message( "Error saving registration.", HTTP_INTERNAL_SERVER_ERROR ) return self.json_message("Push notification subscriber unregistered.") class HTML5PushCallbackView(HomeAssistantView): """Accepts push registrations from a browser.""" requires_auth = False url = "/api/notify.html5/callback" name = "api:notify.html5/callback" def __init__(self, registrations): """Init HTML5PushCallbackView.""" self.registrations = registrations def decode_jwt(self, token): """Find the registration that signed this JWT and return it.""" import jwt # 1. Check claims w/o verifying to see if a target is in there. # 2. If target in claims, attempt to verify against the given name. # 2a. If decode is successful, return the payload. # 2b. If decode is unsuccessful, return a 401. target_check = jwt.decode(token, verify=False) if target_check.get(ATTR_TARGET) in self.registrations: possible_target = self.registrations[target_check[ATTR_TARGET]] key = possible_target[ATTR_SUBSCRIPTION][ATTR_KEYS][ATTR_AUTH] try: return jwt.decode(token, key, algorithms=["ES256", "HS256"]) except jwt.exceptions.DecodeError: pass return self.json_message( "No target found in JWT", status_code=HTTP_UNAUTHORIZED ) # The following is based on code from Auth0 # https://auth0.com/docs/quickstart/backend/python def check_authorization_header(self, request): """Check the authorization header.""" import jwt auth = request.headers.get(AUTHORIZATION, None) if not auth: return self.json_message( "Authorization header is expected", status_code=HTTP_UNAUTHORIZED ) parts = auth.split() if parts[0].lower() != "bearer": return self.json_message( "Authorization header must " "start with Bearer", status_code=HTTP_UNAUTHORIZED, ) if len(parts) != 2: return self.json_message( "Authorization header must " "be Bearer token", status_code=HTTP_UNAUTHORIZED, ) token = parts[1] try: payload = self.decode_jwt(token) except jwt.exceptions.InvalidTokenError: return self.json_message("token is invalid", status_code=HTTP_UNAUTHORIZED) return payload async def post(self, request): """Accept the POST request for push registrations event callback.""" auth_check = self.check_authorization_header(request) if not isinstance(auth_check, dict): return auth_check try: data = await request.json() except ValueError: return self.json_message("Invalid JSON", HTTP_BAD_REQUEST) event_payload = { ATTR_TAG: data.get(ATTR_TAG), ATTR_TYPE: data[ATTR_TYPE], ATTR_TARGET: auth_check[ATTR_TARGET], } if data.get(ATTR_ACTION) is not None: event_payload[ATTR_ACTION] = data.get(ATTR_ACTION) if data.get(ATTR_DATA) is not None: event_payload[ATTR_DATA] = data.get(ATTR_DATA) try: event_payload = CALLBACK_EVENT_PAYLOAD_SCHEMA(event_payload) except vol.Invalid as ex: _LOGGER.warning( "Callback event payload is not valid: %s", humanize_error(event_payload, ex), ) event_name = "{}.{}".format(NOTIFY_CALLBACK_EVENT, event_payload[ATTR_TYPE]) request.app["hass"].bus.fire(event_name, event_payload) return self.json({"status": "ok", "event": event_payload[ATTR_TYPE]}) class HTML5NotificationService(BaseNotificationService): """Implement the notification service for HTML5.""" def __init__(self, hass, gcm_key, vapid_prv, vapid_email, registrations, json_path): """Initialize the service.""" self._gcm_key = gcm_key self._vapid_prv = vapid_prv self._vapid_email = vapid_email self.registrations = registrations self.registrations_json_path = json_path async def async_dismiss_message(service): """Handle dismissing notification message service calls.""" kwargs = {} if self.targets is not None: kwargs[ATTR_TARGET] = self.targets elif service.data.get(ATTR_TARGET) is not None: kwargs[ATTR_TARGET] = service.data.get(ATTR_TARGET) kwargs[ATTR_DATA] = service.data.get(ATTR_DATA) await self.async_dismiss(**kwargs) hass.services.async_register( DOMAIN, SERVICE_DISMISS, async_dismiss_message, schema=DISMISS_SERVICE_SCHEMA, ) @property def targets(self): """Return a dictionary of registered targets.""" targets = {} for registration in self.registrations: targets[registration] = registration return targets def dismiss(self, **kwargs): """Dismisses a notification.""" data = kwargs.get(ATTR_DATA) tag = data.get(ATTR_TAG) if data else "" payload = {ATTR_TAG: tag, ATTR_DISMISS: True, ATTR_DATA: {}} self._push_message(payload, **kwargs) async def async_dismiss(self, **kwargs): """Dismisses a notification. This method must be run in the event loop. """ await self.hass.async_add_executor_job(partial(self.dismiss, **kwargs)) def send_message(self, message="", **kwargs): """Send a message to a user.""" tag = str(uuid.uuid4()) payload = { "badge": "/static/images/notification-badge.png", "body": message, ATTR_DATA: {}, "icon": "/static/icons/favicon-192x192.png", ATTR_TAG: tag, ATTR_TITLE: kwargs.get(ATTR_TITLE, ATTR_TITLE_DEFAULT), } data = kwargs.get(ATTR_DATA) if data: # Pick out fields that should go into the notification directly vs # into the notification data dictionary. data_tmp = {} for key, val in data.items(): if key in HTML5_SHOWNOTIFICATION_PARAMETERS: payload[key] = val else: data_tmp[key] = val payload[ATTR_DATA] = data_tmp if ( payload[ATTR_DATA].get(ATTR_URL) is None and payload.get(ATTR_ACTIONS) is None ): payload[ATTR_DATA][ATTR_URL] = URL_ROOT self._push_message(payload, **kwargs) def _push_message(self, payload, **kwargs): """Send the message.""" from pywebpush import WebPusher timestamp = int(time.time()) ttl = int(kwargs.get(ATTR_TTL, DEFAULT_TTL)) priority = kwargs.get(ATTR_PRIORITY, DEFAULT_PRIORITY) if priority not in ["normal", "high"]: priority = DEFAULT_PRIORITY payload["timestamp"] = timestamp * 1000 # Javascript ms since epoch targets = kwargs.get(ATTR_TARGET) if not targets: targets = self.registrations.keys() for target in list(targets): info = self.registrations.get(target) try: info = REGISTER_SCHEMA(info) except vol.Invalid: _LOGGER.error( "%s is not a valid HTML5 push notification" " target", target ) continue payload[ATTR_DATA][ATTR_JWT] = add_jwt( timestamp, target, payload[ATTR_TAG], info[ATTR_SUBSCRIPTION][ATTR_KEYS][ATTR_AUTH], ) webpusher = WebPusher(info[ATTR_SUBSCRIPTION]) if self._vapid_prv and self._vapid_email: vapid_headers = create_vapid_headers( self._vapid_email, info[ATTR_SUBSCRIPTION], self._vapid_prv ) vapid_headers.update({"urgency": priority, "priority": priority}) response = webpusher.send( data=json.dumps(payload), headers=vapid_headers, ttl=ttl ) else: # Only pass the gcm key if we're actually using GCM # If we don't, notifications break on FireFox gcm_key = ( self._gcm_key if "googleapis.com" in info[ATTR_SUBSCRIPTION][ATTR_ENDPOINT] else None ) response = webpusher.send(json.dumps(payload), gcm_key=gcm_key, ttl=ttl) if response.status_code == 410: _LOGGER.info("Notification channel has expired") reg = self.registrations.pop(target) if not save_json(self.registrations_json_path, self.registrations): self.registrations[target] = reg _LOGGER.error("Error saving registration") else: _LOGGER.info("Configuration saved") def add_jwt(timestamp, target, tag, jwt_secret): """Create JWT json to put into payload.""" import jwt jwt_exp = datetime.fromtimestamp(timestamp) + timedelta(days=JWT_VALID_DAYS) jwt_claims = { "exp": jwt_exp, "nbf": timestamp, "iat": timestamp, ATTR_TARGET: target, ATTR_TAG: tag, } return jwt.encode(jwt_claims, jwt_secret).decode("utf-8") def create_vapid_headers(vapid_email, subscription_info, vapid_private_key): """Create encrypted headers to send to WebPusher.""" from py_vapid import Vapid if vapid_email and vapid_private_key and ATTR_ENDPOINT in subscription_info: url = urlparse(subscription_info.get(ATTR_ENDPOINT)) vapid_claims = { "sub": "mailto:{}".format(vapid_email), "aud": "{}://{}".format(url.scheme, url.netloc), } vapid = Vapid.from_string(private_key=vapid_private_key) return vapid.sign(vapid_claims) return None
#!/usr/bin/env python # Source : Werkov, Github, PyQt4 examples # URL : https://github.com/Werkov/PyQt4/tree/master/examples/dbus/chat # This is only needed for Python v2 but is harmless for Python v3. import sip sip.setapi('QString', 2) from PyQt4 import QtCore, QtGui, QtDBus import time import tensorflow as tf import os import sys sys.path.append(os.path.join('.', 'GUI')) sys.path.append(os.path.join('.', 'Model_ForChat')) sys.path.append(os.path.join('..', 'Model')) from ui_chatmainwindow import Ui_ChatMainWindow from ui_chatsetnickname import Ui_NicknameDialog import model_forChatBox from model_forChatBox import seq2seq_chat import utils class ChatAdaptor(QtDBus.QDBusAbstractAdaptor): QtCore.Q_CLASSINFO("D-Bus Interface", 'com.trolltech.chat') QtCore.Q_CLASSINFO("D-Bus Introspection", '' ' <interface name="com.trolltech.chat">\n' ' <signal name="message">\n' ' <arg direction="out" type="s" name="nickname"/>\n' ' <arg direction="out" type="s" name="text"/>\n' ' </signal>\n' ' <signal name="action">\n' ' <arg direction="out" type="s" name="nickname"/>\n' ' <arg direction="out" type="s" name="text"/>\n' ' </signal>\n' ' </interface>\n' '') action = QtCore.pyqtSignal(str, str) message = QtCore.pyqtSignal(str, str) def __init__(self, parent): super(ChatAdaptor, self).__init__(parent) self.setAutoRelaySignals(True) class ChatInterface(QtDBus.QDBusAbstractInterface): action = QtCore.pyqtSignal(str, str) message = QtCore.pyqtSignal(str, str) def __init__(self, service, path, connection, parent=None): super(ChatInterface, self).__init__(service, path, 'com.trolltech.chat', connection, parent) class ChatMainWindow(QtGui.QMainWindow, Ui_ChatMainWindow): action = QtCore.pyqtSignal(str, str) message = QtCore.pyqtSignal(str, str) def __init__(self): super(ChatMainWindow, self).__init__() self.m_nickname = "nickname" self.m_messages = [] self.setupUi(self) self.sendButton.setEnabled(False) # Connects self.messageLineEdit.textChanged.connect(self.textChangedSlot) self.sendButton.clicked.connect(self.sendClickedSlot) self.actionChangeNickname.triggered.connect(self.changeNickname) self.actionAboutQt.triggered.connect(self.aboutQt) QtGui.qApp.lastWindowClosed.connect(self.exiting) # Add our D-Bus interface and connect to D-Bus. ChatAdaptor(self) QtDBus.QDBusConnection.sessionBus().registerObject('/', self) iface = ChatInterface('', '', QtDBus.QDBusConnection.sessionBus(), self) QtDBus.QDBusConnection.sessionBus().connect('', '', 'com.trolltech.chat', 'message', self.messageSlot) iface.action.connect(self.actionSlot) dialog = NicknameDialog() dialog.cancelButton.setVisible(False) dialog.exec_() self.m_nickname = dialog.nickname.text().strip() self.action.emit(self.m_nickname, "joins the chat") #-------------------------------- # CHAT-BOT INITIALIZATION #-------------------------------- # Instanciates and build the model for feedforward only self.seq2seq_bot = seq2seq_chat(buckets=[(25, 25)], forward_only=True) self.seq2seq_bot.build() # Restore the trained model's parameters from checkpoint file self.sess = tf.Session() if model_forChatBox.MODE == 'WORDS2WORDS': directory = 'model_word2word' elif model_forChatBox.MODE == 'CHARS2CHARS': directory = 'model_char2char' saver, summary_writer = utils.restore(self.seq2seq_bot,self.sess,save_name=os.path.join('..', 'Model', directory)) def rebuildHistory(self): history = '\n'.join(self.m_messages) self.chatHistory.setPlainText(history) @QtCore.pyqtSlot(str, str) def messageSlot(self, nickname, text): # User's message self.m_messages.append("[%s] - %s" % (nickname.upper(), text)) if len(self.m_messages) > 100: self.m_messages.pop(0) self.rebuildHistory() QtGui.QApplication.processEvents() # Bot's message """ Computes the reply """ theReply = self.seq2seq_bot.reply(text, self.sess) self.m_messages.append("[%s] - %s" % ("BOT", theReply)) self.m_messages.append("") if len(self.m_messages) > 100: self.m_messages.pop(0) self.rebuildHistory() @QtCore.pyqtSlot(str, str) def actionSlot(self, nickname, text): self.m_messages.append("--------\n* %s %s\n--------" % (nickname, text)) if len(self.m_messages) > 100: self.m_messages.pop(0) self.rebuildHistory() @QtCore.pyqtSlot(str) def textChangedSlot(self, newText): self.sendButton.setEnabled(newText != '') @QtCore.pyqtSlot() def sendClickedSlot(self): msg = QtDBus.QDBusMessage.createSignal('/', 'com.trolltech.chat', 'message') msg << self.m_nickname << self.messageLineEdit.text() QtDBus.QDBusConnection.sessionBus().send(msg) self.messageLineEdit.setText('') @QtCore.pyqtSlot() def changeNickname(self): dialog = NicknameDialog(self) if dialog.exec_() == QtGui.QDialog.Accepted: old = self.m_nickname self.m_nickname = dialog.nickname.text().strip() self.action.emit(old, "is now known as %s" % self.m_nickname) @QtCore.pyqtSlot() def aboutQt(self): QtGui.QMessageBox.aboutQt(self) @QtCore.pyqtSlot() def exiting(self): self.action.emit(self.m_nickname, "leaves the chat") class NicknameDialog(QtGui.QDialog, Ui_NicknameDialog): def __init__(self, parent=None): super(NicknameDialog, self).__init__(parent) self.setupUi(self) if __name__ == '__main__': import sys app = QtGui.QApplication(sys.argv) if not QtDBus.QDBusConnection.sessionBus().isConnected(): sys.stderr.write("Cannot connect to the D-Bus session bus.\n" "Please check your system settings and try again.\n") sys.exit(1) chat = ChatMainWindow() chat.show() sys.exit(app.exec_())
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for dictionary manipulation.""" import collections import copy def IsNestedField(d, field_list): """Examine a dict of dicts, to see if the nested field name exists.""" for f in field_list: try: d = d[f] except (KeyError, ValueError): return False return True def GetByPath(d, field_list): """Returns the value of a nested field of a dict of dicts.""" for i, f in enumerate(field_list): try: d = d[f] except (KeyError, ValueError): # Re-raise with a more sensible error message. raise KeyError('Can\'t find field %s.' % '.'.join(field_list[:i+1])) return d def SetByPath(d, field_list, value): """Sets the value of a nested field of a dict of dicts.""" GetByPath(d, field_list[:-1])[field_list[-1]] = value def OrderDict(d): """Recursively construct an OrderedDict with alphabetically sorted keys. Recursion will occur on dictionary values that are themselves dict or list objects. Args: d: A dictionary. Returns: A new data structure where the encountered dict objects are replaced by collections.OrderedDict structures with keys sorted by sorted(). """ if isinstance(d, dict): return collections.OrderedDict([ (k, OrderDict(v)) for k, v in sorted(d.items()) ]) elif isinstance(d, list): return [OrderDict(v) for v in d] else: return d class DictMergeError(Exception): pass def MergeNestedDicts(dict_a, dict_b): """Merge two nested dictionaries. No actual leaves can be common to the two dictionaries. Args: dict_a: First dictionary to merge. dict_b: Second dictionary to merge. Returns: A new nested dict combining the inputs. Raises: DictMergeError: If there is a conflict in combining the dictionaries. """ if not isinstance(dict_a, dict) or not isinstance(dict_b, dict): raise DictMergeError('Both arguments must be dictionaries.') merged = {} all_keys = set(dict_a.keys()) | set(dict_b.keys()) for key in all_keys: if key in dict_a and key in dict_b: if (isinstance(dict_a[key], dict) and isinstance(dict_b[key], dict)): merged[key] = MergeNestedDicts(dict_a[key], dict_b[key]) else: raise DictMergeError('Inputs cannot both set the same value %s.' % key) elif key in dict_a: merged[key] = copy.deepcopy(dict_a[key]) else: merged[key] = copy.deepcopy(dict_b[key]) return merged def UpdateNestedDict(d, u): """Returns a new updated nested dictionary.""" d = copy.deepcopy(d) for k, v in u.iteritems(): if isinstance(v, dict): d[k] = UpdateNestedDict(d.get(k, {}), v) else: d[k] = v return d class UnreadKeysError(Exception): pass class MustConsumeAllDictEntries(dict): """Context manager requiring that all keys in a dict be accessed. Args: d: Dictionary to guard. Returns: A new dictionary that records which fields are accessed. Raises: UnreadKeysError: if, upon leaving the protected context, there exist keys in the underlying dictionary, that have not been read. """ def __init__(self, d): super(MustConsumeAllDictEntries, self).__init__(d) self._access_log = set() def __getitem__(self, key): # Try __getitem__ before setting access log, in case key is not found. result = dict.__getitem__(self, key) self._access_log.add(key) return result def GetUnreadKeys(self): return set(self.keys()) - self._access_log def __enter__(self): return self def __exit__(self, *args): if args[0]: # An exception occurred. return False if self.GetUnreadKeys(): raise UnreadKeysError(self.GetUnreadKeys()) def GetAllDictPaths(tree_dict): """Obtain list of paths to all leaves in dictionary. The last item in each list entry is the value at the leaf. For items in dictionary that are a list of dictionaries, each list entry is indexed by a string repesenting its position in the list. Implementation inspired by https://stackoverflow.com/a/40555856. Args: tree_dict: Input dictionary. Returns: List of lists with all paths to leaf items in dictionary. Example: >> a = {'a':[1 , 2, 3], 'b':[{'c': 10}, {'d': 20}] } >> print get_all_dict_paths(a) [['a', [1, 2, 3]], ['b', '0', 'c', 10], ['b', '1', 'd', 20]] """ if isinstance(tree_dict, list): if isinstance(tree_dict[0], dict): return [[str(i)] + path for i, value in enumerate(tree_dict) for path in GetAllDictPaths(value)] else: return [[tree_dict]] elif not isinstance(tree_dict, dict): return [[tree_dict]] return [[key] + path for key, value in tree_dict.items() for path in GetAllDictPaths(value)]
#!/usr/bin/env python3 # Copyright (c) 2016-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test label RPCs. RPCs tested are: - getaccountaddress - getaddressesbyaccount/getaddressesbylabel - listaddressgroupings - setlabel - sendfrom (with account arguments) - move (with account arguments) Run the test twice - once using the accounts API and once using the labels API. The accounts API test can be removed in V0.18. """ from collections import defaultdict from test_framework.test_framework import VergeTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error class WalletLabelsTest(VergeTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [['-deprecatedrpc=accounts'], []] def setup_network(self): """Don't connect nodes.""" self.setup_nodes() def run_test(self): """Run the test twice - once using the accounts API and once using the labels API.""" self.log.info("Test accounts API") self._run_subtest(True, self.nodes[0]) self.log.info("Test labels API") self._run_subtest(False, self.nodes[1]) def _run_subtest(self, accounts_api, node): # Check that there's no UTXO on any of the nodes assert_equal(len(node.listunspent()), 0) # Note each time we call generate, all generated coins go into # the same address, so we call twice to get two addresses w/50 each node.generate(1) node.generate(101) assert_equal(node.getbalance(), 100) # there should be 2 address groups # each with 1 address with a balance of 50 Verges address_groups = node.listaddressgroupings() assert_equal(len(address_groups), 2) # the addresses aren't linked now, but will be after we send to the # common address linked_addresses = set() for address_group in address_groups: assert_equal(len(address_group), 1) assert_equal(len(address_group[0]), 2) assert_equal(address_group[0][1], 50) linked_addresses.add(address_group[0][0]) # send 50 from each address to a third address not in this wallet # There's some fee that will come back to us when the miner reward # matures. common_address = "msf4WtN1YQKXvNtvdFYt9JBnUD2FB41kjr" txid = node.sendmany( fromaccount="", amounts={common_address: 100}, subtractfeefrom=[common_address], minconf=1, ) tx_details = node.gettransaction(txid) fee = -tx_details['details'][0]['fee'] # there should be 1 address group, with the previously # unlinked addresses now linked (they both have 0 balance) address_groups = node.listaddressgroupings() assert_equal(len(address_groups), 1) assert_equal(len(address_groups[0]), 2) assert_equal(set([a[0] for a in address_groups[0]]), linked_addresses) assert_equal([a[1] for a in address_groups[0]], [0, 0]) node.generate(1) # we want to reset so that the "" label has what's expected. # otherwise we're off by exactly the fee amount as that's mined # and matures in the next 100 blocks node.sendfrom("", common_address, fee) amount_to_send = 1.0 # Create labels and make sure subsequent label API calls # recognize the label/address associations. labels = [Label(name, accounts_api) for name in ("a", "b", "c", "d", "e")] for label in labels: if accounts_api: address = node.getaccountaddress(label.name) else: address = node.getnewaddress(label.name) label.add_receive_address(address) label.verify(node) # Check all labels are returned by listlabels. assert_equal(node.listlabels(), [label.name for label in labels]) # Send a transaction to each label, and make sure this forces # getaccountaddress to generate a new receiving address. for label in labels: if accounts_api: node.sendtoaddress(label.receive_address, amount_to_send) label.add_receive_address(node.getaccountaddress(label.name)) else: node.sendtoaddress(label.addresses[0], amount_to_send) label.verify(node) # Check the amounts received. node.generate(1) for label in labels: assert_equal( node.getreceivedbyaddress(label.addresses[0]), amount_to_send) assert_equal(node.getreceivedbylabel(label.name), amount_to_send) # Check that sendfrom label reduces listaccounts balances. for i, label in enumerate(labels): to_label = labels[(i + 1) % len(labels)] if accounts_api: node.sendfrom(label.name, to_label.receive_address, amount_to_send) else: node.sendfrom(label.name, to_label.addresses[0], amount_to_send) node.generate(1) for label in labels: if accounts_api: address = node.getaccountaddress(label.name) else: address = node.getnewaddress(label.name) label.add_receive_address(address) label.verify(node) assert_equal(node.getreceivedbylabel(label.name), 2) if accounts_api: node.move(label.name, "", node.getbalance(label.name)) label.verify(node) node.generate(101) expected_account_balances = {"": 5200} for label in labels: expected_account_balances[label.name] = 0 if accounts_api: assert_equal(node.listaccounts(), expected_account_balances) assert_equal(node.getbalance(""), 5200) # Check that setlabel can assign a label to a new unused address. for label in labels: address = node.getnewaddress() node.setlabel(address, label.name) label.add_address(address) label.verify(node) if accounts_api: assert address not in node.getaddressesbyaccount("") else: assert_raises_rpc_error(-11, "No addresses with label", node.getaddressesbylabel, "") # Check that addmultisigaddress can assign labels. for label in labels: addresses = [] for x in range(10): addresses.append(node.getnewaddress()) multisig_address = node.addmultisigaddress(5, addresses, label.name)['address'] label.add_address(multisig_address) label.purpose[multisig_address] = "send" label.verify(node) node.sendfrom("", multisig_address, 50) node.generate(101) if accounts_api: for label in labels: assert_equal(node.getbalance(label.name), 50) # Check that setlabel can change the label of an address from a # different label. change_label(node, labels[0].addresses[0], labels[0], labels[1], accounts_api) # Check that setlabel can set the label of an address already # in the label. This is a no-op. change_label(node, labels[2].addresses[0], labels[2], labels[2], accounts_api) if accounts_api: # Check that setaccount can change the label of an address which # is the receiving address of a different label. change_label(node, labels[0].receive_address, labels[0], labels[1], accounts_api) # Check that setaccount can set the label of an address which is # already the receiving address of the label. This is a no-op. change_label(node, labels[2].receive_address, labels[2], labels[2], accounts_api) class Label: def __init__(self, name, accounts_api): # Label name self.name = name self.accounts_api = accounts_api # Current receiving address associated with this label. self.receive_address = None # List of all addresses assigned with this label self.addresses = [] # Map of address to address purpose self.purpose = defaultdict(lambda: "receive") def add_address(self, address): assert_equal(address not in self.addresses, True) self.addresses.append(address) def add_receive_address(self, address): self.add_address(address) if self.accounts_api: self.receive_address = address def verify(self, node): if self.receive_address is not None: assert self.receive_address in self.addresses if self.accounts_api: assert_equal(node.getaccountaddress(self.name), self.receive_address) for address in self.addresses: assert_equal( node.getaddressinfo(address)['labels'][0], {"name": self.name, "purpose": self.purpose[address]}) if self.accounts_api: assert_equal(node.getaccount(address), self.name) else: assert_equal(node.getaddressinfo(address)['label'], self.name) assert_equal( node.getaddressesbylabel(self.name), {address: {"purpose": self.purpose[address]} for address in self.addresses}) if self.accounts_api: assert_equal(set(node.getaddressesbyaccount(self.name)), set(self.addresses)) def change_label(node, address, old_label, new_label, accounts_api): assert_equal(address in old_label.addresses, True) if accounts_api: node.setaccount(address, new_label.name) else: node.setlabel(address, new_label.name) old_label.addresses.remove(address) new_label.add_address(address) # Calling setaccount on an address which was previously the receiving # address of a different account should reset the receiving address of # the old account, causing getaccountaddress to return a brand new # address. if accounts_api: if old_label.name != new_label.name and address == old_label.receive_address: new_address = node.getaccountaddress(old_label.name) assert_equal(new_address not in old_label.addresses, True) assert_equal(new_address not in new_label.addresses, True) old_label.add_receive_address(new_address) old_label.verify(node) new_label.verify(node) if __name__ == '__main__': WalletLabelsTest().main()
#!/usr/bin/env python # coding: utf-8 # Copyright 2013 Abram Hindle # Copyright 2016 Boyan Peychoff # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Do not use urllib's HTTP GET and POST mechanisms. # Write your own HTTP GET and POST # The point is to understand what you have to send and get experience with it import sys import socket import re # you may use urllib to encode data appropriately import urllib def help(): print "httpclient.py [URL] [GET/POST] \n" class HTTPResponse(object): def __init__(self, code=200, body=""): self.code = code self.body = body def __str__(self): return "code: " + str(self.code) + "\n body :" + self.body class HTTPClient(object): def parseURL(self,url): stripped = re.sub('(http://|https://)?',"",url) path = "" host = "" port = 80 maybePort="" lookForPathFlag = False for char in stripped: if char != '/' and lookForPathFlag == False: host+=char else: lookForPathFlag = True if(lookForPathFlag): path+=char try: host,maybePort = host.split(':') except: print "port not specified using default: 80" if path == '': path = '/' if maybePort != "": port = int(maybePort) return [path,host,int(port)] def createRequestHeader(self,path,host,command="GET"): header = command + " " + path + " HTTP/1.1 \r\n" header+= "Accept: */* \r\n" header+= "Host: " + host + "\r\n" header+= "Connection: close \r\n" return header def parseResponse(self,response): code = "" body = "" responseParts = response.split('\n') bodyFlag = False body = [] for element in responseParts: if element == "": bodyFlag = True continue # skip \n if bodyFlag: body.append(element) joinedBody = "".join(body) code = responseParts[0].split(" ")[1] return [code,joinedBody] def connect(self, host, port): clientSocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM) clientSocket.connect((host,port)) return clientSocket def get_code(self, data): code = '500' response = data.split('\n') try: code = response[0].split(" ")[1] except IndexError: 'no body returned' return code def get_headers(self,data): response = data.split("\r\n") headers=[] for element in response: if element in ['','\r']: break else: headers.append(element) return headers def get_body(self, data): response = data.split('\n') bodyFlag = False body = [] for element in response: if element in ["",'\r']: bodyFlag = True continue # skip \n if bodyFlag: body.append(element) joinedBody = "".join(body) return joinedBody def recvall(self, sock): buffer = bytearray() done = False while not done: part = sock.recv(1024) if (part): buffer.extend(part) #print str(buffer) else: done = not part return str(buffer) def GET(self, url, args=None): path,host,port = self.parseURL(url) if args != None: if "?" in path: encodedQuery = urllib.urlencode(args) path+= ("&" +encodedQuery) else: query = "?" + urllib.urlencode(args) path += query headerToSend = self.createRequestHeader(path,host,"GET") clientSocket = self.connect(host,port) clientSocket.sendall(headerToSend + "\r\n\r\n") httpResponse = self.recvall(clientSocket) code = self.get_code(httpResponse) headers= self.get_headers(httpResponse) body = self.get_body(httpResponse) return HTTPResponse(int(code), body) def POST(self, url, args=None): contentLength = 0 postBody = None if (args != None): postBody = urllib.urlencode(args) contentLength = len(postBody) path,host,port = self.parseURL(url) headerToSend = self.createRequestHeader(path,host,"POST") headerToSend+=('Content-Length: '+ str(contentLength) + '\r\n') headerToSend+=('Content-Type: application/x-www-form-urlencoded\r\n') clientSocket = self.connect(host,port) if (postBody != None): clientSocket.sendall(headerToSend + "\r\n" + postBody) else: clientSocket.sendall(headerToSend + "\r\n\r\n") httpResponse = self.recvall(clientSocket) code = self.get_code(httpResponse) headers= self.get_headers(httpResponse) body = self.get_body(httpResponse) return HTTPResponse(int(code), body) def command(self,url ,command="GET" ,args=None): if (command == "POST"): return self.POST( url, args ) else: return self.GET( url, args ) if __name__ == "__main__": client = HTTPClient() command = "GET" if (len(sys.argv) <= 1): help() sys.exit(1) elif (len(sys.argv) == 3): print client.command( sys.argv[1], sys.argv[2] ) else: print client.command( command, sys.argv[1] )
#!/usr/bin/env python # # Author: Mike McKerns (mmckerns @caltech and @uqfoundation) # Author: Alta Fang (altafang @caltech and alta @princeton) # Copyright (c) 2008-2015 California Institute of Technology. # License: 3-clause BSD. The full license text is available at: # - http://trac.mystic.cacr.caltech.edu/project/mystic/browser/mystic/LICENSE # The following code attempts to construct something like: # >>> from sympy import Eq, Symbol # >>> from sympy import solve as symsol # >>> x0 = Symbol('x0') # >>> x1 = Symbol('x1') # >>> x2 = Symbol('x2') # >>> eq1 = Eq(x1, x0 - 2.) # >>> eq2 = Eq(x1, x2*2.) # >>> soln = symsol([eq2, eq1], [x0, x1, x2]) from mystic.tools import permutations from mystic.tools import list_or_tuple_or_ndarray def _classify_variables(constraints, variables='x', nvars=None): """Takes a string of constraint equations and determines which variables are dependent, independent, and unconstrained. Assumes there are no duplicate equations. Returns a dictionary with keys: 'dependent', 'independent', and 'unconstrained', and with values that enumerate the variables that match each variable type. Inputs: constraints -- a string of symbolic constraints, with one constraint equation per line. Constraints must be equality constraints only. Standard python syntax should be followed (with the math and numpy modules already imported). For example: >>> constraints = ''' ... x0 = x4**2 ... x2 = x3 + x4''' >>> _classify_variables(constraints, nvars=5) {'dependent':['x0','x2'], 'independent':['x3','x4'], 'unconstrained':['x1']} >>> constraints = ''' ... x0 = x4**2 ... x4 - x3 = 0. ... x4 - x0 = x2''' >>> _classify_variables(constraints, nvars=5) {'dependent': ['x0','x2','x4'], 'independent': ['x3'], 'unconstrained': ['x1']} Additional Inputs: nvars -- number of variables. Includes variables not explicitly given by the constraint equations (e.g. 'x1' in the example above). variables -- desired variable name. Default is 'x'. A list of variable name strings is also accepted for when desired variable names don't have the same base, and can include variables that are not found in the constraints equation string. """ if ">" in constraints or "<" in constraints: raise NotImplementedError, "cannot classify inequalities" from mystic.symbolic import replace_variables, get_variables #XXX: use solve? or first if not in form xi = ... ? if list_or_tuple_or_ndarray(variables): if nvars is not None: variables = variables[:nvars] constraints = replace_variables(constraints, variables) varname = '$' ndim = len(variables) else: varname = variables # varname used below instead of variables myvar = get_variables(constraints, variables) if myvar: ndim = max([int(v.strip(varname)) for v in myvar]) + 1 else: ndim = 0 if nvars is not None: ndim = nvars eqns = constraints.splitlines() indices = range(ndim) dep = [] indep = [] for eqn in eqns: # find which variables are used if eqn: for var in range(ndim): if indices.count(var) != 0: if eqn.find(varname + str(var)) != -1: indep.append(var) indices.remove(var) indep.sort() _dep = [] for eqn in eqns: # find which variables are on the LHS if eqn: split = eqn.split('=') for var in indep: if split[0].find(varname + str(var)) != -1: _dep.append(var) indep.remove(var) break _dep.sort() indep = _dep + indep # prefer variables found on LHS for eqn in eqns: # find one dependent variable per equation _dep = [] _indep = indep[:] if eqn: for var in _indep: if eqn.find(varname + str(var)) != -1: _dep.append(var) _indep.remove(var) if _dep: dep.append(_dep[0]) indep.remove(_dep[0]) #FIXME: 'equivalent' equations not ignored (e.g. x2=x2; or x2=1, 2*x2=2) """These are good: >>> constraints = ''' ... x0 = x4**2 ... x2 - x4 - x3 = 0.''' >>> _classify_variables(constraints, nvars=5) {'dependent': ['x0','x2'], 'independent': ['x3','x4'], 'unconstrained': ['x1']} >>> constraints = ''' ... x0 + x2 = 0. ... x0 + 2*x2 = 0.''' >>> _classify_variables(constraints, nvars=5) {'dependent': ['x0','x2'], 'independent': [], 'unconstrained': ['x1','x3','x4']} This is a bug: >>> constraints = ''' ... x0 + x2 = 0. ... 2*x0 + 2*x2 = 0.''' >>> _classify_variables(constraints, nvars=5) {'dependent': ['x0','x2'], 'independent': [], 'unconstrained': ['x1','x3','x4']} """ #XXX: should simplify first? dep.sort() indep.sort() # return the actual variable names (not the indicies) if varname == variables: # then was single variable variables = [varname+str(i) for i in range(ndim)] dep = [variables[i] for i in dep] indep = [variables[i] for i in indep] indices = [variables[i] for i in indices] d = {'dependent':dep, 'independent':indep, 'unconstrained':indices} return d def _prepare_sympy(constraints, variables='x', nvars=None): """Parse an equation string and prepare input for sympy. Returns a tuple of sympy-specific input: (code for variable declaration, left side of equation string, right side of equation string, list of variables, and the number of sympy equations). Inputs: constraints -- a string of symbolic constraints, with one constraint equation per line. Constraints must be equality constraints only. Standard python syntax should be followed (with the math and numpy modules already imported). For example: >>> constraints = ''' ... x0 = x4**2 ... x4 - x3 = 0. ... x4 - x0 = x2''' >>> code, lhs, rhs, vars, neqn = _prepare_sympy(constraints, nvars=5) >>> print code x0=Symbol('x0') x1=Symbol('x1') x2=Symbol('x2') x3=Symbol('x3') x4=Symbol('x4') rand = Symbol('rand') >>> print lhs, rhs ['x0 ', 'x4 - x3 ', 'x4 - x0 '] [' x4**2', ' 0.', ' x2'] print "%s in %s eqns" % (vars, neqn) x0,x1,x2,x3,x4, in 3 eqns Additional Inputs: nvars -- number of variables. Includes variables not explicitly given by the constraint equations (e.g. 'x1' in the example above). variables -- desired variable name. Default is 'x'. A list of variable name strings is also accepted for when desired variable names don't have the same base, and can include variables that are not found in the constraints equation string. """ if ">" in constraints or "<" in constraints: raise NotImplementedError, "cannot simplify inequalities" from mystic.symbolic import replace_variables, get_variables #XXX: if constraints contain x0,x1,x3 for 'x', should x2 be in code,xlist? if list_or_tuple_or_ndarray(variables): if nvars is not None: variables = variables[:nvars] constraints = replace_variables(constraints, variables, markers='_') varname = '_' ndim = len(variables) else: varname = variables # varname used below instead of variables myvar = get_variables(constraints, variables) if myvar: ndim = max([int(v.strip(varname)) for v in myvar]) + 1 else: ndim = 0 if nvars is not None: ndim = nvars # split constraints_str into lists of left hand sides and right hand sides eacheqn = constraints.splitlines() neqns = 0 left = [] right = [] for eq in eacheqn: #XXX: Le/Ge instead of Eq; Max/Min... (NotImplemented ?) splitlist = eq.replace('==','=').split('=') #FIXME: no inequalities if len(splitlist) == 2: #FIXME: first convert >/< to min/max ? # If equation is blank on one side, raise error. if len(splitlist[0].strip()) == 0 or len(splitlist[1].strip()) == 0: print eq, "is not an equation!" # Raise exception? else: left.append(splitlist[0]) right.append(splitlist[1]) neqns += 1 # If equation doesn't have one equal sign, raise error. if len(splitlist) != 2 and len(splitlist) != 1: print eq, "is not an equation!" # Raise exception? # First create list of x variables xlist = "" for i in range(ndim): xn = varname + str(i) xlist += xn + "," # Start constructing the code string code = "" for i in range(ndim): xn = varname + str(i) code += xn + '=' + "Symbol('" + xn + "')\n" code += "rand = Symbol('rand')\n" return code, left, right, xlist, neqns def _solve_single(constraint, variables='x', target=None, **kwds): """Solve a symbolic constraints equation for a single variable. Inputs: constraint -- a string of symbolic constraints. Only a single constraint equation should be provided, and must be an equality constraint. Standard python syntax should be followed (with the math and numpy modules already imported). For example: >>> equation = "x1 - 3. = x0*x2" >>> print _solve_single(equation) x0 = -(3.0 - x1)/x2 Additional Inputs: variables -- desired variable name. Default is 'x'. A list of variable name strings is also accepted for when desired variable names don't have the same base, and can include variables that are not found in the constraints equation string. target -- list providing the order for which the variables will be solved. By default, increasing order is used. For example: >>> equation = "x1 - 3. = x0*x2" >>> print _solve_single(equation, target='x1') x1 = 3.0 + x0*x2 Further Inputs: locals -- a dictionary of additional variables used in the symbolic constraints equations, and their desired values. """ #XXX: an very similar version of this code is found in _solve_linear XXX# # for now, we abort on multi-line equations or inequalities if len(constraint.replace('==','=').split('=')) != 2: raise NotImplementedError, "requires a single valid equation" if ">" in constraint or "<" in constraint: raise NotImplementedError, "cannot simplify inequalities" nvars = None permute = False # if True, return all permutations warn = True # if True, don't supress warnings verbose = False # if True, print debug info #-----------------------undocumented------------------------------- permute = kwds['permute'] if 'permute' in kwds else permute warn = kwds['warn'] if 'warn' in kwds else warn verbose = kwds['verbose'] if 'verbose' in kwds else verbose #------------------------------------------------------------------ if target in [None, False]: target = [] elif isinstance(target, str): target = target.split(',') else: target = list(target) # not the best for ndarray, but should work from mystic.symbolic import replace_variables, get_variables if list_or_tuple_or_ndarray(variables): if nvars is not None: variables = variables[:nvars] constraints = replace_variables(constraint, variables, markers='_') varname = '_' ndim = len(variables) for i in range(len(target)): if variables.count(target[i]): target[i] = replace_variables(target[i],variables,markers='_') else: constraints = constraint # constraints used below varname = variables # varname used below instead of variables myvar = get_variables(constraint, variables) if myvar: ndim = max([int(v.strip(varname)) for v in myvar]) + 1 else: ndim = 0 if nvars is not None: ndim = nvars # create function to replace "_" with original variables def restore(variables, mystring): if list_or_tuple_or_ndarray(variables): vars = get_variables(mystring,'_') indices = [int(v.strip('_')) for v in vars] for i in range(len(vars)): mystring = mystring.replace(vars[i],variables[indices[i]]) return mystring # default is _locals with sympy imported _locals = {} locals = kwds['locals'] if 'locals' in kwds else None if locals is None: locals = {} try: code = """from sympy import Eq, Symbol;""" code += """from sympy import solve as symsol;""" code = compile(code, '<string>', 'exec') exec code in _locals except ImportError: # Equation will not be simplified." if warn: print "Warning: sympy not installed." return constraint # default is _locals with numpy and math imported # numpy throws an 'AttributeError', but math passes error to sympy code = """from numpy import *; from math import *;""" # prefer math code += """from numpy import mean as average;""" # use np.mean not average code += """from numpy import var as variance;""" # look like mystic.math code += """from numpy import ptp as spread;""" # look like mystic.math code = compile(code, '<string>', 'exec') exec code in _locals _locals.update(locals) #XXX: allow this? code,left,right,xlist,neqns = _prepare_sympy(constraints, varname, ndim) eqlist = "" for i in range(1, neqns+1): eqn = 'eq' + str(i) eqlist += eqn + "," code += eqn + '= Eq(' + left[i-1] + ',' + right[i-1] + ')\n' eqlist = eqlist.rstrip(',') # get full list of variables in 'targeted' order xperms = xlist.split(',')[:-1] targeted = target[:] [targeted.remove(i) for i in targeted if i not in xperms] [targeted.append(i) for i in xperms if i not in targeted] _target = [] [_target.append(i) for i in targeted if i not in _target] targeted = _target targeted = tuple(targeted) ######################################################################## # solve each xi: symsol(single_equation, [x0,x1,...,xi,...,xn]) # returns: {x0: f(xn,...), x1: f(xn,...), ..., xn: f(...,x0)} if permute or not target: #XXX: the goal is solving *only one* equation code += '_xlist = %s\n' % ','.join(targeted) code += '_elist = [symsol(['+eqlist+'], [i]) for i in _xlist]\n' code += '_elist = [i if isinstance(i, dict) else {j:i[-1][-1]} for j,i in zip(_xlist,_elist)]\n' code += 'soln = {}\n' code += '[soln.update(i) for i in _elist if i]\n' else: code += 'soln = symsol([' + eqlist + '], [' + target[0] + '])\n' #code += 'soln = symsol([' + eqlist + '], [' + targeted[0] + '])\n' code += 'soln = soln if isinstance(soln, dict) else {' + target[0] + ': soln[-1][-1]}\n' ######################################################################## if verbose: print code code = compile(code, '<string>', 'exec') try: exec code in globals(), _locals soln = _locals['soln'] if not soln: if warn: print "Warning: target variable is not valid" soln = {} except NotImplementedError: # catch 'multivariate' error for older sympy if warn: print "Warning: could not simplify equation." return constraint #FIXME: resolve diff with _solve_linear except NameError, error: # catch when variable is not defined if warn: print "Warning:", error soln = {} if verbose: print soln #XXX handles multiple solutions? soln = dict([(str(key),str(value)) for key, value in soln.iteritems()]) soln = [(i,soln[i]) for i in targeted if i in soln] #XXX: order as targeted? solns = []; solved = "" for key,value in soln: solved = str(key) + ' = ' + str(value) + '\n' if solved: solns.append( restore(variables, solved.rstrip()) ) if not permute: return None if not solns[:1] else solns[0] return tuple(solns) def _solve_linear(constraints, variables='x', target=None, **kwds): """Solve a system of symbolic linear constraints equations. Inputs: constraints -- a string of symbolic constraints, with one constraint equation per line. Constraints must be equality constraints only. Standard python syntax should be followed (with the math and numpy modules already imported). For example: >>> constraints = ''' ... x0 - x2 = 2. ... x2 = x3*2.''' >>> print _solve_linear(constraints) x2 = 2.0*x3 x0 = 2.0 + 2.0*x3 Additional Inputs: variables -- desired variable name. Default is 'x'. A list of variable name strings is also accepted for when desired variable names don't have the same base, and can include variables that are not found in the constraints equation string. target -- list providing the order for which the variables will be solved. If there are "N" constraint equations, the first "N" variables given will be selected as the dependent variables. By default, increasing order is used. For example: >>> constraints = ''' ... x0 - x2 = 2. ... x2 = x3*2.''' >>> print _solve_linear(constraints, target=['x3','x2']) x3 = -1.0 + 0.5*x0 x2 = -2.0 + x0 Further Inputs: locals -- a dictionary of additional variables used in the symbolic constraints equations, and their desired values. """ nvars = None permute = False # if True, return all permutations warn = True # if True, don't supress warnings verbose = False # if True, print debug info #-----------------------undocumented------------------------------- permute = kwds['permute'] if 'permute' in kwds else permute warn = kwds['warn'] if 'warn' in kwds else warn verbose = kwds['verbose'] if 'verbose' in kwds else verbose #------------------------------------------------------------------ if target in [None, False]: target = [] elif isinstance(target, str): target = target.split(',') else: target = list(target) # not the best for ndarray, but should work from mystic.symbolic import replace_variables, get_variables if list_or_tuple_or_ndarray(variables): if nvars is not None: variables = variables[:nvars] _constraints = replace_variables(constraints, variables, '_') varname = '_' ndim = len(variables) for i in range(len(target)): if variables.count(target[i]): target[i] = replace_variables(target[i],variables,markers='_') else: _constraints = constraints varname = variables # varname used below instead of variables myvar = get_variables(constraints, variables) if myvar: ndim = max([int(v.strip(varname)) for v in myvar]) + 1 else: ndim = 0 if nvars is not None: ndim = nvars # create function to replace "_" with original variables def restore(variables, mystring): if list_or_tuple_or_ndarray(variables): vars = get_variables(mystring,'_') indices = [int(v.strip('_')) for v in vars] for i in range(len(vars)): mystring = mystring.replace(vars[i],variables[indices[i]]) return mystring # default is _locals with sympy imported _locals = {} locals = kwds['locals'] if 'locals' in kwds else None if locals is None: locals = {} # if sympy not installed, return original constraints try: code = """from sympy import Eq, Symbol;""" code += """from sympy import solve as symsol;""" code = compile(code, '<string>', 'exec') exec code in _locals except ImportError: # Equation will not be simplified." if warn: print "Warning: sympy not installed." return constraints # default is _locals with numpy and math imported # numpy throws an 'AttributeError', but math passes error to sympy code = """from numpy import *; from math import *;""" # prefer math code += """from numpy import mean as average;""" # use np.mean not average code += """from numpy import var as variance;""" # look like mystic.math code += """from numpy import ptp as spread;""" # look like mystic.math code = compile(code, '<string>', 'exec') exec code in _locals _locals.update(locals) #XXX: allow this? code,left,right,xlist,neqns = _prepare_sympy(_constraints, varname, ndim) eqlist = "" for i in range(1, neqns+1): eqn = 'eq' + str(i) eqlist += eqn + "," code += eqn + '= Eq(' + left[i-1] + ',' + right[i-1] + ')\n' eqlist = eqlist.rstrip(',') # get full list of variables in 'targeted' order xperms = xlist.split(',')[:-1] targeted = target[:] [targeted.remove(i) for i in targeted if i not in xperms] [targeted.append(i) for i in xperms if i not in targeted] _target = [] [_target.append(i) for i in targeted if i not in _target] targeted = _target targeted = tuple(targeted) if permute: # Form constraints equations for each permutation. # This will change the order of the x variables passed to symsol() # to get different variables solved for. xperms = list(permutations(xperms)) #XXX: takes a while if nvars is ~10 if target: # put the tuple with the 'targeted' order first xperms.remove(targeted) xperms.insert(0, targeted) else: xperms = [tuple(targeted)] solns = [] for perm in xperms: _code = code xlist = ','.join(perm).rstrip(',') #XXX: if not all, use target ? # solve dependent xi: symsol([linear_system], [x0,x1,...,xi,...,xn]) # returns: {x0: f(xn,...), x1: f(xn,...), ...} _code += 'soln = symsol([' + eqlist + '], [' + xlist + '])' #XXX: need to convert/check soln similarly as in _solve_single ? if verbose: print _code _code = compile(_code, '<string>', 'exec') try: exec _code in globals(), _locals soln = _locals['soln'] if not soln: if warn: print "Warning: could not simplify equation." soln = {} except NotImplementedError: # catch 'multivariate' error if warn: print "Warning: could not simplify equation." soln = {} except NameError, error: # catch when variable is not defined if warn: print "Warning:", error soln = {} if verbose: print soln solved = "" for key, value in soln.iteritems(): solved += str(key) + ' = ' + str(value) + '\n' if solved: solns.append( restore(variables, solved.rstrip()) ) if not permute: return None if not solns[:1] else solns[0] # Remove duplicates filter = []; results = [] for i in solns: _eqs = '\n'.join(sorted(i.split('\n'))) if _eqs not in filter: filter.append(_eqs) results.append(i) return tuple(results) # Create strings of all permutations of the solved equations. # Remove duplicates, then take permutations of the lines of equations # to create equations in different orders. # noduplicates = [] # [noduplicates.append(i) for i in solns if i not in noduplicates] # stringperms = [] # for item in noduplicates: # spl = item.splitlines() # for perm in permutations(spl): # permstring = "" # for line in perm: # permstring += line + '\n' # stringperms.append(permstring.rstrip()) # return tuple(stringperms) def solve(constraints, variables='x', target=None, **kwds): """Solve a system of symbolic constraints equations. Inputs: constraints -- a string of symbolic constraints, with one constraint equation per line. Constraints must be equality constraints only. Standard python syntax should be followed (with the math and numpy modules already imported). For example: >>> constraints = ''' ... x0 - x2 = 2. ... x2 = x3*2.''' >>> print solve(constraints) x2 = 2.0*x3 x0 = 2.0 + 2.0*x3 >>> constraints = ''' ... spread([x0,x1]) - 1.0 = mean([x0,x1]) ... mean([x0,x1,x2]) = x2''' >>> print solve(constraints) x0 = -0.5 + 0.5*x2 x1 = 0.5 + 1.5*x2 Additional Inputs: variables -- desired variable name. Default is 'x'. A list of variable name strings is also accepted for when desired variable names don't have the same base, and can include variables that are not found in the constraints equation string. target -- list providing the order for which the variables will be solved. If there are "N" constraint equations, the first "N" variables given will be selected as the dependent variables. By default, increasing order is used. For example: >>> constraints = ''' ... x0 - x2 = 2. ... x2 = x3*2.''' >>> print solve(constraints, target=['x3','x2']) x3 = -1.0 + 0.5*x0 x2 = -2.0 + x0 Further Inputs: locals -- a dictionary of additional variables used in the symbolic constraints equations, and their desired values. """ #-----------------------undocumented------------------------------- #kwds['permute'] = False # if True, return all permutations kwds['warn'] = False # if True, don't supress warnings kwds['verbose'] = False # if True, print debug info #------------------------------------------------------------------ try: if len(constraints.replace('==','=').split('=')) <= 2: soln = _solve_single(constraints, variables=variables, \ target=target, **kwds) else: soln = _solve_linear(constraints, variables=variables, \ target=target, **kwds) if not soln: raise ValueError except: soln = _solve_nonlinear(constraints, variables=variables, \ target=target, **kwds) return soln def _solve_nonlinear(constraints, variables='x', target=None, **kwds): """Build a constraints function given a string of nonlinear constraints. Returns a constraints function. Inputs: constraints -- a string of symbolic constraints, with one constraint equation per line. Constraints must be equality constraints only. Standard python syntax should be followed (with the math and numpy modules already imported). For example: >>> constraints = '''x1 = x3*3. + x0*x2''' >>> print _solve_nonlinear(constraints) x0 = (x1 - 3.0*x3)/x2 >>> constraints = ''' ... spread([x0,x1]) - 1.0 = mean([x0,x1]) ... mean([x0,x1,x2]) = x2''' >>> print _solve_nonlinear(constraints) x0 = -0.5 + 0.5*x2 x1 = 0.5 + 1.5*x2 Additional Inputs: variables -- desired variable name. Default is 'x'. A list of variable name strings is also accepted for when desired variable names don't have the same base, and can include variables that are not found in the constraints equation string. target -- list providing the order for which the variables will be solved. If there are "N" constraint equations, the first "N" variables given will be selected as the dependent variables. By default, increasing order is used. For example: >>> constraints = ''' ... spread([x0,x1]) - 1.0 = mean([x0,x1]) ... mean([x0,x1,x2]) = x2''' >>> print _solve_nonlinear(constraints, target=['x1']) x1 = -0.833333333333333 + 0.166666666666667*x2 x0 = -0.5 + 0.5*x2 Further Inputs: locals -- a dictionary of additional variables used in the symbolic constraints equations, and their desired values. """ nvars = None permute = False # if True, return all permutations warn = True # if True, don't supress warnings verbose = False # if True, print details from _classify_variables #-----------------------undocumented------------------------------- permute = kwds['permute'] if 'permute' in kwds else permute warn = kwds['warn'] if 'warn' in kwds else warn verbose = kwds['verbose'] if 'verbose' in kwds else verbose #------------------------------------------------------------------ if target in [None, False]: target = [] elif isinstance(target, str): target = target.split(',') else: target = list(target) # not the best for ndarray, but should work from mystic.symbolic import replace_variables, get_variables if list_or_tuple_or_ndarray(variables): if nvars is not None: variables = variables[:nvars] constraints = replace_variables(constraints, variables, '_') varname = '_' ndim = len(variables) else: varname = variables # varname used below instead of variables myvar = get_variables(constraints, variables) if myvar: ndim = max([int(v.strip(varname)) for v in myvar]) + 1 else: ndim = 0 if nvars is not None: ndim = nvars # create function to replace "_" with original variables def restore(variables, mystring): if list_or_tuple_or_ndarray(variables): vars = get_variables(mystring,'_') indices = [int(v.strip('_')) for v in vars] for i in range(len(vars)): mystring = mystring.replace(vars[i],variables[indices[i]]) return mystring locals = kwds['locals'] if 'locals' in kwds else None if locals is None: locals = {} eqns = constraints.splitlines() # Remove empty strings: actual_eqns = [] for j in range(len(eqns)): if eqns[j].strip(): actual_eqns.append(eqns[j].strip()) orig_eqns = actual_eqns[:] neqns = len(actual_eqns) xperms = [varname+str(i) for i in range(ndim)] if target: [target.remove(i) for i in target if i not in xperms] [target.append(i) for i in xperms if i not in target] _target = [] [_target.append(i) for i in target if i not in _target] target = _target target = tuple(target) xperms = list(permutations(xperms)) #XXX: takes a while if nvars is ~10 if target: # Try the suggested order first. xperms.remove(target) xperms.insert(0, target) complete_list = [] constraints_function_list = [] # Some of the permutations will give the same answer; # look into reducing the number of repeats? for perm in xperms: # Sort the list actual_eqns so any equation containing x0 is first, etc. sorted_eqns = [] actual_eqns_copy = orig_eqns[:] usedvars = [] for variable in perm: # range(ndim): for eqn in actual_eqns_copy: if eqn.find(variable) != -1: sorted_eqns.append(eqn) actual_eqns_copy.remove(eqn) usedvars.append(variable) break if actual_eqns_copy: # Append the remaining equations for item in actual_eqns_copy: sorted_eqns.append(item) actual_eqns = sorted_eqns # Append the remaining variables to usedvars tempusedvar = usedvars[:] tempusedvar.sort() nmissing = ndim - len(tempusedvar) for m in range(nmissing): usedvars.append(varname + str(len(tempusedvar) + m)) for i in range(neqns): # Trying to use xi as a pivot. Loop through the equations # looking for one containing xi. _target = usedvars[i] for eqn in actual_eqns[i:]: invertedstring = _solve_single(eqn, variables=varname, target=_target, warn=warn) if invertedstring: warn = False break # substitute into the remaining equations. the equations' order # in the list newsystem is like in a linear coefficient matrix. newsystem = ['']*neqns j = actual_eqns.index(eqn) newsystem[j] = eqn othereqns = actual_eqns[:j] + actual_eqns[j+1:] for othereqn in othereqns: expression = invertedstring.split("=")[1] fixed = othereqn.replace(_target, '(' + expression + ')') k = actual_eqns.index(othereqn) newsystem[k] = fixed actual_eqns = newsystem # Invert so that it can be fed properly to generate_constraint simplified = [] for eqn in actual_eqns: _target = usedvars[actual_eqns.index(eqn)] mysoln = _solve_single(eqn, variables=varname, target=_target, warn=warn) if mysoln: simplified.append(mysoln) simplified = restore(variables, '\n'.join(simplified).rstrip()) if permute: complete_list.append(simplified) continue if verbose: print _classify_variables(simplified, variables, ndim) return simplified warning='Warning: an error occurred in building the constraints.' if warn: print warning if verbose: print _classify_variables(simplified, variables, ndim) if permute: #FIXME: target='x3,x1' may order correct, while 'x1,x3' doesn't filter = []; results = [] for i in complete_list: _eqs = '\n'.join(sorted(i.split('\n'))) if _eqs and (_eqs not in filter): filter.append(_eqs) results.append(i) return tuple(results) #FIXME: somehow 'rhs = xi' can be in results return simplified # EOF
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 30 09:17:36 2018 @author: barnhark """ import numpy as np import pytest from numpy.testing import assert_array_equal # , assert_array_almost_equal from landlab import RasterModelGrid from landlab.bmi import wrap_as_bmi from landlab.components import LithoLayers, Lithology def test_lithology_as_bmi(): """Test Lithology can be wrapped with a BMI.""" wrap_as_bmi(Lithology) def test_bad_layer_method(): """Test passing a bad name for the layer method.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1] ids = [1, 2, 1, 2] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} with pytest.raises(ValueError): Lithology(mg, thicknesses, ids, attrs, layer_type="spam") def test_no_topographic__elevation(): """Test init with no topo__elevation.""" mg = RasterModelGrid((3, 3)) thicknesses = [1, 2, 4, 1] ids = [1, 2, 1, 2] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} with pytest.raises(ValueError): Lithology(mg, thicknesses, ids, attrs) def test_thickness_ids_wrong_shape(): """Test wrong size thickness and id shapes.""" # first with thicknesses and IDs both as ndim = 1 arrays mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} with pytest.raises(ValueError): Lithology(mg, thicknesses, ids, attrs) # next as both as ndim = 2 arrays ones = np.ones(mg.number_of_nodes) mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1 * ones, 2 * ones, 4 * ones, 1 * ones, 5 * ones] ids = [1 * ones, 2 * ones, 1 * ones, 2 * ones] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} with pytest.raises(ValueError): Lithology(mg, thicknesses, ids, attrs) # now with thickness as ndim 2 and id as ndim 1 ones = np.ones(mg.number_of_nodes) mg = RasterModelGrid((3, 3)) thicknesses = [1 * ones, 2 * ones, 4 * ones, 1 * ones, 5 * ones] ids = [1, 2, 1, 2] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} with pytest.raises(ValueError): Lithology(mg, thicknesses, ids, attrs) def test_thickness_ndim3(): """Test too many ndim for thickness.""" # next as both as ndim = 3 arrays attrs = {"K_sp": {1: 0.001, 2: 0.0001}} mg = RasterModelGrid((3, 3)) ones = np.ones((mg.number_of_nodes, 2)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1 * ones, 2 * ones, 4 * ones, 1 * ones, 5 * ones] ids = [1, 2, 1, 2] with pytest.raises(ValueError): Lithology(mg, thicknesses, ids, attrs) def test_id_ndim3(): """Test too many ndim for ids.""" # next as both as ndim = 3 arrays attrs = {"K_sp": {1: 0.001, 2: 0.0001}} mg = RasterModelGrid((3, 3)) ones = np.ones(mg.number_of_nodes) extra_ones = np.ones((mg.number_of_nodes, 2)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1 * ones, 2 * ones, 4 * ones, 1 * ones, 5 * ones] ids = [1 * extra_ones, 2 * extra_ones, 1 * extra_ones, 2 * extra_ones] with pytest.raises(ValueError): Lithology(mg, thicknesses, ids, attrs) def test_thickness_nodes_wrong_shape(): """Test wrong size thickness and id shapes.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") ones = np.ones(mg.number_of_nodes + 1) thicknesses = [1 * ones, 2 * ones, 4 * ones, 1 * ones, 5 * ones] ids = [1 * ones, 2 * ones, 1 * ones, 2 * ones, 1 * ones] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} with pytest.raises(ValueError): Lithology(mg, thicknesses, ids, attrs) def test_atts_lack_ids(): """Test Lithology missing ID.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {2: 0.0001}, "age": {1: 100, 2: 300}} with pytest.raises(ValueError): Lithology(mg, thicknesses, ids, attrs) def test_erode_to_zero_thickness(): """Test that eroding Lithology to zero thickness raises an error.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) with pytest.raises(ValueError): lith.add_layer(-100) def test_deposit_with_no_rock_id(): """Test that adding a deposit to Lithology with no id raises an error.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) with pytest.raises(ValueError): lith.add_layer(100) def test_deposit_with_bad_rock_id(): """Test that adding a deposit to Lithology with no id raises an error.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) with pytest.raises(ValueError): lith.add_layer(100, rock_id=3) ones = np.ones(mg.number_of_nodes) new_ids = [0, 1, 3, 4, 0, 1, 0, 1, 5] with pytest.raises(ValueError): lith.add_layer(ones, rock_id=new_ids) def test_adding_existing_attribute(): """Test adding an existing attribute.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) new_attr = {"K_sp": {1: 0.001, 2: 0.0001}} with pytest.raises(ValueError): lith.add_property(new_attr) def test_adding_new_attribute_missing_rock_id(): """Test adding an new attribute missing an existing rock id.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) new_attr = {"D": {2: 0.0001}} with pytest.raises(ValueError): lith.add_property(new_attr) def test_adding_new_attribute_extra_rock_id(): """Test adding an new attribute with an extra rock id.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) new_attr = {"D": {1: 0.001, 2: 0.0001, 3: 5.3}} with pytest.raises(ValueError): lith.add_property(new_attr) def test_adding_new_id_existing_rock_type(): """Test adding an rock type that already exists.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) new_attr = {"K_sp": {1: 0.001, 5: 0.0001}} with pytest.raises(ValueError): lith.add_rock_type(new_attr) def test_adding_new_id_extra_attribute(): """Test adding an new rock type with an extra attribute.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) new_attr = {"K_sp": {4: 0.001, 5: 0.0001}, "D": {4: 0.001, 5: 0.0001}} with pytest.raises(ValueError): lith.add_rock_type(new_attr) def test_adding_new_id_missing_attribute(): """Test adding an new rock type with an extra attribute.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) new_attr = {"D": {4: 0.001, 5: 0.0001}} with pytest.raises(ValueError): lith.add_rock_type(new_attr) def test_updating_attribute_that_doesnt_exist(): """Test updating an attribute that doesn't exist.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) with pytest.raises(ValueError): lith.update_rock_properties("spam", 1, 4) def test_updating_rock_type_that_doesnt_exist(): """Test adding an new rock type with an extra attribute.""" mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) with pytest.raises(ValueError): lith.update_rock_properties("K_sp", 3, 4) def test_run_one_step_deposit_no_id_raises_error(): """Test that giving the run one step method a deposit with no id raises an error.""" mg = RasterModelGrid((3, 3)) z = mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) z += 1 with pytest.raises(ValueError): lith.run_one_step() def test_run_one_step_erodes_all_raises_error(): """Test that eroding all material with the run one step method raises an error.""" mg = RasterModelGrid((3, 3)) z = mg.add_zeros("topographic__elevation", at="node") thicknesses = [1, 2, 4, 1, 5] ids = [1, 2, 1, 2, 1] attrs = {"K_sp": {1: 0.001, 2: 0.0001}} lith = Lithology(mg, thicknesses, ids, attrs) z -= 30 with pytest.raises(ValueError): lith.run_one_step() def test_rock_block_xarray(): """Test that the xarray method works as expected.""" sample_depths = np.arange(0, 10, 1) mg = RasterModelGrid((3, 3)) mg.add_zeros("topographic__elevation", at="node") layer_ids = np.tile([0, 1, 2, 3], 5) layer_elevations = 3.0 * np.arange(-10, 10) layer_elevations[-1] = layer_elevations[-2] + 100 attrs = {"K_sp": {0: 0.0003, 1: 0.0001, 2: 0.0002, 3: 0.0004}} lith = LithoLayers( mg, layer_elevations, layer_ids, function=lambda x, y: x + y, attrs=attrs ) ds = lith.rock_cube_to_xarray(sample_depths) expected_array = np.array( [ [[3.0, 2.0, 2.0], [2.0, 2.0, 2.0], [2.0, 2.0, 1.0]], [[3.0, 3.0, 2.0], [3.0, 2.0, 2.0], [2.0, 2.0, 2.0]], [[3.0, 3.0, 3.0], [3.0, 3.0, 2.0], [3.0, 2.0, 2.0]], [[0.0, 3.0, 3.0], [3.0, 3.0, 3.0], [3.0, 3.0, 2.0]], [[0.0, 0.0, 3.0], [0.0, 3.0, 3.0], [3.0, 3.0, 3.0]], [[0.0, 0.0, 0.0], [0.0, 0.0, 3.0], [0.0, 3.0, 3.0]], [[1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 3.0]], [[1.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0]], [[1.0, 1.0, 1.0], [1.0, 1.0, 0.0], [1.0, 0.0, 0.0]], [[2.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 0.0]], ] ) assert_array_equal(ds.rock_type__id.values, expected_array)
import os from dvc.logger import Logger from dvc.config import Config from dvc.executor import Executor, ExecutorError from dvc.system import System class GitWrapperI(object): COMMIT_LEN = 7 def __init__(self, git_dir=None, commit=None): self._git_dir = git_dir self._commit = commit @property def git_dir(self): return self._git_dir @property def lock_file(self): return os.path.join(self.git_dir_abs, '.' + Config.CONFIG + '.lock') @property def git_dir_abs(self): return System.realpath(self.git_dir) @property def curr_dir_abs(self): return os.path.abspath(os.curdir) @property def curr_commit(self): return self._commit def is_ready_to_go(self): return True @staticmethod def git_file_statuses(): Logger.debug('[dvc-git] Getting file statuses. Command: git status --porcelain') code, out, err = Executor.exec_cmd(['git', 'status', '--porcelain']) if code != 0: raise ExecutorError('[dvc-git] File status command error - {}'.format(err)) Logger.debug('[dvc-git] Getting file statuses. Success.') return GitWrapper.parse_porcelain_files(out) @staticmethod def git_config_get(name): code, out, err = Executor.exec_cmd(['git', 'config', '--get', name]) Logger.debug('[dvc-git] "git config --get {}": code({}), out({}), err({})'.format( name, code, out, err)) if code != 0: return None return out @staticmethod def git_path_to_system_path(path): if os.name == 'nt': return path.replace('/', '\\') return path @staticmethod def parse_porcelain_files(out): result = [] if len(out) > 0: lines = out.split('\n') for line in lines: status = line[:2] file = GitWrapperI.git_path_to_system_path(line[3:]) result.append((status, file)) return result def abs_paths_to_dvc(self, files): result = [] for file in files: result.append(os.path.relpath(os.path.abspath(file), self.git_dir_abs)) return result def commit_all_changes_and_log_status(self, message): pass class GitWrapper(GitWrapperI): def __init__(self): super(GitWrapper, self).__init__() def is_ready_to_go(self): statuses = self.git_file_statuses() if len(statuses) > 0: Logger.error('[dvc-git] Commit all changed files before running reproducible command. Changed files:') for status, file in statuses: Logger.error("{} {}".format(status, file)) return False # Sanity check to make sure we will be able to commit name = self.git_config_get('user.name') if name == None: Logger.error('[dvc-git] Please setup user.name in git config') return False email = self.git_config_get('user.email') if email == None: Logger.error('[dvc-git] Please setup user.email in git config') return False return True @property def curr_dir_dvc(self): return os.path.relpath(os.path.abspath(os.curdir), self.git_dir_abs) @property def git_dir(self): if self._git_dir: return self._git_dir try: Logger.debug('[dvc-git] Getting git directory. Command: git rev-parse --show-toplevel') code, out, err = Executor.exec_cmd(['git', 'rev-parse', '--show-toplevel']) if code != 0: raise ExecutorError('[dvc-git] Git directory command error - {}'.format(err)) Logger.debug('[dvc-git] Getting git directory. Success.') self._git_dir = out return self._git_dir except ExecutorError: raise except Exception as e: raise ExecutorError('Unable to run git command: {}'.format(e)) pass @property def curr_commit(self): Logger.debug('[dvc-git] Getting current git commit. Command: git rev-parse --short HEAD') code, out, err = Executor.exec_cmd(['git', 'rev-parse', '--short', 'HEAD']) if code != 0: raise ExecutorError('[dvc-git] Commit command error - {}'.format(err)) Logger.debug('[dvc-git] Getting current git commit. Success.') return out @staticmethod def commit_all_changes(message): Logger.debug('[dvc-git] Commit all changes. Commands: {} && {} && {}'.format( 'git add --all', 'git status --porcelain', 'git commit -m')) Executor.exec_cmd_only_success(['git', 'add', '--all']) out_status = Executor.exec_cmd_only_success(['git', 'status', '--porcelain']) Executor.exec_cmd_only_success(['git', 'commit', '-m', message]) Logger.debug('[dvc-git] Commit all changes. Success.') return GitWrapper.parse_porcelain_files(out_status) def commit_all_changes_and_log_status(self, message): statuses = self.commit_all_changes(message) Logger.debug('[dvc-git] A new commit {} was made in the current branch. Added files:'.format( self.curr_commit)) for status, file in statuses: Logger.debug('[dvc-git]\t{} {}'.format(status, file)) pass @staticmethod def abs_paths_to_relative(files): cur_dir = System.realpath(os.curdir) result = [] for file in files: result.append(os.path.relpath(System.realpath(file), cur_dir)) return result def dvc_paths_to_abs(self, files): results = [] for file in files: results.append(os.path.join(self.git_dir_abs, file)) return results def were_files_changed(self, code_dependencies, path_factory, changed_files): code_files, code_dirs = self.separate_dependency_files_and_dirs(code_dependencies) code_files_set = set([path_factory.path(x).dvc for x in code_files]) for changed_file in changed_files: if changed_file in code_files_set: return True for dir in code_dirs: if changed_file.startswith(dir): return True return False @staticmethod def get_changed_files(target_commit): Logger.debug('[dvc-git] Identify changes. Command: git diff --name-only HEAD {}'.format( target_commit)) changed_files_str = Executor.exec_cmd_only_success(['git', 'diff', '--name-only', 'HEAD', target_commit]) changed_files = changed_files_str.strip('"').split('\n') Logger.debug('[dvc-git] Identify changes. Success. Changed files: {}'.format( ', '.join(changed_files))) return changed_files @staticmethod def get_target_commit(file): try: commit = Executor.exec_cmd_only_success(['git', 'log', '-1', '--pretty=format:"%h"', file]) return commit.strip('"') except ExecutorError: return None def separate_dependency_files_and_dirs(self, code_dependencies): code_files = [] code_dirs = [] code_dependencies_abs = self.dvc_paths_to_abs(code_dependencies) for code in code_dependencies_abs: if os.path.isdir(code): code_dirs.append(code) else: code_files.append(code) return code_files, code_dirs
from tkinter import * from tkinter.filedialog import askopenfilename from PIL import Image, ImageTk from endeavour import endeavour_functions import csv import os # Location of csv file to save result to. log_filename = r'results_log.csv' master = Tk() master.title("Machine Learning for Image Recognition Purposes") master.geometry("450x500") global source_filename source_filename = None softmax_dir = '..\mnist_softmax_models\softmax_alpha=0.1/' softmax_name = 'model-999999.meta' mlp_dir = '..\mnist_mlp_models_regularised\mlp_nlayers=1_nunits=200/' mlp_name = 'model.meta' conv_dir = '..\mnist_conv_models\conv_nlayers=1_nfeatures=32/' conv_name = 'model.meta' def load(): global source_filename source_filename = askopenfilename() image = Image.open(source_filename).resize((200,200), Image.ANTIALIAS) photo = ImageTk.PhotoImage(image) lab_source.configure(image=photo) lab_source.image = photo def convert(): threshold = slide_threshold.get() endeavour_functions.process_image(source_filename, 'processed.jpg', threshold=threshold) image = Image.open('processed.jpg').resize((200,200)) photo = ImageTk.PhotoImage(image) lab_dest.configure(image=photo) lab_dest.image = photo #lab_dest.pack() def classify(): if var.get() == 'Softmax Classifier': model_dir = softmax_dir model_name = softmax_name elif var.get() == 'MLP Classifier': model_dir = mlp_dir model_name = mlp_name else: model_dir = conv_dir model_name = conv_name print(var.get()) print("Using classifier ", model_dir+model_name) digit = endeavour_functions.classify_image('processed.jpg', model_dir, model_name) ent_class.delete(0, END) ent_class.insert(0, str(digit[0])) ent_dist_0.delete(0, END) ent_dist_1.delete(0, END) ent_dist_2.delete(0, END) ent_dist_3.delete(0, END) ent_dist_4.delete(0, END) ent_dist_5.delete(0, END) ent_dist_6.delete(0, END) ent_dist_7.delete(0, END) ent_dist_8.delete(0, END) ent_dist_9.delete(0, END) ent_dist_0.insert(0, '{0:.6f}'.format(digit[1][0])) ent_dist_1.insert(0, '{0:.6f}'.format(digit[1][1])) ent_dist_2.insert(0, '{0:.6f}'.format(digit[1][2])) ent_dist_3.insert(0, '{0:.6f}'.format(digit[1][3])) ent_dist_4.insert(0, '{0:.6f}'.format(digit[1][4])) ent_dist_5.insert(0, '{0:.6f}'.format(digit[1][5])) ent_dist_6.insert(0, '{0:.6f}'.format(digit[1][6])) ent_dist_7.insert(0, '{0:.6f}'.format(digit[1][7])) ent_dist_8.insert(0, '{0:.6f}'.format(digit[1][8])) ent_dist_9.insert(0, '{0:.6f}'.format(digit[1][9])) def save(): classification = ent_class.get() probs = [ent_dist_0.get(), ent_dist_1.get(), ent_dist_2.get(), ent_dist_3.get(), ent_dist_4.get(), ent_dist_5.get(), ent_dist_6.get(), ent_dist_7.get(), ent_dist_8.get(), ent_dist_9.get()] classifier = var.get() input_dir, input_file = os.path.split(source_filename) input_par_dir = os.path.split(input_dir)[1] fields = [classification, *probs, classifier, input_file, input_par_dir, input_dir] with open(log_filename, 'a') as f: writer = csv.writer(f, lineterminator='\n') writer.writerow(fields) print('Saved results to log') # Place all image operations in left grid left_frame = Frame(master) left_frame.pack(side=LEFT) btn_load = Button(left_frame, text="Load Image", command=load) btn_load.grid(row=0) lab_source = Label(left_frame) lab_source.grid(row=1) thresh_frame = Frame(left_frame) thresh_frame.grid(row=2) btn_convert = Button(left_frame, text="Convert Image", command=convert) btn_convert.grid(row=3) lab_dest = Label(left_frame) lab_dest.grid(row=4) # Threshold label and slider in thresh frame lab_thresh = Label(thresh_frame, text="Threshold:") lab_thresh.pack(side=LEFT) thresh_val = IntVar() slide_threshold = Scale(thresh_frame, from_=0, to=255, variable=thresh_val, showvalue=0, orient=HORIZONTAL, resolution=5) slide_threshold.set(150) slide_threshold.pack(side=LEFT) lab_thresh_val = Label(thresh_frame, textvariable=thresh_val) lab_thresh_val.pack(side=LEFT) # Place all classification operations in right grid right_frame = Frame(master) right_frame.pack(side=RIGHT) model_frame = Frame(right_frame) model_frame.grid(row=0) btn_classify = Button(right_frame, text="Classify Image", command=classify) btn_classify.grid(row=1) class_frame = Frame(right_frame) class_frame.grid(row=2, pady=10) lab_prob = Label(right_frame, text="Output Probability Distribution:") lab_prob.grid(row=3) dist_frame = Frame(right_frame) dist_frame.grid(row=4) btn_save = Button(right_frame, text="Save Results", command=save) btn_save.grid(row=5, pady=10) # Model label and selector in model frame lab_model = Label(model_frame, text="Model:") lab_model.pack(side=LEFT) var = StringVar(master) var.set('Softmax Classifier') opt_model = OptionMenu(model_frame, var, 'Softmax Classifier', 'MLP Classifier', 'Convolutional Classifier') opt_model.pack(side=LEFT) # Classification label and value in class frame lab_class = Label(class_frame, text="Predicted digit:") lab_class.pack(side=LEFT) ent_class = Entry(class_frame, width=5) ent_class.pack(side=LEFT) # Distribution frame lab_dist_0 = Label(dist_frame, text="0:").grid(row=0) lab_dist_1 = Label(dist_frame, text="1:").grid(row=1) lab_dist_2 = Label(dist_frame, text="2:").grid(row=2) lab_dist_3 = Label(dist_frame, text="3:").grid(row=3) lab_dist_4 = Label(dist_frame, text="4:").grid(row=4) lab_dist_5 = Label(dist_frame, text="5:").grid(row=0, column=2) lab_dist_6 = Label(dist_frame, text="6:").grid(row=1, column=2) lab_dist_7 = Label(dist_frame, text="7:").grid(row=2, column=2) lab_dist_8 = Label(dist_frame, text="8:").grid(row=3, column=2) lab_dist_9 = Label(dist_frame, text="9:").grid(row=4, column=2) ent_dist_0 = Entry(dist_frame, width=8) ent_dist_1 = Entry(dist_frame, width=8) ent_dist_2 = Entry(dist_frame, width=8) ent_dist_3 = Entry(dist_frame, width=8) ent_dist_4 = Entry(dist_frame, width=8) ent_dist_5 = Entry(dist_frame, width=8) ent_dist_6 = Entry(dist_frame, width=8) ent_dist_7 = Entry(dist_frame, width=8) ent_dist_8 = Entry(dist_frame, width=8) ent_dist_9 = Entry(dist_frame, width=8) ent_dist_0.grid(row=0, column=1) ent_dist_1.grid(row=1, column=1) ent_dist_2.grid(row=2, column=1) ent_dist_3.grid(row=3, column=1) ent_dist_4.grid(row=4, column=1) ent_dist_5.grid(row=0, column=3) ent_dist_6.grid(row=1, column=3) ent_dist_7.grid(row=2, column=3) ent_dist_8.grid(row=3, column=3) ent_dist_9.grid(row=4, column=3) """ opt_model.pack() slide_threshold.pack() btn_load.pack() btn_convert.pack() btn_classify.pack() lab_source.pack() lab_dest.pack() lab_class.pack() lab_prob.pack() """ mainloop()
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import six import os, sys import re import inspect import pkgutil import importlib import argparse import json import logging import arrow import requests import getpass from collections import OrderedDict from natsort import natsorted from .models import * from .util import * from .roles import Role from . import __version__ from . import cache from . import config as g_config # Figure out where this script is, and change the PATH appropriately BASE = os.path.abspath(os.path.dirname(sys.modules[__name__].__file__)) sys.path.insert(0, BASE) # Create an argument parser parser = argparse.ArgumentParser(description=u"Easily manage Halon nodes and clusters.") subparsers = parser.add_subparsers(title='subcommands', dest='_mod_name', metavar='cmd') subparsers.required = True # All available modules and output formatters modules = {} formatters = {} # Loaded configuration, configured nodes and clusters config = {} nodes = {} clusters = {} # Disable unverified HTTPS warnings - we know what we're doing requests.packages.urllib3.disable_warnings() # Regex that matches quick-connect nodes quick_node_re = re.compile(r'^(?:(?P<name>[a-zA-Z0-9_-]+)=)?(?:(?P<protocol>https?)://)?(?P<data>(?P<username>[^@]+)@(?P<host>[a-zA-Z0-9\-\.]+)(?::(?P<port>[0-9]+))?)$') def load_modules(modules_path): '''Load all modules from the 'modules' directory.''' # Figure out where all the modules are, then treat it as a package, # iterating over its modules and attempting to load each of them. The # 'module' variable in the imported module is the module instance to use - # register that with the application. Yay, dynamic loading abuse. for loader, name, ispkg in pkgutil.iter_modules(path=[modules_path]): mod = loader.find_module(name).load_module(name) if hasattr(mod, 'module'): register_module(name.rstrip('_'), mod.module) else: print(u"Ignoring invalid module (missing 'module' variable): {name}".format(name=name), file=sys.stderr) def load_formatters(formatters_path): '''Load all formatters from the 'formatters' directory.''' for loader, name, ispkg in pkgutil.iter_modules(path=[formatters_path]): fmt = loader.find_module(name).load_module(name) if hasattr(fmt, 'formatter'): formatters[name.rstrip('_')] = fmt.formatter else: print(u"Ignoring invalid formatter (missing 'formatter' member): {name}".format(name=name), file=sys.stderr) def register_module(name, mod): '''Registers a loaded module instance''' p = subparsers.add_parser(name, help=mod.__doc__) p.set_defaults(_mod=mod) mod.register_arguments(p) modules[name] = mod def open_config(): '''Opens a configuration file from the first found default location.''' config_paths = [ os.path.abspath(os.path.join(BASE, '..', 'halonctl.json')), os.path.expanduser('~/.config/halonctl.json'), os.path.expanduser('~/halonctl.json'), os.path.expanduser('~/.halonctl.json'), '/etc/halonctl.json', ] config_path = None for p in config_paths: if os.path.exists(p): config_path = p break if not config_path: print(u"No configuration file found!", file=sys.stderr) print(u"", file=sys.stderr) print(u"Please create one in one of the following locations:", file=sys.stderr) print(u"", file=sys.stderr) for p in config_paths: print(" - {0}".format(p), file=sys.stderr) print(u"", file=sys.stderr) print(u"Or use the -C/--config flag to specify a path.", file=sys.stderr) print(u"A sample config can be found at:", file=sys.stderr) print(u"", file=sys.stderr) print(u" - {0}".format(os.path.abspath(os.path.join(BASE, 'halonctl.sample.json'))), file=sys.stderr) print(u"", file=sys.stderr) sys.exit(1) return open(config_path, 'rU') def load_config(f): '''Loads configuration data from a given file.''' try: conf = json.load(f, encoding='utf-8', object_pairs_hook=OrderedDict) except ValueError as e: sys.exit(u"Configuration Syntax Error: {0}".format(e)) f.close() g_config.config.update(conf) return conf def process_config(config): '''Processes a configuration dictionary into usable components.''' nodes = OrderedDict([(name, Node(data, name)) for name, data in six.iteritems(config.get('nodes', {}))]) clusters = {} for name, data in six.iteritems(config.get('clusters', {})): cluster = NodeList() cluster.name = name cluster.load_data(data) for nid in data['nodes'] if isinstance(data, dict) else data: if not nid in nodes: sys.exit(u"Configuration Error: Cluster '{cid}' references nonexistent node '{nid}'".format(cid=cluster.name, nid=nid)) node = nodes[nid] node.cluster = cluster cluster.append(node) clusters[cluster.name] = cluster return (nodes, clusters) def apply_slice(list_, slice_): if not slice_ or not list_: return list_ offsets = [-1, 0, 0] parts = [int(p) + offsets[i] if p else None for i, p in enumerate(slice_.split(':'))] try: return list_[slice(*parts)] if len(parts) > 1 else [list_[parts[0]]] except IndexError: return [] def apply_filter(available_nodes, available_clusters, nodes, clusters, slice_=''): targets = OrderedDict() if len(nodes) == 0 and len(clusters) == 0: for node in six.itervalues(apply_slice(available_nodes, slice_)): targets[node.name] = node else: for cid in clusters: for node in apply_slice(available_clusters[cid], slice_): targets[node.name] = node for nid in apply_slice(nodes, slice_): targets[nid] = available_nodes[nid] return NodeList(targets.values()) def download_wsdl(nodes, verify): path = cache.get_path(u"wsdl.xml") min_mtime = arrow.utcnow().replace(hours=-12) if not os.path.exists(path) or arrow.get(os.path.getmtime(path)) < min_mtime: has_been_downloaded = False for node in nodes: try: r = requests.get(u"{scheme}://{host}/remote/?wsdl".format(scheme=node.scheme, host=node.host), stream=True, verify=False if node.no_verify else verify) if r.status_code == 200: with open(path, 'wb') as f: for chunk in r.iter_content(256): f.write(chunk) has_been_downloaded = True break except requests.exceptions.SSLError: print_ssl_error(node) sys.exit(1) except: pass if not has_been_downloaded: sys.exit("None of your nodes are available, can't download WSDL") def main(): # Configure logging logging.basicConfig(level=logging.ERROR) logging.getLogger('suds.client').setLevel(logging.CRITICAL) # Load modules and formatters base_paths = [BASE, os.path.expanduser('~/halonctl'), os.path.expanduser('~/.halonctl')] for path in base_paths: load_modules(os.path.join(path, 'modules')) load_formatters(os.path.join(path, 'formatters')) # Figure out the program version version = __version__ try: head_path = os.path.join(os.path.dirname(__file__), '..', '.git', 'refs', 'heads', 'master') with open(head_path) as f: revision = f.read().strip()[:7] version = "{version} ({revision})".format(version=__version__, revision=revision) except IOError: pass # Add parser arguments parser.add_argument('-V', '--version', action='version', version=u"halonctl {version}".format(version=version), help=u"print version information and exit") parser.add_argument('-C', '--config', type=argparse.FileType('rU'), help="use specified configuration file") parser.add_argument('-n', '--node', dest='nodes', action='append', metavar="NODES", default=[], help=u"target nodes") parser.add_argument('-c', '--cluster', dest='clusters', action='append', metavar="CLUSTERS", default=[], help=u"target clusters") parser.add_argument('-s', '--slice', dest='slice', default='', help=u"slicing, as a Python slice expression") parser.add_argument('-d', '--dry', dest='dry_run', action='store_true', help=u"only list the nodes that would be affected") parser.add_argument('-i', '--ignore-partial', action='store_true', help=u"exit normally even for partial results") parser.add_argument('-f', '--format', choices=list(formatters.keys()), default='table', help=u"use the specified output format (default: table)") parser.add_argument('-r', '--raw', action='store_true', help=u"don't humanize the output, output it as raw as possible") parser.add_argument('-g', '--group-by', metavar="KEY", help=u"group output; ignored for table-like formats") parser.add_argument('-k', '--key', dest='group_key', action='store_true', help=u"assume grouper is unique, and key only a single value to it") parser.add_argument('--clear-cache', action='store_true', help=u"clear the WSDL cache") # Parse! args = parser.parse_args() # Clear cache if requested if args.clear_cache: os.remove(cache.get_path(u"wsdl.xml")) # Load configuration config = load_config(args.config or open_config()) nodes, clusters = process_config(config) # Allow wildcard cluster- and node targeting if args.clusters == ['-']: args.clusters = list(clusters.keys()) if args.nodes == ['-']: args.nodes = list(nodes.keys()) # Allow slices without targeting, defaulting to each cluster if args.slice and not args.clusters and not args.nodes: args.clusters = list(clusters.keys()) # Allow non-configured nodes to be specified as '[name:]username@host' quick_node_matches = [ quick_node_re.match(n) for n in args.nodes ] quick_node_args = [] for m in [ m for m in quick_node_matches if m ]: arg = m.group(0) data = m.group('data') n = Node(data, name=m.group('name') or m.group('host')) n.no_verify = True # Don't verify SSL for quick nodes nodes[arg] = n quick_node_args.append(arg) if quick_node_args: l = NodeList([nodes[arg] for arg in quick_node_args]) for node, (code, result) in six.iteritems(l.service.login()): if code == 401: while True: password = getpass.getpass(u"Password for {node.username}@{node.host}: ".format(node=node)) if not password: break node.password = password code = node.service.login()[0] if code == 200: break elif code == 401: print(u"Invalid login, try again") elif code == 0: print(u"The node has gone away") break else: print(u"An error occurred, code {0}".format(code)) break # Validate cluster and node choices invalid_clusters = [cid for cid in args.clusters if not cid in clusters] if invalid_clusters: print(u"Unknown clusters: {0}".format(', '.join(invalid_clusters)), file=sys.stderr) print(u"Available: {0}".format(', '.join(six.iterkeys(clusters))), file=sys.stderr) sys.exit(1) invalid_nodes = [nid for nid in args.nodes if not nid in nodes and nid not in quick_node_args] if invalid_nodes: print(u"Unknown nodes: {0}".format(', '.join(invalid_nodes)), file=sys.stderr) print(u"Available: {0}".format(', '.join(six.iterkeys(nodes))), file=sys.stderr) sys.exit(1) # Filter nodes to choices target_nodes = apply_filter(nodes, clusters, args.nodes, args.clusters, args.slice) # If this is a dry run - stop right here and just print the targets if args.dry_run: print(u"This action would have affected:") for node in target_nodes: print(u" - {name} ({cluster})".format(name=node.name, cluster=node.cluster.name)) return # Download WSDL and create client objects download_wsdl(target_nodes, verify=config.get('verify_ssl', True)) for node in target_nodes: node.load_wsdl() # Run the selected module mod = args._mod retval = mod.run(target_nodes, args) # Normalize generator mods into lists (lets us detect emptiness) if inspect.isgenerator(retval): retval = list(retval) # Print something, if there's anything to print if retval: if hasattr(retval, 'draw'): print(retval.draw()) elif isinstance(retval, Role): print(retval.raw() if args.raw else retval.human()) else: print(formatters[args.format].run(retval, args)) # Let the module decide the exit code - either by explicitly setting it, or # by marking the result as partial, in which case a standard exit code is # returned unless the user has requested partial results to be ignored if mod.exitcode != 0: sys.exit(mod.exitcode) elif mod.partial and not args.ignore_partial: sys.exit(99) if __name__ == '__main__': main()
""" Test for the various mlab source functions. These tests are higher level than the tests testing directly the MlabSource subclasses. They are meant to capture errors in the formatting of the input arguments. """ # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Copyright (c) 2008, Enthought, Inc. # License: BSD Style. import unittest import numpy as np from mayavi.tools import sources ################################################################################ # `BaseTestSource` ################################################################################ class BaseTestSource(unittest.TestCase): def setUp(self): return def tearDown(self): return def all_close(self, a, b): """ Similar to numpy's allclose, but works also for a=None. """ if a is None or b is None: self.assertIsNone(a) self.assertIsNone(b) else: self.assert_(np.allclose(a, a)) def check_positions(self, source, x, y, z): """ Check that the position vectors of the source do correspond to the given input positions """ self.assert_(np.allclose(source.mlab_source.x, x)) self.assert_(np.allclose(source.mlab_source.y, y)) self.assert_(np.allclose(source.mlab_source.z, z)) def check_vectors(self, source, u, v, w): """ Check that the vector data corresponds to the given arrays. """ self.all_close(source.mlab_source.u, u) self.all_close(source.mlab_source.v, v) self.all_close(source.mlab_source.w, w) def check_scalars(self, source, s): """ Check that the scalar data corresponds to the given array. """ self.all_close(source.mlab_source.scalars, s) ################################################################################ # `TestScalarScatter` ################################################################################ class TestScalarScatter(BaseTestSource): def test_input_args(self): """ Check that scalar_scatter can take different input arguments """ # Check for a single number as position vectors. ss = sources.scalar_scatter(0, 0, 0, figure=None) self.check_positions(ss, 0, 0, 0) self.check_scalars(ss, None) self.check_vectors(ss, None, None, None) # Check for a single number as scalar data, and no position # vectors. ss = sources.scalar_scatter(0, figure=None) self.check_positions(ss, 0, 0, 0) self.check_scalars(ss, 0) self.check_vectors(ss, None, None, None) # Check for a list as position vectors. ss = sources.scalar_scatter([0, 1], [0, 1], [0, 1], figure=None) self.check_positions(ss, [0, 1], [0, 1], [0, 1]) self.check_scalars(ss, None) self.check_vectors(ss, None, None, None) # Check for a list as scalar data, and no position vectors. ss = sources.scalar_scatter([0, 1], figure=None) self.check_scalars(ss, [0, 1]) self.check_vectors(ss, None, None, None) # Check for a 1D array as position vectors. a = np.array([0, 1]) ss = sources.scalar_scatter(a, a, a, figure=None) self.check_positions(ss, a, a, a) self.check_scalars(ss, None) self.check_vectors(ss, None, None, None) # Check for a 1D array as a scalar data, and no position vectors. ss = sources.scalar_scatter(a, figure=None) self.check_scalars(ss, a) self.check_vectors(ss, None, None, None) # Check for a 2D array as position vectors. a = np.array([[0, 1], [2, 3]]) ss = sources.scalar_scatter(a, a, a, figure=None) self.check_positions(ss, a, a, a) self.check_scalars(ss, None) self.check_vectors(ss, None, None, None) # Check for a 2D array as scalar data, and no position vectors. ss = sources.scalar_scatter(a, figure=None) self.check_scalars(ss, a) self.check_vectors(ss, None, None, None) # Check for a 2D array as scalar data, and no position vectors. ss = sources.scalar_scatter(a, figure=None) self.check_scalars(ss, a) self.check_vectors(ss, None, None, None) ################################################################################ # `TestVectorScatter` ################################################################################ class TestVectorScatter(BaseTestSource): def test_input_args(self): """ Check that vector_scatter can take different input arguments """ # Check for a single number as a position vector. ss = sources.vector_scatter(0, 0, 0, 0, 0, 0, figure=None) self.check_positions(ss, 0, 0, 0) self.check_scalars(ss, None) self.check_vectors(ss, 0, 0, 0) # Check for no position vectors, and single numbers for vector # data. ss = sources.vector_scatter(0, 0, 0, figure=None) self.check_positions(ss, 0, 0, 0) self.check_scalars(ss, None) self.check_vectors(ss, 0, 0, 0) # Check for a list as a position vector. ss = sources.vector_scatter([0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], figure=None) self.check_positions(ss, [0, 1], [0, 1], [0, 1]) self.check_scalars(ss, None) self.check_vectors(ss, [0, 1], [0, 1], [0, 1]) # Check for a lists as a vector data, and no position vectors ss = sources.vector_scatter([0, 1], [0, 1], [0, 1], figure=None) self.check_scalars(ss, None) self.check_vectors(ss, [0, 1], [0, 1], [0, 1]) # Check for a 1D array as a position vector. a = np.array([0, 1]) ss = sources.vector_scatter(a, a, a, a, a, a, figure=None) self.check_positions(ss, a, a, a) self.check_scalars(ss, None) self.check_vectors(ss, a, a, a) # Check for a 1D array as vector data, and no position vectors. ss = sources.vector_scatter(a, a, a, figure=None) self.check_scalars(ss, None) self.check_vectors(ss, a, a, a) # Check for a 2D array as a position vector. a = np.array([[0, 1], [2, 3]]) ss = sources.vector_scatter(a, a, a, a, a, a, figure=None) self.check_positions(ss, a, a, a) self.check_scalars(ss, None) self.check_vectors(ss, a, a, a) # Check for a 2D array as vector data, and no position vectors. ss = sources.vector_scatter(a, a, a, figure=None) self.check_scalars(ss, None) self.check_vectors(ss, a, a, a) # Check for a 3D array as a position vector. x, y, z = np.mgrid[0:3, 0:3, 0:3] ss = sources.vector_scatter(x, y, z, x, y, z, figure=None) self.check_positions(ss, x, y, z) self.check_scalars(ss, None) self.check_vectors(ss, x, y, z) # Check for a 3D array as vector data, and no position vectors. x, y, z = np.mgrid[0:3, 0:3, 0:3] ss = sources.scalar_scatter(z, figure=None) self.check_scalars(ss, z) X, Y, Z = np.indices(z.shape) self.check_positions(ss, X, Y, Z) ################################################################################ # `TestArray2DSource` ################################################################################ class TestArray2DSource(BaseTestSource): def test_input_args(self): """ Check that array2d_source can take different input arguments """ # Check for a single number as data and no position arrays. ss = sources.array2d_source(0, figure=None) self.check_scalars(ss, 0) # Check for a list as data, and no position arrays. ss = sources.array2d_source([0, 1], figure=None) self.check_scalars(ss, [0, 1]) # Check for a 1D array as data, and no position arrays. a = np.array([0, 1]) ss = sources.array2d_source(a, figure=None) self.check_scalars(ss, a) # Check for a 2D array as data, and no position arrays. a = np.array([[0, 1], [2, 3]]) ss = sources.array2d_source(a, figure=None) self.check_scalars(ss, a) # Check for 2 lists as positions vectors, and a 2D list as data x = [0, 1] y = [0, 1] s = [[0, 1], [2, 3]] ss = sources.array2d_source(x, y, s, figure=None) self.check_scalars(ss, s) # Check for an ogrid as position vectors, and a function for the # scalars x, y = np.ogrid[-3:3, -3:3] f = lambda x, y: x**2 + y**2 ss = sources.array2d_source(x, y, f, figure=None) self.check_scalars(ss, f(x, y)) # Check for an mgrid as position vectors, and a 2D array for the # scalars x, y = np.mgrid[-3:3, -3:3] s = np.zeros_like(x) ss = sources.array2d_source(x, y, x, figure=None) self.check_scalars(ss, s) ################################################################################ # `TestScalarField` ################################################################################ class TestScalarField(BaseTestSource): def test_input_args(self): """ Check that scalar_field can take different input arguments """ # Check for 2D arrays as positions vectors, and a function for # the data f = lambda x, y, z: x**2 + y**2 x, y = np.mgrid[-3:3, -3:3] z = np.zeros_like(x) ss = sources.scalar_field(x, y, z, f, figure=None) self.check_positions(ss, x, y, z) s = f(x, y, z) self.check_scalars(ss, s) # Check for a 2D array as data, and no position vectors s = np.random.random((10, 10)) ss = sources.scalar_field(s, figure=None) self.check_scalars(ss, s) # Check for a 3D array as data, and no position vectors s = np.random.random((10, 10, 10)) ss = sources.scalar_field(s, figure=None) self.check_scalars(ss, s) # Check for a 3D array as data, and 3D arrays as position x, y, z = np.mgrid[-3:3, -3:3, -3:3] ss = sources.scalar_field(x, y, z, z, figure=None) self.check_positions(ss, x, y, z) self.check_scalars(ss, z) ################################################################################ # `TestVectorField` ################################################################################ class TestVectorField(BaseTestSource): def test_input_args(self): """ Check that vector_field can take different input arguments """ # Check for 2D arrays as positions vectors, and a function for # the data x, y = np.mgrid[-3:3, -3:3] z = np.zeros_like(x) def f(x, y, z): return y, z, x ss = sources.vector_field(x, y, z, f, figure=None) self.check_scalars(ss, None) self.check_vectors(ss, y, z, x) # Check for a 2D array as data, and no position vectors u = np.random.random((10, 10)) v = np.random.random((10, 10)) w = np.random.random((10, 10)) ss = sources.vector_field(u, v, w, figure=None) self.check_scalars(ss, None) self.check_vectors(ss, u, v, w) # Check for a 3D array as data, and no position vectors u = np.random.random((10, 10, 10)) v = np.random.random((10, 10, 10)) w = np.random.random((10, 10, 10)) ss = sources.vector_field(u, v, w, figure=None) self.check_scalars(ss, None) self.check_vectors(ss, u, v, w) # Check for a 3D array as data, and 3D arrays as position x, y, z = np.mgrid[-3:3, -3:3, -3:3] ss = sources.vector_field(x, y, z, y, z, x, figure=None) self.check_scalars(ss, None) self.check_positions(ss, x, y, z) self.check_vectors(ss, y, z, x) ################################################################################ # `TestLineSource` ################################################################################ class TestLineSource(BaseTestSource): def test_input_args(self): """ Check that vector_field can take different input arguments """ # Check for numbers as position vectors ss = sources.line_source(0, 0, 0, figure=None) self.check_positions(ss, 0, 0, 0) self.check_scalars(ss, None) # Check for lists as position vectors and as data ss = sources.line_source([0, 1], [0, 1], [0, 1], [2, 3], figure=None) self.check_positions(ss, [0, 1], [0, 1], [0, 1]) self.check_scalars(ss, [2, 3]) # Check for arrays as position vectors and a function as data x, y, z = np.random.random((3, 10)) f = lambda x, y, z: x + y + z ss = sources.line_source(x, y, z, f, figure=None) self.check_positions(ss, x, y, z) self.check_scalars(ss, f(x, y, z)) ################################################################################ # `TestVerticalVectorsSource` ################################################################################ class TestVerticalVectorsSource(BaseTestSource): def test_input_args(self): """ Check that vector_field can take different input arguments """ # Check for numbers as position vectors ss = sources.vertical_vectors_source(0, 0, 1, figure=None) self.check_positions(ss, 0, 0, 0) self.check_scalars(ss, 1) self.check_vectors(ss, 0, 0, 1) ss = sources.vertical_vectors_source(0, 0, 1, 1, figure=None) self.check_positions(ss, 0, 0, 1) self.check_scalars(ss, 1) self.check_vectors(ss, 0, 0, 1) # Check for lists as position vectors and as data ss = sources.vertical_vectors_source([0, 1], [0, 1], [0, 1], [2, 3], figure=None) self.check_positions(ss, [0, 1], [0, 1], [0, 1]) self.check_scalars(ss, [2, 3]) self.check_vectors(ss, [0, 0], [0, 0], [2, 3]) # Check for arrays as position vectors and a function as data x, y, z = np.random.random((3, 10)) zeros = np.zeros_like(x) f = lambda x, y, z: x + y + z ss = sources.vertical_vectors_source(x, y, z, f, figure=None) self.check_positions(ss, x, y, z) self.check_scalars(ss, f(x, y, z)) self.check_vectors(ss, zeros, zeros, z) ss = sources.vertical_vectors_source(x, y, z, figure=None) self.check_positions(ss, x, y, zeros) self.check_scalars(ss, z) self.check_vectors(ss, zeros, zeros, z) ################################################################################ # `TestSourceInfinite` ################################################################################ class TestVerticalVectorsSource(unittest.TestCase): def test_infinite(self): """ Check that passing in arrays with infinite values raises errors """ # Some arrays x = np.random.random((10, 3, 4)) y = np.random.random((10, 3, 4)) z = np.random.random((10, 3, 4)) u = np.random.random((10, 3, 4)) v = np.random.random((10, 3, 4)) w = np.random.random((10, 3, 4)) s = np.random.random((10, 3, 4)) # Add a few infinite values: u[2, 2, 1] = np.inf s[0, 0, 0] = -np.inf # Check value errors are raised because of the infinite values self.assertRaises(ValueError, sources.grid_source, x[0], y[0], z[0], scalars=s[0], figure=None) self.assertRaises(ValueError, sources.vertical_vectors_source, x, y, z, s, figure=None) self.assertRaises(ValueError, sources.array2d_source, x[0], y[0], s[0], figure=None) self.assertRaises(ValueError, sources.scalar_field, x, y, z, s, figure=None) self.assertRaises(ValueError, sources.scalar_scatter, x, y, z, s, figure=None) self.assertRaises(ValueError, sources.vector_scatter, x, y, z, u, v, w, figure=None) self.assertRaises(ValueError, sources.vector_field, x, y, z, u, v, w, figure=None) self.assertRaises(ValueError, sources.line_source, x[0, 0], y[0, 0], z[0, 0], s[0, 0], figure=None) if __name__ == '__main__': unittest.main()
