gt
stringclasses
1 value
context
stringlengths
2.49k
119k
from test import test_support from tokenize import (untokenize, generate_tokens, NUMBER, NAME, OP, STRING, ENDMARKER, tok_name, Untokenizer, tokenize) from StringIO import StringIO import os from unittest import TestCase class TokenizeTest(TestCase): # Tests for the tokenize module. # The tests can be really simple. Given a small fragment of source # code, print out a table with tokens. The ENDMARKER is omitted for # brevity. def check_tokenize(self, s, expected): # Format the tokens in s in a table format. # The ENDMARKER is omitted. result = [] f = StringIO(s) for type, token, start, end, line in generate_tokens(f.readline): if type == ENDMARKER: break type = tok_name[type] result.append(" %(type)-10.10s %(token)-13.13r %(start)s %(end)s" % locals()) self.assertEqual(result, expected.rstrip().splitlines()) def test_basic(self): self.check_tokenize("1 + 1", """\ NUMBER '1' (1, 0) (1, 1) OP '+' (1, 2) (1, 3) NUMBER '1' (1, 4) (1, 5) """) self.check_tokenize("if False:\n" " # NL\n" " True = False # NEWLINE\n", """\ NAME 'if' (1, 0) (1, 2) NAME 'False' (1, 3) (1, 8) OP ':' (1, 8) (1, 9) NEWLINE '\\n' (1, 9) (1, 10) COMMENT '# NL' (2, 4) (2, 8) NL '\\n' (2, 8) (2, 9) INDENT ' ' (3, 0) (3, 4) NAME 'True' (3, 4) (3, 8) OP '=' (3, 9) (3, 10) NAME 'False' (3, 11) (3, 16) COMMENT '# NEWLINE' (3, 17) (3, 26) NEWLINE '\\n' (3, 26) (3, 27) DEDENT '' (4, 0) (4, 0) """) indent_error_file = """\ def k(x): x += 2 x += 5 """ with self.assertRaisesRegexp(IndentationError, "unindent does not match any " "outer indentation level"): for tok in generate_tokens(StringIO(indent_error_file).readline): pass def test_int(self): # Ordinary integers and binary operators self.check_tokenize("0xff <= 255", """\ NUMBER '0xff' (1, 0) (1, 4) OP '<=' (1, 5) (1, 7) NUMBER '255' (1, 8) (1, 11) """) self.check_tokenize("0b10 <= 255", """\ NUMBER '0b10' (1, 0) (1, 4) OP '<=' (1, 5) (1, 7) NUMBER '255' (1, 8) (1, 11) """) self.check_tokenize("0o123 <= 0123", """\ NUMBER '0o123' (1, 0) (1, 5) OP '<=' (1, 6) (1, 8) NUMBER '0123' (1, 9) (1, 13) """) self.check_tokenize("01234567 > ~0x15", """\ NUMBER '01234567' (1, 0) (1, 8) OP '>' (1, 9) (1, 10) OP '~' (1, 11) (1, 12) NUMBER '0x15' (1, 12) (1, 16) """) self.check_tokenize("2134568 != 01231515", """\ NUMBER '2134568' (1, 0) (1, 7) OP '!=' (1, 8) (1, 10) NUMBER '01231515' (1, 11) (1, 19) """) self.check_tokenize("(-124561-1) & 0200000000", """\ OP '(' (1, 0) (1, 1) OP '-' (1, 1) (1, 2) NUMBER '124561' (1, 2) (1, 8) OP '-' (1, 8) (1, 9) NUMBER '1' (1, 9) (1, 10) OP ')' (1, 10) (1, 11) OP '&' (1, 12) (1, 13) NUMBER '0200000000' (1, 14) (1, 24) """) self.check_tokenize("0xdeadbeef != -1", """\ NUMBER '0xdeadbeef' (1, 0) (1, 10) OP '!=' (1, 11) (1, 13) OP '-' (1, 14) (1, 15) NUMBER '1' (1, 15) (1, 16) """) self.check_tokenize("0xdeadc0de & 012345", """\ NUMBER '0xdeadc0de' (1, 0) (1, 10) OP '&' (1, 11) (1, 12) NUMBER '012345' (1, 13) (1, 19) """) self.check_tokenize("0xFF & 0x15 | 1234", """\ NUMBER '0xFF' (1, 0) (1, 4) OP '&' (1, 5) (1, 6) NUMBER '0x15' (1, 7) (1, 11) OP '|' (1, 12) (1, 13) NUMBER '1234' (1, 14) (1, 18) """) def test_long(self): # Long integers self.check_tokenize("x = 0L", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '0L' (1, 4) (1, 6) """) self.check_tokenize("x = 0xfffffffffff", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '0xffffffffff (1, 4) (1, 17) """) self.check_tokenize("x = 123141242151251616110l", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '123141242151 (1, 4) (1, 26) """) self.check_tokenize("x = -15921590215012591L", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) OP '-' (1, 4) (1, 5) NUMBER '159215902150 (1, 5) (1, 23) """) def test_float(self): # Floating point numbers self.check_tokenize("x = 3.14159", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '3.14159' (1, 4) (1, 11) """) self.check_tokenize("x = 314159.", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '314159.' (1, 4) (1, 11) """) self.check_tokenize("x = .314159", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '.314159' (1, 4) (1, 11) """) self.check_tokenize("x = 3e14159", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '3e14159' (1, 4) (1, 11) """) self.check_tokenize("x = 3E123", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '3E123' (1, 4) (1, 9) """) self.check_tokenize("x+y = 3e-1230", """\ NAME 'x' (1, 0) (1, 1) OP '+' (1, 1) (1, 2) NAME 'y' (1, 2) (1, 3) OP '=' (1, 4) (1, 5) NUMBER '3e-1230' (1, 6) (1, 13) """) self.check_tokenize("x = 3.14e159", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '3.14e159' (1, 4) (1, 12) """) def test_string(self): # String literals self.check_tokenize("x = ''; y = \"\"", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) STRING "''" (1, 4) (1, 6) OP ';' (1, 6) (1, 7) NAME 'y' (1, 8) (1, 9) OP '=' (1, 10) (1, 11) STRING '""' (1, 12) (1, 14) """) self.check_tokenize("x = '\"'; y = \"'\"", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) STRING '\\'"\\'' (1, 4) (1, 7) OP ';' (1, 7) (1, 8) NAME 'y' (1, 9) (1, 10) OP '=' (1, 11) (1, 12) STRING '"\\'"' (1, 13) (1, 16) """) self.check_tokenize("x = \"doesn't \"shrink\", does it\"", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) STRING '"doesn\\'t "' (1, 4) (1, 14) NAME 'shrink' (1, 14) (1, 20) STRING '", does it"' (1, 20) (1, 31) """) self.check_tokenize("x = u'abc' + U'ABC'", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) STRING "u'abc'" (1, 4) (1, 10) OP '+' (1, 11) (1, 12) STRING "U'ABC'" (1, 13) (1, 19) """) self.check_tokenize('y = u"ABC" + U"ABC"', """\ NAME 'y' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) STRING 'u"ABC"' (1, 4) (1, 10) OP '+' (1, 11) (1, 12) STRING 'U"ABC"' (1, 13) (1, 19) """) self.check_tokenize("x = ur'abc' + Ur'ABC' + uR'ABC' + UR'ABC'", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) STRING "ur'abc'" (1, 4) (1, 11) OP '+' (1, 12) (1, 13) STRING "Ur'ABC'" (1, 14) (1, 21) OP '+' (1, 22) (1, 23) STRING "uR'ABC'" (1, 24) (1, 31) OP '+' (1, 32) (1, 33) STRING "UR'ABC'" (1, 34) (1, 41) """) self.check_tokenize('y = ur"abc" + Ur"ABC" + uR"ABC" + UR"ABC"', """\ NAME 'y' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) STRING 'ur"abc"' (1, 4) (1, 11) OP '+' (1, 12) (1, 13) STRING 'Ur"ABC"' (1, 14) (1, 21) OP '+' (1, 22) (1, 23) STRING 'uR"ABC"' (1, 24) (1, 31) OP '+' (1, 32) (1, 33) STRING 'UR"ABC"' (1, 34) (1, 41) """) self.check_tokenize("b'abc' + B'abc'", """\ STRING "b'abc'" (1, 0) (1, 6) OP '+' (1, 7) (1, 8) STRING "B'abc'" (1, 9) (1, 15) """) self.check_tokenize('b"abc" + B"abc"', """\ STRING 'b"abc"' (1, 0) (1, 6) OP '+' (1, 7) (1, 8) STRING 'B"abc"' (1, 9) (1, 15) """) self.check_tokenize("br'abc' + bR'abc' + Br'abc' + BR'abc'", """\ STRING "br'abc'" (1, 0) (1, 7) OP '+' (1, 8) (1, 9) STRING "bR'abc'" (1, 10) (1, 17) OP '+' (1, 18) (1, 19) STRING "Br'abc'" (1, 20) (1, 27) OP '+' (1, 28) (1, 29) STRING "BR'abc'" (1, 30) (1, 37) """) self.check_tokenize('br"abc" + bR"abc" + Br"abc" + BR"abc"', """\ STRING 'br"abc"' (1, 0) (1, 7) OP '+' (1, 8) (1, 9) STRING 'bR"abc"' (1, 10) (1, 17) OP '+' (1, 18) (1, 19) STRING 'Br"abc"' (1, 20) (1, 27) OP '+' (1, 28) (1, 29) STRING 'BR"abc"' (1, 30) (1, 37) """) def test_function(self): self.check_tokenize("def d22(a, b, c=2, d=2, *k): pass", """\ NAME 'def' (1, 0) (1, 3) NAME 'd22' (1, 4) (1, 7) OP '(' (1, 7) (1, 8) NAME 'a' (1, 8) (1, 9) OP ',' (1, 9) (1, 10) NAME 'b' (1, 11) (1, 12) OP ',' (1, 12) (1, 13) NAME 'c' (1, 14) (1, 15) OP '=' (1, 15) (1, 16) NUMBER '2' (1, 16) (1, 17) OP ',' (1, 17) (1, 18) NAME 'd' (1, 19) (1, 20) OP '=' (1, 20) (1, 21) NUMBER '2' (1, 21) (1, 22) OP ',' (1, 22) (1, 23) OP '*' (1, 24) (1, 25) NAME 'k' (1, 25) (1, 26) OP ')' (1, 26) (1, 27) OP ':' (1, 27) (1, 28) NAME 'pass' (1, 29) (1, 33) """) self.check_tokenize("def d01v_(a=1, *k, **w): pass", """\ NAME 'def' (1, 0) (1, 3) NAME 'd01v_' (1, 4) (1, 9) OP '(' (1, 9) (1, 10) NAME 'a' (1, 10) (1, 11) OP '=' (1, 11) (1, 12) NUMBER '1' (1, 12) (1, 13) OP ',' (1, 13) (1, 14) OP '*' (1, 15) (1, 16) NAME 'k' (1, 16) (1, 17) OP ',' (1, 17) (1, 18) OP '**' (1, 19) (1, 21) NAME 'w' (1, 21) (1, 22) OP ')' (1, 22) (1, 23) OP ':' (1, 23) (1, 24) NAME 'pass' (1, 25) (1, 29) """) def test_comparison(self): # Comparison self.check_tokenize("if 1 < 1 > 1 == 1 >= 5 <= 0x15 <= 0x12 != " + "1 and 5 in 1 not in 1 is 1 or 5 is not 1: pass", """\ NAME 'if' (1, 0) (1, 2) NUMBER '1' (1, 3) (1, 4) OP '<' (1, 5) (1, 6) NUMBER '1' (1, 7) (1, 8) OP '>' (1, 9) (1, 10) NUMBER '1' (1, 11) (1, 12) OP '==' (1, 13) (1, 15) NUMBER '1' (1, 16) (1, 17) OP '>=' (1, 18) (1, 20) NUMBER '5' (1, 21) (1, 22) OP '<=' (1, 23) (1, 25) NUMBER '0x15' (1, 26) (1, 30) OP '<=' (1, 31) (1, 33) NUMBER '0x12' (1, 34) (1, 38) OP '!=' (1, 39) (1, 41) NUMBER '1' (1, 42) (1, 43) NAME 'and' (1, 44) (1, 47) NUMBER '5' (1, 48) (1, 49) NAME 'in' (1, 50) (1, 52) NUMBER '1' (1, 53) (1, 54) NAME 'not' (1, 55) (1, 58) NAME 'in' (1, 59) (1, 61) NUMBER '1' (1, 62) (1, 63) NAME 'is' (1, 64) (1, 66) NUMBER '1' (1, 67) (1, 68) NAME 'or' (1, 69) (1, 71) NUMBER '5' (1, 72) (1, 73) NAME 'is' (1, 74) (1, 76) NAME 'not' (1, 77) (1, 80) NUMBER '1' (1, 81) (1, 82) OP ':' (1, 82) (1, 83) NAME 'pass' (1, 84) (1, 88) """) def test_shift(self): # Shift self.check_tokenize("x = 1 << 1 >> 5", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '1' (1, 4) (1, 5) OP '<<' (1, 6) (1, 8) NUMBER '1' (1, 9) (1, 10) OP '>>' (1, 11) (1, 13) NUMBER '5' (1, 14) (1, 15) """) def test_additive(self): # Additive self.check_tokenize("x = 1 - y + 15 - 01 + 0x124 + z + a[5]", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '1' (1, 4) (1, 5) OP '-' (1, 6) (1, 7) NAME 'y' (1, 8) (1, 9) OP '+' (1, 10) (1, 11) NUMBER '15' (1, 12) (1, 14) OP '-' (1, 15) (1, 16) NUMBER '01' (1, 17) (1, 19) OP '+' (1, 20) (1, 21) NUMBER '0x124' (1, 22) (1, 27) OP '+' (1, 28) (1, 29) NAME 'z' (1, 30) (1, 31) OP '+' (1, 32) (1, 33) NAME 'a' (1, 34) (1, 35) OP '[' (1, 35) (1, 36) NUMBER '5' (1, 36) (1, 37) OP ']' (1, 37) (1, 38) """) def test_multiplicative(self): # Multiplicative self.check_tokenize("x = 1//1*1/5*12%0x12", """\ NAME 'x' (1, 0) (1, 1) OP '=' (1, 2) (1, 3) NUMBER '1' (1, 4) (1, 5) OP '//' (1, 5) (1, 7) NUMBER '1' (1, 7) (1, 8) OP '*' (1, 8) (1, 9) NUMBER '1' (1, 9) (1, 10) OP '/' (1, 10) (1, 11) NUMBER '5' (1, 11) (1, 12) OP '*' (1, 12) (1, 13) NUMBER '12' (1, 13) (1, 15) OP '%' (1, 15) (1, 16) NUMBER '0x12' (1, 16) (1, 20) """) def test_unary(self): # Unary self.check_tokenize("~1 ^ 1 & 1 |1 ^ -1", """\ OP '~' (1, 0) (1, 1) NUMBER '1' (1, 1) (1, 2) OP '^' (1, 3) (1, 4) NUMBER '1' (1, 5) (1, 6) OP '&' (1, 7) (1, 8) NUMBER '1' (1, 9) (1, 10) OP '|' (1, 11) (1, 12) NUMBER '1' (1, 12) (1, 13) OP '^' (1, 14) (1, 15) OP '-' (1, 16) (1, 17) NUMBER '1' (1, 17) (1, 18) """) self.check_tokenize("-1*1/1+1*1//1 - ---1**1", """\ OP '-' (1, 0) (1, 1) NUMBER '1' (1, 1) (1, 2) OP '*' (1, 2) (1, 3) NUMBER '1' (1, 3) (1, 4) OP '/' (1, 4) (1, 5) NUMBER '1' (1, 5) (1, 6) OP '+' (1, 6) (1, 7) NUMBER '1' (1, 7) (1, 8) OP '*' (1, 8) (1, 9) NUMBER '1' (1, 9) (1, 10) OP '//' (1, 10) (1, 12) NUMBER '1' (1, 12) (1, 13) OP '-' (1, 14) (1, 15) OP '-' (1, 16) (1, 17) OP '-' (1, 17) (1, 18) OP '-' (1, 18) (1, 19) NUMBER '1' (1, 19) (1, 20) OP '**' (1, 20) (1, 22) NUMBER '1' (1, 22) (1, 23) """) def test_selector(self): # Selector self.check_tokenize("import sys, time\n" "x = sys.modules['time'].time()", """\ NAME 'import' (1, 0) (1, 6) NAME 'sys' (1, 7) (1, 10) OP ',' (1, 10) (1, 11) NAME 'time' (1, 12) (1, 16) NEWLINE '\\n' (1, 16) (1, 17) NAME 'x' (2, 0) (2, 1) OP '=' (2, 2) (2, 3) NAME 'sys' (2, 4) (2, 7) OP '.' (2, 7) (2, 8) NAME 'modules' (2, 8) (2, 15) OP '[' (2, 15) (2, 16) STRING "'time'" (2, 16) (2, 22) OP ']' (2, 22) (2, 23) OP '.' (2, 23) (2, 24) NAME 'time' (2, 24) (2, 28) OP '(' (2, 28) (2, 29) OP ')' (2, 29) (2, 30) """) def test_method(self): # Methods self.check_tokenize("@staticmethod\n" "def foo(x,y): pass", """\ OP '@' (1, 0) (1, 1) NAME 'staticmethod (1, 1) (1, 13) NEWLINE '\\n' (1, 13) (1, 14) NAME 'def' (2, 0) (2, 3) NAME 'foo' (2, 4) (2, 7) OP '(' (2, 7) (2, 8) NAME 'x' (2, 8) (2, 9) OP ',' (2, 9) (2, 10) NAME 'y' (2, 10) (2, 11) OP ')' (2, 11) (2, 12) OP ':' (2, 12) (2, 13) NAME 'pass' (2, 14) (2, 18) """) def test_tabs(self): # Evil tabs self.check_tokenize("def f():\n" "\tif x\n" " \tpass", """\ NAME 'def' (1, 0) (1, 3) NAME 'f' (1, 4) (1, 5) OP '(' (1, 5) (1, 6) OP ')' (1, 6) (1, 7) OP ':' (1, 7) (1, 8) NEWLINE '\\n' (1, 8) (1, 9) INDENT '\\t' (2, 0) (2, 1) NAME 'if' (2, 1) (2, 3) NAME 'x' (2, 4) (2, 5) NEWLINE '\\n' (2, 5) (2, 6) INDENT ' \\t' (3, 0) (3, 9) NAME 'pass' (3, 9) (3, 13) DEDENT '' (4, 0) (4, 0) DEDENT '' (4, 0) (4, 0) """) def test_pathological_trailing_whitespace(self): # Pathological whitespace (http://bugs.python.org/issue16152) self.check_tokenize("@ ", """\ OP '@' (1, 0) (1, 1) """) def decistmt(s): result = [] g = generate_tokens(StringIO(s).readline) # tokenize the string for toknum, tokval, _, _, _ in g: if toknum == NUMBER and '.' in tokval: # replace NUMBER tokens result.extend([ (NAME, 'Decimal'), (OP, '('), (STRING, repr(tokval)), (OP, ')') ]) else: result.append((toknum, tokval)) return untokenize(result) class TestMisc(TestCase): def test_decistmt(self): # Substitute Decimals for floats in a string of statements. # This is an example from the docs. from decimal import Decimal s = '+21.3e-5*-.1234/81.7' self.assertEqual(decistmt(s), "+Decimal ('21.3e-5')*-Decimal ('.1234')/Decimal ('81.7')") # The format of the exponent is inherited from the platform C library. # Known cases are "e-007" (Windows) and "e-07" (not Windows). Since # we're only showing 12 digits, and the 13th isn't close to 5, the # rest of the output should be platform-independent. self.assertRegexpMatches(str(eval(s)), '-3.21716034272e-0+7') # Output from calculations with Decimal should be identical across all # platforms. self.assertEqual(eval(decistmt(s)), Decimal('-3.217160342717258261933904529E-7')) class UntokenizeTest(TestCase): def test_bad_input_order(self): # raise if previous row u = Untokenizer() u.prev_row = 2 u.prev_col = 2 with self.assertRaises(ValueError) as cm: u.add_whitespace((1,3)) self.assertEqual(cm.exception.args[0], 'start (1,3) precedes previous end (2,2)') # raise if previous column in row self.assertRaises(ValueError, u.add_whitespace, (2,1)) def test_backslash_continuation(self): # The problem is that <whitespace>\<newline> leaves no token u = Untokenizer() u.prev_row = 1 u.prev_col = 1 u.tokens = [] u.add_whitespace((2, 0)) self.assertEqual(u.tokens, ['\\\n']) u.prev_row = 2 u.add_whitespace((4, 4)) self.assertEqual(u.tokens, ['\\\n', '\\\n\\\n', ' ']) def test_iter_compat(self): u = Untokenizer() token = (NAME, 'Hello') u.compat(token, iter([])) self.assertEqual(u.tokens, ["Hello "]) u = Untokenizer() self.assertEqual(u.untokenize(iter([token])), 'Hello ') class TestRoundtrip(TestCase): def check_roundtrip(self, f): """ Test roundtrip for `untokenize`. `f` is an open file or a string. The source code in f is tokenized, converted back to source code via tokenize.untokenize(), and tokenized again from the latter. The test fails if the second tokenization doesn't match the first. """ if isinstance(f, str): f = StringIO(f) token_list = list(generate_tokens(f.readline)) f.close() tokens1 = [tok[:2] for tok in token_list] new_text = untokenize(tokens1) readline = iter(new_text.splitlines(1)).next tokens2 = [tok[:2] for tok in generate_tokens(readline)] self.assertEqual(tokens2, tokens1) def test_roundtrip(self): # There are some standard formatting practices that are easy to get right. self.check_roundtrip("if x == 1:\n" " print(x)\n") # There are some standard formatting practices that are easy to get right. self.check_roundtrip("if x == 1:\n" " print x\n") self.check_roundtrip("# This is a comment\n" "# This also") # Some people use different formatting conventions, which makes # untokenize a little trickier. Note that this test involves trailing # whitespace after the colon. Note that we use hex escapes to make the # two trailing blanks apperant in the expected output. self.check_roundtrip("if x == 1 : \n" " print x\n") fn = test_support.findfile("tokenize_tests" + os.extsep + "txt") with open(fn) as f: self.check_roundtrip(f) self.check_roundtrip("if x == 1:\n" " # A comment by itself.\n" " print x # Comment here, too.\n" " # Another comment.\n" "after_if = True\n") self.check_roundtrip("if (x # The comments need to go in the right place\n" " == 1):\n" " print 'x==1'\n") self.check_roundtrip("class Test: # A comment here\n" " # A comment with weird indent\n" " after_com = 5\n" " def x(m): return m*5 # a one liner\n" " def y(m): # A whitespace after the colon\n" " return y*4 # 3-space indent\n") # Some error-handling code self.check_roundtrip("try: import somemodule\n" "except ImportError: # comment\n" " print 'Can not import' # comment2\n" "else: print 'Loaded'\n") def test_continuation(self): # Balancing continuation self.check_roundtrip("a = (3,4, \n" "5,6)\n" "y = [3, 4,\n" "5]\n" "z = {'a': 5,\n" "'b':15, 'c':True}\n" "x = len(y) + 5 - a[\n" "3] - a[2]\n" "+ len(z) - z[\n" "'b']\n") def test_backslash_continuation(self): # Backslash means line continuation, except for comments self.check_roundtrip("x=1+\\\n" "1\n" "# This is a comment\\\n" "# This also\n") self.check_roundtrip("# Comment \\\n" "x = 0") def test_string_concatenation(self): # Two string literals on the same line self.check_roundtrip("'' ''") def test_random_files(self): # Test roundtrip on random python modules. # pass the '-ucpu' option to process the full directory. import glob, random fn = test_support.findfile("tokenize_tests" + os.extsep + "txt") tempdir = os.path.dirname(fn) or os.curdir testfiles = glob.glob(os.path.join(tempdir, "test*.py")) if not test_support.is_resource_enabled("cpu"): testfiles = random.sample(testfiles, 10) for testfile in testfiles: try: with open(testfile, 'rb') as f: self.check_roundtrip(f) except: print "Roundtrip failed for file %s" % testfile raise def roundtrip(self, code): if isinstance(code, str): code = code.encode('utf-8') tokens = generate_tokens(StringIO(code).readline) return untokenize(tokens).decode('utf-8') def test_indentation_semantics_retained(self): """ Ensure that although whitespace might be mutated in a roundtrip, the semantic meaning of the indentation remains consistent. """ code = "if False:\n\tx=3\n\tx=3\n" codelines = self.roundtrip(code).split('\n') self.assertEqual(codelines[1], codelines[2]) def test_main(): test_support.run_unittest(TokenizeTest) test_support.run_unittest(UntokenizeTest) test_support.run_unittest(TestRoundtrip) test_support.run_unittest(TestMisc) if __name__ == "__main__": test_main()
""" Implementation of `nbio_interface.AbstractIOServices` on top of a selector-based I/O loop, such as tornado's and our home-grown select_connection's I/O loops. """ import abc import logging import socket import threading from rez.vendor.pika.adapters.utils import nbio_interface, io_services_utils from rez.vendor.pika.adapters.utils.io_services_utils import (check_callback_arg, check_fd_arg) LOGGER = logging.getLogger(__name__) class AbstractSelectorIOLoop(object): """Selector-based I/O loop interface expected by `selector_ioloop_adapter.SelectorIOServicesAdapter` NOTE: this interface follows the corresponding methods and attributes of `tornado.ioloop.IOLoop` in order to avoid additional adapter layering when wrapping tornado's IOLoop. """ @property @abc.abstractmethod def READ(self): # pylint: disable=C0103 """The value of the I/O loop's READ flag; READ/WRITE/ERROR may be used with bitwise operators as expected. Implementation note: the implementations can simply replace these READ/WRITE/ERROR properties with class-level attributes """ @property @abc.abstractmethod def WRITE(self): # pylint: disable=C0103 """The value of the I/O loop's WRITE flag; READ/WRITE/ERROR may be used with bitwise operators as expected """ @property @abc.abstractmethod def ERROR(self): # pylint: disable=C0103 """The value of the I/O loop's ERROR flag; READ/WRITE/ERROR may be used with bitwise operators as expected """ @abc.abstractmethod def close(self): """Release IOLoop's resources. the `close()` method is intended to be called by the application or test code only after `start()` returns. After calling `close()`, no other interaction with the closed instance of `IOLoop` should be performed. """ @abc.abstractmethod def start(self): """Run the I/O loop. It will loop until requested to exit. See `stop()`. """ @abc.abstractmethod def stop(self): """Request exit from the ioloop. The loop is NOT guaranteed to stop before this method returns. To invoke `stop()` safely from a thread other than this IOLoop's thread, call it via `add_callback_threadsafe`; e.g., `ioloop.add_callback(ioloop.stop)` """ @abc.abstractmethod def call_later(self, delay, callback): """Add the callback to the IOLoop timer to be called after delay seconds from the time of call on best-effort basis. Returns a handle to the timeout. :param float delay: The number of seconds to wait to call callback :param callable callback: The callback method :returns: handle to the created timeout that may be passed to `remove_timeout()` :rtype: object """ @abc.abstractmethod def remove_timeout(self, timeout_handle): """Remove a timeout :param timeout_handle: Handle of timeout to remove """ @abc.abstractmethod def add_callback(self, callback): """Requests a call to the given function as soon as possible in the context of this IOLoop's thread. NOTE: This is the only thread-safe method in IOLoop. All other manipulations of IOLoop must be performed from the IOLoop's thread. For example, a thread may request a call to the `stop` method of an ioloop that is running in a different thread via `ioloop.add_callback_threadsafe(ioloop.stop)` :param callable callback: The callback method """ @abc.abstractmethod def add_handler(self, fd, handler, events): """Start watching the given file descriptor for events :param int fd: The file descriptor :param callable handler: When requested event(s) occur, `handler(fd, events)` will be called. :param int events: The event mask using READ, WRITE, ERROR. """ @abc.abstractmethod def update_handler(self, fd, events): """Changes the events we watch for :param int fd: The file descriptor :param int events: The event mask using READ, WRITE, ERROR """ @abc.abstractmethod def remove_handler(self, fd): """Stop watching the given file descriptor for events :param int fd: The file descriptor """ class SelectorIOServicesAdapter(io_services_utils.SocketConnectionMixin, io_services_utils.StreamingConnectionMixin, nbio_interface.AbstractIOServices, nbio_interface.AbstractFileDescriptorServices): """Implements the :py:class:`.nbio_interface.AbstractIOServices` interface on top of selector-style native loop having the :py:class:`AbstractSelectorIOLoop` interface, such as :py:class:`pika.selection_connection.IOLoop` and :py:class:`tornado.IOLoop`. NOTE: :py:class:`.nbio_interface.AbstractFileDescriptorServices` interface is only required by the mixins. """ def __init__(self, native_loop): """ :param AbstractSelectorIOLoop native_loop: An instance compatible with the `AbstractSelectorIOLoop` interface, but not necessarily derived from it. """ self._loop = native_loop # Active watchers: maps file descriptors to `_FileDescriptorCallbacks` self._watchers = dict() # Native loop-specific event masks of interest self._readable_mask = self._loop.READ # NOTE: tying ERROR to WRITE is particularly handy for Windows, whose # `select.select()` differs from Posix by reporting # connection-establishment failure only through exceptfds (ERROR event), # while the typical application workflow is to wait for the socket to # become writable when waiting for socket connection to be established. self._writable_mask = self._loop.WRITE | self._loop.ERROR def get_native_ioloop(self): """Implement :py:meth:`.nbio_interface.AbstractIOServices.get_native_ioloop()`. """ return self._loop def close(self): """Implement :py:meth:`.nbio_interface.AbstractIOServices.close()`. """ self._loop.close() def run(self): """Implement :py:meth:`.nbio_interface.AbstractIOServices.run()`. """ self._loop.start() def stop(self): """Implement :py:meth:`.nbio_interface.AbstractIOServices.stop()`. """ self._loop.stop() def add_callback_threadsafe(self, callback): """Implement :py:meth:`.nbio_interface.AbstractIOServices.add_callback_threadsafe()`. """ self._loop.add_callback(callback) def call_later(self, delay, callback): """Implement :py:meth:`.nbio_interface.AbstractIOServices.call_later()`. """ return _TimerHandle(self._loop.call_later(delay, callback), self._loop) def getaddrinfo(self, host, port, on_done, family=0, socktype=0, proto=0, flags=0): """Implement :py:meth:`.nbio_interface.AbstractIOServices.getaddrinfo()`. """ return _SelectorIOLoopIOHandle( _AddressResolver( native_loop=self._loop, host=host, port=port, family=family, socktype=socktype, proto=proto, flags=flags, on_done=on_done).start()) def set_reader(self, fd, on_readable): """Implement :py:meth:`.nbio_interface.AbstractFileDescriptorServices.set_reader()`. """ LOGGER.debug('SelectorIOServicesAdapter.set_reader(%s, %r)', fd, on_readable) check_fd_arg(fd) check_callback_arg(on_readable, 'on_readable') try: callbacks = self._watchers[fd] except KeyError: self._loop.add_handler(fd, self._on_reader_writer_fd_events, self._readable_mask) self._watchers[fd] = _FileDescriptorCallbacks(reader=on_readable) LOGGER.debug('set_reader(%s, _) added handler Rd', fd) else: if callbacks.reader is None: assert callbacks.writer is not None self._loop.update_handler( fd, self._readable_mask | self._writable_mask) LOGGER.debug('set_reader(%s, _) updated handler RdWr', fd) else: LOGGER.debug('set_reader(%s, _) replacing reader', fd) callbacks.reader = on_readable def remove_reader(self, fd): """Implement :py:meth:`.nbio_interface.AbstractFileDescriptorServices.remove_reader()`. """ LOGGER.debug('SelectorIOServicesAdapter.remove_reader(%s)', fd) check_fd_arg(fd) try: callbacks = self._watchers[fd] except KeyError: LOGGER.debug('remove_reader(%s) neither was set', fd) return False if callbacks.reader is None: assert callbacks.writer is not None LOGGER.debug('remove_reader(%s) reader wasn\'t set Wr', fd) return False callbacks.reader = None if callbacks.writer is None: del self._watchers[fd] self._loop.remove_handler(fd) LOGGER.debug('remove_reader(%s) removed handler', fd) else: self._loop.update_handler(fd, self._writable_mask) LOGGER.debug('remove_reader(%s) updated handler Wr', fd) return True def set_writer(self, fd, on_writable): """Implement :py:meth:`.nbio_interface.AbstractFileDescriptorServices.set_writer()`. """ LOGGER.debug('SelectorIOServicesAdapter.set_writer(%s, %r)', fd, on_writable) check_fd_arg(fd) check_callback_arg(on_writable, 'on_writable') try: callbacks = self._watchers[fd] except KeyError: self._loop.add_handler(fd, self._on_reader_writer_fd_events, self._writable_mask) self._watchers[fd] = _FileDescriptorCallbacks(writer=on_writable) LOGGER.debug('set_writer(%s, _) added handler Wr', fd) else: if callbacks.writer is None: assert callbacks.reader is not None # NOTE: Set the writer func before setting the mask! # Otherwise a race condition can occur where ioloop tries to # call writer when it is still None. callbacks.writer = on_writable self._loop.update_handler( fd, self._readable_mask | self._writable_mask) LOGGER.debug('set_writer(%s, _) updated handler RdWr', fd) else: LOGGER.debug('set_writer(%s, _) replacing writer', fd) callbacks.writer = on_writable def remove_writer(self, fd): """Implement :py:meth:`.nbio_interface.AbstractFileDescriptorServices.remove_writer()`. """ LOGGER.debug('SelectorIOServicesAdapter.remove_writer(%s)', fd) check_fd_arg(fd) try: callbacks = self._watchers[fd] except KeyError: LOGGER.debug('remove_writer(%s) neither was set.', fd) return False if callbacks.writer is None: assert callbacks.reader is not None LOGGER.debug('remove_writer(%s) writer wasn\'t set Rd', fd) return False callbacks.writer = None if callbacks.reader is None: del self._watchers[fd] self._loop.remove_handler(fd) LOGGER.debug('remove_writer(%s) removed handler', fd) else: self._loop.update_handler(fd, self._readable_mask) LOGGER.debug('remove_writer(%s) updated handler Rd', fd) return True def _on_reader_writer_fd_events(self, fd, events): """Handle indicated file descriptor events requested via `set_reader()` and `set_writer()`. :param fd: file descriptor :param events: event mask using native loop's READ/WRITE/ERROR. NOTE: depending on the underlying poller mechanism, ERROR may be indicated upon certain file description state even though we don't request it. We ignore ERROR here since `set_reader()`/`set_writer()` don't request for it. """ callbacks = self._watchers[fd] if events & self._readable_mask and callbacks.reader is None: # NOTE: we check for consistency here ahead of the writer callback # because the writer callback, if any, can change the events being # watched LOGGER.warning( 'READ indicated on fd=%s, but reader callback is None; ' 'events=%s', fd, bin(events)) if events & self._writable_mask: if callbacks.writer is not None: callbacks.writer() else: LOGGER.warning( 'WRITE indicated on fd=%s, but writer callback is None; ' 'events=%s', fd, bin(events)) if events & self._readable_mask: if callbacks.reader is not None: callbacks.reader() else: # Reader callback might have been removed in the scope of writer # callback. pass class _FileDescriptorCallbacks(object): """Holds reader and writer callbacks for a file descriptor""" __slots__ = ('reader', 'writer') def __init__(self, reader=None, writer=None): self.reader = reader self.writer = writer class _TimerHandle(nbio_interface.AbstractTimerReference): """This module's adaptation of `nbio_interface.AbstractTimerReference`. """ def __init__(self, handle, loop): """ :param opaque handle: timer handle from the underlying loop implementation that may be passed to its `remove_timeout()` method :param AbstractSelectorIOLoop loop: the I/O loop instance that created the timeout. """ self._handle = handle self._loop = loop def cancel(self): if self._loop is not None: self._loop.remove_timeout(self._handle) self._handle = None self._loop = None class _SelectorIOLoopIOHandle(nbio_interface.AbstractIOReference): """This module's adaptation of `nbio_interface.AbstractIOReference` """ def __init__(self, subject): """ :param subject: subject of the reference containing a `cancel()` method """ self._cancel = subject.cancel def cancel(self): """Cancel pending operation :returns: False if was already done or cancelled; True otherwise :rtype: bool """ return self._cancel() class _AddressResolver(object): """Performs getaddrinfo asynchronously using a thread, then reports result via callback from the given I/O loop. NOTE: at this stage, we're using a thread per request, which may prove inefficient and even prohibitive if the app performs many of these operations concurrently. """ NOT_STARTED = 0 ACTIVE = 1 CANCELED = 2 COMPLETED = 3 def __init__(self, native_loop, host, port, family, socktype, proto, flags, on_done): """ :param AbstractSelectorIOLoop native_loop: :param host: `see socket.getaddrinfo()` :param port: `see socket.getaddrinfo()` :param family: `see socket.getaddrinfo()` :param socktype: `see socket.getaddrinfo()` :param proto: `see socket.getaddrinfo()` :param flags: `see socket.getaddrinfo()` :param on_done: on_done(records|BaseException) callback for reporting result from the given I/O loop. The single arg will be either an exception object (check for `BaseException`) in case of failure or the result returned by `socket.getaddrinfo()`. """ check_callback_arg(on_done, 'on_done') self._state = self.NOT_STARTED self._result = None self._loop = native_loop self._host = host self._port = port self._family = family self._socktype = socktype self._proto = proto self._flags = flags self._on_done = on_done self._mutex = threading.Lock() self._threading_timer = None def _cleanup(self): """Release resources """ self._loop = None self._threading_timer = None self._on_done = None def start(self): """Start asynchronous DNS lookup. :rtype: nbio_interface.AbstractIOReference """ assert self._state == self.NOT_STARTED, self._state self._state = self.ACTIVE self._threading_timer = threading.Timer(0, self._resolve) self._threading_timer.start() return _SelectorIOLoopIOHandle(self) def cancel(self): """Cancel the pending resolver :returns: False if was already done or cancelled; True otherwise :rtype: bool """ # Try to cancel, but no guarantees with self._mutex: if self._state == self.ACTIVE: LOGGER.debug('Canceling resolver for %s:%s', self._host, self._port) self._state = self.CANCELED # Attempt to cancel, but not guaranteed self._threading_timer.cancel() self._cleanup() return True else: LOGGER.debug( 'Ignoring _AddressResolver cancel request when not ACTIVE; ' '(%s:%s); state=%s', self._host, self._port, self._state) return False def _resolve(self): """Call `socket.getaddrinfo()` and return result via user's callback function on the given I/O loop """ try: # NOTE: on python 2.x, can't pass keyword args to getaddrinfo() result = socket.getaddrinfo(self._host, self._port, self._family, self._socktype, self._proto, self._flags) except Exception as exc: # pylint: disable=W0703 LOGGER.error('Address resolution failed: %r', exc) result = exc self._result = result # Schedule result to be returned to user via user's event loop with self._mutex: if self._state == self.ACTIVE: self._loop.add_callback(self._dispatch_result) else: LOGGER.debug( 'Asynchronous getaddrinfo cancellation detected; ' 'in thread; host=%r', self._host) def _dispatch_result(self): """This is called from the user's I/O loop to pass the result to the user via the user's on_done callback """ if self._state == self.ACTIVE: self._state = self.COMPLETED try: LOGGER.debug( 'Invoking asynchronous getaddrinfo() completion callback; ' 'host=%r', self._host) self._on_done(self._result) finally: self._cleanup() else: LOGGER.debug( 'Asynchronous getaddrinfo cancellation detected; ' 'in I/O loop context; host=%r', self._host)
# Copyright 2014 Rackspace Hosting # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from datetime import datetime import json import netaddr from time import sleep import uuid from proboscis import after_class from proboscis.asserts import assert_equal from proboscis.asserts import assert_not_equal from proboscis.asserts import assert_raises from proboscis.asserts import assert_true from proboscis.asserts import fail from proboscis import before_class from proboscis.decorators import time_out from proboscis import SkipTest from proboscis import test from troveclient.compat import exceptions from trove.common.utils import poll_until from trove import tests from trove.tests.api.instances import assert_unprocessable from trove.tests.api.instances import instance_info from trove.tests.api.instances import InstanceTestInfo from trove.tests.api.instances import TIMEOUT_INSTANCE_CREATE from trove.tests.api.instances import TIMEOUT_INSTANCE_DELETE from trove.tests.config import CONFIG from trove.tests.util.check import AttrCheck from trove.tests.util.check import CollectionCheck from trove.tests.util.check import TypeCheck from trove.tests.util import create_dbaas_client from trove.tests.util.mysql import create_mysql_connection from trove.tests.util.users import Requirements CONFIG_NAME = "test_configuration" CONFIG_DESC = "configuration description" configuration_default = None configuration_info = None configuration_href = None configuration_instance = InstanceTestInfo() configuration_instance_id = None sql_variables = [ 'key_buffer_size', 'connect_timeout', 'join_buffer_size', ] def _is_valid_timestamp(time_string): try: datetime.strptime(time_string, "%Y-%m-%dT%H:%M:%S") except ValueError: return False return True # helper methods to validate configuration is applied to instance def _execute_query(host, user_name, password, query): print("Starting to query database, host: %s, user: %s, password: %s, " "query: %s" % (host, user_name, password, query)) with create_mysql_connection(host, user_name, password) as db: result = db.execute(query) return result def _get_address(instance_id): result = instance_info.dbaas_admin.mgmt.instances.show(instance_id) try: return next(str(ip) for ip in result.ip if netaddr.valid_ipv4(ip)) except StopIteration: fail("No IPV4 ip found") def _test_configuration_is_applied_to_instance(instance, configuration_id): if CONFIG.fake_mode: raise SkipTest("configuration from sql does not work in fake mode") instance_test = instance_info.dbaas.instances.get(instance.id) assert_equal(configuration_id, instance_test.configuration['id']) if configuration_id: testconfig_info = instance_info.dbaas.configurations.get( configuration_id) else: testconfig_info = instance_info.dbaas.instance.configuration( instance.id) testconfig_info['configuration'] conf_instances = instance_info.dbaas.configurations.instances( configuration_id) config_instance_ids = [inst.id for inst in conf_instances] assert_true(instance_test.id in config_instance_ids) cfg_names = testconfig_info.values.keys() host = _get_address(instance.id) for user in instance.users: username = user['name'] password = user['password'] concat_variables = "','".join(cfg_names) query = ("show variables where Variable_name " "in ('%s');" % concat_variables) actual_values = _execute_query(host, username, password, query) print("actual_values %s" % actual_values) print("testconfig_info.values %s" % testconfig_info.values) assert_true(len(actual_values) == len(cfg_names)) # check the configs exist attrcheck = AttrCheck() allowed_attrs = [actual_key for actual_key, actual_value in actual_values] attrcheck.contains_allowed_attrs( testconfig_info.values, allowed_attrs, msg="Configurations parameters") def _get_parameter_type(name): instance_info.dbaas.configuration_parameters.get_parameter( instance_info.dbaas_datastore, instance_info.dbaas_datastore_version, name) resp, body = instance_info.dbaas.client.last_response print(resp) print(body) return json.loads(body.decode())['type'] # check the config values are correct for key, value in actual_values: key_type = _get_parameter_type(key) # mysql returns 'ON' and 'OFF' for True and False respectively if value == 'ON': converted_key_value = (str(key), 1) elif value == 'OFF': converted_key_value = (str(key), 0) else: if key_type == 'integer': value = int(value) converted_key_value = (str(key), value) print("converted_key_value: %s" % str(converted_key_value)) assert_true(converted_key_value in testconfig_info.values.items()) class ConfigurationsTestBase(object): @staticmethod def expected_instance_datastore_configs(instance_id): """Given an instance retrieve the expected test configurations for instance's datastore. """ instance = instance_info.dbaas.instances.get(instance_id) datastore_type = instance.datastore['type'] datastore_test_configs = CONFIG.get(datastore_type, {}) return datastore_test_configs.get("configurations", {}) @staticmethod def expected_default_datastore_configs(): """Returns the expected test configurations for the default datastore defined in the Test Config as dbaas_datastore. """ default_datastore = CONFIG.get('dbaas_datastore', None) datastore_test_configs = CONFIG.get(default_datastore, {}) return datastore_test_configs.get("configurations", {}) @test(depends_on_groups=[tests.DBAAS_API_BACKUPS], groups=[tests.DBAAS_API_CONFIGURATIONS]) class CreateConfigurations(ConfigurationsTestBase): @test def test_expected_configurations_parameters(self): """Test get expected configurations parameters.""" allowed_attrs = ["configuration-parameters"] instance_info.dbaas.configuration_parameters.parameters( instance_info.dbaas_datastore, instance_info.dbaas_datastore_version) resp, body = instance_info.dbaas.client.last_response attrcheck = AttrCheck() config_parameters_dict = json.loads(body.decode()) attrcheck.contains_allowed_attrs( config_parameters_dict, allowed_attrs, msg="Configurations parameters") # sanity check that a few options are in the list config_params_list = config_parameters_dict['configuration-parameters'] config_param_keys = [] for param in config_params_list: config_param_keys.append(param['name']) expected_configs = self.expected_default_datastore_configs() expected_config_params = expected_configs.get('parameters_list') # check for duplicate configuration parameters msg = "check for duplicate configuration parameters" assert_equal(len(config_param_keys), len(set(config_param_keys)), msg) for expected_config_item in expected_config_params: assert_true(expected_config_item in config_param_keys) @test def test_expected_get_configuration_parameter(self): # tests get on a single parameter to verify it has expected attributes param_name = 'key_buffer_size' allowed_config_params = ['name', 'restart_required', 'max', 'min', 'type', 'deleted', 'deleted_at', 'datastore_version_id'] param = instance_info.dbaas.configuration_parameters.get_parameter( instance_info.dbaas_datastore, instance_info.dbaas_datastore_version, param_name) resp, body = instance_info.dbaas.client.last_response print("params: %s" % param) print("resp: %s" % resp) print("body: %s" % body) attrcheck = AttrCheck() config_parameter_dict = json.loads(body.decode()) print("config_parameter_dict: %s" % config_parameter_dict) attrcheck.contains_allowed_attrs( config_parameter_dict, allowed_config_params, msg="Get Configuration parameter") assert_equal(param_name, config_parameter_dict['name']) with TypeCheck('ConfigurationParameter', param) as parameter: parameter.has_field('name', str) parameter.has_field('restart_required', bool) parameter.has_field('max', int) parameter.has_field('min', int) parameter.has_field('type', str) parameter.has_field('datastore_version_id', str) @test def test_configurations_create_invalid_values(self): """Test create configurations with invalid values.""" values = '{"this_is_invalid": 123}' try: instance_info.dbaas.configurations.create( CONFIG_NAME, values, CONFIG_DESC) except exceptions.UnprocessableEntity: resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 422) @test def test_configurations_create_invalid_value_type(self): """Test create configuration with invalid value type.""" values = '{"key_buffer_size": "this is a string not int"}' assert_unprocessable(instance_info.dbaas.configurations.create, CONFIG_NAME, values, CONFIG_DESC) @test def test_configurations_create_value_out_of_bounds(self): """Test create configuration with value out of bounds.""" expected_configs = self.expected_default_datastore_configs() values = json.dumps(expected_configs.get('out_of_bounds_over')) assert_unprocessable(instance_info.dbaas.configurations.create, CONFIG_NAME, values, CONFIG_DESC) values = json.dumps(expected_configs.get('out_of_bounds_under')) assert_unprocessable(instance_info.dbaas.configurations.create, CONFIG_NAME, values, CONFIG_DESC) @test def test_valid_configurations_create(self): """create a configuration with valid parameters from config.""" expected_configs = self.expected_default_datastore_configs() values = json.dumps(expected_configs.get('valid_values')) expected_values = json.loads(values) result = instance_info.dbaas.configurations.create( CONFIG_NAME, values, CONFIG_DESC, datastore=instance_info.dbaas_datastore, datastore_version=instance_info.dbaas_datastore_version) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 200) with TypeCheck('Configuration', result) as configuration: configuration.has_field('name', str) configuration.has_field('description', str) configuration.has_field('values', dict) configuration.has_field('datastore_name', str) configuration.has_field('datastore_version_id', str) configuration.has_field('datastore_version_name', str) global configuration_info configuration_info = result assert_equal(configuration_info.name, CONFIG_NAME) assert_equal(configuration_info.description, CONFIG_DESC) assert_equal(configuration_info.values, expected_values) @test(runs_after=[test_valid_configurations_create]) def test_appending_to_existing_configuration(self): """test_appending_to_existing_configuration""" # test being able to update and insert new parameter name and values # to an existing configuration expected_configs = self.expected_default_datastore_configs() values = json.dumps(expected_configs.get('appending_values')) # ensure updated timestamp is different than created if not CONFIG.fake_mode: sleep(1) instance_info.dbaas.configurations.edit(configuration_info.id, values) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 200) @test(depends_on_classes=[CreateConfigurations], groups=[tests.DBAAS_API_CONFIGURATIONS]) class AfterConfigurationsCreation(ConfigurationsTestBase): @test def test_assign_configuration_to_invalid_instance(self): """test assigning to an instance that does not exist""" invalid_id = "invalid-inst-id" try: instance_info.dbaas.instances.modify(invalid_id, configuration_info.id) except exceptions.NotFound: resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 404) @test def test_assign_configuration_to_valid_instance(self): """test assigning a configuration to an instance""" print("instance_info.id: %s" % instance_info.id) print("configuration_info: %s" % configuration_info) print("configuration_info.id: %s" % configuration_info.id) config_id = configuration_info.id instance_info.dbaas.instances.modify(instance_info.id, configuration=config_id) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 202) @test(depends_on=[test_assign_configuration_to_valid_instance]) def test_assign_configuration_to_instance_with_config(self): """test assigning a configuration to an instance conflicts""" config_id = configuration_info.id assert_raises(exceptions.BadRequest, instance_info.dbaas.instances.modify, instance_info.id, configuration=config_id) @test(depends_on=[test_assign_configuration_to_valid_instance]) @time_out(30) def test_get_configuration_details_from_instance_validation(self): """validate the configuration after attaching""" print("instance_info.id: %s" % instance_info.id) inst = instance_info.dbaas.instances.get(instance_info.id) configuration_id = inst.configuration['id'] print("configuration_info: %s" % configuration_id) assert_not_equal(None, configuration_id) _test_configuration_is_applied_to_instance(instance_info, configuration_id) @test(depends_on=[test_get_configuration_details_from_instance_validation]) def test_configurations_get(self): """test that the instance shows up on the assigned configuration""" result = instance_info.dbaas.configurations.get(configuration_info.id) assert_equal(configuration_info.id, result.id) assert_equal(configuration_info.name, result.name) assert_equal(configuration_info.description, result.description) # check the result field types with TypeCheck("configuration", result) as check: check.has_field("id", str) check.has_field("name", str) check.has_field("description", str) check.has_field("values", dict) check.has_field("created", str) check.has_field("updated", str) check.has_field("instance_count", int) print(result.values) # check for valid timestamps assert_true(_is_valid_timestamp(result.created)) assert_true(_is_valid_timestamp(result.updated)) # check that created and updated timestamps differ, since # test_appending_to_existing_configuration should have changed the # updated timestamp if not CONFIG.fake_mode: assert_not_equal(result.created, result.updated) assert_equal(result.instance_count, 1) with CollectionCheck("configuration_values", result.values) as check: # check each item has the correct type according to the rules for (item_key, item_val) in result.values.items(): print("item_key: %s" % item_key) print("item_val: %s" % item_val) dbaas = instance_info.dbaas param = dbaas.configuration_parameters.get_parameter( instance_info.dbaas_datastore, instance_info.dbaas_datastore_version, item_key) if param.type == 'integer': check.has_element(item_key, int) if param.type == 'string': check.has_element(item_key, str) if param.type == 'boolean': check.has_element(item_key, bool) # Test to make sure that another user is not able to GET this config reqs = Requirements(is_admin=False) test_auth_user = instance_info.user.auth_user other_user = CONFIG.users.find_user(reqs, black_list=[test_auth_user]) other_user_tenant_id = other_user.tenant_id client_tenant_id = instance_info.user.tenant_id if other_user_tenant_id == client_tenant_id: other_user = CONFIG.users.find_user( reqs, black_list=[instance_info.user.auth_user, other_user]) print(other_user) print(other_user.__dict__) other_client = create_dbaas_client(other_user) assert_raises(exceptions.NotFound, other_client.configurations.get, configuration_info.id) @test(depends_on_classes=[AfterConfigurationsCreation], groups=[tests.DBAAS_API_CONFIGURATIONS]) class ListConfigurations(ConfigurationsTestBase): @test def test_configurations_list(self): # test listing configurations show up result = instance_info.dbaas.configurations.list() for conf in result: with TypeCheck("Configuration", conf) as check: check.has_field('id', str) check.has_field('name', str) check.has_field('description', str) check.has_field('datastore_version_id', str) check.has_field('datastore_version_name', str) check.has_field('datastore_name', str) exists = [config for config in result if config.id == configuration_info.id] assert_equal(1, len(exists)) configuration = exists[0] assert_equal(configuration.id, configuration_info.id) assert_equal(configuration.name, configuration_info.name) assert_equal(configuration.description, configuration_info.description) @test def test_configurations_list_for_instance(self): # test getting an instance shows the configuration assigned shows up instance = instance_info.dbaas.instances.get(instance_info.id) assert_equal(instance.configuration['id'], configuration_info.id) assert_equal(instance.configuration['name'], configuration_info.name) # expecting two things in links, href and bookmark assert_equal(2, len(instance.configuration['links'])) link = instance.configuration['links'][0] global configuration_href configuration_href = link['href'] @test def test_get_default_configuration_on_instance(self): # test the api call to get the default template of an instance exists result = instance_info.dbaas.instances.configuration(instance_info.id) global configuration_default configuration_default = result assert_not_equal(None, result.configuration) @test def test_changing_configuration_with_nondynamic_parameter(self): """test_changing_configuration_with_nondynamic_parameter""" expected_configs = self.expected_default_datastore_configs() values = json.dumps(expected_configs.get('nondynamic_parameter')) instance_info.dbaas.configurations.update(configuration_info.id, values) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 202) instance_info.dbaas.configurations.get(configuration_info.id) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 200) @test(depends_on=[test_changing_configuration_with_nondynamic_parameter]) @time_out(20) def test_waiting_for_instance_in_restart_required(self): """test_waiting_for_instance_in_restart_required""" def result_is_not_active(): instance = instance_info.dbaas.instances.get( instance_info.id) if instance.status in CONFIG.running_status: return False else: return True poll_until(result_is_not_active) instance = instance_info.dbaas.instances.get(instance_info.id) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 200) assert_equal('RESTART_REQUIRED', instance.status) @test(depends_on=[test_waiting_for_instance_in_restart_required]) def test_restart_service_should_return_active(self): """test_restart_service_should_return_active""" instance_info.dbaas.instances.restart(instance_info.id) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 202) def result_is_active(): instance = instance_info.dbaas.instances.get( instance_info.id) if instance.status in CONFIG.running_status: return True else: assert_true(instance.status in ['REBOOT', 'SHUTDOWN']) return False poll_until(result_is_active) @test(depends_on=[test_restart_service_should_return_active]) @time_out(30) def test_get_configuration_details_from_instance_validation(self): """test_get_configuration_details_from_instance_validation""" inst = instance_info.dbaas.instances.get(instance_info.id) configuration_id = inst.configuration['id'] assert_not_equal(None, inst.configuration['id']) _test_configuration_is_applied_to_instance(instance_info, configuration_id) @test(depends_on=[test_configurations_list]) def test_compare_list_and_details_timestamps(self): # compare config timestamps between list and details calls result = instance_info.dbaas.configurations.list() list_config = [config for config in result if config.id == configuration_info.id] assert_equal(1, len(list_config)) details_config = instance_info.dbaas.configurations.get( configuration_info.id) assert_equal(list_config[0].created, details_config.created) assert_equal(list_config[0].updated, details_config.updated) @test(depends_on_classes=[ListConfigurations], groups=[tests.DBAAS_API_CONFIGURATIONS]) class StartInstanceWithConfiguration(ConfigurationsTestBase): @test def test_start_instance_with_configuration(self): """test that a new instance will apply the configuration on create""" global configuration_instance databases = [] databases.append({"name": "firstdbconfig", "character_set": "latin2", "collate": "latin2_general_ci"}) databases.append({"name": "db2"}) configuration_instance.databases = databases users = [] users.append({"name": "liteconf", "password": "liteconfpass", "databases": [{"name": "firstdbconfig"}]}) configuration_instance.users = users configuration_instance.name = "TEST_" + str(uuid.uuid4()) + "_config" flavor_href = instance_info.dbaas_flavor_href configuration_instance.dbaas_flavor_href = flavor_href configuration_instance.volume = instance_info.volume configuration_instance.dbaas_datastore = instance_info.dbaas_datastore configuration_instance.dbaas_datastore_version = \ instance_info.dbaas_datastore_version configuration_instance.nics = instance_info.nics result = instance_info.dbaas.instances.create( configuration_instance.name, configuration_instance.dbaas_flavor_href, configuration_instance.volume, configuration_instance.databases, configuration_instance.users, nics=configuration_instance.nics, availability_zone="nova", datastore=configuration_instance.dbaas_datastore, datastore_version=configuration_instance.dbaas_datastore_version, configuration=configuration_href) assert_equal(200, instance_info.dbaas.last_http_code) assert_equal("BUILD", result.status) configuration_instance.id = result.id @test(depends_on_classes=[StartInstanceWithConfiguration], groups=[tests.DBAAS_API_CONFIGURATIONS]) class WaitForConfigurationInstanceToFinish(ConfigurationsTestBase): @test @time_out(TIMEOUT_INSTANCE_CREATE) def test_instance_with_configuration_active(self): """wait for the instance created with configuration""" def result_is_active(): instance = instance_info.dbaas.instances.get( configuration_instance.id) if instance.status in CONFIG.running_status: return True else: assert_equal("BUILD", instance.status) return False poll_until(result_is_active) @test(depends_on=[test_instance_with_configuration_active]) @time_out(30) def test_get_configuration_details_from_instance_validation(self): """Test configuration is applied correctly to the instance.""" inst = instance_info.dbaas.instances.get(configuration_instance.id) configuration_id = inst.configuration['id'] assert_not_equal(None, configuration_id) _test_configuration_is_applied_to_instance(configuration_instance, configuration_id) @test(depends_on=[WaitForConfigurationInstanceToFinish], groups=[tests.DBAAS_API_CONFIGURATIONS]) class DeleteConfigurations(ConfigurationsTestBase): @before_class def setUp(self): # need to store the parameter details that will be deleted config_param_name = sql_variables[1] instance_info.dbaas.configuration_parameters.get_parameter( instance_info.dbaas_datastore, instance_info.dbaas_datastore_version, config_param_name) resp, body = instance_info.dbaas.client.last_response print(resp) print(body) self.config_parameter_dict = json.loads(body.decode()) @after_class(always_run=True) def tearDown(self): # need to "undelete" the parameter that was deleted from the mgmt call if instance_info.dbaas: ds = instance_info.dbaas_datastore ds_v = instance_info.dbaas_datastore_version version = instance_info.dbaas.datastore_versions.get( ds, ds_v) client = instance_info.dbaas_admin.mgmt_configs print(self.config_parameter_dict) client.create(version.id, self.config_parameter_dict['name'], self.config_parameter_dict['restart_required'], self.config_parameter_dict['type'], self.config_parameter_dict['max'], self.config_parameter_dict['min']) @test def test_delete_invalid_configuration_not_found(self): # test deleting a configuration that does not exist throws exception invalid_configuration_id = "invalid-config-id" assert_raises(exceptions.NotFound, instance_info.dbaas.configurations.delete, invalid_configuration_id) @test(depends_on=[test_delete_invalid_configuration_not_found]) def test_delete_configuration_parameter_with_mgmt_api(self): # testing a param that is assigned to an instance can be deleted # and doesn't affect an unassign later. So we delete a parameter # that is used by a test (connect_timeout) ds = instance_info.dbaas_datastore ds_v = instance_info.dbaas_datastore_version version = instance_info.dbaas.datastore_versions.get( ds, ds_v) client = instance_info.dbaas_admin.mgmt_configs config_param_name = self.config_parameter_dict['name'] client.delete(version.id, config_param_name) assert_raises( exceptions.NotFound, instance_info.dbaas.configuration_parameters.get_parameter, ds, ds_v, config_param_name) @test(depends_on=[test_delete_configuration_parameter_with_mgmt_api]) def test_unable_delete_instance_configurations(self): # test deleting a configuration that is assigned to # an instance is not allowed. assert_raises(exceptions.BadRequest, instance_info.dbaas.configurations.delete, configuration_info.id) @test(depends_on=[test_unable_delete_instance_configurations]) @time_out(30) def test_unassign_configuration_from_instances(self): """test to unassign configuration from instance""" instance_info.dbaas.instances.update(configuration_instance.id, remove_configuration=True) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 202) instance_info.dbaas.instances.update(instance_info.id, remove_configuration=True) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 202) instance_info.dbaas.instances.get(instance_info.id) def result_has_no_configuration(): instance = instance_info.dbaas.instances.get(inst_info.id) if hasattr(instance, 'configuration'): return False else: return True inst_info = instance_info poll_until(result_has_no_configuration) inst_info = configuration_instance poll_until(result_has_no_configuration) instance = instance_info.dbaas.instances.get(instance_info.id) assert_equal('RESTART_REQUIRED', instance.status) @test(depends_on=[test_unassign_configuration_from_instances]) def test_assign_in_wrong_state(self): # test assigning a config to an instance in RESTART state assert_raises(exceptions.BadRequest, instance_info.dbaas.instances.modify, configuration_instance.id, configuration=configuration_info.id) @test(depends_on=[test_assign_in_wrong_state]) def test_no_instances_on_configuration(self): """test_no_instances_on_configuration""" result = instance_info.dbaas.configurations.get(configuration_info.id) assert_equal(configuration_info.id, result.id) assert_equal(configuration_info.name, result.name) assert_equal(configuration_info.description, result.description) assert_equal(result.instance_count, 0) print(configuration_instance.id) print(instance_info.id) @test(depends_on=[test_unassign_configuration_from_instances]) @time_out(120) def test_restart_service_should_return_active(self): """test that after restarting the instance it becomes active""" instance_info.dbaas.instances.restart(instance_info.id) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 202) def result_is_active(): instance = instance_info.dbaas.instances.get( instance_info.id) if instance.status in CONFIG.running_status: return True else: assert_equal("REBOOT", instance.status) return False poll_until(result_is_active) @test(depends_on=[test_restart_service_should_return_active]) def test_assign_config_and_name_to_instance_using_patch(self): """test_assign_config_and_name_to_instance_using_patch""" new_name = 'new_name' report = CONFIG.get_report() report.log("instance_info.id: %s" % instance_info.id) report.log("configuration_info: %s" % configuration_info) report.log("configuration_info.id: %s" % configuration_info.id) report.log("instance name:%s" % instance_info.name) report.log("instance new name:%s" % new_name) saved_name = instance_info.name config_id = configuration_info.id instance_info.dbaas.instances.update(instance_info.id, configuration=config_id, name=new_name) assert_equal(202, instance_info.dbaas.last_http_code) check = instance_info.dbaas.instances.get(instance_info.id) assert_equal(200, instance_info.dbaas.last_http_code) assert_equal(check.name, new_name) # restore instance name instance_info.dbaas.instances.update(instance_info.id, name=saved_name) assert_equal(202, instance_info.dbaas.last_http_code) instance = instance_info.dbaas.instances.get(instance_info.id) assert_equal('RESTART_REQUIRED', instance.status) # restart to be sure configuration is applied instance_info.dbaas.instances.restart(instance_info.id) assert_equal(202, instance_info.dbaas.last_http_code) sleep(2) def result_is_active(): instance = instance_info.dbaas.instances.get( instance_info.id) if instance.status in CONFIG.running_status: return True else: assert_equal("REBOOT", instance.status) return False poll_until(result_is_active) # test assigning a configuration to an instance that # already has an assigned configuration with patch config_id = configuration_info.id assert_raises(exceptions.BadRequest, instance_info.dbaas.instances.update, instance_info.id, configuration=config_id) @test(runs_after=[test_assign_config_and_name_to_instance_using_patch]) def test_unassign_configuration_after_patch(self): """Remove the configuration from the instance""" instance_info.dbaas.instances.update(instance_info.id, remove_configuration=True) assert_equal(202, instance_info.dbaas.last_http_code) instance = instance_info.dbaas.instances.get(instance_info.id) assert_equal('RESTART_REQUIRED', instance.status) # restart to be sure configuration has been unassigned instance_info.dbaas.instances.restart(instance_info.id) assert_equal(202, instance_info.dbaas.last_http_code) sleep(2) def result_is_active(): instance = instance_info.dbaas.instances.get( instance_info.id) if instance.status in CONFIG.running_status: return True else: assert_equal("REBOOT", instance.status) return False poll_until(result_is_active) result = instance_info.dbaas.configurations.get(configuration_info.id) assert_equal(result.instance_count, 0) @test def test_unassign_configuration_from_invalid_instance_using_patch(self): # test unassign config group from an invalid instance invalid_id = "invalid-inst-id" try: instance_info.dbaas.instances.update(invalid_id, remove_configuration=True) except exceptions.NotFound: resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 404) @test(runs_after=[test_unassign_configuration_after_patch]) def test_delete_unassigned_configuration(self): """test_delete_unassigned_configuration""" instance_info.dbaas.configurations.delete(configuration_info.id) resp, body = instance_info.dbaas.client.last_response assert_equal(resp.status, 202) @test(depends_on=[test_delete_unassigned_configuration]) @time_out(TIMEOUT_INSTANCE_DELETE) def test_delete_configuration_instance(self): """test_delete_configuration_instance""" instance_info.dbaas.instances.delete(configuration_instance.id) assert_equal(202, instance_info.dbaas.last_http_code) def instance_is_gone(): try: instance_info.dbaas.instances.get(configuration_instance.id) return False except exceptions.NotFound: return True poll_until(instance_is_gone) assert_raises(exceptions.NotFound, instance_info.dbaas.instances.get, configuration_instance.id)
from datetime import timedelta import numpy as np import pytest import pandas as pd from pandas import ( Categorical, CategoricalIndex, Index, IntervalIndex, MultiIndex, date_range, ) from pandas.core.indexes.base import InvalidIndexError import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal def test_slice_locs_partial(idx): sorted_idx, _ = idx.sortlevel(0) result = sorted_idx.slice_locs(("foo", "two"), ("qux", "one")) assert result == (1, 5) result = sorted_idx.slice_locs(None, ("qux", "one")) assert result == (0, 5) result = sorted_idx.slice_locs(("foo", "two"), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs("bar", "baz") assert result == (2, 4) def test_slice_locs(): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice( *idx.slice_locs( df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30) ) ) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index with pytest.raises(TypeError, match="^Level type mismatch"): idx.slice_locs((1, 3)) with pytest.raises(TypeError, match="^Level type mismatch"): idx.slice_locs(df.index[5] + timedelta(seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with pytest.raises(TypeError, match="^Level type mismatch"): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with pytest.raises(TypeError, match="^Level type mismatch"): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(): index = MultiIndex( levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))], codes=[ np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0]), ], ) msg = "[Kk]ey length.*greater than MultiIndex lexsort depth" with pytest.raises(KeyError, match=msg): index.slice_locs((1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_not_contained(): # some searchsorted action index = MultiIndex( levels=[[0, 2, 4, 6], [0, 2, 4]], codes=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0, ) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_putmask_with_wrong_mask(idx): # GH18368 msg = "putmask: mask and data must be the same size" with pytest.raises(ValueError, match=msg): idx.putmask(np.ones(len(idx) + 1, np.bool), 1) with pytest.raises(ValueError, match=msg): idx.putmask(np.ones(len(idx) - 1, np.bool), 1) with pytest.raises(ValueError, match=msg): idx.putmask("foo", 1) def test_get_indexer(): major_axis = Index(np.arange(4)) minor_axis = Index(np.arange(2)) major_codes = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_codes = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex( levels=[major_axis, minor_axis], codes=[major_codes, minor_codes] ) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method="pad") e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method="pad") assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method="ffill") assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method="backfill") e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method="backfill") assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method="bfill") assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(list(range(10)) + list(range(10))) idx2 = Index(list(range(20))) msg = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(): midx = MultiIndex.from_tuples([("a", 1), ("b", 2)]) msg = "method='nearest' not implemented yet for MultiIndex; see GitHub issue 9365" with pytest.raises(NotImplementedError, match=msg): midx.get_indexer(["a"], method="nearest") msg = "tolerance not implemented yet for MultiIndex" with pytest.raises(NotImplementedError, match=msg): midx.get_indexer(["a"], method="pad", tolerance=2) def test_getitem(idx): # scalar assert idx[2] == ("bar", "one") # slice result = idx[2:5] expected = idx[[2, 3, 4]] assert result.equals(expected) # boolean result = idx[[True, False, True, False, True, True]] result2 = idx[np.array([True, False, True, False, True, True])] expected = idx[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(idx): sorted_idx, _ = idx.sortlevel(0) assert sorted_idx.get_loc("baz") == slice(3, 4) assert sorted_idx.get_loc("foo") == slice(0, 2) def test_get_indexer_consistency(idx): # See GH 16819 if isinstance(idx, IntervalIndex): pass if idx.is_unique or isinstance(idx, CategoricalIndex): indexer = idx.get_indexer(idx[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp else: e = "Reindexing only valid with uniquely valued Index objects" with pytest.raises(InvalidIndexError, match=e): idx.get_indexer(idx[0:2]) indexer, _ = idx.get_indexer_non_unique(idx[0:2]) assert isinstance(indexer, np.ndarray) assert indexer.dtype == np.intp @pytest.mark.parametrize("ind1", [[True] * 5, pd.Index([True] * 5)]) @pytest.mark.parametrize( "ind2", [[True, False, True, False, False], pd.Index([True, False, True, False, False])], ) def test_getitem_bool_index_all(ind1, ind2): # GH#22533 idx = MultiIndex.from_tuples([(10, 1), (20, 2), (30, 3), (40, 4), (50, 5)]) tm.assert_index_equal(idx[ind1], idx) expected = MultiIndex.from_tuples([(10, 1), (30, 3)]) tm.assert_index_equal(idx[ind2], expected) @pytest.mark.parametrize("ind1", [[True], pd.Index([True])]) @pytest.mark.parametrize("ind2", [[False], pd.Index([False])]) def test_getitem_bool_index_single(ind1, ind2): # GH#22533 idx = MultiIndex.from_tuples([(10, 1)]) tm.assert_index_equal(idx[ind1], idx) expected = pd.MultiIndex( levels=[np.array([], dtype=np.int64), np.array([], dtype=np.int64)], codes=[[], []], ) tm.assert_index_equal(idx[ind2], expected) def test_get_loc(idx): assert idx.get_loc(("foo", "two")) == 1 assert idx.get_loc(("baz", "two")) == 3 with pytest.raises(KeyError, match=r"^10$"): idx.get_loc(("bar", "two")) with pytest.raises(KeyError, match=r"^'quux'$"): idx.get_loc("quux") msg = "only the default get_loc method is currently supported for MultiIndex" with pytest.raises(NotImplementedError, match=msg): idx.get_loc("foo", method="nearest") # 3 levels index = MultiIndex( levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))], codes=[ np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0]), ], ) with pytest.raises(KeyError, match=r"^\(1, 1\)$"): index.get_loc((1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(["c", "a", "a", "b", "b"]) rs = index.get_loc("c") xp = 0 assert rs == xp def test_get_loc_level(): index = MultiIndex( levels=[Index(np.arange(4)), Index(np.arange(4)), Index(np.arange(4))], codes=[ np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array([0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0]), ], ) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None with pytest.raises(KeyError, match=r"^\(2, 2\)$"): index.get_loc_level((2, 2)) # GH 22221: unused label with pytest.raises(KeyError, match=r"^2$"): index.drop(2).get_loc_level(2) # Unused label on unsorted level: with pytest.raises(KeyError, match=r"^2$"): index.drop(1, level=2).get_loc_level(2, level=2) index = MultiIndex( levels=[[2000], list(range(4))], codes=[np.array([0, 0, 0, 0]), np.array([0, 1, 2, 3])], ) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize("dtype1", [int, float, bool, str]) @pytest.mark.parametrize("dtype2", [int, float, bool, str]) def test_get_loc_multiple_dtypes(dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize("level", [0, 1]) @pytest.mark.parametrize("dtypes", [[int, float], [float, int]]) def test_get_loc_implicit_cast(level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [["a", "b"], ["c", "d"]] key = ["b", "d"] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype="int64")] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 with pytest.raises(KeyError, match=r"^\(False, True\)$"): idx.get_loc((False, True)) with pytest.raises(KeyError, match=r"^\(True, False\)$"): idx.get_loc((True, False)) @pytest.mark.parametrize("level", [0, 1]) def test_get_loc_nan(level, nulls_fixture): # GH 18485 : NaN in MultiIndex levels = [["a", "b"], ["c", "d"]] key = ["b", "d"] levels[level] = np.array([0, nulls_fixture], dtype=type(nulls_fixture)) key[level] = nulls_fixture idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) with pytest.raises(KeyError, match=r"^3\.0$"): idx.get_loc(3) with pytest.raises(KeyError, match=r"^nan$"): idx.get_loc(np.nan) with pytest.raises(KeyError, match=r"^\[nan\]$"): idx.get_loc([np.nan]) def test_get_indexer_categorical_time(): # https://github.com/pandas-dev/pandas/issues/21390 midx = MultiIndex.from_product( [ Categorical(["a", "b", "c"]), Categorical(date_range("2012-01-01", periods=3, freq="H")), ] ) result = midx.get_indexer(midx) tm.assert_numpy_array_equal(result, np.arange(9, dtype=np.intp)) def test_timestamp_multiindex_indexer(): # https://github.com/pandas-dev/pandas/issues/26944 idx = pd.MultiIndex.from_product( [ pd.date_range("2019-01-01T00:15:33", periods=100, freq="H", name="date"), ["x"], [3], ] ) df = pd.DataFrame({"foo": np.arange(len(idx))}, idx) result = df.loc[pd.IndexSlice["2019-1-2":, "x", :], "foo"] qidx = pd.MultiIndex.from_product( [ pd.date_range( start="2019-01-02T00:15:33", end="2019-01-05T02:15:33", freq="H", name="date", ), ["x"], [3], ] ) should_be = pd.Series(data=np.arange(24, len(qidx) + 24), index=qidx, name="foo") tm.assert_series_equal(result, should_be)
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for slim.learning.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import numpy as np from numpy import testing as np_testing from tensorflow.contrib.framework.python.ops import variables as variables_lib2 from tensorflow.contrib.layers.python.layers import layers from tensorflow.contrib.losses.python.losses import loss_ops from tensorflow.contrib.slim.python.slim import learning from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables as variables_lib from tensorflow.python.platform import test from tensorflow.python.summary import summary from tensorflow.python.training import gradient_descent from tensorflow.python.training import saver as saver_lib class ClipGradientNormsTest(test.TestCase): def clip_values(self, arr): norm = np.sqrt(np.sum(arr**2)) if norm > self._max_norm: return self._max_norm * arr / np.sqrt(np.sum(arr**2)) return arr def setUp(self): np.random.seed(0) self._max_norm = 1.0 self._grad_vec = np.array([1., 2., 3.]) self._clipped_grad_vec = self.clip_values(self._grad_vec) self._zero_vec = np.zeros(self._grad_vec.size) def testOrdinaryGradIsClippedCorrectly(self): gradient = constant_op.constant(self._grad_vec, dtype=dtypes.float32) variable = variables_lib.Variable(self._zero_vec, dtype=dtypes.float32) gradients_to_variables = (gradient, variable) [gradients_to_variables] = learning.clip_gradient_norms( [gradients_to_variables], self._max_norm) # Ensure the variable passed through. self.assertEqual(gradients_to_variables[1], variable) with self.test_session() as sess: actual_gradient = sess.run(gradients_to_variables[0]) np_testing.assert_almost_equal(actual_gradient, self._clipped_grad_vec) def testNoneGradPassesThroughCorrectly(self): gradient = None variable = variables_lib.Variable(self._zero_vec, dtype=dtypes.float32) gradients_to_variables = (gradient, variable) [gradients_to_variables] = learning.clip_gradient_norms( [gradients_to_variables], self._max_norm) self.assertEqual(gradients_to_variables[0], None) self.assertEqual(gradients_to_variables[1], variable) def testIndexedSlicesGradIsClippedCorrectly(self): sparse_grad_indices = np.array([0, 1, 4]) sparse_grad_dense_shape = [self._grad_vec.size] values = constant_op.constant(self._grad_vec, dtype=dtypes.float32) indices = constant_op.constant(sparse_grad_indices, dtype=dtypes.int32) dense_shape = constant_op.constant( sparse_grad_dense_shape, dtype=dtypes.int32) gradient = ops.IndexedSlices(values, indices, dense_shape) variable = variables_lib.Variable(self._zero_vec, dtype=dtypes.float32) gradients_to_variables = (gradient, variable) gradients_to_variables = learning.clip_gradient_norms( [gradients_to_variables], self._max_norm)[0] # Ensure the built IndexedSlice has the right form. self.assertEqual(gradients_to_variables[1], variable) self.assertEqual(gradients_to_variables[0].indices, indices) self.assertEqual(gradients_to_variables[0].dense_shape, dense_shape) with session.Session() as sess: actual_gradient = sess.run(gradients_to_variables[0].values) np_testing.assert_almost_equal(actual_gradient, self._clipped_grad_vec) class MultiplyGradientsTest(test.TestCase): def setUp(self): np.random.seed(0) self._multiplier = 3.7 self._grad_vec = np.array([1., 2., 3.]) self._multiplied_grad_vec = np.multiply(self._grad_vec, self._multiplier) def testNonListGradsRaisesError(self): gradient = constant_op.constant(self._grad_vec, dtype=dtypes.float32) variable = variables_lib.Variable(array_ops.zeros_like(gradient)) grad_to_var = (gradient, variable) gradient_multipliers = {variable: self._multiplier} with self.assertRaises(ValueError): learning.multiply_gradients(grad_to_var, gradient_multipliers) def testEmptyMultiplesRaisesError(self): gradient = constant_op.constant(self._grad_vec, dtype=dtypes.float32) variable = variables_lib.Variable(array_ops.zeros_like(gradient)) grad_to_var = (gradient, variable) with self.assertRaises(ValueError): learning.multiply_gradients([grad_to_var], {}) def testNonDictMultiplierRaisesError(self): gradient = constant_op.constant(self._grad_vec, dtype=dtypes.float32) variable = variables_lib.Variable(array_ops.zeros_like(gradient)) grad_to_var = (gradient, variable) with self.assertRaises(ValueError): learning.multiply_gradients([grad_to_var], 3) def testMultipleOfNoneGradRaisesError(self): gradient = constant_op.constant(self._grad_vec, dtype=dtypes.float32) variable = variables_lib.Variable(array_ops.zeros_like(gradient)) grad_to_var = (None, variable) gradient_multipliers = {variable: self._multiplier} with self.assertRaises(ValueError): learning.multiply_gradients(grad_to_var, gradient_multipliers) def testMultipleGradientsWithVariables(self): gradient = constant_op.constant(self._grad_vec, dtype=dtypes.float32) variable = variables_lib.Variable(array_ops.zeros_like(gradient)) grad_to_var = (gradient, variable) gradient_multipliers = {variable: self._multiplier} [grad_to_var] = learning.multiply_gradients([grad_to_var], gradient_multipliers) # Ensure the variable passed through. self.assertEqual(grad_to_var[1], variable) with self.test_session() as sess: actual_gradient = sess.run(grad_to_var[0]) np_testing.assert_almost_equal(actual_gradient, self._multiplied_grad_vec, 5) def testIndexedSlicesGradIsMultiplied(self): values = constant_op.constant(self._grad_vec, dtype=dtypes.float32) indices = constant_op.constant([0, 1, 2], dtype=dtypes.int32) dense_shape = constant_op.constant( [self._grad_vec.size], dtype=dtypes.int32) gradient = ops.IndexedSlices(values, indices, dense_shape) variable = variables_lib.Variable(array_ops.zeros((1, 3))) grad_to_var = (gradient, variable) gradient_multipliers = {variable: self._multiplier} [grad_to_var] = learning.multiply_gradients([grad_to_var], gradient_multipliers) # Ensure the built IndexedSlice has the right form. self.assertEqual(grad_to_var[1], variable) self.assertEqual(grad_to_var[0].indices, indices) self.assertEqual(grad_to_var[0].dense_shape, dense_shape) with self.test_session() as sess: actual_gradient = sess.run(grad_to_var[0].values) np_testing.assert_almost_equal(actual_gradient, self._multiplied_grad_vec, 5) def LogisticClassifier(inputs): return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid) def BatchNormClassifier(inputs): inputs = layers.batch_norm(inputs, decay=0.1) return layers.fully_connected(inputs, 1, activation_fn=math_ops.sigmoid) class TrainBNClassifierTest(test.TestCase): def setUp(self): # Create an easy training set: np.random.seed(0) self._inputs = np.zeros((16, 4)) self._labels = np.random.randint(0, 2, size=(16, 1)).astype(np.float32) for i in range(16): j = int(2 * self._labels[i] + np.random.randint(0, 2)) self._inputs[i, j] = 1 def testTrainWithNoInitAssignCanAchieveZeroLoss(self): logdir = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs') g = ops.Graph() with g.as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) loss = learning.train( train_op, logdir, number_of_steps=300, log_every_n_steps=10) self.assertLess(loss, .1) class CreateTrainOpTest(test.TestCase): def setUp(self): # Create an easy training set: np.random.seed(0) self._inputs = np.random.rand(16, 4).astype(np.float32) self._labels = np.random.randint(0, 2, size=(16, 1)).astype(np.float32) def testUseUpdateOps(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) expected_mean = np.mean(self._inputs, axis=(0)) expected_var = np.var(self._inputs, axis=(0)) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) moving_mean = variables_lib2.get_variables_by_name('moving_mean')[0] moving_variance = variables_lib2.get_variables_by_name('moving_variance')[ 0] with session.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) mean, variance = sess.run([moving_mean, moving_variance]) # After initialization moving_mean == 0 and moving_variance == 1. self.assertAllClose(mean, [0] * 4) self.assertAllClose(variance, [1] * 4) for _ in range(10): sess.run([train_op]) mean = moving_mean.eval() variance = moving_variance.eval() # After 10 updates with decay 0.1 moving_mean == expected_mean and # moving_variance == expected_var. self.assertAllClose(mean, expected_mean) self.assertAllClose(variance, expected_var) def testEmptyUpdateOps(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer, update_ops=[]) moving_mean = variables_lib2.get_variables_by_name('moving_mean')[0] moving_variance = variables_lib2.get_variables_by_name('moving_variance')[ 0] with session.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) mean, variance = sess.run([moving_mean, moving_variance]) # After initialization moving_mean == 0 and moving_variance == 1. self.assertAllClose(mean, [0] * 4) self.assertAllClose(variance, [1] * 4) for _ in range(10): sess.run([train_op]) mean = moving_mean.eval() variance = moving_variance.eval() # Since we skip update_ops the moving_vars are not updated. self.assertAllClose(mean, [0] * 4) self.assertAllClose(variance, [1] * 4) def testUseGlobalStep(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) global_step = variables_lib2.get_or_create_global_step() with session.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) for _ in range(10): sess.run([train_op]) global_step = global_step.eval() # After 10 updates global_step should be 10. self.assertAllClose(global_step, 10) def testNoneGlobalStep(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = BatchNormClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op( total_loss, optimizer, global_step=None) global_step = variables_lib2.get_or_create_global_step() with session.Session() as sess: # Initialize all variables sess.run(variables_lib.global_variables_initializer()) for _ in range(10): sess.run([train_op]) global_step = global_step.eval() # Since train_op don't use global_step it shouldn't change. self.assertAllClose(global_step, 0) def testRecordTrainOpInCollection(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) # Make sure the training op was recorded in the proper collection self.assertTrue(train_op in ops.get_collection(ops.GraphKeys.TRAIN_OP)) class TrainTest(test.TestCase): def setUp(self): # Create an easy training set: np.random.seed(0) self._inputs = np.zeros((16, 4)) self._labels = np.random.randint(0, 2, size=(16, 1)).astype(np.float32) for i in range(16): j = int(2 * self._labels[i] + np.random.randint(0, 2)) self._inputs[i, j] = 1 def testTrainWithNonDefaultGraph(self): logdir = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs') g = ops.Graph() with g.as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) loss = learning.train( train_op, logdir, number_of_steps=300, log_every_n_steps=10, graph=g) self.assertIsNotNone(loss) self.assertLess(loss, .015) def testTrainWithNoneAsLogdir(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) loss = learning.train( train_op, None, number_of_steps=300, log_every_n_steps=10) self.assertIsNotNone(loss) self.assertLess(loss, .015) def testTrainWithSessionConfig(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) session_config = config_pb2.ConfigProto(allow_soft_placement=True) loss = learning.train( train_op, None, number_of_steps=300, log_every_n_steps=10, session_config=session_config) self.assertIsNotNone(loss) self.assertLess(loss, .015) def testTrainWithTrace(self): logdir = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs') with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() summary.scalar('total_loss', total_loss) optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) loss = learning.train( train_op, logdir, number_of_steps=300, log_every_n_steps=10, trace_every_n_steps=100) self.assertIsNotNone(loss) for trace_step in [1, 101, 201]: trace_filename = 'tf_trace-%d.json' % trace_step self.assertTrue(os.path.isfile(os.path.join(logdir, trace_filename))) def testTrainWithNoneAsLogdirWhenUsingSummariesRaisesError(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() summary.scalar('total_loss', total_loss) optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) summary_op = summary.merge_all() with self.assertRaises(ValueError): learning.train( train_op, None, number_of_steps=300, summary_op=summary_op) def testTrainWithNoneAsLogdirWhenUsingTraceRaisesError(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) with self.assertRaises(ValueError): learning.train( train_op, None, number_of_steps=300, trace_every_n_steps=10) def testTrainWithNoneAsLogdirWhenUsingSaverRaisesError(self): with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) saver = saver_lib.Saver() with self.assertRaises(ValueError): learning.train( train_op, None, init_op=None, number_of_steps=300, saver=saver) def testTrainWithNoneAsInitWhenUsingVarsRaisesError(self): logdir = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs') with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) with self.assertRaises(RuntimeError): learning.train(train_op, logdir, init_op=None, number_of_steps=300) def testTrainWithNoInitAssignCanAchieveZeroLoss(self): logdir = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs') with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) loss = learning.train( train_op, logdir, number_of_steps=300, log_every_n_steps=10) self.assertIsNotNone(loss) self.assertLess(loss, .015) def testTrainWithLocalVariable(self): logdir = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs') with ops.Graph().as_default(): random_seed.set_random_seed(0) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) local_multiplier = variables_lib2.local_variable(1.0) tf_predictions = LogisticClassifier(tf_inputs) * local_multiplier loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) loss = learning.train( train_op, logdir, number_of_steps=300, log_every_n_steps=10) self.assertIsNotNone(loss) self.assertLess(loss, .015) def testResumeTrainAchievesRoughlyTheSameLoss(self): logdir = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs') number_of_steps = [300, 301, 305] for i in range(len(number_of_steps)): with ops.Graph().as_default(): random_seed.set_random_seed(i) tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) loss = learning.train( train_op, logdir, number_of_steps=number_of_steps[i], log_every_n_steps=10) self.assertIsNotNone(loss) self.assertLess(loss, .015) def create_train_op(self, learning_rate=1.0, gradient_multiplier=1.0): tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) total_loss = loss_ops.get_total_loss() optimizer = gradient_descent.GradientDescentOptimizer( learning_rate=learning_rate) if gradient_multiplier != 1.0: variables = variables_lib.trainable_variables() gradient_multipliers = {var: gradient_multiplier for var in variables} else: gradient_multipliers = None return learning.create_train_op( total_loss, optimizer, gradient_multipliers=gradient_multipliers) def testTrainWithInitFromCheckpoint(self): logdir1 = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs1') logdir2 = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs2') # First, train the model one step (make sure the error is high). with ops.Graph().as_default(): random_seed.set_random_seed(0) train_op = self.create_train_op() loss = learning.train(train_op, logdir1, number_of_steps=1) self.assertGreater(loss, .5) # Next, train the model to convergence. with ops.Graph().as_default(): random_seed.set_random_seed(1) train_op = self.create_train_op() loss = learning.train( train_op, logdir1, number_of_steps=300, log_every_n_steps=10) self.assertIsNotNone(loss) self.assertLess(loss, .02) # Finally, advance the model a single step and validate that the loss is # still low. with ops.Graph().as_default(): random_seed.set_random_seed(2) train_op = self.create_train_op() model_variables = variables_lib.global_variables() model_path = os.path.join(logdir1, 'model.ckpt-300') init_op = variables_lib.global_variables_initializer() op, init_feed_dict = variables_lib2.assign_from_checkpoint( model_path, model_variables) def InitAssignFn(sess): sess.run(op, init_feed_dict) loss = learning.train( train_op, logdir2, number_of_steps=1, init_op=init_op, init_fn=InitAssignFn) self.assertIsNotNone(loss) self.assertLess(loss, .02) def testTrainWithInitFromFn(self): logdir1 = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs1') logdir2 = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs2') # First, train the model one step (make sure the error is high). with ops.Graph().as_default(): random_seed.set_random_seed(0) train_op = self.create_train_op() loss = learning.train(train_op, logdir1, number_of_steps=1) self.assertGreater(loss, .5) # Next, train the model to convergence. with ops.Graph().as_default(): random_seed.set_random_seed(1) train_op = self.create_train_op() loss = learning.train( train_op, logdir1, number_of_steps=300, log_every_n_steps=10) self.assertIsNotNone(loss) self.assertLess(loss, .015) # Finally, advance the model a single step and validate that the loss is # still low. with ops.Graph().as_default(): random_seed.set_random_seed(2) train_op = self.create_train_op() model_variables = variables_lib.global_variables() model_path = os.path.join(logdir1, 'model.ckpt-300') saver = saver_lib.Saver(model_variables) def RestoreFn(sess): saver.restore(sess, model_path) loss = learning.train( train_op, logdir2, number_of_steps=1, init_fn=RestoreFn) self.assertIsNotNone(loss) self.assertLess(loss, .015) def ModelLoss(self): tf_inputs = constant_op.constant(self._inputs, dtype=dtypes.float32) tf_labels = constant_op.constant(self._labels, dtype=dtypes.float32) tf_predictions = LogisticClassifier(tf_inputs) loss_ops.log_loss(tf_predictions, tf_labels) return loss_ops.get_total_loss() def testTrainAllVarsHasLowerLossThanTrainSubsetOfVars(self): logdir1 = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs1') # First, train only the weights of the model. with ops.Graph().as_default(): random_seed.set_random_seed(0) total_loss = self.ModelLoss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) weights = variables_lib2.get_variables_by_name('weights') train_op = learning.create_train_op( total_loss, optimizer, variables_to_train=weights) loss = learning.train( train_op, logdir1, number_of_steps=200, log_every_n_steps=10) self.assertGreater(loss, .015) self.assertLess(loss, .05) # Next, train the biases of the model. with ops.Graph().as_default(): random_seed.set_random_seed(1) total_loss = self.ModelLoss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) biases = variables_lib2.get_variables_by_name('biases') train_op = learning.create_train_op( total_loss, optimizer, variables_to_train=biases) loss = learning.train( train_op, logdir1, number_of_steps=300, log_every_n_steps=10) self.assertGreater(loss, .015) self.assertLess(loss, .05) # Finally, train both weights and bias to get lower loss. with ops.Graph().as_default(): random_seed.set_random_seed(2) total_loss = self.ModelLoss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) train_op = learning.create_train_op(total_loss, optimizer) loss = learning.train( train_op, logdir1, number_of_steps=400, log_every_n_steps=10) self.assertIsNotNone(loss) self.assertLess(loss, .015) def testTrainingSubsetsOfVariablesOnlyUpdatesThoseVariables(self): # First, train only the weights of the model. with ops.Graph().as_default(): random_seed.set_random_seed(0) total_loss = self.ModelLoss() optimizer = gradient_descent.GradientDescentOptimizer(learning_rate=1.0) weights, biases = variables_lib2.get_variables() train_op = learning.create_train_op(total_loss, optimizer) train_weights = learning.create_train_op( total_loss, optimizer, variables_to_train=[weights]) train_biases = learning.create_train_op( total_loss, optimizer, variables_to_train=[biases]) with session.Session() as sess: # Initialize the variables. sess.run(variables_lib.global_variables_initializer()) # Get the intial weights and biases values. weights_values, biases_values = sess.run([weights, biases]) self.assertGreater(np.linalg.norm(weights_values), 0) self.assertAlmostEqual(np.linalg.norm(biases_values), 0) # Update weights and biases. loss = sess.run(train_op) self.assertGreater(loss, .5) new_weights, new_biases = sess.run([weights, biases]) # Check that the weights and biases have been updated. self.assertGreater(np.linalg.norm(weights_values - new_weights), 0) self.assertGreater(np.linalg.norm(biases_values - new_biases), 0) weights_values, biases_values = new_weights, new_biases # Update only weights. loss = sess.run(train_weights) self.assertGreater(loss, .5) new_weights, new_biases = sess.run([weights, biases]) # Check that the weights have been updated, but biases have not. self.assertGreater(np.linalg.norm(weights_values - new_weights), 0) self.assertAlmostEqual(np.linalg.norm(biases_values - new_biases), 0) weights_values = new_weights # Update only biases. loss = sess.run(train_biases) self.assertGreater(loss, .5) new_weights, new_biases = sess.run([weights, biases]) # Check that the biases have been updated, but weights have not. self.assertAlmostEqual(np.linalg.norm(weights_values - new_weights), 0) self.assertGreater(np.linalg.norm(biases_values - new_biases), 0) def testTrainWithAlteredGradients(self): # Use the same learning rate but different gradient multipliers # to train two models. Model with equivalently larger learning # rate (i.e., learning_rate * gradient_multiplier) has smaller # training loss. logdir1 = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs1') logdir2 = os.path.join( tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs2') multipliers = [1., 1000.] number_of_steps = 10 losses = [] learning_rate = 0.001 # First, train the model with equivalently smaller learning rate. with ops.Graph().as_default(): random_seed.set_random_seed(0) train_op = self.create_train_op( learning_rate=learning_rate, gradient_multiplier=multipliers[0]) loss = learning.train(train_op, logdir1, number_of_steps=number_of_steps) losses.append(loss) self.assertGreater(loss, .5) # Second, train the model with equivalently larger learning rate. with ops.Graph().as_default(): random_seed.set_random_seed(0) train_op = self.create_train_op( learning_rate=learning_rate, gradient_multiplier=multipliers[1]) loss = learning.train(train_op, logdir2, number_of_steps=number_of_steps) losses.append(loss) self.assertIsNotNone(loss) self.assertLess(loss, .5) # The loss of the model trained with larger learning rate should # be smaller. self.assertGreater(losses[0], losses[1]) def testTrainWithEpochLimit(self): logdir = os.path.join(tempfile.mkdtemp(prefix=self.get_temp_dir()), 'tmp_logs') with tf.Graph().as_default(): tf.set_random_seed(0) tf_inputs = tf.constant(self._inputs, dtype=tf.float32) tf_labels = tf.constant(self._labels, dtype=tf.float32) tf_inputs_limited = tf.train.limit_epochs(tf_inputs, num_epochs=300) tf_labels_limited = tf.train.limit_epochs(tf_labels, num_epochs=300) tf_predictions = LogisticClassifier(tf_inputs_limited) slim.losses.log_loss(tf_predictions, tf_labels_limited) total_loss = slim.losses.get_total_loss() optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.0) train_op = slim.learning.create_train_op(total_loss, optimizer) loss = slim.learning.train(train_op, logdir, log_every_n_steps=10) self.assertIsNotNone(loss) self.assertLess(loss, .015) self.assertTrue(os.path.isfile('{}/model.ckpt-300.index'.format(logdir))) self.assertTrue(os.path.isfile('{}/model.ckpt-300.data-00000-of-00001'.format(logdir))) if __name__ == '__main__': test.main()
"""Local node REST api. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import os import flask import flask_restplus as restplus from flask_restplus import inputs from treadmill import webutils _LOGGER = logging.getLogger(__name__) def init(api, cors, impl): """Configures REST handlers for allocation resource.""" app_ns = api.namespace( 'local-app', description='Local app REST operations' ) req_parser = api.parser() req_parser.add_argument('start', default=0, help='The index (inclusive) of' ' the first line from the log file to return.' ' Index is zero based.', location='args', required=False, type=int) req_parser.add_argument('limit', help='The number of lines to return. ' '-1 (the default) means no limit ie. return all' ' the lines in the file from "start".', location='args', required=False, type=int, default=-1) req_parser.add_argument('order', choices=('asc', 'desc'), default='asc', help='The order of the log lines to return. "asc":' ' chronological, "desc": reverse chronological', location='args', required=False, type=str) req_parser.add_argument('all', default=False, help='Whether to return all the log' 'entries or just the latest ones', location='args', required=False, type=inputs.boolean) @app_ns.route('/', defaults={'app': None}) @app_ns.route('/<app>') class _AppList(restplus.Resource): """Local app list resource.""" @webutils.get_api(api, cors) def get(self, app): """Returns listof local instances.""" return impl.list( state=flask.request.args.get('state'), app_name=app, ) @app_ns.route('/<app>/<uniq>',) class _AppDetails(restplus.Resource): """Local app details resource.""" @webutils.get_api(api, cors) def get(self, app, uniq): """Returns list of local instances.""" return impl.get('/'.join([app, uniq])) @app_ns.route('/<app>/<uniq>/sys/<component>',) class _AppSystemLog(restplus.Resource): """Local app details resource.""" def _to_rsrc_id(self, app, uniq, component): """Returns the log resource id based on the args.""" return '/'.join([app, uniq, 'sys', component]) @webutils.opt_gzip @webutils.raw_get_api(api, cors, parser=req_parser) def get(self, app, uniq, component): """Return content of system component log..""" kwargs = req_parser.parse_args() if kwargs.get('all'): return flask.Response( impl.log.get_all(self._to_rsrc_id(app, uniq, component)), mimetype='text/plain') del kwargs['all'] # 'all' is always in kwargs... return flask.Response( impl.log.get(self._to_rsrc_id(app, uniq, component), **kwargs), mimetype='text/plain') @app_ns.route('/<app>/<uniq>/service/<service>',) class _AppServiceLog(restplus.Resource): """Local app details resource.""" def _to_rsrc_id(self, app, uniq, service): """Returns the log resource id based on the args.""" return '/'.join([app, uniq, 'app', service]) @webutils.opt_gzip @webutils.raw_get_api(api, cors, parser=req_parser) def get(self, app, uniq, service): """Return content of system component log..""" kwargs = req_parser.parse_args() if kwargs.get('all'): return flask.Response( impl.log.get_all(self._to_rsrc_id(app, uniq, service)), mimetype='text/plain') del kwargs['all'] # 'all' is always in kwargs... return flask.Response( impl.log.get(self._to_rsrc_id(app, uniq, service), **kwargs), mimetype='text/plain') archive_ns = api.namespace('archive', description='Local archive REST operations') @archive_ns.route('/<app>/<uniq>/sys') class _SysArchiveAsAttachment(restplus.Resource): """Download sys archive as attachment.""" @webutils.raw_get_api(api, cors) def get(self, app, uniq): """Return content of sys archived file..""" fname = impl.archive.get('/'.join([app, uniq, 'sys'])) return flask.send_file( fname, as_attachment=True, attachment_filename=os.path.basename(fname) ) @archive_ns.route('/<app>/<uniq>/app') class _AppArchiveAsAttachment(restplus.Resource): """Download app archive as attachment.""" @webutils.raw_get_api(api, cors) def get(self, app, uniq): """Return content of app archived file..""" fname = impl.archive.get('/'.join([app, uniq, 'app'])) return flask.send_file( fname, as_attachment=True, attachment_filename=os.path.basename(fname) ) metrics_ns = api.namespace('metrics', description='Local metrics ' 'REST operations') metrics_req_parser = api.parser() metrics_req_parser.add_argument( 'timeframe', choices=('short', 'long'), default='short', help='Whether to query the metrics for shorter or longer timeframe.', location='args', required=False, type=str) @metrics_ns.route('/',) class _MetricsList(restplus.Resource): """Local metrics list resource.""" @webutils.get_api(api, cors) def get(self): """Returns list of locally available metrics.""" return impl.list(flask.request.args.get('state'), inc_svc=True) @metrics_ns.route('/<app>/<uniq>') @metrics_ns.route('/<service>') class _Metrics(restplus.Resource): """Download metrics.""" @webutils.raw_get_api(api, cors, parser=metrics_req_parser) def get(self, **id_parts): """ Return metrics either as an attachment or as json. """ args = metrics_req_parser.parse_args() if webutils.wants_json_resp(flask.request): return self._get(self._to_rsrc_id(**id_parts), args.get('timeframe')) else: return self._get_as_attach(self._to_rsrc_id(**id_parts), args.get('timeframe')) def _to_rsrc_id(self, **id_parts): """ Return the metrics resource id based on the keyword args. """ try: rsrc_id = '/'.join([id_parts['app'], id_parts['uniq']]) except KeyError: rsrc_id = id_parts['service'] return rsrc_id def _get(self, rsrc_id, timeframe): """Return the metrics file as json.""" return flask.Response(impl.metrics.get(rsrc_id, timeframe, as_json=True), mimetype='application/json') def _get_as_attach(self, rsrc_id, timeframe): """Return the metrics file as attachment.""" return flask.send_file( impl.metrics.get(rsrc_id, timeframe), as_attachment=True, mimetype='application/octet-stream', attachment_filename=os.path.basename( impl.metrics.file_path(rsrc_id) ) )
from __future__ import annotations from typing import ( TYPE_CHECKING, Any, ) import numpy as np from pandas._config import get_option from pandas._libs import ( lib, missing as libmissing, ) from pandas._libs.arrays import NDArrayBacked from pandas._typing import ( Dtype, Scalar, type_t, ) from pandas.compat import pa_version_under1p0 from pandas.compat.numpy import function as nv from pandas.core.dtypes.base import ( ExtensionDtype, register_extension_dtype, ) from pandas.core.dtypes.common import ( is_array_like, is_bool_dtype, is_dtype_equal, is_integer_dtype, is_object_dtype, is_string_dtype, pandas_dtype, ) from pandas.core import ops from pandas.core.array_algos import masked_reductions from pandas.core.arrays import ( FloatingArray, IntegerArray, PandasArray, ) from pandas.core.arrays.base import ExtensionArray from pandas.core.arrays.floating import FloatingDtype from pandas.core.arrays.integer import _IntegerDtype from pandas.core.construction import extract_array from pandas.core.indexers import check_array_indexer from pandas.core.missing import isna if TYPE_CHECKING: import pyarrow @register_extension_dtype class StringDtype(ExtensionDtype): """ Extension dtype for string data. .. versionadded:: 1.0.0 .. warning:: StringDtype is considered experimental. The implementation and parts of the API may change without warning. In particular, StringDtype.na_value may change to no longer be ``numpy.nan``. Parameters ---------- storage : {"python", "pyarrow"}, optional If not given, the value of ``pd.options.mode.string_storage``. Attributes ---------- None Methods ------- None Examples -------- >>> pd.StringDtype() string[python] >>> pd.StringDtype(storage="pyarrow") string[pyarrow] """ name = "string" #: StringDtype.na_value uses pandas.NA na_value = libmissing.NA _metadata = ("storage",) def __init__(self, storage=None): if storage is None: storage = get_option("mode.string_storage") if storage not in {"python", "pyarrow"}: raise ValueError( f"Storage must be 'python' or 'pyarrow'. Got {storage} instead." ) if storage == "pyarrow" and pa_version_under1p0: raise ImportError( "pyarrow>=1.0.0 is required for PyArrow backed StringArray." ) self.storage = storage @property def type(self) -> type[str]: return str @classmethod def construct_from_string(cls, string): """ Construct a StringDtype from a string. Parameters ---------- string : str The type of the name. The storage type will be taking from `string`. Valid options and their storage types are ========================== ============================================== string result storage ========================== ============================================== ``'string'`` pd.options.mode.string_storage, default python ``'string[python]'`` python ``'string[pyarrow]'`` pyarrow ========================== ============================================== Returns ------- StringDtype Raise ----- TypeError If the string is not a valid option. """ if not isinstance(string, str): raise TypeError( f"'construct_from_string' expects a string, got {type(string)}" ) if string == "string": return cls() elif string == "string[python]": return cls(storage="python") elif string == "string[pyarrow]": return cls(storage="pyarrow") else: raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'") def __eq__(self, other: Any) -> bool: if isinstance(other, str) and other == "string": return True return super().__eq__(other) def __hash__(self) -> int: # custom __eq__ so have to override __hash__ return super().__hash__() # https://github.com/pandas-dev/pandas/issues/36126 # error: Signature of "construct_array_type" incompatible with supertype # "ExtensionDtype" def construct_array_type( # type: ignore[override] self, ) -> type_t[BaseStringArray]: """ Return the array type associated with this dtype. Returns ------- type """ from pandas.core.arrays.string_arrow import ArrowStringArray if self.storage == "python": return StringArray else: return ArrowStringArray def __repr__(self): return f"string[{self.storage}]" def __str__(self): return self.name def __from_arrow__( self, array: pyarrow.Array | pyarrow.ChunkedArray ) -> BaseStringArray: """ Construct StringArray from pyarrow Array/ChunkedArray. """ if self.storage == "pyarrow": from pandas.core.arrays.string_arrow import ArrowStringArray return ArrowStringArray(array) else: import pyarrow if isinstance(array, pyarrow.Array): chunks = [array] else: # pyarrow.ChunkedArray chunks = array.chunks results = [] for arr in chunks: # using _from_sequence to ensure None is converted to NA str_arr = StringArray._from_sequence(np.array(arr)) results.append(str_arr) if results: return StringArray._concat_same_type(results) else: return StringArray(np.array([], dtype="object")) class BaseStringArray(ExtensionArray): pass class StringArray(BaseStringArray, PandasArray): """ Extension array for string data. .. versionadded:: 1.0.0 .. warning:: StringArray is considered experimental. The implementation and parts of the API may change without warning. Parameters ---------- values : array-like The array of data. .. warning:: Currently, this expects an object-dtype ndarray where the elements are Python strings or :attr:`pandas.NA`. This may change without warning in the future. Use :meth:`pandas.array` with ``dtype="string"`` for a stable way of creating a `StringArray` from any sequence. copy : bool, default False Whether to copy the array of data. Attributes ---------- None Methods ------- None See Also -------- array The recommended function for creating a StringArray. Series.str The string methods are available on Series backed by a StringArray. Notes ----- StringArray returns a BooleanArray for comparison methods. Examples -------- >>> pd.array(['This is', 'some text', None, 'data.'], dtype="string") <StringArray> ['This is', 'some text', <NA>, 'data.'] Length: 4, dtype: string Unlike arrays instantiated with ``dtype="object"``, ``StringArray`` will convert the values to strings. >>> pd.array(['1', 1], dtype="object") <PandasArray> ['1', 1] Length: 2, dtype: object >>> pd.array(['1', 1], dtype="string") <StringArray> ['1', '1'] Length: 2, dtype: string However, instantiating StringArrays directly with non-strings will raise an error. For comparison methods, `StringArray` returns a :class:`pandas.BooleanArray`: >>> pd.array(["a", None, "c"], dtype="string") == "a" <BooleanArray> [True, <NA>, False] Length: 3, dtype: boolean """ # undo the PandasArray hack _typ = "extension" def __init__(self, values, copy=False): values = extract_array(values) super().__init__(values, copy=copy) # error: Incompatible types in assignment (expression has type "StringDtype", # variable has type "PandasDtype") NDArrayBacked.__init__(self, self._ndarray, StringDtype(storage="python")) if not isinstance(values, type(self)): self._validate() def _validate(self): """Validate that we only store NA or strings.""" if len(self._ndarray) and not lib.is_string_array( self._ndarray.ravel("K"), skipna=True ): raise ValueError("StringArray requires a sequence of strings or pandas.NA") if self._ndarray.dtype != "object": raise ValueError( "StringArray requires a sequence of strings or pandas.NA. Got " f"'{self._ndarray.dtype}' dtype instead." ) @classmethod def _from_sequence(cls, scalars, *, dtype: Dtype | None = None, copy=False): if dtype and not (isinstance(dtype, str) and dtype == "string"): dtype = pandas_dtype(dtype) assert isinstance(dtype, StringDtype) and dtype.storage == "python" from pandas.core.arrays.masked import BaseMaskedArray if isinstance(scalars, BaseMaskedArray): # avoid costly conversion to object dtype na_values = scalars._mask result = scalars._data result = lib.ensure_string_array(result, copy=copy, convert_na_value=False) result[na_values] = StringDtype.na_value else: # convert non-na-likes to str, and nan-likes to StringDtype.na_value result = lib.ensure_string_array( scalars, na_value=StringDtype.na_value, copy=copy ) # Manually creating new array avoids the validation step in the __init__, so is # faster. Refactor need for validation? new_string_array = cls.__new__(cls) NDArrayBacked.__init__(new_string_array, result, StringDtype(storage="python")) return new_string_array @classmethod def _from_sequence_of_strings( cls, strings, *, dtype: Dtype | None = None, copy=False ): return cls._from_sequence(strings, dtype=dtype, copy=copy) @classmethod def _empty(cls, shape, dtype) -> StringArray: values = np.empty(shape, dtype=object) values[:] = libmissing.NA return cls(values).astype(dtype, copy=False) def __arrow_array__(self, type=None): """ Convert myself into a pyarrow Array. """ import pyarrow as pa if type is None: type = pa.string() values = self._ndarray.copy() values[self.isna()] = None return pa.array(values, type=type, from_pandas=True) def _values_for_factorize(self): arr = self._ndarray.copy() mask = self.isna() arr[mask] = -1 return arr, -1 def __setitem__(self, key, value): value = extract_array(value, extract_numpy=True) if isinstance(value, type(self)): # extract_array doesn't extract PandasArray subclasses value = value._ndarray key = check_array_indexer(self, key) scalar_key = lib.is_scalar(key) scalar_value = lib.is_scalar(value) if scalar_key and not scalar_value: raise ValueError("setting an array element with a sequence.") # validate new items if scalar_value: if isna(value): value = StringDtype.na_value elif not isinstance(value, str): raise ValueError( f"Cannot set non-string value '{value}' into a StringArray." ) else: if not is_array_like(value): value = np.asarray(value, dtype=object) if len(value) and not lib.is_string_array(value, skipna=True): raise ValueError("Must provide strings.") super().__setitem__(key, value) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if is_dtype_equal(dtype, self.dtype): if copy: return self.copy() return self elif isinstance(dtype, _IntegerDtype): arr = self._ndarray.copy() mask = self.isna() arr[mask] = 0 values = arr.astype(dtype.numpy_dtype) return IntegerArray(values, mask, copy=False) elif isinstance(dtype, FloatingDtype): arr = self.copy() mask = self.isna() arr[mask] = "0" values = arr.astype(dtype.numpy_dtype) return FloatingArray(values, mask, copy=False) elif isinstance(dtype, ExtensionDtype): return super().astype(dtype, copy=copy) elif np.issubdtype(dtype, np.floating): arr = self._ndarray.copy() mask = self.isna() arr[mask] = 0 values = arr.astype(dtype) values[mask] = np.nan return values return super().astype(dtype, copy) def _reduce( self, name: str, *, skipna: bool = True, axis: int | None = 0, **kwargs ): if name in ["min", "max"]: return getattr(self, name)(skipna=skipna, axis=axis) raise TypeError(f"Cannot perform reduction '{name}' with string dtype") def min(self, axis=None, skipna: bool = True, **kwargs) -> Scalar: nv.validate_min((), kwargs) result = masked_reductions.min( values=self.to_numpy(), mask=self.isna(), skipna=skipna ) return self._wrap_reduction_result(axis, result) def max(self, axis=None, skipna: bool = True, **kwargs) -> Scalar: nv.validate_max((), kwargs) result = masked_reductions.max( values=self.to_numpy(), mask=self.isna(), skipna=skipna ) return self._wrap_reduction_result(axis, result) def value_counts(self, dropna: bool = True): from pandas import value_counts return value_counts(self._ndarray, dropna=dropna).astype("Int64") def memory_usage(self, deep: bool = False) -> int: result = self._ndarray.nbytes if deep: return result + lib.memory_usage_of_objects(self._ndarray) return result def _cmp_method(self, other, op): from pandas.arrays import BooleanArray if isinstance(other, StringArray): other = other._ndarray mask = isna(self) | isna(other) valid = ~mask if not lib.is_scalar(other): if len(other) != len(self): # prevent improper broadcasting when other is 2D raise ValueError( f"Lengths of operands do not match: {len(self)} != {len(other)}" ) other = np.asarray(other) other = other[valid] if op.__name__ in ops.ARITHMETIC_BINOPS: result = np.empty_like(self._ndarray, dtype="object") result[mask] = StringDtype.na_value result[valid] = op(self._ndarray[valid], other) return StringArray(result) else: # logical result = np.zeros(len(self._ndarray), dtype="bool") result[valid] = op(self._ndarray[valid], other) return BooleanArray(result, mask) _arith_method = _cmp_method # ------------------------------------------------------------------------ # String methods interface _str_na_value = StringDtype.na_value def _str_map( self, f, na_value=None, dtype: Dtype | None = None, convert: bool = True ): from pandas.arrays import BooleanArray if dtype is None: dtype = StringDtype(storage="python") if na_value is None: na_value = self.dtype.na_value mask = isna(self) arr = np.asarray(self) if is_integer_dtype(dtype) or is_bool_dtype(dtype): constructor: type[IntegerArray] | type[BooleanArray] if is_integer_dtype(dtype): constructor = IntegerArray else: constructor = BooleanArray na_value_is_na = isna(na_value) if na_value_is_na: na_value = 1 result = lib.map_infer_mask( arr, f, mask.view("uint8"), convert=False, na_value=na_value, # error: Value of type variable "_DTypeScalar" of "dtype" cannot be # "object" # error: Argument 1 to "dtype" has incompatible type # "Union[ExtensionDtype, str, dtype[Any], Type[object]]"; expected # "Type[object]" dtype=np.dtype(dtype), # type: ignore[type-var,arg-type] ) if not na_value_is_na: mask[:] = False return constructor(result, mask) elif is_string_dtype(dtype) and not is_object_dtype(dtype): # i.e. StringDtype result = lib.map_infer_mask( arr, f, mask.view("uint8"), convert=False, na_value=na_value ) return StringArray(result) else: # This is when the result type is object. We reach this when # -> We know the result type is truly object (e.g. .encode returns bytes # or .findall returns a list). # -> We don't know the result type. E.g. `.get` can return anything. return lib.map_infer_mask(arr, f, mask.view("uint8"))
#!/bin/bash/python from __future__ import print_function import commandLineErrors from commandLineErrors import * import dataConsistency import graph as gr import stringOperations as strOps import json import os import sys # Define a class for handling the command line and operations around it. class commandLine: def __init__(self): # Define errors. self.errors = commandLineErrors() # Store all of the arguments with their values. These will be broken up into arguments that # are for individual tasks within the main pipeline, gkno specific arguments and pipeline # arguments. self.arguments = {} self.gknoArguments = {} self.pipelineArguments = {} # For tasks supplied on the command line, store the task and the list of arguments. Also, store # the broken out arguments (e.g. after the string associated with the task is parsed). self.tasksAsArguments = {} self.taskArguments = {} # Store commands. These could be instructions on the mode of usage etc. self.commands = [] # Store the values for lists that have been reordered. self.reorderedLists = [] # Parse the command line and store all the arguments with their values. argument = None isTaskArguments = False for entry in sys.argv[1:]: isArgument = entry.startswith('-') # If this is a continuation of arguments for a specific task, append the arguments to # the task arguments. If the entry terminates with ']', the task arguments are complete. if isTaskArguments: if entry.endswith(']'): taskArguments += ' ' + entry[:-1] isTaskArguments = False self.arguments[argument].append(taskArguments) # Reset the argument and the taskArguments now the task arguments have been handled. taskArguments = '' argument = '' else: taskArguments += ' ' + entry # If the entry starts with a '['. this is the start of a set of arguments to be applied to # a task within in the pipeline. Find all the commands in the square brackets and associate # with the task argument. elif argument and entry.startswith('['): isTaskArguments = True taskArguments = '' taskArguments += entry[1:] # Only process the entry if not part of task arguments contained in square brackets. else: # If this and the previous entry were not arguments, this should be a command and # is stored. if not argument and not isArgument: self.commands.append(entry) # If the previous command line entry was an argument, check if this entry is an argument or # not. If not, store this as the value for the previous argument. elif argument and not isArgument: self.arguments[argument].append(entry) # If this entry is an argument, set the value of 'argument' to this entry and create the key in # self.arguments. elif isArgument: argument = entry if argument not in self.arguments: self.arguments[argument] = [] # If the end of the command line is reached and argument is still populated, this is assumed # to be a flag and should be added. if argument and not self.arguments[argument]: self.arguments[argument] = [None] # If a flag was set on the command line, it's value will be empty. Loop over self.arguments and replace # all empty fields with None. for argument in self.arguments: if len(self.arguments[argument]) == 0: self.arguments[argument].append(None) # If the mode of operation is to provide information on help categories, store the help category. self.category = None # Determine if gkno is being run in admin mode. def isAdmin(self, modes): try: if self.commands[0] in modes: return True, self.commands[0] except: return False, None return False, None # Determine the mode in which gkno is being run. This is either in 'admin' mode for general gkno # admin (resource management, building, updating etc.), 'help' for different categories of help # or 'run' for running tools or pipelines. def determineMode(self, isAdmin, gkno): if isAdmin: return 'admin' # Check if json files for the web page were requested. if gkno.getGknoArgument('GKNO-WEB', self.arguments): return 'web' # Check if help for gkno specific arguments was requested. if gkno.getGknoArgument('GKNO-ARGUMENTS', self.arguments): return 'gkno help' # If help is requested, return the mode 'help'. if gkno.getGknoArgument('GKNO-HELP', self.arguments): return 'help' # Check if help categories were requested. category = gkno.getGknoArgument('GKNO-CATEGORIES', self.arguments) if category: self.category = None if category == True else category return 'categories' # Check if a list of all pipeline was requested. if gkno.getGknoArgument('GKNO-ALL-PIPELINES', self.arguments): return 'list-all' # If no information is provided (e.g. no admin, tool or pipeline), return 'help' as the mode. if len(self.commands) == 0 and len(self.arguments) == 0: return 'help' # If none of the above, return 'run', return 'run' # Determine the path to the configuration files, if set. def getConfigurationFilePath(self, options): longFormArgument = options['GKNO-CONFIGURATION-PATH'].longFormArgument shortFormArgument = options['GKNO-CONFIGURATION-PATH'].shortFormArgument # If the path is defined, get the path. path = None if longFormArgument in self.arguments: path = self.arguments[longFormArgument][0] elif shortFormArgument in self.arguments: path = self.arguments[shortFormArgument][0] # If the path is defined, check that the path exists. # TODO ERROR if path and not os.path.isdir(path): print('commandLine.getConfigurationFilePath - PATH DOESN\'T EXIST'); exit(1) # Remove trailing '/'. if path and path.endswith('/'): path = path.rstrip('/') # Return the path. return path # Determine the name of the pipeline being run (tools are considered pipelines of a single task). def determinePipeline(self): # If no pipeline name was supplied return None. The mode will be help, so a general help message # will be provided to the user. if not self.commands: return None # If there are multiple commands from the pipeline, the command line is invalid. If not in admin # mode, the command line can only include a single entry that is not an argument or accompanying # value. # TODO ERROR if len(self.commands) != 1: self.errors.invalidCommandLine() # Return the pipeline name. return self.commands[0] # Process the command line arguments. def processArguments(self, superpipeline, args, gkno): # Get the name of the top level pipeline. pipeline = superpipeline.pipeline # Get the names of all the contained pipelines. containedPipelines = superpipeline.tiersByPipeline.keys() # Get a list of all the allowable long and short form arguments. In this first pass, any arguments # being pulled from a contained pipeline are stored. containedPipelineArguments = [] longFormArguments = {} shortFormArguments = {} for argument in args.arguments.keys(): # Check if the argument name is prefixed with the name of a task, following by a '.'. If so, this # argument is pulled in from a contained pipeline. if '.' in argument: prefix = argument.split('.')[0] if prefix in containedPipelines: containedPipelineArguments.append(argument) # Handle defined arguments in the configuration file. else: longFormArguments[argument] = argument shortFormArguments[args.arguments[argument].shortFormArgument] = argument # Loop over the contained pipeline arguments. for argument in containedPipelineArguments: longFormArgument = args.arguments[argument].longFormArgument shortFormArgument = args.arguments[argument].shortFormArgument if longFormArgument not in longFormArguments and shortFormArgument not in shortFormArguments: longFormArguments[argument.split('.')[1]] = argument shortFormArguments[args.arguments[argument].shortFormArgument] = argument # Loop over all of the supplied command line arguments, ensure that they are in their long form # versions and consolidate. Check that all of the arguments are valid for the pipeline being run # or are gkno specific arguments. for argument in self.arguments: values = self.arguments[argument] pipelineShortFormArguments = superpipeline.pipelineConfigurationData[pipeline].shortFormArguments # First check if the argument is the name of a task in the superpipeline. if argument.strip('-') in superpipeline.tasks: if argument.strip('-') in self.tasksAsArguments: for value in values: self.tasksAsArguments[argument.strip('-')].append(value) else: self.tasksAsArguments[argument.strip('-')] = values # If this is a long form argument, check to see if it is a gkno specific argument or a valid pipeline # argument. elif argument in gkno.arguments: shortFormArgument = gkno.arguments[argument].shortFormArgument dataType = gkno.arguments[argument].dataType if argument not in self.gknoArguments: self.gknoArguments[argument] = [] for value in values: if not dataConsistency.isCorrectDataType(value, dataType): self.errors.invalidValue(argument, shortFormArgument, value, dataType, True) self.gknoArguments[argument].append(value) # Check if this is a valid gkno short form argument. elif argument in gkno.shortForms: longFormArgument = gkno.shortForms[argument] dataType = gkno.arguments[longFormArgument].dataType if longFormArgument not in self.gknoArguments: self.gknoArguments[longFormArgument] = [] for value in values: if not dataConsistency.isCorrectDataType(value, dataType): self.errors.invalidValue(longFormArgument, argument, value, dataType, True) self.gknoArguments[longFormArgument].append(value) # Check if this argument is valid for the pipeline. elif argument in longFormArguments: argumentName = longFormArguments[argument] shortFormArgument = args.arguments[argumentName].shortFormArgument dataType = args.arguments[argumentName].dataType if argumentName not in self.pipelineArguments: self.pipelineArguments[argumentName] = [] # If the data type is flag, there are no values, so include 'set' as the value. if dataType == 'flag': self.pipelineArguments[argumentName] = ['set'] # Handle non-flags. else: for value in values: if not dataConsistency.isCorrectDataType(value, dataType): self.errors.invalidValue(argumentName, shortFormArgument, value, dataType, False) self.pipelineArguments[argumentName].append(value) # Check if this is a valid short form pipeline argument. elif argument in shortFormArguments: longFormArgument = shortFormArguments[argument] dataType = args.arguments[longFormArgument].dataType if longFormArgument not in self.pipelineArguments: self.pipelineArguments[longFormArgument] = [] if dataType == 'flag': self.pipelineArguments[longFormArgument] = ['set'] else: for value in values: if not dataConsistency.isCorrectDataType(value, dataType): self.errors.invalidValue(longFormArgument, argument, value, dataType, False) self.pipelineArguments[longFormArgument].append(value) # If the argument is invalid. else: self.errors.invalidArgument(argument) # Add more new arguments. def addGknoArguments(self, gknoArguments): # Loop over the set of gkno arguments to add. for argument in gknoArguments: # If the gkno argument is already set, use the value already supplied, otherwise add the # argument to the gkno arguments. if argument not in self.gknoArguments: self.gknoArguments[argument] = [] for value in gknoArguments[argument]: if isinstance(value, unicode): self.gknoArguments[argument].append(str(value)) else: self.gknoArguments[argument].append(value) # Check if any of the arguments are linked and if so, check if multiple values have been provided to them. # If so, ensure that the order in which the values are sorted is such that the first value for each argument # is most similar to the first value for the other etc. def linkedArguments(self, graph, superpipeline, args): for task in graph.workflow: tool = graph.getGraphNodeAttribute(task, 'tool') toolData = superpipeline.getToolData(tool) # Check if any of the arguments for this task have been given multiple values. linkedArguments = {} for nodeId in graph.graph.predecessors(task): if len(graph.getGraphNodeAttribute(nodeId, 'values')) > 1: argument = graph.getArgumentAttribute(nodeId, task, 'longFormArgument') linkedArgument = toolData.getArgumentAttribute(argument, 'linkedArgument') if linkedArgument != None: linkedArguments[nodeId] = linkedArgument # If there are any linked arguments with multiple values, check the order of the values. for nodeId in linkedArguments: argumentValues = graph.getGraphNodeAttribute(nodeId, 'values') # Determine the nodeId of the linked argument. for linkedNodeId in graph.graph.predecessors(task): if linkedArguments[nodeId] == graph.getArgumentAttribute(linkedNodeId, task, 'longFormArgument'): break # Use the linkedArgumentValues as a reference list and order the values in argumentValues to be most # similar to the reference list, referenceList = graph.getGraphNodeAttribute(linkedNodeId, 'values') queryList = [] for value in referenceList: queryList.append(strOps.findMostSimilar(argumentValues, value)) # If reordering has taken place, store the values so that the user can be warned. Update the graph to # include the reordered list. if queryList != argumentValues: self.reorderedLists.append((task, nodeId, linkedNodeId, argumentValues, queryList, referenceList)) graph.setGraphNodeAttribute(nodeId, 'values', queryList) # Determine the name (if any) of the requested parameter set. def getParameterSetName(self, arguments, gkno): # Loop over the gkno specific arguments looking for the --parameter-set argument, for argument in arguments: if argument == gkno.options['GKNO-PARAMETER-SET'].longFormArgument: # Only one parameter set can be defined. if len(arguments[argument]) != 1: self.errors.multipleParameterSets() # Return the name of the parameter set. return arguments[argument][0] # If no parameter set was defined, return None. return None # For all tasks inputted on the command line, extract all the arguments supplied to the tasks. def parseTasksAsArguments(self, superpipeline): # Parse tasksAsNodes. Each entry is a task in the pipeline and has associated with it a list of # arguments to apply to that task. Parse all of these arguments and identify the graph node that # they point to. If there is no associated node, add the argument to a list of nodes that require # creating. for task in self.tasksAsArguments: arguments = {} # Get the tool associated with this task. tool = superpipeline.tasks[task] # Loop over all arguments supplied to this task (it is allowed that the same task is supplied # on the command line multiple times. for string in self.tasksAsArguments[task]: # Break the string associated with the task into a list. argumentList = string.split(' ') # Parse all the commands supplied for this task. argument = None for counter, entry in enumerate(argumentList): if entry.startswith('-'): # If this entry starts with a '-' and isArgument is true, then the previous entry also started # with a '-'. This implies that the previous entry was a flag argument. if argument: arguments[argument] = ['set'] # Check that the argument is a valid argument for this tool and convert to the long form # version if necessary. argument = superpipeline.toolConfigurationData[tool].getLongFormArgument(entry) #TODO ERROR if argument not in superpipeline.toolConfigurationData[tool].arguments.keys(): print('ERROR - parseTasksAsArguments - 1', tool, entry); exit(0) arguments[argument] = [] # If isArgument is false, then this is a new argument (either it is the first argument in the # list, or the previous entry was a value associated with a different argument). else: # Check that the argument is a valid argument for this tool and convert to the long form # version if necessary. #TODO ERROR argument = superpipeline.toolConfigurationData[tool].getLongFormArgument(entry) if argument not in superpipeline.toolConfigurationData[tool].arguments.keys(): print('ERROR - parseTasksAsArguments - 2', tool, entry); exit(0) if argument not in arguments: arguments[argument] = [] # If this entry does not begin with a dash and there is no defined argument, then the previous # entry also did not start with a '-' and so there is a problem with the supplied arguments. elif not argument: print('ERROR - command.associateArgumentsWithGraphNodes - 1', argument); exit(0) # If this entry does not begin with a '-'. but the argument is set, this is a value for the argument, # so associate the value with the argument. elif argument: arguments[argument].append(entry) argument = None # If the previous list ended on a flag, the value will not have been set. Set it here. if argument: arguments[argument] = ['set'] # Store the list of arguments for each task. self.taskArguments[task] = arguments # Associate the command line arguments with the graph nodes. def associateArgumentsWithGraphNodes(self, graph, superpipeline): associatedNodes = [] # Loop over all the arguments supplied to individual tasks. for taskAddress in self.taskArguments: for argument in self.taskArguments[taskAddress]: values = self.taskArguments[taskAddress][argument] # Get the tool associated with this task. tool = superpipeline.tasks[taskAddress] toolData = superpipeline.toolConfigurationData[tool] # Search the successor and predecessor nodes for this task for the argument supplied. foundArgument = False associatedNodeId = None for nodeId in gr.pipelineGraph.CM_getInputNodes(graph, taskAddress): longFormArgument = gr.pipelineGraph.CM_getArgumentAttribute(graph, nodeId, taskAddress, 'longFormArgument') if longFormArgument == argument: foundArgument = True associatedNodeId = nodeId break # Only check the output nodes if the argument has not already been associated with an input node. if not foundArgument: for nodeId in gr.pipelineGraph.CM_getOutputNodes(graph, taskAddress): longFormArgument = gr.pipelineGraph.CM_getArgumentAttribute(graph.graph, nodeId, taskAddress, 'longFormArgument') if longFormArgument == argument: foundArgument = True associatedNodeId = nodeId break # Add the node to the list. if associatedNodeId: associatedNodes.append((taskAddress, associatedNodeId, tool, argument, values, False)) else: associatedNodes.append((taskAddress, str(taskAddress + '.' + argument), tool, argument, values, True)) # Return the list with information on the nodes to create. return associatedNodes # Check if multiple makefiles were requested and if an id is to be added to any makefiles. def checkMakefiles(self, gknoArguments): multiple = gknoArguments['GKNO-MULTIPLE-MAKEFILES'].longFormArgument idArgument = gknoArguments['GKNO-MAKEFILE-ID'].longFormArgument isMultipleMakefiles = True if multiple in self.gknoArguments else False makefileId = self.gknoArguments[idArgument][0] if idArgument in self.gknoArguments else None return isMultipleMakefiles, makefileId
#!/usr/bin/env python import logging import sys import unittest import mango.unittest import scipy as sp import numpy as np import numpy.random import random import mango.mpi as mpi import mango.fmm import mango.data import mango.io import os, os.path logger, rootLogger = mpi.getLoggers(__name__) class PValueTest(mango.unittest.TestCase): def testGaussianPValue(self): for typePair in [(None, "float32"), ("tomo", None)]: mtype = typePair[0] dtype = typePair[1] mean = 32000.0 stdd = 1000.0 noisDds = mango.data.gaussian_noise(shape=(105,223,240), mean=mean, stdd=stdd, mtype=mtype, dtype=dtype) pvalDds = \ mango.fmm.gaussian_pvalue( noisDds, mean=mean, stdd=stdd, sidedness=mango.fmm.PValueSidednessType.RIGHT_SIDEDNESS ) alpha = 0.05 count = sp.sum(sp.where(pvalDds.asarray() <= alpha, 1, 0)) if (pvalDds.mpi.comm != None): count = pvalDds.mpi.comm.allreduce(count) expCount = sp.product(noisDds.shape)*alpha count = float(count) relErr = sp.absolute(expCount-float(count))/sp.absolute(max(expCount,count)) rootLogger.info("relErr = %s" % relErr) self.assertTrue(relErr < 0.10) def testConvolvedGaussianPValue(self): import matplotlib import matplotlib.pyplot as plt for typePair in [("float64", None), ("tomo_float", None)]: plt.clf() mtype = typePair[0] dtype = typePair[1] mean = 32000.0 stdd = 1000.0 noisDds = mango.data.gaussian_noise(shape=(100,101,102), mean=mean, stdd=stdd, mtype=mtype, dtype=dtype) kernelSigma = 0.6 kernel = mango.image.discrete_gaussian_kernel(kernelSigma) rootLogger.info("kernal.shape=%s" % (kernel.shape,)) rootLogger.info("sp.sum(kernal)=%s" % (sp.sum(kernel),)) rootLogger.info("kernal (min,max)=(%s,%s)" % (np.min(kernel), np.max(kernel),)) convMeanDds, convStddDds = mango.image.discrete_gaussian_mean_stdd(noisDds, kernelSigma) convStddDds = mango.image.discrete_gaussian_stdd(noisDds, kernelSigma, mean=mean) estMean = sp.sum(noisDds.asarray()) if (noisDds.mpi.comm != None): estMean = noisDds.mpi.comm.allreduce(estMean) estMean /= float(sp.product(noisDds.shape)) d = noisDds.asarray()-estMean estStdd = sp.sum(d*d) if (noisDds.mpi.comm != None): estStdd = noisDds.mpi.comm.allreduce(estStdd) estStdd = sp.sqrt(estStdd/float(sp.product(noisDds.shape)-1)) convAvgStdd = sp.sum(convStddDds.asarray()) if (convStddDds.mpi.comm != None): convAvgStdd = convStddDds.mpi.comm.allreduce(convAvgStdd) convAvgStdd /= float(sp.product(convStddDds.shape)) convolveMean = sp.sum(kernel*mean) convolveStdd = sp.sqrt(sp.sum((kernel*kernel)*(stdd*stdd))) if ((convStddDds.mpi.comm == None) or (convStddDds.mpi.comm.Get_size() == 1)): rootLogger.info("Calculating histogram...") hst,edg = sp.histogram((convStddDds.asarray()*convStddDds.asarray()).flatten(), bins=1024) rootLogger.info("Done calculating histogram...edge (min,max)=(%s,%s)" % (np.min(edg), np.max(edg))) hst = sp.array(hst, copy=True, dtype="float64") hst /= sp.sum(hst) hst = hst[0:hst.size//2] edg = edg[0:hst.size + 1] xx = (edg[1:]+edg[0:-1])*0.5 plt.plot(xx, hst) rootLogger.info("Calculating chi2...") chi2xx0 = ((sp.product(kernel.shape)-1)/(stdd*stdd))*edg df = sp.product(kernel.shape)-1 chi2cdf0 = sp.stats.chi2.cdf(chi2xx0, df) y0 = chi2cdf0[1:]-chi2cdf0[0:-1] dof = ((sp.sum(kernel)**2)-(sp.sum(kernel*kernel)))/(sp.sum(kernel)) coeffs = kernel.flatten() rootLogger.info("Calculating gchi2...") gchi2xx1 = (dof/(stdd*stdd))*edg gchi2cdf1 = mango.fmm.gchisqrd(coeffs, sp.zeros_like(coeffs)).cdf(gchi2xx1) y1 = gchi2cdf1[1:]-gchi2cdf1[0:-1] rootLogger.info("Done calculating gchi2.") #plt.plot(xx, y0) plt.plot(xx, y1) plt.title("sp.sum(hst)=%s, sp.sum(chi2)=%s" % (sp.sum(hst), sp.sum(y0))) dir = self.createTmpDir("testConvolvedGaussianPValue") plt.savefig(os.path.join(dir,"convStddDds_%s.png" % mtype), dpi=128) plt.figure() hst,edg = sp.histogram(convMeanDds.asarray().flatten(), bins=256) hst = sp.array(hst, copy=True, dtype="float64") ####hst /= sp.array(edg[1:]-edg[0:-1], dtype="float64") hst /= sp.sum(hst) xx = (edg[1:]+edg[0:-1])*0.5 plt.plot(xx, hst) nd0 = sp.stats.norm.cdf(edg, loc = mean, scale = sp.sqrt(sp.sum(kernel*kernel)*stdd*stdd)) y0 = nd0[1:]-nd0[0:-1] plt.plot(xx,y0) plt.savefig(os.path.join(dir,"convMeanDds_%s.png" % mtype), dpi=128) rootLogger.info("%14s=%10.5f, %14s=%10.5f" % ("mean", mean, "stdd", stdd)) rootLogger.info("%14s=%10.5f, %14s=%10.5f" % ("convolve-mean", convolveMean, "convolve-stdd", convolveStdd)) rootLogger.info("%14s=%10.5f, %14s=%10.5f" % ("est-stdd", estStdd, "conv-avg-stdd", convAvgStdd)) rootLogger.info("Calculating gaussian_pvalue image for from mean-image...") meanPValDds = \ mango.fmm.gaussian_pvalue( convMeanDds, mean=convolveMean, stdd=convolveStdd, sidedness=mango.fmm.PValueSidednessType.RIGHT_SIDEDNESS ) alpha = 0.05 count = sp.sum(sp.where(meanPValDds.asarray() <= alpha, 1, 0)) if (meanPValDds.mpi.comm != None): count = meanPValDds.mpi.comm.allreduce(count) expCount = sp.product(noisDds.shape)*alpha count = float(count) relErr = sp.absolute(expCount-float(count))/sp.absolute(max(expCount,count)) rootLogger.info("relErr = %s" % relErr) self.assertTrue(relErr < 0.10) convVarDds = mango.copy(convStddDds) convVarDds.asarray()[...] *= convVarDds.asarray()*((sp.product(kernel.shape)-1)/(stdd*stdd)) rootLogger.info("Calculating generalised_chi_squared_pvalue image from variance-image...") ### ### Takes too long to compute pvalue image!!!! ### # stddPValDds = \ # mango.fmm.generalised_chi_squared_pvalue( # convVarDds, # coefficients=coeffs, # noncentralities=sp.zeros_like(coeffs), # sidedness=mango.fmm.PValueSidednessType.RIGHT_SIDEDNESS # ) # # alpha = 0.05 # count = sp.sum(sp.where(stddPValDds.asarray() <= alpha, 1, 0)) # if (stddPValDds.mpi.comm != None): # count = stddPValDds.mpi.comm.allreduce(count) # # expCount = sp.product(stddPValDds.shape)*alpha # count = float(count) # relErr = sp.absolute(expCount-float(count))/sp.absolute(max(expCount,count)) # rootLogger.info("relErr = %s" % relErr) # self.assertTrue(relErr < 0.10) def testStructuringElementPValue(self): import matplotlib import matplotlib.pyplot as plt dir = self.createTmpDir("testStructuringElementPValue") for typePair in [("float64", None), ("tomo_float", None)]: plt.clf() mtype = typePair[0] dtype = typePair[1] mean = 32000.0 stdd = 1000.0 noisDds = mango.data.gaussian_noise(shape=(100,101,102), mean=mean, stdd=stdd, mtype=mtype, dtype=dtype) se = mango.image.sphere_se(radius=2.0) seNumElems = sp.sum(sp.where(se.toFootprint(), 1, 0)) rootLogger.info("se.shape=%s" % (se.toFootprint().shape,)) rootLogger.info("sp.sum(se.toFootprint())=%s" % (seNumElems,)) seMeanDds = mango.image.mean_filter(noisDds, se) seStddDds = mango.image.stdd_filter(noisDds, se) estMean = sp.sum(noisDds.asarray()) if (noisDds.mpi.comm != None): estMean = noisDds.mpi.comm.allreduce(estMean) estMean /= float(sp.product(noisDds.shape)) d = noisDds.asarray()-estMean estStdd = sp.sum(d*d) if (noisDds.mpi.comm != None): estStdd = noisDds.mpi.comm.allreduce(estStdd) estStdd = sp.sqrt(estStdd/float(sp.product(noisDds.shape)-1)) seAvgStdd = sp.sum(seStddDds.asarray()) if (seStddDds.mpi.comm != None): seAvgStdd = seStddDds.mpi.comm.allreduce(seAvgStdd) seAvgStdd /= float(sp.product(seStddDds.shape)) seTheoryMean = mean seTheoryStdd = sp.sqrt(seNumElems*((1.0/seNumElems)**2)*(stdd*stdd)) if ((seStddDds.mpi.comm == None) or (seStddDds.mpi.comm.Get_size() == 1)): rootLogger.info("Calculating histogram...") hst,edg = sp.histogram((seStddDds.asarray()*seStddDds.asarray()).flatten(), bins=1024) rootLogger.info("Done calculating histogram...edge (min,max)=(%s,%s)" % (np.min(edg), np.max(edg))) hst = sp.array(hst, copy=True, dtype="float64") hst /= sp.sum(hst) hst = hst[0:hst.size//2] edg = edg[0:hst.size + 1] xx = (edg[1:]+edg[0:-1])*0.5 plt.plot(xx, hst) rootLogger.info("Calculating chi2...") chi2xx0 = ((seNumElems-1)/(stdd*stdd))*edg df = seNumElems-1 chi2cdf0 = sp.stats.chi2.cdf(chi2xx0, df) y0 = chi2cdf0[1:]-chi2cdf0[0:-1] rootLogger.info("Done calculating chi2.") plt.plot(xx, y0) plt.title("sp.sum(hst)=%s, sp.sum(chi2)=%s" % (sp.sum(hst), sp.sum(y0))) plt.savefig(os.path.join(dir,"seStddDds_%s.png" % mtype), dpi=128) plt.figure() hst,edg = sp.histogram(seMeanDds.asarray().flatten(), bins=256) hst = sp.array(hst, copy=True, dtype="float64") ####hst /= sp.array(edg[1:]-edg[0:-1], dtype="float64") hst /= sp.sum(hst) xx = (edg[1:]+edg[0:-1])*0.5 plt.plot(xx, hst) nd0 = sp.stats.norm.cdf(edg, loc = mean, scale = sp.sqrt(seNumElems*((1.0/seNumElems)**2)*stdd*stdd)) y0 = nd0[1:]-nd0[0:-1] plt.plot(xx,y0) plt.savefig(os.path.join(dir,"seMeanDds_%s.png" % mtype), dpi=128) rootLogger.info("%14s=%10.5f, %14s=%10.5f" % ("mean", mean, "stdd", stdd)) rootLogger.info("%14s=%10.5f, %14s=%10.5f" % ("seTheory-mean", seTheoryMean, "seTheory-stdd", seTheoryStdd)) rootLogger.info("%14s=%10.5f, %14s=%10.5f" % ("est-stdd", estStdd, "se-avg-stdd", seAvgStdd)) rootLogger.info("Calculating gaussian_pvalue image for from mean-image...") meanPValDds = \ mango.fmm.gaussian_pvalue( seMeanDds, mean=seTheoryMean, stdd=seTheoryStdd, sidedness=mango.fmm.PValueSidednessType.RIGHT_SIDEDNESS ) alpha = 0.05 count = sp.sum(sp.where(meanPValDds.asarray() <= alpha, 1, 0)) if (meanPValDds.mpi.comm != None): count = meanPValDds.mpi.comm.allreduce(count) expCount = sp.product(noisDds.shape)*alpha count = float(count) relErr = sp.absolute(expCount-float(count))/sp.absolute(max(expCount,count)) rootLogger.info("relErr = %s" % relErr) self.assertTrue(relErr < 0.10) seVarDds = mango.copy(seStddDds) seVarDds.asarray()[...] *= seVarDds.asarray()*((seNumElems)-1)/(stdd*stdd) rootLogger.info("Calculating chi_squared_pvalue image from variance-image...") ### ### Takes too long to compute pvalue image!!!! ### stddPValDds = \ mango.fmm.chi_squared_pvalue( seVarDds, dof=float(seNumElems-1), sidedness=mango.fmm.PValueSidednessType.RIGHT_SIDEDNESS ) alpha = 0.05 count = sp.sum(sp.where(stddPValDds.asarray() <= alpha, 1, 0)) if (stddPValDds.mpi.comm != None): count = stddPValDds.mpi.comm.allreduce(count) expCount = sp.product(stddPValDds.shape)*alpha count = float(count) relErr = sp.absolute(expCount-float(count))/sp.absolute(max(expCount,count)) rootLogger.info("relErr = %s" % relErr) self.assertTrue(relErr < 0.10) def testChiSquaredPValue(self): for typePair in [(None, "float32"), ("float64", None)]: mtype = typePair[0] dtype = typePair[1] dof = 12.0 noisDds = mango.data.chi_squared_noise(shape=(105,223,240), dof=dof, mtype=mtype, dtype=dtype) pvalDds = \ mango.fmm.chi_squared_pvalue( noisDds, dof=dof, sidedness=mango.fmm.PValueSidednessType.RIGHT_SIDEDNESS ) alpha = 0.05 count = sp.sum(sp.where(pvalDds.asarray() <= alpha, 1, 0)) if (pvalDds.mpi.comm != None): count = pvalDds.mpi.comm.allreduce(count) expCount = sp.product(noisDds.shape)*alpha count = float(count) relErr = sp.absolute(expCount-float(count))/sp.absolute(max(expCount,count)) rootLogger.info("relErr = %s" % relErr) self.assertTrue(relErr < 0.10) class GradientChiSquaredPValueTest(mango.unittest.TestCase): def testDiscreteGaussianGradientChiSquaredPValue(self): dir = self.createTmpDir("testDiscreteGaussianGradientChiSquaredPValue") gSigma = 0.5 grdKernelZ = mango.image.discrete_gaussian_gradient_kernel(axis=0, sigma=gSigma) sumSqrd = sp.sum(grdKernelZ*grdKernelZ) rootLogger.info("grdKernelZ = \n%s" % (grdKernelZ,)) mean = 32000.0 stdd = 4000.0 imgDds = mango.data.gaussian_noise(shape=(100,200,200), mean=mean, stdd=stdd, mtype="tomo_float", halo=(3,3,3)) grdDds = mango.image.discrete_gaussian_gradient_magnitude(input=imgDds, sigma=gSigma) mango.io.writeDds(os.path.join(dir, "tomo_floatImg.nc"), imgDds) mango.io.writeDds(os.path.join(dir, "tomo_floatImgGrd.nc"), grdDds) grdDds.updateHaloRegions() grdDds.mirrorOuterLayersToBorder(False) grdDds.subd.asarray()[...] = grdDds.subd.asarray()*grdDds.subd.asarray() grdDds.subd.asarray()[...] /= (sumSqrd*(stdd*stdd)) if ((grdDds.mpi.comm == None) or (grdDds.mpi.comm.Get_size() <= 1)): import matplotlib import matplotlib.pyplot as plt hst,edg = sp.histogram(grdDds.subd.asarray().flatten(), bins=1024) rootLogger.info("Done calculating histogram...edge (min,max)=(%s,%s)" % (np.min(edg), np.max(edg))) hst = sp.array(hst, copy=True, dtype="float64") hst /= sp.sum(hst) hst = hst[0:hst.size//2] edg = edg[0:hst.size + 1] xx = (edg[1:]+edg[0:-1])*0.5 plt.plot(xx, hst, label="gradient histogram") rootLogger.info("Calculating chi2...") chi2xx0 = edg df = 3 chi2cdf0 = sp.stats.chi2.cdf(chi2xx0, df) y0 = chi2cdf0[1:]-chi2cdf0[0:-1] plt.plot(xx, y0, label="Chi-squared distribution") plt.legend() plt.savefig(os.path.join(dir,"gradient_hist_and_chi_sqrd_dist.png"), dpi=100) if __name__ == "__main__": #mango.setLoggingVerbosityLevel("high") mpi.initialiseLoggers( [__name__, "mango.unittest", "mango.mpi", "mango.fmm", "mango.fmmTest"], logLevel=logging.DEBUG ) random.seed((mpi.rank+1)*23456243) numpy.random.seed((mpi.rank+1)*23456134) mango.unittest.main()
