hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7950ccf0237b0c5403a45b351cd7e235a59d5cd8
1,356
py
Python
stl_dsa/users/tests/test_views.py
renodubois/site
028caa79cbb6d116aeb57aaf12a693cda6382072
[ "MIT" ]
null
null
null
stl_dsa/users/tests/test_views.py
renodubois/site
028caa79cbb6d116aeb57aaf12a693cda6382072
[ "MIT" ]
null
null
null
stl_dsa/users/tests/test_views.py
renodubois/site
028caa79cbb6d116aeb57aaf12a693cda6382072
[ "MIT" ]
null
null
null
import pytest from stl_dsa.users.models import User from stl_dsa.users.views import UserRedirectView, UserUpdateView pytestmark = pytest.mark.django_db class TestUserUpdateView: """ TODO: extracting view initialization code as class-scoped fixture would be great if only pytest-django supported non-function-scoped fixture db access -- this is a work-in-progress for now: https://github.com/pytest-dev/pytest-django/pull/258 """ def test_get_success_url(self, user: User, rf): view = UserUpdateView() request = rf.get("/fake-url/") request.user = user view.request = request assert view.get_success_url() == f"/users/{user.id}/" def test_get_user_object(self, user: User, rf): view = UserUpdateView() request = rf.get("/fake-url/") request.user = user view.request = request view_user = view.get_user_object() assert view_user == user def test_membership_status_returned(self, client): response = client.get("/user") class TestUserRedirectView: def test_get_redirect_url(self, user: User, rf): view = UserRedirectView() request = rf.get("/fake-url") request.user = user view.request = request assert view.get_redirect_url() == f"/users/{user.id}/"
28.851064
74
0.652655
7950cd2c66eb54c7c1ac32dc6ed3e18f07417dcc
10,250
py
Python
ikbtleaves/sub_transform.py
uw-biorobotics/IKBT
be1923b441e5bac6662baf64b186cd69f7e31e31
[ "BSD-3-Clause" ]
129
2017-11-17T15:59:31.000Z
2022-03-19T14:37:56.000Z
ikbtleaves/sub_transform.py
uw-biorobotics/IKBT
be1923b441e5bac6662baf64b186cd69f7e31e31
[ "BSD-3-Clause" ]
36
2018-03-07T01:18:45.000Z
2021-11-17T02:59:05.000Z
ikbtleaves/sub_transform.py
uw-biorobotics/IKBT
be1923b441e5bac6662baf64b186cd69f7e31e31
[ "BSD-3-Clause" ]
33
2017-09-22T22:42:37.000Z
2022-03-16T22:52:07.000Z
#!/usr/bin/python # # Implement a transform in which we identify # RHS elements which can be substituted into # another RHS to elminiate unknowns. # # This is a new approach rather than making it a SOLVER # it is just a transform which allows other solvers to work. # # Copyright 2017 University of Washington # Developed by Dianmu Zhang and Blake Hannaford # BioRobotics Lab, University of Washington # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sympy as sp import numpy as np from sys import exit from ikbtfunctions.helperfunctions import * from ikbtbasics.kin_cl import * from ikbtbasics.ik_classes import * # special classes for Inverse kinematics in sympy import b3 as b3 # behavior trees class test_sub_transform(b3.Action): # tester for your ID def tick(self, tick): #test_number = tick.blackboard.get('test_number') # if present R = tick.blackboard.get('Robot') sp.var('a b c d e f g') # set up bb data for testing Td = ik_lhs() Ts = sp.zeros(4) Ts[1,1] = sp.sin(th_1)*sp.cos(th_2)+sp.sin(th_5) Ts[1,2] = sp.sin(th_1)*sp.cos(th_2) Ts[2,1] = a+b+c+d Ts[2,2] = a+b+c # for using sum of angles identities Ts[2,3] = a*b+c Ts[2,0] = a Ts[0,0] = e+f+g Ts[0,1] = sp.sin(e+f+g) testm = matrix_equation(Td,Ts) ua = unknown(a) ub = unknown(b) uc = unknown(c) ud = unknown(d) ue = unknown(e) uf = unknown(f) ug = unknown(g) uth2 = unknown(th_2) uth3 = unknown(th_3) uth4 = unknown(th_4) uth5 = unknown(th_5) variables = [ua,ub,uc,ud,ue,uf,ug,uth2, uth3, uth4, uth5] R.mequation_list = [testm] [L1, L2] = R.scan_Mequation(testm, variables) # lists of 1unk and 2unk equations print(' INITIAL Ts:') Tm = R.mequation_list[0] # for a single test as above sp.pprint(Tm.Ts) print('') tick.blackboard.set('eqns_1u', L1) tick.blackboard.set('eqns_2u', L2) tick.blackboard.set('unknowns',variables) tick.blackboard.set('Robot',R) return b3.SUCCESS class sub_transform(b3.Action): # action leaf for def tick(self, tick): unknowns = tick.blackboard.get('unknowns') # the current list of unknowns R = tick.blackboard.get('Robot') # the current robot instance if(self.BHdebug): print("running: ", self.Name) print('number of matrix equations: ', len(R.mequation_list)) print('first matrix equation: ', R.mequation_list[0]) print('number of input equations: ', len(R.mequation_list[0].get_kequation_list())) print("unknowns:") for u in unknowns: print(u.symbol, ', solved: ',u.solved) print('') # We're going to look at the first N equations in the mequation_list N = 1 # were only looking at first few (1 or 2) matrix equations (at least for now) assert (N <= len(R.mequation_list)), 'sub_transform test wants too many meqns ' # identify elements of eqns where another element can be substituted in # to eliminate unknowns # found = False sp.var('a z') z = a-a # (define symbolic zero!) cols = [0,1,2,3] rows = [0,1,2] # we don't care about row 4 ([0,0,0,1])! for m in range(0,N): for i in rows: for j in cols: e2 = R.mequation_list[m].Ts[i,j] for k in rows: for l in cols: e1 = R.mequation_list[m].Ts[k,l] # substitute with e1 or -e1 ####################################3 ******* adapt ".has" to both LHS and RHS?? if((e1 != e2) and e2 != z and e2.has(e1)): # we found a substitution if(self.BHdebug): print('') print(self.Name, ' found a sub transform (+)') print(e1, ' / ', e2) print('new: ', e2, ' = ', e2.subs(e1, e2) ) nold = count_unknowns(unknowns, e2) new = e2.subs(e1, R.mequation_list[m].Td[k,l]) # substitute nnew = count_unknowns(unknowns, new) if(self.BHdebug): print('Unknowns: old/new:', nold, '/', nnew) print('Prop Sub: ', e2, '/', new) if(nnew < nold): R.mequation_list[m].Ts[i,j] = new found = True elif((e1 != e2) and e2 != z and e2.has(-e1)): # we found a substitution -e1 if(self.BHdebug): print(self.Name, ' found a (-) sub transform') print(e1, '/', e2) nold = count_unknowns(unknowns, e2) new = e2.subs(-e1, -R.mequation_list[m].Td[k,l]) # substitute with -e1 nnew = count_unknowns(unknowns, new) if(self.BHdebug): print('Unknowns: old/new:', nold, '/', nnew) print('Prop Sub: ', e2, '/', new) if(nnew < nold): # only do this to *reduce* # of unknowns! R.mequation_list[m].Ts[i,j] = new found = True if found: # put the tmp_eqns list back into R !!!! ****************************** [L1, L2, L3p] = R.scan_for_equations(unknowns) tick.blackboard.set('eqns_1u', L1) tick.blackboard.set('eqns_2u', L2) tick.blackboard.set('eqns_3pu', L3p) tick.blackboard.set('Robot', R) return b3.SUCCESS #else: #return b3.FAILURE #class test_sincos_solve(b3.Action): # tester for sincos solver #def tick(self, tick): ## set up bb data for testing sincos_solve ##################################################################################### # Test code below. See sincos_solver.py for example # class TestSolver006(unittest.TestCase): # change TEMPLATE to unique name (2 places) def setUp(self): self.DB = False # debug flag print('=============== Test sub_transform.py =====================') return def runTest(self): self.test_subber() def test_subber(self): sub_tester = b3.BehaviorTree() bb = b3.Blackboard() bb.set('Robot', Robot()) setup = test_sub_transform() trans = sub_transform() trans.Name = 'Substitution Transf' trans.BHdebug = True test = b3.Sequence([setup, trans]) sub_tester.root = test sub_tester.tick("Test the substitution test tree", bb) # now examine results R = bb.get('Robot') Tm = R.mequation_list[0] # for a single test as above sp.var('a b c d r_11 r_23 r_31 r_33 r_43 ') fs = " sub_transform FAIL" self.assertTrue(Tm.Ts[1,1]== r_23+sp.sin(th_5), fs) self.assertTrue(Tm.Ts[1,2]== sp.sin(th_1)*sp.cos(th_2), fs) self.assertTrue(Tm.Ts[2,1]== d+r_33, fs) self.assertTrue(Tm.Ts[2,3]== b*r_31+c, fs) self.assertTrue(Tm.Ts[2,0]==a, fs) self.assertTrue(Tm.Ts[0,1]==sp.sin(r_11), fs) print('\n\n Passed 6 assertions\n\n') # # Can run your test from command line by invoking this file # # - or - call your TestSolverTEMPLATE() from elsewhere # def run_test(): print('\n\n=============== Test sub_transform nodes=====================') testsuite = unittest.TestLoader().loadTestsFromTestCase(TestSolver006) # replace TEMPLATE unittest.TextTestRunner(verbosity=2).run(testsuite) if __name__ == "__main__": print('\n\n=============== Test sub_transform nodes=====================') testsuite = unittest.TestLoader().loadTestsFromTestCase(TestSolver006) # replace TEMPLATE unittest.TextTestRunner(verbosity=2).run(testsuite)
44.372294
757
0.532878
7950cd9b5c0c000e6cc2c25a267c3e4e6a56b4e3
14,259
py
Python
Old-Bots/TAG/main.py
CDFalcon/Discord-Bots
10baa0b883cbf57b2c5f0719ac3df9797ad50520
[ "MIT" ]
3
2018-09-14T18:38:46.000Z
2018-09-15T16:26:46.000Z
Old-Bots/TAG/main.py
CDFalcon/Discord-Bots
10baa0b883cbf57b2c5f0719ac3df9797ad50520
[ "MIT" ]
null
null
null
Old-Bots/TAG/main.py
CDFalcon/Discord-Bots
10baa0b883cbf57b2c5f0719ac3df9797ad50520
[ "MIT" ]
null
null
null
# # main.py # # Created by CDFalcon on 4/18/18. # Copyright (c) 2018 CDFalcon. All rights reserved. # #Imports# #-----------------------------------------------------------------------------# import discord from discord.ext import commands from discord.ext.commands import Bot from discord.ext import commands from datetime import datetime import random import settings #Classwork# #-----------------------------------------------------------------------------# tag = commands.Bot(command_prefix='?') tag.remove_command("help") #Functions# #-----------------------------------------------------------------------------# async def isAuthorized(context): hasRoles = False for role in settings.ADMIN_ROLES: if discord.utils.get(context.guild.roles, name=role) in context.author.roles: hasRoles = True return hasRoles async def isHubAdmin(context, *args): try: await context.message.delete() except: await context.author.send(settings.ERROR__WRONG_CHANNEL) return False #21 if len(args) != 2: await context.author.send(settings.ERROR__INVALID_ARGS) return False partner = args[0] try: if (discord.utils.get(context.guild.roles, name = partner + " Admin")) not in context.author.roles: await context.author.send(settings.ERROR__NOT_HUB_ADMIN) return False except: return await context.author.send(settings.ERROR__INVALID_ARGS) return True #Events# #-----------------------------------------------------------------------------# @tag.event async def on_ready(): print("Ready") await tag.change_presence(game=discord.Game(name=(settings.VERSION))) #50 @tag.event async def on_voice_state_update(member, previous, current): if current.channel == discord.utils.get(member.guild.voice_channels, id=settings.DY_CHAN_ID): numbers = '1234567890' channelNumber = int(''.join(random.sample(numbers, 5))) await member.guild.create_voice_channel(str(channelNumber), category = discord.utils.get(member.guild.categories, id=settings.DY_CAT_ID)) await member.move_to(discord.utils.get(member.guild.voice_channels, name=str(channelNumber))) try: if previous.channel.category_id == settings.DY_CAT_ID: if len(previous.channel.members) == 0: await previous.channel.delete() except: pass #General Commands# #-----------------------------------------------------------------------------# @tag.command(pass_context=True) async def help(context): try: await context.author.send(settings.HELP_MENU) await context.message.delete() except: await context.author.send(settings.ERROR__WRONG_CHANNEL) @tag.command(pass_context=True) async def join(context, *args): try: await context.message.delete() except: return await context.author.send(settings.ERROR__WRONG_CHANNEL) if not args or len(args) > 2: return await context.author.send(settings.ERROR__INVALID_ARGS) password = 0 if len(args) == 2: password = args[1] partner = args[0] partnerRole = (discord.utils.get(context.guild.roles, name = partner)) try: if partnerRole.color != discord.Color.dark_blue(): return await context.author.send(settings.ERROR__INVALID_HUB) except: return await context.author.send(settings.ERROR__INVALID_HUB) try: if (discord.utils.get(context.guild.channels, name = partner + " password")).id != int(password): return await context.author.send(settings.ERROR__WRONG_PASSWORD) #91 except: pass if (discord.utils.get(context.guild.roles, name = "Banned from " + partner)) not in context.author.roles: await context.author.send(settings.JOIN_MESSAGE_START + partner + settings.JOIN_MESSAGE_END) return await context.author.add_roles(partnerRole) else: return await context.author.send("**You are banned from **`" + partner + "` **and therefore cannot join.**") @tag.command(pass_context=True) async def leave(context, *args): try: await context.message.delete() except: return await context.author.send(settings.ERROR__WRONG_CHANNEL) if len(args) != 1: return await context.author.send(settings.ERROR__INVALID_ARGS) partnerRole = (discord.utils.get(context.guild.roles, name = args[0])) try: await context.author.remove_roles(partnerRole) #111 except: return await context.author.send(ERROR__INVALID_HUB) return await context.author.send(settings.LEAVE_MESSAGE_START + args[0] + settings.LEAVE_MESSAGE_END) #Hub Admin Commands# #-----------------------------------------------------------------------------# @tag.command(pass_context=True) async def createPassword(context, *args): if await isHubAdmin(context, *args) == False: return partner = args[0] try: await (discord.utils.get(context.guild.channels, name = partner + " password")).delete() except: await context.author.send("**No current password found, creating a new password.**") try: if len(args) != 2: newPassword = await context.guild.create_voice_channel(partner + " password", category = (discord.utils.get(context.guild.categories, id = settings.PASSWORD_ID))) return await context.author.send("**Your new password is **`" + str(newPassword.id) + "`**.**") elif args[1] == "true": return await context.author.send("**Password deleted.**") except: #130 return await context.author.send(settings.ERROR__INVALID_ARGS) @tag.command(pass_context=True) async def ban(context, *args): if await isHubAdmin(context, *args) == False: return partner = args[0] try: await (discord.utils.get(context.guild.members, name = args[1])).add_roles(discord.utils.get(context.guild.roles, name = "Banned from " + partner)) await (discord.utils.get(context.guild.members, name = args[1])).remove_roles(discord.utils.get(context.guild.roles, name = partner)) await (discord.utils.get(context.guild.members, name = args[1])).remove_roles(discord.utils.get(context.guild.roles, name = partner + " Mod")) except: return await context.author.send(settings.ERROR__INVALID_ARGS) await context.author.send("`" + args[1] + "` **has been banned from your hub.**") @tag.command(pass_context=True) #143 async def unban(context, *args): if await isHubAdmin(context, *args) == False: return partner = args[0] try: await (discord.utils.get(context.guild.members, name = args[1])).remove_roles(discord.utils.get(context.guild.roles, name = "Banned from " + partner)) except: return await context.author.send(settings.ERROR__INVALID_ARGS) await context.author.send("`" + args[1] + "` **has been unbanned from your hub.**") @tag.command(pass_context=True) async def mod(context, *args): if await isHubAdmin(context, *args) == False: return partner = args[0] try: await (discord.utils.get(context.guild.members, name = args[1])).add_roles(discord.utils.get(context.guild.roles, name = partner + " Mod")) await (discord.utils.get(context.guild.members, name = args[1])).remove_roles(discord.utils.get(context.guild.roles, name = partner)) except: return await context.author.send(settings.ERROR__INVALID_ARGS) await context.author.send("`" + args[1] + "` **has been added as a mod for your hub.**") @tag.command(pass_context=True) async def unmod(context, *args): if isHubAdmin(context, *args) == False: return partner = args[0] try: await (discord.utils.get(context.guild.members, name = args[1])).remove_roles(discord.utils.get(context.guild.roles, name = partner + " Mod")) except: return await context.author.send(settings.ERROR__INVALID_ARGS) #172 await context.author.send("`" + args[1] + "` **has been removed as a mod from your hub.**") @tag.command(pass_context=True) async def hide(context, *args): if await isHubAdmin(context, *args) == False: return partner = args[0] try: channelToBeHidden = (discord.utils.get(context.guild.channels, name = args[1])) if channelToBeHidden.category == discord.utils.get(context.guild.categories, name = partner): await channelToBeHidden.set_permissions(discord.utils.get(context.guild.roles, name = partner), read_messages = False, read_message_history = False, connect = False) except: return await context.author.send(settings.ERROR__INVALID_ARGS) await context.author.send("**Channel hidden.**") @tag.command(pass_context=True) async def unhide(context, *args): if await isHubAdmin(context, *args) == False: return partner = args[0] #190 try: channelToBeHidden = (discord.utils.get(context.guild.channels, name = args[1])) if channelToBeHidden.category == discord.utils.get(context.guild.categories, name = partner): await channelToBeHidden.set_permissions(discord.utils.get(context.guild.roles, name = partner), read_messages = True, read_message_history = True, connect = True) except: return await context.author.send(settings.ERROR__INVALID_ARGS) await context.author.send("**Channel unhidden.**") #TAG Admin Commands# #-----------------------------------------------------------------------------# @tag.command(pass_context=True) async def addPartner(context, *args): try: #200 if(await isAuthorized(context)): await context.message.delete() else: return await author.context.send(settings.ERROR__NOT_TAG_ADMIN) except: return await context.author.send(settings.ERROR__WRONG_CHANNEL) if not args: return await context.author.send(settings.ERROR__INVALID_ARGS) else: newPartner = args[0] if len(args) < 2 or len(args) > 3: return await context.author.send(settings.ERROR__INVALID_ARGS) firstAdmin = (discord.utils.get(context.guild.members, name = args[1])) if len(args) == 3: if args[2] == "true": password = await context.guild.create_voice_channel(newPartner + " password", category=(discord.utils.get(context.guild.categories, id = settings.PASSWORD_ID))) await firstAdmin.send("Your hub's password is `" + str(password.id) + "`.") else: await context.author.send(settings.ERROR__INVALID_ARGUMENT) await firstAdmin.send(settings.NEW_HUB_MESSAGE) newCategory = await context.guild.create_category(newPartner) newAdminRole = await context.guild.create_role(name = newPartner + " Admin", color = discord.Color.red()) await firstAdmin.add_roles(newAdminRole) newRole = await context.guild.create_role(name = newPartner, color = discord.Color.dark_blue()) newModRole = await context.guild.create_role(name = newPartner + " Mod", color = discord.Color.dark_purple()) newBanRole = await context.guild.create_role(name = "Banned from " + newPartner, color = discord.Color.greyple()) await newCategory.set_permissions(context.guild.default_role, read_messages = False, read_message_history = False, connect = False) await newCategory.set_permissions(newAdminRole, read_messages = True, read_message_history = True, connect = True, manage_channels = True, manage_messages = True, move_members = True) await newCategory.set_permissions(newModRole, read_messages = True, read_message_history = True, connect = True, manage_messages = True) await newCategory.set_permissions(newRole, read_messages = True, read_message_history = True, connect = True) await newCategory.set_permissions(newBanRole, read_messages = False, read_message_history = False, connect = False) await context.guild.create_text_channel("General Chat", category = newCategory) recruit = await context.guild.create_text_channel(newPartner + "-recruitment", category = (discord.utils.get(context.guild.categories, id = settings.RECRUIT_CAT_ID))) await recruit.set_permissions(newModRole, manage_messages = True) await recruit.set_permissions(newAdminRole, manage_messages= True) @tag.command(pass_context=True) async def removePartner(context, *args): try: if(await isAuthorized(context)): await context.message.delete() else: return await context.author.send(settings.ERROR__NOT_TAG_ADMIN) except: return await context.author.send(settings.ERROR__WRONG_CHANNEL) if not args: return await context.author.send(settings.ERROR__INVALID_ARGS) else: partner = args[0] if len(args) > 1: #260 return await context.author.send(settings.ERROR__INVALID_ARGS) try: await (discord.utils.get(context.guild.roles, name = partner)).delete() await (discord.utils.get(context.guild.roles, name = (partner + " Admin"))).delete() await (discord.utils.get(context.guild.roles, name = (partner + " Mod"))).delete() await (discord.utils.get(context.guild.roles, name = ("Banned from " + partner))).delete() except: return await context.author.send(settings.ERROR__INVALID_HUB) category = (discord.utils.get(context.guild.categories, name = partner)) for channel in context.guild.channels: if channel.category == category: await channel.delete() try: await (discord.utils.get(context.guild.channels, name = partner + " password")).delete() except: pass try: await (discord.utils.get(context.guild.channels, name = partner + "-recruitment")).delete() except: pass return await category.delete() #Script Start# #-----------------------------------------------------------------------------# tag.run(settings.BOT_TOKEN) #283
37.622691
187
0.644786
7950cdad367d74e03220a993eb68d992fd97d49d
207
py
Python
agent/model/AgentModel.py
aaitor/agent
835ddf5037b1b6254eda57f056f54195670c17ff
[ "Apache-2.0" ]
null
null
null
agent/model/AgentModel.py
aaitor/agent
835ddf5037b1b6254eda57f056f54195670c17ff
[ "Apache-2.0" ]
null
null
null
agent/model/AgentModel.py
aaitor/agent
835ddf5037b1b6254eda57f056f54195670c17ff
[ "Apache-2.0" ]
1
2019-08-28T09:19:05.000Z
2019-08-28T09:19:05.000Z
import json class AgentModel: def __init__(self): pass def toJson(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4)
17.25
61
0.574879
7950ce977d4c3dffa699bfa53e41f5a52a0b5dea
6,015
py
Python
recovery/redisUsersRecovery.py
SlavomirMazurPantheon/backend
f2e3e6e3a70a0038f706fffec411cc627a480969
[ "Apache-2.0" ]
2
2020-08-19T16:44:48.000Z
2021-04-30T06:48:16.000Z
recovery/redisUsersRecovery.py
SlavomirMazurPantheon/backend
f2e3e6e3a70a0038f706fffec411cc627a480969
[ "Apache-2.0" ]
243
2018-08-21T09:12:57.000Z
2022-03-31T12:31:48.000Z
recovery/redisUsersRecovery.py
SlavomirMazurPantheon/backend
f2e3e6e3a70a0038f706fffec411cc627a480969
[ "Apache-2.0" ]
25
2018-08-21T08:45:43.000Z
2021-12-12T13:51:47.000Z
# Copyright The IETF Trust 2021, All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = 'Richard Zilincik' __copyright__ = 'Copyright The IETF Trust 2021, All Rights Reserved' __license__ = 'Apache License, Version 2.0' __email__ = 'richard.zilincik@pantheon.tech' import argparse import datetime import json import os import time from redis import Redis import utility.log as log from utility.create_config import create_config from utility.staticVariables import backup_date_format from utility.util import get_list_of_backups, job_log class ScriptConfig: def __init__(self): self.help = 'Save or load the users database stored on redis. An automatic backup is made' \ ' before a load is performed' config = create_config() self.log_directory = config.get('Directory-Section', 'logs') self.temp_dir = config.get('Directory-Section', 'temp') self.cache_directory = config.get('Directory-Section', 'cache') self.redis_host = config.get('DB-Section', 'redis-host') self.redis_port = config.get('DB-Section', 'redis-port') # self.var_yang = config.get('Directory-Section', 'var') parser = argparse.ArgumentParser(description=self.help) parser.add_argument('--name_save', default=datetime.datetime.utcnow().strftime(backup_date_format), type=str, help='Set name of the file to save. Default name is date and time in UTC') parser.add_argument('--name_load', type=str, default='', help='Set name of the file to load. Default will take a last saved file') parser.add_argument('--type', default='save', type=str, choices=['save', 'load'], help='Set whether you want to save a file or load a file. Default is save') self.args = parser.parse_args() self.defaults = [parser.get_default(key) for key in self.args.__dict__.keys()] def get_args_list(self): args_dict = {} keys = list(self.args.__dict__.keys()) types = [type(value).__name__ for value in self.args.__dict__.values()] for i, key in enumerate(keys): args_dict[key] = dict(type=types[i], default=self.defaults[i]) return args_dict def get_help(self): ret = {} ret['help'] = self.help ret['options'] = {} ret['options']['type'] = 'Set whether you want to save a file or load a file. Default is save' ret['options']['name_load'] = 'Set name of the file to load. Default will take a last saved file' ret['options']['name_save'] = 'Set name of the file to save. Default name is date and time in UTC' return ret def main(scriptConf=None): start_time = int(time.time()) if scriptConf is None: scriptConf = ScriptConfig() log_directory = scriptConf.log_directory cache_directory = scriptConf.cache_directory temp_dir = scriptConf.temp_dir redis_host = scriptConf.redis_host redis_port = scriptConf.redis_port args = scriptConf.args backups = os.path.join(cache_directory, 'redis-users') LOGGER = log.get_logger('recovery', os.path.join(log_directory, 'yang.log')) LOGGER.info('Starting {} process of redis users database'.format(args.type)) if args.type == 'save': data = {} redis = Redis(host=redis_host, port=redis_port, db=2) cursor = 0 while 1: cursor, keys = redis.scan(cursor) for key in keys: key_type = redis.type(key).decode() if key_type == 'string': value = redis.get(key).decode() elif key_type == 'set': value = [i.decode() for i in redis.smembers(key)] elif key_type == 'hash': hash_table = redis.hgetall(key) value = {hash_key.decode(): hash_table[hash_key].decode() for hash_key in hash_table} else: print(key_type) assert False data[key.decode()] = value if cursor == 0: break if not os.path.isdir(backups): os.mkdir(backups) args.name_save += '.json' with open(os.path.join(backups, args.name_save), 'w') as f: json.dump(data, f) LOGGER.info('Data saved to {} successfully'.format(args.name_save)) filename = '{} - save'.format(os.path.basename(__file__).split('.py')[0]) job_log(start_time, temp_dir, filename, status='Success') elif args.type == 'load': if args.name_load: file_name = '{}.json'.format(os.path.join(backups, args.name_load)) else: list_of_backups = get_list_of_backups(backups) file_name = os.path.join(backups, list_of_backups[-1]) with open(file_name) as f: data = json.load(f) redis = Redis(host=redis_host, port=redis_port, db=2) redis.flushdb() for key, value in data.items(): if isinstance(value, str): redis.set(key, value) elif isinstance(value, list): redis.sadd(key, *value) elif isinstance(value, dict): redis.hset(key, mapping=value) LOGGER.info('Data loaded from {} successfully'.format(file_name)) LOGGER.info('Job finished successfully') if __name__ == '__main__': main()
40.641892
112
0.622943
7950cf0237bff15f997ec676e381060a44dd2735
5,448
py
Python
aiida/cmdline/commands/cmd_comment.py
iriberri/aiida_core
c4a1ec5dac92ee62c59d39ca580bde449f3abf73
[ "BSD-2-Clause" ]
null
null
null
aiida/cmdline/commands/cmd_comment.py
iriberri/aiida_core
c4a1ec5dac92ee62c59d39ca580bde449f3abf73
[ "BSD-2-Clause" ]
null
null
null
aiida/cmdline/commands/cmd_comment.py
iriberri/aiida_core
c4a1ec5dac92ee62c59d39ca580bde449f3abf73
[ "BSD-2-Clause" ]
1
2018-12-21T11:10:09.000Z
2018-12-21T11:10:09.000Z
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida_core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### # pylint: disable=superfluous-parens """ This allows to manage comments from command line. """ import click from aiida.cmdline.commands.cmd_verdi import verdi from aiida.cmdline.params import arguments, options from aiida.cmdline.utils import decorators, echo, multi_line_input @verdi.group('comment') def verdi_comment(): """Inspect, create and manage comments.""" pass @verdi_comment.command() @click.option('--comment', '-c', type=str, required=False) @arguments.NODES(required=True) @decorators.with_dbenv() def add(comment, nodes): """ Add comment to one or more nodes in the database """ from aiida.orm.backend import construct_backend backend = construct_backend() user = backend.users.get_automatic_user() if not comment: comment = multi_line_input.edit_comment() for node in nodes: node.add_comment(comment, user) echo.echo_info("Comment added to node(s) '{}'".format(", ".join([str(node.pk) for node in nodes]))) @verdi_comment.command() @options.USER() @arguments.NODES() @decorators.with_dbenv() def show(user, nodes): """ Show the comments of (a) node(s) in the database """ for node in nodes: all_comments = node.get_comments() if user is not None: to_print = [i for i in all_comments if i['user__email'] == user.email] if not to_print: valid_users = ", ".join(set(["'" + i['user__email'] + "'" for i in all_comments])) echo.echo_info("Nothing found for user '{}'.\n" "Valid users found for Node {} are: {}.".format(user, node.pk, valid_users)) else: to_print = all_comments for i in to_print: comment_msg = [ "***********************************************************", "Comment of '{}' on {}".format( i['user__email'], i['ctime'].strftime("%Y-%m-%d %H:%M")), "PK {} ID {}. Last modified on {}".format( node.pk, i['pk'], i['mtime'].strftime("%Y-%m-%d %H:%M")), "", "{}".format(i['content']), "" ] echo.echo_info("\n".join(comment_msg)) # If there is nothing to print, print a message if not to_print: echo.echo_info("No comments found.") @verdi_comment.command() @click.option( '--all', '-a', 'remove_all', default=False, is_flag=True, help='If used, deletes all the comments of the active user attached to the node') @options.FORCE() @arguments.NODE() @click.argument('comment_id', type=int, required=False, metavar='COMMENT_ID') @decorators.with_dbenv() def remove(remove_all, force, node, comment_id): """ Remove comment(s) of a node. The user can only remove their own comments. pk = The pk (an integer) of the node id = #ID of the comment to be removed from node #PK """ # Note: in fact, the user can still manually delete any comment from aiida.orm.backend import construct_backend backend = construct_backend() user = backend.users.get_automatic_user() if comment_id is None and not remove_all: echo.echo_error("One argument between -a and ID must be provided") return 101 if comment_id is not None and remove_all: echo.echo_error("Cannot use -a together with a comment id") return 102 if remove_all: comment_id = None if not force: if remove_all: click.confirm("Delete all comments of user {} on node <{}>? ".format(user, node.pk), abort=True) else: click.confirm("Delete comment? ", abort=True) comments = node.get_comment_obj(comment_id=comment_id, user=user) for comment in comments: comment.delete() echo.echo_info("Deleted {} comments.".format(len(comments))) return 0 @verdi_comment.command() @click.option('--comment', '-c', type=str, required=False) @arguments.NODE() @click.argument('comment_id', type=int, metavar='COMMENT_ID') @decorators.with_dbenv() def update(comment, node, comment_id): """ Update a comment. id = The id of the comment comment = The comment (a string) to be added to the node(s) """ from aiida.orm.backend import construct_backend backend = construct_backend() user = backend.users.get_automatic_user() # read the comment from terminal if it is not on command line if comment is None: try: current_comment = node.get_comments(comment_id)[0] except IndexError: echo.echo_error("Comment with id '{}' not found".format(comment_id)) return 1 comment = multi_line_input.edit_comment(current_comment['content']) # pylint: disable=protected-access node._update_comment(comment, comment_id, user) return 0
