gt
stringclasses
1 value
context
stringlengths
2.49k
119k
"""Test the Bond config flow.""" from __future__ import annotations from http import HTTPStatus from typing import Any from unittest.mock import MagicMock, Mock, patch from aiohttp import ClientConnectionError, ClientResponseError from homeassistant import config_entries, core from homeassistant.components import zeroconf from homeassistant.components.bond.const import DOMAIN from homeassistant.config_entries import ConfigEntryState from homeassistant.const import CONF_ACCESS_TOKEN, CONF_HOST from .common import ( patch_bond_bridge, patch_bond_device, patch_bond_device_ids, patch_bond_device_properties, patch_bond_token, patch_bond_version, ) from tests.common import MockConfigEntry async def test_user_form(hass: core.HomeAssistant): """Test we get the user initiated form.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} with patch_bond_version( return_value={"bondid": "test-bond-id"} ), patch_bond_device_ids( return_value=["f6776c11", "f6776c12"] ), patch_bond_bridge(), patch_bond_device_properties(), patch_bond_device(), _patch_async_setup_entry() as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token"}, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "bond-name" assert result2["data"] == { CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token", } assert len(mock_setup_entry.mock_calls) == 1 async def test_user_form_with_non_bridge(hass: core.HomeAssistant): """Test setup a smart by bond fan.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} with patch_bond_version( return_value={"bondid": "test-bond-id"} ), patch_bond_device_ids( return_value=["f6776c11"] ), patch_bond_device_properties(), patch_bond_device( return_value={ "name": "New Fan", } ), patch_bond_bridge( return_value={} ), _patch_async_setup_entry() as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token"}, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "New Fan" assert result2["data"] == { CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token", } assert len(mock_setup_entry.mock_calls) == 1 async def test_user_form_invalid_auth(hass: core.HomeAssistant): """Test we handle invalid auth.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch_bond_version( return_value={"bond_id": "test-bond-id"} ), patch_bond_bridge(), patch_bond_device_ids( side_effect=ClientResponseError(Mock(), Mock(), status=401), ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token"}, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "invalid_auth"} async def test_user_form_cannot_connect(hass: core.HomeAssistant): """Test we handle cannot connect error.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch_bond_version( side_effect=ClientConnectionError() ), patch_bond_bridge(), patch_bond_device_ids(): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token"}, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "cannot_connect"} async def test_user_form_old_firmware(hass: core.HomeAssistant): """Test we handle unsupported old firmware.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch_bond_version( return_value={"no_bond_id": "present"} ), patch_bond_bridge(), patch_bond_device_ids(): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token"}, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "old_firmware"} async def test_user_form_unexpected_client_error(hass: core.HomeAssistant): """Test we handle unexpected client error gracefully.""" await _help_test_form_unexpected_error( hass, source=config_entries.SOURCE_USER, user_input={CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token"}, error=ClientResponseError(Mock(), Mock(), status=500), ) async def test_user_form_unexpected_error(hass: core.HomeAssistant): """Test we handle unexpected error gracefully.""" await _help_test_form_unexpected_error( hass, source=config_entries.SOURCE_USER, user_input={CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token"}, error=Exception(), ) async def test_user_form_one_entry_per_device_allowed(hass: core.HomeAssistant): """Test that only one entry allowed per unique ID reported by Bond hub device.""" MockConfigEntry( domain=DOMAIN, unique_id="already-registered-bond-id", data={CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token"}, ).add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch_bond_version( return_value={"bondid": "already-registered-bond-id"} ), patch_bond_bridge(), patch_bond_device_ids(), _patch_async_setup_entry() as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_HOST: "some host", CONF_ACCESS_TOKEN: "test-token"}, ) assert result2["type"] == "abort" assert result2["reason"] == "already_configured" await hass.async_block_till_done() assert len(mock_setup_entry.mock_calls) == 0 async def test_zeroconf_form(hass: core.HomeAssistant): """Test we get the discovery form.""" with patch_bond_version(), patch_bond_token(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=zeroconf.ZeroconfServiceInfo( host="test-host", hostname="mock_hostname", name="test-bond-id.some-other-tail-info", port=None, properties={}, type="mock_type", ), ) assert result["type"] == "form" assert result["errors"] == {} with patch_bond_version( return_value={"bondid": "test-bond-id"} ), patch_bond_bridge(), patch_bond_device_ids(), _patch_async_setup_entry() as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_ACCESS_TOKEN: "test-token"}, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "bond-name" assert result2["data"] == { CONF_HOST: "test-host", CONF_ACCESS_TOKEN: "test-token", } assert len(mock_setup_entry.mock_calls) == 1 async def test_zeroconf_form_token_unavailable(hass: core.HomeAssistant): """Test we get the discovery form and we handle the token being unavailable.""" with patch_bond_version(), patch_bond_token(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=zeroconf.ZeroconfServiceInfo( host="test-host", hostname="mock_hostname", name="test-bond-id.some-other-tail-info", port=None, properties={}, type="mock_type", ), ) await hass.async_block_till_done() assert result["type"] == "form" assert result["errors"] == {} with patch_bond_version(), patch_bond_bridge(), patch_bond_device_ids(), _patch_async_setup_entry() as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_ACCESS_TOKEN: "test-token"}, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "bond-name" assert result2["data"] == { CONF_HOST: "test-host", CONF_ACCESS_TOKEN: "test-token", } assert len(mock_setup_entry.mock_calls) == 1 async def test_zeroconf_form_with_token_available(hass: core.HomeAssistant): """Test we get the discovery form when we can get the token.""" with patch_bond_version(return_value={"bondid": "test-bond-id"}), patch_bond_token( return_value={"token": "discovered-token"} ), patch_bond_bridge( return_value={"name": "discovered-name"} ), patch_bond_device_ids(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=zeroconf.ZeroconfServiceInfo( host="test-host", hostname="mock_hostname", name="test-bond-id.some-other-tail-info", port=None, properties={}, type="mock_type", ), ) await hass.async_block_till_done() assert result["type"] == "form" assert result["errors"] == {} with _patch_async_setup_entry() as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "discovered-name" assert result2["data"] == { CONF_HOST: "test-host", CONF_ACCESS_TOKEN: "discovered-token", } assert len(mock_setup_entry.mock_calls) == 1 async def test_zeroconf_form_with_token_available_name_unavailable( hass: core.HomeAssistant, ): """Test we get the discovery form when we can get the token but the name is unavailable.""" with patch_bond_version( side_effect=ClientResponseError(Mock(), (), status=HTTPStatus.BAD_REQUEST) ), patch_bond_token(return_value={"token": "discovered-token"}): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=zeroconf.ZeroconfServiceInfo( host="test-host", hostname="mock_hostname", name="test-bond-id.some-other-tail-info", port=None, properties={}, type="mock_type", ), ) await hass.async_block_till_done() assert result["type"] == "form" assert result["errors"] == {} with _patch_async_setup_entry() as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], {}, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == "test-bond-id" assert result2["data"] == { CONF_HOST: "test-host", CONF_ACCESS_TOKEN: "discovered-token", } assert len(mock_setup_entry.mock_calls) == 1 async def test_zeroconf_already_configured(hass: core.HomeAssistant): """Test starting a flow from discovery when already configured.""" entry = MockConfigEntry( domain=DOMAIN, unique_id="already-registered-bond-id", data={CONF_HOST: "stored-host", CONF_ACCESS_TOKEN: "test-token"}, ) entry.add_to_hass(hass) with _patch_async_setup_entry() as mock_setup_entry: result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=zeroconf.ZeroconfServiceInfo( host="updated-host", hostname="mock_hostname", name="already-registered-bond-id.some-other-tail-info", port=None, properties={}, type="mock_type", ), ) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data["host"] == "updated-host" assert len(mock_setup_entry.mock_calls) == 1 async def test_zeroconf_already_configured_refresh_token(hass: core.HomeAssistant): """Test starting a flow from zeroconf when already configured and the token is out of date.""" entry2 = MockConfigEntry( domain=DOMAIN, unique_id="not-the-same-bond-id", data={CONF_HOST: "stored-host", CONF_ACCESS_TOKEN: "correct-token"}, ) entry2.add_to_hass(hass) entry = MockConfigEntry( domain=DOMAIN, unique_id="already-registered-bond-id", data={CONF_HOST: "stored-host", CONF_ACCESS_TOKEN: "incorrect-token"}, ) entry.add_to_hass(hass) with patch_bond_version( side_effect=ClientResponseError(MagicMock(), MagicMock(), status=401) ): await hass.config_entries.async_setup(entry.entry_id) assert entry.state is ConfigEntryState.SETUP_ERROR with _patch_async_setup_entry() as mock_setup_entry, patch_bond_token( return_value={"token": "discovered-token"} ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=zeroconf.ZeroconfServiceInfo( host="updated-host", hostname="mock_hostname", name="already-registered-bond-id.some-other-tail-info", port=None, properties={}, type="mock_type", ), ) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "already_configured" assert entry.data["host"] == "updated-host" assert entry.data[CONF_ACCESS_TOKEN] == "discovered-token" # entry2 should not get changed assert entry2.data[CONF_ACCESS_TOKEN] == "correct-token" assert len(mock_setup_entry.mock_calls) == 1 async def test_zeroconf_already_configured_no_reload_same_host( hass: core.HomeAssistant, ): """Test starting a flow from zeroconf when already configured does not reload if the host is the same.""" entry = MockConfigEntry( domain=DOMAIN, unique_id="already-registered-bond-id", data={CONF_HOST: "stored-host", CONF_ACCESS_TOKEN: "correct-token"}, ) entry.add_to_hass(hass) with _patch_async_setup_entry() as mock_setup_entry, patch_bond_token( return_value={"token": "correct-token"} ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_ZEROCONF}, data=zeroconf.ZeroconfServiceInfo( host="stored-host", hostname="mock_hostname", name="already-registered-bond-id.some-other-tail-info", port=None, properties={}, type="mock_type", ), ) await hass.async_block_till_done() assert result["type"] == "abort" assert result["reason"] == "already_configured" assert len(mock_setup_entry.mock_calls) == 0 async def test_zeroconf_form_unexpected_error(hass: core.HomeAssistant): """Test we handle unexpected error gracefully.""" await _help_test_form_unexpected_error( hass, source=config_entries.SOURCE_ZEROCONF, initial_input=zeroconf.ZeroconfServiceInfo( host="test-host", hostname="mock_hostname", name="test-bond-id.some-other-tail-info", port=None, properties={}, type="mock_type", ), user_input={CONF_ACCESS_TOKEN: "test-token"}, error=Exception(), ) async def _help_test_form_unexpected_error( hass: core.HomeAssistant, *, source: str, initial_input: dict[str, Any] = None, user_input: dict[str, Any], error: Exception, ): """Test we handle unexpected error gracefully.""" with patch_bond_token(): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": source}, data=initial_input ) with patch_bond_version( return_value={"bond_id": "test-bond-id"} ), patch_bond_device_ids(side_effect=error): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], user_input ) assert result2["type"] == "form" assert result2["errors"] == {"base": "unknown"} def _patch_async_setup_entry(): return patch( "homeassistant.components.bond.async_setup_entry", return_value=True, )
# module for the <eadheader/> or <control/> portion import xml.etree.cElementTree as ET import globals from messages import error from mixed_content import mixed_content import wx def eadheader(EAD, CSheet): eadheader_root = EAD[0] #update GUI progress bar from wx.lib.pubsub import pub wx.CallAfter(pub.sendMessage, "update_spread", msg="Reading <eadheader>...") # <eadheader> @findaidstatus if "findaidstatus" in eadheader_root.attrib: CSheet.find('DraftStatus').text = eadheader_root.attrib['findaidstatus'] #<eadid> @countrycode and @url if 'countrycode' in eadheader_root.find('eadid').attrib: CSheet.find('CountryCode').text = eadheader_root.find('eadid').attrib['countrycode'] if 'url' in eadheader_root.find('eadid').attrib: CSheet.find('URL').text = eadheader_root.find('eadid').attrib['url'] #<filedesc> if eadheader_root.find('filedesc') is None: error("Your EAD finding aid does not contain a <filedesc> tag. Since this is a required element in EAD2002, EADMachine is unable to convert the file. Please correct your EAD file and try again.", True) #<titlestmt> if eadheader_root.find('filedesc/titlestmt') is None: error("Your EAD finding aid does not contain a <titlestmt> tag. Since this is a required element in EAD2002, EADMachine is unable to convert the file. Please correct your EAD file and try again.", True) titlestmt_element = ET.Element('titlestmt') #<titleproper> if eadheader_root.find('filedesc/titlestmt/titleproper') is None: error("Your EAD finding aid does not contain a <titleproper> tag. Since this is a required element in EAD2002, EADMachine is unable to convert the file. Please correct your EAD file and try again.", True) #<date> if eadheader_root.find('filedesc/titlestmt/titleproper/date') is None: pass else: if 'type' in eadheader_root.find('filedesc/titlestmt/titleproper/date').attrib: if eadheader_root.find('filedesc/titlestmt/titleproper/date').attrib['type'].lower() == 'bulk': CSheet.find('DateBulk').text = eadheader_root.find('filedesc/titlestmt/titleproper/date').text if 'normal' in eadheader_root.find('filedesc/titlestmt/titleproper/date').attrib: CSheet.find('DateBulkNormal').text = eadheader_root.find('filedesc/titlestmt/titleproper/date').attrib['normal'] else: CSheet.find('DateInclusive').text = eadheader_root.find('filedesc/titlestmt/titleproper/date').text if 'normal' in eadheader_root.find('filedesc/titlestmt/titleproper/date').attrib: CSheet.find('DateInclusiveNormal').text = eadheader_root.find('filedesc/titlestmt/titleproper/date').attrib['normal'] else: CSheet.find('DateInclusive').text = eadheader_root.find('filedesc/titlestmt/titleproper/date').text if 'normal' in eadheader_root.find('filedesc/titlestmt/titleproper/date').attrib: CSheet.find('DateInclusiveNormal').text = eadheader_root.find('filedesc/titlestmt/titleproper/date').attrib['normal'] #<subtitle> if eadheader_root.find('filedesc/titlestmt/subtitle') is None: if EAD.find('frontmatter/titlepage/subtitle') is None: pass else: CSheet.find('Subtitle').text = EAD.find('frontmatter/titlepage/subtitle').text else: CSheet.find('Subtitle').text = eadheader_root.find('filedesc/titlestmt/subtitle').text #<author> if eadheader_root.find('filedesc/titlestmt/author') is None: if EAD.find('frontmatter/titlepage/author') is None: pass else: CSheet.find('ProcessedBy').text = EAD.find('frontmatter/titlepage/author').text else: CSheet.find('ProcessedBy').text = eadheader_root.find('filedesc/titlestmt/author').text #<sponsor> if eadheader_root.find('filedesc/titlestmt/sponsor') is None: if EAD.find('frontmatter/titlepage/sponsor') is None: pass else: CSheet.find('Sponsor').text = EAD.find('frontmatter/titlepage/sponsor').text else: CSheet.find('Sponsor').text = eadheader_root.find('filedesc/titlestmt/sponsor').text # Edition Statement Section from editionstmt import editionstmt editionstmt(eadheader_root, CSheet) # Publication Statement Section from publicationstmt import publicationstmt publicationstmt(eadheader_root, CSheet) if CSheet.find('Publisher/PublisherName') is None: if EAD.find('frontmatter/titlepage/publisher') is None: pass else: if EAD.find('frontmatter/titlepage/publisher').text: CSheet.find('Publisher/PublisherName').text = EAD.find('frontmatter/titlepage/publisher').text else: if CSheet.find('Publisher/PublisherName').text: pass else: if EAD.find('frontmatter/titlepage/publisher') is None: pass else: CSheet.find('Publisher/PublisherName').text = EAD.find('frontmatter/titlepage/publisher').text if CSheet.find('PublicationDate').text: pass else: if EAD.find('frontmatter/titlepage/date') is None: pass else: CSheet.find('PublicationDate').text = EAD.find('frontmatter/titlepage/date').text if 'normal' in EAD.find('frontmatter/titlepage/date').attrib: CSheet.find('PublicationDateNormal').text = EAD.find('frontmatter/titlepage/date').attrib['normal'] # Series Statement Section from seriesstmt import seriesstmt seriesstmt(eadheader_root, CSheet) # Note Statement Section if eadheader_root.find('filedesc/notestmt') is None: pass else: for note in eadheader_root.find('filedesc/notestmt').iter('p'): if note.text: note_element = ET.Element('NoteStatement') CSheet.find('NoteStatements').append(note_element) note_element.text = note.text # Profile Description if eadheader_root.find('profiledesc') is None: pass else: # EAD creation and EAD creation date if eadheader_root.find('profiledesc/creation') is None: pass else: CSheet.find('EADCreator').text = eadheader_root.find('profiledesc/creation').text if eadheader_root.find('profiledesc/creation/date') is None: pass else: if eadheader_root.find('profiledesc/creation/date').tail: CSheet.find('EADCreator').text = CSheet.find('EADCreator').text + eadheader_root.find('profiledesc/creation/date').tail CSheet.find('EADCreationDate').text = eadheader_root.find('profiledesc/creation/date').text if 'normal' in eadheader_root.find('profiledesc/creation/date').attrib: CSheet.find('EADCreationDateNormal').text = eadheader_root.find('profiledesc/creation/date').attrib['normal'] # Finding Aid Languages if eadheader_root.find('profiledesc/langusage') is None: pass else: if eadheader_root.find('profiledesc/langusage/language') is None: if eadheader_root.find('profiledesc/langusage').text: CSheet.find('FindingAidLanguages/FALanguage/Lang').text = eadheader_root.find('profiledesc/langusage').text else: CSheet.find('FindingAidLanguages').clear() for lang in eadheader_root.find('profiledesc/langusage'): if lang.tag == "language": FALanguage_element = ET.Element('FALanguage') CSheet.find('FindingAidLanguages').append(FALanguage_element) Lang_element = ET.Element('Lang') FALanguage_element.append(Lang_element) Lang_element.text = lang.text LangCode_element = ET.Element('LangCode') FALanguage_element.append(LangCode_element) if "langcode" in lang.attrib: LangCode_element.text = lang.attrib['langcode'] Script_element = ET.Element('Script') FALanguage_element.append(Script_element) ScriptCode_element = ET.Element('ScriptCode') FALanguage_element.append(ScriptCode_element) LangNote_element = ET.Element('LangNote') FALanguage_element.append(LangNote_element) if eadheader_root.find('profiledesc/langusage').text: LangNote_element.text = eadheader_root.find('profiledesc/langusage').text if len(eadheader_root.find('profiledesc/langusage').tail.strip()) >= 1: LangNote_element.text = LangNote_element.text + eadheader_root.find('profiledesc/langusage').tail # Description Rules if eadheader_root.find('profiledesc/descrules') is None: pass else: CSheet.find('LocalConventions/Convention/Citation').text = mixed_content(eadheader_root.find('profiledesc/descrules')) # Revisions if eadheader_root.find('revisiondesc') is None: pass else: revision_root = eadheader_root.find('revisiondesc') if revision_root.find('change') is None: if revision_root.find('list') is None: pass else: #if list CSheet.find('Revisions').clear() for item in revision_root.find('list'): Event_element = ET.Element('Event') CSheet.find('Revisions').append(Event_element) Type_element = ET.Element('Type') Event_element.append(Type_element) Date_element = ET.Element('Date') Event_element.append(Date_element) DateNormal_element = ET.Element('DateNormal') Event_element.append(DateNormal_element) AgentType_element = ET.Element('AgentType') Event_element.append(AgentType_element) Agent_element = ET.Element('Agent') Event_element.append(Agent_element) Description_element = ET.Element('Description') Event_element.append(Description_element) if item.find('date') is None: pass else: Date_element.text = item.find('date').text if 'normal' in item.find('date').attrib: DateNormal_element.text = item.find('date').attrib['normal'] if item.text: Description_element.text = item.text if item.tail: Description_element.text = Description_element.text + item.tail else: # if change if revision_root.find('list') is None: CSheet.find('Revisions').clear() for change in revision_root: if change.tag == "change": Event_element = ET.Element('Event') CSheet.find('Revisions').append(Event_element) Type_element = ET.Element('Type') Event_element.append(Type_element) Date_element = ET.Element('Date') Event_element.append(Date_element) DateNormal_element = ET.Element('DateNormal') Event_element.append(DateNormal_element) AgentType_element = ET.Element('AgentType') Event_element.append(AgentType_element) Agent_element = ET.Element('Agent') Event_element.append(Agent_element) Description_element = ET.Element('Description') Event_element.append(Description_element) if change.find('date') is None: pass else: Date_element.text = change.find('date').text if 'normal' in change.find('date').attrib: DateNormal_element.text = change.find('date').attrib['normal'] if change.find('item') is None: pass else: Description_element.text = change.find('item').text else: #if list and change CSheet.find('Revisions').clear() for change in revision_root.find('change'): Event_element = ET.Element('Event') CSheet.find('Revisions').append(Event_element) Type_element = ET.Element('Type') Event_element.append(Type_element) Date_element = ET.Element('Date') Event_element.append(Date_element) DateNormal_element = ET.Element('DateNormal') Event_element.append(DateNormal_element) AgentType_element = ET.Element('AgentType') Event_element.append(AgentType_element) Agent_element = ET.Element('Agent') Event_element.append(Agent_element) Description_element = ET.Element('Description') Event_element.append(Description_element) if change.find('date') is None: pass else: Date_element.text = change.find('date').text if 'normal' in change.find('date').attrib: DateNormal_element.text = change.find('date').attrib['normal'] if change.find('item') is None: pass else: Description_element.text = change.find('item').text for item in revision_root.find('list'): Event_element = ET.Element('Event') CSheet.find('Revisions').append(Event_element) Type_element = ET.Element('Type') Event_element.append(Type_element) Date_element = ET.Element('Date') Event_element.append(Date_element) DateNormal_element = ET.Element('DateNormal') Event_element.append(DateNormal_element) AgentType_element = ET.Element('AgentType') Event_element.append(AgentType_element) Agent_element = ET.Element('Agent') Event_element.append(Agent_element) Description_element = ET.Element('Description') Event_element.append(Description_element) if item.find('date') is None: pass else: Date_element.text = item.find('date').text if 'normal' in item.find('date').attrib: DateNormal_element.text = item.find('date').attrib['normal'] if item.text: Description_element.text = item.text if item.tail: Description_element.text = Description_element.text + item.tail
from unittest.mock import patch from hc.payments.models import Subscription from hc.test import BaseTestCase class UpdateSubscriptionTestCase(BaseTestCase): def _setup_mock(self, mock): """ Set up Braintree calls that the controller will use. """ mock.Subscription.create.return_value.is_success = True mock.Subscription.create.return_value.subscription.id = "t-sub-id" def run_update(self, plan_id="P20", nonce="fake-nonce"): form = {"plan_id": plan_id, "nonce": nonce} self.client.login(username="alice@example.org", password="password") return self.client.post("/pricing/update/", form, follow=True) @patch("hc.payments.models.braintree") def test_it_works(self, mock): self._setup_mock(mock) self.profile.sms_limit = 0 self.profile.sms_sent = 1 self.profile.call_limit = 0 self.profile.calls_sent = 1 self.profile.save() r = self.run_update() self.assertRedirects(r, "/accounts/profile/billing/") self.assertContains(r, "Your billing plan has been updated!") # Subscription should be filled out: sub = Subscription.objects.get(user=self.alice) self.assertEqual(sub.subscription_id, "t-sub-id") self.assertEqual(sub.plan_id, "P20") self.assertEqual(sub.plan_name, "Business ($20 / month)") # User's profile should have a higher limits self.profile.refresh_from_db() self.assertEqual(self.profile.ping_log_limit, 1000) self.assertEqual(self.profile.check_limit, 100) self.assertEqual(self.profile.team_limit, 9) self.assertEqual(self.profile.sms_limit, 50) self.assertEqual(self.profile.sms_sent, 0) self.assertEqual(self.profile.call_limit, 20) self.assertEqual(self.profile.calls_sent, 0) # braintree.Subscription.cancel should have not been called # because there was no previous subscription self.assertFalse(mock.Subscription.cancel.called) self.assertTrue(mock.Subscription.create.called) @patch("hc.payments.models.braintree") def test_supporter_works(self, mock): self._setup_mock(mock) self.profile.sms_limit = 0 self.profile.sms_sent = 1 self.profile.call_limit = 0 self.profile.calls_sent = 1 self.profile.save() r = self.run_update("S5") self.assertRedirects(r, "/accounts/profile/billing/") # Subscription should be filled out: sub = Subscription.objects.get(user=self.alice) self.assertEqual(sub.subscription_id, "t-sub-id") self.assertEqual(sub.plan_id, "S5") self.assertEqual(sub.plan_name, "Supporter ($5 / month)") # User's profile should have adjusted limits self.profile.refresh_from_db() self.assertEqual(self.profile.ping_log_limit, 1000) self.assertEqual(self.profile.check_limit, 20) self.assertEqual(self.profile.team_limit, 2) self.assertEqual(self.profile.sms_limit, 5) self.assertEqual(self.profile.sms_sent, 0) self.assertEqual(self.profile.call_limit, 5) self.assertEqual(self.profile.calls_sent, 0) # braintree.Subscription.cancel should have not been called assert not mock.Subscription.cancel.called @patch("hc.payments.models.braintree") def test_yearly_works(self, mock): self._setup_mock(mock) self.profile.sms_limit = 0 self.profile.sms_sent = 1 self.profile.call_limit = 0 self.profile.calls_sent = 1 self.profile.save() r = self.run_update("Y192") self.assertRedirects(r, "/accounts/profile/billing/") # Subscription should be filled out: sub = Subscription.objects.get(user=self.alice) self.assertEqual(sub.subscription_id, "t-sub-id") self.assertEqual(sub.plan_id, "Y192") self.assertEqual(sub.plan_name, "Business ($192 / year)") # User's profile should have a higher limits self.profile.refresh_from_db() self.assertEqual(self.profile.ping_log_limit, 1000) self.assertEqual(self.profile.check_limit, 100) self.assertEqual(self.profile.team_limit, 9) self.assertEqual(self.profile.sms_limit, 50) self.assertEqual(self.profile.sms_sent, 0) self.assertEqual(self.profile.call_limit, 20) self.assertEqual(self.profile.calls_sent, 0) # braintree.Subscription.cancel should have not been called assert not mock.Subscription.cancel.called @patch("hc.payments.models.braintree") def test_plus_works(self, mock): self._setup_mock(mock) self.profile.sms_limit = 0 self.profile.sms_sent = 1 self.profile.call_limit = 0 self.profile.calls_sent = 1 self.profile.save() r = self.run_update("P80") self.assertRedirects(r, "/accounts/profile/billing/") # Subscription should be filled out: sub = Subscription.objects.get(user=self.alice) self.assertEqual(sub.subscription_id, "t-sub-id") self.assertEqual(sub.plan_id, "P80") self.assertEqual(sub.plan_name, "Business Plus ($80 / month)") # User's profile should have a higher limits self.profile.refresh_from_db() self.assertEqual(self.profile.ping_log_limit, 1000) self.assertEqual(self.profile.check_limit, 1000) self.assertEqual(self.profile.team_limit, 500) self.assertEqual(self.profile.sms_limit, 500) self.assertEqual(self.profile.sms_sent, 0) self.assertEqual(self.profile.call_limit, 100) self.assertEqual(self.profile.calls_sent, 0) # braintree.Subscription.cancel should have not been called assert not mock.Subscription.cancel.called @patch("hc.payments.models.braintree") def test_it_cancels(self, mock): self._setup_mock(mock) self.sub = Subscription(user=self.alice) self.sub.subscription_id = "test-id" self.sub.plan_id = "P20" self.sub.plan_name = "Business ($20/mo)" self.sub.save() self.profile.sms_limit = 1 self.profile.sms_sent = 1 self.profile.call_limit = 1 self.profile.calls_sent = 1 self.profile.save() r = self.run_update("") self.assertRedirects(r, "/accounts/profile/billing/") self.assertContains(r, "Your billing plan has been updated!") # Subscription should be cleared sub = Subscription.objects.get(user=self.alice) self.assertEqual(sub.subscription_id, "") self.assertEqual(sub.plan_id, "") self.assertEqual(sub.plan_name, "") # User's profile should have standard limits self.profile.refresh_from_db() self.assertEqual(self.profile.ping_log_limit, 100) self.assertEqual(self.profile.check_limit, 20) self.assertEqual(self.profile.team_limit, 2) self.assertEqual(self.profile.sms_limit, 5) self.assertEqual(self.profile.call_limit, 0) self.assertTrue(mock.Subscription.cancel.called) def test_bad_plan_id(self): r = self.run_update(plan_id="this-is-wrong") self.assertEqual(r.status_code, 400) @patch("hc.payments.models.braintree") def test_it_cancels_previous_subscription(self, mock): self._setup_mock(mock) sub = Subscription(user=self.alice) sub.subscription_id = "prev-sub" sub.save() r = self.run_update() self.assertRedirects(r, "/accounts/profile/billing/") self.assertTrue(mock.Subscription.cancel.called) @patch("hc.payments.models.braintree") def test_subscription_creation_failure(self, mock): mock.Subscription.create.return_value.is_success = False mock.Subscription.create.return_value.message = "sub failure" r = self.run_update() self.assertRedirects(r, "/accounts/profile/billing/") self.assertContains(r, "sub failure") @patch("hc.payments.models.braintree") def test_failed_plan_change_resets_limits(self, mock): # Initial state: the user has a subscription and a high check limit: sub = Subscription.objects.for_user(self.alice) sub.subscription_id = "old-sub-id" sub.save() self.profile.check_limit = 1000 self.profile.save() # Simulate a subscription creation failure: mock.Subscription.create.return_value.is_success = False mock.Subscription.create.return_value.message = "sub failure" r = self.run_update() # It should cancel the current plan self.assertTrue(mock.Subscription.cancel.called) # It should clear out the limits: self.profile.refresh_from_db() self.assertEqual(self.profile.check_limit, 20) # And it should show the error message from API: self.assertRedirects(r, "/accounts/profile/billing/") self.assertContains(r, "sub failure") @patch("hc.payments.models.braintree") def test_it_updates_payment_method(self, mock): # Initial state: the user has a subscription and a high check limit: sub = Subscription.objects.for_user(self.alice) sub.plan_id = "P20" sub.subscription_id = "old-sub-id" sub.save() r = self.run_update() # It should update the existing subscription self.assertTrue(mock.Subscription.update.called) self.assertRedirects(r, "/accounts/profile/billing/") self.assertContains(r, "Your payment method has been updated!")
from .base import BaseLibLinear, BaseSVC, BaseLibSVM from ..base import RegressorMixin from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin from ..feature_selection.from_model import _LearntSelectorMixin class LinearSVC(BaseLibLinear, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Linear Support Vector Classification. Similar to SVC with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better (to large numbers of samples). This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. loss : string, 'l1' or 'l2' (default='l2') Specifies the loss function. 'l1' is the hinge loss (standard SVM) while 'l2' is the squared hinge loss. penalty : string, 'l1' or 'l2' (default='l2') Specifies the norm used in the penalization. The 'l2' penalty is the standard used in SVC. The 'l1' leads to `coef_` vectors that are sparse. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria multi_class: string, 'ovr' or 'crammer_singer' (default='ovr') Determines the multi-class strategy if `y` contains more than two classes. `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from an theoretical perspective as it is consistent it is seldom used in practice and rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). intercept_scaling : float, optional (default=1) when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : int, default: 0 Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Attributes ---------- `coef_` : array, shape = [n_features] if n_classes == 2 \ else [n_classes, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `raw_coef_` that \ follows the internal memory layout of liblinear. `intercept_` : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a memory copy. **References:** `LIBLINEAR: A Library for Large Linear Classification <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__ See also -------- SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the :class:`sklearn.multiclass.OneVsRestClassifier` wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though. sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as LinearSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, penalty='l2', loss='l2', dual=True, tol=1e-4, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None): super(LinearSVC, self).__init__( penalty=penalty, loss=loss, dual=dual, tol=tol, C=C, multi_class=multi_class, fit_intercept=fit_intercept, intercept_scaling=intercept_scaling, class_weight=class_weight, verbose=verbose, random_state=random_state) class SVC(BaseSVC): """C-Support Vector Classification. The implementations is a based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. .. The narrative documentation is available at http://scikit-learn.org/ Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default=0.0) Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 0.0 then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability: boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking: boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB) class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [n_SV, n_features] Support vectors. `n_support_` : array-like, dtype=int32, shape = [n_class] number of support vector for each class. `dual_coef_` : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. \ For multiclass, coefficient for all 1-vs-1 classifiers. \ The layout of the coefficients in the multiclass case is somewhat \ non-trivial. See the section about multi-class classification in the \ SVM section of the User Guide for details. `coef_` : array, shape = [n_class-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVR Support Vector Machine for Regression implemented using libsvm. LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None): super(SVC, self).__init__( 'c_svc', kernel, degree, gamma, coef0, tol, C, 0., 0., shrinking, probability, cache_size, class_weight, verbose, max_iter, random_state) class NuSVC(BaseSVC): """Nu-Support Vector Classification. Similar to SVC but uses a parameter to control the number of support vectors. The implementation is based on libsvm. Parameters ---------- nu : float, optional (default=0.5) An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) degree of kernel function is significant only in poly, rbf, sigmoid gamma : float, optional (default=0.0) kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken. coef0 : float, optional (default=0.0) independent term in kernel function. It is only significant in poly/sigmoid. probability: boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking: boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB) verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [n_SV, n_features] Support vectors. `n_support_` : array-like, dtype=int32, shape = [n_class] number of support vector for each class. `dual_coef_` : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. \ For multiclass, coefficient for all 1-vs-1 classifiers. \ The layout of the coefficients in the multiclass case is somewhat \ non-trivial. See the section about multi-class classification in \ the SVM section of the User Guide for details. `coef_` : array, shape = [n_class-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVC(cache_size=200, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVC Support Vector Machine for classification using libsvm. LinearSVC Scalable linear Support Vector Machine for classification using liblinear. """ def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(NuSVC, self).__init__( 'nu_svc', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, probability, cache_size, None, verbose, max_iter, random_state) class SVR(BaseLibSVM, RegressorMixin): """epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementations is a based on libsvm. Parameters ---------- C : float, optional (default=1.0) penalty parameter C of the error term. epsilon : float, optional (default=0.1) epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) degree of kernel function is significant only in poly, rbf, sigmoid gamma : float, optional (default=0.0) kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken. coef0 : float, optional (default=0.0) independent term in kernel function. It is only significant in poly/sigmoid. probability: boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking: boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB) verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimaton. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [nSV, n_features] Support vectors. `dual_coef_` : array, shape = [n_classes-1, n_SV] Coefficients of the support vector in the decision function. `coef_` : array, shape = [n_classes-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> from sklearn.svm import SVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = SVR(C=1.0, epsilon=0.2) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma=0.0, kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors. """ def __init__(self, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, probability=False, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(SVR, self).__init__( 'epsilon_svr', kernel, degree, gamma, coef0, tol, C, 0., epsilon, shrinking, probability, cache_size, None, verbose, max_iter, random_state) class NuSVR(BaseLibSVM, RegressorMixin): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces with the parameter epsilon of SVR. The implementations is a based on libsvm. Parameters ---------- C : float, optional (default=1.0) penalty parameter C of the error term. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. Only available if impl='nu_svc'. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) degree of kernel function is significant only in poly, rbf, sigmoid gamma : float, optional (default=0.0) kernel coefficient for rbf and poly, if gamma is 0.0 then 1/n_features will be taken. coef0 : float, optional (default=0.0) independent term in kernel function. It is only significant in poly/sigmoid. probability: boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking: boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB) verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [nSV, n_features] Support vectors. `dual_coef_` : array, shape = [n_classes-1, n_SV] Coefficients of the support vector in the decision function. `coef_` : array, shape = [n_classes-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, nu=0.1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR epsilon Support Vector Machine for regression implemented with libsvm. """ def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(NuSVR, self).__init__( 'nu_svr', kernel, degree, gamma, coef0, tol, C, nu, 0., shrinking, probability, cache_size, None, verbose, max_iter, random_state) class OneClassSVM(BaseLibSVM): """Unsupervised Outliers Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Parameters ---------- kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default=0.0) Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 0.0 then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. tol : float, optional Tolerance for stopping criterion. shrinking: boolean, optional Whether to use the shrinking heuristic. cache_size : float, optional Specify the size of the kernel cache (in MB) verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- `support_` : array-like, shape = [n_SV] Index of support vectors. `support_vectors_` : array-like, shape = [nSV, n_features] Support vectors. `dual_coef_` : array, shape = [n_classes-1, n_SV] Coefficient of the support vector in the decision function. `coef_` : array, shape = [n_classes-1, n_features] Weights asigned to the features (coefficients in the primal problem). This is only available in the case of linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` `intercept_` : array, shape = [n_classes-1] Constants in decision function. """ def __init__(self, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(OneClassSVM, self).__init__( 'one_class', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, False, cache_size, None, verbose, max_iter, random_state) def fit(self, X, sample_weight=None, **params): """ Detects the soft boundary of the set of samples X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Set of samples, where n_samples is the number of samples and n_features is the number of features. sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ----- If X is not a C-ordered contiguous array it is copied. """ super(OneClassSVM, self).fit(X, [], sample_weight=sample_weight, **params) return self
# -*- test-case-name: twisted.web.test -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Interface definitions for L{twisted.web}. @var UNKNOWN_LENGTH: An opaque object which may be used as the value of L{IBodyProducer.length} to indicate that the length of the entity body is not known in advance. """ from zope.interface import Interface, Attribute from twisted.python.compat import _PY3 from twisted.internet.interfaces import IPushProducer if not _PY3: # Re-enable when cred is ported to Python 3. Fix as part of #6176: from twisted.cred.credentials import IUsernameDigestHash class IRequest(Interface): """ An HTTP request. @since: 9.0 """ method = Attribute("A C{str} giving the HTTP method that was used.") uri = Attribute( "A C{str} giving the full encoded URI which was requested (including " "query arguments).") path = Attribute( "A C{str} giving the encoded query path of the request URI.") args = Attribute( "A mapping of decoded query argument names as C{str} to " "corresponding query argument values as C{list}s of C{str}. " "For example, for a URI with C{'foo=bar&foo=baz&quux=spam'} " "for its query part, C{args} will be C{{'foo': ['bar', 'baz'], " "'quux': ['spam']}}.") received_headers = Attribute( "Backwards-compatibility access to C{requestHeaders}. Use " "C{requestHeaders} instead. C{received_headers} behaves mostly " "like a C{dict} and does not provide access to all header values.") requestHeaders = Attribute( "A L{http_headers.Headers} instance giving all received HTTP request " "headers.") content = Attribute( "A file-like object giving the request body. This may be a file on " "disk, a C{StringIO}, or some other type. The implementation is free " "to decide on a per-request basis.") headers = Attribute( "Backwards-compatibility access to C{responseHeaders}. Use" "C{responseHeaders} instead. C{headers} behaves mostly like a " "C{dict} and does not provide access to all header values nor " "does it allow multiple values for one header to be set.") responseHeaders = Attribute( "A L{http_headers.Headers} instance holding all HTTP response " "headers to be sent.") def getHeader(key): """ Get an HTTP request header. @type key: C{str} @param key: The name of the header to get the value of. @rtype: C{str} or C{NoneType} @return: The value of the specified header, or C{None} if that header was not present in the request. """ def getCookie(key): """ Get a cookie that was sent from the network. """ def getAllHeaders(): """ Return dictionary mapping the names of all received headers to the last value received for each. Since this method does not return all header information, C{requestHeaders.getAllRawHeaders()} may be preferred. """ def getRequestHostname(): """ Get the hostname that the user passed in to the request. This will either use the Host: header (if it is available) or the host we are listening on if the header is unavailable. @returns: the requested hostname @rtype: C{str} """ def getHost(): """ Get my originally requesting transport's host. @return: An L{IAddress<twisted.internet.interfaces.IAddress>}. """ def getClientIP(): """ Return the IP address of the client who submitted this request. @returns: the client IP address or C{None} if the request was submitted over a transport where IP addresses do not make sense. @rtype: L{str} or C{NoneType} """ def getClient(): """ Return the hostname of the IP address of the client who submitted this request, if possible. This method is B{deprecated}. See L{getClientIP} instead. @rtype: C{NoneType} or L{str} @return: The canonical hostname of the client, as determined by performing a name lookup on the IP address of the client. """ def getUser(): """ Return the HTTP user sent with this request, if any. If no user was supplied, return the empty string. @returns: the HTTP user, if any @rtype: C{str} """ def getPassword(): """ Return the HTTP password sent with this request, if any. If no password was supplied, return the empty string. @returns: the HTTP password, if any @rtype: C{str} """ def isSecure(): """ Return True if this request is using a secure transport. Normally this method returns True if this request's HTTPChannel instance is using a transport that implements ISSLTransport. This will also return True if setHost() has been called with ssl=True. @returns: True if this request is secure @rtype: C{bool} """ def getSession(sessionInterface=None): """ Look up the session associated with this request or create a new one if there is not one. @return: The L{Session} instance identified by the session cookie in the request, or the C{sessionInterface} component of that session if C{sessionInterface} is specified. """ def URLPath(): """ @return: A L{URLPath} instance which identifies the URL for which this request is. """ def prePathURL(): """ @return: At any time during resource traversal, a L{str} giving an absolute URL to the most nested resource which has yet been reached. """ def rememberRootURL(): """ Remember the currently-processed part of the URL for later recalling. """ def getRootURL(): """ Get a previously-remembered URL. """ # Methods for outgoing response def finish(): """ Indicate that the response to this request is complete. """ def write(data): """ Write some data to the body of the response to this request. Response headers are written the first time this method is called, after which new response headers may not be added. """ def addCookie(k, v, expires=None, domain=None, path=None, max_age=None, comment=None, secure=None): """ Set an outgoing HTTP cookie. In general, you should consider using sessions instead of cookies, see L{twisted.web.server.Request.getSession} and the L{twisted.web.server.Session} class for details. """ def setResponseCode(code, message=None): """ Set the HTTP response code. """ def setHeader(k, v): """ Set an HTTP response header. Overrides any previously set values for this header. @type name: C{str} @param name: The name of the header for which to set the value. @type value: C{str} @param value: The value to set for the named header. """ def redirect(url): """ Utility function that does a redirect. The request should have finish() called after this. """ def setLastModified(when): """ Set the C{Last-Modified} time for the response to this request. If I am called more than once, I ignore attempts to set Last-Modified earlier, only replacing the Last-Modified time if it is to a later value. If I am a conditional request, I may modify my response code to L{NOT_MODIFIED<http.NOT_MODIFIED>} if appropriate for the time given. @param when: The last time the resource being returned was modified, in seconds since the epoch. @type when: L{int}, L{long} or L{float} @return: If I am a C{If-Modified-Since} conditional request and the time given is not newer than the condition, I return L{CACHED<http.CACHED>} to indicate that you should write no body. Otherwise, I return a false value. """ def setETag(etag): """ Set an C{entity tag} for the outgoing response. That's "entity tag" as in the HTTP/1.1 I{ETag} header, "used for comparing two or more entities from the same requested resource." If I am a conditional request, I may modify my response code to L{NOT_MODIFIED<http.NOT_MODIFIED>} or L{PRECONDITION_FAILED<http.PRECONDITION_FAILED>}, if appropriate for the tag given. @param etag: The entity tag for the resource being returned. @type etag: C{str} @return: If I am a C{If-None-Match} conditional request and the tag matches one in the request, I return L{CACHED<http.CACHED>} to indicate that you should write no body. Otherwise, I return a false value. """ def setHost(host, port, ssl=0): """ Change the host and port the request thinks it's using. This method is useful for working with reverse HTTP proxies (e.g. both Squid and Apache's mod_proxy can do this), when the address the HTTP client is using is different than the one we're listening on. For example, Apache may be listening on https://www.example.com, and then forwarding requests to http://localhost:8080, but we don't want HTML produced by Twisted to say 'http://localhost:8080', they should say 'https://www.example.com', so we do:: request.setHost('www.example.com', 443, ssl=1) """ class ICredentialFactory(Interface): """ A credential factory defines a way to generate a particular kind of authentication challenge and a way to interpret the responses to these challenges. It creates L{ICredentials<twisted.cred.credentials.ICredentials>} providers from responses. These objects will be used with L{twisted.cred} to authenticate an authorize requests. """ scheme = Attribute( "A C{str} giving the name of the authentication scheme with which " "this factory is associated. For example, C{'basic'} or C{'digest'}.") def getChallenge(request): """ Generate a new challenge to be sent to a client. @type peer: L{twisted.web.http.Request} @param peer: The request the response to which this challenge will be included. @rtype: C{dict} @return: A mapping from C{str} challenge fields to associated C{str} values. """ def decode(response, request): """ Create a credentials object from the given response. @type response: C{str} @param response: scheme specific response string @type request: L{twisted.web.http.Request} @param request: The request being processed (from which the response was taken). @raise twisted.cred.error.LoginFailed: If the response is invalid. @rtype: L{twisted.cred.credentials.ICredentials} provider @return: The credentials represented by the given response. """ class IBodyProducer(IPushProducer): """ Objects which provide L{IBodyProducer} write bytes to an object which provides L{IConsumer<twisted.internet.interfaces.IConsumer>} by calling its C{write} method repeatedly. L{IBodyProducer} providers may start producing as soon as they have an L{IConsumer<twisted.internet.interfaces.IConsumer>} provider. That is, they should not wait for a C{resumeProducing} call to begin writing data. L{IConsumer.unregisterProducer<twisted.internet.interfaces.IConsumer.unregisterProducer>} must not be called. Instead, the L{Deferred<twisted.internet.defer.Deferred>} returned from C{startProducing} must be fired when all bytes have been written. L{IConsumer.write<twisted.internet.interfaces.IConsumer.write>} may synchronously invoke any of C{pauseProducing}, C{resumeProducing}, or C{stopProducing}. These methods must be implemented with this in mind. @since: 9.0 """ # Despite the restrictions above and the additional requirements of # stopProducing documented below, this interface still needs to be an # IPushProducer subclass. Providers of it will be passed to IConsumer # providers which only know about IPushProducer and IPullProducer, not # about this interface. This interface needs to remain close enough to one # of those interfaces for consumers to work with it. length = Attribute( """ C{length} is a C{int} indicating how many bytes in total this L{IBodyProducer} will write to the consumer or L{UNKNOWN_LENGTH} if this is not known in advance. """) def startProducing(consumer): """ Start producing to the given L{IConsumer<twisted.internet.interfaces.IConsumer>} provider. @return: A L{Deferred<twisted.internet.defer.Deferred>} which fires with C{None} when all bytes have been produced or with a L{Failure<twisted.python.failure.Failure>} if there is any problem before all bytes have been produced. """ def stopProducing(): """ In addition to the standard behavior of L{IProducer.stopProducing<twisted.internet.interfaces.IProducer.stopProducing>} (stop producing data), make sure the L{Deferred<twisted.internet.defer.Deferred>} returned by C{startProducing} is never fired. """ class IRenderable(Interface): """ An L{IRenderable} is an object that may be rendered by the L{twisted.web.template} templating system. """ def lookupRenderMethod(name): """ Look up and return the render method associated with the given name. @type name: C{str} @param name: The value of a render directive encountered in the document returned by a call to L{IRenderable.render}. @return: A two-argument callable which will be invoked with the request being responded to and the tag object on which the render directive was encountered. """ def render(request): """ Get the document for this L{IRenderable}. @type request: L{IRequest} provider or C{NoneType} @param request: The request in response to which this method is being invoked. @return: An object which can be flattened. """ class ITemplateLoader(Interface): """ A loader for templates; something usable as a value for L{twisted.web.template.Element}'s C{loader} attribute. """ def load(): """ Load a template suitable for rendering. @return: a C{list} of C{list}s, C{unicode} objects, C{Element}s and other L{IRenderable} providers. """ class IResponse(Interface): """ An object representing an HTTP response received from an HTTP server. @since: 11.1 """ version = Attribute( "A three-tuple describing the protocol and protocol version " "of the response. The first element is of type C{str}, the second " "and third are of type C{int}. For example, C{('HTTP', 1, 1)}.") code = Attribute("The HTTP status code of this response, as a C{int}.") phrase = Attribute( "The HTTP reason phrase of this response, as a C{str}.") headers = Attribute("The HTTP response L{Headers} of this response.") length = Attribute( "The C{int} number of bytes expected to be in the body of this " "response or L{UNKNOWN_LENGTH} if the server did not indicate how " "many bytes to expect. For I{HEAD} responses, this will be 0; if " "the response includes a I{Content-Length} header, it will be " "available in C{headers}.") def deliverBody(protocol): """ Register an L{IProtocol<twisted.internet.interfaces.IProtocol>} provider to receive the response body. The protocol will be connected to a transport which provides L{IPushProducer}. The protocol's C{connectionLost} method will be called with: - ResponseDone, which indicates that all bytes from the response have been successfully delivered. - PotentialDataLoss, which indicates that it cannot be determined if the entire response body has been delivered. This only occurs when making requests to HTTP servers which do not set I{Content-Length} or a I{Transfer-Encoding} in the response. - ResponseFailed, which indicates that some bytes from the response were lost. The C{reasons} attribute of the exception may provide more specific indications as to why. """ class _IRequestEncoder(Interface): """ An object encoding data passed to L{IRequest.write}, for example for compression purpose. @since: 12.3 """ def encode(data): """ Encode the data given and return the result. @param data: The content to encode. @type data: C{str} @return: The encoded data. @rtype: C{str} """ def finish(): """ Callback called when the request is closing. @return: If necessary, the pending data accumulated from previous C{encode} calls. @rtype: C{str} """ class _IRequestEncoderFactory(Interface): """ A factory for returing L{_IRequestEncoder} instances. @since: 12.3 """ def encoderForRequest(request): """ If applicable, returns a L{_IRequestEncoder} instance which will encode the request. """ UNKNOWN_LENGTH = u"twisted.web.iweb.UNKNOWN_LENGTH" __all__ = [ "IUsernameDigestHash", "ICredentialFactory", "IRequest", "IBodyProducer", "IRenderable", "IResponse", "_IRequestEncoder", "_IRequestEncoderFactory", "UNKNOWN_LENGTH"]
#-*- encoding: utf8 -*- import ConfigParser class Opt(object): """Opt is a Abstract Base Class which is used to wrap the options in configuration file. """ def __init__(self, key, group='default', default=None): self.group = group self.key = key self.default = default def parse(self, value): """ The method is a abstract method which should be overrided in derived class. :param value: The value load from configration file. :return: The value after being parsed. """ raise NotImplementedError("Please implement the Class") class BoolOpt(Opt): """ The class is used to parse value to Boolean. """ def __init__(self, key, group='default', default=False): super(BoolOpt, self).__init__(key, group, default) def parse(self, value): if isinstance(value, bool): return value elif isinstance(value, str): if value.upper() in ('NO', '0', 'FALSE', 'WRONG'): return False else: return True elif isinstance(value, int): return True if value else False else: return False class StrOpt(Opt): """ The class is used to parse value to String. """ def __init__(self, key, group='default', default=''): super(StrOpt, self).__init__(key, group, default) def parse(self, value): if value is None: return '' try: return str(value) except Exception as e: return str(self.default) class IntOpt(Opt): """ The class is used to parse value to Int. """ def __init__(self, key, group='default', default=0): super(IntOpt, self).__init__(key, group, default) def parse(self, value): try: return int(value) except Exception as e: return int(self.default) class FloatOpt(Opt): """ The class is used to parse value to Float. """ def __init__(self, key, group='default', default=0): super(FloatOpt, self).__init__(key, group, default) def parse(self, value): try: return float(value) except Exception as e: return float(self.default) class ListOpt(Opt): """ The class is used to parse value to Python List. """ def __init__(self, key, group='default', default=[], sep=','): super(ListOpt, self).__init__(key, group, default) self.sep = sep def parse(self, value): if value is None: if self.default is not None: return self.parse(self.default) else: return list() if isinstance(value, list): return value elif isinstance(value, str): return value.split(self.sep) else: rc = list() rc.append(value) return rc class DictOpt(Opt): """ The class is used to parse value to Python Dict. """ def __init__(self, key, group='default', default={}, sep=','): super(DictOpt, self).__init__(key, group, default) self.sep = sep def parse(self, value): if value is None: if self.default is not None: return self.parse(self.default) else: return dict() if isinstance(value, dict): return value elif isinstance(value, str): tmps = value.split(self.sep) rc = dict() for tmp in tmps: try: key, value = tmp.split(":") except Exception as e: key = tmp value = None rc[key] = value return rc else: return dict() class ConfigOpts(object): """ The class used to parse the configuration file which is based on python standard module ConfigParser. The class is not only to load the configuration file, but also support to override the value in configuration file and parse the value to some known type such as dict, list via register_opts/ register_opt. The unregister_opt is used to eliminate the options(registered by register_opts/ register_opt) in the cache. """ def __init__(self): self.__cache = dict() self.fp = None self.path = None def setup(self, path): self.path = path self.fp = None self._reload() def _reload(self): if self.fp: self.fp = None self.fp = ConfigParser.ConfigParser() self.fp.read(self.path) def _reload_group(self, group): self.__cache[group] = dict() ops = self.fp.options(group) for op in ops: self.__cache[group][op] = self.fp.get(group, op) def __getitem__(self, group='default'): if not self.fp: raise Exception("Please invoke method setup first!") if self.fp.has_section(group): if group not in self.__cache: self._reload_group(group) return self.__cache[group] else: return None def __iter__(self): return self.__cache.__iter__() def __len__(self): return len(self.__cache) def __getattr__(self, group='default'): return self.__getitem__(group) def register_opts(self, opts): """The method is used to register the options. :param opts: opts must be a list or tuple and its elements must be derived class of Opt :return: """ for opt in opts: self.register_opt(opt) def register_opt(self, opt): if not isinstance(opt, Opt): raise TypeError("Options type ERROR") if opt.group not in self.__cache: if self.fp.has_section(opt.group): self._reload_group(opt.group) else: return if not self.fp.has_option(opt.group, opt.key): self.__cache[opt.group][opt.key] = opt.parse(opt.default) else: self.__cache[opt.group][opt.key] = opt.parse(self.fp.get(opt.group, opt.key)) def unregister_opt(self, key, group='default'): """ The method is used to unregister the options :param key: key in section of configuration file :param group: section in configuration file, default is 'default' :return: True: execute successfully; False: execute failure """ if group not in self.__cache: return True if key not in self.__cache[group]: return True try: del self.__cache[group][key] if not self.__cache[group]: del self.__cache[group] except Exception as e: return False return True def get(self, key, group='default', default=None): """ The method is used to get the corresponding value of the key. :param key: key in section of configuration file :param group: section in configuration file, default is 'default' :param default: default value corresponding to the key given by client :return: the corresponding value of the key. """ if not self.fp: raise Exception("Please invoke method setup first!") if group not in self.__cache: self._reload_group(group) try: return self.__cache[group][key] except KeyError as e: if self.fp.has_option(group, key): self.__cache[group][key] = self.fp.get(group, key) else: self.__cache[group][key] = default return self.__cache[group][key] CONF = ConfigOpts() if __name__ == "__main__": CONF['abc'] path = "../etc/bsl.conf" CONF.setup(path) opts = [BoolOpt('bool', 'default'), IntOpt('abc', 'default'), FloatOpt('zip', 'default'), ListOpt('s', 'skp'), DictOpt('d', 'skp'), ListOpt('unknown', 'skp', default=['a','b','c'])] CONF.register_opts(opts) print type(CONF['default']['bool']), CONF['default']['bool'] print type(CONF['default']['abc']), CONF['default']['abc'] print type(CONF['default']['zip']), CONF['default']['zip'] print type(CONF['skp']['s']), CONF['skp']['s'] print type(CONF['skp']['d']), CONF['skp']['d'] print type(CONF['skp']['unknown']), CONF['skp']['unknown'] CONF.unregister_opt('unknown', 'skp') print CONF.get('unknown', 'skp')
# Copyright 2014 Mellanox Technologies, Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import itertools import socket import sys import time from neutron_lib.api.definitions import portbindings from neutron_lib import constants as n_constants from neutron_lib import context from neutron_lib.utils import helpers from oslo_config import cfg from oslo_log import log as logging import oslo_messaging from oslo_service import loopingcall from osprofiler import profiler import six from neutron._i18n import _ from neutron.agent.l2 import l2_agent_extensions_manager as ext_manager from neutron.agent import rpc as agent_rpc from neutron.agent import securitygroups_rpc as agent_sg_rpc from neutron.api.rpc.callbacks import resources from neutron.api.rpc.handlers import securitygroups_rpc as sg_rpc from neutron.common import config as common_config from neutron.common import profiler as setup_profiler from neutron.common import topics from neutron.plugins.ml2.drivers.mech_sriov.agent.common import config from neutron.plugins.ml2.drivers.mech_sriov.agent.common \ import exceptions as exc from neutron.plugins.ml2.drivers.mech_sriov.agent import eswitch_manager as esm LOG = logging.getLogger(__name__) class SriovNicSwitchRpcCallbacks(sg_rpc.SecurityGroupAgentRpcCallbackMixin): # Set RPC API version to 1.0 by default. # history # 1.1 Support Security Group RPC (works with NoopFirewallDriver) # 1.2 Support DVR (Distributed Virtual Router) RPC (not supported) # 1.3 Added param devices_to_update to security_groups_provider_updated # (works with NoopFirewallDriver) # 1.4 Added support for network_update target = oslo_messaging.Target(version='1.4') def __init__(self, context, agent, sg_agent): super(SriovNicSwitchRpcCallbacks, self).__init__() self.context = context self.agent = agent self.sg_agent = sg_agent def port_update(self, context, **kwargs): LOG.debug("port_update received") port = kwargs.get('port') vnic_type = port.get(portbindings.VNIC_TYPE) if vnic_type and vnic_type == portbindings.VNIC_DIRECT_PHYSICAL: LOG.debug("The SR-IOV agent doesn't handle %s ports.", portbindings.VNIC_DIRECT_PHYSICAL) return # Put the port mac address in the updated_devices set. # Do not store port details, as if they're used for processing # notifications there is no guarantee the notifications are # processed in the same order as the relevant API requests. mac = port['mac_address'] pci_slot = None if port.get(portbindings.PROFILE): pci_slot = port[portbindings.PROFILE].get('pci_slot') if pci_slot: self.agent.updated_devices.add((mac, pci_slot)) LOG.debug("port_update RPC received for port: %(id)s with MAC " "%(mac)s and PCI slot %(pci_slot)s slot", {'id': port['id'], 'mac': mac, 'pci_slot': pci_slot}) else: LOG.debug("No PCI Slot for port %(id)s with MAC %(mac)s; " "skipping", {'id': port['id'], 'mac': mac, 'pci_slot': pci_slot}) def network_update(self, context, **kwargs): network_id = kwargs['network']['id'] LOG.debug("network_update message received for network " "%(network_id)s, with ports: %(ports)s", {'network_id': network_id, 'ports': self.agent.network_ports[network_id]}) for port_data in self.agent.network_ports[network_id]: self.agent.updated_devices.add(port_data['device']) @profiler.trace_cls("rpc") class SriovNicSwitchAgent(object): def __init__(self, physical_devices_mappings, exclude_devices, polling_interval): self.polling_interval = polling_interval self.network_ports = collections.defaultdict(list) self.conf = cfg.CONF self.device_mappings = physical_devices_mappings self.exclude_devices = exclude_devices self.setup_eswitch_mgr(physical_devices_mappings, exclude_devices) # Stores port update notifications for processing in the main loop self.updated_devices = set() self.context = context.get_admin_context_without_session() self.plugin_rpc = agent_rpc.PluginApi(topics.PLUGIN) self.sg_plugin_rpc = sg_rpc.SecurityGroupServerRpcApi(topics.PLUGIN) self.sg_agent = agent_sg_rpc.SecurityGroupAgentRpc(self.context, self.sg_plugin_rpc) self._setup_rpc() self.ext_manager = self._create_agent_extension_manager( self.connection) configurations = {'device_mappings': physical_devices_mappings, 'extensions': self.ext_manager.names()} #TODO(mangelajo): optimize resource_versions (see ovs agent) self.agent_state = { 'binary': 'neutron-sriov-nic-agent', 'host': self.conf.host, 'topic': n_constants.L2_AGENT_TOPIC, 'configurations': configurations, 'agent_type': n_constants.AGENT_TYPE_NIC_SWITCH, 'resource_versions': resources.LOCAL_RESOURCE_VERSIONS, 'start_flag': True} # The initialization is complete; we can start receiving messages self.connection.consume_in_threads() # Initialize iteration counter self.iter_num = 0 def _setup_rpc(self): self.agent_id = 'nic-switch-agent.%s' % socket.gethostname() LOG.info("RPC agent_id: %s", self.agent_id) self.topic = topics.AGENT self.state_rpc = agent_rpc.PluginReportStateAPI(topics.REPORTS) # RPC network init # Handle updates from service self.endpoints = [SriovNicSwitchRpcCallbacks(self.context, self, self.sg_agent)] # Define the listening consumers for the agent consumers = [[topics.PORT, topics.UPDATE], [topics.NETWORK, topics.UPDATE], [topics.SECURITY_GROUP, topics.UPDATE]] self.connection = agent_rpc.create_consumers(self.endpoints, self.topic, consumers, start_listening=False) report_interval = cfg.CONF.AGENT.report_interval if report_interval: heartbeat = loopingcall.FixedIntervalLoopingCall( self._report_state) heartbeat.start(interval=report_interval) def _report_state(self): try: self.state_rpc.report_state(self.context, self.agent_state) # we only want to update resource versions on startup self.agent_state.pop('resource_versions', None) self.agent_state.pop('start_flag', None) except Exception: LOG.exception("Failed reporting state!") def _create_agent_extension_manager(self, connection): ext_manager.register_opts(self.conf) mgr = ext_manager.L2AgentExtensionsManager(self.conf) mgr.initialize(connection, 'sriov') return mgr def setup_eswitch_mgr(self, device_mappings, exclude_devices=None): exclude_devices = exclude_devices or {} self.eswitch_mgr = esm.ESwitchManager() self.eswitch_mgr.discover_devices(device_mappings, exclude_devices) def scan_devices(self, registered_devices, updated_devices): curr_devices = self.eswitch_mgr.get_assigned_devices_info() self.agent_state.get('configurations')['devices'] = len(curr_devices) device_info = {} device_info['current'] = curr_devices device_info['added'] = curr_devices - registered_devices # we need to clean up after devices are removed device_info['removed'] = registered_devices - curr_devices # we don't want to process updates for devices that don't exist device_info['updated'] = (updated_devices & curr_devices - device_info['removed']) return device_info def _device_info_has_changes(self, device_info): return (device_info.get('added') or device_info.get('updated') or device_info.get('removed')) def process_network_devices(self, device_info): resync_a = False resync_b = False self.sg_agent.prepare_devices_filter(device_info.get('added')) if device_info.get('updated'): self.sg_agent.refresh_firewall() # Updated devices are processed the same as new ones, as their # admin_state_up may have changed. The set union prevents duplicating # work when a device is new and updated in the same polling iteration. devices_added_updated = (set(device_info.get('added')) | set(device_info.get('updated'))) if devices_added_updated: resync_a = self.treat_devices_added_updated(devices_added_updated) if device_info.get('removed'): resync_b = self.treat_devices_removed(device_info['removed']) # If one of the above operations fails => resync with plugin return (resync_a | resync_b) def treat_device(self, device, pci_slot, admin_state_up, spoofcheck=True): if self.eswitch_mgr.device_exists(device, pci_slot): try: self.eswitch_mgr.set_device_spoofcheck(device, pci_slot, spoofcheck) except Exception: LOG.warning("Failed to set spoofcheck for device %s", device) LOG.info("Device %(device)s spoofcheck %(spoofcheck)s", {"device": device, "spoofcheck": spoofcheck}) try: self.eswitch_mgr.set_device_state(device, pci_slot, admin_state_up) except exc.IpCommandOperationNotSupportedError: LOG.warning("Device %s does not support state change", device) except exc.SriovNicError: LOG.warning("Failed to set device %s state", device) return False else: LOG.info("No device with MAC %s defined on agent.", device) return False return True def _update_network_ports(self, network_id, port_id, mac_pci_slot): self._clean_network_ports(mac_pci_slot) self.network_ports[network_id].append({ "port_id": port_id, "device": mac_pci_slot}) def _clean_network_ports(self, mac_pci_slot): for netid, ports_list in self.network_ports.items(): for port_data in ports_list: if mac_pci_slot == port_data['device']: ports_list.remove(port_data) if ports_list == []: self.network_ports.pop(netid) return port_data['port_id'] def treat_devices_added_updated(self, devices_info): try: macs_list = set([device_info[0] for device_info in devices_info]) devices_details_list = self.plugin_rpc.get_devices_details_list( self.context, macs_list, self.agent_id) except Exception as e: LOG.debug("Unable to get port details for devices " "with MAC addresses %(devices)s: %(e)s", {'devices': macs_list, 'e': e}) # resync is needed return True devices_up = set() devices_down = set() for device_details in devices_details_list: device = device_details['device'] LOG.debug("Port with MAC address %s is added", device) if 'port_id' in device_details: LOG.info("Port %(device)s updated. Details: %(details)s", {'device': device, 'details': device_details}) port_id = device_details['port_id'] profile = device_details['profile'] spoofcheck = device_details.get('port_security_enabled', True) if self.treat_device(device, profile.get('pci_slot'), device_details['admin_state_up'], spoofcheck): if device_details['admin_state_up']: devices_up.add(device) else: devices_down.add(device) self._update_network_ports(device_details['network_id'], port_id, (device, profile.get('pci_slot'))) self.ext_manager.handle_port(self.context, device_details) else: LOG.info("Device with MAC %s not defined on plugin", device) self.plugin_rpc.update_device_list(self.context, devices_up, devices_down, self.agent_id, self.conf.host) return False def treat_devices_removed(self, devices): resync = False for device in devices: mac, pci_slot = device LOG.info("Removing device with MAC address %(mac)s and " "PCI slot %(pci_slot)s", {'mac': mac, 'pci_slot': pci_slot}) try: port_id = self._clean_network_ports(device) if port_id: port = {'port_id': port_id, 'device': mac, 'profile': {'pci_slot': pci_slot}} self.ext_manager.delete_port(self.context, port) else: LOG.warning("port_id to device with MAC " "%s not found", mac) dev_details = self.plugin_rpc.update_device_down(self.context, mac, self.agent_id, cfg.CONF.host) except Exception as e: LOG.debug("Removing port failed for device with MAC address " "%(mac)s and PCI slot %(pci_slot)s due to %(exc)s", {'mac': mac, 'pci_slot': pci_slot, 'exc': e}) resync = True continue if dev_details['exists']: LOG.info("Port with MAC %(mac)s and PCI slot " "%(pci_slot)s updated.", {'mac': mac, 'pci_slot': pci_slot}) else: LOG.debug("Device with MAC %(mac)s and PCI slot " "%(pci_slot)s not defined on plugin", {'mac': mac, 'pci_slot': pci_slot}) return resync def daemon_loop(self): sync = True devices = set() LOG.info("SRIOV NIC Agent RPC Daemon Started!") while True: start = time.time() LOG.debug("Agent rpc_loop - iteration:%d started", self.iter_num) if sync: LOG.info("Agent out of sync with plugin!") devices.clear() sync = False device_info = {} # Save updated devices dict to perform rollback in case # resync would be needed, and then clear self.updated_devices. # As the greenthread should not yield between these # two statements, this will should be thread-safe. updated_devices_copy = self.updated_devices self.updated_devices = set() try: self.eswitch_mgr.discover_devices(self.device_mappings, self.exclude_devices) device_info = self.scan_devices(devices, updated_devices_copy) if self._device_info_has_changes(device_info): LOG.debug("Agent loop found changes! %s", device_info) # If treat devices fails - indicates must resync with # plugin sync = self.process_network_devices(device_info) devices = device_info['current'] except Exception: LOG.exception("Error in agent loop. Devices info: %s", device_info) sync = True # Restore devices that were removed from this set earlier # without overwriting ones that may have arrived since. self.updated_devices |= updated_devices_copy # sleep till end of polling interval elapsed = (time.time() - start) if (elapsed < self.polling_interval): time.sleep(self.polling_interval - elapsed) else: LOG.debug("Loop iteration exceeded interval " "(%(polling_interval)s vs. %(elapsed)s)!", {'polling_interval': self.polling_interval, 'elapsed': elapsed}) self.iter_num = self.iter_num + 1 class SriovNicAgentConfigParser(object): def __init__(self): self.device_mappings = {} self.exclude_devices = {} def parse(self): """Parses device_mappings and exclude_devices. Parse and validate the consistency in both mappings """ self.device_mappings = helpers.parse_mappings( cfg.CONF.SRIOV_NIC.physical_device_mappings, unique_keys=False) self.exclude_devices = config.parse_exclude_devices( cfg.CONF.SRIOV_NIC.exclude_devices) self._validate() def _validate(self): """Validate configuration. Validate that network_device in excluded_device exists in device mappings """ dev_net_set = set(itertools.chain.from_iterable( six.itervalues(self.device_mappings))) for dev_name in self.exclude_devices.keys(): if dev_name not in dev_net_set: raise ValueError(_("Device name %(dev_name)s is missing from " "physical_device_mappings") % {'dev_name': dev_name}) def main(): common_config.init(sys.argv[1:]) common_config.setup_logging() try: config_parser = SriovNicAgentConfigParser() config_parser.parse() device_mappings = config_parser.device_mappings exclude_devices = config_parser.exclude_devices except ValueError: LOG.exception("Failed on Agent configuration parse. " "Agent terminated!") raise SystemExit(1) LOG.info("Physical Devices mappings: %s", device_mappings) LOG.info("Exclude Devices: %s", exclude_devices) polling_interval = cfg.CONF.AGENT.polling_interval try: agent = SriovNicSwitchAgent(device_mappings, exclude_devices, polling_interval) except exc.SriovNicError: LOG.exception("Agent Initialization Failed") raise SystemExit(1) # Start everything. setup_profiler.setup("neutron-sriov-nic-agent", cfg.CONF.host) LOG.info("Agent initialized successfully, now running... ") agent.daemon_loop()
from globals import * import life as lfe import language import graphics import bad_numbers import timers import items import alife import logging import random def get_puncture_value(item, target_structure, target_structure_name='object', debug=True): _damage = (((item['speed']/float(item['max_speed']))*item['damage']['sharp'])*\ (target_structure['max_thickness']/float(target_structure['thickness'])))*\ (item['size']/float(bad_numbers.get_surface_area(target_structure))) if debug: logging.debug('%s is pucturing %s.' % (item['name'], target_structure_name)) logging.debug('%s\'s max speed is %s and is currently traveling at speed %s.' % (item['name'], item['max_speed'], item['speed'])) logging.debug('The %s\'s material has a thickness of %s (with a max of %s).' % (target_structure_name, target_structure['thickness'], target_structure['max_thickness'])) logging.debug('%s has a puncture rating of %s.' % (item['name'], item['damage']['sharp'])) logging.debug('Size of %s: %s, size of %s: %s' % (item['name'], item['size'], target_structure_name, target_structure['size'])) logging.debug('The %s does %s points of damage to the %s.' % (item['name'], _damage, target_structure_name)) return _damage def own_language(life, message): _mentioned_name = False _ret_string = '' for txt in message: if 'player' in life: _ret_string += txt.replace('<own>', 'your') else: _name = txt.replace('<own>', language.get_name_ownership(life, pronoun=_mentioned_name)) if not _name == txt: _mentioned_name = True _ret_string += _name return _ret_string def bullet_hit(life, bullet, limb): _owner = LIFE[bullet['shot_by']] _actual_limb = lfe.get_limb(life, limb) _items_to_check = [] _msg = [] #if 'player' in _owner: # if bullet['aim_at_limb'] == limb: # _hit = True # _msg = ['The round hits'] # elif not limb in life['body']: # return 'The round misses entirely!' # else: # _msg = ['The round misses slightly'] # _detailed = True # #elif 'player' in life: # _msg = ['The round hits'] #else: # _msg = ['%s hits %s\'s %s' % (items.get_name(bullet), life['name'][0], limb)] for item_uid in lfe.get_items_attached_to_limb(life, limb): _items_to_check.append({'item': item_uid, 'visible': True}) _item = items.get_item_from_uid(item_uid) if 'storing' in _item: for item_in_container_uid in _item['storing']: _chance_of_hitting_item = _item['capacity']/float(_item['max_capacity']) if random.uniform(0, 1)<_chance_of_hitting_item: break _items_to_check.append({'item': item_in_container_uid, 'visible': False}) for entry in _items_to_check: _item = items.get_item_from_uid(entry['item']) _item_damage = get_puncture_value(bullet, _item, target_structure_name=_item['name']) _item['thickness'] = bad_numbers.clip(_item['thickness']-_item_damage, 0, _item['max_thickness']) if 'material' in _item and not _item['material'] == 'cloth': _speed_mod = _item_damage _can_stop = True bullet['speed'] *= _speed_mod bullet['velocity'][0] *= _speed_mod bullet['velocity'][1] *= _speed_mod else: _can_stop = False if not _item['thickness']: if _item['uid'] in lfe.get_all_visible_items(life): if 'player' in _owner: _msg.append('%s\'s %s is destroyed!' % (' '.join(life['name']), _item['name'])) if _item['type'] == 'explosive': items.explode(_item) else: items.delete_item(_item) #else: # if bullet['speed']<=1 and _can_stop: # #if 'player' in _owner: # # _msg.append(', lodging itself in %s' % items.get_name(_item)) # #_ret_string = own_language(life, _msg) # # if _ret_string.endswith('!'): # return _ret_string # else: # return _ret_string+'.' # #else: # # if 'material' in _item: # # if _item['material'] == 'metal': # # _msg.append(', puncturing the %s' % _item['name']) # # else: # # _msg.append(', ripping through the %s' % _item['name']) _damage = get_puncture_value(bullet, _actual_limb, target_structure_name=limb) _actual_limb['thickness'] = bad_numbers.clip(_actual_limb['thickness']-_damage, 0, _actual_limb['max_thickness']) if not _actual_limb['thickness']: lfe.sever_limb(life, limb, (0, 0, 0)) _damage_mod = 1-(_actual_limb['thickness']/float(_actual_limb['max_thickness'])) if limb in life['body']: _msg.append(lfe.add_wound(life, limb, cut=_damage*_damage_mod, impact_velocity=bullet['velocity'])) #_ret_string = own_language(life, _msg) return ' '.join(_msg) #if _ret_string.endswith('!'): # return _ret_string #else: # return _ret_string+'.' def bite(life, target_id, limb): logging.debug('%s bit %s in the %s.' % (' '.join(life['name']), ' '.join(LIFE[target_id]['name']), limb)) target = LIFE[target_id] _msg = ['%s' % language.get_introduction(life)] _bite_strength = random.randint(1, 3) if bad_numbers.distance(life['pos'], target['pos'])>1: _msg.append('bites the air') return ' '.join(_msg)+'.' _items_to_check = [] for _item in lfe.get_items_attached_to_limb(target, limb): _items_to_check.append({'item': _item, 'visible': True}) _actual_item = items.get_item_from_uid(_item) if 'storing' in _actual_item: for _item_in_container in _actual_item['storing']: _items_to_check.append({'item': _item_in_container, 'visible': False}) for entry in _items_to_check: _item = items.get_item_from_uid(entry['item']) if not 'thickness' in _item: logging.warning('Item \'%s\' has no set thickness. Guessing...' % _item['name']) _item['thickness'] = _item['size']/2 _thickness = _item['thickness'] _item['thickness'] = bad_numbers.clip(_item['thickness']-_bite_strength, 0, 100) _bite_strength -= _thickness _tear = _item['thickness']-_thickness _limb_in_context = False if _item['material'] == 'cloth': if _thickness and not _item['thickness']: _msg.append('rips through <own> %s' % _item['name']) elif _tear<=-3: _msg.append('rips <own> %s' % _item['name']) elif _tear<=-2: _msg.append('tears <own> %s' % _item['name']) elif _tear<=-1: _msg.append('slightly tears <own> %s' % _item['name']) if _bite_strength <= 0 and _item['thickness']: _msg.append('is stopped by <own> %s' % _item['name']) return ' '.join(_msg) #if not lfe.limb_is_cut(target, limb): if _bite_strength==1: _msg.append(', cutting <own> %s' % limb) elif _bite_strength==2: _msg.append(', tearing <own> %s' % limb) elif _bite_strength==3: _msg.append(', ripping open <own> %s' % limb) if _bite_strength: lfe.add_wound(target, limb, cut=_bite_strength) #TODO: How thick is skin? _bite_strength -= 1 #if not _bite_strength: # return ' '.join(_msg) _ret_string = own_language(target, _msg) return _ret_string+'.'
# Copyright (c) 2013 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import traceback import eventlet from eventlet.green import threading from eventlet.green import time from eventlet import greenpool from eventlet import semaphore from oslo_config import cfg from oslo_context import context from oslo_log import log as logging from sahara import exceptions as ex from sahara.i18n import _ from sahara.i18n import _LW CONF = cfg.CONF LOG = logging.getLogger(__name__) class Context(context.RequestContext): def __init__(self, user_id=None, tenant_id=None, auth_token=None, service_catalog=None, username=None, tenant_name=None, roles=None, is_admin=None, remote_semaphore=None, resource_uuid=None, current_instance_info=None, request_id=None, auth_plugin=None, overwrite=True, **kwargs): if kwargs: LOG.warning(_LW('Arguments dropped when creating context: ' '{args}').format(args=kwargs)) super(Context, self).__init__(auth_token=auth_token, user=user_id, tenant=tenant_id, is_admin=is_admin, resource_uuid=resource_uuid, request_id=request_id) self.service_catalog = service_catalog self.username = username self.tenant_name = tenant_name self.remote_semaphore = remote_semaphore or semaphore.Semaphore( CONF.cluster_remote_threshold) self.auth_plugin = auth_plugin self.roles = roles if overwrite or not hasattr(context._request_store, 'context'): self.update_store() if current_instance_info is not None: self.current_instance_info = current_instance_info else: self.current_instance_info = InstanceInfo() def clone(self): return Context( self.user_id, self.tenant_id, self.auth_token, self.service_catalog, self.username, self.tenant_name, self.roles, self.is_admin, self.remote_semaphore, self.resource_uuid, self.current_instance_info, self.request_id, self.auth_plugin, overwrite=False) def to_dict(self): return { 'user_id': self.user_id, 'tenant_id': self.tenant_id, 'auth_token': self.auth_token, 'service_catalog': self.service_catalog, 'username': self.username, 'tenant_name': self.tenant_name, 'user_name': self.username, 'project_name': self.tenant_name, 'is_admin': self.is_admin, 'roles': self.roles, 'resource_uuid': self.resource_uuid, 'request_id': self.request_id, } def is_auth_capable(self): return (self.service_catalog and self.auth_token and self.tenant and self.user_id) # NOTE(adrienverge): The Context class uses the 'user' and 'tenant' # properties internally (inherited from oslo_context), but Sahara code # often uses 'user_id' and 'tenant_id'. @property def user_id(self): return self.user @user_id.setter def user_id(self, value): self.user = value @property def tenant_id(self): return self.tenant @tenant_id.setter def tenant_id(self, value): self.tenant = value def get_admin_context(): return Context(is_admin=True) _CTX_STORE = threading.local() _CTX_KEY = 'current_ctx' def has_ctx(): return hasattr(_CTX_STORE, _CTX_KEY) def ctx(): if not has_ctx(): raise ex.IncorrectStateError(_("Context isn't available here")) return getattr(_CTX_STORE, _CTX_KEY) def current(): return ctx() def set_ctx(new_ctx): if not new_ctx and has_ctx(): delattr(_CTX_STORE, _CTX_KEY) if hasattr(context._request_store, 'context'): delattr(context._request_store, 'context') if new_ctx: setattr(_CTX_STORE, _CTX_KEY, new_ctx) setattr(context._request_store, 'context', new_ctx) def _wrapper(ctx, thread_description, thread_group, func, *args, **kwargs): try: set_ctx(ctx) func(*args, **kwargs) except BaseException as e: LOG.debug( "Thread {thread} failed with exception: {exception}".format( thread=thread_description, exception=e)) if thread_group and not thread_group.exc: thread_group.exc = e thread_group.exc_stacktrace = traceback.format_exc() thread_group.failed_thread = thread_description finally: if thread_group: thread_group._on_thread_exit() set_ctx(None) def spawn(thread_description, func, *args, **kwargs): eventlet.spawn(_wrapper, current().clone(), thread_description, None, func, *args, **kwargs) class ThreadGroup(object): """ThreadGroup object. It is advised to use TreadGroup as a context manager instead of instantiating and calling _wait() manually. The __exit__() guaranties to exit only after all child threads are done, even if spawning code have thrown an exception """ def __init__(self, thread_pool_size=1000): self.tg = greenpool.GreenPool(size=thread_pool_size) self.exc = None self.exc_stacktrace = None self.failed_thread = None self.threads = 0 self.cv = threading.Condition() def spawn(self, thread_description, func, *args, **kwargs): self.tg.spawn(_wrapper, current().clone(), thread_description, self, func, *args, **kwargs) with self.cv: self.threads += 1 def _on_thread_exit(self): with self.cv: self.threads -= 1 if self.threads == 0: self.cv.notifyAll() # NOTE(dmitryme): A little rationale on why we reimplemented wait(): # * Eventlet's GreenPool.wait() can hung # * Oslo's ThreadGroup.wait() can exit before all threads are done # def _wait(self): """Using of _wait() method. It is preferred to use the class as a context manager and do not use _wait() directly, see class docstring for an explanation. """ with self.cv: while self.threads > 0: self.cv.wait() if self.exc: raise ex.ThreadException(self.failed_thread, self.exc, self.exc_stacktrace) def __enter__(self): return self def __exit__(self, *ex): if not any(ex): self._wait() else: # If spawning code thrown an exception, it had higher priority # for us than the one thrown inside child thread (if any) try: self._wait() except Exception: # that will make __exit__ throw original exception pass def sleep(seconds=0): time.sleep(seconds) class InstanceInfo(object): def __init__(self, cluster_id=None, instance_id=None, instance_name=None, node_group_id=None, step_type=None, step_id=None): self.cluster_id = cluster_id self.instance_id = instance_id self.instance_name = instance_name self.node_group_id = node_group_id self.step_type = step_type self.step_id = step_id def set_step_type(step_type): current().current_instance_info.step_type = step_type class InstanceInfoManager(object): def __init__(self, instance_info): self.prev_instance_info = current().current_instance_info if not instance_info.step_type: instance_info.step_type = self.prev_instance_info.step_type if not instance_info.step_id: instance_info.step_id = self.prev_instance_info.step_id current().current_instance_info = instance_info def __enter__(self): pass def __exit__(self, *args): current().current_instance_info = self.prev_instance_info def set_current_cluster_id(cluster_id): current().resource_uuid = 'none, cluster: %s' % cluster_id def set_current_job_execution_id(je_id): current().resource_uuid = 'none, job_execution: %s' % je_id class SetCurrentInstanceId(object): def __init__(self, instance_id): ctx = current() self.prev_uuid = ctx.resource_uuid if ctx.resource_uuid: ctx.resource_uuid = ctx.resource_uuid.replace('none', instance_id) context.get_current().resource_uuid = ctx.resource_uuid def __enter__(self): pass def __exit__(self, *ex): current().resource_uuid = self.prev_uuid context.get_current().resource_uuid = self.prev_uuid def set_current_instance_id(instance_id): return SetCurrentInstanceId(instance_id)
""" Test for the harmonization operation """ import calendar from datetime import datetime from unittest import TestCase import numpy as np import pandas as pd import xarray as xr from jdcal import gcal2jd from numpy.testing import assert_array_almost_equal from cate.core.op import OP_REGISTRY from cate.core.opimpl import normalize_missing_time, normalize_coord_vars from cate.ops.normalize import normalize, adjust_spatial_attrs, adjust_temporal_attrs from cate.util.misc import object_to_qualified_name # noinspection PyPep8Naming def assertDatasetEqual(expected, actual): # this method is functionally equivalent to # `assert expected == actual`, but it # checks each aspect of equality separately for easier debugging assert expected.equals(actual), (expected, actual) class TestNormalize(TestCase): def test_normalize_lon_lat_2d(self): """ Test nominal execution """ dims = ('time', 'y', 'x') attribs = {'valid_min': 0., 'valid_max': 1.} t_size = 2 y_size = 3 x_size = 4 a_data = np.random.random_sample((t_size, y_size, x_size)) b_data = np.random.random_sample((t_size, y_size, x_size)) time_data = [1, 2] lat_data = [[10., 10., 10., 10.], [20., 20., 20., 20.], [30., 30., 30., 30.]] lon_data = [[-10., 0., 10., 20.], [-10., 0., 10., 20.], [-10., 0., 10., 20.]] dataset = xr.Dataset({'a': (dims, a_data, attribs), 'b': (dims, b_data, attribs) }, {'time': (('time',), time_data), 'lat': (('y', 'x'), lat_data), 'lon': (('y', 'x'), lon_data) }, {'geospatial_lon_min': -15., 'geospatial_lon_max': 25., 'geospatial_lat_min': 5., 'geospatial_lat_max': 35. } ) new_dims = ('time', 'lat', 'lon') expected = xr.Dataset({'a': (new_dims, a_data, attribs), 'b': (new_dims, b_data, attribs)}, {'time': (('time',), time_data), 'lat': (('lat',), [10., 20., 30.]), 'lon': (('lon',), [-10., 0., 10., 20.]), }, {'geospatial_lon_min': -15., 'geospatial_lon_max': 25., 'geospatial_lat_min': 5., 'geospatial_lat_max': 35.}) actual = normalize(dataset) xr.testing.assert_equal(actual, expected) def test_normalize_lon_lat(self): """ Test nominal execution """ dataset = xr.Dataset({'first': (['latitude', 'longitude'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'lon'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize(dataset) assertDatasetEqual(actual, expected) dataset = xr.Dataset({'first': (['lat', 'long'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'lon'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize(dataset) assertDatasetEqual(actual, expected) dataset = xr.Dataset({'first': (['latitude', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize(dataset) assertDatasetEqual(actual, expected) dataset = xr.Dataset({'first': (['zef', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['zef', 'spacetime'], [[1, 2, 3], [2, 3, 4]])}) actual = normalize(dataset) assertDatasetEqual(actual, expected) def test_normalize_inverted_lat(self): first = np.zeros([3, 45, 90]) first[0, :, :] = np.eye(45, 90) ds = xr.Dataset({ 'first': (['time', 'lat', 'lon'], first), 'second': (['time', 'lat', 'lon'], np.zeros([3, 45, 90])), 'lat': np.linspace(88, -88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 4)]}).chunk(chunks={'time': 1}) first = np.zeros([3, 45, 90]) first[0, :, :] = np.flip(np.eye(45, 90), axis=0) expected = xr.Dataset({ 'first': (['time', 'lat', 'lon'], first), 'second': (['time', 'lat', 'lon'], np.zeros([3, 45, 90])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 4)]}).chunk(chunks={'time': 1}) actual = normalize(ds) xr.testing.assert_equal(actual, expected) def test_normalize_with_missing_time_dim(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101', 'time_coverage_end': '20121231'}) norm_ds = normalize(ds) self.assertIsNot(norm_ds, ds) self.assertEqual(len(norm_ds.coords), 4) self.assertIn('lon', norm_ds.coords) self.assertIn('lat', norm_ds.coords) self.assertIn('time', norm_ds.coords) self.assertIn('time_bnds', norm_ds.coords) self.assertEqual(norm_ds.first.shape, (1, 90, 180)) self.assertEqual(norm_ds.second.shape, (1, 90, 180)) self.assertEqual(norm_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2012-07-01T12:00:00'))) self.assertEqual(norm_ds.coords['time_bnds'][0][0], xr.DataArray(pd.to_datetime('2012-01-01'))) self.assertEqual(norm_ds.coords['time_bnds'][0][1], xr.DataArray(pd.to_datetime('2012-12-31'))) def test_normalize_julian_day(self): """ Test Julian Day -> Datetime conversion """ tuples = [gcal2jd(2000, x, 1) for x in range(1, 13)] ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [x[0] + x[1] for x in tuples]}) ds.time.attrs['long_name'] = 'time in julian days' expected = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.zeros([12, 45, 90])), 'second': (['time', 'lat', 'lon'], np.zeros([12, 45, 90])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) expected.time.attrs['long_name'] = 'time' actual = normalize(ds) assertDatasetEqual(actual, expected) def test_registered(self): """ Test as a registered operation """ reg_op = OP_REGISTRY.get_op(object_to_qualified_name(normalize)) dataset = xr.Dataset({'first': (['latitude', 'longitude'], [[1, 2, 3], [2, 3, 4]])}) expected = xr.Dataset({'first': (['lat', 'lon'], [[1, 2, 3], [2, 3, 4]])}) actual = reg_op(ds=dataset) assertDatasetEqual(actual, expected) class TestAdjustSpatial(TestCase): def test_nominal(self): ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' ds1 = adjust_spatial_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['geospatial_lat_min'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['geospatial_lat_min'], -90) self.assertEqual(ds1.attrs['geospatial_lat_max'], 90) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds1.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_lon_min'], -180) self.assertEqual(ds1.attrs['geospatial_lon_max'], 180) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((-180.0 -90.0, -180.0 90.0, 180.0 90.0,' ' 180.0 -90.0, -180.0 -90.0))') # Test existing attributes update lon_min, lat_min, lon_max, lat_max = -20, -40, 60, 40 indexers = {'lon': slice(lon_min, lon_max), 'lat': slice(lat_min, lat_max)} ds2 = ds1.sel(**indexers) ds2 = adjust_spatial_attrs(ds2) self.assertEqual(ds2.attrs['geospatial_lat_min'], -42) self.assertEqual(ds2.attrs['geospatial_lat_max'], 42) self.assertEqual(ds2.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds2.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_lon_min'], -20) self.assertEqual(ds2.attrs['geospatial_lon_max'], 60) self.assertEqual(ds2.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds2.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_bounds'], 'POLYGON((-20.0 -42.0, -20.0 42.0, 60.0 42.0, 60.0' ' -42.0, -20.0 -42.0))') def test_nominal_inverted(self): # Inverted lat ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(88, -88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' ds1 = adjust_spatial_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['geospatial_lat_min'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['geospatial_lat_min'], -90) self.assertEqual(ds1.attrs['geospatial_lat_max'], 90) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds1.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_lon_min'], -180) self.assertEqual(ds1.attrs['geospatial_lon_max'], 180) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((-180.0 -90.0, -180.0 90.0, 180.0 90.0,' ' 180.0 -90.0, -180.0 -90.0))') # Test existing attributes update lon_min, lat_min, lon_max, lat_max = -20, -40, 60, 40 indexers = {'lon': slice(lon_min, lon_max), 'lat': slice(lat_max, lat_min)} ds2 = ds1.sel(**indexers) ds2 = adjust_spatial_attrs(ds2) self.assertEqual(ds2.attrs['geospatial_lat_min'], -42) self.assertEqual(ds2.attrs['geospatial_lat_max'], 42) self.assertEqual(ds2.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds2.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_lon_min'], -20) self.assertEqual(ds2.attrs['geospatial_lon_max'], 60) self.assertEqual(ds2.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds2.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_bounds'], 'POLYGON((-20.0 -42.0, -20.0 42.0, 60.0 42.0, 60.0' ' -42.0, -20.0 -42.0))') def test_bnds(self): ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' lat_bnds = np.empty([len(ds.lat), 2]) lon_bnds = np.empty([len(ds.lon), 2]) ds['nv'] = [0, 1] lat_bnds[:, 0] = ds.lat.values - 2 lat_bnds[:, 1] = ds.lat.values + 2 lon_bnds[:, 0] = ds.lon.values - 2 lon_bnds[:, 1] = ds.lon.values + 2 ds['lat_bnds'] = (['lat', 'nv'], lat_bnds) ds['lon_bnds'] = (['lon', 'nv'], lon_bnds) ds.lat.attrs['bounds'] = 'lat_bnds' ds.lon.attrs['bounds'] = 'lon_bnds' ds1 = adjust_spatial_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['geospatial_lat_min'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['geospatial_lat_min'], -90) self.assertEqual(ds1.attrs['geospatial_lat_max'], 90) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds1.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_lon_min'], -180) self.assertEqual(ds1.attrs['geospatial_lon_max'], 180) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((-180.0 -90.0, -180.0 90.0, 180.0 90.0,' ' 180.0 -90.0, -180.0 -90.0))') # Test existing attributes update lon_min, lat_min, lon_max, lat_max = -20, -40, 60, 40 indexers = {'lon': slice(lon_min, lon_max), 'lat': slice(lat_min, lat_max)} ds2 = ds1.sel(**indexers) ds2 = adjust_spatial_attrs(ds2) self.assertEqual(ds2.attrs['geospatial_lat_min'], -42) self.assertEqual(ds2.attrs['geospatial_lat_max'], 42) self.assertEqual(ds2.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds2.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_lon_min'], -20) self.assertEqual(ds2.attrs['geospatial_lon_max'], 60) self.assertEqual(ds2.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds2.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_bounds'], 'POLYGON((-20.0 -42.0, -20.0 42.0, 60.0 42.0, 60.0' ' -42.0, -20.0 -42.0))') def test_bnds_inverted(self): # Inverted lat ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(88, -88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' lat_bnds = np.empty([len(ds.lat), 2]) lon_bnds = np.empty([len(ds.lon), 2]) ds['nv'] = [0, 1] lat_bnds[:, 0] = ds.lat.values + 2 lat_bnds[:, 1] = ds.lat.values - 2 lon_bnds[:, 0] = ds.lon.values - 2 lon_bnds[:, 1] = ds.lon.values + 2 ds['lat_bnds'] = (['lat', 'nv'], lat_bnds) ds['lon_bnds'] = (['lon', 'nv'], lon_bnds) ds.lat.attrs['bounds'] = 'lat_bnds' ds.lon.attrs['bounds'] = 'lon_bnds' ds1 = adjust_spatial_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['geospatial_lat_min'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['geospatial_lat_min'], -90) self.assertEqual(ds1.attrs['geospatial_lat_max'], 90) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds1.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_lon_min'], -180) self.assertEqual(ds1.attrs['geospatial_lon_max'], 180) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((-180.0 -90.0, -180.0 90.0, 180.0 90.0,' ' 180.0 -90.0, -180.0 -90.0))') # Test existing attributes update lon_min, lat_min, lon_max, lat_max = -20, -40, 60, 40 indexers = {'lon': slice(lon_min, lon_max), 'lat': slice(lat_max, lat_min)} ds2 = ds1.sel(**indexers) ds2 = adjust_spatial_attrs(ds2) self.assertEqual(ds2.attrs['geospatial_lat_min'], -42) self.assertEqual(ds2.attrs['geospatial_lat_max'], 42) self.assertEqual(ds2.attrs['geospatial_lat_units'], 'degrees_north') self.assertEqual(ds2.attrs['geospatial_lat_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_lon_min'], -20) self.assertEqual(ds2.attrs['geospatial_lon_max'], 60) self.assertEqual(ds2.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds2.attrs['geospatial_lon_resolution'], 4) self.assertEqual(ds2.attrs['geospatial_bounds'], 'POLYGON((-20.0 -42.0, -20.0 42.0, 60.0 42.0, 60.0 -42.0, -20.0 -42.0))') def test_once_cell_with_bnds(self): # Only one cell in lat/lon ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([1, 1, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([1, 1, 12])), 'lat': np.array([52.5]), 'lon': np.array([11.5]), 'lat_bnds': (['lat', 'bnds'], np.array([[52.4, 52.6]])), 'lon_bnds': (['lon', 'bnds'], np.array([[11.4, 11.6]])), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' ds1 = adjust_spatial_attrs(ds) self.assertAlmostEqual(ds1.attrs['geospatial_lat_resolution'], 0.2) self.assertAlmostEqual(ds1.attrs['geospatial_lat_min'], 52.4) self.assertAlmostEqual(ds1.attrs['geospatial_lat_max'], 52.6) self.assertEqual(ds1.attrs['geospatial_lat_units'], 'degrees_north') self.assertAlmostEqual(ds1.attrs['geospatial_lon_resolution'], 0.2) self.assertAlmostEqual(ds1.attrs['geospatial_lon_min'], 11.4) self.assertAlmostEqual(ds1.attrs['geospatial_lon_max'], 11.6) self.assertEqual(ds1.attrs['geospatial_lon_units'], 'degrees_east') self.assertEqual(ds1.attrs['geospatial_bounds'], 'POLYGON((11.4 52.4, 11.4 52.6, 11.6 52.6, 11.6 52.4, 11.4 52.4))') def test_once_cell_without_bnds(self): # Only one cell in lat/lon ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([1, 1, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([1, 1, 12])), 'lat': np.array([52.5]), 'lon': np.array([11.5]), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds.lon.attrs['units'] = 'degrees_east' ds.lat.attrs['units'] = 'degrees_north' ds2 = adjust_spatial_attrs(ds) # Datasets should be the same --> not modified self.assertIs(ds2, ds) class TestAdjustTemporal(TestCase): def test_nominal(self): ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, x, 1) for x in range(1, 13)]}) ds1 = adjust_temporal_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['time_coverage_start'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['time_coverage_start'], '2000-01-01T00:00:00.000000000') self.assertEqual(ds1.attrs['time_coverage_end'], '2000-12-01T00:00:00.000000000') self.assertEqual(ds1.attrs['time_coverage_resolution'], 'P1M') self.assertEqual(ds1.attrs['time_coverage_duration'], 'P336D') # Test existing attributes update # noinspection PyTypeChecker indexers = {'time': slice(datetime(2000, 2, 15), datetime(2000, 6, 15))} ds2 = ds1.sel(**indexers) ds2 = adjust_temporal_attrs(ds2) self.assertEqual(ds2.attrs['time_coverage_start'], '2000-03-01T00:00:00.000000000') self.assertEqual(ds2.attrs['time_coverage_end'], '2000-06-01T00:00:00.000000000') self.assertEqual(ds2.attrs['time_coverage_resolution'], 'P1M') self.assertEqual(ds2.attrs['time_coverage_duration'], 'P93D') def test_wrong_type(self): ds = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.zeros([12, 45, 90])), 'second': (['time', 'lat', 'lon'], np.zeros([12, 45, 90])), 'lon': (['lon'], np.linspace(-178, 178, 90)), 'lat': (['lat'], np.linspace(-88, 88, 45)), 'time': (['time'], np.linspace(0, 1, 12))}) ds1 = adjust_temporal_attrs(ds) self.assertIs(ds1, ds) self.assertNotIn('time_coverage_start', ds1) self.assertNotIn('time_coverage_end', ds1) self.assertNotIn('time_coverage_resolution', ds1) self.assertNotIn('time_coverage_duration', ds1) def test_bnds(self): """Test a case when time_bnds is available""" time = [datetime(2000, x, 1) for x in range(1, 13)] ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 12])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'nv': [0, 1], 'time': time}) month_ends = list() for x in ds.time.values: year = int(str(x)[0:4]) month = int(str(x)[5:7]) day = calendar.monthrange(year, month)[1] month_ends.append(datetime(year, month, day)) ds['time_bnds'] = (['time', 'nv'], list(zip(time, month_ends))) ds.time.attrs['bounds'] = 'time_bnds' ds1 = adjust_temporal_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['time_coverage_start'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['time_coverage_start'], '2000-01-01T00:00:00.000000000') self.assertEqual(ds1.attrs['time_coverage_end'], '2000-12-31T00:00:00.000000000') self.assertEqual(ds1.attrs['time_coverage_resolution'], 'P1M') self.assertEqual(ds1.attrs['time_coverage_duration'], 'P366D') def test_single_slice(self): """Test a case when the dataset is a single time slice""" # With bnds ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 1])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 1])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'nv': [0, 1], 'time': [datetime(2000, 1, 1)]}) ds.time.attrs['bounds'] = 'time_bnds' ds['time_bnds'] = (['time', 'nv'], [(datetime(2000, 1, 1), datetime(2000, 1, 31))]) ds1 = adjust_temporal_attrs(ds) # Make sure original dataset is not altered with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['time_coverage_start'] # Make sure expected values are in the new dataset self.assertEqual(ds1.attrs['time_coverage_start'], '2000-01-01T00:00:00.000000000') self.assertEqual(ds1.attrs['time_coverage_end'], '2000-01-31T00:00:00.000000000') self.assertEqual(ds1.attrs['time_coverage_duration'], 'P31D') with self.assertRaises(KeyError): # Resolution is not defined for a single slice # noinspection PyStatementEffect ds.attrs['time_coverage_resolution'] # Without bnds ds = xr.Dataset({ 'first': (['lat', 'lon', 'time'], np.zeros([45, 90, 1])), 'second': (['lat', 'lon', 'time'], np.zeros([45, 90, 1])), 'lat': np.linspace(-88, 88, 45), 'lon': np.linspace(-178, 178, 90), 'time': [datetime(2000, 1, 1)]}) ds1 = adjust_temporal_attrs(ds) self.assertEqual(ds1.attrs['time_coverage_start'], '2000-01-01T00:00:00.000000000') self.assertEqual(ds1.attrs['time_coverage_end'], '2000-01-01T00:00:00.000000000') with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['time_coverage_resolution'] with self.assertRaises(KeyError): # noinspection PyStatementEffect ds.attrs['time_coverage_duration'] class TestNormalizeCoordVars(TestCase): def test_ds_with_potential_coords(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180])), 'lat_bnds': (['lat', 'bnds'], np.zeros([90, 2])), 'lon_bnds': (['lon', 'bnds'], np.zeros([180, 2]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}) new_ds = normalize_coord_vars(ds) self.assertIsNot(ds, new_ds) self.assertEqual(len(new_ds.coords), 4) self.assertIn('lon', new_ds.coords) self.assertIn('lat', new_ds.coords) self.assertIn('lat_bnds', new_ds.coords) self.assertIn('lon_bnds', new_ds.coords) self.assertEqual(len(new_ds.data_vars), 2) self.assertIn('first', new_ds.data_vars) self.assertIn('second', new_ds.data_vars) def test_ds_with_potential_coords_and_bounds(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180])), 'lat_bnds': (['lat', 'bnds'], np.zeros([90, 2])), 'lon_bnds': (['lon', 'bnds'], np.zeros([180, 2])), 'lat': (['lat'], np.linspace(-89.5, 89.5, 90)), 'lon': (['lon'], np.linspace(-179.5, 179.5, 180))}) new_ds = normalize_coord_vars(ds) self.assertIsNot(ds, new_ds) self.assertEqual(len(new_ds.coords), 4) self.assertIn('lon', new_ds.coords) self.assertIn('lat', new_ds.coords) self.assertIn('lat_bnds', new_ds.coords) self.assertIn('lon_bnds', new_ds.coords) self.assertEqual(len(new_ds.data_vars), 2) self.assertIn('first', new_ds.data_vars) self.assertIn('second', new_ds.data_vars) def test_ds_with_no_potential_coords(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101'}) new_ds = normalize_coord_vars(ds) self.assertIs(ds, new_ds) class TestNormalizeMissingTime(TestCase): def test_ds_without_time(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101', 'time_coverage_end': '20121231'}) new_ds = normalize_missing_time(ds) self.assertIsNot(ds, new_ds) self.assertEqual(len(new_ds.coords), 4) self.assertIn('lon', new_ds.coords) self.assertIn('lat', new_ds.coords) self.assertIn('time', new_ds.coords) self.assertIn('time_bnds', new_ds.coords) self.assertEqual(new_ds.coords['time'].attrs.get('long_name'), 'time') self.assertEqual(new_ds.coords['time'].attrs.get('bounds'), 'time_bnds') self.assertEqual(new_ds.first.shape, (1, 90, 180)) self.assertEqual(new_ds.second.shape, (1, 90, 180)) self.assertEqual(new_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2012-07-01T12:00:00'))) self.assertEqual(new_ds.coords['time'].attrs.get('long_name'), 'time') self.assertEqual(new_ds.coords['time'].attrs.get('bounds'), 'time_bnds') self.assertEqual(new_ds.coords['time_bnds'][0][0], xr.DataArray(pd.to_datetime('2012-01-01'))) self.assertEqual(new_ds.coords['time_bnds'][0][1], xr.DataArray(pd.to_datetime('2012-12-31'))) self.assertEqual(new_ds.coords['time_bnds'].attrs.get('long_name'), 'time') def test_ds_without_bounds(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}, attrs={'time_coverage_start': '20120101'}) new_ds = normalize_missing_time(ds) self.assertIsNot(ds, new_ds) self.assertEqual(len(new_ds.coords), 3) self.assertIn('lon', new_ds.coords) self.assertIn('lat', new_ds.coords) self.assertIn('time', new_ds.coords) self.assertNotIn('time_bnds', new_ds.coords) self.assertEqual(new_ds.first.shape, (1, 90, 180)) self.assertEqual(new_ds.second.shape, (1, 90, 180)) self.assertEqual(new_ds.coords['time'][0], xr.DataArray(pd.to_datetime('2012-01-01'))) self.assertEqual(new_ds.coords['time'].attrs.get('long_name'), 'time') self.assertEqual(new_ds.coords['time'].attrs.get('bounds'), None) def test_ds_without_time_attrs(self): ds = xr.Dataset({'first': (['lat', 'lon'], np.zeros([90, 180])), 'second': (['lat', 'lon'], np.zeros([90, 180]))}, coords={'lat': np.linspace(-89.5, 89.5, 90), 'lon': np.linspace(-179.5, 179.5, 180)}) new_ds = normalize_missing_time(ds) self.assertIs(ds, new_ds) class Fix360Test(TestCase): def test_fix_360_lon(self): # The following simulates a strangely geo-coded soil moisture dataset # we found at ... # lon_size = 360 lat_size = 130 time_size = 12 ds = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.random.random_sample([time_size, lat_size, lon_size])), 'second': (['time', 'lat', 'lon'], np.random.random_sample([time_size, lat_size, lon_size]))}, coords={'lon': np.linspace(1., 360., lon_size), 'lat': np.linspace(-64., 65., lat_size), 'time': [datetime(2000, x, 1) for x in range(1, time_size + 1)]}, attrs=dict(geospatial_lon_min=0., geospatial_lon_max=360., geospatial_lat_min=-64.5, geospatial_lat_max=+65.5, geospatial_lon_resolution=1., geospatial_lat_resolution=1.)) new_ds = normalize(ds) self.assertIsNot(ds, new_ds) self.assertEqual(ds.dims, new_ds.dims) self.assertEqual(ds.sizes, new_ds.sizes) assert_array_almost_equal(new_ds.lon, np.linspace(-179.5, 179.5, 360)) assert_array_almost_equal(new_ds.lat, np.linspace(-64., 65., 130)) assert_array_almost_equal(new_ds.first[..., :180], ds.first[..., 180:]) assert_array_almost_equal(new_ds.first[..., 180:], ds.first[..., :180]) assert_array_almost_equal(new_ds.second[..., :180], ds.second[..., 180:]) assert_array_almost_equal(new_ds.second[..., 180:], ds.second[..., :180]) self.assertEqual(-180., new_ds.attrs['geospatial_lon_min']) self.assertEqual(+180., new_ds.attrs['geospatial_lon_max']) self.assertEqual(-64.5, new_ds.attrs['geospatial_lat_min']) self.assertEqual(+65.5, new_ds.attrs['geospatial_lat_max']) self.assertEqual(1., new_ds.attrs['geospatial_lon_resolution']) self.assertEqual(1., new_ds.attrs['geospatial_lat_resolution']) class NormalizeDimOrder(TestCase): """ Test normalize_cci_sea_level operation """ def test_no_change(self): """ Test nominal operation """ lon_size = 360 lat_size = 130 time_size = 12 ds = xr.Dataset({ 'first': (['time', 'lat', 'lon'], np.random.random_sample([time_size, lat_size, lon_size])), 'second': (['time', 'lat', 'lon'], np.random.random_sample([time_size, lat_size, lon_size]))}, coords={'lon': np.linspace(-179.5, -179.5, lon_size), 'lat': np.linspace(-64., 65., lat_size), 'time': [datetime(2000, x, 1) for x in range(1, time_size + 1)]}) ds2 = normalize(ds) self.assertIs(ds2, ds) def test_nominal(self): """ Test nominal operation """ ds = self.new_cci_seal_level_ds() ds2 = normalize(ds) self.assertIsNot(ds2, ds) self.assertIn('ampl', ds2) self.assertIn('phase', ds2) self.assertIn('time', ds2.coords) self.assertIn('time_bnds', ds2.coords) self.assertNotIn('time_step', ds2.coords) self.assertEqual(['time', 'period', 'lat', 'lon'], list(ds2.ampl.dims)) self.assertEqual(['time', 'period', 'lat', 'lon'], list(ds2.phase.dims)) def new_cci_seal_level_ds(self): period_size = 2 lon_size = 4 lat_size = 2 dataset = xr.Dataset(dict(ampl=(['lat', 'lon', 'period'], np.ones(shape=(lat_size, lon_size, period_size))), phase=(['lat', 'lon', 'period'], np.zeros(shape=(lat_size, lon_size, period_size)))), coords=dict(lon=np.array([-135, -45., 45., 135.]), lat=np.array([-45., 45.]), time=pd.to_datetime( ['1993-01-15T00:00:00.000000000', '1993-02-15T00:00:00.000000000', '2015-11-15T00:00:00.000000000', '2015-12-15T00:00:00.000000000']))) dataset.coords['time'].encoding.update(units='days since 1950-01-01', dtype=np.dtype(np.float32)) dataset.coords['time'].attrs.update(long_name='time', standard_name='time') dataset.attrs['time_coverage_start'] = '1993-01-01 00:00:00' dataset.attrs['time_coverage_end'] = '2015-12-31 23:59:59' return dataset
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for computing statistics of samples.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops __all__ = [ "percentile", ] # TODO(langmore) To make equivalent to numpy.percentile: # Make work with a sequence of floats or single float for 'q'. # Make work with "linear", "midpoint" interpolation. (linear should be default) def percentile(x, q, axis=None, interpolation=None, keep_dims=False, validate_args=False, name=None): """Compute the `q`-th percentile of `x`. Given a vector `x`, the `q`-th percentile of `x` is the value `q / 100` of the way from the minimum to the maximum in a sorted copy of `x`. The values and distances of the two nearest neighbors as well as the `interpolation` parameter will determine the percentile if the normalized ranking does not match the location of `q` exactly. This function is the same as the median if `q = 50`, the same as the minimum if `q = 0` and the same as the maximum if `q = 100`. ```python # Get 30th percentile with default ('nearest') interpolation. x = [1., 2., 3., 4.] percentile(x, q=30.) ==> 2.0 # Get 30th percentile with 'lower' interpolation x = [1., 2., 3., 4.] percentile(x, q=30., interpolation='lower') ==> 1.0 # Get 100th percentile (maximum). By default, this is computed over every dim x = [[1., 2.] [3., 4.]] percentile(x, q=100.) ==> 4.0 # Treat the leading dim as indexing samples, and find the 100th quantile (max) # over all such samples. x = [[1., 2.] [3., 4.]] percentile(x, q=100., axis=[0]) ==> [3., 4.] ``` Compare to `numpy.percentile`. Args: x: Floating point `N-D` `Tensor` with `N > 0`. If `axis` is not `None`, `x` must have statically known number of dimensions. q: Scalar `Tensor` in `[0, 100]`. The percentile. axis: Optional `0-D` or `1-D` integer `Tensor` with constant values. The axis that hold independent samples over which to return the desired percentile. If `None` (the default), treat every dimension as a sample dimension, returning a scalar. interpolation : {"lower", "higher", "nearest"}. Default: "nearest" This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points `i < j`: * lower: `i`. * higher: `j`. * nearest: `i` or `j`, whichever is nearest. keep_dims: Python `bool`. If `True`, the last dimension is kept with size 1 If `False`, the last dimension is removed from the output shape. validate_args: Whether to add runtime checks of argument validity. If False, and arguments are incorrect, correct behavior is not guaranteed. name: A Python string name to give this `Op`. Default is "percentile" Returns: A `(N - len(axis))` dimensional `Tensor` of same dtype as `x`, or, if `axis` is `None`, a scalar. Raises: ValueError: If argument 'interpolation' is not an allowed type. """ name = name or "percentile" allowed_interpolations = {"lower", "higher", "nearest"} if interpolation is None: interpolation = "nearest" else: if interpolation not in allowed_interpolations: raise ValueError("Argument 'interpolation' must be in %s. Found %s" % (allowed_interpolations, interpolation)) with ops.name_scope(name, [x, q]): x = ops.convert_to_tensor(x, name="x") q = math_ops.to_float(q, name="q") _get_static_ndims(q, expect_ndims=0) if validate_args: q = control_flow_ops.with_dependencies([ check_ops.assert_rank(q, 0), check_ops.assert_greater_equal(q, 0.), check_ops.assert_less_equal(q, 100.) ], q) if axis is None: y = array_ops.reshape(x, [-1]) else: axis = ops.convert_to_tensor(axis, name="axis") check_ops.assert_integer(axis) axis_ndims = _get_static_ndims( axis, expect_static=True, expect_ndims_no_more_than=1) axis_const = tensor_util.constant_value(axis) if axis_const is None: raise ValueError( "Expected argument 'axis' to be statically available. Found: %s" % axis) axis = axis_const if axis_ndims == 0: axis = [axis] axis = [int(a) for a in axis] x_ndims = _get_static_ndims( x, expect_static=True, expect_ndims_at_least=1) axis = _make_static_axis_non_negative(axis, x_ndims) y = _move_dims_to_flat_end(x, axis, x_ndims) frac_at_q_or_above = 1. - q / 100. d = math_ops.to_float(array_ops.shape(y)[-1]) if interpolation == "lower": index = math_ops.ceil((d - 1) * frac_at_q_or_above) elif interpolation == "higher": index = math_ops.floor((d - 1) * frac_at_q_or_above) elif interpolation == "nearest": index = math_ops.round((d - 1) * frac_at_q_or_above) # Sort everything, not just the top 'k' entries, which allows multiple calls # to sort only once (under the hood) and use CSE. sorted_y = _sort_tensor(y) # result.shape = B result = sorted_y[..., math_ops.to_int32(index)] result.set_shape(y.get_shape()[:-1]) if keep_dims: if axis is None: # ones_vec = [1, 1,..., 1], total length = len(S) + len(B). ones_vec = array_ops.ones( shape=[_get_best_effort_ndims(x)], dtype=dtypes.int32) result *= array_ops.ones(ones_vec, dtype=x.dtype) else: result = _insert_back_keep_dims(result, axis) return result def _get_static_ndims(x, expect_static=False, expect_ndims=None, expect_ndims_no_more_than=None, expect_ndims_at_least=None): """Get static number of dimensions and assert that some expectations are met. This function returns the number of dimensions "ndims" of x, as a Python int. The optional expect arguments are used to check the ndims of x, but this is only done if the static ndims of x is not None. Args: x: A Tensor. expect_static: Expect `x` to have statically defined `ndims`. expect_ndims: Optional Python integer. If provided, assert that x has number of dimensions equal to this. expect_ndims_no_more_than: Optional Python integer. If provided, assert that x has no more than this many dimensions. expect_ndims_at_least: Optional Python integer. If provided, assert that x has at least this many dimensions. Returns: ndims: A Python integer. Raises: ValueError: If any of the expectations above are violated. """ ndims = x.get_shape().ndims if ndims is None: shape_const = tensor_util.constant_value(array_ops.shape(x)) if shape_const is not None: ndims = shape_const.ndim if ndims is None: if expect_static: raise ValueError( "Expected argument 'x' to have statically defined 'ndims'. Found: " % x) return if expect_ndims is not None: ndims_message = ("Expected argument 'x' to have ndims %s. Found tensor %s" % (expect_ndims, x)) if ndims != expect_ndims: raise ValueError(ndims_message) if expect_ndims_at_least is not None: ndims_at_least_message = ( "Expected argument 'x' to have ndims >= %d. Found tensor %s" % ( expect_ndims_at_least, x)) if ndims < expect_ndims_at_least: raise ValueError(ndims_at_least_message) if expect_ndims_no_more_than is not None: ndims_no_more_than_message = ( "Expected argument 'x' to have ndims <= %d. Found tensor %s" % ( expect_ndims_no_more_than, x)) if ndims > expect_ndims_no_more_than: raise ValueError(ndims_no_more_than_message) return ndims def _get_best_effort_ndims(x, expect_ndims=None, expect_ndims_at_least=None, expect_ndims_no_more_than=None): """Get static ndims if possible. Fallback on `tf.rank(x)`.""" ndims_static = _get_static_ndims( x, expect_ndims=expect_ndims, expect_ndims_at_least=expect_ndims_at_least, expect_ndims_no_more_than=expect_ndims_no_more_than) if ndims_static is not None: return ndims_static return array_ops.rank(x) def _insert_back_keep_dims(x, axis): """Insert the dims in `axis` back as singletons after being removed. Args: x: `Tensor`. axis: Python list of integers. Returns: `Tensor` with same values as `x`, but additional singleton dimensions. """ for i in sorted(axis): x = array_ops.expand_dims(x, axis=i) return x def _make_static_axis_non_negative(axis, ndims): """Convert possibly negatively indexed axis to non-negative. Args: axis: Iterable over Python integers. ndims: Number of dimensions into which axis indexes. Returns: A list of non-negative Python integers. Raises: ValueError: If values in `axis` are too big/small to index into `ndims`. """ non_negative_axis = [] for d in axis: if d >= 0: if d >= ndims: raise ValueError("dim %d not in the interval [0, %d]." % (d, ndims - 1)) non_negative_axis.append(d) else: if d < -1 * ndims: raise ValueError( "Negatively indexed dim %d not in the interval [-%d, -1]" % (d, ndims)) non_negative_axis.append(ndims + d) return non_negative_axis def _move_dims_to_flat_end(x, axis, x_ndims): """Move dims corresponding to `axis` in `x` to the end, then flatten. Args: x: `Tensor` with shape `[B0,B1,...,Bb]`. axis: Python list of indices into dimensions of `x`. x_ndims: Python integer holding number of dimensions in `x`. Returns: `Tensor` with value from `x` and dims in `axis` moved to end into one single dimension. """ # Suppose x.shape = [a, b, c, d] # Suppose axis = [1, 3] # front_dims = [0, 2] in example above. front_dims = sorted(set(range(x_ndims)).difference(axis)) # x_permed.shape = [a, c, b, d] x_permed = array_ops.transpose(x, perm=front_dims + list(axis)) if x.get_shape().is_fully_defined(): x_shape = x.get_shape().as_list() # front_shape = [a, c], end_shape = [b * d] front_shape = [x_shape[i] for i in front_dims] end_shape = [np.prod([x_shape[i] for i in axis])] full_shape = front_shape + end_shape else: front_shape = array_ops.shape(x_permed)[:x_ndims - len(axis)] end_shape = [-1] full_shape = array_ops.concat([front_shape, end_shape], axis=0) return array_ops.reshape(x_permed, shape=full_shape) def _sort_tensor(tensor): """Use `top_k` to sort a `Tensor` along the last dimension.""" sorted_, _ = nn_ops.top_k(tensor, k=array_ops.shape(tensor)[-1]) return sorted_
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import speech_recognition from os.path import dirname, join from speech_recognition import WavFile, AudioData from mycroft.client.speech.listener import (AudioConsumer, RecognizerLoop, AUDIO_DATA, STREAM_START, STREAM_DATA, STREAM_STOP) from mycroft.stt import MycroftSTT from queue import Queue class MockRecognizer(object): def __init__(self): self.transcriptions = [] def recognize_mycroft(self, audio, key=None, language=None, show_all=False): if len(self.transcriptions) > 0: return self.transcriptions.pop(0) else: raise speech_recognition.UnknownValueError() def set_transcriptions(self, transcriptions): self.transcriptions = transcriptions class AudioConsumerTest(unittest.TestCase): """ AudioConsumerTest """ def setUp(self): self.loop = RecognizerLoop() self.queue = Queue() self.recognizer = MockRecognizer() self.consumer = AudioConsumer( self.loop.state, self.queue, self.loop, MycroftSTT(), self.loop.wakeup_recognizer, self.loop.wakeword_recognizer) def __create_sample_from_test_file(self, sample_name): root_dir = dirname(dirname(dirname(__file__))) filename = join( root_dir, 'unittests', 'client', 'data', sample_name + '.wav') wavfile = WavFile(filename) with wavfile as source: return AudioData( source.stream.read(), wavfile.SAMPLE_RATE, wavfile.SAMPLE_WIDTH) def test_word_extraction(self): """ This is intended to test the extraction of the word: ``mycroft``. The values for ``ideal_begin`` and ``ideal_end`` were found using an audio tool like Audacity and they represent a sample value position of the audio. ``tolerance`` is an acceptable margin error for the distance between the ideal and actual values found by the ``WordExtractor`` """ # TODO: implement WordExtractor test without relying on the listener return audio = self.__create_sample_from_test_file('weather_mycroft') self.queue.put((AUDIO_DATA, audio)) tolerance = 4000 ideal_begin = 70000 ideal_end = 92000 monitor = {} self.recognizer.set_transcriptions(["what's the weather next week"]) def wakeword_callback(message): monitor['pos_begin'] = message.get('pos_begin') monitor['pos_end'] = message.get('pos_end') self.loop.once('recognizer_loop:wakeword', wakeword_callback) self.consumer.read() actual_begin = monitor.get('pos_begin') self.assertIsNotNone(actual_begin) diff = abs(actual_begin - ideal_begin) self.assertTrue( diff <= tolerance, str(diff) + " is not less than " + str(tolerance)) actual_end = monitor.get('pos_end') self.assertIsNotNone(actual_end) diff = abs(actual_end - ideal_end) self.assertTrue( diff <= tolerance, str(diff) + " is not less than " + str(tolerance)) @unittest.skip('Disabled while unittests are brought upto date') def test_wakeword_in_beginning(self): tag = AUDIO_DATA data = self.__create_sample_from_test_file('weather_mycroft') self.queue.put((tag, data)) self.recognizer.set_transcriptions(["what's the weather next week"]) monitor = {} def callback(message): monitor['utterances'] = message.get('utterances') self.loop.once('recognizer_loop:utterance', callback) self.consumer.read() utterances = monitor.get('utterances') self.assertIsNotNone(utterances) self.assertTrue(len(utterances) == 1) self.assertEqual("what's the weather next week", utterances[0]) @unittest.skip('Disabled while unittests are brought upto date') def test_wakeword(self): self.queue.put((AUDIO_DATA, self.__create_sample_from_test_file('mycroft'))) self.recognizer.set_transcriptions(["silence"]) monitor = {} def callback(message): monitor['utterances'] = message.get('utterances') self.loop.once('recognizer_loop:utterance', callback) self.consumer.read() utterances = monitor.get('utterances') self.assertIsNotNone(utterances) self.assertTrue(len(utterances) == 1) self.assertEqual("silence", utterances[0]) def test_ignore_wakeword_when_sleeping(self): self.queue.put((AUDIO_DATA, self.__create_sample_from_test_file('mycroft'))) self.recognizer.set_transcriptions(["not detected"]) self.loop.sleep() monitor = {} def wakeword_callback(message): monitor['wakeword'] = message.get('utterance') self.loop.once('recognizer_loop:wakeword', wakeword_callback) self.consumer.read() self.assertIsNone(monitor.get('wakeword')) self.assertTrue(self.loop.state.sleeping) def test_wakeup(self): tag = AUDIO_DATA data = self.__create_sample_from_test_file('mycroft_wakeup') self.queue.put((tag, data)) self.loop.sleep() self.consumer.read() self.assertFalse(self.loop.state.sleeping) @unittest.skip('Disabled while unittests are brought upto date') def test_stop(self): self.queue.put((AUDIO_DATA, self.__create_sample_from_test_file('mycroft'))) self.consumer.read() self.queue.put((AUDIO_DATA, self.__create_sample_from_test_file('stop'))) self.recognizer.set_transcriptions(["stop"]) monitor = {} def utterance_callback(message): monitor['utterances'] = message.get('utterances') self.loop.once('recognizer_loop:utterance', utterance_callback) self.consumer.read() utterances = monitor.get('utterances') self.assertIsNotNone(utterances) self.assertTrue(len(utterances) == 1) self.assertEqual("stop", utterances[0]) @unittest.skip('Disabled while unittests are brought upto date') def test_record(self): self.queue.put((AUDIO_DATA, self.__create_sample_from_test_file('mycroft'))) self.consumer.read() self.queue.put((AUDIO_DATA, self.__create_sample_from_test_file('record'))) self.recognizer.set_transcriptions(["record"]) monitor = {} def utterance_callback(message): monitor['utterances'] = message.get('utterances') self.loop.once('recognizer_loop:utterance', utterance_callback) self.consumer.read() utterances = monitor.get('utterances') self.assertIsNotNone(utterances) self.assertTrue(len(utterances) == 1) self.assertEqual("record", utterances[0])
import json import logging from django.core.management.base import BaseCommand from django.db import transaction from osf.models import PreprintProvider, PreprintService, Subject from osf.models.preprint_provider import rules_to_subjects from scripts import utils as script_utils from osf.models.validators import validate_subject_hierarchy from website.preprints.tasks import on_preprint_updated logger = logging.getLogger(__name__) BEPRESS_PROVIDER = None def validate_input(custom_provider, data, copy=False, add_missing=False): # This function may be run outside of this command (e.g. in the admin app) so we # need to make sure that BEPRESS_PROVIDER is set global BEPRESS_PROVIDER BEPRESS_PROVIDER = PreprintProvider.objects.filter(_id='osf').first() logger.info('Validating data') includes = data.get('include', []) excludes = data.get('exclude', []) customs = data.get('custom', {}) merges = data.get('merge', {}) if copy: included_subjects = rules_to_subjects(custom_provider.subjects_acceptable) else: assert not set(includes) & set(excludes), 'There must be no overlap between includes and excludes' for text in includes: assert Subject.objects.filter(provider=BEPRESS_PROVIDER, text=text).exists(), 'Unable to find included subject with text {}'.format(text) included_subjects = Subject.objects.filter(provider=BEPRESS_PROVIDER, text__in=includes).include_children() logger.info('Successfully validated `include`') for text in excludes: try: Subject.objects.get(provider=BEPRESS_PROVIDER, text=text) except Subject.DoesNotExist: raise RuntimeError('Unable to find excluded subject with text {}'.format(text)) assert included_subjects.filter(text=text).exists(), 'Excluded subject with text {} was not included'.format(text) included_subjects = included_subjects.exclude(text__in=excludes) logger.info('Successfully validated `exclude`') for cust_name, map_dict in customs.iteritems(): assert not included_subjects.filter(text=cust_name).exists(), 'Custom text {} already exists in mapped set'.format(cust_name) assert Subject.objects.filter(provider=BEPRESS_PROVIDER, text=map_dict.get('bepress')).exists(), 'Unable to find specified BePress subject with text {}'.format(map_dict.get('bepress')) if map_dict.get('parent'): # Null parent possible assert map_dict['parent'] in set(customs.keys()) | set(included_subjects.values_list('text', flat=True)), 'Unable to find specified parent with text {} in mapped set'.format(map_dict['parent']) # TODO: hierarchy length validation? Probably more trouble than worth here, done on .save logger.info('Successfully validated `custom`') included_subjects = included_subjects | Subject.objects.filter(text__in=[map_dict['bepress'] for map_dict in customs.values()]) for merged_from, merged_into in merges.iteritems(): assert not included_subjects.filter(text=merged_from).exists(), 'Cannot merge subject "{}" that will be included'.format(merged_from) assert merged_into in set(included_subjects.values_list('text', flat=True)) | set(customs.keys()), 'Unable to determine merge target for "{}"'.format(merged_into) included_subjects = included_subjects | Subject.objects.filter(text__in=merges.keys()) missing_subjects = Subject.objects.filter(id__in=set([hier[-1].id for ps in PreprintService.objects.filter(provider=custom_provider) for hier in ps.subject_hierarchy])).exclude(id__in=included_subjects.values_list('id', flat=True)) if not add_missing: assert not missing_subjects.exists(), 'Incomplete mapping -- following subjects in use but not included:\n{}'.format(list(missing_subjects.values_list('text', flat=True))) assert custom_provider.share_title not in [None, '', 'bepress'], 'share title not set; please set the share title on this provider before creating a custom taxonomy.' logger.info('Successfully validated mapping completeness') return list(missing_subjects) if add_missing else None def create_subjects_recursive(custom_provider, root_text, exclude_texts, parent=None): logger.info('Duplicating BePress subject {} on {}'.format(root_text, custom_provider._id)) bepress_subj = Subject.objects.get(provider=BEPRESS_PROVIDER, text=root_text) custom_subj = Subject(text=root_text, parent=parent, bepress_subject=bepress_subj, provider=custom_provider) custom_subj.save() # This is not a problem now, as all excluded subjects are leafs, but it could be problematic if non-leafs had their children excluded. # It could also be problematic if they didn't, if any of those children are used by existing preprints. # TODO: Determine correct resolution for child_text in bepress_subj.children.exclude(text__in=exclude_texts).values_list('text', flat=True): create_subjects_recursive(custom_provider, child_text, exclude_texts, parent=custom_subj) def create_from_subjects_acceptable(custom_provider, add_missing=False, missing=None): tries = 0 subjects_to_copy = list(rules_to_subjects(custom_provider.subjects_acceptable)) if missing and add_missing: subjects_to_copy = subjects_to_copy + missing while len(subjects_to_copy): previous_len = len(subjects_to_copy) tries += 1 if tries == 10: raise RuntimeError('Unable to map subjects acceptable with 10 iterations -- subjects remaining: {}'.format(subjects_to_copy)) for subj in list(subjects_to_copy): if map_custom_subject(custom_provider, subj.text, subj.parent.text if subj.parent else None, subj.text): subjects_to_copy.remove(subj) elif add_missing and subj.parent and subj.parent not in subjects_to_copy: # Dirty subjects_to_copy.append(subj.parent) previous_len += 1 else: logger.warn('Failed. Retrying next iteration') new_len = len(subjects_to_copy) if new_len == previous_len: raise RuntimeError('Unable to map any custom subjects on iteration -- subjects remaining: {}'.format(subjects_to_copy)) def do_create_subjects(custom_provider, includes, excludes, copy=False, add_missing=False, missing=None): if copy: create_from_subjects_acceptable(custom_provider, add_missing=add_missing, missing=missing) else: for root_text in includes: create_subjects_recursive(custom_provider, root_text, excludes) def map_custom_subject(custom_provider, name, parent, mapping): logger.info('Attempting to create subject {} on {} from {} with {}'.format(name, custom_provider._id, mapping, 'parent {}'.format(parent) if parent else 'no parent')) if parent: parent_subject = Subject.objects.filter(provider=custom_provider, text=parent).first() else: parent_subject = None bepress_subject = Subject.objects.get(provider=BEPRESS_PROVIDER, text=mapping) if parent and not parent_subject: return False custom_subject = Subject(provider=custom_provider, text=name, parent=parent_subject, bepress_subject=bepress_subject) custom_subject.save() return True def do_custom_mapping(custom_provider, customs): tries = 0 unmapped_customs = customs while len(unmapped_customs): previous_len = len(unmapped_customs) tries += 1 if tries == 10: raise RuntimeError('Unable to map custom subjects with 10 iterations -- invalid input') successes = [] for cust_name, map_dict in unmapped_customs.iteritems(): if map_custom_subject(custom_provider, cust_name, map_dict.get('parent'), map_dict.get('bepress')): successes.append(cust_name) else: logger.warn('Failed. Retrying next iteration') [unmapped_customs.pop(key) for key in successes] new_len = len(unmapped_customs) if new_len == previous_len: raise RuntimeError('Unable to map any custom subjects on iteration -- invalid input') def map_preprints_to_custom_subjects(custom_provider, merge_dict, dry_run=False): for preprint in PreprintService.objects.filter(provider=custom_provider): logger.info('Preparing to migrate preprint {}'.format(preprint.id)) old_hier = preprint.subject_hierarchy subjects_to_map = [hier[-1] for hier in old_hier] merged_subject_ids = set(Subject.objects.filter(provider=custom_provider, text__in=[merge_dict[k] for k in set(merge_dict.keys()) & set([s.text for s in subjects_to_map])]).values_list('id', flat=True)) subject_ids_to_map = set(s.id for s in subjects_to_map if s.text not in merge_dict.keys()) aliased_subject_ids = set(Subject.objects.filter(bepress_subject__id__in=subject_ids_to_map, provider=custom_provider).values_list('id', flat=True)) | merged_subject_ids aliased_hiers = [s.object_hierarchy for s in Subject.objects.filter(id__in=aliased_subject_ids)] old_subjects = list(preprint.subjects.values_list('id', flat=True)) preprint.subjects.clear() for hier in aliased_hiers: validate_subject_hierarchy([s._id for s in hier]) for s in hier: preprint.subjects.add(s) # Update preprint in SHARE if not dry_run: on_preprint_updated(preprint._id, old_subjects=old_subjects, update_share=True) preprint.reload() new_hier = [s.object_hierarchy for s in preprint.subjects.exclude(children__in=preprint.subjects.all())] logger.info('Successfully migrated preprint {}.\n\tOld hierarchy:{}\n\tNew hierarchy:{}'.format(preprint.id, old_hier, new_hier)) def migrate(provider=None, share_title=None, data=None, dry_run=False, copy=False, add_missing=False): # This function may be run outside of this command (e.g. in the admin app) so we # need to make sure that BEPRESS_PROVIDER is set global BEPRESS_PROVIDER if not BEPRESS_PROVIDER: BEPRESS_PROVIDER = PreprintProvider.objects.filter(_id='osf').first() custom_provider = PreprintProvider.objects.filter(_id=provider).first() assert custom_provider, 'Unable to find specified provider: {}'.format(provider) assert custom_provider.id != BEPRESS_PROVIDER.id, 'Cannot add custom mapping to BePress provider' assert not custom_provider.subjects.exists(), 'Provider aldready has a custom taxonomy' if custom_provider.share_title in [None, '', 'bepress']: if not share_title: raise RuntimeError('`--share-title` is required if not already set on the provider') custom_provider.share_title = share_title custom_provider.save() missing = validate_input(custom_provider, data, copy=copy, add_missing=add_missing) do_create_subjects(custom_provider, data['include'], data.get('exclude', []), copy=copy, add_missing=add_missing, missing=missing) do_custom_mapping(custom_provider, data.get('custom', {})) map_preprints_to_custom_subjects(custom_provider, data.get('merge', {}), dry_run=dry_run) class Command(BaseCommand): def add_arguments(self, parser): super(Command, self).add_arguments(parser) parser.add_argument( '--dry', action='store_true', dest='dry_run', help='Run migration and roll back changes to db', ) parser.add_argument( '--data', action='store', dest='data', help='List of targets, of form {\n"include": [<list of subject texts to include at top level, children implicit>],' '\n"exclude": [<list of children to exclude from included trees>],' '\n"custom": [{"<Custom Name": {"parent": <Parent text>", "bepress": "<Bepress Name>"}}, ...]' '\n"merge": {"<Merged from (bepress)>": "<Merged into (custom)", ...}}', ) parser.add_argument( '--provider', action='store', dest='provider', required=True, help='_id of the PreprintProvider object, e.g. "osf". Provider is expected to not already have a custom taxonomy.' ) parser.add_argument( '--from-subjects-acceptable', action='store_true', dest='from_subjects_acceptable', help='Specifies that the provider\'s `subjects_acceptable` be copied. `data.include` and `exclude` are ignored, the other keys may still be used' ) parser.add_argument( '--add-missing', action='store_true', dest='add_missing', help='Adds "used-but-not-included" subjects.' ) parser.add_argument( '--share-title', action='store', type=str, dest='share_title', help='Sets <provider>.share_title. Ignored if already set on provider, required if not.' ) def handle(self, *args, **options): global BEPRESS_PROVIDER BEPRESS_PROVIDER = PreprintProvider.objects.filter(_id='osf').first() dry_run = options.get('dry_run') provider = options['provider'] data = json.loads(options['data'] or '{}') share_title = options.get('share_title') copy = options.get('from_subjects_acceptable') add_missing = options.get('add_missing') if copy: data['include'] = list(Subject.objects.filter(provider=BEPRESS_PROVIDER, parent__isnull=True).values_list('text', flat=True)) if not dry_run: script_utils.add_file_logger(logger, __file__) with transaction.atomic(): migrate(provider=provider, share_title=share_title, data=data, dry_run=dry_run, copy=copy, add_missing=add_missing) if dry_run: raise RuntimeError('Dry run, transaction rolled back.')