# # Copyright (C) 2000-2008 greg Landrum and Rational Discovery LLC # """ Contains functionality for doing tree pruning """ import numpy from rdkit.ML.DecTree import CrossValidate, DecTree import copy _verbose = 0 def MaxCount(examples): """ given a set of examples, returns the most common result code **Arguments** examples: a list of examples to be counted **Returns** the most common result code """ resList = [x[-1] for x in examples] maxVal = max(resList) counts = [None]*(maxVal+1) for i in xrange(maxVal+1): counts[i] = sum([x==i for x in resList]) return numpy.argmax(counts) def _GetLocalError(node): nWrong = 0 for example in node.GetExamples(): pred = node.ClassifyExample(example,appendExamples=0) if pred != example[-1]: nWrong +=1 #if _verbose: print '------------------>MISS:',example,pred return nWrong def _Pruner(node,level=0): """Recursively finds and removes the nodes whose removals improve classification **Arguments** - node: the tree to be pruned. The pruning data should already be contained within node (i.e. node.GetExamples() should return the pruning data) - level: (optional) the level of recursion, used only in _verbose printing **Returns** the pruned version of node **Notes** - This uses a greedy algorithm which basically does a DFS traversal of the tree, removing nodes whenever possible. - If removing a node does not affect the accuracy, it *will be* removed. We favor smaller trees. """ if _verbose: print ' '*level,'<%d> '%level,'>>> Pruner' children = node.GetChildren()[:] bestTree = copy.deepcopy(node) bestErr = 1e6 emptyChildren=[] # # Loop over the children of this node, removing them when doing so # either improves the local error or leaves it unchanged (we're # introducing a bias for simpler trees). # for i in range(len(children)): child = children[i] examples = child.GetExamples() if _verbose: print ' '*level,'<%d> '%level,' Child:',i,child.GetLabel() bestTree.Print() print if len(examples): if _verbose: print ' '*level,'<%d> '%level,' Examples',len(examples) if not child.GetTerminal(): if _verbose: print ' '*level,'<%d> '%level,' Nonterminal' workTree = copy.deepcopy(bestTree) # # First recurse on the child (try removing things below it) # newNode = _Pruner(child,level=level+1) workTree.ReplaceChildIndex(i,newNode) tempErr = _GetLocalError(workTree) if tempErr<=bestErr: bestErr = tempErr bestTree = copy.deepcopy(workTree) if _verbose: print ' '*level,'<%d> '%level,'>->->->->->' print ' '*level,'<%d> '%level,'replacing:',i,child.GetLabel() child.Print() print ' '*level,'<%d> '%level,'with:' newNode.Print() print ' '*level,'<%d> '%level,'<-<-<-<-<-<' else: workTree.ReplaceChildIndex(i,child) # # Now try replacing the child entirely # bestGuess = MaxCount(child.GetExamples()) newNode = DecTree.DecTreeNode(workTree,'L:%d'%(bestGuess), label=bestGuess,isTerminal=1) newNode.SetExamples(child.GetExamples()) workTree.ReplaceChildIndex(i,newNode) if _verbose: print ' '*level,'<%d> '%level,'ATTEMPT:' workTree.Print() newErr = _GetLocalError(workTree) if _verbose: print ' '*level,'<%d> '%level,'---> ',newErr,bestErr if newErr <= bestErr: bestErr = newErr bestTree = copy.deepcopy(workTree) if _verbose: print ' '*level,'<%d> '%level,'PRUNING:' workTree.Print() else: if _verbose: print ' '*level,'<%d> '%level,'FAIL' # whoops... put the child back in: workTree.ReplaceChildIndex(i,child) else: if _verbose: print ' '*level,'<%d> '%level,' Terminal' else: if _verbose: print ' '*level,'<%d> '%level,' No Examples',len(examples) # # FIX: we need to figure out what to do here (nodes that contain # no examples in the testing set). I can concoct arguments for # leaving them in and for removing them. At the moment they are # left intact. # pass if _verbose: print ' '*level,'<%d> '%level,'<<< out' return bestTree def PruneTree(tree,trainExamples,testExamples,minimizeTestErrorOnly=1): """ implements a reduced-error pruning of decision trees This algorithm is described on page 69 of Mitchell's book. Pruning can be done using just the set of testExamples (the validation set) or both the testExamples and the trainExamples by setting minimizeTestErrorOnly to 0. **Arguments** - tree: the initial tree to be pruned - trainExamples: the examples used to train the tree - testExamples: the examples held out for testing the tree - minimizeTestErrorOnly: if this toggle is zero, all examples (i.e. _trainExamples_ + _testExamples_ will be used to evaluate the error. **Returns** a 2-tuple containing: 1) the best tree 2) the best error (the one which corresponds to that tree) """ if minimizeTestErrorOnly: testSet = testExamples else: testSet = trainExamples + testExamples # remove any stored examples the tree may have tree.ClearExamples() # # screen the test data through the tree so that we end up with the # appropriate points stored at each node of the tree # totErr,badEx = CrossValidate.CrossValidate(tree,testSet,appendExamples=1) # # Prune # newTree = _Pruner(tree) # # And recalculate the errors # totErr,badEx = CrossValidate.CrossValidate(newTree,testSet) newTree.SetBadExamples(badEx) return newTree,totErr # ------- # testing code # ------- def _testRandom(): from rdkit.ML.DecTree import randomtest #examples,attrs,nPossibleVals = randomtest.GenRandomExamples(nVars=20,randScale=0.25,nExamples = 200) examples,attrs,nPossibleVals = randomtest.GenRandomExamples(nVars=10,randScale=0.5,nExamples = 200) tree,frac = CrossValidate.CrossValidationDriver(examples,attrs,nPossibleVals) tree.Print() tree.Pickle('orig.pkl') print 'original error is:', frac print '----Pruning' newTree,frac2 = PruneTree(tree,tree.GetTrainingExamples(),tree.GetTestExamples()) newTree.Print() print 'pruned error is:',frac2 newTree.Pickle('prune.pkl') def _testSpecific(): from rdkit.ML.DecTree import ID3 oPts= [ \ [0,0,1,0], [0,1,1,1], [1,0,1,1], [1,1,0,0], [1,1,1,1], ] tPts = oPts+[[0,1,1,0],[0,1,1,0]] tree = ID3.ID3Boot(oPts,attrs=range(3),nPossibleVals=[2]*4) tree.Print() err,badEx = CrossValidate.CrossValidate(tree,oPts) print 'original error:',err err,badEx = CrossValidate.CrossValidate(tree,tPts) print 'original holdout error:',err newTree,frac2 = PruneTree(tree,oPts,tPts) newTree.Print() err,badEx = CrossValidate.CrossValidate(newTree,tPts) print 'pruned holdout error is:',err print badEx print len(tree),len(newTree) def _testChain(): from rdkit.ML.DecTree import ID3 oPts= [ \ [1,0,0,0,1], [1,0,0,0,1], [1,0,0,0,1], [1,0,0,0,1], [1,0,0,0,1], [1,0,0,0,1], [1,0,0,0,1], [0,0,1,1,0], [0,0,1,1,0], [0,0,1,1,1], [0,1,0,1,0], [0,1,0,1,0], [0,1,0,0,1], ] tPts = oPts tree = ID3.ID3Boot(oPts,attrs=range(len(oPts[0])-1),nPossibleVals=[2]*len(oPts[0])) tree.Print() err,badEx = CrossValidate.CrossValidate(tree,oPts) print 'original error:',err err,badEx = CrossValidate.CrossValidate(tree,tPts) print 'original holdout error:',err newTree,frac2 = PruneTree(tree,oPts,tPts) newTree.Print() err,badEx = CrossValidate.CrossValidate(newTree,tPts) print 'pruned holdout error is:',err print badEx if __name__ == '__main__': _verbose=1 #_testRandom() _testChain()
#!/usr/bin/env python # Copyright 2013 The Swarming Authors. All rights reserved. # Use of this source code is governed under the Apache License, Version 2.0 that # can be found in the LICENSE file. """Client tool to trigger tasks or retrieve results from a Swarming server.""" __version__ = '0.6.1' import collections import json import logging import os import re import shutil import StringIO import subprocess import sys import threading import time import urllib import urlparse import zipfile from third_party import colorama from third_party.depot_tools import fix_encoding from third_party.depot_tools import subcommand from utils import file_path from third_party.chromium import natsort from utils import net from utils import on_error from utils import threading_utils from utils import tools from utils import zip_package import auth import isolated_format import isolateserver import run_isolated ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) class Failure(Exception): """Generic failure.""" pass ### Isolated file handling. def isolated_upload_zip_bundle(isolate_server, bundle): """Uploads a zip package to Isolate Server and returns raw fetch URL. Args: isolate_server: URL of an Isolate Server. bundle: instance of ZipPackage to upload. Returns: URL to get the file from. """ # Swarming bot needs to be able to grab the file from the Isolate Server using # a simple HTTPS GET. Use 'default' namespace so that the raw data returned to # a bot is not zipped, since the swarming_bot doesn't understand compressed # data. This namespace have nothing to do with |namespace| passed to # run_isolated.py that is used to store files for isolated task. logging.info('Zipping up and uploading files...') start_time = time.time() isolate_item = isolateserver.BufferItem(bundle.zip_into_buffer()) with isolateserver.get_storage(isolate_server, 'default') as storage: uploaded = storage.upload_items([isolate_item]) bundle_url = storage.get_fetch_url(isolate_item) elapsed = time.time() - start_time if isolate_item in uploaded: logging.info('Upload complete, time elapsed: %f', elapsed) else: logging.info('Zip file already on server, time elapsed: %f', elapsed) return bundle_url def isolated_get_data(isolate_server): """Returns the 'data' section with all files necessary to bootstrap a task execution running an isolated task. It's mainly zipping run_isolated.zip over and over again. TODO(maruel): Get rid of this with. https://code.google.com/p/swarming/issues/detail?id=173 """ bundle = zip_package.ZipPackage(ROOT_DIR) bundle.add_buffer( 'run_isolated.zip', run_isolated.get_as_zip_package().zip_into_buffer(compress=False)) bundle_url = isolated_upload_zip_bundle(isolate_server, bundle) return [(bundle_url, 'swarm_data.zip')] def isolated_get_run_commands( isolate_server, namespace, isolated_hash, extra_args, verbose): """Returns the 'commands' to run an isolated task via run_isolated.zip. Returns: commands list to be added to the request. """ run_cmd = [ 'python', 'run_isolated.zip', '--isolated', isolated_hash, '--isolate-server', isolate_server, '--namespace', namespace, ] if verbose: run_cmd.append('--verbose') # Pass all extra args for run_isolated.py, it will pass them to the command. if extra_args: run_cmd.append('--') run_cmd.extend(extra_args) return run_cmd def isolated_archive(isolate_server, namespace, isolated, algo, verbose): """Archives a .isolated and all the dependencies on the Isolate Server.""" logging.info( 'isolated_archive(%s, %s, %s)', isolate_server, namespace, isolated) print('Archiving: %s' % isolated) cmd = [ sys.executable, os.path.join(ROOT_DIR, 'isolate.py'), 'archive', '--isolate-server', isolate_server, '--namespace', namespace, '--isolated', isolated, ] cmd.extend(['--verbose'] * verbose) logging.info(' '.join(cmd)) if subprocess.call(cmd, verbose): return None return isolated_format.hash_file(isolated, algo) def isolated_to_hash(isolate_server, namespace, arg, algo, verbose): """Archives a .isolated file if needed. Returns the file hash to trigger and a bool specifying if it was a file (True) or a hash (False). """ if arg.endswith('.isolated'): file_hash = isolated_archive(isolate_server, namespace, arg, algo, verbose) if not file_hash: on_error.report('Archival failure %s' % arg) return None, True return file_hash, True elif isolated_format.is_valid_hash(arg, algo): return arg, False else: on_error.report('Invalid hash %s' % arg) return None, False def isolated_handle_options(options, args): """Handles '--isolated <isolated>', '<isolated>' and '-- <args...>' arguments. Returns: tuple(command, data). """ isolated_cmd_args = [] if not options.isolated: if '--' in args: index = args.index('--') isolated_cmd_args = args[index+1:] args = args[:index] else: # optparse eats '--' sometimes. isolated_cmd_args = args[1:] args = args[:1] if len(args) != 1: raise ValueError( 'Use --isolated, --raw-cmd or \'--\' to pass arguments to the called ' 'process.') # Old code. To be removed eventually. options.isolated, is_file = isolated_to_hash( options.isolate_server, options.namespace, args[0], isolated_format.get_hash_algo(options.namespace), options.verbose) if not options.isolated: raise ValueError('Invalid argument %s' % args[0]) elif args: is_file = False if '--' in args: index = args.index('--') isolated_cmd_args = args[index+1:] if index != 0: raise ValueError('Unexpected arguments.') else: # optparse eats '--' sometimes. isolated_cmd_args = args command = isolated_get_run_commands( options.isolate_server, options.namespace, options.isolated, isolated_cmd_args, options.verbose) # If a file name was passed, use its base name of the isolated hash. # Otherwise, use user name as an approximation of a task name. if not options.task_name: if is_file: key = os.path.splitext(os.path.basename(args[0]))[0] else: key = options.user options.task_name = u'%s/%s/%s' % ( key, '_'.join( '%s=%s' % (k, v) for k, v in sorted(options.dimensions.iteritems())), options.isolated) try: data = isolated_get_data(options.isolate_server) except (IOError, OSError): on_error.report('Failed to upload the zip file') raise ValueError('Failed to upload the zip file') return command, data ### Triggering. TaskRequest = collections.namedtuple( 'TaskRequest', [ 'command', 'data', 'dimensions', 'env', 'expiration', 'hard_timeout', 'idempotent', 'io_timeout', 'name', 'priority', 'tags', 'user', 'verbose', ]) def task_request_to_raw_request(task_request): """Returns the json dict expected by the Swarming server for new request. This is for the v1 client Swarming API. """ return { 'name': task_request.name, 'parent_task_id': os.environ.get('SWARMING_TASK_ID', ''), 'priority': task_request.priority, 'properties': { 'commands': [task_request.command], 'data': task_request.data, 'dimensions': task_request.dimensions, 'env': task_request.env, 'execution_timeout_secs': task_request.hard_timeout, 'io_timeout_secs': task_request.io_timeout, 'idempotent': task_request.idempotent, }, 'scheduling_expiration_secs': task_request.expiration, 'tags': task_request.tags, 'user': task_request.user, } def swarming_handshake(swarming): """Initiates the connection to the Swarming server.""" headers = {'X-XSRF-Token-Request': '1'} response = net.url_read_json( swarming + '/swarming/api/v1/client/handshake', headers=headers, data={}) if not response: logging.error('Failed to handshake with server') return None logging.info('Connected to server version: %s', response['server_version']) return response['xsrf_token'] def swarming_trigger(swarming, raw_request, xsrf_token): """Triggers a request on the Swarming server and returns the json data. It's the low-level function. Returns: { 'request': { 'created_ts': u'2010-01-02 03:04:05', 'name': .. }, 'task_id': '12300', } """ logging.info('Triggering: %s', raw_request['name']) headers = {'X-XSRF-Token': xsrf_token} result = net.url_read_json( swarming + '/swarming/api/v1/client/request', data=raw_request, headers=headers) if not result: on_error.report('Failed to trigger task %s' % raw_request['name']) return None return result def setup_googletest(env, shards, index): """Sets googletest specific environment variables.""" if shards > 1: env = env.copy() env['GTEST_SHARD_INDEX'] = str(index) env['GTEST_TOTAL_SHARDS'] = str(shards) return env def trigger_task_shards(swarming, task_request, shards): """Triggers one or many subtasks of a sharded task. Returns: Dict with task details, returned to caller as part of --dump-json output. None in case of failure. """ def convert(index): req = task_request if shards > 1: req = req._replace( env=setup_googletest(req.env, shards, index), name='%s:%s:%s' % (req.name, index, shards)) return task_request_to_raw_request(req) requests = [convert(index) for index in xrange(shards)] xsrf_token = swarming_handshake(swarming) if not xsrf_token: return None tasks = {} priority_warning = False for index, request in enumerate(requests): task = swarming_trigger(swarming, request, xsrf_token) if not task: break logging.info('Request result: %s', task) if (not priority_warning and task['request']['priority'] != task_request.priority): priority_warning = True print >> sys.stderr, ( 'Priority was reset to %s' % task['request']['priority']) tasks[request['name']] = { 'shard_index': index, 'task_id': task['task_id'], 'view_url': '%s/user/task/%s' % (swarming, task['task_id']), } # Some shards weren't triggered. Abort everything. if len(tasks) != len(requests): if tasks: print >> sys.stderr, 'Only %d shard(s) out of %d were triggered' % ( len(tasks), len(requests)) for task_dict in tasks.itervalues(): abort_task(swarming, task_dict['task_id']) return None return tasks ### Collection. # How often to print status updates to stdout in 'collect'. STATUS_UPDATE_INTERVAL = 15 * 60. class State(object): """States in which a task can be. WARNING: Copy-pasted from appengine/swarming/server/task_result.py. These values are part of the API so if they change, the API changed. It's in fact an enum. Values should be in decreasing order of importance. """ RUNNING = 0x10 PENDING = 0x20 EXPIRED = 0x30 TIMED_OUT = 0x40 BOT_DIED = 0x50 CANCELED = 0x60 COMPLETED = 0x70 STATES = (RUNNING, PENDING, EXPIRED, TIMED_OUT, BOT_DIED, CANCELED, COMPLETED) STATES_RUNNING = (RUNNING, PENDING) STATES_NOT_RUNNING = (EXPIRED, TIMED_OUT, BOT_DIED, CANCELED, COMPLETED) STATES_DONE = (TIMED_OUT, COMPLETED) STATES_ABANDONED = (EXPIRED, BOT_DIED, CANCELED) _NAMES = { RUNNING: 'Running', PENDING: 'Pending', EXPIRED: 'Expired', TIMED_OUT: 'Execution timed out', BOT_DIED: 'Bot died', CANCELED: 'User canceled', COMPLETED: 'Completed', } @classmethod def to_string(cls, state): """Returns a user-readable string representing a State.""" if state not in cls._NAMES: raise ValueError('Invalid state %s' % state) return cls._NAMES[state] class TaskOutputCollector(object): """Assembles task execution summary (for --task-summary-json output). Optionally fetches task outputs from isolate server to local disk (used when --task-output-dir is passed). This object is shared among multiple threads running 'retrieve_results' function, in particular they call 'process_shard_result' method in parallel. """ def __init__(self, task_output_dir, task_name, shard_count): """Initializes TaskOutputCollector, ensures |task_output_dir| exists. Args: task_output_dir: (optional) local directory to put fetched files to. task_name: name of the swarming task results belong to. shard_count: expected number of task shards. """ self.task_output_dir = task_output_dir self.task_name = task_name self.shard_count = shard_count self._lock = threading.Lock() self._per_shard_results = {} self._storage = None if self.task_output_dir and not os.path.isdir(self.task_output_dir): os.makedirs(self.task_output_dir) def process_shard_result(self, shard_index, result): """Stores results of a single task shard, fetches output files if necessary. Modifies |result| in place. Called concurrently from multiple threads. """ # Sanity check index is in expected range. assert isinstance(shard_index, int) if shard_index < 0 or shard_index >= self.shard_count: logging.warning( 'Shard index %d is outside of expected range: [0; %d]', shard_index, self.shard_count - 1) return assert not 'isolated_out' in result result['isolated_out'] = None for output in result['outputs']: isolated_files_location = extract_output_files_location(output) if isolated_files_location: if result['isolated_out']: raise ValueError('Unexpected two task with output') result['isolated_out'] = isolated_files_location # Store result dict of that shard, ignore results we've already seen. with self._lock: if shard_index in self._per_shard_results: logging.warning('Ignoring duplicate shard index %d', shard_index) return self._per_shard_results[shard_index] = result # Fetch output files if necessary. if self.task_output_dir and result['isolated_out']: storage = self._get_storage( result['isolated_out']['server'], result['isolated_out']['namespace']) if storage: # Output files are supposed to be small and they are not reused across # tasks. So use MemoryCache for them instead of on-disk cache. Make # files writable, so that calling script can delete them. isolateserver.fetch_isolated( result['isolated_out']['hash'], storage, isolateserver.MemoryCache(file_mode_mask=0700), os.path.join(self.task_output_dir, str(shard_index)), False) def finalize(self): """Assembles and returns task summary JSON, shutdowns underlying Storage.""" with self._lock: # Write an array of shard results with None for missing shards. summary = { 'shards': [ self._per_shard_results.get(i) for i in xrange(self.shard_count) ], } # Write summary.json to task_output_dir as well. if self.task_output_dir: tools.write_json( os.path.join(self.task_output_dir, 'summary.json'), summary, False) if self._storage: self._storage.close() self._storage = None return summary def _get_storage(self, isolate_server, namespace): """Returns isolateserver.Storage to use to fetch files.""" assert self.task_output_dir with self._lock: if not self._storage: self._storage = isolateserver.get_storage(isolate_server, namespace) else: # Shards must all use exact same isolate server and namespace. if self._storage.location != isolate_server: logging.error( 'Task shards are using multiple isolate servers: %s and %s', self._storage.location, isolate_server) return None if self._storage.namespace != namespace: logging.error( 'Task shards are using multiple namespaces: %s and %s', self._storage.namespace, namespace) return None return self._storage def extract_output_files_location(task_log): """Task log -> location of task output files to fetch. TODO(vadimsh,maruel): Use side-channel to get this information. See 'run_tha_test' in run_isolated.py for where the data is generated. Returns: Tuple (isolate server URL, namespace, isolated hash) on success. None if information is missing or can not be parsed. """ if not task_log: return None match = re.search( r'\[run_isolated_out_hack\](.*)\[/run_isolated_out_hack\]', task_log, re.DOTALL) if not match: return None def to_ascii(val): if not isinstance(val, basestring): raise ValueError() return val.encode('ascii') try: data = json.loads(match.group(1)) if not isinstance(data, dict): raise ValueError() isolated_hash = to_ascii(data['hash']) namespace = to_ascii(data['namespace']) isolate_server = to_ascii(data['storage']) if not file_path.is_url(isolate_server): raise ValueError() data = { 'hash': isolated_hash, 'namespace': namespace, 'server': isolate_server, 'view_url': '%s/browse?%s' % (isolate_server, urllib.urlencode( [('namespace', namespace), ('hash', isolated_hash)])), } return data except (KeyError, ValueError): logging.warning( 'Unexpected value of run_isolated_out_hack: %s', match.group(1)) return None def now(): """Exists so it can be mocked easily.""" return time.time() def retrieve_results( base_url, shard_index, task_id, timeout, should_stop, output_collector): """Retrieves results for a single task ID. Returns: <result dict> on success. None on failure. """ assert isinstance(timeout, float), timeout result_url = '%s/swarming/api/v1/client/task/%s' % (base_url, task_id) output_url = '%s/swarming/api/v1/client/task/%s/output/all' % ( base_url, task_id) started = now() deadline = started + timeout if timeout else None attempt = 0 while not should_stop.is_set(): attempt += 1 # Waiting for too long -> give up. current_time = now() if deadline and current_time >= deadline: logging.error('retrieve_results(%s) timed out on attempt %d', base_url, attempt) return None # Do not spin too fast. Spin faster at the beginning though. # Start with 1 sec delay and for each 30 sec of waiting add another second # of delay, until hitting 15 sec ceiling. if attempt > 1: max_delay = min(15, 1 + (current_time - started) / 30.0) delay = min(max_delay, deadline - current_time) if deadline else max_delay if delay > 0: logging.debug('Waiting %.1f sec before retrying', delay) should_stop.wait(delay) if should_stop.is_set(): return None # Disable internal retries in net.url_read_json, since we are doing retries # ourselves. # TODO(maruel): We'd need to know if it's a 404 and not retry at all. result = net.url_read_json(result_url, retry_50x=False) if not result: continue if result['state'] in State.STATES_NOT_RUNNING: out = net.url_read_json(output_url) result['outputs'] = (out or {}).get('outputs', []) if not result['outputs']: logging.error('No output found for task %s', task_id) # Record the result, try to fetch attached output files (if any). if output_collector: # TODO(vadimsh): Respect |should_stop| and |deadline| when fetching. output_collector.process_shard_result(shard_index, result) return result def yield_results( swarm_base_url, task_ids, timeout, max_threads, print_status_updates, output_collector): """Yields swarming task results from the swarming server as (index, result). Duplicate shards are ignored. Shards are yielded in order of completion. Timed out shards are NOT yielded at all. Caller can compare number of yielded shards with len(task_keys) to verify all shards completed. max_threads is optional and is used to limit the number of parallel fetches done. Since in general the number of task_keys is in the range <=10, it's not worth normally to limit the number threads. Mostly used for testing purposes. output_collector is an optional instance of TaskOutputCollector that will be used to fetch files produced by a task from isolate server to the local disk. Yields: (index, result). In particular, 'result' is defined as the GetRunnerResults() function in services/swarming/server/test_runner.py. """ number_threads = ( min(max_threads, len(task_ids)) if max_threads else len(task_ids)) should_stop = threading.Event() results_channel = threading_utils.TaskChannel() with threading_utils.ThreadPool(number_threads, number_threads, 0) as pool: try: # Adds a task to the thread pool to call 'retrieve_results' and return # the results together with shard_index that produced them (as a tuple). def enqueue_retrieve_results(shard_index, task_id): task_fn = lambda *args: (shard_index, retrieve_results(*args)) pool.add_task( 0, results_channel.wrap_task(task_fn), swarm_base_url, shard_index, task_id, timeout, should_stop, output_collector) # Enqueue 'retrieve_results' calls for each shard key to run in parallel. for shard_index, task_id in enumerate(task_ids): enqueue_retrieve_results(shard_index, task_id) # Wait for all of them to finish. shards_remaining = range(len(task_ids)) active_task_count = len(task_ids) while active_task_count: shard_index, result = None, None try: shard_index, result = results_channel.pull( timeout=STATUS_UPDATE_INTERVAL) except threading_utils.TaskChannel.Timeout: if print_status_updates: print( 'Waiting for results from the following shards: %s' % ', '.join(map(str, shards_remaining))) sys.stdout.flush() continue except Exception: logging.exception('Unexpected exception in retrieve_results') # A call to 'retrieve_results' finished (successfully or not). active_task_count -= 1 if not result: logging.error('Failed to retrieve the results for a swarming key') continue # Yield back results to the caller. assert shard_index in shards_remaining shards_remaining.remove(shard_index) yield shard_index, result finally: # Done or aborted with Ctrl+C, kill the remaining threads. should_stop.set() def decorate_shard_output( swarming, shard_index, result, shard_exit_code, shard_duration): """Returns wrapped output for swarming task shard.""" url = '%s/user/task/%s' % (swarming, result['id']) tag_header = 'Shard %d %s' % (shard_index, url) tag_footer = 'End of shard %d Duration: %.1fs Bot: %s Exit code %s' % ( shard_index, shard_duration, result['bot_id'], shard_exit_code) tag_len = max(len(tag_header), len(tag_footer)) dash_pad = '+-%s-+\n' % ('-' * tag_len) tag_header = '| %s |\n' % tag_header.ljust(tag_len) tag_footer = '| %s |\n' % tag_footer.ljust(tag_len) header = dash_pad + tag_header + dash_pad footer = dash_pad + tag_footer + dash_pad[:-1] output = '\n'.join(o for o in result['outputs'] if o).rstrip() + '\n' return header + output + footer def collect( swarming, task_name, task_ids, timeout, decorate, print_status_updates, task_summary_json, task_output_dir): """Retrieves results of a Swarming task.""" # Collect summary JSON and output files (if task_output_dir is not None). output_collector = TaskOutputCollector( task_output_dir, task_name, len(task_ids)) seen_shards = set() exit_code = 0 total_duration = 0 try: for index, output in yield_results( swarming, task_ids, timeout, None, print_status_updates, output_collector): seen_shards.add(index) # Grab first non-zero exit code as an overall shard exit code. Default to # failure if there was no process that even started. shard_exit_code = 1 shard_exit_codes = sorted(output['exit_codes'], key=lambda x: not x) if shard_exit_codes: shard_exit_code = shard_exit_codes[0] if shard_exit_code: exit_code = shard_exit_code shard_duration = sum(i for i in output['durations'] if i) total_duration += shard_duration if decorate: print(decorate_shard_output( swarming, index, output, shard_exit_code, shard_duration)) if len(seen_shards) < len(task_ids): print('') else: print('%s: %s %d' % (output['bot_id'], output['id'], shard_exit_code)) for output in output['outputs']: if not output: continue output = output.rstrip() if output: print(''.join(' %s\n' % l for l in output.splitlines())) finally: summary = output_collector.finalize() if task_summary_json: tools.write_json(task_summary_json, summary, False) if decorate and total_duration: print('Total duration: %.1fs' % total_duration) if len(seen_shards) != len(task_ids): missing_shards = [x for x in range(len(task_ids)) if x not in seen_shards] print >> sys.stderr, ('Results from some shards are missing: %s' % ', '.join(map(str, missing_shards))) return 1 return exit_code ### Commands. def abort_task(_swarming, _manifest): """Given a task manifest that was triggered, aborts its execution.""" # TODO(vadimsh): No supported by the server yet. def add_filter_options(parser): parser.filter_group = tools.optparse.OptionGroup(parser, 'Filtering slaves') parser.filter_group.add_option( '-d', '--dimension', default=[], action='append', nargs=2, dest='dimensions', metavar='FOO bar', help='dimension to filter on') parser.add_option_group(parser.filter_group) def add_sharding_options(parser): parser.sharding_group = tools.optparse.OptionGroup(parser, 'Sharding options') parser.sharding_group.add_option( '--shards', type='int', default=1, help='Number of shards to trigger and collect.') parser.add_option_group(parser.sharding_group) def add_trigger_options(parser): """Adds all options to trigger a task on Swarming.""" isolateserver.add_isolate_server_options(parser) add_filter_options(parser) parser.task_group = tools.optparse.OptionGroup(parser, 'Task properties') parser.task_group.add_option( '-s', '--isolated', help='Hash of the .isolated to grab from the isolate server') parser.task_group.add_option( '-e', '--env', default=[], action='append', nargs=2, metavar='FOO bar', help='Environment variables to set') parser.task_group.add_option( '--priority', type='int', default=100, help='The lower value, the more important the task is') parser.task_group.add_option( '-T', '--task-name', help='Display name of the task. Defaults to ' '<base_name>/<dimensions>/<isolated hash>/<timestamp> if an ' 'isolated file is provided, if a hash is provided, it defaults to ' '<user>/<dimensions>/<isolated hash>/<timestamp>') parser.task_group.add_option( '--tags', action='append', default=[], help='Tags to assign to the task.') parser.task_group.add_option( '--user', default='', help='User associated with the task. Defaults to authenticated user on ' 'the server.') parser.task_group.add_option( '--idempotent', action='store_true', default=False, help='When set, the server will actively try to find a previous task ' 'with the same parameter and return this result instead if possible') parser.task_group.add_option( '--expiration', type='int', default=6*60*60, help='Seconds to allow the task to be pending for a bot to run before ' 'this task request expires.') parser.task_group.add_option( '--deadline', type='int', dest='expiration', help=tools.optparse.SUPPRESS_HELP) parser.task_group.add_option( '--hard-timeout', type='int', default=60*60, help='Seconds to allow the task to complete.') parser.task_group.add_option( '--io-timeout', type='int', default=20*60, help='Seconds to allow the task to be silent.') parser.task_group.add_option( '--raw-cmd', action='store_true', default=False, help='When set, the command after -- is used as-is without run_isolated. ' 'In this case, no .isolated file is expected.') parser.add_option_group(parser.task_group) def process_trigger_options(parser, options, args): """Processes trigger options and uploads files to isolate server if necessary. """ options.dimensions = dict(options.dimensions) options.env = dict(options.env) data = [] if not options.dimensions: parser.error('Please at least specify one --dimension') if options.raw_cmd: if not args: parser.error( 'Arguments with --raw-cmd should be passed after -- as command ' 'delimiter.') if options.isolate_server: parser.error('Can\'t use both --raw-cmd and --isolate-server.') command = args if not options.task_name: options.task_name = u'%s/%s' % ( options.user, '_'.join( '%s=%s' % (k, v) for k, v in sorted(options.dimensions.iteritems()))) else: isolateserver.process_isolate_server_options(parser, options, False) try: command, data = isolated_handle_options(options, args) except ValueError as e: parser.error(str(e)) return TaskRequest( command=command, data=data, dimensions=options.dimensions, env=options.env, expiration=options.expiration, hard_timeout=options.hard_timeout, idempotent=options.idempotent, io_timeout=options.io_timeout, name=options.task_name, priority=options.priority, tags=options.tags, user=options.user, verbose=options.verbose) def add_collect_options(parser): parser.server_group.add_option( '-t', '--timeout', type='float', default=80*60., help='Timeout to wait for result, set to 0 for no timeout; default: ' '%default s') parser.group_logging.add_option( '--decorate', action='store_true', help='Decorate output') parser.group_logging.add_option( '--print-status-updates', action='store_true', help='Print periodic status updates') parser.task_output_group = tools.optparse.OptionGroup(parser, 'Task output') parser.task_output_group.add_option( '--task-summary-json', metavar='FILE', help='Dump a summary of task results to this file as json. It contains ' 'only shards statuses as know to server directly. Any output files ' 'emitted by the task can be collected by using --task-output-dir') parser.task_output_group.add_option( '--task-output-dir', metavar='DIR', help='Directory to put task results into. When the task finishes, this ' 'directory contains per-shard directory with output files produced ' 'by shards: <task-output-dir>/<zero-based-shard-index>/.') parser.add_option_group(parser.task_output_group) def CMDbots(parser, args): """Returns information about the bots connected to the Swarming server.""" add_filter_options(parser) parser.filter_group.add_option( '--dead-only', action='store_true', help='Only print dead bots, useful to reap them and reimage broken bots') parser.filter_group.add_option( '-k', '--keep-dead', action='store_true', help='Do not filter out dead bots') parser.filter_group.add_option( '-b', '--bare', action='store_true', help='Do not print out dimensions') options, args = parser.parse_args(args) if options.keep_dead and options.dead_only: parser.error('Use only one of --keep-dead and --dead-only') bots = [] cursor = None limit = 250 # Iterate via cursors. base_url = options.swarming + '/swarming/api/v1/client/bots?limit=%d' % limit while True: url = base_url if cursor: url += '&cursor=%s' % urllib.quote(cursor) data = net.url_read_json(url) if data is None: print >> sys.stderr, 'Failed to access %s' % options.swarming return 1 bots.extend(data['items']) cursor = data['cursor'] if not cursor: break for bot in natsort.natsorted(bots, key=lambda x: x['id']): if options.dead_only: if not bot['is_dead']: continue elif not options.keep_dead and bot['is_dead']: continue # If the user requested to filter on dimensions, ensure the bot has all the # dimensions requested. dimensions = bot['dimensions'] for key, value in options.dimensions: if key not in dimensions: break # A bot can have multiple value for a key, for example, # {'os': ['Windows', 'Windows-6.1']}, so that --dimension os=Windows will # be accepted. if isinstance(dimensions[key], list): if value not in dimensions[key]: break else: if value != dimensions[key]: break else: print bot['id'] if not options.bare: print ' %s' % json.dumps(dimensions, sort_keys=True) if bot.get('task_id'): print ' task: %s' % bot['task_id'] return 0 @subcommand.usage('--json file | task_id...') def CMDcollect(parser, args): """Retrieves results of one or multiple Swarming task by its ID. The result can be in multiple part if the execution was sharded. It can potentially have retries. """ add_collect_options(parser) parser.add_option( '-j', '--json', help='Load the task ids from .json as saved by trigger --dump-json') (options, args) = parser.parse_args(args) if not args and not options.json: parser.error('Must specify at least one task id or --json.') if args and options.json: parser.error('Only use one of task id or --json.') if options.json: with open(options.json) as f: tasks = sorted( json.load(f)['tasks'].itervalues(), key=lambda x: x['shard_index']) args = [t['task_id'] for t in tasks] else: valid = frozenset('0123456789abcdef') if any(not valid.issuperset(task_id) for task_id in args): parser.error('Task ids are 0-9a-f.') try: return collect( options.swarming, None, args, options.timeout, options.decorate, options.print_status_updates, options.task_summary_json, options.task_output_dir) except Failure: on_error.report(None) return 1 @subcommand.usage('[resource name]') def CMDquery(parser, args): """Returns raw JSON information via an URL endpoint. Use 'list' to gather the list of valid values from the server. Examples: Printing the list of known URLs: swarming.py query -S https://server-url list Listing last 50 tasks on a specific bot named 'swarm1' swarming.py query -S https://server-url --limit 50 bot/swarm1/tasks """ CHUNK_SIZE = 250 parser.add_option( '-L', '--limit', type='int', default=200, help='Limit to enforce on limitless items (like number of tasks); ' 'default=%default') (options, args) = parser.parse_args(args) if len(args) != 1: parser.error('Must specify only one resource name.') base_url = options.swarming + '/swarming/api/v1/client/' + args[0] url = base_url if options.limit: # Check check, change if not working out. merge_char = '&' if '?' in url else '?' url += '%slimit=%d' % (merge_char, min(CHUNK_SIZE, options.limit)) data = net.url_read_json(url) if data is None: print >> sys.stderr, 'Failed to access %s' % options.swarming return 1 # Some items support cursors. Try to get automatically if cursors are needed # by looking at the 'cursor' items. while ( data.get('cursor') and (not options.limit or len(data['items']) < options.limit)): url = base_url + '?cursor=%s' % urllib.quote(data['cursor']) if options.limit: url += '&limit=%d' % min(CHUNK_SIZE, options.limit - len(data['items'])) new = net.url_read_json(url) if new is None: print >> sys.stderr, 'Failed to access %s' % options.swarming return 1 data['items'].extend(new['items']) data['cursor'] = new['cursor'] if options.limit and len(data.get('items', [])) > options.limit: data['items'] = data['items'][:options.limit] data.pop('cursor', None) json.dump(data, sys.stdout, indent=2, sort_keys=True) sys.stdout.write('\n') return 0 @subcommand.usage('(hash|isolated) [-- extra_args]') def CMDrun(parser, args): """Triggers a task and wait for the results. Basically, does everything to run a command remotely. """ add_trigger_options(parser) add_collect_options(parser) add_sharding_options(parser) options, args = parser.parse_args(args) task_request = process_trigger_options(parser, options, args) try: tasks = trigger_task_shards( options.swarming, task_request, options.shards) except Failure as e: on_error.report( 'Failed to trigger %s(%s): %s' % (options.task_name, args[0], e.args[0])) return 1 if not tasks: on_error.report('Failed to trigger the task.') return 1 print('Triggered task: %s' % options.task_name) task_ids = [ t['task_id'] for t in sorted(tasks.itervalues(), key=lambda x: x['shard_index']) ] try: return collect( options.swarming, options.task_name, task_ids, options.timeout, options.decorate, options.print_status_updates, options.task_summary_json, options.task_output_dir) except Failure: on_error.report(None) return 1 @subcommand.usage('task_id') def CMDreproduce(parser, args): """Runs a task locally that was triggered on the server. This running locally the same commands that have been run on the bot. The data downloaded will be in a subdirectory named 'work' of the current working directory. """ options, args = parser.parse_args(args) if len(args) != 1: parser.error('Must specify exactly one task id.') url = options.swarming + '/swarming/api/v1/client/task/%s/request' % args[0] request = net.url_read_json(url) if not request: print >> sys.stderr, 'Failed to retrieve request data for the task' return 1 if not os.path.isdir('work'): os.mkdir('work') swarming_host = urlparse.urlparse(options.swarming).netloc properties = request['properties'] for data_url, _ in properties['data']: assert data_url.startswith('https://'), data_url data_host = urlparse.urlparse(data_url).netloc if data_host != swarming_host: auth.ensure_logged_in('https://' + data_host) content = net.url_read(data_url) if content is None: print >> sys.stderr, 'Failed to download %s' % data_url return 1 with zipfile.ZipFile(StringIO.StringIO(content)) as zip_file: zip_file.extractall('work') env = None if properties['env']: env = os.environ.copy() logging.info('env: %r', properties['env']) env.update( (k.encode('utf-8'), v.encode('utf-8')) for k, v in properties['env'].iteritems()) exit_code = 0 for cmd in properties['commands']: try: c = subprocess.call(cmd, env=env, cwd='work') except OSError as e: print >> sys.stderr, 'Failed to run: %s' % ' '.join(cmd) print >> sys.stderr, str(e) c = 1 if not exit_code: exit_code = c return exit_code @subcommand.usage("(hash|isolated) [-- extra_args|raw command]") def CMDtrigger(parser, args): """Triggers a Swarming task. Accepts either the hash (sha1) of a .isolated file already uploaded or the path to an .isolated file to archive. If an .isolated file is specified instead of an hash, it is first archived. Passes all extra arguments provided after '--' as additional command line arguments for an isolated command specified in *.isolate file. """ add_trigger_options(parser) add_sharding_options(parser) parser.add_option( '--dump-json', metavar='FILE', help='Dump details about the triggered task(s) to this file as json') options, args = parser.parse_args(args) task_request = process_trigger_options(parser, options, args) try: tasks = trigger_task_shards( options.swarming, task_request, options.shards) if tasks: print('Triggered task: %s' % options.task_name) tasks_sorted = sorted( tasks.itervalues(), key=lambda x: x['shard_index']) if options.dump_json: data = { 'base_task_name': options.task_name, 'tasks': tasks, } tools.write_json(options.dump_json, data, True) print('To collect results, use:') print(' swarming.py collect -S %s --json %s' % (options.swarming, options.dump_json)) else: print('To collect results, use:') print(' swarming.py collect -S %s %s' % (options.swarming, ' '.join(t['task_id'] for t in tasks_sorted))) print('Or visit:') for t in tasks_sorted: print(' ' + t['view_url']) return int(not tasks) except Failure: on_error.report(None) return 1 class OptionParserSwarming(tools.OptionParserWithLogging): def __init__(self, **kwargs): tools.OptionParserWithLogging.__init__( self, prog='swarming.py', **kwargs) self.server_group = tools.optparse.OptionGroup(self, 'Server') self.server_group.add_option( '-S', '--swarming', metavar='URL', default=os.environ.get('SWARMING_SERVER', ''), help='Swarming server to use') self.add_option_group(self.server_group) auth.add_auth_options(self) def parse_args(self, *args, **kwargs): options, args = tools.OptionParserWithLogging.parse_args( self, *args, **kwargs) auth.process_auth_options(self, options) user = self._process_swarming(options) if hasattr(options, 'user') and not options.user: options.user = user return options, args def _process_swarming(self, options): """Processes the --swarming option and aborts if not specified. Returns the identity as determined by the server. """ if not options.swarming: self.error('--swarming is required.') try: options.swarming = net.fix_url(options.swarming) except ValueError as e: self.error('--swarming %s' % e) on_error.report_on_exception_exit(options.swarming) try: user = auth.ensure_logged_in(options.swarming) except ValueError as e: self.error(str(e)) return user def main(args): dispatcher = subcommand.CommandDispatcher(__name__) return dispatcher.execute(OptionParserSwarming(version=__version__), args) if __name__ == '__main__': fix_encoding.fix_encoding() tools.disable_buffering() colorama.init() sys.exit(main(sys.argv[1:]))
# coding: utf-8 from functools import partial import sublime from sublime_plugin import WindowCommand from ..util import noop, StatusSpinner from ..cmd import GitFlowCmd enabled = True __all__ = ['GitFlowInitCommand', 'GitFlowFeatureCommand', 'GitFlowFeatureStartCommand', 'GitFlowFeatureFinishCommand', 'GitFlowReleaseCommand', 'GitFlowReleaseStartCommand', 'GitFlowReleaseFinishCommand', 'GitFlowHotfixStartCommand', 'GitFlowHotfixFinishCommand'] class GitFlowWindowCmd(GitFlowCmd): def is_visible(self): return enabled def is_enabled(self): return enabled def get_branch_choices(self, repo, kind): lines = self.git_flow_lines([kind], cwd=repo) branches, choices = [], [] lines = [l for l in lines if l.strip()] for l in sorted(lines, key=lambda x: (0 if x[0] == '*' else 1, x[2:])): current = l[0:2] name = l[2:] choices.append(['%s%s' % (current, name.strip())]) branches.append(name) return branches, choices def show_branches_panel(self, repo, on_selection, *args, **kwargs): branches, choices = self.get_branch_choices(repo, *args, **kwargs) def on_done(idx): if idx != -1: branch = branches[idx] on_selection(branch) self.window.show_quick_panel(choices, on_done, sublime.MONOSPACE_FONT) def run_async_gitflow_with_panel(self, repo, cmd, progress, panel_name): self.panel = self.window.get_output_panel(panel_name) self.panel_name = panel_name self.panel_shown = False thread = self.git_flow_async(cmd, cwd=repo, on_data=self.on_data) runner = StatusSpinner(thread, progress) runner.start() def on_data(self, d): if not self.panel_shown: self.window.run_command('show_panel', {'panel': 'output.%s' % self.panel_name}) self.panel.run_command('git_panel_append', {'content': d, 'scroll': True}) self.window.run_command('git_status', {'refresh_only': True}) def run_sync_gitflow_with_panel(self, repo, cmd, panel_name): out = self.git_flow_string(cmd, cwd=repo) panel = self.window.get_output_panel(panel_name) panel.run_command('git_panel_write', {'content': out}) self.window.run_command('show_panel', {'panel': 'output.%s' % panel_name}) self.window.run_command('git_status', {'refresh_only': True}) class GitFlowInitCommand(GitFlowWindowCmd, WindowCommand): def run(self, defaults=True): repo = self.get_repo() if not repo: return self.run_async_gitflow_with_panel(repo, ['init', '-d'], "Initializing git-flow", "git-flow-init") # Generic class GitFlowStartCommand(GitFlowWindowCmd): def start(self, kind, base=False): repo = self.get_repo() if not repo: return self.kind = kind self.base = base self.window.show_input_panel('%s:' % self.kind.capitalize(), '', partial(self.on_select, repo), noop, noop) def on_select(self, repo, selection): selection = selection.strip() if not selection: return if self.base: self.window.show_input_panel('Base:', '', partial(self.on_complete, repo, selection), noop, noop) else: self.on_complete(repo, selection) def on_complete(self, repo, selection, base=None): cmd = [self.kind, 'start', selection] if base and base.strip(): cmd.append(base.strip()) self.run_sync_gitflow_with_panel(repo, cmd, 'git-flow-%s-start' % self.kind) self.window.run_command('git_status', {'refresh_only': True}) class GitFlowFinishCommand(GitFlowWindowCmd): def finish(self, kind): repo = self.get_repo() if not repo: return self.kind = kind self.show_branches_panel(repo, partial(self.on_complete, repo), self.kind) def on_complete(self, repo, selection): progress = "Finishing %s: %s" % (self.kind, selection) panel_name = 'git-flow-%s-finish' % self.kind self.run_async_gitflow_with_panel(repo, [self.kind, 'finish', selection], progress, panel_name) # Start commands class GitFlowFeatureStartCommand(GitFlowStartCommand, WindowCommand): """ Documentation coming soon. """ def run(self, base=False): self.start('feature', base) class GitFlowReleaseStartCommand(GitFlowStartCommand, WindowCommand): """ Documentation coming soon. """ def run(self, base=False): self.start('release', base) class GitFlowHotfixStartCommand(GitFlowStartCommand, WindowCommand): """ Documentation coming soon. """ def run(self, base=False): self.start('hotfix', base) # Finish commands class GitFlowFeatureFinishCommand(GitFlowFinishCommand, WindowCommand): """ Documentation coming soon. """ def run(self): self.finish('feature') class GitFlowReleaseFinishCommand(GitFlowFinishCommand, WindowCommand): """ Documentation coming soon. """ def run(self): self.finish('release') class GitFlowHotfixFinishCommand(GitFlowFinishCommand, WindowCommand): """ Documentation coming soon. """ def run(self): self.finish('hotfix') # Features class GitFlowFeatureCommand(GitFlowWindowCmd, WindowCommand): """ Documentation coming soon. """ def run(self): repo = self.get_repo() if not repo: return self.show_branches_panel(repo, noop, 'feature') class GitFlowFeaturePublishCommand(GitFlowWindowCmd, WindowCommand): """ Documentation coming soon. """ def run(self): pass class GitFlowFeaturePullCommand(GitFlowWindowCmd, WindowCommand): """ Documentation coming soon. """ def run(self): pass # Releases class GitFlowReleaseCommand(GitFlowWindowCmd, WindowCommand): """ Documentation coming soon. """ def run(self): repo = self.get_repo() if not repo: return self.show_branches_panel(repo, noop, 'release')
#!/usr/bin/env python # # The purpose of the script is to parse the DeepLearning.java file and emit # code related to parameters. # # Currently pieces of R code get emitted and need to be pasted in manually to the R file. # import sys import os import shutil import signal import time import random import getpass import re import subprocess class Blob: def __init__(self, n, help): self.n = n self.help = help def read_deeplearning_file(deeplearning_file): """ Read deep learning file and generate R parameter stub stuff. @param deeplearning_file: Java source code file @return: none """ try: nlist = [] in_api = False help = None f = open(deeplearning_file, "r") s = f.readline() lineno = 0 while (len(s) != 0): lineno = lineno + 1 stripped = s.strip() if (len(stripped) == 0): s = f.readline() continue if (stripped.startswith("@API")): # print("") if (in_api): assert(False) in_api = True match_groups = re.search("help\s*=\s*\"([^\"]*)\"", stripped) if (match_groups == None): print("Missing help") sys.exit(1) help = match_groups.group(1) # print(help) s = f.readline() continue if (in_api): skip = False if "checkpoint" in stripped: skip = True if "expert_mode" in stripped: skip = True # if "activation" in stripped: # skip = True # if "initial_weight_distribution" in stripped: # skip = True # if "loss" in stripped: # skip = True # if "score_validation_sampling" in stripped: # skip = True if (skip): in_api = False s = f.readline() continue match_groups = re.search("public boolean (\S+) = (\S+);", s) if (match_groups is not None): t = "boolean" n = match_groups.group(1) v = match_groups.group(2) print(" parms = .addBooleanParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, n, v) in_api = False s = f.readline() continue match_groups = re.search("public Activation (\S+) = (\S+);", s) if (match_groups is not None): t = "string" n = match_groups.group(1) v = match_groups.group(2) print(" parms = .addStringParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, n, v) in_api = False s = f.readline() continue match_groups = re.search("public int\[\] (\S+) = .*;", s) if (match_groups is not None): t = "int array" n = match_groups.group(1) print(" parms = .addIntArrayParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, n) in_api = False s = f.readline() continue match_groups = re.search("public int (\S+) = .*;", s) if (match_groups is not None): t = "int" n = match_groups.group(1) print(" parms = .addIntParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, n) in_api = False s = f.readline() continue match_groups = re.search("public double (\S+) = (\S+);", s) if (match_groups is not None): t = "double" n = match_groups.group(1) v = match_groups.group(2) print(" parms = .addDoubleParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, n, v) in_api = False s = f.readline() continue match_groups = re.search("public float (\S+) = (\S+);", s) if (match_groups is not None): t = "float" n = match_groups.group(1) v = match_groups.group(2) print(" parms = .addFloatParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, n, v) in_api = False s = f.readline() continue match_groups = re.search("public double\[\] (\S+);", s) if (match_groups is not None): t = "double array" n = match_groups.group(1) print(" parms = .addDoubleArrayParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, n) in_api = False s = f.readline() continue match_groups = re.search("public long (\S+) = new Random.*;", s) if (match_groups is not None): t = "long" n = match_groups.group(1) v = -1 print(" parms = .addLongParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, n, v) in_api = False s = f.readline() continue match_groups = re.search("public long (\S+) = (\S+);", s) if (match_groups is not None): t = "long" n = match_groups.group(1) v = match_groups.group(2) print(" parms = .addLongParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, n, v) in_api = False s = f.readline() continue if (stripped == "public InitialWeightDistribution initial_weight_distribution = InitialWeightDistribution.UniformAdaptive;"): t = "string" n = "initial_weight_distribution" print(" parms = .addStringParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, "initial_weight_distribution", "UniformAdaptive") in_api = False s = f.readline() continue if (stripped == "public Loss loss = Loss.CrossEntropy;"): t = "string" n = "loss" print(" parms = .addStringParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, "loss", "CrossEntropy") in_api = False s = f.readline() continue if (stripped == "public ClassSamplingMethod score_validation_sampling = ClassSamplingMethod.Uniform;"): t = "string" n = "score_validation_sampling" print(" parms = .addStringParm(parms, k=\"{}\", v={})".format(n,n)) nlist.append(Blob(n, help)) # print(t, "score_validation_sampling", "Uniform") in_api = False s = f.readline() continue print("ERROR: No match group found on line ", lineno) sys.exit(1) s = f.readline() f.close() print("") print("") for blob in nlist: print(" {},".format(blob.n)) print("") print("") for blob in nlist: print(" \item{\code{" + blob.n + "}: " + blob.help + "}") except IOError as e: print("") print("ERROR: Failure reading test list: " + deeplearning_file) print(" (errno {0}): {1}".format(e.errno, e.strerror)) print("") sys.exit(1) def main(argv): read_deeplearning_file("./src/main/java/hex/deeplearning/DeepLearning.java") if __name__ == "__main__": main(sys.argv)
import logging from voluptuous import * from ...adjust import adjust as adjustmodule from ... import pull as pullmodule from ... import repo def mode_b_ify(raw): clone = raw.copy() del clone["name"] clone["internal_url"] = { "readwrite": Url(), #pylint: disable=no-value-for-parameter "readonly": Url(), #pylint: disable=no-value-for-parameter } return clone # # Primitives # nonempty_str = All(str, Length(min=1)) nonempty_noblank_str = All(str, Match(r'^\S+$')) port_num = All(int, Range(min=1, max=65535)) name_str = Match(r'^[a-zA-Z0-9_.][a-zA-Z0-9_.-]*(?<!\.git)$') # # Callback # callback_raw = { "url": Url(), #pylint: disable=no-value-for-parameter Optional("method"): Any("PUT", "POST"), } callback = Schema( {"callback": callback_raw}, required=True, extra=True, ) # # Adjust # adjust_raw = { "name": name_str, "ref": nonempty_str, Optional("adjustParameters"): All(dict), Optional("callback"): callback_raw, } adjust = Schema( adjust_raw, required=True, extra=False, ) adjust_modeb = Schema( mode_b_ify(adjust_raw), required=True, extra=False, ) # # Pull # pull_scm_raw = { "name": name_str, "type": Any(*pullmodule.scm_types), Optional("ref"): nonempty_str, "url": Url(), #pylint: disable=no-value-for-parameter Optional("adjust"): bool, Optional("callback"): callback_raw, } pull_scm = Schema( pull_scm_raw, required=True, extra=False, ) pull_archive_raw = { "name": name_str, "type": pullmodule.archive_type, "url": Url(), #pylint: disable=no-value-for-parameter Optional("adjust"): bool, Optional("callback"): callback_raw, } pull_archive = Schema( pull_archive_raw, required=True, extra=False, ) pull_raw = Any(pull_scm, pull_archive) pull = Schema( pull_raw, required=True, extra=False, ) pull_scm_modeb = mode_b_ify(pull_scm_raw) pull_archive_modeb = mode_b_ify(pull_archive_raw) pull_modeb = Schema( Any(pull_scm_modeb, pull_archive_modeb), required=True, extra=False, ) # # Clone # clone_raw = { #"name": name_str, "type": "git", # only git supported for now "ref": nonempty_str, "originRepoUrl": Url(), "targetRepoUrl": Url(), Optional("callback"): callback_raw, } clone = Schema( clone_raw, required = True, extra = False, ) # # Returns # error_validation = Schema( [{ "error_message": str, "path": [str], "error_type": str, }], required=True, extra=False, ) error_described = Schema( { "error_type": nonempty_str, "error_traceback": nonempty_str, str: object, }, required=True, extra=False, ) error_other = Schema( { "error_type": nonempty_str, "error_traceback": nonempty_str, }, required=True, extra=False, ) success_pull = Schema( { "branch": nonempty_str, "tag": nonempty_str, "url": { "readonly": Url(), #pylint: disable=no-value-for-parameter "readwrite": Url(), #pylint: disable=no-value-for-parameter }, }, required=True, extra=False, ) success_adjust = success_pull success_pull_adjust = Schema( { "branch": nonempty_str, "tag": nonempty_str, "url": { "readonly": Url(), #pylint: disable=no-value-for-parameter "readwrite": Url(), #pylint: disable=no-value-for-parameter }, "pull": success_pull, }, required=True, extra=False, ) # # Server configuration # server_config_raw = { "log": { "path": nonempty_str, "level": Any(*logging._nameToLevel.keys()), }, "bind": { "address": Any(nonempty_str, None), "port": port_num, }, "adjust_provider": { "type": Any(nonempty_str, None), "params": {Extra: object}, }, "repo_provider": { "type": Any(*repo.provider_types.keys()), "params": {Extra: object}, }, } server_config = Schema( server_config_raw, required=True, extra=False, )
from __future__ import print_function, absolute_import, division import abc import uuid import warnings import tempfile from six.moves import zip import numpy as np from numpy.lib.stride_tricks import as_strided import dask.array as da from astropy.wcs import InconsistentAxisTypesError from astropy.io import fits from . import wcs_utils from .utils import WCSWarning __all__ = ['MaskBase', 'InvertedMask', 'CompositeMask', 'BooleanArrayMask', 'LazyMask', 'LazyComparisonMask', 'FunctionMask'] # Global version of the with_spectral_unit docs to avoid duplicating them with_spectral_unit_docs = """ Parameters ---------- unit : u.Unit Any valid spectral unit: velocity, (wave)length, or frequency. Only vacuum units are supported. velocity_convention : u.doppler_relativistic, u.doppler_radio, or u.doppler_optical The velocity convention to use for the output velocity axis. Required if the output type is velocity. rest_value : u.Quantity A rest wavelength or frequency with appropriate units. Required if output type is velocity. The cube's WCS should include this already if the *input* type is velocity, but the WCS's rest wavelength/frequency can be overridden with this parameter. """ def is_broadcastable_and_smaller(shp1, shp2): """ Test if shape 1 can be broadcast to shape 2, not allowing the case where shape 2 has a dimension length 1 """ for a, b in zip(shp1[::-1], shp2[::-1]): # b==1 is broadcastable but not desired if a == 1 or a == b: pass else: return False return True def dims_to_skip(shp1, shp2): """ For a shape `shp1` that is broadcastable to shape `shp2`, specify which dimensions are length 1. Parameters ---------- keep : bool If True, return the dimensions to keep rather than those to remove """ if not is_broadcastable_and_smaller(shp1, shp2): raise ValueError("Cannot broadcast {0} to {1}".format(shp1,shp2)) dims = [] for ii,(a, b) in enumerate(zip(shp1[::-1], shp2[::-1])): # b==1 is broadcastable but not desired if a == 1: dims.append(len(shp2) - ii - 1) elif a == b: pass else: raise ValueError("This should not be possible") if len(shp1) < len(shp2): dims += list(range(len(shp2)-len(shp1))) return dims def view_of_subset(shp1, shp2, view): """ Given two shapes and a view, assuming that shape 1 can be broadcast to shape 2, return the sub-view that applies to shape 1 """ # if the view is 1-dimensional, we can't subset it if not hasattr(view, '__len__'): return view dts = dims_to_skip(shp1, shp2) if view: cv_view = [x for ii,x in enumerate(view) if ii not in dts] else: # if no view is specified, still need to slice cv_view = [x for ii,x in enumerate([slice(None)]*3) if ii not in dts] # return type matters # array[[0,0]] = [array[0], array[0]] # array[(0,0)] = array[0,0] return tuple(cv_view) class MaskBase(object): __metaclass__ = abc.ABCMeta def include(self, data=None, wcs=None, view=(), **kwargs): """ Return a boolean array indicating which values should be included. If ``view`` is passed, only the sliced mask will be returned, which avoids having to load the whole mask in memory. Otherwise, the whole mask is returned in-memory. kwargs are passed to _validate_wcs """ self._validate_wcs(data, wcs, **kwargs) return self._include(data=data, wcs=wcs, view=view) # Commented out, but left as a possibility, because including this didn't fix any # of the problems we encountered with matplotlib plotting def view(self, view=()): """ Compatibility tool: if a numpy.ma.ufunc is run on the mask, it will try to grab a view of the mask, which needs to appear to numpy as a true array. This can be important for, e.g., plotting. Numpy's convention is that masked=True means "masked out" .. note:: I don't know if there are broader concerns or consequences from including this 'view' tool here. """ return self.exclude(view=view) def _validate_wcs(self, new_data=None, new_wcs=None, **kwargs): """ This method can be overridden in cases where the data and WCS have to conform to some rules. This gets called automatically when ``include`` or ``exclude`` are called. """ pass @abc.abstractmethod def _include(self, data=None, wcs=None, view=()): pass def exclude(self, data=None, wcs=None, view=(), **kwargs): """ Return a boolean array indicating which values should be excluded. If ``view`` is passed, only the sliced mask will be returned, which avoids having to load the whole mask in memory. Otherwise, the whole mask is returned in-memory. kwargs are passed to _validate_wcs """ self._validate_wcs(data, wcs, **kwargs) return self._exclude(data=data, wcs=wcs, view=view) def _exclude(self, data=None, wcs=None, view=()): return np.logical_not(self._include(data=data, wcs=wcs, view=view)) def any(self): return np.any(self.exclude()) def _flattened(self, data, wcs=None, view=()): """ Return a flattened array of the included elements of cube Parameters ---------- data : array-like The data array to flatten view : tuple, optional Any slicing to apply to the data before flattening Returns ------- flat_array : `~numpy.ndarray` A 1-D ndarray containing the flattened output Notes ----- This is an internal method used by :class:`SpectralCube`. """ mask = self.include(data=data, wcs=wcs, view=view) # Workaround for https://github.com/dask/dask/issues/6089 if isinstance(data, da.Array) and not isinstance(mask, da.Array): mask = da.asarray(mask, name=str(uuid.uuid4())) # if not isinstance(data, da.Array) and isinstance(mask, da.Array): # mask = mask.compute() return data[view][mask] def _filled(self, data, wcs=None, fill=np.nan, view=(), use_memmap=False, **kwargs): """ Replace the excluded elements of *array* with *fill*. Parameters ---------- data : array-like Input array fill : number Replacement value view : tuple, optional Any slicing to apply to the data before flattening use_memmap : bool Use a memory map to store the output data? Returns ------- filled_array : `~numpy.ndarray` A 1-D ndarray containing the filled output Notes ----- This is an internal method used by :class:`SpectralCube`. Users should use the property :meth:`MaskBase.filled_data` """ # Must convert to floating point, but should not change from inherited # type otherwise dt = np.find_common_type([data.dtype], [float]) if use_memmap and data.size > 0: ntf = tempfile.NamedTemporaryFile() sliced_data = np.memmap(ntf, mode='w+', shape=data[view].shape, dtype=dt) sliced_data[:] = data[view] else: sliced_data = data[view].astype(dt) ex = self.exclude(data=data, wcs=wcs, view=view, **kwargs) return np.ma.masked_array(sliced_data, mask=ex).filled(fill) def __and__(self, other): return CompositeMask(self, other, operation='and') def __or__(self, other): return CompositeMask(self, other, operation='or') def __xor__(self, other): return CompositeMask(self, other, operation='xor') def __invert__(self): return InvertedMask(self) @property def shape(self): raise NotImplementedError("{0} mask classes do not have shape attributes." .format(self.__class__.__name__)) @property def ndim(self): return len(self.shape) @property def size(self): return np.product(self.shape) @property def dtype(self): return np.dtype('bool') def __getitem__(self): raise NotImplementedError("Slicing not supported by mask class {0}" .format(self.__class__.__name__)) def quicklook(self, view, wcs=None, filename=None, use_aplpy=True, aplpy_kwargs={}): ''' View a 2D slice of the mask, specified by view. Parameters ---------- view : tuple Slicing to apply to the mask. Must return a 2D slice. wcs : astropy.wcs.WCS, optional WCS object to use in plotting the mask slice. filename : str, optional Filename of the output image. Enables saving of the plot. use_aplpy : bool, optional Try plotting with the aplpy package aplpy_kwargs : dict, optional kwargs passed to `~aplpy.FITSFigure`. ''' view_twod = self.include(view=view, wcs=wcs) if use_aplpy: if wcs is not None: hdu = fits.PrimaryHDU(view_twod.astype(int), wcs.to_header()) else: hdu = fits.PrimaryHDU(view_twod.astype(int)) try: import aplpy FITSFigure = aplpy.FITSFigure(hdu, **aplpy_kwargs) FITSFigure.show_grayscale() FITSFigure.add_colorbar() if filename is not None: FITSFigure.save(filename) except (InconsistentAxisTypesError, ImportError): use_aplpy = True if not use_aplpy: from matplotlib import pyplot figure = pyplot.imshow(view_twod) if filename is not None: figure.savefig(filename) def _get_new_wcs(self, unit, velocity_convention=None, rest_value=None): """ Returns a new WCS with a different Spectral Axis unit """ from .spectral_axis import convert_spectral_axis,determine_ctype_from_vconv out_ctype = determine_ctype_from_vconv(self._wcs.wcs.ctype[self._wcs.wcs.spec], unit, velocity_convention=velocity_convention) newwcs = convert_spectral_axis(self._wcs, unit, out_ctype, rest_value=rest_value) newwcs.wcs.set() return newwcs _get_new_wcs.__doc__ += with_spectral_unit_docs class InvertedMask(MaskBase): def __init__(self, mask): self._mask = mask @property def shape(self): return self._mask.shape def _include(self, data=None, wcs=None, view=()): return np.logical_not(self._mask.include(data=data, wcs=wcs, view=view)) def __getitem__(self, view): return InvertedMask(self._mask[view]) def with_spectral_unit(self, unit, velocity_convention=None, rest_value=None): """ Get an InvertedMask copy with a WCS in the modified unit """ newmask = self._mask.with_spectral_unit(unit, velocity_convention=velocity_convention, rest_value=rest_value) return InvertedMask(newmask) with_spectral_unit.__doc__ += with_spectral_unit_docs class CompositeMask(MaskBase): """ A combination of several masks. The included masks are treated with the specified operation. Parameters ---------- mask1, mask2 : Masks The two masks to composite operation : str Either 'and' or 'or'; the operation used to combine the masks """ def __init__(self, mask1, mask2, operation='and'): if isinstance(mask1, np.ndarray) and isinstance(mask2, MaskBase) and hasattr(mask2, 'shape'): if not is_broadcastable_and_smaller(mask1.shape, mask2.shape): raise ValueError("Mask1 shape is not broadcastable to Mask2 shape: " "%s vs %s" % (mask1.shape, mask2.shape)) mask1 = BooleanArrayMask(mask1, mask2._wcs, shape=mask2.shape) elif isinstance(mask2, np.ndarray) and isinstance(mask1, MaskBase) and hasattr(mask1, 'shape'): if not is_broadcastable_and_smaller(mask2.shape, mask1.shape): raise ValueError("Mask2 shape is not broadcastable to Mask1 shape: " "%s vs %s" % (mask2.shape, mask1.shape)) mask2 = BooleanArrayMask(mask2, mask1._wcs, shape=mask1.shape) # both entries must have compatible, which effectively means # equal, WCSes. Unless one is a function. if hasattr(mask1, '_wcs') and hasattr(mask2, '_wcs'): mask1._validate_wcs(new_data=None, wcs=mask2._wcs) # In order to composite composites, they must have a _wcs defined. # (maybe this should be a property?) self._wcs = mask1._wcs elif hasattr(mask1, '_wcs'): # if one mask doesn't have a WCS, but the other does, the # compositemask should have the same WCS as the one that does self._wcs = mask1._wcs elif hasattr(mask2, '_wcs'): self._wcs = mask2._wcs self._mask1 = mask1 self._mask2 = mask2 self._operation = operation def _validate_wcs(self, new_data=None, new_wcs=None, **kwargs): self._mask1._validate_wcs(new_data=new_data, new_wcs=new_wcs, **kwargs) self._mask2._validate_wcs(new_data=new_data, new_wcs=new_wcs, **kwargs) @property def shape(self): try: assert self._mask1.shape == self._mask2.shape return self._mask1.shape except AssertionError: raise ValueError("The composite mask does not have a well-defined " "shape; its two components have shapes {0} and " "{1}.".format(self._mask1.shape, self._mask2.shape)) except NotImplementedError: raise ValueError("The composite mask contains at least one " "component with no defined shape.") def _include(self, data=None, wcs=None, view=()): result_mask_1 = self._mask1._include(data=data, wcs=wcs, view=view) result_mask_2 = self._mask2._include(data=data, wcs=wcs, view=view) if self._operation == 'and': return np.bitwise_and(result_mask_1, result_mask_2) elif self._operation == 'or': return np.bitwise_or(result_mask_1, result_mask_2) elif self._operation == 'xor': return np.bitwise_xor(result_mask_1, result_mask_2) else: raise ValueError("Operation '{0}' not supported".format(self._operation)) def __getitem__(self, view): return CompositeMask(self._mask1[view], self._mask2[view], operation=self._operation) def with_spectral_unit(self, unit, velocity_convention=None, rest_value=None): """ Get a CompositeMask copy in which each component has a WCS in the modified unit """ newmask1 = self._mask1.with_spectral_unit(unit, velocity_convention=velocity_convention, rest_value=rest_value) newmask2 = self._mask2.with_spectral_unit(unit, velocity_convention=velocity_convention, rest_value=rest_value) return CompositeMask(newmask1, newmask2, self._operation) with_spectral_unit.__doc__ += with_spectral_unit_docs class BooleanArrayMask(MaskBase): """ A mask defined as an array on a spectral cube WCS Parameters ---------- mask: `numpy.ndarray` A boolean numpy ndarray wcs: `astropy.wcs.WCS` The WCS object shape: tuple The shape of the region the array is masking. This is *required* if ``mask.ndim != data.ndim`` to provide rules for how to broadcast the mask """ def __init__(self, mask, wcs, shape=None, include=True): self._mask_type = 'include' if include else 'exclude' self._wcs = wcs self._wcs_whitelist = set() #if mask.ndim != 3 and (shape is None or len(shape) != 3): # raise ValueError("When creating a BooleanArrayMask with <3 dimensions, " # "the shape of the 3D array must be specified.") if shape is not None and not is_broadcastable_and_smaller(mask.shape, shape): raise ValueError("Mask cannot be broadcast to the specified shape.") self._shape = shape or mask.shape self._mask = mask """ Developer note (AG): The logic in this following section seems overly complicated. All of it is added to make sure that a 1D boolean array along the spectral axis can be created. I thought this was possible previously, but experience many errors in my latest attempt to use one. """ # If a shape is given, we may need to broadcast to that shape if shape is not None: # these are dimensions that simply don't exist n_empty_dims = (len(self._shape)-mask.ndim) # these are dimensions of shape 1 that would be squeezed away but may # be needed to make the arrays broadcastable (e.g., mask[:,None,None]) # Need to add n_empty_dims because (1,2) will broadcast to (3,1,2) # and there will be no extra dims. extra_dims = [ii for ii,(sh1,sh2) in enumerate(zip((0,)*n_empty_dims + mask.shape, shape)) if sh1 == 1 and sh1 != sh2] # Add the [None,]'s and the nonexistant n_extra_dims = n_empty_dims + len(extra_dims) # if there are no extra dims, we're done, the original shape is fine if n_extra_dims > 0: strides = (0,)*n_empty_dims + mask.strides for ed in extra_dims: # all of the [None,] dims should have 0 stride assert strides[ed] == 0,"Stride shape failure" self._mask = as_strided(mask, shape=self.shape, strides=strides) # Make sure the mask shape matches the Mask object shape assert self._mask.shape == self.shape,"Shape initialization failure" def _validate_wcs(self, new_data=None, new_wcs=None, **kwargs): """ Check that the new WCS matches the current one Parameters ---------- kwargs : dict Passed to `wcs_utils.check_equality` """ if new_data is not None and not is_broadcastable_and_smaller(self._mask.shape, new_data.shape): raise ValueError("data shape cannot be broadcast to match mask shape") if new_wcs is not None: if new_wcs not in self._wcs_whitelist: try: if not wcs_utils.check_equality(new_wcs, self._wcs, warn_missing=True, **kwargs): raise ValueError("WCS does not match mask WCS") else: self._wcs_whitelist.add(new_wcs) except InconsistentAxisTypesError: warnings.warn("Inconsistent axis type encountered; WCS is " "invalid and therefore will not be checked " "against other WCSes.", WCSWarning ) self._wcs_whitelist.add(new_wcs) def _include(self, data=None, wcs=None, view=()): result_mask = self._mask[view] return result_mask if self._mask_type == 'include' else np.logical_not(result_mask) def _exclude(self, data=None, wcs=None, view=()): result_mask = self._mask[view] return result_mask if self._mask_type == 'exclude' else np.logical_not(result_mask) @property def shape(self): return self._shape def __getitem__(self, view): return BooleanArrayMask(self._mask[view], wcs_utils.slice_wcs(self._wcs, view, shape=self.shape, drop_degenerate=True), shape=self._mask[view].shape) def with_spectral_unit(self, unit, velocity_convention=None, rest_value=None): """ Get a BooleanArrayMask copy with a WCS in the modified unit """ newwcs = self._get_new_wcs(unit, velocity_convention, rest_value) newmask = BooleanArrayMask(self._mask, newwcs, include=self._mask_type=='include') return newmask with_spectral_unit.__doc__ += with_spectral_unit_docs class LazyMask(MaskBase): """ A boolean mask defined by the evaluation of a function on a fixed dataset. This is conceptually identical to a fixed boolean mask as in :class:`BooleanArrayMask` but defers the evaluation of the mask until it is needed. Parameters ---------- function : callable The function to apply to ``data``. This method should accept a numpy array, which will be a subset of the data array passed to __init__. It should return a boolean array, where `True` values indicate that which pixels are valid/unaffected by masking. data : array-like The array to evaluate ``function`` on. This should support Numpy-like slicing syntax. wcs : `~astropy.wcs.WCS` The WCS of the input data, which is used to define the coordinates for which the boolean mask is defined. """ def __init__(self, function, cube=None, data=None, wcs=None): self._function = function if cube is not None and (data is not None or wcs is not None): raise ValueError("Pass only cube or (data & wcs)") elif cube is not None: self._data = cube._data self._wcs = cube._wcs elif data is not None and wcs is not None: self._data = data self._wcs = wcs else: raise ValueError("Either a cube or (data & wcs) is required.") self._wcs_whitelist = set() @property def shape(self): return self._data.shape def _validate_wcs(self, new_data=None, new_wcs=None, **kwargs): """ Check that the new WCS matches the current one Parameters ---------- kwargs : dict Passed to `wcs_utils.check_equality` """ if new_data is not None: if not is_broadcastable_and_smaller(new_data.shape, self._data.shape): raise ValueError("data shape cannot be broadcast to match mask shape") if new_wcs is not None: if new_wcs not in self._wcs_whitelist: if not wcs_utils.check_equality(new_wcs, self._wcs, warn_missing=True, **kwargs): raise ValueError("WCS does not match mask WCS") else: self._wcs_whitelist.add(new_wcs) def _include(self, data=None, wcs=None, view=()): self._validate_wcs(data, wcs) return self._function(self._data[view]) def __getitem__(self, view): return LazyMask(self._function, data=self._data[view], wcs=wcs_utils.slice_wcs(self._wcs, view, shape=self._data.shape, drop_degenerate=True)) def with_spectral_unit(self, unit, velocity_convention=None, rest_value=None): """ Get a LazyMask copy with a WCS in the modified unit """ newwcs = self._get_new_wcs(unit, velocity_convention, rest_value) newmask = LazyMask(self._function, data=self._data, wcs=newwcs) return newmask with_spectral_unit.__doc__ += with_spectral_unit_docs class LazyComparisonMask(LazyMask): """ A boolean mask defined by the evaluation of a comparison function between a fixed dataset and some other value. This is conceptually similar to the :class:`LazyMask` but it will ensure that the comparison value can be compared to the data Parameters ---------- function : callable The function to apply to ``data``. This method should accept a numpy array, which will be the data array passed to __init__, and a second argument also passed to __init__. It should return a boolean array, where `True` values indicate that which pixels are valid/unaffected by masking. comparison_value : float or array The comparison value for the array data : array-like The array to evaluate ``function`` on. This should support Numpy-like slicing syntax. wcs : `~astropy.wcs.WCS` The WCS of the input data, which is used to define the coordinates for which the boolean mask is defined. """ def __init__(self, function, comparison_value, cube=None, data=None, wcs=None): self._function = function if cube is not None and (data is not None or wcs is not None): raise ValueError("Pass only cube or (data & wcs)") elif cube is not None: self._data = cube._data self._wcs = cube._wcs elif data is not None and wcs is not None: self._data = data self._wcs = wcs else: raise ValueError("Either a cube or (data & wcs) is required.") if (hasattr(comparison_value, 'shape') and not is_broadcastable_and_smaller(self._data.shape, comparison_value.shape)): raise ValueError("The data and the comparison value cannot " "be broadcast to match shape") self._comparison_value = comparison_value self._wcs_whitelist = set() def _include(self, data=None, wcs=None, view=()): self._validate_wcs(data, wcs) if hasattr(self._comparison_value, 'shape') and self._comparison_value.shape: cv_view = view_of_subset(self._comparison_value.shape, self._data.shape, view) return self._function(self._data[view], self._comparison_value[cv_view]) else: return self._function(self._data[view], self._comparison_value) def __getitem__(self, view): if hasattr(self._comparison_value, 'shape') and self._comparison_value.shape: cv_view = view_of_subset(self._comparison_value.shape, self._data.shape, view) return LazyComparisonMask(self._function, data=self._data[view], comparison_value=self._comparison_value[cv_view], wcs=wcs_utils.slice_wcs(self._wcs, view, drop_degenerate=True)) else: return LazyComparisonMask(self._function, data=self._data[view], comparison_value=self._comparison_value, wcs=wcs_utils.slice_wcs(self._wcs, view, drop_degenerate=True)) def with_spectral_unit(self, unit, velocity_convention=None, rest_value=None): """ Get a LazyComparisonMask copy with a WCS in the modified unit """ newwcs = self._get_new_wcs(unit, velocity_convention, rest_value) newmask = LazyComparisonMask(self._function, data=self._data, comparison_value=self._comparison_value, wcs=newwcs) return newmask class FunctionMask(MaskBase): """ A mask defined by a function that is evaluated at run-time using the data passed to the mask. This function differs from :class:`LazyMask` in the arguments which are passed to the function. FunctionMasks receive an array, wcs object, and view, whereas LazyMasks receive pre-sliced views into an array specified at mask-creation time. Parameters ---------- function : callable The function to evaluate the mask. The call signature should be ``function(data, wcs, slice)`` where ``data`` and ``wcs`` are the arguments that get passed to e.g. ``include``, ``exclude``, ``_filled``, and ``_flattened``. The function should return a boolean array, where `True` values indicate that which pixels are valid / unaffected by masking. """ def __init__(self, function): self._function = function def _validate_wcs(self, new_data=None, new_wcs=None, **kwargs): pass def _include(self, data=None, wcs=None, view=()): result = self._function(data, wcs, view) if result.shape != data[view].shape: raise ValueError("Function did not return mask with correct shape - expected {0}, got {1}".format(data[view].shape, result.shape)) return result def __getitem__(self, slice): return self def with_spectral_unit(self, unit, velocity_convention=None, rest_value=None): """ Functional masks do not have WCS defined, so this simply returns a copy of the current mask in order to be consistent with ``with_spectral_unit`` from other Masks """ return FunctionMask(self._function)
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>, # Gael Varoquaux <gael.varoquaux@normalesup.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin from .cross_validation import _check_cv as check_cv from .cross_validation import _fit_and_score from .externals.joblib import Parallel, delayed from .externals import six from .utils import check_random_state from .utils.random import sample_without_replacement from .utils.validation import _num_samples, indexable from .utils.metaestimators import if_delegate_has_method from .metrics.scorer import check_scoring __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): samples = [] # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # get complete grid and yield from it param_grid = list(ParameterGrid(self.param_distributions)) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) while len(samples) < self.n_iter: params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] samples.append(params) yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object This estimator will be cloned and then fitted. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for v in p.values(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values should be a list.") if len(v) == 0: raise ValueError("Parameter values should be a non-empty " "list.") class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class ChangedBehaviorWarning(UserWarning): pass class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate='estimator') def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate='estimator') def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate='estimator') def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate='estimator') def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y = indexable(X, y) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )( delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" method and a "predict" method like any classifier except that the parameters of the classifier used to predict is optimized by cross-validation. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods A object of that type is instantiated for each grid point. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default 1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : integer or cross-validation generator, default=3 If an integer is passed, it is the number of folds. Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a an hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, loss_func=None, score_func=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" method and a "predict" method like any classifier except that the parameters of the classifier used to predict is optimized by cross-validation. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods A object of that type is instantiated for each parameter setting. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of folds (default 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settins, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
#!/usr/bin/python """ sc_video.py This file includes functions to: Initialise the camera Initialise the output video Image size is held in the smart_camera.cnf """ import sys from os.path import expanduser import time import math import multiprocessing import cv2 import numpy as np import sc_config from sc_logger import sc_logger class SmartCameraVideo: def __init__(self): # get which camera we will use self.camera_index = sc_config.config.get_integer('camera','index',0) # get image resolution self.img_width = sc_config.config.get_integer('camera','width',640) self.img_height = sc_config.config.get_integer('camera','height',480) # get image center self.img_center_x = self.img_width / 2 self.img_center_y = self.img_height / 2 # define field of view self.cam_hfov = sc_config.config.get_float('camera','horizontal-fov',70.42) self.cam_vfov = sc_config.config.get_float('camera','vertical-fov',43.3) #get camera distortion matrix and intrinsics. Defaults: logitech c920 mtx = np.array([[ 614.01269552,0,315.00073982], [0,614.43556296,237.14926858], [0,0,1.0]]) dist = np.array([0.12269303, -0.26618881,0.00129035, 0.00081791,0.17005303]) self.matrix = sc_config.config.get_array('camera','matrix', mtx) self.distortion = sc_config.config.get_array('camera', 'distortion', dist) self.newcameramtx, self.roi=cv2.getOptimalNewCameraMatrix(self.matrix,self.distortion,(self.img_width,self.img_height),1,(self.img_width,self.img_height)) #create a camera object self.camera = None #number of cores available for use desiredCores = sc_config.config.get_integer('processing', 'desired_cores', 4) self.cores_available = min(desiredCores, multiprocessing.cpu_count()) #does the user want to capture images in the background self.background_capture = sc_config.config.get_boolean('processing','background_capture', True) # background image processing variables self.proc = None # background process object self.parent_conn = None # parent end of communicatoin pipe self.img_counter = 0 # num images requested so far self.is_backgroundCap = False #state variable for background capture # __str__ - print position vector as string def __str__(self): return "SmartCameraVideo Object W:%d H:%d" % (self.img_width, self.img_height) # get_camera - initialises camera and returns VideoCapture object def get_camera(self,index): sc_logger.text(sc_logger.GENERAL, 'Starting Camera....') # setup video capture self.camera = cv2.VideoCapture(index) self.camera.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH,self.img_width) self.camera.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT,self.img_height) # check we can connect to camera if not self.camera.isOpened(): sc_logger.text(sc_logger.GENERAL,"failed to open camera, exiting!") sys.exit(0) sc_logger.text(sc_logger.GENERAL, 'Camera Open!') return self.camera # # background image processing routines # # image_capture_background - captures all images from the camera in the background and returning the latest image via the pipe when the parent requests it def image_capture_background(self, imgcap_connection): # exit immediately if imgcap_connection is invalid if imgcap_connection is None: sc_logger.text(sc_logger.GENERAL, "image_capture failed because pipe is uninitialised") return # clear latest image latest_image = None while True: # constantly get the image from the webcam success_flag, image=self.camera.read() # if successful overwrite our latest image if success_flag: latest_image = image # check if the parent wants the image if imgcap_connection.poll(): recv_obj = imgcap_connection.recv() # if -1 is received we exit if recv_obj == -1: break # otherwise we return the latest image imgcap_connection.send(latest_image) # release camera when exiting self.camera.release() def stop_capture(self): #Clean up when exitting background capture if(self.is_backgroundCap): # send exit command to image capture process self.parent_conn.send(-1) # join process self.proc.join() #no clean up required with regular capture def start_capture(self,index = 0): #make sure a camera is intialized if self.camera is None: self.get_camera(index) #background capture is desired if self.background_capture: #if we have more than one core available, then start background capture if(self.cores_available > 1): # create pipe self.parent_conn, imgcap_conn = multiprocessing.Pipe() # create and start the sub process and pass it it's end of the pipe self.proc = multiprocessing.Process(target=self.image_capture_background, args=(imgcap_conn,)) self.proc.daemon = True self.proc.start() #Mark that we are in background capture mode self.is_backgroundCap = True else: #Not enough cores for background capture or just doing regular capture self.is_backgroundCap = False # get_image - returns latest image from the camera captured from the background process def get_image(self): #grab image from pipe of background capture if(self.is_backgroundCap): # return immediately if pipe is not initialised if self.parent_conn == None: return None # send request to image capture for image self.parent_conn.send(self.img_counter) # increment counter for next interation self.img_counter = self.img_counter + 1 # wait endlessly until image is returned img = self.parent_conn.recv() #use standard image cap else: #Grab an image success_flag, img= self.camera.read() # return image to caller return img #undisort_image- removes any distortion caused by the camera lense def undisort_image(self,frame): #undistort dst = cv2.undistort(frame, self.matrix, self.distortion, None, self.newcameramtx) # crop the image x,y,w,h = self.roi dst = dst[y:y+h, x:x+w] return dst # main - tests SmartCameraVideo class def main(self): #open a camera #self.get_camera(0) # start background process self.start_capture(self.camera_index) #did we start background capture print 'Background capture {0}'.format(self.is_backgroundCap) while True: # send request to image capture for image img = self.get_image() #undistort image img = self.undisort_image(img) # check image is valid if not img is None: # display image cv2.imshow ('image_display', img) else: print "no image" # check for ESC key being pressed k = cv2.waitKey(5) & 0xFF if k == 27: break # take a rest for a bit time.sleep(0.1) # send exit command to image capture process self.stop_capture() print "a2p 10 = %f" % self.angle_to_pixels_x(10) print "p2a 10 = %f" % self.pixels_to_angle_x(10) # create a single global object sc_video = SmartCameraVideo() if __name__ == "__main__": sc_video.main()
#! /usr/bin/env python """Static analysis tool for checking docstring conventions and style. Implemented checks cover PEP257: http://www.python.org/dev/peps/pep-0257/ Other checks can be added, e.g. NumPy docstring conventions: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt The repository is located at: http://github.com/GreenSteam/pep257 """ from __future__ import with_statement import os import sys import logging import tokenize as tk from itertools import takewhile, dropwhile, chain from optparse import OptionParser from re import compile as re import itertools try: # Python 3.x from ConfigParser import RawConfigParser except ImportError: # Python 2.x from configparser import RawConfigParser log = logging.getLogger(__name__) try: from StringIO import StringIO except ImportError: # Python 3.0 and later from io import StringIO try: next except NameError: # Python 2.5 and earlier nothing = object() def next(obj, default=nothing): if default == nothing: return obj.next() else: try: return obj.next() except StopIteration: return default # If possible (python >= 3.2) use tokenize.open to open files, so PEP 263 # encoding markers are interpreted. try: tokenize_open = tk.open except AttributeError: tokenize_open = open __version__ = '0.6.1-alpha' __all__ = ('check', 'collect') PROJECT_CONFIG = ('setup.cfg', 'tox.ini', '.pep257') NO_VIOLATIONS_RETURN_CODE = 0 VIOLATIONS_RETURN_CODE = 1 INVALID_OPTIONS_RETURN_CODE = 2 def humanize(string): return re(r'(.)([A-Z]+)').sub(r'\1 \2', string).lower() def is_magic(name): return name.startswith('__') and name.endswith('__') def is_ascii(string): return all(ord(char) < 128 for char in string) def is_blank(string): return not string.strip() def leading_space(string): return re('\s*').match(string).group() class Value(object): def __init__(self, *args): vars(self).update(zip(self._fields, args)) def __hash__(self): return hash(repr(self)) def __eq__(self, other): return other and vars(self) == vars(other) def __repr__(self): kwargs = ', '.join('{}={!r}'.format(field, getattr(self, field)) for field in self._fields) return '{}({})'.format(self.__class__.__name__, kwargs) class Definition(Value): _fields = ('name', '_source', 'start', 'end', 'decorators', 'docstring', 'children', 'parent') _human = property(lambda self: humanize(type(self).__name__)) kind = property(lambda self: self._human.split()[-1]) module = property(lambda self: self.parent.module) all = property(lambda self: self.module.all) _slice = property(lambda self: slice(self.start - 1, self.end)) source = property(lambda self: ''.join(self._source[self._slice])) def __iter__(self): return chain([self], *self.children) @property def _publicity(self): return {True: 'public', False: 'private'}[self.is_public] def __str__(self): return 'in %s %s `%s`' % (self._publicity, self._human, self.name) class Module(Definition): _fields = ('name', '_source', 'start', 'end', 'decorators', 'docstring', 'children', 'parent', '_all') is_public = True _nest = staticmethod(lambda s: {'def': Function, 'class': Class}[s]) module = property(lambda self: self) all = property(lambda self: self._all) def __str__(self): return 'at module level' class Package(Module): """A package is a __init__.py module.""" class Function(Definition): _nest = staticmethod(lambda s: {'def': NestedFunction, 'class': NestedClass}[s]) @property def is_public(self): if self.all is not None: return self.name in self.all else: # TODO: are there any magic functions? not methods return not self.name.startswith('_') or is_magic(self.name) class NestedFunction(Function): is_public = False class Method(Function): @property def is_public(self): # Check if we are a setter/deleter method, and mark as private if so. for decorator in self.decorators: # Given 'foo', match 'foo.bar' but not 'foobar' or 'sfoo' if re(r"^{0}\.".format(self.name)).match(decorator.name): return False name_is_public = not self.name.startswith('_') or is_magic(self.name) return self.parent.is_public and name_is_public class Class(Definition): _nest = staticmethod(lambda s: {'def': Method, 'class': NestedClass}[s]) is_public = Function.is_public class NestedClass(Class): is_public = False class Decorator(Value): """A decorator for function, method or class.""" _fields = 'name arguments'.split() class TokenKind(int): def __repr__(self): return "tk.{}".format(tk.tok_name[self]) class Token(Value): _fields = 'kind value start end source'.split() def __init__(self, *args): super(Token, self).__init__(*args) self.kind = TokenKind(self.kind) class TokenStream(object): def __init__(self, filelike): self._generator = tk.generate_tokens(filelike.readline) self.current = Token(*next(self._generator, None)) self.line = self.current.start[0] def move(self): previous = self.current current = next(self._generator, None) self.current = None if current is None else Token(*current) self.line = self.current.start[0] if self.current else self.line return previous def __iter__(self): while True: if self.current is not None: yield self.current else: return self.move() class AllError(Exception): def __init__(self, message): Exception.__init__( self, message + 'That means pep257 cannot decide which definitions are public. ' 'Variable __all__ should be present at most once in each file, ' "in form `__all__ = ('a_public_function', 'APublicClass', ...)`. " 'More info on __all__: http://stackoverflow.com/q/44834/. ') class Parser(object): def __call__(self, filelike, filename): self.source = filelike.readlines() src = ''.join(self.source) self.stream = TokenStream(StringIO(src)) self.filename = filename self.all = None self._accumulated_decorators = [] return self.parse_module() current = property(lambda self: self.stream.current) line = property(lambda self: self.stream.line) def consume(self, kind): assert self.stream.move().kind == kind def leapfrog(self, kind, value=None): """Skip tokens in the stream until a certain token kind is reached. If `value` is specified, tokens whose values are different will also be skipped. """ while self.current is not None: if (self.current.kind == kind and (value is None or self.current.value == value)): self.consume(kind) return self.stream.move() def parse_docstring(self): """Parse a single docstring and return its value.""" log.debug("parsing docstring, token is %r (%s)", self.current.kind, self.current.value) while self.current.kind in (tk.COMMENT, tk.NEWLINE, tk.NL): self.stream.move() log.debug("parsing docstring, token is %r (%s)", self.current.kind, self.current.value) if self.current.kind == tk.STRING: docstring = self.current.value self.stream.move() return docstring return None def parse_decorators(self): """Called after first @ is found. Parse decorators into self._accumulated_decorators. Continue to do so until encountering the 'def' or 'class' start token. """ name = [] arguments = [] at_arguments = False while self.current is not None: if (self.current.kind == tk.NAME and self.current.value in ['def', 'class']): # Done with decorators - found function or class proper break elif self.current.kind == tk.OP and self.current.value == '@': # New decorator found. Store the decorator accumulated so far: self._accumulated_decorators.append( Decorator(''.join(name), ''.join(arguments))) # Now reset to begin accumulating the new decorator: name = [] arguments = [] at_arguments = False elif self.current.kind == tk.OP and self.current.value == '(': at_arguments = True elif self.current.kind == tk.OP and self.current.value == ')': # Ignore close parenthesis pass elif self.current.kind == tk.NEWLINE or self.current.kind == tk.NL: # Ignore newlines pass else: # Keep accumulating current decorator's name or argument. if not at_arguments: name.append(self.current.value) else: arguments.append(self.current.value) self.stream.move() # Add decorator accumulated so far self._accumulated_decorators.append( Decorator(''.join(name), ''.join(arguments))) def parse_definitions(self, class_, all=False): """Parse multiple defintions and yield them.""" while self.current is not None: log.debug("parsing defintion list, current token is %r (%s)", self.current.kind, self.current.value) if all and self.current.value == '__all__': self.parse_all() elif self.current.kind == tk.OP and self.current.value == '@': self.consume(tk.OP) self.parse_decorators() elif self.current.value in ['def', 'class']: yield self.parse_definition(class_._nest(self.current.value)) elif self.current.kind == tk.INDENT: self.consume(tk.INDENT) for definition in self.parse_definitions(class_): yield definition elif self.current.kind == tk.DEDENT: self.consume(tk.DEDENT) return else: self.stream.move() def parse_all(self): """Parse the __all__ definition in a module.""" assert self.current.value == '__all__' self.consume(tk.NAME) if self.current.value != '=': raise AllError('Could not evaluate contents of __all__. ') self.consume(tk.OP) if self.current.value not in '([': raise AllError('Could not evaluate contents of __all__. ') if self.current.value == '[': msg = ("%s WARNING: __all__ is defined as a list, this means " "pep257 cannot reliably detect contents of the __all__ " "variable, because it can be mutated. Change __all__ to be " "an (immutable) tuple, to remove this warning. Note, " "pep257 uses __all__ to detect which definitions are " "public, to warn if public definitions are missing " "docstrings. If __all__ is a (mutable) list, pep257 cannot " "reliably assume its contents. pep257 will proceed " "assuming __all__ is not mutated.\n" % self.filename) sys.stderr.write(msg) self.consume(tk.OP) self.all = [] all_content = "(" while self.current.kind != tk.OP or self.current.value not in ")]": if self.current.kind in (tk.NL, tk.COMMENT): pass elif (self.current.kind == tk.STRING or self.current.value == ','): all_content += self.current.value else: kind = token.tok_name[self.current.kind] raise AllError('Unexpected token kind in __all__: %s' % kind) self.stream.move() self.consume(tk.OP) all_content += ")" try: self.all = eval(all_content, {}) except BaseException as e: raise AllError('Could not evaluate contents of __all__.' '\bThe value was %s. The exception was:\n%s' % (all_content, e)) def parse_module(self): """Parse a module (and its children) and return a Module object.""" log.debug("parsing module.") start = self.line docstring = self.parse_docstring() children = list(self.parse_definitions(Module, all=True)) assert self.current is None, self.current end = self.line cls = Module if self.filename.endswith('__init__.py'): cls = Package module = cls(self.filename, self.source, start, end, [], docstring, children, None, self.all) for child in module.children: child.parent = module log.debug("finished parsing module.") return module def parse_definition(self, class_): """Parse a defintion and return its value in a `class_` object.""" start = self.line self.consume(tk.NAME) name = self.current.value log.debug("parsing %s '%s'", class_.__name__, name) self.stream.move() if self.current.kind == tk.OP and self.current.value == '(': parenthesis_level = 0 while True: if self.current.kind == tk.OP: if self.current.value == '(': parenthesis_level += 1 elif self.current.value == ')': parenthesis_level -= 1 if parenthesis_level == 0: break self.stream.move() if self.current.kind != tk.OP or self.current.value != ':': self.leapfrog(tk.OP, value=":") else: self.consume(tk.OP) if self.current.kind in (tk.NEWLINE, tk.COMMENT): self.leapfrog(tk.INDENT) assert self.current.kind != tk.INDENT docstring = self.parse_docstring() decorators = self._accumulated_decorators self._accumulated_decorators = [] log.debug("parsing nested defintions.") children = list(self.parse_definitions(class_)) log.debug("finished parsing nested defintions for '%s'", name) end = self.line - 1 else: # one-liner definition docstring = self.parse_docstring() decorators = [] # TODO children = [] end = self.line self.leapfrog(tk.NEWLINE) definition = class_(name, self.source, start, end, decorators, docstring, children, None) for child in definition.children: child.parent = definition log.debug("finished parsing %s '%s'. Next token is %r (%s)", class_.__name__, name, self.current.kind, self.current.value) return definition class Error(object): """Error in docstring style.""" # should be overridden by inheriting classes code = None short_desc = None context = None # Options that define how errors are printed: explain = False source = False def __init__(self, *parameters): self.parameters = parameters self.definition = None self.explanation = None def set_context(self, definition, explanation): self.definition = definition self.explanation = explanation filename = property(lambda self: self.definition.module.name) line = property(lambda self: self.definition.start) @property def message(self): ret = '%s: %s' % (self.code, self.short_desc) if self.context is not None: ret += ' (' + self.context % self.parameters + ')' return ret @property def lines(self): source = '' lines = self.definition._source[self.definition._slice] offset = self.definition.start lines_stripped = list(reversed(list(dropwhile(is_blank, reversed(lines))))) numbers_width = 0 for n, line in enumerate(lines_stripped): numbers_width = max(numbers_width, n + offset) numbers_width = len(str(numbers_width)) numbers_width = 6 for n, line in enumerate(lines_stripped): source += '%*d: %s' % (numbers_width, n + offset, line) if n > 5: source += ' ...\n' break return source def __str__(self): self.explanation = '\n'.join(l for l in self.explanation.split('\n') if not is_blank(l)) template = '%(filename)s:%(line)s %(definition)s:\n %(message)s' if self.source and self.explain: template += '\n\n%(explanation)s\n\n%(lines)s\n' elif self.source and not self.explain: template += '\n\n%(lines)s\n' elif self.explain and not self.source: template += '\n\n%(explanation)s\n\n' return template % dict((name, getattr(self, name)) for name in ['filename', 'line', 'definition', 'message', 'explanation', 'lines']) __repr__ = __str__ def __lt__(self, other): return (self.filename, self.line) < (other.filename, other.line) class ErrorRegistry(object): groups = [] class ErrorGroup(object): def __init__(self, prefix, name): self.prefix = prefix self.name = name self.errors = [] def create_error(self, error_code, error_desc, error_context=None): # TODO: check prefix class _Error(Error): code = error_code short_desc = error_desc context = error_context self.errors.append(_Error) return _Error @classmethod def create_group(cls, prefix, name): group = cls.ErrorGroup(prefix, name) cls.groups.append(group) return group @classmethod def get_error_codes(cls): for group in cls.groups: for error in group.errors: yield error.code @classmethod def to_rst(cls): sep_line = '+' + 6 * '-' + '+' + '-' * 71 + '+\n' blank_line = '|' + 78 * ' ' + '|\n' table = '' for group in cls.groups: table += sep_line table += blank_line table += '|' + ('**%s**' % group.name).center(78) + '|\n' table += blank_line for error in group.errors: table += sep_line table += ('|' + error.code.center(6) + '| ' + error.short_desc.ljust(70) + '|\n') table += sep_line return table D1xx = ErrorRegistry.create_group('D1', 'Missing Docstrings') D100 = D1xx.create_error('D100', 'Missing docstring in public module') D101 = D1xx.create_error('D101', 'Missing docstring in public class') D102 = D1xx.create_error('D102', 'Missing docstring in public method') D103 = D1xx.create_error('D103', 'Missing docstring in public function') D104 = D1xx.create_error('D104', 'Missing docstring in public package') D2xx = ErrorRegistry.create_group('D2', 'Whitespace Issues') D200 = D2xx.create_error('D200', 'One-line docstring should fit on one line ' 'with quotes', 'found %s') D201 = D2xx.create_error('D201', 'No blank lines allowed before function ' 'docstring', 'found %s') D202 = D2xx.create_error('D202', 'No blank lines allowed after function ' 'docstring', 'found %s') D203 = D2xx.create_error('D203', '1 blank line required before class ' 'docstring', 'found %s') D204 = D2xx.create_error('D204', '1 blank line required after class ' 'docstring', 'found %s') D205 = D2xx.create_error('D205', '1 blank line required between summary line ' 'and description', 'found %s') D206 = D2xx.create_error('D206', 'Docstring should be indented with spaces, ' 'not tabs') D207 = D2xx.create_error('D207', 'Docstring is under-indented') D208 = D2xx.create_error('D208', 'Docstring is over-indented') D209 = D2xx.create_error('D209', 'Multi-line docstring closing quotes should ' 'be on a separate line') D210 = D2xx.create_error('D210', 'No whitespaces allowed surrounding ' 'docstring text') D3xx = ErrorRegistry.create_group('D3', 'Quotes Issues') D300 = D3xx.create_error('D300', 'Use """triple double quotes"""', 'found %s-quotes') D301 = D3xx.create_error('D301', 'Use r""" if any backslashes in a docstring') D302 = D3xx.create_error('D302', 'Use u""" for Unicode docstrings') D4xx = ErrorRegistry.create_group('D4', 'Docstring Content Issues') D400 = D4xx.create_error('D400', 'First line should end with a period', 'not %r') D401 = D4xx.create_error('D401', 'First line should be in imperative mood', '%r, not %r') D402 = D4xx.create_error('D402', 'First line should not be the function\'s ' '"signature"') class Conventions(object): pep257 = set(ErrorRegistry.get_error_codes()) def get_option_parser(): parser = OptionParser(version=__version__, usage='Usage: pep257 [options] [<file|dir>...]') parser.config_options = ('explain', 'source', 'ignore', 'match', 'select', 'match-dir', 'debug', 'verbose', 'count', 'convention') option = parser.add_option option('-e', '--explain', action='store_true', help='show explanation of each error') option('-s', '--source', action='store_true', help='show source for each error') option('--select', metavar='<codes>', default='', help='choose the basic list of checked errors by specifying which ' 'errors to check for (with a list of comma-separated error ' 'codes). for example: --select=D101,D202') option('--ignore', metavar='<codes>', default='', help='choose the basic list of checked errors by specifying which ' 'errors to ignore (with a list of comma-separated error ' 'codes). for example: --ignore=D101,D202') option('--convention', metavar='<name>', default='', help='choose the basic list of checked errors by specifying an ' 'existing convention. for example: --convention=pep257') option('--add-select', metavar='<codes>', default='', help='amend the list of errors to check for by specifying more ' 'error codes to check.') option('--add-ignore', metavar='<codes>', default='', help='amend the list of errors to check for by specifying more ' 'error codes to ignore.') option('--match', metavar='<pattern>', default='(?!test_).*\.py', help="check only files that exactly match <pattern> regular " "expression; default is --match='(?!test_).*\.py' which " "matches files that don't start with 'test_' but end with " "'.py'") option('--match-dir', metavar='<pattern>', default='[^\.].*', help="search only dirs that exactly match <pattern> regular " "expression; default is --match-dir='[^\.].*', which matches " "all dirs that don't start with a dot") option('-d', '--debug', action='store_true', help='print debug information') option('-v', '--verbose', action='store_true', help='print status information') option('--count', action='store_true', help='print total number of errors to stdout') return parser def collect(names, match=lambda name: True, match_dir=lambda name: True): """Walk dir trees under `names` and generate filnames that `match`. Example ------- >>> sorted(collect(['non-dir.txt', './'], ... match=lambda name: name.endswith('.py'))) ['non-dir.txt', './pep257.py', './setup.py', './test_pep257.py'] """ for name in names: # map(expanduser, names): if os.path.isdir(name): for root, dirs, filenames in os.walk(name): # Skip any dirs that do not match match_dir dirs[:] = [dir for dir in dirs if match_dir(dir)] for filename in filenames: if match(filename): yield os.path.join(root, filename) else: yield name def check(filenames, select=None, ignore=None): """Generate PEP 257 errors that exist in `filenames` iterable. Only returns errors with error-codes defined in `checked_codes` iterable. Example ------- >>> check(['pep257.py'], checked_codes=['D100']) <generator object check at 0x...> """ if select and ignore: raise ValueError('Cannot pass both select and ignore. They are ' 'mutually exclusive.') elif select or ignore: checked_codes = (select or set(ErrorRegistry.get_error_codes()) - set(ignore)) else: checked_codes = Conventions.pep257 for filename in filenames: log.info('Checking file %s.', filename) try: with tokenize_open(filename) as file: source = file.read() for error in PEP257Checker().check_source(source, filename): code = getattr(error, 'code', None) if code in checked_codes: yield error except (EnvironmentError, AllError): yield sys.exc_info()[1] except tk.TokenError: yield SyntaxError('invalid syntax in file %s' % filename) def get_options(args, opt_parser): config = RawConfigParser() parent = tail = os.path.abspath(os.path.commonprefix(args)) config_found = False while tail and not config_found: log.info(tail) for fn in PROJECT_CONFIG: full_path = os.path.join(parent, fn) if config.read(full_path): log.info('local configuration: in %s.', full_path) config_found = True break parent, tail = os.path.split(parent) new_options = None if config.has_section('pep257'): option_list = dict([(o.dest, o.type or o.action) for o in opt_parser.option_list]) # First, read the default values new_options, _ = opt_parser.parse_args([]) # Second, parse the configuration pep257_section = 'pep257' for opt in config.options(pep257_section): if opt.replace('_', '-') not in opt_parser.config_options: log.warning("Unknown option '{}' ignored".format(opt)) continue normalized_opt = opt.replace('-', '_') opt_type = option_list[normalized_opt] if opt_type in ('int', 'count'): value = config.getint(pep257_section, opt) elif opt_type == 'string': value = config.get(pep257_section, opt) else: assert opt_type in ('store_true', 'store_false') value = config.getboolean(pep257_section, opt) setattr(new_options, normalized_opt, value) # Third, overwrite with the command-line options options, _ = opt_parser.parse_args(values=new_options) log.debug("options: %s", options) return options def setup_stream_handlers(options): """Setup logging stream handlers according to the options.""" class StdoutFilter(logging.Filter): def filter(self, record): return record.levelno in (logging.DEBUG, logging.INFO) if log.handlers: for handler in log.handlers: log.removeHandler(handler) stdout_handler = logging.StreamHandler(sys.stdout) stdout_handler.setLevel(logging.WARNING) stdout_handler.addFilter(StdoutFilter()) if options.debug: stdout_handler.setLevel(logging.DEBUG) elif options.verbose: stdout_handler.setLevel(logging.INFO) else: stdout_handler.setLevel(logging.WARNING) log.addHandler(stdout_handler) stderr_handler = logging.StreamHandler(sys.stderr) stderr_handler.setLevel(logging.WARNING) log.addHandler(stderr_handler) def get_checked_error_codes(options): codes = set(ErrorRegistry.get_error_codes()) if options.ignore: checked_codes = codes - set(options.ignore.split(',')) elif options.select: checked_codes = set(options.select.split(',')) elif options.convention: checked_codes = getattr(Conventions, options.convention) else: checked_codes = Conventions.pep257 checked_codes -= set(options.add_ignore.split(',')) checked_codes |= set(options.add_select.split(',')) return checked_codes - set('') def validate_options(options): mutually_exclusive = ('ignore', 'select', 'convention') for opt1, opt2 in itertools.permutations(mutually_exclusive, 2): if getattr(options, opt1) and getattr(options, opt2): log.error('Cannot pass both {0} and {1}. They are ' 'mutually exclusive.'.format(opt1, opt2)) return False if options.convention and not hasattr(Conventions, options.convention): return False return True def run_pep257(): log.setLevel(logging.DEBUG) opt_parser = get_option_parser() # setup the logger before parsing the config file, so that command line # arguments for debug / verbose will be printed. options, arguments = opt_parser.parse_args() setup_stream_handlers(options) # We parse the files before opening the config file, since it changes where # we look for the file. options = get_options(arguments, opt_parser) if not validate_options(options): return INVALID_OPTIONS_RETURN_CODE # Setup the handler again with values from the config file. setup_stream_handlers(options) collected = collect(arguments or ['.'], match=re(options.match + '$').match, match_dir=re(options.match_dir + '$').match) log.debug("starting pep257 in debug mode.") Error.explain = options.explain Error.source = options.source collected = list(collected) checked_codes = get_checked_error_codes(options) errors = check(collected, select=checked_codes) code = NO_VIOLATIONS_RETURN_CODE count = 0 for error in errors: sys.stderr.write('%s\n' % error) code = VIOLATIONS_RETURN_CODE count += 1 if options.count: print(count) return code parse = Parser() def check_for(kind, terminal=False): def decorator(f): f._check_for = kind f._terminal = terminal return f return decorator class PEP257Checker(object): """Checker for PEP 257. D10x: Missing docstrings D20x: Whitespace issues D30x: Docstring formatting D40x: Docstring content issues """ def check_source(self, source, filename): module = parse(StringIO(source), filename) for definition in module: for check in self.checks: terminate = False if isinstance(definition, check._check_for): error = check(None, definition, definition.docstring) errors = error if hasattr(error, '__iter__') else [error] for error in errors: if error is not None: partition = check.__doc__.partition('.\n') message, _, explanation = partition error.set_context(explanation=explanation, definition=definition) yield error if check._terminal: terminate = True break if terminate: break @property def checks(self): all = [check for check in vars(type(self)).values() if hasattr(check, '_check_for')] return sorted(all, key=lambda check: not check._terminal) @check_for(Definition, terminal=True) def check_docstring_missing(self, definition, docstring): """D10{0,1,2,3}: Public definitions should have docstrings. All modules should normally have docstrings. [...] all functions and classes exported by a module should also have docstrings. Public methods (including the __init__ constructor) should also have docstrings. Note: Public (exported) definitions are either those with names listed in __all__ variable (if present), or those that do not start with a single underscore. """ if (not docstring and definition.is_public or docstring and is_blank(eval(docstring))): codes = {Module: D100, Class: D101, NestedClass: D101, Method: D102, Function: D103, NestedFunction: D103, Package: D104} return codes[type(definition)]() @check_for(Definition) def check_one_liners(self, definition, docstring): """D200: One-liner docstrings should fit on one line with quotes. The closing quotes are on the same line as the opening quotes. This looks better for one-liners. """ if docstring: lines = eval(docstring).split('\n') if len(lines) > 1: non_empty_lines = sum(1 for l in lines if not is_blank(l)) if non_empty_lines == 1: return D200(len(lines)) @check_for(Function) def check_no_blank_before(self, function, docstring): # def """D20{1,2}: No blank lines allowed around function/method docstring. There's no blank line either before or after the docstring. """ # NOTE: This does not take comments into account. # NOTE: This does not take into account functions with groups of code. if docstring: before, _, after = function.source.partition(docstring) blanks_before = list(map(is_blank, before.split('\n')[:-1])) blanks_after = list(map(is_blank, after.split('\n')[1:])) blanks_before_count = sum(takewhile(bool, reversed(blanks_before))) blanks_after_count = sum(takewhile(bool, blanks_after)) if blanks_before_count != 0: yield D201(blanks_before_count) if not all(blanks_after) and blanks_after_count != 0: yield D202(blanks_after_count) @check_for(Class) def check_blank_before_after_class(slef, class_, docstring): """D20{3,4}: Class docstring should have 1 blank line around them. Insert a blank line before and after all docstrings (one-line or multi-line) that document a class -- generally speaking, the class's methods are separated from each other by a single blank line, and the docstring needs to be offset from the first method by a blank line; for symmetry, put a blank line between the class header and the docstring. """ # NOTE: this gives false-positive in this case # class Foo: # # """Docstring.""" # # # # comment here # def foo(): pass if docstring: before, _, after = class_.source.partition(docstring) blanks_before = list(map(is_blank, before.split('\n')[:-1])) blanks_after = list(map(is_blank, after.split('\n')[1:])) blanks_before_count = sum(takewhile(bool, reversed(blanks_before))) blanks_after_count = sum(takewhile(bool, blanks_after)) if blanks_before_count != 1: yield D203(blanks_before_count) if not all(blanks_after) and blanks_after_count != 1: yield D204(blanks_after_count) @check_for(Definition) def check_blank_after_summary(self, definition, docstring): """D205: Put one blank line between summary line and description. Multi-line docstrings consist of a summary line just like a one-line docstring, followed by a blank line, followed by a more elaborate description. The summary line may be used by automatic indexing tools; it is important that it fits on one line and is separated from the rest of the docstring by a blank line. """ if docstring: lines = eval(docstring).strip().split('\n') if len(lines) > 1: post_summary_blanks = list(map(is_blank, lines[1:])) blanks_count = sum(takewhile(bool, post_summary_blanks)) if blanks_count != 1: return D205(blanks_count) @check_for(Definition) def check_indent(self, definition, docstring): """D20{6,7,8}: The entire docstring should be indented same as code. The entire docstring is indented the same as the quotes at its first line. """ if docstring: before_docstring, _, _ = definition.source.partition(docstring) _, _, indent = before_docstring.rpartition('\n') lines = docstring.split('\n') if len(lines) > 1: lines = lines[1:] # First line does not need indent. indents = [leading_space(l) for l in lines if not is_blank(l)] if set(' \t') == set(''.join(indents) + indent): yield D206() if (len(indents) > 1 and min(indents[:-1]) > indent or indents[-1] > indent): yield D208() if min(indents) < indent: yield D207() @check_for(Definition) def check_newline_after_last_paragraph(self, definition, docstring): """D209: Put multi-line docstring closing quotes on separate line. Unless the entire docstring fits on a line, place the closing quotes on a line by themselves. """ if docstring: lines = [l for l in eval(docstring).split('\n') if not is_blank(l)] if len(lines) > 1: if docstring.split("\n")[-1].strip() not in ['"""', "'''"]: return D209() @check_for(Definition) def check_surrounding_whitespaces(self, definition, docstring): """D210: No whitespaces allowed surrounding docstring text.""" if docstring: lines = eval(docstring).split('\n') if lines[0].startswith(' ') or \ len(lines) == 1 and lines[0].endswith(' '): return D210() @check_for(Definition) def check_triple_double_quotes(self, definition, docstring): r'''D300: Use """triple double quotes""". For consistency, always use """triple double quotes""" around docstrings. Use r"""raw triple double quotes""" if you use any backslashes in your docstrings. For Unicode docstrings, use u"""Unicode triple-quoted strings""". Note: Exception to this is made if the docstring contains """ quotes in its body. ''' if docstring and '"""' in eval(docstring) and docstring.startswith( ("'''", "r'''", "u'''", "ur'''")): # Allow ''' quotes if docstring contains """, because otherwise """ # quotes could not be expressed inside docstring. Not in PEP 257. return if docstring and not docstring.startswith( ('"""', 'r"""', 'u"""', 'ur"""')): quotes = "'''" if "'''" in docstring[:4] else "'" return D300(quotes) @check_for(Definition) def check_backslashes(self, definition, docstring): r'''D301: Use r""" if any backslashes in a docstring. Use r"""raw triple double quotes""" if you use any backslashes (\) in your docstrings. ''' # Just check that docstring is raw, check_triple_double_quotes # ensures the correct quotes. if docstring and '\\' in docstring and not docstring.startswith( ('r', 'ur')): return D301() @check_for(Definition) def check_unicode_docstring(self, definition, docstring): r'''D302: Use u""" for docstrings with Unicode. For Unicode docstrings, use u"""Unicode triple-quoted strings""". ''' # Just check that docstring is unicode, check_triple_double_quotes # ensures the correct quotes. if docstring and sys.version_info[0] <= 2: if not is_ascii(docstring) and not docstring.startswith( ('u', 'ur')): return D302() @check_for(Definition) def check_ends_with_period(self, definition, docstring): """D400: First line should end with a period. The [first line of a] docstring is a phrase ending in a period. """ if docstring: summary_line = eval(docstring).strip().split('\n')[0] if not summary_line.endswith('.'): return D400(summary_line[-1]) @check_for(Function) def check_imperative_mood(self, function, docstring): # def context """D401: First line should be in imperative mood: 'Do', not 'Does'. [Docstring] prescribes the function or method's effect as a command: ("Do this", "Return that"), not as a description; e.g. don't write "Returns the pathname ...". """ if docstring: stripped = eval(docstring).strip() if stripped: first_word = stripped.split()[0] if first_word.endswith('s') and not first_word.endswith('ss'): return D401(first_word[:-1], first_word) @check_for(Function) def check_no_signature(self, function, docstring): # def context """D402: First line should not be function's or method's "signature". The one-line docstring should NOT be a "signature" reiterating the function/method parameters (which can be obtained by introspection). """ if docstring: first_line = eval(docstring).strip().split('\n')[0] if function.name + '(' in first_line.replace(' ', ''): return D402() # Somewhat hard to determine if return value is mentioned. # @check(Function) def SKIP_check_return_type(self, function, docstring): """D40x: Return value type should be mentioned. [T]he nature of the return value cannot be determined by introspection, so it should be mentioned. """ if docstring and function.returns_value: if 'return' not in docstring.lower(): return Error() def main(): try: sys.exit(run_pep257()) except KeyboardInterrupt: pass if __name__ == '__main__': main()
from panda3d.core import * from panda3d.physics import PhysicalNode from panda3d.physics import ParticleSystem from panda3d.physics import PointParticleFactory from panda3d.physics import ZSpinParticleFactory #from panda3d.physics import OrientedParticleFactory from panda3d.physics import BaseParticleRenderer from panda3d.physics import PointParticleRenderer from panda3d.physics import LineParticleRenderer from panda3d.physics import GeomParticleRenderer from panda3d.physics import SparkleParticleRenderer #from panda3d.physics import SpriteParticleRenderer from panda3d.physics import BaseParticleEmitter from panda3d.physics import ArcEmitter from panda3d.physics import BoxEmitter from panda3d.physics import DiscEmitter from panda3d.physics import LineEmitter from panda3d.physics import PointEmitter from panda3d.physics import RectangleEmitter from panda3d.physics import RingEmitter from panda3d.physics import SphereSurfaceEmitter from panda3d.physics import SphereVolumeEmitter from panda3d.physics import TangentRingEmitter from . import SpriteParticleRendererExt from direct.directnotify.DirectNotifyGlobal import directNotify import sys class Particles(ParticleSystem): notify = directNotify.newCategory('Particles') id = 1 def __init__(self, name=None, poolSize=1024): if (name == None): self.name = 'particles-%d' % Particles.id Particles.id += 1 else: self.name = name ParticleSystem.__init__(self, poolSize) # self.setBirthRate(0.02) # self.setLitterSize(10) # self.setLitterSpread(0) # Set up a physical node self.node = PhysicalNode(self.name) self.nodePath = NodePath(self.node) self.setRenderParent(self.node) self.node.addPhysical(self) self.factory = None self.factoryType = "undefined" # self.setFactory("PointParticleFactory") self.renderer = None self.rendererType = "undefined" # self.setRenderer("PointParticleRenderer") self.emitter = None self.emitterType = "undefined" # self.setEmitter("SphereVolumeEmitter") # Enable particles by default self.fEnabled = 0 #self.enable() self.geomReference = "" def cleanup(self): self.disable() self.clearLinearForces() self.clearAngularForces() self.setRenderParent(self.node) self.node.removePhysical(self) self.nodePath.removeNode() del self.node del self.nodePath del self.factory del self.renderer del self.emitter def enable(self): if (self.fEnabled == 0): base.physicsMgr.attachPhysical(self) base.particleMgr.attachParticlesystem(self) self.fEnabled = 1 def disable(self): if (self.fEnabled == 1): base.physicsMgr.removePhysical(self) base.particleMgr.removeParticlesystem(self) self.fEnabled = 0 def isEnabled(self): return self.fEnabled def getNode(self): return self.node def setFactory(self, type): if (self.factoryType == type): return None if (self.factory): self.factory = None self.factoryType = type if (type == "PointParticleFactory"): self.factory = PointParticleFactory() elif (type == "ZSpinParticleFactory"): self.factory = ZSpinParticleFactory() elif (type == "OrientedParticleFactory"): self.factory = OrientedParticleFactory() else: print("unknown factory type: %s" % type) return None self.factory.setLifespanBase(0.5) ParticleSystem.setFactory(self, self.factory) def setRenderer(self, type): if (self.rendererType == type): return None if (self.renderer): self.renderer = None self.rendererType = type if (type == "PointParticleRenderer"): self.renderer = PointParticleRenderer() self.renderer.setPointSize(1.0) elif (type == "LineParticleRenderer"): self.renderer = LineParticleRenderer() elif (type == "GeomParticleRenderer"): self.renderer = GeomParticleRenderer() # This was moved here because we do not want to download # the direct tools with toontown. if __dev__: from direct.directtools import DirectSelection npath = NodePath('default-geom') bbox = DirectSelection.DirectBoundingBox(npath) self.renderer.setGeomNode(bbox.lines.node()) elif (type == "SparkleParticleRenderer"): self.renderer = SparkleParticleRenderer() elif (type == "SpriteParticleRenderer"): self.renderer = SpriteParticleRendererExt.SpriteParticleRendererExt() # self.renderer.setTextureFromFile() else: print("unknown renderer type: %s" % type) return None ParticleSystem.setRenderer(self, self.renderer) def setEmitter(self, type): if (self.emitterType == type): return None if (self.emitter): self.emitter = None self.emitterType = type if (type == "ArcEmitter"): self.emitter = ArcEmitter() elif (type == "BoxEmitter"): self.emitter = BoxEmitter() elif (type == "DiscEmitter"): self.emitter = DiscEmitter() elif (type == "LineEmitter"): self.emitter = LineEmitter() elif (type == "PointEmitter"): self.emitter = PointEmitter() elif (type == "RectangleEmitter"): self.emitter = RectangleEmitter() elif (type == "RingEmitter"): self.emitter = RingEmitter() elif (type == "SphereSurfaceEmitter"): self.emitter = SphereSurfaceEmitter() elif (type == "SphereVolumeEmitter"): self.emitter = SphereVolumeEmitter() self.emitter.setRadius(1.0) elif (type == "TangentRingEmitter"): self.emitter = TangentRingEmitter() else: print("unknown emitter type: %s" % type) return None ParticleSystem.setEmitter(self, self.emitter) def addForce(self, force): if (force.isLinear()): self.addLinearForce(force) else: self.addAngularForce(force) def removeForce(self, force): if (force == None): self.notify.warning('removeForce() - force == None!') return if (force.isLinear()): self.removeLinearForce(force) else: self.removeAngularForce(force) def setRenderNodePath(self, nodePath): self.setRenderParent(nodePath.node()) ## Getters ## def getName(self): return self.name def getFactory(self): return self.factory def getEmitter(self): return self.emitter def getRenderer(self): return self.renderer def printParams(self, file = sys.stdout, targ = 'self'): file.write('# Particles parameters\n') file.write(targ + '.setFactory(\"' + self.factoryType + '\")\n') file.write(targ + '.setRenderer(\"' + self.rendererType + '\")\n') file.write(targ + '.setEmitter(\"' + self.emitterType + '\")\n') # System parameters file.write(targ + ('.setPoolSize(%d)\n' % int(self.getPoolSize()))) file.write(targ + ('.setBirthRate(%.4f)\n' % self.getBirthRate())) file.write(targ + ('.setLitterSize(%d)\n' % int(self.getLitterSize()))) file.write(targ + ('.setLitterSpread(%d)\n' % self.getLitterSpread())) file.write(targ + ('.setSystemLifespan(%.4f)\n' % self.getSystemLifespan())) file.write(targ + ('.setLocalVelocityFlag(%d)\n' % self.getLocalVelocityFlag())) file.write(targ + ('.setSystemGrowsOlderFlag(%d)\n' % self.getSystemGrowsOlderFlag())) file.write('# Factory parameters\n') file.write(targ + ('.factory.setLifespanBase(%.4f)\n' % self.factory.getLifespanBase())) file.write(targ + '.factory.setLifespanSpread(%.4f)\n' % \ self.factory.getLifespanSpread()) file.write(targ + '.factory.setMassBase(%.4f)\n' % \ self.factory.getMassBase()) file.write(targ + '.factory.setMassSpread(%.4f)\n' % \ self.factory.getMassSpread()) file.write(targ + '.factory.setTerminalVelocityBase(%.4f)\n' % \ self.factory.getTerminalVelocityBase()) file.write(targ + '.factory.setTerminalVelocitySpread(%.4f)\n' % \ self.factory.getTerminalVelocitySpread()) if (self.factoryType == "PointParticleFactory"): file.write('# Point factory parameters\n') elif (self.factoryType == "ZSpinParticleFactory"): file.write('# Z Spin factory parameters\n') file.write(targ + '.factory.setInitialAngle(%.4f)\n' % \ self.factory.getInitialAngle()) file.write(targ + '.factory.setInitialAngleSpread(%.4f)\n' % \ self.factory.getInitialAngleSpread()) file.write(targ + '.factory.enableAngularVelocity(%d)\n' % \ self.factory.getAngularVelocityEnabled()) if(self.factory.getAngularVelocityEnabled()): file.write(targ + '.factory.setAngularVelocity(%.4f)\n' % \ self.factory.getAngularVelocity()) file.write(targ + '.factory.setAngularVelocitySpread(%.4f)\n' % \ self.factory.getAngularVelocitySpread()) else: file.write(targ + '.factory.setFinalAngle(%.4f)\n' % \ self.factory.getFinalAngle()) file.write(targ + '.factory.setFinalAngleSpread(%.4f)\n' % \ self.factory.getFinalAngleSpread()) elif (self.factoryType == "OrientedParticleFactory"): file.write('# Oriented factory parameters\n') file.write(targ + '.factory.setInitialOrientation(%.4f)\n' % \ self.factory.getInitialOrientation()) file.write(targ + '.factory.setFinalOrientation(%.4f)\n' % \ self.factory.getFinalOrientation()) file.write('# Renderer parameters\n') alphaMode = self.renderer.getAlphaMode() aMode = "PRALPHANONE" if (alphaMode == BaseParticleRenderer.PRALPHANONE): aMode = "PRALPHANONE" elif (alphaMode == BaseParticleRenderer.PRALPHAOUT): aMode = "PRALPHAOUT" elif (alphaMode == BaseParticleRenderer.PRALPHAIN): aMode = "PRALPHAIN" elif (alphaMode == BaseParticleRenderer.PRALPHAINOUT): aMode = "PRALPHAINOUT" elif (alphaMode == BaseParticleRenderer.PRALPHAUSER): aMode = "PRALPHAUSER" file.write(targ + '.renderer.setAlphaMode(BaseParticleRenderer.' + aMode + ')\n') file.write(targ + '.renderer.setUserAlpha(%.2f)\n' % \ self.renderer.getUserAlpha()) if (self.rendererType == "PointParticleRenderer"): file.write('# Point parameters\n') file.write(targ + '.renderer.setPointSize(%.2f)\n' % \ self.renderer.getPointSize()) sColor = self.renderer.getStartColor() file.write((targ + '.renderer.setStartColor(Vec4(%.2f, %.2f, %.2f, %.2f))\n' % (sColor[0], sColor[1], sColor[2], sColor[3]))) sColor = self.renderer.getEndColor() file.write((targ + '.renderer.setEndColor(Vec4(%.2f, %.2f, %.2f, %.2f))\n' % (sColor[0], sColor[1], sColor[2], sColor[3]))) blendType = self.renderer.getBlendType() bType = "PPONECOLOR" if (blendType == PointParticleRenderer.PPONECOLOR): bType = "PPONECOLOR" elif (blendType == PointParticleRenderer.PPBLENDLIFE): bType = "PPBLENDLIFE" elif (blendType == PointParticleRenderer.PPBLENDVEL): bType = "PPBLENDVEL" file.write(targ + '.renderer.setBlendType(PointParticleRenderer.' + bType + ')\n') blendMethod = self.renderer.getBlendMethod() bMethod = "PPNOBLEND" if (blendMethod == BaseParticleRenderer.PPNOBLEND): bMethod = "PPNOBLEND" elif (blendMethod == BaseParticleRenderer.PPBLENDLINEAR): bMethod = "PPBLENDLINEAR" elif (blendMethod == BaseParticleRenderer.PPBLENDCUBIC): bMethod = "PPBLENDCUBIC" file.write(targ + '.renderer.setBlendMethod(BaseParticleRenderer.' + bMethod + ')\n') elif (self.rendererType == "LineParticleRenderer"): file.write('# Line parameters\n') sColor = self.renderer.getHeadColor() file.write((targ + '.renderer.setHeadColor(Vec4(%.2f, %.2f, %.2f, %.2f))\n' % (sColor[0], sColor[1], sColor[2], sColor[3]))) sColor = self.renderer.getTailColor() file.write((targ + '.renderer.setTailColor(Vec4(%.2f, %.2f, %.2f, %.2f))\n' % (sColor[0], sColor[1], sColor[2], sColor[3]))) sf = self.renderer.getLineScaleFactor() file.write((targ + '.renderer.setLineScaleFactor(%.2f)\n' % (sf))) elif (self.rendererType == "GeomParticleRenderer"): file.write('# Geom parameters\n') node = self.renderer.getGeomNode() file.write('geomRef = loader.loadModel("' + self.geomReference + '")\n') file.write(targ + '.renderer.setGeomNode(geomRef.node())\n') file.write(targ + '.geomReference = "' + self.geomReference + '"\n'); cbmLut = ('MNone','MAdd','MSubtract','MInvSubtract','MMin','MMax') cboLut = ('OZero','OOne','OIncomingColor','OOneMinusIncomingColor','OFbufferColor', 'OOneMinusFbufferColor','OIncomingAlpha','OOneMinusIncomingAlpha', 'OFbufferAlpha','OOneMinusFbufferAlpha','OConstantColor', 'OOneMinusConstantColor','OConstantAlpha','OOneMinusConstantAlpha', 'OIncomingColorSaturate') file.write(targ + '.renderer.setXScaleFlag(%d)\n' % self.renderer.getXScaleFlag()) file.write(targ + '.renderer.setYScaleFlag(%d)\n' % self.renderer.getYScaleFlag()) file.write(targ + '.renderer.setZScaleFlag(%d)\n' % self.renderer.getZScaleFlag()) file.write(targ + '.renderer.setInitialXScale(%.4f)\n' % self.renderer.getInitialXScale()) file.write(targ + '.renderer.setFinalXScale(%.4f)\n' % self.renderer.getFinalXScale()) file.write(targ + '.renderer.setInitialYScale(%.4f)\n' % self.renderer.getInitialYScale()) file.write(targ + '.renderer.setFinalYScale(%.4f)\n' % self.renderer.getFinalYScale()) file.write(targ + '.renderer.setInitialZScale(%.4f)\n' % self.renderer.getInitialZScale()) file.write(targ + '.renderer.setFinalZScale(%.4f)\n' % self.renderer.getFinalZScale()) cbAttrib = self.renderer.getRenderNode().getAttrib(ColorBlendAttrib.getClassType()) if(cbAttrib): cbMode = cbAttrib.getMode() if(cbMode > 0): if(cbMode in (ColorBlendAttrib.MAdd, ColorBlendAttrib.MSubtract, ColorBlendAttrib.MInvSubtract)): cboa = cbAttrib.getOperandA() cbob = cbAttrib.getOperandB() file.write(targ+'.renderer.setColorBlendMode(ColorBlendAttrib.%s, ColorBlendAttrib.%s, ColorBlendAttrib.%s)\n' % (cbmLut[cbMode], cboLut[cboa], cboLut[cbob])) else: file.write(targ+'.renderer.setColorBlendMode(ColorBlendAttrib.%s)\n' % cbmLut[cbMode]) cim = self.renderer.getColorInterpolationManager() segIdList = [int(seg) for seg in cim.getSegmentIdList().split()] for sid in segIdList: seg = cim.getSegment(sid) if seg.isEnabled(): t_b = seg.getTimeBegin() t_e = seg.getTimeEnd() mod = seg.isModulated() fun = seg.getFunction() typ = type(fun).__name__ if typ == 'ColorInterpolationFunctionConstant': c_a = fun.getColorA() file.write(targ+'.renderer.getColorInterpolationManager().addConstant('+repr(t_b)+','+repr(t_e)+','+ \ 'Vec4('+repr(c_a[0])+','+repr(c_a[1])+','+repr(c_a[2])+','+repr(c_a[3])+'),'+repr(mod)+')\n') elif typ == 'ColorInterpolationFunctionLinear': c_a = fun.getColorA() c_b = fun.getColorB() file.write(targ+'.renderer.getColorInterpolationManager().addLinear('+repr(t_b)+','+repr(t_e)+','+ \ 'Vec4('+repr(c_a[0])+','+repr(c_a[1])+','+repr(c_a[2])+','+repr(c_a[3])+'),' + \ 'Vec4('+repr(c_b[0])+','+repr(c_b[1])+','+repr(c_b[2])+','+repr(c_b[3])+'),'+repr(mod)+')\n') elif typ == 'ColorInterpolationFunctionStepwave': c_a = fun.getColorA() c_b = fun.getColorB() w_a = fun.getWidthA() w_b = fun.getWidthB() file.write(targ+'.renderer.getColorInterpolationManager().addStepwave('+repr(t_b)+','+repr(t_e)+','+ \ 'Vec4('+repr(c_a[0])+','+repr(c_a[1])+','+repr(c_a[2])+','+repr(c_a[3])+'),' + \ 'Vec4('+repr(c_b[0])+','+repr(c_b[1])+','+repr(c_b[2])+','+repr(c_b[3])+'),' + \ repr(w_a)+','+repr(w_b)+','+repr(mod)+')\n') elif typ == 'ColorInterpolationFunctionSinusoid': c_a = fun.getColorA() c_b = fun.getColorB() per = fun.getPeriod() file.write(targ+'.renderer.getColorInterpolationManager().addSinusoid('+repr(t_b)+','+repr(t_e)+','+ \ 'Vec4('+repr(c_a[0])+','+repr(c_a[1])+','+repr(c_a[2])+','+repr(c_a[3])+'),' + \ 'Vec4('+repr(c_b[0])+','+repr(c_b[1])+','+repr(c_b[2])+','+repr(c_b[3])+'),' + \ repr(per)+','+repr(mod)+')\n') elif (self.rendererType == "SparkleParticleRenderer"): file.write('# Sparkle parameters\n') sColor = self.renderer.getCenterColor() file.write((targ + '.renderer.setCenterColor(Vec4(%.2f, %.2f, %.2f, %.2f))\n' % (sColor[0], sColor[1], sColor[2], sColor[3]))) sColor = self.renderer.getEdgeColor() file.write((targ + '.renderer.setEdgeColor(Vec4(%.2f, %.2f, %.2f, %.2f))\n' % (sColor[0], sColor[1], sColor[2], sColor[3]))) file.write(targ + '.renderer.setBirthRadius(%.4f)\n' % self.renderer.getBirthRadius()) file.write(targ + '.renderer.setDeathRadius(%.4f)\n' % self.renderer.getDeathRadius()) lifeScale = self.renderer.getLifeScale() lScale = "SPNOSCALE" if (lifeScale == SparkleParticleRenderer.SPSCALE): lScale = "SPSCALE" file.write(targ + '.renderer.setLifeScale(SparkleParticleRenderer.' + lScale + ')\n') elif (self.rendererType == "SpriteParticleRenderer"): file.write('# Sprite parameters\n') if (self.renderer.getAnimateFramesEnable()): file.write(targ + '.renderer.setAnimateFramesEnable(True)\n') rate = self.renderer.getAnimateFramesRate() if(rate): file.write(targ + '.renderer.setAnimateFramesRate(%.3f)\n'%rate) animCount = self.renderer.getNumAnims() for x in range(animCount): anim = self.renderer.getAnim(x) if(anim.getSourceType() == SpriteAnim.STTexture): file.write(targ + '.renderer.addTextureFromFile(\'%s\')\n' % (anim.getTexSource(),)) else: file.write(targ + '.renderer.addTextureFromNode(\'%s\',\'%s\')\n' % (anim.getModelSource(), anim.getNodeSource())) sColor = self.renderer.getColor() file.write((targ + '.renderer.setColor(Vec4(%.2f, %.2f, %.2f, %.2f))\n' % (sColor[0], sColor[1], sColor[2], sColor[3]))) file.write(targ + '.renderer.setXScaleFlag(%d)\n' % self.renderer.getXScaleFlag()) file.write(targ + '.renderer.setYScaleFlag(%d)\n' % self.renderer.getYScaleFlag()) file.write(targ + '.renderer.setAnimAngleFlag(%d)\n' % self.renderer.getAnimAngleFlag()) file.write(targ + '.renderer.setInitialXScale(%.4f)\n' % self.renderer.getInitialXScale()) file.write(targ + '.renderer.setFinalXScale(%.4f)\n' % self.renderer.getFinalXScale()) file.write(targ + '.renderer.setInitialYScale(%.4f)\n' % self.renderer.getInitialYScale()) file.write(targ + '.renderer.setFinalYScale(%.4f)\n' % self.renderer.getFinalYScale()) file.write(targ + '.renderer.setNonanimatedTheta(%.4f)\n' % self.renderer.getNonanimatedTheta()) blendMethod = self.renderer.getAlphaBlendMethod() bMethod = "PPNOBLEND" if (blendMethod == BaseParticleRenderer.PPNOBLEND): bMethod = "PPNOBLEND" elif (blendMethod == BaseParticleRenderer.PPBLENDLINEAR): bMethod = "PPBLENDLINEAR" elif (blendMethod == BaseParticleRenderer.PPBLENDCUBIC): bMethod = "PPBLENDCUBIC" file.write(targ + '.renderer.setAlphaBlendMethod(BaseParticleRenderer.' + bMethod + ')\n') file.write(targ + '.renderer.setAlphaDisable(%d)\n' % self.renderer.getAlphaDisable()) # Save the color blending to file cbmLut = ('MNone','MAdd','MSubtract','MInvSubtract','MMin','MMax') cboLut = ('OZero','OOne','OIncomingColor','OOneMinusIncomingColor','OFbufferColor', 'OOneMinusFbufferColor','OIncomingAlpha','OOneMinusIncomingAlpha', 'OFbufferAlpha','OOneMinusFbufferAlpha','OConstantColor', 'OOneMinusConstantColor','OConstantAlpha','OOneMinusConstantAlpha', 'OIncomingColorSaturate') cbAttrib = self.renderer.getRenderNode().getAttrib(ColorBlendAttrib.getClassType()) if(cbAttrib): cbMode = cbAttrib.getMode() if(cbMode > 0): if(cbMode in (ColorBlendAttrib.MAdd, ColorBlendAttrib.MSubtract, ColorBlendAttrib.MInvSubtract)): cboa = cbAttrib.getOperandA() cbob = cbAttrib.getOperandB() file.write(targ+'.renderer.setColorBlendMode(ColorBlendAttrib.%s, ColorBlendAttrib.%s, ColorBlendAttrib.%s)\n' % (cbmLut[cbMode], cboLut[cboa], cboLut[cbob])) else: file.write(targ+'.renderer.setColorBlendMode(ColorBlendAttrib.%s)\n' % cbmLut[cbMode]) cim = self.renderer.getColorInterpolationManager() segIdList = [int(seg) for seg in cim.getSegmentIdList().split()] for sid in segIdList: seg = cim.getSegment(sid) if seg.isEnabled(): t_b = seg.getTimeBegin() t_e = seg.getTimeEnd() mod = seg.isModulated() fun = seg.getFunction() typ = type(fun).__name__ if typ == 'ColorInterpolationFunctionConstant': c_a = fun.getColorA() file.write(targ+'.renderer.getColorInterpolationManager().addConstant('+repr(t_b)+','+repr(t_e)+','+ \ 'Vec4('+repr(c_a[0])+','+repr(c_a[1])+','+repr(c_a[2])+','+repr(c_a[3])+'),'+repr(mod)+')\n') elif typ == 'ColorInterpolationFunctionLinear': c_a = fun.getColorA() c_b = fun.getColorB() file.write(targ+'.renderer.getColorInterpolationManager().addLinear('+repr(t_b)+','+repr(t_e)+','+ \ 'Vec4('+repr(c_a[0])+','+repr(c_a[1])+','+repr(c_a[2])+','+repr(c_a[3])+'),' + \ 'Vec4('+repr(c_b[0])+','+repr(c_b[1])+','+repr(c_b[2])+','+repr(c_b[3])+'),'+repr(mod)+')\n') elif typ == 'ColorInterpolationFunctionStepwave': c_a = fun.getColorA() c_b = fun.getColorB() w_a = fun.getWidthA() w_b = fun.getWidthB() file.write(targ+'.renderer.getColorInterpolationManager().addStepwave('+repr(t_b)+','+repr(t_e)+','+ \ 'Vec4('+repr(c_a[0])+','+repr(c_a[1])+','+repr(c_a[2])+','+repr(c_a[3])+'),' + \ 'Vec4('+repr(c_b[0])+','+repr(c_b[1])+','+repr(c_b[2])+','+repr(c_b[3])+'),' + \ repr(w_a)+','+repr(w_b)+','+repr(mod)+')\n') elif typ == 'ColorInterpolationFunctionSinusoid': c_a = fun.getColorA() c_b = fun.getColorB() per = fun.getPeriod() file.write(targ+'.renderer.getColorInterpolationManager().addSinusoid('+repr(t_b)+','+repr(t_e)+','+ \ 'Vec4('+repr(c_a[0])+','+repr(c_a[1])+','+repr(c_a[2])+','+repr(c_a[3])+'),' + \ 'Vec4('+repr(c_b[0])+','+repr(c_b[1])+','+repr(c_b[2])+','+repr(c_b[3])+'),' + \ repr(per)+','+repr(mod)+')\n') file.write('# Emitter parameters\n') emissionType = self.emitter.getEmissionType() eType = "ETEXPLICIT" if (emissionType == BaseParticleEmitter.ETEXPLICIT): eType = "ETEXPLICIT" elif (emissionType == BaseParticleEmitter.ETRADIATE): eType = "ETRADIATE" elif (emissionType == BaseParticleEmitter.ETCUSTOM): eType = "ETCUSTOM" file.write(targ + '.emitter.setEmissionType(BaseParticleEmitter.' + eType + ')\n') file.write(targ + '.emitter.setAmplitude(%.4f)\n' % self.emitter.getAmplitude()) file.write(targ + '.emitter.setAmplitudeSpread(%.4f)\n' % self.emitter.getAmplitudeSpread()) oForce = self.emitter.getOffsetForce() file.write((targ + '.emitter.setOffsetForce(Vec3(%.4f, %.4f, %.4f))\n' % (oForce[0], oForce[1], oForce[2]))) oForce = self.emitter.getExplicitLaunchVector() file.write((targ + '.emitter.setExplicitLaunchVector(Vec3(%.4f, %.4f, %.4f))\n' % (oForce[0], oForce[1], oForce[2]))) orig = self.emitter.getRadiateOrigin() file.write((targ + '.emitter.setRadiateOrigin(Point3(%.4f, %.4f, %.4f))\n' % (orig[0], orig[1], orig[2]))) if (self.emitterType == "BoxEmitter"): file.write('# Box parameters\n') bound = self.emitter.getMinBound() file.write((targ + '.emitter.setMinBound(Point3(%.4f, %.4f, %.4f))\n' % (bound[0], bound[1], bound[2]))) bound = self.emitter.getMaxBound() file.write((targ + '.emitter.setMaxBound(Point3(%.4f, %.4f, %.4f))\n' % (bound[0], bound[1], bound[2]))) elif (self.emitterType == "DiscEmitter"): file.write('# Disc parameters\n') file.write(targ + '.emitter.setRadius(%.4f)\n' % self.emitter.getRadius()) if (eType == "ETCUSTOM"): file.write(targ + '.emitter.setOuterAngle(%.4f)\n' % self.emitter.getOuterAngle()) file.write(targ + '.emitter.setInnerAngle(%.4f)\n' % self.emitter.getInnerAngle()) file.write(targ + '.emitter.setOuterMagnitude(%.4f)\n' % self.emitter.getOuterMagnitude()) file.write(targ + '.emitter.setInnerMagnitude(%.4f)\n' % self.emitter.getInnerMagnitude()) file.write(targ + '.emitter.setCubicLerping(%d)\n' % self.emitter.getCubicLerping()) elif (self.emitterType == "LineEmitter"): file.write('# Line parameters\n') point = self.emitter.getEndpoint1() file.write((targ + '.emitter.setEndpoint1(Point3(%.4f, %.4f, %.4f))\n' % (point[0], point[1], point[2]))) point = self.emitter.getEndpoint2() file.write((targ + '.emitter.setEndpoint2(Point3(%.4f, %.4f, %.4f))\n' % (point[0], point[1], point[2]))) elif (self.emitterType == "PointEmitter"): file.write('# Point parameters\n') point = self.emitter.getLocation() file.write((targ + '.emitter.setLocation(Point3(%.4f, %.4f, %.4f))\n' % (point[0], point[1], point[2]))) elif (self.emitterType == "RectangleEmitter"): file.write('# Rectangle parameters\n') point = self.emitter.getMinBound() file.write((targ + '.emitter.setMinBound(Point2(%.4f, %.4f))\n' % (point[0], point[1]))) point = self.emitter.getMaxBound() file.write((targ + '.emitter.setMaxBound(Point2(%.4f, %.4f))\n' % (point[0], point[1]))) elif (self.emitterType == "RingEmitter"): file.write('# Ring parameters\n') file.write(targ + '.emitter.setRadius(%.4f)\n' % self.emitter.getRadius()) file.write(targ + '.emitter.setRadiusSpread(%.4f)\n' % self.emitter.getRadiusSpread()) if (eType == "ETCUSTOM"): file.write(targ + '.emitter.setAngle(%.4f)\n' % self.emitter.getAngle()) elif (self.emitterType == "SphereSurfaceEmitter"): file.write('# Sphere Surface parameters\n') file.write(targ + '.emitter.setRadius(%.4f)\n' % self.emitter.getRadius()) elif (self.emitterType == "SphereVolumeEmitter"): file.write('# Sphere Volume parameters\n') file.write(targ + '.emitter.setRadius(%.4f)\n' % self.emitter.getRadius()) elif (self.emitterType == "TangentRingEmitter"): file.write('# Tangent Ring parameters\n') file.write(targ + '.emitter.setRadius(%.4f)\n' % self.emitter.getRadius()) file.write(targ + '.emitter.setRadiusSpread(%.4f)\n' % self.emitter.getRadiusSpread()) def getPoolSizeRanges(self): litterRange = [max(1,self.getLitterSize()-self.getLitterSpread()), self.getLitterSize(), self.getLitterSize()+self.getLitterSpread()] lifespanRange = [self.factory.getLifespanBase()-self.factory.getLifespanSpread(), self.factory.getLifespanBase(), self.factory.getLifespanBase()+self.factory.getLifespanSpread()] birthRateRange = [self.getBirthRate()] * 3 print('Litter Ranges: %s' % litterRange) print('LifeSpan Ranges: %s' % lifespanRange) print('BirthRate Ranges: %s' % birthRateRange) return dict(zip(('min','median','max'),[l*s/b for l,s,b in zip(litterRange,lifespanRange,birthRateRange)])) def accelerate(self,time,stepCount = 1,stepTime=0.0): if time > 0.0: if stepTime == 0.0: stepTime = float(time)/stepCount remainder = 0.0 else: stepCount = int(float(time)/stepTime) remainder = time-stepCount*stepTime for step in range(stepCount): base.particleMgr.doParticles(stepTime,self,False) base.physicsMgr.doPhysics(stepTime,self) if(remainder): base.particleMgr.doParticles(remainder,self,False) base.physicsMgr.doPhysics(remainder,self) self.render()
"""Support for Automation Device Specification (ADS).""" import threading import struct import logging import ctypes from collections import namedtuple import voluptuous as vol from homeassistant.const import ( CONF_DEVICE, CONF_IP_ADDRESS, CONF_PORT, EVENT_HOMEASSISTANT_STOP) import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['pyads==3.0.7'] _LOGGER = logging.getLogger(__name__) DATA_ADS = 'data_ads' # Supported Types ADSTYPE_BOOL = 'bool' ADSTYPE_BYTE = 'byte' ADSTYPE_DINT = 'dint' ADSTYPE_INT = 'int' ADSTYPE_UDINT = 'udint' ADSTYPE_UINT = 'uint' CONF_ADS_FACTOR = 'factor' CONF_ADS_TYPE = 'adstype' CONF_ADS_VALUE = 'value' CONF_ADS_VAR = 'adsvar' CONF_ADS_VAR_BRIGHTNESS = 'adsvar_brightness' DOMAIN = 'ads' SERVICE_WRITE_DATA_BY_NAME = 'write_data_by_name' CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Required(CONF_DEVICE): cv.string, vol.Required(CONF_PORT): cv.port, vol.Optional(CONF_IP_ADDRESS): cv.string, }) }, extra=vol.ALLOW_EXTRA) SCHEMA_SERVICE_WRITE_DATA_BY_NAME = vol.Schema({ vol.Required(CONF_ADS_TYPE): vol.In([ADSTYPE_INT, ADSTYPE_UINT, ADSTYPE_BYTE, ADSTYPE_BOOL, ADSTYPE_DINT, ADSTYPE_UDINT]), vol.Required(CONF_ADS_VALUE): vol.Coerce(int), vol.Required(CONF_ADS_VAR): cv.string, }) def setup(hass, config): """Set up the ADS component.""" import pyads conf = config[DOMAIN] net_id = conf.get(CONF_DEVICE) ip_address = conf.get(CONF_IP_ADDRESS) port = conf.get(CONF_PORT) client = pyads.Connection(net_id, port, ip_address) AdsHub.ADS_TYPEMAP = { ADSTYPE_BOOL: pyads.PLCTYPE_BOOL, ADSTYPE_BYTE: pyads.PLCTYPE_BYTE, ADSTYPE_DINT: pyads.PLCTYPE_DINT, ADSTYPE_INT: pyads.PLCTYPE_INT, ADSTYPE_UDINT: pyads.PLCTYPE_UDINT, ADSTYPE_UINT: pyads.PLCTYPE_UINT, } AdsHub.ADSError = pyads.ADSError AdsHub.PLCTYPE_BOOL = pyads.PLCTYPE_BOOL AdsHub.PLCTYPE_BYTE = pyads.PLCTYPE_BYTE AdsHub.PLCTYPE_DINT = pyads.PLCTYPE_DINT AdsHub.PLCTYPE_INT = pyads.PLCTYPE_INT AdsHub.PLCTYPE_UDINT = pyads.PLCTYPE_UDINT AdsHub.PLCTYPE_UINT = pyads.PLCTYPE_UINT try: ads = AdsHub(client) except pyads.ADSError: _LOGGER.error( "Could not connect to ADS host (netid=%s, ip=%s, port=%s)", net_id, ip_address, port) return False hass.data[DATA_ADS] = ads hass.bus.listen(EVENT_HOMEASSISTANT_STOP, ads.shutdown) def handle_write_data_by_name(call): """Write a value to the connected ADS device.""" ads_var = call.data.get(CONF_ADS_VAR) ads_type = call.data.get(CONF_ADS_TYPE) value = call.data.get(CONF_ADS_VALUE) try: ads.write_by_name(ads_var, value, ads.ADS_TYPEMAP[ads_type]) except pyads.ADSError as err: _LOGGER.error(err) hass.services.register( DOMAIN, SERVICE_WRITE_DATA_BY_NAME, handle_write_data_by_name, schema=SCHEMA_SERVICE_WRITE_DATA_BY_NAME) return True # Tuple to hold data needed for notification NotificationItem = namedtuple( 'NotificationItem', 'hnotify huser name plc_datatype callback' ) class AdsHub: """Representation of an ADS connection.""" def __init__(self, ads_client): """Initialize the ADS hub.""" self._client = ads_client self._client.open() # All ADS devices are registered here self._devices = [] self._notification_items = {} self._lock = threading.Lock() def shutdown(self, *args, **kwargs): """Shutdown ADS connection.""" import pyads _LOGGER.debug("Shutting down ADS") for notification_item in self._notification_items.values(): _LOGGER.debug( "Deleting device notification %d, %d", notification_item.hnotify, notification_item.huser) try: self._client.del_device_notification( notification_item.hnotify, notification_item.huser ) except pyads.ADSError as err: _LOGGER.error(err) try: self._client.close() except pyads.ADSError as err: _LOGGER.error(err) def register_device(self, device): """Register a new device.""" self._devices.append(device) def write_by_name(self, name, value, plc_datatype): """Write a value to the device.""" with self._lock: return self._client.write_by_name(name, value, plc_datatype) def read_by_name(self, name, plc_datatype): """Read a value from the device.""" with self._lock: return self._client.read_by_name(name, plc_datatype) def add_device_notification(self, name, plc_datatype, callback): """Add a notification to the ADS devices.""" from pyads import NotificationAttrib attr = NotificationAttrib(ctypes.sizeof(plc_datatype)) with self._lock: hnotify, huser = self._client.add_device_notification( name, attr, self._device_notification_callback) hnotify = int(hnotify) self._notification_items[hnotify] = NotificationItem( hnotify, huser, name, plc_datatype, callback) _LOGGER.debug( "Added device notification %d for variable %s", hnotify, name) def _device_notification_callback(self, notification, name): """Handle device notifications.""" contents = notification.contents hnotify = int(contents.hNotification) _LOGGER.debug("Received notification %d", hnotify) data = contents.data try: with self._lock: notification_item = self._notification_items[hnotify] except KeyError: _LOGGER.error("Unknown device notification handle: %d", hnotify) return # Parse data to desired datatype if notification_item.plc_datatype == self.PLCTYPE_BOOL: value = bool(struct.unpack('<?', bytearray(data)[:1])[0]) elif notification_item.plc_datatype == self.PLCTYPE_INT: value = struct.unpack('<h', bytearray(data)[:2])[0] elif notification_item.plc_datatype == self.PLCTYPE_BYTE: value = struct.unpack('<B', bytearray(data)[:1])[0] elif notification_item.plc_datatype == self.PLCTYPE_UINT: value = struct.unpack('<H', bytearray(data)[:2])[0] elif notification_item.plc_datatype == self.PLCTYPE_DINT: value = struct.unpack('<i', bytearray(data)[:4])[0] elif notification_item.plc_datatype == self.PLCTYPE_UDINT: value = struct.unpack('<I', bytearray(data)[:4])[0] else: value = bytearray(data) _LOGGER.warning("No callback available for this datatype") notification_item.callback(notification_item.name, value)
from lace.serialization.obj.objutils import LoadObjError # lint isn't able to find the defintion in a c++ module pylint: disable=no-name-in-module EXTENSION = '.obj' def load(f, existing_mesh=None): from baiji.serialization.util.openlib import ensure_file_open_and_call return ensure_file_open_and_call(f, _load, mode='r', mesh=existing_mesh) def dump(obj, f, flip_faces=False, ungroup=False, comments=None, copyright=False, split_normals=False, write_mtl=True): # pylint: disable=redefined-outer-name, redefined-builtin, unused-argument from baiji.serialization.util.openlib import ensure_file_open_and_call if comments is None: comments = [] return ensure_file_open_and_call(f, _dump, mode='w', obj=obj, flip_faces=flip_faces, ungroup=ungroup, comments=comments, split_normals=split_normals, write_mtl=write_mtl) def _load(fd, mesh=None): from collections import OrderedDict from baiji import s3 from lace.mesh import Mesh import lace.serialization.obj.objutils as objutils # pylint: disable=no-name-in-module v, vt, vn, vc, f, ft, fn, mtl_path, landm, segm = objutils.read(fd.name) if not mesh: mesh = Mesh() if v.size != 0: mesh.v = v if f.size != 0: mesh.f = f if vn.size != 0: mesh.vn = vn if vt.size != 0: mesh.vt = vt if vc.size != 0: mesh.vc = vc if fn.size != 0: mesh.fn = fn if ft.size != 0: mesh.ft = ft if segm: mesh.segm = OrderedDict([(k, v if isinstance(v, list) else v.tolist()) for k, v in segm.items()]) def path_relative_to_mesh(filename): # The OBJ file we're loading may have come from a local path, or an s3 # url. Since OBJ defines materials and texture files with paths # relative to the OBJ itself, we need tocope with the various # possibilities and if it's a cached file make sure that the material # and texture have been downloaded as well. # # If an absolute path is given and the file is missing, try looking in # the same directory; this lets you find the most common intention when # an abs path is used. # # NB: We do not support loading material & texture info from objs read # from filelike objects without a location on the filesystem; what would # the relative file names mean in that case, anyway? (unless we're given # a valid absolute path, in which case go for it) import os import re # The second term here let's us detect windows absolute paths when we're running on posix if filename == os.path.abspath(filename) or re.match(r'^.\:(\\|/)', filename): if s3.exists(filename): return filename else: filename = s3.path.basename(filename) if hasattr(fd, 'remotename'): mesh_path = fd.remotename elif hasattr(fd, 'name'): mesh_path = fd.name else: return None path = s3.path.join(s3.path.dirname(mesh_path), filename) return path mesh.materials_filepath = None if mtl_path: materials_filepath = path_relative_to_mesh(mtl_path.strip()) if materials_filepath and s3.exists(materials_filepath): with s3.open(materials_filepath, 'r') as f: mesh.materials_file = f.readlines() mesh.materials_filepath = materials_filepath if hasattr(mesh, 'materials_file'): mesh.texture_filepaths = { line.split(None, 1)[0].strip(): path_relative_to_mesh(line.split(None, 1)[1].strip()) for line in mesh.materials_file if line.startswith('map_K') } if 'map_Ka' in mesh.texture_filepaths: mesh.texture_filepath = mesh.texture_filepaths['map_Ka'] elif 'map_Kd' in mesh.texture_filepaths: mesh.texture_filepath = mesh.texture_filepaths['map_Kd'] if landm: mesh.landm = landm return mesh def _dump(f, obj, flip_faces=False, ungroup=False, comments=None, split_normals=False, write_mtl=True): # pylint: disable=redefined-outer-name ''' write_mtl: When True and mesh has a texture, includes a mtllib reference in the .obj and writes a .mtl alongside. ''' import six import os import numpy as np from baiji import s3 ff = -1 if flip_faces else 1 def write_face_to_obj_file(obj, faces, face_index, obj_file): vertex_indices = faces[face_index][::ff] + 1 write_normals = obj.fn is not None or (obj.vn is not None and obj.vn.shape == obj.v.shape) write_texture = obj.ft is not None and obj.vt is not None if write_normals and obj.fn is not None: normal_indices = obj.fn[face_index][::ff] + 1 assert len(normal_indices) == len(vertex_indices) elif write_normals: # unspecified fn but per-vertex normals, assume ordering is same as for v normal_indices = faces[face_index][::ff] + 1 if write_texture: texture_indices = obj.ft[face_index][::ff] + 1 assert len(texture_indices) == len(vertex_indices) # Valid obj face lines are: v, v/vt, v//vn, v/vt/vn if write_normals and write_texture: pattern = '%d/%d/%d' value = tuple(np.array([vertex_indices, texture_indices, normal_indices]).T.flatten()) elif write_normals: pattern = '%d//%d' value = tuple(np.array([vertex_indices, normal_indices]).T.flatten()) elif write_texture: pattern = '%d/%d' value = tuple(np.array([vertex_indices, texture_indices]).T.flatten()) else: pattern = '%d' value = tuple(vertex_indices) obj_file.write(('f ' + ' '.join([pattern]*len(vertex_indices)) + '\n') % value) if comments != None: if isinstance(comments, six.string_types): comments = [comments] for comment in comments: for line in comment.split("\n"): f.write("# %s\n" % line) if write_mtl and hasattr(obj, 'texture_filepath') and obj.texture_filepath is not None: save_to = s3.path.dirname(f.name) mtl_name = os.path.splitext(s3.path.basename(f.name))[0] mtl_filename = mtl_name + '.mtl' f.write('mtllib %s\n' % mtl_filename) f.write('usemtl %s\n' % mtl_name) texture_filename = mtl_name + os.path.splitext(obj.texture_filepath)[1] if not s3.exists(s3.path.join(save_to, texture_filename)): s3.cp(obj.texture_filepath, s3.path.join(save_to, texture_filename)) obj.write_mtl(s3.path.join(save_to, mtl_filename), mtl_name, texture_filename) if obj.vc is not None: for r, c in zip(obj.v, obj.vc): f.write('v %f %f %f %f %f %f\n' % (r[0], r[1], r[2], c[0], c[1], c[2])) elif obj.v is not None: for r in obj.v: f.write('v %f %f %f\n' % (r[0], r[1], r[2])) if obj.vn is not None: if split_normals: for vn_idx in obj.fn: r = obj.vn[vn_idx[0]] f.write('vn %f %f %f\n' % (r[0], r[1], r[2])) r = obj.vn[vn_idx[1]] f.write('vn %f %f %f\n' % (r[0], r[1], r[2])) r = obj.vn[vn_idx[2]] f.write('vn %f %f %f\n' % (r[0], r[1], r[2])) else: for r in obj.vn: f.write('vn %f %f %f\n' % (r[0], r[1], r[2])) if obj.ft is not None and obj.vt is not None: for r in obj.vt: if len(r) == 3: f.write('vt %f %f %f\n' % (r[0], r[1], r[2])) else: f.write('vt %f %f\n' % (r[0], r[1])) if obj.f4 is not None: faces = obj.f4 elif obj.f is not None: faces = obj.f else: faces = None if obj.segm is not None and not ungroup: if faces is not None: # An array of strings. group_names = np.array(obj.segm.keys()) # A 2d array of booleans indicating which face is in which group. group_mask = np.zeros((len(group_names), len(faces)), dtype=bool) for i, segm_faces in enumerate(obj.segm.itervalues()): group_mask[i][segm_faces] = True # In an OBJ file, "g" changes the current state. This is a slice of # group_mask that represents the current state. current_group_mask = np.zeros((len(group_names),), dtype=bool) for face_index in range(len(faces)): # If the group has changed from the previous face, write the # group entry. this_group_mask = group_mask[:, face_index] if any(current_group_mask != this_group_mask): current_group_mask = this_group_mask f.write('g %s\n' % ' '.join(group_names[current_group_mask])) write_face_to_obj_file(obj, faces, face_index, f) else: if faces is not None: for face_index in range(len(faces)): write_face_to_obj_file(obj, faces, face_index, f) def write_mtl(path, material_name, texture_name): from baiji import s3 with s3.open(path, 'w') as f: f.write('newmtl %s\n' % material_name) # copied from another obj, no idea about what it does f.write('ka 0.329412 0.223529 0.027451\n') f.write('kd 0.780392 0.568627 0.113725\n') f.write('ks 0.992157 0.941176 0.807843\n') f.write('illum 0\n') f.write('map_Ka %s\n'%texture_name) f.write('map_Kd %s\n'%texture_name) f.write('map_Ks %s\n'%texture_name)
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest from copy import deepcopy from unittest import mock from airflow.providers.amazon.aws.hooks.glue_crawler import AwsGlueCrawlerHook mock_crawler_name = 'test-crawler' mock_role_name = 'test-role' mock_config = { 'Name': mock_crawler_name, 'Description': 'Test glue crawler from Airflow', 'DatabaseName': 'test_db', 'Role': mock_role_name, 'Targets': { 'S3Targets': [ { 'Path': 's3://test-glue-crawler/foo/', 'Exclusions': [ 's3://test-glue-crawler/bar/', ], 'ConnectionName': 'test-s3-conn', } ], 'JdbcTargets': [ { 'ConnectionName': 'test-jdbc-conn', 'Path': 'test_db/test_table>', 'Exclusions': [ 'string', ], } ], 'MongoDBTargets': [ {'ConnectionName': 'test-mongo-conn', 'Path': 'test_db/test_collection', 'ScanAll': True} ], 'DynamoDBTargets': [{'Path': 'test_db/test_table', 'scanAll': True, 'scanRate': 123.0}], 'CatalogTargets': [ { 'DatabaseName': 'test_glue_db', 'Tables': [ 'test', ], } ], }, 'Classifiers': ['test-classifier'], 'TablePrefix': 'test', 'SchemaChangePolicy': { 'UpdateBehavior': 'UPDATE_IN_DATABASE', 'DeleteBehavior': 'DEPRECATE_IN_DATABASE', }, 'RecrawlPolicy': {'RecrawlBehavior': 'CRAWL_EVERYTHING'}, 'LineageConfiguration': 'ENABLE', 'Configuration': """ { "Version": 1.0, "CrawlerOutput": { "Partitions": { "AddOrUpdateBehavior": "InheritFromTable" } } } """, 'SecurityConfiguration': 'test', 'Tags': {'test': 'foo'}, } class TestAwsGlueCrawlerHook(unittest.TestCase): @classmethod def setUp(cls): cls.hook = AwsGlueCrawlerHook(aws_conn_id="aws_default") def test_init(self): self.assertEqual(self.hook.aws_conn_id, "aws_default") @mock.patch.object(AwsGlueCrawlerHook, "get_conn") def test_has_crawler(self, mock_get_conn): response = self.hook.has_crawler(mock_crawler_name) self.assertEqual(response, True) mock_get_conn.return_value.get_crawler.assert_called_once_with(Name=mock_crawler_name) @mock.patch.object(AwsGlueCrawlerHook, "get_conn") def test_has_crawler_crawled_doesnt_exists(self, mock_get_conn): class MockException(Exception): pass mock_get_conn.return_value.exceptions.EntityNotFoundException = MockException mock_get_conn.return_value.get_crawler.side_effect = MockException("AAA") response = self.hook.has_crawler(mock_crawler_name) self.assertEqual(response, False) mock_get_conn.return_value.get_crawler.assert_called_once_with(Name=mock_crawler_name) @mock.patch.object(AwsGlueCrawlerHook, "get_conn") def test_update_crawler_needed(self, mock_get_conn): mock_get_conn.return_value.get_crawler.return_value = {'Crawler': mock_config} mock_config_two = deepcopy(mock_config) mock_config_two['Role'] = 'test-2-role' response = self.hook.update_crawler(**mock_config_two) self.assertEqual(response, True) mock_get_conn.return_value.get_crawler.assert_called_once_with(Name=mock_crawler_name) mock_get_conn.return_value.update_crawler.assert_called_once_with(**mock_config_two) @mock.patch.object(AwsGlueCrawlerHook, "get_conn") def test_update_crawler_not_needed(self, mock_get_conn): mock_get_conn.return_value.get_crawler.return_value = {'Crawler': mock_config} response = self.hook.update_crawler(**mock_config) self.assertEqual(response, False) mock_get_conn.return_value.get_crawler.assert_called_once_with(Name=mock_crawler_name) @mock.patch.object(AwsGlueCrawlerHook, "get_conn") def test_create_crawler(self, mock_get_conn): mock_get_conn.return_value.create_crawler.return_value = {'Crawler': {'Name': mock_crawler_name}} glue_crawler = self.hook.create_crawler(**mock_config) self.assertIn("Crawler", glue_crawler) self.assertIn("Name", glue_crawler["Crawler"]) self.assertEqual(glue_crawler["Crawler"]["Name"], mock_crawler_name) @mock.patch.object(AwsGlueCrawlerHook, "get_conn") def test_start_crawler(self, mock_get_conn): result = self.hook.start_crawler(mock_crawler_name) self.assertEqual(result, mock_get_conn.return_value.start_crawler.return_value) mock_get_conn.return_value.start_crawler.assert_called_once_with(Name=mock_crawler_name) @mock.patch.object(AwsGlueCrawlerHook, "get_crawler") @mock.patch.object(AwsGlueCrawlerHook, "get_conn") def test_wait_for_crawler_completion_instant_ready(self, mock_get_conn, mock_get_crawler): mock_get_crawler.side_effect = [ {'State': 'READY', 'LastCrawl': {'Status': 'MOCK_STATUS'}}, ] mock_get_conn.return_value.get_crawler_metrics.return_value = { 'CrawlerMetricsList': [ { 'LastRuntimeSeconds': 'TEST-A', 'MedianRuntimeSeconds': 'TEST-B', 'TablesCreated': 'TEST-C', 'TablesUpdated': 'TEST-D', 'TablesDeleted': 'TEST-E', } ] } result = self.hook.wait_for_crawler_completion(mock_crawler_name) self.assertEqual(result, 'MOCK_STATUS') mock_get_conn.assert_has_calls( [ mock.call(), mock.call().get_crawler_metrics(CrawlerNameList=[mock_crawler_name]), ] ) mock_get_crawler.assert_has_calls( [ mock.call(mock_crawler_name), ] ) @mock.patch.object(AwsGlueCrawlerHook, "get_conn") @mock.patch.object(AwsGlueCrawlerHook, "get_crawler") @mock.patch('airflow.providers.amazon.aws.hooks.glue_crawler.sleep') def test_wait_for_crawler_completion_retry_two_times(self, mock_sleep, mock_get_crawler, mock_get_conn): mock_get_crawler.side_effect = [ {'State': 'RUNNING'}, {'State': 'READY', 'LastCrawl': {'Status': 'MOCK_STATUS'}}, ] mock_get_conn.return_value.get_crawler_metrics.side_effect = [ {'CrawlerMetricsList': [{'TimeLeftSeconds': 12}]}, { 'CrawlerMetricsList': [ { 'LastRuntimeSeconds': 'TEST-A', 'MedianRuntimeSeconds': 'TEST-B', 'TablesCreated': 'TEST-C', 'TablesUpdated': 'TEST-D', 'TablesDeleted': 'TEST-E', } ] }, ] result = self.hook.wait_for_crawler_completion(mock_crawler_name) self.assertEqual(result, 'MOCK_STATUS') mock_get_conn.assert_has_calls( [ mock.call(), mock.call().get_crawler_metrics(CrawlerNameList=[mock_crawler_name]), ] ) mock_get_crawler.assert_has_calls( [ mock.call(mock_crawler_name), mock.call(mock_crawler_name), ] ) if __name__ == '__main__': unittest.main()