from __future__ import absolute_import, division, print_function, unicode_literals __metaclass__ = type import pickle import os import cv2 import numpy as np import atexit import copy import time import six import gc import abc from abc import abstractmethod from collections import Iterable import keras from keras.models import Sequential, Model, load_model from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, BatchNormalization, Input, concatenate from keras.engine.topology import InputLayer from keras.optimizers import SGD from keras.utils import np_utils from keras.callbacks import ModelCheckpoint from keras import backend as K from .hyperopt_keras import HyperoptWrapper, getBestParams, DEFAULT_NUM_EVALS, tune from .google_storage import upload, downloadIfAvailable from .task import DEBUG from .preprocess import ImageNormalizer from .data import SCALES, DATASET_LABEL, DatasetManager from .util import TempH5pyFile hp = HyperoptWrapper() NET_FILE_NAMES = {False: {SCALES[0][0]: '12net.hdf', SCALES[1][0]: '24net.hdf', SCALES[2][0]: '48net.hdf'}, True: {SCALES[0][0]: '12calibnet.hdf', SCALES[1][0]: '24calibnet.hdf', SCALES[2][0]: '48calibnet.hdf'}} DROPOUT_PARAM_ID = 'dropout' OPTIMIZER_PARAMS = ['lr', 'momentum', 'decay', 'nesterov'] NORMALIZATION_PARAMS = ['norm', 'flip'] TRAIN_PARAMS = ['batchSize'] OPTIMIZER = SGD DEFAULT_BATCH_SIZE = 128 PREDICTION_BATCH_SIZE = 256 DEFAULT_NUM_EPOCHS = 300 DEFAULT_Q_SIZE = 10 DEBUG_FILE_PATH = 'debug.hdf' PARAM_FILE_NAME_FORMAT_STR = '%sparams' STAGE_ONE_NOT_TRAINED_ERROR = 'You must train the stage one models before moving onto stage two!' STAGE_TWO_NOT_TRAINED_ERROR = 'You must train the stage two models before moving onto stage three!' def _convert(data): if isinstance(data, bytes): return data.decode('ascii') elif isinstance(data, (dict, tuple, list, set)): return type(data)(map(_convert, data.items() if hasattr(data, 'items') else data)) return data @six.add_metaclass(abc.ABCMeta) class ObjectClassifier(): DEFAULT_DROPOUT = .3 LOSS = 'binary_crossentropy' METRICS = ['accuracy'] def __init__(self, stageIdx): self.imgSize = SCALES[stageIdx] self.inputShape = (self.imgSize[1], self.imgSize[0], 3) self.additionalNormalizers = [] self.trainedModel = None self.bestParams = None if stageIdx == 2: self.PARAM_SPACE = copy.deepcopy(self.PARAM_SPACE) self.PARAM_SPACE.update({'dropout2': hp.uniform(0, .75)}) self.update() @abstractmethod def __call__(self): pass def getStageIdx(self): return self.stageIdx def getParamFilePath(self): paramFilePath = PARAM_FILE_NAME_FORMAT_STR % (os.path.splitext(self.getWeightsFilePath())[0],) if not os.path.isfile(paramFilePath): downloadIfAvailable(paramFilePath) return paramFilePath def getParamSpace(self): return self.PARAM_SPACE def getWeightsFilePath(self): weightsFilePath = NET_FILE_NAMES[isinstance(self, ObjectCalibrator)][SCALES[self.stageIdx][0]] if not os.path.isfile(weightsFilePath): downloadIfAvailable(weightsFilePath) return weightsFilePath def getNormalizationMethod(self): return self.bestParams['norm'] if self.wasTuned() else ImageNormalizer.STANDARD_NORMALIZATION def getNormalizationParams(self): params = {} if self.wasTuned(): params = {k: v for k, v in self.bestParams.items() if k in NORMALIZATION_PARAMS} del params['norm'] return params def getAdditionalNormalizers(self, datasetManagerParams = None): if not self.additionalNormalizers: for i in np.arange(0, self.stageIdx): self.additionalNormalizers.append(DatasetManager(MODELS[i][0], **datasetManagerParams).getNormalizer()) return self.additionalNormalizers def getDropouts(self): dropouts = [self.DEFAULT_DROPOUT] * len([k for k in self.getParamSpace() if k.startswith(DROPOUT_PARAM_ID)]) if self.wasTuned(): dropouts = [] for k, v in self.bestParams.items(): if k.startswith(DROPOUT_PARAM_ID): idx = int(k.replace(DROPOUT_PARAM_ID, '')) dropouts.insert(idx, v) return dropouts def getOptimizerParams(self): return {k: v for k, v in self.bestParams.items() if k in OPTIMIZER_PARAMS} if self.wasTuned() else {} def getBatchSize(self): return DEFAULT_BATCH_SIZE if not self.wasTuned() else self.bestParams['batchSize'] def getSaveFilePath(self, debug = DEBUG): return self.getWeightsFilePath() if not debug else DEBUG_FILE_PATH def wasTuned(self): return os.path.isfile(self.getParamFilePath()) def update(self): if self.wasTuned(): with open(self.getParamFilePath(), 'rb') as paramFile: loadArgs = {} if six.PY2 else {'encoding': 'bytes'} trials = pickle.load(paramFile, **loadArgs) trials.__dict__ = _convert(trials.__dict__) best = _convert(trials.best_trial['misc']['vals']) self.bestParams = getBestParams(self.getParamSpace(), best) def compile(self, params = {}, loss = LOSS, metrics = METRICS): if len(params) == 0 and self.bestParams: params = self.bestParams self.model.compile(loss = loss, optimizer = OPTIMIZER(**params), metrics = metrics) def tune(self, datasetManager, labels, metric, verbose = True, numEvals = DEFAULT_NUM_EVALS): paramSpace = self.getParamSpace() paramFilePath = self.getParamFilePath() best, trials = tune(paramSpace, self, datasetManager, labels, metric, verbose = verbose, numEvals = numEvals) if verbose: print('Best model parameters found:', getBestParams(paramSpace, best)) with open(paramFilePath, 'wb') as modelParamFile: pickle.dump(trials, modelParamFile, protocol = 2) upload(paramFilePath) self.update() def getInputGenerator(self, X, y, normalizers, **normalizerParams): isCalibrationNet = isinstance(self, ObjectCalibrator) normalizerParams.update({'labels': y}) generator = normalizers[self.stageIdx if not isCalibrationNet else 0].preprocess(X, **normalizerParams) normalizerParams.update({'batchSize': None, 'labels': None}) while True: X, y = next(generator) X_extended = [] if not isCalibrationNet: for i in np.arange(0, self.stageIdx+1): if i != self.stageIdx: X_extended.append(normalizers[i].preprocess(np.vstack([cv2.resize(img, SCALES[i])[np.newaxis] for img in X]), **normalizerParams)) X_extended.insert(self.stageIdx, X) yield X_extended, y def fit(self, X_train, X_test, y_train, y_test, datasetManager, normalizer = None, numEpochs = DEFAULT_NUM_EPOCHS, saveFilePath = None, batchSize = None, compileParams = None, dropouts = None, verbose = True, debug = DEBUG): params = [compileParams or self.getOptimizerParams(), dropouts or self.getDropouts(), datasetManager.getParams()] saveFilePath = saveFilePath or self.getSaveFilePath(debug) batchSize = batchSize or self.getBatchSize() callbacks = [ModelCheckpoint(saveFilePath, monitor = 'val_loss', save_best_only = True, verbose = int(verbose))] model = self(*params) y_train, y_test = (np_utils.to_categorical(vec, int(np.amax(vec) + 1)) for vec in (y_train, y_test)) normalizers = self.additionalNormalizers + [normalizer or datasetManager.getNormalizer()] if debug: print(params, saveFilePath, batchSize, X_train.shape, X_test.shape, y_train.shape, y_test.shape) model.fit_generator(self.getInputGenerator(X_train, y_train, normalizers, shuffle = True, batchSize = batchSize), len(X_train)//batchSize, epochs = numEpochs, verbose = 2 if verbose else 0, callbacks = callbacks, validation_data = self.getInputGenerator(X_test, y_test, normalizers, batchSize = batchSize, useDataAugmentation = False, shuffle = False), validation_steps = len(X_test)//batchSize, max_queue_size = DEFAULT_Q_SIZE) del self.trainedModel self.trainedModel = None K.clear_session() gc.collect() def loadModel(self, weightsFilePath = None): if self.trainedModel is None: self.trainedModel = load_model(self.getWeightsFilePath() if weightsFilePath is None else weightsFilePath) inputLayers = [] for layer in self.trainedModel.layers: if type(layer) is InputLayer: inputLayers.append(layer.input) inputLayers.append(K.learning_phase()) self.predictFunc = K.function(inputLayers, [self.trainedModel.layers[-1].output]) return self.trainedModel def predict(self, X, normalizer = None, weightsFilePath = None, datasetManager = None): self.loadModel(weightsFilePath) useFastPredict = datasetManager is None makePrediction = lambda X: self.predictFunc(X)[0] if not useFastPredict: batchSize = PREDICTION_BATCH_SIZE normalizers = self.getAdditionalNormalizers(datasetManager.getParams()) + [normalizer] inputGenerator = self.getInputGenerator(X, None, normalizers, batchSize = batchSize, shuffle = False, useDataAugmentation = False) for i in np.arange(0, len(X), PREDICTION_BATCH_SIZE): X_batch, y_batch = next(inputGenerator) batches = [] for j, inputArray in enumerate(X_batch): arraySlice = inputArray[:min(PREDICTION_BATCH_SIZE, len(X) - i)] if j < 2: batches.insert(0, arraySlice) else: batches.append(arraySlice) batches.append(0) predictions = makePrediction(batches) if i == 0: y = np.zeros((0, predictions.shape[1])) y = np.vstack((y, predictions)) else: y = makePrediction(X + [0]) return y def eval(self, X_test, y_test, normalizer, metric, weightsFilePath = None, datasetManager = None, **metric_kwargs): y_pred = self.predict(X_test, normalizer, weightsFilePath, datasetManager = datasetManager) return metric(y_test, np.argmax(y_pred, axis = 1), **metric_kwargs) @six.add_metaclass(abc.ABCMeta) class ObjectCalibrator(ObjectClassifier): LOSS = 'categorical_crossentropy' def __init__(self, stageIdx): super(ObjectCalibrator, self).__init__(stageIdx) @abstractmethod def __call__(self): pass class StageOneClassifier(ObjectClassifier): HP = HyperoptWrapper() PARAM_SPACE = { 'dropout0': HP.uniform(0, .75), 'dropout1': HP.uniform(0, .75), 'lr': HP.loguniform(1e-4, 1), 'batchSize': HP.choice(128), 'norm': HP.choice(ImageNormalizer.STANDARD_NORMALIZATION), 'flip': HP.choice(ImageNormalizer.FLIP_HORIZONTAL), 'momentum': HP.choice(.9), 'decay': HP.choice(1e-4), 'nesterov': HP.choice(True) } def __init__(self): self.stageIdx = 0 super(StageOneClassifier, self).__init__(self.stageIdx) def __call__(self, compileParams = {}, dropouts = [ObjectClassifier.DEFAULT_DROPOUT]*2, datasetManagerParams = {}, includeTop = True, compile = True): inputLayer = Input(shape = self.inputShape) conv2D = Conv2D(16, (3, 3), activation = 'relu')(inputLayer) maxPool2D = MaxPooling2D(pool_size = (3,3),strides = 2)(conv2D) firstDropout = Dropout(dropouts[0])(maxPool2D) flattened = Flatten()(firstDropout) fullyConnectedLayer = Dense(16, activation = 'relu')(flattened) finalDropout = Dropout(dropouts[1])(fullyConnectedLayer) if includeTop: outputLayer = Dense(2, activation = 'softmax')(finalDropout) self.model = Model(inputs = inputLayer, outputs = outputLayer if includeTop else fullyConnectedLayer) if compile: self.compile(compileParams) return self.model class StageTwoClassifier(ObjectClassifier): HP = HyperoptWrapper() PARAM_SPACE = { 'dropout0': HP.uniform(0, .75), 'dropout1': HP.uniform(0, .75), 'lr': HP.loguniform(1e-4, 1), 'batchSize': HP.choice(512), 'norm': HP.choice(ImageNormalizer.STANDARD_NORMALIZATION), 'flip': HP.choice(ImageNormalizer.FLIP_HORIZONTAL), 'momentum': HP.choice(.9), 'decay': HP.choice(1e-4), 'nesterov': HP.choice(True) } def __init__(self): self.stageIdx = 1 super(StageTwoClassifier, self).__init__(self.stageIdx) def __call__(self, compileParams = {}, dropouts = [ObjectClassifier.DEFAULT_DROPOUT]*2, datasetManagerParams = {}, includeTop = True, compile = True): inputLayer = Input(shape = self.inputShape) conv2D = Conv2D(64, (5, 5), activation = 'relu')(inputLayer) maxPool2D = MaxPooling2D(pool_size=(3,3), strides = 2)(conv2D) firstDropout = Dropout(dropouts[0])(maxPool2D) flattened = Flatten()(firstDropout) fullyConnectedLayer = Dense(128, activation = 'relu')(flattened) stageOne = StageOneClassifier() assert os.path.isfile(stageOne.getWeightsFilePath()), STAGE_ONE_NOT_TRAINED_ERROR stageOneModel = stageOne(datasetManagerParams = datasetManagerParams, includeTop = False, compile = False) trainedStageOne = stageOne.loadModel() for i, layer in enumerate(stageOneModel.layers): layer.set_weights(trainedStageOne.layers[i].get_weights()) layer.trainable = False if not self.additionalNormalizers: self.additionalNormalizers.append(DatasetManager(stageOne, **datasetManagerParams).getNormalizer()) mergedFullyConnectedLayer = concatenate([fullyConnectedLayer, stageOneModel.output]) finalDropout = Dropout(dropouts[1])(mergedFullyConnectedLayer) if includeTop: outputLayer = Dense(2, activation = 'softmax')(finalDropout) self.model = Model(inputs = [stageOneModel.input, inputLayer], outputs = outputLayer if includeTop else mergedFullyConnectedLayer) if compile: self.compile(compileParams) return self.model class StageThreeClassifier(ObjectClassifier): # temporary patch for HyperoptWrapper bug. need to change HyperoptWrapper class and retune everything to fix HP = HyperoptWrapper() PARAM_SPACE = { 'dropout0': HP.uniform(0, .75), 'dropout1': HP.uniform(0, .75), 'lr': HP.loguniform(1e-4, 1), 'batchSize': HP.choice(512), 'norm': HP.choice(ImageNormalizer.STANDARD_NORMALIZATION), 'flip': HP.choice(ImageNormalizer.FLIP_HORIZONTAL), 'momentum': HP.choice(.9), 'decay': HP.choice(1e-4), 'nesterov': HP.choice(True) } def __init__(self): self.stageIdx = 2 super(StageThreeClassifier, self).__init__(self.stageIdx) def __call__(self, compileParams = {}, dropouts = [ObjectClassifier.DEFAULT_DROPOUT]*3, datasetManagerParams = {}): inputLayer = Input(shape = self.inputShape) conv2D = Conv2D(64, (5, 5), activation = 'relu')(inputLayer) maxPool2D = MaxPooling2D(pool_size=(3,3), strides = 2)(conv2D) firstDropout = Dropout(dropouts[0])(maxPool2D) firstBatchNorm = BatchNormalization()(firstDropout) secondaryConv2D = Conv2D(64, (5, 5), activation = 'relu')(firstBatchNorm) secondaryBatchNorm = BatchNormalization()(secondaryConv2D) secondaryMaxPool2D = MaxPooling2D(pool_size=(3,3), strides = 2)(secondaryBatchNorm) secondDropout = Dropout(dropouts[1])(secondaryMaxPool2D) flattened = Flatten()(firstDropout) fullyConnectedLayer = Dense(256, activation = 'relu')(flattened) stageTwo = StageTwoClassifier() assert os.path.isfile(stageTwo.getWeightsFilePath()), STAGE_TWO_NOT_TRAINED_ERROR trainedStageTwo = stageTwo.loadModel() stageTwoModel = stageTwo(datasetManagerParams = datasetManagerParams, includeTop = False, compile = False) inputLayers = [inputLayer] for i, layer in enumerate(stageTwoModel.layers): layer.set_weights(trainedStageTwo.layers[i].get_weights()) layer.trainable = False if type(layer) is InputLayer: inputLayers.insert(0, layer.input) if not self.additionalNormalizers: self.additionalNormalizers.extend(stageTwo.getAdditionalNormalizers()) self.additionalNormalizers.append(DatasetManager(stageTwo, **datasetManagerParams).getNormalizer()) mergedFullyConnectedLayer = concatenate([fullyConnectedLayer, stageTwoModel.output]) thirdDropout = Dropout(dropouts[2])(mergedFullyConnectedLayer) outputLayer = Dense(2, activation = 'softmax')(thirdDropout) self.model = Model(inputs = inputLayers, outputs = outputLayer) self.compile(compileParams) return self.model class StageOneCalibrator(ObjectCalibrator): HP = HyperoptWrapper() PARAM_SPACE = { 'dropout0': HP.uniform(0, .75), 'dropout1': HP.uniform(0, .75), 'lr': HP.loguniform(1e-4, 1), 'batchSize': HP.choice(512), 'norm': HP.choice(ImageNormalizer.STANDARD_NORMALIZATION), 'flip': HP.choice(None), 'momentum': HP.choice(.9), 'decay': HP.choice(1e-4), 'nesterov': HP.choice(True) } def __init__(self): self.stageIdx = 0 super(StageOneCalibrator, self).__init__(self.stageIdx) def __call__(self, compileParams = {}, dropouts = [ObjectCalibrator.DEFAULT_DROPOUT]*2, datasetManagerParams = {}): inputLayer = Input(shape = self.inputShape) conv2D = Conv2D(16, (3, 3), activation = 'relu')(inputLayer) maxPool2D = MaxPooling2D(pool_size = (3,3), strides = 2)(conv2D) firstDropout = Dropout(dropouts[0])(maxPool2D) flattened = Flatten()(firstDropout) fullyConnectedLayer = Dense(128, activation = 'relu')(flattened) finalDropout = Dropout(dropouts[1])(fullyConnectedLayer) outputLayer = Dense(45, activation = 'softmax')(finalDropout) self.model = Model(inputs = inputLayer, outputs = outputLayer) self.compile(compileParams) return self.model class StageTwoCalibrator(ObjectCalibrator): HP = HyperoptWrapper() PARAM_SPACE = { 'dropout0': HP.uniform(0, .75), 'dropout1': HP.uniform(0, .75), 'lr': HP.loguniform(1e-4, 1), 'batchSize': HP.choice(512), 'norm': HP.choice(ImageNormalizer.STANDARD_NORMALIZATION), 'flip': HP.choice(None), 'momentum': HP.choice(.9), 'decay': HP.choice(1e-4), 'nesterov': HP.choice(True) } def __init__(self): self.stageIdx = 1 super(StageTwoCalibrator, self).__init__(self.stageIdx) def __call__(self, compileParams = {}, dropouts = [ObjectCalibrator.DEFAULT_DROPOUT]*2, datasetManagerParams = {}): inputLayer = Input(shape = self.inputShape) conv2D = Conv2D(32, (5, 5), activation = 'relu')(inputLayer) maxPool2D = MaxPooling2D(pool_size = (3,3), strides = 2)(conv2D) firstDropout = Dropout(dropouts[0])(maxPool2D) flattened = Flatten()(firstDropout) fullyConnectedLayer = Dense(64, activation = 'relu')(flattened) finalDropout = Dropout(dropouts[1])(fullyConnectedLayer) outputLayer = Dense(45, activation = 'softmax')(finalDropout) self.model = Model(inputs = inputLayer, outputs = outputLayer) self.compile(compileParams) return self.model class StageThreeCalibrator(ObjectCalibrator): #TODO: Fix HyperoptWrapper class HP = HyperoptWrapper() PARAM_SPACE = { 'dropout0': HP.uniform(0, .75), 'dropout1': HP.uniform(0, .75), 'lr': HP.loguniform(1e-9, 1), 'batchSize': HP.choice(512), 'norm': HP.choice(ImageNormalizer.STANDARD_NORMALIZATION), 'flip': HP.choice(None), 'momentum': HP.choice(.9), 'decay': HP.choice(1e-4), 'nesterov': HP.choice(True) } def __init__(self): self.stageIdx = 2 super(StageThreeCalibrator, self).__init__(self.stageIdx) def __call__(self, compileParams = {}, dropouts = [ObjectCalibrator.DEFAULT_DROPOUT]*3, datasetManagerParams = {}): inputLayer = Input(shape = self.inputShape) conv2D = Conv2D(64, (5, 5), activation = 'relu')(inputLayer) maxPool2D = MaxPooling2D(pool_size = (3,3), strides = 2)(conv2D) firstDropout = Dropout(dropouts[0])(maxPool2D) firstBatchNorm = BatchNormalization()(firstDropout) secondaryConv2D = Conv2D(64, (5, 5), activation = 'relu')(firstBatchNorm) secondaryMaxPool2D = MaxPooling2D(pool_size = (3,3), strides = 2)(secondaryConv2D) secondBatchNorm = BatchNormalization()(secondaryMaxPool2D) secondDropout = Dropout(dropouts[1])(secondBatchNorm) flattened = Flatten()(secondDropout) fullyConnectedLayer = Dense(256, activation = 'relu')(flattened) thirdDropout = Dropout(dropouts[2])(fullyConnectedLayer) outputLayer = Dense(45, activation = 'softmax')(thirdDropout) self.model = Model(inputs = inputLayer, outputs = outputLayer) self.compile(compileParams) return self.model MODELS = {False: [StageOneClassifier(), StageTwoClassifier(), StageThreeClassifier()], True: [StageOneCalibrator(), StageTwoCalibrator(), StageThreeCalibrator()]}
#!/usr/bin/python -Wall # ================================================================ # John Kerl # kerl.john.r@gmail.com # 2007-05-31 # ================================================================ from __future__ import division # 1/2 = 0.5, not 0. from sackmat_m import * from sackst_m import * import random # ---------------------------------------------------------------- def maindemo(): n = 3 for r in range(0, 5): A = make_zero_simple_tensor(r, n); print r, n; A.printf() n = 4 for r in range(0, 5): A = make_I_simple_tensor(r, n); print r, n; A.printf() n = 4 for r in range(0, 5): A = make_ones_simple_tensor(r, n); print r, n; A.printf() n = 2 A = make_zero_simple_tensor(3, n); B = make_zero_simple_tensor(3, n); for i in range(0, n): for j in range(0, n): for k in range(0, n): A[i][j][k] = i+j+k + i*j*k + 1 B[i][j][k] = 2+i C = A + B print "A:"; A.printf() print "B:"; B.printf() print "A+B:"; C.printf() A = simple_tensor([[1,2],[3,4]]) B = simple_tensor([5, 6]) C = A * B print "A:"; A.printf() print "B:"; B.printf() print "A*B:"; C.printf() A = simple_tensor([[1,2],[3,4]]) B = simple_tensor([5, 6]) C = B * A print "A:"; A.printf() print "B:"; B.printf() print "B*A:"; C.printf() A = simple_tensor([[1,2,3],[4,5,6],[7,8,9]]) B = simple_tensor([-1, -2, -3]) C = A * B print "A:"; A.printf() print "B:"; B.printf() print "A*B:"; C.printf() A = simple_tensor(2) B = simple_tensor(3) print "A:"; A.printf() print "B:"; B.printf() C = A * B print "A*B:"; C.printf() A = simple_tensor([[1,2,3],[4,5,6],[7,8,9]]) print "A:"; A.printf() B = A.Alt() print "Alt(A):"; B.printf() B = A.Sym() print "Sym(A):"; B.printf() A = simple_tensor([[[1,4],[3,2]],[[9,6],[7,5]]]) print "A:"; A.printf() B = A.Alt() print "Alt(A):"; B.printf() B = A.Sym() print "Sym(A):"; B.printf() print X = simple_tensor([[1,2,3],[4,5,6],[7,8,9]]) Y = simple_tensor([1,-1,1]) P = X * Y S = X & Y A = X ^ Y print "X:"; X.printf() print "Y:"; Y.printf() print "X*Y:"; P.printf() print "XY:"; S.printf() print "X^Y:"; A.printf() print X = simple_tensor([[1,2,3],[4,5,6],[7,8,9]]) Y = simple_tensor([[1,2,3],[4,5,6],[7,8,9]]) P = X * Y S = X & Y A = X ^ Y print "X:"; X.printf() print "Y:"; Y.printf() print "X*Y:"; P.printf() print "XY:"; S.printf() print "X^Y:"; A.printf() print X = simple_tensor([[1,0,0],[0,1,0],[0,0,1]]) Y = simple_tensor([1,1,1]) P = X * Y S = X & Y A = X ^ Y print "X:"; X.printf() print "Y:"; Y.printf() print "X*Y:"; P.printf() print "XY:"; S.printf() print "X^Y:"; A.printf() print X = make_I_simple_tensor(2, 4) Y = make_I_simple_tensor(2, 4) P = X * Y S = X & Y A = X ^ Y print "X:"; X.printf() print "Y:"; Y.printf() print "X*Y:"; P.printf() print "XY:"; S.printf() print "X^Y:"; A.printf() print n = 3 for i in range(0, n): ei = simple_tensor(sackmat_m.stdbv(i, n)) for j in range(i+1, n): ej = simple_tensor(sackmat_m.stdbv(j, n)) eij = ei ^ ej print "e" + str(i) + " ^ e" + str(j) eij.printf() n = 3 for i in range(0, n): ei = simple_tensor(sackmat_m.stdbv(i, n)) for j in range(i+1, n): ej = simple_tensor(sackmat_m.stdbv(j, n)) for k in range(j+1, n): ek = simple_tensor(sackmat_m.stdbv(k, n)) eijk = ei ^ ej ^ ek print "e" + str(i) + " ^ e" + str(j) + " ^ e" + str(k) eijk.printf() n = 4 for i in range(0, n): ei = simple_tensor(sackmat_m.stdbv(i, n)) for j in range(i+1, n): ej = simple_tensor(sackmat_m.stdbv(j, n)) eij = ei ^ ej print "e" + str(i) + " ^ e" + str(j) eij.printf() n = 4 for i in range(0, n): ei = simple_tensor(sackmat_m.stdbv(i, n)) for j in range(i+1, n): ej = simple_tensor(sackmat_m.stdbv(j, n)) for k in range(j+1, n): ek = simple_tensor(sackmat_m.stdbv(k, n)) eijk = ei ^ ej ^ ek print "e" + str(i) + " ^ e" + str(j) + " ^ e" + str(k) eijk.printf() n = 4 for i in range(0, n): ei = simple_tensor(sackmat_m.stdbv(i, n)) for j in range(i+1, n): ej = simple_tensor(sackmat_m.stdbv(j, n)) for k in range(j+1, n): ek = simple_tensor(sackmat_m.stdbv(k, n)) for l in range(k+1, n): el = simple_tensor(sackmat_m.stdbv(l, n)) eijkl = ei ^ ej ^ ek ^ el print "e" + str(i) + " ^ e" + str(j) + " ^ e" + str(k) + " ^ e" + str(l) eijkl.printf() # ---------------------------------------------------------------- #import random # #def foobar(): # #A = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] # #A = [[[0, 1], [0, 0]], [[0, 0], [0, 0]]] # n=5 # A = make_zero_3_tensor(n) # # g = random.Random(1) # for i in range(0, n): # for j in range(0, n): # for k in range(0, n): # #A[i][j][k] = i*j*k+ i*i - j*k + 1 # A[i][j][k] = g.random() # # # print_3_tensor(A) # # #Z = make_zero_3_tensor(2) # #print_3_tensor(Z) # # S = mksymm3(A) # print_3_tensor(S) # # S = mkskew3(A) # print_3_tensor(S) # #foobar() # ---------------------------------------------------------------- def apply_demo(): #T = simple_tensor([[1,0],[0,1]]) #u = [3,4] #v = [5,6] #T = simple_tensor([[1,0,0],[0,1,0],[0,0,1]]) #u = [3,4,5] #v = [5,6,7] T = simple_tensor([[0,1,1],[-1,0,1],[-1,-1,0]]) u = [3,4,5] v = [5,6,7] uv = simple_tensor(u) * simple_tensor(v) t = T.of([u,v]) T.printf() uv.printf() print_row_vector(u) print print_row_vector(v) print print t # ---------------------------------------------------------------- def symstuff(): r = 3 n = 3 p = n ** r A = make_zero_simple_tensor(r, n) v = 1 g = random.Random(1) for i in range(0, p): I = multidx(i, r, n) #A[I] = v A[I] = g.random() v += 1 B = A.Alt() C = A.Sym() print "Orig:"; A.printf(); print print "Alt :"; B.printf(); print print "Sym :"; C.printf(); print D = A - B - C print "OAS :"; D.printf(); print # ---------------------------------------------------------------- def cobtest(): g = simple_tensor([[1,0],[0,1]]) Q = sackmat([[2,0],[1,1]]).transpose() #g = simple_tensor([[1,0,0],[0,1,0],[0,0,1]]) #Q = sackmat([[2,1,1],[0,1,2],[0,0,1]]).transpose() print "Q:"; Q.printf(); print print "g:"; g.printf(); print gp = g.cov_cob(Q); gp.printf() gp = g.ctv_cob(Q); gp.printf() gp = g.cob(Q,[1,0]); gp.printf() gp = g.cob(Q,[0,1]); gp.printf() # ================================================================ #apply_demo() symstuff() #cobtest()
import itertools import json import os from urllib.parse import unquote from django.apps import apps from django.conf import settings from django.http import HttpResponse, HttpResponseRedirect, JsonResponse from django.template import Context, Engine from django.urls import translate_url from django.utils.encoding import force_text from django.utils.formats import get_format from django.utils.http import is_safe_url from django.utils.translation import ( LANGUAGE_SESSION_KEY, check_for_language, get_language, ) from django.utils.translation.trans_real import DjangoTranslation from django.views.generic import View LANGUAGE_QUERY_PARAMETER = 'language' def set_language(request): """ Redirect to a given url while setting the chosen language in the session or cookie. The url and the language code need to be specified in the request parameters. Since this view changes how the user will see the rest of the site, it must only be accessed as a POST request. If called as a GET request, it will redirect to the page in the request (the 'next' parameter) without changing any state. """ next = request.POST.get('next', request.GET.get('next')) if ((next or not request.is_ajax()) and not is_safe_url(url=next, allowed_hosts={request.get_host()}, require_https=request.is_secure())): next = request.META.get('HTTP_REFERER') if next: next = unquote(next) # HTTP_REFERER may be encoded. if not is_safe_url(url=next, allowed_hosts={request.get_host()}, require_https=request.is_secure()): next = '/' response = HttpResponseRedirect(next) if next else HttpResponse(status=204) if request.method == 'POST': lang_code = request.POST.get(LANGUAGE_QUERY_PARAMETER) if lang_code and check_for_language(lang_code): if next: next_trans = translate_url(next, lang_code) if next_trans != next: response = HttpResponseRedirect(next_trans) if hasattr(request, 'session'): request.session[LANGUAGE_SESSION_KEY] = lang_code else: response.set_cookie( settings.LANGUAGE_COOKIE_NAME, lang_code, max_age=settings.LANGUAGE_COOKIE_AGE, path=settings.LANGUAGE_COOKIE_PATH, domain=settings.LANGUAGE_COOKIE_DOMAIN, ) return response def get_formats(): """ Returns all formats strings required for i18n to work """ FORMAT_SETTINGS = ( 'DATE_FORMAT', 'DATETIME_FORMAT', 'TIME_FORMAT', 'YEAR_MONTH_FORMAT', 'MONTH_DAY_FORMAT', 'SHORT_DATE_FORMAT', 'SHORT_DATETIME_FORMAT', 'FIRST_DAY_OF_WEEK', 'DECIMAL_SEPARATOR', 'THOUSAND_SEPARATOR', 'NUMBER_GROUPING', 'DATE_INPUT_FORMATS', 'TIME_INPUT_FORMATS', 'DATETIME_INPUT_FORMATS' ) result = {} for attr in FORMAT_SETTINGS: result[attr] = get_format(attr) formats = {} for k, v in result.items(): if isinstance(v, (int, str)): formats[k] = force_text(v) elif isinstance(v, (tuple, list)): formats[k] = [force_text(value) for value in v] return formats js_catalog_template = r""" {% autoescape off %} (function(globals) { var django = globals.django || (globals.django = {}); {% if plural %} django.pluralidx = function(n) { var v={{ plural }}; if (typeof(v) == 'boolean') { return v ? 1 : 0; } else { return v; } }; {% else %} django.pluralidx = function(count) { return (count == 1) ? 0 : 1; }; {% endif %} /* gettext library */ django.catalog = django.catalog || {}; {% if catalog_str %} var newcatalog = {{ catalog_str }}; for (var key in newcatalog) { django.catalog[key] = newcatalog[key]; } {% endif %} if (!django.jsi18n_initialized) { django.gettext = function(msgid) { var value = django.catalog[msgid]; if (typeof(value) == 'undefined') { return msgid; } else { return (typeof(value) == 'string') ? value : value[0]; } }; django.ngettext = function(singular, plural, count) { var value = django.catalog[singular]; if (typeof(value) == 'undefined') { return (count == 1) ? singular : plural; } else { return value[django.pluralidx(count)]; } }; django.gettext_noop = function(msgid) { return msgid; }; django.pgettext = function(context, msgid) { var value = django.gettext(context + '\x04' + msgid); if (value.indexOf('\x04') != -1) { value = msgid; } return value; }; django.npgettext = function(context, singular, plural, count) { var value = django.ngettext(context + '\x04' + singular, context + '\x04' + plural, count); if (value.indexOf('\x04') != -1) { value = django.ngettext(singular, plural, count); } return value; }; django.interpolate = function(fmt, obj, named) { if (named) { return fmt.replace(/%\(\w+\)s/g, function(match){return String(obj[match.slice(2,-2)])}); } else { return fmt.replace(/%s/g, function(match){return String(obj.shift())}); } }; /* formatting library */ django.formats = {{ formats_str }}; django.get_format = function(format_type) { var value = django.formats[format_type]; if (typeof(value) == 'undefined') { return format_type; } else { return value; } }; /* add to global namespace */ globals.pluralidx = django.pluralidx; globals.gettext = django.gettext; globals.ngettext = django.ngettext; globals.gettext_noop = django.gettext_noop; globals.pgettext = django.pgettext; globals.npgettext = django.npgettext; globals.interpolate = django.interpolate; globals.get_format = django.get_format; django.jsi18n_initialized = true; } }(this)); {% endautoescape %} """ def render_javascript_catalog(catalog=None, plural=None): template = Engine().from_string(js_catalog_template) def indent(s): return s.replace('\n', '\n ') context = Context({ 'catalog_str': indent(json.dumps( catalog, sort_keys=True, indent=2)) if catalog else None, 'formats_str': indent(json.dumps( get_formats(), sort_keys=True, indent=2)), 'plural': plural, }) return HttpResponse(template.render(context), 'text/javascript') def null_javascript_catalog(request, domain=None, packages=None): """ Returns "identity" versions of the JavaScript i18n functions -- i.e., versions that don't actually do anything. """ return render_javascript_catalog() class JavaScriptCatalog(View): """ Return the selected language catalog as a JavaScript library. Receives the list of packages to check for translations in the `packages` kwarg either from the extra dictionary passed to the url() function or as a plus-sign delimited string from the request. Default is 'django.conf'. You can override the gettext domain for this view, but usually you don't want to do that as JavaScript messages go to the djangojs domain. This might be needed if you deliver your JavaScript source from Django templates. """ domain = 'djangojs' packages = None def get(self, request, *args, **kwargs): locale = get_language() domain = kwargs.get('domain', self.domain) # If packages are not provided, default to all installed packages, as # DjangoTranslation without localedirs harvests them all. packages = kwargs.get('packages', '') packages = packages.split('+') if packages else self.packages paths = self.get_paths(packages) if packages else None self.translation = DjangoTranslation(locale, domain=domain, localedirs=paths) context = self.get_context_data(**kwargs) return self.render_to_response(context) def get_paths(self, packages): allowable_packages = dict((app_config.name, app_config) for app_config in apps.get_app_configs()) app_configs = [allowable_packages[p] for p in packages if p in allowable_packages] # paths of requested packages return [os.path.join(app.path, 'locale') for app in app_configs] def get_plural(self): plural = None if '' in self.translation._catalog: for line in self.translation._catalog[''].split('\n'): if line.startswith('Plural-Forms:'): plural = line.split(':', 1)[1].strip() if plural is not None: # This should be a compiled function of a typical plural-form: # Plural-Forms: nplurals=3; plural=n%10==1 && n%100!=11 ? 0 : # n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2; plural = [el.strip() for el in plural.split(';') if el.strip().startswith('plural=')][0].split('=', 1)[1] return plural def get_catalog(self): pdict = {} maxcnts = {} catalog = {} trans_cat = self.translation._catalog trans_fallback_cat = self.translation._fallback._catalog if self.translation._fallback else {} for key, value in itertools.chain(iter(trans_cat.items()), iter(trans_fallback_cat.items())): if key == '' or key in catalog: continue if isinstance(key, str): catalog[key] = value elif isinstance(key, tuple): msgid = key[0] cnt = key[1] maxcnts[msgid] = max(cnt, maxcnts.get(msgid, 0)) pdict.setdefault(msgid, {})[cnt] = value else: raise TypeError(key) for k, v in pdict.items(): catalog[k] = [v.get(i, '') for i in range(maxcnts[k] + 1)] return catalog def get_context_data(self, **kwargs): return { 'catalog': self.get_catalog(), 'formats': get_formats(), 'plural': self.get_plural(), } def render_to_response(self, context, **response_kwargs): def indent(s): return s.replace('\n', '\n ') template = Engine().from_string(js_catalog_template) context['catalog_str'] = indent( json.dumps(context['catalog'], sort_keys=True, indent=2) ) if context['catalog'] else None context['formats_str'] = indent(json.dumps(context['formats'], sort_keys=True, indent=2)) return HttpResponse(template.render(Context(context)), 'text/javascript') class JSONCatalog(JavaScriptCatalog): """ Return the selected language catalog as a JSON object. Receives the same parameters as JavaScriptCatalog and returns a response with a JSON object of the following format: { "catalog": { # Translations catalog }, "formats": { # Language formats for date, time, etc. }, "plural": '...' # Expression for plural forms, or null. } """ def render_to_response(self, context, **response_kwargs): return JsonResponse(context)
from time import sleep from lettuce import world, step from nose.tools import assert_true, assert_equals from questionnaire.features.pages.questionnaires import QuestionnairePage from questionnaire.models import Question, QuestionOption, Theme, QuestionGroupOrder from questionnaire.tests.factories.question_group_factory import QuestionGroupFactory @step(u'And I have both simple and primary questions in my Question Bank') def and_i_have_both_simple_and_primary_questions_in_my_question_bank(step): world.theme = Theme.objects.create(name="Grid Questions Theme") world.grid_question1 = Question.objects.create(text='Primary Option', UID='C00021', answer_type='MultiChoice', is_primary=True, theme=world.theme) world.option1 = QuestionOption.objects.create(text='Option A', question=world.grid_question1) world.option2 = QuestionOption.objects.create(text='Option B', question=world.grid_question1) world.option3 = QuestionOption.objects.create(text='Option C', question=world.grid_question1) world.grid_question2 = Question.objects.create(text='First Column Question - Q2', export_label='First Column Question - Q2', UID='C00022', answer_type='Number', theme=world.theme) world.grid_question3 = Question.objects.create(text='Second Column Question - Q3', export_label='Second Column Question - Q3', UID='C00023', answer_type='Number', theme=world.theme) world.grid_question4 = Question.objects.create(text='Third Column Question - Q4', export_label='Third Column Question - Q4', UID='C00024', answer_type='Number', theme=world.theme) world.grid_question5 = Question.objects.create(text='Fourth Column Question - Q5', export_label='Fourth Column Question - Q5', UID='C00025', answer_type='Number', theme=world.theme) world.grid_question6 = Question.objects.create(text='Sixth Column Question - Q6', export_label='Sixth Column Question - Q6', UID='C00026', answer_type='Number', theme=world.theme) @step(u'And I am editing that questionnaire') def and_i_am_editing_that_questionnaire(step): world.page = QuestionnairePage(world.browser, world.section1) world.page.visit_url('/questionnaire/entry/%s/section/%s/' % (world.questionnaire.id, world.section1.id)) @step(u'Then I should see an option to add a new grid question to each subsection') def then_i_should_see_an_option_to_add_a_new_grid_question_to_each_subsection(step): assert world.page.is_element_present_by_id('id-create-grid-%s' % world.sub_section.id) @step(u'When I choose to create a new grid question for a particular subsection') def when_i_choose_to_create_a_new_grid_question_for_a_particular_subsection(step): world.page.click_by_id('id-create-grid-%s' % world.sub_section.id) @step(u'Then I should see modal allowing me to select the grid options') def then_i_should_see_modal_allowing_me_to_select_the_grid_options(step): world.page.is_text_present('Create Grid in Subsection') @step(u'When I choose to create a grid with all options shown') def when_i_choose_to_create_a_grid_with_all_options_shown(step): world.page.select('type', 'display_all') @step(u'When I choose to create an add-more type of grid') def when_i_choose_to_create_an_add_more_type_of_grid(step): world.page.select('type', 'allow_multiples') @step(u'When I choose to create a hybrid type of grid') def when_i_choose_to_create_a_hybrid_type_of_grid(step): world.page.select('type', 'hybrid') @step(u'When I select the primary questions and columns for the all options grid') def when_i_select_the_primary_questions_and_columns(step): world.page.select('primary_question', world.grid_question1.id) world.page.select_by_id('column-0', world.grid_question2.id) sleep(1) world.browser.find_by_id('td-0').mouse_over() world.page.click_by_id('add-column-0') world.browser.find_by_id('td-1').mouse_over() world.page.click_by_id('remove-column-1') @step(u'When I select the primary questions and columns for the add-more grid') def when_i_select_the_primary_questions_and_columns_for_the_add_more_grid(step): when_i_select_the_primary_questions_and_columns(step) @step(u'And I save my grid') def and_i_save_my_grid(step): world.page.click_by_id('save_grid_button') @step(u'When I close the modal') def when_i_close_the_modal(step): world.page.click_by_id('close-create-grid-modal') sleep(3) world.grid = world.grid_question1.group() @step(u'Then I should see the all-options shown grid created') def then_i_should_that_grid_created_in_the_subsection_of_my_questionnaire(step): assert world.page.is_element_present_by_id('delete-grid-%d' % world.grid.id) world.page.is_text_present(world.grid_question1.text) for option in world.grid_question1.options.all(): world.page.is_text_present(option.text) world.page.is_text_present(world.grid_question2.text) @step(u'Then I should see add-more grid created') def then_i_should_see_the_grid_with_add_more_created(step): assert world.page.is_element_present_by_id('delete-grid-%d' % world.grid.id) world.page.is_text_present(world.grid_question1.text) world.page.is_text_present("Choose One") world.page.is_text_present(world.grid_question2.text) world.page.is_text_present('Add More') @step(u'Then I should see the hybrid grid created') def then_i_should_see_the_hybrid_grid_created(step): assert_true(world.page.is_element_present_by_id('delete-grid-%d' % world.grid.id)) world.page.is_text_present('Add More') for option in world.grid_question1.options.all(): world.page.select('MultiChoice-0-response', option.id) for i in range(1, 5): world.page.is_text_present(eval("world.grid_question%d" % i).text) @step(u'When I choose to remove the grid') def when_i_choose_to_remove_the_grid(step): world.page.click_by_id('delete-grid-%d' % world.grid.id) @step(u'Then I should see a delete grid confirmation prompt') def then_i_should_see_a_delete_grid_confirmation_prompt(step): world.page.is_text_present('Confirm Delete Grid') world.page.is_text_present('Are you sure you want to delete this grid?') @step(u'When I choose to continue with the deletion of the grid') def when_i_choose_to_continue_with_the_deletion_of_the_grid(step): world.page.click_by_id('confirm-delete-grid-%d' % world.grid.id) @step(u'Then I should see a message that the grid was successfully removed') def then_i_should_see_a_message_that_the_grid_was_successfully_removed(step): world.page.is_text_present('Grid successfully removed from questionnaire') @step(u'And I should not see the grid in the questionnaire I am editing') def and_i_should_not_see_the_grid_in_the_questionnaire_i_am_editing(step): assert_true(world.page.is_element_not_present_by_id('delete-grid-%d' % world.grid.id)) for i in range(1, 4): world.page.is_text_present(eval("world.grid_question%d" % i).text, status=False) @step(u'When I choose a theme') def when_i_select_a_theme(step): world.page.select('theme', world.theme.id) @step(u'When I select the hybrid primary question') def when_i_select_the_primary_question(step): world.page.select('primary_question', world.grid_question1.id) @step(u'And I select the non-primary question at row "([^"]*)" column "([^"]*)"') def and_i_select_the_non_primary_question_at_row_group1_column_group1(step, row, column): world.hybrid_grid_questions = [[world.grid_question2], [world.grid_question3, world.grid_question4], [world.grid_question5]] world.page.select_by_id('column_%s_%s'%(row, column), world.hybrid_grid_questions[int(row)][int(column)].id) @step(u'And I add a new element on the right of row "([^"]*)" column "([^"]*)"') def and_i_add_a_new_element_on_the_right_of_row_group1_column_group2(step, row, column): row_column = (int(row), int(column)) world.browser.find_by_id('column_%s_%s' % row_column).mouse_over() world.page.click_by_id('addElement_%s_%s' % row_column) @step(u'Then I should not see the same element at row "([^"]*)" column "([^"]*)"') def then_i_should_not_see_the_same_element_at_row_group1_column_group1(step, row, column): world.page.is_element_not_present_by_id('column_%s_%s'%(row, column)) @step(u'And I add a new row from row "([^"]*)" column "([^"]*)"') def and_i_add_a_new_row_at_group1(step, row, column): row_column = (int(row), int(column)) sleep(1) world.browser.find_by_id('column_%s_%s' % row_column).mouse_over() world.page.click_by_id('addRow_%s_%s' % row_column) @step(u'And I delete the element at row "([^"]*)" column "([^"]*)"') def and_i_delete_the_element_at_row_group1_column_group1(step, row, column): row_column = (int(row), int(column)) sleep(1) world.browser.find_by_id('column_%s_%s' % row_column).mouse_over() world.page.click_by_id('remove_%s_%s' % (row, column)) @step(u'Then I should not see the element at row "([^"]*)" column "([^"]*)"') def then_i_should_not_see_the_element_at_row_group1_column_group1(step, row, column): world.page.is_element_not_present_by_id('column_%s_%s' % (row, column)) @step(u'When I have a display all grid') def when_i_have_a_display_all_grid(step): world.display_all_group = QuestionGroupFactory(grid=True, display_all=True, subsection=world.sub_section, order=1) world.display_all_group.question.add(world.grid_question1, world.grid_question2, world.grid_question3) QuestionGroupOrder.objects.create(order=1, question=world.grid_question1, question_group=world.display_all_group) world.display_all_group.orders.create(order=2, question=world.grid_question2) world.display_all_group.orders.create(order=3, question=world.grid_question3) @step(u'When I click edit the display all grid') def when_i_click_edit_the_display_all_hybrid_grid(step): world.page.click_by_id('edit-grid-%s' % world.display_all_group.id) @step(u'And I click move first question to the right') def and_i_click_column_move_group1_question_to_the_left(step): sleep(1) world.browser.find_by_id('column-0').mouse_over() world.page.click_by_id('move-question-%s-right' % world.grid_question2.id) @step(u'And I choose to move the same question to the left') def and_i_choose_to_move_the_same_question_further_left(step): world.browser.find_by_id('column-1').mouse_over() sleep(0.5) world.page.click_by_id('move-question-%s-left' % world.grid_question2.id) sleep(1) @step(u'And I click update the grid') def and_i_click_update_the_grid(step): world.page.click_by_id('update_grid_button') @step(u'Then I should see that the grid was updated successfully') def then_i_should_see_that_the_grid_was_updated_successfully(step): world.page.is_text_present('The grid was updated successfully.') @step(u'Then I should see it moved to the right') def then_i_should_see_it_moved_to_the_left(step): world.page.assert_questions_ordered_in_edit_modal([world.grid_question3, world.grid_question2]) @step(u'Then I should see it moved back') def then_i_should_see_it_moved_back(step): world.page.assert_questions_ordered_in_edit_modal([world.grid_question2, world.grid_question3]) @step(u'When I close the edit grid modal') def when_i_close_the_edit_grid_modal(step): world.page.click_by_id('close-edit-grid-modal') sleep(3) @step(u'Then I should see the grid questions in their new order') def then_i_should_see_the_grid_questions_in_their_new_order(step): assert world.page.is_element_present_by_id('delete-grid-%d' % world.display_all_group.id) world.page.assert_questions_ordered_in_entry([world.grid_question3, world.grid_question2], world.display_all_group) @step(u'When I have a hybrid grid in that questionnaire') def when_i_have_a_hybrid_all_grid(step): world.hybrid_group = QuestionGroupFactory(grid=True, allow_multiples=True, hybrid=True, subsection=world.sub_section, order=1) world.hybrid_group.question.add(world.grid_question1, world.grid_question2, world.grid_question6) world.hybrid_group.orders.create(order=1, question=world.grid_question1) world.hybrid_group.orders.create(order=2, question=world.grid_question2) world.hybrid_group.orders.create(order=3, question=world.grid_question6) @step(u'When I choose to edit the hybrid grid') def when_i_click_edit_the_hybrid_grid(step): world.page.click_by_id('edit-grid-%s' % world.hybrid_group.id) @step(u'Then I should see the hybrid grid with its questions in their new order') def then_i_should_see_the_hybrid_grid_with_its_questions_in_their_new_order(step): assert world.page.is_element_present_by_id('delete-grid-%d' % world.hybrid_group.id) world.page.assert_questions_ordered_in_hybrid_grid_entry([world.grid_question1, world.grid_question2, world.grid_question3, world.grid_question6], world.hybrid_group) @step(u'And I drag the first row to the second row') def and_i_drag_the_first_row_to_the_second_row(step): world.page.move_draggable_id_by_this_number_of_steps('sortable-row-0', 0) sleep(3) @step(u'Then I should see it moved to the second row') def then_i_should_see_it_moved_to_the_second_row(step): sleep(4) world.page.assert_row_moved_to(position=1) @step(u'And I choose to drag the same row to the third row') def and_i_choose_to_drag_the_same_row_to_the_third_row(step): world.page.move_draggable_id_by_this_number_of_steps('sortable-row-1', 2) sleep(1) @step(u'Then I should see it moved to the third row') def then_i_should_see_it_moved_to_the_third_row(step): world.page.assert_row_moved_to(position=2) @step(u'Then I should see the grid rows in their new order') def then_i_should_see_the_grid_rows_in_their_new_order(step): grid_options = world.browser.find_by_css('.grid-option') expected_order_of_options = [world.option1.text, world.option3.text, world.option2.text] grid_options_text = map(lambda opt: opt.text, grid_options) assert_equals(expected_order_of_options, grid_options_text) @step(u'And I drag the first hybrid row to the second hybrid row') def and_i_drag_the_first_hybrid_row_to_the_second_hybrid_row(step): world.page.move_draggable_id_by_this_number_of_steps('drag-row-0', 1) sleep(3) @step(u'And I drag the same hybrid row to the third hybrid row') def and_i_drag_the_first_hybrid_row_to_the_second_hybrid_row(step): world.page.move_draggable_id_by_this_number_of_steps('drag-row-0', 1) sleep(3) @step(u'Then I should see the hybrid grid rows in their new order') def then_i_should_see_the_hybrid_grid_rows_in_their_new_order(step): question_texts = world.browser.find_by_css('.question-text') expected_order_of_options = [world.grid_question1.text, world.grid_question6.text, world.grid_question2.text] grid_question_text = map(lambda opt: opt.text, question_texts) assert_equals(expected_order_of_options, grid_question_text)
# -*- coding: utf-8 -*- from hyper.packages.hyperframe.frame import ( Frame, DataFrame, RstStreamFrame, SettingsFrame, PushPromiseFrame, PingFrame, WindowUpdateFrame, HeadersFrame, ContinuationFrame, BlockedFrame, GoAwayFrame, ) from hyper.packages.hpack.hpack_compat import Encoder, Decoder from hyper.http20.connection import HTTP20Connection from hyper.http20.stream import ( Stream, STATE_HALF_CLOSED_LOCAL, STATE_OPEN, MAX_CHUNK, STATE_CLOSED ) from hyper.http20.response import HTTP20Response, HTTP20Push from hyper.http20.exceptions import ( HPACKDecodingError, HPACKEncodingError, ProtocolError, ConnectionError, ) from hyper.http20.window import FlowControlManager from hyper.http20.util import ( combine_repeated_headers, split_repeated_headers, h2_safe_headers ) from hyper.common.headers import HTTPHeaderMap from hyper.compat import zlib_compressobj from hyper.contrib import HTTP20Adapter import hyper.http20.errors as errors import errno import os import pytest import socket import zlib from io import BytesIO def decode_frame(frame_data): f, length = Frame.parse_frame_header(frame_data[:9]) f.parse_body(memoryview(frame_data[9:9 + length])) assert 9 + length == len(frame_data) return f class TestHyperConnection(object): def test_connections_accept_hosts_and_ports(self): c = HTTP20Connection(host='www.google.com', port=8080) assert c.host =='www.google.com' assert c.port == 8080 def test_connections_can_parse_hosts_and_ports(self): c = HTTP20Connection('www.google.com:8080') assert c.host == 'www.google.com' assert c.port == 8080 def test_putrequest_establishes_new_stream(self): c = HTTP20Connection("www.google.com") stream_id = c.putrequest('GET', '/') stream = c.streams[stream_id] assert len(c.streams) == 1 assert c.recent_stream is stream def test_putrequest_autosets_headers(self): c = HTTP20Connection("www.google.com") c.putrequest('GET', '/') s = c.recent_stream assert s.headers == [ (':method', 'GET'), (':scheme', 'https'), (':authority', 'www.google.com'), (':path', '/'), ] def test_putheader_puts_headers(self): c = HTTP20Connection("www.google.com") c.putrequest('GET', '/') c.putheader('name', 'value') s = c.recent_stream assert s.headers == [ (':method', 'GET'), (':scheme', 'https'), (':authority', 'www.google.com'), (':path', '/'), ('name', 'value'), ] def test_endheaders_sends_data(self): frames = [] def data_callback(frame): frames.append(frame) c = HTTP20Connection('www.google.com') c._sock = DummySocket() c._send_cb = data_callback c.putrequest('GET', '/') c.endheaders() assert len(frames) == 1 f = frames[0] assert isinstance(f, HeadersFrame) def test_we_can_send_data_using_endheaders(self): frames = [] def data_callback(frame): frames.append(frame) c = HTTP20Connection('www.google.com') c._sock = DummySocket() c._send_cb = data_callback c.putrequest('GET', '/') c.endheaders(message_body=b'hello there', final=True) assert len(frames) == 2 assert isinstance(frames[0], HeadersFrame) assert frames[0].flags == set(['END_HEADERS']) assert isinstance(frames[1], DataFrame) assert frames[1].data == b'hello there' assert frames[1].flags == set(['END_STREAM']) def test_that_we_correctly_send_over_the_socket(self): sock = DummySocket() c = HTTP20Connection('www.google.com') c._sock = sock c.putrequest('GET', '/') c.endheaders(message_body=b'hello there', final=True) # Don't bother testing that the serialization was ok, that should be # fine. assert len(sock.queue) == 2 # Confirm the window got shrunk. assert c._out_flow_control_window == 65535 - len(b'hello there') def test_we_can_read_from_the_socket(self): sock = DummySocket() sock.buffer = BytesIO(b'\x00\x00\x08\x00\x01\x00\x00\x00\x01testdata') c = HTTP20Connection('www.google.com') c._sock = sock c.putrequest('GET', '/') c.endheaders() c._recv_cb() s = c.recent_stream assert s.data == [b'testdata'] def test_we_can_read_fitfully_from_the_socket(self): sock = DummyFitfullySocket() sock.buffer = BytesIO( b'\x00\x00\x18\x00\x01\x00\x00\x00\x01' b'testdata' b'+payload' ) c = HTTP20Connection('www.google.com') c._sock = sock c.putrequest('GET', '/') c.endheaders() c._recv_cb() s = c.recent_stream assert s.data == [b'testdata+payload'] def test_putrequest_sends_data(self): sock = DummySocket() c = HTTP20Connection('www.google.com') c._sock = sock c.request( 'GET', '/', body='hello', headers={'Content-Type': 'application/json'} ) # The socket should have received one headers frame and one body frame. assert len(sock.queue) == 2 assert c._out_flow_control_window == 65535 - len(b'hello') def test_closed_connections_are_reset(self): c = HTTP20Connection('www.google.com') c._sock = DummySocket() encoder = c.encoder decoder = c.decoder wm = c.window_manager c.request('GET', '/') c.close() assert c._sock is None assert not c.streams assert c.recent_stream is None assert c.next_stream_id == 1 assert c.encoder is not encoder assert c.decoder is not decoder assert c._settings == { SettingsFrame.INITIAL_WINDOW_SIZE: 65535, } assert c._out_flow_control_window == 65535 assert c.window_manager is not wm def test_connection_doesnt_send_window_update_on_zero_length_data_frame(self): # Prepare a socket with a data frame in it that has no length. sock = DummySocket() sock.buffer = BytesIO(DataFrame(1).serialize()) c = HTTP20Connection('www.google.com') c._sock = sock # We open a request here just to allocate a stream, but we throw away # the frames it sends. c.request('GET', '/') sock.queue = [] # Read the frame. c._recv_cb() # No frame should have been sent on the connection. assert len(sock.queue) == 0 def test_streams_are_cleared_from_connections_on_close(self): # Prepare a socket so we can open a stream. sock = DummySocket() c = HTTP20Connection('www.google.com') c._sock = sock # Open a request (which creates a stream) c.request('GET', '/') # Close the stream. c.streams[1].close() # There should be nothing left, but the next stream ID should be # unchanged. assert not c.streams assert c.next_stream_id == 3 def test_connections_increment_send_window_properly(self): f = WindowUpdateFrame(0) f.window_increment = 1000 c = HTTP20Connection('www.google.com') c._sock = DummySocket() # 'Receive' the WINDOWUPDATE frame. c.receive_frame(f) assert c._out_flow_control_window == 65535 + 1000 def test_connections_handle_resizing_header_tables_properly(self): sock = DummySocket() f = SettingsFrame(0) f.settings[SettingsFrame.HEADER_TABLE_SIZE] = 1024 c = HTTP20Connection('www.google.com') c._sock = sock # 'Receive' the SETTINGS frame. c.receive_frame(f) # Confirm that the setting is stored and the header table shrunk. assert c._settings[SettingsFrame.HEADER_TABLE_SIZE] == 1024 # Confirm we got a SETTINGS ACK. f2 = decode_frame(sock.queue[0]) assert isinstance(f2, SettingsFrame) assert f2.stream_id == 0 assert f2.flags == set(['ACK']) def test_read_headers_out_of_order(self): # If header blocks aren't decoded in the same order they're received, # regardless of the stream they belong to, the decoder state will become # corrupted. e = Encoder() h1 = HeadersFrame(1) h1.data = e.encode({':status': 200, 'content-type': 'foo/bar'}) h1.flags |= set(['END_HEADERS', 'END_STREAM']) h3 = HeadersFrame(3) h3.data = e.encode({':status': 200, 'content-type': 'baz/qux'}) h3.flags |= set(['END_HEADERS', 'END_STREAM']) sock = DummySocket() sock.buffer = BytesIO(h1.serialize() + h3.serialize()) c = HTTP20Connection('www.google.com') c._sock = sock r1 = c.request('GET', '/a') r3 = c.request('GET', '/b') assert c.get_response(r3).headers == HTTPHeaderMap([('content-type', 'baz/qux')]) assert c.get_response(r1).headers == HTTPHeaderMap([('content-type', 'foo/bar')]) def test_headers_with_continuation(self): e = Encoder() header_data = e.encode( {':status': 200, 'content-type': 'foo/bar', 'content-length': '0'} ) h = HeadersFrame(1) h.data = header_data[0:int(len(header_data)/2)] c = ContinuationFrame(1) c.data = header_data[int(len(header_data)/2):] c.flags |= set(['END_HEADERS', 'END_STREAM']) sock = DummySocket() sock.buffer = BytesIO(h.serialize() + c.serialize()) c = HTTP20Connection('www.google.com') c._sock = sock r = c.request('GET', '/') assert set(c.get_response(r).headers.iter_raw()) == set([(b'content-type', b'foo/bar'), (b'content-length', b'0')]) def test_receive_unexpected_frame(self): # RST_STREAM frames are never defined on connections, so send one of # those. c = HTTP20Connection('www.google.com') f = RstStreamFrame(1) with pytest.raises(ValueError): c.receive_frame(f) def test_send_tolerate_peer_gone(self): class ErrorSocket(DummySocket): def send(self, data): raise socket.error(errno.EPIPE) c = HTTP20Connection('www.google.com') c._sock = ErrorSocket() f = SettingsFrame(0) with pytest.raises(socket.error): c._send_cb(f, False) c._sock = DummySocket() c._send_cb(f, True) # shouldn't raise an error def test_window_increments_appropriately(self): e = Encoder() h = HeadersFrame(1) h.data = e.encode({':status': 200, 'content-type': 'foo/bar'}) h.flags = set(['END_HEADERS']) d = DataFrame(1) d.data = b'hi there sir' d2 = DataFrame(1) d2.data = b'hi there sir again' d2.flags = set(['END_STREAM']) sock = DummySocket() sock.buffer = BytesIO(h.serialize() + d.serialize() + d2.serialize()) c = HTTP20Connection('www.google.com') c._sock = sock c.window_manager.window_size = 1000 c.window_manager.initial_window_size = 1000 c.request('GET', '/') resp = c.get_response() resp.read() queue = list(map(decode_frame, map(memoryview, sock.queue))) assert len(queue) == 3 # one headers frame, two window update frames. assert isinstance(queue[1], WindowUpdateFrame) assert queue[1].window_increment == len(b'hi there sir') assert isinstance(queue[2], WindowUpdateFrame) assert queue[2].window_increment == len(b'hi there sir again') def test_ping_with_ack_ignored(self): c = HTTP20Connection('www.google.com') f = PingFrame(0) f.flags = set(['ACK']) f.opaque_data = b'12345678' def data_cb(frame, tolerate_peer_gone=False): assert False, 'should not be called' c._send_cb = data_cb c.receive_frame(f) def test_ping_without_ack_gets_reply(self): c = HTTP20Connection('www.google.com') f = PingFrame(0) f.opaque_data = b'12345678' frames = [] def data_cb(frame, tolerate_peer_gone=False): frames.append(frame) c._send_cb = data_cb c.receive_frame(f) assert len(frames) == 1 assert frames[0].type == PingFrame.type assert frames[0].flags == set(['ACK']) assert frames[0].opaque_data == b'12345678' def test_blocked_causes_window_updates(self): frames = [] def data_cb(frame, *args): frames.append(frame) c = HTTP20Connection('www.google.com') c._send_cb = data_cb # Change the window size. c.window_manager.window_size = 60000 # Provide a BLOCKED frame. f = BlockedFrame(1) c.receive_frame(f) assert len(frames) == 1 assert frames[0].type == WindowUpdateFrame.type assert frames[0].window_increment == 5535 class TestServerPush(object): def setup_method(self, method): self.frames = [] self.encoder = Encoder() self.conn = None def add_push_frame(self, stream_id, promised_stream_id, headers, end_block=True): frame = PushPromiseFrame(stream_id) frame.promised_stream_id = promised_stream_id frame.data = self.encoder.encode(headers) if end_block: frame.flags.add('END_HEADERS') self.frames.append(frame) def add_headers_frame(self, stream_id, headers, end_block=True, end_stream=False): frame = HeadersFrame(stream_id) frame.data = self.encoder.encode(headers) if end_block: frame.flags.add('END_HEADERS') if end_stream: frame.flags.add('END_STREAM') self.frames.append(frame) def add_data_frame(self, stream_id, data, end_stream=False): frame = DataFrame(stream_id) frame.data = data if end_stream: frame.flags.add('END_STREAM') self.frames.append(frame) def request(self): self.conn = HTTP20Connection('www.google.com', enable_push=True) self.conn._sock = DummySocket() self.conn._sock.buffer = BytesIO(b''.join([frame.serialize() for frame in self.frames])) self.conn.request('GET', '/') def assert_response(self): self.response = self.conn.get_response() assert self.response.status == 200 assert dict(self.response.headers) == {b'content-type': [b'text/html']} def assert_pushes(self): self.pushes = list(self.conn.get_pushes()) assert len(self.pushes) == 1 assert self.pushes[0].method == b'GET' assert self.pushes[0].scheme == b'https' assert self.pushes[0].authority == b'www.google.com' assert self.pushes[0].path == b'/' expected_headers = {b'accept-encoding': [b'gzip']} assert dict(self.pushes[0].request_headers) == expected_headers def assert_push_response(self): push_response = self.pushes[0].get_response() assert push_response.status == 200 assert dict(push_response.headers) == {b'content-type': [b'application/javascript']} assert push_response.read() == b'bar' def test_promise_before_headers(self): self.add_push_frame(1, 2, [(':method', 'GET'), (':path', '/'), (':authority', 'www.google.com'), (':scheme', 'https'), ('accept-encoding', 'gzip')]) self.add_headers_frame(1, [(':status', '200'), ('content-type', 'text/html')]) self.add_data_frame(1, b'foo', end_stream=True) self.add_headers_frame(2, [(':status', '200'), ('content-type', 'application/javascript')]) self.add_data_frame(2, b'bar', end_stream=True) self.request() assert len(list(self.conn.get_pushes())) == 0 self.assert_response() self.assert_pushes() assert self.response.read() == b'foo' self.assert_push_response() def test_promise_after_headers(self): self.add_headers_frame(1, [(':status', '200'), ('content-type', 'text/html')]) self.add_push_frame(1, 2, [(':method', 'GET'), (':path', '/'), (':authority', 'www.google.com'), (':scheme', 'https'), ('accept-encoding', 'gzip')]) self.add_data_frame(1, b'foo', end_stream=True) self.add_headers_frame(2, [(':status', '200'), ('content-type', 'application/javascript')]) self.add_data_frame(2, b'bar', end_stream=True) self.request() assert len(list(self.conn.get_pushes())) == 0 self.assert_response() assert len(list(self.conn.get_pushes())) == 0 assert self.response.read() == b'foo' self.assert_pushes() self.assert_push_response() def test_promise_after_data(self): self.add_headers_frame(1, [(':status', '200'), ('content-type', 'text/html')]) self.add_data_frame(1, b'fo') self.add_push_frame(1, 2, [(':method', 'GET'), (':path', '/'), (':authority', 'www.google.com'), (':scheme', 'https'), ('accept-encoding', 'gzip')]) self.add_data_frame(1, b'o', end_stream=True) self.add_headers_frame(2, [(':status', '200'), ('content-type', 'application/javascript')]) self.add_data_frame(2, b'bar', end_stream=True) self.request() assert len(list(self.conn.get_pushes())) == 0 self.assert_response() assert len(list(self.conn.get_pushes())) == 0 assert self.response.read() == b'foo' self.assert_pushes() self.assert_push_response() def test_capture_all_promises(self): self.add_push_frame(1, 2, [(':method', 'GET'), (':path', '/one'), (':authority', 'www.google.com'), (':scheme', 'https'), ('accept-encoding', 'gzip')]) self.add_headers_frame(1, [(':status', '200'), ('content-type', 'text/html')]) self.add_push_frame(1, 4, [(':method', 'GET'), (':path', '/two'), (':authority', 'www.google.com'), (':scheme', 'https'), ('accept-encoding', 'gzip')]) self.add_data_frame(1, b'foo', end_stream=True) self.add_headers_frame(4, [(':status', '200'), ('content-type', 'application/javascript')]) self.add_headers_frame(2, [(':status', '200'), ('content-type', 'application/javascript')]) self.add_data_frame(4, b'two', end_stream=True) self.add_data_frame(2, b'one', end_stream=True) self.request() assert len(list(self.conn.get_pushes())) == 0 pushes = list(self.conn.get_pushes(capture_all=True)) assert len(pushes) == 2 assert pushes[0].path == b'/one' assert pushes[1].path == b'/two' assert pushes[0].get_response().read() == b'one' assert pushes[1].get_response().read() == b'two' self.assert_response() assert self.response.read() == b'foo' def test_cancel_push(self): self.add_push_frame(1, 2, [(':method', 'GET'), (':path', '/'), (':authority', 'www.google.com'), (':scheme', 'https'), ('accept-encoding', 'gzip')]) self.add_headers_frame(1, [(':status', '200'), ('content-type', 'text/html')]) self.request() self.conn.get_response() list(self.conn.get_pushes())[0].cancel() f = RstStreamFrame(2) f.error_code = 8 assert self.conn._sock.queue[-1] == f.serialize() def test_reset_pushed_streams_when_push_disabled(self): self.add_push_frame(1, 2, [(':method', 'GET'), (':path', '/'), (':authority', 'www.google.com'), (':scheme', 'https'), ('accept-encoding', 'gzip')]) self.add_headers_frame(1, [(':status', '200'), ('content-type', 'text/html')]) self.request() self.conn._enable_push = False self.conn.get_response() f = RstStreamFrame(2) f.error_code = 7 assert self.conn._sock.queue[-1] == f.serialize() def test_pushed_requests_ignore_unexpected_headers(self): headers = HTTPHeaderMap([ (':scheme', 'http'), (':method', 'get'), (':authority', 'google.com'), (':path', '/'), (':reserved', 'no'), ('no', 'no'), ]) p = HTTP20Push(headers, DummyStream(b'')) assert p.request_headers == HTTPHeaderMap([('no', 'no')]) class TestHyperStream(object): def test_streams_have_ids(self): s = Stream(1, None, None, None, None, None, None) assert s.stream_id == 1 def test_streams_initially_have_no_headers(self): s = Stream(1, None, None, None, None, None, None) assert s.headers == [] def test_streams_can_have_headers(self): s = Stream(1, None, None, None, None, None, None) s.add_header("name", "value") assert s.headers == [("name", "value")] def test_stream_opening_sends_headers(self): def data_callback(frame): assert isinstance(frame, HeadersFrame) assert frame.data == 'testkeyTestVal' assert frame.flags == set(['END_STREAM', 'END_HEADERS']) s = Stream(1, data_callback, None, None, NullEncoder, None, None) s.add_header("TestKey", "TestVal") s.open(True) assert s.state == STATE_HALF_CLOSED_LOCAL def test_file_objects_can_be_sent(self): def data_callback(frame): assert isinstance(frame, DataFrame) assert frame.data == b'Hi there!' assert frame.flags == set(['END_STREAM']) s = Stream(1, data_callback, None, None, NullEncoder, None, None) s.state = STATE_OPEN s.send_data(BytesIO(b'Hi there!'), True) assert s.state == STATE_HALF_CLOSED_LOCAL assert s._out_flow_control_window == 65535 - len(b'Hi there!') def test_large_file_objects_are_broken_into_chunks(self): frame_count = [0] recent_frame = [None] def data_callback(frame): assert isinstance(frame, DataFrame) assert len(frame.data) <= MAX_CHUNK frame_count[0] += 1 recent_frame[0] = frame data = b'test' * (MAX_CHUNK + 1) s = Stream(1, data_callback, None, None, NullEncoder, None, None) s.state = STATE_OPEN s.send_data(BytesIO(data), True) assert s.state == STATE_HALF_CLOSED_LOCAL assert recent_frame[0].flags == set(['END_STREAM']) assert frame_count[0] == 5 assert s._out_flow_control_window == 65535 - len(data) def test_bytestrings_can_be_sent(self): def data_callback(frame): assert isinstance(frame, DataFrame) assert frame.data == b'Hi there!' assert frame.flags == set(['END_STREAM']) s = Stream(1, data_callback, None, None, NullEncoder, None, None) s.state = STATE_OPEN s.send_data(b'Hi there!', True) assert s.state == STATE_HALF_CLOSED_LOCAL assert s._out_flow_control_window == 65535 - len(b'Hi there!') def test_long_bytestrings_are_split(self): frame_count = [0] recent_frame = [None] def data_callback(frame): assert isinstance(frame, DataFrame) assert len(frame.data) <= MAX_CHUNK frame_count[0] += 1 recent_frame[0] = frame data = b'test' * (MAX_CHUNK + 1) s = Stream(1, data_callback, None, None, NullEncoder, None, None) s.state = STATE_OPEN s.send_data(data, True) assert s.state == STATE_HALF_CLOSED_LOCAL assert recent_frame[0].flags == set(['END_STREAM']) assert frame_count[0] == 5 assert s._out_flow_control_window == 65535 - len(data) def test_windowupdate_frames_update_windows(self): s = Stream(1, None, None, None, None, None, None) f = WindowUpdateFrame(1) f.window_increment = 1000 s.receive_frame(f) assert s._out_flow_control_window == 65535 + 1000 def test_flow_control_manager_update_includes_padding(self): out_frames = [] in_frames = [] def send_cb(frame): out_frames.append(frame) def recv_cb(s): def inner(): s.receive_frame(in_frames.pop(0)) return inner start_window = 65535 s = Stream(1, send_cb, None, None, None, None, FlowControlManager(start_window)) s._recv_cb = recv_cb(s) s.state = STATE_HALF_CLOSED_LOCAL # Provide two data frames to read. f = DataFrame(1) f.data = b'hi there!' f.pad_length = 10 f.flags.add('END_STREAM') in_frames.append(f) data = s._read() assert data == b'hi there!' assert s._in_window_manager.window_size == start_window - f.pad_length - len(data) - 1 def test_blocked_frames_cause_window_updates(self): out_frames = [] def send_cb(frame, *args): out_frames.append(frame) start_window = 65535 s = Stream(1, send_cb, None, None, None, None, FlowControlManager(start_window)) s._data_cb = send_cb s.state = STATE_HALF_CLOSED_LOCAL # Change the window size. s._in_window_manager.window_size = 60000 # Provide a BLOCKED frame. f = BlockedFrame(1) s.receive_frame(f) assert len(out_frames) == 1 assert out_frames[0].type == WindowUpdateFrame.type assert out_frames[0].window_increment == 5535 def test_stream_reading_works(self): out_frames = [] in_frames = [] def send_cb(frame, tolerate_peer_gone=False): out_frames.append(frame) def recv_cb(s): def inner(): s.receive_frame(in_frames.pop(0)) return inner s = Stream(1, send_cb, None, None, None, None, FlowControlManager(65535)) s._recv_cb = recv_cb(s) s.state = STATE_HALF_CLOSED_LOCAL # Provide a data frame to read. f = DataFrame(1) f.data = b'hi there!' f.flags.add('END_STREAM') in_frames.append(f) data = s._read() assert data == b'hi there!' assert len(out_frames) == 0 def test_can_read_multiple_frames_from_streams(self): out_frames = [] in_frames = [] def send_cb(frame, tolerate_peer_gone=False): out_frames.append(frame) def recv_cb(s): def inner(): s.receive_frame(in_frames.pop(0)) return inner s = Stream(1, send_cb, None, None, None, None, FlowControlManager(800)) s._recv_cb = recv_cb(s) s.state = STATE_HALF_CLOSED_LOCAL # Provide two data frames to read. f = DataFrame(1) f.data = b'hi there!' in_frames.append(f) f = DataFrame(1) f.data = b'hi there again!' f.flags.add('END_STREAM') in_frames.append(f) data = s._read() assert data == b'hi there!hi there again!' assert len(out_frames) == 1 assert isinstance(out_frames[0], WindowUpdateFrame) assert out_frames[0].window_increment == len(b'hi there!') def test_partial_reads_from_streams(self): out_frames = [] in_frames = [] def send_cb(frame, tolerate_peer_gone=False): out_frames.append(frame) def recv_cb(s): def inner(): s.receive_frame(in_frames.pop(0)) return inner s = Stream(1, send_cb, None, None, None, None, FlowControlManager(800)) s._recv_cb = recv_cb(s) s.state = STATE_HALF_CLOSED_LOCAL # Provide two data frames to read. f = DataFrame(1) f.data = b'hi there!' in_frames.append(f) f = DataFrame(1) f.data = b'hi there again!' f.flags.add('END_STREAM') in_frames.append(f) # We'll get the entire first frame. data = s._read(4) assert data == b'hi there!' assert len(out_frames) == 1 # Now we'll get the entire of the second frame. data = s._read(4) assert data == b'hi there again!' assert len(out_frames) == 1 assert s.state == STATE_CLOSED def test_can_receive_continuation_frame_after_end_stream(self): s = Stream(1, None, None, None, None, None, FlowControlManager(65535)) f = HeadersFrame(1) f.data = 'hi there' f.flags = set('END_STREAM') f2 = ContinuationFrame(1) f2.data = ' sir' f2.flags = set('END_HEADERS') s.receive_frame(f) s.receive_frame(f2) def test_receive_unexpected_frame(self): # SETTINGS frames are never defined on streams, so send one of those. s = Stream(1, None, None, None, None, None, None) f = SettingsFrame(0) with pytest.raises(ValueError): s.receive_frame(f) def test_can_receive_trailers(self): headers = [('a', 'b'), ('c', 'd'), (':status', '200')] trailers = [('e', 'f'), ('g', 'h')] s = Stream(1, None, None, None, None, FixedDecoder(headers), None) s.state = STATE_HALF_CLOSED_LOCAL # Provide the first HEADERS frame. f = HeadersFrame(1) f.data = b'hi there!' f.flags.add('END_HEADERS') s.receive_frame(f) assert s.response_headers == HTTPHeaderMap(headers) # Now, replace the dummy decoder to ensure we get a new header block. s._decoder = FixedDecoder(trailers) # Provide the trailers. f = HeadersFrame(1) f.data = b'hi there again!' f.flags.add('END_STREAM') f.flags.add('END_HEADERS') s.receive_frame(f) # Now, check the trailers. assert s.response_trailers == HTTPHeaderMap(trailers) # Confirm we closed the stream. assert s.state == STATE_CLOSED def test_cannot_receive_three_header_blocks(self): first = [('a', 'b'), ('c', 'd'), (':status', '200')] s = Stream(1, None, None, None, None, FixedDecoder(first), None) s.state = STATE_HALF_CLOSED_LOCAL # Provide the first two header frames. f = HeadersFrame(1) f.data = b'hi there!' f.flags.add('END_HEADERS') s.receive_frame(f) f = HeadersFrame(1) f.data = b'hi there again!' f.flags.add('END_HEADERS') s.receive_frame(f) # Provide the third. This one blows up. f = HeadersFrame(1) f.data = b'hi there again!' f.flags.add('END_STREAM') f.flags.add('END_HEADERS') with pytest.raises(ProtocolError): s.receive_frame(f) def test_reading_trailers_early_reads_all_data(self): in_frames = [] headers = [('a', 'b'), ('c', 'd'), (':status', '200')] trailers = [('e', 'f'), ('g', 'h')] def recv_cb(s): def inner(): s.receive_frame(in_frames.pop(0)) return inner s = Stream(1, None, None, None, None, FixedDecoder(headers), FlowControlManager(65535)) s._recv_cb = recv_cb(s) s.state = STATE_HALF_CLOSED_LOCAL # Provide the first HEADERS frame. f = HeadersFrame(1) f.data = b'hi there!' f.flags.add('END_HEADERS') in_frames.append(f) # Provide some data. f = DataFrame(1) f.data = b'testdata' in_frames.append(f) # Provide the trailers. f = HeadersFrame(1) f.data = b'hi there again!' f.flags.add('END_STREAM') f.flags.add('END_HEADERS') in_frames.append(f) # Begin by reading the first headers. assert s.getheaders() == HTTPHeaderMap(headers) # Now, replace the dummy decoder to ensure we get a new header block. s._decoder = FixedDecoder(trailers) # Ask for the trailers. This should also read the data frames. assert s.gettrailers() == HTTPHeaderMap(trailers) assert s.data == [b'testdata'] def test_can_read_single_frames_from_streams(self): out_frames = [] in_frames = [] def send_cb(frame, tolerate_peer_gone=False): out_frames.append(frame) def recv_cb(s): def inner(): s.receive_frame(in_frames.pop(0)) return inner s = Stream(1, send_cb, None, None, None, None, FlowControlManager(800)) s._recv_cb = recv_cb(s) s.state = STATE_HALF_CLOSED_LOCAL # Provide two data frames to read. f = DataFrame(1) f.data = b'hi there!' in_frames.append(f) f = DataFrame(1) f.data = b'hi there again!' f.flags.add('END_STREAM') in_frames.append(f) data = s._read_one_frame() assert data == b'hi there!' data = s._read_one_frame() assert data == b'hi there again!' data = s._read_one_frame() assert data is None data = s._read() assert data == b'' class TestResponse(object): def test_status_is_stripped_from_headers(self): headers = HTTPHeaderMap([(':status', '200')]) resp = HTTP20Response(headers, None) assert resp.status == 200 assert not resp.headers def test_response_transparently_decrypts_gzip(self): headers = HTTPHeaderMap([(':status', '200'), ('content-encoding', 'gzip')]) c = zlib_compressobj(wbits=24) body = c.compress(b'this is test data') body += c.flush() resp = HTTP20Response(headers, DummyStream(body)) assert resp.read() == b'this is test data' def test_response_transparently_decrypts_real_deflate(self): headers = HTTPHeaderMap([(':status', '200'), ('content-encoding', 'deflate')]) c = zlib_compressobj(wbits=zlib.MAX_WBITS) body = c.compress(b'this is test data') body += c.flush() resp = HTTP20Response(headers, DummyStream(body)) assert resp.read() == b'this is test data' def test_response_transparently_decrypts_wrong_deflate(self): headers = HTTPHeaderMap([(':status', '200'), ('content-encoding', 'deflate')]) c = zlib_compressobj(wbits=-zlib.MAX_WBITS) body = c.compress(b'this is test data') body += c.flush() resp = HTTP20Response(headers, DummyStream(body)) assert resp.read() == b'this is test data' def test_response_calls_stream_close(self): headers = HTTPHeaderMap([(':status', '200')]) stream = DummyStream('') resp = HTTP20Response(headers, stream) resp.close() assert stream.closed def test_responses_are_context_managers(self): headers = HTTPHeaderMap([(':status', '200')]) stream = DummyStream('') with HTTP20Response(headers, stream) as resp: pass assert stream.closed def test_read_small_chunks(self): headers = HTTPHeaderMap([(':status', '200')]) stream = DummyStream(b'1234567890') chunks = [b'12', b'34', b'56', b'78', b'90'] resp = HTTP20Response(headers, stream) for chunk in chunks: assert resp.read(2) == chunk assert resp.read() == b'' def test_read_buffered(self): headers = HTTPHeaderMap([(':status', '200')]) stream = DummyStream(b'1234567890') chunks = [b'12', b'34', b'56', b'78', b'90'] * 2 resp = HTTP20Response(headers, stream) resp._data_buffer = b'1234567890' for chunk in chunks: assert resp.read(2) == chunk assert resp.read() == b'' def test_getheader(self): headers = HTTPHeaderMap([(':status', '200'), ('content-type', 'application/json')]) stream = DummyStream(b'') resp = HTTP20Response(headers, stream) assert resp.headers[b'content-type'] == [b'application/json'] def test_response_ignores_unknown_headers(self): headers = HTTPHeaderMap([(':status', '200'), (':reserved', 'yes'), ('no', 'no')]) stream = DummyStream(b'') resp = HTTP20Response(headers, stream) assert resp.headers == HTTPHeaderMap([('no', 'no')]) def test_fileno_not_implemented(self): headers = HTTPHeaderMap([(':status', '200')]) resp = HTTP20Response(headers, DummyStream(b'')) with pytest.raises(NotImplementedError): resp.fileno() def test_trailers_are_read(self): headers = HTTPHeaderMap([(':status', '200')]) trailers = HTTPHeaderMap([('a', 'b'), ('c', 'd')]) stream = DummyStream(b'', trailers=trailers) resp = HTTP20Response(headers, stream) assert resp.trailers == trailers assert resp.trailers['a'] == [b'b'] assert resp.trailers['c'] == [b'd'] def test_read_frames(self): headers = HTTPHeaderMap([(':status', '200')]) stream = DummyStream(None) chunks = [b'12', b'3456', b'78', b'9'] stream.data_frames = chunks resp = HTTP20Response(headers, stream) for recv, expected in zip(resp.read_chunked(), chunks[:]): assert recv == expected def test_read_compressed_frames(self): headers = HTTPHeaderMap([(':status', '200'), ('content-encoding', 'gzip')]) c = zlib_compressobj(wbits=24) body = c.compress(b'this is test data') body += c.flush() stream = DummyStream(None) chunks = [body[x:x+2] for x in range(0, len(body), 2)] stream.data_frames = chunks resp = HTTP20Response(headers, stream) received = b'' for chunk in resp.read_chunked(): received += chunk assert received == b'this is test data' class TestHTTP20Adapter(object): def test_adapter_reuses_connections(self): a = HTTP20Adapter() conn1 = a.get_connection('http2bin.org', 80, 'http') conn2 = a.get_connection('http2bin.org', 80, 'http') assert conn1 is conn2 class TestUtilities(object): def test_combining_repeated_headers(self): test_headers = [ (b'key1', b'val1'), (b'key2', b'val2'), (b'key1', b'val1.1'), (b'key3', b'val3'), (b'key2', b'val2.1'), (b'key1', b'val1.2'), ] expected = [ (b'key1', b'val1\x00val1.1\x00val1.2'), (b'key2', b'val2\x00val2.1'), (b'key3', b'val3'), ] assert expected == combine_repeated_headers(test_headers) def test_splitting_repeated_headers(self): test_headers = [ (b'key1', b'val1\x00val1.1\x00val1.2'), (b'key2', b'val2\x00val2.1'), (b'key3', b'val3'), ] expected = { b'key1': [b'val1', b'val1.1', b'val1.2'], b'key2': [b'val2', b'val2.1'], b'key3': [b'val3'], } assert expected == split_repeated_headers(test_headers) def test_nghttp2_installs_correctly(self): # This test is a debugging tool: if nghttp2 is being tested by Travis, # we need to confirm it imports correctly. Hyper will normally hide the # import failure, so let's discover it here. # Alternatively, if we are *not* testing with nghttp2, this test should # confirm that it's not available. if os.environ.get('NGHTTP2'): import nghttp2 else: with pytest.raises(ImportError): import nghttp2 assert True def test_stripping_connection_header(self): headers = [('one', 'two'), ('connection', 'close')] stripped = [('one', 'two')] assert h2_safe_headers(headers) == stripped def test_stripping_related_headers(self): headers = [ ('one', 'two'), ('three', 'four'), ('five', 'six'), ('connection', 'close, three, five') ] stripped = [('one', 'two')] assert h2_safe_headers(headers) == stripped def test_stripping_multiple_connection_headers(self): headers = [ ('one', 'two'), ('three', 'four'), ('five', 'six'), ('connection', 'close'), ('connection', 'three, five') ] stripped = [('one', 'two')] assert h2_safe_headers(headers) == stripped def test_goaway_frame_PROTOCOL_ERROR(self): f = GoAwayFrame(0) # Set error code to PROTOCOL_ERROR f.error_code = 1; c = HTTP20Connection('www.google.com') c._sock = DummySocket() # 'Receive' the GOAWAY frame. # Validate that the spec error name and description are used to throw # the connection exception. with pytest.raises(ConnectionError) as conn_err: c.receive_frame(f) err_msg = str(conn_err) name, number, description = errors.get_data(1) assert name in err_msg assert number in err_msg assert description in err_msg def test_goaway_frame_HTTP_1_1_REQUIRED(self): f = GoAwayFrame(0) # Set error code to HTTP_1_1_REQUIRED f.error_code = 13; c = HTTP20Connection('www.google.com') c._sock = DummySocket() # 'Receive' the GOAWAY frame. # Validate that the spec error name and description are used to throw # the connection exception. with pytest.raises(ConnectionError) as conn_err: c.receive_frame(f) err_msg = str(conn_err) name, number, description = errors.get_data(13) assert name in err_msg assert number in err_msg assert description in err_msg def test_goaway_frame_NO_ERROR(self): f = GoAwayFrame(0) # Set error code to NO_ERROR f.error_code = 0; c = HTTP20Connection('www.google.com') c._sock = DummySocket() # 'Receive' the GOAWAY frame. # Test makes sure no exception is raised; error code 0 means we are # dealing with a standard and graceful shutdown. c.receive_frame(f) def test_goaway_frame_invalid_error_code(self): f = GoAwayFrame(0) # Set error code to non existing error f.error_code = 100; f.additional_data = 'data about non existing error code'; c = HTTP20Connection('www.google.com') c._sock = DummySocket() # 'Receive' the GOAWAY frame. # If the error code does not exist in the spec then the additional # data is used instead. with pytest.raises(ConnectionError) as conn_err: c.receive_frame(f) err_msg = str(conn_err) with pytest.raises(ValueError): name, number, description = errors.get_data(100) assert 'data about non existing error code' in err_msg assert str(f.error_code) in err_msg def test_receive_unexpected_stream_id(self): frames = [] def data_callback(frame): frames.append(frame) c = HTTP20Connection('www.google.com') c._send_cb = data_callback f = DataFrame(2) data = memoryview(b"hi there sir") c._consume_frame_payload(f, data) # If we receive an unexpected stream id then we cancel the stream # by sending a reset stream that contains the protocol error code (1) f = frames[0] assert len(frames) == 1 assert f.stream_id == 2 assert isinstance(f, RstStreamFrame) assert f.error_code == 1 # PROTOCOL_ERROR # Some utility classes for the tests. class NullEncoder(object): @staticmethod def encode(headers): return '\n'.join("%s%s" % (name, val) for name, val in headers) class FixedDecoder(object): def __init__(self, result): self.result = result def decode(self, headers): return self.result class DummySocket(object): def __init__(self): self.queue = [] self.buffer = BytesIO() self.can_read = False def send(self, data): self.queue.append(data) def recv(self, l): return memoryview(self.buffer.read(l)) def close(self): pass class DummyFitfullySocket(DummySocket): def recv(self, l): length = l if l != 9 and l >= 4: length = int(round(l / 2)) return memoryview(self.buffer.read(length)) class DummyStream(object): def __init__(self, data, trailers=None): self.data = data self.data_frames = [] self.closed = False self.response_headers = {} self._remote_closed = False self.trailers = trailers if self.trailers is None: self.trailers = [] def _read(self, *args, **kwargs): try: read_len = min(args[0], len(self.data)) except IndexError: read_len = len(self.data) d = self.data[:read_len] self.data = self.data[read_len:] if not self.data: self._remote_closed = True return d def _read_one_frame(self): try: return self.data_frames.pop(0) except IndexError: return None def close(self): if not self.closed: self.closed = True else: assert False def gettrailers(self): return self.trailers
# # Coldcard Electrum plugin main code. # # import os, time, io import traceback from typing import TYPE_CHECKING, Optional import struct from electrum_mona import bip32 from electrum_mona.bip32 import BIP32Node, InvalidMasterKeyVersionBytes from electrum_mona.i18n import _ from electrum_mona.plugin import Device, hook, runs_in_hwd_thread from electrum_mona.keystore import Hardware_KeyStore, KeyStoreWithMPK from electrum_mona.transaction import PartialTransaction from electrum_mona.wallet import Standard_Wallet, Multisig_Wallet, Abstract_Wallet from electrum_mona.util import bfh, bh2u, versiontuple, UserFacingException from electrum_mona.base_wizard import ScriptTypeNotSupported from electrum_mona.logging import get_logger from ..hw_wallet import HW_PluginBase, HardwareClientBase from ..hw_wallet.plugin import LibraryFoundButUnusable, only_hook_if_libraries_available _logger = get_logger(__name__) try: import hid from ckcc.protocol import CCProtocolPacker, CCProtocolUnpacker from ckcc.protocol import CCProtoError, CCUserRefused, CCBusyError from ckcc.constants import (MAX_MSG_LEN, MAX_BLK_LEN, MSG_SIGNING_MAX_LENGTH, MAX_TXN_LEN, AF_CLASSIC, AF_P2SH, AF_P2WPKH, AF_P2WSH, AF_P2WPKH_P2SH, AF_P2WSH_P2SH) from ckcc.client import ColdcardDevice, COINKITE_VID, CKCC_PID, CKCC_SIMULATOR_PATH requirements_ok = True class ElectrumColdcardDevice(ColdcardDevice): # avoid use of pycoin for MiTM message signature test def mitm_verify(self, sig, expect_xpub): # verify a signature (65 bytes) over the session key, using the master bip32 node # - customized to use specific EC library of Electrum. pubkey = BIP32Node.from_xkey(expect_xpub).eckey try: pubkey.verify_message_hash(sig[1:65], self.session_key) return True except: return False except ImportError as e: if not (isinstance(e, ModuleNotFoundError) and e.name == 'ckcc'): _logger.exception('error importing coldcard plugin deps') requirements_ok = False COINKITE_VID = 0xd13e CKCC_PID = 0xcc10 CKCC_SIMULATED_PID = CKCC_PID ^ 0x55aa class CKCCClient(HardwareClientBase): def __init__(self, plugin, handler, dev_path, *, is_simulator=False): HardwareClientBase.__init__(self, plugin=plugin) self.device = plugin.device self.handler = handler # if we know what the (xfp, xpub) "should be" then track it here self._expected_device = None if is_simulator: self.dev = ElectrumColdcardDevice(dev_path, encrypt=True) else: # open the real HID device hd = hid.device(path=dev_path) hd.open_path(dev_path) self.dev = ElectrumColdcardDevice(dev=hd, encrypt=True) # NOTE: MiTM test is delayed until we have a hint as to what XPUB we # should expect. It's also kinda slow. def __repr__(self): return '<CKCCClient: xfp=%s label=%r>' % (xfp2str(self.dev.master_fingerprint), self.label()) @runs_in_hwd_thread def verify_connection(self, expected_xfp: int, expected_xpub=None): ex = (expected_xfp, expected_xpub) if self._expected_device == ex: # all is as expected return if expected_xpub is None: expected_xpub = self.dev.master_xpub if ((self._expected_device is not None) or (self.dev.master_fingerprint != expected_xfp) or (self.dev.master_xpub != expected_xpub)): # probably indicating programing error, not hacking _logger.info(f"xpubs. reported by device: {self.dev.master_xpub}. " f"stored in file: {expected_xpub}") raise RuntimeError("Expecting %s but that's not what's connected?!" % xfp2str(expected_xfp)) # check signature over session key # - mitm might have lied about xfp and xpub up to here # - important that we use value capture at wallet creation time, not some value # we read over USB today self.dev.check_mitm(expected_xpub=expected_xpub) self._expected_device = ex if not getattr(self, 'ckcc_xpub', None): self.ckcc_xpub = expected_xpub _logger.info("Successfully verified against MiTM") def is_pairable(self): # can't do anything w/ devices that aren't setup (this code not normally reachable) return bool(self.dev.master_xpub) @runs_in_hwd_thread def close(self): # close the HID device (so can be reused) self.dev.close() self.dev = None def is_initialized(self): return bool(self.dev.master_xpub) def label(self): # 'label' of this Coldcard. Warning: gets saved into wallet file, which might # not be encrypted, so better for privacy if based on xpub/fingerprint rather than # USB serial number. if self.dev.is_simulator: lab = 'Coldcard Simulator ' + xfp2str(self.dev.master_fingerprint) elif not self.dev.master_fingerprint: # failback; not expected lab = 'Coldcard #' + self.dev.serial else: lab = 'Coldcard ' + xfp2str(self.dev.master_fingerprint) return lab def manipulate_keystore_dict_during_wizard_setup(self, d: dict): master_xpub = self.dev.master_xpub if master_xpub is not None: try: node = BIP32Node.from_xkey(master_xpub) except InvalidMasterKeyVersionBytes: raise UserFacingException( _('Invalid xpub magic. Make sure your {} device is set to the correct chain.').format(self.device) + ' ' + _('You might have to unplug and plug it in again.') ) from None d['ckcc_xpub'] = master_xpub @runs_in_hwd_thread def has_usable_connection_with_device(self): # Do end-to-end ping test try: self.ping_check() return True except: return False @runs_in_hwd_thread def get_xpub(self, bip32_path, xtype): assert xtype in ColdcardPlugin.SUPPORTED_XTYPES _logger.info('Derive xtype = %r' % xtype) xpub = self.dev.send_recv(CCProtocolPacker.get_xpub(bip32_path), timeout=5000) # TODO handle timeout? # change type of xpub to the requested type try: node = BIP32Node.from_xkey(xpub) except InvalidMasterKeyVersionBytes: raise UserFacingException(_('Invalid xpub magic. Make sure your {} device is set to the correct chain.') .format(self.device)) from None if xtype != 'standard': xpub = node._replace(xtype=xtype).to_xpub() return xpub @runs_in_hwd_thread def ping_check(self): # check connection is working assert self.dev.session_key, 'not encrypted?' req = b'1234 Electrum Plugin 4321' # free up to 59 bytes try: echo = self.dev.send_recv(CCProtocolPacker.ping(req)) assert echo == req except: raise RuntimeError("Communication trouble with Coldcard") @runs_in_hwd_thread def show_address(self, path, addr_fmt): # prompt user w/ address, also returns it immediately. return self.dev.send_recv(CCProtocolPacker.show_address(path, addr_fmt), timeout=None) @runs_in_hwd_thread def show_p2sh_address(self, *args, **kws): # prompt user w/ p2sh address, also returns it immediately. return self.dev.send_recv(CCProtocolPacker.show_p2sh_address(*args, **kws), timeout=None) @runs_in_hwd_thread def get_version(self): # gives list of strings return self.dev.send_recv(CCProtocolPacker.version(), timeout=1000).split('\n') @runs_in_hwd_thread def sign_message_start(self, path, msg): # this starts the UX experience. self.dev.send_recv(CCProtocolPacker.sign_message(msg, path), timeout=None) @runs_in_hwd_thread def sign_message_poll(self): # poll device... if user has approved, will get tuple: (addr, sig) else None return self.dev.send_recv(CCProtocolPacker.get_signed_msg(), timeout=None) @runs_in_hwd_thread def sign_transaction_start(self, raw_psbt: bytes, *, finalize: bool = False): # Multiple steps to sign: # - upload binary # - start signing UX # - wait for coldcard to complete process, or have it refused. # - download resulting txn assert 20 <= len(raw_psbt) < MAX_TXN_LEN, 'PSBT is too big' dlen, chk = self.dev.upload_file(raw_psbt) resp = self.dev.send_recv(CCProtocolPacker.sign_transaction(dlen, chk, finalize=finalize), timeout=None) if resp != None: raise ValueError(resp) @runs_in_hwd_thread def sign_transaction_poll(self): # poll device... if user has approved, will get tuple: (legnth, checksum) else None return self.dev.send_recv(CCProtocolPacker.get_signed_txn(), timeout=None) @runs_in_hwd_thread def download_file(self, length, checksum, file_number=1): # get a file return self.dev.download_file(length, checksum, file_number=file_number) class Coldcard_KeyStore(Hardware_KeyStore): hw_type = 'coldcard' device = 'Coldcard' plugin: 'ColdcardPlugin' def __init__(self, d): Hardware_KeyStore.__init__(self, d) # Errors and other user interaction is done through the wallet's # handler. The handler is per-window and preserved across # device reconnects self.force_watching_only = False self.ux_busy = False # we need to know at least the fingerprint of the master xpub to verify against MiTM # - device reports these value during encryption setup process # - full xpub value now optional self.ckcc_xpub = d.get('ckcc_xpub', None) def dump(self): # our additions to the stored data about keystore -- only during creation? d = Hardware_KeyStore.dump(self) d['ckcc_xpub'] = self.ckcc_xpub return d def get_xfp_int(self) -> int: xfp = self.get_root_fingerprint() assert xfp is not None return xfp_int_from_xfp_bytes(bfh(xfp)) def get_client(self): # called when user tries to do something like view address, sign somthing. # - not called during probing/setup # - will fail if indicated device can't produce the xpub (at derivation) expected rv = self.plugin.get_client(self) if rv: xfp_int = self.get_xfp_int() rv.verify_connection(xfp_int, self.ckcc_xpub) return rv def give_error(self, message, clear_client=False): self.logger.info(message) if not self.ux_busy: self.handler.show_error(message) else: self.ux_busy = False if clear_client: self.client = None raise UserFacingException(message) def wrap_busy(func): # decorator: function takes over the UX on the device. def wrapper(self, *args, **kwargs): try: self.ux_busy = True return func(self, *args, **kwargs) finally: self.ux_busy = False return wrapper def decrypt_message(self, pubkey, message, password): raise UserFacingException(_('Encryption and decryption are currently not supported for {}').format(self.device)) @wrap_busy def sign_message(self, sequence, message, password): # Sign a message on device. Since we have big screen, of course we # have to show the message unabiguously there first! try: msg = message.encode('ascii', errors='strict') assert 1 <= len(msg) <= MSG_SIGNING_MAX_LENGTH except (UnicodeError, AssertionError): # there are other restrictions on message content, # but let the device enforce and report those self.handler.show_error('Only short (%d max) ASCII messages can be signed.' % MSG_SIGNING_MAX_LENGTH) return b'' path = self.get_derivation_prefix() + ("/%d/%d" % sequence) try: cl = self.get_client() try: self.handler.show_message("Signing message (using %s)..." % path) cl.sign_message_start(path, msg) while 1: # How to kill some time, without locking UI? time.sleep(0.250) resp = cl.sign_message_poll() if resp is not None: break finally: self.handler.finished() assert len(resp) == 2 addr, raw_sig = resp # already encoded in Bitcoin fashion, binary. assert 40 < len(raw_sig) <= 65 return raw_sig except (CCUserRefused, CCBusyError) as exc: self.handler.show_error(str(exc)) except CCProtoError as exc: self.logger.exception('Error showing address') self.handler.show_error('{}\n\n{}'.format( _('Error showing address') + ':', str(exc))) except Exception as e: self.give_error(e, True) # give empty bytes for error cases; it seems to clear the old signature box return b'' @wrap_busy def sign_transaction(self, tx, password): # Upload PSBT for signing. # - we can also work offline (without paired device present) if tx.is_complete(): return client = self.get_client() assert client.dev.master_fingerprint == self.get_xfp_int() raw_psbt = tx.serialize_as_bytes() try: try: self.handler.show_message("Authorize Transaction...") client.sign_transaction_start(raw_psbt) while 1: # How to kill some time, without locking UI? time.sleep(0.250) resp = client.sign_transaction_poll() if resp is not None: break rlen, rsha = resp # download the resulting txn. raw_resp = client.download_file(rlen, rsha) finally: self.handler.finished() except (CCUserRefused, CCBusyError) as exc: self.logger.info(f'Did not sign: {exc}') self.handler.show_error(str(exc)) return except BaseException as e: self.logger.exception('') self.give_error(e, True) return tx2 = PartialTransaction.from_raw_psbt(raw_resp) # apply partial signatures back into txn tx.combine_with_other_psbt(tx2) # caller's logic looks at tx now and if it's sufficiently signed, # will send it if that's the user's intent. @staticmethod def _encode_txin_type(txin_type): # Map from Electrum code names to our code numbers. return {'standard': AF_CLASSIC, 'p2pkh': AF_CLASSIC, 'p2sh': AF_P2SH, 'p2wpkh-p2sh': AF_P2WPKH_P2SH, 'p2wpkh': AF_P2WPKH, 'p2wsh-p2sh': AF_P2WSH_P2SH, 'p2wsh': AF_P2WSH, }[txin_type] @wrap_busy def show_address(self, sequence, txin_type): client = self.get_client() address_path = self.get_derivation_prefix()[2:] + "/%d/%d"%sequence addr_fmt = self._encode_txin_type(txin_type) try: try: self.handler.show_message(_("Showing address ...")) dev_addr = client.show_address(address_path, addr_fmt) # we could double check address here finally: self.handler.finished() except CCProtoError as exc: self.logger.exception('Error showing address') self.handler.show_error('{}\n\n{}'.format( _('Error showing address') + ':', str(exc))) except BaseException as exc: self.logger.exception('') self.handler.show_error(exc) @wrap_busy def show_p2sh_address(self, M, script, xfp_paths, txin_type): client = self.get_client() addr_fmt = self._encode_txin_type(txin_type) try: try: self.handler.show_message(_("Showing address ...")) dev_addr = client.show_p2sh_address(M, xfp_paths, script, addr_fmt=addr_fmt) # we could double check address here finally: self.handler.finished() except CCProtoError as exc: self.logger.exception('Error showing address') self.handler.show_error('{}.\n{}\n\n{}'.format( _('Error showing address'), _('Make sure you have imported the correct wallet description ' 'file on the device for this multisig wallet.'), str(exc))) except BaseException as exc: self.logger.exception('') self.handler.show_error(exc) class ColdcardPlugin(HW_PluginBase): keystore_class = Coldcard_KeyStore minimum_library = (0, 7, 7) DEVICE_IDS = [ (COINKITE_VID, CKCC_PID), (COINKITE_VID, CKCC_SIMULATED_PID) ] SUPPORTED_XTYPES = ('standard', 'p2wpkh-p2sh', 'p2wpkh', 'p2wsh-p2sh', 'p2wsh') def __init__(self, parent, config, name): HW_PluginBase.__init__(self, parent, config, name) self.libraries_available = self.check_libraries_available() if not self.libraries_available: return self.device_manager().register_devices(self.DEVICE_IDS, plugin=self) self.device_manager().register_enumerate_func(self.detect_simulator) def get_library_version(self): import ckcc try: version = ckcc.__version__ except AttributeError: version = 'unknown' if requirements_ok: return version else: raise LibraryFoundButUnusable(library_version=version) def detect_simulator(self): # if there is a simulator running on this machine, # return details about it so it's offered as a pairing choice fn = CKCC_SIMULATOR_PATH if os.path.exists(fn): return [Device(path=fn, interface_number=-1, id_=fn, product_key=(COINKITE_VID, CKCC_SIMULATED_PID), usage_page=0, transport_ui_string='simulator')] return [] @runs_in_hwd_thread def create_client(self, device, handler): if handler: self.handler = handler # We are given a HID device, or at least some details about it. # Not sure why not we aren't just given a HID library handle, but # the 'path' is unabiguous, so we'll use that. try: rv = CKCCClient(self, handler, device.path, is_simulator=(device.product_key[1] == CKCC_SIMULATED_PID)) return rv except Exception as e: self.logger.exception('late failure connecting to device?') return None def setup_device(self, device_info, wizard, purpose): device_id = device_info.device.id_ client = self.scan_and_create_client_for_device(device_id=device_id, wizard=wizard) return client def get_xpub(self, device_id, derivation, xtype, wizard): # this seems to be part of the pairing process only, not during normal ops? # base_wizard:on_hw_derivation if xtype not in self.SUPPORTED_XTYPES: raise ScriptTypeNotSupported(_('This type of script is not supported with {}.').format(self.device)) client = self.scan_and_create_client_for_device(device_id=device_id, wizard=wizard) client.ping_check() xpub = client.get_xpub(derivation, xtype) return xpub @runs_in_hwd_thread def get_client(self, keystore, force_pair=True, *, devices=None, allow_user_interaction=True) -> Optional['CKCCClient']: # Acquire a connection to the hardware device (via USB) client = super().get_client(keystore, force_pair, devices=devices, allow_user_interaction=allow_user_interaction) if client is not None: client.ping_check() return client @staticmethod def export_ms_wallet(wallet: Multisig_Wallet, fp, name): # Build the text file Coldcard needs to understand the multisig wallet # it is participating in. All involved Coldcards can share same file. assert isinstance(wallet, Multisig_Wallet) print('# Exported from Electrum', file=fp) print(f'Name: {name:.20s}', file=fp) print(f'Policy: {wallet.m} of {wallet.n}', file=fp) print(f'Format: {wallet.txin_type.upper()}', file=fp) xpubs = [] for xpub, ks in zip(wallet.get_master_public_keys(), wallet.get_keystores()): # type: str, KeyStoreWithMPK fp_bytes, der_full = ks.get_fp_and_derivation_to_be_used_in_partial_tx(der_suffix=[], only_der_suffix=False) fp_hex = fp_bytes.hex().upper() der_prefix_str = bip32.convert_bip32_intpath_to_strpath(der_full) xpubs.append((fp_hex, xpub, der_prefix_str)) # Before v3.2.1 derivation didn't matter too much to the Coldcard, since it # could use key path data from PSBT or USB request as needed. However, # derivation data is now required. print('', file=fp) assert len(xpubs) == wallet.n for xfp, xpub, der_prefix in xpubs: print(f'Derivation: {der_prefix}', file=fp) print(f'{xfp}: {xpub}\n', file=fp) def show_address(self, wallet, address, keystore: 'Coldcard_KeyStore' = None): if keystore is None: keystore = wallet.get_keystore() if not self.show_address_helper(wallet, address, keystore): return txin_type = wallet.get_txin_type(address) # Standard_Wallet => not multisig, must be bip32 if type(wallet) is Standard_Wallet: sequence = wallet.get_address_index(address) keystore.show_address(sequence, txin_type) elif type(wallet) is Multisig_Wallet: assert isinstance(wallet, Multisig_Wallet) # only here for type-hints in IDE # More involved for P2SH/P2WSH addresses: need M, and all public keys, and their # derivation paths. Must construct script, and track fingerprints+paths for # all those keys pubkey_deriv_info = wallet.get_public_keys_with_deriv_info(address) pubkey_hexes = sorted([pk.hex() for pk in list(pubkey_deriv_info)]) xfp_paths = [] for pubkey_hex in pubkey_hexes: pubkey = bytes.fromhex(pubkey_hex) ks, der_suffix = pubkey_deriv_info[pubkey] fp_bytes, der_full = ks.get_fp_and_derivation_to_be_used_in_partial_tx(der_suffix, only_der_suffix=False) xfp_int = xfp_int_from_xfp_bytes(fp_bytes) xfp_paths.append([xfp_int] + list(der_full)) script = bfh(wallet.pubkeys_to_scriptcode(pubkey_hexes)) keystore.show_p2sh_address(wallet.m, script, xfp_paths, txin_type) else: keystore.handler.show_error(_('This function is only available for standard wallets when using {}.').format(self.device)) return def xfp_int_from_xfp_bytes(fp_bytes: bytes) -> int: return int.from_bytes(fp_bytes, byteorder="little", signed=False) def xfp2str(xfp: int) -> str: # Standardized way to show an xpub's fingerprint... it's a 4-byte string # and not really an integer. Used to show as '0x%08x' but that's wrong endian. return struct.pack('<I', xfp).hex().lower() # EOF
# MIT License # # Copyright (c) 2020-2021 CNRS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import random import warnings from typing import List, Optional, Text, Tuple import matplotlib.pyplot as plt import numpy as np from torchmetrics import AUROC from typing_extensions import Literal from pyannote.audio.core.io import Audio, AudioFile from pyannote.audio.core.task import Problem from pyannote.audio.utils.random import create_rng_for_worker from pyannote.core import Annotation, Segment, SlidingWindow, SlidingWindowFeature class SegmentationTaskMixin: """Methods common to most segmentation tasks""" def setup(self, stage: Optional[str] = None): # ================================================================== # PREPARE TRAINING DATA # ================================================================== self._train = [] self._train_metadata = dict() for f in self.protocol.train(): file = dict() for key, value in f.items(): # keep track of unique labels in self._train_metadata["annotation"] if key == "annotation": for label in value.labels(): self._train_metadata.setdefault("annotation", set()).add(label) # pass "audio" entry as it is elif key == "audio": pass # remove segments shorter than chunks from "annotated" entry elif key == "annotated": value = [ segment for segment in value if segment.duration > self.duration ] file["_annotated_duration"] = sum( segment.duration for segment in value ) # keey track of unique text-like entries (incl. "uri" and "database") # and pass them as they are elif isinstance(value, Text): self._train_metadata.setdefault(key, set()).add(value) # pass score-like entries as they are elif isinstance(value, SlidingWindowFeature): pass else: msg = ( f"Protocol '{self.protocol.name}' defines a '{key}' entry of type {type(value)} " f"which we do not know how to handle." ) warnings.warn(msg) file[key] = value self._train.append(file) self._train_metadata = { key: sorted(values) for key, values in self._train_metadata.items() } # ================================================================== # PREPARE VALIDATION DATA # ================================================================== if not self.has_validation: return self._validation = [] for f in self.protocol.development(): for segment in f["annotated"]: if segment.duration < self.duration: continue num_chunks = round(segment.duration // self.duration) for c in range(num_chunks): start_time = segment.start + c * self.duration chunk = Segment(start_time, start_time + self.duration) self._validation.append((f, chunk)) random.shuffle(self._validation) def setup_validation_metric(self): """Setup default validation metric Use macro-average of area under the ROC curve """ if self.specifications.problem in [ Problem.BINARY_CLASSIFICATION, Problem.MULTI_LABEL_CLASSIFICATION, ]: num_classes = 1 else: num_classes = len(self.specifications.classes) return AUROC(num_classes, pos_label=1, average="macro", compute_on_step=False) def prepare_y(self, one_hot_y: np.ndarray) -> np.ndarray: raise NotImplementedError( f"{self.