33.219512
120
0.598201
7950cf5396b543953cb295e0133641d75bd4d635
1,541
py
Python
CMU/hand_labels/normdat.py
naoc-1861355/Public_Handpose_datasets
a0119226859ffad64bd7ceac8f8b4b67d2aebf8b
[ "MIT" ]
1
2022-01-11T03:43:17.000Z
2022-01-11T03:43:17.000Z
CMU/hand_labels/normdat.py
naoc-1861355/Public_Handpose_datasets
a0119226859ffad64bd7ceac8f8b4b67d2aebf8b
[ "MIT" ]
null
null
null
CMU/hand_labels/normdat.py
naoc-1861355/Public_Handpose_datasets
a0119226859ffad64bd7ceac8f8b4b67d2aebf8b
[ "MIT" ]
null
null
null
import json import os.path import cv2 import numpy as np from utils import generate_json_2d def normdat(outpath): """ normdat is a function that convert this dataset to standard ezxr format output Args: :param outpath : root output path of the formatted files Returns: :return: None """ # Input data paths # paths = ['synth1/', 'synth2/', 'synth3/', 'synth4/'] paths = ['manual_test/', 'manual_train/'] inpath = paths[0] outpath = outpath + inpath if not os.path.isdir(outpath): os.makedirs(outpath) files = sorted([f for f in os.listdir(inpath) if f.endswith('.json')]) for f in files: with open(inpath + f, 'r') as fid: dat = json.load(fid) pts = np.array(dat['hand_pts'], dtype=float) # Left hands are marked, but otherwise follow the same point order is_left = dat['is_left'] # find bounding point for each img (hand) x_min = min(pts[:, 0]) x_max = max(pts[:, 0]) y_min = min(pts[:, 1]) y_max = max(pts[:, 1]) hand_bbox = [x_min, x_max, y_min, y_max] dict_kp = generate_json_2d(pts, hand_bbox, is_left) # copy and dump .jpg and .json img = cv2.imread(inpath + f[0:-5] + '.jpg') cv2.imwrite(outpath + f[0:-5] + '.jpg', img) with open(outpath + f[0:-5] + '.json', 'w') as outfile: json.dump(dict_kp, outfile) def main(): outpath = './data/' normdat(outpath) if __name__ == '__main__': main()
25.683333
82
0.579494
7950d0557725ab94ef9754a4d635e1267072ebc8
825
py
Python
research/attention_ocr/python/datasets/__init__.py
udaylunawat/models
a07de068e5fe56d0b2bd3c155844b35954c180a3
[ "Apache-2.0" ]
null
null
null
research/attention_ocr/python/datasets/__init__.py
udaylunawat/models
a07de068e5fe56d0b2bd3c155844b35954c180a3
[ "Apache-2.0" ]
null
null
null
research/attention_ocr/python/datasets/__init__.py
udaylunawat/models
a07de068e5fe56d0b2bd3c155844b35954c180a3
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from datasets import fsns from datasets import fsns_test from datasets import number_plates __all__ = [fsns, fsns_test, number_plates]
39.285714
80
0.701818
7950d08eb03fa8769a6f5ab780ffdfeae10cffb9
1,521
py
Python
app/auth/views.py
01king-ori/Kingsblog
624a0e738f5ff8728bbcc327c5e6dd4144901e3f
[ "MIT" ]
null
null
null
app/auth/views.py
01king-ori/Kingsblog
624a0e738f5ff8728bbcc327c5e6dd4144901e3f
[ "MIT" ]
null
null
null
app/auth/views.py
01king-ori/Kingsblog
624a0e738f5ff8728bbcc327c5e6dd4144901e3f
[ "MIT" ]
null
null
null
from flask import render_template, redirect, url_for, flash, request from flask_login import login_user,logout_user,login_required from . import auth from ..models import User from .forms import LoginForm, RegistrationForm from .. import db from ..email import mail_message @auth.route('/login', methods=['GET', 'POST']) def login(): login_form = LoginForm() if login_form.validate_on_submit(): user = User.query.filter_by(email=login_form.email.data).first() if user is not None and user.verify_password(login_form.password.data): login_user(user, login_form.remember.data) return redirect(request.args.get('next') or url_for('main.home')) flash('Invalid username or Password') title = "Welcome to the BLOG" return render_template('auth/login.html', login_form=login_form, title=title) @auth.route('/register', methods=["GET", "POST"]) def register(): form = RegistrationForm() if form.validate_on_submit(): user = User(email=form.email.data, username=form.username.data, password=form.password.data) db.session.add(user) db.session.commit() mail_message("Welcome to the BLOG","email/subscriber",user.email,user=user) return redirect(url_for('auth.login')) title = "New Account" return render_template('auth/register.html', registration_form=form) @auth.route('/logout') @login_required def logout(): logout_user() return redirect(url_for("main.index"))
31.040816
100
0.692965
7950d0bcd2bbd793375dfb268d3ce08907f6e4bd
8,701
py
Python
pdns_auth_tsigkey.py
massonpj/ansible-pdns-auth-api
7cd6389e28a4eb359998669a92f075ee402ccced
[ "Apache-2.0" ]
null
null
null
pdns_auth_tsigkey.py
massonpj/ansible-pdns-auth-api
7cd6389e28a4eb359998669a92f075ee402ccced
[ "Apache-2.0" ]
null
null
null
pdns_auth_tsigkey.py
massonpj/ansible-pdns-auth-api
7cd6389e28a4eb359998669a92f075ee402ccced
[ "Apache-2.0" ]
1
2020-08-24T11:07:46.000Z
2020-08-24T11:07:46.000Z
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2020, Kevin P. Fleming <kevin@km6g.us> # Apache License 2.0 (see LICENSE) ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ %YAML 1.2 --- module: pdns_auth_tsigkey short_description: Manages a TSIG key in a PowerDNS Authoritative server description: - This module allows a task to manage the presence and content of a TSIG key in a PowerDNS Authoritative server. requirements: - bravado options: state: description: - If C(present) the zone will be created if necessary; if it already exists, its configuration will be updated to match the provided attributes. - If C(absent) the key will be removed it if exists. - If C(exists) the key's existence will be checked, but it will not be modified. choices: [ 'present', 'absent', 'exists' ] type: str required: false default: 'present' name: description: - Name of the key to be managed. type: str required: true server_id: description: - ID of the server instance which holds the key. type: str required: false default: 'localhost' api_url: description: - URL of the API endpoint in the server. type: str required: false default: 'http://localhost:8081' api_key: description: - Key (token) used to authenticate to the API endpoint in the server. type: str required: true api_spec_file: description: - Path to a file containing the OpenAPI (Swagger) specification for the API version implemented by the server. type: path required: true algorithm: description: - The message digest algorithm, as specified by RFC 2845 and its updates, which will be used to validate requests including this key. - Required when C(state) is C(present). choices: [ 'hmac-md5', 'hmac-sha1', 'hmac-sha224', 'hmac-sha256', 'hmac-sha384', 'hmac-sha512' ] type: str required: false default: 'hmac-md5' key: description: - The base-64 encoded key value. type: str author: - Kevin P. Fleming (@kpfleming) """ EXAMPLES = """ %YAML 1.2 --- # create and populate a file which holds the API specification - name: temp file to hold spec tempfile: state: file suffix: '.json' register: temp_file - name: populate spec file copy: src: api-swagger.json dest: "{{ temp_file.path }}" - name: check that key exists pdns_auth_tsigkey: name: key1 state: exists api_key: 'foobar' api_spec_file: "{{ temp_file.path }}" - name: create key with default algorithm pdns_auth_tsigkey: name: key2 state: present api_key: 'foobar' api_spec_file: "{{ temp_file.path }}" - name: remove key pdns_auth_tsigkey: name: key2 state: absent api_key: 'foobar' api_spec_file: "{{ temp_file.path }}" - name: create key with algorithm and content pdns_auth_tsigkey: name: key3 state: present api_key: 'foobar' api_spec_file: "{{ temp_file.path }}" algorithm: hmac-sha256 key: '+8fQxgYhf5PVGPKclKnk8ReujIfWXOw/aEzzPPhDi6AGagpg/r954FPZdzgFfUjnmjMSA1Yu7vo6DQHVoGnRkw==' """ RETURN = """ %YAML 1.2 --- key: description: Information about the key returned: always type: complex contains: name: description: Name returned: always type: str exists: description: Indicate whether the key exists returned: always type: bool algorithm: description: - The message digest algorithm, as specified by RFC 2845 and its updates, which will be used to validate requests including this key. returned: always type: str key: description: - The base-64 encoded key value. returned: always type: str """ from ansible.module_utils.basic import AnsibleModule from urllib.parse import urlparse def main(): module_args = { "state": { "type": "str", "default": "present", "choices": ["present", "absent", "exists"], }, "name": {"type": "str", "required": True,}, "server_id": {"type": "str", "default": "localhost",}, "api_url": {"type": "str", "default": "http://localhost:8081",}, "api_key": {"type": "str", "required": True, "no_log": True,}, "api_spec_file": {"type": "path", "required": True,}, "algorithm": { "type": "str", "default": "hmac-md5", "choices": [ "hmac-md5", "hmac-sha1", "hmac-sha224", "hmac-sha256", "hmac-sha384", "hmac-sha512", ], }, "key": {"type": "str"}, } module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) try: from bravado.requests_client import RequestsClient from bravado.client import SwaggerClient from bravado.swagger_model import load_file except ImportError: module.fail_json( msg="The pdns_auth_tsigkey module requires the 'bravado' package." ) result = { "changed": False, } state = module.params["state"] server_id = module.params["server_id"] key = module.params["name"] if module.check_mode: module.exit_json(**result) url = urlparse(module.params["api_url"]) http_client = RequestsClient() http_client.set_api_key( url.netloc, module.params["api_key"], param_name="X-API-Key", param_in="header" ) spec = load_file(module.params["api_spec_file"]) spec["host"] = url.netloc spec["schemes"] = [url.scheme] api = SwaggerClient.from_spec(spec, http_client=http_client) result["key"] = {"name": key, "exists": False} # first step is to get information about the key, if it exists # this is required to translate the user-friendly key name into # the key_id required for subsequent API calls partial_key_info = [ k for k in api.tsigkey.listTSIGKeys(server_id=server_id).result() if k["name"] == key ] if len(partial_key_info) == 0: if (state == "exists") or (state == "absent"): # exit as there is nothing left to do module.exit_json(**result) else: # state must be 'present' key_id = None else: # get the full key info and populate the result dict key_id = partial_key_info[0]["id"] key_info = api.tsigkey.getTSIGKey( server_id=server_id, tsigkey_id=key_id ).result() result["key"]["exists"] = True result["key"]["algorithm"] = key_info["algorithm"] result["key"]["key"] = key_info["key"] # if only an existence check was requested, # the operation is complete if state == "exists": module.exit_json(**result) # if absence was requested, remove the zone and exit if state == "absent": api.tsigkey.deleteTSIGKey(server_id=server_id, tsigkey_id=key_id).result() result["changed"] = True module.exit_json(**result) # state must be 'present' if not key_id: # create the requested key key_struct = { "name": key, "algorithm": module.params["algorithm"], } if module.params["key"]: key_struct["key"] = module.params["key"] key_info = api.tsigkey.createTSIGKey( server_id=server_id, tsigkey=key_struct ).result() result["changed"] = True result["key"]["exists"] = True result["key"]["algorithm"] = key_info["algorithm"] result["key"]["key"] = key_info["key"] else: # compare the key's attributes to the provided # options and update it if necessary key_struct = {} if module.params["algorithm"]: if module.params["algorithm"] != key_info["algorithm"]: key_struct["algorithm"] = module.params["algorithm"] if module.params["key"]: if module.params["key"] != key_info["key"]: key_struct["key"] = module.params["key"] if len(key_struct): key_info = api.tsigkey.putTSIGKey( server_id=server_id, tsigkey_id=key_id, tsigkey=key_struct ).result() result["changed"] = True if result["changed"]: result["key"]["algorithm"] = key_info["algorithm"] result["key"]["key"] = key_info["key"] module.exit_json(**result) if __name__ == "__main__": main()
27.710191
101
0.604643
7950d15e58f29bc7fd9a2365bf7ea9e1c0bf291f
3,495
py
Python
tests/test_repr.py
interrogator/loguru
892ca5ef415af000a5fe77f3632f3903da46b39f
[ "MIT" ]
null
null
null
tests/test_repr.py
interrogator/loguru
892ca5ef415af000a5fe77f3632f3903da46b39f
[ "MIT" ]
null
null
null
tests/test_repr.py
interrogator/loguru
892ca5ef415af000a5fe77f3632f3903da46b39f
[ "MIT" ]
null
null
null
from loguru import logger import logging import sys import pathlib import re def test_no_handler(): assert repr(logger) == "<loguru.logger handlers=[]>" def test_stderr(): logger.add(sys.__stderr__) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=10, sink=<stderr>)]>" def test_stdout(): logger.add(sys.__stdout__) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=10, sink=<stdout>)]>" def test_file_object(tmpdir): path = str(tmpdir.join("test.log")) file = open(path, "w") logger.add(file) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=10, sink=%s)]>" % path def test_file_str(tmpdir): path = str(tmpdir.join("test.log")) logger.add(path) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=10, sink=%s)]>" % path def test_file_pathlib(tmpdir): path = str(tmpdir.join("test.log")) logger.add(pathlib.Path(path)) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=10, sink=%s)]>" % path def test_stream_object(): class MyStream: def __init__(self, name): self.name = name def write(self, m): pass def __repr__(self): return "MyStream()" logger.add(MyStream("<foobar>")) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=10, sink=<foobar>)]>" def test_stream_object_without_name_attr(): class MyStream: def write(self, m): pass def __repr__(self): return "MyStream()" logger.add(MyStream()) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=10, sink=MyStream())]>" def test_function(): def my_function(message): pass logger.add(my_function) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=10, sink=my_function)]>" def test_function_without_name(): class Function: def __call__(self, message): pass def __repr__(self): return "<Function>" def __getattr__(self, name): if name == "__name__": raise AttributeError return getattr(self.__class__, name) function = Function() logger.add(function) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=10, sink=<Function>)]>" def test_standard_handler(): handler = logging.StreamHandler(sys.__stderr__) logger.add(handler) if sys.version_info >= (3, 6): r = "<loguru.logger handlers=[(id=0, level=10, sink=<StreamHandler <stderr> (NOTSET)>)]>" assert repr(logger) == r else: r = r"<loguru\.logger handlers=\[\(id=0, level=10, sink=<logging\.StreamHandler .*>\)\]>" assert re.match(r, repr(logger)) def test_multiple_handlers(): logger.add(sys.__stdout__) logger.add(sys.__stderr__) r = "<loguru.logger handlers=[(id=0, level=10, sink=<stdout>), (id=1, level=10, sink=<stderr>)]>" assert repr(logger) == r def test_handler_removed(): i = logger.add(sys.__stdout__) logger.add(sys.__stderr__) logger.remove(i) assert repr(logger) == "<loguru.logger handlers=[(id=1, level=10, sink=<stderr>)]>" def test_handler_level_name(): logger.add(sys.__stderr__, level="TRACE") assert repr(logger) == "<loguru.logger handlers=[(id=0, level=5, sink=<stderr>)]>" def test_handler_level_num(): logger.add(sys.__stderr__, level=33) assert repr(logger) == "<loguru.logger handlers=[(id=0, level=33, sink=<stderr>)]>"
27.519685
101
0.629757
7950d1e65a20728de269d38416a20a07bda70281
11,425
py
Python
aiida/tools/data/array/kpoints/__init__.py
joepvd/aiida_core
6e9711046753332933f982971db1d7ac7e7ade58
[ "BSD-2-Clause" ]
null
null
null
aiida/tools/data/array/kpoints/__init__.py
joepvd/aiida_core
6e9711046753332933f982971db1d7ac7e7ade58
[ "BSD-2-Clause" ]
null
null
null
aiida/tools/data/array/kpoints/__init__.py
joepvd/aiida_core
6e9711046753332933f982971db1d7ac7e7ade58
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida_core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### from __future__ import division from __future__ import print_function from __future__ import absolute_import from aiida.orm.data.array.kpoints import KpointsData from aiida.orm.data.parameter import ParameterData from aiida.tools.data.array.kpoints import legacy from aiida.tools.data.array.kpoints import seekpath __all__ = ['get_kpoints_path', 'get_explicit_kpoints_path'] def get_kpoints_path(structure, method='seekpath', **kwargs): """ Returns a dictionary whose contents depend on the method but includes at least the following keys * parameters: ParameterData node The contents of the parameters depends on the method but contains at least the keys * 'point_coords': a dictionary with 'kpoints-label': [float coordinates] * 'path': a list of length-2 tuples, with the labels of the starting and ending point of each label section The 'seekpath' method which is the default also returns the following additional nodes * primitive_structure: StructureData with the primitive cell * conv_structure: StructureData with the conventional cell Note that the generated kpoints for the seekpath method only apply on the returned primitive_structure and not on the input structure that was provided :param structure: a StructureData node :param method: the method to use for kpoint generation, options are 'seekpath' and 'legacy'. It is strongly advised to use the default 'seekpath' as the 'legacy' implementation is known to have bugs for certain structure cells :param kwargs: optional keyword arguments that depend on the selected method :returns: dictionary as described above in the docstring """ if method not in _get_kpoints_path_methods.keys(): raise ValueError("the method '{}' is not implemented".format(method)) if method == 'seekpath': try: seekpath.check_seekpath_is_installed() except ImportError as exception: raise ValueError("selected method is 'seekpath' but the package is not installed\n" "Either install it or pass method='legacy' as input to the function call") method = _get_kpoints_path_methods[method] return method(structure, **kwargs) def get_explicit_kpoints_path(structure, method='seekpath', **kwargs): """ Returns a dictionary whose contents depend on the method but includes at least the following keys * parameters: ParameterData node * explicit_kpoints: KpointsData node with explicit kpoints path The contents of the parameters depends on the method but contains at least the keys * 'point_coords': a dictionary with 'kpoints-label': [float coordinates] * 'path': a list of length-2 tuples, with the labels of the starting and ending point of each label section The 'seekpath' method which is the default also returns the following additional nodes * primitive_structure: StructureData with the primitive cell * conv_structure: StructureData with the conventional cell Note that the generated kpoints for the seekpath method only apply on the returned primitive_structure and not on the input structure that was provided :param structure: a StructureData node :param method: the method to use for kpoint generation, options are 'seekpath' and 'legacy'. It is strongly advised to use the default 'seekpath' as the 'legacy' implementation is known to have bugs for certain structure cells :param kwargs: optional keyword arguments that depend on the selected method :returns: dictionary as described above in the docstring """ if method not in _get_explicit_kpoints_path_methods.keys(): raise ValueError("the method '{}' is not implemented".format(method)) if method == 'seekpath': try: seekpath.check_seekpath_is_installed() except ImportError as exception: raise ValueError("selected method is 'seekpath' but the package is not installed\n" "Either install it or pass method='legacy' as input to the function call") method = _get_explicit_kpoints_path_methods[method] return method(structure, **kwargs) def _seekpath_get_kpoints_path(structure, **kwargs): """ Call the get_kpoints_path wrapper function for Seekpath :param structure: a StructureData node :param with_time_reversal: if False, and the group has no inversion symmetry, additional lines are returned :param recipe: choose the reference publication that defines the special points and paths. Currently, the following value is implemented: - ``hpkot``: HPKOT paper: Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka, Band structure diagram paths based on crystallography, Comp. Mat. Sci. 128, 140 (2017). DOI: 10.1016/j.commatsci.2016.10.015 :param threshold: the threshold to use to verify if we are in and edge case (e.g., a tetragonal cell, but ``a==c``). For instance, in the tI lattice, if ``abs(a-c) < threshold``, a :py:exc:`~seekpath.hpkot.EdgeCaseWarning` is issued. Note that depending on the bravais lattice, the meaning of the threshold is different (angle, length, ...) :param symprec: the symmetry precision used internally by SPGLIB :param angle_tolerance: the angle_tolerance used internally by SPGLIB """ assert structure.pbc == (True, True, True), 'Seekpath only implemented for three-dimensional structures' recognized_args = ['with_time_reversal', 'recipe', 'threshold', 'symprec', 'angle_tolerance'] unknown_args = set(kwargs).difference(recognized_args) if unknown_args: raise ValueError("unknown arguments {}".format(unknown_args)) return seekpath.get_kpoints_path(structure, kwargs) def _seekpath_get_explicit_kpoints_path(structure, **kwargs): """ Call the get_explicit_kpoints_path wrapper function for Seekpath :param structure: a StructureData node :param with_time_reversal: if False, and the group has no inversion symmetry, additional lines are returned :param reference_distance: a reference target distance between neighboring k-points in the path, in units of 1/ang. The actual value will be as close as possible to this value, to have an integer number of points in each path :param recipe: choose the reference publication that defines the special points and paths. Currently, the following value is implemented: - ``hpkot``: HPKOT paper: Y. Hinuma, G. Pizzi, Y. Kumagai, F. Oba, I. Tanaka, Band structure diagram paths based on crystallography, Comp. Mat. Sci. 128, 140 (2017). DOI: 10.1016/j.commatsci.2016.10.015 :param threshold: the threshold to use to verify if we are in and edge case (e.g., a tetragonal cell, but ``a==c``). For instance, in the tI lattice, if ``abs(a-c) < threshold``, a :py:exc:`~seekpath.hpkot.EdgeCaseWarning` is issued. Note that depending on the bravais lattice, the meaning of the threshold is different (angle, length, ...) :param symprec: the symmetry precision used internally by SPGLIB :param angle_tolerance: the angle_tolerance used internally by SPGLIB """ assert structure.pbc == (True, True, True), 'Seekpath only implemented for three-dimensional structures' recognized_args = ['with_time_reversal', 'reference_distance', 'recipe', 'threshold', 'symprec', 'angle_tolerance'] unknown_args = set(kwargs).difference(recognized_args) if unknown_args: raise ValueError("unknown arguments {}".format(unknown_args)) return seekpath.get_explicit_kpoints_path(structure, kwargs) def _legacy_get_kpoints_path(structure, **kwargs): """ Call the get_kpoints_path of the legacy implementation :param structure: a StructureData node :param bool cartesian: if set to true, reads the coordinates eventually passed in value as cartesian coordinates :param epsilon_length: threshold on lengths comparison, used to get the bravais lattice info :param epsilon_angle: threshold on angles comparison, used to get the bravais lattice info """ args_recognized = ['cartesian', 'epsilon_length', 'epsilon_angle'] args_unknown = set(kwargs).difference(args_recognized) if args_unknown: raise ValueError("unknown arguments {}".format(args_unknown)) point_coords, path, bravais_info = legacy.get_kpoints_path( cell=structure.cell, pbc=structure.pbc, **kwargs ) parameters = { 'bravais_info': bravais_info, 'point_coords': point_coords, 'path': path, } return {'parameters': ParameterData(dict=parameters)} def _legacy_get_explicit_kpoints_path(structure, **kwargs): """ Call the get_explicit_kpoints_path of the legacy implementation :param structure: a StructureData node :param float kpoint_distance: parameter controlling the distance between kpoints. Distance is given in crystal coordinates, i.e. the distance is computed in the space of b1, b2, b3. The distance set will be the closest possible to this value, compatible with the requirement of putting equispaced points between two special points (since extrema are included). :param bool cartesian: if set to true, reads the coordinates eventually passed in value as cartesian coordinates :param float epsilon_length: threshold on lengths comparison, used to get the bravais lattice info :param float epsilon_angle: threshold on angles comparison, used to get the bravais lattice info """ args_recognized = ['value', 'kpoint_distance', 'cartesian', 'epsilon_length', 'epsilon_angle'] args_unknown = set(kwargs).difference(args_recognized) if args_unknown: raise ValueError("unknown arguments {}".format(args_unknown)) point_coords, path, bravais_info, explicit_kpoints, labels = legacy.get_explicit_kpoints_path( cell=structure.cell, pbc=structure.pbc, **kwargs ) kpoints = KpointsData() kpoints.set_cell(structure.cell) kpoints.set_kpoints(explicit_kpoints) kpoints.labels = labels parameters = { 'bravais_info': bravais_info, 'point_coords': point_coords, 'path': path, } return { 'parameters': ParameterData(dict=parameters), 'explicit_kpoints': kpoints } _get_kpoints_path_methods = { 'legacy': _legacy_get_kpoints_path, 'seekpath': _seekpath_get_kpoints_path, } _get_explicit_kpoints_path_methods = { 'legacy': _legacy_get_explicit_kpoints_path, 'seekpath': _seekpath_get_explicit_kpoints_path, }
44.803922
119
0.698818
7950d29a64dbb28b60bf8229788687f93a122298
11
py
Python
src/test/resources/expressions/enclosure/display/list.py
oxisto/reticulated-python
a38c8bd9c842be4f4c8ddc73c61c70aeceb07248
[ "Apache-2.0" ]
3
2019-11-23T10:19:43.000Z
2021-03-19T03:18:30.000Z
src/test/resources/expressions/enclosure/display/list.py
oxisto/reticulated-python
a38c8bd9c842be4f4c8ddc73c61c70aeceb07248
[ "Apache-2.0" ]
46
2019-11-23T12:11:52.000Z
2022-03-07T13:39:12.000Z
src/test/resources/expressions/enclosure/display/list.py
oxisto/reticulated-python
a38c8bd9c842be4f4c8ddc73c61c70aeceb07248
[ "Apache-2.0" ]
3
2020-03-02T13:48:45.000Z
2020-03-06T09:33:25.000Z
[1, ['a']]
5.5
10
0.181818
7950d36494c5876ecc143027629021ed60c36553
4,913
py
Python
tilt/wlt/wallet.py
inc/tilt
2d5e9040cc28e325ae3365f04d3c89c402ebba0f
[ "BSD-1-Clause" ]
1
2021-04-13T11:08:42.000Z
2021-04-13T11:08:42.000Z
tilt/wlt/wallet.py
inc/tilt
2d5e9040cc28e325ae3365f04d3c89c402ebba0f
[ "BSD-1-Clause" ]
null
null
null
tilt/wlt/wallet.py
inc/tilt
2d5e9040cc28e325ae3365f04d3c89c402ebba0f
[ "BSD-1-Clause" ]
2
2021-04-13T11:09:00.000Z
2021-04-25T14:09:06.000Z
#!/bin/python3 # # Tilt - Wallet Manager # Copyright (c) 2021 Lone Dynamics Corporation. All rights reserved. # import json import os import time import glob import logging import sys import pprint import zipfile import bitcoinlib from bitcoinlib.keys import Key from cryptography.fernet import Fernet import tilt.utils as tilt class WalletManager: def __init__(self): tilt.setup() self.tiltdir = os.path.expanduser("~/.tilt") self.walletdir = self.tiltdir + '/wallet' wallet_key = tilt.get_config("wallet_key") self.fernet = Fernet(wallet_key) return # create a new address/key pair, return the new address def create(self, currency, meta={}, label=None, unused=False): k = Key(network=self.currency_to_network(currency)) address = k.address() wif_plain_bytes = k.wif().encode('utf-8') wif_cipher_bytes = self.fernet.encrypt(wif_plain_bytes).decode('utf-8') r = { 'currency': currency, 'address': address, 'cipher_wif': wif_cipher_bytes, 'meta': meta, 'label': label, 'unused': unused, 'ts': int(time.time()) } fn = self.walletdir + "/" + currency + "." + address + ".json" with open(os.open(fn, os.O_CREAT | os.O_WRONLY, 0o600), 'w') as f: f.write(json.dumps(r)) return address # create new unused address/key pairs, return the new address def create_unused(self, currency, quantity=1): addrs = [] for i in range(quantity): addrs.append(self.create(currency, unused=True)) return addrs def load(self, filename): with open(filename, "r") as f: return json.loads(f.read()) def decrypt(self, filename): w = self.load(filename) wif_cipher_bytes = w['cipher_wif'].encode('utf-8') w['plain_wif'] = self.fernet.decrypt(wif_cipher_bytes).decode('utf-8') del w['cipher_wif'] return w def exists(self, currency, address): fn = self.walletdir + "/" + currency + "." + address + ".json" return os.path.isfile(fn) def get(self, currency, address): fn = self.walletdir + "/" + currency + "." + address + ".json" return self.decrypt(fn) def show(self, currency, address): pp = pprint.PrettyPrinter() pp.pprint(self.get(currency, address)) def list(self, currency, show_labels=False, show_balances=False, show_unused=False, confs=6): if currency: fn = self.walletdir + "/" + currency + ".*.json" else: fn = self.walletdir + "/*.json" balances = {} if show_balances: res = tilt.balances(confs) balances = res['balances'] files = list(glob.iglob(fn)) files.sort(key=os.path.getmtime) for fn in files: fs = os.path.basename(fn).split('.') with open(fn) as f: w = json.loads(f.read()) if 'unused' in w and w['unused'] and not show_unused: continue print(fs[0], "\t", fs[1], end='') if fs[0] in balances and fs[1] in balances[fs[0]]: balance = balances[fs[0]][fs[1]] else: balance = 0 if show_balances: print("\t", balance, end='') if show_labels: label = '' if 'label' in w and w['label']: label = w['label'] print("\t", label, end='') print('', flush=True) def freeze(self): zfn = 'tilt-freeze-' + str(int(time.time())) + '.zip' with zipfile.ZipFile(zfn, 'w') as z: files = list(glob.iglob(self.walletdir + '/*.json')) for f in files: an = os.path.basename(f) plainjson = json.dumps(self.decrypt(f)) z.writestr('wallet/' + an, plainjson) logging.info("froze %s files" % len(files)) def destroy(self, zfn): logging.warning("about to permanently delete every file in" \ " ~/.tilt/wallet that also exists in " + zfn + \ "; type 'yes' to proceed:") res = input() if res != "yes": print("aborted") return with zipfile.ZipFile(zfn, 'r') as z: files = z.namelist() for f in files: print("deleting", f) def currency_to_network(self, currency): if currency == "btc": return "bitcoin" if currency == "tbtc": return "testnet" if currency == "ltc": return "litecoin" if currency == "tltc": return "litecoin_testnet" if currency == "doge": return "dogecoin" if currency == "tdoge": return "dogecoin_testnet" raise Exception("unsupported currency", currency)
30.515528
79
0.549766