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Pooling layers. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import tensor_shape from tensorflow.python.keras._impl.keras import backend as K from tensorflow.python.keras._impl.keras.engine import InputSpec from tensorflow.python.keras._impl.keras.engine import Layer from tensorflow.python.keras._impl.keras.utils import conv_utils from tensorflow.python.layers import pooling as tf_pooling_layers class MaxPooling1D(tf_pooling_layers.MaxPooling1D, Layer): """Max pooling operation for temporal data. Arguments: pool_size: Integer, size of the max pooling windows. strides: Integer, or None. Factor by which to downscale. E.g. 2 will halve the input. If None, it will default to `pool_size`. padding: One of `"valid"` or `"same"` (case-insensitive). Input shape: 3D tensor with shape: `(batch_size, steps, features)`. Output shape: 3D tensor with shape: `(batch_size, downsampled_steps, features)`. """ def __init__(self, pool_size=2, strides=None, padding='valid', **kwargs): if strides is None: strides = pool_size super(MaxPooling1D, self).__init__(pool_size, strides, padding, **kwargs) def get_config(self): config = { 'strides': self.strides, 'pool_size': self.pool_size, 'padding': self.padding } base_config = super(MaxPooling1D, self).get_config() return dict(list(base_config.items()) + list(config.items())) class AveragePooling1D(tf_pooling_layers.AveragePooling1D, Layer): """Average pooling for temporal data. Arguments: pool_size: Integer, size of the max pooling windows. strides: Integer, or None. Factor by which to downscale. E.g. 2 will halve the input. If None, it will default to `pool_size`. padding: One of `"valid"` or `"same"` (case-insensitive). Input shape: 3D tensor with shape: `(batch_size, steps, features)`. Output shape: 3D tensor with shape: `(batch_size, downsampled_steps, features)`. """ def __init__(self, pool_size=2, strides=None, padding='valid', **kwargs): if strides is None: strides = pool_size super(AveragePooling1D, self).__init__(pool_size, strides, padding, **kwargs) def get_config(self): config = { 'strides': self.strides, 'pool_size': self.pool_size, 'padding': self.padding } base_config = super(AveragePooling1D, self).get_config() return dict(list(base_config.items()) + list(config.items())) class MaxPooling2D(tf_pooling_layers.MaxPooling2D, Layer): """Max pooling operation for spatial data. Arguments: pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). (2, 2) will halve the input in both spatial dimension. If only one integer is specified, the same window length will be used for both dimensions. strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to `pool_size`. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 4D tensor with shape: `(batch_size, rows, cols, channels)` - If `data_format='channels_first'`: 4D tensor with shape: `(batch_size, channels, rows, cols)` Output shape: - If `data_format='channels_last'`: 4D tensor with shape: `(batch_size, pooled_rows, pooled_cols, channels)` - If `data_format='channels_first'`: 4D tensor with shape: `(batch_size, channels, pooled_rows, pooled_cols)` """ def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs): if data_format is None: data_format = K.image_data_format() if strides is None: strides = pool_size super(MaxPooling2D, self).__init__(pool_size, strides, padding, data_format, **kwargs) def get_config(self): config = { 'pool_size': self.pool_size, 'padding': self.padding, 'strides': self.strides, 'data_format': self.data_format } base_config = super(MaxPooling2D, self).get_config() return dict(list(base_config.items()) + list(config.items())) class AveragePooling2D(tf_pooling_layers.AveragePooling2D, Layer): """Average pooling operation for spatial data. Arguments: pool_size: integer or tuple of 2 integers, factors by which to downscale (vertical, horizontal). (2, 2) will halve the input in both spatial dimension. If only one integer is specified, the same window length will be used for both dimensions. strides: Integer, tuple of 2 integers, or None. Strides values. If None, it will default to `pool_size`. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 4D tensor with shape: `(batch_size, rows, cols, channels)` - If `data_format='channels_first'`: 4D tensor with shape: `(batch_size, channels, rows, cols)` Output shape: - If `data_format='channels_last'`: 4D tensor with shape: `(batch_size, pooled_rows, pooled_cols, channels)` - If `data_format='channels_first'`: 4D tensor with shape: `(batch_size, channels, pooled_rows, pooled_cols)` """ def __init__(self, pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs): if data_format is None: data_format = K.image_data_format() if strides is None: strides = pool_size super(AveragePooling2D, self).__init__(pool_size, strides, padding, data_format, **kwargs) def get_config(self): config = { 'pool_size': self.pool_size, 'padding': self.padding, 'strides': self.strides, 'data_format': self.data_format } base_config = super(AveragePooling2D, self).get_config() return dict(list(base_config.items()) + list(config.items())) class MaxPooling3D(tf_pooling_layers.MaxPooling3D, Layer): """Max pooling operation for 3D data (spatial or spatio-temporal). Arguments: pool_size: tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). (2, 2, 2) will halve the size of the 3D input in each dimension. strides: tuple of 3 integers, or None. Strides values. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` """ def __init__(self, pool_size=(2, 2, 2), strides=None, padding='valid', data_format=None, **kwargs): if data_format is None: data_format = K.image_data_format() if strides is None: strides = pool_size super(MaxPooling3D, self).__init__(pool_size, strides, padding, data_format, **kwargs) def get_config(self): config = { 'pool_size': self.pool_size, 'padding': self.padding, 'strides': self.strides, 'data_format': self.data_format } base_config = super(MaxPooling3D, self).get_config() return dict(list(base_config.items()) + list(config.items())) class AveragePooling3D(tf_pooling_layers.AveragePooling3D, Layer): """Average pooling operation for 3D data (spatial or spatio-temporal). Arguments: pool_size: tuple of 3 integers, factors by which to downscale (dim1, dim2, dim3). (2, 2, 2) will halve the size of the 3D input in each dimension. strides: tuple of 3 integers, or None. Strides values. padding: One of `"valid"` or `"same"` (case-insensitive). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)` """ def __init__(self, pool_size=(2, 2, 2), strides=None, padding='valid', data_format=None, **kwargs): if data_format is None: data_format = K.image_data_format() if strides is None: strides = pool_size super(AveragePooling3D, self).__init__(pool_size, strides, padding, data_format, **kwargs) def get_config(self): config = { 'pool_size': self.pool_size, 'padding': self.padding, 'strides': self.strides, 'data_format': self.data_format } base_config = super(AveragePooling3D, self).get_config() return dict(list(base_config.items()) + list(config.items())) class _GlobalPooling1D(Layer): """Abstract class for different global pooling 1D layers. """ def __init__(self, **kwargs): super(_GlobalPooling1D, self).__init__(**kwargs) self.input_spec = InputSpec(ndim=3) def _compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() return tensor_shape.TensorShape([input_shape[0], input_shape[2]]) def call(self, inputs): raise NotImplementedError class GlobalAveragePooling1D(_GlobalPooling1D): """Global average pooling operation for temporal data. Input shape: 3D tensor with shape: `(batch_size, steps, features)`. Output shape: 2D tensor with shape: `(batch_size, features)` """ def call(self, inputs): return K.mean(inputs, axis=1) class GlobalMaxPooling1D(_GlobalPooling1D): """Global max pooling operation for temporal data. Input shape: 3D tensor with shape: `(batch_size, steps, features)`. Output shape: 2D tensor with shape: `(batch_size, features)` """ def call(self, inputs): return K.max(inputs, axis=1) class _GlobalPooling2D(Layer): """Abstract class for different global pooling 2D layers. """ def __init__(self, data_format=None, **kwargs): super(_GlobalPooling2D, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) def _compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_last': return tensor_shape.TensorShape([input_shape[0], input_shape[3]]) else: return tensor_shape.TensorShape([input_shape[0], input_shape[1]]) def call(self, inputs): raise NotImplementedError def get_config(self): config = {'data_format': self.data_format} base_config = super(_GlobalPooling2D, self).get_config() return dict(list(base_config.items()) + list(config.items())) class GlobalAveragePooling2D(_GlobalPooling2D): """Global average pooling operation for spatial data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 4D tensor with shape: `(batch_size, rows, cols, channels)` - If `data_format='channels_first'`: 4D tensor with shape: `(batch_size, channels, rows, cols)` Output shape: 2D tensor with shape: `(batch_size, channels)` """ def call(self, inputs): if self.data_format == 'channels_last': return K.mean(inputs, axis=[1, 2]) else: return K.mean(inputs, axis=[2, 3]) class GlobalMaxPooling2D(_GlobalPooling2D): """Global max pooling operation for spatial data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 4D tensor with shape: `(batch_size, rows, cols, channels)` - If `data_format='channels_first'`: 4D tensor with shape: `(batch_size, channels, rows, cols)` Output shape: 2D tensor with shape: `(batch_size, channels)` """ def call(self, inputs): if self.data_format == 'channels_last': return K.max(inputs, axis=[1, 2]) else: return K.max(inputs, axis=[2, 3]) class _GlobalPooling3D(Layer): """Abstract class for different global pooling 3D layers. """ def __init__(self, data_format=None, **kwargs): super(_GlobalPooling3D, self).__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=5) def _compute_output_shape(self, input_shape): input_shape = tensor_shape.TensorShape(input_shape).as_list() if self.data_format == 'channels_last': return tensor_shape.TensorShape([input_shape[0], input_shape[4]]) else: return tensor_shape.TensorShape([input_shape[0], input_shape[1]]) def call(self, inputs): raise NotImplementedError def get_config(self): config = {'data_format': self.data_format} base_config = super(_GlobalPooling3D, self).get_config() return dict(list(base_config.items()) + list(config.items())) class GlobalAveragePooling3D(_GlobalPooling3D): """Global Average pooling operation for 3D data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: 2D tensor with shape: `(batch_size, channels)` """ def call(self, inputs): if self.data_format == 'channels_last': return K.mean(inputs, axis=[1, 2, 3]) else: return K.mean(inputs, axis=[2, 3, 4]) class GlobalMaxPooling3D(_GlobalPooling3D): """Global Max pooling operation for 3D data. Arguments: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "channels_last". Input shape: - If `data_format='channels_last'`: 5D tensor with shape: `(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)` - If `data_format='channels_first'`: 5D tensor with shape: `(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)` Output shape: 2D tensor with shape: `(batch_size, channels)` """ def call(self, inputs): if self.data_format == 'channels_last': return K.max(inputs, axis=[1, 2, 3]) else: return K.max(inputs, axis=[2, 3, 4]) # Aliases AvgPool1D = AveragePooling1D MaxPool1D = MaxPooling1D AvgPool2D = AveragePooling2D MaxPool2D = MaxPooling2D AvgPool3D = AveragePooling3D MaxPool3D = MaxPooling3D GlobalMaxPool1D = GlobalMaxPooling1D GlobalMaxPool2D = GlobalMaxPooling2D GlobalMaxPool3D = GlobalMaxPooling3D GlobalAvgPool1D = GlobalAveragePooling1D GlobalAvgPool2D = GlobalAveragePooling2D GlobalAvgPool3D = GlobalAveragePooling3D
# Copyright (c) 2010-2012 OpenStack, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import sys from requests import RequestException from requests.structures import CaseInsensitiveDict from time import sleep import unittest import testtools import mock import six from six.moves import reload_module from six.moves.urllib.parse import urlparse, ParseResult from swiftclient import client as c from swiftclient import shell as s from swiftclient.utils import EMPTY_ETAG def fake_get_auth_keystone(expected_os_options=None, exc=None, storage_url='http://url/', token='token', **kwargs): def fake_get_auth_keystone(auth_url, user, key, actual_os_options, **actual_kwargs): if exc: raise exc('test') # TODO: some way to require auth_url, user and key? if expected_os_options and actual_os_options != expected_os_options: return "", None if 'required_kwargs' in kwargs: for k, v in kwargs['required_kwargs'].items(): if v != actual_kwargs.get(k): return "", None if auth_url.startswith("https") and \ auth_url.endswith("invalid-certificate") and \ not actual_kwargs['insecure']: from swiftclient import client as c raise c.ClientException("invalid-certificate") if auth_url.startswith("https") and \ auth_url.endswith("self-signed-certificate") and \ not actual_kwargs['insecure'] and \ actual_kwargs['cacert'] is None: from swiftclient import client as c raise c.ClientException("unverified-certificate") return storage_url, token return fake_get_auth_keystone class StubResponse(object): """ Placeholder structure for use with fake_http_connect's code_iter to modify response attributes (status, body, headers) on a per-request basis. """ def __init__(self, status=200, body='', headers=None): self.status = status self.body = body self.headers = headers or {} def fake_http_connect(*code_iter, **kwargs): """ Generate a callable which yields a series of stubbed responses. Because swiftclient will reuse an HTTP connection across pipelined requests it is not always the case that this fake is used strictly for mocking an HTTP connection, but rather each HTTP response (i.e. each call to requests get_response). """ class FakeConn(object): def __init__(self, status, etag=None, body='', timestamp='1', headers=None): self.status = status self.reason = 'Fake' self.host = '1.2.3.4' self.port = '1234' self.sent = 0 self.received = 0 self.etag = etag self.body = body self.timestamp = timestamp self._is_closed = True self.headers = headers or {} def connect(self): self._is_closed = False def close(self): self._is_closed = True def isclosed(self): return self._is_closed def getresponse(self): if kwargs.get('raise_exc'): raise Exception('test') return self def getexpect(self): if self.status == -2: raise RequestException() if self.status == -3: return FakeConn(507) return FakeConn(100) def getheaders(self): if self.headers: return self.headers.items() headers = {'content-length': len(self.body), 'content-type': 'x-application/test', 'x-timestamp': self.timestamp, 'last-modified': self.timestamp, 'x-object-meta-test': 'testing', 'etag': self.etag or '"%s"' % EMPTY_ETAG, 'x-works': 'yes', 'x-account-container-count': 12345} if not self.timestamp: del headers['x-timestamp'] try: if next(container_ts_iter) is False: headers['x-container-timestamp'] = '1' except StopIteration: pass if 'slow' in kwargs: headers['content-length'] = '4' if 'headers' in kwargs: headers.update(kwargs['headers']) if 'auth_v1' in kwargs: headers.update( {'x-storage-url': 'storageURL', 'x-auth-token': 'someauthtoken'}) return headers.items() def read(self, amt=None): if 'slow' in kwargs: if self.sent < 4: self.sent += 1 sleep(0.1) return ' ' rv = self.body[:amt] self.body = self.body[amt:] return rv def send(self, amt=None): if 'slow' in kwargs: if self.received < 4: self.received += 1 sleep(0.1) def getheader(self, name, default=None): return dict(self.getheaders()).get(name.lower(), default) timestamps_iter = iter(kwargs.get('timestamps') or ['1'] * len(code_iter)) etag_iter = iter(kwargs.get('etags') or [None] * len(code_iter)) x = kwargs.get('missing_container', [False] * len(code_iter)) if not isinstance(x, (tuple, list)): x = [x] * len(code_iter) container_ts_iter = iter(x) code_iter = iter(code_iter) def connect(*args, **ckwargs): if 'give_content_type' in kwargs: if len(args) >= 7 and 'Content-Type' in args[6]: kwargs['give_content_type'](args[6]['Content-Type']) else: kwargs['give_content_type']('') if 'give_connect' in kwargs: kwargs['give_connect'](*args, **ckwargs) status = next(code_iter) if isinstance(status, StubResponse): fake_conn = FakeConn(status.status, body=status.body, headers=status.headers) else: etag = next(etag_iter) timestamp = next(timestamps_iter) fake_conn = FakeConn(status, etag, body=kwargs.get('body', ''), timestamp=timestamp) if fake_conn.status <= 0: raise RequestException() fake_conn.connect() return fake_conn connect.code_iter = code_iter return connect class MockHttpTest(testtools.TestCase): def setUp(self): super(MockHttpTest, self).setUp() self.fake_connect = None self.request_log = [] def fake_http_connection(*args, **kwargs): self.validateMockedRequestsConsumed() self.request_log = [] self.fake_connect = fake_http_connect(*args, **kwargs) _orig_http_connection = c.http_connection query_string = kwargs.get('query_string') storage_url = kwargs.get('storage_url') auth_token = kwargs.get('auth_token') exc = kwargs.get('exc') on_request = kwargs.get('on_request') def wrapper(url, proxy=None, cacert=None, insecure=False, ssl_compression=True): if storage_url: self.assertEqual(storage_url, url) parsed, _conn = _orig_http_connection(url, proxy=proxy) class RequestsWrapper(object): pass conn = RequestsWrapper() def request(method, url, *args, **kwargs): try: conn.resp = self.fake_connect() except StopIteration: self.fail('Unexpected %s request for %s' % ( method, url)) self.request_log.append((parsed, method, url, args, kwargs, conn.resp)) conn.host = conn.resp.host conn.isclosed = conn.resp.isclosed conn.resp.has_been_read = False _orig_read = conn.resp.read def read(*args, **kwargs): conn.resp.has_been_read = True return _orig_read(*args, **kwargs) conn.resp.read = read if on_request: status = on_request(method, url, *args, **kwargs) conn.resp.status = status if auth_token: headers = args[1] self.assertTrue('X-Auth-Token' in headers) actual_token = headers.get('X-Auth-Token') self.assertEqual(auth_token, actual_token) if query_string: self.assertTrue(url.endswith('?' + query_string)) if url.endswith('invalid_cert') and not insecure: from swiftclient import client as c raise c.ClientException("invalid_certificate") if exc: raise exc return conn.resp def putrequest(path, data=None, headers=None, **kwargs): request('PUT', path, data, headers, **kwargs) conn.request = request conn.putrequest = putrequest def getresponse(): return conn.resp conn.getresponse = getresponse return parsed, conn return wrapper self.fake_http_connection = fake_http_connection def iter_request_log(self): for parsed, method, path, args, kwargs, resp in self.request_log: parts = parsed._asdict() parts['path'] = path full_path = ParseResult(**parts).geturl() args = list(args) log = dict(zip(('body', 'headers'), args)) log.update({ 'method': method, 'full_path': full_path, 'parsed_path': urlparse(full_path), 'path': path, 'headers': CaseInsensitiveDict(log.get('headers')), 'resp': resp, 'status': resp.status, }) yield log orig_assertEqual = unittest.TestCase.assertEqual def assert_request_equal(self, expected, real_request): method, path = expected[:2] if urlparse(path).scheme: match_path = real_request['full_path'] else: match_path = real_request['path'] self.assertEqual((method, path), (real_request['method'], match_path)) if len(expected) > 2: body = expected[2] real_request['expected'] = body err_msg = 'Body mismatch for %(method)s %(path)s, ' \ 'expected %(expected)r, and got %(body)r' % real_request self.orig_assertEqual(body, real_request['body'], err_msg) if len(expected) > 3: headers = expected[3] for key, value in headers.items(): real_request['key'] = key real_request['expected_value'] = value real_request['value'] = real_request['headers'].get(key) err_msg = ( 'Header mismatch on %(key)r, ' 'expected %(expected_value)r and got %(value)r ' 'for %(method)s %(path)s %(headers)r' % real_request) self.orig_assertEqual(value, real_request['value'], err_msg) def assertRequests(self, expected_requests): """ Make sure some requests were made like you expected, provide a list of expected requests, typically in the form of [(method, path), ...] """ real_requests = self.iter_request_log() for expected in expected_requests: real_request = next(real_requests) self.assert_request_equal(expected, real_request) def assert_request(self, expected_request): """ Make sure a request was made as expected. Provide the expected request in the form of [(method, path), ...] """ real_requests = self.iter_request_log() for real_request in real_requests: try: self.assert_request_equal(expected_request, real_request) break except AssertionError: pass else: raise AssertionError( "Expected request %s not found in actual requests %s" % (expected_request, self.request_log) ) def validateMockedRequestsConsumed(self): if not self.fake_connect: return unused_responses = list(self.fake_connect.code_iter) if unused_responses: self.fail('Unused responses %r' % (unused_responses,)) def tearDown(self): self.validateMockedRequestsConsumed() super(MockHttpTest, self).tearDown() # TODO: this nuke from orbit clean up seems to be encouraging # un-hygienic mocking on the swiftclient.client module; which may lead # to some unfortunate test order dependency bugs by way of the broken # window theory if any other modules are similarly patched reload_module(c) class CaptureStreamBuffer(object): """ CaptureStreamBuffer is used for testing raw byte writing for PY3. Anything written here is decoded as utf-8 and written to the parent CaptureStream """ def __init__(self, captured_stream): self._captured_stream = captured_stream def write(self, bytes_data): # No encoding, just convert the raw bytes into a str for testing # The below call also validates that we have a byte string. self._captured_stream.write( ''.join(map(chr, bytes_data)) ) class CaptureStream(object): def __init__(self, stream): self.stream = stream self._capture = six.StringIO() self._buffer = CaptureStreamBuffer(self) self.streams = [self.stream, self._capture] @property def buffer(self): if six.PY3: return self._buffer else: raise AttributeError( 'Output stream has no attribute "buffer" in Python2') def flush(self): pass def write(self, *args, **kwargs): for stream in self.streams: stream.write(*args, **kwargs) def writelines(self, *args, **kwargs): for stream in self.streams: stream.writelines(*args, **kwargs) def getvalue(self): return self._capture.getvalue() def clear(self): self._capture.truncate(0) self._capture.seek(0) class CaptureOutput(object): def __init__(self, suppress_systemexit=False): self._out = CaptureStream(sys.stdout) self._err = CaptureStream(sys.stderr) self.patchers = [] WrappedOutputManager = functools.partial(s.OutputManager, print_stream=self._out, error_stream=self._err) if suppress_systemexit: self.patchers += [ mock.patch('swiftclient.shell.OutputManager.get_error_count', return_value=0) ] self.patchers += [ mock.patch('swiftclient.shell.OutputManager', WrappedOutputManager), mock.patch('sys.stdout', self._out), mock.patch('sys.stderr', self._err), ] def __enter__(self): for patcher in self.patchers: patcher.start() return self def __exit__(self, *args, **kwargs): for patcher in self.patchers: patcher.stop() @property def out(self): return self._out.getvalue() @property def err(self): return self._err.getvalue() def clear(self): self._out.clear() self._err.clear() # act like the string captured by stdout def __str__(self): return self.out def __len__(self): return len(self.out) def __eq__(self, other): return self.out == other def __getattr__(self, name): return getattr(self.out, name)
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.ops.linalg_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools from absl.testing import parameterized import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.linalg import linalg from tensorflow.python.platform import test def _AddTest(test_class, op_name, testcase_name, fn): test_name = "_".join(["test", op_name, testcase_name]) if hasattr(test_class, test_name): raise RuntimeError("Test %s defined more than once" % test_name) setattr(test_class, test_name, fn) def _RandomPDMatrix(n, rng, dtype=np.float64): """Random positive definite matrix.""" temp = rng.randn(n, n).astype(dtype) if dtype in [np.complex64, np.complex128]: temp.imag = rng.randn(n, n) return np.conj(temp).dot(temp.T) class CholeskySolveTest(test.TestCase): def setUp(self): self.rng = np.random.RandomState(0) @test_util.run_deprecated_v1 def test_works_with_five_different_random_pos_def_matrices(self): for n in range(1, 6): for np_type, atol in [(np.float32, 0.05), (np.float64, 1e-5)]: with self.session(use_gpu=True): # Create 2 x n x n matrix array = np.array( [_RandomPDMatrix(n, self.rng), _RandomPDMatrix(n, self.rng)]).astype(np_type) chol = linalg_ops.cholesky(array) for k in range(1, 3): rhs = self.rng.randn(2, n, k).astype(np_type) x = linalg_ops.cholesky_solve(chol, rhs) self.assertAllClose( rhs, math_ops.matmul(array, x).eval(), atol=atol) class LogdetTest(test.TestCase): def setUp(self): self.rng = np.random.RandomState(42) @test_util.run_deprecated_v1 def test_works_with_five_different_random_pos_def_matrices(self): for n in range(1, 6): for np_dtype, atol in [(np.float32, 0.05), (np.float64, 1e-5), (np.complex64, 0.05), (np.complex128, 1e-5)]: matrix = _RandomPDMatrix(n, self.rng, np_dtype) _, logdet_np = np.linalg.slogdet(matrix) with self.session(use_gpu=True): # Create 2 x n x n matrix # matrix = np.array( # [_RandomPDMatrix(n, self.rng, np_dtype), # _RandomPDMatrix(n, self.rng, np_dtype)]).astype(np_dtype) logdet_tf = linalg.logdet(matrix) self.assertAllClose(logdet_np, self.evaluate(logdet_tf), atol=atol) def test_works_with_underflow_case(self): for np_dtype, atol in [(np.float32, 0.05), (np.float64, 1e-5), (np.complex64, 0.05), (np.complex128, 1e-5)]: matrix = (np.eye(20) * 1e-6).astype(np_dtype) _, logdet_np = np.linalg.slogdet(matrix) with self.session(use_gpu=True): logdet_tf = linalg.logdet(matrix) self.assertAllClose(logdet_np, self.evaluate(logdet_tf), atol=atol) class SlogdetTest(test.TestCase): def setUp(self): self.rng = np.random.RandomState(42) @test_util.run_deprecated_v1 def test_works_with_five_different_random_pos_def_matrices(self): for n in range(1, 6): for np_dtype, atol in [(np.float32, 0.05), (np.float64, 1e-5), (np.complex64, 0.05), (np.complex128, 1e-5)]: matrix = _RandomPDMatrix(n, self.rng, np_dtype) sign_np, log_abs_det_np = np.linalg.slogdet(matrix) with self.session(use_gpu=True): sign_tf, log_abs_det_tf = linalg.slogdet(matrix) self.assertAllClose( log_abs_det_np, self.evaluate(log_abs_det_tf), atol=atol) self.assertAllClose(sign_np, self.evaluate(sign_tf), atol=atol) def test_works_with_underflow_case(self): for np_dtype, atol in [(np.float32, 0.05), (np.float64, 1e-5), (np.complex64, 0.05), (np.complex128, 1e-5)]: matrix = (np.eye(20) * 1e-6).astype(np_dtype) sign_np, log_abs_det_np = np.linalg.slogdet(matrix) with self.session(use_gpu=True): sign_tf, log_abs_det_tf = linalg.slogdet(matrix) self.assertAllClose( log_abs_det_np, self.evaluate(log_abs_det_tf), atol=atol) self.assertAllClose(sign_np, self.evaluate(sign_tf), atol=atol) class AdjointTest(test.TestCase): def test_compare_to_numpy(self): for dtype in np.float64, np.float64, np.complex64, np.complex128: matrix_np = np.array([[1 + 1j, 2 + 2j, 3 + 3j], [4 + 4j, 5 + 5j, 6 + 6j]]).astype(dtype) expected_transposed = np.conj(matrix_np.T) with self.session(): matrix = ops.convert_to_tensor(matrix_np) transposed = linalg.adjoint(matrix) self.assertEqual((3, 2), transposed.get_shape()) self.assertAllEqual(expected_transposed, self.evaluate(transposed)) class EyeTest(parameterized.TestCase, test.TestCase): def testShapeInferenceNoBatch(self): self.assertEqual((2, 2), linalg_ops.eye(num_rows=2).shape) self.assertEqual((2, 3), linalg_ops.eye(num_rows=2, num_columns=3).shape) def testShapeInferenceStaticBatch(self): batch_shape = (2, 3) self.assertEqual( (2, 3, 2, 2), linalg_ops.eye(num_rows=2, batch_shape=batch_shape).shape) self.assertEqual( (2, 3, 2, 3), linalg_ops.eye( num_rows=2, num_columns=3, batch_shape=batch_shape).shape) @parameterized.named_parameters( ("DynamicRow", lambda: array_ops.placeholder_with_default(2, shape=None), lambda: None), ("DynamicRowStaticColumn", lambda: array_ops.placeholder_with_default(2, shape=None), lambda: 3), ("StaticRowDynamicColumn", lambda: 2, lambda: array_ops.placeholder_with_default(3, shape=None)), ("DynamicRowDynamicColumn", lambda: array_ops.placeholder_with_default(2, shape=None), lambda: array_ops.placeholder_with_default(3, shape=None))) def testShapeInferenceStaticBatchWith(self, num_rows_fn, num_columns_fn): num_rows = num_rows_fn() num_columns = num_columns_fn() batch_shape = (2, 3) identity_matrix = linalg_ops.eye( num_rows=num_rows, num_columns=num_columns, batch_shape=batch_shape) self.assertEqual(4, identity_matrix.shape.ndims) self.assertEqual((2, 3), identity_matrix.shape[:2]) if num_rows is not None and not isinstance(num_rows, ops.Tensor): self.assertEqual(2, identity_matrix.shape[-2]) if num_columns is not None and not isinstance(num_columns, ops.Tensor): self.assertEqual(3, identity_matrix.shape[-1]) @parameterized.parameters( itertools.product( # num_rows [0, 1, 2, 5], # num_columns [None, 0, 1, 2, 5], # batch_shape [None, [], [2], [2, 3]], # dtype [ dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ]) ) def test_eye_no_placeholder(self, num_rows, num_columns, batch_shape, dtype): eye_np = np.eye(num_rows, M=num_columns, dtype=dtype.as_numpy_dtype) if batch_shape is not None: eye_np = np.tile(eye_np, batch_shape + [1, 1]) eye_tf = self.evaluate(linalg_ops.eye( num_rows, num_columns=num_columns, batch_shape=batch_shape, dtype=dtype)) self.assertAllEqual(eye_np, eye_tf) @parameterized.parameters( itertools.product( # num_rows [0, 1, 2, 5], # num_columns [0, 1, 2, 5], # batch_shape [[], [2], [2, 3]], # dtype [ dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128 ]) ) @test_util.run_deprecated_v1 def test_eye_with_placeholder( self, num_rows, num_columns, batch_shape, dtype): eye_np = np.eye(num_rows, M=num_columns, dtype=dtype.as_numpy_dtype) eye_np = np.tile(eye_np, batch_shape + [1, 1]) num_rows_placeholder = array_ops.placeholder( dtypes.int32, name="num_rows") num_columns_placeholder = array_ops.placeholder( dtypes.int32, name="num_columns") batch_shape_placeholder = array_ops.placeholder( dtypes.int32, name="batch_shape") eye = linalg_ops.eye( num_rows_placeholder, num_columns=num_columns_placeholder, batch_shape=batch_shape_placeholder, dtype=dtype) with self.session(use_gpu=True) as sess: eye_tf = sess.run( eye, feed_dict={ num_rows_placeholder: num_rows, num_columns_placeholder: num_columns, batch_shape_placeholder: batch_shape }) self.assertAllEqual(eye_np, eye_tf) class _MatrixRankTest(object): def test_batch_default_tolerance(self): x_ = np.array( [ [ [2, 3, -2], # = row2+row3 [-1, 1, -2], [3, 2, 0] ], [ [0, 2, 0], # = 2*row2 [0, 1, 0], [0, 3, 0] ], # = 3*row2 [[1, 0, 0], [0, 1, 0], [0, 0, 1]] ], self.dtype) x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.use_static_shape else None) self.assertAllEqual([2, 1, 3], self.evaluate(linalg.matrix_rank(x))) def test_custom_tolerance_broadcasts(self): q = linalg.qr(random_ops.random_uniform([3, 3], dtype=self.dtype))[0] e = constant_op.constant([0.1, 0.2, 0.3], dtype=self.dtype) a = linalg.solve(q, linalg.transpose(a=e * q), adjoint=True) self.assertAllEqual([3, 2, 1, 0], self.evaluate( linalg.matrix_rank( a, tol=[[0.09], [0.19], [0.29], [0.31]]))) def test_nonsquare(self): x_ = np.array( [ [ [2, 3, -2, 2], # = row2+row3 [-1, 1, -2, 4], [3, 2, 0, -2] ], [ [0, 2, 0, 6], # = 2*row2 [0, 1, 0, 3], [0, 3, 0, 9] ] ], # = 3*row2 self.dtype) x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.use_static_shape else None) self.assertAllEqual([2, 1], self.evaluate(linalg.matrix_rank(x))) @test_util.run_all_in_graph_and_eager_modes class MatrixRankStatic32Test(test.TestCase, _MatrixRankTest): dtype = np.float32 use_static_shape = True @test_util.run_all_in_graph_and_eager_modes class MatrixRankDynamic64Test(test.TestCase, _MatrixRankTest): dtype = np.float64 use_static_shape = False class _PinvTest(object): def expected_pinv(self, a, rcond): """Calls `np.linalg.pinv` but corrects its broken batch semantics.""" if a.ndim < 3: return np.linalg.pinv(a, rcond) if rcond is None: rcond = 10. * max(a.shape[-2], a.shape[-1]) * np.finfo(a.dtype).eps s = np.concatenate([a.shape[:-2], [a.shape[-1], a.shape[-2]]]) a_pinv = np.zeros(s, dtype=a.dtype) for i in np.ndindex(a.shape[:(a.ndim - 2)]): a_pinv[i] = np.linalg.pinv( a[i], rcond=rcond if isinstance(rcond, float) else rcond[i]) return a_pinv def test_symmetric(self): a_ = self.dtype([[1., .4, .5], [.4, .2, .25], [.5, .25, .35]]) a_ = np.stack([a_ + 1., a_], axis=0) # Batch of matrices. a = array_ops.placeholder_with_default( a_, shape=a_.shape if self.use_static_shape else None) if self.use_default_rcond: rcond = None else: rcond = self.dtype([0., 0.01]) # Smallest 1 component is forced to zero. expected_a_pinv_ = self.expected_pinv(a_, rcond) a_pinv = linalg.pinv(a, rcond, validate_args=True) a_pinv_ = self.evaluate(a_pinv) self.assertAllClose(expected_a_pinv_, a_pinv_, atol=2e-5, rtol=2e-5) if not self.use_static_shape: return self.assertAllEqual(expected_a_pinv_.shape, a_pinv.shape) def test_nonsquare(self): a_ = self.dtype([[1., .4, .5, 1.], [.4, .2, .25, 2.], [.5, .25, .35, 3.]]) a_ = np.stack([a_ + 0.5, a_], axis=0) # Batch of matrices. a = array_ops.placeholder_with_default( a_, shape=a_.shape if self.use_static_shape else None) if self.use_default_rcond: rcond = None else: # Smallest 2 components are forced to zero. rcond = self.dtype([0., 0.25]) expected_a_pinv_ = self.expected_pinv(a_, rcond) a_pinv = linalg.pinv(a, rcond, validate_args=True) a_pinv_ = self.evaluate(a_pinv) self.assertAllClose(expected_a_pinv_, a_pinv_, atol=1e-5, rtol=1e-4) if not self.use_static_shape: return self.assertAllEqual(expected_a_pinv_.shape, a_pinv.shape) @test_util.run_all_in_graph_and_eager_modes class PinvTestDynamic32DefaultRcond(test.TestCase, _PinvTest): dtype = np.float32 use_static_shape = False use_default_rcond = True @test_util.run_all_in_graph_and_eager_modes class PinvTestStatic64DefaultRcond(test.TestCase, _PinvTest): dtype = np.float64 use_static_shape = True use_default_rcond = True @test_util.run_all_in_graph_and_eager_modes class PinvTestDynamic32CustomtRcond(test.TestCase, _PinvTest): dtype = np.float32 use_static_shape = False use_default_rcond = False @test_util.run_all_in_graph_and_eager_modes class PinvTestStatic64CustomRcond(test.TestCase, _PinvTest): dtype = np.float64 use_static_shape = True use_default_rcond = False def make_tensor_hiding_attributes(value, hide_shape, hide_value=True): if not hide_value: return ops.convert_to_tensor(value) shape = None if hide_shape else getattr(value, "shape", None) return array_ops.placeholder_with_default(value, shape=shape) class _LUReconstruct(object): dtype = np.float32 use_static_shape = True def test_non_batch(self): x_ = np.array([[3, 4], [1, 2]], dtype=self.dtype) x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.use_static_shape else None) y = linalg.lu_reconstruct(*linalg.lu(x), validate_args=True) y_ = self.evaluate(y) if self.use_static_shape: self.assertAllEqual(x_.shape, y.shape) self.assertAllClose(x_, y_, atol=0., rtol=1e-3) def test_batch(self): x_ = np.array([ [[3, 4], [1, 2]], [[7, 8], [3, 4]], ], dtype=self.dtype) x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.use_static_shape else None) y = linalg.lu_reconstruct(*linalg.lu(x), validate_args=True) y_ = self.evaluate(y) if self.use_static_shape: self.assertAllEqual(x_.shape, y.shape) self.assertAllClose(x_, y_, atol=0., rtol=1e-3) @test_util.run_all_in_graph_and_eager_modes class LUReconstructStatic(test.TestCase, _LUReconstruct): use_static_shape = True @test_util.run_all_in_graph_and_eager_modes class LUReconstructDynamic(test.TestCase, _LUReconstruct): use_static_shape = False class _LUMatrixInverse(object): dtype = np.float32 use_static_shape = True def test_non_batch(self): x_ = np.array([[1, 2], [3, 4]], dtype=self.dtype) x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.use_static_shape else None) y = linalg.lu_matrix_inverse(*linalg.lu(x), validate_args=True) y_ = self.evaluate(y) if self.use_static_shape: self.assertAllEqual(x_.shape, y.shape) self.assertAllClose(np.linalg.inv(x_), y_, atol=0., rtol=1e-3) def test_batch(self): x_ = np.array([ [[1, 2], [3, 4]], [[7, 8], [3, 4]], [[0.25, 0.5], [0.75, -2.]], ], dtype=self.dtype) x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.use_static_shape else None) y = linalg.lu_matrix_inverse(*linalg.lu(x), validate_args=True) y_ = self.evaluate(y) if self.use_static_shape: self.assertAllEqual(x_.shape, y.shape) self.assertAllClose(np.linalg.inv(x_), y_, atol=0., rtol=1e-3) @test_util.run_all_in_graph_and_eager_modes class LUMatrixInverseStatic(test.TestCase, _LUMatrixInverse): use_static_shape = True @test_util.run_all_in_graph_and_eager_modes class LUMatrixInverseDynamic(test.TestCase, _LUMatrixInverse): use_static_shape = False class _LUSolve(object): dtype = np.float32 use_static_shape = True def test_non_batch(self): x_ = np.array([[1, 2], [3, 4]], dtype=self.dtype) x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.use_static_shape else None) rhs_ = np.array([[1, 1]], dtype=self.dtype).T rhs = array_ops.placeholder_with_default( rhs_, shape=rhs_.shape if self.use_static_shape else None) lower_upper, perm = linalg.lu(x) y = linalg.lu_solve(lower_upper, perm, rhs, validate_args=True) y_, perm_ = self.evaluate([y, perm]) self.assertAllEqual([1, 0], perm_) expected_ = np.linalg.solve(x_, rhs_) if self.use_static_shape: self.assertAllEqual(expected_.shape, y.shape) self.assertAllClose(expected_, y_, atol=0., rtol=1e-3) def test_batch_broadcast(self): x_ = np.array([ [[1, 2], [3, 4]], [[7, 8], [3, 4]], [[0.25, 0.5], [0.75, -2.]], ], dtype=self.dtype) x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.use_static_shape else None) rhs_ = np.array([[1, 1]], dtype=self.dtype).T rhs = array_ops.placeholder_with_default( rhs_, shape=rhs_.shape if self.use_static_shape else None) lower_upper, perm = linalg.lu(x) y = linalg.lu_solve(lower_upper, perm, rhs, validate_args=True) y_, perm_ = self.evaluate([y, perm]) self.assertAllEqual([[1, 0], [0, 1], [1, 0]], perm_) expected_ = np.linalg.solve(x_, rhs_[np.newaxis]) if self.use_static_shape: self.assertAllEqual(expected_.shape, y.shape) self.assertAllClose(expected_, y_, atol=0., rtol=1e-3) @test_util.run_all_in_graph_and_eager_modes class LUSolveStatic(test.TestCase, _LUSolve): use_static_shape = True @test_util.run_all_in_graph_and_eager_modes class LUSolveDynamic(test.TestCase, _LUSolve): use_static_shape = False if __name__ == "__main__": test.main()
"""Tango Parser. The objective of the preliminary parsing phase is to (try to) uncover the overall structure of the input document. In particular it handles : - line comments - latex-style commands \cmd[<opt>]{<arg1>}{...}{<argN>} - special preformated commands \cmd[<opt>]{{{ <preformated>}}} - latex-style environments \begin{env}[<opt>]{<arg1>}{...}{<argN>} <body> \end{env} - latex-style sectionning commands \part \chapter \section \subsection \subsubsection \paragraph """ import tangolib.eregex as ere import tangolib.lexer as lexer from tangolib.markup import Document, Section, Command, CommandArg, \ Environment, Text, Newlines, Spaces, Preformated, SubDocument, EnvArg import tangolib.template as template from tangolib.macros import DefCommand, DefEnvironment from tangolib.cmdparse import GLOBAL_COMMAND_LINE_ARGUMENTS import tangolib.globalvars as globvars class ParseError(Exception): pass def depth_of_section(section_type): if section_type == 'part': return -1 elif section_type == 'chapter': return 0 elif section_type == 'section': return 1 elif section_type == 'subsection': return 2 elif section_type == 'subsubsection': return 3 elif section_type == 'paragraph': return 4 else: raise ValueError("Not a valid section type: {}".format(section_type)) def section_of_depth(section_depth): if section_depth == -1: return "part" elif section_depth == 0: return "chapter" elif section_depth == 1: return "section" elif section_depth == 2: return "subsection" elif section_depth == 3: return "subsubsection" elif section_depth == 4: return "paragraph" else: raise ValueError("Not a valid section depth: {}".format(section_depth)) # extended regular expressions constants REGEX_IDENT_STR = r"[a-zA-Z_][a-zA-Z_0-9]*" REGEX_PROTECTED = ere.ERegex(r"\\{|\\}") REGEX_LINE_COMMENT = ere.ERegex('%') + ere.zero_or_more(ere.any_char()) + ere.str_end() REGEX_ENV_HEADER = ere.ERegex(r"\\begin{(" + REGEX_IDENT_STR + r")}(?:\[([^\]]+)\])?") REGEX_ENV_FOOTER = ere.ERegex(r"\\end{(" + REGEX_IDENT_STR + r")}") REGEX_SECTION = ere.ERegex(r"\\(part|chapter|section|subsection|subsubsection|paragraph)(?:\[([^\]]+)\])?{([^}]+)}") REGEX_MDSECTION = ere.ERegex(r"^(=+)\s+([^=]+)\s+(=*)(.*)$") REGEX_CMD_PRE_HEADER = ere.ERegex(r"\\(" + REGEX_IDENT_STR + r")(?:\[([^\]]+)\])?{{{") REGEX_CMD_HEADER = ere.ERegex(r"\\(" + REGEX_IDENT_STR + r")(?:\[([^\]]+)\])?") REGEX_SPACE_STR = r"[^\S\n\f\r]" REGEX_SPACE = ere.ERegex(REGEX_SPACE_STR) REGEX_SPACES = ere.ERegex("({})+".format(REGEX_SPACE_STR)) REGEX_MDLIST_OPEN = ere.ERegex("(?:^{0}*\\n)+({0}+)([-+*\\d](?:\\.)?){0}".format(REGEX_SPACE_STR)) REGEX_MDLIST_ITEM = ere.ERegex("^({0}+)([-+*\\d](?:\\.)?){0}".format(REGEX_SPACE_STR)) REGEX_INLINE_PREFORMATED = ere.ERegex("`([^`]*)`") REGEX_EMPH_STAR = ere.ERegex(r"(\*)(?=[^*]+\*)") REGEX_STRONG_STAR = ere.ERegex(r"(\*)\*(?=[^*]+\*\*)") REGEX_EMPH_UNDER = ere.ERegex(r"(_)(?=[^_]+_)") REGEX_STRONG_UNDER = ere.ERegex(r"(_)_(?=[^_]+__)") REGEX_DEF_CMD_HEADER = ere.ERegex(r"\\defCommand{\\(" + REGEX_IDENT_STR + r")}(?:\[([0-9]+)\])?") REGEX_DEF_CMD_HEADER_SHORT = ere.ERegex(r"\\defCmd{\\(" + REGEX_IDENT_STR + r")}(?:\[([0-9]+)\])?") REGEX_DEF_ENV_HEADER = ere.ERegex(r"\\defEnvironment{(" + REGEX_IDENT_STR + r")}(?:\[([0-9]+)\])?") REGEX_DEF_ENV_HEADER_SHORT = ere.ERegex(r"\\defEnv{(" + REGEX_IDENT_STR + r")}(?:\[([0-9]+)\])?") REGEX_MACRO_CMD_ARG = ere.ERegex(r"\\macroCommandArgument\[([0-9]+)\]") # main parser class class Parser: def __init__(self): self.recognizers = [] self.prepare_recognizers() def prepare_recognizers(self): self.recognizers.append(lexer.Regexp("protected", REGEX_PROTECTED)) self.recognizers.append(lexer.EndOfInput("end_of_input")) self.recognizers.append(lexer.Regexp("line_comment", REGEX_LINE_COMMENT)) self.recognizers.append(lexer.Regexp("def_env_header", REGEX_DEF_ENV_HEADER)) self.recognizers.append(lexer.Regexp("def_env_header", REGEX_DEF_ENV_HEADER_SHORT)) self.recognizers.append(lexer.Regexp("def_cmd_header", REGEX_DEF_CMD_HEADER)) self.recognizers.append(lexer.Regexp("def_cmd_header", REGEX_DEF_CMD_HEADER_SHORT)) self.recognizers.append(lexer.Regexp("macro_cmd_arg", REGEX_MACRO_CMD_ARG)) self.recognizers.append(lexer.Regexp("env_header", REGEX_ENV_HEADER)) self.recognizers.append(lexer.Regexp("env_footer", REGEX_ENV_FOOTER)) self.recognizers.append(lexer.Regexp("section", REGEX_SECTION)) self.recognizers.append(lexer.Regexp("mdsection", REGEX_MDSECTION, re_flags=ere.MULTILINE)) self.recognizers.append(lexer.Regexp("inline_preformated", REGEX_INLINE_PREFORMATED)) self.recognizers.append(lexer.Regexp("strong", REGEX_STRONG_STAR)) self.recognizers.append(lexer.Regexp("strong", REGEX_STRONG_UNDER)) self.recognizers.append(lexer.Regexp("emph", REGEX_EMPH_STAR)) self.recognizers.append(lexer.Regexp("emph", REGEX_EMPH_UNDER)) # markdown lists self.recognizers.append(lexer.Regexp("mdlist_open", REGEX_MDLIST_OPEN, re_flags=ere.MULTILINE)) self.recognizers.append(lexer.Regexp("mdlist_item", REGEX_MDLIST_ITEM, re_flags=ere.MULTILINE)) self.recognizers.append(lexer.Regexp("cmd_pre_header", REGEX_CMD_PRE_HEADER)) self.recognizers.append(lexer.Regexp("cmd_header", REGEX_CMD_HEADER)) self.recognizers.append(lexer.Char("open_curly", '{')) self.recognizers.append(lexer.Char("close_curly", '}')) self.recognizers.append(lexer.CharIn("newline", "\n", "\r")) self.recognizers.append(lexer.Regexp("spaces", REGEX_SPACES)) class UnparsedContent: def __init__(self): self.content = "" self.start_pos = None self.end_pos = None def append_char(self, lexer): if self.start_pos is None: self.start_pos = lexer.pos self.content += lexer.next_char() self.end_pos = lexer.pos def append_str(self, str_, start_pos, end_pos): if self.start_pos is None: self.start_pos = start_pos self.content += str_ self.end_pos = end_pos def flush(self, parent): if self.content != "": parent.append(Text(parent.doc, self.content, self.start_pos, self.end_pos)) self.content = "" self.start_pos = None self.end_pos = None def __repr__(self): return "UnparsedContent({},start_pos={},end_pos={})".format(repr(self.content), self.start_pos, self.end_pos) def parse(self, doc, macro_cmd_arguments=None): # BREAKPOINT >>> # import pdb; pdb.set_trace() # <<< BREAKPOINT # element_stack = [] current_element = doc continue_parse = True unparsed_content = Parser.UnparsedContent() lex = doc.lex while continue_parse: tok = lex.next_token() if tok is None: next_char = lex.peek_char() # When closing an emphasis if next_char in { '*', '_' } and current_element.markup_type == "command" \ and current_element.cmd_name in { "emph" , "strong" }: if current_element.cmd_name == "emph": if current_element.cmd_opts['emph_type'] == next_char: lex.next_char() # consume unparsed_content.flush(current_element) current_element = element_stack.pop() else: unparsed_content.append_char(lex) elif current_element.cmd_name == "strong": if current_element.cmd_opts['strong_type'] == next_char: lex.next_chars(2) # consume two unparsed_content.flush(current_element) current_element = element_stack.pop() else: unparsed_content.append_char(lex) else: unparsed_content.append_char(lex) else: # in the other case just append the character unparsed_content.append_char(lex) ############################################### ### End of input ### ############################################### elif tok.token_type == "end_of_input": unparsed_content.flush(current_element) while current_element.markup_type not in { "document", "subdoc", "macrocmddoc", "macroenvdoc", "macroenvfooterdoc" }: if current_element.markup_type == "command": raise ParseError(current_element.start_pos, tok.start_pos, "Unfinished command before end of document") elif current_element.markup_type == "environment": raise ParseError(current_element.start_pos, tok.start_pos, "Unfinished environment before end of document") else: # ok to close current_element.end_pos = tok.start_pos current_element = element_stack.pop() continue_parse = False ### Line comment ### elif tok.token_type == "line_comment": pass # just skip this ############################################### ### Environments ### ############################################### elif tok.token_type == "env_header": unparsed_content.flush(current_element) env = Environment(doc, tok.value.group(1), tok.value.group(2), tok.start_pos, tok.end_pos) current_element.append(env) element_stack.append(current_element) current_element = env # check if the environment has at least an argument ntok = lex.next_token() if ntok is None: pass # special case: no more tokens (last command) elif ntok.token_type == "open_curly": env.parsing_argument = True lex.putback(ntok) # need the bracket for argument parsing else: env.parsing_argument = False lex.putback(ntok) # command without argument # start of argument (or dummy bracket somewhere) elif current_element.markup_type == "environment" and tok.token_type == "open_curly" and hasattr(current_element,"parsing_argument") and current_element.parsing_argument: # first argument env_arg = EnvArg(doc,current_element, tok.start_pos) current_element.add_argument(env_arg) element_stack.append(current_element) current_element = env_arg # end of argument (or dummy bracket somewhere) elif current_element.markup_type == "env_arg" and tok.token_type == "close_curly": unparsed_content.flush(current_element) current_element.end_pos = tok.end_pos # Pop parent element (environment) current_element = element_stack.pop() # check if the environment has at least a further argument ntok = lex.next_token() if ntok is None: # no more token ? ==> ERROR ! raise ParseError(tok.start_pos, tok.end_pos, "Missing closing environment at end of input") elif ntok.token_type == "open_curly": current_element.parsing_argument = True lex.putback(ntok) else: current_element.parsing_argument = False # keep the environment as current element for further argument or the body lex.putback(ntok) # need the bracket for argument parsing elif tok.token_type == "env_footer": if current_element.markup_type != "environment": raise ParseError(tok.start_pos, tok.end_pos, "Cannot close environment") if current_element.env_name != tok.value.group(1): raise ParseError(tok.start_pos, tok.end_pos, "Mismatch environment '{}' (expecting '{}')".format(tok.group(1), current_element.env_name)) unparsed_content.flush(current_element) current_element.footer_start_pos = tok.start_pos current_element.end_pos = tok.end_pos # Pop parent element current_element = element_stack.pop() ############################################### ### Commands ### ############################################### elif tok.token_type == "cmd_header": unparsed_content.flush(current_element) cmd = Command(doc, tok.value.group(1), tok.value.group(2), tok.start_pos, tok.end_pos) current_element.append(cmd) # check if the command has at least an arguemnt ntok = lex.next_token() if ntok is None: pass # special case: no more tokens (last command) elif ntok.token_type == "open_curly": element_stack.append(current_element) current_element = cmd lex.putback(ntok) # need the bracket for argument parsing else: lex.putback(ntok) # command without argument # start of argument (or dummy bracket somewhere) elif current_element.markup_type == "command" and tok.token_type == "open_curly": # first argument cmd_arg = CommandArg(doc,current_element, tok.start_pos) current_element.add_argument(cmd_arg) element_stack.append(current_element) current_element = cmd_arg # end of argument (or dummy bracket somewhere) elif current_element.markup_type == "command_arg" and tok.token_type == "close_curly": unparsed_content.flush(current_element) current_element.end_pos = tok.end_pos # Pop parent element (command) current_element = element_stack.pop() # check if the command has at least an arguemnt ntok = lex.next_token() if ntok is None: current_element = element_stack.pop() # special case: no more tokens (last command, pop it) elif ntok.token_type == "open_curly": # keep the command as current element lex.putback(ntok) # need the bracket for argument parsing else: # pop the command current_element = element_stack.pop() lex.putback(ntok) # command without more argument elif tok.token_type == "cmd_pre_header": unparsed_content.flush(current_element) cmd = Command(doc, tok.value.group(1), tok.value.group(2), tok.start_pos, tok.end_pos, preformated=True) current_element.append(cmd) preformated = "" eat_preformated = True while eat_preformated: footer = lex.peek_chars(3) if footer is None: raise ParseError(tok.start_pos, lex.pos, "Preformated command unfinished (missing '}}}')") elif footer == "}}}": cmd.content = preformated eat_preformated = False lex.next_chars(3) else: preformated += lex.next_char() elif tok.token_type == "open_curly": unparsed_content.append_str("{", tok.start_pos, tok.end_pos) ############################################### ### Sections (latex-style or markdown-style ### ############################################### elif tok.token_type == "section" or tok.token_type == "mdsection": if tok.token_type == "section": # latex section markup section_title = tok.value.group(2) section_depth = depth_of_section(tok.value.group(1)) elif tok.token_type == "mdsection": # markdown section markup section_title = tok.value.group(2) section_depth = len(tok.value.group(1)) if tok.value.group(3) != "" and tok.value.group(3) != tok.value.group(1): raise ParseError(tok.start_pos.next_char(tok.value.start(3)), tok.start_pos.next_char(tok.value.end(3)), 'Wrong section marker: should be "" or "{}"'.format(tok.value.group(1))) if tok.value.group(4) != "" and not tok.value.group(4).isspace(): raise ParseError(tok.start_pos.next_char(tok.value.start(4)), tok.start_pos.next_char(tok.value.end(3)), "Unexpected text '{}' after section markup".format(tok.value.group(4))) if current_element.markup_type == "command": raise ParseError(current_element.start_pos, tok.start_pos, "Unfinished command before section") elif current_element.markup_type == "environment": raise ParseError(current_element.start_pos, tok.start_pos, "Unfinished environment before section") # ok to parse new section unparsed_content.flush(current_element) # close all sections of greater or equal depth while current_element.markup_type == "section" \ and current_element.section_depth >= section_depth: # TODO: fix probably needed for mixing inclusion and sectionnning current_element.end_pos = tok.start_pos current_element = element_stack.pop() section = Section(doc, section_title, section_of_depth(section_depth), section_depth, tok.start_pos, tok.end_pos) current_element.append(section) element_stack.append(current_element) current_element = section ############################################ ### Markdown-style itemize and enumerate ### ############################################$ elif tok.token_type == "mdlist_open" or tok.token_type == "mdlist_item": mditem_indent = len(tok.value.group(1)) mditem_style = "itemize" if (tok.value.group(2)[0] == '-' or tok.value.group(2)[0] == '+') else "enumerate" unparsed_content.flush(current_element) continue_closing = True while continue_closing: dig_once_more = False # TODO: fix probably needed for closing with subdocument while current_element.markup_type not in { "command", "environment", "section", "document", "subdoc" }: current_element = element_stack.pop() if (current_element.markup_type == "environment") and (current_element.env_name in { "itemize", "enumerate" }) \ and (current_element.env_name == mditem_style): try: if current_element.markdown_style: pass # ok except AttributeError: raise ParseError(current_element.start_pos, tok.start_pos, "Mixing latex-style and markdown-style lists is forbidden") if current_element.markdown_indent == mditem_indent: # add a further item at the same level #### element_stack.append(current_element) mditem = Command(doc, "item", None, tok.start_pos, tok.end_pos) mditem.markdown_style = True current_element.append(mditem) #### current_element = mditem continue_closing = False elif current_element.markdown_indent > mditem_indent: # close one current_element = element_stack.pop() continue_closing = True else: # dig one level more dig_once_more = True continue_closing = False else: dig_once_more = True continue_closing = False if dig_once_more: mdlist = Environment(doc, mditem_style, None, tok.start_pos, tok.end_pos) mdlist.markdown_style = True mdlist.markdown_indent = mditem_indent current_element.append(mdlist) element_stack.append(current_element) current_element = mdlist mditem = Command(doc, "item", None, tok.start_pos, tok.end_pos) mditem.markdown_style = True current_element.append(mditem) #### element_stack.append(current_element) #### current_element = mditem # loop if continue_closing == True # and we're done ########################################### ### Inline preformated ### ########################################### elif tok.token_type == "inline_preformated": unparsed_content.flush(current_element) preformated = Preformated(doc, tok.value.group(1), "inline", tok.start_pos, tok.end_pos) current_element.append(preformated) ### Emphasis (normal) ### elif tok.token_type == "emph": unparsed_content.flush(current_element) cmd = Command(doc, "emph", {'emph_type': tok.value.group(1) }, tok.start_pos, tok.end_pos) current_element.append(cmd) element_stack.append(current_element) current_element = cmd ### Strong emphasis ### elif tok.token_type == "strong": unparsed_content.flush(current_element) cmd = Command(doc, "strong", {'strong_type': tok.value.group(1) }, tok.start_pos, tok.end_pos) current_element.append(cmd) element_stack.append(current_element) current_element = cmd ###################################################### ### Macros: commands and environments definitions ### ###################################################### ### command definition elif tok.token_type == "def_cmd_header": unparsed_content.flush(current_element) def_cmd_name = tok.value.group(1) def_cmd_arity = 0 if tok.value.group(2) is not None: def_cmd_arity = int(tok.value.group(2)) tok2 = lex.next_token() if tok2.token_type != "open_curly": raise ParseError(tok.end_pos, tok.end_pos.next_char(), "Missing '{' for \\defCommand body") # prepare the template string def_cmd_lex_start_pos = lex.pos def_cmd_lex_str = "" nb_curly = 1 while nb_curly > 0: ch = lex.next_char() if ch is None: raise ParseError(def_cmd_lex_start_pos, lex.pos, "Unexpected end of input while parsing \\defCommand body") elif ch == '}': nb_curly -= 1 if nb_curly > 0: def_cmd_lex_str += ch else: if ch == '{': nb_curly += 1 def_cmd_lex_str += ch def_cmd_tpl = template.Template(def_cmd_lex_str, globvars.TANGO_EVAL_GLOBAL_ENV, escape_var='#', escape_inline='@', escape_block='@', escape_block_open='{', escape_block_close='}', escape_emit_function='emit', filename='<defCommand:{}>'.format(def_cmd_name), base_pos=def_cmd_lex_start_pos) # register the command doc.register_def_command(def_cmd_name, DefCommand(doc, def_cmd_name, def_cmd_arity, tok.start_pos, tok.end_pos, def_cmd_tpl)) ### macro-command argument elif tok.token_type == "macro_cmd_arg": ### XXX: dead code ? unparsed_content.flush(current_element) arg_num = int(tok.value.group(1)) command_arg_markup = macro_cmd_arguments[arg_num] current_element.append(command_arg_markup) element_stack.append(current_element) current_element = command_arg_markup ### environment definition elif tok.token_type == "def_env_header": unparsed_content.flush(current_element) def_env_name = tok.value.group(1) def_env_arity = 0 if tok.value.group(2) is not None: def_env_arity = int(tok.value.group(2)) tok2 = lex.next_token() if tok2.token_type != "open_curly": raise ParseError(tok.end_pos, tok.end_pos.next_char(), "Missing '{' for \\defEnvironment header body") # prepare the template string for the header part def_env_header_lex_start_pos = lex.pos def_env_header_lex_str = "" nb_curly = 1 while nb_curly > 0: ch = None try: ch = lex.next_char() if ch is None: raise ParseError(def_env_header_lex_start_pos, lex.pos, "Unexpected end of input while parsing \\defEnvironment header body") except: raise ParseError(def_env_header_lex_start_pos, lex.pos, "Unexpected end of input while parsing \\defEnvironment header body") if ch == '}': nb_curly -= 1 if nb_curly > 0: def_env_header_lex_str += ch else: if ch == '{': nb_curly += 1 def_env_header_lex_str += ch def_env_header_tpl = template.Template(def_env_header_lex_str, globvars.TANGO_EVAL_GLOBAL_ENV, escape_var='#', escape_inline='@', escape_block='@', escape_block_open='{', escape_block_close='}', escape_emit_function='emit', filename='<defEnvironment:{}>'.format(def_env_name), base_pos=def_env_header_lex_start_pos) # prepare the template string for the footer part tok2 = lex.next_token() if tok2.token_type != "open_curly": raise ParseError(tok.end_pos, tok.end_pos.next_char(), "Missing '{' for \\defEnvironment footer body") def_env_footer_lex_start_pos = lex.pos def_env_footer_lex_str = "" nb_curly = 1 while nb_curly > 0: ch = None try: ch = lex.next_char() if ch is None: raise ParseError(def_env_footer_lex_start_pos, lex.pos, "Unexpected end of input while parsing \\defEnvironment footer body") except: raise ParseError(def_env_footer_lex_start_pos, lex.pos, "Unexpected end of input while parsing \\defEnvironment footer body") if ch == '}': nb_curly -= 1 if nb_curly > 0: def_env_footer_lex_str += ch else: if ch == '{': nb_curly += 1 def_env_footer_lex_str += ch def_env_footer_tpl = template.Template(def_env_footer_lex_str, globvars.TANGO_EVAL_GLOBAL_ENV, escape_var='#', escape_inline='@', escape_block='@', escape_block_open='{', escape_block_close='}', escape_emit_function='emit', filename='<defEnvironment:{}>'.format(def_env_name), base_pos=def_env_footer_lex_start_pos) # register the environement doc.register_def_environment(def_env_name, DefEnvironment(doc, def_env_name, def_env_arity, def_env_header_lex_start_pos, lex.pos, def_env_header_tpl, def_env_footer_tpl)) ########################################### ### Special characters (newlines, etc.) ### ########################################### elif tok.token_type == "protected": unparsed_content.append_str(tok.value[1:], tok.start_pos, tok.end_pos) elif tok.token_type == "newline": unparsed_content.flush(current_element) newlines = tok.value while lex.peek_char() == "\n" or lex.peek_char() == "\r": newlines += lex.next_char() ## Special treatment for markdown lists if len(newlines) >= 2 or lex.at_eof(): # check if we need to finish some markdown list element_stack_copy = element_stack[:] element_stack_copy.append(current_element) top_mdlist = None while element_stack_copy: current_element_copy = element_stack_copy.pop() if current_element_copy.markup_type in { "command", "environment", "section", "document" } \ and not hasattr(current_element_copy, "markdown_style"): element_stack_copy = [] elif current_element_copy.markup_type == "environment": top_mdlist = current_element_copy if top_mdlist: # found a markdown list to close while current_element is not top_mdlist: current_element = element_stack.pop() # close the top markdown list current_element = element_stack.pop() current_element.append(Newlines(doc, newlines, tok.start_pos, tok.end_pos)) elif tok.token_type == "spaces": unparsed_content.flush(current_element) current_element.append(Spaces(doc, tok.value.group(0), tok.start_pos, tok.end_pos)) else: # unrecognized token type raise ParseError(tok.start_pos, tok.end_pos, "Unrecognized token type: {}".format(tok.token_type)) # at the end of input unparsed_content.flush(current_element) while current_element != doc: if current_element.markup_type == "command": raise ParseError(current_element.start_pos, tok.start_pos, "Unfinished command before end of document") elif current_element.markup_type == "environment": raise ParseError(current_element.start_pos, tok.start_pos, "Unfinished environment before end of document") else: # ok to close current_element.end_pos = tok.start_pos current_element = element_stack.pop() # preparsing finished return doc def prepare_string_lexer(self, input): tokens = lexer.Tokenizer(lexer.StringTokenizer(input)) lex = lexer.Lexer(tokens, *self.recognizers) return lex def parse_from_string(self, input, filename="<string>"): self.filename = filename lex = self.prepare_string_lexer(input) doc = Document(self.filename, lex) return self.parse(doc) def parse_from_file(self, filename): f = open(filename, "r") input = f.read() f.close() doc = self.parse_from_string(input, filename) return doc
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """RNN helpers for TensorFlow models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import tensor_array_ops from tensorflow.python.ops import variable_scope as vs def rnn(cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None): """Creates a recurrent neural network specified by RNNCell "cell". The simplest form of RNN network generated is: state = cell.zero_state(...) outputs = [] for input_ in inputs: output, state = cell(input_, state) outputs.append(output) return (outputs, state) However, a few other options are available: An initial state can be provided. If the sequence_length vector is provided, dynamic calculation is performed. This method of calculation does not compute the RNN steps past the maximum sequence length of the minibatch (thus saving computational time), and properly propagates the state at an example's sequence length to the final state output. The dynamic calculation performed is, at time t for batch row b, (output, state)(b, t) = (t >= sequence_length(b)) ? (zeros(cell.output_size), states(b, sequence_length(b) - 1)) : cell(input(b, t), state(b, t - 1)) Args: cell: An instance of RNNCell. inputs: A length T list of inputs, each a tensor of shape [batch_size, cell.input_size]. initial_state: (optional) An initial state for the RNN. This must be a tensor of appropriate type and shape [batch_size x cell.state_size]. dtype: (optional) The data type for the initial state. Required if initial_state is not provided. sequence_length: Specifies the length of each sequence in inputs. An int32 or int64 vector (tensor) size [batch_size]. Values in [0, T). scope: VariableScope for the created subgraph; defaults to "RNN". Returns: A pair (outputs, state) where: outputs is a length T list of outputs (one for each input) state is the final state Raises: TypeError: If "cell" is not an instance of RNNCell. ValueError: If inputs is None or an empty list. """ if not isinstance(cell, rnn_cell.RNNCell): raise TypeError("cell must be an instance of RNNCell") if not isinstance(inputs, list): raise TypeError("inputs must be a list") if not inputs: raise ValueError("inputs must not be empty") outputs = [] # Create a new scope in which the caching device is either # determined by the parent scope, or is set to place the cached # Variable using the same placement as for the rest of the RNN. with vs.variable_scope(scope or "RNN") as varscope: if varscope.caching_device is None: varscope.set_caching_device(lambda op: op.device) fixed_batch_size = inputs[0].get_shape().with_rank_at_least(1)[0] if fixed_batch_size.value: batch_size = fixed_batch_size.value else: batch_size = array_ops.shape(inputs[0])[0] if initial_state is not None: state = initial_state else: if not dtype: raise ValueError("If no initial_state is provided, dtype must be.") state = cell.zero_state(batch_size, dtype) if sequence_length is not None: sequence_length = math_ops.to_int32(sequence_length) if sequence_length: # Prepare variables zero_output = array_ops.zeros( array_ops.pack([batch_size, cell.output_size]), inputs[0].dtype) zero_output.set_shape( tensor_shape.TensorShape([fixed_batch_size.value, cell.output_size])) min_sequence_length = math_ops.reduce_min(sequence_length) max_sequence_length = math_ops.reduce_max(sequence_length) for time, input_ in enumerate(inputs): if time > 0: vs.get_variable_scope().reuse_variables() # pylint: disable=cell-var-from-loop call_cell = lambda: cell(input_, state) # pylint: enable=cell-var-from-loop if sequence_length: (output, state) = _rnn_step( time, sequence_length, min_sequence_length, max_sequence_length, zero_output, state, call_cell) else: (output, state) = call_cell() outputs.append(output) return (outputs, state) def state_saving_rnn(cell, inputs, state_saver, state_name, sequence_length=None, scope=None): """RNN that accepts a state saver for time-truncated RNN calculation. Args: cell: An instance of RNNCell. inputs: A length T list of inputs, each a tensor of shape [batch_size, cell.input_size]. state_saver: A state saver object with methods `state` and `save_state`. state_name: The name to use with the state_saver. sequence_length: (optional) An int32/int64 vector size [batch_size]. See the documentation for rnn() for more details about sequence_length. scope: VariableScope for the created subgraph; defaults to "RNN". Returns: A pair (outputs, state) where: outputs is a length T list of outputs (one for each input) states is the final state Raises: TypeError: If "cell" is not an instance of RNNCell. ValueError: If inputs is None or an empty list. """ initial_state = state_saver.state(state_name) (outputs, state) = rnn(cell, inputs, initial_state=initial_state, sequence_length=sequence_length, scope=scope) save_state = state_saver.save_state(state_name, state) with ops.control_dependencies([save_state]): outputs[-1] = array_ops.identity(outputs[-1]) return (outputs, state) def _rnn_step( time, sequence_length, min_sequence_length, max_sequence_length, zero_output, state, call_cell): """Calculate one step of a dynamic RNN minibatch. Returns an (output, state) pair conditioned on the sequence_lengths. The pseudocode is something like: if t >= max_sequence_length: return (zero_output, state) if t < min_sequence_length: return call_cell() # Selectively output zeros or output, old state or new state depending # on if we've finished calculating each row. new_output, new_state = call_cell() final_output = np.vstack([ zero_output if time >= sequence_lengths[r] else new_output_r for r, new_output_r in enumerate(new_output) ]) final_state = np.vstack([ state[r] if time >= sequence_lengths[r] else new_state_r for r, new_state_r in enumerate(new_state) ]) return (final_output, final_state) Args: time: Python int, the current time step sequence_length: int32 `Tensor` vector of size [batch_size] min_sequence_length: int32 `Tensor` scalar, min of sequence_length max_sequence_length: int32 `Tensor` scalar, max of sequence_length zero_output: `Tensor` vector of shape [output_size] state: `Tensor` matrix of shape [batch_size, state_size] call_cell: lambda returning tuple of (new_output, new_state) where new_output is a `Tensor` matrix of shape [batch_size, output_size] new_state is a `Tensor` matrix of shape [batch_size, state_size] Returns: A tuple of (final_output, final_state) as given by the pseudocode above: final_output is a `Tensor` matrix of shape [batch_size, output_size] final_state is a `Tensor` matrix of shape [batch_size, state_size] """ # Step 1: determine whether we need to call_cell or not empty_update = lambda: (zero_output, state) state_shape = state.get_shape() output, new_state = control_flow_ops.cond( time < max_sequence_length, call_cell, empty_update) # Step 2: determine whether we need to copy through state and/or outputs existing_output_state = lambda: (output, new_state) def copy_through(): # Use broadcasting select to determine which values should get # the previous state & zero output, and which values should get # a calculated state & output. copy_cond = (time >= sequence_length) return (math_ops.select(copy_cond, zero_output, output), math_ops.select(copy_cond, state, new_state)) (output, state) = control_flow_ops.cond( time < min_sequence_length, existing_output_state, copy_through) output.set_shape(zero_output.get_shape()) state.set_shape(state_shape) return (output, state) def _reverse_seq(input_seq, lengths): """Reverse a list of Tensors up to specified lengths. Args: input_seq: Sequence of seq_len tensors of dimension (batch_size, depth) lengths: A tensor of dimension batch_size, containing lengths for each sequence in the batch. If "None" is specified, simply reverses the list. Returns: time-reversed sequence """ if lengths is None: return list(reversed(input_seq)) for input_ in input_seq: input_.set_shape(input_.get_shape().with_rank(2)) # Join into (time, batch_size, depth) s_joined = array_ops.pack(input_seq) # Reverse along dimension 0 s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1) # Split again into list result = array_ops.unpack(s_reversed) return result def bidirectional_rnn(cell_fw, cell_bw, inputs, initial_state_fw=None, initial_state_bw=None, dtype=None, sequence_length=None, scope=None): """Creates a bidirectional recurrent neural network. Similar to the unidirectional case above (rnn) but takes input and builds independent forward and backward RNNs with the final forward and backward outputs depth-concatenated, such that the output will have the format [time][batch][cell_fw.output_size + cell_bw.output_size]. The input_size of forward and backward cell must match. The initial state for both directions is zero by default (but can be set optionally) and no intermediate states are ever returned -- the network is fully unrolled for the given (passed in) length(s) of the sequence(s) or completely unrolled if length(s) is not given. Args: cell_fw: An instance of RNNCell, to be used for forward direction. cell_bw: An instance of RNNCell, to be used for backward direction. inputs: A length T list of inputs, each a tensor of shape [batch_size, cell.input_size]. initial_state_fw: (optional) An initial state for the forward RNN. This must be a tensor of appropriate type and shape [batch_size x cell.state_size]. initial_state_bw: (optional) Same as for initial_state_fw. dtype: (optional) The data type for the initial state. Required if either of the initial states are not provided. sequence_length: (optional) An int32/int64 vector, size [batch_size], containing the actual lengths for each of the sequences. scope: VariableScope for the created subgraph; defaults to "BiRNN" Returns: A tuple (outputs, output_state_fw, output_state_bw) where: outputs is a length T list of outputs (one for each input), which are depth-concatenated forward and backward outputs output_state_fw is the final state of the forward rnn output_state_bw is the final state of the backward rnn Raises: TypeError: If "cell_fw" or "cell_bw" is not an instance of RNNCell. ValueError: If inputs is None or an empty list. """ if not isinstance(cell_fw, rnn_cell.RNNCell): raise TypeError("cell_fw must be an instance of RNNCell") if not isinstance(cell_bw, rnn_cell.RNNCell): raise TypeError("cell_bw must be an instance of RNNCell") if not isinstance(inputs, list): raise TypeError("inputs must be a list") if not inputs: raise ValueError("inputs must not be empty") name = scope or "BiRNN" # Forward direction with vs.variable_scope(name + "_FW") as fw_scope: output_fw, output_state_fw = rnn(cell_fw, inputs, initial_state_fw, dtype, sequence_length, scope=fw_scope) # Backward direction with vs.variable_scope(name + "_BW") as bw_scope: tmp, output_state_bw = rnn(cell_bw, _reverse_seq(inputs, sequence_length), initial_state_bw, dtype, sequence_length, scope=bw_scope) output_bw = _reverse_seq(tmp, sequence_length) # Concat each of the forward/backward outputs outputs = [array_ops.concat(1, [fw, bw]) for fw, bw in zip(output_fw, output_bw)] return (outputs, output_state_fw, output_state_bw) def dynamic_rnn(cell, inputs, sequence_length, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None): """Creates a recurrent neural network specified by RNNCell "cell". This function is functionally identical to the function `rnn` above, but performs fully dynamic unrolling of `inputs`. Unlike `rnn`, the input `inputs` is not a Python list of `Tensors`. Instead, it is a single `Tensor` where the maximum time is either the first or second dimension (see the parameter `time_major`). The corresponding output is a single `Tensor` having the same number of time steps and batch size. The parameter `sequence_length` is required and dynamic calculation is automatically performed. Args: cell: An instance of RNNCell. inputs: The RNN inputs. If time_major == False (default), this must be a tensor of shape: `[batch_size, max_time, cell.input_size]`. If time_major == True, this must be a tensor of shape: `[max_time, batch_size, cell.input_size]`. sequence_length: An int32/int64 vector (tensor) size [batch_size]. initial_state: (optional) An initial state for the RNN. This must be a tensor of appropriate type and shape [batch_size x cell.state_size]. dtype: (optional) The data type for the initial state. Required if initial_state is not provided. parallel_iterations: (Default: 32). The number of iterations to run in parallel. Those operations which do not have any temporal dependency and can be run in parallel, will be. This parameter trades off time for space. Values >> 1 use more memory but take less time, while smaller values use less memory but computations take longer. swap_memory: Swap the tensors produced in forward inference but needed for back prop from GPU to CPU. time_major: The shape format of the `inputs` and `outputs` Tensors. If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`. If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`. Using time_major = False is a bit more efficient because it avoids transposes at the beginning and end of the RNN calculation. However, most TensorFlow data is batch-major, so by default this function accepts input and emits output in batch-major form. scope: VariableScope for the created subgraph; defaults to "RNN". Returns: A pair (outputs, state) where: outputs: The RNN output `Tensor`. If time_major == False (default), this will be a `Tensor` shaped: `[batch_size, max_time, cell.output_size]`. If time_major == True, this will be a `Tensor` shaped: `[max_time, batch_size, cell.output_size]`. state: The final state, shaped: `[batch_size, cell.state_size]`. Raises: TypeError: If "cell" is not an instance of RNNCell. ValueError: If inputs is None or an empty list. """ if not isinstance(cell, rnn_cell.RNNCell): raise TypeError("cell must be an instance of RNNCell") # By default, time_major==False and inputs are batch-major: shaped # [batch, time, depth] # For internal calculations, we transpose to [time, batch, depth] if not time_major: inputs = array_ops.transpose(inputs, [1, 0, 2]) # (B,T,D) => (T,B,D) parallel_iterations = parallel_iterations or 32 sequence_length = math_ops.to_int32(sequence_length) sequence_length = array_ops.identity(sequence_length, name="sequence_length") # Create a new scope in which the caching device is either # determined by the parent scope, or is set to place the cached # Variable using the same placement as for the rest of the RNN. with vs.variable_scope(scope or "RNN") as varscope: if varscope.caching_device is None: varscope.set_caching_device(lambda op: op.device) input_shape = array_ops.shape(inputs) batch_size = input_shape[1] if initial_state is not None: state = initial_state else: if not dtype: raise ValueError("If no initial_state is provided, dtype must be.") state = cell.zero_state(batch_size, dtype) def _assert_has_shape(x, shape): x_shape = array_ops.shape(x) packed_shape = array_ops.pack(shape) return logging_ops.Assert( math_ops.reduce_all(math_ops.equal(x_shape, packed_shape)), ["Expected shape for Tensor %s is " % x.name, packed_shape, " but saw shape: ", x_shape]) # Perform some shape validation with ops.control_dependencies( [_assert_has_shape(sequence_length, [batch_size])]): sequence_length = array_ops.identity(sequence_length, name="CheckSeqLen") (outputs, final_state) = _dynamic_rnn_loop( cell, inputs, state, sequence_length, parallel_iterations=parallel_iterations, swap_memory=swap_memory) # Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth]. # If we are performing batch-major calculations, transpose output back # to shape [batch, time, depth] if not time_major: outputs = array_ops.transpose(outputs, [1, 0, 2]) # (T,B,D) => (B,T,D) return (outputs, final_state) def _dynamic_rnn_loop(cell, inputs, initial_state, sequence_length, parallel_iterations, swap_memory): """Internal implementation of Dynamic RNN. Args: cell: An instance of RNNCell. inputs: A `Tensor` of shape [time, batch_size, depth]. initial_state: A `Tensor` of shape [batch_size, depth]. sequence_length: An `int32` `Tensor` of shape [batch_size]. parallel_iterations: Positive Python int. swap_memory: A Python boolean Returns: Tuple (final_outputs, final_state). final_outputs: A `Tensor` of shape [time, batch_size, depth]`. final_state: A `Tensor` of shape [batch_size, depth]. """ state = initial_state assert isinstance(parallel_iterations, int), "parallel_iterations must be int" # Construct an initial output input_shape = array_ops.shape(inputs) (time_steps, batch_size, unused_depth) = array_ops.unpack(input_shape, 3) inputs_got_shape = inputs.get_shape().with_rank(3) (const_time_steps, const_batch_size, const_depth) = inputs_got_shape.as_list() # Prepare dynamic conditional copying of state & output zero_output = array_ops.zeros( array_ops.pack([batch_size, cell.output_size]), inputs.dtype) min_sequence_length = math_ops.reduce_min(sequence_length) max_sequence_length = math_ops.reduce_max(sequence_length) time = array_ops.constant(0, dtype=dtypes.int32, name="time") with ops.op_scope([], "dynamic_rnn") as scope: base_name = scope output_ta = tensor_array_ops.TensorArray( dtype=inputs.dtype, size=time_steps, tensor_array_name=base_name + "output") input_ta = tensor_array_ops.TensorArray( dtype=inputs.dtype, size=time_steps, tensor_array_name=base_name + "input") input_ta = input_ta.unpack(inputs) def _time_step(time, state, output_ta_t): """Take a time step of the dynamic RNN. Args: time: int32 scalar Tensor. state: Vector. output_ta_t: `TensorArray`, the output with existing flow. Returns: The tuple (time + 1, new_state, output_ta_t with updated flow). """ input_t = input_ta.read(time) # Restore some shape information input_t.set_shape([const_batch_size, const_depth]) (output, new_state) = _rnn_step( time, sequence_length, min_sequence_length, max_sequence_length, zero_output, state, lambda: cell(input_t, state)) output_ta_t = output_ta_t.write(time, output) return (time + 1, new_state, output_ta_t) (unused_final_time, final_state, output_final_ta) = control_flow_ops.While( cond=lambda time, _1, _2: time < time_steps, body=_time_step, loop_vars=(time, state, output_ta), parallel_iterations=parallel_iterations, swap_memory=swap_memory) final_outputs = output_final_ta.pack() # Restore some shape information final_outputs.set_shape([ const_time_steps, const_batch_size, cell.output_size]) return (final_outputs, final_state)
from sympy import Integer from threading import RLock from pyglet.gl import * from plot_object import PlotObject from plot_axes import PlotAxes from plot_window import PlotWindow from plot_mode import PlotMode import plot_modes from time import sleep from os import getcwd, listdir from util import parse_option_string class Plot(object): """ Plot Examples ============= See examples/plotting.py for many more examples. >>> from sympy import symbols, Plot >>> x,y,z = symbols('xyz') >>> Plot(x*y**3-y*x**3) >>> p = Plot() >>> p[1] = x*y >>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4) >>> p = Plot() >>> p[1] = x**2+y**2 >>> p[2] = -x**2-y**2 Variable Intervals ================== The basic format is [var, min, max, steps], but the syntax is flexible and arguments left out are taken from the defaults for the current coordinate mode: >>> Plot(x**2) # implies [x,-5,5,100] >>> Plot(x**2, [], []) # [x,-1,1,40], [y,-1,1,40] >>> Plot(x**2-y**2, [100], [100]) # [x,-1,1,100], [y,-1,1,100] >>> Plot(x**2, [x,-13,13,100]) >>> Plot(x**2, [-13,13]) # [x,-13,13,100] >>> Plot(x**2, [x,-13,13]) # [x,-13,13,100] >>> Plot(1*x, [], [x], mode='cylindrical') ... # [unbound_theta,0,2*Pi,40], [x,-1,1,20] Coordinate Modes ================ Plot supports several curvilinear coordinate modes, and they independent for each plotted function. You can specify a coordinate mode explicitly with the 'mode' named argument, but it can be automatically determined for cartesian or parametric plots, and therefore must only be specified for polar, cylindrical, and spherical modes. Specifically, Plot(function arguments) and Plot[n] = (function arguments) will interpret your arguments as a cartesian plot if you provide one function and a parametric plot if you provide two or three functions. Similarly, the arguments will be interpreted as a curve is one variable is used, and a surface if two are used. Supported mode names by number of variables: 1: parametric, cartesian, polar 2: parametric, cartesian, cylindrical = polar, spherical >>> Plot(1, mode='spherical') Calculator-like Interface ========================= >>> p = Plot(visible=False) >>> f = x**2 >>> p[1] = f >>> p[2] = f.diff(x) >>> p[3] = f.diff(x).diff(x) >>> p [1]: x**2, 'mode=cartesian' [2]: 2*x, 'mode=cartesian' [3]: 2, 'mode=cartesian' >>> p.show() >>> p.clear() >>> p <blank plot> >>> p[1] = x**2+y**2 >>> p[1].style = 'solid' >>> p[2] = -x**2-y**2 >>> p[2].style = 'wireframe' >>> p[1].color = z, (0.4,0.4,0.9), (0.9,0.4,0.4) >>> p[1].style = 'both' >>> p[2].style = 'both' >>> p.close() Plot Window Keyboard Controls ============================= Screen Rotation: X,Y axis Arrow Keys, A,S,D,W, Numpad 4,6,8,2 Z axis Q,E, Numpad 7,9 Model Rotation: Z axis Z,C, Numpad 1,3 Zoom: R,F, PgUp,PgDn, Numpad +,- Reset Camera: X, Numpad 5 Camera Presets: XY F1 XZ F2 YZ F3 Perspective F4 Sensitivity Modifier: SHIFT Axes Toggle: Visible F5 Colors F6 Close Window: ESCAPE ============================= """ def __init__(self, *fargs, **win_args): """ Positional Arguments ==================== Any given positional arguments are used to initialize a plot function at index 1. In other words... >>> from sympy.core import Symbol >>> x = Symbol('x') >>> p = Plot(x**2, visible=False) ...is equivalent to... >>> p = Plot(visible=False) >>> p[1] = x**2 Note that in earlier versions of the plotting module, you were able to specify multiple functions in the initializer. This functionality has been dropped in favor of better automatic plot plot_mode detection. Named Arguments =============== axes An option string of the form "key1=value1; key2 = value2" which can use the following options: style = ordinate none OR frame OR box OR ordinate stride = 0.25 val OR (val_x, val_y, val_z) overlay = True (draw on top of plot) True OR False colored = False (False uses Black, True uses colors R,G,B = X,Y,Z) True OR False label_axes = False (display axis names at endpoints) True OR False visible = True (show immediately True OR False The following named arguments are passed as arguments to window initialization: antialiasing = True True OR False ortho = False True OR False invert_mouse_zoom = False True OR False """ self._win_args = win_args self._window = None self._render_lock = RLock() self._functions = {} self._pobjects = [] self._screenshot = ScreenShot(self) axe_options = parse_option_string(win_args.pop('axes', '')) self.axes = PlotAxes(**axe_options) self._pobjects.append(self.axes) self[0] = fargs if win_args.get('visible', True): self.show() ## Window Interfaces def show(self): """ Creates and displays a plot window, or activates it (gives it focus) if it has already been created. """ if self._window and not self._window.has_exit: self._window.activate() else: self._win_args['visible'] = True self.axes.reset_resources() self._window = PlotWindow(self, **self._win_args) def close(self): """ Closes the plot window. """ if self._window: self._window.close() def saveimage(self, outfile=None, format='', size=(600, 500)): """ Saves a screen capture of the plot window to an image file. If outfile is given, it can either be a path or a file object. Otherwise a png image will be saved to the current working directory. If the format is omitted, it is determined from the filename extension. """ self._screenshot.save(outfile, format, size) ## Function List Interfaces def clear(self): """ Clears the function list of this plot. """ self._render_lock.acquire() self._functions = {} self.adjust_all_bounds() self._render_lock.release() def __getitem__(self, i): """ Returns the function at position i in the function list. """ return self._functions[i] def __setitem__(self, i, args): """ Parses and adds a PlotMode to the function list. """ if not (isinstance(i, (int, Integer)) and i >= 0): raise ValueError("Function index must " "be an integer >= 0.") if isinstance(args, PlotObject): f = args else: if not isinstance(args, (list, tuple)): args = [args] if len(args) == 0: return # no arguments given kwargs = dict(bounds_callback=self.adjust_all_bounds) f = PlotMode(*args, **kwargs) if f: self._render_lock.acquire() self._functions[i] = f self._render_lock.release() else: raise ValueError("Failed to parse '%s'." % ', '.join(str(a) for a in args)) def __delitem__(self, i): """ Removes the function in the function list at position i. """ self._render_lock.acquire() del self._functions[i] self.adjust_all_bounds() self._render_lock.release() def firstavailableindex(self): """ Returns the first unused index in the function list. """ i = 0 self._render_lock.acquire() while i in self._functions: i += 1 self._render_lock.release() return i def append(self, *args): """ Parses and adds a PlotMode to the function list at the first available index. """ self.__setitem__(self.firstavailableindex(), args) def __len__(self): """ Returns the number of functions in the function list. """ return len(self._functions) def __iter__(self): """ Allows iteration of the function list. """ return self._functions.itervalues() def __repr__(self): return str(self) def __str__(self): """ Returns a string containing a new-line separated list of the functions in the function list. """ s = "" if len(self._functions) == 0: s += "<blank plot>" else: self._render_lock.acquire() s += "\n".join(["%s[%i]: %s" % ("", i, str(self._functions[i])) for i in self._functions]) self._render_lock.release() return s def adjust_all_bounds(self): self._render_lock.acquire() self.axes.reset_bounding_box() for f in self._functions: self.axes.adjust_bounds(self._functions[f].bounds) self._render_lock.release() def wait_for_calculations(self): sleep(0) self._render_lock.acquire() for f in self._functions: a = self._functions[f]._get_calculating_verts b = self._functions[f]._get_calculating_cverts while a() or b(): sleep(0) self._render_lock.release() class ScreenShot: def __init__(self, plot): self._plot = plot self.screenshot_requested = False self.outfile = None self.format = '' self.invisibleMode = False self.flag = 0 def __nonzero__(self): if self.screenshot_requested: return 1 return 0 def _execute_saving(self): if self.flag <3: self.flag += 1 return size_x, size_y = self._plot._window.get_size() size = size_x*size_y*4*sizeof(c_ubyte) image = create_string_buffer(size) glReadPixels(0,0,size_x,size_y, GL_RGBA, GL_UNSIGNED_BYTE, image) from PIL import Image im = Image.frombuffer('RGBA',(size_x,size_y),image.raw, 'raw', 'RGBA', 0, 1) if type(self.outfile) in (str, unicode): im.transpose(Image.FLIP_TOP_BOTTOM).save(self.outfile) elif type(self.outfile)==file: im.transpose(Image.FLIP_TOP_BOTTOM).save(self.outfile, self.format) self.flag = 0 self.screenshot_requested = False if self.invisibleMode: self._plot._window.close() def save(self, outfile=None, format='', size=(600, 500)): self.outfile = outfile self.format = format self.size = size if not self._plot._window or self._plot._window.has_exit: self._plot._win_args['visible'] = False self._plot._win_args['width'] = size[0] self._plot._win_args['height'] = size[1] self._plot.axes.reset_resources() self._plot._window = PlotWindow(self._plot, **self._plot._win_args) self.invisibleMode = True if type(self.outfile) in (str, unicode): self.screenshot_requested = True elif type(self.outfile)==file and self.format: self.screenshot_requested = True elif self.outfile==None: self.outfile=self._create_unique_path() self.screenshot_requested = True print self.outfile def _create_unique_path(self): cwd = getcwd() l = listdir(cwd) path = '' i=0 while True: if not 'plot_%s.png'%i in l: path = cwd+'/plot_%s.png'%i break i+=1 return path
import os import sys import zipfile import tarfile import glob from CityscapeMask2Pascal import cityscapeMask2Pascal from xml.etree import ElementTree as et #--------------------------------------------------------------------------------------------- def createFolder(directory): try: if not os.path.exists(directory): print("Make dir {}".format(directory)) os.makedirs(directory) except OSError: print() print("=== Atention ===") print ('Error: Creating directory. ' + directory) sys.exit() #--------------------------------------------------------------------------------------------- def CityscapeDatasetAnn(databaseName, cityscapeFolder, zipFolder, tmpFolder): print() print("{} annotations".format(databaseName)) zipFile = "gtFine_trainvaltest.zip" if not os.path.isfile(os.path.join(zipFolder,zipFile)): print() print("=== Atention ===") print("Please, first you need download {} to {}".format(zipFile, zipFolder) ) print("https://www.cityscapes-dataset.com/downloads/" ) sys.exit() extractedFolder = os.path.join(tmpFolder,"gtFine/") if os.path.exists(extractedFolder): print("ZIP was already extracted to {}".format(extractedFolder)) else: print("Extracting {} to {}".format(os.path.join(zipFolder,zipFile), tmpFolder)) zip_ref = zipfile.ZipFile(os.path.join(zipFolder,zipFile), 'r') zip_ref.extractall(tmpFolder) zip_ref.close() for folderType in ["train","val"]: extractedFolderAnn = os.path.join(extractedFolder, folderType) outputFolderAnn = os.path.join(cityscapeFolder,folderType+".ann") createFolder(outputFolderAnn) imagesFolderType = os.path.join(cityscapeFolder,folderType) cityscapeMask2Pascal(databaseName, extractedFolderAnn, outputFolderAnn, imagesFolderType) #--------------------------------------------------------------------------------------------- def CityscapeDataset(datasetFolder, zipFolder, tmpFolder): print("=====================================================================") print("Cityscape dataset") print("=====================================================================") zipFile = "leftImg8bit_trainvaltest.zip" if not os.path.isfile(os.path.join(zipFolder,zipFile)): print() print("=== Atention ===") print("Please, first you need download {} to {}".format(zipFile, zipFolder) ) print("https://www.cityscapes-dataset.com/downloads/" ) sys.exit() extractedFolder = os.path.join(tmpFolder,"leftImg8bit/") if os.path.exists(extractedFolder): print("ZIP was already extracted to {}".format(extractedFolder)) else: print("Extracting {} to {}".format(os.path.join(zipFolder,zipFile), tmpFolder)) zip_ref = zipfile.ZipFile(os.path.join(zipFolder,zipFile), 'r') zip_ref.extractall(tmpFolder) zip_ref.close() cityscapeFolder = os.path.join(datasetFolder,"Cityscape") print("Cityscape dataset Folder {}".format(cityscapeFolder)) createFolder(cityscapeFolder) for folderType in ["train","val"]: cityscapefolderType = os.path.join(cityscapeFolder,folderType) createFolder(cityscapefolderType) print("Moving file from {} to {}".format(extractedFolder+folderType, cityscapefolderType)) for fileName in glob.glob(extractedFolder+folderType+'/**/*.png'): destiny = os.path.join( cityscapefolderType, os.path.split(fileName)[1]) #print("copy file from {} to {}".format(fileName,destiny)) os.rename(fileName, destiny) #-- Annotations CityscapeDatasetAnn("Cityscape",cityscapeFolder, zipFolder, tmpFolder) #--------------------------------------------------------------------------------------------- def FoggyCityscapeDataset(datasetFolder, zipFolder, tmpFolder): print("=====================================================================") print("Foggy Cityscape dataset") print("=====================================================================") zipFile = "leftImg8bit_trainvaltest_foggy.zip" if not os.path.isfile(os.path.join(zipFolder,zipFile)): print() print("=== Atention ===") print("Please, first you need download {} to {}".format(zipFile, zipFolder) ) print("https://www.cityscapes-dataset.com/downloads/" ) sys.exit() extractedFolder = os.path.join(tmpFolder,"leftImg8bit_foggy/") if os.path.exists(extractedFolder): print("ZIP was already extracted to {}".format(tmpFolder)) else: print("Extracting {} to {}".format(os.path.join(zipFolder,zipFile), tmpFolder)) zip_ref = zipfile.ZipFile(os.path.join(zipFolder,zipFile), 'r') zip_ref.extractall(tmpFolder) zip_ref.close() for intensity in ["0.02"]: print("Intensity {}".format(intensity)) foggyCityscapeFolder = os.path.join(datasetFolder,"FoggyCityscape",intensity) print("foggy Cityscape dataset intensity {} Folder {}".format(intensity, foggyCityscapeFolder)) createFolder(foggyCityscapeFolder) for folderType in ["train","val"]: foggyCityscapefolderType = os.path.join(foggyCityscapeFolder,folderType) createFolder(foggyCityscapefolderType) print("Moving file from {} to {}".format(extractedFolder+folderType,foggyCityscapefolderType)) for fileName in glob.glob(extractedFolder+folderType+'/**/*'+intensity+'.png'): destiny = os.path.join( foggyCityscapefolderType, os.path.split(fileName)[1]) #print("copy file from {} to {}".format(fileName,destiny)) os.rename(fileName, destiny) foggyCityscapeFolderfolderTypeAnn = os.path.join(foggyCityscapeFolder,folderType+".ann") createFolder(foggyCityscapeFolderfolderTypeAnn) #-- Annotations CityscapeDatasetAnn("FoggyCityscape",foggyCityscapeFolder, zipFolder, tmpFolder) #--------------------------------------------------------------------------------------------- def KittiDataset(datasetFolder, zipFolder, tmpFolder): print("=====================================================================") print("Kitti dataset") print("=====================================================================") tmpFolder = os.path.join(tmpFolder,"kitti") zipFiles = ["data_object_image_2.zip","data_object_label_2.zip","vod-converter-master.zip"] first = True for zipFile in zipFiles: if not os.path.isfile(os.path.join(zipFolder,zipFile)): if first: print() print("=== Atention ===") print("Please, first you need download {} to {}".format(zipFile, zipFolder) ) first = False print("http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d") print("https://github.com/umautobots/vod-converter") if not first: sys.exit() extractedFolder = os.path.join(tmpFolder,"training") if os.path.exists(extractedFolder): print("ZIP was already extracted to {}".format(extractedFolder)) else: zipFiles = ["data_object_image_2.zip","data_object_label_2.zip","vod-converter-master.zip"] for zipFile in zipFiles: print("Extracting {} to {}".format(os.path.join(zipFolder,zipFile), tmpFolder)) zip_ref = zipfile.ZipFile(os.path.join(zipFolder,zipFile), 'r') zip_ref.extractall(tmpFolder) zip_ref.close() print("Creating file train.txt") text_value = "" for fileName in glob.glob(extractedFolder+'/**/*.png'): text_value = text_value+ fileName.split("\\")[-1:][0].split(".")[0] + "\n" text_file = open(os.path.join(tmpFolder,"train.txt"), "w") text_file.write(text_value) text_file.close() print("Annotation convert") sys.path.insert(0,os.path.join(tmpFolder,"vod-converter-master")) sys.path.insert(0,os.path.join(tmpFolder,"vod-converter-master","vod_converter")) from vod_converter import main as kittiConverter kittiConverter.main(from_path=tmpFolder, from_key="kitti", to_path=tmpFolder, to_key="voc", select_only_known_labels=False, filter_images_without_labels=False) kittiFolder = os.path.join(datasetFolder,"Kitti") createFolder(kittiFolder) folderType = "train" kittifolderType = os.path.join(kittiFolder,folderType) createFolder(kittifolderType) extractedFolder = os.path.join(tmpFolder,"VOC2012","JPEGImages") print("Moving file from {} to {}".format(extractedFolder, kittifolderType)) for fileName in glob.glob(extractedFolder+'/*.png'): destiny = os.path.join( kittifolderType, os.path.split(fileName)[1]) os.rename(fileName, destiny) kittifolderType = kittifolderType + ".ann" createFolder(kittifolderType) extractedFolder = os.path.join(tmpFolder,"VOC2012","Annotations") print("Moving file from {} to {}".format(extractedFolder, kittifolderType)) for fileName in glob.glob(extractedFolder+'/*.xml'): destiny = os.path.join( kittifolderType, os.path.split(fileName)[1]) os.rename(fileName, destiny) #--------------------------------------------------------------------------------------------- def Sim10KDataset(datasetFolder, zipFolder, tmpFolder): print("=====================================================================") print("Sim10K dataset") print("=====================================================================") tmpFolder = os.path.join(tmpFolder,"Sim10K") zipFiles = ["repro_10k_annotations.tgz","repro_10k_images.tgz"] first = True for zipFile in zipFiles: if not os.path.isfile(os.path.join(zipFolder,zipFile)): if first: print() print("=== Atention ===") print("Please, first you need download {} to {}".format(zipFile, zipFolder) ) first = False print("https://fcav.engin.umich.edu/sim-dataset/") if not first: sys.exit() extractedFolder = os.path.join(tmpFolder,"VOC2012") if os.path.exists(extractedFolder): print("ZIP was already extracted to {}".format(extractedFolder)) else: zipFiles = ["repro_10k_images.tgz","repro_10k_annotations.tgz"] for zipFile in zipFiles: print("Extracting {} to {}".format(os.path.join(zipFolder,zipFile), tmpFolder)) zip_ref = tarfile.open(os.path.join(zipFolder,zipFile), 'r') zip_ref.extractall(tmpFolder) zip_ref.close() extractedFolder = os.path.join(tmpFolder,"VOC2012","Annotations") print("Adjust filename proper into xml files") for xml_file in glob.glob(extractedFolder+'/*.xml'): tree = et.parse(xml_file) tree.find('.//filename').text = os.path.split(xml_file)[1].split(".")[0]+".jpg" tree.write(xml_file) Sim10kFolder = os.path.join(datasetFolder,"Sim10k") createFolder(Sim10kFolder) count = 0 for folderType in ["train","val"]: Sim10kFolderType = os.path.join(Sim10kFolder,folderType) createFolder(Sim10kFolderType) Sim10kFolderType = Sim10kFolderType + ".ann" createFolder(Sim10kFolderType) extractedFolder = os.path.join(tmpFolder,"VOC2012","JPEGImages") print("Moving file from {} to {}".format(extractedFolder, Sim10kFolderType)) for fileName in glob.glob(extractedFolder+'/*.jpg'): destiny = os.path.join( Sim10kFolderType, os.path.split(fileName)[1]) os.rename(fileName, destiny) extractedFolder = os.path.join(tmpFolder,"VOC2012","Annotations") print("Moving file from {} to {}".format(extractedFolder, Sim10kFolderType)) for fileName in glob.glob(extractedFolder+'/*.xml'): destiny = os.path.join( Sim10kFolderType, os.path.split(fileName)[1]) os.rename(fileName, destiny) #--------------------------------------------------------------------------------------------- if __name__ == "__main__": print("=====================================================================") datasetFolder = "F:/datasets/" print("Set Datasets folder = {}".format(datasetFolder)) print("=====================================================================") if sys.version_info.major<3 or (sys.version_info.major==3 and sys.version_info.minor<7) : print("This code need python version >= 3.7.X") sys.exit() zipFolder = os.path.join(datasetFolder,"zip") print("ZIP Folder {}".format(zipFolder)) createFolder(zipFolder) tmpFolder = os.path.join(datasetFolder,"tmp") print("TMP Folder {}".format(tmpFolder)) createFolder(tmpFolder) print() #CityscapeDataset(datasetFolder, zipFolder, tmpFolder) print() #FoggyCityscapeDataset(datasetFolder, zipFolder, tmpFolder) print() #KittiDataset(datasetFolder, zipFolder, tmpFolder) print() Sim10KDataset(datasetFolder, zipFolder, tmpFolder)
from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from builtins import * # NOQA from future import standard_library standard_library.install_aliases() # NOQA from logging import getLogger import chainer from chainer import functions as F from chainer.initializers import LeCunNormal from chainer import links as L import numpy as np from chainerrl import distribution from chainerrl.functions.bound_by_tanh import bound_by_tanh from chainerrl import links from chainerrl.policy import Policy logger = getLogger(__name__) class FCGaussianPolicy(chainer.ChainList, Policy): """Gaussian policy that consists of fully-connected layers. This model has two output layers: the mean layer and the variance layer. The mean of the Gaussian is computed as follows: Let y as the output of the mean layer. If bound_mean=False: mean = y (if bound_mean=False) If bound_mean=True: mean = min_action + tanh(y) * (max_action - min_action) / 2 The variance of the Gaussian is computed as follows: Let y as the output of the variance layer. variance = softplus(y) + min_var Args: n_input_channels (int): Number of input channels. action_size (int): Number of dimensions of the action space. n_hidden_layers (int): Number of hidden layers. n_hidden_channels (int): Number of hidden channels. min_action (ndarray): Minimum action. Used only when bound_mean=True. max_action (ndarray): Maximum action. Used only when bound_mean=True. var_type (str): Type of parameterization of variance. It must be 'spherical' or 'diagonal'. nonlinearity (callable): Nonlinearity placed between layers. mean_wscale (float): Scale of weight initialization of the mean layer. var_wscale (float): Scale of weight initialization of the variance layer. var_bias (float): The initial value of the bias parameter for the variance layer. min_var (float): Minimum value of the variance. """ def __init__(self, n_input_channels, action_size, n_hidden_layers=0, n_hidden_channels=None, min_action=None, max_action=None, bound_mean=False, var_type='spherical', nonlinearity=F.relu, mean_wscale=1, var_wscale=1, var_bias=0, min_var=0): self.n_input_channels = n_input_channels self.action_size = action_size self.n_hidden_layers = n_hidden_layers self.n_hidden_channels = n_hidden_channels self.min_action = min_action self.max_action = max_action self.bound_mean = bound_mean self.nonlinearity = nonlinearity self.min_var = min_var var_size = {'spherical': 1, 'diagonal': action_size}[var_type] self.hidden_layers = [] if n_hidden_layers > 0: self.hidden_layers.append( L.Linear(n_input_channels, n_hidden_channels)) for _ in range(n_hidden_layers - 1): self.hidden_layers.append( L.Linear(n_hidden_channels, n_hidden_channels)) self.mean_layer = L.Linear(n_hidden_channels, action_size, initialW=LeCunNormal(mean_wscale)) self.var_layer = L.Linear(n_hidden_channels, var_size, initialW=LeCunNormal(var_wscale), initial_bias=var_bias) else: self.mean_layer = L.Linear(n_input_channels, action_size, initialW=LeCunNormal(mean_wscale)) self.var_layer = L.Linear(n_input_channels, var_size, initialW=LeCunNormal(var_wscale), initial_bias=var_bias) super().__init__( self.mean_layer, self.var_layer, *self.hidden_layers) def compute_mean_and_var(self, x): h = x for layer in self.hidden_layers: h = self.nonlinearity(layer(h)) mean = self.mean_layer(h) if self.bound_mean: mean = bound_by_tanh(mean, self.min_action, self.max_action) var = F.broadcast_to(F.softplus(self.var_layer(h)), mean.shape) + \ self.min_var return mean, var def __call__(self, x): mean, var = self.compute_mean_and_var(x) return distribution.GaussianDistribution(mean, var=var) class FCGaussianPolicyWithStateIndependentCovariance( chainer.Chain, Policy): """Gaussian policy that consists of FC layers with parametrized covariance. This model has one output layers: the mean layer. The mean of the Gaussian is computed in the same way as FCGaussianPolicy. Args: n_input_channels (int): Number of input channels. action_size (int): Number of dimensions of the action space. n_hidden_layers (int): Number of hidden layers. n_hidden_channels (int): Number of hidden channels. min_action (ndarray): Minimum action. Used only when bound_mean=True. max_action (ndarray): Maximum action. Used only when bound_mean=True. var_type (str): Type of parameterization of variance. It must be 'spherical' or 'diagonal'. nonlinearity (callable): Nonlinearity placed between layers. mean_wscale (float): Scale of weight initialization of the mean layer. var_func (callable): Callable that computes the variance from the var parameter. It should always return positive values. var_param_init (float): Initial value the var parameter. """ def __init__(self, n_input_channels, action_size, n_hidden_layers=0, n_hidden_channels=None, min_action=None, max_action=None, bound_mean=False, var_type='spherical', nonlinearity=F.relu, mean_wscale=1, var_func=F.softplus, var_param_init=0, ): self.n_input_channels = n_input_channels self.action_size = action_size self.n_hidden_layers = n_hidden_layers self.n_hidden_channels = n_hidden_channels self.min_action = min_action self.max_action = max_action self.bound_mean = bound_mean self.nonlinearity = nonlinearity self.var_func = var_func var_size = {'spherical': 1, 'diagonal': action_size}[var_type] layers = [] layers.append(L.Linear(n_input_channels, n_hidden_channels)) for _ in range(n_hidden_layers - 1): layers.append(self.nonlinearity) layers.append(L.Linear(n_hidden_channels, n_hidden_channels)) layers.append(self.nonlinearity) # The last layer is used to compute the mean layers.append( L.Linear(n_hidden_channels, action_size, initialW=LeCunNormal(mean_wscale))) if self.bound_mean: layers.append(lambda x: bound_by_tanh( x, self.min_action, self.max_action)) super().__init__() with self.init_scope(): self.hidden_layers = links.Sequence(*layers) self.var_param = chainer.Parameter( initializer=var_param_init, shape=(var_size,)) def __call__(self, x): mean = self.hidden_layers(x) var = F.broadcast_to(self.var_func(self.var_param), mean.shape) return distribution.GaussianDistribution(mean, var) class FCGaussianPolicyWithFixedCovariance(links.Sequence, Policy): """Gaussian policy that consists of FC layers with fixed covariance. This model has one output layers: the mean layer. The mean of the Gaussian is computed in the same way as FCGaussianPolicy. The variance of the Gaussian must be specified as an argument. Args: n_input_channels (int): Number of input channels. action_size (int): Number of dimensions of the action space. var (float or ndarray): Variance of the Gaussian distribution. n_hidden_layers (int): Number of hidden layers. n_hidden_channels (int): Number of hidden channels. min_action (ndarray): Minimum action. Used only when bound_mean=True. max_action (ndarray): Maximum action. Used only when bound_mean=True. nonlinearity (callable): Nonlinearity placed between layers. mean_wscale (float): Scale of weight initialization of the mean layer. """ def __init__(self, n_input_channels, action_size, var, n_hidden_layers=0, n_hidden_channels=None, min_action=None, max_action=None, bound_mean=False, nonlinearity=F.relu, mean_wscale=1): self.n_input_channels = n_input_channels self.action_size = action_size self.n_hidden_layers = n_hidden_layers self.n_hidden_channels = n_hidden_channels self.min_action = min_action self.max_action = max_action self.bound_mean = bound_mean self.nonlinearity = nonlinearity if np.isscalar(var): self.var = np.full(action_size, var, dtype=np.float32) else: self.var = var layers = [] if n_hidden_layers > 0: # Input to hidden layers.append(L.Linear(n_input_channels, n_hidden_channels)) layers.append(self.nonlinearity) for _ in range(n_hidden_layers - 1): # Hidden to hidden layers.append(L.Linear(n_hidden_channels, n_hidden_channels)) layers.append(self.nonlinearity) # The last layer is used to compute the mean layers.append( L.Linear(n_hidden_channels, action_size, initialW=LeCunNormal(mean_wscale))) else: # There's only one layer for computing the mean layers.append( L.Linear(n_input_channels, action_size, initialW=LeCunNormal(mean_wscale))) if self.bound_mean: layers.append(lambda x: bound_by_tanh( x, self.min_action, self.max_action)) def get_var_array(shape): self.var = self.xp.asarray(self.var) return self.xp.broadcast_to(self.var, shape) layers.append(lambda x: distribution.GaussianDistribution( x, get_var_array(x.shape))) super().__init__(*layers) class GaussianHeadWithStateIndependentCovariance(chainer.Chain): """Gaussian head with state-independent learned covariance. This link is intended to be attached to a neural network that outputs the mean of a Gaussian policy. The only learnable parameter this link has determines the variance in a state-independent way. State-independent parameterization of the variance of a Gaussian policy is often used with PPO and TRPO, e.g., in https://arxiv.org/abs/1709.06560. Args: action_size (int): Number of dimensions of the action space. var_type (str): Type of parameterization of variance. It must be 'spherical' or 'diagonal'. var_func (callable): Callable that computes the variance from the var parameter. It should always return positive values. var_param_init (float): Initial value the var parameter. """ def __init__( self, action_size, var_type='spherical', var_func=F.softplus, var_param_init=0, ): self.var_func = var_func var_size = {'spherical': 1, 'diagonal': action_size}[var_type] super().__init__() with self.init_scope(): self.var_param = chainer.Parameter( initializer=var_param_init, shape=(var_size,)) def __call__(self, mean): """Return a Gaussian with given mean. Args: mean (chainer.Variable or ndarray): Mean of Gaussian. Returns: chainerrl.distribution.Distribution: Gaussian whose mean is the mean argument and whose variance is computed from the parameter of this link. """ var = F.broadcast_to(self.var_func(self.var_param), mean.shape) return distribution.GaussianDistribution(mean, var)
# Copyright (c) 2014 Alex Meade. All rights reserved. # Copyright (c) 2015 Tom Barron. All rights reserved. # Copyright (c) 2016 Mike Rooney. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from lxml import etree import mock import six import time from cinder import exception from cinder import test from cinder.tests.unit.volume.drivers.netapp.dataontap.client import ( fakes as fake_client) import cinder.tests.unit.volume.drivers.netapp.dataontap.fakes as fake from cinder.volume.drivers.netapp.dataontap.client import api as netapp_api from cinder.volume.drivers.netapp.dataontap.client import client_base CONNECTION_INFO = {'hostname': 'hostname', 'transport_type': 'https', 'port': 443, 'username': 'admin', 'password': 'passw0rd'} class NetAppBaseClientTestCase(test.TestCase): def setUp(self): super(NetAppBaseClientTestCase, self).setUp() self.mock_object(client_base, 'LOG') self.mock_object(client_base.Client, '_init_ssh_client') self.client = client_base.Client(**CONNECTION_INFO) self.client.connection = mock.MagicMock() self.client.connection.get_api_version.return_value = (1, 100) self.client.ssh_client = mock.MagicMock() self.connection = self.client.connection self.fake_volume = six.text_type(uuid.uuid4()) self.fake_lun = six.text_type(uuid.uuid4()) self.fake_size = '1024' self.fake_metadata = {'OsType': 'linux', 'SpaceReserved': 'true'} self.mock_send_request = self.mock_object(self.client, 'send_request') def test_get_ontapi_version(self): version_response = netapp_api.NaElement( etree.XML("""<results status="passed"> <major-version>1</major-version> <minor-version>19</minor-version> </results>""")) self.connection.invoke_successfully.return_value = version_response major, minor = self.client.get_ontapi_version(cached=False) self.assertEqual('1', major) self.assertEqual('19', minor) def test_get_ontapi_version_cached(self): self.connection.get_api_version.return_value = (1, 20) major, minor = self.client.get_ontapi_version() self.assertEqual(1, self.connection.get_api_version.call_count) self.assertEqual(1, major) self.assertEqual(20, minor) def test_check_is_naelement(self): element = netapp_api.NaElement('name') self.assertIsNone(self.client.check_is_naelement(element)) self.assertRaises(ValueError, self.client.check_is_naelement, None) def test_create_lun(self): expected_path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.client.create_lun(self.fake_volume, self.fake_lun, self.fake_size, self.fake_metadata) mock_create_node.assert_called_once_with( 'lun-create-by-size', **{'path': expected_path, 'size': self.fake_size, 'ostype': self.fake_metadata['OsType'], 'space-reservation-enabled': self.fake_metadata['SpaceReserved']}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_create_lun_exact_size(self): expected_path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) self.connection.get_api_version.return_value = (1, 110) with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.client.create_lun(self.fake_volume, self.fake_lun, self.fake_size, self.fake_metadata) mock_create_node.assert_called_once_with( 'lun-create-by-size', **{'path': expected_path, 'size': self.fake_size, 'ostype': self.fake_metadata['OsType'], 'use-exact-size': 'true', 'space-reservation-enabled': self.fake_metadata['SpaceReserved']}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_create_lun_with_qos_policy_group_name(self): expected_path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) expected_qos_group_name = 'qos_1' mock_request = mock.Mock() with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', return_value=mock_request ) as mock_create_node: self.client.create_lun( self.fake_volume, self.fake_lun, self.fake_size, self.fake_metadata, qos_policy_group_name=expected_qos_group_name) mock_create_node.assert_called_once_with( 'lun-create-by-size', **{'path': expected_path, 'size': self.fake_size, 'ostype': self.fake_metadata['OsType'], 'space-reservation-enabled': self.fake_metadata['SpaceReserved']}) mock_request.add_new_child.assert_called_once_with( 'qos-policy-group', expected_qos_group_name) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_create_lun_raises_on_failure(self): self.connection.invoke_successfully = mock.Mock( side_effect=netapp_api.NaApiError) self.assertRaises(netapp_api.NaApiError, self.client.create_lun, self.fake_volume, self.fake_lun, self.fake_size, self.fake_metadata) def test_destroy_lun(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.client.destroy_lun(path) mock_create_node.assert_called_once_with( 'lun-destroy', **{'path': path}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_destroy_lun_force(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) mock_request = mock.Mock() with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', return_value=mock_request ) as mock_create_node: self.client.destroy_lun(path) mock_create_node.assert_called_once_with('lun-destroy', **{'path': path}) mock_request.add_new_child.assert_called_once_with('force', 'true') self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_map_lun(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) igroup = 'igroup' expected_lun_id = 'my_lun' mock_response = mock.Mock() self.connection.invoke_successfully.return_value = mock_response mock_response.get_child_content.return_value = expected_lun_id with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: actual_lun_id = self.client.map_lun(path, igroup) mock_create_node.assert_called_once_with( 'lun-map', **{'path': path, 'initiator-group': igroup}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) self.assertEqual(expected_lun_id, actual_lun_id) def test_map_lun_with_lun_id(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) igroup = 'igroup' expected_lun_id = 'my_lun' mock_response = mock.Mock() self.connection.invoke_successfully.return_value = mock_response mock_response.get_child_content.return_value = expected_lun_id with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: actual_lun_id = self.client.map_lun(path, igroup, lun_id=expected_lun_id) mock_create_node.assert_called_once_with( 'lun-map', **{'path': path, 'initiator-group': igroup}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) self.assertEqual(expected_lun_id, actual_lun_id) def test_map_lun_with_api_error(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) igroup = 'igroup' self.connection.invoke_successfully.side_effect =\ netapp_api.NaApiError() with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.assertRaises(netapp_api.NaApiError, self.client.map_lun, path, igroup) mock_create_node.assert_called_once_with( 'lun-map', **{'path': path, 'initiator-group': igroup}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_unmap_lun(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) igroup = 'igroup' mock_response = mock.Mock() self.connection.invoke_successfully.return_value = mock_response with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.client.unmap_lun(path, igroup) mock_create_node.assert_called_once_with( 'lun-unmap', **{'path': path, 'initiator-group': igroup}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_unmap_lun_with_api_error(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) igroup = 'igroup' self.connection.invoke_successfully.side_effect =\ netapp_api.NaApiError() with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.assertRaises(netapp_api.NaApiError, self.client.unmap_lun, path, igroup) mock_create_node.assert_called_once_with( 'lun-unmap', **{'path': path, 'initiator-group': igroup}) def test_unmap_lun_already_unmapped(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) igroup = 'igroup' EINVALIDINPUTERROR = '13115' self.connection.invoke_successfully.side_effect =\ netapp_api.NaApiError(code=EINVALIDINPUTERROR) with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.client.unmap_lun(path, igroup) mock_create_node.assert_called_once_with( 'lun-unmap', **{'path': path, 'initiator-group': igroup}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_unmap_lun_lun_not_mapped_in_group(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) igroup = 'igroup' EVDISK_ERROR_NO_SUCH_LUNMAP = '9016' self.connection.invoke_successfully.side_effect =\ netapp_api.NaApiError(code=EVDISK_ERROR_NO_SUCH_LUNMAP) with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.client.unmap_lun(path, igroup) mock_create_node.assert_called_once_with( 'lun-unmap', **{'path': path, 'initiator-group': igroup}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_create_igroup(self): igroup = 'igroup' with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.client.create_igroup(igroup) mock_create_node.assert_called_once_with( 'igroup-create', **{'initiator-group-name': igroup, 'initiator-group-type': 'iscsi', 'os-type': 'default'}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_add_igroup_initiator(self): igroup = 'igroup' initiator = 'initiator' with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', ) as mock_create_node: self.client.add_igroup_initiator(igroup, initiator) mock_create_node.assert_called_once_with( 'igroup-add', **{'initiator-group-name': igroup, 'initiator': initiator}) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_do_direct_resize(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) new_size = 1024 mock_request = mock.Mock() with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', return_value=mock_request ) as mock_create_node: self.client.do_direct_resize(path, new_size) mock_create_node.assert_called_once_with( 'lun-resize', **{'path': path, 'size': new_size}) mock_request.add_new_child.assert_called_once_with( 'force', 'true') self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_do_direct_resize_not_forced(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) new_size = 1024 mock_request = mock.Mock() with mock.patch.object(netapp_api.NaElement, 'create_node_with_children', return_value=mock_request ) as mock_create_node: self.client.do_direct_resize(path, new_size, force=False) mock_create_node.assert_called_once_with( 'lun-resize', **{'path': path, 'size': new_size}) self.assertFalse(mock_request.add_new_child.called) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_get_lun_geometry(self): expected_keys = set(['size', 'bytes_per_sector', 'sectors_per_track', 'tracks_per_cylinder', 'cylinders', 'max_resize']) path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) mock_response = mock.Mock() self.connection.invoke_successfully.return_value = mock_response geometry = self.client.get_lun_geometry(path) self.assertEqual(expected_keys, set(geometry.keys())) def test_get_lun_geometry_with_api_error(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) self.connection.invoke_successfully.side_effect =\ netapp_api.NaApiError() geometry = self.client.get_lun_geometry(path) self.assertEqual({}, geometry) def test_get_volume_options(self): fake_response = netapp_api.NaElement('volume') fake_response.add_node_with_children('options', test='blah') self.connection.invoke_successfully.return_value = fake_response options = self.client.get_volume_options('volume') self.assertEqual(1, len(options)) def test_get_volume_options_with_no_options(self): fake_response = netapp_api.NaElement('options') self.connection.invoke_successfully.return_value = fake_response options = self.client.get_volume_options('volume') self.assertEqual([], options) def test_move_lun(self): path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) new_path = '/vol/%s/%s' % (self.fake_volume, self.fake_lun) fake_response = netapp_api.NaElement('options') self.connection.invoke_successfully.return_value = fake_response self.client.move_lun(path, new_path) self.connection.invoke_successfully.assert_called_once_with( mock.ANY, True) def test_get_igroup_by_initiators(self): self.assertRaises(NotImplementedError, self.client.get_igroup_by_initiators, fake.FC_FORMATTED_INITIATORS) def test_get_fc_target_wwpns(self): self.assertRaises(NotImplementedError, self.client.get_fc_target_wwpns) def test_has_luns_mapped_to_initiator(self): initiator = fake.FC_FORMATTED_INITIATORS[0] version_response = netapp_api.NaElement( etree.XML(""" <results status="passed"> <lun-maps> <lun-map-info> <path>/vol/cinder1/volume-9be956b3-9854-4a5c-a7f5-13a16da52c9c</path> <initiator-group>openstack-4b57a80b-ebca-4d27-bd63-48ac5408d08b </initiator-group> <lun-id>0</lun-id> </lun-map-info> <lun-map-info> <path>/vol/cinder1/volume-ac90433c-a560-41b3-9357-7f3f80071eb5</path> <initiator-group>openstack-4b57a80b-ebca-4d27-bd63-48ac5408d08b </initiator-group> <lun-id>1</lun-id> </lun-map-info> </lun-maps> </results>""")) self.connection.invoke_successfully.return_value = version_response self.assertTrue(self.client._has_luns_mapped_to_initiator(initiator)) def test_has_luns_mapped_to_initiator_not_mapped(self): initiator = fake.FC_FORMATTED_INITIATORS[0] version_response = netapp_api.NaElement( etree.XML(""" <results status="passed"> <lun-maps /> </results>""")) self.connection.invoke_successfully.return_value = version_response self.assertFalse(self.client._has_luns_mapped_to_initiator(initiator)) @mock.patch.object(client_base.Client, '_has_luns_mapped_to_initiator') def test_has_luns_mapped_to_initiators(self, mock_has_luns_mapped_to_initiator): initiators = fake.FC_FORMATTED_INITIATORS mock_has_luns_mapped_to_initiator.return_value = True self.assertTrue(self.client.has_luns_mapped_to_initiators(initiators)) @mock.patch.object(client_base.Client, '_has_luns_mapped_to_initiator') def test_has_luns_mapped_to_initiators_not_mapped( self, mock_has_luns_mapped_to_initiator): initiators = fake.FC_FORMATTED_INITIATORS mock_has_luns_mapped_to_initiator.return_value = False self.assertFalse(self.client.has_luns_mapped_to_initiators(initiators)) def test_get_performance_counter_info(self): self.mock_send_request.return_value = netapp_api.NaElement( fake_client.PERF_OBJECT_COUNTER_LIST_INFO_WAFL_RESPONSE) result = self.client.get_performance_counter_info('wafl', 'cp_phase_times') expected = { 'name': 'cp_phase_times', 'base-counter': 'total_cp_msecs', 'labels': fake_client.PERF_OBJECT_COUNTER_TOTAL_CP_MSECS_LABELS, } self.assertEqual(expected, result) perf_object_counter_list_info_args = {'objectname': 'wafl'} self.mock_send_request.assert_called_once_with( 'perf-object-counter-list-info', perf_object_counter_list_info_args, enable_tunneling=False) def test_get_performance_counter_info_not_found(self): self.mock_send_request.return_value = netapp_api.NaElement( fake_client.PERF_OBJECT_COUNTER_LIST_INFO_WAFL_RESPONSE) self.assertRaises(exception.NotFound, self.client.get_performance_counter_info, 'wafl', 'invalid') def test_delete_snapshot(self): api_args = { 'volume': fake.SNAPSHOT['volume_id'], 'snapshot': fake.SNAPSHOT['name'], } self.mock_object(self.client, 'send_request') self.client.delete_snapshot(api_args['volume'], api_args['snapshot']) asserted_api_args = { 'volume': api_args['volume'], 'snapshot': api_args['snapshot'], } self.client.send_request.assert_called_once_with('snapshot-delete', asserted_api_args) def test_create_cg_snapshot(self): self.mock_object(self.client, '_start_cg_snapshot', return_value=fake.CONSISTENCY_GROUP_ID) self.mock_object(self.client, '_commit_cg_snapshot') self.client.create_cg_snapshot([fake.CG_VOLUME_NAME], fake.CG_SNAPSHOT_NAME) self.client._commit_cg_snapshot.assert_called_once_with( fake.CONSISTENCY_GROUP_ID) def test_create_cg_snapshot_no_id(self): self.mock_object(self.client, '_start_cg_snapshot', return_value=None) self.assertRaises(exception.VolumeBackendAPIException, self.client.create_cg_snapshot, [fake.CG_VOLUME_NAME], fake.CG_SNAPSHOT_NAME) def test_start_cg_snapshot(self): snapshot_init = { 'snapshot': fake.CG_SNAPSHOT_NAME, 'timeout': 'relaxed', 'volumes': [{'volume-name': fake.CG_VOLUME_NAME}], } self.mock_object(self.client, 'send_request') self.client._start_cg_snapshot([fake.CG_VOLUME_NAME], snapshot_init['snapshot']) self.client.send_request.assert_called_once_with('cg-start', snapshot_init) def test_commit_cg_snapshot(self): snapshot_commit = {'cg-id': fake.CG_VOLUME_ID} self.mock_object(self.client, 'send_request') self.client._commit_cg_snapshot(snapshot_commit['cg-id']) self.client.send_request.assert_called_once_with( 'cg-commit', {'cg-id': snapshot_commit['cg-id']}) def test_wait_for_busy_snapshot_raise_exception(self): BUSY_SNAPSHOT = dict(fake.SNAPSHOT) BUSY_SNAPSHOT['busy'] = True # Need to mock sleep as it is called by @utils.retry self.mock_object(time, 'sleep') mock_get_snapshot = self.mock_object(self.client, 'get_snapshot', return_value=BUSY_SNAPSHOT) self.assertRaises(exception.SnapshotIsBusy, self.client.wait_for_busy_snapshot, fake.FLEXVOL, fake.SNAPSHOT_NAME) calls = [ mock.call(fake.FLEXVOL, fake.SNAPSHOT_NAME), mock.call(fake.FLEXVOL, fake.SNAPSHOT_NAME), mock.call(fake.FLEXVOL, fake.SNAPSHOT_NAME), ] mock_get_snapshot.assert_has_calls(calls) def test_rename_snapshot(self): self.mock_object(self.client, 'send_request') self.client.rename_snapshot( fake.SNAPSHOT['volume_id'], fake.SNAPSHOT_NAME, client_base.DELETED_PREFIX + fake.SNAPSHOT_NAME) api_args = { 'volume': fake.SNAPSHOT['volume_id'], 'current-name': fake.SNAPSHOT_NAME, 'new-name': client_base.DELETED_PREFIX + fake.SNAPSHOT_NAME, } self.client.send_request.assert_called_once_with( 'snapshot-rename', api_args)
import re import os.path from django.core.urlresolvers import reverse from django.conf import settings from django.db import models from django.utils.translation import ugettext_lazy as _, ugettext from guardian.shortcuts import assign, get_objects_for_user from taggit.managers import TaggableManager from projects.models import Project from projects import constants from .constants import BUILD_STATE, BUILD_TYPES, VERSION_TYPES class VersionManager(models.Manager): def _filter_queryset(self, user, project, privacy_level, only_active): if isinstance(privacy_level, basestring): privacy_level = (privacy_level,) queryset = Version.objects.filter(privacy_level__in=privacy_level) # Remove this so we can use public() for all active public projects #if not user and not project: #return queryset if user and user.is_authenticated(): # Add in possible user-specific views user_queryset = get_objects_for_user(user, 'builds.view_version') queryset = user_queryset | queryset elif user: # Hack around get_objects_for_user not supporting global perms global_access = user.has_perm('builds.view_version') if global_access: queryset = Version.objects.all() if project: # Filter by project if requested queryset = queryset.filter(project=project) if only_active: queryset = queryset.filter(active=True) return queryset def active(self, user=None, project=None, *args, **kwargs): queryset = self._filter_queryset( user, project, privacy_level=(constants.PUBLIC, constants.PROTECTED, constants.PRIVATE), only_active=True, ) return queryset.filter(*args, **kwargs) def public(self, user=None, project=None, only_active=True, *args, **kwargs): queryset = self._filter_queryset( user, project, privacy_level=(constants.PUBLIC), only_active=only_active ) return queryset.filter(*args, **kwargs) def protected(self, user=None, project=None, only_active=True, *args, **kwargs): queryset = self._filter_queryset( user, project, privacy_level=(constants.PUBLIC, constants.PROTECTED), only_active=only_active ) return queryset.filter(*args, **kwargs) def private(self, user=None, project=None, only_active=True, *args, **kwargs): queryset = self._filter_queryset( user, project, privacy_level=(constants.PRIVATE), only_active=only_active ) return queryset.filter(*args, **kwargs) class Version(models.Model): project = models.ForeignKey(Project, verbose_name=_('Project'), related_name='versions') type = models.CharField( _('Type'), max_length=20, choices=VERSION_TYPES, default='unknown', ) # used by the vcs backend identifier = models.CharField(_('Identifier'), max_length=255) verbose_name = models.CharField(_('Verbose Name'), max_length=255) slug = models.CharField(_('Slug'), max_length=255) supported = models.BooleanField(_('Supported'), default=True) active = models.BooleanField(_('Active'), default=False) built = models.BooleanField(_('Built'), default=False) uploaded = models.BooleanField(_('Uploaded'), default=False) privacy_level = models.CharField( _('Privacy Level'), max_length=20, choices=constants.PRIVACY_CHOICES, default='public', help_text=_("Level of privacy for this Version.") ) tags = TaggableManager(blank=True) objects = VersionManager() class Meta: unique_together = [('project', 'slug')] ordering = ['-verbose_name'] permissions = ( # Translators: Permission around whether a user can view the # version ('view_version', _('View Version')), ) def __unicode__(self): return ugettext(u"Version %(version)s of %(project)s (%(pk)s)" % { 'version': self.verbose_name, 'project': self.project, 'pk': self.pk }) def get_absolute_url(self): if not self.built and not self.uploaded: return '' return self.project.get_docs_url(version_slug=self.slug) def save(self, *args, **kwargs): """ Add permissions to the Version for all owners on save. """ obj = super(Version, self).save(*args, **kwargs) for owner in self.project.users.all(): assign('view_version', owner, self) self.project.sync_supported_versions() return obj @property def remote_slug(self): if self.slug == 'latest': if self.project.default_branch: return self.project.default_branch else: return self.project.vcs_repo().fallback_branch else: return self.slug def get_subdomain_url(self): use_subdomain = getattr(settings, 'USE_SUBDOMAIN', False) if use_subdomain: return "/%s/%s/" % ( self.project.language, self.slug, ) else: return reverse('docs_detail', kwargs={ 'project_slug': self.project.slug, 'lang_slug': self.project.language, 'version_slug': self.slug, 'filename': '' }) def get_subproject_url(self): return "/projects/%s/%s/%s/" % ( self.project.slug, self.project.language, self.slug, ) def get_downloads(self, pretty=False): project = self.project data = {} if pretty: if project.has_pdf(self.slug): data['PDF'] = project.get_pdf_url(self.slug) if project.has_htmlzip(self.slug): data['HTML'] = project.get_htmlzip_url(self.slug) if project.has_epub(self.slug): data['Epub'] = project.get_epub_url(self.slug) else: if project.has_pdf(self.slug): data['pdf_url'] = project.get_pdf_url(self.slug) if project.has_htmlzip(self.slug): data['htmlzip_url'] = project.get_htmlzip_url(self.slug) if project.has_epub(self.slug): data['epub_url'] = project.get_epub_url(self.slug) #if project.has_manpage(self.slug): #data['manpage_url'] = project.get_manpage_url(self.slug) if project.has_dash(self.slug): data['dash_url'] = project.get_dash_url(self.slug) data['dash_feed_url'] = project.get_dash_feed_url(self.slug) return data def get_conf_py_path(self): # Hack this for now. return "/docs/" conf_py_path = self.project.conf_file(self.slug) conf_py_path = conf_py_path.replace( self.project.checkout_path(self.slug), '') return conf_py_path.replace('conf.py', '') def get_build_path(self): '''Return version build path if path exists, otherwise `None`''' path = self.project.checkout_path(version=self.slug) if os.path.exists(path): return path return None def get_github_url(self, docroot, filename, source_suffix='.rst'): GITHUB_REGEXS = [ re.compile('github.com/(.+)/(.+)(?:\.git){1}'), re.compile('github.com/(.+)/(.+)'), re.compile('github.com:(.+)/(.+).git'), ] GITHUB_URL = 'https://github.com/{user}/{repo}/blob/{version}{docroot}{path}{source_suffix}' repo_url = self.project.repo if 'github' not in repo_url: return '' if not docroot: return '' for regex in GITHUB_REGEXS: match = regex.search(repo_url) if match: user, repo = match.groups() break else: return '' repo = repo.rstrip('/') return GITHUB_URL.format( user=user, repo=repo, version=self.remote_slug, docroot=docroot, path=filename, source_suffix=source_suffix, ) def get_bitbucket_url(self, docroot, filename, source_suffix='.rst'): BB_REGEXS = [ re.compile('bitbucket.org/(.+)/(.+).git'), re.compile('bitbucket.org/(.+)/(.+)/'), re.compile('bitbucket.org/(.+)/(.+)'), ] BB_URL = 'https://bitbucket.org/{user}/{repo}/src/{version}{docroot}{path}{source_suffix}' repo_url = self.project.repo if 'bitbucket' not in repo_url: return '' if not docroot: return '' for regex in BB_REGEXS: match = regex.search(repo_url) if match: user, repo = match.groups() break else: return '' repo = repo.rstrip('/') return BB_URL.format( user=user, repo=repo, version=self.remote_slug, docroot=docroot, path=filename, source_suffix=source_suffix, ) class VersionAlias(models.Model): project = models.ForeignKey(Project, verbose_name=_('Project'), related_name='aliases') from_slug = models.CharField(_('From slug'), max_length=255, default='') to_slug = models.CharField(_('To slug'), max_length=255, default='', blank=True) largest = models.BooleanField(_('Largest'), default=False) def __unicode__(self): return ugettext(u"Alias for %(project)s: %(from)s -> %(to)s" % { 'project': self.project, 'form': self.from_slug, 'to': self.to_slug, }) class Build(models.Model): project = models.ForeignKey(Project, verbose_name=_('Project'), related_name='builds') version = models.ForeignKey(Version, verbose_name=_('Version'), null=True, related_name='builds') type = models.CharField(_('Type'), max_length=55, choices=BUILD_TYPES, default='html') state = models.CharField(_('State'), max_length=55, choices=BUILD_STATE, default='finished') date = models.DateTimeField(_('Date'), auto_now_add=True) success = models.BooleanField(_('Success')) setup = models.TextField(_('Setup'), null=True, blank=True) setup_error = models.TextField(_('Setup error'), null=True, blank=True) output = models.TextField(_('Output'), default='', blank=True) error = models.TextField(_('Error'), default='', blank=True) exit_code = models.IntegerField(_('Exit code'), max_length=3, null=True, blank=True) class Meta: ordering = ['-date'] get_latest_by = 'date' def __unicode__(self): return ugettext(u"Build %(project)s for %(usernames)s (%(pk)s)" % { 'project': self.project, 'usernames': ' '.join(self.project.users.all() .values_list('username', flat=True)), 'pk': self.pk, }) @models.permalink def get_absolute_url(self): return ('builds_detail', [self.project.slug, self.pk])
import json from datetime import datetime, timedelta from random import random import mock from django.contrib.auth.models import User from django.contrib.sites.models import Site from django.core import mail from nose.tools import eq_ from rest_framework.test import APIClient from kitsune.sumo.helpers import urlparams from kitsune.sumo.tests import TestCase from kitsune.sumo.urlresolvers import reverse from kitsune.questions.tests import question, answer, answervote from kitsune.users import api from kitsune.users.models import Profile from kitsune.users.tests import user, profile, setting class UsernamesTests(TestCase): """Test the usernames API method.""" url = reverse('users.api.usernames', locale='en-US') def setUp(self): self.u = user(username='testUser', save=True) self.client.login(username=self.u.username, password='testpass') def tearDown(self): self.client.logout() def test_no_query(self): res = self.client.get(self.url) eq_(200, res.status_code) eq_('[]', res.content) def test_query_old(self): res = self.client.get(urlparams(self.url, term='a')) eq_(200, res.status_code) data = json.loads(res.content) eq_(0, len(data)) def test_query_current(self): res = self.client.get(urlparams(self.url, term=self.u.username[0])) eq_(200, res.status_code) data = json.loads(res.content) eq_(1, len(data)) def test_post(self): res = self.client.post(self.url) eq_(405, res.status_code) def test_logged_out(self): self.client.logout() res = self.client.get(self.url, HTTP_X_REQUESTED_WITH='XMLHttpRequest') eq_(403, res.status_code) class TestUserSerializer(TestCase): def setUp(self): self.request = mock.Mock() self.data = { 'username': 'bobb', 'display_name': 'Bobbert the Seventh', 'password': 'testpass', 'email': 'bobb@example.com', } def test_user_created(self): # There is at least one user in existence due to migrations number_users = User.objects.count() serializer = api.ProfileSerializer(data=self.data) assert serializer.is_valid() serializer.save() eq_(User.objects.count(), number_users + 1) eq_(Profile.objects.count(), 1) def test_password(self): serializer = api.ProfileSerializer(data=self.data) assert serializer.is_valid() serializer.save() assert serializer.object.user.password != 'testpass' assert serializer.object.user.check_password('testpass') def test_automatic_display_name(self): del self.data['display_name'] serializer = api.ProfileSerializer(data=self.data) assert serializer.is_valid() eq_(serializer.object.name, 'bobb') def test_no_duplicate_emails(self): user(email=self.data['email'], save=True) serializer = api.ProfileSerializer(data=self.data) eq_(serializer.errors, { 'email': ['A user with that email address already exists.'], }) assert not serializer.is_valid() def test_users_with_emails_are_inactive(self): serializer = api.ProfileSerializer(data=self.data) serializer.is_valid() assert serializer.is_valid() serializer.save() eq_(serializer.object.user.is_active, False) def test_users_with_emails_get_confirmation_email(self): serializer = api.ProfileSerializer(data=self.data) assert serializer.is_valid() serializer.save() eq_(len(mail.outbox), 1) eq_(mail.outbox[0].subject, 'Please confirm your email address') def test_cant_update_username(self): p = profile() p.user.username = 'notbobb' p.user.save() serializer = api.ProfileSerializer(data=self.data, instance=p) eq_(serializer.is_valid(), False) eq_(serializer.errors, { 'username': [u"Can't change this field."], }) def test_username_bad_chars(self): # New users shouldn't be able to have '@' in their username. self.data['username'] = 'bobb@example.com' serializer = api.ProfileSerializer(data=self.data) eq_(serializer.is_valid(), False) eq_(serializer.errors, {'username': [u'Usernames may only be letters, numbers, "." and "-".']}) def test_username_too_long(self): # Max length is 30 self.data['username'] = 'B' * 31 serializer = api.ProfileSerializer(data=self.data) eq_(serializer.is_valid(), False) eq_(serializer.errors, {'username': [u'Usernames may only be letters, numbers, "." and "-".']}) def test_username_too_short(self): # Min length is 4 chars. self.data['username'] = 'bob' serializer = api.ProfileSerializer(data=self.data) eq_(serializer.is_valid(), False) eq_(serializer.errors, {'username': [u'Usernames may only be letters, numbers, "." and "-".']}) def test_helpfulness(self): p = profile() u = p.user a1 = answer(creator=u, save=True) a2 = answer(creator=u, save=True) answervote(answer=a1, helpful=True, save=True) answervote(answer=a2, helpful=True, save=True) answervote(answer=a2, helpful=True, save=True) # Some red herrings. answervote(creator=u, save=True) answervote(answer=a1, helpful=False, save=True) serializer = api.ProfileSerializer(instance=p) eq_(serializer.data['helpfulness'], 3) def test_counts(self): p = profile() u = p.user q = question(creator=u, save=True) answer(creator=u, save=True) q.solution = answer(question=q, creator=u, save=True) q.save() serializer = api.ProfileSerializer(instance=p) eq_(serializer.data['question_count'], 1) eq_(serializer.data['answer_count'], 2) eq_(serializer.data['solution_count'], 1) def test_last_answer_date(self): p = profile() u = p.user answer(creator=u, save=True) serializer = api.ProfileSerializer(instance=p) eq_(serializer.data['last_answer_date'], u.answers.last().created) class TestUserView(TestCase): def setUp(self): self.client = APIClient() def test_only_self_edits(self): p1 = profile() p2 = profile() self.client.force_authenticate(user=p2.user) url = reverse('user-detail', args=[p1.user.username]) res = self.client.patch(url, {}) # u2 should not have permission to edit u1's user. eq_(res.status_code, 403) def test_cant_delete(self): p = profile() self.client.force_authenticate(user=p.user) url = reverse('user-detail', args=[p.user.username]) res = self.client.delete(url) eq_(res.status_code, 405) def test_generator_on_stage(self): # There is at least one user made during tests. old_user_count = User.objects.count() res = self.client.post(reverse('user-generate')) eq_(res.status_code, 200) eq_(User.objects.count(), old_user_count + 1) new_user = User.objects.order_by('-id')[0] eq_(res.data['user']['username'], new_user.username) assert 'password' in res.data assert 'token' in res.data def test_generated_users_tagged(self): res = self.client.post(reverse('user-generate')) eq_(res.status_code, 200) assert {'name': 'autogenerated', 'value': 'true'} in res.data['user']['settings'] def test_weekly_solutions(self): eight_days_ago = datetime.now() - timedelta(days=8) # ``a1`` is a solution in the right range. # ``a2`` is a solution, but it is too old. # The third answer is not a solution. a1 = answer(save=True) a1.question.solution = a1 a1.question.save() a2 = answer(created=eight_days_ago, save=True) a2.question.solution = a2 a2.question.save() answer(save=True) res = self.client.get(reverse('user-weekly-solutions')) eq_(res.status_code, 200) eq_(len(res.data), 1) eq_(res.data[0]['username'], a1.creator.username) def test_email_visible_when_signed_in(self): p = profile() url = reverse('user-detail', args=[p.user.username]) self.client.force_authenticate(user=p.user) res = self.client.get(url) eq_(res.data['email'], p.user.email) def test_email_not_visible_when_signed_out(self): p = profile() url = reverse('user-detail', args=[p.user.username]) res = self.client.get(url) assert 'email' not in res.data def test_set_setting_add(self): p = profile() self.client.force_authenticate(user=p.user) url = reverse('user-set-setting', args=[p.user.username]) res = self.client.post(url, {'name': 'foo', 'value': 'bar'}) eq_(res.status_code, 200) eq_(p.settings.get(name='foo').value, 'bar') def test_set_setting_update(self): p = profile() self.client.force_authenticate(user=p.user) s = setting(user=p.user, name='favorite_fruit', value='apple', save=True) url = reverse('user-set-setting', args=[p.user.username]) res = self.client.post(url, {'name': s.name, 'value': 'banana'}) eq_(res.status_code, 200) eq_(p.settings.get(name=s.name).value, 'banana') def test_delete_setting_exists_with_post(self): p = profile() self.client.force_authenticate(user=p.user) s = setting(user=p.user, save=True) url = reverse('user-delete-setting', args=[p.user.username]) res = self.client.post(url, {'name': s.name}) eq_(res.status_code, 204) eq_(p.settings.filter(name=s.name).count(), 0) def test_delete_setting_exists_with_delete(self): p = profile() self.client.force_authenticate(user=p.user) s = setting(user=p.user, save=True) url = reverse('user-delete-setting', args=[p.user.username]) res = self.client.delete(url, {'name': s.name}) eq_(res.status_code, 204) eq_(p.settings.filter(name=s.name).count(), 0) def test_delete_setting_404(self): p = profile() self.client.force_authenticate(user=p.user) url = reverse('user-delete-setting', args=[p.user.username]) res = self.client.post(url, {'name': 'nonexistant'}) eq_(res.status_code, 404) def test_is_active(self): p = profile() url = reverse('user-detail', args=[p.user.username]) res = self.client.get(url) assert 'is_active' in res.data @mock.patch.object(Site.objects, 'get_current') def test_request_password_reset(self, get_current): get_current.return_value.domain = 'testserver' p = profile() url = reverse('user-request-password-reset', args=[p.user.username]) res = self.client.get(url) eq_(res.status_code, 204) eq_(1, len(mail.outbox)) def test_avatar_size(self): p = profile() url = reverse('user-detail', args=[p.user.username]) res = self.client.get(url) assert '?s=48' in res.data['avatar'] res = self.client.get(url, {'avatar_size': 128}) assert '?s=128' in res.data['avatar'] def test_create_use(self): # There is at least one user in existence due to migrations number_users = User.objects.count() username = 'kris-{}'.format(random()) url = reverse('user-list') res = self.client.post(url, { 'username': username, 'password': 'testpass', 'email': 'kris@example.com' }) eq_(res.status_code, 201) eq_(User.objects.count(), number_users + 1) u = User.objects.order_by('-id')[0] eq_(u.username, username) eq_(u.email, 'kris@example.com') eq_(u.is_active, False) def test_invalid_email(self): username = 'sarah-{}'.format(random()) url = reverse('user-list') res = self.client.post(url, { 'username': username, 'password': 'testpass', 'email': 'sarah', # invalid }) eq_(res.status_code, 400) eq_(res.data, {'email': [u'Enter a valid email address.']}) def test_invalid_username(self): url = reverse('user-list') res = self.client.post(url, { 'username': '&', # invalid 'password': 'testpass', 'email': 'lucy@example.com', }) eq_(res.status_code, 400) eq_(res.data, {'username': [u'Usernames may only be letters, numbers, "." and "-".']}) def test_too_short_username(self): url = reverse('user-list') res = self.client.post(url, { 'username': 'a', # too short 'password': 'testpass', 'email': 'lucy@example.com', }) eq_(res.status_code, 400) eq_(res.data, {'username': [u'Usernames may only be letters, numbers, "." and "-".']}) def test_too_long_username(self): url = reverse('user-list') res = self.client.post(url, { 'username': 'a' * 100, # too long 'password': 'testpass', 'email': 'lucy@example.com', }) eq_(res.status_code, 400) eq_(res.data, {'username': [u'Usernames may only be letters, numbers, "." and "-".']})