__class__.__name__} must implement the `prepare_y` method." ) @property def chunk_labels(self) -> Optional[List[Text]]: """Ordered list of labels Override this method to make `prepare_chunk` use a specific ordered list of labels when extracting frame-wise labels. See `prepare_chunk` source code for details. """ return None def prepare_chunk( self, file: AudioFile, chunk: Segment, duration: float = None, stage: Literal["train", "val"] = "train", ) -> Tuple[np.ndarray, np.ndarray, List[Text]]: """Extract audio chunk and corresponding frame-wise labels Parameters ---------- file : AudioFile Audio file. chunk : Segment Audio chunk. duration : float, optional Fix chunk duration to avoid rounding errors. Defaults to self.duration stage : {"train", "val"} "train" for training step, "val" for validation step Returns ------- sample : dict Dictionary with the following keys: X : np.ndarray Audio chunk as (num_samples, num_channels) array. y : np.ndarray Frame-wise labels as (num_frames, num_labels) array. ... """ sample = dict() # ================================================================== # X = "audio" crop # ================================================================== sample["X"], _ = self.model.audio.crop( file, chunk, duration=self.duration if duration is None else duration, ) # ================================================================== # y = "annotation" crop (with corresponding "labels") # ================================================================== # use model introspection to predict how many frames it will output num_samples = sample["X"].shape[1] num_frames, _ = self.model.introspection(num_samples) # crop "annotation" and keep track of corresponding list of labels if needed annotation: Annotation = file["annotation"].crop(chunk) labels = annotation.labels() if self.chunk_labels is None else self.chunk_labels y = np.zeros((num_frames, len(labels)), dtype=np.int8) frames = SlidingWindow( start=chunk.start, duration=self.duration / num_frames, step=self.duration / num_frames, ) for label in annotation.labels(): try: k = labels.index(label) except ValueError: warnings.warn( f"File {file['uri']} contains unexpected label '{label}'." ) continue segments = annotation.label_timeline(label) for start, stop in frames.crop(segments, mode="center", return_ranges=True): y[start:stop, k] += 1 # handle corner case when the same label is active more than once sample["y"] = np.minimum(y, 1, out=y) sample["labels"] = labels # ================================================================== # additional metadata # ================================================================== for key, value in file.items(): # those keys were already dealt with if key in ["audio", "annotation", "annotated"]: pass # replace text-like entries by their integer index elif isinstance(value, Text): try: sample[key] = self._train_metadata[key].index(value) except ValueError as e: if stage == "val": sample[key] = -1 else: raise e # crop score-like entries elif isinstance(value, SlidingWindowFeature): sample[key] = value.crop(chunk, fixed=duration, mode="center") return sample def train__iter__helper(self, rng: random.Random, **domain_filter): """Iterate over training samples with optional domain filtering Parameters ---------- rng : random.Random Random number generator domain_filter : dict, optional When provided (as {domain_key: domain_value} dict), filter training files so that only files such as file[domain_key] == domain_value are used for generating chunks. Yields ------ chunk : dict Training chunks. """ train = self._train try: domain_key, domain_value = domain_filter.popitem() except KeyError: domain_key = None if domain_key is not None: train = [f for f in train if f[domain_key] == domain_value] while True: # select one file at random (with probability proportional to its annotated duration) file, *_ = rng.choices( train, weights=[f["_annotated_duration"] for f in train], k=1, ) # select one annotated region at random (with probability proportional to its duration) segment, *_ = rng.choices( file["annotated"], weights=[s.duration for s in file["annotated"]], k=1, ) # select one chunk at random (with uniform distribution) start_time = rng.uniform(segment.start, segment.end - self.duration) chunk = Segment(start_time, start_time + self.duration) yield self.prepare_chunk(file, chunk, duration=self.duration, stage="train") def train__iter__(self): """Iterate over training samples Yields ------ dict: X: (time, channel) Audio chunks. y: (frame, ) Frame-level targets. Note that frame < time. `frame` is infered automagically from the example model output. ... """ # create worker-specific random number generator rng = create_rng_for_worker(self.model.current_epoch) balance = getattr(self, "balance", None) overlap = getattr(self, "overlap", dict()) overlap_probability = overlap.get("probability", 0.0) if overlap_probability > 0: overlap_snr_min = overlap.get("snr_min", 0.0) overlap_snr_max = overlap.get("snr_max", 0.0) if balance is None: chunks = self.train__iter__helper(rng) else: chunks_by_domain = { domain: self.train__iter__helper(rng, **{balance: domain}) for domain in self._train_metadata[balance] } while True: if balance is not None: domain = rng.choice(self._train_metadata[balance]) chunks = chunks_by_domain[domain] # generate random chunk sample = next(chunks) if rng.random() > overlap_probability: try: sample["y"] = self.prepare_y(sample["y"]) except ValueError: # if a ValueError is raised by prepare_y, skip this sample. # see pyannote.audio.tasks.segmentation.Segmentation.prepare_y # to understand why this might happen. continue _ = sample.pop("labels") yield sample continue # generate another random chunk other_sample = next(chunks) # sum both chunks with random SNR random_snr = ( overlap_snr_max - overlap_snr_min ) * rng.random() + overlap_snr_min alpha = np.exp(-np.log(10) * random_snr / 20) combined_X = Audio.power_normalize( sample["X"] ) + alpha * Audio.power_normalize(other_sample["X"]) # combine labels y, labels = sample["y"], sample.pop("labels") other_y, other_labels = other_sample["y"], other_sample.pop("labels") y_mapping = {label: i for i, label in enumerate(labels)} num_combined_labels = len(y_mapping) for label in other_labels: if label not in y_mapping: y_mapping[label] = num_combined_labels num_combined_labels += 1 # combined_labels = [ # label # for label, _ in sorted(y_mapping.items(), key=lambda item: item[1]) # ] # combine targets combined_y = np.zeros_like(y, shape=(len(y), num_combined_labels)) for i, label in enumerate(labels): combined_y[:, y_mapping[label]] += y[:, i] for i, label in enumerate(other_labels): combined_y[:, y_mapping[label]] += other_y[:, i] # handle corner case when the same label is active at the same time in both chunks combined_y = np.minimum(combined_y, 1, out=combined_y) try: combined_y = self.prepare_y(combined_y) except ValueError: # if a ValueError is raised by prepare_y, skip this sample. # see pyannote.audio.tasks.segmentation.Segmentation.prepare_y # to understand why this might happen. continue combined_sample = { "X": combined_X, "y": combined_y, } for key, value in sample.items(): # those keys were already dealt with if key in ["X", "y"]: pass # text-like entries have been replaced by their integer index in prepare_chunk. # we (somewhat arbitrarily) combine i and j into i + j x (num_values + 1) to avoid # any conflict with pure i or pure j samples elif isinstance(value, int): combined_sample[key] = sample[key] + other_sample[key] * ( len(self._train_metadata[key]) + 1 ) # score-like entries have been chunked into numpy array in prepare_chunk # we (somewhat arbitrarily) average them using the same alpha as for X elif isinstance(value, np.ndarray): combined_sample[key] = (sample[key] + alpha * other_sample[key]) / ( 1 + alpha ) yield combined_sample def train__len__(self): # Number of training samples in one epoch duration = sum(file["_annotated_duration"] for file in self._train) return max(self.batch_size, math.ceil(duration / self.duration)) def val__getitem__(self, idx): f, chunk = self._validation[idx] sample = self.prepare_chunk(f, chunk, duration=self.duration, stage="val") sample["y"] = self.prepare_y(sample["y"]) _ = sample.pop("labels") return sample def val__len__(self): return len(self._validation) def validation_postprocess(self, y, y_pred): return y_pred def validation_step(self, batch, batch_idx: int): """Compute validation area under the ROC curve Parameters ---------- batch : dict of torch.Tensor Current batch. batch_idx: int Batch index. """ X, y = batch["X"], batch["y"] # X = (batch_size, num_channels, num_samples) # y = (batch_size, num_frames, num_classes) or (batch_size, num_frames) y_pred = self.model(X) _, num_frames, _ = y_pred.shape # y_pred = (batch_size, num_frames, num_classes) # postprocess y_pred = self.validation_postprocess(y, y_pred) # - remove warm-up frames # - downsample remaining frames warm_up_left = round(self.warm_up[0] / self.duration * num_frames) warm_up_right = round(self.warm_up[1] / self.duration * num_frames) preds = y_pred[:, warm_up_left : num_frames - warm_up_right : 10] target = y[:, warm_up_left : num_frames - warm_up_right : 10] # torchmetrics tries to be smart about the type of machine learning problem # pyannote.audio is more explicit so we have to reshape target and preds for # torchmetrics to be happy... more details can be found here: # https://torchmetrics.readthedocs.io/en/latest/references/modules.html#input-types if self.specifications.problem == Problem.BINARY_CLASSIFICATION: # target: shape (batch_size, num_frames), type binary # preds: shape (batch_size, num_frames, 1), type float # torchmetrics expects: # target: shape (N,), type binary # preds: shape (N,), type float self.model.validation_metric(preds.reshape(-1), target.reshape(-1)) elif self.specifications.problem == Problem.MULTI_LABEL_CLASSIFICATION: # target: shape (batch_size, num_frames, num_classes), type binary # preds: shape (batch_size, num_frames, num_classes), type float # torchmetrics expects # target: shape (N, ), type binary # preds: shape (N, ), type float self.model.validation_metric(preds.reshape(-1), target.reshape(-1)) elif self.specifications.problem == Problem.MONO_LABEL_CLASSIFICATION: # target: shape (batch_size, num_frames, num_classes), type binary # preds: shape (batch_size, num_frames, num_classes), type float # torchmetrics expects: # target: shape (N, ), type int # preds: shape (N, num_classes), type float # TODO: implement when pyannote.audio gets its first mono-label segmentation task raise NotImplementedError() self.model.log( f"{self.ACRONYM}@val_auroc", self.model.validation_metric, on_step=False, on_epoch=True, prog_bar=True, logger=True, ) # log first batch visualization every 2^n epochs. if ( self.model.current_epoch == 0 or math.log2(self.model.current_epoch) % 1 > 0 or batch_idx > 0 ): return # visualize first 9 validation samples of first batch in Tensorboard X = X.cpu().numpy() y = y.float().cpu().numpy() y_pred = y_pred.cpu().numpy() # prepare 3 x 3 grid (or smaller if batch size is smaller) num_samples = min(self.batch_size, 9) nrows = math.ceil(math.sqrt(num_samples)) ncols = math.ceil(num_samples / nrows) fig, axes = plt.subplots( nrows=3 * nrows, ncols=ncols, figsize=(15, 10), squeeze=False ) # reshape target so that there is one line per class when plottingit y[y == 0] = np.NaN if len(y.shape) == 2: y = y[:, :, np.newaxis] y *= np.arange(y.shape[2]) # plot each sample for sample_idx in range(num_samples): # find where in the grid it should be plotted row_idx = sample_idx // nrows col_idx = sample_idx % ncols # plot waveform ax_wav = axes[row_idx * 3 + 0, col_idx] sample_X = np.mean(X[sample_idx], axis=0) ax_wav.plot(sample_X) ax_wav.set_xlim(0, len(sample_X)) ax_wav.get_xaxis().set_visible(False) ax_wav.get_yaxis().set_visible(False) # plot target ax_ref = axes[row_idx * 3 + 1, col_idx] sample_y = y[sample_idx] ax_ref.plot(sample_y) ax_ref.set_xlim(0, len(sample_y)) ax_ref.set_ylim(-1, sample_y.shape[1]) ax_ref.get_xaxis().set_visible(False) ax_ref.get_yaxis().set_visible(False) # plot prediction ax_hyp = axes[row_idx * 3 + 2, col_idx] sample_y_pred = y_pred[sample_idx] ax_hyp.axvspan(0, warm_up_left, color="k", alpha=0.5, lw=0) ax_hyp.axvspan( num_frames - warm_up_right, num_frames, color="k", alpha=0.5, lw=0 ) ax_hyp.plot(sample_y_pred) ax_hyp.set_ylim(-0.1, 1.1) ax_hyp.set_xlim(0, len(sample_y)) ax_hyp.get_xaxis().set_visible(False) plt.tight_layout() self.model.logger.experiment.add_figure( f"{self.ACRONYM}@val_samples", fig, self.model.current_epoch ) plt.close(fig) @property def val_monitor(self): """Maximize validation area under ROC curve""" return f"{self.ACRONYM}@val_auroc", "max"
from mpi4py import MPI import mpiunittest as unittest import arrayimpl from functools import reduce prod = lambda sequence,start=1: reduce(lambda x, y: x*y, sequence, start) def skip_op(typecode, op): if typecode in 'FDG': if op in (MPI.MAX, MPI.MIN): return True return False def maxvalue(a): try: typecode = a.typecode except AttributeError: typecode = a.dtype.char if typecode == ('f'): return 1e30 elif typecode == ('d'): return 1e300 else: return 2 ** (a.itemsize * 7) - 1 class BaseTestCCOBuf(object): COMM = MPI.COMM_NULL def testBarrier(self): self.COMM.Barrier() def testBcast(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for root in range(size): if rank == root: buf = array(root, typecode, root) else: buf = array( -1, typecode, root) self.COMM.Bcast(buf.as_mpi(), root=root) for value in buf: self.assertEqual(value, root) def testGather(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for root in range(size): sbuf = array(root, typecode, root+1) if rank == root: rbuf = array(-1, typecode, (size,root+1)) else: rbuf = array([], typecode) self.COMM.Gather(sbuf.as_mpi(), rbuf.as_mpi(), root=root) if rank == root: for value in rbuf.flat: self.assertEqual(value, root) def testScatter(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for root in range(size): rbuf = array(-1, typecode, size) if rank == root: sbuf = array(root, typecode, (size, size)) else: sbuf = array([], typecode) self.COMM.Scatter(sbuf.as_mpi(), rbuf.as_mpi(), root=root) for value in rbuf: self.assertEqual(value, root) def testAllgather(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for root in range(size): sbuf = array(root, typecode, root+1) rbuf = array( -1, typecode, (size, root+1)) self.COMM.Allgather(sbuf.as_mpi(), rbuf.as_mpi()) for value in rbuf.flat: self.assertEqual(value, root) def testAlltoall(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for root in range(size): sbuf = array(root, typecode, (size, root+1)) rbuf = array( -1, typecode, (size, root+1)) self.COMM.Alltoall(sbuf.as_mpi(), rbuf.as_mpi_c(root+1)) for value in rbuf.flat: self.assertEqual(value, root) def assertAlmostEqual(self, first, second): num = complex(second-first) den = complex(second+first)/2 or 1.0 if (abs(num/den) > 1e-2): raise self.failureException('%r != %r' % (first, second)) def testReduce(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN): if skip_op(typecode, op): continue for root in range(size): sbuf = array(range(size), typecode) rbuf = array(-1, typecode, size) self.COMM.Reduce(sbuf.as_mpi(), rbuf.as_mpi(), op, root) max_val = maxvalue(rbuf) for i, value in enumerate(rbuf): if rank != root: self.assertEqual(value, -1) continue if op == MPI.SUM: if (i * size) < max_val: self.assertAlmostEqual(value, i*size) elif op == MPI.PROD: if (i ** size) < max_val: self.assertAlmostEqual(value, i**size) elif op == MPI.MAX: self.assertEqual(value, i) elif op == MPI.MIN: self.assertEqual(value, i) def testAllreduce(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.MAX, MPI.MIN, MPI.PROD): if skip_op(typecode, op): continue sbuf = array(range(size), typecode) rbuf = array(0, typecode, size) self.COMM.Allreduce(sbuf.as_mpi(), rbuf.as_mpi(), op) max_val = maxvalue(rbuf) for i, value in enumerate(rbuf): if op == MPI.SUM: if (i * size) < max_val: self.assertAlmostEqual(value, i*size) elif op == MPI.PROD: if (i ** size) < max_val: self.assertAlmostEqual(value, i**size) elif op == MPI.MAX: self.assertEqual(value, i) elif op == MPI.MIN: self.assertEqual(value, i) def testReduceScatter(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.MAX, MPI.MIN, MPI.PROD): if skip_op(typecode, op): continue rcnt = list(range(1,size+1)) sbuf = array([rank+1]*sum(rcnt), typecode) rbuf = array(-1, typecode, rank+1) self.COMM.Reduce_scatter(sbuf.as_mpi(), rbuf.as_mpi(), None, op) max_val = maxvalue(rbuf) for i, value in enumerate(rbuf): if op == MPI.SUM: redval = sum(range(size))+size if redval < max_val: self.assertAlmostEqual(value, redval) elif op == MPI.PROD: redval = prod(range(1,size+1)) if redval < max_val: self.assertAlmostEqual(value, redval) elif op == MPI.MAX: self.assertEqual(value, size) elif op == MPI.MIN: self.assertEqual(value, 1) rbuf = array(-1, typecode, rank+1) self.COMM.Reduce_scatter(sbuf.as_mpi(), rbuf.as_mpi(), rcnt, op) max_val = maxvalue(rbuf) for i, value in enumerate(rbuf): if op == MPI.SUM: redval = sum(range(size))+size if redval < max_val: self.assertAlmostEqual(value, redval) elif op == MPI.PROD: redval = prod(range(1,size+1)) if redval < max_val: self.assertAlmostEqual(value, redval) elif op == MPI.MAX: self.assertEqual(value, size) elif op == MPI.MIN: self.assertEqual(value, 1) def testReduceScatterBlock(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.MAX, MPI.MIN, MPI.PROD): if skip_op(typecode, op): continue for rcnt in range(1, size+1): sbuf = array([rank]*rcnt*size, typecode) rbuf = array(-1, typecode, rcnt) if op == MPI.PROD: sbuf = array([rank+1]*rcnt*size, typecode) self.COMM.Reduce_scatter_block(sbuf.as_mpi(), rbuf.as_mpi(), op) max_val = maxvalue(rbuf) v_sum = (size*(size-1))/2 v_prod = 1 for i in range(1,size+1): v_prod *= i v_max = size-1 v_min = 0 for i, value in enumerate(rbuf): if op == MPI.SUM: if v_sum <= max_val: self.assertAlmostEqual(value, v_sum) elif op == MPI.PROD: if v_prod <= max_val: self.assertAlmostEqual(value, v_prod) elif op == MPI.MAX: self.assertEqual(value, v_max) elif op == MPI.MIN: self.assertEqual(value, v_min) def testScan(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() # -- for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN): if skip_op(typecode, op): continue sbuf = array(range(size), typecode) rbuf = array(0, typecode, size) self.COMM.Scan(sbuf.as_mpi(), rbuf.as_mpi(), op) max_val = maxvalue(rbuf) for i, value in enumerate(rbuf): if op == MPI.SUM: if (i * (rank + 1)) < max_val: self.assertAlmostEqual(value, i * (rank + 1)) elif op == MPI.PROD: if (i ** (rank + 1)) < max_val: self.assertAlmostEqual(value, i ** (rank + 1)) elif op == MPI.MAX: self.assertEqual(value, i) elif op == MPI.MIN: self.assertEqual(value, i) def testExscan(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN): if skip_op(typecode, op): continue sbuf = array(range(size), typecode) rbuf = array(0, typecode, size) try: self.COMM.Exscan(sbuf.as_mpi(), rbuf.as_mpi(), op) except NotImplementedError: self.skipTest('mpi-exscan') if rank == 1: for i, value in enumerate(rbuf): self.assertEqual(value, i) elif rank > 1: max_val = maxvalue(rbuf) for i, value in enumerate(rbuf): if op == MPI.SUM: if (i * rank) < max_val: self.assertAlmostEqual(value, i * rank) elif op == MPI.PROD: if (i ** rank) < max_val: self.assertAlmostEqual(value, i ** rank) elif op == MPI.MAX: self.assertEqual(value, i) elif op == MPI.MIN: self.assertEqual(value, i) def testBcastTypeIndexed(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): datatype = array.TypeMap[typecode] for root in range(size): # if rank == root: buf = array(range(10), typecode).as_raw() else: buf = array(-1, typecode, 10).as_raw() indices = list(range(0, len(buf), 2)) newtype = datatype.Create_indexed_block(1, indices) newtype.Commit() newbuf = (buf, 1, newtype) self.COMM.Bcast(newbuf, root=root) newtype.Free() if rank != root: for i, value in enumerate(buf): if (i % 2): self.assertEqual(value, -1) else: self.assertEqual(value, i) # if rank == root: buf = array(range(10), typecode).as_raw() else: buf = array(-1, typecode, 10).as_raw() indices = list(range(1, len(buf), 2)) newtype = datatype.Create_indexed_block(1, indices) newtype.Commit() newbuf = (buf, 1, newtype) self.COMM.Bcast(newbuf, root) newtype.Free() if rank != root: for i, value in enumerate(buf): if not (i % 2): self.assertEqual(value, -1) else: self.assertEqual(value, i) class BaseTestCCOBufInplace(object): def testGather(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for root in range(size): count = root+3 if rank == root: sbuf = MPI.IN_PLACE buf = array(-1, typecode, (size, count)) #buf.flat[(rank*count):((rank+1)*count)] = \ # array(root, typecode, count) s, e = rank*count, (rank+1)*count for i in range(s, e): buf.flat[i] = root rbuf = buf.as_mpi() else: buf = array(root, typecode, count) sbuf = buf.as_mpi() rbuf = None self.COMM.Gather(sbuf, rbuf, root=root) for value in buf.flat: self.assertEqual(value, root) if rank == root: sbuf = None self.COMM.Gather(sbuf, rbuf, root=root) for value in buf.flat: self.assertEqual(value, root) @unittest.skipMPI('msmpi(==10.0.0)') def testScatter(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for root in range(size): for count in range(1, 10): if rank == root: buf = array(root, typecode, (size, count)) sbuf = buf.as_mpi() rbuf = MPI.IN_PLACE else: buf = array(-1, typecode, count) sbuf = None rbuf = buf.as_mpi() self.COMM.Scatter(sbuf, rbuf, root=root) for value in buf.flat: self.assertEqual(value, root) if rank == root: rbuf = None self.COMM.Scatter(sbuf, rbuf, root=root) for value in buf.flat: self.assertEqual(value, root) def testAllgather(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for count in range(1, 10): buf = array(-1, typecode, (size, count)) s, e = rank*count, (rank+1)*count for i in range(s, e): buf.flat[i] = count self.COMM.Allgather(MPI.IN_PLACE, buf.as_mpi()) for value in buf.flat: self.assertEqual(value, count) self.COMM.Allgather(None, buf.as_mpi()) for value in buf.flat: self.assertEqual(value, count) def assertAlmostEqual(self, first, second): num = complex(second-first) den = complex(second+first)/2 or 1.0 if (abs(num/den) > 1e-2): raise self.failureException('%r != %r' % (first, second)) def testReduce(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN): if skip_op(typecode, op): continue for root in range(size): count = size if rank == root: buf = array(range(size), typecode) sbuf = MPI.IN_PLACE rbuf = buf.as_mpi() else: buf = array(range(size), typecode) buf2 = array(range(size), typecode) sbuf = buf.as_mpi() rbuf = buf2.as_mpi() self.COMM.Reduce(sbuf, rbuf, op, root) if rank == root: max_val = maxvalue(buf) for i, value in enumerate(buf): if op == MPI.SUM: if (i * size) < max_val: self.assertAlmostEqual(value, i*size) elif op == MPI.PROD: if (i ** size) < max_val: self.assertAlmostEqual(value, i**size) elif op == MPI.MAX: self.assertEqual(value, i) elif op == MPI.MIN: self.assertEqual(value, i) def testAllreduce(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.MAX, MPI.MIN, MPI.PROD): if skip_op(typecode, op): continue buf = array(range(size), typecode) sbuf = MPI.IN_PLACE rbuf = buf.as_mpi() self.COMM.Allreduce(sbuf, rbuf, op) max_val = maxvalue(buf) for i, value in enumerate(buf): if op == MPI.SUM: if (i * size) < max_val: self.assertAlmostEqual(value, i*size) elif op == MPI.PROD: if (i ** size) < max_val: self.assertAlmostEqual(value, i**size) elif op == MPI.MAX: self.assertEqual(value, i) elif op == MPI.MIN: self.assertEqual(value, i) def testReduceScatterBlock(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): # one of the ranks would fail as of OpenMPI 4.1.1 if unittest.is_mpi_gpu('openmpi', array): continue for op in (MPI.SUM, MPI.MAX, MPI.MIN, MPI.PROD): if skip_op(typecode, op): continue for rcnt in range(size): if op == MPI.PROD: rbuf = array([rank+1]*rcnt*size, typecode) else: rbuf = array([rank]*rcnt*size, typecode) self.COMM.Reduce_scatter_block(MPI.IN_PLACE, rbuf.as_mpi(), op) max_val = maxvalue(rbuf) for i, value in enumerate(rbuf): if i >= rcnt: if op == MPI.PROD: self.assertEqual(value, rank+1) else: self.assertEqual(value, rank) else: if op == MPI.SUM: redval = sum(range(size)) if redval < max_val: self.assertAlmostEqual(value, redval) elif op == MPI.PROD: redval = prod(range(1,size+1)) if redval < max_val: self.assertAlmostEqual(value, redval) elif op == MPI.MAX: self.assertEqual(value, size-1) elif op == MPI.MIN: self.assertEqual(value, 0) @unittest.skipMPI('MVAPICH2') def testReduceScatter(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.MAX, MPI.MIN, MPI.PROD): if skip_op(typecode, op): continue rcnt = list(range(1, size+1)) if op == MPI.PROD: rbuf = array([rank+1]*sum(rcnt), typecode) else: rbuf = array([rank]*sum(rcnt), typecode) self.COMM.Reduce_scatter(MPI.IN_PLACE, rbuf.as_mpi(), rcnt, op) max_val = maxvalue(rbuf) for i, value in enumerate(rbuf): if i >= rcnt[rank]: if op == MPI.PROD: self.assertEqual(value, rank+1) else: self.assertEqual(value, rank) else: if op == MPI.SUM: redval = sum(range(size)) if redval < max_val: self.assertAlmostEqual(value, redval) elif op == MPI.PROD: redval = prod(range(1,size+1)) if redval < max_val: self.assertAlmostEqual(value, redval) elif op == MPI.MAX: self.assertEqual(value, size-1) elif op == MPI.MIN: self.assertEqual(value, 0) @unittest.skipMPI('openmpi(<=1.8.4)') def testScan(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() # -- for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN): if skip_op(typecode, op): continue buf = array(range(size), typecode) self.COMM.Scan(MPI.IN_PLACE, buf.as_mpi(), op) max_val = maxvalue(buf) for i, value in enumerate(buf): if op == MPI.SUM: if (i * (rank + 1)) < max_val: self.assertAlmostEqual(value, i * (rank + 1)) elif op == MPI.PROD: if (i ** (rank + 1)) < max_val: self.assertAlmostEqual(value, i ** (rank + 1)) elif op == MPI.MAX: self.assertEqual(value, i) elif op == MPI.MIN: self.assertEqual(value, i) @unittest.skipMPI('msmpi(<=4.2.0)') @unittest.skipMPI('openmpi(<=1.8.4)') def testExscan(self): size = self.COMM.Get_size() rank = self.COMM.Get_rank() for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN): if skip_op(typecode, op): continue buf = array(range(size), typecode) try: self.COMM.Exscan(MPI.IN_PLACE, buf.as_mpi(), op) except NotImplementedError: self.skipTest('mpi-exscan') if rank == 1: for i, value in enumerate(buf): self.assertEqual(value, i) elif rank > 1: max_val = maxvalue(buf) for i, value in enumerate(buf): if op == MPI.SUM: if (i * rank) < max_val: self.assertAlmostEqual(value, i * rank) elif op == MPI.PROD: if (i ** rank) < max_val: self.assertAlmostEqual(value, i ** rank) elif op == MPI.MAX: self.assertEqual(value, i) elif op == MPI.MIN: self.assertEqual(value, i) class TestReduceLocal(unittest.TestCase): def testReduceLocal(self): for array, typecode in arrayimpl.subTest(self): # segfault as of OpenMPI 4.1.1 if unittest.is_mpi_gpu('openmpi', array): continue for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN): if skip_op(typecode, op): continue size = 5 sbuf = array(range(1,size+1), typecode) rbuf = array(range(0,size+0), typecode) try: op.Reduce_local(sbuf.as_mpi(), rbuf.as_mpi()) except NotImplementedError: self.skipTest('mpi-op-reduce_local') for i, value in enumerate(rbuf): self.assertEqual(sbuf[i], i+1) if op == MPI.SUM: self.assertAlmostEqual(value, i+(i+1)) elif op == MPI.PROD: self.assertAlmostEqual(value, i*(i+1)) elif op == MPI.MAX: self.assertEqual(value, i+1) elif op == MPI.MIN: self.assertEqual(value, i) def testReduceLocalBadCount(self): for array, typecode in arrayimpl.subTest(self): for op in (MPI.SUM, MPI.PROD, MPI.MAX, MPI.MIN): sbuf = array(range(3), typecode) rbuf = array(range(3), typecode) def f(): op.Reduce_local(sbuf.as_mpi_c(2), rbuf.as_mpi_c(3)) self.assertRaises(ValueError, f) def f(): op.Reduce_local([sbuf.as_raw(), 1, MPI.INT], [rbuf.as_raw(), 1, MPI.SHORT]) self.assertRaises(ValueError, f) class TestCCOBufSelf(BaseTestCCOBuf, unittest.TestCase): COMM = MPI.COMM_SELF class TestCCOBufWorld(BaseTestCCOBuf, unittest.TestCase): COMM = MPI.COMM_WORLD @unittest.skipMPI('MPICH1') @unittest.skipMPI('LAM/MPI') @unittest.skipIf(MPI.IN_PLACE == MPI.BOTTOM, 'mpi-in-place') class TestCCOBufInplaceSelf(BaseTestCCOBufInplace, unittest.TestCase): COMM = MPI.COMM_SELF @unittest.skipMPI('MPICH1') @unittest.skipMPI('LAM/MPI') @unittest.skipIf(MPI.IN_PLACE == MPI.BOTTOM, 'mpi-in-place') class TestCCOBufInplaceWorld(BaseTestCCOBufInplace, unittest.TestCase): COMM = MPI.COMM_WORLD @unittest.skipMPI('IntelMPI', MPI.COMM_WORLD.Get_size() > 1) def testReduceScatter(self): super(TestCCOBufInplaceWorld, self).testReduceScatter() class TestCCOBufSelfDup(TestCCOBufSelf): def setUp(self): self.COMM = MPI.COMM_SELF.Dup() def tearDown(self): self.COMM.Free() @unittest.skipMPI('openmpi(<1.4.0)', MPI.Query_thread() > MPI.THREAD_SINGLE) class TestCCOBufWorldDup(TestCCOBufWorld): def setUp(self): self.COMM = MPI.COMM_WORLD.Dup() def tearDown(self): self.COMM.Free() if __name__ == '__main__': unittest.main()
""" The pyro wire protocol message. Pyro - Python Remote Objects. Copyright by Irmen de Jong (irmen@razorvine.net). """ from __future__ import with_statement import hashlib import hmac import struct import logging import sys from Pyro4 import errors, constants import Pyro4.constants __all__ = ["Message"] log = logging.getLogger("Pyro4.message") MSG_CONNECT = 1 MSG_CONNECTOK = 2 MSG_CONNECTFAIL = 3 MSG_INVOKE = 4 MSG_RESULT = 5 MSG_PING = 6 FLAGS_EXCEPTION = 1 << 0 FLAGS_COMPRESSED = 1 << 1 FLAGS_ONEWAY = 1 << 2 FLAGS_BATCH = 1 << 3 SERIALIZER_SERPENT = 1 SERIALIZER_JSON = 2 SERIALIZER_MARSHAL = 3 SERIALIZER_PICKLE = 4 class Message(object): """ Pyro write protocol message. Wire messages contains of a fixed size header, an optional set of annotation chunks, and then the payload data. This class doesn't deal with the payload data: (de)serialization and handling of that data is done elsewhere. Annotation chunks are only parsed, except the 'HMAC' chunk: that is created and validated because it is used as a message digest. The header format is:: 4 id ('PYRO') 2 protocol version 2 message type 2 message flags 2 sequence number 4 data length 2 data serialization format (serializer id) 2 annotations length (total of all chunks, 0 if no annotation chunks present) 2 (reserved) 2 checksum After the header, zero or more annotation chunks may follow, of the format:: 4 id (ASCII) 2 chunk length x annotation chunk databytes After that, the actual payload data bytes follow. The sequencenumber is used to check if response messages correspond to the actual request message. This prevents the situation where Pyro would perhaps return the response data from another remote call (which would not result in an error otherwise!) This could happen for instance if the socket data stream gets out of sync, perhaps due To some form of signal that interrupts I/O. The header checksum is a simple sum of the header fields to make reasonably sure that we are dealing with an actual correct PYRO protocol header and not some random data that happens to start with the 'PYRO' protocol identifier. An 'HMAC' annotation chunk contains the hmac digest of the message data bytes and all of the annotation chunk data bytes (except those of the HMAC chunk itself). """ __slots__ = ["type", "flags", "seq", "data", "data_size", "serializer_id", "annotations", "annotations_size", "hmac_key"] header_format = '!4sHHHHiHHHH' header_size = struct.calcsize(header_format) checksum_magic = 0x34E9 def __init__(self, msgType, databytes, serializer_id, flags, seq, annotations=None, hmac_key=None): self.type = msgType self.flags = flags self.seq = seq self.data = databytes self.data_size = len(self.data) self.serializer_id = serializer_id self.annotations = annotations or {} self.hmac_key = hmac_key if self.hmac_key: self.annotations["HMAC"] = self.hmac() self.annotations_size = sum([6 + len(v) for v in self.annotations.values()]) if 0 < Pyro4.config.MAX_MESSAGE_SIZE < (self.data_size + self.annotations_size): raise errors.ProtocolError("max message size exceeded (%d where max=%d)" % (self.data_size + self.annotations_size, Pyro4.config.MAX_MESSAGE_SIZE)) def __repr__(self): return "<%s.%s at %x, type=%d flags=%d seq=%d datasize=%d #ann=%d>" % (self.__module__, self.__class__.__name__, id(self), self.type, self.flags, self.seq, self.data_size, len(self.annotations)) def to_bytes(self): """creates a byte stream containing the header followed by annotations (if any) followed by the data""" return self.__header_bytes() + self.__annotations_bytes() + self.data def __header_bytes(self): checksum = (self.type + constants.PROTOCOL_VERSION + self.data_size + self.annotations_size + self.serializer_id + self.flags + self.seq + self.checksum_magic) & 0xffff return struct.pack(self.header_format, b"PYRO", constants.PROTOCOL_VERSION, self.type, self.flags, self.seq, self.data_size, self.serializer_id, self.annotations_size, 0, checksum) def __annotations_bytes(self): if self.annotations: a = [] for k, v in self.annotations.items(): if len(k) != 4: raise errors.ProtocolError("annotation key must be of length 4") if sys.version_info >= (3, 0): k = k.encode("ASCII") a.append(struct.pack("!4sH", k, len(v))) a.append(v) if sys.platform == "cli": return "".join(a) return b"".join(a) return b"" # Note: this 'chunked' way of sending is not used because it triggers Nagle's algorithm # on some systems (linux). This causes massive delays, unless you change the socket option # TCP_NODELAY to disable the algorithm. What also works, is sending all the message bytes # in one go: connection.send(message.to_bytes()) # def send(self, connection): # """send the message as bytes over the connection""" # connection.send(self.__header_bytes()) # if self.annotations: # connection.send(self.__annotations_bytes()) # connection.send(self.data) @classmethod def from_header(cls, headerData): """Parses a message header. Does not yet process the annotations chunks and message data.""" if not headerData or len(headerData) != cls.header_size: raise errors.ProtocolError("header data size mismatch") tag, ver, msg_type, flags, seq, data_size, serializer_id, annotations_size, _, checksum = struct.unpack(cls.header_format, headerData) if tag != b"PYRO" or ver != constants.PROTOCOL_VERSION: raise errors.ProtocolError("invalid data or unsupported protocol version") if checksum != (msg_type + ver + data_size + annotations_size + flags + serializer_id + seq + cls.checksum_magic) & 0xffff: raise errors.ProtocolError("header checksum mismatch") msg = Message(msg_type, b"", serializer_id, flags, seq) msg.data_size = data_size msg.annotations_size = annotations_size return msg @classmethod def recv(cls, connection, requiredMsgTypes=None, hmac_key=None): """ Receives a pyro message from a given connection. Accepts the given message types (None=any, or pass a sequence). Also reads annotation chunks and the actual payload data. Validates a HMAC chunk if present. """ msg = cls.from_header(connection.recv(cls.header_size)) msg.hmac_key = hmac_key if 0 < Pyro4.config.MAX_MESSAGE_SIZE < (msg.data_size + msg.annotations_size): errorMsg = "max message size exceeded (%d where max=%d)" % (msg.data_size + msg.annotations_size, Pyro4.config.MAX_MESSAGE_SIZE) log.error("connection " + str(connection) + ": " + errorMsg) connection.close() # close the socket because at this point we can't return the correct sequence number for returning an error message raise errors.ProtocolError(errorMsg) if requiredMsgTypes and msg.type not in requiredMsgTypes: err = "invalid msg type %d received" % msg.type log.error(err) raise errors.ProtocolError(err) if msg.annotations_size: # read annotation chunks annotations_data = connection.recv(msg.annotations_size) msg.annotations = {} i = 0 while i < msg.annotations_size: anno, length = struct.unpack("!4sH", annotations_data[i:i + 6]) if sys.version_info >= (3, 0): anno = anno.decode("ASCII") msg.annotations[anno] = annotations_data[i + 6:i + 6 + length] i += 6 + length # read data msg.data = connection.recv(msg.data_size) if "HMAC" in msg.annotations and hmac_key: if msg.annotations["HMAC"] != msg.hmac(): raise errors.SecurityError("message hmac mismatch") elif ("HMAC" in msg.annotations) != bool(hmac_key): # Not allowed: message contains hmac but hmac_key is not set, or vice versa. err = "hmac key config not symmetric" log.warning(err) raise errors.SecurityError(err) return msg def hmac(self): """returns the hmac of the data and the annotation chunk values (except HMAC chunk itself)""" mac = hmac.new(self.hmac_key, self.data, digestmod=hashlib.sha1) for k, v in self.annotations.items(): if k != "HMAC": mac.update(v) return mac.digest() @staticmethod def ping(pyroConnection, hmac_key=None): """Convenience method to send a 'ping' message and wait for the 'pong' response""" ping = Message(MSG_PING, b"ping", 42, 0, 0, hmac_key=hmac_key) pyroConnection.send(ping.to_bytes()) Message.recv(pyroConnection, [MSG_PING])
# # Copyright 2014 Telefonica Investigacion y Desarrollo, S.A.U # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """SCIM Schemeas""" import sys SERVICE_PROVIDER_CONFIGS = { "schemas": "", 'documentationUrl': 'https://github.com/telefonicaid/fiware-keystone-scim/blob/master/README.md', 'patch': { 'supported': True }, 'information': { "totalUsers": "", "totalUserOrganizations": "", "totalCloudOrganizations": "", "totalResources": "", "trialUsers": "", "basicUsers": "", "communityUsers": "" }, 'bulk': { 'supported': False, 'maxOperations': 0, 'maxPayloadSize': 0 }, 'filter': { 'supported': True, 'maxResults': sys.maxint }, 'changePassword': { 'supported': True }, 'sort': { 'supported': False }, 'etag': { 'supported': False }, 'xmlDataFormat': { 'supported': False }, 'authenticationSchemes': [ { 'name': 'Keytone Authentication', 'description': 'Authentication using Keystone', 'specUrl': 'http://specs.openstack.org/openstack/keystone-specs', 'documentationUrl': 'http://keystone.openstack.org/', 'type': 'keystonetoken', 'primary': True } ] } SCHEMAS = [ { "id": "urn:scim:schemas:core:1.0:User", "name": "User", "description": "Keystone User", "schema": "urn:scim:schemas:core:1.0", "endpoint": "/Users", "attributes": [ { "name": "id", "type": "string", "multiValued": False, "description": "Unique identifier for the SCIM resource as " "defined by the Service Provider. Each representation of " "the resource MUST include a non-empty id value. This " "identifier MUST be unique across the Service Provider's " "entire set of resources. It MUST be a stable, " "non-reassignable identifier that does not change when the " "same resource is returned in subsequent requests. The " "value of the id attribute is always issued by the Service " "Provider and MUST never be specified by the Service " "Consumer. REQUIRED.", "schema": "urn:scim:schemas:core:1.0", "readOnly": True, "required": True, "caseExact": True }, { "name": "userName", "type": "string", "multiValued": False, "description": "Unique identifier for the User typically used " "by the user to directly authenticate to the service " "provider. Each User MUST include a non-empty userName " "value. This identifier MUST be unique across the Service " "Consumer's entire set of Users. REQUIRED", "schema": "urn:scim:schemas:core:1.0", "readOnly": True, "required": True, "caseExact": True }, { "name": "password", "type": "string", "multiValued": False, "description": "The User's clear text password. This " "attribute is intended to be used as a means to specify an " "initial password when creating a new User or to reset an " "existing User's password.", "schema": "urn:scim:schemas:core:1.0", "readOnly": True, "required": False, "caseExact": True }, { "name": "emails", "type": "complex", "multiValued": True, "multiValuedAttributeChildName": "email", "description": "E-mail addresses for the user. The value " "SHOULD be canonicalized by the Service Provider, e.g. " "bjensen@example.com instead of bjensen@EXAMPLE.COM. " "Canonical Type values of work, home, and other.", "schema": "urn:scim:schemas:core:1.0", "readOnly": False, "required": False, "caseExact": True, "subAttributes": [ { "name": "value", "type": "string", "multiValued": False, "description": "E-mail addresses for the user. The " "value SHOULD be canonicalized by the Service " "Provider, e.g. bjensen@example.com instead of " "bjensen@EXAMPLE.COM. Canonical Type values of " "work, home, and other.", "readOnly": False, "required": False, "caseExact": True } ] }, { "name": "active", "type": "boolean", "multiValued": False, "description": "A Boolean value indicating the User's" "administrative status.", "schema": "urn:scim:schemas:core:1.0", "readOnly": False, "required": False, "caseExact": False }, { "name": "domain_id", "type": "string", "multiValued": False, "description": "User's domain", "schema": "urn:scim:schemas:extension:keystone:1.0", "readOnly": False, "required": True, "caseExact": True } ] }, { "id": "urn:scim:schemas:core:1.0:Group", "name": "Group", "description": "Keystone Group", "schema": "urn:scim:schemas:core:1.0", "endpoint": "/Groups", "attributes": [ { "name": "id", "type": "string", "multiValued": False, "description": "Unique identifier for the SCIM resource", "schema": "urn:scim:schemas:core:1.0", "readOnly": True, "required": True, "caseExact": True }, { "name": "displayName", "type": "string", "multiValued": False, "description": "Unique identifier for the Group", "schema": "urn:scim:schemas:core:1.0", "readOnly": True, "required": True, "caseExact": True }, { "name": "domain_id", "type": "string", "multiValued": False, "description": "Role's domain", "schema": "urn:scim:schemas:extension:keystone:1.0", "readOnly": False, "required": True, "caseExact": True } ] }, { "id": "urn:scim:schemas:extension:keystone:1.0:Role", "name": "Role", "description": "Keystone Role SCIM (domain aware)", "schema": "urn:scim:schemas:extension:keystone:1.0", "endpoint": "/Roles", "attributes": [ { "name": "id", "type": "string", "multiValued": False, "description": "Unique identifier for the SCIM Resource.", "schema": "urn:scim:schemas:core:1.0", "readOnly": True, "required": True, "caseExact": True }, { "name": "name", "type": "string", "multiValued": False, "description": "Role name", "schema": "urn:scim:schemas:extension:keystone:1.0", "readOnly": True, "required": True, "caseExact": True }, { "name": "domain_id", "type": "string", "multiValued": False, "description": "Role's domain", "schema": "urn:scim:schemas:extension:keystone:1.0", "readOnly": False, "required": True, "caseExact": True } ] }, { "id": "urn:scim:schemas:core:2.0:Organization", "name": "Organization", "description": "Keystone Organization", "schema": "urn:scim:schemas:core:2.0", "endpoint": "/Organization", "attributes": [ { "name": "id", "type": "string", "multiValued": False, "description": "Unique identifier for the SCIM resource", "schema": "urn:scim:schemas:core:2.0", "readOnly": True, "required": True, "caseExact": True }, { "name": "name", "type": "string", "multiValued": False, "description": "Organization name", "schema": "urn:scim:schemas:core:2.0", "readOnly": True, "required": True, "caseExact": True }, { "name": "description", "type": "string", "multiValued": False, "description": "Organization description", "schema": "urn:scim:schemas:core:2.0", "readOnly": False, "required": True, "caseExact": True }, { "name": "active", "type": "boolean", "multiValued": False, "description": "A Boolean value indicating the User's" "administrative status.", "schema": "urn:scim:schemas:core:2.0", "readOnly": False, "required": False, "caseExact": False }, { "name": "domain_id", "type": "string", "multiValued": False, "description": "Organization's domain", "schema": "urn:scim:schemas:extension:keystone:2.0", "readOnly": False, "required": True, "caseExact": True }, { "name": "is_default", "type": "boolean", "multiValued": False, "description": "A Boolean value indicating the Organization's" "default status", "schema": "urn:scim:schemas:core:2.0", "readOnly": False, "required": False, "caseExact": False }, ] }, ]
# Copyright (c) 2011-2012 Vit Suchomel and Jan Pomikalek # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. """Character encoding detection library.""" import os import sys import struct ENCODE_REPLACEMENT_CHARACTER = '\x00' MODEL_VERSION = '1.3' def list_models(): "Returns a list of inbuilt models." models = [] models_dir = os.path.join( os.path.dirname(sys.modules['chared'].__file__), 'models') for filename in os.listdir(models_dir): if filename.endswith('.edm'): models.append(filename.rsplit('.', 1)[0]) return sorted(models) def get_model_path(model_id): """ Returns the full path to the model with given id or None if no model with the ID exists. """ models_dir = os.path.join( os.path.dirname(sys.modules['chared'].__file__), 'models') filepath = os.path.join(models_dir, model_id + '.edm') if os.path.isfile(filepath): return filepath else: return None def scalar_product(vec1, vec2): "Returns a scalar product of the two vectors." result = 0 for key in vec1.keys(): if vec2.has_key(key): result += vec1[key] * vec2[key] return result def replace_by_zero(error): """ Replaces unknown bytes while encoding/decoding. The function has to be registered using codecs.register_error. """ if isinstance(error, UnicodeEncodeError): return (unicode(ENCODE_REPLACEMENT_CHARACTER), error.end) elif isinstance(error, UnicodeDecodeError): return (u'\ufffd', error.end) raise error class EncodingDetector(object): VECTOR_TUPLE_LENGTH = 3 def __init__(self, version=MODEL_VERSION, vectors={}, enc_order=()): self._version = version self._vectors = vectors self._encodings_order = enc_order def get_version(self): return self._version def save(self, path): """ Saves the model to the specified path. File format: general row: <verison><TAB><tuple length><TAB><encodings count> for each encoding: info row: <name><TAB><order><TAB><vector length> vector row: <key><packed value>... """ with open(path, 'wb') as fp: #basic attributes fp.write('%s\t%d\t%d\n' % (self._version, self.VECTOR_TUPLE_LENGTH, len(self._vectors))) #vectors for enc, vector in self._vectors.iteritems(): #encoding name, encoding order vect_len = len(vector) enc_order = self.get_encoding_order(enc) fp.write('%s\t%d\t%d\n' % (enc, enc_order, vect_len)) #vector keys & values for k, v in vector.iteritems(): fp.write('%s%s' % (k, struct.pack('=I', v))) fp.write('\n') @classmethod def load(cls, path): """ Loads the model from the specified path. Returns a new instance of EncodingDetector. """ version = '' vectors = {} enc_order = {} with open(path, 'rb') as fp: #basic attributes version, vect_tuple_length, enc_count = fp.readline().split('\t') if MODEL_VERSION != version: sys.stderr.write('WARNING: Potentially incompatible model versions!\n') sys.stderr.write('\t%s: %s\n\tthis module: %s\n' % (path, version, MODEL_VERSION)) vect_tuple_length = int(vect_tuple_length) #vectors for i in range(int(enc_count)): #encoding name, encoding order enc, order, vect_len = fp.readline().split('\t') enc_order[int(order)] = enc #vector keys & values vectors[enc] = {} for j in range(int(vect_len)): key = fp.read(vect_tuple_length) vectors[enc][key] = struct.unpack('=I', fp.read(4))[0] fp.read(1) return EncodingDetector(version, vectors, enc_order.values()) def vectorize(self, string): """ Transforms the input strings into a frequency vector of n-grams of contained characters. Omits vector keys containing the encoding replacement character. """ str_len = len(string) if self.VECTOR_TUPLE_LENGTH > str_len: return {} vector = {} for i in range(str_len - self.VECTOR_TUPLE_LENGTH + 1): key = string[i:i + self.VECTOR_TUPLE_LENGTH] if ENCODE_REPLACEMENT_CHARACTER not in key: vector[key] = vector.get(key, 0) + 1 return vector def train(self, string, encoding): "Trains the detector. The input must be a string and its encoding." self._vectors[encoding] = self.vectorize(string) def set_encodings_order(self, encodings): """ Defines the order (importance / frequency of use) of the encodings the classifier has been trained on. The input must be a list or a tuple of encodings. The first is the most important and the last is the least important. """ if not isinstance(encodings, (tuple, list)): raise TypeError self._encodings_order = tuple(encodings) def get_encoding_order(self, encoding): """ Returns the order of the encoding or sys.maxint if no order is defined for it. """ if encoding in self._encodings_order: return self._encodings_order.index(encoding) return sys.maxint def classify(self, string): """ Returns the predicted character encoding(s) for the input string as a list. The list may contain more than one element if there are multiple equally likely candidates. In this case, the candidates are returned in the order of importance (see set_encodings_order). Empty list may be returned if there are no valid candidates. """ input_vector = self.vectorize(string) classification = [] for clas, vector in self._vectors.iteritems(): score = scalar_product(input_vector, vector) clas_info = {'clas': clas, 'score': score, 'order': self.get_encoding_order(clas)} classification.append(clas_info) if not classification: return [] #order result classes # 1.) by vector similarity score (higher score is better) # 2.) by the encoding order (lower index is better) classification.sort(lambda x, y: cmp(y['score'], x['score']) or cmp(x['order'], y['order'])) #return a list of the top classes # the top classes have the same score and order as the first one first = classification[0] result = [] for clas in classification: if first['score'] == clas['score']: result.append(clas['clas']) return result def reduce_vectors(self): """ Remove the common parts of all vectors. Should be called after all training data has been loaded. Provided the training has been performed on the same data for all encodings, reducing vectors increases both efficiency and accuracy of the classification. """ #get frequencies of (key, value) pairs key_value_count = {} for vect in self._vectors.values(): for key, value in vect.iteritems(): key_value_count[(key, value)] = key_value_count.get( (key, value), 0) + 1 #remove common parts of vectors (the (key, value) pairs with the #frequency equal to the number of vectors) encodings_count = len(self._vectors) for (key, value), count in key_value_count.iteritems(): if count >= encodings_count: for vect in self._vectors.values(): if vect.has_key(key): del vect[key]
import math import numpy import statsmodels.api as sm lowess= sm.nonparametric.lowess import esutil from galpy.util import bovy_coords, bovy_plot from scipy.interpolate import interp1d,UnivariateSpline import apogee.tools.read as apread import isodist import numpy as np import matplotlib.pyplot as plt import os import pickle import apogee.tools.read as apread from apogee.select import apogeeSelect from astropy.io import fits from astropy.table import Table, join _R0= 8. # kpc _Z0= 0.025 # kpc _FEHTAG= 'FE_H' _AFETAG= 'AVG_ALPHAFE' _AFELABEL= r'$[\left([\mathrm{O+Mg+Si+S+Ca}]/5\right)/\mathrm{Fe}]$' catpath = '../catalogues/' selectFile= '../savs/selfunc-nospdata.sav' if os.path.exists(selectFile): with open(selectFile,'rb') as savefile: apo= pickle.load(savefile) def get_rgbsample(loggcut = [1.8, 3.0], teffcut = [0, 10000], add_ages = False, agetype='Martig', apply_corrections=False, distance_correction=False, verbose = False): """ Get a clean sample of dr12 APOGEE data with Michael Haydens distances --- INPUT: None OUTPUT: Clean rgb sample with added distances HISTORY: Started - Mackereth 02/06/16 """ #get the allStar catalogue using apogee python (exlude all bad flags etc) allStar = apread.allStar(rmcommissioning=True, exclude_star_bad=True, exclude_star_warn=True, main=True, ak=True, adddist=False) #cut to a 'sensible' logg range (giants which are not too high on the RGB) allStar = allStar[(allStar['LOGG'] > loggcut[0])&(allStar['LOGG'] < loggcut[1])& (allStar['TEFF'] > teffcut[0])&(allStar['TEFF'] < teffcut[1])] if verbose == True: print str(len(allStar))+' Stars before Distance catalogue join (after Log(g) cut)' #load the distance VAC dists = fits.open(catpath+'DR12_DIST_R-GC.fits')[1].data #convert to astropy Table allStar_tab = Table(data=allStar) dists_tab = Table(data=dists) #join table tab = join(allStar_tab, dists_tab, keys='APOGEE_ID', uniq_col_name='{col_name}{table_name}', table_names=['','2']) data = tab.as_array() data= esutil.numpy_util.add_fields(data,[('M_J', float), ('M_H', float), ('M_K', float), ('MH50_DIST', float), ('MH50_GALR', float), ('MH50_GALZ', float), ('MH50_GALPHI', float), ('AVG_ALPHAFE', float)]) data['MH50_DIST'] = (10**((data['HAYDEN_DISTMOD_50']+5)/5))/1e3 if distance_correction == True: data['MH50_DIST'] *= 1.05 XYZ= bovy_coords.lbd_to_XYZ(data['GLON'], data['GLAT'], data['MH50_DIST'], degree=True) RphiZ= bovy_coords.XYZ_to_galcencyl(XYZ[:,0], XYZ[:,1], XYZ[:,2], Xsun=8.,Zsun=0.025) data['MH50_GALR']= RphiZ[:,0] data['MH50_GALPHI']= RphiZ[:,1] data['MH50_GALZ']= RphiZ[:,2] data['M_J'] = data['J0']-data['HAYDEN_DISTMOD_50'] data['M_H'] = data['H0']-data['HAYDEN_DISTMOD_50'] data['M_K'] = data['K0']-data['HAYDEN_DISTMOD_50'] data['AVG_ALPHAFE'] = avg_alphafe_dr12(data) data[_FEHTAG] += -0.1 #remove locations not in the apogee selection function (FIND OUT WHATS UP HERE) data = data[np.in1d(data['LOCATION_ID'], apo.list_fields())] # Remove locations outside of the Pan-STARRS dust map # In the Southern hemisphere data= data[data['LOCATION_ID'] != 4266] #240,-18 data= data[data['LOCATION_ID'] != 4331] #5.5,-14.2 data= data[data['LOCATION_ID'] != 4381] #5.2,-12.2 data= data[data['LOCATION_ID'] != 4332] #1,-4 data= data[data['LOCATION_ID'] != 4329] #0,-5 data= data[data['LOCATION_ID'] != 4351] #0,-2 data= data[data['LOCATION_ID'] != 4353] #358,0 data= data[data['LOCATION_ID'] != 4385] #358.6,1.4 # Close to the ecliptic pole where there's no data (is it the ecliptic pole? data= data[data['LOCATION_ID'] != 4528] #120,30 data= data[data['LOCATION_ID'] != 4217] #123,22.4 #remove any non-finite magnitudes data = data[np.isfinite(data['M_H'])] if verbose == True: print str(len(data))+' Stars with distance measures (and in good fields...)' if add_ages == True: if agetype == 'Martig': ages = fits.open(catpath+'DR12_martigages_vizier.fits')[1].data idtag = '2MASS_ID' if agetype == 'Cannon': ages = fits.open(catpath+'RGB_Cannon_Ages.fits')[1].data ages = esutil.numpy_util.add_fields(ages,[('Age', float)]) ages['Age'] = np.exp(ages['ln_age']) idtag = 'ID' ages_tab = Table(data=ages) ages_tab.rename_column(idtag, 'APOGEE_ID') tab = join( ages_tab,data, keys='APOGEE_ID', uniq_col_name='{col_name}{table_name}', table_names=['','2']) allStar_full = tab.as_array() data = allStar_full if verbose == True: print str(len(data))+' Stars with ages' if apply_corrections == True: #martig1 = np.genfromtxt(catpath+'martig2016_table1.txt', dtype=None, names=True, skip_header=2) martig1 = fits.open(catpath+'martig_table1.fits') fit = lowess(np.log10(martig1['Age_out']),np.log10(martig1['Age_in'])) xs = np.linspace(-0.3,1.2,100) xsinterpolate = interp1d(xs,xs) fys = fit[:,0]-xsinterpolate(fit[:,1]) interp = UnivariateSpline(fit[:,1], fys) corr_age = np.log10(data['Age'])+(interp(np.log10(data['Age']))) corr_age = 10**corr_age data['Age'] = corr_age return data def avg_alphafe_dr12(data): weight_o= np.ones(len(data)) weight_s= np.ones(len(data)) weight_si= np.ones(len(data)) weight_ca= np.ones(len(data)) weight_mg= np.ones(len(data)) weight_o[data['O_H'] == -9999.0]= 0. weight_s[data['S_H'] == -9999.0]= 0. weight_si[data['SI_H'] == -9999.0]= 0. weight_ca[data['CA_H'] == -9999.0]= 0. weight_mg[data['MG_H'] == -9999.0]= 0. return (weight_o*data['O_H']+weight_s*data['S_H'] +weight_si*data['SI_H']+weight_ca*data['CA_H'] +weight_mg*data['MG_H'])/(weight_o+weight_s +weight_si+weight_ca +weight_mg)\ -data['FE_H']-0.05 # Define the low-alpha, low-iron sample def _lowlow_lowfeh(afe): # The low metallicity edge return -0.6 def _lowlow_highfeh(afe): # The high metallicity edge return -0.25 def _lowlow_lowafe(feh): # The low alpha edge (-0.15,-0.075) to (-0.5,0) return (0--0.075)/(-0.5--0.15)*(feh+0.1--0.15)-0.075 def _lowlow_highafe(feh): # The high alpha edge (-0.15,0.075) to (-0.5,0.15) return (0.15-0.075)/(-0.5--0.15)*(feh+0.1--0.15)+0.075 def get_lowlowsample(): """ NAME: get_lowlowsample PURPOSE: get the RGB sample at low alpha, low iron INPUT: None so far OUTPUT: sample HISTORY: 2015-03-18 - Started - Bovy (IAS) 2016-07-02 - modification - Mackereth (LJMU) """ # Get the full sample first data= get_rgbsample() # Now cut it lowfeh= _lowlow_lowfeh(0.) highfeh= _lowlow_highfeh(0.) indx= (data[_FEHTAG] > lowfeh)*(data[_FEHTAG] <= highfeh)\ *(data[_AFETAG] > _lowlow_lowafe(data[_FEHTAG]))\ *(data[_AFETAG] <= _lowlow_highafe(data[_FEHTAG])) return data[indx] # Define the high-alpha sample def _highalpha_lowfeh(afe): # The low metallicity edge return -0.8 def _highalpha_highfeh(afe): # The high metallicity edge return -0.2 def _highalpha_lowafe(feh): # The low alpha edge (-0.125,0.115) to (-0.6,0.215) return (0.2-0.1)/(-0.6--0.125)*(feh+0.1--0.125)+0.115 def _highalpha_highafe(feh): # The high alpha edge (-0.125,0.19) to (-0.6,0.29) return (0.275-0.175)/(-0.6--0.125)*(feh+0.1--0.125)+0.19 def get_highalphasample(): """ NAME: get_highalphasample PURPOSE: get the RC sample at high alpha INPUT: None so far OUTPUT: sample HISTORY: 2015-03-24 - Started - Bovy (IAS) """ # Get the full sample first data= get_rcsample() # Now cut it lowfeh= _highalpha_lowfeh(0.) highfeh= _highalpha_highfeh(0.) indx= (data[_FEHTAG] > lowfeh)*(data[_FEHTAG] <= highfeh)\ *(data[_AFETAG] > _highalpha_lowafe(data[_FEHTAG]))\ *(data[_AFETAG] <= _highalpha_highafe(data[_FEHTAG])) return data[indx] # Define the solar sample def _solar_lowfeh(afe): # The low metallicity edge return -0.2 def _solar_highfeh(afe): # The high metallicity edge return 0. def _solar_lowafe(feh): # The low alpha edge (0.1,-0.075) to (-0.1,-0.075) return -0.075 def _solar_highafe(feh): # The high alpha edge (-0.15,0.1) to (0.1,0.05) return (0.1-0.05)/(-0.15-0.1)*(feh+0.1-0.1)+0.05 def get_solarsample(): """ NAME: get_solarsample PURPOSE: get the RC sample at solar abundances INPUT: None so far OUTPUT: sample HISTORY: 2015-03-18 - Started - Bovy (IAS) 2016-07-02 - modification - Mackereth (LJMU) """ # Get the full sample first data= get_rgbsample() # Now cut it lowfeh= _solar_lowfeh(0.) highfeh= _solar_highfeh(0.) indx= (data[_FEHTAG] > lowfeh)*(data[_FEHTAG] <= highfeh)\ *(data[_AFETAG] > _solar_lowafe(data[_FEHTAG]))\ *(data[_AFETAG] <= _solar_highafe(data[_FEHTAG])) return data[indx] # Define the high metallicity sample def _highfeh_lowfeh(afe): # The low metallicity edge return 0.05 def _highfeh_highfeh(afe): # The high metallicity edge return 0.3 def _highfeh_lowafe(feh): # The low alpha edge (0.1,-0.075) to (-0.1,-0.075) return -0.075 def _highfeh_highafe(feh): # The high alpha edge (-0.15,0.1) to (0.1,0.05) return 0.05 def get_highfehsample(): """ NAME: get_highfehsample PURPOSE: get the RC sample at high [Fe/H] INPUT: None so far OUTPUT: sample HISTORY: 2015-03-18 - Started - Bovy (IAS) 2016-07-02 - modification - Mackereth (LJMU) """ # Get the full sample first data= get_rgbsample() # Now cut it lowfeh= _highfeh_lowfeh(0.) highfeh= _highfeh_highfeh(0.) indx= (data[_FEHTAG] > lowfeh)*(data[_FEHTAG] <= highfeh)\ *(data[_AFETAG] > _highfeh_lowafe(data[_FEHTAG]))\ *(data[_AFETAG] <= _highfeh_highafe(data[_FEHTAG])) return data[indx] def alphaedge(fehs): edge = np.zeros(len(fehs)) edge[fehs < 0] = (0.12/-0.6)*fehs[fehs < 0]+0.03 edge[fehs >= 0] = 0.03 return edge def highalphaedge(fehs): edge = np.zeros(len(fehs)) edge[fehs < 0] = (-0.13/0.6)*fehs[fehs < 0]+0.04 edge[fehs >= 0] = 0.04 return edge def lowalphaedge(fehs): edge = np.zeros(len(fehs)) edge[fehs < 0] = (-0.10/0.6)*fehs[fehs < 0]+0.01 edge[fehs >= 0] = 0.01 return edge def get_fehage(agebin = [0.,1.], fehbin = [0.,0.2], afebin = 'low', dr=None, agetype='Martig', apply_corrections=False, distance_correction=False): data = get_rgbsample(add_ages=True, agetype=agetype, apply_corrections=apply_corrections, distance_correction=distance_correction) if afebin == 'low': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] < alphaedge(data[_FEHTAG])) if afebin == 'high': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] >= alphaedge(data[_FEHTAG])) if afebin == 'highclean': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] >= highalphaedge(data[_FEHTAG])) if afebin == 'lowclean': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] <= lowalphaedge(data[_FEHTAG])) if afebin == 'lownew': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] <= alphaedge(data[_FEHTAG])-0.025) if afebin == 'highnew': indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])\ *(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1])*(data[_AFETAG] >= alphaedge(data[_FEHTAG])+0.025) if afebin == None: indx = (data['Age'] >= agebin[0])*(data['Age'] < agebin[1])*(data[_FEHTAG] >= fehbin[0])*(data[_FEHTAG] < fehbin[1]) return data[indx] def highalphalocus(): data= get_rgbsample() indx= (data[_AFETAG] > (0.2-0.1)/(-0.6--0.125)*(data[_FEHTAG]+0.1--0.125)+0.11)\ *(data[_FEHTAG] < -0.225)\ +(data[_AFETAG] > 0.05/(-0.6--0.125)*(data[_FEHTAG]+0.1--0.125)+0.11)\ *(data[_FEHTAG] >= -0.225)*(data[_FEHTAG] < 0.125)\ +(data[_FEHTAG] >= 0.125) return lowess(data[_AFETAG][indx],data[_FEHTAG][indx],frac=0.6) def lowalphalocus(): data= get_rgbsample() indx= (data[_AFETAG] > (0.2-0.1)/(-0.6--0.125)*(data[_FEHTAG]+0.1--0.125)+0.11)\ *(data[_FEHTAG] < -0.025)\ +(data[_AFETAG] > 0.05/(-0.6--0.125)*(data[_FEHTAG]+0.1--0.125)+0.11)\ *(data[_FEHTAG] >= -0.225)*(data[_FEHTAG] < 0.125) return lowess(data[_AFETAG][True-indx],data[_FEHTAG][True-indx],frac=0.6) class MAPs: """Class that pixelizes the data sample in [Fe/H] and [a/Fe]""" def __init__(self,data=None,dfeh=0.1,dafe=0.05,fehmin=-0.75,fehmax=0.35, afemin=-0.075,afemax=0.275): """ NAME: __init__ PURPOSE: initialize the MAPs INPUT: data= (None) the data sample; if None, whole stat. RC sample dfeh, dafe= pixel size fehmin, fehmax, afemin, afemax= minimum and maximum FeH and AFe OUTPUT: object with pixelized data HISTORY: 2015-04-06 - Written - Bovy (IAS) """ if data is None: data= get_rcsample() self.data= data self.dx= dfeh self.dy= dafe self.xmin= fehmin self.xmax= fehmax self.ymin= afemin self.ymax= afemax # edges in X and Y self.xedges= numpy.arange(self.xmin,self.xmax+0.01,self.dx) self.yedges= numpy.arange(self.ymin,self.ymax+0.01,self.dy) # X and Y self.x= data[_FEHTAG] self.y= data[_AFETAG] return None def __call__(self,*args,**kwargs): """ NAME: __call__ PURPOSE: return the part of the sample in a (feh,afe) pixel INPUT: [Fe/H] [a/Fe] OUTPUT: returns data recarray in the bin that feh and afe are in HISTORY: 2015-04-06 - Written - Bovy (IAS) """ #Find bin xbin= int(math.floor((args[0]-self.xmin)/self.dx)) ybin= int(math.floor((args[1]-self.ymin)/self.dy)) #Return data return self.data[(self.x > self.xedges[xbin])\ *(self.x <= self.xedges[xbin+1])\ *(self.y > self.yedges[ybin])\ *(self.y <= self.yedges[ybin+1])] def map(self): """ NAME: map PURPOSE: yield a map INPUT: (none) OUTPUT: iterates over the MAPs HISTORY: 2015-04-06 - Written - Bovy (IAS) """ nx= int((self.xmax-self.xmin)/self.dx) ny= int((self.ymax-self.ymin)/self.dy) gx= numpy.linspace(self.xmin+self.dx/2.,self.xmax-self.dx/2.,nx) gy= numpy.linspace(self.ymin+self.dy/2.,self.ymax-self.dy/2.,ny) for ii in range(nx): for jj in range(ny): yield self(gx[ii],gy[jj]) def callIndx(self,*args,**kwargs): """ NAME: callIndx PURPOSE: return index of the part of the sample in an [Fe/H] and [a/Fe] pixel INPUT: [Fe/H] [a/Fe] OUTPUT: returns index into data recarray in the bin that [Fe/H] and [a/Fe] are in HISTORY: 2015-04-06 - Written - Bovy (IAS) """ #Find bin xbin= int(math.floor((args[0]-self.xmin)/self.dx)) ybin= int(math.floor((args[1]-self.ymin)/self.dy)) #Return data return (self.x > self.xedges[xbin])\ *(self.x <= self.xedges[xbin+1])\ *(self.y > self.yedges[ybin])\ *(self.y <= self.yedges[ybin+1]) def xindx(self,x): """ NAME: xindx PURPOSE: return the index corresponding to a [Fe/H] value INPUT: [Fe/H] OUTPUT: index HISTORY: 2015-04-06 - Written - Bovy (IAS) """ return int(math.floor((x-self.xmin)/self.dx)) def yindx(self,y): """ NAME: yindx PURPOSE: return the index corresponding to a [a/Fe] value INPUT: [a/Fe] OUTPUT: index HISTORY: 2015-04-06 - Written - Bovy (IAS) """ return int(math.floor((y-self.ymin)/self.dy)) def plot(self,quant,func=numpy.median,minnstar=20.,submediany=False, returnz=False,justcalc=False, **kwargs): """ NAME: plot PURPOSE: make a plot of a quantity as a function of X and Y INPUT: quant - the quantity (string that returns the quantity, like 'METALS') or a function of the data func - function of quantity to plot minnstar= minimum number of stars (20) submeany= subtract the median y justcalc= (False) if True, do not plot bovy_plot.bovy_dens2d kwargs OUTPUT: plot to output device HISTORY: 2015-04-06 - Written - Bovy (IAS) """ #First create 2D nx= int((self.xmax-self.xmin)/self.dx) ny= int((self.ymax-self.ymin)/self.dy) gx= numpy.linspace(self.xmin+self.dx/2.,self.xmax-self.dx/2.,nx) gy= numpy.linspace(self.ymin+self.dy/2.,self.ymax-self.dy/2.,ny) z2d= numpy.empty((nx,ny)) if isinstance(quant,numpy.ndarray): z2d= numpy.reshape(quant,(nx,ny)) for ii in range(z2d.shape[0]): for jj in range(z2d.shape[1]): tdata= self(gx[ii],gy[jj]) if len(tdata) < minnstar: z2d[ii,jj]= numpy.nan else: nbins= 0 for ii in range(z2d.shape[0]): for jj in range(z2d.shape[1]): tdata= self(gx[ii],gy[jj]) if len(tdata) < minnstar: z2d[ii,jj]= numpy.nan else: nbins+= 1 if hasattr(quant, '__call__'): z2d[ii,jj]= func(quant(tdata)) else: z2d[ii,jj]= func(tdata[quant]) if submediany: z2d[ii,:]-= \ numpy.median(z2d[ii,True-numpy.isnan(z2d[ii,:])]) if justcalc: if returnz: return z2d else: return None #Now plot xrange= kwargs.pop('xrange',[self.xmin,self.xmax]) yrange= kwargs.pop('yrange',[self.ymin,self.ymax]) if not kwargs.has_key('colorbar'): kwargs['colorbar']= True if not kwargs.has_key('shrink'): kwargs['shrink']= 0.78 if not kwargs.has_key('vmin'): kwargs['vmin']= numpy.nanmin(z2d) if not kwargs.has_key('vmax'): kwargs['vmax']= numpy.nanmax(z2d) xlabel= r'$[\mathrm{Fe/H}]$' ylabel= _AFELABEL cmap= kwargs.pop('cmap','coolwarm') out= bovy_plot.bovy_dens2d(z2d.T,origin='lower',cmap=cmap, interpolation='nearest', xlabel=xlabel,ylabel=ylabel, xrange=xrange,yrange=yrange, **kwargs) if returnz: return z2d else: return out
import unittest import numpy import chainer from chainer.backends import cuda from chainer import distributions from chainer import testing from chainer.testing import attr @testing.parameterize(*testing.product({ 'shape': [(3, 2), (1,)], 'is_variable': [True, False], })) @testing.fix_random() class TestKLDivergence(unittest.TestCase): def check_kl(self, dist1, dist2): kl = chainer.kl_divergence(dist1, dist2).data if isinstance(kl, cuda.ndarray): kl = kl.get() sample = dist1.sample(300000) mc_kl = dist1.log_prob(sample).data - dist2.log_prob(sample).data if isinstance(mc_kl, cuda.ndarray): mc_kl = mc_kl.get() mc_kl = numpy.nanmean(mc_kl, axis=0) testing.assert_allclose(kl, mc_kl, atol=1e-2, rtol=1e-2) def encode_params(self, params, is_gpu=False): if is_gpu: params = {k: cuda.to_gpu(v) for k, v in params.items()} if self.is_variable: params = {k: chainer.Variable(v) for k, v in params.items()} return params def make_bernoulli_dist(self, is_gpu=False): p = numpy.random.uniform(0, 1, self.shape).astype(numpy.float32) params = self.encode_params({"p": p}, is_gpu) return distributions.Bernoulli(**params) def make_beta_dist(self, is_gpu=False): a = numpy.random.uniform(0.5, 10, self.shape).astype(numpy.float32) b = numpy.random.uniform(0.5, 10, self.shape).astype(numpy.float32) params = self.encode_params({"a": a, "b": b}, is_gpu) return distributions.Beta(**params) def make_categorical_dist(self, is_gpu=False): p = numpy.random.normal(size=self.shape+(3,)).astype(numpy.float32) p = numpy.exp(p) p /= numpy.expand_dims(p.sum(axis=-1), axis=-1) params = self.encode_params({"p": p}, is_gpu) return distributions.Categorical(**params) def make_dirichlet_dist(self, is_gpu=False): alpha = numpy.random.uniform( 0.5, 10, self.shape + (3,)).astype(numpy.float32) params = self.encode_params({"alpha": alpha}, is_gpu) return distributions.Dirichlet(**params) def make_exponential_dist(self, is_gpu=False): lam = numpy.exp( numpy.random.uniform(0, 0.5, self.shape)).astype(numpy.float32) params = self.encode_params({"lam": lam}, is_gpu) return distributions.Exponential(**params) def make_gamma_dist(self, is_gpu=False): k = numpy.random.uniform(1, 5, self.shape).astype(numpy.float32) theta = numpy.random.uniform(0, 2, self.shape).astype(numpy.float32) params = self.encode_params({"k": k, "theta": theta}, is_gpu) return distributions.Gamma(**params) def make_gumbel_dist(self, is_gpu=False): loc = numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32) scale = numpy.exp( numpy.random.uniform(0, 1, self.shape)).astype(numpy.float32) params = self.encode_params({"loc": loc, "scale": scale}, is_gpu) return distributions.Gumbel(**params) def make_laplace_dist(self, is_gpu=False): loc = numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32) scale = numpy.exp( numpy.random.uniform(-1, 1, self.shape)).astype(numpy.float32) params = self.encode_params({"loc": loc, "scale": scale}, is_gpu) return distributions.Laplace(**params) def make_log_normal_dist(self, is_gpu=False): mu = numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32) sigma = numpy.exp( numpy.random.uniform(-1, 1, self.shape)).astype(numpy.float32) params = self.encode_params({"mu": mu, "sigma": sigma}, is_gpu) return distributions.LogNormal(**params) def make_normal_dist(self, is_gpu=False, use_log_scale=False): loc = numpy.random.uniform(-1, 1, self.shape).astype(numpy.float32) if use_log_scale: log_scale = numpy.random.uniform( -1, 1, self.shape).astype(numpy.float32) params = self.encode_params( {"loc": loc, "log_scale": log_scale}, is_gpu) else: scale = numpy.exp( numpy.random.uniform(-1, 1, self.shape)).astype(numpy.float32) params = self.encode_params({"loc": loc, "scale": scale}, is_gpu) return distributions.Normal(**params) def make_multivariatenormal_dist(self, is_gpu=False): loc = numpy.random.uniform( -1, 1, self.shape + (3,)).astype(numpy.float32) cov = numpy.random.normal(size=(numpy.prod(self.shape),) + (3, 3)) cov = [cov_.dot(cov_.T) for cov_ in cov] cov = numpy.vstack(cov).reshape(self.shape + (3, 3)) scale_tril = numpy.linalg.cholesky(cov).astype(numpy.float32) params = self.encode_params( {"loc": loc, "scale_tril": scale_tril}, is_gpu) return distributions.MultivariateNormal(**params) def make_one_hot_categorical_dist(self, is_gpu=False): p = numpy.random.normal(size=self.shape+(3,)).astype(numpy.float32) p = numpy.exp(p) p /= numpy.expand_dims(p.sum(axis=-1), axis=-1) params = self.encode_params({"p": p}, is_gpu) return distributions.OneHotCategorical(**params) def make_pareto_dist(self, is_gpu=False): scale = numpy.exp(numpy.random.uniform( 0.5, 1, self.shape)).astype(numpy.float32) alpha = numpy.exp(numpy.random.uniform( 1, 2, self.shape)).astype(numpy.float32) params = self.encode_params({"scale": scale, "alpha": alpha}, is_gpu) return distributions.Pareto(**params) def make_poisson_dist(self, is_gpu=False): lam = numpy.random.uniform(5, 10, self.shape).astype(numpy.float32) params = self.encode_params({"lam": lam}, is_gpu) return distributions.Poisson(**params) def make_uniform_dist(self, is_gpu=False, low=None, high=None, loc=None, scale=None, use_loc_scale=False): if use_loc_scale: if loc is None: loc = numpy.random.uniform( -3, 0, self.shape).astype(numpy.float32) if scale is None: scale = numpy.random.uniform( 1, 5, self.shape).astype(numpy.float32) params = self.encode_params({"loc": loc, "scale": scale}, is_gpu) else: if low is None: low = numpy.random.uniform( -3, 0, self.shape).astype(numpy.float32) if high is None: high = numpy.random.uniform( low + 1, low + 6, self.shape).astype(numpy.float32) params = self.encode_params({"low": low, "high": high}, is_gpu) return distributions.Uniform(**params) def test_bernoulli_bernoulli_cpu(self): dist1 = self.make_bernoulli_dist() dist2 = self.make_bernoulli_dist() self.check_kl(dist1, dist2) @attr.gpu def test_bernoulli_bernoulli_gpu(self): dist1 = self.make_bernoulli_dist(True) dist2 = self.make_bernoulli_dist(True) self.check_kl(dist1, dist2) @testing.with_requires('scipy') def test_beta_beta_cpu(self): dist1 = self.make_beta_dist() dist2 = self.make_beta_dist() self.check_kl(dist1, dist2) @attr.gpu def test_beta_beta_gpu(self): dist1 = self.make_beta_dist(True) dist2 = self.make_beta_dist(True) self.check_kl(dist1, dist2) @testing.with_requires('numpy>=1.11') def test_categorical_categorical_cpu(self): dist1 = self.make_categorical_dist() dist2 = self.make_categorical_dist() self.check_kl(dist1, dist2) @attr.gpu def test_categorical_categorical_gpu(self): dist1 = self.make_categorical_dist(True) dist2 = self.make_categorical_dist(True) self.check_kl(dist1, dist2) @testing.with_requires('scipy') def test_dirichlet_dirichlet_cpu(self): dist1 = self.make_dirichlet_dist() dist2 = self.make_dirichlet_dist() self.check_kl(dist1, dist2) @attr.gpu def test_dirichlet_dirichlet_gpu(self): dist1 = self.make_dirichlet_dist(True) dist2 = self.make_dirichlet_dist(True) self.check_kl(dist1, dist2) def test_exponential_exponential_cpu(self): dist1 = self.make_exponential_dist() dist2 = self.make_exponential_dist() self.check_kl(dist1, dist2) @attr.gpu def test_exponential_exponential_gpu(self): dist1 = self.make_exponential_dist(True) dist2 = self.make_exponential_dist(True) self.check_kl(dist1, dist2) @testing.with_requires('scipy') def test_gamma_gamma_cpu(self): dist1 = self.make_gamma_dist() dist2 = self.make_gamma_dist() self.check_kl(dist1, dist2) @attr.gpu def test_gamma_gamma_gpu(self): dist1 = self.make_gamma_dist(True) dist2 = self.make_gamma_dist(True) self.check_kl(dist1, dist2) @testing.with_requires('scipy') def test_gumbel_gumbel_cpu(self): dist1 = self.make_gumbel_dist() dist2 = self.make_gumbel_dist() self.check_kl(dist1, dist2) @attr.gpu def test_gumbel_gumbel_gpu(self): dist1 = self.make_gumbel_dist(True) dist2 = self.make_gumbel_dist(True) self.check_kl(dist1, dist2) def test_laplace_laplace_cpu(self): dist1 = self.make_laplace_dist() dist2 = self.make_laplace_dist() self.check_kl(dist1, dist2) @attr.gpu def test_laplace_laplace_gpu(self): dist1 = self.make_laplace_dist(True) dist2 = self.make_laplace_dist(True) self.check_kl(dist1, dist2) def test_log_normal_log_normal_cpu(self): dist1 = self.make_log_normal_dist() dist2 = self.make_log_normal_dist() self.check_kl(dist1, dist2) @attr.gpu def test_log_normal_log_normal_gpu(self): dist1 = self.make_log_normal_dist(True) dist2 = self.make_log_normal_dist(True) self.check_kl(dist1, dist2) def test_normal_normal_cpu(self): for use_log_scale1 in [True, False]: for use_log_scale2 in [True, False]: dist1 = self.make_normal_dist(use_log_scale=use_log_scale1) dist2 = self.make_normal_dist(use_log_scale=use_log_scale2) self.check_kl(dist1, dist2) @attr.gpu def test_normal_normal_gpu(self): for use_log_scale1 in [True, False]: for use_log_scale2 in [True, False]: dist1 = self.make_normal_dist( True, use_log_scale=use_log_scale1) dist2 = self.make_normal_dist( True, use_log_scale=use_log_scale2) self.check_kl(dist1, dist2) @testing.with_requires('scipy') def test_multivariatenormal_multivariatenormal_cpu(self): dist1 = self.make_multivariatenormal_dist() dist2 = self.make_multivariatenormal_dist() self.check_kl(dist1, dist2) @attr.gpu def test_multivariatenormal_multivariatenormal_gpu(self): dist1 = self.make_multivariatenormal_dist(True) dist2 = self.make_multivariatenormal_dist(True) self.check_kl(dist1, dist2) def test_one_hot_categorical_one_hot_categorical_cpu(self): dist1 = self.make_one_hot_categorical_dist() dist2 = self.make_one_hot_categorical_dist() self.check_kl(dist1, dist2) @attr.gpu def test_one_hot_categorical_one_hot_categorical_gpu(self): dist1 = self.make_one_hot_categorical_dist(True) dist2 = self.make_one_hot_categorical_dist(True) self.check_kl(dist1, dist2) def test_pareto_pareto_cpu(self): dist1 = self.make_pareto_dist() dist2 = self.make_pareto_dist() self.check_kl(dist1, dist2) @attr.gpu def test_pareto_pareto_gpu(self): dist1 = self.make_pareto_dist(True) dist2 = self.make_pareto_dist(True) self.check_kl(dist1, dist2) @testing.with_requires('scipy') def test_poisson_poisson_cpu(self): dist1 = self.make_poisson_dist() dist2 = self.make_poisson_dist() self.check_kl(dist1, dist2) @attr.gpu def test_poisson_poisson_gpu(self): dist1 = self.make_poisson_dist(True) dist2 = self.make_poisson_dist(True) self.check_kl(dist1, dist2) def test_uniform_uniform_cpu(self): for use_loc_scale1 in [True, False]: for use_loc_scale2 in [True, False]: dist1 = self.make_uniform_dist(use_loc_scale=use_loc_scale1) dist2 = self.make_uniform_dist(use_loc_scale=use_loc_scale2) self.check_kl(dist1, dist2) @attr.gpu def test_uniform_uniform_gpu(self): for use_loc_scale1 in [True, False]: for use_loc_scale2 in [True, False]: dist1 = self.make_uniform_dist( True, use_loc_scale=use_loc_scale1) dist2 = self.make_uniform_dist( True, use_loc_scale=use_loc_scale2) self.check_kl(dist1, dist2) testing.run_module(__name__, __file__)
import unittest from test import test_support, test_genericpath import posixpath, os from posixpath import realpath, abspath, dirname, basename # An absolute path to a temporary filename for testing. We can't rely on TESTFN # being an absolute path, so we need this. ABSTFN = abspath(test_support.TESTFN) def safe_rmdir(dirname): try: os.rmdir(dirname) except OSError: pass class PosixPathTest(unittest.TestCase): def setUp(self): self.tearDown() def tearDown(self): for suffix in ["", "1", "2"]: test_support.unlink(test_support.TESTFN + suffix) safe_rmdir(test_support.TESTFN + suffix) def test_join(self): self.assertEqual(posixpath.join("/foo", "bar", "/bar", "baz"), "/bar/baz") self.assertEqual(posixpath.join("/foo", "bar", "baz"), "/foo/bar/baz") self.assertEqual(posixpath.join("/foo/", "bar/", "baz/"), "/foo/bar/baz/") def test_split(self): self.assertEqual(posixpath.split("/foo/bar"), ("/foo", "bar")) self.assertEqual(posixpath.split("/"), ("/", "")) self.assertEqual(posixpath.split("foo"), ("", "foo")) self.assertEqual(posixpath.split("////foo"), ("////", "foo")) self.assertEqual(posixpath.split("//foo//bar"), ("//foo", "bar")) def splitextTest(self, path, filename, ext): self.assertEqual(posixpath.splitext(path), (filename, ext)) self.assertEqual(posixpath.splitext("/" + path), ("/" + filename, ext)) self.assertEqual(posixpath.splitext("abc/" + path), ("abc/" + filename, ext)) self.assertEqual(posixpath.splitext("abc.def/" + path), ("abc.def/" + filename, ext)) self.assertEqual(posixpath.splitext("/abc.def/" + path), ("/abc.def/" + filename, ext)) self.assertEqual(posixpath.splitext(path + "/"), (filename + ext + "/", "")) def test_splitext(self): self.splitextTest("foo.bar", "foo", ".bar") self.splitextTest("foo.boo.bar", "foo.boo", ".bar") self.splitextTest("foo.boo.biff.bar", "foo.boo.biff", ".bar") self.splitextTest(".csh.rc", ".csh", ".rc") self.splitextTest("nodots", "nodots", "") self.splitextTest(".cshrc", ".cshrc", "") self.splitextTest("...manydots", "...manydots", "") self.splitextTest("...manydots.ext", "...manydots", ".ext") self.splitextTest(".", ".", "") self.splitextTest("..", "..", "") self.splitextTest("........", "........", "") self.splitextTest("", "", "") def test_isabs(self): self.assertIs(posixpath.isabs(""), False) self.assertIs(posixpath.isabs("/"), True) self.assertIs(posixpath.isabs("/foo"), True) self.assertIs(posixpath.isabs("/foo/bar"), True) self.assertIs(posixpath.isabs("foo/bar"), False) def test_basename(self): self.assertEqual(posixpath.basename("/foo/bar"), "bar") self.assertEqual(posixpath.basename("/"), "") self.assertEqual(posixpath.basename("foo"), "foo") self.assertEqual(posixpath.basename("////foo"), "foo") self.assertEqual(posixpath.basename("//foo//bar"), "bar") def test_dirname(self): self.assertEqual(posixpath.dirname("/foo/bar"), "/foo") self.assertEqual(posixpath.dirname("/"), "/") self.assertEqual(posixpath.dirname("foo"), "") self.assertEqual(posixpath.dirname("////foo"), "////") self.assertEqual(posixpath.dirname("//foo//bar"), "//foo") def test_islink(self): self.assertIs(posixpath.islink(test_support.TESTFN + "1"), False) f = open(test_support.TESTFN + "1", "wb") try: f.write("foo") f.close() self.assertIs(posixpath.islink(test_support.TESTFN + "1"), False) if hasattr(os, "symlink"): os.symlink(test_support.TESTFN + "1", test_support.TESTFN + "2") self.assertIs(posixpath.islink(test_support.TESTFN + "2"), True) os.remove(test_support.TESTFN + "1") self.assertIs(posixpath.islink(test_support.TESTFN + "2"), True) self.assertIs(posixpath.exists(test_support.TESTFN + "2"), False) self.assertIs(posixpath.lexists(test_support.TESTFN + "2"), True) finally: if not f.close(): f.close() def test_samefile(self): f = open(test_support.TESTFN + "1", "wb") try: f.write("foo") f.close() self.assertIs( posixpath.samefile( test_support.TESTFN + "1", test_support.TESTFN + "1" ), True ) # If we don't have links, assume that os.stat doesn't return resonable # inode information and thus, that samefile() doesn't work if hasattr(os, "symlink"): os.symlink( test_support.TESTFN + "1", test_support.TESTFN + "2" ) self.assertIs( posixpath.samefile( test_support.TESTFN + "1", test_support.TESTFN + "2" ), True ) os.remove(test_support.TESTFN + "2") f = open(test_support.TESTFN + "2", "wb") f.write("bar") f.close() self.assertIs( posixpath.samefile( test_support.TESTFN + "1", test_support.TESTFN + "2" ), False ) finally: if not f.close(): f.close() def test_samestat(self): f = open(test_support.TESTFN + "1", "wb") try: f.write("foo") f.close() self.assertIs( posixpath.samestat( os.stat(test_support.TESTFN + "1"), os.stat(test_support.TESTFN + "1") ), True ) # If we don't have links, assume that os.stat() doesn't return resonable # inode information and thus, that samefile() doesn't work if hasattr(os, "symlink"): if hasattr(os, "symlink"): os.symlink(test_support.TESTFN + "1", test_support.TESTFN + "2") self.assertIs( posixpath.samestat( os.stat(test_support.TESTFN + "1"), os.stat(test_support.TESTFN + "2") ), True ) os.remove(test_support.TESTFN + "2") f = open(test_support.TESTFN + "2", "wb") f.write("bar") f.close() self.assertIs( posixpath.samestat( os.stat(test_support.TESTFN + "1"), os.stat(test_support.TESTFN + "2") ), False ) finally: if not f.close(): f.close() def test_ismount(self): self.assertIs(posixpath.ismount("/"), True) def test_expanduser(self): self.assertEqual(posixpath.expanduser("foo"), "foo") try: import pwd except ImportError: pass else: self.assertIsInstance(posixpath.expanduser("~/"), basestring) # if home directory == root directory, this test makes no sense if posixpath.expanduser("~") != '/': self.assertEqual( posixpath.expanduser("~") + "/", posixpath.expanduser("~/") ) self.assertIsInstance(posixpath.expanduser("~root/"), basestring) self.assertIsInstance(posixpath.expanduser("~foo/"), basestring) with test_support.EnvironmentVarGuard() as env: env['HOME'] = '/' self.assertEqual(posixpath.expanduser("~"), "/") def test_normpath(self): self.assertEqual(posixpath.normpath(""), ".") self.assertEqual(posixpath.normpath("/"), "/") self.assertEqual(posixpath.normpath("//"), "//") self.assertEqual(posixpath.normpath("///"), "/") self.assertEqual(posixpath.normpath("///foo/.//bar//"), "/foo/bar") self.assertEqual(posixpath.normpath("///foo/.//bar//.//..//.//baz"), "/foo/baz") self.assertEqual(posixpath.normpath("///..//./foo/.//bar"), "/foo/bar") if hasattr(os, "symlink"): def test_realpath_basic(self): # Basic operation. try: os.symlink(ABSTFN+"1", ABSTFN) self.assertEqual(realpath(ABSTFN), ABSTFN+"1") finally: test_support.unlink(ABSTFN) def test_realpath_symlink_loops(self): # Bug #930024, return the path unchanged if we get into an infinite # symlink loop. try: old_path = abspath('.') os.symlink(ABSTFN, ABSTFN) self.assertEqual(realpath(ABSTFN), ABSTFN) os.symlink(ABSTFN+"1", ABSTFN+"2") os.symlink(ABSTFN+"2", ABSTFN+"1") self.assertEqual(realpath(ABSTFN+"1"), ABSTFN+"1") self.assertEqual(realpath(ABSTFN+"2"), ABSTFN+"2") # Test using relative path as well. os.chdir(dirname(ABSTFN)) self.assertEqual(realpath(basename(ABSTFN)), ABSTFN) finally: os.chdir(old_path) test_support.unlink(ABSTFN) test_support.unlink(ABSTFN+"1") test_support.unlink(ABSTFN+"2") def test_realpath_resolve_parents(self): # We also need to resolve any symlinks in the parents of a relative # path passed to realpath. E.g.: current working directory is # /usr/doc with 'doc' being a symlink to /usr/share/doc. We call # realpath("a"). This should return /usr/share/doc/a/. try: old_path = abspath('.') os.mkdir(ABSTFN) os.mkdir(ABSTFN + "/y") os.symlink(ABSTFN + "/y", ABSTFN + "/k") os.chdir(ABSTFN + "/k") self.assertEqual(realpath("a"), ABSTFN + "/y/a") finally: os.chdir(old_path) test_support.unlink(ABSTFN + "/k") safe_rmdir(ABSTFN + "/y") safe_rmdir(ABSTFN) def test_realpath_resolve_before_normalizing(self): # Bug #990669: Symbolic links should be resolved before we # normalize the path. E.g.: if we have directories 'a', 'k' and 'y' # in the following hierarchy: # a/k/y # # and a symbolic link 'link-y' pointing to 'y' in directory 'a', # then realpath("link-y/..") should return 'k', not 'a'. try: old_path = abspath('.') os.mkdir(ABSTFN) os.mkdir(ABSTFN + "/k") os.mkdir(ABSTFN + "/k/y") os.symlink(ABSTFN + "/k/y", ABSTFN + "/link-y") # Absolute path. self.assertEqual(realpath(ABSTFN + "/link-y/.."), ABSTFN + "/k") # Relative path. os.chdir(dirname(ABSTFN)) self.assertEqual(realpath(basename(ABSTFN) + "/link-y/.."), ABSTFN + "/k") finally: os.chdir(old_path) test_support.unlink(ABSTFN + "/link-y") safe_rmdir(ABSTFN + "/k/y") safe_rmdir(ABSTFN + "/k") safe_rmdir(ABSTFN) def test_realpath_resolve_first(self): # Bug #1213894: The first component of the path, if not absolute, # must be resolved too. try: old_path = abspath('.') os.mkdir(ABSTFN) os.mkdir(ABSTFN + "/k") os.symlink(ABSTFN, ABSTFN + "link") os.chdir(dirname(ABSTFN)) base = basename(ABSTFN) self.assertEqual(realpath(base + "link"), ABSTFN) self.assertEqual(realpath(base + "link/k"), ABSTFN + "/k") finally: os.chdir(old_path) test_support.unlink(ABSTFN + "link") safe_rmdir(ABSTFN + "/k") safe_rmdir(ABSTFN) def test_relpath(self): (real_getcwd, os.getcwd) = (os.getcwd, lambda: r"/home/user/bar") try: curdir = os.path.split(os.getcwd())[-1] self.assertRaises(ValueError, posixpath.relpath, "") self.assertEqual(posixpath.relpath("a"), "a") self.assertEqual(posixpath.relpath(posixpath.abspath("a")), "a") self.assertEqual(posixpath.relpath("a/b"), "a/b") self.assertEqual(posixpath.relpath("../a/b"), "../a/b") self.assertEqual(posixpath.relpath("a", "../b"), "../"+curdir+"/a") self.assertEqual(posixpath.relpath("a/b", "../c"), "../"+curdir+"/a/b") self.assertEqual(posixpath.relpath("a", "b/c"), "../../a") self.assertEqual(posixpath.relpath("a", "a"), ".") finally: os.getcwd = real_getcwd class PosixCommonTest(test_genericpath.CommonTest): pathmodule = posixpath attributes = ['relpath', 'samefile', 'sameopenfile', 'samestat'] def test_main(): test_support.run_unittest(PosixPathTest, PosixCommonTest) if __name__=="__main__": test_main()