from __future__ import division import unittest from math import sqrt, pi from ..path import CubicBezier, QuadraticBezier, Line, Arc, Path # Most of these test points are not calculated serparately, as that would # take too long and be too error prone. Instead the curves have been verified # to be correct visually, by drawing them with the turtle module, with code # like this: # # import turtle # t = turtle.Turtle() # t.penup() # # for arc in (path1, path2): # p = arc.point(0) # t.goto(p.real - 500, -p.imag + 300) # t.dot(3, 'black') # t.pendown() # for x in range(1, 101): # p = arc.point(x * 0.01) # t.goto(p.real - 500, -p.imag + 300) # t.penup() # t.dot(3, 'black') # # raw_input() # # After the paths have been verified to be correct this way, the testing of # points along the paths has been added as regression tests, to make sure # nobody changes the way curves are drawn by mistake. Therefore, do not take # these points religiously. They might be subtly wrong, unless otherwise # noted. class LineTest(unittest.TestCase): def test_lines(self): # These points are calculated, and not just regression tests. line1 = Line(0j, 400 + 0j) self.assertAlmostEqual(line1.point(0), (0j)) self.assertAlmostEqual(line1.point(0.3), (120 + 0j)) self.assertAlmostEqual(line1.point(0.5), (200 + 0j)) self.assertAlmostEqual(line1.point(0.9), (360 + 0j)) self.assertAlmostEqual(line1.point(1), (400 + 0j)) self.assertAlmostEqual(line1.length(), 400) line2 = Line(400 + 0j, 400 + 300j) self.assertAlmostEqual(line2.point(0), (400 + 0j)) self.assertAlmostEqual(line2.point(0.3), (400 + 90j)) self.assertAlmostEqual(line2.point(0.5), (400 + 150j)) self.assertAlmostEqual(line2.point(0.9), (400 + 270j)) self.assertAlmostEqual(line2.point(1), (400 + 300j)) self.assertAlmostEqual(line2.length(), 300) line3 = Line(400 + 300j, 0j) self.assertAlmostEqual(line3.point(0), (400 + 300j)) self.assertAlmostEqual(line3.point(0.3), (280 + 210j)) self.assertAlmostEqual(line3.point(0.5), (200 + 150j)) self.assertAlmostEqual(line3.point(0.9), (40 + 30j)) self.assertAlmostEqual(line3.point(1), (0j)) self.assertAlmostEqual(line3.length(), 500) def test_equality(self): # This is to test the __eq__ and __ne__ methods, so we can't use # assertEqual and assertNotEqual line = Line(0j, 400 + 0j) self.assertTrue(line == Line(0, 400)) self.assertTrue(line != Line(100, 400)) self.assertFalse(line == str(line)) self.assertTrue(line != str(line)) self.assertFalse(CubicBezier(600 + 500j, 600 + 350j, 900 + 650j, 900 + 500j) == line) class CubicBezierTest(unittest.TestCase): def test_approx_circle(self): """This is a approximate circle drawn in Inkscape""" arc1 = CubicBezier( complex(0, 0), complex(0, 109.66797), complex(-88.90345, 198.57142), complex(-198.57142, 198.57142) ) self.assertAlmostEqual(arc1.point(0), (0j)) self.assertAlmostEqual(arc1.point(0.1), (-2.59896457 + 32.20931647j)) self.assertAlmostEqual(arc1.point(0.2), (-10.12330256 + 62.76392816j)) self.assertAlmostEqual(arc1.point(0.3), (-22.16418039 + 91.25500149j)) self.assertAlmostEqual(arc1.point(0.4), (-38.31276448 + 117.27370288j)) self.assertAlmostEqual(arc1.point(0.5), (-58.16022125 + 140.41119875j)) self.assertAlmostEqual(arc1.point(0.6), (-81.29771712 + 160.25865552j)) self.assertAlmostEqual(arc1.point(0.7), (-107.31641851 + 176.40723961j)) self.assertAlmostEqual(arc1.point(0.8), (-135.80749184 + 188.44811744j)) self.assertAlmostEqual(arc1.point(0.9), (-166.36210353 + 195.97245543j)) self.assertAlmostEqual(arc1.point(1), (-198.57142 + 198.57142j)) arc2 = CubicBezier( complex(-198.57142, 198.57142), complex(-109.66797 - 198.57142, 0 + 198.57142), complex(-198.57143 - 198.57142, -88.90345 + 198.57142), complex(-198.57143 - 198.57142, 0), ) self.assertAlmostEqual(arc2.point(0), (-198.57142 + 198.57142j)) self.assertAlmostEqual(arc2.point(0.1), (-230.78073675 + 195.97245543j)) self.assertAlmostEqual(arc2.point(0.2), (-261.3353492 + 188.44811744j)) self.assertAlmostEqual(arc2.point(0.3), (-289.82642365 + 176.40723961j)) self.assertAlmostEqual(arc2.point(0.4), (-315.8451264 + 160.25865552j)) self.assertAlmostEqual(arc2.point(0.5), (-338.98262375 + 140.41119875j)) self.assertAlmostEqual(arc2.point(0.6), (-358.830082 + 117.27370288j)) self.assertAlmostEqual(arc2.point(0.7), (-374.97866745 + 91.25500149j)) self.assertAlmostEqual(arc2.point(0.8), (-387.0195464 + 62.76392816j)) self.assertAlmostEqual(arc2.point(0.9), (-394.54388515 + 32.20931647j)) self.assertAlmostEqual(arc2.point(1), (-397.14285 + 0j)) arc3 = CubicBezier( complex(-198.57143 - 198.57142, 0), complex(0 - 198.57143 - 198.57142, -109.66797), complex(88.90346 - 198.57143 - 198.57142, -198.57143), complex(-198.57142, -198.57143) ) self.assertAlmostEqual(arc3.point(0), (-397.14285 + 0j)) self.assertAlmostEqual(arc3.point(0.1), (-394.54388515 - 32.20931675j)) self.assertAlmostEqual(arc3.point(0.2), (-387.0195464 - 62.7639292j)) self.assertAlmostEqual(arc3.point(0.3), (-374.97866745 - 91.25500365j)) self.assertAlmostEqual(arc3.point(0.4), (-358.830082 - 117.2737064j)) self.assertAlmostEqual(arc3.point(0.5), (-338.98262375 - 140.41120375j)) self.assertAlmostEqual(arc3.point(0.6), (-315.8451264 - 160.258662j)) self.assertAlmostEqual(arc3.point(0.7), (-289.82642365 - 176.40724745j)) self.assertAlmostEqual(arc3.point(0.8), (-261.3353492 - 188.4481264j)) self.assertAlmostEqual(arc3.point(0.9), (-230.78073675 - 195.97246515j)) self.assertAlmostEqual(arc3.point(1), (-198.57142 - 198.57143j)) arc4 = CubicBezier( complex(-198.57142, -198.57143), complex(109.66797 - 198.57142, 0 - 198.57143), complex(0, 88.90346 - 198.57143), complex(0, 0), ) self.assertAlmostEqual(arc4.point(0), (-198.57142 - 198.57143j)) self.assertAlmostEqual(arc4.point(0.1), (-166.36210353 - 195.97246515j)) self.assertAlmostEqual(arc4.point(0.2), (-135.80749184 - 188.4481264j)) self.assertAlmostEqual(arc4.point(0.3), (-107.31641851 - 176.40724745j)) self.assertAlmostEqual(arc4.point(0.4), (-81.29771712 - 160.258662j)) self.assertAlmostEqual(arc4.point(0.5), (-58.16022125 - 140.41120375j)) self.assertAlmostEqual(arc4.point(0.6), (-38.31276448 - 117.2737064j)) self.assertAlmostEqual(arc4.point(0.7), (-22.16418039 - 91.25500365j)) self.assertAlmostEqual(arc4.point(0.8), (-10.12330256 - 62.7639292j)) self.assertAlmostEqual(arc4.point(0.9), (-2.59896457 - 32.20931675j)) self.assertAlmostEqual(arc4.point(1), (0j)) def test_svg_examples(self): # M100,200 C100,100 250,100 250,200 path1 = CubicBezier(100 + 200j, 100 + 100j, 250 + 100j, 250 + 200j) self.assertAlmostEqual(path1.point(0), (100 + 200j)) self.assertAlmostEqual(path1.point(0.3), (132.4 + 137j)) self.assertAlmostEqual(path1.point(0.5), (175 + 125j)) self.assertAlmostEqual(path1.point(0.9), (245.8 + 173j)) self.assertAlmostEqual(path1.point(1), (250 + 200j)) # S400,300 400,200 path2 = CubicBezier(250 + 200j, 250 + 300j, 400 + 300j, 400 + 200j) self.assertAlmostEqual(path2.point(0), (250 + 200j)) self.assertAlmostEqual(path2.point(0.3), (282.4 + 263j)) self.assertAlmostEqual(path2.point(0.5), (325 + 275j)) self.assertAlmostEqual(path2.point(0.9), (395.8 + 227j)) self.assertAlmostEqual(path2.point(1), (400 + 200j)) # M100,200 C100,100 400,100 400,200 path3 = CubicBezier(100 + 200j, 100 + 100j, 400 + 100j, 400 + 200j) self.assertAlmostEqual(path3.point(0), (100 + 200j)) self.assertAlmostEqual(path3.point(0.3), (164.8 + 137j)) self.assertAlmostEqual(path3.point(0.5), (250 + 125j)) self.assertAlmostEqual(path3.point(0.9), (391.6 + 173j)) self.assertAlmostEqual(path3.point(1), (400 + 200j)) # M100,500 C25,400 475,400 400,500 path4 = CubicBezier(100 + 500j, 25 + 400j, 475 + 400j, 400 + 500j) self.assertAlmostEqual(path4.point(0), (100 + 500j)) self.assertAlmostEqual(path4.point(0.3), (145.9 + 437j)) self.assertAlmostEqual(path4.point(0.5), (250 + 425j)) self.assertAlmostEqual(path4.point(0.9), (407.8 + 473j)) self.assertAlmostEqual(path4.point(1), (400 + 500j)) # M100,800 C175,700 325,700 400,800 path5 = CubicBezier(100 + 800j, 175 + 700j, 325 + 700j, 400 + 800j) self.assertAlmostEqual(path5.point(0), (100 + 800j)) self.assertAlmostEqual(path5.point(0.3), (183.7 + 737j)) self.assertAlmostEqual(path5.point(0.5), (250 + 725j)) self.assertAlmostEqual(path5.point(0.9), (375.4 + 773j)) self.assertAlmostEqual(path5.point(1), (400 + 800j)) # M600,200 C675,100 975,100 900,200 path6 = CubicBezier(600 + 200j, 675 + 100j, 975 + 100j, 900 + 200j) self.assertAlmostEqual(path6.point(0), (600 + 200j)) self.assertAlmostEqual(path6.point(0.3), (712.05 + 137j)) self.assertAlmostEqual(path6.point(0.5), (806.25 + 125j)) self.assertAlmostEqual(path6.point(0.9), (911.85 + 173j)) self.assertAlmostEqual(path6.point(1), (900 + 200j)) # M600,500 C600,350 900,650 900,500 path7 = CubicBezier(600 + 500j, 600 + 350j, 900 + 650j, 900 + 500j) self.assertAlmostEqual(path7.point(0), (600 + 500j)) self.assertAlmostEqual(path7.point(0.3), (664.8 + 462.2j)) self.assertAlmostEqual(path7.point(0.5), (750 + 500j)) self.assertAlmostEqual(path7.point(0.9), (891.6 + 532.4j)) self.assertAlmostEqual(path7.point(1), (900 + 500j)) # M600,800 C625,700 725,700 750,800 path8 = CubicBezier(600 + 800j, 625 + 700j, 725 + 700j, 750 + 800j) self.assertAlmostEqual(path8.point(0), (600 + 800j)) self.assertAlmostEqual(path8.point(0.3), (638.7 + 737j)) self.assertAlmostEqual(path8.point(0.5), (675 + 725j)) self.assertAlmostEqual(path8.point(0.9), (740.4 + 773j)) self.assertAlmostEqual(path8.point(1), (750 + 800j)) # S875,900 900,800 inversion = (750 + 800j) + (750 + 800j) - (725 + 700j) path9 = CubicBezier(750 + 800j, inversion, 875 + 900j, 900 + 800j) self.assertAlmostEqual(path9.point(0), (750 + 800j)) self.assertAlmostEqual(path9.point(0.3), (788.7 + 863j)) self.assertAlmostEqual(path9.point(0.5), (825 + 875j)) self.assertAlmostEqual(path9.point(0.9), (890.4 + 827j)) self.assertAlmostEqual(path9.point(1), (900 + 800j)) def test_length(self): # A straight line: arc = CubicBezier( complex(0, 0), complex(0, 0), complex(0, 100), complex(0, 100) ) self.assertAlmostEqual(arc.length(), 100) # A diagonal line: arc = CubicBezier( complex(0, 0), complex(0, 0), complex(100, 100), complex(100, 100) ) self.assertAlmostEqual(arc.length(), sqrt(2 * 100 * 100)) # A quarter circle arc with radius 100: kappa = 4 * (sqrt(2) - 1) / 3 # http://www.whizkidtech.redprince.net/bezier/circle/ arc = CubicBezier( complex(0, 0), complex(0, kappa * 100), complex(100 - kappa * 100, 100), complex(100, 100) ) # We can't compare with pi*50 here, because this is just an # approximation of a circle arc. pi*50 is 157.079632679 # So this is just yet another "warn if this changes" test. # This value is not verified to be correct. self.assertAlmostEqual(arc.length(), 157.1016698) # A recursive solution has also been suggested, but for CubicBezier # curves it could get a false solution on curves where the midpoint is on a # straight line between the start and end. For example, the following # curve would get solved as a straight line and get the length 300. # Make sure this is not the case. arc = CubicBezier( complex(600, 500), complex(600, 350), complex(900, 650), complex(900, 500) ) self.assertTrue(arc.length() > 300.0) def test_equality(self): # This is to test the __eq__ and __ne__ methods, so we can't use # assertEqual and assertNotEqual segment = CubicBezier(complex(600, 500), complex(600, 350), complex(900, 650), complex(900, 500)) self.assertTrue(segment == CubicBezier(600 + 500j, 600 + 350j, 900 + 650j, 900 + 500j)) self.assertTrue(segment != CubicBezier(600 + 501j, 600 + 350j, 900 + 650j, 900 + 500j)) self.assertTrue(segment != Line(0, 400)) class QuadraticBezierTest(unittest.TestCase): def test_svg_examples(self): """These is the path in the SVG specs""" # M200,300 Q400,50 600,300 T1000,300 path1 = QuadraticBezier(200 + 300j, 400 + 50j, 600 + 300j) self.assertAlmostEqual(path1.point(0), (200 + 300j)) self.assertAlmostEqual(path1.point(0.3), (320 + 195j)) self.assertAlmostEqual(path1.point(0.5), (400 + 175j)) self.assertAlmostEqual(path1.point(0.9), (560 + 255j)) self.assertAlmostEqual(path1.point(1), (600 + 300j)) # T1000, 300 inversion = (600 + 300j) + (600 + 300j) - (400 + 50j) path2 = QuadraticBezier(600 + 300j, inversion, 1000 + 300j) self.assertAlmostEqual(path2.point(0), (600 + 300j)) self.assertAlmostEqual(path2.point(0.3), (720 + 405j)) self.assertAlmostEqual(path2.point(0.5), (800 + 425j)) self.assertAlmostEqual(path2.point(0.9), (960 + 345j)) self.assertAlmostEqual(path2.point(1), (1000 + 300j)) def test_length(self): # expected results calculated with # svg.path.segment_length(q, 0, 1, q.start, q.end, 1e-14, 20, 0) q1 = QuadraticBezier(200 + 300j, 400 + 50j, 600 + 300j) q2 = QuadraticBezier(200 + 300j, 400 + 50j, 500 + 200j) closedq = QuadraticBezier(6+2j, 5-1j, 6+2j) linq1 = QuadraticBezier(1, 2, 3) linq2 = QuadraticBezier(1+3j, 2+5j, -9 - 17j) nodalq = QuadraticBezier(1, 1, 1) tests = [(q1, 487.77109389525975), (q2, 379.90458193489155), (closedq, 3.1622776601683795), (linq1, 2), (linq2, 22.73335777124786), (nodalq, 0)] for q, exp_res in tests: self.assertAlmostEqual(q.length(), exp_res) def test_equality(self): # This is to test the __eq__ and __ne__ methods, so we can't use # assertEqual and assertNotEqual segment = QuadraticBezier(200 + 300j, 400 + 50j, 600 + 300j) self.assertTrue(segment == QuadraticBezier(200 + 300j, 400 + 50j, 600 + 300j)) self.assertTrue(segment != QuadraticBezier(200 + 301j, 400 + 50j, 600 + 300j)) self.assertFalse(segment == Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j)) self.assertTrue(Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j) != segment) class ArcTest(unittest.TestCase): def test_points(self): arc1 = Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j) self.assertAlmostEqual(arc1.center, 100 + 0j) self.assertAlmostEqual(arc1.theta, 180.0) self.assertAlmostEqual(arc1.delta, -90.0) self.assertAlmostEqual(arc1.point(0.0), (0j)) self.assertAlmostEqual(arc1.point(0.1), (1.23116594049 + 7.82172325201j)) self.assertAlmostEqual(arc1.point(0.2), (4.89434837048 + 15.4508497187j)) self.assertAlmostEqual(arc1.point(0.3), (10.8993475812 + 22.699524987j)) self.assertAlmostEqual(arc1.point(0.4), (19.0983005625 + 29.3892626146j)) self.assertAlmostEqual(arc1.point(0.5), (29.2893218813 + 35.3553390593j)) self.assertAlmostEqual(arc1.point(0.6), (41.2214747708 + 40.4508497187j)) self.assertAlmostEqual(arc1.point(0.7), (54.6009500260 + 44.5503262094j)) self.assertAlmostEqual(arc1.point(0.8), (69.0983005625 + 47.5528258148j)) self.assertAlmostEqual(arc1.point(0.9), (84.3565534960 + 49.3844170298j)) self.assertAlmostEqual(arc1.point(1.0), (100 + 50j)) arc2 = Arc(0j, 100 + 50j, 0, 1, 0, 100 + 50j) self.assertAlmostEqual(arc2.center, 50j) self.assertAlmostEqual(arc2.theta, 270.0) self.assertAlmostEqual(arc2.delta, -270.0) self.assertAlmostEqual(arc2.point(0.0), (0j)) self.assertAlmostEqual(arc2.point(0.1), (-45.399049974 + 5.44967379058j)) self.assertAlmostEqual(arc2.point(0.2), (-80.9016994375 + 20.6107373854j)) self.assertAlmostEqual(arc2.point(0.3), (-98.7688340595 + 42.178276748j)) self.assertAlmostEqual(arc2.point(0.4), (-95.1056516295 + 65.4508497187j)) self.assertAlmostEqual(arc2.point(0.5), (-70.7106781187 + 85.3553390593j)) self.assertAlmostEqual(arc2.point(0.6), (-30.9016994375 + 97.5528258148j)) self.assertAlmostEqual(arc2.point(0.7), (15.643446504 + 99.3844170298j)) self.assertAlmostEqual(arc2.point(0.8), (58.7785252292 + 90.4508497187j)) self.assertAlmostEqual(arc2.point(0.9), (89.1006524188 + 72.699524987j)) self.assertAlmostEqual(arc2.point(1.0), (100 + 50j)) arc3 = Arc(0j, 100 + 50j, 0, 0, 1, 100 + 50j) self.assertAlmostEqual(arc3.center, 50j) self.assertAlmostEqual(arc3.theta, 270.0) self.assertAlmostEqual(arc3.delta, 90.0) self.assertAlmostEqual(arc3.point(0.0), (0j)) self.assertAlmostEqual(arc3.point(0.1), (15.643446504 + 0.615582970243j)) self.assertAlmostEqual(arc3.point(0.2), (30.9016994375 + 2.44717418524j)) self.assertAlmostEqual(arc3.point(0.3), (45.399049974 + 5.44967379058j)) self.assertAlmostEqual(arc3.point(0.4), (58.7785252292 + 9.54915028125j)) self.assertAlmostEqual(arc3.point(0.5), (70.7106781187 + 14.6446609407j)) self.assertAlmostEqual(arc3.point(0.6), (80.9016994375 + 20.6107373854j)) self.assertAlmostEqual(arc3.point(0.7), (89.1006524188 + 27.300475013j)) self.assertAlmostEqual(arc3.point(0.8), (95.1056516295 + 34.5491502813j)) self.assertAlmostEqual(arc3.point(0.9), (98.7688340595 + 42.178276748j)) self.assertAlmostEqual(arc3.point(1.0), (100 + 50j)) arc4 = Arc(0j, 100 + 50j, 0, 1, 1, 100 + 50j) self.assertAlmostEqual(arc4.center, 100 + 0j) self.assertAlmostEqual(arc4.theta, 180.0) self.assertAlmostEqual(arc4.delta, 270.0) self.assertAlmostEqual(arc4.point(0.0), (0j)) self.assertAlmostEqual(arc4.point(0.1), (10.8993475812 - 22.699524987j)) self.assertAlmostEqual(arc4.point(0.2), (41.2214747708 - 40.4508497187j)) self.assertAlmostEqual(arc4.point(0.3), (84.3565534960 - 49.3844170298j)) self.assertAlmostEqual(arc4.point(0.4), (130.901699437 - 47.5528258148j)) self.assertAlmostEqual(arc4.point(0.5), (170.710678119 - 35.3553390593j)) self.assertAlmostEqual(arc4.point(0.6), (195.105651630 - 15.4508497187j)) self.assertAlmostEqual(arc4.point(0.7), (198.768834060 + 7.82172325201j)) self.assertAlmostEqual(arc4.point(0.8), (180.901699437 + 29.3892626146j)) self.assertAlmostEqual(arc4.point(0.9), (145.399049974 + 44.5503262094j)) self.assertAlmostEqual(arc4.point(1.0), (100 + 50j)) def test_length(self): # I'll test the length calculations by making a circle, in two parts. arc1 = Arc(0j, 100 + 100j, 0, 0, 0, 200 + 0j) arc2 = Arc(200 + 0j, 100 + 100j, 0, 0, 0, 0j) self.assertAlmostEqual(arc1.length(), pi * 100) self.assertAlmostEqual(arc2.length(), pi * 100) def test_equality(self): # This is to test the __eq__ and __ne__ methods, so we can't use # assertEqual and assertNotEqual segment = Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j) self.assertTrue(segment == Arc(0j, 100 + 50j, 0, 0, 0, 100 + 50j)) self.assertTrue(segment != Arc(0j, 100 + 50j, 0, 1, 0, 100 + 50j)) class TestPath(unittest.TestCase): def test_circle(self): arc1 = Arc(0j, 100 + 100j, 0, 0, 0, 200 + 0j) arc2 = Arc(200 + 0j, 100 + 100j, 0, 0, 0, 0j) path = Path(arc1, arc2) self.assertAlmostEqual(path.point(0.0), (0j)) self.assertAlmostEqual(path.point(0.25), (100 + 100j)) self.assertAlmostEqual(path.point(0.5), (200 + 0j)) self.assertAlmostEqual(path.point(0.75), (100 - 100j)) self.assertAlmostEqual(path.point(1.0), (0j)) self.assertAlmostEqual(path.length(), pi * 200) def test_svg_specs(self): """The paths that are in the SVG specs""" # Big pie: M300,200 h-150 a150,150 0 1,0 150,-150 z path = Path(Line(300 + 200j, 150 + 200j), Arc(150 + 200j, 150 + 150j, 0, 1, 0, 300 + 50j), Line(300 + 50j, 300 + 200j)) # The points and length for this path are calculated and not regression tests. self.assertAlmostEqual(path.point(0.0), (300 + 200j)) self.assertAlmostEqual(path.point(0.14897825542), (150 + 200j)) self.assertAlmostEqual(path.point(0.5), (406.066017177 + 306.066017177j)) self.assertAlmostEqual(path.point(1 - 0.14897825542), (300 + 50j)) self.assertAlmostEqual(path.point(1.0), (300 + 200j)) # The errors seem to accumulate. Still 6 decimal places is more than good enough. self.assertAlmostEqual(path.length(), pi * 225 + 300, places=6) # Little pie: M275,175 v-150 a150,150 0 0,0 -150,150 z path = Path(Line(275 + 175j, 275 + 25j), Arc(275 + 25j, 150 + 150j, 0, 0, 0, 125 + 175j), Line(125 + 175j, 275 + 175j)) # The points and length for this path are calculated and not regression tests. self.assertAlmostEqual(path.point(0.0), (275 + 175j)) self.assertAlmostEqual(path.point(0.2800495767557787), (275 + 25j)) self.assertAlmostEqual(path.point(0.5), (168.93398282201787 + 68.93398282201787j)) self.assertAlmostEqual(path.point(1 - 0.2800495767557787), (125 + 175j)) self.assertAlmostEqual(path.point(1.0), (275 + 175j)) # The errors seem to accumulate. Still 6 decimal places is more than good enough. self.assertAlmostEqual(path.length(), pi * 75 + 300, places=6) # Bumpy path: M600,350 l 50,-25 # a25,25 -30 0,1 50,-25 l 50,-25 # a25,50 -30 0,1 50,-25 l 50,-25 # a25,75 -30 0,1 50,-25 l 50,-25 # a25,100 -30 0,1 50,-25 l 50,-25 path = Path(Line(600 + 350j, 650 + 325j), Arc(650 + 325j, 25 + 25j, -30, 0, 1, 700 + 300j), Line(700 + 300j, 750 + 275j), Arc(750 + 275j, 25 + 50j, -30, 0, 1, 800 + 250j), Line(800 + 250j, 850 + 225j), Arc(850 + 225j, 25 + 75j, -30, 0, 1, 900 + 200j), Line(900 + 200j, 950 + 175j), Arc(950 + 175j, 25 + 100j, -30, 0, 1, 1000 + 150j), Line(1000 + 150j, 1050 + 125j), ) # These are *not* calculated, but just regression tests. Be skeptical. self.assertAlmostEqual(path.point(0.0), (600 + 350j)) self.assertAlmostEqual(path.point(0.3), (755.31526434 + 217.51578768j)) self.assertAlmostEqual(path.point(0.5), (832.23324151 + 156.33454892j)) self.assertAlmostEqual(path.point(0.9), (974.00559321 + 115.26473532j)) self.assertAlmostEqual(path.point(1.0), (1050 + 125j)) # The errors seem to accumulate. Still 6 decimal places is more than good enough. self.assertAlmostEqual(path.length(), 860.6756221710) def test_repr(self): path = Path( Line(start=600 + 350j, end=650 + 325j), Arc(start=650 + 325j, radius=25 + 25j, rotation=-30, arc=0, sweep=1, end=700 + 300j), CubicBezier(start=700 + 300j, control1=800 + 400j, control2=750 + 200j, end=600 + 100j), QuadraticBezier(start=600 + 100j, control=600, end=600 + 300j)) self.assertEqual(eval(repr(path)), path) def test_reverse(self): # Currently you can't reverse paths. self.assertRaises(NotImplementedError, Path().reverse) def test_equality(self): # This is to test the __eq__ and __ne__ methods, so we can't use # assertEqual and assertNotEqual path1 = Path( Line(start=600 + 350j, end=650 + 325j), Arc(start=650 + 325j, radius=25 + 25j, rotation=-30, arc=0, sweep=1, end=700 + 300j), CubicBezier(start=700 + 300j, control1=800 + 400j, control2=750 + 200j, end=600 + 100j), QuadraticBezier(start=600 + 100j, control=600, end=600 + 300j)) path2 = Path( Line(start=600 + 350j, end=650 + 325j), Arc(start=650 + 325j, radius=25 + 25j, rotation=-30, arc=0, sweep=1, end=700 + 300j), CubicBezier(start=700 + 300j, control1=800 + 400j, control2=750 + 200j, end=600 + 100j), QuadraticBezier(start=600 + 100j, control=600, end=600 + 300j)) self.assertTrue(path1 == path2) # Modify path2: path2[0].start = 601 + 350j self.assertTrue(path1 != path2) # Modify back: path2[0].start = 600 + 350j self.assertFalse(path1 != path2) # Get rid of the last segment: del path2[-1] self.assertFalse(path1 == path2) # It's not equal to a list of it's segments self.assertTrue(path1 != path1[:]) self.assertFalse(path1 == path1[:])
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common utilities for the gcloud dataproc tool.""" import time import urlparse import uuid from apitools.base.py import encoding from apitools.base.py import exceptions as apitools_exceptions from googlecloudsdk.api_lib.dataproc import constants from googlecloudsdk.api_lib.dataproc import exceptions from googlecloudsdk.api_lib.dataproc import storage_helpers from googlecloudsdk.core import log from googlecloudsdk.core.console import progress_tracker def FormatRpcError(error): """Returns a printable representation of a failed Google API's status.proto. Args: error: the failed Status to print. Returns: A ready-to-print string representation of the error. """ log.debug('Error:\n' + encoding.MessageToJson(error)) formatted_error = error.message # Only display details if the log level is INFO or finer. if error.details and log.GetVerbosity() <= log.info: formatted_error += ( '\nDetails:\n' + encoding.MessageToJson(error.details)) return formatted_error # TODO(user): Create a common wait_utils class to reuse common code. def WaitForOperation( operation, context, message, timeout_s=2100, poll_period_s=5): """Poll dataproc Operation until its status is done or timeout reached. Args: operation: Operation, message of the operation to be polled. context: dict, dataproc Command context. message: str, message to display to user while polling. timeout_s: number, seconds to poll with retries before timing out. poll_period_s: number, delay in seconds between requests. Returns: Operation: the return value of the last successful operations.get request. Raises: OperationError: if the operation times out or finishes with an error. """ client = context['dataproc_client'] messages = context['dataproc_messages'] request = messages.DataprocProjectsRegionsOperationsGetRequest( name=operation.name) log.status.Print('Waiting on operation [{0}].'.format(operation.name)) start_time = time.time() with progress_tracker.ProgressTracker(message, autotick=True): while timeout_s > (time.time() - start_time): try: operation = client.projects_regions_operations.Get(request) if operation.done: break except apitools_exceptions.HttpError: # Keep trying until we timeout in case error is transient. pass time.sleep(poll_period_s) # TODO(user): Parse operation metadata. log.debug('Operation:\n' + encoding.MessageToJson(operation)) if not operation.done: raise exceptions.OperationTimeoutError( 'Operation [{0}] timed out.'.format(operation.name)) elif operation.error: raise exceptions.OperationError( 'Operation [{0}] failed: {1}.'.format( operation.name, FormatRpcError(operation.error))) log.info('Operation [%s] finished after %.3f seconds', operation.name, (time.time() - start_time)) return operation def WaitForResourceDeletion( request_method, resource_ref, message, timeout_s=60, poll_period_s=5): """Poll Dataproc resource until it no longer exists.""" with progress_tracker.ProgressTracker(message, autotick=True): start_time = time.time() while timeout_s > (time.time() - start_time): try: request_method(resource_ref) except apitools_exceptions.HttpError as error: if error.status_code == 404: # Object deleted return log.debug('Get request for [{0}] failed:\n{1}', resource_ref, error) # Keep trying until we timeout in case error is transient. time.sleep(poll_period_s) raise exceptions.OperationTimeoutError( 'Deleting resource [{0}] timed out.'.format(resource_ref)) class NoOpProgressDisplay(object): """For use in place of a ProgressTracker in a 'with' block.""" def __enter__(self): pass def __exit__(self, *unused_args): pass def WaitForJobTermination( job, context, message, goal_state, stream_driver_log=False, log_poll_period_s=1, dataproc_poll_period_s=10, timeout_s=None): """Poll dataproc Job until its status is terminal or timeout reached. Args: job: The job to wait to finish. context: dict, dataproc Command context. message: str, message to display to user while polling. goal_state: JobStatus.StateValueValuesEnum, the state to define success stream_driver_log: bool, Whether to show the Job's driver's output. log_poll_period_s: number, delay in seconds between checking on the log. dataproc_poll_period_s: number, delay in seconds between requests to the Dataproc API. timeout_s: number, time out for job completion. None means no timeout. Returns: Operation: the return value of the last successful operations.get request. Raises: OperationError: if the operation times out or finishes with an error. """ client = context['dataproc_client'] job_ref = ParseJob(job.reference.jobId, context) request = client.MESSAGES_MODULE.DataprocProjectsRegionsJobsGetRequest( projectId=job_ref.projectId, region=job_ref.region, jobId=job_ref.jobId) driver_log_stream = None last_job_poll_time = 0 job_complete = False wait_display = None def ReadDriverLogIfPresent(): if driver_log_stream and driver_log_stream.open: # TODO(user): Don't read all output. driver_log_stream.ReadIntoWritable(log.err) if stream_driver_log: log.status.Print('Waiting for job output...') wait_display = NoOpProgressDisplay() else: wait_display = progress_tracker.ProgressTracker(message, autotick=True) start_time = now = time.time() with wait_display: while not timeout_s or timeout_s > (now - start_time): # Poll logs first to see if it closed. ReadDriverLogIfPresent() log_stream_closed = driver_log_stream and not driver_log_stream.open if not job_complete and job.status.state in constants.TERMINAL_JOB_STATES: job_complete = True # Wait an 10s to get trailing output. timeout_s = now - start_time + 10 if job_complete and (not stream_driver_log or log_stream_closed): # Nothing left to wait for break regular_job_poll = ( not job_complete # Poll less frequently on dataproc API and now >= last_job_poll_time + dataproc_poll_period_s) # Poll at regular frequency before output has streamed and after it has # finished. expecting_output_stream = stream_driver_log and not driver_log_stream expecting_job_done = not job_complete and log_stream_closed if regular_job_poll or expecting_output_stream or expecting_job_done: last_job_poll_time = now try: job = client.projects_regions_jobs.Get(request) if (stream_driver_log and not driver_log_stream and job.driverOutputResourceUri): driver_log_stream = storage_helpers.StorageObjectSeriesStream( job.driverOutputResourceUri) except apitools_exceptions.HttpError as error: log.warn('GetJob failed:\n%s', error) # Keep trying until we timeout in case error is transient. time.sleep(log_poll_period_s) now = time.time() state = job.status.state if state is not goal_state and job.status.details: # Just log details, because the state will be in the error message. log.info(job.status.details) if state in constants.TERMINAL_JOB_STATES: if stream_driver_log: if not driver_log_stream: log.warn('Expected job output not found.') elif driver_log_stream.open: log.warn('Job terminated, but output did not finish streaming.') if state is goal_state: return job raise exceptions.JobError( 'Job [{0}] entered state [{1}] while waiting for [{2}].'.format( job_ref.jobId, state, goal_state)) raise exceptions.JobTimeoutError( 'Job [{0}] timed out while in state [{1}].'.format( job_ref.jobId, state)) def ParseCluster(name, context): resources = context['resources'] ref = resources.Parse(name, collection='dataproc.projects.regions.clusters') return ref def ParseJob(job_id, context): resources = context['resources'] ref = resources.Parse(job_id, collection='dataproc.projects.regions.jobs') return ref def ParseOperation(operation, context): resources = context['resources'] collection = 'dataproc.projects.regions.operations' # Dataproc usually refers to Operations by relative name, which must be # parsed explicitly until resources.Parse supports it. # TODO(user): Remove once Parse delegates to ParseRelativeName. url = urlparse.urlparse(operation) if not url.scheme and '/' in url.path and not url.path.startswith('/'): return resources.ParseRelativeName(operation, collection=collection) return resources.Parse(operation, collection=collection) def GetJobId(job_id=None): if job_id: return job_id return str(uuid.uuid4()) class Bunch(object): """Class that converts a dictionary to javascript like object. For example: Bunch({'a': {'b': {'c': 0}}}).a.b.c == 0 """ def __init__(self, dictionary): for key, value in dictionary.iteritems(): if isinstance(value, dict): value = Bunch(value) self.__dict__[key] = value def AddJvmDriverFlags(parser): parser.add_argument( '--jar', dest='main_jar', help='The HCFS URI of jar file containing the driver jar.') parser.add_argument( '--class', dest='main_class', help=('The class containing the main method of the driver. Must be in a' ' provided jar or jar that is already on the classpath'))
#!/usr/bin/env python # -*- coding: utf-8 -*- """ CERN@school - Make Plots See the README.md file for more information. """ # Import the code needed to manage files. import os, glob #...for parsing the arguments. import argparse #...for the logging. import logging as lg #...for file manipulation. from shutil import rmtree # Import the JSON library. import json #...for the histograms. from plotting.histograms import Hist, Hist2D if __name__ == "__main__": print("*") print("*==============================*") print("* CERN@school - make the plots *") print("*==============================*") # Get the datafile path from the command line. parser = argparse.ArgumentParser() parser.add_argument("inputPath", help="Path to the input dataset.") parser.add_argument("outputPath", help="The path for the output files.") parser.add_argument("-v", "--verbose", help="Increase output verbosity", action="store_true") args = parser.parse_args() ## The path to the data file. datapath = args.inputPath ## The output path. outputpath = args.outputPath # Set the logging level. if args.verbose: level=lg.DEBUG else: level=lg.INFO # Configure the logging. lg.basicConfig(filename=outputpath + '/log_make-plots.log', filemode='w', level=level) print("*") print("* Input path : '%s'" % (datapath)) print("* Output path : '%s'" % (outputpath)) print("*") # Set up the directories #------------------------ # Check if the output directory exists. If it doesn't, quit. if not os.path.isdir(outputpath): raise IOError("* ERROR: '%s' output directory does not exist!" % (outputpath)) # Create the subdirectories. ## The path to the frame plots. fppath = os.path.join(outputpath, "frameplots") # if os.path.isdir(fppath): rmtree(fppath) lg.info(" * Removing directory '%s'..." % (fppath)) os.mkdir(fppath) lg.info(" * Creating directory '%s'..." % (fppath)) lg.info("") ## The path to the cluster plots. kppath = os.path.join(outputpath, "clusterplots") # if os.path.isdir(kppath): rmtree(kppath) lg.info(" * Removing directory '%s'..." % (kppath)) os.mkdir(kppath) lg.info(" * Creating directory '%s'..." % (kppath)) lg.info("") ## The frame properties JSON file - FIXME: check it exists... ff = open(datapath + "/frames.json", "r") # fd = json.load(ff) ff.close() ## The cluster properties JSON file - FIXME: check it exists... kf = open(datapath + "/klusters.json", "r") # kd = json.load(kf) kf.close() # The frames #------------ ## The number of clusters per frame. ncs = [] ## The number of non-gamma clusters per frame. nlcs = [] ## The number of gamma candidates per frame. ngs = [] # Loop over the frames. for f in fd: # Add to the frame property dictionaries. ncs.append( f["n_kluster"]) nlcs.append(f["n_non_gamma"]) ngs.append( f["n_gamma"]) ## The number of clusters plot. nlcsplot = Hist("ncs", 101, ncs, -1, "Number of clusters", "Number of frames", fppath) ## The number of non-gamma clusters plot. ncsplot = Hist("nls", 102, nlcs, -1, "Number of non-gamma clusters", "Number of frames", fppath) ## The number of gamma clusters plot. ngsplot = Hist("ngs", 103, ngs, -1, "Number of gamma clusters", "Number of frames", fppath) # Make the plot display page. fp = "" fp += "<!DOCTYPE html>\n" fp += "<html>\n" fp += " <head>\n" fp += " <link rel=\"stylesheet\" type=\"text/css\" " fp += "href=\"assets/css/style.css\">\n" fp += " </head>\n" fp += " <body>\n" fp += " <h1>Cluster Sorting: Frame Properties</h1>\n" fp += " <h2>Dataset summary</h2>\n" fp += " <p>\n" fp += " <ul>\n" fp += " <li>Dataset path = '%s'</li>\n" % (datapath) fp += " <li>Number of frames = %d</li>\n" % (len(fd)) fp += " <li>Number of clusters (dat.) = %d</li>\n" % (len(kd)) fp += " </ul>\n" fp += " </p>\n" fp += " <h2>Frame properties</h2>\n" fp += " <table>\n" fp += " <caption>Fig. 1: Clusters per frame.</caption>\n" fp += " <tr><td><img src=\"ncs.png\" /></td></tr>\n" fp += " </table>\n" fp += " <table>\n" fp += " <caption>Fig. 2: Non-gamma clusters per frame.</caption>\n" fp += " <tr><td><img src=\"nls.png\" /></td></tr>\n" fp += " </table>\n" fp += " <table>\n" fp += " <caption>Fig. 3: Gamma clusters per frame.</caption>\n" fp += " <tr><td><img src=\"ngs.png\" /></td></tr>\n" fp += " </table>\n" fp += " </body>\n" fp += "</html>" # Write out the frame property index page. with open("%s/index.html" % (fppath), "w") as framepage: framepage.write(fp) # Clusters #---------- ## A list of clusters. klusters = [] # Create container lists for the cluster properties. cluster_size = [] cluster_counts = [] cluster_maxcounts = [] cluster_radius_u = [] cluster_density_u = [] cluster_linearity = [] cluster_innerfrac = [] # Loop over the klusters. for k in kd: # Add to the cluster property dictionaries. if not k["isedgekluster"]: cluster_size.append( k["size"]) cluster_radius_u.append( k["radius_uw"]) cluster_density_u.append(k["density_uw"]) cluster_linearity.append(k["lin_linearity"]) cluster_innerfrac.append(k["innerfrac"]) cluster_counts.append( k["totalcounts"]) cluster_maxcounts.append(k["maxcounts"]) # Cluster plots #--------------- ksplot = Hist("kls", 1001, cluster_size, -1, "$N_{h}$", "Number of clusters", kppath) kcplot = Hist("klc", 1002, cluster_counts, 100, "$N_{C}$", "Number of clusters", kppath) krplot = Hist("klr", 1003, cluster_radius_u, 100, "$r$", "Number of clusters", kppath) kdplot = Hist("kld", 1004, cluster_density_u, 100, "$\\rho$", "Number of clusters", kppath) klplot = Hist("kll", 1005, cluster_linearity, 100, "Linearity", "Number of clusters", kppath) kiplot = Hist("kli", 1006, cluster_innerfrac, 100, "Inner frac.", "Number of clusters", kppath) kmplot = Hist("klm", 1007, cluster_maxcounts, 100, "Max. Count", "Number of clusters", kppath) # Figure - hits vs radius. hits_vs_rad = Hist2D(201, "hvr", cluster_size, "$N_h$", max(cluster_size), \ cluster_radius_u, "$r$", 100, \ kppath) # Figure - hits vs counts. hits_vs_counts = Hist2D(202, "hvc", cluster_size, "$N_h$", max(cluster_size), \ cluster_counts, "$N_c$", 100, \ kppath) # Figure - hits vs linearity. hits_vs_lin = Hist2D(203, "hvl", cluster_size, "$N_h$", max(cluster_size), \ cluster_linearity, "Linearity", 100, \ kppath) # Figure - radius vs linearity. rad_vs_lin = Hist2D(204, "rvl", cluster_radius_u, "$r$", 100, \ cluster_linearity, "Linearity", 100, \ kppath) # Figure - density vs linearity. rho_vs_lin = Hist2D(205, "dvl", cluster_density_u, "$\\rho$", 100, \ cluster_linearity, "Linearity", 100, \ kppath) # Make the plot display page. kp = "" kp += "<!DOCTYPE html>\n" kp += "<html>\n" kp += " <head>\n" kp += " <link rel=\"stylesheet\" type=\"text/css\" " kp += "href=\"assets/css/style.css\">\n" kp += " </head>\n" kp += " <body>\n" kp += " <h1>Cluster Sorting: Cluster Properties</h1>\n" kp += " <h2>Dataset summary</h2>\n" kp += " <p>\n" kp += " <ul>\n" kp += " <li>Dataset path = '%s'</li>\n" % (datapath) kp += " <li>Number of frames = %d</li>\n" % (len(fd)) kp += " <li>Number of clusters (dat.) = %d</li>\n" % (len(cluster_size)) kp += " </ul>\n" kp += " </p>\n" kp += " <h2>Cluster properties</h2>\n" kp += " <h3>Individual plots</h3>\n" kp += " <table>\n" kp += " <caption>Fig. 1.1: Cluster size.</caption>\n" kp += " <tr><td><img src=\"kls.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 1.2: Total counts per cluster.</caption>\n" kp += " <tr><td><img src=\"klc.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 1.3: Max. count value in the cluster.</caption>\n" kp += " <tr><td><img src=\"klm.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 1.4: Cluster radii.</caption>\n" kp += " <tr><td><img src=\"klr.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 1.5: Cluster density &rho;.</caption>\n" kp += " <tr><td><img src=\"kld.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 1.6: Fraction of inner pixels.</caption>\n" kp += " <tr><td><img src=\"kli.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 1.7: Cluster linearity.</caption>\n" kp += " <tr><td><img src=\"kll.png\" /></td></tr>\n" kp += " </table>\n" kp += " <h3>Comparison plots</h3>\n" kp += " <table>\n" kp += " <caption>Fig. 2.1: Cluster size vs radius.</caption>\n" kp += " <tr><td><img src=\"hvr.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 2.2: Cluster size vs counts.</caption>\n" kp += " <tr><td><img src=\"hvc.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 2.3: Cluster size vs linearity.</caption>\n" kp += " <tr><td><img src=\"hvl.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 2.4: Cluster radius vs linearity.</caption>\n" kp += " <tr><td><img src=\"rvl.png\" /></td></tr>\n" kp += " </table>\n" kp += " <table>\n" kp += " <caption>Fig. 2.5: Cluster density vs linearity.</caption>\n" kp += " <tr><td><img src=\"dvl.png\" /></td></tr>\n" kp += " </table>\n" kp += " </body>\n" kp += "</html>" # Write out the cluster property index page. with open("%s/index.html" % (kppath), "w") as clusterpage: clusterpage.write(kp) # Now you can view the "index.html" files to see the results! print("*") print("* Plotting complete.") print("* View your results by opening '%s' or '%s' in a browser, e.g." % (fppath, kppath)) print("* $ firefox %s/index.html &" % (fppath)) print("* $ firefox %s/index.html &" % (kppath))
# Copyright 2013, Big Switch Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.core.urlresolvers import reverse from django.template import defaultfilters as filters from django.utils import http from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import tables from openstack_dashboard import api from openstack_dashboard import policy class AddPoolLink(tables.LinkAction): name = "addpool" verbose_name = _("Add Pool") url = "horizon:project:lbaas:addpool" classes = ("ajax-modal",) icon = "plus" policy_rules = (("network", "create_pool"),) class AddVipLink(tables.LinkAction): name = "addvip" verbose_name = _("Add VIP") classes = ("ajax-modal",) icon = "plus" policy_rules = (("network", "create_vip"),) def get_link_url(self, pool): base_url = reverse("horizon:project:lbaas:addvip", kwargs={'pool_id': pool.id}) return base_url def allowed(self, request, datum=None): if datum and datum.vip_id: return False return True class AddMemberLink(tables.LinkAction): name = "addmember" verbose_name = _("Add Member") url = "horizon:project:lbaas:addmember" classes = ("ajax-modal",) icon = "plus" policy_rules = (("network", "create_member"),) class AddMonitorLink(tables.LinkAction): name = "addmonitor" verbose_name = _("Add Monitor") url = "horizon:project:lbaas:addmonitor" classes = ("ajax-modal",) icon = "plus" policy_rules = (("network", "create_health_monitor"),) class DeleteVipLink(policy.PolicyTargetMixin, tables.DeleteAction): name = "deletevip" action_present = _("Delete") action_past = _("Scheduled deletion of %(data_type)s") data_type_singular = _("VIP") data_type_plural = _("VIPs") policy_rules = (("network", "delete_vip"),) def allowed(self, request, datum=None): if datum and not datum.vip_id: return False return True class DeletePoolLink(policy.PolicyTargetMixin, tables.DeleteAction): name = "deletepool" action_present = _("Delete") action_past = _("Scheduled deletion of %(data_type)s") data_type_singular = _("Pool") data_type_plural = _("Pools") policy_rules = (("network", "delete_pool"),) def allowed(self, request, datum=None): if datum and datum.vip_id: return False return True class DeleteMonitorLink(policy.PolicyTargetMixin, tables.DeleteAction): name = "deletemonitor" action_present = _("Delete") action_past = _("Scheduled deletion of %(data_type)s") data_type_singular = _("Monitor") data_type_plural = _("Monitors") policy_rules = (("network", "delete_health_monitor"),) class DeleteMemberLink(policy.PolicyTargetMixin, tables.DeleteAction): name = "deletemember" action_present = _("Delete") action_past = _("Scheduled deletion of %(data_type)s") data_type_singular = _("Member") data_type_plural = _("Members") policy_rules = (("network", "delete_member"),) class UpdatePoolLink(policy.PolicyTargetMixin, tables.LinkAction): name = "updatepool" verbose_name = _("Edit Pool") classes = ("ajax-modal", "btn-update",) policy_rules = (("network", "update_pool"),) def get_link_url(self, pool): base_url = reverse("horizon:project:lbaas:updatepool", kwargs={'pool_id': pool.id}) return base_url class UpdateVipLink(policy.PolicyTargetMixin, tables.LinkAction): name = "updatevip" verbose_name = _("Edit VIP") classes = ("ajax-modal", "btn-update",) policy_rules = (("network", "update_vip"),) def get_link_url(self, pool): base_url = reverse("horizon:project:lbaas:updatevip", kwargs={'vip_id': pool.vip_id}) return base_url def allowed(self, request, datum=None): if datum and not datum.vip_id: return False return True class UpdateMemberLink(policy.PolicyTargetMixin, tables.LinkAction): name = "updatemember" verbose_name = _("Edit Member") classes = ("ajax-modal", "btn-update",) policy_rules = (("network", "update_member"),) def get_link_url(self, member): base_url = reverse("horizon:project:lbaas:updatemember", kwargs={'member_id': member.id}) return base_url class UpdateMonitorLink(policy.PolicyTargetMixin, tables.LinkAction): name = "updatemonitor" verbose_name = _("Edit Monitor") classes = ("ajax-modal", "btn-update",) policy_rules = (("network", "update_health_monitor"),) def get_link_url(self, monitor): base_url = reverse("horizon:project:lbaas:updatemonitor", kwargs={'monitor_id': monitor.id}) return base_url def get_vip_link(pool): if pool.vip_id: return reverse("horizon:project:lbaas:vipdetails", args=(http.urlquote(pool.vip_id),)) else: return None class AddPMAssociationLink(policy.PolicyTargetMixin, tables.LinkAction): name = "addassociation" verbose_name = _("Associate Monitor") url = "horizon:project:lbaas:addassociation" classes = ("ajax-modal",) icon = "plus" policy_rules = (("network", "create_pool_health_monitor"),) def allowed(self, request, datum=None): try: tenant_id = request.user.tenant_id monitors = api.lbaas.pool_health_monitor_list(request, tenant_id=tenant_id) for m in monitors: if m.id not in datum['health_monitors']: return True except Exception: exceptions.handle(request, _('Failed to retrieve health monitors.')) return False class DeletePMAssociationLink(policy.PolicyTargetMixin, tables.LinkAction): name = "deleteassociation" verbose_name = _("Disassociate Monitor") url = "horizon:project:lbaas:deleteassociation" classes = ("ajax-modal", "btn-danger") icon = "remove" policy_rules = (("network", "delete_pool_health_monitor"),) def allowed(self, request, datum=None): if datum and not datum['health_monitors']: return False return True class PoolsTable(tables.DataTable): name = tables.Column("name", verbose_name=_("Name"), link="horizon:project:lbaas:pooldetails") description = tables.Column('description', verbose_name=_("Description")) provider = tables.Column('provider', verbose_name=_("Provider"), filters=(lambda v: filters.default(v, _('N/A')),)) subnet_name = tables.Column('subnet_name', verbose_name=_("Subnet")) protocol = tables.Column('protocol', verbose_name=_("Protocol")) status = tables.Column('status', verbose_name=_("Status")) vip_name = tables.Column('vip_name', verbose_name=_("VIP"), link=get_vip_link) class Meta: name = "poolstable" verbose_name = _("Pools") table_actions = (AddPoolLink, DeletePoolLink) row_actions = (UpdatePoolLink, AddVipLink, UpdateVipLink, DeleteVipLink, AddPMAssociationLink, DeletePMAssociationLink, DeletePoolLink) def get_pool_link(member): return reverse("horizon:project:lbaas:pooldetails", args=(http.urlquote(member.pool_id),)) def get_member_link(member): return reverse("horizon:project:lbaas:memberdetails", args=(http.urlquote(member.id),)) class MembersTable(tables.DataTable): address = tables.Column('address', verbose_name=_("IP Address"), link=get_member_link, attrs={'data-type': "ip"}) protocol_port = tables.Column('protocol_port', verbose_name=_("Protocol Port")) weight = tables.Column('weight', verbose_name=_("Weight")) pool_name = tables.Column('pool_name', verbose_name=_("Pool"), link=get_pool_link) status = tables.Column('status', verbose_name=_("Status")) class Meta: name = "memberstable" verbose_name = _("Members") table_actions = (AddMemberLink, DeleteMemberLink) row_actions = (UpdateMemberLink, DeleteMemberLink) def get_monitor_details(monitor): if monitor.type in ('HTTP', 'HTTPS'): return ("%(http_method)s %(url_path)s => %(codes)s" % {'http_method': monitor.http_method, 'url_path': monitor.url_path, 'codes': monitor.expected_codes}) else: return _("-") class MonitorsTable(tables.DataTable): monitor_type = tables.Column( "type", verbose_name=_("Monitor Type"), link="horizon:project:lbaas:monitordetails") delay = tables.Column("delay", verbose_name=_("Delay")) timeout = tables.Column("timeout", verbose_name=_("Timeout")) max_retries = tables.Column("max_retries", verbose_name=_("Max Retries")) details = tables.Column(get_monitor_details, verbose_name=_("Details")) class Meta: name = "monitorstable" verbose_name = _("Monitors") table_actions = (AddMonitorLink, DeleteMonitorLink) row_actions = (UpdateMonitorLink, DeleteMonitorLink)
"""Tests launch, teardown, and update of multiple Ray clusters using Kubernetes operator. Also tests submission of jobs via Ray client.""" import copy import sys import os import subprocess import tempfile import time import unittest from contextlib import contextmanager import kubernetes import pytest import yaml import ray from ray.autoscaler._private._kubernetes.node_provider import\ KubernetesNodeProvider IMAGE_ENV = "KUBERNETES_OPERATOR_TEST_IMAGE" IMAGE = os.getenv(IMAGE_ENV, "rayproject/ray:nightly") NAMESPACE_ENV = "KUBERNETES_OPERATOR_TEST_NAMESPACE" NAMESPACE = os.getenv(NAMESPACE_ENV, "test-k8s-operator") PULL_POLICY_ENV = "KUBERNETES_OPERATOR_TEST_PULL_POLICY" PULL_POLICY = os.getenv(PULL_POLICY_ENV, "Always") RAY_PATH = os.path.abspath( os.path.dirname( os.path.dirname( os.path.dirname(os.path.dirname(os.path.dirname(__file__)))))) @contextmanager def client_connect_to_k8s(port="10001"): command = f"kubectl -n {NAMESPACE}"\ f" port-forward service/example-cluster-ray-head {port}:{port}" command = command.split() print(">>>Port-forwarding head service.") proc = subprocess.Popen(command) # Wait a bit for the port-forwarding connection to be # established. time.sleep(10) ray.client(f"127.0.0.1:{port}").connect() try: yield proc finally: ray.shutdown() proc.kill() def retry_until_true(f): # Keep retrying for 8 minutes with 10 seconds between attempts. def f_with_retries(*args, **kwargs): for _ in range(49): if f(*args, **kwargs): return else: time.sleep(10) pytest.fail("The condition wasn't met before the timeout expired.") return f_with_retries @retry_until_true def wait_for_pods(n, namespace=NAMESPACE, name_filter=""): client = kubernetes.client.CoreV1Api() pods = client.list_namespaced_pod(namespace=namespace).items count = 0 for pod in pods: if name_filter in pod.metadata.name: count += 1 # Double-check that the correct image is use. assert pod.spec.containers[0].image == IMAGE,\ pod.spec.containers[0].image return count == n @retry_until_true def wait_for_logs(operator_pod): """Check if logs indicate presence of nodes of types "head-node" and "worker-nodes" in the "example-cluster" cluster.""" cmd = f"kubectl -n {NAMESPACE} logs {operator_pod}"\ f"| grep ^example-cluster,{NAMESPACE}: | tail -n 100" log_tail = subprocess.check_output(cmd, shell=True).decode() return ("head-node" in log_tail) and ("worker-node" in log_tail) @retry_until_true def wait_for_job(job_pod): print(">>>Checking job logs.") cmd = f"kubectl -n {NAMESPACE} logs {job_pod}" try: out = subprocess.check_output( cmd, shell=True, stderr=subprocess.STDOUT).decode() except subprocess.CalledProcessError as e: print(">>>Failed to check job logs.") print(e.output.decode()) return False success = "success" in out.lower() if success: print(">>>Job submission succeeded.") else: print(">>>Job logs do not indicate job sucess:") print(out) return success @retry_until_true def wait_for_command_to_succeed(cmd): try: subprocess.check_call(cmd, shell=True) return True except subprocess.CalledProcessError: return False @retry_until_true def wait_for_pod_status(pod_name, status): client = kubernetes.client.CoreV1Api() pod = client.read_namespaced_pod(namespace=NAMESPACE, name=pod_name) return pod.status.phase == status @retry_until_true def wait_for_status(cluster_name, status): client = kubernetes.client.CustomObjectsApi() cluster_cr = client.get_namespaced_custom_object( namespace=NAMESPACE, group="cluster.ray.io", version="v1", plural="rayclusters", name=cluster_name) return cluster_cr["status"]["phase"] == status @retry_until_true def wait_for_services(n): return num_services() == n def kubernetes_configs_directory(): relative_path = "deploy" return os.path.join(RAY_PATH, relative_path) def get_kubernetes_config_path(name): return os.path.join(kubernetes_configs_directory(), name) def get_component_config_path(file_name): operator_configs = get_kubernetes_config_path("components") return os.path.join(operator_configs, file_name) def get_crd_path(): return get_kubernetes_config_path("charts/ray/crds/cluster_crd.yaml") def pods(): client = kubernetes.client.CoreV1Api() pod_items = client.list_namespaced_pod(namespace=NAMESPACE).items return [ pod.metadata.name for pod in pod_items if pod.status.phase in ["Running", "Pending"] and pod.metadata.deletion_timestamp is None ] def num_services(): cmd = f"kubectl -n {NAMESPACE} get services --no-headers -o"\ " custom-columns=\":metadata.name\"" service_list = subprocess.check_output(cmd, shell=True).decode().split() return len(service_list) class KubernetesOperatorTest(unittest.TestCase): def test_basic(self): # Validate terminate_node error handling provider = KubernetesNodeProvider({ "namespace": NAMESPACE }, "default_cluster_name") # 404 caught, no error provider.terminate_node("no-such-node") with tempfile.NamedTemporaryFile("w+") as example_cluster_file, \ tempfile.NamedTemporaryFile("w+") as example_cluster2_file,\ tempfile.NamedTemporaryFile("w+") as operator_file,\ tempfile.NamedTemporaryFile("w+") as job_file: # Get paths to operator configs example_cluster_config_path = get_component_config_path( "example_cluster.yaml") operator_config_path = get_component_config_path( "operator_namespaced.yaml") job_path = os.path.join(RAY_PATH, "doc/kubernetes/job-example.yaml") # Load operator configs example_cluster_config = yaml.safe_load( open(example_cluster_config_path).read()) example_cluster2_config = copy.deepcopy(example_cluster_config) # One worker for the second config example_cluster2_config["spec"]["podTypes"][1]["minWorkers"] = 1 example_cluster2_config["metadata"]["name"] = "example-cluster2" operator_config = list( yaml.safe_load_all(open(operator_config_path).read())) job_config = yaml.safe_load(open(job_path).read()) # Fill image fields podTypes = example_cluster_config["spec"]["podTypes"] podTypes2 = example_cluster2_config["spec"]["podTypes"] pod_specs = ([operator_config[-1]["spec"]["template"]["spec"]] + [ job_config["spec"]["template"]["spec"] ] + [podType["podConfig"]["spec"] for podType in podTypes ] + [podType["podConfig"]["spec"] for podType in podTypes2]) for pod_spec in pod_specs: pod_spec["containers"][0]["image"] = IMAGE pod_spec["containers"][0]["imagePullPolicy"] = PULL_POLICY # Use a custom Redis port for one of the clusters. example_cluster_config["spec"]["headStartRayCommands"][1] += \ " --port 6400" example_cluster_config["spec"]["workerStartRayCommands"][1] = \ " ulimit -n 65536; ray start --address=$RAY_HEAD_IP:6400" # Dump to temporary files yaml.dump(example_cluster_config, example_cluster_file) yaml.dump(example_cluster2_config, example_cluster2_file) yaml.dump(job_config, job_file) yaml.dump_all(operator_config, operator_file) files = [ example_cluster_file, example_cluster2_file, operator_file ] for file in files: file.flush() # Start operator and two clusters print("\n>>>Starting operator and two clusters.") for file in files: cmd = f"kubectl -n {NAMESPACE} apply -f {file.name}" subprocess.check_call(cmd, shell=True) # Check that autoscaling respects minWorkers by waiting for # six pods in the namespace. print(">>>Waiting for pods to join clusters.") wait_for_pods(6) # Check that head services are present. print(">>>Checking that head services are present.") wait_for_services(2) # Check that logging output looks normal (two workers connected to # ray cluster example-cluster.) operator_pod = [pod for pod in pods() if "operator" in pod].pop() wait_for_logs(operator_pod) print(">>>Checking that Ray client connection is uninterrupted by" " operator restart.") with client_connect_to_k8s(): @ray.remote class Test: @ray.method() def method(self): return "success" actor = Test.remote() print(">>>Restarting operator pod.") cmd = f"kubectl -n {NAMESPACE} delete pod {operator_pod}" subprocess.check_call(cmd, shell=True) wait_for_pods(6) operator_pod = [pod for pod in pods() if "operator" in pod].pop() wait_for_pod_status(operator_pod, "Running") time.sleep(5) print(">>>Confirming Ray is uninterrupted.") assert ray.get(actor.method.remote()) == "success" # Delete head node of the first cluster. Recovery logic should # allow the rest of the test to pass. print(">>>Deleting cluster's head to test recovery.") head_pod = [pod for pod in pods() if "r-ray-head" in pod].pop() cd = f"kubectl -n {NAMESPACE} delete pod {head_pod}" subprocess.check_call(cd, shell=True) print(">>>Confirming recovery.") # Status marked "Running". wait_for_status("example-cluster", "Running") # Head pod recovered. wait_for_pods(6) # Get the new head pod head_pod = [pod for pod in pods() if "r-ray-head" in pod].pop() wait_for_pod_status(head_pod, "Running") stat_cmd = f"kubectl -n {NAMESPACE} exec {head_pod} -- ray status" print(">>>Waiting for success of `ray status` on recovered head.") wait_for_command_to_succeed(stat_cmd) print(">>>Stopping ray on the head node to test recovery.") stop_cmd = f"kubectl -n {NAMESPACE} exec {head_pod} -- ray stop" subprocess.check_call(stop_cmd, shell=True) # ray status should fail when called immediately after ray stop with pytest.raises(subprocess.CalledProcessError): subprocess.check_call(stat_cmd, shell=True) print(">>>Waiting for success of `ray status` on recovered head.") wait_for_command_to_succeed(stat_cmd) # Delete the second cluster print(">>>Deleting example-cluster2.") cmd = f"kubectl -n {NAMESPACE} delete -f"\ f"{example_cluster2_file.name}" subprocess.check_call(cmd, shell=True) # Four pods remain print(">>>Checking that example-cluster2 pods are gone.") wait_for_pods(4) # Cluster 2 service has been garbage-collected. print(">>>Checking that deleted cluster's service is gone.") wait_for_services(1) # Check job submission print(">>>Submitting a job to test Ray client connection.") cmd = f"kubectl -n {NAMESPACE} create -f {job_file.name}" subprocess.check_call(cmd, shell=True) wait_for_pods(1, name_filter="job") job_pod = [pod for pod in pods() if "job" in pod].pop() time.sleep(10) wait_for_job(job_pod) cmd = f"kubectl -n {NAMESPACE} delete jobs --all" subprocess.check_call(cmd, shell=True) # Check that cluster updates work: increase minWorkers to 3 # and check that one worker is created. print(">>>Updating cluster size.") example_cluster_edit = copy.deepcopy(example_cluster_config) example_cluster_edit["spec"]["podTypes"][1]["minWorkers"] = 3 yaml.dump(example_cluster_edit, example_cluster_file) example_cluster_file.flush() cm = f"kubectl -n {NAMESPACE} apply -f {example_cluster_file.name}" subprocess.check_call(cm, shell=True) print(">>>Checking that new cluster size is respected.") wait_for_pods(5) # Delete the first cluster print(">>>Deleting second cluster.") cmd = f"kubectl -n {NAMESPACE} delete -f"\ f"{example_cluster_file.name}" subprocess.check_call(cmd, shell=True) # Only operator pod remains. print(">>>Checking that all Ray cluster pods are gone.") wait_for_pods(1) # Cluster 1 service has been garbage-collected. print(">>>Checking that all Ray cluster services are gone.") wait_for_services(0) # Verify that cluster deletion earlier in this test did not break # the operator. print(">>>Checking cluster creation again.") for file in [example_cluster_file, example_cluster2_file]: cmd = f"kubectl -n {NAMESPACE} apply -f {file.name}" subprocess.check_call(cmd, shell=True) wait_for_pods(7) print(">>>Checking cluster deletion again.") for file in [example_cluster_file, example_cluster2_file]: cmd = f"kubectl -n {NAMESPACE} delete -f {file.name}" subprocess.check_call(cmd, shell=True) wait_for_pods(1) if __name__ == "__main__": kubernetes.config.load_kube_config() sys.exit(pytest.main(["-sv", __file__]))
""" Supports flushing statsite metrics to Librato """ import ast import sys import socket import logging import ConfigParser import re import base64 import urllib2 import json import os ## # Librato sink for statsite # ========================= # # Use with the following stream command: # # stream_cmd = python sinks/librato.py librato.ini # # The Librato sink takes an INI format configuration file as a single # argument. The following is an example configuration: # # Configuration example: # --------------------- # # [librato] # email = john@example.com # token = 02ac4003c4fcd11bf9cee34e34263155dc7ba1906c322d167db6ab4b2cd2082b # source_regex = ^([^-]+)-- # floor_time_secs = 60 # # Options: # ------- # # - email / token: Librato account credentials (required). # - source: Source name to use for samples, defaults to hostname if not set. # - source_regex: Source name regex extraction see: # https://github.com/librato/statsd-librato-backend#setting-the-source-per-metric # - floor_time_secs: Floor samples to this time (should match statsite flush_interval. # - prefix: Metric name prefix to set for all metrics. # - extended_counters: true/false, look for statsite extended_counters, default false. # This should match your statsite config for extended_counters. # ### class LibratoStore(object): def __init__(self, conffile="/etc/statsite/librato.ini"): """ Implements an interface that allows metrics to be persisted to Librato. Raises a :class:`ValueError` on bad arguments or `Exception` on missing configuration section. :Parameters: - `conffile`: INI configuration file. """ self.logger = logging.getLogger("statsite.librato") self.api = "https://metrics-api.librato.com" self.parse_conf(conffile) self.sink_name = "statsite-librato" self.sink_version = "1.0.1" self.flush_timeout_secs = 5 self.gauges = {} self.measurements = {} # Limit our payload sizes self.max_metrics_payload = 500 self.timer_re = re.compile("^timers\.") self.ex_count_re = re.compile("^counts\.") self.type_re = re.compile("^(kv|timers|counts|gauges|sets)\.(.+)$") self.sfx_map = { 'sum': 'sum', 'sum_sq': None, 'count' : 'count', 'stdev' : 'stddev_m2', 'lower' : 'min', 'upper' : 'max', 'mean' : None } self.sfx_re = re.compile("(.+)\.(sum|sum_sq|count|stdev|lower|upper|mean)$") self.sanitize_re = re.compile("[^-A-Za-z0-9.:_]") def parse_conf(self, conffile): """ Loads configuration from an INI format file. """ sect = "librato" config = ConfigParser.RawConfigParser() config.read(conffile) if not config.has_section(sect): raise Exception("Can not locate config section 'librato'") if config.has_option(sect, 'email'): self.email = config.get(sect, 'email') else: raise ValueError("email must be set in config") if config.has_option(sect, 'token'): self.token = config.get(sect, 'token') else: raise ValueError("token must be set in config") if config.has_option(sect, 'api'): self.api = config.get(sect, 'api') if config.has_option(sect, 'source'): self.source = config.get(sect, 'source') else: self.source = None if config.has_option(sect, 'host'): self.host = config.get(sect, 'host') else: self.host = socket.gethostname() if config.has_option(sect, 'source_regex'): reg = config.get(sect, 'source_regex') # Strip /'s if len(reg) > 2 and reg[0] == '/' and \ reg[len(reg) - 1] == "/": reg = reg[1:len(reg)-1] self.source_re = re.compile(reg) else: self.source_re = None if config.has_option(sect, 'floor_time_secs'): self.floor_time_secs = config.getint(sect, 'floor_time_secs') else: self.floor_time_secs = None if config.has_option(sect, "prefix"): self.prefix = config.get(sect, "prefix") else: self.prefix = None if config.has_option(sect, "source_prefix"): self.source_prefix = config.get(sect, "source_prefix") else: self.source_prefix = None if config.has_option(sect, "extended_counters"): self.extended_counters = config.getboolean(sect, "extended_counters") else: self.extended_counters = False # Check if we want to also send measurements to legacy Librato API if config.has_option(sect, "write_to_legacy"): self.write_to_legacy = config.getboolean(sect, "write_to_legacy") else: self.write_to_legacy = False # Global Tags if config.has_option(sect, "tags"): self.tags = ast.literal_eval(config.get(sect, "tags")) else: self.tags = {} def split_multipart_metric(self, name): m = self.sfx_re.match(name) if m != None: if self.sfx_map[m.group(2)] != None: return m.group(1), self.sfx_map[m.group(2)] else: # These we drop return None, None else: return name, None def sanitize(self, name): return self.sanitize_re.sub("_", name) def parse_tags(self, name, multipart=False): # Find and parse the tags from the name using the syntax name#tag1=value,tag2=value s = name.split("#") tags = {} raw_tags = [] if len(s) > 1: name = s.pop(0) raw_tags = s.pop().split(",") if multipart: # Timers will append .p90, .p99 etc to the end of the "metric name" # Parse the suffix out and append to the metric name last_tag = raw_tags.pop() last_tag_split = last_tag.split('.') # Store the proper name. The suffix is the last element in split of the last tag. name = name + "." + last_tag_split.pop() # Put the tag, without the suffix, back in the list of raw tags if len(last_tag_split) > 1: t = ".".join(last_tag_split) # # We had periods in the tag value... raw_tags.append(t) # raw_tags.extend(last_tag_split) else: raw_tags.extend(last_tag_split) # Parse the tags out for raw_tag in raw_tags: # Get the key and value from tag=value tag_key, tag_value = raw_tag.split("=") tags[tag_key] = tag_value return name, tags def add_measure(self, key, value, time): ts = int(time) if self.floor_time_secs != None: ts = (ts / self.floor_time_secs) * self.floor_time_secs value = float(value) source = self.source name = self.type_re.match(key).group(2) ismultipart = False if self.timer_re.match(key) != None: ismultipart = True if self.extended_counters and \ self.ex_count_re.match(key) != None: ismultipart = True # Match the source regex if self.source_re != None: m = self.source_re.search(name) if m != None: source = m.group(1) name = name[0:m.start(0)] + name[m.end(0):] # Add a source prefix if self.source_prefix: source = "%s.%s" % (self.source_prefix, source) # Parse the tags out name, tags = self.parse_tags(name, ismultipart) subf = None if ismultipart: name, subf = self.split_multipart_metric(name) if subf == None: subf = 'value' # Bail if skipping if name == None: return # Add a metric prefix if self.prefix: name = "%s.%s" % (self.prefix, name) name = self.sanitize(name) # Add the hostname as a global tag. self.tags['host'] = self.host if source: # Sanitize source = self.sanitize(source) # Add a tag of source if not specified by the client if 'source' not in tags: tags['source'] = source # Build a key for the dict that will hold all the measurements to # submit k = "%s\t%s" % (name, source) else: k = name if k not in self.measurements: m = [{'name': name, 'tags' : tags, 'time' : ts, subf: value}] self.measurements[k] = m else: # Build summary statistics processed = False # Try to find an existing measurement for this tagset # so we can add the next summary statistic for m in self.measurements[k]: if m['tags'] == tags: m[subf] = value processed = True break if not processed: # New tagset payload = {'name': name, 'tags' : tags, 'time' : ts, subf: value} self.measurements[k].append(payload) # Build out the legacy gauges if self.write_to_legacy: if k not in self.gauges: # Truncate metric/source names to 255 for legacy if len(name) > 255: name = name[:255] self.logger.warning( "Truncating metric %s to 255 characters to avoid failing entire payload" % name ) if source and len(source) > 255: source = source[:255] self.logger.warning( "Truncating source %s to 255 characters to avoid failing entire payload" % source ) self.gauges[k] = { 'name': name, 'source': source, 'measure_time': ts } self.gauges[k][subf] = value def build(self, metrics): """ Build metric data to send to Librato :Parameters: - `metrics` : A list of (key,value,timestamp) tuples. """ if not metrics: return # Construct the output for m in metrics: k, vs, ts = m.split("|") self.add_measure(k, vs, ts) def flush_payload(self, headers, m, legacy = False): """ POST a payload to Librato. """ if legacy: body = json.dumps({ 'gauges' : m }) url = "%s/v1/metrics" % (self.api) else: global_tags = self.tags body = json.dumps({ 'measurements' : m, 'tags': global_tags }) url = "%s/v1/measurements" % (self.api) req = urllib2.Request(url, body, headers) try: f = urllib2.urlopen(req, timeout = self.flush_timeout_secs) response = f.read() f.close() # The new tags API supports partial payload accept/reject # So let's show a message if any part fails if 'errors' in response: parsed_response = json.loads(response) # errors could be [], so check that prior to logging anything if parsed_response['errors']: self.logger.error(parsed_response) except urllib2.HTTPError as error: body = error.read() self.logger.warning('Failed to send metrics to Librato: Code: %d. Response: %s' % \ (error.code, body)) except IOError as error: if hasattr(error, 'reason'): self.logger.warning('Error when sending metrics Librato (%s)' % (error.reason)) elif hasattr(error, 'code'): self.logger.warning('Error when sending metrics Librato (%s)' % (error.code)) else: self.logger.warning('Error when sending metrics Librato and I dunno why') def flush(self): """ POST a collection of gauges to Librato. """ # Nothing to do if len(self.measurements) == 0: return headers = { 'Content-Type': 'application/json', 'User-Agent': self.build_user_agent(), 'Authorization': 'Basic %s' % self.build_basic_auth() } tagged_metrics = [] legacy_metrics = [] count = 0 for v in self.measurements.values(): for metric in v: tagged_metrics.append(metric) count += 1 if count >= self.max_metrics_payload: self.flush_payload(headers, tagged_metrics) count = 0 tagged_metrics = [] if count > 0: self.flush_payload(headers, tagged_metrics) # If enabled, submit flush metrics to Librato's legacy API if self.write_to_legacy: if len(self.gauges) == 0: return values = self.gauges.values() count = 0 for measure in values: legacy_metrics.append(measure) count += 1 if count >= self.max_metrics_payload: self.flush_payload(headers, legacy_metrics, True) count = 0 legacy_metrics = [] if count > 0: self.flush_payload(headers, legacy_metrics, True) def build_basic_auth(self): base64string = base64.encodestring('%s:%s' % (self.email, self.token)) return base64string.translate(None, '\n') def build_user_agent(self): try: uname = os.uname() system = "; ".join([uname[0], uname[4]]) except Exception: system = os.name() pver = sys.version_info user_agent = '%s/%s (%s) Python-Urllib2/%d.%d' % \ (self.sink_name, self.sink_version, system, pver[0], pver[1]) return user_agent if __name__ == "__main__": # Initialize the logger logging.basicConfig() # Intialize from our arguments librato = LibratoStore(*sys.argv[1:]) # Get all the inputs metrics = sys.stdin.read() # Flush librato.build(metrics.splitlines()) librato.flush()
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A type for representing values that may or may not exist.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six from tensorflow.python.data.util import structure from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import type_spec from tensorflow.python.ops import gen_dataset_ops from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export @tf_export("experimental.Optional", "data.experimental.Optional") @deprecation.deprecated_endpoints("data.experimental.Optional") @six.add_metaclass(abc.ABCMeta) class Optional(composite_tensor.CompositeTensor): """Represents a value that may or may not be present. A `tf.experimental.Optional` can represent the result of an operation that may fail as a value, rather than raising an exception and halting execution. For example, `tf.data.Iterator.get_next_as_optional()` returns a `tf.experimental.Optional` that either contains the next element of an iterator if one exists, or an "empty" value that indicates the end of the sequence has been reached. `tf.experimental.Optional` can only be used with values that are convertible to `tf.Tensor` or `tf.CompositeTensor`. One can create a `tf.experimental.Optional` from a value using the `from_value()` method: >>> optional = tf.experimental.Optional.from_value(42) >>> print(optional.has_value()) tf.Tensor(True, shape=(), dtype=bool) >>> print(optional.get_value()) tf.Tensor(42, shape=(), dtype=int32) or without a value using the `empty()` method: >>> optional = tf.experimental.Optional.empty( ... tf.TensorSpec(shape=(), dtype=tf.int32, name=None)) >>> print(optional.has_value()) tf.Tensor(False, shape=(), dtype=bool) """ @abc.abstractmethod def has_value(self, name=None): """Returns a tensor that evaluates to `True` if this optional has a value. >>> optional = tf.experimental.Optional.from_value(42) >>> print(optional.has_value()) tf.Tensor(True, shape=(), dtype=bool) Args: name: (Optional.) A name for the created operation. Returns: A scalar `tf.Tensor` of type `tf.bool`. """ raise NotImplementedError("Optional.has_value()") @abc.abstractmethod def get_value(self, name=None): """Returns the value wrapped by this optional. If this optional does not have a value (i.e. `self.has_value()` evaluates to `False`), this operation will raise `tf.errors.InvalidArgumentError` at runtime. >>> optional = tf.experimental.Optional.from_value(42) >>> print(optional.get_value()) tf.Tensor(42, shape=(), dtype=int32) Args: name: (Optional.) A name for the created operation. Returns: The wrapped value. """ raise NotImplementedError("Optional.get_value()") @abc.abstractproperty def element_spec(self): """The type specification of an element of this optional. >>> optional = tf.experimental.Optional.from_value(42) >>> print(optional.element_spec) tf.TensorSpec(shape=(), dtype=tf.int32, name=None) Returns: A (nested) structure of `tf.TypeSpec` objects matching the structure of an element of this optional, specifying the type of individual components. """ raise NotImplementedError("Optional.element_spec") @staticmethod def empty(element_spec): """Returns an `Optional` that has no value. NOTE: This method takes an argument that defines the structure of the value that would be contained in the returned `Optional` if it had a value. >>> optional = tf.experimental.Optional.empty( ... tf.TensorSpec(shape=(), dtype=tf.int32, name=None)) >>> print(optional.has_value()) tf.Tensor(False, shape=(), dtype=bool) Args: element_spec: A (nested) structure of `tf.TypeSpec` objects matching the structure of an element of this optional. Returns: A `tf.experimental.Optional` with no value. """ return _OptionalImpl(gen_dataset_ops.optional_none(), element_spec) @staticmethod def from_value(value): """Returns a `tf.experimental.Optional` that wraps the given value. >>> optional = tf.experimental.Optional.from_value(42) >>> print(optional.has_value()) tf.Tensor(True, shape=(), dtype=bool) >>> print(optional.get_value()) tf.Tensor(42, shape=(), dtype=int32) Args: value: A value to wrap. The value must be convertible to `tf.Tensor` or `tf.CompositeTensor`. Returns: A `tf.experimental.Optional` that wraps `value`. """ with ops.name_scope("optional") as scope: with ops.name_scope("value"): element_spec = structure.type_spec_from_value(value) encoded_value = structure.to_tensor_list(element_spec, value) return _OptionalImpl( gen_dataset_ops.optional_from_value(encoded_value, name=scope), element_spec) class _OptionalImpl(Optional): """Concrete implementation of `tf.experimental.Optional`. NOTE(mrry): This implementation is kept private, to avoid defining `Optional.__init__()` in the public API. """ def __init__(self, variant_tensor, element_spec): self._variant_tensor = variant_tensor self._element_spec = element_spec def has_value(self, name=None): with ops.colocate_with(self._variant_tensor): return gen_dataset_ops.optional_has_value(self._variant_tensor, name=name) def get_value(self, name=None): # TODO(b/110122868): Consolidate the restructuring logic with similar logic # in `Iterator.get_next()` and `StructuredFunctionWrapper`. with ops.name_scope(name, "OptionalGetValue", [self._variant_tensor]) as scope: with ops.colocate_with(self._variant_tensor): result = gen_dataset_ops.optional_get_value( self._variant_tensor, name=scope, output_types=structure.get_flat_tensor_types(self._element_spec), output_shapes=structure.get_flat_tensor_shapes(self._element_spec)) # NOTE: We do not colocate the deserialization of composite tensors # because not all ops are guaranteed to have non-GPU kernels. return structure.from_tensor_list(self._element_spec, result) @property def element_spec(self): return self._element_spec @property def _type_spec(self): return OptionalSpec.from_value(self) @tf_export( "OptionalSpec", v1=["OptionalSpec", "data.experimental.OptionalStructure"]) class OptionalSpec(type_spec.TypeSpec): """Type specification for `tf.experimental.Optional`. For instance, `tf.OptionalSpec` can be used to define a tf.function that takes `tf.experimental.Optional` as an input argument: >>> @tf.function(input_signature=[tf.OptionalSpec( ... tf.TensorSpec(shape=(), dtype=tf.int32, name=None))]) ... def maybe_square(optional): ... if optional.has_value(): ... x = optional.get_value() ... return x * x ... return -1 >>> optional = tf.experimental.Optional.from_value(5) >>> print(maybe_square(optional)) tf.Tensor(25, shape=(), dtype=int32) Attributes: element_spec: A (nested) structure of `TypeSpec` objects that represents the type specification of the optional element. """ __slots__ = ["_element_spec"] def __init__(self, element_spec): self._element_spec = element_spec @property def value_type(self): return _OptionalImpl def _serialize(self): return (self._element_spec,) @property def _component_specs(self): return [tensor_spec.TensorSpec((), dtypes.variant)] def _to_components(self, value): return [value._variant_tensor] # pylint: disable=protected-access def _from_components(self, flat_value): # pylint: disable=protected-access return _OptionalImpl(flat_value[0], self._element_spec) @staticmethod def from_value(value): return OptionalSpec(value.element_spec) def _to_legacy_output_types(self): return self def _to_legacy_output_shapes(self): return self def _to_legacy_output_classes(self): return self
from expects.testing import failure from expects import * from datetime import datetime, timedelta from dateutil import relativedelta import calendar import zipfile from io import BytesIO import json import os from esios import Esios from esios.archives import Liquicomun, A1_liquicomun, A2_liquicomun, C2_liquicomun from esios.archives import P48Cierre def test_expected_to_work(the_class, start, end, expected_versions, next=0): """ General expected to work method """ res = the_class().download(start, end, next=next) c = BytesIO(res) zf = zipfile.ZipFile(c) assert zf.testzip() is None assert zf.namelist()[0][:2] in expected_versions return True def test_expected_to_break(the_class, start, end, assert_message, next=0): """ General assert to break method """ it_works = True try: res = the_class().download(start, end, next=next) except: it_works = False assert not it_works, assert_message return True def validate_P48cierre(xml): xsd_path = 'esios/data' xsd_file = 'P48Cierre-esios-MP.xsd' from lxml import etree, objectify from lxml.etree import XMLSyntaxError xmlschema_doc = etree.parse(xsd_path + '/' + xsd_file) xmlschema = etree.XMLSchema(xmlschema_doc) parser = objectify.makeparser(schema=xmlschema) try: objectify.fromstring(xml, parser) return True except XMLSyntaxError as e: return False with description('Base Liquicomun'): with before.all: ESIOS_TOKEN = os.getenv('ESIOS_TOKEN') self.token = ESIOS_TOKEN self.today = datetime.today() self.e = Esios(self.token) with context('Instance'): with it('Returns liquicomun instance'): liqui = Liquicomun(self.e) assert isinstance(liqui, Liquicomun) with it('Gets list'): today = self.today start = datetime(today.year, today.month, 1) last_month_day = calendar.monthrange(today.year, today.month)[1] end = datetime(today.year, today.month, last_month_day) res = self.e.liquicomun().get(start, end) assert len(res) >= 0 with it('Gets current liquicomun'): today = self.today start = datetime(today.year, today.month, 1) last_month_day = calendar.monthrange(today.year, today.month)[1] end = datetime(today.year, today.month, last_month_day) expected_versions = ('A1', 'A2') assert test_expected_to_work(the_class=self.e.liquicomun, start=start, end=end, expected_versions=expected_versions) with it('should download C2 or A3 for 3 months ago'): today = self.today - timedelta(days=93) start = datetime(today.year, today.month, 1) last_month_day = calendar.monthrange(start.year, start.month)[1] end = datetime(start.year, start.month, last_month_day) expected_versions = ('A3', 'C2') assert test_expected_to_work(the_class=self.e.liquicomun, start=start, end=end, expected_versions=expected_versions) with it('should download C6 o C5 for a year ago'): today = self.today - timedelta(days=730) start = datetime(today.year, today.month, 1) last_month_day = calendar.monthrange(start.year, start.month)[1] end = datetime(start.year, start.month, last_month_day) expected_versions = ('A5', 'A6', 'C6', 'C5') assert test_expected_to_work(the_class=self.e.liquicomun, start=start, end=end, expected_versions=expected_versions) with it('should download C7,A7,C6,A6,C5 or A5 for a long time ago'): today = self.today - timedelta(days=730) start = datetime(today.year, today.month, 1) last_month_day = calendar.monthrange(start.year, start.month)[1] end = datetime(start.year, start.month, last_month_day) expected_versions = ('A7', 'C7', 'A6', 'C6', 'C5', 'A5') assert test_expected_to_work(the_class=self.e.liquicomun, start=start, end=end, expected_versions=expected_versions) with context('A1 instance'): with it('can get the A1 for a valid date'): today = self.today start = datetime(today.year, today.month, 1) + relativedelta.relativedelta(months=1) end = start + relativedelta.relativedelta(months=1) - relativedelta.relativedelta(days=1) expected_versions = ('A1') assert test_expected_to_work(the_class=self.e.A1_liquicomun, start=start, end=end, expected_versions=expected_versions) with it('can\'t get the A1 for an invalid date'): today = self.today # Previous month start = datetime(today.year, today.month, 1) - relativedelta.relativedelta(months=1) end = start + relativedelta.relativedelta(months=1) - relativedelta.relativedelta(days=1) error_message = "A1 for previous month must not work! This must be an A2" assert test_expected_to_break(the_class=self.e.A1_liquicomun, start=start, end=end, assert_message=error_message) with context('A2 instance'): with it('can get the related A2 for a valid date'): today = self.today # today start = end = datetime(today.year, today.month, today.day) expected_versions = ('A2') assert test_expected_to_work(the_class=self.e.A2_liquicomun, start=start, end=end, expected_versions=expected_versions) with it('can\'t get the related A2 for an invalid date'): today = self.today # This month start = datetime(today.year, today.month, 1) end = start + relativedelta.relativedelta(months=1) - relativedelta.relativedelta(days=1) error_message = "A2 for this month must not work! This must be an A1" assert test_expected_to_break(the_class=self.e.A2_liquicomun, start=start, end=end, assert_message=error_message) with context('C2 instance'): with it('can get the C2 for a valid date'): today = self.today # Previous month start = datetime(today.year, today.month, 1) - relativedelta.relativedelta(months=2) end = start + relativedelta.relativedelta(months=1) - relativedelta.relativedelta(days=1) expected_versions = ('C2') assert test_expected_to_work(the_class=self.e.C2_liquicomun, start=start, end=end, expected_versions=expected_versions) with it('can\'t get the C2 for an invalid date'): today = self.today # This month start = datetime(today.year, today.month, 1) end = start + relativedelta.relativedelta(months=1) - relativedelta.relativedelta(days=1) error_message = "C2 for this month must not work! This must be an A1" assert test_expected_to_break(the_class=self.e.C2_liquicomun, start=start, end=end, assert_message=error_message) with context('Instance with next'): with before.all: # Expected C5, C4, C3, C2 self.expected_version_list = ["C5", "C4", "C3", "C2"] today = self.today # A year ago self.start = datetime(today.year, today.month, 1) - relativedelta.relativedelta(months=12) self.end = self.start + relativedelta.relativedelta(months=1) - relativedelta.relativedelta(days=1) with it('can get the n=0 //a C5'): next = 0 expected_versions = self.expected_version_list[next] # "C5" assert test_expected_to_work(the_class=self.e.liquicomun, start=self.start, end=self.end, expected_versions=expected_versions, next=next) with it('can get the n=1 //a C4'): next = 1 expected_versions = self.expected_version_list[next] # "C4" assert test_expected_to_work(the_class=self.e.liquicomun, start=self.start, end=self.end, expected_versions=expected_versions, next=next) with it('can get the n=2 //a C3'): next = 1 expected_versions = self.expected_version_list[next] # "C4" assert test_expected_to_work(the_class=self.e.liquicomun, start=self.start, end=self.end, expected_versions=expected_versions, next=next) with it('can get the n=3 //a C2'): next = 3 expected_versions = self.expected_version_list[next] # "C4" assert test_expected_to_work(the_class=self.e.liquicomun, start=self.start, end=self.end, expected_versions=expected_versions, next=next) with it('can\'t get the n=4 //last is n=3 C2!'): next = 4 expected = "irreal" error_message = "The next 4 version for one year ago must not exist. Available '{}'".format(self.expected_version_list) assert test_expected_to_break(the_class=self.e.liquicomun, start=self.start, end=self.end, assert_message=error_message, next=next) with it('can\'t get the n=-1'): next = -1 expected = "irreal" error_message = "Negative next version must break" assert test_expected_to_break(the_class=self.e.liquicomun, start=self.start, end=self.end, assert_message=error_message, next=next) with description('P48Cierre'): with before.all: ESIOS_TOKEN = os.getenv('ESIOS_TOKEN') self.token = ESIOS_TOKEN self.today = datetime.today() self.e = Esios(self.token) with context('Instance'): with it('Returns P48Cierre instance'): liqui = P48Cierre(self.e) assert isinstance(liqui, P48Cierre) with it('Gets list'): today = self.today start = datetime(today.year, today.month, 1) last_month_day = calendar.monthrange(today.year, today.month)[1] end = datetime(today.year, today.month, last_month_day) res = self.e.p48cierre().get(start, end) assert len(res) >= 0 with it('Gets Yesterday p48'): today = self.today start = today.replace(hour=0, minute=0, second=0, microsecond=0) - relativedelta.relativedelta(days=1) end = today.replace(hour=23, minute=59, second=59, microsecond=0) - relativedelta.relativedelta(days=1) res = P48Cierre(self.e).download(start, end) assert validate_P48cierre(res) assert not validate_P48cierre(res + b'ERROR') with it('Gets today and yesterday p48'): today = self.today start = today.replace(hour=0, minute=0, second=0, microsecond=0) - relativedelta.relativedelta(days=1) end = today.replace(hour=23, minute=59, second=59, microsecond=0) res = P48Cierre(self.e).download(start, end) c = BytesIO(res) zf = zipfile.ZipFile(c) assert zf.testzip() is None expected_filenames = [ 'p48cierre_{}.xml'.format(start.strftime('%Y%m%d')), 'p48cierre_{}.xml'.format(end.strftime('%Y%m%d')), 'p48_{}'.format(today.strftime('%Y%m%d'))] assert len(zf.namelist()) == 2 for filename in zf.namelist(): if len(filename) == 22: assert filename in expected_filenames else: assert filename[:12] in expected_filenames with it('Gets current month p48'): today = self.today start = datetime(today.year, today.month, 1) last_month_day = calendar.monthrange(today.year, today.month)[1] end = datetime(today.year, today.month, today.day > 1 and today.day - 1 or 1) res = P48Cierre(self.e).download(start, end) c = BytesIO(res) zf = zipfile.ZipFile(c) assert zf.testzip() is None expected_filenames = [] for day in range(0, today.day): p48_day = start + relativedelta.relativedelta(days=day) expected_filenames.append('p48cierre_{}.xml'.format(p48_day.strftime('%Y%m%d'))) assert len(zf.namelist()) == today.day - 1 for filename in zf.namelist(): assert filename in expected_filenames
# -*- coding: utf-8 -*- # # Copyright (C) 2007-2010 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://babel.edgewall.org/wiki/License. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://babel.edgewall.org/log/. from datetime import datetime import doctest from StringIO import StringIO import unittest import sys from babel.messages.catalog import Catalog, Message from babel.messages import pofile from babel.util import FixedOffsetTimezone, LOCALTZ class ReadPoTestCase(unittest.TestCase): def test_preserve_locale(self): buf = StringIO(r'''msgid "foo" msgstr "Voh"''') catalog = pofile.read_po(buf, locale='en_US') self.assertEqual('en_US', catalog.locale) def test_preserve_domain(self): buf = StringIO(r'''msgid "foo" msgstr "Voh"''') catalog = pofile.read_po(buf, domain='mydomain') self.assertEqual('mydomain', catalog.domain) def test_read_multiline(self): buf = StringIO(r'''msgid "" "Here's some text that\n" "includesareallylongwordthatmightbutshouldnt" " throw us into an infinite " "loop\n" msgstr ""''') catalog = pofile.read_po(buf) self.assertEqual(1, len(catalog)) message = list(catalog)[1] self.assertEqual("Here's some text that\nincludesareallylongwordthat" "mightbutshouldnt throw us into an infinite loop\n", message.id) def test_fuzzy_header(self): buf = StringIO(r'''\ # Translations template for AReallyReallyLongNameForAProject. # Copyright (C) 2007 ORGANIZATION # This file is distributed under the same license as the # AReallyReallyLongNameForAProject project. # FIRST AUTHOR <EMAIL@ADDRESS>, 2007. # #, fuzzy ''') catalog = pofile.read_po(buf) self.assertEqual(1, len(list(catalog))) self.assertEqual(True, list(catalog)[0].fuzzy) def test_not_fuzzy_header(self): buf = StringIO(r'''\ # Translations template for AReallyReallyLongNameForAProject. # Copyright (C) 2007 ORGANIZATION # This file is distributed under the same license as the # AReallyReallyLongNameForAProject project. # FIRST AUTHOR <EMAIL@ADDRESS>, 2007. # ''') catalog = pofile.read_po(buf) self.assertEqual(1, len(list(catalog))) self.assertEqual(False, list(catalog)[0].fuzzy) def test_header_entry(self): buf = StringIO(r'''\ # SOME DESCRIPTIVE TITLE. # Copyright (C) 2007 THE PACKAGE'S COPYRIGHT HOLDER # This file is distributed under the same license as the PACKAGE package. # FIRST AUTHOR <EMAIL@ADDRESS>, 2007. # #, fuzzy msgid "" msgstr "" "Project-Id-Version: 3.15\n" "Report-Msgid-Bugs-To: Fliegender Zirkus <fliegender@zirkus.de>\n" "POT-Creation-Date: 2007-09-27 11:19+0700\n" "PO-Revision-Date: 2007-09-27 21:42-0700\n" "Last-Translator: John <cleese@bavaria.de>\n" "Language-Team: German Lang <de@babel.org>\n" "Plural-Forms: nplurals=2; plural=(n != 1)\n" "MIME-Version: 1.0\n" "Content-Type: text/plain; charset=iso-8859-2\n" "Content-Transfer-Encoding: 8bit\n" "Generated-By: Babel 1.0dev-r313\n" ''') catalog = pofile.read_po(buf) self.assertEqual(1, len(list(catalog))) self.assertEqual(u'3.15', catalog.version) self.assertEqual(u'Fliegender Zirkus <fliegender@zirkus.de>', catalog.msgid_bugs_address) self.assertEqual(datetime(2007, 9, 27, 11, 19, tzinfo=FixedOffsetTimezone(7 * 60)), catalog.creation_date) self.assertEqual(u'John <cleese@bavaria.de>', catalog.last_translator) self.assertEqual(u'German Lang <de@babel.org>', catalog.language_team) self.assertEqual(u'iso-8859-2', catalog.charset) self.assertEqual(True, list(catalog)[0].fuzzy) def test_obsolete_message(self): buf = StringIO(r'''# This is an obsolete message #~ msgid "foo" #~ msgstr "Voh" # This message is not obsolete #: main.py:1 msgid "bar" msgstr "Bahr" ''') catalog = pofile.read_po(buf) self.assertEqual(1, len(catalog)) self.assertEqual(1, len(catalog.obsolete)) message = catalog.obsolete[u'foo'] self.assertEqual(u'foo', message.id) self.assertEqual(u'Voh', message.string) self.assertEqual(['This is an obsolete message'], message.user_comments) def test_obsolete_message_ignored(self): buf = StringIO(r'''# This is an obsolete message #~ msgid "foo" #~ msgstr "Voh" # This message is not obsolete #: main.py:1 msgid "bar" msgstr "Bahr" ''') catalog = pofile.read_po(buf, ignore_obsolete=True) self.assertEqual(1, len(catalog)) self.assertEqual(0, len(catalog.obsolete)) def test_single_plural_form(self): buf = StringIO(r'''msgid "foo" msgid_plural "foos" msgstr[0] "Voh"''') catalog = pofile.read_po(buf, locale='ja_JP') self.assertEqual(1, len(catalog)) self.assertEqual(1, catalog.num_plurals) message = catalog['foo'] self.assertEqual(1, len(message.string)) def test_singular_plural_form(self): buf = StringIO(r'''msgid "foo" msgid_plural "foos" msgstr[0] "Voh" msgstr[1] "Vohs"''') catalog = pofile.read_po(buf, locale='nl_NL') self.assertEqual(1, len(catalog)) self.assertEqual(2, catalog.num_plurals) message = catalog['foo'] self.assertEqual(2, len(message.string)) def test_more_than_two_plural_forms(self): buf = StringIO(r'''msgid "foo" msgid_plural "foos" msgstr[0] "Voh" msgstr[1] "Vohs" msgstr[2] "Vohss"''') catalog = pofile.read_po(buf, locale='lv_LV') self.assertEqual(1, len(catalog)) self.assertEqual(3, catalog.num_plurals) message = catalog['foo'] self.assertEqual(3, len(message.string)) self.assertEqual(u'Vohss', message.string[2]) def test_plural_with_square_brackets(self): buf = StringIO(r'''msgid "foo" msgid_plural "foos" msgstr[0] "Voh [text]" msgstr[1] "Vohs [text]"''') catalog = pofile.read_po(buf, locale='nb_NO') self.assertEqual(1, len(catalog)) self.assertEqual(2, catalog.num_plurals) message = catalog['foo'] self.assertEqual(2, len(message.string)) class WritePoTestCase(unittest.TestCase): def test_join_locations(self): catalog = Catalog() catalog.add(u'foo', locations=[('main.py', 1)]) catalog.add(u'foo', locations=[('utils.py', 3)]) buf = StringIO() pofile.write_po(buf, catalog, omit_header=True) self.assertEqual('''#: main.py:1 utils.py:3 msgid "foo" msgstr ""''', buf.getvalue().strip()) def test_duplicate_comments(self): catalog = Catalog() catalog.add(u'foo', auto_comments=['A comment']) catalog.add(u'foo', auto_comments=['A comment']) buf = StringIO() pofile.write_po(buf, catalog, omit_header=True) self.assertEqual('''#. A comment msgid "foo" msgstr ""''', buf.getvalue().strip()) def test_wrap_long_lines(self): text = """Here's some text where white space and line breaks matter, and should not be removed """ catalog = Catalog() catalog.add(text, locations=[('main.py', 1)]) buf = StringIO() pofile.write_po(buf, catalog, no_location=True, omit_header=True, width=42) self.assertEqual(r'''msgid "" "Here's some text where \n" "white space and line breaks matter, and" " should\n" "\n" "not be removed\n" "\n" msgstr ""''', buf.getvalue().strip()) def test_wrap_long_lines_with_long_word(self): text = """Here's some text that includesareallylongwordthatmightbutshouldnt throw us into an infinite loop """ catalog = Catalog() catalog.add(text, locations=[('main.py', 1)]) buf = StringIO() pofile.write_po(buf, catalog, no_location=True, omit_header=True, width=32) self.assertEqual(r'''msgid "" "Here's some text that\n" "includesareallylongwordthatmightbutshouldnt" " throw us into an infinite " "loop\n" msgstr ""''', buf.getvalue().strip()) def test_wrap_long_lines_in_header(self): """ Verify that long lines in the header comment are wrapped correctly. """ catalog = Catalog(project='AReallyReallyLongNameForAProject', revision_date=datetime(2007, 4, 1)) buf = StringIO() pofile.write_po(buf, catalog) self.assertEqual('''\ # Translations template for AReallyReallyLongNameForAProject. # Copyright (C) 2007 ORGANIZATION # This file is distributed under the same license as the # AReallyReallyLongNameForAProject project. # FIRST AUTHOR <EMAIL@ADDRESS>, 2007. # #, fuzzy''', '\n'.join(buf.getvalue().splitlines()[:7])) def test_wrap_locations_with_hyphens(self): catalog = Catalog() catalog.add(u'foo', locations=[ ('doupy/templates/base/navmenu.inc.html.py', 60) ]) catalog.add(u'foo', locations=[ ('doupy/templates/job-offers/helpers.html', 22) ]) buf = StringIO() pofile.write_po(buf, catalog, omit_header=True) self.assertEqual('''#: doupy/templates/base/navmenu.inc.html.py:60 #: doupy/templates/job-offers/helpers.html:22 msgid "foo" msgstr ""''', buf.getvalue().strip()) def test_no_wrap_and_width_behaviour_on_comments(self): catalog = Catalog() catalog.add("Pretty dam long message id, which must really be big " "to test this wrap behaviour, if not it won't work.", locations=[("fake.py", n) for n in range(1, 30)]) buf = StringIO() pofile.write_po(buf, catalog, width=None, omit_header=True) self.assertEqual("""\ #: fake.py:1 fake.py:2 fake.py:3 fake.py:4 fake.py:5 fake.py:6 fake.py:7 #: fake.py:8 fake.py:9 fake.py:10 fake.py:11 fake.py:12 fake.py:13 fake.py:14 #: fake.py:15 fake.py:16 fake.py:17 fake.py:18 fake.py:19 fake.py:20 fake.py:21 #: fake.py:22 fake.py:23 fake.py:24 fake.py:25 fake.py:26 fake.py:27 fake.py:28 #: fake.py:29 msgid "pretty dam long message id, which must really be big to test this wrap behaviour, if not it won't work." msgstr "" """, buf.getvalue().lower()) buf = StringIO() pofile.write_po(buf, catalog, width=100, omit_header=True) self.assertEqual("""\ #: fake.py:1 fake.py:2 fake.py:3 fake.py:4 fake.py:5 fake.py:6 fake.py:7 fake.py:8 fake.py:9 fake.py:10 #: fake.py:11 fake.py:12 fake.py:13 fake.py:14 fake.py:15 fake.py:16 fake.py:17 fake.py:18 fake.py:19 #: fake.py:20 fake.py:21 fake.py:22 fake.py:23 fake.py:24 fake.py:25 fake.py:26 fake.py:27 fake.py:28 #: fake.py:29 msgid "" "pretty dam long message id, which must really be big to test this wrap behaviour, if not it won't" " work." msgstr "" """, buf.getvalue().lower()) def test_pot_with_translator_comments(self): catalog = Catalog() catalog.add(u'foo', locations=[('main.py', 1)], auto_comments=['Comment About `foo`']) catalog.add(u'bar', locations=[('utils.py', 3)], user_comments=['Comment About `bar` with', 'multiple lines.']) buf = StringIO() pofile.write_po(buf, catalog, omit_header=True) self.assertEqual('''#. Comment About `foo` #: main.py:1 msgid "foo" msgstr "" # Comment About `bar` with # multiple lines. #: utils.py:3 msgid "bar" msgstr ""''', buf.getvalue().strip()) def test_po_with_obsolete_message(self): catalog = Catalog() catalog.add(u'foo', u'Voh', locations=[('main.py', 1)]) catalog.obsolete['bar'] = Message(u'bar', u'Bahr', locations=[('utils.py', 3)], user_comments=['User comment']) buf = StringIO() pofile.write_po(buf, catalog, omit_header=True) self.assertEqual('''#: main.py:1 msgid "foo" msgstr "Voh" # User comment #~ msgid "bar" #~ msgstr "Bahr"''', buf.getvalue().strip()) def test_po_with_multiline_obsolete_message(self): catalog = Catalog() catalog.add(u'foo', u'Voh', locations=[('main.py', 1)]) msgid = r"""Here's a message that covers multiple lines, and should still be handled correctly. """ msgstr = r"""Here's a message that covers multiple lines, and should still be handled correctly. """ catalog.obsolete[msgid] = Message(msgid, msgstr, locations=[('utils.py', 3)]) buf = StringIO() pofile.write_po(buf, catalog, omit_header=True) self.assertEqual(r'''#: main.py:1 msgid "foo" msgstr "Voh" #~ msgid "" #~ "Here's a message that covers\n" #~ "multiple lines, and should still be handled\n" #~ "correctly.\n" #~ msgstr "" #~ "Here's a message that covers\n" #~ "multiple lines, and should still be handled\n" #~ "correctly.\n"''', buf.getvalue().strip()) def test_po_with_obsolete_message_ignored(self): catalog = Catalog() catalog.add(u'foo', u'Voh', locations=[('main.py', 1)]) catalog.obsolete['bar'] = Message(u'bar', u'Bahr', locations=[('utils.py', 3)], user_comments=['User comment']) buf = StringIO() pofile.write_po(buf, catalog, omit_header=True, ignore_obsolete=True) self.assertEqual('''#: main.py:1 msgid "foo" msgstr "Voh"''', buf.getvalue().strip()) def test_po_with_previous_msgid(self): catalog = Catalog() catalog.add(u'foo', u'Voh', locations=[('main.py', 1)], previous_id=u'fo') buf = StringIO() pofile.write_po(buf, catalog, omit_header=True, include_previous=True) self.assertEqual('''#: main.py:1 #| msgid "fo" msgid "foo" msgstr "Voh"''', buf.getvalue().strip()) def test_po_with_previous_msgid_plural(self): catalog = Catalog() catalog.add((u'foo', u'foos'), (u'Voh', u'Voeh'), locations=[('main.py', 1)], previous_id=(u'fo', u'fos')) buf = StringIO() pofile.write_po(buf, catalog, omit_header=True, include_previous=True) self.assertEqual('''#: main.py:1 #| msgid "fo" #| msgid_plural "fos" msgid "foo" msgid_plural "foos" msgstr[0] "Voh" msgstr[1] "Voeh"''', buf.getvalue().strip()) def test_sorted_po(self): catalog = Catalog() catalog.add(u'bar', locations=[('utils.py', 3)], user_comments=['Comment About `bar` with', 'multiple lines.']) catalog.add((u'foo', u'foos'), (u'Voh', u'Voeh'), locations=[('main.py', 1)]) buf = StringIO() pofile.write_po(buf, catalog, sort_output=True) value = buf.getvalue().strip() assert '''\ # Comment About `bar` with # multiple lines. #: utils.py:3 msgid "bar" msgstr "" #: main.py:1 msgid "foo" msgid_plural "foos" msgstr[0] "Voh" msgstr[1] "Voeh"''' in value assert value.find('msgid ""') < value.find('msgid "bar"') < value.find('msgid "foo"') def test_silent_location_fallback(self): buf = StringIO('''\ #: broken_file.py msgid "missing line number" msgstr "" #: broken_file.py:broken_line_number msgid "broken line number" msgstr ""''') catalog = pofile.read_po(buf) self.assertEqual(catalog['missing line number'].locations, []) self.assertEqual(catalog['broken line number'].locations, []) def suite(): suite = unittest.TestSuite() is_py23 = sys.version_info[0:2] == (2, 3) if not is_py23: suite.addTest(doctest.DocTestSuite(pofile)) suite.addTest(unittest.makeSuite(ReadPoTestCase)) suite.addTest(unittest.makeSuite(WritePoTestCase)) return suite if __name__ == '__main__': unittest.main(defaultTest='suite')
import os.path as op from functools import wraps from flask import Blueprint, current_app, render_template, abort, g, url_for from flask_admin import babel from flask_admin._compat import with_metaclass, as_unicode from flask_admin import helpers as h # For compatibility reasons import MenuLink from flask_admin.menu import MenuCategory, MenuView, MenuLink def expose(url='/', methods=('GET',)): """ Use this decorator to expose views in your view classes. :param url: Relative URL for the view :param methods: Allowed HTTP methods. By default only GET is allowed. """ def wrap(f): if not hasattr(f, '_urls'): f._urls = [] f._urls.append((url, methods)) return f return wrap def expose_plugview(url='/'): """ Decorator to expose Flask's pluggable view classes (``flask.views.View`` or ``flask.views.MethodView``). :param url: Relative URL for the view .. versionadded:: 1.0.4 """ def wrap(v): handler = expose(url, v.methods) if hasattr(v, 'as_view'): return handler(v.as_view(v.__name__)) else: return handler(v) return wrap # Base views def _wrap_view(f): # Avoid wrapping view method twice if hasattr(f, '_wrapped'): return f @wraps(f) def inner(self, *args, **kwargs): # Store current admin view h.set_current_view(self) # Check if administrative piece is accessible abort = self._handle_view(f.__name__, **kwargs) if abort is not None: return abort return self._run_view(f, *args, **kwargs) inner._wrapped = True return inner class AdminViewMeta(type): """ View metaclass. Does some precalculations (like getting list of view methods from the class) to avoid calculating them for each view class instance. """ def __init__(cls, classname, bases, fields): type.__init__(cls, classname, bases, fields) # Gather exposed views cls._urls = [] cls._default_view = None for p in dir(cls): attr = getattr(cls, p) if hasattr(attr, '_urls'): # Collect methods for url, methods in attr._urls: cls._urls.append((url, p, methods)) if url == '/': cls._default_view = p # Wrap views setattr(cls, p, _wrap_view(attr)) class BaseViewClass(object): pass class BaseView(with_metaclass(AdminViewMeta, BaseViewClass)): """ Base administrative view. Derive from this class to implement your administrative interface piece. For example:: from flask_admin import BaseView, expose class MyView(BaseView): @expose('/') def index(self): return 'Hello World!' Icons can be added to the menu by using `menu_icon_type` and `menu_icon_value`. For example:: admin.add_view(MyView(name='My View', menu_icon_type='glyph', menu_icon_value='glyphicon-home')) """ @property def _template_args(self): """ Extra template arguments. If you need to pass some extra parameters to the template, you can override particular view function, contribute arguments you want to pass to the template and call parent view. These arguments are local for this request and will be discarded in the next request. Any value passed through ``_template_args`` will override whatever parent view function passed to the template. For example:: class MyAdmin(ModelView): @expose('/') def index(self): self._template_args['name'] = 'foobar' self._template_args['code'] = '12345' super(MyAdmin, self).index() """ args = getattr(g, '_admin_template_args', None) if args is None: args = g._admin_template_args = dict() return args def __init__(self, name=None, category=None, endpoint=None, url=None, static_folder=None, static_url_path=None, menu_class_name=None, menu_icon_type=None, menu_icon_value=None): """ Constructor. :param name: Name of this view. If not provided, will default to the class name. :param category: View category. If not provided, this view will be shown as a top-level menu item. Otherwise, it will be in a submenu. :param endpoint: Base endpoint name for the view. For example, if there's a view method called "index" and endpoint is set to "myadmin", you can use `url_for('myadmin.index')` to get the URL to the view method. Defaults to the class name in lower case. :param url: Base URL. If provided, affects how URLs are generated. For example, if the url parameter is "test", the resulting URL will look like "/admin/test/". If not provided, will use endpoint as a base url. However, if URL starts with '/', absolute path is assumed and '/admin/' prefix won't be applied. :param static_url_path: Static URL Path. If provided, this specifies the path to the static url directory. :param menu_class_name: Optional class name for the menu item. :param menu_icon_type: Optional icon. Possible icon types: - `flask_admin.consts.ICON_TYPE_GLYPH` - Bootstrap glyph icon - `flask_admin.consts.ICON_TYPE_FONT_AWESOME` - Font Awesome icon - `flask_admin.consts.ICON_TYPE_IMAGE` - Image relative to Flask static directory - `flask_admin.consts.ICON_TYPE_IMAGE_URL` - Image with full URL :param menu_icon_value: Icon glyph name or URL, depending on `menu_icon_type` setting """ self.name = name self.category = category self.endpoint = self._get_endpoint(endpoint) self.url = url self.static_folder = static_folder self.static_url_path = static_url_path self.menu = None self.menu_class_name = menu_class_name self.menu_icon_type = menu_icon_type self.menu_icon_value = menu_icon_value # Initialized from create_blueprint self.admin = None self.blueprint = None # Default view if self._default_view is None: raise Exception(u'Attempted to instantiate admin view %s without default view' % self.__class__.__name__) def _get_endpoint(self, endpoint): """ Generate Flask endpoint name. By default converts class name to lower case if endpoint is not explicitly provided. """ if endpoint: return endpoint return self.__class__.__name__.lower() def _get_view_url(self, admin, url): """ Generate URL for the view. Override to change default behavior. """ if url is None: if admin.url != '/': url = '%s/%s' % (admin.url, self.endpoint) else: if self == admin.index_view: url = '/' else: url = '/%s' % self.endpoint else: if not url.startswith('/'): url = '%s/%s' % (admin.url, url) return url def create_blueprint(self, admin): """ Create Flask blueprint. """ # Store admin instance self.admin = admin # If the static_url_path is not provided, use the admin's if not self.static_url_path: self.static_url_path = admin.static_url_path # Generate URL self.url = self._get_view_url(admin, self.url) # If we're working from the root of the site, set prefix to None if self.url == '/': self.url = None # prevent admin static files from conflicting with flask static files if not self.static_url_path: self.static_folder = 'static' self.static_url_path = '/static/admin' # If name is not povided, use capitalized endpoint name if self.name is None: self.name = self._prettify_class_name(self.__class__.__name__) # Create blueprint and register rules self.blueprint = Blueprint(self.endpoint, __name__, url_prefix=self.url, subdomain=self.admin.subdomain, template_folder=op.join('templates', self.admin.template_mode), static_folder=self.static_folder, static_url_path=self.static_url_path) for url, name, methods in self._urls: self.blueprint.add_url_rule(url, name, getattr(self, name), methods=methods) return self.blueprint def render(self, template, **kwargs): """ Render template :param template: Template path to render :param kwargs: Template arguments """ # Store self as admin_view kwargs['admin_view'] = self kwargs['admin_base_template'] = self.admin.base_template # Provide i18n support even if flask-babel is not installed # or enabled. kwargs['_gettext'] = babel.gettext kwargs['_ngettext'] = babel.ngettext kwargs['h'] = h # Expose get_url helper kwargs['get_url'] = self.get_url # Expose config info kwargs['config'] = current_app.config # Contribute extra arguments kwargs.update(self._template_args) return render_template(template, **kwargs) def _prettify_class_name(self, name): """ Split words in PascalCase string into separate words. :param name: String to prettify """ return h.prettify_class_name(name) def is_visible(self): """ Override this method if you want dynamically hide or show administrative views from Flask-Admin menu structure By default, item is visible in menu. Please note that item should be both visible and accessible to be displayed in menu. """ return True def is_accessible(self): """ Override this method to add permission checks. Flask-Admin does not make any assumptions about the authentication system used in your application, so it is up to you to implement it. By default, it will allow access for everyone. """ return True def _handle_view(self, name, **kwargs): """ This method will be executed before calling any view method. It will execute the ``inaccessible_callback`` if the view is not accessible. :param name: View function name :param kwargs: View function arguments """ if not self.is_accessible(): return self.inaccessible_callback(name, **kwargs) def _run_view(self, fn, *args, **kwargs): """ This method will run actual view function. While it is similar to _handle_view, can be used to change arguments that are passed to the view. :param fn: View function :param kwargs: Arguments """ return fn(self, *args, **kwargs) def inaccessible_callback(self, name, **kwargs): """ Handle the response to inaccessible views. By default, it throw HTTP 403 error. Override this method to customize the behaviour. """ return abort(403) def get_url(self, endpoint, **kwargs): """ Generate URL for the endpoint. If you want to customize URL generation logic (persist some query string argument, for example), this is right place to do it. :param endpoint: Flask endpoint name :param kwargs: Arguments for `url_for` """ return url_for(endpoint, **kwargs) @property def _debug(self): if not self.admin or not self.admin.app: return False return self.admin.app.debug class AdminIndexView(BaseView): """ Default administrative interface index page when visiting the ``/admin/`` URL. It can be overridden by passing your own view class to the ``Admin`` constructor:: class MyHomeView(AdminIndexView): @expose('/') def index(self): arg1 = 'Hello' return self.render('admin/myhome.html', arg1=arg1) admin = Admin(index_view=MyHomeView()) Also, you can change the root url from /admin to / with the following:: admin = Admin( app, index_view=AdminIndexView( name='Home', template='admin/myhome.html', url='/' ) ) Default values for the index page are: * If a name is not provided, 'Home' will be used. * If an endpoint is not provided, will default to ``admin`` * Default URL route is ``/admin``. * Automatically associates with static folder. * Default template is ``admin/index.html`` """ def __init__(self, name=None, category=None, endpoint=None, url=None, template='admin/index.html', menu_class_name=None, menu_icon_type=None, menu_icon_value=None): super(AdminIndexView, self).__init__(name or babel.lazy_gettext('Home'), category, endpoint or 'admin', url or '/admin', 'static', menu_class_name=menu_class_name, menu_icon_type=menu_icon_type, menu_icon_value=menu_icon_value) self._template = template @expose() def index(self): return self.render(self._template) class Admin(object): """ Collection of the admin views. Also manages menu structure. """ def __init__(self, app=None, name=None, url=None, subdomain=None, index_view=None, translations_path=None, endpoint=None, static_url_path=None, base_template=None, template_mode=None, category_icon_classes=None): """ Constructor. :param app: Flask application object :param name: Application name. Will be displayed in the main menu and as a page title. Defaults to "Admin" :param url: Base URL :param subdomain: Subdomain to use :param index_view: Home page view to use. Defaults to `AdminIndexView`. :param translations_path: Location of the translation message catalogs. By default will use the translations shipped with Flask-Admin. :param endpoint: Base endpoint name for index view. If you use multiple instances of the `Admin` class with a single Flask application, you have to set a unique endpoint name for each instance. :param static_url_path: Static URL Path. If provided, this specifies the default path to the static url directory for all its views. Can be overridden in view configuration. :param base_template: Override base HTML template for all static views. Defaults to `admin/base.html`. :param template_mode: Base template path. Defaults to `bootstrap2`. If you want to use Bootstrap 3 integration, change it to `bootstrap3`. :param category_icon_classes: A dict of category names as keys and html classes as values to be added to menu category icons. Example: {'Favorites': 'glyphicon glyphicon-star'} """ self.app = app self.translations_path = translations_path self._views = [] self._menu = [] self._menu_categories = dict() self._menu_links = [] if name is None: name = 'Admin' self.name = name self.index_view = index_view or AdminIndexView(endpoint=endpoint, url=url) self.endpoint = endpoint or self.index_view.endpoint self.url = url or self.index_view.url self.static_url_path = static_url_path self.subdomain = subdomain self.base_template = base_template or 'admin/base.html' self.template_mode = template_mode or 'bootstrap2' self.category_icon_classes = category_icon_classes or dict() # Add predefined index view self.add_view(self.index_view) # Register with application if app is not None: self._init_extension() def add_view(self, view): """ Add a view to the collection. :param view: View to add. """ # Add to views self._views.append(view) # If app was provided in constructor, register view with Flask app if self.app is not None: self.app.register_blueprint(view.create_blueprint(self)) self._add_view_to_menu(view) def add_views(self, *args): """ Add one or more views to the collection. Examples:: admin.add_views(view1) admin.add_views(view1, view2, view3, view4) admin.add_views(*my_list) :param args: Argument list including the views to add. """ for view in args: self.add_view(view) def add_link(self, link): """ Add link to menu links collection. :param link: Link to add. """ if link.category: self._add_menu_item(link, link.category) else: self._menu_links.append(link) def add_links(self, *args): """ Add one or more links to the menu links collection. Examples:: admin.add_links(link1) admin.add_links(link1, link2, link3, link4) admin.add_links(*my_list) :param args: Argument list including the links to add. """ for link in args: self.add_link(link) def _add_menu_item(self, menu_item, target_category): if target_category: cat_text = as_unicode(target_category) category = self._menu_categories.get(cat_text) # create a new menu category if one does not exist already if category is None: category = MenuCategory(target_category) category.class_name = self.category_icon_classes.get(cat_text) self._menu_categories[cat_text] = category self._menu.append(category) category.add_child(menu_item) else: self._menu.append(menu_item) def _add_view_to_menu(self, view): """ Add a view to the menu tree :param view: View to add """ self._add_menu_item(MenuView(view.name, view), view.category) def get_category_menu_item(self, name): return self._menu_categories.get(name) def init_app(self, app): """ Register all views with the Flask application. :param app: Flask application instance """ self.app = app self._init_extension() # Register views for view in self._views: app.register_blueprint(view.create_blueprint(self)) def _init_extension(self): if not hasattr(self.app, 'extensions'): self.app.extensions = dict() admins = self.app.extensions.get('admin', []) for p in admins: if p.endpoint == self.endpoint: raise Exception(u'Cannot have two Admin() instances with same' u' endpoint name.') if p.url == self.url and p.subdomain == self.subdomain: raise Exception(u'Cannot assign two Admin() instances with same' u' URL and subdomain to the same application.') admins.append(self) self.app.extensions['admin'] = admins def menu(self): """ Return the menu hierarchy. """ return self._menu def menu_links(self): """ Return menu links. """ return self._menu_links
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, not-context-manager """Automatic quantization toolkit.""" import tvm.ir import tvm from tvm.runtime import Object from . import _quantize from ._calibrate import calibrate from ._partition_conversions import partition_conversions from .. import expr as _expr from .. import transform as _transform class QAnnotateKind(object): """Denote the kind of annotation field, corresponding to different nbit configure.""" IDENTITY = 0 INPUT = 1 WEIGHT = 2 ACTIVATION = 3 def kind2str(kind): """Convert a `QAnnotateKind` to string""" str_map = { QAnnotateKind.INPUT: "input", QAnnotateKind.WEIGHT: "weight", QAnnotateKind.ACTIVATION: "activation", QAnnotateKind.IDENTITY: "identity", } assert kind in str_map return str_map[kind] def _forward_op(ref_call, args): """forward the operator of ref_call with provided arguments""" return _expr.Call(ref_call.op, args, ref_call.attrs, ref_call.type_args, ref_call.span) @tvm._ffi.register_object("relay.quantize.QConfig") class QConfig(Object): """Configure the quantization behavior by setting config variables. Note ---- This object is backed by node system in C++, with arguments that can be exchanged between python and C++. Do not construct directly, use qconfig instead. The fields that are backed by the C++ node are immutable once an instance is constructed. See _node_defaults for the fields. """ _node_defaults = { "nbit_input": 8, "nbit_weight": 8, "nbit_activation": 32, "dtype_input": "int8", "dtype_weight": "int8", "dtype_activation": "int32", "calibrate_mode": "global_scale", "global_scale": 8.0, "weight_scale": "power2", "skip_dense_layer": True, "skip_conv_layers": [0], "do_simulation": False, "round_for_shift": True, "debug_enabled_ops": None, "rounding": "UPWARD", "calibrate_chunk_by": -1, "partition_conversions": "disabled", } # pylint: disable=no-member def __init__(self, handle): """Initialize the function with handle Parameters ---------- handle : SymbolHandle the handle to the underlying C++ Symbol """ super(QConfig, self).__init__(handle) self.handle = handle def guard(self, ref_call): """Return true if op is enabled, otherwise return false""" op_name = ref_call.op.name if self.debug_enabled_ops is not None: name_list = [x.value for x in self.debug_enabled_ops] if op_name not in name_list: return False return True def get_nbit_by_kind(self, kind): name = kind2str(kind) return getattr(self, "nbit_" + name) def get_dtype_by_kind(self, kind): name = kind2str(kind) return getattr(self, "dtype_" + name) def __enter__(self): # pylint: disable=protected-access _quantize._EnterQConfigScope(self) return self def __exit__(self, ptype, value, trace): _quantize._ExitQConfigScope() def __setattr__(self, name, value): if name in QConfig._node_defaults: raise AttributeError("'%s' object cannot set attribute '%s'" % (str(type(self)), name)) return super(QConfig, self).__setattr__(name, value) def current_qconfig(): """Get the current quantization configuration.""" return _quantize._GetCurrentQConfig() def qconfig(**kwargs): """Configure the quantization behavior by setting config variables. Parameters --------- nbit_dict: dict of QAnnotateKind -> int Number of bit for every kind of annotate field. calibrate_mode: str The calibration mode. 'global_scale' or 'kl_divergence'. global_scale: use global scale kl_divergence: find scales by kl divergence on the dataset. global_scale: float The global scale for calibration. weight_scale: str The way to calculate scales for weights (annotated with QAnnotateKind.WEIGHT). power2: Find the maximum of the absolute value of the tensor, and then round up to power of two. max: Find the maximum of the absolute value of the tensor skip_dense_layer: boolean Whether to skip all nn.dense layer type. By default are skipped. skip_conv_layers: list Specifying which layers to be skipped. Provide a list of indices that indicate which conv2d layers to leave untouched. Start from 0. do_simulation: boolean Whether to do simulation with float operation only. round_for_shift: boolean Whether to add bias for rounding during shift. debug_enabled_ops: None or list of str Partially quantize specified operators for debugging. The default value is None, which means will try to call all operartors' annotate rewrite function. rounding: "UPWARD" or "TONEAREST" Rounding direction for fixed point multiplications. partition_conversions: 'disabled', 'enabled', or 'fully_integral' If set to 'enabled' or 'fully_integral', partitions a quantized result into a module containing a prefix function (consisting of input conversion into the quantized data space), a middle function (consisting of the core quantized network), a suffix function (consisting of output dequantization), and a main function (that calls the prefix, middle, and suffix functions in succession). If set to 'fully_integral' and there are unquantized operators in the result, an exception is raised. The default value is 'disabled'. Returns ------- config: QConfig The quantization configuration """ node_args = {k: v if k not in kwargs else kwargs[k] for k, v in QConfig._node_defaults.items()} return tvm.ir.make_node("relay.quantize.QConfig", **node_args) class QuantizeContext(object): """An internal used global context object for annotation, for putting some state variables like `conv2d_counter`.""" Current = None def __init__(self): self.qnode_map = dict() self._conv2d_counter = 0 self._stop_quantize = False def check_to_skip(self, ref_call): """Check the index of conv2d layer to decide whether to skip the current operator.""" if self._stop_quantize: return True if current_qconfig().skip_conv_layers is not None: # check skip conv layers skipped_indices = [int(x) for x in current_qconfig().skip_conv_layers] if self._conv2d_counter in skipped_indices and ref_call.op.name == "nn.conv2d": self._conv2d_counter += 1 return True if ref_call.op.name == "nn.conv2d": self._conv2d_counter += 1 return False def stop_quantize(self): self._stop_quantize = True def reset(self): self._conv2d_counter = 0 self._stop_quantize = False def __enter__(self): self.reset() return self def __exit__(self, ptype, value, traceback): pass def quantize_context(): """Get the global singleton scope""" if QuantizeContext.Current is None: QuantizeContext.Current = QuantizeContext() return QuantizeContext.Current def partition(): """Partition graph into small low-precision sections by `cast_hint` and `stop_fusion`. Returns ------- ret: tvm.transform.Pass The registered pass for VTA rewrite. """ return _quantize.QuantizePartition() def annotate(): """Given a float32 graph, this pass will rewrite the graph and return a graph which simulates the error brought by the current quantization scheme. Returns ------- ret: tvm.transform.Pass The registered pass for quantization annotation. """ return _quantize.QuantizeAnnotate() def realize(): """The realize pass will transform the simulated quantized graph, which actually computes with float32, to a real low-bit integer graph. It will replace the `simulated_quantize` with several fine-grained operators like add, multiply, and shift as much as possible for better performance. Returns ------- ret: tvm.transform.Pass The registered pass for quantization realization. """ return _quantize.QuantizeRealize() def _bind_params(func, params): """Bind the params to the expression.""" name_dict = {} for arg in func.params: name = arg.name_hint if name in name_dict: name_dict[name] = None else: name_dict[name] = arg bind_dict = {} for k, v in params.items(): if k not in name_dict: continue arg = name_dict[k] if arg is None: raise ValueError("Multiple args in the function have name %s" % k) bind_dict[arg] = _expr.const(v) return _expr.bind(func, bind_dict) def prerequisite_optimize(mod, params=None): """Prerequisite optimization passes for quantization. Perform "SimplifyInference", "FoldScaleAxis", "FoldConstant", and "CanonicalizeOps" optimization before quantization.""" optimize = tvm.transform.Sequential( [ _transform.SimplifyInference(), _transform.FoldConstant(), _transform.FoldScaleAxis(), _transform.CanonicalizeOps(), _transform.FoldConstant(), ] ) if params: mod["main"] = _bind_params(mod["main"], params) mod = optimize(mod) return mod def quantize(mod, params=None, dataset=None): """The quantization procedure. Before running the three main procedure of quantization, "annotate", "calibrate" and "realize" , we need to do "SimplifyInference", "FoldScaleAxis", "FoldConstant" first for optimizing. Parameters --------- mod: Module The original module. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. dataset: list of dict of Var -> NDArray The calibration dataset. Returns ------- ret: Function The graph after quantization """ mod = prerequisite_optimize(mod, params) calibrate_pass = tvm.transform.module_pass( calibrate(dataset), opt_level=1, name="QuantizeCalibrate" ) quant_passes = [partition(), annotate(), calibrate_pass, tvm.relay.transform.InferType()] if not current_qconfig().do_simulation: quant_passes.append(realize()) quant_passes.append(_transform.FoldConstant()) quantize_seq = tvm.transform.Sequential(quant_passes) with tvm.transform.PassContext( opt_level=3, required_pass=["QuantizeAnnotate", "QuantizeCalibrate", "QuantizeRealize"] ): with quantize_context(): mod = quantize_seq(mod) q_cfg = current_qconfig() assert q_cfg.partition_conversions in ["disabled", "enabled", "fully_integral"] if q_cfg.partition_conversions != "disabled": quantized_dtypes = {q_cfg.dtype_input, q_cfg.dtype_weight, q_cfg.dtype_activation} ensure_fully_integral = q_cfg.partition_conversions == "fully_integral" return partition_conversions(mod, quantized_dtypes, ensure_fully_integral) return mod
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from struct import pack, unpack from TProtocol import * class TBinaryProtocol(TProtocolBase): """Binary implementation of the Thrift protocol driver.""" # NastyHaxx. Python 2.4+ on 32-bit machines forces hex constants to be # positive, converting this into a long. If we hardcode the int value # instead it'll stay in 32 bit-land. # VERSION_MASK = 0xffff0000 VERSION_MASK = -65536 # VERSION_1 = 0x80010000 VERSION_1 = -2147418112 TYPE_MASK = 0x000000ff def __init__(self, trans, strictRead=False, strictWrite=True): TProtocolBase.__init__(self, trans) self.strictRead = strictRead self.strictWrite = strictWrite def writeMessageBegin(self, name, type, seqid): if self.strictWrite: self.writeI32(TBinaryProtocol.VERSION_1 | type) self.writeString(name) self.writeI32(seqid) else: self.writeString(name) self.writeByte(type) self.writeI32(seqid) def writeMessageEnd(self): pass def writeStructBegin(self, name): pass def writeStructEnd(self): pass def writeFieldBegin(self, name, type, id): self.writeByte(type) self.writeI16(id) def writeFieldEnd(self): pass def writeFieldStop(self): self.writeByte(TType.STOP) def writeMapBegin(self, ktype, vtype, size): self.writeByte(ktype) self.writeByte(vtype) self.writeI32(size) def writeMapEnd(self): pass def writeListBegin(self, etype, size): self.writeByte(etype) self.writeI32(size) def writeListEnd(self): pass def writeSetBegin(self, etype, size): self.writeByte(etype) self.writeI32(size) def writeSetEnd(self): pass def writeBool(self, bool): if bool: self.writeByte(1) else: self.writeByte(0) def writeByte(self, byte): buff = pack("!b", byte) self.trans.write(buff) def writeI16(self, i16): buff = pack("!h", i16) self.trans.write(buff) def writeI32(self, i32): buff = pack("!i", i32) self.trans.write(buff) def writeI64(self, i64): buff = pack("!q", i64) self.trans.write(buff) def writeDouble(self, dub): buff = pack("!d", dub) self.trans.write(buff) def writeString(self, str): self.writeI32(len(str)) self.trans.write(str) def readMessageBegin(self): sz = self.readI32() if sz < 0: version = sz & TBinaryProtocol.VERSION_MASK if version != TBinaryProtocol.VERSION_1: raise TProtocolException( type=TProtocolException.BAD_VERSION, message='Bad version in readMessageBegin: %d' % (sz)) type = sz & TBinaryProtocol.TYPE_MASK name = self.readString() seqid = self.readI32() else: if self.strictRead: raise TProtocolException(type=TProtocolException.BAD_VERSION, message='No protocol version header') name = self.trans.readAll(sz) type = self.readByte() seqid = self.readI32() return (name, type, seqid) def readMessageEnd(self): pass def readStructBegin(self): pass def readStructEnd(self): pass def readFieldBegin(self): type = self.readByte() if type == TType.STOP: return (None, type, 0) id = self.readI16() return (None, type, id) def readFieldEnd(self): pass def readMapBegin(self): ktype = self.readByte() vtype = self.readByte() size = self.readI32() return (ktype, vtype, size) def readMapEnd(self): pass def readListBegin(self): etype = self.readByte() size = self.readI32() return (etype, size) def readListEnd(self): pass def readSetBegin(self): etype = self.readByte() size = self.readI32() return (etype, size) def readSetEnd(self): pass def readBool(self): byte = self.readByte() if byte == 0: return False return True def readByte(self): buff = self.trans.readAll(1) val, = unpack('!b', buff) return val def readI16(self): buff = self.trans.readAll(2) val, = unpack('!h', buff) return val def readI32(self): buff = self.trans.readAll(4) val, = unpack('!i', buff) return val def readI64(self): buff = self.trans.readAll(8) val, = unpack('!q', buff) return val def readDouble(self): buff = self.trans.readAll(8) val, = unpack('!d', buff) return val def readString(self): len = self.readI32() str = self.trans.readAll(len) return str class TBinaryProtocolFactory: def __init__(self, strictRead=False, strictWrite=True): self.strictRead = strictRead self.strictWrite = strictWrite def getProtocol(self, trans): prot = TBinaryProtocol(trans, self.strictRead, self.strictWrite) return prot class TBinaryProtocolAccelerated(TBinaryProtocol): """C-Accelerated version of TBinaryProtocol. This class does not override any of TBinaryProtocol's methods, but the generated code recognizes it directly and will call into our C module to do the encoding, bypassing this object entirely. We inherit from TBinaryProtocol so that the normal TBinaryProtocol encoding can happen if the fastbinary module doesn't work for some reason. (TODO(dreiss): Make this happen sanely in more cases.) In order to take advantage of the C module, just use TBinaryProtocolAccelerated instead of TBinaryProtocol. NOTE: This code was contributed by an external developer. The internal Thrift team has reviewed and tested it, but we cannot guarantee that it is production-ready. Please feel free to report bugs and/or success stories to the public mailing list. """ pass class TBinaryProtocolAcceleratedFactory: def getProtocol(self, trans): return TBinaryProtocolAccelerated(trans)
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations often used for initializing tensors. All variable initializers returned by functions in this file should have the following signature: def _initializer(shape, dtype=dtypes.float32, partition_info=None): Args: shape: List of `int` representing the shape of the output `Tensor`. Some initializers may also be able to accept a `Tensor`. dtype: (Optional) Type of the output `Tensor`. partition_info: (Optional) variable_scope._PartitionInfo object holding additional information about how the variable is partitioned. May be `None` if the variable is not partitioned. Returns: A `Tensor` of type `dtype` and `shape`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops def _assert_float_dtype(dtype): """Validate and return floating point type based on `dtype`. `dtype` must be a floating point type. Args: dtype: The data type to validate. Returns: Validated type. Raises: ValueError: if `dtype` is not a floating point type. """ if not dtype.is_floating: raise ValueError("Expected floating point type, got %s." % dtype) return dtype def zeros_initializer(shape, dtype=dtypes.float32, partition_info=None): """An adaptor for zeros() to match the Initializer spec.""" return array_ops.zeros(shape, dtype) def ones_initializer(shape, dtype=dtypes.float32, partition_info=None): """An adaptor for ones() to match the Initializer spec.""" return array_ops.ones(shape, dtype) def constant_initializer(value=0, dtype=dtypes.float32): """Returns an initializer that generates tensors with constant values. The resulting tensor is populated with values of type `dtype`, as specified by arguments `value` following the desired `shape` of the new tensor (see examples below). The argument `value` can be a constant value, or a list of values of type `dtype`. If `value` is a list, then the length of the list must be less than or equal to the number of elements implied by the desired shape of the tensor. In the case where the total number of elements in `value` is less than the number of elements required by the tensor shape, the last element in `value` will be used to fill the remaining entries. If the total number of elements in `value` is greater than the number of elements required by the tensor shape, the initializer will raise a `ValueError`. Args: value: A Python scalar, list of values, or a N-dimensional numpy array. All elements of the initialized variable will be set to the corresponding value in the `value` argument. dtype: The data type. Returns: An initializer that generates tensors with constant values. Examples: The following example can be rewritten using a numpy.ndarray instead of the `value` list, even reshaped, as shown in the two commented lines below the `value` list initialization. ```python >>> import numpy as np >>> import tensorflow as tf >>> value = [0, 1, 2, 3, 4, 5, 6, 7] >>> # value = np.array(value) >>> # value = value.reshape([2, 4]) >>> init = tf.constant_initializer(value) >>> print('fitting shape:') >>> tf.reset_default_graph() >>> with tf.Session(): >>> x = tf.get_variable('x', shape=[2, 4], initializer=init) >>> x.initializer.run() >>> print(x.eval()) fitting shape: [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.]] >>> print('larger shape:') >>> tf.reset_default_graph() >>> with tf.Session(): >>> x = tf.get_variable('x', shape=[3, 4], initializer=init) >>> x.initializer.run() >>> print(x.eval()) larger shape: [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 7. 7. 7. 7.]] >>> print('smaller shape:') >>> tf.reset_default_graph() >>> with tf.Session(): >>> x = tf.get_variable('x', shape=[2, 3], initializer=init) ValueError: Too many elements provided. Needed at most 6, but received 8 ``` """ def _initializer(shape, dtype=dtype, partition_info=None): return constant_op.constant(value, dtype=dtype, shape=shape) return _initializer def random_uniform_initializer(minval=0, maxval=None, seed=None, dtype=dtypes.float32): """Returns an initializer that generates tensors with a uniform distribution. Args: minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate. maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types. seed: A Python integer. Used to create random seeds. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. dtype: The data type. Returns: An initializer that generates tensors with a uniform distribution. """ def _initializer(shape, dtype=dtype, partition_info=None): return random_ops.random_uniform(shape, minval, maxval, dtype, seed=seed) return _initializer def random_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32): """Returns an initializer that generates tensors with a normal distribution. Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to create random seeds. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. dtype: The data type. Only floating point types are supported. Returns: An initializer that generates tensors with a normal distribution. Raises: ValueError: if `dtype` is not a floating point type. """ def _initializer(shape, dtype=_assert_float_dtype(dtype), partition_info=None): return random_ops.random_normal(shape, mean, stddev, dtype, seed=seed) return _initializer def truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32): """Returns an initializer that generates a truncated normal distribution. These values are similar to values from a `random_normal_initializer` except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters. Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to create random seeds. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. dtype: The data type. Only floating point types are supported. Returns: An initializer that generates tensors with a truncated normal distribution. Raises: ValueError: if `dtype` is not a floating point type. """ def _initializer(shape, dtype=_assert_float_dtype(dtype), partition_info=None): return random_ops.truncated_normal(shape, mean, stddev, dtype, seed=seed) return _initializer def uniform_unit_scaling_initializer(factor=1.0, seed=None, dtype=dtypes.float32): """Returns an initializer that generates tensors without scaling variance. When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does not explode or diminish by reaching the final layer. If the input is `x` and the operation `x * W`, and we want to initialize `W` uniformly at random, we need to pick `W` from [-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)] to keep the scale intact, where `dim = W.shape[0]` (the size of the input). A similar calculation for convolutional networks gives an analogous result with `dim` equal to the product of the first 3 dimensions. When nonlinearities are present, we need to multiply this by a constant `factor`. See [Sussillo et al., 2014](https://arxiv.org/abs/1412.6558) ([pdf](http://arxiv.org/pdf/1412.6558.pdf)) for deeper motivation, experiments and the calculation of constants. In section 2.3 there, the constants were numerically computed: for a linear layer it's 1.0, relu: ~1.43, tanh: ~1.15. Args: factor: Float. A multiplicative factor by which the values will be scaled. seed: A Python integer. Used to create random seeds. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. dtype: The data type. Only floating point types are supported. Returns: An initializer that generates tensors with unit variance. Raises: ValueError: if `dtype` is not a floating point type. """ def _initializer(shape, dtype=_assert_float_dtype(dtype), partition_info=None): scale_shape = shape if partition_info is not None: scale_shape = partition_info.full_shape input_size = 1.0 # Estimating input size is not possible to do perfectly, but we try. # The estimate, obtained by multiplying all dimensions but the last one, # is the right thing for matrix multiply and convolutions (see above). for dim in scale_shape[:-1]: input_size *= float(dim) # Avoid errors when initializing zero-size tensors. input_size = max(input_size, 1.0) max_val = math.sqrt(3 / input_size) * factor return random_ops.random_uniform(shape, -max_val, max_val, dtype, seed=seed) return _initializer # TODO(vrv): Unhide when we are ready to expose this publicly. def _random_walk(shape, nonlinearity, dtype=dtypes.float32, seed=None, name="random_walk"): """Create a random tensor such that backprop neither vanishes nor explodes. Args: shape: a python array of int or a 1-d tensor. Sizes of the Tensor. nonlinearity: the brain python function for implementing the nonlinearity in tensor flow. dtype: The type of the output. seed: A Python integer. Used to create random seeds. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. name: string. Optional name for the op. Returns: A Tensor of the specified sizes filled with random values. """ assert len(shape) == 2, "Random Walk initialization only supports 2D tensors." num_inputs = shape[0] if nonlinearity == math_ops.tanh: # No real formula for this case yet, but this works well for many # layer widths. rwg = 1.13 elif nonlinearity == array_ops.identity: rwg = math.exp(1.0 / (2.0 * num_inputs)) elif nonlinearity == nn_ops.relu: rwg = math.sqrt(2.0) * math.exp(1.2 / (max(num_inputs, 6) - 2.4)) else: assert False, "Unsupported nonlinearity for Random Walk initialization." mean = 0.0 stddev = rwg / math.sqrt(float(num_inputs)) return random_ops.random_normal(shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed, name=name) # TODO(vrv): Unhide when we are ready to expose this publicly. class _RandomWalkInitializer(object): """An Initializer that generates a tensor for Random Walk Initialization.""" def __init__(self, nonlinearity, seed=None): """Construct a RandomWalkInitializer. Args: nonlinearity: the python tensorflow function that computes a nonlinearity in the graph, typically after a Wx+b type operation. seed: A Python integer. Used to create random seeds. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. """ self._nonlinearity = nonlinearity self._seed = seed def __call__(self, shape, dtype=dtypes.float32, partition_info=None): """Generate a tensor used to initialize a variable.""" return random_ops._random_walk(shape, self._nonlinearity, dtype, seed=self._seed)
''' Support ======= Activate other frameworks/toolkits inside the kivy event loop. ''' __all__ = ('install_gobject_iteration', 'install_twisted_reactor', 'uninstall_twisted_reactor', 'install_android') def install_gobject_iteration(): '''Import and install gobject context iteration inside our event loop. This is used as soon as gobject is used (like gstreamer). ''' from kivy.clock import Clock try: from gi.repository import GObject as gobject except ImportError: import gobject if hasattr(gobject, '_gobject_already_installed'): # already installed, don't do it twice. return gobject._gobject_already_installed = True # get gobject mainloop / context loop = gobject.MainLoop() gobject.threads_init() context = loop.get_context() # schedule the iteration each frame def _gobject_iteration(*largs): # XXX we need to loop over context here, otherwise, we might have a lag loop = 0 while context.pending() and loop < 10: context.iteration(False) loop += 1 Clock.schedule_interval(_gobject_iteration, 0) # ----------------------------------------------------------------------------- # Android support # ----------------------------------------------------------------------------- g_android_redraw_count = 0 _redraw_event = None def _android_ask_redraw(*largs): # after wakeup, we need to redraw more than once, otherwise we get a # black screen global g_android_redraw_count from kivy.core.window import Window Window.canvas.ask_update() g_android_redraw_count -= 1 if g_android_redraw_count < 0: return False def install_android(): '''Install hooks for the android platform. * Automatically sleep when the device is paused. * Automatically kill the application when the return key is pressed. ''' try: import android except ImportError: print('Android lib is missing, cannot install android hooks') return from kivy.clock import Clock from kivy.logger import Logger import pygame Logger.info('Support: Android install hooks') # Init the library android.init() android.map_key(android.KEYCODE_MENU, pygame.K_MENU) android.map_key(android.KEYCODE_BACK, pygame.K_ESCAPE) # Check if android should be paused or not. # If pause is requested, just leave the app. def android_check_pause(*largs): # do nothing until android asks for it. if not android.check_pause(): return from kivy.app import App from kivy.base import stopTouchApp from kivy.logger import Logger from kivy.core.window import Window global g_android_redraw_count, _redraw_event # try to get the current running application Logger.info('Android: Must go into sleep mode, check the app') app = App.get_running_app() # no running application, stop our loop. if app is None: Logger.info('Android: No app running, stop everything.') stopTouchApp() return # try to go to pause mode if app.dispatch('on_pause'): Logger.info('Android: App paused, now wait for resume.') # app goes in pause mode, wait. android.wait_for_resume() # is it a stop or resume ? if android.check_stop(): # app must stop Logger.info('Android: Android wants to close our app.') stopTouchApp() else: # app resuming now ! Logger.info('Android: Android has resumed, resume the app.') app.dispatch('on_resume') Window.canvas.ask_update() g_android_redraw_count = 25 # 5 frames/seconds for 5 seconds if _redraw_event is None: _redraw_event = Clock.schedule_interval( _android_ask_redraw, 1 / 5) else: _redraw_event.cancel() _redraw_event() Logger.info('Android: App resume completed.') # app doesn't support pause mode, just stop it. else: Logger.info('Android: App doesn\'t support pause mode, stop.') stopTouchApp() Clock.schedule_interval(android_check_pause, 0) _twisted_reactor_stopper = None _twisted_reactor_work = None def install_twisted_reactor(**kwargs): '''Installs a threaded twisted reactor, which will schedule one reactor iteration before the next frame only when twisted needs to do some work. Any arguments or keyword arguments passed to this function will be passed on the the threadedselect reactors interleave function. These are the arguments one would usually pass to twisted's reactor.startRunning. Unlike the default twisted reactor, the installed reactor will not handle any signals unless you set the 'installSignalHandlers' keyword argument to 1 explicitly. This is done to allow kivy to handle the signals as usual unless you specifically want the twisted reactor to handle the signals (e.g. SIGINT). .. note:: Twisted is not included in iOS build by default. To use it on iOS, put the twisted distribution (and zope.interface dependency) in your application directory. ''' import twisted # prevent installing more than once if hasattr(twisted, '_kivy_twisted_reactor_installed'): return twisted._kivy_twisted_reactor_installed = True # don't let twisted handle signals, unless specifically requested kwargs.setdefault('installSignalHandlers', 0) # install threaded-select reactor, to use with own event loop from twisted.internet import _threadedselect _threadedselect.install() # now we can import twisted reactor as usual from twisted.internet import reactor from twisted.internet.error import ReactorNotRunning from collections import deque from kivy.base import EventLoop from kivy.logger import Logger from kivy.clock import Clock # will hold callbacks to twisted callbacks q = deque() # twisted will call the wake function when it needs to do work def reactor_wake(twisted_loop_next): '''Wakeup the twisted reactor to start processing the task queue ''' Logger.trace("Support: twisted wakeup call to schedule task") q.append(twisted_loop_next) # called every frame, to process the reactors work in main thread def reactor_work(*args): '''Process the twisted reactor task queue ''' Logger.trace("Support: processing twisted task queue") while len(q): q.popleft()() global _twisted_reactor_work _twisted_reactor_work = reactor_work # start the reactor, by telling twisted how to wake, and process def reactor_start(*args): '''Start the twisted reactor main loop ''' Logger.info("Support: Starting twisted reactor") reactor.interleave(reactor_wake, **kwargs) Clock.schedule_interval(reactor_work, 0) # make sure twisted reactor is shutdown if eventloop exists def reactor_stop(*args): '''Shutdown the twisted reactor main loop ''' if reactor.threadpool: Logger.info("Support: Stopping twisted threads") reactor.threadpool.stop() Logger.info("Support: Shutting down twisted reactor") reactor._mainLoopShutdown() try: reactor.stop() except ReactorNotRunning: pass import sys sys.modules.pop('twisted.internet.reactor', None) global _twisted_reactor_stopper _twisted_reactor_stopper = reactor_stop # start and stop the reactor along with kivy EventLoop Clock.schedule_once(reactor_start, 0) EventLoop.bind(on_stop=reactor_stop) def uninstall_twisted_reactor(): '''Uninstalls the Kivy's threaded Twisted Reactor. No more Twisted tasks will run after this got called. Use this to clean the `twisted.internet.reactor` . .. versionadded:: 1.9.0 ''' import twisted # prevent uninstalling more than once if not hasattr(twisted, '_kivy_twisted_reactor_installed'): return from kivy.base import EventLoop global _twisted_reactor_stopper _twisted_reactor_stopper() EventLoop.unbind(on_stop=_twisted_reactor_stopper) del twisted._kivy_twisted_reactor_installed