7950d391f7996ef25b858ff1e5ca9cbc483d6071
16,337
py
Python
testing/scripts/run_android_wpt.py
mduclehcm/react-native-skia
de1ede5332ed66f731be4389cd625f95c32e2733
[ "MIT" ]
643
2021-08-02T05:04:20.000Z
2022-03-27T22:56:02.000Z
testing/scripts/run_android_wpt.py
mduclehcm/react-native-skia
de1ede5332ed66f731be4389cd625f95c32e2733
[ "MIT" ]
18
2021-05-13T05:53:06.000Z
2022-03-31T21:24:25.000Z
testing/scripts/run_android_wpt.py
mduclehcm/react-native-skia
de1ede5332ed66f731be4389cd625f95c32e2733
[ "MIT" ]
16
2021-08-31T07:08:45.000Z
2022-02-14T12:36:15.000Z
#!/usr/bin/env vpython # Copyright 2019 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Runs Web Platform Tests (WPT) on Android browsers. This script supports running tests on the Chromium Waterfall by mapping isolated script flags to WPT flags. It is also useful for local reproduction by performing APK installation and configuring the browser to resolve test hosts. Be sure to invoke this executable directly rather than using python run_android_wpt.py so that WPT dependencies in Chromium vpython are found. If you need more advanced test control, please use the runner located at //third_party/blink/web_tests/external/wpt/wpt. Here's the mapping [isolate script flag] : [wpt flag] --isolated-script-test-output : --log-chromium --total-shards : --total-chunks --shard-index : -- this-chunk """ # TODO(aluo): Combine or factor out commons parts with run_wpt_tests.py script. import argparse import contextlib import json import logging import os import shutil import sys import common import wpt_common logger = logging.getLogger(__name__) SRC_DIR = os.path.abspath( os.path.join(os.path.dirname(__file__), os.pardir, os.pardir)) BUILD_ANDROID = os.path.join(SRC_DIR, 'build', 'android') BLINK_TOOLS_DIR = os.path.join( SRC_DIR, 'third_party', 'blink', 'tools') CATAPULT_DIR = os.path.join(SRC_DIR, 'third_party', 'catapult') DEFAULT_WPT = os.path.join(wpt_common.WEB_TESTS_DIR, 'external', 'wpt', 'wpt') PYUTILS = os.path.join(CATAPULT_DIR, 'common', 'py_utils') if PYUTILS not in sys.path: sys.path.append(PYUTILS) if BLINK_TOOLS_DIR not in sys.path: sys.path.append(BLINK_TOOLS_DIR) if BUILD_ANDROID not in sys.path: sys.path.append(BUILD_ANDROID) import devil_chromium from blinkpy.web_tests.port.android import ( PRODUCTS, PRODUCTS_TO_EXPECTATION_FILE_PATHS, ANDROID_WEBLAYER, ANDROID_WEBVIEW, CHROME_ANDROID, ANDROID_DISABLED_TESTS) from devil import devil_env from devil.android import apk_helper from devil.android import device_utils from devil.android.tools import system_app from devil.android.tools import webview_app from py_utils.tempfile_ext import NamedTemporaryDirectory class PassThroughArgs(argparse.Action): pass_through_args = [] def __call__(self, parser, namespace, values, option_string=None): if option_string: if self.nargs == 0: self.add_unique_pass_through_arg(option_string) elif self.nargs is None: self.add_unique_pass_through_arg('{}={}'.format(option_string, values)) else: raise ValueError("nargs {} not supported: {} {}".format( self.nargs, option_string, values)) @classmethod def add_unique_pass_through_arg(cls, arg): if arg not in cls.pass_through_args: cls.pass_through_args.append(arg) def _get_adapter(device): usage = '%(prog)s --product={' + ','.join(PRODUCTS) + '} ...' product_parser = argparse.ArgumentParser( add_help=False, prog='run_android_wpt.py', usage=usage) product_parser.add_argument( '--product', action='store', required=True, choices=PRODUCTS) options, _ = product_parser.parse_known_args() product = options.product if product == ANDROID_WEBLAYER: return WPTWeblayerAdapter(device) elif product == ANDROID_WEBVIEW: return WPTWebviewAdapter(device) else: return WPTClankAdapter(device) class WPTAndroidAdapter(wpt_common.BaseWptScriptAdapter): def __init__(self, device): self.pass_through_wpt_args = [] self.pass_through_binary_args = [] self._metadata_dir = None self._device = device super(WPTAndroidAdapter, self).__init__() # Arguments from add_extra_argumentsparse were added so # its safe to parse the arguments and set self._options self.parse_args() @property def rest_args(self): rest_args = super(WPTAndroidAdapter, self).rest_args # Here we add all of the arguments required to run WPT tests on Android. rest_args.extend([self.options.wpt_path]) # vpython has packages needed by wpt, so force it to skip the setup rest_args.extend(["--venv=../../", "--skip-venv-setup"]) rest_args.extend(["run", "--test-type=" + self.options.test_type, "--webdriver-binary", self.options.webdriver_binary, "--headless", "--no-pause-after-test", "--no-capture-stdio", "--no-manifest-download", ]) # if metadata was created then add the metadata directory # to the list of wpt arguments if self._metadata_dir: rest_args.extend(['--metadata', self._metadata_dir]) if self.options.verbose >= 3: rest_args.extend(["--log-mach=-", "--log-mach-level=debug", "--log-mach-verbose"]) if self.options.verbose >= 4: rest_args.extend(['--webdriver-arg=--verbose', '--webdriver-arg="--log-path=-"']) rest_args.extend(self.pass_through_wpt_args) return rest_args def _extra_metadata_builder_args(self): raise NotImplementedError def _maybe_build_metadata(self): metadata_builder_cmd = [ sys.executable, os.path.join(wpt_common.BLINK_TOOLS_DIR, 'build_wpt_metadata.py'), '--android-product', self.options.product, '--ignore-default-expectations', '--metadata-output-dir', self._metadata_dir, '--additional-expectations', ANDROID_DISABLED_TESTS, ] metadata_builder_cmd.extend(self._extra_metadata_builder_args()) return common.run_command(metadata_builder_cmd) def run_test(self): with NamedTemporaryDirectory() as self._metadata_dir, self._install_apks(): metadata_command_ret = self._maybe_build_metadata() if metadata_command_ret != 0: return metadata_command_ret return super(WPTAndroidAdapter, self).run_test() def _install_apks(self): raise NotImplementedError def clean_up_after_test_run(self): # Avoid having a dangling reference to the temp directory # which was deleted self._metadata_dir = None def add_extra_arguments(self, parser): # TODO: |pass_through_args| are broke and need to be supplied by way of # --binary-arg". class BinaryPassThroughArgs(PassThroughArgs): pass_through_args = self.pass_through_binary_args class WPTPassThroughArgs(PassThroughArgs): pass_through_args = self.pass_through_wpt_args # Add this so that product argument does not go in self._rest_args # when self.parse_args() is called parser.add_argument('--product', help=argparse.SUPPRESS) parser.add_argument('--webdriver-binary', required=True, help='Path of the webdriver binary. It needs to have' ' the same major version as the apk.') parser.add_argument('--wpt-path', default=DEFAULT_WPT, help='Controls the path of the WPT runner to use' ' (therefore tests). Defaults the revision rolled into' ' Chromium.') parser.add_argument('--test-type', default='testharness', help='Specify to experiment with other test types.' ' Currently only the default is expected to work.') parser.add_argument('--verbose', '-v', action='count', help='Verbosity level.') parser.add_argument('--include', metavar='TEST_OR_DIR', action=WPTPassThroughArgs, help='Test(s) to run, defaults to run all tests.') parser.add_argument('--list-tests', action=WPTPassThroughArgs, nargs=0, help="Don't run any tests, just print out a list of" ' tests that would be run.') parser.add_argument('--webdriver-arg', action=WPTPassThroughArgs, help='WebDriver args.') parser.add_argument('--log-wptreport', metavar='WPT_REPORT_FILE', action=WPTPassThroughArgs, help="Log wptreport with subtest details.") parser.add_argument('--log-raw', metavar='RAW_REPORT_FILE', action=WPTPassThroughArgs, help="Log raw report.") parser.add_argument('--log-html', metavar='HTML_REPORT_FILE', action=WPTPassThroughArgs, help="Log html report.") parser.add_argument('--log-xunit', metavar='XUNIT_REPORT_FILE', action=WPTPassThroughArgs, help="Log xunit report.") parser.add_argument('--enable-features', action=BinaryPassThroughArgs, help='Chromium features to enable during testing.') parser.add_argument('--disable-features', action=BinaryPassThroughArgs, help='Chromium features to disable during testing.') parser.add_argument('--disable-field-trial-config', action=BinaryPassThroughArgs, help='Disable test trials for Chromium features.') parser.add_argument('--force-fieldtrials', action=BinaryPassThroughArgs, help='Force trials for Chromium features.') parser.add_argument('--force-fieldtrial-params', action=BinaryPassThroughArgs, help='Force trial params for Chromium features.') class WPTWeblayerAdapter(WPTAndroidAdapter): WEBLAYER_SHELL_PKG = 'org.chromium.weblayer.shell' WEBLAYER_SUPPORT_PKG = 'org.chromium.weblayer.support' @contextlib.contextmanager def _install_apks(self): install_weblayer_shell_as_needed = maybe_install_user_apk( self._device, self.options.weblayer_shell, self.WEBLAYER_SHELL_PKG) install_weblayer_support_as_needed = maybe_install_user_apk( self._device, self.options.weblayer_support, self.WEBLAYER_SUPPORT_PKG) install_webview_provider_as_needed = maybe_install_webview_provider( self._device, self.options.webview_provider) with install_weblayer_shell_as_needed, \ install_weblayer_support_as_needed, \ install_webview_provider_as_needed: yield def _extra_metadata_builder_args(self): return [ '--additional-expectations', PRODUCTS_TO_EXPECTATION_FILE_PATHS[ANDROID_WEBLAYER]] def add_extra_arguments(self, parser): super(WPTWeblayerAdapter, self).add_extra_arguments(parser) parser.add_argument('--weblayer-shell', help='WebLayer Shell apk to install.') parser.add_argument('--weblayer-support', help='WebLayer Support apk to install.') parser.add_argument('--webview-provider', help='Webview provider apk to install.') @property def rest_args(self): args = super(WPTWeblayerAdapter, self).rest_args args.append(ANDROID_WEBLAYER) return args class WPTWebviewAdapter(WPTAndroidAdapter): SYSTEM_WEBVIEW_SHELL_PKG = 'org.chromium.webview_shell' @contextlib.contextmanager def _install_apks(self): install_shell_as_needed = maybe_install_user_apk( self._device, self.options.system_webview_shell, self.SYSTEM_WEBVIEW_SHELL_PKG) install_webview_provider_as_needed = maybe_install_webview_provider( self._device, self.options.webview_provider) with install_shell_as_needed, install_webview_provider_as_needed: yield def _extra_metadata_builder_args(self): return [ '--additional-expectations', PRODUCTS_TO_EXPECTATION_FILE_PATHS[ANDROID_WEBVIEW]] def add_extra_arguments(self, parser): super(WPTWebviewAdapter, self).add_extra_arguments(parser) parser.add_argument('--system-webview-shell', help=('System WebView Shell apk to install. If not ' 'specified then the on-device WebView apk ' 'will be used.')) parser.add_argument('--webview-provider', help='Webview provider APK to install.') @property def rest_args(self): args = super(WPTWebviewAdapter, self).rest_args args.append(ANDROID_WEBVIEW) return args class WPTClankAdapter(WPTAndroidAdapter): @contextlib.contextmanager def _install_apks(self): install_clank_as_needed = maybe_install_user_apk( self._device, self.options.chrome_apk) with install_clank_as_needed: yield def _extra_metadata_builder_args(self): return [ '--additional-expectations', PRODUCTS_TO_EXPECTATION_FILE_PATHS[CHROME_ANDROID]] def add_extra_arguments(self, parser): super(WPTClankAdapter, self).add_extra_arguments(parser) parser.add_argument( '--chrome-apk', help='Chrome apk to install.') parser.add_argument( '--chrome-package-name', help=('The package name of Chrome to test,' ' defaults to that of the compiled Chrome apk.')) @property def rest_args(self): args = super(WPTClankAdapter, self).rest_args if not self.options.chrome_package_name and not self.options.chrome_apk: raise Exception('Either the --chrome-package-name or --chrome-apk ' 'command line arguments must be used.') if not self.options.chrome_package_name: self.options.chrome_package_name = apk_helper.GetPackageName( self.options.chrome_apk) logger.info("Using Chrome apk's default package %s." % self.options.chrome_package_name) args.extend(['--package-name', self.options.chrome_package_name]) # add the product postional argument args.append(CHROME_ANDROID) return args def maybe_install_webview_provider(device, apk): if apk: logger.info('Will install WebView apk at ' + apk) return webview_app.UseWebViewProvider(device, apk) else: return no_op() def maybe_install_user_apk(device, apk, expected_pkg=None): """contextmanager to install apk on device. Args: device: DeviceUtils instance on which to install the apk. apk: Apk file path on host. expected_pkg: Optional, check that apk's package name matches. Returns: If apk evaluates to false, returns a do-nothing contextmanager. Otherwise, returns a contextmanager to install apk on device. """ if apk: pkg = apk_helper.GetPackageName(apk) if expected_pkg and pkg != expected_pkg: raise ValueError('{} has incorrect package name: {}, expected {}.'.format( apk, pkg, expected_pkg)) install_as_needed = app_installed(device, apk) logger.info('Will install ' + pkg + ' at ' + apk) else: install_as_needed = no_op() return install_as_needed @contextlib.contextmanager def app_installed(device, apk): pkg = apk_helper.GetPackageName(apk) device.Install(apk) try: yield finally: device.Uninstall(pkg) # Dummy contextmanager to simplify multiple optional managers. @contextlib.contextmanager def no_op(): yield # This is not really a "script test" so does not need to manually add # any additional compile targets. def main_compile_targets(args): json.dump([], args.output) def main(): devil_chromium.Initialize() devices = device_utils.DeviceUtils.HealthyDevices() if not devices: logger.error('There are no devices attached to this host. Exiting script.') return 1 # Only 1 device is supported for Android locally, this will work well with # sharding support via swarming infra. device = devices[0] adapter = _get_adapter(device) if adapter.options.verbose: if adapter.options.verbose == 1: logger.setLevel(logging.INFO) else: logger.setLevel(logging.DEBUG) # WPT setup for chrome and webview requires that PATH contains adb. platform_tools_path = os.path.dirname(devil_env.config.FetchPath('adb')) os.environ['PATH'] = ':'.join([platform_tools_path] + os.environ['PATH'].split(':')) return adapter.run_test() if __name__ == '__main__': # Conform minimally to the protocol defined by ScriptTest. if 'compile_targets' in sys.argv: funcs = { 'run': None, 'compile_targets': main_compile_targets, } sys.exit(common.run_script(sys.argv[1:], funcs)) logging.basicConfig(level=logging.WARNING) logger = logging.getLogger() sys.exit(main())
35.984581
80
0.689294
7950d5102694d907493bb089b21903d6788ede4b
1,205
py
Python
Leak #5 - Lost In Translation/windows/Resources/Dsz/PyScripts/Lib/dsz/mca/file/cmd/move/data/dsz/__init__.py
bidhata/EquationGroupLeaks
1ff4bc115cb2bd5bf2ed6bf769af44392926830c
[ "Unlicense" ]
9
2019-11-22T04:58:40.000Z
2022-02-26T16:47:28.000Z
Leak #5 - Lost In Translation/windows/Resources/Dsz/PyScripts/Lib/dsz/mca/file/cmd/move/data/dsz/__init__.py
bidhata/EquationGroupLeaks
1ff4bc115cb2bd5bf2ed6bf769af44392926830c
[ "Unlicense" ]
null
null
null
Leak #5 - Lost In Translation/windows/Resources/Dsz/PyScripts/Lib/dsz/mca/file/cmd/move/data/dsz/__init__.py
bidhata/EquationGroupLeaks
1ff4bc115cb2bd5bf2ed6bf769af44392926830c
[ "Unlicense" ]
8
2017-09-27T10:31:18.000Z
2022-01-08T10:30:46.000Z
# uncompyle6 version 2.9.10 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.6.0b2 (default, Oct 11 2016, 05:27:10) # [GCC 6.2.0 20161005] # Embedded file name: __init__.py import dsz import dsz.cmd import dsz.data import dsz.lp class Move(dsz.data.Task): def __init__(self, cmd=None): dsz.data.Task.__init__(self, cmd) def _LoadData(self): try: self.MoveResults = Move.MoveResults(dsz.cmd.data.Get('MoveResults', dsz.TYPE_OBJECT)[0]) except: self.MoveResults = None return class MoveResults(dsz.data.DataBean): def __init__(self, obj): try: self.delay = dsz.cmd.data.ObjectGet(obj, 'delay', dsz.TYPE_BOOL)[0] except: self.delay = None try: self.destination = dsz.cmd.data.ObjectGet(obj, 'destination', dsz.TYPE_STRING)[0] except: self.destination = None try: self.source = dsz.cmd.data.ObjectGet(obj, 'source', dsz.TYPE_STRING)[0] except: self.source = None return dsz.data.RegisterCommand('Move', Move) MOVE = Move move = Move
25.638298
100
0.580913
7950d5690cb9cdf85abbba0ca2ddaf60421183b3
3,099
py
Python
projDir/uw/scripts/ftpCSapr2Images.py
NCAR/lrose-projects-relampago
8208e4bd83ac8007a04987c0531fb60cc629a05a
[ "BSD-2-Clause" ]
1
2018-12-03T19:51:14.000Z
2018-12-03T19:51:14.000Z
projDir/uw/scripts/ftpCSapr2Images.py
NCAR/lrose-projects-relampago
8208e4bd83ac8007a04987c0531fb60cc629a05a
[ "BSD-2-Clause" ]
null
null
null
projDir/uw/scripts/ftpCSapr2Images.py
NCAR/lrose-projects-relampago
8208e4bd83ac8007a04987c0531fb60cc629a05a
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/python import sys import os import time import datetime from datetime import timedelta import requests from bs4 import BeautifulSoup from ftplib import FTP #if len(sys.argv) != 2: # print >>sys.stderr, "Useage: ",sys.argv[0]," [YYYY_MM_DD]" # quit() #date = sys.argv[1] # get current date and time minus one hour UTC_OFFSET_TIMEDELTA = datetime.datetime.utcnow() - datetime.datetime.now() date_1_hour_ago = datetime.datetime.now() - timedelta(hours=1) + UTC_OFFSET_TIMEDELTA date = date_1_hour_ago.strftime("%Y_%m_%d") dateNoHyphens = date_1_hour_ago.strftime("%Y%m%d") hour = date_1_hour_ago.strftime("%H") #nowTime = time.gmtime() #now = datetime.datetime(nowTime.tm_year, nowTime.tm_mon, nowTime.tm_mday, # nowTime.tm_hour, nowTime.tm_min, nowTime.tm_sec) #date = now.strftime("%Y_%m_%d") #date = '2018_11_01' url = 'https://engineering.arm.gov/~radar/amf1_csapr2_incoming_images/hsrhi/'+date+'/' ext = 'png' homeDir = os.getenv('HOME') outDir = os.path.join(homeDir, 'radar/csapr2/' + date) category = 'radar' platform = 'DOE_CSapr2' ftpCatalogServer = 'catalog.eol.ucar.edu' ftpCatalogUser = 'anonymous' catalogDestDir = '/pub/incoming/catalog/relampago' debug = 1 def listFD(url, ext=''): page = requests.get(url).text print page soup = BeautifulSoup(page, 'html.parser') return [url + '/' + node.get('href') for node in soup.find_all('a') if node.get('href').endswith(ext)] if not os.path.exists(outDir): os.makedirs(outDir) os.chdir(outDir) for file in listFD(url, ext): tmp = os.path.basename(file) (f,e) = os.path.splitext(tmp) parts = f.split('_') (fdate,ftime) = parts[3].split('-') fhour = ftime[0:2] if fdate == dateNoHyphens and fhour == hour: print file cmd = 'wget '+file os.system(cmd) # correct names of -0.0 files #cmd = 'mmv "*_-0.0.png" "#1_00.0.png"' #os.system(cmd) # rename files and ftp them for file in os.listdir(outDir): if file.startswith('cor_'): if debug: print >>sys.stderr, "file = ",file (filename, file_ext) = os.path.splitext(file) parts = filename.split('_') (date,time) = parts[3].split('-') angle_parts = parts[5].split('.') if len(angle_parts[0]) == 1: angle = '00'+angle_parts[0] elif len(angle_parts[0]) == 2: angle = '0'+angle_parts[0] else: angle = angle_parts[0] product = parts[2]+'_'+parts[4]+'_'+angle file_cat = category+'.'+platform+'.'+date+time+'.'+product+file_ext if debug: print >>sys.stderr, "file_cat = ",file_cat cmd = 'mv '+file+' '+file_cat os.system(cmd) # ftp file try: catalogFTP = FTP(ftpCatalogServer,ftpCatalogUser) catalogFTP.cwd(catalogDestDir) file = open(file_cat,'rb') catalogFTP.storbinary('STOR '+file_cat,file) file.close() catalogFTP.quit() except Exception as e: print >>sys.stderr, "FTP failed, exception: ", e
28.694444
106
0.622136
7950d5c597bdfe185bc2350c8cec2863843cc600
7,531
py
Python
lib/googlecloudsdk/command_lib/interactive/parser.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/command_lib/interactive/parser.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/command_lib/interactive/parser.py
bshaffer/google-cloud-sdk
f587382fd112f238c0d6d5ca3dab8f52d2b5c5f9
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A basic command line parser. This command line parser does the bare minimum required to understand the commands and flags being used as well as perform completion. This is not a replacement for argparse (yet). """ from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import enum from googlecloudsdk.calliope import cli_tree from googlecloudsdk.command_lib.interactive import lexer import six LOOKUP_COMMANDS = cli_tree.LOOKUP_COMMANDS LOOKUP_CHOICES = cli_tree.LOOKUP_CHOICES LOOKUP_COMPLETER = cli_tree.LOOKUP_COMPLETER LOOKUP_FLAGS = cli_tree.LOOKUP_FLAGS LOOKUP_GROUPS = cli_tree.LOOKUP_GROUPS LOOKUP_IS_GROUP = cli_tree.LOOKUP_IS_GROUP LOOKUP_IS_HIDDEN = cli_tree.LOOKUP_IS_HIDDEN LOOKUP_IS_SPECIAL = 'interactive.is_special' LOOKUP_NAME = cli_tree.LOOKUP_NAME LOOKUP_NARGS = cli_tree.LOOKUP_NARGS LOOKUP_POSITIONALS = cli_tree.LOOKUP_POSITIONALS LOOKUP_TYPE = cli_tree.LOOKUP_TYPE LOOKUP_CLI_VERSION = cli_tree.LOOKUP_CLI_VERSION class ArgTokenType(enum.Enum): UNKNOWN = 0 # Unknown token type in any position PREFIX = 1 # Potential command name, maybe after lex.SHELL_TERMINATOR_CHARS GROUP = 2 # Command arg with subcommands COMMAND = 3 # Command arg FLAG = 4 # Flag arg FLAG_ARG = 5 # Flag value arg POSITIONAL = 6 # Positional arg SPECIAL = 7 # Special keyword that is followed by PREFIX. class ArgToken(object): """Shell token info. Attributes: value: A string associated with the token. token_type: Instance of ArgTokenType tree: A subtree of CLI root. start: The index of the first char in the original string. end: The index directly after the last char in the original string. """ def __init__(self, value, token_type=ArgTokenType.UNKNOWN, tree=None, start=None, end=None): self.value = value self.token_type = token_type self.tree = tree self.start = start self.end = end def __eq__(self, other): """Equality based on properties.""" if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ return False def __repr__(self): """Improve debugging during tests.""" return 'ArgToken({}, {}, {}, {})'.format(self.value, self.token_type, self.start, self.end) class Parser(object): """Shell command line parser. Attributes: args: context: cmd: hidden: positionals_seen: root: statement: tokens: """ def __init__(self, root, context=None, hidden=False): self.root = root self.hidden = hidden self.args = [] self.cmd = self.root self.positionals_seen = 0 self.previous_line = None self.statement = 0 self.tokens = None self.SetContext(context) def SetContext(self, context=None): """Sets the default command prompt context.""" self.context = six.text_type(context or '') def ParseCommand(self, line): """Parses the next command from line and returns a list of ArgTokens. The parse stops at the first token that is not an ARG or FLAG. That token is not consumed. The caller can examine the return value to determine the parts of the line that were ignored and the remainder of the line that was not lexed/parsed yet. Args: line: a string containing the current command line Returns: A list of ArgTokens. """ self.tokens = lexer.GetShellTokens(line) self.cmd = self.root self.positionals_seen = 0 self.args = [] unknown = False while self.tokens: token = self.tokens.pop(0) value = token.UnquotedValue() if token.lex == lexer.ShellTokenType.TERMINATOR: unknown = False self.cmd = self.root self.args.append(ArgToken(value, ArgTokenType.SPECIAL, self.cmd, token.start, token.end)) elif token.lex == lexer.ShellTokenType.FLAG: self.ParseFlag(token, value) elif token.lex == lexer.ShellTokenType.ARG and not unknown: if value in self.cmd[LOOKUP_COMMANDS]: self.cmd = self.cmd[LOOKUP_COMMANDS][value] if self.cmd[LOOKUP_IS_GROUP]: token_type = ArgTokenType.GROUP elif LOOKUP_IS_SPECIAL in self.cmd: token_type = ArgTokenType.SPECIAL self.cmd = self.root else: token_type = ArgTokenType.COMMAND self.args.append(ArgToken(value, token_type, self.cmd, token.start, token.end)) elif self.cmd == self.root and '=' in value: token_type = ArgTokenType.SPECIAL self.cmd = self.root self.args.append(ArgToken(value, token_type, self.cmd, token.start, token.end)) elif self.positionals_seen < len(self.cmd[LOOKUP_POSITIONALS]): positional = self.cmd[LOOKUP_POSITIONALS][self.positionals_seen] self.args.append(ArgToken(value, ArgTokenType.POSITIONAL, positional, token.start, token.end)) if positional[LOOKUP_NARGS] not in ('*', '+'): self.positionals_seen += 1 elif not value: # trailing space break else: unknown = True if self.cmd == self.root: token_type = ArgTokenType.PREFIX else: token_type = ArgTokenType.UNKNOWN self.args.append(ArgToken(value, token_type, self.cmd, token.start, token.end)) else: unknown = True self.args.append(ArgToken(value, ArgTokenType.UNKNOWN, self.cmd, token.start, token.end)) return self.args def ParseFlag(self, token, name): """Parses the flag token and appends it to the arg list.""" name_start = token.start name_end = token.end value = None value_start = None value_end = None if '=' in name: # inline flag value name, value = name.split('=', 1) name_end = name_start + len(name) value_start = name_end + 1 value_end = value_start + len(value) flag = self.cmd[LOOKUP_FLAGS].get(name) if not flag or not self.hidden and flag[LOOKUP_IS_HIDDEN]: self.args.append(ArgToken(name, ArgTokenType.UNKNOWN, self.cmd, token.start, token.end)) return if flag[LOOKUP_TYPE] != 'bool' and value is None and self.tokens: # next arg is the flag value token = self.tokens.pop(0) value = token.UnquotedValue() value_start = token.start value_end = token.end self.args.append(ArgToken(name, ArgTokenType.FLAG, flag, name_start, name_end)) if value is not None: self.args.append(ArgToken(value, ArgTokenType.FLAG_ARG, None, value_start, value_end))
31.776371
80
0.656354
7950d5d7433ed236942c163a5b774ce167c380ba
5,011
py
Python
paddle/ds2.py
tensor-tang/DeepSpeech2
6ea38aa2a47a1045770d387c0474b266dc5aa311
[ "Apache-2.0" ]
null
null
null
paddle/ds2.py
tensor-tang/DeepSpeech2
6ea38aa2a47a1045770d387c0474b266dc5aa311
[ "Apache-2.0" ]
1
2017-06-05T14:05:35.000Z
2017-06-05T14:05:35.000Z
paddle/ds2.py
tensor-tang/DeepSpeech2
6ea38aa2a47a1045770d387c0474b266dc5aa311
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from paddle.trainer_config_helpers import * use_dummy = get_config_arg("use_dummy", bool, True) batch_size = get_config_arg('batch_size', int, 1) is_predict = get_config_arg("is_predict", bool, False) is_test = get_config_arg("is_test", bool, False) layer_num = get_config_arg('layer_num', int, 6) ####################Data Configuration ################## # 10ms as one step dataSpec = dict( uttLengths = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500], counts = [3, 10, 11, 13, 14, 13, 9, 8, 5, 4, 3, 2, 2, 2, 1], lblLengths = [7, 17, 35, 48, 62, 78, 93, 107, 120, 134, 148, 163, 178, 193, 209], freqBins = 161, charNum = 29, # 29 chars scaleNum = 1280 ) num_classes = dataSpec['charNum'] if not is_predict: train_list = 'data/train.list' if not is_test else None test_list = None #'data/test.list' args = { 'uttLengths': dataSpec['uttLengths'], 'counts': dataSpec['counts'], 'lblLengths': dataSpec['lblLengths'], 'freqBins': dataSpec['freqBins'], 'charNum': dataSpec['charNum'], 'scaleNum': dataSpec['scaleNum'], 'batch_size': batch_size } define_py_data_sources2( train_list, test_list, module='dummy_provider' if use_dummy else 'image_provider', obj='process', args=args) ###################### Algorithm Configuration ############# settings( batch_size=batch_size, learning_rate=1e-3, # learning_method=AdamOptimizer(), # regularization=L2Regularization(8e-4), ) ####################### Deep Speech 2 Configuration ############# ### TODO: ### 1. change all relu to clipped relu ### 2. rnn def mkldnn_CBR(input, kh, kw, sh, sw, ic, oc, clipped = 20): tmp = mkldnn_conv( input = input, num_channels = ic, num_filters = oc, filter_size = [kw, kh], stride = [sw, sh], act = LinearActivation() ) return mkldnn_bn( input = tmp, num_channels = oc, act = MkldnnReluActivation()) def BiDRNN(input, dim_out, dim_in=None): if dim_in is None: dim_in = dim_out tmp = mkldnn_fc(input=input, dim_in=dim_in, dim_out=dim_out, bias_attr=False, act=LinearActivation()) # maybe act=None tmp = mkldnn_bn(input = tmp, isSeq=True, num_channels = dim_out, act = None) return mkldnn_rnn( input=tmp, input_mode=MkldnnRnnConfig.SKIP_INPUT, alg_kind = MkldnnRnnConfig.RNN_RELU, # try to use clipped use_bi_direction = True, sum_output = True, layer_num=1) ######## DS2 model ######## tmp = data_layer(name = 'data', size = dataSpec['freqBins']) tmp = mkldnn_reorder(input = tmp, format_from='nchw', format_to='nhwc', dims_from=[-1, -1, 1, dataSpec['freqBins']], bs_index=0) tmp = mkldnn_reshape(input=tmp, name="view_to_noseq", reshape_type=ReshapeType.TO_NON_SEQUENCE, img_dims=[1, dataSpec['freqBins'], -1]) # conv, bn, relu tmp = mkldnn_CBR(tmp, 5, 20, 2, 2, 1, 32) tmp = mkldnn_CBR(tmp, 5, 10, 1, 2, 32, 32) # (bs, 32, 75, seq) to (seq,bs,2400) tmp = mkldnn_reorder( input = tmp, format_from='nhwc', format_to='chwn', dims_from=[1, -1, 2400, -1], bs_index=1) tmp = mkldnn_reshape(input=tmp, name="view_to_mklseq", reshape_type=ReshapeType.TO_MKL_SEQUENCE, img_dims=[2400, 1, 1], seq_len=-1) tmp = BiDRNN(tmp, 1760, 2400) for i in xrange(layer_num): tmp = BiDRNN(tmp, 1760) # since ctc should +1 of the dim ctc_dim = num_classes + 1 tmp = mkldnn_fc(input=tmp, dim_in = 1760, dim_out = ctc_dim, act=LinearActivation()) #act=None # (seq, bs, dim) to (bs, dim, seq) tmp = mkldnn_reorder( input = tmp, format_from='chwn', format_to='nhwc', dims_from=[-1, -1, ctc_dim, 1], bs_index=1) # (bs, dim, seq) to (bs, seq, dim) tmp = mkldnn_reorder( input = tmp, format_from='nchw', format_to='nhwc', dims_from=[-1, ctc_dim, -1, 1], bs_index=0) output = mkldnn_reshape(input=tmp, name="view_to_paddle_seq", reshape_type=ReshapeType.TO_PADDLE_SEQUENCE, img_dims=[ctc_dim, 1, 1], seq_len=-1) if not is_predict: lbl = data_layer(name='label', size=num_classes) cost = warp_ctc_layer(input=output, name = "WarpCTC", blank = 0, label=lbl, size = ctc_dim) # CTC size should +1 # use ctc so we can use multi threads # cost = ctc_layer(input=output, name = "CTC", label=lbl, size = num_classes + 1) # CTC size should +1 outputs(cost) else: outputs(output)
31.71519
116
0.564558
7950d647ae6c25dc76dfceebbd1d4b4f40951066
566
py
Python
pirates/flag/DistributedFlagShop.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
3
2021-02-25T06:38:13.000Z
2022-03-22T07:00:15.000Z
pirates/flag/DistributedFlagShop.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
null
null
null
pirates/flag/DistributedFlagShop.py
itsyaboyrocket/pirates
6ca1e7d571c670b0d976f65e608235707b5737e3
[ "BSD-3-Clause" ]
1
2021-02-25T06:38:17.000Z
2021-02-25T06:38:17.000Z
# uncompyle6 version 3.2.0 # Python bytecode 2.4 (62061) # Decompiled from: Python 2.7.14 (v2.7.14:84471935ed, Sep 16 2017, 20:19:30) [MSC v.1500 32 bit (Intel)] # Embedded file name: pirates.flag.DistributedFlagShop from pandac.PandaModules import * from direct.distributed.DistributedObject import DistributedObject import FlagGlobals from Flag import Flag class DistributedFlagShop(DistributedObject): __module__ = __name__ notify = directNotify.newCategory('DistributedFlagShop') def __init__(self, cr): DistributedObject.__init__(self, cr)
37.733333