import cv2 import xml.etree.ElementTree as ET import os from rod import * import pprint pp = pprint.PrettyPrinter(depth=6) def xml_load_point(point): return (int(point.split(',')[0]), int(point.split(',')[1])) def xml_load_rect(rect): return (int(rect.find("X").text), int(rect.find("Y").text), int(rect.find("W").text), int(rect.find("H").text)) def xml_load_rgb(text): tokens = text.split(",") return (int(tokens[0]), int(tokens[1]), int(tokens[2])) global refPt refPt = (0,0) def click_callback(event, x, y, flags, param): global refPt if event == cv2.EVENT_LBUTTONDOWN: refPt = (x, y) cropping = True class Recording(object): def __init__(self, recording_file, models, blackouts, crop_to_rod): self.recording_file = recording_file self.tree = ET.parse(recording_file) self.root = self.tree.getroot() base_path = os.path.dirname(recording_file) # Blackouts to hide any rods self.blackouts = blackouts # List of rod names to hide # Crops self.crop = None self.crop_to_rod = crop_to_rod if self.crop_to_rod is None: if self.root.find("CROP") is not None: self.crop = xml_load_rect(self.root.find("CROP").find("RECT")) # Files self.file_avi = os.path.join(base_path, self.root.find("RECORDING").find("AVI").text) self.frame_start = int(self.root.find("RECORDING").find("STARTFRAME").text) self.frame_end = int(self.root.find("RECORDING").find("ENDFRAME").text) # Rod tracking settings rod_tracking_alignment = None rod_tracking_gap_colour = None rod_tracking_gap_colour_distance = None rod_tracking_gap_min_size = None rod_tracking_rod_width = None self.line_detection_frequency = 1 self.model = None if self.root.find("RODS").find("TRACKING").find("MODEL") is not None: # Load the corresponding tracking model self.model = models[self.root.find("RODS").find("TRACKING").find("MODEL").text] else: # Use standard line-detection based rod tracking rod_tracking_alignment = self.root.find("RODS").find("TRACKING").find("ALIGNMENT").text rod_tracking_gap_colour = xml_load_rgb(self.root.find("RODS").find("TRACKING").find("GAP_COLOUR").text) rod_tracking_gap_colour_distance = int(self.root.find("RODS").find("TRACKING").find("GAP_COLOUR_DISTANCE").text) rod_tracking_gap_min_size = int(self.root.find("RODS").find("TRACKING").find("GAP_MIN_SIZE").text) rod_tracking_rod_width = int(self.root.find("RODS").find("TRACKING").find("ROD_WIDTH").text) if self.root.find("RODS").find("TRACKING").find("LINE_DETECTION_FREQUENCY") is None: self.line_detection_frequency = 30 else: self.line_detection_frequency = int(self.root.find("RODS").find("TRACKING").find("LINE_DETECTION_FREQUENCY").text) # Video file self.cap = cv2.VideoCapture(self.file_avi) self.num_frames = self.cap.get(cv2.CAP_PROP_FRAME_COUNT) self.frame = 0 self.has_more = False # Rods self.rods = {} for rod in self.root.find("RODS").iter("ROD"): rod_left = None rod_right = None if self.model is not None: if rod.find("TRACKING") is None or rod.find("TRACKING").find("LEFT") is None: rod_left = None else: rod_left = xml_load_point(rod.find("TRACKING").find("LEFT").text) if rod.find("TRACKING") is None or rod.find("TRACKING").find("RIGHT") is None: rod_right = None else: rod_right = xml_load_point(rod.find("TRACKING").find("RIGHT").text) rod_name = rod.find("NAME").text self.rods[rod_name] = Rod( xml_load_rect(rod.find("RECT")),rod_name, rod_tracking_gap_colour, rod_tracking_gap_colour_distance, rod_tracking_gap_min_size, rod_tracking_rod_width, self.line_detection_frequency, rod_left, rod_right, self.model) def __del__(self): self.cap.release() def process(self): # Extract the rod positions pass def initialize(self): self._initialize_rod_gaps() self.cap.set(1,self.frame_start) self.frame = self.frame_start self.has_more = True def get_next_frame(self): # Returns: # (cropped frame, {rod name = rod positions}) if( self.cap.isOpened() and self.has_more ): font = cv2.FONT_HERSHEY_SIMPLEX ret, frame = self.cap.read() if ret==True and self.frame < self.frame_end: self.frame += 1 frame_with_markup = frame.copy() # Only do edge-processing if we aren't using a ML model to extract position if self.model is None: gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY) edges = cv2.Canny(gray,50,150,apertureSize = 3) else: edges = None # Draw the crop box if self.crop is not None: box = self.crop cv2.rectangle(frame_with_markup, (box[0], box[1]), (box[0] + box[2], box[1] + box[3]), (0,255,0) ); # Process each rod rod_positions = {} failure_count = 0 for rod_name, rod in self.rods.items(): # Update rod tracking if rod.rod_left is None and self.model is None: # Update from the rod line if self.frame % self.line_detection_frequency == 0: rod.update_rod_line(edges) # Get this rod position if rod.rod_line is not None or rod.model is not None: (new_x, line, success) = rod.track_rod_position(frame) if( not success ): failure_count += 1 rod_positions[rod_name] = new_x # Update the graphics box = rod.box if rod_name in self.blackouts: # Black box to indicate it is being cut out cv2.rectangle(frame_with_markup, (box[0], box[1]), (box[0] + box[2], box[1] + box[3]), (0,0,0), 2 ); else: # Show regular box cv2.rectangle(frame_with_markup, (box[0], box[1]), (box[0] + box[2], box[1] + box[3]), (255,0,0), 3 ); # Draw the rod line rod_line = rod.rod_line if rod_line is not None: cv2.line(frame_with_markup,rod_line[0],rod_line[1],(0,0,255),2) if line is not None: rod_offence_last_frame_x = new_x cv2.line(frame_with_markup, line[0], line[1], (255,0,255), thickness=4) # Draw this rod position cv2.putText(frame_with_markup,'Pos %.2f' % (new_x),(box[0]+30, box[1]+30), font, 1,(255,255,255),1,cv2.LINE_AA) # Black out the rods for blackout in self.blackouts: frame = self.rods[blackout].blackout(frame) # Crop the frame if self.crop is None: frame_cropped = frame else: frame_cropped = frame[self.crop[1]:(self.crop[1]+self.crop[3]), self.crop[0]:(self.crop[0]+self.crop[2])] # Crop to the specific rod if self.crop_to_rod is not None and self.crop_to_rod in self.rods: frame_cropped = self.rods[self.crop_to_rod].get_rod_region(frame_cropped) #cv2.imshow('image',frame_cropped) #key = cv2.waitKey(1) # Add text cv2.putText(frame_with_markup,'%i - %i,%i: rgb: %i,%i,%i' % (self.frame, refPt[0],refPt[1],frame[refPt[1]][refPt[0]][0],frame[refPt[1]][refPt[0]][1],frame[refPt[1]][refPt[0]][2]),(10,50), font, 1,(255,255,255),1,cv2.LINE_AA) return (frame_cropped, frame_with_markup, rod_positions, failure_count) else: print("frame read failure") self.has_more = False return (None, None, None, 0) return (None, None, None, 0) def _initialize_rod_gaps(self): print("Loading rod gap tracking sizes...") key_frame_count = 30 #key_frame_count = 5 small_frame_set = [] for i in range(key_frame_count): frame = i * (self.num_frames/key_frame_count) self.cap.set(1,frame) ret, frame = self.cap.read() small_frame_set.append(frame) # Load the rod gap sizes to track from a small subset of the frames for rod_name, rod in self.rods.items(): # Find the gap size size = rod.find_gap_size(small_frame_set) print("\t%s: gap size %i" % (rod_name, size)) def play(self): self.initialize() # Extract the rod positions cv2.namedWindow("image") global refPt (frame, frame_with_markup, rod_positions, failure_count) = self.get_next_frame() while frame is not None: cv2.setMouseCallback("image", click_callback) cv2.imshow('image',frame_with_markup) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break elif key == ord(' '): cv2.waitKey() (frame, frame_with_markup, rod_positions, failure_count) = self.get_next_frame() print("Finished after processing %i frames." % self.frame) cv2.destroyAllWindows()
#!/usr/bin/env python ''' harvest.py A set of modules to support downloading and synchronizing a WAF ''' from catalog_harvesting.waf_parser import WAFParser from catalog_harvesting.erddap_waf_parser import ERDDAPWAFParser from catalog_harvesting.csw import download_csw from catalog_harvesting import get_logger, get_redis_connection from catalog_harvesting.records import parse_records from catalog_harvesting.ckan_api import get_harvest_info, create_harvest_job from catalog_harvesting.notify import Mail, Message, MAIL_DEFAULT_SENDER from hashlib import sha1 from pymongo import MongoClient from datetime import datetime from base64 import b64encode import requests import os import time import redis def download_from_db(conn_string, dest): ''' Download several WAFs using collections from MongoDB as a source :param str conn_string: MongoDB connection string :param str db_name: The name of the MongoDB database to connect to :param str dest: Write directory destination ''' tokens = conn_string.split('/') if len(tokens) > 3: db_name = tokens[3] else: db_name = 'default' db = MongoClient(conn_string)[db_name] for harvest in list(db.Harvests.find({"publish": True})): try: download_harvest(db, harvest, dest) except KeyboardInterrupt: # exit on SIGINT raise except: get_logger().exception("Failed to harvest") get_logger().error(harvest) def download_harvest(db, harvest, dest): ''' Downloads a harvest from the mongo db and updates the harvest with the latest harvest date. :param db: Mongo DB Client :param dict harvest: A dictionary returned from the mongo collection for harvests. ''' src = harvest['url'] get_logger().info('harvesting: %s' % src) db.Harvests.update({"_id": harvest['_id']}, { "$set": { "last_harvest_dt": "harvesting", "last_harvest_status": None } }) try: provider_str = harvest['organization'] path = os.path.join(dest, provider_str) if harvest['harvest_type'] == 'WAF': records, errors = download_waf(db, harvest, src, path) elif harvest['harvest_type'] == 'ERDDAP-WAF': records, errors = download_erddap_waf(db, harvest, src, path) elif harvest['harvest_type'] == 'CSW': records, errors = download_csw(db, harvest, src, path) else: raise TypeError('harvest_type "{}" is not supported; use WAF or CSW'.format(harvest['harvest_type'])) db.Harvests.update({"_id": harvest['_id']}, { "$set": { "last_harvest_dt": datetime.utcnow(), "last_record_count": records, "last_good_count": (records - errors), "last_bad_count": errors, "last_harvest_status": "ok" } }) trigger_ckan_harvest(db, harvest) except: send_notifications(db, harvest) get_logger().exception("Failed to successfully harvest %s", harvest['url']) db.Harvests.update({"_id": harvest['_id']}, { "$set": { "last_harvest_dt": datetime.utcnow(), "last_harvest_status": "fail" } }) def delete_harvest(db, harvest): ''' Deletes a harvest, all associated attempts and records :param db: MongoDB Client :param dict harvest: A dictionary returned from the mongo collection for harvests. ''' try: # Remove attempts records = list(db.Records.find({"harvest_id": harvest['_id']})) for record in records: if os.path.exists(record['location']): get_logger().info("Removing %s", record['location']) os.remove(record['location']) db.Records.remove({"harvest_id": harvest['_id']}) db.Attempts.remove({"parent_harvest": harvest['_id']}) db.Harvests.remove({"_id": harvest['_id']}) except: get_logger().exception("Could not successfully delete harvest") def send_notifications(db, harvest): ''' Send an email to all users belonging to the organization of the harvest notifying them that the harvest failed. :param db: Mongo DB Client :param dict harvest: A dictionary returned from the mongo collection for harvests. ''' users = db.users.find({"profile.organization": harvest['organization']}) mail = Mail() emails = [] for user in list(users): user_emails = user['emails'] if user_emails and user_emails[0]['address']: emails.append(user_emails[0]['address']) recipients = [email for email in emails if throttle_email(email)] # If there are no recipients, obviously don't send an email if not recipients: return for recipient in recipients: get_logger().info("Sending a notification to %s", recipient) msg = Message("Failed to correctly harvest", sender=MAIL_DEFAULT_SENDER or "admin@ioos.us", recipients=recipients) body = ("We were unable to harvest from the harvest source {url}. " "Please verify that the source URL is correct and contains " "valid XML Documents. \n\n" "Thanks!\nIOOS Catalog Harvester".format(url=harvest['url'])) msg.body = body mail.send(msg) def throttle_email(email, timeout=3600): ''' Returns True if an email has already been sent in the last timeout seconds. :param str email: Email address of the recipient :param int timeout: Seconds to wait until the next email can be sent ''' host, port, db = get_redis_connection() redis_pool = redis.ConnectionPool(host=host, port=port, db=db) rc = redis.Redis(connection_pool=redis_pool) key = 'harvesting:notifications:' + b64encode(email) value = rc.get(key) if value is None: rc.setex(key, 1, timeout) return True return False def trigger_ckan_harvest(db, harvest): ''' Initiates a CKAN Harvest :param db: Mongo DB Client :param dict harvest: A dictionary returned from the mongo collection for harvests. ''' try: ckan_harvest = get_harvest_info(db, harvest) ckan_harvest_id = ckan_harvest['id'] create_harvest_job(ckan_harvest_id) except: get_logger().exception("Failed to initiate CKAN Harvest") def download_waf(db, harvest, src, dest): ''' Downloads a WAF's contents to a destination :param db: Mongo DB Client :param dict harvest: A dictionary returned from the mongo collection for harvests. :param url src: URL to the WAF :param str dest: Folder to download to ''' if not os.path.exists(dest): os.makedirs(dest) waf_parser = WAFParser(src) old_records = list(db.Records.find({"harvest_id": harvest['_id']})) db.Records.remove({"harvest_id": harvest['_id']}) new_records = [] count = 0 errors = 0 for link in waf_parser.parse(): get_logger().info("Downloading %s", link) try: link_hash = sha1(link.encode('utf-8')).hexdigest() doc_name = link_hash + '.xml' local_filename = os.path.join(dest, doc_name) get_logger().info("Saving to %s", local_filename) download_file(link, local_filename) rec = parse_records(db, harvest, link, local_filename) new_records.append(rec) if len(rec['validation_errors']): errors += 1 count += 1 except KeyboardInterrupt: raise except Exception: errors += 1 get_logger().exception("Failed to download") continue purge_old_records(new_records, old_records) return count, errors def download_erddap_waf(db, harvest, src, dest): ''' Downloads a WAF's from ERDDAP to a destination :param db: Mongo DB Client :param dict harvest: A dictionary returned from the mongo collection for harvests. :param url src: URL to the WAF :param str dest: Folder to download to ''' if not os.path.exists(dest): os.makedirs(dest) waf_parser = ERDDAPWAFParser(src) old_records = list(db.Records.find({"harvest_id": harvest['_id']})) db.Records.remove({"harvest_id": harvest['_id']}) new_records = [] count = 0 errors = 0 for link in waf_parser.parse(): get_logger().info("Downloading %s", link) try: doc_name = link.split('/')[-1] local_filename = os.path.join(dest, doc_name) # CKAN only looks for XML documents for the harvester if not local_filename.endswith('.xml'): local_filename += '.xml' download_file(link, local_filename) rec = parse_records(db, harvest, link, local_filename) new_records.append(rec) if len(rec['validation_errors']): errors += 1 count += 1 except KeyboardInterrupt: raise except Exception: errors += 1 get_logger().exception("Failed to download") continue purge_old_records(new_records, old_records) return count, errors def download_file(url, location): ''' Downloads a file from a URL and writes it to location :param str url: URL to download document :param str location: Full filename to write to ''' r = requests.get(url, stream=True) with open(location, 'wb') as f: for chunk in r.iter_content(chunk_size=1024 * 1024): if chunk: f.write(chunk) return location def force_clean(path, max_days=3): ''' Deletes any files in path that end in .xml and are older than the specified number of days :param str path: Path to a folder to clean :param int max_days: Maximum number of days to keep an old record before removing it. ''' now = time.time() for root, dirs, files in os.walk(path): for filename in files: filepath = os.path.join(root, filename) if not filename.endswith('.xml'): continue file_st = os.stat(filepath) mtime = file_st.st_mtime if (now - mtime) > (24 * 3600 * max_days): get_logger().info("Removing %s", filepath) os.remove(filepath) def purge_old_records(new_records, old_records): ''' Deletes any records in old_records that aren't in new_records :param list new_records: List of records :param list old_records: List of records ''' get_logger().info("Purging old records from WAF") new_files = [r['location'] for r in new_records if 'location' in r] removal = [r for r in old_records if 'location' in r and r['location'] not in new_files] for record in removal: if 'location' not in record: continue if os.path.exists(record['location']): get_logger().info("Removing %s", record['location']) os.remove(record['location'])
#========================================================================= # ast_visitor_test.py #========================================================================= # Tests for Python AST Visitors. import pytest from ast_visitor import * from ..ast_helpers import get_method_ast, print_simple_ast from pymtl import InPort, OutPort, Wire #------------------------------------------------------------------------- # AST Visitor Checker: Function Decorator #------------------------------------------------------------------------- # This decorator takes two parameters: a list of expected signals detected # as loads by the visitor, and a list of expected signals detected as # stores by the visitor. Assertions verify that the expected signals # match the actual signals detected. # TODO: the order in which you name the signals in each list matters, # should fix this later. def check_ast( ld, st ): def check_decorator( func ): tree, src = get_method_ast( func ) print() #import debug_utils #debug_utils.print_ast( tree ) load, store = DetectLoadsAndStores().enter( tree ) print( "LOADS ", load, "want:", ld ) print( "STORES", store, "want:", st ) assert ld == load assert st == store return func return check_decorator #------------------------------------------------------------------------- # Simple Assignments #------------------------------------------------------------------------- def test_assign(): @check_ast( ['s.in_'], ['s.out.v'] ) def assign( s ): s.out.v = s.in_ def test_assign_op(): @check_ast( ['s.a.v', 's.b', 's.c'], ['s.out.v'] ) def assign_op( s ): s.out.v = s.a.v + s.b + s.c def test_assign_temp(): @check_ast( ['s.in_', 'x'], ['x', 's.out.v'] ) def assign_temp( s ): x = s.in_ s.out.v = x #------------------------------------------------------------------------- # Bit Indexing #------------------------------------------------------------------------- def test_rd_bit_idx_const(): @check_ast( ['s.a.v[?]', 's.b[?]'], ['s.out.v'] ) def rd_bit_idx_const( s ): s.out.v = s.a.v[ 0 ] + s.b[ 1 ] def test_rd_bit_idx_var(): @check_ast( ['s.c', 's.a.v[?]', 's.d', 's.b[?]'], ['s.out.v'] ) def rd_bit_idx_var( s ): s.out.v = s.a.v[ s.c ] & s.b[ s.d ] def test_rd_bit_idx_slice_const(): @check_ast( ['s.a.v[?]', 's.b[?]'], ['s.out.v'] ) def rd_bit_idx_slice_const( s ): s.out.v = s.a.v[ 0:2 ] & s.b[ 4:8 ] def test_rd_bit_idx_slice_var(): @check_ast( ['s.s0', 's.s1', 's.a.v[?]'], ['s.out.v'] ) def rd_bit_idx_slice_var( s ): s.out.v = s.a.v[ s.s0:s.s1 ] def test_wr_bit_idx_const(): @check_ast( ['s.in0', 's.in1'], ['s.out.v[?]'] ) def wr_bit_idx_const( s ): s.out.v[ 0 ] = s.in0 + s.in1 def test_wr_bit_idx_var(): @check_ast( ['s.c', 's.in0', 's.in1'], ['s.out.v[?]'] ) def wr_bit_idx_var( s ): s.out.v[ s.c ] = s.in0 + s.in1 def test_wr_bit_idx_slice_const(): @check_ast( ['s.in0[?]'], ['s.out.v[?]'] ) def wr_bit_idx_slice_const( s ): s.out.v[ 0:1 ] = s.in0[ 3:4 ] def test_wr_bit_idx_slice_var(): @check_ast( ['s.s0', 's.s1', 's.a.v'], ['s.out.v[?]'] ) def wr_bit_idx_slice_var( s ): s.out.v[ s.s0:s.s1 ] = s.a.v #------------------------------------------------------------------------- # List Indexing #------------------------------------------------------------------------- def test_rd_list_idx_const(): @check_ast( ['s.a[?].v', 's.b[?].v'], ['s.out.v'] ) def rd_list_idx_const( s ): s.out.v = s.a[ 0 ].v + s.b[ 1 ].v def test_rd_list_idx_var(): @check_ast( ['s.c', 's.a[?].v', 's.d', 's.b[?]'], ['s.out.v'] ) def rd_list_idx_var( s ): s.out.v = s.a[ s.c ].v & s.b[ s.d ] def test_rd_list_idx_slice_const(): @check_ast( ['s.a[?].v', 's.b[?].v'], ['s.out.v'] ) def rd_list_idx_slice_const( s ): s.out.v = s.a[ 0:2 ].v & s.b[ 4:8 ].v def test_rd_list_idx_slice_var(): @check_ast( ['s.s0', 's.s1', 's.a[?].v'], ['s.out.v'] ) def rd_list_idx_slice_var( s ): s.out.v = s.a[ s.s0:s.s1 ].v def test_wr_list_idx_const(): @check_ast( ['s.in0', 's.in1'], ['s.out[?].v'] ) def wr_list_idx_const( s ): s.out[ 0 ].v = s.in0 + s.in1 def test_wr_list_idx_var(): @check_ast( ['s.c', 's.in0', 's.in1'], ['s.out[?].v'] ) def wr_list_idx_var( s ): s.out[ s.c ].v = s.in0 + s.in1 def test_wr_list_idx_slice_const(): @check_ast( ['s.in0[?]'], ['s.out[?].v'] ) def wr_list_idx_slice_const( s ): s.out[ 0:1 ].v = s.in0[ 3:4 ] def test_wr_list_idx_slice_var(): @check_ast( ['s.s0', 's.s1', 's.a.v'], ['s.out[?].v'] ) def wr_list_idx_slice_var( s ): s.out[ s.s0:s.s1 ].v = s.a.v #------------------------------------------------------------------------- # If Statements #------------------------------------------------------------------------- def test_if_else(): # TODO: prevent duplication? @check_ast( ['s.if0', 's.in0', 's.in1'], ['s.out.v', 's.out.v'] ) def if_else( s ): if s.if0: s.out.v = s.in0 else: s.out.v = s.in1 def test_if_elif_else(): @check_ast( ['s.if0', 's.in0', 's.if1', 's.in1', 's.in2'], ['s.out.v']*3 ) def if_elif_else( s ): if s.if0: s.out.v = s.in0 elif s.if1: s.out.v = s.in1 else: s.out.v = s.in2 def test_if_elif_and(): @check_ast( ['s.if0', 's.if1', 's.in0', 's.if0', 's.if2', 's.in1', 's.in2'], ['s.out.v']*3 ) def if_elif_and( s ): if s.if0 and s.if1: s.out.v = s.in0 elif s.if0 and s.if2: s.out.v = s.in1 else: s.out.v = s.in2 def test_if_elif_elif(): @check_ast( ['s.if0', 's.in0', 's.if1', 's.in1', 's.if2', 's.in2'], ['s.out.v']*3 ) def if_elif_else( s ): if s.if0: s.out.v = s.in0 elif s.if1: s.out.v = s.in1 elif s.if2: s.out.v = s.in2 def test_nested_if(): @check_ast( ['s.if0', 's.if1', 's.in0', 's.if2', 's.in1' ], ['s.out.v']*2 ) def logic( s ): if s.if0: if s.if1: s.out.v = s.in0 elif s.if2: s.out.v = s.in1 def test_nested_else(): @check_ast( ['s.if0', 's.in0', 's.if1', 's.in0', 's.if2', 's.in1' ], ['s.out.v']*3 ) def logic( s ): if s.if0: s.out.v = s.in0 else: if s.if1: s.out.v = s.in0 elif s.if2: s.out.v = s.in1 def test_nested_elif(): @check_ast( ['s.if0', 's.in0', 's.if3', 's.if1', 's.in0', 's.if2', 's.in1' ], ['s.out.v']*3 ) def logic( s ): if s.if0: s.out.v = s.in0 elif s.if3: if s.if1: s.out.v = s.in0 elif s.if2: s.out.v = s.in1 #------------------------------------------------------------------------- # AST Visitor Checker: Function Decorator #------------------------------------------------------------------------- def next( func ): tree, src = get_method_ast( func ) #print_simple_ast( tree ) DetectMissingValueNext( func, 'next' ).visit( tree ) def value( func ): tree, src = get_method_ast( func ) #print_simple_ast( tree ) DetectMissingValueNext( func, 'value' ).visit( tree ) class Temp( object ): def __init__( s ): s.i0, s.i1, s.i2 = InPort [3](1) s.o0, s.o1, s.o2 = OutPort[3](1) s.out = OutPort[3](1) def test_noerror_next(): s = Temp() @next def logic(): s.i0.next = 5 def test_error_next(): s = Temp() with pytest.raises( PyMTLError ): @next def logic(): s.i0 = 5 def test_noerror_value(): s = Temp() @value def logic(): s.i0.next = 5 def test_error_value(): s = Temp() with pytest.raises( PyMTLError ): @value def logic(): s.i0 = 5 def test_noerror_tuple(): s = Temp() @next def logic(): s.o0.next,s.o1.next = 5, 6 @value def logic(): s.o0.value,s.o1.value = 5, 6 @next def logic(): s.o0.next,s.o1.next,s.o2.next = 5, 6, 7 @next def logic(): s.o0.value,s.o1.value,s.o2.value = 5, 6, 7 def test_error_tuple(): s = Temp() with pytest.raises( PyMTLError ): @next def logic(): s.o0, s.o1.next = 5, 6 with pytest.raises( PyMTLError ): @value def logic(): s.o0, s.o1.value = 5, 6 with pytest.raises( PyMTLError ): @next def logic(): s.o0, s.o1 = 5, 6 with pytest.raises( PyMTLError ): @value def logic(): s.o0.value, s.o1 = 5, 6 with pytest.raises( PyMTLError ): @next def logic(): s.o0.next, s.o1, s.o2.next = 5, 6, 7 with pytest.raises( PyMTLError ): @value def logic(): s.o0.value, s.o1.value, s.o2 = 5, 6, 7 def test_noerror_list(): s = Temp() @next def logic(): [s.o0.next,s.o1.next] = 5, 6 @value def logic(): [s.o0.value,s.o1.value] = 5, 6 def test_error_list(): s = Temp() with pytest.raises( PyMTLError ): @next def logic(): [s.o0,s.o1.next] = 5, 6 with pytest.raises( PyMTLError ): @value def logic(): [s.o0.value,s.o1] = 5, 6 def test_noerror_tuple_packs(): s = Temp() @next def logic(): s.o0.next, (s.o1.next, s.o2.next) = 5, (6, 7) @value def logic(): (s.o0.value, s.o1.value), s.o2.value = (5, 6), 7 def test_error_tuple_packs(): s = Temp() with pytest.raises( PyMTLError ): @next def logic(): s.o0.next, (s.o1.next, s.o2) = 5, (6, 7) with pytest.raises( PyMTLError ): @value def logic(): (s.o0, s.o1.value), s.o2.value = (5, 6), 7 def test_noerror_list_packs(): s = Temp() @next def logic(): s.o0.next, [s.o1.next, s.o2.next] = 5, (6, 7) @value def logic(): [s.o0.value, s.o1.value], s.o2.value = (5, 6), 7 def test_error_list_packs(): s = Temp() with pytest.raises( PyMTLError ): @next def logic(): s.o0.next, [s.o1.next, s.o2] = 5, (6, 7) with pytest.raises( PyMTLError ): @value def logic(): [s.o0, s.o1.value], s.o2.value = (5, 6), 7 def test_noerror_mixed_packs(): s = Temp() @next def logic(): [s.o0.next], (s.o1.next, s.o2.next) = [5], (6, 7) @value def logic(): [s.o0.value, s.o1.value], (s.o2.value,) = (5, 6), [7] @next def logic(): [s.o0.next], ([s.o1.next], s.o2.next) = [5], ([6], 7) @value def logic(): [s.o0.value, (s.o1.value)], (s.o2.value,) = (5, 6), [7] def test_error_mixed_packs(): s = Temp() with pytest.raises( PyMTLError ): @next def logic(): [s.o0], (s.o1.next, s.o2.next) = [5], (6, 7) with pytest.raises( PyMTLError ): @value def logic(): [s.o0.value, s.o1], (s.o2,) = (5, 6), [7] with pytest.raises( PyMTLError ): @next def logic(): [s.o0.next], ([s.o1], s.o2.next) = [5], ([6], 7) with pytest.raises( PyMTLError ): @value def logic(): [s.o0.value, (s.o1)], (s.o2.value,) = (5, 6), [7] def test_noerror_subscript(): s = Temp() @next def logic(): s.out[0].next = 5 @value def logic(): s.out[0].value = 5 def test_error_subscript(): s = Temp() with pytest.raises( PyMTLError ): @next def logic(): s.out[0] = 5 with pytest.raises( PyMTLError ): @value def logic(): s.out[0] = 5 def test_noerror_subscript_tuple(): s = Temp() @next def logic(): s.out[0].next, s.out[1].next = 5,6 @value def logic(): s.out[0].value, s.out[1].value = 5,6 def test_error_subscript(): s = Temp() with pytest.raises( PyMTLError ): @next def logic(): s.out[0].next, s.out[1] = 5,6 with pytest.raises( PyMTLError ): @value def logic(): s.out[0], s.out[1].value = 5,6
''' Estimate the impact of beam smearing by running a standard deviation filter over the peak velocity surface (since we use it for stacking) at different resolutions. ''' import numpy as np import scipy.ndimage as nd from astropy.io import fits import astropy.units as u from spectral_cube import Projection import matplotlib.pyplot as plt from turbustat.statistics import PDF from scipy import stats from scipy.stats import binned_statistic import seaborn as sb from corner import hist2d from galaxy_params import gal_feath as gal from paths import (fourteenB_wGBT_HI_file_dict, fourteenB_HI_data_wGBT_path, allfigs_path) from plotting_styles import onecolumn_figure, default_figure def window_stdev(X, window_size): ''' Standard deviation window. From: https://nickc1.github.io/python,/matlab/2016/05/17/Standard-Deviation-(Filters)-in-Matlab-and-Python.html ''' r, c = X.shape X += np.random.rand(r, c) * 1e-6 c1 = nd.uniform_filter(X, window_size, mode='reflect') c2 = nd.uniform_filter(X * X, window_size, mode='reflect') return np.sqrt(c2 - c1 * c1) default_figure() peakvels = \ Projection.from_hdu(fits.open(fourteenB_wGBT_HI_file_dict['PeakVels'])) mom0 = Projection.from_hdu(fits.open(fourteenB_wGBT_HI_file_dict['Moment0'])) # Set the window size to be the FWHM of the beam # Pixels are essentially square in WCS here. window_size = mom0.beam.major.to(u.deg) / \ (peakvels.wcs.wcs.cdelt[-1] * u.deg) window_size = int(np.ceil(window_size)) peakvels_val = peakvels.value.copy() peakvels_val[np.isnan(peakvels_val)] = 0.0 stddev = window_stdev(peakvels_val, window_size) # Now we need to mask out values near edges of NaNs mask = np.isfinite(peakvels) mask = nd.binary_erosion(mask, iterations=window_size) # plt.imshow(stddev, origin='lower', vmax=1.e4) # plt.contour(mask, colors='r') onecolumn_figure() sb.set_palette('colorblind') col_pal = sb.color_palette('colorblind') _ = plt.hist(np.log10(stddev[mask] / 1000.), bins='auto', alpha=0.4, label='19"') peakvels_38 = Projection.from_hdu(fits.open(fourteenB_HI_data_wGBT_path("smooth_2beam/M33_14B-088_HI.clean.image.GBT_feathered.38arcsec.peakvels.fits"))) mom0_38 = Projection.from_hdu(fits.open(fourteenB_HI_data_wGBT_path("smooth_2beam/M33_14B-088_HI.clean.image.GBT_feathered.38arcsec.mom0.fits"))) # Set the window size to be the FWHM of the beam # Pixels are essentially square in WCS here. window_size_38 = mom0_38.beam.major.to(u.deg) / \ (peakvels_38.wcs.wcs.cdelt[-1] * u.deg) window_size_38 = int(np.ceil(window_size_38)) peakvels_val_38 = peakvels_38.value.copy() peakvels_val_38[np.isnan(peakvels_val_38)] = 0.0 stddev_38 = window_stdev(peakvels_val_38, window_size_38) # Now we need to mask out values near edges of NaNs mask_38 = np.isfinite(peakvels_38) mask_38 = nd.binary_erosion(mask_38, iterations=window_size_38) mask_38[np.isnan(stddev_38)] = False mask_38[stddev_38 == 0.0] = False # Only compare where the original resolution values are defined mask_38[~mask] = False _ = plt.hist(np.log10(stddev_38[mask_38] / 1000.), bins='auto', alpha=0.4, label='38"') peakvels_95 = Projection.from_hdu(fits.open(fourteenB_HI_data_wGBT_path("smooth_5beam/M33_14B-088_HI.clean.image.GBT_feathered.95arcsec.peakvels.fits"))) mom0_95 = Projection.from_hdu(fits.open(fourteenB_HI_data_wGBT_path("smooth_5beam/M33_14B-088_HI.clean.image.GBT_feathered.95arcsec.mom0.fits"))) # Set the window size to be the FWHM of the beam # Pixels are essentially square in WCS here. window_size_95 = mom0_95.beam.major.to(u.deg) / \ (peakvels_95.wcs.wcs.cdelt[-1] * u.deg) window_size_95 = int(np.ceil(window_size_95)) peakvels_val_95 = peakvels_95.value.copy() peakvels_val_95[np.isnan(peakvels_val_95)] = 0.0 stddev_95 = window_stdev(peakvels_val_95, window_size_95) # Now we need to mask out values near edges of NaNs mask_95 = np.isfinite(peakvels_95) mask_95 = nd.binary_erosion(mask_95, iterations=window_size_95) mask_95[np.isnan(stddev_95)] = False mask_95[stddev_95 == 0.0] = False mask_95[~mask] = False _ = plt.hist(np.log10(stddev_95[mask_95] / 1000.), bins='auto', alpha=0.4, label='95"') plt.legend(frameon=True) plt.xlim([-1., 2.]) plt.axvline(np.log10(0.2), linestyle='--', linewidth=3, alpha=0.6, color=col_pal[3]) # Fit some log-normals (close-ish to the shape) to get the peak location # and estimate dispersion. print("Fitting log-normals") stddev_masked = stddev.copy() stddev_masked[~mask] = np.NaN # pdf = PDF(stddev_masked).run(verbose=False) stddev_masked_38 = stddev_38.copy() stddev_masked_38[~mask_38] = np.NaN # pdf_38 = PDF(stddev_masked_38).run(verbose=False) stddev_masked_95 = stddev_95.copy() stddev_masked_95[~mask_95] = np.NaN # pdf_95 = PDF(stddev_masked_95).run(verbose=False) # def lognorm_mean(params): # return float(stats.lognorm.stats(s=params[0], scale=params[1], # moments='m')) # print("Mean: 19'' {0}; 38'' {1}; 95'' {2} km/s" # .format(lognorm_mean(pdf.model_params), # lognorm_mean(pdf_38.model_params), # lognorm_mean(pdf_95.model_params))) # print("Dispersion: 19'' {0}; 38'' {1}; 95'' {2} km/s" # .format(pdf.model_params[1], pdf_38.model_params[1], # pdf_95.model_params[1])) # plt.axvline(np.log10(lognorm_mean(pdf.model_params) / 1.e3), color=col_pal[0]) # plt.axvline(np.log10(lognorm_mean(pdf_38.model_params) / 1.e3), color=col_pal[1]) # plt.axvline(np.log10(lognorm_mean(pdf_95.model_params) / 1.e3), color=col_pal[2]) plt.axvline(np.log10(np.nanmedian(stddev_masked) / 1.e3), color=col_pal[0]) plt.axvline(np.log10(np.nanmedian(stddev_masked_38) / 1.e3), color=col_pal[1]) plt.axvline(np.log10(np.nanmedian(stddev_masked_95) / 1.e3), color=col_pal[2]) print("Median: 19'' {0}; 38'' {1}; 95'' {2} m/s" .format(np.nanmedian(stddev_masked), np.nanmedian(stddev_masked_38), np.nanmedian(stddev_masked_95))) # Median: 19'' 1200.64344986; 38'' 1040.18519281; 95'' 2125.5324707 m/s plt.grid() plt.xlabel("log Standard Deviation (km/s)") plt.tight_layout() plt.savefig(allfigs_path('HI_properties/peakvel_stddevfilter_histograms.pdf')) plt.savefig(allfigs_path('HI_properties/peakvel_stddevfilter_histograms.png')) plt.close() # Trends against each other? # comb_mask_38 = np.logical_and(np.isfinite(stddev_masked), # np.isfinite(stddev_masked_38)) # hist2d(stddev_masked[comb_mask_38], stddev_masked_38[comb_mask_38]) # comb_mask_95 = np.logical_and(np.isfinite(stddev_masked), # np.isfinite(stddev_masked_95)) # hist2d(stddev_masked[comb_mask_95], stddev_masked_95[comb_mask_95]) # Against radius? radius = gal.radius(header=mom0.header).to(u.kpc) # hist2d(radius.value[comb_mask_38], # np.log10((stddev_masked_38 / stddev_masked)[comb_mask_38])) # hist2d(radius.value[comb_mask_95], # np.log10((stddev_masked_95 / stddev_masked)[comb_mask_95])) # Mild increase with radius for the inner 2 kpc. # Create radial profiles of avg std beam_pix = 41. rad_bins = np.arange(0, 7.5, 0.5) med_bin, bin_edges, cts = binned_statistic(radius.value[mask], stddev_masked[mask] / 1.e3, bins=rad_bins, statistic=np.mean) # Last bin value are the points that are outside the largest bin bin_cts = np.array([np.sum(cts == bin_lab) for bin_lab in np.unique(cts)[:-1]]) std_bin = binned_statistic(radius.value[mask], stddev_masked[mask] / 1.e3, bins=rad_bins, statistic=np.std)[0] # Correct by number of independent samples # std_bin /= np.sqrt(bin_cts / beam_pix) med_bin_38, bin_edges, cts = binned_statistic(radius.value[mask_38], stddev_masked_38[mask_38] / 1.e3, bins=rad_bins, statistic=np.mean) bin_cts_38 = np.array([np.sum(cts == bin_lab) for bin_lab in np.unique(cts)[:-1]]) std_bin_38 = binned_statistic(radius.value[mask_38], stddev_masked_38[mask_38] / 1.e3, bins=rad_bins, statistic=np.std)[0] # std_bin_38 /= np.sqrt(bin_cts_38 / beam_pix) med_bin_95, bin_edges, cts = binned_statistic(radius.value[mask_95], stddev_masked_95[mask_95] / 1.e3, bins=rad_bins, statistic=np.mean) bin_cts_95 = np.array([np.sum(cts == bin_lab) for bin_lab in np.unique(cts)[:-1]]) std_bin_95 = binned_statistic(radius.value[mask_95], stddev_masked_95[mask_95] / 1.e3, bins=rad_bins, statistic=np.std)[0] # std_bin_95 /= np.sqrt(bin_cts_95 / beam_pix) bin_cents = (bin_edges[1:] + bin_edges[:-1]) / 2. plt.axhline(0.2, color=col_pal[3], linestyle='--', linewidth=4, alpha=0.75) plt.axhline(2.6, color=col_pal[5], linestyle=':', linewidth=4, alpha=0.75) plt.errorbar(bin_cents, med_bin, fmt='o-', drawstyle='steps-mid', yerr=std_bin, label='80 pc (19")') plt.errorbar(bin_cents, med_bin_38, fmt='D-', drawstyle='steps-mid', yerr=std_bin_38, label='160 pc (38")') plt.errorbar(bin_cents, med_bin_95, fmt='^-', drawstyle='steps-mid', yerr=std_bin_95, label='380 pc (95")') plt.legend(frameon=True) plt.grid() plt.ylabel("Standard deviation of\n peak velocity (km/s)") plt.xlabel("Radius (kpc)") plt.tight_layout() plt.savefig(allfigs_path('HI_properties/peakvel_stddevfilter_radprofile.pdf')) plt.savefig(allfigs_path('HI_properties/peakvel_stddevfilter_radprofile.png')) plt.close() # Calculate the bin-averaged velocity dispersions from the radial profiles pix_area = np.sum(radius < 7 * u.kpc) med_bin_area_avg = (bin_cts * med_bin).sum() / pix_area eight5_bin_area_avg = (bin_cts * (med_bin + std_bin)).sum() / pix_area fifteen_bin_area_avg = (bin_cts * (med_bin - std_bin)).sum() / pix_area med_bin_38_area_avg = (bin_cts * med_bin_38).sum() / pix_area eight5_bin_38_area_avg = (bin_cts * (med_bin + std_bin_38)).sum() / pix_area fifteen_bin_38_area_avg = (bin_cts * (med_bin - std_bin_38)).sum() / pix_area med_bin_95_area_avg = (bin_cts * med_bin_95).sum() / pix_area eight5_bin_95_area_avg = (bin_cts * (med_bin + std_bin_95)).sum() / pix_area fifteen_bin_95_area_avg = (bin_cts * (med_bin - std_bin_95)).sum() / pix_area print("Avg. broadening: {0}. Limits: {1}, {2}".format(med_bin_area_avg, fifteen_bin_area_avg, eight5_bin_area_avg)) print("38''Avg. broadening: {0}. Limits: {1}, {2}".format(med_bin_38_area_avg, fifteen_bin_38_area_avg, eight5_bin_38_area_avg)) print("95''Avg. broadening: {0}. Limits: {1}, {2}".format(med_bin_95_area_avg, fifteen_bin_95_area_avg, eight5_bin_95_area_avg)) # Can the line width increases at 95'' be entirely due to beam smearing? hi_width_95 = 8.9 co_width_95 = 7.3 hi_width_38 = 8.0 co_width_38 = 6.0 hi_width_95_bc = np.sqrt(hi_width_95**2 - med_bin_95_area_avg**2) hi_width_95_bc_err = (2 / hi_width_95_bc) * \ (hi_width_95 * 0.1 + med_bin_95_area_avg * 1.0) co_width_95_bc = np.sqrt(co_width_95**2 - med_bin_95_area_avg**2) co_width_95_bc_err = (2 / co_width_95_bc) * \ (co_width_95 * 1.3 + med_bin_95_area_avg * 1.0) print("Beam smear-corr 95'' HI: {0}+/-{1}".format(hi_width_95_bc, hi_width_95_bc_err)) print("Beam smear-corr 95'' CO: {0}+/-{1}".format(co_width_95_bc, co_width_95_bc_err))
from django.contrib import admin from django import forms from django.forms.models import ModelForm, ModelChoiceField from django.forms import ValidationError from mptt.admin import MPTTModelAdmin, MPTTAdminForm from mptt.fields import TreeNodeChoiceField from pidman.admin import admin_site from pidman.pid.ark_utils import normalize_ark, invalid_qualifier_characters from pidman.pid.models import ExtSystem, Pid, Proxy, Target, Policy, Domain class TargetInlineForm(ModelForm): """Base Target inline form for use in editing ARKs and PURLs.""" class Meta: model = Target fields = ('qualify', 'uri', 'proxy', 'active') def clean_qualify(self): # check for any characters not allowed in the qualifier invalid_chars = invalid_qualifier_characters(self.cleaned_data["qualify"]) if invalid_chars: raise ValidationError("Not permitted: " + ', '.join(invalid_chars)) # normalize according to how the ARK will be resolved return normalize_ark(self.cleaned_data["qualify"]) class TargetInline(admin.TabularInline): model = Target fields = ('qualify', 'uri', 'proxy', 'active') # no max, default number of extra fields form = TargetInlineForm can_delete = True # allow ARK target deletion (e.g., qualifiers) # NOTE: should be possible to extend inline template here # to display link status - last checked / message / etc class PurlTargetInline(TargetInline): verbose_name_plural = "Target" max_num = 1 can_delete = False # do not allow PURL target deletion (only one target) fields = ('uri', 'proxy', 'active') class PidAdminForm(ModelForm): domain = TreeNodeChoiceField(queryset=Domain.objects.all()) class Meta: model = Pid exclude = [] class PidAdmin(admin.ModelAdmin): # browse display: type (ark/purl), domain/collection, name/description, and pid url (not target url) # note: including pid for link to edit page, since name is optional and not always present # including dates in list display for sorting purposes # sort columns by: type, domain/collection, name, (pid url?), date created/modified ascending/descending list_display = ('pid', 'truncated_name', 'type', 'created_at', 'updated_at', 'domain', "primary_target_uri", "is_active") #, 'linkcheck_status') # filters: collection/domain, creator/user, type (ark/purl), date ranges (created or modified) list_filter = ( 'type', ('domain', admin.RelatedOnlyFieldListFilter), 'ext_system', ('creator', admin.RelatedOnlyFieldListFilter), 'created_at', 'updated_at') list_select_related = True # may want to limit this some form = PidAdminForm # now possible in django 1.1 - fields to use here? # list_editable = ('name', 'domain') date_hierarchy = 'created_at' search_fields = ['name', 'pid', 'ext_system_key', 'target__uri'] # keep pid type in a separate fieldset in order to suppress it on edit fieldset_pidtype = ('Pid Type', { 'fields': ('type',), 'description': "Select type of pid to create." }) fieldset_pidinfo = ("Pid Information", { 'fields': ('name', 'domain', ('ext_system', 'ext_system_key'), 'policy') }) fieldsets = (fieldset_pidtype, fieldset_pidinfo) # by default, use purl target inline; if saved as an ark, will use TargetInline inlines = [PurlTargetInline] class Media: css = { "all": ("css/font-awesome.min.css",) } def get_inline_instances(self, request, obj=None): # get target inline class based on the object # when adding a new object, restrict targets to purl type until saved # once the object is saved, display purl or ark target inline # edit form based on pid type inlines = list(self.inlines) # make a new copy of inline config if obj is not None and obj.type == 'Ark': inlines[0] = TargetInline return [inline(self.model, self.admin_site) for inline in inlines] # set creator and editor to current user before saving def save_model(self, request, obj, form, change): obj.editor = request.user if not (change): obj.creator = request.user obj.save() # disallow delete of Pids set targets to inactive instead def has_delete_permission(self, request, obj=None): return False def get_queryset(self, request): # extend queryset to prefetch targets & linkcheck status, # which are used in the change list display pidqs = super(PidAdmin, self).get_queryset(request) pidqs = pidqs.prefetch_related('target_set', 'domain', 'creator') # 'target_set__linkcheck__url') return pidqs def formfield_for_dbfield(self, db_field, **kwargs): request = kwargs['request'] formfield = super(PidAdmin, self).formfield_for_dbfield(db_field, **kwargs) if db_field.name == 'domain': choices = getattr(request, '_domain_choices_cache', None) if choices is None: request._domain_choices_cache = choices = list(formfield.choices) formfield.choices = choices return formfield class ExtSystemAdmin(admin.ModelAdmin): list_display = ('name', 'key_field', 'updated_at') class ProxyAdmin(admin.ModelAdmin): list_display = ('name', 'transform', 'updated_at') class PolicyAdmin(admin.ModelAdmin): list_display = ('commitment', 'created_at') # class DomainAdminForm(forms.ModelForm): class DomainAdminForm(MPTTAdminForm): # restrict list of domains allowed to be parents to those domains # without a parent (1 level deep only) parent = TreeNodeChoiceField(queryset=Domain.objects.filter(parent__isnull=True), required=False) class Meta: model = Domain exclude = [] def clean_parent(self): parent = self.cleaned_data["parent"] if parent: # check parent id - cannot point to self if parent.id == self.instance.id: raise ValidationError("Not permitted: a domain can not be its own parent", code='invalid') # restrict hierarchy to one level elif parent.parent: raise ValidationError("Domain hierarchy restricted to depth of 1; " + parent.name + " is a collection of " + parent.parent.name, code='invalid') return parent def clean(self): # policy is optional by default, but top-level domains must have one (can't inherit from parent) if not self.cleaned_data.get('parent', None) and not self.cleaned_data['policy']: raise ValidationError("Policy is required for top-level domains") return self.cleaned_data class CollectionInline(admin.TabularInline): model = Domain verbose_name = "Domain" verbose_name_plural = "Collections" # parent = TreeNodeChoiceField(queryset=Domain.objects.all(), # level_indicator=u'+--') class DomainAdmin(MPTTModelAdmin): form = DomainAdminForm mptt_level_indent = 20 list_display = ('name', 'num_pids', 'subdomain_count', 'show_policy') inlines = [CollectionInline] def get_queryset(self, request): # extend queryset to prefetch policy and parent, # which are used in the change list display domains = super(DomainAdmin, self).get_queryset(request) domains = domains.prefetch_related('policy', 'parent') return domains admin_site.register(Pid, PidAdmin) admin_site.register(Proxy, ProxyAdmin) admin_site.register(ExtSystem, ExtSystemAdmin) admin_site.register(Policy, PolicyAdmin) admin_site.register(Domain, DomainAdmin)
import json from collections import OrderedDict from datetime import datetime from dateutil.relativedelta import relativedelta from dateutil.rrule import rrule, MONTHLY from django.http import JsonResponse from django.utils.decorators import method_decorator from django.views.generic.base import View from corehq.apps.domain.decorators import login_and_domain_required from corehq.apps.fixtures.models import FixtureDataItem from corehq.apps.groups.models import Group from corehq.apps.locations.models import SQLLocation from custom.champ.sqldata import TargetsDataSource, UICFromEPMDataSource, UICFromCCDataSource, \ HivStatusDataSource, FormCompletionDataSource, FirstArtDataSource, LastVLTestDataSource, \ ChampFilter from custom.champ.utils import PREVENTION_XMLNS, POST_TEST_XMLNS, ACCOMPAGNEMENT_XMLNS, \ SUIVI_MEDICAL_XMLNS, ENHANCED_PEER_MOBILIZATION, CHAMP_CAMEROON, TARGET_XMLNS def get_user_ids_for_group(groups): users = [] for group_id in groups: group = Group.get(group_id) users.extend(group.get_user_ids()) return users def get_age_ranges(ages): ranges = [] for age in ages: if age != '50+ yrs' and age != '': start_end = age.split(" ")[0].split("-") ranges.append({'start': start_end[0], 'end': start_end[1]}) elif age == '50+ yrs': ranges.append({'start': 50, 'end': 200}) return ranges def update_date_property(config, post_data, property, filter_key): value = post_data.get(property, '') if value: start_key = '%s_start' % filter_key end_key = '%s_end' % filter_key start, end = value.split(' - ') config.update({ start_key: start, end_key: end }) class ChampView(View): @property def post_data(self): return json.loads(self.request.body.decode('utf-8')) def get_list_property(self, property): value = self.post_data.get(property, []) return [] if '' in value else value @method_decorator([login_and_domain_required], name='dispatch') class PrevisionVsAchievementsView(ChampView): def get_target_data(self, domain): config = { 'domain': domain, 'district': self.get_list_property('target_district'), 'cbo': self.get_list_property('target_cbo'), 'userpl': self.get_list_property('target_userpl'), 'fiscal_year': self.post_data.get('target_fiscal_year', None) } clienttype = self.get_list_property('target_clienttype') for idx, type in enumerate(clienttype): if type == 'client_fsw': type = 'cfsw' clienttype[idx] = type.lower() config.update({'clienttype': clienttype}) target_data = list(TargetsDataSource(config=config).data.values())[0] return target_data def get_kp_prev_achievement(self, domain): config = { 'domain': domain, 'age': get_age_ranges(self.get_list_property('kp_prev_age')), 'district': self.get_list_property('kp_prev_district'), 'activity_type': self.post_data.get('kp_prev_activity_type', None), 'type_visit': self.post_data.get('kp_prev_visit_type', None), 'client_type': self.get_list_property('kp_prev_client_type'), 'user_id': get_user_ids_for_group(self.get_list_property('kp_prev_user_group')), 'want_hiv_test': self.post_data.get('kp_prev_want_hiv_test', None), } update_date_property(config, self.post_data, 'kp_prev_visit_date', 'visit_date') achievement = UICFromEPMDataSource(config=config).data return achievement.get(PREVENTION_XMLNS, {}).get('uic', 0) def get_htc_tst_achievement(self, domain): config = { 'domain': domain, 'age_range': self.get_list_property('htc_tst_age_range'), 'district': self.get_list_property('htc_tst_district'), 'client_type': self.get_list_property('htc_tst_client_type'), 'user_id': get_user_ids_for_group(self.get_list_property('htc_tst_user_group')), } update_date_property(config, self.post_data, 'htc_tst_post_date', 'posttest_date') update_date_property(config, self.post_data, 'htc_tst_hiv_test_date', 'hiv_test_date') achievement = UICFromCCDataSource(config=config).data return achievement.get(POST_TEST_XMLNS, {}).get('uic', 0) def get_htc_pos_achievement(self, domain): config = { 'domain': domain, 'age_range': self.get_list_property('htc_pos_age_range'), 'district': self.get_list_property('htc_pos_district'), 'client_type': self.get_list_property('htc_pos_client_type'), 'user_id': get_user_ids_for_group(self.get_list_property('htc_pos_user_group')), } update_date_property(config, self.post_data, 'htc_pos_post_date', 'posttest_date') update_date_property(config, self.post_data, 'htc_pos_hiv_test_date', 'hiv_test_date') achievement = HivStatusDataSource(config=config).data return achievement.get(POST_TEST_XMLNS, {}).get('uic', 0) def get_care_new_achivement(self, domain): config = { 'domain': domain, 'hiv_status': self.get_list_property('care_new_hiv_status'), 'client_type': self.get_list_property('care_new_client_type'), 'age_range': self.get_list_property('care_new_age_range'), 'district': self.get_list_property('care_new_district'), 'user_id': get_user_ids_for_group(self.get_list_property('care_new_user_group')), } update_date_property(config, self.post_data, 'care_new_date_handshake', 'date_handshake') achievement = FormCompletionDataSource(config=config).data return achievement.get(ACCOMPAGNEMENT_XMLNS, {}).get('uic', 0) def get_tx_new_achivement(self, domain): config = { 'domain': domain, 'hiv_status': self.get_list_property('tx_new_hiv_status'), 'client_type': self.get_list_property('tx_new_client_type'), 'age_range': self.get_list_property('tx_new_age_range'), 'district': self.get_list_property('tx_new_district'), 'user_id': get_user_ids_for_group(self.get_list_property('tx_new_user_group')), } update_date_property(config, self.post_data, 'tx_new_first_art_date', 'first_art_date') achievement = FirstArtDataSource(config=config).data return achievement.get(SUIVI_MEDICAL_XMLNS, {}).get('uic', 0) def get_tx_undetect_achivement(self, domain): config = { 'domain': domain, 'hiv_status': self.get_list_property('tx_undetect_hiv_status'), 'client_type': self.get_list_property('tx_undetect_client_type'), 'age_range': self.get_list_property('tx_undetect_age_range'), 'district': self.get_list_property('tx_undetect_district'), 'undetect_vl': self.post_data.get('tx_undetect_undetect_vl', None), 'user_id': get_user_ids_for_group(self.get_list_property('tx_undetect_user_group')), } update_date_property(config, self.post_data, 'tx_undetect_date_last_vl_test', 'date_last_vl_test') achievement = LastVLTestDataSource(config=config).data return achievement.get(SUIVI_MEDICAL_XMLNS, {}).get('uic', 0) def generate_data(self, domain): targets = self.get_target_data(domain) return { 'chart': [ { 'key': 'Target', 'color': 'blue', 'values': [ {'x': 'KP_PREV', 'y': (targets.get('target_kp_prev', 0) or 0)}, {'x': 'HTC_TST', 'y': (targets.get('target_htc_tst', 0) or 0)}, {'x': 'HTC_POS', 'y': (targets.get('target_htc_pos', 0) or 0)}, {'x': 'CARE_NEW', 'y': (targets.get('target_care_new', 0) or 0)}, {'x': 'TX_NEW', 'y': (targets.get('target_tx_new', 0) or 0)}, {'x': 'TX_UNDETECT', 'y': (targets.get('target_tx_undetect', 0) or 0)} ] }, { 'key': 'Achievements', 'color': 'orange', 'values': [ {'x': 'KP_PREV', 'y': self.get_kp_prev_achievement(domain)}, {'x': 'HTC_TST', 'y': self.get_htc_tst_achievement(domain)}, {'x': 'HTC_POS', 'y': self.get_htc_pos_achievement(domain)}, {'x': 'CARE_NEW', 'y': self.get_care_new_achivement(domain)}, {'x': 'TX_NEW', 'y': self.get_tx_new_achivement(domain)}, {'x': 'TX_UNDETECT', 'y': self.get_tx_undetect_achivement(domain)} ] } ] } def post(self, request, *args, **kwargs): domain = self.kwargs['domain'] return JsonResponse(data=self.generate_data(domain)) @method_decorator([login_and_domain_required], name='dispatch') class PrevisionVsAchievementsTableView(ChampView): def generate_data(self, domain): config = { 'domain': domain, 'district': self.get_list_property('district'), 'cbo': self.get_list_property('cbo'), 'type_visit': self.post_data.get('visit_type', None), 'activity_type': self.post_data.get('activity_type', None), 'client_type': self.get_list_property('client_type'), 'user_id': get_user_ids_for_group(self.get_list_property('organization')), 'fiscal_year': self.post_data.get('fiscal_year', None), } update_date_property(config, self.post_data, 'visit_date', 'visit_date') update_date_property(config, self.post_data, 'posttest_date', 'posttest_date') update_date_property(config, self.post_data, 'first_art_date', 'first_art_date') update_date_property(config, self.post_data, 'date_handshake', 'date_handshake') update_date_property(config, self.post_data, 'date_last_vl_test', 'date_last_vl_test') target_client_types = [] for client_type in config['client_type']: if client_type == 'client_fsw': client_type = 'cfsw' target_client_types.append(client_type.lower()) config.update({'clienttype': target_client_types}) targets = list(TargetsDataSource(config=config.copy()).data.values())[0] kp_prev = UICFromEPMDataSource(config=config.copy()).data htc_tst = UICFromCCDataSource(config=config.copy()).data htc_pos = HivStatusDataSource(config=config.copy()).data care_new = FormCompletionDataSource(config=config.copy()).data tx_new = FirstArtDataSource(config=config.copy()).data tz_undetect = LastVLTestDataSource(config=config).data return { 'target_kp_prev': (targets.get('target_kp_prev', 0) or 0), 'target_htc_tst': (targets.get('target_htc_tst', 0) or 0), 'target_htc_pos': (targets.get('target_htc_pos', 0) or 0), 'target_care_new': (targets.get('target_care_new', 0) or 0), 'target_tx_new': (targets.get('target_tx_new', 0) or 0), 'target_tx_undetect': (targets.get('target_tx_undetect', 0) or 0), 'kp_prev': (kp_prev.get(PREVENTION_XMLNS, {}).get('uic', 0) or 0), 'htc_tst': (htc_tst.get(POST_TEST_XMLNS, {}).get('uic', 0) or 0), 'htc_pos': (htc_pos.get(POST_TEST_XMLNS, {}).get('uic', 0) or 0), 'care_new': (care_new.get(ACCOMPAGNEMENT_XMLNS, {}).get('uic', 0) or 0), 'tx_new': (tx_new.get(SUIVI_MEDICAL_XMLNS, {}).get('uic', 0) or 0), 'tx_undetect': (tz_undetect.get(SUIVI_MEDICAL_XMLNS, {}).get('uic', 0) or 0), } def post(self, request, *args, **kwargs): domain = self.kwargs['domain'] return JsonResponse(data=self.generate_data(domain)) @method_decorator([login_and_domain_required], name='dispatch') class ServiceUptakeView(ChampView): def generate_data(self, domain): month_start = self.post_data.get('month_start', 1) year_start = self.post_data.get('year_start', datetime.now().year) month_end = self.post_data.get('month_end', datetime.now().month) year_end = self.post_data.get('year_end', datetime.now().year) start_date = datetime(year_start, month_start, 1) end_date = (datetime(year_end, month_end, 1) + relativedelta(months=1)) - relativedelta(days=1) config = { 'domain': domain, 'district': self.get_list_property('district'), 'type_visit': self.post_data.get('visit_type', None), 'activity_type': self.post_data.get('activity_type', None), 'client_type': self.get_list_property('client_type'), 'user_id': get_user_ids_for_group(self.get_list_property('organization')), 'visit_date_start': start_date, 'visit_date_end': end_date, 'posttest_date_start': start_date, 'posttest_date_end': end_date, 'date_handshake_start': start_date, 'date_handshake_end': end_date, } kp_prev = UICFromEPMDataSource(config=config.copy(), replace_group_by='kp_prev_month').data htc_tst = UICFromCCDataSource(config=config.copy(), replace_group_by='htc_month').data htc_pos = HivStatusDataSource(config=config.copy(), replace_group_by='htc_month').data care_new = FormCompletionDataSource(config=config, replace_group_by='care_new_month').data htc_uptake_chart_data = OrderedDict() htc_yield_chart_data = OrderedDict() link_chart_data = OrderedDict() rrule_dates = [ rrule_date for rrule_date in rrule( MONTHLY, dtstart=start_date, until=end_date ) ] tickValues = [] for rrule_dt in rrule_dates: date_in_milliseconds = int(rrule_dt.date().strftime("%s")) * 1000 tickValues.append(date_in_milliseconds) htc_uptake_chart_data.update({date_in_milliseconds: 0}) htc_yield_chart_data.update({date_in_milliseconds: 0}) link_chart_data.update({date_in_milliseconds: 0}) for row in htc_tst.values(): date = row['htc_month'] date_in_milliseconds = int(date.strftime("%s")) * 1000 nom = (row['uic'] or 0) denom = (kp_prev[date]['uic'] or 1) if date in kp_prev else 1 htc_uptake_chart_data[date_in_milliseconds] = nom / denom for row in htc_pos.values(): date = row['htc_month'] date_in_milliseconds = int(date.strftime("%s")) * 1000 nom = (row['uic'] or 0) denom = (htc_tst[date]['uic'] or 1) if date in htc_tst else 1 htc_yield_chart_data[date_in_milliseconds] = nom / denom for row in care_new.values(): date = row['care_new_month'] date_in_milliseconds = int(date.strftime("%s")) * 1000 nom = (row['uic'] or 0) denom = (htc_pos[date]['uic'] or 1) if date in htc_pos else 1 link_chart_data[date_in_milliseconds] = nom / denom return { 'chart': [ { "values": [ {'x': key, 'y': value} for key, value in htc_uptake_chart_data.items() ], "key": "HTC_uptake", "strokeWidth": 2, "classed": "dashed", "color": "blue" }, { "values": [ {'x': key, 'y': value} for key, value in htc_yield_chart_data.items() ], "key": "HTC_yield", "strokeWidth": 2, "classed": "dashed", "color": "orange" }, { "values": [ {'x': key, 'y': value} for key, value in link_chart_data.items() ], "key": "Link to care", "strokeWidth": 2, "classed": "dashed", "color": "gray" } ], 'tickValues': tickValues } def post(self, request, *args, **kwargs): domain = self.kwargs['domain'] return JsonResponse(data=self.generate_data(domain)) @method_decorator([login_and_domain_required], name='dispatch') class ChampFilterView(View): xmlns = None table_name = None column_name = None def get(self, request, *args, **kwargs): domain = self.kwargs['domain'] return JsonResponse(data={ 'options': ChampFilter(domain, self.xmlns, self.table_name, self.column_name).data }) class PreventionPropertiesFilter(ChampFilterView): xmlns = PREVENTION_XMLNS table_name = ENHANCED_PEER_MOBILIZATION class PostTestFilter(ChampFilterView): xmlns = POST_TEST_XMLNS table_name = CHAMP_CAMEROON class TargetFilter(ChampFilterView): xmlns = TARGET_XMLNS table_name = ENHANCED_PEER_MOBILIZATION class DistrictFilterPrevView(PreventionPropertiesFilter): column_name = 'district' class CBOFilterView(TargetFilter): column_name = 'cbo' class UserPLFilterView(TargetFilter): column_name = 'userpl' class UserGroupsFilter(View): def get(self, request, *args, **kwargs): domain = self.kwargs['domain'] groups = Group.by_domain(domain) options = [{'id': '', 'text': 'All'}] return JsonResponse(data={ 'options': options + [{'id': group.get_id, 'text': group.name} for group in groups] }) class OrganizationsFilter(View): def get(self, request, *args, **kwargs): domain = self.kwargs['domain'] locations = SQLLocation.objects.filter(domain=domain).exclude(location_type__code='dic') options = [{'id': '', 'value': 'All'}] return JsonResponse(data={ 'options': options + [{'id': loc.location_id, 'value': loc.name} for loc in locations] }) class HierarchyFilter(View): def get(self, request, *args, **kwargs): domain = self.kwargs['domain'] districts = FixtureDataItem.get_item_list(domain, 'district') cbos = FixtureDataItem.get_item_list(domain, 'cbo') clienttypes = FixtureDataItem.get_item_list(domain, 'clienttype') userpls = FixtureDataItem.get_item_list(domain, 'userpl') def to_filter_format(data, parent_key=None): locations = [dict( id='', text='All' )] for row in data: loc_id = row.fields['id'].field_list[0].field_value loc = dict( id=loc_id, text=loc_id ) if parent_key: parent_id = row.fields[parent_key].field_list[0].field_value loc.update({'parent_id': parent_id}) locations.append(loc) return locations hierarchy = { 'districts': to_filter_format(districts), 'cbos': to_filter_format(cbos, 'district_id'), 'clienttypes': to_filter_format(clienttypes, 'cbo_id'), 'userpls': to_filter_format(userpls, 'clienttype_id') } return JsonResponse(data=hierarchy)
# This file is part of Buildbot. Buildbot is free software: you can # redistribute it and/or modify it under the terms of the GNU General Public # License as published by the Free Software Foundation, version 2. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., 51 # Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # Copyright Buildbot Team Members import time import traceback import inspect import shutil import os import sqlalchemy as sa import tempfile from buildbot.process import metrics from twisted.internet import reactor, threads from twisted.python import threadpool, log # set this to True for *very* verbose query debugging output; this can # be monkey-patched from master.cfg, too: # from buildbot.db import pool # pool.debug = True debug = False _debug_id = 1 def timed_do_fn(f): """Decorate a do function to log before, after, and elapsed time, with the name of the calling function. This is not speedy!""" def wrap(callable, *args, **kwargs): global _debug_id # get a description of the function that called us st = traceback.extract_stack(limit=2) file, line, name, _ = st[0] # and its locals frame = inspect.currentframe(1) locals = frame.f_locals # invent a unique ID for the description id, _debug_id = _debug_id, _debug_id+1 descr = "%s-%08x" % (name, id) start_time = time.time() log.msg("%s - before ('%s' line %d)" % (descr, file, line)) for name in locals: if name in ('self', 'thd'): continue log.msg("%s - %s = %r" % (descr, name, locals[name])) # wrap the callable to log the begin and end of the actual thread # function def callable_wrap(*args, **kargs): log.msg("%s - thd start" % (descr,)) try: return callable(*args, **kwargs) finally: log.msg("%s - thd end" % (descr,)) d = f(callable_wrap, *args, **kwargs) def after(x): end_time = time.time() elapsed = (end_time - start_time) * 1000 log.msg("%s - after (%0.2f ms elapsed)" % (descr, elapsed)) return x d.addBoth(after) return d wrap.__name__ = f.__name__ wrap.__doc__ = f.__doc__ return wrap class DBThreadPool(threadpool.ThreadPool): running = False # Some versions of SQLite incorrectly cache metadata about which tables are # and are not present on a per-connection basis. This cache can be flushed # by querying the sqlite_master table. We currently assume all versions of # SQLite have this bug, although it has only been observed in 3.4.2. A # dynamic check for this bug would be more appropriate. This is documented # in bug #1810. __broken_sqlite = None def __init__(self, engine, verbose=False): # verbose is used by upgrade scripts, and if it is set we should print # messages about versions and other warnings log_msg = log.msg if verbose: def log_msg(m): print m pool_size = 5 # If the engine has an C{optimal_thread_pool_size} attribute, then the # maxthreads of the thread pool will be set to that value. This is # most useful for SQLite in-memory connections, where exactly one # connection (and thus thread) should be used. if hasattr(engine, 'optimal_thread_pool_size'): pool_size = engine.optimal_thread_pool_size threadpool.ThreadPool.__init__(self, minthreads=1, maxthreads=pool_size, name='DBThreadPool') self.engine = engine if engine.dialect.name == 'sqlite': vers = self.get_sqlite_version() if vers < (3,7): log_msg("Using SQLite Version %s" % (vers,)) log_msg("NOTE: this old version of SQLite does not support " "WAL journal mode; a busy master may encounter " "'Database is locked' errors. Consider upgrading.") if vers < (3,4): log_msg("NOTE: this old version of SQLite is not " "supported.") raise RuntimeError("unsupported SQLite version") if self.__broken_sqlite is None: self.__class__.__broken_sqlite = self.detect_bug1810() brkn = self.__broken_sqlite if brkn: log_msg("Applying SQLite workaround from Buildbot bug #1810") self._start_evt = reactor.callWhenRunning(self._start) # patch the do methods to do verbose logging if necessary if debug: self.do = timed_do_fn(self.do) self.do_with_engine = timed_do_fn(self.do_with_engine) def _start(self): self._start_evt = None if not self.running: self.start() self._stop_evt = reactor.addSystemEventTrigger( 'during', 'shutdown', self._stop) self.running = True def _stop(self): self._stop_evt = None self.stop() self.engine.dispose() self.running = False def shutdown(self): """Manually stop the pool. This is only necessary from tests, as the pool will stop itself when the reactor stops under normal circumstances.""" if not self._stop_evt: return # pool is already stopped reactor.removeSystemEventTrigger(self._stop_evt) self._stop() # Try about 170 times over the space of a day, with the last few tries # being about an hour apart. This is designed to span a reasonable amount # of time for repairing a broken database server, while still failing # actual problematic queries eventually BACKOFF_START = 1.0 BACKOFF_MULT = 1.05 MAX_OPERATIONALERROR_TIME = 3600*24 # one day def __thd(self, with_engine, callable, args, kwargs): # try to call callable(arg, *args, **kwargs) repeatedly until no # OperationalErrors occur, where arg is either the engine (with_engine) # or a connection (not with_engine) backoff = self.BACKOFF_START start = time.time() while True: if with_engine: arg = self.engine else: arg = self.engine.contextual_connect() if self.__broken_sqlite: # see bug #1810 arg.execute("select * from sqlite_master") try: try: rv = callable(arg, *args, **kwargs) assert not isinstance(rv, sa.engine.ResultProxy), \ "do not return ResultProxy objects!" except sa.exc.OperationalError, e: text = e.orig.args[0] if not isinstance(text, basestring): raise if "Lost connection" in text \ or "database is locked" in text: # see if we've retried too much elapsed = time.time() - start if elapsed > self.MAX_OPERATIONALERROR_TIME: raise metrics.MetricCountEvent.log( "DBThreadPool.retry-on-OperationalError") log.msg("automatically retrying query after " "OperationalError (%ss sleep)" % backoff) # sleep (remember, we're in a thread..) time.sleep(backoff) backoff *= self.BACKOFF_MULT # and re-try continue else: raise finally: if not with_engine: arg.close() break return rv def do(self, callable, *args, **kwargs): return threads.deferToThreadPool(reactor, self, self.__thd, False, callable, args, kwargs) def do_with_engine(self, callable, *args, **kwargs): return threads.deferToThreadPool(reactor, self, self.__thd, True, callable, args, kwargs) def detect_bug1810(self): # detect buggy SQLite implementations; call only for a known-sqlite # dialect try: import pysqlite2.dbapi2 as sqlite sqlite = sqlite except ImportError: import sqlite3 as sqlite tmpdir = tempfile.mkdtemp() dbfile = os.path.join(tmpdir, "detect_bug1810.db") def test(select_from_sqlite_master=False): conn1 = None conn2 = None try: conn1 = sqlite.connect(dbfile) curs1 = conn1.cursor() curs1.execute("PRAGMA table_info('foo')") conn2 = sqlite.connect(dbfile) curs2 = conn2.cursor() curs2.execute("CREATE TABLE foo ( a integer )") if select_from_sqlite_master: curs1.execute("SELECT * from sqlite_master") curs1.execute("SELECT * from foo") finally: if conn1: conn1.close() if conn2: conn2.close() os.unlink(dbfile) try: test() except sqlite.OperationalError: # this is the expected error indicating it's broken shutil.rmtree(tmpdir) return True # but this version should not fail.. test(select_from_sqlite_master=True) shutil.rmtree(tmpdir) return False # not broken - no workaround required def get_sqlite_version(self): engine = sa.create_engine('sqlite://') conn = engine.contextual_connect() try: r = conn.execute("SELECT sqlite_version()") vers_row = r.fetchone() r.close() except: return (0,) if vers_row: try: return tuple(map(int, vers_row[0].split('.'))) except (TypeError, ValueError): return (0,) else: return (0,)
"""Support for Minut Point.""" import asyncio import logging from httpx import ConnectTimeout from pypoint import PointSession import voluptuous as vol from homeassistant import config_entries from homeassistant.components import webhook from homeassistant.config_entries import ConfigEntry from homeassistant.const import ( CONF_CLIENT_ID, CONF_CLIENT_SECRET, CONF_TOKEN, CONF_WEBHOOK_ID, Platform, ) from homeassistant.core import HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers import config_validation as cv, device_registry from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.helpers.dispatcher import ( async_dispatcher_connect, async_dispatcher_send, ) from homeassistant.helpers.entity import DeviceInfo, Entity from homeassistant.helpers.event import async_track_time_interval from homeassistant.helpers.typing import ConfigType from homeassistant.util.dt import as_local, parse_datetime, utc_from_timestamp from . import config_flow from .const import ( CONF_WEBHOOK_URL, DOMAIN, EVENT_RECEIVED, POINT_DISCOVERY_NEW, SCAN_INTERVAL, SIGNAL_UPDATE_ENTITY, SIGNAL_WEBHOOK, ) _LOGGER = logging.getLogger(__name__) DATA_CONFIG_ENTRY_LOCK = "point_config_entry_lock" CONFIG_ENTRY_IS_SETUP = "point_config_entry_is_setup" PLATFORMS = [Platform.BINARY_SENSOR, Platform.SENSOR] CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_CLIENT_ID): cv.string, vol.Required(CONF_CLIENT_SECRET): cv.string, } ) }, extra=vol.ALLOW_EXTRA, ) async def async_setup(hass: HomeAssistant, config: ConfigType) -> bool: """Set up the Minut Point component.""" if DOMAIN not in config: return True conf = config[DOMAIN] config_flow.register_flow_implementation( hass, DOMAIN, conf[CONF_CLIENT_ID], conf[CONF_CLIENT_SECRET] ) hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_IMPORT} ) ) return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up Point from a config entry.""" async def token_saver(token, **kwargs): _LOGGER.debug("Saving updated token %s", token) hass.config_entries.async_update_entry( entry, data={**entry.data, CONF_TOKEN: token} ) session = PointSession( async_get_clientsession(hass), entry.data["refresh_args"][CONF_CLIENT_ID], entry.data["refresh_args"][CONF_CLIENT_SECRET], token=entry.data[CONF_TOKEN], token_saver=token_saver, ) try: await session.ensure_active_token() except ConnectTimeout as err: _LOGGER.debug("Connection Timeout") raise ConfigEntryNotReady from err except Exception: # pylint: disable=broad-except _LOGGER.error("Authentication Error") return False hass.data[DATA_CONFIG_ENTRY_LOCK] = asyncio.Lock() hass.data[CONFIG_ENTRY_IS_SETUP] = set() await async_setup_webhook(hass, entry, session) client = MinutPointClient(hass, entry, session) hass.data.setdefault(DOMAIN, {}).update({entry.entry_id: client}) hass.async_create_task(client.update()) return True async def async_setup_webhook(hass: HomeAssistant, entry: ConfigEntry, session): """Set up a webhook to handle binary sensor events.""" if CONF_WEBHOOK_ID not in entry.data: webhook_id = webhook.async_generate_id() webhook_url = webhook.async_generate_url(hass, webhook_id) _LOGGER.info("Registering new webhook at: %s", webhook_url) hass.config_entries.async_update_entry( entry, data={ **entry.data, CONF_WEBHOOK_ID: webhook_id, CONF_WEBHOOK_URL: webhook_url, }, ) await session.update_webhook( entry.data[CONF_WEBHOOK_URL], entry.data[CONF_WEBHOOK_ID], ["*"], ) webhook.async_register( hass, DOMAIN, "Point", entry.data[CONF_WEBHOOK_ID], handle_webhook ) async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" webhook.async_unregister(hass, entry.data[CONF_WEBHOOK_ID]) session = hass.data[DOMAIN].pop(entry.entry_id) await session.remove_webhook() unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if not hass.data[DOMAIN]: hass.data.pop(DOMAIN) return unload_ok async def handle_webhook(hass, webhook_id, request): """Handle webhook callback.""" try: data = await request.json() _LOGGER.debug("Webhook %s: %s", webhook_id, data) except ValueError: return None if isinstance(data, dict): data["webhook_id"] = webhook_id async_dispatcher_send(hass, SIGNAL_WEBHOOK, data, data.get("hook_id")) hass.bus.async_fire(EVENT_RECEIVED, data) class MinutPointClient: """Get the latest data and update the states.""" def __init__( self, hass: HomeAssistant, config_entry: ConfigEntry, session: PointSession ) -> None: """Initialize the Minut data object.""" self._known_devices: set[str] = set() self._known_homes: set[str] = set() self._hass = hass self._config_entry = config_entry self._is_available = True self._client = session async_track_time_interval(self._hass, self.update, SCAN_INTERVAL) async def update(self, *args): """Periodically poll the cloud for current state.""" await self._sync() async def _sync(self): """Update local list of devices.""" if not await self._client.update(): self._is_available = False _LOGGER.warning("Device is unavailable") async_dispatcher_send(self._hass, SIGNAL_UPDATE_ENTITY) return async def new_device(device_id, platform): """Load new device.""" config_entries_key = f"{platform}.{DOMAIN}" async with self._hass.data[DATA_CONFIG_ENTRY_LOCK]: if config_entries_key not in self._hass.data[CONFIG_ENTRY_IS_SETUP]: await self._hass.config_entries.async_forward_entry_setup( self._config_entry, platform ) self._hass.data[CONFIG_ENTRY_IS_SETUP].add(config_entries_key) async_dispatcher_send( self._hass, POINT_DISCOVERY_NEW.format(platform, DOMAIN), device_id ) self._is_available = True for home_id in self._client.homes: if home_id not in self._known_homes: await new_device(home_id, "alarm_control_panel") self._known_homes.add(home_id) for device in self._client.devices: if device.device_id not in self._known_devices: for platform in PLATFORMS: await new_device(device.device_id, platform) self._known_devices.add(device.device_id) async_dispatcher_send(self._hass, SIGNAL_UPDATE_ENTITY) def device(self, device_id): """Return device representation.""" return self._client.device(device_id) def is_available(self, device_id): """Return device availability.""" if not self._is_available: return False return device_id in self._client.device_ids async def remove_webhook(self): """Remove the session webhook.""" return await self._client.remove_webhook() @property def homes(self): """Return known homes.""" return self._client.homes async def async_alarm_disarm(self, home_id): """Send alarm disarm command.""" return await self._client.alarm_disarm(home_id) async def async_alarm_arm(self, home_id): """Send alarm arm command.""" return await self._client.alarm_arm(home_id) class MinutPointEntity(Entity): """Base Entity used by the sensors.""" def __init__(self, point_client, device_id, device_class): """Initialize the entity.""" self._async_unsub_dispatcher_connect = None self._client = point_client self._id = device_id self._name = self.device.name self._device_class = device_class self._updated = utc_from_timestamp(0) self._value = None def __str__(self): """Return string representation of device.""" return f"MinutPoint {self.name}" async def async_added_to_hass(self): """Call when entity is added to hass.""" _LOGGER.debug("Created device %s", self) self._async_unsub_dispatcher_connect = async_dispatcher_connect( self.hass, SIGNAL_UPDATE_ENTITY, self._update_callback ) await self._update_callback() async def async_will_remove_from_hass(self): """Disconnect dispatcher listener when removed.""" if self._async_unsub_dispatcher_connect: self._async_unsub_dispatcher_connect() async def _update_callback(self): """Update the value of the sensor.""" @property def available(self): """Return true if device is not offline.""" return self._client.is_available(self.device_id) @property def device(self): """Return the representation of the device.""" return self._client.device(self.device_id) @property def device_class(self): """Return the device class.""" return self._device_class @property def device_id(self): """Return the id of the device.""" return self._id @property def extra_state_attributes(self): """Return status of device.""" attrs = self.device.device_status attrs["last_heard_from"] = as_local(self.last_update).strftime( "%Y-%m-%d %H:%M:%S" ) return attrs @property def device_info(self) -> DeviceInfo: """Return a device description for device registry.""" device = self.device.device return DeviceInfo( connections={ (device_registry.CONNECTION_NETWORK_MAC, device["device_mac"]) }, identifiers={(DOMAIN, device["device_id"])}, manufacturer="Minut", model=f"Point v{device['hardware_version']}", name=device["description"], sw_version=device["firmware"]["installed"], via_device=(DOMAIN, device["home"]), ) @property def name(self): """Return the display name of this device.""" return f"{self._name} {self.device_class.capitalize()}" @property def is_updated(self): """Return true if sensor have been updated.""" return self.last_update > self._updated @property def last_update(self): """Return the last_update time for the device.""" last_update = parse_datetime(self.device.last_update) return last_update @property def should_poll(self): """No polling needed for point.""" return False @property def unique_id(self): """Return the unique id of the sensor.""" return f"point.{self._id}-{self.device_class}" @property def value(self): """Return the sensor value.""" return self._value
from __future__ import print_function, division from .str import StrPrinter from sympy.utilities import default_sort_key class LambdaPrinter(StrPrinter): """ This printer converts expressions into strings that can be used by lambdify. """ def _print_MatrixBase(self, expr): return "%s(%s)" % (expr.__class__.__name__, self._print((expr.tolist()))) _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ _print_MatrixBase def _print_Piecewise(self, expr): result = [] i = 0 for arg in expr.args: e = arg.expr c = arg.cond result.append('((') result.append(self._print(e)) result.append(') if (') result.append(self._print(c)) result.append(') else (') i += 1 result = result[:-1] result.append(') else None)') result.append(')'*(2*i - 2)) return ''.join(result) def _print_Sum(self, expr): loops = ( 'for {i} in range({a}, {b}+1)'.format( i=self._print(i), a=self._print(a), b=self._print(b)) for i, a, b in expr.limits) return '(builtins.sum({function} {loops}))'.format( function=self._print(expr.function), loops=' '.join(loops)) def _print_And(self, expr): result = ['('] for arg in sorted(expr.args, key=default_sort_key): result.extend(['(', self._print(arg), ')']) result.append(' and ') result = result[:-1] result.append(')') return ''.join(result) def _print_Or(self, expr): result = ['('] for arg in sorted(expr.args, key=default_sort_key): result.extend(['(', self._print(arg), ')']) result.append(' or ') result = result[:-1] result.append(')') return ''.join(result) def _print_Not(self, expr): result = ['(', 'not (', self._print(expr.args[0]), '))'] return ''.join(result) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_ITE(self, expr): result = [ '((', self._print(expr.args[1]), ') if (', self._print(expr.args[0]), ') else (', self._print(expr.args[2]), '))' ] return ''.join(result) class TensorflowPrinter(LambdaPrinter): """ Tensorflow printer which handles vectorized piecewise functions, logical operators, etc. """ def _print_And(self, expr): "Logical And printer" # We have to override LambdaPrinter because it uses Python 'and' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_and' to NUMPY_TRANSLATIONS. return '{0}({1})'.format('logical_and', ','.join(self._print(i) for i in expr.args)) def _print_Or(self, expr): "Logical Or printer" # We have to override LambdaPrinter because it uses Python 'or' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_or' to NUMPY_TRANSLATIONS. return '{0}({1})'.format('logical_or', ','.join(self._print(i) for i in expr.args)) def _print_Not(self, expr): "Logical Not printer" # We have to override LambdaPrinter because it uses Python 'not' keyword. # If LambdaPrinter didn't define it, we would still have to define our # own because StrPrinter doesn't define it. return '{0}({1})'.format('logical_not', ','.join(self._print(i) for i in expr.args)) def _print_Piecewise(self, expr, **kwargs): from sympy import Piecewise e, cond = expr.args[0].args if len(expr.args) == 1: return 'select({0}, {1}, {2})'.format( self._print(cond, **kwargs), self._print(e, **kwargs), 0) return 'select({0}, {1}, {2})'.format( self._print(cond, **kwargs), self._print(e, **kwargs), self._print(Piecewise(*expr.args[1:]), **kwargs)) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '{op}({lhs}, {rhs})'.format(op=op[expr.rel_op], lhs=lhs, rhs=rhs) return super(NumPyPrinter, self)._print_Relational(expr) class NumPyPrinter(LambdaPrinter): """ Numpy printer which handles vectorized piecewise functions, logical operators, etc. """ _default_settings = { "order": "none", "full_prec": "auto", } def _print_seq(self, seq, delimiter=', '): "General sequence printer: converts to tuple" # Print tuples here instead of lists because numba supports # tuples in nopython mode. return '({},)'.format(delimiter.join(self._print(item) for item in seq)) def _print_MatMul(self, expr): "Matrix multiplication printer" return '({0})'.format(').dot('.join(self._print(i) for i in expr.args)) def _print_DotProduct(self, expr): # DotProduct allows any shape order, but numpy.dot does matrix # multiplication, so we have to make sure it gets 1 x n by n x 1. arg1, arg2 = expr.args if arg1.shape[0] != 1: arg1 = arg1.T if arg2.shape[1] != 1: arg2 = arg2.T return "dot(%s, %s)" % (self._print(arg1), self._print(arg2)) def _print_Piecewise(self, expr): "Piecewise function printer" exprs = '[{0}]'.format(','.join(self._print(arg.expr) for arg in expr.args)) conds = '[{0}]'.format(','.join(self._print(arg.cond) for arg in expr.args)) # If [default_value, True] is a (expr, cond) sequence in a Piecewise object # it will behave the same as passing the 'default' kwarg to select() # *as long as* it is the last element in expr.args. # If this is not the case, it may be triggered prematurely. return 'select({0}, {1}, default=nan)'.format(conds, exprs) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '{op}({lhs}, {rhs})'.format(op=op[expr.rel_op], lhs=lhs, rhs=rhs) return super(NumPyPrinter, self)._print_Relational(expr) def _print_And(self, expr): "Logical And printer" # We have to override LambdaPrinter because it uses Python 'and' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_and' to NUMPY_TRANSLATIONS. return '{0}({1})'.format('logical_and', ','.join(self._print(i) for i in expr.args)) def _print_Or(self, expr): "Logical Or printer" # We have to override LambdaPrinter because it uses Python 'or' keyword. # If LambdaPrinter didn't define it, we could use StrPrinter's # version of the function and add 'logical_or' to NUMPY_TRANSLATIONS. return '{0}({1})'.format('logical_or', ','.join(self._print(i) for i in expr.args)) def _print_Not(self, expr): "Logical Not printer" # We have to override LambdaPrinter because it uses Python 'not' keyword. # If LambdaPrinter didn't define it, we would still have to define our # own because StrPrinter doesn't define it. return '{0}({1})'.format('logical_not', ','.join(self._print(i) for i in expr.args)) def _print_Min(self, expr): return '{0}(({1}))'.format('amin', ','.join(self._print(i) for i in expr.args)) def _print_Max(self, expr): return '{0}(({1}))'.format('amax', ','.join(self._print(i) for i in expr.args)) # numexpr works by altering the string passed to numexpr.evaluate # rather than by populating a namespace. Thus a special printer... class NumExprPrinter(LambdaPrinter): # key, value pairs correspond to sympy name and numexpr name # functions not appearing in this dict will raise a TypeError _numexpr_functions = { 'sin' : 'sin', 'cos' : 'cos', 'tan' : 'tan', 'asin': 'arcsin', 'acos': 'arccos', 'atan': 'arctan', 'atan2' : 'arctan2', 'sinh' : 'sinh', 'cosh' : 'cosh', 'tanh' : 'tanh', 'asinh': 'arcsinh', 'acosh': 'arccosh', 'atanh': 'arctanh', 'ln' : 'log', 'log': 'log', 'exp': 'exp', 'sqrt' : 'sqrt', 'Abs' : 'abs', 'conjugate' : 'conj', 'im' : 'imag', 're' : 'real', 'where' : 'where', 'complex' : 'complex', 'contains' : 'contains', } def _print_ImaginaryUnit(self, expr): return '1j' def _print_seq(self, seq, delimiter=', '): # simplified _print_seq taken from pretty.py s = [self._print(item) for item in seq] if s: return delimiter.join(s) else: return "" def _print_Function(self, e): func_name = e.func.__name__ nstr = self._numexpr_functions.get(func_name, None) if nstr is None: # check for implemented_function if hasattr(e, '_imp_'): return "(%s)" % self._print(e._imp_(*e.args)) else: raise TypeError("numexpr does not support function '%s'" % func_name) return "%s(%s)" % (nstr, self._print_seq(e.args)) def blacklisted(self, expr): raise TypeError("numexpr cannot be used with %s" % expr.__class__.__name__) # blacklist all Matrix printing _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ blacklisted # blacklist some python expressions _print_list = \ _print_tuple = \ _print_Tuple = \ _print_dict = \ _print_Dict = \ blacklisted def doprint(self, expr): lstr = super(NumExprPrinter, self).doprint(expr) return "evaluate('%s', truediv=True)" % lstr def lambdarepr(expr, **settings): """ Returns a string usable for lambdifying. """ return LambdaPrinter(settings).doprint(expr)
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ResNet V1.""" import collections import functools from absl import logging from flax.deprecated import nn import jax.numpy as jnp import ml_collections from gift.data import dataset_utils from gift.models import base_model from gift.nn import dann_utils from gift.utils import tensor_util class ResidualBlock(nn.Module): """ResNet block.""" def apply(self, x, filters, strides=(1, 1), dropout_rate=0.0, epsilon=1e-5, momentum=0.9, norm_layer='batch_norm', train=True, dtype=jnp.float32): # TODO(samirabnar): Make 4 a parameter. needs_projection = x.shape[-1] != filters * 4 or strides != (1, 1) norm_layer_name = '' if norm_layer == 'batch_norm': norm_layer = nn.BatchNorm.partial( use_running_average=not train, momentum=momentum, epsilon=epsilon, dtype=dtype) norm_layer_name = 'bn' elif norm_layer == 'group_norm': norm_layer = nn.GroupNorm.partial(num_groups=16, dtype=dtype) norm_layer_name = 'gn' conv = nn.Conv.partial(bias=False, dtype=dtype) residual = x if needs_projection: residual = conv(residual, filters * 4, (1, 1), strides, name='proj_conv') residual = norm_layer(residual, name=f'proj_{norm_layer_name}') y = conv(x, filters, (1, 1), name='conv1') y = norm_layer(y, name=f'{norm_layer_name}1') y = nn.relu(y) y = conv(y, filters, (3, 3), strides, name='conv2') y = norm_layer(y, name=f'{norm_layer_name}2') y = nn.relu(y) if dropout_rate > 0.0: y = nn.dropout(y, dropout_rate, deterministic=not train) y = conv(y, filters * 4, (1, 1), name='conv3') y = norm_layer( y, name=f'{norm_layer_name}3', scale_init=nn.initializers.zeros) y = nn.relu(residual + y) return y class ResNet(base_model.BaseModel): """ResNetV1.""" # A dictionary mapping the number of layers in a resnet to the number of # blocks in each stage of the model. _block_size_options = { 1: [1], 18: [2, 2, 2, 2], 34: [3, 4, 6, 3], 50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], 200: [3, 24, 36, 3] } def apply(self, inputs, num_outputs, num_filters=64, num_layers=50, dropout_rate=0.0, input_dropout_rate=0.0, train=True, dtype=jnp.float32, head_bias_init=jnp.zeros, return_activations=False, input_layer_key='input', has_discriminator=False, discriminator=False): """Apply a ResNet network on the input. Args: inputs: jnp array; Inputs. num_outputs: int; Number of output units. num_filters: int; Determines base number of filters. Number of filters in block i is num_filters * 2 ** i. num_layers: int; Number of layers (should be one of the predefined ones.) dropout_rate: float; Rate of dropping out the output of different hidden layers. input_dropout_rate: float; Rate of dropping out the input units. train: bool; Is train? dtype: jnp type; Type of the outputs. head_bias_init: fn(rng_key, shape)--> jnp array; Initializer for head bias parameters. return_activations: bool; If True hidden activation are also returned. input_layer_key: str; Determines where to plugin the input (this is to enable providing inputs to slices of the model). If `input_layer_key` is `layer_i` we assume the inputs are the activations of `layer_i` and pass them to `layer_{i+1}`. has_discriminator: bool; Whether the model should have discriminator layer. discriminator: bool; Whether we should return discriminator logits. Returns: Unnormalized Logits with shape `[bs, num_outputs]`, if return_activations: Logits, dict of hidden activations and the key to the representation(s) which will be used in as ``The Representation'', e.g., for computing losses. """ if num_layers not in ResNet._block_size_options: raise ValueError('Please provide a valid number of layers') block_sizes = ResNet._block_size_options[num_layers] layer_activations = collections.OrderedDict() input_is_set = False current_rep_key = 'input' if input_layer_key == current_rep_key: x = inputs input_is_set = True if input_is_set: # Input dropout x = nn.dropout(x, input_dropout_rate, deterministic=not train) layer_activations[current_rep_key] = x rep_key = current_rep_key current_rep_key = 'init_conv' if input_layer_key == current_rep_key: x = inputs input_is_set = True layer_activations[current_rep_key] = x rep_key = current_rep_key elif input_is_set: # First block x = nn.Conv( x, num_filters, (7, 7), (2, 2), padding=[(3, 3), (3, 3)], bias=False, dtype=dtype, name='init_conv') x = nn.BatchNorm( x, use_running_average=not train, momentum=0.9, epsilon=1e-5, dtype=dtype, name='init_bn') x = nn.relu(x) x = nn.max_pool(x, (3, 3), strides=(2, 2), padding='SAME') layer_activations[current_rep_key] = x rep_key = current_rep_key # Residual blocks for i, block_size in enumerate(block_sizes): # Stage i (each stage contains blocks of the same size). for j in range(block_size): strides = (2, 2) if i > 0 and j == 0 else (1, 1) current_rep_key = f'block_{i + 1}+{j}' if input_layer_key == current_rep_key: x = inputs input_is_set = True layer_activations[current_rep_key] = x rep_key = current_rep_key elif input_is_set: x = ResidualBlock( x, num_filters * 2**i, strides=strides, dropout_rate=dropout_rate, train=train, dtype=dtype, name=f'block_{i + 1}_{j}') layer_activations[current_rep_key] = x rep_key = current_rep_key current_rep_key = 'avg_pool' if input_layer_key == current_rep_key: x = inputs input_is_set = True layer_activations[current_rep_key] = x rep_key = current_rep_key elif input_is_set: # Global Average Pool x = jnp.mean(x, axis=(1, 2)) layer_activations[current_rep_key] = x rep_key = current_rep_key # DANN module if has_discriminator: z = dann_utils.flip_grad_identity(x) z = nn.Dense(z, 2, name='disc_l1', bias=True) z = nn.relu(z) z = nn.Dense(z, 2, name='disc_l2', bias=True) current_rep_key = 'head' if input_layer_key == current_rep_key: x = inputs layer_activations[current_rep_key] = x rep_key = current_rep_key logging.warn('Input was never used') elif input_is_set: x = nn.Dense( x, num_outputs, dtype=dtype, bias_init=head_bias_init, name='head') # Make sure that the output is float32, even if our previous computations # are in float16, or other types. x = jnp.asarray(x, jnp.float32) outputs = x if return_activations: outputs = (x, layer_activations, rep_key) if discriminator and has_discriminator: outputs = outputs + (z,) else: del layer_activations if discriminator and has_discriminator: outputs = (x, z) if discriminator and (not has_discriminator): raise ValueError( 'Incosistent values passed for discriminator and has_discriminator') return outputs @classmethod def build_flax_module(cls, hparams=None, dataset_metadata=None): """Build flax module (partially build by passing the hparams). API use to initialize a flax Model: ``` model_def = model_cls.build_flax_module(hparams) _, initial_params = model_def.init_by_shape( rng, [((device_batch_size,)+dataset.meta_data['input_shape'][1:], jnp.float32)]) model = nn.Model(model_def, initial_params) ``` Args: hparams: ConfigDict; contains the hyperparams of the model architecture. dataset_metadata: dict; if hparams is None, dataset_meta data should be passed to provide the output_dim for the default hparam set. Returns: partially build class and hparams. """ hparams = super(ResNet, cls).build_flax_module(hparams, dataset_metadata) model_dtype = dataset_utils.DATA_TYPE[hparams.get('model_dtype_str', 'float32')].jax_dtype return cls.partial( num_outputs=hparams.output_dim, num_filters=hparams.num_filters, num_layers=hparams.num_layers, dropout_rate=hparams.dropout_rate, input_dropout_rate=hparams.input_dropout_rate, head_bias_init=functools.partial( tensor_util.constant_initializer, fill_value=jnp.float32(hparams.get('head_bias_init', 0.0))), dtype=model_dtype, has_discriminator=hparams.get('has_discriminator', False)), hparams @classmethod def default_flax_module_hparams(cls, dataset_metadata): """Default hparams for the flax module that is built in `build_flax_module`. This function in particular serves the testing functions and supposed to provide hparams tha are passed to the flax_module when it's build in `build_flax_module` function, e.g., `model_dtype_str`. Args: dataset_metadata: dict; Passed to provide output dim. Returns: default hparams. """ return ml_collections.ConfigDict( dict( output_dim=dataset_metadata['num_classes'], num_filters=32, num_layers=1, dropout_rate=0.1, input_dropout_rate=0.0, data_dtype_str='float32', has_discriminator=False, ))
# Copyright 2017 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base GCP client which uses the discovery API. """ # modifications (c7n) # - flight recorder support # - env creds sourcing # - various minor bug fixes # todo: # - consider forking googleapiclient to get rid of httplib2 from __future__ import absolute_import, division, print_function, unicode_literals import logging import threading import os import socket import ssl from googleapiclient import discovery, errors # NOQA from googleapiclient.http import set_user_agent from google.auth.credentials import with_scopes_if_required import google.oauth2.credentials import google_auth_httplib2 import httplib2 from ratelimiter import RateLimiter from retrying import retry from six.moves import http_client from six.moves.urllib.error import URLError HTTPLIB_CA_BUNDLE = os.environ.get('HTTPLIB_CA_BUNDLE') CLOUD_SCOPES = frozenset(['https://www.googleapis.com/auth/cloud-platform']) # Per request max wait timeout. HTTP_REQUEST_TIMEOUT = 30.0 # Per thread storage. LOCAL_THREAD = threading.local() log = logging.getLogger('c7n_gcp.client') # Default value num_retries within HttpRequest execute method NUM_HTTP_RETRIES = 5 RETRYABLE_EXCEPTIONS = ( http_client.ResponseNotReady, http_client.IncompleteRead, httplib2.ServerNotFoundError, socket.error, ssl.SSLError, URLError, # include "no network connection" ) class PaginationNotSupported(Exception): """Pagination not supported on this api.""" def is_retryable_exception(e): """Whether exception should be retried. Args: e (Exception): Exception object. Returns: bool: True for exceptions to retry. False otherwise. """ return isinstance(e, RETRYABLE_EXCEPTIONS) @retry(retry_on_exception=is_retryable_exception, wait_exponential_multiplier=1000, wait_exponential_max=10000, stop_max_attempt_number=5) def _create_service_api(credentials, service_name, version, developer_key=None, cache_discovery=False, http=None): """Builds and returns a cloud API service object. Args: credentials (OAuth2Credentials): Credentials that will be used to authenticate the API calls. service_name (str): The name of the API. version (str): The version of the API to use. developer_key (str): The api key to use to determine the project associated with the API call, most API services do not require this to be set. cache_discovery (bool): Whether or not to cache the discovery doc. Returns: object: A Resource object with methods for interacting with the service. """ # The default logging of the discovery obj is very noisy in recent versions. # Lower the default logging level of just this module to WARNING unless # debug is enabled. if log.getEffectiveLevel() > logging.DEBUG: logging.getLogger(discovery.__name__).setLevel(logging.WARNING) discovery_kwargs = { 'serviceName': service_name, 'version': version, 'developerKey': developer_key, 'cache_discovery': cache_discovery, } if http: discovery_kwargs['http'] = http else: discovery_kwargs['credentials'] = credentials return discovery.build(**discovery_kwargs) def _build_http(http=None): """Construct an http client suitable for googleapiclient usage w/ user agent. """ if not http: http = httplib2.Http( timeout=HTTP_REQUEST_TIMEOUT, ca_certs=HTTPLIB_CA_BUNDLE) user_agent = 'Python-httplib2/{} (gzip), {}/{}'.format( httplib2.__version__, 'custodian-gcp', '0.1') return set_user_agent(http, user_agent) class Session(object): """Base class for API repository for a specified Cloud API.""" def __init__(self, credentials=None, quota_max_calls=None, quota_period=None, use_rate_limiter=False, http=None, project_id=None, **kwargs): """Constructor. Args: api_name (str): The API name to wrap. More details here: https://developers.google.com/api-client-library/python/apis/ versions (list): A list of version strings to initialize. credentials (object): GoogleCredentials. quota_max_calls (int): Allowed requests per <quota_period> for the API. quota_period (float): The time period to track requests over. use_rate_limiter (bool): Set to false to disable the use of a rate limiter for this service. **kwargs (dict): Additional args such as version. """ self._use_cached_http = False if not credentials: # Only share the http object when using the default credentials. self._use_cached_http = True credentials, _ = google.auth.default() self._credentials = with_scopes_if_required(credentials, list(CLOUD_SCOPES)) if use_rate_limiter: self._rate_limiter = RateLimiter(max_calls=quota_max_calls, period=quota_period) else: self._rate_limiter = None self._http = http self.project_id = project_id def __repr__(self): """The object representation. Returns: str: The object representation. """ return '<gcp-session: http=%s>' % (self._http,) def get_default_project(self): if self.project_id: return self.project_id for k in ('GOOGLE_PROJECT', 'GCLOUD_PROJECT', 'GOOGLE_CLOUD_PROJECT', 'CLOUDSDK_CORE_PROJECT'): if k in os.environ: return os.environ[k] raise ValueError("No GCP Project ID set - set CLOUDSDK_CORE_PROJECT") def get_default_region(self): for k in ('GOOGLE_REGION', 'GCLOUD_REGION', 'CLOUDSDK_COMPUTE_REGION'): if k in os.environ: return os.environ[k] def get_default_zone(self): for k in ('GOOGLE_ZONE', 'GCLOUD_ZONE', 'CLOUDSDK_COMPUTE_ZONE'): if k in os.environ: return os.environ[k] def client(self, service_name, version, component, **kw): """Safely initialize a repository class to a property. Args: repository_class (class): The class to initialize. version (str): The gcp service version for the repository. Returns: object: An instance of repository_class. """ service = _create_service_api( self._credentials, service_name, version, kw.get('developer_key'), kw.get('cache_discovery', False), self._http) return ServiceClient( gcp_service=service, component=component, credentials=self._credentials, rate_limiter=self._rate_limiter, use_cached_http=self._use_cached_http, http=self._http) # pylint: disable=too-many-instance-attributes, too-many-arguments class ServiceClient(object): """Base class for GCP APIs.""" def __init__(self, gcp_service, credentials, component=None, num_retries=NUM_HTTP_RETRIES, key_field='project', entity_field=None, list_key_field=None, get_key_field=None, max_results_field='maxResults', search_query_field='query', rate_limiter=None, use_cached_http=True, http=None): """Constructor. Args: gcp_service (object): A Resource object with methods for interacting with the service. credentials (OAuth2Credentials): A Credentials object component (str): The subcomponent of the gcp service for this repository instance. E.g. 'instances' for compute.instances().* APIs num_retries (int): The number of http retriable errors to retry on before hard failing. key_field (str): The field name representing the project to query in the API. entity_field (str): The API entity returned generally by the .get() api. E.g. 'instance' for compute.instances().get() list_key_field (str): Optional override of key field for calls to list methods. get_key_field (str): Optional override of key field for calls to get methods. max_results_field (str): The field name that represents the maximum number of results to return in one page. search_query_field (str): The field name used to filter search results. rate_limiter (object): A RateLimiter object to manage API quota. use_cached_http (bool): If set to true, calls to the API will use a thread local shared http object. When false a new http object is used for each request. """ self.gcp_service = gcp_service self._credentials = credentials self._component = None if component: component_api = gcp_service for c in component.split('.'): component_api = getattr(component_api, c)() self._component = component_api self._entity_field = entity_field self._num_retries = num_retries if list_key_field: self._list_key_field = list_key_field else: self._list_key_field = key_field if get_key_field: self._get_key_field = get_key_field else: self._get_key_field = key_field self._max_results_field = max_results_field self._search_query_field = search_query_field self._rate_limiter = rate_limiter self._use_cached_http = use_cached_http self._local = LOCAL_THREAD self._http_replay = http @property def http(self): """A thread local instance of httplib2.Http. Returns: httplib2.Http: An Http instance authorized by the credentials. """ if self._use_cached_http and hasattr(self._local, 'http'): return self._local.http if self._http_replay is not None: # httplib2 instance is not thread safe http = self._http_replay else: http = _build_http() authorized_http = google_auth_httplib2.AuthorizedHttp( self._credentials, http=http) if self._use_cached_http: self._local.http = authorized_http return authorized_http def get_http(self): """Return an http instance sans credentials""" if self._http_replay: return self._http_replay return _build_http() def _build_request(self, verb, verb_arguments): """Builds HttpRequest object. Args: verb (str): Request verb (ex. insert, update, delete). verb_arguments (dict): Arguments to be passed with the request. Returns: httplib2.HttpRequest: HttpRequest to be sent to the API. """ method = getattr(self._component, verb) # Python insists that keys in **kwargs be strings (not variables). # Since we initially build our kwargs as a dictionary where one of the # keys is a variable (target), we need to convert keys to strings, # even though the variable in question is of type str. method_args = {str(k): v for k, v in verb_arguments.items()} return method(**method_args) def _build_next_request(self, verb, prior_request, prior_response): """Builds pagination-aware request object. More details: https://developers.google.com/api-client-library/python/guide/pagination Args: verb (str): Request verb (ex. insert, update, delete). prior_request (httplib2.HttpRequest): Request that may trigger paging. prior_response (dict): Potentially partial response. Returns: httplib2.HttpRequest: HttpRequest or None. None is returned when there is nothing more to fetch - request completed. """ method = getattr(self._component, verb + '_next') return method(prior_request, prior_response) def supports_pagination(self, verb): """Determines if the API action supports pagination. Args: verb (str): Request verb (ex. insert, update, delete). Returns: bool: True when API supports pagination, False otherwise. """ return getattr(self._component, verb + '_next', None) def execute_command(self, verb, verb_arguments): """Executes command (ex. add) via a dedicated http object. Async APIs may take minutes to complete. Therefore, callers are encouraged to leverage concurrent.futures (or similar) to place long running commands on a separate threads. Args: verb (str): Method to execute on the component (ex. get, list). verb_arguments (dict): key-value pairs to be passed to _build_request. Returns: dict: An async operation Service Response. """ request = self._build_request(verb, verb_arguments) return self._execute(request) def execute_paged_query(self, verb, verb_arguments): """Executes query (ex. list) via a dedicated http object. Args: verb (str): Method to execute on the component (ex. get, list). verb_arguments (dict): key-value pairs to be passed to _BuildRequest. Yields: dict: Service Response. Raises: PaginationNotSupportedError: When an API does not support paging. """ if not self.supports_pagination(verb=verb): raise PaginationNotSupported('{} does not support pagination') request = self._build_request(verb, verb_arguments) number_of_pages_processed = 0 while request is not None: response = self._execute(request) number_of_pages_processed += 1 log.debug('Executing paged request #%s', number_of_pages_processed) request = self._build_next_request(verb, request, response) yield response def execute_search_query(self, verb, verb_arguments): """Executes query (ex. search) via a dedicated http object. Args: verb (str): Method to execute on the component (ex. search). verb_arguments (dict): key-value pairs to be passed to _BuildRequest. Yields: dict: Service Response. """ # Implementation of search does not follow the standard API pattern. # Fields need to be in the body rather than sent seperately. next_page_token = None number_of_pages_processed = 0 while True: req_body = verb_arguments.get('body', dict()) if next_page_token: req_body['pageToken'] = next_page_token request = self._build_request(verb, verb_arguments) response = self._execute(request) number_of_pages_processed += 1 log.debug('Executing paged request #%s', number_of_pages_processed) next_page_token = response.get('nextPageToken') yield response if not next_page_token: break def execute_query(self, verb, verb_arguments): """Executes query (ex. get) via a dedicated http object. Args: verb (str): Method to execute on the component (ex. get, list). verb_arguments (dict): key-value pairs to be passed to _BuildRequest. Returns: dict: Service Response. """ request = self._build_request(verb, verb_arguments) return self._execute(request) @retry(retry_on_exception=is_retryable_exception, wait_exponential_multiplier=1000, wait_exponential_max=10000, stop_max_attempt_number=5) def _execute(self, request): """Run execute with retries and rate limiting. Args: request (object): The HttpRequest object to execute. Returns: dict: The response from the API. """ if self._rate_limiter: # Since the ratelimiter library only exposes a context manager # interface the code has to be duplicated to handle the case where # no rate limiter is defined. with self._rate_limiter: return request.execute(http=self.http, num_retries=self._num_retries) return request.execute(http=self.http, num_retries=self._num_retries)
# # Client connect to an Electrum server. # # Runtime check for optional modules from importlib import util as importutil import json, warnings, asyncio, ssl from .protocol import StratumProtocol # Check if aiosocks is present, and load it if it is. if importutil.find_spec("aiosocks") is not None: import aiosocks have_aiosocks = True else: have_aiosocks = False from collections import defaultdict from .exc import ElectrumErrorResponse import logging logger = logging.getLogger(__name__) class StratumClient: def __init__(self, loop=None): ''' Setup state needed to handle req/resp from a single Stratum server. Requires a transport (TransportABC) object to do the communication. ''' self.protocol = None self.next_id = 1 self.inflight = {} self.subscriptions = defaultdict(list) self.actual_connection = {} self.ka_task = None self.loop = loop or asyncio.get_event_loop() self.reconnect = None # call connect() first # next step: call connect() def connection_lost(self, protocol): # Ignore connection_lost for old connections if protocol is not self.protocol: return self.protocol = None logger.warn("Electrum server connection lost") # cleanup keep alive task if self.ka_task: self.ka_task.cancel() self.ka_task = None def close(self): if self.protocol: self.protocol.close() self.protocol = None if self.ka_task: self.ka_task.cancel() self.ka_task = None async def connect(self, server_info, proto_code=None, *, use_tor=False, disable_cert_verify=False, proxy=None, short_term=False): ''' Start connection process. Destination must be specified in a ServerInfo() record (first arg). ''' self.server_info = server_info if not proto_code: proto_code,*_ = server_info.protocols self.proto_code = proto_code logger.debug("Connecting to: %r" % server_info) if proto_code == 'g': # websocket # to do this, we'll need a websockets implementation that # operates more like a asyncio.Transport # maybe: `asyncws` or `aiohttp` raise NotImplementedError('sorry no WebSocket transport yet') hostname, port, use_ssl = server_info.get_port(proto_code) if use_tor: if have_aiosocks: # Connect via Tor proxy proxy, assumed to be on localhost:9050 # unless a tuple is given with another host/port combo. try: socks_host, socks_port = use_tor except TypeError: socks_host, socks_port = 'localhost', 9050 # basically no-one has .onion SSL certificates, and # pointless anyway. disable_cert_verify = True assert not proxy, "Sorry not yet supporting proxy->tor->dest" logger.debug(" .. using TOR") proxy = aiosocks.Socks5Addr(socks_host, int(socks_port)) else: logger.debug("Error: want to use tor, but no aiosocks module.") if use_ssl == True and disable_cert_verify: # Create a more liberal SSL context that won't # object to self-signed certicates. This is # very bad on public Internet, but probably ok # over Tor use_ssl = ssl.create_default_context() use_ssl.check_hostname = False use_ssl.verify_mode = ssl.CERT_NONE logger.debug(" .. SSL cert check disabled") async def _reconnect(): if self.protocol: return # race/duplicate work if proxy: if have_aiosocks: transport, protocol = await aiosocks.create_connection( StratumProtocol, proxy=proxy, proxy_auth=None, remote_resolve=True, ssl=use_ssl, dst=(hostname, port)) else: logger.debug("Error: want to use proxy, but no aiosocks module.") else: transport, protocol = await self.loop.create_connection( StratumProtocol, host=hostname, port=port, ssl=use_ssl) self.protocol = protocol protocol.client = self # capture actual values used self.actual_connection = dict(hostname=hostname, port=int(port), ssl=bool(use_ssl), tor=bool(proxy)) self.actual_connection['ip_addr'] = transport.get_extra_info('peername', default=['unknown'])[0] if not short_term: self.ka_task = self.loop.create_task(self._keepalive()) logger.debug("Connected to: %r" % server_info) # close whatever we had if self.protocol: logger.warn("connect called when already connected, closing previous connection") self.protocol.close() self.protocol = None self.reconnect = _reconnect await self.reconnect() async def _keepalive(self): ''' Keep our connect to server alive forever, with some pointless traffic. ''' while self.protocol: vers = await self.RPC('server.version') logger.debug("Server version: " + repr(vers)) # Five minutes isn't really enough anymore; looks like # servers are killing 2-minute old idle connections now. # But decreasing interval this seems rude. await asyncio.sleep(600) def _send_request(self, method, params=[], is_subscribe = False): ''' Send a new request to the server. Serialized the JSON and tracks id numbers and optional callbacks. ''' # pick a new ID self.next_id += 1 req_id = self.next_id # serialize as JSON msg = {'id': req_id, 'method': method, 'params': params} # subscriptions are a Q, normal requests are a future if is_subscribe: waitQ = asyncio.Queue() self.subscriptions[method].append(waitQ) fut = asyncio.Future(loop=self.loop) self.inflight[req_id] = (msg, fut) # send it via the transport, which serializes it if not self.protocol: logger.debug("Need to reconnect to server") async def connect_first(): await self.reconnect() self.protocol.send_data(msg) self.loop.create_task(connect_first()) else: # typical case, send request immediatedly, response is a future self.protocol.send_data(msg) return fut if not is_subscribe else (fut, waitQ) def _got_response(self, msg): ''' Decode and dispatch responses from the server. Has already been unframed and deserialized into an object. ''' #logger.debug("MSG: %r" % msg) resp_id = msg.get('id', None) if resp_id is None: # subscription traffic comes with method set, but no req id. method = msg.get('method', None) if not method: logger.error("Incoming server message had no ID nor method in it", msg) return # not obvious, but result is on params, not result, for subscriptions result = msg.get('params', None) logger.debug("Traffic on subscription: %s" % method) subs = self.subscriptions.get(method) for q in subs: self.loop.create_task(q.put(result)) return assert 'method' not in msg result = msg.get('result') # fetch and forget about the request inf = self.inflight.pop(resp_id) if not inf: logger.error("Incoming server message had unknown ID in it: %s" % resp_id) return # it's a future which is done now req, rv = inf if 'error' in msg: err = msg['error'] logger.info("Error response: '%s'" % err) rv.set_exception(ElectrumErrorResponse(err, req)) else: rv.set_result(result) def RPC(self, method, *params): ''' Perform a remote command. Expects a method name, which look like: blockchain.address.get_balance .. and sometimes take arguments, all of which are positional. Returns a future which will you should await for the result from the server. Failures are returned as exceptions. ''' assert '.' in method #assert not method.endswith('subscribe') return self._send_request(method, params) def subscribe(self, method, *params): ''' Perform a remote command which will stream events/data to us. Expects a method name, which look like: server.peers.subscribe .. and sometimes take arguments, all of which are positional. Returns a tuple: (Future, asyncio.Queue). The future will have the result of the initial call, and the queue will receive additional responses as they happen. ''' assert '.' in method assert method.endswith('subscribe') return self._send_request(method, params, is_subscribe=True) if __name__ == '__main__': from transport import SocketTransport from svr_info import KnownServers, ServerInfo logging.basicConfig(format="%(asctime)-11s %(message)s", datefmt="[%d/%m/%Y-%H:%M:%S]") loop = asyncio.get_event_loop() loop.set_debug(True) proto_code = 's' if 0: ks = KnownServers() ks.from_json('servers.json') which = ks.select(proto_code, is_onion=True, min_prune=1000)[0] else: which = ServerInfo({ "seen_at": 1465686119.022801, "ports": "t s", "nickname": "dunp", "pruning_limit": 10000, "version": "1.0", "hostname": "erbium1.sytes.net" }) c = StratumClient(loop=loop) loop.run_until_complete(c.connect(which, proto_code, disable_cert_verify=True, use_tor=True)) rv = loop.run_until_complete(c.RPC('server.peers.subscribe')) print("DONE!: this server has %d peers" % len(rv)) loop.close() #c.blockchain.address.get_balance(23)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ServiceEndpointPoliciesOperations(object): """ServiceEndpointPoliciesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2019_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _delete_initial( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified service endpoint policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, service_endpoint_policy_name=service_endpoint_policy_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def get( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str expand=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "_models.ServiceEndpointPolicy" """Gets the specified service Endpoint Policies in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ServiceEndpointPolicy, or the result of cls(response) :rtype: ~azure.mgmt.network.v2019_08_01.models.ServiceEndpointPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "_models.ServiceEndpointPolicy" **kwargs # type: Any ): # type: (...) -> "_models.ServiceEndpointPolicy" cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ServiceEndpointPolicy') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "_models.ServiceEndpointPolicy" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ServiceEndpointPolicy"] """Creates or updates a service Endpoint Policies. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :param parameters: Parameters supplied to the create or update service endpoint policy operation. :type parameters: ~azure.mgmt.network.v2019_08_01.models.ServiceEndpointPolicy :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ServiceEndpointPolicy or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2019_08_01.models.ServiceEndpointPolicy] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, service_endpoint_policy_name=service_endpoint_policy_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def _update_initial( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> "_models.ServiceEndpointPolicy" cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def begin_update( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ServiceEndpointPolicy"] """Updates service Endpoint Policies. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :param parameters: Parameters supplied to update service endpoint policy tags. :type parameters: ~azure.mgmt.network.v2019_08_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ServiceEndpointPolicy or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2019_08_01.models.ServiceEndpointPolicy] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicy"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_initial( resource_group_name=resource_group_name, service_endpoint_policy_name=service_endpoint_policy_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def list( self, **kwargs # type: Any ): # type: (...) -> Iterable["_models.ServiceEndpointPolicyListResult"] """Gets all the service endpoint policies in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ServiceEndpointPolicyListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2019_08_01.models.ServiceEndpointPolicyListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicyListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicyListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/ServiceEndpointPolicies'} # type: ignore def list_by_resource_group( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ServiceEndpointPolicyListResult"] """Gets all service endpoint Policies in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ServiceEndpointPolicyListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2019_08_01.models.ServiceEndpointPolicyListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ServiceEndpointPolicyListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2019-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicyListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies'} # type: ignore
# # Copyright (c) 2014 Juniper Networks, Inc. All rights reserved. # """ This file contains base implementation of both spines and leafs """ from db import * from dm_utils import DMUtils from ansible_conf import AnsibleConf from ansible_conf import JunosInterface from abstract_device_api.abstract_device_xsd import * import abc class AnsibleRoleCommon(AnsibleConf): @classmethod def is_role_supported(cls, role): if role and role.lower().startswith('e2-'): return False for _role in cls._roles or []: if role.lower().startswith(_role.lower()): return True return False # end is_role_supported def __init__(self, logger, params={}): super(AnsibleRoleCommon, self).__init__(logger, params) # end __init__ def is_gateway(self): if self.physical_router.routing_bridging_roles: gateway_roles = [r for r in self.physical_router.routing_bridging_roles if 'Gateway' in r] if gateway_roles: return True return False # end is_spine def underlay_config(self, is_delete=False): self._logger.info("underlay config start: %s(%s)\n" % (self.physical_router.name, self.physical_router.uuid)) if not is_delete: self.build_underlay_bgp() self.send_conf(is_delete=is_delete, retry=False) self._logger.info("underlay config end: %s(%s)\n" % (self.physical_router.name, self.physical_router.uuid)) # end underlay_config def initialize(self): super(AnsibleRoleCommon, self).initialize() self.irb_interfaces = [] self.internal_vn_ris = [] # end initialize def attach_irb(self, ri_conf, ri): if not self.is_gateway(): return is_l2 = ri_conf.get("is_l2", False) is_l2_l3 = ri_conf.get("is_l2_l3", False) vni = ri_conf.get("vni", None) network_id = ri_conf.get("network_id", None) if (is_l2 and vni is not None and self.is_family_configured(self.bgp_params, "e-vpn")): if is_l2_l3: self.irb_interfaces.append("irb." + str(network_id)) # end attach_irb def set_internal_vn_irb_config(self): if self.internal_vn_ris and self.irb_interfaces: for int_ri in self.internal_vn_ris: lr_uuid = DMUtils.extract_lr_uuid_from_internal_vn_name(int_ri.name) lr = LogicalRouterDM.get(lr_uuid) if not lr: continue vn_list = lr.get_connected_networks(include_internal=False) for vn in vn_list: vn_obj = VirtualNetworkDM.get(vn) irb_name = "irb." + str(vn_obj.vn_network_id) if irb_name in self.irb_interfaces: int_ri.add_routing_interfaces(LogicalInterface(name=irb_name)) # end set_internal_vn_irb_config def add_irb_config(self, ri_conf): vn = ri_conf.get("vn") is_l2_l3 = ri_conf.get("is_l2_l3", False) gateways = ri_conf.get("gateways", []) network_id = ri_conf.get("network_id", None) self.interfaces_config = self.interfaces_config or [] irb_intf = PhysicalInterface(name='irb', interface_type='irb') self.interfaces_config.append(irb_intf) self._logger.info("Vn=" + vn.name + ", IRB: " + str(gateways) + ", pr=" + self.physical_router.name) if gateways is not None: intf_unit = LogicalInterface( name='irb.' + str(network_id), unit=network_id, comment=DMUtils.vn_irb_comment(vn, False, is_l2_l3)) irb_intf.add_logical_interfaces(intf_unit) for (irb_ip, gateway) in gateways: intf_unit.add_ip_list(irb_ip) if len(gateway) and gateway != '0.0.0.0': intf_unit.set_gateway(gateway) # end add_irb_config # lo0 interface in RI for route lookup to happen for Inter VN traffic # qfx10k pfe limitation def add_bogus_lo0(self, ri, network_id, vn): self.interfaces_config = self.interfaces_config or [] ifl_num = 1000 + int(network_id) lo_intf = PhysicalInterface(name="lo0", interface_type='loopback') self.interfaces_config.append(lo_intf) intf_unit = LogicalInterface( name="lo0." + str(ifl_num), unit=ifl_num, comment=DMUtils.l3_bogus_lo_intf_comment(vn)) intf_unit.add_ip_list("127.0.0.1") lo_intf.add_logical_interfaces(intf_unit) ri.add_loopback_interfaces(LogicalInterface(name="lo0." + str(ifl_num))) # end add_bogus_lo0 def add_inet_public_vrf_filter(self, firewall_config, inet_type): firewall_config.set_family(inet_type) f = FirewallFilter(name=DMUtils.make_public_vrf_filter_name(inet_type)) f.set_comment(DMUtils.public_vrf_filter_comment()) firewall_config.add_firewall_filters(f) term = Term(name="default-term", then=Then(accept_or_reject=True)) f.add_terms(term) return f # end add_inet_public_vrf_filter def add_inet_filter_term(self, ri_name, prefixes, inet_type): if inet_type == 'inet6': prefixes = DMUtils.get_ipv6_prefixes(prefixes) else: prefixes = DMUtils.get_ipv4_prefixes(prefixes) from_ = From() for prefix in prefixes: from_.add_destination_address(self.get_subnet_for_cidr(prefix)) then_ = Then() then_.add_routing_instance(ri_name) return Term(name=DMUtils.make_vrf_term_name(ri_name), fromxx=from_, then=then_) # end add_inet_filter_term def add_routing_instance(self, ri_conf): ri_name = ri_conf.get("ri_name") vn = ri_conf.get("vn") is_l2 = ri_conf.get("is_l2", False) is_l2_l3 = ri_conf.get("is_l2_l3", False) import_targets = ri_conf.get("import_targets", set()) export_targets = ri_conf.get("export_targets", set()) prefixes = ri_conf.get("prefixes", []) gateways = ri_conf.get("gateways", []) router_external = ri_conf.get("router_external", False) interfaces = ri_conf.get("interfaces", []) vni = ri_conf.get("vni", None) fip_map = ri_conf.get("fip_map", None) network_id = ri_conf.get("network_id", None) is_internal_vn = True if '_contrail_lr_internal_vn_' in vn.name else False encapsulation_priorities = \ ri_conf.get("encapsulation_priorities") or ["MPLSoGRE"] self.ri_config = self.ri_config or [] ri = RoutingInstance(name=ri_name) if vn: is_nat = True if fip_map else False ri.set_comment(DMUtils.vn_ri_comment(vn, is_l2, is_l2_l3, is_nat, router_external)) self.ri_config.append(ri) ri.set_virtual_network_id(str(network_id)) ri.set_vxlan_id(str(vni)) ri.set_virtual_network_is_internal(is_internal_vn) ri.set_is_public_network(router_external) if is_l2_l3: ri.set_virtual_network_mode('l2-l3') elif is_l2: ri.set_virtual_network_mode('l2') else: ri.set_virtual_network_mode('l3') has_ipv6_prefixes = DMUtils.has_ipv6_prefixes(prefixes) has_ipv4_prefixes = DMUtils.has_ipv4_prefixes(prefixes) if not is_l2: ri.set_routing_instance_type("vrf") if fip_map is None: for interface in interfaces: ri.add_interfaces(LogicalInterface(name=interface.name)) if prefixes: for prefix in prefixes: ri.add_static_routes(self.get_route_for_cidr(prefix)) ri.add_prefixes(self.get_subnet_for_cidr(prefix)) else: if encapsulation_priorities[0] == "VXLAN": ri.set_routing_instance_type("virtual-switch") elif (any(x in encapsulation_priorities for x in ["MPLSoGRE", "MPLSoUDP"])): ri.set_routing_instance_type("evpn") if is_internal_vn: self.internal_vn_ris.append(ri) if is_internal_vn or router_external: self.add_bogus_lo0(ri, network_id, vn) if self.is_gateway() and is_l2_l3: self.add_irb_config(ri_conf) self.attach_irb(ri_conf, ri) if fip_map is not None: ri.add_interfaces(LogicalInterface(name=interfaces[0].name)) public_vrf_ips = {} for pip in fip_map.values(): if pip["vrf_name"] not in public_vrf_ips: public_vrf_ips[pip["vrf_name"]] = set() public_vrf_ips[pip["vrf_name"]].add(pip["floating_ip"]) for public_vrf, fips in public_vrf_ips.items(): ri.add_interfaces(LogicalInterface(name=interfaces[1].name)) floating_ips = [] for fip in fips: ri.add_static_routes( Route(prefix=fip, prefix_len=32, next_hop=interfaces[1].name, comment=DMUtils.fip_egress_comment())) floating_ips.append(FloatingIpMap(floating_ip=fip + "/32")) ri.add_floating_ip_list(FloatingIpList( public_routing_instance=public_vrf, floating_ips=floating_ips)) # add firewall config for public VRF if router_external and is_l2 is False: self.firewall_config = self.firewall_config or Firewall( comment=DMUtils.firewall_comment()) if has_ipv4_prefixes and not self.inet4_forwarding_filter: # create single instance inet4 filter self.inet4_forwarding_filter = self.add_inet_public_vrf_filter( self.firewall_config, "inet") if has_ipv6_prefixes and not self.inet6_forwarding_filter: # create single instance inet6 filter self.inet6_forwarding_filter = self.add_inet_public_vrf_filter( self.firewall_config, "inet6") if has_ipv4_prefixes: # add terms to inet4 filter term = self.add_inet_filter_term(ri_name, prefixes, "inet4") # insert before the last term terms = self.inet4_forwarding_filter.get_terms() terms = [term] + (terms or []) self.inet4_forwarding_filter.set_terms(terms) if has_ipv6_prefixes: # add terms to inet6 filter term = self.add_inet_filter_term(ri_name, prefixes, "inet6") # insert before the last term terms = self.inet6_forwarding_filter.get_terms() terms = [term] + (terms or []) self.inet6_forwarding_filter.set_terms(terms) if fip_map is not None: self.firewall_config = self.firewall_config or Firewall( comment=DMUtils.firewall_comment()) f = FirewallFilter( name=DMUtils.make_private_vrf_filter_name(ri_name)) f.set_comment(DMUtils.vn_firewall_comment(vn, "private")) self.firewall_config.add_firewall_filters(f) term = Term(name=DMUtils.make_vrf_term_name(ri_name)) from_ = From() for fip_user_ip in fip_map.keys(): from_.add_source_address(self.get_subnet_for_cidr(fip_user_ip)) term.set_from(from_) term.set_then(Then(routing_instance=[ri_name])) f.add_terms(term) irb_intf = PhysicalInterface(name='irb', interface_type='irb') self.interfaces_config.append(irb_intf) intf_unit = LogicalInterface( name="irb." + str(network_id), unit=network_id, comment=DMUtils.vn_irb_fip_inet_comment(vn)) irb_intf.add_logical_interfaces(intf_unit) intf_unit.set_family("inet") intf_unit.add_firewall_filters( DMUtils.make_private_vrf_filter_name(ri_name)) ri.add_routing_interfaces(intf_unit) if gateways is not None: for (ip, gateway) in gateways: ri.add_gateways(GatewayRoute( ip_address=self.get_subnet_for_cidr(ip), gateway=self.get_subnet_for_cidr(gateway))) # add L2 EVPN and BD config if (is_l2 and vni is not None and self.is_family_configured(self.bgp_params, "e-vpn")): vlan = None if encapsulation_priorities[0] == "VXLAN": self.vlans_config = self.vlans_config or [] vlan = Vlan(name=DMUtils.make_bridge_name(vni), vxlan_id=vni) vlan.set_comment(DMUtils.vn_bd_comment(vn, "VXLAN")) self.vlans_config.append(vlan) for interface in interfaces: vlan.add_interfaces(LogicalInterface(name=interface.name)) if is_l2_l3: # network_id is unique, hence irb irb_intf = "irb." + str(network_id) vlan.add_interfaces(LogicalInterface(name=irb_intf)) elif (any(x in encapsulation_priorities for x in ["MPLSoGRE", "MPLSoUDP"])): self.init_evpn_config(encapsulation_priorities[1]) self.evpn.set_comment( DMUtils.vn_evpn_comment(vn, encapsulation_priorities[1])) for interface in interfaces: self.evpn.add_interfaces(LogicalInterface(name=interface.name)) self.interfaces_config = self.interfaces_config or [] self.build_l2_evpn_interface_config(self.interfaces_config, interfaces, vn, vlan) if (not is_l2 and vni is not None and self.is_family_configured(self.bgp_params, "e-vpn")): self.init_evpn_config() if not is_internal_vn: # add vlans self.add_ri_vlan_config(ri_name, vni) if (not is_l2 and not is_l2_l3 and gateways): self.interfaces_config = self.interfaces_config or [] ifl_num = 1000 + int(network_id) lo_intf = PhysicalInterface(name="lo0", interface_type='loopback') self.interfaces_config.append(lo_intf) intf_unit = LogicalInterface(name="lo0." + str(ifl_num), unit=ifl_num, comment=DMUtils.l3_lo_intf_comment(vn)) lo_intf.add_logical_interfaces(intf_unit) for (lo_ip, _) in gateways: subnet = lo_ip (ip, _) = lo_ip.split('/') if ':' in lo_ip: lo_ip = ip + '/' + '128' else: lo_ip = ip + '/' + '32' intf_unit.add_ip_list(lo_ip) ri.add_loopback_interfaces(LogicalInterface( name="lo0." + str(ifl_num), comment=DMUtils.lo0_ri_intf_comment(vn))) # fip services config if fip_map is not None: nat_rules = NatRules(allow_overlapping_nat_pools=True, name=DMUtils.make_services_set_name(ri_name), comment=DMUtils.service_set_comment(vn)) ri.set_nat_rules(nat_rules) snat_rule = NatRule( name=DMUtils.make_snat_rule_name(ri_name), comment=DMUtils.service_set_nat_rule_comment(vn, "SNAT"), direction="input", translation_type="basic-nat44") snat_rule.set_comment(DMUtils.snat_rule_comment()) nat_rules.add_rules(snat_rule) dnat_rule = NatRule( name=DMUtils.make_dnat_rule_name(ri_name), comment=DMUtils.service_set_nat_rule_comment(vn, "DNAT"), direction="output", translation_type="dnat-44") dnat_rule.set_comment(DMUtils.dnat_rule_comment()) nat_rules.add_rules(dnat_rule) nat_rules.set_inside_interface(interfaces[0].name) nat_rules.set_outside_interface(interfaces[1].name) for pip, fip_vn in fip_map.items(): fip = fip_vn["floating_ip"] # private ip snat_rule.add_source_addresses(self.get_subnet_for_cidr(pip)) # public ip snat_rule.add_source_prefixes(self.get_subnet_for_cidr(fip)) # public ip dnat_rule.add_destination_addresses( self.get_subnet_for_cidr(fip)) # private ip dnat_rule.add_destination_prefixes( self.get_subnet_for_cidr(pip)) intf_unit = LogicalInterface( name=interfaces[0].name, unit=interfaces[0].unit, comment=DMUtils.service_intf_comment("Ingress")) intf_unit.set_family("inet") ri.add_service_interfaces(intf_unit) intf_unit = LogicalInterface( name=interfaces[1].name, unit=interfaces[1].unit, comment=DMUtils.service_intf_comment("Egress")) intf_unit.set_family("inet") ri.add_service_interfaces(intf_unit) for target in import_targets: ri.add_import_targets(target) for target in export_targets: ri.add_export_targets(target) # end add_routing_instance def attach_acls(self, interface, unit): pi_list = [] esi_map = self.get_ae_alloc_esi_map() for esi, ae_id in self.physical_router.ae_id_map.items(): ae_name = "ae" + str(ae_id) if_name, if_unit = interface.name.split('.') if ae_name == if_name: pi_list = esi_map.get(esi) if pi_list: self._logger.info("attach acls on AE intf:%s, link_member:%s, unit:%s" % (ae_name, pi_list[0].name, if_unit)) li_name = pi_list[0].name + '.' + if_unit break if not pi_list and not interface.li_uuid: return interface = LogicalInterfaceDM.find_by_name_or_uuid(interface.li_uuid) if not interface: interface = LogicalInterfaceDM.find_by_name_or_uuid(li_name) if not interface: return sg_list = interface.get_attached_sgs() filter_list = [] for sg in sg_list: flist = self.get_configured_filters(sg) filter_list += flist if filter_list: for fname in filter_list: unit.add_firewall_filters(fname) # end attach_acls def build_l2_evpn_interface_config(self, interfaces_config, interfaces, vn, vlan_conf): ifd_map = {} for interface in interfaces: ifd_map.setdefault(interface.ifd_name, []).append(interface) for ifd_name, interface_list in ifd_map.items(): intf = PhysicalInterface(name=ifd_name) interfaces_config.append(intf) if interface_list[0].is_untagged(): if len(interface_list) > 1: self._logger.error( "invalid logical interfaces config for ifd %s" % ( ifd_name)) continue unit_name = ifd_name + "." + str(interface_list[0].unit) unit = LogicalInterface( name=unit_name, unit=interface_list[0].unit, comment=DMUtils.l2_evpn_intf_unit_comment(vn, False), is_tagged=False, vlan_tag="4094") # attach acls self.attach_acls(interface_list[0], unit) intf.add_logical_interfaces(unit) if vlan_conf: vlan_conf.add_interfaces(LogicalInterface(name=unit_name)) else: for interface in interface_list: unit_name = ifd_name + "." + str(interface.unit) unit = LogicalInterface( name=unit_name, unit=interface.unit, comment=DMUtils.l2_evpn_intf_unit_comment( vn, True, interface.vlan_tag), is_tagged=True, vlan_tag=str(interface.vlan_tag)) # attach acls self.attach_acls(interface, unit) intf.add_logical_interfaces(unit) if vlan_conf: vlan_conf.add_interfaces(LogicalInterface( name=unit_name)) # end build_l2_evpn_interface_config def init_evpn_config(self, encapsulation='vxlan'): if not self.ri_config: # no vn config then no need to configure evpn return if self.evpn: # evpn init done return self.evpn = Evpn(encapsulation=encapsulation) # end init_evpn_config def add_vlan_config(self, vrf_name, vni, is_l2_l3=False, irb_intf=None): self.vlans_config = self.vlans_config or [] vlan = Vlan(name=vrf_name[1:], vxlan_id=vni) if is_l2_l3: if not irb_intf: self._logger.error("Missing irb interface config l3 vlan: %s" % vrf_name) else: vlan.set_vlan_id(vni) vlan.add_interfaces(LogicalInterface(name=irb_intf)) self.vlans_config.append(vlan) return vlan # end add_vlan_config def add_ri_vlan_config(self, vrf_name, vni): self.vlans_config = self.vlans_config or [] self.vlans_config.append(Vlan(name=vrf_name[1:], vlan_id=vni, vxlan_id=vni)) # end add_ri_vlan_config def build_esi_config(self): pr = self.physical_router if not pr: return self.interfaces_config = self.interfaces_config or [] for pi_uuid in pr.physical_interfaces: pi = PhysicalInterfaceDM.get(pi_uuid) if not pi or not pi.esi or pi.esi == "0" or pi.get_parent_ae_id(): continue intf = PhysicalInterface(name=pi.name, ethernet_segment_identifier=pi.esi) self.interfaces_config.append(intf) # end build_esi_config def build_lag_config(self): pr = self.physical_router if not pr: return self.interfaces_config = self.interfaces_config or [] for lag_uuid in pr.link_aggregation_groups or []: link_members = [] lag_obj = LinkAggregationGroupDM.get(lag_uuid) if not lag_obj: continue for pi_uuid in lag_obj.physical_interfaces or []: pi = PhysicalInterfaceDM.get(pi_uuid) if not pi: continue if pi.interface_type != 'lag': link_members.append(pi.name) else: ae_intf_name = pi.name self._logger.info("LAG obj_uuid: %s, link_members: %s, name: %s" % (lag_uuid, link_members, ae_intf_name)) lag = LinkAggrGroup(lacp_enabled=lag_obj.lacp_enabled, link_members=link_members) intf = PhysicalInterface(name=ae_intf_name, interface_type='lag', link_aggregation_group=lag) self.interfaces_config.append(intf) # end build_lag_config def get_vn_li_map(self): pr = self.physical_router vn_list = [] # get all logical router connected networks for lr_id in pr.logical_routers or []: lr = LogicalRouterDM.get(lr_id) if not lr: continue vn_list += lr.get_connected_networks(include_internal=True) vn_dict = {} for vn_id in vn_list: vn_dict[vn_id] = [] for vn_id in pr.virtual_networks: vn_dict[vn_id] = [] li_set = pr.logical_interfaces for pi_uuid in pr.physical_interfaces: pi = PhysicalInterfaceDM.get(pi_uuid) if pi is None: continue li_set |= pi.logical_interfaces for li_uuid in li_set: li = LogicalInterfaceDM.get(li_uuid) if li is None: continue vmi_id = li.virtual_machine_interface vmi = VirtualMachineInterfaceDM.get(vmi_id) if vmi is None: continue vn_id = vmi.virtual_network if li.physical_interface: pi = PhysicalInterfaceDM.get(li.physical_interface) ae_id = pi.get_parent_ae_id() if ae_id and li.physical_interface: _, unit= li.name.split('.') ae_name = "ae" + str(ae_id) + "." + unit vn_dict.setdefault(vn_id, []).append( JunosInterface(ae_name, li.li_type, li.vlan_tag)) continue vn_dict.setdefault(vn_id, []).append( JunosInterface(li.name, li.li_type, li.vlan_tag, li_uuid=li.uuid)) return vn_dict # end def get_vn_associated_physical_interfaces(self): pr = self.physical_router li_set = set() pi_list = [] for pi_uuid in pr.physical_interfaces: pi = PhysicalInterfaceDM.get(pi_uuid) if pi is None or not pi.esi or pi.esi == "0": continue if self.has_vmi(pi.logical_interfaces): pi_list.append(pi) return pi_list # end get_vn_associated_physical_interfaces def has_vmi(self, li_set): if not li_set: return False for li_uuid in li_set: li = LogicalInterfaceDM.get(li_uuid) if not li or not li.virtual_machine_interface \ or not VirtualMachineInterfaceDM.get(li.virtual_machine_interface): continue return True return False # end has_vmi def get_ae_alloc_esi_map(self): pi_list = self.get_vn_associated_physical_interfaces() esi_map = {} for pi in pi_list: if not pi.name.startswith("ae") and pi.esi: esi_map.setdefault(pi.esi, []).append(pi) return esi_map # end get_ae_alloc_esi_map def build_ae_config(self, esi_map): self.interfaces_config = self.interfaces_config or [] # self.ae_id_map should have all esi => ae_id mapping # esi_map should have esi => interface memberships for esi, ae_id in self.physical_router.ae_id_map.items(): # config ae interface ae_name = "ae" + str(ae_id) # associate 'ae' membership pi_list = esi_map.get(esi) link_members = [] for pi in pi_list or []: link_members.append(pi.name) lag = LinkAggrGroup(link_members=link_members) intf = PhysicalInterface(name=ae_name, ethernet_segment_identifier=esi, link_aggregation_group=lag) self.interfaces_config.append(intf) # end build_ae_config def add_addr_term(self, term, addr_match, is_src): if not addr_match: return None subnet = addr_match.get_subnet() if not subnet: return None subnet_ip = subnet.get_ip_prefix() subnet_len = subnet.get_ip_prefix_len() if not subnet_ip or not subnet_len: return None from_ = term.get_from() or From() term.set_from(from_) if is_src: from_.add_source_address(Subnet(prefix=subnet_ip, prefix_len=subnet_len)) else: from_.add_destination_address(Subnet(prefix=subnet_ip, prefix_len=subnet_len)) # end add_addr_term def add_port_term(self, term, port_match, is_src): if not port_match: return None start_port = port_match.get_start_port() end_port = port_match.get_end_port() if not start_port or not end_port: return None port_str = str(start_port) + "-" + str(end_port) from_ = term.get_from() or From() term.set_from(from_) if is_src: from_.add_source_ports(port_str) else: from_.add_destination_ports(port_str) # end add_port_term def add_protocol_term(self, term, protocol_match): if not protocol_match or protocol_match == 'any': return None from_ = term.get_from() or From() term.set_from(from_) from_.set_ip_protocol(protocol_match) # end add_protocol_term def add_filter_term(self, ff, name): term = Term() term.set_name(name) ff.add_terms(term) term.set_then(Then(accept_or_reject=True)) return term def add_dns_dhcp_terms(self, ff): port_list = [67, 68, 53] term = Term() term.set_name("allow-dns-dhcp") from_ = From() from_.set_ip_protocol("udp") term.set_from(from_) for port in port_list: from_.add_source_ports(str(port)) term.set_then(Then(accept_or_reject=True)) ff.add_terms(term) # end add_dns_dhcp_terms def add_ether_type_term(self, ff, ether_type_match): if not ether_type_match: return None term = Term() from_ = From() term.set_from(from_) term.set_name("ether-type") from_.set_ether_type(ether_type_match.lower()) term.set_then(Then(accept_or_reject=True)) ff.add_terms(term) # end add_ether_type_term def build_firewall_filters(self, sg, acl, is_egress=False): acl_rule_present = False if not sg or not acl or not acl.vnc_obj: return acl = acl.vnc_obj entries = acl.get_access_control_list_entries() if not entries: return rules = entries.get_acl_rule() or [] if not rules: return self.firewall_config = self.firewall_config or\ Firewall(DMUtils.firewall_comment()) for rule in rules: if not self.has_terms(rule): continue match = rule.get_match_condition() if not match: continue acl_rule_present = True break if acl_rule_present: filter_name = DMUtils.make_sg_firewall_name(sg.name, acl.uuid) f = FirewallFilter(name=filter_name) f.set_comment(DMUtils.make_sg_firewall_comment(sg.name, acl.uuid)) # allow arp ether type always self.add_ether_type_term(f, 'arp') # allow dhcp/dns always self.add_dns_dhcp_terms(f) for rule in rules: if not self.has_terms(rule): continue match = rule.get_match_condition() if not match: continue rule_uuid = rule.get_rule_uuid() dst_addr_match = match.get_dst_address() dst_port_match = match.get_dst_port() ether_type_match = match.get_ethertype() protocol_match = match.get_protocol() src_addr_match = match.get_src_address() src_port_match = match.get_src_port() term = self.add_filter_term(f, rule_uuid) self.add_addr_term(term, dst_addr_match, False) self.add_addr_term(term, src_addr_match, True) self.add_port_term(term, dst_port_match, False) # source port match is not needed for now (BMS source port) #self.add_port_term(term, src_port_match, True) self.add_protocol_term(term, protocol_match) self.firewall_config.add_firewall_filters(f) # end build_firewall_filters def build_firewall_config(self): sg_list = LogicalInterfaceDM.get_sg_list() for sg in sg_list or []: acls = sg.access_control_lists for acl in acls or []: acl = AccessControlListDM.get(acl) if acl and not acl.is_ingress: self.build_firewall_filters(sg, acl) # end build_firewall_config def is_default_sg(self, match): if (not match.get_dst_address()) or \ (not match.get_dst_port()) or \ (not match.get_ethertype()) or \ (not match.get_src_address()) or \ (not match.get_src_port()) or \ (not match.get_protocol()): return False if not match.get_dst_address().get_subnet(): return False if ((str(match.get_dst_address().get_subnet().get_ip_prefix()) == "0.0.0.0") or \ (str(match.get_dst_address().get_subnet().get_ip_prefix()) == "::")) and \ (str(match.get_dst_address().get_subnet().get_ip_prefix_len()) == "0") and \ (str(match.get_dst_port().get_start_port()) == "0") and \ (str(match.get_dst_port().get_end_port()) == "65535") and \ ((str(match.get_ethertype()) == "IPv4") or \ (str(match.get_ethertype()) == "IPv6")) and \ (not match.get_src_address().get_subnet()) and \ (not match.get_src_address().get_subnet_list()) and \ (str(match.get_src_port().get_start_port()) == "0") and \ (str(match.get_src_port().get_end_port()) == "65535") and \ (str(match.get_protocol()) == "any"): return True return False # end is_default_sg def has_terms(self, rule): match = rule.get_match_condition() if not match: return False # return False if it is default SG, no filter is applied if self.is_default_sg(match): return False return match.get_dst_address() or match.get_dst_port() or \ match.get_ethertype() or match.get_src_address() or match.get_src_port() or \ (match.get_protocol() and match.get_protocol() != 'any') def get_firewall_filters(self, sg, acl, is_egress=False): acl_rule_present = False if not sg or not acl or not acl.vnc_obj: return [] acl = acl.vnc_obj entries = acl.get_access_control_list_entries() if not entries: return [] rules = entries.get_acl_rule() or [] if not rules: return [] filter_names = [] for rule in rules: if not self.has_terms(rule): continue match = rule.get_match_condition() if not match: continue rule_uuid = rule.get_rule_uuid() ether_type_match = match.get_ethertype() if not ether_type_match: continue if 'ipv6' in ether_type_match.lower(): continue acl_rule_present = True break if acl_rule_present: filter_name = DMUtils.make_sg_firewall_name(sg.name, acl.uuid) filter_names.append(filter_name) return filter_names # end get_firewall_filters def get_configured_filters(self, sg): if not sg: return [] filter_names = [] acls = sg.access_control_lists for acl in acls or []: acl = AccessControlListDM.get(acl) if acl and not acl.is_ingress: fnames = self.get_firewall_filters(sg, acl) filter_names += fnames return filter_names # end get_configured_filters def build_ri_config(self): esi_map = self.get_ae_alloc_esi_map() self.physical_router.evaluate_ae_id_map(esi_map) self.build_ae_config(esi_map) vn_dict = self.get_vn_li_map() vn_irb_ip_map = None if self.is_gateway(): self.physical_router.evaluate_vn_irb_ip_map(set(vn_dict.keys()), 'l2_l3', 'irb', False) self.physical_router.evaluate_vn_irb_ip_map(set(vn_dict.keys()), 'l3', 'lo0', True) vn_irb_ip_map = self.physical_router.get_vn_irb_ip_map() for vn_id, interfaces in vn_dict.items(): vn_obj = VirtualNetworkDM.get(vn_id) if (vn_obj is None or vn_obj.get_vxlan_vni() is None or vn_obj.vn_network_id is None): continue export_set = None import_set = None for ri_id in vn_obj.routing_instances: # Find the primary RI by matching the name ri_obj = RoutingInstanceDM.get(ri_id) if ri_obj is None: continue if ri_obj.fq_name[-1] == vn_obj.fq_name[-1]: vrf_name_l2 = DMUtils.make_vrf_name(vn_obj.fq_name[-1], vn_obj.vn_network_id, 'l2') vrf_name_l3 = DMUtils.make_vrf_name(vn_obj.fq_name[-1], vn_obj.vn_network_id, 'l3') if vn_obj.route_targets: export_set = vn_obj.route_targets & ri_obj.export_targets import_set = vn_obj.route_targets & ri_obj.import_targets else: export_set = copy.copy(ri_obj.export_targets) import_set = copy.copy(ri_obj.import_targets) for ri2_id in ri_obj.routing_instances: ri2 = RoutingInstanceDM.get(ri2_id) if ri2 is None: continue import_set |= ri2.export_targets if vn_obj.get_forwarding_mode() in ['l2', 'l2_l3']: irb_ips = None if vn_obj.get_forwarding_mode() == 'l2_l3' and self.is_gateway(): irb_ips = vn_irb_ip_map['irb'].get(vn_id, []) ri_conf = {'ri_name': vrf_name_l2, 'vn': vn_obj, 'is_l2': True, 'is_l2_l3': ( vn_obj.get_forwarding_mode() == 'l2_l3'), 'import_targets': import_set, 'export_targets': export_set, 'prefixes': vn_obj.get_prefixes(), 'gateways': irb_ips, 'router_external': vn_obj.router_external, 'interfaces': interfaces, 'vni': vn_obj.get_vxlan_vni(), 'network_id': vn_obj.vn_network_id, 'encapsulation_priorities': GlobalVRouterConfigDM. global_encapsulation_priorities} self.add_routing_instance(ri_conf) if vn_obj.get_forwarding_mode() in ['l3', 'l2_l3']: interfaces = [] lo0_ips = None if vn_obj.get_forwarding_mode() == 'l2_l3': interfaces = [ JunosInterface( 'irb.' + str(vn_obj.vn_network_id), 'l3', 0)] elif self.is_gateway(): lo0_ips = vn_irb_ip_map['lo0'].get(vn_id, []) is_internal_vn = True if '_contrail_lr_internal_vn_' in vn_obj.name else False ri_conf = {'ri_name': vrf_name_l3, 'vn': vn_obj, 'is_l2': False, 'is_l2_l3': vn_obj.get_forwarding_mode() == 'l2_l3', 'import_targets': import_set, 'export_targets': export_set, 'prefixes': vn_obj.get_prefixes(), 'router_external': vn_obj.router_external, 'interfaces': interfaces, 'gateways': lo0_ips, 'network_id': vn_obj.vn_network_id} if is_internal_vn: ri_conf['vni'] = vn_obj.get_vxlan_vni(is_internal_vn = is_internal_vn) lr_uuid = DMUtils.extract_lr_uuid_from_internal_vn_name(vrf_name_l3) lr = LogicalRouterDM.get(lr_uuid) if lr: ri_conf['router_external'] = lr.logical_router_gateway_external self.add_routing_instance(ri_conf) break if export_set and\ self.physical_router.is_junos_service_ports_enabled() and\ len(vn_obj.instance_ip_map) > 0: service_port_ids = DMUtils.get_service_ports( vn_obj.vn_network_id) if not self.physical_router \ .is_service_port_id_valid(service_port_ids[0]): self._logger.error("DM can't allocate service interfaces" " for (vn, vn-id)=(%s,%s)" % (vn_obj.fq_name, vn_obj.vn_network_id)) else: vrf_name = DMUtils.make_vrf_name(vn_obj.fq_name[-1], vn_obj.vn_network_id, 'l3', True) interfaces = [] service_ports = self.physical_router.junos_service_ports.\ get('service_port') interfaces.append( JunosInterface( service_ports[0] + "." + str(service_port_ids[0]), 'l3', 0)) interfaces.append( JunosInterface( service_ports[0] + "." + str(service_port_ids[1]), 'l3', 0)) ri_conf = {'ri_name': vrf_name, 'vn': vn_obj, 'import_targets': import_set, 'interfaces': interfaces, 'fip_map': vn_obj.instance_ip_map, 'network_id': vn_obj.vn_network_id, 'restrict_proxy_arp': vn_obj.router_external} self.add_routing_instance(ri_conf) return # end build_ri_config def set_common_config(self): self.build_underlay_bgp() if not self.ensure_bgp_config(): return self.build_bgp_config() self.build_ri_config() self.set_internal_vn_irb_config() self.init_evpn_config() self.build_firewall_config() self.build_esi_config() self.build_lag_config() # end set_common_config @staticmethod def get_subnet_for_cidr(cidr): cidr_parts = cidr.split('/', 1) return Subnet(prefix=cidr_parts[0], prefix_len=int(cidr_parts[1]) if len(cidr_parts) > 1 else 32) # end get_subnet_for_cidr @staticmethod def get_route_for_cidr(cidr): cidr_parts = cidr.split('/', 1) return Route(prefix=cidr_parts[0], prefix_len=int(cidr_parts[1]) if len(cidr_parts) > 1 else 32) # end get_route_for_cidr # end AnsibleRoleCommon
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import atexit import functools import os import time import fixtures import nose.plugins.attrib import testresources import testtools from tempest import clients from tempest.common import isolated_creds from tempest import config from tempest import exceptions from tempest.openstack.common import log as logging LOG = logging.getLogger(__name__) # All the successful HTTP status codes from RFC 2616 HTTP_SUCCESS = (200, 201, 202, 203, 204, 205, 206) def attr(*args, **kwargs): """A decorator which applies the nose and testtools attr decorator This decorator applies the nose attr decorator as well as the the testtools.testcase.attr if it is in the list of attributes to testtools we want to apply. """ def decorator(f): if 'type' in kwargs and isinstance(kwargs['type'], str): f = testtools.testcase.attr(kwargs['type'])(f) if kwargs['type'] == 'smoke': f = testtools.testcase.attr('gate')(f) elif 'type' in kwargs and isinstance(kwargs['type'], list): for attr in kwargs['type']: f = testtools.testcase.attr(attr)(f) if attr == 'smoke': f = testtools.testcase.attr('gate')(f) return nose.plugins.attrib.attr(*args, **kwargs)(f) return decorator def services(*args, **kwargs): """A decorator used to set an attr for each service used in a test case This decorator applies a testtools attr for each service that gets exercised by a test case. """ valid_service_list = ['compute', 'image', 'volume', 'orchestration', 'network', 'identity', 'object', 'dashboard'] def decorator(f): for service in args: if service not in valid_service_list: raise exceptions.InvalidServiceTag('%s is not a valid service' % service) attr(type=list(args))(f) return f return decorator def stresstest(*args, **kwargs): """Add stress test decorator For all functions with this decorator a attr stress will be set automatically. @param class_setup_per: allowed values are application, process, action ``application``: once in the stress job lifetime ``process``: once in the worker process lifetime ``action``: on each action @param allow_inheritance: allows inheritance of this attribute """ def decorator(f): if 'class_setup_per' in kwargs: setattr(f, "st_class_setup_per", kwargs['class_setup_per']) else: setattr(f, "st_class_setup_per", 'process') if 'allow_inheritance' in kwargs: setattr(f, "st_allow_inheritance", kwargs['allow_inheritance']) else: setattr(f, "st_allow_inheritance", False) attr(type='stress')(f) return f return decorator def skip_because(*args, **kwargs): """A decorator useful to skip tests hitting known bugs @param bug: bug number causing the test to skip @param condition: optional condition to be True for the skip to have place """ def decorator(f): @functools.wraps(f) def wrapper(*func_args, **func_kwargs): if "bug" in kwargs: if "condition" not in kwargs or kwargs["condition"] is True: msg = "Skipped until Bug: %s is resolved." % kwargs["bug"] raise testtools.TestCase.skipException(msg) return f(*func_args, **func_kwargs) return wrapper return decorator def requires_ext(*args, **kwargs): """A decorator to skip tests if an extension is not enabled @param extension @param service """ def decorator(func): @functools.wraps(func) def wrapper(*func_args, **func_kwargs): if not is_extension_enabled(kwargs['extension'], kwargs['service']): msg = "Skipped because %s extension: %s is not enabled" % ( kwargs['service'], kwargs['extension']) raise testtools.TestCase.skipException(msg) return func(*func_args, **func_kwargs) return wrapper return decorator def is_extension_enabled(extension_name, service): """A function that will check the list of enabled extensions from config """ configs = config.TempestConfig() config_dict = { 'compute': configs.compute_feature_enabled.api_extensions, 'compute_v3': configs.compute_feature_enabled.api_v3_extensions, 'volume': configs.volume_feature_enabled.api_extensions, 'network': configs.network_feature_enabled.api_extensions, } if config_dict[service][0] == 'all': return True if extension_name in config_dict[service]: return True return False # there is a mis-match between nose and testtools for older pythons. # testtools will set skipException to be either # unittest.case.SkipTest, unittest2.case.SkipTest or an internal skip # exception, depending on what it can find. Python <2.7 doesn't have # unittest.case.SkipTest; so if unittest2 is not installed it falls # back to the internal class. # # The current nose skip plugin will decide to raise either # unittest.case.SkipTest or its own internal exception; it does not # look for unittest2 or the internal unittest exception. Thus we must # monkey-patch testtools.TestCase.skipException to be the exception # the nose skip plugin expects. # # However, with the switch to testr nose may not be available, so we # require you to opt-in to this fix with an environment variable. # # This is temporary until upstream nose starts looking for unittest2 # as testtools does; we can then remove this and ensure unittest2 is # available for older pythons; then nose and testtools will agree # unittest2.case.SkipTest is the one-true skip test exception. # # https://review.openstack.org/#/c/33056 # https://github.com/nose-devs/nose/pull/699 if 'TEMPEST_PY26_NOSE_COMPAT' in os.environ: try: import unittest.case.SkipTest # convince pep8 we're using the import... if unittest.case.SkipTest: pass raise RuntimeError("You have unittest.case.SkipTest; " "no need to override") except ImportError: LOG.info("Overriding skipException to nose SkipTest") testtools.TestCase.skipException = nose.plugins.skip.SkipTest at_exit_set = set() def validate_tearDownClass(): if at_exit_set: raise RuntimeError("tearDownClass does not calls the super's " "tearDownClass in these classes: " + str(at_exit_set) + "\n" "If you see the exception, with another " "exception please do not report this one!" "If you are changing tempest code, make sure you", "are calling the super class's tearDownClass!") atexit.register(validate_tearDownClass) class BaseTestCase(testtools.TestCase, testtools.testcase.WithAttributes, testresources.ResourcedTestCase): config = config.TempestConfig() setUpClassCalled = False @classmethod def setUpClass(cls): if hasattr(super(BaseTestCase, cls), 'setUpClass'): super(BaseTestCase, cls).setUpClass() cls.setUpClassCalled = True @classmethod def tearDownClass(cls): at_exit_set.discard(cls) if hasattr(super(BaseTestCase, cls), 'tearDownClass'): super(BaseTestCase, cls).tearDownClass() def setUp(self): super(BaseTestCase, self).setUp() if not self.setUpClassCalled: raise RuntimeError("setUpClass does not calls the super's" "setUpClass in the " + self.__class__.__name__) at_exit_set.add(self.__class__) test_timeout = os.environ.get('OS_TEST_TIMEOUT', 0) try: test_timeout = int(test_timeout) except ValueError: test_timeout = 0 if test_timeout > 0: self.useFixture(fixtures.Timeout(test_timeout, gentle=True)) if (os.environ.get('OS_STDOUT_CAPTURE') == 'True' or os.environ.get('OS_STDOUT_CAPTURE') == '1'): stdout = self.useFixture(fixtures.StringStream('stdout')).stream self.useFixture(fixtures.MonkeyPatch('sys.stdout', stdout)) if (os.environ.get('OS_STDERR_CAPTURE') == 'True' or os.environ.get('OS_STDERR_CAPTURE') == '1'): stderr = self.useFixture(fixtures.StringStream('stderr')).stream self.useFixture(fixtures.MonkeyPatch('sys.stderr', stderr)) if (os.environ.get('OS_LOG_CAPTURE') != 'False' and os.environ.get('OS_LOG_CAPTURE') != '0'): log_format = '%(asctime)-15s %(message)s' self.useFixture(fixtures.LoggerFixture(nuke_handlers=False, format=log_format, level=None)) @classmethod def get_client_manager(cls): """ Returns an Openstack client manager """ cls.isolated_creds = isolated_creds.IsolatedCreds(cls.__name__) force_tenant_isolation = getattr(cls, 'force_tenant_isolation', None) if (cls.config.compute.allow_tenant_isolation or force_tenant_isolation): creds = cls.isolated_creds.get_primary_creds() username, tenant_name, password = creds os = clients.Manager(username=username, password=password, tenant_name=tenant_name, interface=cls._interface) else: os = clients.Manager(interface=cls._interface) return os @classmethod def clear_isolated_creds(cls): """ Clears isolated creds if set """ if getattr(cls, 'isolated_creds'): cls.isolated_creds.clear_isolated_creds() @classmethod def _get_identity_admin_client(cls): """ Returns an instance of the Identity Admin API client """ os = clients.AdminManager(interface=cls._interface) admin_client = os.identity_client return admin_client @classmethod def _get_client_args(cls): return ( cls.config, cls.config.identity.admin_username, cls.config.identity.admin_password, cls.config.identity.uri ) def call_until_true(func, duration, sleep_for): """ Call the given function until it returns True (and return True) or until the specified duration (in seconds) elapses (and return False). :param func: A zero argument callable that returns True on success. :param duration: The number of seconds for which to attempt a successful call of the function. :param sleep_for: The number of seconds to sleep after an unsuccessful invocation of the function. """ now = time.time() timeout = now + duration while now < timeout: if func(): return True LOG.debug("Sleeping for %d seconds", sleep_for) time.sleep(sleep_for) now = time.time() return False