# xml.etree test. This file contains enough tests to make sure that # all included components work as they should. # Large parts are extracted from the upstream test suite. # IMPORTANT: the same doctests are run from "test_xml_etree_c" in # order to ensure consistency between the C implementation and the # Python implementation. # # For this purpose, the module-level "ET" symbol is temporarily # monkey-patched when running the "test_xml_etree_c" test suite. # Don't re-import "xml.etree.ElementTree" module in the docstring, # except if the test is specific to the Python implementation. import sys import cgi from test import test_support from test.test_support import findfile from xml.etree import ElementTree as ET SIMPLE_XMLFILE = findfile("simple.xml", subdir="xmltestdata") SIMPLE_NS_XMLFILE = findfile("simple-ns.xml", subdir="xmltestdata") SAMPLE_XML = """\ <body> <tag class='a'>text</tag> <tag class='b' /> <section> <tag class='b' id='inner'>subtext</tag> </section> </body> """ SAMPLE_SECTION = """\ <section> <tag class='b' id='inner'>subtext</tag> <nexttag /> <nextsection> <tag /> </nextsection> </section> """ SAMPLE_XML_NS = """ <body xmlns="http://effbot.org/ns"> <tag>text</tag> <tag /> <section> <tag>subtext</tag> </section> </body> """ def sanity(): """ Import sanity. >>> from xml.etree import ElementTree >>> from xml.etree import ElementInclude >>> from xml.etree import ElementPath """ def check_method(method): if not hasattr(method, '__call__'): print method, "not callable" def serialize(elem, to_string=True, **options): import StringIO file = StringIO.StringIO() tree = ET.ElementTree(elem) tree.write(file, **options) if to_string: return file.getvalue() else: file.seek(0) return file def summarize(elem): if elem.tag == ET.Comment: return "<Comment>" return elem.tag def summarize_list(seq): return [summarize(elem) for elem in seq] def normalize_crlf(tree): for elem in tree.iter(): if elem.text: elem.text = elem.text.replace("\r\n", "\n") if elem.tail: elem.tail = elem.tail.replace("\r\n", "\n") def check_string(string): len(string) for char in string: if len(char) != 1: print "expected one-character string, got %r" % char new_string = string + "" new_string = string + " " string[:0] def check_mapping(mapping): len(mapping) keys = mapping.keys() items = mapping.items() for key in keys: item = mapping[key] mapping["key"] = "value" if mapping["key"] != "value": print "expected value string, got %r" % mapping["key"] def check_element(element): if not ET.iselement(element): print "not an element" if not hasattr(element, "tag"): print "no tag member" if not hasattr(element, "attrib"): print "no attrib member" if not hasattr(element, "text"): print "no text member" if not hasattr(element, "tail"): print "no tail member" check_string(element.tag) check_mapping(element.attrib) if element.text is not None: check_string(element.text) if element.tail is not None: check_string(element.tail) for elem in element: check_element(elem) # -------------------------------------------------------------------- # element tree tests def interface(): r""" Test element tree interface. >>> element = ET.Element("tag") >>> check_element(element) >>> tree = ET.ElementTree(element) >>> check_element(tree.getroot()) >>> element = ET.Element("t\xe4g", key="value") >>> tree = ET.ElementTree(element) >>> repr(element) # doctest: +ELLIPSIS "<Element 't\\xe4g' at 0x...>" >>> element = ET.Element("tag", key="value") Make sure all standard element methods exist. >>> check_method(element.append) >>> check_method(element.extend) >>> check_method(element.insert) >>> check_method(element.remove) >>> check_method(element.getchildren) >>> check_method(element.find) >>> check_method(element.iterfind) >>> check_method(element.findall) >>> check_method(element.findtext) >>> check_method(element.clear) >>> check_method(element.get) >>> check_method(element.set) >>> check_method(element.keys) >>> check_method(element.items) >>> check_method(element.iter) >>> check_method(element.itertext) >>> check_method(element.getiterator) These methods return an iterable. See bug 6472. >>> check_method(element.iter("tag").next) >>> check_method(element.iterfind("tag").next) >>> check_method(element.iterfind("*").next) >>> check_method(tree.iter("tag").next) >>> check_method(tree.iterfind("tag").next) >>> check_method(tree.iterfind("*").next) These aliases are provided: >>> assert ET.XML == ET.fromstring >>> assert ET.PI == ET.ProcessingInstruction >>> assert ET.XMLParser == ET.XMLTreeBuilder """ def simpleops(): """ Basic method sanity checks. >>> elem = ET.XML("<body><tag/></body>") >>> serialize(elem) '<body><tag /></body>' >>> e = ET.Element("tag2") >>> elem.append(e) >>> serialize(elem) '<body><tag /><tag2 /></body>' >>> elem.remove(e) >>> serialize(elem) '<body><tag /></body>' >>> elem.insert(0, e) >>> serialize(elem) '<body><tag2 /><tag /></body>' >>> elem.remove(e) >>> elem.extend([e]) >>> serialize(elem) '<body><tag /><tag2 /></body>' >>> elem.remove(e) >>> element = ET.Element("tag", key="value") >>> serialize(element) # 1 '<tag key="value" />' >>> subelement = ET.Element("subtag") >>> element.append(subelement) >>> serialize(element) # 2 '<tag key="value"><subtag /></tag>' >>> element.insert(0, subelement) >>> serialize(element) # 3 '<tag key="value"><subtag /><subtag /></tag>' >>> element.remove(subelement) >>> serialize(element) # 4 '<tag key="value"><subtag /></tag>' >>> element.remove(subelement) >>> serialize(element) # 5 '<tag key="value" />' >>> element.remove(subelement) Traceback (most recent call last): ValueError: list.remove(x): x not in list >>> serialize(element) # 6 '<tag key="value" />' >>> element[0:0] = [subelement, subelement, subelement] >>> serialize(element[1]) '<subtag />' >>> element[1:9] == [element[1], element[2]] True >>> element[:9:2] == [element[0], element[2]] True >>> del element[1:2] >>> serialize(element) '<tag key="value"><subtag /><subtag /></tag>' """ def cdata(): """ Test CDATA handling (etc). >>> serialize(ET.XML("<tag>hello</tag>")) '<tag>hello</tag>' >>> serialize(ET.XML("<tag>&#104;&#101;&#108;&#108;&#111;</tag>")) '<tag>hello</tag>' >>> serialize(ET.XML("<tag><![CDATA[hello]]></tag>")) '<tag>hello</tag>' """ # Only with Python implementation def simplefind(): """ Test find methods using the elementpath fallback. >>> from xml.etree import ElementTree >>> CurrentElementPath = ElementTree.ElementPath >>> ElementTree.ElementPath = ElementTree._SimpleElementPath() >>> elem = ElementTree.XML(SAMPLE_XML) >>> elem.find("tag").tag 'tag' >>> ElementTree.ElementTree(elem).find("tag").tag 'tag' >>> elem.findtext("tag") 'text' >>> elem.findtext("tog") >>> elem.findtext("tog", "default") 'default' >>> ElementTree.ElementTree(elem).findtext("tag") 'text' >>> summarize_list(elem.findall("tag")) ['tag', 'tag'] >>> summarize_list(elem.findall(".//tag")) ['tag', 'tag', 'tag'] Path syntax doesn't work in this case. >>> elem.find("section/tag") >>> elem.findtext("section/tag") >>> summarize_list(elem.findall("section/tag")) [] >>> ElementTree.ElementPath = CurrentElementPath """ def find(): """ Test find methods (including xpath syntax). >>> elem = ET.XML(SAMPLE_XML) >>> elem.find("tag").tag 'tag' >>> ET.ElementTree(elem).find("tag").tag 'tag' >>> elem.find("section/tag").tag 'tag' >>> elem.find("./tag").tag 'tag' >>> ET.ElementTree(elem).find("./tag").tag 'tag' >>> ET.ElementTree(elem).find("/tag").tag 'tag' >>> elem[2] = ET.XML(SAMPLE_SECTION) >>> elem.find("section/nexttag").tag 'nexttag' >>> ET.ElementTree(elem).find("section/tag").tag 'tag' >>> ET.ElementTree(elem).find("tog") >>> ET.ElementTree(elem).find("tog/foo") >>> elem.findtext("tag") 'text' >>> elem.findtext("section/nexttag") '' >>> elem.findtext("section/nexttag", "default") '' >>> elem.findtext("tog") >>> elem.findtext("tog", "default") 'default' >>> ET.ElementTree(elem).findtext("tag") 'text' >>> ET.ElementTree(elem).findtext("tog/foo") >>> ET.ElementTree(elem).findtext("tog/foo", "default") 'default' >>> ET.ElementTree(elem).findtext("./tag") 'text' >>> ET.ElementTree(elem).findtext("/tag") 'text' >>> elem.findtext("section/tag") 'subtext' >>> ET.ElementTree(elem).findtext("section/tag") 'subtext' >>> summarize_list(elem.findall(".")) ['body'] >>> summarize_list(elem.findall("tag")) ['tag', 'tag'] >>> summarize_list(elem.findall("tog")) [] >>> summarize_list(elem.findall("tog/foo")) [] >>> summarize_list(elem.findall("*")) ['tag', 'tag', 'section'] >>> summarize_list(elem.findall(".//tag")) ['tag', 'tag', 'tag', 'tag'] >>> summarize_list(elem.findall("section/tag")) ['tag'] >>> summarize_list(elem.findall("section//tag")) ['tag', 'tag'] >>> summarize_list(elem.findall("section/*")) ['tag', 'nexttag', 'nextsection'] >>> summarize_list(elem.findall("section//*")) ['tag', 'nexttag', 'nextsection', 'tag'] >>> summarize_list(elem.findall("section/.//*")) ['tag', 'nexttag', 'nextsection', 'tag'] >>> summarize_list(elem.findall("*/*")) ['tag', 'nexttag', 'nextsection'] >>> summarize_list(elem.findall("*//*")) ['tag', 'nexttag', 'nextsection', 'tag'] >>> summarize_list(elem.findall("*/tag")) ['tag'] >>> summarize_list(elem.findall("*/./tag")) ['tag'] >>> summarize_list(elem.findall("./tag")) ['tag', 'tag'] >>> summarize_list(elem.findall(".//tag")) ['tag', 'tag', 'tag', 'tag'] >>> summarize_list(elem.findall("././tag")) ['tag', 'tag'] >>> summarize_list(elem.findall(".//tag[@class]")) ['tag', 'tag', 'tag'] >>> summarize_list(elem.findall(".//tag[@class='a']")) ['tag'] >>> summarize_list(elem.findall(".//tag[@class='b']")) ['tag', 'tag'] >>> summarize_list(elem.findall(".//tag[@id]")) ['tag'] >>> summarize_list(elem.findall(".//section[tag]")) ['section'] >>> summarize_list(elem.findall(".//section[element]")) [] >>> summarize_list(elem.findall("../tag")) [] >>> summarize_list(elem.findall("section/../tag")) ['tag', 'tag'] >>> summarize_list(ET.ElementTree(elem).findall("./tag")) ['tag', 'tag'] Following example is invalid in 1.2. A leading '*' is assumed in 1.3. >>> elem.findall("section//") == elem.findall("section//*") True ET's Path module handles this case incorrectly; this gives a warning in 1.3, and the behaviour will be modified in 1.4. >>> summarize_list(ET.ElementTree(elem).findall("/tag")) ['tag', 'tag'] >>> elem = ET.XML(SAMPLE_XML_NS) >>> summarize_list(elem.findall("tag")) [] >>> summarize_list(elem.findall("{http://effbot.org/ns}tag")) ['{http://effbot.org/ns}tag', '{http://effbot.org/ns}tag'] >>> summarize_list(elem.findall(".//{http://effbot.org/ns}tag")) ['{http://effbot.org/ns}tag', '{http://effbot.org/ns}tag', '{http://effbot.org/ns}tag'] """ def file_init(): """ >>> import StringIO >>> stringfile = StringIO.StringIO(SAMPLE_XML) >>> tree = ET.ElementTree(file=stringfile) >>> tree.find("tag").tag 'tag' >>> tree.find("section/tag").tag 'tag' >>> tree = ET.ElementTree(file=SIMPLE_XMLFILE) >>> tree.find("element").tag 'element' >>> tree.find("element/../empty-element").tag 'empty-element' """ def bad_find(): """ Check bad or unsupported path expressions. >>> elem = ET.XML(SAMPLE_XML) >>> elem.findall("/tag") Traceback (most recent call last): SyntaxError: cannot use absolute path on element """ def path_cache(): """ Check that the path cache behaves sanely. >>> elem = ET.XML(SAMPLE_XML) >>> for i in range(10): ET.ElementTree(elem).find('./'+str(i)) >>> cache_len_10 = len(ET.ElementPath._cache) >>> for i in range(10): ET.ElementTree(elem).find('./'+str(i)) >>> len(ET.ElementPath._cache) == cache_len_10 True >>> for i in range(20): ET.ElementTree(elem).find('./'+str(i)) >>> len(ET.ElementPath._cache) > cache_len_10 True >>> for i in range(600): ET.ElementTree(elem).find('./'+str(i)) >>> len(ET.ElementPath._cache) < 500 True """ def copy(): """ Test copy handling (etc). >>> import copy >>> e1 = ET.XML("<tag>hello<foo/></tag>") >>> e2 = copy.copy(e1) >>> e3 = copy.deepcopy(e1) >>> e1.find("foo").tag = "bar" >>> serialize(e1) '<tag>hello<bar /></tag>' >>> serialize(e2) '<tag>hello<bar /></tag>' >>> serialize(e3) '<tag>hello<foo /></tag>' """ def attrib(): """ Test attribute handling. >>> elem = ET.Element("tag") >>> elem.get("key") # 1.1 >>> elem.get("key", "default") # 1.2 'default' >>> elem.set("key", "value") >>> elem.get("key") # 1.3 'value' >>> elem = ET.Element("tag", key="value") >>> elem.get("key") # 2.1 'value' >>> elem.attrib # 2.2 {'key': 'value'} >>> attrib = {"key": "value"} >>> elem = ET.Element("tag", attrib) >>> attrib.clear() # check for aliasing issues >>> elem.get("key") # 3.1 'value' >>> elem.attrib # 3.2 {'key': 'value'} >>> attrib = {"key": "value"} >>> elem = ET.Element("tag", **attrib) >>> attrib.clear() # check for aliasing issues >>> elem.get("key") # 4.1 'value' >>> elem.attrib # 4.2 {'key': 'value'} >>> elem = ET.Element("tag", {"key": "other"}, key="value") >>> elem.get("key") # 5.1 'value' >>> elem.attrib # 5.2 {'key': 'value'} >>> elem = ET.Element('test') >>> elem.text = "aa" >>> elem.set('testa', 'testval') >>> elem.set('testb', 'test2') >>> ET.tostring(elem) '<test testa="testval" testb="test2">aa</test>' >>> sorted(elem.keys()) ['testa', 'testb'] >>> sorted(elem.items()) [('testa', 'testval'), ('testb', 'test2')] >>> elem.attrib['testb'] 'test2' >>> elem.attrib['testb'] = 'test1' >>> elem.attrib['testc'] = 'test2' >>> ET.tostring(elem) '<test testa="testval" testb="test1" testc="test2">aa</test>' """ def makeelement(): """ Test makeelement handling. >>> elem = ET.Element("tag") >>> attrib = {"key": "value"} >>> subelem = elem.makeelement("subtag", attrib) >>> if subelem.attrib is attrib: ... print "attrib aliasing" >>> elem.append(subelem) >>> serialize(elem) '<tag><subtag key="value" /></tag>' >>> elem.clear() >>> serialize(elem) '<tag />' >>> elem.append(subelem) >>> serialize(elem) '<tag><subtag key="value" /></tag>' >>> elem.extend([subelem, subelem]) >>> serialize(elem) '<tag><subtag key="value" /><subtag key="value" /><subtag key="value" /></tag>' >>> elem[:] = [subelem] >>> serialize(elem) '<tag><subtag key="value" /></tag>' >>> elem[:] = tuple([subelem]) >>> serialize(elem) '<tag><subtag key="value" /></tag>' """ def parsefile(): """ Test parsing from file. >>> tree = ET.parse(SIMPLE_XMLFILE) >>> normalize_crlf(tree) >>> tree.write(sys.stdout) <root> <element key="value">text</element> <element>text</element>tail <empty-element /> </root> >>> tree = ET.parse(SIMPLE_NS_XMLFILE) >>> normalize_crlf(tree) >>> tree.write(sys.stdout) <ns0:root xmlns:ns0="namespace"> <ns0:element key="value">text</ns0:element> <ns0:element>text</ns0:element>tail <ns0:empty-element /> </ns0:root> >>> with open(SIMPLE_XMLFILE) as f: ... data = f.read() >>> parser = ET.XMLParser() >>> parser.version # doctest: +ELLIPSIS 'Expat ...' >>> parser.feed(data) >>> print serialize(parser.close()) <root> <element key="value">text</element> <element>text</element>tail <empty-element /> </root> >>> parser = ET.XMLTreeBuilder() # 1.2 compatibility >>> parser.feed(data) >>> print serialize(parser.close()) <root> <element key="value">text</element> <element>text</element>tail <empty-element /> </root> >>> target = ET.TreeBuilder() >>> parser = ET.XMLParser(target=target) >>> parser.feed(data) >>> print serialize(parser.close()) <root> <element key="value">text</element> <element>text</element>tail <empty-element /> </root> """ def parseliteral(): """ >>> element = ET.XML("<html><body>text</body></html>") >>> ET.ElementTree(element).write(sys.stdout) <html><body>text</body></html> >>> element = ET.fromstring("<html><body>text</body></html>") >>> ET.ElementTree(element).write(sys.stdout) <html><body>text</body></html> >>> sequence = ["<html><body>", "text</bo", "dy></html>"] >>> element = ET.fromstringlist(sequence) >>> print ET.tostring(element) <html><body>text</body></html> >>> print "".join(ET.tostringlist(element)) <html><body>text</body></html> >>> ET.tostring(element, "ascii") "<?xml version='1.0' encoding='ascii'?>\\n<html><body>text</body></html>" >>> _, ids = ET.XMLID("<html><body>text</body></html>") >>> len(ids) 0 >>> _, ids = ET.XMLID("<html><body id='body'>text</body></html>") >>> len(ids) 1 >>> ids["body"].tag 'body' """ def iterparse(): """ Test iterparse interface. >>> iterparse = ET.iterparse >>> context = iterparse(SIMPLE_XMLFILE) >>> action, elem = next(context) >>> print action, elem.tag end element >>> for action, elem in context: ... print action, elem.tag end element end empty-element end root >>> context.root.tag 'root' >>> context = iterparse(SIMPLE_NS_XMLFILE) >>> for action, elem in context: ... print action, elem.tag end {namespace}element end {namespace}element end {namespace}empty-element end {namespace}root >>> events = () >>> context = iterparse(SIMPLE_XMLFILE, events) >>> for action, elem in context: ... print action, elem.tag >>> events = () >>> context = iterparse(SIMPLE_XMLFILE, events=events) >>> for action, elem in context: ... print action, elem.tag >>> events = ("start", "end") >>> context = iterparse(SIMPLE_XMLFILE, events) >>> for action, elem in context: ... print action, elem.tag start root start element end element start element end element start empty-element end empty-element end root >>> events = ("start", "end", "start-ns", "end-ns") >>> context = iterparse(SIMPLE_NS_XMLFILE, events) >>> for action, elem in context: ... if action in ("start", "end"): ... print action, elem.tag ... else: ... print action, elem start-ns ('', 'namespace') start {namespace}root start {namespace}element end {namespace}element start {namespace}element end {namespace}element start {namespace}empty-element end {namespace}empty-element end {namespace}root end-ns None >>> import StringIO >>> events = ('start-ns', 'end-ns') >>> context = ET.iterparse(StringIO.StringIO(r"<root xmlns=''/>"), events) >>> for action, elem in context: ... print action, elem start-ns ('', '') end-ns None >>> events = ("start", "end", "bogus") >>> with open(SIMPLE_XMLFILE, "rb") as f: ... iterparse(f, events) Traceback (most recent call last): ValueError: unknown event 'bogus' >>> source = StringIO.StringIO( ... "<?xml version='1.0' encoding='iso-8859-1'?>\\n" ... "<body xmlns='http://&#233;ffbot.org/ns'\\n" ... " xmlns:cl\\xe9='http://effbot.org/ns'>text</body>\\n") >>> events = ("start-ns",) >>> context = iterparse(source, events) >>> for action, elem in context: ... print action, elem start-ns ('', u'http://\\xe9ffbot.org/ns') start-ns (u'cl\\xe9', 'http://effbot.org/ns') >>> source = StringIO.StringIO("<document />junk") >>> try: ... for action, elem in iterparse(source): ... print action, elem.tag ... except ET.ParseError, v: ... print v end document junk after document element: line 1, column 12 """ def writefile(): """ >>> elem = ET.Element("tag") >>> elem.text = "text" >>> serialize(elem) '<tag>text</tag>' >>> ET.SubElement(elem, "subtag").text = "subtext" >>> serialize(elem) '<tag>text<subtag>subtext</subtag></tag>' Test tag suppression >>> elem.tag = None >>> serialize(elem) 'text<subtag>subtext</subtag>' >>> elem.insert(0, ET.Comment("comment")) >>> serialize(elem) # assumes 1.3 'text<!--comment--><subtag>subtext</subtag>' >>> elem[0] = ET.PI("key", "value") >>> serialize(elem) 'text<?key value?><subtag>subtext</subtag>' """ def custom_builder(): """ Test parser w. custom builder. >>> with open(SIMPLE_XMLFILE) as f: ... data = f.read() >>> class Builder: ... def start(self, tag, attrib): ... print "start", tag ... def end(self, tag): ... print "end", tag ... def data(self, text): ... pass >>> builder = Builder() >>> parser = ET.XMLParser(target=builder) >>> parser.feed(data) start root start element end element start element end element start empty-element end empty-element end root >>> with open(SIMPLE_NS_XMLFILE) as f: ... data = f.read() >>> class Builder: ... def start(self, tag, attrib): ... print "start", tag ... def end(self, tag): ... print "end", tag ... def data(self, text): ... pass ... def pi(self, target, data): ... print "pi", target, repr(data) ... def comment(self, data): ... print "comment", repr(data) >>> builder = Builder() >>> parser = ET.XMLParser(target=builder) >>> parser.feed(data) pi pi 'data' comment ' comment ' start {namespace}root start {namespace}element end {namespace}element start {namespace}element end {namespace}element start {namespace}empty-element end {namespace}empty-element end {namespace}root """ def getchildren(): """ Test Element.getchildren() >>> with open(SIMPLE_XMLFILE, "r") as f: ... tree = ET.parse(f) >>> for elem in tree.getroot().iter(): ... summarize_list(elem.getchildren()) ['element', 'element', 'empty-element'] [] [] [] >>> for elem in tree.getiterator(): ... summarize_list(elem.getchildren()) ['element', 'element', 'empty-element'] [] [] [] >>> elem = ET.XML(SAMPLE_XML) >>> len(elem.getchildren()) 3 >>> len(elem[2].getchildren()) 1 >>> elem[:] == elem.getchildren() True >>> child1 = elem[0] >>> child2 = elem[2] >>> del elem[1:2] >>> len(elem.getchildren()) 2 >>> child1 == elem[0] True >>> child2 == elem[1] True >>> elem[0:2] = [child2, child1] >>> child2 == elem[0] True >>> child1 == elem[1] True >>> child1 == elem[0] False >>> elem.clear() >>> elem.getchildren() [] """ def writestring(): """ >>> elem = ET.XML("<html><body>text</body></html>") >>> ET.tostring(elem) '<html><body>text</body></html>' >>> elem = ET.fromstring("<html><body>text</body></html>") >>> ET.tostring(elem) '<html><body>text</body></html>' """ def check_encoding(encoding): """ >>> check_encoding("ascii") >>> check_encoding("us-ascii") >>> check_encoding("iso-8859-1") >>> check_encoding("iso-8859-15") >>> check_encoding("cp437") >>> check_encoding("mac-roman") >>> check_encoding("gbk") Traceback (most recent call last): ValueError: multi-byte encodings are not supported >>> check_encoding("cp037") Traceback (most recent call last): ParseError: unknown encoding: line 1, column 30 """ ET.XML("<?xml version='1.0' encoding='%s'?><xml />" % encoding) def encoding(): r""" Test encoding issues. >>> elem = ET.Element("tag") >>> elem.text = u"abc" >>> serialize(elem) '<tag>abc</tag>' >>> serialize(elem, encoding="utf-8") '<tag>abc</tag>' >>> serialize(elem, encoding="us-ascii") '<tag>abc</tag>' >>> serialize(elem, encoding="iso-8859-1") "<?xml version='1.0' encoding='iso-8859-1'?>\n<tag>abc</tag>" >>> elem.text = "<&\"\'>" >>> serialize(elem) '<tag>&lt;&amp;"\'&gt;</tag>' >>> serialize(elem, encoding="utf-8") '<tag>&lt;&amp;"\'&gt;</tag>' >>> serialize(elem, encoding="us-ascii") # cdata characters '<tag>&lt;&amp;"\'&gt;</tag>' >>> serialize(elem, encoding="iso-8859-1") '<?xml version=\'1.0\' encoding=\'iso-8859-1\'?>\n<tag>&lt;&amp;"\'&gt;</tag>' >>> elem.attrib["key"] = "<&\"\'>" >>> elem.text = None >>> serialize(elem) '<tag key="&lt;&amp;&quot;\'&gt;" />' >>> serialize(elem, encoding="utf-8") '<tag key="&lt;&amp;&quot;\'&gt;" />' >>> serialize(elem, encoding="us-ascii") '<tag key="&lt;&amp;&quot;\'&gt;" />' >>> serialize(elem, encoding="iso-8859-1") '<?xml version=\'1.0\' encoding=\'iso-8859-1\'?>\n<tag key="&lt;&amp;&quot;\'&gt;" />' >>> elem.text = u'\xe5\xf6\xf6<>' >>> elem.attrib.clear() >>> serialize(elem) '<tag>&#229;&#246;&#246;&lt;&gt;</tag>' >>> serialize(elem, encoding="utf-8") '<tag>\xc3\xa5\xc3\xb6\xc3\xb6&lt;&gt;</tag>' >>> serialize(elem, encoding="us-ascii") '<tag>&#229;&#246;&#246;&lt;&gt;</tag>' >>> serialize(elem, encoding="iso-8859-1") "<?xml version='1.0' encoding='iso-8859-1'?>\n<tag>\xe5\xf6\xf6&lt;&gt;</tag>" >>> elem.attrib["key"] = u'\xe5\xf6\xf6<>' >>> elem.text = None >>> serialize(elem) '<tag key="&#229;&#246;&#246;&lt;&gt;" />' >>> serialize(elem, encoding="utf-8") '<tag key="\xc3\xa5\xc3\xb6\xc3\xb6&lt;&gt;" />' >>> serialize(elem, encoding="us-ascii") '<tag key="&#229;&#246;&#246;&lt;&gt;" />' >>> serialize(elem, encoding="iso-8859-1") '<?xml version=\'1.0\' encoding=\'iso-8859-1\'?>\n<tag key="\xe5\xf6\xf6&lt;&gt;" />' """ def methods(): r""" Test serialization methods. >>> e = ET.XML("<html><link/><script>1 &lt; 2</script></html>") >>> e.tail = "\n" >>> serialize(e) '<html><link /><script>1 &lt; 2</script></html>\n' >>> serialize(e, method=None) '<html><link /><script>1 &lt; 2</script></html>\n' >>> serialize(e, method="xml") '<html><link /><script>1 &lt; 2</script></html>\n' >>> serialize(e, method="html") '<html><link><script>1 < 2</script></html>\n' >>> serialize(e, method="text") '1 < 2\n' """ def iterators(): """ Test iterators. >>> e = ET.XML("<html><body>this is a <i>paragraph</i>.</body>..</html>") >>> summarize_list(e.iter()) ['html', 'body', 'i'] >>> summarize_list(e.find("body").iter()) ['body', 'i'] >>> summarize(next(e.iter())) 'html' >>> "".join(e.itertext()) 'this is a paragraph...' >>> "".join(e.find("body").itertext()) 'this is a paragraph.' >>> next(e.itertext()) 'this is a ' Method iterparse should return an iterator. See bug 6472. >>> sourcefile = serialize(e, to_string=False) >>> next(ET.iterparse(sourcefile)) # doctest: +ELLIPSIS ('end', <Element 'i' at 0x...>) >>> tree = ET.ElementTree(None) >>> tree.iter() Traceback (most recent call last): AttributeError: 'NoneType' object has no attribute 'iter' """ ENTITY_XML = """\ <!DOCTYPE points [ <!ENTITY % user-entities SYSTEM 'user-entities.xml'> %user-entities; ]> <document>&entity;</document> """ def entity(): """ Test entity handling. 1) good entities >>> e = ET.XML("<document title='&#x8230;'>test</document>") >>> serialize(e) '<document title="&#33328;">test</document>' 2) bad entities >>> ET.XML("<document>&entity;</document>") Traceback (most recent call last): ParseError: undefined entity: line 1, column 10 >>> ET.XML(ENTITY_XML) Traceback (most recent call last): ParseError: undefined entity &entity;: line 5, column 10 3) custom entity >>> parser = ET.XMLParser() >>> parser.entity["entity"] = "text" >>> parser.feed(ENTITY_XML) >>> root = parser.close() >>> serialize(root) '<document>text</document>' """ def error(xml): """ Test error handling. >>> issubclass(ET.ParseError, SyntaxError) True >>> error("foo").position (1, 0) >>> error("<tag>&foo;</tag>").position (1, 5) >>> error("foobar<").position (1, 6) """ try: ET.XML(xml) except ET.ParseError: return sys.exc_value def namespace(): """ Test namespace issues. 1) xml namespace >>> elem = ET.XML("<tag xml:lang='en' />") >>> serialize(elem) # 1.1 '<tag xml:lang="en" />' 2) other "well-known" namespaces >>> elem = ET.XML("<rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#' />") >>> serialize(elem) # 2.1 '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" />' >>> elem = ET.XML("<html:html xmlns:html='http://www.w3.org/1999/xhtml' />") >>> serialize(elem) # 2.2 '<html:html xmlns:html="http://www.w3.org/1999/xhtml" />' >>> elem = ET.XML("<soap:Envelope xmlns:soap='http://schemas.xmlsoap.org/soap/envelope' />") >>> serialize(elem) # 2.3 '<ns0:Envelope xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope" />' 3) unknown namespaces >>> elem = ET.XML(SAMPLE_XML_NS) >>> print serialize(elem) <ns0:body xmlns:ns0="http://effbot.org/ns"> <ns0:tag>text</ns0:tag> <ns0:tag /> <ns0:section> <ns0:tag>subtext</ns0:tag> </ns0:section> </ns0:body> """ def qname(): """ Test QName handling. 1) decorated tags >>> elem = ET.Element("{uri}tag") >>> serialize(elem) # 1.1 '<ns0:tag xmlns:ns0="uri" />' >>> elem = ET.Element(ET.QName("{uri}tag")) >>> serialize(elem) # 1.2 '<ns0:tag xmlns:ns0="uri" />' >>> elem = ET.Element(ET.QName("uri", "tag")) >>> serialize(elem) # 1.3 '<ns0:tag xmlns:ns0="uri" />' >>> elem = ET.Element(ET.QName("uri", "tag")) >>> subelem = ET.SubElement(elem, ET.QName("uri", "tag1")) >>> subelem = ET.SubElement(elem, ET.QName("uri", "tag2")) >>> serialize(elem) # 1.4 '<ns0:tag xmlns:ns0="uri"><ns0:tag1 /><ns0:tag2 /></ns0:tag>' 2) decorated attributes >>> elem.clear() >>> elem.attrib["{uri}key"] = "value" >>> serialize(elem) # 2.1 '<ns0:tag xmlns:ns0="uri" ns0:key="value" />' >>> elem.clear() >>> elem.attrib[ET.QName("{uri}key")] = "value" >>> serialize(elem) # 2.2 '<ns0:tag xmlns:ns0="uri" ns0:key="value" />' 3) decorated values are not converted by default, but the QName wrapper can be used for values >>> elem.clear() >>> elem.attrib["{uri}key"] = "{uri}value" >>> serialize(elem) # 3.1 '<ns0:tag xmlns:ns0="uri" ns0:key="{uri}value" />' >>> elem.clear() >>> elem.attrib["{uri}key"] = ET.QName("{uri}value") >>> serialize(elem) # 3.2 '<ns0:tag xmlns:ns0="uri" ns0:key="ns0:value" />' >>> elem.clear() >>> subelem = ET.Element("tag") >>> subelem.attrib["{uri1}key"] = ET.QName("{uri2}value") >>> elem.append(subelem) >>> elem.append(subelem) >>> serialize(elem) # 3.3 '<ns0:tag xmlns:ns0="uri" xmlns:ns1="uri1" xmlns:ns2="uri2"><tag ns1:key="ns2:value" /><tag ns1:key="ns2:value" /></ns0:tag>' 4) Direct QName tests >>> str(ET.QName('ns', 'tag')) '{ns}tag' >>> str(ET.QName('{ns}tag')) '{ns}tag' >>> q1 = ET.QName('ns', 'tag') >>> q2 = ET.QName('ns', 'tag') >>> q1 == q2 True >>> q2 = ET.QName('ns', 'other-tag') >>> q1 == q2 False >>> q1 == 'ns:tag' False >>> q1 == '{ns}tag' True """ def doctype_public(): """ Test PUBLIC doctype. >>> elem = ET.XML('<!DOCTYPE html PUBLIC' ... ' "-//W3C//DTD XHTML 1.0 Transitional//EN"' ... ' "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">' ... '<html>text</html>') """ def xpath_tokenizer(p): """ Test the XPath tokenizer. >>> # tests from the xml specification >>> xpath_tokenizer("*") ['*'] >>> xpath_tokenizer("text()") ['text', '()'] >>> xpath_tokenizer("@name") ['@', 'name'] >>> xpath_tokenizer("@*") ['@', '*'] >>> xpath_tokenizer("para[1]") ['para', '[', '1', ']'] >>> xpath_tokenizer("para[last()]") ['para', '[', 'last', '()', ']'] >>> xpath_tokenizer("*/para") ['*', '/', 'para'] >>> xpath_tokenizer("/doc/chapter[5]/section[2]") ['/', 'doc', '/', 'chapter', '[', '5', ']', '/', 'section', '[', '2', ']'] >>> xpath_tokenizer("chapter//para") ['chapter', '//', 'para'] >>> xpath_tokenizer("//para") ['//', 'para'] >>> xpath_tokenizer("//olist/item") ['//', 'olist', '/', 'item'] >>> xpath_tokenizer(".") ['.'] >>> xpath_tokenizer(".//para") ['.', '//', 'para'] >>> xpath_tokenizer("..") ['..'] >>> xpath_tokenizer("../@lang") ['..', '/', '@', 'lang'] >>> xpath_tokenizer("chapter[title]") ['chapter', '[', 'title', ']'] >>> xpath_tokenizer("employee[@secretary and @assistant]") ['employee', '[', '@', 'secretary', '', 'and', '', '@', 'assistant', ']'] >>> # additional tests >>> xpath_tokenizer("{http://spam}egg") ['{http://spam}egg'] >>> xpath_tokenizer("./spam.egg") ['.', '/', 'spam.egg'] >>> xpath_tokenizer(".//{http://spam}egg") ['.', '//', '{http://spam}egg'] """ from xml.etree import ElementPath out = [] for op, tag in ElementPath.xpath_tokenizer(p): out.append(op or tag) return out def processinginstruction(): """ Test ProcessingInstruction directly >>> ET.tostring(ET.ProcessingInstruction('test', 'instruction')) '<?test instruction?>' >>> ET.tostring(ET.PI('test', 'instruction')) '<?test instruction?>' Issue #2746 >>> ET.tostring(ET.PI('test', '<testing&>')) '<?test <testing&>?>' >>> ET.tostring(ET.PI('test', u'<testing&>\xe3'), 'latin1') "<?xml version='1.0' encoding='latin1'?>\\n<?test <testing&>\\xe3?>" """ # # xinclude tests (samples from appendix C of the xinclude specification) XINCLUDE = {} XINCLUDE["C1.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>120 Mz is adequate for an average home user.</p> <xi:include href="disclaimer.xml"/> </document> """ XINCLUDE["disclaimer.xml"] = """\ <?xml version='1.0'?> <disclaimer> <p>The opinions represented herein represent those of the individual and should not be interpreted as official policy endorsed by this organization.</p> </disclaimer> """ XINCLUDE["C2.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>This document has been accessed <xi:include href="count.txt" parse="text"/> times.</p> </document> """ XINCLUDE["count.txt"] = "324387" XINCLUDE["C2b.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>This document has been <em>accessed</em> <xi:include href="count.txt" parse="text"/> times.</p> </document> """ XINCLUDE["C3.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>The following is the source of the "data.xml" resource:</p> <example><xi:include href="data.xml" parse="text"/></example> </document> """ XINCLUDE["data.xml"] = """\ <?xml version='1.0'?> <data> <item><![CDATA[Brooks & Shields]]></item> </data> """ XINCLUDE["C5.xml"] = """\ <?xml version='1.0'?> <div xmlns:xi="http://www.w3.org/2001/XInclude"> <xi:include href="example.txt" parse="text"> <xi:fallback> <xi:include href="fallback-example.txt" parse="text"> <xi:fallback><a href="mailto:bob@example.org">Report error</a></xi:fallback> </xi:include> </xi:fallback> </xi:include> </div> """ XINCLUDE["default.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>Example.</p> <xi:include href="{}"/> </document> """.format(cgi.escape(SIMPLE_XMLFILE, True)) def xinclude_loader(href, parse="xml", encoding=None): try: data = XINCLUDE[href] except KeyError: raise IOError("resource not found") if parse == "xml": from xml.etree.ElementTree import XML return XML(data) return data def xinclude(): r""" Basic inclusion example (XInclude C.1) >>> from xml.etree import ElementTree as ET >>> from xml.etree import ElementInclude >>> document = xinclude_loader("C1.xml") >>> ElementInclude.include(document, xinclude_loader) >>> print serialize(document) # C1 <document> <p>120 Mz is adequate for an average home user.</p> <disclaimer> <p>The opinions represented herein represent those of the individual and should not be interpreted as official policy endorsed by this organization.</p> </disclaimer> </document> Textual inclusion example (XInclude C.2) >>> document = xinclude_loader("C2.xml") >>> ElementInclude.include(document, xinclude_loader) >>> print serialize(document) # C2 <document> <p>This document has been accessed 324387 times.</p> </document> Textual inclusion after sibling element (based on modified XInclude C.2) >>> document = xinclude_loader("C2b.xml") >>> ElementInclude.include(document, xinclude_loader) >>> print(serialize(document)) # C2b <document> <p>This document has been <em>accessed</em> 324387 times.</p> </document> Textual inclusion of XML example (XInclude C.3) >>> document = xinclude_loader("C3.xml") >>> ElementInclude.include(document, xinclude_loader) >>> print serialize(document) # C3 <document> <p>The following is the source of the "data.xml" resource:</p> <example>&lt;?xml version='1.0'?&gt; &lt;data&gt; &lt;item&gt;&lt;![CDATA[Brooks &amp; Shields]]&gt;&lt;/item&gt; &lt;/data&gt; </example> </document> Fallback example (XInclude C.5) Note! Fallback support is not yet implemented >>> document = xinclude_loader("C5.xml") >>> ElementInclude.include(document, xinclude_loader) Traceback (most recent call last): IOError: resource not found >>> # print serialize(document) # C5 """ def xinclude_default(): """ >>> from xml.etree import ElementInclude >>> document = xinclude_loader("default.xml") >>> ElementInclude.include(document) >>> print serialize(document) # default <document> <p>Example.</p> <root> <element key="value">text</element> <element>text</element>tail <empty-element /> </root> </document> """ # # badly formatted xi:include tags XINCLUDE_BAD = {} XINCLUDE_BAD["B1.xml"] = """\ <?xml version='1.0'?> <document xmlns:xi="http://www.w3.org/2001/XInclude"> <p>120 Mz is adequate for an average home user.</p> <xi:include href="disclaimer.xml" parse="BAD_TYPE"/> </document> """ XINCLUDE_BAD["B2.xml"] = """\ <?xml version='1.0'?> <div xmlns:xi="http://www.w3.org/2001/XInclude"> <xi:fallback></xi:fallback> </div> """ def xinclude_failures(): r""" Test failure to locate included XML file. >>> from xml.etree import ElementInclude >>> def none_loader(href, parser, encoding=None): ... return None >>> document = ET.XML(XINCLUDE["C1.xml"]) >>> ElementInclude.include(document, loader=none_loader) Traceback (most recent call last): FatalIncludeError: cannot load 'disclaimer.xml' as 'xml' Test failure to locate included text file. >>> document = ET.XML(XINCLUDE["C2.xml"]) >>> ElementInclude.include(document, loader=none_loader) Traceback (most recent call last): FatalIncludeError: cannot load 'count.txt' as 'text' Test bad parse type. >>> document = ET.XML(XINCLUDE_BAD["B1.xml"]) >>> ElementInclude.include(document, loader=none_loader) Traceback (most recent call last): FatalIncludeError: unknown parse type in xi:include tag ('BAD_TYPE') Test xi:fallback outside xi:include. >>> document = ET.XML(XINCLUDE_BAD["B2.xml"]) >>> ElementInclude.include(document, loader=none_loader) Traceback (most recent call last): FatalIncludeError: xi:fallback tag must be child of xi:include ('{http://www.w3.org/2001/XInclude}fallback') """ # -------------------------------------------------------------------- # reported bugs def bug_xmltoolkit21(): """ marshaller gives obscure errors for non-string values >>> elem = ET.Element(123) >>> serialize(elem) # tag Traceback (most recent call last): TypeError: cannot serialize 123 (type int) >>> elem = ET.Element("elem") >>> elem.text = 123 >>> serialize(elem) # text Traceback (most recent call last): TypeError: cannot serialize 123 (type int) >>> elem = ET.Element("elem") >>> elem.tail = 123 >>> serialize(elem) # tail Traceback (most recent call last): TypeError: cannot serialize 123 (type int) >>> elem = ET.Element("elem") >>> elem.set(123, "123") >>> serialize(elem) # attribute key Traceback (most recent call last): TypeError: cannot serialize 123 (type int) >>> elem = ET.Element("elem") >>> elem.set("123", 123) >>> serialize(elem) # attribute value Traceback (most recent call last): TypeError: cannot serialize 123 (type int) """ def bug_xmltoolkit25(): """ typo in ElementTree.findtext >>> elem = ET.XML(SAMPLE_XML) >>> tree = ET.ElementTree(elem) >>> tree.findtext("tag") 'text' >>> tree.findtext("section/tag") 'subtext' """ def bug_xmltoolkit28(): """ .//tag causes exceptions >>> tree = ET.XML("<doc><table><tbody/></table></doc>") >>> summarize_list(tree.findall(".//thead")) [] >>> summarize_list(tree.findall(".//tbody")) ['tbody'] """ def bug_xmltoolkitX1(): """ dump() doesn't flush the output buffer >>> tree = ET.XML("<doc><table><tbody/></table></doc>") >>> ET.dump(tree); sys.stdout.write("tail") <doc><table><tbody /></table></doc> tail """ def bug_xmltoolkit39(): """ non-ascii element and attribute names doesn't work >>> tree = ET.XML("<?xml version='1.0' encoding='iso-8859-1'?><t\xe4g />") >>> ET.tostring(tree, "utf-8") '<t\\xc3\\xa4g />' >>> tree = ET.XML("<?xml version='1.0' encoding='iso-8859-1'?><tag \xe4ttr='v&#228;lue' />") >>> tree.attrib {u'\\xe4ttr': u'v\\xe4lue'} >>> ET.tostring(tree, "utf-8") '<tag \\xc3\\xa4ttr="v\\xc3\\xa4lue" />' >>> tree = ET.XML("<?xml version='1.0' encoding='iso-8859-1'?><t\xe4g>text</t\xe4g>") >>> ET.tostring(tree, "utf-8") '<t\\xc3\\xa4g>text</t\\xc3\\xa4g>' >>> tree = ET.Element(u"t\u00e4g") >>> ET.tostring(tree, "utf-8") '<t\\xc3\\xa4g />' >>> tree = ET.Element("tag") >>> tree.set(u"\u00e4ttr", u"v\u00e4lue") >>> ET.tostring(tree, "utf-8") '<tag \\xc3\\xa4ttr="v\\xc3\\xa4lue" />' """ def bug_xmltoolkit54(): """ problems handling internally defined entities >>> e = ET.XML("<!DOCTYPE doc [<!ENTITY ldots '&#x8230;'>]><doc>&ldots;</doc>") >>> serialize(e) '<doc>&#33328;</doc>' """ def bug_xmltoolkit55(): """ make sure we're reporting the first error, not the last >>> e = ET.XML("<!DOCTYPE doc SYSTEM 'doc.dtd'><doc>&ldots;&ndots;&rdots;</doc>") Traceback (most recent call last): ParseError: undefined entity &ldots;: line 1, column 36 """ class ExceptionFile: def read(self, x): raise IOError def xmltoolkit60(): """ Handle crash in stream source. >>> tree = ET.parse(ExceptionFile()) Traceback (most recent call last): IOError """ XMLTOOLKIT62_DOC = """<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE patent-application-publication SYSTEM "pap-v15-2001-01-31.dtd" []> <patent-application-publication> <subdoc-abstract> <paragraph id="A-0001" lvl="0">A new cultivar of Begonia plant named &lsquo;BCT9801BEG&rsquo;.</paragraph> </subdoc-abstract> </patent-application-publication>""" def xmltoolkit62(): """ Don't crash when using custom entities. >>> xmltoolkit62() u'A new cultivar of Begonia plant named \u2018BCT9801BEG\u2019.' """ ENTITIES = {u'rsquo': u'\u2019', u'lsquo': u'\u2018'} parser = ET.XMLTreeBuilder() parser.entity.update(ENTITIES) parser.feed(XMLTOOLKIT62_DOC) t = parser.close() return t.find('.//paragraph').text def xmltoolkit63(): """ Check reference leak. >>> xmltoolkit63() >>> count = sys.getrefcount(None) >>> for i in range(1000): ... xmltoolkit63() >>> sys.getrefcount(None) - count 0 """ tree = ET.TreeBuilder() tree.start("tag", {}) tree.data("text") tree.end("tag") # -------------------------------------------------------------------- def bug_200708_newline(): r""" Preserve newlines in attributes. >>> e = ET.Element('SomeTag', text="def _f():\n return 3\n") >>> ET.tostring(e) '<SomeTag text="def _f():&#10; return 3&#10;" />' >>> ET.XML(ET.tostring(e)).get("text") 'def _f():\n return 3\n' >>> ET.tostring(ET.XML(ET.tostring(e))) '<SomeTag text="def _f():&#10; return 3&#10;" />' """ def bug_200708_close(): """ Test default builder. >>> parser = ET.XMLParser() # default >>> parser.feed("<element>some text</element>") >>> summarize(parser.close()) 'element' Test custom builder. >>> class EchoTarget: ... def close(self): ... return ET.Element("element") # simulate root >>> parser = ET.XMLParser(EchoTarget()) >>> parser.feed("<element>some text</element>") >>> summarize(parser.close()) 'element' """ def bug_200709_default_namespace(): """ >>> e = ET.Element("{default}elem") >>> s = ET.SubElement(e, "{default}elem") >>> serialize(e, default_namespace="default") # 1 '<elem xmlns="default"><elem /></elem>' >>> e = ET.Element("{default}elem") >>> s = ET.SubElement(e, "{default}elem") >>> s = ET.SubElement(e, "{not-default}elem") >>> serialize(e, default_namespace="default") # 2 '<elem xmlns="default" xmlns:ns1="not-default"><elem /><ns1:elem /></elem>' >>> e = ET.Element("{default}elem") >>> s = ET.SubElement(e, "{default}elem") >>> s = ET.SubElement(e, "elem") # unprefixed name >>> serialize(e, default_namespace="default") # 3 Traceback (most recent call last): ValueError: cannot use non-qualified names with default_namespace option """ def bug_200709_register_namespace(): """ >>> ET.tostring(ET.Element("{http://namespace.invalid/does/not/exist/}title")) '<ns0:title xmlns:ns0="http://namespace.invalid/does/not/exist/" />' >>> ET.register_namespace("foo", "http://namespace.invalid/does/not/exist/") >>> ET.tostring(ET.Element("{http://namespace.invalid/does/not/exist/}title")) '<foo:title xmlns:foo="http://namespace.invalid/does/not/exist/" />' And the Dublin Core namespace is in the default list: >>> ET.tostring(ET.Element("{http://purl.org/dc/elements/1.1/}title")) '<dc:title xmlns:dc="http://purl.org/dc/elements/1.1/" />' """ def bug_200709_element_comment(): """ Not sure if this can be fixed, really (since the serializer needs ET.Comment, not cET.comment). >>> a = ET.Element('a') >>> a.append(ET.Comment('foo')) >>> a[0].tag == ET.Comment True >>> a = ET.Element('a') >>> a.append(ET.PI('foo')) >>> a[0].tag == ET.PI True """ def bug_200709_element_insert(): """ >>> a = ET.Element('a') >>> b = ET.SubElement(a, 'b') >>> c = ET.SubElement(a, 'c') >>> d = ET.Element('d') >>> a.insert(0, d) >>> summarize_list(a) ['d', 'b', 'c'] >>> a.insert(-1, d) >>> summarize_list(a) ['d', 'b', 'd', 'c'] """ def bug_200709_iter_comment(): """ >>> a = ET.Element('a') >>> b = ET.SubElement(a, 'b') >>> comment_b = ET.Comment("TEST-b") >>> b.append(comment_b) >>> summarize_list(a.iter(ET.Comment)) ['<Comment>'] """ def bug_18347(): """ >>> e = ET.XML('<html><CamelCase>text</CamelCase></html>') >>> serialize(e) '<html><CamelCase>text</CamelCase></html>' >>> serialize(e, method="html") '<html><CamelCase>text</CamelCase></html>' """ # -------------------------------------------------------------------- # reported on bugs.python.org def bug_1534630(): """ >>> bob = ET.TreeBuilder() >>> e = bob.data("data") >>> e = bob.start("tag", {}) >>> e = bob.end("tag") >>> e = bob.close() >>> serialize(e) '<tag />' """ def check_issue6233(): """ >>> e = ET.XML("<?xml version='1.0' encoding='utf-8'?><body>t\\xc3\\xa3g</body>") >>> ET.tostring(e, 'ascii') "<?xml version='1.0' encoding='ascii'?>\\n<body>t&#227;g</body>" >>> e = ET.XML("<?xml version='1.0' encoding='iso-8859-1'?><body>t\\xe3g</body>") >>> ET.tostring(e, 'ascii') "<?xml version='1.0' encoding='ascii'?>\\n<body>t&#227;g</body>" """ def check_issue3151(): """ >>> e = ET.XML('<prefix:localname xmlns:prefix="${stuff}"/>') >>> e.tag '{${stuff}}localname' >>> t = ET.ElementTree(e) >>> ET.tostring(e) '<ns0:localname xmlns:ns0="${stuff}" />' """ def check_issue6565(): """ >>> elem = ET.XML("<body><tag/></body>") >>> summarize_list(elem) ['tag'] >>> newelem = ET.XML(SAMPLE_XML) >>> elem[:] = newelem[:] >>> summarize_list(elem) ['tag', 'tag', 'section'] """ def check_html_empty_elems_serialization(self): # issue 15970 # from http://www.w3.org/TR/html401/index/elements.html """ >>> empty_elems = ['AREA', 'BASE', 'BASEFONT', 'BR', 'COL', 'FRAME', 'HR', ... 'IMG', 'INPUT', 'ISINDEX', 'LINK', 'META', 'PARAM'] >>> elems = ''.join('<%s />' % elem for elem in empty_elems) >>> serialize(ET.XML('<html>%s</html>' % elems), method='html') '<html><AREA><BASE><BASEFONT><BR><COL><FRAME><HR><IMG><INPUT><ISINDEX><LINK><META><PARAM></html>' >>> serialize(ET.XML('<html>%s</html>' % elems.lower()), method='html') '<html><area><base><basefont><br><col><frame><hr><img><input><isindex><link><meta><param></html>' >>> elems = ''.join('<%s></%s>' % (elem, elem) for elem in empty_elems) >>> serialize(ET.XML('<html>%s</html>' % elems), method='html') '<html><AREA><BASE><BASEFONT><BR><COL><FRAME><HR><IMG><INPUT><ISINDEX><LINK><META><PARAM></html>' >>> serialize(ET.XML('<html>%s</html>' % elems.lower()), method='html') '<html><area><base><basefont><br><col><frame><hr><img><input><isindex><link><meta><param></html>' """ # -------------------------------------------------------------------- class CleanContext(object): """Provide default namespace mapping and path cache.""" checkwarnings = None def __init__(self, quiet=False): if sys.flags.optimize >= 2: # under -OO, doctests cannot be run and therefore not all warnings # will be emitted quiet = True deprecations = ( # Search behaviour is broken if search path starts with "/". ("This search is broken in 1.3 and earlier, and will be fixed " "in a future version. If you rely on the current behaviour, " "change it to '.+'", FutureWarning), # Element.getchildren() and Element.getiterator() are deprecated. ("This method will be removed in future versions. " "Use .+ instead.", DeprecationWarning), ("This method will be removed in future versions. " "Use .+ instead.", PendingDeprecationWarning), # XMLParser.doctype() is deprecated. ("This method of XMLParser is deprecated. Define doctype.. " "method on the TreeBuilder target.", DeprecationWarning)) self.checkwarnings = test_support.check_warnings(*deprecations, quiet=quiet) def __enter__(self): from xml.etree import ElementTree self._nsmap = ElementTree._namespace_map self._path_cache = ElementTree.ElementPath._cache # Copy the default namespace mapping ElementTree._namespace_map = self._nsmap.copy() # Copy the path cache (should be empty) ElementTree.ElementPath._cache = self._path_cache.copy() self.checkwarnings.__enter__() def __exit__(self, *args): from xml.etree import ElementTree # Restore mapping and path cache ElementTree._namespace_map = self._nsmap ElementTree.ElementPath._cache = self._path_cache self.checkwarnings.__exit__(*args) def test_main(module_name='xml.etree.ElementTree'): from test import test_xml_etree use_py_module = (module_name == 'xml.etree.ElementTree') # The same doctests are used for both the Python and the C implementations assert test_xml_etree.ET.__name__ == module_name # XXX the C module should give the same warnings as the Python module with CleanContext(quiet=not use_py_module): test_support.run_doctest(test_xml_etree, verbosity=True) # The module should not be changed by the tests assert test_xml_etree.ET.__name__ == module_name if __name__ == '__main__': test_main()
import requests, json import urler from lxml import etree from copy import deepcopy from common import GtR, Paging, MIME_MAP NSMAP = {"gtr" : "http://gtr.rcuk.ac.uk/api"} GTR_PREFIX = "gtr" class GtRNative(GtR): def __init__(self, base_url, page_size=25, serialisation="json", username=None, password=None): super(GtRNative, self).__init__(base_url, page_size, serialisation, username, password) self.factory = GtRDAOFactory() self.project_base = self.base_url + "/project/" self.org_base = self.base_url + "/organisation/" self.person_base = self.base_url + "/person/" self.publication_base = self.base_url + "/publication/" ## List Retrieval Methods ## def projects(self, page=None, page_size=None): page_size = self._constrain_page_size(page_size) page_size = page_size if page_size is not None else self.page_size data, paging = self._api(self.project_base, page=page, page_size=page_size) if data is not None and paging is not None: return Projects(self, data, paging, self.project_base) return None def organisations(self, page=None, page_size=None): page_size = self._constrain_page_size(page_size) page_size = page_size if page_size is not None else self.page_size data, paging = self._api(self.org_base, page=page, page_size=page_size) if data is not None and paging is not None: return Organisations(self, data, paging, self.org_base) return None def people(self, page=None, page_size=None): page_size = self._constrain_page_size(page_size) page_size = page_size if page_size is not None else self.page_size data, paging = self._api(self.person_base, page=page, page_size=page_size) if data is not None and paging is not None: return People(self, data, paging, self.person_base) return None def publications(self, page=None, page_size=None): page_size = self._constrain_page_size(page_size) page_size = page_size if page_size is not None else self.page_size data, paging = self._api(self.publication_base, page=page, page_size=page_size) if data is not None and paging is not None: return Publications(self, data, paging, self.publication_base) return None ## Individual retrieval methods ## def project(self, uuid): url = self.project_base + uuid raw, _ = self._api(url) if raw is not None: return Project(self, raw) return None def organisation(self, uuid, page_size=None): url = self.org_base + uuid page_size = self._constrain_page_size(page_size) page_size = page_size if page_size is not None else self.page_size raw, paging = self._api(url, page_size=page_size) if raw is not None and paging is not None: return Organisation(self, raw, paging) return None def person(self, uuid): url = self.person_base + uuid raw, _ = self._api(url) if raw is not None: return Person(self, raw) return None def publication(self, uuid): url = self.publication_base + uuid raw, _ = self._api(url) if raw is not None: return Publication(self, raw) return None class GtRDAOFactory(object): def __init__(self): self.class_map = { "application/xml" : { "projects" : ProjectsXMLDAO, "organisations" : OrganisationsXMLDAO, "people" : PeopleXMLDAO, "publications" : PublicationsXMLDAO, "project" : ProjectXMLDAO, "organisation" : OrganisationXMLDAO, "person" : PersonXMLDAO, "publication" : PublicationXMLDAO }, "application/json" : { "projects" : ProjectsJSONDAO, "organisations" : OrganisationsJSONDAO, "people" : PeopleJSONDAO, "publications" : PublicationsJSONDAO, "project" : ProjectJSONDAO, "organisation" : OrganisationJSONDAO, "person" : PersonJSONDAO, "publication" : PublicationJSONDAO } } def projects(self, client, data): return self._load(client, data, "projects") def project(self, client, data): return self._load(client, data, "project") def organisations(self, client, data): return self._load(client, data, "organisations") def organisation(self, client, data): return self._load(client, data, "organisation") def people(self, client, data): return self._load(client, data, "people") def person(self, client, data): return self._load(client, data, "person") def publications(self, client, data): return self._load(client, data, "publications") def publication(self, client, data): return self._load(client, data, "publication") def _load(self, client, data, domain): klazz = self.class_map.get(client.mimetype, {}).get(domain) if domain is not None: return klazz(data) return None class Native(object): def __init__(self, client): self.client = client self.dao = None def url(self): raise NotImplementedError() def xml(self, pretty_print=True): if self.dao is None: return None if hasattr(self.dao, "xml"): return self.dao.xml(pretty_print) xml, _ = self.client._api(self.url(), mimetype="application/xml") if xml is not None: return etree.tostring(xml, pretty_print=pretty_print) return None def as_dict(self): if self.dao is None: return None if hasattr(self.dao, "as_dict"): return self.dao.as_dict() j, _ = self.client._api(self.url(), mimetype="application/json") return j def json(self, pretty_print=True): d = self.as_dict() if pretty_print: return json.dumps(d, indent=2) return json.dumps(d) class NativeXMLDAO(object): def __init__(self, raw): self.raw = raw ## Methods for use by extending classes ## def _from_xpath(self, xp): """ return the text from the first element found by the provided xpath """ els = self.raw.xpath(xp, namespaces=NSMAP) if els is not None and len(els) > 0: if hasattr(els[0], "text"): return els[0].text return str(els[0]) return None def _get_subs(self, parent_xpath, siblings=()): """ get a tuple containing the text from the first sibling xpath inside each parent xpath """ tups = [] for org in self.raw.xpath(parent_xpath, namespaces=NSMAP): sibs = [] for sib in siblings: els = org.xpath(sib, namespaces=NSMAP) if els is not None and len(els) > 0: val = els[0].text sibs.append(val) tups.append(tuple(sibs)) return tups def _do_xpath(self, xp): """ just apply the xpath to the raw appropriately """ return self.raw.xpath(xp, namespaces=NSMAP) def _port(self, xp, new_root): """ for each result for the xpath, port (via a deep copy) the result to an element named by new_root """ ports = [] for el in self.raw.xpath(xp, namespaces=NSMAP): root = self._gtr_element(new_root) for child in el: root.append(deepcopy(child)) ports.append(root) return ports def _wrap(self, source, wrappers, clone=True): """ wrap the provided element (via a deep copy if requested) in an element named by wrappers (which may be a hierarchy of elements with their namespacessa """ # first create the a list of elements from the hierarchy hierarchy = wrappers.split("/") elements = [] for wrapper in hierarchy: parts = wrapper.split(":") element = None if len(parts) == 1: element = self._element(GTR_PREFIX, parts[0]) elif len(parts) == 2: element = self._element(parts[0], parts[1]) elements.append(element) if clone: source = deepcopy(source) # now add the elements to eachother in reverse for i in range(len(elements) - 1, -1, -1): elements[i].append(source) source = elements[i] return source def _element(self, prefix, name): return etree.Element("{" + NSMAP.get(prefix) + "}" + name, nsmap=NSMAP) def _gtr_element(self, name): """ create a new element with the GTR prefix and namespace map """ return self._element(GTR_PREFIX, name) def xml(self, pretty_print=True): return etree.tostring(self.raw, pretty_print=pretty_print) class NativeJSONDAO(object): def __init__(self, raw): self.raw = raw def as_dict(self): return self.raw def json(self, pretty_print=True): d = self.as_dict() if pretty_print: return json.dumps(d, indent=2) return json.dumps(d) class NativePaged(Native): def __init__(self, client, paging): super(NativePaged, self).__init__(client) self.paging = paging def record_count(self): return self.paging.record_count def pages(self): return self.paging.pages def next_page(self): if self.paging.next is None or self.paging.next == "": return False raw, paging = self.client._api(self.paging.next) if raw is not None and paging is not None: self.dao.raw = raw self.paging = paging return True return False def previous_page(self): if self.paging.previous is None or self.paging.previous == "": return False raw, paging = self.client._api(self.paging.previous) if raw is not None and paging is not None: self.dao.raw = raw self.paging = paging return True return False def first_page(self): if self.paging.first is None or self.paging.first == "": return False raw, paging = self.client._api(self.paging.first) if raw is not None and paging is not None: self.dao.raw = raw self.paging = paging return True return False def last_page(self): if self.paging.last is None or self.paging.last == "": return False raw, paging = self.client._api(self.paging.last) if raw is not None and paging is not None: self.dao.raw = raw self.paging = paging return True return False def skip_to_page(self, page): if self.paging.last is None or self.paging.last == "": return False if page > self.paging.last: return False if page < 1: return False raw, paging = self.client._api(self.url(), page=page) if raw is not None and paging is not None: self.dao.raw = raw self.paging = paging return True return False def current_page(self): return self.paging.current_page() def current_page_size(self): return self.paging.current_page_size() def list_elements(self): """ subclass should implement this to return a list of Native objects. It will be used to run the iterator """ raise NotImplementedError("list_elements has not been implemented") def __iter__(self): return self.iterator() def iterator(self, reset_pages=True, stop_at_page_boundary=False): if reset_pages: self.first_page() def f(): while True: elements = self.list_elements() for p in elements: yield p if stop_at_page_boundary: break if not self.next_page(): break return f() def __len__(self): return self.record_count() #### List Objects #### ## ------ Projects ------- ## class Projects(NativePaged): def __init__(self, client, raw, paging, url, dao=None): super(Projects, self).__init__(client, paging) self.dao = dao if dao is not None else client.factory.projects(client, raw) self._url = url def url(self): return self._url def projects(self): return self.dao.projects(self.client) def list_elements(self): return self.projects() class ProjectsXMLDAO(NativeXMLDAO): project_xpath = "/gtr:projects/gtr:project" project_wrapper = "gtr:projectOverview/gtr:projectComposition" def __init__(self, raw): super(ProjectsXMLDAO, self).__init__(raw) def projects(self, client): raws = self._do_xpath(self.project_xpath) return [Project(client, self._wrap(raw, self.project_wrapper)) for raw in raws] class ProjectsJSONDAO(NativeJSONDAO): def __init__(self, raw): super(ProjectsJSONDAO, self).__init__(raw) def projects(self, client): return [Project(client, {"projectComposition" : {"project" : data}}) for data in self.raw.get('project', [])] ### -------- End Projects -------- ### ### ------- Organisations -------- ### class Organisations(NativePaged): def __init__(self, client, raw, paging, url, dao=None): super(Organisations, self).__init__(client, paging) self.dao = dao if dao is not None else client.factory.organisations(client, raw) self._url = url def url(self): return self._url def organisations(self): return self.dao.organisations(self.client) def list_elements(self): return self.organisations() class OrganisationsXMLDAO(NativeXMLDAO): organisation_xpath = "/gtr:organisations/gtr:organisation" organisation_wrapper = "gtr:organisationOverview" def __init__(self, raw): super(OrganisationsXMLDAO, self).__init__(raw) def organisations(self): raws = self._do_xpath(self.organisation_xpath) return [Organisation(self.client, self._wrap(raw, self.organisation_wrapper), None) for raw in raws] class OrganisationsJSONDAO(NativeJSONDAO): def __init__(self, raw): super(OrganisationsJSONDAO, self).__init__(raw) def organisations(self, client): return [Organisation(client, {"organisationOverview" : {"organisation" : data}}, None) for data in self.raw.get('organisation', [])] ## ---- End Organisations ---- ## ## ----- People ------ ## class People(NativePaged): def __init__(self, client, raw, paging, url, dao=None): super(People, self).__init__(client, paging) self.dao = dao if dao is not None else client.factory.people(client, raw) self._url = url def url(self): return self._url def people(self): return self.dao.people(self.client) def list_elements(self): return self.people() class PeopleXMLDAO(NativeXMLDAO): person_xpath = "/gtr:people/gtr:person" person_wrapper = "gtr:personOverview" def __init__(self, raw): super(PeopleXMLDAO, self).__init__(raw) def people(self, client): raws = self._do_xpath(self.person_xpath) return [Person(client, None, self._wrap(raw, self.person_wrapper)) for raw in raws] class PeopleJSONDAO(NativeJSONDAO): def __init__(self, raw): super(PeopleJSONDAO, self).__init__(raw) def people(self, client): return [Person(client, {"person" : data}) for data in self.raw.get("person", [])] ## ----- End People ------ ## ## ------ Publications ------ ## class Publications(NativePaged): def __init__(self, client, raw, paging, url, dao=None): super(Publications, self).__init__(client, paging) self.dao = dao if dao is not None else client.factory.publications(client, raw) self._url = url def url(self): return self._url def publications(self): return self.dao.publications(self.client) def list_elements(self): return self.publications() class PublicationsXMLDAO(NativeXMLDAO): publication_xpath = "/gtr:publications/gtr:publication" publication_wrapper = "gtr:publicationOverview" def __init__(self, raw): super(PublicationsXMLDAO, self).__init__(raw) def publications(self, client): raws = self._do_xpath(self.publication_xpath) return [Publication(client, self._wrap(raw, self.publication_wrapper)) for raw in raws] class PublicationsJSONDAO(NativeJSONDAO): def __init__(self, raw): super(PublicationsJSONDAO, self).__init__(raw) def publications(self, client): return [Publication(client, { "publication" : data }) for data in self.raw.get("publication", [])] ## ------- End Publications ------ ## ##### Individual Entity Objects #### ## ------ Project ------- ## class Project(Native): def __init__(self, client, raw, dao=None): super(Project, self).__init__(client) self.dao = dao if dao is not None else client.factory.project(client, raw) def url(self): return self.dao.url() def id(self): return self.dao.id() def title(self): return self.dao.title() def start(self): return self.dao.start() def status(self): return self.dao.status() def end(self): return self.dao.end() def abstract(self): return self.dao.abstract() def value(self): return self.dao.value() def category(self): return self.dao.category() def reference(self): return self.dao.reference() def funder(self): return self.dao.funder(self.client) def lead(self): return self.dao.lead(self.client) def orgs(self): return self.dao.orgs(self.client) def people(self): return self.dao.people(self.client) def collaborators(self): return self.dao.collaborators(self.client) def collaboration_outputs(self): pass def intellectual_property_outputs(self): pass def policy_influence_outputs(self): pass def product_outputs(self): pass def research_material_outputs(self): pass def publications(self): pass def fetch(self): updated_proj = self.client.project(self.id()) if updated_proj is not None: self.dao.raw = updated_proj.dao.raw return True return False class ProjectXMLDAO(NativeXMLDAO): composition_base = "/gtr:projectOverview/gtr:projectComposition" project_base = composition_base + "/gtr:project" url_xpath = project_base + "/@url" id_xpath = project_base + "/gtr:id" title_xpath = project_base + "/gtr:title" start_xpath = project_base + "/gtr:fund/gtr:start" status_xpath = project_base + "/gtr:status" end_xpath = project_base + "/gtr:fund/gtr:end" abstract_xpath = project_base + "/gtr:abstractText" funder_xpath = project_base + "/gtr:fund/gtr:funder/gtr:name" value_xpath = project_base + "/gtr:fund/gtr:valuePounds" category_xpath = project_base + "/gtr:grantCategory" reference_xpath = project_base + "/gtr:grantReference" lead_xpath = composition_base + "/gtr:leadResearchOrganisation" orgs_xpath = composition_base + "/gtr:organisations/gtr:organisation" person_xpath = composition_base + "/gtr:projectPeople/gtr:projectPerson" collaborator_xpath = composition_base + "/gtr:collaborations/gtr:collaborator" organisation_wrapper = "organisationOverview" person_wrapper = "personOverview" organisation_element = "organisation" person_element = "person" def __init__(self, raw): super(ProjectXMLDAO, self).__init__(raw) def url(self): return self._from_xpath(self.url_xpath) def id(self): return self._from_xpath(self.id_xpath) def title(self): return self._from_xpath(self.title_xpath) def start(self): return self._from_xpath(self.start_xpath) def status(self): return self._from_xpath(self.status_xpath) def end(self): return self._from_xpath(self.end_xpath) def abstract(self): return self._from_xpath(self.abstract_xpath) # FIXME def funder(self): return self._from_xpath(self.funder_xpath) def value(self): return self._from_xpath(self.value_xpath) def category(self): return self._from_xpath(self.category_xpath) def reference(self): return self._from_xpath(self.reference_xpath) def lead(self, client): raws = self._port(self.lead_xpath, self.organisation_element) if len(raws) > 0: return Organisation(client, self._wrap(raws[0], self.organisation_wrapper), None) return None def orgs(self, client): raws = self._do_xpath(self.orgs_xpath) return [Organisation(client, self._wrap(raw, self.organisation_wrapper), None) for raw in raws] def people(self, client): raws = self._port(self.person_xpath, self.person_element) return [Person(client, self._wrap(raw, self.person_wrapper)) for raw in raws] def collaborators(self, client): raws = self._port(self.collaborator_xpath, self.organisation_element) return [Organisation(client, self._wrap(raw, self.organisation_wrapper), None) for raw in raws] class ProjectJSONDAO(NativeJSONDAO): def __init__(self, raw): super(ProjectJSONDAO, self).__init__(raw) def _composition(self): return (self.raw.get("projectComposition", {})) def _project(self): return (self.raw.get("projectComposition", {}) .get("project", {})) def url(self): return self._project().get("url") def id(self): return self._project().get("id") def title(self): return self._project().get("title") def start(self): return self._project().get("fund", {}).get("start") def status(self): return self._project().get("status") def end(self): return self._project().get("fund", {}).get("end") def abstract(self): return self._project().get("abstractText") def funder(self, client): return Organisation(client, {"organisationOverview" : {"organisation" : self._project().get("fund", {}).get("funder", {})}}, None) def value(self): return self._project().get("fund", {}).get("valuePounds") def category(self): return self._project().get("grantCategory") def reference(self): return self._project().get("grantReference") def lead(self, client): lro = self._composition().get("leadResearchOrganisation") if lro is not None: return Organisation(client, {"organisationOverview" : {"organisation" : lro}}, None) return None def orgs(self, client): return [Organisation(client, {"organisationOverview" : {"organisation" : data}}, None) for data in self._composition().get("organisation", [])] def people(self, client): return [Person(client, {"person" : data }) for data in self._composition().get("projectPerson", [])] def collaborators(self, client): return [Organisation(client, {"organisationOverview" : {"organisation" : data}}, None) for data in self._composition().get("collaborator", [])] ## ------ End Project -------- ## ## -------- Organisation -------- ## class Organisation(NativePaged): def __init__(self, client, raw, paging, dao=None): super(Organisation, self).__init__(client, paging) self.dao = dao if dao is not None else client.factory.organisation(client, raw) self.custom_dao = dao is not None def url(self): return self.dao.url() def id(self): return self.dao.id() def name(self): return self.dao.name() def projects(self): return self.dao.projects(self.client) def load_all_projects(self): # use with caution, will load all the projects for this organisation # and if you use any of the paging features afterwards, it will be # reset current_projects = self.projects() self.next_page() self.dao.add_projects(current_projects) """ if self.paging.next is None or self.paging.next == "": return raw, paging = self.client._api(self.paging.next) if paging is not None: self.paging = paging if raw is not None: interim_dao = None if self.custom_dao: interim_dao = deepcopy(self.dao) interim_dao.raw = raw else: interim_dao = client.factory.organisation(client, raw) projects = raw.get("organisationOverview", {}).get("project", []) if raw is not None and paging is not None: self.dao.raw = raw self.paging = paging return True return False next.get("organisationOverview", {}) """ def fetch(self): updated_org = self.client.organisation(self.id()) if updated_org is not None: self.dao.raw = updated_org.dao.raw self.paging = updated_org.paging return True return False class OrganisationXMLDAO(NativeXMLDAO): overview_base = "/gtr:organisationOverview" url_xpath = overview_base + "/gtr:organisation/@url" id_xpath = overview_base + "/gtr:organisation/gtr:id" name_xpath = overview_base + "/gtr:organisation/gtr:name" def __init__(self, raw): super(OrganisationXMLDAO, self).__init__(raw) def url(self): return self._from_xpath(self.url_xpath) def id(self): return self._from_xpath(self.id_xpath) def name(self): return self._from_xpath(self.name_xpath) class OrganisationJSONDAO(NativeJSONDAO): def __init__(self, raw): super(OrganisationJSONDAO, self).__init__(raw) def _overview(self): return self.raw.get("organisationOverview", {}) def _org(self): return (self.raw.get("organisationOverview", {}) .get("organisation", {})) def url(self): return self._org().get("url") def id(self): return self._org().get("id") def name(self): return self._org().get("name") def projects(self, client): return [Project(client, {"projectOverview" : {"project" : data}}) for data in self._overview().get("project", [])] def add_projects(self, projects): project_raw = [p.dao.raw['projectOverview']['project'] for p in projects] self.raw['organisationOverview']['project'] += project_raw ## ------- End Organisation ---------- ## ## -------- Person -------------- ## class Person(Native): def __init__(self, client, raw, dao=None): super(Person, self).__init__(client) self.dao = dao if dao is not None else client.factory.person(client, raw) def url(self): return self.dao.url() def id(self): return self.dao.id() def isPI(self): pr = self.dao.get_project_roles() pi = self.dao.principal_investigator() return pi and "PRINCIPAL_INVESTIGATOR" in pr def isCI(self): pr = self.dao.get_project_roles() ci = self.dao.co_investigator() return ci and "CO_INVESTIGATOR" in pr def get_project_roles(self): return self.dao.get_project_roles() def projects(self): return self.dao.projects(self.client) def fetch(self): """ will flesh this item out with full data from the API - this WILL lose relation information from the parent object """ updated_person = self.client.person(self.id()) if updated_person is not None: self.dao.raw = updated_person.dao.raw return True return False def get_full(self): """ will return a full person object from the API """ return self.client.person(self.id()) class PersonXMLDAO(NativeXMLDAO): overview_base = "/gtr:personOverview" person_base = overview_base + "/gtr:person" url_xpath = person_base + "/@url" id_xpath = person_base + "/gtr:id" projects_xpath = overview_base + "/gtr:projectCompositions/gtr:projectComposition" project_wrapper = "projectOverview" def __init__(self, raw): super(PersonXMLDAO, self).__init__(raw) def url(self): return self._from_xpath(self.url_xpath) def id(self): return self._from_xpath(self.id_xpath) def projects(self, client): raws = self._do_xpath(self.projects_xpath) return [Project(client, self._wrap(raw, self.project_wrapper)) for raw in raws] class PersonJSONDAO(NativeJSONDAO): def __init__(self, raw): super(PersonJSONDAO, self).__init__(raw) def _person(self): if "personOverview" in self.raw: return self.raw.get("personOverview", {}).get("person", {}) return self.raw.get("person", {}) def url(self): return self._person().get("url") def id(self): return self._person().get("id") def get_project_roles(self): return self._person().get("projectRole", []) def principal_investigator(self): return self._person().get("principalInvestigator", False) def co_investigator(self): return self._person().get("coInvestigator", False) def projects(self, client): return [Project(client, {"projectOverview" : {"project" : data}}) for data in self._overview().get("projectComposition", [])] ## --------- End Person ----------- ## ## -------- Publication ----------- ## class Publication(Native): def __init__(self, client, raw, dao=None): super(Publication, self).__init__(client) self.dao = dao if dao is not None else client.factory.publication(client, raw) def url(self): return self.dao.url() def id(self): return self.dao.id() def title(self): return self.dao.title() def fetch(self): updated_pub = self.client.publication(self.id()) if updated_pub is not None: self.dao.raw = updated_pub.dao.raw return True return False class PublicationXMLDAO(NativeXMLDAO): overview_base = "/gtr:publicationOverview" publication_base = overview_base + "/gtr:publication" url_xpath = publication_base + "/@url" id_xpath = publication_base + "/gtr:id" title_xpath = publication_base + "/gtr:title" def __init__(self, raw): super(PublicationXMLDAO, self).__init__(raw) def url(self): return self._from_xpath(self.url_xpath) def id(self): return self._from_xpath(self.id_xpath) def title(self): return self._from_xpath(self.title_xpath) class PublicationJSONDAO(NativeJSONDAO): def __init__(self, raw): super(PublicationJSONDAO, self).__init__(raw) def _publication(self): return self.raw.get("publication", {}) def url(self): return self._publication().get("url") def id(self): return self._publication().get("id") def title(self): return self._publication().get("title") ## ---------- End Publication -------- ##
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015-2019 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """OpenAIRE configuration file.""" from __future__ import absolute_import, print_function from invenio_records_rest.facets import terms_filter from invenio_records_rest.utils import allow_all OPENAIRE_FUNDREF_LOCAL_SOURCE = 'data/fundref_registry.rdf.gz' OPENAIRE_FUNDREF_ENDPOINT = 'http://dx.doi.org/10.13039/fundref_registry' OPENAIRE_CC_SOURCE = 'data/geonames2countrycodes_iso_3166.txt' OPENAIRE_OAI_LOCAL_SOURCE = '' # Large file that requires separate download OPENAIRE_OAIPMH_ENDPOINT = 'http://api.openaire.eu/oai_pmh' OPENAIRE_OAIPMH_DEFAULT_SET = 'projects' OPENAIRE_FUNDREF_NAMESPACES = { 'dct': 'http://purl.org/dc/terms/', 'fref': 'http://data.crossref.org/fundingdata/terms', 'rdf': 'http://www.w3.org/1999/02/22-rdf-syntax-ns#', 'rdfs': 'http://www.w3.org/2000/01/rdf-schema#', 'skos': 'http://www.w3.org/2004/02/skos/core#', 'skosxl': 'http://www.w3.org/2008/05/skos-xl#', 'svf': 'http://data.crossref.org/fundingdata/xml/schema/grant/grant-1.2/', 'xml': 'http://www.w3.org/XML/1998/namespace', } OPENAIRE_OAIPMH_NAMESPACES = { 'dri': 'http://www.driver-repository.eu/namespace/dri', 'oai': 'http://www.openarchives.org/OAI/2.0/', 'oaf': 'http://namespace.openaire.eu/oaf', } OPENAIRE_SCHEMAS_HOST = 'inveniosoftware.org' OPENAIRE_SCHEMAS_ENDPOINT = '/schemas' OPENAIRE_SCHEMAS_DEFAULT_FUNDER = 'funders/funder-v1.0.0.json' OPENAIRE_SCHEMAS_DEFAULT_GRANT = 'grants/grant-v1.0.0.json' OPENAIRE_JSONRESOLVER_GRANTS_HOST = 'inveniosoftware.org' OPENAIRE_GRANTS_SPECS = [ 'ARCProjects', 'ECProjects', 'FCTProjects', 'FWFProjects', 'HRZZProjects', 'MESTDProjects', 'MZOSProjects', 'NHMRCProjects', 'NIHProjects', 'NSFProjects', 'NWOProjects', 'SFIProjects', 'SNSFProjects', 'WTProjects', ] OPENAIRE_FIXED_FUNDERS = { 'aka_________::AKA': 'http://dx.doi.org/10.13039/501100002341', 'arc_________::ARC': 'http://dx.doi.org/10.13039/501100000923', 'ec__________::EC': 'http://dx.doi.org/10.13039/501100000780', 'fct_________::FCT': 'http://dx.doi.org/10.13039/501100001871', 'fwf_________::FWF': 'http://dx.doi.org/10.13039/501100002428', 'irb_hr______::HRZZ': 'http://dx.doi.org/10.13039/501100004488', 'irb_hr______::MZOS': 'http://dx.doi.org/10.13039/501100006588', 'mestd_______::MESTD': 'http://dx.doi.org/10.13039/501100004564', 'nhmrc_______::NHMRC': 'http://dx.doi.org/10.13039/501100000925', 'nih_________::NIH': 'http://dx.doi.org/10.13039/100000002', 'nsf_________::NSF': 'http://dx.doi.org/10.13039/100000001', 'nwo_________::NWO': 'http://dx.doi.org/10.13039/501100003246', 'rcuk________::RCUK': 'http://dx.doi.org/10.13039/501100000690', 'sfi_________::SFI': 'http://dx.doi.org/10.13039/501100001602', 'snsf________::SNSF': 'http://dx.doi.org/10.13039/501100001711', 'tubitakf____::tubitak': 'http://dx.doi.org/10.13039/501100004410', 'wt__________::WT': 'http://dx.doi.org/10.13039/100004440', } OPENAIRE_REST_ENDPOINTS = dict( frdoi=dict( pid_type='frdoi', pid_minter='openaire_funder_minter', pid_fetcher='openaire_funder_fetcher', list_route='/funders/', item_route='/funders/<pidpath(frdoi):pid_value>', search_index='funders', search_type=None, record_serializers={ 'application/json': ( 'invenio_records_rest.serializers:json_v1_response'), }, search_serializers={ 'application/json': ( 'invenio_records_rest.serializers:json_v1_search'), }, default_media_type='application/json', suggesters=dict( text=dict(completion=dict( field='suggest' )) ), read_permission_factory_imp=allow_all, ), grant=dict( pid_type='grant', pid_minter='openaire_grant_minter', pid_fetcher='openaire_grant_fetcher', list_route='/grants/', item_route='/grants/<pidpath(grant):pid_value>', search_index='grants', search_type=None, record_serializers={ 'application/json': ( 'invenio_records_rest.serializers:json_v1_response'), }, search_serializers={ 'application/json': ( 'invenio_records_rest.serializers:json_v1_search'), }, default_media_type='application/json', suggesters=dict( text=dict(completion=dict( field='suggest', contexts='funder', )) ), read_permission_factory_imp=allow_all, ), ) OPENAIRE_REST_SORT_OPTIONS = dict( funders=dict( bestmatch=dict( fields=['-_score'], title='Best match', default_order='asc', order=1, ), name=dict( fields=['name'], title='Name', default_order='asc', order=2, ), ), grants=dict( bestmatch=dict( fields=['-_score'], title='Best match', default_order='asc', order=1, ), startdate=dict( fields=['startdate'], title='Start date', default_order='asc', order=2, ), enddate=dict( fields=['enddate'], title='End date', default_order='asc', order=2, ), ) ) #: Default sort for records REST API. OPENAIRE_REST_DEFAULT_SORT = dict( grants=dict(query='bestmatch', noquery='bestmatch'), funders=dict(query='bestmatch', noquery='bestmatch'), ) OPENAIRE_REST_FACETS = dict( funders=dict( aggs=dict( country=dict( terms=dict(field='country'), ), type=dict( terms=dict(field='type'), ), ), filters=dict( country=terms_filter('country'), type=terms_filter('type'), ), ), grants=dict( aggs=dict( funder=dict( terms=dict(field='funder.acronyms'), ), ), filters=dict( funder=terms_filter('funder.acronyms'), ), ) )
from __future__ import unicode_literals from itertools import product import numpy as np from matplotlib import cm from matplotlib import pyplot as plt from matplotlib.collections import LineCollection import param from ...core import OrderedDict from ...core.util import (match_spec, unique_iterator, safe_unicode, basestring, max_range, unicode) from ...element import Points, Raster, Polygons, HeatMap from ..util import compute_sizes, get_sideplot_ranges from .element import ElementPlot, ColorbarPlot, LegendPlot from .path import PathPlot from .plot import AdjoinedPlot class ChartPlot(ElementPlot): show_legend = param.Boolean(default=True, doc=""" Whether to show legend for the plot.""") class CurvePlot(ChartPlot): """ CurvePlot can plot Curve and ViewMaps of Curve, which can be displayed as a single frame or animation. Axes, titles and legends are automatically generated from dim_info. If the dimension is set to cyclic in the dim_info it will rotate the curve so that minimum y values are at the minimum x value to make the plots easier to interpret. """ autotick = param.Boolean(default=False, doc=""" Whether to let matplotlib automatically compute tick marks or to allow the user to control tick marks.""") relative_labels = param.Boolean(default=False, doc=""" If plotted quantity is cyclic and center_cyclic is enabled, will compute tick labels relative to the center.""") show_frame = param.Boolean(default=False, doc=""" Disabled by default for clarity.""") show_grid = param.Boolean(default=True, doc=""" Enable axis grid.""") show_legend = param.Boolean(default=True, doc=""" Whether to show legend for the plot.""") style_opts = ['alpha', 'color', 'visible', 'linewidth', 'linestyle', 'marker'] _plot_methods = dict(single='plot') def get_data(self, element, ranges, style): xs = element.dimension_values(0) ys = element.dimension_values(1) return (xs, ys), style, {} def update_handles(self, key, axis, element, ranges, style): artist = self.handles['artist'] (xs, ys), style, axis_kwargs = self.get_data(element, ranges, style) artist.set_xdata(xs) artist.set_ydata(ys) return axis_kwargs class ErrorPlot(ChartPlot): """ ErrorPlot plots the ErrorBar Element type and supporting both horizontal and vertical error bars via the 'horizontal' plot option. """ style_opts = ['ecolor', 'elinewidth', 'capsize', 'capthick', 'barsabove', 'lolims', 'uplims', 'xlolims', 'errorevery', 'xuplims', 'alpha', 'linestyle', 'linewidth', 'markeredgecolor', 'markeredgewidth', 'markerfacecolor', 'markersize', 'solid_capstyle', 'solid_joinstyle', 'dashes', 'color'] _plot_methods = dict(single='errorbar') def init_artists(self, ax, plot_data, plot_kwargs): _, (bottoms, tops), verts = ax.errorbar(*plot_data, **plot_kwargs) return {'bottoms': bottoms, 'tops': tops, 'verts': verts[0]} def get_data(self, element, ranges, style): style['fmt'] = 'none' dims = element.dimensions() xs, ys = (element.dimension_values(i) for i in range(2)) yerr = element.array(dimensions=dims[2:4]) style['yerr'] = yerr.T if len(dims) > 3 else yerr return (xs, ys), style, {} def update_handles(self, key, axis, element, ranges, style): bottoms = self.handles['bottoms'] tops = self.handles['tops'] verts = self.handles['verts'] paths = verts.get_paths() (xs, ys), style, axis_kwargs = self.get_data(element, ranges, style) neg_error = element.dimension_values(2) pos_error = element.dimension_values(3) if len(element.dimensions()) > 3 else neg_error if self.invert_axes: bdata = xs - neg_error tdata = xs + pos_error tops.set_xdata(bdata) tops.set_ydata(ys) bottoms.set_xdata(tdata) bottoms.set_ydata(ys) for i, path in enumerate(paths): path.vertices = np.array([[bdata[i], ys[i]], [tdata[i], ys[i]]]) else: bdata = ys - neg_error tdata = ys + pos_error bottoms.set_xdata(xs) bottoms.set_ydata(bdata) tops.set_xdata(xs) tops.set_ydata(tdata) for i, path in enumerate(paths): path.vertices = np.array([[xs[i], bdata[i]], [xs[i], tdata[i]]]) return axis_kwargs class AreaPlot(ChartPlot): show_legend = param.Boolean(default=False, doc=""" Whether to show legend for the plot.""") style_opts = ['color', 'facecolor', 'alpha', 'edgecolor', 'linewidth', 'hatch', 'linestyle', 'joinstyle', 'fill', 'capstyle', 'interpolate'] _plot_methods = dict(single='fill_between') def get_data(self, element, ranges, style): xs = element.dimension_values(0) ys = [element.dimension_values(vdim) for vdim in element.vdims] return tuple([xs]+ys), style, {} def init_artists(self, ax, plot_data, plot_kwargs): fill_fn = ax.fill_betweenx if self.invert_axes else ax.fill_between stack = fill_fn(*plot_data, **plot_kwargs) return {'artist': stack} def get_extents(self, element, ranges): vdims = element.vdims vdim = vdims[0].name ranges[vdim] = max_range([ranges[vd.name] for vd in vdims]) return super(AreaPlot, self).get_extents(element, ranges) class SpreadPlot(AreaPlot): """ SpreadPlot plots the Spread Element type. """ show_legend = param.Boolean(default=False, doc=""" Whether to show legend for the plot.""") def __init__(self, element, **params): super(SpreadPlot, self).__init__(element, **params) self._extents = None def get_data(self, element, ranges, style): xs = element.dimension_values(0) mean = element.dimension_values(1) neg_error = element.dimension_values(2) pos_idx = 3 if len(element.dimensions()) > 3 else 2 pos_error = element.dimension_values(pos_idx) return (xs, mean-neg_error, mean+pos_error), style, {} class HistogramPlot(ChartPlot): """ HistogramPlot can plot DataHistograms and ViewMaps of DataHistograms, which can be displayed as a single frame or animation. """ show_frame = param.Boolean(default=False, doc=""" Disabled by default for clarity.""") show_grid = param.Boolean(default=False, doc=""" Whether to overlay a grid on the axis.""") style_opts = ['alpha', 'color', 'align', 'visible', 'facecolor', 'edgecolor', 'log', 'capsize', 'error_kw', 'hatch'] def __init__(self, histograms, **params): self.center = False self.cyclic = False super(HistogramPlot, self).__init__(histograms, **params) if self.invert_axes: self.axis_settings = ['ylabel', 'xlabel', 'yticks'] else: self.axis_settings = ['xlabel', 'ylabel', 'xticks'] val_dim = self.hmap.last.get_dimension(1) self.cyclic_range = val_dim.range if val_dim.cyclic else None def initialize_plot(self, ranges=None): hist = self.hmap.last key = self.keys[-1] ranges = self.compute_ranges(self.hmap, key, ranges) el_ranges = match_spec(hist, ranges) # Get plot ranges and values edges, hvals, widths, lims = self._process_hist(hist) if self.invert_axes: self.offset_linefn = self.handles['axis'].axvline self.plotfn = self.handles['axis'].barh else: self.offset_linefn = self.handles['axis'].axhline self.plotfn = self.handles['axis'].bar # Plot bars and make any adjustments style = self.style[self.cyclic_index] legend = hist.label if self.show_legend else '' bars = self.plotfn(edges, hvals, widths, zorder=self.zorder, label=legend, **style) self.handles['artist'] = self._update_plot(self.keys[-1], hist, bars, lims, ranges) # Indexing top ticks = self._compute_ticks(hist, edges, widths, lims) ax_settings = self._process_axsettings(hist, lims, ticks) return self._finalize_axis(self.keys[-1], ranges=el_ranges, **ax_settings) def _process_hist(self, hist): """ Get data from histogram, including bin_ranges and values. """ self.cyclic = hist.get_dimension(0).cyclic edges = hist.edges[:-1] hist_vals = np.array(hist.values) widths = [hist._width] * len(hist) if getattr(hist, '_width', None) else np.diff(hist.edges) lims = hist.range(0) + hist.range(1) return edges, hist_vals, widths, lims def _compute_ticks(self, element, edges, widths, lims): """ Compute the ticks either as cyclic values in degrees or as roughly evenly spaced bin centers. """ if self.xticks is None or not isinstance(self.xticks, int): return None if self.cyclic: x0, x1, _, _ = lims xvals = np.linspace(x0, x1, self.xticks) labels = ["%.0f" % np.rad2deg(x) + '\N{DEGREE SIGN}' for x in xvals] elif self.xticks: dim = element.get_dimension(0) inds = np.linspace(0, len(edges), self.xticks, dtype=np.int) edges = list(edges) + [edges[-1] + widths[-1]] xvals = [edges[i] for i in inds] labels = [dim.pprint_value(v) for v in xvals] return [xvals, labels] def get_extents(self, element, ranges): x0, y0, x1, y1 = super(HistogramPlot, self).get_extents(element, ranges) y0 = np.nanmin([0, y0]) return (x0, y0, x1, y1) def _process_axsettings(self, hist, lims, ticks): """ Get axis settings options including ticks, x- and y-labels and limits. """ axis_settings = dict(zip(self.axis_settings, [None, None, (None if self.overlaid else ticks)])) return axis_settings def _update_plot(self, key, hist, bars, lims, ranges): """ Process bars can be subclassed to manually adjust bars after being plotted. """ return bars def _update_artists(self, key, hist, edges, hvals, widths, lims, ranges): """ Update all the artists in the histogram. Subclassable to allow updating of further artists. """ plot_vals = zip(self.handles['artist'], edges, hvals, widths) for bar, edge, height, width in plot_vals: if self.invert_axes: bar.set_y(edge) bar.set_width(height) bar.set_height(width) else: bar.set_x(edge) bar.set_height(height) bar.set_width(width) def update_handles(self, key, axis, element, ranges, style): # Process values, axes and style edges, hvals, widths, lims = self._process_hist(element) ticks = self._compute_ticks(element, edges, widths, lims) ax_settings = self._process_axsettings(element, lims, ticks) self._update_artists(key, element, edges, hvals, widths, lims, ranges) return ax_settings class SideHistogramPlot(AdjoinedPlot, HistogramPlot): bgcolor = param.Parameter(default=(1, 1, 1, 0), doc=""" Make plot background invisible.""") offset = param.Number(default=0.2, bounds=(0,1), doc=""" Histogram value offset for a colorbar.""") show_grid = param.Boolean(default=True, doc=""" Whether to overlay a grid on the axis.""") def _process_hist(self, hist): """ Subclassed to offset histogram by defined amount. """ edges, hvals, widths, lims = super(SideHistogramPlot, self)._process_hist(hist) offset = self.offset * lims[3] hvals *= 1-self.offset hvals += offset lims = lims[0:3] + (lims[3] + offset,) return edges, hvals, widths, lims def _update_artists(self, n, element, edges, hvals, widths, lims, ranges): super(SideHistogramPlot, self)._update_artists(n, element, edges, hvals, widths, lims, ranges) self._update_plot(n, element, self.handles['artist'], lims, ranges) def _update_plot(self, key, element, bars, lims, ranges): """ Process the bars and draw the offset line as necessary. If a color map is set in the style of the 'main' ViewableElement object, color the bars appropriately, respecting the required normalization settings. """ main = self.adjoined.main _, y1 = element.range(1) offset = self.offset * y1 range_item, main_range, dim = get_sideplot_ranges(self, element, main, ranges) if isinstance(range_item, (Raster, Points, Polygons, HeatMap)): style = self.lookup_options(range_item, 'style')[self.cyclic_index] cmap = cm.get_cmap(style.get('cmap')) main_range = style.get('clims', main_range) else: cmap = None if offset and ('offset_line' not in self.handles): self.handles['offset_line'] = self.offset_linefn(offset, linewidth=1.0, color='k') elif offset: self._update_separator(offset) if cmap is not None: self._colorize_bars(cmap, bars, element, main_range, dim) return bars def get_extents(self, element, ranges): x0, _, x1, _ = element.extents _, y1 = element.range(1) return (x0, 0, x1, y1) def _colorize_bars(self, cmap, bars, element, main_range, dim): """ Use the given cmap to color the bars, applying the correct color ranges as necessary. """ cmap_range = main_range[1] - main_range[0] lower_bound = main_range[0] colors = np.array(element.dimension_values(dim)) colors = (colors - lower_bound) / (cmap_range) for c, bar in zip(colors, bars): bar.set_facecolor(cmap(c)) bar.set_clip_on(False) def _update_separator(self, offset): """ Compute colorbar offset and update separator line if map is non-zero. """ offset_line = self.handles['offset_line'] if offset == 0: offset_line.set_visible(False) else: offset_line.set_visible(True) if self.invert_axes: offset_line.set_xdata(offset) else: offset_line.set_ydata(offset) class PointPlot(ChartPlot, ColorbarPlot): """ Note that the 'cmap', 'vmin' and 'vmax' style arguments control how point magnitudes are rendered to different colors. """ color_index = param.ClassSelector(default=3, class_=(basestring, int), allow_None=True, doc=""" Index of the dimension from which the color will the drawn""") size_index = param.ClassSelector(default=2, class_=(basestring, int), allow_None=True, doc=""" Index of the dimension from which the sizes will the drawn.""") scaling_method = param.ObjectSelector(default="area", objects=["width", "area"], doc=""" Determines whether the `scaling_factor` should be applied to the width or area of each point (default: "area").""") scaling_factor = param.Number(default=1, bounds=(0, None), doc=""" Scaling factor which is applied to either the width or area of each point, depending on the value of `scaling_method`.""") show_grid = param.Boolean(default=True, doc=""" Whether to draw grid lines at the tick positions.""") size_fn = param.Callable(default=np.abs, doc=""" Function applied to size values before applying scaling, to remove values lower than zero.""") style_opts = ['alpha', 'color', 'edgecolors', 'facecolors', 'linewidth', 'marker', 'size', 'visible', 'cmap', 'vmin', 'vmax'] _disabled_opts = ['size'] _plot_methods = dict(single='scatter') def get_data(self, element, ranges, style): xs, ys = (element.dimension_values(i) for i in range(2)) self._compute_styles(element, ranges, style) return (xs, ys), style, {} def _compute_styles(self, element, ranges, style): cdim = element.get_dimension(self.color_index) color = style.pop('color', None) if cdim: cs = element.dimension_values(self.color_index) style['c'] = cs self._norm_kwargs(element, ranges, style, cdim) elif color: style['c'] = color style['edgecolors'] = style.pop('edgecolors', style.pop('edgecolor', 'none')) if element.get_dimension(self.size_index): sizes = element.dimension_values(self.size_index) ms = style.pop('s') if 's' in style else plt.rcParams['lines.markersize'] style['s'] = compute_sizes(sizes, self.size_fn, self.scaling_factor, self.scaling_method, ms) style['edgecolors'] = style.pop('edgecolors', 'none') def update_handles(self, key, axis, element, ranges, style): paths = self.handles['artist'] (xs, ys), style, _ = self.get_data(element, ranges, style) paths.set_offsets(np.column_stack([xs, ys])) sdim = element.get_dimension(self.size_index) if sdim: paths.set_sizes(style['s']) cdim = element.get_dimension(self.color_index) if cdim: paths.set_clim((style['vmin'], style['vmax'])) paths.set_array(style['c']) if 'norm' in style: paths.norm = style['norm'] class VectorFieldPlot(ColorbarPlot): """ Renders vector fields in sheet coordinates. The vectors are expressed in polar coordinates and may be displayed according to angle alone (with some common, arbitrary arrow length) or may be true polar vectors. The color or magnitude can be mapped onto any dimension using the color_index and size_index. The length of the arrows is controlled by the 'scale' style option. The scaling of the arrows may also be controlled via the normalize_lengths and rescale_lengths plot option, which will normalize the lengths to a maximum of 1 and scale them according to the minimum distance respectively. """ color_index = param.ClassSelector(default=None, class_=(basestring, int), allow_None=True, doc=""" Index of the dimension from which the color will the drawn""") size_index = param.ClassSelector(default=3, class_=(basestring, int), allow_None=True, doc=""" Index of the dimension from which the sizes will the drawn.""") arrow_heads = param.Boolean(default=True, doc=""" Whether or not to draw arrow heads. If arrowheads are enabled, they may be customized with the 'headlength' and 'headaxislength' style options.""") normalize_lengths = param.Boolean(default=True, doc=""" Whether to normalize vector magnitudes automatically. If False, it will be assumed that the lengths have already been correctly normalized.""") rescale_lengths = param.Boolean(default=True, doc=""" Whether the lengths will be rescaled to take into account the smallest non-zero distance between two vectors.""") style_opts = ['alpha', 'color', 'edgecolors', 'facecolors', 'linewidth', 'marker', 'visible', 'cmap', 'scale', 'headlength', 'headaxislength', 'pivot', 'width','headwidth'] _plot_methods = dict(single='quiver') def __init__(self, *args, **params): super(VectorFieldPlot, self).__init__(*args, **params) self._min_dist = self._get_map_info(self.hmap) def _get_map_info(self, vmap): """ Get the minimum sample distance and maximum magnitude """ return np.min([self._get_min_dist(vfield) for vfield in vmap]) def _get_min_dist(self, vfield): "Get the minimum sampling distance." xys = vfield.array([0, 1]).view(dtype=np.complex128) m, n = np.meshgrid(xys, xys) distances = np.abs(m-n) np.fill_diagonal(distances, np.inf) return distances[distances>0].min() def get_data(self, element, ranges, style): input_scale = style.pop('scale', 1.0) xs = element.dimension_values(0) if len(element.data) else [] ys = element.dimension_values(1) if len(element.data) else [] radians = element.dimension_values(2) if len(element.data) else [] angles = list(np.rad2deg(radians)) if self.rescale_lengths: input_scale = input_scale / self._min_dist mag_dim = element.get_dimension(self.size_index) if mag_dim: magnitudes = element.dimension_values(mag_dim) _, max_magnitude = ranges[mag_dim.name] if self.normalize_lengths and max_magnitude != 0: magnitudes = magnitudes / max_magnitude else: magnitudes = np.ones(len(xs)) args = (xs, ys, magnitudes, [0.0] * len(element)) if self.color_index: colors = element.dimension_values(self.color_index) args += (colors,) cdim = element.get_dimension(self.color_index) self._norm_kwargs(element, ranges, style, cdim) style['clim'] = (style.pop('vmin'), style.pop('vmax')) style.pop('color', None) if 'pivot' not in style: style['pivot'] = 'mid' if not self.arrow_heads: style['headaxislength'] = 0 style.update(dict(scale=input_scale, angles=angles, units='x', scale_units='x')) return args, style, {} def update_handles(self, key, axis, element, ranges, style): args, style, axis_kwargs = self.get_data(element, ranges, style) # Set magnitudes, angles and colors if supplied. quiver = self.handles['artist'] quiver.set_offsets(np.column_stack(args[:2])) quiver.U = args[2] quiver.angles = style['angles'] if self.color_index: quiver.set_array(args[-1]) quiver.set_clim(style['clim']) return axis_kwargs class BarPlot(LegendPlot): group_index = param.Integer(default=0, doc=""" Index of the dimension in the supplied Bars Element, which will be laid out into groups.""") category_index = param.Integer(default=1, doc=""" Index of the dimension in the supplied Bars Element, which will be laid out into categories.""") stack_index = param.Integer(default=2, doc=""" Index of the dimension in the supplied Bars Element, which will stacked.""") padding = param.Number(default=0.2, doc=""" Defines the padding between groups.""") color_by = param.List(default=['category'], doc=""" Defines how the Bar elements colored. Valid options include any permutation of 'group', 'category' and 'stack'.""") show_legend = param.Boolean(default=True, doc=""" Whether to show legend for the plot.""") xticks = param.Integer(0, precedence=-1) style_opts = ['alpha', 'color', 'align', 'visible', 'edgecolor', 'log', 'facecolor', 'capsize', 'error_kw', 'hatch'] legend_specs = dict(LegendPlot.legend_specs, **{ 'top': dict(bbox_to_anchor=(0., 1.02, 1., .102), ncol=3, loc=3, mode="expand", borderaxespad=0.), 'bottom': dict(ncol=3, mode="expand", loc=2, bbox_to_anchor=(0., -0.4, 1., .102), borderaxespad=0.1)}) _dimensions = OrderedDict([('group', 0), ('category',1), ('stack',2)]) def __init__(self, element, **params): super(BarPlot, self).__init__(element, **params) self.values, self.bar_dimensions = self._get_values() def _get_values(self): """ Get unique index value for each bar """ gi, ci, si =self.group_index, self.category_index, self.stack_index ndims = self.hmap.last.ndims dims = self.hmap.last.kdims dimensions = [] values = {} for vidx, vtype in zip([gi, ci, si], self._dimensions): if vidx < ndims: dim = dims[vidx] dimensions.append(dim) vals = self.hmap.dimension_values(dim.name) else: dimensions.append(None) vals = [None] values[vtype] = list(unique_iterator(vals)) return values, dimensions def _compute_styles(self, element, style_groups): """ Computes color and hatch combinations by any combination of the 'group', 'category' and 'stack'. """ style = self.lookup_options(element, 'style')[0] sopts = [] for sopt in ['color', 'hatch']: if sopt in style: sopts.append(sopt) style.pop(sopt, None) color_groups = [] for sg in style_groups: color_groups.append(self.values[sg]) style_product = list(product(*color_groups)) wrapped_style = self.lookup_options(element, 'style').max_cycles(len(style_product)) color_groups = {k:tuple(wrapped_style[n][sopt] for sopt in sopts) for n,k in enumerate(style_product)} return style, color_groups, sopts def get_extents(self, element, ranges): ngroups = len(self.values['group']) vdim = element.vdims[0].name if self.stack_index in range(element.ndims): return 0, 0, ngroups, np.NaN else: vrange = ranges[vdim] return 0, np.nanmin([vrange[0], 0]), ngroups, vrange[1] def initialize_plot(self, ranges=None): element = self.hmap.last vdim = element.vdims[0] axis = self.handles['axis'] key = self.keys[-1] ranges = self.compute_ranges(self.hmap, key, ranges) ranges = match_spec(element, ranges) self.handles['artist'], self.handles['xticks'], xdims = self._create_bars(axis, element) return self._finalize_axis(key, ranges=ranges, xticks=self.handles['xticks'], dimensions=[xdims, vdim]) def _finalize_ticks(self, axis, element, xticks, yticks, zticks): """ Apply ticks with appropriate offsets. """ yalignments = None if xticks is not None: ticks, labels, yalignments = zip(*sorted(xticks, key=lambda x: x[0])) xticks = (list(ticks), list(labels)) super(BarPlot, self)._finalize_ticks(axis, element, xticks, yticks, zticks) if yalignments: for t, y in zip(axis.get_xticklabels(), yalignments): t.set_y(y) def _create_bars(self, axis, element): # Get style and dimension information values = self.values gi, ci, si = self.group_index, self.category_index, self.stack_index gdim, cdim, sdim = [element.kdims[i] if i < element.ndims else None for i in (gi, ci, si) ] indices = dict(zip(self._dimensions, (gi, ci, si))) style_groups = [sg for sg in self.color_by if indices[sg] < element.ndims] style_opts, color_groups, sopts = self._compute_styles(element, style_groups) dims = element.dimensions('key', label=True) ndims = len(dims) xdims = [d for d in [cdim, gdim] if d is not None] # Compute widths width = (1-(2.*self.padding)) / len(values['category']) # Initialize variables xticks = [] val_key = [None] * ndims style_key = [None] * len(style_groups) label_key = [None] * len(style_groups) labels = [] bars = {} # Iterate over group, category and stack dimension values # computing xticks and drawing bars and applying styles for gidx, grp_name in enumerate(values['group']): if grp_name is not None: grp = gdim.pprint_value(grp_name) if 'group' in style_groups: idx = style_groups.index('group') label_key[idx] = str(grp) style_key[idx] = grp_name val_key[gi] = grp_name if ci < ndims: yalign = -0.04 else: yalign = 0 xticks.append((gidx+0.5, grp, yalign)) for cidx, cat_name in enumerate(values['category']): xpos = gidx+self.padding+(cidx*width) if cat_name is not None: cat = gdim.pprint_value(cat_name) if 'category' in style_groups: idx = style_groups.index('category') label_key[idx] = str(cat) style_key[idx] = cat_name val_key[ci] = cat_name xticks.append((xpos+width/2., cat, 0)) prev = 0 for stk_name in values['stack']: if stk_name is not None: if 'stack' in style_groups: idx = style_groups.index('stack') stk = gdim.pprint_value(stk_name) label_key[idx] = str(stk) style_key[idx] = stk_name val_key[si] = stk_name vals = element.sample([tuple(val_key)]).dimension_values(element.vdims[0].name) val = float(vals[0]) if len(vals) else np.NaN label = ', '.join(label_key) style = dict(style_opts, label='' if label in labels else label, **dict(zip(sopts, color_groups[tuple(style_key)]))) bar = axis.bar([xpos], [val], width=width, bottom=prev, **style) # Update variables bars[tuple(val_key)] = bar prev += val if np.isfinite(val) else 0 labels.append(label) title = [str(element.kdims[indices[cg]]) for cg in self.color_by if indices[cg] < ndims] if self.show_legend and any(len(l) for l in labels): leg_spec = self.legend_specs[self.legend_position] if self.legend_cols: leg_spec['ncol'] = self.legend_cols axis.legend(title=', '.join(title), **leg_spec) return bars, xticks, xdims def update_handles(self, key, axis, element, ranges, style): dims = element.dimensions('key', label=True) ndims = len(dims) ci, gi, si = self.category_index, self.group_index, self.stack_index val_key = [None] * ndims for g in self.values['group']: if g is not None: val_key[gi] = g for c in self.values['category']: if c is not None: val_key[ci] = c prev = 0 for s in self.values['stack']: if s is not None: val_key[si] = s bar = self.handles['artist'].get(tuple(val_key)) if bar: vals = element.sample([tuple(val_key)]).dimension_values(element.vdims[0].name) height = float(vals[0]) if len(vals) else np.NaN bar[0].set_height(height) bar[0].set_y(prev) prev += height if np.isfinite(height) else 0 return {'xticks': self.handles['xticks']} class SpikesPlot(PathPlot, ColorbarPlot): aspect = param.Parameter(default='square', doc=""" The aspect ratio mode of the plot. Allows setting an explicit aspect ratio as width/height as well as 'square' and 'equal' options.""") color_index = param.ClassSelector(default=1, class_=(basestring, int), doc=""" Index of the dimension from which the color will the drawn""") spike_length = param.Number(default=0.1, doc=""" The length of each spike if Spikes object is one dimensional.""") position = param.Number(default=0., doc=""" The position of the lower end of each spike.""") style_opts = PathPlot.style_opts + ['cmap'] def init_artists(self, ax, plot_args, plot_kwargs): line_segments = LineCollection(*plot_args, **plot_kwargs) ax.add_collection(line_segments) return {'artist': line_segments} def get_extents(self, element, ranges): l, b, r, t = super(SpikesPlot, self).get_extents(element, ranges) ndims = len(element.dimensions(label=True)) max_length = t if ndims > 1 else self.spike_length return (l, self.position, r, self.position+max_length) def get_data(self, element, ranges, style): dimensions = element.dimensions(label=True) ndims = len(dimensions) pos = self.position if ndims > 1: data = [[(x, pos), (x, pos+y)] for x, y in element.array()] else: height = self.spike_length data = [[(x[0], pos), (x[0], pos+height)] for x in element.array()] if self.invert_axes: data = [(line[0][::-1], line[1][::-1]) for line in data] cdim = element.get_dimension(self.color_index) if cdim: style['array'] = element.dimension_values(cdim) self._norm_kwargs(element, ranges, style, cdim) style['clim'] = style.pop('vmin'), style.pop('vmax') return (np.array(data),), style, {} def update_handles(self, key, axis, element, ranges, style): artist = self.handles['artist'] (data,), kwargs, axis_kwargs = self.get_data(element, ranges, style) artist.set_paths(data) artist.set_visible(style.get('visible', True)) if 'array' in kwargs: artist.set_clim((kwargs['vmin'], kwargs['vmax'])) artist.set_array(kwargs['array']) if 'norm' in kwargs: artist.norm = kwargs['norm'] return axis_kwargs class SideSpikesPlot(AdjoinedPlot, SpikesPlot): bgcolor = param.Parameter(default=(1, 1, 1, 0), doc=""" Make plot background invisible.""") border_size = param.Number(default=0, doc=""" The size of the border expressed as a fraction of the main plot.""") subplot_size = param.Number(default=0.1, doc=""" The size subplots as expressed as a fraction of the main plot.""") spike_length = param.Number(default=1, doc=""" The length of each spike if Spikes object is one dimensional.""") xaxis = param.ObjectSelector(default='bare', objects=['top', 'bottom', 'bare', 'top-bare', 'bottom-bare', None], doc=""" Whether and where to display the xaxis, bare options allow suppressing all axis labels including ticks and xlabel. Valid options are 'top', 'bottom', 'bare', 'top-bare' and 'bottom-bare'.""") yaxis = param.ObjectSelector(default='bare', objects=['left', 'right', 'bare', 'left-bare', 'right-bare', None], doc=""" Whether and where to display the yaxis, bare options allow suppressing all axis labels including ticks and ylabel. Valid options are 'left', 'right', 'bare' 'left-bare' and 'right-bare'.""") class BoxPlot(ChartPlot): """ BoxPlot plots the ErrorBar Element type and supporting both horizontal and vertical error bars via the 'horizontal' plot option. """ style_opts = ['notch', 'sym', 'whis', 'bootstrap', 'conf_intervals', 'widths', 'showmeans', 'show_caps', 'showfliers', 'boxprops', 'whiskerprops', 'capprops', 'flierprops', 'medianprops', 'meanprops', 'meanline'] _plot_methods = dict(single='boxplot') def get_extents(self, element, ranges): return (np.NaN,)*4 def get_data(self, element, ranges, style): groups = element.groupby(element.kdims) data, labels = [], [] groups = groups.data.items() if element.kdims else [(element.label, element)] for key, group in groups: if element.kdims: label = ','.join([unicode(safe_unicode(d.pprint_value(v))) for d, v in zip(element.kdims, key)]) else: label = key data.append(group[group.vdims[0]]) labels.append(label) style['labels'] = labels style.pop('zorder') style.pop('label') style['vert'] = not self.invert_axes format_kdims = [kd(value_format=None) for kd in element.kdims] return (data,), style, {'dimensions': [format_kdims, element.vdims[0]]} def teardown_handles(self): for group in self.handles['artist'].values(): for v in group: v.remove() class SideBoxPlot(AdjoinedPlot, BoxPlot): bgcolor = param.Parameter(default=(1, 1, 1, 0), doc=""" Make plot background invisible.""") border_size = param.Number(default=0, doc=""" The size of the border expressed as a fraction of the main plot.""") xaxis = param.ObjectSelector(default='bare', objects=['top', 'bottom', 'bare', 'top-bare', 'bottom-bare', None], doc=""" Whether and where to display the xaxis, bare options allow suppressing all axis labels including ticks and xlabel. Valid options are 'top', 'bottom', 'bare', 'top-bare' and 'bottom-bare'.""") yaxis = param.ObjectSelector(default='bare', objects=['left', 'right', 'bare', 'left-bare', 'right-bare', None], doc=""" Whether and where to display the yaxis, bare options allow suppressing all axis labels including ticks and ylabel. Valid options are 'left', 'right', 'bare' 'left-bare' and 'right-bare'.""") def __init__(self, *args, **kwargs): super(SideBoxPlot, self).__init__(*args, **kwargs) if self.adjoined: self.invert_axes = not self.invert_axes