104
0.773852
7950d6fe5019e5f5a01c5b4808ca9d15b68b8aa8
2,296
py
Python
alipay/aop/api/domain/AlipayUserMpointPreconsultModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/AlipayUserMpointPreconsultModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/domain/AlipayUserMpointPreconsultModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipayUserMpointPreconsultModel(object): def __init__(self): self._biz_sub_type = None self._biz_type = None self._point = None self._user_id = None @property def biz_sub_type(self): return self._biz_sub_type @biz_sub_type.setter def biz_sub_type(self, value): self._biz_sub_type = value @property def biz_type(self): return self._biz_type @biz_type.setter def biz_type(self, value): self._biz_type = value @property def point(self): return self._point @point.setter def point(self, value): self._point = value @property def user_id(self): return self._user_id @user_id.setter def user_id(self, value): self._user_id = value def to_alipay_dict(self): params = dict() if self.biz_sub_type: if hasattr(self.biz_sub_type, 'to_alipay_dict'): params['biz_sub_type'] = self.biz_sub_type.to_alipay_dict() else: params['biz_sub_type'] = self.biz_sub_type if self.biz_type: if hasattr(self.biz_type, 'to_alipay_dict'): params['biz_type'] = self.biz_type.to_alipay_dict() else: params['biz_type'] = self.biz_type if self.point: if hasattr(self.point, 'to_alipay_dict'): params['point'] = self.point.to_alipay_dict() else: params['point'] = self.point if self.user_id: if hasattr(self.user_id, 'to_alipay_dict'): params['user_id'] = self.user_id.to_alipay_dict() else: params['user_id'] = self.user_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipayUserMpointPreconsultModel() if 'biz_sub_type' in d: o.biz_sub_type = d['biz_sub_type'] if 'biz_type' in d: o.biz_type = d['biz_type'] if 'point' in d: o.point = d['point'] if 'user_id' in d: o.user_id = d['user_id'] return o
26.697674
75
0.570557
7950d793ebe8d0398dd4ae9be65b1d289c8b5d04
27,383
py
Python
onnx/helper.py
vinitra/onnx
531e6dd459003fc8d13b8abb66b29a72a571c865
[ "MIT" ]
null
null
null
onnx/helper.py
vinitra/onnx
531e6dd459003fc8d13b8abb66b29a72a571c865
[ "MIT" ]
null
null
null
onnx/helper.py
vinitra/onnx
531e6dd459003fc8d13b8abb66b29a72a571c865
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import collections import numbers from six import text_type, integer_types, binary_type import google.protobuf.message from onnx import TensorProto, SparseTensorProto, AttributeProto, ValueInfoProto, \ TensorShapeProto, NodeProto, ModelProto, GraphProto, OperatorSetIdProto, \ TypeProto, SequenceProto, MapProto, IR_VERSION, TrainingInfoProto from onnx import defs from onnx import mapping from onnx.mapping import STORAGE_TENSOR_TYPE_TO_FIELD from typing import Text, Sequence, Any, Optional, Dict, Union, TypeVar, Callable, Tuple, List, cast import numpy as np # type: ignore VersionRowType = Union[Tuple[Text, int, int, int], Tuple[Text, int, int, int, int]] VersionTableType = List[VersionRowType] AssignmentBindingType = List[Tuple[Text, Text]] # This is a copy of the documented version in https://github.com/onnx/onnx/blob/master/docs/Versioning.md#released-versions # Both must be updated whenever a new version of ONNX is released. VERSION_TABLE = [ # Release-version, IR version, ai.onnx version, ai.onnx.ml version, (optional) ai.onnx.training version ('1.0', 3, 1, 1), ('1.1', 3, 5, 1), ('1.1.2', 3, 6, 1), ('1.2', 3, 7, 1), ('1.3', 3, 8, 1), ('1.4.1', 4, 9, 1), ('1.5.0', 5, 10, 1), ('1.6.0', 6, 11, 2), ('1.7.0', 7, 12, 2, 1) ] # type: VersionTableType VersionMapType = Dict[Tuple[Text, int], int] # create a map from (opset-domain, opset-version) to ir-version from above table def create_op_set_id_version_map(table): # type: (VersionTableType) -> VersionMapType result = dict() # type: VersionMapType def process(release_version, ir_version, *args): # type: (Text, int, Any) -> None for pair in zip(['ai.onnx', 'ai.onnx.ml', 'ai.onnx.training'], args): if (pair not in result): result[pair] = ir_version for row in table: process(*row) return result OP_SET_ID_VERSION_MAP = create_op_set_id_version_map(VERSION_TABLE) # Given list of opset ids, determine minimum IR version required def find_min_ir_version_for(opsetidlist): # type: (List[OperatorSetIdProto]) -> int default_min_version = 3 def find_min(domain, version): # type: (Union[Text, None], int) -> int key = (domain if domain else 'ai.onnx', version) if (key in OP_SET_ID_VERSION_MAP): return OP_SET_ID_VERSION_MAP[key] else: raise ValueError("Unsupported opset-version.") if (opsetidlist): return max([find_min(x.domain, x.version) for x in opsetidlist]) return default_min_version # if no opsets specified def make_node( op_type, # type: Text inputs, # type: Sequence[Text] outputs, # type: Sequence[Text] name=None, # type: Optional[Text] doc_string=None, # type: Optional[Text] domain=None, # type: Optional[Text] **kwargs # type: Any ): # type: (...) -> NodeProto """Construct a NodeProto. Arguments: op_type (string): The name of the operator to construct inputs (list of string): list of input names outputs (list of string): list of output names name (string, default None): optional unique identifier for NodeProto doc_string (string, default None): optional documentation string for NodeProto domain (string, default None): optional domain for NodeProto. If it's None, we will just use default domain (which is empty) **kwargs (dict): the attributes of the node. The acceptable values are documented in :func:`make_attribute`. """ node = NodeProto() node.op_type = op_type node.input.extend(inputs) node.output.extend(outputs) if name: node.name = name if doc_string: node.doc_string = doc_string if domain is not None: node.domain = domain if kwargs: node.attribute.extend( make_attribute(key, value) for key, value in sorted(kwargs.items())) return node def make_operatorsetid( domain, # type: Text version, # type: int ): # type: (...) -> OperatorSetIdProto """Construct an OperatorSetIdProto. Arguments: domain (string): The domain of the operator set id version (integer): Version of operator set id """ operatorsetid = OperatorSetIdProto() operatorsetid.domain = domain operatorsetid.version = version return operatorsetid def make_graph( nodes, # type: Sequence[NodeProto] name, # type: Text inputs, # type: Sequence[ValueInfoProto] outputs, # type: Sequence[ValueInfoProto] initializer=None, # type: Optional[Sequence[TensorProto]] doc_string=None, # type: Optional[Text] value_info=[], # type: Sequence[ValueInfoProto] sparse_initializer=None, # type: Optional[Sequence[SparseTensorProto]] ): # type: (...) -> GraphProto if initializer is None: initializer = [] if sparse_initializer is None: sparse_initializer = [] if value_info is None: value_info = [] graph = GraphProto() graph.node.extend(nodes) graph.name = name graph.input.extend(inputs) graph.output.extend(outputs) graph.initializer.extend(initializer) graph.sparse_initializer.extend(sparse_initializer) graph.value_info.extend(value_info) if doc_string: graph.doc_string = doc_string return graph def make_opsetid(domain, version): # type: (Text, int) -> OperatorSetIdProto opsetid = OperatorSetIdProto() opsetid.domain = domain opsetid.version = version return opsetid def make_model(graph, **kwargs): # type: (GraphProto, **Any) -> ModelProto model = ModelProto() # Touch model.ir_version so it is stored as the version from which it is # generated. model.ir_version = IR_VERSION model.graph.CopyFrom(graph) opset_imports = None # type: Optional[Sequence[OperatorSetIdProto]] opset_imports = kwargs.pop('opset_imports', None) # type: ignore if opset_imports is not None: model.opset_import.extend(opset_imports) else: # Default import imp = model.opset_import.add() imp.version = defs.onnx_opset_version() for k, v in kwargs.items(): # TODO: Does this work with repeated fields? setattr(model, k, v) return model # An extension of make_model that infers an IR_VERSION for the model, # if not specified, using a best-effort-basis. def make_model_gen_version(graph, **kwargs): # type: (GraphProto, **Any) -> ModelProto ir_version_field = str('ir_version') if (ir_version_field not in kwargs): opset_imports_field = str('opset_imports') imports = (kwargs[opset_imports_field] if opset_imports_field in kwargs else []) kwargs[ir_version_field] = find_min_ir_version_for(imports) return make_model(graph, **kwargs) def set_model_props(model, dict_value): # type: (ModelProto, Dict[Text, Text]) -> None del model.metadata_props[:] for (k, v) in dict_value.items(): entry = model.metadata_props.add() entry.key = k entry.value = v # model.metadata_properties.append(entry) def split_complex_to_pairs(ca): # type: (Sequence[np.complex64]) -> Sequence[int] return [(ca[i // 2].real if (i % 2 == 0) else ca[i // 2].imag) for i in range(len(ca) * 2)] def make_tensor( name, # type: Text data_type, # type: int dims, # type: Sequence[int] vals, # type: Any raw=False # type: bool ): # type: (...) -> TensorProto ''' Make a TensorProto with specified arguments. If raw is False, this function will choose the corresponding proto field to store the values based on data_type. If raw is True, use "raw_data" proto field to store the values, and values should be of type bytes in this case. ''' tensor = TensorProto() tensor.data_type = data_type tensor.name = name if data_type == TensorProto.STRING: assert not raw, "Can not use raw_data to store string type" # Check number of vals specified equals tensor size size = 1 if (not raw) else (mapping.TENSOR_TYPE_TO_NP_TYPE[data_type].itemsize) for d in dims: size = size * d if (len(vals) != size): raise ValueError("Number of values does not match tensor's size.") if (data_type == TensorProto.COMPLEX64 or data_type == TensorProto.COMPLEX128): vals = split_complex_to_pairs(vals) if raw: tensor.raw_data = vals else: field = mapping.STORAGE_TENSOR_TYPE_TO_FIELD[ mapping.TENSOR_TYPE_TO_STORAGE_TENSOR_TYPE[data_type]] getattr(tensor, field).extend(vals) tensor.dims.extend(dims) return tensor def make_sparse_tensor( values, # type: TensorProto indices, # type: TensorProto dims # type: Sequence[int] ): # type: (...) -> SparseTensorProto sparse = SparseTensorProto() sparse.values.CopyFrom(values) sparse.indices.CopyFrom(indices) sparse.dims.extend(dims) return sparse def make_sequence( name, # type: Text elem_type, # type: int values, # type: Sequence[Any] ): # type: (...) -> SequenceProto ''' Make a Sequence with specified value arguments. ''' sequence = SequenceProto() sequence.name = name sequence.elem_type = elem_type values_field = mapping.STORAGE_ELEMENT_TYPE_TO_FIELD[elem_type] getattr(sequence, values_field).CopyFrom(values) return sequence def make_map( name, # type: Text key_type, # type: int keys, # type: List[Any] values # type: SequenceProto ): # type: (...) -> MapProto ''' Make a Map with specified key-value pair arguments. Criteria for conversion: - Keys and Values must have the same number of elements - Every key in keys must be of the same type - Every value in values must be of the same type ''' map = MapProto() valid_key_int_types = [TensorProto.INT8, TensorProto.INT16, TensorProto.INT32, TensorProto.INT64, TensorProto.UINT8, TensorProto.UINT16, TensorProto.UINT32, TensorProto.UINT64] map.name = name map.key_type = key_type if key_type == TensorProto.STRING: map.string_keys.extend(keys) elif key_type in valid_key_int_types: map.keys.extend(keys) map.values.CopyFrom(values) return map def _to_bytes_or_false(val): # type: (Union[Text, bytes]) -> Union[bytes, bool] """An internal graph to convert the input to a bytes or to False. The criteria for conversion is as follows and should be python 2 and 3 compatible: - If val is py2 str or py3 bytes: return bytes - If val is py2 unicode or py3 str: return val.decode('utf-8') - Otherwise, return False """ if isinstance(val, bytes): return val try: return val.encode('utf-8') except AttributeError: return False def make_attribute( key, # type: Text value, # type: Any doc_string=None # type: Optional[Text] ): # type: (...) -> AttributeProto """Makes an AttributeProto based on the value type.""" attr = AttributeProto() attr.name = key if doc_string: attr.doc_string = doc_string is_iterable = isinstance(value, collections.Iterable) bytes_or_false = _to_bytes_or_false(value) # First, singular cases # float if isinstance(value, float): attr.f = value attr.type = AttributeProto.FLOAT # integer elif isinstance(value, numbers.Integral): attr.i = cast(int, value) attr.type = AttributeProto.INT # string elif bytes_or_false is not False: assert isinstance(bytes_or_false, bytes) attr.s = bytes_or_false attr.type = AttributeProto.STRING elif isinstance(value, TensorProto): attr.t.CopyFrom(value) attr.type = AttributeProto.TENSOR elif isinstance(value, SparseTensorProto): attr.sparse_tensor.CopyFrom(value) attr.type = AttributeProto.SPARSE_TENSOR elif isinstance(value, GraphProto): attr.g.CopyFrom(value) attr.type = AttributeProto.GRAPH # third, iterable cases elif is_iterable: byte_array = [_to_bytes_or_false(v) for v in value] if all(isinstance(v, numbers.Integral) for v in value): # Turn np.int32/64 into Python built-in int. attr.ints.extend(int(v) for v in value) attr.type = AttributeProto.INTS elif all(isinstance(v, numbers.Real) for v in value): # Since ints and floats are members of Real, this allows a mix of ints and floats # (and converts the ints to floats). attr.floats.extend(float(v) for v in value) attr.type = AttributeProto.FLOATS elif all(map(lambda bytes_or_false: bytes_or_false is not False, byte_array)): attr.strings.extend(cast(List[bytes], byte_array)) attr.type = AttributeProto.STRINGS elif all(isinstance(v, TensorProto) for v in value): attr.tensors.extend(value) attr.type = AttributeProto.TENSORS elif all(isinstance(v, SparseTensorProto) for v in value): attr.sparse_tensors.extend(value) attr.type = AttributeProto.SPARSE_TENSORS elif all(isinstance(v, GraphProto) for v in value): attr.graphs.extend(value) attr.type = AttributeProto.GRAPHS else: raise ValueError( "You passed in an iterable attribute but I cannot figure out " "its applicable type.") else: raise TypeError( 'value "{}" is not valid attribute data type.'.format(value)) return attr def get_attribute_value(attr): # type: (AttributeProto) -> Any if attr.type == AttributeProto.FLOAT: return attr.f if attr.type == AttributeProto.INT: return attr.i if attr.type == AttributeProto.STRING: return attr.s if attr.type == AttributeProto.TENSOR: return attr.t if attr.type == AttributeProto.GRAPH: return attr.g if attr.type == AttributeProto.FLOATS: return list(attr.floats) if attr.type == AttributeProto.INTS: return list(attr.ints) if attr.type == AttributeProto.STRINGS: return list(attr.strings) if attr.type == AttributeProto.TENSORS: return list(attr.tensors) if attr.type == AttributeProto.GRAPHS: return list(attr.graphs) raise ValueError("Unsupported ONNX attribute: {}".format(attr)) def make_empty_tensor_value_info(name): # type: (Text) -> ValueInfoProto value_info_proto = ValueInfoProto() value_info_proto.name = name return value_info_proto def make_tensor_value_info( name, # type: Text elem_type, # type: int shape, # type: Optional[Sequence[Union[Text, int]]] doc_string="", # type: Text shape_denotation=None, # type: Optional[List[Text]] ): # type: (...) -> ValueInfoProto """Makes a ValueInfoProto based on the data type and shape.""" value_info_proto = ValueInfoProto() value_info_proto.name = name if doc_string: value_info_proto.doc_string = doc_string tensor_type_proto = value_info_proto.type.tensor_type tensor_type_proto.elem_type = elem_type tensor_shape_proto = tensor_type_proto.shape if shape is not None: # You might think this is a no-op (extending a normal Python # list by [] certainly is), but protobuf lists work a little # differently; if a field is never set, it is omitted from the # resulting protobuf; a list that is explicitly set to be # empty will get an (empty) entry in the protobuf. This # difference is visible to our consumers, so make sure we emit # an empty shape! tensor_shape_proto.dim.extend([]) if shape_denotation: if len(shape_denotation) != len(shape): raise ValueError( 'Invalid shape_denotation. ' 'Must be of the same length as shape.') for i, d in enumerate(shape): dim = tensor_shape_proto.dim.add() if d is None: pass elif isinstance(d, integer_types): dim.dim_value = d elif isinstance(d, text_type): dim.dim_param = d else: raise ValueError( 'Invalid item in shape: {}. ' 'Needs to of integer_types or text_type.'.format(d)) if shape_denotation: dim.denotation = shape_denotation[i] return value_info_proto def make_sequence_value_info( name, # type: Text elem_type, # type: int shape, # type: Optional[Sequence[Union[Text, int]]] doc_string="", # type: Text elem_shape_denotation=None, # type: Optional[List[Text]] ): # type: (...) -> ValueInfoProto """Makes a ValueInfoProto based on the data type and shape for Sequence.""" value_info_proto = ValueInfoProto() value_info_proto.name = name if doc_string: value_info_proto.doc_string = doc_string sequence_type_proto = value_info_proto.type.sequence_type sequence_type_proto.elem_type.tensor_type.elem_type = elem_type tensor_value_info = make_tensor_value_info(name, elem_type, shape, doc_string, elem_shape_denotation) if shape is not None: sequence_type_proto.elem_type.tensor_type.shape.CopyFrom(tensor_value_info.type.tensor_type.shape) return value_info_proto def _sanitize_str(s): # type: (Union[Text, bytes]) -> Text if isinstance(s, text_type): sanitized = s elif isinstance(s, binary_type): sanitized = s.decode('utf-8', errors='ignore') else: sanitized = str(s) if len(sanitized) < 64: return sanitized return sanitized[:64] + '...<+len=%d>' % (len(sanitized) - 64) def printable_attribute(attr, subgraphs=False): # type: (AttributeProto, bool) -> Union[Text, Tuple[Text, List[GraphProto]]] content = [] content.append(attr.name) content.append("=") def str_float(f): # type: (float) -> Text # NB: Different Python versions print different numbers of trailing # decimals, specifying this explicitly keeps it consistent for all # versions return '{:.15g}'.format(f) def str_int(i): # type: (int) -> Text # NB: In Python 2, longs will repr() as '2L', which is ugly and # unnecessary. Explicitly format it to keep it consistent. return '{:d}'.format(i) def str_str(s): # type: (Text) -> Text return repr(s) _T = TypeVar('_T') # noqa def str_list(str_elem, xs): # type: (Callable[[_T], Text], Sequence[_T]) -> Text return '[' + ', '.join(map(str_elem, xs)) + ']' # for now, this logic should continue to work as long as we are running on a proto3 # implementation. If/when we switch to proto3, we will need to use attr.type # To support printing subgraphs, if we find a graph attribute, print out # its name here and pass the graph itself up to the caller for later # printing. graphs = [] if attr.HasField("f"): content.append(str_float(attr.f)) elif attr.HasField("i"): content.append(str_int(attr.i)) elif attr.HasField("s"): # TODO: Bit nervous about Python 2 / Python 3 determinism implications content.append(repr(_sanitize_str(attr.s))) elif attr.HasField("t"): if len(attr.t.dims) > 0: content.append("<Tensor>") else: # special case to print scalars field = STORAGE_TENSOR_TYPE_TO_FIELD[attr.t.data_type] content.append('<Scalar Tensor {}>'.format(str(getattr(attr.t, field)))) elif attr.HasField("g"): content.append("<graph {}>".format(attr.g.name)) graphs.append(attr.g) elif attr.floats: content.append(str_list(str_float, attr.floats)) elif attr.ints: content.append(str_list(str_int, attr.ints)) elif attr.strings: # TODO: Bit nervous about Python 2 / Python 3 determinism implications content.append(str(list(map(_sanitize_str, attr.strings)))) elif attr.tensors: content.append("[<Tensor>, ...]") elif attr.graphs: content.append('[') for i, g in enumerate(attr.graphs): comma = ',' if i != len(attr.graphs) - 1 else '' content.append('<graph {}>{}'.format(g.name, comma)) content.append(']') graphs.extend(attr.graphs) else: content.append("<Unknown>") if subgraphs: return ' '.join(content), graphs else: return ' '.join(content) def printable_dim(dim): # type: (TensorShapeProto.Dimension) -> Text which = dim.WhichOneof('value') assert which is not None return str(getattr(dim, which)) def printable_type(t): # type: (TypeProto) -> Text if t.WhichOneof('value') == "tensor_type": s = TensorProto.DataType.Name(t.tensor_type.elem_type) if t.tensor_type.HasField('shape'): if len(t.tensor_type.shape.dim): s += str(', ' + 'x'.join(map(printable_dim, t.tensor_type.shape.dim))) else: s += str(', scalar') return s if t.WhichOneof('value') is None: return "" return 'Unknown type {}'.format(t.WhichOneof('value')) def printable_value_info(v): # type: (ValueInfoProto) -> Text s = '%{}'.format(v.name) if v.type: s = '{}[{}]'.format(s, printable_type(v.type)) return s def printable_tensor_proto(t): # type: (TensorProto) -> Text s = '%{}['.format(t.name) s += TensorProto.DataType.Name(t.data_type) if t.dims is not None: if len(t.dims): s += str(', ' + 'x'.join(map(str, t.dims))) else: s += str(', scalar') s += ']' return s def printable_node(node, prefix='', subgraphs=False): # type: (NodeProto, Text, bool) -> Union[Text, Tuple[Text, List[GraphProto]]] content = [] if len(node.output): content.append( ', '.join(['%{}'.format(name) for name in node.output])) content.append('=') # To deal with nested graphs graphs = [] # type: List[GraphProto] printed_attrs = [] for attr in node.attribute: if subgraphs: printed_attr, gs = printable_attribute(attr, subgraphs) assert isinstance(gs, list) graphs.extend(gs) printed_attrs.append(printed_attr) else: printed = printable_attribute(attr) assert isinstance(printed, Text) printed_attrs.append(printed) printed_attributes = ', '.join(sorted(printed_attrs)) printed_inputs = ', '.join(['%{}'.format(name) for name in node.input]) if node.attribute: content.append("{}[{}]({})".format(node.op_type, printed_attributes, printed_inputs)) else: content.append("{}({})".format(node.op_type, printed_inputs)) if subgraphs: return prefix + ' '.join(content), graphs else: return prefix + ' '.join(content) def printable_graph(graph, prefix=''): # type: (GraphProto, Text) -> Text content = [] indent = prefix + ' ' # header header = ['graph', graph.name] initializers = {t.name for t in graph.initializer} if len(graph.input): header.append("(") in_strs = [] # required inputs in_with_init_strs = [] # optional inputs with initializer providing default value for inp in graph.input: if inp.name not in initializers: in_strs.append(printable_value_info(inp)) else: in_with_init_strs.append(printable_value_info(inp)) if in_strs: content.append(prefix + ' '.join(header)) header = [] for line in in_strs: content.append(prefix + ' ' + line) header.append(")") if in_with_init_strs: header.append("optional inputs with matching initializers (") content.append(prefix + ' '.join(header)) header = [] for line in in_with_init_strs: content.append(prefix + ' ' + line) header.append(")") # from IR 4 onwards an initializer is not required to have a matching graph input # so output the name, type and shape of those as well if len(in_with_init_strs) < len(initializers): graph_inputs = {i.name for i in graph.input} init_strs = [printable_tensor_proto(i) for i in graph.initializer if i.name not in graph_inputs] header.append("initializers (") content.append(prefix + ' '.join(header)) header = [] for line in init_strs: content.append(prefix + ' ' + line) header.append(")") header.append('{') content.append(prefix + ' '.join(header)) graphs = [] # type: List[GraphProto] # body for node in graph.node: pn, gs = printable_node(node, indent, subgraphs=True) assert isinstance(gs, list) content.append(pn) graphs.extend(gs) # tail tail = ['return'] if len(graph.output): tail.append( ', '.join(['%{}'.format(out.name) for out in graph.output])) content.append(indent + ' '.join(tail)) # closing bracket content.append(prefix + '}') for g in graphs: content.append('\n' + printable_graph(g)) return '\n'.join(content) def strip_doc_string(proto): # type: (google.protobuf.message.Message) -> None """ Empties `doc_string` field on any nested protobuf messages """ assert isinstance(proto, google.protobuf.message.Message) for descriptor in proto.DESCRIPTOR.fields: if descriptor.name == 'doc_string': proto.ClearField(descriptor.name) elif descriptor.type == descriptor.TYPE_MESSAGE: if descriptor.label == descriptor.LABEL_REPEATED: for x in getattr(proto, descriptor.name): strip_doc_string(x) elif proto.HasField(descriptor.name): strip_doc_string(getattr(proto, descriptor.name)) def make_training_info(algorithm, algorithm_bindings, initialization, initialization_bindings): # type: (GraphProto, AssignmentBindingType, Optional[GraphProto], Optional[AssignmentBindingType]) -> TrainingInfoProto training_info = TrainingInfoProto() training_info.algorithm.CopyFrom(algorithm) for k, v in algorithm_bindings: binding = training_info.update_binding.add() binding.key = k binding.value = v if initialization: training_info.initialization.CopyFrom(initialization) if initialization_bindings: for k, v in initialization_bindings: binding = training_info.initialization_binding.add() binding.key = k binding.value = v return training_info
36.220899
217
0.635577
7950d7dbad68be4cd56f2630ba48da83d18298e2
1,481
py
Python
sillygamble/wallet/admin.py
bitcoinuprising/silly-gamble
d6c7e92d90b4f3e06ab2ceda0f0f1ea7acec72f7
[ "MIT" ]
2
2018-01-18T13:07:03.000Z
2020-03-05T07:30:45.000Z
sillygamble/wallet/admin.py
bitcoinuprising/silly-gamble
d6c7e92d90b4f3e06ab2ceda0f0f1ea7acec72f7
[ "MIT" ]
1
2018-10-02T09:06:05.000Z
2018-10-05T14:12:19.000Z
sillygamble/wallet/admin.py
bitcoinuprising/silly-gamble
d6c7e92d90b4f3e06ab2ceda0f0f1ea7acec72f7
[ "MIT" ]
7
2018-01-18T13:10:52.000Z
2019-12-02T02:58:04.000Z
from django.contrib import admin # Register your models here. from .models import Wallet, Transaction from .services.wallet import WalletImportTransaction # Register your models here. # class DepositInline(admin.TabularInline): # model = Deposit # extra = 0 class TransactionInline(admin.TabularInline): model = Transaction extra = 0 def import_transactions(modeladmin, request, queryset): importTransctions = WalletImportTransaction(request, queryset) importTransctions.run() import_transactions.short_description = "Import new transactions" class WalletAdmin(admin.ModelAdmin): list_display = ['__str__', 'active', 'created_at'] list_filter = ['active', 'created_at'] search_fields = ['wallet_id', 'label'] inlines = [ TransactionInline, ] actions = [import_transactions] class DepositAdmin(admin.ModelAdmin): list_display = ['deposit_id', 'from_wallet', 'to_wallet', 'bitcoin_amount', 'spent', 'created_at'] list_filter = ['spent', 'created_at'] search_fields = ['deposit_id', 'from_wallet', 'to_wallet'] class TransactionAdmin(admin.ModelAdmin): list_display = ['__str__', 'from_wallet', 'to_wallet', 'amount_out', 'amount', 'created_at'] list_filter = ['spent', 'created_at'] search_fields = ['__str__', 'transaction_id', 'from_wallet', 'to_wallet'] admin.site.register(Wallet, WalletAdmin) # admin.site.register(Deposit, DepositAdmin) admin.site.register(Transaction, TransactionAdmin)
33.659091
102
0.731938
7950d7edd6c4fb9665b7adf742ec344ca02cfbb6
1,268
py
Python
setup.py
itsbenweeks/python-lsp-jsonrpc
8aee0038336e83d649b59813a31b5b75b2c81074
[ "MIT" ]
2
2021-02-21T17:21:27.000Z
2021-03-05T11:22:13.000Z
setup.py
itsbenweeks/python-lsp-jsonrpc
8aee0038336e83d649b59813a31b5b75b2c81074
[ "MIT" ]
null
null
null
setup.py
itsbenweeks/python-lsp-jsonrpc
8aee0038336e83d649b59813a31b5b75b2c81074
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright 2017-2020 Palantir Technologies, Inc. # Copyright 2021- Python Language Server Contributors. import ast import os from setuptools import find_packages, setup HERE = os.path.abspath(os.path.dirname(__file__)) def get_version(module='pylsp_jsonrpc'): """Get version.""" with open(os.path.join(HERE, module, '_version.py'), 'r') as f: data = f.read() lines = data.split('\n') for line in lines: if line.startswith('VERSION_INFO'): version_tuple = ast.literal_eval(line.split('=')[-1].strip()) version = '.'.join(map(str, version_tuple)) break return version README = open('README.md', 'r').read() setup( name='python-lsp-jsonrpc', version=get_version(), description='JSON RPC 2.0 server library', long_description=README, long_description_content_type='text/markdown', url='https://github.com/python-lsp/python-lsp-jsonrpc', author='Python Language Server Contributors', packages=find_packages(exclude=['contrib', 'docs', 'test']), install_requires=[ 'ujson>=3.0.0', ], extras_require={ 'test': ['pylint', 'pycodestyle', 'pyflakes', 'pytest', 'pytest-cov', 'coverage'], }, )
27.565217
73
0.638801
7950d7fe353371ee126bd46c09a8ba594b469841
78
py
Python
pastycake/notifier.py
9b/pastycake
f02363d822dae7111ecc70a1ad435d88d57be939
[ "BSD-3-Clause" ]
18
2015-02-02T16:12:44.000Z
2021-01-22T01:04:23.000Z
pastycake/notifier.py
5l1v3r1/pastycake
f02363d822dae7111ecc70a1ad435d88d57be939
[ "BSD-3-Clause" ]
null
null
null
pastycake/notifier.py
5l1v3r1/pastycake
f02363d822dae7111ecc70a1ad435d88d57be939
[ "BSD-3-Clause" ]
2
2020-05-11T15:15:24.000Z
2021-06-21T12:21:06.000Z
import abc class Notifier(object): __metaclass__ = abc.ABCMeta pass
11.142857
31
0.705128
7950d82dd9afba67bda6e05db43e6520ffa748c1
957
py
Python
python/dgl/backend/set_default_backend.py
yuanqing-wang/dgl
434f9542b5a95c4700020d07d6622a5dd45a6465
[ "Apache-2.0" ]
null
null
null
python/dgl/backend/set_default_backend.py
yuanqing-wang/dgl
434f9542b5a95c4700020d07d6622a5dd45a6465
[ "Apache-2.0" ]
null
null
null
python/dgl/backend/set_default_backend.py
yuanqing-wang/dgl
434f9542b5a95c4700020d07d6622a5dd45a6465
[ "Apache-2.0" ]
null
null
null
import argparse import os import json def set_default_backend(backend_name): default_dir = os.path.join(os.path.expanduser('~'), '.dgl') if not os.path.exists(default_dir): os.makedirs(default_dir) config_path = os.path.join(default_dir, 'config.json') with open(config_path, "w") as config_file: json.dump({'backend': backend_name.lower()}, config_file) print('Setting the default backend to "{}". You can change it in the ' '~/.dgl/config.json file or export the DGLBACKEND environment variable. ' 'Valid options are: pytorch, mxnet, tensorflow (all lowercase)'.format( backend_name)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("backend", nargs=1, type=str, choices=[ 'jax', 'pytorch', 'tensorflow', 'mxnet'], help="Set default backend") args = parser.parse_args() set_default_backend(args.backend[0])
41.608696
93
0.663532
7950d95b757684445173875002354fa0118a81c3
431
py
Python
app/core/migrations/0006_recipe_image.py
guma44/recipe-app-api
715a0b6a0dce05756c72f93e25c7fa88efbdc6a1
[ "MIT" ]
null
null
null
app/core/migrations/0006_recipe_image.py
guma44/recipe-app-api
715a0b6a0dce05756c72f93e25c7fa88efbdc6a1
[ "MIT" ]
null
null
null
app/core/migrations/0006_recipe_image.py
guma44/recipe-app-api
715a0b6a0dce05756c72f93e25c7fa88efbdc6a1
[ "MIT" ]
null
null
null