import sys from logging import getLogger from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import (QMainWindow, QHBoxLayout, QVBoxLayout, QSizePolicy, QWidget, QPushButton, QLabel, QListWidget, QSplitter, QFrame, QComboBox, QScrollArea, QListWidgetItem, QDialogButtonBox, QApplication) from PyQt5.QtCore import Qt from .plotgui import PlotGUI from .._doc import ds logger = getLogger(__name__) class PlotGUI_QT5(PlotGUI): '''QT5 version of plot winfow GUI We open the figure as a widget inside the qt5 window Attributes ---------- figure : ``matplotlib.figure.Figure`` app : QT5 App created app_window : Windows belonging to the QT5 App databases : list of str The databases to interact with ''' @ds.with_indent(8) def __init__(self, **kwargs): '''Init the GUI using the Qt5 framework. Keyword Arguments ----------------- %(PlotGUI.parameters)s ''' super().__init__(**kwargs) # create qt app app = QtCore.QCoreApplication.instance() if app is None: app = QApplication(sys.argv) logger.debug('Qt app created') self.app = app if not hasattr(app, 'references'): # store references to all the windows logger.debug('creating references set') app.references = set() # create app window self.app_window = ApplicationWindow(self) # add the window reference to the app references list. # this is in order to prevent garbage collection that will lead # to closing of the window. # the reference is removed from the list in the window closeEvent handler # (called when the window is closed) app.references.add(self.app_window) logger.debug('app window references: %r' % app.references) self.app_window.setWindowTitle("Calour") self._set_figure(self.app_window.plotfigure, kwargs['tree_size']) def __call__(self): logger.debug('opening Qt5 window') super().__call__() self.app_window.show() # move the window to the front self.app_window.activateWindow() self.app_window.raise_() # run the event loop self.app.exec_() def show_info(self): sid, fid, abd, annt = self.get_info() self._update_info_labels(sid, fid, abd) self._display_annotation_in_qlistwidget(annt) def _update_info_labels(self, sid, fid, abd): self.app_window.w_abund.setText('{:.01f}'.format(abd)) self.app_window.w_fid.setText(str(fid)) self.app_window.w_sid.setText(str(sid)) sample_field = str(self.app_window.w_sfield.currentText()) self.app_window.w_sfield_val.setText( str(self.exp.sample_metadata[sample_field].iloc[self.current_select[0]])) feature_field = str(self.app_window.w_ffield.currentText()) self.app_window.w_ffield_val.setText( str(self.exp.feature_metadata[feature_field].iloc[self.current_select[1]])) def _display_annotation_in_qlistwidget(self, annt): '''Add a line to the annotation list It does not erase previous lines. Parameters ---------- annt : list of (dict, str) dict : contains the key 'annotationtype' and determines the annotation color also contains all other annotation data needed for right click menu/double click str : The string to add to the list ''' # clear the previous annotation box self.app_window.w_dblist.clear() for cannt in annt: details = cannt[0] newitem = QListWidgetItem(cannt[1]) newitem.setData(QtCore.Qt.UserRole, details) if details['annotationtype'] == 'diffexp': ccolor = QtGui.QColor(0, 0, 200) elif details['annotationtype'] == 'contamination': ccolor = QtGui.QColor(200, 0, 0) elif details['annotationtype'] == 'common': ccolor = QtGui.QColor(0, 200, 0) elif details['annotationtype'] == 'highfreq': ccolor = QtGui.QColor(0, 200, 0) else: ccolor = QtGui.QColor(0, 0, 0) newitem.setForeground(ccolor) self.app_window.w_dblist.addItem(newitem) class MplCanvas(FigureCanvas): """Ultimately, this is a QWidget (as well as a FigureCanvasAgg, etc.). Parameters ---------- parent : width, height : Numeric size of the canvas dpi : int """ def __init__(self, parent=None, width=5, height=4, dpi=100): fig = Figure(figsize=(width, height), dpi=dpi) # comment out because it draws frame on the whole plotting area # self.axes = fig.add_subplot(111) FigureCanvas.__init__(self, fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) class ApplicationWindow(QMainWindow): def __init__(self, gui): QMainWindow.__init__(self) self.setAttribute(QtCore.Qt.WA_DeleteOnClose) self.setWindowTitle("application main window") self.main_widget = QWidget(self) scroll_box_width = 800 # the height of the feature/label boxes (too small makes the horizontal scroll bar # cover the text) label_box_height = 35 # set the GUI widgets # the user side on the right userside = QVBoxLayout() # sample field to display lbox = QHBoxLayout() self.w_sfield = QComboBox() self.w_sfield_val = QLabel(text='NA') self.w_sfield_val.setTextInteractionFlags(Qt.TextSelectableByMouse) scroll = QScrollArea() scroll.setFixedHeight(label_box_height) scroll.setHorizontalScrollBarPolicy(Qt.ScrollBarAsNeeded) self.w_sfield_val.setMinimumWidth(scroll_box_width) scroll.setWidget(self.w_sfield_val) lbox.addWidget(self.w_sfield) lbox.addWidget(scroll) userside.addLayout(lbox) # add the sample field combobox values for i in gui.exp.sample_metadata.columns: self.w_sfield.addItem(str(i)) # feature field to display lbox = QHBoxLayout() self.w_ffield = QComboBox() self.w_ffield_val = QLabel(text='NA') self.w_ffield_val.setTextInteractionFlags(Qt.TextSelectableByMouse) scroll = QScrollArea() scroll.setFixedHeight(label_box_height) self.w_ffield_val.setMinimumWidth(scroll_box_width) scroll.setWidget(self.w_ffield_val) lbox.addWidget(self.w_ffield) lbox.addWidget(scroll) userside.addLayout(lbox) for i in gui.exp.feature_metadata.columns: self.w_ffield.addItem(str(i)) # sample id lbox = QHBoxLayout() label = QLabel(text='Sample ID:') scroll = QScrollArea() scroll.setFixedHeight(label_box_height) self.w_sid = QLabel(text='?') self.w_sid.setTextInteractionFlags(Qt.TextSelectableByMouse) self.w_sid.setMinimumWidth(scroll_box_width) scroll.setWidget(self.w_sid) lbox.addWidget(label) lbox.addWidget(scroll) userside.addLayout(lbox) # feature id lbox = QHBoxLayout() label = QLabel(text='Feature ID:') scroll = QScrollArea() scroll.setFixedHeight(label_box_height) self.w_fid = QLabel(text='?') self.w_fid.setTextInteractionFlags(Qt.TextSelectableByMouse) self.w_fid.setMinimumWidth(scroll_box_width) scroll.setWidget(self.w_fid) lbox.addWidget(label) lbox.addWidget(scroll) userside.addLayout(lbox) # abundance value lbox = QHBoxLayout() label = QLabel(text='Abundance:') self.w_abund = QLabel(text='?') lbox.addWidget(label) lbox.addWidget(self.w_abund) userside.addLayout(lbox) # buttons lbox_buttons = QHBoxLayout() self.w_sequence = QPushButton(text='Copy Seq') lbox_buttons.addWidget(self.w_sequence) self.w_info = QPushButton(text='Info') lbox_buttons.addWidget(self.w_info) self.w_annotate = QPushButton(text='Annotate') lbox_buttons.addWidget(self.w_annotate) userside.addLayout(lbox_buttons) # db annotations list self.w_dblist = QListWidget() self.w_dblist.itemDoubleClicked.connect(self.double_click_annotation) userside.addWidget(self.w_dblist) # the annotation list right mouse menu self.w_dblist.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.w_dblist.customContextMenuRequested.connect(self.annotation_list_right_clicked) # buttons at bottom lbox_buttons_bottom = QHBoxLayout() self.w_save_fasta = QPushButton(text='Save Seqs') lbox_buttons_bottom.addWidget(self.w_save_fasta) self.w_enrichment = QPushButton(text='Enrichment') lbox_buttons_bottom.addWidget(self.w_enrichment) self.w_save_fig = QPushButton(text='Save Fig') lbox_buttons_bottom.addWidget(self.w_save_fig) userside.addLayout(lbox_buttons_bottom) # the heatmap on the left side heatmap = MplCanvas(self.main_widget, width=5, height=4, dpi=100) heatmap.setFocusPolicy(QtCore.Qt.ClickFocus) heatmap.setFocus() layout = QHBoxLayout(self.main_widget) frame = QFrame() splitter = QSplitter(QtCore.Qt.Horizontal, self.main_widget) splitter.addWidget(heatmap) frame.setLayout(userside) splitter.addWidget(frame) layout.addWidget(splitter) self.plotfigure = heatmap.figure self.gui = gui # link events to gui self.w_annotate.clicked.connect(self.annotate) self.w_sequence.clicked.connect(self.copy_sequence) self.w_save_fasta.clicked.connect(self.save_fasta) self.w_enrichment.clicked.connect(self.enrichment) self.w_save_fig.clicked.connect(self.save_fig) self.w_sfield.currentIndexChanged.connect(self.info_field_changed) self.w_ffield.currentIndexChanged.connect(self.info_field_changed) self.main_widget.setFocus() self.setCentralWidget(self.main_widget) def fileQuit(self): # remove the window from the app list - memory can be cleared. app = QtCore.QCoreApplication.instance() if app is not None: if self in app.references: logger.debug('removing window from app window list') app.references.remove(self) else: logger.warning('window not in app window list. Not removed') else: logger.warning('App not found - not removing window from list') self.close() def closeEvent(self, ce): # called when the window is closed. # in that case, we need to remove the reference to the window from the app # window list, so it will be garbage collected now. # happens in fileQuit() method. self.fileQuit() def annotation_list_right_clicked(self, QPos): self.listMenu = QtWidgets.QMenu() parent_position = self.w_dblist.mapToGlobal(QtCore.QPoint(0, 0)) item = self.w_dblist.itemAt(QPos) data = item.data(QtCore.Qt.UserRole) db = data.get('_db_interface', None) if db is None: logger.debug('No database for selected item') return menu_details = self.listMenu.addAction("Details") menu_details.triggered.connect(lambda: self.right_menu_details(item)) if db.annotatable: menu_details = self.listMenu.addAction("Update annotation") menu_details.triggered.connect(lambda: self.right_menu_update(item)) menu_delete = self.listMenu.addAction("Delete annotation") menu_delete.triggered.connect(lambda: self.right_menu_delete(item)) menu_remove = self.listMenu.addAction("Remove seq. from annotation") menu_remove.triggered.connect(lambda: self.right_menu_remove_feature(item)) self.listMenu.move(parent_position + QPos) self.listMenu.show() def right_menu_details(self, item): self.double_click_annotation(item) def right_menu_delete(self, item): if QtWidgets.QMessageBox.warning(self, "Delete annotation?", "Are you sure you want to delete the annotation:\n%s\n" "and all associated features?" % item.text(), QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) == QtWidgets.QMessageBox.No: return data = item.data(QtCore.Qt.UserRole) db = data.get('_db_interface', None) logger.debug('Deleting annotation %s' % item.text()) err = db.delete_annotation(data) if err: logger.error('Annotation not deleted. Error: %s' % err) self.gui.show_info() def right_menu_update(self, item): logger.debug('update annotation %s' % item.text) data = item.data(QtCore.Qt.UserRole) db = data.get('_db_interface', None) db.upadte_annotation(data, self.gui.exp) def right_menu_remove_feature(self, item): features = self.gui.get_selected_seqs() if QtWidgets.QMessageBox.warning(self, "Remove feature from annotation?", "Are you sure you want to remove the %d selected features\n" "from the annotation:\n%s?" % (len(features), item.text()), QtWidgets.QMessageBox.Yes, QtWidgets.QMessageBox.No) == QtWidgets.QMessageBox.No: return data = item.data(QtCore.Qt.UserRole) db = data.get('_db_interface', None) logger.debug('Removing %d features from annotation %s' % (features, item.text())) err = db.remove_features_from_annotation(features, data) if err: logger.error('Features not removed from annotation. Error: %s' % err) def info_field_changed(self): sid, fid, abd = self.gui.get_selection_info() self.gui._update_info_labels(sid, fid, abd) def copy_sequence(self): '''Copy the sequence to the clipboard ''' cseq = self.gui.exp.feature_metadata.index[self.gui.current_select[1]] clipboard = QApplication.clipboard() clipboard.setText(cseq) def save_fasta(self): seqs = self.gui.get_selected_seqs() filename, _ = QtWidgets.QFileDialog.getSaveFileName(self, caption='Save selected seqs to fasta') self.gui.exp.save_fasta(str(filename), seqs) def save_fig(self): '''Save the figure to a pdf/svg/png. Called from the Save Fig button in the gui. ''' cfig = self.plotfigure filename, _ = QtWidgets.QFileDialog.getSaveFileName(self, caption='Save figure', filter='PDF (*.pdf);;SVG (*.svg);; PNG (*.png)', initialFilter='PDF (*.pdf)') cfig.savefig(str(filename)) def enrichment(self): '''Get and display the list of enriched database terms for the selected features. Iterate over all databases that support enrichment analysis. For each such database, get the list of enriched terms in the selected set of features (compared to the other features in the experiment). Then display the list of these terms in a new qt5 window with blue terms for ones enriched in the selected group, red terms for ones enriched in the unselected set of features ''' exp = self.gui.exp group1_seqs = self.gui.get_selected_seqs() allseqs = exp.feature_metadata.index.values group2_seqs = set(allseqs) - set(group1_seqs) for cdb in self.gui.databases: if not cdb.can_do_enrichment: continue cdb.show_enrichment_qt5(group1_seqs, group2=group2_seqs, exp=exp, max_id=None, group1_name='selected', group2_name='unselected', term_type='term', ignore_exp=True) def double_click_annotation(self, item): '''Show database information about the double clicked item in the list. Call the appropriate database for displaying the info ''' data = item.data(QtCore.Qt.UserRole) db = data.get('_db_interface', None) if db is None: return db.show_annotation_info(data) def annotate(self): '''Add database annotation to selected features ''' # get the database used to add annotation if self.gui._annotation_db is None: logger.warning('No database with add annotation capability selected (use plot(...,databases=[dbname])') return # get the sequences of the selection seqs = self.gui.get_selected_seqs() # annotate err = self.gui._annotation_db.add_annotation(seqs, self.gui.exp) if err: logger.error('Error encountered when adding annotaion: %s' % err) return logger.info('Annotation added') class SListWindow(QtWidgets.QDialog): def __init__(self, listdata=[], listname=None): '''Create a list window with items in the list and the listname as specified Parameters ---------- listdata: list of str, optional the data to show in the list listname: str, optional name to display above the list ''' super().__init__() self.setAttribute(QtCore.Qt.WA_DeleteOnClose) if listname is not None: self.setWindowTitle(listname) self.layout = QVBoxLayout(self) self.w_list = QListWidget() self.layout.addWidget(self.w_list) buttonBox = QDialogButtonBox(QDialogButtonBox.Ok) buttonBox.accepted.connect(self.accept) self.layout.addWidget(buttonBox) for citem in listdata: self.w_list.addItem(citem) self.w_list.itemDoubleClicked.connect(self.list_double_click) self.show() self.adjustSize() def add_item(self, text, color='black', dblclick_data=None): '''Add an item to the list Parameters ---------- text : str the string to add color : str, optional the color of the text to add dblclick_function : function or None the function to call when this item is double clicked (or None to ignore) ''' item = QtWidgets.QListWidgetItem() item.setText(text) if color == 'black': ccolor = QtGui.QColor(0, 0, 0) elif color == 'red': ccolor = QtGui.QColor(155, 0, 0) elif color == 'blue': ccolor = QtGui.QColor(0, 0, 155) elif color == 'green': ccolor = QtGui.QColor(0, 155, 0) item.setForeground(ccolor) item.setData(QtCore.Qt.UserRole, dblclick_data) self.w_list.addItem(item) def list_double_click(self, item): data = item.data(QtCore.Qt.UserRole) if data is not None: data['database'].show_term_details(data['term'], data['exp'], data['features1'], data['features2'], gui='qt5')
from typing import Tuple import numpy as np import numpy.ma as ma from sdcit.cython_impl.cy_sdcit import cy_sdcit, cy_split_permutation, cy_dense_permutation from sklearn.linear_model import LinearRegression from sdcit.utils import K2D, p_value_of, random_seeds, cythonize def permuted(D, dense=True): out = np.zeros((len(D),), 'int32') if dense: cy_dense_permutation(D, out) else: cy_split_permutation(D, out) return out def mask_and_perm(Dz: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: n = len(Dz) full_idx = np.arange(0, n) perm = permuted(Dz) # 1 for masked (=excluded) mask = np.zeros((n, n)) mask[full_idx, full_idx] = 1 # i==j mask[full_idx, perm] = 1 # pi_i = j mask[perm, full_idx] = 1 # i = pi_j return mask, perm def penalized_distance(Dz: np.ndarray, mask: np.ndarray) -> np.ndarray: # add some big value to "masked" values except diagonal. return Dz + (mask - np.diag(np.diag(mask))) * Dz.max() # soft penalty def MMSD(Ky: np.ndarray, Kz: np.ndarray, Kxz: np.ndarray, Dz: np.ndarray) -> Tuple[float, float, np.ndarray, np.ndarray]: """Maximum Mean Self-Discrepancy""" n = len(Kxz) full_idx = np.arange(0, n) mask, perm = mask_and_perm(Dz) Ky_fp = Ky[np.ix_(full_idx, perm)] Ky_pp = Ky[np.ix_(perm, perm)] kk = (Ky + Ky_pp - 2 * Ky_fp) statistic = ma.array(Kxz * kk, mask=mask).mean() error_statistic = ma.array(Kz * kk, mask=mask).mean() return statistic, error_statistic, mask, perm def emp_MMSD(Kxz: np.ndarray, Ky: np.ndarray, Kz: np.ndarray, Dz: np.ndarray, num_samples: int) -> Tuple[np.ndarray, np.ndarray]: """Empirical distribution of MMSD""" n = len(Kxz) mmsd_distr = np.zeros((num_samples,)) error_distr = np.zeros((num_samples,)) for i_th in range(num_samples): selected = np.random.choice(n, n // 2, replace=False) grid = np.ix_(selected, selected) mmsd_distr[i_th], error_distr[i_th], *_ = MMSD(Ky[grid], Kz[grid], Kxz[grid], Dz[grid]) return (0.5 * (mmsd_distr - mmsd_distr.mean()) + mmsd_distr.mean(), 0.5 * (error_distr - error_distr.mean()) + error_distr.mean()) def adjust_errors(null_errors, null, error=None, test_statistic=None): if error is not None: assert test_statistic is not None model = LinearRegression().fit(null_errors[:, None], null[:, None]) beta = max(0, model.coef_[0, 0]) if error is not None: return null - null_errors * beta, test_statistic - error * beta else: return null - null_errors * beta def SDCIT(Kx: np.ndarray, Ky: np.ndarray, Kz: np.ndarray, Dz=None, size_of_null_sample=1000, with_null=False, seed=None, adjust=True, to_shuffle=True): """SDCIT (Lee and Honavar, 2017) Parameters ---------- Kx : np.ndarray N by N kernel matrix of X Ky : np.ndarray N by N kernel matrix of Y Kz : np.ndarray N by N kernel matrix of Z Dz : np.ndarray N by N pairwise distance matrix of Z size_of_null_sample : int The number of samples in a null distribution with_null : bool If true, resulting null distribution is also returned seed : int Random seed adjust : bool whether to adjust null distribution and test statistics based on 'permutation error' information to_shuffle : bool shuffle the order of given data at the beginning, which minimize possible issues with getting a bad permutation References ---------- Lee, S., Honavar, V. (2017). Self-Discrepancy Conditional Independence Test. In Proceedings of the Thirty-third Conference on Uncertainty in Artificial Intelligence. Corvallis, Oregon: AUAI Press. """ if seed is not None: np.random.seed(seed) if Dz is None: Dz = K2D(Kz) if to_shuffle: Kx, Ky, Kz, Dz = shuffling(seed, Kx, Ky, Kz, Dz) # categorical Z may yield an ordered 'block' matrix and it may harm permutation. Kxz = Kx * Kz test_statistic, error_statistic, mask, _ = MMSD(Ky, Kz, Kxz, Dz) mask, Pidx = mask_and_perm(penalized_distance(Dz, mask)) # avoid permutation between already permuted pairs. mmsd_distr_under_null, error_distr_under_null = emp_MMSD(Kxz, Ky[np.ix_(Pidx, Pidx)], Kz, penalized_distance(Dz, mask), size_of_null_sample) if adjust: fix_null, fix_test_statistic = adjust_errors(error_distr_under_null, mmsd_distr_under_null, error_statistic, test_statistic) fix_null = fix_null - fix_null.mean() else: fix_null = mmsd_distr_under_null - mmsd_distr_under_null.mean() fix_test_statistic = test_statistic if with_null: return fix_test_statistic, p_value_of(fix_test_statistic, fix_null), fix_null else: return fix_test_statistic, p_value_of(fix_test_statistic, fix_null) def c_SDCIT(Kx, Ky, Kz, Dz=None, size_of_null_sample=1000, with_null=False, seed=None, n_jobs=1, adjust=True, to_shuffle=True): """C-based SDCIT (Lee and Honavar, 2017) Parameters ---------- Kx : np.ndarray N by N kernel matrix of X Ky : np.ndarray N by N kernel matrix of Y Kz : np.ndarray N by N kernel matrix of Z Dz : np.ndarray N by N pairwise distance matrix of Z size_of_null_sample : int The number of samples in a null distribution with_null : bool If true, a resulting null distribution is also returned seed : int Random seed n_jobs: int number of threads to be used adjust : bool whether to adjust null distribution and test statistics based on 'permutation error' information to_shuffle : bool shuffle the order of given data at the beginning, which minimize possible issues with getting a bad permutation References ---------- Lee, S., Honavar, V. (2017). Self-Discrepancy Conditional Independence Test. In Proceedings of the Thirty-third Conference on Uncertainty in Artificial Intelligence. Corvallis, Oregon: AUAI Press. """ if seed is not None: np.random.seed(seed) if Dz is None: Dz = K2D(Kz) if to_shuffle: Kx, Ky, Kz, Dz = shuffling(seed, Kx, Ky, Kz, Dz) # categorical Z may yield an ordered 'block' matrix and it may harm permutation. Kxz = Kx * Kz # prepare parameters & output variables Kxz, Ky, Kz, Dz = cythonize(Kxz, Ky, Kz, Dz) raw_null = np.zeros((size_of_null_sample,), dtype='float64') error_raw_null = np.zeros((size_of_null_sample,), dtype='float64') mmsd = np.zeros((1,), dtype='float64') error_mmsd = np.zeros((1,), dtype='float64') # run SDCIT cy_sdcit(Kxz, Ky, Kz, Dz, size_of_null_sample, random_seeds(), n_jobs, mmsd, error_mmsd, raw_null, error_raw_null) # post-process outputs test_statistic = mmsd[0] error_statistic = error_mmsd[0] raw_null = 0.5 * (raw_null - raw_null.mean()) + raw_null.mean() error_raw_null = 0.5 * (error_raw_null - error_raw_null.mean()) + error_raw_null.mean() if adjust: fix_null, fix_test_statistic = adjust_errors(error_raw_null, raw_null, error_statistic, test_statistic) fix_null = fix_null - fix_null.mean() else: fix_null = raw_null - raw_null.mean() fix_test_statistic = test_statistic if with_null: return fix_test_statistic, p_value_of(fix_test_statistic, fix_null), fix_null else: return fix_test_statistic, p_value_of(fix_test_statistic, fix_null) def shuffling(seed, *matrices): if seed is not None: np.random.seed(seed) n = -1 for matrix in matrices: if n < 0: n = len(matrix) idxs = np.arange(n) np.random.shuffle(idxs) yield matrix[np.ix_(idxs, idxs)]
""" test parquet compat """ import datetime from io import BytesIO import os import pathlib from warnings import ( catch_warnings, filterwarnings, ) import numpy as np import pytest from pandas._config import get_option from pandas.compat import is_platform_windows from pandas.compat.pyarrow import ( pa_version_under1p0, pa_version_under2p0, pa_version_under5p0, ) import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm from pandas.util.version import Version from pandas.io.parquet import ( FastParquetImpl, PyArrowImpl, get_engine, read_parquet, to_parquet, ) try: import pyarrow _HAVE_PYARROW = True except ImportError: _HAVE_PYARROW = False try: with catch_warnings(): # `np.bool` is a deprecated alias... filterwarnings("ignore", "`np.bool`", category=DeprecationWarning) import fastparquet _HAVE_FASTPARQUET = True except ImportError: _HAVE_FASTPARQUET = False pytestmark = pytest.mark.filterwarnings( "ignore:RangeIndex.* is deprecated:DeprecationWarning" ) # TODO(ArrayManager) fastparquet relies on BlockManager internals # setup engines & skips @pytest.fixture( params=[ pytest.param( "fastparquet", marks=pytest.mark.skipif( not _HAVE_FASTPARQUET or get_option("mode.data_manager") == "array", reason="fastparquet is not installed or ArrayManager is used", ), ), pytest.param( "pyarrow", marks=pytest.mark.skipif( not _HAVE_PYARROW, reason="pyarrow is not installed" ), ), ] ) def engine(request): return request.param @pytest.fixture def pa(): if not _HAVE_PYARROW: pytest.skip("pyarrow is not installed") return "pyarrow" @pytest.fixture def fp(): if not _HAVE_FASTPARQUET: pytest.skip("fastparquet is not installed") elif get_option("mode.data_manager") == "array": pytest.skip("ArrayManager is not supported with fastparquet") return "fastparquet" @pytest.fixture def df_compat(): return pd.DataFrame({"A": [1, 2, 3], "B": "foo"}) @pytest.fixture def df_cross_compat(): df = pd.DataFrame( { "a": list("abc"), "b": list(range(1, 4)), # 'c': np.arange(3, 6).astype('u1'), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("20130101", periods=3), # 'g': pd.date_range('20130101', periods=3, # tz='US/Eastern'), # 'h': pd.date_range('20130101', periods=3, freq='ns') } ) return df @pytest.fixture def df_full(): return pd.DataFrame( { "string": list("abc"), "string_with_nan": ["a", np.nan, "c"], "string_with_none": ["a", None, "c"], "bytes": [b"foo", b"bar", b"baz"], "unicode": ["foo", "bar", "baz"], "int": list(range(1, 4)), "uint": np.arange(3, 6).astype("u1"), "float": np.arange(4.0, 7.0, dtype="float64"), "float_with_nan": [2.0, np.nan, 3.0], "bool": [True, False, True], "datetime": pd.date_range("20130101", periods=3), "datetime_with_nat": [ pd.Timestamp("20130101"), pd.NaT, pd.Timestamp("20130103"), ], } ) @pytest.fixture( params=[ datetime.datetime.now(datetime.timezone.utc), datetime.datetime.now(datetime.timezone.min), datetime.datetime.now(datetime.timezone.max), datetime.datetime.strptime("2019-01-04T16:41:24+0200", "%Y-%m-%dT%H:%M:%S%z"), datetime.datetime.strptime("2019-01-04T16:41:24+0215", "%Y-%m-%dT%H:%M:%S%z"), datetime.datetime.strptime("2019-01-04T16:41:24-0200", "%Y-%m-%dT%H:%M:%S%z"), datetime.datetime.strptime("2019-01-04T16:41:24-0215", "%Y-%m-%dT%H:%M:%S%z"), ] ) def timezone_aware_date_list(request): return request.param def check_round_trip( df, engine=None, path=None, write_kwargs=None, read_kwargs=None, expected=None, check_names=True, check_like=False, check_dtype=True, repeat=2, ): """Verify parquet serializer and deserializer produce the same results. Performs a pandas to disk and disk to pandas round trip, then compares the 2 resulting DataFrames to verify equality. Parameters ---------- df: Dataframe engine: str, optional 'pyarrow' or 'fastparquet' path: str, optional write_kwargs: dict of str:str, optional read_kwargs: dict of str:str, optional expected: DataFrame, optional Expected deserialization result, otherwise will be equal to `df` check_names: list of str, optional Closed set of column names to be compared check_like: bool, optional If True, ignore the order of index & columns. repeat: int, optional How many times to repeat the test """ write_kwargs = write_kwargs or {"compression": None} read_kwargs = read_kwargs or {} if expected is None: expected = df if engine: write_kwargs["engine"] = engine read_kwargs["engine"] = engine def compare(repeat): for _ in range(repeat): df.to_parquet(path, **write_kwargs) with catch_warnings(record=True): actual = read_parquet(path, **read_kwargs) tm.assert_frame_equal( expected, actual, check_names=check_names, check_like=check_like, check_dtype=check_dtype, ) if path is None: with tm.ensure_clean() as path: compare(repeat) else: compare(repeat) def check_partition_names(path, expected): """Check partitions of a parquet file are as expected. Parameters ---------- path: str Path of the dataset. expected: iterable of str Expected partition names. """ if pa_version_under5p0: import pyarrow.parquet as pq dataset = pq.ParquetDataset(path, validate_schema=False) assert len(dataset.partitions.partition_names) == len(expected) assert dataset.partitions.partition_names == set(expected) else: import pyarrow.dataset as ds dataset = ds.dataset(path, partitioning="hive") assert dataset.partitioning.schema.names == expected def test_invalid_engine(df_compat): msg = "engine must be one of 'pyarrow', 'fastparquet'" with pytest.raises(ValueError, match=msg): check_round_trip(df_compat, "foo", "bar") def test_options_py(df_compat, pa): # use the set option with pd.option_context("io.parquet.engine", "pyarrow"): check_round_trip(df_compat) def test_options_fp(df_compat, fp): # use the set option with pd.option_context("io.parquet.engine", "fastparquet"): check_round_trip(df_compat) def test_options_auto(df_compat, fp, pa): # use the set option with pd.option_context("io.parquet.engine", "auto"): check_round_trip(df_compat) def test_options_get_engine(fp, pa): assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "pyarrow"): assert isinstance(get_engine("auto"), PyArrowImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "fastparquet"): assert isinstance(get_engine("auto"), FastParquetImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) with pd.option_context("io.parquet.engine", "auto"): assert isinstance(get_engine("auto"), PyArrowImpl) assert isinstance(get_engine("pyarrow"), PyArrowImpl) assert isinstance(get_engine("fastparquet"), FastParquetImpl) def test_get_engine_auto_error_message(): # Expect different error messages from get_engine(engine="auto") # if engines aren't installed vs. are installed but bad version from pandas.compat._optional import VERSIONS # Do we have engines installed, but a bad version of them? pa_min_ver = VERSIONS.get("pyarrow") fp_min_ver = VERSIONS.get("fastparquet") have_pa_bad_version = ( False if not _HAVE_PYARROW else Version(pyarrow.__version__) < Version(pa_min_ver) ) have_fp_bad_version = ( False if not _HAVE_FASTPARQUET else Version(fastparquet.__version__) < Version(fp_min_ver) ) # Do we have usable engines installed? have_usable_pa = _HAVE_PYARROW and not have_pa_bad_version have_usable_fp = _HAVE_FASTPARQUET and not have_fp_bad_version if not have_usable_pa and not have_usable_fp: # No usable engines found. if have_pa_bad_version: match = f"Pandas requires version .{pa_min_ver}. or newer of .pyarrow." with pytest.raises(ImportError, match=match): get_engine("auto") else: match = "Missing optional dependency .pyarrow." with pytest.raises(ImportError, match=match): get_engine("auto") if have_fp_bad_version: match = f"Pandas requires version .{fp_min_ver}. or newer of .fastparquet." with pytest.raises(ImportError, match=match): get_engine("auto") else: match = "Missing optional dependency .fastparquet." with pytest.raises(ImportError, match=match): get_engine("auto") def test_cross_engine_pa_fp(df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=pa, compression=None) result = read_parquet(path, engine=fp) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=fp, columns=["a", "d"]) tm.assert_frame_equal(result, df[["a", "d"]]) def test_cross_engine_fp_pa(request, df_cross_compat, pa, fp): # cross-compat with differing reading/writing engines df = df_cross_compat with tm.ensure_clean() as path: df.to_parquet(path, engine=fp, compression=None) with catch_warnings(record=True): result = read_parquet(path, engine=pa) tm.assert_frame_equal(result, df) result = read_parquet(path, engine=pa, columns=["a", "d"]) tm.assert_frame_equal(result, df[["a", "d"]]) class Base: def check_error_on_write(self, df, engine, exc, err_msg): # check that we are raising the exception on writing with tm.ensure_clean() as path: with pytest.raises(exc, match=err_msg): to_parquet(df, path, engine, compression=None) def check_external_error_on_write(self, df, engine, exc): # check that an external library is raising the exception on writing with tm.ensure_clean() as path: with tm.external_error_raised(exc): to_parquet(df, path, engine, compression=None) @tm.network def test_parquet_read_from_url(self, df_compat, engine): if engine != "auto": pytest.importorskip(engine) url = ( "https://raw.githubusercontent.com/pandas-dev/pandas/" "master/pandas/tests/io/data/parquet/simple.parquet" ) df = read_parquet(url) tm.assert_frame_equal(df, df_compat) class TestBasic(Base): def test_error(self, engine): for obj in [ pd.Series([1, 2, 3]), 1, "foo", pd.Timestamp("20130101"), np.array([1, 2, 3]), ]: msg = "to_parquet only supports IO with DataFrames" self.check_error_on_write(obj, engine, ValueError, msg) def test_columns_dtypes(self, engine): df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) # unicode df.columns = ["foo", "bar"] check_round_trip(df, engine) def test_columns_dtypes_invalid(self, engine): df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) msg = "parquet must have string column names" # numeric df.columns = [0, 1] self.check_error_on_write(df, engine, ValueError, msg) # bytes df.columns = [b"foo", b"bar"] self.check_error_on_write(df, engine, ValueError, msg) # python object df.columns = [ datetime.datetime(2011, 1, 1, 0, 0), datetime.datetime(2011, 1, 1, 1, 1), ] self.check_error_on_write(df, engine, ValueError, msg) @pytest.mark.parametrize("compression", [None, "gzip", "snappy", "brotli"]) def test_compression(self, engine, compression): if compression == "snappy": pytest.importorskip("snappy") elif compression == "brotli": pytest.importorskip("brotli") df = pd.DataFrame({"A": [1, 2, 3]}) check_round_trip(df, engine, write_kwargs={"compression": compression}) def test_read_columns(self, engine): # GH18154 df = pd.DataFrame({"string": list("abc"), "int": list(range(1, 4))}) expected = pd.DataFrame({"string": list("abc")}) check_round_trip( df, engine, expected=expected, read_kwargs={"columns": ["string"]} ) def test_write_index(self, engine): check_names = engine != "fastparquet" df = pd.DataFrame({"A": [1, 2, 3]}) check_round_trip(df, engine) indexes = [ [2, 3, 4], pd.date_range("20130101", periods=3), list("abc"), [1, 3, 4], ] # non-default index for index in indexes: df.index = index if isinstance(index, pd.DatetimeIndex): df.index = df.index._with_freq(None) # freq doesn't round-trip check_round_trip(df, engine, check_names=check_names) # index with meta-data df.index = [0, 1, 2] df.index.name = "foo" check_round_trip(df, engine) def test_write_multiindex(self, pa): # Not supported in fastparquet as of 0.1.3 or older pyarrow version engine = pa df = pd.DataFrame({"A": [1, 2, 3]}) index = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]) df.index = index check_round_trip(df, engine) def test_multiindex_with_columns(self, pa): engine = pa dates = pd.date_range("01-Jan-2018", "01-Dec-2018", freq="MS") df = pd.DataFrame(np.random.randn(2 * len(dates), 3), columns=list("ABC")) index1 = pd.MultiIndex.from_product( [["Level1", "Level2"], dates], names=["level", "date"] ) index2 = index1.copy(names=None) for index in [index1, index2]: df.index = index check_round_trip(df, engine) check_round_trip( df, engine, read_kwargs={"columns": ["A", "B"]}, expected=df[["A", "B"]] ) def test_write_ignoring_index(self, engine): # ENH 20768 # Ensure index=False omits the index from the written Parquet file. df = pd.DataFrame({"a": [1, 2, 3], "b": ["q", "r", "s"]}) write_kwargs = {"compression": None, "index": False} # Because we're dropping the index, we expect the loaded dataframe to # have the default integer index. expected = df.reset_index(drop=True) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) # Ignore custom index df = pd.DataFrame( {"a": [1, 2, 3], "b": ["q", "r", "s"]}, index=["zyx", "wvu", "tsr"] ) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) # Ignore multi-indexes as well. arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = pd.DataFrame( {"one": list(range(8)), "two": [-i for i in range(8)]}, index=arrays ) expected = df.reset_index(drop=True) check_round_trip(df, engine, write_kwargs=write_kwargs, expected=expected) def test_write_column_multiindex(self, engine): # Not able to write column multi-indexes with non-string column names. mi_columns = pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1)]) df = pd.DataFrame(np.random.randn(4, 3), columns=mi_columns) msg = ( r"\s*parquet must have string column names for all values in\s*" "each level of the MultiIndex" ) self.check_error_on_write(df, engine, ValueError, msg) def test_write_column_multiindex_nonstring(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Not able to write column multi-indexes with non-string column names arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], [1, 2, 1, 2, 1, 2, 1, 2], ] df = pd.DataFrame(np.random.randn(8, 8), columns=arrays) df.columns.names = ["Level1", "Level2"] msg = ( r"\s*parquet must have string column names for all values in\s*" "each level of the MultiIndex" ) self.check_error_on_write(df, engine, ValueError, msg) def test_write_column_multiindex_string(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Write column multi-indexes with string column names arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = pd.DataFrame(np.random.randn(8, 8), columns=arrays) df.columns.names = ["ColLevel1", "ColLevel2"] check_round_trip(df, engine) def test_write_column_index_string(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Write column indexes with string column names arrays = ["bar", "baz", "foo", "qux"] df = pd.DataFrame(np.random.randn(8, 4), columns=arrays) df.columns.name = "StringCol" check_round_trip(df, engine) def test_write_column_index_nonstring(self, pa): # GH #34777 # Not supported in fastparquet as of 0.1.3 engine = pa # Write column indexes with string column names arrays = [1, 2, 3, 4] df = pd.DataFrame(np.random.randn(8, 4), columns=arrays) df.columns.name = "NonStringCol" msg = r"parquet must have string column names" self.check_error_on_write(df, engine, ValueError, msg) def test_use_nullable_dtypes(self, engine): import pyarrow.parquet as pq if engine == "fastparquet": # We are manually disabling fastparquet's # nullable dtype support pending discussion pytest.skip("Fastparquet nullable dtype support is disabled") table = pyarrow.table( { "a": pyarrow.array([1, 2, 3, None], "int64"), "b": pyarrow.array([1, 2, 3, None], "uint8"), "c": pyarrow.array(["a", "b", "c", None]), "d": pyarrow.array([True, False, True, None]), # Test that nullable dtypes used even in absence of nulls "e": pyarrow.array([1, 2, 3, 4], "int64"), } ) with tm.ensure_clean() as path: # write manually with pyarrow to write integers pq.write_table(table, path) result1 = read_parquet(path, engine=engine) result2 = read_parquet(path, engine=engine, use_nullable_dtypes=True) assert result1["a"].dtype == np.dtype("float64") expected = pd.DataFrame( { "a": pd.array([1, 2, 3, None], dtype="Int64"), "b": pd.array([1, 2, 3, None], dtype="UInt8"), "c": pd.array(["a", "b", "c", None], dtype="string"), "d": pd.array([True, False, True, None], dtype="boolean"), "e": pd.array([1, 2, 3, 4], dtype="Int64"), } ) if engine == "fastparquet": # Fastparquet doesn't support string columns yet # Only int and boolean result2 = result2.drop("c", axis=1) expected = expected.drop("c", axis=1) tm.assert_frame_equal(result2, expected) @pytest.mark.parametrize( "dtype", [ "Int64", "UInt8", "boolean", "object", "datetime64[ns, UTC]", "float", "period[D]", "Float64", "string", ], ) def test_read_empty_array(self, pa, dtype): # GH #41241 df = pd.DataFrame( { "value": pd.array([], dtype=dtype), } ) check_round_trip(df, pa, read_kwargs={"use_nullable_dtypes": True}) @pytest.mark.filterwarnings("ignore:CategoricalBlock is deprecated:DeprecationWarning") class TestParquetPyArrow(Base): def test_basic(self, pa, df_full): df = df_full # additional supported types for pyarrow dti = pd.date_range("20130101", periods=3, tz="Europe/Brussels") dti = dti._with_freq(None) # freq doesn't round-trip df["datetime_tz"] = dti df["bool_with_none"] = [True, None, True] check_round_trip(df, pa) def test_basic_subset_columns(self, pa, df_full): # GH18628 df = df_full # additional supported types for pyarrow df["datetime_tz"] = pd.date_range("20130101", periods=3, tz="Europe/Brussels") check_round_trip( df, pa, expected=df[["string", "int"]], read_kwargs={"columns": ["string", "int"]}, ) def test_to_bytes_without_path_or_buf_provided(self, pa, df_full): # GH 37105 buf_bytes = df_full.to_parquet(engine=pa) assert isinstance(buf_bytes, bytes) buf_stream = BytesIO(buf_bytes) res = read_parquet(buf_stream) tm.assert_frame_equal(df_full, res) def test_duplicate_columns(self, pa): # not currently able to handle duplicate columns df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy() self.check_error_on_write(df, pa, ValueError, "Duplicate column names found") def test_unsupported(self, pa): # timedelta df = pd.DataFrame({"a": pd.timedelta_range("1 day", periods=3)}) self.check_external_error_on_write(df, pa, NotImplementedError) # mixed python objects df = pd.DataFrame({"a": ["a", 1, 2.0]}) # pyarrow 0.11 raises ArrowTypeError # older pyarrows raise ArrowInvalid self.check_external_error_on_write(df, pa, pyarrow.ArrowException) def test_categorical(self, pa): # supported in >= 0.7.0 df = pd.DataFrame() df["a"] = pd.Categorical(list("abcdef")) # test for null, out-of-order values, and unobserved category df["b"] = pd.Categorical( ["bar", "foo", "foo", "bar", None, "bar"], dtype=pd.CategoricalDtype(["foo", "bar", "baz"]), ) # test for ordered flag df["c"] = pd.Categorical( ["a", "b", "c", "a", "c", "b"], categories=["b", "c", "d"], ordered=True ) check_round_trip(df, pa) @pytest.mark.xfail( is_platform_windows(), reason="localhost connection rejected", strict=False, ) def test_s3_roundtrip_explicit_fs(self, df_compat, s3_resource, pa, s3so): s3fs = pytest.importorskip("s3fs") s3 = s3fs.S3FileSystem(**s3so) kw = {"filesystem": s3} check_round_trip( df_compat, pa, path="pandas-test/pyarrow.parquet", read_kwargs=kw, write_kwargs=kw, ) def test_s3_roundtrip(self, df_compat, s3_resource, pa, s3so): # GH #19134 s3so = {"storage_options": s3so} check_round_trip( df_compat, pa, path="s3://pandas-test/pyarrow.parquet", read_kwargs=s3so, write_kwargs=s3so, ) @td.skip_if_no("s3fs") # also requires flask @pytest.mark.parametrize( "partition_col", [ ["A"], [], ], ) def test_s3_roundtrip_for_dir( self, df_compat, s3_resource, pa, partition_col, s3so ): # GH #26388 expected_df = df_compat.copy() # GH #35791 # read_table uses the new Arrow Datasets API since pyarrow 1.0.0 # Previous behaviour was pyarrow partitioned columns become 'category' dtypes # These are added to back of dataframe on read. In new API category dtype is # only used if partition field is string, but this changed again to use # category dtype for all types (not only strings) in pyarrow 2.0.0 if partition_col: partition_col_type = ( "int32" if (not pa_version_under1p0) and pa_version_under2p0 else "category" ) expected_df[partition_col] = expected_df[partition_col].astype( partition_col_type ) check_round_trip( df_compat, pa, expected=expected_df, path="s3://pandas-test/parquet_dir", read_kwargs={"storage_options": s3so}, write_kwargs={ "partition_cols": partition_col, "compression": None, "storage_options": s3so, }, check_like=True, repeat=1, ) @td.skip_if_no("pyarrow") def test_read_file_like_obj_support(self, df_compat): buffer = BytesIO() df_compat.to_parquet(buffer) df_from_buf = read_parquet(buffer) tm.assert_frame_equal(df_compat, df_from_buf) @td.skip_if_no("pyarrow") def test_expand_user(self, df_compat, monkeypatch): monkeypatch.setenv("HOME", "TestingUser") monkeypatch.setenv("USERPROFILE", "TestingUser") with pytest.raises(OSError, match=r".*TestingUser.*"): read_parquet("~/file.parquet") with pytest.raises(OSError, match=r".*TestingUser.*"): df_compat.to_parquet("~/file.parquet") def test_partition_cols_supported(self, pa, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet(path, partition_cols=partition_cols, compression=None) check_partition_names(path, partition_cols) assert read_parquet(path).shape == df.shape def test_partition_cols_string(self, pa, df_full): # GH #27117 partition_cols = "bool" partition_cols_list = [partition_cols] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet(path, partition_cols=partition_cols, compression=None) check_partition_names(path, partition_cols_list) assert read_parquet(path).shape == df.shape @pytest.mark.parametrize("path_type", [str, pathlib.Path]) def test_partition_cols_pathlib(self, pa, df_compat, path_type): # GH 35902 partition_cols = "B" partition_cols_list = [partition_cols] df = df_compat with tm.ensure_clean_dir() as path_str: path = path_type(path_str) df.to_parquet(path, partition_cols=partition_cols_list) assert read_parquet(path).shape == df.shape def test_empty_dataframe(self, pa): # GH #27339 df = pd.DataFrame() check_round_trip(df, pa) def test_write_with_schema(self, pa): import pyarrow df = pd.DataFrame({"x": [0, 1]}) schema = pyarrow.schema([pyarrow.field("x", type=pyarrow.bool_())]) out_df = df.astype(bool) check_round_trip(df, pa, write_kwargs={"schema": schema}, expected=out_df) @td.skip_if_no("pyarrow") def test_additional_extension_arrays(self, pa): # test additional ExtensionArrays that are supported through the # __arrow_array__ protocol df = pd.DataFrame( { "a": pd.Series([1, 2, 3], dtype="Int64"), "b": pd.Series([1, 2, 3], dtype="UInt32"), "c": pd.Series(["a", None, "c"], dtype="string"), } ) check_round_trip(df, pa) df = pd.DataFrame({"a": pd.Series([1, 2, 3, None], dtype="Int64")}) check_round_trip(df, pa) @td.skip_if_no("pyarrow", min_version="1.0.0") def test_pyarrow_backed_string_array(self, pa, string_storage): # test ArrowStringArray supported through the __arrow_array__ protocol df = pd.DataFrame({"a": pd.Series(["a", None, "c"], dtype="string[pyarrow]")}) with pd.option_context("string_storage", string_storage): check_round_trip(df, pa, expected=df.astype(f"string[{string_storage}]")) @td.skip_if_no("pyarrow") def test_additional_extension_types(self, pa): # test additional ExtensionArrays that are supported through the # __arrow_array__ protocol + by defining a custom ExtensionType df = pd.DataFrame( { # Arrow does not yet support struct in writing to Parquet (ARROW-1644) # "c": pd.arrays.IntervalArray.from_tuples([(0, 1), (1, 2), (3, 4)]), "d": pd.period_range("2012-01-01", periods=3, freq="D"), } ) check_round_trip(df, pa) def test_timestamp_nanoseconds(self, pa): # with version 2.0, pyarrow defaults to writing the nanoseconds, so # this should work without error df = pd.DataFrame({"a": pd.date_range("2017-01-01", freq="1n", periods=10)}) check_round_trip(df, pa, write_kwargs={"version": "2.0"}) def test_timezone_aware_index(self, pa, timezone_aware_date_list): if not pa_version_under2p0: # temporary skip this test until it is properly resolved # https://github.com/pandas-dev/pandas/issues/37286 pytest.skip() idx = 5 * [timezone_aware_date_list] df = pd.DataFrame(index=idx, data={"index_as_col": idx}) # see gh-36004 # compare time(zone) values only, skip their class: # pyarrow always creates fixed offset timezones using pytz.FixedOffset() # even if it was datetime.timezone() originally # # technically they are the same: # they both implement datetime.tzinfo # they both wrap datetime.timedelta() # this use-case sets the resolution to 1 minute check_round_trip(df, pa, check_dtype=False) @td.skip_if_no("pyarrow", min_version="1.0.0") def test_filter_row_groups(self, pa): # https://github.com/pandas-dev/pandas/issues/26551 df = pd.DataFrame({"a": list(range(0, 3))}) with tm.ensure_clean() as path: df.to_parquet(path, pa) result = read_parquet( path, pa, filters=[("a", "==", 0)], use_legacy_dataset=False ) assert len(result) == 1 def test_read_parquet_manager(self, pa, using_array_manager): # ensure that read_parquet honors the pandas.options.mode.data_manager option df = pd.DataFrame(np.random.randn(10, 3), columns=["A", "B", "C"]) with tm.ensure_clean() as path: df.to_parquet(path, pa) result = read_parquet(path, pa) if using_array_manager: assert isinstance(result._mgr, pd.core.internals.ArrayManager) else: assert isinstance(result._mgr, pd.core.internals.BlockManager) class TestParquetFastParquet(Base): def test_basic(self, fp, df_full): df = df_full dti = pd.date_range("20130101", periods=3, tz="US/Eastern") dti = dti._with_freq(None) # freq doesn't round-trip df["datetime_tz"] = dti df["timedelta"] = pd.timedelta_range("1 day", periods=3) check_round_trip(df, fp) @pytest.mark.skip(reason="not supported") def test_duplicate_columns(self, fp): # not currently able to handle duplicate columns df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy() msg = "Cannot create parquet dataset with duplicate column names" self.check_error_on_write(df, fp, ValueError, msg) def test_bool_with_none(self, fp): df = pd.DataFrame({"a": [True, None, False]}) expected = pd.DataFrame({"a": [1.0, np.nan, 0.0]}, dtype="float16") # Fastparquet bug in 0.7.1 makes it so that this dtype becomes # float64 check_round_trip(df, fp, expected=expected, check_dtype=False) def test_unsupported(self, fp): # period df = pd.DataFrame({"a": pd.period_range("2013", freq="M", periods=3)}) # error from fastparquet -> don't check exact error message self.check_error_on_write(df, fp, ValueError, None) # mixed df = pd.DataFrame({"a": ["a", 1, 2.0]}) msg = "Can't infer object conversion type" self.check_error_on_write(df, fp, ValueError, msg) def test_categorical(self, fp): df = pd.DataFrame({"a": pd.Categorical(list("abc"))}) check_round_trip(df, fp) def test_filter_row_groups(self, fp): d = {"a": list(range(0, 3))} df = pd.DataFrame(d) with tm.ensure_clean() as path: df.to_parquet(path, fp, compression=None, row_group_offsets=1) result = read_parquet(path, fp, filters=[("a", "==", 0)]) assert len(result) == 1 def test_s3_roundtrip(self, df_compat, s3_resource, fp, s3so): # GH #19134 check_round_trip( df_compat, fp, path="s3://pandas-test/fastparquet.parquet", read_kwargs={"storage_options": s3so}, write_kwargs={"compression": None, "storage_options": s3so}, ) def test_partition_cols_supported(self, fp, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", partition_cols=partition_cols, compression=None, ) assert os.path.exists(path) import fastparquet actual_partition_cols = fastparquet.ParquetFile(path, False).cats assert len(actual_partition_cols) == 2 def test_partition_cols_string(self, fp, df_full): # GH #27117 partition_cols = "bool" df = df_full with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", partition_cols=partition_cols, compression=None, ) assert os.path.exists(path) import fastparquet actual_partition_cols = fastparquet.ParquetFile(path, False).cats assert len(actual_partition_cols) == 1 def test_partition_on_supported(self, fp, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", compression=None, partition_on=partition_cols, ) assert os.path.exists(path) import fastparquet actual_partition_cols = fastparquet.ParquetFile(path, False).cats assert len(actual_partition_cols) == 2 def test_error_on_using_partition_cols_and_partition_on(self, fp, df_full): # GH #23283 partition_cols = ["bool", "int"] df = df_full msg = ( "Cannot use both partition_on and partition_cols. Use partition_cols for " "partitioning data" ) with pytest.raises(ValueError, match=msg): with tm.ensure_clean_dir() as path: df.to_parquet( path, engine="fastparquet", compression=None, partition_on=partition_cols, partition_cols=partition_cols, ) def test_empty_dataframe(self, fp): # GH #27339 df = pd.DataFrame() expected = df.copy() expected.index.name = "index" check_round_trip(df, fp, expected=expected) def test_timezone_aware_index(self, fp, timezone_aware_date_list): idx = 5 * [timezone_aware_date_list] df = pd.DataFrame(index=idx, data={"index_as_col": idx}) expected = df.copy() expected.index.name = "index" check_round_trip(df, fp, expected=expected) def test_use_nullable_dtypes_not_supported(self, monkeypatch, fp): df = pd.DataFrame({"a": [1, 2]}) with tm.ensure_clean() as path: df.to_parquet(path) with pytest.raises(ValueError, match="not supported for the fastparquet"): read_parquet(path, engine="fastparquet", use_nullable_dtypes=True)
# -*- coding: utf-8 -*- """ This code uses a loop along with our set of coupled differential equations and matrix math to create arrays of 4-vector quaternions. The old plotting functions need to be updated and incorperated into the end of this code or a better visualization solution needs to be found. """ #------------------------------------------------------------------------------ # Importing modules and copying functions # AKA "Setting stuff up" #------------------------------------------------------------------------------ import numpy as np # a set of init quaternions and the identity matrix for building general q-matrices rm = np.identity(2) im = np.array([[-1j,0],[0,1j]]) jm = np.array([[0,1],[-1,0]]) km = np.array([[0,-1j],[-1j,0]]) def vec_mat(v): ''' Converts a quaternion vector into the 2x2 imaginary matrix representation ''' return v[0]*rm + v[1]*im + v[2]*jm + v[3]*km def mat_vec(M): ''' Converts a 2x2 imaginary matrix quaternion into its vector representation ''' return np.array([ M[1,1].real , M[1,1].imag , M[0,1].real , -M[0,1].imag ]) def qvecmult(vec1,vec2): ''' Multiplies two 4-vector quaternions via matrix math ''' return mat_vec(np.dot(vec_mat(vec1),vec_mat(vec2))) def qmatcon(M): ''' conjugates a 2x2 imaginary matrix quaternion ''' return vec_mat(mat_vec(M)*np.array([1,-1,-1,-1])) def qveccon(vec): ''' conjugates 4-vector quaternion ''' return vec*np.array([1,-1,-1,-1]) def qvecnorm(vec): ''' normalizes a 4-vector quaternion ''' return vec/np.sqrt(qvecmult(qveccon(vec),vec)[0]) def qmatnorm(M): ''' piggy-backs off the previous function to normalize 2x2 imaginary matrices ''' return vec_mat(qvecnorm(mat_vec(M))) def qvecmagsqr(vec): ''' returns the magnitude squared of a 4-vector quaternion ''' return qvecmult(qveccon(vec),vec)[0] def qmatmagsqr(M): ''' piggy-backs off the previous function to give the magnitude squared of 2x2 imaginary matrix quaternions ''' return qvecmagsqr(mat_vec(M)) #------------------------------------------------------------------------------ # Defining the differential equations # AKA "Bringing (first) order to the universe" #------------------------------------------------------------------------------ def q1_dot(q1,q2,p1,p2,a): ''' takes the current value of things that we know and calculates derivatives Function assumes 2x2 complex matrices as inputs for q1,q2,p1,p2 a is the coupling constant ''' return (p1 - a*np.dot(q1,np.dot(qmatcon(q2),p2))) \ /(1. - qmatmagsqr(q1)*qmatmagsqr(q2)*a**2) def p1_dot(q1,q2,q1dot,q2dot,a,w): ''' takes the current values of things we know and the hopefully recently calculated derivatives of q1,q2 and uses them to find other derivatives ''' return a*np.dot(q1dot,np.dot(qmatcon(q2dot),q2)) - q1*w**2 #------------------------------------------------------------------------------ # Defining necessary constants and initial conditions # AKA "on the first day..." #------------------------------------------------------------------------------ w = 1. # \omega_0 in our notation a = 0.001 # coupling constant. \alpha in our notation print 'alpha = ',a seed = 8675309 np.random.seed(seed) print 'seed =',seed q1 = vec_mat(np.random.rand(4)) q2 = vec_mat(np.random.rand(4)) p1 = np.random.rand(4) p2 = np.random.rand(4) # this definition of p1 and p2 ensures the condition that the real part of # p_dagger*q is zero at t=0 p1[0] = -qvecmult(qveccon(p1),mat_vec(q1))[0] p2[0] = -qvecmult(qveccon(p2),mat_vec(q2))[0] p1 = vec_mat(p1) p2 = vec_mat(p2) q1 = qmatnorm(q1) q2 = qmatnorm(q2) p1 = qmatnorm(p1) p2 = qmatnorm(p2) #------------------------------------------------------------------------------ # Defining loop parameters # AKA "Configuring the space-time continuum" #------------------------------------------------------------------------------ dt = 0.001 #time step t = 0 print 'dt =',dt q1a = [] q2a = [] p1a = [] p2a = [] s1a = [] s2a = [] time = [] L1 = [0,0] L2 = [0,0] #------------------------------------------------------------------------------ # Checking conserved quantity # AKA "might as well..." #------------------------------------------------------------------------------ con = [] #checking to see if our conserved quantity is actually conserved def conserved(q1,q2,p1,p2): return np.dot(qmatcon(p1),q1) + np.dot(qmatcon(p2),q2) #------------------------------------------------------------------------------ # Creating the time loop # AKA "Let 'er rip" #------------------------------------------------------------------------------ while t<2000: q1a.append(mat_vec(q1)) q2a.append(mat_vec(q2)) p1a.append(mat_vec(p1)) p2a.append(mat_vec(p2)) s1a.append(mat_vec(np.dot(qmatcon(p1),q1))) s2a.append(mat_vec(np.dot(qmatcon(p2),q2))) time.append(t) con.append(mat_vec(conserved(q1,q2,p1,p2))) q1d = q1_dot(q1,q2,p1,p2,a) q2d = q1_dot(q2,q1,p2,p1,a) p1d = p1_dot(q1,q2,q1d,q2d,a,w) p2d = p1_dot(q2,q1,q2d,q1d,a,w) q1 += q1d*dt q2 += q2d*dt p1 += p1d*dt p2 += p2d*dt L1[0] = L1[1] L1[1] = np.sqrt(qmatmagsqr(p1)) - np.sqrt(qmatmagsqr(q1)) L2[0] = L2[1] L2[1] = np.sqrt(qmatmagsqr(p2)) - np.sqrt(qmatmagsqr(q2)) if L1[0]*L1[1]<0: q1 = qmatnorm(q1) p1 = qmatnorm(p1) if L2[0]*L2[1]<0: q2 = qmatnorm(q2) p2 = qmatnorm(p2) t += dt q1a = np.array(q1a) q2a = np.array(q2a) p1a = np.array(p1a) p2a = np.array(p2a) s1a = np.array(s1a) s2a = np.array(s2a) time = np.array(time) con = np.array(con) #------------------------------------------------------------------------------ # Plotting things # AKA "Can we see it now?" #------------------------------------------------------------------------------ import matplotlib.pyplot as plt def vecplot(thing,time,name): plt.clf() plt.title(name) plt.plot(time,thing[:,0],label='Real', color = 'black') plt.plot(time,thing[:,1],label='i', color = 'red') plt.plot(time,thing[:,2],label='j', color = 'green') plt.plot(time,thing[:,3],label='k', color = 'blue') plt.legend(loc='best') plt.xlim([time[0], time[-1]]) plt.grid() plt.show() def scalarplot(thing,time,name): plt.clf() plt.title(name) plt.plot(time,thing,color = 'black') plt.grid() plt.show() vecplot(con,time,'$p_1^{\dagger}q_1 + p_2^{\dagger}q_2$') vecplot(q1a,time,'$q_1$') vecplot(q2a,time,'$q_2$') vecplot(p1a,time,'$p_1$') vecplot(p2a,time,'$p_2$') vecplot(s1a,time,'$p_1^{\dagger}q_1$') vecplot(s2a,time,'$p_2^{\dagger}q_2$')
#!/usr/bin/env python import inspect import os import sys import time import traceback import cv2 import numpy as np import utilscv dir_file = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(dir_file, "../../..")) import gabriel import gabriel.proxy LOG = gabriel.logging.getLogger(__name__) MIN_MATCH_COUNT = 20 MIN_INLIER = 5 # "ALL" for comparing all image # "ODD" for odd image # "EVEN" for even image CONFIG_COMP = "ALL" # If you want to make a pile of Python, please ask ImageFeature # If there is a case of unauthorized access to the database, # Reconciliation of the information provided to the information provider class ImageFeature(object): def __init__(self, nameFile, shape, imageBinary, kp, desc): # Nombre del fichero self.nameFile = nameFile # Shape de la imagen self.shape = shape # Datos binarios de la imagen self.imageBinary = imageBinary # Keypoints of the image once applied the feature detection algorithm self.kp = kp # Descriptores de las features detectadas self.desc = desc # Matching of the image of the database with the image of the webcam self.matchingWebcam = [] # Matching the webcam with the current image of the database self.matchingDatabase = [] # It allows to empty the calculated calculations previously, for a new image def clearMatchingMutuos(self): self.matchingWebcam = [] self.matchingDatabase = [] def nothing(*arg): pass def raw2cv_image(raw_data): img_array = np.asarray(bytearray(raw_data), dtype=np.int8) cv_image = cv2.imdecode(img_array, -1) return cv_image def print_frame(): callerframerecord = inspect.stack()[1] # 0 represents this line # 1 represents line at caller frame = callerframerecord[0] info = inspect.getframeinfo(frame) # print info.filename # __FILE__ -> Test.py # print info.function # __FUNCTION__ -> Main # print info.lineno # __LINE__ -> 13 return info.lineno class ObjectRecognition: log_images_counter = 0 def __init__(self, method=4): self.log_video_writer_created = False self.log_video_writer = None LOG.info("ObjectRecognition Class initializing...") # Creating window and associated sliders, and mouse callback: cv2.namedWindow('Features') cv2.namedWindow('ImageDetector') # Selection of the method to compute the features cv2.createTrackbar('method', 'Features', 0, 4, nothing) # Playback error for calculating inliers with RANSAC cv2.createTrackbar('projer', 'Features', 5, 10, nothing) # Minimum number of inliers to indicate that an object has been recognized cv2.createTrackbar('inliers', 'Features', 20, 50, nothing) # Trackbar to indicate whether features are painted or not cv2.createTrackbar('drawKP', 'Features', 0, 1, nothing) # Creation of the feature detector, according to method (only at the beginning): # self.method = cv2.getTrackbarPos('method', 'Features') self.method = method self.method_str = '' if self.method == 0: if self.method_str != 'SIFT': # no sift error kill self.method_str = 'SIFT' # The number of features has been limited to 250 for the algorithm to flow. self.detector = cv2.xfeatures2d.SIFT_create(nfeatures=250) elif self.method == 1: if self.method_str != 'AKAZE': self.method_str = 'AKAZE' self.detector = cv2.AKAZE_create() elif self.method == 2: if self.method_str != 'SURF': self.method_str = 'SURF' self.detector = cv2.xfeatures2d.SURF_create(800) elif self.method == 3: if self.method_str != 'ORB': self.method_str = 'ORB' self.detector = self.orb = cv2.ORB_create(400) elif self.method == 4: if self.method_str != 'BRISK': self.method_str = 'BRISK' self.detector = cv2.BRISK_create() self.dataBase = dict([('SIFT', []), ('AKAZE', []), ('SURF', []), ('ORB', []), ('BRISK', [])]) self.bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) self.load_models_from_directory() # Funcion encircled the calcular, for example, the calculation of the features of the calculations, # Load features of the imagery of the directory of "models" def load_models_from_directory(self): # The method returns a dictionary. The key is the features algorithm # while the value is a list of objects of type ImageFeature # where all the data of the features of the images of the Database are stored config_index = 0 for imageFile in os.listdir(os.path.join(dir_file, "models")): if CONFIG_COMP == "ODD" and config_index % 2: config_index += 1 continue elif CONFIG_COMP == "EVEN" and not config_index % 2: config_index += 1 continue config_index += 1 # The image is loaded with the OpenCV colorImage = cv2.imread(os.path.join(dir_file, "models/" + str(imageFile))) # We pass the grayscale image currentImage = cv2.cvtColor(colorImage, cv2.COLOR_BGR2GRAY) # We perform a resize of the image, so that the compared image is equal kp, desc = self.detector.detectAndCompute(currentImage, None) self.dataBase[self.method_str].append(ImageFeature(imageFile, currentImage.shape, colorImage, kp, desc)) return self.dataBase # Function responsible for calculating mutual matching, but nesting loops # It is a very slow solution because it does not take advantage of Numpy power # We do not even put a slider to use this method as it is very slow def find_matching_mutuos(self, method_str, desc, kp): for key, item in enumerate(self.dataBase[method_str]): self.dataBase[method_str][key].clearMatchingMutuos() for i in range(len(desc)): primerMatching = None canditatoDataBase = None matchingSegundo = None candidateWebCam = None for j in range(len(self.dataBase[method_str][key].desc)): valorMatching = np.linalg.norm(desc[i] - self.dataBase[method_str][key].desc[j]) if (primerMatching is None or valorMatching < primerMatching): primerMatching = valorMatching canditatoDataBase = j for k in range(len(desc)): valorMatching = np.linalg.norm(self.dataBase[method_str][key].desc[canditatoDataBase] - desc[k]) if (matchingSegundo is None or valorMatching < matchingSegundo): matchingSegundo = valorMatching candidateWebCam = k if not candidateWebCam is None and i == candidateWebCam: self.dataBase[method_str][key].matchingWebcam.append(kp[i].pt) self.dataBase[method_str][key].matchingDatabase.append( self.dataBase[method_str][key].kp[canditatoDataBase].pt) return self.dataBase[method_str] # Function responsible for calculating the mutual matching of a webcam image, # With all the images of the database. Receive as input parameter # The database based on the method of calculation of features used # In the image input of the webcam. def find_matching_mutuos_optimum(self, method_str, desc, kp): # The algorithm is repeated for each image in the database. for key, item in enumerate(self.dataBase[method_str]): self.dataBase[method_str][key].clearMatchingMutuos() for i in range(len(desc)): # The standard of the difference of # the current descriptor, with all descriptors of the image of the database, is calculated. # We got Without loops and making use of Numpy broadcasting, # all distances Between the current descriptor with all descriptors of the current image distanceListFromWebCam = np.linalg.norm(desc[i] - self.dataBase[method_str][key].desc, axis=-1) # You get the candidate who is the shortest distance from the current descriptor candidatoDataBase = distanceListFromWebCam.argmin() # It is checked if the matching is mutual, that is, # if it is true In the other direction. # That is, it is verified that the candidateDatabase Has the current descriptor as best matching distanceListFromDataBase = np.linalg.norm(self.dataBase[method_str][key].desc[candidatoDataBase] - desc, axis=-1) candidatoWebCam = distanceListFromDataBase.argmin() # If mutual matching is fulfilled, it is stored for later processing if abs(i - candidatoWebCam) < MIN_MATCH_COUNT: self.dataBase[method_str][key].matchingWebcam.append(kp[i].pt) self.dataBase[method_str][key].matchingDatabase.append( self.dataBase[method_str][key].kp[candidatoDataBase].pt) # For convenience they become Numpy ND-Array self.dataBase[method_str][key].matchingWebcam = np.array(self.dataBase[method_str][key].matchingWebcam) self.dataBase[method_str][key].matchingDatabase = np.array(self.dataBase[method_str][key].matchingDatabase) return self.dataBase[method_str] # This function calculates the best image based on the number of inliers # Which has each image of the database with the image obtained from # The web camera. def calculate_best_image_by_num_inliers(self, method_str, projer, minInliers): if minInliers < MIN_INLIER: minInliers = MIN_INLIER bestIndex = None bestMask = None numInliers = 0 # For each of the images for index, imgWithMatching in enumerate(self.dataBase[method_str]): # The RANSAC algorithm is computed to calculate the number of inliers try: _, mask = cv2.findHomography(imgWithMatching.matchingDatabase, imgWithMatching.matchingWebcam, cv2.RANSAC, projer) except Exception as e: LOG.info("Line: %s :: Error: %s", print_frame(), str(e)) mask = None if not mask is None: # It is checked, from the mask the number of inliers. # If the number of inliers is greater than the minimum number of inliers, # and is a maximum (it has more inliers than the previous image) # then it is considered to be the image that matches the object stored in the database. countNonZero = np.count_nonzero(mask) if countNonZero >= minInliers and countNonZero > numInliers: numInliers = countNonZero bestIndex = index bestMask = (mask >= 1).reshape(-1) # If an image has been obtained as the best image and therefore must have a minimum number of inlers, # then finally the keypoints that are inliers are calculated # from the mask obtained in findHomography and returned as the best image. LOG.info("Line: %s :: bestIndex: %s, bestMask: %s", print_frame(), bestIndex, bestMask) if not bestIndex is None: bestImage = self.dataBase[method_str][bestIndex] inliersWebCam = bestImage.matchingWebcam[bestMask] inliersDataBase = bestImage.matchingDatabase[bestMask] return bestImage, inliersWebCam, inliersDataBase return None, None, None # This function calculates the affinity matrix A, paints a rectangle around # Of the detected object and paints in a new window the image of the database # Corresponding to the recognized object. def calculateAffinityMatrixAndDraw(self, bestImage, inliersDataBase, inliersWebCam, imgout): # The affinity matrix A A = cv2.estimateRigidTransform(inliersDataBase, inliersWebCam, fullAffine=True) A = np.vstack((A, [0, 0, 1])) # Calculate the points of the rectangle occupied by the recognized object a = np.array([0, 0, 1], np.float) b = np.array([bestImage.shape[1], 0, 1], np.float) c = np.array([bestImage.shape[1], bestImage.shape[0], 1], np.float) d = np.array([0, bestImage.shape[0], 1], np.float) centro = np.array([float(bestImage.shape[0]) / 2, float(bestImage.shape[1]) / 2, 1], np.float) # Multiply the points of the virtual space, to convert them into Real image points a = np.dot(A, a) b = np.dot(A, b) c = np.dot(A, c) d = np.dot(A, d) centro = np.dot(A, centro) # The points are dehomogenized areal = (int(a[0] / a[2]), int(a[1] / b[2])) breal = (int(b[0] / b[2]), int(b[1] / b[2])) creal = (int(c[0] / c[2]), int(c[1] / c[2])) dreal = (int(d[0] / d[2]), int(d[1] / d[2])) centroreal = (int(centro[0] / centro[2]), int(centro[1] / centro[2])) # The polygon and the file name of the image are painted in the center of the polygon points = np.array([areal, breal, creal, dreal], np.int32) cv2.polylines(imgout, np.int32([points]), 1, (255, 255, 255), thickness=2) utilscv.draw_str(imgout, centroreal, bestImage.nameFile.upper()) # The detected object is displayed in a separate window # self.display_image('ImageDetector', bestImage.imageBinary, resize_max=640, wait_time=1) def debug_save_image(self, image_data): if gabriel.Debug.SAVE_IMAGES: self.log_images_counter += 1 with open(os.path.join(gabriel.Const.LOG_IMAGES_PATH, "frame-" + gabriel.util.add_preceding_zeros(self.log_images_counter) + ".jpeg"), "w") as f: f.write(image_data) if gabriel.Debug.SAVE_VIDEO: import cv2 img_array = np.asarray(bytearray(image_data), dtype=np.int8) cv_image = cv2.imdecode(img_array, -1) if not self.log_video_writer_created: self.log_video_writer_created = True self.log_video_writer = cv2.VideoWriter(gabriel.Const.LOG_VIDEO_PATH, cv2.VideoWriter_fourcc(*'XVID'), 10, (cv_image.shape[1], cv_image.shape[0])) self.log_video_writer.write(cv_image) def display_image(self, display_name, img, wait_time=-1, is_resize=True, resize_method="max", resize_max=-1, resize_scale=1, save_image=False): ''' Display image at appropriate size. There are two ways to specify the size: 1. If resize_max is greater than zero, the longer edge (either width or height) of the image is set to this value 2. If resize_scale is greater than zero, the image is scaled by this factor ''' if is_resize: img_shape = img.shape height = img_shape[0]; width = img_shape[1] if resize_max > 0: if height > width: img_display = cv2.resize(img, (resize_max * width / height, resize_max), interpolation=cv2.INTER_NEAREST) else: img_display = cv2.resize(img, (resize_max, resize_max * height / width), interpolation=cv2.INTER_NEAREST) elif resize_scale > 0: img_display = cv2.resize(img, (width * resize_scale, height * resize_scale), interpolation=cv2.INTER_NEAREST) else: LOG.info("Unexpected parameter in image display. About to exit...") else: img_display = img if save_image: self.debug_save_image(img_display) cv2.imshow(display_name, img_display) cv2.waitKey(wait_time) def recognize_image(self, image_data): """ Ref can be found in 1. https://stackoverflow.com/a/41122349/2049763 2. https://stackoverflow.com/q/37716120/2049763 :param image_data: :return: computed image """ kp, desc = self.orb.detectAndCompute(image_data, None) try: for imageFeature in self.dataBase["ORB"]: # Match descriptors. matches = self.bf.match(imageFeature.desc, desc) # Sort them in the order of their distance. matches = sorted(matches, key=lambda x: x.distance) # compute the descriptors with ORB if len(matches) > MIN_MATCH_COUNT: # Draw first 10 matches. image_data = cv2.drawMatches(imageFeature.imageBinary, imageFeature.kp, image_data, kp, matches[:MIN_MATCH_COUNT], None, flags=2) except Exception as e: LOG.info("%s\n" % str(e)) # self.display_image('input', image_data, resize_max=640, wait_time=1) return image_data def detect_image(self, image_data): """ Ref can be found in 1. https://stackoverflow.com/a/41122349/2049763 2. https://stackoverflow.com/q/37716120/2049763 :param image_data: :return: computed image """ kp, desc = self.orb.detectAndCompute(image_data, None) MAX_MATCH_COUNT = MIN_MATCH_COUNT MAX_MATCH = None imageFeature = None matchesMask = False try: for imageFeatures in self.dataBase["ORB"]: matches = self.bf.match(imageFeatures.desc, desc) matches = sorted(matches, key=lambda x: x.distance) # compute the descriptors with ORB if len(matches) > MAX_MATCH_COUNT: MAX_MATCH_COUNT = len(matches) MAX_MATCH = matches imageFeature = imageFeatures if not matchesMask: matchesMask = True if matchesMask: LOG.info("Match found ! !! !!!") image_data = cv2.drawMatches(imageFeature.imageBinary, imageFeature.kp, image_data, kp, MAX_MATCH[:MIN_MATCH_COUNT], None, flags=2) else: LOG.info("No match found") except Exception as e: LOG.info("%s\n" % str(e)) # self.display_image('input', image, resize_max=640, wait_time=1) return image_data def p4_object_recog(self, frame): try: t1 = time.time() image_in = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) image_out = frame.copy() kp, desc = self.detector.detectAndCompute(image_in, None) selectedDataBase = self.dataBase[self.method_str] if len(selectedDataBase) > 0: # We perform the mutual matching imgsMatchingMutuos = self.find_matching_mutuos_optimum(self.method_str, desc, kp) minInliers = int(cv2.getTrackbarPos('inliers', 'Features')) projer = float(cv2.getTrackbarPos('projer', 'Features')) LOG.info("Line: %s :: minInliers: %s, projer: %s", print_frame(), minInliers, projer) # The best image is calculated based on the number of inliers. # The best image is one that has more number of inliers, # but always exceeding the minimum that is indicated in the trackbar 'minInliers' bestImage, inliersWebCam, inliersDataBase = self.calculate_best_image_by_num_inliers(self.method_str, projer, minInliers) if not bestImage is None: # If we find a good image, we calculate the affinity matrix # and paint the recognized object on the screen. self.calculateAffinityMatrixAndDraw(bestImage, inliersDataBase, inliersWebCam, image_out) # Get descriptor dimension of each feature: if desc is not None: if len(desc) > 0: dim = len(desc[0]) else: dim = -1 # We draw features, and write informative text about the image # Only the features are dibuban if the slider indicates it if (int(cv2.getTrackbarPos('drawKP', 'Features')) > 0): cv2.drawKeypoints(image_out, kp, image_out, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) t1 = 1000 * (time.time() - t1) utilscv.draw_str(image_out, (20, 20), "Method {0}, {1} features found, desc. dim. = {2} ". format(self.method_str, len(kp), dim)) utilscv.draw_str(image_out, (20, 40), "Time (ms): {0}".format(str(t1))) # Show results and check keys: # self.display_image('Features', imgage_out, resize_max=640, wait_time=1) return image_out except Exception as e: LOG.info("* ** p4_object_recog Error: %s\n" % str(e)) traceback.print_exc()
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'OrganizationDocument.created' db.add_column(u'organizations_organizationdocument', 'created', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now, blank=True), keep_default=False) # Adding field 'OrganizationDocument.updated' db.add_column(u'organizations_organizationdocument', 'updated', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now, blank=True), keep_default=False) # Adding field 'OrganizationDocument.deleted' db.add_column(u'organizations_organizationdocument', 'deleted', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True), keep_default=False) # Adding field 'OrganizationMember.created' db.add_column(u'organizations_organizationmember', 'created', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now, blank=True), keep_default=False) # Adding field 'OrganizationMember.updated' db.add_column(u'organizations_organizationmember', 'updated', self.gf('django.db.models.fields.DateTimeField')(default=datetime.datetime.now, blank=True), keep_default=False) # Adding field 'OrganizationMember.deleted' db.add_column(u'organizations_organizationmember', 'deleted', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'OrganizationDocument.created' db.delete_column(u'organizations_organizationdocument', 'created') # Deleting field 'OrganizationDocument.updated' db.delete_column(u'organizations_organizationdocument', 'updated') # Deleting field 'OrganizationDocument.deleted' db.delete_column(u'organizations_organizationdocument', 'deleted') # Deleting field 'OrganizationMember.created' db.delete_column(u'organizations_organizationmember', 'created') # Deleting field 'OrganizationMember.updated' db.delete_column(u'organizations_organizationmember', 'updated') # Deleting field 'OrganizationMember.deleted' db.delete_column(u'organizations_organizationmember', 'deleted') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'geo.country': { 'Meta': {'ordering': "['name']", 'object_name': 'Country'}, 'alpha2_code': ('django.db.models.fields.CharField', [], {'max_length': '2', 'blank': 'True'}), 'alpha3_code': ('django.db.models.fields.CharField', [], {'max_length': '3', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'numeric_code': ('django.db.models.fields.CharField', [], {'max_length': '3', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'oda_recipient': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'subregion': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['geo.SubRegion']"}) }, u'geo.region': { 'Meta': {'ordering': "['name']", 'object_name': 'Region'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'numeric_code': ('django.db.models.fields.CharField', [], {'max_length': '3', 'unique': 'True', 'null': 'True', 'blank': 'True'}) }, u'geo.subregion': { 'Meta': {'ordering': "['name']", 'object_name': 'SubRegion'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'numeric_code': ('django.db.models.fields.CharField', [], {'max_length': '3', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['geo.Region']"}) }, u'members.member': { 'Meta': {'object_name': 'Member'}, 'about': ('django.db.models.fields.TextField', [], {'max_length': '265', 'blank': 'True'}), 'available_time': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True', 'blank': 'True'}), 'birthdate': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'deleted': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'disable_token': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'unique': 'True', 'max_length': '254', 'db_index': 'True'}), 'facebook': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '6', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'newsletter': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'phone_number': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}), 'picture': ('sorl.thumbnail.fields.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'primary_language': ('django.db.models.fields.CharField', [], {'max_length': '5'}), 'share_money': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'share_time_knowledge': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'skypename': ('django.db.models.fields.CharField', [], {'max_length': '32', 'blank': 'True'}), 'twitter': ('django.db.models.fields.CharField', [], {'max_length': '15', 'blank': 'True'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'user_type': ('django.db.models.fields.CharField', [], {'default': "'person'", 'max_length': '25'}), 'username': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50'}), 'website': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'why': ('django.db.models.fields.TextField', [], {'max_length': '265', 'blank': 'True'}) }, u'organizations.organization': { 'Meta': {'ordering': "['name']", 'object_name': 'Organization'}, 'account_bank_address': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'account_bank_city': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'account_bank_country': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'account_bank_country'", 'null': 'True', 'to': u"orm['geo.Country']"}), 'account_bank_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'account_bank_postal_code': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'account_bic': ('django_iban.fields.SWIFTBICField', [], {'max_length': '11', 'blank': 'True'}), 'account_holder_address': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'account_holder_city': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'account_holder_country': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'account_holder_country'", 'null': 'True', 'to': u"orm['geo.Country']"}), 'account_holder_name': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'account_holder_postal_code': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'account_iban': ('django_iban.fields.IBANField', [], {'max_length': '34', 'blank': 'True'}), 'account_number': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'account_other': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'address_line1': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'address_line2': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'city': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'country'", 'null': 'True', 'to': u"orm['geo.Country']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'deleted': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'facebook': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'partner_organizations': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'phone_number': ('django.db.models.fields.CharField', [], {'max_length': '40', 'blank': 'True'}), 'postal_code': ('django.db.models.fields.CharField', [], {'max_length': '20', 'blank': 'True'}), 'registration': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'skype': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '100'}), 'state': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'twitter': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'website': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) }, u'organizations.organizationdocument': { 'Meta': {'object_name': 'OrganizationDocument'}, 'author': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['members.Member']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'deleted': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'file': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'organization': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'documents'", 'to': u"orm['organizations.Organization']"}), 'updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}) }, u'organizations.organizationmember': { 'Meta': {'object_name': 'OrganizationMember'}, 'created': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'deleted': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'function': ('django.db.models.fields.CharField', [], {'max_length': '20'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'organization': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'members'", 'to': u"orm['organizations.Organization']"}), 'updated': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['members.Member']"}) }, u'taggit.tag': { 'Meta': {'object_name': 'Tag'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '100'}) }, u'taggit.taggeditem': { 'Meta': {'object_name': 'TaggedItem'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'taggit_taggeditem_tagged_items'", 'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.IntegerField', [], {'db_index': 'True'}), 'tag': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "u'taggit_taggeditem_items'", 'to': u"orm['taggit.Tag']"}) } } complete_apps = ['organizations']
"""The tests for the Template light platform.""" import logging import pytest from homeassistant import setup from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_HS_COLOR, ATTR_WHITE_VALUE, ) from homeassistant.const import STATE_OFF, STATE_ON, STATE_UNAVAILABLE from homeassistant.core import callback from tests.common import assert_setup_component, get_test_home_assistant from tests.components.light import common _LOGGER = logging.getLogger(__name__) # Represent for light's availability _STATE_AVAILABILITY_BOOLEAN = "availability_boolean.state" class TestTemplateLight: """Test the Template light.""" hass = None calls = None # pylint: disable=invalid-name def setup_method(self, method): """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() self.calls = [] @callback def record_call(service): """Track function calls.""" self.calls.append(service) self.hass.services.register("test", "automation", record_call) def teardown_method(self, method): """Stop everything that was started.""" self.hass.stop() def test_template_state_invalid(self): """Test template state with render error.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{states.test['big.fat...']}}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.state == STATE_OFF def test_template_state_text(self): """Test the state text of a template.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{ states.light.test_state.state }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.set("light.test_state", STATE_ON) self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.state == STATE_ON state = self.hass.states.set("light.test_state", STATE_OFF) self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.state == STATE_OFF @pytest.mark.parametrize( "expected_state,template", [(STATE_ON, "{{ 1 == 1 }}"), (STATE_OFF, "{{ 1 == 2 }}")], ) def test_template_state_boolean(self, expected_state, template): """Test the setting of the state with boolean on.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": template, "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.state == expected_state def test_template_syntax_error(self): """Test templating syntax error.""" with assert_setup_component(0, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{%- if false -%}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() assert self.hass.states.all() == [] def test_invalid_name_does_not_create(self): """Test invalid name.""" with assert_setup_component(0, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "bad name here": { "value_template": "{{ 1== 1}}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() assert self.hass.states.all() == [] def test_invalid_light_does_not_create(self): """Test invalid light.""" with assert_setup_component(0, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "switches": {"test_template_light": "Invalid"}, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() assert self.hass.states.all() == [] def test_no_lights_does_not_create(self): """Test if there are no lights no creation.""" with assert_setup_component(0, "light"): assert setup.setup_component( self.hass, "light", {"light": {"platform": "template"}} ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() assert self.hass.states.all() == [] @pytest.mark.parametrize( "missing_key, count", [("value_template", 1), ("turn_on", 0), ("turn_off", 0)] ) def test_missing_key(self, missing_key, count): """Test missing template.""" light = { "light": { "platform": "template", "lights": { "light_one": { "value_template": "{{ 1== 1}}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } } del light["light"]["lights"]["light_one"][missing_key] with assert_setup_component(count, "light"): assert setup.setup_component(self.hass, "light", light) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() if count: assert self.hass.states.all() != [] else: assert self.hass.states.all() == [] def test_on_action(self): """Test on action.""" assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{states.light.test_state.state}}", "turn_on": {"service": "test.automation"}, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() self.hass.states.set("light.test_state", STATE_OFF) self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.state == STATE_OFF common.turn_on(self.hass, "light.test_template_light") self.hass.block_till_done() assert len(self.calls) == 1 def test_on_action_optimistic(self): """Test on action with optimistic state.""" assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "turn_on": {"service": "test.automation"}, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() self.hass.states.set("light.test_state", STATE_OFF) self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.state == STATE_OFF common.turn_on(self.hass, "light.test_template_light") self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert len(self.calls) == 1 assert state.state == STATE_ON def test_off_action(self): """Test off action.""" assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{states.light.test_state.state}}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": {"service": "test.automation"}, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() self.hass.states.set("light.test_state", STATE_ON) self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.state == STATE_ON common.turn_off(self.hass, "light.test_template_light") self.hass.block_till_done() assert len(self.calls) == 1 def test_off_action_optimistic(self): """Test off action with optimistic state.""" assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": {"service": "test.automation"}, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.state == STATE_OFF common.turn_off(self.hass, "light.test_template_light") self.hass.block_till_done() assert len(self.calls) == 1 state = self.hass.states.get("light.test_template_light") assert state.state == STATE_OFF def test_white_value_action_no_template(self): """Test setting white value with optimistic template.""" assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{1 == 1}}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_white_value": { "service": "test.automation", "data_template": { "entity_id": "test.test_state", "white_value": "{{white_value}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.attributes.get("white_value") is None common.turn_on( self.hass, "light.test_template_light", **{ATTR_WHITE_VALUE: 124} ) self.hass.block_till_done() assert len(self.calls) == 1 assert self.calls[0].data["white_value"] == 124 state = self.hass.states.get("light.test_template_light") assert state is not None assert state.attributes.get("white_value") == 124 @pytest.mark.parametrize( "expected_white_value,template", [ (255, "{{255}}"), (None, "{{256}}"), (None, "{{x - 12}}"), (None, "{{ none }}"), (None, ""), ], ) def test_white_value_template(self, expected_white_value, template): """Test the template for the white value.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{ 1 == 1 }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_white_value": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "white_value": "{{white_value}}", }, }, "white_value_template": template, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state is not None assert state.attributes.get("white_value") == expected_white_value def test_level_action_no_template(self): """Test setting brightness with optimistic template.""" assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{1 == 1}}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "test.automation", "data_template": { "entity_id": "test.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.attributes.get("brightness") is None common.turn_on(self.hass, "light.test_template_light", **{ATTR_BRIGHTNESS: 124}) self.hass.block_till_done() assert len(self.calls) == 1 assert self.calls[0].data["brightness"] == 124 state = self.hass.states.get("light.test_template_light") _LOGGER.info(str(state.attributes)) assert state is not None assert state.attributes.get("brightness") == 124 @pytest.mark.parametrize( "expected_level,template", [ (255, "{{255}}"), (None, "{{256}}"), (None, "{{x - 12}}"), (None, "{{ none }}"), (None, ""), ], ) def test_level_template(self, expected_level, template): """Test the template for the level.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{ 1 == 1 }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, "level_template": template, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state is not None assert state.attributes.get("brightness") == expected_level @pytest.mark.parametrize( "expected_temp,template", [ (500, "{{500}}"), (None, "{{501}}"), (None, "{{x - 12}}"), (None, "None"), (None, "{{ none }}"), (None, ""), ], ) def test_temperature_template(self, expected_temp, template): """Test the template for the temperature.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{ 1 == 1 }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_temperature": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "color_temp": "{{color_temp}}", }, }, "temperature_template": template, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state is not None assert state.attributes.get("color_temp") == expected_temp def test_temperature_action_no_template(self): """Test setting temperature with optimistic template.""" assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{1 == 1}}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_temperature": { "service": "test.automation", "data_template": { "entity_id": "test.test_state", "color_temp": "{{color_temp}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.attributes.get("color_template") is None common.turn_on(self.hass, "light.test_template_light", **{ATTR_COLOR_TEMP: 345}) self.hass.block_till_done() assert len(self.calls) == 1 assert self.calls[0].data["color_temp"] == 345 state = self.hass.states.get("light.test_template_light") _LOGGER.info(str(state.attributes)) assert state is not None assert state.attributes.get("color_temp") == 345 def test_friendly_name(self): """Test the accessibility of the friendly_name attribute.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "friendly_name": "Template light", "value_template": "{{ 1 == 1 }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state is not None assert state.attributes.get("friendly_name") == "Template light" def test_icon_template(self): """Test icon template.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "friendly_name": "Template light", "value_template": "{{ 1 == 1 }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, "icon_template": "{% if states.light.test_state.state %}" "mdi:check" "{% endif %}", } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.attributes.get("icon") == "" state = self.hass.states.set("light.test_state", STATE_ON) self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.attributes["icon"] == "mdi:check" def test_entity_picture_template(self): """Test entity_picture template.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "friendly_name": "Template light", "value_template": "{{ 1 == 1 }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, "entity_picture_template": "{% if states.light.test_state.state %}" "/local/light.png" "{% endif %}", } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.attributes.get("entity_picture") == "" state = self.hass.states.set("light.test_state", STATE_ON) self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.attributes["entity_picture"] == "/local/light.png" def test_color_action_no_template(self): """Test setting color with optimistic template.""" assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{1 == 1}}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_color": [ { "service": "test.automation", "data_template": { "entity_id": "test.test_state", "h": "{{h}}", "s": "{{s}}", }, }, { "service": "test.automation", "data_template": { "entity_id": "test.test_state", "s": "{{s}}", "h": "{{h}}", }, }, ], } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state.attributes.get("hs_color") is None common.turn_on( self.hass, "light.test_template_light", **{ATTR_HS_COLOR: (40, 50)} ) self.hass.block_till_done() assert len(self.calls) == 2 assert self.calls[0].data["h"] == 40 assert self.calls[0].data["s"] == 50 assert self.calls[1].data["h"] == 40 assert self.calls[1].data["s"] == 50 state = self.hass.states.get("light.test_template_light") _LOGGER.info(str(state.attributes)) assert state is not None assert self.calls[0].data["h"] == 40 assert self.calls[0].data["s"] == 50 assert self.calls[1].data["h"] == 40 assert self.calls[1].data["s"] == 50 @pytest.mark.parametrize( "expected_hs,template", [ ((360, 100), "{{(360, 100)}}"), ((359.9, 99.9), "{{(359.9, 99.9)}}"), (None, "{{(361, 100)}}"), (None, "{{(360, 101)}}"), (None, "{{x - 12}}"), (None, ""), (None, "{{ none }}"), ], ) def test_color_template(self, expected_hs, template): """Test the template for the color.""" with assert_setup_component(1, "light"): assert setup.setup_component( self.hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "value_template": "{{ 1 == 1 }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_color": [ { "service": "input_number.set_value", "data_template": { "entity_id": "input_number.h", "color_temp": "{{h}}", }, } ], "color_template": template, } }, } }, ) self.hass.block_till_done() self.hass.start() self.hass.block_till_done() state = self.hass.states.get("light.test_template_light") assert state is not None assert state.attributes.get("hs_color") == expected_hs async def test_available_template_with_entities(hass): """Test availability templates with values from other entities.""" await setup.async_setup_component( hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "availability_template": "{{ is_state('availability_boolean.state', 'on') }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() # When template returns true.. hass.states.async_set(_STATE_AVAILABILITY_BOOLEAN, STATE_ON) await hass.async_block_till_done() # Device State should not be unavailable assert hass.states.get("light.test_template_light").state != STATE_UNAVAILABLE # When Availability template returns false hass.states.async_set(_STATE_AVAILABILITY_BOOLEAN, STATE_OFF) await hass.async_block_till_done() # device state should be unavailable assert hass.states.get("light.test_template_light").state == STATE_UNAVAILABLE async def test_invalid_availability_template_keeps_component_available(hass, caplog): """Test that an invalid availability keeps the device available.""" await setup.async_setup_component( hass, "light", { "light": { "platform": "template", "lights": { "test_template_light": { "availability_template": "{{ x - 12 }}", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, "set_level": { "service": "light.turn_on", "data_template": { "entity_id": "light.test_state", "brightness": "{{brightness}}", }, }, } }, } }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() assert hass.states.get("light.test_template_light").state != STATE_UNAVAILABLE assert ("UndefinedError: 'x' is undefined") in caplog.text async def test_unique_id(hass): """Test unique_id option only creates one light per id.""" await setup.async_setup_component( hass, "light", { "light": { "platform": "template", "lights": { "test_template_light_01": { "unique_id": "not-so-unique-anymore", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, }, "test_template_light_02": { "unique_id": "not-so-unique-anymore", "turn_on": { "service": "light.turn_on", "entity_id": "light.test_state", }, "turn_off": { "service": "light.turn_off", "entity_id": "light.test_state", }, }, }, }, }, ) await hass.async_block_till_done() await hass.async_start() await hass.async_block_till_done() assert len(hass.states.async_all()) == 1
# -*- coding: utf-8 -*- # File: conv2d.py from ..compat import tfv1 as tf # this should be avoided first in model code from ..tfutils.common import get_tf_version_tuple from ..utils.argtools import get_data_format, shape2d, shape4d, log_once from .common import VariableHolder, layer_register from .tflayer import convert_to_tflayer_args, rename_get_variable __all__ = ['Conv2D', 'Deconv2D', 'Conv2DTranspose'] @layer_register(log_shape=True) @convert_to_tflayer_args( args_names=['filters', 'kernel_size'], name_mapping={ 'out_channel': 'filters', 'kernel_shape': 'kernel_size', 'stride': 'strides', }) def Conv2D( inputs, filters, kernel_size, strides=(1, 1), padding='same', data_format='channels_last', dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, split=1): """ Similar to `tf.layers.Conv2D`, but with some differences: 1. Default kernel initializer is variance_scaling_initializer(2.0). 2. Default padding is 'same'. 3. Support 'split' argument to do group convolution. Variable Names: * ``W``: weights * ``b``: bias """ if kernel_initializer is None: if get_tf_version_tuple() <= (1, 12): kernel_initializer = tf.contrib.layers.variance_scaling_initializer(2.0) # deprecated else: kernel_initializer = tf.keras.initializers.VarianceScaling(2.0, distribution='untruncated_normal') dilation_rate = shape2d(dilation_rate) if split == 1 and dilation_rate == [1, 1]: # tf.layers.Conv2D has bugs with dilations (https://github.com/tensorflow/tensorflow/issues/26797) with rename_get_variable({'kernel': 'W', 'bias': 'b'}): layer = tf.layers.Conv2D( filters, kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, _reuse=tf.get_variable_scope().reuse) ret = layer.apply(inputs, scope=tf.get_variable_scope()) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=layer.kernel) if use_bias: ret.variables.b = layer.bias else: # group conv implementation data_format = get_data_format(data_format, keras_mode=False) in_shape = inputs.get_shape().as_list() channel_axis = 3 if data_format == 'NHWC' else 1 in_channel = in_shape[channel_axis] assert in_channel is not None, "[Conv2D] Input cannot have unknown channel!" assert in_channel % split == 0, in_channel assert kernel_regularizer is None and bias_regularizer is None and activity_regularizer is None, \ "Not supported by group conv or dilated conv!" out_channel = filters assert out_channel % split == 0, out_channel assert dilation_rate == [1, 1] or get_tf_version_tuple() >= (1, 5), 'TF>=1.5 required for dilated conv.' kernel_shape = shape2d(kernel_size) filter_shape = kernel_shape + [in_channel // split, out_channel] stride = shape4d(strides, data_format=data_format) kwargs = {"data_format": data_format} if get_tf_version_tuple() >= (1, 5): kwargs['dilations'] = shape4d(dilation_rate, data_format=data_format) # matching input dtype (ex. tf.float16) since the default dtype of variable if tf.float32 inputs_dtype = inputs.dtype W = tf.get_variable( 'W', filter_shape, dtype=inputs_dtype, initializer=kernel_initializer) if use_bias: b = tf.get_variable('b', [out_channel], dtype=inputs_dtype, initializer=bias_initializer) if split == 1: conv = tf.nn.conv2d(inputs, W, stride, padding.upper(), **kwargs) else: conv = None if get_tf_version_tuple() >= (1, 13): try: conv = tf.nn.conv2d(inputs, W, stride, padding.upper(), **kwargs) except ValueError: log_once("CUDNN group convolution support is only available with " "https://github.com/tensorflow/tensorflow/pull/25818 . " "Will fall back to a loop-based slow implementation instead!", 'warn') if conv is None: inputs = tf.split(inputs, split, channel_axis) kernels = tf.split(W, split, 3) outputs = [tf.nn.conv2d(i, k, stride, padding.upper(), **kwargs) for i, k in zip(inputs, kernels)] conv = tf.concat(outputs, channel_axis) ret = tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv if activation is not None: ret = activation(ret) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=W) if use_bias: ret.variables.b = b return ret @layer_register(log_shape=True) @convert_to_tflayer_args( args_names=['filters', 'kernel_size', 'strides'], name_mapping={ 'out_channel': 'filters', 'kernel_shape': 'kernel_size', 'stride': 'strides', }) def Conv2DTranspose( inputs, filters, kernel_size, strides=(1, 1), padding='same', data_format='channels_last', activation=None, use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(), kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None): """ A wrapper around `tf.layers.Conv2DTranspose`. Some differences to maintain backward-compatibility: 1. Default kernel initializer is variance_scaling_initializer(2.0). 2. Default padding is 'same' Variable Names: * ``W``: weights * ``b``: bias """ if kernel_initializer is None: if get_tf_version_tuple() <= (1, 12): kernel_initializer = tf.contrib.layers.variance_scaling_initializer(2.0) # deprecated else: kernel_initializer = tf.keras.initializers.VarianceScaling(2.0, distribution='untruncated_normal') if get_tf_version_tuple() <= (1, 12): with rename_get_variable({'kernel': 'W', 'bias': 'b'}): layer = tf.layers.Conv2DTranspose( filters, kernel_size, strides=strides, padding=padding, data_format=data_format, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, _reuse=tf.get_variable_scope().reuse) ret = layer.apply(inputs, scope=tf.get_variable_scope()) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=layer.kernel) if use_bias: ret.variables.b = layer.bias else: # Our own implementation, to avoid Keras bugs. https://github.com/tensorflow/tensorflow/issues/25946 assert kernel_regularizer is None and bias_regularizer is None and activity_regularizer is None, \ "Unsupported arguments due to Keras bug in TensorFlow 1.13" data_format = get_data_format(data_format, keras_mode=False) shape_dyn = tf.shape(inputs) shape_sta = inputs.shape.as_list() strides2d = shape2d(strides) kernel_shape = shape2d(kernel_size) assert padding.lower() in ['valid', 'same'], "Padding {} is not supported!".format(padding) if padding.lower() == 'valid': shape_res2d = [max(kernel_shape[0] - strides2d[0], 0), max(kernel_shape[1] - strides2d[1], 0)] else: shape_res2d = shape2d(0) if data_format == 'NCHW': channels_in = shape_sta[1] out_shape_dyn = tf.stack( [shape_dyn[0], filters, shape_dyn[2] * strides2d[0] + shape_res2d[0], shape_dyn[3] * strides2d[1] + shape_res2d[1]]) out_shape3_sta = [filters, None if shape_sta[2] is None else shape_sta[2] * strides2d[0] + shape_res2d[0], None if shape_sta[3] is None else shape_sta[3] * strides2d[1] + shape_res2d[1]] else: channels_in = shape_sta[-1] out_shape_dyn = tf.stack( [shape_dyn[0], shape_dyn[1] * strides2d[0] + shape_res2d[0], shape_dyn[2] * strides2d[1] + shape_res2d[1], filters]) out_shape3_sta = [None if shape_sta[1] is None else shape_sta[1] * strides2d[0] + shape_res2d[0], None if shape_sta[2] is None else shape_sta[2] * strides2d[1] + shape_res2d[1], filters] inputs_dtype = inputs.dtype W = tf.get_variable('W', kernel_shape + [filters, channels_in], dtype=inputs_dtype, initializer=kernel_initializer) if use_bias: b = tf.get_variable('b', [filters], dtype=inputs_dtype, initializer=bias_initializer) conv = tf.nn.conv2d_transpose( inputs, W, out_shape_dyn, shape4d(strides, data_format=data_format), padding=padding.upper(), data_format=data_format) conv.set_shape(tf.TensorShape([shape_sta[0]] + out_shape3_sta)) ret = tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv if activation is not None: ret = activation(ret) ret = tf.identity(ret, name='output') ret.variables = VariableHolder(W=W) if use_bias: ret.variables.b = b return ret Deconv2D = Conv2DTranspose
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # # Xcode supports build variable substitutions and CPP; sadly, that doesn't work # because: # # 1. Xcode wants to do the Info.plist work before it runs any build phases, # this means if we were to generate a .h file for INFOPLIST_PREFIX_HEADER # we'd have to put it in another target so it runs in time. # 2. Xcode also doesn't check to see if the header being used as a prefix for # the Info.plist has changed. So even if we updated it, it's only looking # at the modtime of the info.plist to see if that's changed. # # So, we work around all of this by making a script build phase that will run # during the app build, and simply update the info.plist in place. This way # by the time the app target is done, the info.plist is correct. # import optparse import os from os import environ as env import plistlib import re import subprocess import sys import tempfile TOP = os.path.join(env['SRCROOT'], '..') def _GetOutput(args): """Runs a subprocess and waits for termination. Returns (stdout, returncode) of the process. stderr is attached to the parent.""" proc = subprocess.Popen(args, stdout=subprocess.PIPE) (stdout, stderr) = proc.communicate() return (stdout, proc.returncode) def _GetOutputNoError(args): """Similar to _GetOutput() but ignores stderr. If there's an error launching the child (like file not found), the exception will be caught and (None, 1) will be returned to mimic quiet failure.""" try: proc = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except OSError: return (None, 1) (stdout, stderr) = proc.communicate() return (stdout, proc.returncode) def _RemoveKeys(plist, *keys): """Removes a varargs of keys from the plist.""" for key in keys: try: del plist[key] except KeyError: pass def _AddVersionKeys(plist, version=None): """Adds the product version number into the plist. Returns True on success and False on error. The error will be printed to stderr.""" if version: match = re.match('\d+\.\d+\.(\d+\.\d+)$', version) if not match: print >>sys.stderr, 'Invalid version string specified: "%s"' % version return False full_version = match.group(0) bundle_version = match.group(1) else: # Pull in the Chrome version number. VERSION_TOOL = os.path.join(TOP, 'chrome/tools/build/version.py') VERSION_FILE = os.path.join(TOP, 'chrome/VERSION') (stdout, retval1) = _GetOutput([VERSION_TOOL, '-f', VERSION_FILE, '-t', '@MAJOR@.@MINOR@.@BUILD@.@PATCH@']) full_version = stdout.rstrip() (stdout, retval2) = _GetOutput([VERSION_TOOL, '-f', VERSION_FILE, '-t', '@BUILD@.@PATCH@']) bundle_version = stdout.rstrip() # If either of the two version commands finished with non-zero returncode, # report the error up. if retval1 or retval2: return False # Add public version info so "Get Info" works. plist['CFBundleShortVersionString'] = full_version # Honor the 429496.72.95 limit. The maximum comes from splitting 2^32 - 1 # into 6, 2, 2 digits. The limitation was present in Tiger, but it could # have been fixed in later OS release, but hasn't been tested (it's easy # enough to find out with "lsregister -dump). # http://lists.apple.com/archives/carbon-dev/2006/Jun/msg00139.html # BUILD will always be an increasing value, so BUILD_PATH gives us something # unique that meetings what LS wants. plist['CFBundleVersion'] = bundle_version # Return with no error. return True def _DoSCMKeys(plist, add_keys): """Adds the SCM information, visible in about:version, to property list. If |add_keys| is True, it will insert the keys, otherwise it will remove them.""" scm_revision = None if add_keys: # Pull in the Chrome revision number. VERSION_TOOL = os.path.join(TOP, 'chrome/tools/build/version.py') LASTCHANGE_FILE = os.path.join(TOP, 'build/util/LASTCHANGE') (stdout, retval) = _GetOutput([VERSION_TOOL, '-f', LASTCHANGE_FILE, '-t', '@LASTCHANGE@']) if retval: return False scm_revision = stdout.rstrip() # See if the operation failed. _RemoveKeys(plist, 'SCMRevision') if scm_revision != None: plist['SCMRevision'] = scm_revision elif add_keys: print >>sys.stderr, 'Could not determine SCM revision. This may be OK.' return True def _DoPDFKeys(plist, add_keys): """Adds PDF support to the document types list. If add_keys is True, it will add the type information dictionary. If it is False, it will remove it if present.""" PDF_FILE_EXTENSION = 'pdf' def __AddPDFKeys(sub_plist): """Writes the keys into a sub-dictionary of the plist.""" sub_plist['CFBundleTypeExtensions'] = [PDF_FILE_EXTENSION] sub_plist['CFBundleTypeIconFile'] = 'document.icns' sub_plist['CFBundleTypeMIMETypes'] = 'application/pdf' sub_plist['CFBundleTypeName'] = 'PDF Document' sub_plist['CFBundleTypeRole'] = 'Viewer' DOCUMENT_TYPES_KEY = 'CFBundleDocumentTypes' # First get the list of document types, creating it if necessary. try: extensions = plist[DOCUMENT_TYPES_KEY] except KeyError: # If this plist doesn't have a type dictionary, create one if set to add the # keys. If not, bail. if not add_keys: return extensions = plist[DOCUMENT_TYPES_KEY] = [] # Loop over each entry in the list, looking for one that handles PDF types. for i, ext in enumerate(extensions): # If an entry for .pdf files is found... if 'CFBundleTypeExtensions' not in ext: continue if PDF_FILE_EXTENSION in ext['CFBundleTypeExtensions']: if add_keys: # Overwrite the existing keys with new ones. __AddPDFKeys(ext) else: # Otherwise, delete the entry entirely. del extensions[i] return # No PDF entry exists. If one needs to be added, do so now. if add_keys: pdf_entry = {} __AddPDFKeys(pdf_entry) extensions.append(pdf_entry) def _AddBreakpadKeys(plist, branding): """Adds the Breakpad keys. This must be called AFTER _AddVersionKeys() and also requires the |branding| argument.""" plist['BreakpadReportInterval'] = '3600' # Deliberately a string. plist['BreakpadProduct'] = '%s_Mac' % branding plist['BreakpadProductDisplay'] = branding plist['BreakpadVersion'] = plist['CFBundleShortVersionString'] # These are both deliberately strings and not boolean. plist['BreakpadSendAndExit'] = 'YES' plist['BreakpadSkipConfirm'] = 'YES' def _RemoveBreakpadKeys(plist): """Removes any set Breakpad keys.""" _RemoveKeys(plist, 'BreakpadURL', 'BreakpadReportInterval', 'BreakpadProduct', 'BreakpadProductDisplay', 'BreakpadVersion', 'BreakpadSendAndExit', 'BreakpadSkipConfirm') def _TagSuffixes(): # Keep this list sorted in the order that tag suffix components are to # appear in a tag value. That is to say, it should be sorted per ASCII. components = ('32bit', 'full') assert tuple(sorted(components)) == components components_len = len(components) combinations = 1 << components_len tag_suffixes = [] for combination in xrange(0, combinations): tag_suffix = '' for component_index in xrange(0, components_len): if combination & (1 << component_index): tag_suffix += '-' + components[component_index] tag_suffixes.append(tag_suffix) return tag_suffixes def _AddKeystoneKeys(plist, bundle_identifier): """Adds the Keystone keys. This must be called AFTER _AddVersionKeys() and also requires the |bundle_identifier| argument (com.example.product).""" plist['KSVersion'] = plist['CFBundleShortVersionString'] plist['KSProductID'] = bundle_identifier plist['KSUpdateURL'] = 'https://tools.google.com/service/update2' _RemoveKeys(plist, 'KSChannelID') for tag_suffix in _TagSuffixes(): if tag_suffix: plist['KSChannelID' + tag_suffix] = tag_suffix def _RemoveKeystoneKeys(plist): """Removes any set Keystone keys.""" _RemoveKeys(plist, 'KSVersion', 'KSProductID', 'KSUpdateURL') tag_keys = [] for tag_suffix in _TagSuffixes(): tag_keys.append('KSChannelID' + tag_suffix) _RemoveKeys(plist, *tag_keys) def Main(argv): parser = optparse.OptionParser('%prog [options]') parser.add_option('--breakpad', dest='use_breakpad', action='store', type='int', default=False, help='Enable Breakpad [1 or 0]') parser.add_option('--breakpad_uploads', dest='breakpad_uploads', action='store', type='int', default=False, help='Enable Breakpad\'s uploading of crash dumps [1 or 0]') parser.add_option('--keystone', dest='use_keystone', action='store', type='int', default=False, help='Enable Keystone [1 or 0]') parser.add_option('--scm', dest='add_scm_info', action='store', type='int', default=True, help='Add SCM metadata [1 or 0]') parser.add_option('--pdf', dest='add_pdf_support', action='store', type='int', default=False, help='Add PDF file handler support [1 or 0]') parser.add_option('--branding', dest='branding', action='store', type='string', default=None, help='The branding of the binary') parser.add_option('--bundle_id', dest='bundle_identifier', action='store', type='string', default=None, help='The bundle id of the binary') parser.add_option('--version', dest='version', action='store', type='string', default=None, help='The version string [major.minor.build.patch]') (options, args) = parser.parse_args(argv) if len(args) > 0: print >>sys.stderr, parser.get_usage() return 1 # Read the plist into its parsed format. DEST_INFO_PLIST = os.path.join(env['TARGET_BUILD_DIR'], env['INFOPLIST_PATH']) plist = plistlib.readPlist(DEST_INFO_PLIST) # Insert the product version. if not _AddVersionKeys(plist, version=options.version): return 2 # Add Breakpad if configured to do so. if options.use_breakpad: if options.branding is None: print >>sys.stderr, 'Use of Breakpad requires branding.' return 1 _AddBreakpadKeys(plist, options.branding) if options.breakpad_uploads: plist['BreakpadURL'] = 'https://clients2.google.com/cr/report' else: # This allows crash dumping to a file without uploading the # dump, for testing purposes. Breakpad does not recognise # "none" as a special value, but this does stop crash dump # uploading from happening. We need to specify something # because if "BreakpadURL" is not present, Breakpad will not # register its crash handler and no crash dumping will occur. plist['BreakpadURL'] = 'none' else: _RemoveBreakpadKeys(plist) # Only add Keystone in Release builds. if options.use_keystone and env['CONFIGURATION'] == 'Release': if options.bundle_identifier is None: print >>sys.stderr, 'Use of Keystone requires the bundle id.' return 1 _AddKeystoneKeys(plist, options.bundle_identifier) else: _RemoveKeystoneKeys(plist) # Adds or removes any SCM keys. if not _DoSCMKeys(plist, options.add_scm_info): return 3 # Adds or removes the PDF file handler entry. _DoPDFKeys(plist, options.add_pdf_support) # Now that all keys have been mutated, rewrite the file. temp_info_plist = tempfile.NamedTemporaryFile() plistlib.writePlist(plist, temp_info_plist.name) # Info.plist will work perfectly well in any plist format, but traditionally # applications use xml1 for this, so convert it to ensure that it's valid. proc = subprocess.Popen(['plutil', '-convert', 'xml1', '-o', DEST_INFO_PLIST, temp_info_plist.name]) proc.wait() return proc.returncode if __name__ == '__main__': sys.exit(Main(sys.argv[1:]))
"""The tests for the MQTT statestream component.""" import homeassistant.components.mqtt_statestream as statestream from homeassistant.core import State from homeassistant.setup import async_setup_component from tests.async_mock import ANY, call from tests.common import mock_state_change_event async def add_statestream( hass, base_topic=None, publish_attributes=None, publish_timestamps=None, publish_include=None, publish_exclude=None, ): """Add a mqtt_statestream component.""" config = {} if base_topic: config["base_topic"] = base_topic if publish_attributes: config["publish_attributes"] = publish_attributes if publish_timestamps: config["publish_timestamps"] = publish_timestamps if publish_include: config["include"] = publish_include if publish_exclude: config["exclude"] = publish_exclude return await async_setup_component( hass, statestream.DOMAIN, {statestream.DOMAIN: config} ) async def test_fails_with_no_base(hass, mqtt_mock): """Setup should fail if no base_topic is set.""" assert await add_statestream(hass) is False async def test_setup_succeeds_without_attributes(hass, mqtt_mock): """Test the success of the setup with a valid base_topic.""" assert await add_statestream(hass, base_topic="pub") async def test_setup_succeeds_with_attributes(hass, mqtt_mock): """Test setup with a valid base_topic and publish_attributes.""" assert await add_statestream(hass, base_topic="pub", publish_attributes=True) async def test_state_changed_event_sends_message(hass, mqtt_mock): """Test the sending of a new message if event changed.""" e_id = "fake.entity" base_topic = "pub" # Add the statestream component for publishing state updates assert await add_statestream(hass, base_topic=base_topic) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State(e_id, "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called async def test_state_changed_event_sends_message_and_timestamp(hass, mqtt_mock): """Test the sending of a message and timestamps if event changed.""" e_id = "another.entity" base_topic = "pub" # Add the statestream component for publishing state updates assert await add_statestream( hass, base_topic=base_topic, publish_attributes=None, publish_timestamps=True ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State(e_id, "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state calls = [ call.async_publish("pub/another/entity/state", "on", 1, True), call.async_publish("pub/another/entity/last_changed", ANY, 1, True), call.async_publish("pub/another/entity/last_updated", ANY, 1, True), ] mqtt_mock.async_publish.assert_has_calls(calls, any_order=True) assert mqtt_mock.async_publish.called async def test_state_changed_attr_sends_message(hass, mqtt_mock): """Test the sending of a new message if attribute changed.""" e_id = "fake.entity" base_topic = "pub" # Add the statestream component for publishing state updates assert await add_statestream(hass, base_topic=base_topic, publish_attributes=True) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() test_attributes = {"testing": "YES", "list": ["a", "b", "c"], "bool": False} # Set a state of an entity mock_state_change_event(hass, State(e_id, "off", attributes=test_attributes)) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state calls = [ call.async_publish("pub/fake/entity/state", "off", 1, True), call.async_publish("pub/fake/entity/testing", '"YES"', 1, True), call.async_publish("pub/fake/entity/list", '["a", "b", "c"]', 1, True), call.async_publish("pub/fake/entity/bool", "false", 1, True), ] mqtt_mock.async_publish.assert_has_calls(calls, any_order=True) assert mqtt_mock.async_publish.called async def test_state_changed_event_include_domain(hass, mqtt_mock): """Test that filtering on included domain works as expected.""" base_topic = "pub" incl = {"domains": ["fake"]} excl = {} # Add the statestream component for publishing state updates # Set the filter to allow fake.* items assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State("fake.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included mock_state_change_event(hass, State("fake2.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called async def test_state_changed_event_include_entity(hass, mqtt_mock): """Test that filtering on included entity works as expected.""" base_topic = "pub" incl = {"entities": ["fake.entity"]} excl = {} # Add the statestream component for publishing state updates # Set the filter to allow fake.* items assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State("fake.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included mock_state_change_event(hass, State("fake.entity2", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called async def test_state_changed_event_exclude_domain(hass, mqtt_mock): """Test that filtering on excluded domain works as expected.""" base_topic = "pub" incl = {} excl = {"domains": ["fake2"]} # Add the statestream component for publishing state updates # Set the filter to allow fake.* items assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State("fake.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included mock_state_change_event(hass, State("fake2.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called async def test_state_changed_event_exclude_entity(hass, mqtt_mock): """Test that filtering on excluded entity works as expected.""" base_topic = "pub" incl = {} excl = {"entities": ["fake.entity2"]} # Add the statestream component for publishing state updates # Set the filter to allow fake.* items assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State("fake.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included mock_state_change_event(hass, State("fake.entity2", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called async def test_state_changed_event_exclude_domain_include_entity(hass, mqtt_mock): """Test filtering with excluded domain and included entity.""" base_topic = "pub" incl = {"entities": ["fake.entity"]} excl = {"domains": ["fake"]} # Add the statestream component for publishing state updates # Set the filter to allow fake.* items assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State("fake.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included mock_state_change_event(hass, State("fake.entity2", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called async def test_state_changed_event_include_domain_exclude_entity(hass, mqtt_mock): """Test filtering with included domain and excluded entity.""" base_topic = "pub" incl = {"domains": ["fake"]} excl = {"entities": ["fake.entity2"]} # Add the statestream component for publishing state updates # Set the filter to allow fake.* items assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State("fake.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included mock_state_change_event(hass, State("fake.entity2", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called async def test_state_changed_event_include_globs(hass, mqtt_mock): """Test that filtering on included glob works as expected.""" base_topic = "pub" incl = {"entity_globs": ["*.included_*"]} excl = {} # Add the statestream component for publishing state updates # Set the filter to allow *.included_* items assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity with included glob mock_state_change_event(hass, State("fake2.included_entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake2/included_entity/state mqtt_mock.async_publish.assert_called_with( "pub/fake2/included_entity/state", "on", 1, True ) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included mock_state_change_event(hass, State("fake2.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called async def test_state_changed_event_exclude_globs(hass, mqtt_mock): """Test that filtering on excluded globs works as expected.""" base_topic = "pub" incl = {} excl = {"entity_globs": ["*.excluded_*"]} # Add the statestream component for publishing state updates # Set the filter to allow *.excluded_* items assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State("fake.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included by glob mock_state_change_event(hass, State("fake.excluded_entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called async def test_state_changed_event_exclude_domain_globs_include_entity(hass, mqtt_mock): """Test filtering with excluded domain and glob and included entity.""" base_topic = "pub" incl = {"entities": ["fake.entity"]} excl = {"domains": ["fake"], "entity_globs": ["*.excluded_*"]} # Add the statestream component for publishing state updates # Set the filter to exclude with include filter assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity mock_state_change_event(hass, State("fake.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that doesn't match any filters mock_state_change_event(hass, State("fake2.included_entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with( "pub/fake2/included_entity/state", "on", 1, True ) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included by domain mock_state_change_event(hass, State("fake.entity2", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included by glob mock_state_change_event(hass, State("fake.excluded_entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called async def test_state_changed_event_include_domain_globs_exclude_entity(hass, mqtt_mock): """Test filtering with included domain and glob and excluded entity.""" base_topic = "pub" incl = {"domains": ["fake"], "entity_globs": ["*.included_*"]} excl = {"entities": ["fake.entity2"]} # Add the statestream component for publishing state updates # Set the filter to include with exclude filter assert await add_statestream( hass, base_topic=base_topic, publish_include=incl, publish_exclude=excl ) await hass.async_block_till_done() # Reset the mock because it will have already gotten calls for the # mqtt_statestream state change on initialization, etc. mqtt_mock.async_publish.reset_mock() # Set a state of an entity included by domain mock_state_change_event(hass, State("fake.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with("pub/fake/entity/state", "on", 1, True) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity included by glob mock_state_change_event(hass, State("fake.included_entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() # Make sure 'on' was published to pub/fake/entity/state mqtt_mock.async_publish.assert_called_with( "pub/fake/included_entity/state", "on", 1, True ) assert mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that shouldn't be included mock_state_change_event(hass, State("fake.entity2", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called mqtt_mock.async_publish.reset_mock() # Set a state of an entity that doesn't match any filters mock_state_change_event(hass, State("fake2.entity", "on")) await hass.async_block_till_done() await hass.async_block_till_done() assert not mqtt_mock.async_publish.called
from proximal.tests.base_test import BaseTest import proximal as px from proximal.lin_ops.vstack import vstack from proximal.algorithms import admm, pc, hqs, ladmm, absorb_offset from proximal.utils.cuda_codegen import PyCudaAdapter import cvxpy as cvx import numpy as np class TestAlgs(BaseTest): def test_admm(self): """Test ADMM algorithm. """ X = px.Variable((10, 5)) B = np.reshape(np.arange(50), (10, 5)) * 1. prox_fns = [px.sum_squares(X, b=B)] sltn = admm.solve(prox_fns, [], 1.0, eps_abs=1e-4, eps_rel=1e-4) self.assertItemsAlmostEqual(X.value, B, places=2) self.assertAlmostEqual(sltn, 0) prox_fns = [px.norm1(X, b=B, beta=2)] sltn = admm.solve(prox_fns, [], 1.0) self.assertItemsAlmostEqual(X.value, B / 2., places=2) self.assertAlmostEqual(sltn, 0) prox_fns = [px.norm1(X), px.sum_squares(X, b=B)] sltn = admm.solve(prox_fns, [], 1.0, eps_rel=1e-5, eps_abs=1e-5) cvx_X = cvx.Variable(10, 5) cost = cvx.sum_squares(cvx_X - B) + cvx.norm(cvx_X, 1) prob = cvx.Problem(cvx.Minimize(cost)) prob.solve() self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value) psi_fns, omega_fns = admm.partition(prox_fns) sltn = admm.solve(psi_fns, omega_fns, 1.0, eps_rel=1e-5, eps_abs=1e-5) self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value) prox_fns = [px.norm1(X)] quad_funcs = [px.sum_squares(X, b=B)] sltn = admm.solve(prox_fns, quad_funcs, 1.0, eps_rel=1e-5, eps_abs=1e-5) self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value) # With parameters for px.sum_squares prox_fns = [px.norm1(X)] quad_funcs = [px.sum_squares(X, b=B, alpha=0.1, beta=2., gamma=1, c=B)] sltn = admm.solve(prox_fns, quad_funcs, 1.0, eps_rel=1e-5, eps_abs=1e-5) cvx_X = cvx.Variable(10, 5) cost = 0.1 * cvx.sum_squares(2 * cvx_X - B) + cvx.sum_squares(cvx_X) + \ cvx.norm(cvx_X, 1) + cvx.trace(B.T * cvx_X) prob = cvx.Problem(cvx.Minimize(cost)) prob.solve() self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value, places=3) prox_fns = [px.norm1(X)] quad_funcs = [px.sum_squares(X - B, alpha=0.1, beta=2., gamma=1, c=B)] quad_funcs[0] = absorb_offset(quad_funcs[0]) sltn = admm.solve(prox_fns, quad_funcs, 1.0, eps_rel=1e-5, eps_abs=1e-5) self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value, places=3) prox_fns = [px.norm1(X)] cvx_X = cvx.Variable(10, 5) # With linear operators. kernel = np.array([1, 2, 3]) x = px.Variable(3) b = np.array([-41, 413, 2]) prox_fns = [px.nonneg(x), px.sum_squares(px.conv(kernel, x), b=b)] sltn = admm.solve(prox_fns, [], 1.0, eps_abs=1e-5, eps_rel=1e-5) kernel_mat = np.matrix("2 1 3; 3 2 1; 1 3 2") cvx_X = cvx.Variable(3) cost = cvx.norm(kernel_mat * cvx_X - b) prob = cvx.Problem(cvx.Minimize(cost), [cvx_X >= 0]) prob.solve() self.assertItemsAlmostEqual(x.value, cvx_X.value, places=2) self.assertAlmostEqual(np.sqrt(sltn), prob.value, places=2) prox_fns = [px.nonneg(x)] quad_funcs = [px.sum_squares(px.conv(kernel, x), b=b)] sltn = admm.solve(prox_fns, quad_funcs, 1.0, eps_abs=1e-5, eps_rel=1e-5) self.assertItemsAlmostEqual(x.value, cvx_X.value, places=2) self.assertAlmostEqual(np.sqrt(sltn), prob.value, places=2) def test_pock_chambolle(self): self._test_pock_chambolle('numpy') def test_pock_chambolle_cuda(self): self._test_pock_chambolle('pycuda') def _test_pock_chambolle(self, impl): """Test pock chambolle algorithm. """ #print() #print("----------------------",impl,"-------------------------") if impl == 'pycuda': kw = {'adapter': PyCudaAdapter()} else: kw = {} X = px.Variable((10, 5)) B = np.reshape(np.arange(50), (10, 5)) prox_fns = [px.sum_squares(X, b=B)] sltn = pc.solve(prox_fns, [], 1.0, 1.0, 1.0, eps_rel=1e-5, eps_abs=1e-5, **kw) self.assertItemsAlmostEqual(X.value, B, places=2) self.assertAlmostEqual(sltn, 0) prox_fns = [px.norm1(X, b=B, beta=2)] sltn = pc.solve(prox_fns, [], 1.0, 1.0, 1.0, eps_rel=1e-5, eps_abs=1e-5, **kw) self.assertItemsAlmostEqual(X.value, B / 2., places=2) self.assertAlmostEqual(sltn, 0, places=2) prox_fns = [px.norm1(X), px.sum_squares(X, b=B)] #print("----------------------------------------------------") #print("----------------------------------------------------") sltn = pc.solve(prox_fns, [], 0.5, 1.0, 1.0, eps_rel=1e-5, eps_abs=1e-5, conv_check=1, **kw) cvx_X = cvx.Variable(10, 5) cost = cvx.sum_squares(cvx_X - B) + cvx.norm(cvx_X, 1) prob = cvx.Problem(cvx.Minimize(cost)) prob.solve() self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value) psi_fns, omega_fns = pc.partition(prox_fns) sltn = pc.solve(psi_fns, omega_fns, 0.5, 1.0, 1.0, eps_abs=1e-5, eps_rel=1e-5, **kw) self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value) # With linear operators. kernel = np.array([1, 2, 3]) kernel_mat = np.matrix("2 1 3; 3 2 1; 1 3 2") x = px.Variable(3) b = np.array([-41, 413, 2]) prox_fns = [px.nonneg(x), px.sum_squares(px.conv(kernel, x), b=b)] sltn = pc.solve(prox_fns, [], 0.1, 0.1, 1.0, max_iters=3000, eps_abs=1e-5, eps_rel=1e-5, **kw) cvx_X = cvx.Variable(3) cost = cvx.norm(kernel_mat * cvx_X - b) prob = cvx.Problem(cvx.Minimize(cost), [cvx_X >= 0]) prob.solve() self.assertItemsAlmostEqual(x.value, cvx_X.value, places=2) psi_fns, omega_fns = pc.partition(prox_fns) sltn = pc.solve(psi_fns, omega_fns, 0.1, 0.1, 1.0, max_iters=3000, eps_abs=1e-5, eps_rel=1e-5, **kw) self.assertItemsAlmostEqual(x.value, cvx_X.value, places=2) # TODO # Multiple variables. x = px.Variable(1) y = px.Variable(1) prox_fns = [px.nonneg(x), px.sum_squares(vstack([x,y]), b=np.arange(2))] sltn = pc.solve(prox_fns, [prox_fns[-1]], 0.1, 0.1, 1.0, max_iters=3000, eps_abs=1e-5, eps_rel=1e-5, try_diagonalize=False) self.assertItemsAlmostEqual(x.value, [0]) self.assertItemsAlmostEqual(y.value, [1]) sltn = pc.solve(prox_fns, [prox_fns[-1]], 0.1, 0.1, 1.0, max_iters=3000, eps_abs=1e-5, eps_rel=1e-5, try_diagonalize=True) self.assertItemsAlmostEqual(x.value, [0]) self.assertItemsAlmostEqual(y.value, [1]) def test_half_quadratic_splitting(self): """Test half quadratic splitting. """ X = px.Variable((10, 5)) B = np.reshape(np.arange(50), (10, 5)) prox_fns = [px.sum_squares(X, b=B)] sltn = hqs.solve(prox_fns, [], eps_rel=1e-4, max_iters=100, max_inner_iters=50) self.assertItemsAlmostEqual(X.value, B, places=2) self.assertAlmostEqual(sltn, 0) prox_fns = [px.norm1(X, b=B, beta=2)] sltn = hqs.solve(prox_fns, [], eps_rel=1e-4, max_iters=100, max_inner_iters=50) self.assertItemsAlmostEqual(X.value, B / 2., places=2) self.assertAlmostEqual(sltn, 0) prox_fns = [px.norm1(X), px.sum_squares(X, b=B)] sltn = hqs.solve(prox_fns, [], eps_rel=1e-7, rho_0=1.0, rho_scale=np.sqrt(2.0) * 2.0, rho_max=2**16, max_iters=20, max_inner_iters=500) cvx_X = cvx.Variable(10, 5) cost = cvx.sum_squares(cvx_X - B) + cvx.norm(cvx_X, 1) prob = cvx.Problem(cvx.Minimize(cost)) prob.solve() self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value, places=3) psi_fns, omega_fns = hqs.partition(prox_fns) sltn = hqs.solve(psi_fns, omega_fns, eps_rel=1e-7, rho_0=1.0, rho_scale=np.sqrt(2.0) * 2.0, rho_max=2**16, max_iters=20, max_inner_iters=500) self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value, places=3) # With linear operators. kernel = np.array([1, 2, 3]) kernel_mat = np.matrix("2 1 3; 3 2 1; 1 3 2") x = px.Variable(3) b = np.array([-41, 413, 2]) prox_fns = [px.nonneg(x), px.sum_squares(px.conv(kernel, x), b=b)] hqs.solve(prox_fns, [], eps_rel=1e-9, rho_0=4, rho_scale=np.sqrt(2.0) * 1.0, rho_max=2**16, max_iters=30, max_inner_iters=500) cvx_X = cvx.Variable(3) cost = cvx.norm(kernel_mat * cvx_X - b) prob = cvx.Problem(cvx.Minimize(cost), [cvx_X >= 0]) prob.solve() self.assertItemsAlmostEqual(x.value, cvx_X.value, places=0) psi_fns, omega_fns = hqs.partition(prox_fns) hqs.solve(psi_fns, omega_fns, eps_rel=1e-9, rho_0=4, rho_scale=np.sqrt(2.0) * 1.0, rho_max=2**16, max_iters=30, max_inner_iters=500) self.assertItemsAlmostEqual(x.value, cvx_X.value, places=0) def test_lin_admm(self): """Test linearized admm. algorithm. """ X = px.Variable((10, 5)) B = np.reshape(np.arange(50), (10, 5)) prox_fns = [px.sum_squares(X, b=B)] sltn = ladmm.solve(prox_fns, [], 0.1, max_iters=500, eps_rel=1e-5, eps_abs=1e-5) self.assertItemsAlmostEqual(X.value, B, places=2) self.assertAlmostEqual(sltn, 0) prox_fns = [px.norm1(X, b=B, beta=2)] sltn = ladmm.solve(prox_fns, [], 0.1, max_iters=500, eps_rel=1e-5, eps_abs=1e-5) self.assertItemsAlmostEqual(X.value, B / 2., places=2) self.assertAlmostEqual(sltn, 0, places=2) prox_fns = [px.norm1(X), px.sum_squares(X, b=B)] sltn = ladmm.solve(prox_fns, [], 0.1, max_iters=500, eps_rel=1e-5, eps_abs=1e-5) cvx_X = cvx.Variable(10, 5) cost = cvx.sum_squares(cvx_X - B) + cvx.norm(cvx_X, 1) prob = cvx.Problem(cvx.Minimize(cost)) prob.solve() self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value) psi_fns, omega_fns = ladmm.partition(prox_fns) sltn = ladmm.solve(psi_fns, omega_fns, 0.1, max_iters=500, eps_rel=1e-5, eps_abs=1e-5) self.assertItemsAlmostEqual(X.value, cvx_X.value, places=2) self.assertAlmostEqual(sltn, prob.value) # With linear operators. kernel = np.array([1, 2, 3]) kernel_mat = np.matrix("2 1 3; 3 2 1; 1 3 2") x = px.Variable(3) b = np.array([-41, 413, 2]) prox_fns = [px.nonneg(x), px.sum_squares(px.conv(kernel, x), b=b)] sltn = ladmm.solve(prox_fns, [], 0.1, max_iters=3000, eps_abs=1e-5, eps_rel=1e-5) cvx_X = cvx.Variable(3) cost = cvx.norm(kernel_mat * cvx_X - b) prob = cvx.Problem(cvx.Minimize(cost), [cvx_X >= 0]) prob.solve() self.assertItemsAlmostEqual(x.value, cvx_X.value, places=2) psi_fns, omega_fns = ladmm.partition(prox_fns) sltn = ladmm.solve(psi_fns, omega_fns, 0.1, max_iters=3000, eps_abs=1e-5, eps_rel=1e-5) self.assertItemsAlmostEqual(x.value, cvx_X.value, places=2) def test_equil(self): """Test equilibration. """ from proximal.algorithms.equil import newton_equil np.random.seed(1) kernel = np.array([1, 1, 1]) / np.sqrt(3) kernel_mat = np.ones((3, 3)) / np.sqrt(3) x = px.Variable(3) wr = np.array([10, 5, 7]) K = px.mul_elemwise(wr, x) K = px.conv(kernel, K) wl = np.array([100, 50, 3]) K = px.mul_elemwise(wl, K) K = px.CompGraph(K) # Equilibrate gamma = 1e-1 d, e = px.equil(K, 1000, gamma=gamma, M=5) tmp = d * wl * kernel_mat * wr * e u, v = np.log(d), np.log(e) obj_val = np.square(tmp).sum() / 2 - u.sum() - v.sum() + \ gamma * (np.linalg.norm(v)**2 + np.linalg.norm(u)**2) d, e = newton_equil(wl * kernel_mat * wr, gamma, 100) tmp = d * wl * kernel_mat * wr * e u, v = np.log(d), np.log(e) sltn_val = np.square(tmp).sum() / 2 - u.sum() - v.sum() + \ gamma * (np.linalg.norm(v)**2 + np.linalg.norm(u)**2) self.assertAlmostEqual((obj_val - sltn_val) / sltn_val, 0, places=3) if __name__ == "__main__": import sys if 'cuda' in sys.argv: TestAlgs().test_pock_chambolle_cuda() else: TestAlgs().test_pock_chambolle()
import sqlalchemy as sa from sqlalchemy import Computed from sqlalchemy import event from sqlalchemy import Identity from sqlalchemy import Integer from sqlalchemy import String from sqlalchemy import testing from sqlalchemy.testing import eq_ from sqlalchemy.testing import fixtures from sqlalchemy.testing.assertsql import assert_engine from sqlalchemy.testing.assertsql import CompiledSQL from sqlalchemy.testing.assertsql import Conditional from sqlalchemy.testing.fixtures import fixture_session from sqlalchemy.testing.schema import Column from sqlalchemy.testing.schema import Table class TriggerDefaultsTest(fixtures.MappedTest): __requires__ = ("row_triggers",) @classmethod def define_tables(cls, metadata): dt = Table( "dt", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ), Column("col1", String(20)), Column( "col2", String(20), server_default=sa.schema.FetchedValue() ), Column( "col3", String(20), sa.schema.FetchedValue(for_update=True) ), Column( "col4", String(20), sa.schema.FetchedValue(), sa.schema.FetchedValue(for_update=True), ), ) dialect_name = testing.db.dialect.name for ins in ( sa.DDL( "CREATE TRIGGER dt_ins AFTER INSERT ON dt " "FOR EACH ROW BEGIN " "UPDATE dt SET col2='ins', col4='ins' " "WHERE dt.id = NEW.id; END" ).execute_if(dialect="sqlite"), sa.DDL( "CREATE TRIGGER dt_ins ON dt AFTER INSERT AS " "UPDATE dt SET col2='ins', col4='ins' " "WHERE dt.id IN (SELECT id FROM inserted);" ).execute_if(dialect="mssql"), sa.DDL( "CREATE TRIGGER dt_ins BEFORE INSERT " "ON dt " "FOR EACH ROW " "BEGIN " ":NEW.col2 := 'ins'; :NEW.col4 := 'ins'; END;" ).execute_if(dialect="oracle"), sa.DDL( "CREATE TRIGGER dt_ins BEFORE INSERT " "ON dt " "FOR EACH ROW " "EXECUTE PROCEDURE my_func_ins();" ).execute_if(dialect="postgresql"), sa.DDL( "CREATE TRIGGER dt_ins BEFORE INSERT ON dt " "FOR EACH ROW BEGIN " "SET NEW.col2='ins'; SET NEW.col4='ins'; END" ).execute_if( callable_=lambda ddl, target, bind, **kw: bind.engine.name not in ("oracle", "mssql", "sqlite", "postgresql") ), ): my_func_ins = sa.DDL( "CREATE OR REPLACE FUNCTION my_func_ins() " "RETURNS TRIGGER AS $$ " "BEGIN " "NEW.col2 := 'ins'; NEW.col4 := 'ins'; " "RETURN NEW; " "END; $$ LANGUAGE PLPGSQL" ).execute_if(dialect="postgresql") event.listen(dt, "after_create", my_func_ins) event.listen(dt, "after_create", ins) if dialect_name == "postgresql": event.listen( dt, "before_drop", sa.DDL("DROP TRIGGER dt_ins ON dt") ) else: event.listen(dt, "before_drop", sa.DDL("DROP TRIGGER dt_ins")) for up in ( sa.DDL( "CREATE TRIGGER dt_up AFTER UPDATE ON dt " "FOR EACH ROW BEGIN " "UPDATE dt SET col3='up', col4='up' " "WHERE dt.id = OLD.id; END" ).execute_if(dialect="sqlite"), sa.DDL( "CREATE TRIGGER dt_up ON dt AFTER UPDATE AS " "UPDATE dt SET col3='up', col4='up' " "WHERE dt.id IN (SELECT id FROM deleted);" ).execute_if(dialect="mssql"), sa.DDL( "CREATE TRIGGER dt_up BEFORE UPDATE ON dt " "FOR EACH ROW BEGIN " ":NEW.col3 := 'up'; :NEW.col4 := 'up'; END;" ).execute_if(dialect="oracle"), sa.DDL( "CREATE TRIGGER dt_up BEFORE UPDATE ON dt " "FOR EACH ROW " "EXECUTE PROCEDURE my_func_up();" ).execute_if(dialect="postgresql"), sa.DDL( "CREATE TRIGGER dt_up BEFORE UPDATE ON dt " "FOR EACH ROW BEGIN " "SET NEW.col3='up'; SET NEW.col4='up'; END" ).execute_if( callable_=lambda ddl, target, bind, **kw: bind.engine.name not in ("oracle", "mssql", "sqlite", "postgresql") ), ): my_func_up = sa.DDL( "CREATE OR REPLACE FUNCTION my_func_up() " "RETURNS TRIGGER AS $$ " "BEGIN " "NEW.col3 := 'up'; NEW.col4 := 'up'; " "RETURN NEW; " "END; $$ LANGUAGE PLPGSQL" ).execute_if(dialect="postgresql") event.listen(dt, "after_create", my_func_up) event.listen(dt, "after_create", up) if dialect_name == "postgresql": event.listen(dt, "before_drop", sa.DDL("DROP TRIGGER dt_up ON dt")) else: event.listen(dt, "before_drop", sa.DDL("DROP TRIGGER dt_up")) @classmethod def setup_classes(cls): class Default(cls.Comparable): pass @classmethod def setup_mappers(cls): Default, dt = cls.classes.Default, cls.tables.dt cls.mapper_registry.map_imperatively(Default, dt) def test_insert(self): Default = self.classes.Default d1 = Default(id=1) eq_(d1.col1, None) eq_(d1.col2, None) eq_(d1.col3, None) eq_(d1.col4, None) session = fixture_session() session.add(d1) session.flush() eq_(d1.col1, None) eq_(d1.col2, "ins") eq_(d1.col3, None) # don't care which trigger fired assert d1.col4 in ("ins", "up") def test_update(self): Default = self.classes.Default d1 = Default(id=1) session = fixture_session() session.add(d1) session.flush() d1.col1 = "set" session.flush() eq_(d1.col1, "set") eq_(d1.col2, "ins") eq_(d1.col3, "up") eq_(d1.col4, "up") class ExcludedDefaultsTest(fixtures.MappedTest): @classmethod def define_tables(cls, metadata): Table( "dt", metadata, Column( "id", Integer, primary_key=True, test_needs_autoincrement=True ), Column("col1", String(20), default="hello"), ) def test_exclude(self): dt = self.tables.dt class Foo(fixtures.BasicEntity): pass self.mapper_registry.map_imperatively( Foo, dt, exclude_properties=("col1",) ) f1 = Foo() sess = fixture_session() sess.add(f1) sess.flush() eq_(sess.connection().execute(dt.select()).fetchall(), [(1, "hello")]) class ComputedDefaultsOnUpdateTest(fixtures.MappedTest): """test that computed columns are recognized as server oninsert/onupdate defaults.""" __backend__ = True __requires__ = ("computed_columns",) @classmethod def define_tables(cls, metadata): Table( "test", metadata, Column("id", Integer, primary_key=True), Column("foo", Integer), Column("bar", Integer, Computed("foo + 42")), ) @classmethod def setup_classes(cls): class Thing(cls.Basic): pass class ThingNoEager(cls.Basic): pass @classmethod def setup_mappers(cls): Thing = cls.classes.Thing cls.mapper_registry.map_imperatively( Thing, cls.tables.test, eager_defaults=True ) ThingNoEager = cls.classes.ThingNoEager cls.mapper_registry.map_imperatively( ThingNoEager, cls.tables.test, eager_defaults=False ) @testing.combinations(("eager", True), ("noneager", False), id_="ia") def test_insert_computed(self, eager): if eager: Thing = self.classes.Thing else: Thing = self.classes.ThingNoEager s = fixture_session() t1, t2 = (Thing(id=1, foo=5), Thing(id=2, foo=10)) s.add_all([t1, t2]) with assert_engine(testing.db) as asserter: s.flush() eq_(t1.bar, 5 + 42) eq_(t2.bar, 10 + 42) asserter.assert_( Conditional( eager and testing.db.dialect.implicit_returning, [ Conditional( testing.db.dialect.insert_executemany_returning, [ CompiledSQL( "INSERT INTO test (id, foo) " "VALUES (%(id)s, %(foo)s) " "RETURNING test.bar", [{"foo": 5, "id": 1}, {"foo": 10, "id": 2}], dialect="postgresql", ), ], [ CompiledSQL( "INSERT INTO test (id, foo) " "VALUES (%(id)s, %(foo)s) " "RETURNING test.bar", [{"foo": 5, "id": 1}], dialect="postgresql", ), CompiledSQL( "INSERT INTO test (id, foo) " "VALUES (%(id)s, %(foo)s) " "RETURNING test.bar", [{"foo": 10, "id": 2}], dialect="postgresql", ), ], ) ], [ CompiledSQL( "INSERT INTO test (id, foo) VALUES (:id, :foo)", [{"foo": 5, "id": 1}, {"foo": 10, "id": 2}], ), CompiledSQL( "SELECT test.bar AS test_bar FROM test " "WHERE test.id = :pk_1", [{"pk_1": 1}], ), CompiledSQL( "SELECT test.bar AS test_bar FROM test " "WHERE test.id = :pk_1", [{"pk_1": 2}], ), ], ) ) @testing.combinations( ( "eagerload", True, testing.requires.computed_columns_on_update_returning, ), ( "noneagerload", False, ), id_="ia", ) def test_update_computed(self, eager): if eager: Thing = self.classes.Thing else: Thing = self.classes.ThingNoEager s = fixture_session() t1, t2 = (Thing(id=1, foo=1), Thing(id=2, foo=2)) s.add_all([t1, t2]) s.flush() t1.foo = 5 t2.foo = 6 with assert_engine(testing.db) as asserter: s.flush() eq_(t1.bar, 5 + 42) eq_(t2.bar, 6 + 42) if eager and testing.db.dialect.implicit_returning: asserter.assert_( CompiledSQL( "UPDATE test SET foo=%(foo)s " "WHERE test.id = %(test_id)s " "RETURNING test.bar", [{"foo": 5, "test_id": 1}], dialect="postgresql", ), CompiledSQL( "UPDATE test SET foo=%(foo)s " "WHERE test.id = %(test_id)s " "RETURNING test.bar", [{"foo": 6, "test_id": 2}], dialect="postgresql", ), ) elif eager: asserter.assert_( CompiledSQL( "UPDATE test SET foo=:foo WHERE test.id = :test_id", [{"foo": 5, "test_id": 1}], ), CompiledSQL( "UPDATE test SET foo=:foo WHERE test.id = :test_id", [{"foo": 6, "test_id": 2}], ), CompiledSQL( "SELECT test.bar AS test_bar FROM test " "WHERE test.id = :pk_1", [{"pk_1": 1}], ), CompiledSQL( "SELECT test.bar AS test_bar FROM test " "WHERE test.id = :pk_1", [{"pk_1": 2}], ), ) else: asserter.assert_( CompiledSQL( "UPDATE test SET foo=:foo WHERE test.id = :test_id", [{"foo": 5, "test_id": 1}, {"foo": 6, "test_id": 2}], ), CompiledSQL( "SELECT test.bar AS test_bar FROM test " "WHERE test.id = :pk_1", [{"pk_1": 1}], ), CompiledSQL( "SELECT test.bar AS test_bar FROM test " "WHERE test.id = :pk_1", [{"pk_1": 2}], ), ) class IdentityDefaultsOnUpdateTest(fixtures.MappedTest): """test that computed columns are recognized as server oninsert/onupdate defaults.""" __backend__ = True __requires__ = ("identity_columns",) run_create_tables = "each" @classmethod def define_tables(cls, metadata): Table( "test", metadata, Column("id", Integer, Identity(), primary_key=True), Column("foo", Integer), ) @classmethod def setup_classes(cls): class Thing(cls.Basic): pass @classmethod def setup_mappers(cls): Thing = cls.classes.Thing cls.mapper_registry.map_imperatively(Thing, cls.tables.test) def test_insert_identity(self): Thing = self.classes.Thing s = fixture_session() t1, t2 = (Thing(foo=5), Thing(foo=10)) s.add_all([t1, t2]) with assert_engine(testing.db) as asserter: s.flush() eq_(t1.id, 1) eq_(t2.id, 2) asserter.assert_( Conditional( testing.db.dialect.implicit_returning, [ Conditional( testing.db.dialect.insert_executemany_returning, [ CompiledSQL( "INSERT INTO test (foo) VALUES (%(foo)s) " "RETURNING test.id", [{"foo": 5}, {"foo": 10}], dialect="postgresql", ), ], [ CompiledSQL( "INSERT INTO test (foo) VALUES (%(foo)s) " "RETURNING test.id", [{"foo": 5}], dialect="postgresql", ), CompiledSQL( "INSERT INTO test (foo) VALUES (%(foo)s) " "RETURNING test.id", [{"foo": 10}], dialect="postgresql", ), ], ) ], [ CompiledSQL( "INSERT INTO test (foo) VALUES (:foo)", [{"foo": 5}], ), CompiledSQL( "INSERT INTO test (foo) VALUES (:foo)", [{"foo": 10}], ), ], ) )