# -*- coding: utf-8 -*- """ This file is part of pyCMBS. (c) 2012- Alexander Loew For COPYING and LICENSE details, please refer to the LICENSE file """ """Attempt to generate templates for module reference with Sphinx XXX - we exclude extension modules To include extension modules, first identify them as valid in the ``_uri2path`` method, then handle them in the ``_parse_module`` script. We get functions and classes by parsing the text of .py files. Alternatively we could import the modules for discovery, and we'd have to do that for extension modules. This would involve changing the ``_parse_module`` method to work via import and introspection, and might involve changing ``discover_modules`` (which determines which files are modules, and therefore which module URIs will be passed to ``_parse_module``). NOTE: this is a modified version of a script originally shipped with the PyMVPA project, which we've adapted for NIPY use. PyMVPA is an MIT-licensed project.""" # Stdlib imports import os import re # Functions and classes class ApiDocWriter(object): ''' Class for automatic detection and parsing of API docs to Sphinx-parsable reST format''' # only separating first two levels rst_section_levels = ['*', '=', '-', '~', '^'] def __init__(self, package_name, rst_extension='.rst', package_skip_patterns=None, module_skip_patterns=None, ): ''' Initialize package for parsing Parameters ---------- package_name : string Name of the top-level package. *package_name* must be the name of an importable package rst_extension : string, optional Extension for reST files, default '.rst' package_skip_patterns : None or sequence of {strings, regexps} Sequence of strings giving URIs of packages to be excluded Operates on the package path, starting at (including) the first dot in the package path, after *package_name* - so, if *package_name* is ``sphinx``, then ``sphinx.util`` will result in ``.util`` being passed for earching by these regexps. If is None, gives default. Default is: ['\.tests$'] module_skip_patterns : None or sequence Sequence of strings giving URIs of modules to be excluded Operates on the module name including preceding URI path, back to the first dot after *package_name*. For example ``sphinx.util.console`` results in the string to search of ``.util.console`` If is None, gives default. Default is: ['\.setup$', '\._'] ''' if package_skip_patterns is None: package_skip_patterns = ['\\.tests$'] if module_skip_patterns is None: module_skip_patterns = ['\\.setup$', '\\._'] self.package_name = package_name self.rst_extension = rst_extension self.package_skip_patterns = package_skip_patterns self.module_skip_patterns = module_skip_patterns def get_package_name(self): return self._package_name def set_package_name(self, package_name): ''' Set package_name >>> docwriter = ApiDocWriter('sphinx') >>> import sphinx >>> docwriter.root_path == sphinx.__path__[0] True >>> docwriter.package_name = 'docutils' >>> import docutils >>> docwriter.root_path == docutils.__path__[0] True ''' # It's also possible to imagine caching the module parsing here self._package_name = package_name self.root_module = __import__(package_name) self.root_path = self.root_module.__path__[0] self.written_modules = None package_name = property(get_package_name, set_package_name, None, 'get/set package_name') def _get_object_name(self, line): ''' Get second token in line >>> docwriter = ApiDocWriter('sphinx') >>> docwriter._get_object_name(" def func(): ") 'func' >>> docwriter._get_object_name(" class Klass(object): ") 'Klass' >>> docwriter._get_object_name(" class Klass: ") 'Klass' ''' name = line.split()[1].split('(')[0].strip() # in case we have classes which are not derived from object # ie. old style classes return name.rstrip(':') def _uri2path(self, uri): ''' Convert uri to absolute filepath Parameters ---------- uri : string URI of python module to return path for Returns ------- path : None or string Returns None if there is no valid path for this URI Otherwise returns absolute file system path for URI Examples -------- >>> docwriter = ApiDocWriter('sphinx') >>> import sphinx >>> modpath = sphinx.__path__[0] >>> res = docwriter._uri2path('sphinx.builder') >>> res == os.path.join(modpath, 'builder.py') True >>> res = docwriter._uri2path('sphinx') >>> res == os.path.join(modpath, '__init__.py') True >>> docwriter._uri2path('sphinx.does_not_exist') ''' if uri == self.package_name: return os.path.join(self.root_path, '__init__.py') path = uri.replace('.', os.path.sep) path = path.replace(self.package_name + os.path.sep, '') path = os.path.join(self.root_path, path) # XXX maybe check for extensions as well? if os.path.exists(path + '.py'): # file path += '.py' elif os.path.exists(os.path.join(path, '__init__.py')): path = os.path.join(path, '__init__.py') else: return None return path def _path2uri(self, dirpath): ''' Convert directory path to uri ''' relpath = dirpath.replace(self.root_path, self.package_name) if relpath.startswith(os.path.sep): relpath = relpath[1:] return relpath.replace(os.path.sep, '.') def _parse_module(self, uri): ''' Parse module defined in *uri* ''' filename = self._uri2path(uri) if filename is None: # nothing that we could handle here. return ([],[]) f = open(filename, 'rt') functions, classes = self._parse_lines(f) f.close() return functions, classes def _parse_lines(self, linesource): ''' Parse lines of text for functions and classes ''' functions = [] classes = [] for line in linesource: if line.startswith('def ') and line.count('('): # exclude private stuff name = self._get_object_name(line) if not name.startswith('_'): functions.append(name) elif line.startswith('class '): # exclude private stuff name = self._get_object_name(line) if not name.startswith('_'): classes.append(name) else: pass functions.sort() classes.sort() return functions, classes def generate_api_doc(self, uri): '''Make autodoc documentation template string for a module Parameters ---------- uri : string python location of module - e.g 'sphinx.builder' Returns ------- S : string Contents of API doc ''' # get the names of all classes and functions functions, classes = self._parse_module(uri) if not len(functions) and not len(classes): print 'WARNING: Empty -',uri # dbg return '' # Make a shorter version of the uri that omits the package name for # titles uri_short = re.sub(r'^%s\.' % self.package_name,'',uri) ad = '.. AUTO-GENERATED FILE -- DO NOT EDIT!\n\n' chap_title = uri_short ad += (chap_title+'\n'+ self.rst_section_levels[1] * len(chap_title) + '\n\n') # Set the chapter title to read 'module' for all modules except for the # main packages if '.' in uri: title = 'Module: :mod:`' + uri_short + '`' else: title = ':mod:`' + uri_short + '`' ad += title + '\n' + self.rst_section_levels[2] * len(title) if len(classes): ad += '\nInheritance diagram for ``%s``:\n\n' % uri ad += '.. inheritance-diagram:: %s \n' % uri ad += ' :parts: 3\n' ad += '\n.. automodule:: ' + uri + '\n' ad += '\n.. currentmodule:: ' + uri + '\n' multi_class = len(classes) > 1 multi_fx = len(functions) > 1 if multi_class: ad += '\n' + 'Classes' + '\n' + \ self.rst_section_levels[2] * 7 + '\n' elif len(classes) and multi_fx: ad += '\n' + 'Class' + '\n' + \ self.rst_section_levels[2] * 5 + '\n' for c in classes: ad += '\n:class:`' + c + '`\n' \ + self.rst_section_levels[multi_class + 2 ] * \ (len(c)+9) + '\n\n' ad += '\n.. autoclass:: ' + c + '\n' # must NOT exclude from index to keep cross-refs working ad += ' :members:\n' \ ' :undoc-members:\n' \ ' :show-inheritance:\n' \ ' :inherited-members:\n' \ '\n' \ ' .. automethod:: __init__\n' if multi_fx: ad += '\n' + 'Functions' + '\n' + \ self.rst_section_levels[2] * 9 + '\n\n' elif len(functions) and multi_class: ad += '\n' + 'Function' + '\n' + \ self.rst_section_levels[2] * 8 + '\n\n' for f in functions: # must NOT exclude from index to keep cross-refs working ad += '\n.. autofunction:: ' + uri + '.' + f + '\n\n' return ad def _survives_exclude(self, matchstr, match_type): ''' Returns True if *matchstr* does not match patterns ``self.package_name`` removed from front of string if present Examples -------- >>> dw = ApiDocWriter('sphinx') >>> dw._survives_exclude('sphinx.okpkg', 'package') True >>> dw.package_skip_patterns.append('^\\.badpkg$') >>> dw._survives_exclude('sphinx.badpkg', 'package') False >>> dw._survives_exclude('sphinx.badpkg', 'module') True >>> dw._survives_exclude('sphinx.badmod', 'module') True >>> dw.module_skip_patterns.append('^\\.badmod$') >>> dw._survives_exclude('sphinx.badmod', 'module') False ''' if match_type == 'module': patterns = self.module_skip_patterns elif match_type == 'package': patterns = self.package_skip_patterns else: raise ValueError('Cannot interpret match type "%s"' % match_type) # Match to URI without package name L = len(self.package_name) if matchstr[:L] == self.package_name: matchstr = matchstr[L:] for pat in patterns: try: pat.search except AttributeError: pat = re.compile(pat) if pat.search(matchstr): return False return True def discover_modules(self): ''' Return module sequence discovered from ``self.package_name`` Parameters ---------- None Returns ------- mods : sequence Sequence of module names within ``self.package_name`` Examples -------- >>> dw = ApiDocWriter('sphinx') >>> mods = dw.discover_modules() >>> 'sphinx.util' in mods True >>> dw.package_skip_patterns.append('\.util$') >>> 'sphinx.util' in dw.discover_modules() False >>> ''' modules = [self.package_name] # raw directory parsing for dirpath, dirnames, filenames in os.walk(self.root_path): # Check directory names for packages root_uri = self._path2uri(os.path.join(self.root_path, dirpath)) for dirname in dirnames[:]: # copy list - we modify inplace package_uri = '.'.join((root_uri, dirname)) if (self._uri2path(package_uri) and self._survives_exclude(package_uri, 'package')): modules.append(package_uri) else: dirnames.remove(dirname) # Check filenames for modules for filename in filenames: module_name = filename[:-3] module_uri = '.'.join((root_uri, module_name)) if (self._uri2path(module_uri) and self._survives_exclude(module_uri, 'module')): modules.append(module_uri) return sorted(modules) def write_modules_api(self, modules,outdir): # write the list written_modules = [] for m in modules: api_str = self.generate_api_doc(m) if not api_str: continue # write out to file outfile = os.path.join(outdir, m + self.rst_extension) fileobj = open(outfile, 'wt') fileobj.write(api_str) fileobj.close() written_modules.append(m) self.written_modules = written_modules def write_api_docs(self, outdir): """Generate API reST files. Parameters ---------- outdir : string Directory name in which to store files We create automatic filenames for each module Returns ------- None Notes ----- Sets self.written_modules to list of written modules """ if not os.path.exists(outdir): os.mkdir(outdir) # compose list of modules modules = self.discover_modules() self.write_modules_api(modules,outdir) def write_index(self, outdir, froot='gen', relative_to=None): """Make a reST API index file from written files Parameters ---------- path : string Filename to write index to outdir : string Directory to which to write generated index file froot : string, optional root (filename without extension) of filename to write to Defaults to 'gen'. We add ``self.rst_extension``. relative_to : string path to which written filenames are relative. This component of the written file path will be removed from outdir, in the generated index. Default is None, meaning, leave path as it is. """ if self.written_modules is None: raise ValueError('No modules written') # Get full filename path path = os.path.join(outdir, froot+self.rst_extension) # Path written into index is relative to rootpath if relative_to is not None: relpath = outdir.replace(relative_to + os.path.sep, '') else: relpath = outdir idx = open(path,'wt') w = idx.write w('.. AUTO-GENERATED FILE -- DO NOT EDIT!\n\n') w('.. toctree::\n\n') for f in self.written_modules: w(' %s\n' % os.path.join(relpath,f)) idx.close()
"""Models mixins for Social Auth""" import re import time import base64 import uuid import warnings from datetime import datetime, timedelta import six from openid.association import Association as OpenIdAssociation from .exceptions import MissingBackend from .backends.utils import get_backend NO_ASCII_REGEX = re.compile(r'[^\x00-\x7F]+') NO_SPECIAL_REGEX = re.compile(r'[^\w.@+_-]+', re.UNICODE) class UserMixin(object): user = '' provider = '' uid = None extra_data = None def get_backend(self, strategy): return get_backend(strategy.get_backends(), self.provider) def get_backend_instance(self, strategy): try: backend_class = self.get_backend(strategy) except MissingBackend: return None else: return backend_class(strategy=strategy) @property def access_token(self): """Return access_token stored in extra_data or None""" return self.extra_data.get('access_token') @property def tokens(self): warnings.warn('tokens is deprecated, use access_token instead') return self.access_token def refresh_token(self, strategy, *args, **kwargs): token = self.extra_data.get('refresh_token') or \ self.extra_data.get('access_token') backend = self.get_backend(strategy) if token and backend and hasattr(backend, 'refresh_token'): backend = backend(strategy=strategy) response = backend.refresh_token(token, *args, **kwargs) extra_data = backend.extra_data(self, self.uid, response, self.extra_data) if self.set_extra_data(extra_data): self.save() def expiration_timedelta(self): """Return provider session live seconds. Returns a timedelta ready to use with session.set_expiry(). If provider returns a timestamp instead of session seconds to live, the timedelta is inferred from current time (using UTC timezone). None is returned if there's no value stored or it's invalid. """ if self.extra_data and 'expires' in self.extra_data: try: expires = int(self.extra_data.get('expires')) except (ValueError, TypeError): return None now = datetime.utcnow() # Detect if expires is a timestamp if expires > time.mktime(now.timetuple()): # expires is a datetime, return the remaining difference return datetime.fromtimestamp(expires) - now else: # expires is the time to live seconds since creation, # check against auth_time if present, otherwise return # the value auth_time = self.extra_data.get('auth_time') if auth_time: reference = datetime.fromtimestamp(auth_time) return (reference + timedelta(seconds=expires)) - now else: return timedelta(seconds=expires) def expiration_datetime(self): # backward compatible alias return self.expiration_timedelta() def access_token_expired(self): expiration = self.expiration_timedelta() return expiration and expiration.total_seconds() <= 0 def get_access_token(self, strategy): """Returns a valid access token.""" if self.access_token_expired(): self.refresh_token(strategy) return self.access_token def set_extra_data(self, extra_data=None): if extra_data and self.extra_data != extra_data: if self.extra_data and not isinstance( self.extra_data, six.string_types): self.extra_data.update(extra_data) else: self.extra_data = extra_data return True @classmethod def clean_username(cls, value): """Clean username removing any unsupported character""" value = NO_ASCII_REGEX.sub('', value) value = NO_SPECIAL_REGEX.sub('', value) return value @classmethod def changed(cls, user): """The given user instance is ready to be saved""" raise NotImplementedError('Implement in subclass') @classmethod def get_username(cls, user): """Return the username for given user""" raise NotImplementedError('Implement in subclass') @classmethod def user_model(cls): """Return the user model""" raise NotImplementedError('Implement in subclass') @classmethod def username_max_length(cls): """Return the max length for username""" raise NotImplementedError('Implement in subclass') @classmethod def allowed_to_disconnect(cls, user, backend_name, association_id=None): """Return if it's safe to disconnect the social account for the given user""" raise NotImplementedError('Implement in subclass') @classmethod def disconnect(cls, entry): """Disconnect the social account for the given user""" raise NotImplementedError('Implement in subclass') @classmethod def user_exists(cls, *args, **kwargs): """ Return True/False if a User instance exists with the given arguments. Arguments are directly passed to filter() manager method. """ raise NotImplementedError('Implement in subclass') @classmethod def create_user(cls, *args, **kwargs): """Create a user instance""" raise NotImplementedError('Implement in subclass') @classmethod def get_user(cls, pk): """Return user instance for given id""" raise NotImplementedError('Implement in subclass') @classmethod def get_users_by_email(cls, email): """Return users instances for given email address""" raise NotImplementedError('Implement in subclass') @classmethod def get_social_auth(cls, provider, uid): """Return UserSocialAuth for given provider and uid""" raise NotImplementedError('Implement in subclass') @classmethod def get_social_auth_for_user(cls, user, provider=None, id=None): """Return all the UserSocialAuth instances for given user""" raise NotImplementedError('Implement in subclass') @classmethod def create_social_auth(cls, user, uid, provider): """Create a UserSocialAuth instance for given user""" raise NotImplementedError('Implement in subclass') class NonceMixin(object): """One use numbers""" server_url = '' timestamp = 0 salt = '' @classmethod def use(cls, server_url, timestamp, salt): """Create a Nonce instance""" raise NotImplementedError('Implement in subclass') class AssociationMixin(object): """OpenId account association""" server_url = '' handle = '' secret = '' issued = 0 lifetime = 0 assoc_type = '' @classmethod def oids(cls, server_url, handle=None): kwargs = {'server_url': server_url} if handle is not None: kwargs['handle'] = handle return sorted([ (assoc.id, cls.openid_association(assoc)) for assoc in cls.get(**kwargs) ], key=lambda x: x[1].issued, reverse=True) @classmethod def openid_association(cls, assoc): secret = assoc.secret if not isinstance(secret, six.binary_type): secret = secret.encode() return OpenIdAssociation(assoc.handle, base64.decodestring(secret), assoc.issued, assoc.lifetime, assoc.assoc_type) @classmethod def store(cls, server_url, association): """Create an Association instance""" raise NotImplementedError('Implement in subclass') @classmethod def get(cls, *args, **kwargs): """Get an Association instance""" raise NotImplementedError('Implement in subclass') @classmethod def remove(cls, ids_to_delete): """Remove an Association instance""" raise NotImplementedError('Implement in subclass') class CodeMixin(object): email = '' code = '' verified = False def verify(self): self.verified = True self.save() @classmethod def generate_code(cls): return uuid.uuid4().hex @classmethod def make_code(cls, email): code = cls() code.email = email code.code = cls.generate_code() code.verified = False code.save() return code @classmethod def get_code(cls, code): raise NotImplementedError('Implement in subclass') class PartialMixin(object): token = '' data = '' next_step = '' backend = '' @property def args(self): return self.data.get('args', []) @args.setter def args(self, value): self.data['args'] = value @property def kwargs(self): return self.data.get('kwargs', {}) @kwargs.setter def kwargs(self, value): self.data['kwargs'] = value def extend_kwargs(self, values): self.data['kwargs'].update(values) @classmethod def generate_token(cls): return uuid.uuid4().hex @classmethod def load(cls, token): raise NotImplementedError('Implement in subclass') @classmethod def destroy(cls, token): raise NotImplementedError('Implement in subclass') @classmethod def prepare(cls, backend, next_step, data): partial = cls() partial.backend = backend partial.next_step = next_step partial.data = data partial.token = cls.generate_token() return partial @classmethod def store(cls, partial): partial.save() return partial class BaseStorage(object): user = UserMixin nonce = NonceMixin association = AssociationMixin code = CodeMixin partial = PartialMixin @classmethod def is_integrity_error(cls, exception): """Check if given exception flags an integrity error in the DB""" raise NotImplementedError('Implement in subclass')
# Working with TF commit 24466c2e6d32621cd85f0a78d47df6eed2c5c5a6 import math import numpy as np import tensorflow as tf import tensorflow.contrib.seq2seq as seq2seq from tensorflow.contrib.layers import safe_embedding_lookup_sparse as embedding_lookup_unique from tensorflow.contrib.rnn import LSTMCell, LSTMStateTuple, GRUCell import helpers class Seq2SeqModel(): """Seq2Seq model usign blocks from new `tf.contrib.seq2seq`. Requires TF 1.0.0-alpha""" PAD = 0 EOS = 1 def __init__(self, encoder_cell, decoder_cell, vocab_size, embedding_size, bidirectional=True, attention=False, debug=False): self.debug = debug self.bidirectional = bidirectional self.attention = attention self.vocab_size = vocab_size self.embedding_size = embedding_size self.encoder_cell = encoder_cell self.decoder_cell = decoder_cell self._make_graph() @property def decoder_hidden_units(self): # @TODO: is this correct for LSTMStateTuple? return self.decoder_cell.output_size def _make_graph(self): if self.debug: self._init_debug_inputs() else: self._init_placeholders() self._init_decoder_train_connectors() self._init_embeddings() if self.bidirectional: self._init_bidirectional_encoder() else: self._init_simple_encoder() self._init_decoder() self._init_optimizer() def _init_debug_inputs(self): """ Everything is time-major """ x = [[5, 6, 7], [7, 6, 0], [0, 7, 0]] xl = [2, 3, 1] self.encoder_inputs = tf.constant(x, dtype=tf.int32, name='encoder_inputs') self.encoder_inputs_length = tf.constant(xl, dtype=tf.int32, name='encoder_inputs_length') self.decoder_targets = tf.constant(x, dtype=tf.int32, name='decoder_targets') self.decoder_targets_length = tf.constant(xl, dtype=tf.int32, name='decoder_targets_length') def _init_placeholders(self): """ Everything is time-major """ self.encoder_inputs = tf.placeholder( shape=(None, None), dtype=tf.int32, name='encoder_inputs', ) self.encoder_inputs_length = tf.placeholder( shape=(None,), dtype=tf.int32, name='encoder_inputs_length', ) # required for training, not required for testing self.decoder_targets = tf.placeholder( shape=(None, None), dtype=tf.int32, name='decoder_targets' ) self.decoder_targets_length = tf.placeholder( shape=(None,), dtype=tf.int32, name='decoder_targets_length', ) def _init_decoder_train_connectors(self): """ During training, `decoder_targets` and decoder logits. This means that their shapes should be compatible. Here we do a bit of plumbing to set this up. """ with tf.name_scope('DecoderTrainFeeds'): sequence_size, batch_size = tf.unstack(tf.shape(self.decoder_targets)) EOS_SLICE = tf.ones([1, batch_size], dtype=tf.int32) * self.EOS PAD_SLICE = tf.ones([1, batch_size], dtype=tf.int32) * self.PAD self.decoder_train_inputs = tf.concat([EOS_SLICE, self.decoder_targets], axis=0) self.decoder_train_length = self.decoder_targets_length + 1 decoder_train_targets = tf.concat([self.decoder_targets, PAD_SLICE], axis=0) decoder_train_targets_seq_len, _ = tf.unstack(tf.shape(decoder_train_targets)) decoder_train_targets_eos_mask = tf.one_hot(self.decoder_train_length - 1, decoder_train_targets_seq_len, on_value=self.EOS, off_value=self.PAD, dtype=tf.int32) decoder_train_targets_eos_mask = tf.transpose(decoder_train_targets_eos_mask, [1, 0]) # hacky way using one_hot to put EOS symbol at the end of target sequence decoder_train_targets = tf.add(decoder_train_targets, decoder_train_targets_eos_mask) self.decoder_train_targets = decoder_train_targets self.loss_weights = tf.ones([ batch_size, tf.reduce_max(self.decoder_train_length) ], dtype=tf.float32, name="loss_weights") def _init_embeddings(self): with tf.variable_scope("embedding") as scope: # Uniform(-sqrt(3), sqrt(3)) has variance=1. sqrt3 = math.sqrt(3) initializer = tf.random_uniform_initializer(-sqrt3, sqrt3) self.embedding_matrix = tf.get_variable( name="embedding_matrix", shape=[self.vocab_size, self.embedding_size], initializer=initializer, dtype=tf.float32) self.encoder_inputs_embedded = tf.nn.embedding_lookup( self.embedding_matrix, self.encoder_inputs) self.decoder_train_inputs_embedded = tf.nn.embedding_lookup( self.embedding_matrix, self.decoder_train_inputs) def _init_simple_encoder(self): with tf.variable_scope("Encoder") as scope: (self.encoder_outputs, self.encoder_state) = ( tf.nn.dynamic_rnn(cell=self.encoder_cell, inputs=self.encoder_inputs_embedded, sequence_length=self.encoder_inputs_length, time_major=True, dtype=tf.float32) ) def _init_bidirectional_encoder(self): with tf.variable_scope("BidirectionalEncoder") as scope: ((encoder_fw_outputs, encoder_bw_outputs), (encoder_fw_state, encoder_bw_state)) = ( tf.nn.bidirectional_dynamic_rnn(cell_fw=self.encoder_cell, cell_bw=self.encoder_cell, inputs=self.encoder_inputs_embedded, sequence_length=self.encoder_inputs_length, time_major=True, dtype=tf.float32) ) self.encoder_outputs = tf.concat((encoder_fw_outputs, encoder_bw_outputs), 2) if isinstance(encoder_fw_state, LSTMStateTuple): encoder_state_c = tf.concat( (encoder_fw_state.c, encoder_bw_state.c), 1, name='bidirectional_concat_c') encoder_state_h = tf.concat( (encoder_fw_state.h, encoder_bw_state.h), 1, name='bidirectional_concat_h') self.encoder_state = LSTMStateTuple(c=encoder_state_c, h=encoder_state_h) elif isinstance(encoder_fw_state, tf.Tensor): self.encoder_state = tf.concat((encoder_fw_state, encoder_bw_state), 1, name='bidirectional_concat') def _init_decoder(self): with tf.variable_scope("Decoder") as scope: def output_fn(outputs): return tf.contrib.layers.linear(outputs, self.vocab_size, scope=scope) if not self.attention: decoder_fn_train = seq2seq.simple_decoder_fn_train(encoder_state=self.encoder_state) decoder_fn_inference = seq2seq.simple_decoder_fn_inference( output_fn=output_fn, encoder_state=self.encoder_state, embeddings=self.embedding_matrix, start_of_sequence_id=self.EOS, end_of_sequence_id=self.EOS, maximum_length=tf.reduce_max(self.encoder_inputs_length) + 3, num_decoder_symbols=self.vocab_size, ) else: # attention_states: size [batch_size, max_time, num_units] attention_states = tf.transpose(self.encoder_outputs, [1, 0, 2]) (attention_keys, attention_values, attention_score_fn, attention_construct_fn) = seq2seq.prepare_attention( attention_states=attention_states, attention_option="bahdanau", num_units=self.decoder_hidden_units, ) decoder_fn_train = seq2seq.attention_decoder_fn_train( encoder_state=self.encoder_state, attention_keys=attention_keys, attention_values=attention_values, attention_score_fn=attention_score_fn, attention_construct_fn=attention_construct_fn, name='attention_decoder' ) decoder_fn_inference = seq2seq.attention_decoder_fn_inference( output_fn=output_fn, encoder_state=self.encoder_state, attention_keys=attention_keys, attention_values=attention_values, attention_score_fn=attention_score_fn, attention_construct_fn=attention_construct_fn, embeddings=self.embedding_matrix, start_of_sequence_id=self.EOS, end_of_sequence_id=self.EOS, maximum_length=tf.reduce_max(self.encoder_inputs_length) + 3, num_decoder_symbols=self.vocab_size, ) (self.decoder_outputs_train, self.decoder_state_train, self.decoder_context_state_train) = ( seq2seq.dynamic_rnn_decoder( cell=self.decoder_cell, decoder_fn=decoder_fn_train, inputs=self.decoder_train_inputs_embedded, sequence_length=self.decoder_train_length, time_major=True, scope=scope, ) ) self.decoder_logits_train = output_fn(self.decoder_outputs_train) self.decoder_prediction_train = tf.argmax(self.decoder_logits_train, axis=-1, name='decoder_prediction_train') scope.reuse_variables() (self.decoder_logits_inference, self.decoder_state_inference, self.decoder_context_state_inference) = ( seq2seq.dynamic_rnn_decoder( cell=self.decoder_cell, decoder_fn=decoder_fn_inference, time_major=True, scope=scope, ) ) self.decoder_prediction_inference = tf.argmax(self.decoder_logits_inference, axis=-1, name='decoder_prediction_inference') def _init_optimizer(self): logits = tf.transpose(self.decoder_logits_train, [1, 0, 2]) targets = tf.transpose(self.decoder_train_targets, [1, 0]) self.loss = seq2seq.sequence_loss(logits=logits, targets=targets, weights=self.loss_weights) self.train_op = tf.train.AdamOptimizer().minimize(self.loss) def make_train_inputs(self, input_seq, target_seq): inputs_, inputs_length_ = helpers.batch(input_seq) targets_, targets_length_ = helpers.batch(target_seq) return { self.encoder_inputs: inputs_, self.encoder_inputs_length: inputs_length_, self.decoder_targets: targets_, self.decoder_targets_length: targets_length_, } def make_inference_inputs(self, input_seq): inputs_, inputs_length_ = helpers.batch(input_seq) return { self.encoder_inputs: inputs_, self.encoder_inputs_length: inputs_length_, } def make_seq2seq_model(**kwargs): args = dict(encoder_cell=LSTMCell(10), decoder_cell=LSTMCell(20), vocab_size=10, embedding_size=10, attention=True, bidirectional=True, debug=False) args.update(kwargs) return Seq2SeqModel(**args) def train_on_copy_task(session, model, length_from=3, length_to=8, vocab_lower=2, vocab_upper=10, batch_size=100, max_batches=5000, batches_in_epoch=1000, verbose=True): batches = helpers.random_sequences(length_from=length_from, length_to=length_to, vocab_lower=vocab_lower, vocab_upper=vocab_upper, batch_size=batch_size) loss_track = [] try: for batch in range(max_batches+1): batch_data = next(batches) fd = model.make_train_inputs(batch_data, batch_data) _, l = session.run([model.train_op, model.loss], fd) loss_track.append(l) if verbose: if batch == 0 or batch % batches_in_epoch == 0: print('batch {}'.format(batch)) print(' minibatch loss: {}'.format(session.run(model.loss, fd))) for i, (e_in, dt_pred) in enumerate(zip( fd[model.encoder_inputs].T, session.run(model.decoder_prediction_train, fd).T )): print(' sample {}:'.format(i + 1)) print(' enc input > {}'.format(e_in)) print(' dec train predicted > {}'.format(dt_pred)) if i >= 2: break print() except KeyboardInterrupt: print('training interrupted') return loss_track if __name__ == '__main__': import sys if 'fw-debug' in sys.argv: tf.reset_default_graph() with tf.Session() as session: model = make_seq2seq_model(debug=True) session.run(tf.global_variables_initializer()) session.run(model.decoder_prediction_train) session.run(model.decoder_prediction_train) elif 'fw-inf' in sys.argv: tf.reset_default_graph() with tf.Session() as session: model = make_seq2seq_model() session.run(tf.global_variables_initializer()) fd = model.make_inference_inputs([[5, 4, 6, 7], [6, 6]]) inf_out = session.run(model.decoder_prediction_inference, fd) print(inf_out) elif 'train' in sys.argv: tracks = {} tf.reset_default_graph() with tf.Session() as session: model = make_seq2seq_model(attention=True) session.run(tf.global_variables_initializer()) loss_track_attention = train_on_copy_task(session, model) tf.reset_default_graph() with tf.Session() as session: model = make_seq2seq_model(attention=False) session.run(tf.global_variables_initializer()) loss_track_no_attention = train_on_copy_task(session, model) import matplotlib.pyplot as plt plt.plot(loss_track) print('loss {:.4f} after {} examples (batch_size={})'.format(loss_track[-1], len(loss_track)*batch_size, batch_size)) else: tf.reset_default_graph() session = tf.InteractiveSession() model = make_seq2seq_model(debug=False) session.run(tf.global_variables_initializer()) fd = model.make_inference_inputs([[5, 4, 6, 7], [6, 6]]) inf_out = session.run(model.decoder_prediction_inference, fd)
# Copyright 2016 ASLP@NPU. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: npuichigo@gmail.com (zhangyuchao) from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import argparse import numpy as np import os import sys import time import tensorflow as tf from io_funcs.tf_datasets import SequenceDataset from models.tf_model import TfModel from utils.utils import pp, show_all_variables, write_binary_file, ProgressBar # Basic model parameters as external flags. FLAGS = None def restore_from_ckpt(sess, saver): ckpt = tf.train.get_checkpoint_state(os.path.join(FLAGS.save_dir, "nnet")) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) return True else: tf.logging.fatal("checkpoint not found") return False def train_one_epoch(sess, summary_writer, merged, global_step, train_step, train_loss, train_num_batches): if FLAGS.show: bar = ProgressBar('Training', max=train_num_batches) tr_loss = num_batches = 0 while True: if FLAGS.show: bar.next() try: if num_batches % 50 == 49: _, loss, summary, step = sess.run([train_step, train_loss, merged, global_step]) summary_writer.add_summary(summary, step) else: _, loss = sess.run([train_step, train_loss]) tr_loss += loss num_batches += 1 except tf.errors.OutOfRangeError: break if FLAGS.show: bar.finish() tr_loss /= float(num_batches) return tr_loss def eval_one_epoch(sess, valid_loss, valid_num_batches): if FLAGS.show: bar = ProgressBar('Validation', max=valid_num_batches) val_loss = num_batches = 0 while True: if FLAGS.show: bar.next() try: loss = sess.run(valid_loss) val_loss += loss num_batches += 1 except tf.errors.OutOfRangeError: break if FLAGS.show: bar.finish() val_loss /= float(num_batches) return val_loss def train(): """Run the training of the acoustic or duration model.""" dataset_train = SequenceDataset( subset="train", config_dir=FLAGS.config_dir, data_dir=FLAGS.data_dir, batch_size=FLAGS.batch_size, input_size=FLAGS.input_dim, output_size=FLAGS.output_dim, num_threads=FLAGS.num_threads, use_bucket=True, infer=False, name="dataset_train")() dataset_valid = SequenceDataset( subset="valid", config_dir=FLAGS.config_dir, data_dir=FLAGS.data_dir, batch_size=FLAGS.batch_size, input_size=FLAGS.input_dim, output_size=FLAGS.output_dim, num_threads=FLAGS.num_threads, use_bucket=True, infer=False, name="dataset_valid")() model = TfModel( rnn_cell=FLAGS.rnn_cell, dnn_depth=FLAGS.dnn_depth, dnn_num_hidden=FLAGS.dnn_num_hidden, rnn_depth=FLAGS.rnn_depth, rnn_num_hidden=FLAGS.rnn_num_hidden, output_size=FLAGS.output_dim, bidirectional=FLAGS.bidirectional, rnn_output=FLAGS.rnn_output, cnn_output=FLAGS.cnn_output, look_ahead=FLAGS.look_ahead, mdn_output=FLAGS.mdn_output, mix_num=FLAGS.mix_num, name="tf_model") # Build a reinitializable iterator for both dataset_train and dataset_valid. iterator = tf.data.Iterator.from_structure( dataset_train.batched_dataset.output_types, dataset_train.batched_dataset.output_shapes) (input_sequence, input_sequence_length, target_sequence, target_sequence_length) = iterator.get_next() training_init_op = iterator.make_initializer(dataset_train.batched_dataset) validation_init_op = iterator.make_initializer(dataset_valid.batched_dataset) # Build the model and get the loss. output_sequence_logits, train_final_state = model( input_sequence, input_sequence_length) loss = model.loss( output_sequence_logits, target_sequence, target_sequence_length) tf.summary.scalar("loss", loss) learning_rate = tf.get_variable( "learning_rate", shape=[], dtype=tf.float32, initializer=tf.constant_initializer(FLAGS.learning_rate), trainable=False) reduce_learning_rate = learning_rate.assign( learning_rate * FLAGS.reduce_learning_rate_multiplier) global_step = tf.get_variable( name="global_step", shape=[], dtype=tf.int64, initializer=tf.zeros_initializer(), trainable=False, collections=[tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.GLOBAL_STEP]) # Set up optimizer with global norm clipping. trainable_variables = tf.trainable_variables() optimizer = tf.train.AdamOptimizer(learning_rate) grads, _ = tf.clip_by_global_norm( tf.gradients(loss, trainable_variables), FLAGS.max_grad_norm) train_step = optimizer.apply_gradients( zip(grads, trainable_variables), global_step=global_step) show_all_variables() merged_all = tf.summary.merge_all() saver = tf.train.Saver(max_to_keep=FLAGS.max_epochs) # Train config = tf.ConfigProto() # Prevent exhausting all the gpu memories config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: # Run init sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter( os.path.join(FLAGS.save_dir, "nnet"), sess.graph) if FLAGS.resume_training: restore_from_ckpt(sess, saver) # add a blank line for log readability print() sys.stdout.flush() sess.run(validation_init_op) loss_prev = eval_one_epoch(sess, loss, dataset_valid.num_batches) tf.logging.info("CROSSVAL PRERUN AVG.LOSS %.4f\n" % loss_prev) for epoch in range(FLAGS.max_epochs): # Train one epoch time_start = time.time() sess.run(training_init_op) tr_loss = train_one_epoch(sess, summary_writer, merged_all, global_step, train_step, loss, dataset_train.num_batches) time_end = time.time() used_time = time_end - time_start # Validate one epoch sess.run(validation_init_op) val_loss = eval_one_epoch(sess, loss, dataset_valid.num_batches) # Determine checkpoint path FLAGS.learning_rate = sess.run(learning_rate) cptk_name = 'nnet_epoch%d_lrate%g_tr%.4f_cv%.4f' % ( epoch + 1, FLAGS.learning_rate, tr_loss, val_loss) checkpoint_path = os.path.join(FLAGS.save_dir, "nnet", cptk_name) # accept or reject new parameters if val_loss < loss_prev: saver.save(sess, checkpoint_path) # logging training loss along with validation loss tf.logging.info( "EPOCH %d: TRAIN AVG.LOSS %.4f, (lrate%g) " "CROSSVAL AVG.LOSS %.4f, TIME USED %.2f, %s" % ( epoch + 1, tr_loss, FLAGS.learning_rate, val_loss, used_time, "nnet accepted")) loss_prev = val_loss else: tf.logging.info( "EPOCH %d: TRAIN AVG.LOSS %.4f, (lrate%g) " "CROSSVAL AVG.LOSS %.4f, TIME USED %.2f, %s" % ( epoch + 1, tr_loss, FLAGS.learning_rate, val_loss, used_time, "nnet rejected")) restore_from_ckpt(sess, saver) # Reducing learning rate. sess.run(reduce_learning_rate) # add a blank line for log readability print() sys.stdout.flush() def decode(): """Run the decoding of the acoustic or duration model.""" with tf.device('/cpu:0'): dataset_test = SequenceDataset( subset="test", config_dir=FLAGS.config_dir, data_dir=FLAGS.data_dir, batch_size=1, input_size=FLAGS.input_dim, output_size=FLAGS.output_dim, infer=True, name="dataset_test")() model = TfModel( rnn_cell=FLAGS.rnn_cell, dnn_depth=FLAGS.dnn_depth, dnn_num_hidden=FLAGS.dnn_num_hidden, rnn_depth=FLAGS.rnn_depth, rnn_num_hidden=FLAGS.rnn_num_hidden, output_size=FLAGS.output_dim, bidirectional=FLAGS.bidirectional, rnn_output=FLAGS.rnn_output, cnn_output=FLAGS.cnn_output, look_ahead=FLAGS.look_ahead, mdn_output=FLAGS.mdn_output, mix_num=FLAGS.mix_num, name="tf_model") # Build the testing model and get test output sequence. test_iterator = dataset_test.batched_dataset.make_one_shot_iterator() input_sequence, input_sequence_length = test_iterator.get_next() test_output_sequence_logits, test_final_state = model( input_sequence, input_sequence_length) show_all_variables() saver = tf.train.Saver() # Decode. with tf.Session() as sess: # Run init sess.run(tf.global_variables_initializer()) if not restore_from_ckpt(sess, saver): sys.exit(-1) # Read cmvn to do reverse mean variance normalization cmvn = np.load(os.path.join(FLAGS.data_dir, "train_cmvn.npz")) num_batches = 0 used_time_sum = frames_sum = 0.0 while True: try: time_start = time.time() logits = sess.run(test_output_sequence_logits) time_end = time.time() used_time = time_end - time_start used_time_sum += used_time frame_num = logits.shape[1] frames_sum += frame_num # Squeeze batch dimension. logits = logits.squeeze(axis=0) if FLAGS.mdn_output: out_pi = logits[:, : FLAGS.mix_num] out_mu = logits[:, FLAGS.mix_num : (FLAGS.mix_num + FLAGS.mix_num * FLAGS.output_dim)] out_sigma = logits[:, (FLAGS.mix_num + FLAGS.mix_num * FLAGS.output_dim) :] max_index_pi = out_pi.argmax(axis=1) result_mu = [] for i in xrange(out_mu.shape[0]): beg_index = max_index_pi[i] * FLAGS.output_dim end_index = (max_index_pi[i] + 1) * FLAGS.output_dim result_mu.append(out_mu[i, beg_index:end_index]) logits = np.vstack(result_mu) sequence = logits * cmvn["stddev_labels"] + cmvn["mean_labels"] out_dir_name = os.path.join(FLAGS.save_dir, "test", "cmp") out_file_name =os.path.basename( dataset_test.tfrecords_lst[num_batches]).split('.')[0] + ".cmp" out_path = os.path.join(out_dir_name, out_file_name) write_binary_file(sequence, out_path, with_dim=False) #np.savetxt(out_path, sequence, fmt="%f") tf.logging.info( "writing inferred cmp to %s (%d frames in %.4f seconds)" % ( out_path, frame_num, used_time)) num_batches += 1 except tf.errors.OutOfRangeError: break tf.logging.info("Done decoding -- epoch limit reached (%d " "frames per second)" % int(frames_sum / used_time_sum)) def main(_): """Training or decoding according to FLAGS.""" if FLAGS.decode != True: train() else: decode() if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) def _str_to_bool(s): """Convert string to bool (in argparse context).""" if s.lower() not in ['true', 'false']: raise ValueError('Argument needs to be a ' 'boolean, got {}'.format(s)) return {'true': True, 'false': False}[s.lower()] parser = argparse.ArgumentParser() parser.add_argument( '--decode', default=False, help="Flag indicating decoding or training.", action="store_true" ) parser.add_argument( '--resume_training', default=False, help="Flag indicating whether to resume training from cptk.", action="store_true" ) parser.add_argument( '--input_dim', type=int, default=145, help='The dimension of inputs.' ) parser.add_argument( '--output_dim', type=int, default=75, help='The dimension of outputs.' ) parser.add_argument( '--rnn_cell', type=str, default='fused_lstm', help='Rnn cell types including rnn, gru and lstm.' ) parser.add_argument( '--bidirectional', type=_str_to_bool, default=False, help='Whether to use bidirectional layers.' ) parser.add_argument( '--dnn_depth', type=int, default=2, help='Number of layers of dnn model.' ) parser.add_argument( '--rnn_depth', type=int, default=3, help='Number of layers of rnn model.' ) parser.add_argument( '--dnn_num_hidden', type=int, default=128, help='Number of hidden units to use.' ) parser.add_argument( '--rnn_num_hidden', type=int, default=64, help='Number of hidden units to use.' ) parser.add_argument( '--max_grad_norm', type=float, default=5.0, help='The max gradient normalization.' ) parser.add_argument( '--rnn_output', type=_str_to_bool, default=False, help='Whether to use rnn as the output layer.' ) parser.add_argument( '--cnn_output', type=_str_to_bool, default=False, help='Whether to use cnn as the output layer.' ) parser.add_argument( '--look_ahead', type=int, default=5, help='Number of steps to look ahead in cnn output layer.', ) parser.add_argument( '--mdn_output', type=_str_to_bool, default=False, help='Whether to use mdn as the output layer.' ) parser.add_argument( '--mix_num', type=int, default=1, help='Number of gaussian mixes in mdn output layer.', ) parser.add_argument( '--batch_size', type=int, default=32, help='Mini-batch size.' ) parser.add_argument( '--learning_rate', type=float, default=0.001, help='Initial learning rate.' ) parser.add_argument( '--max_epochs', type=int, default=30, help='Max number of epochs to run trainer totally.', ) parser.add_argument( '--reduce_learning_rate_multiplier', type=float, default=0.5, help='Factor for reducing learning rate.' ) parser.add_argument( '--num_threads', type=int, default=8, help='The num of threads to read tfrecords files.' ) parser.add_argument( '--save_dir', type=str, default='exp/acoustic/', help='Directory to put the training result.' ) parser.add_argument( '--data_dir', type=str, default='data/', help='Directory of train, val and test data.' ) parser.add_argument( '--config_dir', type=str, default='config/', help='Directory to load train, val and test lists.' ) parser.add_argument( '--show', type=_str_to_bool, default=True, help='Whether to use progress bar.' ) FLAGS, unparsed = parser.parse_known_args() pp.pprint(FLAGS.__dict__) tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
""" Echidna's parameter module. Contains :class:`Parameter` and all classes that inherit from it. """ import numpy import abc import logging import warnings from echidna.core import scale, shift, smear class Parameter(object): """ The base class for creating parameter classes. Args: type_name (string): The type of the parameter. name (str): The name of this parameter low (float): The lower limit to float the parameter from high (float): The higher limit to float the parameter from bins (int): The number of steps between low and high values Attributes: _type (string): The type of the parameter. _name (str): The name of this parameter _low (float): The lower limit to float the parameter from _high (float): The higher limit to float the parameter from _bins (int): The number of steps between low and high values _min (float): Minimum bound for values - (-inf) by default _max (float): Maximum bound for values - (inf) by default """ def __init__(self, type_name, name, low, high, bins): """ Initialise config class """ self._type = type_name self._name = name self._low = float(low) self._high = float(high) self._bins = int(bins) self._min = -numpy.inf self._max = numpy.inf def get_bins(self): """ Get the number of bins. Returns: int: Number of bins for this parameter. """ return self._bins def get_bin(self, value): """ Get bin for value of parameter. Args: value (float): Value of parameter. Returns: int: Bin index. """ return int((value - self._low) / (self._high - self._low) * self._bins) def get_high(self): """ Get the high value of the parameter Returns: float: The high value of the parameter. """ return self._high def get_low(self): """ Get the low value of the parameter. Returns: float: The low value the parameter. """ return self._low def get_name(self): """ Get the name of the parameter. Returns: float: The name of the parameter. """ return self._name def get_type(self): """ Get the type of the parameter. Returns: float: The type of the parameter. """ return self._type def get_width(self): """Get the width of the binning for the parameter Returns: float: Bin width. """ return (self._high - self._low) / float(self._bins) def to_dict(self, basic=False): """ Represent the properties of the parameter in a dictionary. .. note:: The attributes :attr:`_name`, :attr:`_type` are never included in the dictionary. This is because it is expected that the dictionary returned here will usually be used as part of a larger dictionary where type and/or parameter_name are keys. Returns: dict: Representation of the parameter in the form of a dictionary. """ parameter_dict = {} parameter_dict["low"] = self._low parameter_dict["high"] = self._high parameter_dict["bins"] = self._bins return parameter_dict class FitParameter(Parameter): """Simple data container that holds information for a fit parameter (i.e. a systematic to float). .. warning:: The sigma value can be explicitly set as None. This is so that you disable a penalty term for a floating parameter. If a parameter is being floated, but sigma is None, then no penalty term will be added for the parameter. .. note:: The :class:`FitParameter` class offers three different scales for constructing the array of values for the parameter. These are: * **linear**: A standard linear scale is the default option. This creates an array of equally spaced values, starting at :obj:`low` and ending at :obj:`high` (*includive*). The array will contain :obj:`bins` values. * **logscale**: This creates an array of values that are equally spaced in log-space, but increase exponentially in linear-space, starting at :obj:`low` and ending at :obj:`high` (*includive*). The array will contain :obj:`bins` values. * **logscale_deviation**: This creates an array of values - centred around the prior - whose absolute deviations from the prior are equally spaced in log-space, but increase exponentially in linear-space. The values start at :obj:`low` and end at :obj:`high` (*includive*). The array will contain :obj:`bins` values. Args: name (str): The name of this parameter prior (float): The prior of the parameter sigma (float): The sigma of the parameter low (float): The lower limit to float the parameter from high (float): The higher limit to float the parameter from bins (int): The number of steps between low and high values dimension (string, optional): The spectral dimension to which the fit parameter applies. values (:class:`numpy.array`, optional): Array of parameter values to test in fit. best_fit (float, optional): Best-fit value calculated by fit. penalty_term (float, optional): Penalty term value at best fit. logscale (bool, optional): Flag to create an logscale array of values, rather than a linear array. base (float, optional): Base to use when creating an logscale array. Default is base-e. logscale_deviation (bool, optional): Flag to create a logscale deviation array of values rather than a linear or logscale array. Attributes: _prior (float): The prior of the parameter _sigma (float): The sigma of the parameter _dimension (string): The spectral dimension to which the fit parameter applies. _values (:class:`numpy.array`): Array of parameter values to test in fit. _best_fit (float): Best-fit value calculated by fit. _penalty_term (float): Penalty term value at best fit. _logscale (bool): Flag to create an logscale array of values, rather than a linear array. _base (float): Base to use when creating an logscale array. Default is base-e _logscale_deviation (bool): Flag to create a logscale deviation array of values rather than a linear or logscale array. _bin_boundaries (:class:`numpy.array`): Array of bin boundaries corresponding to :attr:`_values`. """ def __init__(self, name, prior, sigma, low, high, bins, dimension=None, values=None, current_value=None, penalty_term=None, best_fit=None, logscale=None, base=numpy.e, logscale_deviation=None): """Initialise FitParameter class """ super(FitParameter, self).__init__("fit", name, low, high, bins) self._logger = logging.getLogger("FitParameter") self._prior = float(prior) if sigma is None: self._logger.warning( "Setting sigma explicitly as None for %s - " "No penalty term will be added for this parameter!" % name) self._sigma = sigma self._dimension = dimension self._values = values self._current_value = current_value self._best_fit = best_fit self._penalty_term = penalty_term self._logscale = None self._base = None self._logscale_deviation = None self._bin_boundaries = None if logscale: self._logger.info("Setting logscale %s for parameter %s" % (logscale, name)) logging.getLogger("extra").info(" --> with base: %.4g" % base) if logscale_deviation is not None: self._logger.warning("Recieved logscale_deviation flag that " "will not have any effect") self._logscale = logscale self._base = base elif logscale_deviation: self._logger.info("Setting logscale_deviation %s for parameter %s" % (logscale_deviation, name)) self._logscale_deviation = logscale_deviation @abc.abstractmethod def apply_to(self, spectrum): """ Applies current value of fit parameter to spectrum. Args: spectrum (:class:`Spectra`): Spectrum to which current value of parameter should be applied. Returns: (:class:`Spectra`): Modified spectrum. Raises: ValueError: If :attr:`_current_value` is not set. """ pass def check_values(self): """ Check that no values/bin_boundaries fall outside the min and max bounds for the paramaeter type. Check that the prior is in the values. Warnings: UserWarning: If any values fall outside the boundaries for the parameter type - defined by :attr:`_min` and :attr:`_max`. UserWarning: If :attr:`_prior` is not present in the :attr:`_values` array. """ values = self.get_values() # Check for bad values - fall outside of allowed range for parameter bad_indices = numpy.where((values < self._min) | (values > self._max))[0] if len(bad_indices) != 0: # Bad values present warnings.warn( "%d values fall outside bounds (%.4g, %.4g), for parameter %s" % (len(bad_indices), self._min, self._max, self._name)) bad_values = numpy.take(values, bad_indices) self._logger.debug("The bad values are:") logging.getLogger("extra").debug("\n\n%s\n" % str(bad_values)) # Check prior contained in values if not numpy.any(numpy.around(values / self._prior, 12) == numpy.around(1., 12)): warnings.warn("Prior not in values array " "for parameter %s" % self._name) logging.getLogger("extra").warning( "\n\nUsers are strongly advised to include the value of the " "in all FitParameter value arrays as failure to do this " "could result in unusual Fit results.\n\n This can be " "achieved with an odd number of bins and low and high values " "symmetric about prior. Some scale types - logscale_deviation " "build the array of values around the prior, so it is " "included by definition.\n") log_text = "Values: %s\n" % str(values) log_text += "Prior: %.4g\n" % self._prior logging.getLogger("extra").debug("\n\n%s" % log_text) def get_best_fit(self): """ Returns: float: Best fit value of parameter - stored in :attr:`_best_fit`. Raises: ValueError: If the value of :attr:`_best_fit` has not yet been set. """ if self._best_fit is None: raise ValueError("Best fit value for parameter" + self._name + " has not been set") return self._best_fit def get_bin(self, value): """ Get bin for value of parameter. Args: value (float): Value of parameter. Returns: int: Bin index. """ try: return numpy.where(numpy.isclose(self.get_values(), value))[0][0] except: return int((value - self._low) / (self._high - self._low) * self._bins) def get_bin_boundaries(self): """ ***PENDING DEPRECATION*** Returns an array of bin boundaries, based on the :attr:`_low`, :attr:`_high` and :attr:`_bins` parameters, and any flags (:attr:`_logscale` or :attr:`_logscale_deviation`) that have been applied. Returns: (:class:`numpy.array`): Array of bin_baoundaries for the parameter values stored in :attr:`_values`. Warnings: PendingDeprecationWarning: This method will be deprecated soon. Bin boundaries shouldn't be required here as we are referring to points on a grid, not bins. """ warnings.warn(PendingDeprecationWarning( "Bin boundaries shouldn't be required here " "as we are referring to points on a grid, not bins")) if self._bin_boundaries is None: # Generate array of bin boundaries if self._logscale: if self._low <= 0.: # set low = -log(high) low = -numpy.log(self._high) logging.warning("Correcting fit parameter value <= 0.0") logging.debug(" --> changed to %.4g (previously %.4g)" % (numpy.exp(low), self._low)) else: low = numpy.log(self._low) high = numpy.log(self._high) width = (numpy.log(high) - numpy.log(low)) / int(self._bins) self._bin_boundaries = numpy.logspace( low - 0.5*width, high + 0.5*width, num=self._bins+1, base=numpy.e) elif self._logscale_deviation: delta = self._high - self._prior width = numpy.log(delta + 1.) / int(self._bins / 2) deltas = numpy.linspace( 0.5 * width, numpy.log(delta + 1.) + 0.5*width, num=int((self._bins + 1) / 2)) pos = self._prior + numpy.exp(deltas) - 1. neg = self._prior - numpy.exp(deltas[::-1]) + 1. self._bin_boundaries = numpy.append(neg, pos) else: width = self.get_width() self._bin_boundaries = numpy.linspace(self._low + 0.5*width, self._high + 0.5*width, self._bins + 1) return self._bin_boundaries def get_current_value(self): """ Returns: float: Current value of fit parameter - stored in :attr:`_current_value` """ if self._current_value is None: raise ValueError("Current value not yet set " + "for parameter " + self._name) return self._current_value def get_dimension(self): """ Returns: string: Dimension to which fit parameter is applied. """ return self._dimension def get_penalty_term(self): """ Gets the value of the penalty term at the best fit. Returns: float: Penalty term value of parameter at best fit - stored in :attr:`_penalty_term`. Raises: ValueError: If the value of :attr:`_penalty_term` has not yet been set. """ if self._penalty_term is None: raise ValueError("Penalty term value for parameter" + self._name + " has not been set") return self._penalty_term def get_prior(self): """ Returns: float: Prior value of fit parameter - stored in :attr:`_prior` """ return self._prior def get_sigma(self): """ Returns: float: Sigma of fit parameter - stored in :attr:`_sigma` """ return self._sigma def get_values(self): """ Returns an array of values, based on the :attr:`_low`, :attr:`_high` and :attr:`_bins` parameters, and any flags (:attr:`_logscale` or :attr:`_logscale_deviation`) that have been applied. .. warning:: Calling this method with the :attr:`logscale_deviation` flag enabled, may alter the value of :attr:`_low`, as this scale must be symmetric about the prior. Returns: (:class:`numpy.array`): Array of parameter values to test in fit. Stored in :attr:`_values`. """ if self._values is None: # Generate array of values if self._logscale: # Create an array that is equally spaced in log-space self._logger.info("Creating logscale array of values " "for parameter %s" % self._name) if self._low <= 0.: # set low = -log(high) low = -numpy.log(self._high) logging.warning("Correcting fit parameter value <= 0.0") logging.debug(" --> changed to %.4g (previously %.4g)" % (numpy.exp(low), self._low)) else: low = numpy.log(self._low) high = numpy.log(self._high) self._values = numpy.logspace(low, high, num=self._bins, base=numpy.e) elif self._logscale_deviation: # Create an array where absolute deviations from the prior # increase linearly in logspace. The array is therefore # approximately symmetrical about the prior, but the positive # and negative deviations are treated separatedly, so can have # an extended range on either side. self._logger.info("Creating logscale_deviation array of " "values for parameter %s" % self._name) # Calculate maximum deviation above and below prior delta_low = numpy.absolute(self._low - self._prior) delta_high = numpy.absolute(self._high - self._prior) # Calculate bins above and below, distributing evenly bins_low = numpy.rint( (delta_low) / (delta_low + delta_high) * (self._bins + 1)) bins_high = numpy.rint( (delta_high) / (delta_low + delta_high) * (self._bins + 1)) # Calculate arrays of deviation, linear in logspace deltas_low = numpy.linspace( 0., numpy.log(delta_low + 1.), bins_low) deltas_high = numpy.linspace( 0., numpy.log(delta_high + 1.), bins_high) # Create positive and negative arrays of values # [::-1] reverses array # Prior is included in low low = self._prior - numpy.exp(deltas_low[::-1]) + 1. # Prior not included in high high = self._prior + numpy.exp(deltas_high[1:]) - 1. self._values = numpy.append(low, high) else: # Create a normal linear array self._logger.info("Creating linear array of values " "for parameter %s" % self._name) self._values = numpy.linspace( self._low, self._high, self._bins) return self._values def get_value_at(self, index): """ Access the parameter value at a given index in the array. Args: index (int): Index of parameter value requested. Returns: float: Parameter value at the given index. """ return self.get_values()[index] def get_value_index(self, value): """ Get the index corresponding to a given parameter value. Args: value (float): Parameter value for which to get corresponding index. Returns: int: Index of corresponding to the given parameter value. .. warning:: If there are multiple occurences of ``value`` in the array of parameter values, only the index of the first occurence will be returned. """ indices = numpy.where(self.get_values() == value)[0] if len(indices) == 0: raise ValueError("No value %.2g found in parameter values " + "for parameter %s." % (value, self._name)) return int(indices[0]) def set_best_fit(self, best_fit): """ Set value for :attr:`_best_fit`. Args: best_fit (float): Best fit value for parameter """ self._best_fit = best_fit def set_current_value(self, value): """ Set value for :attr:`_current_value`. Args: value (float): Current value of fit parameter """ self._current_value = value def set_par(self, **kwargs): """Set a fitting parameter's values after initialisation. Args: kwargs (dict): keyword arguments .. note:: Keyword arguments include: * prior (float): Value to set the prior to of the parameter * sigma (float): Value to set the sigma to of the parameter * low (float): Value to set the lower limit to of the parameter * high (float): Value to set the higher limit to of the parameter * bins (float): Value to set the size of the bins between low and high of the parameter * logscale (bool): Flag to create an logscale array of values, rather than a linear array. * base (float): Base to use when creating an logscale array. Raises: TypeError: Unknown variable type passed as a kwarg. """ for kw in kwargs: self._logger.warning("Updating value for %s (%.4g --> %.4g)" % (kw, self.__dict__["_"+kw], kwargs[kw])) if kw == "prior": self._prior = float(kwargs[kw]) elif kw == "sigma": if kwargs[kw] is None: self._logger.warning("Setting sigma explicitly as None - " "No penalty term will be applied") self._sigma = kwargs[kw] elif kw == "low": self._low = float(kwargs[kw]) elif kw == "high": self._high = float(kwargs[kw]) elif kw == "bins": self._bins = float(kwargs[kw]) elif kw == "logscale": self._logscale = bool(kwargs[kw]) elif kw == "base": self._base = float(kwargs[kw]) elif kw == "logscale_deviation": self._logscale_deviation = bool(kwargs[kw]) elif kw == "dimension": self._dimension = str(kwargs[kw]) else: raise TypeError("Unhandled parameter name / type %s" % kw) self._logger.warning("Setting _values and _bin_boundaries to None") self._values = None self._bin_boundaries = None def set_penalty_term(self, penalty_term): """ Set value for :attr:`_penalty_term`. Args: penalty_term (float): Value for penalty term of parameter at best fit. """ self._penalty_term = penalty_term def to_dict(self, basic=False): """ Represent the properties of the parameter in a dictionary. Args: basic (bool, optional): If True, only the basic properties: prior, sigma, low, high and bins are included. .. note:: The attributes :attr:`_name`, :attr:`_dimension`, :attr:`_values` and :attr:`_logger` are never included in the dictionary. For the first two this is because it is expected that the dictionary returned here will usually be used as part of a larger dictionary where dimension and parameter_name are keys. The :attr:`values` attribute is not included because this is a lrge numpy array. The logger is not included as this is for internal use only. Returns: dict: Representation of the parameter in the form of a dictionary. """ parameter_dict = {} # Add basic attributes parameter_dict["prior"] = self._prior parameter_dict["sigma"] = self._sigma parameter_dict["low"] = self._low parameter_dict["high"] = self._high parameter_dict["bins"] = self._bins parameter_dict["logscale"] = self._logscale parameter_dict["base"] = self._base parameter_dict["logscale_deviation"] = self._logscale_deviation if basic: return parameter_dict # Add non-basic attributes parameter_dict["current_value"] = self._current_value parameter_dict["best_fit"] = self._best_fit parameter_dict["penalty_term"] = self._best_fit return parameter_dict class RateParameter(FitParameter): """ Data container that holds information for a rate parameter that is included in the fit. Args: name (str): The name of this parameter prior (float): The prior of the parameter sigma (float): The sigma of the parameter low (float): The lower limit to float the parameter from high (float): The higher limit to float the parameter from bins (int): The number of steps between low and high values logscale (bool, optional): Flag to create an logscale array of values, rather than a linear array. base (float, optional): Base to use when creating an logscale array. kwargs (dict): Other keyword arguments to pass to :class:`FitParameter` Attributes: _logscale (bool): Flag to create an logscale array of values, rather than a linear array. _base (float): Base to use when creating an logscale array. """ def __init__(self, name, prior, sigma, low, high, bins, logscale=None, base=numpy.e, logscale_deviation=None, **kwargs): super(RateParameter, self).__init__( name, prior, sigma, low, high, bins, logscale=logscale, base=base, logscale_deviation=logscale_deviation, **kwargs) self._min = 0. # For rates def apply_to(self, spectrum): """ Scales spectrum to current value of rate parameter. Args: spectrum (:class:`Spectra`): Spectrum which should be scaled to current rate value. Returns: (:class:`Spectra`): Scaled spectrum. Raises: ValueError: If :attr:`_current_value` is not set. """ if self._current_value is None: raise ValueError("Current value of rate parameter %s " "has not been set" % self._name) spectrum.scale(self._current_value) return spectrum class ResolutionParameter(FitParameter): """ Data container that holds information for a resulution parameter that is included in the fit. Args: name (str): The name of this parameter prior (float): The prior of the parameter sigma (float): The sigma of the parameter low (float): The lower limit to float the parameter from high (float): The higher limit to float the parameter from bins (int): The number of steps between low and high values dimension (string): The spectral dimension to which the resolution parameter applies. kwargs (dict): Other keyword arguments to pass to :class:`FitParameter` """ def __init__(self, name, prior, sigma, low, high, bins, dimension, **kwargs): super(ResolutionParameter, self).__init__( name, prior, sigma, low, high, bins, dimension, **kwargs) def apply_to(self, spectrum): """ Smears spectrum to current value of resolution. Args: spectrum (:class:`Spectra`): Spectrum which should be smeared. Returns: (:class:`Spectra`): Smeared spectrum. Raises: ValueError: If :attr:`_current_value` is not set. """ if self._current_value is None: raise ValueError("Current value of rate parameter %s " "has not been set" % self._name) cur_value = self._current_value if cur_value > 10.: smearer = smear.EnergySmearLY() else: smearer = smear.EnergySmearRes() smearer.set_resolution(self._current_value) spectrum = smearer.weighted_smear(spectrum, self._dimension) return spectrum def get_pre_convolved(self, directory, filename, added_dim=False): """ Constructs the filename and directory from which a pre_convolved spectrum can be loaded from. .. note:: Before any calls to this function, the directory and filename is should be of the form:: ../dimension/syst/file_XXyy.hdf5 where dimension is the dimension you are applying systematics to e.g. `energy_mc` and syst is the type of systematic e.g. `smear`. XX and yy represent the syst value e.g. 200 and syst denoted type e.g. ly for 200 NHits/MeV light yield. For multiple dimensions and systematics then it is of the form:: ../dimension/syst1/syst2/dimension/syst3/file_AAbb_CCdd_EEff.hdf5 where the order of directories and filename is the order in which the systematics have been applied. Args: directory (string): Current or base directory containing pre-convolved :class:`Spectra` object filename (string): Current or base name of :class:`Spectra` object added_dim (bool, optional): If a dimension has just been added to the directory then this flag is True. Returns: string: Directory containing pre-convolved :class:`Spectra`, appended with name of this :class:`FitParameter` string: Name of pre-convolved :class:`Spectra`, appended with current value of this :class:`FitParameter` Raises: ValueError: If :attr:`_current_value` is not set. """ if self._current_value is None: raise ValueError("Current value of fit parameter %s " "has not been set" % self._name) if directory[-1] != '/': directory += '/' if not added_dim: dir_list = directory.split('/') # Find last occurance of dimension and search from here idx = dir_list[::-1].index(self._dimension) if 'smear' not in dir_list[-idx:]: directory += 'smear/' else: directory += 'smear/' if self._current_value > 10.: ext = 'ly' else: ext = 'rs' value_string = str(self._current_value) # Strip trailling zero in filename value_string = value_string.rstrip('0').rstrip('.') filename_list = filename.split('_') temp_fname = '' subbed = False for x in filename_list: if x[-2:] == ext: x = value_string + ext subbed = True elif x[-7:] == ext + ".hdf5": x = value_string + ext + ".hdf5" subbed = True if x[-5:] == ".hdf5": temp_fname += x else: temp_fname += x + "_" if not subbed: temp_fname = temp_fname[:-5] + "_" + value_string + ext + ".hdf5" return directory, temp_fname class ScaleParameter(FitParameter): """ Data container that holds information for a scale parameter that is included in the fit. Args: name (str): The name of this parameter prior (float): The prior of the parameter sigma (float): The sigma of the parameter low (float): The lower limit to float the parameter from high (float): The higher limit to float the parameter from bins (int): The number of steps between low and high values dimension (string): The spectral dimension to which the scale parameter applies. kwargs (dict): Other keyword arguments to pass to :class:`FitParameter` """ def __init__(self, name, prior, sigma, low, high, bins, dimension, **kwargs): super(ScaleParameter, self).__init__( name, prior, sigma, low, high, bins, dimension, **kwargs) def apply_to(self, spectrum): """ Convolves spectrum with current value of scale parameter. Args: spectrum (:class:`Spectra`): Spectrum to be convolved. Returns: (:class:`Spectra`): Convolved spectrum. Raises: ValueError: If :attr:`_current_value` is not set. """ if self._current_value is None: raise ValueError("Current value of scale parameter %s " "has not been set" % self._name) scaler = scale.Scale() scaler.set_scale_factor(self._current_value) return scaler.scale(spectrum, self._dimension) def get_pre_convolved(self, directory, filename, added_dim=False): """ Constructs the filename and directory from which a pre_convolved spectrum can be loaded from. .. note:: Before any calls to this function, the directory and filename is should be of the form:: ../dimension/syst/file_XXyy.hdf5 where dimension is the dimension you are applying systematics to e.g. `energy_mc` and syst is the type of systematic e.g. `smear`. XX and yy represent the syst value e.g. 200 and syst denoted type e.g. ly for 200 NHits/MeV light yield. For multiple dimensions and systematics then it is of the form:: ../dimension/syst1/syst2/dimension/syst3/file_AAbb_CCdd_EEff.hdf5 where the order of directories and filename is the order in which the systematics have been applied. Args: directory (string): Current or base directory containing pre-convolved :class:`Spectra` object filename (string): Current or base name of :class:`Spectra` object added_dim (bool, optional): If a dimension has just been added to the directory then this flag is True. Returns: string: Directory containing pre-convolved :class:`Spectra`, appended with name of this :class:`FitParameter` string: Name of pre-convolved :class:`Spectra`, appended with current value of this :class:`FitParameter` Raises: ValueError: If :attr:`_current_value` is not set. """ if self._current_value is None: raise ValueError("Current value of fit parameter %s " "has not been set" % self._name) if directory[-1] != '/': directory += '/' if not added_dim: dir_list = directory.split('/') # Find last occurance of dimension and search from here idx = dir_list[::-1].index(self._dimension) if 'scale' not in dir_list[-idx:]: directory += 'scale/' else: directory += 'scale/' value_string = str(self._current_value) # Strip trailling zero in filename value_string = value_string.rstrip('0').rstrip('.') filename_list = filename.split('_') temp_fname = '' subbed = False for x in filename_list: if x[-2:] == "sc": x = value_string + "sc" subbed = True elif x[-7:] == "sc.hdf5": x = value_string + "sc.hdf5" subbed = True if x[-5:] == ".hdf5": temp_fname += x else: temp_fname += x + "_" if not subbed: temp_fname = temp_fname[:-5] + "_" + value_string + "sc.hdf5" return directory, temp_fname class ShiftParameter(FitParameter): """ Data container that holds information for a shift parameter that is included in the fit. Args: name (str): The name of this parameter prior (float): The prior of the parameter sigma (float): The sigma of the parameter low (float): The lower limit to float the parameter from high (float): The higher limit to float the parameter from bins (int): The number of steps between low and high values dimension (string): The spectral dimension to which the shift parameter applies. kwargs (dict): Other keyword arguments to pass to :class:`FitParameter` """ def __init__(self, name, prior, sigma, low, high, bins, dimension, **kwargs): super(ShiftParameter, self).__init__( name, prior, sigma, low, high, bins, dimension, **kwargs) def apply_to(self, spectrum): """ Convolves spectrum with current value of shift parameter. Args: spectrum (:class:`Spectra`): Spectrum to be convolved. Returns: (:class:`Spectra`): Convolved spectrum. Raises: ValueError: If :attr:`_current_value` is not set. """ if self._current_value is None: raise ValueError("Current value of shift parameter %s " "has not been set" % self._name) shifter = shift.Shift() shifter.set_shift(self._current_value) return shifter.shift(spectrum, self._dimension) def get_pre_convolved(self, directory, filename, added_dim=False): """ Constructs the filename and directory from which a pre_convolved spectrum can be loaded from. .. note:: Before any calls to this function, the directory and filename is should be of the form:: ../dimension/syst/file_XXyy.hdf5 where dimension is the dimension you are applying systematics to e.g. `energy_mc` and syst is the type of systematic e.g. `smear`. XX and yy represent the syst value e.g. 200 and syst denoted type e.g. ly for 200 NHits/MeV light yield. For multiple dimensions and systematics then it is of the form:: ../dimension/syst1/syst2/dimension/syst3/file_AAbb_CCdd_EEff.hdf5 where the order of directories and filename is the order in which the systematics have been applied. Args: directory (string): Current or base directory containing pre-convolved :class:`Spectra` object filename (string): Current or base name of :class:`Spectra` object added_dim (bool, optional): If a dimension has just been added to the directory then this flag is True. Returns: string: Directory containing pre-convolved :class:`Spectra`, appended with name of this :class:`FitParameter` string: Name of pre-convolved :class:`Spectra`, appended with current value of this :class:`FitParameter` Raises: ValueError: If :attr:`_current_value` is not set. """ if self._current_value is None: raise ValueError("Current value of fit parameter %s " "has not been set" % self._name) if directory[-1] != '/': directory += '/' if not added_dim: dir_list = directory.split('/') # Find last occurance of dimension and search from here idx = dir_list[::-1].index(self._dimension) if 'shift' not in dir_list[-idx:]: directory += 'shift/' else: directory += 'shift/' value_string = str(self._current_value) # Strip trailling zero in filename value_string = value_string.rstrip('0').rstrip('.') filename_list = filename.split('_') temp_fname = '' subbed = False for x in filename_list: if x[-2:] == "sh": x = value_string + "sh" subbed = True elif x[-7:] == "sh.hdf5": x = value_string + "sh.hdf5" subbed = True if x[-5:] == ".hdf5": temp_fname += x else: temp_fname += x + "_" if not subbed: temp_fname = temp_fname[:-5] + "_" + value_string + "sh.hdf5" return directory, temp_fname class SpectraParameter(Parameter): """Simple data container that holds information for a Spectra parameter (i.e. axis of the spectrum). Args: name (str): The name of this parameter low (float): The lower limit of this parameter high (float): The upper limit of this parameter bins (int): The number of bins for this parameter """ def __init__(self, name, low, high, bins): """Initialise SpectraParameter class """ super(SpectraParameter, self).__init__("spectra", name, low, high, bins) def get_bin(self, x): """ Gets the bin index which contains value x. Args: x (float): Value you wish to find the bin index for. Raises: ValueError: If x is less than parameter lower bounds ValueError: If x is more than parameter upper bounds Returns: int: Bin index """ if x < self._low: raise ValueError("%s is below parameter lower bound %s" % (x, self._low)) if x > self._high: raise ValueError("%s is above parameter upper bound %s" % (x, self._high)) return int((x - self._low) / self.get_width()) def get_bin_boundaries(self): """ Returns the bin boundaries for the parameter Returns: :class:`numpy.ndarray`: Bin boundaries for the parameter. """ return numpy.linspace(self._low, self._high, self._bins+1) def get_bin_centre(self, bin): """ Calculates the central value of a given bin Args: bin (int): Bin number. Raises: TypeError: If bin is not int ValueError: If bin is less than zero ValueError: If bin is greater than the number of bins - 1 Returns: float: value of bin centre """ if type(bin) != int and type(bin) != numpy.int64: raise TypeError("Must pass an integer value") if bin < 0: raise ValueError("Bin number (%s) must be zero or positive" % bin) if bin > self._bins - 1: raise ValueError("Bin number (%s) is out of range. Max = %s" % (bin, self._bins)) return self._low + (bin + 0.5)*self.get_width() def get_bin_centres(self): """ Returns the bin centres of the parameter Returns: :class:`numpy.ndarray`: Bin centres of parameter. """ return numpy.arange(self._low+self.get_width()*0.5, self._high, self.get_width()) def get_unit(self): """Get the default unit for a given parameter Raises: Exception: Unknown parameter. Returns: string: Unit of the parameter """ if self._name.split('_')[0] == "energy": return "MeV" if self._name.split('_')[0] == "radial": return "mm" def round(self, x): """ Round the value to nearest bin edge Args: x (float): Value to round. Returns: float: The value of the closest bin edge to x """ return round(x/self.get_width())*self.get_width() def set_par(self, **kwargs): """Set a limit / binning parameter after initialisation. Args: kwargs (dict): keyword arguments .. note:: Keyword arguments include: * low (float): Value to set the lower limit to of the parameter * high (float): Value to set the higher limit to of the parameter * bins (int): Value to set the number of bins of the parameter Raises: TypeError: Unknown variable type passed as a kwarg. """ for kw in kwargs: if kw == "low": self._low = float(kwargs[kw]) elif kw == "high": self._high = float(kwargs[kw]) elif kw == "bins": self._bins = int(kwargs[kw]) else: raise TypeError("Unhandled parameter name / type %s" % kw)
"""Support for Xiaomi Philips Lights.""" import asyncio import datetime from datetime import timedelta from functools import partial import logging from math import ceil import voluptuous as vol from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_HS_COLOR, ATTR_COLOR_TEMP, ATTR_ENTITY_ID, DOMAIN, PLATFORM_SCHEMA, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, SUPPORT_COLOR_TEMP, Light, ) from homeassistant.const import CONF_HOST, CONF_NAME, CONF_TOKEN from homeassistant.exceptions import PlatformNotReady import homeassistant.helpers.config_validation as cv from homeassistant.util import color, dt _LOGGER = logging.getLogger(__name__) DEFAULT_NAME = "Xiaomi Philips Light" DATA_KEY = "light.xiaomi_miio" CONF_MODEL = "model" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Required(CONF_TOKEN): vol.All(cv.string, vol.Length(min=32, max=32)), vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_MODEL): vol.In( [ "philips.light.sread1", "philips.light.ceiling", "philips.light.zyceiling", "philips.light.moonlight", "philips.light.bulb", "philips.light.candle", "philips.light.candle2", "philips.light.mono1", "philips.light.downlight", ] ), } ) # The light does not accept cct values < 1 CCT_MIN = 1 CCT_MAX = 100 DELAYED_TURN_OFF_MAX_DEVIATION_SECONDS = 4 DELAYED_TURN_OFF_MAX_DEVIATION_MINUTES = 1 SUCCESS = ["ok"] ATTR_MODEL = "model" ATTR_SCENE = "scene" ATTR_DELAYED_TURN_OFF = "delayed_turn_off" ATTR_TIME_PERIOD = "time_period" ATTR_NIGHT_LIGHT_MODE = "night_light_mode" ATTR_AUTOMATIC_COLOR_TEMPERATURE = "automatic_color_temperature" ATTR_REMINDER = "reminder" ATTR_EYECARE_MODE = "eyecare_mode" # Moonlight ATTR_SLEEP_ASSISTANT = "sleep_assistant" ATTR_SLEEP_OFF_TIME = "sleep_off_time" ATTR_TOTAL_ASSISTANT_SLEEP_TIME = "total_assistant_sleep_time" ATTR_BRAND_SLEEP = "brand_sleep" ATTR_BRAND = "brand" SERVICE_SET_SCENE = "xiaomi_miio_set_scene" SERVICE_SET_DELAYED_TURN_OFF = "xiaomi_miio_set_delayed_turn_off" SERVICE_REMINDER_ON = "xiaomi_miio_reminder_on" SERVICE_REMINDER_OFF = "xiaomi_miio_reminder_off" SERVICE_NIGHT_LIGHT_MODE_ON = "xiaomi_miio_night_light_mode_on" SERVICE_NIGHT_LIGHT_MODE_OFF = "xiaomi_miio_night_light_mode_off" SERVICE_EYECARE_MODE_ON = "xiaomi_miio_eyecare_mode_on" SERVICE_EYECARE_MODE_OFF = "xiaomi_miio_eyecare_mode_off" XIAOMI_MIIO_SERVICE_SCHEMA = vol.Schema({vol.Optional(ATTR_ENTITY_ID): cv.entity_ids}) SERVICE_SCHEMA_SET_SCENE = XIAOMI_MIIO_SERVICE_SCHEMA.extend( {vol.Required(ATTR_SCENE): vol.All(vol.Coerce(int), vol.Clamp(min=1, max=6))} ) SERVICE_SCHEMA_SET_DELAYED_TURN_OFF = XIAOMI_MIIO_SERVICE_SCHEMA.extend( {vol.Required(ATTR_TIME_PERIOD): vol.All(cv.time_period, cv.positive_timedelta)} ) SERVICE_TO_METHOD = { SERVICE_SET_DELAYED_TURN_OFF: { "method": "async_set_delayed_turn_off", "schema": SERVICE_SCHEMA_SET_DELAYED_TURN_OFF, }, SERVICE_SET_SCENE: { "method": "async_set_scene", "schema": SERVICE_SCHEMA_SET_SCENE, }, SERVICE_REMINDER_ON: {"method": "async_reminder_on"}, SERVICE_REMINDER_OFF: {"method": "async_reminder_off"}, SERVICE_NIGHT_LIGHT_MODE_ON: {"method": "async_night_light_mode_on"}, SERVICE_NIGHT_LIGHT_MODE_OFF: {"method": "async_night_light_mode_off"}, SERVICE_EYECARE_MODE_ON: {"method": "async_eyecare_mode_on"}, SERVICE_EYECARE_MODE_OFF: {"method": "async_eyecare_mode_off"}, } async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the light from config.""" from miio import Device, DeviceException if DATA_KEY not in hass.data: hass.data[DATA_KEY] = {} host = config.get(CONF_HOST) name = config.get(CONF_NAME) token = config.get(CONF_TOKEN) model = config.get(CONF_MODEL) _LOGGER.info("Initializing with host %s (token %s...)", host, token[:5]) devices = [] unique_id = None if model is None: try: miio_device = Device(host, token) device_info = miio_device.info() model = device_info.model unique_id = f"{model}-{device_info.mac_address}" _LOGGER.info( "%s %s %s detected", model, device_info.firmware_version, device_info.hardware_version, ) except DeviceException: raise PlatformNotReady if model == "philips.light.sread1": from miio import PhilipsEyecare light = PhilipsEyecare(host, token) primary_device = XiaomiPhilipsEyecareLamp(name, light, model, unique_id) devices.append(primary_device) hass.data[DATA_KEY][host] = primary_device secondary_device = XiaomiPhilipsEyecareLampAmbientLight( name, light, model, unique_id ) devices.append(secondary_device) # The ambient light doesn't expose additional services. # A hass.data[DATA_KEY] entry isn't needed. elif model in ["philips.light.ceiling", "philips.light.zyceiling"]: from miio import Ceil light = Ceil(host, token) device = XiaomiPhilipsCeilingLamp(name, light, model, unique_id) devices.append(device) hass.data[DATA_KEY][host] = device elif model == "philips.light.moonlight": from miio import PhilipsMoonlight light = PhilipsMoonlight(host, token) device = XiaomiPhilipsMoonlightLamp(name, light, model, unique_id) devices.append(device) hass.data[DATA_KEY][host] = device elif model in [ "philips.light.bulb", "philips.light.candle", "philips.light.candle2", "philips.light.downlight", ]: from miio import PhilipsBulb light = PhilipsBulb(host, token) device = XiaomiPhilipsBulb(name, light, model, unique_id) devices.append(device) hass.data[DATA_KEY][host] = device elif model == "philips.light.mono1": from miio import PhilipsBulb light = PhilipsBulb(host, token) device = XiaomiPhilipsGenericLight(name, light, model, unique_id) devices.append(device) hass.data[DATA_KEY][host] = device else: _LOGGER.error( "Unsupported device found! Please create an issue at " "https://github.com/syssi/philipslight/issues " "and provide the following data: %s", model, ) return False async_add_entities(devices, update_before_add=True) async def async_service_handler(service): """Map services to methods on Xiaomi Philips Lights.""" method = SERVICE_TO_METHOD.get(service.service) params = { key: value for key, value in service.data.items() if key != ATTR_ENTITY_ID } entity_ids = service.data.get(ATTR_ENTITY_ID) if entity_ids: target_devices = [ dev for dev in hass.data[DATA_KEY].values() if dev.entity_id in entity_ids ] else: target_devices = hass.data[DATA_KEY].values() update_tasks = [] for target_device in target_devices: if not hasattr(target_device, method["method"]): continue await getattr(target_device, method["method"])(**params) update_tasks.append(target_device.async_update_ha_state(True)) if update_tasks: await asyncio.wait(update_tasks) for xiaomi_miio_service in SERVICE_TO_METHOD: schema = SERVICE_TO_METHOD[xiaomi_miio_service].get( "schema", XIAOMI_MIIO_SERVICE_SCHEMA ) hass.services.async_register( DOMAIN, xiaomi_miio_service, async_service_handler, schema=schema ) class XiaomiPhilipsAbstractLight(Light): """Representation of a Abstract Xiaomi Philips Light.""" def __init__(self, name, light, model, unique_id): """Initialize the light device.""" self._name = name self._light = light self._model = model self._unique_id = unique_id self._brightness = None self._available = False self._state = None self._state_attrs = {ATTR_MODEL: self._model} @property def should_poll(self): """Poll the light.""" return True @property def unique_id(self): """Return an unique ID.""" return self._unique_id @property def name(self): """Return the name of the device if any.""" return self._name @property def available(self): """Return true when state is known.""" return self._available @property def device_state_attributes(self): """Return the state attributes of the device.""" return self._state_attrs @property def is_on(self): """Return true if light is on.""" return self._state @property def brightness(self): """Return the brightness of this light between 0..255.""" return self._brightness @property def supported_features(self): """Return the supported features.""" return SUPPORT_BRIGHTNESS async def _try_command(self, mask_error, func, *args, **kwargs): """Call a light command handling error messages.""" from miio import DeviceException try: result = await self.hass.async_add_executor_job( partial(func, *args, **kwargs) ) _LOGGER.debug("Response received from light: %s", result) return result == SUCCESS except DeviceException as exc: _LOGGER.error(mask_error, exc) self._available = False return False async def async_turn_on(self, **kwargs): """Turn the light on.""" if ATTR_BRIGHTNESS in kwargs: brightness = kwargs[ATTR_BRIGHTNESS] percent_brightness = ceil(100 * brightness / 255.0) _LOGGER.debug("Setting brightness: %s %s%%", brightness, percent_brightness) result = await self._try_command( "Setting brightness failed: %s", self._light.set_brightness, percent_brightness, ) if result: self._brightness = brightness else: await self._try_command("Turning the light on failed.", self._light.on) async def async_turn_off(self, **kwargs): """Turn the light off.""" await self._try_command("Turning the light off failed.", self._light.off) async def async_update(self): """Fetch state from the device.""" from miio import DeviceException try: state = await self.hass.async_add_executor_job(self._light.status) except DeviceException as ex: self._available = False _LOGGER.error("Got exception while fetching the state: %s", ex) return _LOGGER.debug("Got new state: %s", state) self._available = True self._state = state.is_on self._brightness = ceil((255 / 100.0) * state.brightness) class XiaomiPhilipsGenericLight(XiaomiPhilipsAbstractLight): """Representation of a Generic Xiaomi Philips Light.""" def __init__(self, name, light, model, unique_id): """Initialize the light device.""" super().__init__(name, light, model, unique_id) self._state_attrs.update({ATTR_SCENE: None, ATTR_DELAYED_TURN_OFF: None}) async def async_update(self): """Fetch state from the device.""" from miio import DeviceException try: state = await self.hass.async_add_executor_job(self._light.status) except DeviceException as ex: self._available = False _LOGGER.error("Got exception while fetching the state: %s", ex) return _LOGGER.debug("Got new state: %s", state) self._available = True self._state = state.is_on self._brightness = ceil((255 / 100.0) * state.brightness) delayed_turn_off = self.delayed_turn_off_timestamp( state.delay_off_countdown, dt.utcnow(), self._state_attrs[ATTR_DELAYED_TURN_OFF], ) self._state_attrs.update( {ATTR_SCENE: state.scene, ATTR_DELAYED_TURN_OFF: delayed_turn_off} ) async def async_set_scene(self, scene: int = 1): """Set the fixed scene.""" await self._try_command( "Setting a fixed scene failed.", self._light.set_scene, scene ) async def async_set_delayed_turn_off(self, time_period: timedelta): """Set delayed turn off.""" await self._try_command( "Setting the turn off delay failed.", self._light.delay_off, time_period.total_seconds(), ) @staticmethod def delayed_turn_off_timestamp( countdown: int, current: datetime, previous: datetime ): """Update the turn off timestamp only if necessary.""" if countdown is not None and countdown > 0: new = current.replace(microsecond=0) + timedelta(seconds=countdown) if previous is None: return new lower = timedelta(seconds=-DELAYED_TURN_OFF_MAX_DEVIATION_SECONDS) upper = timedelta(seconds=DELAYED_TURN_OFF_MAX_DEVIATION_SECONDS) diff = previous - new if lower < diff < upper: return previous return new return None class XiaomiPhilipsBulb(XiaomiPhilipsGenericLight): """Representation of a Xiaomi Philips Bulb.""" def __init__(self, name, light, model, unique_id): """Initialize the light device.""" super().__init__(name, light, model, unique_id) self._color_temp = None @property def color_temp(self): """Return the color temperature.""" return self._color_temp @property def min_mireds(self): """Return the coldest color_temp that this light supports.""" return 175 @property def max_mireds(self): """Return the warmest color_temp that this light supports.""" return 333 @property def supported_features(self): """Return the supported features.""" return SUPPORT_BRIGHTNESS | SUPPORT_COLOR_TEMP async def async_turn_on(self, **kwargs): """Turn the light on.""" if ATTR_COLOR_TEMP in kwargs: color_temp = kwargs[ATTR_COLOR_TEMP] percent_color_temp = self.translate( color_temp, self.max_mireds, self.min_mireds, CCT_MIN, CCT_MAX ) if ATTR_BRIGHTNESS in kwargs: brightness = kwargs[ATTR_BRIGHTNESS] percent_brightness = ceil(100 * brightness / 255.0) if ATTR_BRIGHTNESS in kwargs and ATTR_COLOR_TEMP in kwargs: _LOGGER.debug( "Setting brightness and color temperature: " "%s %s%%, %s mireds, %s%% cct", brightness, percent_brightness, color_temp, percent_color_temp, ) result = await self._try_command( "Setting brightness and color temperature failed: " "%s bri, %s cct", self._light.set_brightness_and_color_temperature, percent_brightness, percent_color_temp, ) if result: self._color_temp = color_temp self._brightness = brightness elif ATTR_COLOR_TEMP in kwargs: _LOGGER.debug( "Setting color temperature: " "%s mireds, %s%% cct", color_temp, percent_color_temp, ) result = await self._try_command( "Setting color temperature failed: %s cct", self._light.set_color_temperature, percent_color_temp, ) if result: self._color_temp = color_temp elif ATTR_BRIGHTNESS in kwargs: brightness = kwargs[ATTR_BRIGHTNESS] percent_brightness = ceil(100 * brightness / 255.0) _LOGGER.debug("Setting brightness: %s %s%%", brightness, percent_brightness) result = await self._try_command( "Setting brightness failed: %s", self._light.set_brightness, percent_brightness, ) if result: self._brightness = brightness else: await self._try_command("Turning the light on failed.", self._light.on) async def async_update(self): """Fetch state from the device.""" from miio import DeviceException try: state = await self.hass.async_add_executor_job(self._light.status) except DeviceException as ex: self._available = False _LOGGER.error("Got exception while fetching the state: %s", ex) return _LOGGER.debug("Got new state: %s", state) self._available = True self._state = state.is_on self._brightness = ceil((255 / 100.0) * state.brightness) self._color_temp = self.translate( state.color_temperature, CCT_MIN, CCT_MAX, self.max_mireds, self.min_mireds ) delayed_turn_off = self.delayed_turn_off_timestamp( state.delay_off_countdown, dt.utcnow(), self._state_attrs[ATTR_DELAYED_TURN_OFF], ) self._state_attrs.update( {ATTR_SCENE: state.scene, ATTR_DELAYED_TURN_OFF: delayed_turn_off} ) @staticmethod def translate(value, left_min, left_max, right_min, right_max): """Map a value from left span to right span.""" left_span = left_max - left_min right_span = right_max - right_min value_scaled = float(value - left_min) / float(left_span) return int(right_min + (value_scaled * right_span)) class XiaomiPhilipsCeilingLamp(XiaomiPhilipsBulb): """Representation of a Xiaomi Philips Ceiling Lamp.""" def __init__(self, name, light, model, unique_id): """Initialize the light device.""" super().__init__(name, light, model, unique_id) self._state_attrs.update( {ATTR_NIGHT_LIGHT_MODE: None, ATTR_AUTOMATIC_COLOR_TEMPERATURE: None} ) @property def min_mireds(self): """Return the coldest color_temp that this light supports.""" return 175 @property def max_mireds(self): """Return the warmest color_temp that this light supports.""" return 370 async def async_update(self): """Fetch state from the device.""" from miio import DeviceException try: state = await self.hass.async_add_executor_job(self._light.status) except DeviceException as ex: self._available = False _LOGGER.error("Got exception while fetching the state: %s", ex) return _LOGGER.debug("Got new state: %s", state) self._available = True self._state = state.is_on self._brightness = ceil((255 / 100.0) * state.brightness) self._color_temp = self.translate( state.color_temperature, CCT_MIN, CCT_MAX, self.max_mireds, self.min_mireds ) delayed_turn_off = self.delayed_turn_off_timestamp( state.delay_off_countdown, dt.utcnow(), self._state_attrs[ATTR_DELAYED_TURN_OFF], ) self._state_attrs.update( { ATTR_SCENE: state.scene, ATTR_DELAYED_TURN_OFF: delayed_turn_off, ATTR_NIGHT_LIGHT_MODE: state.smart_night_light, ATTR_AUTOMATIC_COLOR_TEMPERATURE: state.automatic_color_temperature, } ) class XiaomiPhilipsEyecareLamp(XiaomiPhilipsGenericLight): """Representation of a Xiaomi Philips Eyecare Lamp 2.""" def __init__(self, name, light, model, unique_id): """Initialize the light device.""" super().__init__(name, light, model, unique_id) self._state_attrs.update( {ATTR_REMINDER: None, ATTR_NIGHT_LIGHT_MODE: None, ATTR_EYECARE_MODE: None} ) async def async_update(self): """Fetch state from the device.""" from miio import DeviceException try: state = await self.hass.async_add_executor_job(self._light.status) except DeviceException as ex: self._available = False _LOGGER.error("Got exception while fetching the state: %s", ex) return _LOGGER.debug("Got new state: %s", state) self._available = True self._state = state.is_on self._brightness = ceil((255 / 100.0) * state.brightness) delayed_turn_off = self.delayed_turn_off_timestamp( state.delay_off_countdown, dt.utcnow(), self._state_attrs[ATTR_DELAYED_TURN_OFF], ) self._state_attrs.update( { ATTR_SCENE: state.scene, ATTR_DELAYED_TURN_OFF: delayed_turn_off, ATTR_REMINDER: state.reminder, ATTR_NIGHT_LIGHT_MODE: state.smart_night_light, ATTR_EYECARE_MODE: state.eyecare, } ) async def async_set_delayed_turn_off(self, time_period: timedelta): """Set delayed turn off.""" await self._try_command( "Setting the turn off delay failed.", self._light.delay_off, round(time_period.total_seconds() / 60), ) async def async_reminder_on(self): """Enable the eye fatigue notification.""" await self._try_command( "Turning on the reminder failed.", self._light.reminder_on ) async def async_reminder_off(self): """Disable the eye fatigue notification.""" await self._try_command( "Turning off the reminder failed.", self._light.reminder_off ) async def async_night_light_mode_on(self): """Turn the smart night light mode on.""" await self._try_command( "Turning on the smart night light mode failed.", self._light.smart_night_light_on, ) async def async_night_light_mode_off(self): """Turn the smart night light mode off.""" await self._try_command( "Turning off the smart night light mode failed.", self._light.smart_night_light_off, ) async def async_eyecare_mode_on(self): """Turn the eyecare mode on.""" await self._try_command( "Turning on the eyecare mode failed.", self._light.eyecare_on ) async def async_eyecare_mode_off(self): """Turn the eyecare mode off.""" await self._try_command( "Turning off the eyecare mode failed.", self._light.eyecare_off ) @staticmethod def delayed_turn_off_timestamp( countdown: int, current: datetime, previous: datetime ): """Update the turn off timestamp only if necessary.""" if countdown is not None and countdown > 0: new = current.replace(second=0, microsecond=0) + timedelta( minutes=countdown ) if previous is None: return new lower = timedelta(minutes=-DELAYED_TURN_OFF_MAX_DEVIATION_MINUTES) upper = timedelta(minutes=DELAYED_TURN_OFF_MAX_DEVIATION_MINUTES) diff = previous - new if lower < diff < upper: return previous return new return None class XiaomiPhilipsEyecareLampAmbientLight(XiaomiPhilipsAbstractLight): """Representation of a Xiaomi Philips Eyecare Lamp Ambient Light.""" def __init__(self, name, light, model, unique_id): """Initialize the light device.""" name = f"{name} Ambient Light" if unique_id is not None: unique_id = "{}-{}".format(unique_id, "ambient") super().__init__(name, light, model, unique_id) async def async_turn_on(self, **kwargs): """Turn the light on.""" if ATTR_BRIGHTNESS in kwargs: brightness = kwargs[ATTR_BRIGHTNESS] percent_brightness = ceil(100 * brightness / 255.0) _LOGGER.debug( "Setting brightness of the ambient light: %s %s%%", brightness, percent_brightness, ) result = await self._try_command( "Setting brightness of the ambient failed: %s", self._light.set_ambient_brightness, percent_brightness, ) if result: self._brightness = brightness else: await self._try_command( "Turning the ambient light on failed.", self._light.ambient_on ) async def async_turn_off(self, **kwargs): """Turn the light off.""" await self._try_command( "Turning the ambient light off failed.", self._light.ambient_off ) async def async_update(self): """Fetch state from the device.""" from miio import DeviceException try: state = await self.hass.async_add_executor_job(self._light.status) except DeviceException as ex: self._available = False _LOGGER.error("Got exception while fetching the state: %s", ex) return _LOGGER.debug("Got new state: %s", state) self._available = True self._state = state.ambient self._brightness = ceil((255 / 100.0) * state.ambient_brightness) class XiaomiPhilipsMoonlightLamp(XiaomiPhilipsBulb): """Representation of a Xiaomi Philips Zhirui Bedside Lamp.""" def __init__(self, name, light, model, unique_id): """Initialize the light device.""" super().__init__(name, light, model, unique_id) self._hs_color = None self._state_attrs.pop(ATTR_DELAYED_TURN_OFF) self._state_attrs.update( { ATTR_SLEEP_ASSISTANT: None, ATTR_SLEEP_OFF_TIME: None, ATTR_TOTAL_ASSISTANT_SLEEP_TIME: None, ATTR_BRAND_SLEEP: None, ATTR_BRAND: None, } ) @property def min_mireds(self): """Return the coldest color_temp that this light supports.""" return 153 @property def max_mireds(self): """Return the warmest color_temp that this light supports.""" return 588 @property def hs_color(self) -> tuple: """Return the hs color value.""" return self._hs_color @property def supported_features(self): """Return the supported features.""" return SUPPORT_BRIGHTNESS | SUPPORT_COLOR | SUPPORT_COLOR_TEMP async def async_turn_on(self, **kwargs): """Turn the light on.""" if ATTR_COLOR_TEMP in kwargs: color_temp = kwargs[ATTR_COLOR_TEMP] percent_color_temp = self.translate( color_temp, self.max_mireds, self.min_mireds, CCT_MIN, CCT_MAX ) if ATTR_BRIGHTNESS in kwargs: brightness = kwargs[ATTR_BRIGHTNESS] percent_brightness = ceil(100 * brightness / 255.0) if ATTR_HS_COLOR in kwargs: hs_color = kwargs[ATTR_HS_COLOR] rgb = color.color_hs_to_RGB(*hs_color) if ATTR_BRIGHTNESS in kwargs and ATTR_HS_COLOR in kwargs: _LOGGER.debug( "Setting brightness and color: " "%s %s%%, %s", brightness, percent_brightness, rgb, ) result = await self._try_command( "Setting brightness and color failed: " "%s bri, %s color", self._light.set_brightness_and_rgb, percent_brightness, rgb, ) if result: self._hs_color = hs_color self._brightness = brightness elif ATTR_BRIGHTNESS in kwargs and ATTR_COLOR_TEMP in kwargs: _LOGGER.debug( "Setting brightness and color temperature: " "%s %s%%, %s mireds, %s%% cct", brightness, percent_brightness, color_temp, percent_color_temp, ) result = await self._try_command( "Setting brightness and color temperature failed: " "%s bri, %s cct", self._light.set_brightness_and_color_temperature, percent_brightness, percent_color_temp, ) if result: self._color_temp = color_temp self._brightness = brightness elif ATTR_HS_COLOR in kwargs: _LOGGER.debug("Setting color: %s", rgb) result = await self._try_command( "Setting color failed: %s", self._light.set_rgb, rgb ) if result: self._hs_color = hs_color elif ATTR_COLOR_TEMP in kwargs: _LOGGER.debug( "Setting color temperature: " "%s mireds, %s%% cct", color_temp, percent_color_temp, ) result = await self._try_command( "Setting color temperature failed: %s cct", self._light.set_color_temperature, percent_color_temp, ) if result: self._color_temp = color_temp elif ATTR_BRIGHTNESS in kwargs: brightness = kwargs[ATTR_BRIGHTNESS] percent_brightness = ceil(100 * brightness / 255.0) _LOGGER.debug("Setting brightness: %s %s%%", brightness, percent_brightness) result = await self._try_command( "Setting brightness failed: %s", self._light.set_brightness, percent_brightness, ) if result: self._brightness = brightness else: await self._try_command("Turning the light on failed.", self._light.on) async def async_update(self): """Fetch state from the device.""" from miio import DeviceException try: state = await self.hass.async_add_executor_job(self._light.status) except DeviceException as ex: self._available = False _LOGGER.error("Got exception while fetching the state: %s", ex) return _LOGGER.debug("Got new state: %s", state) self._available = True self._state = state.is_on self._brightness = ceil((255 / 100.0) * state.brightness) self._color_temp = self.translate( state.color_temperature, CCT_MIN, CCT_MAX, self.max_mireds, self.min_mireds ) self._hs_color = color.color_RGB_to_hs(*state.rgb) self._state_attrs.update( { ATTR_SCENE: state.scene, ATTR_SLEEP_ASSISTANT: state.sleep_assistant, ATTR_SLEEP_OFF_TIME: state.sleep_off_time, ATTR_TOTAL_ASSISTANT_SLEEP_TIME: state.total_assistant_sleep_time, ATTR_BRAND_SLEEP: state.brand_sleep, ATTR_BRAND: state.brand, } ) async def async_set_delayed_turn_off(self, time_period: timedelta): """Set delayed turn off. Unsupported.""" return
#!/usr/bin/env python # # Copyright (c) 2012 Eran Sandler (eran@sandler.co.il), http://eran.sandler.co.il, http://forecastcloudy.net # Copyright (C) 2012-2013 Dustin Kirkland <kirkland@byobu.co> # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # import urllib2 import argparse try: import simplejson as json except ImportError: import json EC2_REGIONS = [ "us-east-1", "us-west-1", "us-west-2", "eu-west-1", "ap-southeast-1", "ap-southeast-2", "ap-northeast-1", "sa-east-1" ] EC2_INSTANCE_TYPES = [ "t1.micro", "m1.small", "m1.medium", "m1.large", "m1.xlarge", "m2.xlarge", "m2.2xlarge", "m2.4xlarge", "c1.medium", "c1.xlarge", "cc1.4xlarge", "cc2.8xlarge", "cg1.4xlarge", "cr1.8xlarge", "m3.xlarge", "m3.2xlarge", "hi1.4xlarge", "hs1.8xlarge" ] EC2_OS_TYPES = [ "linux", "mswin" ] JSON_NAME_TO_EC2_REGIONS_API = { "us-east" : "us-east-1", "us-east-1" : "us-east-1", "us-west" : "us-west-1", "us-west-1" : "us-west-1", "us-west-2" : "us-west-2", "eu-ireland" : "eu-west-1", "eu-west-1" : "eu-west-1", "apac-sin" : "ap-southeast-1", "ap-southeast-1" : "ap-southeast-1", "ap-southeast-2" : "ap-southeast-2", "apac-syd" : "ap-southeast-2", "apac-tokyo" : "ap-northeast-1", "ap-northeast-1" : "ap-northeast-1", "sa-east-1" : "sa-east-1" } EC2_REGIONS_API_TO_JSON_NAME = { "us-east-1" : "us-east", "us-west-1" : "us-west", "us-west-2" : "us-west-2", "eu-west-1" : "eu-ireland", "ap-southeast-1" : "apac-sin", "ap-southeast-2" : "apac-syd", "ap-northeast-1" : "apac-tokyo", "sa-east-1" : "sa-east-1" } INSTANCES_ON_DEMAND_URL = "http://aws.amazon.com/ec2/pricing/pricing-on-demand-instances.json" INSTANCES_RESERVED_LIGHT_UTILIZATION_LINUX_URL = "http://aws.amazon.com/ec2/pricing/ri-light-linux.json" INSTANCES_RESERVED_LIGHT_UTILIZATION_WINDOWS_URL = "http://aws.amazon.com/ec2/pricing/ri-light-mswin.json" INSTNACES_RESERVED_MEDIUM_UTILIZATION_LINUX_URL = "http://aws.amazon.com/ec2/pricing/ri-medium-linux.json" INSTANCES_RESERVED_MEDIUM_UTILIZATION_WINDOWS_URL = "http://aws.amazon.com/ec2/pricing/ri-medium-mswin.json" INSTANCES_RESERVED_HEAVY_UTILIZATION_LINUX_URL = "http://aws.amazon.com/ec2/pricing/ri-heavy-linux.json" INSTANCES_RESERVED_HEAVY_UTILIZATION_WINDOWS_URL = "http://aws.amazon.com/ec2/pricing/ri-heavy-mswin.json" INSTANCES_RESERVED_OS_TYPE_BY_URL = { INSTANCES_RESERVED_LIGHT_UTILIZATION_LINUX_URL : "linux", INSTANCES_RESERVED_LIGHT_UTILIZATION_WINDOWS_URL : "mswin", INSTNACES_RESERVED_MEDIUM_UTILIZATION_LINUX_URL : "linux", INSTANCES_RESERVED_MEDIUM_UTILIZATION_WINDOWS_URL : "mswin", INSTANCES_RESERVED_HEAVY_UTILIZATION_LINUX_URL : "linux", INSTANCES_RESERVED_HEAVY_UTILIZATION_WINDOWS_URL : "mswin" } INSTANCES_RESERVED_UTILIZATION_TYPE_BY_URL = { INSTANCES_RESERVED_LIGHT_UTILIZATION_LINUX_URL : "light", INSTANCES_RESERVED_LIGHT_UTILIZATION_WINDOWS_URL : "light", INSTNACES_RESERVED_MEDIUM_UTILIZATION_LINUX_URL : "medium", INSTANCES_RESERVED_MEDIUM_UTILIZATION_WINDOWS_URL : "medium", INSTANCES_RESERVED_HEAVY_UTILIZATION_LINUX_URL : "heavy", INSTANCES_RESERVED_HEAVY_UTILIZATION_WINDOWS_URL : "heavy" } DEFAULT_CURRENCY = "USD" INSTANCE_TYPE_MAPPING = { "stdODI" : "m1", "uODI" : "t1", "hiMemODI" : "m2", "hiCPUODI" : "c1", "clusterComputeI" : "cc1", "clusterGPUI" : "cg1", "hiIoODI" : "hi1", "secgenstdODI" : "m3", "hiStoreODI": "hs1", "clusterHiMemODI": "cr1", # Reserved Instance Types "stdResI" : "m1", "uResI" : "t1", "hiMemResI" : "m2", "hiCPUResI" : "c1", "clusterCompResI" : "cc1", "clusterGPUResI" : "cg1", "hiIoResI" : "hi1", "secgenstdResI" : "m3", "hiStoreResI": "hs1", "clusterHiMemResI": "cr1" } INSTANCE_SIZE_MAPPING = { "u" : "micro", "sm" : "small", "med" : "medium", "lg" : "large", "xl" : "xlarge", "xxl" : "2xlarge", "xxxxl" : "4xlarge", "xxxxxxxxl" : "8xlarge" } def _load_data(url): f = urllib2.urlopen(url) return json.loads(f.read()) def get_ec2_reserved_instances_prices(filter_region=None, filter_instance_type=None, filter_os_type=None): """ Get EC2 reserved instances prices. Results can be filtered by region """ get_specific_region = (filter_region is not None) if get_specific_region: filter_region = EC2_REGIONS_API_TO_JSON_NAME[filter_region] get_specific_instance_type = (filter_instance_type is not None) get_specific_os_type = (filter_os_type is not None) currency = DEFAULT_CURRENCY urls = [ INSTANCES_RESERVED_LIGHT_UTILIZATION_LINUX_URL, INSTANCES_RESERVED_LIGHT_UTILIZATION_WINDOWS_URL, INSTNACES_RESERVED_MEDIUM_UTILIZATION_LINUX_URL, INSTANCES_RESERVED_MEDIUM_UTILIZATION_WINDOWS_URL, INSTANCES_RESERVED_HEAVY_UTILIZATION_LINUX_URL, INSTANCES_RESERVED_HEAVY_UTILIZATION_WINDOWS_URL ] result_regions = [] result_regions_index = {} result = { "config" : { "currency" : currency, }, "regions" : result_regions } for u in urls: os_type = INSTANCES_RESERVED_OS_TYPE_BY_URL[u] utilization_type = INSTANCES_RESERVED_UTILIZATION_TYPE_BY_URL[u] data = _load_data(u) if "config" in data and data["config"] and "regions" in data["config"] and data["config"]["regions"]: for r in data["config"]["regions"]: if "region" in r and r["region"]: if get_specific_region and filter_region != r["region"]: continue region_name = JSON_NAME_TO_EC2_REGIONS_API[r["region"]] if region_name in result_regions_index: instance_types = result_regions_index[region_name]["instanceTypes"] else: instance_types = [] result_regions.append({ "region" : region_name, "instanceTypes" : instance_types }) result_regions_index[region_name] = result_regions[-1] if "instanceTypes" in r: for it in r["instanceTypes"]: instance_type = INSTANCE_TYPE_MAPPING[it["type"]] if "sizes" in it: for s in it["sizes"]: instance_size = INSTANCE_SIZE_MAPPING[s["size"]] prices = { "1year" : { "hourly" : None, "upfront" : None }, "3year" : { "hourly" : None, "upfront" : None } } _type = "%s.%s" % (instance_type, instance_size) if _type == "cc1.8xlarge": # Fix conflict where cc1 and cc2 share the same type _type = "cc2.8xlarge" if get_specific_instance_type and _type != filter_instance_type: continue if get_specific_os_type and os_type != filter_os_type: continue instance_types.append({ "type" : _type, "os" : os_type, "utilization" : utilization_type, "prices" : prices }) for price_data in s["valueColumns"]: price = None try: price = float(price_data["prices"][currency]) except ValueError: price = None if price_data["name"] == "yrTerm1": prices["1year"]["upfront"] = price elif price_data["name"] == "yrTerm1Hourly": prices["1year"]["hourly"] = price elif price_data["name"] == "yrTerm3": prices["3year"]["upfront"] = price elif price_data["name"] == "yrTerm3Hourly": prices["3year"]["hourly"] = price return result def get_ec2_ondemand_instances_prices(filter_region=None, filter_instance_type=None, filter_os_type=None): """ Get EC2 on-demand instances prices. Results can be filtered by region """ get_specific_region = (filter_region is not None) if get_specific_region: filter_region = EC2_REGIONS_API_TO_JSON_NAME[filter_region] get_specific_instance_type = (filter_instance_type is not None) get_specific_os_type = (filter_os_type is not None) currency = DEFAULT_CURRENCY result_regions = [] result = { "config" : { "currency" : currency, "unit" : "perhr" }, "regions" : result_regions } data = _load_data(INSTANCES_ON_DEMAND_URL) if "config" in data and data["config"] and "regions" in data["config"] and data["config"]["regions"]: for r in data["config"]["regions"]: if "region" in r and r["region"]: if get_specific_region and filter_region != r["region"]: continue region_name = JSON_NAME_TO_EC2_REGIONS_API[r["region"]] instance_types = [] if "instanceTypes" in r: for it in r["instanceTypes"]: instance_type = INSTANCE_TYPE_MAPPING[it["type"]] if "sizes" in it: for s in it["sizes"]: instance_size = INSTANCE_SIZE_MAPPING[s["size"]] for price_data in s["valueColumns"]: price = None try: price = float(price_data["prices"][currency]) except ValueError: price = None _type = "%s.%s" % (instance_type, instance_size) if _type == "cc1.8xlarge": # Fix conflict where cc1 and cc2 share the same type _type = "cc2.8xlarge" if get_specific_instance_type and _type != filter_instance_type: continue if get_specific_os_type and price_data["name"] != filter_os_type: continue instance_types.append({ "type" : _type, "os" : price_data["name"], "price" : price }) result_regions.append({ "region" : region_name, "instanceTypes" : instance_types }) return result return None if __name__ == "__main__": def none_as_string(v): if not v: return "" else: return v try: import argparse except ImportError: print "ERROR: You are running Python < 2.7. Please use pip to install argparse: pip install argparse" parser = argparse.ArgumentParser(add_help=True, description="Print out the current prices of EC2 instances") parser.add_argument("--type", "-t", help="Show ondemand or reserved instances", choices=["ondemand", "reserved"], required=True) parser.add_argument("--filter-region", "-fr", help="Filter results to a specific region", choices=EC2_REGIONS, default=None) parser.add_argument("--filter-type", "-ft", help="Filter results to a specific instance type", choices=EC2_INSTANCE_TYPES, default=None) parser.add_argument("--filter-os-type", "-fo", help="Filter results to a specific os type", choices=EC2_OS_TYPES, default=None) parser.add_argument("--format", "-f", choices=["json", "table", "csv"], help="Output format", default="table") args = parser.parse_args() if args.format == "table": try: from prettytable import PrettyTable except ImportError: print "ERROR: Please install 'prettytable' using pip: pip install prettytable" data = None if args.type == "ondemand": data = get_ec2_ondemand_instances_prices(args.filter_region, args.filter_type, args.filter_os_type) elif args.type == "reserved": data = get_ec2_reserved_instances_prices(args.filter_region, args.filter_type, args.filter_os_type) if args.format == "json": print json.dumps(data) elif args.format == "table": x = PrettyTable() if args.type == "ondemand": try: x.set_field_names(["region", "type", "os", "price"]) except AttributeError: x.field_names = ["region", "type", "os", "price"] try: x.aligns[-1] = "l" except AttributeError: x.align["price"] = "l" for r in data["regions"]: region_name = r["region"] for it in r["instanceTypes"]: x.add_row([region_name, it["type"], it["os"], none_as_string(it["price"])]) elif args.type == "reserved": try: x.set_field_names(["region", "type", "os", "utilization", "term", "price", "upfront"]) except AttributeError: x.field_names = ["region", "type", "os", "utilization", "term", "price", "upfront"] try: x.aligns[-1] = "l" x.aligns[-2] = "l" except AttributeError: x.align["price"] = "l" x.align["upfront"] = "l" for r in data["regions"]: region_name = r["region"] for it in r["instanceTypes"]: for term in it["prices"]: x.add_row([region_name, it["type"], it["os"], it["utilization"], term, none_as_string(it["prices"][term]["hourly"]), none_as_string(it["prices"][term]["upfront"])]) print x elif args.format == "csv": if args.type == "ondemand": print "region,type,os,price" for r in data["regions"]: region_name = r["region"] for it in r["instanceTypes"]: print "%s,%s,%s,%s" % (region_name, it["type"], it["os"], none_as_string(it["price"])) elif args.type == "reserved": print "region,type,os,utilization,term,price,upfront" for r in data["regions"]: region_name = r["region"] for it in r["instanceTypes"]: for term in it["prices"]: print "%s,%s,%s,%s,%s,%s,%s" % (region_name, it["type"], it["os"], it["utilization"], term, none_as_string(it["prices"][term]["hourly"]), none_as_string(it["prices"][term]["upfront"]))