# Generated by Django 2.1.15 on 2021-02-15 11:41 import core.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0005_recipe'), ] operations = [ migrations.AddField( model_name='recipe', name='image', field=models.ImageField(null=True, upload_to=core.models.recipe_image_file_path), ), ]
21.55
93
0.62181
7950dc0852c9a6990a68a4ef14e017efc8e20fef
11,341
py
Python
ote_sdk/ote_sdk/usecases/exportable_code/streamer/streamer.py
ntyukaev/training_extensions
c897d42e50828fea853ceda0795e1f0e7d6e9909
[ "Apache-2.0" ]
null
null
null
ote_sdk/ote_sdk/usecases/exportable_code/streamer/streamer.py
ntyukaev/training_extensions
c897d42e50828fea853ceda0795e1f0e7d6e9909
[ "Apache-2.0" ]
null
null
null
ote_sdk/ote_sdk/usecases/exportable_code/streamer/streamer.py
ntyukaev/training_extensions
c897d42e50828fea853ceda0795e1f0e7d6e9909
[ "Apache-2.0" ]
1
2020-12-13T22:13:51.000Z
2020-12-13T22:13:51.000Z
""" Streamer for reading input """ # Copyright (C) 2021-2022 Intel Corporation # SPDX-License-Identifier: Apache-2.0 # import abc import multiprocessing import queue import sys from enum import Enum from pathlib import Path from typing import Iterable, Iterator, List, NamedTuple, Optional, Tuple, Union import cv2 import numpy as np from natsort import natsorted class MediaType(Enum): """ This Enum represents the types of input """ IMAGE = 1 VIDEO = 2 CAMERA = 3 class MediaExtensions(NamedTuple): """ This NamedTuple represents the extensions for input """ IMAGE: Tuple[str, ...] VIDEO: Tuple[str, ...] MEDIA_EXTENSIONS = MediaExtensions( IMAGE=(".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".pgm", ".tif", ".tiff", ".webp"), VIDEO=(".avi", ".mp4"), ) def get_media_type(path: Optional[Union[str, Path]]) -> MediaType: """ Get Media Type from the input path. :param path: Path to file or directory. Could be None, which implies camera media type. """ if isinstance(path, str): path = Path(path) media_type: MediaType if path is None: media_type = MediaType.CAMERA elif path.is_dir(): if _get_filenames(path, MediaType.IMAGE): media_type = MediaType.IMAGE elif path.is_file(): if _is_file_with_supported_extensions(path, _get_extensions(MediaType.IMAGE)): media_type = MediaType.IMAGE elif _is_file_with_supported_extensions(path, _get_extensions(MediaType.VIDEO)): media_type = MediaType.VIDEO else: raise ValueError("File extension not supported.") else: raise ValueError("File or folder does not exist") return media_type def _get_extensions(media_type: MediaType) -> Tuple[str, ...]: """ Get extensions of the input media type. :param media_type: Type of the media. Either image or video. :return: Supported extensions for the corresponding media type. :example: >>> _get_extensions(media_type=MediaType.IMAGE) ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') >>> _get_extensions(media_type=MediaType.VIDEO) ('.avi', '.mp4') """ return getattr(MEDIA_EXTENSIONS, media_type.name) def _is_file_with_supported_extensions(path: Path, extensions: Tuple[str, ...]) -> bool: """ Check if the file is supported for the media type :param path: File path to check :param extensions: Supported extensions for the media type :example: >>> from pathlib import Path >>> path = Path("./demo.mp4") >>> extensions = _get_extensions(media_type=MediaType.VIDEO) >>> _is_file_with_supported_extensions(path, extensions) True >>> path = Path("demo.jpg") >>> extensions = _get_extensions(media_type=MediaType.IMAGE) >>> _is_file_with_supported_extensions(path, extensions) True >>> path = Path("demo.mp3") >>> extensions = _get_extensions(media_type=MediaType.IMAGE) >>> _is_file_with_supported_extensions(path, extensions) False """ return path.suffix.lower() in extensions def _get_filenames(path: Union[str, Path], media_type: MediaType) -> List[str]: """ Get filenames from a directory or a path to a file. :param path: Path to the file or to the location that contains files. :param media_type: Type of the media (image or video) :example: >>> path = "../images" >>> _get_filenames(path, media_type=MediaType.IMAGE) ['images/4.jpeg', 'images/1.jpeg', 'images/5.jpeg', 'images/3.jpeg', 'images/2.jpeg'] """ extensions = _get_extensions(media_type) filenames: List[str] = [] if media_type == MediaType.CAMERA: raise ValueError( "Cannot get filenames for camera. Only image and video files are supported." ) if isinstance(path, str): path = Path(path) if path.is_file(): if _is_file_with_supported_extensions(path, extensions): filenames = [path.as_posix()] else: raise ValueError("Extension not supported for media type") if path.is_dir(): for filename in path.rglob("*"): if _is_file_with_supported_extensions(filename, extensions): filenames.append(filename.as_posix()) filenames = natsorted(filenames) # type: ignore[assignment] if len(filenames) == 0: raise FileNotFoundError(f"No {media_type.name} file found in {path}!") return filenames def _read_video_stream(stream: cv2.VideoCapture) -> Iterator[np.ndarray]: """ Read video and yield the frame. :param stream: Video stream captured via OpenCV's VideoCapture :return: Individual frame """ while True: frame_available, frame = stream.read() if not frame_available: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) yield frame stream.release() class BaseStreamer(metaclass=abc.ABCMeta): """ Base Streamer interface to implement Image, Video and Camera streamers. """ @abc.abstractmethod def get_stream(self, stream_input): """ Get the streamer object, depending on the media type. :param stream_input: Path to the stream or camera device index in case to capture from camera. :return: Streamer object. """ raise NotImplementedError @abc.abstractmethod def __iter__(self) -> Iterator[np.ndarray]: """ Iterate through the streamer object that is a Python Generator object. :return: Yield the image or video frame. """ raise NotImplementedError def _process_run(streamer: BaseStreamer, buffer: multiprocessing.Queue): """ Private function that is run by the thread. Waits for the buffer to gain space for timeout seconds while it is full. If no space was available within this time the function will exit :param streamer: The streamer to retrieve frames from :param buffer: The buffer to place the retrieved frames in """ for frame in streamer: buffer.put(frame) class ThreadedStreamer(BaseStreamer): """ Runs a BaseStreamer on a seperate thread. :param streamer: The streamer to run on a thread :param buffer_size: Number of frame to buffer internally :example: >>> streamer = VideoStreamer(path="../demo.mp4") >>> threaded_streamer = ThreadedStreamer(streamer) ... for frame in threaded_streamer: ... pass """ def __init__(self, streamer: BaseStreamer, buffer_size: int = 2): self.buffer_size = buffer_size self.streamer = streamer def get_stream(self, _=None) -> BaseStreamer: return self.streamer def __iter__(self) -> Iterator[np.ndarray]: buffer: multiprocessing.Queue = multiprocessing.Queue(maxsize=self.buffer_size) process = multiprocessing.Process( target=_process_run, args=(self.get_stream(), buffer) ) # Make thread a daemon so that it will exit when the main program exits as well process.daemon = True process.start() try: while process.is_alive() or not buffer.empty(): try: yield buffer.get(timeout=0.1) except queue.Empty: pass except GeneratorExit: process.terminate() finally: process.join(timeout=0.1) # The kill() function is only available in Python 3.7. # Skip it if running an older Python version. if sys.version_info >= (3, 7) and process.exitcode is None: process.kill() class VideoStreamer(BaseStreamer): """ Video Streamer :param path: Path to the video file or directory. :example: >>> streamer = VideoStreamer(path="../demo.mp4") ... for frame in streamer: ... pass """ def __init__(self, path: str) -> None: self.media_type = MediaType.VIDEO self.filenames = _get_filenames(path, media_type=MediaType.VIDEO) def get_stream(self, stream_input: str) -> cv2.VideoCapture: return cv2.VideoCapture(stream_input) def __iter__(self) -> Iterator[np.ndarray]: for filename in self.filenames: stream = self.get_stream(stream_input=filename) yield from _read_video_stream(stream) class CameraStreamer(BaseStreamer): """ Stream video frames from camera :param camera_device: Camera device index e.g, 0, 1 :example: >>> streamer = CameraStreamer(camera_device=0) ... for frame in streamer: ... cv2.imshow("Window", frame) ... if ord("q") == cv2.waitKey(1): ... break """ def __init__(self, camera_device: Optional[int] = None): self.media_type = MediaType.CAMERA self.camera_device = 0 if camera_device is None else camera_device def get_stream(self, stream_input: int): return cv2.VideoCapture(stream_input) def __iter__(self) -> Iterator[np.ndarray]: stream = self.get_stream(stream_input=self.camera_device) yield from _read_video_stream(stream) class ImageStreamer(BaseStreamer): """ Stream from image file or directory. :param path: Path to an image or directory. :example: >>> streamer = ImageStreamer(path="../images") ... for frame in streamer: ... cv2.imshow("Window", frame) ... cv2.waitKey(0) """ def __init__(self, path: str) -> None: self.media_type = MediaType.IMAGE self.filenames = _get_filenames(path=path, media_type=MediaType.IMAGE) @staticmethod def get_stream(stream_input: str) -> Iterable[np.ndarray]: image = cv2.imread(stream_input) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) yield image def __iter__(self) -> Iterator[np.ndarray]: for filename in self.filenames: yield from self.get_stream(stream_input=filename) def get_streamer( path: Optional[str] = None, camera_device: Optional[int] = None, threaded: bool = False, ) -> BaseStreamer: """ Get streamer object based on the file path or camera device index provided. :param path: Path to file or directory. :param camera_device: Camera device index. :param threaded: Threaded streaming option """ if path is not None and camera_device is not None: raise ValueError( "Both path and camera device is provided. Choose either camera or path to a image/video file." ) media_type = get_media_type(path) streamer: BaseStreamer if path is not None and media_type == MediaType.IMAGE: streamer = ImageStreamer(path) elif path is not None and media_type == MediaType.VIDEO: streamer = VideoStreamer(path) elif media_type == MediaType.CAMERA: if camera_device is None: camera_device = 0 streamer = CameraStreamer(camera_device) else: raise ValueError("Unknown media type") if threaded: streamer = ThreadedStreamer(streamer) return streamer
29.610966
106
0.638127
7950ddaf3f54e0fd5a71728e8fd2d8f0da0b959f
3,775
py
Python
examples/opencv_app.py
saddy001/remi
1dd886a55b0d2750880253508df43c90db4f0b08
[ "Apache-2.0" ]
1
2018-03-30T16:57:49.000Z
2018-03-30T16:57:49.000Z
examples/opencv_app.py
saddy001/remi
1dd886a55b0d2750880253508df43c90db4f0b08
[ "Apache-2.0" ]
null
null
null
examples/opencv_app.py
saddy001/remi
1dd886a55b0d2750880253508df43c90db4f0b08
[ "Apache-2.0" ]
null
null
null
""" Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import time import io import cv2 import remi.gui as gui from remi import start, App class OpencvVideoWidget(gui.Image): def __init__(self, video_source=0, fps=5, **kwargs): super(OpencvVideoWidget, self).__init__("/%s/get_image_data" % id(self), **kwargs) self.fps = fps self.capture = cv2.VideoCapture(video_source) javascript_code = gui.Tag() javascript_code.type = 'script' javascript_code.attributes['type'] = 'text/javascript' javascript_code.add_child('code', """ function update_image%(id)s(){ if(document.getElementById('%(id)s').getAttribute('play')=='False') return; var url = '/%(id)s/get_image_data'; var xhr = new XMLHttpRequest(); xhr.open('GET', url, true); xhr.responseType = 'blob' xhr.onload = function(e){ var urlCreator = window.URL || window.webkitURL; var imageUrl = urlCreator.createObjectURL(this.response); document.getElementById('%(id)s').src = imageUrl; } xhr.send(); }; setInterval( update_image%(id)s, %(update_rate)s ); """ % {'id': id(self), 'update_rate': 1000.0 / self.fps}) self.add_child('javascript_code', javascript_code) self.play() def play(self): self.attributes['play'] = True def stop(self): self.attributes['play'] = False def get_image_data(self): ret, frame = self.capture.read() if ret: ret, jpeg = cv2.imencode('.jpg', frame) if ret: headers = {'Content-type': 'image/jpeg'} # tostring is an alias to tobytes, which wasn't added till numpy 1.9 return [jpeg.tostring(), headers] return None, None class MyApp(App): def __init__(self, *args): super(MyApp, self).__init__(*args) def main(self, name='world'): # the arguments are width - height - layoutOrientationOrizontal wid = gui.Widget(width=640, height=600, margin='0px auto') self.opencvideo_widget = OpencvVideoWidget(0, 10, width=620, height=530) self.opencvideo_widget.style['margin'] = '10px' menu = gui.Menu(width=620, height=30) m1 = gui.MenuItem('Video', width=100, height=30) m11 = gui.MenuItem('Play', width=100, height=30) m12 = gui.MenuItem('Stop', width=100, height=30) m11.set_on_click_listener(self.menu_play_clicked) m12.set_on_click_listener(self.menu_stop_clicked) menu.append(m1) m1.append(m11) m1.append(m12) wid.append(menu) wid.append(self.opencvideo_widget) # returning the root widget return wid def menu_play_clicked(self, widget): self.opencvideo_widget.play() def menu_stop_clicked(self, widget): self.opencvideo_widget.stop() if __name__ == "__main__": # optional parameters # start(MyApp,address='127.0.0.1', port=8081, multiple_instance=False,enable_file_cache=True, update_interval=0.1, start_browser=True) start(MyApp)
34.633028
138
0.615629
7950de24fdc3f3cedd834064297305bb42a59917
10,871
py
Python
tests/tasks/prefect/test_flow_run.py
knockrentals/prefect_core
d1e4413f1fa18baef0db6dba0c053b04ce593577
[ "Apache-2.0" ]
null
null
null
tests/tasks/prefect/test_flow_run.py
knockrentals/prefect_core
d1e4413f1fa18baef0db6dba0c053b04ce593577
[ "Apache-2.0" ]
null
null
null
tests/tasks/prefect/test_flow_run.py
knockrentals/prefect_core
d1e4413f1fa18baef0db6dba0c053b04ce593577
[ "Apache-2.0" ]
null
null
null
from datetime import timedelta import pendulum import pytest from unittest.mock import MagicMock import prefect from prefect.client.client import FlowRunInfoResult, ProjectInfo from prefect.engine import signals, state from prefect.run_configs import UniversalRun from prefect.tasks.prefect.flow_run import StartFlowRun @pytest.fixture() def client(monkeypatch): cloud_client = MagicMock( graphql=MagicMock( return_value=MagicMock( data=MagicMock(flow=[MagicMock(id="abc123"), MagicMock(id="def456")]) ) ), create_flow_run=MagicMock(return_value="xyz890"), get_cloud_url=MagicMock(return_value="https://api.prefect.io/flow/run/url"), create_task_run_artifact=MagicMock(return_value="id"), get_flow_run_info=MagicMock( return_value=FlowRunInfoResult( id="my-flow-run-id", name="test-run", flow_id="xyz890", version=1, task_runs=[], state=state.Success(), scheduled_start_time=None, project=ProjectInfo(id="my-project-id", name="Test Project"), parameters={"test": "ing"}, context={}, ) ), ) monkeypatch.setattr( "prefect.tasks.prefect.flow_run.Client", MagicMock(return_value=cloud_client) ) monkeypatch.setattr( "prefect.artifacts.Client", MagicMock(return_value=cloud_client) ) yield cloud_client def test_deprecated_old_name(): from prefect.tasks.prefect import FlowRunTask with pytest.warns(UserWarning, match="StartFlowRun"): task = FlowRunTask(name="My flow run") assert isinstance(task, StartFlowRun) assert task.name == "My flow run" class TestStartFlowRunCloud: def test_initialization(self, cloud_api): now = pendulum.now() run_config = UniversalRun() # verify that the task is initialized as expected task = StartFlowRun( name="My Flow Run Task", checkpoint=False, project_name="Test Project", flow_name="Test Flow", new_flow_context={"foo": "bar"}, parameters={"test": "ing"}, run_config=run_config, run_name="test-run", scheduled_start_time=now, ) assert task.name == "My Flow Run Task" assert task.checkpoint is False assert task.project_name == "Test Project" assert task.flow_name == "Test Flow" assert task.new_flow_context == {"foo": "bar"} assert task.parameters == {"test": "ing"} assert task.run_config == run_config assert task.run_name == "test-run" assert task.scheduled_start_time == now def test_init_errors_if_tasks_passed_to_parameters(self, cloud_api): with pytest.raises(TypeError, match="An instance of `Task` was passed"): StartFlowRun( name="testing", parameters={"a": 1, "b": prefect.Parameter("b")} ) @pytest.mark.parametrize("idempotency_key", [None, "my-key"]) @pytest.mark.parametrize("task_run_id", [None, "test-id"]) def test_flow_run_task_submit_args( self, client, cloud_api, idempotency_key, task_run_id ): run_config = UniversalRun() # verify that create_flow_run was called task = StartFlowRun( project_name="Test Project", flow_name="Test Flow", parameters={"test": "ing"}, run_config=run_config, run_name="test-run", ) # verify that run returns the new flow run ID with prefect.context(task_run_id=task_run_id): assert task.run(idempotency_key=idempotency_key) == "xyz890" # verify the GraphQL query was called with the correct arguments query_args = list(client.graphql.call_args_list[0][0][0]["query"].keys())[0] assert "Test Project" in query_args assert "Test Flow" in query_args # verify create_flow_run was called with the correct arguments assert client.create_flow_run.call_args[1] == dict( flow_id="abc123", parameters={"test": "ing"}, run_config=run_config, idempotency_key=idempotency_key or task_run_id, context=None, run_name="test-run", scheduled_start_time=None, ) def test_flow_run_task_uses_scheduled_start_time(self, client, cloud_api): in_one_hour = pendulum.now().add(hours=1) # verify that create_flow_run was called task = StartFlowRun( project_name="Test Project", flow_name="Test Flow", scheduled_start_time=in_one_hour, ) # verify that run returns the new flow run ID assert task.run() == "xyz890" # verify create_flow_run was called with the correct arguments client.create_flow_run.assert_called_once_with( flow_id="abc123", parameters=None, idempotency_key=None, context=None, run_name=None, scheduled_start_time=in_one_hour, run_config=None, ) def test_flow_run_task_without_flow_name(self, cloud_api): # verify that a ValueError is raised without a flow name task = StartFlowRun(project_name="Test Project") with pytest.raises(ValueError, match="Must provide a flow name."): task.run() def test_flow_run_task_without_project_name(self, cloud_api): # verify that a ValueError is raised without a project name task = StartFlowRun(flow_name="Test Flow") with pytest.raises(ValueError, match="Must provide a project name."): task.run() def test_flow_run_task_with_no_matching_flow(self, client, cloud_api): # verify a ValueError is raised if the client returns no flows task = StartFlowRun(flow_name="Test Flow", project_name="Test Project") client.graphql = MagicMock(return_value=MagicMock(data=MagicMock(flow=[]))) with pytest.raises(ValueError, match="Flow 'Test Flow' not found."): task.run() def test_flow_run_link_artifact(self, client, cloud_api): task = StartFlowRun( project_name="Test Project", flow_name="Test Flow", parameters={"test": "ing"}, run_name="test-run", ) with prefect.context(running_with_backend=True, task_run_id="trid"): task.run() client.create_task_run_artifact.assert_called_once_with( data={"link": "/flow/run/url"}, kind="link", task_run_id="trid" ) class TestStartFlowRunServer: def test_initialization(self, server_api): now = pendulum.now() # verify that the task is initialized as expected task = StartFlowRun( name="My Flow Run Task", project_name="Demo", checkpoint=False, flow_name="Test Flow", new_flow_context={"foo": "bar"}, parameters={"test": "ing"}, run_name="test-run", scheduled_start_time=now, ) assert task.name == "My Flow Run Task" assert task.checkpoint is False assert task.flow_name == "Test Flow" assert task.new_flow_context == {"foo": "bar"} assert task.parameters == {"test": "ing"} assert task.run_name == "test-run" assert task.scheduled_start_time == now def test_flow_run_task(self, client, server_api): # verify that create_flow_run was called task = StartFlowRun( flow_name="Test Flow", project_name="Demo", parameters={"test": "ing"}, run_name="test-run", ) # verify that run returns the new flow run ID assert task.run() == "xyz890" # verify the GraphQL query was called with the correct arguments query_args = list(client.graphql.call_args_list[0][0][0]["query"].keys())[0] assert "Test Flow" in query_args # verify create_flow_run was called with the correct arguments client.create_flow_run.assert_called_once_with( flow_id="abc123", parameters={"test": "ing"}, idempotency_key=None, context=None, run_name="test-run", scheduled_start_time=None, run_config=None, ) def test_flow_run_task_with_wait(self, client, server_api): # verify that create_flow_run was called task = StartFlowRun( flow_name="Test Flow", project_name="Demo", parameters={"test": "ing"}, run_name="test-run", wait=True, poll_interval=timedelta(seconds=3), ) assert task.poll_interval == timedelta(seconds=3) # Run flow, and assert that signals a success with pytest.raises(signals.SUCCESS) as exc_info: task.run() flow_state_signal = exc_info.value assert isinstance(flow_state_signal.state, state.Success) # Check flow ID assert str(flow_state_signal).split(" ")[0] == "xyz890" # verify the GraphQL query was called with the correct arguments query_args = list(client.graphql.call_args_list[0][0][0]["query"].keys())[0] assert "Test Flow" in query_args # verify create_flow_run was called with the correct arguments client.create_flow_run.assert_called_once_with( flow_id="abc123", parameters={"test": "ing"}, idempotency_key=None, context=None, run_name="test-run", scheduled_start_time=None, run_config=None, ) def test_flow_run_task_poll_interval_too_short(self): with pytest.raises(ValueError): task = StartFlowRun( flow_name="Test Flow", project_name="Demo", parameters={"test": "ing"}, run_name="test-run", wait=True, poll_interval=timedelta(seconds=2), ) def test_flow_run_task_without_flow_name(self, server_api): # verify that a ValueError is raised without a flow name task = StartFlowRun() with pytest.raises(ValueError, match="Must provide a flow name."): task.run() def test_flow_run_task_with_no_matching_flow(self, client, server_api): # verify a ValueError is raised if the client returns no flows task = StartFlowRun(flow_name="Test Flow", project_name="Demo") client.graphql = MagicMock(return_value=MagicMock(data=MagicMock(flow=[]))) with pytest.raises(ValueError, match="Flow 'Test Flow' not found."): task.run()
38.14386
85
0.615123
7950de6f095226cc19c10921e1c58a21c9dad234
2,185
py
Python
src/main/resources/redmine/Server.py
xebialabs-community/xlr-redmine-plugin
8257bb050ce6a0fa40b98dfae074d0802365f818
[ "MIT" ]
null
null
null
src/main/resources/redmine/Server.py
xebialabs-community/xlr-redmine-plugin
8257bb050ce6a0fa40b98dfae074d0802365f818
[ "MIT" ]
null
null
null
src/main/resources/redmine/Server.py
xebialabs-community/xlr-redmine-plugin
8257bb050ce6a0fa40b98dfae074d0802365f818
[ "MIT" ]
null
null
null
# # Copyright 2019 XEBIALABS # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # from org.apache.http.client import ClientProtocolException params = {'url': configuration.url, 'proxyHost': configuration.proxyHost, 'proxyPort': configuration.proxyPort, 'proxyUsername': configuration.proxyUsername, 'proxyPassword': configuration.proxyPassword} response = None try: headers = None if configuration.apiKey: headers = {'X-Redmine-API-Key': configuration.apiKey } elif configuration.password: params['username'] = configuration.username params['password'] = configuration.password response = HttpRequest(params).get('/issues.json', contentType='application/json', headers=headers) except ClientProtocolException: raise Exception("URL is not valid") # Redmine api returns 403 in case you are authenticated but not enough permissions if response.status != 403 and response.status != 200: reason = "Unknown" if response.status == 400: reason = "Bad request" elif response.status == 401: reason = "Unauthorized" raise Exception("HTTP response code %s, reason %s" % (response.status, reason))
62.428571
462
0.747368
7950df4d9487228feba7ed00fb1b4690ba7b89c5
7,461
py
Python
eth2/beacon/types/states.py
onyb/trinity
347e2beac23c5c1bb4aab136bb44c162467f6ff7
[ "MIT" ]
null
null
null
eth2/beacon/types/states.py
onyb/trinity
347e2beac23c5c1bb4aab136bb44c162467f6ff7
[ "MIT" ]
null
null
null
eth2/beacon/types/states.py
onyb/trinity
347e2beac23c5c1bb4aab136bb44c162467f6ff7
[ "MIT" ]
null
null
null
from typing import Sequence, Type, TypeVar from eth.constants import ZERO_HASH32 from eth_typing import Hash32 from eth_utils import humanize_hash from ssz.hashable_container import HashableContainer from ssz.sedes import Bitvector, List, Vector, bytes32, uint64 from eth2.beacon.constants import JUSTIFICATION_BITS_LENGTH, ZERO_ROOT from eth2.beacon.helpers import compute_epoch_at_slot from eth2.beacon.typing import Bitfield, Epoch, Gwei, Root, Slot, Timestamp from eth2.configs import Eth2Config from .block_headers import BeaconBlockHeader, default_beacon_block_header from .checkpoints import Checkpoint, default_checkpoint from .defaults import ( default_slot, default_timestamp, default_tuple, default_tuple_of_size, ) from .eth1_data import Eth1Data, default_eth1_data from .forks import Fork, default_fork from .pending_attestations import PendingAttestation from .validators import Validator default_justification_bits = Bitfield((False,) * JUSTIFICATION_BITS_LENGTH) TBeaconState = TypeVar("TBeaconState", bound="BeaconState") # Use mainnet constants for defaults. We can't import the config object because of an import cycle. # TODO: When py-ssz is updated to support size configs, the config will be passed to the `create` # classmethod and we can create the defaults dynamically there. default_block_roots = default_tuple_of_size(2 ** 13, ZERO_ROOT) default_state_roots = default_tuple_of_size(2 ** 13, ZERO_HASH32) default_randao_mixes = default_tuple_of_size(2 ** 16, ZERO_HASH32) default_slashings = default_tuple_of_size(2 ** 13, Gwei(0)) class BeaconState(HashableContainer): fields = [ # Versioning ("genesis_time", uint64), ("slot", uint64), ("fork", Fork), # History ("latest_block_header", BeaconBlockHeader), ( "block_roots", Vector(bytes32, 1), ), # Needed to process attestations, older to newer # noqa: E501 ("state_roots", Vector(bytes32, 1)), ( "historical_roots", List(bytes32, 1), ), # allow for a log-sized Merkle proof from any block to any historical block root # noqa: E501 # Ethereum 1.0 chain ("eth1_data", Eth1Data), ("eth1_data_votes", List(Eth1Data, 1)), ("eth1_deposit_index", uint64), # Validator registry ("validators", List(Validator, 1)), ("balances", List(uint64, 1)), # Shuffling ("randao_mixes", Vector(bytes32, 1)), # Slashings ( "slashings", Vector(uint64, 1), ), # Balances slashed at every withdrawal period # noqa: E501 # Attestations ("previous_epoch_attestations", List(PendingAttestation, 1)), ("current_epoch_attestations", List(PendingAttestation, 1)), # Justification ("justification_bits", Bitvector(JUSTIFICATION_BITS_LENGTH)), ("previous_justified_checkpoint", Checkpoint), ("current_justified_checkpoint", Checkpoint), # Finality ("finalized_checkpoint", Checkpoint), ] @classmethod def create( cls: Type[TBeaconState], *, genesis_time: Timestamp = default_timestamp, slot: Slot = default_slot, fork: Fork = default_fork, latest_block_header: BeaconBlockHeader = default_beacon_block_header, block_roots: Sequence[Root] = default_block_roots, state_roots: Sequence[Hash32] = default_state_roots, historical_roots: Sequence[Hash32] = default_tuple, eth1_data: Eth1Data = default_eth1_data, eth1_data_votes: Sequence[Eth1Data] = default_tuple, eth1_deposit_index: int = 0, validators: Sequence[Validator] = default_tuple, balances: Sequence[Gwei] = default_tuple, randao_mixes: Sequence[Hash32] = default_randao_mixes, slashings: Sequence[Gwei] = default_slashings, previous_epoch_attestations: Sequence[PendingAttestation] = default_tuple, current_epoch_attestations: Sequence[PendingAttestation] = default_tuple, justification_bits: Bitfield = default_justification_bits, previous_justified_checkpoint: Checkpoint = default_checkpoint, current_justified_checkpoint: Checkpoint = default_checkpoint, finalized_checkpoint: Checkpoint = default_checkpoint, config: Eth2Config = None, validator_and_balance_length_check: bool = True, ) -> TBeaconState: # We usually want to check that the lengths of each list are the same # In some cases, e.g. SSZ fuzzing, they are not and we still want to instantiate an object. if validator_and_balance_length_check: if len(validators) != len(balances): raise ValueError( f"The length of validators ({len(validators)}) and balances ({len(balances)}) " "lists should be the same." ) if config: # try to provide sane defaults if block_roots == default_tuple: block_roots = default_tuple_of_size( config.SLOTS_PER_HISTORICAL_ROOT, ZERO_ROOT ) if state_roots == default_tuple: state_roots = default_tuple_of_size( config.SLOTS_PER_HISTORICAL_ROOT, ZERO_HASH32 ) if randao_mixes == default_tuple: randao_mixes = default_tuple_of_size( config.EPOCHS_PER_HISTORICAL_VECTOR, ZERO_HASH32 ) if slashings == default_tuple: slashings = default_tuple_of_size( config.EPOCHS_PER_SLASHINGS_VECTOR, Gwei(0) ) return super().create( genesis_time=genesis_time, slot=slot, fork=fork, latest_block_header=latest_block_header, block_roots=block_roots, state_roots=state_roots, historical_roots=historical_roots, eth1_data=eth1_data, eth1_data_votes=eth1_data_votes, eth1_deposit_index=eth1_deposit_index, validators=validators, balances=balances, randao_mixes=randao_mixes, slashings=slashings, previous_epoch_attestations=previous_epoch_attestations, current_epoch_attestations=current_epoch_attestations, justification_bits=justification_bits, previous_justified_checkpoint=previous_justified_checkpoint, current_justified_checkpoint=current_justified_checkpoint, finalized_checkpoint=finalized_checkpoint, ) def __str__(self) -> str: return ( f"[hash_tree_root]={humanize_hash(self.hash_tree_root)}, slot={self.slot}" ) @property def validator_count(self) -> int: return len(self.validators) def current_epoch(self, slots_per_epoch: int) -> Epoch: return compute_epoch_at_slot(self.slot, slots_per_epoch) def previous_epoch(self, slots_per_epoch: int, genesis_epoch: Epoch) -> Epoch: current_epoch = self.current_epoch(slots_per_epoch) if current_epoch == genesis_epoch: return genesis_epoch else: return Epoch(current_epoch - 1) def next_epoch(self, slots_per_epoch: int) -> Epoch: return Epoch(self.current_epoch(slots_per_epoch) + 1)
40.548913
106
0.667873
7950e128e74649ab0a837e8ededf4cdf3faf0b64
5,495
py
Python
deprecated/matrix.py
s-geronimoanderson/compat-id
3ae52dd3d3e92285de425304ccde02f87d2ae880
[ "Apache-2.0" ]
null
null
null
deprecated/matrix.py
s-geronimoanderson/compat-id
3ae52dd3d3e92285de425304ccde02f87d2ae880
[ "Apache-2.0" ]
null
null
null
deprecated/matrix.py
s-geronimoanderson/compat-id
3ae52dd3d3e92285de425304ccde02f87d2ae880