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ PySpark supports custom serializers for transferring data; this can improve performance. By default, PySpark uses L{PickleSerializer} to serialize objects using Python's C{cPickle} serializer, which can serialize nearly any Python object. Other serializers, like L{MarshalSerializer}, support fewer datatypes but can be faster. The serializer is chosen when creating L{SparkContext}: >>> from pyspark.context import SparkContext >>> from pyspark.serializers import MarshalSerializer >>> sc = SparkContext('local', 'test', serializer=MarshalSerializer()) >>> sc.parallelize(list(range(1000))).map(lambda x: 2 * x).take(10) [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] >>> sc.stop() By default, PySpark serialize objects in batches; the batch size can be controlled through SparkContext's C{batchSize} parameter (the default size is 1024 objects): >>> sc = SparkContext('local', 'test', batchSize=2) >>> rdd = sc.parallelize(range(16), 4).map(lambda x: x) Behind the scenes, this creates a JavaRDD with four partitions, each of which contains two batches of two objects: >>> rdd.glom().collect() [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]] >>> rdd._jrdd.count() 8L >>> sc.stop() A batch size of -1 uses an unlimited batch size, and a size of 1 disables batching: >>> sc = SparkContext('local', 'test', batchSize=1) >>> rdd = sc.parallelize(range(16), 4).map(lambda x: x) >>> rdd.glom().collect() [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]] >>> rdd._jrdd.count() 16L """ import cPickle from itertools import chain, izip, product import marshal import struct import sys from pyspark import cloudpickle __all__ = ["PickleSerializer", "MarshalSerializer"] class SpecialLengths(object): END_OF_DATA_SECTION = -1 PYTHON_EXCEPTION_THROWN = -2 TIMING_DATA = -3 class Serializer(object): def dump_stream(self, iterator, stream): """ Serialize an iterator of objects to the output stream. """ raise NotImplementedError def load_stream(self, stream): """ Return an iterator of deserialized objects from the input stream. """ raise NotImplementedError def _load_stream_without_unbatching(self, stream): return self.load_stream(stream) # Note: our notion of "equality" is that output generated by # equal serializers can be deserialized using the same serializer. # This default implementation handles the simple cases; # subclasses should override __eq__ as appropriate. def __eq__(self, other): return isinstance(other, self.__class__) def __ne__(self, other): return not self.__eq__(other) class FramedSerializer(Serializer): """ Serializer that writes objects as a stream of (length, data) pairs, where C{length} is a 32-bit integer and data is C{length} bytes. """ def __init__(self): # On Python 2.6, we can't write bytearrays to streams, so we need to convert them # to strings first. Check if the version number is that old. self._only_write_strings = sys.version_info[0:2] <= (2, 6) def dump_stream(self, iterator, stream): for obj in iterator: self._write_with_length(obj, stream) def load_stream(self, stream): while True: try: yield self._read_with_length(stream) except EOFError: return def _write_with_length(self, obj, stream): serialized = self.dumps(obj) write_int(len(serialized), stream) if self._only_write_strings: stream.write(str(serialized)) else: stream.write(serialized) def _read_with_length(self, stream): length = read_int(stream) obj = stream.read(length) if obj == "": raise EOFError return self.loads(obj) def dumps(self, obj): """ Serialize an object into a byte array. When batching is used, this will be called with an array of objects. """ raise NotImplementedError def loads(self, obj): """ Deserialize an object from a byte array. """ raise NotImplementedError class BatchedSerializer(Serializer): """ Serializes a stream of objects in batches by calling its wrapped Serializer with streams of objects. """ UNLIMITED_BATCH_SIZE = -1 def __init__(self, serializer, batchSize=UNLIMITED_BATCH_SIZE): self.serializer = serializer self.batchSize = batchSize def _batched(self, iterator): if self.batchSize == self.UNLIMITED_BATCH_SIZE: yield list(iterator) else: items = [] count = 0 for item in iterator: items.append(item) count += 1 if count == self.batchSize: yield items items = [] count = 0 if items: yield items def dump_stream(self, iterator, stream): self.serializer.dump_stream(self._batched(iterator), stream) def load_stream(self, stream): return chain.from_iterable(self._load_stream_without_unbatching(stream)) def _load_stream_without_unbatching(self, stream): return self.serializer.load_stream(stream) def __eq__(self, other): return isinstance(other, BatchedSerializer) and \ other.serializer == self.serializer def __str__(self): return "BatchedSerializer<%s>" % str(self.serializer) class CartesianDeserializer(FramedSerializer): """ Deserializes the JavaRDD cartesian() of two PythonRDDs. """ def __init__(self, key_ser, val_ser): self.key_ser = key_ser self.val_ser = val_ser def prepare_keys_values(self, stream): key_stream = self.key_ser._load_stream_without_unbatching(stream) val_stream = self.val_ser._load_stream_without_unbatching(stream) key_is_batched = isinstance(self.key_ser, BatchedSerializer) val_is_batched = isinstance(self.val_ser, BatchedSerializer) for (keys, vals) in izip(key_stream, val_stream): keys = keys if key_is_batched else [keys] vals = vals if val_is_batched else [vals] yield (keys, vals) def load_stream(self, stream): for (keys, vals) in self.prepare_keys_values(stream): for pair in product(keys, vals): yield pair def __eq__(self, other): return isinstance(other, CartesianDeserializer) and \ self.key_ser == other.key_ser and self.val_ser == other.val_ser def __str__(self): return "CartesianDeserializer<%s, %s>" % \ (str(self.key_ser), str(self.val_ser)) class PairDeserializer(CartesianDeserializer): """ Deserializes the JavaRDD zip() of two PythonRDDs. """ def __init__(self, key_ser, val_ser): self.key_ser = key_ser self.val_ser = val_ser def load_stream(self, stream): for (keys, vals) in self.prepare_keys_values(stream): for pair in izip(keys, vals): yield pair def __eq__(self, other): return isinstance(other, PairDeserializer) and \ self.key_ser == other.key_ser and self.val_ser == other.val_ser def __str__(self): return "PairDeserializer<%s, %s>" % \ (str(self.key_ser), str(self.val_ser)) class NoOpSerializer(FramedSerializer): def loads(self, obj): return obj def dumps(self, obj): return obj class PickleSerializer(FramedSerializer): """ Serializes objects using Python's cPickle serializer: http://docs.python.org/2/library/pickle.html This serializer supports nearly any Python object, but may not be as fast as more specialized serializers. """ def dumps(self, obj): return cPickle.dumps(obj, 2) loads = cPickle.loads class CloudPickleSerializer(PickleSerializer): def dumps(self, obj): return cloudpickle.dumps(obj, 2) class MarshalSerializer(FramedSerializer): """ Serializes objects using Python's Marshal serializer: http://docs.python.org/2/library/marshal.html This serializer is faster than PickleSerializer but supports fewer datatypes. """ dumps = marshal.dumps loads = marshal.loads class UTF8Deserializer(Serializer): """ Deserializes streams written by String.getBytes. """ def loads(self, stream): length = read_int(stream) return stream.read(length).decode('utf8') def load_stream(self, stream): while True: try: yield self.loads(stream) except struct.error: return except EOFError: return def read_long(stream): length = stream.read(8) if length == "": raise EOFError return struct.unpack("!q", length)[0] def write_long(value, stream): stream.write(struct.pack("!q", value)) def pack_long(value): return struct.pack("!q", value) def read_int(stream): length = stream.read(4) if length == "": raise EOFError return struct.unpack("!i", length)[0] def write_int(value, stream): stream.write(struct.pack("!i", value)) def write_with_length(obj, stream): write_int(len(obj), stream) stream.write(obj)
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Changing field 'Option.value' db.alter_column('sentry_option', 'value', self.gf('picklefield.fields.PickledObjectField')()) # Changing field 'ProjectOption.value' db.alter_column('sentry_projectoptions', 'value', self.gf('picklefield.fields.PickledObjectField')()) def backwards(self, orm): # Changing field 'Option.value' db.alter_column('sentry_option', 'value', self.gf('django.db.models.fields.TextField')()) # Changing field 'ProjectOption.value' db.alter_column('sentry_projectoptions', 'value', self.gf('django.db.models.fields.TextField')()) models = { 'sentry.user': { 'Meta': {'object_name': 'User', 'db_table': "'auth_user'"}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'sentry.event': { 'Meta': {'unique_together': "(('project', 'event_id'),)", 'object_name': 'Event', 'db_table': "'sentry_message'"}, 'checksum': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}), 'culprit': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'db_column': "'view'", 'blank': 'True'}), 'data': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'datetime': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'event_id': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True', 'db_column': "'message_id'"}), 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], {'blank': 'True', 'related_name': "'event_set'", 'null': 'True', 'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'default': '40', 'db_index': 'True', 'blank': 'True'}), 'logger': ('django.db.models.fields.CharField', [], {'default': "'root'", 'max_length': '64', 'db_index': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'server_name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'db_index': 'True'}), 'site': ('django.db.models.fields.CharField', [], {'max_length': '128', 'null': 'True', 'db_index': 'True'}), 'time_spent': ('django.db.models.fields.FloatField', [], {'null': 'True'}) }, 'sentry.filtervalue': { 'Meta': {'unique_together': "(('project', 'key', 'value'),)", 'object_name': 'FilterValue'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'sentry.group': { 'Meta': {'unique_together': "(('project', 'logger', 'culprit', 'checksum'),)", 'object_name': 'Group', 'db_table': "'sentry_groupedmessage'"}, 'checksum': ('django.db.models.fields.CharField', [], {'max_length': '32', 'db_index': 'True'}), 'culprit': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'db_column': "'view'", 'blank': 'True'}), 'data': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'default': '40', 'db_index': 'True', 'blank': 'True'}), 'logger': ('django.db.models.fields.CharField', [], {'default': "'root'", 'max_length': '64', 'db_index': 'True', 'blank': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'score': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'db_index': 'True'}), 'time_spent_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time_spent_total': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1', 'db_index': 'True'}), 'views': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sentry.View']", 'symmetrical': 'False', 'blank': 'True'}) }, 'sentry.groupbookmark': { 'Meta': {'unique_together': "(('project', 'user', 'group'),)", 'object_name': 'GroupBookmark'}, 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], {'related_name': "'bookmark_set'", 'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'related_name': "'bookmark_set'", 'to': "orm['sentry.Project']"}), 'user': ('sentry.db.models.fields.FlexibleForeignKey', [], {'related_name': "'sentry_bookmark_set'", 'to': "orm['sentry.User']"}) }, 'sentry.groupmeta': { 'Meta': {'unique_together': "(('group', 'key'),)", 'object_name': 'GroupMeta'}, 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'value': ('django.db.models.fields.TextField', [], {}) }, 'sentry.messagecountbyminute': { 'Meta': {'unique_together': "(('project', 'group', 'date'),)", 'object_name': 'MessageCountByMinute'}, 'date': ('django.db.models.fields.DateTimeField', [], {}), 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'time_spent_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time_spent_total': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'sentry.messagefiltervalue': { 'Meta': {'unique_together': "(('project', 'key', 'value', 'group'),)", 'object_name': 'MessageFilterValue'}, 'first_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'last_seen': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now', 'null': 'True', 'db_index': 'True'}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'sentry.messageindex': { 'Meta': {'unique_together': "(('column', 'value', 'object_id'),)", 'object_name': 'MessageIndex'}, 'column': ('django.db.models.fields.CharField', [], {'max_length': '32'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'value': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'sentry.option': { 'Meta': {'object_name': 'Option'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '64'}), 'value': ('picklefield.fields.PickledObjectField', [], {}) }, 'sentry.project': { 'Meta': {'object_name': 'Project'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'owner': ('sentry.db.models.fields.FlexibleForeignKey', [], {'related_name': "'sentry_owned_project_set'", 'null': 'True', 'to': "orm['sentry.User']"}), 'public': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0', 'db_index': 'True'}) }, 'sentry.projectcountbyminute': { 'Meta': {'unique_together': "(('project', 'date'),)", 'object_name': 'ProjectCountByMinute'}, 'date': ('django.db.models.fields.DateTimeField', [], {}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Project']", 'null': 'True'}), 'time_spent_count': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'time_spent_total': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'sentry.projectdomain': { 'Meta': {'unique_together': "(('project', 'domain'),)", 'object_name': 'ProjectDomain'}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'related_name': "'domain_set'", 'to': "orm['sentry.Project']"}) }, 'sentry.projectmember': { 'Meta': {'unique_together': "(('project', 'user'),)", 'object_name': 'ProjectMember'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'related_name': "'member_set'", 'to': "orm['sentry.Project']"}), 'public_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'secret_key': ('django.db.models.fields.CharField', [], {'max_length': '32', 'unique': 'True', 'null': 'True'}), 'type': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'user': ('sentry.db.models.fields.FlexibleForeignKey', [], {'related_name': "'sentry_project_set'", 'to': "orm['sentry.User']"}) }, 'sentry.projectoption': { 'Meta': {'unique_together': "(('project', 'key'),)", 'object_name': 'ProjectOption', 'db_table': "'sentry_projectoptions'"}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'value': ('picklefield.fields.PickledObjectField', [], {}) }, 'sentry.searchdocument': { 'Meta': {'unique_together': "(('project', 'group'),)", 'object_name': 'SearchDocument'}, 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_changed': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'group': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Group']"}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'project': ('sentry.db.models.fields.FlexibleForeignKey', [], {'to': "orm['sentry.Project']"}), 'status': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'total_events': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}) }, 'sentry.searchtoken': { 'Meta': {'unique_together': "(('document', 'field', 'token'),)", 'object_name': 'SearchToken'}, 'document': ('sentry.db.models.fields.FlexibleForeignKey', [], {'related_name': "'token_set'", 'to': "orm['sentry.SearchDocument']"}), 'field': ('django.db.models.fields.CharField', [], {'default': "'text'", 'max_length': '64'}), 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'times_seen': ('django.db.models.fields.PositiveIntegerField', [], {'default': '1'}), 'token': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'sentry.view': { 'Meta': {'object_name': 'View'}, 'id': ('sentry.db.models.fields.bounded.BoundedBigAutoField', [], {'primary_key': 'True'}), 'path': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'verbose_name': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}), 'verbose_name_plural': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True'}) } } complete_apps = ['sentry']
import datetime import os from django import forms from django.contrib.auth.models import User from django.core.files import * from django.core.files.storage import FileSystemStorage from django.db import models from django.db.models.signals import post_save from settings import MEDIA_ROOT # Create the list of years from 2O11 to actual year + 2. start_date = '2011' date = datetime.datetime.now() end_date = date.year + 2 YEARS_CHOICES = () # Starts with an empty list and concatenate. for year in range(int(start_date), int(end_date)): YEARS_CHOICES += ( ('%d - %d' % (year, year + 1), '%d - %d' % (year, year + 1)), ) # List of status. STATUS_CHOICES = ( ('admin', 'Admin'), ('teacher', 'Teacher'), ('student', 'Student'), ) # List of assignments work management # (free = illimited files - required files = Planned uploads) REQUIREMENT_CHOICES = ( ('none', 'None'), ('user_defined', 'User defined'), ) # List of possibilities for RequiredFile's file type FILE_TYPE_CHOICES = ( ('none', 'none'), ('pdf', 'pdf'), ('tar.gz', 'tar.gz'), ) # Add a behavior to File management. # Removes file when a file object is removed in db class OverwriteStorage(FileSystemStorage): def get_available_name(self, name): # If the filename already exists, removes it if self.exists(name): os.remove(os.path.join(MEDIA_ROOT, name)) return name # More field for an user. class UserProfile(models.Model): user = models.OneToOneField(User, unique=True) status = models.CharField(max_length=10, choices=STATUS_CHOICES, default='student') # In Admin panel : object = username. def __unicode__(self): return self.user.username # Autocreate a UserProfile when a user is created. def create_user_profile(sender, instance, created, **kwargs): if created: UserProfile.objects.create(user=instance) post_save.connect(create_user_profile, sender=User) # The course model. class Course(models.Model): name = models.CharField(max_length=40) description = models.CharField(max_length=100, blank=True) owner = \ models.ForeignKey(User, related_name='course', limit_choices_to={'userprofile__status': 'teacher'}) editdate = models.DateTimeField(auto_now=True) years = \ models.CharField(max_length=11, choices=YEARS_CHOICES, default='%d - %d' % (date.year, date.year + 1)) subscribed = \ models.ManyToManyField(User, related_name='course_list', blank=True, null=True, limit_choices_to={'userprofile__status': 'student'}) # In Admin panel : object = name. def __unicode__(self): return self.name # Definition of the model Assignment class Assignment (models.Model): name = models.CharField(max_length=40) course = models.ForeignKey(Course, related_name='assignment') description = models.CharField(max_length=130) firm_deadline = models.DateTimeField(blank=True, null=True) official_deadline = models.DateTimeField(blank=True, null=True) admins = \ models.ManyToManyField(User, blank=True, null=True, limit_choices_to={'userprofile__status': 'teacher'}) editdate = models.DateTimeField(auto_now=True) visible = models.BooleanField(blank=True) requirement = models.CharField(max_length=14, choices=REQUIREMENT_CHOICES, default='none') # In Admin panel : object = username. def __unicode__(self): return self.name # A variable True if official deadline date is in past def official_deadline_past(self): # Verify official deadline exists and has been passed. if (self.official_deadline) and \ (datetime.datetime.now() >= self.official_deadline): return True return False # A variable True if firm deadline date is in past def firm_deadline_past(self): # Verify firm deadline exists and has been passed. if (self.firm_deadline) and \ (datetime.datetime.now() >= self.firm_deadline): return True return False # The definition of the model Group class Group(models.Model): name = models.CharField(max_length=30) assignment = models.ForeignKey(Assignment) members = models.ManyToManyField(User, related_name='group_list', null=True, blank=True) # In Admin panel : object = name def __unicode__(self): return self.name # The name_id is a classic name with Group + ID (of the group) def name_id(self): ID = u'%s' % self.id return 'Group ' + ID # The definition of the model File class File(models.Model): # That define the filename as the real name of the file without path def filename(self): return os.path.basename(self.file.name) # The path for a file : MEDIA_ROOT/Work/Coursename_CourseID/ # Assignmname_Assignment_ID/Group Group_ID/filename def path(instance, filename): return '/'.join(['Work', instance.group.assignment.course.name + '_' + unicode(instance.group.assignment.course.id), instance.group.assignment.name + '_' + unicode(instance.group.assignment.id), 'Group ' + unicode(instance.group.id), filename]) file = models.FileField(storage=OverwriteStorage(), upload_to=path) requiredfile = models.ForeignKey('RequiredFile', blank=True, null=True) group = models.ForeignKey(Group, related_name='file_list') uploader = models.ForeignKey(User) editdate = models.DateTimeField(auto_now=True) # In Admin panel : object = file.name def __unicode__(self): return self.file.name # Overwrite delete() function to delete the file before delete the model'enter def delete(self): try: self.file.delete() except: pass super(File, self).delete() # The definition of the model RequiredFile class RequiredFile (models.Model): assignment = models.ForeignKey(Assignment) name = models.CharField(max_length=40) description = models.CharField(max_length=100, blank=True, null=True) type = models.CharField(max_length=6, choices=FILE_TYPE_CHOICES, default='none') # In Admin panel : object = name def __unicode__(self): return self.name # The definition of a form to add a course. class CourseForm(forms.ModelForm): class Meta: model = Course fields = ('name', 'description', 'years') # The definition of a form to add students to a course. class AddSubscribedForm(forms.ModelForm): class Meta: model = Course fields = ('subscribed',) # The definition of the form to change course's owner. class ChangeCourseOwnerForm(forms.ModelForm): class Meta: model = Course fields = ('owner',) # Definition of the form to edit Assignments class EditAssignmentForm (forms.ModelForm): class Meta: model = Assignment fields = ('name', 'description', 'official_deadline', 'firm_deadline', 'admins', 'visible', 'requirement') # Definition of the form to add Assignments class AddAssignmentForm (forms.ModelForm): class Meta: model = Assignment fields = ('name', 'description', 'official_deadline', 'firm_deadline', 'admins', 'visible', 'requirement') # The definition of the form to send files class UploadFileForm(forms.ModelForm): class Meta: model = File fields = ('file',)
""" tests.test_invalid_forms.py --------------------------- Flask-User automated tests: Tests all forms with as many invalid field values as possible :copyright: (c) 2013 by Ling Thio :author: Ling Thio (ling.thio@gmail.com) :license: Simplified BSD License, see LICENSE.txt for more details. """ from __future__ import print_function from datetime import datetime import time from flask import current_app, url_for from flask_user.tests.tst_utils import response_has_string # ********************** # ** Global Variables ** # ********************** # Using global variable for speed user1 = None user2 = None user3 = None user4 = None # ************* # ** Defines ** # ************* SHORT_USERNAME = 'Aa' INVALID_EMAIL = 'user1.example.com' invalid_usernames = ( 'with space', 'with&symbol', "with'symbol", ) invalid_passwords = ( 'Abcd1', # too short 'ABCabc', # no digits 'ABC123', # no lower case letters 'abc123', # no upper case letters ) # ********************* # ** Automated tests ** # ********************* # Function names must start with 'test' # The 'client' parameter is set up in conftest.py def test_init(db): """ Set up two test users """ global user1, user2, user3, user4 # Enable all features um = current_app.user_manager um.enable_register = True um.enable_change_username = True um.enable_change_password = True um.enable_confirm_email = True um.enable_reset_password = True um.enable_email = True um.enable_retype_password = True # Tests have not been written with auto_login in mind um.auto_login = False hashed_password = um.hash_password('Password1') User = um.db_adapter.UserClass # Create user1 with username and email user1 = User(username='user1', email='user1@example.com', password=hashed_password, active=True) assert user1 db.session.add(user1) # Create user1 with email only user2 = User(email='user2@example.com', password=hashed_password, active=True) assert user2 db.session.add(user2) # Create user3 with username and email user3 = User(username='user3', email='user3@example.com', password=hashed_password, active=True) assert user3 db.session.add(user3) # Create user4 with email only user4 = User(email='user4@example.com', password=hashed_password, active=True) assert user4 db.session.add(user4) db.session.commit() def test_invalid_register_with_username_form(client): print("test_invalid_register_with_username_form") # Choose config um = current_app.user_manager um.enable_username = True User = um.db_adapter.UserClass # Set default values url = url_for('user.register') username = 'user3' email = 'user3@example.com' password = 'Password1' # Test empty username client.post_invalid_form(url, 'Username is required', username='', email=email, password=password, retype_password=password) # Test short username client.post_invalid_form(url, 'Username must be at least 3 characters long', username=SHORT_USERNAME, email=email, password=password, retype_password=password) # Test invalid usernames for invalid_username in invalid_usernames: client.post_invalid_form(url, 'Username may only contain letters, numbers, ', username=invalid_username, email=email, password=password, retype_password=password) # Test existing username (case INsensitive!) client.post_invalid_form(url, 'This Username is already in use. Please try another one.', username='UsEr1', email=email, password=password, retype_password=password) # Test empty password client.post_invalid_form(url, 'Password is required', username=username, email=email, password='', retype_password='') # Test invalid passwords for invalid_password in invalid_passwords: client.post_invalid_form(url, 'Password must have at least 6 characters with one lowercase letter, one uppercase letter and one number', username=username, email=email, password=invalid_password, retype_password=invalid_password) # Test non-matching passwords client.post_invalid_form(url, 'Password and Retype Password did not match', username=username, email=email, password='Password1', retype_password='Password9') def test_invalid_register_with_email_form(client): print("test_invalid_register_with_email_form") # Choose config um = current_app.user_manager um.enable_username = False User = um.db_adapter.UserClass # Set default values url = url_for('user.register') email = 'user3@example.com' password = 'Password1' # Test empty email client.post_invalid_form(url, 'Email is required', email='', password=password, retype_password=password) # Test invalid email client.post_invalid_form(url, 'Invalid Email', email=INVALID_EMAIL, password=password, retype_password=password) # Test existing email (case INsensitive!) # TODO: Debug #client.post_invalid_form(url, 'This Email is already in use. Please try another one.', # email='UsEr1@ExAmPlE.CoM', password=password, retype_password=password) # Test empty password client.post_invalid_form(url, 'Password is required', email=email, password='', retype_password='') # Test invalid passwords for invalid_password in invalid_passwords: client.post_invalid_form(url, 'Password must have at least 6 characters with one lowercase letter, one uppercase letter and one number', email=email, password=invalid_password, retype_password=invalid_password) # Test non-matching passwords client.post_invalid_form(url, 'Password and Retype Password did not match', email=email, password='Password1', retype_password='Password9') def test_invalid_confirm_email_page(client): print("test_invalid_confirm_email_page") # Test Invalid token url = url_for('user.confirm_email', token='InvalidToken') client.get_invalid_page(url, 'Invalid confirmation token') # Generate valid token um = current_app.user_manager token = um.generate_token(user1.id) url = url_for('user.confirm_email', token=token) # Test Expired token um.confirm_email_expiration = 1 # set 1 second expiration time.sleep(2) # wait for 2 seconds client.get_invalid_page(url, 'Your confirmation token has expired') def test_invalid_login_with_username_form(client): print("test_invalid_login_with_username_form") # Choose config um = current_app.user_manager um.enable_email = True um.enable_username = True # Set default values url = url_for('user.login') username = 'user1' password = 'Password1' # Test empty username client.post_invalid_form(url, 'Username is required', username='', password=password) # Test incorrect username um.show_username_email_does_not_exist = False client.post_invalid_form(url, 'Incorrect Username/Email and/or Password', username='Xuser1', password=password) um.show_username_email_does_not_exist = True client.post_invalid_form(url, 'Username/Email does not exist', username='Xuser1', password=password) um.show_username_email_does_not_exist = False # Test empty password client.post_invalid_form(url, 'Password is required', username=username, password='') # Test incorrect password um.show_username_email_does_not_exist = False client.post_invalid_form(url, 'Incorrect Username/Email and/or Password', username=username, password='XPassword1') um.show_username_email_does_not_exist = True client.post_invalid_form(url, 'Incorrect Password', username=username, password='XPassword1') um.show_username_email_does_not_exist = False def test_invalid_login_with_email_form(client): print("test_invalid_login_with_email_form") # Choose config um = current_app.user_manager um.enable_email = True um.enable_username = False # Set default values url = url_for('user.login') email = 'user2@example.com' password = 'Password1' # Test empty email client.post_invalid_form(url, 'Email is required', email='', password=password) # Test incorrect email um.show_username_email_does_not_exist = False client.post_invalid_form(url, 'Incorrect Email and/or Password', email='Xuser2@example.com', password=password) um.show_username_email_does_not_exist = True client.post_invalid_form(url, 'Email does not exist', email='Xuser2@example.com', password=password) um.show_username_email_does_not_exist = False # Test empty password client.post_invalid_form(url, 'Password is required', email=email, password='') # Test incorrect password um.show_username_email_does_not_exist = False client.post_invalid_form(url, 'Incorrect Email and/or Password', email=email, password='XPassword1') um.show_username_email_does_not_exist = True client.post_invalid_form(url, 'Incorrect Password', email=email, password='XPassword1') um.show_username_email_does_not_exist = False def test_invalid_change_username_form(client): print("test_invalid_change_username_form") # Set user manager config um = current_app.user_manager um.enable_username = True um.enable_email = False # Set default values username = 'user1' password = 'Password1' new_username = 'user4' url = url_for('user.change_username') # Log in as 'user1' client.login(username=username, password=password) # Test empty username client.post_invalid_form(url, 'Username is required', new_username='', old_password=password) # Test short username client.post_invalid_form(url, 'Username must be at least 3 characters long', new_username=SHORT_USERNAME, old_password=password) # Test existing username client.post_invalid_form(url, 'This Username is already in use. Please try another one.', new_username='user3', old_password=password) # Test empty password client.post_invalid_form(url, 'Old Password is required', new_username=username, old_password='') # Test incorrect password client.post_invalid_form(url, 'Old Password is incorrect', new_username=username, old_password='XPassword1') client.logout() def test_invalid_change_password_form(client): print("test_invalid_change_password_form") # Set user manager config um = current_app.user_manager um.enable_username = False # Set default values email = 'user2@example.com' old_password = 'Password1' new_password = 'Password5' url = url_for('user.change_password') # Log in as 'user1' client.login(email=email, password=old_password) # Test empty old password client.post_invalid_form(url, 'Old Password is required', old_password='', new_password=new_password, retype_password=new_password) # Test incorrect old password client.post_invalid_form(url, 'Old Password is incorrect', old_password='XPassword1', new_password=new_password, retype_password=new_password) # Test empty password client.post_invalid_form(url, 'New Password is required', old_password=old_password, new_password='', retype_password=new_password) # Test invalid passwords for invalid_password in invalid_passwords: client.post_invalid_form(url, 'Password must have at least 6 characters with one lowercase letter, one uppercase letter and one number', old_password=old_password, new_password=invalid_password, retype_password=new_password) # Test non-matching passwords client.post_invalid_form(url, 'New Password and Retype Password did not match', old_password=old_password, new_password=new_password, retype_password='Xpassword5') client.logout() def test_invalid_forgot_password_form(client): print("test_invalid_forgot_password_form") url = url_for('user.forgot_password') # Test invalid email client.post_invalid_form(url, 'Invalid Email', email=INVALID_EMAIL) def test_invalid_reset_password(client): print("test_invalid_reset_password") # Set user manager config um = current_app.user_manager # Set default values new_password = 'Password5' # Simulate a valid forgot password form token = um.generate_token(user1.id) # Test invalid token url = url_for('user.reset_password', token='InvalidToken') client.post_invalid_form(url, 'Your reset password token is invalid', new_password=new_password, retype_password=new_password) # Expired Token url = url_for('user.reset_password', token=token) um.reset_password_expiration = 1 # set 1 second expiration time.sleep(2) # wait for 2 seconds client.post_invalid_form(url, 'Your reset password token has expired', new_password=new_password, retype_password=new_password) um.reset_password_expiration = 2*24*3600 # 2 days # Invalid retype password client.post_invalid_form(url, 'New Password and Retype Password did not match', new_password = new_password, retype_password='XPassword5') def test_valid_roles(client): um = current_app.user_manager User = um.db_adapter.UserClass # Perform only for roles_required_app user007 = User.query.filter(User.username=='user007').first() if not user007: return print("test_valid_roles") um.enable_username = True client.login(username='user007', password='Password1') url = url_for('special_page') response = client.get_valid_page(url) assert not response_has_string(response, 'You must be signed in to access') client.logout() def test_invalid_roles(client): um = current_app.user_manager User = um.db_adapter.UserClass # Perform only for roles_required_app user007 = User.query.filter(User.username=='user007').first() if not user007: return print("test_invalid_roles") um.enable_username = True client.login(username='user1', password='Password1') url = url_for('special_page') response = client.get_invalid_page(url, 'You do not have permission to access') client.logout() def test_login_without_confirm_email(client): print("test_login_without_confirm_email") um = current_app.user_manager um.enable_username = False um.enable_email = True um.enable_confirm_email = True um.enable_retype_password = False email = 'notconfirmed@example.com' password = 'Password1' # register user client.post_valid_form(url_for('user.register'), email=email, password=password) # Try logging in without confirming email client.post_invalid_form(url_for('user.login'), 'Your email address has not yet been confirmed', email=email, password=password) # Confirm email manually, but disable account User = um.db_adapter.UserClass user = User.query.filter(User.email==email).first() assert(user) user.active = False user.confirmed_at = datetime.utcnow() # Try logging in into disabled account client.post_invalid_form(url_for('user.login'), 'Your account has not been enabled', email=email, password=password) def test_cleanup(db): """ Delete user1 and user2 """ global user1, user2, user3, user4 db.session.delete(user1) db.session.delete(user2) db.session.delete(user3) db.session.delete(user4) db.session.commit() user1 = None user2 = None user3 = None user4 = None # TODO: # Register without confirming email and try to log in # 'Your email address has not yet been confirmed. Check your email Inbox and Spam folders for the confirmation email and follow the instructions to activate your account.' # # Disable account and try to login # 'Your account has been disabled.' # # Logout with user_manager.logout_next set # # Reset password with custom user_manager.password_validator # # Change password with custom user_manager.password_validator: # # Custom db_adapter.EmailClass
""" search.py """ from flask import Flask, request, redirect, abort, make_response from flask import render_template, flash import bibserver.dao from bibserver import auth import json, httplib from bibserver.config import config import bibserver.util as util import logging from logging.handlers import RotatingFileHandler LOG_FILENAME="./app.log" log = logging.getLogger('werkzeug') log.setLevel(logging.DEBUG) formatter = logging.Formatter( "[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s") handler = RotatingFileHandler(LOG_FILENAME, maxBytes=10000000, backupCount=5) handler.setFormatter(formatter) log.addHandler(handler) class Search(object): def __init__(self,path,current_user): self.path = path.replace(".json","") self.current_user = current_user # facets -> convert to aggs self.search_options = { 'search_url': '/query?', 'search_index': 'elasticsearch', 'paging': { 'from': 0, 'size': 10 }, #'predefined_filters': {}, #'facets': config['search_facet_fields'], 'result_display': config['search_result_display'], 'search_sortby': [{'display':'year', 'field':'year.exact'}, {'display':'author','field':'author.name'}, {'display':'journal','field':'journal.name'}], 'searchbox_fieldselect': [ {'display':'author','field':'author.name'}, {'display':'journal','field':'journal.name'}]#, #'addremovefacets': config['add_remove_facets'] # (full list could also be pulled from DAO) } self.parts = self.path.strip('/').split('/') def find(self): log.debug(self.parts[0]) log.debug(self.parts) log.debug(len(self.parts)) if bibserver.dao.Account.get(self.parts[0]): if len(self.parts) == 1: return self.account() # user account elif len(self.parts) == 2: if self.parts[1] == "collections": return self.collections() else: return self.collection() # get a collection elif len(self.parts) == 3: return self.record() # get a record in collection elif self.parts[0] == 'collections': return self.collections() # get search list of all collections elif len(self.parts) == 1: if self.parts[0] != 'search': self.search_options['q'] = self.parts[0] return self.default() # get search result of implicit search term elif len(self.parts) == 2: return self.implicit_facet() # get search result of implicit facet filter else: abort(404) def default(self): # default search page if util.request_wants_json(): res = bibserver.dao.Record.query() resp = make_response( json.dumps([i['_source'] for i in res._hits], sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: return render_template('search/index.html', current_user=self.current_user, search_options=json.dumps(self.search_options), collection=None ) # TODO: convert facet => aggs def implicit_facet(self): self.search_options['predefined_filters'][self.parts[0]+config['facet_field']] = self.parts[1] # remove the implicit facet from facets for count,facet in enumerate(self.search_options['facets']): if facet['field'] == self.parts[0]+config['facet_field']: del self.search_options['facets'][count] if util.request_wants_json(): res = bibserver.dao.Record.query(terms=self.search_options['predefined_filters']) resp = make_response( json.dumps([i['_source'] for i in res._hits], sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: return render_template('search/index.html', current_user=self.current_user, search_options=json.dumps(self.search_options), collection=None, implicit=self.parts[0]+': ' + self.parts[1] ) def collections(self): if len(self.parts) == 1: if util.request_wants_json(): res = bibserver.dao.Collection.query(size=1000000) colls = [i['_source'] for i in res._hits] resp = make_response( json.dumps(colls, sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: # search collection records self.search_options['search_url'] = '/query/collection?' self.search_options['facets'] = [{'field':'owner','size':100},{'field':'_created','size':100}] self.search_options['result_display'] = [[{'pre':'<h3>','field':'label','post':'</h3>'}],[{'field':'description'}],[{'pre':'created by ','field':'owner'}]] self.search_options['result_display'] = config['collections_result_display'] return render_template('collection/index.html', current_user=self.current_user, search_options=json.dumps(self.search_options), collection=None) elif len(self.parts) == 2: if self.parts[0] == "collections": acc = bibserver.dao.Account.get(self.parts[1]) else: acc = bibserver.dao.Account.get(self.parts[0]) if acc: resp = make_response( json.dumps([coll.data for coll in acc.collections], sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: abort(404) elif len(self.parts) == 3: coll = bibserver.dao.Collection.get_by_owner_coll(self.parts[1],self.parts[2]) if coll: coll.data['records'] = len(coll) resp = make_response( json.dumps(coll.data, sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: abort(404) else: abort(404) def record(self): found = None res = bibserver.dao.Record.query(terms = { 'owner'+config['facet_field']:self.parts[0], 'collection'+config['facet_field']:self.parts[1], 'id'+config['facet_field']:self.parts[2] }) if res.total == 0: rec = bibserver.dao.Record.get(self.parts[2]) if rec: found = 1 elif res.total == 1: rec = bibserver.dao.Record.get(res._hits[0]['_id']) found = 1 else: found = 2 if not found: abort(404) elif found == 1: collection = bibserver.dao.Collection.get_by_owner_coll(rec.data['owner'],rec.data['collection']) if request.method == 'DELETE': if rec: if not auth.collection.update(self.current_user, collection): abort(401) rec.delete() abort(404) else: abort(404) elif request.method == 'POST': if rec: if not auth.collection.update(self.current_user, collection): abort(401) rec.data = request.json rec.save() resp = make_response( json.dumps(rec.data, sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: if util.request_wants_json(): resp = make_response( json.dumps(rec.data, sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: admin = True if auth.collection.update(self.current_user, collection) else False # make a list of all the values in the record, for autocomplete on the search field searchvals = [] def valloop(obj): if isinstance(obj,dict): for item in obj: valloop(obj[item]) elif isinstance(obj,list): for thing in obj: valloop(thing) else: searchvals.append(obj) valloop(rec.data) # get fuzzy like this host = str(config['ELASTIC_SEARCH_HOST']).rstrip('/') db_path = config['ELASTIC_SEARCH_DB'] fullpath = '/' + db_path + '/record/' + rec.id + '/_mlt?mlt_fields=title&min_term_freq=1&percent_terms_to_match=1&min_word_len=3' c = httplib.HTTPConnection(host) c.request('GET', fullpath) resp = c.getresponse() res = json.loads(resp.read()) mlt = [i['_source'] for i in res['hits']['hits']] # get any notes notes = bibserver.dao.Note.about(rec.id) # check service core for more data about the record # TODO: should maybe move this into the record dao or something # TODO: also, add in any other calls to external APIs servicecore = "" apis = config['external_apis'] if apis['servicecore']['key']: try: servicecore = "not found in any UK repository" addr = apis['servicecore']['url'] + rec.data['title'].replace(' ','%20') + "?format=json&api_key=" + apis['servicecore']['key'] import urllib2 response = urllib2.urlopen( addr ) data = json.loads(response.read()) if 'ListRecords' in data and len(data['ListRecords']) != 0: record = data['ListRecords'][0]['record']['metadata']['oai_dc:dc'] servicecore = "<h3>Availability</h3><p>This article is openly available in an institutional repository:</p>" servicecore += '<p><a target="_blank" href="' + record["dc:source"] + '">' + record["dc:title"] + '</a><br />' if "dc:description" in record: servicecore += record["dc:description"] + '<br /><br />' servicecore += '</p>' except: pass # render the record with all extras return render_template('record.html', record=json.dumps(rec.data), prettyrecord=self.prettify(rec.data), objectrecord = rec.data, searchvals=json.dumps(searchvals), admin=admin, notes=notes, servicecore=servicecore, mlt=mlt, searchables=json.dumps(config["searchables"], sort_keys=True) ) else: if util.request_wants_json(): resp = make_response( json.dumps([i['_source'] for i in res._hits], sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: return render_template('record.html', multiple=[i['_source'] for i in res._hits]) def account(self): self.search_options['predefined_filters']['owner'+config['facet_field']] = self.parts[0] acc = bibserver.dao.Account.get(self.parts[0]) if request.method == 'DELETE': if not auth.user.update(self.current_user,acc): abort(401) if acc: acc.delete() return '' elif request.method == 'POST': if not auth.user.update(self.current_user,acc): abort(401) info = request.json if info.get('_id',False): if info['_id'] != self.parts[0]: acc = bibserver.dao.Account.get(info['_id']) else: info['api_key'] = acc.data['api_key'] info['_created'] = acc.data['_created'] info['collection'] = acc.data['collection'] info['owner'] = acc.data['collection'] acc.data = info if 'password' in info and not info['password'].startswith('sha1'): acc.set_password(info['password']) acc.save() resp = make_response( json.dumps(acc.data, sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: if util.request_wants_json(): if not auth.user.update(self.current_user,acc): abort(401) resp = make_response( json.dumps(acc.data, sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: admin = True if auth.user.update(self.current_user,acc) else False recordcount = bibserver.dao.Record.query(terms={'owner':acc.id}).total collcount = bibserver.dao.Collection.query(terms={'owner':acc.id}).total return render_template('account/view.html', current_user=self.current_user, search_options=json.dumps(self.search_options), record=json.dumps(acc.data), recordcount=recordcount, collcount=collcount, admin=admin, account=acc, superuser=auth.user.is_super(self.current_user) ) def collection(self): # show the collection that matches parts[1] self.search_options['predefined_filters']['owner'] = self.parts[0] self.search_options['predefined_filters']['collection'] = self.parts[1] # remove the collection facet for count,facet in enumerate(self.search_options['facets']): if facet['field'] == 'collection'+config['facet_field']: del self.search_options['facets'][count] # look for collection metadata metadata = bibserver.dao.Collection.get_by_owner_coll(self.parts[0],self.parts[1]) if request.method == 'DELETE': if metadata != None: if not auth.collection.update(self.current_user, metadata): abort(401) else: metadata.delete() return '' else: if not auth.collection.create(self.current_user, None): abort(401) else: size = bibserver.dao.Record.query(terms={'owner':self.parts[0],'collection':self.parts[1]}).total for rid in bibserver.dao.Record.query(terms={'owner':self.parts[0],'collection':self.parts[1]},size=size)._hits: record = bibserver.dao.Record.get(rid['_id']) if record: record.delete() return '' elif request.method == 'POST': if metadata != None: metadata.data = request.json metadata.save() return '' else: abort(404) else: if util.request_wants_json(): out = {"metadata":metadata.data,"records":[]} out['metadata']['records'] = len(metadata) out['metadata']['query'] = request.url for rec in metadata.records: out['records'].append(rec.data) resp = make_response( json.dumps(out, sort_keys=True, indent=4) ) resp.mimetype = "application/json" return resp else: admin = True if metadata != None and auth.collection.update(self.current_user, metadata) else False if metadata and '_display_settings' in metadata: self.search_options.update(metadata['_display_settings']) users = bibserver.dao.Account.query(size=1000000) # pass the userlist for autocomplete admin addition (could be ajax'd) userlist = [i['_source']['_id'] for i in users['hits']['hits']] return render_template('search/index.html', current_user=self.current_user, search_options=json.dumps(self.search_options), collection=metadata.data, record = json.dumps(metadata.data), userlist=json.dumps(userlist), request=request, admin=admin ) def prettify(self,record): result = '<p>' # given a result record, build how it should look on the page img = False if img: result += '<img class="thumbnail" style="float:left; width:100px; margin:0 5px 10px 0; max-height:150px;" src="' + img[0] + '" />' # add the record based on display template if available display = config['search_result_display'] lines = '' for lineitem in display: line = '' for obj in lineitem: thekey = obj['field'] parts = thekey.split('.') if len(parts) == 1: res = record elif len(parts) == 2: res = record.get(parts[0],'') elif len(parts) == 3: res = record[parts[0]][parts[1]] counter = len(parts) - 1 if res and isinstance(res, dict): thevalue = res.get(parts[counter],'') # this is a dict else: thevalue = [] for row in res: thevalue.append(row[parts[counter]]) if thevalue and len(thevalue): line += obj.get('pre','') if isinstance(thevalue, list): for index,val in enumerate(thevalue): if index != 0 and index != len(thevalue)-1: line += ', ' line += val else: line += thevalue line += obj.get('post','') if line: lines += line + "<br />" if lines: result += lines else: result += json.dumps(record,sort_keys=True,indent=4) result += '</p>' return result
# -*- coding: utf-8 -*- import random from cadnano.views.pathview import pathstyles from cadnano.proxies.cnproxy import UndoCommand from cadnano.strand import Strand class SplitCommand(UndoCommand): """ The SplitCommand takes as input a strand and "splits" the strand in two, such that one new strand 3' end is at base_idx, and the other new strand 5' end is at base_idx +/- 1 (depending on the direction of the strands). Under the hood: On redo, this command actually is creates two new copies of the original strand, resizes each and modifies their connections. On undo, the new copies are removed and the original is restored. """ def __init__(self, strand: Strand, base_idx: int, update_sequence: bool = True): super(SplitCommand, self).__init__("split strand") # Store inputs self._old_strand = strand # TODO possibly implement selection preserving # doc = strand.document() # self.was_selected = was_selected = doc.isModelStrandSelected(strand) # if was_selected: # self.select_values = doc.getSelectedStrandValue(strand) # else: # self.select_values = (None, None) old_sequence = strand._sequence is5to3 = strand.isForward() self._s_set = strand.strandSet() self._old_oligo = oligo = strand.oligo() # Create copies self.strand_low = strand_low = strand.shallowCopy() self.strand_high = strand_high = strand.shallowCopy() if oligo.isCircular(): self._l_oligo = self._h_oligo = l_oligo = h_oligo = oligo.shallowCopy() else: self._l_oligo = l_oligo = oligo.shallowCopy() self._h_oligo = h_oligo = oligo.shallowCopy() color_list = pathstyles.STAP_COLORS # Determine oligo retention based on strand priority if is5to3: # strand_low has priority i_new_low = base_idx color_low = oligo.getColor() color_high = random.choice(color_list) olg5p, olg3p = l_oligo, h_oligo std5p, std3p = strand_low, strand_high else: # strand_high has priority i_new_low = base_idx - 1 color_low = random.choice(color_list) color_high = oligo.getColor() olg5p, olg3p = h_oligo, l_oligo std5p, std3p = strand_high, strand_low # this is for updating a connected xover view object # there is only ever one xover a strand is in charge of self._strand3p = std3p self._strand5p = std5p # Update strand connectivity strand_low.setConnectionHigh(None) strand_high.setConnectionLow(None) # Resize strands and update decorators strand_low.setIdxs((strand.lowIdx(), i_new_low)) strand_high.setIdxs((i_new_low + 1, strand.highIdx())) # Update the oligo for things like its 5prime end and isCircular olg5p._strandSplitUpdate(std5p, std3p, olg3p, strand) if not oligo.isCircular(): # Update the oligo color if necessary l_oligo._setColor(color_low) h_oligo._setColor(color_high) # settle the oligo length length = 0 for strand in std3p.generator3pStrand(): length += strand.totalLength() # end for olg5p._setLength(olg5p.length() - length, emit_signals=True) olg3p._setLength(length, emit_signals=True) # end if if update_sequence and old_sequence: if is5to3: # strand_low has priority tL = strand_low.totalLength() strand_low._sequence = old_sequence[0:tL] strand_high._sequence = old_sequence[tL:] else: tH = strand_high.totalLength() strand_high._sequence = old_sequence[0:tH] strand_low._sequence = old_sequence[tH:] # end def def redo(self): ss = self._s_set s_low = self.strand_low s_high = self.strand_high o_strand = self._old_strand olg = self._old_oligo l_olg = self._l_oligo h_olg = self._h_oligo was_not_loop = l_olg != h_olg # Remove old Strand from the s_set ss._removeFromStrandList(o_strand, update_segments=False) # Add new strands to the s_set (reusing idx, so order matters) ss._addToStrandList(s_high, update_segments=False) ss._addToStrandList(s_low) # update connectivity of strands sLcL = s_low.connectionLow() if sLcL: if ((o_strand.isForward() and sLcL.isForward()) or (not o_strand.isForward() and not sLcL.isForward())): sLcL.setConnectionHigh(s_low) else: sLcL.setConnectionLow(s_low) sHcH = s_high.connectionHigh() if sHcH: if ((o_strand.isForward() and sHcH.isForward()) or (not o_strand.isForward() and not sHcH.isForward())): sHcH.setConnectionLow(s_high) else: sHcH.setConnectionHigh(s_high) # Traverse the strands via 3'conns to assign the new oligos fSetOligo = Strand.setOligo for strand in l_olg.strand5p().generator3pStrand(): fSetOligo(strand, l_olg, emit_signals=True) # emits strandHasNewOligoSignal if was_not_loop: # do the second oligo which is different for i, strand in enumerate(h_olg.strand5p().generator3pStrand()): # emits strandHasNewOligoSignal fSetOligo(strand, h_olg, emit_signals=True) # Add new oligo and remove old oligos from the part olg.removeFromPart(emit_signals=True) l_olg.addToPart(s_low.part(), emit_signals=True) if was_not_loop: h_olg.addToPart(s_high.part(), emit_signals=True) # Emit Signals related to destruction and addition o_strand.strandRemovedSignal.emit(o_strand) ss.strandsetStrandAddedSignal.emit(ss, s_high) ss.strandsetStrandAddedSignal.emit(ss, s_low) # if self.was_selected: # print("WAS SELECTED") # doc = ss.document() # select_values = self.select_values # doc.addStrandToSelection(s_low, select_values) # doc.addStrandToSelection(s_high, select_values) # doc.updateStrandSelection() # end def def undo(self): ss = self._s_set s_low = self.strand_low s_high = self.strand_high o_strand = self._old_strand olg = self._old_oligo l_olg = self._l_oligo h_olg = self._h_oligo was_not_loop = l_olg != h_olg # Remove new strands from the s_set (reusing idx, so order matters) ss._removeFromStrandList(s_low, update_segments=False) ss._removeFromStrandList(s_high, update_segments=False) # Add the old strand to the s_set ss._addToStrandList(o_strand) # update connectivity of strands oScL = o_strand.connectionLow() if oScL: if ((o_strand.isForward() and oScL.isForward()) or (not o_strand.isForward() and not oScL.isForward())): oScL.setConnectionHigh(o_strand) else: oScL.setConnectionLow(o_strand) oScH = o_strand.connectionHigh() if oScH: if ((o_strand.isForward() and oScH.isForward()) or (not o_strand.isForward() and not oScH.isForward())): oScH.setConnectionLow(o_strand) else: oScH.setConnectionHigh(o_strand) # Traverse the strands via 3'conns to assign the old oligo fSetOligo = Strand.setOligo for strand in olg.strand5p().generator3pStrand(): fSetOligo(strand, olg, emit_signals=True) # Add old oligo and remove new oligos from the part olg.addToPart(ss.part(), emit_signals=True) l_olg.removeFromPart(emit_signals=True) if was_not_loop: h_olg.removeFromPart(emit_signals=True) # Emit Signals related to destruction and addition s_low.strandRemovedSignal.emit(s_low) s_high.strandRemovedSignal.emit(s_high) ss.strandsetStrandAddedSignal.emit(ss, o_strand) ss.part().reemitActiveVirtualHelix() # emit last to ensure colors of ticks are correct # if self.was_selected: # doc = ss.document() # doc.addStrandToSelection(o_strand, self.select_values) # doc.updateStrandSelection() # end def # end class
#!/usr/bin/env python # -*- coding: utf-8 -*- # copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Excellon Statements ==================== **Excellon file statement classes** """ import re import uuid import itertools from .utils import (parse_gerber_value, write_gerber_value, decimal_string, inch, metric) __all__ = ['ExcellonTool', 'ToolSelectionStmt', 'CoordinateStmt', 'CommentStmt', 'HeaderBeginStmt', 'HeaderEndStmt', 'RewindStopStmt', 'EndOfProgramStmt', 'UnitStmt', 'IncrementalModeStmt', 'VersionStmt', 'FormatStmt', 'LinkToolStmt', 'MeasuringModeStmt', 'RouteModeStmt', 'LinearModeStmt', 'DrillModeStmt', 'AbsoluteModeStmt', 'RepeatHoleStmt', 'UnknownStmt', 'ExcellonStatement', 'ZAxisRoutPositionStmt', 'RetractWithClampingStmt', 'RetractWithoutClampingStmt', 'CutterCompensationOffStmt', 'CutterCompensationLeftStmt', 'CutterCompensationRightStmt', 'ZAxisInfeedRateStmt', 'NextToolSelectionStmt', 'SlotStmt'] class ExcellonStatement(object): """ Excellon Statement abstract base class """ @classmethod def from_excellon(cls, line): raise NotImplementedError('from_excellon must be implemented in a ' 'subclass') def __init__(self, unit='inch', id=None): self.units = unit self.id = uuid.uuid4().int if id is None else id def to_excellon(self, settings=None): raise NotImplementedError('to_excellon must be implemented in a ' 'subclass') def to_inch(self): self.units = 'inch' def to_metric(self): self.units = 'metric' def offset(self, x_offset=0, y_offset=0): pass def __eq__(self, other): return self.__dict__ == other.__dict__ class ExcellonTool(ExcellonStatement): """ Excellon Tool class Parameters ---------- settings : FileSettings (dict-like) File-wide settings. kwargs : dict-like Tool settings from the excellon statement. Valid keys are: - `diameter` : Tool diameter [expressed in file units] - `rpm` : Tool RPM - `feed_rate` : Z-axis tool feed rate - `retract_rate` : Z-axis tool retraction rate - `max_hit_count` : Number of hits allowed before a tool change - `depth_offset` : Offset of tool depth from tip of tool. Attributes ---------- number : integer Tool number from the excellon file diameter : float Tool diameter in file units rpm : float Tool RPM feed_rate : float Tool Z-axis feed rate. retract_rate : float Tool Z-axis retract rate depth_offset : float Offset of depth measurement from tip of tool max_hit_count : integer Maximum number of tool hits allowed before a tool change hit_count : integer Number of tool hits in excellon file. """ PLATED_UNKNOWN = None PLATED_YES = 'plated' PLATED_NO = 'nonplated' PLATED_OPTIONAL = 'optional' @classmethod def from_tool(cls, tool): args = {} args['depth_offset'] = tool.depth_offset args['diameter'] = tool.diameter args['feed_rate'] = tool.feed_rate args['max_hit_count'] = tool.max_hit_count args['number'] = tool.number args['plated'] = tool.plated args['retract_rate'] = tool.retract_rate args['rpm'] = tool.rpm return cls(None, **args) @classmethod def from_excellon(cls, line, settings, id=None, plated=None): """ Create a Tool from an excellon file tool definition line. Parameters ---------- line : string Tool definition line from an excellon file. settings : FileSettings (dict-like) Excellon file-wide settings Returns ------- tool : Tool An ExcellonTool representing the tool defined in `line` """ commands = pairwise(re.split('([BCFHSTZ])', line)[1:]) args = {} args['id'] = id nformat = settings.format zero_suppression = settings.zero_suppression for cmd, val in commands: if cmd == 'B': args['retract_rate'] = parse_gerber_value(val, nformat, zero_suppression) elif cmd == 'C': args['diameter'] = parse_gerber_value(val, nformat, zero_suppression) elif cmd == 'F': args['feed_rate'] = parse_gerber_value(val, nformat, zero_suppression) elif cmd == 'H': args['max_hit_count'] = parse_gerber_value(val, nformat, zero_suppression) elif cmd == 'S': args['rpm'] = 1000 * parse_gerber_value(val, nformat, zero_suppression) elif cmd == 'T': args['number'] = int(val) elif cmd == 'Z': args['depth_offset'] = parse_gerber_value(val, nformat, zero_suppression) if plated != ExcellonTool.PLATED_UNKNOWN: # Sometimees we can can parse the plating status args['plated'] = plated return cls(settings, **args) @classmethod def from_dict(cls, settings, tool_dict): """ Create an ExcellonTool from a dict. Parameters ---------- settings : FileSettings (dict-like) Excellon File-wide settings tool_dict : dict Excellon tool parameters as a dict Returns ------- tool : ExcellonTool An ExcellonTool initialized with the parameters in tool_dict. """ return cls(settings, **tool_dict) def __init__(self, settings, **kwargs): if kwargs.get('id') is not None: super(ExcellonTool, self).__init__(id=kwargs.get('id')) self.settings = settings self.number = kwargs.get('number') self.feed_rate = kwargs.get('feed_rate') self.retract_rate = kwargs.get('retract_rate') self.rpm = kwargs.get('rpm') self.diameter = kwargs.get('diameter') self.max_hit_count = kwargs.get('max_hit_count') self.depth_offset = kwargs.get('depth_offset') self.plated = kwargs.get('plated') self.hit_count = 0 def to_excellon(self, settings=None): if self.settings and not settings: settings = self.settings fmt = settings.format zs = settings.zero_suppression stmt = 'T%02d' % self.number if self.retract_rate is not None: stmt += 'B%s' % write_gerber_value(self.retract_rate, fmt, zs) if self.feed_rate is not None: stmt += 'F%s' % write_gerber_value(self.feed_rate, fmt, zs) if self.max_hit_count is not None: stmt += 'H%s' % write_gerber_value(self.max_hit_count, fmt, zs) if self.rpm is not None: if self.rpm < 100000.: stmt += 'S%s' % write_gerber_value(self.rpm / 1000., fmt, zs) else: stmt += 'S%g' % (self.rpm / 1000.) if self.diameter is not None: stmt += 'C%s' % decimal_string(self.diameter, fmt[1], True) if self.depth_offset is not None: stmt += 'Z%s' % write_gerber_value(self.depth_offset, fmt, zs) return stmt def to_inch(self): if self.settings.units != 'inch': self.settings.units = 'inch' if self.diameter is not None: self.diameter = inch(self.diameter) def to_metric(self): if self.settings.units != 'metric': self.settings.units = 'metric' if self.diameter is not None: self.diameter = metric(self.diameter) def _hit(self): self.hit_count += 1 def equivalent(self, other): """ Is the other tool equal to this, ignoring the tool number, and other file specified properties """ if type(self) != type(other): return False return (self.diameter == other.diameter and self.feed_rate == other.feed_rate and self.retract_rate == other.retract_rate and self.rpm == other.rpm and self.depth_offset == other.depth_offset and self.max_hit_count == other.max_hit_count and self.plated == other.plated and self.settings.units == other.settings.units) def __repr__(self): unit = 'in.' if self.settings.units == 'inch' else 'mm' fmtstr = '<ExcellonTool %%02d: %%%d.%dg%%s dia.>' % self.settings.format return fmtstr % (self.number, self.diameter, unit) class ToolSelectionStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, **kwargs): """ Create a ToolSelectionStmt from an excellon file line. Parameters ---------- line : string Line from an Excellon file Returns ------- tool_statement : ToolSelectionStmt ToolSelectionStmt representation of `line.` """ line = line[1:] compensation_index = None # up to 3 characters for tool number (Frizting uses that) if len(line) <= 3: tool = int(line) else: tool = int(line[:2]) compensation_index = int(line[2:]) return cls(tool, compensation_index, **kwargs) def __init__(self, tool, compensation_index=None, **kwargs): super(ToolSelectionStmt, self).__init__(**kwargs) tool = int(tool) compensation_index = (int(compensation_index) if compensation_index is not None else None) self.tool = tool self.compensation_index = compensation_index def to_excellon(self, settings=None): stmt = 'T%02d' % self.tool if self.compensation_index is not None: stmt += '%02d' % self.compensation_index return stmt class NextToolSelectionStmt(ExcellonStatement): # TODO the statement exists outside of the context of the file, # so it is imposible to know that it is really the next tool def __init__(self, cur_tool, next_tool, **kwargs): """ Select the next tool in the wheel. Parameters ---------- cur_tool : the tool that is currently selected next_tool : the that that is now selected """ super(NextToolSelectionStmt, self).__init__(**kwargs) self.cur_tool = cur_tool self.next_tool = next_tool def to_excellon(self, settings=None): stmt = 'M00' return stmt class ZAxisInfeedRateStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, **kwargs): """ Create a ZAxisInfeedRate from an excellon file line. Parameters ---------- line : string Line from an Excellon file Returns ------- z_axis_infeed_rate : ToolSelectionStmt ToolSelectionStmt representation of `line.` """ rate = int(line[1:]) return cls(rate, **kwargs) def __init__(self, rate, **kwargs): super(ZAxisInfeedRateStmt, self).__init__(**kwargs) self.rate = rate def to_excellon(self, settings=None): return 'F%02d' % self.rate class CoordinateStmt(ExcellonStatement): @classmethod def from_point(cls, point, mode=None): stmt = cls(point[0], point[1]) if mode: stmt.mode = mode return stmt @classmethod def from_excellon(cls, line, settings, **kwargs): x_coord = None y_coord = None if line[0] == 'X': splitline = line.strip('X').split('Y') x_coord = parse_gerber_value(splitline[0], settings.format, settings.zero_suppression) if len(splitline) == 2: y_coord = parse_gerber_value(splitline[1], settings.format, settings.zero_suppression) else: y_coord = parse_gerber_value(line.strip(' Y'), settings.format, settings.zero_suppression) c = cls(x_coord, y_coord, **kwargs) c.units = settings.units return c def __init__(self, x=None, y=None, **kwargs): super(CoordinateStmt, self).__init__(**kwargs) self.x = x self.y = y self.mode = None def to_excellon(self, settings): stmt = '' if self.mode == "ROUT": stmt += "G00" if self.mode == "LINEAR": stmt += "G01" if self.x is not None: stmt += 'X%s' % write_gerber_value(self.x, settings.format, settings.zero_suppression) if self.y is not None: stmt += 'Y%s' % write_gerber_value(self.y, settings.format, settings.zero_suppression) return stmt def to_inch(self): if self.units == 'metric': self.units = 'inch' if self.x is not None: self.x = inch(self.x) if self.y is not None: self.y = inch(self.y) def to_metric(self): if self.units == 'inch': self.units = 'metric' if self.x is not None: self.x = metric(self.x) if self.y is not None: self.y = metric(self.y) def offset(self, x_offset=0, y_offset=0): if self.x is not None: self.x += x_offset if self.y is not None: self.y += y_offset def __str__(self): coord_str = '' if self.x is not None: coord_str += 'X: %g ' % self.x if self.y is not None: coord_str += 'Y: %g ' % self.y return '<Coordinate Statement: %s>' % coord_str class RepeatHoleStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, settings, **kwargs): match = re.compile(r'R(?P<rcount>[0-9]*)X?(?P<xdelta>[+\-]?\d*\.?\d*)?Y?' '(?P<ydelta>[+\-]?\d*\.?\d*)?').match(line) stmt = match.groupdict() count = int(stmt['rcount']) xdelta = (parse_gerber_value(stmt['xdelta'], settings.format, settings.zero_suppression) if stmt['xdelta'] is not '' else None) ydelta = (parse_gerber_value(stmt['ydelta'], settings.format, settings.zero_suppression) if stmt['ydelta'] is not '' else None) c = cls(count, xdelta, ydelta, **kwargs) c.units = settings.units return c def __init__(self, count, xdelta=0.0, ydelta=0.0, **kwargs): super(RepeatHoleStmt, self).__init__(**kwargs) self.count = count self.xdelta = xdelta self.ydelta = ydelta def to_excellon(self, settings): stmt = 'R%d' % self.count if self.xdelta is not None and self.xdelta != 0.0: stmt += 'X%s' % write_gerber_value(self.xdelta, settings.format, settings.zero_suppression) if self.ydelta is not None and self.ydelta != 0.0: stmt += 'Y%s' % write_gerber_value(self.ydelta, settings.format, settings.zero_suppression) return stmt def to_inch(self): if self.units == 'metric': self.units = 'inch' if self.xdelta is not None: self.xdelta = inch(self.xdelta) if self.ydelta is not None: self.ydelta = inch(self.ydelta) def to_metric(self): if self.units == 'inch': self.units = 'metric' if self.xdelta is not None: self.xdelta = metric(self.xdelta) if self.ydelta is not None: self.ydelta = metric(self.ydelta) def __str__(self): return '<Repeat Hole: %d times, offset X: %g Y: %g>' % ( self.count, self.xdelta if self.xdelta is not None else 0, self.ydelta if self.ydelta is not None else 0) class CommentStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, **kwargs): return cls(line.lstrip(';')) def __init__(self, comment, **kwargs): super(CommentStmt, self).__init__(**kwargs) self.comment = comment def to_excellon(self, settings=None): return ';%s' % self.comment class HeaderBeginStmt(ExcellonStatement): def __init__(self, **kwargs): super(HeaderBeginStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'M48' class HeaderEndStmt(ExcellonStatement): def __init__(self, **kwargs): super(HeaderEndStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'M95' class RewindStopStmt(ExcellonStatement): def __init__(self, **kwargs): super(RewindStopStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return '%' class ZAxisRoutPositionStmt(ExcellonStatement): def __init__(self, **kwargs): super(ZAxisRoutPositionStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'M15' class RetractWithClampingStmt(ExcellonStatement): def __init__(self, **kwargs): super(RetractWithClampingStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'M16' class RetractWithoutClampingStmt(ExcellonStatement): def __init__(self, **kwargs): super(RetractWithoutClampingStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'M17' class CutterCompensationOffStmt(ExcellonStatement): def __init__(self, **kwargs): super(CutterCompensationOffStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'G40' class CutterCompensationLeftStmt(ExcellonStatement): def __init__(self, **kwargs): super(CutterCompensationLeftStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'G41' class CutterCompensationRightStmt(ExcellonStatement): def __init__(self, **kwargs): super(CutterCompensationRightStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'G42' class EndOfProgramStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, settings, **kwargs): match = re.compile(r'M30X?(?P<x>\d*\.?\d*)?Y?' '(?P<y>\d*\.?\d*)?').match(line) stmt = match.groupdict() x = (parse_gerber_value(stmt['x'], settings.format, settings.zero_suppression) if stmt['x'] is not '' else None) y = (parse_gerber_value(stmt['y'], settings.format, settings.zero_suppression) if stmt['y'] is not '' else None) c = cls(x, y, **kwargs) c.units = settings.units return c def __init__(self, x=None, y=None, **kwargs): super(EndOfProgramStmt, self).__init__(**kwargs) self.x = x self.y = y def to_excellon(self, settings=None): stmt = 'M30' if self.x is not None: stmt += 'X%s' % write_gerber_value(self.x) if self.y is not None: stmt += 'Y%s' % write_gerber_value(self.y) return stmt def to_inch(self): if self.units == 'metric': self.units = 'inch' if self.x is not None: self.x = inch(self.x) if self.y is not None: self.y = inch(self.y) def to_metric(self): if self.units == 'inch': self.units = 'metric' if self.x is not None: self.x = metric(self.x) if self.y is not None: self.y = metric(self.y) def offset(self, x_offset=0, y_offset=0): if self.x is not None: self.x += x_offset if self.y is not None: self.y += y_offset class UnitStmt(ExcellonStatement): @classmethod def from_settings(cls, settings): """Create the unit statement from the FileSettings""" return cls(settings.units, settings.zeros) @classmethod def from_excellon(cls, line, **kwargs): units = 'inch' if 'INCH' in line else 'metric' zeros = 'leading' if 'LZ' in line else 'trailing' if '0000.00' in line: format = (4, 2) elif '000.000' in line: format = (3, 3) elif '00.0000' in line: format = (2, 4) else: format = None return cls(units, zeros, format, **kwargs) def __init__(self, units='inch', zeros='leading', format=None, **kwargs): super(UnitStmt, self).__init__(**kwargs) self.units = units.lower() self.zeros = zeros self.format = format def to_excellon(self, settings=None): # TODO This won't export the invalid format statement if it exists stmt = '%s,%s' % ('INCH' if self.units == 'inch' else 'METRIC', 'LZ' if self.zeros == 'leading' else 'TZ') return stmt def to_inch(self): self.units = 'inch' def to_metric(self): self.units = 'metric' class IncrementalModeStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, **kwargs): return cls('off', **kwargs) if 'OFF' in line else cls('on', **kwargs) def __init__(self, mode='off', **kwargs): super(IncrementalModeStmt, self).__init__(**kwargs) if mode.lower() not in ['on', 'off']: raise ValueError('Mode may be "on" or "off"') self.mode = mode def to_excellon(self, settings=None): return 'ICI,%s' % ('OFF' if self.mode == 'off' else 'ON') class VersionStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, **kwargs): version = int(line.split(',')[1]) return cls(version, **kwargs) def __init__(self, version=1, **kwargs): super(VersionStmt, self).__init__(**kwargs) version = int(version) if version not in [1, 2]: raise ValueError('Valid versions are 1 or 2') self.version = version def to_excellon(self, settings=None): return 'VER,%d' % self.version class FormatStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, **kwargs): fmt = int(line.split(',')[1]) return cls(fmt, **kwargs) def __init__(self, format=1, **kwargs): super(FormatStmt, self).__init__(**kwargs) format = int(format) if format not in [1, 2]: raise ValueError('Valid formats are 1 or 2') self.format = format def to_excellon(self, settings=None): return 'FMAT,%d' % self.format @property def format_tuple(self): return (self.format, 6 - self.format) class LinkToolStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, **kwargs): linked = [int(tool) for tool in line.split('/')] return cls(linked, **kwargs) def __init__(self, linked_tools, **kwargs): super(LinkToolStmt, self).__init__(**kwargs) self.linked_tools = [int(x) for x in linked_tools] def to_excellon(self, settings=None): return '/'.join([str(x) for x in self.linked_tools]) class MeasuringModeStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, **kwargs): if not ('M71' in line or 'M72' in line): raise ValueError('Not a measuring mode statement') return cls('inch', **kwargs) if 'M72' in line else cls('metric', **kwargs) def __init__(self, units='inch', **kwargs): super(MeasuringModeStmt, self).__init__(**kwargs) units = units.lower() if units not in ['inch', 'metric']: raise ValueError('units must be "inch" or "metric"') self.units = units def to_excellon(self, settings=None): return 'M72' if self.units == 'inch' else 'M71' def to_inch(self): self.units = 'inch' def to_metric(self): self.units = 'metric' class RouteModeStmt(ExcellonStatement): def __init__(self, **kwargs): super(RouteModeStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'G00' class LinearModeStmt(ExcellonStatement): def __init__(self, **kwargs): super(LinearModeStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'G01' class DrillModeStmt(ExcellonStatement): def __init__(self, **kwargs): super(DrillModeStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'G05' class AbsoluteModeStmt(ExcellonStatement): def __init__(self, **kwargs): super(AbsoluteModeStmt, self).__init__(**kwargs) def to_excellon(self, settings=None): return 'G90' class UnknownStmt(ExcellonStatement): @classmethod def from_excellon(cls, line, **kwargs): return cls(line, **kwargs) def __init__(self, stmt, **kwargs): super(UnknownStmt, self).__init__(**kwargs) self.stmt = stmt def to_excellon(self, settings=None): return self.stmt def __str__(self): return "<Unknown Statement: %s>" % self.stmt class SlotStmt(ExcellonStatement): """ G85 statement. Defines a slot created by multiple drills between two specified points. Format is two coordinates, split by G85in the middle, for example, XnY0nG85XnYn """ @classmethod def from_points(cls, start, end): return cls(start[0], start[1], end[0], end[1]) @classmethod def from_excellon(cls, line, settings, **kwargs): # Split the line based on the G85 separator sub_coords = line.split('G85') (x_start_coord, y_start_coord) = SlotStmt.parse_sub_coords(sub_coords[0], settings) (x_end_coord, y_end_coord) = SlotStmt.parse_sub_coords(sub_coords[1], settings) # Some files seem to specify only one of the coordinates if x_end_coord == None: x_end_coord = x_start_coord if y_end_coord == None: y_end_coord = y_start_coord c = cls(x_start_coord, y_start_coord, x_end_coord, y_end_coord, **kwargs) c.units = settings.units return c @staticmethod def parse_sub_coords(line, settings): x_coord = None y_coord = None if line[0] == 'X': splitline = line.strip('X').split('Y') x_coord = parse_gerber_value(splitline[0], settings.format, settings.zero_suppression) if len(splitline) == 2: y_coord = parse_gerber_value(splitline[1], settings.format, settings.zero_suppression) else: y_coord = parse_gerber_value(line.strip(' Y'), settings.format, settings.zero_suppression) return (x_coord, y_coord) def __init__(self, x_start=None, y_start=None, x_end=None, y_end=None, **kwargs): super(SlotStmt, self).__init__(**kwargs) self.x_start = x_start self.y_start = y_start self.x_end = x_end self.y_end = y_end self.mode = None def to_excellon(self, settings): stmt = '' if self.x_start is not None: stmt += 'X%s' % write_gerber_value(self.x_start, settings.format, settings.zero_suppression) if self.y_start is not None: stmt += 'Y%s' % write_gerber_value(self.y_start, settings.format, settings.zero_suppression) stmt += 'G85' if self.x_end is not None: stmt += 'X%s' % write_gerber_value(self.x_end, settings.format, settings.zero_suppression) if self.y_end is not None: stmt += 'Y%s' % write_gerber_value(self.y_end, settings.format, settings.zero_suppression) return stmt def to_inch(self): if self.units == 'metric': self.units = 'inch' if self.x_start is not None: self.x_start = inch(self.x_start) if self.y_start is not None: self.y_start = inch(self.y_start) if self.x_end is not None: self.x_end = inch(self.x_end) if self.y_end is not None: self.y_end = inch(self.y_end) def to_metric(self): if self.units == 'inch': self.units = 'metric' if self.x_start is not None: self.x_start = metric(self.x_start) if self.y_start is not None: self.y_start = metric(self.y_start) if self.x_end is not None: self.x_end = metric(self.x_end) if self.y_end is not None: self.y_end = metric(self.y_end) def offset(self, x_offset=0, y_offset=0): if self.x_start is not None: self.x_start += x_offset if self.y_start is not None: self.y_start += y_offset if self.x_end is not None: self.x_end += x_offset if self.y_end is not None: self.y_end += y_offset def __str__(self): start_str = '' if self.x_start is not None: start_str += 'X: %g ' % self.x_start if self.y_start is not None: start_str += 'Y: %g ' % self.y_start end_str = '' if self.x_end is not None: end_str += 'X: %g ' % self.x_end if self.y_end is not None: end_str += 'Y: %g ' % self.y_end return '<Slot Statement: %s to %s>' % (start_str, end_str) def pairwise(iterator): """ Iterate over list taking two elements at a time. e.g. [1, 2, 3, 4, 5, 6] ==> [(1, 2), (3, 4), (5, 6)] """ a, b = itertools.tee(iterator) itr = zip(itertools.islice(a, 0, None, 2), itertools.islice(b, 1, None, 2)) for elem in itr: yield elem
import tables as T import numpy as N import subprocess import threading import SimpleXMLRPCServer import SocketServer import time,xmlrpclib,httplib import cPickle as pickle import ConfigParser import sys, os import imp # xmlrpc mit timeout def Server(url, *args, **kwargs): t = TimeoutTransport() t.timeout = kwargs.get('timeout', 60) if 'timeout' in kwargs: del kwargs['timeout'] kwargs['transport'] = t server = xmlrpclib.Server(url, *args, **kwargs) return server class TimeoutTransport(xmlrpclib.Transport): def make_connection(self, host): conn = TimeoutHTTP(host) conn.set_timeout(self.timeout) return conn class TimeoutHTTPConnection(httplib.HTTPConnection): def connect(self): httplib.HTTPConnection.connect(self) self.sock.settimeout(self.timeout) class TimeoutHTTP(httplib.HTTP): _connection_class = TimeoutHTTPConnection def set_timeout(self, timeout): self._conn.timeout = timeout # Create server # SocketServer.ThreadingMixIn, SimpleXMLRPCServer.SimpleXMLRPCServer #class ThreadingXMLRPCServer(SimpleXMLRPCServer.SimpleXMLRPCServer): pass class ThreadingXMLRPCServer(SocketServer.ThreadingMixIn, SimpleXMLRPCServer.SimpleXMLRPCServer): pass #class ThreadingXMLRPCServer(SocketServer.ThreadingTCPServer, SimpleXMLRPCServer.SimpleXMLRPCServer): pass #class ThreadingXMLRPCServer(SocketServer.TCPServer, SimpleXMLRPCServer.SimpleXMLRPCDispatcher): # def __init__(self, addr, requestHandler = SimpleXMLRPCServer.SimpleXMLRPCRequestHandler, logRequests = 0): # self.logRequests = logRequests # if sys.version_info[:2] < (2, 5): # SimpleXMLRPCServer.SimpleXMLRPCDispatcher.__init__(self) # else: # SimpleXMLRPCServer.SimpleXMLRPCDispatcher.__init__(self, allow_none = False, encoding = None) # SocketServer.ThreadingTCPServer.__init__(self, addr, requestHandler) # pass # The Damaris Logger Daemon class DamarisLogger: def __init__(self, data_file, max_puts_before_flush,port): #print os.getcwd() self.hdf = T.openFile(data_file,'a') self.run_flag = True self.server = ThreadingXMLRPCServer(("localhost", port), logRequests=0) self.server.allow_reuse_address = True self.server.allow_none = True self.server.allow_introspection = True self.server.register_introspection_functions=True self.server.register_function(self.put_data) self.server.register_function(self.get_data) self.server.register_function(self.put_external_data) self.server.register_function(self.unblock_client) self.server.register_function(self.block_client) self.server.register_function(self.occupied) self.server.register_function(self.quit) self.server.register_function(self.quit_client) self.server.register_function(self.status) self.server.register_function(self.register_client) self.server.register_function(self.unregister_client) self.server.register_function(self.quit_device) self.server.register_function(self.server_run) self.puts = 0 self.total_puts = 0 self.block_list = set() self.quit_list = set() self.quit_client_flag = False self.client_list = set() self.max_puts_before_flush = max_puts_before_flush self.lock = threading.Lock() def __del__(self): try: print "closing files ..." self.hdf.flush() self.hdf.close() except: print "Could not close files, sorry!" def register_client(self,device): self.client_list.add(device) return None def unregister_client(self,device): self.client_list.remove(device) return None def flushing(self): self.lock.acquire() if self.puts >= self.max_puts_before_flush: self.hdf.flush() self.puts = 0 self.lock.release() return None def server_run(self): return self.run_flag def quit(self): #self.run_flag = False self.quit_client_flag = True i = 0 while (i < 10) and not len(self.client_list) == 0: i += 1 print "Clients still running ...", self.client_list time.sleep(0.5) self.__del__() self.run_flag = False return None def status(self): self.flushing() return self.total_puts, list(self.client_list), list(self.block_list) def quit_device(self,device): """ Tell client 'device' to quit """ self.quit_list.add(device) return None ######## client controls ############### def quit_client(self, device): """ Should the client 'device' quit? """ if device in self.quit_list: self.quit_list.remove(device) return True if self.quit_client_flag: return self.quit_client_flag def occupied(self,device): if device in self.block_list: return True else: return False def block_client(self,device): self.block_list.add(device) return None def unblock_client(self,device): self.block_list.remove(device) return None ######################################## def run(self): """ This function is starting the server and registering the needed functions """ print "Server up and running ..." while self.run_flag: self.server.handle_request() def put_external_data(self, device, command): """ Reads data from an external (shell) command """ record_time = time.time() external = subprocess.Popen(command, shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE) in_data = external.stdout.readline() # result = map(float, in_data.strip().split(' ')) # Much faster! result = N.fromstring("".join(in_data), sep=' ') self.put_data(device, record_time, result) return 1 def put_data(self, device, record_time, data): """ Put in data via an external program. The program should connect to the DAMARISd daemon and issue this command. record_time is a list of timestamps, from for example time.time(). value is a cPickle.dumps(numpy.array), each row corresponds to a time stamp """ def make_EArray(device,cols): try: self.hdf.root._g_checkHasChild(device) # throws NoSuchNodeError if not existing device_array = self.hdf.getNode('/',device) except T.exceptions.NoSuchNodeError: device_array = self.hdf.createEArray('/',device, atom=T.Float64Atom(), shape=(0,cols+1)) return device_array # Check the type of record_time, we need one dimensional data if type(record_time) != list: # if a numpy array if type(record_time) == N.ndarray: if all(record_time.shape) > 1: # we need one dimensional time data, thus flatten record_time = record_time.flatten() # not a numpy array, make a list out of it #else: # record_time = list(record_time) # Data comes from outside client via xmlrpclib if type(data) == str: data = pickle.loads(data) # rows, cols for creating the pytables array rows_cols = data.shape # is one dimension if len(rows_cols) == 1: rows = 1 cols = rows_cols[0] # is two dimensinal if len(rows_cols) == 2: rows,cols = rows_cols else: # todo error handling pass device_array = make_EArray(device,cols) rows = N.empty((rows,cols+1)) rows[:,0]=record_time rows[:,1:]=data try: device_array.append(rows) except: print "ERROR! Quitting client: %s"%device self.quit_device(device) # update puts, flush if necessary self.lock.acquire() self.total_puts += 1 self.puts += 1 self.lock.release() self.flushing() return None def search(self,anarray,value,start=None,stop=None): """ Binary search, needs ~ 23 iterations for 12e6 records """ Found = False if start == None: start = 0 if stop == None: stop = anarray.shape[0] bisect = (stop+start)/2 current_point = anarray.read(start=bisect)[:,0] while not Found: if value < current_point: stop = bisect-1 elif value > current_point: start = bisect+1 # can't go higher if start >= anarray.shape[0]: start=bisect bisect = (stop+start)/2 if bisect >= anarray.shape[0]: bisect = anarray.shape[0] if bisect < 0: bisect = 0 current_point = anarray.read(start=bisect)[:,0] if start >= stop: Found = True return bisect def get_data(self, device, start_time, stop_time): self.hdf.flush() device_array = self.hdf.getNode('/',device) # select the values in timeframe # This is very inefficient #tmp = [ x[:] for x in device_array.iterrows() # if (start_time <= x[0] <= stop_time) ] #values_to_return = N.empty((len(tmp), len(tmp[0]))) #for i,row in enumerate(tmp): # values_to_return[i,:]=row # using binary search start_point = self.search(device_array,start_time) # don't search the whole thing again, start at start_point end_point = self.search(device_array,stop_time, start = start_point-1) #print start_point, end_point,device if start_point == end_point: values_to_return = device_array.read(start_point) else: values_to_return = device_array.read(start_point, end_point) return_object = pickle.dumps(values_to_return, protocol=0) return return_object def damarisd_daemon(): s = "%s Starting server"%(time.ctime()) print print len(s)*"#" print s print len(s)*"#" ############ GENERAL CONFIGURATION PART ################### config = ConfigParser.ConfigParser() config.read('damarisd.config') devices = [sec for sec in config.sections()]# if sec!="general"] data_file = config.defaults()['data_file'] max_puts_before_flush = int(config.defaults()['max_puts_before_flush']) port = int(config.defaults()['port']) # log the config for sec in config.sections(): print "Device: %s"%sec for pair in sorted(config.items(sec)): keys,val = pair print "\t%s = %s"%pair ############## SERVER PART ###################### damarisd_server = DamarisLogger(data_file,max_puts_before_flush,port) daemon = threading.Thread(target = damarisd_server.run) daemon.setDaemon(True) daemon.start() # move this to background daemon.run() time.sleep(0.1) server = Server('http://localhost:%i'%port) ######### CLIENT PART ############ def shelldevice_thread(device, command,rate): Quit = False #server = xmlrpclib.Server('http://localhost:%i'%port) server.register_client(device) while not Quit: Quit = bool(server.quit_client(device)) if server.occupied(device) == 0: server.put_external_data(device, command) time.sleep(rate) server.unregister_client(device) def pydevice_thread(device, module, arg_list): """ Python module interface. All the logic has to be in the client module. On start: a) server.register_client(device) b) server.put_data c) check server.occupied d) check server.quit_client flag On quitting: a) last transmission b) server.unregister_client(device) """ fm = imp.find_module(module) mod = imp.load_module(module, fm[0],fm[1],fm[2]) mod.doit(server, device, arg_list) # start the device logger # distinguish between shell commands and python scripts ################### CLIENT CONFIGURATION ########################### shelldevices = [dev for dev in devices if config.has_option(dev,'command')] pydevices = [dev for dev in devices if config.has_option(dev,'module')] for device in shelldevices: command = config.get(device,'command') rate = config.getfloat(device,'rate') cmd = threading.Thread(target = shelldevice_thread, args = (device,command,rate)) cmd.setName("Thread_%s"%device) cmd.setDaemon(True) cmd.start() for device in pydevices: module = config.get(device,'module') argument_list = eval(config.get(device,'args')) #print argument_list cmd = threading.Thread(target = pydevice_thread, args = (device,module,argument_list)) cmd.setName("Thread_%s"%device) cmd.setDaemon(True) cmd.start() # endless loop run = True # server = xmlrpclib.Server('http://localhost:8002') while run: time.sleep(2) try: run = server.server_run() except: run = False pass # DAMONIZE from chris python page #!/usr/bin/env python ########################################################################### # configure UID and GID of server UID = 501 GID = 501 # configure these paths: LOGFILE = '/Users/markusro/Projects/DAMARISd/damarisd.log' PIDFILE = '/Users/markusro/Projects/DAMARISd/damarisd.pid' # and let USERPROG be the main function of your project USERPROG = damarisd_daemon ########################################################################### #based on Juergen Hermanns http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66012 class Log: """file like for writes with auto flush after each write to ensure that everything is logged, even during an unexpected exit.""" def __init__(self, f): self.f = f def write(self, s): self.f.write(s) self.f.flush() def main(): #change to data directory if needed os.chdir("/Users/markusro/Projects/DAMARISd") #redirect outputs to a logfile sys.stdout = sys.stderr = Log(open(LOGFILE, 'a+')) #ensure the that the daemon runs a normal user #os.setegid(GID) #set group first "pydaemon" #os.seteuid(UID) #set user "pydaemon" #start the user program here: USERPROG() if __name__ == "__main__": # do the UNIX double-fork magic, see Stevens' "Advanced # Programming in the UNIX Environment" for details (ISBN 0201563177) try: pid = os.fork() if pid > 0: # exit first parent sys.exit(0) except OSError, e: print >>sys.stderr, "fork #1 failed: %d (%s)" % (e.errno, e.strerror) sys.exit(1) # decouple from parent environment os.chdir("/") #don't prevent unmounting.... os.setsid() os.umask(0) # do second fork try: pid = os.fork() if pid > 0: # exit from second parent, print eventual PID before print "Daemon PID %d" % pid open(PIDFILE,'w').write("%d"%pid) sys.exit(0) print "Daemon PID %d" % pid except OSError, e: print >>sys.stderr, "fork #2 failed: %d (%s)" % (e.errno, e.strerror) sys.exit(1) # start the daemon main loop main()
#!/usr/bin/env python # The contents of this file are subject to the BitTorrent Open Source License # Version 1.1 (the License). You may not copy or use this file, in either # source code or executable form, except in compliance with the License. You # may obtain a copy of the License at http://www.bittorrent.com/license/. # # Software distributed under the License is distributed on an AS IS basis, # WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License # for the specific language governing rights and limitations under the # License. # Original version written by John Hoffman, heavily modified for different # multitorrent architecture by Uoti Urpala (over 40% shorter than original) import os from cStringIO import StringIO from traceback import print_exc from BitTorrent import configfile from BitTorrent.parsedir import parsedir from BitTorrent.download import Multitorrent, Feedback from BitTorrent.ConvertedMetainfo import ConvertedMetainfo from BitTorrent import BTFailure from threading import Event from time import time class LaunchMany(Feedback): def __init__(self, config, output, configfile_key): try: self.config = config self.output = output self.configfile_key = configfile_key self.torrent_dir = config['torrent_dir'] self.torrent_cache = {} self.file_cache = {} self.blocked_files = {} self.torrent_list = [] self.downloads = {} self.doneflag = Event() self.hashcheck_queue = [] self.hashcheck_store = {} self.hashcheck_current = None self.multitorrent = Multitorrent(config, self.doneflag, self.global_error) self.rawserver = self.multitorrent.rawserver self.rawserver.add_task(self.scan, 0) self.rawserver.add_task(self.stats, 0) try: import signal def handler(signum, frame): self.rawserver.external_add_task(self.read_config, 0) signal.signal(signal.SIGHUP, handler) self.rawserver.install_sigint_handler() except Exception, e: self.output.message(_("Could not set signal handler: ") + str(e)) self.rawserver.listen_forever() self.output.message(_("shutting down")) for infohash in self.torrent_list: self.output.message(_('dropped "%s"') % self.torrent_cache[infohash]['path']) torrent = self.downloads[infohash] if torrent is not None: torrent.shutdown() except: data = StringIO() print_exc(file = data) output.exception(data.getvalue()) def scan(self): self.rawserver.add_task(self.scan, self.config['parse_dir_interval']) r = parsedir(self.torrent_dir, self.torrent_cache, self.file_cache, self.blocked_files, self.output.message) ( self.torrent_cache, self.file_cache, self.blocked_files, added, removed ) = r for infohash, data in removed.items(): self.output.message(_('dropped "%s"') % data['path']) self.remove(infohash) for infohash, data in added.items(): self.output.message(_('added "%s"' ) % data['path']) self.add(infohash, data) def stats(self): self.rawserver.add_task(self.stats, self.config['display_interval']) data = [] for infohash in self.torrent_list: cache = self.torrent_cache[infohash] if self.config['display_path']: name = cache['path'] else: name = cache['name'] size = cache['length'] d = self.downloads[infohash] progress = '0.0%' peers = 0 seeds = 0 seedsmsg = "S" dist = 0.0 uprate = 0.0 dnrate = 0.0 upamt = 0 dnamt = 0 t = 0 msg = '' if d is None: status = _("waiting for hash check") else: stats = d.get_status() status = stats['activity'] progress = '%.1f%%' % (int(stats['fractionDone']*1000)/10.0) if d.started and not d.closed: s = stats dist = s['numCopies'] if d.is_seed: seeds = 0 # s['numOldSeeds'] seedsmsg = "s" else: if s['numSeeds'] + s['numPeers']: t = stats['timeEst'] if t is None: t = -1 if t == 0: # unlikely t = 0.01 status = _("downloading") else: t = -1 status = _("connecting to peers") seeds = s['numSeeds'] dnrate = stats['downRate'] peers = s['numPeers'] uprate = stats['upRate'] upamt = s['upTotal'] dnamt = s['downTotal'] if d.errors and (d.closed or d.errors[-1][0] + 300 > time()): msg = d.errors[-1][2] data.append(( name, status, progress, peers, seeds, seedsmsg, dist, uprate, dnrate, upamt, dnamt, size, t, msg )) stop = self.output.display(data) if stop: self.doneflag.set() def remove(self, infohash): self.torrent_list.remove(infohash) if self.downloads[infohash] is not None: self.downloads[infohash].shutdown() self.was_stopped(infohash) del self.downloads[infohash] def add(self, infohash, data): self.torrent_list.append(infohash) self.downloads[infohash] = None self.hashcheck_queue.append(infohash) self.hashcheck_store[infohash] = data['metainfo'] self.check_hashcheck_queue() def check_hashcheck_queue(self): if self.hashcheck_current is not None or not self.hashcheck_queue: return self.hashcheck_current = self.hashcheck_queue.pop(0) metainfo = self.hashcheck_store[self.hashcheck_current] del self.hashcheck_store[self.hashcheck_current] filename = self.determine_filename(self.hashcheck_current) self.downloads[self.hashcheck_current] = self.multitorrent. \ start_torrent(ConvertedMetainfo(metainfo), self.config, self, filename) def determine_filename(self, infohash): x = self.torrent_cache[infohash] name = x['name'] savein = self.config['save_in'] isdir = not x['metainfo']['info'].has_key('length') style = self.config['saveas_style'] if style == 4: torrentname = os.path.split(x['path'][:-8])[1] suggestedname = name if torrentname == suggestedname: style = 1 else: style = 3 if style == 1 or style == 3: if savein: saveas = os.path.join(savein,x['file'][:-8]) # strip '.torrent' else: saveas = x['path'][:-8] # strip '.torrent' if style == 3 and not isdir: saveas = os.path.join(saveas, name) else: if savein: saveas = os.path.join(savein, name) else: saveas = os.path.join(os.path.split(x['path'])[0], name) return saveas def was_stopped(self, infohash): try: self.hashcheck_queue.remove(infohash) except: pass else: del self.hashcheck_store[infohash] if self.hashcheck_current == infohash: self.hashcheck_current = None self.check_hashcheck_queue() def global_error(self, level, text): self.output.message(text) def exchandler(self, s): self.output.exception(s) def read_config(self): try: newvalues = configfile.get_config(self.config, self.configfile_key) except Exception, e: self.output.message(_("Error reading config: ") + str(e)) return self.output.message(_("Rereading config file")) self.config.update(newvalues) # The set_option call can potentially trigger something that kills # the torrent (when writing this the only possibility is a change in # max_files_open causing an IOError while closing files), and so # the self.failed() callback can run during this loop. for option, value in newvalues.iteritems(): self.multitorrent.set_option(option, value) for torrent in self.downloads.values(): if torrent is not None: for option, value in newvalues.iteritems(): torrent.set_option(option, value) # rest are callbacks from torrent instances def started(self, torrent): self.hashcheck_current = None self.check_hashcheck_queue() def failed(self, torrent, is_external): infohash = torrent.infohash self.was_stopped(infohash) if self.torrent_cache.has_key(infohash): self.output.message('DIED: "'+self.torrent_cache[infohash]['path']+'"') def exception(self, torrent, text): self.exchandler(text)
# Copyright 2015: Mirantis Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import ddt import mock from rally.common import costilius from rally.task.processing import charts from tests.unit import test CHARTS = "rally.task.processing.charts." class ChartTestCase(test.TestCase): class Chart(charts.Chart): def _map_iteration_values(self, iteration): return [("foo_" + k, iteration[k]) for k in ["a", "b"]] @property def bench_info(self): return {"iterations_count": 42, "atomic": {"a": {}, "b": {}, "c": {}}} def test___init__(self): self.assertRaises(TypeError, charts.Chart, self.bench_info) chart = self.Chart(self.bench_info) self.assertEqual({}, chart._data) self.assertEqual(42, chart.base_size) self.assertEqual(1000, chart.zipped_size) chart = self.Chart(self.bench_info, zipped_size=24) self.assertEqual({}, chart._data) self.assertEqual(42, chart.base_size) self.assertEqual(24, chart.zipped_size) @mock.patch(CHARTS + "utils.GraphZipper") def test_add_iteration_and_render(self, mock_graph_zipper): gzipper_a = mock.Mock(get_zipped_graph=lambda: "a_points") gzipper_b = mock.Mock(get_zipped_graph=lambda: "b_points") mock_graph_zipper.side_effect = [gzipper_a, gzipper_b] chart = self.Chart(self.bench_info, 24) self.assertEqual([], chart.render()) [chart.add_iteration(itr) for itr in [{"a": 1, "b": 2}, {"a": 3, "b": 4}]] self.assertEqual([mock.call(42, 24), mock.call(42, 24)], mock_graph_zipper.mock_calls) self.assertEqual(2, len(chart._data)) self.assertEqual([mock.call(1), mock.call(3)], chart._data["foo_a"].add_point.mock_calls) self.assertEqual([mock.call(2), mock.call(4)], chart._data["foo_b"].add_point.mock_calls) self.assertEqual([("foo_a", "a_points"), ("foo_b", "b_points")], chart.render()) def test__fix_atomic_actions(self): chart = self.Chart(self.bench_info) self.assertEqual( {"atomic_actions": {"a": 5, "b": 6, "c": 0}}, chart._fix_atomic_actions({"atomic_actions": {"a": 5, "b": 6}})) class MainStackedAreaChartTestCase(test.TestCase): def test_add_iteration_and_render(self): chart = charts.MainStackedAreaChart({"iterations_count": 3, "iterations_failed": 0}, 10) self.assertIsInstance(chart, charts.Chart) [chart.add_iteration(itr) for itr in ( {"duration": 1.1, "idle_duration": 2.2, "error": []}, {"error": [], "duration": 1.1, "idle_duration": 0.5}, {"duration": 1.3, "idle_duration": 3.4, "error": []})] expected = [("duration", [[1, 1.1], [2, 1.1], [3, 1.3]]), ("idle_duration", [[1, 2.2], [2, 0.5], [3, 3.4]])] self.assertEqual(expected, chart.render()) def test_add_iteration_and_render_with_failed_iterations(self): chart = charts.MainStackedAreaChart({"iterations_count": 3, "iterations_failed": 2}, 10) self.assertIsInstance(chart, charts.Chart) [chart.add_iteration(itr) for itr in ( {"duration": 1.1, "idle_duration": 2.2, "error": []}, {"error": ["foo_err"], "duration": 1.1, "idle_duration": 0.5}, {"duration": 1.3, "idle_duration": 3.4, "error": ["foo_err"]})] expected = [("duration", [[1, 1.1], [2, 0], [3, 0]]), ("idle_duration", [[1, 2.2], [2, 0], [3, 0]]), ("failed_duration", [[1, 0], [2, 1.6], [3, 4.7]])] self.assertEqual(expected, chart.render()) class AtomicStackedAreaChartTestCase(test.TestCase): def test_add_iteration_and_render(self): iterations = ( {"atomic_actions": {"foo": 1.1}, "error": []}, {"atomic_actions": {"foo": 1.1, "bar": 1.2}, "error": [], "duration": 40, "idle_duration": 2}, {"atomic_actions": {"bar": 1.2}, "error": [], "duration": 5.5, "idle_duration": 2.5}) expected = [("bar", [[1, 0], [2, 1.2], [3, 1.2]]), ("foo", [[1, 1.1], [2, 1.1], [3, 0]])] chart = charts.AtomicStackedAreaChart( {"iterations_count": 3, "iterations_failed": 0, "atomic": {"foo": {}, "bar": {}}}, 10) self.assertIsInstance(chart, charts.Chart) [chart.add_iteration(iteration) for iteration in iterations] self.assertEqual(expected, sorted(chart.render())) def test_add_iteration_and_render_with_failed_iterations(self): iterations = ( {"atomic_actions": {"foo": 1.1}, "error": []}, {"atomic_actions": {"foo": 1.1, "bar": 1.2}, "error": ["foo_err"], "duration": 40, "idle_duration": 2}, {"atomic_actions": {"bar": 1.2}, "error": ["foo_err"], "duration": 5.5, "idle_duration": 2.5}) expected = [("bar", [[1, 0], [2, 1.2], [3, 1.2]]), ("failed_duration", [[1, 0], [2, 39.7], [3, 6.8]]), ("foo", [[1, 1.1], [2, 1.1], [3, 0]])] chart = charts.AtomicStackedAreaChart( {"iterations_count": 3, "iterations_failed": 2, "atomic": {"foo": {}, "bar": {}}}, 10) self.assertIsInstance(chart, charts.Chart) [chart.add_iteration(iteration) for iteration in iterations] self.assertEqual(expected, sorted(chart.render())) class OutputStackedAreaChartTestCase(test.TestCase): def test_add_iteration_and_render(self): chart = charts.OutputStackedAreaChart( {"iterations_count": 3, "output_names": ["foo", "bar"]}, 10) self.assertIsInstance(chart, charts.Chart) [chart.add_iteration({"scenario_output": {"data": x}}) for x in ({"foo": 1.1, "bar": 1.2}, {"foo": 1.3}, {"bar": 1.4})] expected = [("bar", [[1, 1.2], [2, 0], [3, 1.4]]), ("foo", [[1, 1.1], [2, 1.3], [3, 0]])] self.assertEqual(expected, sorted(chart.render())) class AvgChartTestCase(test.TestCase): class AvgChart(charts.AvgChart): def _map_iteration_values(self, iteration): return iteration["foo"].items() def test_add_iteration_and_render(self): self.assertRaises(TypeError, charts.AvgChart, {"iterations_count": 3}) chart = self.AvgChart({"iterations_count": 3}) self.assertIsInstance(chart, charts.AvgChart) [chart.add_iteration({"foo": x}) for x in ({"a": 1.3, "b": 4.3}, {"a": 2.4, "b": 5.4}, {"a": 3.5, "b": 7.7})] self.assertEqual([("a", 2.4), ("b", 5.8)], sorted(chart.render())) class AtomicAvgChartTestCase(test.TestCase): def test_add_iteration_and_render(self): chart = charts.AtomicAvgChart({"iterations_count": 3, "atomic": {"foo": {}, "bar": {}}}) self.assertIsInstance(chart, charts.AvgChart) [chart.add_iteration({"atomic_actions": costilius.OrderedDict(a)}) for a in ([("foo", 2), ("bar", 5)], [("foo", 4)], [("bar", 7)])] self.assertEqual([("bar", 4.0), ("foo", 2.0)], sorted(chart.render())) @ddt.ddt class LoadProfileChartTestCase(test.TestCase): @ddt.data({"count": 5, "load_duration": 63, "tstamp_start": 12345, "kwargs": {"scale": 10}, "data": [ (12345, 4.2, False), (12347, 42, False), (12349, 10, True), (12351, 5.5, False), (12353, 0.42, False)], "expected": [("parallel iterations", [ [6.0, 3], [12.0, 3], [18.0, 1], [24.0, 1], [30.0, 1], [36.0, 1], [42.0, 1], [48.0, 1], [54.0, 0], [63, 0]])]}, {"count": 5, "load_duration": 63, "tstamp_start": 12345, "kwargs": {"scale": 8, "name": "Custom text"}, "data": [ (12345, 4.2, False), (12347, 42, False), (12349, 10, True), (12351, 5.5, False), (12353, 0.42, False)], "expected": [("Custom text", [ [8.0, 4], [16.0, 3], [24.0, 1], [32.0, 1], [40.0, 1], [48.0, 1], [56.0, 0], [63, 0]])]}, {"count": 0, "load_duration": 0, "tstamp_start": 12345, "kwargs": {"scale": 8}, "data": [], "expected": [("parallel iterations", [[0, 0]])]}) @ddt.unpack def test_add_iteration_and_render(self, count, load_duration, tstamp_start, kwargs, data, expected): chart = charts.LoadProfileChart( {"iterations_count": count, "load_duration": load_duration, "tstamp_start": tstamp_start}, **kwargs) self.assertIsInstance(chart, charts.Chart) [chart.add_iteration({"timestamp": t, "duration": d, "error": e}) for t, d, e in data] self.assertEqual(expected, chart.render()) @ddt.ddt class HistogramChartTestCase(test.TestCase): class HistogramChart(charts.HistogramChart): def __init__(self, benchmark_info): super(HistogramChartTestCase.HistogramChart, self).__init__(benchmark_info) self._data["bar"] = {"views": self._init_views(1.2, 4.2), "disabled": None} def _map_iteration_values(self, iteration): return iteration["foo"].items() def test_add_iteration_and_render(self): self.assertRaises(TypeError, charts.HistogramChart, {"iterations_count": 3}) chart = self.HistogramChart({"iterations_count": 3}) self.assertIsInstance(chart, charts.HistogramChart) [chart.add_iteration({"foo": x}) for x in ({"bar": 1.2}, {"bar": 2.4}, {"bar": 4.2})] expected = [[{"disabled": None, "key": "bar", "values": [{"x": 2.7, "y": 2}, {"x": 4.2, "y": 1}], "view": "Square Root Choice"}, {"disabled": None, "key": "bar", "values": [{"x": 2.2, "y": 1}, {"x": 3.2, "y": 1}, {"x": 4.2, "y": 1}], "view": "Sturges Formula"}, {"disabled": None, "key": "bar", "values": [{"x": 2.2, "y": 1}, {"x": 3.2, "y": 1}, {"x": 4.2, "y": 1}], "view": "Rice Rule"}]] self.assertEqual(expected, chart.render()) @ddt.data( {"base_size": 2, "min_value": 1, "max_value": 4, "expected": [{"bins": 2, "view": "Square Root Choice", "x": [2.5, 4.0], "y": [0, 0]}, {"bins": 2, "view": "Sturges Formula", "x": [2.5, 4.0], "y": [0, 0]}, {"bins": 3, "view": "Rice Rule", "x": [2.0, 3.0, 4.0], "y": [0, 0, 0]}]}, {"base_size": 100, "min_value": 27, "max_value": 42, "expected": [ {"bins": 10, "view": "Square Root Choice", "x": [28.5, 30.0, 31.5, 33.0, 34.5, 36.0, 37.5, 39.0, 40.5, 42.0], "y": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}, {"bins": 8, "view": "Sturges Formula", "x": [28.875, 30.75, 32.625, 34.5, 36.375, 38.25, 40.125, 42.0], "y": [0, 0, 0, 0, 0, 0, 0, 0]}, {"bins": 10, "view": "Rice Rule", "x": [28.5, 30.0, 31.5, 33.0, 34.5, 36.0, 37.5, 39.0, 40.5, 42.0], "y": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}]}) @ddt.unpack def test_views(self, base_size=None, min_value=None, max_value=None, expected=None): chart = self.HistogramChart({"iterations_count": base_size}) self.assertEqual(expected, chart._init_views(min_value, max_value)) class MainHistogramChartTestCase(test.TestCase): def test_add_iteration_and_render(self): chart = charts.MainHistogramChart( {"iterations_count": 3, "min_duration": 2, "max_duration": 7}) self.assertIsInstance(chart, charts.HistogramChart) [chart.add_iteration(itr) for itr in ( {"duration": 1.1, "idle_duration": 2.2, "error": None}, {"error": True}, {"duration": 1.3, "idle_duration": 3.4, "error": None})] expected = [ {"disabled": None, "key": "task", "view": "Square Root Choice", "values": [{"x": 4.5, "y": 3}, {"x": 7.0, "y": 0}]}, {"disabled": None, "key": "task", "view": "Sturges Formula", "values": [{"x": 3.666666666666667, "y": 3}, {"x": 5.333333333333334, "y": 0}, {"x": 7.0, "y": 0}]}, {"disabled": None, "key": "task", "view": "Rice Rule", "values": [{"x": 3.666666666666667, "y": 3}, {"x": 5.333333333333334, "y": 0}, {"x": 7.0, "y": 0}]}] self.assertEqual([expected], chart.render()) class AtomicHistogramChartTestCase(test.TestCase): def test_add_iteration_and_render(self): chart = charts.AtomicHistogramChart( {"iterations_count": 3, "atomic": costilius.OrderedDict( [("foo", {"min_duration": 1.6, "max_duration": 2.8}), ("bar", {"min_duration": 3.1, "max_duration": 5.5})])}) self.assertIsInstance(chart, charts.HistogramChart) [chart.add_iteration({"atomic_actions": a}) for a in ({"foo": 1.6, "bar": 3.1}, {"foo": 2.8}, {"bar": 5.5})] expected = [ [{"disabled": 0, "key": "foo", "view": "Square Root Choice", "values": [{"x": 2.2, "y": 2}, {"x": 2.8, "y": 1}]}, {"disabled": 0, "key": "foo", "view": "Sturges Formula", "values": [{"x": 2.0, "y": 2}, {"x": 2.4, "y": 0}, {"x": 2.8, "y": 1}]}, {"disabled": 0, "key": "foo", "view": "Rice Rule", "values": [{"x": 2.0, "y": 2}, {"x": 2.4, "y": 0}, {"x": 2.8, "y": 1}]}], [{"disabled": 1, "key": "bar", "view": "Square Root Choice", "values": [{"x": 4.3, "y": 2}, {"x": 5.5, "y": 1}]}, {"disabled": 1, "key": "bar", "view": "Sturges Formula", "values": [{"x": 3.9, "y": 2}, {"x": 4.7, "y": 0}, {"x": 5.5, "y": 1}]}, {"disabled": 1, "key": "bar", "view": "Rice Rule", "values": [{"x": 3.9, "y": 2}, {"x": 4.7, "y": 0}, {"x": 5.5, "y": 1}]}]] self.assertEqual(expected, chart.render()) MAIN_STATS_TABLE_COLUMNS = ["Action", "Min (sec)", "Median (sec)", "90%ile (sec)", "95%ile (sec)", "Max (sec)", "Avg (sec)", "Success", "Count"] def generate_iteration(duration, error, *args): return { "atomic_actions": costilius.OrderedDict(args), "duration": duration, "error": error } @ddt.ddt class MainStatsTableTestCase(test.TestCase): @ddt.data( { "info": { "iterations_count": 1, "atomic": costilius.OrderedDict([("foo", {}), ("bar", {})]) }, "data": [ generate_iteration(10.0, False, ("foo", 1.0), ("bar", 2.0)) ], "expected": { "cols": MAIN_STATS_TABLE_COLUMNS, "rows": [ ["foo", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, "100.0%", 1], ["bar", 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, "100.0%", 1], ["total", 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, "100.0%", 1], ] } }, { "info": {"iterations_count": 2, "atomic": {"foo": {}}}, "data": [ generate_iteration(10.0, True, ("foo", 1.0)), generate_iteration(10.0, True, ("foo", 2.0)) ], "expected": { "cols": MAIN_STATS_TABLE_COLUMNS, "rows": [ ["foo", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a", 2], ["total", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a", 2], ] } }, { "info": {"iterations_count": 2, "atomic": {"foo": {}}}, "data": [ generate_iteration(10.0, False, ("foo", 1.0)), generate_iteration(20.0, True, ("foo", 2.0)) ], "expected": { "cols": MAIN_STATS_TABLE_COLUMNS, "rows": [ ["foo", 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, "50.0%", 2], ["total", 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, "50.0%", 2] ] } }, { "info": { "iterations_count": 4, "atomic": costilius.OrderedDict([("foo", {}), ("bar", {})]) }, "data": [ generate_iteration(10.0, False, ("foo", 1.0), ("bar", 4.0)), generate_iteration(20.0, False, ("foo", 2.0), ("bar", 4.0)), generate_iteration(30.0, False, ("foo", 3.0), ("bar", 4.0)), generate_iteration(40.0, True, ("foo", 4.0), ("bar", 4.0)) ], "expected": { "cols": MAIN_STATS_TABLE_COLUMNS, "rows": [ ["foo", 1.0, 2.0, 2.8, 2.9, 3.0, 2.0, "75.0%", 4], ["bar", 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, "75.0%", 4], ["total", 10.0, 20.0, 28.0, 29.0, 30.0, 20.0, "75.0%", 4] ] } }, { "info": { "iterations_count": 0, "atomic": costilius.OrderedDict() }, "data": [], "expected": { "cols": MAIN_STATS_TABLE_COLUMNS, "rows": [ ["total", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a", "n/a", 0] ] } } ) @ddt.unpack def test_add_iteration_and_render(self, info, data, expected): table = charts.MainStatsTable(info) for el in data: table.add_iteration(el) self.assertEqual(expected, table.render())
# -*- coding: utf-8 -*- # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # Author: Mauro Soria import os from queue import Queue import time import sys import gc from threading import Lock from lib.connection import Requester, RequestException from lib.core import Dictionary, Fuzzer, ReportManager from lib.reports import JSONReport, PlainTextReport, SimpleReport from lib.utils import FileUtils class SkipTargetInterrupt(Exception): pass MAYOR_VERSION = 0 MINOR_VERSION = 3 REVISION = 8 VERSION = { "MAYOR_VERSION": MAYOR_VERSION, "MINOR_VERSION": MINOR_VERSION, "REVISION": REVISION } class Controller(object): def __init__(self, script_path, arguments, output): global VERSION PROGRAM_BANNER = open(FileUtils.buildPath(script_path, "lib", "controller", "banner.txt")).read().format( **VERSION) self.script_path = script_path self.exit = False self.arguments = arguments self.output = output self.savePath = self.script_path if self.arguments.saveHome: savePath = self.getSavePath() if not FileUtils.exists(savePath): FileUtils.createDirectory(savePath) if FileUtils.exists(savePath) and not FileUtils.isDir(savePath): self.output.error('Cannot use {} because is a file. Should be a directory'.format(savePath)) exit(1) if not FileUtils.canWrite(savePath): self.output.error('Directory {} is not writable'.format(savePath)) exit(1) logs = FileUtils.buildPath(savePath, "logs") if not FileUtils.exists(logs): FileUtils.createDirectory(logs) reports = FileUtils.buildPath(savePath, "reports") if not FileUtils.exists(reports): FileUtils.createDirectory(reports) self.savePath = savePath self.reportsPath = FileUtils.buildPath(self.savePath, "logs") self.blacklists = self.getBlacklists() self.fuzzer = None self.excludeStatusCodes = self.arguments.excludeStatusCodes self.recursive = self.arguments.recursive self.suppressEmpty = self.arguments.suppressEmpty self.directories = Queue() self.excludeSubdirs = (arguments.excludeSubdirs if arguments.excludeSubdirs is not None else []) self.output.header(PROGRAM_BANNER) self.dictionary = Dictionary(self.arguments.wordlist, self.arguments.extensions, self.arguments.lowercase, self.arguments.forceExtensions) self.printConfig() self.errorLog = None self.errorLogPath = None self.errorLogLock = Lock() self.batch = False self.batchSession = None self.setupErrorLogs() self.output.newLine("\nError Log: {0}".format(self.errorLogPath)) if self.arguments.autoSave and len(self.arguments.urlList) > 1: self.setupBatchReports() self.output.newLine("\nAutoSave path: {0}".format(self.batchDirectoryPath)) if self.arguments.useRandomAgents: self.randomAgents = FileUtils.getLines(FileUtils.buildPath(script_path, "db", "user-agents.txt")) try: for url in self.arguments.urlList: try: gc.collect() self.reportManager = ReportManager() self.currentUrl = url self.output.target(self.currentUrl) try: self.requester = Requester(url, cookie=self.arguments.cookie, useragent=self.arguments.useragent, maxPool=self.arguments.threadsCount, maxRetries=self.arguments.maxRetries, delay=self.arguments.delay, timeout=self.arguments.timeout, ip=self.arguments.ip, proxy=self.arguments.proxy, redirect=self.arguments.redirect, requestByHostname=self.arguments.requestByHostname) self.requester.request("/") except RequestException as e: self.output.error(e.args[0]['message']) raise SkipTargetInterrupt if self.arguments.useRandomAgents: self.requester.setRandomAgents(self.randomAgents) for key, value in arguments.headers.items(): self.requester.setHeader(key, value) # Initialize directories Queue with start Path self.basePath = self.requester.basePath if self.arguments.scanSubdirs is not None: for subdir in self.arguments.scanSubdirs: self.directories.put(subdir) else: self.directories.put('') self.setupReports(self.requester) matchCallbacks = [self.matchCallback] notFoundCallbacks = [self.notFoundCallback] errorCallbacks = [self.errorCallback, self.appendErrorLog] self.fuzzer = Fuzzer(self.requester, self.dictionary, testFailPath=self.arguments.testFailPath, threads=self.arguments.threadsCount, matchCallbacks=matchCallbacks, notFoundCallbacks=notFoundCallbacks, errorCallbacks=errorCallbacks) self.wait() except SkipTargetInterrupt: continue finally: self.reportManager.save() except KeyboardInterrupt: self.output.error('\nCanceled by the user') exit(0) finally: if not self.errorLog.closed: self.errorLog.close() self.reportManager.close() self.output.warning('\nTask Completed') def printConfig(self): self.output.config(', '.join(self.arguments.extensions), str(self.arguments.threadsCount), str(len(self.dictionary))) def getSavePath(self): basePath = None dirPath = None basePath = os.path.expanduser('~') if os.name == 'nt': dirPath = "dirsearch" else: dirPath = ".dirsearch" return FileUtils.buildPath(basePath, dirPath) def getBlacklists(self): blacklists = {} for status in [400, 403, 500]: blacklistFileName = FileUtils.buildPath(self.script_path, 'db') blacklistFileName = FileUtils.buildPath(blacklistFileName, '{}_blacklist.txt'.format(status)) if not FileUtils.canRead(blacklistFileName): # Skip if cannot read file continue blacklists[status] = [] for line in FileUtils.getLines(blacklistFileName): # Skip comments if line.lstrip().startswith('#'): continue blacklists[status].append(line) return blacklists def setupErrorLogs(self): fileName = "errors-{0}.log".format(time.strftime('%y-%m-%d_%H-%M-%S')) self.errorLogPath = FileUtils.buildPath(FileUtils.buildPath(self.savePath, "logs", fileName)) self.errorLog = open(self.errorLogPath, "w") def setupBatchReports(self): self.batch = True self.batchSession = "BATCH-{0}".format(time.strftime('%y-%m-%d_%H-%M-%S')) self.batchDirectoryPath = FileUtils.buildPath(self.savePath, "reports", self.batchSession) if not FileUtils.exists(self.batchDirectoryPath): FileUtils.createDirectory(self.batchDirectoryPath) if not FileUtils.exists(self.batchDirectoryPath): self.output.error("Couldn't create batch folder {}".format(self.batchDirectoryPath)) sys.exit(1) if FileUtils.canWrite(self.batchDirectoryPath): FileUtils.createDirectory(self.batchDirectoryPath) targetsFile = FileUtils.buildPath(self.batchDirectoryPath, "TARGETS.txt") FileUtils.writeLines(targetsFile, self.arguments.urlList) else: self.output.error("Couldn't create batch folder {}.".format(self.batchDirectoryPath)) sys.exit(1) def setupReports(self, requester): if self.arguments.autoSave: basePath = ('/' if requester.basePath is '' else requester.basePath) basePath = basePath.replace(os.path.sep, '.')[1:-1] fileName = None directoryPath = None if self.batch: fileName = requester.host directoryPath = self.batchDirectoryPath else: fileName = ('{}_'.format(basePath) if basePath is not '' else '') fileName += time.strftime('%y-%m-%d_%H-%M-%S') directoryPath = FileUtils.buildPath(self.savePath,'reports', requester.host) outputFile = FileUtils.buildPath(directoryPath, fileName) if FileUtils.exists(outputFile): i = 2 while FileUtils.exists(outputFile + "_" + str(i)): i += 1 outputFile += "_" + str(i) if not FileUtils.exists(directoryPath): FileUtils.createDirectory(directoryPath) if not FileUtils.exists(directoryPath): self.output.error("Couldn't create reports folder {}".format(directoryPath)) sys.exit(1) if FileUtils.canWrite(directoryPath): report = None if self.arguments.autoSaveFormat == 'simple': report = SimpleReport(requester.host, requester.port, requester.protocol, requester.basePath, outputFile) if self.arguments.autoSaveFormat == 'json': report = JSONReport(requester.host, requester.port, requester.protocol, requester.basePath, outputFile) else: report = PlainTextReport(requester.host, requester.port, requester.protocol, requester.basePath, outputFile) self.reportManager.addOutput(report) else: self.output.error("Can't write reports to {}".format(directoryPath)) sys.exit(1) if self.arguments.simpleOutputFile is not None: self.reportManager.addOutput(SimpleReport(requester.host, requester.port, requester.protocol, requester.basePath, self.arguments.simpleOutputFile)) if self.arguments.plainTextOutputFile is not None: self.reportManager.addOutput(PlainTextReport(requester.host, requester.port, requester.protocol, requester.basePath, self.arguments.plainTextOutputFile)) if self.arguments.jsonOutputFile is not None: self.reportManager.addOutput(JSONReport(requester.host, requester.port, requester.protocol, requester.basePath, self.arguments.jsonOutputFile)) def matchCallback(self, path): self.index += 1 if path.status is not None: if path.status not in self.excludeStatusCodes and ( self.blacklists.get(path.status) is None or path.path not in self.blacklists.get( path.status)) and not ( self.suppressEmpty and (len(path.response.body) == 0)): self.output.statusReport(path.path, path.response) self.addDirectory(path.path) self.reportManager.addPath(self.currentDirectory + path.path, path.status, path.response) self.reportManager.save() del path def notFoundCallback(self, path): self.index += 1 self.output.lastPath(path, self.index, len(self.dictionary)) del path def errorCallback(self, path, errorMsg): self.output.addConnectionError() del path def appendErrorLog(self, path, errorMsg): with self.errorLogLock: line = time.strftime('[%y-%m-%d %H:%M:%S] - ') line += self.currentUrl + " - " + path + " - " + errorMsg self.errorLog.write(os.linesep + line) self.errorLog.flush() def handleInterrupt(self): self.output.warning('CTRL+C detected: Pausing threads, please wait...') self.fuzzer.pause() try: while True: msg = "[e]xit / [c]ontinue" if not self.directories.empty(): msg += " / [n]ext" if len(self.arguments.urlList) > 1: msg += " / [s]kip target" self.output.inLine(msg + ': ') option = input() if option.lower() == 'e': self.exit = True self.fuzzer.stop() raise KeyboardInterrupt elif option.lower() == 'c': self.fuzzer.play() return elif not self.directories.empty() and option.lower() == 'n': self.fuzzer.stop() return elif len(self.arguments.urlList) > 1 and option.lower() == 's': raise SkipTargetInterrupt else: continue except KeyboardInterrupt as SystemExit: self.exit = True raise KeyboardInterrupt def processPaths(self): while True: try: while not self.fuzzer.wait(0.3): continue break except (KeyboardInterrupt, SystemExit) as e: self.handleInterrupt() def wait(self): while not self.directories.empty(): self.index = 0 self.currentDirectory = self.directories.get() self.output.warning('[{1}] Starting: {0}'.format(self.currentDirectory, time.strftime('%H:%M:%S'))) self.fuzzer.requester.basePath = self.basePath + self.currentDirectory self.output.basePath = self.basePath + self.currentDirectory self.fuzzer.start() self.processPaths() return def addDirectory(self, path): if not self.recursive: return False if path.endswith('/'): if path in [directory + '/' for directory in self.excludeSubdirs]: return False self.directories.put(self.currentDirectory + path) return True else: return False
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from copy import copy import json import requests from requests import HTTPError, RequestException import os import time from mycroft.configuration import Configuration from mycroft.configuration.config import DEFAULT_CONFIG, SYSTEM_CONFIG, \ USER_CONFIG from mycroft.identity import IdentityManager, identity_lock from mycroft.version import VersionManager from mycroft.util import get_arch, connected, LOG _paired_cache = False class BackendDown(RequestException): pass class InternetDown(RequestException): pass class Api: """ Generic class to wrap web APIs """ params_to_etag = {} etag_to_response = {} def __init__(self, path): self.path = path # Load the config, skipping the REMOTE_CONFIG since we are # getting the info needed to get to it! config = Configuration.get([DEFAULT_CONFIG, SYSTEM_CONFIG, USER_CONFIG], cache=False) config_server = config.get("server") self.url = config_server.get("url") self.version = config_server.get("version") self.identity = IdentityManager.get() def request(self, params): self.check_token() self.build_path(params) self.old_params = copy(params) return self.send(params) def check_token(self): # If the identity hasn't been loaded, load it if not self.identity.has_refresh(): self.identity = IdentityManager.load() # If refresh is needed perform a refresh if self.identity.refresh and self.identity.is_expired(): self.identity = IdentityManager.load() # if no one else has updated the token refresh it if self.identity.is_expired(): self.refresh_token() def refresh_token(self): LOG.debug('Refreshing token') if identity_lock.acquire(blocking=False): try: data = self.send({ "path": "auth/token", "headers": { "Authorization": "Bearer " + self.identity.refresh } }) IdentityManager.save(data, lock=False) LOG.debug('Saved credentials') except HTTPError as e: if e.response.status_code == 401: LOG.error('Could not refresh token, invalid refresh code.') else: raise finally: identity_lock.release() else: # Someone is updating the identity wait for release with identity_lock: LOG.debug('Refresh is already in progress, waiting until done') time.sleep(1.2) os.sync() self.identity = IdentityManager.load(lock=False) LOG.debug('new credentials loaded') def send(self, params, no_refresh=False): """ Send request to mycroft backend. The method handles Etags and will return a cached response value if nothing has changed on the remote. Arguments: params (dict): request parameters no_refresh (bool): optional parameter to disable refreshs of token Returns: Requests response object. """ query_data = frozenset(params.get('query', {}).items()) params_key = (params.get('path'), query_data) etag = self.params_to_etag.get(params_key) method = params.get("method", "GET") headers = self.build_headers(params) data = self.build_data(params) json_body = self.build_json(params) query = self.build_query(params) url = self.build_url(params) # For an introduction to the Etag feature check out: # https://en.wikipedia.org/wiki/HTTP_ETag if etag: headers['If-None-Match'] = etag response = requests.request( method, url, headers=headers, params=query, data=data, json=json_body, timeout=(3.05, 15) ) if response.status_code == 304: # Etag matched, use response previously cached response = self.etag_to_response[etag] elif 'ETag' in response.headers: etag = response.headers['ETag'].strip('"') # Cache response for future lookup when we receive a 304 self.params_to_etag[params_key] = etag self.etag_to_response[etag] = response return self.get_response(response, no_refresh) def get_response(self, response, no_refresh=False): """ Parse response and extract data from response. Will try to refresh the access token if it's expired. Arguments: response (requests Response object): Response to parse no_refresh (bool): Disable refreshing of the token Returns: data fetched from server """ data = self.get_data(response) if 200 <= response.status_code < 300: return data elif (not no_refresh and response.status_code == 401 and not response.url.endswith("auth/token") and self.identity.is_expired()): self.refresh_token() return self.send(self.old_params, no_refresh=True) raise HTTPError(data, response=response) def get_data(self, response): try: return response.json() except: return response.text def build_headers(self, params): headers = params.get("headers", {}) self.add_content_type(headers) self.add_authorization(headers) params["headers"] = headers return headers def add_content_type(self, headers): if not headers.__contains__("Content-Type"): headers["Content-Type"] = "application/json" def add_authorization(self, headers): if not headers.__contains__("Authorization"): headers["Authorization"] = "Bearer " + self.identity.access def build_data(self, params): return params.get("data") def build_json(self, params): json = params.get("json") if json and params["headers"]["Content-Type"] == "application/json": for k, v in json.items(): if v == "": json[k] = None params["json"] = json return json def build_query(self, params): return params.get("query") def build_path(self, params): path = params.get("path", "") params["path"] = self.path + path return params["path"] def build_url(self, params): path = params.get("path", "") version = params.get("version", self.version) return self.url + "/" + version + "/" + path class DeviceApi(Api): """ Web API wrapper for obtaining device-level information """ def __init__(self): super(DeviceApi, self).__init__("device") def get_code(self, state): IdentityManager.update() return self.request({ "path": "/code?state=" + state }) def activate(self, state, token): version = VersionManager.get() platform = "unknown" platform_build = "" # load just the local configs to get platform info config = Configuration.get([SYSTEM_CONFIG, USER_CONFIG], cache=False) if "enclosure" in config: platform = config.get("enclosure").get("platform", "unknown") platform_build = config.get("enclosure").get("platform_build", "") return self.request({ "method": "POST", "path": "/activate", "json": {"state": state, "token": token, "coreVersion": version.get("coreVersion"), "platform": platform, "platform_build": platform_build, "enclosureVersion": version.get("enclosureVersion")} }) def update_version(self): version = VersionManager.get() platform = "unknown" platform_build = "" # load just the local configs to get platform info config = Configuration.get([SYSTEM_CONFIG, USER_CONFIG], cache=False) if "enclosure" in config: platform = config.get("enclosure").get("platform", "unknown") platform_build = config.get("enclosure").get("platform_build", "") return self.request({ "method": "PATCH", "path": "/" + self.identity.uuid, "json": {"coreVersion": version.get("coreVersion"), "platform": platform, "platform_build": platform_build, "enclosureVersion": version.get("enclosureVersion")} }) def send_email(self, title, body, sender): return self.request({ "method": "PUT", "path": "/" + self.identity.uuid + "/message", "json": {"title": title, "body": body, "sender": sender} }) def report_metric(self, name, data): return self.request({ "method": "POST", "path": "/" + self.identity.uuid + "/metric/" + name, "json": data }) def get(self): """ Retrieve all device information from the web backend """ return self.request({ "path": "/" + self.identity.uuid }) def get_settings(self): """ Retrieve device settings information from the web backend Returns: str: JSON string with user configuration information. """ return self.request({ "path": "/" + self.identity.uuid + "/setting" }) def get_location(self): """ Retrieve device location information from the web backend Returns: str: JSON string with user location. """ return self.request({ "path": "/" + self.identity.uuid + "/location" }) def get_subscription(self): """ Get information about type of subscrition this unit is connected to. Returns: dictionary with subscription information """ return self.request({ 'path': '/' + self.identity.uuid + '/subscription'}) @property def is_subscriber(self): """ status of subscription. True if device is connected to a paying subscriber. """ try: return self.get_subscription().get('@type') != 'free' except: # If can't retrieve, assume not paired and not a subscriber yet return False def get_subscriber_voice_url(self, voice=None): self.check_token() archs = {'x86_64': 'x86_64', 'armv7l': 'arm', 'aarch64': 'arm'} arch = archs.get(get_arch()) if arch: path = '/' + self.identity.uuid + '/voice?arch=' + arch return self.request({'path': path})['link'] def get_oauth_token(self, dev_cred): """ Get Oauth token for dev_credential dev_cred. Argument: dev_cred: development credentials identifier Returns: json string containing token and additional information """ return self.request({ "method": "GET", "path": "/" + self.identity.uuid + "/token/" + str(dev_cred) }) def upload_skills_data(self, data): """ Upload skills.json file. Arguments: data: dictionary with skills data from msm """ self.request({ "method": "PUT", "path": "/" + self.identity.uuid + "/skillJson", "json": data }) class STTApi(Api): """ Web API wrapper for performing Speech to Text (STT) """ def __init__(self, path): super(STTApi, self).__init__(path) def stt(self, audio, language, limit): """ Web API wrapper for performing Speech to Text (STT) Args: audio (bytes): The recorded audio, as in a FLAC file language (str): A BCP-47 language code, e.g. "en-US" limit (int): Maximum minutes to transcribe(?) Returns: str: JSON structure with transcription results """ return self.request({ "method": "POST", "headers": {"Content-Type": "audio/x-flac"}, "query": {"lang": language, "limit": limit}, "data": audio }) def has_been_paired(): """ Determine if this device has ever been paired with a web backend Returns: bool: True if ever paired with backend (not factory reset) """ # This forces a load from the identity file in case the pairing state # has recently changed id = IdentityManager.load() return id.uuid is not None and id.uuid != "" def is_paired(ignore_errors=True): """ Determine if this device is actively paired with a web backend Determines if the installation of Mycroft has been paired by the user with the backend system, and if that pairing is still active. Returns: bool: True if paired with backend """ global _paired_cache if _paired_cache: # NOTE: This assumes once paired, the unit remains paired. So # un-pairing must restart the system (or clear this value). # The Mark 1 does perform a restart on RESET. return True try: api = DeviceApi() device = api.get() _paired_cache = api.identity.uuid is not None and \ api.identity.uuid != "" return _paired_cache except HTTPError as e: if e.response.status_code == 401: return False except Exception as e: LOG.warning('Could not get device infO: ' + repr(e)) if ignore_errors: return False if connected(): raise BackendDown raise InternetDown
# Copyright 2015 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib import constants from oslo_utils import uuidutils from neutron.common import constants as n_const from neutron.common import utils from neutron import context from neutron.db.models import l3 as l3_models from neutron.db.models import l3_attrs from neutron.db.models import l3ha as l3ha_model from neutron.db import models_v2 from neutron.extensions import portbindings from neutron.plugins.ml2.drivers.l2pop import db as l2pop_db from neutron.plugins.ml2 import models from neutron.tests.common import helpers from neutron.tests import tools from neutron.tests.unit import testlib_api HOST = helpers.HOST HOST_2 = 'HOST_2' HOST_3 = 'HOST_3' HOST_2_TUNNELING_IP = '20.0.0.2' HOST_3_TUNNELING_IP = '20.0.0.3' TEST_ROUTER_ID = 'router_id' TEST_NETWORK_ID = 'network_id' TEST_HA_NETWORK_ID = 'ha_network_id' class TestL2PopulationDBTestCase(testlib_api.SqlTestCase): def setUp(self): super(TestL2PopulationDBTestCase, self).setUp() self.ctx = context.get_admin_context() self._create_network() def _create_network(self, network_id=TEST_NETWORK_ID): with self.ctx.session.begin(subtransactions=True): self.ctx.session.add(models_v2.Network(id=network_id)) def _create_router(self, distributed=True, ha=False): with self.ctx.session.begin(subtransactions=True): self.ctx.session.add(l3_models.Router(id=TEST_ROUTER_ID)) self.ctx.session.add(l3_attrs.RouterExtraAttributes( router_id=TEST_ROUTER_ID, distributed=distributed, ha=ha)) def _create_ha_router(self, distributed=False): helpers.register_l3_agent(HOST_2) helpers.register_ovs_agent(HOST_2, tunneling_ip=HOST_2_TUNNELING_IP) # Register l3 agent on host3, which doesn't host any HA router. # Tests should test that host3 is not a HA agent host. helpers.register_l3_agent(HOST_3) helpers.register_ovs_agent(HOST_3, tunneling_ip=HOST_3_TUNNELING_IP) with self.ctx.session.begin(subtransactions=True): self.ctx.session.add(models_v2.Network(id=TEST_HA_NETWORK_ID)) self._create_router(distributed=distributed, ha=True) for state, host in [(n_const.HA_ROUTER_STATE_ACTIVE, HOST), (n_const.HA_ROUTER_STATE_STANDBY, HOST_2)]: self._setup_port_binding( network_id=TEST_HA_NETWORK_ID, device_owner=constants.DEVICE_OWNER_ROUTER_HA_INTF, device_id=TEST_ROUTER_ID, host_state=state, host=host) def get_l3_agent_by_host(self, agent_host): plugin = helpers.FakePlugin() return plugin._get_agent_by_type_and_host( self.ctx, constants.AGENT_TYPE_L3, agent_host) def test_get_agent_by_host(self): helpers.register_l3_agent() helpers.register_dhcp_agent() helpers.register_ovs_agent() agent = l2pop_db.get_agent_by_host( self.ctx.session, helpers.HOST) self.assertEqual(constants.AGENT_TYPE_OVS, agent.agent_type) def test_get_agent_by_host_no_candidate(self): helpers.register_l3_agent() helpers.register_dhcp_agent() agent = l2pop_db.get_agent_by_host( self.ctx.session, helpers.HOST) self.assertIsNone(agent) def _setup_port_binding(self, **kwargs): with self.ctx.session.begin(subtransactions=True): mac = utils.get_random_mac('fa:16:3e:00:00:00'.split(':')) port_id = uuidutils.generate_uuid() network_id = kwargs.get('network_id', TEST_NETWORK_ID) device_owner = kwargs.get('device_owner', '') device_id = kwargs.get('device_id', '') host = kwargs.get('host', helpers.HOST) self.ctx.session.add(models_v2.Port( id=port_id, network_id=network_id, mac_address=mac, admin_state_up=True, status=constants.PORT_STATUS_ACTIVE, device_id=device_id, device_owner=device_owner)) port_binding_cls = models.PortBinding binding_kwarg = {'port_id': port_id, 'host': host, 'vif_type': portbindings.VIF_TYPE_UNBOUND, 'vnic_type': portbindings.VNIC_NORMAL} if device_owner == constants.DEVICE_OWNER_DVR_INTERFACE: port_binding_cls = models.DistributedPortBinding binding_kwarg['router_id'] = TEST_ROUTER_ID binding_kwarg['status'] = constants.PORT_STATUS_DOWN self.ctx.session.add(port_binding_cls(**binding_kwarg)) if network_id == TEST_HA_NETWORK_ID: agent = self.get_l3_agent_by_host(host) haport_bindings_cls = l3ha_model.L3HARouterAgentPortBinding habinding_kwarg = {'port_id': port_id, 'router_id': device_id, 'l3_agent_id': agent['id'], 'state': kwargs.get('host_state', n_const.HA_ROUTER_STATE_ACTIVE)} self.ctx.session.add(haport_bindings_cls(**habinding_kwarg)) def test_get_distributed_active_network_ports(self): self._setup_port_binding( device_owner=constants.DEVICE_OWNER_DVR_INTERFACE) # Register a L2 agent + A bunch of other agents on the same host helpers.register_l3_agent() helpers.register_dhcp_agent() helpers.register_ovs_agent() tunnel_network_ports = l2pop_db.get_distributed_active_network_ports( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(1, len(tunnel_network_ports)) _, agent = tunnel_network_ports[0] self.assertEqual(constants.AGENT_TYPE_OVS, agent.agent_type) def test_get_distributed_active_network_ports_no_candidate(self): self._setup_port_binding( device_owner=constants.DEVICE_OWNER_DVR_INTERFACE) # Register a bunch of non-L2 agents on the same host helpers.register_l3_agent() helpers.register_dhcp_agent() tunnel_network_ports = l2pop_db.get_distributed_active_network_ports( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(0, len(tunnel_network_ports)) def test_get_nondistributed_active_network_ports(self): self._setup_port_binding(dvr=False) # Register a L2 agent + A bunch of other agents on the same host helpers.register_l3_agent() helpers.register_dhcp_agent() helpers.register_ovs_agent() fdb_network_ports = l2pop_db.get_nondistributed_active_network_ports( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(1, len(fdb_network_ports)) _, agent = fdb_network_ports[0] self.assertEqual(constants.AGENT_TYPE_OVS, agent.agent_type) def test_get_nondistributed_active_network_ports_no_candidate(self): self._setup_port_binding(dvr=False) # Register a bunch of non-L2 agents on the same host helpers.register_l3_agent() helpers.register_dhcp_agent() fdb_network_ports = l2pop_db.get_nondistributed_active_network_ports( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(0, len(fdb_network_ports)) def test__get_ha_router_interface_ids_with_ha_dvr_snat_port(self): helpers.register_dhcp_agent() helpers.register_l3_agent() helpers.register_ovs_agent() self._create_ha_router() self._setup_port_binding( device_owner=constants.DEVICE_OWNER_ROUTER_SNAT, device_id=TEST_ROUTER_ID) ha_iface_ids = l2pop_db._get_ha_router_interface_ids( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(1, len(list(ha_iface_ids))) def test__get_ha_router_interface_ids_with_ha_replicated_port(self): helpers.register_dhcp_agent() helpers.register_l3_agent() helpers.register_ovs_agent() self._create_ha_router() self._setup_port_binding( device_owner=constants.DEVICE_OWNER_HA_REPLICATED_INT, device_id=TEST_ROUTER_ID) ha_iface_ids = l2pop_db._get_ha_router_interface_ids( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(1, len(list(ha_iface_ids))) def test__get_ha_router_interface_ids_with_no_ha_port(self): self._create_router() self._setup_port_binding( device_owner=constants.DEVICE_OWNER_ROUTER_SNAT, device_id=TEST_ROUTER_ID) ha_iface_ids = l2pop_db._get_ha_router_interface_ids( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(0, len(list(ha_iface_ids))) def test_active_network_ports_with_dvr_snat_port(self): # Test to get agent hosting dvr snat port helpers.register_l3_agent() helpers.register_dhcp_agent() helpers.register_ovs_agent() # create DVR router self._create_router() # setup DVR snat port self._setup_port_binding( device_owner=constants.DEVICE_OWNER_ROUTER_SNAT, device_id=TEST_ROUTER_ID) helpers.register_dhcp_agent() fdb_network_ports = l2pop_db.get_nondistributed_active_network_ports( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(1, len(fdb_network_ports)) def test_active_network_ports_with_ha_dvr_snat_port(self): # test to get HA agents hosting HA+DVR snat port helpers.register_dhcp_agent() helpers.register_l3_agent() helpers.register_ovs_agent() # create HA+DVR router self._create_ha_router() # setup HA snat port self._setup_port_binding( device_owner=constants.DEVICE_OWNER_ROUTER_SNAT, device_id=TEST_ROUTER_ID) fdb_network_ports = l2pop_db.get_nondistributed_active_network_ports( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(0, len(fdb_network_ports)) ha_ports = l2pop_db.get_ha_active_network_ports( self.ctx.session, TEST_NETWORK_ID) self.assertEqual(2, len(ha_ports)) def test_active_port_count_with_dvr_snat_port(self): helpers.register_l3_agent() helpers.register_dhcp_agent() helpers.register_ovs_agent() self._create_router() self._setup_port_binding( device_owner=constants.DEVICE_OWNER_ROUTER_SNAT, device_id=TEST_ROUTER_ID) helpers.register_dhcp_agent() port_count = l2pop_db.get_agent_network_active_port_count( self.ctx.session, HOST, TEST_NETWORK_ID) self.assertEqual(1, port_count) port_count = l2pop_db.get_agent_network_active_port_count( self.ctx.session, HOST_2, TEST_NETWORK_ID) self.assertEqual(0, port_count) def test_active_port_count_with_ha_dvr_snat_port(self): helpers.register_dhcp_agent() helpers.register_l3_agent() helpers.register_ovs_agent() self._create_ha_router() self._setup_port_binding( device_owner=constants.DEVICE_OWNER_ROUTER_SNAT, device_id=TEST_ROUTER_ID) port_count = l2pop_db.get_agent_network_active_port_count( self.ctx.session, HOST, TEST_NETWORK_ID) self.assertEqual(1, port_count) port_count = l2pop_db.get_agent_network_active_port_count( self.ctx.session, HOST_2, TEST_NETWORK_ID) self.assertEqual(1, port_count) def test_get_ha_agents_by_router_id(self): helpers.register_dhcp_agent() helpers.register_l3_agent() helpers.register_ovs_agent() self._create_ha_router() self._setup_port_binding( device_owner=constants.DEVICE_OWNER_ROUTER_SNAT, device_id=TEST_ROUTER_ID) agents = l2pop_db.get_ha_agents_by_router_id( self.ctx.session, TEST_ROUTER_ID) ha_agents = [agent.host for agent in agents] self.assertEqual(tools.UnorderedList([HOST, HOST_2]), ha_agents)
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for Ftrl operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training import adagrad from tensorflow.python.training import ftrl from tensorflow.python.training import gradient_descent class FtrlOptimizerTest(test.TestCase): def doTestFtrlwithoutRegularization(self, use_resource=False): for dtype in [dtypes.half, dtypes.float32]: with self.test_session() as sess: if use_resource: var0 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype) else: var0 = variables.Variable([0.0, 0.0], dtype=dtype) var1 = variables.Variable([0.0, 0.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) grads1 = constant_op.constant([0.01, 0.02], dtype=dtype) opt = ftrl.FtrlOptimizer( 3.0, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllClose([0.0, 0.0], v0_val) self.assertAllClose([0.0, 0.0], v1_val) # Run 3 steps FTRL for _ in range(3): update.run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType( np.array([-2.60260963, -4.29698515]), v0_val) self.assertAllCloseAccordingToType( np.array([-0.28432083, -0.56694895]), v1_val) def testFtrlWithoutRegularization(self): self.doTestFtrlwithoutRegularization(use_resource=False) def testResourceFtrlWithoutRegularization(self): self.doTestFtrlwithoutRegularization(use_resource=True) def testFtrlwithoutRegularization2(self): for dtype in [dtypes.half, dtypes.float32]: with self.test_session() as sess: var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([4.0, 3.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) grads1 = constant_op.constant([0.01, 0.02], dtype=dtype) opt = ftrl.FtrlOptimizer( 3.0, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) # Run 3 steps FTRL for _ in range(3): update.run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType( np.array([-2.55607247, -3.98729396]), v0_val) self.assertAllCloseAccordingToType( np.array([-0.28232238, -0.56096673]), v1_val) def testMinimizeSparseResourceVariable(self): for dtype in [dtypes.half, dtypes.float32, dtypes.float64]: with self.test_session(): var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype) x = constant_op.constant([[4.0], [5.0]], dtype=dtype) pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x) loss = pred * pred sgd_op = ftrl.FtrlOptimizer(1.0).minimize(loss) variables.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0]], var0.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType( [[0, 1]], var0.eval(), atol=0.01) def testFtrlWithL1(self): for dtype in [dtypes.half, dtypes.float32]: with self.test_session() as sess: var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([4.0, 3.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) grads1 = constant_op.constant([0.01, 0.02], dtype=dtype) opt = ftrl.FtrlOptimizer( 3.0, initial_accumulator_value=0.1, l1_regularization_strength=0.001, l2_regularization_strength=0.0) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) # Run 10 steps FTRL for _ in range(10): update.run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType( np.array([-7.66718769, -10.91273689]), v0_val) self.assertAllCloseAccordingToType( np.array([-0.93460727, -1.86147261]), v1_val) def testFtrlWithL1_L2(self): for dtype in [dtypes.half, dtypes.float32]: with self.test_session() as sess: var0 = variables.Variable([1.0, 2.0], dtype=dtype) var1 = variables.Variable([4.0, 3.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) grads1 = constant_op.constant([0.01, 0.02], dtype=dtype) opt = ftrl.FtrlOptimizer( 3.0, initial_accumulator_value=0.1, l1_regularization_strength=0.001, l2_regularization_strength=2.0) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) # Run 10 steps FTRL for _ in range(10): update.run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType( np.array([-0.24059935, -0.46829352]), v0_val) self.assertAllCloseAccordingToType( np.array([-0.02406147, -0.04830509]), v1_val) def applyOptimizer(self, opt, dtype, steps=5, is_sparse=False): if is_sparse: var0 = variables.Variable([[0.0], [0.0]], dtype=dtype) var1 = variables.Variable([[0.0], [0.0]], dtype=dtype) grads0 = ops.IndexedSlices( constant_op.constant( [0.1], shape=[1, 1], dtype=dtype), constant_op.constant([0]), constant_op.constant([2, 1])) grads1 = ops.IndexedSlices( constant_op.constant( [0.02], shape=[1, 1], dtype=dtype), constant_op.constant([1]), constant_op.constant([2, 1])) else: var0 = variables.Variable([0.0, 0.0], dtype=dtype) var1 = variables.Variable([0.0, 0.0], dtype=dtype) grads0 = constant_op.constant([0.1, 0.2], dtype=dtype) grads1 = constant_op.constant([0.01, 0.02], dtype=dtype) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) variables.global_variables_initializer().run() sess = ops.get_default_session() v0_val, v1_val = sess.run([var0, var1]) if is_sparse: self.assertAllCloseAccordingToType([[0.0], [0.0]], v0_val) self.assertAllCloseAccordingToType([[0.0], [0.0]], v1_val) else: self.assertAllCloseAccordingToType([0.0, 0.0], v0_val) self.assertAllCloseAccordingToType([0.0, 0.0], v1_val) # Run Ftrl for a few steps for _ in range(steps): update.run() v0_val, v1_val = sess.run([var0, var1]) return v0_val, v1_val # When variables are initialized with Zero, FTRL-Proximal has two properties: # 1. Without L1&L2 but with fixed learning rate, FTRL-Proximal is identical # with GradientDescent. # 2. Without L1&L2 but with adaptive learning rate, FTRL-Proximal is identical # with Adagrad. # So, basing on these two properties, we test if our implementation of # FTRL-Proximal performs same updates as Adagrad or GradientDescent. def testEquivAdagradwithoutRegularization(self): for dtype in [dtypes.half, dtypes.float32]: with self.test_session(): val0, val1 = self.applyOptimizer( ftrl.FtrlOptimizer( 3.0, # Adagrad learning rate learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0), dtype) with self.test_session(): val2, val3 = self.applyOptimizer( adagrad.AdagradOptimizer( 3.0, initial_accumulator_value=0.1), dtype) self.assertAllCloseAccordingToType(val0, val2) self.assertAllCloseAccordingToType(val1, val3) def testEquivSparseAdagradwithoutRegularization(self): for dtype in [dtypes.half, dtypes.float32]: with self.test_session(): val0, val1 = self.applyOptimizer( ftrl.FtrlOptimizer( 3.0, # Adagrad learning rate learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0), dtype, is_sparse=True) with self.test_session(): val2, val3 = self.applyOptimizer( adagrad.AdagradOptimizer( 3.0, initial_accumulator_value=0.1), dtype, is_sparse=True) self.assertAllCloseAccordingToType(val0, val2) self.assertAllCloseAccordingToType(val1, val3) def testEquivSparseGradientDescentwithoutRegularization(self): for dtype in [dtypes.half, dtypes.float32]: with self.test_session(): val0, val1 = self.applyOptimizer( ftrl.FtrlOptimizer( 3.0, # Fixed learning rate learning_rate_power=-0.0, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0), dtype, is_sparse=True) with self.test_session(): val2, val3 = self.applyOptimizer( gradient_descent.GradientDescentOptimizer(3.0), dtype, is_sparse=True) self.assertAllCloseAccordingToType(val0, val2) self.assertAllCloseAccordingToType(val1, val3) def testEquivGradientDescentwithoutRegularization(self): for dtype in [dtypes.half, dtypes.float32]: with self.test_session(): val0, val1 = self.applyOptimizer( ftrl.FtrlOptimizer( 3.0, # Fixed learning rate learning_rate_power=-0.0, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0), dtype) with self.test_session(): val2, val3 = self.applyOptimizer( gradient_descent.GradientDescentOptimizer(3.0), dtype) self.assertAllCloseAccordingToType(val0, val2) self.assertAllCloseAccordingToType(val1, val3) if __name__ == "__main__": test.main()