# -*- coding: utf-8 -*- from __future__ import unicode_literals """ Django settings for myshop project. For more information on this file, see https://docs.djangoproject.com/en/stable/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/stable/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os from decimal import Decimal from django.utils.translation import ugettext_lazy as _ from django.core.exceptions import ImproperlyConfigured from django.core.urlresolvers import reverse_lazy from cmsplugin_cascade.utils import format_lazy SHOP_APP_LABEL = 'myshop' BASE_DIR = os.path.dirname(__file__) SHOP_TUTORIAL = os.environ.get('DJANGO_SHOP_TUTORIAL') if SHOP_TUTORIAL is None: raise ImproperlyConfigured("Environment variable DJANGO_SHOP_TUTORIAL is not set") if SHOP_TUTORIAL not in ['commodity', 'i18n_commodity', 'smartcard', 'i18n_smartcard', 'i18n_polymorphic', 'polymorphic']: msg = "Environment variable DJANGO_SHOP_TUTORIAL has an invalid value `{}`" raise ImproperlyConfigured(msg.format(SHOP_TUTORIAL)) # Root directory for this django project PROJECT_ROOT = os.path.abspath(os.path.join(BASE_DIR, os.path.pardir)) # Directory where working files, such as media and databases are kept WORK_DIR = os.environ.get('DJANGO_WORKDIR', os.path.abspath(os.path.join(PROJECT_ROOT, os.path.pardir, 'workdir'))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ ADMINS = (("The Merchant", 'the.merchant@example.com'),) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'nqniwbt=%@5a(e8%&h#c^0()64(ujs0=4%_nyajn*t6a$ca&at' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = bool(os.environ.get('DJANGO_DEBUG')) ALLOWED_HOSTS = ['*'] SITE_ID = 1 # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'Europe/Vienna' # Application definition # replace django.contrib.auth.models.User by implementation # allowing to login via email address AUTH_USER_MODEL = 'email_auth.User' AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend', ] INSTALLED_APPS = [ 'django.contrib.auth', 'email_auth', 'polymorphic', # deprecated: 'djangocms_admin_style', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.admin', 'django.contrib.staticfiles', 'django.contrib.sitemaps', 'djangocms_text_ckeditor', 'django_select2', 'cmsplugin_cascade', 'cmsplugin_cascade.clipboard', 'cmsplugin_cascade.sharable', 'cmsplugin_cascade.extra_fields', 'cmsplugin_cascade.icon', 'cmsplugin_cascade.segmentation', 'cms_bootstrap3', 'adminsortable2', 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'django_fsm', 'fsm_admin', 'djng', 'cms', 'menus', 'treebeard', 'compressor', 'sekizai', 'sass_processor', 'django_filters', 'filer', 'easy_thumbnails', 'easy_thumbnails.optimize', 'post_office', 'haystack', 'shop', 'shop_stripe', 'myshop', ] if SHOP_TUTORIAL in ['i18n_commodity', 'i18n_smartcard', 'i18n_polymorphic']: INSTALLED_APPS.append('parler') MIDDLEWARE_CLASSES = [ 'djng.middleware.AngularUrlMiddleware', # 'django.middleware.cache.UpdateCacheMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'shop.middleware.CustomerMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.gzip.GZipMiddleware', 'shop.middleware.MethodOverrideMiddleware', 'cms.middleware.language.LanguageCookieMiddleware', 'cms.middleware.user.CurrentUserMiddleware', 'cms.middleware.page.CurrentPageMiddleware', 'cms.middleware.utils.ApphookReloadMiddleware', 'cms.middleware.toolbar.ToolbarMiddleware', # 'django.middleware.cache.FetchFromCacheMiddleware', ] MIGRATION_MODULES = { 'myshop': 'myshop.migrations.{}'.format(SHOP_TUTORIAL) } ROOT_URLCONF = 'myshop.urls' WSGI_APPLICATION = 'wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(WORK_DIR, SHOP_TUTORIAL, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/stable/topics/i18n/ LANGUAGE_CODE = 'en' if SHOP_TUTORIAL in ['i18n_smartcard', 'i18n_commodity', 'i18n_polymorphic']: USE_I18N = True LANGUAGES = ( ('en', "English"), ('de', "Deutsch"), ) PARLER_DEFAULT_LANGUAGE = 'en' PARLER_LANGUAGES = { 1: ( {'code': 'de'}, {'code': 'en'}, ), 'default': { 'fallbacks': ['de', 'en'], }, } CMS_LANGUAGES = { 'default': { 'fallbacks': ['en', 'de'], 'redirect_on_fallback': True, 'public': True, 'hide_untranslated': False, }, 1: ({ 'public': True, 'code': 'en', 'hide_untranslated': False, 'name': 'English', 'redirect_on_fallback': True, }, { 'public': True, 'code': 'de', 'hide_untranslated': False, 'name': 'Deutsch', 'redirect_on_fallback': True, },) } else: USE_I18N = False USE_L10N = True USE_TZ = True USE_X_FORWARDED_HOST = True # Absolute path to the directory that holds media. # Example: "/home/media/media.lawrence.com/" MEDIA_ROOT = os.path.join(WORK_DIR, SHOP_TUTORIAL, 'media') # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '/media/' # Absolute path to the directory that holds static files. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.path.join(WORK_DIR, 'static') # URL that handles the static files served from STATIC_ROOT. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' STATICFILES_FINDERS = [ 'myshop.finders.FileSystemFinder', # or 'django.contrib.staticfiles.finders.FileSystemFinder', 'myshop.finders.AppDirectoriesFinder', # or 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'sass_processor.finders.CssFinder', 'compressor.finders.CompressorFinder', ] STATICFILES_DIRS = [ ('node_modules', os.path.join(PROJECT_ROOT, 'node_modules')), ] TEMPLATES = [{ 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'APP_DIRS': True, 'DIRS': [], 'OPTIONS': { 'context_processors': ( 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.debug', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.template.context_processors.csrf', 'django.template.context_processors.request', 'django.contrib.messages.context_processors.messages', 'sekizai.context_processors.sekizai', 'cms.context_processors.cms_settings', 'shop.context_processors.customer', 'shop.context_processors.ng_model_options', 'shop_stripe.context_processors.public_keys', ) } }] SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'filters': {'require_debug_false': {'()': 'django.utils.log.RequireDebugFalse'}}, 'formatters': { 'simple': { 'format': '[%(asctime)s %(module)s] %(levelname)s: %(message)s' }, }, 'handlers': { 'console': { 'level': 'INFO', 'class': 'logging.StreamHandler', 'formatter': 'simple', }, }, 'loggers': { 'django': { 'handlers': ['console'], 'level': 'INFO', 'propagate': True, }, 'post_office': { 'handlers': ['console'], 'level': 'WARNING', 'propagate': True, }, }, } SILENCED_SYSTEM_CHECKS = ['auth.W004'] FIXTURE_DIRS = [os.path.join(WORK_DIR, SHOP_TUTORIAL, 'fixtures')] ############################################ # settings for sending mail EMAIL_HOST = 'smtp.example.com' EMAIL_PORT = 587 EMAIL_HOST_USER = 'no-reply@example.com' EMAIL_HOST_PASSWORD = 'smtp-secret-password' EMAIL_USE_TLS = True DEFAULT_FROM_EMAIL = 'My Shop <no-reply@example.com>' EMAIL_REPLY_TO = 'info@example.com' EMAIL_BACKEND = 'post_office.EmailBackend' ############################################ # settings for third party Django apps NODE_MODULES_URL = STATIC_URL + 'node_modules/' SASS_PROCESSOR_INCLUDE_DIRS = [ os.path.join(PROJECT_ROOT, 'node_modules'), ] COERCE_DECIMAL_TO_STRING = True FSM_ADMIN_FORCE_PERMIT = True ROBOTS_META_TAGS = ('noindex', 'nofollow') SERIALIZATION_MODULES = {'json': str('shop.money.serializers')} ############################################ # settings for django-restframework and plugins REST_FRAMEWORK = { 'DEFAULT_RENDERER_CLASSES': ( 'shop.rest.money.JSONRenderer', 'rest_framework.renderers.BrowsableAPIRenderer', # can be disabled for production environments ), # 'DEFAULT_AUTHENTICATION_CLASSES': ( # 'rest_framework.authentication.TokenAuthentication', # ), 'DEFAULT_FILTER_BACKENDS': ('rest_framework.filters.DjangoFilterBackend',), 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'PAGE_SIZE': 12, } ############################################ # settings for storing session data SESSION_ENGINE = 'django.contrib.sessions.backends.cached_db' SESSION_SAVE_EVERY_REQUEST = True ############################################ # settings for storing files and images FILER_ADMIN_ICON_SIZES = ('16', '32', '48', '80', '128') FILER_ALLOW_REGULAR_USERS_TO_ADD_ROOT_FOLDERS = True FILER_DUMP_PAYLOAD = False FILE_UPLOAD_MAX_MEMORY_SIZE = 5242880 THUMBNAIL_HIGH_RESOLUTION = False THUMBNAIL_OPTIMIZE_COMMAND = { 'gif': '/usr/bin/optipng {filename}', 'jpeg': '/usr/bin/jpegoptim {filename}', 'png': '/usr/bin/optipng {filename}' } THUMBNAIL_PRESERVE_EXTENSIONS = True THUMBNAIL_PROCESSORS = ( 'easy_thumbnails.processors.colorspace', 'easy_thumbnails.processors.autocrop', 'filer.thumbnail_processors.scale_and_crop_with_subject_location', 'easy_thumbnails.processors.filters', ) ############################################ # settings for django-cms and its plugins CMS_TEMPLATES = [ ('myshop/pages/default.html', _("Default Page")), ('myshop/pages/test.html', _("Test Page")), # to show strides rendering via {% render_cascade ... %} ] CMS_CACHE_DURATIONS = { 'content': 600, 'menus': 3600, 'permissions': 86400, } CMS_PERMISSION = False cascade_workarea_glossary = { 'breakpoints': ['xs', 'sm', 'md', 'lg'], 'container_max_widths': {'xs': 750, 'sm': 750, 'md': 970, 'lg': 1170}, 'fluid': False, 'media_queries': { 'xs': ['(max-width: 768px)'], 'sm': ['(min-width: 768px)', '(max-width: 992px)'], 'md': ['(min-width: 992px)', '(max-width: 1200px)'], 'lg': ['(min-width: 1200px)'], }, } CMS_PLACEHOLDER_CONF = { 'Breadcrumb': { 'plugins': ['BreadcrumbPlugin'], 'parent_classes': {'BreadcrumbPlugin': None}, 'glossary': cascade_workarea_glossary, }, 'Commodity Details': { 'plugins': ['BootstrapContainerPlugin', 'BootstrapJumbotronPlugin'], 'parent_classes': { 'BootstrapContainerPlugin': None, 'BootstrapJumbotronPlugin': None, }, 'glossary': cascade_workarea_glossary, }, 'Main Content': { 'plugins': ['BootstrapContainerPlugin', 'BootstrapJumbotronPlugin'], 'parent_classes': { 'BootstrapContainerPlugin': None, 'BootstrapJumbotronPlugin': None, 'TextLinkPlugin': ['TextPlugin', 'AcceptConditionPlugin'], }, 'glossary': cascade_workarea_glossary, }, 'Static Footer': { 'plugins': ['BootstrapContainerPlugin', ], 'parent_classes': { 'BootstrapContainerPlugin': None, }, 'glossary': cascade_workarea_glossary, }, } CMSPLUGIN_CASCADE_PLUGINS = [ 'cmsplugin_cascade.segmentation', 'cmsplugin_cascade.generic', 'cmsplugin_cascade.icon', 'cmsplugin_cascade.leaflet', 'cmsplugin_cascade.link', 'shop.cascade', 'cmsplugin_cascade.bootstrap3', ] CMSPLUGIN_CASCADE = { 'link_plugin_classes': [ 'shop.cascade.plugin_base.CatalogLinkPluginBase', 'cmsplugin_cascade.link.plugin_base.LinkElementMixin', 'shop.cascade.plugin_base.CatalogLinkForm', ], 'alien_plugins': ['TextPlugin', 'TextLinkPlugin', 'AcceptConditionPlugin'], 'bootstrap3': { 'template_basedir': 'angular-ui', }, 'plugins_with_extra_render_templates': { 'CustomSnippetPlugin': [ ('shop/catalog/product-heading.html', _("Product Heading")), ('myshop/catalog/manufacturer-filter.html', _("Manufacturer Filter")), ], }, 'plugins_with_sharables': { 'BootstrapImagePlugin': ['image_shapes', 'image_width_responsive', 'image_width_fixed', 'image_height', 'resize_options'], 'BootstrapPicturePlugin': ['image_shapes', 'responsive_heights', 'image_size', 'resize_options'], }, 'leaflet': { 'tilesURL': 'https://api.tiles.mapbox.com/v4/{id}/{z}/{x}/{y}.png?access_token={accessToken}', 'accessToken': 'pk.eyJ1IjoibWFwYm94IiwiYSI6ImNpejY4NXVycTA2emYycXBndHRqcmZ3N3gifQ.rJcFIG214AriISLbB6B5aw', 'apiKey': 'AIzaSyD71sHrtkZMnLqTbgRmY_NsO0A9l9BQmv4', }, 'bookmark_prefix': '/', 'segmentation_mixins': [ ('shop.cascade.segmentation.EmulateCustomerModelMixin', 'shop.cascade.segmentation.EmulateCustomerAdminMixin'), ], 'allow_plugin_hiding': True, } CKEDITOR_SETTINGS = { 'language': '{{ language }}', 'skin': 'moono', 'toolbar': 'CMS', 'toolbar_HTMLField': [ ['Undo', 'Redo'], ['cmsplugins', '-', 'ShowBlocks'], ['Format', 'Styles'], ['TextColor', 'BGColor', '-', 'PasteText', 'PasteFromWord'], ['Maximize', ''], '/', ['Bold', 'Italic', 'Underline', '-', 'Subscript', 'Superscript', '-', 'RemoveFormat'], ['JustifyLeft', 'JustifyCenter', 'JustifyRight'], ['HorizontalRule'], ['NumberedList', 'BulletedList', '-', 'Outdent', 'Indent', '-', 'Table'], ['Source'] ], 'stylesSet': format_lazy('default:{}', reverse_lazy('admin:cascade_texticon_wysiwig_config')), } CKEDITOR_SETTINGS_CAPTION = { 'language': '{{ language }}', 'skin': 'moono', 'height': 70, 'toolbar_HTMLField': [ ['Undo', 'Redo'], ['Format', 'Styles'], ['Bold', 'Italic', 'Underline', '-', 'Subscript', 'Superscript', '-', 'RemoveFormat'], ['Source'] ], } CKEDITOR_SETTINGS_DESCRIPTION = { 'language': '{{ language }}', 'skin': 'moono', 'height': 250, 'toolbar_HTMLField': [ ['Undo', 'Redo'], ['cmsplugins', '-', 'ShowBlocks'], ['Format', 'Styles'], ['TextColor', 'BGColor', '-', 'PasteText', 'PasteFromWord'], ['Maximize', ''], '/', ['Bold', 'Italic', 'Underline', '-', 'Subscript', 'Superscript', '-', 'RemoveFormat'], ['JustifyLeft', 'JustifyCenter', 'JustifyRight'], ['HorizontalRule'], ['NumberedList', 'BulletedList', '-', 'Outdent', 'Indent', '-', 'Table'], ['Source'] ], } SELECT2_CSS = 'node_modules/select2/dist/css/select2.min.css' SELECT2_JS = 'node_modules/select2/dist/js/select2.min.js' ############################################# # settings for full index text search (Haystack) HAYSTACK_CONNECTIONS = { 'default': { 'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine', 'URL': 'http://localhost:9200/', 'INDEX_NAME': 'myshop-{}-en'.format(SHOP_TUTORIAL), }, } if USE_I18N: HAYSTACK_CONNECTIONS['de'] = { 'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine', 'URL': 'http://localhost:9200/', 'INDEX_NAME': 'myshop-{}-de'.format(SHOP_TUTORIAL), } HAYSTACK_ROUTERS = [ 'shop.search.routers.LanguageRouter', ] ############################################ # settings for django-shop and its plugins SHOP_VALUE_ADDED_TAX = Decimal(19) SHOP_DEFAULT_CURRENCY = 'EUR' SHOP_PRODUCT_SUMMARY_SERIALIZER = 'myshop.serializers.ProductSummarySerializer' if SHOP_TUTORIAL in ['i18n_polymorphic', 'polymorphic']: SHOP_CART_MODIFIERS = ['myshop.polymorphic_modifiers.MyShopCartModifier'] else: SHOP_CART_MODIFIERS = ['shop.modifiers.defaults.DefaultCartModifier'] SHOP_CART_MODIFIERS.extend([ 'shop.modifiers.taxes.CartExcludedTaxModifier', 'myshop.modifiers.PostalShippingModifier', 'myshop.modifiers.CustomerPickupModifier', 'shop.modifiers.defaults.PayInAdvanceModifier', ]) if 'shop_stripe' in INSTALLED_APPS: SHOP_CART_MODIFIERS.append('myshop.modifiers.StripePaymentModifier') SHOP_EDITCART_NG_MODEL_OPTIONS = "{updateOn: 'default blur', debounce: {'default': 2500, 'blur': 0}}" SHOP_ORDER_WORKFLOWS = [ 'shop.payment.defaults.ManualPaymentWorkflowMixin', 'shop.payment.defaults.CancelOrderWorkflowMixin', 'shop_stripe.payment.OrderWorkflowMixin', ] if SHOP_TUTORIAL in ['i18n_polymorphic', 'polymorphic']: SHOP_ORDER_WORKFLOWS.append('shop.shipping.delivery.PartialDeliveryWorkflowMixin') else: SHOP_ORDER_WORKFLOWS.append('shop.shipping.defaults.CommissionGoodsWorkflowMixin') SHOP_STRIPE = { 'PUBKEY': 'pk_test_HlEp5oZyPonE21svenqowhXp', 'APIKEY': 'sk_test_xUdHLeFasmOUDvmke4DHGRDP', 'PURCHASE_DESCRIPTION': _("Thanks for purchasing at MyShop"), } try: from .private_settings import * # NOQA except ImportError: pass
#!/usr/bin/env python # Copyright (c) 2010-2016 Stanford University # # Permission to use, copy, modify, and distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR(S) DISCLAIM ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL AUTHORS BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """Runs a RAMCloud. Used to exercise a RAMCloud cluster (e.g., for performance measurements) by running a collection of servers and clients. """ from __future__ import division, print_function from common import * import config import itertools import log import os import random import pprint import re import subprocess import sys import time from optparse import OptionParser # Locations of various RAMCloud executables. coordinator_binary = '%s/coordinator' % config.hooks.get_remote_obj_path() server_binary = '%s/server' % config.hooks.get_remote_obj_path() ensure_servers_bin = '%s/apps/ensureServers' % config.hooks.get_remote_obj_path() # valgrind valgrind_command = '' # Info used to construct service locators for each of the transports # supported by RAMCloud. In some cases the locator for the coordinator # needs to be different from that for the servers. server_locator_templates = { 'tcp': 'tcp:host=%(host)s,port=%(port)d', 'tcp-1g': 'tcp:host=%(host1g)s,port=%(port)d', 'basic+udp': 'basic+udp:host=%(host)s,port=%(port)d', 'basic+udp-1g': 'basic+udp:host=%(host1g)s,port=%(port)d', 'unreliable+udp': 'unreliable+udp:host=%(host)s,port=%(port)d', 'infrc': 'infrc:host=%(host)s,port=%(port)d', 'basic+infud': 'basic+infud:host=%(host1g)s', 'unreliable+infud': 'unreliable+infud:host=%(host1g)s', 'unreliable+infeth': 'unreliable+infeth:mac=00:11:22:33:44:%(id)02x', 'basic+dpdk': 'basic+dpdk:', } coord_locator_templates = { 'tcp': 'tcp:host=%(host)s,port=%(port)d', 'tcp-1g': 'tcp:host=%(host1g)s,port=%(port)d', 'basic+udp': 'basic+udp:host=%(host)s,port=%(port)d', 'basic+udp-1g': 'basic+udp:host=%(host1g)s,port=%(port)d', 'unreliable+udp': 'unreliable+udp:host=%(host)s,port=%(port)d', 'infrc': 'infrc:host=%(host)s,port=%(port)d', # Coordinator uses udp even when rest of cluster uses infud # or infeth. 'basic+infud': 'basic+udp:host=%(host)s,port=%(port)d', 'basic+dpdk': 'basic+udp:host=%(host)s,port=%(port)d', } def server_locator(transport, host, port=server_port): """Generate a service locator for a master/backup process. @param transport: A transport name (e.g. infrc, basic+infud, tcp, ...) @type transport: C{str} @param host: A 3-tuple of (hostname, ip, id). @type host: C{(str, str, int)} @param port: Port which should be part of the locator (if any). Allows multiple services to be started on the same host. @type port: C{int} @return: A service locator. @rtype: C{str} """ locator = (server_locator_templates[transport] % {'host': host[1], 'host1g': host[0], 'port': port, 'id': host[2]}) return locator def coord_locator(transport, host): """Generate a service locator for a coordinator process. @param transport: A transport name (e.g. infrc, basic+infud, tcp, ...) @type transport: C{str} @param host: A 3-tuple of (hostname, ip, id). @type host: C{(str, str, int)} @return: A service locator. @rtype: C{str} """ locator = (coord_locator_templates[transport] % {'host': host[1], 'host1g': host[0], 'port': coordinator_port, 'id': host[2]}) return locator class Cluster(object): """Helper context manager for scripting and coordinating RAMCloud on a cluster. Useful for configuring and running experiments. See run() for a simpler interface useful for running single-shot experiments where the cluster configuration is (mostly) static throughout the experiment. === Configuration/Defaults === The fields below control various aspects of the run as well as some of the defaults that are used when creating processes in the cluster. Most users of this class will want to override some of these after an instance of Cluster is created but before any operations are performed with it. @ivar log_level: Log level to use for spawned servers. (default: NOTICE) @ivar verbose: If True then print progress of starting clients/servers. (default: False) @ivar transport: Transport name to use for servers (see server_locator_templates) (default: basic+infud). @ivar replicas: Replication factor to use for each log segment. (default: 3) @ivar disk: Server args for specifying the storage device to use for backups (default: default_disk1 taken from {,local}config.py). @ivar disjunct: Disjunct (not collocate) entities on each server. === Other Stuff === @ivar coordinator: None until start_coordinator() is run, then a Sandbox.Process corresponding to the coordinator process. @ivar servers: List of Sandbox.Process corresponding to each of the server processes started with start_server(). @ivar masters_started: Number of masters started via start_server(). Notice, ensure_servers() uses this, so if you kill processes in the cluster ensure this is consistent. @ivar backups_started: Number of backups started via start_server(). Notice, ensure_servers() uses this, so if you kill processes in the cluster ensure this is consistent. @ivar log_subdir: Specific directory where all the processes created by this cluster will log. @ivar sandbox: Nested context manager that cleans up processes when the the context of this cluster is exited. """ def __init__(self, log_dir='logs', log_exists=False, cluster_name_exists=False): """ @param log_dir: Top-level directory in which to write log files. A separate subdirectory will be created in this directory for the log files from this run. This can only be overridden by passing it to __init__() since that method creates the subdirectory. (default: logs) @param log_exists: Indicates whether the log directory already exists. This will be true for cluster objects that are created after starting the clusterperf test. (default: False) @param cluster_name_exists: Indicates whether a cluster name already exists as part of this test. Backups that are started/restarted using the same cluster name will read data from the replicas (default: False) """ self.log_level = 'NOTICE' self.verbose = False self.transport = 'basic+infud' self.replicas = 3 self.disk = default_disk1 self.disjunct = False if cluster_name_exists: # do nothing if it exists self.cluster_name = None if self.verbose: print ('Cluster name exists') else: self.cluster_name = 'cluster_' + ''.join([chr(random.choice( range(ord('a'), ord('z')))) for c in range(20)]) if self.verbose: print ('Cluster name is %s' % (self.cluster_name)) self.coordinator = None self.next_server_id = 1 self.next_client_id = 1 self.masters_started = 0 self.backups_started = 0 self.coordinator_host= getHosts()[0] self.coordinator_locator = coord_locator(self.transport, self.coordinator_host) self.log_subdir = log.createDir(log_dir, log_exists) # Create a perfcounters directory under the log directory. os.mkdir(self.log_subdir + '/perfcounters') if not log_exists: self.sandbox = Sandbox() else: self.sandbox = Sandbox(cleanup=False) # create the shm directory to store shared files try: os.mkdir('%s/logs/shm' % os.getcwd()) except: pass f = open('%s/logs/shm/README' % os.getcwd(), 'w+') f.write('This directory contains files that correspond to' 'different server processes that were started during' 'the last run of clusterperf. Filename is\n' '"<hostname>_<pid>". Each of these files stores' 'the service locator of the respective server which is' 'used to give information to the client.\nThe existence' 'of this file at the end of a clusterperf run means' 'that processes were not cleaned up properly the last' ' time. So one can use these pids during manual clean up') if not cluster_name_exists: # store the name of the cluster by creating an empty file with # the appropriate file name in shm so that new backups when # created using a different cluster object can use it to read # data from their disks f = open('%s/logs/shm/%s' % (os.getcwd(), self.cluster_name), 'w+') def start_coordinator(self, host, args=''): """Start a coordinator on a node. @param host: (hostname, ip, id) tuple describing the node on which to start the RAMCloud coordinator. @param args: Additional command-line args to pass to the coordinator. (default: '') @return: Sandbox.Process representing the coordinator process. """ if self.coordinator: raise Exception('Coordinator already started') self.coordinator_host = host self.coordinator_locator = coord_locator(self.transport, self.coordinator_host) if not self.enable_logcabin: command = ( '%s %s -C %s -l %s --logFile %s/coordinator.%s.log %s' % (valgrind_command, coordinator_binary, self.coordinator_locator, self.log_level, self.log_subdir, self.coordinator_host[0], args)) self.coordinator = self.sandbox.rsh(self.coordinator_host[0], command, bg=True, stderr=subprocess.STDOUT) else: # currently hardcoding logcabin server because ankita's logcabin # scripts are not on git. command = ( '%s %s -C %s -z logcabin21:61023 -l %s ' '--logFile %s/coordinator.%s.log %s' % (valgrind_command, coordinator_binary, self.coordinator_locator, self.log_level, self.log_subdir, self.coordinator_host[0], args)) self.coordinator = self.sandbox.rsh(self.coordinator_host[0], command, bg=True, stderr=subprocess.STDOUT) # just wait for coordinator to start time.sleep(1) # invoke the script that restarts the coordinator if it dies restart_command = ('%s/restart_coordinator %s/coordinator.%s.log' ' %s %s logcabin21:61023' % (local_scripts_path, self.log_subdir, self.coordinator_host[0], obj_path, self.coordinator_locator)) restarted_coord = self.sandbox.rsh(self.coordinator_host[0], restart_command, kill_on_exit=True, bg=True, stderr=subprocess.STDOUT) self.ensure_servers(0, 0) if self.verbose: print('Coordinator started on %s at %s' % (self.coordinator_host[0], self.coordinator_locator)) print('Coordinator command line arguments %s' % (command)) return self.coordinator def start_server(self, host, args='', master=True, backup=True, disk=None, port=server_port, kill_on_exit=True ): """Start a server on a node. @param host: (hostname, ip, id) tuple describing the node on which to start the RAMCloud server. @param args: Additional command-line args to pass to the server. (default: '') @param master: If True then the started server provides a master service. (default: True) @param backup: If True then the started server provides a backup service. (default: True) @param disk: If backup is True then the started server passes these additional arguments to select the storage type and location. (default: self.disk) @param port: The port the server should listen on. (default: see server_locator()) @param kill_on_exit: If False, this server process is not reaped at the end of the clusterperf test. (default: True) @return: Sandbox.Process representing the server process. """ log_prefix = '%s/server%d.%s' % ( self.log_subdir, self.next_server_id, host[0]) command = ('%s %s -C %s -L %s -r %d -l %s --clusterName __unnamed__ ' '--logFile %s.log --preferredIndex %d %s' % (valgrind_command, server_binary, self.coordinator_locator, server_locator(self.transport, host, port), self.replicas, self.log_level, log_prefix, self.next_server_id, args)) self.next_server_id += 1 if master and backup: pass elif master: command += ' --masterOnly' elif backup: command += ' --backupOnly' else: raise Exception('Cannot start a server that is neither a master ' 'nor backup') if backup: if not disk: disk = self.disk command += ' %s' % disk self.backups_started += 1 if master: self.masters_started += 1 # Adding redirection for stdout and stderr. stdout = open(log_prefix + '.out', 'w') stderr = open(log_prefix + '.err', 'w') if not kill_on_exit: server = self.sandbox.rsh(host[0], command, is_server=True, locator=server_locator(self.transport, host, port), kill_on_exit=False, bg=True, stdout=stdout, stderr=stderr) else: server = self.sandbox.rsh(host[0], command, is_server=True, locator=server_locator(self.transport, host, port), bg=True, stdout=stdout, stderr=stderr) if self.verbose: print('Server started on %s at %s: %s' % (host[0], server_locator(self.transport, host, port), command)) return server def kill_server(self, locator): """Kill a running server. @param locator: service locator for the server that needs to be killed. """ path = '%s/logs/shm' % os.getcwd() files = sorted([f for f in os.listdir(path) if os.path.isfile( os.path.join(path, f) )]) for file in files: f = open('%s/logs/shm/%s' % (os.getcwd(), file),'r') service_locator = f.read() if (locator in service_locator): to_kill = '1' mhost = file subprocess.Popen(['ssh', mhost.split('_')[0], '%s/killserver' % config.hooks.get_remote_scripts_path(), to_kill, os.getcwd(), mhost]) f.close() try: os.remove('%s/logs/shm/%s' % (os.getcwd(), file)) except: pass else: f.close() def ensure_servers(self, numMasters=None, numBackups=None, timeout=30): """Poll the coordinator and block until the specified number of masters and backups have enlisted. Useful for ensuring that the cluster is in the expected state before experiments begin. If the expected state isn't acheived within 5 seconds the call will throw an exception. @param numMasters: Number of masters that must be part of the cluster before this call returns successfully. If unspecified then wait until all the masters started with start_servers() have enlisted. @param numBackups: Number of backups that must be part of the cluster before this call returns successfully. If unspecified then wait until all the backups started with start_servers() have enlisted. """ if not numMasters: numMasters = self.masters_started if not numBackups: numBackups = self.backups_started self.sandbox.checkFailures() try: ensureCommand = ('%s -C %s -m %d -b %d -l 1 --wait %d ' '--logFile %s/ensureServers.log' % (ensure_servers_bin, self.coordinator_locator, numMasters, numBackups, timeout, self.log_subdir)) if self.verbose: print("ensureServers command: %s" % ensureCommand) self.sandbox.rsh(self.coordinator_host[0], ensureCommand) except: # prefer exceptions from dead processes to timeout error self.sandbox.checkFailures() raise def start_clients(self, hosts, client): """Start a client binary on a set of nodes. @param hosts: List of (hostname, ip, id) tuples describing the nodes on which to start the client binary. Each binary is launch with a --numClients and --clientIndex argument. @param client: Path to the client binary to run along with any args to pass to each client. @return: Sandbox.Process representing the client process. """ num_clients = len(hosts) args = client.split(' ') client_bin = args[0] client_args = ' '.join(args[1:]) clients = [] for i, client_host in enumerate(hosts): command = ('%s %s -C %s --numClients %d --clientIndex %d ' '--logFile %s/client%d.%s.log %s' % (valgrind_command, client_bin, self.coordinator_locator, num_clients, i, self.log_subdir, self.next_client_id, client_host[0], client_args)) self.next_client_id += 1 clients.append(self.sandbox.rsh(client_host[0], command, bg=True)) if self.verbose: print('Client %d started on %s: %s' % (i, client_host[0], command)) return clients def wait(self, processes, timeout=30): """Wait for a set of processes to exit. @param processes: List of Sandbox.Process instances as returned by start_coordinator, start_server, and start_clients whose exit should be waited on. @param timeout: Seconds to wait for exit before giving up and throwing an exception. (default: 30) """ start = time.time() for i, p in enumerate(processes): while p.proc.returncode is None: self.sandbox.checkFailures() time.sleep(.1) if time.time() - start > timeout: raise Exception('timeout exceeded %s' % self.log_subdir) if self.verbose: print('%s finished' % p.sonce) def remove_empty_files(self): """Remove blank files and empty directories within the log directory. """ root = self.log_subdir for item in os.listdir(root): path = os.path.join(root, item) if os.path.isfile(path): if os.path.getsize(path) == 0: os.remove(path) elif os.path.isdir(path): try: os.rmdir(path) except: None def shutdown(): """Kill all remaining processes started as part of this cluster and wait for their exit. Usually called implicitly if 'with' keyword is used with the cluster.""" self.__exit__(None, None, None) def __enter__(self): self.sandbox.__enter__() config.hooks.cluster_enter(self) return self def __exit__(self, exc_type=None, exc_value=None, exc_tb=None): config.hooks.cluster_exit() self.sandbox.__exit__(exc_type, exc_value, exc_tb) self.remove_empty_files() return False # rethrow exception, if any def run( num_servers=4, # Number of hosts on which to start # servers (not including coordinator). backup_disks_per_server=2, # Number of backup disks to use on each # server host (0, 1, or 2). replicas=3, # Replication factor to use for each # log segment. disk1=default_disk1, # Server arguments specifying the # backing device when one backup disk # is used on each server. disk2=default_disk2, # Server arguments specifying the # backing devices when two backup disks # are used on each server # (if backup_disks_per_server= 2). timeout=20, # How many seconds to wait for the # clients to complete. coordinator_args='', # Additional arguments for the # coordinator. master_args='', # Additional arguments for each server # that runs a master backup_args='', # Additional arguments for each server # that runs a backup. log_level='NOTICE', # Log level to use for all servers. log_dir='logs', # Top-level directory in which to write # log files. A separate subdirectory # will be created in this directory # for the log files from this run. client=None, # Command-line to invoke for each client # additional arguments will be prepended # with configuration information such as # -C. num_clients=0, # Number of client processes to run. # They will all run on separate # machines, if possible, but if there # aren't enough available machines then # multiple clients will run on some # machines. client_hosts=None, # An explicit list of hosts (in # host, ip, id triples) on which clients # should be run. If this is set and # share_hosts is set then share_hosts is # ignored. share_hosts=False, # True means clients can be run on # machines running servers, if needed. transport='basic+infud', # Name of transport to use for servers. verbose=False, # Print information about progress in # starting clients and servers debug=False, # If True, pause after starting all # to allow for debugging setup such as # attaching gdb. old_master_host=None, # Pass a (hostname, ip, id) tuple to # construct a large master on that host # before the others are started. Useful # for creating the old master for # recoveries. old_master_args='', # Additional arguments to run on the # old master (e.g. total RAM). enable_logcabin=False, # Do not enable logcabin. valgrind=False, # Do not run under valgrind valgrind_args='', # Additional arguments for valgrind disjunct=False, # Disjunct entities on a server coordinator_host=None ): """ Start a coordinator and servers, as indicated by the arguments. If a client is specified, then start one or more client processes and wait for them to complete. Otherwise leave the cluster running. @return: string indicating the path to the log files for this run. """ # client_hosts = [('rc52', '192.168.1.152', 52)] if client: if num_clients == 0: num_clients = 1 if verbose: print('num_servers=(%d), available hosts=(%d) defined in config.py' % (num_servers, len(getHosts()))) print ('disjunct=', disjunct) # When disjunct=True, disjuncts Coordinator and Clients on Server nodes. if disjunct: if num_servers + num_clients + 1 > len(getHosts()): raise Exception('num_servers (%d)+num_clients (%d)+1(coord) exceeds the available hosts (%d)' % (num_servers, num_clients, len(getHosts()))) else: if num_servers > len(getHosts()): raise Exception('num_servers (%d) exceeds the available hosts (%d)' % (num_servers, len(getHosts()))) if not share_hosts and not client_hosts: if (len(getHosts()) - num_servers) < 1: raise Exception('Asked for %d servers without sharing hosts with %d ' 'clients, but only %d hosts were available' % (num_servers, num_clients, len(getHosts()))) masters_started = 0 backups_started = 0 global valgrind_command if valgrind: valgrind_command = ('valgrind %s' % valgrind_args) with Cluster(log_dir) as cluster: cluster.log_level = log_level cluster.verbose = verbose cluster.transport = transport cluster.replicas = replicas cluster.timeout = timeout cluster.disk = disk1 cluster.enable_logcabin = enable_logcabin cluster.disjunct = disjunct cluster.hosts = getHosts() if not coordinator_host: coordinator_host = cluster.hosts[len(cluster.hosts)-1] coordinator = cluster.start_coordinator(coordinator_host, coordinator_args) if disjunct: cluster.hosts.pop(0) if old_master_host: oldMaster = cluster.start_server(old_master_host, old_master_args, backup=False) oldMaster.ignoreFailures = True masters_started += 1 cluster.ensure_servers(timeout=60) for host in cluster.hosts[:num_servers]: backup = False args = master_args disk_args = None if backup_disks_per_server > 0: backup = True args += ' %s' % backup_args backups_started += 1 disk_args = disk1 if backup_disks_per_server == 1 else disk2 cluster.start_server(host, args, backup=backup, disk=disk_args) masters_started += 1 if disjunct: cluster.hosts = cluster.hosts[num_servers:] if masters_started > 0 or backups_started > 0: cluster.ensure_servers() if verbose: print('All servers running') if not client: print('Servers started.') raw_input('Type <Enter> to shutdown servers: ') elif debug: print('Servers started; pausing for debug setup.') raw_input('Type <Enter> to continue: ') if client: # Note: even if it's OK to share hosts between clients and servers, # don't do it unless necessary. if not client_hosts: if disjunct: host_list = cluster.hosts[:] else: host_list = cluster.hosts[num_servers:] if share_hosts: host_list.extend(cluster.hosts[:num_servers]) client_hosts = [host_list[i % len(host_list)] for i in range(num_clients)] assert(len(client_hosts) == num_clients) clients = cluster.start_clients(client_hosts, client) cluster.wait(clients, timeout) return cluster.log_subdir if __name__ == '__main__': parser = OptionParser(description= 'Start RAMCloud servers and run a client application.', conflict_handler='resolve') parser.add_option('--backupArgs', metavar='ARGS', default='', dest='backup_args', help='Additional command-line arguments to pass to ' 'each backup') parser.add_option('-b', '--backupDisks', type=int, default=1, metavar='N', dest='backup_disks_per_server', help='Number of backup disks to run on each server host ' '(0, 1, or 2)') parser.add_option('--client', metavar='ARGS', help='Command line to invoke the client application ' '(additional arguments will be inserted at the beginning ' 'of the argument list)') parser.add_option('-n', '--clients', type=int, default=1, metavar='N', dest='num_clients', help='Number of instances of the client application ' 'to run') parser.add_option('--coordinatorArgs', metavar='ARGS', default='', dest='coordinator_args', help='Additional command-line arguments to pass to the ' 'cluster coordinator') parser.add_option('--debug', action='store_true', default=False, help='Pause after starting servers but before running ' 'clients to enable debugging setup') parser.add_option('--disk1', default=default_disk1, help='Server arguments to specify disk for first backup') parser.add_option('--disk2', default=default_disk2, help='Server arguments to specify disk for second backup') parser.add_option('-l', '--logLevel', default='NOTICE', choices=['DEBUG', 'NOTICE', 'WARNING', 'ERROR', 'SILENT'], metavar='L', dest='log_level', help='Controls degree of logging in servers') parser.add_option('-d', '--logDir', default='logs', metavar='DIR', dest='log_dir', help='Top level directory for log files; the files for ' 'each invocation will go in a subdirectory.') parser.add_option('--masterArgs', metavar='ARGS', default='', dest='master_args', help='Additional command-line arguments to pass to ' 'each master') parser.add_option('-r', '--replicas', type=int, default=3, metavar='N', help='Number of disk backup copies for each segment') parser.add_option('-s', '--servers', type=int, default=4, metavar='N', dest='num_servers', help='Number of hosts on which to run servers') parser.add_option('--shareHosts', action='store_true', default=False, dest='share_hosts', help='Allow clients to run on machines running servers ' '(by default clients run on different machines than ' 'the servers, though multiple clients may run on a ' 'single machine)') parser.add_option('-t', '--timeout', type=int, default=20, metavar='SECS', help="Abort if the client application doesn't finish within " 'SECS seconds') parser.add_option('-T', '--transport', default='basic+infud', help='Transport to use for communication with servers') parser.add_option('-v', '--verbose', action='store_true', default=False, help='Print progress messages') parser.add_option('--valgrind', action='store_true', default=False, help='Run all the processes under valgrind') parser.add_option('--valgrindArgs', metavar='ARGS', default='', dest='valgrind_args', help='Arguments to pass to valgrind') parser.add_option('--disjunct', action='store_true', default=False, help='Disjunct entities (disable collocation) on each server') (options, args) = parser.parse_args() status = 0 try: run(**vars(options)) finally: logInfo = log.scan("logs/latest", ["WARNING", "ERROR"]) if len(logInfo) > 0: print(logInfo, file=sys.stderr) status = 1 quit(status)
"""The tests for numeric state automation.""" from datetime import timedelta import logging from unittest.mock import patch import pytest import voluptuous as vol import homeassistant.components.automation as automation from homeassistant.components.homeassistant.triggers import ( numeric_state as numeric_state_trigger, ) from homeassistant.const import ATTR_ENTITY_ID, ENTITY_MATCH_ALL, SERVICE_TURN_OFF from homeassistant.core import Context from homeassistant.helpers import entity_registry as er from homeassistant.setup import async_setup_component import homeassistant.util.dt as dt_util from tests.common import ( assert_setup_component, async_fire_time_changed, async_mock_service, mock_component, ) @pytest.fixture def calls(hass): """Track calls to a mock service.""" return async_mock_service(hass, "test", "automation") @pytest.fixture(autouse=True) async def setup_comp(hass): """Initialize components.""" mock_component(hass, "group") await async_setup_component( hass, "input_number", { "input_number": { "value_3": {"min": 0, "max": 255, "initial": 3}, "value_5": {"min": 0, "max": 255, "initial": 5}, "value_8": {"min": 0, "max": 255, "initial": 8}, "value_10": {"min": 0, "max": 255, "initial": 10}, "value_12": {"min": 0, "max": 255, "initial": 12}, "value_100": {"min": 0, "max": 255, "initial": 100}, } }, ) hass.states.async_set("number.value_10", 10) hass.states.async_set("sensor.value_10", 10) @pytest.mark.parametrize( "below", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_not_fires_on_entity_removal(hass, calls, below): """Test the firing with removed entity.""" hass.states.async_set("test.entity", 11) assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, }, "action": {"service": "test.automation"}, } }, ) # Entity disappears hass.states.async_remove("test.entity") await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize( "below", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_fires_on_entity_change_below(hass, calls, below): """Test the firing with changed entity.""" hass.states.async_set("test.entity", 11) await hass.async_block_till_done() context = Context() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, }, "action": { "service": "test.automation", "data_template": {"id": "{{ trigger.id}}"}, }, } }, ) # 9 is below 10 hass.states.async_set("test.entity", 9, context=context) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].context.parent_id == context.id # Set above 12 so the automation will fire again hass.states.async_set("test.entity", 12) await hass.services.async_call( automation.DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: ENTITY_MATCH_ALL}, blocking=True, ) hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data["id"] == 0 @pytest.mark.parametrize( "below", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_fires_on_entity_change_below_uuid(hass, calls, below): """Test the firing with changed entity specified by registry entry id.""" registry = er.async_get(hass) entry = registry.async_get_or_create( "test", "hue", "1234", suggested_object_id="entity" ) assert entry.entity_id == "test.entity" hass.states.async_set("test.entity", 11) await hass.async_block_till_done() context = Context() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": entry.id, "below": below, }, "action": { "service": "test.automation", "data_template": {"id": "{{ trigger.id}}"}, }, } }, ) # 9 is below 10 hass.states.async_set("test.entity", 9, context=context) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].context.parent_id == context.id # Set above 12 so the automation will fire again hass.states.async_set("test.entity", 12) await hass.services.async_call( automation.DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: ENTITY_MATCH_ALL}, blocking=True, ) hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data["id"] == 0 @pytest.mark.parametrize( "below", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_fires_on_entity_change_over_to_below(hass, calls, below): """Test the firing with changed entity.""" hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 9 is below 10 hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize( "below", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_fires_on_entities_change_over_to_below(hass, calls, below): """Test the firing with changed entities.""" hass.states.async_set("test.entity_1", 11) hass.states.async_set("test.entity_2", 11) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": ["test.entity_1", "test.entity_2"], "below": below, }, "action": {"service": "test.automation"}, } }, ) # 9 is below 10 hass.states.async_set("test.entity_1", 9) await hass.async_block_till_done() assert len(calls) == 1 hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() assert len(calls) == 2 @pytest.mark.parametrize( "below", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_not_fires_on_entity_change_below_to_below(hass, calls, below): """Test the firing with changed entity.""" context = Context() hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 9 is below 10 so this should fire hass.states.async_set("test.entity", 9, context=context) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].context.parent_id == context.id # already below so should not fire again hass.states.async_set("test.entity", 5) await hass.async_block_till_done() assert len(calls) == 1 # still below so should not fire again hass.states.async_set("test.entity", 3) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize( "below", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_not_below_fires_on_entity_change_to_equal(hass, calls, below): """Test the firing with changed entity.""" hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 10 is not below 10 so this should not fire again hass.states.async_set("test.entity", 10) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize( "below", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_not_fires_on_initial_entity_below(hass, calls, below): """Test the firing when starting with a match.""" hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, }, "action": {"service": "test.automation"}, } }, ) # Do not fire on first update when initial state was already below hass.states.async_set("test.entity", 8) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize( "above", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_not_fires_on_initial_entity_above(hass, calls, above): """Test the firing when starting with a match.""" hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, }, "action": {"service": "test.automation"}, } }, ) # Do not fire on first update when initial state was already above hass.states.async_set("test.entity", 12) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize( "above", (10, "input_number.value_10", "number.value_10", "sensor.value_10") ) async def test_if_fires_on_entity_change_above(hass, calls, above): """Test the firing with changed entity.""" hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, }, "action": {"service": "test.automation"}, } }, ) # 11 is above 10 hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert len(calls) == 1 async def test_if_fires_on_entity_unavailable_at_startup(hass, calls): """Test the firing with changed entity at startup.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": 10, }, "action": {"service": "test.automation"}, } }, ) # 11 is above 10 hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize("above", (10, "input_number.value_10")) async def test_if_fires_on_entity_change_below_to_above(hass, calls, above): """Test the firing with changed entity.""" # set initial state hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, }, "action": {"service": "test.automation"}, } }, ) # 11 is above 10 and 9 is below hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize("above", (10, "input_number.value_10")) async def test_if_not_fires_on_entity_change_above_to_above(hass, calls, above): """Test the firing with changed entity.""" # set initial state hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, }, "action": {"service": "test.automation"}, } }, ) # 12 is above 10 so this should fire hass.states.async_set("test.entity", 12) await hass.async_block_till_done() assert len(calls) == 1 # already above, should not fire again hass.states.async_set("test.entity", 15) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize("above", (10, "input_number.value_10")) async def test_if_not_above_fires_on_entity_change_to_equal(hass, calls, above): """Test the firing with changed entity.""" # set initial state hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, }, "action": {"service": "test.automation"}, } }, ) # 10 is not above 10 so this should not fire again hass.states.async_set("test.entity", 10) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize( "above, below", ( (5, 10), (5, "input_number.value_10"), ("input_number.value_5", 10), ("input_number.value_5", "input_number.value_10"), ), ) async def test_if_fires_on_entity_change_below_range(hass, calls, above, below): """Test the firing with changed entity.""" hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, "above": above, }, "action": {"service": "test.automation"}, } }, ) # 9 is below 10 hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize( "above, below", ( (5, 10), (5, "input_number.value_10"), ("input_number.value_5", 10), ("input_number.value_5", "input_number.value_10"), ), ) async def test_if_fires_on_entity_change_below_above_range(hass, calls, above, below): """Test the firing with changed entity.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, "above": above, }, "action": {"service": "test.automation"}, } }, ) # 4 is below 5 hass.states.async_set("test.entity", 4) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize( "above, below", ( (5, 10), (5, "input_number.value_10"), ("input_number.value_5", 10), ("input_number.value_5", "input_number.value_10"), ), ) async def test_if_fires_on_entity_change_over_to_below_range(hass, calls, above, below): """Test the firing with changed entity.""" hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, "above": above, }, "action": {"service": "test.automation"}, } }, ) # 9 is below 10 hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize( "above, below", ( (5, 10), (5, "input_number.value_10"), ("input_number.value_5", 10), ("input_number.value_5", "input_number.value_10"), ), ) async def test_if_fires_on_entity_change_over_to_below_above_range( hass, calls, above, below ): """Test the firing with changed entity.""" hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": above, "above": below, }, "action": {"service": "test.automation"}, } }, ) # 4 is below 5 so it should not fire hass.states.async_set("test.entity", 4) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize("below", (100, "input_number.value_100")) async def test_if_not_fires_if_entity_not_match(hass, calls, below): """Test if not fired with non matching entity.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.another_entity", "below": below, }, "action": {"service": "test.automation"}, } }, ) hass.states.async_set("test.entity", 11) await hass.async_block_till_done() assert len(calls) == 0 async def test_if_not_fires_and_warns_if_below_entity_unknown(hass, caplog, calls): """Test if warns with unknown below entity.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": "input_number.unknown", }, "action": {"service": "test.automation"}, } }, ) caplog.clear() caplog.set_level(logging.WARNING) hass.states.async_set("test.entity", 1) await hass.async_block_till_done() assert len(calls) == 0 assert len(caplog.record_tuples) == 1 assert caplog.record_tuples[0][1] == logging.WARNING @pytest.mark.parametrize("below", (10, "input_number.value_10")) async def test_if_fires_on_entity_change_below_with_attribute(hass, calls, below): """Test attributes change.""" hass.states.async_set("test.entity", 11, {"test_attribute": 11}) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 9 is below 10 hass.states.async_set("test.entity", 9, {"test_attribute": 11}) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize("below", (10, "input_number.value_10")) async def test_if_not_fires_on_entity_change_not_below_with_attribute( hass, calls, below ): """Test attributes.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 11 is not below 10 hass.states.async_set("test.entity", 11, {"test_attribute": 9}) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize("below", (10, "input_number.value_10")) async def test_if_fires_on_attribute_change_with_attribute_below(hass, calls, below): """Test attributes change.""" hass.states.async_set("test.entity", "entity", {"test_attribute": 11}) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "value_template": "{{ state.attributes.test_attribute }}", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 9 is below 10 hass.states.async_set("test.entity", "entity", {"test_attribute": 9}) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize("below", (10, "input_number.value_10")) async def test_if_not_fires_on_attribute_change_with_attribute_not_below( hass, calls, below ): """Test attributes change.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "value_template": "{{ state.attributes.test_attribute }}", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 11 is not below 10 hass.states.async_set("test.entity", "entity", {"test_attribute": 11}) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize("below", (10, "input_number.value_10")) async def test_if_not_fires_on_entity_change_with_attribute_below(hass, calls, below): """Test attributes change.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "value_template": "{{ state.attributes.test_attribute }}", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 11 is not below 10, entity state value should not be tested hass.states.async_set("test.entity", "9", {"test_attribute": 11}) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize("below", (10, "input_number.value_10")) async def test_if_not_fires_on_entity_change_with_not_attribute_below( hass, calls, below ): """Test attributes change.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "value_template": "{{ state.attributes.test_attribute }}", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 11 is not below 10, entity state value should not be tested hass.states.async_set("test.entity", "entity") await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize("below", (10, "input_number.value_10")) async def test_fires_on_attr_change_with_attribute_below_and_multiple_attr( hass, calls, below ): """Test attributes change.""" hass.states.async_set( "test.entity", "entity", {"test_attribute": 11, "not_test_attribute": 11} ) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "value_template": "{{ state.attributes.test_attribute }}", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 9 is not below 10 hass.states.async_set( "test.entity", "entity", {"test_attribute": 9, "not_test_attribute": 11} ) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize("below", (10, "input_number.value_10")) async def test_template_list(hass, calls, below): """Test template list.""" hass.states.async_set("test.entity", "entity", {"test_attribute": [11, 15, 11]}) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "value_template": "{{ state.attributes.test_attribute[2] }}", "below": below, }, "action": {"service": "test.automation"}, } }, ) # 3 is below 10 hass.states.async_set("test.entity", "entity", {"test_attribute": [11, 15, 3]}) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize("below", (10.0, "input_number.value_10")) async def test_template_string(hass, calls, below): """Test template string.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "value_template": "{{ state.attributes.test_attribute | multiply(10) }}", "below": below, }, "action": { "service": "test.automation", "data_template": { "some": "{{ trigger.%s }}" % "}} - {{ trigger.".join( ( "platform", "entity_id", "below", "above", "from_state.state", "to_state.state", ) ) }, }, } }, ) hass.states.async_set("test.entity", "test state 1", {"test_attribute": "1.2"}) await hass.async_block_till_done() hass.states.async_set("test.entity", "test state 2", {"test_attribute": "0.9"}) await hass.async_block_till_done() assert len(calls) == 1 assert ( calls[0].data["some"] == f"numeric_state - test.entity - {below} - None - test state 1 - test state 2" ) async def test_not_fires_on_attr_change_with_attr_not_below_multiple_attr(hass, calls): """Test if not fired changed attributes.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "value_template": "{{ state.attributes.test_attribute }}", "below": 10, }, "action": {"service": "test.automation"}, } }, ) # 11 is not below 10 hass.states.async_set( "test.entity", "entity", {"test_attribute": 11, "not_test_attribute": 9} ) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_action(hass, calls, above, below): """Test if action.""" entity_id = "domain.test_entity" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": {"platform": "event", "event_type": "test_event"}, "condition": { "condition": "numeric_state", "entity_id": entity_id, "above": above, "below": below, }, "action": {"service": "test.automation"}, } }, ) hass.states.async_set(entity_id, 10) hass.bus.async_fire("test_event") await hass.async_block_till_done() assert len(calls) == 1 hass.states.async_set(entity_id, 8) hass.bus.async_fire("test_event") await hass.async_block_till_done() assert len(calls) == 1 hass.states.async_set(entity_id, 9) hass.bus.async_fire("test_event") await hass.async_block_till_done() assert len(calls) == 2 @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_fails_setup_bad_for(hass, calls, above, below): """Test for setup failure for bad for.""" hass.states.async_set("test.entity", 5) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "below": below, "for": {"invalid": 5}, }, "action": {"service": "homeassistant.turn_on"}, } }, ) with patch.object(numeric_state_trigger, "_LOGGER") as mock_logger: hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert mock_logger.error.called async def test_if_fails_setup_for_without_above_below(hass, calls): """Test for setup failures for missing above or below.""" with assert_setup_component(0, automation.DOMAIN): assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "for": {"seconds": 5}, }, "action": {"service": "homeassistant.turn_on"}, } }, ) @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_not_fires_on_entity_change_with_for(hass, calls, above, below): """Test for not firing on entity change with for.""" assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "below": below, "for": {"seconds": 5}, }, "action": {"service": "test.automation"}, } }, ) hass.states.async_set("test.entity", 9) await hass.async_block_till_done() hass.states.async_set("test.entity", 15) await hass.async_block_till_done() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=10)) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_not_fires_on_entities_change_with_for_after_stop( hass, calls, above, below ): """Test for not firing on entities change with for after stop.""" hass.states.async_set("test.entity_1", 0) hass.states.async_set("test.entity_2", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": ["test.entity_1", "test.entity_2"], "above": above, "below": below, "for": {"seconds": 5}, }, "action": {"service": "test.automation"}, } }, ) hass.states.async_set("test.entity_1", 9) hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=10)) await hass.async_block_till_done() assert len(calls) == 1 hass.states.async_set("test.entity_1", 15) hass.states.async_set("test.entity_2", 15) await hass.async_block_till_done() hass.states.async_set("test.entity_1", 9) hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() await hass.services.async_call( automation.DOMAIN, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: ENTITY_MATCH_ALL}, blocking=True, ) async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=10)) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_fires_on_entity_change_with_for_attribute_change( hass, calls, above, below ): """Test for firing on entity change with for and attribute change.""" hass.states.async_set("test.entity", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "below": below, "for": {"seconds": 5}, }, "action": {"service": "test.automation"}, } }, ) utcnow = dt_util.utcnow() with patch("homeassistant.core.dt_util.utcnow") as mock_utcnow: mock_utcnow.return_value = utcnow hass.states.async_set("test.entity", 9) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=4) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity", 9, attributes={"mock_attr": "attr_change"}) await hass.async_block_till_done() assert len(calls) == 0 mock_utcnow.return_value += timedelta(seconds=4) async_fire_time_changed(hass, mock_utcnow.return_value) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_fires_on_entity_change_with_for(hass, calls, above, below): """Test for firing on entity change with for.""" hass.states.async_set("test.entity", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "below": below, "for": {"seconds": 5}, }, "action": {"service": "test.automation"}, } }, ) hass.states.async_set("test.entity", 9) await hass.async_block_till_done() async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=10)) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize("above", (10, "input_number.value_10")) async def test_wait_template_with_trigger(hass, calls, above): """Test using wait template with 'trigger.entity_id'.""" hass.states.async_set("test.entity", "0") await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, }, "action": [ {"wait_template": "{{ states(trigger.entity_id) | int < 10 }}"}, { "service": "test.automation", "data_template": { "some": "{{ trigger.%s }}" % "}} - {{ trigger.".join( ("platform", "entity_id", "to_state.state") ) }, }, ], } }, ) await hass.async_block_till_done() hass.states.async_set("test.entity", "12") hass.states.async_set("test.entity", "8") await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data["some"] == "numeric_state - test.entity - 12" @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_fires_on_entities_change_no_overlap(hass, calls, above, below): """Test for firing on entities change with no overlap.""" hass.states.async_set("test.entity_1", 0) hass.states.async_set("test.entity_2", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": ["test.entity_1", "test.entity_2"], "above": above, "below": below, "for": {"seconds": 5}, }, "action": { "service": "test.automation", "data_template": {"some": "{{ trigger.entity_id }}"}, }, } }, ) await hass.async_block_till_done() utcnow = dt_util.utcnow() with patch("homeassistant.core.dt_util.utcnow") as mock_utcnow: mock_utcnow.return_value = utcnow hass.states.async_set("test.entity_1", 9) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=10) async_fire_time_changed(hass, mock_utcnow.return_value) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data["some"] == "test.entity_1" hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=10) async_fire_time_changed(hass, mock_utcnow.return_value) await hass.async_block_till_done() assert len(calls) == 2 assert calls[1].data["some"] == "test.entity_2" @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_fires_on_entities_change_overlap(hass, calls, above, below): """Test for firing on entities change with overlap.""" hass.states.async_set("test.entity_1", 0) hass.states.async_set("test.entity_2", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": ["test.entity_1", "test.entity_2"], "above": above, "below": below, "for": {"seconds": 5}, }, "action": { "service": "test.automation", "data_template": {"some": "{{ trigger.entity_id }}"}, }, } }, ) await hass.async_block_till_done() utcnow = dt_util.utcnow() with patch("homeassistant.core.dt_util.utcnow") as mock_utcnow: mock_utcnow.return_value = utcnow hass.states.async_set("test.entity_1", 9) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=1) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=1) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity_2", 15) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=1) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() assert len(calls) == 0 mock_utcnow.return_value += timedelta(seconds=3) async_fire_time_changed(hass, mock_utcnow.return_value) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data["some"] == "test.entity_1" mock_utcnow.return_value += timedelta(seconds=3) async_fire_time_changed(hass, mock_utcnow.return_value) await hass.async_block_till_done() assert len(calls) == 2 assert calls[1].data["some"] == "test.entity_2" @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_fires_on_change_with_for_template_1(hass, calls, above, below): """Test for firing on change with for template.""" hass.states.async_set("test.entity", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "below": below, "for": {"seconds": "{{ 5 }}"}, }, "action": {"service": "test.automation"}, } }, ) hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert len(calls) == 0 async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=10)) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_fires_on_change_with_for_template_2(hass, calls, above, below): """Test for firing on change with for template.""" hass.states.async_set("test.entity", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "below": below, "for": "{{ 5 }}", }, "action": {"service": "test.automation"}, } }, ) hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert len(calls) == 0 async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=10)) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_fires_on_change_with_for_template_3(hass, calls, above, below): """Test for firing on change with for template.""" hass.states.async_set("test.entity", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "below": below, "for": "00:00:{{ 5 }}", }, "action": {"service": "test.automation"}, } }, ) hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert len(calls) == 0 async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=10)) await hass.async_block_till_done() assert len(calls) == 1 async def test_if_not_fires_on_error_with_for_template(hass, calls): """Test for not firing on error with for template.""" hass.states.async_set("test.entity", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": 100, "for": "00:00:05", }, "action": {"service": "test.automation"}, } }, ) hass.states.async_set("test.entity", 101) await hass.async_block_till_done() assert len(calls) == 0 async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=3)) hass.states.async_set("test.entity", "unavailable") await hass.async_block_till_done() assert len(calls) == 0 async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=3)) hass.states.async_set("test.entity", 101) await hass.async_block_till_done() assert len(calls) == 0 @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_invalid_for_template(hass, calls, above, below): """Test for invalid for template.""" hass.states.async_set("test.entity", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "below": below, "for": "{{ five }}", }, "action": {"service": "test.automation"}, } }, ) with patch.object(numeric_state_trigger, "_LOGGER") as mock_logger: hass.states.async_set("test.entity", 9) await hass.async_block_till_done() assert mock_logger.error.called @pytest.mark.parametrize( "above, below", ( (8, 12), (8, "input_number.value_12"), ("input_number.value_8", 12), ("input_number.value_8", "input_number.value_12"), ), ) async def test_if_fires_on_entities_change_overlap_for_template( hass, calls, above, below ): """Test for firing on entities change with overlap and for template.""" hass.states.async_set("test.entity_1", 0) hass.states.async_set("test.entity_2", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": ["test.entity_1", "test.entity_2"], "above": above, "below": below, "for": '{{ 5 if trigger.entity_id == "test.entity_1"' " else 10 }}", }, "action": { "service": "test.automation", "data_template": { "some": "{{ trigger.entity_id }} - {{ trigger.for }}" }, }, } }, ) await hass.async_block_till_done() utcnow = dt_util.utcnow() with patch("homeassistant.util.dt.utcnow") as mock_utcnow: mock_utcnow.return_value = utcnow hass.states.async_set("test.entity_1", 9) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=1) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=1) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity_2", 15) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=1) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() assert len(calls) == 0 mock_utcnow.return_value += timedelta(seconds=3) async_fire_time_changed(hass, mock_utcnow.return_value) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data["some"] == "test.entity_1 - 0:00:05" mock_utcnow.return_value += timedelta(seconds=3) async_fire_time_changed(hass, mock_utcnow.return_value) await hass.async_block_till_done() assert len(calls) == 1 mock_utcnow.return_value += timedelta(seconds=5) async_fire_time_changed(hass, mock_utcnow.return_value) await hass.async_block_till_done() assert len(calls) == 2 assert calls[1].data["some"] == "test.entity_2 - 0:00:10" async def test_below_above(hass): """Test above cannot be above below.""" with pytest.raises(vol.Invalid): await numeric_state_trigger.async_validate_trigger_config( hass, {"platform": "numeric_state", "above": 1200, "below": 1000} ) async def test_schema_unacceptable_entities(hass): """Test input_number, number & sensor only is accepted for above/below.""" with pytest.raises(vol.Invalid): await numeric_state_trigger.async_validate_trigger_config( hass, { "platform": "numeric_state", "above": "input_datetime.some_input", "below": 1000, }, ) with pytest.raises(vol.Invalid): await numeric_state_trigger.async_validate_trigger_config( hass, { "platform": "numeric_state", "below": "input_datetime.some_input", "above": 1200, }, ) @pytest.mark.parametrize("above", (3, "input_number.value_3")) async def test_attribute_if_fires_on_entity_change_with_both_filters( hass, calls, above ): """Test for firing if both filters are match attribute.""" hass.states.async_set("test.entity", "bla", {"test-measurement": 1}) assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "attribute": "test-measurement", }, "action": {"service": "test.automation"}, } }, ) await hass.async_block_till_done() hass.states.async_set("test.entity", "bla", {"test-measurement": 4}) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize("above", (3, "input_number.value_3")) async def test_attribute_if_not_fires_on_entities_change_with_for_after_stop( hass, calls, above ): """Test for not firing on entity change with for after stop trigger.""" hass.states.async_set("test.entity", "bla", {"test-measurement": 1}) assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "above": above, "attribute": "test-measurement", "for": 5, }, "action": {"service": "test.automation"}, } }, ) await hass.async_block_till_done() hass.states.async_set("test.entity", "bla", {"test-measurement": 4}) await hass.async_block_till_done() assert len(calls) == 0 async_fire_time_changed(hass, dt_util.utcnow() + timedelta(seconds=10)) await hass.async_block_till_done() assert len(calls) == 1 @pytest.mark.parametrize( "above, below", ((8, 12),), ) async def test_variables_priority(hass, calls, above, below): """Test an externally defined trigger variable is overridden.""" hass.states.async_set("test.entity_1", 0) hass.states.async_set("test.entity_2", 0) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger_variables": {"trigger": "illegal"}, "trigger": { "platform": "numeric_state", "entity_id": ["test.entity_1", "test.entity_2"], "above": above, "below": below, "for": '{{ 5 if trigger.entity_id == "test.entity_1"' " else 10 }}", }, "action": { "service": "test.automation", "data_template": { "some": "{{ trigger.entity_id }} - {{ trigger.for }}" }, }, } }, ) await hass.async_block_till_done() utcnow = dt_util.utcnow() with patch("homeassistant.util.dt.utcnow") as mock_utcnow: mock_utcnow.return_value = utcnow hass.states.async_set("test.entity_1", 9) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=1) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=1) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity_2", 15) await hass.async_block_till_done() mock_utcnow.return_value += timedelta(seconds=1) async_fire_time_changed(hass, mock_utcnow.return_value) hass.states.async_set("test.entity_2", 9) await hass.async_block_till_done() assert len(calls) == 0 mock_utcnow.return_value += timedelta(seconds=3) async_fire_time_changed(hass, mock_utcnow.return_value) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data["some"] == "test.entity_1 - 0:00:05" @pytest.mark.parametrize("multiplier", (1, 5)) async def test_template_variable(hass, calls, multiplier): """Test template variable.""" hass.states.async_set("test.entity", "entity", {"test_attribute": [11, 15, 11]}) await hass.async_block_till_done() assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: { "trigger_variables": {"multiplier": multiplier}, "trigger": { "platform": "numeric_state", "entity_id": "test.entity", "value_template": "{{ state.attributes.test_attribute[2] * multiplier}}", "below": 10, }, "action": {"service": "test.automation"}, } }, ) # 3 is below 10 hass.states.async_set("test.entity", "entity", {"test_attribute": [11, 15, 3]}) await hass.async_block_till_done() if multiplier * 3 < 10: assert len(calls) == 1 else: assert len(calls) == 0
#dice guideline from random import randint #FOR program module moduleName="Dice Module" #moduleName="The Lusty Orc Dice Module" #FOR dice rolls #mulligan_yes_or_no=True not implemented the_lowest_possible_roll=1 the_number_of_sides_on_a_die=6 the_number_of_rolls_in_a_set=4 reroll_if_equal_or_less=0 number_of_lowest_rolls_to_drop_in_a_set=1 number_of_highest_rolls_to_drop_in_a_set=1 #Rules for attribute rolls, Do not alter anything past this line ''' def dicerollbatch(): WorkingBatch=[] for setNumber in range(self.dieSets): rolls=[] dropped=[] #creates another recursion loop that runs for die_number_per_set times and addes a random roll result to the rolls and dropped lists using the x variable, each roll is between the values lowest_possible_roll and number_of_sides_on_die for roll in range(self.setDieNumber): r=(randint(lowest_possible_roll, self.dieSides)) rolls.append(r) dropped.append(r) #after the rolls are done, normally 4 of them, the set is added to the rollBatch variable container as well as adding to the dropped sets container self.rollBatch.append(rolls) dropped.remove(min(dropped)) self.droppedBatch.append(dropped) #after the roll sets have been added to the batch the batch count is incremented up one self.batch+=1 #after the numbers have been generated and appended to the batch the sets are printed out vertically print("number of batch attempts:"+str(self.batch)+"\nStat Rolls") for batchSets in range(len(self.rollBatch)): at=0 for batchRolls in range(len(self.droppedBatch[batchSets])):at+=self.droppedBatch[batchSets][batchRolls] self.attributeResults.append(at) print((self.rollBatch[batchSets]), (self.attributeResults[batchSets])) ''' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' #test_4_rolls_print from random import randint The_number_of_rolls_in_a_set=4 The_number_of_sides_on_a_die=6 the_lowest_possible_roll=1 #the followign 6 lines of code roll 4 numbers between 1 and 6 and then prints them out vertically def roll_set_of_dice(): for roll in range(The_number_of_rolls_in_a_set): roll_result=(randint(the_lowest_possible_roll, The_number_of_sides_on_a_die)) print("%s" % roll_result) return #roll_set_of_dice() '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' #test_4_rolls_output_to_list_print_list from random import randint the_number_of_rolls_in_a_set=4 the_number_of_sides_on_a_die=6 the_lowest_possible_roll=1 #the following 8 lines of code rolls 4 6 sided dice and copies the reuslts to a lsit and then print's the list def roll_set_of_dice(): set_of_dice_rolls=[] for roll in range(the_number_of_rolls_in_a_set): roll_result=(randint(the_lowest_possible_roll, the_number_of_sides_on_a_die)) set_of_dice_rolls.append(roll_result) print(set_of_dice_rolls) return #roll_set_of_dice() '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' #test_4_rolls with reroll and output from random import randint the_number_of_rolls_in_a_set=4 the_number_of_sides_on_a_die=6 the_lowest_possible_roll=1 reroll_if_equal_or_less=5 #rolls 4 dice between 1 and 6 and rerolls all results that are 5 or less then outputs them to roll_set_of_dice def roll_set_of_dice(): set_of_dice_rolls=[] for roll in range(the_number_of_rolls_in_a_set): roll_result=(randint(the_lowest_possible_roll, the_number_of_sides_on_a_die)) while roll_result<=reroll_if_equal_or_less: roll_result=(randint(the_lowest_possible_roll, the_number_of_sides_on_a_die)) print("reroll %s" %roll_result) else:set_of_dice_rolls.append(roll_result) print(set_of_dice_rolls) return #roll_set_of_dice() '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' #test_4_rolls if drop lowest or highest is greater than zero copy set_of_dice_rolls to set_of_dice_rolls_adjusted from random import randint the_number_of_rolls_in_a_set=4 the_number_of_sides_on_a_die=6 the_lowest_possible_roll=1 reroll_if_equal_or_less=0 number_of_lowest_rolls_to_drop_in_a_set=1 number_of_highest_rolls_to_drop_in_a_set=0 #rolls 4 dice between 1 and 6 and rerolls all results that are 5 or less then outputs them to roll_set_of_dice def roll_set_of_dice(): set_of_dice_rolls=[] set_of_dice_rolls_adjusted=[] for roll in range(the_number_of_rolls_in_a_set): roll_result=(randint(the_lowest_possible_roll, the_number_of_sides_on_a_die)) while roll_result<=reroll_if_equal_or_less: roll_result=(randint(the_lowest_possible_roll, the_number_of_sides_on_a_die)) print("reroll %s" %roll_result) else:set_of_dice_rolls.append(roll_result) if (number_of_lowest_rolls_to_drop_in_a_set>0) or (number_of_highest_rolls_to_drop_in_a_set>0): for roll_results in range(len(set_of_dice_rolls)): set_of_dice_rolls_adjusted.append(set_of_dice_rolls[roll_results]) print(set_of_dice_rolls_adjusted) print(set_of_dice_rolls) return #roll_set_of_dice() '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' #test_4_rolls drop highest and lowest from random import randint the_number_of_rolls_in_a_set=4 the_number_of_sides_on_a_die=6 the_lowest_possible_roll=1 reroll_if_equal_or_less=0 number_of_lowest_rolls_to_drop_in_a_set=1 number_of_highest_rolls_to_drop_in_a_set=1 #rolls 4 dice between 1 and 6 and rerolls all results that are 5 or less then outputs them to roll_set_of_dice def roll_set_of_dice(): set_of_dice_rolls=[] set_of_dice_rolls_adjusted=[] for roll in range(the_number_of_rolls_in_a_set): roll_result=(randint(the_lowest_possible_roll, the_number_of_sides_on_a_die)) while roll_result<=reroll_if_equal_or_less: roll_result=(randint(the_lowest_possible_roll, the_number_of_sides_on_a_die)) print("reroll %s" %roll_result) else:set_of_dice_rolls.append(roll_result) for roll_results in range(len(set_of_dice_rolls)): set_of_dice_rolls_adjusted.append(set_of_dice_rolls[roll_results]) print("\n////Break////\n%s\n%s\n////Break////\n" % (set_of_dice_rolls, set_of_dice_rolls_adjusted)) if (number_of_lowest_rolls_to_drop_in_a_set>0) or (number_of_highest_rolls_to_drop_in_a_set>0): if number_of_lowest_rolls_to_drop_in_a_set>0: drop_counter=0 drop_counter+=number_of_lowest_rolls_to_drop_in_a_set #print(set_of_dice_rolls_adjusted) #print(drop_counter) while drop_counter>0: set_of_dice_rolls_adjusted.remove(min(set_of_dice_rolls_adjusted)) #print(set_of_dice_rolls_adjusted) drop_counter-=1 #print(drop_counter) if number_of_highest_rolls_to_drop_in_a_set>0: drop_counter=0 drop_counter+=number_of_highest_rolls_to_drop_in_a_set #print(set_of_dice_rolls_adjusted) #print(drop_counter) while drop_counter>0: set_of_dice_rolls_adjusted.remove(max(set_of_dice_rolls_adjusted)) #print(set_of_dice_rolls_adjusted) drop_counter-=1 #print(drop_counter) print("\n////Break////\n%s\n%s\n////Break////\n" % (set_of_dice_rolls, set_of_dice_rolls_adjusted)) return roll_set_of_dice() '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
import theano.sandbox.cuda.basic_ops as sbcuda import numpy as np import load_data import realtime_augmentation as ra import time import sys import json from custom_for_keras import input_generator from datetime import datetime, timedelta from keras.optimizers import Adam from custom_keras_model_x_cat_x_maxout import kaggle_x_cat_x_maxout\ as kaggle_winsol start_time = time.time() copy_to_ram_beforehand = False debug = True predict = False # not implemented continueAnalysis = True saveAtEveryValidation = True import_conv_weights = False get_winsol_weights = False # only relevant if not continued and not gets winsol weights, see http://arxiv.org/abs/1511.06422 for # describtion # for this to work, the batch size has to be something like 128, 256, 512, # ... reason not found DO_LSUV_INIT = True BATCH_SIZE = 256 # keep in mind NUM_INPUT_FEATURES = 3 MOMENTUM = 0.9 WEIGHT_DECAY = 0.0 EPOCHS = 200 VALIDATE_EVERY = 5 # 20 # 12 # 6 # 6 # 6 # 5 # NUM_EPOCHS_NONORM = 0. # this should be only a few, just .1 hopefully suffices. INCLUDE_FLIP = True TRAIN_LOSS_SF_PATH = "trainingNmbrs_started_adam_lsuv.txt" # TARGET_PATH = "predictions/final/try_convnet.csv" WEIGHTS_PATH='analysis/final/try_lsuv_adam_next.h5' CONV_WEIGHT_PATH = ""#analysis/final/try_started_with_3cat_noMaxout_next_next.h5" LEARNING_RATE_SCHEDULE = { 0: 0.005, # 2: 0.1, # 10: 0.05, # 40: 0.01, # 80: 0.005, 120: 0.001 # 500: 0.04, # 0: 0.01, # 1800: 0.004, # 2300: 0.0004, # 0: 0.08, # 50: 0.04, # 2000: 0.008, # 3200: 0.0008, # 4600: 0.0004, } if continueAnalysis or get_winsol_weights: LEARNING_RATE_SCHEDULE = { 0: 0.005, 120: 0.001, #40: 0.01, #80: 0.005 # 0: 0.0001, # 500: 0.002, # 800: 0.0004, # 3200: 0.0002, # 4600: 0.0001, } optimizer = None#Adam(lr=LEARNING_RATE_SCHEDULE[0]) input_sizes = [(69, 69), (69, 69)] PART_SIZE = 45 N_INPUT_VARIATION = 2 GEN_BUFFER_SIZE = 2 y_train = np.load("data/solutions_train.npy") ra.y_train = y_train # split training data into training + a small validation set ra.num_train = y_train.shape[0] # integer division, is defining validation size ra.num_valid = ra.num_train // 10 ra.num_train -= ra.num_valid # training num check for EV usage if ra.num_train != 55420: print "num_train = %s not %s" % (ra.num_train, 55420) ra.y_valid = ra.y_train[ra.num_train:] ra.y_train = ra.y_train[:ra.num_train] load_data.num_train = y_train.shape[0] load_data.train_ids = np.load("data/train_ids.npy") ra.load_data.num_train = load_data.num_train ra.load_data.train_ids = load_data.train_ids ra.valid_ids = load_data.train_ids[ra.num_train:] ra.train_ids = load_data.train_ids[:ra.num_train] train_ids = load_data.train_ids test_ids = load_data.test_ids num_train = ra.num_train num_test = len(test_ids) num_valid = ra.num_valid y_valid = ra.y_valid y_train = ra.y_train valid_ids = ra.valid_ids train_ids = ra.train_ids train_indices = np.arange(num_train) valid_indices = np.arange(num_train, num_train + num_valid) test_indices = np.arange(num_test) N_TRAIN = num_train N_VALID = num_valid print("The training sample contains %s , the validation sample contains %s images. \n" % (ra.num_train, ra.num_valid)) # train without normalisation for this fraction of the traininng sample, to get the weights in # the right 'zone'. # maybe put into class with open(TRAIN_LOSS_SF_PATH, 'a')as f: f.write('#now with ADAM optimisation') if continueAnalysis: f.write('#continuing from ') f.write(WEIGHTS_PATH) # f.write("#wRandFlip \n") f.write("#The training is running for %s epochs, each with %s images. The validation sample contains %s images. \n" % ( EPOCHS, N_TRAIN, ra.num_valid)) f.write("#validation is done every %s epochs\n" % VALIDATE_EVERY) f.write("the learning rate schedule is ") json.dump(LEARNING_RATE_SCHEDULE, f) f.write('\n') print 'initiate winsol class' winsol = kaggle_winsol(BATCH_SIZE=BATCH_SIZE, NUM_INPUT_FEATURES=NUM_INPUT_FEATURES, PART_SIZE=PART_SIZE, input_sizes=input_sizes, LEARNING_RATE_SCHEDULE=LEARNING_RATE_SCHEDULE, MOMENTUM=MOMENTUM, LOSS_PATH=TRAIN_LOSS_SF_PATH, WEIGHTS_PATH=WEIGHTS_PATH, include_flip=INCLUDE_FLIP) print "Build model" if debug: print("input size: %s x %s x %s x %s" % (input_sizes[0][0], input_sizes[0][1], NUM_INPUT_FEATURES, BATCH_SIZE)) winsol.init_models(optimizer=Adam(lr=LEARNING_RATE_SCHEDULE[0])) if debug: winsol.print_summary() print "Set up data loading" ds_transforms = [ ra.build_ds_transform(3.0, target_size=input_sizes[0]), ra.build_ds_transform( 3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45) ] num_input_representations = len(ds_transforms) augmentation_params = { 'zoom_range': (1.0 / 1.3, 1.3), 'rotation_range': (0, 360), 'shear_range': (0, 0), 'translation_range': (-4, 4), 'do_flip': True, } def create_data_gen(): augmented_data_gen = ra.realtime_augmented_data_gen( num_chunks=N_TRAIN / BATCH_SIZE * (EPOCHS + 1), chunk_size=BATCH_SIZE, augmentation_params=augmentation_params, ds_transforms=ds_transforms, target_sizes=input_sizes) post_augmented_data_gen = ra.post_augment_brightness_gen( augmented_data_gen, std=0.5) train_gen = load_data.buffered_gen_mp( post_augmented_data_gen, buffer_size=GEN_BUFFER_SIZE) input_gen = input_generator(train_gen) return input_gen # # may need doubling the generator,can be done with # itertools.tee(iterable, n=2) input_gen = create_data_gen() def create_valid_gen(): data_gen_valid = ra.realtime_fixed_augmented_data_gen( valid_indices, 'train', ds_transforms=ds_transforms, chunk_size=N_VALID, target_sizes=input_sizes) # load_data.buffered_gen_mp(data_gen_valid, buffer_size=GEN_BUFFER_SIZE) return data_gen_valid print "Preprocess validation data upfront" start_time_val1 = time.time() xs_valid = [[] for _ in xrange(num_input_representations)] for data, length in create_valid_gen(): for x_valid_list, x_chunk in zip(xs_valid, data): x_valid_list.append(x_chunk[:length]) xs_valid = [np.vstack(x_valid) for x_valid in xs_valid] # move the colour dimension up xs_valid = [x_valid.transpose(0, 3, 1, 2) for x_valid in xs_valid] validation_data = ( [xs_valid[0], xs_valid[1]], y_valid) t_val = (time.time() - start_time_val1) print " took %.2f seconds" % (t_val) if continueAnalysis: print "Load model weights" winsol.load_weights(path=WEIGHTS_PATH) winsol.WEIGHTS_PATH = ((WEIGHTS_PATH.split('.', 1)[0] + '_next.h5')) elif get_winsol_weights: print "import weights from run with original kaggle winner solution" winsol.load_weights() elif import_conv_weights: print 'Import convnet weights from training with geometric forms' winsol.load_conv_layers(path=CONV_WEIGHT_PATH) elif DO_LSUV_INIT: start_time_lsuv = time.time() print 'Starting LSUV initialisation' # TODO check influence on the first epoch of the data generation of this # .next() train_batch = input_gen.next()[0] if debug: print type(train_batch) print np.shape(train_batch) winsol.LSUV_init(train_batch) print " took %.2f seconds" % (time.time() - start_time_lsuv) if debug: print("Free GPU Mem before first step %s MiB " % (sbcuda.cuda_ndarray.cuda_ndarray.mem_info()[0] / 1024. / 1024.)) def save_exit(): print "\nsaving..." winsol.save() print "Done!" print ' run for %s' % timedelta(seconds=(time.time() - start_time)) exit() sys.exit(0) try: print '' print "losses without training on validation sample up front" evalHist = winsol.evaluate([xs_valid[0], xs_valid[1]], y_valid=y_valid) if debug: print("Free GPU Mem after validation check %s MiB " % (sbcuda.cuda_ndarray.cuda_ndarray.mem_info()[0] / 1024. / 1024.)) print '' print "Train %s epoch without norm" % NUM_EPOCHS_NONORM time1 = time.time() no_norm_events = int(NUM_EPOCHS_NONORM * N_TRAIN) if no_norm_events: hist = winsol.fit_gen(modelname='model_noNorm', data_generator=input_gen, validation=validation_data, samples_per_epoch=no_norm_events) if debug: print("\nFree GPU Mem before train loop %s MiB " % (sbcuda.cuda_ndarray.cuda_ndarray.mem_info()[0] / 1024. / 1024.)) print 'starting main training' if no_norm_events: eta = (time.time() - time1) / NUM_EPOCHS_NONORM * EPOCHS print 'rough ETA %s sec. -> finishes at %s' % ( int(eta), datetime.now() + timedelta(seconds=eta)) winsol.full_fit(data_gen=input_gen, validation=validation_data, samples_per_epoch=N_TRAIN, validate_every=VALIDATE_EVERY, nb_epochs=EPOCHS, data_gen_creator=create_data_gen) except KeyboardInterrupt: print "\ngot keyboard interuption" save_exit() except ValueError, e: print "\ngot value error, could be the end of the generator in the fit" print e save_exit() save_exit()
import os import signal import threading import docker import dockerpty from subprocess import Popen, STDOUT, PIPE, SubprocessError, CalledProcessError import spython from spython.main.parse.parsers import DockerParser from spython.main.parse.writers import SingularityWriter from popper import utils as pu from popper.cli import log as log from popper.runner import StepRunner as StepRunner from popper.utils import assert_executable_exists class HostRunner(StepRunner): """Run a step directly on the host machine.""" def __init__(self, **kw): super(HostRunner, self).__init__(**kw) self._spawned_pids = set() if self._config.reuse: log.warning("Reuse not supported for HostRunner.") def __enter__(self): return self def __exit__(self, exc_type, exc, traceback): pass def run(self, step): step_env = self._prepare_environment(step, env=dict(os.environ)) if not step.runs: raise AttributeError("Expecting 'runs' attribute in step.") cmd = step.runs + tuple(step.args) log.info(f"[{step.id}] {cmd}") if self._config.dry_run: return 0 log.debug(f"Environment:\n{pu.prettystr(step_env)}") pid, ecode, _ = HostRunner._exec_cmd( cmd, env=step_env, cwd=self._config.workspace_dir, pids=self._spawned_pids ) if pid != 0: self._spawned_pids.remove(pid) return ecode def stop_running_tasks(self): for pid in self._spawned_pids: log.info(f"Stopping proces {pid}") os.kill(pid, signal.SIGKILL) @staticmethod def _exec_cmd(cmd, env=None, cwd=os.getcwd(), pids=set(), logging=True): pid = 0 ecode = None try: with Popen( cmd, stdout=PIPE, stderr=STDOUT, universal_newlines=True, preexec_fn=os.setsid, env=env, cwd=cwd, ) as p: pid = p.pid pids.add(p.pid) log.debug("Reading process output") output = [] for line in iter(p.stdout.readline, ""): if logging: log.step_info(line.rstrip()) else: output.append(line.rstrip()) p.wait() ecode = p.poll() log.debug(f"Code returned by process: {ecode}") except SubprocessError as ex: output = "" if not ecode: ecode = 1 log.step_info(f"Command '{cmd[0]}' failed with: {ex}") except Exception as ex: output = "" ecode = 1 log.step_info(f"Command raised non-SubprocessError error: {ex}") return pid, ecode, "\n".join(output) class DockerRunner(StepRunner): """Runs steps in docker on the local machine.""" def __init__(self, init_docker_client=True, **kw): super(DockerRunner, self).__init__(**kw) self._spawned_containers = set() self._d = None if not init_docker_client: return try: self._d = docker.from_env() self._d.version() except Exception as e: log.debug(f"Docker error: {e}") log.fail("Unable to connect to the docker daemon.") log.debug(f"Docker info: {pu.prettystr(self._d.info())}") def __exit__(self, exc_type, exc_value, exc_traceback): if self._d: self._d.close() def run(self, step): """Execute the given step in docker.""" cid = pu.sanitized_name(step.id, self._config.wid) container = self._find_container(cid) if not container and self._config.reuse: log.fail( f"Cannot find an existing container for step '{step.id}' to be reused" ) if container and not self._config.reuse and not self._config.dry_run: container.remove(force=True) container = None if not container and not self._config.reuse: container = self._create_container(cid, step) log.info(f"[{step.id}] docker start") if self._config.dry_run: return 0 self._spawned_containers.add(container) try: container.start() if self._config.pty: dockerpty.start(self._d.api, container.id) else: cout = container.logs(stream=True) for line in cout: log.step_info(line.decode().rstrip()) e = container.wait()["StatusCode"] except Exception as exc: log.fail(exc) return e def stop_running_tasks(self): for c in self._spawned_containers: log.info(f"Stopping container {c.name}") c.stop() def _create_container(self, cid, step): build, _, img, tag, build_ctx_path = self._get_build_info(step) if build: log.info(f"[{step.id}] docker build {img}:{tag} {build_ctx_path}") if not self._config.dry_run: streamer = self._d.api.build( decode=True, path=build_ctx_path, tag=f"{img}:{tag}", rm=True, ) for chunk in streamer: if self._config.quiet: continue if "stream" in chunk: lines = [line for line in chunk["stream"].splitlines() if line] for line in lines: log.step_info(line.strip()) elif not self._config.skip_pull and not step.skip_pull: log.info(f"[{step.id}] docker pull {img}:{tag}") if not self._config.dry_run: streamer = self._d.api.pull(repository=f"{img}:{tag}", decode=True,) for chunk in streamer.splitlines(): if self._config.quiet: continue chunk = chunk.strip() if chunk: import json chunk = json.loads(chunk) if "id" in chunk: log.step_info(chunk["id"] + ": " + chunk["status"]) else: log.step_info(chunk["status"]) if self._config.dry_run: return container_args = self._get_container_kwargs(step, f"{img}:{tag}", cid) if "volumes" not in container_args: container_args["volumes"] = [] else: container_args["volumes"] = list(container_args["volumes"]) container_args["volumes"].append("/var/run/docker.sock:/var/run/docker.sock") log.debug(f"Container args: {container_args}") msg = f"[{step.id}] docker create name={cid}" msg += f' image={container_args["image"]}' if container_args["entrypoint"]: msg += f' entrypoint={container_args["entrypoint"]}' if container_args["command"]: msg += f' command={container_args["command"]}' log.info(msg) container = self._d.containers.create(**container_args) return container def _find_container(self, cid): """Check whether the container exists.""" containers = self._d.containers.list(all=True, filters={"name": cid}) filtered_containers = [c for c in containers if c.name == cid] if len(filtered_containers): return filtered_containers[0] return None class PodmanRunner(StepRunner): """Runs steps in podman on the local machine.""" def __init__(self, init_podman_client=True, **kw): super(PodmanRunner, self).__init__(**kw) self._spawned_containers = set() if not init_podman_client: return podman_executables = ["podman"] for exe in podman_executables: assert_executable_exists(exe) try: _, _, self._p_info = HostRunner._exec_cmd(["podman", "info"], logging=False) self._p_version = HostRunner._exec_cmd(["podman", "version"], logging=False) except Exception as e: log.debug(f"Podman error: {e}") log.fail("Unable to connect to podman, is it installed?") log.debug(f"Podman info: {pu.prettystr(self._p_info)}") def run(self, step): """Executes the given step in podman.""" cid = pu.sanitized_name(step.id, self._config.wid) container = self._find_container(cid) if not container and self._config.reuse: log.fail( f"Cannot find an existing container for step '{step.id}' to be reused" ) if container and not self._config.reuse and not self._config.dry_run: cmd = ["podman", "rm", "-f", container] HostRunner._exec_cmd(cmd, logging=False) container = None if not container and not self._config.reuse: container = self._create_container(cid, step) log.info(f"[{step.id}] podman start") if self._config.dry_run: return 0 self._spawned_containers.add(container) cmd = ["podman", "start", "-a", container] _, e, _ = HostRunner._exec_cmd(cmd) return e def stop_running_tasks(self): """Stop containers started by Popper.""" for c in self._spawned_containers: log.info(f"Stopping container {c}") _, ecode, _ = HostRunner._exec_cmd(["podman", "stop", c], logging=False) if ecode != 0: log.warning(f"Failed to stop the {c} container") def _find_container(self, cid): """Checks whether the container exists.""" cmd = ["podman", "inspect", "-f", "{{.Id}}", cid] _, ecode, containers = HostRunner._exec_cmd(cmd, logging=False) if ecode == 125: return None if ecode != 0: log.fail(f"podman inspect fail: {containers}") return containers.strip() def _create_container(self, cid, step): build, _, img, tag, build_ctx_path = self._get_build_info(step) if build: log.info(f"[{step.id}] podman build {img}:{tag} {build_ctx_path}") if not self._config.dry_run: cmd = [ "podman", "build", "--tag", f"{img}:{tag}", "--rm", "--file", build_ctx_path, ] HostRunner._exec_cmd(cmd) elif not self._config.skip_pull and not step.skip_pull: log.info(f"[{step.id}] podman pull {img}:{tag}") if not self._config.dry_run: cmd = ["podman", "pull", f"{img}:{tag}"] HostRunner._exec_cmd(cmd, logging=False) if self._config.dry_run: return container_args = self._get_container_kwargs(step, f"{img}:{tag}", cid) log.debug(f"Container args: {container_args}") msg = [f"{step.id}", "podman", "create", f"name={cid}"] msg.append(f"image={container_args.get('image')}") msg.append(f"entrypoint={container_args.get('entrypoint')}" or "") msg.append(f"command={container_args.get('command')}" or "") log.info(msg) cmd = ["podman", "create"] cmd.extend(["--name", container_args.get("name") or ""]) cmd.extend(["-v", container_args.get("volumes")[0] or ""]) env = container_args.get("environment") if env: for i, j in env.items(): cmd.extend(["-e", f"{i}={j}"]) cmd.extend(["-d" if container_args.get("detach") else ""]) cmd.extend(["-w", container_args.get("working_dir")]) h = container_args.get("hostname", None) if h: cmd.extend(["-h", h]) domain_name = container_args.get("domainname", None) if domain_name: cmd.extend(["--domainname", domain_name]) tty = container_args.get("tty", None) if tty: cmd.extend(["-t", tty]) entrypoint = container_args.get("entrypoint") if entrypoint: cmd.extend(["--entrypoint", entrypoint[0]]) entrypoint_rmd = entrypoint[1:] cmd.append(container_args.get("image")) if entrypoint: for i in entrypoint_rmd: cmd.extend([i or ""]) for i in container_args["command"]: cmd.extend([i or ""]) _, ecode, container = HostRunner._exec_cmd(cmd, logging=False) if ecode != 0: return None container = container.rsplit() if len(container) == 0: return None return container[-1] class SingularityRunner(StepRunner): """Runs steps in singularity on the local machine.""" lock = threading.Lock() def __init__(self, init_spython_client=True, **kw): super(SingularityRunner, self).__init__(**kw) self._spawned_containers = set() self._s = None if SingularityRunner._in_docker(): log.fail( ( "You seem to be running Popper in a Docker container.\n" "Singularity cannot be executed this way.\n" "Either run Popper without Singularity or install Popper " "through PIP.\n" "Instructions are available here:\n" "https://github.com/getpopper/popper/" "blob/master/docs/installation.md" ) ) if self._config.reuse: log.fail("Reuse not supported for SingularityRunner.") if not init_spython_client: return singularity_executables = ["singularity"] for exe in singularity_executables: assert_executable_exists(exe) self._s = spython.main.Client self._s.quiet = True def run(self, step): self._setup_singularity_cache() cid = pu.sanitized_name(step.id, self._config.wid) + ".sif" self._container = os.path.join(self._singularity_cache, cid) exists = os.path.exists(self._container) if exists and not self._config.dry_run and not self._config.skip_pull: os.remove(self._container) self._create_container(step, cid) ecode = self._singularity_start(step, cid) return ecode @staticmethod def _convert(dockerfile, singularityfile): parser = DockerParser(dockerfile) for p in parser.recipe.files: p[0] = p[0].strip('"') p[1] = p[1].strip('"') if os.path.isdir(p[0]): p[0] += "/." writer = SingularityWriter(parser.recipe) recipe = writer.convert() with open(singularityfile, "w") as sf: sf.write(recipe) return singularityfile @staticmethod def _get_recipe_file(build_ctx_path, cid): dockerfile = os.path.join(build_ctx_path, "Dockerfile") singularityfile = os.path.join( build_ctx_path, "Singularity.{}".format(cid[:-4]) ) if os.path.isfile(dockerfile): return SingularityRunner._convert(dockerfile, singularityfile) else: log.fail("No Dockerfile was found.") @staticmethod def _in_docker(): """ Returns TRUE if we are being executed in a Docker container. """ if os.path.isfile("/proc/1/cgroup"): with open("/proc/1/cgroup", "r") as f: return "docker" in f.read() or "lxc" in f.read() def _build_from_recipe(self, build_ctx_path, build_dest, cid): SingularityRunner.lock.acquire() pwd = os.getcwd() os.chdir(build_ctx_path) recipefile = SingularityRunner._get_recipe_file(build_ctx_path, cid) self._s.build( recipe=recipefile, image=cid, build_folder=build_dest, force=True, quiet=self._config.quiet, ) os.chdir(pwd) SingularityRunner.lock.release() def _setup_singularity_cache(self): self._singularity_cache = os.path.join( self._config.cache_dir, "singularity", self._config.wid ) os.makedirs(self._singularity_cache, exist_ok=True) def _get_container_options(self): container_args = { "userns": True, "pwd": "/workspace", "bind": [f"{self._config.workspace_dir}:/workspace"], } self._update_with_engine_config(container_args) options = [] for k, v in container_args.items(): if isinstance(v, list): for item in v: options.append(pu.key_value_to_flag(k, item)) else: options.append(pu.key_value_to_flag(k, v)) options = " ".join(options).split(" ") log.debug(f"container options: {options}\n") return options def _create_container(self, step, cid): build, image, _, _, build_ctx_path = self._get_build_info(step) if "shub://" in step.uses or "library://" in step.uses: build = False image = step.uses build_ctx_path = None if build: log.info(f"[{step.id}] singularity build {cid} {build_ctx_path}") if not self._config.dry_run: self._build_from_recipe(build_ctx_path, self._singularity_cache, cid) elif not self._config.skip_pull and not step.skip_pull: log.info(f"[{step.id}] singularity pull {cid} {image}") if not self._config.dry_run: self._s.pull(image=image, name=cid, pull_folder=self._singularity_cache) def _singularity_start(self, step, cid): env = self._prepare_environment(step) # set the environment variables for k, v in env.items(): os.environ[k] = str(v) args = list(step.args) runs = list(step.runs) ecode = None if runs: info = f"[{step.id}] singularity exec {cid} {runs}" commands = runs start_fn = self._s.execute else: info = f"[{step.id}] singularity run {cid} {args}" commands = args start_fn = self._s.run log.info(info) if self._config.dry_run: return 0 options = self._get_container_options() output = start_fn(self._container, commands, stream=True, options=options) try: for line in output: log.step_info(line.strip("\n")) ecode = 0 except CalledProcessError as ex: ecode = ex.returncode return ecode def stop_running_tasks(self): pass
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ApplicationSecurityGroupsOperations(object): """ApplicationSecurityGroupsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_11_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _delete_initial( self, resource_group_name, # type: str application_security_group_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationSecurityGroupName': self._serialize.url("application_security_group_name", application_security_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationSecurityGroups/{applicationSecurityGroupName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str application_security_group_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified application security group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param application_security_group_name: The name of the application security group. :type application_security_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, application_security_group_name=application_security_group_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationSecurityGroupName': self._serialize.url("application_security_group_name", application_security_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationSecurityGroups/{applicationSecurityGroupName}'} # type: ignore def get( self, resource_group_name, # type: str application_security_group_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.ApplicationSecurityGroup" """Gets information about the specified application security group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param application_security_group_name: The name of the application security group. :type application_security_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ApplicationSecurityGroup, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_11_01.models.ApplicationSecurityGroup :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationSecurityGroup"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationSecurityGroupName': self._serialize.url("application_security_group_name", application_security_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ApplicationSecurityGroup', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationSecurityGroups/{applicationSecurityGroupName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str application_security_group_name, # type: str parameters, # type: "_models.ApplicationSecurityGroup" **kwargs # type: Any ): # type: (...) -> "_models.ApplicationSecurityGroup" cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationSecurityGroup"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationSecurityGroupName': self._serialize.url("application_security_group_name", application_security_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ApplicationSecurityGroup') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ApplicationSecurityGroup', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ApplicationSecurityGroup', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationSecurityGroups/{applicationSecurityGroupName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str application_security_group_name, # type: str parameters, # type: "_models.ApplicationSecurityGroup" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ApplicationSecurityGroup"] """Creates or updates an application security group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param application_security_group_name: The name of the application security group. :type application_security_group_name: str :param parameters: Parameters supplied to the create or update ApplicationSecurityGroup operation. :type parameters: ~azure.mgmt.network.v2018_11_01.models.ApplicationSecurityGroup :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ApplicationSecurityGroup or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2018_11_01.models.ApplicationSecurityGroup] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationSecurityGroup"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, application_security_group_name=application_security_group_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ApplicationSecurityGroup', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationSecurityGroupName': self._serialize.url("application_security_group_name", application_security_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationSecurityGroups/{applicationSecurityGroupName}'} # type: ignore def _update_tags_initial( self, resource_group_name, # type: str application_security_group_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> "_models.ApplicationSecurityGroup" cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationSecurityGroup"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_tags_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationSecurityGroupName': self._serialize.url("application_security_group_name", application_security_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ApplicationSecurityGroup', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_tags_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationSecurityGroups/{applicationSecurityGroupName}'} # type: ignore def begin_update_tags( self, resource_group_name, # type: str application_security_group_name, # type: str parameters, # type: "_models.TagsObject" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.ApplicationSecurityGroup"] """Updates an application security group's tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param application_security_group_name: The name of the application security group. :type application_security_group_name: str :param parameters: Parameters supplied to update application security group tags. :type parameters: ~azure.mgmt.network.v2018_11_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ApplicationSecurityGroup or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2018_11_01.models.ApplicationSecurityGroup] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationSecurityGroup"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_tags_initial( resource_group_name=resource_group_name, application_security_group_name=application_security_group_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ApplicationSecurityGroup', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'applicationSecurityGroupName': self._serialize.url("application_security_group_name", application_security_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationSecurityGroups/{applicationSecurityGroupName}'} # type: ignore def list_all( self, **kwargs # type: Any ): # type: (...) -> Iterable["_models.ApplicationSecurityGroupListResult"] """Gets all application security groups in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ApplicationSecurityGroupListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_11_01.models.ApplicationSecurityGroupListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationSecurityGroupListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ApplicationSecurityGroupListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/applicationSecurityGroups'} # type: ignore def list( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ApplicationSecurityGroupListResult"] """Gets all the application security groups in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ApplicationSecurityGroupListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_11_01.models.ApplicationSecurityGroupListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ApplicationSecurityGroupListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-11-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ApplicationSecurityGroupListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/applicationSecurityGroups'} # type: ignore
from django.test import TestCase from django.core.files import File from django.core.files.uploadedfile import SimpleUploadedFile from django.conf import settings import os.path from validatedfile.fields import FileQuota from testing.models import TestModel, TestModelNoValidate, TestContainer, TestElement from testing.forms import TestModelForm, TestModelNoValidateForm, TestElementForm class ValidatedFileFieldTest(TestCase): SAMPLE_FILES_PATH = 'testing/sample_files' def test_create_empty_instance(self): instance = TestModel.objects.create() def test_create_instance_with_file(self): instance = TestModel.objects.create( the_file = File(self._get_sample_file('image2k.png'), 'the_file.png') ) self._check_file_url(instance.the_file, 'the_file.png') instance.the_file.delete() instance.delete() def test_form_ok(self): form = self._create_bound_test_model_form(form_class = TestModelForm, orig_filename = 'image2k.png', dest_filename = 'the_file.png', content_type = 'image/png') self.assertTrue(form.is_valid()) instance = form.save() self._check_file_url(instance.the_file, 'the_file.png') instance.the_file.delete() instance.delete() def test_form_invalid_size(self): form = self._create_bound_test_model_form(form_class = TestModelForm, orig_filename = 'image15k.png', dest_filename = 'the_file.png', content_type = 'image/png') self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 1) self.assertEqual(len(form.errors['the_file']), 1) self.assertEqual(form.errors['the_file'][0], u'Files of size greater than 10.0 KB are not allowed. Your file is 14.2 KB') def test_form_invalid_filetype(self): form = self._create_bound_test_model_form(form_class = TestModelForm, orig_filename = 'document1k.pdf', dest_filename = 'the_file.pdf', content_type = 'application/pdf') self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 1) self.assertEqual(len(form.errors['the_file']), 1) self.assertEqual(form.errors['the_file'][0], u'Files of type application/pdf are not supported.') def test_form_invalid_filetype_and_size(self): form = self._create_bound_test_model_form(form_class = TestModelForm, orig_filename = 'document15k.pdf', dest_filename = 'the_file.pdf', content_type = 'application/pdf') self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 1) self.assertEqual(len(form.errors['the_file']), 1) self.assertEqual(form.errors['the_file'][0], u'Files of type application/pdf are not supported.') def test_form_fake_filetype(self): form = self._create_bound_test_model_form(form_class = TestModelForm, orig_filename = 'document1k.pdf', dest_filename = 'the_file.pdf', content_type = 'image/png') self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 1) self.assertEqual(len(form.errors['the_file']), 1) self.assertEqual(form.errors['the_file'][0], u'Files of type application/pdf are not supported.') def test_form_no_validate(self): form = self._create_bound_test_model_form(form_class = TestModelNoValidateForm, orig_filename = 'document15k.pdf', dest_filename = 'the_file.pdf', content_type = 'application/pdf') self.assertTrue(form.is_valid()) instance = form.save() self._check_file_url(instance.the_file, 'the_file.pdf') instance.the_file.delete() instance.delete() def test_form_null_file(self): form = self._create_bound_test_model_form(form_class = TestModelNoValidateForm) self.assertTrue(form.is_valid()) instance = form.save() self.assertEqual(instance.the_file, None) instance.delete() def test_quota_empty(self): container = self._create_container(name = 'container1') quota = FileQuota() quota.update(container.test_elements.all(), 'the_file') self.assertEqual(quota.current_usage, 0) self.assertFalse(quota.exceeds()) container.delete() def test_quota_one_file(self): container = self._create_container(name = 'container') element = self._add_element(container = container, orig_filename = 'image2k.png', dest_filename = 'the_file.png') quota = FileQuota() quota.update(container.test_elements.all(), 'the_file') self.assertEqual(quota.current_usage, 2120) self.assertFalse(quota.exceeds()) element.the_file.delete() element.delete() container.delete() def test_quota_several_files_several_containers(self): container1 = self._create_container(name = 'container1') element1 = self._add_element(container = container1, orig_filename = 'image2k.png', dest_filename = 'the_file1.png') element2 = self._add_element(container = container1, orig_filename = 'image15k.png', dest_filename = 'the_file2.png') container2 = self._create_container(name = 'container2') element3 = self._add_element(container = container2, orig_filename = 'document15k.pdf', dest_filename = 'the_file3.pdf') quota = FileQuota(max_usage = 20000) quota.update(container1.test_elements.all(), 'the_file') self.assertEqual(quota.current_usage, 16706) self.assertFalse(quota.exceeds()) element1.the_file.delete() element2.the_file.delete() element3.the_file.delete() element1.delete() element2.delete() element3.delete() container1.delete() container2.delete() def test_quota_exceeds(self): quota = FileQuota(max_usage = 1000) container = self._create_container(name = 'container1') quota.update(container.test_elements.all(), 'the_file') self.assertEqual(quota.current_usage, 0) self.assertFalse(quota.exceeds()) self.assertTrue(quota.exceeds(2120)) element = self._add_element(container = container, orig_filename = 'image2k.png', dest_filename = 'the_file.png') quota.update(container.test_elements.all(), 'the_file') self.assertEqual(quota.current_usage, 2120) self.assertTrue(quota.exceeds()) element.the_file.delete() element.delete() container.delete() def test_quota_near_limit(self): quota = FileQuota(max_usage = 6500) container = self._create_container(name = 'container1') quota.update(container.test_elements.all(), 'the_file') self.assertEqual(quota.current_usage, 0) self.assertFalse(quota.near_limit()) element1 = self._add_element(container = container, orig_filename = 'image2k.png', dest_filename = 'the_file.png') quota.update(container.test_elements.all(), 'the_file') self.assertEqual(quota.current_usage, 2120) self.assertFalse(quota.near_limit()) element2 = self._add_element(container = container, orig_filename = 'image2k.png', dest_filename = 'the_file.png') quota.update(container.test_elements.all(), 'the_file') self.assertEqual(quota.current_usage, 4240) self.assertFalse(quota.near_limit()) element3 = self._add_element(container = container, orig_filename = 'image2k.png', dest_filename = 'the_file.png') quota.update(container.test_elements.all(), 'the_file') self.assertEqual(quota.current_usage, 6360) self.assertTrue(quota.near_limit()) element1.the_file.delete() element2.the_file.delete() element3.the_file.delete() element1.delete() element2.delete() element3.delete() container.delete() def test_form_quota_check(self): container = self._create_container(name = 'container1') form1 = self._create_unbound_test_element_form(container = container) self.assertFalse(form1.exceeds_quota()) element = self._add_element(container = container, orig_filename = 'image15k.png', dest_filename = 'the_file.png') form2 = self._create_unbound_test_element_form(container = container) self.assertTrue(form2.exceeds_quota()) element.the_file.delete() element.delete() container.delete() def test_form_quota_ok(self): container = self._create_container(name = 'container1') form = self._create_bound_test_element_form(container = container, orig_filename = 'image2k.png', dest_filename = 'the_file.png', content_type = 'image/png') self.assertTrue(form.is_valid()) container.delete() def test_form_quota_exceeded(self): container = self._create_container(name = 'container1') element = self._add_element(container = container, orig_filename = 'image2k.png', dest_filename = 'the_file.png') form = self._create_bound_test_element_form(container = container, orig_filename = 'image15k.png', dest_filename = 'the_file.png', content_type = 'image/png') self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 1) self.assertEqual(len(form.errors['the_file']), 1) self.assertEqual(form.errors['the_file'][0], u'Please keep the total uploaded files under 9.8 KB. With this file, the total would be 16.3 KB.') element.the_file.delete() element.delete() container.delete() # Utilities def _get_sample_file(self, filename): path = os.path.join(self.SAMPLE_FILES_PATH, filename) return open(path) def _check_file_url(self, filefield, filename): url = os.path.join(settings.MEDIA_URL, filefield.field.upload_to, filename) self.assertEqual(filefield.url, url) def _get_file_url(self, filename): return os.path.join(MEDIA_ROOT, prefix, filename) def _create_bound_test_model_form(self, form_class, orig_filename = None, dest_filename = None, content_type = None): if orig_filename and dest_filename and content_type: uploaded_file = SimpleUploadedFile( name = dest_filename, content = self._get_sample_file(orig_filename).read(), content_type = content_type, ) files = {'the_file': uploaded_file} else: files = {} form = form_class(data = {}, files = files) return form def _create_container(self, name): return TestContainer.objects.create(name = name) def _add_element(self, container, orig_filename, dest_filename): return container.test_elements.create( the_file = File(self._get_sample_file(orig_filename), dest_filename) ) def _create_unbound_test_element_form(self, container): return TestElementForm(container = container) def _create_bound_test_element_form(self, container, orig_filename = None, dest_filename = None, content_type = None): if orig_filename and dest_filename and content_type: uploaded_file = SimpleUploadedFile( name = dest_filename, content = self._get_sample_file(orig_filename).read(), content_type = content_type, ) files = {'the_file': uploaded_file} else: files = {} form = TestElementForm(container = container, data = {}, files = files) return form
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Pipeline options validator. For internal use only; no backwards-compatibility guarantees. """ # pytype: skip-file import logging import re from apache_beam.internal import pickler from apache_beam.options.pipeline_options import DebugOptions from apache_beam.options.pipeline_options import GoogleCloudOptions from apache_beam.options.pipeline_options import PortableOptions from apache_beam.options.pipeline_options import SetupOptions from apache_beam.options.pipeline_options import StandardOptions from apache_beam.options.pipeline_options import TestOptions from apache_beam.options.pipeline_options import TypeOptions from apache_beam.options.pipeline_options import WorkerOptions _LOGGER = logging.getLogger(__name__) class PipelineOptionsValidator(object): """Validates PipelineOptions. Goes through a list of known PipelineOption subclassess and calls:: validate(validator) if one is implemented. Aggregates a list of validation errors from all and returns an aggregated list. """ # Validator will call validate on these subclasses of PipelineOptions OPTIONS = [ DebugOptions, GoogleCloudOptions, PortableOptions, SetupOptions, StandardOptions, TestOptions, TypeOptions, WorkerOptions ] # Mutually exclusive options for different types of portable environments. REQUIRED_ENVIRONMENT_OPTIONS = { 'DOCKER': [], 'PROCESS': ['process_command'], 'EXTERNAL': ['external_service_address'], 'LOOPBACK': [] } OPTIONAL_ENVIRONMENT_OPTIONS = { 'DOCKER': ['docker_container_image'], 'PROCESS': ['process_variables'], 'EXTERNAL': [], 'LOOPBACK': [] } # Possible validation errors. ERR_MISSING_OPTION = 'Missing required option: %s.' ERR_MISSING_GCS_PATH = 'Missing GCS path option: %s.' ERR_INVALID_GCS_PATH = 'Invalid GCS path (%s), given for the option: %s.' ERR_INVALID_GCS_BUCKET = ( 'Invalid GCS bucket (%s), given for the option: %s. See ' 'https://developers.google.com/storage/docs/bucketnaming ' 'for more details.') ERR_INVALID_GCS_OBJECT = 'Invalid GCS object (%s), given for the option: %s.' ERR_INVALID_JOB_NAME = ( 'Invalid job_name (%s); the name must consist of only the characters ' '[-a-z0-9], starting with a letter and ending with a letter or number') ERR_INVALID_PROJECT_NUMBER = ( 'Invalid Project ID (%s). Please make sure you specified the Project ID, ' 'not project number.') ERR_INVALID_PROJECT_ID = ( 'Invalid Project ID (%s). Please make sure you specified the Project ID, ' 'not project description.') ERR_INVALID_NOT_POSITIVE = ( 'Invalid value (%s) for option: %s. Value needs ' 'to be positive.') ERR_INVALID_TEST_MATCHER_TYPE = ( 'Invalid value (%s) for option: %s. Please extend your matcher object ' 'from hamcrest.core.base_matcher.BaseMatcher.') ERR_INVALID_TEST_MATCHER_UNPICKLABLE = ( 'Invalid value (%s) for option: %s. Please make sure the test matcher ' 'is unpicklable.') ERR_INVALID_TRANSFORM_NAME_MAPPING = ( 'Invalid transform name mapping format. Please make sure the mapping is ' 'string key-value pairs. Invalid pair: (%s:%s)') ERR_INVALID_ENVIRONMENT = ( 'Option %s is not compatible with environment type %s.') ERR_ENVIRONMENT_CONFIG = ( 'Option environment_config is incompatible with option(s) %s.') ERR_MISSING_REQUIRED_ENVIRONMENT_OPTION = ( 'Option %s is required for environment type %s.') ERR_NUM_WORKERS_TOO_HIGH = ( 'num_workers (%s) cannot exceed max_num_workers (%s)') # GCS path specific patterns. GCS_URI = '(?P<SCHEME>[^:]+)://(?P<BUCKET>[^/]+)(/(?P<OBJECT>.*))?' GCS_BUCKET = '^[a-z0-9][-_a-z0-9.]+[a-z0-9]$' GCS_SCHEME = 'gs' # GoogleCloudOptions specific patterns. JOB_PATTERN = '[a-z]([-a-z0-9]*[a-z0-9])?' PROJECT_ID_PATTERN = '[a-z][-a-z0-9:.]+[a-z0-9]' PROJECT_NUMBER_PATTERN = '[0-9]*' ENDPOINT_PATTERN = r'https://[\S]*googleapis\.com[/]?' def __init__(self, options, runner): self.options = options self.runner = runner def validate(self): """Calls validate on subclassess and returns a list of errors. validate will call validate method on subclasses, accumulate the returned list of errors, and returns the aggregate list. Returns: Aggregate list of errors after all calling all possible validate methods. """ errors = [] for cls in self.OPTIONS: if 'validate' in cls.__dict__ and callable(cls.__dict__['validate']): errors.extend(self.options.view_as(cls).validate(self)) return errors def is_service_runner(self): """True if pipeline will execute on the Google Cloud Dataflow service.""" is_service_runner = ( self.runner is not None and type(self.runner).__name__ in ['DataflowRunner', 'TestDataflowRunner']) dataflow_endpoint = ( self.options.view_as(GoogleCloudOptions).dataflow_endpoint) is_service_endpoint = ( dataflow_endpoint is not None and self.is_full_string_match(self.ENDPOINT_PATTERN, dataflow_endpoint)) return is_service_runner and is_service_endpoint def is_full_string_match(self, pattern, string): """Returns True if the pattern matches the whole string.""" pattern = '^%s$' % pattern return re.search(pattern, string) is not None def _validate_error(self, err, *args): return [err % args] def validate_gcs_path(self, view, arg_name): """Validates a GCS path against gs://bucket/object URI format.""" arg = getattr(view, arg_name, None) if arg is None: return self._validate_error(self.ERR_MISSING_GCS_PATH, arg_name) match = re.match(self.GCS_URI, arg, re.DOTALL) if match is None: return self._validate_error(self.ERR_INVALID_GCS_PATH, arg, arg_name) scheme = match.group('SCHEME') bucket = match.group('BUCKET') gcs_object = match.group('OBJECT') if ((scheme is None) or (scheme.lower() != self.GCS_SCHEME) or (bucket is None)): return self._validate_error(self.ERR_INVALID_GCS_PATH, arg, arg_name) if not self.is_full_string_match(self.GCS_BUCKET, bucket): return self._validate_error(self.ERR_INVALID_GCS_BUCKET, arg, arg_name) if gcs_object is None or '\n' in gcs_object or '\r' in gcs_object: return self._validate_error(self.ERR_INVALID_GCS_OBJECT, arg, arg_name) return [] def validate_cloud_options(self, view): """Validates job_name and project arguments.""" errors = [] if (view.job_name and not self.is_full_string_match(self.JOB_PATTERN, view.job_name)): errors.extend( self._validate_error(self.ERR_INVALID_JOB_NAME, view.job_name)) project = view.project if project is None: errors.extend(self._validate_error(self.ERR_MISSING_OPTION, 'project')) else: if self.is_full_string_match(self.PROJECT_NUMBER_PATTERN, project): errors.extend( self._validate_error(self.ERR_INVALID_PROJECT_NUMBER, project)) elif not self.is_full_string_match(self.PROJECT_ID_PATTERN, project): errors.extend( self._validate_error(self.ERR_INVALID_PROJECT_ID, project)) if view.update: if not view.job_name: errors.extend( self._validate_error( 'Existing job name must be provided when updating a pipeline.')) if view.transform_name_mapping: if not view.update or not self.options.view_as(StandardOptions).streaming: errors.append( 'Transform name mapping option is only useful when ' '--update and --streaming is specified') for _, (key, value) in enumerate(view.transform_name_mapping.items()): if not isinstance(key, str) or not isinstance(value, str): errors.extend( self._validate_error( self.ERR_INVALID_TRANSFORM_NAME_MAPPING, key, value)) break if view.region is None and self.is_service_runner(): default_region = self.runner.get_default_gcp_region() if default_region is None: errors.extend(self._validate_error(self.ERR_MISSING_OPTION, 'region')) else: view.region = default_region return errors def validate_sdk_container_image_options(self, view): errors = [] if view.sdk_container_image and view.worker_harness_container_image: # To be fully backwards-compatible, these options will be set to the same # value. Check that the values are different. if view.sdk_container_image != view.worker_harness_container_image: errors.extend( self._validate_error( 'Cannot use legacy flag --worker_harness_container_image along ' 'with view.sdk_container_image')) elif view.worker_harness_container_image: # Warn about legacy flag and set new flag to value of old flag. _LOGGER.warning( 'Setting sdk_container_image to value of legacy flag ' 'worker_harness_container_image.') view.sdk_container_image = view.worker_harness_container_image elif view.sdk_container_image: # Set legacy option to value of new option. view.worker_harness_container_image = view.sdk_container_image return errors def validate_num_workers(self, view): """Validates that Dataflow worker number is valid.""" errors = self.validate_optional_argument_positive(view, 'num_workers') errors.extend( self.validate_optional_argument_positive(view, 'max_num_workers')) num_workers = view.num_workers max_num_workers = view.max_num_workers if (num_workers is not None and max_num_workers is not None and num_workers > max_num_workers): errors.extend( self._validate_error( self.ERR_NUM_WORKERS_TOO_HIGH, num_workers, max_num_workers)) return errors def validate_worker_region_zone(self, view): """Validates Dataflow worker region and zone arguments are consistent.""" errors = [] if view.zone and (view.worker_region or view.worker_zone): errors.extend( self._validate_error( 'Cannot use deprecated flag --zone along with worker_region or ' 'worker_zone.')) if self.options.view_as(DebugOptions).lookup_experiment('worker_region')\ and (view.worker_region or view.worker_zone): errors.extend( self._validate_error( 'Cannot use deprecated experiment worker_region along with ' 'worker_region or worker_zone.')) if view.worker_region and view.worker_zone: errors.extend( self._validate_error( 'worker_region and worker_zone are mutually exclusive.')) if view.zone: _LOGGER.warning( 'Option --zone is deprecated. Please use --worker_zone instead.') view.worker_zone = view.zone view.zone = None return errors def validate_optional_argument_positive(self, view, arg_name): """Validates that an optional argument (if set) has a positive value.""" arg = getattr(view, arg_name, None) if arg is not None and int(arg) <= 0: return self._validate_error(self.ERR_INVALID_NOT_POSITIVE, arg, arg_name) return [] def validate_test_matcher(self, view, arg_name): """Validates that on_success_matcher argument if set. Validates that on_success_matcher is unpicklable and is instance of `hamcrest.core.base_matcher.BaseMatcher`. """ # This is a test only method and requires hamcrest from hamcrest.core.base_matcher import BaseMatcher pickled_matcher = view.on_success_matcher errors = [] try: matcher = pickler.loads(pickled_matcher) if not isinstance(matcher, BaseMatcher): errors.extend( self._validate_error( self.ERR_INVALID_TEST_MATCHER_TYPE, matcher, arg_name)) except: # pylint: disable=bare-except errors.extend( self._validate_error( self.ERR_INVALID_TEST_MATCHER_UNPICKLABLE, pickled_matcher, arg_name)) return errors def validate_environment_options(self, view): """Validates portable environment options.""" errors = [] actual_environment_type = ( view.environment_type.upper() if view.environment_type else None) for environment_type, required in self.REQUIRED_ENVIRONMENT_OPTIONS.items(): found_required_options = [ opt for opt in required if view.lookup_environment_option(opt) is not None ] found_optional_options = [ opt for opt in self.OPTIONAL_ENVIRONMENT_OPTIONS[environment_type] if view.lookup_environment_option(opt) is not None ] found_options = found_required_options + found_optional_options if environment_type == actual_environment_type: if view.environment_config: if found_options: errors.extend( self._validate_error( self.ERR_ENVIRONMENT_CONFIG, ', '.join(found_options))) else: missing_options = set(required).difference( set(found_required_options)) for opt in missing_options: errors.extend( self._validate_error( self.ERR_MISSING_REQUIRED_ENVIRONMENT_OPTION, opt, environment_type)) else: # Environment options classes are mutually exclusive. for opt in found_options: errors.extend( self._validate_error( self.ERR_INVALID_ENVIRONMENT, opt, actual_environment_type)) if actual_environment_type == 'LOOPBACK' and view.environment_config: errors.extend( self._validate_error( self.ERR_INVALID_ENVIRONMENT, 'environment_config', 'LOOPBACK')) return errors
import time import pytest import datetime import cronparse def test_input_cron(): """ Make sure we can send values to cron """ parser = cronparse.CronParse() with pytest.raises(TypeError): parser.set_cron(input_cron=1) with pytest.raises(ValueError): parser.set_cron(input_cron='invalid string') parser.set_cron(input_cron = '* * * * *') for x in parser.cron_parts.values(): assert x == '*' parser.set_cron(input_cron = '10 * * * *') assert parser.cron_parts['minute'] == '10' assert parser.cron_parts['hour'] == '*' parser.set_cron(input_cron = '*/10 * * * *') assert parser.cron_parts['minute'] == '*/10' assert parser.cron_parts['hour'] == '*' with pytest.raises(ValueError): parser.set_cron(input_cron='*/70 * * * *') with pytest.raises(ValueError): parser.set_cron(input_cron='* 24 * * *') def test_get_time(monkeypatch): """ Test time creation using fixed times. """ def fake_time(*args, **kwargs): return 1411410214.388395 monkeypatch.setattr(cronparse.time, 'time', fake_time) parser = cronparse.CronParse() result = parser.get_time() expected = datetime.datetime(year=2014, month=9, day=22, hour=11, minute=23, second=34, microsecond=388395) assert result == expected def test_get_day_of_week(monkeypatch): class fake_weekday(object): def weekday(self): return 6 parser = cronparse.CronParse() result = parser.get_day_of_week(date=fake_weekday()) assert result == 0 def test_validate_dt_part(): dt = datetime.datetime(year=2014, month=8, day=8, hour=8, minute=10) parser = cronparse.CronParse() parser.set_cron(input_cron='15 */2 8 * *') assert parser.validate_dt_part(dt=dt, component='hour') assert parser.validate_dt_part(dt=dt, component='day') assert parser.validate_dt_part(dt=dt, component='month') assert not parser.validate_dt_part(dt=dt, component='minute') def test_validate_dow(): dt = datetime.datetime(year=2014, month=10, day=3, hour=8, minute=10) parser = cronparse.CronParse() parser.set_cron(input_cron='* * * * 5') assert parser.validate_dow(dt=dt) parser.set_cron(input_cron='* * * * 4') assert not parser.validate_dow(dt=dt) def test_brute_next(): """ Can we just brute force this thing? """ dt = datetime.datetime(year=2014, month=8, day=8, hour=8, minute=8) parser = cronparse.CronParse() parser.set_cron(input_cron='* * * * *') assert parser.brute_next(now=dt) == dt parser.set_cron(input_cron='10 * * * *') assert parser.brute_next(now=dt) == datetime.datetime(year=2014, month=8, day=8, hour=8, minute=10) parser.set_cron(input_cron='* 10 * * *') assert parser.brute_next(now=dt) == datetime.datetime(year=2014, month=8, day=8, hour=10, minute=0) parser.set_cron(input_cron='5 * * * *') assert parser.brute_next(now=dt) == datetime.datetime(year=2014, month=8, day=8, hour=9, minute=5) parser.set_cron(input_cron='*/10 * * * *') assert parser.brute_next(now=dt) == datetime.datetime(year=2014, month=8, day=8, hour=8, minute=10) parser.set_cron(input_cron='5 */10 * * *') assert parser.brute_next(now=dt) == datetime.datetime(year=2014, month=8, day=8, hour=10, minute=5) parser.set_cron(input_cron='5 6 30 1 *') assert parser.brute_next(now=dt) == datetime.datetime(year=2015, month=1, day=30, hour=6, minute=5) parser.set_cron(input_cron='1 2 * * 3') assert parser.brute_next(now=dt) == datetime.datetime(year=2014, month=8, day=13, hour=2, minute=1) # Should use dow instead of day as that is closer parser.set_cron(input_cron='1 2 22 * 3') assert parser.brute_next(now=dt) == datetime.datetime(year=2014, month=8, day=13, hour=2, minute=1) # Lists parser.set_cron(input_cron='2,3,4,5 2 22 * 3') assert parser.brute_next(now=dt) == datetime.datetime(year=2014, month=8, day=13, hour=2, minute=2) # Range parser.set_cron(input_cron='2-5 2 22 * 3') assert parser.brute_next(now=dt) == datetime.datetime(year=2014, month=8, day=13, hour=2, minute=2) # Longest test I know of parser.set_cron(input_cron='59 14-23/23 29 2 *') start = time.time() result = parser.brute_next(now=dt) print 'Timing test took %f' % (time.time() - start) assert result == datetime.datetime(year=2016, month=2, day=29, hour=23, minute=59) def test_profile(): import cProfile, pstats parser = cronparse.CronParse() parser.set_cron(input_cron='1-59/59 14-23/23 29 2 *') def run_test(parser, n): for x in xrange(n): dt = datetime.datetime(year=2014, month=8, day=8, hour=8, minute=8) parser.brute_next(now=dt) cProfile.runctx("run_test(parser=parser, n=1000)", globals(), locals()) def deprecated_test_pick_minute(monkeypatch): now = datetime.datetime(year=2014, month=8, day=8, hour=8, minute=20) parser = cronparse.CronParse() # Should return right now parser.set_cron(input_cron='* * * * *') result = parser.pick_minute(now=now) assert result == now # Should return now parser.set_cron(input_cron = '20 * * * *') result = parser.pick_minute(now=now) assert result == now # Since the tenth minute has already passed, should go to the next hour parser.set_cron(input_cron = '10 * * * *') result = parser.pick_minute(now=now) assert result == datetime.datetime(year=2014, month=8, day=8, hour=9, minute=10) parser.set_cron(input_cron = '*/15 * * * *') result = parser.pick_minute(now=now) assert result == datetime.datetime(year=2014, month=8, day=8, hour=8, minute=30) def deprecated_test_pick_hour(): """ Grab an hour """ now = datetime.datetime(year=2014, month=8, day=8, hour=8, minute=20) parser = cronparse.CronParse() # Should return right now parser.set_cron(input_cron='* * * * *') result = parser.pick_hour(now=now) assert result == now # Should return right now parser.set_cron(input_cron='* 8 * * *') result = parser.pick_hour(now=now) assert result == now # Should return sometime tomorrow parser.set_cron(input_cron='* 7 * * *') result = parser.pick_hour(now=now) assert result == datetime.datetime(year=2014, month=8, day=9, hour=7, minute=0) # Should return next hour parser.set_cron(input_cron='* */2 * * *') result = parser.pick_hour(now=now) assert result == datetime.datetime(year=2014, month=8, day=8, hour=10, minute=0)
# # Copyright 2012 John Gerlock # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from elementtree.ElementTree import Element, SubElement from elementtree.ElementTree import dump, tostring, fromstring import requests class WebToolsRequest(): def __init__(self, user_id): self.user_id = user_id self.api_url = 'https://secure.shippingapis.com/ShippingAPI.dll' self.test_api_url = 'https://secure.shippingapis.com/ShippingAPITest.dll' self.address_fields = ('FirmName', 'Address1', 'Address2', 'City', 'State', 'Zip5', 'Zip4') self.verify_root_tag = 'AddressValidateRequest' self.zipcode_lookup_root_tag = 'ZipCodeLookupRequest' self.citystate_lookup_root_tag = 'CityStateLookupRequest' self.test_data = [ { 'address2':'6406 Ivy Lane', 'city':'Greenbelt', 'state':'MD' }, { 'address2':'8 Wildwood Drive', 'city':'Old Lyme', 'state':'CT', 'zip5':'06371' }] def build_request_xml(self, data, root_tag): root = Element(root_tag, USERID=self.user_id) for i, address in enumerate(data): address_element = SubElement(root, 'Address', ID=str(i)) for field in self.address_fields: SubElement( address_element, field).text = address.get(field.lower()) return tostring(root) def request(self, api_name, xml, test=False): if test: response = requests.get( self.test_api_url, params={'API': api_name, 'XML': xml}) else: response = requests.get( self.api_url, params={'API': api_name, 'XML': xml}) return response def verify(self, data): api_name = 'Verify' xml = self.build_request_xml(data, self.verify_root_tag) response = self.request(api_name, xml) return Response(response) def zipcode_lookup(self, data): api_name = 'ZipCodeLookup' xml = self.build_request_xml(data, self.zipcode_lookup_root_tag) response = self.request(api_name, xml) return Response(response) def citystate_lookup(self, data): api_name = 'CityStateLookup' xml = self.build_request_xml(data, 'CityStateLookupRequest') response = self.request(api_name, xml) return Response(response) def verify_test(self): api_name = 'Verify' xml = self.build_request_xml(self.test_data, self.verify_root_tag) response = self.request(api_name, xml) print response.content def zipcode_lookup_test(self): api_name = 'ZipCodeLookup' xml = self.build_request_xml( self.test_data, self.zipcode_lookup_root_tag) response = self.request(api_name, xml) print response.content def citystate_lookup_test(self): api_name = 'CityStateLookup' xml = self.build_request_xml( self.test_data, self.citystate_lookup_root_tag) response = self.request(api_name, xml) print response.content def make_all_test_requests(self): self.verify_test() self.zipcode_lookup_test() self.citystate_lookup_test() class Response(): def __init__(self, response): self.address_fields = ( 'FirmName', 'Address1', 'Address2', 'City', 'State', 'Zip5', 'Zip4') self.response = response self.et = self.response_to_et(self.response) self.check_et_errors(self.et) self.dict = self.build_address_dict(self.et) self.index = self.address_count def __iter__(self): return self def __getitem__(self, key): if self.dict.get(str(key)): return self.dict[str(key)] else: raise IndexError def next(self): if self.index == 0: raise StopIteration self.index = self.index - 1 return self.data[self.index] def dump(self): print self.response.status_code print self.response.content if self.et: dump(self.et) def check_respone_errors(self, response): if response.status_code is not 200: self.dump() raise Exception def response_to_et(self, response): return fromstring(response.content) def check_et_errors(self, et): if et.tag == 'Error': self.dump() raise Exception else: return et def build_address_dict(self, et): addresses = {} for address_element in et.getiterator('Address'): address = {} id = address_element.get('ID') address['id'] = id for key in self.address_fields: address[str(key).lower()] = address_element.findtext(key) addresses[id] = WebToolsAddress(address) return addresses @property def address_count(self): return len(self.et.getiterator('Address')) class WebToolsAddress(): def __init__(self, address): self.address = address def __str__(self): fields = ('firmname', 'address1', 'address2') add_string = '' for field in fields: if self.address[field]: add_string += '%s\n' % self.address[field] add_string += self.last_line return add_string @property def address(self): return self.address @property def address1(self): return self.address['address1'] @property def address2(self): return self.address['address2'] @property def city(self): return self.address['city'] @property def state(self): return self.address['state'] @property def zip4(self): return self.address['zip4'] @property def zip5(self): return self.address['zip5'] @property def address_lines(self): if self.address1: return '%s\n%s' % (self.address1, self.address2) else: return '%s' % self.address2 @property def zipcode(self): return '%s-%s' % (self.zip5, self.zip4) @property def citystate(self): return '%s, %s' % (self.city, self.state) @property def last_line(self): return '%s %s' % (self.citystate, self.zipcode)
import arrow from path import Path from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.sql.expression import func from sqlalchemy import Column, Integer, String, Text from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker import twittback import twittback.config class NoSuchId(Exception): def __init__(self, twitter_id): super().__init__(twitter_id) self.twitter_id = twitter_id Base = declarative_base() class Tweet(Base): __tablename__ = "tweets" twitter_id = Column(Integer, primary_key=True) text = Column(Text) timestamp = Column(Integer) def to_tweet(self): return twittback.Tweet( twitter_id=self.twitter_id, text=self.text, timestamp=self.timestamp ) @classmethod def from_(cls, tweet): return cls( twitter_id=tweet.twitter_id, text=tweet.text, timestamp=tweet.timestamp ) class _UserModel: screen_name = Column(String, primary_key=True) name = Column(Text) description = Column(Text) location = Column(Text) @classmethod def from_(cls, user): return cls( screen_name=user.screen_name, name=user.name, description=user.description, location=user.location, ) def to_user(self): return twittback.User( screen_name=self.screen_name, description=self.description, location=self.location, name=self.name, ) class User(Base, _UserModel): __tablename__ = "user" class Following(Base, _UserModel): __tablename__ = "following" class Followers(Base, _UserModel): __tablename__ = "followers" class Repository: def __init__(self, db_path): self.db_path = db_path connect_string = "sqlite:///" + db_path self.engine = create_engine(connect_string) session_maker = sessionmaker(bind=self.engine) self.session = session_maker() if self.db_path == ":memory:" or not self.db_path.exists(): self.init_db() def init_db(self): Base.metadata.create_all(self.engine) def query(self, *args, **kwargs): return self.session.query(*args, **kwargs) def add(self, *args, **kwargs): return self.session.add(*args, **kwargs) def commit(self): return self.session.commit() def add_tweets(self, tweets): for tweet in tweets: to_add = Tweet.from_(tweet) self.add(to_add) self.commit() def latest_tweet(self): latest_tweets = self.latest_tweets() try: latest_tweet = next(latest_tweets) return latest_tweet except StopIteration: return None def latest_tweets(self): query = self.query(Tweet).order_by(Tweet.twitter_id.desc())[0:10] for entry in query: yield entry.to_tweet() def all_tweets(self): query = self.query(Tweet).order_by(Tweet.twitter_id.asc()) for entry in query: yield entry.to_tweet() def num_tweets(self): return self.query(Tweet).count() def tweets_for_month(self, year, month_number): start_date = arrow.Arrow(year, month_number, 1) end_date = start_date.shift(months=+1) query = ( self.query(Tweet) .order_by(Tweet.twitter_id.asc()) .filter(start_date.timestamp < Tweet.timestamp) .filter(Tweet.timestamp < end_date.timestamp) ) for entry in query: yield entry.to_tweet() def date_range(self): start_row = self.query(func.min(Tweet.timestamp)).scalar() end_row = self.query(func.max(Tweet.timestamp)).scalar() return (start_row, end_row) def tweet_by_id(self, twitter_id): entry = self._tweet_entry_by_id(twitter_id) return entry.to_tweet() def set_text(self, twitter_id, text): entry = self._tweet_entry_by_id(twitter_id) entry.text = text self.commit() def search_tweet(self, pattern): full_pattern = "%" + pattern + "%" query = self.query(Tweet).filter(Tweet.text.ilike(full_pattern)) for entry in query: yield entry.to_tweet() def _tweet_entry_by_id(self, twitter_id): entry = self.query(Tweet).filter(Tweet.twitter_id == twitter_id).one_or_none() if not entry: raise NoSuchId(twitter_id) return entry def user(self): entry = self.query(User).one() return entry.to_user() def save_user(self, user): self.query(User).delete() entry = User.from_(user) entry.screen_name = user.screen_name entry.name = user.name entry.description = user.description entry.location = user.location self.add(entry) self.commit() def following(self): return self._get_related_users(Following) def save_following(self, following): return self._set_related_users(Following, following) def followers(self): return self._get_related_users(Followers) def save_followers(self, followers): return self._set_related_users(Followers, followers) def _get_related_users(self, userClass): for entry in self.query(userClass).all(): yield entry.to_user() def _set_related_users(self, userClass, users): self.query(userClass).delete() for user in users: self.add(userClass.from_(user)) self.commit() def get_repository(): config = twittback.config.read_config() db_path = Path(config["db"]["path"]) db_path.parent.makedirs_p() return Repository(db_path)
class SkipTest(Exception): pass class AssertRaisesContext: def __init__(self, exc): self.expected = exc def __enter__(self): return self def __exit__(self, exc_type, exc_value, tb): if exc_type is None: assert False, "%r not raised" % self.expected if issubclass(exc_type, self.expected): return True return False class TestCase: def fail(self, msg=''): assert False, msg def assertEqual(self, x, y, msg=''): if not msg: msg = "%r vs (expected) %r" % (x, y) assert x == y, msg def assertNotEqual(self, x, y, msg=''): if not msg: msg = "%r not expected to be equal %r" % (x, y) assert x != y, msg def assertAlmostEqual(self, x, y, places=None, msg='', delta=None): if x == y: return if delta is not None and places is not None: raise TypeError("specify delta or places not both") if delta is not None: if abs(x - y) <= delta: return if not msg: msg = '%r != %r within %r delta' % (x, y, delta) else: if places is None: places = 7 if round(abs(y-x), places) == 0: return if not msg: msg = '%r != %r within %r places' % (x, y, places) assert False, msg def assertNotAlmostEqual(self, x, y, places=None, msg='', delta=None): if delta is not None and places is not None: raise TypeError("specify delta or places not both") if delta is not None: if not (x == y) and abs(x - y) > delta: return if not msg: msg = '%r == %r within %r delta' % (x, y, delta) else: if places is None: places = 7 if not (x == y) and round(abs(y-x), places) != 0: return if not msg: msg = '%r == %r within %r places' % (x, y, places) assert False, msg def assertIs(self, x, y, msg=''): if not msg: msg = "%r is not %r" % (x, y) assert x is y, msg def assertIsNot(self, x, y, msg=''): if not msg: msg = "%r is %r" % (x, y) assert x is not y, msg def assertIsNone(self, x, msg=''): if not msg: msg = "%r is not None" % x assert x is None, msg def assertIsNotNone(self, x, msg=''): if not msg: msg = "%r is None" % x assert x is not None, msg def assertTrue(self, x, msg=''): if not msg: msg = "Expected %r to be True" % x assert x, msg def assertFalse(self, x, msg=''): if not msg: msg = "Expected %r to be False" % x assert not x, msg def assertIn(self, x, y, msg=''): if not msg: msg = "Expected %r to be in %r" % (x, y) assert x in y, msg def assertIsInstance(self, x, y, msg=''): assert isinstance(x, y), msg def assertRaises(self, exc, func=None, *args, **kwargs): if func is None: return AssertRaisesContext(exc) try: func(*args, **kwargs) assert False, "%r not raised" % exc except Exception as e: if isinstance(e, exc): return raise def skip(msg): def _decor(fun): # We just replace original fun with _inner def _inner(self): raise SkipTest(msg) return _inner return _decor def skipUnless(cond, msg): if cond: return lambda x: x return skip(msg) class TestSuite: def __init__(self): self.tests = [] def addTest(self, cls): self.tests.append(cls) class TestRunner: def run(self, suite): res = TestResult() for c in suite.tests: run_class(c, res) return res class TestResult: def __init__(self): self.errorsNum = 0 self.failuresNum = 0 self.skippedNum = 0 self.testsRun = 0 def wasSuccessful(self): return self.errorsNum == 0 and self.failuresNum == 0 # TODO: Uncompliant def run_class(c, test_result): o = c() set_up = getattr(o, "setUp", lambda: None) tear_down = getattr(o, "tearDown", lambda: None) for name in dir(o): if name.startswith("test"): print(name, end=' ...') m = getattr(o, name) try: set_up() test_result.testsRun += 1 m() tear_down() print(" ok") except SkipTest as e: print(" skipped:", e.args[0]) test_result.skippedNum += 1 def main(module="__main__"): def test_cases(m): for tn in dir(m): c = getattr(m, tn) if isinstance(c, object) and isinstance(c, type) and issubclass(c, TestCase): yield c m = __import__(module) suite = TestSuite() for c in test_cases(m): suite.addTest(c) runner = TestRunner() result = runner.run(suite) msg = "Ran %d tests" % result.testsRun if result.skippedNum > 0: msg += " (%d skipped)" % result.skippedNum print(msg)
""" Testing strategies for Hypothesis-based tests. """ import keyword import string from collections import OrderedDict from hypothesis import strategies as st import attr from .utils import make_class def gen_attr_names(): """ Generate names for attributes, 'a'...'z', then 'aa'...'zz'. ~702 different attribute names should be enough in practice. Some short strings (such as 'as') are keywords, so we skip them. """ lc = string.ascii_lowercase for c in lc: yield c for outer in lc: for inner in lc: res = outer + inner if keyword.iskeyword(res): continue yield outer + inner def maybe_underscore_prefix(source): """ A generator to sometimes prepend an underscore. """ to_underscore = False for val in source: yield val if not to_underscore else "_" + val to_underscore = not to_underscore def _create_hyp_class(attrs): """ A helper function for Hypothesis to generate attrs classes. """ return make_class("HypClass", dict(zip(gen_attr_names(), attrs))) def _create_hyp_nested_strategy(simple_class_strategy): """ Create a recursive attrs class. Given a strategy for building (simpler) classes, create and return a strategy for building classes that have as an attribute: either just the simpler class, a list of simpler classes, a tuple of simpler classes, an ordered dict or a dict mapping the string "cls" to a simpler class. """ # Use a tuple strategy to combine simple attributes and an attr class. def just_class(tup): combined_attrs = list(tup[0]) combined_attrs.append(attr.ib(default=attr.Factory(tup[1]))) return _create_hyp_class(combined_attrs) def list_of_class(tup): default = attr.Factory(lambda: [tup[1]()]) combined_attrs = list(tup[0]) combined_attrs.append(attr.ib(default=default)) return _create_hyp_class(combined_attrs) def tuple_of_class(tup): default = attr.Factory(lambda: (tup[1](),)) combined_attrs = list(tup[0]) combined_attrs.append(attr.ib(default=default)) return _create_hyp_class(combined_attrs) def dict_of_class(tup): default = attr.Factory(lambda: {"cls": tup[1]()}) combined_attrs = list(tup[0]) combined_attrs.append(attr.ib(default=default)) return _create_hyp_class(combined_attrs) def ordereddict_of_class(tup): default = attr.Factory(lambda: OrderedDict([("cls", tup[1]())])) combined_attrs = list(tup[0]) combined_attrs.append(attr.ib(default=default)) return _create_hyp_class(combined_attrs) # A strategy producing tuples of the form ([list of attributes], <given # class strategy>). attrs_and_classes = st.tuples(list_of_attrs, simple_class_strategy) return st.one_of( attrs_and_classes.map(just_class), attrs_and_classes.map(list_of_class), attrs_and_classes.map(tuple_of_class), attrs_and_classes.map(dict_of_class), attrs_and_classes.map(ordereddict_of_class), ) bare_attrs = st.builds(attr.ib, default=st.none()) int_attrs = st.integers().map(lambda i: attr.ib(default=i)) str_attrs = st.text().map(lambda s: attr.ib(default=s)) float_attrs = st.floats().map(lambda f: attr.ib(default=f)) dict_attrs = st.dictionaries(keys=st.text(), values=st.integers()).map( lambda d: attr.ib(default=d) ) simple_attrs_without_metadata = ( bare_attrs | int_attrs | str_attrs | float_attrs | dict_attrs ) @st.composite def simple_attrs_with_metadata(draw): """ Create a simple attribute with arbitrary metadata. """ c_attr = draw(simple_attrs) keys = st.booleans() | st.binary() | st.integers() | st.text() vals = st.booleans() | st.binary() | st.integers() | st.text() metadata = draw( st.dictionaries(keys=keys, values=vals, min_size=1, max_size=5) ) return attr.ib( default=c_attr._default, validator=c_attr._validator, repr=c_attr.repr, cmp=c_attr.cmp, hash=c_attr.hash, init=c_attr.init, metadata=metadata, type=None, converter=c_attr.converter, ) simple_attrs = simple_attrs_without_metadata | simple_attrs_with_metadata() # Python functions support up to 255 arguments. list_of_attrs = st.lists(simple_attrs, max_size=9) @st.composite def simple_classes( draw, slots=None, frozen=None, weakref_slot=None, private_attrs=None ): """ A strategy that generates classes with default non-attr attributes. For example, this strategy might generate a class such as: @attr.s(slots=True, frozen=True, weakref_slot=True) class HypClass: a = attr.ib(default=1) _b = attr.ib(default=None) c = attr.ib(default='text') _d = attr.ib(default=1.0) c = attr.ib(default={'t': 1}) By default, all combinations of slots, frozen, and weakref_slot classes will be generated. If `slots=True` is passed in, only slotted classes will be generated, and if `slots=False` is passed in, no slot classes will be generated. The same applies to `frozen` and `weakref_slot`. By default, some attributes will be private (i.e. prefixed with an underscore). If `private_attrs=True` is passed in, all attributes will be private, and if `private_attrs=False`, no attributes will be private. """ attrs = draw(list_of_attrs) frozen_flag = draw(st.booleans()) if frozen is None else frozen slots_flag = draw(st.booleans()) if slots is None else slots weakref_slot_flag = ( draw(st.booleans()) if weakref_slot is None else weakref_slot ) if private_attrs is None: attr_names = maybe_underscore_prefix(gen_attr_names()) elif private_attrs is True: attr_names = ("_" + n for n in gen_attr_names()) elif private_attrs is False: attr_names = gen_attr_names() cls_dict = dict(zip(attr_names, attrs)) post_init_flag = draw(st.booleans()) if post_init_flag: def post_init(self): pass cls_dict["__attrs_post_init__"] = post_init return make_class( "HypClass", cls_dict, slots=slots_flag, frozen=frozen_flag, weakref_slot=weakref_slot_flag, ) # st.recursive works by taking a base strategy (in this case, simple_classes) # and a special function. This function receives a strategy, and returns # another strategy (building on top of the base strategy). nested_classes = st.recursive( simple_classes(), _create_hyp_nested_strategy, max_leaves=10 )
from __future__ import print_function, division from sympy.core import S, sympify, Dummy, Mod from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_and from sympy.core.numbers import Integer, pi from sympy.core.relational import Eq from sympy.ntheory import sieve from math import sqrt as _sqrt from sympy.core.compatibility import reduce, range from sympy.core.cache import cacheit from sympy.polys.polytools import poly_from_expr from sympy.polys.polyerrors import PolificationFailed class CombinatorialFunction(Function): """Base class for combinatorial functions. """ def _eval_simplify(self, ratio, measure): from sympy.simplify.simplify import combsimp expr = combsimp(self) if measure(expr) <= ratio*measure(self): return expr return self ############################################################################### ######################## FACTORIAL and MULTI-FACTORIAL ######################## ############################################################################### class factorial(CombinatorialFunction): """Implementation of factorial function over nonnegative integers. By convention (consistent with the gamma function and the binomial coefficients), factorial of a negative integer is complex infinity. The factorial is very important in combinatorics where it gives the number of ways in which `n` objects can be permuted. It also arises in calculus, probability, number theory, etc. There is strict relation of factorial with gamma function. In fact n! = gamma(n+1) for nonnegative integers. Rewrite of this kind is very useful in case of combinatorial simplification. Computation of the factorial is done using two algorithms. For small arguments naive product is evaluated. However for bigger input algorithm Prime-Swing is used. It is the fastest algorithm known and computes n! via prime factorization of special class of numbers, called here the 'Swing Numbers'. Examples ======== >>> from sympy import Symbol, factorial, S >>> n = Symbol('n', integer=True) >>> factorial(0) 1 >>> factorial(7) 5040 >>> factorial(-2) zoo >>> factorial(n) factorial(n) >>> factorial(2*n) factorial(2*n) >>> factorial(S(1)/2) factorial(1/2) See Also ======== factorial2, RisingFactorial, FallingFactorial """ def fdiff(self, argindex=1): from sympy import gamma, polygamma if argindex == 1: return gamma(self.args[0] + 1)*polygamma(0, self.args[0] + 1) else: raise ArgumentIndexError(self, argindex) _small_swing = [ 1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395, 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075, 35102025, 5014575, 145422675, 9694845, 300540195, 300540195 ] @classmethod def _swing(cls, n): if n < 33: return cls._small_swing[n] else: N, primes = int(_sqrt(n)), [] for prime in sieve.primerange(3, N + 1): p, q = 1, n while True: q //= prime if q > 0: if q & 1 == 1: p *= prime else: break if p > 1: primes.append(p) for prime in sieve.primerange(N + 1, n//3 + 1): if (n // prime) & 1 == 1: primes.append(prime) L_product = R_product = 1 for prime in sieve.primerange(n//2 + 1, n + 1): L_product *= prime for prime in primes: R_product *= prime return L_product*R_product @classmethod def _recursive(cls, n): if n < 2: return 1 else: return (cls._recursive(n//2)**2)*cls._swing(n) @classmethod def eval(cls, n): n = sympify(n) if n.is_Number: if n is S.Zero: return S.One elif n is S.Infinity: return S.Infinity elif n.is_Integer: if n.is_negative: return S.ComplexInfinity else: n, result = n.p, 1 if n < 20: for i in range(2, n + 1): result *= i else: N, bits = n, 0 while N != 0: if N & 1 == 1: bits += 1 N = N >> 1 result = cls._recursive(n)*2**(n - bits) return Integer(result) def _eval_rewrite_as_gamma(self, n): from sympy import gamma return gamma(n + 1) def _eval_rewrite_as_Product(self, n): from sympy import Product if n.is_nonnegative and n.is_integer: i = Dummy('i', integer=True) return Product(i, (i, 1, n)) def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_positive(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_composite(self): x = self.args[0] if x.is_integer: return (x - 3).is_nonnegative def _eval_is_real(self): x = self.args[0] if x.is_nonnegative or x.is_noninteger: return True class MultiFactorial(CombinatorialFunction): pass class subfactorial(CombinatorialFunction): r"""The subfactorial counts the derangements of n items and is defined for non-negative integers as:: , | 1 for n = 0 !n = { 0 for n = 1 | (n - 1)*(!(n - 1) + !(n - 2)) for n > 1 ` It can also be written as int(round(n!/exp(1))) but the recursive definition with caching is implemented for this function. An interesting analytic expression is the following [2]_ .. math:: !x = \Gamma(x + 1, -1)/e which is valid for non-negative integers x. The above formula is not very useful incase of non-integers. :math:`\Gamma(x + 1, -1)` is single-valued only for integral arguments x, elsewhere on the positive real axis it has an infinite number of branches none of which are real. References ========== .. [1] http://en.wikipedia.org/wiki/Subfactorial .. [2] http://mathworld.wolfram.com/Subfactorial.html Examples ======== >>> from sympy import subfactorial >>> from sympy.abc import n >>> subfactorial(n + 1) subfactorial(n + 1) >>> subfactorial(5) 44 See Also ======== sympy.functions.combinatorial.factorials.factorial, sympy.utilities.iterables.generate_derangements, sympy.functions.special.gamma_functions.uppergamma """ @classmethod @cacheit def _eval(self, n): if not n: return S.One elif n == 1: return S.Zero return (n - 1)*(self._eval(n - 1) + self._eval(n - 2)) @classmethod def eval(cls, arg): if arg.is_Number: if arg.is_Integer and arg.is_nonnegative: return cls._eval(arg) elif arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity def _eval_is_even(self): if self.args[0].is_odd and self.args[0].is_nonnegative: return True def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_rewrite_as_uppergamma(self, arg): from sympy import uppergamma return uppergamma(arg + 1, -1)/S.Exp1 def _eval_is_nonnegative(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_odd(self): if self.args[0].is_even and self.args[0].is_nonnegative: return True class factorial2(CombinatorialFunction): """The double factorial n!!, not to be confused with (n!)! The double factorial is defined for nonnegative integers and for odd negative integers as:: , | n*(n - 2)*(n - 4)* ... * 1 for n positive odd n!! = { n*(n - 2)*(n - 4)* ... * 2 for n positive even | 1 for n = 0 | (n+2)!! / (n+2) for n negative odd ` References ========== .. [1] https://en.wikipedia.org/wiki/Double_factorial Examples ======== >>> from sympy import factorial2, var >>> var('n') n >>> factorial2(n + 1) factorial2(n + 1) >>> factorial2(5) 15 >>> factorial2(-1) 1 >>> factorial2(-5) 1/3 See Also ======== factorial, RisingFactorial, FallingFactorial """ @classmethod def eval(cls, arg): # TODO: extend this to complex numbers? if arg.is_Number: if not arg.is_Integer: raise ValueError("argument must be nonnegative integer or negative odd integer") # This implementation is faster than the recursive one # It also avoids "maximum recursion depth exceeded" runtime error if arg.is_nonnegative: if arg.is_even: k = arg / 2 return 2 ** k * factorial(k) return factorial(arg) / factorial2(arg - 1) if arg.is_odd: return arg * (S.NegativeOne) ** ((1 - arg) / 2) / factorial2(-arg) raise ValueError("argument must be nonnegative integer or negative odd integer") def _eval_is_even(self): # Double factorial is even for every positive even input n = self.args[0] if n.is_integer: if n.is_odd: return False if n.is_even: if n.is_positive: return True if n.is_zero: return False def _eval_is_integer(self): # Double factorial is an integer for every nonnegative input, and for # -1 and -3 n = self.args[0] if n.is_integer: if (n + 1).is_nonnegative: return True if n.is_odd: return (n + 3).is_nonnegative def _eval_is_odd(self): # Double factorial is odd for every odd input not smaller than -3, and # for 0 n = self.args[0] if n.is_odd: return (n + 3).is_nonnegative if n.is_even: if n.is_positive: return False if n.is_zero: return True def _eval_is_positive(self): # Double factorial is positive for every nonnegative input, and for # every odd negative input which is of the form -1-4k for an # nonnegative integer k n = self.args[0] if n.is_integer: if (n + 1).is_nonnegative: return True if n.is_odd: return ((n + 1) / 2).is_even def _eval_rewrite_as_gamma(self, n): from sympy import gamma, Piecewise, sqrt return 2**(n/2)*gamma(n/2 + 1) * Piecewise((1, Eq(Mod(n, 2), 0)), (sqrt(2/pi), Eq(Mod(n, 2), 1))) ############################################################################### ######################## RISING and FALLING FACTORIALS ######################## ############################################################################### class RisingFactorial(CombinatorialFunction): """Rising factorial (also called Pochhammer symbol) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by: rf(x, k) = x * (x + 1) * ... * (x + k - 1) where 'x' can be arbitrary expression and 'k' is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit http://mathworld.wolfram.com/RisingFactorial.html page. When x is a polynomial f of a single variable y of order >= 1, rf(x,k) = f(y) * f(y+1) * ... * f(x+k-1) as described in Peter Paule, "Greatest Factorial Factorization and Symbolic Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268, 1995. Examples ======== >>> from sympy import rf, symbols, factorial, ff, binomial >>> from sympy.abc import x >>> n, k = symbols('n k', integer=True) >>> rf(x, 0) 1 >>> rf(1, 5) 120 >>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x) True >>> rf(x**3, 2) Poly(x**6 + 3*x**5 + 3*x**4 + x**3, x, domain='ZZ') Rewrite >>> rf(x, k).rewrite(ff) FallingFactorial(k + x - 1, k) >>> rf(x, k).rewrite(binomial) binomial(k + x - 1, k)*factorial(k) >>> rf(n, k).rewrite(factorial) factorial(k + n - 1)/factorial(n - 1) See Also ======== factorial, factorial2, FallingFactorial References ========== .. [1] https://en.wikipedia.org/wiki/Pochhammer_symbol """ @classmethod def eval(cls, x, k): x = sympify(x) k = sympify(k) if x is S.NaN or k is S.NaN: return S.NaN elif x is S.One: return factorial(k) elif k.is_Integer: if k is S.Zero: return S.One else: if k.is_positive: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: if k.is_odd: return S.NegativeInfinity else: return S.Infinity else: try: F, opt = poly_from_expr(x) except PolificationFailed: return reduce(lambda r, i: r*(x + i), range(0, int(k)), 1) if len(opt.gens) > 1 or F.degree() <= 1: return reduce(lambda r, i: r*(x + i), range(0, int(k)), 1) else: v = opt.gens[0] return reduce(lambda r, i: r*(F.subs(v, v + i).expand()), range(0, int(k)), 1) else: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: return S.Infinity else: try: F, opt = poly_from_expr(x) except PolificationFailed: return 1/reduce(lambda r, i: r*(x - i), range(1, abs(int(k)) + 1), 1) if len(opt.gens) > 1 or F.degree() <= 1: return 1/reduce(lambda r, i: r*(x - i), range(1, abs(int(k)) + 1), 1) else: v = opt.gens[0] return 1/reduce(lambda r, i: r*(F.subs(v, v - i).expand()), range(1, abs(int(k)) + 1), 1) def _eval_rewrite_as_gamma(self, x, k): from sympy import gamma return gamma(x + k) / gamma(x) def _eval_rewrite_as_FallingFactorial(self, x, k): return FallingFactorial(x + k - 1, k) def _eval_rewrite_as_factorial(self, x, k): if x.is_integer and k.is_integer: return factorial(k + x - 1) / factorial(x - 1) def _eval_rewrite_as_binomial(self, x, k): if k.is_integer: return factorial(k) * binomial(x + k - 1, k) def _eval_is_integer(self): return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer, self.args[1].is_nonnegative)) def _sage_(self): import sage.all as sage return sage.rising_factorial(self.args[0]._sage_(), self.args[1]._sage_()) class FallingFactorial(CombinatorialFunction): """Falling factorial (related to rising factorial) is a double valued function arising in concrete mathematics, hypergeometric functions and series expansions. It is defined by ff(x, k) = x * (x-1) * ... * (x - k+1) where 'x' can be arbitrary expression and 'k' is an integer. For more information check "Concrete mathematics" by Graham, pp. 66 or visit http://mathworld.wolfram.com/FallingFactorial.html page. When x is a polynomial f of a single variable y of order >= 1, ff(x,k) = f(y) * f(y-1) * ... * f(x-k+1) as described in Peter Paule, "Greatest Factorial Factorization and Symbolic Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268, 1995. >>> from sympy import ff, factorial, rf, gamma, polygamma, binomial, symbols >>> from sympy.abc import x, k >>> n, m = symbols('n m', integer=True) >>> ff(x, 0) 1 >>> ff(5, 5) 120 >>> ff(x, 5) == x*(x-1)*(x-2)*(x-3)*(x-4) True >>> ff(x**2, 2) Poly(x**4 - 2*x**3 + x**2, x, domain='ZZ') >>> ff(n, n) factorial(n) Rewrite >>> ff(x, k).rewrite(gamma) (-1)**k*gamma(k - x)/gamma(-x) >>> ff(x, k).rewrite(rf) RisingFactorial(-k + x + 1, k) >>> ff(x, m).rewrite(binomial) binomial(x, m)*factorial(m) >>> ff(n, m).rewrite(factorial) factorial(n)/factorial(-m + n) See Also ======== factorial, factorial2, RisingFactorial References ========== .. [1] http://mathworld.wolfram.com/FallingFactorial.html """ @classmethod def eval(cls, x, k): x = sympify(x) k = sympify(k) if x is S.NaN or k is S.NaN: return S.NaN elif k.is_integer and x == k: return factorial(x) elif k.is_Integer: if k is S.Zero: return S.One else: if k.is_positive: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: if k.is_odd: return S.NegativeInfinity else: return S.Infinity else: try: F, opt = poly_from_expr(x) except PolificationFailed: return reduce(lambda r, i: r*(x - i), range(0, int(k)), 1) if len(opt.gens) > 1 or F.degree() <= 1: return reduce(lambda r, i: r*(x - i), range(0, int(k)), 1) else: v = opt.gens[0] return reduce(lambda r, i: r*(F.subs(v, v - i).expand()), range(0, int(k)), 1) else: if x is S.Infinity: return S.Infinity elif x is S.NegativeInfinity: return S.Infinity else: try: F, opt = poly_from_expr(x) except PolificationFailed: return 1/reduce(lambda r, i: r*(x + i), range(1, abs(int(k)) + 1), 1) if len(opt.gens) > 1 or F.degree() <= 1: return 1/reduce(lambda r, i: r*(x + i), range(1, abs(int(k)) + 1), 1) else: v = opt.gens[0] return 1/reduce(lambda r, i: r*(F.subs(v, v + i).expand()), range(1, abs(int(k)) + 1), 1) def _eval_rewrite_as_gamma(self, x, k): from sympy import gamma return (-1)**k*gamma(k - x) / gamma(-x) def _eval_rewrite_as_RisingFactorial(self, x, k): return rf(x - k + 1, k) def _eval_rewrite_as_binomial(self, x, k): if k.is_integer: return factorial(k) * binomial(x, k) def _eval_rewrite_as_factorial(self, x, k): if x.is_integer and k.is_integer: return factorial(x) / factorial(x - k) def _eval_is_integer(self): return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer, self.args[1].is_nonnegative)) def _sage_(self): import sage.all as sage return sage.falling_factorial(self.args[0]._sage_(), self.args[1]._sage_()) rf = RisingFactorial ff = FallingFactorial ############################################################################### ########################### BINOMIAL COEFFICIENTS ############################# ############################################################################### class binomial(CombinatorialFunction): """Implementation of the binomial coefficient. It can be defined in two ways depending on its desired interpretation: C(n,k) = n!/(k!(n-k)!) or C(n, k) = ff(n, k)/k! First, in a strict combinatorial sense it defines the number of ways we can choose 'k' elements from a set of 'n' elements. In this case both arguments are nonnegative integers and binomial is computed using an efficient algorithm based on prime factorization. The other definition is generalization for arbitrary 'n', however 'k' must also be nonnegative. This case is very useful when evaluating summations. For the sake of convenience for negative 'k' this function will return zero no matter what valued is the other argument. To expand the binomial when n is a symbol, use either expand_func() or expand(func=True). The former will keep the polynomial in factored form while the latter will expand the polynomial itself. See examples for details. Examples ======== >>> from sympy import Symbol, Rational, binomial, expand_func >>> n = Symbol('n', integer=True, positive=True) >>> binomial(15, 8) 6435 >>> binomial(n, -1) 0 Rows of Pascal's triangle can be generated with the binomial function: >>> for N in range(8): ... print([ binomial(N, i) for i in range(N + 1)]) ... [1] [1, 1] [1, 2, 1] [1, 3, 3, 1] [1, 4, 6, 4, 1] [1, 5, 10, 10, 5, 1] [1, 6, 15, 20, 15, 6, 1] [1, 7, 21, 35, 35, 21, 7, 1] As can a given diagonal, e.g. the 4th diagonal: >>> N = -4 >>> [ binomial(N, i) for i in range(1 - N)] [1, -4, 10, -20, 35] >>> binomial(Rational(5, 4), 3) -5/128 >>> binomial(Rational(-5, 4), 3) -195/128 >>> binomial(n, 3) binomial(n, 3) >>> binomial(n, 3).expand(func=True) n**3/6 - n**2/2 + n/3 >>> expand_func(binomial(n, 3)) n*(n - 2)*(n - 1)/6 """ def fdiff(self, argindex=1): from sympy import polygamma if argindex == 1: # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/ n, k = self.args return binomial(n, k)*(polygamma(0, n + 1) - \ polygamma(0, n - k + 1)) elif argindex == 2: # http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/ n, k = self.args return binomial(n, k)*(polygamma(0, n - k + 1) - \ polygamma(0, k + 1)) else: raise ArgumentIndexError(self, argindex) @classmethod def _eval(self, n, k): # n.is_Number and k.is_Integer and k != 1 and n != k if k.is_Integer: if n.is_Integer and n >= 0: n, k = int(n), int(k) if k > n: return S.Zero elif k > n // 2: k = n - k M, result = int(_sqrt(n)), 1 for prime in sieve.primerange(2, n + 1): if prime > n - k: result *= prime elif prime > n // 2: continue elif prime > M: if n % prime < k % prime: result *= prime else: N, K = n, k exp = a = 0 while N > 0: a = int((N % prime) < (K % prime + a)) N, K = N // prime, K // prime exp = a + exp if exp > 0: result *= prime**exp return Integer(result) else: d = result = n - k + 1 for i in range(2, k + 1): d += 1 result *= d result /= i return result @classmethod def eval(cls, n, k): n, k = map(sympify, (n, k)) d = n - k if d.is_zero or k.is_zero: return S.One elif d.is_zero is False: if (k - 1).is_zero: return n elif k.is_negative: return S.Zero elif n.is_integer and n.is_nonnegative and d.is_negative: return S.Zero if k.is_Integer and k > 0 and n.is_Number: return cls._eval(n, k) def _eval_expand_func(self, **hints): """ Function to expand binomial(n,k) when m is positive integer Also, n is self.args[0] and k is self.args[1] while using binomial(n, k) """ n = self.args[0] if n.is_Number: return binomial(*self.args) k = self.args[1] if k.is_Add and n in k.args: k = n - k if k.is_Integer: if k == S.Zero: return S.One elif k < 0: return S.Zero else: n = self.args[0] result = n - k + 1 for i in range(2, k + 1): result *= n - k + i result /= i return result else: return binomial(*self.args) def _eval_rewrite_as_factorial(self, n, k): return factorial(n)/(factorial(k)*factorial(n - k)) def _eval_rewrite_as_gamma(self, n, k): from sympy import gamma return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1)) def _eval_rewrite_as_FallingFactorial(self, n, k): if k.is_integer: return ff(n, k) / factorial(k) def _eval_is_integer(self): n, k = self.args if n.is_integer and k.is_integer: return True elif k.is_integer is False: return False