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from scipy.sparse import coo_matrix class Matrix: """A sparse matrix class (indexed from zero). Replace with NumPy arrays.""" def __init__(self, matrix=None, size=None): """Size is a tuple (m,n) representing m rows and n columns.""" if matrix is None: self.data = {} if size is None: self.column_count = 0 self.row_count = 0 self.size = (self.row_count, self.column_count) else: self.row_count, self.column_count = size[:2] self.size = size else: """Initialize to be a clone of the given matrix.""" self.column_count = matrix.column_count self.data = matrix.data self.row_count = matrix.row_count self.size = matrix.size def get(self, subscript): """Return the matrix element indexed by the given (valid) subscript.""" row, column = subscript[:2] if self.__is_valid(subscript): # Get the value if it's present, else a zero. result = self.data.get(subscript, 0) else: raise IndexError return result def set(self, subscript, value): """Set the matrix element indexed by the given (valid) subscript.""" if value != 0 and self.__is_valid(subscript): self.data[subscript] = value else: raise IndexError def __is_valid(self, subscript): """Return whether the given subscript is within the matrix's bounds.""" return ((0,0) <= subscript and subscript < self.size) def __is_valid_row(self, row_number): """Return whether the given row is within the matrix's bounds.""" return self.__is_valid((row_number, 0)) def __str__(self): """Return a NumPy-like matrix representation.""" result = "" for row in range(self.size): current = [] for column in range(self.size): subscript = (row, column) current.append(self.get(subscript)) if result == "": result = "[{}".format(current) else: result = "{0}\n {1}".format(result, current) return "{}]".format(result) def extend_columns(self, matrix): raise NotImplementedError def extend_rows(self, matrix): """Extend the current matrix with the given matrix.""" row_count, column_count = matrix.size[:2] if column_count != self.column_count: raise ValueError self.row_count += row_count self.size = (self.row_count, self.column_count) base_row_count = self.row_count for key, value in matrix.data.items(): row, column = key[:2] self.set((base_row_count + row, column), value) return self def replace_row(self, row_number, vector): """Replace the specified row with the given vector.""" if not self.__is_valid_row(row_number): raise ValueError row_count, column_count = vector.size[:2] if row_count != 1 and column_count != 1: raise ValueError # Eliminate current row entries. for col in [col for (row, col) in self.data.items() if row == row_number]: self.data.pop(row_number, col) # Update row with vector elements. if row_count == 1: new_row = vector.transpose() else: new_row = vector for key, value in new_row.data.items(): row, _ = key[:2] self.set((row_number, row), value) return self def submatrix(self, row_set, column_set): """Return a submatrix with the given rows and columns.""" submatrix = Matrix(len(row_set), len(column_set)) raise NotImplementedError def to_vec(self): """Return an m*n length vector comprising all the matrix's columns.""" column_count = self.column_count vector = Matrix(size=(self.row_count * column_count, 1)) for key, value in self.data.items(): row, column = key[:2] subscript = (column * column_count + row, 0) vector.set(subscript, value) return vector def to_ijv(self): """Return the matrix in ijv (triplet) array format.""" row_indices = [] column_indices = [] nonzero_elements = [] k = 0 for key, value in self.data.items(): if value == 0: continue row, col = key[:2] row_indices.append(row) column_indices.append(col) nonzero_elements.append(value) k += 1 return row_indices, column_indices, nonzero_elements def to_coo_matrix(self): """Return the matrix in COOrdinate format.""" row_indices, column_indices, nonzero_elements = self.to_ijv() return coo_matrix((nonzero_elements, (row_indices, column_indices)), shape=(self.size, self.size)) def transpose(self): """Transpose the matrix.""" m, n = self.size[:2] transposed_size = (n, m) transposed_matrix = {} for key, value in matrix.data.items(): i, j = key[:2] transposed_key = (j, i) transposed_matrix[transposed_key] = value self.matrix = transposed_matrix self.size = transposed_size
36.879195
79
0.571611
7950e187cab9539ccfb7de350c2196fd7a3a9a64
43,521
py
Python
tensorflow/python/framework/type_spec.py
kim-com/tensorflow
4301e3f34b8da528c58bdafe05cd66c8a55fce9e
[ "Apache-2.0" ]
1
2022-03-29T23:09:34.000Z
2022-03-29T23:09:34.000Z
tensorflow/python/framework/type_spec.py
kim-com/tensorflow
4301e3f34b8da528c58bdafe05cd66c8a55fce9e
[ "Apache-2.0" ]
null
null
null
tensorflow/python/framework/type_spec.py
kim-com/tensorflow
4301e3f34b8da528c58bdafe05cd66c8a55fce9e
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Type specifications for TensorFlow APIs.""" import abc import collections import functools import re from typing import List, Optional, Sequence, Any import warnings import numpy as np from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.platform import tf_logging as logging from tensorflow.python.types import trace from tensorflow.python.util import _pywrap_utils from tensorflow.python.util import compat from tensorflow.python.util import deprecation from tensorflow.python.util import nest from tensorflow.python.util import tf_decorator from tensorflow.python.util.lazy_loader import LazyLoader from tensorflow.python.util.tf_export import tf_export # Use LazyLoader to avoid circular dependencies. tensor_spec = LazyLoader( "tensor_spec", globals(), "tensorflow.python.framework.tensor_spec") ops = LazyLoader("ops", globals(), "tensorflow.python.framework.ops") @tf_export("TypeSpec", v1=["TypeSpec", "data.experimental.Structure"]) class TypeSpec(trace.TraceType, metaclass=abc.ABCMeta): """Specifies a TensorFlow value type. A `tf.TypeSpec` provides metadata describing an object accepted or returned by TensorFlow APIs. Concrete subclasses, such as `tf.TensorSpec` and `tf.RaggedTensorSpec`, are used to describe different value types. For example, `tf.function`'s `input_signature` argument accepts a list (or nested structure) of `TypeSpec`s. Creating new subclasses of `TypeSpec` (outside of TensorFlow core) is not currently supported. In particular, we may make breaking changes to the private methods and properties defined by this base class. Example: >>> spec = tf.RaggedTensorSpec(shape=[None, None], dtype=tf.int32) >>> @tf.function(input_signature=[spec]) ... def double(x): ... return x * 2 >>> print(double(tf.ragged.constant([[1, 2], [3]]))) <tf.RaggedTensor [[2, 4], [6]]> """ # === Subclassing === # # Each `TypeSpec` subclass must define: # # * A "component encoding" for values. # * A "serialization" for types. # # The component encoding for a value is a nested structure of `tf.Tensor` # or `CompositeTensor` that can be used by the `TypeSpec` to reconstruct # the value. Each individual `TypeSpec` must use the same nested structure # for all values -- this structure is defined by the `component_specs` # attribute. Decomposing values into components, and reconstructing them # from those components, should be inexpensive. In particular, it should # *not* require any TensorFlow ops. # # The serialization for a `TypeSpec` is a nested tuple of values that can # be used to reconstruct the `TypeSpec`. See the documentation for # `_serialize()` for more information. __slots__ = [] @abc.abstractproperty def value_type(self): """The Python type for values that are compatible with this TypeSpec. In particular, all values that are compatible with this TypeSpec must be an instance of this type. """ raise NotImplementedError("%s.value_type" % type(self).__name__) def is_subtype_of(self, other: trace.TraceType) -> bool: """Returns True if `self` is a subtype of `other`. Implements the tf.types.experimental.func.TraceType interface. If not overridden by a subclass, the default behavior is to assume the TypeSpec is covariant upon attributes that implement TraceType and invariant upon rest of the attributes as well as the structure and type of the TypeSpec. Args: other: A TraceType object. """ if type(self) is not type(other): return False is_subtype = True def check_attribute(attribute_self, attribute_other): nonlocal is_subtype if not is_subtype: return if isinstance(attribute_self, trace.TraceType): if not attribute_self.is_subtype_of(attribute_other): is_subtype = False return else: if attribute_self != attribute_other: is_subtype = False try: # TODO(b/217959193): Replace _serialize with parameter decomposition. nest.map_structure(check_attribute, self._serialize(), other._serialize()) # pylint: disable=protected-access except (ValueError, TypeError): return False return is_subtype def most_specific_common_supertype( self, others: Sequence[trace.TraceType]) -> Optional["TypeSpec"]: """Returns the most specific supertype TypeSpec of `self` and `others`. Implements the tf.types.experimental.func.TraceType interface. If not overridden by a subclass, the default behavior is to assume the TypeSpec is covariant upon attributes that implement TraceType and invariant upon rest of the attributes as well as the structure and type of the TypeSpec. Args: others: A sequence of TraceTypes. """ if any(type(self) is not type(other) for other in others): return None has_supertype = True def make_supertype_attribute(attribute_self, *attribute_others): nonlocal has_supertype if not has_supertype: return if isinstance(attribute_self, trace.TraceType): attribute_supertype = attribute_self.most_specific_common_supertype( attribute_others) if attribute_supertype is None: has_supertype = False return return attribute_supertype else: if not all(attribute_self == attribute_other for attribute_other in attribute_others): has_supertype = False return return attribute_self try: # TODO(b/217959193): Replace _serialize with parameter decomposition. serialized_supertype = nest.map_structure( make_supertype_attribute, self._serialize(), *(o._serialize() for o in others)) # pylint: disable=protected-access except (ValueError, TypeError): return None return self._deserialize(serialized_supertype) if has_supertype else None # TODO(b/202447704): Reduce internal usages. def is_compatible_with(self, spec_or_value): """Returns true if `spec_or_value` is compatible with this TypeSpec.""" # === Subclassing === # If not overridden by subclasses, the default behavior is to convert # `spec_or_value` to a `TypeSpec` (if it isn't already); and then to # consider two `TypeSpec`s compatible if they have the same type, and # the values returned by `_serialize` are compatible (where # `tf.TensorShape`, `tf.TensorSpec`, and `tf.DType` are checked for # compatibility using their `is_compatible_with` method; and all other # types are considered compatible if they are equal). if not isinstance(spec_or_value, TypeSpec): spec_or_value = type_spec_from_value(spec_or_value) if type(self) is not type(spec_or_value): return False return self.__is_compatible(self._serialize(), spec_or_value._serialize()) # pylint: disable=protected-access @deprecation.deprecated(None, "Use most_specific_common_supertype instead.") def most_specific_compatible_type(self, other: "TypeSpec") -> "TypeSpec": """Returns the most specific TypeSpec compatible with `self` and `other`. Deprecated. Please use `most_specific_common_supertype` instead. Do not override this function. Args: other: A `TypeSpec`. Raises: ValueError: If there is no TypeSpec that is compatible with both `self` and `other`. """ result = self.most_specific_common_supertype([other]) if result is None: raise ValueError("No TypeSpec is compatible with both %s and %s" % (self, other)) return result def _with_tensor_ranks_only(self) -> "TypeSpec": """Returns a TypeSpec compatible with `self`, with tensor shapes relaxed. Returns: A `TypeSpec` that is compatible with `self`, where any `TensorShape` information has been relaxed to include only tensor rank (and not the dimension sizes for individual axes). """ # === Subclassing === # If not overridden by a subclass, the default behavior is to serialize # this TypeSpec, relax any TensorSpec or TensorShape values, and # deserialize the result. def relax(value): if isinstance(value, TypeSpec): return value._with_tensor_ranks_only() # pylint: disable=protected-access elif (isinstance(value, tensor_shape.TensorShape) and value.rank is not None): return tensor_shape.TensorShape([None] * value.rank) else: return value return self._deserialize(nest.map_structure(relax, self._serialize())) # TODO(b/206014848): Helper function to support logic that does not consider # Tensor name. Will be removed once load-bearing usages of Tensor name are # fixed. def _without_tensor_names(self) -> "TypeSpec": """Returns a TypeSpec compatible with `self`, with tensor names removed. Returns: A `TypeSpec` that is compatible with `self`, where the name of any `TensorSpec` is set to `None`. """ # === Subclassing === # If not overridden by a subclass, the default behavior is to serialize # this TypeSpec, set the TensorSpecs' names to None, and deserialize the # result. def rename(value): if isinstance(value, TypeSpec): return value._without_tensor_names() # pylint: disable=protected-access return value return self._deserialize(nest.map_structure(rename, self._serialize())) # === Component encoding for values === @abc.abstractmethod def _to_components(self, value): """Encodes `value` as a nested structure of `Tensor` or `CompositeTensor`. Args: value: A value compatible with this `TypeSpec`. (Caller is responsible for ensuring compatibility.) Returns: A nested structure of `tf.Tensor` or `tf.CompositeTensor` compatible with `self._component_specs`, which can be used to reconstruct `value`. """ # === Subclassing === # This method must be inexpensive (do not call TF ops). raise NotImplementedError("%s._to_components()" % type(self).__name__) @abc.abstractmethod def _from_components(self, components): """Reconstructs a value from a nested structure of Tensor/CompositeTensor. Args: components: A nested structure of `tf.Tensor` or `tf.CompositeTensor`, compatible with `self._component_specs`. (Caller is responsible for ensuring compatibility.) Returns: A value that is compatible with this `TypeSpec`. """ # === Subclassing === # This method must be inexpensive (do not call TF ops). raise NotImplementedError("%s._from_components()" % type(self).__name__) @abc.abstractproperty def _component_specs(self): """A nested structure of TypeSpecs for this type's components. Returns: A nested structure describing the component encodings that are returned by this TypeSpec's `_to_components` method. In particular, for a TypeSpec `spec` and a compatible value `value`: ``` nest.map_structure(lambda t, c: assert t.is_compatible_with(c), spec._component_specs, spec._to_components(value)) ``` """ raise NotImplementedError("%s._component_specs()" % type(self).__name__) # === Tensor list encoding for values === def _to_tensor_list(self, value) -> List["ops.Tensor"]: """Encodes `value` as a flat list of `tf.Tensor`. By default, this just flattens `self._to_components(value)` using `nest.flatten`. However, subclasses may override this to return a different tensor encoding for values. In particular, some subclasses of `BatchableTypeSpec` override this method to return a "boxed" encoding for values, which then can be batched or unbatched. See `BatchableTypeSpec` for more details. Args: value: A value with compatible this `TypeSpec`. (Caller is responsible for ensuring compatibility.) Returns: A list of `tf.Tensor`, compatible with `self._flat_tensor_specs`, which can be used to reconstruct `value`. """ return nest.flatten(self._to_components(value), expand_composites=True) def _from_tensor_list(self, tensor_list: List["ops.Tensor"]) -> Any: """Reconstructs a value from a flat list of `tf.Tensor`. Args: tensor_list: A flat list of `tf.Tensor`, compatible with `self._flat_tensor_specs`. Returns: A value that is compatible with this `TypeSpec`. Raises: ValueError: If `tensor_list` is not compatible with `self._flat_tensor_specs`. """ self.__check_tensor_list(tensor_list) return self._from_compatible_tensor_list(tensor_list) def _from_compatible_tensor_list( self, tensor_list: List["ops.Tensor"]) -> Any: """Reconstructs a value from a compatible flat list of `tf.Tensor`. Args: tensor_list: A flat list of `tf.Tensor`, compatible with `self._flat_tensor_specs`. (Caller is responsible for ensuring compatibility.) Returns: A value that is compatible with this `TypeSpec`. """ return self._from_components( nest.pack_sequence_as( self._component_specs, tensor_list, expand_composites=True)) @property def _flat_tensor_specs(self): """A list of TensorSpecs compatible with self._to_tensor_list(v).""" return nest.flatten(self._component_specs, expand_composites=True) # === Serialization for types === @abc.abstractmethod def _serialize(self): """Returns a nested tuple containing the state of this TypeSpec. The serialization may contain the following value types: boolean, integer, string, float, None, `TensorSpec`, `tf.TensorShape`, `tf.DType`, `np.ndarray`, `TypeSpec`, and nested tuples, namedtuples, dicts, and OrderedDicts of any of the above. This method is used to provide default definitions for: equality testing (__eq__, __ne__), hashing (__hash__), pickling (__reduce__), string representation (__repr__), `self.is_compatible_with()`, `self.most_specific_compatible_type()`, and protobuf serialization (e.g. TensorInfo and StructuredValue). """ raise NotImplementedError("%s._serialize()" % type(self).__name__) @classmethod def _deserialize(cls, serialization): """Reconstructs a TypeSpec from a value returned by `serialize`. Args: serialization: A value returned by _serialize. In some contexts, `namedtuple`s in `serialization` may not have the identical type that was returned by `_serialize` (but its type will still be a `namedtuple` type with the same type name and field names). For example, the code that loads a SavedModel does not have access to the original `namedtuple` type, so it dynamically creates a new `namedtuple` type with the same type name and field names as the original one. If necessary, you can check `serialization` for these duck-typed `nametuple` types, and restore them to the original type. (E.g., this would be necessary if you rely on type checks such as `isinstance` for this `TypeSpec`'s member variables). Returns: A `TypeSpec` of type `cls`. """ return cls(*serialization) # === Operators === def __eq__(self, other) -> bool: # pylint: disable=protected-access return (type(other) is type(self) and self.__get_cmp_key() == other.__get_cmp_key()) def __ne__(self, other) -> bool: return not self == other def __hash__(self) -> int: return hash(self.__get_cmp_key()) def __reduce__(self): return type(self), self._serialize() def __repr__(self) -> str: return "%s%r" % (type(self).__name__, self._serialize()) # === Legacy Output === # TODO(b/133606651) Document and/or deprecate the legacy_output methods. # (These are used by tf.data.) def _to_legacy_output_types(self): raise NotImplementedError("%s._to_legacy_output_types()" % type(self).__name__) def _to_legacy_output_shapes(self): raise NotImplementedError("%s._to_legacy_output_shapes()" % type(self).__name__) def _to_legacy_output_classes(self): return self.value_type # === Private Helper Methods === # TODO(b/216206374): Currently this usage is used to represent a Tensor # argument not a TensorSpec argument as it should be. def __tf_tracing_type__(self, context: trace.TracingContext) -> trace.TraceType: if context.include_tensor_ranks_only: return self._with_tensor_ranks_only() else: return self def __check_tensor_list(self, tensor_list): """Raises an exception if tensor_list incompatible w/ flat_tensor_specs.""" expected = self._flat_tensor_specs specs = [type_spec_from_value(t) for t in tensor_list] if len(specs) != len(expected): raise ValueError(f"Cannot create a {self.value_type.__name__} from the " f"tensor list because the TypeSpec expects " f"{len(expected)} items, but the provided tensor list " f"has {len(specs)} items.") for i, (s1, s2) in enumerate(zip(specs, expected)): if not s1.is_compatible_with(s2): raise ValueError(f"Cannot create a {self.value_type.__name__} from the " f"tensor list because item {i} ({tensor_list[i]!r}) " f"is incompatible with the expected TypeSpec {s2}.") def __get_cmp_key(self): """Returns a hashable eq-comparable key for `self`.""" # TODO(b/133606651): Decide whether to cache this value. return (type(self), self.__make_cmp_key(self._serialize())) def __make_cmp_key(self, value): """Converts `value` to a hashable key.""" if isinstance(value, (int, float, bool, np.generic, dtypes.DType, TypeSpec, tensor_shape.TensorShape)): return value if isinstance(value, compat.bytes_or_text_types): return value if value is None: return value if isinstance(value, dict): return tuple([ tuple([self.__make_cmp_key(key), self.__make_cmp_key(value[key])]) for key in sorted(value.keys()) ]) if isinstance(value, tuple): return tuple([self.__make_cmp_key(v) for v in value]) if isinstance(value, list): return (list, tuple([self.__make_cmp_key(v) for v in value])) if isinstance(value, np.ndarray): return (np.ndarray, value.shape, TypeSpec.__nested_list_to_tuple(value.tolist())) raise ValueError(f"Cannot generate a hashable key for {self} because " f"the _serialize() method " f"returned an unsupproted value of type {type(value)}") @staticmethod def __nested_list_to_tuple(value): """Converts a nested list to a corresponding nested tuple.""" if isinstance(value, list): return tuple(TypeSpec.__nested_list_to_tuple(v) for v in value) return value @staticmethod def __same_types(a, b): """Returns whether a and b have the same type, up to namedtuple equivalence. Consistent with tf.nest.assert_same_structure(), two namedtuple types are considered the same iff they agree in their class name (without qualification by module name) and in their sequence of field names. This makes namedtuples recreated by nested_structure_coder compatible with their original Python definition. Args: a: a Python object. b: a Python object. Returns: A boolean that is true iff type(a) and type(b) are the same object or equivalent namedtuple types. """ if nest.is_namedtuple(a) and nest.is_namedtuple(b): return nest.same_namedtuples(a, b) else: return type(a) is type(b) @staticmethod def __is_compatible(a, b): """Returns true if the given type serializations compatible.""" if isinstance(a, TypeSpec): return a.is_compatible_with(b) if not TypeSpec.__same_types(a, b): return False if isinstance(a, (list, tuple)): return (len(a) == len(b) and all(TypeSpec.__is_compatible(x, y) for (x, y) in zip(a, b))) if isinstance(a, dict): return (len(a) == len(b) and sorted(a.keys()) == sorted(b.keys()) and all(TypeSpec.__is_compatible(a[k], b[k]) for k in a.keys())) if isinstance(a, (tensor_shape.TensorShape, dtypes.DType)): return a.is_compatible_with(b) return a == b # TODO(b/221459366): Remove after usages are removed. @staticmethod def __most_specific_compatible_type_serialization(a, b): """Helper for most_specific_compatible_type. Combines two type serializations as follows: * If they are both tuples of the same length, then recursively combine the respective tuple elements. * If they are both dicts with the same keys, then recursively combine the respective dict elements. * If they are both TypeSpecs, then combine using TypeSpec.most_specific_compatible_type. * If they are both TensorShapes, then combine using TensorShape.most_specific_compatible_shape. * If they are both TensorSpecs with the same dtype, then combine using TensorShape.most_specific_compatible_shape to combine shapes. * If they are equal, then return a. * If none of the above, then raise a ValueError. Args: a: A serialized TypeSpec or nested component from a serialized TypeSpec. b: A serialized TypeSpec or nested component from a serialized TypeSpec. Returns: A value with the same type and structure as `a` and `b`. Raises: ValueError: If `a` and `b` are incompatible. """ if not TypeSpec.__same_types(a, b): raise ValueError( f"Encountered incompatible types while determining the most specific " f"compatible type. " f"The Python type structures of `a` and `b` are different. " f"`a` : {a!r} `b` : {b!r}") if nest.is_namedtuple(a): assert a._fields == b._fields # Implied by __same_types(a, b). return type(a)(*[ TypeSpec.__most_specific_compatible_type_serialization(x, y) for (x, y) in zip(a, b) ]) if isinstance(a, (list, tuple)): if len(a) != len(b): raise ValueError( f"Encountered incompatible types while determining the most specific " f"compatible type. " f"Type spec structure `a` has a length of {len(a)} and " f"type spec structure `b` has a different length of {len(b)}." f"`a` : {a!r} `b` : {b!r}") return tuple( TypeSpec.__most_specific_compatible_type_serialization(x, y) for (x, y) in zip(a, b)) if isinstance(a, collections.OrderedDict): a_keys, b_keys = a.keys(), b.keys() if len(a) != len(b) or a_keys != b_keys: raise ValueError( f"Encountered incompatible types while determining the most specific " f"compatible type. " f"Type spec structure `a` has keys {a_keys} and " f"type spec structure `b` has different keys {b_keys}." f"`a` : {a!r} `b` : {b!r}") return collections.OrderedDict([ (k, TypeSpec.__most_specific_compatible_type_serialization(a[k], b[k])) for k in a_keys ]) if isinstance(a, dict): a_keys, b_keys = sorted(a.keys()), sorted(b.keys()) if len(a) != len(b) or a_keys != b_keys: raise ValueError( f"Encountered incompatible types while determining the most specific " f"compatible type. " f"Type spec structure `a` has keys {a_keys} and " f"type spec structure `b` has different keys {b_keys}." f"`a` : {a!r} `b` : {b!r}") return { k: TypeSpec.__most_specific_compatible_type_serialization(a[k], b[k]) for k in a_keys } if isinstance(a, tensor_shape.TensorShape): return a.most_specific_compatible_shape(b) if isinstance(a, list): raise AssertionError( f"{type(a).__name__}._serialize() should not return list values.") if isinstance(a, TypeSpec): return a.most_specific_compatible_type(b) if a != b: raise ValueError( f"Encountered incompatible types while determining the most specific " f"compatible type. " f"Type spec structure `a` and `b` are different. " f"`a` : {a!r} `b` : {b!r}") return a class TypeSpecBatchEncoder(object, metaclass=abc.ABCMeta): """Class used to encode and decode composite tensor values for batching. In order to be batched and unbatched by APIs such as `tf.data.Dataset` and `tf.map_fn`, composite tensors must be encoded using flat tensors that can themselves be batched or unbatched. `TypeSpecBatchEncoder`s are responsible for implementing this encoding. If a composite tensor's shape is a prefix of the shape of all of its component tensors, then this encoding can usually be performed by just returning those component tensors as a list. But if the composite tensor has components whose shape has a more complex relationship to the shape of the composite tensor, then a custom `TypeSpecBatchEncoder` may need to be implemented. """ @abc.abstractmethod def batch(self, spec, batch_size): """Returns the TypeSpec representing a batch of values described by `spec`. Args: spec: The `TypeSpec` for an individual value. batch_size: An `int` indicating the number of values that are batched together, or `None` if the batch size is not known. Returns: A `TypeSpec` for a batch of values. """ raise NotImplementedError(f"{type(self).__name__}.batch") @abc.abstractmethod def unbatch(self, spec): """Returns the TypeSpec for a single unbatched element in `spec`. Args: spec: The `TypeSpec` for a batch of values. Returns: A `TypeSpec` for an individual value. """ raise NotImplementedError(f"{type(self).__name__}.unbatch") @abc.abstractmethod def encode(self, spec, value, minimum_rank=0): """Encodes `value` as a nest of batchable `Tensor` or `CompositeTensor`. Args: spec: The TypeSpec of the value to encode. value: A value compatible with `spec`. minimum_rank: The minimum rank for the returned Tensors, CompositeTensors, and ExtensionType values. This can be used to ensure that the encoded values can be unbatched this number of times. If `minimum_rank>0`, then `t.shape[:minimum_rank]` must be compatible for all values `t` returned by `encode`. Returns: A nest (as defined by `tf.nest`) of `tf.Tensor`s, batchable `tf.CompositeTensor`s, or `tf.ExtensionType`s. Stacking, unstacking, or concatenating these encoded values and then decoding the result must be equivalent to stacking, unstacking, or concatenating the original values. """ raise NotImplementedError(f"{type(self).__name__}.encode") @abc.abstractmethod def decode(self, spec, encoded_value): """Decodes `value` from a batchable tensor encoding. Args: spec: The TypeSpec for the result value. If encoded values with spec `s` were batched, then `spec` should be `s.batch(batch_size)`; or if encoded values with spec `s` were unbatched, then `spec` should be `s.unbatch()`. encoded_value: A nest of values returned by `encode`; or a nest of values that was formed by stacking, unstacking, or concatenating the corresponding elements of values returned by `encode`. Returns: A value compatible with `type_spec`. """ raise NotImplementedError(f"{type(self).__name__}.decode") @abc.abstractmethod def encoding_specs(self, spec): """Returns a nest of `TypeSpec`(s) describing the encoding for `spec`. Args: spec: The TypeSpec whose encoding should be described. Returns: A nest (as defined by `tf.nest) of `tf.TypeSpec`, describing the values that are returned by `self.encode(spec, ...)`. All TypeSpecs in this nest must be batchable. """ raise NotImplementedError(f"{type(self).__name__}.encoding_specs") class LegacyTypeSpecBatchEncoder(TypeSpecBatchEncoder): """TypeSpecBatchEncoder for legacy composite tensor classes. TODO(edloper): Update existing composite tensors to use non-legacy CompositTensorBatchEncoders. """ def batch(self, type_spec, batch_size): return type_spec._batch(batch_size) # pylint: disable=protected-access def unbatch(self, type_spec): return type_spec._unbatch() # pylint: disable=protected-access def encode(self, type_spec, value, minimum_rank=0): if minimum_rank == 0: return type_spec._to_tensor_list(value) # pylint: disable=protected-access elif minimum_rank == 1: if not isinstance(type_spec, BatchableTypeSpec): raise ValueError(f"{type_spec.__name__}.encode does not support " "minimum_rank>0.") return type_spec._to_batched_tensor_list(value) # pylint: disable=protected-access else: raise ValueError(f"{type_spec.__name__}.encode does not support " "minimum_rank>1.") def decode(self, type_spec, encoded_value): return type_spec._from_tensor_list(encoded_value) # pylint: disable=protected-access def encoding_specs(self, spec): return spec._flat_tensor_specs # pylint: disable=protected-access class BatchableTypeSpec(TypeSpec, metaclass=abc.ABCMeta): """TypeSpec with a batchable tensor encoding. The batchable tensor encoding is a list of `tf.Tensor`s that supports batching and unbatching. In particular, stacking (or unstacking) values with the same `TypeSpec` must be equivalent to stacking (or unstacking) each of their tensor lists. Unlike the component encoding (returned by `self._to_components)`, the batchable tensor encoding may require using encoding/decoding ops. If a subclass's batchable tensor encoding is not simply a flattened version of the component encoding, then the subclass must override `_to_tensor_list`, `_from_tensor_list`, and _flat_tensor_specs`. """ __slots__ = [] __batch_encoder__ = LegacyTypeSpecBatchEncoder() @abc.abstractmethod def _batch(self, batch_size) -> TypeSpec: """Returns a TypeSpec representing a batch of objects with this TypeSpec. Args: batch_size: An `int` representing the number of elements in a batch, or `None` if the batch size may vary. Returns: A `TypeSpec` representing a batch of objects with this TypeSpec. """ raise NotImplementedError(f"{type(self).