Datasets:
Formats:
parquet
Languages:
English
Size:
10K - 100K
Tags:
document-detection
corner-detection
perspective-correction
document-scanner
keypoint-regression
License:
| dataset_info: | |
| features: | |
| - name: image | |
| dtype: image | |
| - name: filename | |
| dtype: string | |
| - name: is_negative | |
| dtype: bool | |
| - name: corner_tl_x | |
| dtype: float32 | |
| - name: corner_tl_y | |
| dtype: float32 | |
| - name: corner_tr_x | |
| dtype: float32 | |
| - name: corner_tr_y | |
| dtype: float32 | |
| - name: corner_br_x | |
| dtype: float32 | |
| - name: corner_br_y | |
| dtype: float32 | |
| - name: corner_bl_x | |
| dtype: float32 | |
| - name: corner_bl_y | |
| dtype: float32 | |
| splits: | |
| - name: train | |
| num_examples: 32968 | |
| - name: validation | |
| num_examples: 8645 | |
| - name: test | |
| num_examples: 6652 | |
| configs: | |
| - config_name: default | |
| data_files: | |
| - split: train | |
| path: train/*.parquet | |
| - split: validation | |
| path: val/*.parquet | |
| - split: test | |
| path: test/*.parquet | |
| license: other | |
| task_categories: | |
| - image-segmentation | |
| - keypoint-detection | |
| - object-detection | |
| tags: | |
| - document-detection | |
| - corner-detection | |
| - perspective-correction | |
| - document-scanner | |
| - keypoint-regression | |
| language: | |
| - en | |
| size_categories: | |
| - 10K<n<100K | |
| # DocCornerDataset | |
| A high-quality document corner detection dataset for training models to detect the four corners of documents in images. This dataset is optimized for building robust document scanning and perspective correction applications. | |
| ## Dataset Examples | |
| ### Training Set | |
| <img src="collages/train_collage.jpg" alt="Training samples" width="600"/> | |
| ### Validation Set | |
| <img src="collages/val_collage.jpg" alt="Validation samples" width="600"/> | |
| ### Test Set | |
| <img src="collages/test_collage.jpg" alt="Test samples" width="600"/> | |
| *Green polygons show the annotated document corners* | |
| ## Dataset Description | |
| This dataset contains images with document corner annotations, optimized for training robust document detection models. It uses the best-performing splits from an iterative dataset cleaning process with multiple quality validation steps. | |
| ### Key Features | |
| - **High Quality Annotations**: Labels refined through iterative cleaning with multiple teacher models | |
| - **Diverse Document Types**: IDs, invoices, receipts, books, cards, and general documents | |
| - **Negative Samples**: Includes images without documents for training robust classifiers | |
| - **No Overlap**: Train, validation, and test splits are completely disjoint | |
| ## Dataset Statistics | |
| | Split | Images | Description | | |
| |-------|--------|-------------| | |
| | `train` | 32,968 | Training set (cleaned iter3 + hard negatives) | | |
| | `validation` | 8,645 | Validation set (cleaned iter3) | | |
| | `test` | 6,652 | Held-out test set (no overlap with train/val) | | |
| | **Total** | **48,265** | | | |
| ## Data Sources and Licenses | |
| This dataset is compiled from multiple open-source datasets. **Please refer to the original dataset licenses before using this data.** | |
| ### MIDV Dataset (ID Cards) | |
| Mobile Identity Document Video dataset for identity document detection and recognition. | |
| | Dataset | Images | License | Source | | |
| |---------|--------|---------|--------| | |
| | **MIDV-500** | ~9,400 | Research use | [Website](http://l3i-share.univ-lr.fr/MIDV500/) | | |
| | **MIDV-2019** | ~1,350 | Research use | [Website](http://l3i-share.univ-lr.fr/MIDV2019/) | | |
| **Citation:** | |
| ```bibtex | |
| @article{arlazarov2019midv500, | |
| title={MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream}, | |
| author={Arlazarov, V.V. and Bulatov, K. and Chernov, T. and Arlazarov, V.L.}, | |
| journal={Computer Optics}, | |
| volume={43}, | |
| number={5}, | |
| pages={818--824}, | |
| year={2019} | |
| } | |
| @inproceedings{arlazarov2019midv2019, | |
| title={MIDV-2019: Challenges of the modern mobile-based document OCR}, | |
| author={Arlazarov, V.V. and Bulatov, K. and Chernov, T. and Arlazarov, V.L.}, | |
| booktitle={ICDAR}, | |
| year={2019} | |
| } | |
| ``` | |
| ### SmartDoc Dataset (Documents) | |
| SmartDoc Challenge dataset for document image acquisition and quality assessment. | |
| | Dataset | Images | License | Source | | |
| |---------|--------|---------|--------| | |
| | **SmartDoc** | ~1,380 | Research use | [Website](https://smartdoc.univ-lr.fr/) | | |
| **Citation:** | |