__author__ = 'stuart' import os, sys, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) from datastreams import DataSet, DataStream, Datum, DictSet, DictStream if sys.version_info[0] == 2 and sys.version_info[1] < 7: import unittest2 as unittest else: import unittest try: reduce except: from functools import reduce class JoinTests(unittest.TestCase): def test_inner_join(self): left = DataSet.from_csv("test_set_1.csv") right = DataSet.from_csv("test_set_2.csv") joined = left.join('inner', 'name', right) self.assertIn('stuart', joined.map(lambda entity: entity.name)) self.assertEqual(2, sum(joined.map(lambda entity: entity.name == 'gatsby'))) self.assertNotIn('max', joined.map(lambda entity: entity.name)) self.assertNotIn('john', joined.map(lambda entity: entity.name)) def test_outer_join(self): left = DataSet.from_csv("test_set_1.csv") right = DataSet.from_csv("test_set_2.csv") joined = left.join('outer', 'name', right) self.assertIn('max', joined.map(lambda entity: entity.name)) self.assertEqual(2, sum(joined.map(lambda entity: entity.name == 'gatsby'))) self.assertEqual(1, sum(joined.map(lambda entity: entity.name == 'max'))) self.assertIn('max', joined.map(lambda entity: entity.name)) self.assertIn('john', joined.map(lambda entity: entity.name)) def test_left_join(self): left = DataSet.from_csv("test_set_1.csv") right = DataSet.from_csv("test_set_2.csv") joined = left.join('left', 'name', right) self.assertEqual(2, sum(joined.map(lambda entity: entity.name == 'gatsby'))) self.assertEqual(0, sum(joined.map(lambda entity: entity.name == 'max'))) self.assertNotIn('max', joined.map(lambda entity: entity.name)) self.assertIn('john', joined.map(lambda entity: entity.name)) def test_right_join(self): left = DataSet.from_csv("test_set_1.csv") right = DataSet.from_csv("test_set_2.csv") joined = left.join('right', 'name', right) self.assertEqual(2, sum(joined.map(lambda entity: entity.name == 'gatsby'))) self.assertEqual(1, sum(joined.map(lambda entity: entity.name == 'max'))) self.assertIn('max', joined.map(lambda entity: entity.name)) self.assertNotIn('john', joined.map(lambda entity: entity.name)) def test_group_by(self): stream = DataStream.from_csv("test_set_2.csv") grouped = stream.group_by('name') groupdict = dict(grouped) self.assertEqual(2, len(groupdict['gatsby'])) self.assertEqual(1, len(groupdict['carina'])) class StreamTests(unittest.TestCase): def test_map(self): stream = DataStream(range(10)) inced = stream.map(lambda num: num + 1) self.assertEqual(1, next(inced)) self.assertEqual(2, next(inced)) self.assertEqual(3, next(inced)) self.assertEqual(4, next(inced)) self.assertEqual(5, next(inced)) def test_map_builtin(self): stream = DataStream(range(10)) updated = list(map(lambda num: num + 1, stream)) self.assertEqual(len(updated), 10) self.assertEqual(updated[0], 1) self.assertEqual(updated[1], 2) self.assertEqual(updated[2], 3) def test_filter(self): stream = DataStream(range(14)) odds = stream.filter(lambda num: num % 2) self.assertEqual(next(odds), 1) self.assertEqual(next(odds), 3) self.assertEqual(next(odds), 5) posset = DataStream(range(10)).collect() negs = set(posset.filter(lambda num: num < 0)) self.assertEqual(len(negs), 0) doubled = list(posset.map(lambda num: num * 2)) self.assertEqual(len(doubled), len(posset)) def test_filters(self): stream = DataStream(range(14)) odd_filter = lambda num: num % 2 != 0 gt5filter = lambda num: num > 5 filtered = list(stream.filters([odd_filter, gt5filter])) self.assertListEqual(filtered, [7, 9, 11, 13]) def test_filter_builtin(self): stream = DataStream(range(14)) odds = list(filter(lambda num: num % 2, stream)) self.assertEqual(odds[0], 1) self.assertEqual(odds[1], 3) self.assertEqual(odds[2], 5) def test_reduce(self): stream = DataStream(range(5)) factorials = stream.map(lambda num: num + 1)\ .reduce(lambda facts, num: facts * num) self.assertEqual(factorials, 5*4*3*2*1) def test_reduce_to_dataset(self): stream = DataStream(range(5)) def filtreducer(agg, row): if row % 2 == 0: return agg + [row] return agg ghetto_filtered = stream.reduce(filtreducer, []) self.assertEqual(ghetto_filtered[0], 0) self.assertEqual(ghetto_filtered[1], 2) self.assertEqual(ghetto_filtered[2], 4) def test_reduce_builtin(self): stream = DataStream(range(5)) summed = reduce(lambda a, b: a + b, stream, 0) self.assertEqual(summed, sum(range(5))) def test_read_file(self): stream = DataStream.from_file("test_set_1.csv") self.assertEqual('name,age,height', next(stream).strip()) self.assertEqual('carina,27,60', next(stream).strip()) self.assertEqual('stuart,27,72', next(stream).strip()) self.assertEqual('gatsby,7,24', next(stream).strip()) self.assertEqual('john,31,76', next(stream).strip()) def test_read_csv(self): stream = DataStream.from_csv("test_set_1.csv") self.assertEqual('carina', next(stream).name) self.assertEqual('stuart', next(stream).name) self.assertEqual('gatsby', next(stream).name) self.assertEqual('john', next(stream).name) def test_batch(self): batched = DataStream(range(9)).batch(2) self.assertSequenceEqual(next(batched), [0, 1]) self.assertSequenceEqual(next(batched), [2, 3]) self.assertSequenceEqual(next(batched), [4, 5]) self.assertSequenceEqual(next(batched), [6, 7]) self.assertSequenceEqual(next(batched), [8]) batched = DataStream(range(4)).batch(2).to_list() self.assertEqual(len(batched), 2) def test_window(self): stream = DataStream(range(10)) windowed = stream.window(3, 2) self.assertSequenceEqual(next(windowed).to_list(), [0, 1, 2]) self.assertSequenceEqual(next(windowed).to_list(), [2, 3, 4]) self.assertSequenceEqual(next(windowed).to_list(), [4, 5, 6]) self.assertSequenceEqual(next(windowed).to_list(), [6, 7, 8]) self.assertSequenceEqual(next(windowed).to_list(), [8, 9]) def test_concat(self): stream = DataStream([[], [1], [2, 3]]) flattened = stream.concat() self.assertEqual(next(flattened), 1) self.assertEqual(next(flattened), 2) self.assertEqual(next(flattened), 3) def test_concat_map(self): stream = DataStream(range(20)) batched = stream.batch(4) concat_mapped = batched.concat_map( lambda nums: map(lambda num: num + 1, nums)) result = list(concat_mapped) self.assertSequenceEqual(result, list(map(lambda num: num + 1, range(20)))) def test_for_each(self): stream = DataStream(range(20)) not_changed = stream.for_each(lambda num: num + 1) self.assertEqual(next(not_changed), 0) self.assertEqual(next(not_changed), 1) self.assertEqual(next(not_changed), 2) def test_take_now(self): stream = DataStream(range(13)) not_iter = stream.take_now(5) self.assertEqual(len(not_iter), 5) self.assertEqual(not_iter[0], 0) def test_drop_take(self): stream = DataStream(range(10)) second_half = stream.drop(5).take(5) self.assertEqual(next(second_half), 5) self.assertEqual(next(second_half), 6) self.assertEqual(next(second_half), 7) self.assertEqual(next(second_half), 8) def test_count(self): n = 20 self.assertEqual(DataStream(range(n)).count(), n) def test_count_frequency(self): stream = DataStream("Hello, world!") counts = stream.count_frequency() self.assertEqual(dict(counts)['l'], 3) self.assertEqual(dict(counts)['e'], 1) self.assertEqual(dict(counts)['!'], 1) def test_to(self): stream = DataStream(['{"key": "value"}'])\ .to(list) self.assertTrue(isinstance(stream, list)) def test_to_dict(self): stream = DataStream("Hello, world!") counts = stream.count_frequency().to_dict() self.assertEqual(counts['l'], 3) self.assertEqual(counts['e'], 1) self.assertEqual(counts['!'], 1) def test_to_list(self): stream = DataStream(range(20)) streamlist = stream.to_list() self.assertListEqual(streamlist, list(range(20))) def test_to_set(self): stream = DataStream(range(19)) range10 = stream\ .map(lambda num: abs(num - 9))\ .to_set() self.assertSetEqual(range10, set(range(10))) def test_set(self): class Brad(object): def __init__(self, name, height, age): self.name = name self.height = height self.age = age stream = DataStream([Brad('b-rad', 72, 21)]) \ .set('name', lambda row: 'brad')\ .set('height', lambda row: 70) \ .set('age', lambda row: 30) brad = next(stream) self.assertEqual(brad.height, 70) self.assertEqual(brad.name, 'brad') self.assertEqual(brad.age, 30) def test_map_method(self): class Brad(object): def __init__(self, name, height, age): self.name = name self.height = height self.age = age def get_name(self, upper): return self.name.upper() if upper else self.name stream = DataStream([Brad('b-rad', 72, 21)]) \ .set('name', lambda row: 'brad') \ .set('height', lambda row: 70) \ .set('age', lambda row: 30) BRAD_NAME = next(stream.map_method('get_name', True)) self.assertEqual(BRAD_NAME, 'BRAD') def test_call(self): global _test_call_passed _test_call_passed = False def make_test_pass(dataset): global _test_call_passed _test_call_passed = isinstance(dataset, DataSet) DataSet(range(10)).call(make_test_pass) self.assertTrue(_test_call_passed) del _test_call_passed def test_execute(self): global _test_execute_count _test_execute_count = 0 def inc_execute_count(num): global _test_execute_count _test_execute_count += 1 self.assertEqual(_test_execute_count, 0) DataStream(range(20))\ .for_each(inc_execute_count)\ .execute() self.assertEqual(_test_execute_count, 20) del _test_execute_count def test_pick_attrs(self): def test_attrs(obj): self.assertIn('b', dir(obj)) self.assertNotIn('a', dir(obj)) DataStream([Datum({'a': 1, 'b': 2}), Datum({'bbb': 0, 'b': 5})])\ .pick_attrs(['b'])\ .for_each(test_attrs)\ .execute() def test_dedupe(self): stream = DataStream([[0, 1], [0, 2], [1, 1]]) deduped = stream.dedupe(lambda row: row[0]) self.assertSequenceEqual([[0, 1], [1, 1]], deduped.to_list()) def test_sample(self): stream = DataStream(range(100)) sampled = stream.sample(0.5, 5).to_list() self.assertEqual(len(sampled), 5) def test_slots_set(self): class Thing(object): __slots__ = ['name', 'age'] def __init__(self, name, age): self.name = name self.age = age class Other(object): __slots__ = ['name', 'weight'] def __init__(self, name, weight): self.name = name self.weight = weight things = DataStream([Thing('brad', 24), Thing('alice', 54)]) others = DataStream([Other('brad', 170), Other('angela', 115)]) other_things = things.join('inner', 'name', others).set('age', value=20) self.assertEqual(next(other_things).age, 20) def test_from_files(self): stream = DataStream.from_files(['test_set_1.csv', 'test_set_2.csv']) self.assertEqual(stream.count(), 11) class DataSetTests(unittest.TestCase): def test_map(self): stream2 = DataSet(range(10)) \ .take_now(5) \ .map(lambda num: num + 1) self.assertEqual(1, next(stream2)) self.assertEqual(2, next(stream2)) self.assertEqual(3, next(stream2)) self.assertEqual(4, next(stream2)) self.assertEqual(5, next(stream2)) class FilterRadixTests(unittest.TestCase): def test_radix_eq(self): stream = DataStream(range(10)) just_three = stream.where('real').eq(3) self.assertListEqual(list(just_three), [3]) def test_radix_is_in(self): stream = DataStream(range(20)) some_primes = [1, 2, 3, 5, 7] those_primes = list(stream.where('real').is_in(some_primes)) self.assertListEqual(those_primes, some_primes) def test_lengths(self): stream = DataSet(['hello', 'hello world', 'hello even more worlds']) self.assertEqual(stream.where().shorter_than(10).count(), 1) self.assertEqual(stream.where().longer_than(10).count(), 2) self.assertEqual(stream.where().has_length(5).count(), 1) class DictStreamTests(unittest.TestCase): def test_dicstream_set(self): stream = DictStream([{'name': 'brad', 'age': 25}])\ .set('height', lambda row: 70)\ .set('age', lambda row: 30) brad = next(stream) self.assertEqual(brad['height'], 70) self.assertEqual(brad['name'], 'brad') self.assertEqual(brad['age'], 30) def test_dictstream_where(self): stream = DictSet([{'name': 'brad', 'age': 25}]) filtered_empty = stream.where('age').gt(40).collect() filtered_something = stream.where('age').lt(40).collect() self.assertEqual(len(filtered_empty), 0) self.assertEqual(len(filtered_something), 1) def test_group_by(self): stream = DictStream([{'name': 'brad', 'age': 25}, {'name': 'bradley', 'age': 22}]) grouped = stream.group_by('name') self.assertEqual(len(grouped), 2) def test_join_basic(self): streama = DictStream([{'name': 'brad', 'age': 25}, {'name': 'bradley', 'age': 22}]) streamb = DictStream([{'name': 'brad', 'num': 21}, {'name': 'cooper', 'num': 22}]) joined = streama.join('inner', 'name', streamb) self.assertEqual(len(joined), 1) self.assertEqual(joined[0]['name'], 'brad') self.assertEqual(joined[0]['age'], 25) self.assertEqual(joined[0]['num'], 21) if __name__ == '__main__': unittest.main()
import mxnet as mx from mxnet import gluon from mxnet.gluon import nn import numpy as np def test_parameter(): p = gluon.Parameter('weight', shape=(10, 10)) p.initialize(init='xavier', ctx=[mx.cpu(0), mx.cpu(1)]) assert len(p.list_data()) == 2 assert len(p.list_grad()) == 2 assert p.data(mx.cpu(1)).context == mx.cpu(1) assert p.data(mx.cpu(0)).shape == (10, 10) assert p.var().name == 'weight' def test_paramdict(): params = gluon.ParameterDict('net_') params.get('weight', shape=(10, 10)) assert list(params.keys()) == ['net_weight'] params.initialize(ctx=mx.cpu()) params.save('test.params') params.load('test.params', mx.cpu()) def test_parameter_sharing(): class Net(gluon.Block): def __init__(self, **kwargs): super(Net, self).__init__(**kwargs) with self.name_scope(): self.dense0 = nn.Dense(5, in_units=5) self.dense1 = nn.Dense(5, in_units=5) def forward(self, x): return self.dense1(self.dense0(x)) net1 = Net(prefix='net1_') net2 = Net(prefix='net2_', params=net1.collect_params()) net1.collect_params().initialize() net2(mx.nd.zeros((3, 5))) net1.save_params('net1.params') net3 = Net(prefix='net3_') net3.load_params('net1.params', mx.cpu()) def test_basic(): model = nn.Sequential() model.add(nn.Dense(128, activation='tanh', in_units=10)) model.add(nn.Dropout(0.5)) model.add(nn.Dense(64, activation='tanh', in_units=128)) model.add(nn.Dense(32, in_units=64)) model.add(nn.Activation('relu')) # symbol x = mx.sym.var('data') y = model(x) assert len(y.list_arguments()) == 7 # ndarray model.collect_params().initialize(mx.init.Xavier(magnitude=2.24)) x = model(mx.nd.zeros((32, 10))) assert x.shape == (32, 32) x.wait_to_read() def check_layer_forward(layer, dshape): layer.collect_params().initialize() with mx.autograd.record(): out = layer(mx.nd.ones(shape=dshape)) out.backward() layer.hybridize() with mx.autograd.record(): out = layer(mx.nd.ones(shape=dshape)) out.backward() def test_conv(): layers1d = [ nn.Conv1D(16, 3, in_channels=4), nn.Conv1D(16, 3, groups=2, in_channels=4), nn.Conv1D(16, 3, strides=3, groups=2, in_channels=4), ] for layer in layers1d: check_layer_forward(layer, (1, 4, 10)) layers2d = [ nn.Conv2D(16, (3, 4), in_channels=4), nn.Conv2D(16, (5, 4), in_channels=4), nn.Conv2D(16, (3, 4), groups=2, in_channels=4), nn.Conv2D(16, (3, 4), strides=4, in_channels=4), nn.Conv2D(16, (3, 4), dilation=4, in_channels=4), nn.Conv2D(16, (3, 4), padding=4, in_channels=4), ] for layer in layers2d: check_layer_forward(layer, (1, 4, 20, 20)) layers3d = [ nn.Conv3D(16, (1, 8, 4), in_channels=4, activation='relu'), nn.Conv3D(16, (5, 4, 3), in_channels=4), nn.Conv3D(16, (3, 3, 3), groups=2, in_channels=4), nn.Conv3D(16, 4, strides=4, in_channels=4), nn.Conv3D(16, (3, 3, 3), padding=4, in_channels=4), ] for layer in layers3d: check_layer_forward(layer, (1, 4, 10, 10, 10)) layer = nn.Conv2D(16, (3, 3), layout='NHWC', in_channels=4) # check_layer_forward(layer, (1, 10, 10, 4)) layer = nn.Conv3D(16, (3, 3, 3), layout='NDHWC', in_channels=4) # check_layer_forward(layer, (1, 10, 10, 10, 4)) def test_deconv(): # layers1d = [ # nn.Conv1DTranspose(16, 3, in_channels=4), # nn.Conv1DTranspose(16, 3, groups=2, in_channels=4), # nn.Conv1DTranspose(16, 3, strides=3, groups=2, in_channels=4), # ] # for layer in layers1d: # check_layer_forward(layer, (1, 4, 10)) layers2d = [ nn.Conv2DTranspose(16, (3, 4), in_channels=4), nn.Conv2DTranspose(16, (5, 4), in_channels=4), nn.Conv2DTranspose(16, (3, 4), groups=2, in_channels=4), nn.Conv2DTranspose(16, (3, 4), strides=4, in_channels=4), nn.Conv2DTranspose(16, (3, 4), dilation=4, in_channels=4), nn.Conv2DTranspose(16, (3, 4), padding=4, in_channels=4), nn.Conv2DTranspose(16, (3, 4), strides=4, output_padding=3, in_channels=4), ] for layer in layers2d: check_layer_forward(layer, (1, 4, 20, 20)) # layers3d = [ # nn.Conv3DTranspose(16, (1, 8, 4), in_channels=4), # nn.Conv3DTranspose(16, (5, 4, 3), in_channels=4), # nn.Conv3DTranspose(16, (3, 3, 3), groups=2, in_channels=4), # nn.Conv3DTranspose(16, 4, strides=4, in_channels=4), # nn.Conv3DTranspose(16, (3, 3, 3), padding=4, in_channels=4), # ] # for layer in layers3d: # check_layer_forward(layer, (1, 4, 10, 10, 10)) # # # layer = nn.Conv2DTranspose(16, (3, 3), layout='NHWC', in_channels=4) # # check_layer_forward(layer, (1, 10, 10, 4)) # # layer = nn.Conv3DTranspose(16, (3, 3, 3), layout='NDHWC', in_channels=4) # # check_layer_forward(layer, (1, 10, 10, 10, 4)) def test_pool(): layers1d = [ nn.MaxPool1D(), nn.MaxPool1D(3), nn.MaxPool1D(3, 2), nn.AvgPool1D(), nn.GlobalAvgPool1D(), ] for layer in layers1d: check_layer_forward(layer, (1, 2, 10)) layers2d = [ nn.MaxPool2D(), nn.MaxPool2D((3, 3)), nn.MaxPool2D(3, 2), nn.AvgPool2D(), nn.GlobalAvgPool2D(), ] for layer in layers2d: check_layer_forward(layer, (1, 2, 10, 10)) layers3d = [ nn.MaxPool3D(), nn.MaxPool3D((3, 3, 3)), nn.MaxPool3D(3, 2), nn.AvgPool3D(), nn.GlobalAvgPool3D(), ] for layer in layers3d: check_layer_forward(layer, (1, 2, 10, 10, 10)) # test ceil_mode x = mx.nd.zeros((2, 2, 10, 10)) layer = nn.MaxPool2D(3, ceil_mode=False) layer.collect_params().initialize() assert (layer(x).shape==(2, 2, 3, 3)) layer = nn.MaxPool2D(3, ceil_mode=True) layer.collect_params().initialize() assert (layer(x).shape==(2, 2, 4, 4)) def test_batchnorm(): layer = nn.BatchNorm(in_channels=10) check_layer_forward(layer, (2, 10, 10, 10)) def test_reshape(): x = mx.nd.ones((2, 4, 10, 10)) layer = nn.Conv2D(10, 2, in_channels=4) layer.collect_params().initialize() with mx.autograd.record(): x = layer(x) x = x.reshape((-1,)) x = x + 10 x.backward() def test_slice(): x = mx.nd.ones((5, 4, 10, 10)) layer = nn.Conv2D(10, 2, in_channels=4) layer.collect_params().initialize() with mx.autograd.record(): x = layer(x) x = x[1:3] x = x + 10 x.backward() def test_at(): x = mx.nd.ones((5, 4, 10, 10)) layer = nn.Conv2D(10, 2, in_channels=4) layer.collect_params().initialize() with mx.autograd.record(): x = layer(x) x = x[1] x = x + 10 x.backward() def test_defered_init(): x = mx.nd.ones((5, 4, 10, 10)) layer = nn.Conv2D(10, 2) layer.collect_params().initialize() layer(x) def check_split_data(x, num_slice, batch_axis, **kwargs): res = gluon.utils.split_data(x, num_slice, batch_axis, **kwargs) assert len(res) == num_slice mx.test_utils.assert_almost_equal(mx.nd.concat(*res, dim=batch_axis).asnumpy(), x.asnumpy()) def test_split_data(): x = mx.nd.random_uniform(shape=(128, 33, 64)) check_split_data(x, 8, 0) check_split_data(x, 3, 1) check_split_data(x, 4, 1, even_split=False) check_split_data(x, 15, 1, even_split=False) try: check_split_data(x, 4, 1) except ValueError: return assert False, "Should have failed" def test_flatten(): flatten = nn.Flatten() x = mx.nd.zeros((3,4,5,6)) assert flatten(x).shape == (3, 4*5*6) x = mx.nd.zeros((3,6)) assert flatten(x).shape == (3, 6) x = mx.nd.zeros((3,)) assert flatten(x).shape == (3, 1) if __name__ == '__main__': import nose nose.runmodule()
# Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" from abc import ABCMeta, abstractmethod import numpy as np from .sgd_fast import EpsilonInsensitive from .sgd_fast import Hinge from .sgd_fast import Huber from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredEpsilonInsensitive from .sgd_fast import SquaredHinge from .sgd_fast import SquaredLoss from .sgd_fast import plain_sgd, average_sgd from .base import LinearClassifierMixin, SparseCoefMixin from .base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..externals import six from ..externals.joblib import Parallel, delayed from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (check_array, check_random_state, check_X_y, deprecated) from ..utils import compute_class_weight from ..utils.extmath import safe_sparse_dot from ..utils.fixes import astype from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() self.coef_ = None if self.average > 0: self.standard_coef_ = None self.average_coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") if self.learning_rate == "optimal" and self.alpha == 0: raise ValueError("alpha must be > 0 since " "learning_rate is 'optimal'. alpha is used " "to compute the optimal learning rate.") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon,) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match " "dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes,): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1, ) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log,), "modified_huber": (ModifiedHuber,), "squared_loss": (SquaredLoss,), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(self.intercept_) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight in ['balanced', 'auto']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights," " use compute_class_weight('{0}', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the constructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: constant: eta = eta0 optimal: eta = 1.0 / (alpha * (t + t0)) [default] invscaling: eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss,), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = astype(y, np.float64, copy=False) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and self.average_coef_ is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) @deprecated(" and will be removed in 0.19.") def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ = \ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0/(alpha * t) invscaling: eta = eta0 / pow(t, power_t) [default] eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10 will`` begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. average_coef_ : array, shape (n_features,) Averaged weights assigned to the features. average_intercept_ : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
import logging import servercommands # Globals invalidNames = ['NONE'] def configLog(filepath): logging.basicConfig(level=logging.DEBUG, filename=filepath, format='%(asctime)s | %(message)s') def logMsg(msg): """Logs the specified message to std out and the file set my the logging config.""" print msg logging.info(msg) def gamesList(client): """Get list of all games on the server.""" return [{'name':k, 'player_count':len(v['players']), 'playerlimit':v['playerlimit']} for k, v in client.factory.games.items()] def addStatusInfo(client, resp): """Add needed data based on client's status.""" resp['status'] = client.status if client.status == 'In lobby': resp['games'] = gamesList(client) elif client.status == 'In game': resp['gamedata'] = client.factory.games[client.gamekey] def sendToLobby(client, resp): """Send response to specified clients""" clientlist = [k for k, v in client.factory.named_clients.items() if v.gamekey == None] resp['status'] = 'In lobby' resp['games'] = gamesList(client) client.factory.sendToClients(clientlist, client.factory.json_encoder.encode(resp)) # Log logMsg('to: '+str(clientlist)+' - '+str(resp)) def sendToGame(client, gamename, resp): """Send response to specified clients""" clientlist = client.factory.games[gamename]['players'].keys() resp['status'] = 'In game' resp['gamedata'] = client.factory.games[gamename] client.factory.sendToClients(clientlist, client.factory.json_encoder.encode(resp)) # Log logMsg('to: '+str(clientlist)+' - '+str(resp)) def sendResp(client, resp): """Send response to client""" addStatusInfo(client, resp) client.sendMessage(client.factory.json_encoder.encode(resp)) # Log logMsg('to: '+str(client.name)+' - '+str(resp)) def sendError(client, error): """Send client an error""" logMsg('Client error: '+error) sendResp(client, {'err':error}) # Command functions: def createUser(client, cmd, sendMsg=True): """Create a new user and save new player data""" if len(cmd) < 4: if sendMsg: sendError(client, 'Both username and password are required') elif len(cmd) > 4 or cmd[2] in invalidNames: if sendMsg: sendError(client, 'Invalid username or password') elif servercommands.createUser(client, cmd[2], cmd[3]): if sendMsg: sendResp(client, {'message':'User successfully created'}) else: if sendMsg: sendError(client, 'Failed to create user') def login(client, cmd, sendMsg=True): """Attempt to log client in. Response will contain error response if failed. Response will contain lobby data (games) if successful. Status changes to 'inlobby' on success.""" if len(cmd) < 3: if sendMsg: sendError(client, 'Both username and password required') return elif len(cmd) > 3: if sendMsg: sendError(client, 'Invalid username or password') return else: username, password = cmd[1], cmd[2] if client.status != 'Logging in': if sendMsg: sendError(client, 'You are already logged in') elif client.name in client.factory.named_clients.keys(): if sendMsg: sendError(client, 'You are already logged in') elif username in client.factory.named_clients.keys(): if sendMsg: sendError(client, 'That username is already in use') elif username in invalidNames: if sendMsg: sendError(client, 'That username is not valid, try again') else: if servercommands.login(client, username, password): # Log logMsg('Login successful: "'+username+'" logged in') if sendMsg: sendResp(client, {'message':'Logged in as '+username}) else: if sendMsg: sendError(client, 'Invalid username or password') def createGame(client, cmd, sendMsg=True): """Attempt to create a game. Response will contain an error message (err) if failed. Status does not change on success.""" error = None if len(cmd) != 3: if sendMsg: sendError(client, 'No game name provided') return else: gamename = cmd[2] if client.name == None: if sendMsg: sendError(client, 'You must be logged in to create a game') elif client.status != 'In lobby': if sendMsg: sendError(client, 'Must be in lobby to create a game') elif gamename in client.factory.games.keys(): if sendMsg: sendError(client, 'That game already exists') elif (len(client.factory.games) == int(client.factory.properties['game_limit'])): if sendMsg: sendError(client, """Game limit reached, try again later or join another game""") else: servercommands.createGame(client, gamename, {}) # Log logMsg('Create game successful: "'+gamename+'" created') if sendMsg: sendToLobby(client, {'message':'Game '+gamename+' created'}) def joinGame(client, cmd, sendMsg=True): """Attempt to add the client to the specified game. Response will contain error message (err) if failed. Response will contain game data (gamedata) if successful. Status changes to 'ingame' on success.""" if len(cmd) != 3: sendError(client, 'Invalid game name') return else: gamename = cmd[2] if client.name == None: if sendMsg: sendError(client, 'You must be logged in to join a game') elif client.gamekey != None: if sendMsg: sendError(client, 'You are already in a game') elif gamename not in client.factory.games.keys(): if sendMsg: sendError(client, 'There is currently no game with that name') elif (len(client.factory.games[gamename]['players']) == int(client.factory.games[gamename]['playerlimit'])): if sendMsg: sendError(client, 'That game is full') else: servercommands.joinGame(client, gamename) # Log logMsg('Join game successful: "'+client.name +'"added to "'+gamename+'"') if sendMsg: sendToGame(client, gamename, {'message':client.name+' joined the game'}) sendToLobby(client, {}) def quitGame(client, sendMsg=True): """Attempt to quit game. Response will contain error message (err) if failed. Response will contain lobby data (games) if successful. Status changes to 'inlobby' on success.""" if client.gamekey == None: if sendMsg: sendError(client, 'You are not in a game yet') else: # Capture game name gamename = client.gamekey servercommands.quitGame(client) # Log logMsg('Quit game successful: "'+client.name +'" removed from "'+gamename+'"') if sendMsg: sendToGame(client, gamename, {'message':client.name+' left the game'}) sendToLobby(client, {}) def levelup(client, cmd, sendMsg=True): """Attempt to level up player. Response will contain error message (err) if failed. Response will contain lobby data (games) if successful. Status changes to 'inlobby' on success.""" if len(cmd) != 2: sendError(client, 'Invalid stat name') return else: statname = cmd[1] if client.playerdata == None: if sendMsg: sendError(client, 'You must be logged in to level up') elif statname not in client.playerdata['stats'].keys(): if sendMsg: sendError(client, "Couldn't find that stat, try again") elif client.playerdata['exp'] <= 0: if sendMsg: sendError(client, "You don't have enough XP, win some games first") else: servercommands.levelUp(client, statname) # Log logMsg('Level up successful: "'+statname +'" increased by 1 for "'+client.name+'"') if sendMsg: sendResp(client, {'message':statname+' increased by 1'}) def logout(client, sendMsg=True): """Attempt to log client out. Response will contain error message (err) if failed. Response will contain if status of 'logged_out' successful. Status changes to 'logging_in' on success.""" # Clear game data quitGame(client, False) if client.name == None: if sendMsg: sendError(client, "You haven't logged in yet") else: # Capture username username = client.name servercommands.logout(client) # Log logMsg('Logout successful: "'+username+'" logged out') if sendMsg: sendResp(client, {'status':'Logging in', 'message':'Logged out'}) def closeConn(client): """Remove client data and close connection with client""" logMsg('Closing client connection') # Clear client data logout(client, False) client.factory.clients.remove(client) # Disconnect client.abortConnection()
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras core layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import textwrap import numpy as np from tensorflow.python import keras from tensorflow.python.eager import context from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import testing_utils from tensorflow.python.keras.layers import core from tensorflow.python.keras.mixed_precision.experimental import policy from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.platform import test @keras_parameterized.run_all_keras_modes class DropoutLayersTest(keras_parameterized.TestCase): def test_dropout(self): testing_utils.layer_test( keras.layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) testing_utils.layer_test( keras.layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [3, 1]}, input_shape=(3, 2)) def test_dropout_supports_masking(self): dropout = keras.layers.Dropout(0.5) self.assertEqual(True, dropout.supports_masking) def test_spatial_dropout_1d(self): testing_utils.layer_test( keras.layers.SpatialDropout1D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4)) def test_spatial_dropout_2d(self): testing_utils.layer_test( keras.layers.SpatialDropout2D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4, 5)) testing_utils.layer_test( keras.layers.SpatialDropout2D, kwargs={'rate': 0.5, 'data_format': 'channels_first'}, input_shape=(2, 3, 4, 5)) def test_spatial_dropout_3d(self): testing_utils.layer_test( keras.layers.SpatialDropout3D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4, 4, 5)) testing_utils.layer_test( keras.layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': 'channels_first'}, input_shape=(2, 3, 4, 4, 5)) def test_dropout_partial_noise_shape(self): inputs = keras.Input(shape=(5, 10)) layer = keras.layers.Dropout(0.5, noise_shape=(None, 1, None)) outputs = layer(inputs) model = keras.Model(inputs, outputs) out = model(np.ones((20, 5, 10)), training=True) out_np = keras.backend.get_value(out) # Test that dropout mask is shared across second dim. self.assertAllClose(out_np[:, 0, :], out_np[:, 1, :]) @keras_parameterized.run_all_keras_modes class LambdaLayerTest(keras_parameterized.TestCase): def test_lambda(self): testing_utils.layer_test( keras.layers.Lambda, kwargs={'function': lambda x: x + 1}, input_shape=(3, 2)) testing_utils.layer_test( keras.layers.Lambda, kwargs={ 'function': lambda x, a, b: x * a + b, 'arguments': { 'a': 0.6, 'b': 0.4 } }, input_shape=(3, 2)) # test serialization with function def f(x): return x + 1 ld = keras.layers.Lambda(f) config = ld.get_config() ld = keras.layers.deserialize({ 'class_name': 'Lambda', 'config': config }) self.assertEqual(ld.function(3), 4) # test with lambda ld = keras.layers.Lambda( lambda x: keras.backend.concatenate([math_ops.square(x), x])) config = ld.get_config() ld = keras.layers.Lambda.from_config(config) self.assertAllEqual(self.evaluate(ld.function([3])), [9, 3]) def test_lambda_multiple_inputs(self): ld = keras.layers.Lambda(lambda x: x[0], output_shape=lambda x: x[0]) x1 = np.ones([3, 2], np.float32) x2 = np.ones([3, 5], np.float32) out = ld([x1, x2]) self.assertAllEqual(out.shape, [3, 2]) def test_lambda_output_shape(self): l = keras.layers.Lambda(lambda x: x + 1, output_shape=(1, 1)) l(keras.backend.variable(np.ones((1, 1)))) self.assertEqual((1, 1), l.get_config()['output_shape']) def test_lambda_output_shape_function(self): def get_output_shape(input_shape): return 1 * input_shape l = keras.layers.Lambda(lambda x: x + 1, output_shape=get_output_shape) l(keras.backend.variable(np.ones((1, 1)))) self.assertEqual('lambda', l.get_config()['output_shape_type']) def test_lambda_output_shape_autocalculate_multiple_inputs(self): def lambda_fn(x): return math_ops.matmul(x[0], x[1]) l = keras.layers.Lambda(lambda_fn, dtype=dtypes.float64) output_shape = l.compute_output_shape([(10, 10), (10, 20)]) self.assertAllEqual((10, 20), output_shape) output_signature = l.compute_output_signature([ tensor_spec.TensorSpec(dtype=dtypes.float64, shape=(10, 10)), tensor_spec.TensorSpec(dtype=dtypes.float64, shape=(10, 20))]) self.assertAllEqual((10, 20), output_signature.shape) self.assertAllEqual(dtypes.float64, output_signature.dtype) def test_lambda_output_shape_list_multiple_outputs(self): def lambda_fn(x): return x l = keras.layers.Lambda(lambda_fn, output_shape=[(10,), (20,)]) output_shape = l.compute_output_shape([(10, 10), (10, 20)]) self.assertAllEqual([(10, 10), (10, 20)], output_shape) def test_lambda_output_shape_tuple_with_none(self): def lambda_fn(x): return x l = keras.layers.Lambda(lambda_fn, output_shape=(None, 10)) output_shape = l.compute_output_shape((5, 10, 20)) self.assertAllEqual([5, None, 10], output_shape.as_list()) def test_lambda_output_shape_function_multiple_outputs(self): def lambda_fn(x): return x def output_shape_fn(input_shape): return input_shape l = keras.layers.Lambda(lambda_fn, output_shape=output_shape_fn) output_shape = l.compute_output_shape([(10, 10), (10, 20)]) self.assertAllEqual([(10, 10), (10, 20)], output_shape) def test_lambda_output_shape_nested(self): def lambda_fn(inputs): return (inputs[1]['a'], {'b': inputs[0]}) l = keras.layers.Lambda(lambda_fn) output_shape = l.compute_output_shape(((10, 20), {'a': (10, 5)})) self.assertAllEqual(((10, 5), {'b': (10, 20)}), output_shape) def test_lambda_config_serialization(self): # Test serialization with output_shape and output_shape_type layer = keras.layers.Lambda( lambda x: x + 1, output_shape=(1, 1), mask=lambda i, m: m) layer(keras.backend.variable(np.ones((1, 1)))) config = layer.get_config() layer = keras.layers.deserialize({ 'class_name': 'Lambda', 'config': config }) self.assertAllEqual(layer.function(1), 2) self.assertAllEqual(layer._output_shape, (1, 1)) self.assertAllEqual(layer.mask(1, True), True) layer = keras.layers.Lambda.from_config(config) self.assertAllEqual(layer.function(1), 2) self.assertAllEqual(layer._output_shape, (1, 1)) self.assertAllEqual(layer.mask(1, True), True) def test_lambda_with_training_arg(self): def fn(x, training=True): return keras.backend.in_train_phase(x, 2 * x, training=training) layer = keras.layers.Lambda(fn) x = keras.backend.ones(()) train_out = layer(x, training=True) eval_out = layer(x, training=False) self.assertEqual(keras.backend.get_value(train_out), 1.) self.assertEqual(keras.backend.get_value(eval_out), 2.) def test_lambda_with_mask(self): def add_one(inputs): return inputs + 1.0 def mask(unused_inputs, previous_mask): return previous_mask layer = keras.layers.Lambda(add_one, mask=mask) x = np.ones([5, 4, 3]) x[:, -1, :] = 0 masking = keras.layers.Masking() out = layer(masking(x)) expected_out = np.full([5, 4, 3], 2.0) expected_out[:, -1, :] = 1.0 expected_mask = np.ones([5, 4]) expected_mask[:, -1] = 0.0 self.assertAllClose(self.evaluate(out), expected_out) self.assertIsNotNone(out._keras_mask) self.assertAllClose(self.evaluate(out._keras_mask), expected_mask) def test_lambda_with_ragged_input(self): def add_one(inputs): return inputs + 1.0 layer = keras.layers.Lambda(add_one) ragged_input = ragged_factory_ops.constant([[1.0], [2.0, 3.0]]) out = layer(ragged_input) expected_out = ragged_factory_ops.constant([[2.0], [3.0, 4.0]]) self.assertAllClose(out, expected_out) def test_lambda_deserialization_does_not_pollute_core(self): layer = keras.layers.Lambda(lambda x: x + 1) config = layer.get_config() keras.layers.Lambda.from_config(config) self.assertNotIn(self.__class__.__name__, dir(core)) class TestStatefulLambda(keras_parameterized.TestCase): @keras_parameterized.run_all_keras_modes @keras_parameterized.run_with_all_model_types def test_lambda_with_variable_in_model(self): v = variables.Variable(1., trainable=True) def lambda_fn(x, v): return x * v # While it is generally not advised to mix Variables with Lambda layers, if # the variables are explicitly set as attributes then they are still # tracked. This is consistent with the base Layer behavior. layer = keras.layers.Lambda(lambda_fn, arguments={'v': v}) self.assertLen(layer.trainable_weights, 0) layer.v = v self.assertLen(layer.trainable_weights, 1) model = testing_utils.get_model_from_layers([layer], input_shape=(10,)) model.compile( keras.optimizer_v2.gradient_descent.SGD(0.1), 'mae', run_eagerly=testing_utils.should_run_eagerly()) x, y = np.ones((10, 10), 'float32'), 2 * np.ones((10, 10), 'float32') model.fit(x, y, batch_size=2, epochs=2, validation_data=(x, y)) self.assertLen(model.trainable_weights, 1) self.assertAllClose(keras.backend.get_value(model.trainable_weights[0]), 2.) @keras_parameterized.run_all_keras_modes @keras_parameterized.run_with_all_model_types def test_creation_inside_lambda(self): def lambda_fn(x): scale = variables.Variable(1., trainable=True, name='scale') shift = variables.Variable(1., trainable=True, name='shift') return x * scale + shift expected_error = textwrap.dedent(r''' ( )?The following Variables were created within a Lambda layer \(shift_and_scale\) ( )?but are not tracked by said layer: ( )? <tf.Variable \'.*shift_and_scale/scale:0\'.+ ( )? <tf.Variable \'.*shift_and_scale/shift:0\'.+ ( )?The layer cannot safely ensure proper Variable reuse.+''') with self.assertRaisesRegex(ValueError, expected_error): layer = keras.layers.Lambda(lambda_fn, name='shift_and_scale') model = testing_utils.get_model_from_layers([layer], input_shape=(1,)) model(array_ops.ones((4, 1))) @keras_parameterized.run_all_keras_modes @keras_parameterized.run_with_all_model_types def test_transitive_variable_creation(self): dense = keras.layers.Dense(1, use_bias=False, kernel_initializer='ones') def bad_lambda_fn(x): return dense(x + 1) # Dense layer is built on first call expected_error = textwrap.dedent(r''' ( )?The following Variables were created within a Lambda layer \(bias_dense\) ( )?but are not tracked by said layer: ( )? <tf.Variable \'.*bias_dense/dense/kernel:0\'.+ ( )?The layer cannot safely ensure proper Variable reuse.+''') with self.assertRaisesRegex(ValueError, expected_error): layer = keras.layers.Lambda(bad_lambda_fn, name='bias_dense') model = testing_utils.get_model_from_layers([layer], input_shape=(1,)) model(array_ops.ones((4, 1))) @keras_parameterized.run_all_keras_modes @keras_parameterized.run_with_all_model_types def test_warns_on_variable_capture(self): v = variables.Variable(1., trainable=True) def lambda_fn(x): return x * v expected_warning = textwrap.dedent(r''' ( )?The following Variables were used a Lambda layer\'s call \(lambda\), but ( )?are not present in its tracked objects: ( )? <tf.Variable \'.*Variable:0\'.+ ( )?It is possible that this is intended behavior.+''') layer = keras.layers.Lambda(lambda_fn) def patched_warn(msg): raise ValueError(msg) layer._warn = patched_warn with self.assertRaisesRegex(ValueError, expected_warning): model = testing_utils.get_model_from_layers([layer], input_shape=(1,)) model(array_ops.ones((4, 1))) @keras_parameterized.run_all_keras_modes class CoreLayersTest(keras_parameterized.TestCase): def test_masking(self): testing_utils.layer_test( keras.layers.Masking, kwargs={}, input_shape=(3, 2, 3)) def test_keras_mask(self): x = np.ones((10, 10)) y = keras.layers.Masking(1.)(x) self.assertTrue(hasattr(y, '_keras_mask')) self.assertTrue(y._keras_mask is not None) self.assertAllClose(self.evaluate(y._keras_mask), np.zeros((10,))) def test_compute_mask_with_positional_mask_arg(self): class MyLayer(keras.layers.Layer): def call(self, inputs, mask=None): return inputs def compute_mask(self, inputs, mask=None): if mask is not None: return array_ops.ones(()) else: return array_ops.zeros(()) x, mask = array_ops.ones((1, 1)), array_ops.ones((1, 1)) layer = MyLayer() y = layer(x, mask) # Check that `mask` was correctly sent to `compute_mask`. self.assertEqual(keras.backend.get_value(y._keras_mask), 1) def test_activation(self): # with string argument testing_utils.layer_test( keras.layers.Activation, kwargs={'activation': 'relu'}, input_shape=(3, 2)) # with function argument testing_utils.layer_test( keras.layers.Activation, kwargs={'activation': keras.backend.relu}, input_shape=(3, 2)) def test_reshape(self): testing_utils.layer_test( keras.layers.Reshape, kwargs={'target_shape': (8, 1)}, input_shape=(3, 2, 4)) testing_utils.layer_test( keras.layers.Reshape, kwargs={'target_shape': (-1, 1)}, input_shape=(3, 2, 4)) testing_utils.layer_test( keras.layers.Reshape, kwargs={'target_shape': (1, -1)}, input_shape=(3, 2, 4)) testing_utils.layer_test( keras.layers.Reshape, kwargs={'target_shape': (-1, 1)}, input_shape=(None, None, 2)) def test_reshape_set_static_shape(self): input_layer = keras.Input(batch_shape=(1, None)) reshaped = keras.layers.Reshape((1, 100))(input_layer) # Make sure the batch dim is not lost after array_ops.reshape. self.assertEqual(reshaped.shape, [1, 1, 100]) def test_permute(self): testing_utils.layer_test( keras.layers.Permute, kwargs={'dims': (2, 1)}, input_shape=(3, 2, 4)) def test_permute_errors_on_invalid_starting_dims_index(self): with self.assertRaisesRegex(ValueError, r'Invalid permutation .*dims.*'): testing_utils.layer_test( keras.layers.Permute, kwargs={'dims': (0, 1, 2)}, input_shape=(3, 2, 4)) def test_permute_errors_on_invalid_set_of_dims_indices(self): with self.assertRaisesRegex(ValueError, r'Invalid permutation .*dims.*'): testing_utils.layer_test( keras.layers.Permute, kwargs={'dims': (1, 4, 2)}, input_shape=(3, 2, 4)) def test_flatten(self): testing_utils.layer_test( keras.layers.Flatten, kwargs={}, input_shape=(3, 2, 4)) # Test channels_first inputs = np.random.random((10, 3, 5, 5)).astype('float32') outputs = testing_utils.layer_test( keras.layers.Flatten, kwargs={'data_format': 'channels_first'}, input_data=inputs) target_outputs = np.reshape( np.transpose(inputs, (0, 2, 3, 1)), (-1, 5 * 5 * 3)) self.assertAllClose(outputs, target_outputs) def test_flatten_scalar_channels(self): testing_utils.layer_test( keras.layers.Flatten, kwargs={}, input_shape=(3,)) # Test channels_first inputs = np.random.random((10,)).astype('float32') outputs = testing_utils.layer_test( keras.layers.Flatten, kwargs={'data_format': 'channels_first'}, input_data=inputs) target_outputs = np.expand_dims(inputs, -1) self.assertAllClose(outputs, target_outputs) def test_repeat_vector(self): testing_utils.layer_test( keras.layers.RepeatVector, kwargs={'n': 3}, input_shape=(3, 2)) def test_dense(self): testing_utils.layer_test( keras.layers.Dense, kwargs={'units': 3}, input_shape=(3, 2)) testing_utils.layer_test( keras.layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 2)) testing_utils.layer_test( keras.layers.Dense, kwargs={'units': 3}, input_shape=(None, None, 2)) testing_utils.layer_test( keras.layers.Dense, kwargs={'units': 3}, input_shape=(3, 4, 5, 2)) def test_dense_dtype(self): inputs = ops.convert_to_tensor_v2_with_dispatch( np.random.randint(low=0, high=7, size=(2, 2))) layer = keras.layers.Dense(5, dtype='float32') outputs = layer(inputs) self.assertEqual(outputs.dtype, 'float32') def test_dense_with_policy(self): inputs = ops.convert_to_tensor_v2_with_dispatch( np.random.randint(low=0, high=7, size=(2, 2))) layer = keras.layers.Dense(5, dtype=policy.Policy('mixed_float16')) outputs = layer(inputs) output_signature = layer.compute_output_signature( tensor_spec.TensorSpec(dtype='float16', shape=(2, 2))) self.assertEqual(output_signature.dtype, dtypes.float16) self.assertEqual(output_signature.shape, (2, 5)) self.assertEqual(outputs.dtype, 'float16') self.assertEqual(layer.kernel.dtype, 'float32') def test_dense_regularization(self): layer = keras.layers.Dense( 3, kernel_regularizer=keras.regularizers.l1(0.01), bias_regularizer='l1', activity_regularizer='l2', name='dense_reg') layer(keras.backend.variable(np.ones((2, 4)))) self.assertEqual(3, len(layer.losses)) def test_dense_constraints(self): k_constraint = keras.constraints.max_norm(0.01) b_constraint = keras.constraints.max_norm(0.01) layer = keras.layers.Dense( 3, kernel_constraint=k_constraint, bias_constraint=b_constraint) layer(keras.backend.variable(np.ones((2, 4)))) self.assertEqual(layer.kernel.constraint, k_constraint) self.assertEqual(layer.bias.constraint, b_constraint) def test_activity_regularization(self): layer = keras.layers.ActivityRegularization(l1=0.1) layer(keras.backend.variable(np.ones((2, 4)))) self.assertEqual(1, len(layer.losses)) config = layer.get_config() self.assertEqual(config.pop('l1'), 0.1) def test_numpy_inputs(self): if context.executing_eagerly(): layer = keras.layers.RepeatVector(2) x = np.ones((10, 10)) self.assertAllEqual(np.ones((10, 2, 10)), layer(x)) layer = keras.layers.Concatenate() x, y = np.ones((10, 10)), np.ones((10, 10)) self.assertAllEqual(np.ones((10, 20)), layer([x, y])) if __name__ == '__main__': test.main()
#!/usr/bin/env python #Copyright (C) 2011 by Benedict Paten (benedictpaten@gmail.com) # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. import os import re import subprocess import time import sys from Queue import Queue, Empty from threading import Thread from sonLib.bioio import logger from sonLib.bioio import system from jobTree.batchSystems.abstractBatchSystem import AbstractBatchSystem from jobTree.src.master import getParasolResultsFileName from jobTree.batchSystems.multijob import MultiTarget class MemoryString: def __init__(self, string): if string[-1] == 'K' or string[-1] == 'M' or string[-1] == 'G': self.unit = string[-1] self.val = float(string[:-1]) else: self.unit = 'B' self.val = float(string) self.bytes = self.byteVal() def __str__(self): if self.unit != 'B': return str(val) + unit else: return str(val) def byteVal(self): if self.unit == 'B': return self.val elif self.unit == 'K': return self.val * 1024 elif self.unit == 'M': return self.val * 1048576 elif self.unit == 'G': return self.val * 1073741824 def __cmp__(self, other): return cmp(self.bytes, other.bytes) def prepareQsub(cpu, mem): qsubline = ["qsub","-b","y","-terse","-j" ,"y", "-cwd", "-o", "/dev/null", "-e", "/dev/null", "-v", "LD_LIBRARY_PATH=%s" % os.environ["LD_LIBRARY_PATH"]] reqline = list() if cpu is not None: reqline.append("p="+str(cpu)) if mem is not None: reqline.append("vf="+str(mem/ 1024)+"K") reqline.append("h_vmem="+str(mem/ 1024)+"K") if len(reqline) > 0: qsubline.extend(["-hard","-l", ",".join(reqline)]) return qsubline def qsub(qsubline): logger.debug("**"+" ".join(qsubline)) process = subprocess.Popen(qsubline, stdout=subprocess.PIPE) result = int(process.stdout.readline().strip().split('.')[0]) logger.debug("Got the job id: %s" % (str(result))) return result def getjobexitcode(sgeJobID): job, task = sgeJobID args = ["qacct", "-j", str(job)] if task is not None: args.extend(["-t", str(task)]) process = subprocess.Popen(args, stdout = subprocess.PIPE,stderr = subprocess.STDOUT) for line in process.stdout: if line.startswith("failed") and int(line.split()[1]) == 1: return 1 elif line.startswith("exit_status"): return int(line.split()[1]) return None class Worker(Thread): def __init__(self, newJobsQueue, updatedJobsQueue, killQueue, killedJobsQueue, boss): Thread.__init__(self) self.newJobsQueue = newJobsQueue self.updatedJobsQueue = updatedJobsQueue self.killQueue = killQueue self.killedJobsQueue = killedJobsQueue self.waitingJobs = list() self.runningJobs = set() self.boss = boss self.allocatedCpus = dict() self.sgeJobIDs = dict() def getRunningJobIDs(self): times = {} currentjobs = dict((self.sgeJobIDs[x], x) for x in self.runningJobs) process = subprocess.Popen(["qstat"], stdout = subprocess.PIPE) stdout, stderr = process.communicate() for currline in stdout.split('\n'): items = curline.strip().split() if ((len(items) > 9 and (items[0],items[9]) in currentjobs) or (items[0], None) in currentjobs) and items[4] == 'r': jobstart = " ".join(items[5:7]) jobstart = time.mktime(time.strptime(jobstart,"%m/%d/%Y %H:%M:%S")) times[currentjobs[(items[0],items[9])]] = time.time() - jobstart return times def getSgeID(self, jobID): if not jobID in self.sgeJobIDs: RuntimeError("Unknown jobID, could not be converted") (job,task) = self.sgeJobIDs[jobID] if task is None: return str(job) else: return str(job) + "." + str(task) def forgetJob(self, jobID): self.runningJobs.remove(jobID) del self.allocatedCpus[jobID] del self.sgeJobIDs[jobID] def killJobs(self): # Load hit list: killList = list() while not self.killQueue.empty(): killList.append(self.killQueue.get()) # Do the dirty job for jobID in list(killList): if jobID in self.runningJobs: process = subprocess.Popen(["qdel", self.getSgeID(jobID)]) else: if jobID in self.waitingJobs: self.waitingJobs.remove(jobID) self.killedJobsQueue.put(jobID) killList.remove(jobID) # Wait to confirm the kill while len(killList) > 0: for jobID in list(killList): if getjobexitcode(self.sgeJobIDs[jobID]) is not None: self.killedJobsQueue.put(jobID) killList.remove(jobID) self.forgetJob(jobID) if len(killList) > 0: logger.critical("Tried to kill some jobs, but something happened and they are still going, so I'll try again") time.sleep(5) def createJobs(self): # Load new job ids: while not self.newJobsQueue.empty(): self.waitingJobs.append(self.newJobsQueue.get()) # Launch jobs as necessary: while len(self.waitingJobs) > 0 and sum(self.allocatedCpus.values()) < int(self.boss.maxCpus): jobID, cpu, memory, command = self.waitingJobs.pop(0) qsubline = prepareQsub(cpu, memory) + [command] sgeJobID = qsub(qsubline) self.sgeJobIDs[jobID] = (sgeJobID, None) self.runningJobs.add(jobID) self.allocatedCpus[jobID] = cpu def checkOnJobs(self): for jobID in list(self.runningJobs): exit = getjobexitcode(self.sgeJobIDs[jobID]) if exit is not None: self.updatedJobsQueue.put((jobID, exit)) self.forgetJob(jobID) def run(self): while True: self.killJobs() self.createJobs() self.checkOnJobs() time.sleep(10) class GridengineBatchSystem(AbstractBatchSystem): """The interface for gridengine. """ @classmethod def getDisplayNames(cls): """ Names used to select this batch system. """ return ["gridengine","gridEngine"] def __init__(self, config, maxCpus, maxMemory): AbstractBatchSystem.__init__(self, config, maxCpus, maxMemory) #Call the parent constructor self.gridengineResultsFile = getParasolResultsFileName(config.attrib["job_tree"]) #Reset the job queue and results (initially, we do this again once we've killed the jobs) self.gridengineResultsFileHandle = open(self.gridengineResultsFile, 'w') self.gridengineResultsFileHandle.close() #We lose any previous state in this file, and ensure the files existence self.currentjobs = set() self.obtainSystemConstants() self.nextJobID = 0 self.newJobsQueue = Queue() self.updatedJobsQueue = Queue() self.killQueue = Queue() self.killedJobsQueue = Queue() self.worker = Worker(self.newJobsQueue, self.updatedJobsQueue, self.killQueue, self.killedJobsQueue, self) self.worker.setDaemon(True) self.worker.start() def __des__(self): #Closes the file handle associated with the results file. self.gridengineResultsFileHandle.close() #Close the results file, cos were done. def issueJob(self, command, memory, cpu): self.checkResourceRequest(memory, cpu) jobID = self.nextJobID self.nextJobID += 1 self.currentjobs.add(jobID) self.newJobsQueue.put((jobID, cpu, memory, command)) logger.debug("Issued the job command: %s with job id: %s " % (command, str(jobID))) return jobID def killJobs(self, jobIDs): """Kills the given jobs, represented as Job ids, then checks they are dead by checking they are not in the list of issued jobs. """ for jobID in jobIDs: self.killQueue.put(jobID) killList = set(jobIDs) while len(killList) > 0: while True: i = self.getFromQueueSafely(self.killedJobsQueue, maxWait) if i is not None: killList.remove(jobID) self.currentjobs.remove(jobID) else: break if len(killList) > 0: time.sleep(5) def getIssuedJobIDs(self): """Gets the list of jobs issued to SGE. """ return list(self.currentjobs) def getRunningJobIDs(self): return self.worker.getRunningJobIDs() def getUpdatedJob(self, maxWait): i = self.getFromQueueSafely(self.updatedJobsQueue, maxWait) if i == None: return None jobID, retcode = i self.updatedJobsQueue.task_done() self.currentjobs.remove(jobID) return i def getWaitDuration(self): """We give parasol a second to catch its breath (in seconds) """ return 0.0 def getRescueJobFrequency(self): """Parasol leaks jobs, but rescuing jobs involves calls to parasol list jobs and pstat2, making it expensive. We allow this every 10 minutes.. """ return 1800 #Half an hour def obtainSystemConstants(self): p = subprocess.Popen(["qhost"], stdout = subprocess.PIPE,stderr = subprocess.STDOUT) line = p.stdout.readline() items = line.strip().split() num_columns = len(items) cpu_index = None mem_index = None for i in range(num_columns): if items[i] == 'NCPU': cpu_index = i elif items[i] == 'MEMTOT': mem_index = i if cpu_index is None or mem_index is None: RuntimeError("qhost command does not return NCPU or MEMTOT columns") p.stdout.readline() self.maxCPU = 0 self.maxMEM = MemoryString("0") for line in p.stdout: items = line.strip().split() if len(items) < num_columns: RuntimeError("qhost output has a varying number of columns") if items[cpu_index] != '-' and items[cpu_index] > self.maxCPU: self.maxCPU = items[cpu_index] if items[mem_index] != '-' and MemoryString(items[mem_index]) > self.maxMEM: self.maxMEM = MemoryString(items[mem_index]) if self.maxCPU is 0 or self.maxMEM is 0: RuntimeError("qhost returns null NCPU or MEMTOT info") def main(): pass def _test(): import doctest return doctest.testmod() if __name__ == '__main__': _test() main()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import constants import json class Topology: """ Represents the topology provided by the Cloud Controller """ def __init__(self): self.service_map = {} """ :type : dict[str, Service] """ self.initialized = False """ :type : bool """ self.json_str = None """ :type : str """ def get_services(self): """ Provides the list of services on the topology :return: The list of Service objects :rtype: list[Service] """ return self.service_map.values() def get_service(self, service_name): """ Provides the service information for the given service name :param str service_name: service name to be retrieved :return: Service object of the service, None if the provided service name is invalid :rtype: Service """ if service_name in self.service_map: return self.service_map[service_name] return None def add_service(self, service): """ Adds a service to the list of services on the topology :param Service service: :return: void """ self.service_map[service.service_name] = service def add_services(self, services): """ :param list[Service] services: :return: void """ for service in services: self.add_service(service) def remove_service(self, service_name): """ Removes the service of the provided service name :param str service_name: :return: void """ if service_name in self.service_map: self.service_map.pop(service_name) def service_exists(self, service_name): """ Checks if the service of the provided service name exists :param str service_name: :return: True if the service exists, False if otherwise :rtype: bool """ return service_name in self.service_map def clear(self): """ Clears the service information list :return: void """ self.service_map = {} def __str__(self): """ to string override :return: """ return "Topology [serviceMap= %r , initialized= %r ]" % (self.service_map, self.initialized) class Service: """ Represents a service on the topology """ def __init__(self, service_name, service_type): self.service_name = service_name """ :type : str """ self.service_type = service_type """ :type : str """ self.cluster_id_cluster_map = {} """ :type : dict[str, Cluster] """ self.port_map = {} """ :type : dict[str, Port] """ self.properties = {} """ :type : dict[str, str] """ def get_clusters(self): """ Provides the list of clusters in the particular service :return: The list of Cluster objects :rtype: list[Cluster] """ return self.cluster_id_cluster_map.values() def add_cluster(self, cluster): """ Adds a cluster to the service :param Cluster cluster: the cluster to be added :return: void """ self.cluster_id_cluster_map[cluster.cluster_id] = cluster def remove_cluster(self, cluster_id): if cluster_id in self.cluster_id_cluster_map: self.cluster_id_cluster_map.pop(cluster_id) def cluster_exists(self, cluster_id): """ Checks if the cluster with the given cluster id exists for ther service :param str cluster_id: :return: True if the cluster for the given cluster id exists, False if otherwise :rtype: bool """ return cluster_id in self.cluster_id_cluster_map def get_cluster(self, cluster_id): """ Provides the Cluster information for the provided cluster id :param str cluster_id: the cluster id to search for :return: Cluster object for the given cluster id, None if the cluster id is invalid :rtype: Cluster """ if cluster_id in self.cluster_id_cluster_map: return self.cluster_id_cluster_map[cluster_id] return None def get_ports(self): """ Returns the list of ports in the particular service :return: The list of Port object :rtype: list[Port] """ return self.port_map.values() def get_port(self, proxy_port): """ Provides the port information for the provided proxy port :param str proxy_port: :return: Port object for the provided port, None if port is invalid :rtype: Port """ if proxy_port in self.port_map: return self.port_map[proxy_port] return None def add_port(self, port): self.port_map[port.proxy] = port def add_ports(self, ports): for port in ports: self.add_port(port) class Cluster: """ Represents a cluster for a service """ def __init__(self, service_name="", cluster_id="", deployment_policy_name="", autoscale_policy_name=""): self.service_name = service_name """ :type : str """ self.cluster_id = cluster_id """ :type : str """ self.deployment_policy_name = deployment_policy_name """ :type : str """ self.autoscale_policy_name = autoscale_policy_name """ :type : str """ self.hostnames = [] """ :type : list[str] """ self.member_map = {} """ :type : dict[str, Member] """ self.tenant_range = None """ :type : str """ self.is_lb_cluster = False """ :type : bool """ self.is_kubernetes_cluster = False """ :type : bool """ # self.status = None # """ :type : str """ self.load_balancer_algorithm_name = None """ :type : str """ self.properties = {} """ :type : dict[str, str] """ self.member_list_json = None """ :type : str """ self.app_id = "" """ :type : str """ self.kubernetesService_map = {} """ :type : dict[str, KubernetesService] """ # Not relevant to cartridge agent # self.instance_id_instance_context_map = {} # """ :type : dict[str, ClusterInstance] """ def add_hostname(self, hostname): self.hostnames.append(hostname) def set_tenant_range(self, tenant_range): Cluster.validate_tenant_range(tenant_range) self.tenant_range = tenant_range def get_members(self): """ Provides the list of member information in the cluster :return: The list of Member object :rtype: list[Member] """ return self.member_map.values() def get_kubernetesServices(self): """ Provides the list of kubernetes Services in the cluster :return: The list of KubernetesService object :rtype: list[KubernetesService] """ return self.kubernetesService_map.values() def add_kubernetesService(self, kubernetesService): self.kubernetesService_map[kubernetesService.id] = kubernetesService def add_member(self, member): self.member_map[member.member_id] = member def remove_member(self, member_id): if self.member_exists(member_id): self.member_map.pop(member_id) def get_member(self, member_id): """ Provides the member information for the provided member id :param str member_id: :return: Member object for the provided member id, None if member id is invalid :rtype: Member """ if self.member_exists(member_id): return self.member_map[member_id] return None def member_exists(self, member_id): """ Checks if the member for the provided member id exists in this cluster :param str member_id: member id to be searched :return: True if the member exists, False if otherwise :rtype: bool """ return member_id in self.member_map def __str__(self): return "Cluster [serviceName=" + self.service_name + ", clusterId=" + self.cluster_id \ + ", autoscalePolicyName=" + self.autoscale_policy_name + ", deploymentPolicyName=" \ + self.deployment_policy_name + ", hostNames=" + self.hostnames + ", tenantRange=" + self.tenant_range \ + ", isLbCluster=" + self.is_lb_cluster + ", properties=" + self.properties + "]" def tenant_id_in_range(self, tenant_id): """ Check whether a given tenant id is in tenant range of the cluster. :param str tenant_id: tenant id to be checked :return: True if the tenant id is in tenant id range, False if otherwise :rtype: bool """ if self.tenant_range is None: return False if self.tenant_range == "*": return True else: arr = self.tenant_range.split(constants.TENANT_RANGE_DELIMITER) tenant_start = int(arr[0]) if tenant_start <= tenant_id: tenant_end = arr[1] if tenant_end == "*": return True else: if tenant_id <= int(tenant_end): return True return False @staticmethod def validate_tenant_range(tenant_range): """ Validates the tenant range to be either '*' or a delimeted range of numbers :param str tenant_range: The tenant range string to be validated :return: void if the provided tenant range is valid, RuntimeError if otherwise :exception: RuntimeError if the tenant range is invalid """ valid = False if tenant_range == "*": valid = True else: arr = tenant_range.split(constants.TENANT_RANGE_DELIMITER) if len(arr) == 2: if arr[0].isdigit() and arr[1].isdigit(): valid = True elif arr[0].isdigit() and arr[1] == "*": valid = True if not valid: raise RuntimeError("Tenant range %r is not valid" % tenant_range) class Member: """ Represents a member on a particular cluster """ def __init__(self, service_name="", cluster_id="", network_partition_id="", partition_id="", member_id="", cluster_instance_id=""): self.service_name = service_name """ :type : str """ self.cluster_id = cluster_id """ :type : str """ self.network_partition_id = network_partition_id """ :type : str """ self.cluster_instance_id = cluster_instance_id """ :type : str """ self.partition_id = partition_id """ :type : str """ self.member_id = member_id """ :type : str """ self.port_map = {} """ :type : dict[str, Port] """ self.init_time = None """ :type : int """ self.member_public_ips = None """ :type : str """ self.member_default_public_ip = None """ :type : str """ self.status = None """ :type : str """ self.member_private_ips = None """ :type : str """ self.member_default_private_ip = None """ :type : str """ self.properties = {} """ :type : dict[str, str] """ self.lb_cluster_id = None """ :type : str """ self.json_str = None """ :type : str """ def is_active(self): """ Checks if the member is in active state :return: True if active, False if otherwise :rtype: bool """ return self.status == MemberStatus.Active def get_ports(self): """ Provides the list of the ports in the member :return: List of Port objects :rtype: list[Port] """ return self.port_map.values() def get_port(self, proxy): """ Provides the port information for the given port id :param str proxy: The port id :return: Port object of the provided port id, None if otherwise :rtype: Port """ if proxy in self.port_map: return self.port_map[proxy] return None def add_port(self, port): self.port_map[port.proxy] = port def add_ports(self, ports): for port in ports: self.add_port(port) def to_json(self): return "{memberId: " + self.member_id + ", status: " + self.status + "}" class KubernetesService: """ Represents a kubernetes service on a particular cluster """ def __init__(self, id, portalIP, protocol, port, containerPort, serviceType, portName): self.id = id """ :type : str """ self.portalIP = portalIP """ :type : str """ self.protocol = protocol """ :type : str """ self.port = port """ :type : str """ self.containerPort = containerPort """ :type : str """ self.serviceType = serviceType """ :type : str """ self.portName = portName """ :type : str """ self.publicIPs = [] """ :type : list[str] """ def add_public_ips(self, public_ip): self.publicIPs.append(public_ip) class Port: """ Represents a port on a particular member """ def __init__(self, protocol, value, proxy): self.protocol = protocol """ :type : str """ self.value = value """ :type : str """ self.proxy = proxy """ :type : str """ def __str__(self): return "Port [protocol=%r, value=%r proxy=%r]" % (self.protocol, self.value, self.proxy) class ServiceType: """ ServiceType enum """ SingleTenant = 1 MultiTenant = 2 class ClusterStatus: """ ClusterStatus enum """ Created = 1 In_Maintenance = 2 Removed = 3 class MemberStatus: """ MemberStatus enum """ Created = "Created" Initialized = "Initialized" Starting = "Starting" Active = "Active" In_Maintenance = "In_Maintenance" ReadyToShutDown = "ReadyToShutDown" Suspended = "Suspended" Terminated = "Terminated" class TopologyContext: """ Handles and maintains a model of the topology provided by the Cloud Controller """ topology = Topology() initialized = False @staticmethod def get_topology(): if TopologyContext.topology is None: TopologyContext.topology = Topology() return TopologyContext.topology @staticmethod def update(topology): TopologyContext.topology = topology class Tenant: """ Object type representing the tenant details of a single tenant """ def __init__(self, tenant_id, tenant_domain): self.tenant_id = tenant_id """ :type : int """ self.tenant_domain = tenant_domain """ :type : str """ self.service_name_subscription_map = {} """ :type : dict[str, Subscription] """ def get_subscription(self, service_name): """ Returns the Subscription object related to the provided service name :param str service_name: service name to be retrieved :return: Subscription of the service or None if the service name doesn't exist :rtype: Subscription """ if service_name in self.service_name_subscription_map: return self.service_name_subscription_map[service_name] return None def is_subscribed(self, service_name): """ Checks if the given service name has a subscription from this tenant :param str service_name: name of the service to check :return: True if the tenant is subscribed to the given service name, False if not :rtype: bool """ return service_name in self.service_name_subscription_map def add_subscription(self, subscription): """ Adds a subscription information entry on the subscription list for this tenant :param Subscription subscription: Subscription information to be added :return: void :rtype: void """ self.service_name_subscription_map[subscription.service_name] = subscription def remove_subscription(self, service_name): """ Removes the specified subscription details from the subscription list :param str service_name: The service name of the subscription to be removed :return: void :rtype: void """ if service_name in self.service_name_subscription_map: self.service_name_subscription_map.pop(service_name) class Subscription: """ Subscription information of a particular subscription to a service """ def __init__(self, service_name, cluster_ids): self.service_name = service_name """ :type : str """ self.cluster_ids = cluster_ids """ :type : list[str] """ self.subscription_domain_map = {} """ :type : dict[str, SubscriptionDomain] """ def add_subscription_domain(self, domain_name, application_context): """ Adds a subscription domain :param str domain_name: :param str application_context: :return: void :rtype: void """ self.subscription_domain_map[domain_name] = SubscriptionDomain(domain_name, application_context) def remove_subscription_domain(self, domain_name): """ Removes the subscription domain of the specified domain name :param str domain_name: :return: void :rtype: void """ if domain_name in self.subscription_domain_map: self.subscription_domain_map.pop(domain_name) def subscription_domain_exists(self, domain_name): """ Returns the SubscriptionDomain information of the specified domain name :param str domain_name: :return: SubscriptionDomain :rtype: SubscriptionDomain """ return domain_name in self.subscription_domain_map def get_subscription_domains(self): """ Returns the list of subscription domains of this subscription :return: List of SubscriptionDomain objects :rtype: list[SubscriptionDomain] """ return self.subscription_domain_map.values() class SubscriptionDomain: """ Represents a Subscription Domain """ def __init__(self, domain_name, application_context): self.domain_name = domain_name """ :type : str """ self.application_context = application_context """ :type : str """ class TenantContext: """ Handles and maintains a model of all the information related to tenants within this instance """ tenants = {} initialized = False tenant_domains = {"carbon.super": Tenant(-1234, "carbon.super")} @staticmethod def add_tenant(tenant): TenantContext.tenants[tenant.tenant_id] = tenant TenantContext.tenant_domains[tenant.tenant_domain] = tenant @staticmethod def remove_tenant(tenant_id): if tenant_id in TenantContext.tenants: tenant = TenantContext.get_tenant(tenant_id) TenantContext.tenants.pop(tenant.tenant_id) TenantContext.tenant_domains.pop(tenant.tenant_domain) @staticmethod def update(tenants): for tenant in tenants: TenantContext.add_tenant(tenant) @staticmethod def get_tenant(tenant_id): """ Gets the Tenant object of the provided tenant ID :param int tenant_id: :return: Tenant object of the provided tenant ID :rtype: Tenant """ if tenant_id in TenantContext.tenants: return TenantContext.tenants[tenant_id] return None @staticmethod def get_tenant_by_domain(tenant_domain): """ Gets the Tenant object of the provided tenant domain :param str tenant_domain: :return: Tenant object of the provided tenant domain :rtype: str """ if tenant_domain in TenantContext.tenant_domains: return TenantContext.tenant_domains[tenant_domain] return None
""" Various complex queries that have been problematic in the past. """ import datetime from django.db import models from django.db.models.query import Q class Tag(models.Model): name = models.CharField(max_length=10) parent = models.ForeignKey('self', blank=True, null=True) def __unicode__(self): return self.name class Note(models.Model): note = models.CharField(max_length=100) misc = models.CharField(max_length=10) class Meta: ordering = ['note'] def __unicode__(self): return self.note class ExtraInfo(models.Model): info = models.CharField(max_length=100) note = models.ForeignKey(Note) class Meta: ordering = ['info'] def __unicode__(self): return self.info class Author(models.Model): name = models.CharField(max_length=10) num = models.IntegerField(unique=True) extra = models.ForeignKey(ExtraInfo) def __unicode__(self): return self.name class Item(models.Model): name = models.CharField(max_length=10) created = models.DateTimeField() tags = models.ManyToManyField(Tag, blank=True, null=True) creator = models.ForeignKey(Author) note = models.ForeignKey(Note) class Meta: ordering = ['-note', 'name'] def __unicode__(self): return self.name class Report(models.Model): name = models.CharField(max_length=10) creator = models.ForeignKey(Author, to_field='num') def __unicode__(self): return self.name class Ranking(models.Model): rank = models.IntegerField() author = models.ForeignKey(Author) class Meta: # A complex ordering specification. Should stress the system a bit. ordering = ('author__extra__note', 'author__name', 'rank') def __unicode__(self): return '%d: %s' % (self.rank, self.author.name) class Cover(models.Model): title = models.CharField(max_length=50) item = models.ForeignKey(Item) class Meta: ordering = ['item'] def __unicode__(self): return self.title class Number(models.Model): num = models.IntegerField() def __unicode__(self): return unicode(self.num) # Some funky cross-linked models for testing a couple of infinite recursion # cases. class X(models.Model): y = models.ForeignKey('Y') class Y(models.Model): x1 = models.ForeignKey(X, related_name='y1') # Some models with a cycle in the default ordering. This would be bad if we # didn't catch the infinite loop. class LoopX(models.Model): y = models.ForeignKey('LoopY') class Meta: ordering = ['y'] class LoopY(models.Model): x = models.ForeignKey(LoopX) class Meta: ordering = ['x'] class LoopZ(models.Model): z = models.ForeignKey('self') class Meta: ordering = ['z'] # A model and custom default manager combination. class CustomManager(models.Manager): def get_query_set(self): return super(CustomManager, self).get_query_set().filter(public=True, tag__name='t1') class ManagedModel(models.Model): data = models.CharField(max_length=10) tag = models.ForeignKey(Tag) public = models.BooleanField(default=True) objects = CustomManager() normal_manager = models.Manager() def __unicode__(self): return self.data __test__ = {'API_TESTS':""" >>> t1 = Tag(name='t1') >>> t1.save() >>> t2 = Tag(name='t2', parent=t1) >>> t2.save() >>> t3 = Tag(name='t3', parent=t1) >>> t3.save() >>> t4 = Tag(name='t4', parent=t3) >>> t4.save() >>> t5 = Tag(name='t5', parent=t3) >>> t5.save() >>> n1 = Note(note='n1', misc='foo') >>> n1.save() >>> n2 = Note(note='n2', misc='bar') >>> n2.save() >>> n3 = Note(note='n3', misc='foo') >>> n3.save() Create these out of order so that sorting by 'id' will be different to sorting by 'info'. Helps detect some problems later. >>> e2 = ExtraInfo(info='e2', note=n2) >>> e2.save() >>> e1 = ExtraInfo(info='e1', note=n1) >>> e1.save() >>> a1 = Author(name='a1', num=1001, extra=e1) >>> a1.save() >>> a2 = Author(name='a2', num=2002, extra=e1) >>> a2.save() >>> a3 = Author(name='a3', num=3003, extra=e2) >>> a3.save() >>> a4 = Author(name='a4', num=4004, extra=e2) >>> a4.save() >>> time1 = datetime.datetime(2007, 12, 19, 22, 25, 0) >>> time2 = datetime.datetime(2007, 12, 19, 21, 0, 0) >>> time3 = datetime.datetime(2007, 12, 20, 22, 25, 0) >>> time4 = datetime.datetime(2007, 12, 20, 21, 0, 0) >>> i1 = Item(name='one', created=time1, creator=a1, note=n3) >>> i1.save() >>> i1.tags = [t1, t2] >>> i2 = Item(name='two', created=time2, creator=a2, note=n2) >>> i2.save() >>> i2.tags = [t1, t3] >>> i3 = Item(name='three', created=time3, creator=a2, note=n3) >>> i3.save() >>> i4 = Item(name='four', created=time4, creator=a4, note=n3) >>> i4.save() >>> i4.tags = [t4] >>> r1 = Report(name='r1', creator=a1) >>> r1.save() >>> r2 = Report(name='r2', creator=a3) >>> r2.save() Ordering by 'rank' gives us rank2, rank1, rank3. Ordering by the Meta.ordering will be rank3, rank2, rank1. >>> rank1 = Ranking(rank=2, author=a2) >>> rank1.save() >>> rank2 = Ranking(rank=1, author=a3) >>> rank2.save() >>> rank3 = Ranking(rank=3, author=a1) >>> rank3.save() >>> c1 = Cover(title="first", item=i4) >>> c1.save() >>> c2 = Cover(title="second", item=i2) >>> c2.save() >>> n1 = Number(num=4) >>> n1.save() >>> n2 = Number(num=8) >>> n2.save() >>> n3 = Number(num=12) >>> n3.save() Bug #1050 >>> Item.objects.filter(tags__isnull=True) [<Item: three>] >>> Item.objects.filter(tags__id__isnull=True) [<Item: three>] Bug #1801 >>> Author.objects.filter(item=i2) [<Author: a2>] >>> Author.objects.filter(item=i3) [<Author: a2>] >>> Author.objects.filter(item=i2) & Author.objects.filter(item=i3) [<Author: a2>] Bug #2306 Checking that no join types are "left outer" joins. >>> query = Item.objects.filter(tags=t2).query >>> query.LOUTER not in [x[2] for x in query.alias_map.values()] True >>> Item.objects.filter(Q(tags=t1)).order_by('name') [<Item: one>, <Item: two>] >>> Item.objects.filter(Q(tags=t1)).filter(Q(tags=t2)) [<Item: one>] >>> Item.objects.filter(Q(tags=t1)).filter(Q(creator__name='fred')|Q(tags=t2)) [<Item: one>] Each filter call is processed "at once" against a single table, so this is different from the previous example as it tries to find tags that are two things at once (rather than two tags). >>> Item.objects.filter(Q(tags=t1) & Q(tags=t2)) [] >>> Item.objects.filter(Q(tags=t1), Q(creator__name='fred')|Q(tags=t2)) [] >>> qs = Author.objects.filter(ranking__rank=2, ranking__id=rank1.id) >>> list(qs) [<Author: a2>] >>> qs.query.count_active_tables() 2 >>> qs = Author.objects.filter(ranking__rank=2).filter(ranking__id=rank1.id) >>> qs.query.count_active_tables() 3 Bug #4464 >>> Item.objects.filter(tags=t1).filter(tags=t2) [<Item: one>] >>> Item.objects.filter(tags__in=[t1, t2]).distinct().order_by('name') [<Item: one>, <Item: two>] >>> Item.objects.filter(tags__in=[t1, t2]).filter(tags=t3) [<Item: two>] Bug #2080, #3592 >>> Author.objects.filter(item__name='one') | Author.objects.filter(name='a3') [<Author: a1>, <Author: a3>] >>> Author.objects.filter(Q(item__name='one') | Q(name='a3')) [<Author: a1>, <Author: a3>] >>> Author.objects.filter(Q(name='a3') | Q(item__name='one')) [<Author: a1>, <Author: a3>] >>> Author.objects.filter(Q(item__name='three') | Q(report__name='r3')) [<Author: a2>] Bug #4289 A slight variation on the above theme: restricting the choices by the lookup constraints. >>> Number.objects.filter(num__lt=4) [] >>> Number.objects.filter(num__gt=8, num__lt=12) [] >>> Number.objects.filter(num__gt=8, num__lt=13) [<Number: 12>] >>> Number.objects.filter(Q(num__lt=4) | Q(num__gt=8, num__lt=12)) [] >>> Number.objects.filter(Q(num__gt=8, num__lt=12) | Q(num__lt=4)) [] >>> Number.objects.filter(Q(num__gt=8) & Q(num__lt=12) | Q(num__lt=4)) [] >>> Number.objects.filter(Q(num__gt=7) & Q(num__lt=12) | Q(num__lt=4)) [<Number: 8>] Bug #6074 Merging two empty result sets shouldn't leave a queryset with no constraints (which would match everything). >>> Author.objects.filter(Q(id__in=[])) [] >>> Author.objects.filter(Q(id__in=[])|Q(id__in=[])) [] Bug #1878, #2939 >>> Item.objects.values('creator').distinct().count() 3 # Create something with a duplicate 'name' so that we can test multi-column # cases (which require some tricky SQL transformations under the covers). >>> xx = Item(name='four', created=time1, creator=a2, note=n1) >>> xx.save() >>> Item.objects.exclude(name='two').values('creator', 'name').distinct().count() 4 >>> Item.objects.exclude(name='two').extra(select={'foo': '%s'}, select_params=(1,)).values('creator', 'name', 'foo').distinct().count() 4 >>> Item.objects.exclude(name='two').extra(select={'foo': '%s'}, select_params=(1,)).values('creator', 'name').distinct().count() 4 >>> xx.delete() Bug #2253 >>> q1 = Item.objects.order_by('name') >>> q2 = Item.objects.filter(id=i1.id) >>> q1 [<Item: four>, <Item: one>, <Item: three>, <Item: two>] >>> q2 [<Item: one>] >>> (q1 | q2).order_by('name') [<Item: four>, <Item: one>, <Item: three>, <Item: two>] >>> (q1 & q2).order_by('name') [<Item: one>] # FIXME: This is difficult to fix and very much an edge case, so punt for now. # # This is related to the order_by() tests, below, but the old bug exhibited # # itself here (q2 was pulling too many tables into the combined query with the # # new ordering, but only because we have evaluated q2 already). # >>> len((q1 & q2).order_by('name').query.tables) # 1 >>> q1 = Item.objects.filter(tags=t1) >>> q2 = Item.objects.filter(note=n3, tags=t2) >>> q3 = Item.objects.filter(creator=a4) >>> ((q1 & q2) | q3).order_by('name') [<Item: four>, <Item: one>] Bugs #4088, #4306 >>> Report.objects.filter(creator=1001) [<Report: r1>] >>> Report.objects.filter(creator__num=1001) [<Report: r1>] >>> Report.objects.filter(creator__id=1001) [] >>> Report.objects.filter(creator__id=a1.id) [<Report: r1>] >>> Report.objects.filter(creator__name='a1') [<Report: r1>] Bug #4510 >>> Author.objects.filter(report__name='r1') [<Author: a1>] Bug #5324, #6704 >>> Item.objects.filter(tags__name='t4') [<Item: four>] >>> Item.objects.exclude(tags__name='t4').order_by('name').distinct() [<Item: one>, <Item: three>, <Item: two>] >>> Item.objects.exclude(tags__name='t4').order_by('name').distinct().reverse() [<Item: two>, <Item: three>, <Item: one>] >>> Author.objects.exclude(item__name='one').distinct().order_by('name') [<Author: a2>, <Author: a3>, <Author: a4>] # Excluding across a m2m relation when there is more than one related object # associated was problematic. >>> Item.objects.exclude(tags__name='t1').order_by('name') [<Item: four>, <Item: three>] >>> Item.objects.exclude(tags__name='t1').exclude(tags__name='t4') [<Item: three>] # Excluding from a relation that cannot be NULL should not use outer joins. >>> query = Item.objects.exclude(creator__in=[a1, a2]).query >>> query.LOUTER not in [x[2] for x in query.alias_map.values()] True Similarly, when one of the joins cannot possibly, ever, involve NULL values (Author -> ExtraInfo, in the following), it should never be promoted to a left outer join. So hte following query should only involve one "left outer" join (Author -> Item is 0-to-many). >>> qs = Author.objects.filter(id=a1.id).filter(Q(extra__note=n1)|Q(item__note=n3)) >>> len([x[2] for x in qs.query.alias_map.values() if x[2] == query.LOUTER]) 1 The previous changes shouldn't affect nullable foreign key joins. >>> Tag.objects.filter(parent__isnull=True).order_by('name') [<Tag: t1>] >>> Tag.objects.exclude(parent__isnull=True).order_by('name') [<Tag: t2>, <Tag: t3>, <Tag: t4>, <Tag: t5>] >>> Tag.objects.exclude(Q(parent__name='t1') | Q(parent__isnull=True)).order_by('name') [<Tag: t4>, <Tag: t5>] >>> Tag.objects.exclude(Q(parent__isnull=True) | Q(parent__name='t1')).order_by('name') [<Tag: t4>, <Tag: t5>] >>> Tag.objects.exclude(Q(parent__parent__isnull=True)).order_by('name') [<Tag: t4>, <Tag: t5>] >>> Tag.objects.filter(~Q(parent__parent__isnull=True)).order_by('name') [<Tag: t4>, <Tag: t5>] Bug #2091 >>> t = Tag.objects.get(name='t4') >>> Item.objects.filter(tags__in=[t]) [<Item: four>] Combining querysets built on different models should behave in a well-defined fashion. We raise an error. >>> Author.objects.all() & Tag.objects.all() Traceback (most recent call last): ... AssertionError: Cannot combine queries on two different base models. >>> Author.objects.all() | Tag.objects.all() Traceback (most recent call last): ... AssertionError: Cannot combine queries on two different base models. Bug #3141 >>> Author.objects.extra(select={'foo': '1'}).count() 4 >>> Author.objects.extra(select={'foo': '%s'}, select_params=(1,)).count() 4 Bug #2400 >>> Author.objects.filter(item__isnull=True) [<Author: a3>] >>> Tag.objects.filter(item__isnull=True) [<Tag: t5>] Bug #2496 >>> Item.objects.extra(tables=['queries_author']).select_related().order_by('name')[:1] [<Item: four>] Bug #2076 # Ordering on related tables should be possible, even if the table is not # otherwise involved. >>> Item.objects.order_by('note__note', 'name') [<Item: two>, <Item: four>, <Item: one>, <Item: three>] # Ordering on a related field should use the remote model's default ordering as # a final step. >>> Author.objects.order_by('extra', '-name') [<Author: a2>, <Author: a1>, <Author: a4>, <Author: a3>] # Using remote model default ordering can span multiple models (in this case, # Cover is ordered by Item's default, which uses Note's default). >>> Cover.objects.all() [<Cover: first>, <Cover: second>] # If you're not careful, it's possible to introduce infinite loops via default # ordering on foreign keys in a cycle. We detect that. >>> LoopX.objects.all() Traceback (most recent call last): ... FieldError: Infinite loop caused by ordering. >>> LoopZ.objects.all() Traceback (most recent call last): ... FieldError: Infinite loop caused by ordering. # ... but you can still order in a non-recursive fashion amongst linked fields # (the previous test failed because the default ordering was recursive). >>> LoopX.objects.all().order_by('y__x__y__x__id') [] # If the remote model does not have a default ordering, we order by its 'id' # field. >>> Item.objects.order_by('creator', 'name') [<Item: one>, <Item: three>, <Item: two>, <Item: four>] # Cross model ordering is possible in Meta, too. >>> Ranking.objects.all() [<Ranking: 3: a1>, <Ranking: 2: a2>, <Ranking: 1: a3>] >>> Ranking.objects.all().order_by('rank') [<Ranking: 1: a3>, <Ranking: 2: a2>, <Ranking: 3: a1>] # Ordering by a many-valued attribute (e.g. a many-to-many or reverse # ForeignKey) is legal, but the results might not make sense. That isn't # Django's problem. Garbage in, garbage out. >>> Item.objects.all().order_by('tags', 'id') [<Item: one>, <Item: two>, <Item: one>, <Item: two>, <Item: four>] # If we replace the default ordering, Django adjusts the required tables # automatically. Item normally requires a join with Note to do the default # ordering, but that isn't needed here. >>> qs = Item.objects.order_by('name') >>> qs [<Item: four>, <Item: one>, <Item: three>, <Item: two>] >>> len(qs.query.tables) 1 # Ordering of extra() pieces is possible, too and you can mix extra fields and # model fields in the ordering. >>> Ranking.objects.extra(tables=['django_site'], order_by=['-django_site.id', 'rank']) [<Ranking: 1: a3>, <Ranking: 2: a2>, <Ranking: 3: a1>] >>> qs = Ranking.objects.extra(select={'good': 'case when rank > 2 then 1 else 0 end'}) >>> [o.good for o in qs.extra(order_by=('-good',))] == [True, False, False] True >>> qs.extra(order_by=('-good', 'id')) [<Ranking: 3: a1>, <Ranking: 2: a2>, <Ranking: 1: a3>] # Despite having some extra aliases in the query, we can still omit them in a # values() query. >>> qs.values('id', 'rank').order_by('id') [{'id': 1, 'rank': 2}, {'id': 2, 'rank': 1}, {'id': 3, 'rank': 3}] Bugs #2874, #3002 >>> qs = Item.objects.select_related().order_by('note__note', 'name') >>> list(qs) [<Item: two>, <Item: four>, <Item: one>, <Item: three>] # This is also a good select_related() test because there are multiple Note # entries in the SQL. The two Note items should be different. >>> qs[0].note, qs[0].creator.extra.note (<Note: n2>, <Note: n1>) Bug #3037 >>> Item.objects.filter(Q(creator__name='a3', name='two')|Q(creator__name='a4', name='four')) [<Item: four>] Bug #5321, #7070 Ordering columns must be included in the output columns. Note that this means results that might otherwise be distinct are not (if there are multiple values in the ordering cols), as in this example. This isn't a bug; it's a warning to be careful with the selection of ordering columns. >>> Note.objects.values('misc').distinct().order_by('note', '-misc') [{'misc': u'foo'}, {'misc': u'bar'}, {'misc': u'foo'}] Bug #4358 If you don't pass any fields to values(), relation fields are returned as "foo_id" keys, not "foo". For consistency, you should be able to pass "foo_id" in the fields list and have it work, too. We actually allow both "foo" and "foo_id". # The *_id version is returned by default. >>> 'note_id' in ExtraInfo.objects.values()[0] True # You can also pass it in explicitly. >>> ExtraInfo.objects.values('note_id') [{'note_id': 1}, {'note_id': 2}] # ...or use the field name. >>> ExtraInfo.objects.values('note') [{'note': 1}, {'note': 2}] Bug #5261 >>> Note.objects.exclude(Q()) [<Note: n1>, <Note: n2>, <Note: n3>] Bug #3045, #3288 Once upon a time, select_related() with circular relations would loop infinitely if you forgot to specify "depth". Now we set an arbitrary default upper bound. >>> X.objects.all() [] >>> X.objects.select_related() [] Bug #3739 The all() method on querysets returns a copy of the queryset. >>> q1 = Item.objects.order_by('name') >>> id(q1) == id(q1.all()) False Bug #2902 Parameters can be given to extra_select, *if* you use a SortedDict. (First we need to know which order the keys fall in "naturally" on your system, so we can put things in the wrong way around from normal. A normal dict would thus fail.) >>> from django.utils.datastructures import SortedDict >>> s = [('a', '%s'), ('b', '%s')] >>> params = ['one', 'two'] >>> if {'a': 1, 'b': 2}.keys() == ['a', 'b']: ... s.reverse() ... params.reverse() # This slightly odd comparison works aorund the fact that PostgreSQL will # return 'one' and 'two' as strings, not Unicode objects. It's a side-effect of # using constants here and not a real concern. >>> d = Item.objects.extra(select=SortedDict(s), select_params=params).values('a', 'b')[0] >>> d == {'a': u'one', 'b': u'two'} True # Order by the number of tags attached to an item. >>> l = Item.objects.extra(select={'count': 'select count(*) from queries_item_tags where queries_item_tags.item_id = queries_item.id'}).order_by('-count') >>> [o.count for o in l] [2, 2, 1, 0] Bug #6154 Multiple filter statements are joined using "AND" all the time. >>> Author.objects.filter(id=a1.id).filter(Q(extra__note=n1)|Q(item__note=n3)) [<Author: a1>] >>> Author.objects.filter(Q(extra__note=n1)|Q(item__note=n3)).filter(id=a1.id) [<Author: a1>] Bug #6981 >>> Tag.objects.select_related('parent').order_by('name') [<Tag: t1>, <Tag: t2>, <Tag: t3>, <Tag: t4>, <Tag: t5>] Bug #6180, #6203 -- dates with limits and/or counts >>> Item.objects.count() 4 >>> Item.objects.dates('created', 'month').count() 1 >>> Item.objects.dates('created', 'day').count() 2 >>> len(Item.objects.dates('created', 'day')) 2 >>> Item.objects.dates('created', 'day')[0] datetime.datetime(2007, 12, 19, 0, 0) Bug #7087 -- dates with extra select columns >>> Item.objects.dates('created', 'day').extra(select={'a': 1}) [datetime.datetime(2007, 12, 19, 0, 0), datetime.datetime(2007, 12, 20, 0, 0)] Test that parallel iterators work. >>> qs = Tag.objects.all() >>> i1, i2 = iter(qs), iter(qs) >>> i1.next(), i1.next() (<Tag: t1>, <Tag: t2>) >>> i2.next(), i2.next(), i2.next() (<Tag: t1>, <Tag: t2>, <Tag: t3>) >>> i1.next() <Tag: t3> >>> qs = X.objects.all() >>> bool(qs) False >>> bool(qs) False We can do slicing beyond what is currently in the result cache, too. ## FIXME!! This next test causes really weird PostgreSQL behaviour, but it's ## only apparent much later when the full test suite runs. I don't understand ## what's going on here yet. ## ## # We need to mess with the implemenation internals a bit here to decrease the ## # cache fill size so that we don't read all the results at once. ## >>> from django.db.models import query ## >>> query.ITER_CHUNK_SIZE = 2 ## >>> qs = Tag.objects.all() ## ## # Fill the cache with the first chunk. ## >>> bool(qs) ## True ## >>> len(qs._result_cache) ## 2 ## ## # Query beyond the end of the cache and check that it is filled out as required. ## >>> qs[4] ## <Tag: t5> ## >>> len(qs._result_cache) ## 5 ## ## # But querying beyond the end of the result set will fail. ## >>> qs[100] ## Traceback (most recent call last): ## ... ## IndexError: ... Bug #7045 -- extra tables used to crash SQL construction on the second use. >>> qs = Ranking.objects.extra(tables=['django_site']) >>> s = qs.query.as_sql() >>> s = qs.query.as_sql() # test passes if this doesn't raise an exception. Bug #7098 -- Make sure semi-deprecated ordering by related models syntax still works. >>> Item.objects.values('note__note').order_by('queries_note.note', 'id') [{'note__note': u'n2'}, {'note__note': u'n3'}, {'note__note': u'n3'}, {'note__note': u'n3'}] Bug #7096 -- Make sure exclude() with multiple conditions continues to work. >>> Tag.objects.filter(parent=t1, name='t3').order_by('name') [<Tag: t3>] >>> Tag.objects.exclude(parent=t1, name='t3').order_by('name') [<Tag: t1>, <Tag: t2>, <Tag: t4>, <Tag: t5>] >>> Item.objects.exclude(tags__name='t1', name='one').order_by('name').distinct() [<Item: four>, <Item: three>, <Item: two>] >>> Item.objects.filter(name__in=['three', 'four']).exclude(tags__name='t1').order_by('name') [<Item: four>, <Item: three>] More twisted cases, involving nested negations. >>> Item.objects.exclude(~Q(tags__name='t1', name='one')) [<Item: one>] >>> Item.objects.filter(~Q(tags__name='t1', name='one'), name='two') [<Item: two>] >>> Item.objects.exclude(~Q(tags__name='t1', name='one'), name='two') [<Item: four>, <Item: one>, <Item: three>] Bug #7095 Updates that are filtered on the model being updated are somewhat tricky to get in MySQL. This exercises that case. >>> mm = ManagedModel.objects.create(data='mm1', tag=t1, public=True) >>> ManagedModel.objects.update(data='mm') """}
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A batched replay buffer of nests of Tensors which can be sampled uniformly. - Each add assumes tensors have batch_size as first dimension, and will store each element of the batch in an offset segment, so that each batch dimension has its own contiguous memory. Within batch segments, behaves as a circular buffer. The get_next function returns 'ids' in addition to the data. This is not really needed for the batched replay buffer, but is returned to be consistent with the API for a priority replay buffer, which needs the ids to update priorities. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import gin import numpy as np import tensorflow as tf from tf_agents.replay_buffers import replay_buffer from tf_agents.replay_buffers import table from tf_agents.specs import tensor_spec from tf_agents.utils import common from tf_agents.utils import nest_utils BufferInfo = collections.namedtuple('BufferInfo', ['ids', 'probabilities']) @gin.configurable class TFUniformReplayBuffer(replay_buffer.ReplayBuffer): """A TFUniformReplayBuffer with batched adds and uniform sampling.""" def __init__(self, data_spec, batch_size, max_length=1000, scope='TFUniformReplayBuffer', device='cpu:*', table_fn=table.Table, dataset_drop_remainder=False, dataset_window_shift=None, stateful_dataset=False): """Creates a TFUniformReplayBuffer. The TFUniformReplayBuffer stores episodes in `B == batch_size` blocks of size `L == max_length`, with total frame capacity `C == L * B`. Storage looks like: ``` block1 ep1 frame1 frame2 ... ep2 frame1 frame2 ... <L frames total> block2 ep1 frame1 frame2 ... ep2 frame1 frame2 ... <L frames total> ... blockB ep1 frame1 frame2 ... ep2 frame1 frame2 ... <L frames total> ``` Multiple episodes may be stored within a given block, up to `max_length` frames total. In practice, new episodes will overwrite old ones as the block rolls over its `max_length`. Args: data_spec: A TensorSpec or a list/tuple/nest of TensorSpecs describing a single item that can be stored in this buffer. batch_size: Batch dimension of tensors when adding to buffer. max_length: The maximum number of items that can be stored in a single batch segment of the buffer. scope: Scope prefix for variables and ops created by this class. device: A TensorFlow device to place the Variables and ops. table_fn: Function to create tables `table_fn(data_spec, capacity)` that can read/write nested tensors. dataset_drop_remainder: If `True`, then when calling `as_dataset` with arguments `single_deterministic_pass=True` and `sample_batch_size is not None`, the final batch will be dropped if it does not contain exactly `sample_batch_size` items. This is helpful for static shape inference as the resulting tensors will always have leading dimension `sample_batch_size` instead of `None`. dataset_window_shift: Window shift used when calling `as_dataset` with arguments `single_deterministic_pass=True` and `num_steps is not None`. This determines how the resulting frames are windowed. If `None`, then there is no overlap created between frames and each frame is seen exactly once. For example, if `max_length=5`, `num_steps=2`, `sample_batch_size=None`, and `dataset_window_shift=None`, then the datasets returned will have frames `{[0, 1], [2, 3], [4]}`. If `dataset_window_shift is not None`, then windows are created with a window overlap of `dataset_window_shift` and you will see each frame up to `num_steps` times. For example, if `max_length=5`, `num_steps=2`, `sample_batch_size=None`, and `dataset_window_shift=1`, then the datasets returned will have windows of shifted repeated frames: `{[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]}`. For more details, see the documentation of `tf.data.Dataset.window`, specifically for the `shift` argument. The default behavior is to not overlap frames (`dataset_window_shift=None`) but users often want to see all combinations of frame sequences, in which case `dataset_window_shift=1` is the appropriate value. stateful_dataset: whether the dataset contains stateful ops or not. """ self._batch_size = batch_size self._max_length = max_length capacity = self._batch_size * self._max_length super(TFUniformReplayBuffer, self).__init__( data_spec, capacity, stateful_dataset) self._id_spec = tensor_spec.TensorSpec([], dtype=tf.int64, name='id') self._capacity_value = np.int64(self._capacity) self._batch_offsets = ( tf.range(self._batch_size, dtype=tf.int64) * self._max_length) self._scope = scope self._device = device self._table_fn = table_fn self._dataset_drop_remainder = dataset_drop_remainder self._dataset_window_shift = dataset_window_shift with tf.device(self._device), tf.compat.v1.variable_scope(self._scope): self._capacity = tf.constant(capacity, dtype=tf.int64) self._data_table = table_fn(self._data_spec, self._capacity_value) self._id_table = table_fn(self._id_spec, self._capacity_value) self._last_id = common.create_variable('last_id', -1) self._last_id_cs = tf.CriticalSection(name='last_id') def variables(self): return (self._data_table.variables() + self._id_table.variables() + [self._last_id]) @property def device(self): return self._device @property def table_fn(self): return self._table_fn @property def scope(self): return self._scope # Methods defined in ReplayBuffer base class def _num_frames(self): num_items_single_batch_segment = self._get_last_id() + 1 total_frames = num_items_single_batch_segment * self._batch_size return tf.minimum(total_frames, self._capacity) def _add_batch(self, items): """Adds a batch of items to the replay buffer. Args: items: A tensor or list/tuple/nest of tensors representing a batch of items to be added to the replay buffer. Each element of `items` must match the data_spec of this class. Should be shape [batch_size, data_spec, ...] Returns: An op that adds `items` to the replay buffer. Raises: ValueError: If called more than once. """ nest_utils.assert_same_structure(items, self._data_spec) # Calling get_outer_rank here will validate that all items have the same # outer rank. This was not usually an issue, but now that it's easier to # call this from an eager context it's easy to make the mistake. nest_utils.get_outer_rank( tf.nest.map_structure(tf.convert_to_tensor, items), self._data_spec) with tf.device(self._device), tf.name_scope(self._scope): id_ = self._increment_last_id() write_rows = self._get_rows_for_id(id_) write_id_op = self._id_table.write(write_rows, id_) write_data_op = self._data_table.write(write_rows, items) return tf.group(write_id_op, write_data_op) def _get_next(self, sample_batch_size=None, num_steps=None, time_stacked=True): """Returns an item or batch of items sampled uniformly from the buffer. Sample transitions uniformly from replay buffer. When sub-episodes are desired, specify num_steps, although note that for the returned items to truly be sub-episodes also requires that experience collection be single-threaded. Args: sample_batch_size: (Optional.) An optional batch_size to specify the number of items to return. See get_next() documentation. num_steps: (Optional.) Optional way to specify that sub-episodes are desired. See get_next() documentation. time_stacked: Bool, when true and num_steps > 1 get_next on the buffer would return the items stack on the time dimension. The outputs would be [B, T, ..] if sample_batch_size is given or [T, ..] otherwise. Returns: A 2 tuple, containing: - An item, sequence of items, or batch thereof sampled uniformly from the buffer. - BufferInfo NamedTuple, containing: - The items' ids. - The sampling probability of each item. Raises: ValueError: if num_steps is bigger than the capacity. """ with tf.device(self._device), tf.name_scope(self._scope): with tf.name_scope('get_next'): min_val, max_val = _valid_range_ids( self._get_last_id(), self._max_length, num_steps) rows_shape = () if sample_batch_size is None else (sample_batch_size,) assert_nonempty = tf.compat.v1.assert_greater( max_val, min_val, message='TFUniformReplayBuffer is empty. Make sure to add items ' 'before sampling the buffer.') with tf.control_dependencies([assert_nonempty]): num_ids = max_val - min_val probability = tf.cond( pred=tf.equal(num_ids, 0), true_fn=lambda: 0., false_fn=lambda: 1. / tf.cast(num_ids * self._batch_size, # pylint: disable=g-long-lambda tf.float32)) ids = tf.random.uniform( rows_shape, minval=min_val, maxval=max_val, dtype=tf.int64) # Move each id sample to a random batch. batch_offsets = tf.random.uniform( rows_shape, minval=0, maxval=self._batch_size, dtype=tf.int64) batch_offsets *= self._max_length if num_steps is None: rows_to_get = tf.math.mod(ids, self._max_length) + batch_offsets data = self._data_table.read(rows_to_get) data_ids = self._id_table.read(rows_to_get) else: if time_stacked: step_range = tf.range(num_steps, dtype=tf.int64) if sample_batch_size: step_range = tf.reshape(step_range, [1, num_steps]) step_range = tf.tile(step_range, [sample_batch_size, 1]) ids = tf.tile(tf.expand_dims(ids, -1), [1, num_steps]) batch_offsets = batch_offsets[:, None] else: step_range = tf.reshape(step_range, [num_steps]) rows_to_get = tf.math.mod(step_range + ids, self._max_length) + batch_offsets data = self._data_table.read(rows_to_get) data_ids = self._id_table.read(rows_to_get) else: data = [] data_ids = [] for step in range(num_steps): steps_to_get = tf.math.mod(ids + step, self._max_length) + batch_offsets items = self._data_table.read(steps_to_get) data.append(items) data_ids.append(self._id_table.read(steps_to_get)) data = tuple(data) data_ids = tuple(data_ids) probabilities = tf.fill(rows_shape, probability) buffer_info = BufferInfo(ids=data_ids, probabilities=probabilities) return data, buffer_info @gin.configurable( 'tf_agents.tf_uniform_replay_buffer.TFUniformReplayBuffer.as_dataset') def as_dataset(self, sample_batch_size=None, num_steps=None, num_parallel_calls=None, single_deterministic_pass=False): return super(TFUniformReplayBuffer, self).as_dataset( sample_batch_size, num_steps, num_parallel_calls, single_deterministic_pass=single_deterministic_pass) def _as_dataset(self, sample_batch_size=None, num_steps=None, sequence_preprocess_fn=None, num_parallel_calls=None): """Creates a dataset that returns entries from the buffer in shuffled order. Args: sample_batch_size: (Optional.) An optional batch_size to specify the number of items to return. See as_dataset() documentation. num_steps: (Optional.) Optional way to specify that sub-episodes are desired. See as_dataset() documentation. sequence_preprocess_fn: (Optional.) Preprocessing function for sequences before they are sharded into subsequences of length `num_steps` and batched. num_parallel_calls: (Optional.) Number elements to process in parallel. See as_dataset() documentation. Returns: A dataset of type tf.data.Dataset, elements of which are 2-tuples of: - An item or sequence of items or batch thereof - Auxiliary info for the items (i.e. ids, probs). Raises: NotImplementedError: If `sequence_preprocess_fn != None` is passed in. """ if sequence_preprocess_fn is not None: raise NotImplementedError('sequence_preprocess_fn is not supported.') def get_next(_): return self.get_next(sample_batch_size, num_steps, time_stacked=True) dataset = tf.data.experimental.Counter().map( get_next, num_parallel_calls=num_parallel_calls) return dataset def _single_deterministic_pass_dataset(self, sample_batch_size=None, num_steps=None, sequence_preprocess_fn=None, num_parallel_calls=None): """Creates a dataset that returns entries from the buffer in fixed order. Args: sample_batch_size: (Optional.) An optional batch_size to specify the number of items to return. See as_dataset() documentation. num_steps: (Optional.) Optional way to specify that sub-episodes are desired. See as_dataset() documentation. sequence_preprocess_fn: (Optional.) Preprocessing function for sequences before they are sharded into subsequences of length `num_steps` and batched. num_parallel_calls: (Optional.) Number elements to process in parallel. See as_dataset() documentation. Returns: A dataset of type tf.data.Dataset, elements of which are 2-tuples of: - An item or sequence of items or batch thereof - Auxiliary info for the items (i.e. ids, probs). Raises: ValueError: If `dataset_drop_remainder` is set, and `sample_batch_size > self.batch_size`. In this case all data will be dropped. NotImplementedError: If `sequence_preprocess_fn != None` is passed in. """ if sequence_preprocess_fn is not None: raise NotImplementedError('sequence_preprocess_fn is not supported.') static_size = tf.get_static_value(sample_batch_size) static_num_steps = tf.get_static_value(num_steps) static_self_batch_size = tf.get_static_value(self._batch_size) static_self_max_length = tf.get_static_value(self._max_length) if (self._dataset_drop_remainder and static_size is not None and static_self_batch_size is not None and static_size > static_self_batch_size): raise ValueError( 'sample_batch_size ({}) > self.batch_size ({}) and ' 'dataset_drop_remainder is True. In ' 'this case, ALL data will be dropped by the deterministic dataset.' .format(static_size, static_self_batch_size)) if (self._dataset_drop_remainder and static_num_steps is not None and static_self_max_length is not None and static_num_steps > static_self_max_length): raise ValueError( 'num_steps_size ({}) > self.max_length ({}) and ' 'dataset_drop_remainder is True. In ' 'this case, ALL data will be dropped by the deterministic dataset.' .format(static_num_steps, static_self_max_length)) def get_row_ids(_): """Passed to Dataset.range(self._batch_size).flat_map(.), gets row ids.""" with tf.device(self._device), tf.name_scope(self._scope): with tf.name_scope('single_deterministic_pass_dataset'): # Here we pass num_steps=None because _valid_range_ids uses # num_steps to determine a hard stop when sampling num_steps starting # from the returned indices. But in our case, we want all the indices # and we'll use TF dataset's window() mechanism to get # num_steps-length blocks. The window mechanism handles this stuff # for us. min_frame_offset, max_frame_offset = _valid_range_ids( self._get_last_id(), self._max_length, num_steps=None) tf.compat.v1.assert_less( min_frame_offset, max_frame_offset, message='TFUniformReplayBuffer is empty. Make sure to add items ' 'before asking the buffer for data.') min_max_frame_range = tf.range(min_frame_offset, max_frame_offset) window_shift = self._dataset_window_shift def group_windows(ds_, drop_remainder=self._dataset_drop_remainder): return ds_.batch(num_steps, drop_remainder=drop_remainder) if sample_batch_size is None: def row_ids(b): # Create a vector of shape [num_frames] and slice it along each # frame. ids = tf.data.Dataset.from_tensor_slices( b * self._max_length + min_max_frame_range) if num_steps is not None: ids = (ids.window(num_steps, shift=window_shift) .flat_map(group_windows)) return ids return tf.data.Dataset.range(self._batch_size).flat_map(row_ids) else: def batched_row_ids(batch): # Create a matrix of indices shaped [num_frames, batch_size] # and slice it along each frame row to get groups of batches # for frame 0, frame 1, ... return tf.data.Dataset.from_tensor_slices( (min_max_frame_range[:, tf.newaxis] + batch * self._max_length)) indices_ds = ( tf.data.Dataset.range(self._batch_size) .batch(sample_batch_size, drop_remainder=self._dataset_drop_remainder) .flat_map(batched_row_ids)) if num_steps is not None: # We have sequences of num_frames rows shaped [sample_batch_size]. # Window and group these to rows of shape # [num_steps, sample_batch_size], then # transpose them to get index tensors of shape # [sample_batch_size, num_steps]. def group_windows_drop_remainder(d): return group_windows(d, drop_remainder=True) indices_ds = (indices_ds.window(num_steps, shift=window_shift) .flat_map(group_windows_drop_remainder) .map(tf.transpose)) return indices_ds # Get our indices as a dataset; each time we reinitialize the iterator we # update our min/max id bounds from the state of the replay buffer. ds = tf.data.Dataset.range(1).flat_map(get_row_ids) def get_data(id_): with tf.device(self._device), tf.name_scope(self._scope): with tf.name_scope('single_deterministic_pass_dataset'): data = self._data_table.read(id_ % self._capacity) buffer_info = BufferInfo(ids=id_, probabilities=()) return (data, buffer_info) # Deterministic even though num_parallel_calls > 1. Operations are # run in parallel but then the results are returned in original stream # order. ds = ds.map(get_data, num_parallel_calls=num_parallel_calls) return ds def _gather_all(self): """Returns all the items in buffer, shape [batch_size, timestep, ...]. Returns: All the items currently in the buffer. """ with tf.device(self._device), tf.name_scope(self._scope): with tf.name_scope('gather_all'): # Make ids, repeated over batch_size. Shape [batch_size, num_ids, ...]. min_val, max_val = _valid_range_ids( self._get_last_id(), self._max_length) ids = tf.range(min_val, max_val) ids = tf.stack([ids] * self._batch_size) rows = tf.math.mod(ids, self._max_length) # Make batch_offsets, shape [batch_size, 1], then add to rows. batch_offsets = tf.expand_dims( tf.range(self._batch_size, dtype=tf.int64) * self._max_length, 1) rows += batch_offsets # Expected shape is [batch_size, max_length, ...]. data = self._data_table.read(rows) return data def _clear(self, clear_all_variables=False): """Return op that resets the contents of replay buffer. Args: clear_all_variables: boolean indicating if all variables should be cleared. By default, table contents will be unlinked from replay buffer, but values are unmodified for efficiency. Set `clear_all_variables=True` to reset all variables including Table contents. Returns: op that clears or unlinks the replay buffer contents. """ table_vars = self._data_table.variables() + self._id_table.variables() def _init_vars(): assignments = [self._last_id.assign(-1)] if clear_all_variables: assignments += [v.assign(tf.zeros_like(v)) for v in table_vars] return tf.group(*assignments, name='clear') return self._last_id_cs.execute(_init_vars) # Helper functions. def _increment_last_id(self, increment=1): """Increments the last_id in a thread safe manner. Args: increment: amount to increment last_id by. Returns: An op that increments the last_id. """ def _assign_add(): return self._last_id.assign_add(increment).value() return self._last_id_cs.execute(_assign_add) def _get_last_id(self): def last_id(): return self._last_id.value() return self._last_id_cs.execute(last_id) def _get_rows_for_id(self, id_): """Make a batch_size length list of tensors, with row ids for write.""" id_mod = tf.math.mod(id_, self._max_length) rows = self._batch_offsets + id_mod return rows def _valid_range_ids(last_id, max_length, num_steps=None): """Returns the [min_val, max_val) range of ids. When num_steps is provided, [min_val, max_val+num_steps) are also valid ids. Args: last_id: The last id added to the buffer. max_length: The max length of each batch segment in the buffer. num_steps: Optional way to specify that how many ids need to be valid. Returns: A tuple (min_id, max_id) for the range [min_id, max_id) of valid ids. """ if num_steps is None: num_steps = tf.constant(1, tf.int64) min_id_not_full = tf.constant(0, dtype=tf.int64) max_id_not_full = tf.maximum(last_id + 1 - num_steps + 1, 0) min_id_full = last_id + 1 - max_length max_id_full = last_id + 1 - num_steps + 1 return (tf.where(last_id < max_length, min_id_not_full, min_id_full), tf.where(last_id < max_length, max_id_not_full, max_id_full))
# coding: utf-8 """ This module defines the Node class that is inherited by Task, Work and Flow objects. """ from __future__ import division, print_function, unicode_literals import sys import os import time import collections import abc import six import numpy as np from pprint import pprint from atomicfile import AtomicFile from pydispatch import dispatcher from monty.termcolor import colored from monty.serialization import loadfn from monty.string import is_string from monty.io import FileLock from monty.collections import AttrDict, Namespace from monty.functools import lazy_property from monty.json import MSONable from pymatgen.serializers.json_coders import json_pretty_dump, pmg_serialize from .utils import File, Directory, irdvars_for_ext, abi_extensions import logging logger = logging.getLogger(__name__) __author__ = "Matteo Giantomassi" __copyright__ = "Copyright 2013, The Materials Project" __version__ = "0.1" __maintainer__ = "Matteo Giantomassi" def _2attrs(item): return item if item is None or isinstance(list, tuple) else (item,) class Status(int): """This object is an integer representing the status of the `Node`.""" # Possible status of the node. See monty.termocolor for the meaning of color, on_color and attrs. _STATUS_INFO = [ #(value, name, color, on_color, attrs) (1, "Initialized", None , None, None), # Node has been initialized (2, "Locked", None , None, None), # Task is locked an must be explicitly unlocked by an external subject (Work). (3, "Ready", None , None, None), # Node is ready i.e. all the depencies of the node have status S_OK (4, "Submitted", "blue" , None, None), # Node has been submitted (The `Task` is running or we have started to finalize the Work) (5, "Running", "magenta", None, None), # Node is running. (6, "Done", None , None, None), # Node done, This does not imply that results are ok or that the calculation completed successfully (7, "AbiCritical", "red" , None, None), # Node raised an Error by ABINIT. (8, "QCritical", "red" , "on_white", None), # Node raised an Error by submitting submission script, or by executing it (9, "Unconverged", "red" , "on_yellow", None), # This usually means that an iterative algorithm didn't converge. (10, "Error", "red" , None, None), # Node raised an unrecoverable error, usually raised when an attempt to fix one of other types failed. (11, "Completed", "green" , None, None), # Execution completed successfully. ] _STATUS2STR = collections.OrderedDict([(t[0], t[1]) for t in _STATUS_INFO]) _STATUS2COLOR_OPTS = collections.OrderedDict([(t[0], {"color": t[2], "on_color": t[3], "attrs": _2attrs(t[4])}) for t in _STATUS_INFO]) def __repr__(self): return "<%s: %s, at %s>" % (self.__class__.__name__, str(self), id(self)) def __str__(self): """String representation.""" return self._STATUS2STR[self] @classmethod def as_status(cls, obj): """Convert obj into Status.""" if obj is None: return None return obj if isinstance(obj, cls) else cls.from_string(obj) @classmethod def from_string(cls, s): """Return a `Status` instance from its string representation.""" for num, text in cls._STATUS2STR.items(): if text == s: return cls(num) else: raise ValueError("Wrong string %s" % s) @classmethod def all_status_strings(cls): """List of strings with all possible values status.""" return [info[1] for info in cls._STATUS_INFO] @property def is_critical(self): """True if status is critical.""" return str(self) in ("AbiCritical", "QCritical", "Uncoverged", "Error") @property def color_opts(self): return self._STATUS2COLOR_OPTS[self] @property def colored(self): """Return colorized text used to print the status if the stream supports it.""" return colored(str(self), **self.color_opts) class Dependency(object): """ This object describes the dependencies among the nodes of a calculation. A `Dependency` consists of a `Node` that produces a list of products (files) that are used by the other nodes (`Task` or `Work`) to start the calculation. One usually creates the object by calling work.register Example: # Register the SCF task in work. scf_task = work.register(scf_strategy) # Register the NSCF calculation and its dependency on the SCF run via deps. nscf_task = work.register(nscf_strategy, deps={scf_task: "DEN"}) """ def __init__(self, node, exts=None): """ Args: node: The task or the worfklow associated to the dependency or string with a filepath. exts: Extensions of the output files that are needed for running the other tasks. """ self._node = Node.as_node(node) if exts and is_string(exts): exts = exts.split() # Extract extensions. self.exts = [e for e in exts if not e.startswith("@")] # Save getters self.getters = [e for e in exts if e.startswith("@")] #if self.getters: print(self.getters) def __hash__(self): return hash(self._node) def __repr__(self): return "node %s will produce: %s " % (repr(self.node), repr(self.exts)) def __str__(self): return "node %s will produce: %s " % (str(self.node), str(self.exts)) @property def info(self): return str(self.node) @property def node(self): """The :class:`Node` associated to the dependency.""" return self._node @property def status(self): """The status of the dependency, i.e. the status of the :class:`Node`.""" return self.node.status @lazy_property def products(self): """List of output files produces by self.""" _products = [] for ext in self.exts: prod = Product(ext, self.node.opath_from_ext(ext)) _products.append(prod) return _products def apply_getters(self, task): """ This function is called when we specify the task dependencies with the syntax: deps={node: "@property"} In this case the task has to the get `property` from `node` before starting the calculation. At present, the following properties are supported: - @structure """ if not self.getters: return for getter in self.getters: if getter == "@structure": task.history.info("Getting structure from %s" % self.node) new_structure = self.node.get_final_structure() task._change_structure(new_structure) else: raise ValueError("Wrong getter %s" % getter) def connecting_vars(self): """ Returns a dictionary with the variables that must be added to the input file in order to connect this :class:`Node` to its dependencies. """ vars = {} for prod in self.products: vars.update(prod.connecting_vars()) return vars def get_filepaths_and_exts(self): """Returns the paths of the output files produced by self and its extensions""" filepaths = [prod.filepath for prod in self.products] exts = [prod.ext for prod in self.products] return filepaths, exts class Product(object): """ A product represents an output file produced by ABINIT instance. This file is needed to start another `Task` or another `Work`. """ def __init__(self, ext, path): """ Args: ext: ABINIT file extension path: (asbolute) filepath """ if ext not in abi_extensions(): raise ValueError("Extension %s has not been registered in the internal database" % str(ext)) self.ext = ext self.file = File(path) @classmethod def from_file(cls, filepath): """Build a :class:`Product` instance from a filepath.""" # Find the abinit extension. for i in range(len(filepath)): if filepath[i:] in abi_extensions(): ext = filepath[i:] break else: raise ValueError("Cannot detect abinit extension in %s" % filepath) return cls(ext, filepath) def __str__(self): return "File=%s, Extension=%s, " % (self.file.path, self.ext) @property def filepath(self): """Absolute path of the file.""" return self.file.path def connecting_vars(self): """ Returns a dictionary with the ABINIT variables that must be used to make the code use this file. """ return irdvars_for_ext(self.ext) class GridFsFile(AttrDict): """Information on a file that will stored in the MongoDb gridfs collection.""" def __init__(self, path, fs_id=None, mode="b"): super(GridFsFile, self).__init__(path=path, fs_id=fs_id, mode=mode) class NodeResults(dict, MSONable): """Dictionary used to store the most important results produced by a :class:`Node`.""" JSON_SCHEMA = { "type": "object", "properties": { "node_id": {"type": "integer", "required": True}, "node_finalized": {"type": "boolean", "required": True}, "node_history": {"type": "array", "required": True}, "node_class": {"type": "string", "required": True}, "node_name": {"type": "string", "required": True}, "node_status": {"type": "string", "required": True}, "in": {"type": "object", "required": True, "description": "dictionary with input parameters"}, "out": {"type": "object", "required": True, "description": "dictionary with the output results"}, "exceptions": {"type": "array", "required": True}, "files": {"type": "object", "required": True}, }, } @classmethod def from_node(cls, node): """Initialize an instance of `NodeResults` from a `Node` subclass.""" kwargs = dict( node_id=node.node_id, node_finalized=node.finalized, node_history=list(node.history), node_name=node.name, node_class=node.__class__.__name__, node_status=str(node.status), ) return node.Results(node, **kwargs) def __init__(self, node, **kwargs): super(NodeResults, self).__init__(**kwargs) self.node = node if "in" not in self: self["in"] = Namespace() if "out" not in self: self["out"] = Namespace() if "exceptions" not in self: self["exceptions"] = [] if "files" not in self: self["files"] = Namespace() @property def exceptions(self): return self["exceptions"] @property def gridfs_files(self): """List with the absolute paths of the files to be put in GridFs.""" return self["files"] def register_gridfs_files(self, **kwargs): """ This function registers the files that will be saved in GridFS. kwargs is a dictionary mapping the key associated to the file (usually the extension) to the absolute path. By default, files are assumed to be in binary form, for formatted files one should pass a tuple ("filepath", "t"). Example:: results.register_gridfs(GSR="path/to/GSR.nc", text_file=("/path/to/txt_file", "t")) The GSR file is a binary file, whereas text_file is a text file. """ d = {} for k, v in kwargs.items(): mode = "b" if isinstance(v, (list, tuple)): v, mode = v d[k] = GridFsFile(path=v, mode=mode) self["files"].update(d) return self def push_exceptions(self, *exceptions): for exc in exceptions: newstr = str(exc) if newstr not in self.exceptions: self["exceptions"] += [newstr,] @pmg_serialize def as_dict(self): return self.copy() @classmethod def from_dict(cls, d): return cls({k: v for k, v in d.items() if k not in ("@module", "@class")}) def json_dump(self, filename): json_pretty_dump(self.as_dict(), filename) @classmethod def json_load(cls, filename): return cls.from_dict(loadfn(filename)) def validate_json_schema(self): import validictory d = self.as_dict() try: validictory.validate(d, self.JSON_SCHEMA) return True except ValueError as exc: pprint(d) print(exc) return False def update_collection(self, collection): """ Update a mongodb collection. """ node = self.node flow = node if node.is_flow else node.flow # Build the key used to store the entry in the document. key = node.name if node.is_task: key = "w" + str(node.pos[0]) + "_t" + str(node.pos[1]) elif node.is_work: key = "w" + str(node.pos) db = collection.database # Save files with GridFs first in order to get the ID. if self.gridfs_files: import gridfs fs = gridfs.GridFS(db) for ext, gridfile in self.gridfs_files.items(): logger.info("gridfs: about to put file:", str(gridfile)) # Here we set gridfile.fs_id that will be stored in the mondodb document try: with open(gridfile.path, "r" + gridfile.mode) as f: gridfile.fs_id = fs.put(f, filename=gridfile.path) except IOError as exc: logger.critical(str(exc)) if flow.mongo_id is None: # Flow does not have a mongo_id, allocate doc for the flow and save its id. flow.mongo_id = collection.insert({}) print("Creating flow.mongo_id", flow.mongo_id, type(flow.mongo_id)) # Get the document from flow.mongo_id and update it. doc = collection.find_one({"_id": flow.mongo_id}) if key in doc: raise ValueError("%s is already in doc!" % key) doc[key] = self.as_dict() collection.save(doc) #collection.update({'_id':mongo_id}, {"$set": doc}, upsert=False) def check_spectator(node_method): """ Decorator for :class:`Node` methods. Raise `SpectatorNodeError`. """ from functools import wraps @wraps(node_method) def wrapper(*args, **kwargs): node = args[0] if node.in_spectator_mode: #raise node.SpectatorError("You should not call this method when the node in spectator_mode") #warnings.warn("You should not call %s when the node in spectator_mode" % node_method) import warnings return node_method(*args, **kwargs) return wrapper class NodeError(Exception): """Base Exception raised by :class:`Node` subclasses""" class SpectatorNodeError(NodeError): """ Exception raised by :class:`Node` methods when the node is in spectator mode and we are calling a method with side effects. """ class Node(six.with_metaclass(abc.ABCMeta, object)): """ Abstract base class defining the interface that must be implemented by the nodes of the calculation. Nodes are hashable and can be tested for equality """ Results = NodeResults Error = NodeError SpectatorError = SpectatorNodeError # Possible status of the node. S_INIT = Status.from_string("Initialized") S_LOCKED = Status.from_string("Locked") S_READY = Status.from_string("Ready") S_SUB = Status.from_string("Submitted") S_RUN = Status.from_string("Running") S_DONE = Status.from_string("Done") S_ABICRITICAL = Status.from_string("AbiCritical") S_QCRITICAL = Status.from_string("QCritical") S_UNCONVERGED = Status.from_string("Unconverged") S_ERROR = Status.from_string("Error") S_OK = Status.from_string("Completed") ALL_STATUS = [ S_INIT, S_LOCKED, S_READY, S_SUB, S_RUN, S_DONE, S_ABICRITICAL, S_QCRITICAL, S_UNCONVERGED, S_ERROR, S_OK, ] # Color used to plot the network in networkx color_rgb = (0, 0, 0) def __init__(self): self._in_spectator_mode = False # Node identifier. self._node_id = get_newnode_id() # List of dependencies self._deps = [] # List of files (products) needed by this node. self._required_files = [] # Used to push additional info during the execution. self.history = NodeHistory(maxlen=80) # Actions performed to fix abicritical events. self._corrections = NodeCorrections() # Set to true if the node has been finalized. self._finalized = False self._status = self.S_INIT def __eq__(self, other): if not isinstance(other, Node): return False return self.node_id == other.node_id def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash(self.node_id) def __repr__(self): try: return "<%s, node_id=%s, workdir=%s>" % ( self.__class__.__name__, self.node_id, self.relworkdir) except AttributeError: # this usually happens when workdir has not been initialized return "<%s, node_id=%s, workdir=None>" % (self.__class__.__name__, self.node_id) #def __setattr__(self, name, value): # if self.in_spectator_mode: # raise RuntimeError("You should not call __setattr__ in spectator_mode") # return super(Node, self).__setattr__(name,value) @classmethod def as_node(cls, obj): """ Convert obj into a Node instance. Return: obj if obj is a Node instance, cast obj to :class:`FileNode` instance of obj is a string. None if obj is None """ if isinstance(obj, cls): return obj elif is_string(obj): # Assume filepath. return FileNode(obj) elif obj is None: return obj else: raise TypeError("Don't know how to convert %s to Node instance." % obj) @property def name(self): """ The name of the node (only used for facilitating its identification in the user interface). """ try: return self._name except AttributeError: if self.is_task: try: return self.pos_str except: return os.path.basename(self.workdir) else: return os.path.basename(self.workdir) @property def relworkdir(self): """Return a relative version of the workdir""" try: return os.path.relpath(self.workdir) except OSError: # current working directory may not be defined! return self.workdir def set_name(self, name): """Set the name of the Node.""" self._name = name @property def node_id(self): """Node identifier.""" return self._node_id @check_spectator def set_node_id(self, node_id): """Set the node identifier. Use it carefully!""" self._node_id = node_id @property def finalized(self): """True if the `Node` has been finalized.""" return self._finalized @finalized.setter def finalized(self, boolean): self._finalized = boolean self.history.info("Status set to finalized") @property def in_spectator_mode(self): return self._in_spectator_mode @in_spectator_mode.setter def in_spectator_mode(self, mode): self._in_spectator_mode = bool(mode) #self.history.info("in_spectator_mode set to %s" % mode) @property def corrections(self): """ List of dictionaries with infornation on the actions performed to solve `AbiCritical` Events. Each dictionary contains the `AbinitEvent` who triggered the correction and a human-readable message with the description of the operation performed. """ return self._corrections @property def num_corrections(self): return len(self.corrections) def log_correction(self, event, action): """ This method should be called once we have fixed the problem associated to this event. It adds a new entry in the correction history of the node. Args: event: :class:`AbinitEvent` that triggered the correction. action (str): Human-readable string with info on the action perfomed to solve the problem. """ # TODO: Create CorrectionObject action = str(action) self.history.info(action) self._corrections.append(dict( event=event.as_dict(), action=action, )) @property def is_file(self): """True if this node is a file""" return isinstance(self, FileNode) @property def is_task(self): """True if this node is a Task""" from .tasks import Task return isinstance(self, Task) @property def is_work(self): """True if this node is a Work""" from .works import Work return isinstance(self, Work) @property def is_flow(self): """True if this node is a Flow""" from .flows import Flow return isinstance(self, Flow) @property def deps(self): """ List of :class:`Dependency` objects defining the dependencies of this `Node`. Empty list if this :class:`Node` does not have dependencies. """ return self._deps @check_spectator def add_deps(self, deps): """ Add a list of dependencies to the :class:`Node`. Args: deps: List of :class:`Dependency` objects specifying the dependencies of the node. or dictionary mapping nodes to file extensions e.g. {task: "DEN"} """ if isinstance(deps, collections.Mapping): # Convert dictionary into list of dependencies. deps = [Dependency(node, exts) for node, exts in deps.items()] # We want a list if not isinstance(deps, (list, tuple)): deps = [deps] assert all(isinstance(d, Dependency) for d in deps) # Add the dependencies to the node self._deps.extend(deps) if self.is_work: # The task in the work should inherit the same dependency. for task in self: task.add_deps(deps) @check_spectator def remove_deps(self, deps): """ Remove a list of dependencies from the :class:`Node`. Args: deps: List of :class:`Dependency` objects specifying the dependencies of the node. """ if not isinstance(deps, (list, tuple)): deps = [deps] assert all(isinstance(d, Dependency) for d in deps) self._deps = [d for d in self._deps if d not in deps] if self.is_work: # remove the same list of dependencies from the task in the work for task in self: task.remove_deps(deps) @property def deps_status(self): """Returns a list with the status of the dependencies.""" if not self.deps: return [self.S_OK] return [d.status for d in self.deps] def depends_on(self, other): """True if this node depends on the other node.""" return other in [d.node for d in self.deps] def get_parents(self): """Return the list of nodes in the :class:`Flow` required by this :class:`Node`""" parents = [] for work in self.flow: if self.depends_on(work): parents.append(work) for task in work: if self.depends_on(task): parents.append(task) return parents def get_children(self): """Return the list of nodes in the :class:`Flow` that depends on this :class:`Node`""" children = [] for work in self.flow: if work.depends_on(self): children.append(work) for task in work: if task.depends_on(self): children.append(task) return children def str_deps(self): """Return the string representation of the dependencies of the node.""" lines = [] app = lines.append app("Dependencies of node %s:" % str(self)) for i, dep in enumerate(self.deps): app("%d) %s, status=%s" % (i, dep.info, str(dep.status))) return "\n".join(lines) def set_gc(self, gc): """ Set the garbage collector. """ assert isinstance(gc, GarbageCollector) self._gc = gc @property def gc(self): """ Garbage collector. None if garbage collection is deactivated. Use flow.set_garbage_collector to initialize the object. """ try: return self._gc except AttributeError: #if not self.is_flow and self.flow.gc: return self.flow.gc return None @property def event_handlers(self): """ The list of handlers registered for this node. If the node is not a `Flow` and does not have its own list of `handlers` the handlers registered at the level of the flow are returned. This trick allows one to registered different handlers at the level of the Task for testing purposes. By default, we have a common list of handlers for all the nodes in the flow. This choice facilitates the automatic installation of the handlers when we use callbacks to generate new Works and Tasks! """ if self.is_flow: return self._event_handlers try: return self._event_handlers except AttributeError: return self.flow._event_handlers @check_spectator def install_event_handlers(self, categories=None, handlers=None): """ Install the `EventHandlers for this `Node`. If no argument is provided the default list of handlers is installed. Args: categories: List of categories to install e.g. base + can_change_physics handlers: explicit list of :class:`EventHandler` instances. This is the most flexible way to install handlers. .. note:: categories and handlers are mutually exclusive. """ if categories is not None and handlers is not None: raise ValueError("categories and handlers are mutually exclusive!") from .events import get_event_handler_classes if categories: raise NotImplementedError() handlers = [cls() for cls in get_event_handler_classes(categories=categories)] else: handlers = handlers or [cls() for cls in get_event_handler_classes()] self._event_handlers = handlers def show_event_handlers(self, stream=sys.stdout, verbose=0): """Print to `stream` the event handlers installed for this flow.""" lines = ["List of event handlers installed:"] for handler in self.event_handlers: if verbose: lines.extend(handler.__class__.cls2str().split("\n")) lines.extend(str(handler).split("\n")) stream.write("\n".join(lines)) stream.write("\n") def send_signal(self, signal): """ Send signal from this node to all connected receivers unless the node is in spectator mode. signal -- (hashable) signal value, see `dispatcher` connect for details Return a list of tuple pairs [(receiver, response), ... ] or None if the node is in spectator mode. if any receiver raises an error, the error propagates back through send, terminating the dispatch loop, so it is quite possible to not have all receivers called if a raises an error. """ if self.in_spectator_mode: return None logger.debug("Node %s broadcasts signal %s" % (self, signal)) dispatcher.send(signal=signal, sender=self) ########################## ### Abstract protocol #### ########################## @abc.abstractproperty def status(self): """The status of the `Node`.""" @abc.abstractmethod def check_status(self): """Check the status of the `Node`.""" class FileNode(Node): """ A Node that consists of a file. May be not yet existing Mainly used to connect :class:`Task` objects to external files produced in previous runs. """ color_rgb = np.array((102, 51, 255)) / 255 def __init__(self, filename): super(FileNode, self).__init__() self.filepath = os.path.abspath(filename) # Directories with input|output|temporary data. self.workdir = os.path.dirname(self.filepath) self.indir = Directory(self.workdir) self.outdir = Directory(self.workdir) self.tmpdir = Directory(self.workdir) @property def products(self): return [Product.from_file(self.filepath)] def opath_from_ext(self, ext): return self.filepath @property def status(self): return self.S_OK if os.path.exists(self.filepath) else self.S_ERROR def check_status(self): return self.status def get_results(self, **kwargs): results = super(FileNode, self).get_results(**kwargs) #results.register_gridfs_files(filepath=self.filepath) return results class HistoryRecord(object): """ A `HistoryRecord` instance represents an entry in the :class:`NodeHistory`. `HistoryRecord` instances are created every time something is logged. They contain all the information pertinent to the event being logged. The main information passed in is in msg and args, which are combined using str(msg) % args to create the message field of the record. The record also includes information such as when the record was created, the source line where the logging call was made .. attribute:: levelno Numeric logging level for the message (DEBUG, INFO, WARNING, ERROR, CRITICAL) .. attribute:: levelname Text logging level for the message ("DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL") .. attribute:: pathname Full pathname of the source file where the logging call was issued (if available) .. attribute:: filename Filename portion of pathname .. attribute:: module Module (name portion of filename) .. attribute:: lineno Source line number where the logging call was issued (if available) .. attribute:: func_name Function name .. attribute:: created Time when the HistoryRecord was created (time.time() return value) .. attribute:: asctime Textual time when the HistoryRecord was created .. attribute:: message The result of record.getMessage(), computed just as the record is emitted """ def __init__(self, level, pathname, lineno, msg, args, exc_info, func=None): """ Initialize a logging record with interesting information. """ # # The following statement allows passing of a dictionary as a sole # argument, so that you can do something like # logging.debug("a %(a)d b %(b)s", {'a':1, 'b':2}) # Suggested by Stefan Behnel. # Note that without the test for args[0], we get a problem because # during formatting, we test to see if the arg is present using # 'if self.args:'. If the event being logged is e.g. 'Value is %d' # and if the passed arg fails 'if self.args:' then no formatting # is done. For example, logger.warn('Value is %d', 0) would log # 'Value is %d' instead of 'Value is 0'. # For the use case of passing a dictionary, this should not be a problem. if args and len(args) == 1 and isinstance(args[0], dict) and args[0]: args = args[0] self.args = args self.levelno = level self.pathname = pathname self.msg = msg self.levelname = "FOOBAR" #getLevelName(level) try: self.filename = os.path.basename(pathname) self.module = os.path.splitext(self.filename)[0] except (TypeError, ValueError, AttributeError): self.filename = pathname self.module = "Unknown module" self.exc_info = exc_info self.exc_text = None # used to cache the traceback text self.lineno = lineno self.func_name = func self.created = time.time() self.asctime = time.asctime() # Remove milliseconds i = self.asctime.find(".") if i != -1: self.asctime = self.asctime[:i] def __repr__(self): return '<%s, %s, %s, %s,\n"%s">' % (self.__class__.__name__, self.levelno, self.pathname, self.lineno, self.msg) def __str__(self): return self.get_message(metadata=False) def get_message(self, metadata=False, asctime=True): """ Return the message after merging any user-supplied arguments with the message. Args: metadata: True if function and module name should be added. asctime: True if time string should be added. """ msg = self.msg if is_string(self.msg) else str(self.msg) if self.args: try: msg = msg % self.args except: msg += str(self.args) if asctime: msg = "[" + self.asctime + "] " + msg # Add metadata if metadata: msg += "\nCalled by %s at %s:%s\n" % (self.func_name, self.pathname, self.lineno) return msg @pmg_serialize def as_dict(self): return {'level': self.levelno, 'pathname': self.pathname, 'lineno': self.lineno, 'msg': self.msg, 'args': self.args, 'exc_info': self.exc_info, 'func': self.func_name} @classmethod def from_dict(cls, d): return cls(level=d['level'], pathname=d['pathname'], lineno=int(d['lineno']), msg=d['msg'], args=d['args'], exc_info=d['exc_info'], func=d['func']) class NodeHistory(collections.deque): """Logger-like object""" def __str__(self): return self.to_string() def to_string(self, metadata=False): """Returns a string with the history. Set metadata to True to have info on function and module.""" return "\n".join(rec.get_message(metadata=metadata) for rec in self) def info(self, msg, *args, **kwargs): """Log 'msg % args' with the info severity level""" self._log("INFO", msg, args, kwargs) def warning(self, msg, *args, **kwargs): """Log 'msg % args' with the warning severity level""" self._log("WARNING", msg, args, kwargs) def critical(self, msg, *args, **kwargs): """Log 'msg % args' with the critical severity level""" self._log("CRITICAL", msg, args, kwargs) def _log(self, level, msg, args, exc_info=None, extra=None): """Low-level logging routine which creates a :class:`HistoryRecord`.""" if exc_info and not isinstance(exc_info, tuple): exc_info = sys.exc_info() self.append(HistoryRecord(level, "unknown filename", 0, msg, args, exc_info, func="unknown func")) #from monty.inspect import find_caller, caller_name # FIXME: Rewrite this! It does not work if find_caller is not in the module. #c = find_caller() #print(caller_name(skip=3)) #self.append(HistoryRecord(level, c.filename, c.lineno, msg, args, exc_info, func=c.name)) class NodeCorrections(list): """Iterable storing the correctios performed by the :class:`EventHandler`""" #TODO # Correction should have a human-readable message # and a list of operatins in JSON format (Modder?) so that # we can read them and re-apply the corrections to another task if needed. #def count_event_class(self, event_class): # """ # Return the number of times the event class has been already fixed. # """ # #return len([c for c in self if c["event"]["@class"] == str(event_class)]) #def _find(self, event_class) class GarbageCollector(object): """This object stores information on the """ def __init__(self, exts, policy): self.exts, self.policy = set(exts), policy # The code below initializes a counter from a file when the module is imported # and save the counter's updated value automatically when the program terminates # without relying on the application making an explicit call into this module at termination. _COUNTER = None _COUNTER_FILE = os.path.join(os.getenv("HOME"), ".abinit", "abipy", "nodecounter") def init_counter(): global _COUNTER # Make dir and file if not present. if not os.path.exists(os.path.dirname(_COUNTER_FILE)): os.makedirs(os.path.dirname(_COUNTER_FILE)) if not os.path.exists(_COUNTER_FILE): with open(_COUNTER_FILE, "wt") as fh: fh.write("%d\n" % -1) if _COUNTER is None: with open(_COUNTER_FILE, "r") as fh: _COUNTER = int(fh.read()) def get_newnode_id(): """ Returns a new node identifier used for :class:`Task`, :class:`Work` and :class:`Flow` objects. .. warning: The id is unique inside the same python process so be careful when Works and Tasks are constructed at run-time or when threads are used. """ init_counter() global _COUNTER _COUNTER += 1 return _COUNTER def save_lastnode_id(): """Save the id of the last node created.""" init_counter() with FileLock(_COUNTER_FILE): with AtomicFile(_COUNTER_FILE, mode="w") as fh: fh.write("%d\n" % _COUNTER) # Register function atexit import atexit atexit.register(save_lastnode_id)
# -*- coding: utf-8 -*- # Copyright (c) 2015 Australian Government, Department of the Environment # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ''' Metadata driver for DIMAP imagery B{Format specification}: - U{http://www.spotimage.fr/dimap/spec/documentation/refdoc.htm} @todo: Implement pleiades (dimap v2.0) once gdal fixes dimap driver, http://trac.osgeo.org/gdal/ticket/5018 and http://trac.osgeo.org/gdal/ticket/4826 ''' #format_regex=[r'metadata\.dim$'] #DIMAP #format_regex=[r'\.dim$'] #DIMAP any *.dim format_regex=[r'(?<!vol_list)\.dim$', #DIMAP - any *.dim (excluding vol_list.dim) r'dim_phr.*\.xml$'] #Pleiades image metadata not yet implemented, see #http://trac.osgeo.org/gdal/ticket/5018 and #http://trac.osgeo.org/gdal/ticket/4826 '''Regular expression list of file formats''' #import base dataset modules #import __dataset__ import __default__ # import other modules import sys, os, re, glob, time, math, string from metageta import utilities, geometry from lxml import etree try: from osgeo import gdal from osgeo import gdalconst from osgeo import osr from osgeo import ogr except ImportError: import gdal import gdalconst import osr import ogr gdal.AllRegister() class Dataset(__default__.Dataset): '''Subclass of __default__.Dataset class so we get a load of metadata populated automatically''' def __init__(self,f): if f[:4]=='/vsi': import warnings warnings.warn('DIMAP files in zip/tar archives are not supported') raise NotImplementedError '''Open the dataset''' if not f:f=self.fileinfo['filepath'] self.filelist=[r for r in glob.glob('%s/*'%os.path.dirname(f))] #dom=etree.parse(f) #Takes tooo long to parse the whole file, so just read as far as we need... strxml='' for line in open(f, 'r'): if line.upper().strip()=='<DATA_STRIP>':break else: strxml+=line if not '</Dimap_Document>' in strxml:strxml+='</Dimap_Document>' self._dom=etree.fromstring(strxml) self.dimap_version=map(int, self._dom.xpath('string(//*/METADATA_FORMAT/@version)').split('.')) if self.dimap_version[0]>2: import warnings warnings.warn('DIMAP V%s is not supported'%self.dimap_version[0]) raise NotImplementedError def __getmetadata__(self,f=None): '''Read Metadata for a DIMAP image as GDAL doesn't quite get it all...''' if not f:f=self.fileinfo['filepath'] self.metadata['filetype']='DIMAP / %s'%'.'.join(map(str,self.dimap_version)) if self.dimap_version[0]==1: self.v1(f) elif self.dimap_version[0]==2: self.v2(f) def v1(self,f=None): dom = self._dom self.metadata['sceneid'] = dom.xpath('string(/Dimap_Document/Dataset_Id/DATASET_NAME)') bands=dom.xpath('/Dimap_Document/Spectral_Band_Info/BAND_DESCRIPTION') self.metadata['bands']=','.join([band.xpath('string(.)') for band in bands]) try:__default__.Dataset.__getmetadata__(self, f) #autopopulate basic metadata except geometry.GDALError,err: #Work around reading images with lowercase filenames when #the DATA_FILE_PATH is uppercase # - eg samba filesystems which get converted to lowercase dfp=dom.xpath('/Dimap_Document/Data_Access/Data_File/DATA_FILE_PATH')[0] fn=utilities.encode(dfp.xpath('string(@href)')) #XML is unicode, gdal.Open doesn't like unicode if not os.path.dirname(fn):fn=os.path.join(os.path.dirname(f),fn) exists,img=utilities.exists(fn,True) if exists and not os.path.exists(fn): import tempfile tmpfd,tmpfn=tempfile.mkstemp(suffix='.dim',prefix='metadata') dfp.set('href',img) tmpfo=os.fdopen(tmpfd,'w') tmpfo.write(etree.tostring(dom)) tmpfo.flush() tmpfo.close() cwd=os.path.abspath(os.curdir) tmp=os.path.split(tmpfn) os.chdir(tmp[0]) #CD to the tmp dir so __default__.Dataset.__getmetadata__ doesn't __default__.Dataset.__getmetadata__(self, tmp[1]) gdalmd=self._gdaldataset.GetMetadata() self._gdaldataset=geometry.OpenDataset(img) self._gdaldataset.SetMetadata(gdalmd) os.unlink(tmpfn) os.chdir(cwd) else:raise dates={} for src in dom.xpath('//Scene_Source'): datetime='%sT%s'%(src.xpath('string(IMAGING_DATE)'),src.xpath('string(IMAGING_TIME)')) dts=time.mktime(time.strptime(datetime,utilities.datetimeformat))#ISO 8601 dates[dts]=datetime self.metadata['imgdate']='%s/%s'%(dates[min(dates.keys())],dates[max(dates.keys())]) gdalmd=self._gdaldataset.GetMetadata() self.metadata['satellite']='%s %s' % (gdalmd['MISSION'],gdalmd['MISSION_INDEX']) try:self.metadata['sensor']='%s %s' % (gdalmd['INSTRUMENT'],gdalmd['INSTRUMENT_INDEX']) except:self.metadata['sensor']='%s' % gdalmd['INSTRUMENT'] try:self.metadata['sunelevation'] = float(gdalmd['SUN_ELEVATION']) except:pass try:self.metadata['sunazimuth'] = float(gdalmd['SUN_AZIMUTH']) except:pass try:self.metadata['level'] = gdalmd['PROCESSING_LEVEL'] except:self.metadata['level'] = gdalmd['PRODUCT_TYPE'] self.metadata['viewangle'] = gdalmd.get('VIEWING_ANGLE',gdalmd.get('INCIDENCE_ANGLE','')) #Processing, store in lineage field lineage=[] for step in dom.find('Data_Processing').getchildren(): lineage.append('%s: %s' % (step.tag.replace('_',' '), step.text.replace('_',' '))) self.metadata['lineage']='\n'.join(lineage) def v2(self,f=None): if not f:f=self.fileinfo['filepath'] dom = self._dom self.metadata['sceneid'] = dom.xpath('string(/Dimap_Document/Dataset_Identification/DATASET_NAME)') try: self._gdaldataset=geometry.OpenDataset(f) __default__.Dataset.__getmetadata__(self) #autopopulate basic metadata except: ncols=dom.xpath('number(//*/NCOLS)') nrows=dom.xpath('number(//*/NROWS)') nbands=dom.xpath('number(//*/NBANDS)') nbits=dom.xpath('number(//*/NBITS)') if nbits==16:datatype='UInt16' else:datatype='Byte' if nbands==1: bands=[1] else: bands=[int(b[1:]) for b in [dom.xpath('string(//*/RED_CHANNEL)'), dom.xpath('string(//*/GREEN_CHANNEL)'), dom.xpath('string(//*/BLUE_CHANNEL)')]] self.metadata['bands']=','.join(map(str,bands)) if dom.xpath('string(//*/DATA_FILE_TILES)')=='true': import math ntiles=dom.xpath('number(//*/NTILES)') if dom.xpath('boolean(//*/NTILES_COUNT/@ntiles_x)'): ntiles_x=dom.xpath('number(//*/NTILES_COUNT/@ntiles_x)') ntiles_y=dom.xpath('number(//*/NTILES_COUNT/@ntiles_y)') elif dom.xpath('boolean(//*/NTILES_COUNT/@ntiles_C)'): ntiles_x=dom.xpath('number(//*/NTILES_COUNT/@ntiles_C)') ntiles_y=dom.xpath('number(//*/NTILES_COUNT/@ntiles_R)') tile_cols=math.ceil(ncols/ntiles_x) last_tile_cols=tile_cols-(ntiles_x*tile_cols-ncols) tile_rows=math.ceil(nrows/ntiles_y) last_tile_rows=tile_rows-(ntiles_y*tile_rows-nrows) srcrects,dstrects=[],[] files=[] for df in dom.xpath('//*/Data_File'): col=df.xpath('number(@tile_C)') row=df.xpath('number(@tile_R)') datafile=os.path.join(os.path.dirname(f),df.xpath('string(DATA_FILE_PATH/@href)')) exists,datafile=utilities.exists(datafile,True) #Work around reading images with lowercase filenames when the DATA_FILE_PATH is uppercase # - eg samba filesystems which get converted to lowercase if (row,col)==(1,1):r1c1=datafile srcrect=[0,0,tile_cols,tile_rows] dstrect=[(ntiles_x-1)*tile_cols,(ntiles_y-1)*tile_rows,tile_cols,tile_rows] if col==ntiles_x:#last col srcrect[2]=last_tile_cols dstrect[2]=last_tile_cols if row==ntiles_y:#last row srcrect[3]=last_tile_rows dstrect[3]=last_tile_rows files.append(datafile) srcrects.append(srcrect) dstrects.append(dstrect) self._gdaldataset=geometry.OpenDataset(geometry.CreateMosaicedVRT(files,bands,srcrects,dstrects,ncols,nrows,datatype)) ds=geometry.OpenDataset(r1c1) self._gdaldataset.SetGeoTransform(ds.GetGeoTransform()) self._gdaldataset.SetProjection(ds.GetProjection()) else: datafile=os.path.join(os.path.dirname(f),dom.xpath('string(//*/DATA_FILE_PATH/@href)')) exists,datafile=utilities.exists(datafile,True) self._gdaldataset=geometry.OpenDataset(datafile) __default__.Dataset.__getmetadata__(self) dates={} for src in dom.xpath('//Source_Identification'): datetime='%sT%s'%(src.xpath('string(//*/IMAGING_DATE)'),src.xpath('string(//*/IMAGING_TIME)')[:8]) dts=time.mktime(time.strptime(datetime,utilities.datetimeformat))#ISO 8601 dates[dts]=datetime if len(dates)==1: self.metadata['imgdate']=datetime else: self.metadata['imgdate']='%s/%s'%(dates[min(dates.keys())],dates[max(dates.keys())]) self.metadata['satellite']='%s %s' % (src.xpath('string(//*/MISSION)'),src.xpath('string(//*/MISSION_INDEX)')) try:self.metadata['sensor']='%s %s' % (src.xpath('string(//*/INSTRUMENT)'),src.xpath('string(//*/INSTRUMENT_INDEX)')) except:self.metadata['sensor']='%s' % src.xpath('string(//*/INSTRUMENT)') try: sunangles=dom.xpath('//*/Located_Geometric_Values[LOCATION_TYPE="Center"]/Solar_Incidences')[0] self.metadata['sunelevation'] = sunangles.xpath('number(SUN_ELEVATION)') self.metadata['sunazimuth'] = sunangles.xpath('number(SUN_AZIMUTH)') except:pass try: self.metadata['viewangle'] = dom.xpath('number(//*/Located_Geometric_Values[LOCATION_TYPE="Center"]/Acquisition_Angles/VIEWING_ANGLE)') self.metadata['satelevation'] = dom.xpath('number(//*/Located_Geometric_Values[LOCATION_TYPE="Center"]/Acquisition_Angles/INCIDENCE_ANGLE)') self.metadata['satazimuth'] = dom.xpath('number(//*/Located_Geometric_Values[LOCATION_TYPE="Center"]/Acquisition_Angles/AZIMUTH_ANGLE)') except:pass try:self.metadata['level'] = dom.xpath('string(//*/Processing_Information/Product_Settings/PROCESSING_LEVEL)') except:pass try:self.metadata['resampling'] = dom.xpath('string(//*/Processing_Information/Product_Settings/Sampling_Settings/RESAMPLING_KERNEL)') except:pass self.metadata['metadata']=etree.tostring(dom, pretty_print=True) #Get cloud cover from MASKS/CLD_*_MSK.GML??? def getoverview(self,outfile=None,width=800,format='JPG'): ''' Generate overviews for DIMAP imagery @type outfile: str @param outfile: a filepath to the output overview image. If supplied, format is determined from the file extension @type width: int @param width: image width @type format: str @param format: format to generate overview image, one of ['JPG','PNG','GIF','BMP','TIF']. Not required if outfile is supplied. @rtype: str @return: filepath (if outfile is supplied)/binary image data (if outfile is not supplied) @todo: - Should we do something with the band display order metadata? <Band_Display_Order> <RED_CHANNEL>1</RED_CHANNEL> <GREEN_CHANNEL>2</GREEN_CHANNEL> <BLUE_CHANNEL>3</BLUE_CHANNEL> </Band_Display_Order> ''' from metageta import overviews try: #First check for a browse graphic, no point re-inventing the wheel... f=self.fileinfo['filepath'] #if self.dimap_version[0]==1: # fp=self._dom.xpath('/Dimap_Document/Dataset_Id/DATASET_QL_PATH')[0] #else: # fp=self._dom.xpath('/Dimap_Document/Dataset_Identification/DATASET_QL_PATH')[0] fp=self._dom.xpath('string(//*/DATASET_QL_PATH/@href)') fn=utilities.encode(fp) #XML is unicode, gdal.Open doesn't like unicode browse=os.path.join(os.path.dirname(f),fn) if os.path.exists(browse) and gdal.Open(browse).RasterXSize >= width: return overviews.resize(browse,outfile,width) except:pass return __default__.Dataset.getoverview(self,outfile,width,format)#Do it the slow way...