__name__}._batch") @abc.abstractmethod def _unbatch(self) -> TypeSpec: """Returns a TypeSpec representing a single element this TypeSpec. Returns: A `TypeSpec` representing a single element of objects with this TypeSpec. """ raise NotImplementedError(f"{type(self).__name__}._unbatch") @property def _flat_tensor_specs(self) -> List[TypeSpec]: """A list of TensorSpecs compatible with self._to_tensor_list(v).""" component_flat_tensor_specs = nest.map_structure( functools.partial(get_batchable_flat_tensor_specs, context_spec=self), self._component_specs) return nest.flatten(component_flat_tensor_specs) def _to_tensor_list( self, value: composite_tensor.CompositeTensor) -> List["ops.Tensor"]: """Encodes `value` as a flat list of `ops.Tensor`.""" component_tensor_lists = nest.map_structure( batchable_to_tensor_list, self._component_specs, self._to_components(value)) return nest.flatten(component_tensor_lists) def _to_batched_tensor_list( self, value: composite_tensor.CompositeTensor) -> List["ops.Tensor"]: """Encodes `value` as a flat list of `ops.Tensor` each with rank>0.""" get_spec_tensor_list = lambda spec, v: ( # pylint: disable=g-long-lambda batchable_to_tensor_list(spec, v, minimum_rank=1) if isinstance(spec, BatchableTypeSpec) else spec._to_tensor_list(v)) # pylint: disable=protected-access component_batched_tensor_lists = nest.map_structure( get_spec_tensor_list, self._component_specs, self._to_components(value)) tensor_list = nest.flatten(component_batched_tensor_lists) if any(t.shape.ndims == 0 for t in tensor_list): raise ValueError( f"While converting {value} to a list of tensors for batching, " f"found a scalar item which cannot be batched.") return tensor_list def _from_compatible_tensor_list( self, tensor_list: List["ops.Tensor"] ) -> composite_tensor.CompositeTensor: """Reconstructs a value from a compatible flat list of `ops.Tensor`.""" flat_specs = nest.map_structure( functools.partial(get_batchable_flat_tensor_specs, context_spec=self), self._component_specs) nested_tensor_list = nest.pack_sequence_as(flat_specs, tensor_list) components = nest.map_structure_up_to( self._component_specs, batchable_from_tensor_list, self._component_specs, nested_tensor_list) return self._from_components(components) def get_batchable_flat_tensor_specs(spec, context_spec=None): """Returns the flat tensor specs for `spec`.""" if isinstance(spec, tensor_spec.TensorSpec): return [spec] elif hasattr(spec, "__batch_encoder__"): encoding_specs = nest.map_structure( functools.partial(get_batchable_flat_tensor_specs, context_spec=context_spec), spec.__batch_encoder__.encoding_specs(spec)) return nest.flatten(encoding_specs) else: # TODO(edloper) Fix existing CompositeTensors that permit this, and # then turn this warning into an error. warnings.warn(f"Batchable type {context_spec} contains non-batchable " f"field or component with type {spec}.") return spec._flat_tensor_specs # pylint: disable=protected-access def batchable_to_tensor_list(spec, value, minimum_rank=0): """Returns a list of tensors encoding `value`, whose type is `spec`.""" if isinstance(spec, tensor_spec.TensorSpec): return [value] elif hasattr(spec, "__batch_encoder__"): encoded_value = spec.__batch_encoder__.encode(spec, value, minimum_rank) encoded_specs = spec.__batch_encoder__.encoding_specs(spec) encoded_flats = nest.map_structure( functools.partial(batchable_to_tensor_list, minimum_rank=minimum_rank), encoded_specs, encoded_value) return nest.flatten(encoded_flats) else: return spec._to_tensor_list(value) # pylint: disable=protected-access def batchable_from_tensor_list(spec, tensor_list): """Returns a value with type `spec` decoded from `tensor_list`.""" if isinstance(spec, tensor_spec.TensorSpec): assert len(tensor_list) == 1 return tensor_list[0] elif hasattr(spec, "__batch_encoder__"): encoded_specs = spec.__batch_encoder__.encoding_specs(spec) flat_specs = nest.map_structure(get_batchable_flat_tensor_specs, encoded_specs) encoded_flats = nest.pack_sequence_as(flat_specs, tensor_list) encoded_value = nest.map_structure_up_to( encoded_specs, batchable_from_tensor_list, encoded_specs, encoded_flats) return spec.__batch_encoder__.decode(spec, encoded_value) else: return spec._from_compatible_tensor_list(tensor_list) # pylint: disable=protected-access @tf_export("type_spec_from_value") def type_spec_from_value(value) -> TypeSpec: """Returns a `tf.TypeSpec` that represents the given `value`. Examples: >>> tf.type_spec_from_value(tf.constant([1, 2, 3])) TensorSpec(shape=(3,), dtype=tf.int32, name=None) >>> tf.type_spec_from_value(np.array([4.0, 5.0], np.float64)) TensorSpec(shape=(2,), dtype=tf.float64, name=None) >>> tf.type_spec_from_value(tf.ragged.constant([[1, 2], [3, 4, 5]])) RaggedTensorSpec(TensorShape([2, None]), tf.int32, 1, tf.int64) >>> example_input = tf.ragged.constant([[1, 2], [3]]) >>> @tf.function(input_signature=[tf.type_spec_from_value(example_input)]) ... def f(x): ... return tf.reduce_sum(x, axis=1) Args: value: A value that can be accepted or returned by TensorFlow APIs. Accepted types for `value` include `tf.Tensor`, any value that can be converted to `tf.Tensor` using `tf.convert_to_tensor`, and any subclass of `CompositeTensor` (such as `tf.RaggedTensor`). Returns: A `TypeSpec` that is compatible with `value`. Raises: TypeError: If a TypeSpec cannot be built for `value`, because its type is not supported. """ spec = _type_spec_from_value(value) if spec is not None: return spec # Fallback: try converting value to a tensor. try: tensor = ops.convert_to_tensor(value) spec = _type_spec_from_value(tensor) if spec is not None: return spec except (ValueError, TypeError) as e: logging.vlog( 3, "Failed to convert %r to tensor: %s" % (type(value).__name__, e)) raise TypeError(f"Could not build a TypeSpec for {value} of " f"unsupported type {type(value)}.") def _type_spec_from_value(value) -> TypeSpec: """Returns a `TypeSpec` that represents the given `value`.""" if isinstance(value, ops.Tensor): # Note: we do not include Tensor names when constructing TypeSpecs. return tensor_spec.TensorSpec(value.shape, value.dtype) if isinstance(value, composite_tensor.CompositeTensor): return value._type_spec # pylint: disable=protected-access # If `value` is a list and all of its elements can be represented by the same # batchable type spec, then we can represent the entire list using a single # type spec that captures the type accurately (unlike the `convert_to_tensor` # fallback). if isinstance(value, list) and value: subspecs = [_type_spec_from_value(v) for v in value] if isinstance(subspecs[0], BatchableTypeSpec): merged_subspec = subspecs[0] try: for subspec in subspecs[1:]: merged_subspec = merged_subspec.most_specific_compatible_type(subspec) return merged_subspec._batch(len(subspecs)) # pylint: disable=protected-access except (ValueError, TypeError): pass # incompatible subspecs for entry in reversed(_TYPE_CONVERSION_FUNCTION_REGISTRY): type_object, converter_fn, allow_subclass = entry if ((type(value) is type_object) or # pylint: disable=unidiomatic-typecheck (allow_subclass and isinstance(value, type_object))): return converter_fn(value) return None _TYPE_CONVERSION_FUNCTION_REGISTRY = [] def register_type_spec_from_value_converter(type_object, converter_fn, allow_subclass=False): """Registers a function for converting values with a given type to TypeSpecs. If multiple registered `type_object`s match a value, then the most recent registration takes precedence. Custom converters should not be defined for `CompositeTensor`s; use `CompositeTensor._type_spec` instead. Args: type_object: A Python `type` object representing the type of values accepted by `converter_fn`. converter_fn: A function that takes one argument (an instance of the type represented by `type_object`) and returns a `TypeSpec`. allow_subclass: If true, then use `isinstance(value, type_object)` to check for matches. If false, then use `type(value) is type_object`. """ _, type_object = tf_decorator.unwrap(type_object) _TYPE_CONVERSION_FUNCTION_REGISTRY.append( (type_object, converter_fn, allow_subclass)) _pywrap_utils.RegisterType("TypeSpec", TypeSpec) _TYPE_SPEC_TO_NAME = {} _NAME_TO_TYPE_SPEC = {} # Regular expression for valid TypeSpec names. _REGISTERED_NAME_RE = re.compile(r"^(\w+\.)+\w+$") # TODO(b/173744905) tf_export this as "tf.register_type_spec". (And add a # usage example to the docstring, once the API is public.) # # TODO(b/173744905) Update this decorator to apply to ExtensionType rather than # TypeSpec (once we do refactoring to move to_components/from_components from # TypeSpec to ExtensionType). def register(name): """Decorator used to register a globally unique name for a TypeSpec subclass. Args: name: The name of the type spec. Must be globally unique. Must have the form `"{project_name}.{type_name}"`. E.g. `"my_project.MyTypeSpec"`. Returns: A class decorator that registers the decorated class with the given name. """ if not isinstance(name, str): raise TypeError("Expected `name` to be a string; got %r" % (name,)) if not _REGISTERED_NAME_RE.match(name): raise ValueError( "Registered name must have the form '{project_name}.{type_name}' " "(e.g. 'my_project.MyTypeSpec'); got %r." % name) def decorator_fn(cls): if not (isinstance(cls, type) and issubclass(cls, TypeSpec)): raise TypeError("Expected `cls` to be a TypeSpec; got %r" % (cls,)) if cls in _TYPE_SPEC_TO_NAME: raise ValueError("Class %s.%s has already been registered with name %s." % (cls.__module__, cls.__name__, _TYPE_SPEC_TO_NAME[cls])) if name in _NAME_TO_TYPE_SPEC: raise ValueError("Name %s has already been registered for class %s.%s." % (name, _NAME_TO_TYPE_SPEC[name].__module__, _NAME_TO_TYPE_SPEC[name].__name__)) _TYPE_SPEC_TO_NAME[cls] = name _NAME_TO_TYPE_SPEC[name] = cls return cls return decorator_fn # TODO(edloper) tf_export this as "tf.get_type_spec_name" (or some similar name) def get_name(cls): """Returns the registered name for TypeSpec `cls`.""" if not (isinstance(cls, type) and issubclass(cls, TypeSpec)): raise TypeError("Expected `cls` to be a TypeSpec; got %r" % (cls,)) if cls not in _TYPE_SPEC_TO_NAME: raise ValueError("TypeSpec %s.%s has not been registered." % (cls.__module__, cls.__name__)) return _TYPE_SPEC_TO_NAME[cls] # TODO(edloper) tf_export this as "tf.lookup_type_spec" (or some similar name) def lookup(name): """Returns the TypeSpec that has been registered with name `name`.""" if not isinstance(name, str): raise TypeError("Expected `name` to be a string; got %r" % (name,)) if name not in _NAME_TO_TYPE_SPEC: raise ValueError("No TypeSpec has been registered with name %r" % (name,)) return _NAME_TO_TYPE_SPEC[name]
39.34991
114
0.691505
7950e31c6c57cdca61de8e44feaba28cdb00dc0a
10,409
py
Python
vspk/v4_0/nuvcentereamconfig.py
cldelcourt/vspk-python
cdea810cd220e6ddc131407735941b9a26b2edda
[ "BSD-3-Clause" ]
null
null
null
vspk/v4_0/nuvcentereamconfig.py
cldelcourt/vspk-python
cdea810cd220e6ddc131407735941b9a26b2edda
[ "BSD-3-Clause" ]
null
null
null
vspk/v4_0/nuvcentereamconfig.py
cldelcourt/vspk-python
cdea810cd220e6ddc131407735941b9a26b2edda
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (c) 2015, Alcatel-Lucent Inc # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .fetchers import NUGlobalMetadatasFetcher from .fetchers import NUMetadatasFetcher from bambou import NURESTObject class NUVCenterEAMConfig(NURESTObject): """ Represents a VCenterEAMConfig in the VSD Notes: The EAM solution configuration. """ __rest_name__ = "eamconfig" __resource_name__ = "eamconfigs" ## Constants CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL" CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE" def __init__(self, **kwargs): """ Initializes a VCenterEAMConfig instance Notes: You can specify all parameters while calling this methods. A special argument named `data` will enable you to load the object from a Python dictionary Examples: >>> vcentereamconfig = NUVCenterEAMConfig(id=u'xxxx-xxx-xxx-xxx', name=u'VCenterEAMConfig') >>> vcentereamconfig = NUVCenterEAMConfig(data=my_dict) """ super(NUVCenterEAMConfig, self).__init__() # Read/Write Attributes self._eam_server_ip = None self._eam_server_port_number = None self._eam_server_port_type = None self._entity_scope = None self._extension_key = None self._external_id = None self._last_updated_by = None self._ovf_url = None self._vib_url = None self.expose_attribute(local_name="eam_server_ip", remote_name="eamServerIP", attribute_type=str, is_required=True, is_unique=False) self.expose_attribute(local_name="eam_server_port_number", remote_name="eamServerPortNumber", attribute_type=int, is_required=True, is_unique=False) self.expose_attribute(local_name="eam_server_port_type", remote_name="eamServerPortType", attribute_type=str, is_required=True, is_unique=False) self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL']) self.expose_attribute(local_name="extension_key", remote_name="extensionKey", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True) self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="ovf_url", remote_name="ovfURL", attribute_type=str, is_required=True, is_unique=False) self.expose_attribute(local_name="vib_url", remote_name="vibURL", attribute_type=str, is_required=False, is_unique=False) # Fetchers self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self._compute_args(**kwargs) # Properties @property def eam_server_ip(self): """ Get eam_server_ip value. Notes: The EAM server IP This attribute is named `eamServerIP` in VSD API. """ return self._eam_server_ip @eam_server_ip.setter def eam_server_ip(self, value): """ Set eam_server_ip value. Notes: The EAM server IP This attribute is named `eamServerIP` in VSD API. """ self._eam_server_ip = value @property def eam_server_port_number(self): """ Get eam_server_port_number value. Notes: The EAM server port number This attribute is named `eamServerPortNumber` in VSD API. """ return self._eam_server_port_number @eam_server_port_number.setter def eam_server_port_number(self, value): """ Set eam_server_port_number value. Notes: The EAM server port number This attribute is named `eamServerPortNumber` in VSD API. """ self._eam_server_port_number = value @property def eam_server_port_type(self): """ Get eam_server_port_type value. Notes: The EAM server port Type This attribute is named `eamServerPortType` in VSD API. """ return self._eam_server_port_type @eam_server_port_type.setter def eam_server_port_type(self, value): """ Set eam_server_port_type value. Notes: The EAM server port Type This attribute is named `eamServerPortType` in VSD API. """ self._eam_server_port_type = value @property def entity_scope(self): """ Get entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ return self._entity_scope @entity_scope.setter def entity_scope(self, value): """ Set entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ self._entity_scope = value @property def extension_key(self): """ Get extension_key value. Notes: Key of the extension that the solution registers This attribute is named `extensionKey` in VSD API. """ return self._extension_key @extension_key.setter def extension_key(self, value): """ Set extension_key value. Notes: Key of the extension that the solution registers This attribute is named `extensionKey` in VSD API. """ self._extension_key = value @property def external_id(self): """ Get external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ return self._external_id @external_id.setter def external_id(self, value): """ Set external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ self._external_id = value @property def last_updated_by(self): """ Get last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ return self._last_updated_by @last_updated_by.setter def last_updated_by(self, value): """ Set last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ self._last_updated_by = value @property def ovf_url(self): """ Get ovf_url value. Notes: The url for the ovf This attribute is named `ovfURL` in VSD API. """ return self._ovf_url @ovf_url.setter def ovf_url(self, value): """ Set ovf_url value. Notes: The url for the ovf This attribute is named `ovfURL` in VSD API. """ self._ovf_url = value @property def vib_url(self): """ Get vib_url value. Notes: The url for the optional vib This attribute is named `vibURL` in VSD API. """ return self._vib_url @vib_url.setter def vib_url(self, value): """ Set vib_url value. Notes: The url for the optional vib This attribute is named `vibURL` in VSD API. """ self._vib_url = value
29.571023
175
0.596311
7950e4f9722b8b2924e216c80cad1587fcfc60d2
7,691
py
Python
docs/conf.py
julienmendes/corona
25b085090df1c0a6f415be96fb21bcf1373c230d
[ "MIT" ]
null
null
null
docs/conf.py
julienmendes/corona
25b085090df1c0a6f415be96fb21bcf1373c230d
[ "MIT" ]
null
null
null
docs/conf.py
julienmendes/corona
25b085090df1c0a6f415be96fb21bcf1373c230d
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # corona documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'corona' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'coronadoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'corona.tex', u'corona Documentation', u"JM", 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'corona', u'corona Documentation', [u"JM"], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'corona', u'corona Documentation', u"JM", 'corona', 'coronavirus', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
31.391837
80
0.70472
7950e50045c40383a6db8405526dcd960304ab3f
598
py
Python
Application/ReclamaCaicoProject/ReclamaCaicoApp/migrations/0010_comentario_user.py
WesleyVitor/ReclamaCaico
df67997821fc00236f1d9c77e8685ed8e4a6934b
[ "MIT" ]
null
null
null
Application/ReclamaCaicoProject/ReclamaCaicoApp/migrations/0010_comentario_user.py
WesleyVitor/ReclamaCaico
df67997821fc00236f1d9c77e8685ed8e4a6934b
[ "MIT" ]
null
null
null
Application/ReclamaCaicoProject/ReclamaCaicoApp/migrations/0010_comentario_user.py
WesleyVitor/ReclamaCaico
df67997821fc00236f1d9c77e8685ed8e4a6934b
[ "MIT" ]
null
null
null
# Generated by Django 2.2.2 on 2019-09-07 14:36 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('ReclamaCaicoApp', '0009_auto_20190907_1132'), ] operations = [ migrations.AddField( model_name='comentario', name='user', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), ]
27.181818
121
0.682274
7950e5a8ce8111b5af259667b7e8d572addd1c07
1,485
py
Python
Incident-Response/Tools/Loki/loki-package-builder.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
1
2021-07-24T17:22:50.000Z
2021-07-24T17:22:50.000Z
Incident-Response/Tools/Loki/loki-package-builder.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-28T03:40:31.000Z
2022-02-28T03:40:52.000Z
Incident-Response/Tools/Loki/loki-package-builder.py
sn0b4ll/Incident-Playbook
cf519f58fcd4255674662b3620ea97c1091c1efb
[ "MIT" ]
2
2022-02-25T08:34:51.000Z
2022-03-16T17:29:44.000Z
import sys import argparse import io from lib.privrules import * def parse_arguments(): parser = argparse.ArgumentParser(description='Package builder for Loki') parser.add_argument('--ruledir', help='directory containing the rules to build into Loki', required=True) parser.add_argument('--target', help='target where to store the compiled ruleset', required=True) return parser.parse_args() def main(): args = parse_arguments() rules = read_rules_from_dir(args.ruledir) # stop if no private rules were found if rules == None: return buffer = io.BytesIO() rules.save(file=buffer) serialized_rules = buffer.getvalue() serialized_rules_compressed = compress(serialized_rules) rsakey = generate_RSA_key(RSA_KEY_SIZE) rsa_cipher = get_cipher_RSA_PKCS1_OAEP(rsakey.publickey()) aes_iv = Random.new().read(AES.block_size) aeskey = generate_AES_key(32) aes_cipher = get_cipher_AES(aeskey, aes_iv) encrypted_rules = encrypt(serialized_rules_compressed, aes_cipher) encrypted_rules = aes_iv + encrypted_rules encrypted_aes_key = encrypt(aeskey, rsa_cipher) encrypted_rules = encrypted_aes_key + encrypted_rules with open(args.target, "wb") as f: f.write(str(encrypted_rules)) n = export_RSA_key(rsakey, "%s.key" % args.target) if decrypt_rules(args.target) == None: print("unable to decrypt package") sys.exit(-1) if __name__ == "__main__": main()
31.595745
109
0.713805
7950e5b8306e665c63e9ed17dec883e394ece72b
234,804
py
Python
venv/Lib/site-packages/matplotlib/tests/test_axes.py
amelliaaas/tugastkc4
f442382c72379e911f3780543b95345a3b1c9407
[ "Apache-2.0" ]
7
2021-09-20T19:23:05.000Z
2022-01-22T13:28:01.000Z
venv/Lib/site-packages/matplotlib/tests/test_axes.py
amelliaaas/tugastkc4
f442382c72379e911f3780543b95345a3b1c9407
[ "Apache-2.0" ]
null
null
null
venv/Lib/site-packages/matplotlib/tests/test_axes.py
amelliaaas/tugastkc4
f442382c72379e911f3780543b95345a3b1c9407
[ "Apache-2.0" ]
20
2021-11-07T13:55:56.000Z
2021-12-02T10:54:01.000Z
from collections import namedtuple import datetime from decimal import Decimal import io from itertools import product import platform from types import SimpleNamespace try: from contextlib import nullcontext except ImportError: from contextlib import ExitStack as nullcontext # Py3.6. import dateutil.tz import numpy as np from numpy import ma from cycler import cycler import pytest import matplotlib import matplotlib as mpl from matplotlib.testing.decorators import ( image_comparison, check_figures_equal, remove_ticks_and_titles) import matplotlib.colors as mcolors import matplotlib.dates as mdates from matplotlib.figure import Figure import matplotlib.font_manager as mfont_manager import matplotlib.markers as mmarkers import matplotlib.patches as mpatches import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms from numpy.testing import ( assert_allclose, assert_array_equal, assert_array_almost_equal) from matplotlib import rc_context from matplotlib.cbook import MatplotlibDeprecationWarning # Note: Some test cases are run twice: once normally and once with labeled data # These two must be defined in the same test function or need to have # different baseline images to prevent race conditions when pytest runs # the tests with multiple threads. def test_get_labels(): fig, ax = plt.subplots() ax.set_xlabel('x label') ax.set_ylabel('y label') assert ax.get_xlabel() == 'x label' assert ax.get_ylabel() == 'y label' @check_figures_equal() def test_label_loc_vertical(fig_test, fig_ref): ax = fig_test.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2], label='scatter') ax.legend() ax.set_ylabel('Y Label', loc='top') ax.set_xlabel('X Label', loc='right') cbar = fig_test.colorbar(sc) cbar.set_label("Z Label", loc='top') ax = fig_ref.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2], label='scatter') ax.legend() ax.set_ylabel('Y Label', y=1, ha='right') ax.set_xlabel('X Label', x=1, ha='right') cbar = fig_ref.colorbar(sc) cbar.set_label("Z Label", y=1, ha='right') @check_figures_equal() def test_label_loc_horizontal(fig_test, fig_ref): ax = fig_test.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2], label='scatter') ax.legend() ax.set_ylabel('Y Label', loc='bottom') ax.set_xlabel('X Label', loc='left') cbar = fig_test.colorbar(sc, orientation='horizontal') cbar.set_label("Z Label", loc='left') ax = fig_ref.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2], label='scatter') ax.legend() ax.set_ylabel('Y Label', y=0, ha='left') ax.set_xlabel('X Label', x=0, ha='left') cbar = fig_ref.colorbar(sc, orientation='horizontal') cbar.set_label("Z Label", x=0, ha='left') @check_figures_equal() def test_label_loc_rc(fig_test, fig_ref): with matplotlib.rc_context({"xaxis.labellocation": "right", "yaxis.labellocation": "top"}): ax = fig_test.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2], label='scatter') ax.legend() ax.set_ylabel('Y Label') ax.set_xlabel('X Label') cbar = fig_test.colorbar(sc, orientation='horizontal') cbar.set_label("Z Label") ax = fig_ref.subplots() sc = ax.scatter([1, 2], [1, 2], c=[1, 2], label='scatter') ax.legend() ax.set_ylabel('Y Label', y=1, ha='right') ax.set_xlabel('X Label', x=1, ha='right') cbar = fig_ref.colorbar(sc, orientation='horizontal') cbar.set_label("Z Label", x=1, ha='right') @check_figures_equal(extensions=["png"]) def test_acorr(fig_test, fig_ref): np.random.seed(19680801) Nx = 512 x = np.random.normal(0, 1, Nx).cumsum() maxlags = Nx-1 ax_test = fig_test.subplots() ax_test.acorr(x, maxlags=maxlags) ax_ref = fig_ref.subplots() # Normalized autocorrelation norm_auto_corr = np.correlate(x, x, mode="full")/np.dot(x, x) lags = np.arange(-maxlags, maxlags+1) norm_auto_corr = norm_auto_corr[Nx-1-maxlags:Nx+maxlags] ax_ref.vlines(lags, [0], norm_auto_corr) ax_ref.axhline(y=0, xmin=0, xmax=1) @check_figures_equal(extensions=["png"]) def test_spy(fig_test, fig_ref): np.random.seed(19680801) a = np.ones(32 * 32) a[:16 * 32] = 0 np.random.shuffle(a) a = a.reshape((32, 32)) axs_test = fig_test.subplots(2) axs_test[0].spy(a) axs_test[1].spy(a, marker=".", origin="lower") axs_ref = fig_ref.subplots(2) axs_ref[0].imshow(a, cmap="gray_r", interpolation="nearest") axs_ref[0].xaxis.tick_top() axs_ref[1].plot(*np.nonzero(a)[::-1], ".", markersize=10) axs_ref[1].set( aspect=1, xlim=axs_ref[0].get_xlim(), ylim=axs_ref[0].get_ylim()[::-1]) for ax in axs_ref: ax.xaxis.set_ticks_position("both") def test_spy_invalid_kwargs(): fig, ax = plt.subplots() for unsupported_kw in [{'interpolation': 'nearest'}, {'marker': 'o', 'linestyle': 'solid'}]: with pytest.raises(TypeError): ax.spy(np.eye(3, 3), **unsupported_kw) @check_figures_equal(extensions=["png"]) def test_matshow(fig_test, fig_ref): mpl.style.use("mpl20") a = np.random.rand(32, 32) fig_test.add_subplot().matshow(a) ax_ref = fig_ref.add_subplot() ax_ref.imshow(a) ax_ref.xaxis.tick_top() ax_ref.xaxis.set_ticks_position('both') @image_comparison(['formatter_ticker_001', 'formatter_ticker_002', 'formatter_ticker_003', 'formatter_ticker_004', 'formatter_ticker_005', ]) def test_formatter_ticker(): import matplotlib.testing.jpl_units as units units.register() # This should affect the tick size. (Tests issue #543) matplotlib.rcParams['lines.markeredgewidth'] = 30 # This essentially test to see if user specified labels get overwritten # by the auto labeler functionality of the axes. xdata = [x*units.sec for x in range(10)] ydata1 = [(1.5*y - 0.5)*units.km for y in range(10)] ydata2 = [(1.75*y - 1.0)*units.km for y in range(10)] ax = plt.figure().subplots() ax.set_xlabel("x-label 001") ax = plt.figure().subplots() ax.set_xlabel("x-label 001") ax.plot(xdata, ydata1, color='blue', xunits="sec") ax = plt.figure().subplots() ax.set_xlabel("x-label 001") ax.plot(xdata, ydata1, color='blue', xunits="sec") ax.set_xlabel("x-label 003") ax = plt.figure().subplots() ax.plot(xdata, ydata1, color='blue', xunits="sec") ax.plot(xdata, ydata2, color='green', xunits="hour") ax.set_xlabel("x-label 004") # See SF bug 2846058 # https://sourceforge.net/tracker/?func=detail&aid=2846058&group_id=80706&atid=560720 ax = plt.figure().subplots() ax.plot(xdata, ydata1, color='blue', xunits="sec") ax.plot(xdata, ydata2, color='green', xunits="hour") ax.set_xlabel("x-label 005") ax.autoscale_view() def test_funcformatter_auto_formatter(): def _formfunc(x, pos): return '' ax = plt.figure().subplots() assert ax.xaxis.isDefault_majfmt assert ax.xaxis.isDefault_minfmt assert ax.yaxis.isDefault_majfmt assert ax.yaxis.isDefault_minfmt ax.xaxis.set_major_formatter(_formfunc) assert not ax.xaxis.isDefault_majfmt assert ax.xaxis.isDefault_minfmt assert ax.yaxis.isDefault_majfmt assert ax.yaxis.isDefault_minfmt targ_funcformatter = mticker.FuncFormatter(_formfunc) assert isinstance(ax.xaxis.get_major_formatter(), mticker.FuncFormatter) assert ax.xaxis.get_major_formatter().func == targ_funcformatter.func def test_strmethodformatter_auto_formatter(): formstr = '{x}_{pos}' ax = plt.figure().subplots() assert ax.xaxis.isDefault_majfmt assert ax.xaxis.isDefault_minfmt assert ax.yaxis.isDefault_majfmt assert ax.yaxis.isDefault_minfmt ax.yaxis.set_minor_formatter(formstr) assert ax.xaxis.isDefault_majfmt assert ax.xaxis.isDefault_minfmt assert ax.yaxis.isDefault_majfmt assert not ax.yaxis.isDefault_minfmt targ_strformatter = mticker.StrMethodFormatter(formstr) assert isinstance(ax.yaxis.get_minor_formatter(), mticker.StrMethodFormatter) assert ax.yaxis.get_minor_formatter().fmt == targ_strformatter.fmt @image_comparison(["twin_axis_locators_formatters"]) def test_twin_axis_locators_formatters(): vals = np.linspace(0, 1, num=5, endpoint=True) locs = np.sin(np.pi * vals / 2.0) majl = plt.FixedLocator(locs) minl = plt.FixedLocator([0.1, 0.2, 0.3]) fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) ax1.plot([0.1, 100], [0, 1]) ax1.yaxis.set_major_locator(majl) ax1.yaxis.set_minor_locator(minl) ax1.yaxis.set_major_formatter(plt.FormatStrFormatter('%08.2lf')) ax1.yaxis.set_minor_formatter(plt.FixedFormatter(['tricks', 'mind', 'jedi'])) ax1.xaxis.set_major_locator(plt.LinearLocator()) ax1.xaxis.set_minor_locator(plt.FixedLocator([15, 35, 55, 75])) ax1.xaxis.set_major_formatter(plt.FormatStrFormatter('%05.2lf')) ax1.xaxis.set_minor_formatter(plt.FixedFormatter(['c', '3', 'p', 'o'])) ax1.twiny() ax1.twinx() def test_twinx_cla(): fig, ax = plt.subplots() ax2 = ax.twinx() ax3 = ax2.twiny() plt.draw() assert not ax2.xaxis.get_visible() assert not ax2.patch.get_visible() ax2.cla() ax3.cla() assert not ax2.xaxis.get_visible() assert not ax2.patch.get_visible() assert ax2.yaxis.get_visible() assert ax3.xaxis.get_visible() assert not ax3.patch.get_visible() assert not ax3.yaxis.get_visible() assert ax.xaxis.get_visible() assert ax.patch.get_visible() assert ax.yaxis.get_visible() @pytest.mark.parametrize('twin', ('x', 'y')) @check_figures_equal(extensions=['png'], tol=0.19) def test_twin_logscale(fig_test, fig_ref, twin): twin_func = f'twin{twin}' # test twinx or twiny set_scale = f'set_{twin}scale' x = np.arange(1, 100) # Change scale after twinning. ax_test = fig_test.add_subplot(2, 1, 1) ax_twin = getattr(ax_test, twin_func)() getattr(ax_test, set_scale)('log') ax_twin.plot(x, x) # Twin after changing scale. ax_test = fig_test.add_subplot(2, 1, 2) getattr(ax_test, set_scale)('log') ax_twin = getattr(ax_test, twin_func)() ax_twin.plot(x, x) for i in [1, 2]: ax_ref = fig_ref.add_subplot(2, 1, i) getattr(ax_ref, set_scale)('log') ax_ref.plot(x, x) # This is a hack because twinned Axes double-draw the frame. # Remove this when that is fixed. Path = matplotlib.path.Path fig_ref.add_artist( matplotlib.patches.PathPatch( Path([[0, 0], [0, 1], [0, 1], [1, 1], [1, 1], [1, 0], [1, 0], [0, 0]], [Path.MOVETO, Path.LINETO] * 