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 The version of the OpenAPI document: 1.113 Contact: api-support@onshape.zendesk.com Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 import six # noqa: F401 import nulltype # noqa: F401 from onshape_client.oas.model_utils import ( # noqa: F401 ModelComposed, ModelNormal, ModelSimple, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) try: from onshape_client.oas.models import btp_annotation231 except ImportError: btp_annotation231 = sys.modules["onshape_client.oas.models.btp_annotation231"] try: from onshape_client.oas.models import btp_space10 except ImportError: btp_space10 = sys.modules["onshape_client.oas.models.btp_space10"] try: from onshape_client.oas.models import btp_statement269 except ImportError: btp_statement269 = sys.modules["onshape_client.oas.models.btp_statement269"] try: from onshape_client.oas.models import btp_statement_loop277_all_of except ImportError: btp_statement_loop277_all_of = sys.modules[ "onshape_client.oas.models.btp_statement_loop277_all_of" ] try: from onshape_client.oas.models import btp_statement_loop_for3278 except ImportError: btp_statement_loop_for3278 = sys.modules[ "onshape_client.oas.models.btp_statement_loop_for3278" ] try: from onshape_client.oas.models import btp_statement_loop_for_in279 except ImportError: btp_statement_loop_for_in279 = sys.modules[ "onshape_client.oas.models.btp_statement_loop_for_in279" ] try: from onshape_client.oas.models import btp_statement_loop_while280 except ImportError: btp_statement_loop_while280 = sys.modules[ "onshape_client.oas.models.btp_statement_loop_while280" ] class BTPStatementLoop277(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ("documentation_type",): { "FUNCTION": "FUNCTION", "PREDICATE": "PREDICATE", "CONSTANT": "CONSTANT", "ENUM": "ENUM", "USER_TYPE": "USER_TYPE", "FEATURE_DEFINITION": "FEATURE_DEFINITION", "FILE_HEADER": "FILE_HEADER", "UNDOCUMENTABLE": "UNDOCUMENTABLE", "UNKNOWN": "UNKNOWN", }, } validations = {} additional_properties_type = None @staticmethod def openapi_types(): """ This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { "bt_type": (str,), # noqa: E501 "body": (btp_statement269.BTPStatement269,), # noqa: E501 "space_after_loop_type": (btp_space10.BTPSpace10,), # noqa: E501 "atomic": (bool,), # noqa: E501 "documentation_type": (str,), # noqa: E501 "end_source_location": (int,), # noqa: E501 "node_id": (str,), # noqa: E501 "short_descriptor": (str,), # noqa: E501 "space_after": (btp_space10.BTPSpace10,), # noqa: E501 "space_before": (btp_space10.BTPSpace10,), # noqa: E501 "space_default": (bool,), # noqa: E501 "start_source_location": (int,), # noqa: E501 "annotation": (btp_annotation231.BTPAnnotation231,), # noqa: E501 } @staticmethod def discriminator(): return { "bt_type": { "BTPStatementLoopFor3-278": btp_statement_loop_for3278.BTPStatementLoopFor3278, "BTPStatementLoopForIn-279": btp_statement_loop_for_in279.BTPStatementLoopForIn279, "BTPStatementLoopWhile-280": btp_statement_loop_while280.BTPStatementLoopWhile280, }, } attribute_map = { "bt_type": "btType", # noqa: E501 "body": "body", # noqa: E501 "space_after_loop_type": "spaceAfterLoopType", # noqa: E501 "atomic": "atomic", # noqa: E501 "documentation_type": "documentationType", # noqa: E501 "end_source_location": "endSourceLocation", # noqa: E501 "node_id": "nodeId", # noqa: E501 "short_descriptor": "shortDescriptor", # noqa: E501 "space_after": "spaceAfter", # noqa: E501 "space_before": "spaceBefore", # noqa: E501 "space_default": "spaceDefault", # noqa: E501 "start_source_location": "startSourceLocation", # noqa: E501 "annotation": "annotation", # noqa: E501 } required_properties = set( [ "_data_store", "_check_type", "_from_server", "_path_to_item", "_configuration", "_composed_instances", "_var_name_to_model_instances", "_additional_properties_model_instances", ] ) def __init__( self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs ): # noqa: E501 """btp_statement_loop277.BTPStatementLoop277 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. bt_type (str): [optional] # noqa: E501 body (btp_statement269.BTPStatement269): [optional] # noqa: E501 space_after_loop_type (btp_space10.BTPSpace10): [optional] # noqa: E501 atomic (bool): [optional] # noqa: E501 documentation_type (str): [optional] # noqa: E501 end_source_location (int): [optional] # noqa: E501 node_id (str): [optional] # noqa: E501 short_descriptor (str): [optional] # noqa: E501 space_after (btp_space10.BTPSpace10): [optional] # noqa: E501 space_before (btp_space10.BTPSpace10): [optional] # noqa: E501 space_default (bool): [optional] # noqa: E501 start_source_location (int): [optional] # noqa: E501 annotation (btp_annotation231.BTPAnnotation231): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration constant_args = { "_check_type": _check_type, "_path_to_item": _path_to_item, "_from_server": _from_server, "_configuration": _configuration, } required_args = {} # remove args whose value is Null because they are unset required_arg_names = list(required_args.keys()) for required_arg_name in required_arg_names: if required_args[required_arg_name] is nulltype.Null: del required_args[required_arg_name] model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info(constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for var_name, var_value in required_args.items(): setattr(self, var_name, var_value) for var_name, var_value in six.iteritems(kwargs): if ( var_name in unused_args and self._configuration is not None and self._configuration.discard_unknown_keys and not self._additional_properties_model_instances ): # discard variable. continue setattr(self, var_name, var_value) @staticmethod def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading return { "anyOf": [], "allOf": [ btp_statement269.BTPStatement269, btp_statement_loop277_all_of.BTPStatementLoop277AllOf, ], "oneOf": [], } @classmethod def get_discriminator_class(cls, from_server, data): """Returns the child class specified by the discriminator""" discriminator = cls.discriminator() discr_propertyname_py = list(discriminator.keys())[0] discr_propertyname_js = cls.attribute_map[discr_propertyname_py] if from_server: class_name = data[discr_propertyname_js] else: class_name = data[discr_propertyname_py] class_name_to_discr_class = discriminator[discr_propertyname_py] return class_name_to_discr_class.get(class_name)
#!/usr/bin/env python3 # Copyright (c) 2009-2019 The Bitcoin Core developers # Copyright (c) 2014-2019 The DigiByte Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the bumpfee RPC. Verifies that the bumpfee RPC creates replacement transactions successfully when its preconditions are met, and returns appropriate errors in other cases. This module consists of around a dozen individual test cases implemented in the top-level functions named as test_<test_case_description>. The test functions can be disabled or reordered if needed for debugging. If new test cases are added in the future, they should try to follow the same convention and not make assumptions about execution order. """ from decimal import Decimal from test_framework.blocktools import add_witness_commitment, create_block, create_coinbase, send_to_witness from test_framework.messages import BIP125_SEQUENCE_NUMBER, CTransaction from test_framework.test_framework import DigiByteTestFramework from test_framework.util import assert_equal, assert_greater_than, assert_raises_rpc_error, bytes_to_hex_str, connect_nodes_bi, hex_str_to_bytes, sync_mempools import io WALLET_PASSPHRASE = "test" WALLET_PASSPHRASE_TIMEOUT = 3600 class BumpFeeTest(DigiByteTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True self.extra_args = [[ "-deprecatedrpc=addwitnessaddress", "-walletrbf={}".format(i), ] for i in range(self.num_nodes)] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Encrypt wallet for test_locked_wallet_fails test self.nodes[1].node_encrypt_wallet(WALLET_PASSPHRASE) self.start_node(1) self.nodes[1].walletpassphrase(WALLET_PASSPHRASE, WALLET_PASSPHRASE_TIMEOUT) connect_nodes_bi(self.nodes, 0, 1) self.sync_all() peer_node, rbf_node = self.nodes rbf_node_address = rbf_node.getnewaddress() # fund rbf node with 10 coins of 0.001 dgb (100,000 satoshis) self.log.info("Mining blocks...") peer_node.generate(110) self.sync_all() for i in range(25): peer_node.sendtoaddress(rbf_node_address, 0.001) self.sync_all() peer_node.generate(1) self.sync_all() assert_equal(rbf_node.getbalance(), Decimal("0.025")) self.log.info("Running tests") dest_address = peer_node.getnewaddress() test_simple_bumpfee_succeeds(rbf_node, peer_node, dest_address) test_segwit_bumpfee_succeeds(rbf_node, dest_address) test_nonrbf_bumpfee_fails(peer_node, dest_address) test_notmine_bumpfee_fails(rbf_node, peer_node, dest_address) test_bumpfee_with_descendant_fails(rbf_node, rbf_node_address, dest_address) test_small_output_fails(rbf_node, dest_address) test_dust_to_fee(rbf_node, dest_address) test_settxfee(rbf_node, dest_address) test_rebumping(rbf_node, dest_address) test_rebumping_not_replaceable(rbf_node, dest_address) test_unconfirmed_not_spendable(rbf_node, rbf_node_address) test_bumpfee_metadata(rbf_node, dest_address) test_locked_wallet_fails(rbf_node, dest_address) self.log.info("Success") def test_simple_bumpfee_succeeds(rbf_node, peer_node, dest_address): rbfid = spend_one_input(rbf_node, dest_address) rbftx = rbf_node.gettransaction(rbfid) sync_mempools((rbf_node, peer_node)) assert rbfid in rbf_node.getrawmempool() and rbfid in peer_node.getrawmempool() bumped_tx = rbf_node.bumpfee(rbfid) assert_equal(bumped_tx["errors"], []) assert bumped_tx["fee"] - abs(rbftx["fee"]) > 0 # check that bumped_tx propagates, original tx was evicted and has a wallet conflict sync_mempools((rbf_node, peer_node)) assert bumped_tx["txid"] in rbf_node.getrawmempool() assert bumped_tx["txid"] in peer_node.getrawmempool() assert rbfid not in rbf_node.getrawmempool() assert rbfid not in peer_node.getrawmempool() oldwtx = rbf_node.gettransaction(rbfid) assert len(oldwtx["walletconflicts"]) > 0 # check wallet transaction replaces and replaced_by values bumpedwtx = rbf_node.gettransaction(bumped_tx["txid"]) assert_equal(oldwtx["replaced_by_txid"], bumped_tx["txid"]) assert_equal(bumpedwtx["replaces_txid"], rbfid) def test_segwit_bumpfee_succeeds(rbf_node, dest_address): # Create a transaction with segwit output, then create an RBF transaction # which spends it, and make sure bumpfee can be called on it. segwit_in = next(u for u in rbf_node.listunspent() if u["amount"] == Decimal("0.001")) segwit_out = rbf_node.getaddressinfo(rbf_node.getnewaddress()) rbf_node.addwitnessaddress(segwit_out["address"]) segwitid = send_to_witness( use_p2wsh=False, node=rbf_node, utxo=segwit_in, pubkey=segwit_out["pubkey"], encode_p2sh=False, amount=Decimal("0.0009"), sign=True) rbfraw = rbf_node.createrawtransaction([{ 'txid': segwitid, 'vout': 0, "sequence": BIP125_SEQUENCE_NUMBER }], {dest_address: Decimal("0.0005"), rbf_node.getrawchangeaddress(): Decimal("0.0003")}) rbfsigned = rbf_node.signrawtransactionwithwallet(rbfraw) rbfid = rbf_node.sendrawtransaction(rbfsigned["hex"]) assert rbfid in rbf_node.getrawmempool() bumped_tx = rbf_node.bumpfee(rbfid) assert bumped_tx["txid"] in rbf_node.getrawmempool() assert rbfid not in rbf_node.getrawmempool() def test_nonrbf_bumpfee_fails(peer_node, dest_address): # cannot replace a non RBF transaction (from node which did not enable RBF) not_rbfid = peer_node.sendtoaddress(dest_address, Decimal("0.00090000")) assert_raises_rpc_error(-4, "not BIP 125 replaceable", peer_node.bumpfee, not_rbfid) def test_notmine_bumpfee_fails(rbf_node, peer_node, dest_address): # cannot bump fee unless the tx has only inputs that we own. # here, the rbftx has a peer_node coin and then adds a rbf_node input # Note that this test depends upon the RPC code checking input ownership prior to change outputs # (since it can't use fundrawtransaction, it lacks a proper change output) utxos = [node.listunspent()[-1] for node in (rbf_node, peer_node)] inputs = [{ "txid": utxo["txid"], "vout": utxo["vout"], "address": utxo["address"], "sequence": BIP125_SEQUENCE_NUMBER } for utxo in utxos] output_val = sum(utxo["amount"] for utxo in utxos) - Decimal("0.001") rawtx = rbf_node.createrawtransaction(inputs, {dest_address: output_val}) signedtx = rbf_node.signrawtransactionwithwallet(rawtx) signedtx = peer_node.signrawtransactionwithwallet(signedtx["hex"]) rbfid = rbf_node.sendrawtransaction(signedtx["hex"]) assert_raises_rpc_error(-4, "Transaction contains inputs that don't belong to this wallet", rbf_node.bumpfee, rbfid) def test_bumpfee_with_descendant_fails(rbf_node, rbf_node_address, dest_address): # cannot bump fee if the transaction has a descendant # parent is send-to-self, so we don't have to check which output is change when creating the child tx parent_id = spend_one_input(rbf_node, rbf_node_address) tx = rbf_node.createrawtransaction([{"txid": parent_id, "vout": 0}], {dest_address: 0.00020000}) tx = rbf_node.signrawtransactionwithwallet(tx) rbf_node.sendrawtransaction(tx["hex"]) assert_raises_rpc_error(-8, "Transaction has descendants in the wallet", rbf_node.bumpfee, parent_id) def test_small_output_fails(rbf_node, dest_address): # cannot bump fee with a too-small output rbfid = spend_one_input(rbf_node, dest_address) rbf_node.bumpfee(rbfid, {"totalFee": 50000}) rbfid = spend_one_input(rbf_node, dest_address) assert_raises_rpc_error(-4, "Change output is too small", rbf_node.bumpfee, rbfid, {"totalFee": 50001}) def test_dust_to_fee(rbf_node, dest_address): # check that if output is reduced to dust, it will be converted to fee # the bumped tx sets fee=49,900, but it converts to 50,000 rbfid = spend_one_input(rbf_node, dest_address) fulltx = rbf_node.getrawtransaction(rbfid, 1) # (32-byte p2sh-pwpkh output size + 148 p2pkh spend estimate) * 10k(discard_rate) / 1000 = 1800 # P2SH outputs are slightly "over-discarding" due to the IsDust calculation assuming it will # be spent as a P2PKH. bumped_tx = rbf_node.bumpfee(rbfid, {"totalFee": 50000-1800}) full_bumped_tx = rbf_node.getrawtransaction(bumped_tx["txid"], 1) assert_equal(bumped_tx["fee"], Decimal("0.00050000")) assert_equal(len(fulltx["vout"]), 2) assert_equal(len(full_bumped_tx["vout"]), 1) #change output is eliminated def test_settxfee(rbf_node, dest_address): # check that bumpfee reacts correctly to the use of settxfee (paytxfee) rbfid = spend_one_input(rbf_node, dest_address) requested_feerate = Decimal("0.00025000") rbf_node.settxfee(requested_feerate) bumped_tx = rbf_node.bumpfee(rbfid) actual_feerate = bumped_tx["fee"] * 1000 / rbf_node.getrawtransaction(bumped_tx["txid"], True)["vsize"] # Assert that the difference between the requested feerate and the actual # feerate of the bumped transaction is small. assert_greater_than(Decimal("0.00001000"), abs(requested_feerate - actual_feerate)) rbf_node.settxfee(Decimal("0.00000000")) # unset paytxfee def test_rebumping(rbf_node, dest_address): # check that re-bumping the original tx fails, but bumping the bumper succeeds rbfid = spend_one_input(rbf_node, dest_address) bumped = rbf_node.bumpfee(rbfid, {"totalFee": 2000}) assert_raises_rpc_error(-4, "already bumped", rbf_node.bumpfee, rbfid, {"totalFee": 3000}) rbf_node.bumpfee(bumped["txid"], {"totalFee": 3000}) def test_rebumping_not_replaceable(rbf_node, dest_address): # check that re-bumping a non-replaceable bump tx fails rbfid = spend_one_input(rbf_node, dest_address) bumped = rbf_node.bumpfee(rbfid, {"totalFee": 10000, "replaceable": False}) assert_raises_rpc_error(-4, "Transaction is not BIP 125 replaceable", rbf_node.bumpfee, bumped["txid"], {"totalFee": 20000}) def test_unconfirmed_not_spendable(rbf_node, rbf_node_address): # check that unconfirmed outputs from bumped transactions are not spendable rbfid = spend_one_input(rbf_node, rbf_node_address) rbftx = rbf_node.gettransaction(rbfid)["hex"] assert rbfid in rbf_node.getrawmempool() bumpid = rbf_node.bumpfee(rbfid)["txid"] assert bumpid in rbf_node.getrawmempool() assert rbfid not in rbf_node.getrawmempool() # check that outputs from the bump transaction are not spendable # due to the replaces_txid check in CWallet::AvailableCoins assert_equal([t for t in rbf_node.listunspent(minconf=0, include_unsafe=False) if t["txid"] == bumpid], []) # submit a block with the rbf tx to clear the bump tx out of the mempool, # then invalidate the block so the rbf tx will be put back in the mempool. # This makes it possible to check whether the rbf tx outputs are # spendable before the rbf tx is confirmed. block = submit_block_with_tx(rbf_node, rbftx) # Can not abandon conflicted tx assert_raises_rpc_error(-5, 'Transaction not eligible for abandonment', lambda: rbf_node.abandontransaction(txid=bumpid)) rbf_node.invalidateblock(block.hash) # Call abandon to make sure the wallet doesn't attempt to resubmit # the bump tx and hope the wallet does not rebroadcast before we call. rbf_node.abandontransaction(bumpid) assert bumpid not in rbf_node.getrawmempool() assert rbfid in rbf_node.getrawmempool() # check that outputs from the rbf tx are not spendable before the # transaction is confirmed, due to the replaced_by_txid check in # CWallet::AvailableCoins assert_equal([t for t in rbf_node.listunspent(minconf=0, include_unsafe=False) if t["txid"] == rbfid], []) # check that the main output from the rbf tx is spendable after confirmed rbf_node.generate(1) assert_equal( sum(1 for t in rbf_node.listunspent(minconf=0, include_unsafe=False) if t["txid"] == rbfid and t["address"] == rbf_node_address and t["spendable"]), 1) def test_bumpfee_metadata(rbf_node, dest_address): rbfid = rbf_node.sendtoaddress(dest_address, Decimal("0.00100000"), "comment value", "to value") bumped_tx = rbf_node.bumpfee(rbfid) bumped_wtx = rbf_node.gettransaction(bumped_tx["txid"]) assert_equal(bumped_wtx["comment"], "comment value") assert_equal(bumped_wtx["to"], "to value") def test_locked_wallet_fails(rbf_node, dest_address): rbfid = spend_one_input(rbf_node, dest_address) rbf_node.walletlock() assert_raises_rpc_error(-13, "Please enter the wallet passphrase with walletpassphrase first.", rbf_node.bumpfee, rbfid) def spend_one_input(node, dest_address): tx_input = dict( sequence=BIP125_SEQUENCE_NUMBER, **next(u for u in node.listunspent() if u["amount"] == Decimal("0.00100000"))) rawtx = node.createrawtransaction( [tx_input], {dest_address: Decimal("0.00050000"), node.getrawchangeaddress(): Decimal("0.00049000")}) signedtx = node.signrawtransactionwithwallet(rawtx) txid = node.sendrawtransaction(signedtx["hex"]) return txid def submit_block_with_tx(node, tx): ctx = CTransaction() ctx.deserialize(io.BytesIO(hex_str_to_bytes(tx))) tip = node.getbestblockhash() height = node.getblockcount() + 1 block_time = node.getblockheader(tip)["mediantime"] + 1 block = create_block(int(tip, 16), create_coinbase(height), block_time) block.vtx.append(ctx) block.rehash() block.hashMerkleRoot = block.calc_merkle_root() add_witness_commitment(block) block.solve() node.submitblock(bytes_to_hex_str(block.serialize(True))) return block if __name__ == "__main__": BumpFeeTest().main()
from __future__ import unicode_literals import tempfile import shutil import os from compose import config from compose.project import Project from compose.const import LABEL_CONFIG_HASH from .testcases import DockerClientTestCase class ProjectTestCase(DockerClientTestCase): def run_up(self, cfg, **kwargs): kwargs.setdefault('smart_recreate', True) kwargs.setdefault('timeout', 0.1) project = self.make_project(cfg) project.up(**kwargs) return set(project.containers(stopped=True)) def make_project(self, cfg): return Project.from_dicts( name='composetest', client=self.client, service_dicts=config.from_dictionary(cfg), ) class BasicProjectTest(ProjectTestCase): def setUp(self): super(BasicProjectTest, self).setUp() self.cfg = { 'db': {'image': 'busybox:latest'}, 'web': {'image': 'busybox:latest'}, } def test_no_change(self): old_containers = self.run_up(self.cfg) self.assertEqual(len(old_containers), 2) new_containers = self.run_up(self.cfg) self.assertEqual(len(new_containers), 2) self.assertEqual(old_containers, new_containers) def test_partial_change(self): old_containers = self.run_up(self.cfg) old_db = [c for c in old_containers if c.name_without_project == 'db_1'][0] old_web = [c for c in old_containers if c.name_without_project == 'web_1'][0] self.cfg['web']['command'] = '/bin/true' new_containers = self.run_up(self.cfg) self.assertEqual(len(new_containers), 2) preserved = list(old_containers & new_containers) self.assertEqual(preserved, [old_db]) removed = list(old_containers - new_containers) self.assertEqual(removed, [old_web]) created = list(new_containers - old_containers) self.assertEqual(len(created), 1) self.assertEqual(created[0].name_without_project, 'web_1') self.assertEqual(created[0].get('Config.Cmd'), ['/bin/true']) def test_all_change(self): old_containers = self.run_up(self.cfg) self.assertEqual(len(old_containers), 2) self.cfg['web']['command'] = '/bin/true' self.cfg['db']['command'] = '/bin/true' new_containers = self.run_up(self.cfg) self.assertEqual(len(new_containers), 2) unchanged = old_containers & new_containers self.assertEqual(len(unchanged), 0) new = new_containers - old_containers self.assertEqual(len(new), 2) class ProjectWithDependenciesTest(ProjectTestCase): def setUp(self): super(ProjectWithDependenciesTest, self).setUp() self.cfg = { 'db': { 'image': 'busybox:latest', 'command': 'tail -f /dev/null', }, 'web': { 'image': 'busybox:latest', 'command': 'tail -f /dev/null', 'links': ['db'], }, 'nginx': { 'image': 'busybox:latest', 'command': 'tail -f /dev/null', 'links': ['web'], }, } def test_up(self): containers = self.run_up(self.cfg) self.assertEqual( set(c.name_without_project for c in containers), set(['db_1', 'web_1', 'nginx_1']), ) def test_change_leaf(self): old_containers = self.run_up(self.cfg) self.cfg['nginx']['environment'] = {'NEW_VAR': '1'} new_containers = self.run_up(self.cfg) self.assertEqual( set(c.name_without_project for c in new_containers - old_containers), set(['nginx_1']), ) def test_change_middle(self): old_containers = self.run_up(self.cfg) self.cfg['web']['environment'] = {'NEW_VAR': '1'} new_containers = self.run_up(self.cfg) self.assertEqual( set(c.name_without_project for c in new_containers - old_containers), set(['web_1', 'nginx_1']), ) def test_change_root(self): old_containers = self.run_up(self.cfg) self.cfg['db']['environment'] = {'NEW_VAR': '1'} new_containers = self.run_up(self.cfg) self.assertEqual( set(c.name_without_project for c in new_containers - old_containers), set(['db_1', 'web_1', 'nginx_1']), ) def test_change_root_no_recreate(self): old_containers = self.run_up(self.cfg) self.cfg['db']['environment'] = {'NEW_VAR': '1'} new_containers = self.run_up(self.cfg, allow_recreate=False) self.assertEqual(new_containers - old_containers, set()) def converge(service, allow_recreate=True, smart_recreate=False, insecure_registry=False, do_build=True): """ If a container for this service doesn't exist, create and start one. If there are any, stop them, create+start new ones, and remove the old containers. """ plan = service.convergence_plan( allow_recreate=allow_recreate, smart_recreate=smart_recreate, ) return service.execute_convergence_plan( plan, insecure_registry=insecure_registry, do_build=do_build, timeout=0.1, ) class ServiceStateTest(DockerClientTestCase): """Test cases for Service.convergence_plan.""" def test_trigger_create(self): web = self.create_service('web') self.assertEqual(('create', []), web.convergence_plan(smart_recreate=True)) def test_trigger_noop(self): web = self.create_service('web') container = web.create_container() web.start() web = self.create_service('web') self.assertEqual(('noop', [container]), web.convergence_plan(smart_recreate=True)) def test_trigger_start(self): options = dict(command=["top"]) web = self.create_service('web', **options) web.scale(2) containers = web.containers(stopped=True) containers[0].stop() containers[0].inspect() self.assertEqual([c.is_running for c in containers], [False, True]) web = self.create_service('web', **options) self.assertEqual( ('start', containers[0:1]), web.convergence_plan(smart_recreate=True), ) def test_trigger_recreate_with_config_change(self): web = self.create_service('web', command=["top"]) container = web.create_container() web = self.create_service('web', command=["top", "-d", "1"]) self.assertEqual(('recreate', [container]), web.convergence_plan(smart_recreate=True)) def test_trigger_recreate_with_image_change(self): repo = 'composetest_myimage' tag = 'latest' image = '{}:{}'.format(repo, tag) image_id = self.client.images(name='busybox')[0]['Id'] self.client.tag(image_id, repository=repo, tag=tag) try: web = self.create_service('web', image=image) container = web.create_container() # update the image c = self.client.create_container(image, ['touch', '/hello.txt']) self.client.commit(c, repository=repo, tag=tag) self.client.remove_container(c) web = self.create_service('web', image=image) self.assertEqual(('recreate', [container]), web.convergence_plan(smart_recreate=True)) finally: self.client.remove_image(image) def test_trigger_recreate_with_build(self): context = tempfile.mkdtemp() base_image = "FROM busybox\nLABEL com.docker.compose.test_image=true\n" try: dockerfile = os.path.join(context, 'Dockerfile') with open(dockerfile, 'w') as f: f.write(base_image) web = self.create_service('web', build=context) container = web.create_container() with open(dockerfile, 'w') as f: f.write(base_image + 'CMD echo hello world\n') web.build() web = self.create_service('web', build=context) self.assertEqual(('recreate', [container]), web.convergence_plan(smart_recreate=True)) finally: shutil.rmtree(context) class ConfigHashTest(DockerClientTestCase): def test_no_config_hash_when_one_off(self): web = self.create_service('web') container = web.create_container(one_off=True) self.assertNotIn(LABEL_CONFIG_HASH, container.labels) def test_no_config_hash_when_overriding_options(self): web = self.create_service('web') container = web.create_container(environment={'FOO': '1'}) self.assertNotIn(LABEL_CONFIG_HASH, container.labels) def test_config_hash_with_custom_labels(self): web = self.create_service('web', labels={'foo': '1'}) container = converge(web)[0] self.assertIn(LABEL_CONFIG_HASH, container.labels) self.assertIn('foo', container.labels) def test_config_hash_sticks_around(self): web = self.create_service('web', command=["top"]) container = converge(web)[0] self.assertIn(LABEL_CONFIG_HASH, container.labels) web = self.create_service('web', command=["top", "-d", "1"]) container = converge(web)[0] self.assertIn(LABEL_CONFIG_HASH, container.labels)
""" Handles all requests relevant to the extraction service of the API. """ import base64 import cv2 from hutts_verification.image_processing.sample_extract import TextExtractor from flask import Blueprint, jsonify, request, make_response from hutts_verification.utils.image_handling import grab_image from hutts_verification.image_processing.sample_extract import FaceExtractor from hutts_verification.utils.hutts_logger import logger __authors__ = "Nicolai van Niekerk, Stephan Nell" __copyright__ = "Copyright 2017, Java the Hutts" __license__ = "BSD" __maintainer__ = "Nicolai van Niekerk" __email__ = "nicvaniek@gmail.com" __status__ = "Development" extract = Blueprint('extract', __name__) @extract.route('/extractText', methods=['POST']) def extract_text(): """ Sample function to extract text from image received. URL: http://localhost:5000/extractText. """ # Initialize the data dictionary to be returned by the request. data = {"success": False} # Check to see if this is a post request. if request.method == "POST": # Check to see if an image was uploaded. if request.get_json().get("idPhoto", None) is not None: # Grab the uploaded image. image = grab_image(string=request.get_json()["idPhoto"]) # Otherwise, assume that a URL was passed in. else: # Grab the URL from the request. url = request.get_json().get("url", None) # If the URL is None, then return an error. if url is None: data["error"] = "No URL provided." return jsonify(data) # Load the image and convert. image = grab_image(url=url) # Grab additional parameters specifying techniques preferences = {} if 'blur_technique' in request.get_json(): preferences['blur_method'] = request.get_json()['blur_technique'] if 'threshold_technique' in request.get_json(): preferences['threshold_method'] = request.get_json()['threshold_technique'] if 'remove_face' in request.get_json(): preferences['remove_face'] = request.get_json()['remove_face'] if 'remove_barcode' in request.get_json(): preferences['remove_barcode'] = request.get_json()['remove_barcode'] if 'color' in request.get_json(): preferences['color'] = request.get_json()['color'] if 'id_type' in request.get_json(): preferences['id_type'] = request.get_json()['id_type'] if 'useIO' in request.get_json(): preferences['useIO'] = request.get_json()['useIO'] == 'true' else: preferences['useIO'] = False # Extract text from image extractor = TextExtractor(preferences) result = extractor.extract(image) return jsonify(result) @extract.route('/extractFace', methods=['POST']) def extract_face(): """ Sample function to extract face from image received. URL: http://localhost:5000/extractFace. """ # initialize the data dictionary to be returned by the request data = {"success": False} # check to see if this is a post request if request.method == "POST": # check to see if an image was uploaded if request.get_json().get("idPhoto", None) is not None: # grab the uploaded image image = grab_image(string=request.get_json()["idPhoto"]) # otherwise, assume that a URL was passed in else: # grab the URL from the request url = request.get_json().get("url", None) # if the URL is None, then return an error if url is None: data["error"] = "No URL provided." return jsonify(data) # load the image and convert image = grab_image(url=url) # Add preferences preferences = {} if 'useIO' in request.get_json(): preferences['useIO'] = request.get_json()['useIO'] == 'true' # Call open CV commands here with the extracted image response = face_extraction_response(preferences['useIO'], image) return response @extract.route('/extractAll', methods=['POST']) def extract_all(): """ Sample function to extract face and text from image received. URL: http://localhost:5000/extractAll. """ # initialize the data dictionary to be returned by the request data = {"success": False} # check to see if this is a post request if request.method == "POST": # check to see if an image was uploaded if request.get_json().get("idPhoto", None) is not None: # grab the uploaded image image = grab_image(string=request.get_json()["idPhoto"]) # otherwise, assume that a URL was passed in else: # grab the URL from the request url = request.get_json().get("url", None) # if the URL is None, then return an error if url is None: data["error"] = "No URL provided." return jsonify(data) # load the image and convert image = grab_image(url=url) # Call open CV commands here with the extracted image # Grab additional parameters specifying techniques preferences = {} if 'blur_technique' in request.get_json(): preferences['blur_method'] = request.get_json()['blur_technique'] if 'threshold_technique' in request.get_json(): preferences['threshold_method'] = request.get_json()['threshold_technique'] if 'remove_face' in request.get_json(): preferences['remove_face'] = request.get_json()['remove_face'] if 'remove_barcode' in request.get_json(): preferences['remove_barcode'] = request.get_json()['remove_barcode'] if 'color' in request.get_json(): preferences['color'] = request.get_json()['color'] if 'id_type' in request.get_json(): preferences['id_type'] = request.get_json()['id_type'] if 'useIO' in request.get_json(): preferences['useIO'] = request.get_json()['useIO'] == 'true' else: preferences['useIO'] = False # Extract test from image extractor = TextExtractor(preferences) result = extractor.extract(image) response = face_extraction_response(preferences['useIO'], image, result) return response def face_extraction_response(use_io, image, text_extract_result=None): """ This function converts the extracted cv2 image and converts it to a jpg image. Furthermore, the jpg image is converted to Base64 jpg type and returned. If text extraction results are provided the response will contain the data of text extraction result as well. :param use_io (boolean): Whether or not images should be written to disk. :param image (obj): The cv2 (numpy) image that should be converted to jpg. :param text_extract_result (dict): The extracted text results. Returns: - (obj): The response object that contains the information for HTTP transmission. """ extractor = FaceExtractor() result = extractor.extract(image, use_io) _, buffer = cv2.imencode('.jpg', result) # replace base64 indicator for the first occurrence and apply apply base64 jpg encoding logger.info("Converting to Base64") jpg_img = ('data:image/jpg;base64' + str(base64.b64encode(buffer)).replace("b", ",", 1)).replace("'", "") temp_dict = {"extracted_face": jpg_img} if text_extract_result: temp_dict["text_extract_result"] = text_extract_result data = jsonify(temp_dict) # prepare response logger.info("Preparing Response") response = make_response(data) response.mimetype = 'multipart/form-data' response.headers['Cache-Control'] = 'no-cache, no-store, must-revalidate' response.headers['Pragma'] = 'no-cache' return response
import time import log from led import LEDMatrix from led import LEDStrip from led import LEDCircle import colors from util import d import threading class animThread(threading.Thread): def __init__(self, anim, args): super(animThread, self).__init__() self.setDaemon(True) self._anim = anim self._args = args def run(self): log.debug("Starting thread...") self._anim._run(**self._args) log.debug("Thread Complete") class BaseAnimation(object): def __init__(self, led): self._led = led self.animComplete = False self._step = 0 self._timeRef = 0 self._internalDelay = None self._sleep = None self._threaded = False self._thread = None self._callback = None self._stopEvent = threading.Event() self._stopEvent.clear() self._led._threadedAnim = False self._free_run = False def _msTime(self): return time.time() * 1000.0 def preRun(self, amt=1): self._led.all_off() def preStep(self, amt=1): pass def postStep(self, amt=1): pass def step(self, amt=1): raise RuntimeError("Base class step() called. This shouldn't happen") def stopThread(self, wait=False): if self._thread: self._stopEvent.set() if wait: self._thread.join() def __enter__(self): return self def _exit(self, type, value, traceback): pass def __exit__(self, type, value, traceback): self._exit(type, value, traceback) self.stopThread(wait=True) self._led.all_off() self._led.update() self._led.waitForUpdate() def cleanup(self): return self.__exit__(None, None, None) def stopped(self): return not (self._thread and self._thread.isAlive()) def _run(self, amt, fps, sleep, max_steps, untilComplete, max_cycles, seconds): self.preRun() # calculate sleep time base on desired Frames per Second if fps: sleep = int(1000 / fps) if seconds is not None: max_steps = int((seconds * 1000) / sleep) initSleep = sleep self._step = 0 cur_step = 0 cycle_count = 0 self.animComplete = False while (not self._stopEvent.isSet() and ((max_steps == 0 and not untilComplete) or (max_steps > 0 and cur_step < max_steps) or (max_steps == 0 and untilComplete and not self.animComplete))): self._timeRef = self._msTime() start = self._msTime() if hasattr(self, "_input_dev"): self._keys = self._input_dev.getKeys() self.preStep(amt) self.step(amt) self.postStep(amt) mid = self._msTime() if self._free_run: sleep = None elif self._internalDelay: sleep = self._internalDelay elif initSleep: sleep = initSleep self._sleep = sleep self._led._frameGenTime = int(mid - start) self._led._frameTotalTime = sleep self._led.update() now = self._msTime() if self.animComplete and max_cycles > 0: if cycle_count < max_cycles - 1: cycle_count += 1 self.animComplete = False stepTime = int(mid - start) if self._led._threadedUpdate: updateTime = int(self._led.lastThreadedUpdate()) totalTime = updateTime else: updateTime = int(now - mid) totalTime = stepTime + updateTime if self._led._threadedUpdate: log.debug( "Frame: %sms / Update Max: %sms", stepTime, updateTime) else: log.debug("%sms/%sfps / Frame: %sms / Update: %sms", totalTime, int(1000 / max(totalTime, 1)), stepTime, updateTime) if sleep: diff = (self._msTime() - self._timeRef) t = max(0, (sleep - diff) / 1000.0) if t == 0: log.warning( "Frame-time of %dms set, but took %dms!", sleep, diff) if self._threaded: self._stopEvent.wait(t) else: time.sleep(t) cur_step += 1 self._exit(None, None, None) if self._callback: self._callback(self) def run(self, amt=1, fps=None, sleep=None, max_steps=0, untilComplete=False, max_cycles=0, threaded=False, joinThread=False, callback=None, seconds=None): self._led._threadedAnim = self._threaded = threaded if self._threaded: self._stopEvent.clear() self._callback = callback if self._threaded: args = {} l = locals() run_params = ["amt", "fps", "sleep", "max_steps", "untilComplete", "max_cycles", "seconds"] for p in run_params: if p in l: args[p] = l[p] self._thread = animThread(self, args) self._thread.start() if joinThread: self._thread.join() else: self._run(amt, fps, sleep, max_steps, untilComplete, max_cycles, seconds) RUN_PARAMS = [{ "id": "amt", "label": "Step Amount", "type": "int", "min": 1, "default": 1, "help": "Amount to step animation by on each frame. May not be used on some animations." }, { "id": "fps", "label": "Framerate", "type": "int", "default": 15, "min": 1, "help": "Framerate at which to run animation." }, { "id": "seconds", "label": "Run Seconds", "type": "int", "default": None, "min": 0, "help": "Number of seconds to run animation for, based on framerate." }, { "id": "max_steps", "label": "Max Frames", "type": "int", "min": 0, "default": 0, "help": "Total frames to run before stopping." }, { "id": "untilComplete", "label": "Until Complete", "type": "bool", "default": False, "help": "Run until animation marks itself as complete. If supported." }, { "id": "max_cycles", "label": "Max Cycles", "type": "int", "min": 1, "default": 1, "help": "If Until Complete is set, animation will repeat this many times." }, ] class OffAnim(BaseAnimation): def __init__(self, led, timeout=10): super(OffAnim, self).__init__(led) self._internalDelay = timeout * 1000 def step(self, amt=1): self._led.all_off() class AnimationQueue(BaseAnimation): def __init__(self, led, anims=None): super(AnimationQueue, self).__init__(led) self.anims = anims or [] self.curAnim = None self.animIndex = 0 self._internalDelay = 0 # never wait self.fps = None self.untilComplete = False # overriding to handle all the animations def stopThread(self, wait=False): for a, r in self.anims: # a bit of a hack. they aren't threaded, but stops them anyway a._stopEvent.set() super(AnimationQueue, self).stopThread(wait) def addAnim(self, anim, amt=1, fps=None, max_steps=0, untilComplete=False, max_cycles=0, seconds=None): a = ( anim, { "amt": amt, "fps": fps, "max_steps": max_steps, "untilComplete": untilComplete, "max_cycles": max_cycles, "seconds": seconds } ) self.anims.append(a) def preRun(self, amt=1): if len(self.anims) == 0: raise Exception("Must provide at least one animation.") self.animIndex = -1 def run(self, amt=1, fps=None, sleep=None, max_steps=0, untilComplete=False, max_cycles=0, threaded=False, joinThread=False, callback=None, seconds=None): self.fps = fps self.untilComplete = untilComplete super(AnimationQueue, self).run(amt=1, fps=None, sleep=None, max_steps=0, untilComplete=untilComplete, max_cycles=0, threaded=threaded, joinThread=joinThread, callback=callback, seconds=seconds) def step(self, amt=1): self.animIndex += 1 if self.animIndex >= len(self.anims): if self.untilComplete: self.animComplete = True else: self.animIndex = 0 if not self.animComplete: self.curAnim = self.anims[self.animIndex] anim, run = self.curAnim run.update(threaded=False, joinThread=False, callback=None) run['fps'] = run.get('fps') or self.fps anim.run(**(run)) RUN_PARAMS = [{ "id": "fps", "label": "Default Framerate", "type": "int", "default": None, "min": 1, "help": "Default framerate to run all animations in queue." }, { "id": "untilComplete", "label": "Until Complete", "type": "bool", "default": False, "help": "Run until animation marks itself as complete. If supported." }] class BaseStripAnim(BaseAnimation): def __init__(self, led, start=0, end=-1): super(BaseStripAnim, self).__init__(led) if not isinstance(led, LEDStrip): raise RuntimeError("Must use LEDStrip with Strip Animations!") self._start = max(start, 0) self._end = end if self._end < 0 or self._end > self._led.lastIndex: self._end = self._led.lastIndex self._size = self._end - self._start + 1 class BaseMatrixAnim(BaseAnimation): def __init__(self, led, width=0, height=0, startX=0, startY=0): super(BaseMatrixAnim, self).__init__(led) if not isinstance(led, LEDMatrix): raise RuntimeError("Must use LEDMatrix with Matrix Animations!") self.width = width or led.width self.height = height or led.height self.startX = startX self.startY = startY class BaseGameAnim(BaseMatrixAnim): def __init__(self, led, inputDev): super(BaseGameAnim, self).__init__(led) self._input_dev = inputDev self._keys = None self._lastKeys = None self._speedStep = 0 self._speeds = {} self._keyfuncs = {} def _exit(self, type, value, traceback): if hasattr(self._input_dev, 'setLightsOff'): self._input_dev.setLightsOff(5) self._input_dev.close() def setSpeed(self, name, speed): self._speeds[name] = speed def getSpeed(self, name): return self._speeds.get(name) def _checkSpeed(self, speed): return not (self._speedStep % speed) def checkSpeed(self, name): return name in self._speeds and self._checkSpeed(self._speeds[name]) def addKeyFunc(self, key, func, speed=1, hold=True): if not isinstance(key, list): key = [key] for k in key: self._keyfuncs[k] = d({ "func": func, "speed": speed, "hold": hold, "last": False, "inter": False }) def handleKeys(self): kf = self._keyfuncs for key in self._keys: val = self._keys[key] if key in kf: cfg = kf[key] speedPass = self._checkSpeed(cfg.speed) if cfg.hold: if speedPass: if (val or cfg.inter): cfg.func() else: cfg.inter = cfg.last = val elif speedPass: if (val or cfg.inter) and not cfg.last: cfg.func() cfg.inter = cfg.last = val else: cfg.inter |= val self._lastKeys = self._keys def preStep(self, amt): pass def postStep(self, amt): self._speedStep += 1 class BaseCircleAnim(BaseAnimation): def __init__(self, led): super(BaseCircleAnim, self).__init__(led) if not isinstance(led, LEDCircle): raise RuntimeError("Must use LEDCircle with Circle Animations!") self.rings = led.rings self.ringCount = led.ringCount self.lastRing = led.lastRing self.ringSteps = led.ringSteps class StripChannelTest(BaseStripAnim): def __init__(self, led): super(StripChannelTest, self).__init__(led) self._internalDelay = 500 self.colors = [colors.Red, colors.Green, colors.Blue, colors.White] def step(self, amt=1): self._led.set(0, colors.Red) self._led.set(1, colors.Green) self._led.set(2, colors.Green) self._led.set(3, colors.Blue) self._led.set(4, colors.Blue) self._led.set(5, colors.Blue) color = self._step % 4 self._led.fill(self.colors[color], 7, 9) self._step += 1 class MatrixChannelTest(BaseMatrixAnim): def __init__(self, led): super(MatrixChannelTest, self).__init__(led, 0, 0) self._internalDelay = 500 self.colors = [colors.Red, colors.Green, colors.Blue, colors.White] def step(self, amt=1): self._led.drawLine(0, 0, 0, self.height - 1, colors.Red) self._led.drawLine(1, 0, 1, self.height - 1, colors.Green) self._led.drawLine(2, 0, 2, self.height - 1, colors.Green) self._led.drawLine(3, 0, 3, self.height - 1, colors.Blue) self._led.drawLine(4, 0, 4, self.height - 1, colors.Blue) self._led.drawLine(5, 0, 5, self.height - 1, colors.Blue) color = self._step % 4 self._led.fillRect(7, 0, 3, self.height, self.colors[color]) self._step += 1 class MatrixCalibrationTest(BaseMatrixAnim): def __init__(self, led): super(MatrixCalibrationTest, self).__init__(led, 0, 0) self._internalDelay = 500 self.colors = [colors.Red, colors.Green, colors.Green, colors.Blue, colors.Blue, colors.Blue] def step(self, amt=1): self._led.all_off() i = self._step % self.width for x in range(i + 1): c = self.colors[x % len(self.colors)] self._led.drawLine(x, 0, x, i, c) self.animComplete = (i == (self.width - 1)) self._step += 1
"""Test SQLAlchemy form extensions.""" import pytest import mock from django import forms from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker from sqlalchemy import Column, Integer, String from sqlalchemy import create_engine import forms2 from forms2 import sqlalchemy from tests import record def _deep_instance(): ret = record('a', 'c') ret.a = record('b') ret.a.b = 'val4' ret.c = record('d') ret.c.d = 'val5' return ret @pytest.mark.parametrize( ['model', 'result'], [ (record('x', 'y'), dict(x='val1', y='val2')), (record('z', 'f'), dict(z='val1', f='val2')), ]) def test_model_to_dict(model, result): """Test model to dict conversion.""" assert sqlalchemy.model_to_dict(model(**result), result.keys()) == result @pytest.mark.parametrize( ['instance', 'result'], [ ( _deep_instance(), { 'a.b': 'val4', 'c.d': 'val5', } ), ] ) def test_model_to_dict_deep(instance, result): """Test model to dict recursive.""" assert sqlalchemy.model_to_dict(instance, result.keys()) == result @pytest.mark.parametrize( ['model', 'result'], [ (record('x', 'y'), dict(x='val1', y='val2')), (record('z', 'f'), dict(z='val3', f='val3')), ]) def test_dict_to_model(model, result): """Test dict to model conversion.""" instance = model(**dict(((key, '') for (key, value) in result.items()))) sqlalchemy.dict_to_model(instance, result) assert instance._asdict() == result @pytest.mark.parametrize( ['instance', 'result'], [ ( _deep_instance(), { 'a.b': 'val4', 'c.d': 'val5' } ), ] ) def test_dict_to_model_deep(instance, result): """Test dict to model conversion recursive.""" sqlalchemy.dict_to_model(instance, result) assert sqlalchemy.model_to_dict(instance, result.keys()) == result @pytest.fixture def model_class(): """Create test model class.""" Base = declarative_base() class TestModel(Base): __tablename__ = 'test_table' id = Column(Integer, primary_key=True) name = Column(String) fullname = Column(String) password = Column(String) def save(): pass return TestModel @pytest.fixture def model(model_class): """Create test model instance.""" return model_class(id=1) @pytest.fixture def model_form_class(model_class): """Create test model form class.""" class TestModelForm(forms2.SAModelForm): class Meta: model = model_class return TestModelForm @pytest.fixture def query(model_class, session): """Create SQLAlchemy Query for model_class.""" return session.query(model_class) @pytest.fixture def session(request, engine): """SQLAlchemy session.""" session = sessionmaker(bind=engine)() return session @pytest.fixture def engine(request, model_class): """SQLAlchemy engine.""" engine = create_engine('sqlite:///:memory:') model_class.metadata.create_all(engine) return engine def test_model_form(monkeypatch, model_form_class, model_class, model): """Test SAModelForm.""" form = model_form_class(instance=model, data={}) assert form.is_valid() with mock.patch.object(model_class, 'save') as mocked: form.save() mocked.assert_called_once() def test_model_form_without_instance(model_form_class, model_class, model): """Test SAModelForm without an instance.""" form = model_form_class(data={}) assert form.is_valid() with mock.patch.object(model_class, 'save') as mocked: form.save() mocked.assert_called_once() @pytest.mark.parametrize('lazy', [True, False]) def test_model_choice_field(query, model, session, lazy): """Test ModelChoiceField.""" field = sqlalchemy.ModelChoiceField(query) assert field.label_from_instance(model) == repr(model) field = sqlalchemy.ModelChoiceField( query if not lazy else lambda field: query, label_from_instance=lambda x: str(x.id)) assert field.label_from_instance(model) == '1' assert field.primary_key.name == 'id' assert field.prepare_value(model) == 1 assert field.to_python(None) is None session.add(model) session.commit() with pytest.raises(forms.ValidationError) as exc: field.to_python(-1) assert '%(' not in sqlalchemy.force_text(exc.value.message) assert field.to_python(1) == model def test_model_multiple_choice_field(query, model, session): """Test ModelMultipleChoiceField.""" field = sqlalchemy.ModelMultipleChoiceField(query) with pytest.raises(forms.ValidationError): field.clean(None) with pytest.raises(forms.ValidationError): field.clean([1]) session.add(model) session.commit() assert field.clean([1]) == [model] assert field.prepare_value(model) == 1 assert field.prepare_value([model]) == [1]
from __future__ import absolute_import, unicode_literals from datetime import date from django import forms from django.conf import settings from django.contrib.admin.options import (ModelAdmin, TabularInline, HORIZONTAL, VERTICAL) from django.contrib.admin.sites import AdminSite from django.contrib.admin.widgets import AdminDateWidget, AdminRadioSelect from django.contrib.admin import (SimpleListFilter, BooleanFieldListFilter) from django.core.exceptions import ImproperlyConfigured from django.forms.models import BaseModelFormSet from django.forms.widgets import Select from django.test import TestCase from django.test.utils import str_prefix from django.utils import unittest, six from .models import Band, Concert, ValidationTestModel, ValidationTestInlineModel class MockRequest(object): pass class MockSuperUser(object): def has_perm(self, perm): return True request = MockRequest() request.user = MockSuperUser() class ModelAdminTests(TestCase): def setUp(self): self.band = Band.objects.create( name='The Doors', bio='', sign_date=date(1965, 1, 1), ) self.site = AdminSite() # form/fields/fieldsets interaction ############################## def test_default_fields(self): ma = ModelAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'bio', 'sign_date']) def test_default_fieldsets(self): # fieldsets_add and fieldsets_change should return a special data structure that # is used in the templates. They should generate the "right thing" whether we # have specified a custom form, the fields argument, or nothing at all. # # Here's the default case. There are no custom form_add/form_change methods, # no fields argument, and no fieldsets argument. ma = ModelAdmin(Band, self.site) self.assertEqual(ma.get_fieldsets(request), [(None, {'fields': ['name', 'bio', 'sign_date']})]) self.assertEqual(ma.get_fieldsets(request, self.band), [(None, {'fields': ['name', 'bio', 'sign_date']})]) def test_get_fieldsets(self): # Test that get_fieldsets is called when figuring out form fields. # Refs #18681. class BandAdmin(ModelAdmin): def get_fieldsets(self, request, obj=None): return [(None, {'fields': ['name', 'bio']})] ma = BandAdmin(Band, self.site) form = ma.get_form(None) self.assertEqual(form._meta.fields, ['name', 'bio']) class InlineBandAdmin(TabularInline): model = Concert fk_name = 'main_band' can_delete = False def get_fieldsets(self, request, obj=None): return [(None, {'fields': ['day', 'transport']})] ma = InlineBandAdmin(Band, self.site) form = ma.get_formset(None).form self.assertEqual(form._meta.fields, ['day', 'transport']) def test_lookup_allowed_allows_nonexistent_lookup(self): """ Ensure that a lookup_allowed allows a parameter whose field lookup doesn't exist. Refs #21129. """ class BandAdmin(ModelAdmin): fields = ['name'] ma = BandAdmin(Band, self.site) self.assertTrue(ma.lookup_allowed('name__nonexistent', 'test_value')) def test_field_arguments(self): # If we specify the fields argument, fieldsets_add and fielsets_change should # just stick the fields into a formsets structure and return it. class BandAdmin(ModelAdmin): fields = ['name'] ma = BandAdmin(Band, self.site) self.assertEqual(ma.get_fieldsets(request), [(None, {'fields': ['name']})]) self.assertEqual(ma.get_fieldsets(request, self.band), [(None, {'fields': ['name']})]) def test_field_arguments_restricted_on_form(self): # If we specify fields or fieldsets, it should exclude fields on the Form class # to the fields specified. This may cause errors to be raised in the db layer if # required model fields arent in fields/fieldsets, but that's preferable to # ghost errors where you have a field in your Form class that isn't being # displayed because you forgot to add it to fields/fieldsets # Using `fields`. class BandAdmin(ModelAdmin): fields = ['name'] ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name']) self.assertEqual(list(ma.get_form(request, self.band).base_fields), ['name']) # Using `fieldsets`. class BandAdmin(ModelAdmin): fieldsets = [(None, {'fields': ['name']})] ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name']) self.assertEqual(list(ma.get_form(request, self.band).base_fields), ['name']) # Using `exclude`. class BandAdmin(ModelAdmin): exclude = ['bio'] ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'sign_date']) # You can also pass a tuple to `exclude`. class BandAdmin(ModelAdmin): exclude = ('bio',) ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'sign_date']) # Using `fields` and `exclude`. class BandAdmin(ModelAdmin): fields = ['name', 'bio'] exclude = ['bio'] ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name']) def test_custom_form_meta_exclude_with_readonly(self): """ Ensure that the custom ModelForm's `Meta.exclude` is respected when used in conjunction with `ModelAdmin.readonly_fields` and when no `ModelAdmin.exclude` is defined. Refs #14496. """ # First, with `ModelAdmin` ----------------------- class AdminBandForm(forms.ModelForm): class Meta: model = Band exclude = ['bio'] class BandAdmin(ModelAdmin): readonly_fields = ['name'] form = AdminBandForm ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['sign_date']) # Then, with `InlineModelAdmin` ----------------- class AdminConcertForm(forms.ModelForm): class Meta: model = Concert exclude = ['day'] class ConcertInline(TabularInline): readonly_fields = ['transport'] form = AdminConcertForm fk_name = 'main_band' model = Concert class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] ma = BandAdmin(Band, self.site) self.assertEqual( list(list(ma.get_formsets(request))[0]().forms[0].fields), ['main_band', 'opening_band', 'id', 'DELETE']) def test_custom_form_meta_exclude(self): """ Ensure that the custom ModelForm's `Meta.exclude` is overridden if `ModelAdmin.exclude` or `InlineModelAdmin.exclude` are defined. Refs #14496. """ # First, with `ModelAdmin` ----------------------- class AdminBandForm(forms.ModelForm): class Meta: model = Band exclude = ['bio'] class BandAdmin(ModelAdmin): exclude = ['name'] form = AdminBandForm ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['bio', 'sign_date']) # Then, with `InlineModelAdmin` ----------------- class AdminConcertForm(forms.ModelForm): class Meta: model = Concert exclude = ['day'] class ConcertInline(TabularInline): exclude = ['transport'] form = AdminConcertForm fk_name = 'main_band' model = Concert class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] ma = BandAdmin(Band, self.site) self.assertEqual( list(list(ma.get_formsets(request))[0]().forms[0].fields), ['main_band', 'opening_band', 'day', 'id', 'DELETE']) def test_custom_form_validation(self): # If we specify a form, it should use it allowing custom validation to work # properly. This won't, however, break any of the admin widgets or media. class AdminBandForm(forms.ModelForm): delete = forms.BooleanField() class BandAdmin(ModelAdmin): form = AdminBandForm ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'bio', 'sign_date', 'delete']) self.assertEqual( type(ma.get_form(request).base_fields['sign_date'].widget), AdminDateWidget) def test_form_exclude_kwarg_override(self): """ Ensure that the `exclude` kwarg passed to `ModelAdmin.get_form()` overrides all other declarations. Refs #8999. """ class AdminBandForm(forms.ModelForm): class Meta: model = Band exclude = ['name'] class BandAdmin(ModelAdmin): exclude = ['sign_date'] form = AdminBandForm def get_form(self, request, obj=None, **kwargs): kwargs['exclude'] = ['bio'] return super(BandAdmin, self).get_form(request, obj, **kwargs) ma = BandAdmin(Band, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['name', 'sign_date']) def test_formset_exclude_kwarg_override(self): """ Ensure that the `exclude` kwarg passed to `InlineModelAdmin.get_formset()` overrides all other declarations. Refs #8999. """ class AdminConcertForm(forms.ModelForm): class Meta: model = Concert exclude = ['day'] class ConcertInline(TabularInline): exclude = ['transport'] form = AdminConcertForm fk_name = 'main_band' model = Concert def get_formset(self, request, obj=None, **kwargs): kwargs['exclude'] = ['opening_band'] return super(ConcertInline, self).get_formset(request, obj, **kwargs) class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] ma = BandAdmin(Band, self.site) self.assertEqual( list(list(ma.get_formsets(request))[0]().forms[0].fields), ['main_band', 'day', 'transport', 'id', 'DELETE']) def test_queryset_override(self): # If we need to override the queryset of a ModelChoiceField in our custom form # make sure that RelatedFieldWidgetWrapper doesn't mess that up. band2 = Band(name='The Beatles', bio='', sign_date=date(1962, 1, 1)) band2.save() class ConcertAdmin(ModelAdmin): pass ma = ConcertAdmin(Concert, self.site) form = ma.get_form(request)() self.assertHTMLEqual(str(form["main_band"]), '<select name="main_band" id="id_main_band">\n' '<option value="" selected="selected">---------</option>\n' '<option value="%d">The Beatles</option>\n' '<option value="%d">The Doors</option>\n' '</select>' % (band2.id, self.band.id)) class AdminConcertForm(forms.ModelForm): pass def __init__(self, *args, **kwargs): super(AdminConcertForm, self).__init__(*args, **kwargs) self.fields["main_band"].queryset = Band.objects.filter(name='The Doors') class ConcertAdmin(ModelAdmin): form = AdminConcertForm ma = ConcertAdmin(Concert, self.site) form = ma.get_form(request)() self.assertHTMLEqual(str(form["main_band"]), '<select name="main_band" id="id_main_band">\n' '<option value="" selected="selected">---------</option>\n' '<option value="%d">The Doors</option>\n' '</select>' % self.band.id) def test_regression_for_ticket_15820(self): """ Ensure that `obj` is passed from `InlineModelAdmin.get_fieldsets()` to `InlineModelAdmin.get_formset()`. """ class CustomConcertForm(forms.ModelForm): class Meta: model = Concert fields = ['day'] class ConcertInline(TabularInline): model = Concert fk_name = 'main_band' def get_formset(self, request, obj=None, **kwargs): if obj: kwargs['form'] = CustomConcertForm return super(ConcertInline, self).get_formset(request, obj, **kwargs) class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] concert = Concert.objects.create(main_band=self.band, opening_band=self.band, day=1) ma = BandAdmin(Band, self.site) inline_instances = ma.get_inline_instances(request) fieldsets = list(inline_instances[0].get_fieldsets(request)) self.assertEqual(fieldsets[0][1]['fields'], ['main_band', 'opening_band', 'day', 'transport']) fieldsets = list(inline_instances[0].get_fieldsets(request, inline_instances[0].model)) self.assertEqual(fieldsets[0][1]['fields'], ['day']) # radio_fields behavior ########################################### def test_default_foreign_key_widget(self): # First, without any radio_fields specified, the widgets for ForeignKey # and fields with choices specified ought to be a basic Select widget. # ForeignKey widgets in the admin are wrapped with RelatedFieldWidgetWrapper so # they need to be handled properly when type checking. For Select fields, all of # the choices lists have a first entry of dashes. cma = ModelAdmin(Concert, self.site) cmafa = cma.get_form(request) self.assertEqual(type(cmafa.base_fields['main_band'].widget.widget), Select) self.assertEqual( list(cmafa.base_fields['main_band'].widget.choices), [('', '---------'), (self.band.id, 'The Doors')]) self.assertEqual( type(cmafa.base_fields['opening_band'].widget.widget), Select) self.assertEqual( list(cmafa.base_fields['opening_band'].widget.choices), [('', '---------'), (self.band.id, 'The Doors')]) self.assertEqual(type(cmafa.base_fields['day'].widget), Select) self.assertEqual(list(cmafa.base_fields['day'].widget.choices), [('', '---------'), (1, 'Fri'), (2, 'Sat')]) self.assertEqual(type(cmafa.base_fields['transport'].widget), Select) self.assertEqual( list(cmafa.base_fields['transport'].widget.choices), [('', '---------'), (1, 'Plane'), (2, 'Train'), (3, 'Bus')]) def test_foreign_key_as_radio_field(self): # Now specify all the fields as radio_fields. Widgets should now be # RadioSelect, and the choices list should have a first entry of 'None' if # blank=True for the model field. Finally, the widget should have the # 'radiolist' attr, and 'inline' as well if the field is specified HORIZONTAL. class ConcertAdmin(ModelAdmin): radio_fields = { 'main_band': HORIZONTAL, 'opening_band': VERTICAL, 'day': VERTICAL, 'transport': HORIZONTAL, } cma = ConcertAdmin(Concert, self.site) cmafa = cma.get_form(request) self.assertEqual(type(cmafa.base_fields['main_band'].widget.widget), AdminRadioSelect) self.assertEqual(cmafa.base_fields['main_band'].widget.attrs, {'class': 'radiolist inline'}) self.assertEqual(list(cmafa.base_fields['main_band'].widget.choices), [(self.band.id, 'The Doors')]) self.assertEqual( type(cmafa.base_fields['opening_band'].widget.widget), AdminRadioSelect) self.assertEqual(cmafa.base_fields['opening_band'].widget.attrs, {'class': 'radiolist'}) self.assertEqual( list(cmafa.base_fields['opening_band'].widget.choices), [('', 'None'), (self.band.id, 'The Doors')]) self.assertEqual(type(cmafa.base_fields['day'].widget), AdminRadioSelect) self.assertEqual(cmafa.base_fields['day'].widget.attrs, {'class': 'radiolist'}) self.assertEqual(list(cmafa.base_fields['day'].widget.choices), [(1, 'Fri'), (2, 'Sat')]) self.assertEqual(type(cmafa.base_fields['transport'].widget), AdminRadioSelect) self.assertEqual(cmafa.base_fields['transport'].widget.attrs, {'class': 'radiolist inline'}) self.assertEqual(list(cmafa.base_fields['transport'].widget.choices), [('', 'None'), (1, 'Plane'), (2, 'Train'), (3, 'Bus')]) class AdminConcertForm(forms.ModelForm): class Meta: model = Concert exclude = ('transport',) class ConcertAdmin(ModelAdmin): form = AdminConcertForm ma = ConcertAdmin(Concert, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['main_band', 'opening_band', 'day']) class AdminConcertForm(forms.ModelForm): extra = forms.CharField() class Meta: model = Concert fields = ['extra', 'transport'] class ConcertAdmin(ModelAdmin): form = AdminConcertForm ma = ConcertAdmin(Concert, self.site) self.assertEqual(list(ma.get_form(request).base_fields), ['extra', 'transport']) class ConcertInline(TabularInline): form = AdminConcertForm model = Concert fk_name = 'main_band' can_delete = True class BandAdmin(ModelAdmin): inlines = [ ConcertInline ] ma = BandAdmin(Band, self.site) self.assertEqual( list(list(ma.get_formsets(request))[0]().forms[0].fields), ['extra', 'transport', 'id', 'DELETE', 'main_band']) class ValidationTests(unittest.TestCase): def test_validation_only_runs_in_debug(self): # Ensure validation only runs when DEBUG = True try: settings.DEBUG = True class ValidationTestModelAdmin(ModelAdmin): raw_id_fields = 10 site = AdminSite() six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.raw_id_fields' must be a list or tuple.", site.register, ValidationTestModel, ValidationTestModelAdmin, ) finally: settings.DEBUG = False site = AdminSite() site.register(ValidationTestModel, ValidationTestModelAdmin) def test_raw_id_fields_validation(self): class ValidationTestModelAdmin(ModelAdmin): raw_id_fields = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.raw_id_fields' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): raw_id_fields = ('non_existent_field',) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.raw_id_fields' refers to field 'non_existent_field' that is missing from model 'modeladmin.ValidationTestModel'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): raw_id_fields = ('name',) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.raw_id_fields\[0\]', 'name' must be either a ForeignKey or ManyToManyField.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): raw_id_fields = ('users',) ValidationTestModelAdmin.validate(ValidationTestModel) def test_fieldsets_validation(self): class ValidationTestModelAdmin(ModelAdmin): fieldsets = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.fieldsets' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): fieldsets = ({},) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.fieldsets\[0\]' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): fieldsets = ((),) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.fieldsets\[0\]' does not have exactly two elements.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): fieldsets = (("General", ()),) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.fieldsets\[0\]\[1\]' must be a dictionary.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): fieldsets = (("General", {}),) six.assertRaisesRegex(self, ImproperlyConfigured, "'fields' key is required in ValidationTestModelAdmin.fieldsets\[0\]\[1\] field options dict.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): fieldsets = (("General", {"fields": ("name",)}),) ValidationTestModelAdmin.validate(ValidationTestModel) class ValidationTestModelAdmin(ModelAdmin): fieldsets = (("General", {"fields": ("name",)}),) fields = ["name",] six.assertRaisesRegex(self, ImproperlyConfigured, "Both fieldsets and fields are specified in ValidationTestModelAdmin.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): fieldsets = [(None, {'fields': ['name', 'name']})] six.assertRaisesRegex(self, ImproperlyConfigured, "There are duplicate field\(s\) in ValidationTestModelAdmin.fieldsets", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): fields = ["name", "name"] six.assertRaisesRegex(self, ImproperlyConfigured, "There are duplicate field\(s\) in ValidationTestModelAdmin.fields", ValidationTestModelAdmin.validate, ValidationTestModel, ) def test_form_validation(self): class FakeForm(object): pass class ValidationTestModelAdmin(ModelAdmin): form = FakeForm six.assertRaisesRegex(self, ImproperlyConfigured, "ValidationTestModelAdmin.form does not inherit from BaseModelForm.", ValidationTestModelAdmin.validate, ValidationTestModel, ) def test_fieldsets_with_custom_form_validation(self): class BandAdmin(ModelAdmin): fieldsets = ( ('Band', { 'fields': ('name',) }), ) BandAdmin.validate(Band) class AdminBandForm(forms.ModelForm): delete = forms.BooleanField() class BandAdmin(ModelAdmin): form = AdminBandForm fieldsets = ( ('Band', { 'fields': ('name', 'bio', 'sign_date', 'delete') }), ) BandAdmin.validate(Band) def test_filter_vertical_validation(self): class ValidationTestModelAdmin(ModelAdmin): filter_vertical = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.filter_vertical' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): filter_vertical = ("non_existent_field",) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.filter_vertical' refers to field 'non_existent_field' that is missing from model 'modeladmin.ValidationTestModel'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): filter_vertical = ("name",) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.filter_vertical\[0\]' must be a ManyToManyField.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): filter_vertical = ("users",) ValidationTestModelAdmin.validate(ValidationTestModel) def test_filter_horizontal_validation(self): class ValidationTestModelAdmin(ModelAdmin): filter_horizontal = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.filter_horizontal' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): filter_horizontal = ("non_existent_field",) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.filter_horizontal' refers to field 'non_existent_field' that is missing from model 'modeladmin.ValidationTestModel'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): filter_horizontal = ("name",) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.filter_horizontal\[0\]' must be a ManyToManyField.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): filter_horizontal = ("users",) ValidationTestModelAdmin.validate(ValidationTestModel) def test_radio_fields_validation(self): class ValidationTestModelAdmin(ModelAdmin): radio_fields = () six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.radio_fields' must be a dictionary.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): radio_fields = {"non_existent_field": None} six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.radio_fields' refers to field 'non_existent_field' that is missing from model 'modeladmin.ValidationTestModel'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): radio_fields = {"name": None} six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.radio_fields\['name'\]' is neither an instance of ForeignKey nor does have choices set.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): radio_fields = {"state": None} six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.radio_fields\['state'\]' is neither admin.HORIZONTAL nor admin.VERTICAL.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): radio_fields = {"state": VERTICAL} ValidationTestModelAdmin.validate(ValidationTestModel) def test_prepopulated_fields_validation(self): class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = () six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.prepopulated_fields' must be a dictionary.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = {"non_existent_field": None} six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.prepopulated_fields' refers to field 'non_existent_field' that is missing from model 'modeladmin.ValidationTestModel'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = {"slug": ("non_existent_field",)} six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.prepopulated_fields\['slug'\]\[0\]' refers to field 'non_existent_field' that is missing from model 'modeladmin.ValidationTestModel'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = {"users": ("name",)} six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.prepopulated_fields\['users'\]' is either a DateTimeField, ForeignKey or ManyToManyField. This isn't allowed.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): prepopulated_fields = {"slug": ("name",)} ValidationTestModelAdmin.validate(ValidationTestModel) def test_list_display_validation(self): class ValidationTestModelAdmin(ModelAdmin): list_display = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_display' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_display = ('non_existent_field',) six.assertRaisesRegex(self, ImproperlyConfigured, str_prefix("ValidationTestModelAdmin.list_display\[0\], %(_)s'non_existent_field' is not a callable or an attribute of 'ValidationTestModelAdmin' or found in the model 'ValidationTestModel'."), ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_display = ('users',) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_display\[0\]', 'users' is a ManyToManyField which is not supported.", ValidationTestModelAdmin.validate, ValidationTestModel, ) def a_callable(obj): pass class ValidationTestModelAdmin(ModelAdmin): def a_method(self, obj): pass list_display = ('name', 'decade_published_in', 'a_method', a_callable) ValidationTestModelAdmin.validate(ValidationTestModel) def test_list_display_links_validation(self): class ValidationTestModelAdmin(ModelAdmin): list_display_links = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_display_links' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_display_links = ('non_existent_field',) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_display_links\[0\]' refers to 'non_existent_field' which is not defined in 'list_display'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_display_links = ('name',) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_display_links\[0\]' refers to 'name' which is not defined in 'list_display'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) def a_callable(obj): pass class ValidationTestModelAdmin(ModelAdmin): def a_method(self, obj): pass list_display = ('name', 'decade_published_in', 'a_method', a_callable) list_display_links = ('name', 'decade_published_in', 'a_method', a_callable) ValidationTestModelAdmin.validate(ValidationTestModel) def test_list_filter_validation(self): class ValidationTestModelAdmin(ModelAdmin): list_filter = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_filter' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_filter = ('non_existent_field',) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_filter\[0\]' refers to 'non_existent_field' which does not refer to a Field.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class RandomClass(object): pass class ValidationTestModelAdmin(ModelAdmin): list_filter = (RandomClass,) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_filter\[0\]' is 'RandomClass' which is not a descendant of ListFilter.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_filter = (('is_active', RandomClass),) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_filter\[0\]\[1\]' is 'RandomClass' which is not of type FieldListFilter.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class AwesomeFilter(SimpleListFilter): def get_title(self): return 'awesomeness' def get_choices(self, request): return (('bit', 'A bit awesome'), ('very', 'Very awesome'), ) def get_queryset(self, cl, qs): return qs class ValidationTestModelAdmin(ModelAdmin): list_filter = (('is_active', AwesomeFilter),) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_filter\[0\]\[1\]' is 'AwesomeFilter' which is not of type FieldListFilter.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_filter = (BooleanFieldListFilter,) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_filter\[0\]' is 'BooleanFieldListFilter' which is of type FieldListFilter but is not associated with a field name.", ValidationTestModelAdmin.validate, ValidationTestModel, ) # Valid declarations below ----------- class ValidationTestModelAdmin(ModelAdmin): list_filter = ('is_active', AwesomeFilter, ('is_active', BooleanFieldListFilter), 'no') ValidationTestModelAdmin.validate(ValidationTestModel) def test_list_per_page_validation(self): class ValidationTestModelAdmin(ModelAdmin): list_per_page = 'hello' six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_per_page' should be a int.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_per_page = 100 ValidationTestModelAdmin.validate(ValidationTestModel) def test_max_show_all_allowed_validation(self): class ValidationTestModelAdmin(ModelAdmin): list_max_show_all = 'hello' six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_max_show_all' should be a int.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_max_show_all = 200 ValidationTestModelAdmin.validate(ValidationTestModel) def test_search_fields_validation(self): class ValidationTestModelAdmin(ModelAdmin): search_fields = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.search_fields' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) def test_date_hierarchy_validation(self): class ValidationTestModelAdmin(ModelAdmin): date_hierarchy = 'non_existent_field' six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.date_hierarchy' refers to field 'non_existent_field' that is missing from model 'modeladmin.ValidationTestModel'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): date_hierarchy = 'name' six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.date_hierarchy is neither an instance of DateField nor DateTimeField.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): date_hierarchy = 'pub_date' ValidationTestModelAdmin.validate(ValidationTestModel) def test_ordering_validation(self): class ValidationTestModelAdmin(ModelAdmin): ordering = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.ordering' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): ordering = ('non_existent_field',) six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.ordering\[0\]' refers to field 'non_existent_field' that is missing from model 'modeladmin.ValidationTestModel'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): ordering = ('?', 'name') six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.ordering' has the random ordering marker '\?', but contains other fields as well. Please either remove '\?' or the other fields.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): ordering = ('?',) ValidationTestModelAdmin.validate(ValidationTestModel) class ValidationTestModelAdmin(ModelAdmin): ordering = ('band__name',) ValidationTestModelAdmin.validate(ValidationTestModel) class ValidationTestModelAdmin(ModelAdmin): ordering = ('name',) ValidationTestModelAdmin.validate(ValidationTestModel) def test_list_select_related_validation(self): class ValidationTestModelAdmin(ModelAdmin): list_select_related = 1 six.assertRaisesRegex( self, ImproperlyConfigured, "'ValidationTestModelAdmin.list_select_related' should be either a " "bool, a tuple or a list", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): list_select_related = False ValidationTestModelAdmin.validate(ValidationTestModel) def test_save_as_validation(self): class ValidationTestModelAdmin(ModelAdmin): save_as = 1 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.save_as' should be a bool.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): save_as = True ValidationTestModelAdmin.validate(ValidationTestModel) def test_save_on_top_validation(self): class ValidationTestModelAdmin(ModelAdmin): save_on_top = 1 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.save_on_top' should be a bool.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestModelAdmin(ModelAdmin): save_on_top = True ValidationTestModelAdmin.validate(ValidationTestModel) def test_inlines_validation(self): class ValidationTestModelAdmin(ModelAdmin): inlines = 10 six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.inlines' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestInline(object): pass class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.inlines\[0\]' does not inherit from BaseModelAdmin.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestInline(TabularInline): pass class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] six.assertRaisesRegex(self, ImproperlyConfigured, "'model' is a required attribute of 'ValidationTestModelAdmin.inlines\[0\]'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class SomethingBad(object): pass class ValidationTestInline(TabularInline): model = SomethingBad class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestModelAdmin.inlines\[0\].model' does not inherit from models.Model.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestInline(TabularInline): model = ValidationTestInlineModel class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] ValidationTestModelAdmin.validate(ValidationTestModel) def test_fields_validation(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel fields = 10 class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestInline.fields' must be a list or tuple.", ValidationTestModelAdmin.validate, ValidationTestModel, ) def test_fk_name_validation(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel fk_name = "non_existent_field" class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestInline.fk_name' refers to field 'non_existent_field' that is missing from model 'modeladmin.ValidationTestInlineModel'.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestInline(TabularInline): model = ValidationTestInlineModel fk_name = "parent" class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] ValidationTestModelAdmin.validate(ValidationTestModel) def test_extra_validation(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel extra = "hello" class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestInline.extra' should be a int.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestInline(TabularInline): model = ValidationTestInlineModel extra = 2 class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] ValidationTestModelAdmin.validate(ValidationTestModel) def test_max_num_validation(self): class ValidationTestInline(TabularInline): model = ValidationTestInlineModel max_num = "hello" class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestInline.max_num' should be a int.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class ValidationTestInline(TabularInline): model = ValidationTestInlineModel max_num = 2 class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] ValidationTestModelAdmin.validate(ValidationTestModel) def test_formset_validation(self): class FakeFormSet(object): pass class ValidationTestInline(TabularInline): model = ValidationTestInlineModel formset = FakeFormSet class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] six.assertRaisesRegex(self, ImproperlyConfigured, "'ValidationTestInline.formset' does not inherit from BaseModelFormSet.", ValidationTestModelAdmin.validate, ValidationTestModel, ) class RealModelFormSet(BaseModelFormSet): pass class ValidationTestInline(TabularInline): model = ValidationTestInlineModel formset = RealModelFormSet class ValidationTestModelAdmin(ModelAdmin): inlines = [ValidationTestInline] ValidationTestModelAdmin.validate(ValidationTestModel)
#!/usr/bin/python2.7 # Copyright 2010 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic API for reading/writing small numbers of records.""" __author__ = 'kpy@google.com (Ka-Ping Yee)' import calendar import csv import logging import re import StringIO import xml.dom.minidom import django.utils.html from google.appengine import runtime import external_search import importer import indexing import model import pfif import simplejson import subscribe import utils from model import Person, Note, ApiActionLog from text_query import TextQuery from utils import Struct HARD_MAX_RESULTS = 200 # Clients can ask for more, but won't get more. class InputFileError(Exception): pass def get_requested_formats(path): """Returns a list of requested formats. The possible values are 'persons' and 'notes'.""" format = path.split('/')[-1] if format in ['persons', 'notes']: return [format] return ['persons', 'notes'] def complete_record_ids(record, domain): """Ensures that a record's record_id fields are prefixed with a domain.""" def complete(record, field): id = record.get(field) if id and '/' not in id: record[field] = '%s/%s' % (domain, id) complete(record, 'person_record_id') complete(record, 'note_record_id') return record def get_tag_params(handler): """Return HTML tag parameters used in import.html.""" return { 'begin_notes_template_link': '<a href="%s/notes-template.xlsx">' % django.utils.html.escape(handler.env.global_url), 'end_notes_template_link': '</a>', 'begin_sample_anchor_tag': '<a href="%s/sample-import.csv" target="_blank">' % django.utils.html.escape(handler.env.global_url), 'end_sample_anchor_tag': '</a>', 'begin_document_anchor_tag': '<a href=' '"https://code.google.com/p/googlepersonfinder/wiki/ImportCSV" ' 'target="_blank">', 'end_document_anchor_tag': '</a>', } def generate_note_record_ids(records): for record in records: if not record.get('note_record_id', '').strip(): record['note_record_id'] = str(model.UniqueId.create_id()) yield record def convert_time(text, offset): """Converts a textual date and time into an RFC 3339 UTC timestamp.""" if utils.DATETIME_RE.match(text.strip()): # don't apply offset return text match = re.search(r'(\d\d\d\d)[/-](\d+)[/-](\d+) *(\d+):(\d+)', text) if match: y, l, d, h, m = map(int, match.groups()) timestamp = calendar.timegm((y, l, d, h, m, 0)) - offset*3600 return utils.format_utc_timestamp(timestamp) return text # keep the original text so it shows up in the error message def convert_time_fields(rows, default_offset=0): """Filters CSV rows, converting time fields to RFC 3339 UTC times. The first row that contains "person_record_id" is assumed to be the header row containing field names. Preceding rows are treated as a preamble. If the text "time_zone_offset" is found in the preamble section, the cell immediately below it is treated as a time zone offset from UTC in hours. Otherwise default_offset is used as the time zone offset. Rows below the header row are returned as dictionaries (as csv.DictReader would), except that any "*_date" fields are parsed as local times, converted to UTC according to the specified offset, and reformatted as RFC 3339 UTC times. """ field_names = [] time_fields = [] setting_names = [] settings = {} offset = default_offset for row in rows: if field_names: record = dict(zip(field_names, row)) for key in time_fields: record[key] = convert_time(record[key], offset) yield record elif 'person_record_id' in row: field_names = [name.lower().strip() for name in row] time_fields = [name for name in row if name.endswith('_date')] if 'time_zone_offset' in settings: try: offset = float(settings['time_zone_offset']) except ValueError: raise InputFileError('invalid time_zone_offset value') else: settings.update(dict(zip(setting_names, row))) setting_names = [name.lower().strip() for name in row] class Import(utils.BaseHandler): https_required = True def get(self): self.render('import.html', formats=get_requested_formats(self.env.path), params=self.params, **get_tag_params(self)) def post(self): if not (self.auth and self.auth.domain_write_permission): # TODO(ryok): i18n self.error(403, message='Missing or invalid authorization key.') return content = self.request.get('content') if not content: self.error(400, message='Please specify at least one CSV file.') return try: lines = content.splitlines() # handles \r, \n, or \r\n if self.request.get('format') == 'notes': self.import_notes(lines) else: self.import_persons(lines) except InputFileError, e: self.error(400, message='Problem in the uploaded file: %s' % e) except runtime.DeadlineExceededError, e: self.error(400, message= 'Sorry, the uploaded file is too large. Try splitting it into ' 'smaller files (keeping the header rows in each file) and ' 'uploading each part separately.') def import_notes(self, lines): source_domain = self.auth.domain_write_permission records = importer.utf8_decoder(generate_note_record_ids( convert_time_fields(csv.reader(lines)))) try: records = [complete_record_ids(r, source_domain) for r in records] except csv.Error, e: self.error(400, message= 'The CSV file is formatted incorrectly. (%s)' % e) return notes_written, notes_skipped, notes_total = importer.import_records( self.repo, source_domain, importer.create_note, records, believed_dead_permission=self.auth.believed_dead_permission, omit_duplicate_notes=True) utils.log_api_action(self, ApiActionLog.WRITE, 0, notes_written, 0, len(notes_skipped)) self.render('import.html', formats=get_requested_formats(self.env.path), params=self.params, stats=[ Struct(type='Note', written=notes_written, skipped=notes_skipped, total=notes_total)], **get_tag_params(self)) def import_persons(self, lines): # TODO(ryok): support non-UTF8 encodings. source_domain = self.auth.domain_write_permission records = importer.utf8_decoder(convert_time_fields(csv.reader(lines))) try: records = [complete_record_ids(r, source_domain) for r in records] except csv.Error, e: self.error(400, message= 'The CSV file is formatted incorrectly. (%s)' % e) return is_not_empty = lambda x: (x or '').strip() persons = [r for r in records if is_not_empty(r.get('full_name'))] notes = [r for r in records if is_not_empty(r.get('note_record_id'))] people_written, people_skipped, people_total = importer.import_records( self.repo, source_domain, importer.create_person, persons) notes_written, notes_skipped, notes_total = importer.import_records( self.repo, source_domain, importer.create_note, notes, believed_dead_permission=self.auth.believed_dead_permission) utils.log_api_action(self, ApiActionLog.WRITE, people_written, notes_written, len(people_skipped), len(notes_skipped)) self.render('import.html', formats=get_requested_formats(self.env.path), params=self.params, stats=[ Struct(type='Person', written=people_written, skipped=people_skipped, total=people_total), Struct(type='Note', written=notes_written, skipped=notes_skipped, total=notes_total)], **get_tag_params(self)) class Read(utils.BaseHandler): https_required = True def get(self): if self.config.read_auth_key_required and not ( self.auth and self.auth.read_permission): self.info( 403, message='Missing or invalid authorization key', style='plain') return pfif_version = self.params.version # Note that self.request.get can handle multiple IDs at once; we # can consider adding support for multiple records later. record_id = self.request.get('id') if not record_id: self.info(400, message='Missing id parameter', style='plain') return person = model.Person.get( self.repo, record_id, filter_expired=False) if not person: self.info( 400, message='No person record with ID %s' % record_id, style='plain') return notes = model.Note.get_by_person_record_id(self.repo, record_id) notes = [note for note in notes if not note.hidden] self.response.headers['Content-Type'] = 'application/xml' records = [pfif_version.person_to_dict(person, person.is_expired)] note_records = map(pfif_version.note_to_dict, notes) utils.optionally_filter_sensitive_fields(records, self.auth) utils.optionally_filter_sensitive_fields(note_records, self.auth) pfif_version.write_file( self.response.out, records, lambda p: note_records) utils.log_api_action( self, ApiActionLog.READ, len(records), len(notes)) class Write(utils.BaseHandler): https_required = True def post(self): if not (self.auth and self.auth.domain_write_permission): self.info( 403, message='Missing or invalid authorization key', style='plain') return source_domain = self.auth.domain_write_permission try: person_records, note_records = \ pfif.parse_file(self.request.body_file) except Exception, e: self.info(400, message='Invalid XML: %s' % e, style='plain') return mark_notes_reviewed = bool(self.auth.mark_notes_reviewed) believed_dead_permission = bool( self.auth.believed_dead_permission) self.response.headers['Content-Type'] = 'application/xml' self.write('<?xml version="1.0"?>\n') self.write('<status:status>\n') create_person = importer.create_person num_people_written, people_skipped, total = importer.import_records( self.repo, source_domain, create_person, person_records) self.write_status( 'person', num_people_written, people_skipped, total, 'person_record_id') create_note = importer.create_note num_notes_written, notes_skipped, total = importer.import_records( self.repo, source_domain, create_note, note_records, mark_notes_reviewed, believed_dead_permission, self) self.write_status( 'note', num_notes_written, notes_skipped, total, 'note_record_id') self.write('</status:status>\n') utils.log_api_action(self, ApiActionLog.WRITE, num_people_written, num_notes_written, len(people_skipped), len(notes_skipped)) def write_status(self, type, written, skipped, total, id_field): """Emit status information about the results of an attempted write.""" skipped_records = [] for error, record in skipped: skipped_records.append( ' <pfif:%s>%s</pfif:%s>\n' % (id_field, record.get(id_field, ''), id_field)) skipped_records.append( ' <status:error>%s</status:error>\n' % error) self.write(''' <status:write> <status:record_type>pfif:%s</status:record_type> <status:parsed>%d</status:parsed> <status:written>%d</status:written> <status:skipped> %s </status:skipped> </status:write> ''' % (type, total, written, ''.join(skipped_records).rstrip())) class Search(utils.BaseHandler): https_required = False def get(self): if self.config.search_auth_key_required and not ( self.auth and self.auth.search_permission): self.info( 403, message='Missing or invalid authorization key', style='plain') return pfif_version = self.params.version # Retrieve parameters and do some sanity checks on them. record_id = self.request.get('id') query_string = self.request.get('q') max_results = min(self.params.max_results or 100, HARD_MAX_RESULTS) results = [] if record_id: # Search by record ID (always returns just 1 result or nothing). person = model.Person.get(self.repo, record_id) if person: results = [person] elif query_string: # Search by query words. query = TextQuery(query_string) if self.config.external_search_backends: results = external_search.search(self.repo, query, max_results, self.config.external_search_backends) # External search backends are not always complete. Fall back to # the original search when they fail or return no results. if not results: results = indexing.search(self.repo, query, max_results) else: self.info( 400, message='Neither id nor q parameter specified', style='plain') records = [pfif_version.person_to_dict(result) for result in results] utils.optionally_filter_sensitive_fields(records, self.auth) # Define the function to retrieve notes for a person. def get_notes_for_person(person): notes = model.Note.get_by_person_record_id( self.repo, person['person_record_id']) notes = [note for note in notes if not note.hidden] records = map(pfif_version.note_to_dict, notes) utils.optionally_filter_sensitive_fields(records, self.auth) return records self.response.headers['Content-Type'] = 'application/xml' pfif_version.write_file( self.response.out, records, get_notes_for_person) utils.log_api_action(self, ApiActionLog.SEARCH, len(records)) class Subscribe(utils.BaseHandler): https_required = True def post(self): if not (self.auth and self.auth.subscribe_permission): return self.error(403, 'Missing or invalid authorization key') if not subscribe.is_email_valid(self.params.subscribe_email): return self.error(400, 'Invalid email address') person = model.Person.get(self.repo, self.params.id) if not person: return self.error(400, 'Invalid person_record_id') subscription = subscribe.subscribe_to(self, self.repo, person, self.params.subscribe_email, self.env.lang) utils.log_api_action(self, ApiActionLog.SUBSCRIBE) if not subscription: return self.info(200, 'Already subscribed') return self.info(200, 'Successfully subscribed') class Unsubscribe(utils.BaseHandler): https_required = True def post(self): if not (self.auth and self.auth.subscribe_permission): return self.error(403, 'Missing or invalid authorization key') subscription = model.Subscription.get(self.repo, self.params.id, self.params.subscribe_email) self.response.set_status(200) utils.log_api_action(self, ApiActionLog.UNSUBSCRIBE) if subscription: subscription.delete() return self.info(200, 'Successfully unsubscribed') return self.info(200, 'Not subscribed') def fetch_all(query): results = [] batch = query.fetch(500) while batch: results += batch batch = query.with_cursor(query.cursor()).fetch(500) return results class Stats(utils.BaseHandler): def get(self): if not (self.auth and self.auth.stats_permission): self.info( 403, message='Missing or invalid authorization key', style='plain') return person_counts = model.Counter.get_all_counts(self.repo, 'person') note_counts = model.Counter.get_all_counts(self.repo, 'note') # unreviewed note_counts['hidden=FALSE,reviewed=FALSE'] = len(fetch_all( model.Note.all(keys_only=True ).filter('repo =', self.repo ).filter('reviewed =', False ).filter('hidden =', False ).order('-entry_date'))) # accepted note_counts['hidden=FALSE,reviewed=TRUE'] = len(fetch_all( model.Note.all(keys_only=True ).filter('repo =', self.repo ).filter('reviewed =', True ).filter('hidden =', False ).order('-entry_date'))) # flagged note_counts['hidden=TRUE'] = len(fetch_all( model.Note.all(keys_only=True ).filter('repo =', self.repo ).filter('hidden =', True ).order('-entry_date'))) self.response.headers['Content-Type'] = 'application/json' self.write(simplejson.dumps({'person': person_counts, 'note': note_counts})) class HandleSMS(utils.BaseHandler): https_required = True repo_required = False MAX_RESULTS = 3 def post(self): if not (self.auth and self.auth.search_permission): self.info( 403, message= '"key" URL parameter is either missing, invalid or ' 'lacks required permissions. The key\'s repo must be "*" ' 'and search_permission must be True.', style='plain') return body = self.request.body_file.read() doc = xml.dom.minidom.parseString(body) message_text = self.get_element_text(doc, 'message_text') receiver_phone_number = self.get_element_text( doc, 'receiver_phone_number') if message_text is None: self.info( 400, message='message_text element is required.', style='plain') return if receiver_phone_number is None: self.info( 400, message='receiver_phone_number element is required.', style='plain') return repo = ( self.config.sms_number_to_repo and self.config.sms_number_to_repo.get(receiver_phone_number)) if not repo: self.info( 400, message= 'The given receiver_phone_number is not found in ' 'sms_number_to_repo config.', style='plain') return responses = [] m = re.search(r'^search\s+(.+)$', message_text.strip(), re.I) if m: query_string = m.group(1).strip() query = TextQuery(query_string) persons = indexing.search(repo, query, HandleSMS.MAX_RESULTS) if persons: for person in persons: responses.append(self.render_person(person)) else: responses.append('No results found for: %s' % query_string) responses.append( 'More at: google.org/personfinder/%s?ui=light' % repo) responses.append( 'All data entered in Person Finder is available to the public ' 'and usable by anyone. Google does not review or verify the ' 'accuracy of this data google.org/personfinder/global/tos.html') else: responses.append('Usage: Search John') self.response.headers['Content-Type'] = 'application/xml' self.write( '<?xml version="1.0" encoding="utf-8"?>\n' '<response>\n' ' <message_text>%s</message_text>\n' '</response>\n' % django.utils.html.escape(' ## '.join(responses))) def render_person(self, person): fields = [] fields.append(person.full_name) if person.latest_status: # The result of utils.get_person_status_text() may be a Django's # proxy object for lazy translation. Use unicode() to convert it # into a unicode object. We must not specify an encoding for # unicode() in this case. fields.append(unicode( utils.get_person_status_text(person))) if person.sex: fields.append(person.sex) if person.age: fields.append(person.age) if person.home_city or person.home_state: fields.append( 'From: ' + ' '.join(filter(None, [person.home_city, person.home_state]))) return ' / '.join(fields) def get_element_text(self, doc, tag_name): elems = doc.getElementsByTagName(tag_name) if elems: text = u'' for node in elems[0].childNodes: if node.nodeType == node.TEXT_NODE: text += node.data return text.encode('utf-8') else: return None
# This file is responsible for setup up the executing environment of droidbox app # Here the executing environment includes: # 1. Static environments: contacts, call logs, SMS, pre-installed apps, etc # 2. Dynamic environments: continuous GPS, Accelerometer, etc # The environment should be determined before app start running. # We don't need to set up all environments for one app, # instead we select a subset according to static analysis result of app. import logging import json import time import os POLICY_NONE = "none" POLICY_DUMMY = "dummy" POLICY_STATIC = "static" DEFAULT_POLICY = POLICY_NONE class UnknownEnvException(Exception): pass class AppEnv(object): """ This class describes a environment attribute of device """ def to_dict(self): return self.__dict__ def to_json(self): return json.dumps(self.to_dict()) def __str__(self): return self.to_dict().__str__() def deploy(self, device): """ deploy this env to device :param device: Device """ raise NotImplementedError class StaticAppEnv(AppEnv): """ This class describes a static environment attribute of device """ def deploy(self, device): raise NotImplementedError class DynamicAppEnv(AppEnv): """ This class describes a dynamic environment attribute of device usually we need to start a thread for this """ def deploy(self, device): raise NotImplementedError class ContactAppEnv(StaticAppEnv): """ This class describes a contact inside device """ def __init__(self, name='Lynn', phone="1234567890", email="droidbot@honeynet.com", env_dict=None): if env_dict is not None: self.__dict__ = env_dict return self.name = name self.phone = phone self.email = email self.env_type = 'contact' def deploy(self, device): """ add a contact to the device """ contact_data = self.__dict__ contact_data.pop('env_type') return device.add_contact(contact_data) class SettingsAppEnv(StaticAppEnv): """ This class describes settings of device """ def __init__(self, table_name="system", name="screen_brightness", value="50", env_dict=None): if env_dict is not None: self.__dict__ = env_dict return self.table_name = table_name self.name = name self.value = value self.env_type = 'settings' def deploy(self, device): return device.change_settings(self.table_name, self.name, self.value) class CallLogEnv(StaticAppEnv): """ call log """ def __init__(self, phone="1234567890", call_in=True, accepted=True, env_dict=None): """ a call log :param phone: str, phone number of contact :param call_in: bool, True for call in, False for call out :param accepted: whether the call is accepted """ if env_dict is not None: self.__dict__ = env_dict return self.phone = phone self.call_in = call_in self.accepted = accepted self.env_type = 'calllog' def deploy(self, device): if self.call_in: return self.deploy_call_in(device) else: return self.deploy_call_out(device) def deploy_call_in(self, device): """ deploy call in log event to device """ if not device.receive_call(self.phone): return False time.sleep(1) if self.accepted: device.accept_call(self.phone) time.sleep(1) return device.cancel_call(self.phone) def deploy_call_out(self, device): """ deploy call out log event to device """ device.call(self.phone) time.sleep(2) return device.cancel_call(self.phone) class DummyFilesEnv(StaticAppEnv): """ push dummy files to device """ def __init__(self, dummy_files_dir=None): """ :param: dummy_files_dir: directory to dummy files """ if dummy_files_dir is None: import pkg_resources dummy_files_dir = pkg_resources.resource_filename("droidbot", "resources/dummy_documents") self.dummy_files_dir = dummy_files_dir self.env_type = "dummy_files" def deploy(self, device): device.push_file(self.dummy_files_dir) class SMSLogEnv(StaticAppEnv): """ SMS log """ def __init__(self, phone="1234567890", sms_in=True, content="Hello world", env_dict=None): """ a call log :param phone: str, phone number of contact :param sms_in: bool, True for income message, False for outcome :param content: content of message """ if env_dict is not None: self.__dict__ = env_dict return self.phone = phone self.sms_in = sms_in self.content = content self.env_type = 'smslog' def deploy(self, device): if self.sms_in: return device.receive_sms(self.phone, self.content) else: return device.send_sms(self.phone, self.content) class GPSAppEnv(DynamicAppEnv): """ This class describes the continuous updating GPS data inside device """ def __init__(self, center_x=50, center_y=50, delta_x=1, delta_y=1, env_dict=None): if env_dict is not None: self.__dict__ = env_dict return self.center_x = center_x self.center_y = center_y self.delta_x = delta_x self.delta_y = delta_y self.env_type = 'gps' def deploy(self, device): return device.set_continuous_gps(self.center_x, self.center_y, self.delta_x, self.delta_y) ENV_TYPES = { 'contact': ContactAppEnv, 'settings': SettingsAppEnv, 'calllog': CallLogEnv, 'smslog': SMSLogEnv, 'gps': GPSAppEnv } class AppEnvManager(object): """ AppEnvManager manages the environment of device in which an app will run. """ def __init__(self, device, app, env_policy): """ construct a new AppEnvManager instance :param device: instance of Device :param app: instance of App :param env_policy: policy of setting up environment, string :return: """ self.logger = logging.getLogger('AppEnvManager') self.device = device self.app = app self.policy = env_policy self.envs = [] self.enabled = True if not self.policy: self.policy = POLICY_NONE if self.policy == POLICY_NONE: self.env_factory = None elif self.policy == POLICY_DUMMY: self.env_factory = DummyEnvFactory() elif self.policy == POLICY_STATIC: self.env_factory = StaticEnvFactory(app) else: self.env_factory = FileEnvFactory(self.policy) def add_env(self, env): """ add a env to the envs list :param env: a env instance, should be subclass of AppEnv :return: """ self.envs.append(env) def deploy(self): """ deploy the environments to device (Emulator) :return: """ self.logger.info("Start deploying environment, policy is %s" % self.policy) if self.env_factory is not None: self.envs = self.generate_from_factory(self.env_factory) if self.envs is None: return for env in self.envs: if not self.enabled: break self.device.add_env(env) self.logger.debug("Finish deploying environment") if self.device.output_dir is not None: out_file = open(os.path.join(self.device.output_dir, "droidbot_env.json"), "w") self.dump(out_file) out_file.close() self.logger.debug("Environment settings saved to droidbot_env.json") def dump(self, env_file): """ dump the environment information to a file :param env_file: the file to output the environment :return: """ env_array = [] for env in self.envs: env_array.append(env.to_dict()) env_json = json.dumps(env_array) env_file.write(env_json) def generate_from_factory(self, app_env_factory): """ generate the environment of app from factory :param app_env_factory: the AppEnvFactory instance used to generate :return: """ return app_env_factory.produce_envs() def stop(self): self.enabled = False class AppEnvFactory(object): """ This class is responsible for produce a list of static and dynamic AppEnv """ def produce_envs(self): return [] class DummyEnvFactory(AppEnvFactory): """ A dummy factory which generate randomized app environment """ def produce_envs(self): """ produce a list of dummy environment """ envs = [ContactAppEnv(), SettingsAppEnv(), CallLogEnv(), SMSLogEnv(), GPSAppEnv(), DummyFilesEnv()] return envs class StaticEnvFactory(AppEnvFactory): """ A factory which generate ad hoc environment based on static analysis result of app """ def __init__(self, app): """ create a StaticEnvFactory from app analysis result """ self.app = app def produce_envs(self): """ generate app-specific envs """ envs = [] permissions = self.app.permissions if 'android.permission.READ_CONTACTS' in permissions: envs.append(ContactAppEnv()) if 'android.permission.READ_CALL_LOG' in permissions: envs.append(CallLogEnv()) envs.append(CallLogEnv(call_in=False)) envs.append(CallLogEnv(accepted=False)) if 'android.permission.ACCESS_FINE_LOCATION' in permissions: envs.append(GPSAppEnv()) if 'android.permission.READ_SMS' in permissions: envs.append(SMSLogEnv()) envs.append(SMSLogEnv(sms_in=False)) if 'android.permission.READ_EXTERNAL_STORAGE' in permissions \ or 'android.permission.WRITE_EXTERNAL_STORAGE' in permissions \ or 'android.permission.MOUNT_UNMOUNT_FILESYSTEMS' in permissions: envs.append(DummyFilesEnv()) # TODO add more app-specific app environment return envs class FileEnvFactory(AppEnvFactory): """ A factory which generate environment from file """ def __init__(self, env_file): """ create a FileEnvFactory from a json file :param env_file path string """ self.envs = [] self.file = env_file f = open(env_file, 'r') env_array = json.load(f) for env_dict in env_array: if not isinstance(env_dict, dict): raise UnknownEnvException if 'env_type' not in env_dict: raise UnknownEnvException env_type = env_dict['env_type'] if 'env_type' not in ENV_TYPES: raise UnknownEnvException EnvType = ENV_TYPES[env_type] env = EnvType(dict=env_dict) self.envs.append(env) self.index = 0 def produce_envs(self): """ generate envs from file """ env = self.envs[self.index] self.index += 1 return env
import datetime from datetime import timedelta from django.test import TestCase from django.forms.models import model_to_dict from django.contrib.auth import models as auth_models from django.core.exceptions import ValidationError from pyconde.conference.test_utils import ConferenceTestingMixin from pyconde.conference import models as conference_models from pyconde.speakers import models as speakers_models from . import models from . import forms from . import validators from . import utils class SubmissionTests(ConferenceTestingMixin, TestCase): def setUp(self): self.create_test_conference() self.user = auth_models.User.objects.create_user( 'test', 'test@test.com', 'testpassword') speakers_models.Speaker.objects.all().delete() self.speaker = speakers_models.Speaker(user=self.user) self.speaker.save() self.now = datetime.datetime.now() def tearDown(self): self.destroy_all_test_conferences() def test_with_open_sessionkind(self): """ Tests that a proposal can be submitted with an open sessionkind """ proposal = models.Proposal( conference=self.conference, title="Proposal", description="DESCRIPTION", abstract="ABSTRACT", speaker=self.speaker, kind=self.kind, audience_level=self.audience_level, duration=self.duration, track=self.track ) data = model_to_dict(proposal) data['agree_to_terms'] = True form = forms.ProposalSubmissionForm(data=data) self.assertTrue(form.is_valid(), form.errors) now = datetime.datetime.now() self.kind.start_date = now - datetime.timedelta(1) self.kind.end_date = now + datetime.timedelta(1) self.kind.save() data = model_to_dict(proposal) data['agree_to_terms'] = True form = forms.ProposalSubmissionForm(data=data) self.assertTrue(form.is_valid(), form.errors) def test_with_closed_sessionkind(self): proposal = models.Proposal( conference=self.conference, title="Proposal", description="DESCRIPTION", abstract="ABSTRACT", speaker=self.speaker, kind=self.kind, audience_level=self.audience_level, duration=self.duration, track=self.track ) self.kind.start_date = self.now - timedelta(2) self.kind.end_date = self.now - timedelta(1) self.kind.closed = None self.kind.save() form = forms.ProposalSubmissionForm(data=model_to_dict(proposal)) self.assertFalse(form.is_valid()) self.kind.start_date = None self.kind.end_date = None self.kind.closed = True self.kind.save() form = forms.ProposalSubmissionForm(data=model_to_dict(proposal)) self.assertFalse(form.is_valid(), form.errors) class MaxWordsValidatorTests(TestCase): def test_too_long(self): v = validators.MaxWordsValidator(3) self.assertRaises(ValidationError, v, "this is a bit too long") def test_ok_with_signs(self): v = validators.MaxWordsValidator(3) v("hi! hello... world!") def test_ok(self): v = validators.MaxWordsValidator(2) v("hello world!") def test_ok_with_whitespaces(self): v = validators.MaxWordsValidator(2) v("hello \n \t world!") class ListUserProposalsViewTests(ConferenceTestingMixin, TestCase): def setUp(self): self.create_test_conference('') self.create_test_conference('other_') self.user = auth_models.User.objects.create_user( 'test', 'test@test.com', 'testpassword' ) speakers_models.Speaker.objects.all().delete() self.speaker = speakers_models.Speaker(user=self.user) self.speaker.save() self.now = datetime.datetime.now() def tearDown(self): self.destroy_all_test_conferences() self.user.delete() def test_current_conf_only(self): """ This view should only list proposals made for the current conference. """ # In this case the user has made two proposals: One for the current # conference, one for another one also managed within the same # database. Only the one for the current conference should be listed # here. previous_proposal = models.Proposal( conference=self.other_conference, title="Proposal", description="DESCRIPTION", abstract="ABSTRACT", speaker=self.speaker, kind=self.other_kind, audience_level=self.other_audience_level, duration=self.other_duration, track=self.other_track ) previous_proposal.save() current_proposal = models.Proposal( conference=self.conference, title="Proposal", description="DESCRIPTION", abstract="ABSTRACT", speaker=self.speaker, kind=self.kind, audience_level=self.audience_level, duration=self.duration, track=self.track ) current_proposal.save() with self.settings(CONFERENCE_ID=self.conference.pk): self.client.login(username=self.user.username, password='testpassword') ctx = self.client.get('/proposals/mine/').context self.assertEqual([current_proposal], list(ctx['proposals'])) with self.settings(CONFERENCE_ID=self.other_conference.pk): self.client.login(username=self.user.username, password='testpassword') ctx = self.client.get('/proposals/mine/').context self.assertEqual([previous_proposal], list(ctx['proposals'])) def test_login_required(self): """ This list should only be available to logged in users. """ self.client.logout() self.assertRedirects( self.client.get('/proposals/mine/'), '/accounts/login/?next=/proposals/mine/') class SubmitProposalViewTests(TestCase): def test_login_required(self): self.client.logout() self.assertRedirects( self.client.get('/proposals/submit/'), '/accounts/login/?next=/proposals/submit/') class SubmitTypedProposalViewTests(TestCase): def test_login_required(self): self.client.logout() self.assertRedirects( self.client.get('/proposals/submit/testkind/'), '/accounts/login/?next=/proposals/submit/testkind/') class EditProposalViewTests(TestCase): def test_login_required(self): self.client.logout() self.assertRedirects( self.client.get('/proposals/edit/123/'), '/accounts/login/?next=/proposals/edit/123/') class CancelProposalViewTests(TestCase): def test_login_required(self): self.client.logout() self.assertRedirects( self.client.get('/proposals/cancel/123/'), '/accounts/login/?next=/proposals/cancel/123/') class LeaveProposalViewTests(TestCase): def test_login_required(self): self.client.logout() self.assertRedirects( self.client.get('/proposals/leave/123/'), '/accounts/login/?next=/proposals/leave/123/') class TimeslotModelTests(ConferenceTestingMixin, TestCase): def setUp(self): self.create_test_conference() def tearDown(self): self.destroy_all_test_conferences() def test_uniqueness(self): """ Ensure uniqueness of a timeslot per day. """ section = conference_models.Section( conference=self.conference, name="Test section") section.save() today = datetime.datetime.now().date() ts1 = models.TimeSlot(date=today, slot=1, section=section) ts1.save() ts2 = models.TimeSlot(date=today, slot=2, section=section) ts2.save() ts1_again = models.TimeSlot(date=today, slot=1, section=section) with self.assertRaises(Exception): ts1_again.clear() class DateRangeTests(TestCase): def test_simple_daterange(self): start = datetime.date(2013, 3, 15) end = datetime.date(2013, 3, 18) range_ = list(utils.get_date_range(start, end)) self.assertEquals(4, len(range_)) self.assertEquals(datetime.date(2013, 3, 15), range_[0]) self.assertEquals(datetime.date(2013, 3, 16), range_[1]) self.assertEquals(datetime.date(2013, 3, 17), range_[2]) self.assertEquals(datetime.date(2013, 3, 18), range_[3]) def test_oneday_daterange(self): start = datetime.date(2013, 3, 15) end = datetime.date(2013, 3, 15) range_ = list(utils.get_date_range(start, end)) self.assertEquals(1, len(range_)) self.assertEquals(datetime.date(2013, 3, 15), range_[0]) def test_invalid_daterange(self): start = datetime.date(2013, 03, 15) end = datetime.date(2013, 03, 14) with self.assertRaises(ValueError): list(utils.get_date_range(start, end))
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finite difference approximations of the Fisher-Rao norm regularizer. The provided utility routines are used to create Fisher-Rao norm regularizers. The implementations use finite difference perturbations of the parameters in the original loss to approximate the necessary gradient-vector products. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class VariableCollector(object): """Helper class with custom getter to collect `Variable` objects in a scope. When called for the first time the custom getter stores the corresponding `Variable` object in dictionary. When called subsequently for the same `Variable` name the getter will return the object from the dictionary instead of calling the original getter. """ def __init__(self): self.variables = {} def collector_getter(self, getter, name, *args, **kwargs): """Custom getter for `VariableScope` that stores `Variable` in dictionary. Args: getter: Function, original getter function name: String, name of `Variable` in the scope *args: Additional arguments, currently only passed forward on first call of the original getter **kwargs: Additional arguments, currently only passed forward on first call of the original getter Returns: A `Tensor` object that contains the named `Variable` either from calling the original getter or if available from the dictionary. """ if name not in self.variables: self.variables[name] = getter(name, *args, **kwargs) # TODO(jonathanjh): Add consistency check for args and kwargs. return self.variables[name] def make_perturbation_getter(should_regularize, collector, perturbation): """Creates custom getter to replace variables in scope by their perturbations. Args: should_regularize: Function, takes a variable name as String and returns Boolean that decides whether the variable should be regularized. collector: `VariableCollector` object that provides the dictionary to use for subsequent use of the same `Variable` object for the same name. perturbation: Float, perturbation value added on top of 1 to use for variable replacement value. Returns: A custom getter function that can be used with `VariableScope`. """ def plus_getter(getter, name, *args, **kwargs): var = collector.collector_getter(getter, name, *args, **kwargs) if should_regularize(name) and kwargs.get("trainable"): var = (1. + perturbation) * var return var return plus_getter def make_empirical_fisher_regularizer(make_logits, labels, scope, should_regularize, perturbation): """Creates per-example logits and the per-example empirical Fisher-Rao norm. This function assumes the model of a categorical distribution generated by a softmax function. The empirical Fisher-Rao norm uses the empirical training distribution for both the input values and the labels to estimate the Fisher information matrix. Args: make_logits: Function, returns `Tensor` representing the per-example logits. The expected shape of the tensor is such that the number of categories is the last dimension. labels: Tensor, encoding of the class labels compatible in dimension with the return of the make_logits function. scope: String, name of `VariableScope` to use for the `Variable` objects that represent the regularized parameter. should_regularize: Function, takes a variable name as String and returns Boolean that decides whether the variable should be regularized. The passed variable name includes the name of the scope. perturbation: Float, finite difference perturbation constant. The choice of perturbation constant represents a tradeoff between rounding and approximation error and should depend on floating point precision and parameter norm. Returns: A tuple of `Tensor` objects representing the per-example logits and the scalar empirical Fisher-Rao norm regularization loss. Raises: ValueError: if the last dimension of the logits shape is not statically inferrable. """ collector = VariableCollector() with tf.variable_scope(scope, custom_getter=collector.collector_getter): logits = make_logits() if logits.shape[-1].value is None: raise ValueError("The size of the last dimension of the logits vector must" " be statically inferrable.") with tf.variable_scope( scope, custom_getter= make_perturbation_getter(should_regularize, collector, perturbation)): perturbed_logits = make_logits() loss = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits) perturbed_loss = tf.nn.softmax_cross_entropy_with_logits( labels=labels, logits=perturbed_logits) regularizer = tf.square( tf.divide(tf.subtract(perturbed_loss, loss), perturbation)) regularizer = tf.reduce_mean(regularizer) return (logits, regularizer) def make_standard_fisher_regularizer(make_logits, scope, should_regularize, perturbation, differentiate_probability): """Creates per-example logits and the per-example standard Fisher-Rao norm. This function assumes the model of a categorical distribution generated by a softmax function. The standard Fisher-Rao norm uses the model distribution computed from the logits by the softmax function to estimate the Fisher information matrix. The empirical training distribution is used for the input values. Args: make_logits: Function, returns `Tensor` representing the per-example logits. The expected shape of the tensor is such that the number of categories is the last dimension. scope: String, name of `VariableScope` to use for the `Variable` objects that represent the regularized parameter. should_regularize: Function, takes a variable name as String and returns Boolean that decides whether the variable should be regularized. The passed variable name includes the name of the scope. perturbation: Float, finite difference perturbation constant. The choice of perturbation constant represents a tradeoff between rounding and approximation error and should depend on floating point precision and parameter norm. differentiate_probability: Boolean, determines whether the label probability distribution should be differentiated. Returns: A tuple of `Tensor` objects representing the per-example logits and the scalar standard Fisher-Rao norm regularization loss. Raises: ValueError: if the last dimension of the logits shape is not statically inferrable. """ collector = VariableCollector() with tf.variable_scope(scope, custom_getter=collector.collector_getter): logits = make_logits() if logits.shape[-1].value is None: raise ValueError("The size of the last dimension of the logits vector must" " be statically inferrable.") with tf.variable_scope( scope, custom_getter= make_perturbation_getter(should_regularize, collector, perturbation)): perturbed_logits = make_logits() log_probs = tf.nn.log_softmax(logits, axis=-1) perturbed_log_probs = tf.nn.log_softmax(perturbed_logits, axis=-1) stop_probs = tf.stop_gradient(tf.exp(log_probs)) log_prob_derivative = (tf.square((perturbed_log_probs - log_probs) / perturbation)) if differentiate_probability: prob_regularizer_loss = (log_prob_derivative * stop_probs + tf.stop_gradient(log_prob_derivative) * log_probs * stop_probs - tf.stop_gradient(log_prob_derivative * log_probs * stop_probs)) else: prob_regularizer_loss = log_prob_derivative * stop_probs regularizer = logits.shape[-1].value * tf.reduce_mean(prob_regularizer_loss) return (logits, regularizer)
# Copyright (c) 2015-2016 Tigera, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module containing all of the datatypes written and read from the datastore. """ from collections import namedtuple import copy import json import re from pycalico import netns from netaddr import IPAddress, IPNetwork from pycalico.util import generate_cali_interface_name, validate_characters, \ validate_ports, validate_icmp_type from pycalico.block import BLOCK_PREFIXLEN from pycalico.datastore_errors import InvalidBlockSizeError IF_PREFIX = "cali" """ prefix that appears in all Calico interface names in the root namespace. e.g. cali123456789ab. """ class Rules(namedtuple("Rules", ["inbound_rules", "outbound_rules"])): """ A set of Calico rules describing inbound and outbound network traffic policy. """ def to_dict(self): """ Convert the Rules object to a dictionary. :return: A dictionary representation of this object. """ json_dict = self._asdict() rules = json_dict["inbound_rules"] json_dict["inbound_rules"] = [rule.to_json_dict() for rule in rules] rules = json_dict["outbound_rules"] json_dict["outbound_rules"] = [rule.to_json_dict() for rule in rules] return json_dict def to_json(self, indent=None): """ Convert the Rules object to a JSON string. :param indent: Integer representing the level of indent from the returned json string. None = no indent, 0 = only newlines. Recommend using 1 for human-readable strings. :return: A JSON string representation of this object. """ return json.dumps(self.to_dict(), indent=indent) @classmethod def from_json(cls, json_str): """ Create a Rules object from a JSON string. :param json_str: A JSON string representation of a Rules object. :return: A Rules object. """ json_dict = json.loads(json_str) inbound_rules = [] for rule in json_dict["inbound_rules"]: inbound_rules.append(Rule(**rule)) outbound_rules = [] for rule in json_dict["outbound_rules"]: outbound_rules.append(Rule(**rule)) rules = cls(inbound_rules=inbound_rules, outbound_rules=outbound_rules) return rules class BGPPeer(object): """ Class encapsulating a BGPPeer. """ def __init__(self, ip, as_num): """ Constructor. :param ip: The BGPPeer IP address (string or IPAddress) :param as_num: The AS Number (string or int). """ self.ip = IPAddress(ip) # Store the AS number as a string. This allows dotted notation of # AS numbers. self.as_num = str(as_num) def to_json(self): """ Convert the BGPPeer to a JSON string. :return: A JSON string. """ json_dict = {"ip": str(self.ip), "as_num": self.as_num} return json.dumps(json_dict) @classmethod def from_json(cls, json_str): """ Convert the json string into a BGPPeer object. :param json_str: The JSON string representing a BGPPeer. :return: A BGPPeer object. """ json_dict = json.loads(json_str) return cls(json_dict["ip"], json_dict["as_num"]) def __eq__(self, other): if not isinstance(other, BGPPeer): return NotImplemented return (self.ip == other.ip and self.as_num == other.as_num) class IPPool(object): """ Class encapsulating an IPPool. """ def __init__(self, cidr, ipip=False, masquerade=False, ipam=True, disabled=False): """ Constructor. :param cidr: IPNetwork object (or CIDR string) representing the pool. NOTE: When used by Calico IPAM, an IPPool's cidr prefix must have a length equal to or smaller than an IPAM block, such as /24 if the IPAM block size is /26. :param ipip: Use IP-IP for this pool. :param masquerade: Enable masquerade (outgoing NAT) for this pool. :param ipam: Whether this IPPool is used by Calico IPAM. :param disabled: Whether this IPPool is disabled. If disabled, the pool is not used by the IPAM client for new allocation blocks. """ # Normalize the CIDR (e.g. 1.2.3.4/16 -> 1.2.0.0/16) self.cidr = IPNetwork(cidr).cidr self.ipam = bool(ipam) if self.ipam: if self.cidr.prefixlen > BLOCK_PREFIXLEN[self.cidr.version]: raise InvalidBlockSizeError("The CIDR block size for an " "IPv%s pool when using Calico IPAM must have a prefix " "length of %s or lower. Given: %s" % (self.cidr.version, BLOCK_PREFIXLEN[self.cidr.version], self.cidr.prefixlen)) self.ipip = bool(ipip) self.masquerade = bool(masquerade) self.disabled = bool(disabled) def to_json(self): """ Convert the IPPool to a JSON string. :return: A JSON string. """ json_dict = {"cidr" : str(self.cidr)} if self.ipip: json_dict["ipip"] = "tunl0" if self.masquerade: json_dict["masquerade"] = True # Only write "ipam" and "disabled" when they differ from their default # values. This keeps the interface unchanged between versions when # these fields are not required. if not self.ipam: json_dict["ipam"] = False if self.disabled: json_dict["disabled"] = True return json.dumps(json_dict) @classmethod def from_json(cls, json_str): """ Convert the json string into a IPPool object. :param json_str: The JSON string representing an IPPool. :return: An IPPool object. """ # The fields "ipam" and "disabled" may not be present in older versions # of the data, so use default values if not present. json_dict = json.loads(json_str) return cls(json_dict["cidr"], ipip=json_dict.get("ipip"), masquerade=json_dict.get("masquerade"), ipam=json_dict.get("ipam", True), disabled=json_dict.get("disabled", False)) def __eq__(self, other): if not isinstance(other, IPPool): return NotImplemented return (self.cidr == other.cidr and self.ipip == other.ipip and self.masquerade == other.masquerade and self.ipam == other.ipam and self.disabled == other.disabled) def __contains__(self, item): """ Override __contains__ so that you can check if an IP address is in this pool. e.g. IPAddress("1.2.3.4) in IPPool("1.2.3.0/24") is True. """ return item in self.cidr def __str__(self): """Return the CIDR of this pool.""" return str(self.cidr) class Endpoint(object): """ Class encapsulating an Endpoint. This class keeps track of the original JSON representation of the endpoint to allow atomic updates to be performed. """ # Endpoint path match regex ENDPOINT_KEY_MATCH = re.compile("/calico/v1/host/(?P<hostname>[^/]*)/" "workload/(?P<orchestrator_id>[^/]*)/" "(?P<workload_id>[^/]*)/" "endpoint/(?P<endpoint_id>[^/]*)") def __init__(self, hostname, orchestrator_id, workload_id, endpoint_id, state, mac, name=None): self.hostname = hostname self.orchestrator_id = orchestrator_id self.workload_id = workload_id self.endpoint_id = endpoint_id self.state = state self.mac = mac self.name = name or generate_cali_interface_name(IF_PREFIX, endpoint_id) self.ipv4_nets = set() self.ipv6_nets = set() self.profile_ids = [] self._original_json = None self.labels = {} def to_json(self): json_dict = {"state": self.state, "name": self.name, "mac": self.mac, "profile_ids": self.profile_ids, "labels": self.labels, "ipv4_nets": sorted([str(net) for net in self.ipv4_nets]), "ipv6_nets": sorted([str(net) for net in self.ipv6_nets])} return json.dumps(json_dict) @classmethod def from_json(cls, endpoint_key, json_str): """ Create an Endpoint from the endpoint raw JSON and the endpoint key. :param endpoint_key: The endpoint key (the etcd path to the endpoint) :param json_str: The raw endpoint JSON data. :return: An Endpoint object, or None if the endpoint_key does not represent and Endpoint. """ match = Endpoint.ENDPOINT_KEY_MATCH.match(endpoint_key) if not match: return None hostname = match.group("hostname") orchestrator_id = match.group("orchestrator_id") workload_id = match.group("workload_id") endpoint_id = match.group("endpoint_id") json_dict = json.loads(json_str) ep = cls(hostname, orchestrator_id, workload_id, endpoint_id, json_dict["state"], json_dict["mac"], name=json_dict["name"]) for net in json_dict["ipv4_nets"]: ep.ipv4_nets.add(IPNetwork(net)) for net in json_dict["ipv6_nets"]: ep.ipv6_nets.add(IPNetwork(net)) labels = json_dict.get("labels", {}) ep.labels = labels # Version controlled fields profile_id = json_dict.get("profile_id", None) ep.profile_ids = [profile_id] if profile_id else \ json_dict.get("profile_ids", []) # Store the original JSON representation of this Endpoint. ep._original_json = json_str return ep def matches(self, hostname=None, orchestrator_id=None, workload_id=None, endpoint_id=None): """ A less strict 'equals' function, which compares provided parameters to the current endpoint object. :param hostname: The hostname to compare to :param orchestrator_id: The orchestrator ID to compare to. :param workload_id: The workload ID to compare to :param endpoint_id: The endpoint ID to compare to :return: True if the provided parameters match the Endpoint's parameters, False if any of the provided parameters are different from the Endpoint's parameters. """ if hostname and hostname != self.hostname: return False elif orchestrator_id and orchestrator_id != self.orchestrator_id: return False elif workload_id and workload_id != self.workload_id: return False elif endpoint_id and endpoint_id != self.endpoint_id: return False else: return True def provision_veth(self, namespace, veth_name_ns): """ Create the veth, move into the container namespace, add the IP and set up the default routes. Note, the endpoint will not be updated in etcd. If desired, the user should update the endpoint mac with the mac address provided by the function and then call update_endpoint :param self: The endpoint object to provision the veth on :param namespace: The namespace to operate in :type namespace netns.Namespace :param veth_name_ns: The name of the interface in the namespace :return The mac address of the veth as a string """ assert isinstance(namespace, netns.Namespace), \ 'Namespace object expected.' netns.create_veth(self.name, self.temp_interface_name) netns.move_veth_into_ns(namespace, self.temp_interface_name, veth_name_ns) for ip_net in self.ipv4_nets | self.ipv6_nets: netns.add_ip_to_ns_veth(namespace, ip_net.ip, veth_name_ns) netns.add_ns_default_route(namespace, self.name, veth_name_ns) return netns.get_ns_veth_mac(namespace, veth_name_ns) def __eq__(self, other): if not isinstance(other, Endpoint): return NotImplemented return (self.endpoint_id == other.endpoint_id and self.state == other.state and self.mac == other.mac and self.profile_ids == other.profile_ids and self.ipv4_nets == other.ipv4_nets and self.name == other.name and self.ipv6_nets == other.ipv6_nets) def __ne__(self, other): result = self.__eq__(other) if result is NotImplemented: return result return not result def copy(self): return copy.deepcopy(self) @property def temp_interface_name(self): return generate_cali_interface_name("tmp", self.endpoint_id) def __repr__(self): return self.__str__() def __str__(self): return "Endpoint(%s)" % self.to_json() class Profile(object): """A Calico policy profile.""" def __init__(self, name): self.name = name self.tags = set() # Default to empty lists of rules. self.rules = Rules([], []) class Policy(object): """A Calico policy.""" def __init__(self, tier_name, policy_name): self.tier_name = tier_name self.policy_name = policy_name self.order = 0 # Default to empty lists of rules. self.rules = Rules([], []) # Default to empty selector. self.selector = "" def to_json(self): """ Returns a json string representing this Policy as stored in the data store. """ data = {"order": self.order, "selector": self.selector} data.update(self.rules.to_dict()) return json.dumps(data) class Rule(dict): """ A Calico inbound or outbound traffic rule. """ ALLOWED_KEYS = ["protocol", "src_tag", "src_selector", "src_ports", "src_net", "dst_tag", "dst_selector", "dst_ports", "dst_net", "icmp_type", "icmp_code", "action"] def __init__(self, **kwargs): super(Rule, self).__init__() for key, value in kwargs.iteritems(): self[key] = value def __setitem__(self, key, value): if key not in Rule.ALLOWED_KEYS: raise KeyError("Key %s is not allowed on Rule." % key) # Convert any CIDR strings to netaddr before inserting them. if key in ("src_net", "dst_net"): value = IPNetwork(value) if key == "action" and value not in ("allow", "deny", "next-tier"): raise ValueError("'%s' is not allowed for key 'action'" % value) if (key == "protocol" and value not in ("tcp", "udp", "icmp", "icmpv6", None)): raise ValueError("'%s' is not allowed for key 'protocol'" % value) if key in ("src_tag", "dst_tag") and not validate_characters(value): raise ValueError("'%s' is not allowed for key '%s'" % (value, key)) if key in ("src_ports", "dst_ports") and not validate_ports(value): raise ValueError("'%s' is not allowed for key '%s'" % (value, key)) if key in ("icmp_type", "icmp_code") and not validate_icmp_type(value): raise ValueError("'%s' is not allowed for key '%s'" % (value, key)) super(Rule, self).__setitem__(key, value) def to_json(self): """ Convert the Rule object to a JSON string. :return: A JSON string representation of this object. """ return json.dumps(self.to_json_dict()) def to_json_dict(self): """ Convert the Rule object to a dict that can be directly converted to JSON. :return: A dict containing valid JSON types. """ # Convert IPNetworks to strings json_dict = self.copy() if "dst_net" in json_dict: json_dict["dst_net"] = str(json_dict["dst_net"]) if "src_net" in json_dict: json_dict["src_net"] = str(json_dict["src_net"]) # Convert ports to integers. if "dst_ports" in json_dict: json_dict["dst_ports"] = [p for p in json_dict["dst_ports"]] if "src_ports" in json_dict: json_dict["src_ports"] = [p for p in json_dict["src_ports"]] return json_dict def pprint(self): """Human readable description.""" out = [self["action"]] if "protocol" in self: out.append(self["protocol"]) if "icmp_type" in self: out.extend(["type", str(self["icmp_type"])]) if "icmp_code" in self: out.extend(["code", str(self["icmp_code"])]) if "src_tag" in self or "src_ports" in self or "src_net" in self: out.append("from") if "src_ports" in self: ports = ",".join(str(p) for p in self["src_ports"]) out.extend(["ports", ports]) if "src_tag" in self: out.extend(["tag", self["src_tag"]]) if "src_net" in self: out.extend(["cidr", str(self["src_net"])]) if "dst_tag" in self or "dst_ports" in self or "dst_net" in self: out.append("to") if "dst_ports" in self: ports = ",".join(str(p) for p in self["dst_ports"]) out.extend(["ports", ports]) if "dst_tag" in self: out.extend(["tag", self["dst_tag"]]) if "dst_net" in self: out.extend(["cidr", str(self["dst_net"])]) return " ".join(out) class IPAMConfig(object): """ IPAM configuration. """ AUTO_ALLOCATE_BLOCKS = "auto_allocate_blocks" STRICT_AFFINITY = "strict_affinity" def __init__(self, auto_allocate_blocks=True, strict_affinity=False): self.auto_allocate_blocks = auto_allocate_blocks """ Whether Calico IPAM module is allowed to auto-allocate affine blocks when auto-assigning IP addresses. """ self.strict_affinity = strict_affinity """ Whether strict affinity should be observed for affine blocks. """ def to_json(self): """ Convert the IPAMConfig object to a JSON string. :return: A JSON string representation of this object. """ return json.dumps(self.to_json_dict()) def to_json_dict(self): """ Convert the Rule object to a dict that can be directly converted to JSON. :return: A dict containing valid JSON types. """ return { IPAMConfig.AUTO_ALLOCATE_BLOCKS: self.auto_allocate_blocks, IPAMConfig.STRICT_AFFINITY: self.strict_affinity } @classmethod def from_json(cls, json_str): """ Create an IPAMConfig from the raw JSON. :param json_str: A JSON string representation of an IPAMConfig object. :return: An IPAMConfig object. """ json_dict = json.loads(json_str) return IPAMConfig( auto_allocate_blocks=json_dict[IPAMConfig.AUTO_ALLOCATE_BLOCKS], strict_affinity=json_dict[IPAMConfig.STRICT_AFFINITY] ) def __eq__(self, other): if not isinstance(other, IPAMConfig): return NotImplemented return (self.auto_allocate_blocks == other.auto_allocate_blocks and self.strict_affinity == other.strict_affinity) def __ne__(self, other): result = self.__eq__(other) if result is NotImplemented: return result return not result def __repr__(self): return self.__str__() def __str__(self): return "IPAMConfig(%s)" % self.to_json()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from flask_restful import fields from cairis.core.AcceptEnvironmentProperties import AcceptEnvironmentProperties from cairis.core.ObjectSummary import ObjectSummary from cairis.core.Asset import Asset from cairis.core.AssetEnvironmentProperties import AssetEnvironmentProperties from cairis.core.Attacker import Attacker from cairis.core.AttackerEnvironmentProperties import AttackerEnvironmentProperties from cairis.core.ClassAssociation import ClassAssociation from cairis.core.GoalAssociation import GoalAssociation from cairis.core.Dependency import Dependency from cairis.core.Directory import Directory from cairis.core.Goal import Goal from cairis.core.GoalEnvironmentProperties import GoalEnvironmentProperties from cairis.core.Obstacle import Obstacle from cairis.core.ObstacleEnvironmentProperties import ObstacleEnvironmentProperties from cairis.core.DomainProperty import DomainProperty from cairis.core.MisuseCase import MisuseCase from cairis.core.MisuseCaseEnvironmentProperties import MisuseCaseEnvironmentProperties from cairis.core.MitigateEnvironmentProperties import MitigateEnvironmentProperties from cairis.core.Persona import Persona from cairis.core.PersonaEnvironmentProperties import PersonaEnvironmentProperties from cairis.core.Requirement import Requirement from cairis.core.Risk import Risk from cairis.core.Role import Role from cairis.core.SecurityPattern import SecurityPattern from cairis.core.Target import Target from cairis.core.Task import Task from cairis.core.Trace import Trace from cairis.core.TrustBoundary import TrustBoundary from cairis.core.UseCase import UseCase from cairis.core.TaskEnvironmentProperties import TaskEnvironmentProperties from cairis.core.UseCaseEnvironmentProperties import UseCaseEnvironmentProperties from cairis.core.ThreatEnvironmentProperties import ThreatEnvironmentProperties from cairis.core.TransferEnvironmentProperties import TransferEnvironmentProperties from cairis.core.ValidationResult import ValidationResult from cairis.core.ValueType import ValueType from cairis.core.Vulnerability import Vulnerability from cairis.core.VulnerabilityEnvironmentProperties import VulnerabilityEnvironmentProperties from cairis.core.Countermeasure import Countermeasure from cairis.core.CountermeasureEnvironmentProperties import CountermeasureEnvironmentProperties from cairis.core.ClassAssociation import ClassAssociation from cairis.core.GoalAssociation import GoalAssociation from cairis.core.ExternalDocument import ExternalDocument from cairis.core.DocumentReference import DocumentReference from cairis.core.ReferenceSynopsis import ReferenceSynopsis from cairis.core.ReferenceContribution import ReferenceContribution from cairis.core.GoalContribution import GoalContribution from cairis.core.ConceptReference import ConceptReference from cairis.core.PersonaCharacteristic import PersonaCharacteristic from cairis.core.TaskCharacteristic import TaskCharacteristic from cairis.core.ComponentView import ComponentView from cairis.core.Component import Component from cairis.core.TemplateGoal import TemplateGoal from cairis.core.TemplateAsset import TemplateAsset from cairis.core.TemplateRequirement import TemplateRequirement from cairis.core.Location import Location from cairis.core.Locations import Locations from cairis.core.WeaknessTarget import WeaknessTarget from cairis.core.DataFlow import DataFlow from cairis.tools.PseudoClasses import EnvironmentTensionModel, SecurityAttribute, ValuedRole, RiskRating, CountermeasureTarget,PersonaTaskCharacteristics, StepAttributes, CharacteristicReference,ObjectDependency,CharacteristicReferenceSynopsis,CharacteristicReferenceContribution __author__ = 'Robin Quetin, Shamal Faily' obj_id_field = "__python_obj__" likelihood_metadata = { "enum": ['Incredible', 'Improbable', 'Remote', 'Occasional', 'Probable', 'Frequent'] } severity_metadata = { "enum": ['Negligible', 'Marginal', 'Critical', 'Catastrophic'] } value_metadata = { "enum": ['None','Low', 'Medium', 'High'] } assettype_metadata = { "enum" : ['Information','Systems','Software','Hardware','People']} def gen_class_metadata(class_ref): return { "enum": [class_ref.__module__+'.'+class_ref.__name__] } class InterfaceModel(object): resource_fields = { obj_id_field: fields.String, "theInterfaceName": fields.String, "theInterfaceType": fields.String, "theAccessRight": fields.String, "thePrivilege": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class AssetEnvironmentPropertiesModel(object): def __init__(self, env_name='', associations=[], attributes=[]): self.environment = env_name self.associations = associations self.attributes = attributes self.attributesDictionary = {} def json_prepare(self): self.attributes = list(self.attributesDictionary.values()) self.attributesDictionary = {} for idx in range(0, len(self.associations)): self.associations[idx] = list(self.associations[idx]) resource_fields = { "__python_obj__": fields.String, "theAssociations": fields.List(fields.List(fields.String)), "theProperties": fields.List(fields.Nested(SecurityAttribute.resource_fields)), "theEnvironmentName": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class AssetModel(object): resource_fields = { obj_id_field: fields.String, "theDescription": fields.String, "theSignificance": fields.String, "theTags": fields.List(fields.String), "theCriticalRationale": fields.String, "theInterfaces": fields.List(fields.Nested(InterfaceModel.resource_fields)), "theType": fields.String, "theName": fields.String, "isCritical": fields.Integer, "theShortCode": fields.String, "theEnvironmentProperties": fields.List(fields.Nested(AssetEnvironmentPropertiesModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class ObjectSummaryModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theType": fields.String, "theDescription": fields.String, "theOriginator": fields.String, "theStatus": fields.String, "theVulnerability": fields.String, "theThreat": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class CapabilityModel(object): resource_fields = { "name": fields.String, "value": fields.String } required = list(resource_fields.keys()) class AttackerEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, 'theMotives': fields.List(fields.String), 'theRoles': fields.List(fields.String), 'theCapabilities': fields.List(fields.Nested(CapabilityModel.resource_fields)), 'theEnvironmentName': fields.String, } required = list(resource_fields.keys()) required.remove(obj_id_field) class AttackerModel(object): resource_fields = { obj_id_field: fields.String, 'theName': fields.String, 'theImage': fields.String, 'theDescription': fields.String, 'theTags': fields.List(fields.String), 'theEnvironmentProperties': fields.List(fields.Nested(AttackerEnvironmentPropertiesModel.resource_fields)), } required = list(resource_fields.keys()) required.remove(obj_id_field) class CImportParams(object): resource_fields = { 'urlenc_file_contents': fields.String, 'type': fields.String, 'overwrite': fields.Integer } required = list(resource_fields.keys()) class CExportParams(object): resource_fields = { 'theModel': fields.String } required = list(resource_fields.keys()) class DocumentationParams(object): resource_fields = { 'theDocumentType': fields.String, 'theTypeFlags': fields.List(fields.Integer), 'theSectionFlags': fields.List(fields.Integer) } required = list(resource_fields.keys()) class DependencyModel(object): resource_fields = { obj_id_field: fields.String, 'theDependencyType': fields.String, 'theRationale': fields.String, 'theEnvironmentName': fields.String, 'theDepender': fields.String, 'theDependee': fields.String, 'theDependency': fields.String, } required = list(resource_fields.keys()) required.remove(obj_id_field) class ClassAssociationModel(object): resource_fields = { obj_id_field: fields.String, 'theEnvironmentName': fields.String, 'theHeadAsset': fields.String, 'theHeadNav': fields.String, 'theHeadType': fields.String, 'theHeadMultiplicity': fields.String, 'theHeadRole': fields.String, 'theTailRole': fields.String, 'theTailMultiplicity': fields.String, 'theTailType': fields.String, 'theTailNav': fields.String, 'theTailAsset': fields.String, 'theRationale': fields.String, } required = list(resource_fields.keys()) required.remove(obj_id_field) class GoalAssociationModel(object): resource_fields = { obj_id_field: fields.String, 'theEnvironmentName': fields.String, 'theGoal': fields.String, 'theGoalDimension': fields.String, 'theAssociation': fields.String, 'theSubGoal': fields.String, 'theSubGoalDimension': fields.String, 'theAlternativeId': fields.String, 'theRationale': fields.String, } required = list(resource_fields.keys()) required.remove(obj_id_field) class EnvironmentModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theShortCode": fields.String, "theDescription": fields.String, "theEnvironments": fields.List(fields.String), "theDuplicateProperty": fields.String, "theOverridingEnvironment": fields.String, "theTensions": fields.List(fields.Nested(EnvironmentTensionModel.resource_fields)), } required = list(resource_fields.keys()) required.remove(obj_id_field) class ConcernAssociationModel(object): resource_fields = { obj_id_field: fields.String, 'theSource': fields.String, 'theSourceNry': fields.String, 'theLinkVerb': fields.String, 'theTargetNry': fields.String, 'theTarget': fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self,src,srcNry,linkVerb,targ,targNry): self.theSource = src self.theSourceNry = srcNry self.theLinkVerb = linkVerb self.theTargetNry = targNry self.theTarget = targ class RefinementModel(object): resource_fields = { obj_id_field: fields.String, 'theEndName': fields.String, 'theEndType': fields.String, 'theRefType': fields.String, 'isAlternate': fields.String, 'theRationale': fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self,eName,eType,refType,isAlt,refRat): self.theEndName = eName self.theEndType = eType self.theRefType = refType self.isAlternate = isAlt self.theRationale = refRat class GoalEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, "theCategory": fields.String, "theConcernAssociations": fields.List(fields.Nested(ConcernAssociationModel.resource_fields)), "theConcerns": fields.List(fields.String), "theDefinition": fields.String, "theEnvironmentName": fields.String, "theFitCriterion": fields.String, "theGoalRefinements": fields.List(fields.Nested(RefinementModel.resource_fields)), "theIssue": fields.String, "thePriority": fields.String, "theSubGoalRefinements": fields.List(fields.Nested(RefinementModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class GoalModel(object): resource_fields = { obj_id_field: fields.String, "theEnvironmentProperties": fields.List(fields.Nested(GoalEnvironmentPropertiesModel.resource_fields)), "theName": fields.String, "theOriginator": fields.String, "theTags": fields.List(fields.String) } required = list(resource_fields.keys()) required.remove(obj_id_field) class ObstacleEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, "theDefinition": fields.String, "theCategory": fields.String, "theGoalRefinements": fields.List(fields.Nested(RefinementModel.resource_fields)), "theSubGoalRefinements": fields.List(fields.Nested(RefinementModel.resource_fields)), "theConcerns": fields.List(fields.String), "theProbability": fields.Float, "theProbabilityRationale": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class ObstacleModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theTags": fields.List(fields.String), "theOriginator": fields.String, "theEnvironmentProperties": fields.List(fields.Nested(ObstacleEnvironmentPropertiesModel.resource_fields)), } required = list(resource_fields.keys()) required.remove(obj_id_field) class DomainPropertyModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theTags": fields.List(fields.String), "theDescription": fields.String, "theType": fields.String, "theOriginator": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class MisuseCaseEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, "theAssets": fields.List(fields.String), "theAttackers": fields.List(fields.String), "theDescription": fields.String, "theEnvironmentName": fields.String, "theObjective": fields.String, "theLikelihood": fields.String, "theRiskRating": fields.Nested(RiskRating.resource_fields), "theSeverity": fields.String, } required = ["theDescription", "theEnvironmentName"] class MisuseCaseModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theRiskName": fields.String, "theEnvironmentProperties": fields.List(fields.Nested(MisuseCaseEnvironmentPropertiesModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class RequirementModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theLabel": fields.String, "theDescription": fields.String, "thePriority": fields.Integer, "theOriginator": fields.String, "theFitCriterion": fields.String, "theRationale": fields.String, "theType": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class AcceptEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, 'theCost': fields.String, 'theRationale': fields.String, 'theEnvironmentName': fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class MitigateEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, 'theDetectionMechanisms': fields.List(fields.String), 'theDetectionPoint': fields.String, 'theType': fields.String, 'theEnvironmentName': fields.String, } required = list(resource_fields.keys()) required.remove(obj_id_field) class TransferEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, 'theRoles': fields.List(fields.Nested(ValuedRole.resource_fields)), 'theRationale': fields.String, 'theEnvironmentName': fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class ResponseEnvironmentPropertiesModel(object): resource_fields = { 'accept': fields.List(fields.Nested(AcceptEnvironmentPropertiesModel.resource_fields)), 'mitigate': fields.List(fields.Nested(MitigateEnvironmentPropertiesModel.resource_fields)), 'transfer': fields.List(fields.Nested(TransferEnvironmentPropertiesModel.resource_fields)) } field_names = list(resource_fields.keys()) class ResponseModel(object): resource_fields = { obj_id_field: fields.String, 'theTags': fields.List(fields.String), 'theRisk': fields.String, 'theName': fields.String, 'theEnvironmentProperties': fields.Nested(ResponseEnvironmentPropertiesModel.resource_fields), 'theResponseType': fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) required.remove('theTags') class RiskModel(object): resource_fields = { obj_id_field: fields.String, "theVulnerabilityName": fields.String, "theMisuseCase": fields.Nested(MisuseCaseModel.resource_fields), "theTags": fields.List(fields.Nested(fields.String)), "theThreatName": fields.String, "theRiskName": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) required.remove("theTags") class RoleModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theType": fields.String, "theShortCode": fields.String, "theDescription": fields.String, } required = list(resource_fields.keys()) required.remove(obj_id_field) class RoleEnvironmentPropertiesModel(object): resource_fields = { "theEnvironmentName": fields.String, "theResponses": fields.List(fields.List(fields.String)), "theCountermeasures": fields.List(fields.String), "theGoals": fields.List(fields.String), "theRequirements": fields.List(fields.String) } required = list(resource_fields.keys()) class ThreatEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, 'theAssets': fields.List(fields.String), 'theLikelihood': fields.String, 'theEnvironmentName': fields.String, 'theAttackers': fields.List(fields.String), 'theProperties': fields.List(fields.Nested(SecurityAttribute.resource_fields)), } required = list(resource_fields.keys()) required.remove(obj_id_field) class ThreatModel(object): resource_fields = { obj_id_field: fields.String, 'theTags': fields.List(fields.String), 'theName': fields.String, 'theType': fields.String, 'theMethod': fields.String, 'theEnvironmentProperties': fields.List(fields.Nested(ThreatEnvironmentPropertiesModel.resource_fields)), } required = list(resource_fields.keys()) required.remove(obj_id_field) class UserConfigModel(object): resource_fields = { "user": fields.String, "passwd": fields.String, "db": fields.String, "host": fields.String, "port": fields.Integer, "jsonPrettyPrint": fields.String } required = list(resource_fields.keys()) required.remove("jsonPrettyPrint") class VulnerabilityEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, "theAssets": fields.List(fields.String), "theEnvironmentName": fields.String, "theSeverity": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class VulnerabilityModel(object): resource_fields = { obj_id_field: fields.String, 'theName': fields.String, 'theType': fields.String, 'theTags': fields.List(fields.String), 'theDescription': fields.String, 'theEnvironmentProperties': fields.List(fields.Nested(VulnerabilityEnvironmentPropertiesModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class CountermeasureTask(object): resource_fields = { "thePersona": fields.String, "theTask": fields.String, "theDuration": fields.String, "theFrequency": fields.String, "theDemands": fields.String, "theGoalConflict": fields.String } required = list(resource_fields.keys()) def __init__(self,pName,tName,tDur,tFreq,tDemands,tGoalConflict): self.thePersona = pName self.theTask = tName self.theDuration = tDur self.theFrequency = tFreq self.theDemands = tDemands self.theGoalConflict = tGoalConflict class CountermeasureEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, "theEnvironmentName": fields.String, "theRequirements": fields.List(fields.String), "theTargets": fields.List(fields.Nested(CountermeasureTarget.resource_fields)), 'theProperties': fields.List(fields.Nested(SecurityAttribute.resource_fields)), "theCost": fields.String, "theRoles": fields.List(fields.String), "thePersonas": fields.List(fields.Nested(CountermeasureTask.