| ```bibtex | |
| @inproceedings{burie2015smartdoc, | |
| title={ICDAR 2015 Competition on Smartphone Document Capture and OCR (SmartDoc)}, | |
| author={Burie, J.C. and Chazalon, J. and Coustaty, M. and others}, | |
| booktitle={ICDAR}, | |
| year={2015} | |
| } | |
| ``` | |
| ### COCO Dataset (Negative Samples) | |
| Common Objects in Context dataset used for negative samples (images without documents). | |
| | Dataset | Images | License | Source | | |
| |---------|--------|---------|--------| | |
| | **COCO val2017** | ~4,300 | [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) | [Website](https://cocodataset.org/) | | |
| | **COCO train2017** | ~11,400 | [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) | [Website](https://cocodataset.org/) | | |
| **Note:** Excluded categories that could be confused with documents: book, laptop, tv, cell phone, keyboard, mouse, remote, clock. | |
| **Citation:** | |
| ```bibtex | |
| @inproceedings{lin2014coco, | |
| title={Microsoft COCO: Common Objects in Context}, | |
| author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and others}, | |
| booktitle={ECCV}, | |
| year={2014} | |
| } | |
| ``` | |
| ### Roboflow Universe (Various Documents) | |
| Various document datasets from Roboflow Universe community. | |
| | Category | Datasets | License | Source | | |
| |----------|----------|---------|--------| | |
| | **Documents** | document_segmentation_v2, doc_scanner, doc_rida, documento | Various (check individual) | [Roboflow Universe](https://universe.roboflow.com/) | | |
| | **Bills/Invoices** | bill_segmentation, cs_invoice | Various (check individual) | [Roboflow Universe](https://universe.roboflow.com/) | | |
| | **Receipts** | receipt_detection, receipt_occam, receipts_coolstuff | Various (check individual) | [Roboflow Universe](https://universe.roboflow.com/) | | |
| | **ID Cards** | card_corner, card_4_class, id_card_skew, id_detections, idcard_jj | Various (check individual) | [Roboflow Universe](https://universe.roboflow.com/) | | |
| | **Passports** | segment_passport | Various (check individual) | [Roboflow Universe](https://universe.roboflow.com/) | | |
| | **Books** | book_reader, page_segmentation_tecgp, book_cmjt2 | Various (check individual) | [Roboflow Universe](https://universe.roboflow.com/) | | |
| **Note:** Roboflow datasets have various licenses. Please check the individual dataset pages on [Roboflow Universe](https://universe.roboflow.com/) for specific license terms. | |
| ## Features | |
| | Feature | Type | Description | | |
| |---------|------|-------------| | |
| | `image` | Image | The document image (JPEG) | | |
| | `filename` | string | Original filename for traceability | | |
| | `is_negative` | bool | `True` if image contains no document | | |
| | `corner_tl_x` | float32 | Top-left corner X coordinate (normalized 0-1) | | |
| | `corner_tl_y` | float32 | Top-left corner Y coordinate (normalized 0-1) | | |
| | `corner_tr_x` | float32 | Top-right corner X coordinate (normalized 0-1) | | |
| | `corner_tr_y` | float32 | Top-right corner Y coordinate (normalized 0-1) | | |
| | `corner_br_x` | float32 | Bottom-right corner X coordinate (normalized 0-1) | | |
| | `corner_br_y` | float32 | Bottom-right corner Y coordinate (normalized 0-1) | | |
| | `corner_bl_x` | float32 | Bottom-left corner X coordinate (normalized 0-1) | | |
| | `corner_bl_y` | float32 | Bottom-left corner Y coordinate (normalized 0-1) | | |
| ### Corner Order | |
| Corners are ordered **clockwise** starting from top-left: | |
| ``` | |
| 1 (TL) -------- 2 (TR) | |
| | | | |
| | Document | | |
| | | | |
| 4 (BL) -------- 3 (BR) | |
| ``` | |
| ### Coordinate System | |
| - Coordinates are **normalized** to the range [0, 1] | |
| - To convert to pixel coordinates: `pixel_x = corner_x * image_width` | |
| - Origin (0, 0) is at the **top-left** of the image | |
| ### Negative Samples | |
| Images with `is_negative=True`: | |
| - Do not contain any document | |
| - All corner coordinates are `null` | |
| - Useful for training classifiers to reject non-document images | |
| ## Usage | |
| ### Loading the Dataset | |
| ```python | |
| from datasets import load_dataset | |
| # Load all splits | |
| dataset = load_dataset("mapo80/DocCornerDataset") | |
| # Access specific splits | |
| train_data = dataset["train"] | |
| val_data = dataset["validation"] | |
| test_data = dataset["test"] | |
| print(f"Train: {len(train_data)} samples") | |
| print(f"Val: {len(val_data)} samples") | |
| print(f"Test: {len(test_data)} samples") | |
| ``` | |
| ### Iterating Over Samples | |
| ```python | |
| for sample in dataset["train"]: | |