# -*- coding: utf-8 -*- # # Copyright (C) 2006-2008 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://genshi.edgewall.org/wiki/License. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://genshi.edgewall.org/log/. """Support for programmatically generating markup streams from Python code using a very simple syntax. The main entry point to this module is the `tag` object (which is actually an instance of the ``ElementFactory`` class). You should rarely (if ever) need to directly import and use any of the other classes in this module. Elements can be created using the `tag` object using attribute access. For example: >>> doc = tag.p('Some text and ', tag.a('a link', href='http://example.org/'), '.') >>> doc <Element "p"> This produces an `Element` instance which can be further modified to add child nodes and attributes. This is done by "calling" the element: positional arguments are added as child nodes (alternatively, the `Element.append` method can be used for that purpose), whereas keywords arguments are added as attributes: >>> doc(tag.br) <Element "p"> >>> print doc <p>Some text and <a href="http://example.org/">a link</a>.<br/></p> If an attribute name collides with a Python keyword, simply append an underscore to the name: >>> doc(class_='intro') <Element "p"> >>> print doc <p class="intro">Some text and <a href="http://example.org/">a link</a>.<br/></p> As shown above, an `Element` can easily be directly rendered to XML text by printing it or using the Python ``str()`` function. This is basically a shortcut for converting the `Element` to a stream and serializing that stream: >>> stream = doc.generate() >>> stream #doctest: +ELLIPSIS <genshi.core.Stream object at ...> >>> print stream <p class="intro">Some text and <a href="http://example.org/">a link</a>.<br/></p> The `tag` object also allows creating "fragments", which are basically lists of nodes (elements or text) that don't have a parent element. This can be useful for creating snippets of markup that are attached to a parent element later (for example in a template). Fragments are created by calling the `tag` object, which returns an object of type `Fragment`: >>> fragment = tag('Hello, ', tag.em('world'), '!') >>> fragment <Fragment> >>> print fragment Hello, <em>world</em>! """ try: set except NameError: from sets import Set as set from pyxer.template.genshi.core import Attrs, Markup, Namespace, QName, Stream, \ START, END, TEXT __all__ = ['Fragment', 'Element', 'ElementFactory', 'tag'] __docformat__ = 'restructuredtext en' class Fragment(object): """Represents a markup fragment, which is basically just a list of element or text nodes. """ __slots__ = ['children'] def __init__(self): """Create a new fragment.""" self.children = [] def __add__(self, other): return Fragment()(self, other) def __call__(self, *args): """Append any positional arguments as child nodes. :see: `append` """ map(self.append, args) return self def __iter__(self): return self._generate() def __repr__(self): return '<%s>' % self.__class__.__name__ def __str__(self): return str(self.generate()) def __unicode__(self): return unicode(self.generate()) def __html__(self): return Markup(self.generate()) def append(self, node): """Append an element or string as child node. :param node: the node to append; can be an `Element`, `Fragment`, or a `Stream`, or a Python string or number """ if isinstance(node, (Stream, Element, basestring, int, float, long)): # For objects of a known/primitive type, we avoid the check for # whether it is iterable for better performance self.children.append(node) elif isinstance(node, Fragment): self.children.extend(node.children) elif node is not None: try: map(self.append, iter(node)) except TypeError: self.children.append(node) def _generate(self): for child in self.children: if isinstance(child, Fragment): for event in child._generate(): yield event elif isinstance(child, Stream): for event in child: yield event else: if not isinstance(child, basestring): child = unicode(child) yield TEXT, child, (None, -1, -1) def generate(self): """Return a markup event stream for the fragment. :rtype: `Stream` """ return Stream(self._generate()) def _kwargs_to_attrs(kwargs): attrs = [] names = set() for name, value in kwargs.items(): name = name.rstrip('_').replace('_', '-') if value is not None and name not in names: attrs.append((QName(name), unicode(value))) names.add(name) return Attrs(attrs) class Element(Fragment): """Simple XML output generator based on the builder pattern. Construct XML elements by passing the tag name to the constructor: >>> print Element('strong') <strong/> Attributes can be specified using keyword arguments. The values of the arguments will be converted to strings and any special XML characters escaped: >>> print Element('textarea', rows=10, cols=60) <textarea rows="10" cols="60"/> >>> print Element('span', title='1 < 2') <span title="1 &lt; 2"/> >>> print Element('span', title='"baz"') <span title="&#34;baz&#34;"/> The " character is escaped using a numerical entity. The order in which attributes are rendered is undefined. If an attribute value evaluates to `None`, that attribute is not included in the output: >>> print Element('a', name=None) <a/> Attribute names that conflict with Python keywords can be specified by appending an underscore: >>> print Element('div', class_='warning') <div class="warning"/> Nested elements can be added to an element using item access notation. The call notation can also be used for this and for adding attributes using keyword arguments, as one would do in the constructor. >>> print Element('ul')(Element('li'), Element('li')) <ul><li/><li/></ul> >>> print Element('a')('Label') <a>Label</a> >>> print Element('a')('Label', href="target") <a href="target">Label</a> Text nodes can be nested in an element by adding strings instead of elements. Any special characters in the strings are escaped automatically: >>> print Element('em')('Hello world') <em>Hello world</em> >>> print Element('em')(42) <em>42</em> >>> print Element('em')('1 < 2') <em>1 &lt; 2</em> This technique also allows mixed content: >>> print Element('p')('Hello ', Element('b')('world')) <p>Hello <b>world</b></p> Quotes are not escaped inside text nodes: >>> print Element('p')('"Hello"') <p>"Hello"</p> Elements can also be combined with other elements or strings using the addition operator, which results in a `Fragment` object that contains the operands: >>> print Element('br') + 'some text' + Element('br') <br/>some text<br/> Elements with a namespace can be generated using the `Namespace` and/or `QName` classes: >>> from genshi.core import Namespace >>> xhtml = Namespace('http://www.w3.org/1999/xhtml') >>> print Element(xhtml.html, lang='en') <html xmlns="http://www.w3.org/1999/xhtml" lang="en"/> """ __slots__ = ['tag', 'attrib'] def __init__(self, tag_, **attrib): Fragment.__init__(self) self.tag = QName(tag_) self.attrib = _kwargs_to_attrs(attrib) def __call__(self, *args, **kwargs): """Append any positional arguments as child nodes, and keyword arguments as attributes. :return: the element itself so that calls can be chained :rtype: `Element` :see: `Fragment.append` """ self.attrib |= _kwargs_to_attrs(kwargs) Fragment.__call__(self, *args) return self def __repr__(self): return '<%s "%s">' % (self.__class__.__name__, self.tag) def _generate(self): yield START, (self.tag, self.attrib), (None, -1, -1) for kind, data, pos in Fragment._generate(self): yield kind, data, pos yield END, self.tag, (None, -1, -1) def generate(self): """Return a markup event stream for the fragment. :rtype: `Stream` """ return Stream(self._generate()) class ElementFactory(object): """Factory for `Element` objects. A new element is created simply by accessing a correspondingly named attribute of the factory object: >>> factory = ElementFactory() >>> print factory.foo <foo/> >>> print factory.foo(id=2) <foo id="2"/> Markup fragments (lists of nodes without a parent element) can be created by calling the factory: >>> print factory('Hello, ', factory.em('world'), '!') Hello, <em>world</em>! A factory can also be bound to a specific namespace: >>> factory = ElementFactory('http://www.w3.org/1999/xhtml') >>> print factory.html(lang="en") <html xmlns="http://www.w3.org/1999/xhtml" lang="en"/> The namespace for a specific element can be altered on an existing factory by specifying the new namespace using item access: >>> factory = ElementFactory() >>> print factory.html(factory['http://www.w3.org/2000/svg'].g(id=3)) <html><g xmlns="http://www.w3.org/2000/svg" id="3"/></html> Usually, the `ElementFactory` class is not be used directly. Rather, the `tag` instance should be used to create elements. """ def __init__(self, namespace=None): """Create the factory, optionally bound to the given namespace. :param namespace: the namespace URI for any created elements, or `None` for no namespace """ if namespace and not isinstance(namespace, Namespace): namespace = Namespace(namespace) self.namespace = namespace def __call__(self, *args): """Create a fragment that has the given positional arguments as child nodes. :return: the created `Fragment` :rtype: `Fragment` """ return Fragment()(*args) def __getitem__(self, namespace): """Return a new factory that is bound to the specified namespace. :param namespace: the namespace URI or `Namespace` object :return: an `ElementFactory` that produces elements bound to the given namespace :rtype: `ElementFactory` """ return ElementFactory(namespace) def __getattr__(self, name): """Create an `Element` with the given name. :param name: the tag name of the element to create :return: an `Element` with the specified name :rtype: `Element` """ return Element(self.namespace and self.namespace[name] or name) tag = ElementFactory() """Global `ElementFactory` bound to the default namespace. :type: `ElementFactory` """
import mock from django.test import TestCase from django.contrib.auth.models import User from django.http import HttpRequest from mediaviewer.models.usersettings import UserSettings from mediaviewer.models.request import Request from mediaviewer.views.requests import (addrequests, ajaxvote, ajaxdone, ajaxgiveup, requests, ) class TestRequests(TestCase): def setUp(self): self.filter_patcher = mock.patch( 'mediaviewer.views.requests.Request.objects.filter') self.mock_filter = self.filter_patcher.start() self.addCleanup(self.filter_patcher.stop) self.setSiteWideContext_patcher = mock.patch( 'mediaviewer.views.requests.setSiteWideContext') self.mock_setSiteWideContext = self.setSiteWideContext_patcher.start() self.addCleanup(self.setSiteWideContext_patcher.stop) self.render_patcher = mock.patch( 'mediaviewer.views.requests.render') self.mock_render = self.render_patcher.start() self.addCleanup(self.render_patcher.stop) self.change_password_patcher = mock.patch( 'mediaviewer.views.password_reset.change_password') self.mock_change_password = self.change_password_patcher.start() self.addCleanup(self.change_password_patcher.stop) self.user = mock.MagicMock(User) self.settings = mock.MagicMock() self.settings.force_password_change = False self.user.settings.return_value = self.settings self.request = mock.MagicMock(HttpRequest) self.request.user = self.user self.test_requestObj = mock.MagicMock(Request) self.mock_filter.return_value = [self.test_requestObj] def test_valid(self): expected_context = { 'items': [self.test_requestObj], 'user': self.user, 'active_page': 'requests', 'title': 'Requests', } expected = self.mock_render.return_value actual = requests(self.request) self.assertEqual(expected, actual) self.mock_filter.assert_called_once_with(done=False) self.mock_setSiteWideContext.assert_called_once_with( expected_context, self.request, includeMessages=True) self.mock_render.assert_called_once_with( self.request, 'mediaviewer/request.html', expected_context) def test_force_password_change(self): self.settings.force_password_change = True expected = self.mock_change_password.return_value actual = requests(self.request) self.assertEqual(expected, actual) self.mock_change_password.assert_called_once_with(self.request) class TestAddRequests(TestCase): def setUp(self): self.HttpResponseRedirect_patcher = mock.patch( 'mediaviewer.views.requests.HttpResponseRedirect') self.mock_httpResponseRedirect = ( self.HttpResponseRedirect_patcher.start()) self.addCleanup(self.HttpResponseRedirect_patcher.stop) self.reverse_patcher = mock.patch('mediaviewer.views.requests.reverse') self.mock_reverse = self.reverse_patcher.start() self.addCleanup(self.reverse_patcher.stop) self.request_new_patcher = mock.patch( 'mediaviewer.views.requests.Request.new') self.mock_request_new = self.request_new_patcher.start() self.addCleanup(self.request_new_patcher.stop) self.request_vote_new_patcher = mock.patch( 'mediaviewer.views.requests.RequestVote.new') self.mock_request_vote_new = self.request_vote_new_patcher.start() self.addCleanup(self.request_vote_new_patcher.stop) self.change_password_patcher = mock.patch( 'mediaviewer.views.password_reset.change_password') self.mock_change_password = self.change_password_patcher.start() self.addCleanup(self.change_password_patcher.stop) self.test_user = User.objects.create_superuser('test_user', 'test@user.com', 'password') self.settings = mock.MagicMock() self.settings.force_password_change = False self.test_user.settings = lambda: self.settings self.request = mock.MagicMock() self.request.POST = {'newrequest': 'new request'} self.request.user = self.test_user def test_valid(self): expected = self.mock_httpResponseRedirect.return_value actual = addrequests(self.request) self.assertEqual(expected, actual) self.mock_reverse.assert_called_once_with('mediaviewer:requests') self.mock_httpResponseRedirect.assert_called_once_with( self.mock_reverse.return_value) self.mock_request_new.assert_called_once_with('new request', self.test_user) self.mock_request_vote_new.assert_called_once_with( self.mock_request_new.return_value, self.test_user) def test_force_password_change(self): self.settings.force_password_change = True expected = self.mock_change_password.return_value actual = addrequests(self.request) self.assertEqual(expected, actual) self.mock_change_password.assert_called_once_with(self.request) class TestAjaxVote(TestCase): def setUp(self): self.HttpResponse_patcher = mock.patch( 'mediaviewer.views.requests.HttpResponse') self.mock_httpResponse = self.HttpResponse_patcher.start() self.addCleanup(self.HttpResponse_patcher.stop) self.dumps_patcher = mock.patch( 'mediaviewer.views.requests.json.dumps') self.mock_dumps = self.dumps_patcher.start() self.addCleanup(self.dumps_patcher.stop) self.get_object_patcher = mock.patch( 'mediaviewer.views.requests.get_object_or_404') self.mock_get_object = self.get_object_patcher.start() self.addCleanup(self.get_object_patcher.stop) self.new_patcher = mock.patch( 'mediaviewer.views.requests.RequestVote.new') self.mock_new = self.new_patcher.start() self.addCleanup(self.new_patcher.stop) self.test_user = User.objects.create_superuser('test_user', 'test@user.com', 'password') self.request = mock.MagicMock() self.request.POST = {'requestid': 123} self.request.user = self.test_user self.mock_requestObj = mock.MagicMock() self.mock_get_object.return_value = self.mock_requestObj def test_request_exists(self): expected = self.mock_httpResponse.return_value actual = ajaxvote(self.request) self.assertEqual(expected, actual) self.mock_new.assert_called_once_with(self.mock_requestObj, self.test_user) self.mock_requestObj.numberOfVotes.assert_called_once_with() self.mock_dumps.assert_called_once_with({ 'numberOfVotes': self.mock_requestObj.numberOfVotes.return_value, 'requestid': 123}) self.mock_httpResponse.assert_called_once_with( self.mock_dumps.return_value, content_type='application/javascript') def test_user_not_authenticated(self): self.test_user = mock.MagicMock() self.test_user.is_authenticated.return_value = False self.request.user = self.test_user self.assertRaisesMessage( Exception, 'User not authenticated. Refresh and try again.', ajaxvote, self.request) # TODO: Add tests for user messages class TestAjaxDone(TestCase): def setUp(self): self.HttpResponse_patcher = mock.patch( 'mediaviewer.views.requests.HttpResponse') self.mock_httpResponse = self.HttpResponse_patcher.start() self.addCleanup(self.HttpResponse_patcher.stop) self.dumps_patcher = mock.patch( 'mediaviewer.views.requests.json.dumps') self.mock_dumps = self.dumps_patcher.start() self.addCleanup(self.dumps_patcher.stop) self.get_object_patcher = mock.patch( 'mediaviewer.views.requests.get_object_or_404') self.mock_get_object = self.get_object_patcher.start() self.addCleanup(self.get_object_patcher.stop) self.user = mock.create_autospec(User) self.user.username = 'test_logged_in_user' self.user.is_authenticated.return_value = True self.user.is_staff = True self.settings = mock.create_autospec(UserSettings) self.settings.force_password_change = False self.user.settings.return_value = self.settings self.request = mock.MagicMock() self.request.POST = {'requestid': 123} self.request.user = self.user def test_user_not_authenticated(self): self.user.is_authenticated.return_value = False expected_response = { 'errmsg': 'User not authenticated. Refresh and try again.'} expected = self.mock_httpResponse.return_value actual = ajaxdone(self.request) self.assertEqual(expected, actual) self.mock_dumps.assert_called_once_with(expected_response) self.mock_httpResponse.assert_called_once_with( self.mock_dumps.return_value, content_type='application/javascript') def test_user_not_staff(self): self.user.is_staff = False expected_response = { 'errmsg': 'User is not a staffer'} expected = self.mock_httpResponse.return_value actual = ajaxdone(self.request) self.assertEqual(expected, actual) self.mock_dumps.assert_called_once_with(expected_response) self.mock_httpResponse.assert_called_once_with( self.mock_dumps.return_value, content_type='application/javascript') def test_valid(self): expected_response = { 'errmsg': '', 'message': 'Marked done!', 'requestid': 123} expected = self.mock_httpResponse.return_value actual = ajaxdone(self.request) self.assertEqual(expected, actual) self.mock_dumps.assert_called_once_with(expected_response) self.mock_httpResponse.assert_called_once_with( self.mock_dumps.return_value, content_type='application/javascript') class TestGiveUp(TestCase): def setUp(self): self.HttpResponse_patcher = mock.patch( 'mediaviewer.views.requests.HttpResponse') self.mock_httpResponse = self.HttpResponse_patcher.start() self.addCleanup(self.HttpResponse_patcher.stop) self.dumps_patcher = mock.patch( 'mediaviewer.views.requests.json.dumps') self.mock_dumps = self.dumps_patcher.start() self.addCleanup(self.dumps_patcher.stop) self.get_object_patcher = mock.patch( 'mediaviewer.views.requests.get_object_or_404') self.mock_get_object = self.get_object_patcher.start() self.addCleanup(self.get_object_patcher.stop) self.user = mock.create_autospec(User) self.user.username = 'test_logged_in_user' self.user.is_authenticated.return_value = True self.user.is_staff = True self.settings = mock.create_autospec(UserSettings) self.settings.force_password_change = False self.user.settings.return_value = self.settings self.request = mock.MagicMock() self.request.POST = {'requestid': 123} self.request.user = self.user def test_user_not_authenticated(self): self.user.is_authenticated.return_value = False expected_response = { 'errmsg': 'User not authenticated. Refresh and try again.'} expected = self.mock_httpResponse.return_value actual = ajaxgiveup(self.request) self.assertEqual(expected, actual) self.mock_dumps.assert_called_once_with(expected_response) self.mock_httpResponse.assert_called_once_with( self.mock_dumps.return_value, content_type='application/javascript') def test_user_not_staff(self): self.user.is_staff = False expected_response = { 'errmsg': 'User is not a staffer'} expected = self.mock_httpResponse.return_value actual = ajaxgiveup(self.request) self.assertEqual(expected, actual) self.mock_dumps.assert_called_once_with(expected_response) self.mock_httpResponse.assert_called_once_with( self.mock_dumps.return_value, content_type='application/javascript') def test_valid(self): expected_response = { 'errmsg': '', 'message': 'Give up!', 'requestid': 123} expected = self.mock_httpResponse.return_value actual = ajaxgiveup(self.request) self.assertEqual(expected, actual) self.mock_dumps.assert_called_once_with(expected_response) self.mock_httpResponse.assert_called_once_with( self.mock_dumps.return_value, content_type='application/javascript')
# Copyright 2012 VMware, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import contextlib import time import mock from oslo.config import cfg from neutron.agent.linux import ip_lib from neutron.agent.linux import ovs_lib from neutron.openstack.common import log from neutron.plugins.common import constants as p_const from neutron.plugins.openvswitch.agent import ovs_neutron_agent from neutron.plugins.openvswitch.common import constants from neutron.tests import base # Useful global dummy variables. NET_UUID = '3faeebfe-5d37-11e1-a64b-000c29d5f0a7' LS_ID = 42 LV_ID = 42 LV_IDS = [42, 43] VIF_ID = '404deaec-5d37-11e1-a64b-000c29d5f0a8' VIF_MAC = '3c:09:24:1e:78:23' OFPORT_NUM = 1 VIF_PORT = ovs_lib.VifPort('port', OFPORT_NUM, VIF_ID, VIF_MAC, 'switch') VIF_PORTS = {VIF_ID: VIF_PORT} LVM = ovs_neutron_agent.LocalVLANMapping(LV_ID, 'gre', None, LS_ID, VIF_PORTS) LVM_FLAT = ovs_neutron_agent.LocalVLANMapping( LV_ID, 'flat', 'net1', LS_ID, VIF_PORTS) LVM_VLAN = ovs_neutron_agent.LocalVLANMapping( LV_ID, 'vlan', 'net1', LS_ID, VIF_PORTS) FIXED_IPS = [{'subnet_id': 'my-subnet-uuid', 'ip_address': '1.1.1.1'}] VM_DEVICE_OWNER = "compute:None" TUN_OFPORTS = {p_const.TYPE_GRE: {'ip1': '11', 'ip2': '12'}} BCAST_MAC = "01:00:00:00:00:00/01:00:00:00:00:00" UCAST_MAC = "00:00:00:00:00:00/01:00:00:00:00:00" class DummyPort: def __init__(self, interface_id): self.interface_id = interface_id class DummyVlanBinding: def __init__(self, network_id, vlan_id): self.network_id = network_id self.vlan_id = vlan_id class TunnelTest(base.BaseTestCase): USE_VETH_INTERCONNECTION = False VETH_MTU = None def setUp(self): super(TunnelTest, self).setUp() cfg.CONF.set_default('firewall_driver', 'neutron.agent.firewall.NoopFirewallDriver', group='SECURITYGROUP') cfg.CONF.set_override('report_interval', 0, 'AGENT') self.INT_BRIDGE = 'integration_bridge' self.TUN_BRIDGE = 'tunnel_bridge' self.MAP_TUN_BRIDGE = 'tun_br_map' self.NET_MAPPING = {'net1': self.MAP_TUN_BRIDGE} self.INT_OFPORT = 11111 self.TUN_OFPORT = 22222 self.MAP_TUN_INT_OFPORT = 33333 self.MAP_TUN_PHY_OFPORT = 44444 self.inta = mock.Mock() self.intb = mock.Mock() self.ovs_bridges = {self.INT_BRIDGE: mock.Mock(), self.TUN_BRIDGE: mock.Mock(), self.MAP_TUN_BRIDGE: mock.Mock(), } self.ovs_int_ofports = { 'patch-tun': self.TUN_OFPORT, 'int-%s' % self.MAP_TUN_BRIDGE: self.MAP_TUN_INT_OFPORT } self.mock_bridge = mock.patch.object(ovs_lib, 'OVSBridge').start() self.mock_bridge.side_effect = (lambda br_name, root_helper: self.ovs_bridges[br_name]) self.mock_int_bridge = self.ovs_bridges[self.INT_BRIDGE] self.mock_int_bridge.add_port.return_value = self.MAP_TUN_INT_OFPORT self.mock_int_bridge.add_patch_port.side_effect = ( lambda tap, peer: self.ovs_int_ofports[tap]) self.mock_map_tun_bridge = self.ovs_bridges[self.MAP_TUN_BRIDGE] self.mock_map_tun_bridge.br_name = self.MAP_TUN_BRIDGE self.mock_map_tun_bridge.add_port.return_value = ( self.MAP_TUN_PHY_OFPORT) self.mock_map_tun_bridge.add_patch_port.return_value = ( self.MAP_TUN_PHY_OFPORT) self.mock_tun_bridge = self.ovs_bridges[self.TUN_BRIDGE] self.mock_tun_bridge.add_port.return_value = self.INT_OFPORT self.mock_tun_bridge.add_patch_port.return_value = self.INT_OFPORT self.device_exists = mock.patch.object(ip_lib, 'device_exists').start() self.device_exists.return_value = True self.ipdevice = mock.patch.object(ip_lib, 'IPDevice').start() self.ipwrapper = mock.patch.object(ip_lib, 'IPWrapper').start() add_veth = self.ipwrapper.return_value.add_veth add_veth.return_value = [self.inta, self.intb] self.get_bridges = mock.patch.object(ovs_lib, 'get_bridges').start() self.get_bridges.return_value = [self.INT_BRIDGE, self.TUN_BRIDGE, self.MAP_TUN_BRIDGE] self.execute = mock.patch('neutron.agent.linux.utils.execute').start() self._define_expected_calls() def _define_expected_calls(self): self.mock_bridge_expected = [ mock.call(self.INT_BRIDGE, 'sudo'), mock.call(self.MAP_TUN_BRIDGE, 'sudo'), mock.call(self.TUN_BRIDGE, 'sudo'), ] self.mock_int_bridge = self.ovs_bridges[self.INT_BRIDGE] self.mock_int_bridge_expected = [ mock.call.create(), mock.call.set_secure_mode(), mock.call.delete_port('patch-tun'), mock.call.remove_all_flows(), mock.call.add_flow(priority=1, actions='normal'), mock.call.add_flow(priority=0, table=constants.CANARY_TABLE, actions='drop'), ] self.mock_map_tun_bridge_expected = [ mock.call.remove_all_flows(), mock.call.add_flow(priority=1, actions='normal'), mock.call.delete_port('phy-%s' % self.MAP_TUN_BRIDGE), mock.call.add_patch_port('phy-%s' % self.MAP_TUN_BRIDGE, constants.NONEXISTENT_PEER), ] self.mock_int_bridge_expected += [ mock.call.delete_port('int-%s' % self.MAP_TUN_BRIDGE), mock.call.add_patch_port('int-%s' % self.MAP_TUN_BRIDGE, constants.NONEXISTENT_PEER), ] self.mock_int_bridge_expected += [ mock.call.add_flow(priority=2, in_port=self.MAP_TUN_INT_OFPORT, actions='drop'), mock.call.set_db_attribute( 'Interface', 'int-%s' % self.MAP_TUN_BRIDGE, 'options:peer', 'phy-%s' % self.MAP_TUN_BRIDGE), ] self.mock_map_tun_bridge_expected += [ mock.call.add_flow(priority=2, in_port=self.MAP_TUN_PHY_OFPORT, actions='drop'), mock.call.set_db_attribute( 'Interface', 'phy-%s' % self.MAP_TUN_BRIDGE, 'options:peer', 'int-%s' % self.MAP_TUN_BRIDGE), ] self.mock_tun_bridge_expected = [ mock.call.reset_bridge(), mock.call.add_patch_port('patch-int', 'patch-tun'), ] self.mock_int_bridge_expected += [ mock.call.add_patch_port('patch-tun', 'patch-int') ] self.mock_tun_bridge_expected += [ mock.call.remove_all_flows(), mock.call.add_flow(priority=1, actions="resubmit(,%s)" % constants.PATCH_LV_TO_TUN, in_port=self.INT_OFPORT), mock.call.add_flow(priority=0, actions="drop"), mock.call.add_flow(priority=0, table=constants.PATCH_LV_TO_TUN, dl_dst=UCAST_MAC, actions="resubmit(,%s)" % constants.UCAST_TO_TUN), mock.call.add_flow(priority=0, table=constants.PATCH_LV_TO_TUN, dl_dst=BCAST_MAC, actions="resubmit(,%s)" % constants.FLOOD_TO_TUN), ] for tunnel_type in constants.TUNNEL_NETWORK_TYPES: self.mock_tun_bridge_expected.append( mock.call.add_flow( table=constants.TUN_TABLE[tunnel_type], priority=0, actions="drop")) learned_flow = ("table=%s," "priority=1," "hard_timeout=300," "NXM_OF_VLAN_TCI[0..11]," "NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[]," "load:0->NXM_OF_VLAN_TCI[]," "load:NXM_NX_TUN_ID[]->NXM_NX_TUN_ID[]," "output:NXM_OF_IN_PORT[]" % constants.UCAST_TO_TUN) self.mock_tun_bridge_expected += [ mock.call.add_flow(table=constants.LEARN_FROM_TUN, priority=1, actions="learn(%s),output:%s" % (learned_flow, self.INT_OFPORT)), mock.call.add_flow(table=constants.UCAST_TO_TUN, priority=0, actions="resubmit(,%s)" % constants.FLOOD_TO_TUN), mock.call.add_flow(table=constants.FLOOD_TO_TUN, priority=0, actions="drop") ] self.device_exists_expected = [] self.ipdevice_expected = [] self.ipwrapper_expected = [mock.call('sudo')] self.get_bridges_expected = [mock.call('sudo'), mock.call('sudo')] self.inta_expected = [] self.intb_expected = [] self.execute_expected = [] def _build_agent(self, **kwargs): kwargs.setdefault('integ_br', self.INT_BRIDGE) kwargs.setdefault('tun_br', self.TUN_BRIDGE) kwargs.setdefault('local_ip', '10.0.0.1') kwargs.setdefault('bridge_mappings', self.NET_MAPPING) kwargs.setdefault('root_helper', 'sudo') kwargs.setdefault('polling_interval', 2) kwargs.setdefault('tunnel_types', ['gre']) kwargs.setdefault('veth_mtu', self.VETH_MTU) kwargs.setdefault('use_veth_interconnection', self.USE_VETH_INTERCONNECTION) return ovs_neutron_agent.OVSNeutronAgent(**kwargs) def _verify_mock_call(self, mock_obj, expected): mock_obj.assert_has_calls(expected) self.assertEqual(len(mock_obj.mock_calls), len(expected)) def _verify_mock_calls(self): self._verify_mock_call(self.mock_bridge, self.mock_bridge_expected) self._verify_mock_call(self.mock_int_bridge, self.mock_int_bridge_expected) self._verify_mock_call(self.mock_map_tun_bridge, self.mock_map_tun_bridge_expected) self._verify_mock_call(self.mock_tun_bridge, self.mock_tun_bridge_expected) self._verify_mock_call(self.device_exists, self.device_exists_expected) self._verify_mock_call(self.ipdevice, self.ipdevice_expected) self._verify_mock_call(self.ipwrapper, self.ipwrapper_expected) self._verify_mock_call(self.get_bridges, self.get_bridges_expected) self._verify_mock_call(self.inta, self.inta_expected) self._verify_mock_call(self.intb, self.intb_expected) self._verify_mock_call(self.execute, self.execute_expected) def test_construct(self): agent = self._build_agent() self.assertEqual(agent.agent_id, 'ovs-agent-%s' % cfg.CONF.host) self._verify_mock_calls() # TODO(ethuleau): Initially, local ARP responder is be dependent to the # ML2 l2 population mechanism driver. # The next two tests use l2_pop flag to test ARP responder def test_construct_with_arp_responder(self): self._build_agent(l2_population=True, arp_responder=True) self.mock_tun_bridge_expected.insert( 5, mock.call.add_flow(table=constants.PATCH_LV_TO_TUN, priority=1, proto="arp", dl_dst="ff:ff:ff:ff:ff:ff", actions="resubmit(,%s)" % constants.ARP_RESPONDER) ) self.mock_tun_bridge_expected.insert( 12, mock.call.add_flow(table=constants.ARP_RESPONDER, priority=0, actions="resubmit(,%s)" % constants.FLOOD_TO_TUN) ) self._verify_mock_calls() def test_construct_without_arp_responder(self): self._build_agent(l2_population=False, arp_responder=True) self._verify_mock_calls() def test_construct_vxlan(self): self._build_agent(tunnel_types=['vxlan']) self._verify_mock_calls() def test_provision_local_vlan(self): ofports = ','.join(TUN_OFPORTS[p_const.TYPE_GRE].values()) self.mock_tun_bridge_expected += [ mock.call.mod_flow(table=constants.FLOOD_TO_TUN, dl_vlan=LV_ID, actions="strip_vlan," "set_tunnel:%s,output:%s" % (LS_ID, ofports)), mock.call.add_flow(table=constants.TUN_TABLE['gre'], priority=1, tun_id=LS_ID, actions="mod_vlan_vid:%s,resubmit(,%s)" % (LV_ID, constants.LEARN_FROM_TUN)), ] a = self._build_agent() a.available_local_vlans = set([LV_ID]) a.tun_br_ofports = TUN_OFPORTS a.provision_local_vlan(NET_UUID, p_const.TYPE_GRE, None, LS_ID) self._verify_mock_calls() def test_provision_local_vlan_flat(self): action_string = 'strip_vlan,normal' self.mock_map_tun_bridge_expected.append( mock.call.add_flow(priority=4, in_port=self.MAP_TUN_PHY_OFPORT, dl_vlan=LV_ID, actions=action_string)) action_string = 'mod_vlan_vid:%s,normal' % LV_ID self.mock_int_bridge_expected.append( mock.call.add_flow(priority=3, in_port=self.INT_OFPORT, dl_vlan=65535, actions=action_string)) a = self._build_agent() a.available_local_vlans = set([LV_ID]) a.phys_brs['net1'] = self.mock_map_tun_bridge a.phys_ofports['net1'] = self.MAP_TUN_PHY_OFPORT a.int_ofports['net1'] = self.INT_OFPORT a.provision_local_vlan(NET_UUID, p_const.TYPE_FLAT, 'net1', LS_ID) self._verify_mock_calls() def test_provision_local_vlan_flat_fail(self): a = self._build_agent() a.provision_local_vlan(NET_UUID, p_const.TYPE_FLAT, 'net2', LS_ID) self._verify_mock_calls() def test_provision_local_vlan_vlan(self): action_string = 'mod_vlan_vid:%s,normal' % LS_ID self.mock_map_tun_bridge_expected.append( mock.call.add_flow(priority=4, in_port=self.MAP_TUN_PHY_OFPORT, dl_vlan=LV_ID, actions=action_string)) action_string = 'mod_vlan_vid:%s,normal' % LS_ID self.mock_int_bridge_expected.append( mock.call.add_flow(priority=3, in_port=self.INT_OFPORT, dl_vlan=LV_ID, actions=action_string)) a = self._build_agent() a.available_local_vlans = set([LV_ID]) a.phys_brs['net1'] = self.mock_map_tun_bridge a.phys_ofports['net1'] = self.MAP_TUN_PHY_OFPORT a.int_ofports['net1'] = self.INT_OFPORT a.provision_local_vlan(NET_UUID, p_const.TYPE_VLAN, 'net1', LS_ID) self._verify_mock_calls() def test_provision_local_vlan_vlan_fail(self): a = self._build_agent() a.provision_local_vlan(NET_UUID, p_const.TYPE_VLAN, 'net2', LS_ID) self._verify_mock_calls() def test_reclaim_local_vlan(self): self.mock_tun_bridge_expected += [ mock.call.delete_flows( table=constants.TUN_TABLE['gre'], tun_id=LS_ID), mock.call.delete_flows(dl_vlan=LVM.vlan) ] a = self._build_agent() a.available_local_vlans = set() a.local_vlan_map[NET_UUID] = LVM a.reclaim_local_vlan(NET_UUID) self.assertIn(LVM.vlan, a.available_local_vlans) self._verify_mock_calls() def test_reclaim_local_vlan_flat(self): self.mock_map_tun_bridge_expected.append( mock.call.delete_flows( in_port=self.MAP_TUN_PHY_OFPORT, dl_vlan=LVM_FLAT.vlan)) self.mock_int_bridge_expected.append( mock.call.delete_flows( dl_vlan=65535, in_port=self.INT_OFPORT)) a = self._build_agent() a.phys_brs['net1'] = self.mock_map_tun_bridge a.phys_ofports['net1'] = self.MAP_TUN_PHY_OFPORT a.int_ofports['net1'] = self.INT_OFPORT a.available_local_vlans = set() a.local_vlan_map[NET_UUID] = LVM_FLAT a.reclaim_local_vlan(NET_UUID) self.assertIn(LVM_FLAT.vlan, a.available_local_vlans) self._verify_mock_calls() def test_reclaim_local_vlan_vlan(self): self.mock_map_tun_bridge_expected.append( mock.call.delete_flows( in_port=self.MAP_TUN_PHY_OFPORT, dl_vlan=LVM_VLAN.vlan)) self.mock_int_bridge_expected.append( mock.call.delete_flows( dl_vlan=LV_ID, in_port=self.INT_OFPORT)) a = self._build_agent() a.phys_brs['net1'] = self.mock_map_tun_bridge a.phys_ofports['net1'] = self.MAP_TUN_PHY_OFPORT a.int_ofports['net1'] = self.INT_OFPORT a.available_local_vlans = set() a.local_vlan_map[NET_UUID] = LVM_VLAN a.reclaim_local_vlan(NET_UUID) self.assertIn(LVM_VLAN.vlan, a.available_local_vlans) self._verify_mock_calls() def test_port_bound(self): self.mock_int_bridge_expected += [ mock.call.db_get_val('Port', VIF_PORT.port_name, 'tag'), mock.call.set_db_attribute('Port', VIF_PORT.port_name, 'tag', str(LVM.vlan)), mock.call.delete_flows(in_port=VIF_PORT.ofport) ] a = self._build_agent() a.local_vlan_map[NET_UUID] = LVM a.local_dvr_map = {} a.port_bound(VIF_PORT, NET_UUID, 'gre', None, LS_ID, FIXED_IPS, VM_DEVICE_OWNER, False) self._verify_mock_calls() def test_port_unbound(self): with mock.patch.object(ovs_neutron_agent.OVSNeutronAgent, 'reclaim_local_vlan') as reclaim_local_vlan: a = self._build_agent() a.local_vlan_map[NET_UUID] = LVM a.port_unbound(VIF_ID, NET_UUID) reclaim_local_vlan.assert_called_once_with(NET_UUID) self._verify_mock_calls() def test_port_dead(self): self.mock_int_bridge_expected += [ mock.call.db_get_val('Port', VIF_PORT.port_name, 'tag'), mock.call.set_db_attribute( 'Port', VIF_PORT.port_name, 'tag', ovs_neutron_agent.DEAD_VLAN_TAG), mock.call.add_flow(priority=2, in_port=VIF_PORT.ofport, actions='drop') ] a = self._build_agent() a.available_local_vlans = set([LV_ID]) a.local_vlan_map[NET_UUID] = LVM a.port_dead(VIF_PORT) self._verify_mock_calls() def test_tunnel_update(self): tunnel_port = '9999' self.mock_tun_bridge.add_tunnel_port.return_value = tunnel_port self.mock_tun_bridge_expected += [ mock.call.add_tunnel_port('gre-1', '10.0.10.1', '10.0.0.1', 'gre', 4789, True), mock.call.add_flow(priority=1, in_port=tunnel_port, actions='resubmit(,3)') ] a = self._build_agent() a.tunnel_update( mock.sentinel.ctx, tunnel_id='1', tunnel_ip='10.0.10.1', tunnel_type=p_const.TYPE_GRE) self._verify_mock_calls() def test_tunnel_update_self(self): a = self._build_agent() a.tunnel_update( mock.sentinel.ctx, tunnel_id='1', tunnel_ip='10.0.0.1') self._verify_mock_calls() def test_daemon_loop(self): reply2 = {'current': set(['tap0']), 'added': set(['tap2']), 'removed': set([])} reply3 = {'current': set(['tap2']), 'added': set([]), 'removed': set(['tap0'])} self.mock_int_bridge_expected += [ mock.call.dump_flows_for_table(constants.CANARY_TABLE), mock.call.dump_flows_for_table(constants.CANARY_TABLE) ] with contextlib.nested( mock.patch.object(log.ContextAdapter, 'exception'), mock.patch.object(ovs_neutron_agent.OVSNeutronAgent, 'scan_ports'), mock.patch.object(ovs_neutron_agent.OVSNeutronAgent, 'process_network_ports'), mock.patch.object(ovs_neutron_agent.OVSNeutronAgent, 'tunnel_sync'), mock.patch.object(time, 'sleep') ) as (log_exception, scan_ports, process_network_ports, ts, time_sleep): log_exception.side_effect = Exception( 'Fake exception to get out of the loop') scan_ports.side_effect = [reply2, reply3] process_network_ports.side_effect = [ False, Exception('Fake exception to get out of the loop')] q_agent = self._build_agent() # Hack to test loop # We start method and expect it will raise after 2nd loop # If something goes wrong, assert_has_calls below will catch it try: q_agent.daemon_loop() except Exception: pass # FIXME(salv-orlando): There should not be assertions on log messages log_exception.assert_called_once_with( "Error while processing VIF ports") scan_ports.assert_has_calls([ mock.call(set(), set()), mock.call(set(['tap0']), set()) ]) process_network_ports.assert_has_calls([ mock.call({'current': set(['tap0']), 'removed': set([]), 'added': set(['tap2'])}, False), mock.call({'current': set(['tap2']), 'removed': set(['tap0']), 'added': set([])}, False) ]) self._verify_mock_calls() class TunnelTestUseVethInterco(TunnelTest): USE_VETH_INTERCONNECTION = True def _define_expected_calls(self): self.mock_bridge_expected = [ mock.call(self.INT_BRIDGE, 'sudo'), mock.call(self.MAP_TUN_BRIDGE, 'sudo'), mock.call(self.TUN_BRIDGE, 'sudo'), ] self.mock_int_bridge_expected = [ mock.call.create(), mock.call.set_secure_mode(), mock.call.delete_port('patch-tun'), mock.call.remove_all_flows(), mock.call.add_flow(priority=1, actions='normal'), mock.call.add_flow(table=constants.CANARY_TABLE, priority=0, actions="drop") ] self.mock_map_tun_bridge_expected = [ mock.call.remove_all_flows(), mock.call.add_flow(priority=1, actions='normal'), mock.call.delete_port('phy-%s' % self.MAP_TUN_BRIDGE), mock.call.add_port(self.intb), ] self.mock_int_bridge_expected += [ mock.call.delete_port('int-%s' % self.MAP_TUN_BRIDGE), mock.call.add_port(self.inta) ] self.mock_int_bridge_expected += [ mock.call.add_flow(priority=2, in_port=self.MAP_TUN_INT_OFPORT, actions='drop') ] self.mock_map_tun_bridge_expected += [ mock.call.add_flow(priority=2, in_port=self.MAP_TUN_PHY_OFPORT, actions='drop') ] self.mock_tun_bridge_expected = [ mock.call.reset_bridge(), mock.call.add_patch_port('patch-int', 'patch-tun'), ] self.mock_int_bridge_expected += [ mock.call.add_patch_port('patch-tun', 'patch-int') ] self.mock_tun_bridge_expected += [ mock.call.remove_all_flows(), mock.call.add_flow(priority=1, in_port=self.INT_OFPORT, actions="resubmit(,%s)" % constants.PATCH_LV_TO_TUN), mock.call.add_flow(priority=0, actions='drop'), mock.call.add_flow(priority=0, table=constants.PATCH_LV_TO_TUN, dl_dst=UCAST_MAC, actions="resubmit(,%s)" % constants.UCAST_TO_TUN), mock.call.add_flow(priority=0, table=constants.PATCH_LV_TO_TUN, dl_dst=BCAST_MAC, actions="resubmit(,%s)" % constants.FLOOD_TO_TUN), ] for tunnel_type in constants.TUNNEL_NETWORK_TYPES: self.mock_tun_bridge_expected.append( mock.call.add_flow( table=constants.TUN_TABLE[tunnel_type], priority=0, actions="drop")) learned_flow = ("table=%s," "priority=1," "hard_timeout=300," "NXM_OF_VLAN_TCI[0..11]," "NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[]," "load:0->NXM_OF_VLAN_TCI[]," "load:NXM_NX_TUN_ID[]->NXM_NX_TUN_ID[]," "output:NXM_OF_IN_PORT[]" % constants.UCAST_TO_TUN) self.mock_tun_bridge_expected += [ mock.call.add_flow(table=constants.LEARN_FROM_TUN, priority=1, actions="learn(%s),output:%s" % (learned_flow, self.INT_OFPORT)), mock.call.add_flow(table=constants.UCAST_TO_TUN, priority=0, actions="resubmit(,%s)" % constants.FLOOD_TO_TUN), mock.call.add_flow(table=constants.FLOOD_TO_TUN, priority=0, actions="drop") ] self.device_exists_expected = [ mock.call('int-%s' % self.MAP_TUN_BRIDGE, 'sudo'), ] self.ipdevice_expected = [ mock.call('int-%s' % self.MAP_TUN_BRIDGE, 'sudo'), mock.call().link.delete() ] self.ipwrapper_expected = [ mock.call('sudo'), mock.call().add_veth('int-%s' % self.MAP_TUN_BRIDGE, 'phy-%s' % self.MAP_TUN_BRIDGE) ] self.get_bridges_expected = [mock.call('sudo'), mock.call('sudo')] self.inta_expected = [mock.call.link.set_up()] self.intb_expected = [mock.call.link.set_up()] self.execute_expected = [mock.call(['udevadm', 'settle', '--timeout=10'])] class TunnelTestWithMTU(TunnelTestUseVethInterco): VETH_MTU = 1500 def _define_expected_calls(self): super(TunnelTestWithMTU, self)._define_expected_calls() self.inta_expected.append(mock.call.link.set_mtu(self.VETH_MTU)) self.intb_expected.append(mock.call.link.set_mtu(self.VETH_MTU))
from __future__ import absolute_import from __future__ import print_function import math import re from decimal import Decimal from .adjacency_graphs import adjacency_graphs from six.moves import range # on qwerty, 'g' has degree 6, being adjacent to 'ftyhbv'. '\' has degree 1. # this calculates the average over all keys. def calc_average_degree(graph): average = 0 for key, neighbors in graph.items(): average += len([n for n in neighbors if n]) average /= len([k for k in graph.keys()]) return average BRUTEFORCE_CARDINALITY = 10 MIN_GUESSES_BEFORE_GROWING_SEQUENCE = 10000 MIN_SUBMATCH_GUESSES_SINGLE_CHAR = 10 MIN_SUBMATCH_GUESSES_MULTI_CHAR = 50 REFERENCE_YEAR = 2000 def binom(n, k): """ Returns binomial coefficient (n choose k). """ # http://blog.plover.com/math/choose.html if k > n: return 0 if k == 0: return 1 result = 1 for denom in range(1, k + 1): result *= n result /= denom n -= 1 return result def log10(n): """ Returns logarithm of n in base 10. """ return math.log(float(n), 10) def log2(n): """ Returns logarithm of n in base 2. """ return math.log(n, 2) def factorial(n): """ Return factorial of n """ if n < 2: return 1 f = 1 for i in range(1, n): f *= i return f def insert_val_to_arr(array, index, value, default=None): if (len(array) - 1) > index: array[index] = value else: for i in range(len(array), index+1): array.append(default) array[index] = value def most_guessable_match_sequence(password, matches, _exclude_additive=False): optimal_product = [[] for _ in range(len(password)+1)] backpointers = [[] for _ in range(len(password)+1)] max_l = 0 optimal_l = None def make_bruteforce_match(i, j): return { "pattern": "bruteforce", "token": password[i:j+1], "i": i, "j": j } def score(guess_product, sequence_length): result = math.factorial(sequence_length) * guess_product if not _exclude_additive: result += math.pow(MIN_GUESSES_BEFORE_GROWING_SEQUENCE, sequence_length - 1) return result for k in range(len(password)): backpointers[k] = [] optimal_product[k] = [] optimal_score = Decimal("Infinity") for prev_l in range(max_l + 1): # for each new k, starting scenario to try to beat: bruteforce matches # involving the lowest-possible l. three cases: # # 1. all-bruteforce match (for length-1 sequences.) # 2. extending a previous bruteforce match # (possible when optimal[k-1][l] ends in bf.) # 3. starting a new single-char bruteforce match # (possible when optimal[k-1][l] exists but does not end in bf.) # # otherwise: there is no bruteforce starting scenario that might be better # than already-discovered lower-l sequences. consider_bruteforce = True bf_j = k try: if prev_l == 0: bf_i = 0 new_l = 1 elif "pattern" in backpointers[k-1][prev_l] and \ backpointers[k-1][prev_l]["pattern"] == "bruteforce": bf_i = backpointers[k-1][prev_l]["i"] new_l = prev_l elif backpointers[k-1][prev_l] is not None: bf_i = k new_l = prev_l + 1 else: # bf_i = 0 # new_l = None consider_bruteforce = False except: # bf_i = 0 # new_l = None consider_bruteforce = False if consider_bruteforce: bf_match = make_bruteforce_match(bf_i, bf_j) prev_j = k - len(bf_match["token"]) # end of preceeding match candidate_product = estimate_guesses(bf_match, password) if new_l > 1: candidate_product *= optimal_product[prev_j][new_l - 1] candidate_score = score(candidate_product, new_l) if candidate_score < optimal_score: optimal_score = candidate_score # optimal_product[k][new_l] = candidate_product insert_val_to_arr(optimal_product[k], new_l, candidate_product) optimal_l = new_l max_l = max(max_l, new_l) # backpointers[k][new_l] = bf_match insert_val_to_arr(backpointers[k], new_l, bf_match) # now try beating those bruteforce starting scenarios. # for each match m ending at k, see if forming a (prev_l + 1) sequence # ending at m is better than the current optimum. for match in matches: if match["j"] != k: continue i, j = (match["i"], match["j"]) if prev_l == 0: # if forming a len-1 sequence [match], match.i must fully cover [0..k] if i != 0: continue else: # it's only possible to form a new potentially-optimal sequence ending at # match when there's an optimal length-prev_l sequence ending at match.i-1. try: if not optimal_product[i-1][prev_l]: continue except: continue candidate_product = estimate_guesses(match, password) if prev_l > 0: candidate_product *= optimal_product[i-1][prev_l] candidate_score = score(candidate_product, prev_l + 1) if candidate_score < optimal_score: optimal_score = candidate_score insert_val_to_arr(optimal_product[k], prev_l + 1, candidate_product) # optimal_product[k][prev_l+1] = candidate_product optimal_l = prev_l + 1 max_l = max(max_l, prev_l+1) insert_val_to_arr(backpointers[k], prev_l + 1, match) # backpointers[k][prev_l+1] = match # walk backwards and decode the optimal sequence match_sequence = [] l = optimal_l k = len(password) - 1 while k >= 0: match = backpointers[k][l] match_sequence.append(match) k = match["i"] - 1 l -= 1 match_sequence.reverse() # final result object return { "password": password, "guesses": optimal_score, "guesses_log10": log10(optimal_score), "sequence": match_sequence } # ------------------------------------------------------------------------------ # guess estimation -- one function per match pattern --------------------------- # ------------------------------------------------------------------------------ def estimate_guesses(match, password): if "guesses" in match and match["guesses"]: return match["guesses"] # a match's guess estimate doesn't change. cache it. min_guesses = 1 if len(match["token"]) < len(password): if len(match["token"]) == 1: min_guesses = MIN_SUBMATCH_GUESSES_SINGLE_CHAR else: min_guesses = MIN_SUBMATCH_GUESSES_MULTI_CHAR estimation_functions = { "bruteforce": bruteforce_guesses, "dictionary": dictionary_guesses, "spatial": spatial_guesses, "repeat": repeat_guesses, "sequence": sequence_guesses, "regex": regex_guesses, "date": date_guesses } guesses = estimation_functions[match["pattern"]](match) if not isinstance(guesses, (int, float)): print("hoge") match["guesses"] = max(guesses, min_guesses) match["guesses_log10"] = log10(match["guesses"]) return match["guesses"] def bruteforce_guesses(match): guesses = math.pow(BRUTEFORCE_CARDINALITY, len(match["token"])) # small detail: make bruteforce matches at minimum one guess bigger than smallest allowed # submatch guesses, such that non-bruteforce submatches over the same [i..j] take precidence. if len(match["token"]) == 1: min_guesses = MIN_SUBMATCH_GUESSES_SINGLE_CHAR + 1 else: min_guesses = MIN_SUBMATCH_GUESSES_MULTI_CHAR + 1 return max(guesses, min_guesses) def repeat_guesses(match): return match["base_guesses"] * match["repeat_count"] def sequence_guesses(match): first_chr = match["token"][0] # lower guesses for obvious starting points if first_chr in ["a", "A", "z", "Z", "0", "1", "9"]: base_guesses = 4 else: if first_chr.isdigit(): base_guesses = 10 # digits else: # could give a higher base for uppercase, # assigning 26 to both upper and lower sequences is more conservative. base_guesses = 26 if not match["ascending"]: # need to try a descending sequence in addition to every ascending sequence -> # 2x guesses base_guesses *= 2 return base_guesses * len(match["token"]) MIN_YEAR_SPACE = 20 def regex_guesses(match): char_class_bases = { "alpha_lower": 26, "alpha_upper": 26, "alpha": 52, "alphanumeric": 62, "digits": 10, "symbols": 33 } if "regex_name" in match and match["regex_name"] in char_class_bases: return math.pow(char_class_bases[match["regex_name"]], len(match["token"])) elif "regex_name" in match and match["regex_name"] == "recent_year": # conservative estimate of year space: num years from REFERENCE_YEAR. # if year is close to REFERENCE_YEAR, estimate a year space of MIN_YEAR_SPACE. year_space = math.fabs(int(match["regex_match"].group(0))) - REFERENCE_YEAR year_space = max(year_space, MIN_YEAR_SPACE) return year_space def date_guesses(match): # base guesses: (year distance from REFERENCE_YEAR) * num_days * num_years year_space = max(math.fabs(match["year"] - REFERENCE_YEAR), MIN_YEAR_SPACE) guesses = year_space * 31 * 12 # double for four-digit years if "has_full_year" in match and match["has_full_year"]: guesses *= 2 # add factor of 4 for separator selection (one of ~4 choices) if "separator" in match and match["separator"]: guesses *= 4 return guesses KEYBOARD_AVERAGE_DEGREE = calc_average_degree(adjacency_graphs["qwerty"]) # slightly different for keypad/mac keypad, but close enough KEYPAD_AVERAGE_DEGREE = calc_average_degree(adjacency_graphs["keypad"]) KEYBOARD_STARTING_POSITIONS = len([k for k, v in adjacency_graphs["qwerty"].items()]) KEYPAD_STARTING_POSITIONS = len([k for k, v in adjacency_graphs["keypad"].items()]) def spatial_guesses(match): if "graph" in match and match["graph"] in ['qwerty', 'dvorak']: s = KEYBOARD_STARTING_POSITIONS d = KEYBOARD_AVERAGE_DEGREE else: s = KEYPAD_STARTING_POSITIONS d = KEYPAD_AVERAGE_DEGREE guesses = 0 L = len(match["token"]) t = match["turns"] # estimate the number of possible patterns w/ length L or less with t turns or less. for i in range(2, L + 1): possible_turns = min(t, i - 1) for j in range(1, possible_turns + 1): guesses += binom(i - 1, j - 1) * s * math.pow(d, j) # add extra guesses for shifted keys. (% instead of 5, A instead of a.) # math is similar to extra guesses of l33t substitutions in dictionary matches. if "shifted_count" in match and match["shifted_count"]: S = match["shifted_count"] U = len(match["token"]) - match["shifted_count"] # unshifted count if S == 0 or U == 0: guesses *= 2 else: shifted_variations = 0 for i in range(1, min(S, U) + 1): shifted_variations += binom(S + U, i) guesses *= shifted_variations return guesses def dictionary_guesses(match): match["base_guesses"] = match["rank"] # keep these as properties for display purposes match["uppercase_variations"] = uppercase_variations(match) match["l33t_variations"] = l33t_variations(match) reversed_variations = 2 if "reversed" in match and match["reversed"] else 1 return match["base_guesses"] * match["uppercase_variations"] * match["l33t_variations"] * reversed_variations START_UPPER = r"^[A-Z][^A-Z]+$" END_UPPER = r"^[^A-Z]+[A-Z]$" ALL_UPPER = r"^[^a-z]+$" ALL_LOWER = r"^[^A-Z]+$" NO_LETTER = r"^$" def uppercase_variations(match): word = match["token"] if re.search(ALL_LOWER, word) or re.search(NO_LETTER, word): return 1 # a capitalized word is the most common capitalization scheme, # so it only doubles the search space (uncapitalized + capitalized). # allcaps and end-capitalized are common enough too, underestimate as 2x factor to be safe. for regex in [START_UPPER, END_UPPER, ALL_UPPER]: if re.search(regex, word): return 2 # otherwise calculate the number of ways to capitalize U+L uppercase+lowercase letters # with U uppercase letters or less. or, if there's more uppercase than lower (for eg. PASSwORD), # the number of ways to lowercase U+L letters with L lowercase letters or less. U = len([c for c in word if re.match(u"[A-Z]", c)]) L = len([c for c in word if re.match(u"[a-z]", c)]) variations = 0 for i in range(1, min(U, L) + 1): variations += binom(U + L, i) return variations def l33t_variations(match): if "l33t" not in match or not match["l33t"]: return 1 variations = 1 for subbed, unsubbed in match["sub"].items(): # lower-case match.token before calculating: capitalization shouldn't affect l33t calc. c_list = match["token"].lower() num_subbed = len([c for c in c_list if c == subbed]) num_unsubbed = len([c for c in c_list if c == unsubbed]) if num_subbed == 0 or num_unsubbed == 0: # for this sub, password is either fully subbed (444) or fully unsubbed (aaa) # treat that as doubling the space (attacker needs to try fully subbed chars in addition to # unsubbed.) variations *= 2 else: # this case is similar to capitalization: # with aa44a, U = 3, S = 2, attacker needs to try unsubbed + one sub + two subs p = min(num_unsubbed, num_subbed) possibilities = 0 for i in range(1, p+1): possibilities += binom(num_unsubbed + num_subbed, i) variations *= possibilities return variations
#=============================================================================== # Copyright (c) 2018, Max Zwiessele # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of paramz.tests.model_tests nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #=============================================================================== import unittest import numpy as np from paramz.core import HierarchyError from paramz import transformations from paramz.parameterized import Parameterized from paramz.param import Param, ParamConcatenation from paramz.model import Model from unittest.case import SkipTest from paramz.tests.parameterized_tests import P, M class ModelTest(unittest.TestCase): def setUp(self): self.testmodel = M('testmodel') self.testmodel.kern = P('rbf') self.testmodel.likelihood = P('Gaussian_noise', variance=Param('variance', np.random.uniform(0.1, 0.5), transformations.Logexp())) self.testmodel.link_parameter(self.testmodel.kern) self.testmodel.link_parameter(self.testmodel.likelihood) variance=Param('variance', np.random.uniform(0.1, 0.5), transformations.Logexp()) lengthscale=Param('lengthscale', np.random.uniform(.1, 1, 1), transformations.Logexp()) self.testmodel.kern.variance = variance self.testmodel.kern.lengthscale = lengthscale self.testmodel.kern.link_parameter(lengthscale) self.testmodel.kern.link_parameter(variance) self.testmodel.trigger_update() #============================================================================= # GP_regression. | Value | Constraint | Prior | Tied to # rbf.variance | 1.0 | +ve | | # rbf.lengthscale | 1.0 | +ve | | # Gaussian_noise.variance | 1.0 | +ve | | #============================================================================= def test_pydot(self): try: import pydot G = self.testmodel.build_pydot() testmodel_node_labels = set(['testmodel', 'lengthscale', 'variance', 'Cacher(heres_johnny)\n limit=5\n \\#cached=1', 'rbf', 'Cacher(heres_johnny)\n limit=5\n \\#cached=1', 'Gaussian_noise', 'variance']) testmodel_edges = set([tuple(e) for e in [['variance', 'Gaussian_noise'], ['Gaussian_noise', 'Cacher(heres_johnny)\n limit=5\n \\#cached=1'], ['rbf', 'rbf'], ['Gaussian_noise', 'variance'], ['testmodel', 'Gaussian_noise'], ['lengthscale', 'rbf'], ['rbf', 'lengthscale'], ['rbf', 'testmodel'], ['variance', 'rbf'], ['testmodel', 'rbf'], ['testmodel', 'testmodel'], ['Gaussian_noise', 'testmodel'], ['Gaussian_noise', 'Gaussian_noise'], ['rbf', 'variance'], ['rbf', 'Cacher(heres_johnny)\n limit=5\n \\#cached=1']]]) self.assertSetEqual(set([n.get_label() for n in G.get_nodes()]), testmodel_node_labels) edges = set() for e in G.get_edges(): points = e.obj_dict['points'] edges.add(tuple(G.get_node(p)[0].get_label() for p in points)) self.assertSetEqual(edges, testmodel_edges) except ImportError: raise SkipTest("pydot not available") def test_optimize_preferred(self): self.testmodel.update_toggle() self.testmodel.optimize(messages=True, xtol=0, ftol=0, gtol=1e-6, bfgs_factor=1) self.testmodel.optimize(messages=False) np.testing.assert_array_less(self.testmodel.gradient, np.ones(self.testmodel.size)*1e-2) def test_optimize_scg(self): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") self.testmodel.optimize('scg', messages=1, max_f_eval=10, max_iters=100) self.testmodel.optimize('scg', messages=0, xtol=0, ftol=0, gtol=1e-6, max_iters=2) self.testmodel.optimize('scg', messages=0, xtol=0, ftol=20, gtol=0, max_iters=2) self.testmodel.optimize('scg', messages=0, xtol=20, ftol=0, gtol=0, max_iters=2) np.testing.assert_array_less(self.testmodel.gradient, np.ones(self.testmodel.size)*1e-1) def test_optimize_tnc(self): from paramz.optimization.optimization import opt_tnc import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") self.testmodel.optimize_restarts(1, messages=1, optimizer=opt_tnc(), verbose=False) self.testmodel.optimize('tnc', messages=1, xtol=0, ftol=0, gtol=1e-6) np.testing.assert_array_less(self.testmodel.gradient, np.ones(self.testmodel.size)*1e-2) # self.assertDictEqual(self.testmodel.optimization_runs[-1].__getstate__(), {}) def test_optimize_rprop(self): try: import climin except ImportError: raise SkipTest("climin not installed, skipping test") import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") self.testmodel.optimize('rprop', messages=1) np.testing.assert_array_less(self.testmodel.gradient, np.ones(self.testmodel.size)*1e-2) def test_optimize_ada(self): try: import climin except ImportError: raise SkipTest("climin not installed, skipping test") import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") self.testmodel.trigger_update() self.testmodel.optimize('adadelta', messages=1, step_rate=1, momentum=1) np.testing.assert_array_less(self.testmodel.gradient, np.ones(self.testmodel.size)*1e-2) def test_optimize_adam(self): try: import climin except ImportError: raise SkipTest("climin not installed, skipping test") import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") self.testmodel.trigger_update() self.testmodel.optimize('adam', messages=1, step_rate=1., momentum=1.) np.testing.assert_array_less(self.testmodel.gradient, np.ones(self.testmodel.size)*1e-2) def test_optimize_org_bfgs(self): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") with np.errstate(divide='ignore'): self.testmodel.optimize_restarts(1, messages=0, optimizer='org-bfgs', xtol=0, ftol=0, gtol=1e-6) self.testmodel.optimize(messages=1, optimizer='org-bfgs') np.testing.assert_array_less(self.testmodel.gradient, np.ones(self.testmodel.size)*1e-2) def test_optimize_fix(self): self.testmodel.fix() self.assertTrue(self.testmodel.checkgrad()) self.assertTrue(self.testmodel.checkgrad(1)) self.testmodel.optimize(messages=1) def test_optimize_cgd(self): self.assertRaises(KeyError, self.testmodel.optimize, 'cgd', messages=1) def test_optimize_simplex(self): import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") self.testmodel.optimize('simplex', messages=1, xtol=0, ftol=0, gtol=1e-6) self.testmodel.optimize('simplex', start=self.testmodel.optimizer_array, messages=0) np.testing.assert_array_less(self.testmodel.gradient, np.ones(self.testmodel.size)*1e-2) def test_optimize_error(self): class M(Model): def __init__(self, name, **kwargs): super(M, self).__init__(name=name) for k, val in kwargs.items(): self.__setattr__(k, val) self.link_parameter(self.__getattribute__(k)) self._allowed_failures = 1 def objective_function(self): raise ValueError('Some error occured') def log_likelihood(self): raise ValueError('Some error occured') def parameters_changed(self): #self._obj = (self.param_array**2).sum() self.gradient[:] = 2*self.param_array testmodel = M("test", var=Param('test', np.random.normal(0,1,(20)))) testmodel.optimize_restarts(2, messages=0, optimizer='org-bfgs', xtol=0, ftol=0, gtol=1e-6, robust=True) self.assertRaises(ValueError, testmodel.optimize_restarts, 1, messages=0, optimizer='org-bfgs', xtol=0, ftol=0, gtol=1e-6, robust=False) def test_optimize_restarts(self): m = self.testmodel.copy() m.optimize_restarts(2, messages=0, xtol=0, ftol=0, gtol=1e-6, robust=False) np.testing.assert_array_less(m.gradient, np.ones(self.testmodel.size)*1e-2) self.assertIs(len(m.optimization_runs), 2) def test_optimize_restarts_parallel(self): m = self.testmodel.copy() m.optimize_restarts(2, messages=0, xtol=0, ftol=0, gtol=1e-6, robust=False, parallel=True) np.testing.assert_array_less(m.gradient, np.ones(self.testmodel.size) * 1e-2) self.assertIs(len(m.optimization_runs), 2) def test_raveled_index(self): self.assertListEqual(self.testmodel._raveled_index_for(self.testmodel['.*variance']).tolist(), [1, 2]) self.assertListEqual(self.testmodel.kern.lengthscale._raveled_index_for(None).tolist(), [0]) def test_constraints_testmodel(self): self.testmodel['.*rbf'].constrain_negative() self.assertListEqual(self.testmodel.constraints[transformations.NegativeLogexp()].tolist(), [0,1]) self.testmodel['.*lengthscale'].constrain_bounded(0,1) self.assertListEqual(self.testmodel.constraints[transformations.NegativeLogexp()].tolist(), [1]) self.assertListEqual(self.testmodel.constraints[transformations.Logistic(0, 1)].tolist(), [0]) self.testmodel[''].unconstrain_negative() self.assertListEqual(self.testmodel.constraints[transformations.NegativeLogexp()].tolist(), []) self.assertListEqual(self.testmodel.constraints[transformations.Logistic(0, 1)].tolist(), [0]) self.testmodel['.*lengthscale'].unconstrain_bounded(0,1) self.assertListEqual(self.testmodel.constraints[transformations.Logistic(0, 1)].tolist(), []) def test_constraints_set_direct(self): self.testmodel['.*rbf'].constrain_negative() self.testmodel['.*lengthscale'].constrain_bounded(0,1) self.testmodel['.*variance'].fix() self.assertListEqual(self.testmodel.constraints[transformations.__fixed__].tolist(), [1,2]) self.assertListEqual(self.testmodel.constraints[transformations.Logistic(0,1)].tolist(), [0]) self.assertListEqual(self.testmodel.constraints[transformations.NegativeLogexp()].tolist(), [1]) cache_constraints = self.testmodel.constraints.copy() self.testmodel.unconstrain() self.testmodel.likelihood.fix() self.assertListEqual(self.testmodel._fixes_.tolist(), [transformations.UNFIXED, transformations.UNFIXED, transformations.FIXED]) self.assertListEqual(self.testmodel.constraints[transformations.__fixed__].tolist(), [2]) self.assertListEqual(self.testmodel.constraints[transformations.Logistic(0,1)].tolist(), []) self.assertListEqual(self.testmodel.constraints[transformations.NegativeLogexp()].tolist(), []) self.testmodel.constraints = cache_constraints self.assertListEqual(self.testmodel.constraints[transformations.__fixed__].tolist(), [1,2]) self.assertListEqual(self.testmodel.constraints[transformations.Logistic(0,1)].tolist(), [0]) self.assertListEqual(self.testmodel.constraints[transformations.NegativeLogexp()].tolist(), [1]) self.assertListEqual(self.testmodel._fixes_.tolist(), [transformations.UNFIXED, transformations.FIXED, transformations.FIXED]) self.assertIs(self.testmodel.constraints, self.testmodel.likelihood.constraints._param_index_ops) self.assertIs(self.testmodel.constraints, self.testmodel.kern.constraints._param_index_ops) #self.assertSequenceEqual(cache_str, str(self.testmodel), None, str) def test_updates(self): val = float(self.testmodel.objective_function()) self.testmodel.update_toggle() self.testmodel.kern.randomize(np.random.normal, loc=1, scale=.2) self.testmodel.likelihood.randomize() self.assertEqual(val, self.testmodel.objective_function()) self.testmodel.update_model(True) self.assertNotEqual(val, self.testmodel.objective_function()) def test_set_gradients(self): self.testmodel.gradient = 10. np.testing.assert_array_equal(self.testmodel.gradient, 10.) self.testmodel.kern.lengthscale.gradient = 15 np.testing.assert_array_equal(self.testmodel.gradient, [15., 10., 10.]) def test_fixing_optimize(self): self.testmodel.kern.lengthscale.fix() val = float(self.testmodel.kern.lengthscale) self.testmodel.randomize() self.assertEqual(val, self.testmodel.kern.lengthscale) self.testmodel.optimize(max_iters=2) def test_regular_expression_misc(self): self.assertTrue(self.testmodel[''].checkgrad()) self.testmodel['.*rbf'][:] = 10 self.testmodel[''][2] = 11 np.testing.assert_array_equal(self.testmodel.param_array, [10,10,11]) np.testing.assert_((self.testmodel[''][:2] == [10,10]).all()) self.testmodel.kern.lengthscale.fix() val = float(self.testmodel.kern.lengthscale) self.testmodel.randomize() self.assertEqual(val, self.testmodel.kern.lengthscale) variances = self.testmodel['.*var'].values() self.testmodel['.*var'].fix() self.testmodel.randomize() np.testing.assert_equal(variances, self.testmodel['.*var'].values()) self.testmodel[''] = 1.0 self.maxDiff = None self.testmodel[''].unconstrain() self.assertSequenceEqual(self.testmodel[''].__str__(VT100=False), " index | testmodel.rbf.lengthscale | constraints\n [0] | 1.00000000 | \n ----- | testmodel.rbf.variance | -----------\n [0] | 1.00000000 | \n ----- | testmodel.Gaussian_noise.variance | -----------\n [0] | 1.00000000 | ") def test_fix_unfix(self): default_constraints = dict(self.testmodel.constraints.items()) self.testmodel['.*lengthscale'].fix() fixed = self.testmodel.constraints[transformations.__fixed__] self.assertListEqual(fixed.tolist(), [0]) unfixed = self.testmodel.kern.lengthscale.unfix() self.testmodel['.*lengthscale'].constrain_positive() self.assertListEqual(unfixed.tolist(), [0]) fixed = self.testmodel['.*rbf'].fix() fixed = self.testmodel.constraints[transformations.__fixed__] self.assertListEqual(fixed.tolist(), [0,1]) unfixed = self.testmodel.kern.unfix() self.assertListEqual(unfixed.tolist(), [0,1]) fixed = self.testmodel.constraints[transformations.__fixed__] self.testmodel['.*rbf'].unfix() np.testing.assert_array_equal(fixed, self.testmodel.constraints[transformations.__fixed__]) #print default_constraints test_constraints = dict(self.testmodel.constraints.items()) for k in default_constraints: np.testing.assert_array_equal(default_constraints[k], test_constraints[k]) def test_fix_unfix_constraints(self): self.testmodel.constrain_bounded(0,1) self.testmodel['.*variance'].constrain(transformations.Logexp()) self.testmodel['.*Gauss'].constrain_bounded(0.3, 0.7) before_constraints = dict(self.testmodel.constraints.items()) self.testmodel.fix() test_constraints = dict(self.testmodel.constraints.items()) for k in before_constraints: np.testing.assert_array_equal(before_constraints[k], test_constraints[k]) np.testing.assert_array_equal(test_constraints[transformations.__fixed__], [0,1,2]) # Assert fixing works and does not randomize the - say - lengthscale: val = float(self.testmodel.kern.lengthscale) self.testmodel.randomize() self.assertEqual(val, self.testmodel.kern.lengthscale) self.testmodel.unfix() test_constraints = dict(self.testmodel.constraints.items()) for k in before_constraints: np.testing.assert_array_equal(before_constraints[k], test_constraints[k]) def test_fix_constrain(self): # save the constraints as they where: before_constraints = dict(self.testmodel.constraints.items()) # fix self.testmodel.fix() test_constraints = dict(self.testmodel.constraints.items()) # make sure fixes are in place: np.testing.assert_array_equal(test_constraints[transformations.__fixed__], [0,1,2]) # make sure, the constraints still exist for k in before_constraints: np.testing.assert_array_equal(before_constraints[k], test_constraints[k]) # override fix and previous constraint: self.testmodel.likelihood.constrain_bounded(0,1) # lik not fixed anymore np.testing.assert_array_equal(self.testmodel.constraints[transformations.__fixed__], [0,1]) # previous constraints still in place: np.testing.assert_array_equal(self.testmodel.constraints[transformations.Logexp()], [0,1]) # lik bounded np.testing.assert_array_equal(self.testmodel.constraints[transformations.Logistic(0,1)], [2]) def test_caching_offswitch(self): self.assertEqual(len(self.testmodel.kern.cache), 1) [self.assertEqual(len(c.cached_outputs), 1) for c in self.testmodel.kern.cache.values()] self.testmodel.disable_caching() self.testmodel.trigger_update() [self.assertFalse(c.cacher_enabled) for c in self.testmodel.kern.cache.values()] self.assertFalse(self.testmodel.kern.cache.caching_enabled) self.assertFalse(self.testmodel.likelihood.cache.caching_enabled) self.assertTrue(self.testmodel.checkgrad()) self.assertEqual(len(self.testmodel.kern.cache), 1) [self.assertEqual(len(c.cached_outputs), 0) for c in self.testmodel.kern.cache.values()] self.testmodel.enable_caching() self.testmodel.trigger_update() self.assertEqual(len(self.testmodel.kern.cache), 1) [self.assertEqual(len(c.cached_outputs), 1) for c in self.testmodel.kern.cache.values()] def test_checkgrad(self): self.assertTrue(self.testmodel.checkgrad(1)) self.assertTrue(self.testmodel.checkgrad()) self.assertTrue(self.testmodel.rbf.variance.checkgrad(1)) self.assertTrue(self.testmodel.rbf.variance.checkgrad()) self.assertTrue(self.testmodel._checkgrad(verbose=1)) self.assertTrue(self.testmodel._checkgrad(verbose=0)) def test_printing(self): print(self.testmodel.hierarchy_name(False)) self.assertEqual(self.testmodel.num_params, 2) self.assertEqual(self.testmodel.kern.lengthscale.num_params, 0) def test_hierarchy_error(self): self.assertRaises(HierarchyError, self.testmodel.link_parameter, self.testmodel.parameters[0]) p2 = P('Gaussian_noise', variance=Param('variance', np.random.uniform(0.1, 0.5), transformations.Logexp())) self.testmodel.link_parameter(p2.variance) self.assertTrue(self.testmodel.checkgrad()) self.assertRaises(HierarchyError, self.testmodel.unlink_parameter, p2) self.assertRaises(HierarchyError, self.testmodel.unlink_parameter, 'not a parameter') def test_set_get(self): self.testmodel.likelihood.variance = 10 self.assertIsInstance(self.testmodel.likelihood.variance, Param) np.testing.assert_array_equal(self.testmodel.likelihood[:], [10]) def test_get_by_name(self): self.testmodel.likelihood.variance = 10 self.assertIsInstance(self.testmodel.likelihood.variance, Param) np.testing.assert_array_equal(self.testmodel.likelihood[:], [10]) def test_likelihood_replicate(self): m = self.testmodel m2 = self.testmodel.copy(memo={}) np.testing.assert_array_equal(self.testmodel[:], m2[:]) np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood()) m.randomize() m2[:] = m[''].values() np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood()) m.randomize() m2[''] = m[:] np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood()) m.randomize() m2[:] = m[:] np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood()) m.randomize() m2[''] = m[''] np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood()) m.kern.lengthscale.randomize() m2[:] = m[:] np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood()) m.Gaussian_noise.randomize() m2[:] = m[:] np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood()) m['.*var'] = 2 m2['.*var'] = m['.*var'] np.testing.assert_almost_equal(m.log_likelihood(), m2.log_likelihood()) np.testing.assert_array_equal(self.testmodel[''].values(), m2[''].values()) np.testing.assert_array_equal(self.testmodel[:], m2[''].values()) np.testing.assert_array_equal(self.testmodel[''].values(), m2[:]) np.testing.assert_array_equal(self.testmodel['.*variance'].values(), m2['.*variance'].values()) np.testing.assert_array_equal(self.testmodel['.*len'].values, m2['.*len'].values) np.testing.assert_array_equal(self.testmodel['.*rbf'].values(), m2['.*rbf'].values()) def test_set_empty(self): pars = self.testmodel[:].copy() self.testmodel.rbf[:] = None np.testing.assert_array_equal(self.testmodel[:], pars) def test_set_error(self): self.assertRaises(ValueError, self.testmodel.__setitem__, slice(None), 'test') def test_empty_parameterized(self): #print(ParamConcatenation([self.testmodel.rbf, self.testmodel.likelihood.variance])) self.testmodel.name = 'anothername' self.testmodel.link_parameter(Parameterized('empty')) hmm = Parameterized('test') self.testmodel.kern.test = hmm self.testmodel.kern.link_parameter(hmm) self.testmodel.kern.test.link_parameter(Param('test1',1)) self.assertIsInstance(self.testmodel['.*test1$'], Param) self.assertIsInstance(self.testmodel['.*test$'], Parameterized) self.assertIsInstance(self.testmodel['.*empty'], Parameterized) self.assertIsInstance(self.testmodel['.*test'], ParamConcatenation) self.assertIsInstance(self.testmodel['.*rbf$'], Parameterized) self.assertIs(self.testmodel['rbf.variance'], self.testmodel.rbf.variance) self.assertIs(self.testmodel['rbf$'], self.testmodel.rbf) def test_likelihood_set(self): m = self.testmodel m2 = self.testmodel.copy() np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood()) m.kern.lengthscale.randomize() m2.kern.lengthscale = m.kern.lengthscale np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood()) m.kern.lengthscale.randomize() m2['.*lengthscale'] = m.kern.lengthscale np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood()) m.kern.lengthscale.randomize() m2['.*lengthscale'] = m.kern['.*lengthscale'] np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood()) m.kern.lengthscale.randomize() m2.kern.lengthscale = m.kern['.*lengthscale'] np.testing.assert_equal(m.log_likelihood(), m2.log_likelihood()) np.testing.assert_array_equal(self.testmodel[''].values(), m2[''].values()) np.testing.assert_array_equal(self.testmodel[:], m2[''].values()) np.testing.assert_array_equal(self.testmodel[''].values(), m2[:]) np.testing.assert_array_equal(self.testmodel['.*variance'].values(), m2['.*variance'].values()) np.testing.assert_array_equal(self.testmodel['.*len'], m2['.*len']) np.testing.assert_array_equal(self.testmodel['.*rbf'][0], m2['.*rbf'][0]) np.testing.assert_array_equal(self.testmodel['.*rbf'][1], m2['.*rbf'][1])
import types import weakref from .lock import allocate_lock class BaseTypeByIdentity(object): is_array_type = False is_raw_function = False def get_c_name(self, replace_with='', context='a C file'): result = self.c_name_with_marker assert result.count('&') == 1 # some logic duplication with ffi.getctype()... :-( replace_with = replace_with.strip() if replace_with: if replace_with.startswith('*') and '&[' in result: replace_with = '(%s)' % replace_with elif not replace_with[0] in '[(': replace_with = ' ' + replace_with result = result.replace('&', replace_with) if '$' in result: from .ffiplatform import VerificationError raise VerificationError( "cannot generate '%s' in %s: unknown type name" % (self._get_c_name(), context)) return result def _get_c_name(self): return self.c_name_with_marker.replace('&', '') def has_c_name(self): return '$' not in self._get_c_name() def get_cached_btype(self, ffi, finishlist, can_delay=False): try: BType = ffi._cached_btypes[self] except KeyError: BType = self.build_backend_type(ffi, finishlist) BType2 = ffi._cached_btypes.setdefault(self, BType) assert BType2 is BType return BType def __repr__(self): return '<%s>' % (self._get_c_name(),) def _get_items(self): return [(name, getattr(self, name)) for name in self._attrs_] class BaseType(BaseTypeByIdentity): def __eq__(self, other): return (self.__class__ == other.__class__ and self._get_items() == other._get_items()) def __ne__(self, other): return not self == other def __hash__(self): return hash((self.__class__, tuple(self._get_items()))) class VoidType(BaseType): _attrs_ = () def __init__(self): self.c_name_with_marker = 'void&' def build_backend_type(self, ffi, finishlist): return global_cache(self, ffi, 'new_void_type') void_type = VoidType() class PrimitiveType(BaseType): _attrs_ = ('name',) ALL_PRIMITIVE_TYPES = { 'char': 'c', 'short': 'i', 'int': 'i', 'long': 'i', 'long long': 'i', 'signed char': 'i', 'unsigned char': 'i', 'unsigned short': 'i', 'unsigned int': 'i', 'unsigned long': 'i', 'unsigned long long': 'i', 'float': 'f', 'double': 'f', 'long double': 'f', '_Bool': 'i', # the following types are not primitive in the C sense 'wchar_t': 'c', 'int8_t': 'i', 'uint8_t': 'i', 'int16_t': 'i', 'uint16_t': 'i', 'int32_t': 'i', 'uint32_t': 'i', 'int64_t': 'i', 'uint64_t': 'i', 'intptr_t': 'i', 'uintptr_t': 'i', 'ptrdiff_t': 'i', 'size_t': 'i', 'ssize_t': 'i', } def __init__(self, name): assert name in self.ALL_PRIMITIVE_TYPES self.name = name self.c_name_with_marker = name + '&' def is_char_type(self): return self.ALL_PRIMITIVE_TYPES[self.name] == 'c' def is_integer_type(self): return self.ALL_PRIMITIVE_TYPES[self.name] == 'i' def is_float_type(self): return self.ALL_PRIMITIVE_TYPES[self.name] == 'f' def build_backend_type(self, ffi, finishlist): return global_cache(self, ffi, 'new_primitive_type', self.name) class BaseFunctionType(BaseType): _attrs_ = ('args', 'result', 'ellipsis') def __init__(self, args, result, ellipsis): self.args = args self.result = result self.ellipsis = ellipsis # reprargs = [arg._get_c_name() for arg in self.args] if self.ellipsis: reprargs.append('...') reprargs = reprargs or ['void'] replace_with = self._base_pattern % (', '.join(reprargs),) self.c_name_with_marker = ( self.result.c_name_with_marker.replace('&', replace_with)) class RawFunctionType(BaseFunctionType): # Corresponds to a C type like 'int(int)', which is the C type of # a function, but not a pointer-to-function. The backend has no # notion of such a type; it's used temporarily by parsing. _base_pattern = '(&)(%s)' is_raw_function = True def build_backend_type(self, ffi, finishlist): from . import api raise api.CDefError("cannot render the type %r: it is a function " "type, not a pointer-to-function type" % (self,)) def as_function_pointer(self): return FunctionPtrType(self.args, self.result, self.ellipsis) class FunctionPtrType(BaseFunctionType): _base_pattern = '(*&)(%s)' def build_backend_type(self, ffi, finishlist): result = self.result.get_cached_btype(ffi, finishlist) args = [] for tp in self.args: args.append(tp.get_cached_btype(ffi, finishlist)) return global_cache(self, ffi, 'new_function_type', tuple(args), result, self.ellipsis) class PointerType(BaseType): _attrs_ = ('totype',) _base_pattern = " *&" _base_pattern_array = "(*&)" def __init__(self, totype): self.totype = totype if totype.is_array_type: extra = self._base_pattern_array else: extra = self._base_pattern self.c_name_with_marker = totype.c_name_with_marker.replace('&', extra) def build_backend_type(self, ffi, finishlist): BItem = self.totype.get_cached_btype(ffi, finishlist, can_delay=True) return global_cache(self, ffi, 'new_pointer_type', BItem) voidp_type = PointerType(void_type) class ConstPointerType(PointerType): _base_pattern = " const *&" _base_pattern_array = "(const *&)" const_voidp_type = ConstPointerType(void_type) class NamedPointerType(PointerType): _attrs_ = ('totype', 'name') def __init__(self, totype, name): PointerType.__init__(self, totype) self.name = name self.c_name_with_marker = name + '&' class ArrayType(BaseType): _attrs_ = ('item', 'length') is_array_type = True def __init__(self, item, length): self.item = item self.length = length # if length is None: brackets = '&[]' elif length == '...': brackets = '&[/*...*/]' else: brackets = '&[%d]' % length self.c_name_with_marker = ( self.item.c_name_with_marker.replace('&', brackets)) def resolve_length(self, newlength): return ArrayType(self.item, newlength) def build_backend_type(self, ffi, finishlist): if self.length == '...': from . import api raise api.CDefError("cannot render the type %r: unknown length" % (self,)) self.item.get_cached_btype(ffi, finishlist) # force the item BType BPtrItem = PointerType(self.item).get_cached_btype(ffi, finishlist) return global_cache(self, ffi, 'new_array_type', BPtrItem, self.length) char_array_type = ArrayType(PrimitiveType('char'), None) class StructOrUnionOrEnum(BaseTypeByIdentity): _attrs_ = ('name',) forcename = None def build_c_name_with_marker(self): name = self.forcename or '%s %s' % (self.kind, self.name) self.c_name_with_marker = name + '&' def force_the_name(self, forcename): self.forcename = forcename self.build_c_name_with_marker() def get_official_name(self): assert self.c_name_with_marker.endswith('&') return self.c_name_with_marker[:-1] class StructOrUnion(StructOrUnionOrEnum): fixedlayout = None completed = False partial = False packed = False def __init__(self, name, fldnames, fldtypes, fldbitsize): self.name = name self.fldnames = fldnames self.fldtypes = fldtypes self.fldbitsize = fldbitsize self.build_c_name_with_marker() def enumfields(self): for name, type, bitsize in zip(self.fldnames, self.fldtypes, self.fldbitsize): if name == '' and isinstance(type, StructOrUnion): # nested anonymous struct/union for result in type.enumfields(): yield result else: yield (name, type, bitsize) def force_flatten(self): # force the struct or union to have a declaration that lists # directly all fields returned by enumfields(), flattening # nested anonymous structs/unions. names = [] types = [] bitsizes = [] for name, type, bitsize in self.enumfields(): names.append(name) types.append(type) bitsizes.append(bitsize) self.fldnames = tuple(names) self.fldtypes = tuple(types) self.fldbitsize = tuple(bitsizes) def get_cached_btype(self, ffi, finishlist, can_delay=False): BType = StructOrUnionOrEnum.get_cached_btype(self, ffi, finishlist, can_delay) if not can_delay: self.finish_backend_type(ffi, finishlist) return BType def finish_backend_type(self, ffi, finishlist): if self.completed: if self.completed != 2: raise NotImplementedError("recursive structure declaration " "for '%s'" % (self.name,)) return BType = ffi._cached_btypes[self] if self.fldtypes is None: return # not completing it: it's an opaque struct # self.completed = 1 # if self.fixedlayout is None: fldtypes = [tp.get_cached_btype(ffi, finishlist) for tp in self.fldtypes] lst = list(zip(self.fldnames, fldtypes, self.fldbitsize)) sflags = 0 if self.packed: sflags = 8 # SF_PACKED ffi._backend.complete_struct_or_union(BType, lst, self, -1, -1, sflags) # else: fldtypes = [] fieldofs, fieldsize, totalsize, totalalignment = self.fixedlayout for i in range(len(self.fldnames)): fsize = fieldsize[i] ftype = self.fldtypes[i] # if isinstance(ftype, ArrayType) and ftype.length == '...': # fix the length to match the total size BItemType = ftype.item.get_cached_btype(ffi, finishlist) nlen, nrest = divmod(fsize, ffi.sizeof(BItemType)) if nrest != 0: self._verification_error( "field '%s.%s' has a bogus size?" % ( self.name, self.fldnames[i] or '{}')) ftype = ftype.resolve_length(nlen) self.fldtypes = (self.fldtypes[:i] + (ftype,) + self.fldtypes[i+1:]) # BFieldType = ftype.get_cached_btype(ffi, finishlist) if isinstance(ftype, ArrayType) and ftype.length is None: assert fsize == 0 else: bitemsize = ffi.sizeof(BFieldType) if bitemsize != fsize: self._verification_error( "field '%s.%s' is declared as %d bytes, but is " "really %d bytes" % (self.name, self.fldnames[i] or '{}', bitemsize, fsize)) fldtypes.append(BFieldType) # lst = list(zip(self.fldnames, fldtypes, self.fldbitsize, fieldofs)) ffi._backend.complete_struct_or_union(BType, lst, self, totalsize, totalalignment) self.completed = 2 def _verification_error(self, msg): from .ffiplatform import VerificationError raise VerificationError(msg) def check_not_partial(self): if self.partial and self.fixedlayout is None: from . import ffiplatform raise ffiplatform.VerificationMissing(self._get_c_name()) def build_backend_type(self, ffi, finishlist): self.check_not_partial() finishlist.append(self) # return global_cache(self, ffi, 'new_%s_type' % self.kind, self.get_official_name(), key=self) class StructType(StructOrUnion): kind = 'struct' class UnionType(StructOrUnion): kind = 'union' class EnumType(StructOrUnionOrEnum): kind = 'enum' partial = False partial_resolved = False def __init__(self, name, enumerators, enumvalues, baseinttype=None): self.name = name self.enumerators = enumerators self.enumvalues = enumvalues self.baseinttype = baseinttype self.build_c_name_with_marker() def force_the_name(self, forcename): StructOrUnionOrEnum.force_the_name(self, forcename) if self.forcename is None: name = self.get_official_name() self.forcename = '$' + name.replace(' ', '_') def check_not_partial(self): if self.partial and not self.partial_resolved: from . import ffiplatform raise ffiplatform.VerificationMissing(self._get_c_name()) def build_backend_type(self, ffi, finishlist): self.check_not_partial() base_btype = self.build_baseinttype(ffi, finishlist) return global_cache(self, ffi, 'new_enum_type', self.get_official_name(), self.enumerators, self.enumvalues, base_btype, key=self) def build_baseinttype(self, ffi, finishlist): if self.baseinttype is not None: return self.baseinttype.get_cached_btype(ffi, finishlist) # if self.enumvalues: smallest_value = min(self.enumvalues) largest_value = max(self.enumvalues) else: smallest_value = 0 largest_value = 0 if smallest_value < 0: # needs a signed type sign = 1 candidate1 = PrimitiveType("int") candidate2 = PrimitiveType("long") else: sign = 0 candidate1 = PrimitiveType("unsigned int") candidate2 = PrimitiveType("unsigned long") btype1 = candidate1.get_cached_btype(ffi, finishlist) btype2 = candidate2.get_cached_btype(ffi, finishlist) size1 = ffi.sizeof(btype1) size2 = ffi.sizeof(btype2) if (smallest_value >= ((-1) << (8*size1-1)) and largest_value < (1 << (8*size1-sign))): return btype1 if (smallest_value >= ((-1) << (8*size2-1)) and largest_value < (1 << (8*size2-sign))): return btype2 raise api.CDefError("%s values don't all fit into either 'long' " "or 'unsigned long'" % self._get_c_name()) def unknown_type(name, structname=None): if structname is None: structname = '$%s' % name tp = StructType(structname, None, None, None) tp.force_the_name(name) return tp def unknown_ptr_type(name, structname=None): if structname is None: structname = '*$%s' % name tp = StructType(structname, None, None, None) return NamedPointerType(tp, name) global_lock = allocate_lock() def global_cache(srctype, ffi, funcname, *args, **kwds): key = kwds.pop('key', (funcname, args)) assert not kwds try: return ffi._backend.__typecache[key] except KeyError: pass except AttributeError: # initialize the __typecache attribute, either at the module level # if ffi._backend is a module, or at the class level if ffi._backend # is some instance. if isinstance(ffi._backend, types.ModuleType): ffi._backend.__typecache = weakref.WeakValueDictionary() else: type(ffi._backend).__typecache = weakref.WeakValueDictionary() try: res = getattr(ffi._backend, funcname)(*args) except NotImplementedError as e: raise NotImplementedError("%s: %r: %s" % (funcname, srctype, e)) # note that setdefault() on WeakValueDictionary is not atomic # and contains a rare bug (http://bugs.python.org/issue19542); # we have to use a lock and do it ourselves cache = ffi._backend.__typecache with global_lock: res1 = cache.get(key) if res1 is None: cache[key] = res return res else: return res1 def pointer_cache(ffi, BType): return global_cache('?', ffi, 'new_pointer_type', BType) def attach_exception_info(e, name): if e.args and type(e.args[0]) is str: e.args = ('%s: %s' % (name, e.args[0]),) + e.args[1:]
"""Support for Modbus switches.""" import logging import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_COMMAND_OFF, CONF_COMMAND_ON, CONF_NAME, CONF_SLAVE, STATE_ON) from homeassistant.helpers import config_validation as cv from homeassistant.helpers.entity import ToggleEntity from homeassistant.helpers.restore_state import RestoreEntity from . import CONF_HUB, DEFAULT_HUB, DOMAIN as MODBUS_DOMAIN _LOGGER = logging.getLogger(__name__) CONF_COIL = 'coil' CONF_COILS = 'coils' CONF_REGISTER = 'register' CONF_REGISTER_TYPE = 'register_type' CONF_REGISTERS = 'registers' CONF_STATE_OFF = 'state_off' CONF_STATE_ON = 'state_on' CONF_VERIFY_REGISTER = 'verify_register' CONF_VERIFY_STATE = 'verify_state' REGISTER_TYPE_HOLDING = 'holding' REGISTER_TYPE_INPUT = 'input' REGISTERS_SCHEMA = vol.Schema({ vol.Required(CONF_COMMAND_OFF): cv.positive_int, vol.Required(CONF_COMMAND_ON): cv.positive_int, vol.Required(CONF_NAME): cv.string, vol.Required(CONF_REGISTER): cv.positive_int, vol.Optional(CONF_HUB, default=DEFAULT_HUB): cv.string, vol.Optional(CONF_REGISTER_TYPE, default=REGISTER_TYPE_HOLDING): vol.In([REGISTER_TYPE_HOLDING, REGISTER_TYPE_INPUT]), vol.Optional(CONF_SLAVE): cv.positive_int, vol.Optional(CONF_STATE_OFF): cv.positive_int, vol.Optional(CONF_STATE_ON): cv.positive_int, vol.Optional(CONF_VERIFY_REGISTER): cv.positive_int, vol.Optional(CONF_VERIFY_STATE, default=True): cv.boolean, }) COILS_SCHEMA = vol.Schema({ vol.Required(CONF_COIL): cv.positive_int, vol.Required(CONF_NAME): cv.string, vol.Required(CONF_SLAVE): cv.positive_int, vol.Optional(CONF_HUB, default=DEFAULT_HUB): cv.string, }) PLATFORM_SCHEMA = vol.All( cv.has_at_least_one_key(CONF_COILS, CONF_REGISTERS), PLATFORM_SCHEMA.extend({ vol.Optional(CONF_COILS): [COILS_SCHEMA], vol.Optional(CONF_REGISTERS): [REGISTERS_SCHEMA], })) def setup_platform(hass, config, add_entities, discovery_info=None): """Read configuration and create Modbus devices.""" switches = [] if CONF_COILS in config: for coil in config.get(CONF_COILS): hub_name = coil.get(CONF_HUB) hub = hass.data[MODBUS_DOMAIN][hub_name] switches.append(ModbusCoilSwitch( hub, coil.get(CONF_NAME), coil.get(CONF_SLAVE), coil.get(CONF_COIL))) if CONF_REGISTERS in config: for register in config.get(CONF_REGISTERS): hub_name = register.get(CONF_HUB) hub = hass.data[MODBUS_DOMAIN][hub_name] switches.append(ModbusRegisterSwitch( hub, register.get(CONF_NAME), register.get(CONF_SLAVE), register.get(CONF_REGISTER), register.get(CONF_COMMAND_ON), register.get(CONF_COMMAND_OFF), register.get(CONF_VERIFY_STATE), register.get(CONF_VERIFY_REGISTER), register.get(CONF_REGISTER_TYPE), register.get(CONF_STATE_ON), register.get(CONF_STATE_OFF))) add_entities(switches) class ModbusCoilSwitch(ToggleEntity, RestoreEntity): """Representation of a Modbus coil switch.""" def __init__(self, hub, name, slave, coil): """Initialize the coil switch.""" self._hub = hub self._name = name self._slave = int(slave) if slave else None self._coil = int(coil) self._is_on = None async def async_added_to_hass(self): """Handle entity which will be added.""" state = await self.async_get_last_state() if not state: return self._is_on = state.state == STATE_ON @property def is_on(self): """Return true if switch is on.""" return self._is_on @property def name(self): """Return the name of the switch.""" return self._name def turn_on(self, **kwargs): """Set switch on.""" self._hub.write_coil(self._slave, self._coil, True) def turn_off(self, **kwargs): """Set switch off.""" self._hub.write_coil(self._slave, self._coil, False) def update(self): """Update the state of the switch.""" result = self._hub.read_coils(self._slave, self._coil, 1) try: self._is_on = bool(result.bits[0]) except AttributeError: _LOGGER.error( 'No response from hub %s, slave %s, coil %s', self._hub.name, self._slave, self._coil) class ModbusRegisterSwitch(ModbusCoilSwitch): """Representation of a Modbus register switch.""" # pylint: disable=super-init-not-called def __init__(self, hub, name, slave, register, command_on, command_off, verify_state, verify_register, register_type, state_on, state_off): """Initialize the register switch.""" self._hub = hub self._name = name self._slave = slave self._register = register self._command_on = command_on self._command_off = command_off self._verify_state = verify_state self._verify_register = ( verify_register if verify_register else self._register) self._register_type = register_type if state_on is not None: self._state_on = state_on else: self._state_on = self._command_on if state_off is not None: self._state_off = state_off else: self._state_off = self._command_off self._is_on = None def turn_on(self, **kwargs): """Set switch on.""" self._hub.write_register(self._slave, self._register, self._command_on) if not self._verify_state: self._is_on = True def turn_off(self, **kwargs): """Set switch off.""" self._hub.write_register( self._slave, self._register, self._command_off) if not self._verify_state: self._is_on = False def update(self): """Update the state of the switch.""" if not self._verify_state: return value = 0 if self._register_type == REGISTER_TYPE_INPUT: result = self._hub.read_input_registers( self._slave, self._register, 1) else: result = self._hub.read_holding_registers( self._slave, self._register, 1) try: value = int(result.registers[0]) except AttributeError: _LOGGER.error( "No response from hub %s, slave %s, register %s", self._hub.name, self._slave, self._verify_register) if value == self._state_on: self._is_on = True elif value == self._state_off: self._is_on = False else: _LOGGER.error( "Unexpected response from hub %s, slave %s " "register %s, got 0x%2x", self._hub.name, self._slave, self._verify_register, value)
# -*- coding: utf-8 -*- """ flask_security.core ~~~~~~~~~~~~~~~~~~~ Flask-Security core module :copyright: (c) 2012 by Matt Wright. :copyright: (c) 2017 by CERN. :copyright: (c) 2017 by ETH Zurich, Swiss Data Science Center. :license: MIT, see LICENSE for more details. """ from datetime import datetime import pkg_resources from flask import current_app, render_template from flask_babelex import Domain from flask_login import UserMixin as BaseUserMixin from flask_login import AnonymousUserMixin, LoginManager, current_user from flask_principal import Identity, Principal, RoleNeed, UserNeed, \ identity_loaded from itsdangerous import URLSafeTimedSerializer from passlib.context import CryptContext from werkzeug.datastructures import ImmutableList from werkzeug.local import LocalProxy from .forms import ChangePasswordForm, ConfirmRegisterForm, \ ForgotPasswordForm, LoginForm, PasswordlessLoginForm, RegisterForm, \ ResetPasswordForm, SendConfirmationForm from .utils import config_value as cv from .utils import _, get_config, hash_data, localize_callback, string_types, \ url_for_security, verify_hash, send_mail from .views import create_blueprint # Convenient references _security = LocalProxy(lambda: current_app.extensions['security']) #: Default Flask-Security configuration _default_config = { 'BLUEPRINT_NAME': 'security', 'CLI_ROLES_NAME': 'roles', 'CLI_USERS_NAME': 'users', 'URL_PREFIX': None, 'SUBDOMAIN': None, 'FLASH_MESSAGES': True, 'I18N_DOMAIN': 'flask_security', 'PASSWORD_HASH': 'bcrypt', 'PASSWORD_SALT': None, 'PASSWORD_SINGLE_HASH': { 'django_argon2', 'django_bcrypt_sha256', 'django_pbkdf2_sha256', 'django_pbkdf2_sha1', 'django_bcrypt', 'django_salted_md5', 'django_salted_sha1', 'django_des_crypt', 'plaintext', }, 'LOGIN_URL': '/login', 'LOGOUT_URL': '/logout', 'REGISTER_URL': '/register', 'RESET_URL': '/reset', 'CHANGE_URL': '/change', 'CONFIRM_URL': '/confirm', 'POST_LOGIN_VIEW': '/', 'POST_LOGOUT_VIEW': '/', 'CONFIRM_ERROR_VIEW': None, 'POST_REGISTER_VIEW': None, 'POST_CONFIRM_VIEW': None, 'POST_RESET_VIEW': None, 'POST_CHANGE_VIEW': None, 'UNAUTHORIZED_VIEW': lambda: None, 'FORGOT_PASSWORD_TEMPLATE': 'security/forgot_password.html', 'LOGIN_USER_TEMPLATE': 'security/login_user.html', 'REGISTER_USER_TEMPLATE': 'security/register_user.html', 'RESET_PASSWORD_TEMPLATE': 'security/reset_password.html', 'CHANGE_PASSWORD_TEMPLATE': 'security/change_password.html', 'SEND_CONFIRMATION_TEMPLATE': 'security/send_confirmation.html', 'SEND_LOGIN_TEMPLATE': 'security/send_login.html', 'CONFIRMABLE': False, 'REGISTERABLE': False, 'RECOVERABLE': False, 'TRACKABLE': False, 'PASSWORDLESS': False, 'CHANGEABLE': False, 'SEND_REGISTER_EMAIL': True, 'SEND_PASSWORD_CHANGE_EMAIL': True, 'SEND_PASSWORD_RESET_EMAIL': True, 'SEND_PASSWORD_RESET_NOTICE_EMAIL': True, 'LOGIN_WITHIN': '1 days', 'CONFIRM_EMAIL_WITHIN': '5 days', 'RESET_PASSWORD_WITHIN': '5 days', 'LOGIN_WITHOUT_CONFIRMATION': False, 'EMAIL_SENDER': LocalProxy(lambda: current_app.config.get( 'MAIL_DEFAULT_SENDER', 'no-reply@localhost' )), 'TOKEN_AUTHENTICATION_KEY': 'auth_token', 'TOKEN_AUTHENTICATION_HEADER': 'Authentication-Token', 'TOKEN_MAX_AGE': None, 'CONFIRM_SALT': 'confirm-salt', 'RESET_SALT': 'reset-salt', 'LOGIN_SALT': 'login-salt', 'CHANGE_SALT': 'change-salt', 'REMEMBER_SALT': 'remember-salt', 'DEFAULT_REMEMBER_ME': False, 'DEFAULT_HTTP_AUTH_REALM': _('Login Required'), 'EMAIL_SUBJECT_REGISTER': _('Welcome'), 'EMAIL_SUBJECT_CONFIRM': _('Please confirm your email'), 'EMAIL_SUBJECT_PASSWORDLESS': _('Login instructions'), 'EMAIL_SUBJECT_PASSWORD_NOTICE': _('Your password has been reset'), 'EMAIL_SUBJECT_PASSWORD_CHANGE_NOTICE': _( 'Your password has been changed'), 'EMAIL_SUBJECT_PASSWORD_RESET': _('Password reset instructions'), 'EMAIL_PLAINTEXT': True, 'EMAIL_HTML': True, 'USER_IDENTITY_ATTRIBUTES': ['email'], 'PASSWORD_SCHEMES': [ 'bcrypt', 'des_crypt', 'pbkdf2_sha256', 'pbkdf2_sha512', 'sha256_crypt', 'sha512_crypt', # And always last one... 'plaintext' ], 'DEPRECATED_PASSWORD_SCHEMES': ['auto'], 'HASHING_SCHEMES': [ 'sha256_crypt', 'hex_md5', ], 'DEPRECATED_HASHING_SCHEMES': ['hex_md5'], 'DATETIME_FACTORY': datetime.utcnow, } #: Default Flask-Security messages _default_messages = { 'UNAUTHORIZED': ( _('You do not have permission to view this resource.'), 'error'), 'CONFIRM_REGISTRATION': ( _('Thank you. Confirmation instructions ' 'have been sent to %(email)s.'), 'success'), 'EMAIL_CONFIRMED': ( _('Thank you. Your email has been confirmed.'), 'success'), 'ALREADY_CONFIRMED': ( _('Your email has already been confirmed.'), 'info'), 'INVALID_CONFIRMATION_TOKEN': ( _('Invalid confirmation token.'), 'error'), 'EMAIL_ALREADY_ASSOCIATED': ( _('%(email)s is already associated with an account.'), 'error'), 'PASSWORD_MISMATCH': ( _('Password does not match'), 'error'), 'RETYPE_PASSWORD_MISMATCH': ( _('Passwords do not match'), 'error'), 'INVALID_REDIRECT': ( _('Redirections outside the domain are forbidden'), 'error'), 'PASSWORD_RESET_REQUEST': ( _('Instructions to reset your password have been sent to %(email)s.'), 'info'), 'PASSWORD_RESET_EXPIRED': ( _('You did not reset your password within %(within)s. ' 'New instructions have been sent to %(email)s.'), 'error'), 'INVALID_RESET_PASSWORD_TOKEN': ( _('Invalid reset password token.'), 'error'), 'CONFIRMATION_REQUIRED': ( _('Email requires confirmation.'), 'error'), 'CONFIRMATION_REQUEST': ( _('Confirmation instructions have been sent to %(email)s.'), 'info'), 'CONFIRMATION_EXPIRED': ( _('You did not confirm your email within %(within)s. ' 'New instructions to confirm your email have been sent ' 'to %(email)s.'), 'error'), 'LOGIN_EXPIRED': ( _('You did not login within %(within)s. New instructions to login ' 'have been sent to %(email)s.'), 'error'), 'LOGIN_EMAIL_SENT': ( _('Instructions to login have been sent to %(email)s.'), 'success'), 'INVALID_LOGIN_TOKEN': ( _('Invalid login token.'), 'error'), 'DISABLED_ACCOUNT': ( _('Account is disabled.'), 'error'), 'EMAIL_NOT_PROVIDED': ( _('Email not provided'), 'error'), 'INVALID_EMAIL_ADDRESS': ( _('Invalid email address'), 'error'), 'PASSWORD_NOT_PROVIDED': ( _('Password not provided'), 'error'), 'PASSWORD_NOT_SET': ( _('No password is set for this user'), 'error'), 'PASSWORD_INVALID_LENGTH': ( _('Password must be at least 6 characters'), 'error'), 'USER_DOES_NOT_EXIST': ( _('Specified user does not exist'), 'error'), 'INVALID_PASSWORD': ( _('Invalid password'), 'error'), 'PASSWORDLESS_LOGIN_SUCCESSFUL': ( _('You have successfully logged in.'), 'success'), 'FORGOT_PASSWORD': ( _('Forgot password?'), 'info'), 'PASSWORD_RESET': ( _('You successfully reset your password and you have been logged in ' 'automatically.'), 'success'), 'PASSWORD_IS_THE_SAME': ( _('Your new password must be different than your previous password.'), 'error'), 'PASSWORD_CHANGE': ( _('You successfully changed your password.'), 'success'), 'LOGIN': ( _('Please log in to access this page.'), 'info'), 'REFRESH': ( _('Please reauthenticate to access this page.'), 'info'), } _default_forms = { 'login_form': LoginForm, 'confirm_register_form': ConfirmRegisterForm, 'register_form': RegisterForm, 'forgot_password_form': ForgotPasswordForm, 'reset_password_form': ResetPasswordForm, 'change_password_form': ChangePasswordForm, 'send_confirmation_form': SendConfirmationForm, 'passwordless_login_form': PasswordlessLoginForm, } def _user_loader(user_id): return _security.datastore.find_user(id=user_id) def _request_loader(request): header_key = _security.token_authentication_header args_key = _security.token_authentication_key header_token = request.headers.get(header_key, None) token = request.args.get(args_key, header_token) if request.is_json: data = request.get_json(silent=True) or {} if isinstance(data, dict): token = data.get(args_key, token) try: data = _security.remember_token_serializer.loads( token, max_age=_security.token_max_age) user = _security.datastore.find_user(id=data[0]) if user and verify_hash(data[1], user.password): return user except: pass return _security.login_manager.anonymous_user() def _identity_loader(): if not isinstance(current_user._get_current_object(), AnonymousUserMixin): identity = Identity(current_user.id) return identity def _on_identity_loaded(sender, identity): if hasattr(current_user, 'id'): identity.provides.add(UserNeed(current_user.id)) for role in getattr(current_user, 'roles', []): identity.provides.add(RoleNeed(role.name)) identity.user = current_user def _get_login_manager(app, anonymous_user): lm = LoginManager() lm.anonymous_user = anonymous_user or AnonymousUser lm.localize_callback = localize_callback lm.login_view = '%s.login' % cv('BLUEPRINT_NAME', app=app) lm.user_loader(_user_loader) lm.request_loader(_request_loader) if cv('FLASH_MESSAGES', app=app): lm.login_message, lm.login_message_category = cv('MSG_LOGIN', app=app) lm.needs_refresh_message, lm.needs_refresh_message_category = cv( 'MSG_REFRESH', app=app) else: lm.login_message = None lm.needs_refresh_message = None lm.init_app(app) return lm def _get_principal(app): p = Principal(app, use_sessions=False) p.identity_loader(_identity_loader) return p def _get_pwd_context(app): pw_hash = cv('PASSWORD_HASH', app=app) schemes = cv('PASSWORD_SCHEMES', app=app) deprecated = cv('DEPRECATED_PASSWORD_SCHEMES', app=app) if pw_hash not in schemes: allowed = (', '.join(schemes[:-1]) + ' and ' + schemes[-1]) raise ValueError( "Invalid password hashing scheme %r. Allowed values are %s" % (pw_hash, allowed)) return CryptContext( schemes=schemes, default=pw_hash, deprecated=deprecated) def _get_i18n_domain(app): return Domain( pkg_resources.resource_filename('flask_security', 'translations'), domain=cv('I18N_DOMAIN', app=app) ) def _get_hashing_context(app): schemes = cv('HASHING_SCHEMES', app=app) deprecated = cv('DEPRECATED_HASHING_SCHEMES', app=app) return CryptContext( schemes=schemes, deprecated=deprecated) def _get_serializer(app, name): secret_key = app.config.get('SECRET_KEY') salt = app.config.get('SECURITY_%s_SALT' % name.upper()) return URLSafeTimedSerializer(secret_key=secret_key, salt=salt) def _get_state(app, datastore, anonymous_user=None, **kwargs): for key, value in get_config(app).items(): kwargs[key.lower()] = value kwargs.update(dict( app=app, datastore=datastore, principal=_get_principal(app), pwd_context=_get_pwd_context(app), hashing_context=_get_hashing_context(app), i18n_domain=_get_i18n_domain(app), remember_token_serializer=_get_serializer(app, 'remember'), login_serializer=_get_serializer(app, 'login'), reset_serializer=_get_serializer(app, 'reset'), confirm_serializer=_get_serializer(app, 'confirm'), _context_processors={}, _send_mail_task=None, _unauthorized_callback=None )) if 'login_manager' not in kwargs: kwargs['login_manager'] = _get_login_manager( app, anonymous_user) for key, value in _default_forms.items(): if key not in kwargs or not kwargs[key]: kwargs[key] = value return _SecurityState(**kwargs) def _context_processor(): return dict(url_for_security=url_for_security, security=_security) class RoleMixin(object): """Mixin for `Role` model definitions""" def __eq__(self, other): return (self.name == other or self.name == getattr(other, 'name', None)) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.name) class UserMixin(BaseUserMixin): """Mixin for `User` model definitions""" @property def is_active(self): """Returns `True` if the user is active.""" return self.active def get_auth_token(self): """Returns the user's authentication token.""" data = [str(self.id), hash_data(self.password)] return _security.remember_token_serializer.dumps(data) def has_role(self, role): """Returns `True` if the user identifies with the specified role. :param role: A role name or `Role` instance""" if isinstance(role, string_types): return role in (role.name for role in self.roles) else: return role in self.roles def get_security_payload(self): """Serialize user object as response payload.""" return {'id': str(self.id)} class AnonymousUser(AnonymousUserMixin): """AnonymousUser definition""" def __init__(self): self.roles = ImmutableList() def has_role(self, *args): """Returns `False`""" return False class _SecurityState(object): def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key.lower(), value) def _add_ctx_processor(self, endpoint, fn): group = self._context_processors.setdefault(endpoint, []) fn not in group and group.append(fn) def _run_ctx_processor(self, endpoint): rv = {} for g in [None, endpoint]: for fn in self._context_processors.setdefault(g, []): rv.update(fn()) return rv def context_processor(self, fn): self._add_ctx_processor(None, fn) def forgot_password_context_processor(self, fn): self._add_ctx_processor('forgot_password', fn) def login_context_processor(self, fn): self._add_ctx_processor('login', fn) def register_context_processor(self, fn): self._add_ctx_processor('register', fn) def reset_password_context_processor(self, fn): self._add_ctx_processor('reset_password', fn) def change_password_context_processor(self, fn): self._add_ctx_processor('change_password', fn) def send_confirmation_context_processor(self, fn): self._add_ctx_processor('send_confirmation', fn) def send_login_context_processor(self, fn): self._add_ctx_processor('send_login', fn) def mail_context_processor(self, fn): self._add_ctx_processor('mail', fn) def send_mail_task(self, fn): self._send_mail_task = fn def unauthorized_handler(self, fn): self._unauthorized_callback = fn class Security(object): """The :class:`Security` class initializes the Flask-Security extension. :param app: The application. :param datastore: An instance of a user datastore. :param register_blueprint: to register the Security blueprint or not. :param login_form: set form for the login view :param register_form: set form for the register view :param confirm_register_form: set form for the confirm register view :param forgot_password_form: set form for the forgot password view :param reset_password_form: set form for the reset password view :param change_password_form: set form for the change password view :param send_confirmation_form: set form for the send confirmation view :param passwordless_login_form: set form for the passwordless login view :param anonymous_user: class to use for anonymous user """ def __init__(self, app=None, datastore=None, register_blueprint=True, **kwargs): self.app = app self._datastore = datastore self._register_blueprint = register_blueprint self._kwargs = kwargs self._state = None # set by init_app if app is not None and datastore is not None: self._state = self.init_app( app, datastore, register_blueprint=register_blueprint, **kwargs) def init_app(self, app, datastore=None, register_blueprint=None, **kwargs): """Initializes the Flask-Security extension for the specified application and datastore implementation. :param app: The application. :param datastore: An instance of a user datastore. :param register_blueprint: to register the Security blueprint or not. """ self.app = app if datastore is None: datastore = self._datastore if register_blueprint is None: register_blueprint = self._register_blueprint for key, value in self._kwargs.items(): kwargs.setdefault(key, value) for key, value in _default_config.items(): app.config.setdefault('SECURITY_' + key, value) for key, value in _default_messages.items(): app.config.setdefault('SECURITY_MSG_' + key, value) identity_loaded.connect_via(app)(_on_identity_loaded) self._state = state = _get_state(app, datastore, **kwargs) if register_blueprint: app.register_blueprint(create_blueprint(state, __name__)) app.context_processor(_context_processor) @app.before_first_request def _register_i18n(): if '_' not in app.jinja_env.globals: app.jinja_env.globals['_'] = state.i18n_domain.gettext state.render_template = self.render_template state.send_mail = self.send_mail app.extensions['security'] = state if hasattr(app, 'cli'): from .cli import users, roles if state.cli_users_name: app.cli.add_command(users, state.cli_users_name) if state.cli_roles_name: app.cli.add_command(roles, state.cli_roles_name) return state def render_template(self, *args, **kwargs): return render_template(*args, **kwargs) def send_mail(self, *args, **kwargs): return send_mail(*args, **kwargs) def __getattr__(self, name): return getattr(self._state, name, None)
""" Test Elasticsearch persistence. """ from datetime import timedelta from unittest.mock import patch from hamcrest import ( all_of, assert_that, calling, contains, equal_to, has_entry, has_key, has_property, is_, none, raises, ) from microcosm.api import create_object_graph from nose.plugins.attrib import attr from microcosm_elasticsearch.assertions import assert_that_eventually, assert_that_not_eventually from microcosm_elasticsearch.errors import ElasticsearchConflictError, ElasticsearchNotFoundError from microcosm_elasticsearch.tests.fixtures import Person, Planet, SelectorAttribute class TestStore: def setup(self): self.graph = create_object_graph("example", testing=True) self.store = self.graph.person_store self.overloaded_store = self.graph.person_overloaded_store self.graph.elasticsearch_index_registry.createall(force=True) self.kevin = Person( first="Kevin", last="Durant", origin_planet=Planet.EARTH, ) self.steph = Person( first="Steph", last="Curry", origin_planet=Planet.MARS, ) def test_retrieve_not_found(self): assert_that( calling(self.store.retrieve).with_args(self.store.new_object_id()), raises(ElasticsearchNotFoundError), ) def test_create(self): self.store.create(self.kevin) assert_that( self.store.retrieve(self.kevin.id), all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("middle", none()), has_property("last", "Durant"), has_property("origin_planet", Planet.EARTH), ), ) def test_create_duplicate(self): self.store.create(self.kevin) assert_that( calling(self.store.create).with_args(self.kevin), raises(ElasticsearchConflictError), ) def test_count(self): with self.store.flushing(): self.store.create(self.kevin) self.store.create(self.steph) assert_that(self.store.count(), is_(equal_to(2))) @attr("slow") def test_count_slow(self): self.store.create(self.kevin) self.store.create(self.steph) assert_that_eventually( self.store.count, is_(equal_to(2)), tries=5, sleep_seconds=1.0, ) def test_delete_not_found(self): assert_that( calling(self.store.delete).with_args(self.store.new_object_id()), raises(ElasticsearchNotFoundError), ) def test_delete(self): self.store.create(self.kevin) assert_that(self.store.delete(self.kevin.id), is_(equal_to(True))) assert_that( calling(self.store.retrieve).with_args(self.kevin.id), raises(ElasticsearchNotFoundError), ) def test_search(self): with self.store.flushing(): self.store.create(self.kevin) assert_that( self.store.search(), contains( all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("last", "Durant"), ), ), ) def test_search_with_count(self): with self.store.flushing(): self.store.create(self.kevin) items, count = self.store.search_with_count() assert_that( items, contains( all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("last", "Durant"), ), ), ) assert_that(count, is_(equal_to(1))) @attr("slow") def test_search_slow(self): self.store.create(self.kevin) assert_that_eventually( self.store.search, contains( all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("last", "Durant"), ), ), tries=5, sleep_seconds=1.0, ) def test_search_order_reverse_chronological(self): with self.store.flushing(): self.store.create(self.kevin) with patch.object(self.store, "new_timestamp") as mocked: # ensure we have >= 1s created at delta mocked.return_value = self.kevin.created_at + timedelta(seconds=1).seconds * 1000 self.store.create(self.steph) assert_that( self.store.search(), contains( has_property("id", self.steph.id), has_property("id", self.kevin.id), ), ) def test_search_paging(self): with self.store.flushing(): self.store.create(self.kevin) with patch.object(self.store, "new_timestamp") as mocked: # ensure we have >= 1s created at delta mocked.return_value = self.kevin.created_at + timedelta(seconds=1).seconds * 1000 self.store.create(self.steph) assert_that( self.store.search(offset=1, limit=1), contains( has_property("id", self.kevin.id), ), ) assert_that( self.store.search(offset=0, limit=1), contains( has_property("id", self.steph.id), ), ) def test_search_filter(self): with self.store.flushing(): self.store.create(self.kevin) assert_that( self.store.search(q=self.kevin.first), contains( all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("last", "Durant"), ), ), ) def test_search_filter_out(self): with self.store.flushing(): self.store.create(self.kevin) assert_that( self.store.search(q=self.steph.first), contains(), ) @attr("slow") def test_search_filter_out_slow(self): self.store.create(self.kevin) assert_that_not_eventually( calling(self.store.search).with_args(q=self.steph.first), contains( all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("last", "Durant"), ), ), ) def test_update_not_found(self): assert_that( calling(self.store.update).with_args(self.store.new_object_id(), self.kevin), raises(ElasticsearchNotFoundError), ) def test_update(self): self.store.create(self.kevin) self.kevin.middle = "MVP" self.store.update(self.kevin.id, self.kevin) assert_that( self.store.retrieve(self.kevin.id), all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("middle", "MVP"), has_property("last", "Durant"), ), ) def test_replace_not_found(self): self.kevin.middle = "MVP" self.store.replace(self.kevin.id, self.kevin) assert_that( self.store.retrieve(self.kevin.id), all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("middle", "MVP"), has_property("last", "Durant"), ), ) def test_replace(self): self.store.create(self.kevin) self.kevin.middle = "MVP" self.store.replace(self.kevin.id, self.kevin) assert_that( self.store.retrieve(self.kevin.id), all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("middle", "MVP"), has_property("last", "Durant"), ), ) def test_bulk(self): self.store.bulk( actions=[ ("index", self.kevin) ], batch_size=1, ) assert_that( self.store.retrieve(self.kevin.id), all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("middle", none()), has_property("last", "Durant"), ), ) def test_bulk_with_report(self): results = self.store.bulk( actions=[ ("index", self.kevin), ("delete", self.steph), ], batch_size=2, ) assert_that( self.store.retrieve(self.kevin.id), all_of( has_property("id", self.kevin.id), has_property("first", "Kevin"), has_property("middle", none()), has_property("last", "Durant"), ), ) result = results[0] # Updated items assert_that(result[0], is_(equal_to(1))) # Report on failed to delete items assert_that(result[1], contains( has_key('delete'), )) assert_that(result[1][0]['delete'], has_entry('result', 'not_found')) class TestOverloadedStore(TestStore): def setup(self): super().setup() self.person_in_one = Person( first="One", last="Person", origin_planet=Planet.MARS, ) self.person_in_two = Person( first="Two", last="Person", origin_planet=Planet.MARS, ) with self.overloaded_store.flushing(selector_attribute=SelectorAttribute.ONE): self.overloaded_store.create( self.person_in_one, selector_attribute=SelectorAttribute.ONE ) with self.overloaded_store.flushing(selector_attribute=SelectorAttribute.TWO): self.overloaded_store.create( self.person_in_two, selector_attribute=SelectorAttribute.TWO ) def test_search_with_count(self): result, count = self.overloaded_store.search_with_count(selector_attribute=SelectorAttribute.ONE) assert_that(result[0], has_property("id", self.person_in_one.id)) assert_that(count, is_(equal_to(1))) result, count = self.overloaded_store.search_with_count(selector_attribute=SelectorAttribute.TWO) assert_that(result[0], has_property("id", self.person_in_two.id)) assert_that(count, is_(equal_to(1))) def test_search(self): assert_that( self.overloaded_store.search(selector_attribute=SelectorAttribute.ONE), contains( all_of( has_property("id", self.person_in_one.id), has_property("first", "One"), ), ), ) assert_that( self.overloaded_store.search(selector_attribute=SelectorAttribute.TWO), contains( all_of( has_property("id", self.person_in_two.id), has_property("first", "Two"), ), ), )