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class CountermeasureModel(object): resource_fields = { obj_id_field: fields.String, 'theName': fields.String, 'theTags': fields.List(fields.String), 'theDescription': fields.String, 'theType': fields.String, 'theEnvironmentProperties': fields.List(fields.Nested(CountermeasureEnvironmentPropertiesModel.resource_fields)), } required = list(resource_fields.keys()) required.remove(obj_id_field) required.remove('theTags') class PersonaEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, 'theDirectFlag': fields.Integer, 'theNarrative': fields.String, 'theRoles': fields.List(fields.String) } required = list(resource_fields.keys()) required.remove(obj_id_field) class PersonaModel(object): resource_fields = { obj_id_field: fields.String, 'theName': fields.String, 'theTags': fields.List(fields.String), 'theActivities': fields.String, 'theAttitudes': fields.String, 'theAptitudes': fields.String, 'theMotivations': fields.String, 'theSkills': fields.String, 'theIntrinsic': fields.String, 'theContextual': fields.String, 'theImage': fields.String, 'isAssumption': fields.Integer, 'thePersonaType': fields.String, 'theEnvironmentProperties': fields.List(fields.Nested(PersonaEnvironmentPropertiesModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class TaskEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, 'thePersonas': fields.List(fields.Nested(PersonaTaskCharacteristics.resource_fields)), 'theAssets': fields.List(fields.String), 'theDependencies': fields.String, 'theNarrative': fields.String, 'theConsequences': fields.String, 'theBenefits': fields.String, 'theConcernAssociations': fields.List(fields.Nested(ConcernAssociationModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class TaskModel(object): resource_fields = { obj_id_field: fields.String, 'theName': fields.String, 'theShortCode': fields.String, 'theObjective': fields.String, 'isAssumption': fields.Integer, 'theAuthor': fields.String, 'theTags': fields.List(fields.String), 'theEnvironmentProperties': fields.List(fields.Nested(TaskEnvironmentPropertiesModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class UseCaseEnvironmentPropertiesModel(object): resource_fields = { obj_id_field: fields.String, 'thePreCond': fields.String, 'theSteps': fields.List(fields.Nested(StepAttributes.resource_fields)), 'thePostCond': fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class UseCaseContributionModel(object): resource_fields = { obj_id_field: fields.String, 'theContributionTo': fields.String, 'theReferenceContribution': fields.Nested(CharacteristicReferenceContribution.resource_fields) } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self,contTo,rc): self.theContributionTo = contTo self.theReferenceContribution = rc def __getitem__(self,varName): if (varName == 'theContributionTo'): return self.theContributionTo elif (varName == 'theReferenceContribution'): return self.theReferenceContribution else: return None class UseCaseModel(object): resource_fields = { obj_id_field: fields.String, 'theName': fields.String, 'theTags': fields.List(fields.String), 'theAuthor': fields.String, 'theCode': fields.String, 'theActors': fields.List(fields.String), 'theDescription': fields.String, 'theReferenceContributions': fields.List(fields.Nested(UseCaseContributionModel.resource_fields)), 'theEnvironmentProperties': fields.List(fields.Nested(UseCaseEnvironmentPropertiesModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class SearchValuesModel(object): resource_fields = { obj_id_field: fields.String, 'theEnvironmentName': fields.String, 'theTypeName': fields.String, 'theObjectName': fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class FindModel(object): resource_fields = { obj_id_field: fields.String, 'theSearchValues': fields.List(fields.Nested(SearchValuesModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class VersionModel(object): resource_fields = { obj_id_field: fields.String, 'theVersion': fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class ValidationModel(object): resource_fields = { obj_id_field: fields.String, 'theLabel': fields.String, 'theMessage': fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class AssetAssociationModel(object): resource_fields = { obj_id_field: fields.String, "theEnvironmentName": fields.String, "theHeadAsset": fields.String, "theHeadType": fields.String, "theHeadNavigation": fields.String, "theHeadMultiplicity": fields.String, "theHeadRole": fields.String, "theTailRole": fields.String, "theTailMultiplicity": fields.String, "theTailType": fields.String, "theTailNavigation": fields.String, "theTailAsset": fields.String, "theRationale": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class GoalAssociationModel(object): resource_fields = { obj_id_field: fields.String, "theEnvironmentName": fields.String, "theGoal": fields.String, "theGoalDimension": fields.String, "theAssociationType": fields.String, "theSubGoal": fields.String, "theSubGoalDimension": fields.String, "theAlternativeId": fields.String, "theRationale": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class ExternalDocumentModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theVersion": fields.String, "thePublicationDate": fields.String, "theAuthors": fields.String, "theDescription": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class DocumentReferenceModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theDocName": fields.String, "theContributor": fields.String, "theExcerpt": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class ReferenceSynopsisModel(object): resource_fields = { obj_id_field: fields.String, "theReference": fields.String, "theSynopsis": fields.String, "theDimension": fields.String, "theActor": fields.String, "theSynopsisDimension" : fields.String, "theInitialSatisfaction" : fields.String, "theRelatedGoals" : fields.List(fields.String) } required = list(resource_fields.keys()) required.remove(obj_id_field) class ReferenceContributionModel(object): resource_fields = { obj_id_field: fields.String, "theSource": fields.String, "theDestination": fields.String, "theMeansEnd": fields.String, "theContribution": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class GoalContributionModel(object): resource_fields = { obj_id_field: fields.String, "theSource": fields.String, "theSourceType": fields.String, "theDestination": fields.String, "theDestinationType": fields.String, "theMeansEnd": fields.String, "theContribution": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class ConceptReferenceModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theDimName": fields.String, "theObjtName": fields.String, "theDescription": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class PersonaCharacteristicModel(object): resource_fields = { obj_id_field: fields.String, "thePersonaName": fields.String, "theModQual": fields.String, "theVariable": fields.String, "theName": fields.String, "theCharacteristicSynopsis": fields.Nested(CharacteristicReferenceSynopsis.resource_fields), "theGrounds": fields.List(fields.Nested(CharacteristicReference.resource_fields)), "theWarrant": fields.List(fields.Nested(CharacteristicReference.resource_fields)), "theRebuttal": fields.List(fields.Nested(CharacteristicReference.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class TaskCharacteristicModel(object): resource_fields = { obj_id_field: fields.String, "theTaskName": fields.String, "theModQual": fields.String, "theName": fields.String, "theGrounds": fields.List(fields.Nested(CharacteristicReference.resource_fields)), "theWarrant": fields.List(fields.Nested(CharacteristicReference.resource_fields)), "theRebuttal": fields.List(fields.Nested(CharacteristicReference.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class ObjectDependencyModel(object): resource_fields = { obj_id_field: fields.String, "theDependencies": fields.List(fields.Nested(ObjectDependency.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self): self.theDependencies = [] class ComponentStructureModel(object): resource_fields = { obj_id_field: fields.String, "theHeadAsset": fields.String, "theHeadAdornment": fields.String, "theHeadNav": fields.String, "theHeadNry": fields.String, "theHeadRole": fields.String, "theTailRole": fields.String, "theTailNry": fields.String, "theTailNav": fields.String, "theTailAdornment": fields.String, "theTailAsset": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class ComponentGoalAssociationModel(object): resource_fields = { obj_id_field: fields.String, "theHeadGoal": fields.String, "theRefType": fields.String, "theTailGoal": fields.String, "theRationale": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class ComponentModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theDescription": fields.String, "theInterfaces" : fields.List(fields.Nested(InterfaceModel.resource_fields)), "theStructure" : fields.List(fields.Nested(ComponentStructureModel.resource_fields)), "theRequirements" : fields.List(fields.String), "theGoals" : fields.List(fields.String), "theGoalAssociations" : fields.List(fields.Nested(ComponentGoalAssociationModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class ConnectorModel(object): resource_fields = { obj_id_field: fields.String, "theConnectorName": fields.String, "theFromComponent": fields.String, "theFromRole": fields.String, "theFromInterface": fields.String, "theToComponent": fields.String, "theToInterface": fields.String, "theToRole": fields.String, "theAssetName": fields.String, "theProtocol": fields.String, "theAccessRight": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class ArchitecturalPatternModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theSynopsis": fields.String, "theComponents": fields.List(fields.Nested(ComponentModel.resource_fields)), "theConnectors": fields.List(fields.Nested(ConnectorModel.resource_fields)), "theAttackSurfaceMetric": fields.List(fields.Integer) } required = list(resource_fields.keys()) required.remove(obj_id_field) required.remove('theAttackSurfaceMetric') class ValueTypeModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theDescription": fields.String, "theType": fields.String, "theEnvironmentName": fields.String, "theScore": fields.Integer, "theRationale": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class TemplateGoalModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theDefinition": fields.String, "theRationale": fields.String, "theConcerns": fields.List(fields.String), "theResponsibilities": fields.List(fields.String) } required = list(resource_fields.keys()) required.remove(obj_id_field) class TemplateAssetModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theShortCode": fields.String, "theDescription": fields.String, "theSignificance": fields.String, "theType": fields.String, "theSurfaceType": fields.String, "theAccessRight": fields.String, "theProperties": fields.List(fields.Nested(SecurityAttribute.resource_fields)), "theTags": fields.String, "theInterfaces" : fields.List(fields.Nested(InterfaceModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) required.remove('theTags') class TemplateRequirementModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theAssetName": fields.String, "theType": fields.String, "theDescription": fields.String, "theRationale": fields.String, "theFitCriterion": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class LocationModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theAssetInstances": fields.List(fields.String), "thePersonaInstances": fields.List(fields.String), "theLinks": fields.List(fields.String), } required = list(resource_fields.keys()) required.remove(obj_id_field) class LocationsModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theDiagram": fields.List(fields.String), "theLocations" : fields.List(fields.Nested(LocationModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class SummaryModel(object): resource_fields = { "theLabel": fields.String, "theValue": fields.String } required = list(resource_fields.keys()) def __init__(self,lbl,val): self.theLabel = lbl self.theValue = val class TraceModel(object): resource_fields = { obj_id_field: fields.String, "theFromObject": fields.String, "theFromName": fields.String, "theToObject": fields.String, "theToName": fields.String, "theLabel" : fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self,fromObjt,fromName,toObjt,toName,lbl): self.theFromObject = fromObjt self.theFromName = fromName self.theToObject = toObjt self.theToName = toName self.theLabel = lbl class WeaknessTargetModel(object): resource_fields = { obj_id_field: fields.String, "theTargetName": fields.String, "theComponents": fields.List(fields.String), "theTemplateAssets": fields.List(fields.String), "theAssets": fields.List(fields.String), "theTreatmentRequirement": fields.String, "theTreatmentAsset": fields.String, "theTreatmentEffectiveness": fields.String, "theTreatmentRationale" : fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self): self.theTargetName = '' self.theComponents = [] self.theTemplateAssets = [] self.theAssets = [] self.theTreatmentRequirement = '' self.theTreatmentAsset = '' self.theTreatmentEffectiveness = '' self.theTreatmentRationale = '' class PersonaImpactModel(object): resource_fields = { obj_id_field: fields.String, "thePersonaName": fields.String, "theImpactScore": fields.Integer } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self,pName,iScore): self.thePersonaName = pName self.theImpactScore = iScore class CandidateGoalObstacleModel(object): resource_fields = { obj_id_field: fields.String, "theGoalName": fields.String, "theObstacleName": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self,gName,oName): self.theGoalName = gName self.theObstacleName = oName class WeaknessAnalysisModel(object): resource_fields = { obj_id_field: fields.String, "theVulnerabilityWeaknesses" : fields.List(fields.Nested(WeaknessTargetModel.resource_fields)), "theThreatWeaknesses" : fields.List(fields.Nested(WeaknessTargetModel.resource_fields)), "thePersonaImpact" : fields.List(fields.Nested(PersonaImpactModel.resource_fields)), "theCandidateGoals" : fields.List(fields.Nested(CandidateGoalObstacleModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self): self.theVulnerabilityWeaknesses = [] self.theThreatWeaknesses = [] self.thePersonaImpact = [] self.theCandidateGoals = [] class SecurityPatternStructureModel(object): resource_fields = { obj_id_field: fields.String, "theHeadAsset": fields.String, "theHeadAdornment": fields.String, "theHeadNry": fields.String, "theHeadRole": fields.String, "theTailRole": fields.String, "theTailNry": fields.String, "theTailAdornment": fields.String, "theTailAsset": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class PatternRequirementModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theAsset": fields.String, "theType": fields.String, "theDescription": fields.String, "theRationale": fields.String, "theFitCriterion": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class SecurityPatternModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theContext": fields.String, "theProblem": fields.String, "theSolution": fields.String, "theRequirements": fields.List(fields.Nested(PatternRequirementModel.resource_fields)), "theConcernAssociations" : fields.List(fields.Nested(SecurityPatternStructureModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class DataFlowObstacle(object): resource_fields = { obj_id_field: fields.String, "theObstacleName" : fields.String, "theKeyword" : fields.String, "theContext" : fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class DataFlowModel(object): resource_fields = { obj_id_field: fields.String, "theName": fields.String, "theType": fields.String, "theEnvironmentName": fields.String, "theFromName": fields.String, "theFromType": fields.String, "theToName": fields.String, "theToType": fields.String, "theAssets": fields.List(fields.String), "theObstacles": fields.List(fields.Nested(DataFlowObstacle.resource_fields)), "theTags": fields.List(fields.String) } required = list(resource_fields.keys()) required.remove(obj_id_field) class DirectoryModel(object): resource_fields = { obj_id_field: fields.String, "theLabel": fields.String, "theName": fields.String, "theDescription": fields.String, "theType": fields.String, "theReference": fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) class TrustBoundaryComponent(object): resource_fields = { obj_id_field: fields.String, 'theName': fields.String, 'theType': fields.String, "theTags": fields.List(fields.String) } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self,n,t): self.theName = n self.theType = t def name(self): return self.theName def type(self): return self.theType class TrustBoundaryEnvironmentModel(object): resource_fields = { obj_id_field: fields.String, 'theEnvironmentName': fields.String, 'theComponents': fields.List(fields.Nested(TrustBoundaryComponent.resource_fields)), 'thePrivilege' : fields.String } required = list(resource_fields.keys()) required.remove(obj_id_field) def __init__(self,n,c,p): self.theEnvironmentName = n self.theComponents = c self.thePrivilege = p class TrustBoundaryModel(object): resource_fields = { obj_id_field: fields.String, 'theName': fields.String, 'theType': fields.String, 'theDescription': fields.String, 'theEnvironmentProperties': fields.List(fields.Nested(TrustBoundaryEnvironmentModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class ThreatModelPropertyModel(object): resource_fields = { obj_id_field: fields.String, 'theProperty': fields.String, 'theThreats': fields.List(fields.String) } required = list(resource_fields.keys()) required.remove(obj_id_field) class ThreatModelElementModel(object): resource_fields = { obj_id_field: fields.String, 'theElement': fields.String, 'theProperties': fields.List(fields.Nested(ThreatModelPropertyModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field) class ThreatModelModel(object): resource_fields = { obj_id_field: fields.String, 'theEntities': fields.List(fields.Nested(ThreatModelElementModel.resource_fields)), 'theProcesses': fields.List(fields.Nested(ThreatModelElementModel.resource_fields)), 'theDatastores': fields.List(fields.Nested(ThreatModelElementModel.resource_fields)), 'theDataflows': fields.List(fields.Nested(ThreatModelElementModel.resource_fields)) } required = list(resource_fields.keys()) required.remove(obj_id_field)
#!/usr/bin/env python2 # Copyright (c) 2014-2018 The Bitcoin Core developers # Copyright (c) 2015-2018 The PIVX developers # Copyright (c) 2018 The Ion developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Exercise the wallet backup code. Ported from walletbackup.sh. Test case is: 4 nodes. 1 2 and 3 send transactions between each other, fourth node is a miner. 1 2 3 each mine a block to start, then Miner creates 100 blocks so 1 2 3 each have 50 mature coins to spend. Then 5 iterations of 1/2/3 sending coins amongst themselves to get transactions in the wallets, and the miner mining one block. Wallets are backed up using dumpwallet/backupwallet. Then 5 more iterations of transactions and mining a block. Miner then generates 101 more blocks, so any transaction fees paid mature. Sanity check: Sum(1,2,3,4 balances) == 114*50 1/2/3 are shutdown, and their wallets erased. Then restore using wallet.dat backup. And confirm 1/2/3/4 balances are same as before. Shutdown again, restore using importwallet, and confirm again balances are correct. """ from test_framework import BitcoinTestFramework from util import * from random import randint import logging logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) class WalletBackupTest(BitcoinTestFramework): def setup_chain(self): logging.info("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 4) # This mirrors how the network was setup in the bash test def setup_network(self, split=False): # nodes 1, 2,3 are spenders, let's give them a keypool=100 extra_args = [["-keypool=100"], ["-keypool=100"], ["-keypool=100"], []] self.nodes = start_nodes(4, self.options.tmpdir, extra_args) connect_nodes(self.nodes[0], 3) connect_nodes(self.nodes[1], 3) connect_nodes(self.nodes[2], 3) connect_nodes(self.nodes[2], 0) self.is_network_split=False self.sync_all() def one_send(self, from_node, to_address): if (randint(1,2) == 1): amount = Decimal(randint(1,10)) / Decimal(10) self.nodes[from_node].sendtoaddress(to_address, amount) def do_one_round(self): a0 = self.nodes[0].getnewaddress() a1 = self.nodes[1].getnewaddress() a2 = self.nodes[2].getnewaddress() self.one_send(0, a1) self.one_send(0, a2) self.one_send(1, a0) self.one_send(1, a2) self.one_send(2, a0) self.one_send(2, a1) # Have the miner (node3) mine a block. # Must sync mempools before mining. sync_mempools(self.nodes) self.nodes[3].setgenerate(True, 1) # As above, this mirrors the original bash test. def start_three(self): self.nodes[0] = start_node(0, self.options.tmpdir) self.nodes[1] = start_node(1, self.options.tmpdir) self.nodes[2] = start_node(2, self.options.tmpdir) connect_nodes(self.nodes[0], 3) connect_nodes(self.nodes[1], 3) connect_nodes(self.nodes[2], 3) connect_nodes(self.nodes[2], 0) def stop_three(self): stop_node(self.nodes[0], 0) stop_node(self.nodes[1], 1) stop_node(self.nodes[2], 2) def erase_three(self): os.remove(self.options.tmpdir + "/node0/regtest/wallet.dat") os.remove(self.options.tmpdir + "/node1/regtest/wallet.dat") os.remove(self.options.tmpdir + "/node2/regtest/wallet.dat") def run_test(self): logging.info("Generating initial blockchain") self.nodes[0].setgenerate(True, 1) sync_blocks(self.nodes) self.nodes[1].setgenerate(True, 1) sync_blocks(self.nodes) self.nodes[2].setgenerate(True, 1) sync_blocks(self.nodes) self.nodes[3].setgenerate(True, 100) sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) assert_equal(self.nodes[2].getbalance(), 50) assert_equal(self.nodes[3].getbalance(), 0) logging.info("Creating transactions") # Five rounds of sending each other transactions. for i in range(5): self.do_one_round() logging.info("Backing up") tmpdir = self.options.tmpdir self.nodes[0].backupwallet(tmpdir + "/node0/wallet.bak") self.nodes[0].dumpwallet(tmpdir + "/node0/wallet.dump") self.nodes[1].backupwallet(tmpdir + "/node1/wallet.bak") self.nodes[1].dumpwallet(tmpdir + "/node1/wallet.dump") self.nodes[2].backupwallet(tmpdir + "/node2/wallet.bak") self.nodes[2].dumpwallet(tmpdir + "/node2/wallet.dump") logging.info("More transactions") for i in range(5): self.do_one_round() # Generate 101 more blocks, so any fees paid mature self.nodes[3].setgenerate(True, 101) self.sync_all() balance0 = self.nodes[0].getbalance() balance1 = self.nodes[1].getbalance() balance2 = self.nodes[2].getbalance() balance3 = self.nodes[3].getbalance() total = balance0 + balance1 + balance2 + balance3 # At this point, there are 214 blocks (103 for setup, then 10 rounds, then 101.) # 114 are mature, so the sum of all wallets should be 114 * 50 = 5700. assert_equal(total, 5700) ## # Test restoring spender wallets from backups ## logging.info("Restoring using wallet.dat") self.stop_three() self.erase_three() # Start node2 with no chain shutil.rmtree(self.options.tmpdir + "/node2/regtest/blocks") shutil.rmtree(self.options.tmpdir + "/node2/regtest/chainstate") # Restore wallets from backup shutil.copyfile(tmpdir + "/node0/wallet.bak", tmpdir + "/node0/regtest/wallet.dat") shutil.copyfile(tmpdir + "/node1/wallet.bak", tmpdir + "/node1/regtest/wallet.dat") shutil.copyfile(tmpdir + "/node2/wallet.bak", tmpdir + "/node2/regtest/wallet.dat") logging.info("Re-starting nodes") self.start_three() sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), balance0) assert_equal(self.nodes[1].getbalance(), balance1) assert_equal(self.nodes[2].getbalance(), balance2) logging.info("Restoring using dumped wallet") self.stop_three() self.erase_three() #start node2 with no chain shutil.rmtree(self.options.tmpdir + "/node2/regtest/blocks") shutil.rmtree(self.options.tmpdir + "/node2/regtest/chainstate") self.start_three() assert_equal(self.nodes[0].getbalance(), 0) assert_equal(self.nodes[1].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 0) self.nodes[0].importwallet(tmpdir + "/node0/wallet.dump") self.nodes[1].importwallet(tmpdir + "/node1/wallet.dump") self.nodes[2].importwallet(tmpdir + "/node2/wallet.dump") sync_blocks(self.nodes) assert_equal(self.nodes[0].getbalance(), balance0) assert_equal(self.nodes[1].getbalance(), balance1) assert_equal(self.nodes[2].getbalance(), balance2) if __name__ == '__main__': WalletBackupTest().main()
import math as python_lib_Math import math as Math import builtins as python_lib_Builtins import inspect as python_lib_Inspect class Enum: _hx_class_name = "Enum" _hx_fields = ["tag", "index", "params"] _hx_methods = ["__str__"] def __init__(self,tag,index,params): self.tag = None self.index = None self.params = None self.tag = tag self.index = index self.params = params def __str__(self): if (self.params is None): return self.tag else: return (((HxOverrides.stringOrNull(self.tag) + "(") + HxOverrides.stringOrNull(",".join([python_Boot.toString1(x1,'') for x1 in self.params]))) + ")") class Script: _hx_class_name = "Script" _hx_statics = ["main"] @staticmethod def main(): data = sys_io_File.getContent("dq_unisex_names.csv") data = StringTools.replace(data,"\r","") data_list = data.split("\n") first_five = data_list[0:5] print(str(first_five)) class StringTools: _hx_class_name = "StringTools" _hx_statics = ["replace"] @staticmethod def replace(s,sub,by): _this = None if (sub == ""): _this = list(s) else: _this = s.split(sub) return by.join([python_Boot.toString1(x1,'') for x1 in _this]) class haxe_io_Eof: _hx_class_name = "haxe.io.Eof" _hx_methods = ["toString"] def toString(self): return "Eof" class python_Boot: _hx_class_name = "python.Boot" _hx_statics = ["keywords", "toString1", "fields", "simpleField", "getInstanceFields", "getSuperClass", "getClassFields", "prefixLength", "unhandleKeywords"] @staticmethod def toString1(o,s): if (o is None): return "null" if isinstance(o,str): return o if (s is None): s = "" if (len(s) >= 5): return "<...>" if isinstance(o,bool): if o: return "true" else: return "false" if isinstance(o,int): return str(o) if isinstance(o,float): try: if (o == int(o)): def _hx_local_1(): def _hx_local_0(): v = o return Math.floor((v + 0.5)) return str(_hx_local_0()) return _hx_local_1() else: return str(o) except Exception as _hx_e: _hx_e1 = _hx_e e = _hx_e1 return str(o) if isinstance(o,list): o1 = o l = len(o1) st = "[" s = (("null" if s is None else s) + "\t") _g = 0 while (_g < l): i = _g _g = (_g + 1) prefix = "" if (i > 0): prefix = "," st = (("null" if st is None else st) + HxOverrides.stringOrNull(((("null" if prefix is None else prefix) + HxOverrides.stringOrNull(python_Boot.toString1((o1[i] if i >= 0 and i < len(o1) else None),s)))))) st = (("null" if st is None else st) + "]") return st try: if hasattr(o,"toString"): return o.toString() except Exception as _hx_e: _hx_e1 = _hx_e pass if (python_lib_Inspect.isfunction(o) or python_lib_Inspect.ismethod(o)): return "<function>" if hasattr(o,"__class__"): if isinstance(o,_hx_AnonObject): toStr = None try: fields = python_Boot.fields(o) fieldsStr = None _g1 = [] _g11 = 0 while (_g11 < len(fields)): f = (fields[_g11] if _g11 >= 0 and _g11 < len(fields) else None) _g11 = (_g11 + 1) x = ((("" + ("null" if f is None else f)) + " : ") + HxOverrides.stringOrNull(python_Boot.toString1(python_Boot.simpleField(o,f),(("null" if s is None else s) + "\t")))) _g1.append(x) fieldsStr = _g1 toStr = (("{ " + HxOverrides.stringOrNull(", ".join([x1 for x1 in fieldsStr]))) + " }") except Exception as _hx_e: _hx_e1 = _hx_e e2 = _hx_e1 return "{ ... }" if (toStr is None): return "{ ... }" else: return toStr if isinstance(o,Enum): o2 = o l1 = len(o2.params) hasParams = (l1 > 0) if hasParams: paramsStr = "" _g2 = 0 while (_g2 < l1): i1 = _g2 _g2 = (_g2 + 1) prefix1 = "" if (i1 > 0): prefix1 = "," paramsStr = (("null" if paramsStr is None else paramsStr) + HxOverrides.stringOrNull(((("null" if prefix1 is None else prefix1) + HxOverrides.stringOrNull(python_Boot.toString1((o2.params[i1] if i1 >= 0 and i1 < len(o2.params) else None),s)))))) return (((HxOverrides.stringOrNull(o2.tag) + "(") + ("null" if paramsStr is None else paramsStr)) + ")") else: return o2.tag if hasattr(o,"_hx_class_name"): if (o.__class__.__name__ != "type"): fields1 = python_Boot.getInstanceFields(o) fieldsStr1 = None _g3 = [] _g12 = 0 while (_g12 < len(fields1)): f1 = (fields1[_g12] if _g12 >= 0 and _g12 < len(fields1) else None) _g12 = (_g12 + 1) x1 = ((("" + ("null" if f1 is None else f1)) + " : ") + HxOverrides.stringOrNull(python_Boot.toString1(python_Boot.simpleField(o,f1),(("null" if s is None else s) + "\t")))) _g3.append(x1) fieldsStr1 = _g3 toStr1 = (((HxOverrides.stringOrNull(o._hx_class_name) + "( ") + HxOverrides.stringOrNull(", ".join([x1 for x1 in fieldsStr1]))) + " )") return toStr1 else: fields2 = python_Boot.getClassFields(o) fieldsStr2 = None _g4 = [] _g13 = 0 while (_g13 < len(fields2)): f2 = (fields2[_g13] if _g13 >= 0 and _g13 < len(fields2) else None) _g13 = (_g13 + 1) x2 = ((("" + ("null" if f2 is None else f2)) + " : ") + HxOverrides.stringOrNull(python_Boot.toString1(python_Boot.simpleField(o,f2),(("null" if s is None else s) + "\t")))) _g4.append(x2) fieldsStr2 = _g4 toStr2 = (((("#" + HxOverrides.stringOrNull(o._hx_class_name)) + "( ") + HxOverrides.stringOrNull(", ".join([x1 for x1 in fieldsStr2]))) + " )") return toStr2 if (o == str): return "#String" if (o == list): return "#Array" if callable(o): return "function" try: if hasattr(o,"__repr__"): return o.__repr__() except Exception as _hx_e: _hx_e1 = _hx_e pass if hasattr(o,"__str__"): return o.__str__([]) if hasattr(o,"__name__"): return o.__name__ return "???" else: return str(o) @staticmethod def fields(o): a = [] if (o is not None): if hasattr(o,"_hx_fields"): fields = o._hx_fields return list(fields) if isinstance(o,_hx_AnonObject): d = o.__dict__ keys = d.keys() handler = python_Boot.unhandleKeywords for k in keys: a.append(handler(k)) elif hasattr(o,"__dict__"): a1 = [] d1 = o.__dict__ keys1 = d1.keys() for k in keys1: a.append(k) return a @staticmethod def simpleField(o,field): if (field is None): return None field1 = None if field in python_Boot.keywords: field1 = ("_hx_" + field) elif ((((len(field) > 2) and ((ord(field[0]) == 95))) and ((ord(field[1]) == 95))) and ((ord(field[(len(field) - 1)]) != 95))): field1 = ("_hx_" + field) else: field1 = field if hasattr(o,field1): return getattr(o,field1) else: return None @staticmethod def getInstanceFields(c): f = None if hasattr(c,"_hx_fields"): f = c._hx_fields else: f = [] if hasattr(c,"_hx_methods"): a = c._hx_methods f = (f + a) sc = python_Boot.getSuperClass(c) if (sc is None): return f else: scArr = python_Boot.getInstanceFields(sc) scMap = set(scArr) res = [] _g = 0 while (_g < len(f)): f1 = (f[_g] if _g >= 0 and _g < len(f) else None) _g = (_g + 1) if (not f1 in scMap): scArr.append(f1) return scArr @staticmethod def getSuperClass(c): if (c is None): return None try: if hasattr(c,"_hx_super"): return c._hx_super return None except Exception as _hx_e: _hx_e1 = _hx_e pass return None @staticmethod def getClassFields(c): if hasattr(c,"_hx_statics"): x = c._hx_statics return list(x) else: return [] @staticmethod def unhandleKeywords(name): if (HxString.substr(name,0,python_Boot.prefixLength) == "_hx_"): real = HxString.substr(name,python_Boot.prefixLength,None) if real in python_Boot.keywords: return real return name class _hx_AnonObject: _hx_class_name = "_hx_AnonObject" class python_internal_ArrayImpl: _hx_class_name = "python.internal.ArrayImpl" _hx_statics = ["_get"] @staticmethod def _get(x,idx): if ((idx > -1) and ((idx < len(x)))): return x[idx] else: return None class HxOverrides: _hx_class_name = "HxOverrides" _hx_statics = ["eq", "stringOrNull"] @staticmethod def eq(a,b): if (isinstance(a,list) or isinstance(b,list)): return a is b return (a == b) @staticmethod def stringOrNull(s): if (s is None): return "null" else: return s class HxString: _hx_class_name = "HxString" _hx_statics = ["substr"] @staticmethod def substr(s,startIndex,_hx_len = None): if (_hx_len is None): return s[startIndex:] else: if (_hx_len == 0): return "" return s[startIndex:(startIndex + _hx_len)] class sys_io_File: _hx_class_name = "sys.io.File" _hx_statics = ["getContent"] @staticmethod def getContent(path): f = python_lib_Builtins.open(path,"r",-1,"utf-8",None,"") content = f.read(-1) f.close() return content Math.NEGATIVE_INFINITY = float("-inf") Math.POSITIVE_INFINITY = float("inf") Math.NaN = float("nan") Math.PI = python_lib_Math.pi python_Boot.keywords = set(["and", "del", "from", "not", "with", "as", "elif", "global", "or", "yield", "assert", "else", "if", "pass", "None", "break", "except", "import", "raise", "True", "class", "exec", "in", "return", "False", "continue", "finally", "is", "try", "def", "for", "lambda", "while"]) python_Boot.prefixLength = len("_hx_") Script.main()
from __future__ import absolute_import, print_function, unicode_literals import datetime import random from django.db.models import Max, Min, Sum from django.db.models.query import F from kolibri.auth.filters import HierarchyRelationsFilter from kolibri.auth.models import Classroom, Facility, FacilityUser from kolibri.content.models import ContentNode from kolibri.logger.models import AttemptLog, ContentSessionLog, ContentSummaryLog, MasteryLog from le_utils.constants import content_kinds def get_or_create_facilities(**options): n_facilities = options['n_facilities'] n_on_device = Facility.objects.all().count() n_to_create = n_facilities - n_on_device if n_to_create > 0: print('Generating {n} facility object(s)'.format(n=n_to_create)) for i in range(0, n_to_create): Facility.objects.create(name='Test Facility {i}'.format(i=i + 1)) return Facility.objects.all()[0:n_facilities] def get_or_create_classrooms(**options): n_classes = options['n_classes'] facility = options['facility'] n_on_device = Classroom.objects.filter(parent=facility).count() n_to_create = n_classes - n_on_device if n_to_create > 0: print('Generating {n} classroom object(s) for facility: {name}'.format( n=n_to_create, name=facility.name, )) for i in range(0, n_to_create): Classroom.objects.create( parent=facility, name='Classroom {i}{a}'.format(i=i + 1, a=random.choice('ABCD')) ) return Classroom.objects.filter(parent=facility)[0:n_classes] def get_or_create_classroom_users(**options): classroom = options['classroom'] n_users = options['n_users'] user_data = options['user_data'] facility = options['facility'] # The headers in the user_data.csv file that we use to generate user Full Names # Note, we randomly pick from these to give deliberately varied (and sometimes idiosyncratic) # Full names - because we should never assume that users have names like us user_data_name_fields = ["GivenName", "MiddleInitial", "Surname"] n_in_classroom = HierarchyRelationsFilter(FacilityUser.objects.all()).filter_by_hierarchy( ancestor_collection=classroom, target_user=F("id"), ).count() # Only generate new users if there are fewer users than requested. n_to_create = n_users - n_in_classroom if n_to_create > 0: print('Generating {n} user object(s) for class: {classroom} in facility: {facility}'.format( n=n_to_create, classroom=classroom, facility=facility, )) for i in range(0, n_to_create): # Get the first base data that does not have a matching user already base_data = user_data[n_in_classroom + i] # Randomly create the name from 1 to 3 of the three user name fields name = " ".join([base_data[key] for key in random.sample(user_data_name_fields, random.randint(1, 3))]) user = FacilityUser.objects.create( facility=facility, full_name=name, username=base_data['Username'] ) # Set a dummy password so that if we want to login as this learner later, we can. user.set_password('password') user.save() # Add the user to the current classroom classroom.add_member(user) return HierarchyRelationsFilter(FacilityUser.objects.all()).filter_by_hierarchy( target_user=F("id"), ancestor_collection=classroom, )[0:n_users] def add_channel_activity_for_user(**options): # noqa: max-complexity=16 n_content_items = options['n_content_items'] channel = options['channel'] user = options['user'] now = options['now'] channel_id = channel.id default_channel_content = ContentNode.objects.exclude(kind=content_kinds.TOPIC).filter(channel_id=channel_id) print('Generating {i} user interaction(s) for user: {user} for channel: {channel}'.format( i=n_content_items, user=user, channel=channel.name )) # Generate a content interaction history for this many content items for i in range(0, n_content_items): # Use this to randomly select a content node to generate the interaction for index = random.randint(0, default_channel_content.count() - 1) random_node = default_channel_content[index] # We will generate between 1 and 5 content session logs for this content item session_logs = [] for j in range(0, random.randint(1, 5)): # How many minutes did they spend in this session? Up to 15 duration = random.random() * 15 # Assume they spent some of this session time not doing anything - the lazy... idle_time = random.random() * duration session_logs.append(ContentSessionLog( user=user, channel_id=channel_id, content_id=random_node.content_id, start_timestamp=now - datetime.timedelta(i + j, 0, duration), end_timestamp=now - datetime.timedelta(i + j), # How many seconds did they actually spend doing something? time_spent=(duration - idle_time) * 60, progress=random.random(), kind=random_node.kind, )) # Assume they have not completed completion_timestamp = None cumulative_progress = 0 # Go through all the session logs and add up the progress in each for session_log in session_logs: cumulative_progress = min(cumulative_progress + session_log.progress, 1.0) # If the progress is 1 or more, they have completed! Set the completion timestamp # For the end of this session, for the sake of argument. if cumulative_progress >= 1.0: completion_timestamp = session_log.end_timestamp session_log.save() # Now that we have created all the Session Logs, infer the summary log from them summary_log, created = ContentSummaryLog.objects.get_or_create( user=user, kind=random_node.kind, content_id=random_node.content_id, # Use defaults here so that we don't try to create a new Summary Log with the same # kind/content_id/user combo, as this would violate uniqueness constraints defaults={ 'channel_id': channel_id, # Start timestamp is the earliest start timestamp of the session logs 'start_timestamp': min(session_logs, key=lambda x: x.start_timestamp).start_timestamp, # End timestamp is the latest of all the end timestamps 'end_timestamp': max(session_logs, key=lambda x: x.end_timestamp).end_timestamp, 'completion_timestamp': completion_timestamp, 'time_spent': sum(session_log.time_spent for session_log in session_logs), 'progress': min(sum(session_log.progress for session_log in session_logs), 1.0), } ) if not created: # We didn't create the summary log this time, so it probably means it has other session logs # Aggregate the information from there to update the relevant fields on the summary log updates = ContentSessionLog.objects.filter( user=user, kind=random_node.kind, content_id=random_node.content_id ).aggregate( start_timestamp=Min('start_timestamp'), end_timestamp=Max('end_timestamp'), progress=Sum('progress') ) summary_log.start_timestamp = updates['start_timestamp'] summary_log.end_timestamp = updates['end_timestamp'] if summary_log.progress < 1.0 and updates['progress'] >= 1.0: # If it was not previously completed, and is now, set the completion timestamp to the # final end timestamp of the session logs. summary_log.completion_timestamp = updates['end_timestamp'] summary_log.progress = min(1.0, updates['progress']) summary_log.save() # If we are dealing with anything but an assessment (currently only exercises) # we are done - if not, create additional data here if random_node.kind == content_kinds.EXERCISE: # Generate a mastery log if needed mastery_log, created = MasteryLog.objects.get_or_create( user=user, mastery_level=1, summarylog=summary_log, defaults={ 'start_timestamp': summary_log.start_timestamp, 'end_timestamp': summary_log.end_timestamp, 'complete': summary_log.progress >= 1.0, 'completion_timestamp': completion_timestamp, 'mastery_criterion': { 'm': 5, 'n': 5, 'type': 'm_of_n', }, } ) if not created: # Not created, so update relevant fields on it based on new interactions if not mastery_log.complete and summary_log.progress >= 1.0: mastery_log.complete = True mastery_log.completion_timestamp = summary_log.completion_timestamp mastery_log.end_timestamp = summary_log.end_timestamp # Get the list of assessment item ids from the assessment meta data assessment_item_ids = random_node.assessmentmetadata.first().assessment_item_ids for i, session_log in enumerate(reversed(session_logs)): # Always make students get 5 attempts correct in the most recent session # if the exercise is complete complete = (i == 0 and mastery_log.complete) if complete: n = 5 else: # Otherwise, let them have answered between 1 and 5 questions per session n = random.randint(1, 5) # How long did they spend on these n questions? timespan = session_log.end_timestamp - session_log.start_timestamp # Index through each individual question for j in range(0, n): if complete: # If this is the session where they completed the exercise, always # make them get it right correct = True else: # Otherwise only let students get odd indexed questions right, # ensuring they will always have a mastery breaking sequence # as zero based indexing means their first attempt will always be wrong! correct = j % 2 == 1 start_timestamp = session_log.end_timestamp - (timespan / n) * (j + 1) end_timestamp = session_log.end_timestamp - (timespan / n) * j # If incorrect, must have made at least two attempts at the question question_attempts = 1 if correct else random.randint(2, 5) question_interval = (end_timestamp - start_timestamp) / question_attempts # If they got it wrong, give 20/80 chance that they took a hint to do so hinted = random.choice((False, False, False, False, not correct)) if hinted: first_interaction = { 'correct': False, 'type': 'hint', } else: first_interaction = { 'correct': correct, 'type': 'answer', } first_interaction.update({ 'answer': {}, 'timestamp': start_timestamp + question_interval }) interaction_history = [first_interaction] # If it is correct, this can be our only response, otherwise, add more. if not correct: for att in range(1, question_attempts - 1): # Add on additional attempts for intervening incorrect responses interaction_history += [{ 'correct': False, 'type': 'answer', 'answer': {}, 'timestamp': start_timestamp + question_interval * (att + 1), }] # Finally, add a correct response that allows the user to move onto the next question interaction_history += [{ 'correct': True, 'type': 'answer', 'answer': {}, 'timestamp': end_timestamp, }] AttemptLog.objects.create( # Choose a random assessment item id from the exercise item=random.choice(assessment_item_ids), # Just let each attempt be a fixed proportion of the total time spent on the exercise start_timestamp=start_timestamp, end_timestamp=end_timestamp, time_spent=timespan.total_seconds(), # Mark all attempts as complete, as assume that student gave correct answer eventually complete=True, # Mark as correct or incorrect correct=correct, hinted=hinted, # We can't meaningfully generate fake answer data for Perseus exercises # (which are currently our only exercise type) - so don't bother. answer={}, simple_answer='', interaction_history=interaction_history, user=user, masterylog=mastery_log, sessionlog=session_log, )
''' Copyright Zlatko Minev and Zaki Leghtas 2015, 2016, 2017 ''' import os import time import shutil import numpy as np import pandas as pd import matplotlib.pyplot as plt from stat import S_ISREG, ST_CTIME, ST_MODE from pandas import HDFStore, Series, DataFrame from pint import UnitRegistry from hfss import * from toolbox import * from config_bbq import root_dir, gseam, th, eps_r, tan_delta_surf, tan_delta_sapp ### Definitions ureg = UnitRegistry(system='mks') #============================================================================== #%% Main compuation class & interface with HFSS #============================================================================== class Bbq(object): """ This class defines a BBQ object which calculates and saves Hamiltonian parameters from an HFSS simulation """ def __init__(self, project, design, verbose=True, append_analysis=False, setup_name = None): ''' calculate_H is the single-jucntion method using UH-Ue ''' self.project = project self.design = design self.setup = design.get_setup(name=setup_name) self.fields = self.setup.get_fields() self.nmodes = int(self.setup.n_modes) self.listvariations = design._solutions.ListVariations(str(self.setup.solution_name)) self.nominalvariation = design.get_nominal_variation() self.nvariations = np.size(self.listvariations) self.solutions = self.setup.get_solutions() self.verbose = verbose self.append_analysis = append_analysis self.hfss_variables = {} # container for eBBQ list of varibles self.sols = {} # container for eBBQ solutions; could make a Panel self.meta_data = {} # container for eBBQ metadata self.setup_data() if self.verbose: print ' # Modes: ' + str(self.nmodes), '\n # Variations: ' + str(self.nvariations) #self.get_latest_h5() self.latest_h5_path = None if self.latest_h5_path is not None and self.append_analysis: latest_bbq_analysis = BbqAnalysis(self.latest_h5_path) if self.verbose: print 'Varied variables and values : ', latest_bbq_analysis.get_swept_variables(), \ 'Variations : ', latest_bbq_analysis.variations def get_latest_h5(self): dirpath = self.data_dir entries1 = (os.path.join(dirpath, fn) for fn in os.listdir(dirpath)) # get all entries in the directory w/ stats entries2 = ((os.stat(path), path) for path in entries1) entries3 = ((stat[ST_CTIME], path) # leave only regular files, insert creation date for stat, path in entries2 if S_ISREG(stat[ST_MODE]) and path[-4:]=='hdf5') #NOTE: on Windows `ST_CTIME` is a creation date but on Unix it could be something else #NOTE: use `ST_MTIME` to sort by a modification date paths_sorted = [] for cdate, path in sorted(entries3): paths_sorted.append(path) #print time.ctime(cdate), os.path.basename(path) if len(paths_sorted) > 0: self.latest_h5_path = paths_sorted[-1] if self.verbose: print 'This simulations has been analyzed, latest data in ' + self.latest_h5_path else: self.latest_h5_path = None if self.verbose: print 'This simulation has never been analyzed' def setup_data(self): ''' Setups up the folder path ''' data_dir = root_dir + '/' + self.project.name + '/' + self.design.name if self.verbose: print data_dir if not os.path.isdir(data_dir): os.makedirs(data_dir) self.data_dir = data_dir self.data_filename = self.data_dir + '/' + self.design.name + '_' + time.strftime('%Y%m%d_%H%M%S', time.localtime()) + '.hdf5' if len(self.design.name) > 50: print_color('WARNING! DESING FILENAME MAY BE TOO LONG! ') if self.verbose: print "Data will be saved in " + str(data_dir) @deprecated def calc_p_j(self, modes=None, variation=None): ''' Calculates the p_j for all the modes. Requires a calculator expression called P_J. ''' lv = self.get_lv(variation) if modes is None: modes = range(self.nmodes) pjs = {} for ii, m in enumerate(modes): print 'Calculating p_j for mode ' + str(m) + ' (' + str(ii) + '/' + str(np.size(modes)-1) + ')' self.solutions.set_mode(m+1, 0) self.fields = self.setup.get_fields() P_J = self.fields.P_J pjs['pj_'+str(m)] = P_J.evaluate(lv=lv) self.pjs = pjs if self.verbose: print pjs return pjs def get_p_j(self, mode): pj = {} pj_val = (self.U_E-self.U_H)/(2*self.U_E) pj['pj_'+str(mode)] = np.abs(pj_val) print ' p_j_' + str(mode) + ' = ' + str(pj_val) return pj def get_freqs_bare(self, variation): #str(self.get_lv(variation)) freqs_bare_vals = [] freqs_bare_dict = {} freqs, kappa_over_2pis = self.solutions.eigenmodes(self.get_lv_EM(variation)) for m in range(self.nmodes): freqs_bare_dict['freq_bare_'+str(m)] = 1e9*freqs[m] freqs_bare_vals.append(1e9*freqs[m]) if kappa_over_2pis is not None: freqs_bare_dict['Q_'+str(m)] = freqs[m]/kappa_over_2pis[m] else: freqs_bare_dict['Q_'+str(m)] = 0 self.freqs_bare = freqs_bare_dict self.freqs_bare_vals = freqs_bare_vals return freqs_bare_dict, freqs_bare_vals def get_lv(self, variation): ''' variation is a string #; e.g., '0' returns array of var names and var values ''' if variation is None: lv = self.nominalvariation lv = self.parse_listvariations(lv) else: lv = self.listvariations[ ureg(variation) ] lv = self.parse_listvariations(lv) return lv def get_lv_EM(self, variation): if variation is None: lv = self.nominalvariation #lv = self.parse_listvariations_EM(lv) else: lv = self.listvariations[ ureg(variation) ] #lv = self.parse_listvariations_EM(lv) return str(lv) def parse_listvariations_EM(self,lv): lv = str(lv) lv = lv.replace("=",":=,") lv = lv.replace(' ',',') lv = lv.replace("'","") lv = lv.split(",") return lv def parse_listvariations(self,lv): lv = str(lv) lv = lv.replace("=",":=,") lv = lv.replace(' ',',') lv = lv.replace("'","") lv = lv.split(",") return lv def get_variables(self,variation=None): lv = self.get_lv(variation) variables={} for ii in range(len(lv)/2): variables['_'+lv[2*ii][:-2]]=lv[2*ii+1] self.variables = variables return variables # @deprecated # TODO: delete this # def save_data(self, data, variation): # group = self.h5file.create_group(variation) # for name, val in data.items(): # group[name] = val def get_Qseam(self, seam, mode, variation): ''' caculate the contribution to Q of a seam, by integrating the current in the seam with finite conductance: set in the config file ref: http://arxiv.org/pdf/1509.01119.pdf ''' lv = self.get_lv(variation) Qseam = {} print 'Calculating Qseam_'+ seam +' for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')' j_2_norm = self.fields.Vector_Jsurf.norm_2() # overestimating the loss by taking norm2 of j, rather than jperp**2 int_j_2 = j_2_norm.integrate_line(seam) int_j_2_val = int_j_2.evaluate(lv=lv, phase=90) yseam = int_j_2_val/self.U_H/self.omega Qseam['Qseam_'+seam+'_'+str(mode)] = gseam/yseam print 'Qseam_' + seam + '_' + str(mode) + str(' = ') + str(gseam/yseam) return Series(Qseam) def get_Qseam_sweep(self, seam, mode, variation, variable, values, unit, pltresult=True): # values = ['5mm','6mm','7mm'] # ref: http://arxiv.org/pdf/1509.01119.pdf self.solutions.set_mode(mode+1, 0) self.fields = self.setup.get_fields() freqs_bare_dict, freqs_bare_vals = self.get_freqs_bare(variation) self.omega = 2*np.pi*freqs_bare_vals[mode] print variation print type(variation) print ureg(variation) self.U_H = self.calc_U_H(variation) lv = self.get_lv(variation) Qseamsweep = [] print 'Calculating Qseam_'+ seam +' for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')' for value in values: self.design.set_variable(variable, str(value)+unit) j_2_norm = self.fields.Vector_Jsurf.norm_2() # overestimating the loss by taking norm2 of j, rather than jperp**2 int_j_2 = j_2_norm.integrate_line(seam) int_j_2_val = int_j_2.evaluate(lv=lv, phase=90) yseam = int_j_2_val/self.U_H/self.omega Qseamsweep.append(gseam/yseam) # Qseamsweep['Qseam_sweep_'+seam+'_'+str(mode)] = gseam/yseam #Cprint 'Qseam_' + seam + '_' + str(mode) + str(' = ') + str(gseam/yseam) if pltresult: fig, ax = plt.subplots() ax.plot(values,Qseamsweep) ax.set_yscale('log') ax.set_xlabel(variable+' ('+unit+')') ax.set_ylabel('Q'+'_'+seam) return Qseamsweep def get_Qdielectric(self, dielectric, mode, variation): Qdielectric = {} print 'Calculating Qdielectric_'+ dielectric +' for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')' U_dielectric = self.calc_U_E(variation, volume=dielectric) p_dielectric = U_dielectric/self.U_E Qdielectric['Qdielectric_'+dielectric+'_'+str(mode)] = 1/(p_dielectric*tan_delta_sapp) print 'p_dielectric'+'_'+dielectric+'_'+str(mode)+' = ' + str(p_dielectric) return Series(Qdielectric) def get_Qsurface(self, mode, variation): ''' caculate the contribution to Q of a dieletric layer of dirt on all surfaces set the dirt thickness and loss tangent in the config file ref: http://arxiv.org/pdf/1509.01854.pdf ''' lv = self.get_lv(variation) Qsurf = {} print 'Calculating Qsurface for mode ' + str(mode) + ' (' + str(mode) + '/' + str(self.nmodes-1) + ')' # A = self.fields.Mag_E**2 # A = A.integrate_vol(name='AllObjects') # U_surf = A.evaluate(lv=lv) calcobject=CalcObject([],self.setup) vecE=calcobject.getQty("E") A=vecE B=vecE.conj() A=A.dot(B) A=A.real() A=A.integrate_surf(name='AllObjects') U_surf = A.evaluate(lv=lv) U_surf *= th*epsilon_0*eps_r p_surf = U_surf/self.U_E Qsurf['Qsurf_'+str(mode)] = 1/(p_surf*tan_delta_surf) print 'p_surf'+'_'+str(mode)+' = ' + str(p_surf) return Series(Qsurf) def get_Hparams(self, freqs, pjs, lj): Hparams = {} fzpfs = [] # calculate Kerr and fzpf for m in self.modes: omega = 2*pi*freqs[m] ej = fluxQ**2/lj pj = pjs['pj_'+str(m)] fzpf = np.sqrt(pj*hbar*omega/ej) fzpfs.append(fzpf) Hparams['fzpf_'+str(m)] = fzpf alpha = 2*ej/fact(4)*nck(4,2)*(fzpf**4)/hbar Hparams['alpha_'+str(m)] = alpha Hparams['freq_'+str(m)]=(omega-alpha)/2/pi # calculate chi for m in self.modes: for n in self.modes: if n<m: chi_mn = ej/hbar*(fzpfs[m]*fzpfs[n])**2 Hparams['chi_'+str(m)+'_'+str(n)] = chi_mn return Hparams def calc_U_E(self, variation, volume=None): ''' This is 2 * the peak electric energy.(since we do not divide by 2, and use the peak phasors) ''' lv = self.get_lv(variation) if volume is None: volume = 'AllObjects' else: pass calcobject=CalcObject([],self.setup) vecE=calcobject.getQty("E") A=vecE.times_eps() B=vecE.conj() A=A.dot(B) A=A.real() A=A.integrate_vol(name=volume) return A.evaluate(lv=lv) def calc_U_H(self, variation, volume=None): lv = self.get_lv(variation) if volume is None: volume = 'AllObjects' else: pass calcobject=CalcObject([],self.setup) vecH=calcobject.getQty("H") A=vecH.times_mu() B=vecH.conj() A=A.dot(B) A=A.real() A=A.integrate_vol(name=volume) return A.evaluate(lv=lv) def calc_current(self, fields, line ): '''Function to calculate Current based on line. Not in use line = integration line between plates - name ''' self.design.Clear_Field_Clac_Stack() comp = fields.Vector_H exp = comp.integrate_line_tangent(line) I = exp.evaluate(phase = 90) self.design.Clear_Field_Clac_Stack() return I def calc_avg_current_J_surf_mag(self, variation, junc_rect, junc_len): ''' Peak current I_max for mdoe J in junction J The avg. is over the surface of the junction. I.e., spatial. ''' lv = self.get_lv(variation) calc = CalcObject([],self.setup) calc = calc.getQty("Jsurf").mag().integrate_surf(name = junc_rect) I = calc.evaluate(lv=lv) / junc_len #phase = 90 #self.design.Clear_Field_Clac_Stack() return I def calc_line_current(self, variation, junc_line_name): lv = self.get_lv(variation) calc = CalcObject([],self.setup) calc = calc.getQty("H").imag().integrate_line_tangent(name = junc_line_name) #self.design.Clear_Field_Clac_Stack() return calc.evaluate(lv=lv) def calc_Pjs_from_I_for_mode(self,variation, U_H,U_E, LJs, junc_rects,junc_lens, method = 'J_surf_mag' , freq = None, calc_sign = None): ''' Expected that you have specified the mode before calling this Expected to precalc U_H and U_E for mode, will retunr pandas series object junc_rect = ['junc_rect1', 'junc_rect2'] name of junc rectangles to integrate H over junc_len = [0.0001] specify in SI units; i.e., meters LJs = [8e-09, 8e-09] SI units calc_sign = ['junc_line1', 'junc_line2'] used to define sign of ZPF Potential errors: If you dont have a line or rect by the right name you will prob get an erorr o the type: com_error: (-2147352567, 'Exception occurred.', (0, None, None, None, 0, -2147024365), None) ''' dat = {} for i, junc_rect in enumerate(junc_rects): print_NoNewLine(' ' + junc_rect) if method is 'J_surf_mag': I_peak = self.calc_avg_current_J_surf_mag(variation, junc_rect, junc_lens[i]) else: print 'Not yet implemented.' if LJs is None: print_color(' -----> ERROR: Why is LJs passed as None!?') #dat['I_' +junc_rect] = I_peak # stores the phase information as well dat['pJ_' +junc_rect] = LJs[i] * I_peak**2 / (2*U_E) if calc_sign is not None: Idum = self.calc_line_current(variation, calc_sign[i]) dat['sign_'+junc_rect] = +1 if Idum > 0 else -1 print ' %+.5f' %(dat['pJ_' +junc_rect] * dat['sign_'+junc_rect] ) else: print ' %0.5f' %(dat['pJ_' +junc_rect]) return pd.Series(dat) def do_eBBQ(self, variations= None, plot_fig = False, modes = None, Pj_from_current = True, junc_rect = [], junc_lines = None, junc_len = [], junc_LJ_var_name = [], dielectrics = None, seams = None, surface = False, calc_Hamiltonian = False,pJ_method = 'J_surf_mag', save_mesh_stats = True): """ Pj_from_current: Multi-junction calculation of energy participation ratio matrix based on <I_J>. Current is integrated average of J_surf by default: (zkm 3/29/16) Will calculate the Pj matrix for the selected modes for the given junctions junc_rect array & length of juuncs junc_rect = ['junc_rect1', 'junc_rect2'] name of junc rectangles to integrate H over junc_lines = ['junc_line1', 'junc_line2'] used to define the current flow direction, arbitrary, doesnt really matter that much, just need a line there junc_len = [0.0001] lenght of junc = lenght of junc_line #TODO: could now get rid of this and use the line [specify in SI units; i.e., meters] junc_LJ_var_name = ['LJ1', 'LJ2'] pJ_method = 'J_surf_mag' - takes the avg. Jsurf over the rect. Make sure you have seeded lots of tets here. i recommend starting with 4 across smallest dimension. Assumptions: Low dissipation (high-Q). Right now, we assume that there are no lumped capcitors to simply calculations. Not required. We assume that there are only lumped inductors, so that U_tot = U_E+U_H+U_L and U_C =0, so that U_tot = 2*U_E; Other parameters: seams = ['seam1', 'seam2'] (seams needs to be a list of strings) variations = ['0', '1'] A variation is a combination of project/design variables in an optimetric sweep """ self.Pj_from_current = Pj_from_current; meta_data = {}; assert(type(junc_LJ_var_name) == list), "Please pass junc_LJ_var_name as a list " if Pj_from_current : print_color(' Setup: ' + self.setup.name); self.PJ_multi_sol = {} # this is where the result will go if seams is not None: self.seams = seams; meta_data['seams'] = seams; if dielectrics is not None: self.dielectrics = dielectrics; meta_data['dielectrics'] = dielectrics; if variations is None: variations = (['-1'] if self.listvariations == (u'',) else [str(i) for i in range(self.nvariations)] ) if modes is None: modes = range(self.nmodes) if self.latest_h5_path is not None and self.append_analysis:shutil.copyfile(self.latest_h5_path, self.data_filename); self.h5file = hdf = pd.HDFStore(self.data_filename); self.variations = variations; self.modes = modes; self.njunc = len(junc_rect) meta_data['junc_rect'] = junc_rect; meta_data['junc_lines'] = junc_lines; meta_data['junc_len'] = junc_len; meta_data['junc_LJ_var_name'] = junc_LJ_var_name; meta_data['pJ_method'] = pJ_method; mesh_stats = self.mesh_stats = [] for ii, variation in enumerate(variations): print_color( 'variation : ' + variation + ' / ' + str(self.nvariations-1), bg = 44, newline = False ) self.lv = self.get_lv(variation) if (variation+'/hfss_variables') in hdf.keys() and self.append_analysis: print_NoNewLine(' previously analyzed ...\n'); \ continue; print_NoNewLine( ' NOT analyzed\n' ); time.sleep(0.5) hdf[variation+'/hfss_variables'] = self.hfss_variables[variation] = varz \ = pd.Series(self.get_variables(variation=variation)) freqs_bare_dict, freqs_bare_vals = self.get_freqs_bare(variation) # get bare freqs from HFSS self.pjs={}; var_sol_accum = [] for mode in modes: sol = Series({'freq' : freqs_bare_vals[mode]*10**-9, 'modeQ' : freqs_bare_dict['Q_'+str(mode)] }) self.omega = 2*np.pi*freqs_bare_vals[mode] # this should really be passed as argument to the functions rather than a property of the calss I would say print ' Mode \x1b[0;30;46m ' + str(mode) + ' \x1b[0m / ' + str(self.nmodes-1)+' calculating:' self.solutions.set_mode(mode+1, 0) self.fields = self.setup.get_fields() print_NoNewLine(' U_H ...'); sol['U_H'] = self.U_H = self.calc_U_H(variation) print_NoNewLine(' U_E'); sol['U_E'] = self.U_E = self.calc_U_E(variation) print( " => U_L = %.3f%%" %( (self.U_E - self.U_H )/(2*self.U_E)) ) if self.Pj_from_current: self.LJs = [ ureg.Quantity(varz['_'+LJvar_nm]).to_base_units().magnitude for LJvar_nm in junc_LJ_var_name] meta_data['LJs'] = dict(zip(junc_LJ_var_name, self.LJs)) print ' I -> p_{mJ} ...' sol_PJ = self.calc_Pjs_from_I_for_mode(variation, self.U_H, self.U_E, self.LJs, junc_rect, junc_len, method = pJ_method, freq = freqs_bare_vals[mode]*10**-9, calc_sign = junc_lines) sol = sol.append(sol_PJ) if self.njunc == 1: # Single-junction method using global U_H and U_E; assert(type(junc_LJ_var_name) == list and len(junc_LJ_var_name) == 1), "Please pass junc_LJ_var_name as array of 1 element for a single junction; e.g., junc_LJ_var_name = ['junc1']" #lj = 1E-3*ureg.Quantity(varz['_'+junc_LJ_var_name]).to_base_units().magnitude sol['pj1'] = self.get_p_j(mode) self.pjs.update(sol['pj1']) # convinience function for single junction case if seams is not None: # get seam Q for seam in seams: sol = sol.append(self.get_Qseam(seam,mode,variation)) if dielectrics is not None: # get Q dielectric for dielectric in dielectrics: sol = sol.append(self.get_Qdielectric(dielectric, mode, variation)) if surface is True: # get Q surface sol = sol.append( self.get_Qsurface(mode, variation) ) var_sol_accum +=[sol] #TODO: add metadata to the Dataframe & save it # such as what are the junc_rect names and Lj values etc. (e.g., http://stackoverflow.com/questions/29129095/save-additional-attributes-in-pandas-dataframe/29130146#29130146) hdf[variation+'/eBBQ_solution'] = self.sols[variation] \ = pd.DataFrame(var_sol_accum, index = modes) hdf[variation+'/meta_data'] = self.meta_data[variation] \ = Series(meta_data) if save_mesh_stats: msh = self.setup.get_mesh_stats(self.listvariations[ureg(variation)]) mesh_stats += [msh] if msh is not None: hdf[variation+'/mesh_stats'] = msh # returns dataframe conv = self.setup.get_convergence(self.listvariations[ureg(variation)]) # returns dataframe #print 'conv.' if conv is not None: hdf[variation+'/convergence'] = conv self.h5file.close() self.bbq_analysis = BbqAnalysis(self.data_filename, variations=self.variations) #TODO: to be implemented below # if plot_fig: # self.bbq_analysis.plot_Hparams(modes=self.modes) # self.bbq_analysis.print_Hparams(modes=self.modes) print "\n\nCOMPLETE: do_eBBQ.\n" return def eBBQ_ND(freqs, PJ, Om, EJ, LJs, SIGN, cos_trunc = 6, fock_trunc = 7, use_1st_order = False): ''' numerical diagonalizaiton for energy BBQ fzpfs: reduced zpf ( in units of \phi_0 ) ''' assert(all(freqs<1E6)), "Please input the frequencies in GHz" assert(all(LJs <1E-3)),"Please input the inductances in Henries" assert((PJ >0).any()),"ND -- PJs are not all > 0; \n %s" % (PJ) import bbqNumericalDiagonalization from bbqNumericalDiagonalization import bbq_hmt, make_dispersive, fqr fzpfs = np.zeros(PJ.T.shape) for junc in xrange(fzpfs.shape[0]): for mode in xrange(fzpfs.shape[1]): fzpfs[junc, mode] = np.sqrt(PJ[mode,junc] * Om[mode,mode] / EJ[junc,junc] ) #*0.001 fzpfs = fzpfs * SIGN.T Hs = bbq_hmt(freqs*10**9, LJs.astype(np.float), fqr*fzpfs, cos_trunc, fock_trunc, individual = use_1st_order) f1s, CHI_ND, fzpfs, f0s = make_dispersive(Hs, fock_trunc, fzpfs, freqs,use_1st_order = use_1st_order) # f0s = freqs CHI_ND = -1*CHI_ND *1E-6; return f1s, CHI_ND, fzpfs, f0s; def eBBQ_Pmj_to_H_params(s, meta_data, cos_trunc = None, fock_trunc = None, _renorm_pj = True, use_1st_order = False): ''' returns the CHIs as MHz with anharmonicity alpha as the diagonal (with - sign) --------------- f0s [GHz]: Eigenmode frequencies computed by HFSS; i.e., linear freq returned in GHz f1s [GHz]: Dressed mode frequencies (by the non-linearity; e.g., Lamb shift, etc. ). If numerical diagonalizaiton is run, then we return the numerically diagonalizaed frequencies, otherwise, use 1st order pertuirbation theory on the 4th order expansion of the cosine. CHI_O1 [MHz] : Analytic expression for the chis based on a cos trunc to 4th order, and using 1st order perturbation theory. CHI_ND [MHz] : Numerically diagonalized chi matrix. PJ : Participation matrix Om [GHz] : Diagnoal matrix of of linear mode (HFSS) frequencies EJ [GHz] : Diagonal matrix of junction energies, in GHz. ask Zlatko for more info. ''' import scipy Planck = scipy.constants.Planck f0s = np.array( s['freq'] ) Qs = s['modeQ'] LJ_nms = meta_data['junc_LJ_var_name'] # ordered LJs = np.array([meta_data['LJs'][nm] for nm in LJ_nms]) # LJ in Henries, must make sure these are given in the right order EJs = (fluxQ**2/LJs/Planck*10**-9).astype(np.float) # EJs in GHz PJ_Jsu = s.loc[:,s.keys().str.contains('pJ')] # EPR from Jsurf avg PJ_Jsu_sum = PJ_Jsu.apply(sum, axis = 1) # sum of participations as calculated by avg surf current PJ_glb_sum = (s['U_E'] - s['U_H'])/(2*s['U_E']) # sum of participations as calculated by global UH and UE diff = (PJ_Jsu_sum-PJ_glb_sum)/PJ_glb_sum*100 # debug if _renorm_pj: # Renormalize PJs = PJ_Jsu.divide(PJ_Jsu_sum, axis=0).mul(PJ_glb_sum,axis=0) else: PJs = PJ_Jsu print 'NO renorm' if (PJs < 0).any().any() == True: print "\n\n**************\n\n" print_color("Warning / error!!! Some PJ was found <= 0. This is probably a numerical error, or a super low-Q mode. We will take the abs value. Otherwise, rerun with more precision, inspect, and do due dilligence.)") print PJs print "\n\n**************\n\n" PJs = np.abs(PJs) SIGN = s.loc[:,s.keys().str.contains('sign_')] PJ = np.mat(PJs.values) Om = np.mat(np.diagflat(f0s)) EJ = np.mat(np.diagflat(EJs)) CHI_O1= Om * PJ * EJ.I * PJ.T * Om * 1000. # MHz CHI_O1= divide_diagonal_by_2(CHI_O1) # Make the diagonals alpha f1s = f0s - np.diag(CHI_O1/1000.) # 1st order PT expect freq to be dressed down by alpha if cos_trunc is not None: f1s, CHI_ND, fzpfs, f0s = eBBQ_ND(f0s, PJ, Om, EJ, LJs, SIGN, cos_trunc = cos_trunc, fock_trunc = fock_trunc, use_1st_order = use_1st_order) else: CHI_ND, fzpfs = None, None return CHI_O1, CHI_ND, PJ, Om, EJ, diff, LJs, SIGN, f0s, f1s, fzpfs, Qs # the return could be made clener, or dictionary #%% class BbqAnalysis(object): ''' defines an analysis object which loads and plots data from a h5 file This data is obtained using e.g bbq.do_bbq ''' def __init__(self, data_filename, variations=None): #raise('not implemented') self.data_filename = data_filename with HDFStore(data_filename, mode = 'r') as hdf: # = h5py.File(data_filename, 'r') # i think we should open & close the file here, i dont see why we need to keep it open & keep accessing it. It is small in memeory, just load it into the RAM. # all the data will be stored in 3 objects. if variations is None: import re variations = [] for key in hdf.keys(): if 'hfss_variables' in key: variations += re.findall(r'\b\d+\b', key) self.variations = variations self.hfss_variables = {} self.sols = {} self.meta_data = {} self.mesh_stats = {} self.convergence = {} for variation in variations: try: self.hfss_variables[variation] = hdf[variation+'/hfss_variables'] self.sols[variation] = hdf[variation+'/eBBQ_solution'] self.meta_data[variation] = hdf[variation+'/meta_data'] self.mesh_stats[variation] = hdf[variation+'/mesh_stats'] self.convergence[variation] = hdf[variation+'/convergence'] # TODO: better way to handle errors except Exception as e: print_color('Error in variation ' + str(variation)) print_color(e) self.nmodes = self.sols[variations[0]].shape[0] self.meta_data = DataFrame(self.meta_data) self._renorm_pj = True def get_variable_vs(self, swpvar): ret = {} for key, varz in self.hfss_variables.iteritems(): ret[key] = ureg.Quantity(varz['_'+swpvar]).magnitude return ret def get_convergences_max_tets(self): ''' Index([u'Pass Number', u'Solved Elements', u'Max Delta Freq. %' ]) ''' ret = {} for key, df in self.convergence.iteritems(): ret[key] = df['Solved Elements'].iloc[-1] return ret def get_convergences_Tets_vs_pass(self): ''' Index([u'Pass Number', u'Solved Elements', u'Max Delta Freq. %' ]) ''' ret = {} for key, df in self.convergence.iteritems(): s = df['Solved Elements'] #s.index = df['Pass Number'] ret[key] = s return ret def get_convergences_MaxDeltaFreq_vs_pass(self): ''' Index([u'Pass Number', u'Solved Elements', u'Max Delta Freq. %' ]) ''' ret = {} for key, df in self.convergence.iteritems(): s = df['Max Delta Freq. %'] #s.index = df['Pass Number'] ret[key] = s return ret def get_mesh_tot(self): ret = {} for key, m in self.mesh_stats.iteritems(): ret[key] = m['Num Tets '].sum() return ret def get_solution_column(self, col_name, swp_var, sort = True): ''' sort by variation -- must be numeric ''' Qs, swp = [], [] for key, sol in self.sols.iteritems(): Qs += [ sol[col_name] ] varz = self.hfss_variables[key] swp += [ ureg.Quantity(varz['_'+swp_var]).magnitude ] Qs = DataFrame(Qs, index = swp) return Qs if not sort else Qs.sort_index() def get_Qs(self, swp_var, sort = True): return self.get_solution_column('modeQ', swp_var, sort) def get_Fs(self, swp_var, sort = True): ''' this returns the linear frequencies that HFSS gives''' return self.get_solution_column('freq', swp_var, sort) def get_junc_rect_names(self): return self.meta_data.loc['junc_rect',:] def analyze_variation(self, variation = '0', cos_trunc = 6, fock_trunc = 7, print_results = True, frmt = "{:7.2f}" ): ''' Container function to call eBBQ_Pmj_to_H_params Can also print results neatly. Returns ---------------------------- f0s [GHz]: Eigenmode frequencies computed by HFSS; i.e., linear freq returned in GHz f1s [GHz]: Dressed mode frequencies (by the non-linearity; e.g., Lamb shift, etc. ). If numerical diagonalizaiton is run, then we return the numerically diagonalizaed frequencies, otherwise, use 1st order pertuirbation theory on the 4th order expansion of the cosine. CHI_O1 [MHz] : Analytic expression for the chis based on a cos trunc to 4th order, and using 1st order perturbation theory. CHI_ND [MHz] : Numerically diagonalized chi matrix. PJ : Participation matrix Om [GHz] : Diagnoal matrix of of linear mode (HFSS) frequencies EJ [GHz] : Diagonal matrix of junction energies, in GHz. ''' s = self.sols[variation]; meta_data = self.meta_data[variation] varz = self.hfss_variables[variation] CHI_O1, CHI_ND, PJ, Om, EJ, diff, LJs, SIGN, f0s, f1s, fzpfs, Qs = \ eBBQ_Pmj_to_H_params(s, meta_data, cos_trunc = cos_trunc, fock_trunc = fock_trunc, _renorm_pj = self._renorm_pj) if print_results: ##TODO: generalize to more modes print '\nPJ=\t(renorm.)' print_matrix(PJ*SIGN, frmt = "{:7.4f}") print "\n","* "*5, "CHI matrix (MHz)", "* "*5 if cos_trunc is not None: print '\nCHI_ND=\t PJ O(%d) [alpha diag]'%(cos_trunc) print_matrix(CHI_ND, append_row ="MHz", frmt = frmt) else: print '\nCHI_O1=\t [alpha diag]' print_matrix(CHI_O1, append_row ="MHz", frmt = frmt) if len(f0s) == 3: print '\nf0={:6.2f} {:7.2f} {:7.2f} GHz'.format(*f0s) print '\nf1={:6.2f} {:7.2f} {:7.2f} GHz'.format(*(f1s*1E-9)) print 'Q={:8.1e} {:7.1e} {:6.0f}'.format(*(Qs)) else: print "\n","* "*5, "Eigen (Linear) vs Dressed Frequencies MHz", "* "*5 print pd.DataFrame(np.array([f0s*1E3,f1s*1E3]).transpose(), columns = ['Linear', 'Dressed']) #print "\n", "* "*5, "Dressed freqs Frequencies MHz", "* "*5 # these are the ND if ND was used, else it is the O1PT #print print "\n","* "*5, "Eigen (linear) Qs ", "* "*5 print pd.Series(Qs) # Q =0 means no dissipation used in sim. return CHI_O1, CHI_ND, PJ, Om, EJ, diff, LJs, SIGN, f0s, f1s, fzpfs, Qs, varz @deprecated def get_swept_variables(self): #TODO: needs to be updated to new standard; currently borken swept_variables_names = [] swept_variables_values = [] for name in self.h5data[self.variations[0]].keys(): if '_'==name[0]: # design variables all start with _ variables = [] for variation in self.variations: variables.append(self.h5data[variation][name].value) if len(set(variables))>1: swept_variables_names.append(name) swept_variables_values.append(list(set(variables))) else: pass return swept_variables_names, swept_variables_values @deprecated def get_variable_variations(self, variablename): variables = [] for variation in self.variations: variables.append(self.h5data[variation][variablename].value) return np.asarray(variables) @deprecated def get_float_units(self, variable_name, variation='0'): variable_value = self.h5data[variation][variable_name].value n = 1 try: float(variable_value) return float(variable_value), '' except ValueError: while True: try: float(variable_value[:-n]) return float(variable_value[:-n]), variable_value[len(variable_value)-n:] except: n+=1 @deprecated def print_Hparams(self, variation=None, modes=None): #TODO: needs to be updated to new standard; currently borken if modes==None: modes = range(self.nmodes) else: pass if variation == None: variation = self.variations[-1] else: pass swept_variables_names, swept_variables_values = self.get_swept_variables() for vname in swept_variables_names: print vname + ' = ' + self.h5data[variation][vname].value for ii, m in enumerate(modes): freq_m = 'freq_'+str(m) Kerr_m = 'alpha_'+str(m) Q_m = 'Q_'+str(m) if freq_m not in self.h5data[variation].keys(): freq_m = 'freq_bare_'+str(m) else: pass if Kerr_m in self.h5data[variation].keys(): print Kerr_m + ' = ' +str(self.h5data[variation][Kerr_m].value/2/pi/1e6) + ' MHz' else: pass print freq_m +' = ' + str(self.h5data[variation][freq_m].value/1e9) + ' GHz' if Q_m in self.h5data[variation].keys(): print Q_m + ' = ' + str(self.h5data[variation][Q_m].value) else: pass for n in modes[0:ii]: chi_m_n = 'chi_'+str(m)+'_'+str(n) if chi_m_n in self.h5data[variation].keys(): print chi_m_n + ' = ' + str(self.h5data[variation][chi_m_n].value/2/pi/1e6) + ' MHz' @deprecated def plot_Hparams(self, variable_name=None, modes=None): #TODO: needs to be updated to new standard; currently borken fig, ax = plt.subplots(2,2, figsize=(24,10)) if variable_name == None: xaxis = self.variations else: xaxis = [] for variation in self.variations: xaxis.append(self.get_float_units(variable_name, variation)[0]) if modes==None: modes = range(self.nmodes) else: pass for ii, m in enumerate(modes): freq_m = 'freq_'+str(m) Kerr_m = 'alpha_'+str(m) Q_m = 'Q_'+str(m) Qsurf_m = 'Qsurf_'+str(m) if freq_m not in self.h5data[self.variations[0]].keys(): freq_m = 'freq_bare_'+str(m) else: pass if Kerr_m in self.h5data[self.variations[0]].keys(): ax[0][1].plot(xaxis, self.get_variable_variations(Kerr_m)/2/pi/1e6, 'o', label = str(m)) else: pass ax[0][0].plot(xaxis, self.get_variable_variations(freq_m)/1e9, 'o', label=str(m)) if Q_m in self.h5data[self.variations[0]].keys(): ax[1][1].plot(xaxis, self.get_variable_variations(Q_m), 'o', label = Q_m) else: pass if Qsurf_m in self.h5data[self.variations[0]].keys(): ax[1][1].plot(xaxis, self.get_variable_variations(Qsurf_m), 'o', label = Qsurf_m) else: pass if 'seams' in self.h5data[self.variations[0]].keys(): for seam in self.h5data[self.variations[0]]['seams'].value: Qseam_m = 'Qseam_'+seam+'_'+str(m) if Qseam_m in self.h5data[self.variations[0]].keys(): ax[1][1].plot(xaxis, self.get_variable_variations(Qseam_m), 'o', label = Qseam_m) else: pass if 'dielectrics' in self.h5data[self.variations[0]].keys(): for dielectric in self.h5data[self.variations[0]]['dielectrics'].value: Qdielectric_m = 'Qdielectric_'+dielectric+'_'+str(m) if Qdielectric_m in self.h5data[self.variations[0]].keys(): ax[1][1].plot(xaxis, self.get_variable_variations(Qdielectric_m), 'o', label = Qdielectric_m) else: pass for n in modes[0:ii]: chi_m_n = 'chi_'+str(m)+'_'+str(n) if chi_m_n in self.h5data[self.variations[0]].keys(): ax[1][0].plot(xaxis, self.get_variable_variations(chi_m_n)/2/pi/1e6, 'o', label=str(m)+','+str(n)) ax[0][0].legend() ax[0][0].set_ylabel('freq (GHz)') ax[0][1].legend() ax[0][1].set_ylabel('Kerr/2pi (MHz)') ax[0][1].set_yscale('log') ax[1][0].legend() ax[1][0].set_ylabel('Chi/2pi (MHz)') ax[1][0].set_yscale('log') ax[1][1].legend() ax[1][1].set_ylabel('Q') ax[1][1].set_yscale('log') if variable_name == None: swept_variables_names, swept_variables_values = self.get_swept_variables() xticks = [] for variation in xaxis: xtick = '' for name in swept_variables_names: xtick += name[1:] + ' = ' + self.h5data[variation][name].value + '\n' xticks.append(str(xtick)) ax[1][0].set_xticks([int(v) for v in xaxis]) ax[1][0].set_xticklabels(xticks, rotation='vertical') ax[1][1].set_xticks([int(v) for v in xaxis]) ax[1][1].set_xticklabels(xticks, rotation='vertical') ax[0][0].set_xticklabels([]) ax[0][1].set_xticklabels([]) else: xlabel = variable_name + ' (' + self.get_float_units(variable_name, self.variations[0])[1] + ')' ax[1][0].set_xlabel(xlabel) ax[1][1].set_xlabel(xlabel) fig.subplots_adjust(bottom=0.3) fig.suptitle(self.data_filename) fig.savefig(self.data_filename[:-5]+'.jpg') return fig, ax # for variable in swept_variables_names: # fig1 = plt.subplots() # ax1 = fig1.add_subplot(221) # ax.scatter() # return
import random import six.moves.urllib.error import six.moves.urllib.parse import six.moves.urllib.request from splunk_eventgen.lib.logging_config import logger from splunk_eventgen.lib.outputplugin import OutputPlugin try: from concurrent.futures import ThreadPoolExecutor import requests from requests import Session from requests_futures.sessions import FuturesSession except ImportError: pass try: import ujson as json except ImportError: import json class NoServers(Exception): def __init__(self, *args, **kwargs): Exception.__init__(self, *args, **kwargs) class BadConnection(Exception): def __init__(self, *args, **kwargs): Exception.__init__(self, *args, **kwargs) class HTTPCoreOutputPlugin(OutputPlugin): name = "httpcore" MAXQUEUELENGTH = 1000 useOutputQueue = False validSettings = [ "httpeventServers", "httpeventOutputMode", "httpeventMaxPayloadSize", ] defaultableSettings = [ "httpeventServers", "httpeventOutputMode", "httpeventMaxPayloadSize", ] jsonSettings = ["httpeventServers"] def __init__(self, sample, output_counter=None): OutputPlugin.__init__(self, sample, output_counter) # TODO: make workers a param that can be set in eventgen.conf def _setup_REST_workers(self, session=None, workers=20): # disable any "requests" warnings requests.packages.urllib3.disable_warnings() # Bind passed in samples to the outputter. self.lastsourcetype = None if not session: session = Session() self.session = FuturesSession( session=session, executor=ThreadPoolExecutor(max_workers=workers) ) self.active_sessions = [] @staticmethod def _urlencode(value): """ Takes a value and make sure everything int he string is URL safe. :param value: string :return: urlencoded string """ return six.moves.urllib.parse.quote(value) @staticmethod def _bg_convert_json(sess, resp): """ Takes a futures session object, and sets the data to a parsed json output. Use this as a background task for the session queue. Example: future = session.get('http://httpbin.org/get', background_callback=_bg_convert_json) :param sess: futures session object. Automatically called on a background_callback as aruguments. :param resp: futures resp object. Automatically called on a background_callback as aruguments. :return: """ if resp.status_code == 200: if getattr(resp, "json", None): resp.data = resp.json() else: if type(resp.data) == str: resp.data = json.loads(resp.data) def updateConfig(self, config): OutputPlugin.updateConfig(self, config) try: if hasattr(self.config, "httpeventServers") is False: if hasattr(self._sample, "httpeventServers"): self.config.httpeventServers = self._sample.httpeventServers else: logger.error( "outputMode %s but httpeventServers not specified for sample %s" % (self.name, self._sample.name) ) raise NoServers( "outputMode %s but httpeventServers not specified for sample %s" % (self.name, self._sample.name) ) # set default output mode to round robin if ( hasattr(self.config, "httpeventOutputMode") and self.config.httpeventOutputMode ): self.httpeventoutputmode = config.httpeventOutputMode else: if ( hasattr(self._sample, "httpeventOutputMode") and self._sample.httpeventOutputMode ): self.httpeventoutputmode = self._sample.httpeventOutputMode else: self.httpeventoutputmode = "roundrobin" if ( hasattr(self.config, "httpeventMaxPayloadSize") and self.config.httpeventMaxPayloadSize ): self.httpeventmaxsize = self.config.httpeventMaxPayloadSize else: if ( hasattr(self._sample, "httpeventMaxPayloadSize") and self._sample.httpeventMaxPayloadSize ): self.httpeventmaxsize = self._sample.httpeventMaxPayloadSize else: self.httpeventmaxsize = 10000 logger.debug("Currentmax size: %s " % self.httpeventmaxsize) if isinstance(config.httpeventServers, str): self.httpeventServers = json.loads(config.httpeventServers) else: self.httpeventServers = config.httpeventServers logger.debug( "Setting up the connection pool for %s in %s" % (self._sample.name, self._app) ) self.createConnections() logger.debug("Pool created.") logger.debug("Finished init of %s plugin." % self.name) except Exception as e: logger.exception(str(e)) def createConnections(self): self.serverPool = [] if self.httpeventServers: for server in self.httpeventServers.get("servers"): if not server.get("address"): logger.error( "requested a connection to a httpevent server, but no address specified for sample %s" % self._sample.name ) raise ValueError( "requested a connection to a httpevent server, but no address specified for sample %s" % self._sample.name ) if not server.get("port"): logger.error( "requested a connection to a httpevent server, but no port specified for server %s" % server ) raise ValueError( "requested a connection to a httpevent server, but no port specified for server %s" % server ) if not server.get("key"): logger.error( "requested a connection to a httpevent server, but no key specified for server %s" % server ) raise ValueError( "requested a connection to a httpevent server, but no key specified for server %s" % server ) if not ( (server.get("protocol") == "http") or (server.get("protocol") == "https") ): logger.error( "requested a connection to a httpevent server, but no protocol specified for server %s" % server ) raise ValueError( "requested a connection to a httpevent server, but no protocol specified for server %s" % server ) logger.debug( "Validation Passed, Creating a requests object for server: %s" % server.get("address") ) setserver = {} setserver["url"] = "%s://%s:%s/services/collector" % ( server.get("protocol"), server.get("address"), server.get("port"), ) setserver["header"] = "Splunk %s" % server.get("key") logger.debug("Adding server set to pool, server: %s" % setserver) self.serverPool.append(setserver) else: raise NoServers( "outputMode %s but httpeventServers not specified for sample %s" % (self.name, self._sample.name) ) def _sendHTTPEvents(self, payload): currentreadsize = 0 stringpayload = "" totalbytesexpected = 0 totalbytessent = 0 numberevents = len(payload) logger.debug("Sending %s events to splunk" % numberevents) for line in payload: logger.debug("line: %s " % line) targetline = json.dumps(line) logger.debug("targetline: %s " % targetline) targetlinesize = len(targetline) totalbytesexpected += targetlinesize if (int(currentreadsize) + int(targetlinesize)) <= int( self.httpeventmaxsize ): stringpayload = stringpayload + targetline currentreadsize = currentreadsize + targetlinesize logger.debug("stringpayload: %s " % stringpayload) else: logger.debug( "Max size for payload hit, sending to splunk then continuing." ) try: self._transmitEvents(stringpayload) totalbytessent += len(stringpayload) currentreadsize = targetlinesize stringpayload = targetline except Exception as e: logger.exception(str(e)) raise e else: try: totalbytessent += len(stringpayload) logger.debug( "End of for loop hit for sending events to splunk, total bytes sent: %s ---- out of %s -----" % (totalbytessent, totalbytesexpected) ) self._transmitEvents(stringpayload) except Exception as e: logger.exception(str(e)) raise e def _transmitEvents(self, payloadstring): targetServer = [] logger.debug("Transmission called with payloadstring: %s " % payloadstring) if self.httpeventoutputmode == "mirror": targetServer = self.serverPool else: targetServer.append(random.choice(self.serverPool)) for server in targetServer: logger.debug("Selected targetServer object: %s" % targetServer) url = server["url"] headers = {} headers["Authorization"] = server["header"] headers["content-type"] = "application/json" try: payloadsize = len(payloadstring) self.active_sessions.append( self.session.post( url=url, data=payloadstring, headers=headers, verify=False ) ) except Exception as e: logger.error("Failed for exception: %s" % e) logger.error( "Failed sending events to url: %s sourcetype: %s size: %s" % (url, self.lastsourcetype, payloadsize) ) logger.debug( "Failed sending events to url: %s headers: %s payload: %s" % (url, headers, payloadstring) ) raise e def load(): """Returns an instance of the plugin""" return HTTPCoreOutputPlugin
"""fontTools.misc.bezierTools.py -- tools for working with bezier path segments. Rewritten to elimate the numpy dependency """ __all__ = [ "calcQuadraticBounds", "calcCubicBounds", "splitLine", "splitQuadratic", "splitCubic", "splitQuadraticAtT", "splitCubicAtT", "solveQuadratic", "solveCubic", ] from robofab.misc.arrayTools import calcBounds epsilon = 1e-12 def calcQuadraticBounds(pt1, pt2, pt3): """Return the bounding rectangle for a qudratic bezier segment. pt1 and pt3 are the "anchor" points, pt2 is the "handle". >>> calcQuadraticBounds((0, 0), (50, 100), (100, 0)) (0, 0, 100, 50.0) >>> calcQuadraticBounds((0, 0), (100, 0), (100, 100)) (0.0, 0.0, 100, 100) """ (ax, ay), (bx, by), (cx, cy) = calcQuadraticParameters(pt1, pt2, pt3) ax2 = ax*2.0 ay2 = ay*2.0 roots = [] if ax2 != 0: roots.append(-bx/ax2) if ay2 != 0: roots.append(-by/ay2) points = [(ax*t*t + bx*t + cx, ay*t*t + by*t + cy) for t in roots if 0 <= t < 1] + [pt1, pt3] return calcBounds(points) def calcCubicBounds(pt1, pt2, pt3, pt4): """Return the bounding rectangle for a cubic bezier segment. pt1 and pt4 are the "anchor" points, pt2 and pt3 are the "handles". >>> calcCubicBounds((0, 0), (25, 100), (75, 100), (100, 0)) (0, 0, 100, 75.0) >>> calcCubicBounds((0, 0), (50, 0), (100, 50), (100, 100)) (0.0, 0.0, 100, 100) >>> calcCubicBounds((50, 0), (0, 100), (100, 100), (50, 0)) (35.566243270259356, 0, 64.43375672974068, 75.0) """ (ax, ay), (bx, by), (cx, cy), (dx, dy) = calcCubicParameters(pt1, pt2, pt3, pt4) # calc first derivative ax3 = ax * 3.0 ay3 = ay * 3.0 bx2 = bx * 2.0 by2 = by * 2.0 xRoots = [t for t in solveQuadratic(ax3, bx2, cx) if 0 <= t < 1] yRoots = [t for t in solveQuadratic(ay3, by2, cy) if 0 <= t < 1] roots = xRoots + yRoots points = [(ax*t*t*t + bx*t*t + cx * t + dx, ay*t*t*t + by*t*t + cy * t + dy) for t in roots] + [pt1, pt4] return calcBounds(points) def splitLine(pt1, pt2, where, isHorizontal): """Split the line between pt1 and pt2 at position 'where', which is an x coordinate if isHorizontal is False, a y coordinate if isHorizontal is True. Return a list of two line segments if the line was successfully split, or a list containing the original line. >>> printSegments(splitLine((0, 0), (100, 100), 50, True)) ((0, 0), (50.0, 50.0)) ((50.0, 50.0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 100, True)) ((0, 0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 0, True)) ((0, 0), (0.0, 0.0)) ((0.0, 0.0), (100, 100)) >>> printSegments(splitLine((0, 0), (100, 100), 0, False)) ((0, 0), (0.0, 0.0)) ((0.0, 0.0), (100, 100)) """ pt1x, pt1y = pt1 pt2x, pt2y = pt2 ax = (pt2x - pt1x) ay = (pt2y - pt1y) bx = pt1x by = pt1y ax1 = (ax, ay)[isHorizontal] if ax == 0: return [(pt1, pt2)] t = float(where - (bx, by)[isHorizontal]) / ax if 0 <= t < 1: midPt = ax * t + bx, ay * t + by return [(pt1, midPt), (midPt, pt2)] else: return [(pt1, pt2)] def splitQuadratic(pt1, pt2, pt3, where, isHorizontal): """Split the quadratic curve between pt1, pt2 and pt3 at position 'where', which is an x coordinate if isHorizontal is False, a y coordinate if isHorizontal is True. Return a list of curve segments. >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 150, False)) ((0, 0), (50, 100), (100, 0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, False)) ((0.0, 0.0), (25.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (75.0, 50.0), (100.0, 0.0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, False)) ((0.0, 0.0), (12.5, 25.0), (25.0, 37.5)) ((25.0, 37.5), (62.5, 75.0), (100.0, 0.0)) >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 25, True)) ((0.0, 0.0), (7.32233047034, 14.6446609407), (14.6446609407, 25.0)) ((14.6446609407, 25.0), (50.0, 75.0), (85.3553390593, 25.0)) ((85.3553390593, 25.0), (92.6776695297, 14.6446609407), (100.0, -7.1054273576e-15)) >>> # XXX I'm not at all sure if the following behavior is desirable: >>> printSegments(splitQuadratic((0, 0), (50, 100), (100, 0), 50, True)) ((0.0, 0.0), (25.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (50.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (75.0, 50.0), (100.0, 0.0)) """ a, b, c = calcQuadraticParameters(pt1, pt2, pt3) solutions = solveQuadratic(a[isHorizontal], b[isHorizontal], c[isHorizontal] - where) solutions = [t for t in solutions if 0 <= t < 1] solutions.sort() if not solutions: return [(pt1, pt2, pt3)] return _splitQuadraticAtT(a, b, c, *solutions) def splitCubic(pt1, pt2, pt3, pt4, where, isHorizontal): """Split the cubic curve between pt1, pt2, pt3 and pt4 at position 'where', which is an x coordinate if isHorizontal is False, a y coordinate if isHorizontal is True. Return a list of curve segments. >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 150, False)) ((0, 0), (25, 100), (75, 100), (100, 0)) >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 50, False)) ((0.0, 0.0), (12.5, 50.0), (31.25, 75.0), (50.0, 75.0)) ((50.0, 75.0), (68.75, 75.0), (87.5, 50.0), (100.0, 0.0)) >>> printSegments(splitCubic((0, 0), (25, 100), (75, 100), (100, 0), 25, True)) ((0.0, 0.0), (2.2937927384, 9.17517095361), (4.79804488188, 17.5085042869), (7.47413641001, 25.0)) ((7.47413641001, 25.0), (31.2886200204, 91.6666666667), (68.7113799796, 91.6666666667), (92.52586359, 25.0)) ((92.52586359, 25.0), (95.2019551181, 17.5085042869), (97.7062072616, 9.17517095361), (100.0, 1.7763568394e-15)) """ a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) solutions = solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal], d[isHorizontal] - where) solutions = [t for t in solutions if 0 <= t < 1] solutions.sort() if not solutions: return [(pt1, pt2, pt3, pt4)] return _splitCubicAtT(a, b, c, d, *solutions) def splitQuadraticAtT(pt1, pt2, pt3, *ts): """Split the quadratic curve between pt1, pt2 and pt3 at one or more values of t. Return a list of curve segments. >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5)) ((0.0, 0.0), (25.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (75.0, 50.0), (100.0, 0.0)) >>> printSegments(splitQuadraticAtT((0, 0), (50, 100), (100, 0), 0.5, 0.75)) ((0.0, 0.0), (25.0, 50.0), (50.0, 50.0)) ((50.0, 50.0), (62.5, 50.0), (75.0, 37.5)) ((75.0, 37.5), (87.5, 25.0), (100.0, 0.0)) """ a, b, c = calcQuadraticParameters(pt1, pt2, pt3) return _splitQuadraticAtT(a, b, c, *ts) def splitCubicAtT(pt1, pt2, pt3, pt4, *ts): """Split the cubic curve between pt1, pt2, pt3 and pt4 at one or more values of t. Return a list of curve segments. >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5)) ((0.0, 0.0), (12.5, 50.0), (31.25, 75.0), (50.0, 75.0)) ((50.0, 75.0), (68.75, 75.0), (87.5, 50.0), (100.0, 0.0)) >>> printSegments(splitCubicAtT((0, 0), (25, 100), (75, 100), (100, 0), 0.5, 0.75)) ((0.0, 0.0), (12.5, 50.0), (31.25, 75.0), (50.0, 75.0)) ((50.0, 75.0), (59.375, 75.0), (68.75, 68.75), (77.34375, 56.25)) ((77.34375, 56.25), (85.9375, 43.75), (93.75, 25.0), (100.0, 0.0)) """ a, b, c, d = calcCubicParameters(pt1, pt2, pt3, pt4) return _splitCubicAtT(a, b, c, d, *ts) def _splitQuadraticAtT(a, b, c, *ts): ts = list(ts) segments = [] ts.insert(0, 0.0) ts.append(1.0) ax, ay = a bx, by = b cx, cy = c for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i+1] delta = (t2 - t1) # calc new a, b and c a1x = ax * delta**2 a1y = ay * delta**2 b1x = (2*ax*t1 + bx) * delta b1y = (2*ay*t1 + by) * delta c1x = ax*t1**2 + bx*t1 + cx c1y = ay*t1**2 + by*t1 + cy pt1, pt2, pt3 = calcQuadraticPoints((a1x, a1y), (b1x, b1y), (c1x, c1y)) segments.append((pt1, pt2, pt3)) return segments def _splitCubicAtT(a, b, c, d, *ts): ts = list(ts) ts.insert(0, 0.0) ts.append(1.0) segments = [] ax, ay = a bx, by = b cx, cy = c dx, dy = d for i in range(len(ts) - 1): t1 = ts[i] t2 = ts[i+1] delta = (t2 - t1) # calc new a, b, c and d a1x = ax * delta**3 a1y = ay * delta**3 b1x = (3*ax*t1 + bx) * delta**2 b1y = (3*ay*t1 + by) * delta**2 c1x = (2*bx*t1 + cx + 3*ax*t1**2) * delta c1y = (2*by*t1 + cy + 3*ay*t1**2) * delta d1x = ax*t1**3 + bx*t1**2 + cx*t1 + dx d1y = ay*t1**3 + by*t1**2 + cy*t1 + dy pt1, pt2, pt3, pt4 = calcCubicPoints((a1x, a1y), (b1x, b1y), (c1x, c1y), (d1x, d1y)) segments.append((pt1, pt2, pt3, pt4)) return segments # # Equation solvers. # from math import sqrt, acos, cos, pi def solveQuadratic(a, b, c, sqrt=sqrt): """Solve a quadratic equation where a, b and c are real. a*x*x + b*x + c = 0 This function returns a list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! """ if abs(a) < epsilon: if abs(b) < epsilon: # We have a non-equation; therefore, we have no valid solution roots = [] else: # We have a linear equation with 1 root. roots = [-c/b] else: # We have a true quadratic equation. Apply the quadratic formula to find two roots. DD = b*b - 4.0*a*c if DD >= 0.0: rDD = sqrt(DD) roots = [(-b+rDD)/2.0/a, (-b-rDD)/2.0/a] else: # complex roots, ignore roots = [] return roots def solveCubic(a, b, c, d, abs=abs, pow=pow, sqrt=sqrt, cos=cos, acos=acos, pi=pi): """Solve a cubic equation where a, b, c and d are real. a*x*x*x + b*x*x + c*x + d = 0 This function returns a list of roots. Note that the returned list is neither guaranteed to be sorted nor to contain unique values! """ # # adapted from: # CUBIC.C - Solve a cubic polynomial # public domain by Ross Cottrell # found at: http://www.strangecreations.com/library/snippets/Cubic.C # if abs(a) < epsilon: # don't just test for zero; for very small values of 'a' solveCubic() # returns unreliable results, so we fall back to quad. return solveQuadratic(b, c, d) a = float(a) a1 = b/a a2 = c/a a3 = d/a Q = (a1*a1 - 3.0*a2)/9.0 R = (2.0*a1*a1*a1 - 9.0*a1*a2 + 27.0*a3)/54.0 R2_Q3 = R*R - Q*Q*Q if R2_Q3 < 0: theta = acos(R/sqrt(Q*Q*Q)) rQ2 = -2.0*sqrt(Q) x0 = rQ2*cos(theta/3.0) - a1/3.0 x1 = rQ2*cos((theta+2.0*pi)/3.0) - a1/3.0 x2 = rQ2*cos((theta+4.0*pi)/3.0) - a1/3.0 return [x0, x1, x2] else: if Q == 0 and R == 0: x = 0 else: x = pow(sqrt(R2_Q3)+abs(R), 1/3.0) x = x + Q/x if R >= 0.0: x = -x x = x - a1/3.0 return [x] # # Conversion routines for points to parameters and vice versa # def calcQuadraticParameters(pt1, pt2, pt3): x2, y2 = pt2 x3, y3 = pt3 cx, cy = pt1 bx = (x2 - cx) * 2.0 by = (y2 - cy) * 2.0 ax = x3 - cx - bx ay = y3 - cy - by return (ax, ay), (bx, by), (cx, cy) def calcCubicParameters(pt1, pt2, pt3, pt4): x2, y2 = pt2 x3, y3 = pt3 x4, y4 = pt4 dx, dy = pt1 cx = (x2 -dx) * 3.0 cy = (y2 -dy) * 3.0 bx = (x3 - x2) * 3.0 - cx by = (y3 - y2) * 3.0 - cy ax = x4 - dx - cx - bx ay = y4 - dy - cy - by return (ax, ay), (bx, by), (cx, cy), (dx, dy) def calcQuadraticPoints(a, b, c): ax, ay = a bx, by = b cx, cy = c x1 = cx y1 = cy x2 = (bx * 0.5) + cx y2 = (by * 0.5) + cy x3 = ax + bx + cx y3 = ay + by + cy return (x1, y1), (x2, y2), (x3, y3) def calcCubicPoints(a, b, c, d): ax, ay = a bx, by = b cx, cy = c dx, dy = d x1 = dx y1 = dy x2 = (cx / 3.0) + dx y2 = (cy / 3.0) + dy x3 = (bx + cx) / 3.0 + x2 y3 = (by + cy) / 3.0 + y2 x4 = ax + dx + cx + bx y4 = ay + dy + cy + by return (x1, y1), (x2, y2), (x3, y3), (x4, y4) def _segmentrepr(obj): """ >>> _segmentrepr([1, [2, 3], [], [[2, [3, 4], [0.1, 2.2]]]]) '(1, (2, 3), (), ((2, (3, 4), (0.1, 2.2))))' """ try: it = iter(obj) except TypeError: return str(obj) else: return "(%s)" % ", ".join([_segmentrepr(x) for x in it]) def printSegments(segments): """Helper for the doctests, displaying each segment in a list of segments on a single line as a tuple. """ for segment in segments: print(_segmentrepr(segment)) if __name__ == "__main__": import doctest doctest.testmod()
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Validates all aggregate functions across all datatypes # import pytest from testdata.common import widetable from tests.common.environ import USING_OLD_AGGS_JOINS from tests.common.impala_test_suite import ImpalaTestSuite from tests.common.skip import SkipIfOldAggsJoins from tests.common.test_dimensions import ( create_exec_option_dimension, create_uncompressed_text_dimension) from tests.common.test_result_verifier import ( assert_codegen_enabled, parse_column_types, parse_column_labels, QueryTestResult, parse_result_rows) from tests.common.test_vector import ImpalaTestDimension # Test dimensions for TestAggregation. AGG_FUNCTIONS = ['sum', 'count', 'min', 'max', 'avg', 'ndv'] DATA_TYPES = ['int', 'bool', 'double', 'bigint', 'tinyint', 'smallint', 'float', 'timestamp', 'string'] # Lookup table for TestAggregation results. result_lut = { 'sum-tinyint': 45000, 'avg-tinyint': 5, 'count-tinyint': 9000, 'min-tinyint': 1, 'max-tinyint': 9, 'ndv-tinyint': 9, 'sum-smallint': 495000, 'avg-smallint': 50, 'count-smallint': 9900, 'min-smallint': 1, 'max-smallint': 99, 'ndv-smallint': 99, 'sum-int': 4995000, 'avg-int': 500, 'count-int': 9990, 'min-int': 1, 'max-int': 999, 'ndv-int': 999, 'sum-bigint': 49950000, 'avg-bigint': 5000, 'count-bigint': 9990, 'min-bigint': 10, 'max-bigint' : 9990, 'ndv-bigint': 999, 'sum-bool': 5000, 'count-bool': 10000, 'min-bool': 'false', 'max-bool': 'true', 'avg-bool': 0.5, 'ndv-bool': 2, 'sum-double': 50449500.0, 'count-double': 9990, 'min-double': 10.1, 'max-double': 10089.9, 'avg-double': 5050.0, 'ndv-double': 999, 'sum-float': 5494500.0, 'count-float': 9990, 'min-float': 1.10, 'max-float': 1098.9, 'avg-float': 550.0, 'ndv-float': 999, 'count-timestamp': 10000, 'min-timestamp': '2010-01-01 00:00:00', 'max-timestamp': '2010-01-10 18:02:05.100000000', 'avg-timestamp': '2010-01-05 20:47:11.705080000', 'ndv-timestamp': 10000, 'count-string': 10000, 'min-string': '0', 'max-string': '999', 'ndv-string': 999, 'sum-distinct-tinyint': 45, 'count-distinct-tinyint': 9, 'min-distinct-tinyint': 1, 'max-distinct-tinyint': 9, 'avg-distinct-tinyint': 5, 'ndv-distinct-tinyint': 9, 'sum-distinct-smallint': 4950, 'count-distinct-smallint': 99, 'min-distinct-smallint': 1, 'max-distinct-smallint': 99, 'avg-distinct-smallint': 50, 'ndv-distinct-smallint': 99, 'sum-distinct-int': 499500, 'count-distinct-int': 999, 'min-distinct-int': 1, 'max-distinct-int': 999, 'avg-distinct-int': 500, 'ndv-distinct-int': 999, 'sum-distinct-bigint': 4995000, 'count-distinct-bigint': 999, 'min-distinct-bigint': 10, 'max-distinct-bigint': 9990, 'avg-distinct-bigint': 5000, 'ndv-distinct-bigint': 999, 'sum-distinct-bool': 1, 'count-distinct-bool': 2, 'min-distinct-bool': 'false', 'max-distinct-bool': 'true', 'avg-distinct-bool': 0.5, 'ndv-distinct-bool': 2, 'sum-distinct-double': 5044950.0, 'count-distinct-double': 999, 'min-distinct-double': 10.1, 'max-distinct-double': 10089.9, 'avg-distinct-double': 5050.0, 'ndv-distinct-double': 999, 'sum-distinct-float': 549450.0, 'count-distinct-float': 999, 'min-distinct-float': 1.1, 'max-distinct-float': 1098.9, 'avg-distinct-float': 550.0, 'ndv-distinct-float': 999, 'count-distinct-timestamp': 10000, 'min-distinct-timestamp': '2010-01-01 00:00:00', 'max-distinct-timestamp': '2010-01-10 18:02:05.100000000', 'avg-distinct-timestamp': '2010-01-05 20:47:11.705080000', 'ndv-distinct-timestamp': 10000, 'count-distinct-string': 1000, 'min-distinct-string': '0', 'max-distinct-string': '999', 'ndv-distinct-string': 999, } class TestAggregation(ImpalaTestSuite): @classmethod def get_workload(self): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestAggregation, cls).add_test_dimensions() # Add two more dimensions cls.ImpalaTestMatrix.add_dimension(ImpalaTestDimension('agg_func', *AGG_FUNCTIONS)) cls.ImpalaTestMatrix.add_dimension(ImpalaTestDimension('data_type', *DATA_TYPES)) cls.ImpalaTestMatrix.add_constraint(lambda v: cls.is_valid_vector(v)) @classmethod def is_valid_vector(cls, vector): data_type, agg_func = vector.get_value('data_type'), vector.get_value('agg_func') file_format = vector.get_value('table_format').file_format if file_format not in ['parquet']: return False if cls.exploration_strategy() == 'core': # Reduce execution time when exploration strategy is 'core' if vector.get_value('exec_option')['batch_size'] != 0: return False # Avro doesn't have timestamp type non_numeric = data_type in ['bool', 'string'] if file_format == 'avro' and data_type == 'timestamp': return False elif non_numeric and agg_func not in ['min', 'max', 'count', 'ndv']: return False elif agg_func == 'sum' and data_type == 'timestamp': return False return True def test_aggregation(self, vector): exec_option = vector.get_value('exec_option') disable_codegen = exec_option['disable_codegen'] # The old aggregation node does not support codegen for all aggregate functions. check_codegen_enabled = not disable_codegen and not USING_OLD_AGGS_JOINS data_type, agg_func = (vector.get_value('data_type'), vector.get_value('agg_func')) query = 'select %s(%s_col) from alltypesagg where day is not null' % (agg_func, data_type) result = self.execute_query(query, exec_option, table_format=vector.get_value('table_format')) assert len(result.data) == 1 self.verify_agg_result(agg_func, data_type, False, result.data[0]); if check_codegen_enabled: # Verify codegen was enabled for the preaggregation. # It is deliberately disabled for the merge aggregation. assert_codegen_enabled(result.runtime_profile, [1]) query = 'select %s(DISTINCT(%s_col)) from alltypesagg where day is not null' % ( agg_func, data_type) result = self.execute_query(query, vector.get_value('exec_option')) assert len(result.data) == 1 self.verify_agg_result(agg_func, data_type, True, result.data[0]); if check_codegen_enabled: # Verify codegen was enabled for all stages of the aggregation. assert_codegen_enabled(result.runtime_profile, [1, 2, 4, 6]) def verify_agg_result(self, agg_func, data_type, distinct, actual_string): key = '%s-%s%s' % (agg_func, 'distinct-' if distinct else '', data_type) if agg_func == 'ndv': # NDV is inherently approximate. Compare with some tolerance. err = abs(result_lut[key] - int(actual_string)) rel_err = err / float(result_lut[key]) print key, result_lut[key], actual_string,abs(result_lut[key] - int(actual_string)) assert err <= 1 or rel_err < 0.05 elif data_type in ('float', 'double') and agg_func != 'count': # Compare with a margin of error. delta = 1e6 if data_type == 'double' else 1e3 assert abs(result_lut[key] - float(actual_string)) < delta elif data_type == 'timestamp' and agg_func != 'count': # Strip off everything past 10s of microseconds. ignore_digits = 4 assert result_lut[key][:-ignore_digits] == actual_string[:-ignore_digits] else: assert str(result_lut[key]) == actual_string class TestAggregationQueries(ImpalaTestSuite): """Run the aggregation test suite, with codegen enabled and disabled, to exercise our non-codegen code""" @classmethod def get_workload(self): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestAggregationQueries, cls).add_test_dimensions() cls.ImpalaTestMatrix.add_dimension( create_exec_option_dimension(disable_codegen_options=[False, True])) if cls.exploration_strategy() == 'core': cls.ImpalaTestMatrix.add_dimension( create_uncompressed_text_dimension(cls.get_workload())) def test_non_codegen_tinyint_grouping(self, vector, unique_database): # Regression for IMPALA-901. The test includes an INSERT statement, so can only be run # on INSERT-able formats - text only in this case, since the bug doesn't depend on the # file format. if vector.get_value('table_format').file_format == 'text' \ and vector.get_value('table_format').compression_codec == 'none': self.client.execute("create table %s.imp_901 (col tinyint)" % unique_database) self.run_test_case('QueryTest/aggregation_no_codegen_only', vector, unique_database) def test_aggregation(self, vector): if vector.get_value('table_format').file_format == 'hbase': pytest.xfail(reason="IMPALA-283 - select count(*) produces inconsistent results") self.run_test_case('QueryTest/aggregation', vector) def test_distinct(self, vector): if vector.get_value('table_format').file_format == 'hbase': pytest.xfail("HBase returns columns in alphabetical order for select distinct *, " "making the result verication to fail.") if vector.get_value('table_format').file_format == 'kudu': pytest.xfail("IMPALA-4042: count(distinct NULL) fails on a view, needed for kudu") self.run_test_case('QueryTest/distinct', vector) def test_group_concat(self, vector): """group_concat distinct tests Required to run directly in python because the order in which results will be merged at the final, single-node aggregation step is non-deterministic (if the first phase is running on multiple nodes). Need to pull the result apart and compare the actual items)""" exec_option = vector.get_value('exec_option') disable_codegen = exec_option['disable_codegen'] table_format = vector.get_value('table_format') # Test group_concat distinct with other aggregate function and groupings. # expected result is the row: 2010,'1, 2, 3, 4','1-2-3-4','2|3|1|4',40,4 query = """select year, group_concat(distinct string_col), group_concat(distinct string_col, '-'), group_concat(distinct string_col, '|'), count(string_col), count(distinct string_col) from alltypesagg where int_col < 5 and year = 2010 group by year""" result = self.execute_query(query, exec_option, table_format=table_format) row = (result.data)[0].split("\t") assert(len(row) == 6) assert(row[0] == '2010') delimiter = [', ', '-', '|'] for i in range(1, 4): assert(set(row[i].split(delimiter[i-1])) == set(['1', '2', '3', '4'])) assert(row[4] == '40') assert(row[5] == '4') check_codegen_enabled = not disable_codegen and not USING_OLD_AGGS_JOINS if check_codegen_enabled: # Verify codegen was enabled for all three stages of the aggregation. assert_codegen_enabled(result.runtime_profile, [1, 2, 4]) # Test group_concat distinct with arrow delimiter, with multiple rows query = """select day, group_concat(distinct string_col, "->") from (select * from alltypesagg where id % 100 = day order by id limit 99999) a group by day order by day""" result = self.execute_query(query, exec_option, table_format=table_format) string_col = [] string_col.append(set(['1','101','201','301','401','501','601','701','801','901'])) string_col.append(set(['2','102','202','302','402','502','602','702','802','902'])) string_col.append(set(['3','103','203','303','403','503','603','703','803','903'])) string_col.append(set(['4','104','204','304','404','504','604','704','804','904'])) string_col.append(set(['5','105','205','305','405','505','605','705','805','905'])) string_col.append(set(['6','106','206','306','406','506','606','706','806','906'])) string_col.append(set(['7','107','207','307','407','507','607','707','807','907'])) string_col.append(set(['8','108','208','308','408','508','608','708','808','908'])) string_col.append(set(['9','109','209','309','409','509','609','709','809','909'])) string_col.append(set(['10','110','210','310','410','510','610','710','810','910'])) assert(len(result.data) == 10) for i in range(10): row = (result.data)[i].split("\t") assert(len(row) == 2) assert(row[0] == str(i+1)) assert(set(row[1].split("->")) == string_col[i]) # Test group_concat distinct with merge node query = """select group_concat(distinct string_col, ' ') from alltypesagg where int_col < 10""" result = self.execute_query(query, exec_option, table_format=table_format) assert(set((result.data)[0].split(" ")) == set(['1','2','3','4','5','6','7','8','9'])) if check_codegen_enabled: # Verify codegen was enabled for all four stages of the aggregation. assert_codegen_enabled(result.runtime_profile, [1, 2, 4, 6]) class TestWideAggregationQueries(ImpalaTestSuite): """Test that aggregations with many grouping columns work""" @classmethod def get_workload(self): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestWideAggregationQueries, cls).add_test_dimensions() cls.ImpalaTestMatrix.add_dimension( create_exec_option_dimension(disable_codegen_options=[False, True])) # File format doesn't matter for this test. cls.ImpalaTestMatrix.add_constraint( lambda v: v.get_value('table_format').file_format == 'parquet') def test_many_grouping_columns(self, vector): """Test that an aggregate with many grouping columns works""" table_format = vector.get_value('table_format') exec_option = vector.get_value('exec_option') query = "select distinct * from widetable_1000_cols" # Ensure codegen is enabled. result = self.execute_query(query, exec_option, table_format=table_format) # All rows should be distinct. expected_result = widetable.get_data(1000, 10, quote_strings=True) types = parse_column_types(result.schema) labels = parse_column_labels(result.schema) expected = QueryTestResult(expected_result, types, labels, order_matters=False) actual = QueryTestResult(parse_result_rows(result), types, labels, order_matters=False) assert expected == actual class TestTPCHAggregationQueries(ImpalaTestSuite): # Uses the TPC-H dataset in order to have larger aggregations. @classmethod def get_workload(cls): return 'tpch' @classmethod def add_test_dimensions(cls): super(TestTPCHAggregationQueries, cls).add_test_dimensions() cls.ImpalaTestMatrix.add_constraint(lambda v:\ v.get_value('table_format').file_format in ['parquet']) def test_tpch_aggregations(self, vector): self.run_test_case('tpch-aggregations', vector) @SkipIfOldAggsJoins.passthrough_preagg def test_tpch_passthrough_aggregations(self, vector): self.run_test_case('tpch-passthrough-aggregations', vector)
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Created on Fri Mar 4 23:00:43 2016 @author: ddboline """ from __future__ import (absolute_import, division, print_function, unicode_literals) import argparse import os from subprocess import call from movie_collection_app.movie_collection import MovieCollection from movie_collection_app.util import (play_file, remove_remote_file, HOMEDIR, get_remote_file, get_remote_files, HOSTNAME) list_of_commands = ('list', 'get', 'play', 'playyad', 'rm', 'add', 'purge', 'time', 'tvshows', 'master', 'slave', 'fifo', 'test', 'web', 'addcol') help_text = 'commands=%s,[number]' % ','.join(list_of_commands) def make_queue(_command='list', _args=None): ''' seperate function to run commands from make_queue() ''' if _command == 'test': testfile = '/home/ddboline/public_html/videos/test.mp4' play_file(testfile) remove_remote_file(testfile) testfile = '/home/ddboline/public_html/videos/temp.mp4' play_file(testfile) remove_remote_file(testfile) return [] mq_ = MovieCollection() out_list = [] if _command == 'list' or _command == 'time' or _command == 'web': if not _args: out_list += mq_.list_entries(None, do_time=(_command == 'time')) elif len(_args) == 1 and _args[0] == 'head': out_list += mq_.list_entries( None, first_entry=0, last_entry=20, do_time=(_command == 'time')) elif len(_args) == 1 and _args[0] == 'tail': out_list += mq_.list_entries( None, first_entry=-20, last_entry=0, do_time=(_command == 'time')) elif len(_args) == 1 and _args[0] == 'local': out_list += mq_.list_entries(None, do_local=True, do_time=(_command == 'time')) elif len(_args) == 1: out_list += mq_.list_entries(_args[0], do_time=(_command == 'time')) elif len(_args) == 2 and isinstance(_args[0], int)\ and isinstance(_args[1], int): out_list += mq_.list_entries( None, first_entry=_args[0], last_entry=_args[1], do_time=(_command == 'time')) elif len(_args) >= 2: for arg in _args: out_list += mq_.list_entries(arg, do_time=(_command == 'time')) if _command == 'web': make_web_page_from_string( mq_.list_entries(), '/tmp/current_queue.html', do_main_dir=False, subdir='all') if os.path.exists('/tmp/current_queue.html'): call( 'mv /tmp/current_queue.html %s/public_html/videos/' 'current_queue.html' % HOMEDIR, shell=True) make_web_page_from_string(out_list, do_main_dir=True, subdir='partial') elif _command == 'get': if len(_args) == 1 and isinstance(_args[0], int): out_list += [get_remote_file(mq_.current_queue[_args[0]])] elif len(_args) == 2 and isinstance(_args[0], int)\ and isinstance(_args[1], int): out_list += get_remote_files(mq_.current_queue[_args[0]:_args[1]]) elif len(_args) >= 1: for arg in _args: out_list += [mq_.get_entry_by_name(arg)] elif _command == 'tvshows': if not _args: out_list += mq_.list_tvshows() elif len(_args) == 1: out_list += mq_.list_tvshows(do_random=(_args[0] == 'rand')) else: out_list += mq_.list_tvshows( do_random=(_args[0] == 'rand'), play_random=(_args[1] == 'play')) elif _command == 'add' and len(_args) > 0: for arg in _args: if os.path.exists(arg): tmp_, _ = mq_.add_entry(arg) out_list += tmp_ elif _command == 'addcol' and len(_args) > 0: for arg in _args: if os.path.exists(arg): tmp_, _ = mq_.add_entry_to_collection(arg) out_list += tmp_ elif _command == 'rm' and len(_args) > 0: _args = sorted(_args) offset = 0 if len(_args) == 2 and isinstance(_args[0], int)\ and isinstance(_args[1], int) and _args[0] < _args[1]\ and _args[1] < len(mq_.current_queue): for idx in range(_args[0], _args[1] + 1): tm_ = mq_.rm_entry(idx - offset) if tm_: out_list += tm_ offset += 1 else: for arg in _args: if isinstance(arg, int): tm_ = mq_.rm_entry(arg - offset) if tm_: out_list += tm_ offset += 1 else: out_list += mq_.rm_entry_by_name(arg) mq_.read_queue_from_db() elif isinstance(_command, int): pos = _command for arg in _args: if isinstance(arg, int): continue if os.path.exists(arg): tmp_, pos_ = mq_.add_entry(arg, position=pos) out_list += tmp_ pos += pos_ elif _command[0:4] == 'play': if len(_args) == 2 and isinstance(_args[0], int)\ and isinstance(_args[1], int) and _args[0] < _args[1]: for idx in range(_args[0], _args[1]): play_file(mq_.current_queue[idx], yad=(_command == 'playyad')) for arg in _args: if isinstance(arg, int) and arg < len(mq_.current_queue): print(len(mq_.current_queue)) play_file(mq_.current_queue[arg]['path'], yad=(_command == 'playyad')) else: fn_ = mq_.show_entry_by_name(arg) if fn_: play_file(fn_, yad=(_command == 'playyad')) return out_list def make_web_page_from_string(in_list=None, queue_file='%s/public_html/videos/' % HOMEDIR + 'video_queue.html', do_main_dir=False, subdir=''): ''' write video queue html file ''' if HOSTNAME != 'dilepton-tower' or not in_list: return if do_main_dir and os.path.exists('/var/www/html/videos'): # os.system('rm -rf %s' % '/'.join(('/var/www/html/videos', subdir))) os.system('mkdir -p %s' % '/'.join(('/var/www/html/videos', subdir))) with open(queue_file, 'w') as vidfile: vidfile.write('<!DOCTYPE HTML>\n') vidfile.write('<html>\n') vidfile.write('<body>\n') vidfname = '' for line in in_list: idx = -1 cur = '' ents = line.split() idx = int(ents[0]) cur = ents[1] if 'sabrent2000' in cur: vidfname = cur.replace('/media/sabrent2000/Documents/movies', 'movies')\ .replace( '/media/sabrent2000/television/unwatched', 'television') if 'caviar2000' in cur: vidfname = cur.replace('/media/caviar2000/Documents/movies', 'movies2') if 'western2000' in cur: vidfname = cur.replace('/media/western2000/Documents/movies', 'movies3') if do_main_dir and os.path.exists('/'.join(('/var/www/html/videos', subdir))): link_path = '%s/%s' % ('/'.join(('/var/www/html/videos', subdir)), os.path.basename(cur)) if not os.path.exists(link_path): os.system('rm -rf %s' % link_path) os.system('ln -s %s %s' % (cur, link_path)) vidfname = '../videos/%s' % os.path.basename(cur) vidname = cur.split('/')[-1].replace('_', ' ') vidfile.write('<H3 align="center">\n<a href="../%s">' % vidfname + '%03i\t%s</a>\n</H3>\n\n' % (idx, vidname)) vidfile.write('</body>\n') vidfile.write('</html>\n') def make_queue_parse(): parser = argparse.ArgumentParser(description='make_queue script') parser.add_argument('command', nargs='*', help=help_text) args = parser.parse_args() _command = 'list' _args = [] if hasattr(args, 'command'): if len(args.command) > 0: _command = args.command[0] if _command not in list_of_commands: try: _command = int(_command) except ValueError: print(help_text) exit(0) if len(args.command) > 1: for it_ in args.command[1:]: try: it_ = int(it_) except ValueError: pass _args.append(it_) out_list = make_queue(_command=_command, _args=_args) if len(out_list) > 0: out_list = '\n'.join(out_list) try: print(out_list) except IOError: pass
#!/usr/bin/env python # isbn.py # Code for messing with ISBN numbers # Especially stuff for converting between ISBN-10 and ISBN-13 # Copyright (C) 2007 Darren J Wilkinson # Free GPL code # Last updated: 14/8/2007 import sys,re __doc__="""Code for messing with ISBN numbers. Stuff for validating ISBN-10 and ISBN-13 numbers, computing check digits and converting from one format to the other. This code doesn't know anything about proper hyphenation of ISBNs. Nor does it know anything about the real "validity" of ISBNs - it just validates on the basis of the check-digit. Some examples: >>> import isbn >>> isbn.isValid("1-58488-540-8") True >>> isbn.isValid("1-58488-540-5") False >>> isbn.isValid("978-158488-540-5") True >>> isbn.isI10("978-158488-540-5") False >>> isbn.isI13("978-158488-540-5") True >>> isbn.convert("1-58488-540-8") '9781584885405' >>> isbn.convert("978-158488-540-5") '1584885408' >>> isbn.isbn_strip("978-158488-540-5") '9781584885405' >>> isbn.check("1-58488-540") '8' >>> isbn.toI13("1-58488-540-8") '9781584885405' >>> isbn.toI13("978-158488-540-5") '9781584885405' >>> isbn.url("amazon","978-158488-540-5") 'http://www.amazon.com/exec/obidos/ASIN/1584885408' The code is very simple pure python code in a single source file. Please read the source code file (isbn.py) for further information about how it works. Please send bug reports, bug fixes, etc. to: darrenjwilkinson@btinternet.com Free GPL code, Copyright (C) 2007 Darren J Wilkinson http://www.staff.ncl.ac.uk/d.j.wilkinson/ """ def isbn_strip(isbn): """Strip whitespace, hyphens, etc. from an ISBN number and return the result.""" short=re.sub("\W","",isbn) return re.sub("\D","X",short) def convert(isbn): """Convert an ISBN-10 to ISBN-13 or vice-versa.""" short=isbn_strip(isbn) if (isValid(short)==False): raise "Invalid ISBN" if len(short)==10: stem="978"+short[:-1] return stem+check(stem) else: if short[:3]=="978": stem=short[3:-1] return stem+check(stem) else: raise "ISBN not convertible" def isValid(isbn): """Check the validity of an ISBN. Works for either ISBN-10 or ISBN-13.""" short=isbn_strip(isbn) if len(short)==10: return isI10(short) elif len(short)==13: return isI13(short) else: return False def check(stem): """Compute the check digit for the stem of an ISBN. Works with either the first 9 digits of an ISBN-10 or the first 12 digits of an ISBN-13.""" short=isbn_strip(stem) if len(short)==9: return checkI10(short) elif len(short)==12: return checkI13(short) else: return False def checkI10(stem): """Computes the ISBN-10 check digit based on the first 9 digits of a stripped ISBN-10 number.""" chars=list(stem) sum=0 digit=10 for char in chars: sum+=digit*int(char) digit-=1 check=11-(sum%11) if check==10: return "X" elif check==11: return "0" else: return str(check) def isI10(isbn): """Checks the validity of an ISBN-10 number.""" short=isbn_strip(isbn) if (len(short)!=10): return False chars=list(short) sum=0 digit=10 for char in chars: if (char=='X' or char=='x'): char="10" sum+=digit*int(char) digit-=1 remainder=sum%11 if remainder==0: return True else: return False def checkI13(stem): """Compute the ISBN-13 check digit based on the first 12 digits of a stripped ISBN-13 number. """ chars=list(stem) sum=0 count=0 for char in chars: if (count%2==0): sum+=int(char) else: sum+=3*int(char) count+=1 check=10-(sum%10) if check==10: return "0" else: return str(check) def isI13(isbn): """Checks the validity of an ISBN-13 number.""" short=isbn_strip(isbn) if (len(short)!=13): return False chars=list(short) sum=0 count=0 for char in chars: if (count%2==0): sum+=int(char) else: sum+=3*int(char) count+=1 remainder=sum%10 if remainder==0: return True else: return False def toI10(isbn): """Converts supplied ISBN (either ISBN-10 or ISBN-13) to a stripped ISBN-10.""" if (isValid(isbn)==False): raise "Invalid ISBN" if isI10(isbn): return isbn_strip(isbn) else: return convert(isbn) def toI13(isbn): """Converts supplied ISBN (either ISBN-10 or ISBN-13) to a stripped ISBN-13.""" if (isValid(isbn)==False): raise "Invalid ISBN" if isI13(isbn): return isbn_strip(isbn) else: return convert(isbn) def url(type,isbn): """Returns a URL for a book, corresponding to the "type" and the "isbn" provided. This function is likely to go out-of-date quickly, and is provided mainly as an example of a potential use-case for the package. Currently allowed types are "google-books" (the default if the type is not recognised), "amazon", "amazon-uk", "blackwells". """ short=toI10(isbn) if type=="amazon": return "http://www.amazon.com/o/ASIN/"+short elif type=="amazon-uk": return "http://www.amazon.co.uk/o/ASIN/"+short elif type=="blackwells": return "http://bookshop.blackwell.co.uk/jsp/welcome.jsp?action=search&type=isbn&term="+short else: return "http://books.google.com/books?vid="+short if __name__=='__main__': isbn="1-58488-540-8" # isbn="978-158488-540-5" print isbn if isValid(isbn): print "isbn ok" else: print "isbn BAD" print convert(isbn) print """ For help/information, do "python", "import isbn", "help(isbn)". """ # eof
import pytest import numpy as np from numpy.testing import assert_allclose from keras.layers import Dense, Dropout from keras.engine.topology import merge, Input from keras.engine.training import Model from keras.models import Sequential from keras import backend as K from keras.utils.test_utils import keras_test @keras_test def test_model_methods(): a = Input(shape=(3,), name='input_a') b = Input(shape=(3,), name='input_b') a_2 = Dense(4, name='dense_1')(a) dp = Dropout(0.5, name='dropout') b_2 = dp(b) model = Model([a, b], [a_2, b_2]) optimizer = 'rmsprop' loss = 'mse' loss_weights = [1., 0.5] model.compile(optimizer, loss, metrics=[], loss_weights=loss_weights, sample_weight_mode=None) input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_a_np = np.random.random((10, 4)) output_b_np = np.random.random((10, 3)) # test train_on_batch out = model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]) out = model.train_on_batch({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}) # test fit out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np], nb_epoch=1, batch_size=4) out = model.fit({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np], nb_epoch=1, batch_size=4) out = model.fit({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}, nb_epoch=1, batch_size=4) # test validation_split out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np], nb_epoch=1, batch_size=4, validation_split=0.5) out = model.fit({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np], nb_epoch=1, batch_size=4, validation_split=0.5) out = model.fit({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}, nb_epoch=1, batch_size=4, validation_split=0.5) # test validation data out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np], nb_epoch=1, batch_size=4, validation_data=([input_a_np, input_b_np], [output_a_np, output_b_np])) out = model.fit({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np], nb_epoch=1, batch_size=4, validation_split=0.5, validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np])) out = model.fit({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}, nb_epoch=1, batch_size=4, validation_split=0.5, validation_data=({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np})) # test_on_batch out = model.test_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np}, [output_a_np, output_b_np]) out = model.test_on_batch({'input_a': input_a_np, 'input_b': input_b_np}, {'dense_1': output_a_np, 'dropout': output_b_np}) # predict_on_batch out = model.predict_on_batch([input_a_np, input_b_np]) out = model.predict_on_batch({'input_a': input_a_np, 'input_b': input_b_np}) # predict, evaluate input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_a_np = np.random.random((10, 4)) output_b_np = np.random.random((10, 3)) out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4) out = model.predict([input_a_np, input_b_np], batch_size=4) # with sample_weight input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_a_np = np.random.random((10, 4)) output_b_np = np.random.random((10, 3)) sample_weight = [None, np.random.random((10,))] out = model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np], sample_weight=sample_weight) out = model.test_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np], sample_weight=sample_weight) # test accuracy metric model.compile(optimizer, loss, metrics=['acc'], sample_weight_mode=None) out = model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) assert len(out) == 5 out = model.test_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) assert len(out) == 5 # this should also work model.compile(optimizer, loss, metrics={'dense_1': 'acc'}, sample_weight_mode=None) out = model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) assert len(out) == 4 out = model.test_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) assert len(out) == 4 # and this as well model.compile(optimizer, loss, metrics={'dense_1': ['acc']}, sample_weight_mode=None) out = model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) assert len(out) == 4 out = model.test_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) assert len(out) == 4 # test with a custom metric function mse = lambda y_true, y_pred: K.mean(K.pow(y_true - y_pred, 2)) def mse_powers(y_true, y_pred): m = mse(y_true, y_pred) return { 'mse_squared': K.pow(m, 2), 'mse_cubed': K.pow(m, 3) } model.compile(optimizer, loss, metrics=[mse, mse_powers], sample_weight_mode=None) out = model.train_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) out_len = 1 + 2 * 4 # total loss, per layer: loss + 3 metrics assert len(out) == out_len out = model.test_on_batch([input_a_np, input_b_np], [output_a_np, output_b_np]) assert len(out) == out_len input_a_np = np.random.random((10, 3)) input_b_np = np.random.random((10, 3)) output_a_np = np.random.random((10, 4)) output_b_np = np.random.random((10, 3)) out = model.fit([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4, nb_epoch=1) out = model.evaluate([input_a_np, input_b_np], [output_a_np, output_b_np], batch_size=4) out = model.predict([input_a_np, input_b_np], batch_size=4) @keras_test def test_trainable_argument(): x = np.random.random((5, 3)) y = np.random.random((5, 2)) model = Sequential() model.add(Dense(2, input_dim=3, trainable=False)) model.compile('rmsprop', 'mse') out = model.predict(x) model.train_on_batch(x, y) out_2 = model.predict(x) assert_allclose(out, out_2) # test with nesting input = Input(shape=(3,)) output = model(input) model = Model(input, output) model.compile('rmsprop', 'mse') out = model.predict(x) model.train_on_batch(x, y) out_2 = model.predict(x) assert_allclose(out, out_2) if __name__ == '__main__': pytest.main([__file__])
import unittest, random, sys, time, re sys.path.extend(['.','..','py']) import h2o, h2o_browse as h2b, h2o_exec as h2e, h2o_hosts, h2o_import as h2i initList = [ ('r.hex', 'r.hex=i.hex'), ] DO_IFELSE = False DO_CAN_RETURN_NAN = False DO_FAIL1 = False DO_TERNARY = False DO_APPLY = True DO_FUNCTION = False DO_FORCE_LHS_ON_MULTI = True exprList = [ 'x= 3; r.hex[(x > 0) & (x < 4),]', # all x values between 0 and 1 'x= 3; r.hex[,(x > 0) & (x < 4)]', # all x values between 0 and 1 # 'z = if (any(r3.hex == 0) || any(r4.hex == 0)), "zero encountered"', # FALSE and TRUE don't exist? # 'x <- c(NA, FALSE, TRUE)', # 'names(x) <- as.character(x)' # outer(x, x, "&")## AND table # outer(x, x, "|")## OR table "1.23", "!1.23", "1.23<2.34", "!1.23<2.34", "!1.23<!2.34", "1.23<!2.34", "1.23<=2.34", "1.23>2.34", "1.23>=2.34", "1.23==2.34", "1.23!=2.34", "r.hex", "!r.hex", # Not supported # "+(1.23,2.34)", "x=0; x+2", "x=!0; !x+2", "x=!0; x+!2", "x=1", "x=!1", "x<-1", "x<-!1", "c(1,3,5)", "!c(1,3,5)", "!c(!1,3,5)", "!c(1,!3,5)", "!c(1,3,!5)", "a=0; x=0", "a=!0; x=!0", "r.hex[2,3]", # "r.hex[!2,3]", # no cols selectd # "r.hex[2,!3]", "r.hex[2+4,-4]", "r.hex[1,-1]; r.hex[1,-1]; r.hex[1,-1]", "r.hex[1,]", "r.hex+1", "r.hex[,1]", "r.hex[,1]+1", "r.hex-r.hex", "1.23+(r.hex-r.hex)", "(1.23+r.hex)-r.hex", "is.na(r.hex)", "nrow(r.hex)*3", "r.hex[nrow(r.hex)-1,ncol(r.hex)-1]", "r.hex[nrow(r.hex),]", "r.hex[,ncol(r.hex)+1]=4", "r.hex[,1]=3.3; r.hex", "r.hex[,1]=r.hex[,1]+1", # doesn't work # "cbind(c(1), c(2), c(3))", # "cbind(c(1,2,3), c(4,5,6))", # "cbind(c(1,2,3), c(4,5,6), c(7,8,9))", # "cbind(c(1,2,3,4), c(5,6,7))", # "cbind(c(1,2,3), c(4,5,6,7))", "cbind(c(1,2,3,4), c(5,6,7,8))", "r.hex[c(1,3,5),]", "a=c(11,22,33,44,55,66); a[c(2,6,1),]", # fails? # "a=c(1,2,3); a[a[,1]>10,1]", "sum(1,2)", "sum(1,2,3)", "sum(c(1,3,5))", "sum(4,c(1,3,5),2,6)", "sum(1,r.hex,3)", "min(1,2)", # doesn't work # "min(1,2,3)", # doesn't work. only 2 params? # "min(c(1,3,5))", # doesn't work. only 2 params? # "min(4,c(1,3,5),2,6)", # doesn't work # "min(1,r.hex,3)", "max(1,23)", # doesn't work # Passed 3 args but expected 2 # "max(1,2,3)", # doesn't work # "max(c(1,3,5))", # doesn't work # Passed 4 args but expected 2 # "max(4,c(1,3,5),2,6)", # doesn't work # "max(1,r.hex,3)", "factor(r.hex[,5])", "r.hex[,1]==1.0", "runif(r.hex[,1], -1)", "r.hex[,3]=4", ] if DO_APPLY: exprList += [ "apply(r.hex,1,sum)", "apply(r.hex,2,sum)", ] if DO_FUNCTION: exprList += [ # doesn't work # "crnk=function(x){99}", # "crk=function(x){99}", "crunk=function(x){x+99}", # "function(x){x+99}", # "crunk=function(x){99}; r.hex[,3]=4", "function(x,y,z){x[]}(r.hex,1,2)", "function(x){x+1}(2)", "function(x){y=x*2; y+1}(2)", "function(x){y=1+2}(2)", "function(funy){function(x){funy(x)*funy(x)}}(sgn)(-2)", "a=1; a=2; function(x){x=a;a=3}", "a=r.hex; function(x){x=a;a=3;nrow(x)*a}(a)", # "mean2=function(x){apply(x,1,sum)/nrow(x)};mean2(r.hex)", # "mean2=function(x){apply(x,2,sum)/nrow(x)};mean2(r.hex)", "mean2=function(x){99/nrow(x)};mean2(r.hex)", "mean2=function(x){99/nrow(x)}", # what happens if you rename a function in a single string ] # FIX! should add ternary here? # ifelse does all 3 params # ? doesn't do the else if true # we don't support the split if/else if DO_TERNARY: exprList += [ # do we really care about this case # "(0 ? + : *)(1,2)", # "0 ? + : * (1, 2)", "1 ? r.hex : (r.hex+1)", "1 ? (r.hex+1) : r.hex", # don't do these harder ternary for now #"(1 ? r.hex : (r.hex+1))[1,2]", # "apply(r.hex,2, function(x){x==-1 ? 1 : x})", "0 ? 1 : 2", "0 ? r.hex+1 : r.hex+2", "r.hex>3 ? 99 : r.hex", ] if DO_IFELSE: exprList += [ "apply(r.hex,2,function(x){ifelse(x==-1,1,x)})", "ifelse(0,1,2)", "ifelse(0,r.hex+1,r.hex+2)", "ifelse(r.hex>3,99,r.hex)", "ifelse(0,+,*)(1,2)", ] if DO_CAN_RETURN_NAN: exprList += [ "r.hex[r.hex[,1]>4,]", ] if DO_FAIL1: exprList += [ "a=ncol(r.hex); r.hex[,c(a+1,a+2)]=5", ] # concatenate some random choices to make life harder exprBigList = [] for i in range(1000): # expr = "" # concatNum = random.randint(1,2) # expr = "crunk=function(x){x+98};" expr = "" # expr = "function(x){x+98};" concatNum = random.randint(1,3) for j in range(concatNum): randExpr = random.choice(exprList) if DO_FORCE_LHS_ON_MULTI: # lhs =? if re.search("=(?!=)", randExpr): expr += randExpr + ";" else: expr += "d=" + randExpr + ";" else: expr += randExpr + ";" assert expr!="r" exprBigList.append(expr) class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): global SEED, localhost SEED = h2o.setup_random_seed() localhost = h2o.decide_if_localhost() if (localhost): h2o.build_cloud(1) else: h2o_hosts.build_cloud_with_hosts(1) @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_exec2_operators2(self): bucket = 'smalldata' csvPathname = 'iris/iris2.csv' hexKey = 'i.hex' parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, schema='put', hex_key=hexKey) for resultKey, execExpr in initList: h2e.exec_expr(h2o.nodes[0], execExpr, resultKey=resultKey, timeoutSecs=4) start = time.time() h2e.exec_expr_list_rand(len(h2o.nodes), exprList, None, maxTrials=200, timeoutSecs=10, allowEmptyResult=True) # now run them just concatenating each time. We don't do any template substitutes, so don't need # exec_expr_list_rand() bigExecExpr = "" for execExpr in exprBigList: h2e.exec_expr(h2o.nodes[0], execExpr, resultKey=None, timeoutSecs=4.) h2o.check_sandbox_for_errors() print "exec end on ", "operators" , 'took', time.time() - start, 'seconds' if __name__ == '__main__': h2o.unit_main()
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 Justin Santa Barbara # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Utilities and helper functions.""" import contextlib import datetime import hashlib import inspect import os import pyclbr import re import shutil import stat import sys import tempfile from xml.dom import minidom from xml.parsers import expat from xml import sax from xml.sax import expatreader from xml.sax import saxutils from os_brick.initiator import connector from oslo_concurrency import lockutils from oslo_concurrency import processutils from oslo_config import cfg from oslo_log import log as logging from oslo_utils import importutils from oslo_utils import timeutils import retrying import six from cinder import exception from cinder.i18n import _, _LE CONF = cfg.CONF LOG = logging.getLogger(__name__) ISO_TIME_FORMAT = "%Y-%m-%dT%H:%M:%S" PERFECT_TIME_FORMAT = "%Y-%m-%dT%H:%M:%S.%f" synchronized = lockutils.synchronized_with_prefix('cinder-') def find_config(config_path): """Find a configuration file using the given hint. :param config_path: Full or relative path to the config. :returns: Full path of the config, if it exists. :raises: `cinder.exception.ConfigNotFound` """ possible_locations = [ config_path, os.path.join(CONF.state_path, "etc", "cinder", config_path), os.path.join(CONF.state_path, "etc", config_path), os.path.join(CONF.state_path, config_path), "/etc/cinder/%s" % config_path, ] for path in possible_locations: if os.path.exists(path): return os.path.abspath(path) raise exception.ConfigNotFound(path=os.path.abspath(config_path)) def as_int(obj, quiet=True): # Try "2" -> 2 try: return int(obj) except (ValueError, TypeError): pass # Try "2.5" -> 2 try: return int(float(obj)) except (ValueError, TypeError): pass # Eck, not sure what this is then. if not quiet: raise TypeError(_("Can not translate %s to integer.") % (obj)) return obj def is_int_like(val): """Check if a value looks like an int.""" try: return str(int(val)) == str(val) except Exception: return False def check_exclusive_options(**kwargs): """Checks that only one of the provided options is actually not-none. Iterates over all the kwargs passed in and checks that only one of said arguments is not-none, if more than one is not-none then an exception will be raised with the names of those arguments who were not-none. """ if not kwargs: return pretty_keys = kwargs.pop("pretty_keys", True) exclusive_options = {} for (k, v) in kwargs.iteritems(): if v is not None: exclusive_options[k] = True if len(exclusive_options) > 1: # Change the format of the names from pythonic to # something that is more readable. # # Ex: 'the_key' -> 'the key' if pretty_keys: names = [k.replace('_', ' ') for k in kwargs.keys()] else: names = kwargs.keys() names = ", ".join(sorted(names)) msg = (_("May specify only one of %s") % (names)) raise exception.InvalidInput(reason=msg) def execute(*cmd, **kwargs): """Convenience wrapper around oslo's execute() method.""" if 'run_as_root' in kwargs and 'root_helper' not in kwargs: kwargs['root_helper'] = get_root_helper() return processutils.execute(*cmd, **kwargs) def check_ssh_injection(cmd_list): ssh_injection_pattern = ['`', '$', '|', '||', ';', '&', '&&', '>', '>>', '<'] # Check whether injection attacks exist for arg in cmd_list: arg = arg.strip() # Check for matching quotes on the ends is_quoted = re.match('^(?P<quote>[\'"])(?P<quoted>.*)(?P=quote)$', arg) if is_quoted: # Check for unescaped quotes within the quoted argument quoted = is_quoted.group('quoted') if quoted: if (re.match('[\'"]', quoted) or re.search('[^\\\\][\'"]', quoted)): raise exception.SSHInjectionThreat(command=cmd_list) else: # We only allow spaces within quoted arguments, and that # is the only special character allowed within quotes if len(arg.split()) > 1: raise exception.SSHInjectionThreat(command=cmd_list) # Second, check whether danger character in command. So the shell # special operator must be a single argument. for c in ssh_injection_pattern: if c not in arg: continue result = arg.find(c) if not result == -1: if result == 0 or not arg[result - 1] == '\\': raise exception.SSHInjectionThreat(command=cmd_list) def create_channel(client, width, height): """Invoke an interactive shell session on server.""" channel = client.invoke_shell() channel.resize_pty(width, height) return channel def cinderdir(): import cinder return os.path.abspath(cinder.__file__).split('cinder/__init__.py')[0] def last_completed_audit_period(unit=None): """This method gives you the most recently *completed* audit period. arguments: units: string, one of 'hour', 'day', 'month', 'year' Periods normally begin at the beginning (UTC) of the period unit (So a 'day' period begins at midnight UTC, a 'month' unit on the 1st, a 'year' on Jan, 1) unit string may be appended with an optional offset like so: 'day@18' This will begin the period at 18:00 UTC. 'month@15' starts a monthly period on the 15th, and year@3 begins a yearly one on March 1st. returns: 2 tuple of datetimes (begin, end) The begin timestamp of this audit period is the same as the end of the previous. """ if not unit: unit = CONF.volume_usage_audit_period offset = 0 if '@' in unit: unit, offset = unit.split("@", 1) offset = int(offset) rightnow = timeutils.utcnow() if unit not in ('month', 'day', 'year', 'hour'): raise ValueError('Time period must be hour, day, month or year') if unit == 'month': if offset == 0: offset = 1 end = datetime.datetime(day=offset, month=rightnow.month, year=rightnow.year) if end >= rightnow: year = rightnow.year if 1 >= rightnow.month: year -= 1 month = 12 + (rightnow.month - 1) else: month = rightnow.month - 1 end = datetime.datetime(day=offset, month=month, year=year) year = end.year if 1 >= end.month: year -= 1 month = 12 + (end.month - 1) else: month = end.month - 1 begin = datetime.datetime(day=offset, month=month, year=year) elif unit == 'year': if offset == 0: offset = 1 end = datetime.datetime(day=1, month=offset, year=rightnow.year) if end >= rightnow: end = datetime.datetime(day=1, month=offset, year=rightnow.year - 1) begin = datetime.datetime(day=1, month=offset, year=rightnow.year - 2) else: begin = datetime.datetime(day=1, month=offset, year=rightnow.year - 1) elif unit == 'day': end = datetime.datetime(hour=offset, day=rightnow.day, month=rightnow.month, year=rightnow.year) if end >= rightnow: end = end - datetime.timedelta(days=1) begin = end - datetime.timedelta(days=1) elif unit == 'hour': end = rightnow.replace(minute=offset, second=0, microsecond=0) if end >= rightnow: end = end - datetime.timedelta(hours=1) begin = end - datetime.timedelta(hours=1) return (begin, end) class ProtectedExpatParser(expatreader.ExpatParser): """An expat parser which disables DTD's and entities by default.""" def __init__(self, forbid_dtd=True, forbid_entities=True, *args, **kwargs): # Python 2.x old style class expatreader.ExpatParser.__init__(self, *args, **kwargs) self.forbid_dtd = forbid_dtd self.forbid_entities = forbid_entities def start_doctype_decl(self, name, sysid, pubid, has_internal_subset): raise ValueError("Inline DTD forbidden") def entity_decl(self, entityName, is_parameter_entity, value, base, systemId, publicId, notationName): raise ValueError("<!ENTITY> forbidden") def unparsed_entity_decl(self, name, base, sysid, pubid, notation_name): # expat 1.2 raise ValueError("<!ENTITY> forbidden") def reset(self): expatreader.ExpatParser.reset(self) if self.forbid_dtd: self._parser.StartDoctypeDeclHandler = self.start_doctype_decl if self.forbid_entities: self._parser.EntityDeclHandler = self.entity_decl self._parser.UnparsedEntityDeclHandler = self.unparsed_entity_decl def safe_minidom_parse_string(xml_string): """Parse an XML string using minidom safely. """ try: return minidom.parseString(xml_string, parser=ProtectedExpatParser()) except sax.SAXParseException: raise expat.ExpatError() def xhtml_escape(value): """Escapes a string so it is valid within XML or XHTML. """ return saxutils.escape(value, {'"': '&quot;', "'": '&apos;'}) def get_from_path(items, path): """Returns a list of items matching the specified path. Takes an XPath-like expression e.g. prop1/prop2/prop3, and for each item in items, looks up items[prop1][prop2][prop3]. Like XPath, if any of the intermediate results are lists it will treat each list item individually. A 'None' in items or any child expressions will be ignored, this function will not throw because of None (anywhere) in items. The returned list will contain no None values. """ if path is None: raise exception.Error('Invalid mini_xpath') (first_token, sep, remainder) = path.partition('/') if first_token == '': raise exception.Error('Invalid mini_xpath') results = [] if items is None: return results if not isinstance(items, list): # Wrap single objects in a list items = [items] for item in items: if item is None: continue get_method = getattr(item, 'get', None) if get_method is None: continue child = get_method(first_token) if child is None: continue if isinstance(child, list): # Flatten intermediate lists for x in child: results.append(x) else: results.append(child) if not sep: # No more tokens return results else: return get_from_path(results, remainder) def is_valid_boolstr(val): """Check if the provided string is a valid bool string or not.""" val = str(val).lower() return (val == 'true' or val == 'false' or val == 'yes' or val == 'no' or val == 'y' or val == 'n' or val == '1' or val == '0') def is_none_string(val): """Check if a string represents a None value.""" if not isinstance(val, six.string_types): return False return val.lower() == 'none' def monkey_patch(): """If the CONF.monkey_patch set as True, this function patches a decorator for all functions in specified modules. You can set decorators for each modules using CONF.monkey_patch_modules. The format is "Module path:Decorator function". Example: 'cinder.api.ec2.cloud:' \ cinder.openstack.common.notifier.api.notify_decorator' Parameters of the decorator is as follows. (See cinder.openstack.common.notifier.api.notify_decorator) name - name of the function function - object of the function """ # If CONF.monkey_patch is not True, this function do nothing. if not CONF.monkey_patch: return # Get list of modules and decorators for module_and_decorator in CONF.monkey_patch_modules: module, decorator_name = module_and_decorator.split(':') # import decorator function decorator = importutils.import_class(decorator_name) __import__(module) # Retrieve module information using pyclbr module_data = pyclbr.readmodule_ex(module) for key in module_data.keys(): # set the decorator for the class methods if isinstance(module_data[key], pyclbr.Class): clz = importutils.import_class("%s.%s" % (module, key)) for method, func in inspect.getmembers(clz, inspect.ismethod): setattr( clz, method, decorator("%s.%s.%s" % (module, key, method), func)) # set the decorator for the function if isinstance(module_data[key], pyclbr.Function): func = importutils.import_class("%s.%s" % (module, key)) setattr(sys.modules[module], key, decorator("%s.%s" % (module, key), func)) def generate_glance_url(): """Generate the URL to glance.""" # TODO(jk0): This will eventually need to take SSL into consideration # when supported in glance. return "http://%s:%d" % (CONF.glance_host, CONF.glance_port) def make_dev_path(dev, partition=None, base='/dev'): """Return a path to a particular device. >>> make_dev_path('xvdc') /dev/xvdc >>> make_dev_path('xvdc', 1) /dev/xvdc1 """ path = os.path.join(base, dev) if partition: path += str(partition) return path def sanitize_hostname(hostname): """Return a hostname which conforms to RFC-952 and RFC-1123 specs.""" if isinstance(hostname, unicode): hostname = hostname.encode('latin-1', 'ignore') hostname = re.sub('[ _]', '-', hostname) hostname = re.sub('[^\w.-]+', '', hostname) hostname = hostname.lower() hostname = hostname.strip('.-') return hostname def hash_file(file_like_object): """Generate a hash for the contents of a file.""" checksum = hashlib.sha1() any(map(checksum.update, iter(lambda: file_like_object.read(32768), ''))) return checksum.hexdigest() def service_is_up(service): """Check whether a service is up based on last heartbeat.""" last_heartbeat = service['updated_at'] or service['created_at'] # Timestamps in DB are UTC. elapsed = (timeutils.utcnow() - last_heartbeat).total_seconds() return abs(elapsed) <= CONF.service_down_time def read_file_as_root(file_path): """Secure helper to read file as root.""" try: out, _err = execute('cat', file_path, run_as_root=True) return out except processutils.ProcessExecutionError: raise exception.FileNotFound(file_path=file_path) @contextlib.contextmanager def temporary_chown(path, owner_uid=None): """Temporarily chown a path. :params owner_uid: UID of temporary owner (defaults to current user) """ if owner_uid is None: owner_uid = os.getuid() orig_uid = os.stat(path).st_uid if orig_uid != owner_uid: execute('chown', owner_uid, path, run_as_root=True) try: yield finally: if orig_uid != owner_uid: execute('chown', orig_uid, path, run_as_root=True) @contextlib.contextmanager def tempdir(**kwargs): tmpdir = tempfile.mkdtemp(**kwargs) try: yield tmpdir finally: try: shutil.rmtree(tmpdir) except OSError as e: LOG.debug('Could not remove tmpdir: %s', six.text_type(e)) def walk_class_hierarchy(clazz, encountered=None): """Walk class hierarchy, yielding most derived classes first.""" if not encountered: encountered = [] for subclass in clazz.__subclasses__(): if subclass not in encountered: encountered.append(subclass) # drill down to leaves first for subsubclass in walk_class_hierarchy(subclass, encountered): yield subsubclass yield subclass def get_root_helper(): return 'sudo cinder-rootwrap %s' % CONF.rootwrap_config def brick_get_connector_properties(multipath=False, enforce_multipath=False): """wrapper for the brick calls to automatically set the root_helper needed for cinder. :param multipath: A boolean indicating whether the connector can support multipath. :param enforce_multipath: If True, it raises exception when multipath=True is specified but multipathd is not running. If False, it falls back to multipath=False when multipathd is not running. """ root_helper = get_root_helper() return connector.get_connector_properties(root_helper, CONF.my_ip, multipath, enforce_multipath) def brick_get_connector(protocol, driver=None, execute=processutils.execute, use_multipath=False, device_scan_attempts=3, *args, **kwargs): """Wrapper to get a brick connector object. This automatically populates the required protocol as well as the root_helper needed to execute commands. """ root_helper = get_root_helper() return connector.InitiatorConnector.factory(protocol, root_helper, driver=driver, execute=execute, use_multipath=use_multipath, device_scan_attempts= device_scan_attempts, *args, **kwargs) def require_driver_initialized(driver): """Verifies if `driver` is initialized If the driver is not initialized, an exception will be raised. :params driver: The driver instance. :raises: `exception.DriverNotInitialized` """ # we can't do anything if the driver didn't init if not driver.initialized: driver_name = driver.__class__.__name__ LOG.error(_LE("Volume driver %s not initialized"), driver_name) raise exception.DriverNotInitialized() def get_file_mode(path): """This primarily exists to make unit testing easier.""" return stat.S_IMODE(os.stat(path).st_mode) def get_file_gid(path): """This primarily exists to make unit testing easier.""" return os.stat(path).st_gid def get_file_size(path): """Returns the file size.""" return os.stat(path).st_size def _get_disk_of_partition(devpath, st=None): """Returns a disk device path from a partition device path, and stat for the device. If devpath is not a partition, devpath is returned as it is. For example, '/dev/sda' is returned for '/dev/sda1', and '/dev/disk1' is for '/dev/disk1p1' ('p' is prepended to the partition number if the disk name ends with numbers). """ diskpath = re.sub('(?:(?<=\d)p)?\d+$', '', devpath) if diskpath != devpath: try: st_disk = os.stat(diskpath) if stat.S_ISBLK(st_disk.st_mode): return (diskpath, st_disk) except OSError: pass # devpath is not a partition if st is None: st = os.stat(devpath) return (devpath, st) def get_blkdev_major_minor(path, lookup_for_file=True): """Get the device's "major:minor" number of a block device to control I/O ratelimit of the specified path. If lookup_for_file is True and the path is a regular file, lookup a disk device which the file lies on and returns the result for the device. """ st = os.stat(path) if stat.S_ISBLK(st.st_mode): path, st = _get_disk_of_partition(path, st) return '%d:%d' % (os.major(st.st_rdev), os.minor(st.st_rdev)) elif stat.S_ISCHR(st.st_mode): # No I/O ratelimit control is provided for character devices return None elif lookup_for_file: # lookup the mounted disk which the file lies on out, _err = execute('df', path) devpath = out.split("\n")[1].split()[0] if devpath[0] is not '/': # the file is on a network file system return None return get_blkdev_major_minor(devpath, False) else: msg = _("Unable to get a block device for file \'%s\'") % path raise exception.Error(msg) def check_string_length(value, name, min_length=0, max_length=None): """Check the length of specified string :param value: the value of the string :param name: the name of the string :param min_length: the min_length of the string :param max_length: the max_length of the string """ if not isinstance(value, six.string_types): msg = _("%s is not a string or unicode") % name raise exception.InvalidInput(message=msg) if len(value) < min_length: msg = _("%(name)s has a minimum character requirement of " "%(min_length)s.") % {'name': name, 'min_length': min_length} raise exception.InvalidInput(message=msg) if max_length and len(value) > max_length: msg = _("%(name)s has more than %(max_length)s " "characters.") % {'name': name, 'max_length': max_length} raise exception.InvalidInput(message=msg) _visible_admin_metadata_keys = ['readonly', 'attached_mode'] def add_visible_admin_metadata(volume): """Add user-visible admin metadata to regular metadata. Extracts the admin metadata keys that are to be made visible to non-administrators, and adds them to the regular metadata structure for the passed-in volume. """ visible_admin_meta = {} if volume.get('volume_admin_metadata'): for item in volume['volume_admin_metadata']: if item['key'] in _visible_admin_metadata_keys: visible_admin_meta[item['key']] = item['value'] # avoid circular ref when volume is a Volume instance elif (volume.get('admin_metadata') and isinstance(volume.get('admin_metadata'), dict)): for key in _visible_admin_metadata_keys: if key in volume['admin_metadata'].keys(): visible_admin_meta[key] = volume['admin_metadata'][key] if not visible_admin_meta: return # NOTE(zhiyan): update visible administration metadata to # volume metadata, administration metadata will rewrite existing key. if volume.get('volume_metadata'): orig_meta = list(volume.get('volume_metadata')) for item in orig_meta: if item['key'] in visible_admin_meta.keys(): item['value'] = visible_admin_meta.pop(item['key']) for key, value in visible_admin_meta.iteritems(): orig_meta.append({'key': key, 'value': value}) volume['volume_metadata'] = orig_meta # avoid circular ref when vol is a Volume instance elif (volume.get('metadata') and isinstance(volume.get('metadata'), dict)): volume['metadata'].update(visible_admin_meta) else: volume['metadata'] = visible_admin_meta def remove_invalid_filter_options(context, filters, allowed_search_options): """Remove search options that are not valid for non-admin API/context. """ if context.is_admin: # Allow all options return # Otherwise, strip out all unknown options unknown_options = [opt for opt in filters if opt not in allowed_search_options] bad_options = ", ".join(unknown_options) LOG.debug("Removing options '%s' from query.", bad_options) for opt in unknown_options: del filters[opt] def is_blk_device(dev): try: if stat.S_ISBLK(os.stat(dev).st_mode): return True return False except Exception: LOG.debug('Path %s not found in is_blk_device check', dev) return False def retry(exceptions, interval=1, retries=3, backoff_rate=2): def _retry_on_exception(e): return isinstance(e, exceptions) def _backoff_sleep(previous_attempt_number, delay_since_first_attempt_ms): exp = backoff_rate ** previous_attempt_number wait_for = max(0, interval * exp) LOG.debug("Sleeping for %s seconds", wait_for) return wait_for * 1000.0 def _print_stop(previous_attempt_number, delay_since_first_attempt_ms): delay_since_first_attempt = delay_since_first_attempt_ms / 1000.0 LOG.debug("Failed attempt %s", previous_attempt_number) LOG.debug("Have been at this for %s seconds", delay_since_first_attempt) return previous_attempt_number == retries if retries < 1: raise ValueError('Retries must be greater than or ' 'equal to 1 (received: %s). ' % retries) def _decorator(f): @six.wraps(f) def _wrapper(*args, **kwargs): r = retrying.Retrying(retry_on_exception=_retry_on_exception, wait_func=_backoff_sleep, stop_func=_print_stop) return r.call(f, *args, **kwargs) return _wrapper return _decorator def convert_version_to_int(version): try: if isinstance(version, six.string_types): version = convert_version_to_tuple(version) if isinstance(version, tuple): return reduce(lambda x, y: (x * 1000) + y, version) except Exception: msg = _("Version %s is invalid.") % version raise exception.CinderException(msg) def convert_version_to_str(version_int): version_numbers = [] factor = 1000 while version_int != 0: version_number = version_int - (version_int // factor * factor) version_numbers.insert(0, six.text_type(version_number)) version_int = version_int / factor return reduce(lambda x, y: "%s.%s" % (x, y), version_numbers) def convert_version_to_tuple(version_str): return tuple(int(part) for part in version_str.split('.'))