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from airflow.providers.apache.spark.hooks.spark_jdbc import SparkJDBCHook from airflow.providers.apache.spark.operators.spark_submit import SparkSubmitOperator from airflow.utils.decorators import apply_defaults # pylint: disable=too-many-instance-attributes class SparkJDBCOperator(SparkSubmitOperator): """ This operator extends the SparkSubmitOperator specifically for performing data transfers to/from JDBC-based databases with Apache Spark. As with the SparkSubmitOperator, it assumes that the "spark-submit" binary is available on the PATH. :param spark_app_name: Name of the job (default airflow-spark-jdbc) :type spark_app_name: str :param spark_conn_id: Connection id as configured in Airflow administration :type spark_conn_id: str :param spark_conf: Any additional Spark configuration properties :type spark_conf: dict :param spark_py_files: Additional python files used (.zip, .egg, or .py) :type spark_py_files: str :param spark_files: Additional files to upload to the container running the job :type spark_files: str :param spark_jars: Additional jars to upload and add to the driver and executor classpath :type spark_jars: str :param num_executors: number of executor to run. This should be set so as to manage the number of connections made with the JDBC database :type num_executors: int :param executor_cores: Number of cores per executor :type executor_cores: int :param executor_memory: Memory per executor (e.g. 1000M, 2G) :type executor_memory: str :param driver_memory: Memory allocated to the driver (e.g. 1000M, 2G) :type driver_memory: str :param verbose: Whether to pass the verbose flag to spark-submit for debugging :type verbose: bool :param keytab: Full path to the file that contains the keytab :type keytab: str :param principal: The name of the kerberos principal used for keytab :type principal: str :param cmd_type: Which way the data should flow. 2 possible values: spark_to_jdbc: data written by spark from metastore to jdbc jdbc_to_spark: data written by spark from jdbc to metastore :type cmd_type: str :param jdbc_table: The name of the JDBC table :type jdbc_table: str :param jdbc_conn_id: Connection id used for connection to JDBC database :type jdbc_conn_id: str :param jdbc_driver: Name of the JDBC driver to use for the JDBC connection. This driver (usually a jar) should be passed in the 'jars' parameter :type jdbc_driver: str :param metastore_table: The name of the metastore table, :type metastore_table: str :param jdbc_truncate: (spark_to_jdbc only) Whether or not Spark should truncate or drop and recreate the JDBC table. This only takes effect if 'save_mode' is set to Overwrite. Also, if the schema is different, Spark cannot truncate, and will drop and recreate :type jdbc_truncate: bool :param save_mode: The Spark save-mode to use (e.g. overwrite, append, etc.) :type save_mode: str :param save_format: (jdbc_to_spark-only) The Spark save-format to use (e.g. parquet) :type save_format: str :param batch_size: (spark_to_jdbc only) The size of the batch to insert per round trip to the JDBC database. Defaults to 1000 :type batch_size: int :param fetch_size: (jdbc_to_spark only) The size of the batch to fetch per round trip from the JDBC database. Default depends on the JDBC driver :type fetch_size: int :param num_partitions: The maximum number of partitions that can be used by Spark simultaneously, both for spark_to_jdbc and jdbc_to_spark operations. This will also cap the number of JDBC connections that can be opened :type num_partitions: int :param partition_column: (jdbc_to_spark-only) A numeric column to be used to partition the metastore table by. If specified, you must also specify: num_partitions, lower_bound, upper_bound :type partition_column: str :param lower_bound: (jdbc_to_spark-only) Lower bound of the range of the numeric partition column to fetch. If specified, you must also specify: num_partitions, partition_column, upper_bound :type lower_bound: int :param upper_bound: (jdbc_to_spark-only) Upper bound of the range of the numeric partition column to fetch. If specified, you must also specify: num_partitions, partition_column, lower_bound :type upper_bound: int :param create_table_column_types: (spark_to_jdbc-only) The database column data types to use instead of the defaults, when creating the table. Data type information should be specified in the same format as CREATE TABLE columns syntax (e.g: "name CHAR(64), comments VARCHAR(1024)"). The specified types should be valid spark sql data types. """ # pylint: disable=too-many-arguments,too-many-locals @apply_defaults def __init__(self, spark_app_name='airflow-spark-jdbc', spark_conn_id='spark-default', spark_conf=None, spark_py_files=None, spark_files=None, spark_jars=None, num_executors=None, executor_cores=None, executor_memory=None, driver_memory=None, verbose=False, keytab=None, principal=None, cmd_type='spark_to_jdbc', jdbc_table=None, jdbc_conn_id='jdbc-default', jdbc_driver=None, metastore_table=None, jdbc_truncate=False, save_mode=None, save_format=None, batch_size=None, fetch_size=None, num_partitions=None, partition_column=None, lower_bound=None, upper_bound=None, create_table_column_types=None, *args, **kwargs): super().__init__(*args, **kwargs) self._spark_app_name = spark_app_name self._spark_conn_id = spark_conn_id self._spark_conf = spark_conf self._spark_py_files = spark_py_files self._spark_files = spark_files self._spark_jars = spark_jars self._num_executors = num_executors self._executor_cores = executor_cores self._executor_memory = executor_memory self._driver_memory = driver_memory self._verbose = verbose self._keytab = keytab self._principal = principal self._cmd_type = cmd_type self._jdbc_table = jdbc_table self._jdbc_conn_id = jdbc_conn_id self._jdbc_driver = jdbc_driver self._metastore_table = metastore_table self._jdbc_truncate = jdbc_truncate self._save_mode = save_mode self._save_format = save_format self._batch_size = batch_size self._fetch_size = fetch_size self._num_partitions = num_partitions self._partition_column = partition_column self._lower_bound = lower_bound self._upper_bound = upper_bound self._create_table_column_types = create_table_column_types def execute(self, context): """ Call the SparkSubmitHook to run the provided spark job """ self._hook = SparkJDBCHook( spark_app_name=self._spark_app_name, spark_conn_id=self._spark_conn_id, spark_conf=self._spark_conf, spark_py_files=self._spark_py_files, spark_files=self._spark_files, spark_jars=self._spark_jars, num_executors=self._num_executors, executor_cores=self._executor_cores, executor_memory=self._executor_memory, driver_memory=self._driver_memory, verbose=self._verbose, keytab=self._keytab, principal=self._principal, cmd_type=self._cmd_type, jdbc_table=self._jdbc_table, jdbc_conn_id=self._jdbc_conn_id, jdbc_driver=self._jdbc_driver, metastore_table=self._metastore_table, jdbc_truncate=self._jdbc_truncate, save_mode=self._save_mode, save_format=self._save_format, batch_size=self._batch_size, fetch_size=self._fetch_size, num_partitions=self._num_partitions, partition_column=self._partition_column, lower_bound=self._lower_bound, upper_bound=self._upper_bound, create_table_column_types=self._create_table_column_types ) self._hook.submit_jdbc_job() def on_kill(self): self._hook.on_kill()
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Generates java source files from a mojom.Module.""" import argparse import ast import contextlib import os import re import shutil import tempfile import zipfile from jinja2 import contextfilter import mojom.generate.generator as generator import mojom.generate.module as mojom from mojom.generate.template_expander import UseJinja GENERATOR_PREFIX = 'java' _HEADER_SIZE = 8 _spec_to_java_type = { mojom.BOOL.spec: 'boolean', mojom.DCPIPE.spec: 'org.chromium.mojo.system.DataPipe.ConsumerHandle', mojom.DOUBLE.spec: 'double', mojom.DPPIPE.spec: 'org.chromium.mojo.system.DataPipe.ProducerHandle', mojom.FLOAT.spec: 'float', mojom.HANDLE.spec: 'org.chromium.mojo.system.UntypedHandle', mojom.INT16.spec: 'short', mojom.INT32.spec: 'int', mojom.INT64.spec: 'long', mojom.INT8.spec: 'byte', mojom.MSGPIPE.spec: 'org.chromium.mojo.system.MessagePipeHandle', mojom.NULLABLE_DCPIPE.spec: 'org.chromium.mojo.system.DataPipe.ConsumerHandle', mojom.NULLABLE_DPPIPE.spec: 'org.chromium.mojo.system.DataPipe.ProducerHandle', mojom.NULLABLE_HANDLE.spec: 'org.chromium.mojo.system.UntypedHandle', mojom.NULLABLE_MSGPIPE.spec: 'org.chromium.mojo.system.MessagePipeHandle', mojom.NULLABLE_SHAREDBUFFER.spec: 'org.chromium.mojo.system.SharedBufferHandle', mojom.NULLABLE_STRING.spec: 'String', mojom.SHAREDBUFFER.spec: 'org.chromium.mojo.system.SharedBufferHandle', mojom.STRING.spec: 'String', mojom.UINT16.spec: 'short', mojom.UINT32.spec: 'int', mojom.UINT64.spec: 'long', mojom.UINT8.spec: 'byte', } _spec_to_decode_method = { mojom.BOOL.spec: 'readBoolean', mojom.DCPIPE.spec: 'readConsumerHandle', mojom.DOUBLE.spec: 'readDouble', mojom.DPPIPE.spec: 'readProducerHandle', mojom.FLOAT.spec: 'readFloat', mojom.HANDLE.spec: 'readUntypedHandle', mojom.INT16.spec: 'readShort', mojom.INT32.spec: 'readInt', mojom.INT64.spec: 'readLong', mojom.INT8.spec: 'readByte', mojom.MSGPIPE.spec: 'readMessagePipeHandle', mojom.NULLABLE_DCPIPE.spec: 'readConsumerHandle', mojom.NULLABLE_DPPIPE.spec: 'readProducerHandle', mojom.NULLABLE_HANDLE.spec: 'readUntypedHandle', mojom.NULLABLE_MSGPIPE.spec: 'readMessagePipeHandle', mojom.NULLABLE_SHAREDBUFFER.spec: 'readSharedBufferHandle', mojom.NULLABLE_STRING.spec: 'readString', mojom.SHAREDBUFFER.spec: 'readSharedBufferHandle', mojom.STRING.spec: 'readString', mojom.UINT16.spec: 'readShort', mojom.UINT32.spec: 'readInt', mojom.UINT64.spec: 'readLong', mojom.UINT8.spec: 'readByte', } _java_primitive_to_boxed_type = { 'boolean': 'Boolean', 'byte': 'Byte', 'double': 'Double', 'float': 'Float', 'int': 'Integer', 'long': 'Long', 'short': 'Short', } def NameToComponent(name): # insert '_' between anything and a Title name (e.g, HTTPEntry2FooBar -> # HTTP_Entry2_FooBar) name = re.sub('([^_])([A-Z][^A-Z_]+)', r'\1_\2', name) # insert '_' between non upper and start of upper blocks (e.g., # HTTP_Entry2_FooBar -> HTTP_Entry2_Foo_Bar) name = re.sub('([^A-Z_])([A-Z])', r'\1_\2', name) return [x.lower() for x in name.split('_')] def UpperCamelCase(name): return ''.join([x.capitalize() for x in NameToComponent(name)]) def CamelCase(name): uccc = UpperCamelCase(name) return uccc[0].lower() + uccc[1:] def ConstantStyle(name): components = NameToComponent(name) if components[0] == 'k': components = components[1:] return '_'.join([x.upper() for x in components]) def GetNameForElement(element): if (mojom.IsEnumKind(element) or mojom.IsInterfaceKind(element) or mojom.IsStructKind(element)): return UpperCamelCase(element.name) if mojom.IsInterfaceRequestKind(element): return GetNameForElement(element.kind) if isinstance(element, (mojom.Method, mojom.Parameter, mojom.Field)): return CamelCase(element.name) if isinstance(element, mojom.EnumValue): return (GetNameForElement(element.enum) + '.' + ConstantStyle(element.name)) if isinstance(element, (mojom.NamedValue, mojom.Constant)): return ConstantStyle(element.name) raise Exception('Unexpected element: ' % element) def GetInterfaceResponseName(method): return UpperCamelCase(method.name + 'Response') def ParseStringAttribute(attribute): assert isinstance(attribute, basestring) return attribute def GetJavaTrueFalse(value): return 'true' if value else 'false' def GetArrayNullabilityFlags(kind): """Returns nullability flags for an array type, see Decoder.java. As we have dedicated decoding functions for arrays, we have to pass nullability information about both the array itself, as well as the array element type there. """ assert mojom.IsAnyArrayKind(kind) ARRAY_NULLABLE = \ 'org.chromium.mojo.bindings.BindingsHelper.ARRAY_NULLABLE' ELEMENT_NULLABLE = \ 'org.chromium.mojo.bindings.BindingsHelper.ELEMENT_NULLABLE' NOTHING_NULLABLE = \ 'org.chromium.mojo.bindings.BindingsHelper.NOTHING_NULLABLE' flags_to_set = [] if mojom.IsNullableKind(kind): flags_to_set.append(ARRAY_NULLABLE) if mojom.IsNullableKind(kind.kind): flags_to_set.append(ELEMENT_NULLABLE) if not flags_to_set: flags_to_set = [NOTHING_NULLABLE] return ' | '.join(flags_to_set) def AppendEncodeDecodeParams(initial_params, context, kind, bit): """ Appends standard parameters shared between encode and decode calls. """ params = list(initial_params) if (kind == mojom.BOOL): params.append(str(bit)) if mojom.IsReferenceKind(kind): if mojom.IsAnyArrayKind(kind): params.append(GetArrayNullabilityFlags(kind)) else: params.append(GetJavaTrueFalse(mojom.IsNullableKind(kind))) if mojom.IsAnyArrayKind(kind): if mojom.IsFixedArrayKind(kind): params.append(str(kind.length)) else: params.append( 'org.chromium.mojo.bindings.BindingsHelper.UNSPECIFIED_ARRAY_LENGTH'); if mojom.IsInterfaceKind(kind): params.append('%s.MANAGER' % GetJavaType(context, kind)) if mojom.IsAnyArrayKind(kind) and mojom.IsInterfaceKind(kind.kind): params.append('%s.MANAGER' % GetJavaType(context, kind.kind)) return params @contextfilter def DecodeMethod(context, kind, offset, bit): def _DecodeMethodName(kind): if mojom.IsAnyArrayKind(kind): return _DecodeMethodName(kind.kind) + 's' if mojom.IsEnumKind(kind): return _DecodeMethodName(mojom.INT32) if mojom.IsInterfaceRequestKind(kind): return 'readInterfaceRequest' if mojom.IsInterfaceKind(kind): return 'readServiceInterface' return _spec_to_decode_method[kind.spec] methodName = _DecodeMethodName(kind) params = AppendEncodeDecodeParams([ str(offset) ], context, kind, bit) return '%s(%s)' % (methodName, ', '.join(params)) @contextfilter def EncodeMethod(context, kind, variable, offset, bit): params = AppendEncodeDecodeParams( [ variable, str(offset) ], context, kind, bit) return 'encode(%s)' % ', '.join(params) def GetPackage(module): if 'JavaPackage' in module.attributes: return ParseStringAttribute(module.attributes['JavaPackage']) # Default package. return 'org.chromium.mojom.' + module.namespace def GetNameForKind(context, kind): def _GetNameHierachy(kind): hierachy = [] if kind.parent_kind: hierachy = _GetNameHierachy(kind.parent_kind) hierachy.append(GetNameForElement(kind)) return hierachy module = context.resolve('module') elements = [] if GetPackage(module) != GetPackage(kind.module): elements += [GetPackage(kind.module)] elements += _GetNameHierachy(kind) return '.'.join(elements) def GetBoxedJavaType(context, kind): unboxed_type = GetJavaType(context, kind, False) if unboxed_type in _java_primitive_to_boxed_type: return _java_primitive_to_boxed_type[unboxed_type] return unboxed_type @contextfilter def GetJavaType(context, kind, boxed=False): if boxed: return GetBoxedJavaType(context, kind) if mojom.IsStructKind(kind) or mojom.IsInterfaceKind(kind): return GetNameForKind(context, kind) if mojom.IsInterfaceRequestKind(kind): return ('org.chromium.mojo.bindings.InterfaceRequest<%s>' % GetNameForKind(context, kind.kind)) if mojom.IsAnyArrayKind(kind): return '%s[]' % GetJavaType(context, kind.kind) if mojom.IsEnumKind(kind): return 'int' return _spec_to_java_type[kind.spec] @contextfilter def DefaultValue(context, field): assert field.default if isinstance(field.kind, mojom.Struct): assert field.default == 'default' return 'new %s()' % GetJavaType(context, field.kind) return '(%s) %s' % ( GetJavaType(context, field.kind), ExpressionToText(context, field.default, kind_spec=field.kind.spec)) @contextfilter def ConstantValue(context, constant): return '(%s) %s' % ( GetJavaType(context, constant.kind), ExpressionToText(context, constant.value, kind_spec=constant.kind.spec)) @contextfilter def NewArray(context, kind, size): if mojom.IsAnyArrayKind(kind.kind): return NewArray(context, kind.kind, size) + '[]' return 'new %s[%s]' % (GetJavaType(context, kind.kind), size) @contextfilter def ExpressionToText(context, token, kind_spec=''): def _TranslateNamedValue(named_value): entity_name = GetNameForElement(named_value) if named_value.parent_kind: return GetJavaType(context, named_value.parent_kind) + '.' + entity_name # Handle the case where named_value is a module level constant: if not isinstance(named_value, mojom.EnumValue): entity_name = (GetConstantsMainEntityName(named_value.module) + '.' + entity_name) if GetPackage(named_value.module) == GetPackage(context.resolve('module')): return entity_name return GetPackage(named_value.module) + '.' + entity_name if isinstance(token, mojom.NamedValue): return _TranslateNamedValue(token) if kind_spec.startswith('i') or kind_spec.startswith('u'): # Add Long suffix to all integer literals. number = ast.literal_eval(token.lstrip('+ ')) if not isinstance(number, (int, long)): raise ValueError('got unexpected type %r for int literal %r' % ( type(number), token)) # If the literal is too large to fit a signed long, convert it to the # equivalent signed long. if number >= 2 ** 63: number -= 2 ** 64 return '%dL' % number if isinstance(token, mojom.BuiltinValue): if token.value == 'double.INFINITY': return 'java.lang.Double.POSITIVE_INFINITY' if token.value == 'double.NEGATIVE_INFINITY': return 'java.lang.Double.NEGATIVE_INFINITY' if token.value == 'double.NAN': return 'java.lang.Double.NaN' if token.value == 'float.INFINITY': return 'java.lang.Float.POSITIVE_INFINITY' if token.value == 'float.NEGATIVE_INFINITY': return 'java.lang.Float.NEGATIVE_INFINITY' if token.value == 'float.NAN': return 'java.lang.Float.NaN' return token def IsPointerArrayKind(kind): if not mojom.IsAnyArrayKind(kind): return False sub_kind = kind.kind return mojom.IsObjectKind(sub_kind) def GetResponseStructFromMethod(method): return generator.GetDataHeader( False, generator.GetResponseStructFromMethod(method)) def GetStructFromMethod(method): return generator.GetDataHeader( False, generator.GetStructFromMethod(method)) def GetConstantsMainEntityName(module): if 'JavaConstantsClassName' in module.attributes: return ParseStringAttribute(module.attributes['JavaConstantsClassName']) # This constructs the name of the embedding classes for module level constants # by extracting the mojom's filename and prepending it to Constants. return (UpperCamelCase(module.path.split('/')[-1].rsplit('.', 1)[0]) + 'Constants') def GetMethodOrdinalName(method): return ConstantStyle(method.name) + '_ORDINAL' def HasMethodWithResponse(interface): for method in interface.methods: if method.response_parameters: return True return False def HasMethodWithoutResponse(interface): for method in interface.methods: if not method.response_parameters: return True return False @contextlib.contextmanager def TempDir(): dirname = tempfile.mkdtemp() try: yield dirname finally: shutil.rmtree(dirname) def ZipContentInto(root, zip_filename): with zipfile.ZipFile(zip_filename, 'w') as zip_file: for dirname, _, files in os.walk(root): for filename in files: path = os.path.join(dirname, filename) path_in_archive = os.path.relpath(path, root) zip_file.write(path, path_in_archive) class Generator(generator.Generator): java_filters = { 'interface_response_name': GetInterfaceResponseName, 'constant_value': ConstantValue, 'default_value': DefaultValue, 'decode_method': DecodeMethod, 'expression_to_text': ExpressionToText, 'encode_method': EncodeMethod, 'has_method_with_response': HasMethodWithResponse, 'has_method_without_response': HasMethodWithoutResponse, 'is_fixed_array_kind': mojom.IsFixedArrayKind, 'is_handle': mojom.IsNonInterfaceHandleKind, 'is_nullable_kind': mojom.IsNullableKind, 'is_pointer_array_kind': IsPointerArrayKind, 'is_struct_kind': mojom.IsStructKind, 'java_type': GetJavaType, 'java_true_false': GetJavaTrueFalse, 'method_ordinal_name': GetMethodOrdinalName, 'name': GetNameForElement, 'new_array': NewArray, 'response_struct_from_method': GetResponseStructFromMethod, 'struct_from_method': GetStructFromMethod, 'struct_size': lambda ps: ps.GetTotalSize() + _HEADER_SIZE, } def GetJinjaExports(self): return { 'package': GetPackage(self.module), } def GetJinjaExportsForInterface(self, interface): exports = self.GetJinjaExports() exports.update({'interface': interface}) if interface.client: for client in self.module.interfaces: if client.name == interface.client: exports.update({'client': client}) return exports @UseJinja('java_templates/enum.java.tmpl', filters=java_filters) def GenerateEnumSource(self, enum): exports = self.GetJinjaExports() exports.update({'enum': enum}) return exports @UseJinja('java_templates/struct.java.tmpl', filters=java_filters) def GenerateStructSource(self, struct): exports = self.GetJinjaExports() exports.update({'struct': struct}) return exports @UseJinja('java_templates/interface.java.tmpl', filters=java_filters) def GenerateInterfaceSource(self, interface): return self.GetJinjaExportsForInterface(interface) @UseJinja('java_templates/interface_internal.java.tmpl', filters=java_filters) def GenerateInterfaceInternalSource(self, interface): return self.GetJinjaExportsForInterface(interface) @UseJinja('java_templates/constants.java.tmpl', filters=java_filters) def GenerateConstantsSource(self, module): exports = self.GetJinjaExports() exports.update({'main_entity': GetConstantsMainEntityName(module), 'constants': module.constants}) return exports def DoGenerateFiles(self): if not os.path.exists(self.output_dir): try: os.makedirs(self.output_dir) except: # Ignore errors on directory creation. pass # Keep this above the others as .GetStructs() changes the state of the # module, annotating structs with required information. for struct in self.GetStructs(): self.Write(self.GenerateStructSource(struct), '%s.java' % GetNameForElement(struct)) for enum in self.module.enums: self.Write(self.GenerateEnumSource(enum), '%s.java' % GetNameForElement(enum)) for interface in self.module.interfaces: self.Write(self.GenerateInterfaceSource(interface), '%s.java' % GetNameForElement(interface)) self.Write(self.GenerateInterfaceInternalSource(interface), '%s_Internal.java' % GetNameForElement(interface)) if self.module.constants: self.Write(self.GenerateConstantsSource(self.module), '%s.java' % GetConstantsMainEntityName(self.module)) def GenerateFiles(self, unparsed_args): parser = argparse.ArgumentParser() parser.add_argument('--java_output_directory', dest='java_output_directory') args = parser.parse_args(unparsed_args) package_path = GetPackage(self.module).replace('.', '/') # Generate the java files in a temporary directory and place a single # srcjar in the output directory. zip_filename = os.path.join(self.output_dir, "%s.srcjar" % self.module.name) with TempDir() as temp_java_root: self.output_dir = os.path.join(temp_java_root, package_path) self.DoGenerateFiles(); ZipContentInto(temp_java_root, zip_filename) if args.java_output_directory: # If requested, generate the java files directly into indicated directory. self.output_dir = os.path.join(args.java_output_directory, package_path) self.DoGenerateFiles(); def GetJinjaParameters(self): return { 'lstrip_blocks': True, 'trim_blocks': True, } def GetGlobals(self): return { 'namespace': self.module.namespace, 'module': self.module, }
#!/usr/bin/env python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################################################################################ """Checks code for common issues before submitting.""" import argparse import os import subprocess import sys import unittest import yaml import constants _SRC_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) def _is_project_file(actual_path, expected_filename): """Returns True if actual_path's name is |expected_filename| and is a file that exists and is in in projects/.""" if os.path.basename(actual_path) != expected_filename: return False if os.path.basename(os.path.dirname( os.path.dirname(actual_path))) != 'projects': return False return os.path.exists(actual_path) # TODO: Check for -fsanitize=fuzzer in files as well. def _check_one_lib_fuzzing_engine(build_sh_file): """Returns False if |build_sh_file| contains -lFuzzingEngine. This is deprecated behavior. $LIB_FUZZING_ENGINE should be used instead so that -fsanitize=fuzzer is used.""" if not _is_project_file(build_sh_file, 'build.sh'): return True with open(build_sh_file) as build_sh: build_sh_lines = build_sh.readlines() for line_num, line in enumerate(build_sh_lines): uncommented_code = line.split('#')[0] if '-lFuzzingEngine' in uncommented_code: print( 'Error: build.sh contains deprecated "-lFuzzingEngine" on line: {0}. ' 'Please use "$LIB_FUZZING_ENGINE" instead.'.format(line_num)) return False return True def check_lib_fuzzing_engine(paths): """Calls _check_one_lib_fuzzing_engine on each path in |paths|. Returns True if the result of every call is True.""" return all([_check_one_lib_fuzzing_engine(path) for path in paths]) class ProjectYamlChecker: """Checks for a project.yaml file.""" # Sections in a project.yaml and the constant values that they are allowed # to have. SECTIONS_AND_CONSTANTS = { 'sanitizers': constants.SANITIZERS, 'architectures': constants.ARCHITECTURES, 'fuzzing_engines': constants.ENGINES, } # Note: this list must be updated when we allow new sections. VALID_SECTION_NAMES = [ 'architectures', 'auto_ccs', 'blackbox', 'builds_per_day', 'coverage_extra_args', 'disabled', 'fuzzing_engines', 'help_url', 'homepage', 'language', 'labels', # For internal use only, hard to lint as it uses fuzzer names. 'main_repo', 'primary_contact', 'run_tests', 'sanitizers', 'selective_unpack', 'vendor_ccs', 'view_restrictions', ] # Note that some projects like boost only have auto-ccs. However, forgetting # primary contact is probably a mistake. REQUIRED_SECTIONS = ['primary_contact', 'main_repo'] def __init__(self, filename): self.filename = filename with open(filename) as file_handle: self.data = yaml.safe_load(file_handle) self.success = True def do_checks(self): """Does all project.yaml checks. Returns True if they pass.""" if self.is_disabled(): return True checks = [ self.check_project_yaml_constants, self.check_required_sections, self.check_valid_section_names, self.check_valid_emails, self.check_valid_language, self.check_dataflow, ] for check_function in checks: check_function() return self.success def is_disabled(self): """Returns True if this project is disabled.""" return self.data.get('disabled', False) def error(self, message): """Prints an error message and sets self.success to False.""" self.success = False print('Error in {filename}: {message}'.format(filename=self.filename, message=message)) def check_dataflow(self): """Checks that if "dataflow" is specified in "fuzzing_engines", it is also specified in "sanitizers", and that if specified in "sanitizers", it is also specified in "fuzzing_engines". Returns True if this condition is met.""" engines = self.data.get('fuzzing_engines', []) dfsan_engines = 'dataflow' in engines sanitizers = self.data.get('sanitizers', []) dfsan_sanitizers = 'dataflow' in sanitizers if dfsan_engines and not dfsan_sanitizers: self.error('"dataflow" only specified in "fuzzing_engines" must also be ' 'specified in "sanitizers" or in neither.') return if dfsan_sanitizers and not dfsan_engines: self.error('"dataflow" only specified in "sanitizers" must also be ' 'specified in "fuzzing_engines" or in neither.') return def check_project_yaml_constants(self): """Returns True if certain sections only have certain constant values.""" for section, allowed_constants in self.SECTIONS_AND_CONSTANTS.items(): if section not in self.data: continue actual_constants = self.data[section] for constant in actual_constants: if isinstance(constant, str): if constant not in allowed_constants: self.error(('{constant} (in {section} section) is not a valid ' 'constant ({allowed_constants}).').format( constant=constant, section=section, allowed_constants=', '.join(allowed_constants))) elif isinstance(constant, dict): # The only alternative value allowed is the experimental flag, i.e. # `constant == {'memory': {'experimental': True}}`. Do not check the # experimental flag, but assert that the sanitizer is a valid one. if (len(constant.keys()) > 1 or list(constant.keys())[0] not in allowed_constants): self.error('Not allowed value in the project.yaml: ' + str(constant)) else: self.error('Not allowed value in the project.yaml: ' + str(constant)) def check_valid_section_names(self): """Returns True if all section names are valid.""" for name in self.data: if name not in self.VALID_SECTION_NAMES: self.error('{name} is not a valid section name ({valid_names})'.format( name=name, valid_names=self.VALID_SECTION_NAMES)) def check_required_sections(self): """Returns True if all required sections are in |self.data|.""" for section in self.REQUIRED_SECTIONS: if section not in self.data: self.error(section + ' section is missing.') def check_valid_emails(self): """Returns True if emails are valid looking..""" # Get email addresses. email_addresses = [] primary_contact = self.data.get('primary_contact') if primary_contact: email_addresses.append(primary_contact) auto_ccs = self.data.get('auto_ccs') if auto_ccs: email_addresses.extend(auto_ccs) # Check that email addresses seem normal. for email_address in email_addresses: if '@' not in email_address or '.' not in email_address: self.error(email_address + ' is an invalid email address.') def check_valid_language(self): """Returns True if the language is specified and valid.""" language = self.data.get('language') if not language: self.error('Missing "language" attribute in project.yaml.') elif language not in constants.LANGUAGES: self.error( '"language: {language}" is not supported ({supported}).'.format( language=language, supported=constants.LANGUAGES)) def _check_one_project_yaml(project_yaml_filename): """Does checks on the project.yaml file. Returns True on success.""" if _is_project_file(project_yaml_filename, 'project.yml'): print(project_yaml_filename, 'must be named project.yaml.') return False if not _is_project_file(project_yaml_filename, 'project.yaml'): return True checker = ProjectYamlChecker(project_yaml_filename) return checker.do_checks() def check_project_yaml(paths): """Calls _check_one_project_yaml on each path in |paths|. Returns True if the result of every call is True.""" return all([_check_one_project_yaml(path) for path in paths]) def do_checks(changed_files): """Runs all presubmit checks. Returns False if any fails.""" checks = [ check_license, yapf, lint, check_project_yaml, check_lib_fuzzing_engine ] # Use a list comprehension here and in other cases where we use all() so that # we don't quit early on failure. This is more user-friendly since the more # errors we spit out at once, the less frequently the less check-fix-check # cycles they need to do. return all([check(changed_files) for check in checks]) _CHECK_LICENSE_FILENAMES = ['Dockerfile'] _CHECK_LICENSE_EXTENSIONS = [ '.bash', '.c', '.cc', '.cpp', '.css', '.Dockerfile', '.h', '.htm', '.html', '.js', '.proto', '.py', '.sh', ] THIRD_PARTY_DIR_NAME = 'third_party' _LICENSE_STRING = 'http://www.apache.org/licenses/LICENSE-2.0' def check_license(paths): """Validates license header.""" if not paths: return True success = True for path in paths: path_parts = str(path).split(os.sep) if any(path_part == THIRD_PARTY_DIR_NAME for path_part in path_parts): continue filename = os.path.basename(path) extension = os.path.splitext(path)[1] if (filename not in _CHECK_LICENSE_FILENAMES and extension not in _CHECK_LICENSE_EXTENSIONS): continue with open(path) as file_handle: if _LICENSE_STRING not in file_handle.read(): print('Missing license header in file %s.' % str(path)) success = False return success def bool_to_returncode(success): """Returns 0 if |success|. Otherwise returns 1.""" if success: print('Success.') return 0 print('Failed.') return 1 def is_nonfuzzer_python(path): """Returns True if |path| ends in .py.""" return os.path.splitext(path)[1] == '.py' and '/projects/' not in path def lint(_=None): """Runs python's linter on infra. Returns False if it fails linting.""" command = ['python3', '-m', 'pylint', '-j', '0', 'infra'] returncode = subprocess.run(command, check=False).returncode return returncode == 0 def yapf(paths, validate=True): """Does yapf on |path| if it is Python file. Only validates format if |validate|. Otherwise, formats the file. Returns False if validation or formatting fails.""" paths = [path for path in paths if is_nonfuzzer_python(path)] if not paths: return True validate_argument = '-d' if validate else '-i' command = ['yapf', validate_argument, '-p'] command.extend(paths) returncode = subprocess.run(command, check=False).returncode return returncode == 0 def get_changed_files(): """Returns a list of absolute paths of files changed in this git branch.""" branch_commit_hash = subprocess.check_output( ['git', 'merge-base', 'HEAD', 'origin/HEAD']).strip().decode() diff_commands = [ # Return list of modified files in the commits on this branch. ['git', 'diff', '--name-only', branch_commit_hash + '..'], # Return list of modified files from uncommitted changes. ['git', 'diff', '--name-only'] ] changed_files = set() for command in diff_commands: file_paths = subprocess.check_output(command).decode().splitlines() for file_path in file_paths: if not os.path.isfile(file_path): continue changed_files.add(file_path) print('Changed files: {changed_files}'.format( changed_files=' '.join(changed_files))) return [os.path.abspath(f) for f in changed_files] def run_build_tests(): """Runs build tests because they can't be run in parallel.""" suite_list = [ unittest.TestLoader().discover(os.path.join(_SRC_ROOT, 'infra', 'build'), pattern='*_test.py'), ] suite = unittest.TestSuite(suite_list) print('Running build tests.') result = unittest.TextTestRunner().run(suite) return not result.failures and not result.errors def run_nonbuild_tests(parallel): """Runs all tests but build tests. Does them in parallel if |parallel|. The reason why we exclude build tests is because they use an emulator that prevents them from being used in parallel.""" # We look for all project directories because otherwise pytest won't run tests # that are not in valid modules (e.g. "base-images"). relevant_dirs = set() all_files = get_all_files() for file_path in all_files: directory = os.path.dirname(file_path) relevant_dirs.add(directory) # Use ignore-glob because ignore doesn't seem to work properly with the way we # pass directories to pytest. command = [ 'pytest', '--ignore-glob=infra/build/*', ] if parallel: command.extend(['-n', 'auto']) command += list(relevant_dirs) print('Running non-build tests.') # TODO(metzman): Get rid of this once config_utils stops using it. env = os.environ.copy() env['CIFUZZ_TEST'] = '1' return subprocess.run(command, check=False, env=env).returncode == 0 def run_tests(_=None, parallel=False, build_tests=True, nonbuild_tests=True): """Runs all unit tests.""" build_success = True nonbuild_success = True if nonbuild_tests: nonbuild_success = run_nonbuild_tests(parallel) else: print('Skipping nonbuild tests as specified.') if build_tests: build_success = run_build_tests() else: print('Skipping build tests as specified.') return nonbuild_success and build_success def get_all_files(): """Returns a list of absolute paths of files in this repo.""" get_all_files_command = ['git', 'ls-files'] output = subprocess.check_output(get_all_files_command).decode().splitlines() return [os.path.abspath(path) for path in output if os.path.isfile(path)] def main(): """Check changes on a branch for common issues before submitting.""" # Get program arguments. parser = argparse.ArgumentParser(description='Presubmit script for oss-fuzz.') parser.add_argument('command', choices=['format', 'lint', 'license', 'infra-tests'], nargs='?') parser.add_argument('-a', '--all-files', action='store_true', help='Run presubmit check(s) on all files', default=False) parser.add_argument('-p', '--parallel', action='store_true', help='Run tests in parallel.', default=False) parser.add_argument('-s', '--skip-build-tests', action='store_true', help='Skip build tests which are slow and must run ' 'sequentially.', default=False) parser.add_argument('-n', '--skip-nonbuild-tests', action='store_true', help='Only do build tests.', default=False) args = parser.parse_args() if args.all_files: relevant_files = get_all_files() else: relevant_files = get_changed_files() os.chdir(_SRC_ROOT) # Do one specific check if the user asked for it. if args.command == 'format': success = yapf(relevant_files, False) return bool_to_returncode(success) if args.command == 'lint': success = lint() return bool_to_returncode(success) if args.command == 'license': success = check_license(relevant_files) return bool_to_returncode(success) if args.command == 'infra-tests': success = run_tests(relevant_files, parallel=args.parallel, build_tests=(not args.skip_build_tests), nonbuild_tests=(not args.skip_nonbuild_tests)) return bool_to_returncode(success) # Do all the checks (but no tests). success = do_checks(relevant_files) return bool_to_returncode(success) if __name__ == '__main__': sys.exit(main())
from __future__ import division, print_function import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from train_semisupervised.train import ( PREVIOUS_STATES_DISTANCES, MODEL_HEIGHT, MODEL_WIDTH, MODEL_PREV_HEIGHT, MODEL_PREV_WIDTH ) from batching import states_to_batch from train_semisupervised import models as models_semisupervised from lib.util import to_variable, to_cuda, to_numpy from lib import util from lib import actions as actionslib from config import Config import imgaug as ia from imgaug import augmenters as iaa import cPickle as pickle import argparse import numpy as np import cv2 import gzip as gz import torch import torch.nn.functional as F import collections from scipy import misc, ndimage from skimage import draw import glob try: xrange except NameError: xrange = range def main(): parser = argparse.ArgumentParser(description="Generate frames for a video. This requires a previous recording done via train.py --record='filename'.") parser.add_argument("--record", default=None, help="Filepath to recording.", required=True) parser.add_argument("--outdir", default="video_output", help="Output directory name.", required=False) parser.add_argument("--y", default=False, action="store_true", help="Always let ffmpeg/avconv overwrite existing video files without asking.", required=False) parser.add_argument("--noredraw", default=False, action="store_true", help="Skip drawing frames for videos for which the target directory already exists.", required=False) args = parser.parse_args() assert args.record is not None if "*" in args.record: record_fps = glob.glob(args.record) assert len(record_fps) > 0 for record_fp in record_fps: fn = os.path.basename(record_fp) assert fn != "" fn_root = fn[0:fn.index(".")] #os.path.splitext(fn) assert fn_root != "" outdir = os.path.join(args.outdir, fn_root + "-" + str(abs(hash(record_fp)))[0:8]) process(record_fp, outdir, args.y, args.noredraw) else: process(args.record, args.outdir, args.y, args.noredraw) def process(record_fp, outdir_frames, y, noredraw): if outdir_frames[-1] == "/": outdir_videos = os.path.dirname(outdir_frames[:-1]) dirname_frames_last = os.path.basename(outdir_frames[:-1]) else: outdir_videos = os.path.dirname(outdir_frames) dirname_frames_last = os.path.basename(outdir_frames) assert os.path.isfile(record_fp) print("Processing recording '%s'..." % (record_fp,)) print("Writing frames to '%s', videos to '%s' with filename start '%s'..." % (outdir_frames, outdir_videos, dirname_frames_last)) with gz.open(record_fp, "rb") as f: recording = pickle.load(f) if os.path.exists(outdir_frames) and noredraw: print("Video frames were already drawn, not redrawing") else: if not os.path.exists(outdir_frames): print("Target directory for frames does not exist, creating it...") os.makedirs(outdir_frames) fd = FrameDrawer(outdir_videos) for fidx, frames_drawn in enumerate(fd.draw_frames(recording)): print("Frame %06d of around %06d..." % (fidx, len(recording["frames"]))) frame_plans = frames_drawn[0] frame_atts = frames_drawn[1] frame_grids = frames_drawn[2] if frame_plans is not None: misc.imsave(os.path.join(outdir_frames, "plans_%06d.jpg" % (fidx,)), frame_plans) if frame_atts is not None: misc.imsave(os.path.join(outdir_frames, "atts_%06d.jpg" % (fidx,)), frame_atts) if frame_grids is not None: misc.imsave(os.path.join(outdir_frames, "grids_%06d.jpg" % (fidx,)), frame_grids) #if fidx > 200: # break if not os.path.exists(outdir_videos): print("Target directory for videos does not exist, creating it...") os.makedirs(outdir_videos) frame_fps = ["plans_%06d.jpg", "atts_%06d.jpg", "grids_%06d.jpg"] frame_fps = [os.path.join(outdir_frames, fp) for fp in frame_fps] video_fps = ["plans.mp4", "atts.mp4", "grids.mp4"] video_fps = [os.path.join(outdir_videos, "%s-%s" % (dirname_frames_last, fp)) for fp in video_fps] for frame_fp, video_fp in zip(frame_fps, video_fps): #os.system('avconv %s -framerate 10 -i "%s" -crf 25 -b:v 2000k -vcodec mpeg4 %s' % ("-y" if y else "", frame_fp, video_fp)) os.system('avconv %s -framerate 10 -i "%s" -crf 25 -b:v 2000k -vcodec h264 %s' % ("-y" if y else "", frame_fp, video_fp)) class FrameDrawer(object): def __init__(self, outdir): self.outdir = outdir checkpoint_supervised = torch.load("../train_semisupervised/train_semisupervised_model_withshortcuts.tar") embedder_supervised = models_semisupervised.PredictorWithShortcuts() embedder_supervised.eval() embedder_supervised.load_state_dict(checkpoint_supervised["predictor_state_dict"]) if Config.GPU >= 0: embedder_supervised.cuda(Config.GPU) self.embedder_supervised = embedder_supervised def draw_frames(self, recording): previous_states = collections.deque(maxlen=max(PREVIOUS_STATES_DISTANCES)) for frame in recording["frames"]: scr = util.decompress_img(frame["scr"]) scr = np.clip(scr.astype(np.float32) * 1.5, 0, 255).astype(np.uint8) current_state = frame["state"] current_plan_idx = frame["current_plan_idx"] current_plan_step_idx = frame["current_plan_step_idx"] idr_v = frame["idr_v"] idr_adv = frame["idr_adv"] plan_to_rewards_direct = frame["plan_to_rewards_direct"] plan_to_reward_indirect = frame["plan_to_reward_indirect"] plan_to_reward = frame["plan_to_reward"] plans_ranking = frame["plans_ranking"] if current_plan_idx is not None: frame_plans = self.draw_frame_plans( scr, current_state, recording["plans"], current_plan_idx, current_plan_step_idx, idr_v, idr_adv, plan_to_rewards_direct, plan_to_reward_indirect, plan_to_reward, plans_ranking ) else: frame_plans = None if len(previous_states) == previous_states.maxlen: batch = states_to_batch([list(previous_states)], [[current_state]], iaa.Noop(), PREVIOUS_STATES_DISTANCES, MODEL_HEIGHT, MODEL_WIDTH, MODEL_PREV_HEIGHT, MODEL_PREV_WIDTH) inputs_supervised = batch.inputs_supervised(volatile=True, gpu=Config.GPU) x_ae, x_grids, x_atts, x_ma, x_flow, x_canny, x_flipped, x_emb = self.embedder_supervised.forward(inputs_supervised[0], inputs_supervised[1]) frame_attributes = self.draw_frame_attributes(scr, x_atts) frame_grids = self.draw_frame_grids(scr, x_grids) else: frame_attributes = None frame_grids = None yield (frame_plans, frame_attributes, frame_grids) previous_states.append(current_state) def draw_frame_plans(self, scr, state, plans, current_plan_idx, current_plan_step_idx, idr_v, idr_adv, plan_to_rewards_direct, plan_to_reward_indirect, plan_to_reward, plans_ranking): mincolf = 0.2 bgcolor = [0, 0, 0] image = np.zeros((720, 1280, 3), dtype=np.uint8) scr_main = ia.imresize_single_image(scr, (int(720*0.58), int(1280*0.58))) util.draw_image( image, y=int((image.shape[0]-scr_main.shape[0])/2), x=1280-scr_main.shape[1]-2, other_img=scr_main, copy=False ) image = util.draw_text( image, x=1280-(scr_main.shape[1]//2)-125, y=image.shape[0] - int((image.shape[0]-scr_main.shape[0])/2) + 10, text="Framerate matches the one that the model sees (10fps).", size=10, color=[128, 128, 128] ) def draw_key(key): btn = [ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0] ] btn = np.array(btn, dtype=np.uint8) * 255 btn = np.tile(btn[:, :, np.newaxis], (1, 1, 3)) if key is None: return np.zeros_like(btn) elif key == "": return btn else: return util.draw_text(btn, x=3, y=3, text=key, size=9, color=[255, 255, 255]) def multiaction_idx_to_image(multiaction_idx): #btn = np.pad(btn, ((0, 0), (0, 4), (0, 0)), mode="constant", constant_values=0) key_to_img = dict() for key in ["W", "A", "S", "D", None]: key_to_img[key] = draw_key(key) multiaction = actionslib.ALL_MULTIACTIONS[multiaction_idx] sw = 1.0 if multiaction[0] == "W" else mincolf sa = 1.0 if multiaction[1] == "A" else mincolf ss = 1.0 if multiaction[0] == "S" else mincolf sd = 1.0 if multiaction[1] == "D" else mincolf buttons = [ [key_to_img[None], key_to_img["W"]*sw, key_to_img[None]], [key_to_img["A"]*sa, key_to_img["S"]*ss, key_to_img["D"]*sd] ] buttons_img = np.vstack([ np.hstack([btn.astype(np.uint8) for btn in buttons[0]]), np.hstack([btn.astype(np.uint8) for btn in buttons[1]]) ]) buttons_img = np.pad(buttons_img, ((0, 0), (0, 4), (0, 0)), mode="constant", constant_values=0) return buttons_img multiaction_idx_to_image_dict = dict([(i, multiaction_idx_to_image(i)) for i in range(len(actionslib.ALL_MULTIACTIONS))]) multiaction_to_image_dict = dict([(ma, multiaction_idx_to_image(i)) for i, ma in enumerate(actionslib.ALL_MULTIACTIONS)]) def plan_to_image(p_multiactions, p_direct_rewards, p_v, padding_bottom=8, minwidth=200): plan_viz = [multiaction_to_image_dict[ma] for ma in p_multiactions] #plan_viz = [np.pad(a, ((0, 20), (2, 2), (0, 0)), mode="constant", constant_values=0) for a in plan_viz] plan_viz = [np.pad(a, ((0, 20), (0, 1), (0, 0)), mode="constant", constant_values=0) for a in plan_viz] if p_direct_rewards is not None: for j in xrange(len(plan_viz)): #plan_viz[j] = util.draw_text(plan_viz[j], x=9, y=plan_viz[j].shape[0]-16, text="r", size=9, color=[128, 128, 128]) plan_viz[j] = util.draw_text(plan_viz[j], x=11, y=plan_viz[j].shape[0]-13, text="r %.1f" % (p_direct_rewards[j],), size=9, color=[128, 128, 128]) if p_v is not None: plan_viz.append(np.zeros_like(plan_viz[-1])) #plan_viz[-1] = util.draw_text(plan_viz[-1], x=3, y=5, text="V", size=9, color=[128, 128, 128]) #plan_viz[-1] = util.draw_text(plan_viz[-1], x=9, y=11, text="V %.1f" % (p_v,), size=9, color=[255, 255, 255]) plan_viz[-1] = util.draw_text(plan_viz[-1], x=5, y=16, text="V %.1f" % (p_v,), size=9, color=[255, 255, 255]) plan_viz = np.hstack(plan_viz) width_extend = minwidth - plan_viz.shape[1] if plan_viz.shape[1] < minwidth else 0 #print("width_extend", width_extend, minwidth, plan_viz.shape[0]) plan_viz = np.pad(plan_viz, ((0, padding_bottom), (0, width_extend), (0, 0)), mode="constant", constant_values=0) return plan_viz # ------------- # current plan # ------------- current_plan_viz = plan_to_image( plans[current_plan_idx][current_plan_step_idx:], None, None ) #current_plan_viz = np.pad(current_plan_viz, ((50, 0), (20, 0), (0, 0)), mode="constant", constant_values=0) current_plan_viz = np.pad(current_plan_viz, ((50, 0), (2, 0), (0, 0)), mode="constant", constant_values=0) current_plan_viz = util.draw_text(current_plan_viz, x=4, y=4, text="Current Plan", color=[255, 255, 255]) util.draw_image(image, y=10, x=10, other_img=current_plan_viz, copy=False) # ------------- # best plans # ------------- best_plans_viz = [] for i in range(4): plan_idx = plans_ranking[::-1][i] plan = plans[plan_idx] r = plan_to_rewards_direct[plan_idx] v = plan_to_reward_indirect[plan_idx] plan_viz = plan_to_image(plan, r, v) best_plans_viz.append(plan_viz) best_plans_viz = np.vstack(best_plans_viz) #best_plans_viz = np.pad(best_plans_viz, ((50, 30), (20, 0), (0, 0)), mode="constant", constant_values=0) best_plans_viz = np.pad(best_plans_viz, ((50, 30), (2, 0), (0, 0)), mode="constant", constant_values=0) best_plans_viz = util.draw_text(best_plans_viz, x=4, y=4, text="Best Plans", color=[255, 255, 255]) best_plans_viz = util.draw_text(best_plans_viz, x=30, y=best_plans_viz.shape[0]-20, text="r = expected direct reward at timestep (discounted)\nV = expected indirect reward at last timestep (discounted)", color=[128, 128, 128], size=9) util.draw_image(image, y=110, x=10, other_img=best_plans_viz, copy=False) # -------------- # top15 # -------------- n = 15 top_viz = [] counts_ud = dict([(action, 0) for action in actionslib.ACTIONS_UP_DOWN]) counts_lr = dict([(action, 0) for action in actionslib.ACTIONS_LEFT_RIGHT]) for i in range(n): plan_idx = plans_ranking[::-1][i] plan = plans[plan_idx] for ma in plan: counts_ud[ma[0]] += 1 counts_lr[ma[1]] += 1 sum_ud = np.sum(list(counts_ud.values())) sum_lr = np.sum(list(counts_lr.values())) fracs_ud = [counts_ud["W"]/sum_ud, counts_ud["S"]/sum_ud, counts_ud["~WS"]/sum_ud] fracs_lr = [counts_lr["A"]/sum_lr, counts_lr["D"]/sum_lr, counts_lr["~AD"]/sum_lr] def draw_bar(frac, key, h=30, w=20, margin_right=15): bar = np.zeros((h, 1), dtype=np.uint8) + 32 bar[0:int(h*frac)+1] = 255 bar = np.flipud(bar) bar = np.tile(bar[:, :, np.newaxis], (1, w, 3)) bar = np.pad(bar, ((20, 30), (0, margin_right), (0, 0)), mode="constant", constant_values=0) textx = 5 if frac*100 >= 10: textx = textx - 3 elif frac*100 >= 100: textx = textx - 6 bar = ia.draw_text(bar, x=textx, y=2, text="%.0f%%" % (frac*100,), size=8, color=[255, 255, 255]) keyimg = draw_key(key) util.draw_image(bar, x=(w//2)-keyimg.shape[1]//2, y=bar.shape[0]-keyimg.shape[0]-8, other_img=keyimg, copy=False) return bar bars_ud = [draw_bar(fracs_ud[0], "W"), draw_bar(fracs_ud[1], "S"), draw_bar(fracs_ud[2], "", margin_right=55)] bars_lr = [draw_bar(fracs_lr[0], "A"), draw_bar(fracs_lr[1], "D"), draw_bar(fracs_lr[2], "")] top_viz = np.hstack(bars_ud + bars_lr) top_viz = np.pad(top_viz, ((50, 30), (20, 180), (0, 0)), mode="constant", constant_values=0) top_viz = util.draw_text(top_viz, x=4, y=4, text="Share Of Keys (Top %d Plans)" % (n,), color=[255, 255, 255]) top_viz = util.draw_text(top_viz, x=4, y=top_viz.shape[0]-20, text="Percent of actions among top %d plans that contain a top/down or left/right key" % (n,), color=[128, 128, 128], size=9) util.draw_image(image, y=430, x=10, other_img=top_viz, copy=False) # -------------- # other # -------------- other_viz = np.zeros((300, 500, 3), dtype=np.uint8) other_viz = util.draw_text(other_viz, x=4, y=4, text="Speed", color=[255, 255, 255]) other_viz = util.draw_text(other_viz, x=150, y=4, text="Steering Wheel", color=[255, 255, 255]) other_viz = util.draw_text(other_viz, x=12, y=65, text="%d km/h" % (state.speed if state.speed is not None else -1), color=[255, 255, 255]) sw_angle = state.steering_wheel_cnn if state.steering_wheel_cnn is not None else 0 sw_circle = np.zeros((80, 80, 3), dtype=np.int32) if sw_angle <= -360 or sw_angle >= 360: rr, cc = draw.circle(r=40, c=40, radius=30) sw_circle[rr, cc, :] = 128 col = [128, 128, 128] if -360 < sw_angle < 360 else [255, 255, 255] if abs(sw_angle % 360) > 1: if sw_angle < 0: sw_circle = util.draw_direction_circle( sw_circle, y=40, x=40, r_inner=0, r_outer=30, angle_start=360-(abs(int(sw_angle)) % 360), angle_end=360, color_border=col, color_fill=col #color_fill=[255,0,0] ) #sw_circle = util.draw_text(sw_circle, x=5, y=5, text="%.2f\n%.2f" % (abs(int(sw_angle)) % 360, 360-(abs(int(sw_angle)) % 360)), size=12, color=[255, 255, 255]) else: sw_circle = util.draw_direction_circle( sw_circle, y=40, x=40, r_inner=0, r_outer=30, angle_start=0, angle_end=int(sw_angle) % 360, color_border=col, color_fill=col #color_fill=[0,255,0] ) rr, cc, val = draw.circle_perimeter_aa(40, 40, radius=30) #sw_circle[rr, cc, :] = sw_circle[rr, cc, :] + np.tile((val * 255)[:,:,np.newaxis], (1, 1, 3)) sw_circle[rr, cc, :] += np.tile((val * 255).astype(np.int32)[:,np.newaxis], (1, 3)) sw_circle = np.clip(sw_circle, 0, 255).astype(np.uint8) sw_circle = np.pad(sw_circle, ((0, 0), (0, 140), (0, 0)), mode="constant", constant_values=0) sw_circle = util.draw_text(sw_circle, x=92, y=27, text="%d deg" % (sw_angle,), color=[255, 255, 255]) util.draw_image(other_viz, x=150, y=40, other_img=sw_circle, copy=False) util.draw_image(image, y=590, x=10, other_img=other_viz, copy=False) return image def draw_frame_attributes(self, scr, atts): atts = atts[0] mincolf = 0.2 #print("space_front raw", atts[33:37], F.softmax(atts[33:37])) #print("space_left raw", atts[37:41], F.softmax(atts[37:41])) #print("space_right raw", atts[41:45], F.softmax(atts[41:45].unsqueeze(0)).squeeze(0)) road_type = simplesoftmax(to_numpy(atts[0:10])) intersection = simplesoftmax(to_numpy(atts[10:17])) direction = simplesoftmax(to_numpy(atts[17:20])) lane_count = simplesoftmax(to_numpy(atts[20:25])) curve = simplesoftmax(to_numpy(atts[25:33])) space_front = simplesoftmax(to_numpy(atts[33:37])) space_left = simplesoftmax(to_numpy(atts[37:41])) space_right = simplesoftmax(to_numpy(atts[41:45])) offroad = simplesoftmax(to_numpy(atts[45:48])) bgcolor = [0, 0, 0] image = np.zeros((720, 1280, 3), dtype=np.uint8) + bgcolor scr_main = ia.imresize_single_image(scr, (int(720*0.58), int(1280*0.58))) util.draw_image( image, y=int((image.shape[0]-scr_main.shape[0])/2), x=1280-scr_main.shape[1]-2, other_img=scr_main, copy=False ) image = util.draw_text( image, x=1280-(scr_main.shape[1]//2)-125, y=image.shape[0] - int((image.shape[0]-scr_main.shape[0])/2) + 10, text="Framerate matches the one that the model sees (10fps).", size=10, color=[128, 128, 128] ) # --------------- # Curve # --------------- """ street = np.zeros((65, 65, 3), dtype=np.float32) street[:, 0:2, :] = 255 street[:, -2:, :] = 255 street[:, 32:35, :] = 255 street_left_strong = curve(street """ curve_left_strong = 255 - ndimage.imread("../images/video/curve-left-strong.png", mode="RGB") curve_left_medium = 255 - ndimage.imread("../images/video/curve-left-medium.png", mode="RGB") curve_left_slight = 255 - ndimage.imread("../images/video/curve-left-slight.png", mode="RGB") curve_straight = 255 - ndimage.imread("../images/video/curve-straight.png", mode="RGB") curve_right_strong = np.fliplr(curve_left_strong) curve_right_medium = np.fliplr(curve_left_medium) curve_right_slight = np.fliplr(curve_left_slight) curve_straight = (curve_straight * np.clip(curve[0], mincolf, 1.0)).astype(np.uint8) curve_left_slight = (curve_left_slight * np.clip(curve[1], mincolf, 1.0)).astype(np.uint8) curve_left_medium = (curve_left_medium * np.clip(curve[2], mincolf, 1.0)).astype(np.uint8) curve_left_strong = (curve_left_strong * np.clip(curve[3], mincolf, 1.0)).astype(np.uint8) curve_right_slight = (curve_right_slight * np.clip(curve[4], mincolf, 1.0)).astype(np.uint8) curve_right_medium = (curve_right_medium * np.clip(curve[5], mincolf, 1.0)).astype(np.uint8) curve_right_strong = (curve_right_strong * np.clip(curve[6], mincolf, 1.0)).astype(np.uint8) def add_perc(curve_img, perc, x_correct): col = np.clip(255 * perc, mincolf*255, 255) col = np.array([col, col, col], dtype=np.uint8) curve_img_pad = np.pad(curve_img, ((0, 20), (0, 0), (0, 0)), mode="constant", constant_values=0) x = int(curve_img_pad.shape[1]/2) - 6 if (perc*100) >= 100: x = x - 9 elif (perc*100) >= 10: x = x - 6 x = x + x_correct curve_img_pad = util.draw_text( curve_img_pad, x=x, y=curve_img_pad.shape[0]-15, text="%.0f%%" % (perc*100,), color=col, size=9 ) return curve_img_pad curve_straight = add_perc(curve_straight, curve[0], x_correct=0) curve_left_slight = add_perc(curve_left_slight, curve[1], x_correct=3) curve_left_medium = add_perc(curve_left_medium, curve[2], x_correct=1) curve_left_strong = add_perc(curve_left_strong, curve[3], x_correct=-1) curve_right_slight = add_perc(curve_right_slight, curve[4], x_correct=-3) curve_right_medium = add_perc(curve_right_medium, curve[5], x_correct=-2) curve_right_strong = add_perc(curve_right_strong, curve[6], x_correct=0) curves = np.hstack([ curve_left_strong, curve_left_medium, curve_left_slight, curve_straight, curve_right_slight, curve_right_medium, curve_right_strong ]) curves = np.pad(curves, ((50, 0), (20, 0), (0, 0)), mode="constant", constant_values=0) curves = util.draw_text(curves, x=4, y=4, text="Curve", color=[255, 255, 255]) util.draw_image(image, y=50, x=2, other_img=curves, copy=False) # --------------- # Lane count # --------------- pics = [] for lc_idx in range(4): col = int(np.clip(255*lane_count[lc_idx], 255*mincolf, 255)) col = np.array([col, col, col], dtype=np.uint8) lc = lc_idx + 1 marking_width = 2 street = np.zeros((64, 64, 3), dtype=np.float32) street[:, 0:marking_width, :] = col street[:, -marking_width:, :] = col inner_width = street.shape[1] - 2*marking_width lane_width = int((inner_width - (lc-1)*marking_width) // lc) start = marking_width for i in range(lc-1): mstart = start + lane_width mend = mstart + marking_width street[1::6, mstart:mend, :] = col street[2::6, mstart:mend, :] = col street[3::6, mstart:mend, :] = col start = mend x = 14 + 24 if lane_count[lc_idx]*100 >= 10: x = x - 8 elif lane_count[lc_idx]*100 >= 100: x = x - 12 street = np.pad(street, ((0, 20), (14, 14), (0, 0)), mode="constant", constant_values=0) street = util.draw_text(street, x=x, y=street.shape[0]-14, text="%.0f%%" % (lane_count[lc_idx]*100,), size=9, color=col) pics.append(street) pics = np.hstack(pics) pics = np.pad(pics, ((55, 0), (20, 0), (0, 0)), mode="constant", constant_values=0) pics = util.draw_text(pics, x=4, y=4, text="Lane Count", color=[255, 255, 255]) util.draw_image(image, y=250, x=2, other_img=pics, copy=False) # --------------- # Space # --------------- truck = np.zeros((100, 55, 3), dtype=np.uint8) truck[0:2, :, :] = 255 truck[0:20, 0:2, :] = 255 truck[0:20, -2:, :] = 255 truck[20:22, :, :] = 255 truck[22:25, 25:27, :] = 255 truck[22:25, 29:31, :] = 255 truck[24:26, :, :] = 255 truck[24:, 0:2, :] = 255 truck[24:, -2:, :] = 255 truck[24:, -2:, :] = 255 truck[-2:, :, :] = 255 truck_full = np.pad(truck, ((50, 50), (100, 50), (0, 0)), mode="constant", constant_values=np.average(bgcolor)) #print("space_front", space_front) #print("space_right", space_right) #print("space_left", space_left) fill_top = 1 * space_front[0] + 0.6 * space_front[1] + 0.25 * space_front[2] + 0 * space_front[3] fill_right = 1 * space_right[0] + 0.6 * space_right[1] + 0.25 * space_right[2] + 0 * space_right[3] fill_left = 1 * space_left[0] + 0.6 * space_left[1] + 0.25 * space_left[2] + 0 * space_left[3] r_outer_top = 8 + int((30-8) * fill_top) r_outer_right = 8 + int((30-8) * fill_right) r_outer_left = 8 + int((30-8) * fill_left) def fill_to_text(fill): col = np.array([255, 255, 255], dtype=np.uint8) if fill > 0.75: text = "plenty" elif fill > 0.5: text = "some" elif fill > 0.25: text = "low" else: text = "minimal" return text, col #top truck_full = util.draw_direction_circle( truck_full, y=33, x=100+27, r_inner=8, r_outer=30, angle_start=-60, angle_end=60, color_border=[255, 255, 255], color_fill=[0, 0, 0] ) truck_full = util.draw_direction_circle( truck_full, y=33, x=100+27, r_inner=8, r_outer=r_outer_top, angle_start=-60, angle_end=60, color_border=[255, 255, 255], color_fill=[255, 255, 255] ) #text, col = fill_to_text(fill_top) #truck_full = util.draw_text(truck_full, x=100+27, y=15, text=text, size=9, color=col) # right truck_full = util.draw_direction_circle( truck_full, y=100, x=170, r_inner=8, r_outer=30, angle_start=30, angle_end=180-30, color_border=[255, 255, 255], color_fill=[0, 0, 0] ) truck_full = util.draw_direction_circle( truck_full, y=100, x=170, r_inner=8, r_outer=r_outer_right, angle_start=30, angle_end=180-30, color_border=[255, 255, 255], color_fill=[255, 255, 255] ) #text, col = fill_to_text(fill_right) #truck_full = util.draw_text(truck_full, x=170, y=100, text=text, size=9, color=col) # left truck_full = util.draw_direction_circle( truck_full, y=100, x=83, r_inner=8, r_outer=30, angle_start=180+30, angle_end=360-30, color_border=[255, 255, 255], color_fill=[0, 0, 0] ) truck_full = util.draw_direction_circle( truck_full, y=100, x=83, r_inner=8, r_outer=r_outer_left, angle_start=180+30, angle_end=360-30, color_border=[255, 255, 255], color_fill=[255, 255, 255] ) #text, col = fill_to_text(fill_left) #truck_full = util.draw_text(truck_full, x=75, y=100, text=text, size=9, color=col) truck_full = np.pad(truck_full, ((50, 0), (110, 0), (0, 0)), mode="constant", constant_values=0) truck_full = util.draw_text(truck_full, x=4, y=4, text="Space", color=[255, 255, 255]) util.draw_image(image, y=450, x=10, other_img=truck_full, copy=False) return image def draw_frame_grids(self, scr, grids): grids_meta = [ (0, "street boundaries"), (3, "crashables (except cars)"), (7, "street markings"), (4, "current lane"), (1, "cars"), (2, "cars in mirrors") ] titles = [title for idx, title in grids_meta] grids = to_numpy(grids[0]) grids = [grids[idx] for idx, title in grids_meta] #self.grid_to_graph(scr, grids[0]) bgcolor = [0, 0, 0] image = np.zeros((720, 1280, 3), dtype=np.uint8) + bgcolor scr_main = ia.imresize_single_image(scr, (int(720*0.58), int(1280*0.58))) #util.draw_image(image, y=720-scr_main.shape[0], x=1080-scr_main.shape[1], other_img=scr_main, copy=False) util.draw_image( image, y=int((image.shape[0]-scr_main.shape[0])/2), x=1280-scr_main.shape[1]-2, other_img=scr_main, copy=False ) image = util.draw_text( image, x=1280-(scr_main.shape[1]//2)-125, y=image.shape[0] - int((image.shape[0]-scr_main.shape[0])/2) + 10, text="Framerate matches the one that the model sees (10fps).", size=10, color=[128, 128, 128] ) grid_rel_size = 0.19 scr_small = ia.imresize_single_image(scr, (int(720*grid_rel_size), int(1280*grid_rel_size))) grid_hms = [] for grid, title in zip(grids, titles): grid = (grid*255).astype(np.uint8)[:,:,np.newaxis] grid = ia.imresize_single_image(grid, (int(720*grid_rel_size), int(1280*grid_rel_size)), interpolation="nearest") grid_hm = util.draw_heatmap_overlay(scr_small, grid/255) grid_hm = np.pad(grid_hm, ((2, 0), (2, 2), (0, 0)), mode="constant", constant_values=np.average(bgcolor)) #grid_hm = np.pad(grid_hm, ((0, 20), (0, 0), (0, 0)), mode="constant", constant_values=0) #grid_hm[-20:, 2:-2, :] = [128, 128, 255] #grid_hm = util.draw_text(grid_hm, x=4, y=grid_hm.shape[0]-16, text=title, size=10, color=[255, 255, 255]) grid_hm = np.pad(grid_hm, ((40, 0), (0, 0), (0, 0)), mode="constant", constant_values=0) grid_hm = util.draw_text(grid_hm, x=4, y=20, text=title, size=12, color=[255, 255, 255]) grid_hms.append(grid_hm) grid_hms = ia.draw_grid(grid_hms, cols=2) util.draw_image(image, y=70, x=0, other_img=grid_hms, copy=False) return image def tsalesman(self, graph): if len(graph) <= 2: return graph paths = [] for _ in xrange(1000): ids = list(range(len(graph))) np.random.shuffle(ids) path = [graph[idx] for idx in ids] paths.append(path) def length_edge(node1, node2): d = math.sqrt((node1[0]-node2[0])**2 + (node1[1]-node2[1])**2) return d def length_path(path): length_sum = length_edge(path[0], path[-1]) for i in xrange(1, len(path)): length_sum += length_edge(path[i-1], path[i]) return length_sum paths_l = [(path, length_path(path)) for path in paths] paths = sorted(paths_l, key=lambda t: t[1]) return paths[0][0] def grid_to_graph(self, scr, grid): import scipy.ndimage as ndimage import scipy.ndimage.filters as filters data = grid neighborhood_size = 7 #threshold_max = 0.5 threshold_diff = 0.1 threshold_score = 0.2 data_max = filters.maximum_filter(data, neighborhood_size) maxima = (data == data_max) data_min = filters.minimum_filter(data, neighborhood_size) #diff = ((data_max - data_min) > threshold_diff) #maxima[diff == 0] = 0 maxima[data_max < 0.2] = 0 labeled, num_objects = ndimage.label(maxima) slices = ndimage.find_objects(labeled) xx, yy, score = [], [], [] for dy, dx in slices: x_center = (dx.start + dx.stop - 1)/2 y_center = (dy.start + dy.stop - 1)/2 s = np.average(data[dy.start:dy.stop+1, dx.start:dx.stop+1]) if s > threshold_score: xx.append(x_center / grid.shape[1]) yy.append(y_center / grid.shape[0]) score.append(s) graph = list(zip(xx, yy, score)) path = tsalesman(graph) paths_final = [path] scr_viz = np.copy(scr) h, w = scr.shape[0:2] #hup, wup = h/grid.shape[0], w/grid.shape[1] hup, wup = h, w for i, (x, y, s) in enumerate(zip(xx, yy, score)): size = 3*int(s*10) size = size if size % 2 != 0 else size - 1 scr_viz = util.draw_point(scr_viz, y=int(y*hup), x=int(x*wup), size=size, color=[0, 255, 0]) scr_viz = util.draw_text(scr_viz, y=int(y*hup), x=int(x*wup), text=str(i), color=[0, 255, 0]) colors = [[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 255, 255], [0, 0, 0]] for path, col in zip(paths_final, colors): last_x = None last_y = None for (x, y, s) in path: if last_x is not None: scr_viz = util.draw_line(scr_viz, y1=int(last_y*hup), x1=int(last_x*wup), y2=int(y*hup), x2=int(x*wup), color=col, thickness=2) last_x = x last_y = y misc.imshow(scr_viz) """ paths_final = [] graph = list(zip(xx, yy, score)) for _ in range(1): paths_final_flat = flatten_list(paths_final) print("paths_final_flat", paths_final_flat) source_candidates = [(i, (x, y, s)) for i, (x, y, s) in enumerate(graph) if (x, y, s) not in paths_final_flat] if len(source_candidates) == 0: break else: #print("source_candidates", source_candidates) #source_score = max([s for (i, (x, y, s)) in source_candidates]) #print("source_score", source_score) #source_id = [i for (i, (x, y, s)) in source_candidates if s == source_score][0] source_val = min([x for (i, (x, y, s)) in source_candidates]) source_id = [i for (i, (x, y, s)) in source_candidates if x == source_val][0] print("source_id", source_id) _, _, paths = self.dijkstra(graph, source_id, already_done=[i for i, (x, y, s) in enumerate(paths_final_flat)]) if len(paths) == 0: break else: print("paths", paths) #best_path = sorted(paths, key=lambda t: -t[1]+t[2], reverse=True)[0] best_path = sorted(paths, key=lambda t: t[2], reverse=True)[0] best_path = best_path[0] print("best_path ids", best_path) best_path = [graph[idx] for idx in best_path] print("best_path", best_path) paths_final.append(best_path) paths_final = [path for path in paths_final if len(path) > 1] scr_viz = np.copy(scr) h, w = scr.shape[0:2] #hup, wup = h/grid.shape[0], w/grid.shape[1] hup, wup = h, w for i, (x, y, s) in enumerate(zip(xx, yy, score)): size = 3*int(s*10) size = size if size % 2 != 0 else size - 1 scr_viz = util.draw_point(scr_viz, y=int(y*hup), x=int(x*wup), size=size, color=[0, 255, 0]) scr_viz = util.draw_text(scr_viz, y=int(y*hup), x=int(x*wup), text=str(i), color=[0, 255, 0]) colors = [[255, 0, 0], [0, 255, 0], [0, 0, 255], [255, 255, 255], [0, 0, 0]] for path, col in zip(paths_final, colors): last_x = None last_y = None for (x, y, s) in path: if last_x is not None: scr_viz = util.draw_line(scr_viz, y1=int(last_y*hup), x1=int(last_x*wup), y2=int(y*hup), x2=int(x*wup), color=col, thickness=2) last_x = x last_y = y misc.imshow(scr_viz) """ #misc.imshow(np.hstack([scr, scr_viz])) """ def shortest(self, graph): edges = [] def dijkstra(self, graph, source_id, distance_threshold=0.5, already_done=None): already_done = set() if already_done is None else set(already_done) id_to_vertex = dict([(i, v) for i, v in enumerate(graph)]) vertex_to_id = dict([(v, i) for i, v in enumerate(graph)]) graph_ids = [i for i, _ in enumerate(graph)] def length(id1, id2): d = (graph[id1][0]-graph[id2][0])**2 + (graph[id1][1]-graph[id2][1])**2 if id1 in already_done or id2 in already_done: d = d + 0.2 d = d / (0.5*(id_to_vertex[id1][2] + id_to_vertex[id2][2])) print("length", id1, id2, d) return d def neighbours(id1): n = [] for id2, v in id_to_vertex.items(): #print(id1, id2, length(id1, id2)) if id1 != id2 and length(id1, id2) < distance_threshold: n.append(id2) return n def mindist(dist, Q): mindist_val = 999999 mindist_id = -1 for vid in Q: if dist[vid] < mindist_val: mindist_val = mindist_val mindist_id = vid return mindist_id dist = dict() prev = dict() Q = set() for vid in graph_ids: dist[vid] = 999999 prev[vid] = None Q.add(vid) dist[source_id] = 0 prev[source_id] = None while len(Q) > 0: uid = mindist(dist, Q) print("do", uid) if uid == -1: print(Q) print(dist) if uid == -1: break else: Q.remove(uid) for vid in neighbours(uid): alt = dist[uid] + length(uid, vid) print("neighbour %d -> %d | d=%.2f" % (uid, vid, alt)) if alt < dist[vid]: print("closer!") dist[vid] = alt prev[vid] = uid print("dist", dist) print("prev", prev) # paths ps = [] for i, v in enumerate(graph): last_node_id = i p = [last_node_id] sum_dist = 0 count_nodes = 1 while True: curr_node_id = prev[last_node_id] if curr_node_id is None: break else: p.append(curr_node_id) count_nodes += 1 sum_dist += length(last_node_id, curr_node_id) last_node_id = curr_node_id ps.append((p, sum_dist, count_nodes)) print("ps", ps) ps = [p for p in ps if p[0][-1] == source_id] print("ps red", ps) return dist, prev, ps """ def flatten_list(l): return [item for sublist in l for item in sublist] def simplesoftmax(l): s = np.sum(l) if s > 0: return l/s else: return np.zeros_like(s) if __name__ == "__main__": main()
from dateutil.parser import parse as dtparse import locale locale.setlocale(locale.LC_ALL, '') class ReleaseNoteTxt(object): def __init__(self, changes): self.changes = changes #pprint(self.changes) def save(self, filepath): try: import prettytable except ImportError: raise ImportError( "Please install prettytable to use this rendered") def format_number(n, sign=None): s = "" if sign: if n > 0: s = "+" elif n < 0: s = "-" try: n = abs(n) strn = "%s%s" % (s, locale.format("%d", n, grouping=True)) except TypeError: # something wrong with converting, maybe we don't even have a number to format... strn = "N.A" return strn txt = "" title = "Build version: '%s'" % self.changes["new"]["_version"] txt += title + "\n" txt += "".join(["="] * len(title)) + "\n" dt = dtparse(self.changes["generated_on"]) txt += "Previous build version: '%s'\n" % self.changes["old"][ "_version"] txt += "Generated on: %s\n" % dt.strftime("%Y-%m-%d at %H:%M:%S") txt += "\n" table = prettytable.PrettyTable([ "Updated datasource", "prev. release", "new release", "prev. # of docs", "new # of docs" ]) table.align["Updated datasource"] = "l" table.align["prev. release"] = "c" table.align["new release"] = "c" table.align["prev. # of docs"] = "r" table.align["new # of docs"] = "r" for src, info in sorted(self.changes["sources"]["added"].items(), key=lambda e: e[0]): main_info = dict([(k, v) for k, v in info.items() if k.startswith("_")]) sub_infos = dict([(k, v) for k, v in info.items() if not k.startswith("_")]) if sub_infos: for sub, sub_info in sub_infos.items(): table.add_row([ "%s.%s" % (src, sub), "-", main_info["_version"], "-", format_number(sub_info["_count"]) ]) # only _count avail there else: main_count = main_info.get("_count") and format_number( main_info["_count"]) or "" table.add_row( [src, "-", main_info.get("_version", ""), "-", main_count]) for src, info in sorted(self.changes["sources"]["deleted"].items(), key=lambda e: e[0]): main_info = dict([(k, v) for k, v in info.items() if k.startswith("_")]) sub_infos = dict([(k, v) for k, v in info.items() if not k.startswith("_")]) if sub_infos: for sub, sub_info in sub_infos.items(): table.add_row([ "%s.%s" % (src, sub), main_info.get("_version", ""), "-", format_number(sub_info["_count"]), "-" ]) # only _count avail there else: main_count = main_info.get("_count") and format_number( main_info["_count"]) or "" table.add_row( [src, main_info.get("_version", ""), "-", main_count, "-"]) for src, info in sorted(self.changes["sources"]["updated"].items(), key=lambda e: e[0]): # extract information from main-source old_main_info = dict([(k, v) for k, v in info["old"].items() if k.startswith("_")]) new_main_info = dict([(k, v) for k, v in info["new"].items() if k.startswith("_")]) old_main_count = old_main_info.get("_count") and format_number( old_main_info["_count"]) or None new_main_count = new_main_info.get("_count") and format_number( new_main_info["_count"]) or None if old_main_count is None: assert new_main_count is None, "Sub-sources found for '%s', old and new count should " % src + \ "both be None. Info was: %s" % info old_sub_infos = dict([(k, v) for k, v in info["old"].items() if not k.startswith("_")]) new_sub_infos = dict([(k, v) for k, v in info["new"].items() if not k.startswith("_")]) # old & new sub_infos should have the same structure (same existing keys) # so we just use one of them to explore if old_sub_infos: assert new_sub_infos for sub, sub_info in old_sub_infos.items(): table.add_row([ "%s.%s" % (src, sub), old_main_info.get("_version", ""), new_main_info.get("_version", ""), format_number(sub_info["_count"]), format_number(new_sub_infos[sub]["_count"]) ]) else: assert new_main_count is not None, "No sub-sources found, old and new count should NOT " + \ "both be None. Info was: %s" % info table.add_row([ src, old_main_info.get("_version", ""), new_main_info.get("_version", ""), old_main_count, new_main_count ]) if table._rows: txt += table.get_string() txt += "\n" else: txt += "No datasource changed.\n" total_count = self.changes["new"].get("_count") if self.changes["sources"]["added"]: txt += "New datasource(s): %s\n" % ", ".join( sorted(list(self.changes["sources"]["added"]))) if self.changes["sources"]["deleted"]: txt += "Deleted datasource(s): %s\n" % ", ".join( sorted(list(self.changes["sources"]["deleted"]))) if self.changes["sources"]: txt += "\n" table = prettytable.PrettyTable(["Updated stats.", "previous", "new"]) table.align["Updated stats."] = "l" table.align["previous"] = "r" table.align["new"] = "r" for stat_name, stat in sorted(self.changes["stats"]["added"].items(), key=lambda e: e[0]): table.add_row([stat_name, "-", format_number(stat["_count"])]) for stat_name, stat in sorted(self.changes["stats"]["deleted"].items(), key=lambda e: e[0]): table.add_row([stat_name, format_number(stat["_count"]), "-"]) for stat_name, stat in sorted(self.changes["stats"]["updated"].items(), key=lambda e: e[0]): table.add_row([ stat_name, format_number(stat["old"]["_count"]), format_number(stat["new"]["_count"]) ]) if table._rows: txt += table.get_string() txt += "\n\n" if self.changes["new"]["_fields"]: new_fields = sorted(self.changes["new"]["_fields"].get("add", [])) deleted_fields = self.changes["new"]["_fields"].get("remove", []) updated_fields = self.changes["new"]["_fields"].get("replace", []) if new_fields: txt += "New field(s): %s\n" % ", ".join(new_fields) if deleted_fields: txt += "Deleted field(s): %s\n" % ", ".join(deleted_fields) if updated_fields: txt += "Updated field(s): %s\n" % ", ".join(updated_fields) txt += "\n" if total_count is not None: txt += "Overall, %s documents in this release\n" % ( format_number(total_count)) if self.changes["new"]["_summary"]: sumups = [] sumups.append( "%s document(s) added" % format_number(self.changes["new"]["_summary"].get("add", 0))) sumups.append("%s document(s) deleted" % format_number( self.changes["new"]["_summary"].get("delete", 0))) sumups.append("%s document(s) updated" % format_number( self.changes["new"]["_summary"].get("update", 0))) txt += ", ".join(sumups) + "\n" else: txt += "No information available for added/deleted/updated documents\n" if self.changes.get("note"): txt += "\n" txt += "Note: %s\n" % self.changes["note"] with open(filepath, "w") as fout: fout.write(txt) return txt
#!/usr/bin/env python # # Use the raw transactions API to spend sinertalers received on particular addresses, # and send any change back to that same address. # # Example usage: # spendfrom.py # Lists available funds # spendfrom.py --from=ADDRESS --to=ADDRESS --amount=11.00 # # Assumes it will talk to a sinertalerd or Bitcoin-Qt running # on localhost. # # Depends on jsonrpc # from decimal import * import getpass import math import os import os.path import platform import sys import time from jsonrpc import ServiceProxy, json BASE_FEE=Decimal("0.001") def check_json_precision(): """Make sure json library being used does not lose precision converting SIN values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def determine_db_dir(): """Return the default location of the sinertaler data directory""" if platform.system() == "Darwin": return os.path.expanduser("~/Library/Application Support/Bitcoin/") elif platform.system() == "Windows": return os.path.join(os.environ['APPDATA'], "Bitcoin") return os.path.expanduser("~/.sinertaler") def read_sinertaler_config(dbdir): """Read the sinertaler.conf file from dbdir, returns dictionary of settings""" from ConfigParser import SafeConfigParser class FakeSecHead(object): def __init__(self, fp): self.fp = fp self.sechead = '[all]\n' def readline(self): if self.sechead: try: return self.sechead finally: self.sechead = None else: s = self.fp.readline() if s.find('#') != -1: s = s[0:s.find('#')].strip() +"\n" return s config_parser = SafeConfigParser() config_parser.readfp(FakeSecHead(open(os.path.join(dbdir, "sinertaler.conf")))) return dict(config_parser.items("all")) def connect_JSON(config): """Connect to a sinertaler JSON-RPC server""" testnet = config.get('testnet', '0') testnet = (int(testnet) > 0) # 0/1 in config file, convert to True/False if not 'rpcport' in config: config['rpcport'] = 49876 if testnet else 39876 connect = "http://%s:%s@127.0.0.1:%s"%(config['rpcuser'], config['rpcpassword'], config['rpcport']) try: result = ServiceProxy(connect) # ServiceProxy is lazy-connect, so send an RPC command mostly to catch connection errors, # but also make sure the sinertalerd we're talking to is/isn't testnet: if result.getmininginfo()['testnet'] != testnet: sys.stderr.write("RPC server at "+connect+" testnet setting mismatch\n") sys.exit(1) return result except: sys.stderr.write("Error connecting to RPC server at "+connect+"\n") sys.exit(1) def unlock_wallet(sinertalerd): info = sinertalerd.getinfo() if 'unlocked_until' not in info: return True # wallet is not encrypted t = int(info['unlocked_until']) if t <= time.time(): try: passphrase = getpass.getpass("Wallet is locked; enter passphrase: ") sinertalerd.walletpassphrase(passphrase, 5) except: sys.stderr.write("Wrong passphrase\n") info = sinertalerd.getinfo() return int(info['unlocked_until']) > time.time() def list_available(sinertalerd): address_summary = dict() address_to_account = dict() for info in sinertalerd.listreceivedbyaddress(0): address_to_account[info["address"]] = info["account"] unspent = sinertalerd.listunspent(0) for output in unspent: # listunspent doesn't give addresses, so: rawtx = sinertalerd.getrawtransaction(output['txid'], 1) vout = rawtx["vout"][output['vout']] pk = vout["scriptPubKey"] # This code only deals with ordinary pay-to-sinertaler-address # or pay-to-script-hash outputs right now; anything exotic is ignored. if pk["type"] != "pubkeyhash" and pk["type"] != "scripthash": continue address = pk["addresses"][0] if address in address_summary: address_summary[address]["total"] += vout["value"] address_summary[address]["outputs"].append(output) else: address_summary[address] = { "total" : vout["value"], "outputs" : [output], "account" : address_to_account.get(address, "") } return address_summary def select_coins(needed, inputs): # Feel free to improve this, this is good enough for my simple needs: outputs = [] have = Decimal("0.0") n = 0 while have < needed and n < len(inputs): outputs.append({ "txid":inputs[n]["txid"], "vout":inputs[n]["vout"]}) have += inputs[n]["amount"] n += 1 return (outputs, have-needed) def create_tx(sinertalerd, fromaddresses, toaddress, amount, fee): all_coins = list_available(sinertalerd) total_available = Decimal("0.0") needed = amount+fee potential_inputs = [] for addr in fromaddresses: if addr not in all_coins: continue potential_inputs.extend(all_coins[addr]["outputs"]) total_available += all_coins[addr]["total"] if total_available < needed: sys.stderr.write("Error, only %f SIN available, need %f\n"%(total_available, needed)); sys.exit(1) # # Note: # Python's json/jsonrpc modules have inconsistent support for Decimal numbers. # Instead of wrestling with getting json.dumps() (used by jsonrpc) to encode # Decimals, I'm casting amounts to float before sending them to sinertalerd. # outputs = { toaddress : float(amount) } (inputs, change_amount) = select_coins(needed, potential_inputs) if change_amount > BASE_FEE: # don't bother with zero or tiny change change_address = fromaddresses[-1] if change_address in outputs: outputs[change_address] += float(change_amount) else: outputs[change_address] = float(change_amount) rawtx = sinertalerd.createrawtransaction(inputs, outputs) signed_rawtx = sinertalerd.signrawtransaction(rawtx) if not signed_rawtx["complete"]: sys.stderr.write("signrawtransaction failed\n") sys.exit(1) txdata = signed_rawtx["hex"] return txdata def compute_amount_in(sinertalerd, txinfo): result = Decimal("0.0") for vin in txinfo['vin']: in_info = sinertalerd.getrawtransaction(vin['txid'], 1) vout = in_info['vout'][vin['vout']] result = result + vout['value'] return result def compute_amount_out(txinfo): result = Decimal("0.0") for vout in txinfo['vout']: result = result + vout['value'] return result def sanity_test_fee(sinertalerd, txdata_hex, max_fee): class FeeError(RuntimeError): pass try: txinfo = sinertalerd.decoderawtransaction(txdata_hex) total_in = compute_amount_in(sinertalerd, txinfo) total_out = compute_amount_out(txinfo) if total_in-total_out > max_fee: raise FeeError("Rejecting transaction, unreasonable fee of "+str(total_in-total_out)) tx_size = len(txdata_hex)/2 kb = tx_size/1000 # integer division rounds down if kb > 1 and fee < BASE_FEE: raise FeeError("Rejecting no-fee transaction, larger than 1000 bytes") if total_in < 0.01 and fee < BASE_FEE: raise FeeError("Rejecting no-fee, tiny-amount transaction") # Exercise for the reader: compute transaction priority, and # warn if this is a very-low-priority transaction except FeeError as err: sys.stderr.write((str(err)+"\n")) sys.exit(1) def main(): import optparse parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--from", dest="fromaddresses", default=None, help="addresses to get sinertalers from") parser.add_option("--to", dest="to", default=None, help="address to get send sinertalers to") parser.add_option("--amount", dest="amount", default=None, help="amount to send") parser.add_option("--fee", dest="fee", default="0.0", help="fee to include") parser.add_option("--datadir", dest="datadir", default=determine_db_dir(), help="location of sinertaler.conf file with RPC username/password (default: %default)") parser.add_option("--testnet", dest="testnet", default=False, action="store_true", help="Use the test network") parser.add_option("--dry_run", dest="dry_run", default=False, action="store_true", help="Don't broadcast the transaction, just create and print the transaction data") (options, args) = parser.parse_args() check_json_precision() config = read_sinertaler_config(options.datadir) if options.testnet: config['testnet'] = True sinertalerd = connect_JSON(config) if options.amount is None: address_summary = list_available(sinertalerd) for address,info in address_summary.iteritems(): n_transactions = len(info['outputs']) if n_transactions > 1: print("%s %.8f %s (%d transactions)"%(address, info['total'], info['account'], n_transactions)) else: print("%s %.8f %s"%(address, info['total'], info['account'])) else: fee = Decimal(options.fee) amount = Decimal(options.amount) while unlock_wallet(sinertalerd) == False: pass # Keep asking for passphrase until they get it right txdata = create_tx(sinertalerd, options.fromaddresses.split(","), options.to, amount, fee) sanity_test_fee(sinertalerd, txdata, amount*Decimal("0.01")) if options.dry_run: print(txdata) else: txid = sinertalerd.sendrawtransaction(txdata) print(txid) if __name__ == '__main__': main()
# # Copyright 2014 Red Hat # # Author: Chris Dent <chdent@redhat.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Converters for producing hardware sensor data sample messages from notification events. """ from oslo.config import cfg from oslo import messaging from ceilometer.openstack.common import log from ceilometer import plugin from ceilometer import sample LOG = log.getLogger(__name__) OPTS = [ cfg.StrOpt('ironic_exchange', default='ironic', help='Exchange name for Ironic notifications.'), ] cfg.CONF.register_opts(OPTS) # Map unit name to SI UNIT_MAP = { 'Watts': 'W', 'Volts': 'V', } def validate_reading(data): """Some sensors read "Disabled".""" return data != 'Disabled' def transform_id(data): return data.lower().replace(' ', '_') def parse_reading(data): try: volume, unit = data.split(' ', 1) unit = unit.rsplit(' ', 1)[-1] return float(volume), UNIT_MAP.get(unit, unit) except ValueError: raise InvalidSensorData('unable to parse sensor reading: %s' % data) def parse_event_reading(key,real_data): try: element_array=real_data[key].split('|') if element_array[5].strip(' ').lower()=='asser': volume=1 else: if element_array[5].strip(' ').lower()=='deasser': volume=0 else: volume=2 return volume except ValueError: raise InvalidSensorData('unable to parse sensor reading: %s' % data) class InvalidSensorData(ValueError): pass class SensorNotification(plugin.NotificationBase): """A generic class for extracting samples from sensor data notifications. A notification message can contain multiple samples from multiple sensors, all with the same basic structure: the volume for the sample is found as part of the value of a 'Sensor Reading' key. The unit is in the same value. Subclasses exist solely to allow flexibility with stevedore configuration. """ event_types = ['hardware.ipmi.*'] metric = None @staticmethod def get_targets(conf): """oslo.messaging.TargetS for this plugin.""" return [messaging.Target(topic=topic, exchange=conf.ironic_exchange) for topic in conf.notification_topics] def _get_sample(self, message): try: return (payload for _, payload in message['payload'][self.metric].items()) except KeyError: return [] def _package_event_payload(self, message, payload): # NOTE(chdent): How much of the payload should we keep? payload['node'] = message['payload']['node_uuid'] info = {'publisher_id': message['publisher_id'], 'timestamp': message['payload']['timestamp'], 'event_type': message['payload']['event_type'], 'user_id': message['payload'].get('user_id'), 'project_id': message['payload'].get('project_id'), 'payload': payload} return info def _package_payload(self, message, payload): # NOTE(chdent): How much of the payload should we keep? payload['node'] = message['payload']['node_uuid'] info = {'publisher_id': message['publisher_id'], 'timestamp': message['payload']['timestamp'], 'event_type': message['payload']['event_type'], 'user_id': message['payload'].get('user_id'), 'project_id': message['payload'].get('project_id'), 'payload': payload} return info def process_notification(self, message): """Read and process a notification. The guts of a message are in dict value of a 'payload' key which then itself has a payload key containing a dict of multiple sensor readings. If expected keys in the payload are missing or values are not in the expected form for transformations, KeyError and ValueError are caught and the current sensor payload is skipped. """ payloads = self._get_sample(message['payload']) if self.metric =="sel": message_payload=message['payload'] name=message_payload['event_type'] short_name=name.split(".")[-1] unit="NA" this_uuid=message_payload['node_uuid'] real_message=message_payload['payload'] event_key_list=real_message[short_name].keys() for each in event_key_list: volume= parse_event_reading(each,real_message[short_name]) resource_id = '%(nodeid)s-%(evenname)s' % {'nodeid':this_uuid,'evenname':each} info=self._package_event_payload(message,real_message) yield sample.Sample.from_notification( name=name, type=sample.TYPE_GAUGE, unit=unit, volume=volume, resource_id=resource_id, message=info, user_id=info['user_id'], project_id=info['project_id']) continue else: for payload in payloads: try: # Provide a fallback resource_id in case parts are missing. print payload resource_id = 'missing id' try: resource_id = '%(nodeid)s-%(sensorid)s' % { 'nodeid': message['payload']['node_uuid'], 'sensorid': transform_id(payload['Sensor ID']) } except KeyError as exc: raise InvalidSensorData('missing key in payload: %s' % exc) info = self._package_payload(message, payload) try: sensor_reading = info['payload']['Sensor Reading'] except KeyError as exc: raise InvalidSensorData( "missing 'Sensor Reading' in payload" ) if validate_reading(sensor_reading): volume, unit = parse_reading(sensor_reading) yield sample.Sample.from_notification( name='hardware.ipmi.%s' % self.metric.lower(), type=sample.TYPE_GAUGE, unit=unit, volume=volume, resource_id=resource_id, message=info, user_id=info['user_id'], project_id=info['project_id']) except InvalidSensorData as exc: LOG.warn( 'invalid sensor data for %(resource)s: %(error)s' % dict(resource=resource_id, error=exc) ) continue class TemperatureSensorNotification(SensorNotification): metric = 'Temperature' class CurrentSensorNotification(SensorNotification): metric = 'Current' class FanSensorNotification(SensorNotification): metric = 'Fan' class VoltageSensorNotification(SensorNotification): metric = 'Voltage' class SelNotification(SensorNotification): metric = 'sel'
#!/usr/bin/python # (c) 2016, Marcin Skarbek <github@skarbek.name> # (c) 2016, Andreas Olsson <andreas@arrakis.se> # (c) 2017, Loic Blot <loic.blot@unix-experience.fr> # # This module was ported from https://github.com/mskarbek/ansible-nsupdate # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: nsupdate short_description: Manage DNS records. description: - Create, update and remove DNS records using DDNS updates - DDNS works well with both bind and Microsoft DNS (see https://technet.microsoft.com/en-us/library/cc961412.aspx) version_added: "2.3" requirements: - dnspython author: "Loic Blot (@nerzhul)" options: state: description: - Manage DNS record. choices: ['present', 'absent'] default: 'present' server: description: - Apply DNS modification on this server. required: true key_name: description: - Use TSIG key name to authenticate against DNS C(server) key_secret: description: - Use TSIG key secret, associated with C(key_name), to authenticate against C(server) key_algorithm: description: - Specify key algorithm used by C(key_secret). choices: ['HMAC-MD5.SIG-ALG.REG.INT', 'hmac-md5', 'hmac-sha1', 'hmac-sha224', 'hmac-sha256', 'hamc-sha384', 'hmac-sha512'] default: 'hmac-md5' zone: description: - DNS record will be modified on this C(zone). required: true record: description: - Sets the DNS record to modify. required: true type: description: - Sets the record type. default: 'A' ttl: description: - Sets the record TTL. default: 3600 value: description: - Sets the record value. default: None ''' EXAMPLES = ''' - name: Add or modify ansible.example.org A to 192.168.1.1" nsupdate: key_name: "nsupdate" key_secret: "+bFQtBCta7j2vWkjPkAFtgA==" server: "10.1.1.1" zone: "example.org" record: "ansible" value: "192.168.1.1" - name: Remove puppet.example.org CNAME nsupdate: key_name: "nsupdate" key_secret: "+bFQtBCta7j2vWkjPkAFtgA==" server: "10.1.1.1" zone: "example.org" record: "puppet" type: "CNAME" state: absent ''' RETURN = ''' changed: description: If module has modified record returned: success type: string record: description: DNS record returned: success type: string sample: 'ansible' ttl: description: DNS record TTL returned: success type: int sample: 86400 type: description: DNS record type returned: success type: string sample: 'CNAME' value: description: DNS record value returned: success type: string sample: '192.168.1.1' zone: description: DNS record zone returned: success type: string sample: 'example.org.' dns_rc: description: dnspython return code returned: always type: int sample: 4 dns_rc_str: description: dnspython return code (string representation) returned: always type: string sample: 'REFUSED' ''' from binascii import Error as binascii_error from socket import error as socket_error try: import dns.update import dns.query import dns.tsigkeyring import dns.message import dns.resolver HAVE_DNSPYTHON = True except ImportError: HAVE_DNSPYTHON = False from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native class RecordManager(object): def __init__(self, module): self.module = module if module.params['zone'][-1] != '.': self.zone = module.params['zone'] + '.' else: self.zone = module.params['zone'] if module.params['key_name']: try: self.keyring = dns.tsigkeyring.from_text({ module.params['key_name']: module.params['key_secret'] }) except TypeError: module.fail_json(msg='Missing key_secret') except binascii_error as e: module.fail_json(msg='TSIG key error: %s' % to_native(e)) else: self.keyring = None if module.params['key_algorithm'] == 'hmac-md5': self.algorithm = 'HMAC-MD5.SIG-ALG.REG.INT' else: self.algorithm = module.params['key_algorithm'] self.dns_rc = 0 def __do_update(self, update): response = None try: response = dns.query.tcp(update, self.module.params['server'], timeout=10) except (dns.tsig.PeerBadKey, dns.tsig.PeerBadSignature) as e: self.module.fail_json(msg='TSIG update error (%s): %s' % (e.__class__.__name__, to_native(e))) except (socket_error, dns.exception.Timeout) as e: self.module.fail_json(msg='DNS server error: (%s): %s' % (e.__class__.__name__, to_native(e))) return response def create_or_update_record(self): result = {'changed': False, 'failed': False} exists = self.record_exists() if exists in [0, 2]: if self.module.check_mode: self.module.exit_json(changed=True) if exists == 0: self.dns_rc = self.create_record() if self.dns_rc != 0: result['msg'] = "Failed to create DNS record (rc: %d)" % self.dns_rc elif exists == 2: self.dns_rc = self.modify_record() if self.dns_rc != 0: result['msg'] = "Failed to update DNS record (rc: %d)" % self.dns_rc if self.dns_rc != 0: result['failed'] = True else: result['changed'] = True else: result['changed'] = False return result def create_record(self): update = dns.update.Update(self.zone, keyring=self.keyring, keyalgorithm=self.algorithm) try: update.add(self.module.params['record'], self.module.params['ttl'], self.module.params['type'], self.module.params['value']) except AttributeError: self.module.fail_json(msg='value needed when state=present') except dns.exception.SyntaxError: self.module.fail_json(msg='Invalid/malformed value') response = self.__do_update(update) return dns.message.Message.rcode(response) def modify_record(self): update = dns.update.Update(self.zone, keyring=self.keyring, keyalgorithm=self.algorithm) update.replace(self.module.params['record'], self.module.params['ttl'], self.module.params['type'], self.module.params['value']) response = self.__do_update(update) return dns.message.Message.rcode(response) def remove_record(self): result = {'changed': False, 'failed': False} if self.record_exists() == 0: return result # Check mode and record exists, declared fake change. if self.module.check_mode: self.module.exit_json(changed=True) update = dns.update.Update(self.zone, keyring=self.keyring, keyalgorithm=self.algorithm) update.delete(self.module.params['record'], self.module.params['type']) response = self.__do_update(update) self.dns_rc = dns.message.Message.rcode(response) if self.dns_rc != 0: result['failed'] = True result['msg'] = "Failed to delete record (rc: %d)" % self.dns_rc else: result['changed'] = True return result def record_exists(self): update = dns.update.Update(self.zone, keyring=self.keyring, keyalgorithm=self.algorithm) try: update.present(self.module.params['record'], self.module.params['type']) except dns.rdatatype.UnknownRdatatype as e: self.module.fail_json(msg='Record error: {0}'.format(to_native(e))) response = self.__do_update(update) self.dns_rc = dns.message.Message.rcode(response) if self.dns_rc == 0: if self.module.params['state'] == 'absent': return 1 try: update.present(self.module.params['record'], self.module.params['type'], self.module.params['value']) except AttributeError: self.module.fail_json(msg='value needed when state=present') except dns.exception.SyntaxError: self.module.fail_json(msg='Invalid/malformed value') response = self.__do_update(update) self.dns_rc = dns.message.Message.rcode(response) if self.dns_rc == 0: return 1 else: return 2 else: return 0 def main(): tsig_algs = ['HMAC-MD5.SIG-ALG.REG.INT', 'hmac-md5', 'hmac-sha1', 'hmac-sha224', 'hmac-sha256', 'hamc-sha384', 'hmac-sha512'] module = AnsibleModule( argument_spec=dict( state=dict(required=False, default='present', choices=['present', 'absent'], type='str'), server=dict(required=True, type='str'), key_name=dict(required=False, type='str'), key_secret=dict(required=False, type='str', no_log=True), key_algorithm=dict(required=False, default='hmac-md5', choices=tsig_algs, type='str'), zone=dict(required=True, type='str'), record=dict(required=True, type='str'), type=dict(required=False, default='A', type='str'), ttl=dict(required=False, default=3600, type='int'), value=dict(required=False, default=None, type='str') ), supports_check_mode=True ) if not HAVE_DNSPYTHON: module.fail_json(msg='python library dnspython required: pip install dnspython') if len(module.params["record"]) == 0: module.fail_json(msg='record cannot be empty.') record = RecordManager(module) result = {} if module.params["state"] == 'absent': result = record.remove_record() elif module.params["state"] == 'present': result = record.create_or_update_record() result['dns_rc'] = record.dns_rc result['dns_rc_str'] = dns.rcode.to_text(record.dns_rc) if result['failed']: module.fail_json(**result) else: result['record'] = dict(zone=record.zone, record=module.params['record'], type=module.params['type'], ttl=module.params['ttl'], value=module.params['value']) module.exit_json(**result) if __name__ == '__main__': main()
#! /usr/bin/env python # -*- coding: utf-8 -*- # copyright 2014 Hamilton Kibbe <ham@hamiltonkib.be> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CAM File ============ **AM file classes** This module provides common base classes for Excellon/Gerber CNC files """ class FileSettings(object): """ CAM File Settings Provides a common representation of gerber/excellon file settings Parameters ---------- notation: string notation format. either 'absolute' or 'incremental' units : string Measurement units. 'inch' or 'metric' zero_suppression: string 'leading' to suppress leading zeros, 'trailing' to suppress trailing zeros. This is the convention used in Gerber files. format : tuple (int, int) Decimal format zeros : string 'leading' to include leading zeros, 'trailing to include trailing zeros. This is the convention used in Excellon files Notes ----- Either `zeros` or `zero_suppression` should be specified, there is no need to specify both. `zero_suppression` will take on the opposite value of `zeros` and vice versa """ def __init__(self, notation='absolute', units='inch', zero_suppression=None, format=(2, 5), zeros=None, angle_units='degrees'): if notation not in ['absolute', 'incremental']: raise ValueError('Notation must be either absolute or incremental') self.notation = notation if units not in ['inch', 'metric']: raise ValueError('Units must be either inch or metric') self.units = units if zero_suppression is None and zeros is None: self.zero_suppression = 'trailing' elif zero_suppression == zeros: raise ValueError('Zeros and Zero Suppression must be different. \ Best practice is to specify only one.') elif zero_suppression is not None: if zero_suppression not in ['leading', 'trailing']: # This is a common problem in Eagle files, so just suppress it self.zero_suppression = 'leading' else: self.zero_suppression = zero_suppression elif zeros is not None: if zeros not in ['leading', 'trailing']: raise ValueError('Zeros must be either leading or trailling') self.zeros = zeros if len(format) != 2: raise ValueError('Format must be a tuple(n=2) of integers') self.format = format if angle_units not in ('degrees', 'radians'): raise ValueError('Angle units may be degrees or radians') self.angle_units = angle_units @property def zero_suppression(self): return self._zero_suppression @zero_suppression.setter def zero_suppression(self, value): self._zero_suppression = value self._zeros = 'leading' if value == 'trailing' else 'trailing' @property def zeros(self): return self._zeros @zeros.setter def zeros(self, value): self._zeros = value self._zero_suppression = 'leading' if value == 'trailing' else 'trailing' def __getitem__(self, key): if key == 'notation': return self.notation elif key == 'units': return self.units elif key == 'zero_suppression': return self.zero_suppression elif key == 'zeros': return self.zeros elif key == 'format': return self.format elif key == 'angle_units': return self.angle_units else: raise KeyError() def __setitem__(self, key, value): if key == 'notation': if value not in ['absolute', 'incremental']: raise ValueError('Notation must be either \ absolute or incremental') self.notation = value elif key == 'units': if value not in ['inch', 'metric']: raise ValueError('Units must be either inch or metric') self.units = value elif key == 'zero_suppression': if value not in ['leading', 'trailing']: raise ValueError('Zero suppression must be either leading or \ trailling') self.zero_suppression = value elif key == 'zeros': if value not in ['leading', 'trailing']: raise ValueError('Zeros must be either leading or trailling') self.zeros = value elif key == 'format': if len(value) != 2: raise ValueError('Format must be a tuple(n=2) of integers') self.format = value elif key == 'angle_units': if value not in ('degrees', 'radians'): raise ValueError('Angle units may be degrees or radians') self.angle_units = value else: raise KeyError('%s is not a valid key' % key) def __eq__(self, other): return (self.notation == other.notation and self.units == other.units and self.zero_suppression == other.zero_suppression and self.format == other.format and self.angle_units == other.angle_units) def __str__(self): return ('<Settings: %s %s %s %s %s>' % (self.units, self.notation, self.zero_suppression, self.format, self.angle_units)) class CamFile(object): """ Base class for Gerber/Excellon files. Provides a common set of settings parameters. Parameters ---------- settings : FileSettings The current file configuration. primitives : iterable List of primitives in the file. filename : string Name of the file that this CamFile represents. layer_name : string Name of the PCB layer that the file represents Attributes ---------- settings : FileSettings File settings as a FileSettings object notation : string File notation setting. May be either 'absolute' or 'incremental' units : string File units setting. May be 'inch' or 'metric' zero_suppression : string File zero-suppression setting. May be either 'leading' or 'trailling' format : tuple (<int>, <int>) File decimal representation format as a tuple of (integer digits, decimal digits) """ def __init__(self, statements=None, settings=None, primitives=None, filename=None, layer_name=None): if settings is not None: self.notation = settings['notation'] self.units = settings['units'] self.zero_suppression = settings['zero_suppression'] self.zeros = settings['zeros'] self.format = settings['format'] else: self.notation = 'absolute' self.units = 'inch' self.zero_suppression = 'trailing' self.zeros = 'leading' self.format = (2, 5) self.statements = statements if statements is not None else [] if primitives is not None: self.primitives = primitives self.filename = filename self.layer_name = layer_name @property def settings(self): """ File settings Returns ------- settings : FileSettings (dict-like) A FileSettings object with the specified configuration. """ return FileSettings(self.notation, self.units, self.zero_suppression, self.format) @property def bounds(self): """ File boundaries """ pass @property def bounding_box(self): pass def to_inch(self): pass def to_metric(self): pass def render(self, ctx=None, invert=False, filename=None): """ Generate image of layer. Parameters ---------- ctx : :class:`GerberContext` GerberContext subclass used for rendering the image filename : string <optional> If provided, save the rendered image to `filename` """ if ctx is None: from .render import GerberCairoContext ctx = GerberCairoContext() ctx.set_bounds(self.bounding_box) ctx.paint_background() ctx.invert = invert ctx.new_render_layer() for p in self.primitives: ctx.render(p) ctx.flatten() if filename is not None: ctx.dump(filename)
# Copyright 2013 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import uuid from oslo.config import cfg import webob from cinder.api import extensions from cinder.api.v2 import volume_metadata from cinder.api.v2 import volumes from cinder import db from cinder import exception from cinder.openstack.common import jsonutils from cinder import test from cinder.tests.api import fakes from cinder.tests.api.v2 import stubs from cinder.volume import api as volume_api CONF = cfg.CONF def return_create_volume_metadata_max(context, volume_id, metadata, delete): return stub_max_volume_metadata() def return_create_volume_metadata(context, volume_id, metadata, delete): return stub_volume_metadata() def return_new_volume_metadata(context, volume_id, metadata, delete): return stub_new_volume_metadata() def return_create_volume_metadata_insensitive(context, snapshot_id, metadata, delete): return stub_volume_metadata_insensitive() def return_volume_metadata(context, volume_id): if not isinstance(volume_id, str) or not len(volume_id) == 36: msg = 'id %s must be a uuid in return volume metadata' % volume_id raise Exception(msg) return stub_volume_metadata() def return_empty_volume_metadata(context, volume_id): return {} def return_empty_container_metadata(context, volume_id, metadata, delete): return {} def delete_volume_metadata(context, volume_id, key): pass def stub_volume_metadata(): metadata = { "key1": "value1", "key2": "value2", "key3": "value3", } return metadata def stub_new_volume_metadata(): metadata = { 'key10': 'value10', 'key99': 'value99', 'KEY20': 'value20', } return metadata def stub_volume_metadata_insensitive(): metadata = { "key1": "value1", "key2": "value2", "key3": "value3", "KEY4": "value4", } return metadata def stub_max_volume_metadata(): metadata = {"metadata": {}} for num in range(CONF.quota_metadata_items): metadata['metadata']['key%i' % num] = "blah" return metadata def return_volume(context, volume_id): return {'id': '0cc3346e-9fef-4445-abe6-5d2b2690ec64', 'name': 'fake', 'metadata': {}} def return_volume_nonexistent(context, volume_id): raise exception.VolumeNotFound('bogus test message') def fake_update_volume_metadata(self, context, volume, diff): pass class volumeMetaDataTest(test.TestCase): def setUp(self): super(volumeMetaDataTest, self).setUp() self.volume_api = volume_api.API() fakes.stub_out_key_pair_funcs(self.stubs) self.stubs.Set(db, 'volume_get', return_volume) self.stubs.Set(db, 'volume_metadata_get', return_volume_metadata) self.stubs.Set(db, 'service_get_all_by_topic', stubs.stub_service_get_all_by_topic) self.stubs.Set(self.volume_api, 'update_volume_metadata', fake_update_volume_metadata) self.ext_mgr = extensions.ExtensionManager() self.ext_mgr.extensions = {} self.volume_controller = volumes.VolumeController(self.ext_mgr) self.controller = volume_metadata.Controller() self.req_id = str(uuid.uuid4()) self.url = '/v2/fake/volumes/%s/metadata' % self.req_id vol = {"size": 100, "display_name": "Volume Test Name", "display_description": "Volume Test Desc", "availability_zone": "zone1:host1", "metadata": {}} body = {"volume": vol} req = fakes.HTTPRequest.blank('/v2/volumes') self.volume_controller.create(req, body) def test_index(self): req = fakes.HTTPRequest.blank(self.url) res_dict = self.controller.index(req, self.req_id) expected = { 'metadata': { 'key1': 'value1', 'key2': 'value2', 'key3': 'value3', }, } self.assertEqual(expected, res_dict) def test_index_nonexistent_volume(self): self.stubs.Set(db, 'volume_metadata_get', return_volume_nonexistent) req = fakes.HTTPRequest.blank(self.url) self.assertRaises(webob.exc.HTTPNotFound, self.controller.index, req, self.url) def test_index_no_data(self): self.stubs.Set(db, 'volume_metadata_get', return_empty_volume_metadata) req = fakes.HTTPRequest.blank(self.url) res_dict = self.controller.index(req, self.req_id) expected = {'metadata': {}} self.assertEqual(expected, res_dict) def test_show(self): req = fakes.HTTPRequest.blank(self.url + '/key2') res_dict = self.controller.show(req, self.req_id, 'key2') expected = {'meta': {'key2': 'value2'}} self.assertEqual(expected, res_dict) def test_show_nonexistent_volume(self): self.stubs.Set(db, 'volume_metadata_get', return_volume_nonexistent) req = fakes.HTTPRequest.blank(self.url + '/key2') self.assertRaises(webob.exc.HTTPNotFound, self.controller.show, req, self.req_id, 'key2') def test_show_meta_not_found(self): self.stubs.Set(db, 'volume_metadata_get', return_empty_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key6') self.assertRaises(webob.exc.HTTPNotFound, self.controller.show, req, self.req_id, 'key6') def test_delete(self): self.stubs.Set(db, 'volume_metadata_get', return_volume_metadata) self.stubs.Set(db, 'volume_metadata_delete', delete_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key2') req.method = 'DELETE' res = self.controller.delete(req, self.req_id, 'key2') self.assertEqual(200, res.status_int) def test_delete_nonexistent_volume(self): self.stubs.Set(db, 'volume_get', return_volume_nonexistent) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'DELETE' self.assertRaises(webob.exc.HTTPNotFound, self.controller.delete, req, self.req_id, 'key1') def test_delete_meta_not_found(self): self.stubs.Set(db, 'volume_metadata_get', return_empty_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key6') req.method = 'DELETE' self.assertRaises(webob.exc.HTTPNotFound, self.controller.delete, req, self.req_id, 'key6') def test_create(self): self.stubs.Set(db, 'volume_metadata_get', return_empty_volume_metadata) self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank('/v2/volume_metadata') req.method = 'POST' req.content_type = "application/json" body = {"metadata": {"key1": "value1", "key2": "value2", "key3": "value3", }} req.body = jsonutils.dumps(body) res_dict = self.controller.create(req, self.req_id, body) self.assertEqual(body, res_dict) def test_create_with_keys_in_uppercase_and_lowercase(self): # if the keys in uppercase_and_lowercase, should return the one # which server added self.stubs.Set(db, 'volume_metadata_get', return_empty_volume_metadata) self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata_insensitive) req = fakes.HTTPRequest.blank('/v2/volume_metadata') req.method = 'POST' req.content_type = "application/json" body = {"metadata": {"key1": "value1", "KEY1": "value1", "key2": "value2", "KEY2": "value2", "key3": "value3", "KEY4": "value4"}} expected = {"metadata": {"key1": "value1", "key2": "value2", "key3": "value3", "KEY4": "value4"}} req.body = jsonutils.dumps(body) res_dict = self.controller.create(req, self.req_id, body) self.assertEqual(expected, res_dict) def test_create_empty_body(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'POST' req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, self.req_id, None) def test_create_item_empty_key(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, self.req_id, body) def test_create_item_key_too_long(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {("a" * 260): "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, self.req_id, body) def test_create_nonexistent_volume(self): self.stubs.Set(db, 'volume_get', return_volume_nonexistent) self.stubs.Set(db, 'volume_metadata_get', return_volume_metadata) self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank('/v2/volume_metadata') req.method = 'POST' req.content_type = "application/json" body = {"metadata": {"key9": "value9"}} req.body = jsonutils.dumps(body) self.assertRaises(webob.exc.HTTPNotFound, self.controller.create, req, self.req_id, body) def test_update_all(self): self.stubs.Set(db, 'volume_metadata_update', return_new_volume_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" expected = { 'metadata': { 'key10': 'value10', 'key99': 'value99', 'KEY20': 'value20', }, } req.body = jsonutils.dumps(expected) res_dict = self.controller.update_all(req, self.req_id, expected) self.assertEqual(expected, res_dict) def test_update_all_with_keys_in_uppercase_and_lowercase(self): self.stubs.Set(db, 'volume_metadata_get', return_create_volume_metadata) self.stubs.Set(db, 'volume_metadata_update', return_new_volume_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" body = { 'metadata': { 'key10': 'value10', 'KEY10': 'value10', 'key99': 'value99', 'KEY20': 'value20', }, } expected = { 'metadata': { 'key10': 'value10', 'key99': 'value99', 'KEY20': 'value20', }, } req.body = jsonutils.dumps(expected) res_dict = self.controller.update_all(req, self.req_id, body) self.assertEqual(expected, res_dict) def test_update_all_empty_container(self): self.stubs.Set(db, 'volume_metadata_update', return_empty_container_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" expected = {'metadata': {}} req.body = jsonutils.dumps(expected) res_dict = self.controller.update_all(req, self.req_id, expected) self.assertEqual(expected, res_dict) def test_update_all_malformed_container(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" expected = {'meta': {}} req.body = jsonutils.dumps(expected) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update_all, req, self.req_id, expected) def test_update_all_malformed_data(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" expected = {'metadata': ['asdf']} req.body = jsonutils.dumps(expected) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update_all, req, self.req_id, expected) def test_update_all_nonexistent_volume(self): self.stubs.Set(db, 'volume_get', return_volume_nonexistent) req = fakes.HTTPRequest.blank(self.url) req.method = 'PUT' req.content_type = "application/json" body = {'metadata': {'key10': 'value10'}} req.body = jsonutils.dumps(body) self.assertRaises(webob.exc.HTTPNotFound, self.controller.update_all, req, '100', body) def test_update_item(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" res_dict = self.controller.update(req, self.req_id, 'key1', body) expected = {'meta': {'key1': 'value1'}} self.assertEqual(expected, res_dict) def test_update_item_nonexistent_volume(self): self.stubs.Set(db, 'volume_get', return_volume_nonexistent) req = fakes.HTTPRequest.blank('/v2/fake/volumes/asdf/metadata/key1') req.method = 'PUT' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPNotFound, self.controller.update, req, self.req_id, 'key1', body) def test_update_item_empty_body(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, self.req_id, 'key1', None) def test_update_item_empty_key(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, self.req_id, '', body) def test_update_item_key_too_long(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {("a" * 260): "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.update, req, self.req_id, ("a" * 260), body) def test_update_item_value_too_long(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"key1": ("a" * 260)}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.update, req, self.req_id, "key1", body) def test_update_item_too_many_keys(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/key1') req.method = 'PUT' body = {"meta": {"key1": "value1", "key2": "value2"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, self.req_id, 'key1', body) def test_update_item_body_uri_mismatch(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url + '/bad') req.method = 'PUT' body = {"meta": {"key1": "value1"}} req.body = jsonutils.dumps(body) req.headers["content-type"] = "application/json" self.assertRaises(webob.exc.HTTPBadRequest, self.controller.update, req, self.req_id, 'bad', body) def test_invalid_metadata_items_on_create(self): self.stubs.Set(db, 'volume_metadata_update', return_create_volume_metadata) req = fakes.HTTPRequest.blank(self.url) req.method = 'POST' req.headers["content-type"] = "application/json" #test for long key data = {"metadata": {"a" * 260: "value1"}} req.body = jsonutils.dumps(data) self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.create, req, self.req_id, data) #test for long value data = {"metadata": {"key": "v" * 260}} req.body = jsonutils.dumps(data) self.assertRaises(webob.exc.HTTPRequestEntityTooLarge, self.controller.create, req, self.req_id, data) #test for empty key. data = {"metadata": {"": "value1"}} req.body = jsonutils.dumps(data) self.assertRaises(webob.exc.HTTPBadRequest, self.controller.create, req, self.req_id, data)
from collections import defaultdict from .common import error_info from .common import fail, warn from .env import env from .errors import Errors, Warnings from .scope import Scope from .ir import CONST, TEMP, MOVE from .irvisitor import IRVisitor, IRTransformer from .type import Type from .typecheck import TypePropagation class PortTypeProp(TypePropagation): def visit_NEW(self, ir): if ir.func_scope().is_port(): assert self.scope.is_ctor() and self.scope.parent.is_module() attrs = {} ctor = ir.func_scope().find_ctor() for (_, a), p in zip(ir.args, ctor.params[1:]): if a.is_a(CONST): if p.copy.name == 'direction': di = self._normalize_direction(a.value) if not di: fail(self.current_stm, Errors.UNKNOWN_X_IS_SPECIFIED, ['direction', a.value]) attrs[p.copy.name] = di else: attrs[p.copy.name] = a.value elif a.is_a(TEMP) and a.symbol().typ.is_class(): attrs[p.copy.name] = a.symbol().typ.name else: fail(self.current_stm, Errors.PORT_PARAM_MUST_BE_CONST) assert len(ir.func_scope().type_args) == 1 assert 'direction' in attrs attrs['dtype'] = ir.func_scope().type_args[0] attrs['root_symbol'] = self.current_stm.dst.symbol() if self.current_stm.is_a(MOVE) and self.current_stm.dst.is_a(TEMP): attrs['port_kind'] = 'internal' else: if attrs['direction'] == 'input' or attrs['direction'] == 'output': attrs['port_kind'] = 'external' else: attrs['port_kind'] = 'internal' if 'protocol' not in attrs: attrs['protocol'] = 'none' if 'init' not in attrs or attrs['init'] is None: attrs['init'] = 0 port_typ = Type.port(ir.func_scope(), attrs) #port_typ.freeze() ir.func_scope().return_type = port_typ return ir.func_scope().return_type def _normalize_direction(self, di): if di == 'in' or di == 'input' or di == 'i': return 'input' elif di == 'out' or di == 'output' or di == 'o': return 'output' elif di == 'any' or not di: return 'any' return '' def visit_CALL(self, ir): if ir.func_scope().is_method() and ir.func_scope().parent.is_port(): sym = ir.func.tail() assert sym.typ.is_port() kind = sym.typ.get_port_kind() root = sym.typ.get_root_symbol() port_owner = root.scope # if port is a local variable, we modify the port owner its parent if port_owner.is_method(): port_owner = port_owner.parent if self.scope.is_worker(): scope = self.scope.worker_owner elif self.scope.is_method(): scope = self.scope.parent else: scope = self.scope if not scope.is_subclassof(port_owner) and kind == 'internal': fail(self.current_stm, Errors.PORT_ACCESS_IS_NOT_ALLOWED) return super().visit_CALL(ir) class PortConverter(IRTransformer): def __init__(self): super().__init__() self.writers = defaultdict(set) self.readers = defaultdict(set) def process_all(self): scopes = Scope.get_scopes(with_class=True) modules = [s for s in scopes if s.is_module()] if not modules: return typeprop = PortTypeProp() for m in modules: if not m.is_instantiated(): continue ctor = m.find_ctor() assert ctor typeprop.process(ctor) for w, args in m.workers: typeprop.process(w) for caller in env.depend_graph.preds(m): if caller.is_namespace(): continue typeprop.process(caller) self.union_ports = defaultdict(set) self.process(ctor) for w, args in m.workers: self.process(w) for caller in env.depend_graph.preds(m): if caller.is_namespace(): continue self.process(caller) # check for instance variable port for field in m.class_fields().values(): if field.typ.is_port() and field not in self.readers and field not in self.writers: if not env.depend_graph.preds(m): continue assert ctor.usedef stm = ctor.usedef.get_stms_defining(field).pop() warn(stm, Warnings.PORT_IS_NOT_USED, [field.orig_name()]) # check for local variable port for sym in ctor.symbols.values(): if sym.typ.is_port() and sym not in self.readers and sym not in self.writers: assert ctor.usedef stms = ctor.usedef.get_stms_defining(sym) # This symbol might not be used (e.g. ancestor symbol), # so we have to check if its definition statement exists. if stms: warn(list(stms)[0], Warnings.PORT_IS_NOT_USED, [sym.orig_name()]) def _set_and_check_port_direction(self, expected_di, sym): port_typ = sym.typ rootsym = port_typ.get_root_symbol() di = port_typ.get_direction() kind = port_typ.get_port_kind() if kind == 'external': if di == 'any': port_typ.set_port_kind('internal') port_typ.set_direction('inout') elif di != expected_di: if sym.ancestor and sym.ancestor.scope is not sym.scope: # the port has been accessed as opposite direction # by a module includes original owner module port_typ.set_port_kind('internal') port_typ.set_direction('inout') else: fail(self.current_stm, Errors.DIRECTION_IS_CONFLICTED, [sym.orig_name()]) elif kind == 'internal': if self.scope.is_worker(): port_typ.set_direction('inout') else: fail(self.current_stm, Errors.DIRECTION_IS_CONFLICTED, [sym.orig_name()]) if expected_di == 'output': # write-write conflict if self.writers[rootsym]: assert len(self.writers[rootsym]) == 1 writer = list(self.writers[rootsym])[0] if writer is not self.scope and writer.worker_owner is self.scope.worker_owner: fail(self.current_stm, Errors.WRITING_IS_CONFLICTED, [sym.orig_name()]) else: if kind == 'internal': assert self.scope.is_worker() or self.scope.parent.is_module() self.writers[rootsym].add(self.scope) elif expected_di == 'input': # read-read conflict if self.readers[rootsym]: if all([s.is_testbench() for s in self.readers[rootsym]]): if self.scope.is_testbench(): self.readers[rootsym].add(self.scope) elif port_typ.get_scope().name.startswith('polyphony.io.Port') and port_typ.get_protocol() == 'none': pass else: assert len(self.readers[rootsym]) == 1 reader = list(self.readers[rootsym])[0] if reader is not self.scope and reader.worker_owner is self.scope.worker_owner: fail(self.current_stm, Errors.READING_IS_CONFLICTED, [sym.orig_name()]) else: if kind == 'internal': assert self.scope.is_worker() or self.scope.parent.is_module() self.readers[rootsym].add(self.scope) def _get_port_owner(self, sym): assert sym.typ.is_port() root = sym.typ.get_root_symbol() if root.scope.is_ctor(): return root.scope.parent else: return root.scope def _check_port_direction(self, sym, func_scope): if func_scope.name.startswith('polyphony.io.Queue'): if func_scope.orig_name in ('wr', 'full'): expected_di = 'output' else: expected_di = 'input' else: if func_scope.orig_name == 'wr': expected_di = 'output' else: expected_di = 'input' port_owner = self._get_port_owner(sym) if ((self.scope.is_worker() and not self.scope.worker_owner.is_subclassof(port_owner)) or not self.scope.is_worker()): expected_di = 'output' if expected_di == 'input' else 'input' if sym in self.union_ports: for s in self.union_ports[sym]: self._set_and_check_port_direction(expected_di, s) else: self._set_and_check_port_direction(expected_di, sym) def visit_CALL(self, ir): if not ir.func_scope().is_lib(): return ir if ir.func_scope().is_method() and ir.func_scope().parent.is_port(): sym = ir.func.tail() assert sym.typ.is_port() self._check_port_direction(sym, ir.func_scope()) if (self.current_stm.block.synth_params['scheduling'] == 'pipeline' and self.scope.find_region(self.current_stm.block) is not self.scope.top_region()): root_sym = sym.typ.get_root_symbol() root_sym.add_tag('pipelined') return ir def visit_SYSCALL(self, ir): if ir.sym.name.startswith('polyphony.timing.wait_'): if (ir.sym.name == 'polyphony.timing.wait_rising' or ir.sym.name == 'polyphony.timing.wait_falling'): ports = ir.args elif ir.sym.name == 'polyphony.timing.wait_edge': ports = ir.args[2:] elif ir.sym.name == 'polyphony.timing.wait_value': ports = ir.args[1:] for _, p in ports: port = p.symbol().typ assert port.is_port() di = port.get_direction() kind = port.get_port_kind() if kind == 'external': port_owner = self._get_port_owner(p.symbol()) #port.set_direction('input') #port.freeze() if ((self.scope.is_worker() and not self.scope.worker_owner.is_subclassof(port_owner)) or not self.scope.is_worker()): if di == 'input': fail(self.current_stm, Errors.CANNOT_WAIT_INPUT) else: if di == 'output': fail(self.current_stm, Errors.CANNOT_WAIT_OUTPUT) return ir def visit_PHI(self, ir): if ir.var.symbol().typ.is_port(): for arg in ir.args: self.union_ports[ir.var.symbol()].add(arg.symbol()) super().visit_PHI(ir) class FlattenPortList(IRTransformer): def visit_MREF(self, ir): memsym = ir.mem.symbol() memtyp = memsym.typ assert memtyp.is_seq() elm_t = memtyp.get_element() if not elm_t.is_object(): return ir if not elm_t.get_scope().is_port(): return ir if not ir.offset.is_a(CONST): return ir portname = '{}_{}'.format(memsym.name, ir.offset.value) scope = ir.mem.symbol().scope portsym = scope.find_sym(portname) assert portsym ir.mem.set_symbol(portsym) return ir.mem
from __future__ import absolute_import from __future__ import print_function import sys, os, yaml, glob import subprocess import pandas as pd import gzip import re import string import shutil import numpy as np from matplotlib import pyplot as plt from nougat import common, align from nougat.pdf.peakdetect import peakdet def run(global_config, sample_config): sorted_libraries_by_insert = common._sort_libraries_by_insert( sample_config) sample_config["commands"] = "" if "tools" in sample_config: """If so, execute them one after the other in the specified order (might not work)""" for command in sample_config["tools"]: """with this I pick up at run time the correct function in the current module""" command_fn = getattr(sys.modules[__name__], "_run_{}".format(command)) """Update sample config, each command return sample_config and if necessary it modifies it""" sample_config = command_fn(global_config, sample_config, sorted_libraries_by_insert) else: #run default pipeline for QC sample_config = _run_trimmomatic(global_config, sample_config, sorted_libraries_by_insert) sample_config = _run_fastqc(global_config, sample_config, sorted_libraries_by_insert) sample_config = _run_abyss(global_config, sample_config, sorted_libraries_by_insert) with open("{}.nougat".format(sample_config.get("output", "sample")), "w") as f: yaml.dump(sample_config, f) def _run_align(global_config, sample_config,sorted_libraries_by_insert): if "reference" not in sample_config: print("reference sequence not provided, skypping alignment step.", "Please provide a reference if you are intrested in aligning the reads", "against a reference") return sample_config if not os.path.exists("alignments"): os.makedirs("alignments") os.chdir("alignments") sorted_libraries_by_insert = align._align_reads(global_config, sample_config, sorted_libraries_by_insert) # align reads sorted_alignments_by_insert = align._merge_bam_files(global_config, sample_config, sorted_libraries_by_insert) # merge alignments sorted_alignments_by_insert = align.picard_CGbias(global_config, sample_config,sorted_alignments_by_insert) # compute picard stats sorted_alignments_by_insert = align.picard_collectInsertSizeMetrics( global_config, sample_config,sorted_alignments_by_insert) sorted_alignments_by_insert = align.picard_markDuplicates(global_config, sample_config,sorted_alignments_by_insert) os.chdir("..") sample_config["alignments"] = sorted_alignments_by_insert return sample_config def _run_fastqc(global_config, sample_config, sorted_libraries_by_insert): mainDir = os.getcwd() FastqcFolder = os.path.join(os.getcwd(), "fastqc") if not os.path.exists(FastqcFolder): os.makedirs(FastqcFolder) program=global_config["Tools"]["fastqc"]["bin"] program_options=global_config["Tools"]["fastqc"]["options"] for library, libraryInfo in sorted_libraries_by_insert: command = [program] for option in program_options: command.append(option) read1=libraryInfo["pair1"] read2=libraryInfo["pair2"] command.append(read1) if read2 is not None: command.append(read2) common.print_command(command) sample_config["commands"] += "\n" + common.get_command_str(command) folder_output_name = os.path.join(FastqcFolder, os.path.basename(read1).split(".fastq.gz")[0]) if not common.check_dryrun(sample_config) and not \ os.path.exists("{}_fastqc.zip".format(folder_output_name)): fastq_stdOut = open(os.path.join(FastqcFolder, "{}_fastqc.stdout".format(library)), "a") fastq_stdErr = open(os.path.join(FastqcFolder, "{}_fastqc.stderr".format(library)), "a") subprocess.call(command, stdout=fastq_stdOut, stderr=fastq_stdErr) sample_config["fastqc"] = FastqcFolder return sample_config def _run_abyss(global_config, sample_config, sorted_libraries_by_insert): mainDir = os.getcwd() ABySS_Kmer_Folder = os.path.join(os.getcwd(), "abyss_kmer") if "kmer" not in sample_config: sys.exit("error in _run_abyss QCcontrol: kmer must be present in \ sample_config.yaml") kmer = sample_config["kmer"] if not os.path.exists(ABySS_Kmer_Folder): os.makedirs(ABySS_Kmer_Folder) os.chdir(ABySS_Kmer_Folder) program = global_config["Tools"]["abyss"]["bin"] program = os.path.join(program, "ABYSS-P") program_options=global_config["Tools"]["abyss"]["options"] if "abyss" in sample_config: program_options=sample_config["abyss"] threads = 16 # default for UPPMAX if "threads" in sample_config : threads = sample_config["threads"] command = "mpirun -np {} {} ".format(threads, program) command += "-k {} ".format(kmer) command += "--coverage-hist=histogram.hist -o preUnitgs.fa" for library, libraryInfo in sorted_libraries_by_insert: read1=libraryInfo["pair1"] read2=libraryInfo["pair2"] orientation = libraryInfo["orientation"] if orientation=="innie" or orientation=="outtie": command += " {} ".format(read1) if read2 is not None: command += " {} ".format(read2) if orientation == "none": command += " {} ".format(read1) common.print_command(command) sample_config["commands"] += "\n" + common.get_command_str(command) if not common.check_dryrun(sample_config) and not \ os.path.exists("histogram.hist"): ABySS_Kmer_stdOut = open("ABySS_Kmer_Folder.stdOut", "a") ABySS_Kmer_stdErr = open("ABySS_Kmer_Folder.stdErr", "a") returnValue = subprocess.call(command, shell=True, \ stdout=ABySS_Kmer_stdOut, stderr=ABySS_Kmer_stdErr) if returnValue > 0: print("ABySS kmer plotting failed: unkwnown reason") else : subprocess.call(("rm", "preUnitgs.fa")) _plotKmerFixed(1,200, kmer, "kmer_coverage_1_200.png") _plotKmerFixed(1,500, kmer, "kmer_coverage_1_500.png") _plotKmerFixed(15,200, kmer, "kmer_coverage_15_200.png") _plotKmerFixed(15,500, kmer, "kmer_coverage_15_500.png") _plotKmer(kmer, "kmer_coverage.png") os.chdir("..") sample_config["abyss"] = ABySS_Kmer_Folder return sample_config def _plotKmer(kmer, output_name): """Kmer abundance as a single plot, suitable for the report """ Kmer_histogram = pd.io.parsers.read_csv("histogram.hist", sep='\t', header=None) Kmer_coverage = Kmer_histogram[Kmer_histogram.columns[0]].tolist() Kmer_count = Kmer_histogram[Kmer_histogram.columns[1]].tolist() # Not interested in coverage > 5000 kcov = [c for c in Kmer_coverage if c <= 5000] # Multiply the abundance by a gradient kcount_gradient = [kcov[i] * Kmer_count[i] for i in range(len(kcov))] # Lazily drift towards the most spacious area under the curve # using divide and conquer. def get_bisect(chunk): left = chunk[:int(len(chunk)/2)] right = chunk[int(len(chunk)/2):] lweight = sum(map(lambda x: x[0] * x[1], left)) / len(left) rweight = sum(map(lambda x: x[0] * x[1], right)) / len(right) if lweight > rweight: return left else: return right # Perform six bisections cov_count = list(zip(kcov, kcount_gradient)) for i in range(0,6): try: cov_count = get_bisect(cov_count) except ZeroDivisionError: # Already at the leftmost position pass xmax = cov_count[-1][0] # We could always use more space xmax = int(xmax * 1.3) ymax = max(kcount_gradient) # Find the highest peak x > 1. Works 70% of the time. maxtab, mintab = peakdet(kcount_gradient, 100000.0) first_peak = list(np.array(maxtab)[:,0])[0] # Discard x = 0 peak if first_peak == 0 and maxtab.size > 2: maxtab = np.delete(maxtab, 0, 0) peak = np.argmax(maxtab, axis=0)[1] peak = maxtab[peak][0] plt.xlim((0, xmax)) plt.ylim((0, ymax)) plt.plot(kcov, kcount_gradient) plt.vlines(peak, 1, kcount_gradient[peak], colors='r', linestyles='--') plt.text(peak, kcount_gradient[peak], str(peak)) plotname = "{}".format(output_name) plt.savefig(plotname) plt.clf() return 0 def _plotKmerFixed(min_limit, max_limit, kmer, output_name): """Old kmerplot, kept just in case... """ Kmer_histogram = pd.io.parsers.read_csv("histogram.hist", sep='\t', header=None) Kmer_coverage = Kmer_histogram[Kmer_histogram.columns[0]].tolist() Kmer_count = Kmer_histogram[Kmer_histogram.columns[1]].tolist() Kmer_freq = [Kmer_coverage[i]*Kmer_count[i] for i in \ range(len(Kmer_coverage))] #coverage peak, disregarding initial peak kmer_freq_peak = Kmer_freq.index(max(Kmer_freq[min_limit:max_limit])) kmer_freq_peak_value=max(Kmer_freq[min_limit:max_limit]) xmax = max_limit ymax = kmer_freq_peak_value + (kmer_freq_peak_value*0.30) plt.plot(Kmer_coverage, Kmer_freq) plt.title("K-mer length = {}".format(kmer)) plt.xlim((0,xmax)) plt.ylim((0,ymax)) plt.vlines(kmer_freq_peak, 0, kmer_freq_peak_value, colors='r', linestyles='--') plt.text(kmer_freq_peak, kmer_freq_peak_value+2000, str(kmer_freq_peak)) plotname = "{}".format(output_name) plt.savefig(plotname) plt.clf() return 0 def _run_trimmomatic(global_config, sample_config, sorted_libraries_by_insert): program = global_config["Tools"]["trimmomatic"]["bin"] program_folder = os.path.dirname(program) if "adapters" not in sample_config: sys.exit("running MP pipeline, adapters file to be used in trimming" "are needed for Trimmomatic. Please specify them" "in the sample configuration file and rerun") adapterFile = sample_config["adapters"] if not os.path.exists(adapterFile): sys.exit("Trimmomatic cannot be run as adapter file is not specified" "or points to unknown position: {}".format(adapterFile)) mainDirectory = os.getcwd() trimmomaticDir = os.path.join(mainDirectory, "Trimmomatic") if not os.path.exists(trimmomaticDir): os.makedirs(trimmomaticDir) os.chdir(trimmomaticDir) #now I am in running dir, I need to process one by one the libraries threads = 8 if "threads" in sample_config: threads = sample_config["threads"] for library, libraryInfo in sorted_libraries_by_insert: read1=libraryInfo["pair1"] read2=libraryInfo["pair2"] orientation = libraryInfo["orientation"] if read2 is not None: read1_baseName = os.path.split(read1)[1].split(".")[0] read2_baseName = os.path.split(read2)[1].split(".")[0] output_read1_pair = os.path.join(trimmomaticDir, "{}.fastq.gz".format(read1_baseName)) output_read1_sing = os.path.join(trimmomaticDir, "{}_u.fastq.gz".format(read1_baseName)) output_read2_pair = os.path.join(trimmomaticDir, "{}.fastq.gz".format(read2_baseName)) output_read2_sing = os.path.join(trimmomaticDir, "{}_u.fastq.gz".format(read2_baseName)) command = ["java", "-jar", program, "PE", "-threads", "{}".format(threads), "-phred33", read1, read2, output_read1_pair, output_read1_sing, output_read2_pair, output_read2_sing, "ILLUMINACLIP:{}:2:30:10".format(adapterFile), "LEADING:3", "TRAILING:3", "SLIDINGWINDOW:4:15", "MINLEN:30"] common.print_command(command) sample_config["commands"] += "\n" + common.get_command_str(command) # do not execute is files have been already gennerated if not common.check_dryrun(sample_config) and not \ os.path.exists(output_read1_pair): stdOut = open("{}_trimmomatic.stdOut".format(read1_baseName), "w") stdErr = open("{}_trimmomatic.stdErr".format(read1_baseName), "w") returnValue = subprocess.call(command, stdout=stdOut, stderr=stdErr) # run the program if returnValue != 0: print("error while running command: {}".format(command)) libraryInfo["pair1"] = output_read1_pair libraryInfo["pair2"] = output_read2_pair libraryInfo["trimmomatic"] = os.path.join(trimmomaticDir, "{}_trimmomatic.stdErr".format(read1_baseName)) os.chdir(mainDirectory) return sample_config def _kmergenie_plot(hist_file): """Kmergenie outputs pdf plots. We want pngs without resorting to \ imagemagick TODO: Abstract this to a common plotting function if possible""" kgenie_hist = pd.io.parsers.read_csv(hist_file, sep=" ", header=0) kmer_lengths = kgenie_hist[kgenie_hist.columns[0]].tolist() genomic_kmers = kgenie_hist[kgenie_hist.columns[1]].tolist() peak_value = max(genomic_kmers) peak_idx = genomic_kmers.index(peak_value) best_k = kmer_lengths[peak_idx] plt.plot(kmer_lengths, genomic_kmers) plt.title("Best K-mer length: {}".format(best_k)) plt.xlabel("K-mer size") plt.ylabel("Number of genomic k-mers") y_margin = (min(genomic_kmers) + peak_value) / 2 * 0.01 y_min = min(genomic_kmers) - y_margin y_max = peak_value + y_margin plt.ylim(y_min, y_max) plt.xlim(min(kmer_lengths) - 5, max(kmer_lengths) + 5) plt.vlines(best_k, 0, peak_value, colors = "r", linestyles='--') plt.savefig(hist_file + ".png") plt.clf() def _run_kmergenie(global_config, sample_config, sorted_libraries_by_insert): """Runs kmergenie to establish a recommended kmer size for assembly""" maindir = os.getcwd() kmerdir = os.path.join(maindir, "kmergenie") if not os.path.exists(kmerdir): os.makedirs(kmerdir) os.chdir(kmerdir) #Write a list of input fastq files for kmergenie kmer_input = os.path.join(kmerdir, "{}kmerinput.txt".format(sample_config.get("output",""))) program = global_config["Tools"]["kmergenie"]["bin"] program_options=global_config["Tools"]["kmergenie"]["options"] # Could be useful to add --diploid if sample is highly heterozygous if "kmergenie" in sample_config: program_options=sample_config["kmergenie"] threads = "" # Kmergenie will spawn number_of_cores - 1 threads by default if "threads" in sample_config : threads = sample_config["threads"] cmd_list = [program, kmer_input] for option in filter(None, program_options): cmd_list.append(option) if threads: cmd_list.append("-t {}".format(threads)) command = " ".join(cmd_list) common.print_command(command) sample_config["commands"] += "\n" + common.get_command_str(command) if not common.check_dryrun(sample_config): with open(kmer_input, "w") as f: for lib, lib_info in sorted_libraries_by_insert: f.write(lib_info["pair1"] + "\n") f.write(lib_info["pair2"] + "\n") stdOut = open("kmergenie.stdOut", "w") stdErr = open("kmergenie.stdErr", "w") returnValue = subprocess.call(cmd_list, stdout=stdOut, stderr=stdErr) if returnValue != 0: print("error while running command: {}".format(command)) else: _kmergenie_plot("histograms.dat") sample_config["kmergenie"] = kmerdir os.chdir(maindir) return sample_config
import datetime import hashlib import json from bson.objectid import ObjectId try: from django.urls import reverse except ImportError: from django.core.urlresolvers import reverse from django.http import HttpResponse from django.shortcuts import render from crits.core.class_mapper import class_from_id, class_from_value from crits.core.crits_mongoengine import EmbeddedSource from crits.core.crits_mongoengine import create_embedded_source, json_handler from crits.core.handlers import build_jtable, jtable_ajax_list, jtable_ajax_delete from crits.core.handlers import csv_export from crits.core.user_tools import user_sources from crits.core.user_tools import is_user_subscribed from crits.certificates.certificate import Certificate from crits.notifications.handlers import remove_user_from_notification from crits.services.analysis_result import AnalysisResult from crits.services.handlers import run_triage, get_supported_services from crits.vocabulary.relationships import RelationshipTypes from crits.vocabulary.acls import CertificateACL def generate_cert_csv(request): """ Generate a CSV file of the Certificate information :param request: The request for this CSV. :type request: :class:`django.http.HttpRequest` :returns: :class:`django.http.HttpResponse` """ response = csv_export(request,Certificate) return response def get_certificate_details(md5, user): """ Generate the data to render the Certificate details template. :param md5: The MD5 of the Certificate to get details for. :type md5: str :param user: The user requesting this information. :type user: str :returns: template (str), arguments (dict) """ template = None sources = user_sources(user.username) cert = Certificate.objects(md5=md5, source__name__in=sources).first() if not user.check_source_tlp(cert): cert = None if not cert: template = "error.html" args = {'error': 'Certificate not yet available or you do not have access to view it.'} else: cert.sanitize("%s" % user.username) # remove pending notifications for user remove_user_from_notification("%s" % user.username, cert.id, 'Certificate') # subscription subscription = { 'type': 'Certificate', 'id': cert.id, 'subscribed': is_user_subscribed("%s" % user.username, 'Certificate', cert.id), } #objects objects = cert.sort_objects() #relationships relationships = cert.sort_relationships("%s" % user.username, meta=True) # relationship relationship = { 'type': 'Certificate', 'value': cert.id } #comments comments = {'comments': cert.get_comments(), 'url_key': md5} #screenshots screenshots = cert.get_screenshots(user.username) # services service_list = get_supported_services('Certificate') # analysis results service_results = cert.get_analysis_results() args = {'service_list': service_list, 'objects': objects, 'relationships': relationships, 'comments': comments, 'relationship': relationship, "subscription": subscription, "screenshots": screenshots, 'service_results': service_results, "cert": cert, "CertificateACL": CertificateACL,} return template, args def generate_cert_jtable(request, option): """ Generate the jtable data for rendering in the list template. :param request: The request for this jtable. :type request: :class:`django.http.HttpRequest` :param option: Action to take. :type option: str of either 'jtlist', 'jtdelete', or 'inline'. :returns: :class:`django.http.HttpResponse` """ obj_type = Certificate type_ = "certificate" mapper = obj_type._meta['jtable_opts'] if option == "jtlist": # Sets display url details_url = mapper['details_url'] details_url_key = mapper['details_url_key'] fields = mapper['fields'] response = jtable_ajax_list(obj_type, details_url, details_url_key, request, includes=fields) return HttpResponse(json.dumps(response, default=json_handler), content_type="application/json") if option == "jtdelete": response = {"Result": "ERROR"} if jtable_ajax_delete(obj_type,request): response = {"Result": "OK"} return HttpResponse(json.dumps(response, default=json_handler), content_type="application/json") jtopts = { 'title': "Certificates", 'default_sort': mapper['default_sort'], 'listurl': reverse('crits-%ss-views-%ss_listing' % (type_, type_), args=('jtlist',)), 'deleteurl': reverse('crits-%ss-views-%ss_listing' % (type_, type_), args=('jtdelete',)), 'searchurl': reverse(mapper['searchurl']), 'fields': mapper['jtopts_fields'], 'hidden_fields': mapper['hidden_fields'], 'linked_fields': mapper['linked_fields'], 'details_link': mapper['details_link'], 'no_sort': mapper['no_sort'] } jtable = build_jtable(jtopts,request) jtable['toolbar'] = [ { 'tooltip': "'All Certificates'", 'text': "'All'", 'click': "function () {$('#certificate_listing').jtable('load', {'refresh': 'yes'});}", 'cssClass': "'jtable-toolbar-center'", }, { 'tooltip': "'New Certificates'", 'text': "'New'", 'click': "function () {$('#certificate_listing').jtable('load', {'refresh': 'yes', 'status': 'New'});}", 'cssClass': "'jtable-toolbar-center'", }, { 'tooltip': "'In Progress Certificates'", 'text': "'In Progress'", 'click': "function () {$('#certificate_listing').jtable('load', {'refresh': 'yes', 'status': 'In Progress'});}", 'cssClass': "'jtable-toolbar-center'", }, { 'tooltip': "'Analyzed Certificates'", 'text': "'Analyzed'", 'click': "function () {$('#certificate_listing').jtable('load', {'refresh': 'yes', 'status': 'Analyzed'});}", 'cssClass': "'jtable-toolbar-center'", }, { 'tooltip': "'Deprecated Certificates'", 'text': "'Deprecated'", 'click': "function () {$('#certificate_listing').jtable('load', {'refresh': 'yes', 'status': 'Deprecated'});}", 'cssClass': "'jtable-toolbar-center'", }, { 'tooltip': "'Add Certificate'", 'text': "'Add Certificate'", 'click': "function () {$('#new-certificate').click()}", }, ] if option == "inline": return render(request, "jtable.html", {'jtable': jtable, 'jtid': '%s_listing' % type_, 'button' : '%ss_tab' % type_}, ) else: return render(request, "%s_listing.html" % type_, {'jtable': jtable, 'jtid': '%s_listing' % type_}, ) def handle_cert_file(filename, data, source_name, user=None, description=None, related_md5=None, method='', reference='', tlp=None, relationship=None, bucket_list=None, ticket=None, related_id=None, related_type=None, relationship_type=None): """ Add a Certificate. :param filename: The filename of the Certificate. :type filename: str :param data: The filedata of the Certificate. :type data: str :param source_name: The source which provided this Certificate. :type source_name: str, :class:`crits.core.crits_mongoengine.EmbeddedSource`, list of :class:`crits.core.crits_mongoengine.EmbeddedSource` :param user: The user adding the Certificate. :type user: str :param description: Description of the Certificate. :type description: str :param related_md5: MD5 of a top-level object related to this Certificate. :type related_md5: str :param related_type: The CRITs type of the related top-level object. :type related_type: str :param method: The method of acquiring this Certificate. :type method: str :param reference: A reference to the source of this Certificate. :type reference: str :param tlp: The TLP for this certificate. :type tlp: str :param relationship: The relationship between the parent and the Certificate. :type relationship: str :param bucket_list: Bucket(s) to add to this Certificate :type bucket_list: str(comma separated) or list. :param ticket: Ticket(s) to add to this Certificate :type ticket: str(comma separated) or list. :param related_id: ID of object to create relationship with :type related_id: str :param related_type: Type of object to create relationship with :type related_id: str :param relationship_type: Type of relationship to create. :type relationship_type: str :returns: dict with keys: 'success' (boolean), 'message' (str), 'md5' (str) if successful. """ if not data: status = { 'success': False, 'message': 'No data object passed in' } return status if len(data) <= 0: status = { 'success': False, 'message': 'Data length <= 0' } return status if ((related_type and not (related_id or related_md5)) or (not related_type and (related_id or related_md5))): status = { 'success': False, 'message': 'Must specify both related_type and related_id or related_md5.' } return status related_obj = None if related_id or related_md5: if related_id: related_obj = class_from_id(related_type, related_id) else: related_obj = class_from_value(related_type, related_md5) if not related_obj: status = { 'success': False, 'message': 'Related object not found.' } return status # generate md5 and timestamp md5 = hashlib.md5(data).hexdigest() timestamp = datetime.datetime.now() # generate Certificate cert = Certificate.objects(md5=md5).first() if not cert: cert = Certificate() cert.filename = filename cert.created = timestamp cert.size = len(data) cert.description = description cert.md5 = md5 # generate source information and add to certificate if isinstance(source_name, basestring) and len(source_name) > 0: if user.check_source_write(source_name): s = create_embedded_source(source_name, reference=reference, method=method, tlp=tlp, analyst=user.username) else: return {"success": False, "message": "User does not have permission to add objects \ using source %s." % str(source_name)} cert.add_source(s) elif isinstance(source_name, EmbeddedSource): cert.add_source(source_name, method=method, reference=reference, tlp=tlp) elif isinstance(source_name, list) and len(source_name) > 0: for s in source_name: if isinstance(s, EmbeddedSource): cert.add_source(s, method=method, reference=reference, tlp=tlp) if bucket_list: cert.add_bucket_list(bucket_list, user) if ticket: cert.add_ticket(ticket, user) # add file to GridFS if not isinstance(cert.filedata.grid_id, ObjectId): cert.add_file_data(data) # save cert cert.save(username=user) cert.reload() # run certificate triage if len(AnalysisResult.objects(object_id=str(cert.id))) < 1 and data: run_triage(cert, user) # update relationship if a related top-level object is supplied if related_obj and cert: if relationship_type: relationship=RelationshipTypes.inverse(relationship=relationship_type) if not relationship: relationship = RelationshipTypes.RELATED_TO cert.add_relationship(related_obj, relationship, analyst=user, get_rels=False) cert.save(username=user) status = { 'success': True, 'message': 'Uploaded certificate', 'md5': md5, 'id': str(cert.id), 'object': cert } return status def delete_cert(md5, username=None): """ Delete a Certificate. :param md5: The MD5 of the Certificate to delete. :type md5: str :param username: The user deleting the certificate. :type username: str :returns: True, False """ cert = Certificate.objects(md5=md5).first() if cert: cert.delete(username=username) return True else: return False