# Copyright 2017, 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not # use this file except in compliance with the License. A copy of the License # is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """ Defines various constants used througout the project """ import mxnet as mx import numpy as np BOS_SYMBOL = "<s>" EOS_SYMBOL = "</s>" UNK_SYMBOL = "<unk>" PAD_SYMBOL = "<pad>" PAD_ID = 0 TOKEN_SEPARATOR = " " VOCAB_SYMBOLS = [PAD_SYMBOL, UNK_SYMBOL, BOS_SYMBOL, EOS_SYMBOL] # reserve extra space for the EOS or BOS symbol that is added to both source and target SPACE_FOR_XOS = 1 ARG_SEPARATOR = ":" ENCODER_PREFIX = "encoder_" DECODER_PREFIX = "decoder_" EMBEDDING_PREFIX = "embed_" ATTENTION_PREFIX = "att_" COVERAGE_PREFIX = "cov_" BIDIRECTIONALRNN_PREFIX = ENCODER_PREFIX + "birnn_" STACKEDRNN_PREFIX = ENCODER_PREFIX + "rnn_" FORWARD_PREFIX = "forward_" REVERSE_PREFIX = "reverse_" TRANSFORMER_ENCODER_PREFIX = ENCODER_PREFIX + "transformer_" CNN_ENCODER_PREFIX = ENCODER_PREFIX + "cnn_" CHAR_SEQ_ENCODER_PREFIX = ENCODER_PREFIX + "char_" DEFAULT_OUTPUT_LAYER_PREFIX = "target_output_" # embedding prefixes SOURCE_EMBEDDING_PREFIX = "source_" + EMBEDDING_PREFIX SOURCE_POSITIONAL_EMBEDDING_PREFIX = "source_pos_" + EMBEDDING_PREFIX TARGET_EMBEDDING_PREFIX = "target_" + EMBEDDING_PREFIX TARGET_POSITIONAL_EMBEDDING_PREFIX = "target_pos_" + EMBEDDING_PREFIX SHARED_EMBEDDING_PREFIX = "source_target_" + EMBEDDING_PREFIX # encoder names (arguments) RNN_NAME = "rnn" RNN_WITH_CONV_EMBED_NAME = "rnn-with-conv-embed" TRANSFORMER_TYPE = "transformer" CONVOLUTION_TYPE = "cnn" TRANSFORMER_WITH_CONV_EMBED_TYPE = "transformer-with-conv-embed" IMAGE_PRETRAIN_TYPE = "image-pretrain-cnn" # available encoders ENCODERS = [RNN_NAME, RNN_WITH_CONV_EMBED_NAME, TRANSFORMER_TYPE, TRANSFORMER_WITH_CONV_EMBED_TYPE, CONVOLUTION_TYPE, IMAGE_PRETRAIN_TYPE] # available decoder DECODERS = [RNN_NAME, TRANSFORMER_TYPE, CONVOLUTION_TYPE] # rnn types LSTM_TYPE = 'lstm' LNLSTM_TYPE = 'lnlstm' LNGLSTM_TYPE = 'lnglstm' GRU_TYPE = 'gru' LNGRU_TYPE = 'lngru' LNGGRU_TYPE = 'lnggru' CELL_TYPES = [LSTM_TYPE, LNLSTM_TYPE, LNGLSTM_TYPE, GRU_TYPE, LNGRU_TYPE, LNGGRU_TYPE] # positional embeddings NO_POSITIONAL_EMBEDDING = "none" FIXED_POSITIONAL_EMBEDDING = "fixed" LEARNED_POSITIONAL_EMBEDDING = "learned" POSITIONAL_EMBEDDING_TYPES = [NO_POSITIONAL_EMBEDDING, FIXED_POSITIONAL_EMBEDDING, LEARNED_POSITIONAL_EMBEDDING] DEFAULT_INIT_PATTERN = ".*" # init types INIT_XAVIER = 'xavier' INIT_UNIFORM = 'uniform' INIT_TYPES = [INIT_XAVIER, INIT_UNIFORM] INIT_XAVIER_FACTOR_TYPE_IN = "in" INIT_XAVIER_FACTOR_TYPE_OUT = "out" INIT_XAVIER_FACTOR_TYPE_AVG = "avg" INIT_XAVIER_FACTOR_TYPES = [INIT_XAVIER_FACTOR_TYPE_IN, INIT_XAVIER_FACTOR_TYPE_OUT, INIT_XAVIER_FACTOR_TYPE_AVG] RAND_TYPE_UNIFORM = 'uniform' RAND_TYPE_GAUSSIAN = 'gaussian' # Embedding init types EMBED_INIT_PATTERN = '(%s|%s|%s)weight' % (SOURCE_EMBEDDING_PREFIX, TARGET_EMBEDDING_PREFIX, SHARED_EMBEDDING_PREFIX) EMBED_INIT_DEFAULT = 'default' EMBED_INIT_NORMAL = 'normal' EMBED_INIT_TYPES = [EMBED_INIT_DEFAULT, EMBED_INIT_NORMAL] # RNN init types RNN_INIT_PATTERN = ".*h2h.*" RNN_INIT_ORTHOGONAL = 'orthogonal' RNN_INIT_ORTHOGONAL_STACKED = 'orthogonal_stacked' # use the default initializer used also for all other weights RNN_INIT_DEFAULT = 'default' # RNN decoder state init types RNN_DEC_INIT_ZERO = "zero" RNN_DEC_INIT_LAST = "last" RNN_DEC_INIT_AVG = "avg" RNN_DEC_INIT_CHOICES = [RNN_DEC_INIT_ZERO, RNN_DEC_INIT_LAST, RNN_DEC_INIT_AVG] # attention types ATT_BILINEAR = 'bilinear' ATT_DOT = 'dot' ATT_MH_DOT = 'mhdot' ATT_FIXED = 'fixed' ATT_LOC = 'location' ATT_MLP = 'mlp' ATT_COV = "coverage" ATT_TYPES = [ATT_BILINEAR, ATT_DOT, ATT_MH_DOT, ATT_FIXED, ATT_LOC, ATT_MLP, ATT_COV] # weight tying components WEIGHT_TYING_SRC = 'src' WEIGHT_TYING_TRG = 'trg' WEIGHT_TYING_SOFTMAX = 'softmax' # weight tying types (combinations of above components): WEIGHT_TYING_TRG_SOFTMAX = 'trg_softmax' WEIGHT_TYING_SRC_TRG = 'src_trg' WEIGHT_TYING_SRC_TRG_SOFTMAX = 'src_trg_softmax' # default decoder prefixes RNN_DECODER_PREFIX = DECODER_PREFIX + "rnn_" TRANSFORMER_DECODER_PREFIX = DECODER_PREFIX + "transformer_" CNN_DECODER_PREFIX = DECODER_PREFIX + "cnn_" # Activation types # Gaussian Error Linear Unit (https://arxiv.org/pdf/1606.08415.pdf) GELU = "gelu" # Gated Linear Unit (https://arxiv.org/pdf/1705.03122.pdf) GLU = "glu" RELU = "relu" SIGMOID = "sigmoid" SOFT_RELU = "softrelu" # Swish-1/SiLU (https://arxiv.org/pdf/1710.05941.pdf, https://arxiv.org/pdf/1702.03118.pdf) SWISH1 = "swish1" TANH = "tanh" TRANSFORMER_ACTIVATION_TYPES = [GELU, RELU, SWISH1] CNN_ACTIVATION_TYPES = [GLU, RELU, SIGMOID, SOFT_RELU, TANH] # Convolutional block pad types: CNN_PAD_LEFT = "left" CNN_PAD_CENTERED = "centered" # default I/O variable names SOURCE_NAME = "source" SOURCE_LENGTH_NAME = "source_length" TARGET_NAME = "target" TARGET_LABEL_NAME = "target_label" LEXICON_NAME = "lexicon" SOURCE_ENCODED_NAME = "encoded_source" TARGET_PREVIOUS_NAME = "prev_target_word_id" HIDDEN_PREVIOUS_NAME = "prev_hidden" SOURCE_DYNAMIC_PREVIOUS_NAME = "prev_dynamic_source" LOGIT_INPUTS_NAME = "logit_inputs" LOGITS_NAME = "logits" SOFTMAX_NAME = "softmax" SOFTMAX_OUTPUT_NAME = SOFTMAX_NAME + "_output" MEASURE_SPEED_EVERY = 50 # measure speed and metrics every X batches # Monitor constants STAT_FUNC_DEFAULT = "mx_default" # default MXNet monitor stat func: mx.nd.norm(x)/mx.nd.sqrt(x.size) STAT_FUNC_MAX = 'max' STAT_FUNC_MIN = 'min' STAT_FUNC_MEAN = 'mean' MONITOR_STAT_FUNCS = {STAT_FUNC_DEFAULT: None, STAT_FUNC_MAX: lambda x: mx.nd.max(x), STAT_FUNC_MEAN: lambda x: mx.nd.mean(x)} # Inference constants DEFAULT_BEAM_SIZE = 5 CHUNK_SIZE_NO_BATCHING = 1 CHUNK_SIZE_PER_BATCH_SEGMENT = 500 BEAM_SEARCH_STOP_FIRST = 'first' BEAM_SEARCH_STOP_ALL = 'all' # Inference Input JSON constants JSON_TEXT_KEY = "text" JSON_FACTORS_KEY = "factors" JSON_CONSTRAINTS_KEY = "constraints" JSON_ENCODING = "utf-8" # Lexical constraints BANK_ADJUSTMENT = 'even' VERSION_NAME = "version" CONFIG_NAME = "config" LOG_NAME = "log" JSON_SUFFIX = ".json" VOCAB_SRC_PREFIX = "vocab.src" VOCAB_SRC_NAME = VOCAB_SRC_PREFIX + ".%d" + JSON_SUFFIX VOCAB_TRG_PREFIX = "vocab.trg" VOCAB_TRG_NAME = VOCAB_TRG_PREFIX + ".%d" + JSON_SUFFIX VOCAB_ENCODING = "utf-8" PARAMS_PREFIX = "params." PARAMS_NAME = PARAMS_PREFIX + "%05d" PARAMS_BEST_NAME = "params.best" DECODE_OUT_NAME = "decode.output.%05d" DECODE_IN_NAME = "decode.source.%d" DECODE_REF_NAME = "decode.target" SYMBOL_NAME = "symbol" + JSON_SUFFIX METRICS_NAME = "metrics" TENSORBOARD_NAME = "tensorboard" # training resumption constants TRAINING_STATE_DIRNAME = "training_state" TRAINING_STATE_TEMP_DIRNAME = "tmp.training_state" TRAINING_STATE_TEMP_DELETENAME = "delete.training_state" OPT_STATES_LAST = "mx_optimizer_last.pkl" OPT_STATES_BEST = "mx_optimizer_best.pkl" OPT_STATES_INITIAL = "mx_optimizer_initial.pkl" BUCKET_ITER_STATE_NAME = "bucket.pkl" RNG_STATE_NAME = "rng.pkl" TRAINING_STATE_NAME = "training.pkl" SCHEDULER_STATE_NAME = "scheduler.pkl" TRAINING_STATE_PARAMS_NAME = "params" ARGS_STATE_NAME = "args.yaml" # Arguments that may differ and still resume training ARGS_MAY_DIFFER = ["overwrite_output", "use-tensorboard", "quiet", "align_plot_prefix", "sure_align_threshold", "keep_last_params"] # Other argument constants TRAINING_ARG_SOURCE = "--source" TRAINING_ARG_TARGET = "--target" TRAINING_ARG_PREPARED_DATA = "--prepared-data" VOCAB_ARG_SHARED_VOCAB = "--shared-vocab" INFERENCE_ARG_INPUT_LONG = "--input" INFERENCE_ARG_INPUT_SHORT = "-i" INFERENCE_ARG_OUTPUT_LONG = "--output" INFERENCE_ARG_OUTPUT_SHORT = "-o" INFERENCE_ARG_INPUT_FACTORS_LONG = "--input-factors" INFERENCE_ARG_INPUT_FACTORS_SHORT = "-if" TRAIN_ARGS_MONITOR_BLEU = "--decode-and-evaluate" TRAIN_ARGS_CHECKPOINT_FREQUENCY = "--checkpoint-frequency" # Used to delimit factors on STDIN for inference DEFAULT_FACTOR_DELIMITER = '|' # data layout strings BATCH_MAJOR_IMAGE = "NCHW" BATCH_MAJOR = "NTC" TIME_MAJOR = "TNC" BATCH_TYPE_SENTENCE = "sentence" BATCH_TYPE_WORD = "word" KVSTORE_DEVICE = "device" KVSTORE_LOCAL = "local" KVSTORE_SYNC = "dist_sync" KVSTORE_DIST_DEVICE_SYNC = "dist_device_sync" KVSTORE_DIST_ASYNC = "dist_async" KVSTORE_NCCL = 'nccl' KVSTORE_TYPES = [KVSTORE_DEVICE, KVSTORE_LOCAL, KVSTORE_SYNC, KVSTORE_DIST_DEVICE_SYNC, KVSTORE_DIST_ASYNC, KVSTORE_NCCL] # Training constants OPTIMIZER_ADAM = "adam" OPTIMIZER_EVE = "eve" OPTIMIZER_NADAM = "nadam" OPTIMIZER_RMSPROP = "rmsprop" OPTIMIZER_SGD = "sgd" OPTIMIZER_NAG = "nag" OPTIMIZER_ADAGRAD = "adagrad" OPTIMIZER_ADADELTA = "adadelta" OPTIMIZERS = [OPTIMIZER_ADAM, OPTIMIZER_EVE, OPTIMIZER_NADAM, OPTIMIZER_RMSPROP, OPTIMIZER_SGD, OPTIMIZER_NAG, OPTIMIZER_ADAGRAD, OPTIMIZER_ADADELTA] LR_SCHEDULER_FIXED_RATE_INV_SQRT_T = "fixed-rate-inv-sqrt-t" LR_SCHEDULER_FIXED_RATE_INV_T = "fixed-rate-inv-t" LR_SCHEDULER_FIXED_STEP = "fixed-step" LR_SCHEDULER_PLATEAU_REDUCE = "plateau-reduce" LR_SCHEDULERS = [LR_SCHEDULER_FIXED_RATE_INV_SQRT_T, LR_SCHEDULER_FIXED_RATE_INV_T, LR_SCHEDULER_FIXED_STEP, LR_SCHEDULER_PLATEAU_REDUCE] LR_DECAY_OPT_STATES_RESET_OFF = 'off' LR_DECAY_OPT_STATES_RESET_INITIAL = 'initial' LR_DECAY_OPT_STATES_RESET_BEST = 'best' LR_DECAY_OPT_STATES_RESET_CHOICES = [LR_DECAY_OPT_STATES_RESET_OFF, LR_DECAY_OPT_STATES_RESET_INITIAL, LR_DECAY_OPT_STATES_RESET_BEST] GRADIENT_CLIPPING_TYPE_ABS = 'abs' GRADIENT_CLIPPING_TYPE_NORM = 'norm' GRADIENT_CLIPPING_TYPE_NONE = 'none' GRADIENT_CLIPPING_TYPES = [GRADIENT_CLIPPING_TYPE_ABS, GRADIENT_CLIPPING_TYPE_NORM, GRADIENT_CLIPPING_TYPE_NONE] GRADIENT_COMPRESSION_NONE = None GRADIENT_COMPRESSION_2BIT = "2bit" GRADIENT_COMPRESSION_TYPES = [GRADIENT_CLIPPING_TYPE_NONE, GRADIENT_COMPRESSION_2BIT] # output handler OUTPUT_HANDLER_TRANSLATION = "translation" OUTPUT_HANDLER_TRANSLATION_WITH_SCORE = "translation_with_score" OUTPUT_HANDLER_TRANSLATION_WITH_ALIGNMENTS = "translation_with_alignments" OUTPUT_HANDLER_TRANSLATION_WITH_ALIGNMENT_MATRIX = "translation_with_alignment_matrix" OUTPUT_HANDLER_BENCHMARK = "benchmark" OUTPUT_HANDLER_ALIGN_PLOT = "align_plot" OUTPUT_HANDLER_ALIGN_TEXT = "align_text" OUTPUT_HANDLER_BEAM_STORE = "beam_store" OUTPUT_HANDLERS = [OUTPUT_HANDLER_TRANSLATION, OUTPUT_HANDLER_TRANSLATION_WITH_SCORE, OUTPUT_HANDLER_TRANSLATION_WITH_ALIGNMENTS, OUTPUT_HANDLER_TRANSLATION_WITH_ALIGNMENT_MATRIX, OUTPUT_HANDLER_BENCHMARK, OUTPUT_HANDLER_ALIGN_PLOT, OUTPUT_HANDLER_ALIGN_TEXT, OUTPUT_HANDLER_BEAM_STORE] # metrics ACCURACY = 'accuracy' PERPLEXITY = 'perplexity' BLEU = 'bleu' CHRF = 'chrf' BLEU_VAL = BLEU + "-val" CHRF_VAL = CHRF + "-val" AVG_TIME = "avg-sec-per-sent-val" DECODING_TIME = "decode-walltime-val" METRICS = [PERPLEXITY, ACCURACY, BLEU] METRIC_MAXIMIZE = {ACCURACY: True, BLEU: True, PERPLEXITY: False} METRIC_WORST = {ACCURACY: 0.0, BLEU: 0.0, PERPLEXITY: np.inf} # loss CROSS_ENTROPY = 'cross-entropy' LOSS_NORM_BATCH = 'batch' LOSS_NORM_VALID = "valid" TARGET_MAX_LENGTH_FACTOR = 2 DEFAULT_NUM_STD_MAX_OUTPUT_LENGTH = 2 DTYPE_FP16 = 'float16' DTYPE_FP32 = 'float32' LARGE_POSITIVE_VALUE = 99999999. LARGE_NEGATIVE_VALUE = -LARGE_POSITIVE_VALUE LARGE_VALUES = { # Something at the middle of 32768<x<65519. Will be rounded to a multiple of 32. # https://en.wikipedia.org/wiki/Half-precision_floating-point_format#Precision_limitations_on_integer_values DTYPE_FP16: 49152.0, # Will be rounded to 1.0e8. # https://en.wikipedia.org/wiki/Single-precision_floating-point_format#Precision_limits_on_integer_values. DTYPE_FP32: LARGE_POSITIVE_VALUE } LHUC_NAME = "lhuc" # lhuc application points LHUC_ENCODER = "encoder" LHUC_DECODER = "decoder" LHUC_STATE_INIT = "state_init" LHUC_ALL = "all" LHUC_CHOICES = [LHUC_ENCODER, LHUC_DECODER, LHUC_STATE_INIT, LHUC_ALL] # data sharding SHARD_NAME = "shard.%05d" SHARD_SOURCE = SHARD_NAME + ".source" SHARD_TARGET = SHARD_NAME + ".target" DATA_INFO = "data.info" DATA_CONFIG = "data.config" PREPARED_DATA_VERSION_FILE = "data.version" PREPARED_DATA_VERSION = 2
# coding: utf-8 from __future__ import print_function #prepare for python3 import os,sys,shutil import time as clocktime import numpy as np from scipy.stats import powerlaw import matplotlib matplotlib.use('Agg') #matplotlib.use("Cairo") import matplotlib.pyplot as plt from amuse.community.rebound.interface import Rebound from plotting import plot_interaction, plot_system from amuse.units.units import named from amuse.ext.orbital_elements import orbital_elements_for_rel_posvel_arrays from botsrots import BotsRots try: from amuse.units import units MEarth = units.MEarth REarth = units.REarth except: from usagi.units import units MEarth = units.MEarth REarth = units.REarth rhoEarth = units.MEarth / (4./3. * np.pi * units.REarth**3) MMoon = named('Lunar mass', 'M_Moon', 0.0123 * units.MEarth)#7.35e22 * units.kg aR = named('Roche limit radius for lunar density', 'a_R', 2.9 * units.REarth) from amuse.lab import * def get_roche_limit_radius( rho, ): # Kokubo 2000 eq 2 a_R = 2.456 * (rho.value_in(rhoEarth))**(-1./3.) | units.REarth return a_R def particle_radius( m, rho, ): # Kokubo 2000 eq 1 radius = ( (m.value_in(units.MEarth))**(1./3.) * (rho.value_in(rhoEarth)**(-1./3.)) ) | units.REarth return radius class Resolve_Encounters(object): def __init__( self, encounters_0, encounters_1, primary = None, convert_nbody = None, G = constants.G, epsilon_n = 0.1, epsilon_t = 1, f = 0.0, time = 0.0 | units.yr, ): self.all_encounters_A = encounters_0 self.all_encounters_B = encounters_1 self.number_of_collisions = len(self.all_encounters_A) self.primary = primary self.particles_modified = Particles() self.particles_removed = Particles() self.epsilon_n = epsilon_n self.epsilon_t = epsilon_t self.G = G self.f = f self.time = time # Velocity changes only v_n -> can be done for ALL particles! self.update_velocities() # Should resolve collision immediately since the in-between state is unphysical # and may cause mergers within Roche radius self.resolve_rebounders() if self.f > 0.0: # These are used to determine if a merger will take place self.get_hill_radius() self.get_jacobi_energy() self.get_encounter_type() # Resolve. # NOTE: need to take ongoing changes into account... # First: collisions that don't result in a merger # Then: mergers if len(self.merging) > 0: self.resolve_mergers() def update_velocities( self, ): A = self.all_encounters_A B = self.all_encounters_B if self.epsilon_t != 1.0: return -1 r = B.position - A.position v = B.velocity - A.velocity n = r/r.lengths().reshape((self.number_of_collisions,1)) v_n = ( v[:,0]*n[:,0] + v[:,1]*n[:,1] + v[:,2]*n[:,2] ).reshape((len(n),1)) * n self.v_A_orig = A.velocity self.v_B_orig = B.velocity A.velocity += (1+self.epsilon_n) * v_n * (B.mass / (A.mass+B.mass)).reshape((self.number_of_collisions,1)) B.velocity += -(1+self.epsilon_n) * v_n * (A.mass / (A.mass+B.mass)).reshape((self.number_of_collisions,1)) def get_jacobi_energy( self, ): """ Taken from Canup & Esposito (1995/1994), with cues from Kokubo, Ida & Makino (2000) """ A = self.all_encounters_A B = self.all_encounters_B # Constants m_A = A.mass m_B = B.mass M = m_A + m_B r_A = A.position r_B = B.position r = ( r_A * m_A.reshape((self.number_of_collisions,1)) + r_B * m_B.reshape((self.number_of_collisions,1)) ) / M.reshape((self.number_of_collisions,1)) r_p = self.primary.position r_orb = r - r_p v_A = A.velocity v_B = B.velocity v_c = ( v_A * m_A.reshape((self.number_of_collisions,1)) + v_B * m_B.reshape((self.number_of_collisions,1)) ) / M.reshape((self.number_of_collisions,1)) v_d = v_B - v_A v_p = self.primary.velocity v_orb = (v_c - v_p) # Derived x_hat = VectorQuantity( ( r_orb / r_orb.lengths().reshape((self.number_of_collisions,1)) ), units.none, ) v_orb_hat = VectorQuantity( ( v_orb / v_orb.lengths().reshape((self.number_of_collisions,1)) ), units.none, ) z_hat = x_hat.cross(v_orb_hat) y_hat = x_hat.cross(z_hat) x = ( r[:,0] * x_hat[:,0] + r[:,1] * x_hat[:,1] + r[:,2] * x_hat[:,2] ) z = ( r[:,0] * z_hat[:,0] + r[:,1] * z_hat[:,1] + r[:,2] * z_hat[:,2] ) Omega = ( v_orb[:,0] * y_hat[:,0] + v_orb[:,1] * y_hat[:,1] + v_orb[:,2] * y_hat[:,2] ) / (2*np.pi * r_orb.lengths()) # Remember this is a potential, not really an energy # But since mass is always > 0, no problem. self.E_J = ( 0.5 * v_d.lengths_squared() - 1.5 * x**2 * Omega**2 + 0.5 * z**2 * Omega**2 - self.G*M/r.lengths() + 4.5 * self.radius_Hill**2 * Omega**2 ) def get_hill_radius( self, ): A = self.all_encounters_A B = self.all_encounters_B m_A = A.mass m_B = B.mass M = m_A + m_B r_A = A.position r_B = B.position r = ( r_A * m_A.reshape((self.number_of_collisions,1)) + r_B * m_B.reshape((self.number_of_collisions,1)) ) / M.reshape((self.number_of_collisions,1)) r_p = self.primary.position r_orb = r - r_p self.radius_Hill = ( M / (3 * self.primary.mass) )**(1./3) * r_orb.lengths() def get_encounter_type( self, energy_unit = units.erg, mass_unit = units.kg, length_unit = units.km, time_unit = units.s, ): A = self.all_encounters_A B = self.all_encounters_B interaction_includes_planet = ( (self.primary.key == A.key) ^ (self.primary.key == B.key) ) if self.f > 0.0: jacobi_energy_negative = ( self.E_J < (0 | energy_unit / mass_unit) ) within_hill_radius = ( (A.radius + B.radius) < (self.f * self.radius_Hill) ) merging = ( interaction_includes_planet ^ ( jacobi_energy_negative & within_hill_radius ) ) else: merging = interaction_includes_planet not_merging = (merging == False) self.merging = np.where(merging)[0] self.not_merging = np.where(not_merging)[0] self.colliding = self.not_merging#np.where(not_merging)[0] #self.colliding = np.where(not_merging & approaching)[0] def resolve_rebounders( self, move_particles = True, correct_for_multiple_collisions = False, ): A = self.all_encounters_A B = self.all_encounters_B if move_particles: # Make sure the radii no longer overlap # This introduces an additional kick, but it prevents singularities... m_A = A.mass m_B = B.mass M = m_A + m_B r = B.position - A.position #Distance the particles are overlapping: d = r.lengths() - B.radius - A.radius n_hat = VectorQuantity( ( r / r.lengths().reshape((self.number_of_collisions,1)) ), units.none, ) #Displacement post-velocity change: disp = d.reshape((self.number_of_collisions,1)) * n_hat A.position += (m_B/M).reshape((self.number_of_collisions,1)) * disp B.position += -(m_A/M).reshape((self.number_of_collisions,1)) * disp # Sync self.particles_modified.add_particles(A) self.particles_modified.add_particles(B) def resolve_mergers( self, ): # Conserve position and velocity of center-of-mass # Combine total mass in the most massive particle # Choose the first one if masses are equal A = self.all_encounters_A B = self.all_encounters_B # This has to be a for loop, since we have to account for multiple collisions with one object in one timestep. for i in range(len(self.merging)): index = self.merging[i] if B[index].mass > A[index].mass: seed = B[index] merge_with = A[index] else: seed = A[index] merge_with = B[index] dist = (seed.position-merge_with.position).lengths() if merge_with.key in self.particles_removed.key: print("already merged!") break if seed.key in self.particles_removed.key: print("This should never happen!") print(seed.key) break if seed.key in self.particles_modified.key: # Particle already exists in modified form, # probably had a collision. # Use the modified form # and remove it from the already-done list! seed = self.particles_modified.select( lambda x: x == seed.key,["key"])[0].copy() self.particles_modified.remove_particle(seed) rho = seed.mass / (4/3. * np.pi * seed.radius**3) if merge_with.key in self.particles_modified.key: merge_with = self.particles_modified.select( lambda x: x == merge_with.key, ["key"])[0].copy() self.particles_modified.remove_particle(merge_with) particles_to_merge = Particles() particles_to_merge.add_particle(seed) particles_to_merge.add_particle(merge_with) new_particle = seed.copy() new_particle.position = particles_to_merge.center_of_mass() new_particle.velocity = particles_to_merge.center_of_mass_velocity() new_particle.mass = particles_to_merge.mass.sum() new_particle.radius = particle_radius(new_particle.mass, rho) self.particles_removed.add_particle(merge_with) self.particles_modified.add_particle(new_particle) class Planetary_Disc(object): """ Class to resolve encounters and collisions in a disc around a planet. Collisions with the planet are also taken into account. """ def __init__(self, options): """ Initialise particles, identify subgroups. """ self.options = options convert_nbody = self.options["converter"] self.f = 0. if self.options["rubblepile"] else 1.0 self.converter = convert_nbody if convert_nbody != None else ( nbody_system.nbody_to_si( 1|nbody_system.length, 1|nbody_system.mass, ) ) self.particles = Particles() self.integrators = [] self.encounters = [] self.sync_attributes = ["mass", "radius", "x", "y", "z", "vx", "vy", "vz"] self.length_unit = units.AU self.mass_unit = units.kg self.speed_unit = units.kms self.energy_unit = units.erg self.time_unit = units.yr self.particles.collection_attributes.nbody_length = self.converter.to_si(1|nbody_system.length) self.particles.collection_attributes.nbody_mass = self.converter.to_si(1|nbody_system.mass) self.time_margin = 0 | self.time_unit self.model_time = 0 | self.time_unit self.kinetic_energy = 0 | self.energy_unit self.potential_energy = 0 | self.energy_unit self.timestep = self.options["timestep"] self.CollisionResolver = BotsRots() def exit_graceful(self): self.write_backup() exit() def write_backup(self, filename="continue.hdf5"): self.particles.collection_attributes.time = self.model_time if self.options["gravity"]=="Rebound": self.particles.collection_attributes.timestep = self.integrator.model_time / self.timestep if self.options["gravity"]=="Bonsai": self.particles.collection_attributes.timestep = self.integrator.model_time / self.timestep #self.particles.collection_attributes.grav_parameters = self.integrator.parameters write_set_to_file(self.particles,filename,"amuse") def evolve_model(self,time): if options["verbose"]>0: print("#Evolving to %s"%(time/self.timestep)) if time > self.model_time: #print(self.particles[0]) number_of_encounters = 0 last_encounter_0 = -1 last_encounter_1 = -1 if options["verbose"]>0: print("#%s > %s, evolving..."%( time/self.timestep, self.model_time/self.timestep, )) self.integrator.evolve_model(time + 0.000001*self.timestep) if options["verbose"]>0: print("#integrator now at %s"%(self.integrator.model_time/self.timestep)) # Detect an error, save data in that case if self.integrator.particles[0].x.number == np.nan: self.exit_graceful() else: if options["verbose"]>0: print("#Updating model") self.from_integrator_to_particles.copy() if options["verbose"]>0: print("#Getting energies from model") self.model_time = self.integrator.model_time self.kinetic_energy = self.integrator.kinetic_energy self.potential_energy = self.integrator.potential_energy if ( self.options["gravity"]=="Rebound" or self.options["gravity"]=="Bonsai" ): if self.options["verbose"]>0: print("#Timesteps completed: %s"%(self.integrator.model_time / self.timestep)) if options["verbose"]>0: print("#Handling collisions") if self.collision_detection.is_set(): number_of_loops = 0 if self.options["gravity"] == "ph4": max_number_of_loops = len(self.particles) else: max_number_of_loops = 1 while (len(self.collision_detection.particles(0)) > 0) and number_of_loops < max_number_of_loops: number_of_loops += 1 this_encounter_0 = self.collision_detection.particles(0)[0].key this_encounter_1 = self.collision_detection.particles(1)[0].key if (this_encounter_0 == last_encounter_0 and this_encounter_1 == last_encounter_1): p0 = self.collision_detection.particles(0)[0] p1 = self.collision_detection.particles(1)[0] last_encounter_0 = this_encounter_0 last_encounter_1 = this_encounter_1 number_of_encounters += len(self.collision_detection.particles(0)) #m_before = self.integrator.particles.mass.sum() self.resolve_encounters() #m_after = self.integrator.particles.mass.sum() #if ( # np.abs((m_after - m_before).value_in(units.MEarth)) > # self.converter.to_si( # (1e-10|nbody_system.mass) # ).value_in(units.MEarth) # ): # print("#Mass changed!", (m_after - m_before).as_quantity_in(units.MEarth)) self.integrator.evolve_model(time + 0.000001*self.timestep) if self.options["verbose"]>0: print("#Handled %i encounters this timestep"%(number_of_encounters)) if options["verbose"]>0: print("#Done") def define_subgroups(self): #self.star = self.particles[0] #self.planet = self.particles[1] #self.disc = self.particles[2:] self.star = self.particles.select(lambda x: x == "star", ["type"]) self.planet = self.particles.select(lambda x: x == "planet", ["type"]) #self.moon = self.particles.select(lambda x: x == "moon", ["type"]) self.disc = self.particles.select(lambda x: x == "disc", ["type"]) def add_particle(self, particle): self.add_particles(particle.as_set()) #self.particles.add_particle(particle) #self.integrator.particles.add_particle(particle) #self.define_subgroups() def add_particles(self, particles): self.particles.add_particles(particles) self.integrator.particles.add_particles(particles) self.define_subgroups() def remove_particle(self, particle): self.remove_particles(particle.as_set()) #self.particles.remove_particle(particle) #self.integrator.particles.remove_particle(particle) #self.define_subgroups() def remove_particles(self, particles): if len(particles) > 0: if options["verbose"]>0: print("#Removing %i particles"%(len(particles))) #from_encounter_to_particles = \ # particles.new_channel_to(self.particles) #from_encounter_to_particles.copy_attributes(self.sync_attributes) #self.from_particles_to_integrator.copy_attributes(self.sync_attributes) self.integrator.particles.remove_particles(particles) self.particles.remove_particles(particles) #print(len(self.particles),len(self.integrator.particles)) self.define_subgroups() def add_integrator(self, integrator): self.integrator = integrator self.collision_detection = integrator.stopping_conditions.collision_detection try: self.integrator_timestep = integrator.parameters.timestep self.time_margin = 0.5 * self.integrator_timestep except: self.integrator_timestep = False if not options["disable_collisions"]: self.collision_detection.enable() self.from_integrator_to_particles = \ self.integrator.particles.new_channel_to(self.particles) self.from_particles_to_integrator = \ self.particles.new_channel_to(self.integrator.particles) def resolve_encounters( self, ): if options["verbose"]>1: print("%d : Resolving encounters"%(clocktime.time()-starttime)) #f = 1.0 # fraction of the Hill radius #print(self.integrator.particles[0]) #print(self.particles[0]) colliders_i = self.particles.get_indices_of_keys(self.collision_detection.particles(0).key) colliders_j = self.particles.get_indices_of_keys(self.collision_detection.particles(1).key) d_pos, d_vel = self.CollisionResolver.handle_collisions(self.particles,colliders_i,colliders_j) self.particles.position += d_pos self.particles.velocity += d_vel self.from_particles_to_integrator.copy_attributes(["mass","x","y","z","vx","vy","vz"]) self.from_particles_to_integrator.copy_attributes(["radius"]) distance_to_planet = (self.disc.position - self.planet.position).lengths() - self.planet.radius - self.disc.radius colliding_with_planet = np.where(distance_to_planet < 0|self.planet.x.unit) planet_and_colliders = self.planet + self.disc[colliding_with_planet] self.planet.position = planet_and_colliders.center_of_mass() self.planet.velocity = planet_and_colliders.center_of_mass_velocity() self.planet.mass = planet_and_colliders.mass.sum() self.remove_particles(self.disc[colliding_with_planet]) #print(self.integrator.particles[0]) #print(self.particles[0]) #self.disc[colliding_with_planet].x *= 50 #self.disc[colliding_with_planet].mass *= 0 #self.disc[colliding_with_planet].radius *= 0 #self.from_particles_to_integrator.copy_attributes(["mass","x","y","z","vx","vy","vz"]) #self.from_particles_to_integrator.copy_attributes(["radius"]) def main(options): starttime = clocktime.time() now = clocktime.strftime("%Y%m%d%H%M%S") # Read the initial conditions file provided. This uses "Giant Impact" units. mass_unit = options["unit_mass"] length_unit = options["unit_length"] converter = nbody_system.nbody_to_si(1|mass_unit, 1|length_unit) options["converter"] = converter time = options["time_start"] if options["verbose"]>1: print("%d : Start reading particles"%(clocktime.time()-starttime)) if len(sys.argv) >= 2: filename = sys.argv[1] ext = filename.split('.')[-1] if ext == "hdf5": particles = read_set_from_file(filename, "amuse") rundir = "./runs/" + filename.split('/')[-1][:-5] else: print("Unknown filetype") exit() else: print("No initial conditions given") exit() if options["verbose"]>1: print("%d : Read particles"%(clocktime.time()-starttime)) rundir += "-%s-%s"%( now, options["gravity"], ) if options["rubblepile"]: rundir += "-rubblepile" backupdir = rundir + "/backups" plotdir = rundir + "/plots" try: os.makedirs(rundir) os.makedirs(backupdir) os.makedirs(plotdir) shutil.copy(sys.argv[0],rundir) except: #FIXME make a new dir in this case, to prevent overwriting old files # use a datetime stamp print("#directories already present") exit() particles[0].colour = "blue" particles[1:].colour = "black" kepler_time = converter.to_si( 2 * np.pi * ( (1|nbody_system.length)**3 / ((1|nbody_system.mass) * nbody_system.G) )**0.5 ) converter_earthunits = nbody_system.nbody_to_si(1|units.MEarth,1|units.REarth) options["timestep"] = (kepler_time/(2*np.pi))*(2**-4) if options["verbose"]>1: print("%d : Starting gravity"%(clocktime.time()-starttime)) # Start up gravity code if options["gravity"] == "Rebound": gravity = Rebound(converter,redirection="none") gravity.parameters.timestep = options["timestep"] gravity.parameters.integrator = options["integrator"] gravity.parameters.solver = "compensated" #gravity.parameters.solver = "tree" #gravity.parameters.opening_angle2 = 0.25 #gravity.parameters.boundary = "open" #gravity.parameters.boundary_size = 10|units.REarth if options["whfast_corrector"]: gravity.parameters.whfast_corrector = options["whfast_corrector"] elif options["gravity"] == "Bonsai": #gravity = Bonsai(converter,redirection="none") gravity = Bonsai(converter,) gravity.parameters.timestep = options["timestep"] gravity.parameters.opening_angle = 0.5 #gravity.parameters.epsilon_squared = (0.1 * particles[-1].radius)**2 gravity.parameters.epsilon_squared = 0.0 | nbody_system.length**2 elif options["gravity"] == "Pikachu": #gravity = Bonsai(converter,redirection="none") gravity = Pikachu(converter,) gravity.parameters.timestep = options["timestep"] gravity.parameters.opening_angle = 0.5 #gravity.parameters.epsilon_squared = (0.1 * particles[-1].radius)**2 gravity.parameters.epsilon_squared = 0.0 | nbody_system.length**2 elif options["gravity"] == "ph4": if options["use_gpu"]: gravity = ph4(converter, mode="gpu", redirection="none") else: gravity = ph4(converter, redirection="none") elif options["gravity"] == "phigrape": if options["use_gpu"]: gravity = PhiGRAPE(converter, mode="gpu") else: gravity = PhiGRAPE(converter) elif options["gravity"] == "Hermite": gravity = Hermite(converter, number_of_workers=6) gravity.parameters.dt_min = options["timestep"] gravity.parameters.dt_max = options["timestep"] else: print("Unknown gravity code") exit() print(gravity.parameters) planetary_disc = Planetary_Disc(options) planetary_disc.add_integrator(gravity) planetary_disc.add_particles(particles) t_start = time plot_time = time backup_time = time timestep = options["timestep"] plot_timestep = options["timestep_plot"] backup_timestep = options["timestep_backup"] t_end = options["time_end"] backup = 0 plot = 0 log_time = VectorQuantity([],units.s) log_kinetic_energy = VectorQuantity([],units.erg) log_potential_energy = VectorQuantity([],units.erg) log_angular_momentum = VectorQuantity([],units.AU**2 * units.MEarth * units.yr**-1) log = open(rundir+"/log.txt",'w') log.write("#1 time = %s\n"%(converter_earthunits.to_si(1|nbody_system.time))) log.write("#1 length = %s\n"%(converter_earthunits.to_si(1|nbody_system.length))) log.write("#1 mass = %s\n"%(converter_earthunits.to_si(1|nbody_system.mass))) log.write("#1 energy = %s\n"%(converter_earthunits.to_si(1|nbody_system.energy))) log.write("#Time N E_kin E_pot l2 M_disc a_mean a_sigma e_mean e_sigma inc_mean inc_sigma\n") log.write("#%s n %s %s %s %s %s %s\n"%( units.s, nbody_system.energy,#s.erg, nbody_system.energy,#s.erg, (units.REarth**2 * units.MEarth * units.day**-1)**2, units.MEarth, units.REarth, units.REarth, ) ) log.flush() time += options["timestep"] if options["verbose"]>1: print("%d : Starting loop"%(clocktime.time()-starttime)) while time < t_end: if time >= plot_time: if options["verbose"]>1: print("%d : Making plot"%(clocktime.time()-starttime)) plot_system( planetary_disc.particles, "%s/plot-%05i.png"%(plotdir,plot), center_on_most_massive=False, center = planetary_disc.planet.position, time = planetary_disc.model_time, ) plot += 1 plot_time += plot_timestep if time >= backup_time: if options["verbose"]>1: print("%d : Making backup"%(clocktime.time()-starttime)) planetary_disc.write_backup(filename="%s/savefile-%i.hdf5"%(backupdir,backup)) backup += 1 backup_time += backup_timestep if (time - planetary_disc.model_time) <= 0.5 * timestep: if options["verbose"]>0: print("#Increasing timestep: %s - %s <= 0.5"%( planetary_disc.model_time / planetary_disc.timestep, time / planetary_disc.timestep, )) time += timestep kinetic_energy = planetary_disc.kinetic_energy potential_energy = planetary_disc.potential_energy angular_momentum = planetary_disc.particles.total_angular_momentum() semimajor_axis, eccentricity, true_anomaly,inc, long_asc_node, arg_per_mat = orbital_elements_for_rel_posvel_arrays( planetary_disc.disc.position - planetary_disc.planet.position, planetary_disc.disc.velocity - planetary_disc.planet.velocity, planetary_disc.planet.mass,#total_masses, G=constants.G, ) #FIXME kinetic energy per particle #FIXME angular momentum per particle log.write("%s %i %s %s %s %s %s %s %s %s %s %s\n"%( planetary_disc.model_time.value_in(units.s), len(planetary_disc.particles), converter_earthunits.to_nbody(kinetic_energy).value_in(nbody_system.energy), converter_earthunits.to_nbody(potential_energy).value_in(nbody_system.energy), ( angular_momentum[0]**2 + angular_momentum[1]**2 + angular_momentum[2]**2 ).value_in(units.REarth**4 * units.MEarth**2 * units.day**-2), planetary_disc.disc.mass.sum().value_in(units.MEarth), semimajor_axis.mean().value_in(units.REarth), semimajor_axis.std().value_in(units.REarth), eccentricity.mean(), eccentricity.std(), inc.mean(), inc.std(), ) ) log.flush() else: if options["verbose"]>0: print("#Not increasing timestep: %s - %s > 0.5"%( planetary_disc.model_time / planetary_disc.timestep, time / planetary_disc.timestep, )) planetary_disc.evolve_model(time) gravity.stop() log.close() if __name__ == "__main__": options = {} options["verbose"] = 0 options["rubblepile"] = True options["gravity"] = "Bonsai" options["integrator"] = "leapfrog" options["whfast_corrector"] = 0 options["use_gpu"] = True options["time_start"] = 0. | units.yr options["time_end"] = 10000. |units.yr #options["timestep"] = 24 |units.hour options["timestep_plot"] = 2 | units.day#0.275 | units.yr options["timestep_backup"] = 365.25 |units.day options["unit_mass"] = 80*units.MJupiter options["disable_collisions"] = False options["unit_length"] = 80 * units.RJupiter#get_roche_limit_radius(1.0|units.g * units.cm**-3).value_in(units.RJupiter) * units.RJupiter main(options)
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ Utility to run Automated Human Readable Description (AHRD) pipeline. <https://github.com/groupschoof/AHRD> """ import os.path as op from os import symlink import sys import re import logging from jcvi.formats.base import must_open from jcvi.apps.base import OptionParser, ActionDispatcher, mkdir, glob ##### Compiled RegExps ##### # Cellular locations loc_pat = re.compile(r",\s*(chloroplastic|cytoplasmic|mitochondrial).*?\s$", re.I) # Any word that matches e.g. Os02g0234800 osg_pat = re.compile(r"\bOs\d{2}g\d{7}.*?\s", re.I) # (fragment) frag_pat = re.compile(r"\(fragment[s]?\)", re.I) # Trailing protein numeric copy (e.g. Myb 1) trail_pat = re.compile(r"(?<!type)\s\d+\s*$", re.I) # UPF upf_pat = re.compile(r"^UPF.*$") # Remove 'DDB_G\d+' ID ddb_pat = re.compile(r"\s+DDB_G\d+", re.I) # Any AHRD that matches e.g. "AT5G54690-like protein" atg_pat = re.compile(r"\bAT[1-5M]G\d{5}-like protein", re.I) # remove 'arabidopsis thaliana' atg_id_pat = re.compile(r"[_]*AT\d{1}G\d+[/]*", re.I) athila_pat1 = re.compile(r"Belongs to|^Encodes|^Expression|^highly", re.I) athila_pat2 = re.compile(r"^Arabidopsis thaliana ", re.I) athila_pat3 = re.compile(r"^Arabidopsis ", re.I) athila_pat4 = re.compile(r"BEST Arabidopsis thaliana protein match is: ", re.I) # &apos;? => ' apos_pat = re.compile(r"&apos;?") # &gt => none gt_pat = re.compile(r"&gt") # -like to -like protein like_pat = re.compile(r"[-]like$", re.I) # 'repeat$' to 'repeat protein' repeat_pat = re.compile(r"repeat$", re.I) # re used by the following 3 cases Protein_pat = re.compile(r"Protein\s+", re.I) # 'binding$' to 'binding protein' binding_pat = re.compile(r"binding$", re.I) # 'domain$' to 'domain-containing protein' domain_pat = re.compile(r"domain$", re.I) # 'related$' to '-like protein' related_pat = re.compile(r"[,\s+]*[\s+|-]*related$", re.I) # '[0-9]+ homolog' to '-like protein' homolog_pat1 = re.compile(r"(?<!type)\s+\d+\s+homolog.*$", re.I) # 'Protein\s+(.*)\s+homolog' to '$1-like protein' homolog_pat2 = re.compile(r"^Protein([\s+\S+]+)\s+homolog.*", re.I) # 'homolog protein' to '-like protein' homolog_pat3 = re.compile(r"\s+homolog\s+protein.*", re.I) # 'homolog \S+' to '-like protein' homolog_pat4 = re.compile(r"\s+homolog\s+\S+$", re.I) # 'homologue$' to '-like protein' homolog_pat5 = re.compile(r"\s+homologue[\s+\S+]$", re.I) # 'homolog$' to '-like protein' homolog_pat6 = re.compile(r"\s+homolog$", re.I) # 'Agenet domain-containing protein / bromo-adjacent homology (BAH) domain-containing protein' # to 'Agenet and bromo-adjacent homology (BAH) domain-containing protein' agenet_pat = re.compile(r"Agenet domain-containing protein \/ ", re.I) # plural to singular plural_pat = re.compile(r"[deinr]s$", re.I) # 'like_TBP' or 'likeTBP' to 'like TBP' tbp_pat = re.compile(r"like[_]*TBP", re.I) # 'protein protein' to 'protein' prot_pat = re.compile(r" protein protein", re.I) # 'Candidate|Hypothetical|Novel|Predicted|Possible' to 'Putative' put_pat = re.compile(r"Candidate|Hypothetical|Novel|Predicted|Possible", re.I) # 'dimerisation' to 'dimerization' dimer_pat = re.compile(r"dimerisation", re.I) # '\s+LENGTH=\d+' to '' length_pat = re.compile(r"\s+LENGTH\=\d+", re.I) # disallowed words disallow = ("genome", "annotation", "project") disallow_pat = re.compile("|".join(str(x) for x in disallow)) # disallowed organism names organism = ("thaliana", "rickettsia", "rice", "yeast") organism_pat = re.compile("|".join("^.*{0}".format(str(x)) for x in organism)) # consolidate glycosidic links glycosidic_link_pat = re.compile("\d+,\d+") # Kevin Silverstein suggested names (exclude list) spada = ("LCR", "RALF", "SCR") spada_pat = re.compile("|".join("^{0}$".format(str(x)) for x in spada)) # names with all capital letters (maybe followed by numbers) sym_pat = re.compile(r"^[A-Z]+[A-Z0-9\-]{0,}$") lc_sym_pat = re.compile(r"^[A-z]{1}[a-z]+[0-9]{1,}$") eol_sym_pat = re.compile(r"\([A-Z]+[A-Z0-9\-]{0,}\)$") # sulfer -> sulfur sulfer_pat = re.compile(r"sulfer") # assessory -> accessory assessory_pat = re.compile(r"assessory") # british to american spelling conversion # -ise -> -ize # -isation -> ization ise_pat = re.compile(r"\b([A-z]+)ise\b") isation_pat = re.compile(r"\b([A-z]+)isation\b") Template = """ proteins_fasta: {2} blast_dbs: swissprot: weight: 100 file: swissprot/{1}.swissprot.pairwise blacklist: {0}/blacklist_descline.txt filter: {0}/filter_descline_sprot.txt token_blacklist: {0}/blacklist_token.txt description_score_bit_score_weight: 0.2 tair: weight: 50 file: tair/{1}.tair.pairwise blacklist: {0}/blacklist_descline.txt filter: {0}/filter_descline_tair.txt token_blacklist: {0}/blacklist_token.txt description_score_bit_score_weight: 0.4 trembl: weight: 10 file: trembl/{1}.trembl.pairwise blacklist: {0}/blacklist_descline.txt filter: {0}/filter_descline_trembl.txt token_blacklist: {0}/blacklist_token.txt description_score_bit_score_weight: 0.4 {7} token_score_bit_score_weight: {4} token_score_database_score_weight: {5} token_score_overlap_score_weight: {6} description_score_relative_description_frequency_weight: 0.6 output: {3} """ iprscanTemplate = """ interpro_database: ./interpro.xml interpro_result: {0} """ # Necessary for the script to know the location of `interpro.xml` and `interpro.dtd` iprscan_datadir = "/usr/local/devel/ANNOTATION/iprscan/iprscan_v4.7/data" def main(): actions = ( ('batch', 'batch run AHRD'), ('merge', 'merge AHRD run results'), ('fix', 'fix AHRD names'), ) p = ActionDispatcher(actions) p.dispatch(globals()) Unknown = "Unknown protein" Hypothetical = "hypothetical protein" def fix_text(s): # Fix descriptions like D7TDB1 ( s = re.sub("([A-Z0-9]){6} \(", "", s) s = s.translate(None, "[]") s = s.replace("(-)", "[-]") s = s.replace("(+)", "[+]") s = s.replace("(Uncharacterized protein)", "") s = s.translate(None, "()") # before trimming off at the first ";", check if name has glycosidic # linkage information (e.g 1,3 or 1,4). If so, also check if multiple # linkages are separated by ";". If so, replace ";" by "-" m = re.findall(glycosidic_link_pat, s) if m and ";" in s: s = re.sub(";\s*", "-", s) s = s.split(";")[0] # Cellular locations # Any word that matches e.g. AT5G54690 # Any word that matches e.g. Os02g0234800 # (fragment) # Trailing protein numeric copy (e.g. Myb 1) # UPF # Remove 'DDB_G\d+' ID # '_At[0-9]+g[0-9]+' to '' for pat in (loc_pat, osg_pat, frag_pat, trail_pat, upf_pat, ddb_pat): # below is a hack since word boundaries don't work on / s = s.strip() + " " s = re.sub(pat, "", s) # &apos;? => ' s = re.sub(apos_pat, "'", s) # &gt => none s = re.sub(gt_pat, "", s) # reduce runs such as -- ''' s = re.sub(r"[-]+", "-", s) s = re.sub(r"[']+", "'", s) s = s.strip() # -like to -like protein s = re.sub(like_pat, "-like protein", s) # 'repeat$' to 'repeat protein' if re.search(repeat_pat, s): s += "-containing protein" # 'binding$' to 'binding protein' if re.search(binding_pat, s): s += " protein" if re.match(Protein_pat, s): s = re.sub(Protein_pat, "", s) # 'domain$' to 'domain-containing protein' if re.search(domain_pat, s): s += "-containing protein" if re.search(r"-domain", s): s = re.sub(r"-domain", " domain", s) if re.match(Protein_pat, s): s = re.sub(Protein_pat, "", s) # 'related$' to '-like protein' if re.search(related_pat, s): s = re.sub(related_pat, "-like protein", s) if re.match(Protein_pat, s) and not re.match(r"Protein kinase", s): s = re.sub(Protein_pat, "", s) # '[0-9]+ homolog' to '-like protein' if re.search(homolog_pat1, s): s = re.sub(homolog_pat1, "-like protein", s) if re.match(Protein_pat, s): s = re.sub(Protein_pat, "", s) # 'Protein\s+(.*)\s+homolog' to '$1-like protein' match = re.search(homolog_pat2, s) if match and not re.match(r"Protein kinase", s): ret = match.group(1) s = re.sub(homolog_pat2, ret + "-like protein", s) s = re.sub(r"^\s+", "", s) s = s.capitalize() # 'homolog protein' to '-like protein' # 'homolog \S+' to '-like protein' # 'homologue$' to '-like protein' # 'homolog$' to '-like protein' for pat in (homolog_pat3, homolog_pat4, homolog_pat5, homolog_pat6): if re.search(pat, s): s = re.sub(pat, "-like protein", s) # 'Agenet domain-containing protein / bromo-adjacent homology (BAH) domain-containing protein' # to 'Agenet and bromo-adjacent homology (BAH) domain-containing protein' if re.search(agenet_pat, s): s = re.sub(agenet_pat, "Agenet and ", s) # plural to singular if re.search(plural_pat, s): #if s.find('biogenesis') == -1 and s.find('Topors') == -1 and s.find('allergens') == -1: if s.find('biogenesis') == -1 and s.find('Topors') == -1: s = re.sub(r"s$", "", s) # 'like_TBP' or 'likeTBP' to 'like TBP' if re.search(tbp_pat, s): s = re.sub(tbp_pat, "like TBP", s) # 'protein protein' to 'protein' if re.search(prot_pat, s): s = re.sub(prot_pat, " protein", s) # 'Candidate|Hypothetical|Novel|Predicted|Possible' to 'Putative' if re.search(put_pat, s): s = re.sub(put_pat, "Putative", s) # 'dimerisation' to 'dimerization' if re.search(dimer_pat, s): s = re.sub(dimer_pat, "dimerization", s) # Any AHRD that matches e.g. "AT5G54690-like protein" # Any AHRD that contains the words '^Belongs|^Encoded|^Expression|^highly' for pat in (atg_pat, athila_pat1): if re.search(pat, s): s = Unknown # remove 'arabidopsis[ thaliana]' and/or embedded Atg IDs for pat in (atg_id_pat, athila_pat2, athila_pat3, athila_pat4): # below is a hack since word boundaries don't work on / s = s.strip() + " " s = re.sub(pat, "", s) # remove "\s+LENGTH=\d+" from TAIR deflines if re.search(length_pat, s): s = re.sub(length_pat, "", s) # if name has a dot followed by a space (". ") in it and contains multiple # parts separated by a comma, strip name starting from first occurrence of "," if re.search(r"\. ", s): if re.search(r",", s): s = s.split(",")[0] # if name contains any of the disallowed words, # remove word occurrence from name # if name contains references to any other organism, trim name upto # that occurrence for pat in (disallow_pat, organism_pat): if re.search(pat, s): s = re.sub(pat, "", s) s = s.strip() # if name is entirely a gene symbol-like (all capital letters, maybe followed by numbers) # add a "-like protein" at the end if (re.search(sym_pat, s) or re.search(lc_sym_pat, s)) \ and not re.search(spada_pat, s): s = s + "-like protein" # if gene symbol in parantheses at EOL, remove symbol if re.search(eol_sym_pat, s): s = re.sub(eol_sym_pat, "", s) # if name terminates at a symbol([^A-Za-z0-9_]), trim it off if re.search(r"\W{1,}$", s) and not re.search(r"\)$", s): s = re.sub("\W{1,}$", "", s) # change sulfer to sulfur if re.search(sulfer_pat, s): s = re.sub(sulfer_pat, "sulfur", s) # change assessory to accessory if re.search(assessory_pat, s): s = re.sub(assessory_pat, "accessory", s) # change -ise/-isation to -ize/-ization match = re.search(ise_pat, s) if match: ret = match.group(1) s = re.sub(ise_pat, "{0}ize".format(ret), s) match = re.search(isation_pat, s) if match: ret = match.group(1) s = re.sub(isation_pat, "{0}ization".format(ret), s) """ case (qr/^Histone-lysine/) { $ahrd =~ s/,\s+H\d{1}\s+lysine\-\d+//gs; } """ sl = s.lower() # Any mention of `clone` or `contig` is not informative if "clone" in sl or "contig" in sl: s = Unknown # All that's left is `protein` is not informative if sl in ("protein", "protein, putative", ""): s = Unknown if Unknown.lower() in sl: s = Unknown if "FUNCTIONS IN".lower() in sl and "unknown" in sl: s = Unknown if "uncharacterized" in sl: s = "uncharacterized protein" s = s.replace(", putative", "") s = s.replace("Putative ", "") if s == Unknown or s.strip() == "protein": s = Hypothetical # Compact all spaces s = ' '.join(s.split()) assert s.strip() return s def fix(args): """ %prog fix ahrd.csv > ahrd.fixed.csv Fix ugly names from Uniprot. """ p = OptionParser(fix.__doc__) p.set_outfile() opts, args = p.parse_args(args) if len(args) < 1: sys.exit(not p.print_help()) csvfile, = args fp = open(csvfile) fw = must_open(opts.outfile, "w") for row in fp: if row[0] == '#': continue if row.strip() == "": continue atoms = row.rstrip("\r\n").split("\t") name, hit, ahrd_code, desc = atoms[:4] \ if len(atoms) > 2 else \ atoms[0], None, None, atoms[-1] newdesc = fix_text(desc) if hit and hit.strip() != "" and newdesc == Hypothetical: newdesc = "conserved " + newdesc print >> fw, "\t".join(atoms[:4] + [newdesc] + atoms[4:]) def merge(args): """ %prog merge output/*.csv > ahrd.csv Merge AHRD results, remove redundant headers, empty lines, etc. If there are multiple lines containing the same ID (first column). Then whatever comes the first will get retained. """ p = OptionParser(merge.__doc__) opts, args = p.parse_args(args) if len(args) < 1: sys.exit(not p.print_help()) csvfiles = args cf = csvfiles[0] fp = open(cf) for row in fp: if row.startswith("Protein"): break header = row.rstrip() print header seen = set() for cf in csvfiles: fp = open(cf) for row in fp: if row[0] == '#': continue if row.strip() == "": continue if row.strip() == header: continue atoms = row.rstrip().split("\t") id = atoms[0] if id in seen: logging.error("ID `{0}` ignored.".format(id)) continue seen.add(id) print row.strip() def batch(args): """ %prog batch splits output The arguments are two folders. Input FASTA sequences are in splits/. Output csv files are in output/. Must have folders swissprot/, tair/, trembl/ that contains the respective BLAST output. Once finished, you can run, for example: $ parallel java -Xmx2g -jar ~/code/AHRD/dist/ahrd.jar {} ::: output/*.yml """ p = OptionParser(batch.__doc__) ahrd_weights = { "blastp": [0.5, 0.3, 0.2], "blastx": [0.6, 0.4, 0.0] } blast_progs = tuple(ahrd_weights.keys()) p.add_option("--path", default="~/code/AHRD/", help="Path where AHRD is installed [default: %default]") p.add_option("--blastprog", default="blastp", choices=blast_progs, help="Specify the blast program being run. Based on this option," \ + " the AHRD parameters (score_weights) will be modified." \ + " [default: %default]") p.add_option("--iprscan", default=None, help="Specify path to InterProScan results file if available." \ + " If specified, the yml conf file will be modified" \ + " appropriately. [default: %default]") opts, args = p.parse_args(args) if len(args) != 2: sys.exit(not p.print_help()) splits, output = args mkdir(output) bit_score, db_score, ovl_score = ahrd_weights[opts.blastprog] for f in glob("{0}/*.fasta".format(splits)): fb = op.basename(f).rsplit(".", 1)[0] fw = open(op.join(output, fb + ".yml"), "w") path = op.expanduser(opts.path) dir = op.join(path, "test/resources") outfile = op.join(output, fb + ".csv") interpro = iprscanTemplate.format(opts.iprscan) if opts.iprscan else "" print >> fw, Template.format(dir, fb, f, outfile, bit_score, db_score, ovl_score, interpro) if opts.iprscan: if not op.lexists("interpro.xml"): symlink(op.join(iprscan_datadir, "interpro.xml"), "interpro.xml") if not op.lexists("interpro.dtd"): symlink(op.join(iprscan_datadir, "interpro.dtd"), "interpro.dtd") if __name__ == '__main__': main()
# -*- coding: utf-8 -*- # Copyright (C) 2014 Yahoo! Inc. All Rights Reserved. # Copyright (C) 2016 GoDaddy Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import import collections import copy import itertools import os import sys import traceback import jsonschema from oslo_utils import reflection import six from failure import _utils as utils class InvalidFormat(ValueError): """Exception raised when data is not in the right format.""" class NoActiveException(RuntimeError): """Exception raised when no current exception/exc_info() exists.""" class WrappedFailure(utils.StrMixin, Exception): """Wraps one or several failure objects. When exception/s cannot be re-raised (for example, because the value and traceback are lost in serialization) or there are several exceptions active at the same time (due to more than one thread raising exceptions), we will wrap the corresponding failure objects into this exception class and *may* reraise this exception type to allow users to handle the contained failures/causes as they see fit... See the failure class documentation for a more comprehensive set of reasons why this object *may* be reraised instead of the original exception. :param causes: the :py:class:`~failure.Failure` objects that caused this this exception to be raised. """ def __init__(self, causes): super(WrappedFailure, self).__init__() self._causes = [] for cause in causes: if cause.check(type(self)) and cause.exception is not None: # NOTE(imelnikov): flatten wrapped failures. self._causes.extend(cause.exception) else: self._causes.append(cause) def __iter__(self): """Iterate over failures that caused the exception.""" return iter(self._causes) def __len__(self): """Return number of wrapped failures.""" return len(self._causes) def check(self, *exc_classes): """Check if any of exception classes caused the failure/s. :param exc_classes: exception types/exception type names to search for. If any of the contained failures were caused by an exception of a given type, the corresponding argument that matched is returned. If not then ``None`` is returned. """ if not exc_classes: return None for cause in self: result = cause.check(*exc_classes) if result is not None: return result return None def __bytes__(self): buf = six.BytesIO() buf.write(b'WrappedFailure: [') causes_gen = (six.binary_type(cause) for cause in self._causes) buf.write(b", ".join(causes_gen)) buf.write(b']') return buf.getvalue() def __unicode__(self): buf = six.StringIO() buf.write(u'WrappedFailure: [') causes_gen = (six.text_type(cause) for cause in self._causes) buf.write(u", ".join(causes_gen)) buf.write(u']') return buf.getvalue() class Failure(utils.StrMixin): """An immutable object that represents failure. Failure objects encapsulate exception information so that they can be re-used later to re-raise, inspect, examine, log, print, serialize, deserialize... For those who are curious, here are a few reasons why the original exception itself *may* not be reraised and instead a reraised wrapped failure exception object will be instead. These explanations are *only* applicable when a failure object is serialized and deserialized (when it is retained inside the python process that the exception was created in the the original exception can be reraised correctly without issue). * Traceback objects are not serializable/recreatable, since they contain references to stack frames at the location where the exception was raised. When a failure object is serialized and sent across a channel and recreated it is *not* possible to restore the original traceback and originating stack frames. * The original exception *type* can not *always* be guaranteed to be found, certain nodes can run code that is not accessible/available when the failure is being deserialized. Even if it was possible to use pickle safely (which it is not) it would not *always* be possible to find the originating exception or associated code in this situation. * The original exception *type* can not be guaranteed to be constructed in a *correct* manner. At the time of failure object creation the exception has already been created and the failure object can not assume it has knowledge (or the ability) to recreate the original type of the captured exception (this is especially hard if the original exception was created via a complex process via some custom exception ``__init__`` method). * The original exception *type* can not *always* be guaranteed to be constructed and/or imported in a *safe* manner. Importing *foreign* exception types dynamically can be problematic when not done correctly and in a safe manner; since failure objects can capture *any* exception it would be *unsafe* to try to import those exception types namespaces and modules on the receiver side dynamically (this would create similar issues as the ``pickle`` module has). TODO(harlowja): use parts of http://bugs.python.org/issue17911 and the backport at https://pypi.python.org/pypi/traceback2/ to (hopefully) simplify the methods and contents of this object... """ BASE_EXCEPTIONS = { # py2.x old/legacy names... 2: ('exceptions.BaseException', 'exceptions.Exception'), # py3.x new names... 3: ('builtins.BaseException', 'builtins.Exception'), } """ Root exceptions of all other python exceptions (as a string). See: https://docs.python.org/2/library/exceptions.html """ #: Expected failure schema (in json schema format). SCHEMA = { "$ref": "#/definitions/cause", "definitions": { "cause": { "type": "object", 'properties': { 'exc_args': { "type": "array", "minItems": 0, }, 'exc_kwargs': { "type": "object", "additionalProperties": True, }, 'exception_str': { "type": "string", }, 'traceback_str': { "type": "string", }, 'exc_type_names': { "type": "array", "items": { "type": "string", }, "minItems": 1, }, 'generated_on': { "type": "array", "items": { "type": "number", }, "minItems": 1, }, 'cause': { "type": "object", "$ref": "#/definitions/cause", }, }, "required": [ "exception_str", 'traceback_str', 'exc_type_names', 'generated_on', ], "additionalProperties": True, }, }, } def __init__(self, exc_info=None, exc_args=None, exc_kwargs=None, exception_str='', exc_type_names=None, cause=None, traceback_str='', generated_on=None): exc_type_names = utils.to_tuple(exc_type_names) if not exc_type_names: raise ValueError("Invalid exception type (no type names" " provided)") self._exc_type_names = exc_type_names self._exc_info = utils.to_tuple(exc_info, on_none=None) self._exc_args = utils.to_tuple(exc_args) if exc_kwargs: self._exc_kwargs = dict(exc_kwargs) else: self._exc_kwargs = {} self._exception_str = exception_str self._cause = cause self._traceback_str = traceback_str self._generated_on = utils.to_tuple(generated_on, on_none=None) @classmethod def from_exc_info(cls, exc_info=None, retain_exc_info=True, cause=None, find_cause=True): """Creates a failure object from a ``sys.exc_info()`` tuple.""" if exc_info is None: exc_info = sys.exc_info() if not any(exc_info): raise NoActiveException("No exception currently" " being handled") # This should always be the (type, value, traceback) tuple, # either from a prior sys.exc_info() call or from some other # creation... if len(exc_info) != 3: raise ValueError("Provided 'exc_info' must contain three" " elements") exc_type, exc_val, exc_tb = exc_info try: if exc_type is None or exc_val is None: raise ValueError("Invalid exception tuple (exception" " type and exception value must" " be provided)") exc_args = tuple(getattr(exc_val, 'args', [])) exc_kwargs = dict(getattr(exc_val, 'kwargs', {})) exc_type_names = utils.extract_roots(exc_type) if not exc_type_names: exc_type_name = reflection.get_class_name( exc_val, truncate_builtins=False) # This should only be possible if the exception provided # was not really an exception... raise TypeError("Invalid exception type '%s' (not an" " exception)" % (exc_type_name)) exception_str = utils.exception_message(exc_val) if hasattr(exc_val, '__traceback_str__'): traceback_str = exc_val.__traceback_str__ else: if exc_tb is not None: traceback_str = '\n'.join( traceback.format_exception(*exc_info)) else: traceback_str = '' if not retain_exc_info: exc_info = None if find_cause and cause is None: cause = cls._extract_cause(exc_val) return cls(exc_info=exc_info, exc_args=exc_args, exc_kwargs=exc_kwargs, exception_str=exception_str, exc_type_names=exc_type_names, cause=cause, traceback_str=traceback_str, generated_on=sys.version_info[0:2]) finally: del exc_type, exc_val, exc_tb @classmethod def from_exception(cls, exception, retain_exc_info=True, cause=None, find_cause=True): """Creates a failure object from a exception instance.""" exc_info = ( type(exception), exception, getattr(exception, '__traceback__', None) ) return cls.from_exc_info(exc_info=exc_info, retain_exc_info=retain_exc_info, cause=cause, find_cause=find_cause) @classmethod def validate(cls, data): """Validate input data matches expected failure ``dict`` format.""" try: jsonschema.validate( data, cls.SCHEMA, # See: https://github.com/Julian/jsonschema/issues/148 types={'array': (list, tuple)}) except jsonschema.ValidationError as e: raise InvalidFormat("Failure data not of the" " expected format: %s" % (e.message)) else: # Ensure that all 'exc_type_names' originate from one of # base exceptions, because those are the root exceptions that # python mandates/provides and anything else is invalid... causes = collections.deque([data]) while causes: cause = causes.popleft() try: generated_on = cause['generated_on'] ok_bases = cls.BASE_EXCEPTIONS[generated_on[0]] except (KeyError, IndexError): ok_bases = [] root_exc_type = cause['exc_type_names'][-1] if root_exc_type not in ok_bases: raise InvalidFormat( "Failure data 'exc_type_names' must" " have an initial exception type that is one" " of %s types: '%s' is not one of those" " types" % (ok_bases, root_exc_type)) sub_cause = cause.get('cause') if sub_cause is not None: causes.append(sub_cause) def _matches(self, other): if self is other: return True return (self.exception_type_names == other.exception_type_names and self.exception_args == other.exception_args and self.exception_kwargs == other.exception_kwargs and self.exception_str == other.exception_str and self.traceback_str == other.traceback_str and self.cause == other.cause and self.generated_on == other.generated_on) def matches(self, other): """Checks if another object is equivalent to this object. :returns: checks if another object is equivalent to this object :rtype: boolean """ if not isinstance(other, Failure): return False if self.exc_info is None or other.exc_info is None: return self._matches(other) else: return self == other def __eq__(self, other): if not isinstance(other, Failure): return NotImplemented return (self._matches(other) and utils.are_equal_exc_info_tuples(self.exc_info, other.exc_info)) def __ne__(self, other): return not (self == other) # NOTE(imelnikov): obj.__hash__() should return same values for equal # objects, so we should redefine __hash__. Failure equality semantics # is a bit complicated, so for now we just mark Failure objects as # unhashable. See python docs on object.__hash__ for more info: # http://docs.python.org/2/reference/datamodel.html#object.__hash__ __hash__ = None @property def exception(self): """Exception value, or ``None`` if exception value is not present. Exception value *may* be lost during serialization. """ if self._exc_info: return self._exc_info[1] else: return None @property def generated_on(self): """Python major & minor version tuple this failure was generated on. May be ``None`` if not provided during creation (or after if lost). """ return self._generated_on @property def exception_str(self): """String representation of exception.""" return self._exception_str @property def exception_args(self): """Tuple of arguments given to the exception constructor.""" return self._exc_args @property def exception_kwargs(self): """Dict of keyword arguments given to the exception constructor.""" return self._exc_kwargs @property def exception_type_names(self): """Tuple of current exception type **names** (in MRO order).""" return self._exc_type_names @property def exc_info(self): """Exception info tuple or ``None``. See: https://docs.python.org/2/library/sys.html#sys.exc_info for what the contents of this tuple are (if none, then no contents can be examined). """ return self._exc_info @property def traceback_str(self): """Exception traceback as string.""" return self._traceback_str @staticmethod def reraise_if_any(failures, cause_cls_finder=None): """Re-raise exceptions if argument is not empty. If argument is empty list/tuple/iterator, this method returns None. If argument is converted into a list with a single ``Failure`` object in it, that failure is reraised. Else, a :class:`~.WrappedFailure` exception is raised with the failure list as causes. """ if not isinstance(failures, (list, tuple)): # Convert generators/other into a list... failures = list(failures) if len(failures) == 1: failures[0].reraise(cause_cls_finder=cause_cls_finder) elif len(failures) > 1: raise WrappedFailure(failures) def reraise(self, cause_cls_finder=None): """Re-raise captured exception (possibly trying to recreate).""" if self._exc_info: six.reraise(*self._exc_info) else: # Attempt to regenerate the full chain (and then raise # from the root); without a traceback, oh well... root = None parent = None for cause in itertools.chain([self], self.iter_causes()): if cause_cls_finder is not None: cause_cls = cause_cls_finder(cause) else: cause_cls = None if cause_cls is None: # Unable to find where this cause came from, give up... raise WrappedFailure([self]) exc = cause_cls( *cause.exception_args, **cause.exception_kwargs) # Saving this will ensure that if this same exception # is serialized again that we will extract the traceback # from it directly (thus proxying along the original # traceback as much as we can). exc.__traceback_str__ = cause.traceback_str if root is None: root = exc if parent is not None: parent.__cause__ = exc parent = exc six.reraise(type(root), root, tb=None) def check(self, *exc_classes): """Check if any of ``exc_classes`` caused the failure. Arguments of this method can be exception types or type names (strings **fully qualified**). If captured exception is an instance of exception of given type, the corresponding argument is returned, otherwise ``None`` is returned. """ for cls in exc_classes: cls_name = utils.cls_to_cls_name(cls) if cls_name in self._exc_type_names: return cls return None @property def cause(self): """Nested failure *cause* of this failure. This property is typically only useful on 3.x or newer versions of python as older versions do **not** have associated causes. Refer to :pep:`3134` and :pep:`409` and :pep:`415` for what this is examining to find failure causes. """ return self._cause def __unicode__(self): return self.pformat() def pformat(self, traceback=False): """Pretty formats the failure object into a string.""" buf = six.StringIO() if not self._exc_type_names: buf.write('Failure: %s' % (self._exception_str)) else: buf.write('Failure: %s: %s' % (self._exc_type_names[0], self._exception_str)) if traceback: if self._traceback_str is not None: traceback_str = self._traceback_str.rstrip() else: traceback_str = None if traceback_str: buf.write(os.linesep) buf.write(traceback_str) else: buf.write(os.linesep) buf.write('Traceback not available.') return buf.getvalue() def iter_causes(self): """Iterate over all causes.""" curr = self._cause while curr is not None: yield curr curr = curr._cause def __getstate__(self): dct = self.to_dict() if self._exc_info: # Avoids 'TypeError: can't pickle traceback objects' dct['exc_info'] = self._exc_info[0:2] return dct def __setstate__(self, dct): self._exception_str = dct['exception_str'] if 'exc_args' in dct: self._exc_args = tuple(dct['exc_args']) else: # Guess we got an older version somehow, before this # was added, so at that point just set to an empty tuple... self._exc_args = () if 'exc_kwargs' in dct: self._exc_kwargs = dict(dct['exc_kwargs']) else: self._exc_kwargs = {} self._traceback_str = dct['traceback_str'] self._exc_type_names = dct['exc_type_names'] self._generated_on = dct['generated_on'] if 'exc_info' in dct: # Tracebacks can't be serialized/deserialized, but since we # provide a traceback string (and more) this should be # acceptable... # # TODO(harlowja): in the future we could do something like # what the twisted people have done, see for example # twisted-13.0.0/twisted/python/failure.py#L89 for how they # created a fake traceback object... exc_info = list(dct['exc_info']) while len(exc_info) < 3: exc_info.append(None) self._exc_info = tuple(exc_info[0:3]) else: self._exc_info = None cause = dct.get('cause') if cause is not None: cause = self.from_dict(cause) self._cause = cause @classmethod def _extract_cause(cls, exc_val): """Helper routine to extract nested cause (if any).""" # See: https://www.python.org/dev/peps/pep-3134/ for why/what # these are... # # '__cause__' attribute for explicitly chained exceptions # '__context__' attribute for implicitly chained exceptions # '__traceback__' attribute for the traceback # # See: https://www.python.org/dev/peps/pep-0415/ for why/what # the '__suppress_context__' is/means/implies... nested_exc_vals = [] seen = [exc_val] while True: suppress_context = getattr( exc_val, '__suppress_context__', False) if suppress_context: attr_lookups = ['__cause__'] else: attr_lookups = ['__cause__', '__context__'] nested_exc_val = None for attr_name in attr_lookups: attr_val = getattr(exc_val, attr_name, None) if attr_val is None: continue nested_exc_val = attr_val if nested_exc_val is None or nested_exc_val in seen: break seen.append(nested_exc_val) nested_exc_vals.append(nested_exc_val) exc_val = nested_exc_val last_cause = None for exc_val in reversed(nested_exc_vals): f = cls.from_exception(exc_val, cause=last_cause, find_cause=False) last_cause = f return last_cause @classmethod def from_dict(cls, data): """Converts this from a dictionary to a object.""" data = dict(data) cause = data.get('cause') if cause is not None: data['cause'] = cls.from_dict(cause) return cls(**data) def to_dict(self, include_args=True, include_kwargs=True): """Converts this object to a dictionary. :param include_args: boolean indicating whether to include the exception args in the output. :param include_kwargs: boolean indicating whether to include the exception kwargs in the output. """ data = { 'exception_str': self.exception_str, 'traceback_str': self.traceback_str, 'exc_type_names': self.exception_type_names, 'exc_args': self.exception_args if include_args else tuple(), 'exc_kwargs': self.exception_kwargs if include_kwargs else {}, 'generated_on': self.generated_on, } if self._cause is not None: data['cause'] = self._cause.to_dict(include_args=include_args, include_kwargs=include_kwargs) return data def copy(self, deep=False): """Copies this object (shallow or deep). :param deep: boolean indicating whether to do a deep copy (or a shallow copy). """ cause = self._cause if cause is not None: cause = cause.copy(deep=deep) exc_info = utils.copy_exc_info(self.exc_info, deep=deep) exc_args = self.exception_args exc_kwargs = self.exception_kwargs if deep: exc_args = copy.deepcopy(exc_args) exc_kwargs = copy.deepcopy(exc_kwargs) else: exc_args = tuple(exc_args) exc_kwargs = exc_kwargs.copy() # These are just simple int/strings, so deep copy doesn't really # matter/apply here (as they are immutable anyway). exc_type_names = tuple(self._exc_type_names) generated_on = self._generated_on if generated_on: generated_on = tuple(generated_on) # NOTE(harlowja): use `self.__class__` here so that we can work # with subclasses (assuming anyone makes one). return self.__class__(exc_info=exc_info, exception_str=self.exception_str, traceback_str=self.traceback_str, exc_args=exc_args, exc_kwargs=exc_kwargs, exc_type_names=exc_type_names, cause=cause, generated_on=generated_on)
import unittest from mock import Mock from datetime import datetime from tests.test_basefile import BaseFileTests class CNTTests(BaseFileTests): def setUp(self): super(CNTTests, self).setUp() self.filesys.open.return_value = MockFile() from niprov.cnt import NeuroscanFile self.constructor = NeuroscanFile self.file = NeuroscanFile(self.path, dependencies=self.dependencies) def test_Inspect_parses_experimental_basics(self): out = self.file.inspect() self.assertEqual(out['subject'], 'Jane Doe') self.assertEqual(out['dimensions'], [32, 2080]) self.assertEqual(out['acquired'], datetime(2015,3,9,13,7,3)) self.assertEqual(out['sampling-frequency'], 1000) self.assertEqual(out['duration'], 2080/1000.) def test_Determines_modality(self): out = self.file.inspect() self.assertEqual(out['modality'], 'EEG') def test_Preserves_modality_if_inherited(self): pass # Doesn't have to preserve class MockFile(object): def __init__(self): self.cursor = -1 def __enter__(self): return self def __exit__(self, *args, **kwargs): pass def read(self, nbytes): self.cursor = self.cursor + 1 return _data[self.cursor] _data = [ None, #h.rev = self._fread(fid,12,'char') None, #h.nextfile = self._fread(fid,1,'long') None, #h.prevfile = self._fread(fid,1,'ulong') None, #h.type = self._fread(fid,1,'char') None, #h.id = self._fread(fid,20,'char') None, #h.oper = self._fread(fid,20,'char') None, #h.doctor = self._fread(fid,20,'char') None, #h.referral = self._fread(fid,20,'char') None, #h.hospital = self._fread(fid,20,'char') #h.patient = self._fread(fid,20,'char') b'Jane Doe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', None, #h.age = self._fread(fid,1,'short') None, #h.sex = self._fread(fid,1,'char') None, #h.hand = self._fread(fid,1,'char') None, #h.med = self._fread(fid,20, 'char') None, #h.category = self._fread(fid,20, 'char') None, #h.state = self._fread(fid,20, 'char') None, #h.label = self._fread(fid,20, 'char') b'09/03/15' , #h.date = self._fread(fid,10, 'char') b'13:07:03', #h.time = self._fread(fid,12, 'char') None, #h.mean_age = self._fread(fid,1,'float') None, #h.stdev = self._fread(fid,1,'float') None, #h.n = self._fread(fid,1,'short') None, #h.compfile = self._fread(fid,38,'char') None, #h.spectwincomp = self._fread(fid,1,'float') None, #h.meanaccuracy = self._fread(fid,1,'float') None, #h.meanlatency = self._fread(fid,1,'float') None, #h.sortfile = self._fread(fid,46,'char') None, #h.numevents = self._fread(fid,1,'int') None, #h.compoper = self._fread(fid,1,'char') None, #h.avgmode = self._fread(fid,1,'char') None, #h.review = self._fread(fid,1,'char') None, #h.nsweeps = self._fread(fid,1,'ushort') None, #h.compsweeps = self._fread(fid,1,'ushort') None, #h.acceptcnt = self._fread(fid,1,'ushort') None, #h.rejectcnt = self._fread(fid,1,'ushort') None, #h.pnts = self._fread(fid,1,'ushort') b' \x00', #h.nchannels = self._fread(fid,1,'ushort') None, #h.avgupdate = self._fread(fid,1,'ushort') None, #h.domain = self._fread(fid,1,'char') None, #h.variance = self._fread(fid,1,'char') b'\xe8\x03', #h.rate = self._fread(fid,1,'ushort') None, #h.scale = self._fread(fid,1,'double') None, #h.veogcorrect = self._fread(fid,1,'char') None, #h.heogcorrect = self._fread(fid,1,'char') None, #h.aux1correct = self._fread(fid,1,'char') None, #h.aux2correct = self._fread(fid,1,'char') None, #h.veogtrig = self._fread(fid,1,'float') None, #h.heogtrig = self._fread(fid,1,'float') None, #h.aux1trig = self._fread(fid,1,'float') None, #h.aux2trig = self._fread(fid,1,'float') None, #h.heogchnl = self._fread(fid,1,'short') None, #h.veogchnl = self._fread(fid,1,'short') None, #h.aux1chnl = self._fread(fid,1,'short') None, #h.aux2chnl = self._fread(fid,1,'short') None, #h.veogdir = self._fread(fid,1,'char') None, #h.heogdir = self._fread(fid,1,'char') None, #h.aux1dir = self._fread(fid,1,'char') None, #h.aux2dir = self._fread(fid,1,'char') None, #h.veog_n = self._fread(fid,1,'short') None, #h.heog_n = self._fread(fid,1,'short') None, #h.aux1_n = self._fread(fid,1,'short') None, #h.aux2_n = self._fread(fid,1,'short') None, #h.veogmaxcnt = self._fread(fid,1,'short') None, #h.heogmaxcnt = self._fread(fid,1,'short') None, #h.aux1maxcnt = self._fread(fid,1,'short') None, #h.aux2maxcnt = self._fread(fid,1,'short') None, #h.veogmethod = self._fread(fid,1,'char') None, #h.heogmethod = self._fread(fid,1,'char') None, #h.aux1method = self._fread(fid,1,'char') None, #h.aux2method = self._fread(fid,1,'char') None, #h.ampsensitivity = self._fread(fid,1,'float') None, #h.lowpass = self._fread(fid,1,'char') None, #h.highpass = self._fread(fid,1,'char') None, #h.notch = self._fread(fid,1,'char') None, #h.autoclipadd = self._fread(fid,1,'char') None, #h.baseline = self._fread(fid,1,'char') None, #h.offstart = self._fread(fid,1,'float') None, #h.offstop = self._fread(fid,1,'float') None, #h.reject = self._fread(fid,1,'char') None, #h.rejstart = self._fread(fid,1,'float') None, #h.rejstop = self._fread(fid,1,'float') None, #h.rejmin = self._fread(fid,1,'float') None, #h.rejmax = self._fread(fid,1,'float') None, #h.trigtype = self._fread(fid,1,'char') None, #h.trigval = self._fread(fid,1,'float') None, #h.trigchnl = self._fread(fid,1,'char') None, #h.trigmask = self._fread(fid,1,'short') None, #h.trigisi = self._fread(fid,1,'float') None, #h.trigmin = self._fread(fid,1,'float') None, #h.trigmax = self._fread(fid,1,'float') None, #h.trigdir = self._fread(fid,1,'char') None, #h.autoscale = self._fread(fid,1,'char') None, #h.n2 = self._fread(fid,1,'short') None, #h.dir = self._fread(fid,1,'char') None, #h.dispmin = self._fread(fid,1,'float') None, #h.dispmax = self._fread(fid,1,'float') None, #h.xmin = self._fread(fid,1,'float') None, #h.xmax = self._fread(fid,1,'float') None, #h.automin = self._fread(fid,1,'float') None, #h.automax = self._fread(fid,1,'float') None, #h.zmin = self._fread(fid,1,'float') None, #h.zmax = self._fread(fid,1,'float') None, #h.lowcut = self._fread(fid,1,'float') None, #h.highcut = self._fread(fid,1,'float') None, #h.common = self._fread(fid,1,'char') None, #h.savemode = self._fread(fid,1,'char') None, #h.manmode = self._fread(fid,1,'char') None, #h.ref = self._fread(fid,10,'char') None, #h.rectify = self._fread(fid,1,'char') None, #h.displayxmin = self._fread(fid,1,'float') None, #h.displayxmax = self._fread(fid,1,'float') None, #h.phase = self._fread(fid,1,'char') None, #h.screen = self._fread(fid,16,'char') None, #h.calmode = self._fread(fid,1,'short') None, #h.calmethod = self._fread(fid,1,'short') None, #h.calupdate = self._fread(fid,1,'short') None, #h.calbaseline = self._fread(fid,1,'short') None, #h.calsweeps = self._fread(fid,1,'short') None, #h.calattenuator = self._fread(fid,1,'float') None, #h.calpulsevolt = self._fread(fid,1,'float') None, #h.calpulsestart = self._fread(fid,1,'float') None, #h.calpulsestop = self._fread(fid,1,'float') None, #h.calfreq = self._fread(fid,1,'float') None, #h.taskfile = self._fread(fid,34,'char') None, #h.seqfile = self._fread(fid,34,'char') None, #h.spectmethod = self._fread(fid,1,'char') None, #h.spectscaling = self._fread(fid,1,'char') None, #h.spectwindow = self._fread(fid,1,'char') None, #h.spectwinlength = self._fread(fid,1,'float') None, #h.spectorder = self._fread(fid,1,'char') None, #h.notchfilter = self._fread(fid,1,'char') None, #h.headgain = self._fread(fid,1,'short') None, #h.additionalfiles = self._fread(fid,1,'int') None, #h.unused = self._fread(fid,5,'char') None, #h.fspstopmethod = self._fread(fid,1,'short') None, #h.fspstopmode = self._fread(fid,1,'short') None, #h.fspfvalue = self._fread(fid,1,'float') None, #h.fsppoint = self._fread(fid,1,'short') None, #h.fspblocksize = self._fread(fid,1,'short') None, #h.fspp1 = self._fread(fid,1,'ushort') None, #h.fspp2 = self._fread(fid,1,'ushort') None, #h.fspalpha = self._fread(fid,1,'float') None, #h.fspnoise = self._fread(fid,1,'float') None, #h.fspv1 = self._fread(fid,1,'short') None, #h.montage = self._fread(fid,40,'char') None, #h.eventfile = self._fread(fid,40,'char') None, #h.fratio = self._fread(fid,1,'float') None, #h.minor_rev = self._fread(fid,1,'char') None, #h.eegupdate = self._fread(fid,1,'short') None, #h.compressed = self._fread(fid,1,'char') None, #h.xscale = self._fread(fid,1,'float') None, #h.yscale = self._fread(fid,1,'float') None, #h.xsize = self._fread(fid,1,'float') None, #h.ysize = self._fread(fid,1,'float') None, #h.acmode = self._fread(fid,1,'char') None, #h.commonchnl = self._fread(fid,1,'uchar') None, #h.xtics = self._fread(fid,1,'char') None, #h.xrange = self._fread(fid,1,'char') None, #h.ytics = self._fread(fid,1,'char') None, #h.yrange = self._fread(fid,1,'char') None, #h.xscalevalue = self._fread(fid,1,'float') None, #h.xscaleinterval = self._fread(fid,1,'float') None, #h.yscalevalue = self._fread(fid,1,'float') None, #h.yscaleinterval = self._fread(fid,1,'float') None, #h.scaletoolx1 = self._fread(fid,1,'float') None, #h.scaletooly1 = self._fread(fid,1,'float') None, #h.scaletoolx2 = self._fread(fid,1,'float') None, #h.scaletooly2 = self._fread(fid,1,'float') None, #h.port = self._fread(fid,1,'short') b' \x08\x00\x00', #h.numsamples = self._fread(fid,1,'ulong') None, #h.filterflag = self._fread(fid,1,'char') None, #h.lowcutoff = self._fread(fid,1,'float') None, #h.lowpoles = self._fread(fid,1,'short') None, #h.highcutoff = self._fread(fid,1,'float') None, #h.highpoles = self._fread(fid,1,'short') None, #h.filtertype = self._fread(fid,1,'char') None, #h.filterdomain = self._fread(fid,1,'char') None, #h.snrflag = self._fread(fid,1,'char') None, #h.coherenceflag = self._fread(fid,1,'char') None, #h.continuoustype = self._fread(fid,1,'char') None, #h.eventtablepos = self._fread(fid,1,'ulong') None, #h.continuousseconds = self._fread(fid,1,'float') None, #h.channeloffset = self._fread(fid,1,'long') None, #h.autocorrectflag = self._fread(fid,1,'char') None, #h.dcthreshold = self._fread(fid,1,'uchar') ]
import sys import Queue import time import threading import collections import json import requests import websocket # =========================== logging ========================================= import logging logger = logging.getLogger(__name__) # =========================== classes ========================================= def convertToString(data): if isinstance(data, basestring): return str(data) elif isinstance(data, collections.Mapping): return dict(map(convertToString, data.iteritems())) elif isinstance(data, collections.Iterable): return type(data)(map(convertToString, data)) else: return data class DuplexClientPeriodicTimer(threading.Thread): def __init__(self, period, func): # store params self.period = period self.func = func # local variables self.dataLock = threading.RLock() self.goOn = True self.currentDelay = 0 # start the thread threading.Thread.__init__(self) self.name = 'DuplexClientPeriodicTimer' self.daemon = True self.start() def run(self): try: self.currentDelay = 1 while self.goOn: funcToCall = None with self.dataLock: self.currentDelay -= 1 if self.currentDelay == 0: funcToCall = self.func self.currentDelay = self.period if funcToCall: try: funcToCall() except Exception as err: logger.critical("DuplexClientPeriodicTimer could not call {0}: {1}".format(funcToCall,err)) time.sleep(1) except Exception as err: logger.critical("DuplexClientPeriodicTimer crashed: {0}".format(err)) def fireNow(self): with self.dataLock: self.currentDelay = 1 def close(self): self.goOn = False class DuplexClient(object): def __init__(self, kwargs): self.from_server_cb = kwargs['from_server_cb'] self.id = kwargs['id'] self.token = kwargs['token'] @classmethod def from_url(cls, **kwargs): server_url = kwargs['server_url'] if server_url.startswith('http'): return DuplexClientHttp(kwargs) elif server_url.startswith('ws'): return DuplexClientWs(kwargs) else: raise SystemError() def to_server(self, o): raise NotImplementedError() def getStatus(self): raise NotImplementedError() def disconnect(self): raise NotImplementedError() class DuplexClientHttp(DuplexClient): MAXQUEUEZISE = 100 def __init__(self, kwargs): """ The following kwargs MUST be present: - the required kwargs for the DuplexClient class - 'server_url' URL of the server, e.g. "http://127.0.0.1:8080/api/v1/o.json" - 'polling_period' the period (in seconds) with which the DuplexClientHttp instance polls the server - 'buffer_tx' a boolean. It False, objects passed through the to_server() method are buffered until the next polling_period. """ # store params self.server_url = kwargs['server_url'] self.polling_period = kwargs['polling_period'] self.buffer_tx = kwargs['buffer_tx'] # local variables self.dataLock = threading.RLock() self.toserverqueue = Queue.Queue(maxsize=self.MAXQUEUEZISE) self.is_connected = False self.lastheard_ts = None self._set_is_connected(False) # initialize parent DuplexClient.__init__(self, kwargs) # start periodic timer, and fire now self.periodicTimer = DuplexClientPeriodicTimer( period = self.polling_period, func = self._poll_server, ) self.periodicTimer.fireNow() # ======================= public ========================================== def to_server(self, o): """ 'o' contains a single object ['b','yttywetywe'] """ assert type(o) == str # add to queue self.toserverqueue.put(o, block=False) # send now, if appropriate if self.buffer_tx==False: self.periodicTimer.fireNow() def getStatus(self): returnVal = {} with self.dataLock: returnVal['connectionmode'] = 'http_polling' returnVal['is_connected'] = self.is_connected returnVal['lastheard_ts'] = self.lastheard_ts if self.lastheard_ts: returnVal['lastheard_since'] = time.time()-self.lastheard_ts returnVal['toserverqueue_fill'] = self.toserverqueue.qsize() return returnVal def disconnect(self): self.polling_timer.cancel() # ======================= private ========================================= def _poll_server(self, o=None): """ Send one HTTP POST request to server to (1) send the elements from toserverqueue to the server (2) receive the objects from the server and rearm. """ # send objects try: # create HTTP body body = { 'id': self.id, 'token': self.token, 'ttl': self.polling_period+3, } # objects o = [] while True: try: e = self.toserverqueue.get(block=False) except Queue.Empty: break else: o += [e] if o: body['o'] = o # send to server r = requests.post( self.server_url, json = body, ).json() r = convertToString(r) except requests.exceptions.ConnectionError as err: self._set_is_connected(False) logger.error(err) except Exception as err: self._set_is_connected(False) logger.error(err) else: self._set_is_connected(True) if r['o']: self.from_server_cb(r['o']) def _set_is_connected(self,newstate): with self.dataLock: self.is_connected = newstate if self.is_connected: self.lastheard_ts = time.time() class DuplexClientWs(DuplexClient): def __init__(self, kwargs): # store params self.server_url = kwargs['server_url'] # initialize parent DuplexClient.__init__(self, kwargs) # start Websocket self.ws = websocket.WebSocketApp(self.server_url, on_message=self.on_message, on_error=self.on_error, on_close=self.on_close, ) self.ws.on_open = self.on_open wst = threading.Thread(target=self.ws.run_forever) wst.daemon = True wst.start() def on_message(self, ws, message): if message['o']: self.from_server_cb(message['o']) def on_error(self, ws, error): self.from_server_cb(error) def on_close(self, ws): logger.debug("Websocket closed for id: {0}.".format(self.id)) def on_open(self, ws): logger.debug("Websocket open for id: {0}.".format(self.id)) def to_server(self, o): body = { 'id': self.id, 'token': self.token, 'o': [o] } self.ws.send(json.dumps(body)) def getStatus(self): raise NotImplementedError() def disconnect(self): self.ws.close() # =========================== main ============================================ class CliDuplexClient(object): def __init__(self): # create server self.duplexClient = DuplexClient.from_url( server_url = 'http://api-dev.solsystem.io/api/v1/o.json', id = 'testmanager', token = '{"org":"lmayz4","token":"255L*XFQX?8ETDyBVs"}', polling_period = 5, buffer_tx = True, from_server_cb = self.from_server_cb, ) ''' self.duplexClient = DuplexClient.from_url( server_url = 'ws://127.0.0.1:8080/api/v1/ws', id = id, token = 'mytoken', from_server_cb = self.from_server_cb, ) ''' # cli self.cli = DustCli.DustCli( 'CliDuplexClient', self._clihandle_quit, ) self.cli.registerCommand( name = 'tx', alias = 'tx', description = 'transmit to server', params = ['msg'], callback = self._clihandle_tx, ) self.cli.registerCommand( name = 'status', alias = 'u', description = 'check status', params = [], callback = self._clihandle_status, ) def _clihandle_tx(self, params): msg = params[0] self.duplexClient.to_server([{'msg': msg}]) def _clihandle_status(self, params): pp.pprint(self.duplexClient.getStatus()) def from_server_cb(self, o): logger.debug('from server: {0}'.format(o)) def _clihandle_quit(self): time.sleep(.3) print "bye bye." sys.exit(0) def main(): client = CliDuplexClient() if __name__ == "__main__": import random import string import DustCli import pprint pp = pprint.PrettyPrinter(indent=4) main()