| image = sample["image"] # PIL Image | |
| filename = sample["filename"] | |
| if not sample["is_negative"]: | |
| # Get corner coordinates (normalized 0-1) | |
| corners = [ | |
| (sample["corner_tl_x"], sample["corner_tl_y"]), | |
| (sample["corner_tr_x"], sample["corner_tr_y"]), | |
| (sample["corner_br_x"], sample["corner_br_y"]), | |
| (sample["corner_bl_x"], sample["corner_bl_y"]), | |
| ] | |
| # Convert to pixel coordinates | |
| w, h = image.size | |
| corners_px = [(int(x * w), int(y * h)) for x, y in corners] | |
| ``` | |
| ### Visualizing Annotations | |
| ```python | |
| from PIL import Image, ImageDraw | |
| def draw_corners(image, corners, color=(0, 255, 0), width=3): | |
| """Draw document corners on image.""" | |
| draw = ImageDraw.Draw(image) | |
| w, h = image.size | |
| # Convert normalized to pixel coords | |
| points = [(int(c[0] * w), int(c[1] * h)) for c in corners] | |
| # Draw polygon | |
| for i in range(4): | |
| draw.line([points[i], points[(i+1) % 4]], fill=color, width=width) | |
| # Draw corner circles | |
| for p in points: | |
| r = 5 | |
| draw.ellipse([p[0]-r, p[1]-r, p[0]+r, p[1]+r], fill=color) | |
| return image | |
| # Example usage | |
| sample = dataset["train"][0] | |
| if not sample["is_negative"]: | |
| corners = [ | |
| (sample["corner_tl_x"], sample["corner_tl_y"]), | |
| (sample["corner_tr_x"], sample["corner_tr_y"]), | |
| (sample["corner_br_x"], sample["corner_br_y"]), | |
| (sample["corner_bl_x"], sample["corner_bl_y"]), | |
| ] | |
| annotated = draw_corners(sample["image"].copy(), corners) | |
| annotated.show() | |
| ``` | |
| ### Training a Model (PyTorch Example) | |
| ```python | |
| import torch | |
| from torch.utils.data import DataLoader | |
| from datasets import load_dataset | |
| dataset = load_dataset("mapo80/DocCornerDataset") | |
| def collate_fn(batch): | |
| images = torch.stack([transform(s["image"]) for s in batch]) | |
| # Stack corner coordinates (8 values per sample) | |
| corners = [] | |
| for s in batch: | |
| if s["is_negative"]: | |
| corners.append(torch.zeros(8)) | |
| else: | |
| corners.append(torch.tensor([ | |
| s["corner_tl_x"], s["corner_tl_y"], | |
| s["corner_tr_x"], s["corner_tr_y"], | |
| s["corner_br_x"], s["corner_br_y"], | |
| s["corner_bl_x"], s["corner_bl_y"], | |
| ])) | |
| return images, torch.stack(corners) | |
| train_loader = DataLoader( | |
| dataset["train"], | |
| batch_size=32, | |
| shuffle=True, | |
| collate_fn=collate_fn | |
| ) | |
| ``` | |
| ## Model Performance | |
| Models trained on this dataset achieve the following performance: | |
| | Model | Input Size | mIoU (val) | mIoU (test) | | |
| |-------|------------|------------|-------------| | |
| | MobileNetV2 (alpha=0.35) | 224x224 | 0.9894 | 0.9826 | | |
| | MobileNetV2 (alpha=0.35) | 256x256 | 0.9902 | 0.9819 | | |
| *mIoU = Mean Intersection over Union between predicted and ground truth quadrilaterals* | |
| ## Citation | |
| If you use this dataset in your research, please cite this dataset and the original source datasets: | |
| ```bibtex | |
| @dataset{doccornerdataset2025, | |
| author = {mapo80}, | |
| title = {DocCornerDataset: Document Corner Detection Dataset}, | |
| year = {2025}, | |
| publisher = {Hugging Face}, | |
| url = {https://huggingface.co/datasets/mapo80/DocCornerDataset} | |
| } | |
| ``` | |
| **Please also cite the original datasets used:** | |
| - MIDV-500/MIDV-2019 (Arlazarov et al., 2019) | |
| - SmartDoc (Burie et al., 2015) | |
| - COCO (Lin et al., 2014) | |
| ## License | |
| ⚠️ **This dataset is compiled from multiple sources with different licenses.** | |
| | Source | License | | |
| |--------|---------| | |
| | MIDV-500/MIDV-2019 | Research use only | | |
| | SmartDoc | Research use only | | |
| | COCO | CC BY 4.0 | | |
| | Roboflow datasets | Various (check individual datasets) | | |
| **Before using this dataset, please review the licenses of the original datasets:** | |
| - [MIDV-500](http://l3i-share.univ-lr.fr/MIDV500/) | |
| - [MIDV-2019](http://l3i-share.univ-lr.fr/MIDV2019/) | |
| - [SmartDoc](https://smartdoc.univ-lr.fr/) | |
| - [COCO](https://cocodataset.org/#termsofuse) | |
| - [Roboflow Universe](https://universe.roboflow.com/) (check individual datasets) | |
| ## Acknowledgments | |
| This dataset was created by combining and processing multiple open-source datasets. We thank the authors of MIDV, SmartDoc, COCO, and the Roboflow community for making their data available. | |
| ## Related Projects | |
| - [DocCornerNet](https://github.com/mapo80/DocCornerNet-CoordClass) - Document corner detection model trained on this dataset | |