from __future__ import print_function from __future__ import division from __future__ import unicode_literals from __future__ import absolute_import # Standard imports from future import standard_library standard_library.install_aliases() from builtins import range from builtins import * from past.utils import old_div import numpy as np import urllib.request, urllib.parse, urllib.error,json,csv import xml.etree.cElementTree as ET import urllib.request, urllib.error, urllib.parse import time # Our imports import emission.core.common as ec import emission.core.get_database as edb import emission.analysis.modelling.tour_model.trajectory_matching as eatm def find_near(lst,pnt,radius): near=[] for i in range(len(lst)): # print(ec.calDistance(lst[i],pnt)) if ec.calDistance(lst[i],pnt)<radius: near.append(i) return near def find_nearest(lst,pnt): nearest=lst[0] dis=99999999 for i in range(len(lst)): # print(ec.calDistance(lst[i],pnt)) new_dis=ec.calDistance(lst[i],pnt) if new_dis<dis: dis=new_dis nearest=lst[i] print(dis) return nearest def cal_matching_score(lst1,lst2,radius): len1=len(lst1) len2=len(lst2) max_len=max(len1,len2) count=0 print('cal_matching start') # print(len1) # print(len2) # print(max_len) for i in range(max_len): # print(int(i/max_len*len1)) # print(int(i/max_len*len2)) # print(lst1[int(i/max_len*len1)]) # print(lst2[int(i/max_len*len2)]) if ec.Is_place_2(lst1[int(i/max_len*len1)],lst2[int(i/max_len*len2)],radius): count+=1 score=old_div(count,max_len) return score def route_matching(lst1,lst2,step,radius,len_match,min_score): # input 2 lists of tracking points, each tracking points is geojson format # the two lists must have at least two tracking points if len(lst1)<2 or len(lst2)<2: return False start_pnt1=lst1[0] end_pnt1=lst1[-1] start_pnt2=lst2[0] end_pnt2=lst2[-1] # Case 1, lst2 is part of lst1: lst1_extended=[] for i in range(len(lst1)-1): dis=ec.calDistance(lst1[i]['track_location']['coordinates'],lst1[i+1]['track_location']['coordinates']) num_inter=int(round(old_div(dis,step))) if num_inter==0: lst1_extended.append(lst1[i]['track_location']['coordinates']) else: lon_list=np.linspace(lst1[i]['track_location']['coordinates'][0],lst1[i+1]['track_location']['coordinates'][0],num_inter,False) lat_list=np.linspace(lst1[i]['track_location']['coordinates'][1],lst1[i+1]['track_location']['coordinates'][1],num_inter,False) for j in range(len(lon_list)): lst1_extended.append([lon_list[j],lat_list[j]]) lst1_extended.append(end_pnt1['track_location']['coordinates']) lst2_extended=[] for i in range(len(lst2)-1): dis=ec.calDistance(lst2[i]['track_location']['coordinates'],lst2[i+1]['track_location']['coordinates']) num_inter=int(round(old_div(dis,step))) if num_inter==0: lst2_extended.append(lst2[i]['track_location']['coordinates']) else: lon_list=np.linspace(lst2[i]['track_location']['coordinates'][0],lst2[i+1]['track_location']['coordinates'][0],num_inter,False) lat_list=np.linspace(lst2[i]['track_location']['coordinates'][1],lst2[i+1]['track_location']['coordinates'][1],num_inter,False) for j in range(len(lon_list)): lst2_extended.append([lon_list[j],lat_list[j]]) lst2_extended.append(end_pnt2['track_location']['coordinates']) # print(len(lst1_extended)) # print(len(lst2_extended)) near_start2=find_near(lst1_extended,start_pnt2['track_location']['coordinates'],radius) near_end2=find_near(lst1_extended,end_pnt2['track_location']['coordinates'],radius) near_start1=find_near(lst2_extended,start_pnt1['track_location']['coordinates'],radius) near_end1=find_near(lst2_extended,end_pnt1['track_location']['coordinates'],radius) # print(near_start2) # print(near_end2) # print(near_start1) # print(near_end1) best_score=[] if len(near_start2)>0 and len(near_end2)>0: print("start of case 1") for near_s in near_start2: for near_e in near_end2: if old_div(min(abs(near_e-near_s)+1,len(lst2_extended)),max(abs(near_e-near_s)+1,len(lst2_extended)))>=len_match: print("possible near_s is %s" % near_s) print("possible near_e is %s" % near_e) if near_e>near_s: print("start index is %d" % near_s) print("end index is %d" % near_e) route1=lst1_extended[near_s:near_e+1:1] route2=lst2_extended print("route1 is %s" % route1) print("route2 is %s" % route2) else: print("start index is %d" % near_s) print("end index is %d" % near_e) route1=lst1_extended[near_e:near_s+1:1][::-1] route2=lst2_extended print("route1 is %s" % route1) print("route2 is %s" % route2) best_score.append(cal_matching_score(route1,route2,radius)) if len(near_start1)>0 and len(near_end1)>0: print("start of case 2") for near_s in near_start1: for near_e in near_end1: if old_div(min(abs(near_e-near_s)+1,len(lst1_extended)),max(abs(near_e-near_s)+1,len(lst1_extended)))>=len_match: if near_e>near_s: print("start index is %d" % near_s) print("end index is %d" % near_e) route1=lst1_extended route2=lst2_extended[near_s:near_e+1:1] print("route1 is %s" % route1) print("route2 is %s" % route2) else: route1=lst1_extended route2=lst2_extended[near_e:near_s+1:1][::-1] best_score.append(cal_matching_score(route1,route2,radius)) print(best_score) if len(best_score)>0 and max(best_score)>min_score: return True else: return False def route_matching_2(lst1,lst2,step,radius,min_score): # input 2 lists of tracking points, each tracking points is geojson format # the two lists must have at least two tracking points if len(lst1)<2 or len(lst2)<2: return False start_pnt1=lst1[0] end_pnt1=lst1[-1] start_pnt2=lst2[0] end_pnt2=lst2[-1] # Case 1, lst2 is part of lst1: lst1_extended=[] for i in range(len(lst1)-1): dis=ec.calDistance(lst1[i]['track_location']['coordinates'],lst1[i+1]['track_location']['coordinates']) num_inter=int(round(old_div(dis,step))) if num_inter==0: lst1_extended.append(lst1[i]['track_location']['coordinates']) else: lon_list=np.linspace(lst1[i]['track_location']['coordinates'][0],lst1[i+1]['track_location']['coordinates'][0],num_inter,False) lat_list=np.linspace(lst1[i]['track_location']['coordinates'][1],lst1[i+1]['track_location']['coordinates'][1],num_inter,False) for j in range(len(lon_list)): lst1_extended.append([lon_list[j],lat_list[j]]) lst1_extended.append(end_pnt1['track_location']['coordinates']) lst2_extended=[] for i in range(len(lst2)-1): dis=ec.calDistance(lst2[i]['track_location']['coordinates'],lst2[i+1]['track_location']['coordinates']) num_inter=int(round(old_div(dis,step))) if num_inter==0: lst2_extended.append(lst2[i]['track_location']['coordinates']) else: lon_list=np.linspace(lst2[i]['track_location']['coordinates'][0],lst2[i+1]['track_location']['coordinates'][0],num_inter,False) lat_list=np.linspace(lst2[i]['track_location']['coordinates'][1],lst2[i+1]['track_location']['coordinates'][1],num_inter,False) for j in range(len(lon_list)): lst2_extended.append([lon_list[j],lat_list[j]]) lst2_extended.append(end_pnt2['track_location']['coordinates']) # print(len(lst1_extended)) # print(len(lst2_extended)) best_score=[] score_2_in_1=0 for point2 in lst2: if ec.Include_place_2(lst1_extended,point2['track_location']['coordinates'],radius): score_2_in_1+=1 best_score.append(old_div(score_2_in_1,len(lst2))) score_1_in_2=0 for point1 in lst1: if ec.Include_place_2(lst2_extended,point1['track_location']['coordinates'],radius): score_1_in_2+=1 best_score.append(old_div(score_1_in_2,len(lst1))) print(best_score) if max(best_score)>min_score: return True else: return False def getRoute(section_id): route=[] Sections=edb.get_section_db() section=Sections.find_one({'_id':section_id}) for point in section['track_points']: route.append(point['track_location']['coordinates']) return route def refineRoute(lst1,step): if lst1 ==[]: return lst1 # print(len(lst1)) lst1_extended=[] for i in range(len(lst1)-1): dis=ec.calDistance(lst1[i],lst1[i+1]) num_inter=int(round(old_div(dis,step))) if num_inter==0: lst1_extended.append(lst1[i]) else: lon_list=np.linspace(lst1[i][0],lst1[i+1][0],num_inter,False) lat_list=np.linspace(lst1[i][1],lst1[i+1][1],num_inter,False) for j in range(len(lon_list)): lst1_extended.append([lon_list[j],lat_list[j]]) lst1_extended.append(lst1[-1]) # print(len(lst1)) # print(len(lst1_extended)) return lst1_extended def storeTransitStop(type,route): Transit=edb.get_transit_db() todo={} stops=[] tree = ET.ElementTree(file=urllib.request.urlopen('http://api.bart.gov/api/stn.aspx?cmd=stns&key=MW9S-E7SL-26DU-VV8V')) root = tree.getroot() # print(root[1][0].find('name').text) file_name='/Users/Mogeng/Berkeley/Semester2/E-Mission/Transit_routes/'+type+'_'+route+'.csv' with open(file_name, 'rU') as csvfile: r = csv.reader(csvfile,delimiter=',',quotechar='|') for row in r: print(row[0]) for i in range(len(root[1])): if row[0].replace(' / ','/').replace('Street','St.').replace('International',"Int'l")==root[1][i].find('name').text: print((float(root[1][i].find('gtfs_longitude').text),float(root[1][i].find('gtfs_latitude').text))) stops.append([float(root[1][i].find('gtfs_longitude').text),float(root[1][i].find('gtfs_latitude').text)]) break todo['type']=type todo['route']=route todo['stops']=stops Transit.insert(todo) def storeCalTrainStop(): Transit=edb.get_transit_db() todo={} stops=[] edb.get_transit_db().remove({'type':'CalTrain'}) # print(root[1][0].find('name').text) file_name='/Users/Mogeng/Berkeley/Semester2/E-Mission/Transit_routes/CalTrain.csv' with open(file_name, 'rU') as csvfile: r = csv.reader(csvfile,delimiter=',',quotechar='|') for row in r: time.sleep(1) print(row[0]) # print(add) url='https://maps.googleapis.com/maps/api/geocode/json?address='+urllib.parse.quote_plus(row[0]+' caltrain station') print(url) geo= json.load(urllib.request.urlopen(url)) result=geo['results'][0] print(result['geometry']['location']) stops.append([result['geometry']['location']['lng'],result['geometry']['location']['lat']]) todo['type']='CalTrain' todo['route']='CalTrain' todo['stops']=stops Transit.insert(todo) ## START ROUTE MATCHING!!! ## def existingMatchDistance(route1,route2,step1=100000,step2=100000,method='lcs',radius1=2000): ## see how if "route1" can match with an existing route "route2" ## will be mainly used in matching with transit route # print(lst[0],lst[-1]) # print(route) dis=999999 if len(route1) < 2 or len(route2) < 2: return dis for start_route2 in range(len(route2)): coverage_start=find_near(route1,route2[start_route2],radius1) if coverage_start!=[]: break for end_route2 in range(len(route2)-1,-1,-1): coverage_end=find_near(route1,route2[end_route2],radius1) if coverage_end!=[]: break # print(start_route2,end_route2) # print(coverage_start,coverage_end) if abs(start_route2-end_route2)>1 and start_route2!=len(route2) and end_route2!=0: start_route1=coverage_start[0] end_route1=coverage_end[-1] if abs(start_route1-end_route1)>=1: ## using DTW Iteration if method=='dtw': if start_route1<end_route1: new_dis=eatm.DTW.dynamicTimeWarp(refineRoute(route1[start_route1:end_route1+1],step1),refineRoute(route2[start_route2:end_route2+1],step2),ec.calDistance) elif end_route1<start_route1: new_dis=eatm.DTW.dynamicTimeWarp(refineRoute(route1[end_route1:start_route1+1][::-1],step1),refineRoute(route2[start_route2:end_route2+1],step2),ec.calDistance) ## using DTW Recursion if method=='DTW': if start_route1<end_route1: aa=eatm.DTW.Dtw(refineRoute(route1[start_route1:end_route1+1],step1),refineRoute(route2[start_route2:end_route2+1],step2),ec.calDistance) elif end_route1<start_route1: aa=eatm.DTW.Dtw(refineRoute(route1[end_route1:start_route1+1][::-1],step1),refineRoute(route2[start_route2:end_route2+1],step2),ec.calDistance) new_dis=aa.calculate_distance() ## using symmetric DTW if method=='DTWSym': if start_route1<end_route1: aa=eatm.DTW.Dtw(refineRoute(route1[start_route1:end_route1+1],step1),refineRoute(route2[start_route2:end_route2+1],step2),ec.calDistance) elif end_route1<start_route1: aa=eatm.DTW.Dtw(refineRoute(route1[end_route1:start_route1+1][::-1],step1),refineRoute(route2[start_route2:end_route2+1],step2),ec.calDistance) new_dis=aa.calculate_distance() ## using DTW if method=='DTWAsym': if start_route1<end_route1: aa=eatm.DTW.Dtw(refineRoute(route1[start_route1:end_route1+1],step1),refineRoute(route2[start_route2:end_route2+1],step2),ec.calDistance) elif end_route1<start_route1: aa=eatm.DTW.Dtw(refineRoute(route1[end_route1:start_route1+1][::-1],step1),refineRoute(route2[start_route2:end_route2+1],step2),ec.calDistance) new_dis=aa.calculate_distance() ## using Frechet if method=='Frechet': if start_route1<end_route1: new_dis=eatm.Frechet.Frechet(refineRoute(route1[start_route1:end_route1+1],step1),refineRoute(route2[start_route2:end_route2+1],step2)) elif end_route1<start_route1: new_dis=eatm.Frechet.Frechet(refineRoute(route1[end_route1:start_route1+1][::-1],step1),refineRoute(route2[start_route2:end_route2+1],step2)) ## using lcs if method=='lcs': if start_route1<end_route1: new_dis=eatm.LCS.lcsScore(refineRoute(route1[start_route1:end_route1+1],step1),refineRoute(route2[start_route2:end_route2+1],step2),radius1) elif end_route1<start_route1: # print(route1[start_route1:end_route1-1]) # print(start_route1,end_route1) # print(len(route1[start_route1:end_route1-1:-1])) new_dis=eatm.LCS.lcsScore(refineRoute(route1[end_route1:start_route1+1][::-1],step1),refineRoute(route2[start_route2:end_route2+1],step2),radius1) if new_dis<dis: dis=new_dis # print(dis) return [start_route2,end_route2,dis] def fullMatchDistance(route1,route2,step1=100000,step2=100000,method='lcs',radius1=2000): ## see how if "route1" can partially match with "route" ## will be mainly used in matching with transit route # print(lst[0],lst[-1]) # print(route) dis=999999 if len(route1) < 2 or len(route2) < 2: return dis ## using DTW Iteration if method=='dtw': new_dis=eatm.DTW.dynamicTimeWarp(refineRoute(route1,step1),refineRoute(route2,step2),ec.calDistance) ## using DTW Recursion if method=='DTW': aa=eatm.DTW.Dtw(refineRoute(route1,step1),refineRoute(route2,step2),ec.calDistance) new_dis=aa.calculate_distance() ## using symmetric DTW if method=='DTWSym': aa=eatm.DTW.DtwSym(refineRoute(route1,step1),refineRoute(route2,step2),ec.calDistance) new_dis=aa.calculate_distance() ## using Asymmetric DTW if method=='DTWAsym': aa=eatm.DTW.DtwAsym(refineRoute(route1,step1),refineRoute(route2,step2),ec.calDistance) new_dis=aa.calculate_distance() ## using Frechet if method=='Frechet': new_dis=eatm.Frechet.Frechet(refineRoute(route1,step1),refineRoute(route2,step2)) ## using lcs if method=='lcs': new_dis=eatm.LCS.lcsScore(refineRoute(route1,step1),refineRoute(route2,step2),radius1) if new_dis<dis: dis=new_dis # print(dis) return dis def matchTransitRoutes(lst,route,step1=100000,step2=100000,method='lcs',radius1=2500,threshold=0.5): [final_start,final_end,dis]=existingMatchDistance(lst,route,step1,step2,method,radius1) if dis<=threshold: return 1 else: return 0 def matchTransitStops(lst,route,radius1=2000): if ec.Include_place_2(route,lst[0],radius1) and ec.Include_place_2(route,lst[-1],radius1): return 1 else: return 0 def matchTwoRoutes(route1,route2,step1=100000,step2=100000,method='lcs',radius1=2000,threshold=0.6): [final_start,final_end,dis]=fullMatchDistance(route1,route2,step1,step2,method,radius1) if dis<=threshold: return 1 else: return 0 def update_user_routeDistanceMatrix(user_id,data_feature,step1=100000,step2=100000,method='lcs',radius1=1000): ids = list(data_feature.keys()) """ user_query=edb.get_routeDistanceMatrix_db().find_one({'$and':[{'user':user_id},{'method':method}]}) if user_query==None: user_disMat={} for _id in ids: user_disMat[_id] = {} edb.get_routeDistanceMatrix_db().insert({'user':user_id,'method':method,'disMat':user_disMat}) else: user_disMat=user_query['disMat'] """ user_disMat = edb.get_routeDistanceMatrix_db(user_id, method) a=0 # print(len(ids)) for _id in ids: if a % 100 == 0: print("In update_user_routeDistanceMatrix, a = %d" % a) a+=1 for key in ids: try: user_disMat[_id][key] #print("found it") except KeyError: #print('Updating matrix for the trip ' + _id + '. Doing calculations.') dis=fullMatchDistance(data_feature[_id], data_feature[key],step1,step2,method,radius1) #user_disMat[_id] = {} if _id not in user_disMat: user_disMat[_id] = {} user_disMat[_id][key] = dis #print('Update successful.') #print(user_disMat[_id]) #edb.get_routeDistanceMatrix_db().update({'$and':[{'user':user_id},{'method':method}]},{'user':user_id,'method':method,'disMat':user_disMat}) print(type(user_disMat)) user_disMat = edb.update_routeDistanceMatrix_db(user_id, method, user_disMat) return user_disMat # for entry in edb.get_routeDistanceMatrix_db().find(): # print(entry) def update_user_routeClusters(user_id,clusters,method='lcs'): user_query=edb.get_routeCluster_db().find_one({'$and':[{'user':user_id},{'method':method}]}) if user_query==None: edb.get_routeCluster_db().insert({'user':user_id,'method':method,'clusters':clusters}) else: edb.get_routeCluster_db().update({'user':user_id,'method':method},{'user':user_id,'method':method,'clusters':clusters}) def get_common_routes_for_user(user_id,method='lcs'): common_idxs = [] Sections = edb.get_section_db() user_route_clusters = edb.get_routeCluster_db().find_one({'$and':[{'user':user_id},{'method':method}]})['clusters'] for idx in list(user_route_clusters.keys()): # print(idx) if len(user_route_clusters[idx]) >= 3: section=Sections.find_one({'_id': idx}) # print(section) if section['distance'] > 2000 and len(getRoute(idx)) > 10 and section['duration'] > 600: common_idxs.append(idx) return common_idxs
from tcga_encoder.utils.helpers import * from tcga_encoder.data.data import * from tcga_encoder.definitions.tcga import * #from tcga_encoder.definitions.nn import * from tcga_encoder.definitions.locations import * #from tcga_encoder.algorithms import * import seaborn as sns from sklearn.manifold import TSNE, locally_linear_embedding import lifelines from lifelines import CoxPHFitter from lifelines.datasets import load_regression_dataset from lifelines.utils import k_fold_cross_validation from lifelines import KaplanMeierFitter from lifelines.statistics import logrank_test, multivariate_logrank_test def main( data_location, results_location ): data_path = os.path.join( HOME_DIR ,data_location ) #, "data.h5" ) results_path = os.path.join( HOME_DIR, results_location ) data_filename = os.path.join( data_path, "data.h5") fill_filename = os.path.join( results_path, "full_vae_fill.h5" ) save_dir = os.path.join( results_path, "survival_concordance" ) check_and_mkdir(save_dir) survival_curves_dir = os.path.join( save_dir, "sig_curves" ) check_and_mkdir(survival_curves_dir) print "HOME_DIR: ", HOME_DIR print "data_filename: ", data_filename print "fill_filename: ", fill_filename print "LOADING stores" data_store = pd.HDFStore( data_filename, "r" ) fill_store = pd.HDFStore( fill_filename, "r" ) Z_train = fill_store["/Z/TRAIN/Z/mu"] Z_val = fill_store["/Z/VAL/Z/mu"] Z = np.vstack( (Z_train.values, Z_val.values) ) n_z = Z.shape[1] #pdb.set_trace() z_names = ["z_%d"%z_idx for z_idx in range(Z.shape[1])] Z = pd.DataFrame( Z, index = np.hstack( (Z_train.index.values, Z_val.index.values)), columns = z_names ) barcodes = np.union1d( Z_train.index.values, Z_val.index.values ) Z=Z.loc[barcodes] tissues = data_store["/CLINICAL/TISSUE"].loc[barcodes] #Overall Survival (OS) The event call is derived from "vital status" parameter. The time_to_event is in days, equals to days_to_death if patient deceased; in the case of a patient is still living, the time variable is the maximum(days_to_last_known_alive, days_to_last_followup). This pair of clinical parameters are called _EVENT and _TIME_TO_EVENT on the cancer browser. ALL_SURVIVAL = data_store["/CLINICAL/data"][["patient.days_to_last_followup","patient.days_to_death","patient.days_to_birth"]] tissue_barcodes = np.array( ALL_SURVIVAL.index.tolist(), dtype=str ) surv_barcodes = np.array([ x+"_"+y for x,y in tissue_barcodes]) NEW_SURVIVAL = pd.DataFrame( ALL_SURVIVAL.values, index =surv_barcodes, columns = ALL_SURVIVAL.columns ) NEW_SURVIVAL = NEW_SURVIVAL.loc[barcodes] #clinical = data_store["/CLINICAL/data"].loc[barcodes] Age = NEW_SURVIVAL[ "patient.days_to_birth" ].values.astype(int) Times = NEW_SURVIVAL[ "patient.days_to_last_followup" ].fillna(0).values.astype(int)+NEW_SURVIVAL[ "patient.days_to_death" ].fillna(0).values.astype(int) Events = (1-np.isnan( NEW_SURVIVAL[ "patient.days_to_death" ].astype(float)) ).astype(int) ok_age_query = Age<-10 ok_age = pp.find(ok_age_query ) tissues = tissues[ ok_age_query ] #pdb.set_trace() Age=-Age[ok_age] Times = Times[ok_age] Events = Events[ok_age] barcodes = barcodes[ok_age] NEW_SURVIVAL = NEW_SURVIVAL.loc[barcodes] #ok_followup_query = NEW_SURVIVAL[ "patient.days_to_last_followup" ].fillna(0).values>=0 #ok_followup = pp.find( ok_followup_query ) bad_followup_query = NEW_SURVIVAL[ "patient.days_to_last_followup" ].fillna(0).values.astype(int)<0 bad_followup = pp.find( bad_followup_query ) ok_followup_query = 1-bad_followup_query ok_followup = pp.find( ok_followup_query ) bad_death_query = NEW_SURVIVAL[ "patient.days_to_death" ].fillna(0).values.astype(int)<0 bad_death = pp.find( bad_death_query ) #pdb.set_trace() Age=Age[ok_followup] Times = Times[ok_followup] Events = Events[ok_followup] barcodes = barcodes[ok_followup] NEW_SURVIVAL = NEW_SURVIVAL.loc[barcodes] Z = Z.loc[barcodes] Z["E"] = Events Z["T"] = Times Z["Age"] = np.log(Age) tissues = data_store["/CLINICAL/TISSUE"].loc[barcodes] tissue_names = tissues.columns tissue_idx = np.argmax( tissues.values, 1 ) Z["Tissue"] = tissue_idx n_tissues = len(tissue_names) n_random = 100 random_names = ["r_%d"%(trial_idx) for trial_idx in range(n_random)] alpha=0.02 nbr_to_plot = 5 concordance_values = {} concordance_random = {} concordance_z_values = pd.DataFrame( np.nan*np.ones((n_tissues,n_z) ), index = tissue_names, columns=z_names ) concordance_z_random = pd.DataFrame( np.nan*np.ones((n_tissues,n_random) ), index = tissue_names, columns=random_names ) concordance_z_values_xval = pd.DataFrame( np.nan*np.ones((n_tissues,n_z) ), index = tissue_names, columns=z_names ) concordance_I_values = pd.DataFrame( np.nan*np.ones((n_tissues,n_z) ), index = tissue_names, columns=z_names ) concordance_I_random = pd.DataFrame( np.nan*np.ones((n_tissues,n_random) ), index = tissue_names, columns=random_names ) concordance_z_p_values = pd.DataFrame( np.ones( (n_tissues,n_z) ), \ index = tissue_names, \ columns = z_names ) # cf = CoxPHFitter() # scores = k_fold_cross_validation(cf, Z, 'T', event_col='E', k=5) # pdb.set_trace() split_nbr = 2 for t_idx in range(n_tissues): t_ids = tissue_idx == t_idx tissue_name = tissue_names[t_idx] if tissue_name == "gbm": print "skipping gbm" continue print "working %s"%(tissue_name) bcs = barcodes[t_ids] Z_tissue = Z.loc[ bcs ] events = Z_tissue["E"] times = Z_tissue["T"] Z_values = Z_tissue[z_names].values n_tissue = len(bcs) print " using z_values" for z_idx in range(n_z): z = Z_values[:,z_idx] z_data = Z_tissue[ ["z_%d"%(z_idx), "E","T"] ] I = np.argsort(z) z_concordance = lifelines.utils.concordance_index(times[I], z, event_observed=events[I]) z_concordance = max( z_concordance, 1.0-z_concordance ) concordance_z_values["z_%d"%(z_idx)].loc[tissue_name] = z_concordance print " using random" for r_idx in range(n_random): #z = Z_values[:,z_idx] z = np.random.randn(n_tissue) I = np.argsort(z) #np.random.permutation(n_tissue) z_concordance = lifelines.utils.concordance_index(times[I], z, event_observed=events[I]) z_concordance = max( z_concordance, 1.0-z_concordance ) concordance_z_random["r_%d"%(r_idx)].loc[tissue_name] = z_concordance v = concordance_z_values.loc[tissue_name].values r = concordance_z_random.loc[tissue_name].values concordance_z_p_values.loc[tissue_name] = (1.0 + (v[:,np.newaxis]>r).sum(1))/(1.0+len(r)) conc=concordance_z_p_values.loc[tissue_name] sig = (concordance_z_p_values.loc[tissue_name] < alpha ).astype(int) z_sig_names = sig[ sig==1 ].index.values for z_name in z_sig_names: z_idx = int( z_name.split("_")[1] ) z = Z_values[:,z_idx] #z_data = Z_tissue[ ["z_%d"%(z_idx), "E","T"] ] I = np.argsort(z) cum_events = events[I].cumsum() I_splits = [] #[[],[]] #np.array_split( I, split_nbr ) I_splits.append( pp.find( cum_events <= events.sum()/2.0 ) ) I_splits.append( pp.find( cum_events > events.sum()/2.0 ) ) #groups = np.zeros(n_tissue) # k = 1 # for splits in I_splits[1:]: # groups[splits] = k; k+=1 results = logrank_test(times[I_splits[0]], times[I_splits[-1]], events[ I_splits[0] ], events[ I_splits[-1] ] ) p_value = results.p_value #results2 = logrank_test(times[I_splits[0]]/365.0, times[I_splits[-1]]/365.0, events[ I_splits[0] ], events[ I_splits[-1] ] ) #pdb.set_trace() c = conc[ z_name ] f = pp.figure() ax= f.add_subplot(111) kmf = KaplanMeierFitter() k=0 for splits in I_splits: kmf.fit(times[splits], event_observed=events[splits], label="q=%d/%d"%(k+1,split_nbr) ) ax=kmf.plot(ax=ax,at_risk_counts=False,show_censors=True,ci_show=False) k+=1 pp.ylim(0,1) pp.title( "%s %s p-value = %0.4f concordance = %0.3f "%( tissue_name, z_name, p_value, c ) ) pp.savefig( survival_curves_dir + "/%s_%s_p%0.5f_c%0.3f.png"%(tissue_name, z_name, p_value, c), format="png", dpi=300) pp.savefig( survival_curves_dir + "/%s_%s_p%0.5f_c%0.3f.png"%(z_name, tissue_name, p_value, c), format="png", dpi=300) #pdb.set_trace() concordance_z_random.drop("gbm",inplace=True) concordance_z_values.drop("gbm",inplace=True) concordance_z_p_values.drop("gbm",inplace=True) # concordance_z_p_values = pd.DataFrame( np.ones( concordance_z_values.values.shape), \ # index = concordance_z_values.index, \ # columns = concordance_z_values.columns ) # for tissue in concordance_z_random.index.values: # v = concordance_z_values.loc[tissue].values # r = concordance_z_random.loc[tissue].values # concordance_z_p_values.loc[tissue] = (1.0 + (v[:,np.newaxis]>r).sum(1))/(1.0+len(r)) concordance_z_p_values.to_csv( save_dir + "/concordance_z_p_values.csv" ) concordance_z_random.to_csv( save_dir + "/concordance_z_random.csv" ) concordance_z_values.to_csv( save_dir + "/concordance_z_values.csv" ) #pdb.set_trace() f = pp.figure() ax_z = f.add_subplot(221) ax_log_z = f.add_subplot(223) ax_p = f.add_subplot(222) ax_log_p = f.add_subplot(224) bins_conc=np.linspace(0.5,1,21) bins_p=np.linspace(0.0,1,21) ax_z.hist( concordance_z_values.values.flatten(), bins=bins_conc, normed=True, histtype="step", lw=2, log=False) ax_z.hist( concordance_z_random.values.flatten(), bins=bins_conc, normed=True, histtype="step", lw=2, log=False) ax_log_z.hist( concordance_z_values.values.flatten(), bins=bins_conc, normed=True, histtype="step", lw=2, log=True) ax_log_z.hist( concordance_z_random.values.flatten(), bins=bins_conc, normed=True, histtype="step", lw=2, log=True) ax_p.hist( concordance_z_p_values.values.flatten(), bins=bins_p, normed=True, histtype="step", lw=2, log=False) ax_log_p.hist( concordance_z_p_values.values.flatten(), bins=bins_p, normed=True, histtype="step", lw=2, log=True) pp.savefig( save_dir + "/p_values.png", format="png", dpi=300) return concordance_z_random, concordance_z_values, concordance_z_p_values #, concordance_z_p_values_xval if __name__ == "__main__": data_location = sys.argv[1] results_location = sys.argv[2] concordance_z_random, concordance_z_values, concordance_z_p_values = main( data_location, results_location )
import logging import os import threading from django.apps import apps from django.conf import settings from django.core.cache import cache from django.db import models, connection from boardinghouse import signals LOGGER = logging.getLogger(__name__) LOGGER.addHandler(logging.NullHandler()) _thread_locals = threading.local() class Forbidden(Exception): """ An exception that will be raised when an attempt to activate a non-valid schema is made. """ class TemplateSchemaActivation(Forbidden): """ An exception that will be raised when a user attempts to activate the __template__ schema. """ def __init__(self, *args, **kwargs): super(TemplateSchemaActivation, self).__init__( 'Activating template schema forbidden.', *args, **kwargs ) def get_schema_model(): return apps.get_model( getattr(settings, 'BOARDINGHOUSE_SCHEMA_MODEL', 'boardinghouse.Schema') ) def _get_search_path(): cursor = connection.cursor() cursor.execute('SELECT current_schema()') search_path = cursor.fetchone()[0] cursor.close() return search_path.split(',') def _set_search_path(search_path): cursor = connection.cursor() cursor.execute('SET search_path TO %s,{}'.format(_get_public_schema()), [search_path]) cursor.close() def _get_public_schema(): return getattr(settings, 'PUBLIC_SCHEMA', 'public') def _schema_exists(schema_name, cursor=None): if cursor: cursor.execute("SELECT schema_name FROM information_schema.schemata WHERE schema_name = %s", [schema_name]) return bool(cursor.fetchone()) cursor = connection.cursor() try: return _schema_exists(schema_name, cursor) finally: cursor.close() def get_active_schema_name(): """ Get the currently active schema. This requires a database query to ask it what the current `search_path` is. """ active_schema = getattr(_thread_locals, 'schema', None) if not active_schema: reported_schema = _get_search_path()[0] if _get_schema(reported_schema): active_schema = reported_schema else: active_schema = None _thread_locals.schema = active_schema return active_schema def get_active_schema(): """ Get the (internal) name of the currently active schema. """ return _get_schema(get_active_schema_name()) def get_active_schemata(): """ Get a (cached) list of all currently active schemata. """ schemata = cache.get('active-schemata') if schemata is None: schemata = get_schema_model().objects.active() cache.set('active-schemata', schemata) return schemata def get_all_schemata(): """ Get a (cached) list of all schemata. """ schemata = cache.get('all-schemata') if schemata is None: schemata = get_schema_model().objects.all() cache.set('all-schemata', schemata) return schemata def _get_schema(schema_name): """ Get the matching active schema object for the given name, if it exists. """ if not schema_name: return for schema in get_active_schemata(): if schema_name == schema.schema or schema_name == schema: return schema def activate_schema(schema_name): """ Activate the current schema: this will execute, in the database connection, something like: SET search_path TO "foo",public; It sends signals before and after that the schema will be, and was activated. Must be passed a string: the internal name of the schema to activate. """ if schema_name == '__template__': raise TemplateSchemaActivation() signals.schema_pre_activate.send(sender=None, schema_name=schema_name) _set_search_path(schema_name) signals.schema_post_activate.send(sender=None, schema_name=schema_name) _thread_locals.schema = schema_name def activate_template_schema(): """ Activate the template schema. You probably don't want to do this. """ _thread_locals.schema = None schema_name = '__template__' signals.schema_pre_activate.send(sender=None, schema_name=schema_name) _set_search_path(schema_name) signals.schema_post_activate.send(sender=None, schema_name=schema_name) def get_template_schema(): return get_schema_model()('__template__') def deactivate_schema(schema=None): """ Deactivate the provided (or current) schema. """ cursor = connection.cursor() signals.schema_pre_activate.send(sender=None, schema_name=None) cursor.execute('SET search_path TO "$user",{}'.format(_get_public_schema())) signals.schema_post_activate.send(sender=None, schema_name=None) _thread_locals.schema = None cursor.close() def create_schema(schema_name): cursor = connection.cursor() if _schema_exists(schema_name): LOGGER.warn('Attempt to create an existing schema: %s' % schema_name) return cursor.execute("SELECT clone_schema('__template__', %s)", [schema_name]) cursor.close() if schema_name != '__template__': signals.schema_created.send(sender=get_schema_model(), schema=schema_name) LOGGER.info('New schema created: %s' % schema_name) #: These models are required to be shared by the system. REQUIRED_SHARED_MODELS = [ 'auth.user', 'auth.permission', 'auth.group', 'boardinghouse.schema', 'sites.site', 'sessions.session', 'contenttypes.contenttype', 'admin.logentry', 'migrations.migration', ] def _is_join_model(model): """ We define a model as a join model if all of it's fields are related fields (or it's primary key), and there is more than just one field. I am not 100% happy with this definition. """ return all([ (field.primary_key or field.rel) for field in model._meta.fields ]) and len(model._meta.fields) > 1 def is_shared_model(model): """ Is the model (or instance of a model) one that should be in the public/shared schema? """ if model._is_shared_model: return True app_model = '%s.%s' % ( model._meta.app_label, model._meta.model_name ) # These should be case insensitive! if app_model in REQUIRED_SHARED_MODELS: return True if app_model in settings.SHARED_MODELS: return True # Sometimes, we want a join table to be private. if app_model in settings.PRIVATE_MODELS: return False # if all fields are auto or fk, then we are a join model, # and if all related objects are shared, then we must # also be shared, unless we were explicitly marked as private # above. if _is_join_model(model): return all([ is_shared_model(field.rel.get_related_field().model) for field in model._meta.fields if field.rel ]) return False def is_shared_table(table): """ Is the model from the provided database table name shared? We may need to look and see if we can work out which models this table joins. """ # Get a mapping of all table names to models. table_map = dict([ (x._meta.db_table, x) for x in models.get_models() if not x._meta.proxy ]) # If we have a match, see if that one is shared. if table in table_map: return is_shared_model(table_map[table]) # It may be a join table. prefixes = [ (db_table, model) for db_table, model in table_map.items() if table.startswith(db_table) ] if len(prefixes) == 1: db_table, model = prefixes[0] rel_model = model._meta.get_field_by_name( table.replace(db_table, '').lstrip('_') )[0].rel.get_related_field().model elif len(prefixes) == 0: # No matching models found. # Assume this is not a shared table... return False else: return is_shared_model(model) return is_shared_model(model) and is_shared_model(rel_model) # Internal helper functions. def _schema_table_exists(): table_name = get_schema_model()._meta.db_table cursor = connection.cursor() cursor.execute("SELECT * FROM information_schema.tables WHERE table_name = %s", [table_name]) return bool(cursor.fetchone()) def _sql_from_file(filename): """ A large part of this project is based around how simple it is to clone a schema's structure into a new schema. This is encapsulated in an SQL script: this function will install a function from an arbitrary file. """ cursor = connection.cursor() sql_file = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'sql', '%s.sql' % filename) function = " ".join([x.strip() for x in open(sql_file).readlines() if not x.strip().startswith('--')]) function = function.replace("%", "%%") cursor.execute(function) cursor.close() def _wrap_command(command): def inner(self, *args, **kwargs): _sql_from_file('clone_schema') get_template_schema().create_schema() cursor = connection.cursor() # In the case of create table statements, we want to make sure # they go to the public schema, but want reads to come from # __template__. cursor.execute('SET search_path TO {},__template__'.format(_get_public_schema())) cursor.close() command(self, *args, **kwargs) deactivate_schema() # We don't want just active schemata... _create_all_schemata() return inner def _create_all_schemata(): """ Create all of the schemata, just in case they haven't yet been created. """ cursor = connection.cursor() cursor.execute("SELECT count(*)>0 FROM information_schema.tables WHERE table_name = 'boardinghouse_schema'") if cursor.fetchone() == (True,): for schema in get_schema_model().objects.all(): schema.create_schema()
# Copyright Hybrid Logic Ltd. See LICENSE file for details. # -*- test-case-name: flocker.provision.test.test_install -*- """ Install flocker on a remote node. """ import posixpath from textwrap import dedent from urlparse import urljoin from effect import Func, Effect import yaml from characteristic import attributes from flocker.acceptance.testtools import DatasetBackend from ._common import PackageSource, Variants from ._ssh import ( run, run_from_args, sudo_from_args, put, run_remotely, ) from ._effect import sequence from flocker.cli import configure_ssh ZFS_REPO = { 'fedora-20': "https://s3.amazonaws.com/archive.zfsonlinux.org/" "fedora/zfs-release$(rpm -E %dist).noarch.rpm", 'centos-7': "https://s3.amazonaws.com/archive.zfsonlinux.org/" "epel/zfs-release.el7.noarch.rpm", } ARCHIVE_BUCKET = 'clusterhq-archive' CLUSTERHQ_REPO = { 'fedora-20': "https://s3.amazonaws.com/{archive_bucket}/" "fedora/clusterhq-release$(rpm -E %dist).noarch.rpm".format( archive_bucket=ARCHIVE_BUCKET, ), 'centos-7': "https://s3.amazonaws.com/{archive_bucket}/" "centos/clusterhq-release$(rpm -E %dist).noarch.rpm".format( archive_bucket=ARCHIVE_BUCKET, ), } @attributes(['distribution']) class DistributionNotSupported(NotImplementedError): """ Raised when the provisioning step is not supported on the given distribution. :ivar bytes distribution: The distribution that isn't supported. """ def __str__(self): return "Distribution not supported: %s" % (self.distribution,) def task_configure_brew_path(): """ Configure non-interactive shell to use all paths. By default, OSX provides a minimal $PATH, for programs run via SSH. In particular /usr/local/bin (which contains `brew`) isn't in the path. This configures the path to have it there. """ return put( path='.bashrc', content=dedent("""\ if [ -x /usr/libexec/path_helper ]; then eval `/usr/libexec/path_helper -s` fi """)) def task_test_homebrew(recipe): """ The commands used to install a Homebrew recipe for Flocker and test it. This taps the ClusterHQ/tap tap, which means that Homebrew looks in the ClusterHQ/homebrew-tap GitHub repository for any recipe name given. :param bytes recipe: The name of a recipe in a either the official Homebrew tap or ClusterHQ/tap, or a URL pointing to a recipe. :return Effect: Commands used to install a Homebrew recipe for Flocker and test it. """ return sequence([ run_from_args(['brew', 'tap', 'ClusterHQ/tap']), run("brew update"), run("brew install {recipe}".format(recipe=recipe)), run("brew test {recipe}".format(recipe=recipe)), ]) def task_install_ssh_key(): """ Install the authorized ssh keys of the current user for root as well. """ return sequence([ sudo_from_args(['cp', '.ssh/authorized_keys', '/root/.ssh/authorized_keys']), ]) def task_upgrade_kernel(distribution): """ Upgrade kernel. """ if distribution == 'centos-7': return sequence([ run_from_args([ "yum", "install", "-y", "kernel-devel", "kernel"]), run_from_args(['sync']), ]) elif distribution == 'ubuntu-14.04': # Not required. return sequence([]) else: raise DistributionNotSupported(distribution=distribution) def task_disable_selinux(distribution): """ Disable SELinux for this session and permanently. XXX: Remove this when we work out suitable SELinux settings. See https://clusterhq.atlassian.net/browse/FLOC-619. """ if distribution in ('centos-7',): return sequence([ run("if selinuxenabled; then setenforce 0; fi"), run("test -e /etc/selinux/config && " "sed --in-place='.preflocker' " "'s/^SELINUX=.*$/SELINUX=disabled/g' " "/etc/selinux/config"), ]) elif distribution in ('fedora-20', 'ubuntu-14.04'): # Fedora and Ubuntu do not have SELinux enabled return sequence([]) else: raise DistributionNotSupported(distribution=distribution) def task_install_control_certificates(ca_cert, control_cert, control_key): """ Install certificates and private key required by the control service. :param FilePath ca_cert: Path to CA certificate on local machine. :param FilePath control_cert: Path to control service certificate on local machine. :param FilePath control_key: Path to control service private key local machine. """ # Be better if permissions were correct from the start. # https://clusterhq.atlassian.net/browse/FLOC-1922 return sequence([ run('mkdir -p /etc/flocker'), run('chmod u=rwX,g=,o= /etc/flocker'), put(path="/etc/flocker/cluster.crt", content=ca_cert.getContent()), put(path="/etc/flocker/control-service.crt", content=control_cert.getContent()), put(path="/etc/flocker/control-service.key", content=control_key.getContent()), ]) def task_install_node_certificates(ca_cert, node_cert, node_key): """ Install certificates and private key required by a node. :param FilePath ca_cert: Path to CA certificate on local machine. :param FilePath node_cert: Path to node certificate on local machine. :param FilePath node_key: Path to node private key local machine. """ # Be better if permissions were correct from the start. # https://clusterhq.atlassian.net/browse/FLOC-1922 return sequence([ run('mkdir -p /etc/flocker'), run('chmod u=rwX,g=,o= /etc/flocker'), put(path="/etc/flocker/cluster.crt", content=ca_cert.getContent()), put(path="/etc/flocker/node.crt", content=node_cert.getContent()), put(path="/etc/flocker/node.key", content=node_key.getContent()), ]) def task_enable_docker(distribution): """ Start docker and configure it to start automatically. """ if distribution in ('fedora-20', 'centos-7'): return sequence([ run_from_args(["systemctl", "enable", "docker.service"]), run_from_args(["systemctl", "start", "docker.service"]), ]) elif distribution == 'ubuntu-14.04': # Ubuntu enables docker service during installation return sequence([]) else: raise DistributionNotSupported(distribution=distribution) def open_firewalld(service): """ Open firewalld port for a service. :param str service: Name of service. """ return sequence([ run_from_args(command + [service]) for command in [['firewall-cmd', '--permanent', '--add-service'], ['firewall-cmd', '--add-service']]]) def open_ufw(service): """ Open ufw port for a service. :param str service: Name of service. """ return sequence([ run_from_args(['ufw', 'allow', service]) ]) def task_enable_flocker_control(distribution): """ Enable flocker-control service. """ if distribution in ('centos-7', 'fedora-20'): return sequence([ run_from_args(['systemctl', 'enable', 'flocker-control']), run_from_args(['systemctl', 'start', 'flocker-control']), ]) elif distribution == 'ubuntu-14.04': # Since the flocker-control service is currently installed # alongside the flocker-dataset-agent service, the default control # service configuration does not automatically start the # service. Here, we provide an override file to start it. return sequence([ put( path='/etc/init/flocker-control.override', content=dedent('''\ start on runlevel [2345] stop on runlevel [016] '''), ), run("echo 'flocker-control-api\t4523/tcp\t\t\t# Flocker Control API port' >> /etc/services"), # noqa run("echo 'flocker-control-agent\t4524/tcp\t\t\t# Flocker Control Agent port' >> /etc/services"), # noqa run_from_args(['service', 'flocker-control', 'start']), ]) else: raise DistributionNotSupported(distribution=distribution) def task_open_control_firewall(distribution): """ Open the firewall for flocker-control. """ if distribution in ('centos-7', 'fedora-20'): open_firewall = open_firewalld elif distribution == 'ubuntu-14.04': open_firewall = open_ufw else: raise DistributionNotSupported(distribution=distribution) return sequence([ open_firewall(service) for service in ['flocker-control-api', 'flocker-control-agent'] ]) def task_enable_flocker_agent(distribution, control_node, dataset_backend=DatasetBackend.zfs): """ Configure and enable the flocker agents. :param bytes control_node: The address of the control agent. :param DatasetBackend dataset_backend: The volume backend the nodes are configured with. (This has a default for use in the documentation). """ put_config_file = put( path='/etc/flocker/agent.yml', content=yaml.safe_dump( { "version": 1, "control-service": { "hostname": control_node, "port": 4524, }, "dataset": { "backend": dataset_backend.name, }, }, ), ) if distribution in ('centos-7', 'fedora-20'): return sequence([ put_config_file, run_from_args(['systemctl', 'enable', 'flocker-dataset-agent']), run_from_args(['systemctl', 'start', 'flocker-dataset-agent']), run_from_args(['systemctl', 'enable', 'flocker-container-agent']), run_from_args(['systemctl', 'start', 'flocker-container-agent']), ]) elif distribution == 'ubuntu-14.04': return sequence([ put_config_file, run_from_args(['service', 'flocker-dataset-agent', 'start']), run_from_args(['service', 'flocker-container-agent', 'start']), ]) else: raise DistributionNotSupported(distribution=distribution) def task_create_flocker_pool_file(): """ Create a file-back zfs pool for flocker. """ return sequence([ run('mkdir -p /var/opt/flocker'), run('truncate --size 10G /var/opt/flocker/pool-vdev'), run('zpool create flocker /var/opt/flocker/pool-vdev'), ]) def task_install_zfs(distribution, variants=set()): """ Install ZFS on a node. :param bytes distribution: The distribution the node is running. :param set variants: The set of variant configurations to use when """ commands = [] if distribution == 'ubuntu-14.04': commands += [ # ZFS not available in base Ubuntu - add ZFS repo run_from_args([ "add-apt-repository", "-y", "ppa:zfs-native/stable"]), ] commands += [ # Update to read package info from new repos run_from_args([ "apt-get", "update"]), # Package spl-dkms sometimes does not have libc6-dev as a # dependency, add it before ZFS installation requires it. # See https://github.com/zfsonlinux/zfs/issues/3298 run_from_args(["apt-get", "-y", "install", "libc6-dev"]), run_from_args(['apt-get', '-y', 'install', 'zfsutils']), ] elif distribution in ('fedora-20', 'centos-7'): commands += [ run_from_args(["yum", "install", "-y", ZFS_REPO[distribution]]), ] if distribution == 'centos-7': commands.append( run_from_args(["yum", "install", "-y", "epel-release"])) if Variants.ZFS_TESTING in variants: commands += [ run_from_args(['yum', 'install', '-y', 'yum-utils']), run_from_args([ 'yum-config-manager', '--enable', 'zfs-testing']) ] commands += [ run_from_args(['yum', 'install', '-y', 'zfs']), ] else: raise DistributionNotSupported(distribution) return sequence(commands) def configure_zfs(node, variants): """ Configure ZFS for use as a Flocker backend. :param INode node: The node to configure ZFS on. :param set variants: The set of variant configurations to use when :return Effect: """ return sequence([ run_remotely( username='root', address=node.address, commands=task_upgrade_kernel( distribution=node.distribution), ), node.reboot(), run_remotely( username='root', address=node.address, commands=sequence([ task_install_zfs( distribution=node.distribution, variants=variants), task_create_flocker_pool_file(), ]), ), Effect( Func(lambda: configure_ssh(node.address, 22))), ]) def task_install_flocker( distribution=None, package_source=PackageSource()): """ Install flocker on a distribution. :param bytes distribution: The distribution the node is running. :param PackageSource package_source: The source from which to install the package. """ if package_source.branch: result_path = posixpath.join( '/results/omnibus/', package_source.branch, distribution) base_url = urljoin(package_source.build_server, result_path) else: base_url = None if distribution == 'ubuntu-14.04': commands = [ # Ensure add-apt-repository command is available run_from_args([ "apt-get", "-y", "install", "software-properties-common"]), # Add Docker repo for recent Docker versions run_from_args([ "add-apt-repository", "-y", "ppa:james-page/docker"]), # Add ClusterHQ repo for installation of Flocker packages. run_from_args([ 'add-apt-repository', '-y', 'deb https://s3.amazonaws.com/clusterhq-archive/ubuntu 14.04/amd64/' # noqa ]) ] if base_url: # Add BuildBot repo for testing commands.append(run_from_args([ "add-apt-repository", "-y", "deb {} /".format(base_url)])) commands += [ # Update to read package info from new repos run_from_args([ "apt-get", "update"]), ] if package_source.os_version: package = 'clusterhq-flocker-node=%s' % ( package_source.os_version,) else: package = 'clusterhq-flocker-node' # Install Flocker node and all dependencies commands.append(run_from_args([ 'apt-get', '-y', '--force-yes', 'install', package])) return sequence(commands) else: commands = [ run(command="yum install -y " + CLUSTERHQ_REPO[distribution]) ] if base_url: repo = dedent(b"""\ [clusterhq-build] name=clusterhq-build baseurl=%s gpgcheck=0 enabled=0 """) % (base_url,) commands.append(put(content=repo, path='/etc/yum.repos.d/clusterhq-build.repo')) branch_opt = ['--enablerepo=clusterhq-build'] else: branch_opt = [] if package_source.os_version: package = 'clusterhq-flocker-node-%s' % ( package_source.os_version,) else: package = 'clusterhq-flocker-node' commands.append(run_from_args( ["yum", "install"] + branch_opt + ["-y", package])) return sequence(commands) ACCEPTANCE_IMAGES = [ "postgres:latest", "clusterhq/mongodb:latest", ] def task_pull_docker_images(images=ACCEPTANCE_IMAGES): """ Pull docker images. :param list images: List of images to pull. Defaults to images used in acceptance tests. """ return sequence([ run_from_args(['docker', 'pull', image]) for image in images ]) def task_enable_updates_testing(distribution): """ Enable the distribution's proposed updates repository. :param bytes distribution: See func:`task_install_flocker` """ if distribution == 'fedora-20': return sequence([ run_from_args(['yum', 'install', '-y', 'yum-utils']), run_from_args([ 'yum-config-manager', '--enable', 'updates-testing']) ]) else: raise DistributionNotSupported(distribution=distribution) def task_enable_docker_head_repository(distribution): """ Enable the distribution's repository containing in-development docker builds. :param bytes distribution: See func:`task_install_flocker` """ if distribution == 'fedora-20': return sequence([ run_from_args(['yum', 'install', '-y', 'yum-utils']), run_from_args([ 'yum-config-manager', '--add-repo', 'https://copr.fedoraproject.org/coprs/lsm5/docker-io/repo/fedora-20/lsm5-docker-io-fedora-20.repo', # noqa ]) ]) elif distribution == "centos-7": return sequence([ put(content=dedent("""\ [virt7-testing] name=virt7-testing baseurl=http://cbs.centos.org/repos/virt7-testing/x86_64/os/ enabled=1 gpgcheck=0 """), path="/etc/yum.repos.d/virt7-testing.repo") ]) else: raise DistributionNotSupported(distribution=distribution) def provision(distribution, package_source, variants): """ Provision the node for running flocker. This drives all the common Fedora20 installation steps in: * http://doc-dev.clusterhq.com/gettingstarted/installation.html#installing-on-fedora-20 # noqa :param bytes address: Address of the node to provision. :param bytes username: Username to connect as. :param bytes distribution: See func:`task_install_flocker` :param PackageSource package_source: See func:`task_install_flocker` :param set variants: The set of variant configurations to use when provisioning """ commands = [] if Variants.DISTRO_TESTING in variants: commands.append(task_enable_updates_testing(distribution)) if Variants.DOCKER_HEAD in variants: commands.append(task_enable_docker_head_repository(distribution)) commands.append( task_install_flocker( package_source=package_source, distribution=distribution)) if distribution in ('centos-7'): commands.append(task_disable_selinux(distribution)) commands.append(task_enable_docker(distribution)) return sequence(commands) def configure_cluster(control_node, agent_nodes, certificates, dataset_backend): """ Configure flocker-control, flocker-dataset-agent and flocker-container-agent on a collection of nodes. :param INode control_node: The control node. :param INode agent_nodes: List of agent nodes. :param Certificates certificates: Certificates to upload. :param DatasetBackend dataset_backend: Dataset backend to configure. """ return sequence([ run_remotely( username='root', address=control_node.address, commands=sequence([ task_install_control_certificates( certificates.cluster.certificate, certificates.control.certificate, certificates.control.key), task_enable_flocker_control(control_node.distribution), ]), ), sequence([ sequence([ run_remotely( username='root', address=node.address, commands=sequence([ task_install_node_certificates( certificates.cluster.certificate, certnkey.certificate, certnkey.key), task_enable_flocker_agent( distribution=node.distribution, control_node=control_node.address, dataset_backend=dataset_backend, )]), ), ]) for certnkey, node in zip(certificates.nodes, agent_nodes) ]) ])
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides an interface for working with multiple event files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import threading import six import tensorflow as tf from tensorboard.backend.event_processing import directory_watcher from tensorboard.backend.event_processing import plugin_event_accumulator as event_accumulator # pylint: disable=line-too-long from tensorboard.backend.event_processing import io_wrapper class EventMultiplexer(object): """An `EventMultiplexer` manages access to multiple `EventAccumulator`s. Each `EventAccumulator` is associated with a `run`, which is a self-contained TensorFlow execution. The `EventMultiplexer` provides methods for extracting information about events from multiple `run`s. Example usage for loading specific runs from files: ```python x = EventMultiplexer({'run1': 'path/to/run1', 'run2': 'path/to/run2'}) x.Reload() ``` Example usage for loading a directory where each subdirectory is a run ```python (eg:) /parent/directory/path/ /parent/directory/path/run1/ /parent/directory/path/run1/events.out.tfevents.1001 /parent/directory/path/run1/events.out.tfevents.1002 /parent/directory/path/run2/ /parent/directory/path/run2/events.out.tfevents.9232 /parent/directory/path/run3/ /parent/directory/path/run3/events.out.tfevents.9232 x = EventMultiplexer().AddRunsFromDirectory('/parent/directory/path') (which is equivalent to:) x = EventMultiplexer({'run1': '/parent/directory/path/run1', 'run2':...} ``` If you would like to watch `/parent/directory/path`, wait for it to be created (if necessary) and then periodically pick up new runs, use `AutoloadingMultiplexer` @@Tensors """ def __init__(self, run_path_map=None, size_guidance=None, tensor_size_guidance=None, purge_orphaned_data=True): """Constructor for the `EventMultiplexer`. Args: run_path_map: Dict `{run: path}` which specifies the name of a run, and the path to find the associated events. If it is None, then the EventMultiplexer initializes without any runs. size_guidance: A dictionary mapping from `tagType` to the number of items to store for each tag of that type. See `event_accumulator.EventAccumulator` for details. tensor_size_guidance: A dictionary mapping from `plugin_name` to the number of items to store for each tag of that type. See `event_accumulator.EventAccumulator` for details. purge_orphaned_data: Whether to discard any events that were "orphaned" by a TensorFlow restart. """ tf.logging.info('Event Multiplexer initializing.') self._accumulators_mutex = threading.Lock() self._accumulators = {} self._paths = {} self._reload_called = False self._size_guidance = (size_guidance or event_accumulator.DEFAULT_SIZE_GUIDANCE) self._tensor_size_guidance = tensor_size_guidance self.purge_orphaned_data = purge_orphaned_data if run_path_map is not None: tf.logging.info('Event Multplexer doing initialization load for %s', run_path_map) for (run, path) in six.iteritems(run_path_map): self.AddRun(path, run) tf.logging.info('Event Multiplexer done initializing') def AddRun(self, path, name=None): """Add a run to the multiplexer. If the name is not specified, it is the same as the path. If a run by that name exists, and we are already watching the right path, do nothing. If we are watching a different path, replace the event accumulator. If `Reload` has been called, it will `Reload` the newly created accumulators. Args: path: Path to the event files (or event directory) for given run. name: Name of the run to add. If not provided, is set to path. Returns: The `EventMultiplexer`. """ name = name or path accumulator = None with self._accumulators_mutex: if name not in self._accumulators or self._paths[name] != path: if name in self._paths and self._paths[name] != path: # TODO(@dandelionmane) - Make it impossible to overwrite an old path # with a new path (just give the new path a distinct name) tf.logging.warning('Conflict for name %s: old path %s, new path %s', name, self._paths[name], path) tf.logging.info('Constructing EventAccumulator for %s', path) accumulator = event_accumulator.EventAccumulator( path, size_guidance=self._size_guidance, tensor_size_guidance=self._tensor_size_guidance, purge_orphaned_data=self.purge_orphaned_data) self._accumulators[name] = accumulator self._paths[name] = path if accumulator: if self._reload_called: accumulator.Reload() return self def AddRunsFromDirectory(self, path, name=None): """Load runs from a directory; recursively walks subdirectories. If path doesn't exist, no-op. This ensures that it is safe to call `AddRunsFromDirectory` multiple times, even before the directory is made. If path is a directory, load event files in the directory (if any exist) and recursively call AddRunsFromDirectory on any subdirectories. This mean you can call AddRunsFromDirectory at the root of a tree of event logs and TensorBoard will load them all. If the `EventMultiplexer` is already loaded this will cause the newly created accumulators to `Reload()`. Args: path: A string path to a directory to load runs from. name: Optionally, what name to apply to the runs. If name is provided and the directory contains run subdirectories, the name of each subrun is the concatenation of the parent name and the subdirectory name. If name is provided and the directory contains event files, then a run is added called "name" and with the events from the path. Raises: ValueError: If the path exists and isn't a directory. Returns: The `EventMultiplexer`. """ tf.logging.info('Starting AddRunsFromDirectory: %s', path) for subdir in GetLogdirSubdirectories(path): tf.logging.info('Adding events from directory %s', subdir) rpath = os.path.relpath(subdir, path) subname = os.path.join(name, rpath) if name else rpath self.AddRun(subdir, name=subname) tf.logging.info('Done with AddRunsFromDirectory: %s', path) return self def Reload(self): """Call `Reload` on every `EventAccumulator`.""" tf.logging.info('Beginning EventMultiplexer.Reload()') self._reload_called = True # Build a list so we're safe even if the list of accumulators is modified # even while we're reloading. with self._accumulators_mutex: items = list(self._accumulators.items()) names_to_delete = set() for name, accumulator in items: try: accumulator.Reload() except (OSError, IOError) as e: tf.logging.error("Unable to reload accumulator '%s': %s", name, e) except directory_watcher.DirectoryDeletedError: names_to_delete.add(name) with self._accumulators_mutex: for name in names_to_delete: tf.logging.warning("Deleting accumulator '%s'", name) del self._accumulators[name] tf.logging.info('Finished with EventMultiplexer.Reload()') return self def PluginAssets(self, plugin_name): """Get index of runs and assets for a given plugin. Args: plugin_name: Name of the plugin we are checking for. Returns: A dictionary that maps from run_name to a list of plugin assets for that run. """ with self._accumulators_mutex: # To avoid nested locks, we construct a copy of the run-accumulator map items = list(six.iteritems(self._accumulators)) return {run: accum.PluginAssets(plugin_name) for run, accum in items} def RetrievePluginAsset(self, run, plugin_name, asset_name): """Return the contents for a specific plugin asset from a run. Args: run: The string name of the run. plugin_name: The string name of a plugin. asset_name: The string name of an asset. Returns: The string contents of the plugin asset. Raises: KeyError: If the asset is not available. """ accumulator = self.GetAccumulator(run) return accumulator.RetrievePluginAsset(plugin_name, asset_name) def FirstEventTimestamp(self, run): """Return the timestamp of the first event of the given run. This may perform I/O if no events have been loaded yet for the run. Args: run: A string name of the run for which the timestamp is retrieved. Returns: The wall_time of the first event of the run, which will typically be seconds since the epoch. Raises: KeyError: If the run is not found. ValueError: If the run has no events loaded and there are no events on disk to load. """ accumulator = self.GetAccumulator(run) return accumulator.FirstEventTimestamp() def Scalars(self, run, tag): """Retrieve the scalar events associated with a run and tag. Args: run: A string name of the run for which values are retrieved. tag: A string name of the tag for which values are retrieved. Raises: KeyError: If the run is not found, or the tag is not available for the given run. Returns: An array of `event_accumulator.ScalarEvents`. """ accumulator = self.GetAccumulator(run) return accumulator.Scalars(tag) def Graph(self, run): """Retrieve the graph associated with the provided run. Args: run: A string name of a run to load the graph for. Raises: KeyError: If the run is not found. ValueError: If the run does not have an associated graph. Returns: The `GraphDef` protobuf data structure. """ accumulator = self.GetAccumulator(run) return accumulator.Graph() def MetaGraph(self, run): """Retrieve the metagraph associated with the provided run. Args: run: A string name of a run to load the graph for. Raises: KeyError: If the run is not found. ValueError: If the run does not have an associated graph. Returns: The `MetaGraphDef` protobuf data structure. """ accumulator = self.GetAccumulator(run) return accumulator.MetaGraph() def RunMetadata(self, run, tag): """Get the session.run() metadata associated with a TensorFlow run and tag. Args: run: A string name of a TensorFlow run. tag: A string name of the tag associated with a particular session.run(). Raises: KeyError: If the run is not found, or the tag is not available for the given run. Returns: The metadata in the form of `RunMetadata` protobuf data structure. """ accumulator = self.GetAccumulator(run) return accumulator.RunMetadata(tag) def Audio(self, run, tag): """Retrieve the audio events associated with a run and tag. Args: run: A string name of the run for which values are retrieved. tag: A string name of the tag for which values are retrieved. Raises: KeyError: If the run is not found, or the tag is not available for the given run. Returns: An array of `event_accumulator.AudioEvents`. """ accumulator = self.GetAccumulator(run) return accumulator.Audio(tag) def Tensors(self, run, tag): """Retrieve the tensor events associated with a run and tag. Args: run: A string name of the run for which values are retrieved. tag: A string name of the tag for which values are retrieved. Raises: KeyError: If the run is not found, or the tag is not available for the given run. Returns: An array of `event_accumulator.TensorEvent`s. """ accumulator = self.GetAccumulator(run) return accumulator.Tensors(tag) def PluginRunToTagToContent(self, plugin_name): """Returns a 2-layer dictionary of the form {run: {tag: content}}. The `content` referred above is the content field of the PluginData proto for the specified plugin within a Summary.Value proto. Args: plugin_name: The name of the plugin for which to fetch content. Returns: A dictionary of the form {run: {tag: content}}. """ mapping = {} for run in self.Runs(): try: tag_to_content = self.GetAccumulator(run).PluginTagToContent( plugin_name) except KeyError: # This run lacks content for the plugin. Try the next run. continue mapping[run] = tag_to_content return mapping def SummaryMetadata(self, run, tag): """Return the summary metadata for the given tag on the given run. Args: run: A string name of the run for which summary metadata is to be retrieved. tag: A string name of the tag whose summary metadata is to be retrieved. Raises: KeyError: If the run is not found, or the tag is not available for the given run. Returns: A `tf.SummaryMetadata` protobuf. """ accumulator = self.GetAccumulator(run) return accumulator.SummaryMetadata(tag) def Runs(self): """Return all the run names in the `EventMultiplexer`. Returns: ``` {runName: { scalarValues: [tagA, tagB, tagC], graph: true, meta_graph: true}} ``` """ with self._accumulators_mutex: # To avoid nested locks, we construct a copy of the run-accumulator map items = list(six.iteritems(self._accumulators)) return {run_name: accumulator.Tags() for run_name, accumulator in items} def RunPaths(self): """Returns a dict mapping run names to event file paths.""" return self._paths def GetAccumulator(self, run): """Returns EventAccumulator for a given run. Args: run: String name of run. Returns: An EventAccumulator object. Raises: KeyError: If run does not exist. """ with self._accumulators_mutex: return self._accumulators[run] def GetLogdirSubdirectories(path): """Returns subdirectories with event files on path.""" if tf.gfile.Exists(path) and not tf.gfile.IsDirectory(path): raise ValueError('GetLogdirSubdirectories: path exists and is not a ' 'directory, %s' % path) # ListRecursively just yields nothing if the path doesn't exist. return ( subdir for (subdir, files) in io_wrapper.ListRecursively(path) if list(filter(event_accumulator.IsTensorFlowEventsFile, files)) )
# Copyright (c) 2008-2009 Pedro Matiello <pmatiello@gmail.com> # Salim Fadhley <sal@stodge.org> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. class common( object ): """ Standard methods common to all graph classes. @sort: __eq__, __getitem__, __iter__, __len__, __repr__, __str__, add_graph, add_nodes, add_spanning_tree, complete, inverse, order, reverse """ def __str__(self): """ Return a string representing the graph when requested by str() (or print). @rtype: string @return: String representing the graph. """ str_nodes = repr( self.nodes() ) str_edges = repr( self.edges() ) return "%s %s" % ( str_nodes, str_edges ) def __repr__(self): """ Return a string representing the graph when requested by repr() @rtype: string @return: String representing the graph. """ return "<%s.%s %s>" % ( self.__class__.__module__, self.__class__.__name__, str(self) ) def __iter__(self): """ Return a iterator passing through all nodes in the graph. @rtype: iterator @return: Iterator passing through all nodes in the graph. """ for n in self.nodes(): yield n def __len__(self): """ Return the order of self when requested by len(). @rtype: number @return: Size of the graph. """ return self.order() def __getitem__(self, node): """ Return a iterator passing through all neighbors of the given node. @rtype: iterator @return: Iterator passing through all neighbors of the given node. """ for n in self.neighbors( node ): yield n def order(self): """ Return the order of self, this is defined as the number of nodes in the graph. @rtype: number @return: Size of the graph. """ return len(self.nodes()) def add_nodes(self, nodelist): """ Add given nodes to the graph. @attention: While nodes can be of any type, it's strongly recommended to use only numbers and single-line strings as node identifiers if you intend to use write(). Objects used to identify nodes absolutely must be hashable. If you need attach a mutable or non-hashable node, consider using the labeling feature. @type nodelist: list @param nodelist: List of nodes to be added to the graph. """ for each in nodelist: self.add_node(each) def add_graph(self, other): """ Add other graph to this graph. @attention: Attributes and labels are not preserved. @type other: graph @param other: Graph """ self.add_nodes( n for n in other.nodes() if not n in self.nodes() ) for each_node in other.nodes(): for each_edge in other.neighbors(each_node): if (not self.has_edge((each_node, each_edge))): self.add_edge((each_node, each_edge)) def add_spanning_tree(self, st): """ Add a spanning tree to the graph. @type st: dictionary @param st: Spanning tree. """ self.add_nodes(list(st.keys())) for each in st: if (st[each] is not None): self.add_edge((st[each], each)) def complete(self): """ Make the graph a complete graph. @attention: This will modify the current graph. """ for each in self.nodes(): for other in self.nodes(): if (each != other and not self.has_edge((each, other))): self.add_edge((each, other)) def inverse(self): """ Return the inverse of the graph. @rtype: graph @return: Complement graph for the graph. """ inv = self.__class__() inv.add_nodes(self.nodes()) inv.complete() for each in self.edges(): if (inv.has_edge(each)): inv.del_edge(each) return inv def reverse(self): """ Generate the reverse of a directed graph, returns an identical graph if not directed. Attributes & weights are preserved. @rtype: digraph @return: The directed graph that should be reversed. """ assert self.DIRECTED, "Undirected graph types such as %s cannot be reversed" % self.__class__.__name__ N = self.__class__() #- Add the nodes N.add_nodes( n for n in self.nodes() ) #- Add the reversed edges for (u, v) in self.edges(): wt = self.edge_weight((u, v)) label = self.edge_label((u, v)) attributes = self.edge_attributes((u, v)) N.add_edge((v, u), wt, label, attributes) return N def __eq__(self, other): """ Return whether this graph is equal to another one. @type other: graph, digraph @param other: Other graph or digraph @rtype: boolean @return: Whether this graph and the other are equal. """ def nodes_eq(): for each in self: if (not other.has_node(each)): return False for each in other: if (not self.has_node(each)): return False return True def edges_eq(): for edge in self.edges(): if (not other.has_edge(edge)): return False for edge in other.edges(): if (not self.has_edge(edge)): return False return True try: return nodes_eq() and edges_eq() except AttributeError: return False
import collections from supriya import CalculationRate from supriya.synthdefs import PureUGen, UGen class COsc(PureUGen): """ A chorusing wavetable oscillator. :: >>> cosc = supriya.ugens.COsc.ar( ... beats=0.5, ... buffer_id=23, ... frequency=440, ... ) >>> cosc COsc.ar() """ _ordered_input_names = collections.OrderedDict( [("buffer_id", None), ("frequency", 440.0), ("beats", 0.5)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class DegreeToKey(PureUGen): """ A signal-to-modal-pitch converter.` :: >>> source = supriya.ugens.In.ar(bus=0) >>> degree_to_key = supriya.ugens.DegreeToKey.ar( ... buffer_id=23, ... octave=12, ... source=source, ... ) >>> degree_to_key DegreeToKey.ar() """ _ordered_input_names = collections.OrderedDict( [("buffer_id", None), ("source", None), ("octave", 12)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class Impulse(PureUGen): """ A non-band-limited single-sample impulse generator unit generator. :: >>> supriya.ugens.Impulse.ar() Impulse.ar() """ _ordered_input_names = collections.OrderedDict( [("frequency", 440.0), ("phase", 0.0)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class Index(PureUGen): """ A clipping buffer indexer. :: >>> source = supriya.ugens.In.ar(bus=0) >>> index = supriya.ugens.Index.ar( ... buffer_id=23, ... source=source, ... ) >>> index Index.ar() """ _ordered_input_names = collections.OrderedDict( [("buffer_id", None), ("source", None)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class LFCub(PureUGen): """ A sine-like oscillator unit generator. :: >>> supriya.ugens.LFCub.ar() LFCub.ar() """ _ordered_input_names = collections.OrderedDict( [("frequency", 440.0), ("initial_phase", 0.0)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class LFGauss(PureUGen): """ A non-band-limited gaussian function oscillator. :: >>> supriya.ugens.LFGauss.ar() LFGauss.ar() """ ### CLASS VARIABLES ### _ordered_input_names = collections.OrderedDict( [ ("duration", 1), ("width", 0.1), ("initial_phase", 0), ("loop", 1), ("done_action", 0), ] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) ### INITIALIZER ### def __init__( self, calculation_rate=None, done_action=0, duration=1, initial_phase=0, loop=1, width=0.1, ): import supriya.synthdefs done_action = supriya.DoneAction.from_expr(done_action) UGen.__init__( self, calculation_rate=calculation_rate, done_action=done_action, duration=duration, initial_phase=initial_phase, loop=loop, width=width, ) class LFPar(PureUGen): """ A parabolic oscillator unit generator. :: >>> supriya.ugens.LFPar.ar() LFPar.ar() """ _ordered_input_names = collections.OrderedDict( [("frequency", 440.0), ("initial_phase", 0.0)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class LFPulse(PureUGen): """ A non-band-limited pulse oscillator. :: >>> supriya.ugens.LFPulse.ar() LFPulse.ar() """ _ordered_input_names = collections.OrderedDict( [("frequency", 440.0), ("initial_phase", 0), ("width", 0.5)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class LFSaw(PureUGen): """ A non-band-limited sawtooth oscillator unit generator. :: >>> supriya.ugens.LFSaw.ar() LFSaw.ar() """ _ordered_input_names = collections.OrderedDict( [("frequency", 440.0), ("initial_phase", 0.0)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class LFTri(PureUGen): """ A non-band-limited triangle oscillator unit generator. :: >>> supriya.ugens.LFTri.ar() LFTri.ar() """ _ordered_input_names = collections.OrderedDict( [("frequency", 440.0), ("initial_phase", 0.0)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class Osc(PureUGen): """ An interpolating wavetable oscillator. """ _ordered_input_names = collections.OrderedDict( [("buffer_id", 0), ("frequency", 440.0), ("initial_phase", 0.0)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class OscN(PureUGen): """ A non-interpolating wavetable oscillator. """ _ordered_input_names = collections.OrderedDict( [("buffer_id", 0), ("frequency", 440.0), ("initial_phase", 0.0)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class Select(PureUGen): """ A signal selector. :: >>> sources = supriya.ugens.In.ar(bus=0, channel_count=8) >>> selector = supriya.ugens.Phasor.kr() * 8 >>> select = supriya.ugens.Select.ar( ... sources=sources, ... selector=selector, ... ) >>> select Select.ar() """ _ordered_input_names = collections.OrderedDict( [("selector", None), ("sources", None)] ) _unexpanded_input_names = ("sources",) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class SinOsc(PureUGen): """ A sinusoid oscillator unit generator. :: >>> supriya.ugens.SinOsc.ar() SinOsc.ar() :: >>> print(_) synthdef: name: ... ugens: - SinOsc.ar: frequency: 440.0 phase: 0.0 """ _ordered_input_names = collections.OrderedDict( [("frequency", 440.0), ("phase", 0.0)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class SyncSaw(PureUGen): """ A sawtooth wave that is hard synched to a fundamental pitch. :: >>> sync_saw = supriya.ugens.SyncSaw.ar( ... saw_frequency=440, ... sync_frequency=440, ... ) >>> sync_saw SyncSaw.ar() """ _ordered_input_names = collections.OrderedDict( [("sync_frequency", 440), ("saw_frequency", 440)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class VOsc(PureUGen): """ A wavetable lookup oscillator which can be swept smoothly across wavetables. :: >>> vosc = supriya.ugens.VOsc.ar( ... buffer_id=supriya.ugens.MouseX.kr(0, 7), ... frequency=440, ... phase=0, ... ) >>> vosc VOsc.ar() """ _ordered_input_names = collections.OrderedDict( [("buffer_id", None), ("frequency", 440), ("phase", 0)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class VOsc3(PureUGen): """ A wavetable lookup oscillator which can be swept smoothly across wavetables. :: >>> vosc_3 = supriya.ugens.VOsc3.ar( ... buffer_id=supriya.ugens.MouseX.kr(0, 7), ... freq_1=110, ... freq_2=220, ... freq_3=440, ... ) >>> vosc_3 VOsc3.ar() """ _ordered_input_names = collections.OrderedDict( [("buffer_id", None), ("freq_1", 110), ("freq_2", 220), ("freq_3", 440)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class VarSaw(PureUGen): """ A sawtooth-triangle oscillator with variable duty. :: >>> supriya.ugens.VarSaw.ar() VarSaw.ar() """ _ordered_input_names = collections.OrderedDict( [("frequency", 440.0), ("initial_phase", 0.0), ("width", 0.5)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class Vibrato(PureUGen): """ Vibrato is a slow frequency modulation. :: >>> vibrato = supriya.ugens.Vibrato.ar( ... delay=0, ... depth=0.02, ... depth_variation=0.1, ... frequency=440, ... initial_phase=0, ... onset=0, ... rate=6, ... rate_variation=0.04, ... ) >>> vibrato Vibrato.ar() """ _ordered_input_names = collections.OrderedDict( [ ("frequency", 440), ("rate", 6), ("depth", 0.02), ("delay", 0), ("onset", 0), ("rate_variation", 0.04), ("depth_variation", 0.1), ("initial_phase", 0), ] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL) class WrapIndex(UGen): """ A wrapping buffer indexer. :: >>> source = supriya.ugens.In.ar(bus=0) >>> wrap_index = supriya.ugens.WrapIndex.ar( ... buffer_id=23, ... source=source, ... ) >>> wrap_index WrapIndex.ar() """ _ordered_input_names = collections.OrderedDict( [("buffer_id", None), ("source", None)] ) _valid_calculation_rates = (CalculationRate.AUDIO, CalculationRate.CONTROL)
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # # Unit test for the AlarmItem class. # # Copyright (c) 2015 carlosperate https://github.com/carlosperate/ # Licensed under The MIT License (MIT), a copy can be found in the LICENSE file # from __future__ import unicode_literals, absolute_import import unittest import mock import io try: from LightUpAlarm.AlarmItem import AlarmItem except ImportError: import os import sys file_dir = os.path.dirname(os.path.realpath(__file__)) package_dir = os.path.dirname(os.path.dirname(file_dir)) sys.path.insert(0, package_dir) from LightUpAlarm.AlarmItem import AlarmItem class AlarmItemTestCase(unittest.TestCase): """ Tests for AlarmItem class. """ # # Helper methods # def assert_repeat(self, alarm_test, days): self.assertEqual(alarm_test.monday, days[0]) self.assertEqual(alarm_test.tuesday, days[1]) self.assertEqual(alarm_test.wednesday, days[2]) self.assertEqual(alarm_test.thursday, days[3]) self.assertEqual(alarm_test.friday, days[4]) self.assertEqual(alarm_test.saturday, days[5]) self.assertEqual(alarm_test.sunday, days[6]) def assert_stderr(self, test_srderr, equal=False): """ Checks the stderr error string and resets it for next test. """ if equal is True: self.assertEqual(test_srderr.getvalue(), '') else: self.assertNotEqual(test_srderr.getvalue(), '') test_srderr.truncate(0) test_srderr.write('') self.assertEqual(test_srderr.getvalue(), '') # # Tests # def test_constructor(self): """ Tests valid inputs to the constructor. """ id_ = 265 hour = 23 minute = 59 days = (False, True, True, False, False, False, False) label = 'Alarm label' timestamp = 12345678 # Check constructor with minimum arguments alarm_test = AlarmItem(hour, minute) self.assertEqual(hour, alarm_test.hour) self.assertEqual(minute, alarm_test.minute) for day in alarm_test.repeat: self.assertEqual(alarm_test.repeat[day], False) self.assertEqual(alarm_test.label, '') self.assertIsNone(alarm_test.timestamp) # Check constructor with minimum arguments + repeat days alarm_test = AlarmItem(hour, minute, days=days) self.assertEqual(days, alarm_test.repeat) # Check constructor with minimum arguments + repeat days + enabled alarm_test = AlarmItem(hour, minute, days=days, enabled=False) self.assertEqual(False, alarm_test.enabled) # Check constructor with minimum arguments + repeat days + enabled + # label alarm_test = AlarmItem( hour, minute, days=days, enabled=False, label=label) self.assertEqual(label, alarm_test.label) # Check constructor with minimum arguments + repeat days + enabled + # label + timestamp alarm_test = AlarmItem(hour, minute, days=days, enabled=False, label=label, timestamp=timestamp) self.assertEqual(timestamp, alarm_test.timestamp) # Check constructor with minimum arguments + repeat days + enabled + # label + id alarm_test = AlarmItem(hour, minute, days=days, enabled=False, label=label, timestamp=timestamp, alarm_id=id_) self.assertEqual(id_, alarm_test.id_) def test_constructor_hour_min_range(self): """ Test constructor values for hours and minutes to produce a None object if they are larger than 23 and 59 respectively. """ # The accessor functions print to stderr if bad data is encountered, so # we need to capture stderr to test it. with mock.patch('sys.stderr', new=io.StringIO()) as test_srderr: # Invalid minute self.assertEqual(test_srderr.getvalue(), '') alarm_test = AlarmItem(23, 60) self.assertIsNone(alarm_test) self.assert_stderr(test_srderr) alarm_test = AlarmItem(23, -50) self.assertIsNone(alarm_test) self.assert_stderr(test_srderr) # Invalid hour alarm_test = AlarmItem(24, 59) self.assertIsNone(alarm_test) self.assert_stderr(test_srderr) alarm_test = AlarmItem(-12, 59) self.assertIsNone(alarm_test) self.assert_stderr(test_srderr) # Invalid hour and minute alarm_test = AlarmItem(24, 60) self.assertIsNone(alarm_test) self.assert_stderr(test_srderr) alarm_test = AlarmItem(-16, -45) self.assertIsNone(alarm_test) self.assert_stderr(test_srderr) def test_hour_min_loop_range(self): """ Test setting the hours and minutes accessors to not change values with invalid inputs. """ alarm_test = AlarmItem(0, 1) # The accessor functions print to stderr if bad data is encountered, so # we need to capture stderr to test it. with mock.patch('sys.stderr', new=io.StringIO()) as test_srderr: self.assertEqual(test_srderr.getvalue(), '') alarm_test.hour = 12 alarm_test.minute = 34 self.assertEqual(alarm_test.hour, 12) self.assertEqual(alarm_test.minute, 34) self.assert_stderr(test_srderr, equal=True) # Invalid ints alarm_test.minute = 60 self.assert_stderr(test_srderr) alarm_test.minute = -1 self.assert_stderr(test_srderr) self.assertEqual(alarm_test.minute, 34) alarm_test.hour = 24 self.assert_stderr(test_srderr) alarm_test.hour = -2 self.assert_stderr(test_srderr) self.assertEqual(alarm_test.hour, 12) self.assertEqual(alarm_test.hour, 12) self.assertEqual(alarm_test.minute, 34) def test_hour_min_integers(self): """ Test setting the hours and minutes values valid integers and non-integer values. """ alarm_test = AlarmItem(0, 0) # The accessor functions print to stderr if bad data is encountered, so # we need to capture stderr to test it. with mock.patch('sys.stderr', new=io.StringIO()) as test_srderr: # First ensure that successful set does not write to stderr self.assertEqual(test_srderr.getvalue(), '') alarm_test.hour = 12 alarm_test.minute = 34 self.assert_stderr(test_srderr, equal=True) # Float instead of integer alarm_test.hour = 12.34 self.assert_stderr(test_srderr) alarm_test.minute = 34.56 self.assert_stderr(test_srderr) # String instead of integer alarm_test.hour = 'minutes' self.assert_stderr(test_srderr) alarm_test.minute = 'hours' self.assert_stderr(test_srderr) self.assertEqual(alarm_test.hour, 12) self.assertEqual(alarm_test.minute, 34) def test_repeat_list_strictness(self): """ Test that the repeat list of booleans is filtered and catches invalid inputs. Including lists of not booleans, and boolean lists with and incorrect number of items. """ alarm_test = AlarmItem(0, 0) valid_days = (False, True, True, False, False, False, False) # Setting a valid value self.assertNotEqual(valid_days, alarm_test.repeat) alarm_test.repeat = valid_days self.assertEqual(valid_days, alarm_test.repeat) # The accessor functions print to stderr if bad data is encountered, so # we need to capture stderr to test it. with mock.patch('sys.stderr', new=io.StringIO()) as test_srderr: # First ensure that successful set does not write to stderr self.assertEqual(test_srderr.getvalue(), '') alarm_test.repeat = valid_days self.assertEqual(alarm_test.repeat, valid_days) self.assertEqual(test_srderr.getvalue(), '') # Too many arguments alarm_test.repeat = ( False, False, False, False, False, False, False, False) self.assert_stderr(test_srderr) self.assertEqual(alarm_test.repeat, valid_days) # Too few arguments alarm_test.repeat = (True, True, True, True, True, True) self.assert_stderr(test_srderr) self.assertEqual(alarm_test.repeat, valid_days) # Wrong arguments alarm_test.repeat = (True, True, True, 0, True, True, True) self.assert_stderr(test_srderr) self.assertEqual(alarm_test.repeat, valid_days) def test_repeat_accessors_get(self): """ Sets the repeat list at the constructor and variable level, and test that all the individual accessors for each day of the week works correctly. """ days = [False, True, True, False, True, False, True] # Test constructor input alarm_test = AlarmItem(0, 0, days, False) self.assertEqual(alarm_test.repeat, tuple(days)) self.assert_repeat(alarm_test, days) # Test repeat accesor with opposite repeat list for i in xrange(len(days)): days[i] = not days[i] alarm_test.repeat = days self.assertEqual(alarm_test.repeat, tuple(days)) self.assert_repeat(alarm_test, days) def test_repeat_accessors_set(self): """ Sets the repeat list and test that the individual set accessors work as expected, including throwing errors if values are not booleans. """ alarm_test = AlarmItem(0, 0) days = [False, True, True, False, True, False, True] # Test with correct values alarm_test.monday = days[0] alarm_test.tuesday = days[1] alarm_test.wednesday = days[2] alarm_test.thursday = days[3] alarm_test.friday = days[4] alarm_test.saturday = days[5] alarm_test.sunday = days[6] self.assert_repeat(alarm_test, days) # To test the incorrect value, the accessor setter prints to stderr # if bad data is encountered, so we need to capture stderr to test it. with mock.patch('sys.stderr', new=io.StringIO()) as test_srderr: # First ensure that successful set does not write to stderr self.assertEqual(test_srderr.getvalue(), '') alarm_test.monday = days[0] self.assertEqual(test_srderr.getvalue(), '') # Monday alarm_test.monday = 'monday' self.assert_stderr(test_srderr) alarm_test.monday = 1 self.assert_stderr(test_srderr) alarm_test.monday = 2.3 self.assert_stderr(test_srderr) self.assertEqual(alarm_test.monday, days[0]) # Tuesday alarm_test.tuesday = 'tuesday' self.assert_stderr(test_srderr) alarm_test.tuesday = 1 self.assert_stderr(test_srderr) alarm_test.tuesday = 2.3 self.assert_stderr(test_srderr) self.assertEqual(alarm_test.tuesday, days[1]) # Wednesday alarm_test.wednesday = 'wednesday' self.assert_stderr(test_srderr) alarm_test.wednesday = 1 self.assert_stderr(test_srderr) alarm_test.wednesday = 2.3 self.assert_stderr(test_srderr) self.assertEqual(alarm_test.wednesday, days[2]) # Thursday alarm_test.thursday = 'thursday' self.assert_stderr(test_srderr) alarm_test.thursday = 1 self.assert_stderr(test_srderr) alarm_test.thursday = 2.3 self.assert_stderr(test_srderr) self.assertEqual(alarm_test.thursday, days[3]) # Friday alarm_test.friday = 'friday' self.assert_stderr(test_srderr) alarm_test.friday = 1 self.assert_stderr(test_srderr) alarm_test.friday = 2.3 self.assert_stderr(test_srderr) self.assertEqual(alarm_test.friday, days[4]) # Saturday alarm_test.saturday = 'saturday' self.assert_stderr(test_srderr) alarm_test.saturday = 1 self.assert_stderr(test_srderr) alarm_test.saturday = 2.3 self.assert_stderr(test_srderr) self.assertEqual(alarm_test.saturday, days[5]) # Sunday alarm_test.sunday = 'sunday' self.assert_stderr(test_srderr) alarm_test.sunday = 1 self.assert_stderr(test_srderr) alarm_test.sunday = 2.3 self.assertEqual(alarm_test.sunday, days[6]) def test_id(self): """ Tests the id member variable accessors filters non-integers. """ alarm_test = AlarmItem(0, 0) alarm_test.id_ = 5 self.assertEqual(5, alarm_test.id_) # The accessor setter prints to stderr if bad data is encountered, so # we need to capture stderr to test it. with mock.patch('sys.stderr', new=io.StringIO()) as test_srderr: # First ensure that successful set does not write to stderr self.assertEqual(test_srderr.getvalue(), '') alarm_test.id_ = 10 self.assertEqual(test_srderr.getvalue(), '') self.assertEqual(alarm_test.id_, 10) # Negative integer instead of positive integer alarm_test.id_ = -2 self.assertEqual(alarm_test.id_, 10) self.assert_stderr(test_srderr) # String instead of integer alarm_test.id_ = 'String' self.assertEqual(alarm_test.id_, 10) self.assert_stderr(test_srderr) # Float instead of integer alarm_test.id_ = 10.4 self.assertEqual(alarm_test.id_, 10) self.assert_stderr(test_srderr) def test_label(self): """ Tests the label variable accessors and its string coversion. """ alarm_test = AlarmItem(0, 0) label = 'Alarm test label' # The accessor setter prints to stderr if bad data is encountered, so # we need to capture stderr to test it. with mock.patch('sys.stderr', new=io.StringIO()) as test_srderr: # First ensure that successful set does not write to stderr self.assertEqual(test_srderr.getvalue(), '') alarm_test.label = label self.assertEqual(label, alarm_test.label) self.assertEqual(test_srderr.getvalue(), '') # Try other types alarm_test.label = 5 self.assertEqual('5', alarm_test.label) self.assertEqual(test_srderr.getvalue(), '') alarm_test.label = True self.assertEqual('True', alarm_test.label) self.assertEqual(test_srderr.getvalue(), '') alarm_test.label = {'test': 5} self.assertEqual("{u'test': 5}", alarm_test.label) self.assertEqual(test_srderr.getvalue(), '') def test_timestamp(self): """ Tests the timetstamp member variable accessors filters non-integers. """ alarm_test = AlarmItem(0, 0) alarm_test.timestamp = 1427486989 self.assertEqual(alarm_test.timestamp, 1427486989) # The accessor setter prints to stderr if bad data is encountered, so # we need to capture stderr to test it. with mock.patch('sys.stderr', new=io.StringIO()) as test_srderr: # First ensure that successful set does not write to stderr self.assertEqual(test_srderr.getvalue(), '') alarm_test.timestamp = 10 self.assertEqual(test_srderr.getvalue(), '') self.assertEqual(alarm_test.timestamp, 10) # Negative integer instead of positive integer alarm_test.timestamp = -2 self.assertEqual(alarm_test.timestamp, 10) self.assert_stderr(test_srderr) # String instead of integer alarm_test.timestamp = 'String' self.assertEqual(alarm_test.timestamp, 10) self.assert_stderr(test_srderr) # Float instead of integer alarm_test.timestamp = 10.4 self.assertEqual(alarm_test.timestamp, 10) self.assert_stderr(test_srderr) def test_time_to_alarm(self): """ Full tests coverage for the get_time_diff function. Good resource: http://www.timeanddate.com/date/timeduration.html """ one_day = 1440 test_alarm = AlarmItem( 9, 30, (True, False, False, True, False, False, False), True) time_diff = test_alarm.minutes_to_alert(9, 30, 0) self.assertEqual(time_diff, 0) time_diff = test_alarm.minutes_to_alert(9, 29, 0) self.assertEqual(time_diff, 1) time_diff = test_alarm.minutes_to_alert(19, 55, 2) self.assertEqual(time_diff, 815) time_diff = test_alarm.minutes_to_alert(9, 30, 2) self.assertEqual(time_diff, one_day) time_diff = test_alarm.minutes_to_alert(9, 30, 1) self.assertEqual(time_diff, (one_day * 2)) time_diff = test_alarm.minutes_to_alert(9, 31, 1) self.assertEqual(time_diff, ((one_day * 2) - 1)) time_diff = test_alarm.minutes_to_alert(9, 29, 4) self.assertEqual(time_diff, ((one_day * 3) + 1)) time_diff = test_alarm.minutes_to_alert(3, 15, 1) self.assertEqual(time_diff, ((one_day * 2) + (60 * 6) + 15)) test_alarm.repeat = (True, False, False, False, False, False, False) time_diff = test_alarm.minutes_to_alert(9, 31, 0) self.assertEqual(time_diff, ((one_day * 7) - 1)) time_diff = test_alarm.minutes_to_alert(13, 34, 1) self.assertEqual(time_diff, ((one_day * 5) + (60 * 19) + 56)) time_diff = test_alarm.minutes_to_alert(4, 15, 2) self.assertEqual(time_diff, ((one_day * 5) + (60 * 5) + 15)) def test_string_alarm(self): """ Checks the __str__ output is correct. """ test_alarm = AlarmItem( 9, 30, (True, False, False, True, False, False, True), True) test_alarm.id_ = 10 out = 'Alarm ID: 10 | Time: 09:30 | Enabled: Yes | Repeat: ' +\ 'Mon --- --- Thu --- --- Sun ' self.assertEqual(str(test_alarm), out) def test_any_enabled_day(self): """ Test any_day_enabled() returns False if all repeats are false. """ test_alarm = AlarmItem( 9, 30, (True, False, False, True, False, False, True), True) self.assertTrue(test_alarm.any_day_enabled()) test_alarm.repeat = (False, False, False, False, False, False, False) self.assertFalse(test_alarm.any_day_enabled()) def test_diff_alarm(self): """ Tests the diff_alarm method returned Alarms. """ # Helper function to assert the alarm properties, takes the outer scope # variables directly as we will be reusing them for all tests def assert_diff_alarm(diff_alarm): self.assertEqual(diff_alarm.minute, expected_minute) self.assertEqual(diff_alarm.hour, expected_hour) self.assert_repeat(diff_alarm, expected_days) self.assertEqual(diff_alarm.enabled, test_enabled) self.assertEqual(diff_alarm.label, expected_label) self.assertNotEqual(diff_alarm.timestamp, test_timestamp) self.assertNotEqual(diff_alarm.id_, test_id) # First test - 15 minutes to 9 30, so only change in minutes time_diff = -15 test_minute = 30 test_hour = 9 expected_minute = 15 expected_hour = 9 test_days = (True, False, False, True, False, False, True) expected_days = test_days test_enabled = True test_id = 98 test_label = "test label" expected_label = test_label + \ (" (Alarm %s %+dmin)" % (test_id, time_diff)) test_timestamp = 1234 test_alarm = AlarmItem( test_hour, test_minute, days=test_days, enabled=test_enabled, timestamp=test_timestamp, label=test_label, alarm_id=test_id) assert_diff_alarm(test_alarm.diff_alarm(time_diff)) # Now test + 15 minutes to 9 30, so only change in minutes time_diff = 15 test_minute = 30 test_hour = 9 expected_minute = 45 expected_hour = 9 expected_label = test_label + \ (" (Alarm %s %+dmin)" % (test_id, time_diff)) test_alarm = AlarmItem( test_hour, test_minute, days=test_days, enabled=test_enabled, timestamp=test_timestamp, label=test_label, alarm_id=test_id) assert_diff_alarm(test_alarm.diff_alarm(time_diff)) # Now test + 15 minutes to 9 30, so only change in minutes time_diff = 15 test_minute = 30 test_hour = 9 expected_minute = 45 expected_hour = 9 expected_label = test_label + \ (" (Alarm %s %+dmin)" % (test_id, time_diff)) test_alarm = AlarmItem( test_hour, test_minute, days=test_days, enabled=test_enabled, timestamp=test_timestamp, label=test_label, alarm_id=test_id) assert_diff_alarm(test_alarm.diff_alarm(time_diff)) # Now test + minutes with hour rollover time_diff = 59 test_minute = 10 test_hour = 14 expected_minute = 9 expected_hour = 15 expected_label = test_label + \ (" (Alarm %s %+dmin)" % (test_id, time_diff)) test_alarm = AlarmItem( test_hour, test_minute, days=test_days, enabled=test_enabled, timestamp=test_timestamp, label=test_label, alarm_id=test_id) assert_diff_alarm(test_alarm.diff_alarm(time_diff)) # Now test - minutes with hour rollover time_diff = -59 test_minute = 10 test_hour = 14 expected_minute = 11 expected_hour = 13 expected_label = test_label + \ (" (Alarm %s %+dmin)" % (test_id, time_diff)) test_alarm = AlarmItem( test_hour, test_minute, days=test_days, enabled=test_enabled, timestamp=test_timestamp, label=test_label, alarm_id=test_id) assert_diff_alarm(test_alarm.diff_alarm(time_diff)) # Now test + minutes with day rollover time_diff = 30 test_minute = 50 test_hour = 23 expected_minute = 20 expected_hour = 0 test_days = (True, False, False, True, True, False, True) expected_days = (True, True, False, False, True, True, False) expected_label = test_label + \ (" (Alarm %s %+dmin)" % (test_id, time_diff)) test_alarm = AlarmItem( test_hour, test_minute, days=test_days, enabled=test_enabled, timestamp=test_timestamp, label=test_label, alarm_id=test_id) assert_diff_alarm(test_alarm.diff_alarm(time_diff)) # Now test - minutes with day rollover time_diff = -30 test_minute = 10 test_hour = 0 expected_minute = 40 expected_hour = 23 test_days = (True, False, False, True, True, False, True) expected_days = (False, False, True, True, False, True, True) expected_label = test_label + \ (" (Alarm %s %+dmin)" % (test_id, time_diff)) test_alarm = AlarmItem( test_hour, test_minute, days=test_days, enabled=test_enabled, timestamp=test_timestamp, label=test_label, alarm_id=test_id) assert_diff_alarm(test_alarm.diff_alarm(time_diff)) # Test input sanitation capturing stderr to check with mock.patch('sys.stderr', new=io.StringIO()) as test_srderr: # First ensure that successful set does not write to stderr self.assertEqual(test_srderr.getvalue(), '') time_diff = 0 test_alarm.diff_alarm(time_diff) self.assertEqual(test_srderr.getvalue(), '') # Lower boundary time_diff = -60 test_alarm.diff_alarm(time_diff) self.assert_stderr(test_srderr) # Upper boundary time_diff = 60 test_alarm.diff_alarm(time_diff) self.assert_stderr(test_srderr) # other types instead of integer time_diff = 0.1 test_alarm.diff_alarm(time_diff) self.assert_stderr(test_srderr) time_diff = "0" test_alarm.diff_alarm(time_diff) self.assert_stderr(test_srderr) if __name__ == '__main__': unittest.main()
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base classes for probability distributions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import contextlib import inspect import types import numpy as np import six from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops _DISTRIBUTION_PUBLIC_METHOD_WRAPPERS = [ "batch_shape_tensor", "batch_shape", "event_shape_tensor", "event_shape", "sample", "log_prob", "prob", "log_cdf", "cdf", "log_survival_function", "survival_function", "entropy", "mean", "variance", "stddev", "mode", "covariance"] @six.add_metaclass(abc.ABCMeta) class _BaseDistribution(object): """Abstract base class needed for resolving subclass hierarchy.""" pass def _copy_fn(fn): """Create a deep copy of fn. Args: fn: a callable Returns: A `FunctionType`: a deep copy of fn. Raises: TypeError: if `fn` is not a callable. """ if not callable(fn): raise TypeError("fn is not callable: %s" % fn) # The blessed way to copy a function. copy.deepcopy fails to create a # non-reference copy. Since: # types.FunctionType == type(lambda: None), # and the docstring for the function type states: # # function(code, globals[, name[, argdefs[, closure]]]) # # Create a function object from a code object and a dictionary. # ... # # Here we can use this to create a new function with the old function's # code, globals, closure, etc. return types.FunctionType( code=fn.__code__, globals=fn.__globals__, name=fn.__name__, argdefs=fn.__defaults__, closure=fn.__closure__) def _update_docstring(old_str, append_str): """Update old_str by inserting append_str just before the "Args:" section.""" old_str = old_str or "" old_str_lines = old_str.split("\n") # Step 0: Prepend spaces to all lines of append_str. This is # necessary for correct markdown generation. append_str = "\n".join(" %s" % line for line in append_str.split("\n")) # Step 1: Find mention of "Args": has_args_ix = [ ix for ix, line in enumerate(old_str_lines) if line.strip().lower() == "args:"] if has_args_ix: final_args_ix = has_args_ix[-1] return ("\n".join(old_str_lines[:final_args_ix]) + "\n\n" + append_str + "\n\n" + "\n".join(old_str_lines[final_args_ix:])) else: return old_str + "\n\n" + append_str class _DistributionMeta(abc.ABCMeta): def __new__(mcs, classname, baseclasses, attrs): """Control the creation of subclasses of the Distribution class. The main purpose of this method is to properly propagate docstrings from private Distribution methods, like `_log_prob`, into their public wrappers as inherited by the Distribution base class (e.g. `log_prob`). Args: classname: The name of the subclass being created. baseclasses: A tuple of parent classes. attrs: A dict mapping new attributes to their values. Returns: The class object. Raises: TypeError: If `Distribution` is not a subclass of `BaseDistribution`, or the new class is derived via multiple inheritance and the first parent class is not a subclass of `BaseDistribution`. AttributeError: If `Distribution` does not implement e.g. `log_prob`. ValueError: If a `Distribution` public method lacks a docstring. """ if not baseclasses: # Nothing to be done for Distribution raise TypeError("Expected non-empty baseclass. Does Distribution " "not subclass _BaseDistribution?") which_base = [ base for base in baseclasses if base == _BaseDistribution or issubclass(base, Distribution)] base = which_base[0] if base == _BaseDistribution: # Nothing to be done for Distribution return abc.ABCMeta.__new__(mcs, classname, baseclasses, attrs) if not issubclass(base, Distribution): raise TypeError("First parent class declared for %s must be " "Distribution, but saw '%s'" % (classname, base.__name__)) for attr in _DISTRIBUTION_PUBLIC_METHOD_WRAPPERS: special_attr = "_%s" % attr class_attr_value = attrs.get(attr, None) if attr in attrs: # The method is being overridden, do not update its docstring continue base_attr_value = getattr(base, attr, None) if not base_attr_value: raise AttributeError( "Internal error: expected base class '%s' to implement method '%s'" % (base.__name__, attr)) class_special_attr_value = attrs.get(special_attr, None) if class_special_attr_value is None: # No _special method available, no need to update the docstring. continue class_special_attr_docstring = inspect.getdoc(class_special_attr_value) if not class_special_attr_docstring: # No docstring to append. continue class_attr_value = _copy_fn(base_attr_value) class_attr_docstring = inspect.getdoc(base_attr_value) if class_attr_docstring is None: raise ValueError( "Expected base class fn to contain a docstring: %s.%s" % (base.__name__, attr)) class_attr_value.__doc__ = _update_docstring( class_attr_value.__doc__, ("Additional documentation from `%s`:\n\n%s" % (classname, class_special_attr_docstring))) attrs[attr] = class_attr_value return abc.ABCMeta.__new__(mcs, classname, baseclasses, attrs) class ReparameterizationType(object): """Instances of this class represent how sampling is reparameterized. Two static instances exist in the distritributions library, signifying one of two possible properties for samples from a distribution: `FULLY_REPARAMETERIZED`: Samples from the distribution are fully reparameterized, and straight-through gradients are supported. `NOT_REPARAMETERIZED`: Samples from the distribution are not fully reparameterized, and straight-through gradients are either partially unsupported or are not supported at all. In this case, for purposes of e.g. RL or variational inference, it is generally safest to wrap the sample results in a `stop_gradients` call and instead use policy gradients / surrogate loss instead. """ def __init__(self, rep_type): self._rep_type = rep_type def __repr__(self): return "<Reparameteriation Type: %s>" % self._rep_type def __eq__(self, other): """Determine if this `ReparameterizationType` is equal to another. Since RepaparameterizationType instances are constant static global instances, equality checks if two instances' id() values are equal. Args: other: Object to compare against. Returns: `self is other`. """ return self is other # Fully reparameterized distribution: samples from a fully # reparameterized distribution support straight-through gradients with # respect to all parameters. FULLY_REPARAMETERIZED = ReparameterizationType("FULLY_REPARAMETERIZED") # Not reparameterized distribution: samples from a non- # reparameterized distribution do not support straight-through gradients for # at least some of the parameters. NOT_REPARAMETERIZED = ReparameterizationType("NOT_REPARAMETERIZED") @six.add_metaclass(_DistributionMeta) class Distribution(_BaseDistribution): """A generic probability distribution base class. `Distribution` is a base class for constructing and organizing properties (e.g., mean, variance) of random variables (e.g, Bernoulli, Gaussian). #### Subclassing Subclasses are expected to implement a leading-underscore version of the same-named function. The argument signature should be identical except for the omission of `name="..."`. For example, to enable `log_prob(value, name="log_prob")` a subclass should implement `_log_prob(value)`. Subclasses can append to public-level docstrings by providing docstrings for their method specializations. For example: ```python @distribution_util.AppendDocstring("Some other details.") def _log_prob(self, value): ... ``` would add the string "Some other details." to the `log_prob` function docstring. This is implemented as a simple decorator to avoid python linter complaining about missing Args/Returns/Raises sections in the partial docstrings. #### Broadcasting, batching, and shapes All distributions support batches of independent distributions of that type. The batch shape is determined by broadcasting together the parameters. The shape of arguments to `__init__`, `cdf`, `log_cdf`, `prob`, and `log_prob` reflect this broadcasting, as does the return value of `sample` and `sample_n`. `sample_n_shape = [n] + batch_shape + event_shape`, where `sample_n_shape` is the shape of the `Tensor` returned from `sample_n`, `n` is the number of samples, `batch_shape` defines how many independent distributions there are, and `event_shape` defines the shape of samples from each of those independent distributions. Samples are independent along the `batch_shape` dimensions, but not necessarily so along the `event_shape` dimensions (depending on the particulars of the underlying distribution). Using the `Uniform` distribution as an example: ```python minval = 3.0 maxval = [[4.0, 6.0], [10.0, 12.0]] # Broadcasting: # This instance represents 4 Uniform distributions. Each has a lower bound at # 3.0 as the `minval` parameter was broadcasted to match `maxval`'s shape. u = Uniform(minval, maxval) # `event_shape` is `TensorShape([])`. event_shape = u.event_shape # `event_shape_t` is a `Tensor` which will evaluate to []. event_shape_t = u.event_shape_tensor() # Sampling returns a sample per distribution. `samples` has shape # [5, 2, 2], which is [n] + batch_shape + event_shape, where n=5, # batch_shape=[2, 2], and event_shape=[]. samples = u.sample_n(5) # The broadcasting holds across methods. Here we use `cdf` as an example. The # same holds for `log_cdf` and the likelihood functions. # `cum_prob` has shape [2, 2] as the `value` argument was broadcasted to the # shape of the `Uniform` instance. cum_prob_broadcast = u.cdf(4.0) # `cum_prob`'s shape is [2, 2], one per distribution. No broadcasting # occurred. cum_prob_per_dist = u.cdf([[4.0, 5.0], [6.0, 7.0]]) # INVALID as the `value` argument is not broadcastable to the distribution's # shape. cum_prob_invalid = u.cdf([4.0, 5.0, 6.0]) ``` #### Parameter values leading to undefined statistics or distributions. Some distributions do not have well-defined statistics for all initialization parameter values. For example, the beta distribution is parameterized by positive real numbers `concentration1` and `concentration0`, and does not have well-defined mode if `concentration1 < 1` or `concentration0 < 1`. The user is given the option of raising an exception or returning `NaN`. ```python a = tf.exp(tf.matmul(logits, weights_a)) b = tf.exp(tf.matmul(logits, weights_b)) # Will raise exception if ANY batch member has a < 1 or b < 1. dist = distributions.beta(a, b, allow_nan_stats=False) mode = dist.mode().eval() # Will return NaN for batch members with either a < 1 or b < 1. dist = distributions.beta(a, b, allow_nan_stats=True) # Default behavior mode = dist.mode().eval() ``` In all cases, an exception is raised if *invalid* parameters are passed, e.g. ```python # Will raise an exception if any Op is run. negative_a = -1.0 * a # beta distribution by definition has a > 0. dist = distributions.beta(negative_a, b, allow_nan_stats=True) dist.mean().eval() ``` """ def __init__(self, dtype, is_continuous, reparameterization_type, validate_args, allow_nan_stats, parameters=None, graph_parents=None, name=None): """Constructs the `Distribution`. **This is a private method for subclass use.** Args: dtype: The type of the event samples. `None` implies no type-enforcement. is_continuous: Python `bool`. If `True` this `Distribution` is continuous over its supported domain. reparameterization_type: Instance of `ReparameterizationType`. If `distributions.FULLY_REPARAMETERIZED`, this `Distribution` can be reparameterized in terms of some standard distribution with a function whose Jacobian is constant for the support of the standard distribution. If `distributions.NOT_REPARAMETERIZED`, then no such reparameterization is available. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. parameters: Python `dict` of parameters used to instantiate this `Distribution`. graph_parents: Python `list` of graph prerequisites of this `Distribution`. name: Python `str` name prefixed to Ops created by this class. Default: subclass name. Raises: ValueError: if any member of graph_parents is `None` or not a `Tensor`. """ graph_parents = [] if graph_parents is None else graph_parents for i, t in enumerate(graph_parents): if t is None or not contrib_framework.is_tensor(t): raise ValueError("Graph parent item %d is not a Tensor; %s." % (i, t)) self._dtype = dtype self._is_continuous = is_continuous self._reparameterization_type = reparameterization_type self._allow_nan_stats = allow_nan_stats self._validate_args = validate_args self._parameters = parameters or {} self._graph_parents = graph_parents self._name = name or type(self).__name__ @classmethod def param_shapes(cls, sample_shape, name="DistributionParamShapes"): """Shapes of parameters given the desired shape of a call to `sample()`. This is a class method that describes what key/value arguments are required to instantiate the given `Distribution` so that a particular shape is returned for that instance's call to `sample()`. Subclasses should override class method `_param_shapes`. Args: sample_shape: `Tensor` or python list/tuple. Desired shape of a call to `sample()`. name: name to prepend ops with. Returns: `dict` of parameter name to `Tensor` shapes. """ with ops.name_scope(name, values=[sample_shape]): return cls._param_shapes(sample_shape) @classmethod def param_static_shapes(cls, sample_shape): """param_shapes with static (i.e. `TensorShape`) shapes. This is a class method that describes what key/value arguments are required to instantiate the given `Distribution` so that a particular shape is returned for that instance's call to `sample()`. Assumes that the sample's shape is known statically. Subclasses should override class method `_param_shapes` to return constant-valued tensors when constant values are fed. Args: sample_shape: `TensorShape` or python list/tuple. Desired shape of a call to `sample()`. Returns: `dict` of parameter name to `TensorShape`. Raises: ValueError: if `sample_shape` is a `TensorShape` and is not fully defined. """ if isinstance(sample_shape, tensor_shape.TensorShape): if not sample_shape.is_fully_defined(): raise ValueError("TensorShape sample_shape must be fully defined") sample_shape = sample_shape.as_list() params = cls.param_shapes(sample_shape) static_params = {} for name, shape in params.items(): static_shape = tensor_util.constant_value(shape) if static_shape is None: raise ValueError( "sample_shape must be a fully-defined TensorShape or list/tuple") static_params[name] = tensor_shape.TensorShape(static_shape) return static_params @staticmethod def _param_shapes(sample_shape): raise NotImplementedError("_param_shapes not implemented") @property def name(self): """Name prepended to all ops created by this `Distribution`.""" return self._name @property def dtype(self): """The `DType` of `Tensor`s handled by this `Distribution`.""" return self._dtype @property def parameters(self): """Dictionary of parameters used to instantiate this `Distribution`.""" # Remove "self", "__class__", or other special variables. These can appear # if the subclass used `parameters = locals()`. return dict((k, v) for k, v in self._parameters.items() if not k.startswith("__") and k != "self") @property def is_continuous(self): return self._is_continuous @property def reparameterization_type(self): """Describes how samples from the distribution are reparameterized. Currently this is one of the static instances `distributions.FULLY_REPARAMETERIZED` or `distributions.NOT_REPARAMETERIZED`. Returns: An instance of `ReparameterizationType`. """ return self._reparameterization_type @property def allow_nan_stats(self): """Python `bool` describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or - infinity), so the variance = E[(X - mean)**2] is also undefined. Returns: allow_nan_stats: Python `bool`. """ return self._allow_nan_stats @property def validate_args(self): """Python `bool` indicating possibly expensive checks are enabled.""" return self._validate_args def copy(self, **override_parameters_kwargs): """Creates a deep copy of the distribution. Note: the copy distribution may continue to depend on the original intialization arguments. Args: **override_parameters_kwargs: String/value dictionary of initialization arguments to override with new values. Returns: distribution: A new instance of `type(self)` intitialized from the union of self.parameters and override_parameters_kwargs, i.e., `dict(self.parameters, **override_parameters_kwargs)`. """ parameters = dict(self.parameters, **override_parameters_kwargs) return type(self)(**parameters) def _batch_shape_tensor(self): raise NotImplementedError("batch_shape_tensor is not implemented") def batch_shape_tensor(self, name="batch_shape_tensor"): """Shape of a single sample from a single event index as a 1-D `Tensor`. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. Args: name: name to give to the op Returns: batch_shape: `Tensor`. """ with self._name_scope(name): if self.batch_shape.is_fully_defined(): return ops.convert_to_tensor(self.batch_shape.as_list(), dtype=dtypes.int32, name="batch_shape") return self._batch_shape_tensor() def _batch_shape(self): return tensor_shape.TensorShape(None) @property def batch_shape(self): """Shape of a single sample from a single event index as a `TensorShape`. May be partially defined or unknown. The batch dimensions are indexes into independent, non-identical parameterizations of this distribution. Returns: batch_shape: `TensorShape`, possibly unknown. """ return self._batch_shape() def _event_shape_tensor(self): raise NotImplementedError("event_shape_tensor is not implemented") def event_shape_tensor(self, name="event_shape_tensor"): """Shape of a single sample from a single batch as a 1-D int32 `Tensor`. Args: name: name to give to the op Returns: event_shape: `Tensor`. """ with self._name_scope(name): if self.event_shape.is_fully_defined(): return ops.convert_to_tensor(self.event_shape.as_list(), dtype=dtypes.int32, name="event_shape") return self._event_shape_tensor() def _event_shape(self): return tensor_shape.TensorShape(None) @property def event_shape(self): """Shape of a single sample from a single batch as a `TensorShape`. May be partially defined or unknown. Returns: event_shape: `TensorShape`, possibly unknown. """ return self._event_shape() def is_scalar_event(self, name="is_scalar_event"): """Indicates that `event_shape == []`. Args: name: The name to give this op. Returns: is_scalar_event: `bool` scalar `Tensor`. """ with self._name_scope(name): return ops.convert_to_tensor( self._is_scalar_helper(self.event_shape, self.event_shape_tensor), name="is_scalar_event") def is_scalar_batch(self, name="is_scalar_batch"): """Indicates that `batch_shape == []`. Args: name: The name to give this op. Returns: is_scalar_batch: `bool` scalar `Tensor`. """ with self._name_scope(name): return ops.convert_to_tensor( self._is_scalar_helper(self.batch_shape, self.batch_shape_tensor), name="is_scalar_batch") def _sample_n(self, n, seed=None): raise NotImplementedError("sample_n is not implemented") def _call_sample_n(self, sample_shape, seed, name, **kwargs): with self._name_scope(name, values=[sample_shape]): sample_shape = ops.convert_to_tensor( sample_shape, dtype=dtypes.int32, name="sample_shape") sample_shape, n = self._expand_sample_shape_to_vector( sample_shape, "sample_shape") samples = self._sample_n(n, seed, **kwargs) batch_event_shape = array_ops.shape(samples)[1:] final_shape = array_ops.concat([sample_shape, batch_event_shape], 0) samples = array_ops.reshape(samples, final_shape) samples = self._set_sample_static_shape(samples, sample_shape) return samples def sample(self, sample_shape=(), seed=None, name="sample"): """Generate samples of the specified shape. Note that a call to `sample()` without arguments will generate a single sample. Args: sample_shape: 0D or 1D `int32` `Tensor`. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a `Tensor` with prepended dimensions `sample_shape`. """ return self._call_sample_n(sample_shape, seed, name) def _log_prob(self, value): raise NotImplementedError("log_prob is not implemented") def _call_log_prob(self, value, name, **kwargs): with self._name_scope(name, values=[value]): value = ops.convert_to_tensor(value, name="value") try: return self._log_prob(value, **kwargs) except NotImplementedError as original_exception: try: return math_ops.log(self._prob(value, **kwargs)) except NotImplementedError: raise original_exception def log_prob(self, value, name="log_prob"): """Log probability density/mass function (depending on `is_continuous`). Args: value: `float` or `double` `Tensor`. name: The name to give this op. Returns: log_prob: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_log_prob(value, name) def _prob(self, value): raise NotImplementedError("prob is not implemented") def _call_prob(self, value, name, **kwargs): with self._name_scope(name, values=[value]): value = ops.convert_to_tensor(value, name="value") try: return self._prob(value, **kwargs) except NotImplementedError as original_exception: try: return math_ops.exp(self._log_prob(value, **kwargs)) except NotImplementedError: raise original_exception def prob(self, value, name="prob"): """Probability density/mass function (depending on `is_continuous`). Args: value: `float` or `double` `Tensor`. name: The name to give this op. Returns: prob: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_prob(value, name) def _log_cdf(self, value): raise NotImplementedError("log_cdf is not implemented") def _call_log_cdf(self, value, name, **kwargs): with self._name_scope(name, values=[value]): value = ops.convert_to_tensor(value, name="value") try: return self._log_cdf(value, **kwargs) except NotImplementedError as original_exception: try: return math_ops.log(self._cdf(value, **kwargs)) except NotImplementedError: raise original_exception def log_cdf(self, value, name="log_cdf"): """Log cumulative distribution function. Given random variable `X`, the cumulative distribution function `cdf` is: ```none log_cdf(x) := Log[ P[X <= x] ] ``` Often, a numerical approximation can be used for `log_cdf(x)` that yields a more accurate answer than simply taking the logarithm of the `cdf` when `x << -1`. Args: value: `float` or `double` `Tensor`. name: The name to give this op. Returns: logcdf: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_log_cdf(value, name) def _cdf(self, value): raise NotImplementedError("cdf is not implemented") def _call_cdf(self, value, name, **kwargs): with self._name_scope(name, values=[value]): value = ops.convert_to_tensor(value, name="value") try: return self._cdf(value, **kwargs) except NotImplementedError as original_exception: try: return math_ops.exp(self._log_cdf(value, **kwargs)) except NotImplementedError: raise original_exception def cdf(self, value, name="cdf"): """Cumulative distribution function. Given random variable `X`, the cumulative distribution function `cdf` is: ```none cdf(x) := P[X <= x] ``` Args: value: `float` or `double` `Tensor`. name: The name to give this op. Returns: cdf: a `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_cdf(value, name) def _log_survival_function(self, value): raise NotImplementedError("log_survival_function is not implemented") def _call_log_survival_function(self, value, name, **kwargs): with self._name_scope(name, values=[value]): value = ops.convert_to_tensor(value, name="value") try: return self._log_survival_function(value, **kwargs) except NotImplementedError as original_exception: try: return math_ops.log1p(-self.cdf(value, **kwargs)) except NotImplementedError: raise original_exception def log_survival_function(self, value, name="log_survival_function"): """Log survival function. Given random variable `X`, the survival function is defined: ```none log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] ``` Typically, different numerical approximations can be used for the log survival function, which are more accurate than `1 - cdf(x)` when `x >> 1`. Args: value: `float` or `double` `Tensor`. name: The name to give this op. Returns: `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_log_survival_function(value, name) def _survival_function(self, value): raise NotImplementedError("survival_function is not implemented") def _call_survival_function(self, value, name, **kwargs): with self._name_scope(name, values=[value]): value = ops.convert_to_tensor(value, name="value") try: return self._survival_function(value, **kwargs) except NotImplementedError as original_exception: try: return 1. - self.cdf(value, **kwargs) except NotImplementedError: raise original_exception def survival_function(self, value, name="survival_function"): """Survival function. Given random variable `X`, the survival function is defined: ```none survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). ``` Args: value: `float` or `double` `Tensor`. name: The name to give this op. Returns: `Tensor` of shape `sample_shape(x) + self.batch_shape` with values of type `self.dtype`. """ return self._call_survival_function(value, name) def _entropy(self): raise NotImplementedError("entropy is not implemented") def entropy(self, name="entropy"): """Shannon entropy in nats.""" with self._name_scope(name): return self._entropy() def _mean(self): raise NotImplementedError("mean is not implemented") def mean(self, name="mean"): """Mean.""" with self._name_scope(name): return self._mean() def _variance(self): raise NotImplementedError("variance is not implemented") def variance(self, name="variance"): """Variance. Variance is defined as, ```none Var = E[(X - E[X])**2] ``` where `X` is the random variable associated with this distribution, `E` denotes expectation, and `Var.shape = batch_shape + event_shape`. Args: name: The name to give this op. Returns: variance: Floating-point `Tensor` with shape identical to `batch_shape + event_shape`, i.e., the same shape as `self.mean()`. """ with self._name_scope(name): try: return self._variance() except NotImplementedError as original_exception: try: return math_ops.square(self._stddev()) except NotImplementedError: raise original_exception def _stddev(self): raise NotImplementedError("stddev is not implemented") def stddev(self, name="stddev"): """Standard deviation. Standard deviation is defined as, ```none stddev = E[(X - E[X])**2]**0.5 ``` where `X` is the random variable associated with this distribution, `E` denotes expectation, and `stddev.shape = batch_shape + event_shape`. Args: name: The name to give this op. Returns: stddev: Floating-point `Tensor` with shape identical to `batch_shape + event_shape`, i.e., the same shape as `self.mean()`. """ with self._name_scope(name): try: return self._stddev() except NotImplementedError as original_exception: try: return math_ops.sqrt(self._variance()) except NotImplementedError: raise original_exception def _covariance(self): raise NotImplementedError("covariance is not implemented") def covariance(self, name="covariance"): """Covariance. Covariance is (possibly) defined only for non-scalar-event distributions. For example, for a length-`k`, vector-valued distribution, it is calculated as, ```none Cov[i, j] = Covariance(X_i, X_j) = E[(X_i - E[X_i]) (X_j - E[X_j])] ``` where `Cov` is a (batch of) `k x k` matrix, `0 <= (i, j) < k`, and `E` denotes expectation. Alternatively, for non-vector, multivariate distributions (e.g., matrix-valued, Wishart), `Covariance` shall return a (batch of) matrices under some vectorization of the events, i.e., ```none Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above] ``` where `Cov` is a (batch of) `k' x k'` matrices, `0 <= (i, j) < k' = reduce_prod(event_shape)`, and `Vec` is some function mapping indices of this distribution's event dimensions to indices of a length-`k'` vector. Args: name: The name to give this op. Returns: covariance: Floating-point `Tensor` with shape `[B1, ..., Bn, k', k']` where the first `n` dimensions are batch coordinates and `k' = reduce_prod(self.event_shape)`. """ with self._name_scope(name): return self._covariance() def _mode(self): raise NotImplementedError("mode is not implemented") def mode(self, name="mode"): """Mode.""" with self._name_scope(name): return self._mode() @contextlib.contextmanager def _name_scope(self, name=None, values=None): """Helper function to standardize op scope.""" with ops.name_scope(self.name): with ops.name_scope(name, values=( ([] if values is None else values) + self._graph_parents)) as scope: yield scope def _expand_sample_shape_to_vector(self, x, name): """Helper to `sample` which ensures input is 1D.""" x_static_val = tensor_util.constant_value(x) if x_static_val is None: prod = math_ops.reduce_prod(x) else: prod = np.prod(x_static_val, dtype=x.dtype.as_numpy_dtype()) ndims = x.get_shape().ndims # != sample_ndims if ndims is None: # Maybe expand_dims. ndims = array_ops.rank(x) expanded_shape = distribution_util.pick_vector( math_ops.equal(ndims, 0), np.array([1], dtype=np.int32), array_ops.shape(x)) x = array_ops.reshape(x, expanded_shape) elif ndims == 0: # Definitely expand_dims. if x_static_val is not None: x = ops.convert_to_tensor( np.array([x_static_val], dtype=x.dtype.as_numpy_dtype()), name=name) else: x = array_ops.reshape(x, [1]) elif ndims != 1: raise ValueError("Input is neither scalar nor vector.") return x, prod def _set_sample_static_shape(self, x, sample_shape): """Helper to `sample`; sets static shape info.""" # Set shape hints. sample_shape = tensor_shape.TensorShape( tensor_util.constant_value(sample_shape)) ndims = x.get_shape().ndims sample_ndims = sample_shape.ndims batch_ndims = self.batch_shape.ndims event_ndims = self.event_shape.ndims # Infer rank(x). if (ndims is None and sample_ndims is not None and batch_ndims is not None and event_ndims is not None): ndims = sample_ndims + batch_ndims + event_ndims x.set_shape([None] * ndims) # Infer sample shape. if ndims is not None and sample_ndims is not None: shape = sample_shape.concatenate([None]*(ndims - sample_ndims)) x.set_shape(x.get_shape().merge_with(shape)) # Infer event shape. if ndims is not None and event_ndims is not None: shape = tensor_shape.TensorShape( [None]*(ndims - event_ndims)).concatenate(self.event_shape) x.set_shape(x.get_shape().merge_with(shape)) # Infer batch shape. if batch_ndims is not None: if ndims is not None: if sample_ndims is None and event_ndims is not None: sample_ndims = ndims - batch_ndims - event_ndims elif event_ndims is None and sample_ndims is not None: event_ndims = ndims - batch_ndims - sample_ndims if sample_ndims is not None and event_ndims is not None: shape = tensor_shape.TensorShape([None]*sample_ndims).concatenate( self.batch_shape).concatenate([None]*event_ndims) x.set_shape(x.get_shape().merge_with(shape)) return x def _is_scalar_helper(self, static_shape, dynamic_shape_fn): """Implementation for `is_scalar_batch` and `is_scalar_event`.""" if static_shape.ndims is not None: return static_shape.ndims == 0 shape = dynamic_shape_fn() if (shape.get_shape().ndims is not None and shape.get_shape()[0].value is not None): # If the static_shape is correctly written then we should never execute # this branch. We keep it just in case there's some unimagined corner # case. return shape.get_shape().as_list() == [0] return math_ops.equal(array_ops.shape(shape)[0], 0)
import os import numpy as np import taichi as ti from tests import test_utils this_dir = os.path.dirname(os.path.abspath(__file__)) model_file_path = os.path.join(this_dir, 'ell.json') @test_utils.test(require=ti.extension.mesh) def test_mesh_patch_idx(): mesh_builder = ti.Mesh.Tet() mesh_builder.verts.place({'idx': ti.i32}) model = mesh_builder.build(ti.Mesh.load_meta(model_file_path)) @ti.kernel def foo(): for v in model.verts: v.idx = ti.mesh_patch_idx() foo() idx = model.verts.idx.to_numpy() assert idx[0] == 6 assert idx.sum() == 89 def _test_mesh_for(cell_reorder=False, vert_reorder=False, extra_tests=True): mesh_builder = ti.Mesh.Tet() mesh_builder.verts.place({'t': ti.i32}, reorder=vert_reorder) mesh_builder.cells.place({'t': ti.i32}, reorder=cell_reorder) mesh_builder.cells.link(mesh_builder.verts) mesh_builder.verts.link(mesh_builder.cells) mesh_builder.cells.link(mesh_builder.cells) mesh_builder.verts.link(mesh_builder.verts) model = mesh_builder.build(ti.Mesh.load_meta(model_file_path)) @ti.kernel def cell_vert(): for c in model.cells: for j in range(c.verts.size): c.t += c.verts[j].id cell_vert() total = model.cells.t.to_numpy().sum() model.cells.t.fill(0) assert total == 892 @ti.kernel def vert_cell(): for v in model.verts: for j in range(v.cells.size): v.t += v.cells[j].id vert_cell() total = model.verts.t.to_numpy().sum() model.verts.t.fill(0) assert total == 1104 if not extra_tests: return @ti.kernel def cell_cell(): for c in model.cells: for j in range(c.cells.size): c.t += c.cells[j].id cell_cell() total = model.cells.t.to_numpy().sum() model.cells.t.fill(0) assert total == 690 @ti.kernel def vert_vert(): for v in model.verts: for j in range(v.verts.size): v.t += v.verts[j].id vert_vert() total = model.verts.t.to_numpy().sum() model.verts.t.fill(0) assert total == 1144 @test_utils.test(require=ti.extension.mesh) def test_mesh_for(): _test_mesh_for(False, False) _test_mesh_for(False, True) @test_utils.test(require=ti.extension.mesh, optimize_mesh_reordered_mapping=False) def test_mesh_reordered_opt(): _test_mesh_for(True, True, False) @test_utils.test(require=ti.extension.mesh, mesh_localize_to_end_mapping=False) def test_mesh_localize_mapping0(): _test_mesh_for(False, False, False) _test_mesh_for(True, True, False) @test_utils.test(require=ti.extension.mesh, mesh_localize_from_end_mapping=True) def test_mesh_localize_mapping1(): _test_mesh_for(False, False, False) _test_mesh_for(True, True, False) @test_utils.test(require=ti.extension.mesh) def test_mesh_reorder(): vec3i = ti.types.vector(3, ti.i32) mesh_builder = ti.Mesh.Tet() mesh_builder.verts.place({'s': ti.i32, 's3': vec3i}, reorder=True) mesh_builder.cells.link(mesh_builder.verts) model = mesh_builder.build(ti.Mesh.load_meta(model_file_path)) id2 = np.array([x**2 for x in range(len(model.verts))]) id123 = np.array([[x**1, x**2, x**3] for x in range(len(model.verts))]) model.verts.s.from_numpy(id2) model.verts.s3.from_numpy(id123) @ti.kernel def foo(): for v in model.verts: assert v.s == v.id**2 assert v.s3[0] == v.id**1 and v.s3[1] == v.id**2 and v.s3[ 2] == v.id**3 v.s = v.id**3 v.s3 *= v.id foo() id3 = model.verts.s.to_numpy() id234 = model.verts.s3.to_numpy() for i in range(len(model.verts)): assert model.verts.s[i] == i**3 assert id3[i] == i**3 assert model.verts.s3[i][0] == i**2 assert model.verts.s3[i][1] == i**3 assert model.verts.s3[i][2] == i**4 assert id234[i][0] == i**2 assert id234[i][1] == i**3 assert id234[i][2] == i**4 @test_utils.test(require=ti.extension.mesh) def test_mesh_minor_relations(): mesh_builder = ti.Mesh.Tet() mesh_builder.verts.place({'y': ti.i32}) mesh_builder.edges.place({'x': ti.i32}) mesh_builder.cells.link(mesh_builder.edges) mesh_builder.verts.link(mesh_builder.cells) model = mesh_builder.build(ti.Mesh.load_meta(model_file_path)) model.edges.x.fill(1) @ti.kernel def foo(): for v in model.verts: for i in range(v.cells.size): c = v.cells[i] for j in range(c.edges.size): e = c.edges[j] v.y += e.x foo() total = model.verts.y.to_numpy().sum() assert total == 576 @test_utils.test(require=ti.extension.mesh, demote_no_access_mesh_fors=True) def test_multiple_meshes(): mesh_builder = ti.Mesh.Tet() mesh_builder.verts.place({'y': ti.i32}) meta = ti.Mesh.load_meta(model_file_path) model1 = mesh_builder.build(meta) model2 = mesh_builder.build(meta) model1.verts.y.from_numpy( np.array([x**2 for x in range(len(model1.verts))])) @ti.kernel def foo(): for v in model1.verts: model2.verts.y[v.id] = v.y foo() out = model2.verts.y.to_numpy() for i in range(len(out)): assert out[i] == i**2 @test_utils.test(require=ti.extension.mesh) def test_mesh_local(): mesh_builder = ti.Mesh.Tet() mesh_builder.verts.place({'a': ti.i32}) mesh_builder.faces.link(mesh_builder.verts) model = mesh_builder.build(ti.Mesh.load_meta(model_file_path)) ext_a = ti.field(ti.i32, shape=len(model.verts)) @ti.kernel def foo(cache: ti.template()): if ti.static(cache): ti.mesh_local(ext_a, model.verts.a) for f in model.faces: m = f.verts[0].id + f.verts[1].id + f.verts[2].id f.verts[0].a += m f.verts[1].a += m f.verts[2].a += m ext_a[f.verts[0].id] += m ext_a[f.verts[1].id] += m ext_a[f.verts[2].id] += m foo(False) res1 = model.verts.a.to_numpy() res2 = ext_a.to_numpy() model.verts.a.fill(0) ext_a.fill(0) foo(True) res3 = model.verts.a.to_numpy() res4 = ext_a.to_numpy() for i in range(len(model.verts)): assert res1[i] == res2[i] assert res1[i] == res3[i] assert res1[i] == res4[i] @test_utils.test(require=ti.extension.mesh, experimental_auto_mesh_local=True) def test_auto_mesh_local(): mesh_builder = ti.Mesh.Tet() mesh_builder.verts.place({'a': ti.i32, 's': ti.i32}) mesh_builder.faces.link(mesh_builder.verts) model = mesh_builder.build(ti.Mesh.load_meta(model_file_path)) ext_a = ti.field(ti.i32, shape=len(model.verts)) @ti.kernel def foo(cache: ti.template()): for v in model.verts: v.s = v.id if ti.static(cache): ti.mesh_local(ext_a, model.verts.a) for f in model.faces: m = f.verts[0].s + f.verts[1].s + f.verts[2].s f.verts[0].a += m f.verts[1].a += m f.verts[2].a += m for i in range(3): ext_a[f.verts[i].id] += m foo(False) res1 = model.verts.a.to_numpy() res2 = ext_a.to_numpy() model.verts.a.fill(0) ext_a.fill(0) foo(True) res3 = model.verts.a.to_numpy() res4 = ext_a.to_numpy() for i in range(len(model.verts)): assert res1[i] == res2[i] assert res1[i] == res3[i] assert res1[i] == res4[i] @test_utils.test(require=ti.extension.mesh) def test_nested_mesh_for(): mesh_builder = ti.Mesh.Tet() mesh_builder.faces.place({'a': ti.i32, 'b': ti.i32}) mesh_builder.faces.link(mesh_builder.verts) model = mesh_builder.build(ti.Mesh.load_meta(model_file_path)) @ti.kernel def foo(): for f in model.faces: for i in range(f.verts.size): f.a += f.verts[i].id for v in f.verts: f.b += v.id a = model.faces.a.to_numpy() b = model.faces.b.to_numpy() assert (a == b).all() == 1 @test_utils.test(require=ti.extension.mesh) def test_multiple_mesh_major_relations(): mesh = ti.TetMesh() mesh.verts.place({ 's': ti.i32, 's_': ti.i32, 's1': ti.i32, 'a': ti.i32, 'b': ti.i32, 'c': ti.i32 }) mesh.edges.place({'s2': ti.i32}) mesh.cells.place({'s3': ti.i32}) mesh.verts.link(mesh.verts) mesh.verts.link(mesh.edges) mesh.verts.link(mesh.cells) model = mesh.build(ti.Mesh.load_meta(model_file_path)) @ti.kernel def foo(): for u in model.verts: u.s1 = u.id for e in model.edges: e.s2 = e.id for c in model.cells: c.s3 = c.id ti.mesh_local(model.verts.s1, model.edges.s2, model.cells.s3) for u in model.verts: a, b, c = 0, 0, 0 for i in range(u.verts.size): a += u.verts[i].s1 for i in range(u.edges.size): b += u.edges[i].s2 for i in range(u.cells.size): c += u.cells[i].s3 u.s = a * b * c for u in model.verts: for i in range(u.verts.size): u.a += u.verts[i].s1 for u in model.verts: for i in range(u.edges.size): u.b += u.edges[i].s2 for u in model.verts: for i in range(u.cells.size): u.c += u.cells[i].s3 for u in model.verts: u.s_ = u.a * u.b * u.c foo() sum1 = model.verts.s.to_numpy().sum() sum2 = model.verts.s_.to_numpy().sum() assert sum1 == sum2
from binascii import hexlify, unhexlify from hashlib import md5, sha1, sha256 from ..exceptions import SSLError SSLContext = None HAS_SNI = False create_default_context = None import errno import ssl try: # Test for SSL features from ssl import wrap_socket, CERT_NONE, PROTOCOL_SSLv23 from ssl import HAS_SNI # Has SNI? except ImportError: pass try: from ssl import OP_NO_SSLv2, OP_NO_SSLv3, OP_NO_COMPRESSION except ImportError: OP_NO_SSLv2, OP_NO_SSLv3 = 0x1000000, 0x2000000 OP_NO_COMPRESSION = 0x20000 try: from ssl import _DEFAULT_CIPHERS except ImportError: _DEFAULT_CIPHERS = ( 'ECDH+AESGCM:DH+AESGCM:ECDH+AES256:DH+AES256:ECDH+AES128:DH+AES:ECDH+HIGH:' 'DH+HIGH:ECDH+3DES:DH+3DES:RSA+AESGCM:RSA+AES:RSA+HIGH:RSA+3DES:ECDH+RC4:' 'DH+RC4:RSA+RC4:!aNULL:!eNULL:!MD5' ) try: from ssl import SSLContext # Modern SSL? except ImportError: import sys class SSLContext(object): # Platform-specific: Python 2 & 3.1 supports_set_ciphers = sys.version_info >= (2, 7) def __init__(self, protocol_version): self.protocol = protocol_version # Use default values from a real SSLContext self.check_hostname = False self.verify_mode = ssl.CERT_NONE self.ca_certs = None self.options = 0 self.certfile = None self.keyfile = None self.ciphers = None def load_cert_chain(self, certfile, keyfile): self.certfile = certfile self.keyfile = keyfile def load_verify_locations(self, location): self.ca_certs = location def set_ciphers(self, cipher_suite): if not self.supports_set_ciphers: raise TypeError( 'Your version of Python does not support setting ' 'a custom cipher suite. Please upgrade to Python ' '2.7, 3.2, or later if you need this functionality.' ) self.ciphers = cipher_suite def wrap_socket(self, socket, server_hostname=None): kwargs = { 'keyfile': self.keyfile, 'certfile': self.certfile, 'ca_certs': self.ca_certs, 'cert_reqs': self.verify_mode, 'ssl_version': self.protocol, } if self.supports_set_ciphers: # Platform-specific: Python 2.7+ return wrap_socket(socket, ciphers=self.ciphers, **kwargs) else: # Platform-specific: Python 2.6 return wrap_socket(socket, **kwargs) def assert_fingerprint(cert, fingerprint): """ Checks if given fingerprint matches the supplied certificate. :param cert: Certificate as bytes object. :param fingerprint: Fingerprint as string of hexdigits, can be interspersed by colons. """ # Maps the length of a digest to a possible hash function producing # this digest. hashfunc_map = { 16: md5, 20: sha1, 32: sha256, } fingerprint = fingerprint.replace(':', '').lower() digest_length, odd = divmod(len(fingerprint), 2) if odd or digest_length not in hashfunc_map: raise SSLError('Fingerprint is of invalid length.') # We need encode() here for py32; works on py2 and p33. fingerprint_bytes = unhexlify(fingerprint.encode()) hashfunc = hashfunc_map[digest_length] cert_digest = hashfunc(cert).digest() if not cert_digest == fingerprint_bytes: raise SSLError('Fingerprints did not match. Expected "{0}", got "{1}".' .format(hexlify(fingerprint_bytes), hexlify(cert_digest))) def resolve_cert_reqs(candidate): """ Resolves the argument to a numeric constant, which can be passed to the wrap_socket function/method from the ssl module. Defaults to :data:`ssl.CERT_NONE`. If given a string it is assumed to be the name of the constant in the :mod:`ssl` module or its abbrevation. (So you can specify `REQUIRED` instead of `CERT_REQUIRED`. If it's neither `None` nor a string we assume it is already the numeric constant which can directly be passed to wrap_socket. """ if candidate is None: return CERT_NONE if isinstance(candidate, str): res = getattr(ssl, candidate, None) if res is None: res = getattr(ssl, 'CERT_' + candidate) return res return candidate def resolve_ssl_version(candidate): """ like resolve_cert_reqs """ if candidate is None: return PROTOCOL_SSLv23 if isinstance(candidate, str): res = getattr(ssl, candidate, None) if res is None: res = getattr(ssl, 'PROTOCOL_' + candidate) return res return candidate def create_urllib3_context(ssl_version=None, cert_reqs=ssl.CERT_REQUIRED, options=None, ciphers=None): """All arguments have the same meaning as ``ssl_wrap_socket``. By default, this function does a lot of the same work that ``ssl.create_default_context`` does on Python 3.4+. It: - Disables SSLv2, SSLv3, and compression - Sets a restricted set of server ciphers If you wish to enable SSLv3, you can do:: from urllib3.util import ssl_ context = ssl_.create_urllib3_context() context.options &= ~ssl_.OP_NO_SSLv3 You can do the same to enable compression (substituting ``COMPRESSION`` for ``SSLv3`` in the last line above). :param ssl_version: The desired protocol version to use. This will default to PROTOCOL_SSLv23 which will negotiate the highest protocol that both the server and your installation of OpenSSL support. :param cert_reqs: Whether to require the certificate verification. This defaults to ``ssl.CERT_REQUIRED``. :param options: Specific OpenSSL options. These default to ``ssl.OP_NO_SSLv2``, ``ssl.OP_NO_SSLv3``, ``ssl.OP_NO_COMPRESSION``. :param ciphers: Which cipher suites to allow the server to select. :returns: Constructed SSLContext object with specified options :rtype: SSLContext """ context = SSLContext(ssl_version or ssl.PROTOCOL_SSLv23) if options is None: options = 0 # SSLv2 is easily broken and is considered harmful and dangerous options |= OP_NO_SSLv2 # SSLv3 has several problems and is now dangerous options |= OP_NO_SSLv3 # Disable compression to prevent CRIME attacks for OpenSSL 1.0+ # (issue #309) options |= OP_NO_COMPRESSION context.options |= options if getattr(context, 'supports_set_ciphers', True): # Platform-specific: Python 2.6 context.set_ciphers(ciphers or _DEFAULT_CIPHERS) context.verify_mode = cert_reqs if getattr(context, 'check_hostname', None) is not None: # Platform-specific: Python 3.2 # We do our own verification, including fingerprints and alternative # hostnames. So disable it here context.check_hostname = False return context def ssl_wrap_socket(sock, keyfile=None, certfile=None, cert_reqs=None, ca_certs=None, server_hostname=None, ssl_version=None, ciphers=None, ssl_context=None): """ All arguments except for server_hostname and ssl_context have the same meaning as they do when using :func:`ssl.wrap_socket`. :param server_hostname: When SNI is supported, the expected hostname of the certificate :param ssl_context: A pre-made :class:`SSLContext` object. If none is provided, one will be created using :func:`create_urllib3_context`. :param ciphers: A string of ciphers we wish the client to support. This is not supported on Python 2.6 as the ssl module does not support it. """ context = ssl_context if context is None: context = create_urllib3_context(ssl_version, cert_reqs, ciphers=ciphers) if ca_certs: try: context.load_verify_locations(ca_certs) except IOError as e: # Platform-specific: Python 2.6, 2.7, 3.2 raise SSLError(e) # Py33 raises FileNotFoundError which subclasses OSError # These are not equivalent unless we check the errno attribute except OSError as e: # Platform-specific: Python 3.3 and beyond if e.errno == errno.ENOENT: raise SSLError(e) raise if certfile: context.load_cert_chain(certfile, keyfile) if HAS_SNI: # Platform-specific: OpenSSL with enabled SNI return context.wrap_socket(sock, server_hostname=server_hostname) return context.wrap_socket(sock)