# pylint:disable=missing-class-docstring,unused-argument from collections import defaultdict from typing import Optional, Any, Dict, TYPE_CHECKING import ailment from ailment import Expression, Block from ailment.statement import Statement from ..ailblock_walker import AILBlockWalker from ..sequence_walker import SequenceWalker from ..structurer_nodes import ConditionNode, ConditionalBreakNode, LoopNode if TYPE_CHECKING: from angr.sim_variable import SimVariable from angr.knowledge_plugins.variables.variable_manager import VariableManagerInternal class LocationBase: __slots__ = () class StatementLocation(LocationBase): __slots__ = ('block_addr', 'block_idx', 'stmt_idx', ) def __init__(self, block_addr, block_idx, stmt_idx): self.block_addr = block_addr self.block_idx = block_idx self.stmt_idx = stmt_idx def __repr__(self): return f"Loc: Statement@{self.block_addr:x}.{self.block_idx}-{self.stmt_idx}" class ExpressionLocation(LocationBase): __slots__ = ('block_addr', 'block_idx', 'stmt_idx', 'expr_idx', ) def __init__(self, block_addr, block_idx, stmt_idx, expr_idx): self.block_addr = block_addr self.block_idx = block_idx self.stmt_idx = stmt_idx self.expr_idx = expr_idx def __repr__(self): return f"Loc: Expression@{self.block_addr:x}.{self.block_idx}-{self.stmt_idx}[{self.expr_idx}]" class ConditionLocation(LocationBase): __slots__ = ('node_addr', ) def __init__(self, cond_node_addr): self.node_addr = cond_node_addr def __repr__(self): return f"Loc: ConditionNode@{self.node_addr:x}" class ConditionalBreakLocation(LocationBase): __slots__ = ('node_addr', ) def __init__(self, node_addr): self.node_addr = node_addr def __repr__(self): return f"Loc: ConditionalBreakNode@{self.node_addr:x}" class ExpressionUseFinder(AILBlockWalker): def __init__(self): super().__init__() self.uses = defaultdict(set) def _handle_expr(self, expr_idx: int, expr: Expression, stmt_idx: int, stmt: Optional[Statement], block: Optional[Block]) -> Any: if isinstance(expr, ailment.Register) and expr.variable is not None: if not (isinstance(stmt, ailment.Stmt.Assignment) and stmt.dst is expr): if block is not None: self.uses[expr.variable].add((expr, ExpressionLocation(block.addr, block.idx, stmt_idx, expr_idx))) else: self.uses[expr.variable].add((expr, None)) return None return super()._handle_expr(expr_idx, expr, stmt_idx, stmt, block) class ExpressionCounter(SequenceWalker): """ Find all expressions that are assigned once and only used once. """ def __init__(self, node, variable_manager): handlers = { ConditionalBreakNode: self._handle_ConditionalBreak, ConditionNode: self._handle_Condition, LoopNode: self._handle_Loop, ailment.Block: self._handle_Block, } self.assignments = defaultdict(set) self.uses = { } self._variable_manger: 'VariableManagerInternal' = variable_manager super().__init__(handlers) self.walk(node) def _u(self, v) -> Optional['SimVariable']: """ Get unified variable for a given variable. """ return self._variable_manger.unified_variable(v) def _handle_Block(self, node: ailment.Block, **kwargs): # find assignments for idx, stmt in enumerate(node.statements): if isinstance(stmt, ailment.Stmt.Assignment): if isinstance(stmt.dst, ailment.Expr.Register) and stmt.dst.variable is not None: u = self._u(stmt.dst.variable) if u is not None: # dependency dependency_finder = ExpressionUseFinder() dependency_finder.walk_expression(stmt.src) dependencies = set(self._u(v) for v in dependency_finder.uses) self.assignments[u].add((stmt.src, tuple(dependencies), StatementLocation(node.addr, node.idx, idx))) if (isinstance(stmt, ailment.Stmt.Call) and isinstance(stmt.ret_expr, ailment.Expr.Register) and stmt.ret_expr.variable is not None): u = self._u(stmt.ret_expr.variable) if u is not None: dependency_finder = ExpressionUseFinder() dependency_finder.walk_expression(stmt) dependencies = set(self._u(v) for v in dependency_finder.uses) self.assignments[u].add((stmt, tuple(dependencies), StatementLocation(node.addr, node.idx, idx))) # walk the block and find uses of variables use_finder = ExpressionUseFinder() use_finder.walk(node) for v, content in use_finder.uses.items(): u = self._u(v) if u is not None: if u not in self.uses: self.uses[u] = set() self.uses[u] |= content def _collect_uses(self, expr: Expression, loc: LocationBase): use_finder = ExpressionUseFinder() use_finder.walk_expression(expr, stmt_idx=-1) for var, uses in use_finder.uses.items(): u = self._u(var) if u is None: continue for use in uses: if u not in self.uses: self.uses[u] = set() self.uses[u].add((use[0], loc)) def _handle_ConditionalBreak(self, node: ConditionalBreakNode, **kwargs): # collect uses on the condition expression self._collect_uses(node.condition, ConditionalBreakLocation(node.addr)) return super()._handle_ConditionalBreak(node, **kwargs) def _handle_Condition(self, node: ConditionNode, **kwargs): # collect uses on the condition expression self._collect_uses(node.condition, ConditionLocation(node.addr)) return super()._handle_Condition(node, **kwargs) def _handle_Loop(self, node: LoopNode, **kwargs): # collect uses on the condition expression if node.initializer is not None: self._collect_uses(node.initializer, ConditionLocation(node.addr)) if node.iterator is not None: self._collect_uses(node.iterator, ConditionLocation(node.addr)) if node.condition is not None: self._collect_uses(node.condition, ConditionLocation(node.addr)) return super()._handle_Loop(node, **kwargs) class ExpressionReplacer(AILBlockWalker): def __init__(self, assignments: Dict, uses: Dict): super().__init__() self._assignments = assignments self._uses = uses def _handle_expr(self, expr_idx: int, expr: Expression, stmt_idx: int, stmt: Optional[Statement], block: Optional[Block]) -> Any: if isinstance(expr, ailment.Register) and expr.variable is not None and expr.variable in self._uses: replace_with, _ = self._assignments[expr.variable] return replace_with return super()._handle_expr(expr_idx, expr, stmt_idx, stmt, block) class ExpressionFolder(SequenceWalker): def __init__(self, assignments: Dict, uses: Dict, node): handlers = { ailment.Block: self._handle_Block, ConditionNode: self._handle_Condition, ConditionalBreakNode: self._handle_ConditionalBreak, } super().__init__(handlers) self._assignments = assignments self._uses = uses self.walk(node) def _handle_Block(self, node: ailment.Block, **kwargs): # Walk the block to remove each assignment and replace uses of each variable new_stmts = [ ] for stmt in node.statements: if isinstance(stmt, ailment.Stmt.Assignment): if isinstance(stmt.dst, ailment.Expr.Register) and stmt.dst.variable is not None: if stmt.dst.variable in self._assignments: # remove this statement continue if (isinstance(stmt, ailment.Stmt.Call) and isinstance(stmt.ret_expr, ailment.Expr.Register) and stmt.ret_expr.variable is not None and stmt.ret_expr.variable in self._assignments): # remove this statement continue new_stmts.append(stmt) node.statements = new_stmts # Walk the block to replace the use of each variable replacer = ExpressionReplacer(self._assignments, self._uses) replacer.walk(node) def _handle_ConditionalBreak(self, node: ConditionalBreakNode, **kwargs): replacer = ExpressionReplacer(self._assignments, self._uses) r = replacer.walk_expression(node.condition) if r is not None and r is not node.condition: node.condition = r return super()._handle_ConditionalBreak(node, **kwargs) def _handle_Condition(self, node: ConditionNode, **kwargs): replacer = ExpressionReplacer(self._assignments, self._uses) r = replacer.walk_expression(node.condition) if r is not None and r is not node.condition: node.condition = r return super()._handle_Condition(node, **kwargs) def _handle_Loop(self, node: LoopNode, **kwargs): replacer = ExpressionReplacer(self._assignments, self._uses) # iterator if node.iterator is not None: r = replacer.walk_expression(node.iterator) if r is not None and r is not node.iterator: node.iterator = r # initializer if node.initializer is not None: r = replacer.walk_expression(node.initializer) if r is not None and r is not node.initializer: node.initializer = r # condition if node.condition is not None: r = replacer.walk_expression(node.condition) if r is not None and r is not node.condition: node.condition = r return super()._handle_Loop(node, **kwargs)
# pylint: disable=too-many-lines,redefined-outer-name,redefined-builtin from asyncio import Future from typing import ( Any, Callable, Iterable, Mapping, Optional, Tuple, TypeVar, Union, overload, ) from . import abc, typing from ._version import __version__ from .internal.utils import alias from .notification import Notification from .observable import ConnectableObservable, GroupedObservable, Observable from .observer import Observer from .pipe import compose, pipe from .subject import Subject _T = TypeVar("_T") _T1 = TypeVar("_T1") _T2 = TypeVar("_T2") _TKey = TypeVar("_TKey") _TState = TypeVar("_TState") _A = TypeVar("_A") _B = TypeVar("_B") _C = TypeVar("_C") _D = TypeVar("_D") _E = TypeVar("_E") _F = TypeVar("_F") _G = TypeVar("_G") def amb(*sources: Observable[_T]) -> Observable[_T]: """Propagates the observable sequence that emits first. .. marble:: :alt: amb ---8--6--9-----------| --1--2--3---5--------| ----------10-20-30---| [ amb() ] --1--2--3---5--------| Example: >>> winner = reactivex.amb(xs, ys, zs) Args: sources: Sequence of observables to monitor for first emission. Returns: An observable sequence that surfaces any of the given sequences, whichever emitted the first element. """ from .observable.amb import amb_ as amb_ return amb_(*sources) def case( mapper: Callable[[], _TKey], sources: Mapping[_TKey, Observable[_T]], default_source: Optional[Union[Observable[_T], "Future[_T]"]] = None, ) -> Observable[_T]: """Uses mapper to determine which source in sources to use. .. marble:: :alt: case --1---------------| a--1--2--3--4--| b--10-20-30---| [case(mapper, { 1: a, 2: b })] ---1--2--3--4--| Examples: >>> res = reactivex.case(mapper, { '1': obs1, '2': obs2 }) >>> res = reactivex.case(mapper, { '1': obs1, '2': obs2 }, obs0) Args: mapper: The function which extracts the value for to test in a case statement. sources: An object which has keys which correspond to the case statement labels. default_source: [Optional] The observable sequence or Future that will be run if the sources are not matched. If this is not provided, it defaults to :func:`empty`. Returns: An observable sequence which is determined by a case statement. """ from .observable.case import case_ return case_(mapper, sources, default_source) def catch(*sources: Observable[_T]) -> Observable[_T]: """Continues observable sequences which are terminated with an exception by switching over to the next observable sequence. .. marble:: :alt: catch ---1---2---3-* a-7-8-| [ catch(a) ] ---1---2---3---7-8-| Examples: >>> res = reactivex.catch(xs, ys, zs) Args: sources: Sequence of observables. Returns: An observable sequence containing elements from consecutive observables from the sequence of sources until one of them terminates successfully. """ from .observable.catch import catch_with_iterable_ return catch_with_iterable_(sources) def catch_with_iterable(sources: Iterable[Observable[_T]]) -> Observable[_T]: """Continues observable sequences that are terminated with an exception by switching over to the next observable sequence. .. marble:: :alt: catch ---1---2---3-* a-7-8-| [ catch(a) ] ---1---2---3---7-8-| Examples: >>> res = reactivex.catch([xs, ys, zs]) >>> res = reactivex.catch(src for src in [xs, ys, zs]) Args: sources: An Iterable of observables; thus, a generator can also be used here. Returns: An observable sequence containing elements from consecutive observables from the sequence of sources until one of them terminates successfully. """ from .observable.catch import catch_with_iterable_ return catch_with_iterable_(sources) def create(subscribe: typing.Subscription[_T]) -> Observable[_T]: """Creates an observable sequence object from the specified subscription function. .. marble:: :alt: create [ create(a) ] ---1---2---3---4---| Args: subscribe: Subscription function. Returns: An observable sequence that can be subscribed to via the given subscription function. """ return Observable(subscribe) @overload def combine_latest( __a: Observable[_A], __b: Observable[_B] ) -> Observable[Tuple[_A, _B]]: ... @overload def combine_latest( __a: Observable[_A], __b: Observable[_B], __c: Observable[_C] ) -> Observable[Tuple[_A, _B, _C]]: ... @overload def combine_latest( __a: Observable[_A], __b: Observable[_B], __c: Observable[_C], __d: Observable[_D] ) -> Observable[Tuple[_A, _B, _C, _D]]: ... def combine_latest(*__sources: Observable[Any]) -> Observable[Any]: """Merges the specified observable sequences into one observable sequence by creating a tuple whenever any of the observable sequences emits an element. .. marble:: :alt: combine_latest ---a-----b--c------| --1---2--------3---| [ combine_latest() ] ---a1-a2-b2-c2-c3--| Examples: >>> obs = rx.combine_latest(obs1, obs2, obs3) Args: sources: Sequence of observables. Returns: An observable sequence containing the result of combining elements from each source in given sequence. """ from .observable.combinelatest import combine_latest_ return combine_latest_(*__sources) def concat(*sources: Observable[_T]) -> Observable[_T]: """Concatenates all of the specified observable sequences. .. marble:: :alt: concat ---1--2--3--| --6--8--| [ concat() ] ---1--2--3----6--8-| Examples: >>> res = reactivex.concat(xs, ys, zs) Args: sources: Sequence of observables. Returns: An observable sequence that contains the elements of each source in the given sequence, in sequential order. """ from .observable.concat import concat_with_iterable_ return concat_with_iterable_(sources) def concat_with_iterable(sources: Iterable[Observable[_T]]) -> Observable[_T]: """Concatenates all of the specified observable sequences. .. marble:: :alt: concat ---1--2--3--| --6--8--| [ concat() ] ---1--2--3----6--8-| Examples: >>> res = reactivex.concat_with_iterable([xs, ys, zs]) >>> res = reactivex.concat_with_iterable(for src in [xs, ys, zs]) Args: sources: An Iterable of observables; thus, a generator can also be used here. Returns: An observable sequence that contains the elements of each given sequence, in sequential order. """ from .observable.concat import concat_with_iterable_ return concat_with_iterable_(sources) def defer( factory: Callable[[abc.SchedulerBase], Union[Observable[_T], "Future[_T]"]] ) -> Observable[_T]: """Returns an observable sequence that invokes the specified factory function whenever a new observer subscribes. .. marble:: :alt: defer [ defer(1,2,3) ] ---1--2--3--| ---1--2--3--| Example: >>> res = reactivex.defer(lambda scheduler: of(1, 2, 3)) Args: factory: Observable factory function to invoke for each observer which invokes :func:`subscribe() <reactivex.Observable.subscribe>` on the resulting sequence. The factory takes a single argument, the scheduler used. Returns: An observable sequence whose observers trigger an invocation of the given factory function. """ from .observable.defer import defer_ return defer_(factory) def empty(scheduler: Optional[abc.SchedulerBase] = None) -> Observable[Any]: """Returns an empty observable sequence. .. marble:: :alt: empty [ empty() ] --| Example: >>> obs = reactivex.empty() Args: scheduler: [Optional] Scheduler instance to send the termination call on. By default, this will use an instance of :class:`ImmediateScheduler <reactivex.scheduler.ImmediateScheduler>`. Returns: An observable sequence with no elements. """ from .observable.empty import empty_ return empty_(scheduler) def for_in( values: Iterable[_T1], mapper: typing.Mapper[_T1, Observable[_T2]] ) -> Observable[_T2]: """Concatenates the observable sequences obtained by running the specified result mapper for each element in the specified values. .. marble:: :alt: for_in a--1--2-| b--10--20-| [for_in((a, b), lambda i: i+1)] ---2--3--11--21-| Note: This is just a wrapper for :func:`reactivex.concat(map(mapper, values)) <reactivex.concat>` Args: values: An Iterable of values to turn into an observable source. mapper: A function to apply to each item in the values list to turn it into an observable sequence; this should return instances of :class:`reactivex.Observable`. Returns: An observable sequence from the concatenated observable sequences. """ mapped: Iterable[Observable[_T2]] = map(mapper, values) return concat_with_iterable(mapped) @overload def fork_join(__a: Observable[_A], __b: Observable[_B]) -> Observable[Tuple[_A, _B]]: ... @overload def fork_join( __a: Observable[_A], __b: Observable[_B], __c: Observable[_C] ) -> Observable[Tuple[_A, _B, _C]]: ... @overload def fork_join( __a: Observable[_A], __b: Observable[_B], __c: Observable[_C], __d: Observable[_D] ) -> Observable[Tuple[_A, _B, _C, _D]]: ... @overload def fork_join( __a: Observable[_A], __b: Observable[_B], __c: Observable[_C], __d: Observable[_D], __e: Observable[_E], ) -> Observable[Tuple[_A, _B, _C, _D, _E]]: ... def fork_join(*sources: Observable[Any]) -> Observable[Any]: """Wait for observables to complete and then combine last values they emitted into a tuple. Whenever any of that observables completes without emitting any value, result sequence will complete at that moment as well. .. marble:: :alt: fork_join ---a-----b--c---d-| --1---2------3-4---| -a---------b---| [ fork_join() ] --------------------d4b| Examples: >>> obs = reactivex.fork_join(obs1, obs2, obs3) Args: sources: Sequence of observables. Returns: An observable sequence containing the result of combining last element from each source in given sequence. """ from .observable.forkjoin import fork_join_ return fork_join_(*sources) def from_callable( supplier: Callable[[], _T], scheduler: Optional[abc.SchedulerBase] = None ) -> Observable[_T]: """Returns an observable sequence that contains a single element generated by the given supplier, using the specified scheduler to send out observer messages. .. marble:: :alt: from_callable [ from_callable() ] --1--| Examples: >>> res = reactivex.from_callable(lambda: calculate_value()) >>> res = reactivex.from_callable(lambda: 1 / 0) # emits an error Args: supplier: Function which is invoked to obtain the single element. scheduler: [Optional] Scheduler instance to schedule the values on. If not specified, the default is to use an instance of :class:`CurrentThreadScheduler <reactivex.scheduler.CurrentThreadScheduler>`. Returns: An observable sequence containing the single element obtained by invoking the given supplier function. """ from .observable.returnvalue import from_callable_ return from_callable_(supplier, scheduler) def from_callback( func: Callable[..., Callable[..., None]], mapper: Optional[typing.Mapper[Any, Any]] = None, ) -> Callable[[], Observable[Any]]: """Converts a callback function to an observable sequence. Args: func: Function with a callback as the last argument to convert to an Observable sequence. mapper: [Optional] A mapper which takes the arguments from the callback to produce a single item to yield on next. Returns: A function, when executed with the required arguments minus the callback, produces an Observable sequence with a single value of the arguments to the callback as a list. """ from .observable.fromcallback import from_callback_ return from_callback_(func, mapper) def from_future(future: "Future[_T]") -> Observable[_T]: """Converts a Future to an Observable sequence .. marble:: :alt: from_future [ from_future() ] ------1| Args: future: A Python 3 compatible future. https://docs.python.org/3/library/asyncio-task.html#future Returns: An observable sequence which wraps the existing future success and failure. """ from .observable.fromfuture import from_future_ return from_future_(future) def from_iterable( iterable: Iterable[_T], scheduler: Optional[abc.SchedulerBase] = None ) -> Observable[_T]: """Converts an iterable to an observable sequence. .. marble:: :alt: from_iterable [ from_iterable(1,2,3) ] ---1--2--3--| Example: >>> reactivex.from_iterable([1,2,3]) Args: iterable: An Iterable to change into an observable sequence. scheduler: [Optional] Scheduler instance to schedule the values on. If not specified, the default is to use an instance of :class:`CurrentThreadScheduler <reactivex.scheduler.CurrentThreadScheduler>`. Returns: The observable sequence whose elements are pulled from the given iterable sequence. """ from .observable.fromiterable import from_iterable_ as from_iterable_ return from_iterable_(iterable, scheduler) from_ = alias("from_", "Alias for :func:`reactivex.from_iterable`.", from_iterable) from_list = alias( "from_list", "Alias for :func:`reactivex.from_iterable`.", from_iterable ) def from_marbles( string: str, timespan: typing.RelativeTime = 0.1, scheduler: Optional[abc.SchedulerBase] = None, lookup: Optional[Mapping[Union[str, float], Any]] = None, error: Optional[Exception] = None, ) -> Observable[Any]: """Convert a marble diagram string to a cold observable sequence, using an optional scheduler to enumerate the events. .. marble:: :alt: from_marbles [ from_marbles(-1-2-3-) ] -1-2-3-| Each character in the string will advance time by timespan (except for space). Characters that are not special (see the table below) will be interpreted as a value to be emitted. Numbers will be cast to int or float. Special characters: +------------+--------------------------------------------------------+ | :code:`-` | advance time by timespan | +------------+--------------------------------------------------------+ | :code:`#` | on_error() | +------------+--------------------------------------------------------+ | :code:`|` | on_completed() | +------------+--------------------------------------------------------+ | :code:`(` | open a group of marbles sharing the same timestamp | +------------+--------------------------------------------------------+ | :code:`)` | close a group of marbles | +------------+--------------------------------------------------------+ | :code:`,` | separate elements in a group | +------------+--------------------------------------------------------+ | <space> | used to align multiple diagrams, does not advance time | +------------+--------------------------------------------------------+ In a group of elements, the position of the initial :code:`(` determines the timestamp at which grouped elements will be emitted. E.g. :code:`--(12,3,4)--` will emit 12, 3, 4 at 2 * timespan and then advance virtual time by 8 * timespan. Examples: >>> from_marbles('--1--(2,3)-4--|') >>> from_marbles('a--b--c-', lookup={'a': 1, 'b': 2, 'c': 3}) >>> from_marbles('a--b---#', error=ValueError('foo')) Args: string: String with marble diagram timespan: [Optional] Duration of each character in seconds. If not specified, defaults to :code:`0.1`. scheduler: [Optional] Scheduler to run the the input sequence on. If not specified, defaults to the subscribe scheduler if defined, else to an instance of :class:`NewThreadScheduler <reactivex.scheduler.NewThreadScheduler`. lookup: [Optional] A dict used to convert an element into a specified value. If not specified, defaults to :code:`{}`. error: [Optional] Exception that will be use in place of the :code:`#` symbol. If not specified, defaults to :code:`Exception('error')`. Returns: The observable sequence whose elements are pulled from the given marble diagram string. """ from .observable.marbles import from_marbles as _from_marbles return _from_marbles( string, timespan, lookup=lookup, error=error, scheduler=scheduler ) cold = alias("cold", "Alias for :func:`reactivex.from_marbles`.", from_marbles) def generate_with_relative_time( initial_state: _TState, condition: typing.Predicate[_TState], iterate: typing.Mapper[_TState, _TState], time_mapper: Callable[[_TState], typing.RelativeTime], ) -> Observable[_TState]: """Generates an observable sequence by iterating a state from an initial state until the condition fails. .. marble:: :alt: generate_with_relative_time [generate_with_relative_time()] -1-2-3-4-| Example: >>> res = reactivex.generate_with_relative_time( 0, lambda x: True, lambda x: x + 1, lambda x: 0.5 ) Args: initial_state: Initial state. condition: Condition to terminate generation (upon returning :code:`False`). iterate: Iteration step function. time_mapper: Time mapper function to control the speed of values being produced each iteration, returning relative times, i.e. either a :class:`float` denoting seconds, or an instance of :class:`timedelta`. Returns: The generated sequence. """ from .observable.generatewithrelativetime import generate_with_relative_time_ return generate_with_relative_time_(initial_state, condition, iterate, time_mapper) def generate( initial_state: _TState, condition: typing.Predicate[_TState], iterate: typing.Mapper[_TState, _TState], ) -> Observable[_TState]: """Generates an observable sequence by running a state-driven loop producing the sequence's elements. .. marble:: :alt: generate [ generate() ] -1-2-3-4-| Example: >>> res = reactivex.generate(0, lambda x: x < 10, lambda x: x + 1) Args: initial_state: Initial state. condition: Condition to terminate generation (upon returning :code:`False`). iterate: Iteration step function. Returns: The generated sequence. """ from .observable.generate import generate_ return generate_(initial_state, condition, iterate) def hot( string: str, timespan: typing.RelativeTime = 0.1, duetime: typing.AbsoluteOrRelativeTime = 0.0, scheduler: Optional[abc.SchedulerBase] = None, lookup: Optional[Mapping[Union[str, float], Any]] = None, error: Optional[Exception] = None, ) -> Observable[Any]: """Convert a marble diagram string to a hot observable sequence, using an optional scheduler to enumerate the events. .. marble:: :alt: hot [ from_marbles(-1-2-3-) ] -1-2-3-| -2-3-| Each character in the string will advance time by timespan (except for space). Characters that are not special (see the table below) will be interpreted as a value to be emitted. Numbers will be cast to int or float. Special characters: +------------+--------------------------------------------------------+ | :code:`-` | advance time by timespan | +------------+--------------------------------------------------------+ | :code:`#` | on_error() | +------------+--------------------------------------------------------+ | :code:`|` | on_completed() | +------------+--------------------------------------------------------+ | :code:`(` | open a group of elements sharing the same timestamp | +------------+--------------------------------------------------------+ | :code:`)` | close a group of elements | +------------+--------------------------------------------------------+ | :code:`,` | separate elements in a group | +------------+--------------------------------------------------------+ | <space> | used to align multiple diagrams, does not advance time | +------------+--------------------------------------------------------+ In a group of elements, the position of the initial :code:`(` determines the timestamp at which grouped elements will be emitted. E.g. :code:`--(12,3,4)--` will emit 12, 3, 4 at 2 * timespan and then advance virtual time by 8 * timespan. Examples: >>> hot("--1--(2,3)-4--|") >>> hot("a--b--c-", lookup={'a': 1, 'b': 2, 'c': 3}) >>> hot("a--b---#", error=ValueError("foo")) Args: string: String with marble diagram timespan: [Optional] Duration of each character in seconds. If not specified, defaults to :code:`0.1`. duetime: [Optional] Absolute datetime or timedelta from now that determines when to start the emission of elements. scheduler: [Optional] Scheduler to run the the input sequence on. If not specified, defaults to an instance of :class:`NewThreadScheduler <reactivex.scheduler.NewThreadScheduler>`. lookup: [Optional] A dict used to convert an element into a specified value. If not specified, defaults to :code:`{}`. error: [Optional] Exception that will be use in place of the :code:`#` symbol. If not specified, defaults to :code:`Exception('error')`. Returns: The observable sequence whose elements are pulled from the given marble diagram string. """ from .observable.marbles import hot as _hot return _hot( string, timespan, duetime, lookup=lookup, error=error, scheduler=scheduler ) def if_then( condition: Callable[[], bool], then_source: Union[Observable[_T], "Future[_T]"], else_source: Union[None, Observable[_T], "Future[_T]"] = None, ) -> Observable[_T]: """Determines whether an observable collection contains values. .. marble:: :alt: if_then ---1--2--3--| --6--8--| [ if_then() ] ---1--2--3--| Examples: >>> res = reactivex.if_then(condition, obs1) >>> res = reactivex.if_then(condition, obs1, obs2) Args: condition: The condition which determines if the then_source or else_source will be run. then_source: The observable sequence or :class:`Future` that will be run if the condition function returns :code:`True`. else_source: [Optional] The observable sequence or :class:`Future` that will be run if the condition function returns :code:`False`. If this is not provided, it defaults to :func:`empty() <reactivex.empty>`. Returns: An observable sequence which is either the then_source or else_source. """ from .observable.ifthen import if_then_ return if_then_(condition, then_source, else_source) def interval( period: typing.RelativeTime, scheduler: Optional[abc.SchedulerBase] = None ) -> Observable[int]: """Returns an observable sequence that produces a value after each period. .. marble:: :alt: interval [ interval() ] ---1---2---3---4---> Example: >>> res = reactivex.interval(1.0) Args: period: Period for producing the values in the resulting sequence (specified as a :class:`float` denoting seconds or an instance of :class:`timedelta`). scheduler: Scheduler to run the interval on. If not specified, an instance of :class:`TimeoutScheduler <reactivex.scheduler.TimeoutScheduler>` is used. Returns: An observable sequence that produces a value after each period. """ from .observable.interval import interval_ return interval_(period, scheduler) def merge(*sources: Observable[Any]) -> Observable[Any]: """Merges all the observable sequences into a single observable sequence. .. marble:: :alt: merge ---1---2---3---4-| -a---b---c---d--| [ merge() ] -a-1-b-2-c-3-d-4-| Example: >>> res = reactivex.merge(obs1, obs2, obs3) Args: sources: Sequence of observables. Returns: The observable sequence that merges the elements of the observable sequences. """ from .observable.merge import merge_ return merge_(*sources) def never() -> Observable[Any]: """Returns a non-terminating observable sequence, which can be used to denote an infinite duration (e.g. when using reactive joins). .. marble:: :alt: never [ never() ] --> Returns: An observable sequence whose observers will never get called. """ from .observable.never import never_ return never_() def of(*args: _T) -> Observable[_T]: """This method creates a new observable sequence whose elements are taken from the arguments. .. marble:: :alt: of [ of(1,2,3) ] ---1--2--3--| Note: This is just a wrapper for :func:`reactivex.from_iterable(args) <reactivex.from_iterable>` Example: >>> res = reactivex.of(1,2,3) Args: args: The variable number elements to emit from the observable. Returns: The observable sequence whose elements are pulled from the given arguments """ return from_iterable(args) def on_error_resume_next( *sources: Union[ Observable[_T], "Future[_T]", Callable[[Optional[Exception]], Observable[_T]] ] ) -> Observable[_T]: """Continues an observable sequence that is terminated normally or by an exception with the next observable sequence. .. marble:: :alt: on_error_resume_next --1--2--* a--3--4--* b--6-| [on_error_resume_next(a,b)] --1--2----3--4----6-| Examples: >>> res = reactivex.on_error_resume_next(xs, ys, zs) Args: sources: Sequence of sources, each of which is expected to be an instance of either :class:`Observable` or :class:`Future`. Returns: An observable sequence that concatenates the source sequences, even if a sequence terminates with an exception. """ from .observable.onerrorresumenext import on_error_resume_next_ return on_error_resume_next_(*sources) def range( start: int, stop: Optional[int] = None, step: Optional[int] = None, scheduler: Optional[abc.SchedulerBase] = None, ) -> Observable[int]: """Generates an observable sequence of integral numbers within a specified range, using the specified scheduler to send out observer messages. .. marble:: :alt: range [ range(4) ] --0--1--2--3--| Examples: >>> res = reactivex.range(10) >>> res = reactivex.range(0, 10) >>> res = reactivex.range(0, 10, 1) Args: start: The value of the first integer in the sequence. stop: [Optional] Generate number up to (exclusive) the stop value. Default is `sys.maxsize`. step: [Optional] The step to be used (default is 1). scheduler: [Optional] The scheduler to schedule the values on. If not specified, the default is to use an instance of :class:`CurrentThreadScheduler <reactivex.scheduler.CurrentThreadScheduler>`. Returns: An observable sequence that contains a range of sequential integral numbers. """ from .observable.range import range_ return range_(start, stop, step, scheduler) def return_value( value: _T, scheduler: Optional[abc.SchedulerBase] = None ) -> Observable[_T]: """Returns an observable sequence that contains a single element, using the specified scheduler to send out observer messages. There is an alias called 'just'. .. marble:: :alt: return_value [ return_value(4) ] -4-| Examples: >>> res = reactivex.return_value(42) >>> res = reactivex.return_value(42, timeout_scheduler) Args: value: Single element in the resulting observable sequence. Returns: An observable sequence containing the single specified element. """ from .observable.returnvalue import return_value_ return return_value_(value, scheduler) just = alias("just", "Alias for :func:`reactivex.return_value`.", return_value) def repeat_value(value: _T, repeat_count: Optional[int] = None) -> Observable[_T]: """Generates an observable sequence that repeats the given element the specified number of times. .. marble:: :alt: repeat_value [ repeat_value(4) ] -4-4-4-4-> Examples: >>> res = reactivex.repeat_value(42) >>> res = reactivex.repeat_value(42, 4) Args: value: Element to repeat. repeat_count: [Optional] Number of times to repeat the element. If not specified, repeats indefinitely. Returns: An observable sequence that repeats the given element the specified number of times. """ from .observable.repeat import repeat_value_ return repeat_value_(value, repeat_count) def start( func: Callable[[], _T], scheduler: Optional[abc.SchedulerBase] = None ) -> Observable[_T]: """Invokes the specified function asynchronously on the specified scheduler, surfacing the result through an observable sequence. .. marble:: :alt: start [ start(lambda i: return 4) ] -4-| -4-| Note: The function is called immediately, not during the subscription of the resulting sequence. Multiple subscriptions to the resulting sequence can observe the function's result. Example: >>> res = reactivex.start(lambda: pprint('hello')) >>> res = reactivex.start(lambda: pprint('hello'), rx.Scheduler.timeout) Args: func: Function to run asynchronously. scheduler: [Optional] Scheduler to run the function on. If not specified, defaults to an instance of :class:`TimeoutScheduler <reactivex.scheduler.TimeoutScheduler>`. Returns: An observable sequence exposing the function's result value, or an exception. """ from .observable.start import start_ return start_(func, scheduler) def start_async(function_async: Callable[[], "Future[_T]"]) -> Observable[_T]: """Invokes the asynchronous function, surfacing the result through an observable sequence. .. marble:: :alt: start_async [ start_async() ] ------1| Args: function_async: Asynchronous function which returns a :class:`Future` to run. Returns: An observable sequence exposing the function's result value, or an exception. """ from .observable.startasync import start_async_ return start_async_(function_async) def throw( exception: Union[str, Exception], scheduler: Optional[abc.SchedulerBase] = None ) -> Observable[Any]: """Returns an observable sequence that terminates with an exception, using the specified scheduler to send out the single OnError message. .. marble:: :alt: throw [ throw() ] -* Example: >>> res = reactivex.throw(Exception('Error')) Args: exception: An object used for the sequence's termination. scheduler: [Optional] Scheduler to schedule the error notification on. If not specified, the default is to use an instance of :class:`ImmediateScheduler <reactivex.scheduler.ImmediateScheduler>`. Returns: The observable sequence that terminates exceptionally with the specified exception object. """ from .observable.throw import throw_ return throw_(exception, scheduler) def timer( duetime: typing.AbsoluteOrRelativeTime, period: Optional[typing.RelativeTime] = None, scheduler: Optional[abc.SchedulerBase] = None, ) -> Observable[int]: """Returns an observable sequence that produces a value after duetime has elapsed and then after each period. .. marble:: :alt: timer [ timer(2) ] --0-| Examples: >>> res = reactivex.timer(datetime(...)) >>> res = reactivex.timer(datetime(...), 0.1) >>> res = reactivex.timer(5.0) >>> res = reactivex.timer(5.0, 1.0) Args: duetime: Absolute (specified as a datetime object) or relative time (specified as a float denoting seconds or an instance of timedelta) at which to produce the first value. period: [Optional] Period to produce subsequent values (specified as a float denoting seconds or an instance of timedelta). If not specified, the resulting timer is not recurring. scheduler: [Optional] Scheduler to run the timer on. If not specified, the default is to use an instance of :class:`TimeoutScheduler <reactivex.scheduler.TimeoutScheduler>`. Returns: An observable sequence that produces a value after due time has elapsed and then each period. """ from .observable.timer import timer_ return timer_(duetime, period, scheduler) def to_async( func: Callable[..., _T], scheduler: Optional[abc.SchedulerBase] = None ) -> Callable[..., Observable[_T]]: """Converts the function into an asynchronous function. Each invocation of the resulting asynchronous function causes an invocation of the original synchronous function on the specified scheduler. .. marble:: :alt: to_async [ to_async()() ] ------1| Examples: >>> res = reactivex.to_async(lambda x, y: x + y)(4, 3) >>> res = reactivex.to_async(lambda x, y: x + y, Scheduler.timeout)(4, 3) >>> res = reactivex.to_async(lambda x: log.debug(x), Scheduler.timeout)('hello') Args: func: Function to convert to an asynchronous function. scheduler: [Optional] Scheduler to run the function on. If not specified, defaults to an instance of :class:`TimeoutScheduler <reactivex.scheduler.TimeoutScheduler>`. Returns: Asynchronous function. """ from .observable.toasync import to_async_ return to_async_(func, scheduler) def using( resource_factory: Callable[[], abc.DisposableBase], observable_factory: Callable[[abc.DisposableBase], Observable[_T]], ) -> Observable[_T]: """Constructs an observable sequence that depends on a resource object, whose lifetime is tied to the resulting observable sequence's lifetime. Example: >>> res = reactivex.using(lambda: AsyncSubject(), lambda: s: s) Args: resource_factory: Factory function to obtain a resource object. observable_factory: Factory function to obtain an observable sequence that depends on the obtained resource. Returns: An observable sequence whose lifetime controls the lifetime of the dependent resource object. """ from .observable.using import using_ return using_(resource_factory, observable_factory) def with_latest_from(*sources: Observable[Any]) -> Observable[Tuple[Any, ...]]: """Merges the specified observable sequences into one observable sequence by creating a :class:`tuple` only when the first observable sequence produces an element. .. marble:: :alt: with_latest_from ---1---2---3----4-| --a-----b----c-d----| [with_latest_from() ] ---1,a-2,a-3,b--4,d-| Examples: >>> obs = rx.with_latest_from(obs1) >>> obs = rx.with_latest_from([obs1, obs2, obs3]) Args: sources: Sequence of observables. Returns: An observable sequence containing the result of combining elements of the sources into a :class:`tuple`. """ from .observable.withlatestfrom import with_latest_from_ return with_latest_from_(*sources) def zip(*args: Observable[Any]) -> Observable[Tuple[Any, ...]]: """Merges the specified observable sequences into one observable sequence by creating a :class:`tuple` whenever all of the observable sequences have produced an element at a corresponding index. .. marble:: :alt: zip --1--2---3-----4---| -a----b----c-d------| [ zip() ] --1,a-2,b--3,c-4,d-| Example: >>> res = rx.zip(obs1, obs2) Args: args: Observable sources to zip. Returns: An observable sequence containing the result of combining elements of the sources as a :class:`tuple`. """ from .observable.zip import zip_ return zip_(*args) __all__ = [ "abc", "amb", "case", "catch", "catch_with_iterable", "create", "combine_latest", "compose", "concat", "concat_with_iterable", "ConnectableObservable", "defer", "empty", "fork_join", "from_callable", "from_callback", "from_future", "from_iterable", "GroupedObservable", "never", "Notification", "on_error_resume_next", "of", "Observable", "Observer", "return_value", "pipe", "range", "repeat_value", "Subject", "start", "start_async", "throw", "timer", "typing", "to_async", "using", "with_latest_from", "zip", "__version__", ]
'''@file train_asr.py this file will do the asr training''' import os from functools import partial import tensorflow as tf from six.moves import configparser from nabu.distributed import create_server from nabu.processing import batchdispenser, feature_reader, target_coder from nabu.neuralnetworks.classifiers.asr import asr_factory from nabu.neuralnetworks.trainers import trainer_factory from nabu.neuralnetworks.decoders import decoder_factory def train_asr(clusterfile, job_name, task_index, ssh_command, expdir): ''' does everything for asr training Args: clusterfile: the file where all the machines in the cluster are specified if None, local training will be done job_name: one of ps or worker in the case of distributed training task_index: the task index in this job ssh_command: the command to use for ssh, if 'None' no tunnel will be created expdir: the experiments directory ''' #read the database config file parsed_database_cfg = configparser.ConfigParser() parsed_database_cfg.read(os.path.join(expdir, 'database.cfg')) database_cfg = dict(parsed_database_cfg.items('database')) #read the features config file parsed_feat_cfg = configparser.ConfigParser() parsed_feat_cfg.read(os.path.join(expdir, 'model', 'features.cfg')) feat_cfg = dict(parsed_feat_cfg.items('features')) #read the asr config file parsed_nnet_cfg = configparser.ConfigParser() parsed_nnet_cfg.read(os.path.join(expdir, 'model', 'asr.cfg')) nnet_cfg = dict(parsed_nnet_cfg.items('asr')) #read the trainer config file parsed_trainer_cfg = configparser.ConfigParser() parsed_trainer_cfg.read(os.path.join(expdir, 'trainer.cfg')) trainer_cfg = dict(parsed_trainer_cfg.items('trainer')) #read the decoder config file parsed_decoder_cfg = configparser.ConfigParser() parsed_decoder_cfg.read(os.path.join(expdir, 'model', 'decoder.cfg')) decoder_cfg = dict(parsed_decoder_cfg.items('decoder')) #make distinction between three implemented different kind of training forms if database_cfg['train_mode'] == 'supervised': nonsupervised = False elif database_cfg['train_mode'] == 'nonsupervised' or\ database_cfg['train_mode'] == 'semisupervised': nonsupervised = True else: raise Exception('Wrong kind of training mode') #when (partly) nonsupervised, what features are used for the reconstruction #currently two possible options implemented if nonsupervised: if trainer_cfg['reconstruction_features'] == 'audio_samples': audio_used = True elif trainer_cfg['reconstruction_features'] == 'input_features': audio_used = False else: raise Exception( 'Unknown specification for the reconstruction features') #read the quant config file if nonsupervised training and samples used if nonsupervised: if audio_used: parsed_quant_cfg = configparser.ConfigParser() parsed_quant_cfg.read(os.path.join(expdir, 'model', 'quantization.cfg')) quant_cfg = dict(parsed_quant_cfg.items('features')) #based on the other settings, compute and overwrite samples_per_hlfeature #and unpredictable_samples in the classifier config dictionary if nonsupervised: if audio_used: rate_after_quant = int(quant_cfg['quant_rate']) win_lenght = float(feat_cfg['winlen']) win_shift = float(feat_cfg['winstep']) samples_one_window = int(win_lenght*rate_after_quant) samples_one_shift = int(win_shift*rate_after_quant) #### THIS IS ONLY RELEVANT WHEN USING A LISTENER WITH PYRAM STRUCT # and this line should be adapted otherwise time_compression = 2**int(nnet_cfg['listener_numlayers']) #store values in config dictionary nnet_cfg['samples_per_hlfeature'] = samples_one_shift\ *time_compression nnet_cfg['unpredictable_samples'] = (samples_one_window+\ (time_compression-1)\ *samples_one_shift)-nnet_cfg['samples_per_hlfeature'] #create the cluster and server server = create_server.create_server( clusterfile=clusterfile, job_name=job_name, task_index=task_index, expdir=expdir, ssh_command=ssh_command) #the ps should just wait if job_name == 'ps': server.join() # path to where the training samples are stored featdir = os.path.join(database_cfg['train_dir'], feat_cfg['name']) #create the coder with open(os.path.join(database_cfg['train_dir'], 'alphabet')) as fid: alphabet = fid.read().split(' ') coder = target_coder.TargetCoder(alphabet) #create a feature reader for the training data with open(featdir + '/maxlength', 'r') as fid: max_length = int(fid.read()) featreader = feature_reader.FeatureReader( scpfile=featdir + '/feats_shuffled.scp', cmvnfile=featdir + '/cmvn.scp', utt2spkfile=featdir + '/utt2spk', max_length=max_length) #read the feature dimension with open(featdir + '/dim', 'r') as fid: input_dim = int(fid.read()) #the path to the text file textfile = os.path.join(database_cfg['train_dir'], 'targets') # If nonsupervised and audio used, we also need to read samples # these can be done with a second feature reader if nonsupervised: if audio_used: featdir2 = os.path.join(database_cfg['train_dir'], quant_cfg['name']) with open(featdir2 + '/maxlength', 'r') as fid: max_length_audio = int(fid.read()) audioreader = feature_reader.FeatureReader( scpfile=featdir2 + '/feats_shuffled.scp', cmvnfile=None, utt2spkfile=None, max_length=max_length_audio) ## create a batch dispenser, depending on which situation we're in if not nonsupervised: # in the normal supervised training mode, regular dispenser is needed if 'las_ignoring_mode' in trainer_cfg: if trainer_cfg['las_ignoring_mode'] == 'True': # if we ignore unlabeled examples dispenser = batchdispenser.AsrTextBatchDispenser( feature_reader=featreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile) elif trainer_cfg['las_ignoring_mode'] == 'False': # if we choose to process the unlabeled examples if 'fixed_ratio' in trainer_cfg: if trainer_cfg['fixed_ratio'] == 'True': # if we choose to process with batches with fixed # labeled/unlabeled ratio dispenser = \ batchdispenser.AsrTextBatchDispenserAltFixRatio( feature_reader=featreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile, percentage_unlabeled=1-float( database_cfg['part_labeled'])) elif trainer_cfg['fixed_ratio'] == 'False': # if the fixed ratio is not used dispenser = batchdispenser.AsrTextBatchDispenserAlt( feature_reader=featreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile) else: raise Exception('wrong information in fixed_ratio var') else: # if fixed ratio is not specified, we choose to do without it dispenser = batchdispenser.AsrTextBatchDispenserAlt( feature_reader=featreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile) else: raise Exception('wrong information in LAS_ignoring_mode var') else: # if no specification is made about the ignoring, ignore the unlabeled dispenser = batchdispenser.AsrTextBatchDispenser( feature_reader=featreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile) else: # when doing (partly) nonsupervised extra reconstruction features needed if audio_used: # when the audio is the reconstruction feature if 'fixed_ratio' in trainer_cfg: if trainer_cfg['fixed_ratio'] == 'True': # if specified to work with fixed lab/unlab ratio batches dispenser = \ batchdispenser.AsrTextAndAudioBatchDispenserFixRatio( feature_reader=featreader, audio_reader=audioreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile, percentage_unlabeled=1-float( database_cfg['part_labeled'])) elif trainer_cfg['fixed_ratio'] == 'False': # if specified to not use the fixed ratio dispenser = batchdispenser.AsrTextAndAudioBatchDispenser( feature_reader=featreader, audio_reader=audioreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile) else: raise Exception('wrong information in fixed_ratio var') else: # without specification, suppose no fixed ratio batches dispenser = batchdispenser.AsrTextAndAudioBatchDispenser( feature_reader=featreader, audio_reader=audioreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile) else: # if no audio is used, the input features are used if 'fixed_ratio' in trainer_cfg: if trainer_cfg['fixed_ratio'] == 'True': # if specified to work with fixed labeled/unlabled ratio batches dispenser = \ batchdispenser.AsrTextAndFeatBatchDispenserFixRatio( feature_reader=featreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile, percentage_unlabeled=1-float( database_cfg['part_labeled'])) elif trainer_cfg['fixed_ratio'] == 'False': # if specified to not use the fixed ratio dispenser = batchdispenser.AsrTextAndFeatBatchDispenser( feature_reader=featreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile) else: raise Exception('wrong information in fixed_ratio var') else: # without specification, suppose no fixed ratio batches dispenser = batchdispenser.AsrTextAndFeatBatchDispenser( feature_reader=featreader, target_coder=coder, size=int(trainer_cfg['batch_size']), target_path=textfile) # read validation data. If there are text targets, they are only important # for the validation data. If only nonsupervised, we must validate on the # reconstructed features if 'dev_data' in database_cfg: # create a reader for the validation inputs featdir = database_cfg['dev_dir'] + '/' + feat_cfg['name'] with open(featdir + '/maxlength', 'r') as fid: max_length = int(fid.read()) val_reader = feature_reader.FeatureReader( scpfile=featdir + '/feats.scp', cmvnfile=featdir + '/cmvn.scp', utt2spkfile=featdir + '/utt2spk', max_length=max_length) textfile = os.path.join(database_cfg['dev_dir'], 'targets') #read the validation text targets with open(textfile) as fid: lines = fid.readlines() val_text_targets = dict() for line in lines: splitline = line.strip().split(' ') val_text_targets[splitline[0]] = ' '.join(splitline[1:]) if nonsupervised: #also store the reconstruction targets val_rec_targets = dict() if audio_used: audiodir = database_cfg['dev_dir'] + '/' + quant_cfg['name'] with open(audiodir + '/maxlength', 'r') as fid: max_length_audio = int(fid.read()) val_audio_reader = feature_reader.FeatureReader( scpfile=audiodir + '/feats.scp', cmvnfile=None, utt2spkfile=audiodir + '/utt2spk', max_length=max_length_audio) for _ in range(val_audio_reader.num_utt): utt_id, audio, _ = val_audio_reader.get_utt() val_rec_targets[utt_id] = audio else: #input features are used for _ in range(val_reader.num_utt): utt_id, feat, _ = val_reader.get_utt() val_rec_targets[utt_id] = feat else: with open(textfile) as fid: lines = fid.readlines() val_rec_targets = dict() for line in lines: splitline = line.strip().split(' ') val_rec_targets[splitline[0]] = None val_targets = dict() for utt_id in val_text_targets: val_targets[utt_id] = (val_text_targets[utt_id], val_rec_targets[utt_id]) else: if int(trainer_cfg['valid_utt']) > 0: val_dispenser = dispenser.split(int(trainer_cfg['valid_utt'])) val_reader = val_dispenser.feature_reader val_targets = val_dispenser.target_dict else: val_reader = None val_targets = None #encode the validation targets if val_targets is not None: for utt in val_targets: val_targets[utt] = (dispenser.target_coder.encode( val_targets[utt][0]), val_targets[utt][1]) #create the classifier if nonsupervised: if audio_used: output_dim_second_el = int(quant_cfg['quant_levels']) else: # input features used output_dim_second_el = input_dim else: # only supervised training output_dim_second_el = None classifier = asr_factory.factory( conf=nnet_cfg, output_dim=(coder.num_labels, output_dim_second_el)) #create the callable for the decoder decoder = partial( decoder_factory.factory, conf=decoder_cfg, classifier=classifier, input_dim=input_dim, max_input_length=val_reader.max_length, coder=coder, expdir=expdir) #create the trainer if nonsupervised: if audio_used: reconstruction_dim = 1 else: reconstruction_dim = input_dim else: reconstruction_dim = 1 tr = trainer_factory.factory( conf=trainer_cfg, decoder=decoder, classifier=classifier, input_dim=input_dim, reconstruction_dim=reconstruction_dim, dispenser=dispenser, val_reader=val_reader, val_targets=val_targets, expdir=expdir, server=server, task_index=task_index) print 'starting training' #train the classifier tr.train() if __name__ == '__main__': #define the FLAGS tf.app.flags.DEFINE_string('clusterfile', None, 'The file containing the cluster') tf.app.flags.DEFINE_string('job_name', 'local', 'One of ps, worker') tf.app.flags.DEFINE_integer('task_index', 0, 'The task index') tf.app.flags.DEFINE_string( 'ssh_command', 'None', 'the command that should be used to create ssh tunnels') tf.app.flags.DEFINE_string('expdir', 'expdir', 'The experimental directory') FLAGS = tf.app.flags.FLAGS train_asr( clusterfile=FLAGS.clusterfile, job_name=FLAGS.job_name, task_index=FLAGS.task_index, ssh_command=FLAGS.ssh_command, expdir=FLAGS.expdir)
# -*- coding: utf-8 -*- import pytest from tests.utils import TestCaseBase import sqlparse from sqlparse.exceptions import SQLParseError class TestFormat(TestCaseBase): def test_keywordcase(self): sql = 'select * from bar; -- select foo\n' res = sqlparse.format(sql, keyword_case='upper') self.ndiffAssertEqual(res, 'SELECT * FROM bar; -- select foo\n') res = sqlparse.format(sql, keyword_case='capitalize') self.ndiffAssertEqual(res, 'Select * From bar; -- select foo\n') res = sqlparse.format(sql.upper(), keyword_case='lower') self.ndiffAssertEqual(res, 'select * from BAR; -- SELECT FOO\n') self.assertRaises(SQLParseError, sqlparse.format, sql, keyword_case='foo') def test_identifiercase(self): sql = 'select * from bar; -- select foo\n' res = sqlparse.format(sql, identifier_case='upper') self.ndiffAssertEqual(res, 'select * from BAR; -- select foo\n') res = sqlparse.format(sql, identifier_case='capitalize') self.ndiffAssertEqual(res, 'select * from Bar; -- select foo\n') res = sqlparse.format(sql.upper(), identifier_case='lower') self.ndiffAssertEqual(res, 'SELECT * FROM bar; -- SELECT FOO\n') self.assertRaises(SQLParseError, sqlparse.format, sql, identifier_case='foo') sql = 'select * from "foo"."bar"' res = sqlparse.format(sql, identifier_case="upper") self.ndiffAssertEqual(res, 'select * from "foo"."bar"') def test_strip_comments_single(self): sql = 'select *-- statement starts here\nfrom foo' res = sqlparse.format(sql, strip_comments=True) self.ndiffAssertEqual(res, 'select * from foo') sql = 'select * -- statement starts here\nfrom foo' res = sqlparse.format(sql, strip_comments=True) self.ndiffAssertEqual(res, 'select * from foo') sql = 'select-- foo\nfrom -- bar\nwhere' res = sqlparse.format(sql, strip_comments=True) self.ndiffAssertEqual(res, 'select from where') self.assertRaises(SQLParseError, sqlparse.format, sql, strip_comments=None) def test_strip_comments_multi(self): sql = '/* sql starts here */\nselect' res = sqlparse.format(sql, strip_comments=True) self.ndiffAssertEqual(res, 'select') sql = '/* sql starts here */ select' res = sqlparse.format(sql, strip_comments=True) self.ndiffAssertEqual(res, 'select') sql = '/*\n * sql starts here\n */\nselect' res = sqlparse.format(sql, strip_comments=True) self.ndiffAssertEqual(res, 'select') sql = 'select (/* sql starts here */ select 2)' res = sqlparse.format(sql, strip_comments=True) self.ndiffAssertEqual(res, 'select (select 2)') def test_strip_ws(self): f = lambda sql: sqlparse.format(sql, strip_whitespace=True) s = 'select\n* from foo\n\twhere ( 1 = 2 )\n' self.ndiffAssertEqual(f(s), 'select * from foo where (1 = 2)') s = 'select -- foo\nfrom bar\n' self.ndiffAssertEqual(f(s), 'select -- foo\nfrom bar') self.assertRaises(SQLParseError, sqlparse.format, s, strip_whitespace=None) def test_preserve_ws(self): # preserve at least one whitespace after subgroups f = lambda sql: sqlparse.format(sql, strip_whitespace=True) s = 'select\n* /* foo */ from bar ' self.ndiffAssertEqual(f(s), 'select * /* foo */ from bar') def test_notransform_of_quoted_crlf(self): # Make sure that CR/CR+LF characters inside string literals don't get # affected by the formatter. s1 = "SELECT some_column LIKE 'value\r'" s2 = "SELECT some_column LIKE 'value\r'\r\nWHERE id = 1\n" s3 = "SELECT some_column LIKE 'value\\'\r' WHERE id = 1\r" s4 = "SELECT some_column LIKE 'value\\\\\\'\r' WHERE id = 1\r\n" f = lambda x: sqlparse.format(x) # Because of the use of self.ndiffAssertEqual(f(s1), "SELECT some_column LIKE 'value\r'") self.ndiffAssertEqual(f(s2), "SELECT some_column LIKE 'value\r'\nWHERE id = 1\n") self.ndiffAssertEqual(f(s3), "SELECT some_column LIKE 'value\\'\r' WHERE id = 1\n") self.ndiffAssertEqual(f(s4), "SELECT some_column LIKE 'value\\\\\\'\r' WHERE id = 1\n") def test_outputformat(self): sql = 'select * from foo;' self.assertRaises(SQLParseError, sqlparse.format, sql, output_format='foo') class TestFormatReindent(TestCaseBase): def test_option(self): self.assertRaises(SQLParseError, sqlparse.format, 'foo', reindent=2) self.assertRaises(SQLParseError, sqlparse.format, 'foo', indent_tabs=2) self.assertRaises(SQLParseError, sqlparse.format, 'foo', reindent=True, indent_width='foo') self.assertRaises(SQLParseError, sqlparse.format, 'foo', reindent=True, indent_width=-12) def test_stmts(self): f = lambda sql: sqlparse.format(sql, reindent=True) s = 'select foo; select bar' self.ndiffAssertEqual(f(s), 'select foo;\n\nselect bar') s = 'select foo' self.ndiffAssertEqual(f(s), 'select foo') s = 'select foo; -- test\n select bar' self.ndiffAssertEqual(f(s), 'select foo; -- test\n\nselect bar') def test_keywords(self): f = lambda sql: sqlparse.format(sql, reindent=True) s = 'select * from foo union select * from bar;' self.ndiffAssertEqual(f(s), '\n'.join(['select *', 'from foo', 'union', 'select *', 'from bar;'])) def test_keywords_between(self): # issue 14 # don't break AND after BETWEEN f = lambda sql: sqlparse.format(sql, reindent=True) s = 'and foo between 1 and 2 and bar = 3' self.ndiffAssertEqual(f(s), '\n'.join(['', 'and foo between 1 and 2', 'and bar = 3'])) def test_parenthesis(self): f = lambda sql: sqlparse.format(sql, reindent=True) s = 'select count(*) from (select * from foo);' self.ndiffAssertEqual(f(s), '\n'.join(['select count(*)', 'from', ' (select *', ' from foo);', ]) ) def test_where(self): f = lambda sql: sqlparse.format(sql, reindent=True) s = 'select * from foo where bar = 1 and baz = 2 or bzz = 3;' self.ndiffAssertEqual(f(s), ('select *\nfrom foo\n' 'where bar = 1\n' ' and baz = 2\n' ' or bzz = 3;')) s = 'select * from foo where bar = 1 and (baz = 2 or bzz = 3);' self.ndiffAssertEqual(f(s), ('select *\nfrom foo\n' 'where bar = 1\n' ' and (baz = 2\n' ' or bzz = 3);')) def test_join(self): f = lambda sql: sqlparse.format(sql, reindent=True) s = 'select * from foo join bar on 1 = 2' self.ndiffAssertEqual(f(s), '\n'.join(['select *', 'from foo', 'join bar on 1 = 2'])) s = 'select * from foo inner join bar on 1 = 2' self.ndiffAssertEqual(f(s), '\n'.join(['select *', 'from foo', 'inner join bar on 1 = 2'])) s = 'select * from foo left outer join bar on 1 = 2' self.ndiffAssertEqual(f(s), '\n'.join(['select *', 'from foo', 'left outer join bar on 1 = 2'] )) s = 'select * from foo straight_join bar on 1 = 2' self.ndiffAssertEqual(f(s), '\n'.join(['select *', 'from foo', 'straight_join bar on 1 = 2'] )) def test_identifier_list(self): f = lambda sql: sqlparse.format(sql, reindent=True) s = 'select foo, bar, baz from table1, table2 where 1 = 2' self.ndiffAssertEqual(f(s), '\n'.join(['select foo,', ' bar,', ' baz', 'from table1,', ' table2', 'where 1 = 2'])) s = 'select a.*, b.id from a, b' self.ndiffAssertEqual(f(s), '\n'.join(['select a.*,', ' b.id', 'from a,', ' b'])) def test_identifier_list_with_functions(self): f = lambda sql: sqlparse.format(sql, reindent=True) s = ("select 'abc' as foo, coalesce(col1, col2)||col3 as bar," "col3 from my_table") self.ndiffAssertEqual(f(s), '\n'.join( ["select 'abc' as foo,", " coalesce(col1, col2)||col3 as bar,", " col3", "from my_table"])) def test_case(self): f = lambda sql: sqlparse.format(sql, reindent=True) s = 'case when foo = 1 then 2 when foo = 3 then 4 else 5 end' self.ndiffAssertEqual(f(s), '\n'.join(['case', ' when foo = 1 then 2', ' when foo = 3 then 4', ' else 5', 'end'])) def test_case2(self): f = lambda sql: sqlparse.format(sql, reindent=True) s = 'case(foo) when bar = 1 then 2 else 3 end' self.ndiffAssertEqual(f(s), '\n'.join(['case(foo)', ' when bar = 1 then 2', ' else 3', 'end'])) def test_nested_identifier_list(self): # issue4 f = lambda sql: sqlparse.format(sql, reindent=True) s = '(foo as bar, bar1, bar2 as bar3, b4 as b5)' self.ndiffAssertEqual(f(s), '\n'.join(['(foo as bar,', ' bar1,', ' bar2 as bar3,', ' b4 as b5)'])) def test_duplicate_linebreaks(self): # issue3 f = lambda sql: sqlparse.format(sql, reindent=True) s = 'select c1 -- column1\nfrom foo' self.ndiffAssertEqual(f(s), '\n'.join(['select c1 -- column1', 'from foo'])) s = 'select c1 -- column1\nfrom foo' r = sqlparse.format(s, reindent=True, strip_comments=True) self.ndiffAssertEqual(r, '\n'.join(['select c1', 'from foo'])) s = 'select c1\nfrom foo\norder by c1' self.ndiffAssertEqual(f(s), '\n'.join(['select c1', 'from foo', 'order by c1'])) s = 'select c1 from t1 where (c1 = 1) order by c1' self.ndiffAssertEqual(f(s), '\n'.join(['select c1', 'from t1', 'where (c1 = 1)', 'order by c1'])) def test_keywordfunctions(self): # issue36 f = lambda sql: sqlparse.format(sql, reindent=True) s = 'select max(a) b, foo, bar' self.ndiffAssertEqual(f(s), '\n'.join(['select max(a) b,', ' foo,', ' bar'])) def test_identifier_and_functions(self): # issue45 f = lambda sql: sqlparse.format(sql, reindent=True) s = 'select foo.bar, nvl(1) from dual' self.ndiffAssertEqual(f(s), '\n'.join(['select foo.bar,', ' nvl(1)', 'from dual'])) class TestOutputFormat(TestCaseBase): def test_python(self): sql = 'select * from foo;' f = lambda sql: sqlparse.format(sql, output_format='python') self.ndiffAssertEqual(f(sql), "sql = 'select * from foo;'") f = lambda sql: sqlparse.format(sql, output_format='python', reindent=True) self.ndiffAssertEqual(f(sql), ("sql = ('select * '\n" " 'from foo;')")) def test_php(self): sql = 'select * from foo;' f = lambda sql: sqlparse.format(sql, output_format='php') self.ndiffAssertEqual(f(sql), '$sql = "select * from foo;";') f = lambda sql: sqlparse.format(sql, output_format='php', reindent=True) self.ndiffAssertEqual(f(sql), ('$sql = "select * ";\n' '$sql .= "from foo;";')) def test_sql(self): # "sql" is an allowed option but has no effect sql = 'select * from foo;' f = lambda sql: sqlparse.format(sql, output_format='sql') self.ndiffAssertEqual(f(sql), 'select * from foo;') def test_format_column_ordering(): # issue89 sql = 'select * from foo order by c1 desc, c2, c3;' formatted = sqlparse.format(sql, reindent=True) expected = '\n'.join(['select *', 'from foo', 'order by c1 desc,', ' c2,', ' c3;']) assert formatted == expected def test_truncate_strings(): sql = 'update foo set value = \'' + 'x' * 1000 + '\';' formatted = sqlparse.format(sql, truncate_strings=10) assert formatted == 'update foo set value = \'xxxxxxxxxx[...]\';' formatted = sqlparse.format(sql, truncate_strings=3, truncate_char='YYY') assert formatted == 'update foo set value = \'xxxYYY\';' def test_truncate_strings_invalid_option(): pytest.raises(SQLParseError, sqlparse.format, 'foo', truncate_strings='bar') pytest.raises(SQLParseError, sqlparse.format, 'foo', truncate_strings=-1) pytest.raises(SQLParseError, sqlparse.format, 'foo', truncate_strings=0) @pytest.mark.parametrize('sql', ['select verrrylongcolumn from foo', 'select "verrrylongcolumn" from "foo"']) def test_truncate_strings_doesnt_truncate_identifiers(sql): formatted = sqlparse.format(sql, truncate_strings=2) assert formatted == sql
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for specs.tensor_spec.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.specs import array_spec from tf_agents.specs import tensor_spec from tf_agents.trajectories import time_step as ts TYPE_PARAMETERS = ( ("tf.int32", tf.int32), ("tf.int64", tf.int64), ("tf.float32", tf.float32), ("tf.float64", tf.float64), ("tf.uint8", tf.uint8), ("tf.string", tf.string), ("tf.bool", tf.bool), ) def example_nested_array_spec(dtype): return { "spec_1": array_spec.ArraySpec((2, 3), dtype), "bounded_spec_1": array_spec.BoundedArraySpec((2, 3), dtype, -10, 10), "bounded_spec_2": array_spec.BoundedArraySpec((2, 3), dtype, -10, -10), "bounded_array_spec_3": array_spec.BoundedArraySpec((2,), dtype, [-10, -10], [10, 10]), "bounded_array_spec_4": array_spec.BoundedArraySpec((2,), dtype, [-10, -9], [10, 9]), "dict_spec": { "spec_2": array_spec.ArraySpec((2, 3), dtype), "bounded_spec_2": array_spec.BoundedArraySpec((2, 3), dtype, -10, 10) }, "tuple_spec": ( array_spec.ArraySpec((2, 3), dtype), array_spec.BoundedArraySpec((2, 3), dtype, -10, 10), ), "list_spec": [ array_spec.ArraySpec((2, 3), dtype), (array_spec.ArraySpec( (2, 3), dtype), array_spec.BoundedArraySpec((2, 3), dtype, -10, 10)), ], } def example_nested_tensor_spec(dtype, outer_dims=()): minval = 0 if dtype == tf.uint8 else -10 maxval = 255 if dtype == tf.uint8 else 10 return { "spec_1": tensor_spec.TensorSpec(outer_dims + (2, 3), dtype), "bounded_spec_1": tensor_spec.BoundedTensorSpec(outer_dims + (2, 3), dtype, minval, maxval), "bounded_spec_2": tensor_spec.BoundedTensorSpec(outer_dims + (2, 3), dtype, minval, minval), "bounded_array_spec_3": tensor_spec.BoundedTensorSpec(outer_dims + (2,), dtype, [minval, minval], [maxval, maxval]), "bounded_array_spec_4": tensor_spec.BoundedTensorSpec(outer_dims + (2,), dtype, [minval, minval + 1], [maxval, maxval - 1]), "dict_spec": { "spec_2": tensor_spec.TensorSpec(outer_dims + (2, 3), dtype), "bounded_spec_2": tensor_spec.BoundedTensorSpec(outer_dims + (2, 3), dtype, minval, maxval) }, "tuple_spec": ( tensor_spec.TensorSpec(outer_dims + (2, 3), dtype), tensor_spec.BoundedTensorSpec(outer_dims + (2, 3), dtype, minval, maxval), ), "list_spec": [ tensor_spec.TensorSpec(outer_dims + (2, 3), dtype), (tensor_spec.TensorSpec(outer_dims + (2, 3), dtype), tensor_spec.BoundedTensorSpec(outer_dims + (2, 3), dtype, minval, maxval)), ], } @parameterized.named_parameters(*TYPE_PARAMETERS) class BoundedTensorSpecSampleTest(tf.test.TestCase, parameterized.TestCase): def testIntegerSamplesIncludeUpperBound(self, dtype): if not dtype.is_integer: # Only test on integer dtypes. return spec = tensor_spec.BoundedTensorSpec((2, 3), dtype, 3, 3) sample = tensor_spec.sample_spec_nest(spec) sample_ = self.evaluate(sample) self.assertEqual(sample_.shape, (2, 3)) self.assertTrue(np.all(sample_ == 3)) def testIntegerSamplesExcludeMaxOfDtype(self, dtype): # Exclude non integer types and uint8 (has special sampling logic). if not dtype.is_integer or dtype == tf.uint8: return spec = tensor_spec.BoundedTensorSpec((2, 3), dtype, dtype.max - 1, dtype.max) sample = tensor_spec.sample_spec_nest(spec) sample_ = self.evaluate(sample) self.assertEqual(sample_.shape, (2, 3)) self.assertTrue(np.all(sample_ == dtype.max - 1)) def testSampleWithArrayInBounds(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") spec = tensor_spec.BoundedTensorSpec((2, 3), dtype, (0, 0, 0), 3) sample = tensor_spec.sample_spec_nest(spec) self.assertEqual((2, 3), sample.shape) sample_ = self.evaluate(sample) self.assertEqual((2, 3), sample_.shape) self.assertTrue(np.all(sample_ <= 3)) self.assertTrue(np.all(0 <= sample_)) def testTensorSpecSample(self, dtype): if dtype == tf.string or dtype == tf.bool: self.skipTest("Not compatible with string or bool type.") spec = tensor_spec.TensorSpec((2, 3), dtype) sample = tensor_spec.sample_spec_nest(spec) bounded = tensor_spec.BoundedTensorSpec.from_spec(spec) sample_ = self.evaluate(sample) self.assertTrue( np.all(sample_ >= bounded.minimum), (sample_.min(), sample_.max())) self.assertTrue( np.all(sample_ <= bounded.maximum), (sample_.min(), sample_.max())) def testBoundedTensorSpecSample(self, dtype): if dtype == tf.string or dtype == tf.bool: self.skipTest("Not compatible with string or bool type.") spec = tensor_spec.BoundedTensorSpec((2, 3), dtype, 2, 7) sample = tensor_spec.sample_spec_nest(spec) sample_ = self.evaluate(sample) self.assertTrue(np.all(sample_ >= 2)) self.assertTrue(np.all(sample_ <= 7)) def testOuterDimsNestAddsDimensionsToSpecs(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") nested_spec = example_nested_tensor_spec(dtype) outer_dims = (4, 3) self.assertEqual( tensor_spec.add_outer_dims_nest(nested_spec, outer_dims), example_nested_tensor_spec(dtype, outer_dims)) def testAddOuterShapeWhenNotTupleOrListThrows(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") with self.assertRaises(ValueError): tensor_spec.add_outer_dims_nest(1, example_nested_tensor_spec(dtype)) def testOuterDimsNestRemovesDimensionsFromSpecs(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") nested_spec = example_nested_tensor_spec(dtype) larger_spec = tensor_spec.add_outer_dims_nest(nested_spec, (3, 4)) removed_spec = tensor_spec.remove_outer_dims_nest(larger_spec, 2) self.assertEqual(nested_spec, removed_spec) def testOuterDimsNestRemovesDimensionsFromSpecsThrows(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") nested_spec = example_nested_tensor_spec(dtype) with self.assertRaises(ValueError): tensor_spec.remove_outer_dims_nest(nested_spec, 10) def testAddOuterDimToSpecs(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") nested_spec = example_nested_tensor_spec(dtype) outer_dim = 4 self.assertEqual( tensor_spec.add_outer_dim(nested_spec, outer_dim), example_nested_tensor_spec(dtype, (outer_dim,))) def testAddOuterDimNoneToSpecs(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") nested_spec = example_nested_tensor_spec(dtype) outer_dim = None self.assertEqual( tensor_spec.add_outer_dim(nested_spec, outer_dim), example_nested_tensor_spec(dtype, (outer_dim,))) def testNestSample(self, dtype): if dtype == tf.string or dtype == tf.bool: self.skipTest("Not compatible with string or bool type.") nested_spec = example_nested_tensor_spec(dtype) sample = tensor_spec.sample_spec_nest(nested_spec) spec_1 = tensor_spec.BoundedTensorSpec.from_spec(nested_spec["spec_1"]) bounded_spec_1 = nested_spec["bounded_spec_1"] sample_ = self.evaluate(sample) self.assertTrue(np.all(sample_["spec_1"] >= spec_1.minimum)) self.assertTrue(np.all(sample_["spec_1"] <= spec_1.maximum)) self.assertTrue(np.all(sample_["bounded_spec_1"] >= bounded_spec_1.minimum)) self.assertTrue(np.all(sample_["bounded_spec_1"] <= bounded_spec_1.maximum)) self.assertIn("spec_2", sample_["dict_spec"]) tensor_spec_2 = sample_["dict_spec"]["spec_2"] self.assertTrue(np.all(tensor_spec_2 >= spec_1.minimum)) self.assertTrue(np.all(tensor_spec_2 <= spec_1.maximum)) self.assertIn("bounded_spec_2", sample_["dict_spec"]) sampled_bounded_spec_2 = sample_["dict_spec"]["bounded_spec_2"] self.assertTrue(np.all(sampled_bounded_spec_2 >= spec_1.minimum)) self.assertTrue(np.all(sampled_bounded_spec_2 <= spec_1.maximum)) self.assertIn("tuple_spec", sample_) self.assertTrue(np.all(sample_["tuple_spec"][0] >= spec_1.minimum)) self.assertTrue(np.all(sample_["tuple_spec"][0] <= spec_1.maximum)) self.assertTrue(np.all(sample_["tuple_spec"][1] >= bounded_spec_1.minimum)) self.assertTrue(np.all(sample_["tuple_spec"][1] <= bounded_spec_1.maximum)) self.assertIn("list_spec", sample_) self.assertTrue(np.all(sample_["list_spec"][0] >= spec_1.minimum)) self.assertTrue(np.all(sample_["list_spec"][0] <= spec_1.maximum)) self.assertTrue(np.all(sample_["list_spec"][1][0] >= spec_1.minimum)) self.assertTrue(np.all(sample_["list_spec"][1][0] <= spec_1.maximum)) self.assertTrue( np.all(sample_["list_spec"][1][1] >= bounded_spec_1.minimum)) self.assertTrue( np.all(sample_["list_spec"][1][1] <= bounded_spec_1.maximum)) def testNestSampleOuterDims(self, dtype): # Can't add another level of parameterized args because the test class is # already parameterized on dtype. if dtype == tf.string or dtype == tf.bool: self.skipTest("Not compatible with string or bool type.") self._testNestSampleOuterDims(dtype, use_tensor=False) self._testNestSampleOuterDims(dtype, use_tensor=True) def _testNestSampleOuterDims(self, dtype, use_tensor): nested_spec = example_nested_tensor_spec(dtype) if use_tensor: outer_dims = tf.constant([2, 3], dtype=tf.int32) else: outer_dims = (2, 3) sample = tensor_spec.sample_spec_nest(nested_spec, outer_dims=outer_dims) bounded = tensor_spec.BoundedTensorSpec.from_spec(nested_spec["spec_1"]) sample_ = self.evaluate(sample) self.assertEqual((2, 3) + tuple(nested_spec["spec_1"].shape.as_list()), sample_["spec_1"].shape) self.assertTrue(np.all(sample_["spec_1"] >= bounded.minimum)) self.assertTrue(np.all(sample_["spec_1"] <= bounded.maximum)) bounded_spec_1 = nested_spec["bounded_spec_1"] self.assertEqual((2, 3) + tuple(bounded_spec_1.shape.as_list()), sample_["bounded_spec_1"].shape) self.assertTrue(np.all(sample_["bounded_spec_1"] >= bounded_spec_1.minimum)) self.assertTrue(np.all(sample_["bounded_spec_1"] <= bounded_spec_1.maximum)) self.assertIn("spec_2", sample_["dict_spec"]) tensor_spec_2 = sample_["dict_spec"]["spec_2"] self.assertEqual( (2, 3) + tuple(nested_spec["dict_spec"]["spec_2"].shape.as_list()), tensor_spec_2.shape) self.assertTrue(np.all(tensor_spec_2 >= bounded.minimum)) self.assertTrue(np.all(tensor_spec_2 <= bounded.maximum)) self.assertIn("bounded_spec_2", sample_["dict_spec"]) sampled_bounded_spec_2 = sample_["dict_spec"]["bounded_spec_2"] self.assertEqual( (2, 3) + tuple(nested_spec["dict_spec"]["bounded_spec_2"].shape.as_list()), sampled_bounded_spec_2.shape) self.assertTrue(np.all(sampled_bounded_spec_2 >= bounded.minimum)) self.assertTrue(np.all(sampled_bounded_spec_2 <= bounded.maximum)) self.assertIn("tuple_spec", sample_) self.assertEqual( (2, 3) + tuple(nested_spec["tuple_spec"][0].shape.as_list()), sample_["tuple_spec"][0].shape) self.assertTrue(np.all(sample_["tuple_spec"][0] >= bounded.minimum)) self.assertTrue(np.all(sample_["tuple_spec"][0] <= bounded.maximum)) tuple_bounded_spec = nested_spec["tuple_spec"][1] self.assertEqual((2, 3) + tuple(tuple_bounded_spec.shape.as_list()), sample_["tuple_spec"][1].shape) self.assertTrue( np.all(sample_["tuple_spec"][1] >= tuple_bounded_spec.minimum)) self.assertTrue( np.all(sample_["tuple_spec"][1] <= tuple_bounded_spec.maximum)) self.assertIn("list_spec", sample_) self.assertEqual( (2, 3) + tuple(nested_spec["list_spec"][0].shape.as_list()), sample_["list_spec"][0].shape) self.assertTrue(np.all(sample_["list_spec"][0] >= bounded.minimum)) self.assertTrue(np.all(sample_["list_spec"][0] <= bounded.maximum)) self.assertEqual( (2, 3) + tuple(nested_spec["list_spec"][1][0].shape.as_list()), sample_["list_spec"][1][0].shape) self.assertTrue(np.all(sample_["list_spec"][1][0] >= bounded.minimum)) self.assertTrue(np.all(sample_["list_spec"][1][0] <= bounded.maximum)) list_bounded_spec = nested_spec["list_spec"][1][1] self.assertTrue( np.all(sample_["list_spec"][1][1] >= list_bounded_spec.minimum)) self.assertTrue( np.all(sample_["list_spec"][1][1] <= list_bounded_spec.maximum)) def _test_batched_shape(sample_, spec_): self.assertSequenceEqual(sample_.shape, outer_dims + tuple(spec_.shape)) tf.nest.map_structure(_test_batched_shape, sample, nested_spec) @parameterized.named_parameters(*TYPE_PARAMETERS) class TensorSpecZeroTest(tf.test.TestCase, parameterized.TestCase): def testNestZero(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") nested_spec = example_nested_tensor_spec(dtype) zeros = tensor_spec.zero_spec_nest(nested_spec) zeros_ = self.evaluate(zeros) def check_shape_and_zero(spec, value): self.assertEqual(spec.shape, value.shape) self.assertTrue(np.all(value == 0)) tf.nest.map_structure(check_shape_and_zero, nested_spec, zeros_) def testNestZeroWithOuterDims(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") nested_spec = example_nested_tensor_spec(dtype) zeros = tensor_spec.zero_spec_nest(nested_spec, outer_dims=[4]) zeros_ = self.evaluate(zeros) def check_shape_and_zero(spec, value): self.assertEqual([4] + spec.shape, value.shape) self.assertTrue(np.all(value == 0)) tf.nest.map_structure(check_shape_and_zero, nested_spec, zeros_) def testNestZeroWithOuterDimsTensor(self, dtype): if dtype == tf.string: self.skipTest("Not compatible with string type.") nested_spec = example_nested_tensor_spec(dtype) zeros = tensor_spec.zero_spec_nest( nested_spec, outer_dims=[tf.constant(8, dtype=tf.int32)]) zeros_ = self.evaluate(zeros) def check_shape_and_zero(spec, value): self.assertEqual([8] + spec.shape, value.shape) self.assertTrue(np.all(value == 0)) tf.nest.map_structure(check_shape_and_zero, nested_spec, zeros_) def testOnlyTensorSpecIsSupported(self, dtype): sparse_spec = tf.SparseTensorSpec([1], tf.int32) with self.assertRaisesRegex(NotImplementedError, "not supported.*Sparse"): _ = tensor_spec.zero_spec_nest(sparse_spec) ragged_spec = tf.RaggedTensorSpec(ragged_rank=0, shape=[3, 5]) with self.assertRaisesRegex(NotImplementedError, "not supported.*Ragged"): _ = tensor_spec.zero_spec_nest(ragged_spec) def testEmptySpec(self, dtype): self.assertEqual((), tensor_spec.zero_spec_nest(())) self.assertEqual([], tensor_spec.zero_spec_nest([])) @parameterized.named_parameters(*TYPE_PARAMETERS) class TensorSpecTypeTest(tf.test.TestCase, parameterized.TestCase): def testIsDiscrete(self, dtype): spec = tensor_spec.TensorSpec((2, 3), dtype=dtype) self.assertIs(tensor_spec.is_discrete(spec), dtype.is_integer) def testIsContinuous(self, dtype): spec = tensor_spec.TensorSpec((2, 3), dtype=dtype) self.assertIs(tensor_spec.is_continuous(spec), dtype.is_floating) def testExclusive(self, dtype): if dtype == tf.string or dtype == tf.bool: self.skipTest("Not compatible with string or bool type.") spec = tensor_spec.TensorSpec((2, 3), dtype=dtype) self.assertIs( tensor_spec.is_discrete(spec) ^ tensor_spec.is_continuous(spec), True) class FromSpecTest(tf.test.TestCase): def testFromSpec(self): example_array_spec = example_nested_array_spec(np.int32) example_tensor_spec = tensor_spec.from_spec(example_array_spec) flat_tensor_spec = tf.nest.flatten(example_tensor_spec) expected_tensor_spec = tf.nest.flatten(example_nested_tensor_spec(tf.int32)) for spec, expected_spec in zip(flat_tensor_spec, expected_tensor_spec): self.assertEqual(type(expected_spec), type(spec)) self.assertEqual(expected_spec, spec) def testFromStringSpec(self): spec = tensor_spec.from_spec(array_spec.ArraySpec([1], np.string_)) self.assertEqual(tf.string, spec.dtype) class ToPlaceholderTest(tf.test.TestCase): def skipIfExecutingEagerly(self): # With TF 2.0 (or when executing eagerly), these tests do not make sense. if tf.executing_eagerly(): self.skipTest("Placeholders do not make sense when executing eagerly") def testCreatePlaceholderFromTuple(self): self.skipIfExecutingEagerly() specs = ( tensor_spec.TensorSpec(shape=(), dtype=tf.float32, name="act_prob"), tensor_spec.TensorSpec(shape=(), dtype=tf.float32, name="value_pred"), ) ph = tensor_spec.to_nest_placeholder(specs) self.assertEqual(2, len(ph)) self.assertEqual(ph[0].name, "act_prob:0") self.assertEqual(ph[0].dtype, tf.float32) self.assertEqual(ph[0].shape, tf.TensorShape([])) self.assertEqual(ph[1].name, "value_pred:0") self.assertEqual(ph[1].dtype, tf.float32) self.assertEqual(ph[1].shape, tf.TensorShape([])) def testCreatePlaceholderFromTimeStepSpec(self): self.skipIfExecutingEagerly() obs_spec = tensor_spec.TensorSpec([2], tf.float32, "obs") time_step_spec = ts.time_step_spec(obs_spec) ph = tensor_spec.to_nest_placeholder(time_step_spec) self.assertIsInstance(ph, ts.TimeStep) self.assertEqual(ph.observation.name, "obs:0") self.assertEqual(ph.observation.dtype, tf.float32) self.assertEqual(ph.observation.shape, tf.TensorShape([2])) def testCreatePlaceholderWithNameScope(self): self.skipIfExecutingEagerly() obs_spec = tensor_spec.TensorSpec([2], tf.float32, "obs") time_step_spec = ts.time_step_spec(obs_spec) ph = tensor_spec.to_nest_placeholder(time_step_spec, name_scope="action") self.assertEqual(ph.observation.name, "action/obs:0") if __name__ == "__main__": tf.test.main()
# Copyright (c) 2011 - 2017, Intel Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """``test_clissh.py`` `Unittests for cli<X>.py modules` """ import os import re import time import socket from unittest.mock import MagicMock import paramiko import pytest from testlib import clissh from testlib import clitelnet from testlib import clinns from testlib.custom_exceptions import CLIException def create_ssh(request, host, login): ssh_conn = clissh.CLISSH(host, username=login, sudo_prompt="[sudo] password") return ssh_conn def create_telnet(request, host, login): telnet_conn = clitelnet.TelnetCMD(host, username=login, sudo_prompt="[sudo] password") return telnet_conn def create_nns(request, host, login): os.system("sudo ip netns add %s" % host) os.system("sudo ip netns exec %s ifconfig lo up" % host) request.addfinalizer(lambda: os.system("sudo ip netns del %s" % host)) nns_obj = clinns.CLISSHNetNS(host, username=login, sudo_prompt="[sudo] password") return nns_obj @pytest.fixture(scope="session", params=["ssh", "telnet", "nns"]) def credentials(request): if request.param not in request.config.option.cli_api: pytest.skip("{0} API is skipped for test.".format(request.param.upper())) if request.param == "nns" and os.getenv("USER") != "root": pytest.fail("NNS unittests require root permissions.") ipaddr = request.config.option.ssh_ip username = request.config.option.ssh_user password = request.config.option.ssh_pass return ipaddr, username, password, request.param @pytest.fixture def cli_obj(request, credentials): request.config.login = credentials[0] obj = globals()["create_{0}".format(credentials[3])](request, credentials[0], credentials[1]) request.addfinalizer(obj.close) obj.login(credentials[1], credentials[2], timeout=5) return obj @pytest.fixture def request_object(request, credentials): obj = globals()["create_{0}".format(credentials[3])](request, credentials[0], credentials[1]) return obj @pytest.mark.unittests class TestSSH(object): """CLISSH unittests. """ def test_login_true(self, credentials, request_object): """Verify login/logout. """ obj = request_object obj.login(credentials[1], credentials[2], timeout=5) obj.close() def test_multiple_login_logout(self, credentials, request_object): """Verify login after logout multiple times. """ for i in range(5): request_object.login(credentials[1], credentials[2], timeout=5) request_object.close() @pytest.mark.skipif("'telnet' not in config.option.cli_api", reason="Skip telnet testcase.") def test_enter_exit_mode(self, cli_obj, credentials): """Verify enter/exit mode. """ message = "Telnet specific test case" if isinstance(cli_obj, clinns.CLISSHNetNS): pytest.skip(message) if isinstance(cli_obj, clissh.CLISSH): pytest.skip(message) assert cli_obj.enter_mode(cmd="python", new_prompt=">>>") == ">>>" out, err, _ = cli_obj.exec_command("print 'O' + 'K'") assert "OK" in out assert credentials[1] in cli_obj.exit_mode(exit_cmd="exit()") @pytest.mark.skipif(True, reason="Skip this test because user doesn't have root permission") def test_sudo_shell_command_ssh(self, cli_obj, credentials): """Verify sudo mode for ssh. """ message = "SSH specific test case" if isinstance(cli_obj, clinns.CLISSHNetNS): pytest.skip(message) if isinstance(cli_obj, clitelnet.TelnetCMD): pytest.skip(message) cli_obj.open_shell() # Clear shell output time.sleep(0.5) cli_obj.shell_read() cli_obj.password = credentials[2] # cmd = "env | $(which grep) TTY" cmd = "stty -a" data, ret_code = cli_obj.shell_command(cmd, timeout=5, sudo=True) assert ret_code == "0" assert data @pytest.mark.skipif("'telnet' not in config.option.cli_api", reason="Skip telnet testcase.") def test_sudo_shell_command_telnet(self, cli_obj, credentials): """Verify sudo mode for telnet. """ message = "Telnet specific test case" if isinstance(cli_obj, clinns.CLISSHNetNS): pytest.skip(message) if isinstance(cli_obj, clissh.CLISSH): pytest.skip(message) cli_obj.password = credentials[2] cmd = "ls" data, ret_code = cli_obj.shell_command(cmd, timeout=5, sudo=True) def test_login_false_username_ssh(self, credentials): """Verify AuthenticationException in case Incorrect username for ssh object. """ ssh_conn = clissh.CLISSH(credentials[0]) with pytest.raises(paramiko.AuthenticationException): ssh_conn = clissh.CLISSH(credentials[0]) ssh_conn.login(ssh_conn.randstr(30), credentials[2], timeout=5) @pytest.mark.skipif("'telnet' not in config.option.cli_api", reason="Skip telnet testcase.") def test_login_false_username_telnet(self, credentials): """Verify AuthenticationException in case Incorrect username for telnet object. """ telnet_conn = clitelnet.TelnetCMD(credentials[0]) with pytest.raises(CLIException): telnet_conn = clitelnet.TelnetCMD(credentials[0]) telnet_conn.login(telnet_conn.randstr(30), credentials[2], timeout=5) def test_login_false_userpass_ssh(self, credentials): """Verify AuthenticationException in case Incorrect password for ssh object. """ ssh_conn = clissh.CLISSH(credentials[0]) with pytest.raises(paramiko.AuthenticationException): ssh_conn = clissh.CLISSH(credentials[0]) ssh_conn.login(credentials[1], ssh_conn.randstr(30), timeout=5) @pytest.mark.skipif("'telnet' not in config.option.cli_api", reason="Skip telnet testcase.") def test_login_false_userpass_telnet(self, credentials): """Verify AuthenticationException in case Incorrect password for telnet object. """ telnet_conn = clitelnet.TelnetCMD(credentials[0]) with pytest.raises(CLIException): telnet_conn = clitelnet.TelnetCMD(credentials[0]) telnet_conn.login(credentials[1], telnet_conn.randstr(30), timeout=5) # Negative tests for nns module isn't implemented, because nns module always in 'login' mode def test_shell_command_1(self, cli_obj): """Non interactive shell command. No prompt is defined. """ cli_obj.open_shell() # Clear shell output time.sleep(0.5) cli_obj.shell_read() # cmd = "env | $(which grep) TTY" cmd = "stty -a" data, ret_code = cli_obj.shell_command(cmd, timeout=5, sudo=False) assert ret_code == "0" assert data def test_shell_command_2(self, cli_obj): """Non interactive shell command. Read prompt and set prompt. """ if isinstance(cli_obj, clinns.CLISSHNetNS): pytest.skip("clinns objects don't have login procedure") data = cli_obj.open_shell() # Last line in login greater has to be prompt. # Wait 3 seconds for it. # data = cli_obj.shell_read(3) # Read prompt prompt = data.split("\n")[-1] # Set prompt to ssh object assert prompt cli_obj.prompt = prompt # Execute command with ret_code=False cmd = "stty -a" data, ret_code = cli_obj.shell_command(cmd, timeout=5, ret_code=False) # Return code isn't read assert ret_code is None assert data # Check return code manually cmd = "echo ENV_RET_CODE=$?" data, _ = cli_obj.shell_command(cmd, timeout=5, ret_code=False) assert "ENV_RET_CODE=0" in data def test_shell_command_3(self, cli_obj): """Non interactive shell command. Non 0 exit code. """ cli_obj.open_shell() # Execute command that has to exit with non 0 exit code cmd = "test ! -d /" data, ret_code = cli_obj.shell_command(cmd, timeout=5, expected_rc=1) # Return code isn't read assert ret_code == "1" def test_put_file(self, cli_obj, credentials): """Copying file to remote host. """ if isinstance(cli_obj, clitelnet.TelnetCMD): pytest.xfail("put_file in not supported by clitelnet objects") # Test file is test module itself src = os.path.abspath(__file__) dst = "/tmp/testfile_for_taf_clissh_put_file_method_unittest_{0}".format(credentials[3]) # Get size of test file in bytes. fsize = os.path.getsize(src) # Remove testfile on remote host rm_command = "rm {0}".format(dst) _out, _err, _ = cli_obj.exec_command(rm_command, timeout=3) # Verify that test file doesn't exist on remote host command = "ls {0}".format(dst) _out, _err, _ = cli_obj.exec_command(command, timeout=3) assert "file_method_unittest" not in _out # Copying file to remote host, and verify that it exists cli_obj.put_file(src, dst) _out, _err, _ = cli_obj.exec_command(command, timeout=3) assert "file_method_unittest" in _out # Verify file size command = "wc -c {0}".format(dst) _out, _err, _ = cli_obj.exec_command(command, timeout=3) r_fsize = _out.split(" ")[0] assert str(fsize) == r_fsize # Remove testfile on remote host _out, _err, _ = cli_obj.exec_command(rm_command, timeout=3) def test_get_file(self, tmpdir, cli_obj, credentials): """Copying file to remote host. """ if isinstance(cli_obj, clitelnet.TelnetCMD): pytest.skip("get_file in not supported by clitelnet objects") pid = os.getpid() remote_file = "/tmp/testfile_for_taf_clissh_get_file_method_unittest_{0}_{1}_remote".format(credentials[3], pid) local_file = tmpdir.join("testfile_for_taf_clissh_get_file_method_unittest_{0}_{1}_local".format(credentials[3], pid)) # Remove local file is exists try: local_file.remove() except EnvironmentError: pass assert not local_file.exists() # Create testfile on remote host cli_obj.open_shell() command = "echo Some test data > {0}".format(remote_file) _rc, _out = cli_obj.shell_command(command, timeout=3) # Verify that test file exists on remote host command = "ls {0}".format(remote_file) time.sleep(0.3) _out, _err, _ = cli_obj.exec_command(command, timeout=3) assert "file_method_unittest" in _out # Copying file to remote host, and verify that it exists cli_obj.get_file(remote_file, str(local_file)) assert local_file.exists() # Verify file size. (text in echo command above has to create file of 15 bytes size.) l_fsize = local_file.size() assert l_fsize == 15 # Remove testfile on remote host rm_command = "rm {0}".format(remote_file) _out, _err, _ = cli_obj.exec_command(rm_command, timeout=3) def test_interactive_command_1(self, cli_obj): """Interactive shell command with str actions. """ cli_obj.open_shell() # Execute command cmd = "python3" # Add interactive commands alternatives = [] # First check some host alternatives.append((">>>", "a", False, True)) # Second - exit alternatives.append(("is not defined", "exit()", False, True)) data, ret_code = cli_obj.shell_command(cmd, alternatives=alternatives, timeout=5) # Verify output assert ret_code == "0" # Verify that our commands are in output assert [s for s in data.split("\n") if ">>> a" in s] assert [s for s in data.split("\n") if ">>> exit()" in s] def test_interactive_command_2(self, cli_obj): """Interactive shell command with func action. """ flag = [] def append_flag(): """Append mutable object to verify that action is called and called only once. """ flag.append(1) cli_obj.open_shell() # Execute command # cmd = "ping -c7 127.0.0.1" cmd = "python3" # Add interactive commands alternatives = [] # Call action on 3th ICMP request alternatives.append((">>>", "import time; print('1\\n2\\nabcd\\n'); time.sleep(2)", False, True)) alternatives.append(("abcd", append_flag, False, True)) alternatives.append((">>>", "exit()", False, True)) data, ret_code = cli_obj.shell_command(cmd, alternatives=alternatives, timeout=5) # Verify output assert ret_code == "0" assert flag def test_send_command(self, cli_obj): """Send command without waiting exit. """ if isinstance(cli_obj, clinns.CLISSHNetNS): pytest.skip("For clinns objects must be created child object first, then shell_read() can be used") cli_obj.open_shell() # Clear shell buffer time.sleep(1) cli_obj.shell_read() # Execute command with ret_code=False cmd = "ping -c3 127.0.0.1" cli_obj.send_command(cmd) # Wait untill command is executed time.sleep(5) # Verify output out = cli_obj.shell_read() # original was icmp_req=3 which is not in the output # the standard ping output on Linux is icmp_seq=3 so use re to be safe assert re.search(r"icmp_[rs]eq=3", out) assert "rtt min/avg/max/mdev" in out def test_cleared_shell_buffer(self, cli_obj): """Cleared buffer after open_shell(). """ if isinstance(cli_obj, clinns.CLISSHNetNS): pytest.skip("For clinns objects open_shell() is not implemented") cli_obj.open_shell() # Execute command with ret_code=False cmd = "ping -c3 127.0.0.1" cli_obj.send_command(cmd) # Wait untill command is executed time.sleep(5) # Verify output out = cli_obj.shell_read() # original was icmp_req=3 which is not in the output # the standard ping output on Linux is icmp_seq=3 so use re to be safe assert re.search(r"icmp_[rs]eq=3", out) assert "rtt min/avg/max/mdev" in out assert "Last login:" not in out def test_exec_command_timeout_telnet(self, cli_obj): """Verify timeout for exec_command. """ if isinstance(cli_obj, clinns.CLISSHNetNS) or isinstance(cli_obj, clissh.CLISSH): pytest.skip("CLISSHException raises only for clitelnet objects") # The following ping command requires 10s to execute. cmd = "ping -i1 -c10 127.0.0.1" # Set timeout to 1s with pytest.raises(CLIException): cli_obj.exec_command(cmd, timeout=1) def test_exec_command_timeout_ssh(self, cli_obj): """Verify timeout for exec_command. """ if isinstance(cli_obj, clinns.CLISSHNetNS) or isinstance(cli_obj, clitelnet.TelnetCMD): pytest.skip("CLISSHException raises only for clitelnet and clinns objects") # The following ping command requires 10s to execute. cmd = "ping -i1 -c10 127.0.0.1" # Set timeout to 1s with pytest.raises(socket.timeout): cli_obj.exec_command(cmd, timeout=0.5) def test_shell_command_timeout(self, cli_obj): """Verify timeout for shell_command. """ cli_obj.open_shell() # The following ping command requires 5s to execute. cmd = "ping -i1 -c5 127.0.0.1" # Set timeout to 1s with pytest.raises(CLIException): cli_obj.shell_command(cmd, timeout=1) def test_quiet_1(self, cli_obj): """Verify raising an exception on return code != 0. """ cli_obj.open_shell() # The command has to return exit code 2. cmd = "ping -l" with pytest.raises(CLIException): cli_obj.shell_command(cmd) def test_quiet_2(self, cli_obj): """Check expected_rc parameter. """ cli_obj.open_shell() # The command has to return exit code 2. cmd = "ping -l" cli_obj.shell_command(cmd, expected_rc="2") def test_quiet_3(self, cli_obj, monkeypatch): """Verify an exception isn't raised on return code != 0 and default quiet option. """ cli_obj.open_shell() # The command has to return exit code 2. cmd = "ping -l" monkeypatch.setattr(cli_obj, "quiet", True) out, rc = cli_obj.shell_command(cmd) assert rc == "2" def test_alter_in_command(self, cli_obj): """Verify if prompt present in command it doesn't influence on finding prompt in output data. """ cli_obj.open_shell() cmd = "echo some_test_data" # Add interactive commands alternatives = [] # Call action on 3th ICMP request alternatives.append(("some_test_data", None, True, False)) data, ret_code = cli_obj.shell_command(cmd, alternatives=alternatives, timeout=5) # Verify output assert ret_code == "0" assert len(data.split("\n")) == 2 @pytest.mark.skipif(True, reason="Stupid fails intermittently due to incomplete reads") def test_send_command_continuous_output(self, cli_obj): """Send command without waiting exit and read continuous output. """ if isinstance(cli_obj, clinns.CLISSHNetNS): pytest.xfail("For clinns objects must be created child object first, then shell_read() can be used") if isinstance(cli_obj, clitelnet.TelnetCMD): pytest.xfail("For clitelnet objects commands with continuous output must be launched in batch mode") cli_obj.open_shell() # Clear shell buffer time.sleep(1) cli_obj.shell_read() # Execute command with ret_code=False cmd = "top -d1" cli_obj.send_command(cmd) # Wait some time untill command is running time.sleep(2) # Verify output out1 = cli_obj.shell_read() # Verify that output contains top headers # pytest bug with % in compound assert so split them # https://bitbucket.org/hpk42/pytest/issue/604/valueerror-unsupported-format-character-in # the column headers are not re-output because of curses # only the load average header is re-written for each update assert "%" "Cpu" in out1 # this fails intermittently, possibly increase the sleep or implement a better # select poll or read loop. But we don't care right now assert "users," in out1 assert "load average" in out1 # Save time from top output regexp = re.compile(r"top - \d\d:\d\d:\d\d") time1 = regexp.search(out1) assert time1 is not None time1 = time1.group() time.sleep(2) out2 = cli_obj.shell_read() open("/tmp/out2", "w").write(out2) assert "%" "Cpu" in out2 assert "users," in out2 assert "load average" in out2 # But out2 should contain differ data time2 = regexp.search(out2) assert time2 is not None time2 = time2.group() assert time1 != time2 # Send Ctrl + C cli_obj.send_command(cli_obj.Raw("\x03")) out3 = cli_obj.shell_read() # Verify that there is no top output assert "%" "Cpu" not in out3 assert "users," not in out3 assert "load average" not in out3 # Verify that there is no top output again time.sleep(1) out4 = cli_obj.shell_read() assert "%" "Cpu" not in out4 assert "users," not in out4 assert "load average" not in out4 @pytest.mark.unittests class TestCLISSH(object): EMPTY_PASSWORD_KEY = """\ -----BEGIN RSA PRIVATE KEY----- MIIEpgIBAAKCAQEAybpzWXae7rYCORumvBc6f+J77fhZ/WU2fiqLgv62DojfWFqY 92U0Bo8NtynU4NcVwQBrNCCpinMD3JdDcLSXsN70ON5z5FLm1Ms4gvpICei7TegC FVTEMsa9gfiMygDAOAapLlsZP6v1F/r/zQtsV9Nqm5pTlZ5gF6e/FmlQbg/sF52K A3sB762eBKfwq9p5/l2XfAELY4ypvGaAS+alVStuop3hhax5D6RUy1hG7IsMfT1x tFfwqgKqbO0AahjojakTlKZ+VBrGQYb9SUWSEOTN/EdU2wYDK9u08ilSCYW1HbN7 rV4yX4ZZXZBuddll8DRVQIs5fZP1xKQBKfiSZQIDAQABAoIBAQCaIPwrGafbKXNP YOInCfRna4tWyg8vvVpCUY1gm+5L8qX7ItWHCGsUq85F6Q8+bvevC/vcyyvenXwQ 2f3sKf9QYzjkDosro2+8nDzkTggmkgwyPRcCZ060oQaAPICNgr9azzQKOA51iJPu K5eweY7hF6Z3lxVP1r8Cs+cbX4HVZLbmva+98476zw9MD+XEd2qkjgldLAmVCsiR E3H862GU0yk+mReSs0Qz8OYjyWAGXPN9SmMPIv4qZg4qVLw6y17pN+A4aMmL1ThK h9jPoAsXL+5lpi3T1rHUes1ene9hQLyv46B6TKTiTRPnP2aUeJF7xXS4aZSEVy23 0zTphoatAoGBAPMosVDw+iT8bMzmG5cFHEA2CAd/EdXKkPEvWUCf4uFcqzslImUW Vq0asuFyOHBCHsVxsA5BmYRsCcQdn8jUuTHM3GAUwf29rmhW584W5Jznv1bByNMQ Og35zXNYm+CgxWOaD8ayXtAZ+3GgjKA+JbpsIh1wqwrv/q4atiha1CTvAoGBANRh pnCBFgLt6l5TsnmqB4yUiSC+SIluuz5csoQnCSgb4DBKe6yjDzqXTStHQOBv5l7o wcuXzziX3rXZ5ym14aU20Dix7H+fjjTDCOT/A4r44PhZBKcC53RnndJ3a283BrAK s2p4gn0iGPtG24UG9UokDD56vDChED3Bc8a3ngXrAoGBAOJXIpbBeVcsUOp513zA GQf8Q4UW1zc2k6yt8lqhecNlS06GxnlqTcxcad5JQBfetF398W+TyJ7nIkAXg0Ci IrEkjI4zRFA5XDtrieLglHUpk4XiZFlzZVbVDFUuSgrSHGsWYVEHgBId3VxrofsX Xm8lcKwO0Ggh9eOCocT2pzqpAoGBAJFfIekiQqnQpjrYuXKT0sUEKvTRqp7/v4UJ OFxCx/6/Te5gHVVm65akV/sGs76seZh/Y59zEzFeqt/4/kTLrV9ELLSR/RrCYTl2 QpFUiN1IS91SOWAEGd/QyPN2MICYvqgjOvnm8RKsE0N0FfBxeda84/CkXEpBBPfw gcoEh1LvAoGBAN0Tv5gSXLkEaUfL6BTeOKr+PxKrdmUfLHSKTTT0MlA/oAig9FmZ dVcroxqKsqWhQmY4EgXH20IOyNdRX4d8oMyTEA1Xyorq78DVfPQAhE2y6wO0Z8K/ mAvF7/+hRzNa4l25lailJFHR7VgwLPo24xNlWgyjn9T5JNnor8TIimoy -----END RSA PRIVATE KEY----- """ def test_invalid_pkey_raises_SSHException(self, credentials): ipaddr, username, password, param = credentials if param == "ssh": with pytest.raises(paramiko.SSHException): ssh_conn = clissh.CLISSH(ipaddr, username=username, pkey="") assert ssh_conn.pkey def test_pkey(self, credentials): ipaddr, username, password, param = credentials if param == "ssh": ssh_conn = clissh.CLISSH(ipaddr, username=username, pkey=self.EMPTY_PASSWORD_KEY) assert ssh_conn.pkey assert ssh_conn.pkey.get_bits() == 2048 def test_probe_port_1(self): """Test probe_port function. """ assert clissh.probe_port('127.0.0.1', 22, MagicMock()) is True def test_probe_port_2(self): """Test probe_port function negative. """ assert clissh.probe_port('8.8.8.8', 8081, MagicMock()) is False
#!/usr/bin/env python3 """ ingest.py: source client for Voctomix. Copyright: 2015-2020 Carl F. Karsten <carl@nextdayvideo.com>, Ryan Verner <ryan@nextdayvideo.com.au> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. Features: Retrieves audio and video-caps config from core. and client config Uses core's clock. Mix and match audio and video sources muxed into one stream. Can display video locally, including frame count and fps. Defaults to test audio and video sent to local core. """ import argparse from pprint import pprint import socket import sys import gi gi.require_version('Gst', '1.0') gi.require_version('GstNet', '1.0') from gi.repository import Gst, GstNet, GObject, GLib from lib.connection import Connection def mk_video_src(args, videocaps): # make video source part of pipeline # args come from command line # videocaps come from voctocore if args.video_source == 'dv': video_src = """ dv1394src name=videosrc {attribs} ! dvdemux name=demux ! queue max-size-time=4000000000 ! dvdec ! """ elif args.video_source == 'hdv': video_src = """ hdv1394src {attribs} name=videosrc ! tsdemux ! queue max-size-time=4000000000 ! decodebin ! """ elif args.video_source == 'hdmi2usb': # https://hdmi2usb.tv # Note: this code works with 720p video_src = """ v4l2src {attribs} name=videosrc ! queue max-size-time=4000000000 ! image/jpeg,width=1280,height=720 ! jpegdec ! """ elif args.video_source == 'ximage': # startx=0 starty=0 endx=1919 endy=1079 ! video_src = """ ximagesrc {attribs} name=videosrc use-damage=false ! """ elif args.video_source == 'blackmagic': video_src = """ decklinkvideosrc {attribs} name=videosrc ! queue max-size-time=4000000000 max-size-bytes=209715200 ! """ # yadif ! # deinterlace elif args.video_source == 'png': video_src = """ multifilesrc {attribs} caps="image/png" ! pngdec ! """ elif args.video_source == 'file': video_src = """ multifilesrc {attribs} ! decodebin name=src src. ! queue ! """ elif args.video_source == 'test': video_src = """ videotestsrc name=videosrc {attribs} ! """ # things to render as text ontop of test video video_src += """ clockoverlay text="Source: {hostname}\nCaps: {videocaps}\nAttribs: {attribs}\n" halignment=left line-alignment=left ! """.format(hostname=socket.gethostname(), videocaps=videocaps, attribs=args.video_attribs) elif args.video_source == 'spacescope': # Stereo visualizer # pair up with test beep for a handy AV sync test. video_src = """ audio_tee. ! queue ! spacescope shader=none style=lines {attribs} ! """ if args.monitor: if args.debug: videosink="fpsdisplaysink" else: videosink="autovideosink" video_src += """ tee name=t ! queue ! videoconvert ! {videosink} sync=false t. ! queue ! """.format(videosink=videosink) if args.video_elements: video_src += args.video_elements + " !\n" video_src += videocaps + " !\n" video_src = video_src.format(attribs=args.video_attribs) return video_src def mk_audio_src(args, audiocaps): d = { 'attribs': args.audio_attribs, 'base_audio_attribs': 'provide-clock=false slave-method=re-timestamp', 'audiocaps': audiocaps, } if args.audio_source in ['dv', 'hdv']: # this only works if video is from DV also. # or some gst source that gets demux ed audio_src = """ demux.audio ! queue ! """ elif args.audio_source == 'file': # this only works if video is from ... # some gst source that gets demux ed, I guess. audio_src = """ src. ! queue ! """ elif args.audio_source == 'pulse': audio_src = """ pulsesrc {attribs} {base_audio_attribs} name=audiosrc ! queue max-size-time=4000000000 ! audiorate ! """ elif args.audio_source == 'alsa': audio_src = """ alsasrc {attribs} {base_audio_attribs} name=audiosrc ! queue max-size-time=4000000000 ! audiorate ! """ elif args.audio_source == 'blackmagic': audio_src = """ decklinkaudiosrc name=audiosrc {attribs} ! queue max-size-time=4000000000 ! """ elif args.audio_source == 'test': audio_src = """ audiotestsrc wave=ticks freq=330 {attribs} name=audiosrc ! """ audio_src += """ {audiocaps} ! tee name=audio_tee audio_tee. ! queue ! """ audio_src = audio_src.format(**d) return audio_src def mk_client(core_ip, port): client = "tcpclientsink host={host} port={port}".format( host=core_ip, port=port) return client def mk_pipeline(args, server_caps, core_ip): if args.src: src = args.src.format(**server_caps) else: video_src = mk_video_src(args, server_caps['videocaps']) audio_src = mk_audio_src(args, server_caps['audiocaps']) src = """ {video_src} mux. {audio_src} mux. matroskamux name=mux ! """.format(video_src=video_src, audio_src=audio_src) client = mk_client(core_ip, args.port) pipeline = """ {src} {client} """.format(src=src, client=client) # remove blank lines to make it more human readable while "\n\n" in pipeline: pipeline = pipeline.replace("\n\n", "\n") print(pipeline) if args.debug: # print something to run in a shell gst_cmd = "gst-launch-1.0 {}".format(pipeline) # escape the ! because bash # asl2: ! is interpreted as a command history metacharacter gst_cmd = gst_cmd.replace("!", " \! ") # remove all the \n to make it easy to cut/paste into shell gst_cmd = gst_cmd.replace("\n", " ") while " " in gst_cmd: gst_cmd = gst_cmd.replace(" ", " ") print("-"*78) print(gst_cmd) print("-"*78) return pipeline def get_server_conf(core_ip, source_id, args): # establish a synchronus connection to server conn = Connection(core_ip) # fetch config from server server_config = conn.fetch_config() # Pull out the configs relevant to this client server_conf = { 'videocaps': server_config['mix']['videocaps'], 'audiocaps': server_config['mix']['audiocaps'] } if source_id is not None: # get conf from server for this source, d=server_config[source_id] if args.debug: pprint(d) # stomp all over command line values # this is backwards: command line should override conf file. for k in d: if args.debug: print('--{}="{}"'.format(k,d[k])) # python argparse converts a-b to a_b, so we will to too. args.__setattr__(k.replace("-", "_"),d[k]) return server_conf, args def get_clock(core_ip, core_clock_port=9998): clock = GstNet.NetClientClock.new( 'voctocore', core_ip, core_clock_port, 0) print('obtained NetClientClock from host: {ip}:{port}'.format( ip=core_ip, port=core_clock_port)) print('waiting for NetClientClock to sync...') clock.wait_for_sync(Gst.CLOCK_TIME_NONE) print('synced with NetClientClock.') return clock def run_pipeline(pipeline, clock, audio_delay=0, video_delay=0): def on_eos(bus, message): print('Received EOS-Signal') sys.exit(0) def on_error(bus, message): print('Received Error-Signal') (error, debug) = message.parse_error() print('Error-Details: #%u: %s' % (error.code, debug)) sys.exit(2) print('starting pipeline...') senderPipeline = Gst.parse_launch(pipeline) if clock is not None: senderPipeline.use_clock(clock) # Delay video/audio if required NS_TO_MS = 100000 if video_delay > 0: print('Adjusting video sync: [{} milliseconds]'.format(video_delay)) video_delay = video_delay * NS_TO_MS videosrc = senderPipeline.get_by_name('videosrc') videosrc.get_static_pad('src').set_offset(video_delay) if audio_delay > 0: print('Adjusting audio sync: [{} milliseconds]'.format(audio_delay)) audio_delay = audio_delay * NS_TO_MS audiosrc = senderPipeline.get_by_name('audiosrc') audiosrc.get_static_pad('src').set_offset(audio_delay) # Binding End-of-Stream-Signal on Source-Pipeline senderPipeline.bus.add_signal_watch() senderPipeline.bus.connect("message::eos", on_eos) senderPipeline.bus.connect("message::error", on_error) print("playing...") senderPipeline.set_state(Gst.State.PLAYING) mainloop = GLib.MainLoop() try: mainloop.run() except KeyboardInterrupt: print('Terminated via Ctrl-C') print('Shutting down...') senderPipeline.set_state(Gst.State.NULL) print('Done.') return def get_args(): parser = argparse.ArgumentParser( description='''Vocto-ingest Client with Net-time support. Gst caps are retrieved from the server. Run without parameters: send test av to localhost:10000 ''') parser.add_argument( '-v', '--verbose', action='count', default=0, help="Also print INFO and DEBUG messages.") parser.add_argument('--source-id', action='store', help="get config from server using this id.") parser.add_argument( '--src', action='store', default='', help="gst source pipeline") parser.add_argument( '--video-source', action='store', choices=[ 'dv', 'hdv', 'udp_h264', 'hdmi2usb', 'blackmagic', 'ximage', 'png', 'file', 'test', 'spacescope'], default='test', help="Where to get video from") parser.add_argument( '--video-attribs', action='store', default='', help="misc video attributes for gst") parser.add_argument( '--video-delay', action='store', default=0, type=int, help="delay video by this many milliseconds") parser.add_argument( '--video-elements', action='store', default='videoconvert ! videorate ! videoscale', help="gst video elments ! after src") parser.add_argument( '--audio-source', action='store', choices=['dv', 'hdv', 'file', 'alsa', 'pulse', 'blackmagic', 'test', ], default='test', help="Where to get audio from") parser.add_argument( '--audio-attribs', action='store', default='', help="misc audio attributes for gst") parser.add_argument( '--audio-delay', action='store', default=0, type=int, help="delay audio by this many milliseconds") parser.add_argument( '--audio-elements', action='store', default="audioconvert ! audioresample ! audiorate", help="gst audio elments ! after src") parser.add_argument( '-m', '--monitor', action='store_true', help="local display sink") parser.add_argument( '--host', action='store', default='localhost', help="hostname of vocto core") parser.add_argument( '--port', action='store', default='10000', help="port of vocto core") parser.add_argument( '--no-clock', action='store_true', help="Don't use core's clock. (danger)") parser.add_argument( '--debug', action='store_true', help="debugging things, like dump a gst-launch-1.0 command") args = parser.parse_args() return args def main(): GObject.threads_init() Gst.init([]) args = get_args() core_ip = socket.gethostbyname(args.host) server_caps, args = get_server_conf(core_ip, args.source_id, args) pipeline = mk_pipeline(args, server_caps, core_ip) if args.no_clock: clock = None else: clock = get_clock(core_ip) run_pipeline(pipeline, clock, args.audio_delay, args.video_delay) if __name__ == '__main__': main()