import datetime import logging import MySQLdb import random import re import subprocess from pylons import config from anygit.backends import common from anygit.data import exceptions logger = logging.getLogger(__name__) connection = None collection_to_class = {} sha1_re = re.compile('^[a-f0-9]*') ## Exported functions def create_schema(): print 'Huhh??' def _flush(klass, instances): klass._object_store.insert_all(instance.get_updates() for instance in instances) common._register_flush(_flush) def init_model(connection): """Call me before using any of the tables or classes in the model.""" db = connection for obj in common.__dict__.itervalues(): if type(obj) == type and issubclass(obj, common.Model) and hasattr(obj, '__tablename__'): tablename = getattr(obj, '__tablename__') obj._object_store = Domain(db, tablename) collection_to_class[obj._object_store] = obj def setup(): """ Sets up the database session """ global connection connection = MySQLdb.connect(host=config.get('mysql.host'), user=config.get('mysql.user'), passwd=config.get('mysql.password'), db=config.get('mysql.db'), ssl={'ca' : config.get('mysql.cert')}) init_model(connection) def destroy_session(): global connection connection = None ## Internal functions class Query(object): def __init__(self, domain, query, is_full_query=None): self.is_full_query = is_full_query self._limit = None self._skip = None self._order = None self.domain = domain if isinstance(query, dict): items = [] for k, v in query.iteritems(): if isinstance(v, list): items.append('`%s` IN (%s)' % (k, ','.join(self.domain._encode(val) for val in v))) elif isinstance(v, dict): if '$lt' in v: items.append('`%s` < %s' % (k, self.domain._encode(v['$lt']))) elif '$in' in v: if v['$in']: items.append('`%s` IN (%s)' % (k, ','.join(self.domain._encode(val) for val in v['$in']))) else: items.append('1 = 0') else: raise ValueError('Unrecognized query modifier %s' % v) else: items.append('`%s` = %s' % (k, self.domain._encode(v))) query = ' and '.join(items) self.query = query self._iterator = None def _get_iterator(self): if not self._iterator: self._iterator = iter(self.domain.select(self._get_select())) return self._iterator def _get_order(self): if self._order: return ' ORDER BY `%s` %s' % self._order else: return '' def _get_select(self): # TODO: select a subset of attributes if self.is_full_query: return self.query if self.query: full_query = 'select * from `%s` where %s' % (self.domain.name, self.query) else: full_query = 'select * from `%s`' % self.domain.name return full_query + self._get_order() + self._get_limit() def _get_count(self): if self.query: full_query = 'select count(*) as count from `%s` where %s' % (self.domain.name, self.query) else: full_query = 'select count(*) from `%s`' % self.domain.name return full_query def _get_limit(self): clause = [] if self._limit is not None: clause.append('LIMIT %d' % self._limit) if self._skip is not None: clause.append('OFFSET %d' % self._skip) if clause: return ' %s' % ' '.join(clause) else: return '' def __iter__(self): return iter(self.transform_outgoing(i) for i in self._get_iterator()) def count(self): return int(self.domain.select(self._get_count()).next()['count']) def next(self): return self.transform_outgoing(self._get_iterator().next()) def limit(self, limit): self._limit = limit return self def skip(self, skip): self._skip = skip return self def order(self, column, type): """Order the results. type should be ASC or DESC""" self._order = (column, type) return self def transform_outgoing(self, son): """Transform an object retrieved from the database""" if 'type' in son: klass = common.classify(son['type']) return klass.demongofy(son) else: try: return collection_to_class[self.domain].demongofy(son) except KeyError: return son class Domain(object): def __init__(self, connection, name): self.connection = connection self.name = name def find(self, kwargs='', is_full_query=None): return Query(self, kwargs, is_full_query=is_full_query) def find_one(self, kwargs): result = self.find(kwargs) return result.next() def find_prefix(self, attr, value): # TODO: Perhaps do actual escaping here if not sha1_re.search(value): raise ValueError('Invalid sha1 prefix %s' % value) return Query(self, '%s LIKE "%s%%"' % (attr, value)) def _encode(self, value): if isinstance(value, bool): if value: return '1' else: return '0' else: return repr(unicode(value)).lstrip('u') def _prepare_params(self, id, attributes): keys = [] values = [] # TODO: escape if id is not None: keys.append('`id`') values.append(self._encode(id)) for k, v in attributes.iteritems(): keys.append('`%s`' % k) values.append(self._encode(v)) return keys, values def insert(self, attributes, delayed=True): keys, values = self._prepare_params(None, attributes) if delayed: delayed_statement = ' DELAYED' else: delayed_statement = '' query = 'INSERT%s IGNORE INTO `%s` (%s) VALUES (%s)' % (delayed_statement, self.name, ', '.join(keys), ', '.join(values)) self._execute(query) def insert_all(self, attributes_list, delayed=True): if not attributes_list: logger.error('Asked me to save nothing...') return if delayed: delayed_statement = ' DELAYED' else: delayed_statement = '' args = [] for attributes in attributes_list: keys, values = self._prepare_params(None, attributes) assert keys assert values args.append(' (%s)' % ', '.join(values)) query = 'INSERT%s IGNORE INTO `%s` (%s) VALUES %s' % (delayed_statement, self.name, ', '.join(keys), ', '.join(args)) logger.info('Massive insert: %s' % query) self._execute(query) def update(self, id, attributes): keys, values = self._prepare_params(None, attributes) # Mutable args = ', '.join('%s=%s' % (k, v) for k, v in zip(keys, values)) query = 'UPDATE `%s` SET %s WHERE `id` = %s' % (self.name, args, self._encode(id)) self._execute(query) def select(self, query_string): cursor = self.connection.cursor(MySQLdb.cursors.DictCursor) self._execute(query_string, cursor=cursor) return iter(cursor) def drop(self): self._execute('DROP TABLE `%s`' % self.name) def _execute(self, query_string, cursor=None): if not cursor: cursor = self.connection.cursor() return cursor.execute(query_string)
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import json import os import sys import tempfile import time import traceback import zipfile from django.conf import settings from django.shortcuts import render_to_response from django.http import HttpResponse from django.core.urlresolvers import reverse from django.core.servers.basehttp import FileWrapper from django.shortcuts import redirect from django.utils.translation import ugettext as _ import django.views.debug from desktop.lib import django_mako from desktop.lib.conf import GLOBAL_CONFIG from desktop.lib.django_util import login_notrequired, render_json, render from desktop.lib.i18n import smart_str, force_unicode from desktop.lib.paths import get_desktop_root from desktop.log.access import access_log_level, access_warn from desktop.models import UserPreferences, Settings, Document, DocumentTag from desktop import appmanager import desktop.conf import desktop.log.log_buffer LOG = logging.getLogger(__name__) def home(request): docs = Document.objects.get_docs(request.user).order_by('-last_modified')[:1000] tags = DocumentTag.objects.get_tags(user=request.user) apps = appmanager.get_apps_dict(request.user) return render('home.mako', request, { 'apps': apps, 'documents': docs, 'json_documents': json.dumps(massaged_documents_for_json(docs)), 'tags': tags, 'json_tags': json.dumps(massaged_tags_for_json(tags, request.user)) }) def list_docs(request): docs = Document.objects.get_docs(request.user).order_by('-last_modified')[:1000] return HttpResponse(json.dumps(massaged_documents_for_json(docs)), mimetype="application/json") def list_tags(request): tags = DocumentTag.objects.get_tags(user=request.user) return HttpResponse(json.dumps(massaged_tags_for_json(tags, request.user)), mimetype="application/json") def massaged_documents_for_json(documents): return [massage_doc_for_json(doc) for doc in documents] def massage_doc_for_json(doc): perms = doc.list_permissions() return { 'id': doc.id, 'contentType': doc.content_type.name, 'icon': doc.icon, 'name': doc.name, 'url': doc.content_object.get_absolute_url(), 'description': doc.description, 'tags': [{'id': tag.id, 'name': tag.tag} for tag in doc.tags.all()], 'perms': { 'read': { 'users': [{'id': user.id, 'username': user.username} for user in perms.users.all()], 'groups': [{'id': group.id, 'name': group.name} for group in perms.groups.all()] } }, 'owner': doc.owner.username, 'lastModified': doc.last_modified.strftime("%x %X"), 'lastModifiedInMillis': time.mktime(doc.last_modified.timetuple()) } def massaged_tags_for_json(tags, user): ts = [] trash = DocumentTag.objects.get_trash_tag(user) history = DocumentTag.objects.get_history_tag(user) for tag in tags: massaged_tag = { 'id': tag.id, 'name': tag.tag, 'isTrash': tag.id == trash.id, 'isHistory': tag.id == history.id, 'isExample': tag.tag == DocumentTag.EXAMPLE } ts.append(massaged_tag) return ts def add_tag(request): response = {'status': -1, 'message': ''} if request.method == 'POST': try: tag = DocumentTag.objects.create_tag(request.user, request.POST['name']) response['tag_id'] = tag.id response['status'] = 0 except Exception, e: response['message'] = force_unicode(e) else: response['message'] = _('POST request only') return HttpResponse(json.dumps(response), mimetype="application/json") def tag(request): response = {'status': -1, 'message': ''} if request.method == 'POST': request_json = json.loads(request.POST['data']) try: tag = DocumentTag.objects.tag(request.user, request_json['doc_id'], request_json.get('tag'), request_json.get('tag_id')) response['tag_id'] = tag.id response['status'] = 0 except Exception, e: response['message'] = force_unicode(e) else: response['message'] = _('POST request only') return HttpResponse(json.dumps(response), mimetype="application/json") def update_tags(request): response = {'status': -1, 'message': ''} if request.method == 'POST': request_json = json.loads(request.POST['data']) try: doc = DocumentTag.objects.update_tags(request.user, request_json['doc_id'], request_json['tag_ids']) response['doc'] = massage_doc_for_json(doc) response['status'] = 0 except Exception, e: response['message'] = force_unicode(e) else: response['message'] = _('POST request only') return HttpResponse(json.dumps(response), mimetype="application/json") def remove_tags(request): response = {'status': -1, 'message': _('Error')} if request.method == 'POST': request_json = json.loads(request.POST['data']) try: for tag_id in request_json['tag_ids']: DocumentTag.objects.delete_tag(tag_id, request.user) response['message'] = _('Tag(s) removed!') response['status'] = 0 except Exception, e: response['message'] = force_unicode(e) else: response['message'] = _('POST request only') return HttpResponse(json.dumps(response), mimetype="application/json") def update_permissions(request): response = {'status': -1, 'message': _('Error')} if request.method == 'POST': data = json.loads(request.POST['data']) doc_id = request.POST['doc_id'] try: doc = Document.objects.get_doc(doc_id, request.user) # doc.sync_permissions({'read': {'user_ids': [1, 2, 3], 'group_ids': [1, 2, 3]}}) doc.sync_permissions(data) response['message'] = _('Permissions updated!') response['status'] = 0 response['doc'] = massage_doc_for_json(doc) except Exception, e: response['message'] = force_unicode(e) else: response['message'] = _('POST request only') return HttpResponse(json.dumps(response), mimetype="application/json") @access_log_level(logging.WARN) def log_view(request): """ We have a log handler that retains the last X characters of log messages. If it is attached to the root logger, this view will display that history, otherwise it will report that it can't be found. """ if not request.user.is_superuser: return HttpResponse(_("You must be a superuser.")) l = logging.getLogger() for h in l.handlers: if isinstance(h, desktop.log.log_buffer.FixedBufferHandler): return render('logs.mako', request, dict(log=[l for l in h.buf], query=request.GET.get("q", ""))) return render('logs.mako', request, dict(log=[_("No logs found!")])) @access_log_level(logging.WARN) def download_log_view(request): """ Zip up the log buffer and then return as a file attachment. """ if not request.user.is_superuser: return HttpResponse(_("You must be a superuser.")) l = logging.getLogger() for h in l.handlers: if isinstance(h, desktop.log.log_buffer.FixedBufferHandler): try: # We want to avoid doing a '\n'.join of the entire log in memory # in case it is rather big. So we write it to a file line by line # and pass that file to zipfile, which might follow a more efficient path. tmp = tempfile.NamedTemporaryFile() log_tmp = tempfile.NamedTemporaryFile("w+t") for l in h.buf: log_tmp.write(smart_str(l) + '\n') # This is not just for show - w/out flush, we often get truncated logs log_tmp.flush() t = time.time() zip = zipfile.ZipFile(tmp, "w", zipfile.ZIP_DEFLATED) zip.write(log_tmp.name, "hue-logs/hue-%s.log" % t) zip.close() length = tmp.tell() # if we don't seek to start of file, no bytes will be written tmp.seek(0) wrapper = FileWrapper(tmp) response = HttpResponse(wrapper, content_type="application/zip") response['Content-Disposition'] = 'attachment; filename=hue-logs-%s.zip' % t response['Content-Length'] = length return response except Exception, e: logging.exception("Couldn't construct zip file to write logs to.") return log_view(request) return render_to_response("logs.mako", dict(log=[_("No logs found.")])) @access_log_level(logging.DEBUG) def prefs(request, key=None): """Get or set preferences.""" if key is None: d = dict( (x.key, x.value) for x in UserPreferences.objects.filter(user=request.user)) return render_json(d) else: if "set" in request.REQUEST: try: x = UserPreferences.objects.get(user=request.user, key=key) except UserPreferences.DoesNotExist: x = UserPreferences(user=request.user, key=key) x.value = request.REQUEST["set"] x.save() return render_json(True) if "delete" in request.REQUEST: try: x = UserPreferences.objects.get(user=request.user, key=key) x.delete() return render_json(True) except UserPreferences.DoesNotExist: return render_json(False) else: try: x = UserPreferences.objects.get(user=request.user, key=key) return render_json(x.value) except UserPreferences.DoesNotExist: return render_json(None) def bootstrap(request): """Concatenates bootstrap.js files from all installed Hue apps.""" # Has some None's for apps that don't have bootsraps. all_bootstraps = [ (app, app.get_bootstrap_file()) for app in appmanager.DESKTOP_APPS if request.user.has_hue_permission(action="access", app=app.name) ] # Iterator over the streams. concatenated = [ "\n/* %s */\n%s" % (app.name, b.read()) for app, b in all_bootstraps if b is not None ] # HttpResponse can take an iteratable as the first argument, which # is what happens here. return HttpResponse(concatenated, mimetype='text/javascript') _status_bar_views = [] def register_status_bar_view(view): global _status_bar_views _status_bar_views.append(view) @access_log_level(logging.DEBUG) def status_bar(request): """ Concatenates multiple views together to build up a "status bar"/"status_bar". These views are registered using register_status_bar_view above. """ resp = "" for view in _status_bar_views: try: r = view(request) if r.status_code == 200: resp += r.content else: LOG.warning("Failed to execute status_bar view %s" % (view,)) except: LOG.exception("Failed to execute status_bar view %s" % (view,)) return HttpResponse(resp) def dump_config(request): # Note that this requires login (as do most apps). show_private = False conf_dir = os.path.realpath(os.getenv("HUE_CONF_DIR", get_desktop_root("conf"))) if not request.user.is_superuser: return HttpResponse(_("You must be a superuser.")) if request.GET.get("private"): show_private = True apps = sorted(appmanager.DESKTOP_MODULES, key=lambda app: app.name) apps_names = [app.name for app in apps] top_level = sorted(GLOBAL_CONFIG.get().values(), key=lambda obj: apps_names.index(obj.config.key)) return render("dump_config.mako", request, dict( show_private=show_private, top_level=top_level, conf_dir=conf_dir, apps=apps)) if sys.version_info[0:2] <= (2,4): def _threads(): import threadframe return threadframe.dict().iteritems() else: def _threads(): return sys._current_frames().iteritems() @access_log_level(logging.WARN) def threads(request): """Dumps out server threads. Useful for debugging.""" if not request.user.is_superuser: return HttpResponse(_("You must be a superuser.")) out = [] for thread_id, stack in _threads(): out.append("Thread id: %s" % thread_id) for filename, lineno, name, line in traceback.extract_stack(stack): out.append(" %-20s %s(%d)" % (name, filename, lineno)) out.append(" %-80s" % (line)) out.append("") return HttpResponse("\n".join(out), content_type="text/plain") def jasmine(request): return render('jasmine.mako', request, None) def index(request): if request.user.is_superuser: return redirect(reverse('about:index')) else: return home(request) def serve_404_error(request, *args, **kwargs): """Registered handler for 404. We just return a simple error""" access_warn(request, "404 not found") return render("404.mako", request, dict(uri=request.build_absolute_uri()), status=404) def serve_500_error(request, *args, **kwargs): """Registered handler for 500. We use the debug view to make debugging easier.""" try: exc_info = sys.exc_info() if exc_info: if desktop.conf.HTTP_500_DEBUG_MODE.get() and exc_info[0] and exc_info[1]: # If (None, None, None), default server error describing why this failed. return django.views.debug.technical_500_response(request, *exc_info) else: # Could have an empty traceback return render("500.mako", request, {'traceback': traceback.extract_tb(exc_info[2])}) else: # exc_info could be empty return render("500.mako", request, {}) finally: # Fallback to default 500 response if ours fails # Will end up here: # - Middleware or authentication backends problems # - Certain missing imports # - Packaging and install issues pass _LOG_LEVELS = { "critical": logging.CRITICAL, "error": logging.ERROR, "warning": logging.WARNING, "info": logging.INFO, "debug": logging.DEBUG } _MAX_LOG_FRONTEND_EVENT_LENGTH = 1024 _LOG_FRONTEND_LOGGER = logging.getLogger("desktop.views.log_frontend_event") @login_notrequired def log_frontend_event(request): """ Logs arguments to server's log. Returns an empty string. Parameters (specified via either GET or POST) are "logname", "level" (one of "debug", "info", "warning", "error", or "critical"), and "message". """ def get(param, default=None): return request.REQUEST.get(param, default) level = _LOG_LEVELS.get(get("level"), logging.INFO) msg = "Untrusted log event from user %s: %s" % ( request.user, get("message", "")[:_MAX_LOG_FRONTEND_EVENT_LENGTH]) _LOG_FRONTEND_LOGGER.log(level, msg) return HttpResponse("") def who_am_i(request): """ Returns username and FS username, and optionally sleeps. """ try: sleep = float(request.REQUEST.get("sleep") or 0.0) except ValueError: sleep = 0.0 time.sleep(sleep) return HttpResponse(request.user.username + "\t" + request.fs.user + "\n") def commonheader(title, section, user, padding="90px"): """ Returns the rendered common header """ current_app = None other_apps = [] if user.is_authenticated(): apps = appmanager.get_apps(user) apps_list = appmanager.get_apps_dict(user) for app in apps: if app.display_name not in ['beeswax', 'impala', 'pig', 'jobsub', 'jobbrowser', 'metastore', 'hbase', 'sqoop', 'oozie', 'filebrowser', 'useradmin', 'search', 'help', 'about', 'zookeeper', 'proxy']: other_apps.append(app) if section == app.display_name: current_app = app else: apps_list = [] return django_mako.render_to_string("common_header.mako", { 'current_app': current_app, 'apps': apps_list, 'other_apps': other_apps, 'title': title, 'section': section, 'padding': padding, 'user': user }) def commonfooter(messages=None): """ Returns the rendered common footer """ if messages is None: messages = {} hue_settings = Settings.get_settings() return django_mako.render_to_string("common_footer.mako", { 'messages': messages, 'version': settings.HUE_DESKTOP_VERSION, 'collect_usage': desktop.conf.COLLECT_USAGE.get(), 'tours_and_tutorials': hue_settings.tours_and_tutorials }) # If the app's conf.py has a config_validator() method, call it. CONFIG_VALIDATOR = 'config_validator' # # Cache config errors because (1) they mostly don't go away until restart, # and (2) they can be costly to compute. So don't stress the system just because # the dock bar wants to refresh every n seconds. # # The actual viewing of all errors may choose to disregard the cache. # _CONFIG_ERROR_LIST = None def _get_config_errors(request, cache=True): """Returns a list of (confvar, err_msg) tuples.""" global _CONFIG_ERROR_LIST if not cache or _CONFIG_ERROR_LIST is None: error_list = [ ] for module in appmanager.DESKTOP_MODULES: # Get the config_validator() function try: validator = getattr(module.conf, CONFIG_VALIDATOR) except AttributeError: continue if not callable(validator): LOG.warn("Auto config validation: %s.%s is not a function" % (module.conf.__name__, CONFIG_VALIDATOR)) continue try: error_list.extend(validator(request.user)) except Exception, ex: LOG.exception("Error in config validation by %s: %s" % (module.nice_name, ex)) _CONFIG_ERROR_LIST = error_list return _CONFIG_ERROR_LIST def check_config(request): """Check config and view for the list of errors""" if not request.user.is_superuser: return HttpResponse(_("You must be a superuser.")) conf_dir = os.path.realpath(os.getenv("HUE_CONF_DIR", get_desktop_root("conf"))) return render('check_config.mako', request, { 'error_list': _get_config_errors(request, cache=False), 'conf_dir': conf_dir }, force_template=True) def check_config_ajax(request): """Alert administrators about configuration problems.""" if not request.user.is_superuser: return HttpResponse('') error_list = _get_config_errors(request) if not error_list: # Return an empty response, rather than using the mako template, for performance. return HttpResponse('') return render('config_alert_dock.mako', request, dict(error_list=error_list), force_template=True)
from __future__ import absolute_import import os import six import logging import warnings from django import VERSION from leonardo.base import leonardo, default from leonardo.utils.settings import (get_conf_from_module, merge, get_leonardo_modules, get_loaded_modules, DJANGO_CONF) from importlib import import_module # noqa from django.utils.module_loading import module_has_submodule # noqa _file_path = os.path.abspath(os.path.dirname(__file__)).split('/') BASE_DIR = '/'.join(_file_path[0:-2]) from leonardo.conf.default import * MEDIA_ROOT = os.path.join(BASE_DIR, 'media') STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_URL = '/media/' STATIC_URL = '/static/' if VERSION[:2] >= (1, 8): TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join( os.path.dirname(os.path.realpath(__file__)), 'templates') ], 'OPTIONS': { 'context_processors': default.context_processors, 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', 'dbtemplates.loader.Loader', 'horizon.loaders.TemplateLoader', ], 'debug': True }, }, ] else: TEMPLATE_DIRS = [ os.path.join( os.path.dirname(os.path.realpath(__file__)), 'templates') ] TEMPLATE_CONTEXT_PROCESSORS = default.context_processors TEMPLATE_LOADERS = ( 'dbtemplates.loader.Loader', 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', 'horizon.loaders.TemplateLoader', ) try: # obsole location since 1.0.3 use `leonrdo_site.settings` from leonardo_site.local.settings import * warnings.warn( 'leonardo_site.local.settings is obsolete use new location') except ImportError: pass try: # full settings # TODO support configurable from local_settings # LEONARDO_PROJECT_NAME = 'leonardo_site' from leonardo_site.settings import * except ImportError: pass try: # local settings from local_settings import * except ImportError: warnings.warn( 'local_settings was not found in $PYTHONPATH !') if not DEBUG: if VERSION[:2] >= (1, 8): TEMPLATES[0]['OPTIONS']['loaders'] = [ ('django.template.loaders.cached.Loader', [ 'dbtemplates.loader.Loader', 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', 'horizon.loaders.TemplateLoader', ])] TEMPLATES[0]['OPTIONS']['debug'] = False else: TEMPLATE_DEBUG = DEBUG APPS = merge(APPS, default.core) if 'media' in APPS: FILER_IMAGE_MODEL = 'leonardo.module.media.models.Image' try: from leonardo.conf.horizon import * from leonardo.conf.static import * except Exception as e: pass if LEONARDO_SYSTEM_MODULE: APPS = merge(APPS, ['leonardo_system']) HORIZON_CONFIG['system_module'] = True else: HORIZON_CONFIG['system_module'] = False # load directly specified apps leonardo.get_app_modules(APPS) # propagate settings to leonardo leonardo.MODULES_AUTOLOAD = LEONARDO_MODULE_AUTO_INCLUDE # load all modules leonardo.load_modules() # just propagate all loaded modules to settings LEONARDO_MODULES = leonardo.get_modules() # iterate over sorted modules for mod, mod_cfg in LEONARDO_MODULES: try: # import all settings keys from module if module_has_submodule(mod, "settings"): try: settings_mod = import_module( '{0}.settings'.format(mod.__name__)) for k in dir(settings_mod): if not k.startswith("_"): val = getattr(settings_mod, k, None) globals()[k] = val locals()[k] = val except Exception as e: warnings.warn( 'Exception "{}" raised during loading ' 'settings from {}'.format(str(e), mod)) # go through django keys and merge it to main settings for key in DJANGO_CONF.keys(): updated_value = mod_cfg.get_value(key, globals()[key]) globals()[key] = updated_value locals()[key] = updated_value # map value to leonardo but under our internal name setattr(leonardo, DJANGO_CONF[key], updated_value) if mod_cfg.urls_conf: MODULE_URLS[mod_cfg.urls_conf] = {'is_public': mod_cfg.public} # TODO move to utils.settings # support for one level nested in config dictionary for config_key, config_value in six.iteritems(mod_cfg.config): if isinstance(config_value, dict): CONSTANCE_CONFIG_GROUPS.update({config_key: config_value}) for c_key, c_value in six.iteritems(config_value): mod_cfg.config[c_key] = c_value # remove from main dict mod_cfg.config.pop(config_key) else: if isinstance(mod_cfg.optgroup, six.string_types): CONSTANCE_CONFIG_GROUPS.update({ mod_cfg.optgroup: mod_cfg.config}) else: if 'ungrouped' in CONSTANCE_CONFIG_GROUPS: CONSTANCE_CONFIG_GROUPS['ungrouped'].update(mod_cfg.config) else: CONSTANCE_CONFIG_GROUPS['ungrouped'] = \ mod_cfg.config # import and update absolute overrides for model, method in six.iteritems(mod_cfg.absolute_url_overrides): try: _mod = import_module(".".join(method.split('.')[:-1])) ABSOLUTE_URL_OVERRIDES[model] = getattr( _mod, method.split('.')[-1]) except Exception as e: raise e for nav_extension in mod_cfg.navigation_extensions: try: import_module(nav_extension) except ImportError: pass CONSTANCE_CONFIG.update(mod_cfg.config) if VERSION[:2] >= (1, 8): TEMPLATES[0]['DIRS'] = merge(TEMPLATES[0]['DIRS'], mod_cfg.dirs) cp = TEMPLATES[0]['OPTIONS']['context_processors'] TEMPLATES[0]['OPTIONS']['context_processors'] = merge( cp, mod_cfg.context_processors) else: TEMPLATE_CONTEXT_PROCESSORS = merge( TEMPLATE_CONTEXT_PROCESSORS, mod_cfg.context_processors) TEMPLATE_DIRS = merge(TEMPLATE_DIRS, mod_cfg.dirs) # collect grouped widgets if isinstance(mod_cfg.optgroup, six.string_types): if len(mod_cfg.widgets) > 0: WIDGETS[mod_cfg.optgroup] = merge( getattr(WIDGETS, mod_cfg.optgroup, []), mod_cfg.widgets) else: if len(mod_cfg.widgets) > 0 and DEBUG: WIDGETS['ungrouped'] = merge( getattr(WIDGETS, 'ungrouped', []), mod_cfg.widgets) warnings.warn('You have ungrouped widgets' ', please specify your ``optgroup``' 'which categorize your widgets in %s' % mod) except Exception as e: warnings.warn( 'Exception "{}" raised during loading ' 'module {}'.format(str(e), mod)) setattr(leonardo, 'widgets', WIDGETS) from leonardo.module.web.models import Page from leonardo.module.web.widget import ApplicationWidget # register external apps Page.create_content_type( ApplicationWidget, APPLICATIONS=APPLICATION_CHOICES) # register widgets for _optgroup, _widgets in six.iteritems(WIDGETS): optgroup = _optgroup if _optgroup != 'ungrouped' else None for widget in _widgets: Page.create_content_type(widget, optgroup=optgroup) Page.register_extensions(*PAGE_EXTENSIONS) Page.register_default_processors(LEONARDO_FRONTEND_EDITING) # FINALLY OVERRIDE ALL try: # local settings from local_settings import * except ImportError: warnings.warn( 'Missing local_settings !') try: # full settings from leonardo_site.local.settings import * except ImportError: pass try: # full settings from leonardo_site.settings import * except ImportError: pass # and again merge core with others APPS = merge(APPS, default.core) # go through django keys and merge it to main settings for key in DJANGO_CONF.keys(): # map value to leonardo but under our internal name setattr(leonardo, DJANGO_CONF[key], globals()[key]) # Add HORIZON_CONFIG to the context information for offline compression COMPRESS_OFFLINE_CONTEXT = { 'STATIC_URL': STATIC_URL, 'HORIZON_CONFIG': HORIZON_CONFIG, } if DEBUG: try: import debug_toolbar INSTALLED_APPS = merge(INSTALLED_APPS, ['debug_toolbar']) from leonardo.conf.debug import * except ImportError: if DEBUG: warnings.warn('DEBUG is set to True but, DEBUG tools ' 'is not installed please run ' '"pip install django-leonardo[debug]"') # async messages try: import async_messages INSTALLED_APPS = merge(INSTALLED_APPS, ['async_messages']) MIDDLEWARE_CLASSES = merge(MIDDLEWARE_CLASSES, ['async_messages.middleware.AsyncMiddleware']) except ImportError: pass # use js files instead of horizon HORIZON_CONFIG['js_files'] = leonardo.js_files HORIZON_CONFIG['js_spec_files'] = leonardo.js_spec_files HORIZON_CONFIG['css_files'] = leonardo.css_files HORIZON_CONFIG['scss_files'] = leonardo.scss_files HORIZON_CONFIG['angular_modules'] = leonardo.angular_modules HORIZON_CONFIG['page_actions'] = leonardo.page_actions HORIZON_CONFIG['widget_actions'] = leonardo.widget_actions # path horizon config from horizon import conf conf.HORIZON_CONFIG = HORIZON_CONFIG if DEBUG: logging.basicConfig(level=logging.DEBUG)
from yahoo_finance import Share from argparse import ArgumentParser import time import sys import datetime import timeit mystock = "" yearhighlist = "" yearlowlist = "" volumealert = "" winnerList = "" looserList = "" sp500index = Share('^GSPC') nasdaqindex = Share('^IXIC') sp500Price = "" sp500Change = "" sp500percentChange = "" ndqChange = "" globalTrip = 0 ###VolumeHighTest - return the volumealert as a list instead of a string, so that it can be referenced easier elsewhere in the future def isMarketOpen(): """determines how many seconds after midnight now is, and compares it with the seconds after midnight in the blackout period. Between 9am-9:45am Eastern Yahoo! sends N/A data for some fields, for which I don't have all of the error handling working""" newnow = datetime.datetime.now() midnight = datetime.datetime.combine(newnow.date(), datetime.time()) seconds = (newnow - midnight).seconds startBlackout = 32400 #9:00am Eastern is 32,400 seconds after midnight, begin blackout period endBlackout = 35100 #9:45am Eastern is 35,100 seconds after midnight; end blackout period print seconds if (seconds >= startBlackout) and (seconds <= endBlackout): return 0 else: return 1 def ofAverageVolume(self): """Compares a stocks current volume against the average volume determine what percent of average it else""" myAverageVolume = getAvgDailyVolume(self) myCurrentVolume = getVolume(self) if myAverageVolume > myCurrentVolume: ofAverageVolume = myCurrentVolume / myAverageVolume return ofAverageVolume else: ofAverageVolume = (1-(myAverageVolume - myCurrentVolume)/(myAverageVolume))*100 return ofAverageVolume def volumeHighTest(self): """ If the current volume for a stock is greater than the average volume, add the ticker to the global volulumalert string and return yes/no. """ newvolumehightest = "" if getVolume(self) > getAvgDailyVolume(self): newvolumehightest = "yes" global volumealert volumealert += ticker else: newvolumehightest = "no" return newvolumehightest def getStock(self): """wrapper for the Yahoo-Finance module warpper; if refactoring this could probably be eliminated""" return Share(self) def getPrice(self): return self.get_price() def percentChange(self): if (mydaychange is not None) and (myopen is not None): tickerPercentChange = (mydaychange/myopen)*100 return tickerPercentChange else: return 0 def index_price(): global sp500Change, sp500Price sp500Price = float(sp500index.get_price()) sp500Open = float(sp500index.get_open()) sp500Change = float(sp500index.get_change()) global sp500percentChange sp500percentChange = ((sp500Change/sp500Open)*100) return (sp500Price, sp500Open, sp500Change, sp500percentChange) def getOpen(self): go = self.get_open() if go is not None: return float(self.get_open()) else: return 1 def getVolume(self): return float(self.get_volume()) def getAvgDailyVolume(self): return float(self.get_avg_daily_volume()) def getDayChange(self): """Checks to see if the gdc is None (e.g. between ~9am-9:45am Yhaoo Finance returns N/A for change). If Yahoo-Finance returns N/A (none), then return 0 to prevent error. Returning 0 causes winLoss() to return invalid data.""" gdc = mystock.get_change() if gdc is not None: #print ticker, gdc return float(self.get_change()) else: return 1 def getDayHigh(self): return self.get_days_high() def getDayLow(self): return self.get_days_low() def getYearHigh(self): return self.get_year_high() def getYearLow(self): return self.get_year_low() def winList(self): if getDayChange(self) > 0: global winnerList winnerList += ticker def looseList(self): if getDayChange(self) <= 0: global looserList looserList += ticker def newHighTest(self): newhighpricetest = "" if getDayHigh(self) == getYearHigh(self): newhighpricetest = "yes" global yearhighlist yearhighlist += ticker else: newhighpricetest = "no" return newhighpricetest def newLowTest(self): newlowpricetest = "" if getDayLow(self) == getYearLow(self): newlowpricetest = "yes" global yearlowlist yearlowlist += ticker else: newlowpricetest = "no" return newlowpricetest def winReport(): print "\n", "Winners: \n", winnerList def lossReport(): print "\n", "Loosers: \n", looserList def volumeSummary(): if volumealert: print "\n", "High Volume alert: \n" + volumealert else: print "\n", "High Volume alert:: \n", "No tickers in watchlist flagged for high volume \n" def yearLowSummary(): if yearlowlist: print "Hitting 52-week low: \n" + yearlowlist else: print "\n", "Hitting 52-week low: \n", "No tickers in watchlist hitting 52-week low \n" def yearHighSummary(): #global yearhighlist if yearhighlist: print "\n", "Hitting 52-week high: \n" + yearhighlist else: print "\n", "Hitting 52-week high: \n", "No tickers in watchlist hitting 52-week high \n" def detailTicker(): """Primarily for debugging -d and modify this function to return what you're interested printing while looping trough ticker list""" myofAverageVolume = "" #debug detail line item; modify so that -d fits the test case. if args.detail: #print ticker, myprice, myvolume, myavgdailyvolume, mydaychange, mydayhigh, mydaylow, myyearhigh, myyearlow, mynewhightest, myvolumehightest, mynewlowtest, myopen, mypercentchange tickerPrint = ticker.strip('\n') print ticker, myprice, mydayhigh, myyearhigh, mydaylow, myyearlow #print tickerPrint, myprice, str(round(mypercentchange, 2))+'%' def noAction(): print "\n", args.filename + ": " + "Watchlist triggered no alerts today." def index_summary(): print "S&P 500, Price: %s, Change: %s, Percent Change: %s" %(sp500Price, sp500Change, str(round(sp500percentChange,2))+'%'), "\n" #converts to string, and rounds my variable to 2 decimal places when printing def outperformSP500(self): #tickerPrint = ticker.strip('\n') global sp500percentChange if mypercentchange > sp500percentChange: print ticker.strip('\n') + ", " + str(round(mypercentchange, 2))+'%' + ", " + str(round(myofAverageVolume, 2))+'%' + ", " + myprice parser = ArgumentParser(description = 'Watchlist Filtering for Yahoo-Finance') parser.add_argument("-f", "--file", required=True, dest="filename", help="file name of watchlist; expects plain text file with 1 ticker symbol per line, and no empty lines at the end", metavar="FILE") parser.add_argument("-v", "--volume", action="store_true", dest="volumeFlag", default=False, help="high volume notification") parser.add_argument("-nl", "--low", action="store_true", dest="newlowFlag", default=False, help="new 52-week low notification") parser.add_argument("-d", "--detail", action="store_true", dest="detail", default=False, help="detailed ticker info") parser.add_argument("-wl", "--wins", action="store_true", dest="winnerlist", default=False, help="outputs today's winners") parser.add_argument("-ll", "--losses", action="store_true", dest="looserlist", default=False, help="outputs today's loosers") parser.add_argument("-ip", "--indexprices", action="store_true", dest="indexprices", default=False, help="outputs current index prices") parser.add_argument("-op", "--outperformance", action="store_true", dest="outperformance", default=False, help="prints tickers symbol and change info if ticker is outperformaning the day's S&P 500 performance. MUST USE WITH -ip") parser.add_argument("-nh", "--newhighs", action="store_true", dest="newhighs", default=False, help="prints tickers from watchlist hitting new 52 week highs") args = parser.parse_args() if not isMarketOpen(): print "Between 9:00am - 9:45am Eastern (UTC-0:500) Yahoo Finance input values are not initalized. Please re-run with '-ip / -op' after 9:45am. Other arguments will function normally." exit() starttime = timeit.default_timer() watchList = open(args.filename) ticker = watchList.readlines() watchList.close() print '\n%s\nRunning queries on %s symboles...' % (time.strftime('%Y-%m-%d %H:%M:%S'), len(ticker)) if args.indexprices: indexinfo = index_price() index_summary() for ticker in ticker: mystock = getStock(ticker) myprice = getPrice(mystock) myopen = getOpen(mystock) myvolume = getVolume(mystock) myavgdailyvolume = getAvgDailyVolume(mystock) mydaychange = getDayChange(mystock) mydayhigh = getDayHigh(mystock) mydaylow = getDayLow(mystock) if args.newhighs: myyearhigh = getYearHigh(mystock) if args.newlowFlag: mynewlog = getYearLow(mystock) myyearlow = getYearLow(mystock) mynewhightest = newHighTest(mystock) myvolumehightest = volumeHighTest(mystock) mynewlowtest = newLowTest(mystock) mypercentchange = percentChange(mystock) winList(mystock) looseList(mystock) myofAverageVolume = ofAverageVolume(mystock) detailTicker() if args.outperformance: if globalTrip is 0: print "Ticker, Percent Change, Percent of Average Volume, Price" globalTrip = 1 outperformSP500(mystock) if args.filename: if args.newhighs: yearHighSummary() if args.newlowFlag: yearLowSummary() if args.volumeFlag: volumeSummary() if args.winnerlist: winReport() if args.looserlist: lossReport() stoptime = timeit.default_timer() runtime = stoptime - starttime print "Completed in: %s" % str(round(runtime, 2)), "seconds"
#!/usr/bin/env python """ This module has functions that generated random values for django fields. """ import datetime import os import uuid from decimal import Decimal from itertools import ifilter from itertools import imap from itertools import islice from random import choice from random import randint from random import shuffle def generate_integer(bits=32, negative_allowed=True): length = randint(1, bits - 1) - 1 positive = True if negative_allowed: positive = choice([True, False]) if positive: low = (1 << length) high = 2 * low - 1 if low == 1: low = 0 return randint(low, high) else: high = -(1 << length) - 1 low = 2 * (high + 1) if high == -2: high = -1 return randint(low, high) def generate_big_integer(): return generate_integer(64) def generate_int(): return generate_integer(32) def generate_small_integer(): return generate_integer(16) def generate_positive_integer(): return generate_integer(32, False) def generate_positive_small_integer(): return generate_integer(16, False) def generate_boolean(null_allowed=False): res = randint(0, 1 + int(null_allowed)) if res < 2: return bool(res) def generate_ip(): return str.join('.', [str(randint(0, 255)) for _ in xrange(4)]) def generate_comma_separated_int(max_length): parts = randint(0, (max_length - 1) / 4) left = randint(1, min(3, max_length - 4 * parts)) number = [str(randint(int(bool(parts)), 10 ** left - 1))] number.extend('%.3d' % randint(0, 999) for _ in xrange(parts)) return str.join(',', number) def generate_string(max_length, lower=True, upper=True, digits=True, special=True, null_allowed=False, exact_len=False): vascii = dict([(chr(n), n) for n in xrange(128)]) allowed_characters = [] chars_in_range = lambda beg, end: [chr(n) for n in xrange(vascii[beg], vascii[end] + 1)] if lower: allowed_characters.extend(chars_in_range('a', 'z')) if upper: allowed_characters.extend(chars_in_range('A', 'Z')) if digits: allowed_characters.extend(chars_in_range('0', '9')) if special: if (isinstance(special, list) or isinstance(special, tuple) or isinstance(special, set)): allowed_characters.extend(special) elif special is True: allowed_characters.extend(chars_in_range('!', '/')) allowed_characters.extend(chars_in_range(':', '@')) allowed_characters.extend(chars_in_range('[', '`')) allowed_characters.extend(chars_in_range('{', '~')) length = max_length if not exact_len: length = randint(1 - null_allowed, max_length) return str.join('', [choice(allowed_characters) for _ in xrange(length)]) def generate_date_time(auto_now=False): if auto_now: return datetime.datetime.now() else: year = randint(1900, 2100) month = randint(1, 12) long_month = [1, 3, 5, 7, 8, 10, 12] day = 0 if month in long_month: day = randint(1, 31) else: if month == 2: x = year leap_year = int((x % 4 == 0 and not x % 100 == 0) or x % 400 == 0) day = randint(1, 28 + leap_year) else: day = randint(1, 30) hour = randint(0, 23) minute = randint(0, 59) second = randint(0, 59) microsecond = randint(0, 999999) return datetime.datetime(year, month, day, hour, minute, second, microsecond) def generate_date(auto_now=False): return generate_date_time(auto_now).date() def generate_time(auto_now=False): return generate_date_time(auto_now).time() def generate_text(max_length, exact=False): sentences = randint(1, max((max_length + 39) / 60, (max_length + 39) / 40)) rem_length = max_length text = [] for idx in xrange(sentences): length = rem_length / (sentences - idx) length = min((rem_length) / (sentences - idx) + int(bool(idx)), randint(2, 7) * 6, rem_length - int(bool(idx))) if length > 0: text.append(generate_sentence(length, exact=exact)) rem_length -= len(text[-1]) + int(bool(idx)) return str.join(' ', text) def generate_sentence(max_length, lower=True, upper=False, digits=False, seperators=[' '], end_char=['.'], exact=False): if max_length < 3: return generate_string(max_length, lower, upper, digits, special=False, null_allowed=True, exact_len=True) if not end_char: end_char = [''] max_length -= bool(end_char) and bool(any(char for char in end_char)) length = max_length if not exact and length >= 5: length = randint(1, max_length) a = 5.0 / 6.0 no_words = randint(1, int(2 * length * (1 - a) + 1 - 2 * a) + 1) max_word_length = int((length + 1) / no_words * a) lengths = [randint(1, max_word_length) for _ in xrange(no_words)] lengths.sort() tot = length - no_words + 1 - sum(lengths) while tot < 0 and lengths: tot += lengths.pop() tot += int(bool(lengths)) no_words -= 1 if tot > 1 and (exact or randint(0, 1) == 0 or not lengths): lengths.append(tot - 1) no_words += 1 shuffle(lengths) words = [generate_string(word_length, lower, upper, digits, False, False, True) for word_length in lengths] words_endings = [choice(seperators) for _ in xrange(len(lengths) - 1)] words_endings.append(choice(end_char)) words = map(lambda t: t[0] + t[1], zip(words, words_endings)) return str.join('', words) def generate_decimal(max_digits, decimal_places): integer_part_len = max_digits - decimal_places integer_part = generate_string(integer_part_len, False, False, True, False, False, False) integer_part = str(int(integer_part)) decimal_part = generate_string(decimal_places, False, False, True, False, False, False) return Decimal('%s.%s' % (integer_part, decimal_part)) def generate_float(max_digits=50, decimal_places=30): return float(generate_decimal(max_digits, decimal_places)) def generate_email(max_length, exact_len=False): if max_length < 7: return '' dom = ['com', 'de', 'it', 'uk', 'edu', 'es', 'fr', 'eg', 'ru', 'pl', 'org', 'es', 'pk', 'jo', 'fe', 'se', 'tr', 'ch'] tot_length = (max_length - 5) / 2 parts = [generate_string(tot_length, lower=True, upper=False, digits=True, special=False, null_allowed=False, exact_len=exact_len) for _ in xrange(2)] return '%s@%s.%s' % (parts[0], parts[1], choice(dom)) def generate_url(max_length): if max_length < 16: return '' dom = ['com', 'de', 'it', 'uk', 'edu', 'es', 'fr', 'eg', 'ru', 'pl', 'org', 'es', 'pk', 'jo', 'fe', 'se', 'tr', 'ch'] domain = generate_sentence(randint(3, max_length - 11), lower=True, digits=True, seperators=['.'], end_char=['.']) domain += choice(dom) suburl = '' if len(domain) + 8 < max_length: suburl = choice(['', '/']) if randint(1, 6) > 2 and len(domain) + len(suburl) + 10 < max_length: suburl = '/' suburl += generate_sentence(max_length - len(domain) - 8 - len(suburl), digits=True, seperators=[''], end_char=['/', '']) return '%s://%s%s' % (choice(['http', 'ftp', 'https']), domain, suburl) def generate_uuid(): return uuid.uuid4() def generate_file_path(): walk = os.walk(os.getcwd()) flt = ifilter(lambda path: not any(p.startswith('.') for p in path[0]), walk) flt = imap(lambda path: path[0], flt) flt = islice(flt, 1000) return choice(list(flt))
# -*- coding: utf-8 -*- # # boltons documentation build configuration file, created by # sphinx-quickstart on Sat Mar 21 00:34:18 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import sphinx from pprint import pprint # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. CUR_PATH = os.path.dirname(os.path.abspath(__file__)) PROJECT_PATH = os.path.abspath(CUR_PATH + '/../') PACKAGE_PATH = os.path.abspath(CUR_PATH + '/../boltons/') sys.path.insert(0, PROJECT_PATH) sys.path.insert(0, PACKAGE_PATH) pprint(os.environ) def get_mod_stats(): # TODO: docstring percentage. import pkgutil from boltons.funcutils import get_module_callables mod_count = 0 tot_type_count = 0 tot_func_count = 0 ignore = lambda attr_name: attr_name.startswith('_') for _, mod_name, _ in pkgutil.iter_modules([PACKAGE_PATH]): if not mod_name.endswith('utils'): continue mod = __import__(mod_name) types, funcs = get_module_callables(mod, ignore=ignore) if not len(types) and not len(funcs): continue mod_count += 1 tot_type_count += len(types) tot_func_count += len(funcs) ret = (mod_count, tot_type_count, tot_func_count) print ('==== %s modules ==== %s types ==== %s funcs ====' % ret) return ret B_MOD_COUNT, B_TYPE_COUNT, B_FUNC_COUNT = get_mod_stats() rst_epilog = """ .. |b_mod_count| replace:: {mod_count} .. |b_type_count| replace:: {type_count} .. |b_func_count| replace:: {func_count} """.format(mod_count=B_MOD_COUNT, type_count=B_TYPE_COUNT, func_count=B_FUNC_COUNT) # -- General configuration ------------------------------------------------ autosummary_generate = True # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', ] # Read the Docs is version 1.2 as of writing if sphinx.version_info[:2] < (1, 3): extensions.append('sphinxcontrib.napoleon') else: extensions.append('sphinx.ext.napoleon') # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'boltons' copyright = u'2018, Mahmoud Hashemi' author = u'Mahmoud Hashemi' version = '18.0' release = '18.0.0' if os.name != 'nt': today_fmt = '%B %d, %Y' exclude_patterns = ['_build'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'python': ('https://docs.python.org/2.7', None)} # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if on_rtd: html_theme = 'default' else: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = ['_themes', sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # TEMP: see https://github.com/rtfd/readthedocs.org/issues/1692 # Add RTD Theme Path. #if 'html_theme_path' in globals(): # html_theme_path.append('/home/docs/checkouts/readthedocs.org/readthedocs/templates/sphinx') #else: # html_theme_path = ['_themes', '/home/docs/checkouts/readthedocs.org/readthedocs/templates/sphinx'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'boltonsdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'boltons.tex', u'boltons Documentation', u'Mahmoud Hashemi', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'boltons', u'boltons Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'boltons', u'boltons Documentation', author, 'boltons', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
"""Import tasks for the Harvard Center for Astrophysics.""" import csv import os from glob import glob from math import floor from astrocats.catalog.photometry import PHOTOMETRY from astrocats.catalog.utils import (is_number, jd_to_mjd, pbar, pbar_strings, uniq_cdl) from astropy.time import Time as astrotime from decimal import Decimal from ..supernova import SUPERNOVA from ..utils import clean_snname ACKN_CFA = ("This research has made use of the CfA Supernova Archive, " "which is funded in part by the National Science Foundation " "through grant AST 0907903.") def do_cfa_photo(catalog): """Import photometry from the CfA archive.""" from html import unescape import re task_str = catalog.get_current_task_str() file_names = glob( os.path.join(catalog.get_current_task_repo(), 'cfa-input/*.dat')) for fname in pbar_strings(file_names, task_str): f = open(fname, 'r') tsvin = csv.reader(f, delimiter=' ', skipinitialspace=True) csv_data = [] for r, row in enumerate(tsvin): new = [] for item in row: new.extend(item.split('\t')) csv_data.append(new) for r, row in enumerate(csv_data): for c, col in enumerate(row): csv_data[r][c] = col.strip() csv_data[r] = [_f for _f in csv_data[r] if _f] eventname = os.path.basename(os.path.splitext(fname)[0]) eventparts = eventname.split('_') name = clean_snname(eventparts[0]) name = catalog.add_entry(name) secondaryname = 'CfA Supernova Archive' secondaryurl = 'https://www.cfa.harvard.edu/supernova/SNarchive.html' secondarysource = catalog.entries[name].add_source( name=secondaryname, url=secondaryurl, secondary=True, acknowledgment=ACKN_CFA) catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, name, secondarysource) year = re.findall(r'\d+', name)[0] catalog.entries[name].add_quantity(SUPERNOVA.DISCOVER_DATE, year, secondarysource) eventbands = list(eventparts[1]) tu = 'MJD' jdoffset = Decimal(0.) for rc, row in enumerate(csv_data): if len(row) > 0 and row[0][0] == "#": if len(row[0]) > 2 and row[0][:3] == '#JD': tu = 'JD' rowparts = row[0].split('-') jdoffset = Decimal(rowparts[1]) elif len(row[0]) > 6 and row[0][:7] == '#Julian': tu = 'JD' jdoffset = Decimal(0.) elif len(row) > 1 and row[1].lower() == 'photometry': for ci, col in enumerate(row[2:]): if col[0] == "(": refstr = ' '.join(row[2 + ci:]) refstr = refstr.replace('(', '').replace(')', '') bibcode = unescape(refstr) source = catalog.entries[name].add_source( bibcode=bibcode) elif len(row) > 1 and row[1] == 'HJD': tu = 'HJD' continue elif len(row) > 0: mjd = row[0] for v, val in enumerate(row): if v == 0: if tu == 'JD': mjd = str(jd_to_mjd(Decimal(val) + jdoffset)) tuout = 'MJD' elif tu == 'HJD': mjd = str(jd_to_mjd(Decimal(val))) tuout = 'MJD' else: mjd = val tuout = tu elif v % 2 != 0: if float(row[v]) < 90.0: src = secondarysource + ',' + source photodict = { PHOTOMETRY.U_TIME: tuout, PHOTOMETRY.TIME: mjd, PHOTOMETRY.BAND_SET: 'Standard', PHOTOMETRY.BAND: eventbands[(v - 1) // 2], PHOTOMETRY.MAGNITUDE: row[v], PHOTOMETRY.E_MAGNITUDE: row[v + 1], PHOTOMETRY.SOURCE: src } catalog.entries[name].add_photometry(**photodict) f.close() # Hicken 2012 with open( os.path.join(catalog.get_current_task_repo(), 'hicken-2012-standard.dat'), 'r') as infile: tsvin = list(csv.reader(infile, delimiter='|', skipinitialspace=True)) for r, row in enumerate(pbar(tsvin, task_str)): if r <= 47: continue if row[0][:2] != 'sn': name = 'SN' + row[0].strip() else: name = row[0].strip() name = catalog.add_entry(name) source = catalog.entries[name].add_source( bibcode='2012ApJS..200...12H') catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, name, source) catalog.entries[name].add_quantity(SUPERNOVA.CLAIMED_TYPE, 'Ia', source) photodict = { PHOTOMETRY.U_TIME: 'MJD', PHOTOMETRY.TIME: row[2].strip(), PHOTOMETRY.BAND: row[1].strip(), PHOTOMETRY.BAND_SET: 'Standard', PHOTOMETRY.MAGNITUDE: row[6].strip(), PHOTOMETRY.E_MAGNITUDE: row[7].strip(), PHOTOMETRY.SOURCE: source } catalog.entries[name].add_photometry(**photodict) # Bianco 2014 with open( os.path.join(catalog.get_current_task_repo(), 'bianco-2014-standard.dat'), 'r') as infile: tsvin = list(csv.reader(infile, delimiter=' ', skipinitialspace=True)) for row in pbar(tsvin, task_str): name = 'SN' + row[0] name = catalog.add_entry(name) source = catalog.entries[name].add_source( bibcode='2014ApJS..213...19B') catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, name, source) photodict = { PHOTOMETRY.U_TIME: 'MJD', PHOTOMETRY.TIME: row[2], PHOTOMETRY.BAND: row[1], PHOTOMETRY.MAGNITUDE: row[3], PHOTOMETRY.E_MAGNITUDE: row[4], PHOTOMETRY.TELESCOPE: row[5], PHOTOMETRY.BAND_SET: 'Standard', PHOTOMETRY.SOURCE: source } catalog.entries[name].add_photometry(**photodict) catalog.journal_entries() return def do_cfa_spectra(catalog): """Import spectra from the CfA archive.""" task_str = catalog.get_current_task_str() # II spectra oldname = '' file_names = next( os.walk(os.path.join(catalog.get_current_task_repo(), 'CfA_SNII')))[1] for ni, name in enumerate(pbar_strings(file_names, task_str)): fullpath = os.path.join(catalog.get_current_task_repo(), 'CfA_SNII/') + name origname = name if name.startswith('sn') and is_number(name[2:6]): name = 'SN' + name[2:] name = catalog.get_preferred_name(name) if oldname and name != oldname: catalog.journal_entries() oldname = name name = catalog.add_entry(name) reference = 'CfA Supernova Archive' refurl = 'https://www.cfa.harvard.edu/supernova/SNarchive.html' source = catalog.entries[name].add_source( name=reference, url=refurl, secondary=True, acknowledgment=ACKN_CFA) catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, name, source) for fi, fname in enumerate( sorted( glob(fullpath + '/*'), key=lambda s: s.lower())): filename = os.path.basename(fname) fileparts = filename.split('-') if origname.startswith('sn') and is_number(origname[2:6]): year = fileparts[1][:4] month = fileparts[1][4:6] day = fileparts[1][6:] instrument = fileparts[2].split('.')[0] else: year = fileparts[2][:4] month = fileparts[2][4:6] day = fileparts[2][6:] instrument = fileparts[3].split('.')[0] time = str( astrotime(year + '-' + month + '-' + str(floor(float(day))) .zfill(2)).mjd + float(day) - floor(float(day))) f = open(fname, 'r') data = csv.reader(f, delimiter=' ', skipinitialspace=True) data = [list(i) for i in zip(*data)] wavelengths = data[0] fluxes = data[1] errors = data[2] sources = uniq_cdl([ source, (catalog.entries[name] .add_source(bibcode='2017arXiv170601030H')) ]) catalog.entries[name].add_spectrum( u_wavelengths='Angstrom', u_fluxes='erg/s/cm^2/Angstrom', filename=filename, wavelengths=wavelengths, fluxes=fluxes, u_time='MJD' if time else '', time=time, instrument=instrument, u_errors='ergs/s/cm^2/Angstrom', errors=errors, source=sources, dereddened=False, deredshifted=False) if catalog.args.travis and ni >= catalog.TRAVIS_QUERY_LIMIT: break catalog.journal_entries() # Ia spectra oldname = '' file_names = next( os.walk(os.path.join(catalog.get_current_task_repo(), 'CfA_SNIa')))[1] for ni, name in enumerate(pbar_strings(file_names, task_str)): fullpath = os.path.join(catalog.get_current_task_repo(), 'CfA_SNIa/') + name origname = name if name.startswith('sn') and is_number(name[2:6]): name = 'SN' + name[2:] if name.startswith('snf') and is_number(name[3:7]): name = 'SNF' + name[3:] name = catalog.get_preferred_name(name) if oldname and name != oldname: catalog.journal_entries() oldname = name name = catalog.add_entry(name) reference = 'CfA Supernova Archive' refurl = 'https://www.cfa.harvard.edu/supernova/SNarchive.html' source = catalog.entries[name].add_source( name=reference, url=refurl, secondary=True, acknowledgment=ACKN_CFA) catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, name, source) for fi, fname in enumerate( sorted( glob(fullpath + '/*'), key=lambda s: s.lower())): filename = os.path.basename(fname) fileparts = filename.split('-') if origname.startswith('sn') and is_number(origname[2:6]): year = fileparts[1][:4] month = fileparts[1][4:6] day = fileparts[1][6:] instrument = fileparts[2].split('.')[0] else: year = fileparts[2][:4] month = fileparts[2][4:6] day = fileparts[2][6:] instrument = fileparts[3].split('.')[0] time = str( astrotime(year + '-' + month + '-' + str(floor(float(day))) .zfill(2)).mjd + float(day) - floor(float(day))) f = open(fname, 'r') data = csv.reader(f, delimiter=' ', skipinitialspace=True) data = [list(i) for i in zip(*data)] wavelengths = data[0] fluxes = data[1] errors = data[2] sources = uniq_cdl([ source, (catalog.entries[name] .add_source(bibcode='2012AJ....143..126B')), (catalog.entries[name] .add_source(bibcode='2008AJ....135.1598M')) ]) catalog.entries[name].add_spectrum( u_wavelengths='Angstrom', u_fluxes='erg/s/cm^2/Angstrom', filename=filename, wavelengths=wavelengths, fluxes=fluxes, u_time='MJD' if time else '', time=time, instrument=instrument, u_errors='ergs/s/cm^2/Angstrom', errors=errors, source=sources, dereddened=False, deredshifted=False) if catalog.args.travis and ni >= catalog.TRAVIS_QUERY_LIMIT: break catalog.journal_entries() # Ibc spectra oldname = '' file_names = next( os.walk(os.path.join(catalog.get_current_task_repo(), 'CfA_SNIbc')))[1] for ni, name in enumerate(pbar(file_names, task_str)): fullpath = os.path.join(catalog.get_current_task_repo(), 'CfA_SNIbc/') + name if name.startswith('sn') and is_number(name[2:6]): name = 'SN' + name[2:] name = catalog.get_preferred_name(name) if oldname and name != oldname: catalog.journal_entries() oldname = name name = catalog.add_entry(name) reference = 'CfA Supernova Archive' refurl = 'https://www.cfa.harvard.edu/supernova/SNarchive.html' source = catalog.entries[name].add_source( name=reference, url=refurl, secondary=True, acknowledgment=ACKN_CFA) catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, name, source) for fi, fname in enumerate( sorted( glob(fullpath + '/*'), key=lambda s: s.lower())): filename = os.path.basename(fname) fileparts = filename.split('-') instrument = '' year = fileparts[1][:4] month = fileparts[1][4:6] day = fileparts[1][6:].split('.')[0] if len(fileparts) > 2: instrument = fileparts[-1].split('.')[0] time = str( astrotime(year + '-' + month + '-' + str(floor(float(day))) .zfill(2)).mjd + float(day) - floor(float(day))) f = open(fname, 'r') data = csv.reader(f, delimiter=' ', skipinitialspace=True) data = [list(i) for i in zip(*data)] wavelengths = data[0] fluxes = data[1] sources = uniq_cdl([ source, catalog.entries[name] .add_source(bibcode='2014AJ....147...99M') ]) catalog.entries[name].add_spectrum( u_wavelengths='Angstrom', u_fluxes='erg/s/cm^2/Angstrom', wavelengths=wavelengths, filename=filename, fluxes=fluxes, u_time='MJD' if time else '', time=time, instrument=instrument, source=sources, dereddened=False, deredshifted=False) if catalog.args.travis and ni >= catalog.TRAVIS_QUERY_LIMIT: break catalog.journal_entries() # Other spectra oldname = '' file_names = next( os.walk(os.path.join(catalog.get_current_task_repo(), 'CfA_Extra')))[1] for ni, name in enumerate(pbar_strings(file_names, task_str)): fullpath = os.path.join(catalog.get_current_task_repo(), 'CfA_Extra/') + name if name.startswith('sn') and is_number(name[2:6]): name = 'SN' + name[2:] name = catalog.get_preferred_name(name) if oldname and name != oldname: catalog.journal_entries() oldname = name name = catalog.add_entry(name) reference = 'CfA Supernova Archive' refurl = 'https://www.cfa.harvard.edu/supernova/SNarchive.html' source = catalog.entries[name].add_source( name=reference, url=refurl, secondary=True, acknowledgment=ACKN_CFA) catalog.entries[name].add_quantity(SUPERNOVA.ALIAS, name, source) for fi, fname in enumerate( sorted( glob(fullpath + '/*'), key=lambda s: s.lower())): if not os.path.isfile(fname): continue filename = os.path.basename(fname) if ((not filename.startswith('sn') or not filename.endswith('flm') or any( x in filename for x in ['-interp', '-z', '-dered', '-obj', '-gal']))): continue fileparts = filename.split('.')[0].split('-') instrument = '' time = '' if len(fileparts) > 1: year = fileparts[1][:4] month = fileparts[1][4:6] day = fileparts[1][6:] if is_number(year) and is_number(month) and is_number(day): if len(fileparts) > 2: instrument = fileparts[-1] time = str( astrotime(year + '-' + month + '-' + str( floor(float(day))).zfill(2)).mjd + float(day) - floor(float(day))) f = open(fname, 'r') data = csv.reader(f, delimiter=' ', skipinitialspace=True) data = [list(i) for i in zip(*data)] wavelengths = data[0] fluxes = [str(Decimal(x) * Decimal(1.0e-15)) for x in data[1]] catalog.entries[name].add_spectrum( u_wavelengths='Angstrom', u_fluxes='erg/s/cm^2/Angstrom', wavelengths=wavelengths, filename=filename, fluxes=fluxes, u_time='MJD' if time else '', time=time, instrument=instrument, source=source, dereddened=False, deredshifted=False) if catalog.args.travis and ni >= catalog.TRAVIS_QUERY_LIMIT: break catalog.journal_entries() return
import contextlib from collections import namedtuple, defaultdict from datetime import datetime from dask.callbacks import Callback # The names of the Ray-specific callbacks. These are the kwarg names that # RayDaskCallback will accept on construction, and is considered the # source-of-truth for what Ray-specific callbacks exist. CBS = ( "ray_presubmit", "ray_postsubmit", "ray_pretask", "ray_posttask", "ray_postsubmit_all", "ray_finish", ) # The Ray-specific callback method names for RayDaskCallback. CB_FIELDS = tuple("_" + field for field in CBS) # The Ray-specific callbacks that we do _not_ wish to drop from RayCallbacks # if not given on a RayDaskCallback instance (will be filled with None # instead). CBS_DONT_DROP = {"ray_pretask", "ray_posttask"} # The Ray-specific callbacks for a single RayDaskCallback. RayCallback = namedtuple("RayCallback", " ".join(CBS)) # The Ray-specific callbacks for one or more RayDaskCallbacks. RayCallbacks = namedtuple("RayCallbacks", " ".join([field + "_cbs" for field in CBS])) class RayDaskCallback(Callback): """ Extends Dask's `Callback` class with Ray-specific hooks. When instantiating or subclassing this class, both the normal Dask hooks (e.g. pretask, posttask, etc.) and the Ray-specific hooks can be provided. See `dask.callbacks.Callback` for usage. Caveats: Any Dask-Ray scheduler must bring the Ray-specific callbacks into context using the `local_ray_callbacks` context manager, since the built-in `local_callbacks` context manager provided by Dask isn't aware of this class. """ # Set of active Ray-specific callbacks. ray_active = set() def __init__(self, **kwargs): """ Ray-specific callbacks: - def _ray_presubmit(task, key, deps): Run before submitting a Ray task. If this callback returns a non-`None` value, a Ray task will _not_ be created and this value will be used as the would-be task's result value. Args: task (tuple): A Dask task, where the first tuple item is the task function, and the remaining tuple items are the task arguments (either the actual argument values, or Dask keys into the deps dictionary whose corresponding values are the argument values). key (str): The Dask graph key for the given task. deps (dict): The dependencies of this task. Returns: Either None, in which case a Ray task will be submitted, or a non-None value, in which case a Ray task will not be submitted and this return value will be used as the would-be task result value. - def _ray_postsubmit(task, key, deps, object_ref): Run after submitting a Ray task. Args: task (tuple): A Dask task, where the first tuple item is the task function, and the remaining tuple items are the task arguments (either the actual argument values, or Dask keys into the deps dictionary whose corresponding values are the argument values). key (str): The Dask graph key for the given task. deps (dict): The dependencies of this task. object_ref (ray.ObjectRef): The object reference for the return value of the Ray task. - def _ray_pretask(key, object_refs): Run before executing a Dask task within a Ray task. This executes after the task has been submitted, within a Ray worker. The return value of this task will be passed to the _ray_posttask callback, if provided. Args: key (str): The Dask graph key for the Dask task. object_refs (List[ray.ObjectRef]): The object references for the arguments of the Ray task. Returns: A value that will be passed to the corresponding _ray_posttask callback, if said callback is defined. - def _ray_posttask(key, result, pre_state): Run after executing a Dask task within a Ray task. This executes within a Ray worker. This callback receives the return value of the _ray_pretask callback, if provided. Args: key (str): The Dask graph key for the Dask task. result (object): The task result value. pre_state (object): The return value of the corresponding _ray_pretask callback, if said callback is defined. - def _ray_postsubmit_all(object_refs, dsk): Run after all Ray tasks have been submitted. Args: object_refs (List[ray.ObjectRef]): The object references for the output (leaf) Ray tasks of the task graph. dsk (dict): The Dask graph. - def _ray_finish(result): Run after all Ray tasks have finished executing and the final result has been returned. Args: result (object): The final result (output) of the Dask computation, before any repackaging is done by Dask collection-specific post-compute callbacks. """ for cb in CBS: cb_func = kwargs.pop(cb, None) if cb_func is not None: setattr(self, "_" + cb, cb_func) super().__init__(**kwargs) @property def _ray_callback(self): return RayCallback(*[getattr(self, field, None) for field in CB_FIELDS]) def __enter__(self): self._ray_cm = add_ray_callbacks(self) self._ray_cm.__enter__() super().__enter__() return self def __exit__(self, *args): super().__exit__(*args) self._ray_cm.__exit__(*args) def register(self): type(self).ray_active.add(self._ray_callback) super().register() def unregister(self): type(self).ray_active.remove(self._ray_callback) super().unregister() class add_ray_callbacks: def __init__(self, *callbacks): self.callbacks = [normalize_ray_callback(c) for c in callbacks] RayDaskCallback.ray_active.update(self.callbacks) def __enter__(self): return self def __exit__(self, *args): for c in self.callbacks: RayDaskCallback.ray_active.discard(c) def normalize_ray_callback(cb): if isinstance(cb, RayDaskCallback): return cb._ray_callback elif isinstance(cb, RayCallback): return cb else: raise TypeError( "Callbacks must be either 'RayDaskCallback' or 'RayCallback' " "namedtuple" ) def unpack_ray_callbacks(cbs): """Take an iterable of callbacks, return a list of each callback.""" if cbs: # Only drop callback methods that aren't in CBS_DONT_DROP. return RayCallbacks( *( [cb for cb in cbs_ if cb or CBS[idx] in CBS_DONT_DROP] or None for idx, cbs_ in enumerate(zip(*cbs)) ) ) else: return RayCallbacks(*([()] * len(CBS))) @contextlib.contextmanager def local_ray_callbacks(callbacks=None): """ Allows Dask-Ray callbacks to work with nested schedulers. Callbacks will only be used by the first started scheduler they encounter. This means that only the outermost scheduler will use global callbacks. """ global_callbacks = callbacks is None if global_callbacks: callbacks, RayDaskCallback.ray_active = (RayDaskCallback.ray_active, set()) try: yield callbacks or () finally: if global_callbacks: RayDaskCallback.ray_active = callbacks class ProgressBarCallback(RayDaskCallback): def __init__(self): import ray @ray.remote class ProgressBarActor: def __init__(self): self._init() def submit(self, key, deps, now): for dep in deps.keys(): self.deps[key].add(dep) self.submitted[key] = now self.submission_queue.append((key, now)) def task_scheduled(self, key, now): self.scheduled[key] = now def finish(self, key, now): self.finished[key] = now def result(self): return len(self.submitted), len(self.finished) def report(self): result = defaultdict(dict) for key, finished in self.finished.items(): submitted = self.submitted[key] scheduled = self.scheduled[key] # deps = self.deps[key] result[key]["execution_time"] = ( finished - scheduled ).total_seconds() # Calculate the scheduling time. # This is inaccurate. # We should subtract scheduled - (last dep completed). # But currently it is not easy because # of how getitem is implemented in dask on ray sort. result[key]["scheduling_time"] = ( scheduled - submitted ).total_seconds() result["submission_order"] = self.submission_queue return result def ready(self): pass def reset(self): self._init() def _init(self): self.submission_queue = [] self.submitted = defaultdict(None) self.scheduled = defaultdict(None) self.finished = defaultdict(None) self.deps = defaultdict(set) try: self.pb = ray.get_actor("_dask_on_ray_pb") ray.get(self.pb.reset.remote()) except ValueError: self.pb = ProgressBarActor.options(name="_dask_on_ray_pb").remote() ray.get(self.pb.ready.remote()) def _ray_postsubmit(self, task, key, deps, object_ref): # Indicate the dask task is submitted. self.pb.submit.remote(key, deps, datetime.now()) def _ray_pretask(self, key, object_refs): self.pb.task_scheduled.remote(key, datetime.now()) def _ray_posttask(self, key, result, pre_state): # Indicate the dask task is finished. self.pb.finish.remote(key, datetime.now()) def _ray_finish(self, result): print("All tasks are completed.")
# Load and dump a diagnostics database in CDD format. import logging from xml.etree import ElementTree from ..data import Data from ..did import Did from ..internal_database import InternalDatabase from ...errors import ParseError from ...utils import cdd_offset_to_dbc_start_bit LOGGER = logging.getLogger(__name__) class DataType(object): def __init__(self, name, id_, bit_length, encoding, minimum, maximum, choices, byte_order, unit, factor, offset): self.name = name self.id_ = id_ self.bit_length = bit_length self.encoding = encoding self.minimum = minimum self.maximum = maximum self.choices = choices self.byte_order = byte_order self.unit = unit self.factor = factor self.offset = offset def _load_choices(data_type): choices = {} for choice in data_type.findall('TEXTMAP'): start = int(choice.attrib['s'].strip('()')) end = int(choice.attrib['e'].strip('()')) if start == end: choices[start] = choice.find('TEXT/TUV[1]').text if not choices: choices = None return choices def _load_data_types(ecu_doc): """Load all data types found in given ECU doc element. """ data_types = {} types = ecu_doc.findall('DATATYPES/IDENT') types += ecu_doc.findall('DATATYPES/LINCOMP') types += ecu_doc.findall('DATATYPES/TEXTTBL') types += ecu_doc.findall('DATATYPES/STRUCTDT') types += ecu_doc.findall('DATATYPES/EOSITERDT') for data_type in types: # Default values. byte_order = 'big_endian' unit = None factor = 1 offset = 0 bit_length = None encoding = None minimum = None maximum = None # Name and id. type_name = data_type.find('NAME/TUV[1]').text type_id = data_type.attrib['id'] # Load from C-type element. ctype = data_type.find('CVALUETYPE') for key, value in ctype.attrib.items(): if key == 'bl': bit_length = int(value) elif key == 'enc': encoding = value elif key == 'minsz': minimum = int(value) elif key == 'maxsz': maximum = int(value) else: LOGGER.debug("Ignoring unsupported attribute '%s'.", key) if ctype.attrib['bo'] == '21': byte_order = 'big_endian' elif ctype.attrib['bo'] == '12': byte_order = 'little_endian' else: raise ParseError("Unknown byte order code: %s" % ctype.attrib['bo']) # Load from P-type element. ptype_unit = data_type.find('PVALUETYPE/UNIT') if ptype_unit is not None: unit = ptype_unit.text # Choices, scale and offset. choices = _load_choices(data_type) # Slope and offset. comp = data_type.find('COMP') if comp is not None: factor = float(comp.attrib['f']) offset = float(comp.attrib['o']) data_types[type_id] = DataType(type_name, type_id, bit_length, encoding, minimum, maximum, choices, byte_order, unit, factor, offset) return data_types def _load_data_element(data, offset, data_types): """Load given signal element and return a signal object. """ data_type = data_types[data.attrib['dtref']] # Map CDD/c-style field offset to the DBC/can.Signal.start bit numbering # convention for compatability with can.Signal objects and the shared codec # infrastructure. # dbc_start_bitnum = cdd_offset_to_dbc_start_bit(offset, data_type.bit_length, data_type.byte_order) return Data(name=data.find('QUAL').text, start = dbc_start_bitnum, length=data_type.bit_length, byte_order = data_type.byte_order, scale=data_type.factor, offset=data_type.offset, minimum=data_type.minimum, maximum=data_type.maximum, unit=data_type.unit, choices=data_type.choices) def _load_did_element(did, data_types): """Load given DID element and return a did object. """ offset = 0 datas = [] data_objs = did.findall('SIMPLECOMPCONT/DATAOBJ') data_objs += did.findall('SIMPLECOMPCONT/UNION/STRUCT/DATAOBJ') for data_obj in data_objs: data = _load_data_element(data_obj, offset, data_types) if data: datas.append(data) offset += data.length identifier = int(did.find('STATICVALUE').attrib['v']) name = did.find('QUAL').text length = (offset + 7) // 8 return Did(identifier=identifier, name=name, length=length, datas=datas) def load_string(string): """Parse given CDD format string. """ root = ElementTree.fromstring(string) ecu_doc = root.find('ECUDOC') data_types = _load_data_types(ecu_doc) var = ecu_doc.findall('ECU')[0].find('VAR') dids = [] for diag_class in var.findall('DIAGCLASS'): for diag_inst in diag_class.findall('DIAGINST'): did = _load_did_element(diag_inst, data_types) dids.append(did) return InternalDatabase(dids)
# -*- coding: utf-8 -*- """ Django settings for test_project project. Generated by 'django-admin startproject' using Django 1.11.8. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os from logging.handlers import SysLogHandler from modoboa.test_settings import * # noqa # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.realpath(os.path.dirname(os.path.dirname(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = "w537@nm@5n)=+e%-7*z-jxf21a#0k%uv^rbu**+cj4=_u57e(8" # SECURITY WARNING: don't run with debug turned on in production! DEBUG = "DEBUG" in os.environ TEMPLATE_DEBUG = DEBUG ALLOWED_HOSTS = [ "127.0.0.1", "localhost", ] SITE_ID = 1 # Security settings X_FRAME_OPTIONS = "SAMEORIGIN" # Application definition INSTALLED_APPS = ( "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.sites", "django.contrib.staticfiles", "reversion", "ckeditor", "ckeditor_uploader", "rest_framework", "rest_framework.authtoken", 'django_otp', 'django_otp.plugins.otp_totp', 'django_otp.plugins.otp_static', ) # A dedicated place to register Modoboa applications # Do not delete it. # Do not change the order. MODOBOA_APPS = ( "modoboa", "modoboa.core", "modoboa.lib", "modoboa.admin", "modoboa.transport", "modoboa.relaydomains", "modoboa.limits", "modoboa.parameters", "modoboa.dnstools", "modoboa.maillog", # Modoboa extensions here. "modoboa_amavis", ) INSTALLED_APPS += MODOBOA_APPS AUTH_USER_MODEL = "core.User" MIDDLEWARE = ( "x_forwarded_for.middleware.XForwardedForMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", 'django_otp.middleware.OTPMiddleware', 'modoboa.core.middleware.TwoFAMiddleware', "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.locale.LocaleMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "modoboa.core.middleware.LocalConfigMiddleware", "modoboa.lib.middleware.AjaxLoginRedirect", "modoboa.lib.middleware.CommonExceptionCatcher", "modoboa.lib.middleware.RequestCatcherMiddleware", ) AUTHENTICATION_BACKENDS = ( # 'modoboa.lib.authbackends.LDAPBackend', # 'modoboa.lib.authbackends.SMTPBackend', "django.contrib.auth.backends.ModelBackend", ) # SMTP authentication # AUTH_SMTP_SERVER_ADDRESS = 'localhost' # AUTH_SMTP_SERVER_PORT = 25 # AUTH_SMTP_SECURED_MODE = None # 'ssl' or 'starttls' are accepted TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", "modoboa.core.context_processors.top_notifications", ], "debug": TEMPLATE_DEBUG, }, }, ] ROOT_URLCONF = "test_project.urls" WSGI_APPLICATION = "test_project.wsgi.application" # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = "/sitestatic/" STATIC_ROOT = os.path.join(BASE_DIR, "sitestatic") STATICFILES_DIRS = ( # os.path.join(BASE_DIR, '..', 'modoboa', 'bower_components'), ) MEDIA_URL = "/media/" MEDIA_ROOT = os.path.join(BASE_DIR, "media") # Rest framework settings REST_FRAMEWORK = { "DEFAULT_AUTHENTICATION_CLASSES": ( "rest_framework.authentication.TokenAuthentication", "rest_framework.authentication.SessionAuthentication", ), } # Modoboa settings # MODOBOA_CUSTOM_LOGO = os.path.join(MEDIA_URL, "custom_logo.png") # DOVECOT_LOOKUP_PATH = ('/path/to/dovecot', ) MODOBOA_API_URL = "https://api.modoboa.org/1/" # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", # NOQA:E501 }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", # NOQA:E501 }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", # NOQA:E501 }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", # NOQA:E501 }, { "NAME": "modoboa.core.password_validation.ComplexityValidator", "OPTIONS": { "upper": 1, "lower": 1, "digits": 1, "specials": 0 } }, ] # CKeditor CKEDITOR_UPLOAD_PATH = "uploads/" CKEDITOR_IMAGE_BACKEND = "pillow" CKEDITOR_RESTRICT_BY_USER = True CKEDITOR_BROWSE_SHOW_DIRS = True CKEDITOR_ALLOW_NONIMAGE_FILES = False CKEDITOR_CONFIGS = { "default": { "allowedContent": True, "toolbar": "Modoboa", "width": None, "toolbar_Modoboa": [ ["Bold", "Italic", "Underline"], ["JustifyLeft", "JustifyCenter", "JustifyRight", "JustifyBlock"], ["BidiLtr", "BidiRtl", "Language"], ["NumberedList", "BulletedList", "-", "Outdent", "Indent"], ["Undo", "Redo"], ["Link", "Unlink", "Anchor", "-", "Smiley"], ["TextColor", "BGColor", "-", "Source"], ["Font", "FontSize"], ["Image", ], ["SpellChecker"] ], }, } # Logging configuration LOGGING = { "version": 1, "formatters": { "syslog": { "format": "%(name)s: %(levelname)s %(message)s" }, }, "handlers": { "syslog-auth": { "class": "logging.handlers.SysLogHandler", "facility": SysLogHandler.LOG_AUTH, "formatter": "syslog" }, "modoboa": { "class": "modoboa.core.loggers.SQLHandler", } }, "loggers": { "modoboa.auth": { "handlers": ["syslog-auth", "modoboa"], "level": "INFO", "propagate": False }, "modoboa.admin": { "handlers": ["modoboa"], "level": "INFO", "propagate": False } } } # Load settings from extensions try: from modoboa_amavis import settings as modoboa_amavis_settings modoboa_amavis_settings.apply(globals()) except AttributeError: from modoboa_amavis.settings import * # noqa MIGRATION_MODULES = { "modoboa_amavis": None } TEST_RUNNER = "modoboa_amavis.test_runners.UnManagedModelTestRunner" # We force sqlite backend for tests because the generated database is # not the same as the one provided by amavis... DATABASES.update({ # noqa "amavis": { "ENGINE": "django.db.backends.sqlite3", "NAME": "amavis.db", "PORT": "", "ATOMIC_REQUESTS": True, }, }) # sqlite defaults to UTF-8 AMAVIS_DEFAULT_DATABASE_ENCODING = "UTF-8"
"""Nodes that make up parse trees Parsing spits out a tree of these, which you can then tell to walk itself and spit out a useful value. Or you can walk it yourself; the structural attributes are public. """ # TODO: If this is slow, think about using cElementTree or something. from inspect import isfunction from sys import version_info, exc_info from parsimonious.exceptions import VisitationError, UndefinedLabel from parsimonious.utils import StrAndRepr from six import reraise, python_2_unicode_compatible, with_metaclass, iteritems @python_2_unicode_compatible class Node(StrAndRepr): """A parse tree node Consider these immutable once constructed. As a side effect of a memory-saving strategy in the cache, multiple references to a single ``Node`` might be returned in a single parse tree. So, if you start messing with one, you'll see surprising parallel changes pop up elsewhere. My philosophy is that parse trees (and their nodes) should be representation-agnostic. That is, they shouldn't get all mixed up with what the final rendered form of a wiki page (or the intermediate representation of a programming language, or whatever) is going to be: you should be able to parse once and render several representations from the tree, one after another. """ # I tried making this subclass list, but it got ugly. I had to construct # invalid ones and patch them up later, and there were other problems. __slots__ = ['expr_name', # The name of the expression that generated me 'full_text', # The full text fed to the parser 'start', # The position in the text where that expr started matching 'end', # The position after starft where the expr first didn't # match. [start:end] follow Python slice conventions. 'children'] # List of child parse tree nodes def __init__(self, expr_name, full_text, start, end, children=None): self.expr_name = expr_name self.full_text = full_text self.start = start self.end = end self.children = children or [] def __iter__(self): """Support looping over my children and doing tuple unpacks on me. It can be very handy to unpack nodes in arg lists; see :class:`PegVisitor` for an example. """ return iter(self.children) @property def text(self): """Return the text this node matched.""" return self.full_text[self.start:self.end] # From here down is just stuff for testing and debugging. def prettily(self, error=None): """Return a unicode, pretty-printed representation of me. :arg error: The node to highlight because an error occurred there """ # TODO: If a Node appears multiple times in the tree, we'll point to # them all. Whoops. def indent(text): return '\n'.join((' ' + line) for line in text.splitlines()) ret = [u'<%s%s matching "%s">%s' % ( self.__class__.__name__, (' called "%s"' % self.expr_name) if self.expr_name else '', self.text, ' <-- *** We were here. ***' if error is self else '')] for n in self: ret.append(indent(n.prettily(error=error))) return '\n'.join(ret) def __str__(self): """Return a compact, human-readable representation of me.""" return self.prettily() def __eq__(self, other): """Support by-value deep comparison with other nodes for testing.""" return (other is not None and self.expr_name == other.expr_name and self.full_text == other.full_text and self.start == other.start and self.end == other.end and self.children == other.children) def __ne__(self, other): return not self == other def __repr__(self, top_level=True): """Return a bit of code (though not an expression) that will recreate me.""" # repr() of unicode flattens everything out to ASCII, so we don't need # to explicitly encode things afterward. ret = ["s = %r" % self.full_text] if top_level else [] ret.append("%s(%r, s, %s, %s%s)" % ( self.__class__.__name__, self.expr_name, self.start, self.end, (', children=[%s]' % ', '.join([c.__repr__(top_level=False) for c in self.children])) if self.children else '')) return '\n'.join(ret) class RegexNode(Node): """Node returned from a ``Regex`` expression Grants access to the ``re.Match`` object, in case you want to access capturing groups, etc. """ __slots__ = ['match'] class RuleDecoratorMeta(type): def __new__(metaclass, name, bases, namespace): def unvisit(name): """Remove any leading "visit_" from a method name.""" return name[6:] if name.startswith('visit_') else name methods = [v for k, v in iteritems(namespace) if hasattr(v, '_rule') and isfunction(v)] if methods: from parsimonious.grammar import Grammar # circular import dodge methods.sort(key=(lambda x: x.func_code.co_firstlineno) if version_info[0] < 3 else (lambda x: x.__code__.co_firstlineno)) # Possible enhancement: once we get the Grammar extensibility story # solidified, we can have @rules *add* to the default grammar # rather than pave over it. namespace['grammar'] = Grammar( '\n'.join('{name} = {expr}'.format(name=unvisit(m.__name__), expr=m._rule) for m in methods)) return super(RuleDecoratorMeta, metaclass).__new__(metaclass, name, bases, namespace) class NodeVisitor(with_metaclass(RuleDecoratorMeta,object)): """A shell for writing things that turn parse trees into something useful Performs a depth-first traversal of an AST. Subclass this, add methods for each expr you care about, instantiate, and call ``visit(top_node_of_parse_tree)``. It'll return the useful stuff. This API is very similar to that of ``ast.NodeVisitor``. These could easily all be static methods, but that would add at least as much weirdness at the call site as the ``()`` for instantiation. And this way, we support subclasses that require state state: options, for example, or a symbol table constructed from a programming language's AST. We never transform the parse tree in place, because... * There are likely multiple references to the same ``Node`` object in a parse tree, and changes to one reference would surprise you elsewhere. * It makes it impossible to report errors: you'd end up with the "error" arrow pointing someplace in a half-transformed mishmash of nodes--and that's assuming you're even transforming the tree into another tree. Heaven forbid you're making it into a string or something else. """ #: The :term:`default grammar`: the one recommended for use with this #: visitor. If you populate this, you will be able to call #: :meth:`NodeVisitor.parse()` as a shortcut. grammar = None #: Classes of exceptions you actually intend to raise during visitation #: and which should propogate out of the visitor. These will not be #: wrapped in a VisitationError when they arise. unwrapped_exceptions = () # TODO: If we need to optimize this, we can go back to putting subclasses # in charge of visiting children; they know when not to bother. Or we can # mark nodes as not descent-worthy in the grammar. def visit(self, node): """Walk a parse tree, transforming it into another representation. Recursively descend a parse tree, dispatching to the method named after the rule in the :class:`~parsimonious.grammar.Grammar` that produced each node. If, for example, a rule was... :: bold = '<b>' ...the ``visit_bold()`` method would be called. It is your responsibility to subclass :class:`NodeVisitor` and implement those methods. """ method = getattr(self, 'visit_' + node.expr_name, self.generic_visit) # Call that method, and show where in the tree it failed if it blows # up. try: return method(node, [self.visit(n) for n in node]) except (VisitationError, UndefinedLabel): # Don't catch and re-wrap already-wrapped exceptions. raise except self.unwrapped_exceptions: raise except Exception: # Catch any exception, and tack on a parse tree so it's easier to # see where it went wrong. exc_class, exc, tb = exc_info() reraise(VisitationError, VisitationError(exc, exc_class, node), tb) def generic_visit(self, node, visited_children): """Default visitor method :arg node: The node we're visiting :arg visited_children: The results of visiting the children of that node, in a list I'm not sure there's an implementation of this that makes sense across all (or even most) use cases, so we leave it to subclasses to implement for now. """ raise NotImplementedError("No visitor method was defined for %s." % node.expr_name) # Convenience methods: def parse(self, text, pos=0): """Parse some text with this Visitor's default grammar. ``SomeVisitor().parse('some_string')`` is a shortcut for ``SomeVisitor().visit(some_grammar.parse('some_string'))``. """ return self._parse_or_match(text, pos, 'parse') def match(self, text, pos=0): """Parse some text with this Visitor's default grammar, but don't insist on parsing all the way to the end. ``SomeVisitor().match('some_string')`` is a shortcut for ``SomeVisitor().visit(some_grammar.match('some_string'))``. """ return self._parse_or_match(text, pos, 'match') # Internal convenience methods to help you write your own visitors: def lift_child(self, node, _a): """Lift the sole child of ``node`` up to replace the node.""" (first_child,) = _a return first_child # Private methods: def _parse_or_match(self, text, pos, method_name): """Execute a parse or match on the default grammar, followed by a visitation. Raise RuntimeError if there is no default grammar specified. """ if not self.grammar: raise RuntimeError( "The {cls}.{method}() shortcut won't work because {cls} was " "never associated with a specific " "grammar. Fill out its " "`grammar` attribute, and try again.".format( cls=self.__class__.__name__, method=method_name)) return self.visit(getattr(self.grammar, method_name)(text, pos=pos)) def rule(rule_string): """Decorate a NodeVisitor ``visit_*`` method to tie a grammar rule to it. The following will arrange for the ``visit_digit`` method to receive the results of the ``~"[0-9]"`` parse rule:: @rule('~"[0-9]"') def visit_digit(self, node, visited_children): ... Notice that there is no "digit = " as part of the rule; that gets inferred from the method name. In cases where there is only one kind of visitor interested in a grammar, using ``@rule`` saves you having to look back and forth between the visitor and the grammar definition. On an implementation level, all ``@rule`` rules get stitched together into a :class:`~parsimonoius.Grammar` that becomes the NodeVisitor's :term:`default grammar`. Typically, the choice of a default rule for this grammar is simple: whatever ``@rule`` comes first in the class is the default. But the choice may become surprising if you divide the ``@rule`` calls among subclasses. At the moment, which method "comes first" is decided simply by comparing line numbers, so whatever method is on the smallest-numbered line will be the default. In a future release, this will change to pick the first ``@rule`` call on the basemost class that has one. That way, a subclass which does not override the default rule's ``visit_*`` method won't unintentionally change which rule is the default. """ def decorator(method): method._rule = rule_string # XXX: Maybe register them on a class var instead so we can just override a @rule'd visitor method on a subclass without blowing away the rule string that comes with it. return method return decorator
# $Id$ # # Copyright (C) 2007,2008 Greg Landrum # # @@ All Rights Reserved @@ # import os,sys import io import unittest from rdkit.six.moves import cPickle from rdkit import RDConfig from rdkit import DataStructs as ds def feq(v1,v2,tol=1e-4): return abs(v1-v2)<tol class TestCase(unittest.TestCase): def setUp(self) : pass def test1Int(self): """ """ v1 = ds.IntSparseIntVect(5) self.assertRaises(IndexError,lambda:v1[5]) v1[0]=1 v1[2]=2 v1[3]=3 self.assertTrue(v1==v1) self.assertTrue(v1.GetLength()==5) v2= ds.IntSparseIntVect(5) self.assertTrue(v1!=v2) v2|=v1 self.assertTrue(v2==v1) v3=v2|v1 self.assertTrue(v3==v1) onVs = v1.GetNonzeroElements() self.assertTrue(onVs=={0:1,2:2,3:3}) def test2Long(self): """ """ l=1<<42 v1 = ds.LongSparseIntVect(l) self.assertRaises(IndexError,lambda:v1[l]) v1[0]=1 v1[2]=2 v1[1<<35]=3 self.assertTrue(v1==v1) self.assertTrue(v1.GetLength()==l) v2= ds.LongSparseIntVect(l) self.assertTrue(v1!=v2) v2|=v1 self.assertTrue(v2==v1) v3=v2|v1 self.assertTrue(v3==v1) onVs = v1.GetNonzeroElements() self.assertTrue(onVs=={0:1,2:2,1<<35:3}) def test3Pickle1(self): """ """ l=1<<42 v1 = ds.LongSparseIntVect(l) self.assertRaises(IndexError,lambda:v1[l+1]) v1[0]=1 v1[2]=2 v1[1<<35]=3 self.assertTrue(v1==v1) v2= cPickle.loads(cPickle.dumps(v1)) self.assertTrue(v2==v1) v3= ds.LongSparseIntVect(v2.ToBinary()) self.assertTrue(v2==v3) self.assertTrue(v1==v3) #cPickle.dump(v1,file('lsiv.pkl','wb+')) with open( os.path.join(RDConfig.RDBaseDir, 'Code/DataStructs/Wrap/testData/lsiv.pkl'), 'r' ) as tf: buf = tf.read().replace('\r\n', '\n').encode('utf-8') tf.close() with io.BytesIO(buf) as f: v3 = cPickle.load(f) self.assertTrue(v3==v1) def test3Pickle2(self): """ """ l=1<<21 v1 = ds.IntSparseIntVect(l) self.assertRaises(IndexError,lambda:v1[l+1]) v1[0]=1 v1[2]=2 v1[1<<12]=3 self.assertTrue(v1==v1) v2= cPickle.loads(cPickle.dumps(v1)) self.assertTrue(v2==v1) v3= ds.IntSparseIntVect(v2.ToBinary()) self.assertTrue(v2==v3) self.assertTrue(v1==v3) #cPickle.dump(v1,file('isiv.pkl','wb+')) with open( os.path.join(RDConfig.RDBaseDir, 'Code/DataStructs/Wrap/testData/isiv.pkl'), 'r' ) as tf: buf = tf.read().replace('\r\n', '\n').encode('utf-8') tf.close() with io.BytesIO(buf) as f: v3 = cPickle.load(f) self.assertTrue(v3==v1) def test4Update(self): """ """ v1 = ds.IntSparseIntVect(5) self.assertRaises(IndexError,lambda:v1[6]) v1[0]=1 v1[2]=2 v1[3]=3 self.assertTrue(v1==v1) v2 = ds.IntSparseIntVect(5) v2.UpdateFromSequence((0,2,3,3,2,3)) self.assertTrue(v1==v2) def test5Dice(self): """ """ v1 = ds.IntSparseIntVect(5) v1[4]=4; v1[0]=2; v1[3]=1; self.assertTrue(feq(ds.DiceSimilarity(v1,v1),1.0)) v1 = ds.IntSparseIntVect(5) v1[0]=2; v1[2]=1; v1[3]=4; v1[4]=6; v2 = ds.IntSparseIntVect(5) v2[1]=2; v2[2]=3; v2[3]=4; v2[4]=4; self.assertTrue(feq(ds.DiceSimilarity(v1,v2),18.0/26.)) self.assertTrue(feq(ds.DiceSimilarity(v2,v1),18.0/26.)) def test6BulkDice(self): """ """ sz=10 nToSet=5 nVs=6 import random vs = [] for i in range(nVs): v = ds.IntSparseIntVect(sz) for j in range(nToSet): v[random.randint(0,sz-1)]=random.randint(1,10) vs.append(v) baseDs = [ds.DiceSimilarity(vs[0],vs[x]) for x in range(1,nVs)] bulkDs = ds.BulkDiceSimilarity(vs[0],vs[1:]) for i in range(len(baseDs)): self.assertTrue(feq(baseDs[i],bulkDs[i])) def test6BulkTversky(self): """ """ sz=10 nToSet=5 nVs=6 import random vs = [] for i in range(nVs): v = ds.IntSparseIntVect(sz) for j in range(nToSet): v[random.randint(0,sz-1)]=random.randint(1,10) vs.append(v) baseDs = [ds.TverskySimilarity(vs[0],vs[x],.5,.5) for x in range(1,nVs)] bulkDs = ds.BulkTverskySimilarity(vs[0],vs[1:],0.5,0.5) diceDs = [ds.DiceSimilarity(vs[0],vs[x]) for x in range(1,nVs)] for i in range(len(baseDs)): self.assertTrue(feq(baseDs[i],bulkDs[i])) self.assertTrue(feq(baseDs[i],diceDs[i])) bulkDs = ds.BulkTverskySimilarity(vs[0],vs[1:],1.0,1.0) taniDs = [ds.TanimotoSimilarity(vs[0],vs[x]) for x in range(1,nVs)] for i in range(len(bulkDs)): self.assertTrue(feq(bulkDs[i],taniDs[i])) taniDs = ds.BulkTanimotoSimilarity(vs[0],vs[1:]) for i in range(len(bulkDs)): self.assertTrue(feq(bulkDs[i],taniDs[i])) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python # coding: utf-8 import logging from multiprocessing.pool import ThreadPool import pprint import struct import threading import time import traceback import unittest import environment import tablet import utils from protocols_flavor import protocols_flavor from vtdb import dbexceptions from vtdb import keyrange from vtdb import keyrange_constants from vtdb import vtdb_logger from vtdb import vtgate_cursor from vtdb import vtgate_client shard_0_master = tablet.Tablet() shard_0_replica1 = tablet.Tablet() shard_0_replica2 = tablet.Tablet() shard_1_master = tablet.Tablet() shard_1_replica1 = tablet.Tablet() shard_1_replica2 = tablet.Tablet() KEYSPACE_NAME = 'test_keyspace' SHARD_NAMES = ['-80', '80-'] SHARD_KID_MAP = { '-80': [ 527875958493693904, 626750931627689502, 345387386794260318, 332484755310826578, 1842642426274125671, 1326307661227634652, 1761124146422844620, 1661669973250483744, 3361397649937244239, 2444880764308344533], '80-': [ 9767889778372766922, 9742070682920810358, 10296850775085416642, 9537430901666854108, 10440455099304929791, 11454183276974683945, 11185910247776122031, 10460396697869122981, 13379616110062597001, 12826553979133932576], } CREATE_VT_INSERT_TEST = '''create table vt_insert_test ( id bigint auto_increment, msg varchar(64), keyspace_id bigint(20) unsigned NOT NULL, primary key (id) ) Engine=InnoDB''' CREATE_VT_A = '''create table vt_a ( eid bigint, id int, keyspace_id bigint(20) unsigned NOT NULL, primary key(eid, id) ) Engine=InnoDB''' CREATE_VT_FIELD_TYPES = '''create table vt_field_types ( id bigint(20) auto_increment, uint_val bigint(20) unsigned, str_val varchar(64), unicode_val varchar(64), float_val float(5, 1), keyspace_id bigint(20) unsigned NOT NULL, primary key(id) ) Engine=InnoDB''' create_tables = [CREATE_VT_INSERT_TEST, CREATE_VT_A, CREATE_VT_FIELD_TYPES] pack_kid = struct.Struct('!Q').pack class DBRow(object): def __init__(self, column_names, row_tuple): self.__dict__ = dict(zip(column_names, row_tuple)) def __repr__(self): return pprint.pformat(self.__dict__, 4) def setUpModule(): logging.debug('in setUpModule') try: environment.topo_server().setup() # start mysql instance external to the test setup_procs = [shard_0_master.init_mysql(), shard_0_replica1.init_mysql(), shard_0_replica2.init_mysql(), shard_1_master.init_mysql(), shard_1_replica1.init_mysql(), shard_1_replica2.init_mysql() ] utils.wait_procs(setup_procs) setup_tablets() except: tearDownModule() raise def tearDownModule(): logging.debug('in tearDownModule') if utils.options.skip_teardown: return logging.debug('Tearing down the servers and setup') tablet.kill_tablets([shard_0_master, shard_0_replica1, shard_0_replica2, shard_1_master, shard_1_replica1, shard_1_replica2]) teardown_procs = [shard_0_master.teardown_mysql(), shard_0_replica1.teardown_mysql(), shard_0_replica2.teardown_mysql(), shard_1_master.teardown_mysql(), shard_1_replica1.teardown_mysql(), shard_1_replica2.teardown_mysql(), ] utils.wait_procs(teardown_procs, raise_on_error=False) environment.topo_server().teardown() utils.kill_sub_processes() utils.remove_tmp_files() shard_0_master.remove_tree() shard_0_replica1.remove_tree() shard_0_replica2.remove_tree() shard_1_master.remove_tree() shard_1_replica1.remove_tree() shard_1_replica2.remove_tree() def setup_tablets(): # Start up a master mysql and vttablet logging.debug('Setting up tablets') utils.run_vtctl(['CreateKeyspace', KEYSPACE_NAME]) utils.run_vtctl(['SetKeyspaceShardingInfo', '-force', KEYSPACE_NAME, 'keyspace_id', 'uint64']) shard_0_master.init_tablet('master', keyspace=KEYSPACE_NAME, shard='-80') shard_0_replica1.init_tablet('replica', keyspace=KEYSPACE_NAME, shard='-80') shard_0_replica2.init_tablet('replica', keyspace=KEYSPACE_NAME, shard='-80') shard_1_master.init_tablet('master', keyspace=KEYSPACE_NAME, shard='80-') shard_1_replica1.init_tablet('replica', keyspace=KEYSPACE_NAME, shard='80-') shard_1_replica2.init_tablet('replica', keyspace=KEYSPACE_NAME, shard='80-') utils.run_vtctl(['RebuildKeyspaceGraph', KEYSPACE_NAME], auto_log=True) for t in [shard_0_master, shard_0_replica1, shard_0_replica2, shard_1_master, shard_1_replica1, shard_1_replica2]: t.create_db('vt_test_keyspace') for create_table in create_tables: t.mquery(shard_0_master.dbname, create_table) t.start_vttablet(wait_for_state=None) for t in [shard_0_master, shard_0_replica1, shard_0_replica2, shard_1_master, shard_1_replica1, shard_1_replica2]: t.wait_for_vttablet_state('SERVING') utils.run_vtctl(['InitShardMaster', KEYSPACE_NAME+'/-80', shard_0_master.tablet_alias], auto_log=True) utils.run_vtctl(['InitShardMaster', KEYSPACE_NAME+'/80-', shard_1_master.tablet_alias], auto_log=True) utils.run_vtctl( ['RebuildKeyspaceGraph', KEYSPACE_NAME], auto_log=True) utils.check_srv_keyspace( 'test_nj', KEYSPACE_NAME, 'Partitions(master): -80 80-\n' 'Partitions(rdonly): -80 80-\n' 'Partitions(replica): -80 80-\n') utils.VtGate().start() def get_connection(timeout=10.0): protocol = protocols_flavor().vtgate_python_protocol() try: return vtgate_client.connect(protocol, utils.vtgate.addr(), timeout) except Exception: logging.exception('Connection to vtgate (timeout=%s) failed.', timeout) raise def get_keyrange(shard_name): kr = None if shard_name == keyrange_constants.SHARD_ZERO: kr = keyrange.KeyRange(keyrange_constants.NON_PARTIAL_KEYRANGE) else: kr = keyrange.KeyRange(shard_name) return kr def _delete_all(shard_index, table_name): vtgate_conn = get_connection() # This write is to set up the test with fresh insert # and hence performing it directly on the connection. vtgate_conn.begin() vtgate_conn._execute('delete from %s' % table_name, {}, KEYSPACE_NAME, 'master', keyranges=[get_keyrange(SHARD_NAMES[shard_index])]) vtgate_conn.commit() def do_write(count, shard_index): kid_list = SHARD_KID_MAP[SHARD_NAMES[shard_index]] _delete_all(shard_index, 'vt_insert_test') vtgate_conn = get_connection() for x in xrange(count): keyspace_id = kid_list[x % len(kid_list)] cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)], writable=True) cursor.begin() cursor.execute( 'insert into vt_insert_test (msg, keyspace_id) ' 'values (%(msg)s, %(keyspace_id)s)', {'msg': 'test %s' % x, 'keyspace_id': keyspace_id}) cursor.commit() def restart_vtgate(extra_args=None): if extra_args is None: extra_args = {} port = utils.vtgate.port utils.vtgate.kill() utils.VtGate(port=port).start(extra_args=extra_args) class BaseTestCase(unittest.TestCase): def setUp(self): super(BaseTestCase, self).setUp() logging.info('Start: %s.', '.'.join(self.id().split('.')[-2:])) class TestCoreVTGateFunctions(BaseTestCase): def setUp(self): super(TestCoreVTGateFunctions, self).setUp() self.shard_index = 1 self.keyrange = get_keyrange(SHARD_NAMES[self.shard_index]) self.master_tablet = shard_1_master self.replica_tablet = shard_1_replica1 def test_status(self): self.assertIn('</html>', utils.vtgate.get_status()) def test_connect(self): vtgate_conn = get_connection() self.assertNotEqual(vtgate_conn, None) def test_writes(self): vtgate_conn = get_connection() _delete_all(self.shard_index, 'vt_insert_test') count = 10 kid_list = SHARD_KID_MAP[SHARD_NAMES[self.shard_index]] for x in xrange(count): keyspace_id = kid_list[count%len(kid_list)] cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)], writable=True) cursor.begin() cursor.execute( 'insert into vt_insert_test (msg, keyspace_id) ' 'values (%(msg)s, %(keyspace_id)s)', {'msg': 'test %s' % x, 'keyspace_id': keyspace_id}) cursor.commit() cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) rowcount = cursor.execute('select * from vt_insert_test', {}) self.assertEqual(rowcount, count, 'master fetch works') def test_query_routing(self): """Test VtGate routes queries to the right tablets.""" row_counts = [20, 30] for shard_index in [0, 1]: do_write(row_counts[shard_index], shard_index) vtgate_conn = get_connection() for shard_index in [0, 1]: # Fetch all rows in each shard cursor = vtgate_conn.cursor( KEYSPACE_NAME, 'master', keyranges=[get_keyrange(SHARD_NAMES[shard_index])]) rowcount = cursor.execute('select * from vt_insert_test', {}) # Verify row count self.assertEqual(rowcount, row_counts[shard_index]) # Verify keyspace id for result in cursor.results: kid = result[2] self.assertIn(kid, SHARD_KID_MAP[SHARD_NAMES[shard_index]]) # Do a cross shard range query and assert all rows are fetched cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyranges=[get_keyrange('75-95')]) rowcount = cursor.execute('select * from vt_insert_test', {}) self.assertEqual(rowcount, row_counts[0] + row_counts[1]) def test_rollback(self): vtgate_conn = get_connection() count = 10 _delete_all(self.shard_index, 'vt_insert_test') kid_list = SHARD_KID_MAP[SHARD_NAMES[self.shard_index]] for x in xrange(count): keyspace_id = kid_list[x%len(kid_list)] cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)], writable=True) cursor.begin() cursor.execute( 'insert into vt_insert_test (msg, keyspace_id) ' 'values (%(msg)s, %(keyspace_id)s)', {'msg': 'test %s' % x, 'keyspace_id': keyspace_id}) cursor.commit() vtgate_conn.begin() vtgate_conn._execute( 'delete from vt_insert_test', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) vtgate_conn.rollback() cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) rowcount = cursor.execute('select * from vt_insert_test', {}) logging.debug('ROLLBACK TEST rowcount %d count %d', rowcount, count) self.assertEqual( rowcount, count, "Fetched rows(%d) != inserted rows(%d), rollback didn't work" % (rowcount, count)) do_write(10, self.shard_index) def test_execute_entity_ids(self): vtgate_conn = get_connection() count = 10 _delete_all(self.shard_index, 'vt_a') eid_map = {} kid_list = SHARD_KID_MAP[SHARD_NAMES[self.shard_index]] for x in xrange(count): keyspace_id = kid_list[x%len(kid_list)] eid_map[x] = pack_kid(keyspace_id) cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)], writable=True) cursor.begin() cursor.execute( 'insert into vt_a (eid, id, keyspace_id) ' 'values (%(eid)s, %(id)s, %(keyspace_id)s)', {'eid': x, 'id': x, 'keyspace_id': keyspace_id}) cursor.commit() cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyspace_ids=None) rowcount = cursor.execute( 'select * from vt_a', {}, entity_keyspace_id_map=eid_map, entity_column_name='id') self.assertEqual(rowcount, count, 'entity_ids works') def test_batch_read(self): vtgate_conn = get_connection() count = 10 _delete_all(self.shard_index, 'vt_insert_test') shard_name = SHARD_NAMES[self.shard_index] kid_list = SHARD_KID_MAP[shard_name] for x in xrange(count): keyspace_id = kid_list[x%len(kid_list)] cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)], writable=True) cursor.begin() cursor.execute( 'insert into vt_insert_test (msg, keyspace_id) ' 'values (%(msg)s, %(keyspace_id)s)', {'msg': 'test %s' % x, 'keyspace_id': keyspace_id}) cursor.commit() _delete_all(self.shard_index, 'vt_a') for x in xrange(count): keyspace_id = kid_list[x%len(kid_list)] cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)], writable=True) cursor.begin() cursor.execute( 'insert into vt_a (eid, id, keyspace_id) ' 'values (%(eid)s, %(id)s, %(keyspace_id)s)', {'eid': x, 'id': x, 'keyspace_id': keyspace_id}) cursor.commit() kid_list = [pack_kid(kid) for kid in kid_list] cursor = vtgate_conn.cursor(keyspace=None, tablet_type='master') params_list = [ dict(sql='select msg, keyspace_id from vt_insert_test', bind_variables={}, keyspace=KEYSPACE_NAME, keyspace_ids=kid_list, shards=None), dict(sql='select eid, id, keyspace_id from vt_a', bind_variables={}, keyspace=KEYSPACE_NAME, keyspace_ids=None, shards=[shard_name]), dict(sql='select eid + 100, id, keyspace_id from vt_a', bind_variables={}, keyspace=KEYSPACE_NAME, keyspace_ids=kid_list, shards=None), ] cursor.executemany(sql=None, params_list=params_list) self.assertEqual(cursor.rowcount, count) msg_0, msg_1 = (row[0] for row in sorted(cursor.fetchall())[:2]) self.assertEqual(msg_0, 'test 0') self.assertEqual(msg_1, 'test 1') self.assertTrue(cursor.nextset()) self.assertEqual(cursor.rowcount, count) eid_0, eid_1 = (row[0] for row in sorted(cursor.fetchall())[:2]) self.assertEqual(eid_0, 0) self.assertEqual(eid_1, 1) self.assertTrue(cursor.nextset()) eid_0_plus_100, eid_1_plus_100 = ( row[0] for row in sorted(cursor.fetchall())[:2]) self.assertEqual(eid_0_plus_100, 100) self.assertEqual(eid_1_plus_100, 101) self.assertFalse(cursor.nextset()) def test_batch_write(self): vtgate_conn = get_connection() cursor = vtgate_conn.cursor(keyspace=None, tablet_type='master') kid_list = SHARD_KID_MAP[SHARD_NAMES[self.shard_index]] all_ids = [pack_kid(kid) for kid in kid_list] count = 10 cursor.executemany( sql=None, params_list=[ dict(sql='delete from vt_insert_test', bind_variables=None, keyspace=KEYSPACE_NAME, keyspace_ids=all_ids, shards=None)]) params_list = [] for x in xrange(count): keyspace_id = kid_list[x%len(kid_list)] params_list.append( dict(sql=None, bind_variables= {'msg': 'test %s' % x, 'keyspace_id': keyspace_id}, keyspace=KEYSPACE_NAME, keyspace_ids=[pack_kid(keyspace_id)], shards=None)) cursor.executemany( sql='insert into vt_insert_test (msg, keyspace_id) ' 'values (%(msg)s, %(keyspace_id)s)', params_list=params_list) cursor.executemany( sql=None, params_list=[ dict(sql='delete from vt_a', bind_variables=None, keyspace=KEYSPACE_NAME, keyspace_ids=all_ids, shards=None)]) params_list = [] for x in xrange(count): keyspace_id = kid_list[x%len(kid_list)] sql = ( 'insert into vt_a (eid, id, keyspace_id) ' 'values (%(eid)s, %(id)s, %(keyspace_id)s)') bind_variables = {'eid': x, 'id': x, 'keyspace_id': keyspace_id} keyspace = KEYSPACE_NAME keyspace_ids = [pack_kid(keyspace_id)] params_list.append(dict( sql=sql, bind_variables=bind_variables, keyspace=keyspace, keyspace_ids=keyspace_ids, shards=None)) cursor.executemany(sql=None, params_list=params_list) _, rowcount, _, _ = vtgate_conn._execute( 'select * from vt_insert_test', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) self.assertEqual(rowcount, count) _, rowcount, _, _ = vtgate_conn._execute( 'select * from vt_a', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) self.assertEqual(rowcount, count) def test_streaming_fetchsubset(self): count = 30 do_write(count, self.shard_index) # Fetch a subset of the total size. vtgate_conn = get_connection() def get_stream_cursor(): return vtgate_conn.cursor( KEYSPACE_NAME, 'master', keyranges=[self.keyrange], cursorclass=vtgate_cursor.StreamVTGateCursor) def fetch_first_10_rows(stream_cursor): stream_cursor.execute('select msg from vt_insert_test', {}) rows = stream_cursor.fetchmany(size=10) self.assertEqual(rows, [('test %d' % x,) for x in xrange(10)]) def fetch_next_10_rows(stream_cursor): rows = stream_cursor.fetchmany(size=10) self.assertEqual(rows, [('test %d' % x,) for x in xrange(10, 20)]) stream_cursor_1 = get_stream_cursor() stream_cursor_2 = get_stream_cursor() fetch_first_10_rows(stream_cursor_1) fetch_first_10_rows(stream_cursor_2) fetch_next_10_rows(stream_cursor_1) fetch_next_10_rows(stream_cursor_2) stream_cursor_1.close() stream_cursor_2.close() def test_streaming_fetchall(self): count = 30 do_write(count, self.shard_index) # Fetch all. vtgate_conn = get_connection() stream_cursor = vtgate_conn.cursor( KEYSPACE_NAME, 'master', keyranges=[self.keyrange], cursorclass=vtgate_cursor.StreamVTGateCursor) stream_cursor.execute('select * from vt_insert_test', {}) rows = stream_cursor.fetchall() rowcount = len(list(rows)) self.assertEqual(rowcount, count) stream_cursor.close() def test_streaming_fetchone(self): count = 30 do_write(count, self.shard_index) # Fetch one. vtgate_conn = get_connection() stream_cursor = vtgate_conn.cursor( KEYSPACE_NAME, 'master', keyranges=[self.keyrange], cursorclass=vtgate_cursor.StreamVTGateCursor) stream_cursor.execute('select * from vt_insert_test', {}) rows = stream_cursor.fetchone() self.assertTrue(type(rows) == tuple, 'Received a valid row') stream_cursor.close() def test_streaming_multishards(self): count = 30 do_write(count, 0) do_write(count, 1) vtgate_conn = get_connection() stream_cursor = vtgate_conn.cursor( KEYSPACE_NAME, 'master', keyranges=[keyrange.KeyRange( keyrange_constants.NON_PARTIAL_KEYRANGE)], cursorclass=vtgate_cursor.StreamVTGateCursor) stream_cursor.execute('select * from vt_insert_test', {}) rows = stream_cursor.fetchall() rowcount = len(list(rows)) self.assertEqual(rowcount, count * 2) stream_cursor.close() def test_streaming_zero_results(self): vtgate_conn = get_connection() vtgate_conn.begin() vtgate_conn._execute('delete from vt_insert_test', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) vtgate_conn.commit() # After deletion, should result zero. stream_cursor = vtgate_conn.cursor( KEYSPACE_NAME, 'master', keyranges=[self.keyrange], cursorclass=vtgate_cursor.StreamVTGateCursor) stream_cursor.execute('select * from vt_insert_test', {}) rows = stream_cursor.fetchall() rowcount = len(list(rows)) self.assertEqual(rowcount, 0) def test_interleaving(self): tablet_type = 'master' try: vtgate_conn = get_connection() vtgate_conn.begin() vtgate_conn._execute( 'delete from vt_insert_test', {}, KEYSPACE_NAME, tablet_type, keyranges=[self.keyrange]) kid_list = SHARD_KID_MAP[SHARD_NAMES[self.shard_index]] count = len(kid_list) for x in xrange(count): keyspace_id = kid_list[x] vtgate_conn._execute( 'insert into vt_insert_test (msg, keyspace_id) ' 'values (%(msg)s, %(keyspace_id)s)', {'msg': 'test %s' % x, 'keyspace_id': keyspace_id}, KEYSPACE_NAME, tablet_type, keyspace_ids=[pack_kid(keyspace_id)]) vtgate_conn.commit() vtgate_conn2 = get_connection() query = ( 'select keyspace_id from vt_insert_test where keyspace_id = %(kid)s') thd = threading.Thread(target=self._query_lots, args=( vtgate_conn2, query, {'kid': kid_list[0]}, KEYSPACE_NAME, tablet_type, [pack_kid(kid_list[0])])) thd.start() for i in xrange(count): (result, _, _, _) = vtgate_conn._execute( query, {'kid': kid_list[i]}, KEYSPACE_NAME, tablet_type, keyspace_ids=[pack_kid(kid_list[i])]) self.assertEqual(result, [(kid_list[i],)]) if i % 10 == 0: generator, _ = vtgate_conn._stream_execute( query, {'kid': kid_list[i]}, KEYSPACE_NAME, tablet_type, keyspace_ids=[pack_kid(kid_list[i])]) for result in generator: self.assertEqual(result, (kid_list[i],)) thd.join() except Exception, e: self.fail('Failed with error %s %s' % (str(e), traceback.format_exc())) def test_field_types(self): vtgate_conn = get_connection() _delete_all(self.shard_index, 'vt_field_types') count = 10 base_uint = int('8' + '0' * 15, base=16) kid_list = SHARD_KID_MAP[SHARD_NAMES[self.shard_index]] for x in xrange(1, count): keyspace_id = kid_list[count % len(kid_list)] cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)], writable=True) cursor.begin() cursor.execute( 'insert into vt_field_types ' '(uint_val, str_val, unicode_val, float_val, keyspace_id) ' 'values (%(uint_val)s, %(str_val)s, %(unicode_val)s, ' '%(float_val)s, %(keyspace_id)s)', {'uint_val': base_uint + x, 'str_val': 'str_%d' % x, 'unicode_val': unicode('str_%d' % x), 'float_val': x * 1.2, 'keyspace_id': keyspace_id}) cursor.commit() cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) rowcount = cursor.execute('select * from vt_field_types', {}) field_names = [f[0] for f in cursor.description] self.assertEqual(rowcount, count -1, "rowcount doesn't match") id_list = [] uint_val_list = [] str_val_list = [] unicode_val_list = [] float_val_list = [] for r in cursor.results: row = DBRow(field_names, r) id_list.append(row.id) uint_val_list.append(row.uint_val) str_val_list.append(row.str_val) unicode_val_list.append(row.unicode_val) float_val_list.append(row.float_val) # iterable type checks - list, tuple, set are supported. query = 'select * from vt_field_types where id in %(id_1)s' rowcount = cursor.execute(query, {'id_1': id_list}) self.assertEqual(rowcount, len(id_list), "rowcount doesn't match") rowcount = cursor.execute(query, {'id_1': tuple(id_list)}) self.assertEqual(rowcount, len(id_list), "rowcount doesn't match") rowcount = cursor.execute(query, {'id_1': set(id_list)}) self.assertEqual(rowcount, len(id_list), "rowcount doesn't match") for r in cursor.results: row = DBRow(field_names, r) self.assertIsInstance(row.id, (int, long)) # received field types same as input. # uint query = 'select * from vt_field_types where uint_val in %(uint_val_1)s' rowcount = cursor.execute(query, {'uint_val_1': uint_val_list}) self.assertEqual(rowcount, len(uint_val_list), "rowcount doesn't match") for _, r in enumerate(cursor.results): row = DBRow(field_names, r) self.assertIsInstance(row.uint_val, long) self.assertGreaterEqual( row.uint_val, base_uint, 'uint value not in correct range') # str query = 'select * from vt_field_types where str_val in %(str_val_1)s' rowcount = cursor.execute(query, {'str_val_1': str_val_list}) self.assertEqual(rowcount, len(str_val_list), "rowcount doesn't match") for i, r in enumerate(cursor.results): row = DBRow(field_names, r) self.assertIsInstance(row.str_val, str) # unicode str query = ( 'select * from vt_field_types where unicode_val in %(unicode_val_1)s') rowcount = cursor.execute(query, {'unicode_val_1': unicode_val_list}) self.assertEqual( rowcount, len(unicode_val_list), "rowcount doesn't match") for i, r in enumerate(cursor.results): row = DBRow(field_names, r) self.assertIsInstance(row.unicode_val, basestring) # deliberately eliminating the float test since it is flaky due # to mysql float precision handling. def _query_lots( self, conn, query, bind_vars, keyspace_name, tablet_type, keyspace_ids): for _ in xrange(500): result, _, _, _ = conn._execute( query, bind_vars, keyspace_name, tablet_type, keyspace_ids=keyspace_ids) self.assertEqual(result, [tuple(bind_vars.values())]) class TestFailures(BaseTestCase): def setUp(self): super(TestFailures, self).setUp() self.shard_index = 1 self.keyrange = get_keyrange(SHARD_NAMES[self.shard_index]) self.master_tablet = shard_1_master self.master_tablet.kill_vttablet() self.tablet_start(self.master_tablet, 'master') self.replica_tablet = shard_1_replica1 self.replica_tablet.kill_vttablet() self.tablet_start(self.replica_tablet, 'replica') self.replica_tablet2 = shard_1_replica2 self.replica_tablet2.kill_vttablet() self.tablet_start(self.replica_tablet2, 'replica') port = utils.vtgate.port utils.vtgate.kill() utils.VtGate(port=port).start() def tablet_start(self, tablet, tablet_type, lameduck_period='0.5s'): _ = tablet_type return tablet.start_vttablet(lameduck_period=lameduck_period) def test_status_with_error(self): """Tests that the status page loads correctly after a VTGate error.""" vtgate_conn = get_connection() cursor = vtgate_conn.cursor( 'INVALID_KEYSPACE', 'replica', keyspace_ids=['0']) # We expect to see a DatabaseError due to an invalid keyspace with self.assertRaises(dbexceptions.DatabaseError): cursor.execute('select * from vt_insert_test', {}) # Page should have loaded successfully self.assertIn('</html>', utils.vtgate.get_status()) def test_tablet_restart_read(self): # Since we're going to kill the tablet, there will be a race between the # client timeout here and the vtgate->vttablet connection timeout, so we # increase it for this test. vtgate_conn = get_connection(timeout=30) self.replica_tablet.kill_vttablet() self.replica_tablet2.kill_vttablet() with self.assertRaises(dbexceptions.DatabaseError): vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) self.tablet_start(self.replica_tablet, 'replica') self.tablet_start(self.replica_tablet2, 'replica') try: _ = vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) except Exception, e: self.fail('Communication with shard %s replica failed with error %s' % (SHARD_NAMES[self.shard_index], str(e))) def test_vtgate_restart_read(self): vtgate_conn = get_connection() port = utils.vtgate.port utils.vtgate.kill() with self.assertRaises(dbexceptions.OperationalError): vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) utils.VtGate(port=port).start() vtgate_conn = get_connection() vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) def test_tablet_restart_stream_execute(self): # Since we're going to kill the tablet, there will be a race between the # client timeout here and the vtgate->vttablet connection timeout, so we # increase it for this test. vtgate_conn = get_connection(timeout=30) stream_cursor = vtgate_conn.cursor( KEYSPACE_NAME, 'replica', keyranges=[self.keyrange], cursorclass=vtgate_cursor.StreamVTGateCursor) self.replica_tablet.kill_vttablet() self.replica_tablet2.kill_vttablet() with self.assertRaises(dbexceptions.DatabaseError): stream_cursor.execute('select * from vt_insert_test', {}) self.tablet_start(self.replica_tablet, 'replica') self.tablet_start(self.replica_tablet2, 'replica') try: stream_cursor.execute('select * from vt_insert_test', {}) except Exception, e: self.fail('Communication with shard0 replica failed with error %s' % str(e)) def test_vtgate_restart_stream_execute(self): vtgate_conn = get_connection() stream_cursor = vtgate_conn.cursor( KEYSPACE_NAME, 'replica', keyranges=[self.keyrange], cursorclass=vtgate_cursor.StreamVTGateCursor) port = utils.vtgate.port utils.vtgate.kill() with self.assertRaises(dbexceptions.OperationalError): stream_cursor.execute('select * from vt_insert_test', {}) utils.VtGate(port=port).start() vtgate_conn = get_connection() stream_cursor = vtgate_conn.cursor( KEYSPACE_NAME, 'replica', keyranges=[self.keyrange], cursorclass=vtgate_cursor.StreamVTGateCursor) try: stream_cursor.execute('select * from vt_insert_test', {}) except Exception, e: self.fail('Communication with shard0 replica failed with error %s' % str(e)) # vtgate begin doesn't make any back-end connections to # vttablet so the kill and restart shouldn't have any effect. def test_tablet_restart_begin(self): vtgate_conn = get_connection() self.master_tablet.kill_vttablet() vtgate_conn.begin() _ = self.tablet_start(self.master_tablet, 'master') vtgate_conn.begin() # this succeeds only if retry_count > 0 vtgate_conn._execute( 'delete from vt_insert_test', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) vtgate_conn.commit() def test_vtgate_restart_begin(self): vtgate_conn = get_connection() port = utils.vtgate.port utils.vtgate.kill() with self.assertRaises(dbexceptions.OperationalError): vtgate_conn.begin() utils.VtGate(port=port).start() vtgate_conn = get_connection() vtgate_conn.begin() def test_tablet_fail_write(self): # Since we're going to kill the tablet, there will be a race between the # client timeout here and the vtgate->vttablet connection timeout, so we # increase it for this test. vtgate_conn = get_connection(timeout=30) with self.assertRaises(dbexceptions.DatabaseError): vtgate_conn.begin() self.master_tablet.kill_vttablet() vtgate_conn._execute( 'delete from vt_insert_test', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) vtgate_conn.commit() _ = self.tablet_start(self.master_tablet, 'master') vtgate_conn.begin() vtgate_conn._execute( 'delete from vt_insert_test', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) vtgate_conn.commit() def test_vttablet_errors_not_logged(self): """Verifies that errors from VtTablet aren't logged as such in VTGate. Instead of making assertions by reading the log stream, we read a debug vars that is incremented by VTGate whenever it chooses to log exceptions to Infof instead of Errorf. """ vtgate_conn = get_connection() keyspace_id = SHARD_KID_MAP[SHARD_NAMES[self.shard_index]][0] cursor = vtgate_conn.cursor(KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)], writable=True) with self.assertRaises(dbexceptions.DatabaseError): cursor.execute('this is not valid syntax, throw an error', {}) try: non_vtgate_errors = ( utils.vtgate.get_vars()['VtgateInfoErrorCounts']['NonVtgateErrors']) except KeyError: self.fail( "No errors in VTGate that weren't logged as exceptions: " "'NonVtgateErrors' vars not found") self.assertEqual(non_vtgate_errors, 1) def test_error_on_dml(self): vtgate_conn = get_connection() vtgate_conn.begin() keyspace_id = SHARD_KID_MAP[SHARD_NAMES[ (self.shard_index+1)%len(SHARD_NAMES) ]][0] try: vtgate_conn._execute( 'insert into vt_insert_test values(:msg, :keyspace_id)', {'msg': 'test4', 'keyspace_id': keyspace_id}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) vtgate_conn.commit() self.fail('Failed to raise DatabaseError exception') except dbexceptions.DatabaseError: # FIXME(alainjobart) add a method to get the session to vtgate_client, # instead of poking into it like this. if protocols_flavor().vtgate_python_protocol() == 'gorpc': logging.info( 'SHARD SESSIONS: %s', vtgate_conn.session['ShardSessions']) transaction_id = ( vtgate_conn.session['ShardSessions'][0]['TransactionId']) else: transaction_id = vtgate_conn.session.shard_sessions[0].transaction_id self.assertTrue(transaction_id != 0) except Exception, e: self.fail('Expected DatabaseError as exception, got %s' % str(e)) finally: vtgate_conn.rollback() def test_vtgate_fail_write(self): vtgate_conn = get_connection() port = utils.vtgate.port with self.assertRaises(dbexceptions.OperationalError): vtgate_conn.begin() utils.vtgate.kill() vtgate_conn._execute( 'delete from vt_insert_test', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) vtgate_conn.commit() utils.VtGate(port=port).start() vtgate_conn = get_connection() vtgate_conn.begin() vtgate_conn._execute( 'delete from vt_insert_test', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) vtgate_conn.commit() # test timeout between py client and vtgate def test_vtgate_timeout(self): vtgate_conn = get_connection(timeout=3.0) with self.assertRaises(dbexceptions.TimeoutError): vtgate_conn._execute( 'select sleep(4) from dual', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) vtgate_conn = get_connection(timeout=3.0) with self.assertRaises(dbexceptions.TimeoutError): vtgate_conn._execute( 'select sleep(4) from dual', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) # Currently this is causing vttablet to become unreachable at # the timeout boundary and kill any query being executed # at the time. Prevent flakiness in other tests by sleeping # until the query times out. # TODO fix b/17733518 time.sleep(3) # test timeout between vtgate and vttablet # the timeout is set to 5 seconds def test_tablet_timeout(self): # this test only makes sense if there is a shorter/protective timeout # set for vtgate-vttablet connection. # TODO(liguo): evaluate if we want such a timeout return vtgate_conn = get_connection() with self.assertRaises(dbexceptions.DatabaseError): vtgate_conn.begin() vtgate_conn._execute( 'select sleep(7) from dual', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) vtgate_conn = get_connection() with self.assertRaises(dbexceptions.DatabaseError): vtgate_conn.begin() vtgate_conn._execute( 'select sleep(7) from dual', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) # Test the case that no query sent during tablet shuts down (single tablet) def test_restart_mysql_tablet_idle(self): self.replica_tablet2.kill_vttablet() vtgate_conn = get_connection() utils.wait_procs([self.replica_tablet.shutdown_mysql(),]) try: vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) self.fail('DatabaseError should have been raised') except Exception, e: self.assertIsInstance(e, dbexceptions.DatabaseError) self.assertNotIsInstance(e, dbexceptions.IntegrityError) self.assertNotIsInstance(e, dbexceptions.OperationalError) self.assertNotIsInstance(e, dbexceptions.TimeoutError) utils.wait_procs([self.replica_tablet.start_mysql(),]) # force health check so tablet can become serving utils.run_vtctl( ['RunHealthCheck', self.replica_tablet.tablet_alias, 'replica'], auto_log=True) self.replica_tablet.wait_for_vttablet_state('SERVING') vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) self.replica_tablet.kill_vttablet() self.tablet_start(self.replica_tablet, 'replica') self.replica_tablet.wait_for_vttablet_state('SERVING') # TODO: expect to fail until we can detect vttablet shuts down gracefully # while VTGate is idle. # NOTE: with grpc, it will reconnect, and not trigger an error. if protocols_flavor().tabletconn_protocol() == 'grpc': return try: result = vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) self.fail( 'DatabaseError should have been raised, but got %s' % str(result)) except Exception, e: self.assertIsInstance(e, dbexceptions.DatabaseError) self.assertNotIsInstance(e, dbexceptions.IntegrityError) self.assertNotIsInstance(e, dbexceptions.OperationalError) self.assertNotIsInstance(e, dbexceptions.TimeoutError) self.tablet_start(self.replica_tablet2, 'replica') # Test the case that there are queries sent during vttablet shuts down, # and all querys fail because there is only one vttablet. def test_restart_mysql_tablet_queries(self): vtgate_conn = get_connection() utils.wait_procs([self.replica_tablet.shutdown_mysql(),]) utils.wait_procs([self.replica_tablet2.shutdown_mysql(),]) try: vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) self.fail('DatabaseError should have been raised') except Exception, e: self.assertIsInstance(e, dbexceptions.DatabaseError) self.assertNotIsInstance(e, dbexceptions.IntegrityError) self.assertNotIsInstance(e, dbexceptions.OperationalError) self.assertNotIsInstance(e, dbexceptions.TimeoutError) utils.wait_procs([self.replica_tablet.start_mysql(),]) utils.wait_procs([self.replica_tablet2.start_mysql(),]) # force health check so tablet can become serving utils.run_vtctl( ['RunHealthCheck', self.replica_tablet.tablet_alias, 'replica'], auto_log=True) utils.run_vtctl( ['RunHealthCheck', self.replica_tablet2.tablet_alias, 'replica'], auto_log=True) self.replica_tablet.wait_for_vttablet_state('SERVING') self.replica_tablet2.wait_for_vttablet_state('SERVING') self.replica_tablet2.kill_vttablet() self.replica_tablet.kill_vttablet(wait=False) time.sleep(0.1) # send query while vttablet is in lameduck, should fail as no vttablet try: vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) self.fail('DatabaseError should have been raised') except Exception, e: self.assertIsInstance(e, dbexceptions.DatabaseError) self.assertNotIsInstance(e, dbexceptions.IntegrityError) self.assertNotIsInstance(e, dbexceptions.OperationalError) self.assertNotIsInstance(e, dbexceptions.TimeoutError) # send another query, should also fail try: vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) self.fail('DatabaseError should have been raised') except Exception, e: self.assertIsInstance(e, dbexceptions.DatabaseError) self.assertNotIsInstance(e, dbexceptions.IntegrityError) self.assertNotIsInstance(e, dbexceptions.OperationalError) self.assertNotIsInstance(e, dbexceptions.TimeoutError) # sleep over the lameduck period time.sleep(0.5) self.tablet_start(self.replica_tablet, 'replica') self.tablet_start(self.replica_tablet2, 'replica') self.replica_tablet.wait_for_vttablet_state('SERVING') self.replica_tablet2.wait_for_vttablet_state('SERVING') # as the cached vtgate-tablet conn was marked down, it should succeed vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) # Test the case that there are queries sent during one vttablet shuts down, # and all querys succeed because there is another vttablet. def test_restart_mysql_tablet_queries_multi_tablets(self): vtgate_conn = get_connection() utils.wait_procs([self.replica_tablet.shutdown_mysql(),]) # should retry on tablet2 and succeed vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) utils.wait_procs([self.replica_tablet.start_mysql(),]) # force health check so tablet can become serving utils.run_vtctl( ['RunHealthCheck', self.replica_tablet.tablet_alias, 'replica'], auto_log=True) self.replica_tablet.wait_for_vttablet_state('SERVING') tablet2_vars = utils.get_vars(self.replica_tablet2.port) t2_query_count_before = int(tablet2_vars['Queries']['TotalCount']) vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) tablet2_vars = utils.get_vars(self.replica_tablet2.port) t2_query_count_after = int(tablet2_vars['Queries']['TotalCount']) self.assertTrue((t2_query_count_after-t2_query_count_before) == 1) # kill tablet2 and leave it in lameduck mode self.replica_tablet2.kill_vttablet(wait=False) time.sleep(0.1) # send query while tablet2 is in lameduck, should retry on tablet1 tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_before = int(tablet1_vars['Queries']['TotalCount']) vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_after = int(tablet1_vars['Queries']['TotalCount']) self.assertTrue((t1_query_count_after-t1_query_count_before) == 1) # sleep over the lameduck period time.sleep(0.5) # send another query, should also succeed on tablet1 tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_before = int(tablet1_vars['Queries']['TotalCount']) vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_after = int(tablet1_vars['Queries']['TotalCount']) self.assertTrue((t1_query_count_after-t1_query_count_before) == 1) # start tablet2 self.tablet_start(self.replica_tablet2, 'replica') self.replica_tablet2.wait_for_vttablet_state('SERVING') # it should succeed on tablet1 tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_before = int(tablet1_vars['Queries']['TotalCount']) vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_after = int(tablet1_vars['Queries']['TotalCount']) self.assertTrue((t1_query_count_after-t1_query_count_before) == 1) # Test the case that there are queries sent during one vttablet is killed, # and all queries succeed because there is another vttablet. def test_kill_mysql_tablet_queries_multi_tablets(self): vtgate_conn = get_connection() utils.wait_procs([self.replica_tablet.shutdown_mysql(),]) # should retry on tablet2 and succeed tablet2_vars = utils.get_vars(self.replica_tablet2.port) t2_query_count_before = int(tablet2_vars['Queries']['TotalCount']) vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) tablet2_vars = utils.get_vars(self.replica_tablet2.port) t2_query_count_after = int(tablet2_vars['Queries']['TotalCount']) self.assertTrue((t2_query_count_after-t2_query_count_before) == 1) # start tablet1 mysql utils.wait_procs([self.replica_tablet.start_mysql(),]) # force health check so tablet can become serving utils.run_vtctl( ['RunHealthCheck', self.replica_tablet.tablet_alias, 'replica'], auto_log=True) self.replica_tablet.wait_for_vttablet_state('SERVING') # should succeed on tablet2 tablet2_vars = utils.get_vars(self.replica_tablet2.port) t2_query_count_before = int(tablet2_vars['Queries']['TotalCount']) vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) tablet2_vars = utils.get_vars(self.replica_tablet2.port) t2_query_count_after = int(tablet2_vars['Queries']['TotalCount']) self.assertTrue((t2_query_count_after-t2_query_count_before) == 1) # hard kill tablet2 self.replica_tablet2.hard_kill_vttablet() # send query after tablet2 is killed, should not retry on the cached conn try: vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) self.fail('DatabaseError should have been raised') except Exception, e: self.assertIsInstance(e, dbexceptions.DatabaseError) self.assertNotIsInstance(e, dbexceptions.IntegrityError) self.assertNotIsInstance(e, dbexceptions.OperationalError) self.assertNotIsInstance(e, dbexceptions.TimeoutError) # send another query, should succeed on tablet1 tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_before = int(tablet1_vars['Queries']['TotalCount']) vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_after = int(tablet1_vars['Queries']['TotalCount']) self.assertTrue((t1_query_count_after-t1_query_count_before) == 1) # start tablet2 self.tablet_start(self.replica_tablet2, 'replica') self.replica_tablet2.wait_for_vttablet_state('SERVING') # it should succeed on tablet1 tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_before = int(tablet1_vars['Queries']['TotalCount']) vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_after = int(tablet1_vars['Queries']['TotalCount']) self.assertTrue((t1_query_count_after-t1_query_count_before) == 1) def test_bind_vars_in_exception_message(self): vtgate_conn = get_connection() keyspace_id = None count = 1 vtgate_conn.begin() vtgate_conn._execute( 'delete from vt_a', {}, KEYSPACE_NAME, 'master', keyranges=[get_keyrange(SHARD_NAMES[self.shard_index])]) vtgate_conn.commit() eid_map = {} # start transaction vtgate_conn.begin() kid_list = SHARD_KID_MAP[SHARD_NAMES[self.shard_index]] # kill vttablet self.master_tablet.kill_vttablet() try: # perform write, this should fail for x in xrange(count): keyspace_id = kid_list[x%len(kid_list)] eid_map[x] = str(keyspace_id) vtgate_conn._execute( 'insert into vt_a (eid, id, keyspace_id) ' 'values (%(eid)s, %(id)s, %(keyspace_id)s)', {'eid': x, 'id': x, 'keyspace_id': keyspace_id}, KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)]) vtgate_conn.commit() except Exception, e: # check that bind var value is not present in exception message. if str(keyspace_id) in str(e): self.fail('bind_vars present in the exception message') finally: vtgate_conn.rollback() # Start master tablet again self.tablet_start(self.master_tablet, 'master') def test_fail_fast_when_no_serving_tablets(self): """Verify VtGate requests fail-fast when tablets are unavailable. When there are no SERVING tablets available to serve a request, VtGate should fail-fast (returning an appropriate error) without waiting around till the request deadline expires. """ tablet_type = 'replica' keyranges = [get_keyrange(SHARD_NAMES[self.shard_index])] query = 'select * from vt_insert_test' # Execute a query to warm VtGate's caches for connections and endpoints get_rtt(KEYSPACE_NAME, query, tablet_type, keyranges) # Shutdown mysql and ensure tablet is in NOT_SERVING state utils.wait_procs([self.replica_tablet.shutdown_mysql(),]) utils.wait_procs([self.replica_tablet2.shutdown_mysql(),]) try: get_rtt(KEYSPACE_NAME, query, tablet_type, keyranges) self.replica_tablet.wait_for_vttablet_state('NOT_SERVING') self.replica_tablet2.wait_for_vttablet_state('NOT_SERVING') except Exception: self.fail('unable to set tablet to NOT_SERVING state') # Fire off a few requests in parallel num_requests = 10 pool = ThreadPool(processes=num_requests) async_results = [] for _ in range(num_requests): async_result = pool.apply_async( get_rtt, (KEYSPACE_NAME, query, tablet_type, keyranges)) async_results.append(async_result) # Fetch all round trip times and verify max rt_times = [] for async_result in async_results: rt_times.append(async_result.get()) # The true upper limit is 2 seconds (1s * 2 retries as in # utils.py). To account for network latencies and other variances, # we keep an upper bound of 3 here. self.assertTrue( max(rt_times) < 3, 'at least one request did not fail-fast; round trip times: %s' % rt_times) # Restart tablet and put it back to SERVING state utils.wait_procs([self.replica_tablet.start_mysql(),]) utils.wait_procs([self.replica_tablet2.start_mysql(),]) # force health check so tablet can become serving utils.run_vtctl( ['RunHealthCheck', self.replica_tablet.tablet_alias, 'replica'], auto_log=True) utils.run_vtctl( ['RunHealthCheck', self.replica_tablet2.tablet_alias, 'replica'], auto_log=True) self.replica_tablet.wait_for_vttablet_state('SERVING') self.replica_tablet2.wait_for_vttablet_state('SERVING') def test_lameduck_ongoing_query_single(self): vtgate_conn = get_connection() utils.wait_procs([self.replica_tablet2.shutdown_mysql(),]) utils.run_vtctl( ['RunHealthCheck', self.replica_tablet2.tablet_alias, 'replica'], auto_log=True) self.replica_tablet.kill_vttablet() self.tablet_start(self.replica_tablet, 'replica', '5s') self.replica_tablet.wait_for_vttablet_state('SERVING') # make sure query can go through tablet1 tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_before = int(tablet1_vars['Queries']['TotalCount']) vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) tablet1_vars = utils.get_vars(self.replica_tablet.port) t1_query_count_after = int(tablet1_vars['Queries']['TotalCount']) self.assertTrue((t1_query_count_after-t1_query_count_before) == 1) # start a long running query num_requests = 10 pool = ThreadPool(processes=num_requests) async_results = [] for _ in range(5): async_result = pool.apply_async( send_long_query, (KEYSPACE_NAME, 'replica', [self.keyrange], 2)) async_results.append(async_result) # soft kill vttablet # **should wait till previous queries are sent out** time.sleep(1) self.replica_tablet.kill_vttablet(wait=False) # send query while vttablet is in lameduck, should fail as no vttablet time.sleep(0.1) try: vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) self.fail('DatabaseError should have been raised') except Exception, e: self.assertIsInstance(e, dbexceptions.DatabaseError) self.assertNotIsInstance(e, dbexceptions.IntegrityError) self.assertNotIsInstance(e, dbexceptions.OperationalError) self.assertNotIsInstance(e, dbexceptions.TimeoutError) # Fetch all ongoing query results query_results = [] for async_result in async_results: query_results.append(async_result.get()) # all should succeed for query_result in query_results: self.assertTrue(query_result) # sleep over lameduck period time.sleep(5) # start tablet1 self.tablet_start(self.replica_tablet, 'replica') self.replica_tablet.wait_for_vttablet_state('SERVING') # send another query, should succeed on tablet1 vtgate_conn._execute( 'select 1 from vt_insert_test', {}, KEYSPACE_NAME, 'replica', keyranges=[self.keyrange]) # start tablet2 utils.wait_procs([self.replica_tablet2.start_mysql(),]) utils.run_vtctl( ['RunHealthCheck', self.replica_tablet2.tablet_alias, 'replica'], auto_log=True) self.replica_tablet2.wait_for_vttablet_state('SERVING') # Return round trip time for a VtGate query, ignore any errors def get_rtt(keyspace, query, tablet_type, keyranges): vtgate_conn = get_connection() cursor = vtgate_conn.cursor(keyspace, tablet_type, keyranges=keyranges) start = time.time() try: cursor.execute(query, {}) except Exception: pass duration = time.time() - start return duration # Send out a long query, return if it succeeds. def send_long_query(keyspace, tablet_type, keyranges, delay): try: vtgate_conn = get_connection() cursor = vtgate_conn.cursor(keyspace, tablet_type, keyranges=keyranges) query = 'select sleep(%s) from dual' % str(delay) try: cursor.execute(query, {}) except Exception: return False return True except Exception: return False class VTGateTestLogger(vtdb_logger.VtdbLogger): def __init__(self): self._integrity_error_count = 0 def integrity_error(self, e): self._integrity_error_count += 1 def get_integrity_error_count(self): return self._integrity_error_count DML_KEYWORDS = ['insert', 'update', 'delete'] class TestExceptionLogging(BaseTestCase): def setUp(self): super(TestExceptionLogging, self).setUp() self.shard_index = 1 self.keyrange = get_keyrange(SHARD_NAMES[self.shard_index]) self.master_tablet = shard_1_master self.replica_tablet = shard_1_replica1 vtdb_logger.register_vtdb_logger(VTGateTestLogger()) self.logger = vtdb_logger.get_logger() def test_integrity_error_logging(self): vtgate_conn = get_connection() vtgate_conn.begin() vtgate_conn._execute( 'delete from vt_a', {}, KEYSPACE_NAME, 'master', keyranges=[self.keyrange]) vtgate_conn.commit() keyspace_id = SHARD_KID_MAP[SHARD_NAMES[self.shard_index]][0] old_error_count = self.logger.get_integrity_error_count() try: vtgate_conn.begin() vtgate_conn._execute( 'insert into vt_a (eid, id, keyspace_id) ' 'values (%(eid)s, %(id)s, %(keyspace_id)s)', {'eid': 1, 'id': 1, 'keyspace_id': keyspace_id}, KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)]) vtgate_conn._execute( 'insert into vt_a (eid, id, keyspace_id) ' 'values (%(eid)s, %(id)s, %(keyspace_id)s)', {'eid': 1, 'id': 1, 'keyspace_id': keyspace_id}, KEYSPACE_NAME, 'master', keyspace_ids=[pack_kid(keyspace_id)]) vtgate_conn.commit() except dbexceptions.IntegrityError as e: parts = str(e).split(',') exc_msg = parts[0] for kw in DML_KEYWORDS: if kw in exc_msg: self.fail("IntegrityError shouldn't contain the query %s" % exc_msg) except Exception as e: self.fail('Expected IntegrityError to be raised, raised %s' % str(e)) finally: vtgate_conn.rollback() # The underlying execute is expected to catch and log the integrity error. self.assertEqual(self.logger.get_integrity_error_count(), old_error_count+1) if __name__ == '__main__': utils.main()
#from seq2seq import ngramlm, neurallm import cPickle, pickle import numpy as np import os from collections import defaultdict import dynet as dy from dynet import * import numpy import random from nltk.tokenize import RegexpTokenizer class Attention_Batch: def __init__(self, src_vocab_size, tgt_vocab_size, model, state_dim, embed_size, src_lookup, tgt_lookup, minibatch_size, builder=dy.LSTMBuilder): self.model = model #self.trainer = dy.SimpleSGDTrainer(self.model) self.layers = 1 self.embed_size = 128 self.hidden_size = 128 self.state_size = 128 self.src_vocab_size = src_vocab_size self.tgt_vocab_size = tgt_vocab_size self.attention_size = 32 self.minibatch_size = minibatch_size self.enc_fwd_lstm = dy.LSTMBuilder(self.layers, self.embed_size, self.state_size, model) self.enc_bwd_lstm = dy.LSTMBuilder(self.layers, self.embed_size,self.state_size, model) self.dec_lstm = dy.LSTMBuilder(self.layers, self.state_size*2 + self.embed_size, self.state_size, model) self.input_lookup = src_lookup self.output_lookup = tgt_lookup self.attention_w1 = model.add_parameters( (self.attention_size, self.state_size*2)) self.attention_w2 = model.add_parameters( (self.attention_size , self.state_size * self.layers* 2)) self.attention_v = model.add_parameters( (1, self.attention_size)) self.decoder_w = model.add_parameters( (self.src_vocab_size , self.state_size )) self.decoder_b = model.add_parameters( ( self.src_vocab_size )) #self.output_lookup = lookup self.duration_weight = model.add_parameters(( 1, self.state_size )) self.duration_bias = model.add_parameters( ( 1 )) def run_lstm(self, init_state, input_vecs): s = init_state out_vectors = [] for vector in input_vecs: x_t = lookup(self.input_lookup, int(vector)) s = s.add_input(x_t) out_vector = s.output() out_vectors.append(out_vector) return out_vectors ## I am just gonna loop over them def run_lstm_batch(self, init_state, input_vecs_batch): out_vectors_array = [] for input_vecs in input_vecs_batch: s = init_state out_vectors = [] for vector in input_vecs: x_t = lookup(self.input_lookup, int(vector)) s = s.add_input(x_t) out_vector = s.output() out_vectors.append(out_vector) out_vectors_array.append(out_vectors) def embed_sentence(self, sentence): sentence = [EOS] + list(sentence) + [EOS] sentence = [char2int[c] for c in sentence] global input_lookup return [input_lookup[char] for char in sentence] def attend_batch(self, input_mat_array, state_array, w1dt_array): context_array = [] for input_mat, state, w1dt in zip(input_mat_array, state_array, w1dt_array): context_array.append(attend(input_mat, state, w1dt)) return context_array def attend(self, input_mat, state, w1dt): #global self.attention_w2 #global self.attention_v w2 = dy.parameter(self.attention_w2) v = dy.parameter(self.attention_v) w2dt = w2*dy.concatenate(list(state.s())) unnormalized = dy.transpose(v * dy.tanh(dy.colwise_add(w1dt, w2dt))) att_weights = dy.softmax(unnormalized) context = input_mat * att_weights return context def test_duration(self, state, idx): dw = dy.parameter(self.duration_weight) db = dy.parameter(self.duration_bias) dur = dw * state.output() + db return dy.squared_norm(dur - idx) def decode_batch(self, vectors_array, output_array, end_token): loss_array = [] for vector, output in zip(vectors_array, output_array): l,t = self.decode(vector, output, end_token) loss_array.append(l) return dy.esum(loss_array) , t def decode(self, vectors, output, end_token): #output = [EOS] + list(output) + [EOS] #output = [char2int[c] for c in output] w = dy.parameter(self.decoder_w) b = dy.parameter(self.decoder_b) w1 = dy.parameter(self.attention_w1) input_mat = dy.concatenate_cols(vectors) w1dt = None last_output_embeddings = self.output_lookup[2] s = self.dec_lstm.initial_state().add_input(dy.concatenate([dy.vecInput(self.state_size *2), last_output_embeddings])) loss = [] dur_loss = [] c = 1 for word in output: c += 1 # w1dt can be computed and cached once for the entire decoding phase w1dt = w1dt or w1 * input_mat vector = dy.concatenate([self.attend(input_mat, s, w1dt), last_output_embeddings]) s = s.add_input(vector) k = s #print "Going" dloss = self.test_duration(k, c) #print "Back" dur_loss.append(dloss) out_vector = w * s.output() + b probs = dy.softmax(out_vector) last_output_embeddings = self.output_lookup[word] loss.append(-dy.log(dy.pick(probs, word))) loss = dy.esum(loss) return loss, c def generate(self, sentence): #embedded = embed_sentence(in_seq) encoded = self.encode_sentence(sentence) w = dy.parameter(self.decoder_w) b = dy.parameter(self.decoder_b) w1 = dy.parameter(self.attention_w1) input_mat = dy.concatenate_cols(encoded) w1dt = None last_output_embeddings = self.output_lookup[2] s = self.dec_lstm.initial_state().add_input(dy.concatenate([dy.vecInput(self.state_size * 2), last_output_embeddings])) out = '' res = [] count_EOS = 0 for i in range(len(sentence)): if count_EOS == 2: break # w1dt can be computed and cached once for the entire decoding phase w1dt = w1dt or w1 * input_mat vector = dy.concatenate([self.attend(input_mat, s, w1dt), last_output_embeddings]) s = s.add_input(vector) #k = s #dloss = self.test_duration(k, i, b) out_vector = w * s.output() + b probs = dy.softmax(out_vector).vec_value() next_word = probs.index(max(probs)) last_output_embeddings = self.output_lookup[next_word] if next_word == 2: count_EOS += 1 continue res.append(next_word) #out += int2char[next_word] return res def get_loss(self, sentence): dy.renew_cg() #embedded = self.embed_sentence(sentence) encoded = self.encode_sentence(sentence) end_token = '</s>' return self.decode(encoded, sentence, end_token) def get_loss_batch(self, src_sentence_array, tgt_sentence_array): dy.renew_cg() #embedded = self.embed_sentence(sentence) encoded_array = self.encode_sentence_batch(src_sentence_array) end_token = '</s>' return self.decode_batch(encoded_array, tgt_sentence_array, end_token) def encode_sentence(self, sentence): sentence_rev = list(reversed(sentence)) fwd_vectors = self.run_lstm(self.enc_fwd_lstm.initial_state(), sentence) bwd_vectors = self.run_lstm(self.enc_bwd_lstm.initial_state(), sentence_rev) bwd_vectors = list(reversed(bwd_vectors)) vectors = [dy.concatenate(list(p)) for p in zip(fwd_vectors, bwd_vectors)] return vectors def encode_sentence_batch(self, sentence_array): vectors_array = [] for sentence in sentence_array: vectors_array.append(self.encode_sentence(sentence)) return vectors_array def encode_sentence_batch_advanced(self, sentence_array): sentence_rev_array = [] for sent in sentence_array: sentence_rev_arrayy.append(list(reversed(sent))) fwd_vectors = self.run_lstm_batch(self.enc_fwd_lstm.initial_state(), sentence_arry) bwd_vectors = self.run_lstm_batch(self.enc_bwd_lstm.initial_state(), sentence_rev_array) bwd_vectors_array = [] for v in bwd_vectors: bwd_vectors_array.append(list(reversed(v))) fwd_vectors_array = fwd_vectors vectors_batch = [] for fwd_vector, bwd_vector in zip(fwd_vectors_array, bwd_vectors_array): vector = [dy.concatenate(list(p)) for p in zip(fwd_vector, bwd_vector)] vectors_batch.append(vector) return vectors_batch class Attention: def __init__(self, vocab_size, model, lookup): self.model = model #self.trainer = dy.SimpleSGDTrainer(self.model) self.layers = 1 self.embed_size = 128 self.hidden_size = 128 self.state_size = 128 self.src_vocab_size = vocab_size self.tgt_vocab_size = vocab_size self.attention_size = 32 self.enc_fwd_lstm = dy.LSTMBuilder(self.layers, self.embed_size, self.state_size, model) self.enc_bwd_lstm = dy.LSTMBuilder(self.layers, self.embed_size,self.state_size, model) self.dec_lstm = dy.LSTMBuilder(self.layers, self.state_size*2 + self.embed_size, self.state_size, model) self.input_lookup = lookup self.attention_w1 = model.add_parameters( (self.attention_size, self.state_size*2)) self.attention_w2 = model.add_parameters( (self.attention_size , self.state_size * self.layers* 2)) self.attention_v = model.add_parameters( (1, self.attention_size)) self.decoder_w = model.add_parameters( (self.src_vocab_size , self.state_size )) self.decoder_b = model.add_parameters( ( self.src_vocab_size )) self.output_lookup = lookup self.duration_weight = model.add_parameters(( 1, self.state_size )) self.duration_bias = model.add_parameters( ( 1 )) def run_lstm(self, init_state, input_vecs): s = init_state out_vectors = [] for vector in input_vecs: x_t = lookup(self.input_lookup, int(vector)) s = s.add_input(x_t) out_vector = s.output() out_vectors.append(out_vector) return out_vectors def embed_sentence(self, sentence): sentence = [EOS] + list(sentence) + [EOS] sentence = [char2int[c] for c in sentence] global input_lookup return [input_lookup[char] for char in sentence] def attend(self, input_mat, state, w1dt): #global self.attention_w2 #global self.attention_v w2 = dy.parameter(self.attention_w2) v = dy.parameter(self.attention_v) w2dt = w2*dy.concatenate(list(state.s())) unnormalized = dy.transpose(v * dy.tanh(dy.colwise_add(w1dt, w2dt))) att_weights = dy.softmax(unnormalized) context = input_mat * att_weights return context def test_duration(self, state, idx): dw = dy.parameter(self.duration_weight) db = dy.parameter(self.duration_bias) dur = dw * state.output() + db return dy.squared_norm(dur - idx) def decode(self, vectors, output, end_token): #output = [EOS] + list(output) + [EOS] #output = [char2int[c] for c in output] w = dy.parameter(self.decoder_w) b = dy.parameter(self.decoder_b) w1 = dy.parameter(self.attention_w1) input_mat = dy.concatenate_cols(vectors) w1dt = None last_output_embeddings = self.output_lookup[2] s = self.dec_lstm.initial_state().add_input(dy.concatenate([dy.vecInput(self.state_size *2), last_output_embeddings])) loss = [] dur_loss = [] c = 1 for word in output: c += 1 # w1dt can be computed and cached once for the entire decoding phase w1dt = w1dt or w1 * input_mat vector = dy.concatenate([self.attend(input_mat, s, w1dt), last_output_embeddings]) s = s.add_input(vector) k = s #print "Going" dloss = self.test_duration(k, c) #print "Back" dur_loss.append(dloss) out_vector = w * s.output() + b probs = dy.softmax(out_vector) last_output_embeddings = self.output_lookup[word] loss.append(-dy.log(dy.pick(probs, word))) loss = dy.esum(loss) return loss, dy.esum(dur_loss) def generate(self, sentence): #embedded = embed_sentence(in_seq) encoded = self.encode_sentence(sentence) w = dy.parameter(self.decoder_w) b = dy.parameter(self.decoder_b) w1 = dy.parameter(self.attention_w1) input_mat = dy.concatenate_cols(encoded) w1dt = None last_output_embeddings = self.output_lookup[2] s = self.dec_lstm.initial_state().add_input(dy.concatenate([dy.vecInput(self.state_size * 2), last_output_embeddings])) out = '' res = [] count_EOS = 0 for i in range(len(sentence)): if count_EOS == 2: break # w1dt can be computed and cached once for the entire decoding phase w1dt = w1dt or w1 * input_mat vector = dy.concatenate([self.attend(input_mat, s, w1dt), last_output_embeddings]) s = s.add_input(vector) #k = s #dloss = self.test_duration(k, i, b) out_vector = w * s.output() + b probs = dy.softmax(out_vector).vec_value() next_word = probs.index(max(probs)) last_output_embeddings = self.output_lookup[next_word] if next_word == 2: count_EOS += 1 continue res.append(next_word) #out += int2char[next_word] return res def get_loss(self, sentence): dy.renew_cg() #embedded = self.embed_sentence(sentence) encoded = self.encode_sentence(sentence) end_token = '</s>' return self.decode(encoded, sentence, end_token) def encode_sentence(self, sentence): sentence_rev = list(reversed(sentence)) fwd_vectors = self.run_lstm(self.enc_fwd_lstm.initial_state(), sentence) bwd_vectors = self.run_lstm(self.enc_bwd_lstm.initial_state(), sentence_rev) bwd_vectors = list(reversed(bwd_vectors)) vectors = [dy.concatenate(list(p)) for p in zip(fwd_vectors, bwd_vectors)] return vectors class EncoderDecoder: def __init__(self, vocab_size): self.model = Model() self.trainer = SimpleSGDTrainer(self.model) self.layers = 2 self.embed_size = 128 self.hidden_size = 128 self.src_vocab_size = vocab_size self.tgt_vocab_size = vocab_size self.enc_builder = LSTMBuilder(self.layers, self.embed_size, self.hidden_size, self.model) self.dec_builder = LSTMBuilder(self.layers, self.embed_size, self.hidden_size, self.model) self.src_lookup = self.model.add_lookup_parameters((self.src_vocab_size, self.embed_size)) self.tgt_lookup = self.model.add_lookup_parameters((self.tgt_vocab_size, self.embed_size)) self.W_y = self.model.add_parameters((self.tgt_vocab_size, self.hidden_size)) self.b_y = self.model.add_parameters((self.tgt_vocab_size)) def encode(self, instance, wids): dy.renew_cg() W_y = dy.parameter(self.W_y) b_y = dy.parameter(self.b_y) # print "chceking wids here",wids["about"] src_sent = instance.split() #print "printing src sentnce length", len(src_sent) losses = [] total_words = 0 # Encoder enc_state = self.enc_builder.initial_state() #for current_word in src_sent: for (cw, nw) in zip(src_sent, src_sent[1:]): state = enc_state.add_input(self.src_lookup[wids[cw]]) encoded = (W_y * state.output()) + b_y err = pickneglogsoftmax(encoded, int(wids[nw])) losses.append(err) return dy.esum(losses) dec_state = self.dec_builder.initial_state() dec_state = self.dec_builder.initial_state(encoded) errs = [] # Calculate losses for decoding for (cw, nw) in zip(src_sent, src_sent[1:]): dec_state = dec_state.add_input(self.tgt_lookup[wids[current_word]]) decoded = dec_state.output() ystar = (W_y * dec_state.output()) + b_y #print "current word is >>>>>>>", cw #print "next word shud be", nw loss = dy.pickneglogsoftmax(ystar, wids[nw]) losses.append(loss) ''' total_words += 1 dist_array = [] for i in range(0,len(ystar.value())): dist = numpy.linalg.norm(self.tgt_lookup[wids[nw]].value() - ystar.value()[i]) dist_array.append(dist) #print " predicted next_word ========>", src_sent[dist_array.index(min(dist_array))] ''' return dy.esum(losses) #, total_words, src_sent[dist_array.index(min(dist_array))] class EncoderDecoder_debug: def __init__(self, vocab_size): self.model = dy.Model() self.trainer = dy.SimpleSGDTrainer(self.model) self.layers = 2 self.embed_size = 1 self.hidden_size = 1 self.src_vocab_size = vocab_size self.tgt_vocab_size = vocab_size self.enc_builder = dy.LSTMBuilder(self.layers, self.embed_size, self.hidden_size, self.model) self.dec_builder = dy.LSTMBuilder(self.layers, self.embed_size, self.hidden_size, self.model) self.src_lookup = self.model.add_lookup_parameters((self.src_vocab_size, self.embed_size)) self.tgt_lookup = self.model.add_lookup_parameters((self.tgt_vocab_size, self.embed_size)) self.W_y = self.model.add_parameters((self.tgt_vocab_size, self.hidden_size)) self.b_y = self.model.add_parameters((self.tgt_vocab_size)) def encode(self, instance, wids): dy.renew_cg() W_y = dy.parameter(self.W_y) b_y = dy.parameter(self.b_y) # print "chceking wids here",wids["about"] src_sent = instance.split() #print "printing src sentnce length", len(src_sent) losses = [] total_words = 0 # Encoder enc_state = self.enc_builder.initial_state() for current_word in src_sent: state = enc_state.add_input(self.src_lookup[wids[current_word]]) encoded = (W_y * state.output()) + b_y dec_state = self.dec_builder.initial_state() dec_state = self.dec_builder.initial_state(encoded) errs = [] # Calculate losses for decoding for (cw, nw) in zip(src_sent, src_sent[1:]): dec_state = dec_state.add_input(self.tgt_lookup[wids[current_word]]) decoded = dec_state.output() ystar = (W_y * dec_state.output()) + b_y print "current word is >>>>>>>", cw print "next word shud be", nw #loss = dy.pickneglogsoftmax(ystar, wids[nw]) for wid in wids: loss = dy.pickneglogsoftmax(ystar, wids[wid]) print "Loss for ", wid, " w.r.t ", nw, " is ", loss.value() from collections import defaultdict from itertools import count import sys class RNNLanguageModel_batch: def __init__(self, model, LAYERS, INPUT_DIM, HIDDEN_DIM, VOCAB_SIZE, lookup, builder=SimpleRNNBuilder): self.builder = builder(LAYERS, INPUT_DIM, HIDDEN_DIM, model) self.lookup = lookup self.R = model.add_parameters((VOCAB_SIZE, HIDDEN_DIM)) self.bias = model.add_parameters((VOCAB_SIZE)) def save_to_disk(self, filename): model.save(filename, [self.builder, self.lookup, self.R, self.bias]) def load_from_disk(self, filename): (self.builder, self.lookup, self.R, self.bias) = model.load(filename) def build_lm_graph(self, sent): renew_cg() init_state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) errs = [] # will hold expressions es=[] state = init_state for (cw,nw) in zip(sent,sent[1:]): # assume word is already a word-id x_t = lookup(self.lookup, int(cw)) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) err = pickneglogsoftmax(r_t, int(nw)) errs.append(err) nerr = esum(errs) return nerr def get_loss_batch(self, sent_array): renew_cg() init_state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) wids = [] masks = [] # get the wids and masks for each step # "I am good", "This is good", "Good Morning" -> [['I', 'Today', 'Good'], ['am', 'is', 'Morning'], ['good', 'good', '<S>'], ['I', 'Today', 'Good'], ['am', 'is', 'Morning'], ['good', 'good', '<S>']] tot_words = 0 wids = [] masks = [] for i in range(len(sent_array[0])): wids.append([ (sent[i] if len(sent)>i else 3) for sent in sent_array]) mask = [(1 if len(sent)>i else 0) for sent in sent_array] masks.append(mask) tot_words += sum(mask) # start the rnn by inputting "<s>" init_ids = [2] * len(sent_array) #print dy.lookup_batch(self.lookup,init_ids) #print "Looked up" s = init_state.add_input(dy.lookup_batch(self.lookup,init_ids)) # feed word vectors into the RNN and predict the next word losses = [] for wid, mask in zip(wids, masks): # calculate the softmax and loss #print "WID ", wid score = dy.affine_transform([bias, R, s.output()]) loss = dy.pickneglogsoftmax_batch(score, wid) # mask the loss if at least one sentence is shorter if mask[-1] != 1: mask_expr = dy.inputVector(mask) mask_expr = dy.reshape(mask_expr, (1,), len(sent_array)) loss = loss * mask_expr losses.append(loss) # update the state of the RNN wemb = dy.lookup_batch(self.lookup, wid) s = s.add_input(wemb) return dy.sum_batches(dy.esum(losses)), tot_words errs = [] # will hold expressions es=[] for (wid, mask) in zip(wids, masks): # assume word is already a word-id x_t = lookup(self.lookup, int(cw)) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) err = pickneglogsoftmax(r_t, int(nw)) errs.append(err) nerr = esum(errs) return nerr def predict_next_word(self, sentence): renew_cg() init_state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) state = init_state for cw in sentence: # assume word is already a word-id x_t = lookup(self.lookup, int(cw)) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) prob = softmax(r_t) return prob def sample(self, first=1, nchars=0, stop=-1): res = [first] renew_cg() state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) cw = first while True: x_t = lookup(self.lookup, cw) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) ydist = softmax(r_t) dist = ydist.vec_value() rnd = random.random() for i,p in enumerate(dist): rnd -= p if rnd <= 0: break res.append(i) cw = i if cw == stop: break if nchars and len(res) > nchars: break return res from collections import defaultdict from itertools import count import sys class RNNLanguageModel: def __init__(self, model, LAYERS, INPUT_DIM, HIDDEN_DIM, VOCAB_SIZE, builder=SimpleRNNBuilder): self.builder = builder(LAYERS, INPUT_DIM, HIDDEN_DIM, model) self.lookup = model.add_lookup_parameters((VOCAB_SIZE, INPUT_DIM)) self.R = model.add_parameters((VOCAB_SIZE, HIDDEN_DIM)) self.bias = model.add_parameters((VOCAB_SIZE)) def save_to_disk(self, filename): model.save(filename, [self.builder, self.lookup, self.R, self.bias]) def load_from_disk(self, filename): (self.builder, self.lookup, self.R, self.bias) = model.load(filename) def build_lm_graph(self, sent): renew_cg() init_state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) errs = [] # will hold expressions es=[] state = init_state for (cw,nw) in zip(sent,sent[1:]): # assume word is already a word-id x_t = lookup(self.lookup, int(cw)) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) err = pickneglogsoftmax(r_t, int(nw)) errs.append(err) nerr = esum(errs) return nerr def predict_next_word(self, sentence): renew_cg() init_state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) state = init_state for cw in sentence: # assume word is already a word-id x_t = lookup(self.lookup, int(cw)) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) prob = softmax(r_t) return prob def sample(self, first=1, nchars=0, stop=-1): res = [first] renew_cg() state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) cw = first while True: x_t = lookup(self.lookup, cw) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) ydist = softmax(r_t) dist = ydist.vec_value() rnd = random.random() for i,p in enumerate(dist): rnd -= p if rnd <= 0: break res.append(i) cw = i if cw == stop: break if nchars and len(res) > nchars: break return res class RNNEncoderDecoder: def __init__(self, model, LAYERS, INPUT_DIM, HIDDEN_DIM, VOCAB_SIZE, lookup, builder=SimpleRNNBuilder): self.builder = builder(LAYERS, INPUT_DIM, HIDDEN_DIM, model) self.lookup = lookup self.R = model.add_parameters((VOCAB_SIZE, HIDDEN_DIM)) self.bias = model.add_parameters((VOCAB_SIZE)) def save_to_disk(self, filename): model.save(filename, [self.builder, self.lookup, self.R, self.bias]) def load_from_disk(self, filename): (self.builder, self.lookup, self.R, self.bias) = model.load(filename) def build_lm_graph(self, sent): renew_cg() init_state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) errs = [] # will hold expressions es=[] state = init_state for (cw,nw) in zip(sent,sent[1:]): # assume word is already a word-id x_t = lookup(self.lookup, int(cw)) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) err = pickneglogsoftmax(r_t, int(nw)) errs.append(err) nerr = esum(errs) #return nerr encoded = r_t dec_state = self.builder.initial_state() dec_state = self.builder.initial_state(encoded) decoder_errs = [] # Calculate losses for decoding for (cw, nw) in zip(sent, sent[1:]): x_t = lookup(self.lookup, int(cw)) dec_state = dec_state.add_input(x_t) y_t = dec_state.output() ystar = (R * y_t) + bias err = pickneglogsoftmax(r_t, int(nw)) decoder_errs.append(err) derr = esum(decoder_errs) return derr def predict_next_word(self, sentence): renew_cg() init_state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) state = init_state for cw in sentence: # assume word is already a word-id x_t = lookup(self.lookup, int(cw)) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) prob = softmax(r_t) return prob def resynth(self, sent): renew_cg() init_state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) errs = [] # will hold expressions es=[] state = init_state for cw in sent: # assume word is already a word-id x_t = lookup(self.lookup, int(cw)) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) err = pickneglogsoftmax(r_t, int(nw)) errs.append(err) nerr = esum(errs) #return nerr encoded = r_t dec_state = self.builder.initial_state() dec_state = self.builder.initial_state(encoded) decoder_errs = [] # Calculate losses for decoding for (cw, nw) in zip(sent, sent[1:]): x_t = lookup(self.lookup, int(cw)) dec_state = dec_state.add_input(x_t) y_t = dec_state.output() ystar = (R * y_t) + bias err = pickneglogsoftmax(r_t, int(nw)) decoder_errs.append(err) derr = esum(decoder_errs) return derr def sample(self, first=1, nchars=0, stop=-1): res = [first] renew_cg() state = self.builder.initial_state() R = parameter(self.R) bias = parameter(self.bias) cw = first while True: x_t = lookup(self.lookup, cw) state = state.add_input(x_t) y_t = state.output() r_t = bias + (R * y_t) ydist = softmax(r_t) dist = ydist.vec_value() rnd = random.random() for i,p in enumerate(dist): rnd -= p if rnd <= 0: break res.append(i) cw = i if cw == stop: break if nchars and len(res) > nchars: break return res class nnlm: def __init__(self): self.feats_and_values ={} self.wids = defaultdict(lambda: len(self.wids)) self.unigrams = {} self.model = dy.Model() self.EMB_SIZE = 1 self.HID_SIZE = 1 self.N = 3 M = self.model.add_lookup_parameters((len(self.wids), self.EMB_SIZE)) W_mh = self.model.add_parameters((self.HID_SIZE, self.EMB_SIZE * (self.N-1))) b_hh = self.model.add_parameters((self.HID_SIZE)) W_hs = self.model.add_parameters((len(self.wids), self.HID_SIZE)) b_s = self.model.add_parameters((len(self.wids))) def read_corpus(self, file): print file tokenizer = RegexpTokenizer(r'\w+') f = open(file) self.data_array_train = [] for line in f: line = '<s> ' + line.split('\n')[0] + ' </s>' words = line.split() for word in words: if word == '<s>' or '</s>': pass else: word = tokenizer.tokenize(word)[0] if word in self.unigrams: self.unigrams[word] = self.unigrams[word] + 1 else: self.unigrams[word] = 1 f.close() self.assign_ids() self.create_data(file) self.save_wids() return self.trigramfeaturedict, self.wids def save_wids(self): f = open('wids.txt','w') for w in self.wids: f.write(w + ' ' + str(self.wids[w]) + '\n') f.close() ''' from nltk.tokenize import RegexpTokenizer def read_corpus(self, file): print file f = open(file) tokenizer = RegexpTokenizer(r'\w+') self.data_array_train = [] for line in f: line = line.split('\n')[0] line = ['<s>'] + tokenizer.tokenize(line) + ['</s>'] words = [w.lower() for w in line] for word in words: if word in self.unigrams: self.unigrams[word] = self.unigrams[word] + 1 else: self.unigrams[word] = 1 f.close() self.assign_ids() self.create_data(file) self.save_wids() return self.trigramfeaturedict, self.wids def save_wids(self): f = open('wids.txt','w') for w in self.wids: f.write(w + ' ' + str(self.wids[w]) + '\n') f.close() ''' def assign_ids(self): self.wids["<unk>"] = 0 self.wids["<s>"] = 1 self.wids["</s>"] = 2 for w in self.unigrams: # if self.unigrams[w] > 3: self.wids[w] # else: # self.wids[w] = 0 #print "prinitn wids frm nnlm--------------", self.wids return def create_data(self, file): self.accumulate_trigramfeatures(file) def build_nnlm_graph(self, dictionary): dy.renew_cg() M = self.model.add_lookup_parameters((len(self.wids), self.EMB_SIZE)) W_mh = self.model.add_parameters((self.HID_SIZE, self.EMB_SIZE * (self.N-1))) b_hh = self.model.add_parameters((self.HID_SIZE)) W_hs = self.model.add_parameters((len(self.wids), self.HID_SIZE)) b_s = self.model.add_parameters((len(self.wids))) w_xh = dy.parameter(W_mh) b_h = dy.parameter(b_hh) W_hy = dy.parameter(W_hs) b_y = dy.parameter(b_s) errs = [] for context, next_word in dictionary: #print context, next_word k = M[self.wids[context.split()[0]]] kk = M[self.wids[context.split()[1]]] #print k , kk #print k.value() x = k.value() + kk.value() #print x h_val = dy.tanh(w_xh * dy.inputVector(x) + b_h) y_val = W_hy * h_val + b_y err = dy.pickneglogsoftmax(y_val,self.wids[next_word]) errs.append(err) gen_err = dy.esum(errs) return gen_err def accumulate_trigramfeatures(self, file): self.trigramfeaturedict = {} g = open(file) for line in g: line = '<s> ' + line.split('\n')[0] + ' </s>' line = line.split() contexts = zip(line[0:len(line)-2], line[1:len(line)-1], line[2:]) for prev_2, prev_1, current in contexts: #print prev_2, prev_1, current context = prev_2 + ' ' + prev_1 self.trigramfeaturedict[context] = current g.close() return class loglinearlm: def __init__(self): self.feats_and_values ={} self.wids = defaultdict(lambda: len(self.wids)) def read_corpus(self, file): print file f = open(file) self.data_array_train = [] for line in f: line = '<s> ' + line.split('\n')[0] + ' </s>' self.data_array_train.append(line) words = line.split() for word in words: wid = self.wids[word] f.close() #self.get_feature_vectors(file) def accumulate_trigramfeatures(self, file): self.trigramfeaturedict = {} g = open(file) for line in g: line = '<s> ' + line.split('\n')[0] + ' </s>' line = line.split() contexts = zip(line[0:len(line)-2], line[1:len(line)-1], line[2:]) for prev_2, prev_1, current in contexts: #print prev_2, prev_1, current context = prev_2 + ' ' + prev_1 self.trigramfeaturedict[context] = current g.close() def print_words(self): for wid in self.wids: print wid, self.wids[wid] def get_vocab_size(self): return len(self.wids) def calculate_feature_F1(self, file): # This is a trigram context feature local_features = [] local_words = [] feature_vector_prime = np.zeros(self.get_vocab_size()) g = open(file) for line in g: line = '<s> ' + line.split('\n')[0] + ' </s>' #print line line = line.split() contexts = zip(line[0:len(line)-2], line[1:len(line)-1], line[2:]) for prev_2, prev_1, current in contexts: feature_vector = feature_vector_prime #print prev_2, prev_1, current, self.get_vocab_size() #print prev_2, self.wids[prev_2], feature_vector prev_2_id = self.wids[prev_2] feature_vector[prev_2_id] = 1.0 prev_1_id = self.wids[prev_1] feature_vector[prev_1_id] = 1.0 local_features.append(feature_vector) local_words.append(current) #print feature_vector #print features[0] g.close() return local_features, local_words def sparse_features_to_dense_features(self, features): ret = np.zeros(len(features)) #print ret for f in features: #print f ret[f] += 1 return ret def get_feature_vectors(self, file): features = [] #features.append(self.sparse_features_to_dense_features(self.calculate_feature_F1(file))) feats,words = self.calculate_feature_F1(file) features.append(feats) #features.append(calculate_feature_F2()) #features.append(calculate_feature_F3()) #features.append(calculate_feature_F4()) #return zip(features, words) return zip(feats, words) class ngramlm: def __init__(self, order): self.order = order self.unigrams = {} self.bigrams = {} self.alpha_unk = 0.02 self.alpha_1 = 0.245 self.alpha_2 = 0.735 self.wids = defaultdict(lambda: len(self.wids)) def get_vocab_size(self): return len(self.wids) def store_counts(self, file): self.get_ngrams(file, self.order) if self.print_flag == 1: print "Unique Unigrams like :", list(self.unigrams)[0], " are ", len(self.unigrams) print "Unique Bigrams like :", list(self.bigrams)[0], " are ", len(self.bigrams) def get_features_v1(self): # This is a basic version which returns wid of every word as feature and its likelihood as target self.training_data = [] self.num_features = 1 c = 1 feature_vector = np.zeros(int(self.get_vocab_size())) # One hot k print feature_vector for line in self.data_array_train: line = line.split() for word in line: feature_vector = np.zeros(int(self.get_vocab_size())) # One hot k c = c + 1 wid = self.wids[word] feature_vector[wid] = 1 if c % 1000 == 1: print word, wid, feature_vector[wid] self.training_data.append(feature_vector) return def feature_function(self, ctxt): features = [] features.append(self.calculate_wid(ctxt)) return features #def get_likelihood(self, word): def calculate_wid(self, ctxt): return wids[ctxt] def read_corpus(self, file): # for each line in the file, split the words and turn them into IDs like this: print file f = open(file) self.data_array_train = [] for line in f: line = line.split('\n')[0] self.data_array_train.append(line) words = line.split() for word in words: wid = self.wids[word] def print_words(self): for wid in self.wids: print wid, self.wids[wid] def print_dicts(self): print "Printing unigrams" for k in self.unigrams: print k,self.unigrams[k] print "Printing bigrams" for k in self.bigrams: print k, self.bigrams[k] def save_dicts(self): with open('unigrams.pkl', 'wb') as f: pickle.dump(self.unigrams, f, pickle.HIGHEST_PROTOCOL) with open('bigrams.pkl', 'wb') as f: pickle.dump(self.bigrams, f, pickle.HIGHEST_PROTOCOL) def load_dicts(self): with open('unigrams.pkl', 'rb') as f: self.unigrams = pickle.load(f) with open('bigrams.pkl', 'rb') as f: self.bigrams = pickle.load(f) def get_counts(self, file): self.print_flag = 1 self.store_counts(file) # Calcuates n grams from a line def ngrams(self,line, n): lst = line.split() output = {} for i in range(len(lst) -n + 1): g = ' '.join(lst[i:i+n]) output.setdefault(g, 0) output[g] += 1 return output def combine_dicts(self, base_dict, small_dict): for key in small_dict: if base_dict.has_key(key): base_dict[key] = int(base_dict[key]) + int(small_dict[key]) else: base_dict[key] = int(small_dict[key]) return base_dict # Calculates n grams from a file def get_ngrams(self, file, count): f = open(file) for line in f: line = '<s> ' + line.split('\n')[0] + ' </s>' bigrams = self.ngrams(line,2) self.bigrams = self.combine_dicts(self.bigrams,bigrams) unigrams = self.ngrams(line,1) self.unigrams = self.combine_dicts(self.unigrams,unigrams) self.remove_singletons(self.unigrams) def remove_singletons(self, base_dict): for key in base_dict: #print key, base_dict[key] if base_dict[key] < 2: #print key base_dict[key] = 0 return def eqn8(self, strng, print_flag): l = len(strng.split()) if l == 1: estimate = (1 - self.alpha_1) * (float(self.unigrams[strng]) / sum(self.unigrams.values())) + self.alpha_unk * np.exp(1e-7) return estimate else: c = strng #strng = strng.split()[:-1] #p = ' '.join(tk for tk in strng) p = c.split()[-1] if print_flag ==1: print "Bigram is ", c print "Unigram is ", p #print (1 - self.alpha_2) * (float(self.bigrams[c]) / self.bigrams.values())) #print estimate = (1 - self.alpha_2) * (float(self.bigrams[c]) / sum(self.bigrams.values())) + (1 - self.alpha_1) * (float(self.unigrams[p]) / sum(self.unigrams.values())) + self.alpha_unk * np.exp(1e-7) return estimate def get_file_perplexity(self, file): f = open(file) print_flag = 0 self.num_sentences = 0 self.num_oovs = 0 self.num_words = 0 self.logprob = 0 arr = [] for line in f: line = line.split('\n')[0].lower() #line = '<s> ' + line.split('\n')[0] + ' </s>' ppl_sentence = self.get_sentence_perplexity(line,0) if print_flag ==1: print line, ppl_sentence, '\n' arr.append(ppl_sentence) #print np.mean(arr) log_arr = np.log(arr) print log_arr ml_corpus = -1.0 * np.sum(log_arr) * 1.0/len(arr) print np.exp(ml_corpus) print 'Sentences: ', self.num_sentences print 'Words: ', self.num_words print 'OOVs: ' , self.num_oovs print 'Log probability: ', self.logprob self.perplexity = np.exp( -1.0 * self.logprob / ( self.num_words + self.num_sentences - self.num_oovs) * 2.71) # SRILM constant print "Perplexity over corpus is: ", self.perplexity def get_sentence_perplexity(self, string, print_flag): #print len(string) num_tokens = 0 num_oovs = 0 if len(string.split()) < 2: print "The Sentence you gave me is very short" return -1.0 * np.log(self.eqn8(string,0) / 2) else: mle_sentence = np.log(1.0) line = string.split('\n')[0] + ' </s>' length_line = len(string.split()) line = line.split() b = 0 while b < len(line) - 1: if print_flag ==1: print "The value of b is ", b kv = line[b] + ' ' + line[b+1] if print_flag ==1: print "I am looking for ", kv if line[b+1] == '</s>': kv = line[b] if print_flag ==1: print "I am looking for ", kv if kv in self.bigrams and self.bigrams[kv] > 0: if print_flag ==1: print "Found ",kv , " in bigrams" mle = self.eqn8(kv,0) length_gram = 2 else: if print_flag ==1: print "I did not find ", kv, " in bigrams" kv = line[b] if print_flag ==1: print "Now, I am searching for ", kv if kv in self.unigrams and self.unigrams[kv] > 0: if print_flag ==1: print "Found ",kv , " in unigrams" mle = self.eqn8(kv,0) length_gram = 1 else: if print_flag ==1: print "I did not find ", kv, " in unigrams or it was a singleton. I think its an UNK" kv = line[b] mle = self.alpha_unk * np.exp(1e-7) length_gram = 1 num_oovs = num_oovs + 1 b = b + length_gram num_tokens = num_tokens + 1 mle_sentence = mle_sentence + np.log(mle) self.num_oovs += num_oovs self.num_sentences += 1 self.num_words += length_line self.logprob += mle_sentence print_flag = 0 mle_sentence_old = mle_sentence mle_sentence = mle_sentence * (- 1.0 / (length_line + 1 +1 - num_oovs ) ) ppl_sentence = np.exp(mle_sentence * 2.3) if print_flag ==1: print "MLE of sentence is ", mle_sentence_old, " and PPL of sentence is ", ppl_sentence, " number of words: ", length_line, " number of OOVs: " , num_oovs g = open('t','w') g.write(string + '\n') g.close() cmd = 'ngram -lm ../data/en-de/01_srilm_bigram.model -ppl t' os.system(cmd) print '\n\n' print_flag = 0 return ppl_sentence
""" Copyright 2017-present Airbnb, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from fnmatch import fnmatch import json import os from streamalert.shared.config import firehose_alerts_bucket from streamalert.shared.logger import get_logger from streamalert.shared.utils import get_data_file_format from streamalert_cli.athena.handler import create_table, create_log_tables from streamalert_cli.helpers import check_credentials, continue_prompt, run_command from streamalert_cli.manage_lambda.deploy import deploy from streamalert_cli.terraform.generate import terraform_generate_handler from streamalert_cli.terraform.helpers import terraform_check, terraform_runner from streamalert_cli.utils import ( add_clusters_arg, CLICommand, set_parser_epilog, UniqueSortedListAction, ) LOGGER = get_logger(__name__) class TerraformInitCommand(CLICommand): description = 'Initialize StreamAlert infrastructure' @classmethod def setup_subparser(cls, subparser): """Manage.py init takes no arguments""" @classmethod def handler(cls, options, config): """Initialize infrastructure using Terraform Args: config (CLIConfig): Loaded StreamAlert config Returns: bool: False if errors occurred, True otherwise """ LOGGER.info('Initializing StreamAlert') # generate init Terraform files if not terraform_generate_handler(config=config, init=True): return False LOGGER.info('Initializing Terraform') if not run_command(['terraform', 'init'], cwd=config.build_directory): return False # build init infrastructure LOGGER.info('Building initial infrastructure') init_targets = [ 'aws_s3_bucket.lambda_source', 'aws_s3_bucket.logging_bucket', 'aws_s3_bucket.streamalert_secrets', 'aws_s3_bucket.terraform_remote_state', 'aws_s3_bucket.streamalerts', 'aws_kms_key.server_side_encryption', 'aws_kms_alias.server_side_encryption', 'aws_kms_key.streamalert_secrets', 'aws_kms_alias.streamalert_secrets', 'module.streamalert_athena', #required for the alerts table 'aws_dynamodb_table.terraform_remote_state_lock' ] # this bucket must exist before the log tables can be created, but # shouldn't be created unless the firehose is enabled if config['global']['infrastructure'].get('firehose', {}).get('enabled'): init_targets.append('aws_s3_bucket.streamalert_data') if not terraform_runner(config, targets=init_targets): LOGGER.error('An error occurred while running StreamAlert init') return False # generate the main.tf with remote state enabled LOGGER.info('Configuring Terraform Remote State') if not terraform_generate_handler(config=config, check_tf=False, check_creds=False): return False if not run_command(['terraform', 'init'], cwd=config.build_directory): return False LOGGER.info('Deploying Lambda Functions') functions = ['rule', 'alert', 'alert_merger', 'athena', 'classifier'] deploy(config, functions) # we need to manually create the streamalerts table since terraform does not support this # See: https://github.com/terraform-providers/terraform-provider-aws/issues/1486 if get_data_file_format(config) == 'json': # Terraform v0.12 now supports creating Athena tables. We will support # to use terraform aws_glue_catalog_table resource to create table only # when data file_format is set to "parquet" in "athena_partitioner_config" # # For "json" file_format, we will continue using Athena DDL query to # create tables. However, this capabity will be faded out in the future # release because we want users to take advantage of parquet performance. alerts_bucket = firehose_alerts_bucket(config) create_table('alerts', alerts_bucket, config) # Create the glue catalog tables for the enabled logs if not create_log_tables(config=config): return LOGGER.info('Building remaining infrastructure') return terraform_runner(config, refresh=False) class TerraformBuildCommand(CLICommand): description = 'Run terraform against StreamAlert modules, optionally targeting specific modules' @classmethod def setup_subparser(cls, subparser): """Add build subparser: manage.py build [options]""" set_parser_epilog( subparser, epilog=( '''\ Example: manage.py build --target alert_processor_lambda ''' ) ) _add_default_tf_args(subparser, add_cluster_args=False) @classmethod def handler(cls, options, config): """Run Terraform with an optional set of targets and clusters Args: options (argparse.Namespace): Parsed arguments from manage.py config (CLIConfig): Loaded StreamAlert config Returns: bool: False if errors occurred, True otherwise """ if not terraform_generate_handler(config=config): return False # Will create log tables only when file_format set to "json" and return erlier if # log tables creation failed. # This capabity will be faded out in the future release. if get_data_file_format(config) == 'json' and not create_log_tables(config=config): return target_modules, valid = _get_valid_tf_targets(config, options.target) if not valid: return False return terraform_runner(config, targets=target_modules if target_modules else None) class TerraformDestroyCommand(CLICommand): description = 'Destroy StreamAlert infrastructure, optionally targeting specific modules' @classmethod def setup_subparser(cls, subparser): """Add destroy subparser: manage.py destroy [options]""" set_parser_epilog( subparser, epilog=( '''\ Example: manage.py destroy --target aws_s3_bucket-streamalerts ''' ) ) _add_default_tf_args(subparser) @classmethod def handler(cls, options, config): """Use Terraform to destroy any existing infrastructure Args: options (argparse.Namespace): Parsed arguments from manage.py config (CLIConfig): Loaded StreamAlert config Returns: bool: False if errors occurred, True otherwise """ # Check for valid credentials if not check_credentials(): return False # Verify terraform is installed if not terraform_check(): return False # Ask for approval here since multiple Terraform commands may be necessary if not continue_prompt(message='Are you sure you want to destroy?'): return False if options.target: target_modules, valid = _get_valid_tf_targets(config, options.target) if not valid: return False return terraform_runner( config, destroy=True, auto_approve=True, targets=target_modules if target_modules else None ) # Migrate back to local state so Terraform can successfully # destroy the S3 bucket used by the backend. # Do not check for terraform or aws creds again since these were checked above if not terraform_generate_handler(config=config, init=True, check_tf=False, check_creds=False): return False if not run_command(['terraform', 'init'], cwd=config.build_directory): return False # Destroy all of the infrastructure return terraform_runner(config, destroy=True, auto_approve=True) class TerraformListTargetsCommand(CLICommand): description = 'List available Terraform modules to be used for targeted builds' @classmethod def setup_subparser(cls, subparser): """Manage.py list-targets does not take any arguments""" @classmethod def handler(cls, options, config): """Print the available terraform targets Args: config (CLIConfig): Loaded StreamAlert config Returns: bool: False if errors occurred, True otherwise """ modules = get_tf_modules(config, True) if not modules: return False max_resource_len = max(len(value) for values in modules.values() for value in values) + 8 row_format_str = '{prefix:<{pad}}{value}' header = row_format_str.format(prefix='Target', pad=max_resource_len, value='Type') print(header) print('-' * (len(header) + 4)) for value_type in sorted(modules): for item in sorted(modules[value_type]): print(row_format_str.format(prefix=item, pad=max_resource_len, value=value_type)) return True def _add_default_tf_args(tf_parser, add_cluster_args=True): """Add the default terraform parser options""" tf_parser.add_argument( '-t', '--target', metavar='TARGET', help=( 'One or more Terraform module name to target. Use `list-targets` for a list ' 'of available targets' ), action=UniqueSortedListAction, default=[], nargs='+' ) if add_cluster_args: # Add the option to specify cluster(s) add_clusters_arg(tf_parser) def _get_valid_tf_targets(config, targets): all_matches = set() if not targets: return all_matches, True # Empty targets is acceptable modules = get_tf_modules(config) if not modules: return all_matches, False for target in targets: matches = { '{}.{}'.format(value_type, value) if value_type == 'module' else value for value_type, values in modules.items() for value in values if fnmatch(value, target) } if not matches: LOGGER.error('Invalid terraform target supplied: %s', target) continue all_matches.update(matches) if not all_matches: LOGGER.error( 'No terraform targets found matching supplied target(s): %s', ', '.join(sorted(targets)) ) return all_matches, False return all_matches, True def get_tf_modules(config, generate=False): if generate: if not terraform_generate_handler(config=config, check_tf=False, check_creds=False): return False modules = set() resources = set() for root, _, files in os.walk(config.build_directory): for file_name in files: path = os.path.join(root, file_name) if path.endswith('.tf.json'): with open(path, 'r') as tf_file: tf_data = json.load(tf_file) modules.update(set((tf_data['module']))) resources.update( '{}.{}'.format(resource, value) for resource, values in tf_data.get('resource', {}).items() for value in values ) return {'module': modules, 'resource': resources}
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock from webob import exc from magnum.api.controllers import base from magnum.api.controllers import versions from magnum.api import versioned_method from magnum.tests import base as test_base class TestVersion(test_base.TestCase): def setUp(self): super(TestVersion, self).setUp() self.a = versions.Version( {versions.Version.string: "container-infra 2.0"}, "container-infra 2.0", "container-infra 2.1") self.b = versions.Version( {versions.Version.string: "container-infra 2.0"}, "container-infra 2.0", "container-infra 2.1") self.c = versions.Version( {versions.Version.string: "container-infra 2.2"}, "container-infra 2.0", "container-infra 2.2") def test_is_null_true(self): self.a.major = 0 self.a.minor = 0 self.assertEqual(0 == 0, self.a.is_null()) def test_is_null_false(self): self.assertEqual(2 == 0, self.a.is_null()) def test__eq__with_equal(self): self.assertEqual(2 == 2, self.a == self.b) def test__eq__with_unequal(self): self.a.major = 1 self.assertEqual(1 == 2, self.a == self.b) def test__ne__with_equal(self): self.assertEqual(2 != 2, self.a != self.b) def test__ne__with_unequal(self): self.a.major = 1 self.assertEqual(1 != 2, self.a != self.b) def test__lt__with_higher_major_version(self): self.a.major = 2 self.b.major = 1 self.assertEqual(2 < 1, self.a < self.b) def test__lt__with_lower_major_version(self): self.a.major = 1 self.b.major = 2 self.assertEqual(1 < 2, self.a < self.b) def test__lt__with_higher_minor_version(self): self.a.minor = 2 self.b.minor = 1 self.assertEqual(self.a.major, self.b.major) self.assertEqual(2 < 1, self.a < self.b) def test__lt__with_lower_minor_version(self): self.a.minor = 1 self.b.minor = 2 self.assertEqual(self.a.major, self.b.major) self.assertEqual(1 < 2, self.a < self.b) def test__gt__with_higher_major_version(self): self.a.major = 2 self.b.major = 1 self.assertEqual(2 > 1, self.a > self.b) def test__gt__with_lower_major_version(self): self.a.major = 1 self.b.major = 2 self.assertEqual(1 > 2, self.a > self.b) def test__gt__with_higher_minor_version(self): self.a.minor = 2 self.b.minor = 1 self.assertEqual(self.a.major, self.b.major) self.assertEqual(2 > 1, self.a > self.b) def test__gt__with_lower_minor_version(self): self.a.minor = 1 self.b.minor = 2 self.assertEqual(self.a.major, self.b.major) self.assertEqual(1 > 2, self.a > self.b) def test__le__with_equal(self): self.assertEqual(2 == 2, self.a <= self.b) def test__le__with_higher_version(self): self.a.major = 3 self.assertEqual(3 <= 2, self.a <= self.b) def test__le__with_lower_version(self): self.a.major = 1 self.assertEqual(1 <= 2, self.a <= self.b) def test__ge__with_equal(self): self.assertEqual(2 >= 2, self.a >= self.b) def test__ge__with_higher_version(self): self.a.major = 3 self.assertEqual(3 >= 2, self.a >= self.b) def test__ge__with_lower_version(self): self.a.major = 1 self.assertEqual(1 >= 2, self.a >= self.b) def test_matches_start_version(self): self.assertEqual(0 >= 0, self.a.matches(self.b, self.c)) def test_matches_end_version(self): self.a.minor = 2 self.assertEqual(2 <= 2, self.a.matches(self.b, self.c)) def test_matches_valid_version(self): self.a.minor = 1 self.assertEqual(0 <= 1 <= 2, self.a.matches(self.b, self.c)) def test_matches_version_too_high(self): self.a.minor = 3 self.assertEqual(0 <= 3 <= 2, self.a.matches(self.b, self.c)) def test_matches_version_too_low(self): self.a.major = 1 self.assertEqual(2 <= 1 <= 2, self.a.matches(self.b, self.c)) def test_matches_null_version(self): self.a.major = 0 self.a.minor = 0 self.assertRaises(ValueError, self.a.matches, self.b, self.c) @mock.patch('magnum.api.controllers.versions.Version.parse_headers') def test_init(self, mock_parse): a = mock.Mock() b = mock.Mock() mock_parse.return_value = (a, b) v = versions.Version('test', 'foo', 'bar') mock_parse.assert_called_with('test', 'foo', 'bar') self.assertEqual(a, v.major) self.assertEqual(b, v.minor) @mock.patch('magnum.api.controllers.versions.Version.parse_headers') def test_repr(self, mock_parse): mock_parse.return_value = (123, 456) v = versions.Version('test', mock.ANY, mock.ANY) result = "%s" % v self.assertEqual('123.456', result) @mock.patch('magnum.api.controllers.versions.Version.parse_headers') def test_repr_with_strings(self, mock_parse): mock_parse.return_value = ('abc', 'def') v = versions.Version('test', mock.ANY, mock.ANY) result = "%s" % v self.assertEqual('abc.def', result) def test_parse_headers_ok(self): version = versions.Version.parse_headers( {versions.Version.string: 'container-infra 123.456'}, mock.ANY, mock.ANY) self.assertEqual((123, 456), version) def test_parse_headers_latest(self): for s in ['magnum latest', 'magnum LATEST']: version = versions.Version.parse_headers( {versions.Version.string: s}, mock.ANY, 'container-infra 1.9') self.assertEqual((1, 9), version) def test_parse_headers_bad_length(self): self.assertRaises( exc.HTTPNotAcceptable, versions.Version.parse_headers, {versions.Version.string: 'container-infra 1'}, mock.ANY, mock.ANY) self.assertRaises( exc.HTTPNotAcceptable, versions.Version.parse_headers, {versions.Version.string: 'container-infra 1.2.3'}, mock.ANY, mock.ANY) def test_parse_no_header(self): # this asserts that the minimum version string is applied version = versions.Version.parse_headers({}, 'container-infra 1.1', 'container-infra 1.5') self.assertEqual((1, 1), version) def test_parse_incorrect_service_type(self): self.assertRaises( exc.HTTPNotAcceptable, versions.Version.parse_headers, {versions.Version.string: '1.1'}, 'container-infra 1.1', 'container-infra 1.1') self.assertRaises( exc.HTTPNotAcceptable, versions.Version.parse_headers, {versions.Version.string: 'nova 1.1'}, 'container-infra 1.1', 'container-infra 1.1') class TestController(test_base.TestCase): def test_check_for_versions_intersection_negative(self): func_list = \ [versioned_method.VersionedMethod('foo', versions.Version('', '', '', '2.1'), versions.Version('', '', '', '2.4'), None), versioned_method.VersionedMethod('foo', versions.Version('', '', '', '2.11'), versions.Version('', '', '', '3.1'), None), versioned_method.VersionedMethod('foo', versions.Version('', '', '', '2.8'), versions.Version('', '', '', '2.9'), None), ] result = base.Controller.check_for_versions_intersection( func_list=func_list) self.assertFalse(result) func_list = \ [versioned_method.VersionedMethod('foo', versions.Version('', '', '', '2.12'), versions.Version('', '', '', '2.14'), None), versioned_method.VersionedMethod('foo', versions.Version('', '', '', '3.0'), versions.Version('', '', '', '3.4'), None) ] result = base.Controller.check_for_versions_intersection( func_list=func_list) self.assertFalse(result) def test_check_for_versions_intersection_positive(self): func_list = \ [versioned_method.VersionedMethod('foo', versions.Version('', '', '', '2.1'), versions.Version('', '', '', '2.4'), None), versioned_method.VersionedMethod('foo', versions.Version('', '', '', '2.3'), versions.Version('', '', '', '3.1'), None), versioned_method.VersionedMethod('foo', versions.Version('', '', '', '2.9'), versions.Version('', '', '', '3.4'), None) ] result = base.Controller.check_for_versions_intersection( func_list=func_list) self.assertTrue(result) def test_check_for_versions_intersection_shared_start_end(self): func_list = \ [versioned_method.VersionedMethod('foo', versions.Version('', '', '', '1.1'), versions.Version('', '', '', '1.1'), None), versioned_method.VersionedMethod('foo', versions.Version('', '', '', '1.1'), versions.Version('', '', '', '1.2'), None) ] result = base.Controller.check_for_versions_intersection( func_list=func_list) self.assertTrue(result) def test_api_version_decorator(self): class MyController(base.Controller): @base.Controller.api_version('1.0', '1.1') def testapi1(self): return 'API1_1.0_1.1' @base.Controller.api_version('1.2', '1.3') # noqa def testapi1(self): # noqa return 'API1_1.2_1.3' @base.Controller.api_version('2.1', '2.2') def testapi2(self): return 'API2_2.1_2.2' @base.Controller.api_version('1.0', '2.0') # noqa def testapi2(self): # noqa return 'API2_1.0_2.0' controller = MyController() # verify list was added to controller self.assertIsNotNone(controller.versioned_methods) api1_list = controller.versioned_methods['testapi1'] api2_list = controller.versioned_methods['testapi2'] # verify versioned_methods reordered correctly self.assertEqual('1.2', str(api1_list[0].start_version)) self.assertEqual('1.3', str(api1_list[0].end_version)) self.assertEqual('1.0', str(api1_list[1].start_version)) self.assertEqual('1.1', str(api1_list[1].end_version)) # verify stored methods can be called result = api1_list[0].func(controller) self.assertEqual('API1_1.2_1.3', result) result = api1_list[1].func(controller) self.assertEqual('API1_1.0_1.1', result) # verify versioned_methods reordered correctly self.assertEqual('2.1', str(api2_list[0].start_version)) self.assertEqual('2.2', str(api2_list[0].end_version)) self.assertEqual('1.0', str(api2_list[1].start_version)) self.assertEqual('2.0', str(api2_list[1].end_version)) # Verify stored methods can be called result = api2_list[0].func(controller) self.assertEqual('API2_2.1_2.2', result) result = api2_list[1].func(controller) self.assertEqual('API2_1.0_2.0', result) @mock.patch('pecan.request') def test_controller_get_attribute(self, mock_pecan_request): class MyController(base.Controller): @base.Controller.api_version('1.0', '1.1') def testapi1(self): return 'API1_1.0_1.1' @base.Controller.api_version('1.2', '1.3') # noqa def testapi1(self): # noqa return 'API1_1.2_1.3' controller = MyController() mock_pecan_request.version = versions.Version("", "", "", "1.2") controller.request = mock_pecan_request method = controller.__getattribute__('testapi1') result = method() self.assertEqual('API1_1.2_1.3', result) @mock.patch('pecan.request') def test_controller_get_attr_version_not_found(self, mock_pecan_request): class MyController(base.Controller): @base.Controller.api_version('1.0', '1.1') def testapi1(self): return 'API1_1.0_1.1' @base.Controller.api_version('1.3', '1.4') # noqa def testapi1(self): # noqa return 'API1_1.3_1.4' controller = MyController() mock_pecan_request.version = versions.Version("", "", "", "1.2") controller.request = mock_pecan_request self.assertRaises(exc.HTTPNotAcceptable, controller.__getattribute__, 'testapi1')
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright: (c) 2017, F5 Networks Inc. # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = r''' --- module: bigip_virtual_address short_description: Manage LTM virtual addresses on a BIG-IP description: - Manage LTM virtual addresses on a BIG-IP system. version_added: "1.0.0" options: name: description: - Name of the virtual address. - If this parameter is not provided, the system uses the value of C(address). type: str address: description: - Specifies the virtual address. This value cannot be modified after it is set. - If you never created a virtual address, but did create virtual servers, a virtual address for each virtual server was created automatically. The name of this virtual address is its IP address value. type: str netmask: description: - Specifies the netmask of the provided virtual address. This value cannot be modified after it is set. - When creating a new virtual address, if this parameter is not specified, the default value is C(255.255.255.255) for IPv4 addresses and C(ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff) for IPv6 addresses. type: str connection_limit: description: - Specifies the number of concurrent connections the system allows on this virtual address. type: int arp: description: - Specifies whether the system accepts ARP requests. - When C(no), specifies the system does not accept ARP requests. - When C(yes), the packets are dropped. - Both ARP and ICMP Echo must be disabled in order for forwarding virtual servers using that virtual address to forward ICMP packets. - When creating a new virtual address, if this parameter is not specified, the default value is C(yes). type: bool auto_delete: description: - Specifies whether the system automatically deletes the virtual address with the deletion of the last associated virtual server. When C(no), specifies the system leaves the virtual address, even when all associated virtual servers have been deleted. When creating the virtual address, the default value is C(yes). type: bool icmp_echo: description: - Specifies how the system sends responses to (ICMP) echo requests on a per-virtual address basis for enabling route advertisement. When C(enabled), the BIG-IP system intercepts ICMP echo request packets and responds to them directly. When C(disabled), the BIG-IP system passes ICMP echo requests through to the backend servers. When (selective), causes the BIG-IP system to internally enable or disable responses based on virtual server state; C(when_any_available), C(when_all_available, or C(always), regardless of the state of any virtual servers. type: str choices: - enabled - disabled - selective state: description: - The virtual address state. If C(absent), the system makes an attempt to delete the virtual address. This will only succeed if this virtual address is not in use by a virtual server. C(present) creates the virtual address and enables it. If C(enabled), enables the virtual address if it exists. If C(disabled), creates the virtual address if needed, and sets the state to C(disabled). type: str choices: - present - absent - enabled - disabled default: present availability_calculation: description: - Specifies which routes of the virtual address the system advertises. When C(when_any_available), advertises the route when any virtual server is available. When C(when_all_available), advertises the route when all virtual servers are available. When (always), always advertises the route regardless of the virtual servers available. type: str choices: - always - when_all_available - when_any_available aliases: ['advertise_route'] route_advertisement: description: - Specifies whether the system uses route advertisement for this virtual address. - When disabled, the system does not advertise routes for this virtual address. - The majority of these options are only supported on versions 13.0.0-HF1 or later. On versions prior than this, all choices expect C(disabled) translate to C(enabled). - When C(always), the BIG-IP system always advertises the route for the virtual address, regardless of availability status. This requires an C(enabled) virtual address. - When C(enabled), the BIG-IP system advertises the route for the available virtual address, based on the calculation method in the availability calculation. - When C(disabled), the BIG-IP system does not advertise the route for the virtual address, regardless of the availability status. - When C(selective), you can also selectively enable ICMP echo responses, which causes the BIG-IP system to internally enable or disable responses based on virtual server state. - When C(any), the BIG-IP system advertises the route for the virtual address when any virtual server is available. - When C(all), the BIG-IP system advertises the route for the virtual address when all virtual servers are available. type: str choices: - disabled - enabled - always - selective - any - all partition: description: - Device partition to manage resources on. type: str default: Common traffic_group: description: - The traffic group for the virtual address. When creating a new address, if this value is not specified, the default is C(/Common/traffic-group-1). type: str route_domain: description: - The route domain of the C(address) you want to use. - This value cannot be modified after it is set. type: str spanning: description: - Enables all BIG-IP systems in a device group to listen for and process traffic on the same virtual address. - Spanning for a virtual address occurs when you enable the C(spanning) option on a device, and then sync the virtual address to the other members of the device group. - Spanning also relies on the upstream router to distribute application flows to the BIG-IP systems using ECMP routes. ECMP defines a route to the virtual address using distinct Floating self-IP addresses configured on each BIG-IP system. - You must also configure MAC masquerade addresses and disable C(arp) on the virtual address when Spanning is enabled. - When creating a new virtual address, if this parameter is not specified, the default valus is C(no). type: bool extends_documentation_fragment: f5networks.f5_modules.f5 author: - Tim Rupp (@caphrim007) - Wojciech Wypior (@wojtek0806) ''' EXAMPLES = r''' - name: Add virtual address bigip_virtual_address: state: present partition: Common address: 10.10.10.10 provider: server: lb.mydomain.net user: admin password: secret delegate_to: localhost - name: Enable route advertisement on the virtual address bigip_virtual_address: state: present address: 10.10.10.10 route_advertisement: any provider: server: lb.mydomain.net user: admin password: secret delegate_to: localhost ''' RETURN = r''' availability_calculation: description: Specifies which routes of the virtual address the system advertises. returned: changed type: str sample: always auto_delete: description: New setting for auto deleting virtual address. returned: changed type: bool sample: yes icmp_echo: description: New ICMP echo setting applied to virtual address. returned: changed type: str sample: disabled connection_limit: description: The new connection limit of the virtual address. returned: changed type: int sample: 1000 netmask: description: The netmask of the virtual address. returned: created type: int sample: 2345 arp: description: The new way the virtual address handles ARP requests. returned: changed type: bool sample: yes address: description: The address of the virtual address. returned: created type: int sample: 2345 state: description: The new state of the virtual address. returned: changed type: str sample: disabled spanning: description: Whether spanning is enabled or not. returned: changed type: str sample: disabled ''' from datetime import datetime from distutils.version import LooseVersion from ansible.module_utils.basic import ( AnsibleModule, env_fallback ) from ansible.module_utils.parsing.convert_bool import ( BOOLEANS_TRUE, BOOLEANS_FALSE ) from ..module_utils.bigip import F5RestClient from ..module_utils.common import ( F5ModuleError, AnsibleF5Parameters, transform_name, f5_argument_spec, fq_name, flatten_boolean ) from ..module_utils.icontrol import tmos_version from ..module_utils.ipaddress import ( is_valid_ip, compress_address ) from ..module_utils.teem import send_teem class Parameters(AnsibleF5Parameters): api_map = { 'routeAdvertisement': 'route_advertisement_type', 'autoDelete': 'auto_delete', 'icmpEcho': 'icmp_echo', 'connectionLimit': 'connection_limit', 'serverScope': 'availability_calculation', 'mask': 'netmask', 'trafficGroup': 'traffic_group', } updatables = [ 'route_advertisement_type', 'auto_delete', 'icmp_echo', 'connection_limit', 'arp', 'enabled', 'availability_calculation', 'traffic_group', 'spanning', ] returnables = [ 'route_advertisement_type', 'auto_delete', 'icmp_echo', 'connection_limit', 'netmask', 'arp', 'address', 'state', 'traffic_group', 'route_domain', 'spanning', 'availability_calculation', ] api_attributes = [ 'routeAdvertisement', 'autoDelete', 'icmpEcho', 'connectionLimit', 'advertiseRoute', 'arp', 'mask', 'enabled', 'serverScope', 'trafficGroup', 'spanning', 'serverScope', ] @property def availability_calculation(self): if self._values['availability_calculation'] is None: return None elif self._values['availability_calculation'] in ['any', 'when_any_available']: return 'any' elif self._values['availability_calculation'] in ['all', 'when_all_available']: return 'all' elif self._values['availability_calculation'] in ['none', 'always']: return 'none' @property def connection_limit(self): if self._values['connection_limit'] is None: return None return int(self._values['connection_limit']) @property def enabled(self): if self._values['state'] in ['enabled', 'present']: return 'yes' elif self._values['enabled'] in BOOLEANS_TRUE: return 'yes' elif self._values['state'] == 'disabled': return 'no' elif self._values['enabled'] in BOOLEANS_FALSE: return 'no' else: return None @property def netmask(self): if self._values['netmask'] is None: return None if is_valid_ip(self._values['netmask']): return self._values['netmask'] else: raise F5ModuleError( "The provided 'netmask' is not a valid IP address" ) @property def auto_delete(self): result = flatten_boolean(self._values['auto_delete']) if result == 'yes': return 'true' if result == 'no': return 'false' @property def state(self): if self.enabled == 'yes' and self._values['state'] != 'present': return 'enabled' elif self.enabled == 'no': return 'disabled' else: return self._values['state'] @property def traffic_group(self): if self._values['traffic_group'] is None: return None else: result = fq_name(self.partition, self._values['traffic_group']) if result.startswith('/Common/'): return result else: raise F5ModuleError( "Traffic groups can only exist in /Common" ) @property def route_advertisement_type(self): if self.route_advertisement: return self.route_advertisement else: return self._values['route_advertisement_type'] @property def route_advertisement(self): if self._values['route_advertisement'] is None: return None version = tmos_version(self.client) if LooseVersion(version) <= LooseVersion('13.0.0'): if self._values['route_advertisement'] == 'disabled': return 'disabled' else: return 'enabled' else: return self._values['route_advertisement'] class ApiParameters(Parameters): pass class ModuleParameters(Parameters): @property def address(self): if self._values['address'] is None: return None if is_valid_ip(self._values['address']): return compress_address(self._values['address']) else: raise F5ModuleError( "The provided 'address' is not a valid IP address" ) @property def full_address(self): if self.route_domain is not None: return '{0}%{1}'.format(self.address, self.route_domain) return self.address @property def name(self): if self._values['name'] is None: result = str(self.address) if self.route_domain: result = "{0}%{1}".format(result, self.route_domain) else: result = self._values['name'] return result @property def route_domain(self): if self._values['route_domain'] is None: return None try: return int(self._values['route_domain']) except ValueError: uri = "https://{0}:{1}/mgmt/tm/net/route-domain/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self._values['partition'], self._values['route_domain']) ) resp = self.client.api.get(uri) try: response = resp.json() except ValueError: raise F5ModuleError( "The specified 'route_domain' was not found." ) if resp.status == 404 or 'code' in response and response['code'] == 404: raise F5ModuleError( "The specified 'route_domain' was not found." ) return int(response['id']) @property def arp(self): result = flatten_boolean(self._values['arp']) if result == 'yes': return 'enabled' if result == 'no': return 'disabled' @property def spanning(self): result = flatten_boolean(self._values['spanning']) if result == 'yes': return 'enabled' if result == 'no': return 'disabled' class Changes(Parameters): def to_return(self): result = {} try: for returnable in self.returnables: result[returnable] = getattr(self, returnable) result = self._filter_params(result) except Exception: raise return result class UsableChanges(Changes): @property def address(self): if self._values['address'] is None: return None if self._values['route_domain'] is None: return self._values['address'] result = "{0}%{1}".format(self._values['address'], self.route_domain) return result class ReportableChanges(Changes): @property def arp(self): if self._values['arp'] == 'disabled': return 'no' elif self._values['arp'] == 'enabled': return 'yes' @property def spanning(self): if self._values['spanning'] == 'disabled': return 'no' elif self._values['spanning'] == 'enabled': return 'yes' class Difference(object): def __init__(self, want, have=None): self.want = want self.have = have def compare(self, param): try: result = getattr(self, param) return result except AttributeError: return self.__default(param) def __default(self, param): attr1 = getattr(self.want, param) try: attr2 = getattr(self.have, param) if attr1 != attr2: return attr1 except AttributeError: return attr1 @property def traffic_group(self): if self.want.traffic_group != self.have.traffic_group: return self.want.traffic_group @property def spanning(self): if self.want.spanning is None: return None if self.want.spanning != self.have.spanning: return self.want.spanning @property def arp(self): if self.want.arp is None: return None if self.want.arp != self.have.arp: return self.want.arp class ModuleManager(object): def __init__(self, *args, **kwargs): self.module = kwargs.get('module', None) self.client = F5RestClient(**self.module.params) self.have = ApiParameters() self.want = ModuleParameters(client=self.client, params=self.module.params) self.changes = UsableChanges() def _set_changed_options(self): changed = {} for key in Parameters.returnables: if getattr(self.want, key) is not None: changed[key] = getattr(self.want, key) if changed: self.changes = UsableChanges(params=changed) def _update_changed_options(self): diff = Difference(self.want, self.have) updatables = Parameters.updatables changed = dict() for k in updatables: change = diff.compare(k) if change is None: continue else: if isinstance(change, dict): changed.update(change) else: changed[k] = change if changed: self.changes = UsableChanges(params=changed) return True return False def _announce_deprecations(self, result): warnings = result.pop('__warnings', []) for warning in warnings: self.client.module.deprecate( msg=warning['msg'], version=warning['version'] ) def exec_module(self): start = datetime.now().isoformat() version = tmos_version(self.client) changed = False result = dict() state = self.want.state if state in ['present', 'enabled', 'disabled']: changed = self.present() elif state == "absent": changed = self.absent() reportable = ReportableChanges(params=self.changes.to_return()) changes = reportable.to_return() result.update(**changes) if self.module._diff and self.have: result['diff'] = self.make_diff() result.update(dict(changed=changed)) self._announce_deprecations(result) send_teem(start, self.module, version) return result def _grab_attr(self, item): result = dict() updatables = Parameters.updatables for k in updatables: if getattr(item, k) is not None: result[k] = getattr(item, k) return result def make_diff(self): result = dict(before=self._grab_attr(self.have), after=self._grab_attr(self.want)) return result def should_update(self): result = self._update_changed_options() if result: return True return False def present(self): if self.exists(): return self.update() else: return self.create() def absent(self): changed = False if self.exists(): changed = self.remove() return changed def remove(self): if self.module.check_mode: return True self.remove_from_device() if self.exists(): raise F5ModuleError("Failed to delete the virtual address") return True def create(self): self._set_changed_options() if self.want.traffic_group is None: self.want.update({'traffic_group': '/Common/traffic-group-1'}) if self.want.arp is None: self.want.update({'arp': True}) if self.want.spanning is None: self.want.update({'spanning': False}) if self.want.netmask is None: if is_valid_ip(self.want.address, type='ipv4'): self.want.update({'netmask': '255.255.255.255'}) else: self.want.update({'netmask': 'ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff'}) if self.want.arp == 'enabled' and self.want.spanning == 'enabled': raise F5ModuleError( "'arp' and 'spanning' cannot both be enabled on virtual address." ) if self.module.check_mode: return True self.create_on_device() if self.exists(): return True else: raise F5ModuleError("Failed to create the virtual address") def update(self): self.have = self.read_current_from_device() if self.want.netmask is not None: if self.have.netmask != self.want.netmask: raise F5ModuleError( "The netmask cannot be changed. Delete and recreate " "the virtual address if you need to do this." ) if self.want.address is not None: if self.have.address != self.want.full_address: raise F5ModuleError( "The address cannot be changed. Delete and recreate " "the virtual address if you need to do this." ) if self.changes.arp == 'enabled' and self.changes.spanning == 'enabled': raise F5ModuleError( "'arp' and 'spanning' cannot both be enabled on virtual address." ) if not self.should_update(): return False if self.module.check_mode: return True self.update_on_device() return True def exists(self): uri = "https://{0}:{1}/mgmt/tm/ltm/virtual-address/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.name) ) resp = self.client.api.get(uri) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if resp.status == 404 or 'code' in response and response['code'] == 404: return False if resp.status in [200, 201] or 'code' in response and response['code'] in [200, 201]: return True errors = [401, 403, 409, 500, 501, 502, 503, 504] if resp.status in errors or 'code' in response and response['code'] in errors: if 'message' in response: raise F5ModuleError(response['message']) else: raise F5ModuleError(resp.content) def read_current_from_device(self): uri = "https://{0}:{1}/mgmt/tm/ltm/virtual-address/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.name) ) resp = self.client.api.get(uri) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if 'code' in response and response['code'] == 400: if 'message' in response: raise F5ModuleError(response['message']) else: raise F5ModuleError(resp.content) return ApiParameters(params=response) def update_on_device(self): params = self.changes.api_params() uri = "https://{0}:{1}/mgmt/tm/ltm/virtual-address/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.name) ) resp = self.client.api.patch(uri, json=params) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if 'code' in response and response['code'] == 400: if 'message' in response: raise F5ModuleError(response['message']) else: raise F5ModuleError(resp.content) def create_on_device(self): params = self.changes.api_params() params['name'] = self.want.name params['partition'] = self.want.partition params['address'] = self.changes.address uri = "https://{0}:{1}/mgmt/tm/ltm/virtual-address/".format( self.client.provider['server'], self.client.provider['server_port'], ) resp = self.client.api.post(uri, json=params) try: response = resp.json() except ValueError as ex: raise F5ModuleError(str(ex)) if 'code' in response and response['code'] in [400, 403, 409]: if 'message' in response: raise F5ModuleError(response['message']) else: raise F5ModuleError(resp.content) return response['selfLink'] def remove_from_device(self): uri = "https://{0}:{1}/mgmt/tm/ltm/virtual-address/{2}".format( self.client.provider['server'], self.client.provider['server_port'], transform_name(self.want.partition, self.want.name) ) resp = self.client.api.delete(uri) if resp.status == 200: return True class ArgumentSpec(object): def __init__(self): self.supports_check_mode = True argument_spec = dict( state=dict( default='present', choices=['present', 'absent', 'disabled', 'enabled'] ), name=dict(), address=dict(), netmask=dict(), connection_limit=dict( type='int' ), auto_delete=dict( type='bool' ), icmp_echo=dict( choices=['enabled', 'disabled', 'selective'], ), availability_calculation=dict( choices=['always', 'when_all_available', 'when_any_available'], aliases=['advertise_route'] ), traffic_group=dict(), partition=dict( default='Common', fallback=(env_fallback, ['F5_PARTITION']) ), route_domain=dict(), spanning=dict(type='bool'), route_advertisement=dict( choices=[ 'disabled', 'enabled', 'always', 'selective', 'any', 'all', ] ), arp=dict(type='bool'), ) self.argument_spec = {} self.argument_spec.update(f5_argument_spec) self.argument_spec.update(argument_spec) self.required_one_of = [ ['name', 'address'] ] def main(): spec = ArgumentSpec() module = AnsibleModule( argument_spec=spec.argument_spec, supports_check_mode=spec.supports_check_mode, required_one_of=spec.required_one_of ) try: mm = ModuleManager(module=module) results = mm.exec_module() module.exit_json(**results) except F5ModuleError as ex: module.fail_json(msg=str(ex)) if __name__ == '__main__': main()
from __future__ import division import math from sorl.thumbnail.engines.base import EngineBase from sorl.thumbnail.compat import BufferIO try: from PIL import Image, ImageFile, ImageDraw, ImageChops, ImageFilter except ImportError: import Image, ImageFile, ImageDraw, ImageChops def round_corner(radius, fill): """Draw a round corner""" corner = Image.new('L', (radius, radius), 0) # (0, 0, 0, 0)) draw = ImageDraw.Draw(corner) draw.pieslice((0, 0, radius * 2, radius * 2), 180, 270, fill=fill) return corner def round_rectangle(size, radius, fill): """Draw a rounded rectangle""" width, height = size rectangle = Image.new('L', size, 255) # fill corner = round_corner(radius, 255) # fill rectangle.paste(corner, (0, 0)) rectangle.paste(corner.rotate(90), (0, height - radius)) # Rotate the corner and paste it rectangle.paste(corner.rotate(180), (width - radius, height - radius)) rectangle.paste(corner.rotate(270), (width - radius, 0)) return rectangle class GaussianBlur(ImageFilter.Filter): name = "GaussianBlur" def __init__(self, radius=2): self.radius = radius def filter(self, image): return image.gaussian_blur(self.radius) class Engine(EngineBase): def get_image(self, source): buffer = BufferIO(source.read()) return Image.open(buffer) def get_image_size(self, image): return image.size def get_image_info(self, image): return image.info or {} def is_valid_image(self, raw_data): buffer = BufferIO(raw_data) try: trial_image = Image.open(buffer) trial_image.verify() except Exception: return False return True def _cropbox(self, image, x, y, x2, y2): return image.crop((x, y, x2, y2)) def _orientation(self, image): try: exif = image._getexif() except (AttributeError, IOError, KeyError, IndexError): exif = None if exif: orientation = exif.get(0x0112) if orientation == 2: image = image.transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 3: image = image.rotate(180) elif orientation == 4: image = image.transpose(Image.FLIP_TOP_BOTTOM) elif orientation == 5: image = image.rotate(-90).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 6: image = image.rotate(-90) elif orientation == 7: image = image.rotate(90).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 8: image = image.rotate(90) return image def _colorspace(self, image, colorspace): if colorspace == 'RGB': if image.mode == 'RGBA': return image # RGBA is just RGB + Alpha if image.mode == 'LA' or (image.mode == 'P' and 'transparency' in image.info): return image.convert('RGBA') return image.convert('RGB') if colorspace == 'GRAY': return image.convert('L') return image def _remove_border(self, image, image_width, image_height): image_entropy = self._get_image_entropy(image) borders = { 'top': lambda iy, dy, y: (dy, dy + y), 'right': lambda ix, dx, x: (ix - dx - x, ix - dx), 'bottom': lambda iy, dy, y: (iy - dy - y, iy - dy), 'left': lambda ix, dx, x: (dx, dx + x), } offset = {'top': 0, 'right': 0, 'bottom': 0, 'left': 0, } for border in ['top', 'bottom']: # Don't remove too much, the image may just be plain while offset[border] < image_height / 3.5: slice_size = min(image_width / 20, 10) y_range = borders[border](image_height, offset[border], slice_size) section = image.crop((0, y_range[0], image_width, y_range[1])) # If this section is below the threshold; remove it if self._get_image_entropy(section) < 2.0: offset[border] += slice_size else: break for border in ['left', 'right']: while offset[border] < image_width / 3.5: slice_size = min(image_height / 20, 10) x_range = borders[border](image_width, offset[border], slice_size) section = image.crop((x_range[0], 0, x_range[1], image_height)) if self._get_image_entropy(section) < 2.0: offset[border] += slice_size else: break return image.crop( (offset['left'], offset['top'], image_width - offset['right'], image_height - offset['bottom'])) # Credit to chrisopherhan https://github.com/christopherhan/pycrop # This is just a slight rework of pycrops implimentation def _entropy_crop(self, image, geometry_width, geometry_height, image_width, image_height): geometry_ratio = geometry_width / geometry_height # The is proportionally wider than it should be while image_width / image_height > geometry_ratio: slice_width = max(image_width - geometry_width, 10) right = image.crop((image_width - slice_width, 0, image_width, image_height)) left = image.crop((0, 0, slice_width, image_height)) if self._get_image_entropy(left) < self._get_image_entropy(right): image = image.crop((slice_width, 0, image_width, image_height)) else: image = image.crop((0, 0, image_height - slice_width, image_height)) image_width -= slice_width # The image is proportionally taller than it should be while image_width / image_height < geometry_ratio: slice_height = min(image_height - geometry_height, 10) bottom = image.crop((0, image_height - slice_height, image_width, image_height)) top = image.crop((0, 0, image_width, slice_height)) if self._get_image_entropy(bottom) < self._get_image_entropy(top): image = image.crop((0, 0, image_width, image_height - slice_height)) else: image = image.crop((0, slice_height, image_width, image_height)) image_height -= slice_height return image def _scale(self, image, width, height): return image.resize((width, height), resample=Image.ANTIALIAS) def _crop(self, image, width, height, x_offset, y_offset): return image.crop((x_offset, y_offset, width + x_offset, height + y_offset)) def _rounded(self, image, r): i = round_rectangle(image.size, r, "notusedblack") image.putalpha(i) return image def _blur(self, image, radius): return image.filter(GaussianBlur(radius)) def _padding(self, image, geometry, options): x_image, y_image = self.get_image_size(image) left = int((geometry[0] - x_image) / 2) top = int((geometry[1] - y_image) / 2) color = options.get('padding_color') im = Image.new(image.mode, geometry, color) im.paste(image, (left, top)) return im def _get_raw_data(self, image, format_, quality, image_info=None, progressive=False): # Increase (but never decrease) PIL buffer size ImageFile.MAXBLOCK = max(ImageFile.MAXBLOCK, image.size[0] * image.size[1]) bf = BufferIO() params = { 'format': format_, 'quality': quality, 'optimize': 1, } # keeps icc_profile if 'icc_profile' in image_info: params['icc_profile'] = image_info['icc_profile'] raw_data = None if format_ == 'JPEG' and progressive: params['progressive'] = True try: # Do not save unnecessary exif data for smaller thumbnail size params.pop('exif', {}) image.save(bf, **params) except (IOError, OSError): # Try without optimization. params.pop('optimize') image.save(bf, **params) else: raw_data = bf.getvalue() finally: bf.close() return raw_data def _get_image_entropy(self, image): """calculate the entropy of an image""" hist = image.histogram() hist_size = sum(hist) hist = [float(h) / hist_size for h in hist] return -sum([p * math.log(p, 2) for p in hist if p != 0])
# Copyright 2013 OpenStack Foundation # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_db import exception as db_exception import six from manila import context from manila.db import api as db_api from manila.db.sqlalchemy import api as sqlalchemy_api from manila.db.sqlalchemy import models from manila import exception from manila import test class ShareNetworkDBTest(test.TestCase): def __init__(self, *args, **kwargs): super(ShareNetworkDBTest, self).__init__(*args, **kwargs) self.fake_context = context.RequestContext(user_id='fake user', project_id='fake project', is_admin=False) def _check_fields(self, expected, actual): for key in expected: self.assertEqual(actual[key], expected[key]) def setUp(self): super(ShareNetworkDBTest, self).setUp() self.share_nw_dict = {'id': 'fake network id', 'neutron_net_id': 'fake net id', 'neutron_subnet_id': 'fake subnet id', 'project_id': self.fake_context.project_id, 'user_id': 'fake_user_id', 'network_type': 'vlan', 'segmentation_id': 1000, 'cidr': '10.0.0.0/24', 'ip_version': 4, 'name': 'whatever', 'description': 'fake description'} def test_create_one_network(self): result = db_api.share_network_create(self.fake_context, self.share_nw_dict) self._check_fields(expected=self.share_nw_dict, actual=result) self.assertEqual(len(result['shares']), 0) self.assertEqual(len(result['security_services']), 0) def test_create_two_networks_in_different_tenants(self): share_nw_dict2 = self.share_nw_dict.copy() share_nw_dict2['id'] = None share_nw_dict2['project_id'] = 'fake project 2' result1 = db_api.share_network_create(self.fake_context, self.share_nw_dict) result2 = db_api.share_network_create(self.fake_context, share_nw_dict2) self._check_fields(expected=self.share_nw_dict, actual=result1) self._check_fields(expected=share_nw_dict2, actual=result2) def test_create_two_networks_in_one_tenant(self): share_nw_dict2 = self.share_nw_dict.copy() share_nw_dict2['id'] = share_nw_dict2['id'] + "suffix" result1 = db_api.share_network_create(self.fake_context, self.share_nw_dict) result2 = db_api.share_network_create(self.fake_context, share_nw_dict2) self._check_fields(expected=self.share_nw_dict, actual=result1) self._check_fields(expected=share_nw_dict2, actual=result2) def test_create_with_duplicated_id(self): db_api.share_network_create(self.fake_context, self.share_nw_dict) self.assertRaises(db_exception.DBDuplicateEntry, db_api.share_network_create, self.fake_context, self.share_nw_dict) def test_get(self): db_api.share_network_create(self.fake_context, self.share_nw_dict) result = db_api.share_network_get(self.fake_context, self.share_nw_dict['id']) self._check_fields(expected=self.share_nw_dict, actual=result) self.assertEqual(len(result['shares']), 0) self.assertEqual(len(result['security_services']), 0) def test_get_with_one_share(self): share_dict1 = {'id': 'fake share id1', 'share_network_id': self.share_nw_dict['id']} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.share_create(self.fake_context, share_dict1) result = db_api.share_network_get(self.fake_context, self.share_nw_dict['id']) self.assertEqual(len(result['shares']), 1) self._check_fields(expected=share_dict1, actual=result['shares'][0]) def test_get_with_two_shares(self): share_dict1 = {'id': 'fake share id1', 'share_network_id': self.share_nw_dict['id']} share_dict2 = {'id': 'fake share id2', 'share_network_id': self.share_nw_dict['id']} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.share_create(self.fake_context, share_dict1) db_api.share_create(self.fake_context, share_dict2) result = db_api.share_network_get(self.fake_context, self.share_nw_dict['id']) self.assertEqual(len(result['shares']), 2) def test_get_with_one_security_service(self): security_dict1 = {'id': 'fake security service id1', 'project_id': self.fake_context.project_id, 'type': 'fake type'} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.security_service_create(self.fake_context, security_dict1) db_api.share_network_add_security_service(self.fake_context, self.share_nw_dict['id'], security_dict1['id']) result = db_api.share_network_get(self.fake_context, self.share_nw_dict['id']) self.assertEqual(len(result['security_services']), 1) self._check_fields(expected=security_dict1, actual=result['security_services'][0]) def test_get_with_two_security_services(self): security_dict1 = {'id': 'fake security service id1', 'project_id': self.fake_context.project_id, 'type': 'fake type'} security_dict2 = {'id': 'fake security service id2', 'project_id': self.fake_context.project_id, 'type': 'fake type'} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.security_service_create(self.fake_context, security_dict1) db_api.security_service_create(self.fake_context, security_dict2) db_api.share_network_add_security_service(self.fake_context, self.share_nw_dict['id'], security_dict1['id']) db_api.share_network_add_security_service(self.fake_context, self.share_nw_dict['id'], security_dict2['id']) result = db_api.share_network_get(self.fake_context, self.share_nw_dict['id']) self.assertEqual(len(result['security_services']), 2) def test_get_not_found(self): self.assertRaises(exception.ShareNetworkNotFound, db_api.share_network_get, self.fake_context, 'fake id') def test_delete(self): db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.share_network_delete(self.fake_context, self.share_nw_dict['id']) self.assertRaises(exception.ShareNetworkNotFound, db_api.share_network_get, self.fake_context, self.share_nw_dict['id']) def test_delete_not_found(self): self.assertRaises(exception.ShareNetworkNotFound, db_api.share_network_delete, self.fake_context, 'fake id') def test_update(self): new_name = 'fake_new_name' db_api.share_network_create(self.fake_context, self.share_nw_dict) result_update = db_api.share_network_update(self.fake_context, self.share_nw_dict['id'], {'name': new_name}) result_get = db_api.share_network_get(self.fake_context, self.share_nw_dict['id']) self.assertEqual(result_update['name'], new_name) self._check_fields(expected=dict(six.iteritems(result_update)), actual=dict(six.iteritems(result_get))) def test_update_not_found(self): self.assertRaises(exception.ShareNetworkNotFound, db_api.share_network_update, self.fake_context, 'fake id', {}) def test_get_all_one_record(self): db_api.share_network_create(self.fake_context, self.share_nw_dict) result = db_api.share_network_get_all(self.fake_context) self.assertEqual(len(result), 1) self._check_fields(expected=self.share_nw_dict, actual=result[0]) def test_get_all_two_records(self): share_nw_dict2 = dict(self.share_nw_dict) share_nw_dict2['id'] = 'fake subnet id2' share_nw_dict2['neutron_subnet_id'] = 'fake subnet id2' db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.share_network_create(self.fake_context, share_nw_dict2) result = db_api.share_network_get_all(self.fake_context) self.assertEqual(len(result), 2) def test_get_all_by_project(self): share_nw_dict2 = dict(self.share_nw_dict) share_nw_dict2['id'] = 'fake share nw id2' share_nw_dict2['project_id'] = 'fake project 2' share_nw_dict2['neutron_subnet_id'] = 'fake subnet id2' db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.share_network_create(self.fake_context, share_nw_dict2) result = db_api.share_network_get_all_by_project( self.fake_context, share_nw_dict2['project_id']) self.assertEqual(len(result), 1) self._check_fields(expected=share_nw_dict2, actual=result[0]) def test_add_security_service(self): security_dict1 = {'id': 'fake security service id1', 'project_id': self.fake_context.project_id, 'type': 'fake type'} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.security_service_create(self.fake_context, security_dict1) db_api.share_network_add_security_service(self.fake_context, self.share_nw_dict['id'], security_dict1['id']) result = sqlalchemy_api.model_query( self.fake_context, models.ShareNetworkSecurityServiceAssociation).\ filter_by(security_service_id=security_dict1['id']).\ filter_by(share_network_id=self.share_nw_dict['id']).first() self.assertTrue(result is not None) def test_add_security_service_not_found_01(self): security_service_id = 'unknown security service' db_api.share_network_create(self.fake_context, self.share_nw_dict) self.assertRaises(exception.SecurityServiceNotFound, db_api.share_network_add_security_service, self.fake_context, self.share_nw_dict['id'], security_service_id) def test_add_security_service_not_found_02(self): security_dict1 = {'id': 'fake security service id1', 'project_id': self.fake_context.project_id, 'type': 'fake type'} share_nw_id = 'unknown share network' db_api.security_service_create(self.fake_context, security_dict1) self.assertRaises(exception.ShareNetworkNotFound, db_api.share_network_add_security_service, self.fake_context, share_nw_id, security_dict1['id']) def test_add_security_service_association_error_already_associated(self): security_dict1 = {'id': 'fake security service id1', 'project_id': self.fake_context.project_id, 'type': 'fake type'} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.security_service_create(self.fake_context, security_dict1) db_api.share_network_add_security_service(self.fake_context, self.share_nw_dict['id'], security_dict1['id']) self.assertRaises( exception.ShareNetworkSecurityServiceAssociationError, db_api.share_network_add_security_service, self.fake_context, self.share_nw_dict['id'], security_dict1['id']) def test_remove_security_service(self): security_dict1 = {'id': 'fake security service id1', 'project_id': self.fake_context.project_id, 'type': 'fake type'} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.security_service_create(self.fake_context, security_dict1) db_api.share_network_add_security_service(self.fake_context, self.share_nw_dict['id'], security_dict1['id']) db_api.share_network_remove_security_service(self.fake_context, self.share_nw_dict['id'], security_dict1['id']) result = sqlalchemy_api.model_query( self.fake_context, models.ShareNetworkSecurityServiceAssociation).\ filter_by(security_service_id=security_dict1['id']).\ filter_by(share_network_id=self.share_nw_dict['id']).first() self.assertTrue(result is None) share_nw_ref = db_api.share_network_get(self.fake_context, self.share_nw_dict['id']) self.assertEqual(len(share_nw_ref['security_services']), 0) def test_remove_security_service_not_found_01(self): security_service_id = 'unknown security service' db_api.share_network_create(self.fake_context, self.share_nw_dict) self.assertRaises(exception.SecurityServiceNotFound, db_api.share_network_remove_security_service, self.fake_context, self.share_nw_dict['id'], security_service_id) def test_remove_security_service_not_found_02(self): security_dict1 = {'id': 'fake security service id1', 'project_id': self.fake_context.project_id, 'type': 'fake type'} share_nw_id = 'unknown share network' db_api.security_service_create(self.fake_context, security_dict1) self.assertRaises(exception.ShareNetworkNotFound, db_api.share_network_remove_security_service, self.fake_context, share_nw_id, security_dict1['id']) def test_remove_security_service_dissociation_error(self): security_dict1 = {'id': 'fake security service id1', 'project_id': self.fake_context.project_id, 'type': 'fake type'} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.security_service_create(self.fake_context, security_dict1) self.assertRaises( exception.ShareNetworkSecurityServiceDissociationError, db_api.share_network_remove_security_service, self.fake_context, self.share_nw_dict['id'], security_dict1['id']) def test_security_services_relation(self): security_dict1 = {'id': 'fake security service id1', 'project_id': self.fake_context.project_id, 'type': 'fake type'} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.security_service_create(self.fake_context, security_dict1) result = db_api.share_network_get(self.fake_context, self.share_nw_dict['id']) self.assertEqual(len(result['security_services']), 0) def test_shares_relation(self): share_dict = {'id': 'fake share id1'} db_api.share_network_create(self.fake_context, self.share_nw_dict) db_api.share_create(self.fake_context, share_dict) result = db_api.share_network_get(self.fake_context, self.share_nw_dict['id']) self.assertEqual(len(result['shares']), 0)
# _*_ coding:utf-8 _*_ import tornado.web import ujson import pymongo import datetime import time import logging from Constant import ConstantVar, SUtils logger = logging.getLogger() class CpReportDetailHandler(tornado.web.RequestHandler): """ report handler for every cid every day post method """ def validate_parameter(self, st, et, t, cids, n, s): """ check param ok or not :param d: date string like 20180101 :param t: time string int(time.time()), len is 10 :param n:nonce not empty :param s:sign string not empty :return: """ if not n or not s: return False if not SUtils.is_time_str(t): return False if st: if not SUtils.is_date_str(st): return False if et: if not SUtils.is_date_str(et): return False if cids: try: tl = eval(cids) if not isinstance(tl, list): return False except Exception as e: return False return True def post(self): """ : http post handler: """ try: SUtils.init() return_val = { 'data': {}, 'status': ConstantVar.st_other, 'msg': '', } logger.info("\n\npost: %s", self.request.body) param_time = self.get_argument('t', '') param_nonce = self.get_argument('n', '') param_sign = self.get_argument('s', '') para_start_date = self.get_argument('start_date', '') para_end_date = self.get_argument('end_date', '') cids_list = self.get_argument('cids', '') crawler_channel = self.get_argument('crawler_channel', '') telecom = self.get_argument('telecom', '') province = self.get_argument('province', '') be_ok = self.validate_parameter(para_start_date, para_end_date, param_time, cids_list, param_nonce, param_sign) if not be_ok: return_val['msg'] = ConstantVar.status_msg[ConstantVar.st_param_error] return_val['status'] = ConstantVar.st_param_error result_str = ujson.encode(return_val, ensure_ascii=False) self.write(result_str) return try: be, desc = SUtils.check_sign(param_time, param_nonce, param_sign) if not be: return_val['msg'] = ConstantVar.status_msg[ConstantVar.st_access_deny] return_val['status'] = ConstantVar.st_access_deny result_str = ujson.encode(return_val, ensure_ascii=False) self.write(result_str) return except Exception as e: logger.error(e) return_val['status'] = ConstantVar.st_other return_val['msg'] = ConstantVar.status_msg[ConstantVar.st_other] result_str = ujson.encode(return_val, ensure_ascii=False) self.write(result_str) return if cids_list: cids_list = eval(cids_list) # deal result = self.deal(para_start_date, para_end_date, cids_list, telecom, province, crawler_channel) # json obj 2 str return_val['data'] = result return_val['status'] = ConstantVar.st_success result_str = ujson.encode(return_val, ensure_ascii=False) self.write(result_str) except Exception as e: logger.error(e) return_val['status'] = ConstantVar.st_other return_val['msg'] = ConstantVar.status_msg[ConstantVar.st_other] result_str = ujson.encode(return_val, ensure_ascii=False) self.write(result_str) def get_pwd_reset_data(self, data, province, telecom, cids_list, para_start_date, para_end_date): """ data like {cid:tel_set} :return:{} like {cid:(pwd_reset_success, pwd_reset_total, pwd_rt_success_pct)} """ logger.info("") result = {} condition = {} if telecom: condition['telecom'] = telecom if province: condition['province'] = province # in tid_info end_time is a string if para_start_date: para_date_timstamp_start = str(time.mktime( datetime.datetime.strptime(para_start_date + "00:00:00", "%Y%m%d%H:%M:%S").timetuple())) condition["end_time"] = {'$gte': para_date_timstamp_start} if para_end_date: para_date_timstamp_end = str(time.mktime( datetime.datetime.strptime(para_end_date + "23:59:59", "%Y%m%d%H:%M:%S").timetuple())) if 'end_time' in condition: condition['end_time']['$lte'] = para_date_timstamp_end else: condition["end_time"] = {'$lte': para_date_timstamp_end} if cids_list: # in tel_info cid's type is int32 condition["cid"] = {'$in': [str(i) for i in cids_list]} logger.info(condition) conn = None try: conn = pymongo.MongoClient(ConstantVar.mongo_db_host, ConstantVar.mongo_db_port) col = conn[ConstantVar.mongo_db_pwd_name][ConstantVar.mongo_db_pwd_col] success_count = 0 all_count = 0 all = col.find(condition, {'end_time': 1, 'tel': 1, 'status': 1, 'cid':1}) for p in all: try: status = p['status'] tel = p['tel'] end_time = int(float(p['end_time'])) end_date = datetime.datetime.fromtimestamp(end_time) end_date = end_date.strftime("%Y%m%d") if not (tel in data.get(end_date, set())): continue if status == 0: success_count += 1 all_count += 1 if all_count != 0: result[end_date] = [success_count, all_count, float(success_count)/all_count] except Exception as e: logger.error("error: %s, data:%s", e, p) return result finally: if conn: conn.close() def get_tel_num(self, mongo_handle, condition): """ :param param_date: :param mongo_handle: :return form sid_info summary tel_num (unique) """ logger.info(condition) ori_sid_info = mongo_handle[ConstantVar.mongo_db_name][ConstantVar.mongo_db_ori_col] if 'rpt_date' in condition: v = condition['rpt_date'] if '$gte' in v: para_date_timstamp_start = time.mktime( datetime.datetime.strptime(v['$gte'] + "00:00:00", "%Y%m%d%H:%M:%S").timetuple()) v['$gte'] = para_date_timstamp_start if '$lte' in v: para_date_timstamp_end = time.mktime( datetime.datetime.strptime(v['$lte'] + "23:59:59", "%Y%m%d%H:%M:%S").timetuple()) v['$lte'] = para_date_timstamp_end condition['end_time'] = v del condition['rpt_date'] if 'cid' in condition: # in [sid_info] cid is a string , should be utf8 string v = condition['cid'] condition['cid'] = [str(i).decode('utf8') for i in v] logger.info(condition) ori_telnums_data = ori_sid_info.find(condition, {'cid': 1, 'tel': 1}) # get realtime data from sid_info cid_tel_data = {} for k in ori_telnums_data: end_time = k.get('end_time', None) if not end_time: continue rpt_date = datetime.datetime.fromtimestamp(end_time) rpt_date = rpt_date.strftime("%Y%m%d") if rpt_date not in cid_tel_data: cid_tel_data[rpt_date] = set() tel = k.get('tel', ConstantVar.other_default_value) if isinstance(tel, dict) or isinstance(tel, list): # tel maybe a dict or list whick can not be add into a set logger.info("tel :%s is not a str", tel) continue cid_tel_data[rpt_date].add(tel) return cid_tel_data def deal(self, para_start_date, para_end_date, cids_list, telecom, province, crawler_channel): """ :param para_date: :return summarize data contail key finally_require_keys finally_require_keys = ['cid', 'total_nums', 'authen_nums', 'crawl_nums', 'report_nums', 'tel_nums', 'authen_pct', 'crawl_pct', 'report_pct', 'log_loss_pct', 'tel_num_diff'] """ logger.info("") mongo_handle = None try: # get data from mongodb # get summarize data from rpt table mongo_handle = pymongo.MongoClient(ConstantVar.mongo_db_host, ConstantVar.mongo_db_port) rpt_collection = mongo_handle[ConstantVar.mongo_db_name][ConstantVar.mongo_db_rpt_col] condition = {} if telecom: condition['telecom'] = telecom if province: condition['province'] = province if crawler_channel: condition['crawler_channel'] = crawler_channel if para_start_date: condition["rpt_date"] = {'$gte': para_start_date} if para_end_date: if 'rpt_date' in condition: condition['rpt_date']['$lte'] = para_end_date else: condition["rpt_date"] = {'$lte': para_end_date} if cids_list: # in sid_info_data_rpt cid's type is int32 cids_list = [int(k) for k in cids_list] condition["cid"] = {'$in': cids_list} logger.info(condition) one_day_rpt = rpt_collection.find(condition) # get data realtime data from sid_info all_tmp_data = {} # maybe multi cid(every cid one result) # maybe multi rows return from mongo (sum them) for k in one_day_rpt: rpt_date = k['rpt_date'] if rpt_date not in all_tmp_data: all_tmp_data[rpt_date] = { 'total_nums': k.get('total_nums', 0), 'authen_nums': k.get('authen_nums', 0), 'crawl_nums': k.get('crawl_nums', 0), 'report_nums': k.get('report_nums', 0), 'final_nums': k.get('final_nums', 0), 'call_log_intact_nums': k.get('call_log_intact_nums', 0), 'bill_intact_nums': k.get('bill_intact_nums', 0), 'date': rpt_date, 'log_loss_pct': 0, 'bill_loss_pct': 0, 'tel_num': 0, 'pwd_rt_success': 0, 'pwd_rt_total': 0, 'pwd_rt_pct': 0, } else: all_tmp_data[rpt_date]['total_nums'] += k.get('total_nums', 0) all_tmp_data[rpt_date]['authen_nums'] += k.get('authen_nums', 0) all_tmp_data[rpt_date]['crawl_nums'] += k.get('crawl_nums', 0) all_tmp_data[rpt_date]['report_nums'] += k.get('report_nums', 0) all_tmp_data[rpt_date]['call_log_intact_nums'] += k.get('call_log_intact_nums', 0) all_tmp_data[rpt_date]['bill_intact_nums'] += k.get('bill_intact_nums', 0) all_tmp_data[rpt_date]['final_nums'] += k.get('final_nums', 0) # get all tel num all_tel_num_data = self.get_tel_num(mongo_handle, condition) pwd_result = self.get_pwd_reset_data(all_tel_num_data, province, telecom, cids_list, para_start_date, para_end_date) # calc all pct for rpt_date in all_tmp_data: v = all_tmp_data[rpt_date] if v['total_nums'] == 0: v['authen_pct'] = 0 else: v['authen_pct'] = float(v['authen_nums']) / v['total_nums'] if v['authen_nums'] == 0: v['crawl_pct'] = 0 else: v['crawl_pct'] = float(v['crawl_nums']) / v['authen_nums'] if v['crawl_nums'] == 0: v['report_pct'] = 0 else: v['report_pct'] = float(v['report_nums']) / v['crawl_nums'] if v['final_nums'] == 0: v['log_loss_pct'] = 0 v['bill_loss_pct'] = 0 else: v['log_loss_pct'] = 1 - float(v['call_log_intact_nums']) / v['final_nums'] v['bill_loss_pct'] = 1 - float(v['bill_intact_nums']) / v['final_nums'] v['tel_num'] = len(all_tel_num_data.get(rpt_date, set())) pwd_data = pwd_result.get(rpt_date, [0, 0, 0]) v['pwd_rt_success'], v['pwd_rt_total'], v['pwd_rt_pct'] = pwd_data except Exception as e: logger.error(e) finally: if mongo_handle: mongo_handle.close() return all_tmp_data
#!/usr/bin/python import csv def comma_decimal(val): return float(val.replace(",", ".")) def comma_decimal_formatter(val): return str(val).replace(".", ",") class CSVError(Exception): pass class CSVHeaderError(CSVError): def __init__(self, expected, actual): CSVError.__init__(self, "Invalid header") self.expected = expected self.actual = actual class CSVFieldError(CSVError): def __init__(self, field, file=None): if file is None: CSVError.__init__(self, "Unknown field '%s'" % field) else: CSVError.__init__(self, "Unknown field '%s' in file '%s'" % (field, file)) class CSVMod(object): def __init__(self, controller): self.controller = controller def start(self): reader = self.controller.reader reader.begin() writer = self.controller.writer writer.begin() writer.writeheader() for data in reader: row = reader.create_row(data) update = self.controller.handle(row) self.controller.post_progress(row) if update is None: update = row.is_changed if update: writer.write(row.fields) self.controller.finish() class CSVRow(object): """ :type joins: dict """ def __init__(self, fields, joins, aliases: dict, file_name=None): self.fields = fields self.origin = dict(fields) self.joins = joins self.aliases = aliases self.file_name = file_name def __getitem__(self, item): return self.fields[self._get_field_name(item, True)] def __setitem__(self, key, value): getattr(self, "fields")[self._get_field_name(key, False)] = value def __repr__(self): return str(self.fields) def _get_field_name(self, key, strict=True) -> str: if key in self.fields: return key if key in self.aliases: return self.aliases[key] if strict: raise CSVFieldError(key, file=self.file_name) else: return key @property def is_changed(self) -> bool: return self.origin != self.fields def join(self, name, field=None): """ :rtype: CSVRow """ try: join = self.joins[name] except KeyError: raise CSVError("Unknown join '%s'" % name) joint = join.auto_join(self) if joint is None: return None if field is not None: return joint[field] return joint def has_join(self, name) -> bool: return name in self.joins.keys() class CSVFile(object): def __init__(self, **kwargs): self._fields = list() self.file_name = kwargs.pop("file") self.file_handle = None self.format = dict(delimiter=";", quotechar='"') self.encoding = kwargs.pop("encoding", "utf-8") self.aliases = kwargs.pop("aliases", dict()) self.fields = kwargs.pop("fields", list()) self.converter = kwargs.pop("converter", dict()) self.base_csv = None self.name = kwargs.pop("name", None) if "format" in kwargs: self.format.update(kwargs.pop("format")) if len(kwargs) > 0: raise KeyError("Invalid option: %s" % ", ".join(kwargs.keys())) @property def fields(self): return self._fields @fields.setter def fields(self, lst): fields = list() for field in lst: if field in self.aliases: fields.append(self.aliases[field]) else: fields.append(field) self._fields = fields def begin(self): pass def end(self): self.file_handle.close() def _reduce_fields(self, row: dict) -> dict: return {k: v for k, v in row.items() if k in self.fields} class CSVReadFile(CSVFile): def __init__(self, **kwargs): self._joins = dict() self.joins = kwargs.pop("joins", list()) super().__init__(**kwargs) @property def joins(self): return self._joins @joins.setter def joins(self, joins): if not hasattr(joins, "__iter__"): joins = (joins, ) self._joins = dict() for join in joins: self._joins[join.name] = join def __iter__(self): return self.base_csv def check_header(self, header): if self.fields is None: return True header = list(header) fields = list(self.fields) for field in fields: if field not in header: raise CSVHeaderError(field, header) return True def create_row(self, data) -> CSVRow: for field, converter in self.converter.items(): data[field] = converter(data[field]) return CSVRow(self._reduce_fields(data), self.joins, self.aliases, self.name) @property def reader(self) -> csv.DictReader: if not self.base_csv: self.file_handle = open(self.file_name, "r", encoding=self.encoding) self.base_csv = csv.DictReader(self.file_handle, **self.format) return self.base_csv def begin(self): if self.fields is None: self.fields = self.reader.fieldnames else: self.check_header(self.reader.fieldnames) for join in self.joins.values(): join.begin() def end(self): super().end() for join in self.joins.values(): join.end() class CSVWriteFile(CSVFile): def __init__(self, **kwargs): self.formatter = kwargs.pop("formatter", dict()) if "name" not in kwargs: kwargs["name"] = "target" super().__init__(**kwargs) @property def writer(self) -> csv.DictWriter: if not self.base_csv: self.file_handle = open(self.file_name, "w", encoding=self.encoding) self.base_csv = csv.DictWriter(self.file_handle, self.fields, **self.format) return self.base_csv @CSVFile.fields.setter def fields(self, val): self._fields = val def write(self, data): data = dict(data) for field, formatter in self.formatter.items(): data[field] = formatter(data[field]) self.writer.writerow(self._reduce_fields(data)) def writeheader(self): self.writer.writeheader() def _reduce_fields(self, row: dict): result = dict() for k, v in row.items(): if k in self.fields: result[k] = v if k in self.aliases: result[self.aliases[k]] = v return result class JoinCSV(CSVReadFile): def __init__(self, **kwargs): self.local_field = kwargs.pop("local") self.join_field = kwargs.pop("remote") self.cache_enabled = kwargs.pop("cache", True) self.cache = dict() if "name" not in kwargs: kwargs["name"] = kwargs["file"] super().__init__(**kwargs) def get_row(self, criteria) -> CSVRow: if self.cache_enabled: f = self.get_row_cached else: f = self.get_row_uncached data = f(criteria) return data def get_row_uncached(self, criteria) -> dict: for row in self.reader: if self._is_match(row, criteria): return self.create_row(row) def get_row_cached(self, criteria) -> dict: if criteria in self.cache: return self.cache[criteria] for row in self.reader: r = self.create_row(row) self.cache[row[self.join_field]] = r if self._is_match(r, criteria): return r def auto_join(self, row: CSVRow) -> CSVRow: criteria = row[self.local_field] return self.get_row(criteria) def _is_match(self, row, criteria) -> bool: return row[self.join_field] == criteria class Statistics(object): class Counter(object): def __init__(self, allow_negative=True): self.slots = dict() self.allow_negative = allow_negative def plus(self, slot, n=1): try: self.slots[slot] += n except KeyError: self.slots[slot] = n if not self.allow_negative and self[slot] < 0: self.slots[slot] = 0 def minus(self, slot, n=1): self.plus(slot, -n) def __getitem__(self, item): return self.slots.get(item, 0) def __init__(self): self.changes = {} self.rows = 0 def process(self, data): changed = False for field in data.origin.keys(): if data.origin[field] != data[field]: changed = True self._incr("changes", field) if changed: self.rows += 1 def finish(self): import operator print("Finished, modified %d rows." % self.rows) s = sorted(self.changes.items(), key=operator.itemgetter(1)) for field, changes in s: print("%6d %s" % (changes, field)) def _incr(self, prop, index, n=1): try: self.__dict__[prop][index] += n except KeyError: self.__dict__[prop][index] = n class Controller(object): statistics = [Statistics()] settings = dict() output = dict() def __init__(self, input_file=None, output_file=None): if input_file is not None: self.settings["file"] = input_file if output_file is not None: self.output["file"] = output_file self._reader = None self._writer = None def handle(self, data): pass @property def reader(self) -> CSVReadFile: if not self._reader: if "name" not in self.settings: self.settings["name"] = "main" self._reader = CSVReadFile(**self.settings) return self._reader @property def writer(self) -> CSVWriteFile: if not self._writer: opts = dict(self.output) if opts.get("fields") is None: opts["fields"] = self.reader.fields if "name" not in opts: opts["name"] = "main" self._writer = CSVWriteFile(**opts) return self._writer def post_progress(self, data): for stat in self.statistics: stat.process(data) def finish(self): self._reader.end() for stat in self.statistics: stat.finish() if __name__ == "__main__": from sys import argv, path from os import getcwd def import_controller(name): components = name.split('.') module = __import__(components[0]) for comp in components[1:]: module = getattr(module, comp) return module if len(argv) != 4: print("Usage: %s <controller> <input> <output>" % argv[0]) exit(1) controller_name = argv[1] read_file = argv[2] write_file = argv[3] path.append(getcwd()) chosen_controller = import_controller(controller_name) mod = CSVMod(chosen_controller(read_file, write_file)) try: mod.start() except CSVHeaderError as e: print("Unexpected header detected.") print(e.expected) print(e.actual)
#!/usr/bin/python # Author: Brian Kellogg # Version: 1.4 # # Bro Intel file MUST have the below header and it MUST be TAB DELIMITED # #fields indicator indicator_type meta.source meta.desc meta.url meta.do_notice meta.if_in # # This script was written for Bro and OSSEC intel file updates on SecurityOnion import sys from subprocess import call import ConfigParser import re import os from shutil import copy # string colorization # from http://korbinin.blogspot.com/2012/10/color-text-output-from-python.html def hilite(string, status, bold): attr = [] if sys.stdout.isatty(): if status == 'g': # green attr.append('32') elif status == 'r': # red attr.append('31') elif status == 'y': # yellow attr.append('33') elif status == 'b': # blue attr.append('34') elif status == 'm': # magenta attr.append('35') if bold: attr.append('1') return '\x1b[%sm%s\x1b[0m' % (';'.join(attr), string) else: return string # check if file exists and is writeable # if file does not exist then ask to create it otherwise exit def exists_and_writable(intel_file): if os.path.isfile(intel_file): try: with open(intel_file, 'a+') as f: f.closed except IOError: print(hilite("\nFile, %s, is not writeable!\n", "r", True) % intel_file) exit(4) elif "bro" in intel_file: print(hilite("\nBro intel file, %s, does not exist!\n", "r", True) % intel_file) create = raw_input("Create intel file (y/n)? ") if create == 'y': try: with open(intel_file, 'w+') as f: f.write('#fields\tindicator\tindicator_type\tmeta.source\tmeta.desc\tmeta.url\tmeta.do_notice\tmeta.if_in\n') except IOError: print(hilite("\nCould not create file!\n", "r", True)) exit(4) else: exit(0) elif "ossec" in intel_file: print(hilite("\nOSSEC intel file, %s, does not exist!\n", "r", True) % intel_file) create = raw_input("Create intel file (y/n)? ") if create == 'y': try: with open(intel_file, 'w+') as f: f.closed except IOError: print(hilite("\nCould not create file!\n", "r", True)) exit(4) else: exit(0) # check if file is executable def is_executable(program): def is_exe(file_path): return os.path.isfile(file_path) and os.access(file_path, os.X_OK) if is_exe(program): return program else: print(hilite("\n%s is not executable or does not exist!\n", "r", True) % program) exit(4) # clean up duplicate lines in intel files def remove_duplicate_lines(intel_file): # backup intel files before any modifications by script copy(intel_file, BACKUP_DIR) lines_seen = set() # holds lines already seen with open(intel_file, 'r') as f: lines = f.readlines() with open(intel_file, 'w') as f: for line in lines: if line not in lines_seen: # not a duplicate f.write(line) lines_seen.add(line) # clean up OSSEC intel file by removing any complete /24s and adding the three octet equivalent def ossec_collapse_full_nets(addr, source, intel_file): count = 0 with open(intel_file, 'r') as f: lines = f.readlines() for line in lines: if addr in line: count += 1 if count > 255: delete_ip(addr, 0, 255, intel_file) add_ip(addr, 0, 255, source, None, None, None, None, OSSEC_IP_FILE) # add IP(s) to intel file def add_ip(addr, start_ip, end_ip, source, desc, url, notice, if_in, intel_file): with open(intel_file, 'a+') as f: lines = f.readlines() ossec_full_range = addr + ":" found = False # if adding a /24 to ossec then no need to add each individual IP if "ossec" in intel_file: for line in lines: # did we intially add a /24 to the OSSEC intel file? if ossec_full_range in line: print(hilite("%s already exists in %s!", "r", True) % (line, intel_file)) found = True break if not found and start_ip == 0 and end_ip == 255: # remove any existing IPs in this range from the OSSEC intel file delete_ip(addr, start_ip, end_ip, intel_file) f.write('%s:%s\n' % (addr, source)) print(hilite("Added %s to %s", "y", True) % (addr, intel_file)) # since we are adding a /24 lets not trigger the next if clause found = True if not found: for last_octet in range(start_ip, end_ip + 1): found = False for line in lines: if addr in line: if "ossec" in intel_file: temp = line.split(":") else: temp = line.split('\t') temp = temp[0].split(".") temp = int(temp[3]) if last_octet == temp: print(hilite("%s already exists in %s!", "r", True) % (line, intel_file)) found = True break if "ossec" not in intel_file and not found: f.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\n' % (addr + str(last_octet), "Intel::ADDR", source, desc, url, notice, if_in)) print(hilite("Added %s to %s", "y", True) % (addr + str(last_octet), intel_file)) elif not found: f.write('%s:%s\n' % (addr + str(last_octet), source)) print(hilite("Added %s to %s", "y", True) % (addr + str(last_octet), intel_file)) # lets see if we can take this /24 and rewrite it in the OSSEC short form if "ossec" in intel_file: ossec_collapse_full_nets(addr, source, intel_file) # remove IP(s) from intel file def delete_ip(addr, start_ip, end_ip, intel_file): with open(intel_file, 'r') as f: lines = f.readlines() with open(intel_file, 'w') as f: ossec_full_range = addr + ":" ossec_add_ip_ranges = False for line in lines: found = False # did we initially add a /24 to the OSSEC intel file? if ("ossec" in intel_file) and (ossec_full_range in line): print(hilite("Removed %s from %s!", "y", True) % (addr, intel_file)) # pull out what is after the : so that we can reuse it if we need to add some of the range back in source = line.split(":") # remove newlines source = source[1].rstrip('\n') ossec_add_ip_ranges = True found = True elif addr in line: if "ossec" in intel_file: last_octet = line.split(":") else: last_octet = line.split('\t') last_octet = last_octet[0].split(".") last_octet = int(last_octet[3]) if start_ip <= last_octet <= end_ip: print(hilite("Removed %s from %s!", "y", True) % (addr + str(last_octet), intel_file)) found = True # write line back to file if not found if not found: f.write(line) # if we removed a /24 from the OSSEC intel file and we need to add back some of that /24 range lets do that if ossec_add_ip_ranges and start_ip != 0 and end_ip != 255: if start_ip == 0: start = end_ip + 1 end = 255 elif end_ip == 255: start = 0 end = start_ip - 1 else: start = 0 end = start_ip - 1 add_ip(addr, start, end, source, None, None, None, None, OSSEC_IP_FILE) start = end_ip + 1 end = 255 add_ip(addr, start, end, source, None, None, None, None, OSSEC_IP_FILE) # choose where Bro is to look for the intel def get_if_in(): cont = True while cont: print(""" Choose where to look for intel: Hit enter for default of (-) ******************************** 1. Conn::IN_ORIG 2. Conn::IN_RESP 3. Files::IN_HASH 4. Files::IN_NAME 5. DNS::IN_REQUEST 6. DNS::IN_RESPONSE 7. HTTP::IN_HOST_HEADER 8. HTTP::IN_REFERRER_HEADER 9. HTTP::IN_USER_AGENT_HEADER 10. HTTP::IN_X_FORWARDED_FOR_HEADER 11. HTTP::IN_URL 12. SMTP::IN_MAIL_FROM 13. SMTP::IN_RCPT_TO 14. SMTP::IN_FROM 15. SMTP::IN_TO 16. SMTP::IN_RECEIVED_HEADER 17. SMTP::IN_REPLY_TO 18. SMTP::IN_X_ORIGINATING_IP_HEADER 19. SMTP::IN_MESSAGE 20. SSL::IN_SERVER_CERT 21. SSL::IN_CLIENT_CERT 22. SSL::IN_SERVER_NAME 23. SMTP::IN_HEADER 24. Leave Blank """) ans = raw_input("Choice (-)? ") if ans == "1": return "Conn::IN_ORIG" elif ans == "2": return "Conn::IN_RESP" elif ans == "3": return "Files::IN_HASH" elif ans == "4": return "Files::IN_NAME" elif ans == "5": return "DNS::IN_REQUEST" elif ans == "6": return "DNS::IN_RESPONSE" elif ans == "7": return "HTTP::IN_HOST_HEADER" elif ans == "8": return "HTTP::IN_REFERRER_HEADER" elif ans == "9": return "HTTP::IN_USER_AGENT_HEADER" elif ans == "10": return "HTTP::IN_X_FORWARDED_FOR_HEADER" elif ans == "11": return "HTTP::IN_URL" elif ans == "12": return "SMTP::IN_MAIL_FROM" elif ans == "13": return "SMTP::IN_RCPT_TO" elif ans == "14": return "SMTP::IN_FROM" elif ans == "15": return "SMTP::IN_TO" elif ans == "16": return "SMTP::IN_RECEIVED_HEADER" elif ans == "17": return "SMTP::IN_REPLY_TO" elif ans == "18": return "SMTP::IN_X_ORIGINATING_IP_HEADER" elif ans == "19": return "SMTP::IN_MESSAGE" elif ans == "20": return "SSL::IN_SERVER_CERT" elif ans == "21": return "SSL::IN_CLIENT_CERT" elif ans == "22": return "SSL::IN_SERVER_NAME" elif ans == "23": return "SMTP::IN_HEADER" elif ans == "24": return "-" else: return "-" # get all the info needed to add the intel def get_info(): desc = raw_input("Description? ") if not desc: desc = "-" source = raw_input("Source (drc)? ") if not source: source = "drc" url = raw_input("URL? ") if not url: url = "-" notice = raw_input("Do notice (T)? ") notice = notice.upper() if notice != "T" or notice != "F": notice = "T" if_in = get_if_in() return source, desc, url, notice, if_in # get the information to add or remove intel then perform the specified operation def misc_intel(op, header, type, intel_file): print("\n%s" % header) print("----------------------------") intel = raw_input("Intel? ") source, desc, url, notice, if_in = get_info() if op == "add": add_misc_intel(type, intel, intel_file, source, desc, url, notice, if_in) else: delete_misc_intel(intel, intel_file) return intel # add all other types of intel def add_misc_intel(intel_type, intel, intel_file, source, desc, url, notice, if_in): with open(intel_file, 'a+') as f: lines = f.readlines() # Lets see if this intel is already in the file for line in lines: if intel in line: print(hilite("%s already exists in file!", "r", True) % intel) # if we get a match then exit return # write line to file if not found # how we write to the file is dependent on if it is an OSSEC intel file or a Bro intel file if "ossec" in intel_file: f.write('%s:drc\n' % intel) else: f.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\n' % (intel, intel_type, source, desc, url, notice, if_in)) print(hilite("Added %s to %s", "y", True) % (intel, intel_file)) # remove misc intel type def delete_misc_intel(intel, intel_file): with open(intel_file, 'r') as f: lines = f.readlines() # open intel file for writing with open(intel_file, 'w') as f: found = False for line in lines: # skip matching line we want to remove if intel in line: found = True print(hilite("Removed %s from %s!", "y", True) % (intel, intel_file)) continue # write line back to file if not a match f.write(line) if not found: print(hilite("%s not found int %s", "y", True) % (intel, intel_file)) # Get user input and run correct function to add or remove intel IP def do_ip(header, question, single_ip, ip_add): print("\n%s" % header) print("----------------------------") addr = raw_input("First three octets including the trailing . ? ") # need to convert beginning IP to int for comparison start_ip = int(raw_input(question)) # if singleIP is TRUE then then set endIP = begIP if single_ip: end_ip = start_ip else: # need to convert ending IP to int for comparison end_ip = int(raw_input("Last IP in last octet? ")) # is the IP information valid, if not return to main menu if start_ip < 0 or end_ip > 255 or not (re.match(IP_REGEX, addr)): print(hilite("\n\nInvalid IP information.", "r", True)) return if ip_add: source, desc, url, notice, if_in = get_info() print(hilite("\n------------RESULTS---------------", "y", True)) if ip_add: add_ip(addr, start_ip, end_ip, source, desc, url, notice, if_in, BRO_INTEL_FILE) add_ip(addr, start_ip, end_ip, source, desc, url, notice, if_in, OSSEC_IP_FILE) else: delete_ip(addr, start_ip, end_ip, BRO_INTEL_FILE) delete_ip(addr, start_ip, end_ip, OSSEC_IP_FILE) call(OSSEC_MAKELISTS) def main_menu(): loop = True while loop: print(""" Intel Update: ############################## 1. Add single intel IP 2. Add range of intel IPs 3. Remove single intel IP 4. Remove range of intel IPs 5. Add URL 6. Remove URL 7. Add Software 8. Remove Software 9. Add Email 10. Remove Email 11. Add Domain 12. Remove Domain 13. Add Username 14. Remove Username 15. Add File Hash 16. Remove File Hash 17. Add File Name 18. Remove File Name 19. Add Cert Hash 20. Remove Cert Hash q. Quit ############################## """) choice = raw_input("Choice? ") if choice == "1": do_ip("\nAdd single intel IP:", "Last octet? ", True, True) elif choice == "2": do_ip("\nAdd range of intel IPs:", "First IP in last octet? ", False, True) elif choice == "3": do_ip("\nRemove single intel IP:", "Last octet? ", True, False) elif choice == "4": do_ip("\nRemove range of intel IPs:", "First IP in last octet? ", False, False) elif choice == "5": misc_intel("add", "\nAdd URL:", "Intel::URL", BRO_INTEL_FILE) elif choice == "6": misc_intel("rem", "\nRemove URL:", None, BRO_INTEL_FILE) elif choice == "7": misc_intel("add", "\nAdd software:", "Intel::SOFTWARE", BRO_INTEL_FILE) elif choice == "8": misc_intel("rem", "\nRemove software:", None, BRO_INTEL_FILE) elif choice == "9": misc_intel("add", "\nAdd Email:", "Intel::EMAIL", BRO_INTEL_FILE) elif choice == "10": misc_intel("rem", "\nRemove Email:", None, BRO_INTEL_FILE) elif choice == "11": intel = misc_intel("add", "\nAdd domain:", "Intel::DOMAIN", BRO_INTEL_FILE) add_misc_intel(None, intel, OSSEC_DNS_FILE, None, None, None, None, None) call(OSSEC_MAKELISTS) elif choice == "12": intel = misc_intel("rem", "\nRemove domain:", None, BRO_INTEL_FILE) delete_misc_intel(intel, OSSEC_DNS_FILE) call(OSSEC_MAKELISTS) elif choice == "13": intel = misc_intel("add", "\nAdd username:", "Intel::USER_NAME", BRO_INTEL_FILE) add_misc_intel(None, intel, OSSEC_USERS_FILE, None, None, None, None, None) call(OSSEC_MAKELISTS) elif choice == "14": intel = misc_intel("rem", "\nRemove username:", None, BRO_INTEL_FILE) delete_misc_intel(intel, OSSEC_USERS_FILE) call(OSSEC_MAKELISTS) elif choice == "15": misc_intel("add", "\nAdd file hash:", "Intel::FILE_HASH", BRO_INTEL_FILE) elif choice == "16": misc_intel("rem", "\nRemove file hash:", None, BRO_INTEL_FILE) elif choice == "17": misc_intel("add", "\nAdd file name:", "Intel::FILE_NAME", BRO_INTEL_FILE) elif choice == "18": misc_intel("rem", "\nRemove file name:", None, BRO_INTEL_FILE) elif choice == "19": misc_intel("add", "\nAdd Cert hash:", "Intel::CERT_HASH", BRO_INTEL_FILE) elif choice == "20": misc_intel("rem", "\nRemove Cert hash:", None, BRO_INTEL_FILE) elif choice == "q": exit(0) else: print(hilite("\nInvalid input!", "r", True)) def main(): usage = """ usage: %prog Update the modIntel.conf file to point to your Bro and OSSEC intel files. The modIntel.conf file must reside in the same directory or modify this script with the location you placed it in. Header of the intel file must be: #fields\tindicator\tindicator_type\tmeta.source\tmeta.desc\tmeta.url\tmeta.do_notice\tmeta.if_in Remember Bro intel files MUST be tab delimited!!! Any Bro intel file must be loaded into Bro to be used. Example, add below to /opt/bro/share/bro/site/local.bro in order to load the your intel1.txt custom file: redef Intel::read_files += { "/opt/bro/share/bro/policy/intel1.txt", }; Bro adds new intel but does not remove without a restart: sudo broctl install sudo broctl restart or sudo nsme_sensor_ps-restart --only-bro The script will also run the ossec-makelists command to compile any updated CDB files. The script, before performing any other action on intel files, will backup all intel files to the specified location in modIntel.conf. The script will also parse all intel files for duplicates upon startup. The script does its best to honor OSSEC's ability to specify IPs at the octet boundaries but only for /24s. Logic is not included for /8s or /16s. """ if len(sys.argv) > 1: print(hilite("\n%s", "r", True) % usage) # globals to hold Bro and OSSEC intel file locations global IP_REGEX, BRO_INTEL_FILE, OSSEC_IP_FILE, OSSEC_DNS_FILE, OSSEC_MAKELISTS, OSSEC_USERS_FILE, BACKUP_DIR # regex to match first three octets of IP including trailing "." IP_REGEX = re.compile("^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.$") # read in configs config = ConfigParser.ConfigParser() config.readfp(open(r'modIntel.conf')) BRO_INTEL_FILE = config.get('files', 'bro') OSSEC_IP_FILE = config.get('files', 'ossecIP') OSSEC_DNS_FILE = config.get('files', 'ossecDNS') OSSEC_USERS_FILE = config.get('files', 'ossecUsers') OSSEC_MAKELISTS = config.get('files', 'ossecMLISTS') BACKUP_DIR = config.get('files', 'backupDir') if not os.access(BACKUP_DIR, os.W_OK): print(hilite("\n%s is not writeable or does not exist!\nPlease check your configuration.\n", "r", True) % BACKUP_DIR) exit(4) # tuple of files to check for exist, write access, and duplicate lines check_files = BRO_INTEL_FILE, OSSEC_IP_FILE, OSSEC_DNS_FILE, OSSEC_USERS_FILE for check in check_files: exists_and_writable(check) remove_duplicate_lines(check) # is the OSSEC CDB compiler there and executable is_executable(OSSEC_MAKELISTS) # compile OSSEC CDBs in case they were modified by the above duplicate checks call(OSSEC_MAKELISTS) # goto main menu main_menu() if __name__ == '__main__': main()
from topaz.objects.fileobject import FNM_NOESCAPE, FNM_DOTMATCH from topaz.objects.regexpobject import RegexpCache from topaz.utils.glob import Glob from ..base import BaseTopazTest class GlobHelper(object): def __init__(self, space, tmpdir, monkeypatch): self.space = space self.tmpdir = tmpdir monkeypatch.chdir(tmpdir) def create_paths(self, mock_files): for path in mock_files: self.tmpdir.join(path).ensure() def glob(self, pattern, flags=0): glob = Glob(self.space.fromcache(RegexpCache)) glob.glob(pattern, flags) return glob.matches() def sglob(self, pattern, flags=0): return sorted(self.glob(pattern, flags)) def pytest_funcarg__glob_helper(request): space = request.getfuncargvalue("space") tmpdir = request.getfuncargvalue("tmpdir") monkeypatch = request.getfuncargvalue("monkeypatch") return GlobHelper(space, tmpdir, monkeypatch) class TestGlob(BaseTopazTest): """ These tests are almost entirely copied from rubyspec. They are included separately here because globs are required for running specs. """ def test_absolute(self, glob_helper): assert glob_helper.glob("/") == ["/"] def test_non_dotfiles_with_star(self, glob_helper): glob_helper.create_paths([ ".dotfile", ".dotsubdir/.dotfile", ".dotsubdir/nondotfile", "file_one.ext", "file_two.ext", "nondotfile" ]) assert glob_helper.sglob("*") == [ "file_one.ext", "file_two.ext", "nondotfile" ] assert glob_helper.sglob("**") == [ "file_one.ext", "file_two.ext", "nondotfile"] assert glob_helper.sglob("*file") == ["nondotfile"] def test_dotfiles_with_star(self, glob_helper): glob_helper.create_paths([ ".dotfile", ".dotsubdir/.dotfile", ".dotsubdir/nondotfile", "file_one.ext", "file_two.ext", "nondotfile" ]) assert glob_helper.sglob(".*") == [".", "..", ".dotfile", ".dotsubdir"] assert glob_helper.sglob(".**") == [ ".", "..", ".dotfile", ".dotsubdir" ] assert glob_helper.sglob(".*file") == [".dotfile"] def test_empty_pattern_no_matches(self, glob_helper): assert glob_helper.glob("") == [] def test_regexp_specials(self, glob_helper): glob_helper.create_paths([ "special/+", "special/^", "special/$", "special/(", "special/)", "special/[", "special/]", "special/{", "special/}" ]) assert glob_helper.glob("special/+") == ["special/+"] assert glob_helper.glob("special/^") == ["special/^"] assert glob_helper.glob("special/$") == ["special/$"] assert glob_helper.glob("special/(") == ["special/("] assert glob_helper.glob("special/)") == ["special/)"] assert glob_helper.glob("special/\\[") == ["special/["] assert glob_helper.glob("special/]") == ["special/]"] assert glob_helper.glob("special/\\{") == ["special/{"] assert glob_helper.glob("special/\\}") == ["special/}"] # TODO: Skip these on Windows glob_helper.create_paths(["special/*", "special/?", "special/|"]) assert glob_helper.glob("special/\\*") == ["special/*"] assert glob_helper.glob("special/\\?") == ["special/?"] assert glob_helper.glob("special/|") == ["special/|"] def test_matches_paths_with_globs(self, glob_helper): glob_helper.create_paths(["special/test{1}/file[1]"]) assert glob_helper.glob("special/test\\{1\\}/*") == [ "special/test{1}/file[1]" ] def test_dstar_recursion(self, glob_helper): glob_helper.create_paths([ ".dotfile", ".dotsubdir/.dotfile", ".dotsubdir/nondotfile", "file_one.ext", "file_two.ext", "nondotfile", "subdir_one/.dotfile", "subdir_one/nondotfile", "subdir_two/nondotfile", "subdir_two/nondotfile.ext", "deeply/.dotfile", "deeply/nested/.dotfile.ext", "deeply/nested/directory/structure/.ext", "deeply/nested/directory/structure/file_one", "deeply/nested/directory/structure/file_one.ext", "deeply/nested/directory/structure/foo", "deeply/nondotfile" ]) assert glob_helper.sglob("**/") == [ "deeply/", "deeply/nested/", "deeply/nested/directory/", "deeply/nested/directory/structure/", "subdir_one/", "subdir_two/" ] assert glob_helper.sglob("**/*fil*") == [ "deeply/nested/directory/structure/file_one", "deeply/nested/directory/structure/file_one.ext", "deeply/nondotfile", "file_one.ext", "file_two.ext", "nondotfile", "subdir_one/nondotfile", "subdir_two/nondotfile", "subdir_two/nondotfile.ext" ] def test_question_mark(self, glob_helper): glob_helper.create_paths(["subdir_one", "subdir_two"]) assert glob_helper.sglob("?ubdir_one") == ["subdir_one"] assert glob_helper.sglob("subdir_???") == ["subdir_one", "subdir_two"] def test_character_group(self, glob_helper): glob_helper.create_paths(["subdir_one", "subdir_two"]) assert glob_helper.sglob("[stfu]ubdir_one") == ["subdir_one"] assert glob_helper.sglob("[A-Za-z]ubdir_one") == ["subdir_one"] assert glob_helper.sglob("subdir_[a-z][a-z][a-z]") == [ "subdir_one", "subdir_two" ] def test_negated_character_group(self, glob_helper): glob_helper.create_paths(["subdir_one", "subdir_two"]) assert glob_helper.sglob("[^stfu]ubdir_one") == [] assert glob_helper.sglob("[^wtf]ubdir_one") == ["subdir_one"] assert glob_helper.sglob("[^a-zA-Z]ubdir_one") == [] assert glob_helper.sglob("[^0-9a-fA-F]ubdir_one") == ["subdir_one"] def test_braces(self, glob_helper): glob_helper.create_paths([ ".dotfile", ".dotsubdir/.dotfile", ".dotsubdir/nondotfile", "subdir_one/.dotfile", "subdir_one/nondotfile", "subdir_two/nondotfile", "subdir_two/nondotfile.ext" ]) assert glob_helper.sglob("subdir_{one,two,three}") == [ "subdir_one", "subdir_two" ] assert glob_helper.sglob("sub*_{one,two,three}") == [ "subdir_one", "subdir_two" ] assert glob_helper.sglob("subdir_two/nondotfile{.ext,}") == [ "subdir_two/nondotfile", "subdir_two/nondotfile.ext" ] assert glob_helper.sglob("{,.}*") == [ ".", "..", ".dotfile", ".dotsubdir", "subdir_one", "subdir_two" ] def test_braces_ordering(self, glob_helper): glob_helper.create_paths([ "brace/a", "brace/a.js", "brace/a.erb", "brace/a.js.rjs", "brace/a.html.erb" ]) assert glob_helper.glob("brace/a{.js,.html}{.erb,.rjs}") == [ "brace/a.js.rjs", "brace/a.html.erb" ] assert glob_helper.glob("brace/a{.{js,html},}{.{erb,rjs},}") == [ "brace/a.js.rjs", "brace/a.js", "brace/a.html.erb", "brace/a.erb", "brace/a" ] def test_escaping(self, glob_helper): glob_helper.create_paths(["foo^bar", "nondotfile"]) assert glob_helper.glob("foo?bar") == ["foo^bar"] assert glob_helper.glob("foo\\?bar") == [] assert glob_helper.glob("nond\\otfile") == ["nondotfile"] def test_preserves_separator(self, glob_helper): glob_helper.create_paths([ "deeply/nested/directory/structure/file_one.ext" ]) assert glob_helper.glob("deeply/nested//directory/*/*.ext") == [ "deeply/nested//directory/structure/file_one.ext" ] assert glob_helper.glob("deeply/*/directory/structure//**/*.ext") == [ "deeply/nested/directory/structure//file_one.ext" ] def test_ignores_missing_dirs(self, glob_helper): assert glob_helper.glob("deeply/notthere/blah*/whatever") == [] assert glob_helper.glob("deeply/notthere/blah/") == [] def test_multiple_recursives(self, glob_helper): glob_helper.create_paths(["a/x/b/y/e", "a/x/b/y/b/z/e"]) assert glob_helper.sglob("a/**/b/**/e") == [ "a/x/b/y/b/z/e", "a/x/b/y/e" ] def test_flag_dotmatch(self, glob_helper): glob_helper.create_paths([ ".dotfile", ".dotsubdir/.dotfile", ".dotsubdir/nondotfile", "file_one.ext", "file_two.ext", "nondotfile", "deeply/nested/.dotfile.ext" ]) assert glob_helper.sglob("*", FNM_DOTMATCH) == [ ".", "..", ".dotfile", ".dotsubdir", "deeply", "file_one.ext", "file_two.ext", "nondotfile" ] assert glob_helper.sglob("**", FNM_DOTMATCH) == [ ".", "..", ".dotfile", ".dotsubdir", "deeply", "file_one.ext", "file_two.ext", "nondotfile" ] assert glob_helper.sglob("*file", FNM_DOTMATCH) == [ ".dotfile", "nondotfile" ] assert glob_helper.sglob("**/", FNM_DOTMATCH) == [ ".dotsubdir/", "deeply/", "deeply/nested/" ] assert glob_helper.sglob("./**/", FNM_DOTMATCH) == [ "./", "./.dotsubdir/", "./deeply/", "./deeply/nested/" ] def test_flag_noescape(self, glob_helper): # TODO: Skip this on Windows glob_helper.create_paths(["foo?bar"]) assert glob_helper.glob("foo?bar", FNM_NOESCAPE) == ["foo?bar"] assert glob_helper.glob("foo\\?bar", FNM_NOESCAPE) == [] glob_helper.create_paths(["foo\\?bar"]) assert glob_helper.glob("foo\\?bar", FNM_NOESCAPE) == ["foo\\?bar"]
import os import json import numpy as np from shutil import copyfile from keras.optimizers import SGD import keras.backend as K from AlphaGo.ai import ProbabilisticPolicyPlayer import AlphaGo.go as go from AlphaGo.models.policy import CNNPolicy from AlphaGo.util import flatten_idx def _make_training_pair(st, mv, preprocessor): # Convert move to one-hot st_tensor = preprocessor.state_to_tensor(st) mv_tensor = np.zeros((1, st.size * st.size)) mv_tensor[(0, flatten_idx(mv, st.size))] = 1 return (st_tensor, mv_tensor) def run_n_games(optimizer, learner, opponent, num_games, mock_states=[]): '''Run num_games games to completion, keeping track of each position and move of the learner. (Note: learning cannot happen until all games have completed) ''' board_size = learner.policy.model.input_shape[-1] states = [go.GameState(size=board_size) for _ in range(num_games)] learner_net = learner.policy.model # Allowing injection of a mock state object for testing purposes if mock_states: states = mock_states # Create one list of features (aka state tensors) and one of moves for each game being played. state_tensors = [[] for _ in range(num_games)] move_tensors = [[] for _ in range(num_games)] # List of booleans indicating whether the 'learner' player won. learner_won = [None] * num_games # Start all odd games with moves by 'opponent'. Even games will have 'learner' black. learner_color = [go.BLACK if i % 2 == 0 else go.WHITE for i in range(num_games)] odd_states = states[1::2] moves = opponent.get_moves(odd_states) for st, mv in zip(odd_states, moves): st.do_move(mv) current = learner other = opponent idxs_to_unfinished_states = {i: states[i] for i in range(num_games)} while len(idxs_to_unfinished_states) > 0: # Get next moves by current player for all unfinished states. moves = current.get_moves(idxs_to_unfinished_states.values()) just_finished = [] # Do each move to each state in order. for (idx, state), mv in zip(idxs_to_unfinished_states.iteritems(), moves): # Order is important here. We must get the training pair on the unmodified state before # updating it with do_move. is_learnable = current is learner and mv is not go.PASS_MOVE if is_learnable: (st_tensor, mv_tensor) = _make_training_pair(state, mv, learner.policy.preprocessor) state_tensors[idx].append(st_tensor) move_tensors[idx].append(mv_tensor) state.do_move(mv) if state.is_end_of_game: learner_won[idx] = state.get_winner() == learner_color[idx] just_finished.append(idx) # Remove games that have finished from dict. for idx in just_finished: del idxs_to_unfinished_states[idx] # Swap 'current' and 'other' for next turn. current, other = other, current # Train on each game's results, setting the learning rate negative to 'unlearn' positions from # games where the learner lost. for (st_tensor, mv_tensor, won) in zip(state_tensors, move_tensors, learner_won): optimizer.lr = K.abs(optimizer.lr) * (+1 if won else -1) learner_net.train_on_batch(np.concatenate(st_tensor, axis=0), np.concatenate(mv_tensor, axis=0)) # Return the win ratio. wins = sum(state.get_winner() == pc for (state, pc) in zip(states, learner_color)) return float(wins) / num_games def log_loss(y_true, y_pred): '''Keras 'loss' function for the REINFORCE algorithm, where y_true is the action that was taken, and updates with the negative gradient will make that action more likely. We use the negative gradient because keras expects training data to minimize a loss function. ''' return -y_true * K.log(K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon())) def run_training(cmd_line_args=None): import argparse parser = argparse.ArgumentParser(description='Perform reinforcement learning to improve given policy network. Second phase of pipeline.') # noqa: E501 parser.add_argument("model_json", help="Path to policy model JSON.") parser.add_argument("initial_weights", help="Path to HDF5 file with inital weights (i.e. result of supervised training).") # noqa: E501 parser.add_argument("out_directory", help="Path to folder where the model params and metadata will be saved after each epoch.") # noqa: E501 parser.add_argument("--learning-rate", help="Keras learning rate (Default: 0.001)", type=float, default=0.001) # noqa: E501 parser.add_argument("--policy-temp", help="Distribution temperature of players using policies (Default: 0.67)", type=float, default=0.67) # noqa: E501 parser.add_argument("--save-every", help="Save policy as a new opponent every n batches (Default: 500)", type=int, default=500) # noqa: E501 parser.add_argument("--game-batch", help="Number of games per mini-batch (Default: 20)", type=int, default=20) # noqa: E501 parser.add_argument("--move-limit", help="Maximum number of moves per game", type=int, default=500) # noqa: E501 parser.add_argument("--iterations", help="Number of training batches/iterations (Default: 10000)", type=int, default=10000) # noqa: E501 parser.add_argument("--resume", help="Load latest weights in out_directory and resume", default=False, action="store_true") # noqa: E501 parser.add_argument("--verbose", "-v", help="Turn on verbose mode", default=False, action="store_true") # noqa: E501 # Baseline function (TODO) default lambda state: 0 (receives either file # paths to JSON and weights or None, in which case it uses default baseline 0) if cmd_line_args is None: args = parser.parse_args() else: args = parser.parse_args(cmd_line_args) ZEROTH_FILE = "weights.00000.hdf5" if args.resume: if not os.path.exists(os.path.join(args.out_directory, "metadata.json")): raise ValueError("Cannot resume without existing output directory") if not os.path.exists(args.out_directory): if args.verbose: print("creating output directory {}".format(args.out_directory)) os.makedirs(args.out_directory) if not args.resume: # make a copy of weights file, "weights.00000.hdf5" in the output directory copyfile(args.initial_weights, os.path.join(args.out_directory, ZEROTH_FILE)) if args.verbose: print("copied {} to {}".format(args.initial_weights, os.path.join(args.out_directory, ZEROTH_FILE))) player_weights = ZEROTH_FILE else: # if resuming, we expect initial_weights to be just a # "weights.#####.hdf5" file, not a full path args.initial_weights = os.path.join(args.out_directory, os.path.basename(args.initial_weights)) if not os.path.exists(args.initial_weights): raise ValueError("Cannot resume; weights {} do not exist".format(args.initial_weights)) elif args.verbose: print("Resuming with weights {}".format(args.initial_weights)) player_weights = os.path.basename(args.initial_weights) # Set initial conditions policy = CNNPolicy.load_model(args.model_json) policy.model.load_weights(args.initial_weights) player = ProbabilisticPolicyPlayer(policy, temperature=args.policy_temp, move_limit=args.move_limit) # different opponents come from simply changing the weights of 'opponent.policy.model'. That # is, only 'opp_policy' needs to be changed, and 'opponent' will change. opp_policy = CNNPolicy.load_model(args.model_json) opponent = ProbabilisticPolicyPlayer(opp_policy, temperature=args.policy_temp, move_limit=args.move_limit) if args.verbose: print("created player and opponent with temperature {}".format(args.policy_temp)) if not args.resume: metadata = { "model_file": args.model_json, "init_weights": args.initial_weights, "learning_rate": args.learning_rate, "temperature": args.policy_temp, "game_batch": args.game_batch, "opponents": [ZEROTH_FILE], # which weights from which to sample an opponent each batch "win_ratio": {} # map from player to tuple of (opponent, win ratio) Useful for # validating in lieu of 'accuracy/loss' } else: with open(os.path.join(args.out_directory, "metadata.json"), "r") as f: metadata = json.load(f) # Append args of current run to history of full command args. metadata["cmd_line_args"] = metadata.get("cmd_line_args", []) metadata["cmd_line_args"].append(vars(args)) def save_metadata(): with open(os.path.join(args.out_directory, "metadata.json"), "w") as f: json.dump(metadata, f, sort_keys=True, indent=2) optimizer = SGD(lr=args.learning_rate) player.policy.model.compile(loss=log_loss, optimizer=optimizer) for i_iter in range(1, args.iterations + 1): # Randomly choose opponent from pool (possibly self), and playing # game_batch games against them. opp_weights = np.random.choice(metadata["opponents"]) opp_path = os.path.join(args.out_directory, opp_weights) # Load new weights into opponent's network, but keep the same opponent object. opponent.policy.model.load_weights(opp_path) if args.verbose: print("Batch {}\tsampled opponent is {}".format(i_iter, opp_weights)) # Run games (and learn from results). Keep track of the win ratio vs each opponent over # time. win_ratio = run_n_games(optimizer, player, opponent, args.game_batch) metadata["win_ratio"][player_weights] = (opp_weights, win_ratio) # Save all intermediate models. player_weights = "weights.%05d.hdf5" % i_iter player.policy.model.save_weights(os.path.join(args.out_directory, player_weights)) # Add player to batch of oppenents once in a while. if i_iter % args.save_every == 0: metadata["opponents"].append(player_weights) save_metadata() if __name__ == '__main__': run_training()