4), transform=ax_ref.transAxes, facecolor='none', edgecolor=mpl.rcParams['axes.edgecolor'], linewidth=mpl.rcParams['axes.linewidth'], capstyle='projecting')) remove_ticks_and_titles(fig_test) remove_ticks_and_titles(fig_ref) @image_comparison(['twin_autoscale.png']) def test_twinx_axis_scales(): x = np.array([0, 0.5, 1]) y = 0.5 * x x2 = np.array([0, 1, 2]) y2 = 2 * x2 fig = plt.figure() ax = fig.add_axes((0, 0, 1, 1), autoscalex_on=False, autoscaley_on=False) ax.plot(x, y, color='blue', lw=10) ax2 = plt.twinx(ax) ax2.plot(x2, y2, 'r--', lw=5) ax.margins(0, 0) ax2.margins(0, 0) def test_twin_inherit_autoscale_setting(): fig, ax = plt.subplots() ax_x_on = ax.twinx() ax.set_autoscalex_on(False) ax_x_off = ax.twinx() assert ax_x_on.get_autoscalex_on() assert not ax_x_off.get_autoscalex_on() ax_y_on = ax.twiny() ax.set_autoscaley_on(False) ax_y_off = ax.twiny() assert ax_y_on.get_autoscaley_on() assert not ax_y_off.get_autoscaley_on() def test_inverted_cla(): # GitHub PR #5450. Setting autoscale should reset # axes to be non-inverted. # plotting an image, then 1d graph, axis is now down fig = plt.figure(0) ax = fig.gca() # 1. test that a new axis is not inverted per default assert not ax.xaxis_inverted() assert not ax.yaxis_inverted() img = np.random.random((100, 100)) ax.imshow(img) # 2. test that a image axis is inverted assert not ax.xaxis_inverted() assert ax.yaxis_inverted() # 3. test that clearing and plotting a line, axes are # not inverted ax.cla() x = np.linspace(0, 2*np.pi, 100) ax.plot(x, np.cos(x)) assert not ax.xaxis_inverted() assert not ax.yaxis_inverted() # 4. autoscaling should not bring back axes to normal ax.cla() ax.imshow(img) plt.autoscale() assert not ax.xaxis_inverted() assert ax.yaxis_inverted() # 5. two shared axes. Inverting the master axis should invert the shared # axes; clearing the master axis should bring axes in shared # axes back to normal. ax0 = plt.subplot(211) ax1 = plt.subplot(212, sharey=ax0) ax0.yaxis.set_inverted(True) assert ax1.yaxis_inverted() ax1.plot(x, np.cos(x)) ax0.cla() assert not ax1.yaxis_inverted() ax1.cla() # 6. clearing the nonmaster should not touch limits ax0.imshow(img) ax1.plot(x, np.cos(x)) ax1.cla() assert ax.yaxis_inverted() # clean up plt.close(fig) @check_figures_equal(extensions=["png"]) def test_minorticks_on_rcParams_both(fig_test, fig_ref): with matplotlib.rc_context({"xtick.minor.visible": True, "ytick.minor.visible": True}): ax_test = fig_test.subplots() ax_test.plot([0, 1], [0, 1]) ax_ref = fig_ref.subplots() ax_ref.plot([0, 1], [0, 1]) ax_ref.minorticks_on() @image_comparison(["autoscale_tiny_range"], remove_text=True) def test_autoscale_tiny_range(): # github pull #904 fig, axs = plt.subplots(2, 2) for i, ax in enumerate(axs.flat): y1 = 10**(-11 - i) ax.plot([0, 1], [1, 1 + y1]) @pytest.mark.style('default') def test_autoscale_tight(): fig, ax = plt.subplots(1, 1) ax.plot([1, 2, 3, 4]) ax.autoscale(enable=True, axis='x', tight=False) ax.autoscale(enable=True, axis='y', tight=True) assert_allclose(ax.get_xlim(), (-0.15, 3.15)) assert_allclose(ax.get_ylim(), (1.0, 4.0)) @pytest.mark.style('default') def test_autoscale_log_shared(): # related to github #7587 # array starts at zero to trigger _minpos handling x = np.arange(100, dtype=float) fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) ax1.loglog(x, x) ax2.semilogx(x, x) ax1.autoscale(tight=True) ax2.autoscale(tight=True) plt.draw() lims = (x[1], x[-1]) assert_allclose(ax1.get_xlim(), lims) assert_allclose(ax1.get_ylim(), lims) assert_allclose(ax2.get_xlim(), lims) assert_allclose(ax2.get_ylim(), (x[0], x[-1])) @pytest.mark.style('default') def test_use_sticky_edges(): fig, ax = plt.subplots() ax.imshow([[0, 1], [2, 3]], origin='lower') assert_allclose(ax.get_xlim(), (-0.5, 1.5)) assert_allclose(ax.get_ylim(), (-0.5, 1.5)) ax.use_sticky_edges = False ax.autoscale() xlim = (-0.5 - 2 * ax._xmargin, 1.5 + 2 * ax._xmargin) ylim = (-0.5 - 2 * ax._ymargin, 1.5 + 2 * ax._ymargin) assert_allclose(ax.get_xlim(), xlim) assert_allclose(ax.get_ylim(), ylim) # Make sure it is reversible: ax.use_sticky_edges = True ax.autoscale() assert_allclose(ax.get_xlim(), (-0.5, 1.5)) assert_allclose(ax.get_ylim(), (-0.5, 1.5)) @check_figures_equal(extensions=["png"]) def test_sticky_shared_axes(fig_test, fig_ref): # Check that sticky edges work whether they are set in an axes that is a # "master" in a share, or an axes that is a "follower". Z = np.arange(15).reshape(3, 5) ax0 = fig_test.add_subplot(211) ax1 = fig_test.add_subplot(212, sharex=ax0) ax1.pcolormesh(Z) ax0 = fig_ref.add_subplot(212) ax1 = fig_ref.add_subplot(211, sharex=ax0) ax0.pcolormesh(Z) @image_comparison(['offset_points'], remove_text=True) def test_basic_annotate(): # Setup some data t = np.arange(0.0, 5.0, 0.01) s = np.cos(2.0*np.pi * t) # Offset Points fig = plt.figure() ax = fig.add_subplot(autoscale_on=False, xlim=(-1, 5), ylim=(-3, 5)) line, = ax.plot(t, s, lw=3, color='purple') ax.annotate('local max', xy=(3, 1), xycoords='data', xytext=(3, 3), textcoords='offset points') def test_annotate_parameter_warn(): fig, ax = plt.subplots() with pytest.warns(MatplotlibDeprecationWarning, match=r"The \'s\' parameter of annotate\(\) " "has been renamed \'text\'"): ax.annotate(s='now named text', xy=(0, 1)) @image_comparison(['arrow_simple.png'], remove_text=True) def test_arrow_simple(): # Simple image test for ax.arrow # kwargs that take discrete values length_includes_head = (True, False) shape = ('full', 'left', 'right') head_starts_at_zero = (True, False) # Create outer product of values kwargs = product(length_includes_head, shape, head_starts_at_zero) fig, axs = plt.subplots(3, 4) for i, (ax, kwarg) in enumerate(zip(axs.flat, kwargs)): ax.set_xlim(-2, 2) ax.set_ylim(-2, 2) # Unpack kwargs (length_includes_head, shape, head_starts_at_zero) = kwarg theta = 2 * np.pi * i / 12 # Draw arrow ax.arrow(0, 0, np.sin(theta), np.cos(theta), width=theta/100, length_includes_head=length_includes_head, shape=shape, head_starts_at_zero=head_starts_at_zero, head_width=theta / 10, head_length=theta / 10) def test_arrow_empty(): _, ax = plt.subplots() # Create an empty FancyArrow ax.arrow(0, 0, 0, 0, head_length=0) def test_arrow_in_view(): _, ax = plt.subplots() ax.arrow(1, 1, 1, 1) assert ax.get_xlim() == (0.8, 2.2) assert ax.get_ylim() == (0.8, 2.2) def test_annotate_default_arrow(): # Check that we can make an annotation arrow with only default properties. fig, ax = plt.subplots() ann = ax.annotate("foo", (0, 1), xytext=(2, 3)) assert ann.arrow_patch is None ann = ax.annotate("foo", (0, 1), xytext=(2, 3), arrowprops={}) assert ann.arrow_patch is not None @image_comparison(['fill_units.png'], savefig_kwarg={'dpi': 60}) def test_fill_units(): import matplotlib.testing.jpl_units as units units.register() # generate some data t = units.Epoch("ET", dt=datetime.datetime(2009, 4, 27)) value = 10.0 * units.deg day = units.Duration("ET", 24.0 * 60.0 * 60.0) dt = np.arange('2009-04-27', '2009-04-29', dtype='datetime64[D]') dtn = mdates.date2num(dt) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) ax1.plot([t], [value], yunits='deg', color='red') ind = [0, 0, 1, 1] ax1.fill(dtn[ind], [0.0, 0.0, 90.0, 0.0], 'b') ax2.plot([t], [value], yunits='deg', color='red') ax2.fill([t, t, t + day, t + day], [0.0, 0.0, 90.0, 0.0], 'b') ax3.plot([t], [value], yunits='deg', color='red') ax3.fill(dtn[ind], [0 * units.deg, 0 * units.deg, 90 * units.deg, 0 * units.deg], 'b') ax4.plot([t], [value], yunits='deg', color='red') ax4.fill([t, t, t + day, t + day], [0 * units.deg, 0 * units.deg, 90 * units.deg, 0 * units.deg], facecolor="blue") fig.autofmt_xdate() def test_plot_format_kwarg_redundant(): with pytest.warns(UserWarning, match="marker .* redundantly defined"): plt.plot([0], [0], 'o', marker='x') with pytest.warns(UserWarning, match="linestyle .* redundantly defined"): plt.plot([0], [0], '-', linestyle='--') with pytest.warns(UserWarning, match="color .* redundantly defined"): plt.plot([0], [0], 'r', color='blue') # smoke-test: should not warn plt.errorbar([0], [0], fmt='none', color='blue') @image_comparison(['single_point', 'single_point']) def test_single_point(): # Issue #1796: don't let lines.marker affect the grid matplotlib.rcParams['lines.marker'] = 'o' matplotlib.rcParams['axes.grid'] = True fig, (ax1, ax2) = plt.subplots(2) ax1.plot([0], [0], 'o') ax2.plot([1], [1], 'o') # Reuse testcase from above for a labeled data test data = {'a': [0], 'b': [1]} fig, (ax1, ax2) = plt.subplots(2) ax1.plot('a', 'a', 'o', data=data) ax2.plot('b', 'b', 'o', data=data) @image_comparison(['single_date.png'], style='mpl20') def test_single_date(): # use former defaults to match existing baseline image plt.rcParams['axes.formatter.limits'] = -7, 7 dt = mdates.date2num(np.datetime64('0000-12-31')) time1 = [721964.0] data1 = [-65.54] fig, ax = plt.subplots(2, 1) ax[0].plot_date(time1 + dt, data1, 'o', color='r') ax[1].plot(time1, data1, 'o', color='r') @check_figures_equal(extensions=["png"]) def test_shaped_data(fig_test, fig_ref): row = np.arange(10).reshape((1, -1)) col = np.arange(0, 100, 10).reshape((-1, 1)) axs = fig_test.subplots(2) axs[0].plot(row) # Actually plots nothing (columns are single points). axs[1].plot(col) # Same as plotting 1d. axs = fig_ref.subplots(2) # xlim from the implicit "x=0", ylim from the row datalim. axs[0].set(xlim=(-.06, .06), ylim=(0, 9)) axs[1].plot(col.ravel()) def test_structured_data(): # support for structured data pts = np.array([(1, 1), (2, 2)], dtype=[("ones", float), ("twos", float)]) # this should not read second name as a format and raise ValueError axs = plt.figure().subplots(2) axs[0].plot("ones", "twos", data=pts) axs[1].plot("ones", "twos", "r", data=pts) @image_comparison(['aitoff_proj'], extensions=["png"], remove_text=True, style='mpl20') def test_aitoff_proj(): """ Test aitoff projection ref.: https://github.com/matplotlib/matplotlib/pull/14451 """ x = np.linspace(-np.pi, np.pi, 20) y = np.linspace(-np.pi / 2, np.pi / 2, 20) X, Y = np.meshgrid(x, y) fig, ax = plt.subplots(figsize=(8, 4.2), subplot_kw=dict(projection="aitoff")) ax.grid() ax.plot(X.flat, Y.flat, 'o', markersize=4) @image_comparison(['axvspan_epoch']) def test_axvspan_epoch(): import matplotlib.testing.jpl_units as units units.register() # generate some data t0 = units.Epoch("ET", dt=datetime.datetime(2009, 1, 20)) tf = units.Epoch("ET", dt=datetime.datetime(2009, 1, 21)) dt = units.Duration("ET", units.day.convert("sec")) ax = plt.gca() ax.axvspan(t0, tf, facecolor="blue", alpha=0.25) ax.set_xlim(t0 - 5.0*dt, tf + 5.0*dt) @image_comparison(['axhspan_epoch'], tol=0.02) def test_axhspan_epoch(): import matplotlib.testing.jpl_units as units units.register() # generate some data t0 = units.Epoch("ET", dt=datetime.datetime(2009, 1, 20)) tf = units.Epoch("ET", dt=datetime.datetime(2009, 1, 21)) dt = units.Duration("ET", units.day.convert("sec")) ax = plt.gca() ax.axhspan(t0, tf, facecolor="blue", alpha=0.25) ax.set_ylim(t0 - 5.0*dt, tf + 5.0*dt) @image_comparison(['hexbin_extent.png', 'hexbin_extent.png'], remove_text=True) def test_hexbin_extent(): # this test exposes sf bug 2856228 fig, ax = plt.subplots() data = (np.arange(2000) / 2000).reshape((2, 1000)) x, y = data ax.hexbin(x, y, extent=[.1, .3, .6, .7]) # Reuse testcase from above for a labeled data test data = {"x": x, "y": y} fig, ax = plt.subplots() ax.hexbin("x", "y", extent=[.1, .3, .6, .7], data=data) @image_comparison(['hexbin_empty.png'], remove_text=True) def test_hexbin_empty(): # From #3886: creating hexbin from empty dataset raises ValueError ax = plt.gca() ax.hexbin([], []) def test_hexbin_pickable(): # From #1973: Test that picking a hexbin collection works fig, ax = plt.subplots() data = (np.arange(200) / 200).reshape((2, 100)) x, y = data hb = ax.hexbin(x, y, extent=[.1, .3, .6, .7], picker=-1) mouse_event = SimpleNamespace(x=400, y=300) assert hb.contains(mouse_event)[0] @image_comparison(['hexbin_log.png'], style='mpl20') def test_hexbin_log(): # Issue #1636 (and also test log scaled colorbar) # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False np.random.seed(19680801) n = 100000 x = np.random.standard_normal(n) y = 2.0 + 3.0 * x + 4.0 * np.random.standard_normal(n) y = np.power(2, y * 0.5) fig, ax = plt.subplots() h = ax.hexbin(x, y, yscale='log', bins='log') plt.colorbar(h) def test_inverted_limits(): # Test gh:1553 # Calling invert_xaxis prior to plotting should not disable autoscaling # while still maintaining the inverted direction fig, ax = plt.subplots() ax.invert_xaxis() ax.plot([-5, -3, 2, 4], [1, 2, -3, 5]) assert ax.get_xlim() == (4, -5) assert ax.get_ylim() == (-3, 5) plt.close() fig, ax = plt.subplots() ax.invert_yaxis() ax.plot([-5, -3, 2, 4], [1, 2, -3, 5]) assert ax.get_xlim() == (-5, 4) assert ax.get_ylim() == (5, -3) # Test inverting nonlinear axes. fig, ax = plt.subplots() ax.set_yscale("log") ax.set_ylim(10, 1) assert ax.get_ylim() == (10, 1) @image_comparison(['nonfinite_limits']) def test_nonfinite_limits(): x = np.arange(0., np.e, 0.01) # silence divide by zero warning from log(0) with np.errstate(divide='ignore'): y = np.log(x) x[len(x)//2] = np.nan fig, ax = plt.subplots() ax.plot(x, y) @pytest.mark.style('default') @pytest.mark.parametrize('plot_fun', ['scatter', 'plot', 'fill_between']) @check_figures_equal(extensions=["png"]) def test_limits_empty_data(plot_fun, fig_test, fig_ref): # Check that plotting empty data doesn't change autoscaling of dates x = np.arange("2010-01-01", "2011-01-01", dtype="datetime64[D]") ax_test = fig_test.subplots() ax_ref = fig_ref.subplots() getattr(ax_test, plot_fun)([], []) for ax in [ax_test, ax_ref]: getattr(ax, plot_fun)(x, range(len(x)), color='C0') @image_comparison(['imshow', 'imshow'], remove_text=True, style='mpl20') def test_imshow(): # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' # Create a NxN image N = 100 (x, y) = np.indices((N, N)) x -= N//2 y -= N//2 r = np.sqrt(x**2+y**2-x*y) # Create a contour plot at N/4 and extract both the clip path and transform fig, ax = plt.subplots() ax.imshow(r) # Reuse testcase from above for a labeled data test data = {"r": r} fig, ax = plt.subplots() ax.imshow("r", data=data) @image_comparison(['imshow_clip'], style='mpl20') def test_imshow_clip(): # As originally reported by Gellule Xg <gellule.xg@free.fr> # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' # Create a NxN image N = 100 (x, y) = np.indices((N, N)) x -= N//2 y -= N//2 r = np.sqrt(x**2+y**2-x*y) # Create a contour plot at N/4 and extract both the clip path and transform fig, ax = plt.subplots() c = ax.contour(r, [N/4]) x = c.collections[0] clip_path = x.get_paths()[0] clip_transform = x.get_transform() clip_path = mtransforms.TransformedPath(clip_path, clip_transform) # Plot the image clipped by the contour ax.imshow(r, clip_path=clip_path) @check_figures_equal(extensions=["png"]) def test_imshow_norm_vminvmax(fig_test, fig_ref): """Parameters vmin, vmax should be ignored if norm is given.""" a = [[1, 2], [3, 4]] ax = fig_ref.subplots() ax.imshow(a, vmin=0, vmax=5) ax = fig_test.subplots() with pytest.warns(MatplotlibDeprecationWarning, match="Passing parameters norm and vmin/vmax " "simultaneously is deprecated."): ax.imshow(a, norm=mcolors.Normalize(-10, 10), vmin=0, vmax=5) @image_comparison(['polycollection_joinstyle'], remove_text=True) def test_polycollection_joinstyle(): # Bug #2890979 reported by Matthew West fig, ax = plt.subplots() verts = np.array([[1, 1], [1, 2], [2, 2], [2, 1]]) c = mpl.collections.PolyCollection([verts], linewidths=40) ax.add_collection(c) ax.set_xbound(0, 3) ax.set_ybound(0, 3) @pytest.mark.parametrize( 'x, y1, y2', [ (np.zeros((2, 2)), 3, 3), (np.arange(0.0, 2, 0.02), np.zeros((2, 2)), 3), (np.arange(0.0, 2, 0.02), 3, np.zeros((2, 2))) ], ids=[ '2d_x_input', '2d_y1_input', '2d_y2_input' ] ) def test_fill_between_input(x, y1, y2): fig, ax = plt.subplots() with pytest.raises(ValueError): ax.fill_between(x, y1, y2) @pytest.mark.parametrize( 'y, x1, x2', [ (np.zeros((2, 2)), 3, 3), (np.arange(0.0, 2, 0.02), np.zeros((2, 2)), 3), (np.arange(0.0, 2, 0.02), 3, np.zeros((2, 2))) ], ids=[ '2d_y_input', '2d_x1_input', '2d_x2_input' ] ) def test_fill_betweenx_input(y, x1, x2): fig, ax = plt.subplots() with pytest.raises(ValueError): ax.fill_betweenx(y, x1, x2) @image_comparison(['fill_between_interpolate'], remove_text=True) def test_fill_between_interpolate(): x = np.arange(0.0, 2, 0.02) y1 = np.sin(2*np.pi*x) y2 = 1.2*np.sin(4*np.pi*x) fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) ax1.plot(x, y1, x, y2, color='black') ax1.fill_between(x, y1, y2, where=y2 >= y1, facecolor='white', hatch='/', interpolate=True) ax1.fill_between(x, y1, y2, where=y2 <= y1, facecolor='red', interpolate=True) # Test support for masked arrays. y2 = np.ma.masked_greater(y2, 1.0) # Test that plotting works for masked arrays with the first element masked y2[0] = np.ma.masked ax2.plot(x, y1, x, y2, color='black') ax2.fill_between(x, y1, y2, where=y2 >= y1, facecolor='green', interpolate=True) ax2.fill_between(x, y1, y2, where=y2 <= y1, facecolor='red', interpolate=True) @image_comparison(['fill_between_interpolate_decreasing'], style='mpl20', remove_text=True) def test_fill_between_interpolate_decreasing(): p = np.array([724.3, 700, 655]) t = np.array([9.4, 7, 2.2]) prof = np.array([7.9, 6.6, 3.8]) fig, ax = plt.subplots(figsize=(9, 9)) ax.plot(t, p, 'tab:red') ax.plot(prof, p, 'k') ax.fill_betweenx(p, t, prof, where=prof < t, facecolor='blue', interpolate=True, alpha=0.4) ax.fill_betweenx(p, t, prof, where=prof > t, facecolor='red', interpolate=True, alpha=0.4) ax.set_xlim(0, 30) ax.set_ylim(800, 600) # test_symlog and test_symlog2 used to have baseline images in all three # formats, but the png and svg baselines got invalidated by the removal of # minor tick overstriking. @image_comparison(['symlog.pdf']) def test_symlog(): x = np.array([0, 1, 2, 4, 6, 9, 12, 24]) y = np.array([1000000, 500000, 100000, 100, 5, 0, 0, 0]) fig, ax = plt.subplots() ax.plot(x, y) ax.set_yscale('symlog') ax.set_xscale('linear') ax.set_ylim(-1, 10000000) @image_comparison(['symlog2.pdf'], remove_text=True) def test_symlog2(): # Numbers from -50 to 50, with 0.1 as step x = np.arange(-50, 50, 0.001) fig, axs = plt.subplots(5, 1) for ax, linthresh in zip(axs, [20., 2., 1., 0.1, 0.01]): ax.plot(x, x) ax.set_xscale('symlog', linthresh=linthresh) ax.grid(True) axs[-1].set_ylim(-0.1, 0.1) def test_pcolorargs_5205(): # Smoketest to catch issue found in gh:5205 x = [-1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5] y = [-1.5, -1.25, -1.0, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5] X, Y = np.meshgrid(x, y) Z = np.hypot(X, Y) plt.pcolor(Z) plt.pcolor(list(Z)) plt.pcolor(x, y, Z[:-1, :-1]) plt.pcolor(X, Y, list(Z[:-1, :-1])) @image_comparison(['pcolormesh'], remove_text=True) def test_pcolormesh(): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False n = 12 x = np.linspace(-1.5, 1.5, n) y = np.linspace(-1.5, 1.5, n*2) X, Y = np.meshgrid(x, y) Qx = np.cos(Y) - np.cos(X) Qz = np.sin(Y) + np.sin(X) Qx = (Qx + 1.1) Z = np.hypot(X, Y) / 5 Z = (Z - Z.min()) / Z.ptp() # The color array can include masked values: Zm = ma.masked_where(np.abs(Qz) < 0.5 * np.max(Qz), Z) fig, (ax1, ax2, ax3) = plt.subplots(1, 3) ax1.pcolormesh(Qx, Qz, Z[:-1, :-1], lw=0.5, edgecolors='k') ax2.pcolormesh(Qx, Qz, Z[:-1, :-1], lw=2, edgecolors=['b', 'w']) ax3.pcolormesh(Qx, Qz, Z, shading="gouraud") @image_comparison(['pcolormesh_alpha'], extensions=["png", "pdf"], remove_text=True) def test_pcolormesh_alpha(): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False n = 12 X, Y = np.meshgrid( np.linspace(-1.5, 1.5, n), np.linspace(-1.5, 1.5, n*2) ) Qx = X Qy = Y + np.sin(X) Z = np.hypot(X, Y) / 5 Z = (Z - Z.min()) / Z.ptp() vir = plt.get_cmap("viridis", 16) # make another colormap with varying alpha colors = vir(np.arange(16)) colors[:, 3] = 0.5 + 0.5*np.sin(np.arange(16)) cmap = mcolors.ListedColormap(colors) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) for ax in ax1, ax2, ax3, ax4: ax.add_patch(mpatches.Rectangle( (0, -1.5), 1.5, 3, facecolor=[.7, .1, .1, .5], zorder=0 )) # ax1, ax2: constant alpha ax1.pcolormesh(Qx, Qy, Z[:-1, :-1], cmap=vir, alpha=0.4, shading='flat', zorder=1) ax2.pcolormesh(Qx, Qy, Z, cmap=vir, alpha=0.4, shading='gouraud', zorder=1) # ax3, ax4: alpha from colormap ax3.pcolormesh(Qx, Qy, Z[:-1, :-1], cmap=cmap, shading='flat', zorder=1) ax4.pcolormesh(Qx, Qy, Z, cmap=cmap, shading='gouraud', zorder=1) @image_comparison(['pcolormesh_datetime_axis.png'], remove_text=False, style='mpl20') def test_pcolormesh_datetime_axis(): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False fig = plt.figure() fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15) base = datetime.datetime(2013, 1, 1) x = np.array([base + datetime.timedelta(days=d) for d in range(21)]) y = np.arange(21) z1, z2 = np.meshgrid(np.arange(20), np.arange(20)) z = z1 * z2 plt.subplot(221) plt.pcolormesh(x[:-1], y[:-1], z[:-1, :-1]) plt.subplot(222) plt.pcolormesh(x, y, z) x = np.repeat(x[np.newaxis], 21, axis=0) y = np.repeat(y[:, np.newaxis], 21, axis=1) plt.subplot(223) plt.pcolormesh(x[:-1, :-1], y[:-1, :-1], z[:-1, :-1]) plt.subplot(224) plt.pcolormesh(x, y, z) for ax in fig.get_axes(): for label in ax.get_xticklabels(): label.set_ha('right') label.set_rotation(30) @image_comparison(['pcolor_datetime_axis.png'], remove_text=False, style='mpl20') def test_pcolor_datetime_axis(): fig = plt.figure() fig.subplots_adjust(hspace=0.4, top=0.98, bottom=.15) base = datetime.datetime(2013, 1, 1) x = np.array([base + datetime.timedelta(days=d) for d in range(21)]) y = np.arange(21) z1, z2 = np.meshgrid(np.arange(20), np.arange(20)) z = z1 * z2 plt.subplot(221) plt.pcolor(x[:-1], y[:-1], z[:-1, :-1]) plt.subplot(222) plt.pcolor(x, y, z) x = np.repeat(x[np.newaxis], 21, axis=0) y = np.repeat(y[:, np.newaxis], 21, axis=1) plt.subplot(223) plt.pcolor(x[:-1, :-1], y[:-1, :-1], z[:-1, :-1]) plt.subplot(224) plt.pcolor(x, y, z) for ax in fig.get_axes(): for label in ax.get_xticklabels(): label.set_ha('right') label.set_rotation(30) def test_pcolorargs(): n = 12 x = np.linspace(-1.5, 1.5, n) y = np.linspace(-1.5, 1.5, n*2) X, Y = np.meshgrid(x, y) Z = np.hypot(X, Y) / 5 _, ax = plt.subplots() with pytest.raises(TypeError): ax.pcolormesh(y, x, Z) with pytest.raises(TypeError): ax.pcolormesh(X, Y, Z.T) with pytest.raises(TypeError): ax.pcolormesh(x, y, Z[:-1, :-1], shading="gouraud") with pytest.raises(TypeError): ax.pcolormesh(X, Y, Z[:-1, :-1], shading="gouraud") x[0] = np.NaN with pytest.raises(ValueError): ax.pcolormesh(x, y, Z[:-1, :-1]) with np.errstate(invalid='ignore'): x = np.ma.array(x, mask=(x < 0)) with pytest.raises(ValueError): ax.pcolormesh(x, y, Z[:-1, :-1]) # Expect a warning with non-increasing coordinates x = [359, 0, 1] y = [-10, 10] X, Y = np.meshgrid(x, y) Z = np.zeros(X.shape) with pytest.warns(UserWarning, match='are not monotonically increasing or decreasing'): ax.pcolormesh(X, Y, Z, shading='auto') @check_figures_equal(extensions=["png"]) def test_pcolornearest(fig_test, fig_ref): ax = fig_test.subplots() x = np.arange(0, 10) y = np.arange(0, 3) np.random.seed(19680801) Z = np.random.randn(2, 9) ax.pcolormesh(x, y, Z, shading='flat') ax = fig_ref.subplots() # specify the centers x2 = x[:-1] + np.diff(x) / 2 y2 = y[:-1] + np.diff(y) / 2 ax.pcolormesh(x2, y2, Z, shading='nearest') @check_figures_equal(extensions=["png"]) def test_pcolornearestunits(fig_test, fig_ref): ax = fig_test.subplots() x = [datetime.datetime.fromtimestamp(x * 3600) for x in range(10)] y = np.arange(0, 3) np.random.seed(19680801) Z = np.random.randn(2, 9) ax.pcolormesh(x, y, Z, shading='flat') ax = fig_ref.subplots() # specify the centers x2 = [datetime.datetime.fromtimestamp((x + 0.5) * 3600) for x in range(9)] y2 = y[:-1] + np.diff(y) / 2 ax.pcolormesh(x2, y2, Z, shading='nearest') @check_figures_equal(extensions=["png"]) def test_pcolordropdata(fig_test, fig_ref): ax = fig_test.subplots() x = np.arange(0, 10) y = np.arange(0, 4) np.random.seed(19680801) Z = np.random.randn(3, 9) # fake dropping the data ax.pcolormesh(x[:-1], y[:-1], Z[:-1, :-1], shading='flat') ax = fig_ref.subplots() # test dropping the data... x2 = x[:-1] y2 = y[:-1] with pytest.warns(MatplotlibDeprecationWarning): ax.pcolormesh(x2, y2, Z, shading='flat') @check_figures_equal(extensions=["png"]) def test_pcolorauto(fig_test, fig_ref): ax = fig_test.subplots() x = np.arange(0, 10) y = np.arange(0, 4) np.random.seed(19680801) Z = np.random.randn(3, 9) ax.pcolormesh(x, y, Z, shading='auto') ax = fig_ref.subplots() # specify the centers x2 = x[:-1] + np.diff(x) / 2 y2 = y[:-1] + np.diff(y) / 2 ax.pcolormesh(x2, y2, Z, shading='auto') @image_comparison(['canonical']) def test_canonical(): fig, ax = plt.subplots() ax.plot([1, 2, 3]) @image_comparison(['arc_angles.png'], remove_text=True, style='default') def test_arc_angles(): # Ellipse parameters w = 2 h = 1 centre = (0.2, 0.5) scale = 2 fig, axs = plt.subplots(3, 3) for i, ax in enumerate(axs.flat): theta2 = i * 360 / 9 theta1 = theta2 - 45 ax.add_patch(mpatches.Ellipse(centre, w, h, alpha=0.3)) ax.add_patch(mpatches.Arc(centre, w, h, theta1=theta1, theta2=theta2)) # Straight lines intersecting start and end of arc ax.plot([scale * np.cos(np.deg2rad(theta1)) + centre[0], centre[0], scale * np.cos(np.deg2rad(theta2)) + centre[0]], [scale * np.sin(np.deg2rad(theta1)) + centre[1], centre[1], scale * np.sin(np.deg2rad(theta2)) + centre[1]]) ax.set_xlim(-scale, scale) ax.set_ylim(-scale, scale) # This looks the same, but it triggers a different code path when it # gets large enough. w *= 10 h *= 10 centre = (centre[0] * 10, centre[1] * 10) scale *= 10 @image_comparison(['arc_ellipse'], remove_text=True) def test_arc_ellipse(): xcenter, ycenter = 0.38, 0.52 width, height = 1e-1, 3e-1 angle = -30 theta = np.deg2rad(np.arange(360)) x = width / 2. * np.cos(theta) y = height / 2. * np.sin(theta) rtheta = np.deg2rad(angle) R = np.array([ [np.cos(rtheta), -np.sin(rtheta)], [np.sin(rtheta), np.cos(rtheta)]]) x, y = np.dot(R, np.array([x, y])) x += xcenter y += ycenter fig = plt.figure() ax = fig.add_subplot(211, aspect='auto') ax.fill(x, y, alpha=0.2, facecolor='yellow', edgecolor='yellow', linewidth=1, zorder=1) e1 = mpatches.Arc((xcenter, ycenter), width, height, angle=angle, linewidth=2, fill=False, zorder=2) ax.add_patch(e1) ax = fig.add_subplot(212, aspect='equal') ax.fill(x, y, alpha=0.2, facecolor='green', edgecolor='green', zorder=1) e2 = mpatches.Arc((xcenter, ycenter), width, height, angle=angle, linewidth=2, fill=False, zorder=2) ax.add_patch(e2) def test_marker_as_markerstyle(): fix, ax = plt.subplots() m = mmarkers.MarkerStyle('o') ax.plot([1, 2, 3], [3, 2, 1], marker=m) ax.scatter([1, 2, 3], [4, 3, 2], marker=m) ax.errorbar([1, 2, 3], [5, 4, 3], marker=m) @image_comparison(['markevery'], remove_text=True) def test_markevery(): x = np.linspace(0, 10, 100) y = np.sin(x) * np.sqrt(x/10 + 0.5) # check marker only plot fig, ax = plt.subplots() ax.plot(x, y, 'o', label='default') ax.plot(x, y, 'd', markevery=None, label='mark all') ax.plot(x, y, 's', markevery=10, label='mark every 10') ax.plot(x, y, '+', markevery=(5, 20), label='mark every 5 starting at 10') ax.legend() @image_comparison(['markevery_line'], remove_text=True) def test_markevery_line(): x = np.linspace(0, 10, 100) y = np.sin(x) * np.sqrt(x/10 + 0.5) # check line/marker combos fig, ax = plt.subplots() ax.plot(x, y, '-o', label='default') ax.plot(x, y, '-d', markevery=None, label='mark all') ax.plot(x, y, '-s', markevery=10, label='mark every 10') ax.plot(x, y, '-+', markevery=(5, 20), label='mark every 5 starting at 10') ax.legend() @image_comparison(['markevery_linear_scales'], remove_text=True, tol=0.001) def test_markevery_linear_scales(): cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] cols = 3 gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols) delta = 0.11 x = np.linspace(0, 10 - 2 * delta, 200) + delta y = np.sin(x) + 1.0 + delta for i, case in enumerate(cases): row = (i // cols) col = i % cols plt.subplot(gs[row, col]) plt.title('markevery=%s' % str(case)) plt.plot(x, y, 'o', ls='-', ms=4, markevery=case) @image_comparison(['markevery_linear_scales_zoomed'], remove_text=True) def test_markevery_linear_scales_zoomed(): cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] cols = 3 gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols) delta = 0.11 x = np.linspace(0, 10 - 2 * delta, 200) + delta y = np.sin(x) + 1.0 + delta for i, case in enumerate(cases): row = (i // cols) col = i % cols plt.subplot(gs[row, col]) plt.title('markevery=%s' % str(case)) plt.plot(x, y, 'o', ls='-', ms=4, markevery=case) plt.xlim((6, 6.7)) plt.ylim((1.1, 1.7)) @image_comparison(['markevery_log_scales'], remove_text=True) def test_markevery_log_scales(): cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] cols = 3 gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols) delta = 0.11 x = np.linspace(0, 10 - 2 * delta, 200) + delta y = np.sin(x) + 1.0 + delta for i, case in enumerate(cases): row = (i // cols) col = i % cols plt.subplot(gs[row, col]) plt.title('markevery=%s' % str(case)) plt.xscale('log') plt.yscale('log') plt.plot(x, y, 'o', ls='-', ms=4, markevery=case) @image_comparison(['markevery_polar'], style='default', remove_text=True) def test_markevery_polar(): cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] cols = 3 gs = matplotlib.gridspec.GridSpec(len(cases) // cols + 1, cols) r = np.linspace(0, 3.0, 200) theta = 2 * np.pi * r for i, case in enumerate(cases): row = (i // cols) col = i % cols plt.subplot(gs[row, col], polar=True) plt.title('markevery=%s' % str(case)) plt.plot(theta, r, 'o', ls='-', ms=4, markevery=case) @image_comparison(['marker_edges'], remove_text=True) def test_marker_edges(): x = np.linspace(0, 1, 10) fig, ax = plt.subplots() ax.plot(x, np.sin(x), 'y.', ms=30.0, mew=0, mec='r') ax.plot(x+0.1, np.sin(x), 'y.', ms=30.0, mew=1, mec='r') ax.plot(x+0.2, np.sin(x), 'y.', ms=30.0, mew=2, mec='b') @image_comparison(['bar_tick_label_single.png', 'bar_tick_label_single.png']) def test_bar_tick_label_single(): # From 2516: plot bar with array of string labels for x axis ax = plt.gca() ax.bar(0, 1, align='edge', tick_label='0') # Reuse testcase from above for a labeled data test data = {"a": 0, "b": 1} fig, ax = plt.subplots() ax = plt.gca() ax.bar("a", "b", align='edge', tick_label='0', data=data) def test_nan_bar_values(): fig, ax = plt.subplots() ax.bar([0, 1], [np.nan, 4]) def test_bar_ticklabel_fail(): fig, ax = plt.subplots() ax.bar([], []) @image_comparison(['bar_tick_label_multiple.png']) def test_bar_tick_label_multiple(): # From 2516: plot bar with array of string labels for x axis ax = plt.gca() ax.bar([1, 2.5], [1, 2], width=[0.2, 0.5], tick_label=['a', 'b'], align='center') @image_comparison(['bar_tick_label_multiple_old_label_alignment.png']) def test_bar_tick_label_multiple_old_alignment(): # Test that the alignment for class is backward compatible matplotlib.rcParams["ytick.alignment"] = "center" ax = plt.gca() ax.bar([1, 2.5], [1, 2], width=[0.2, 0.5], tick_label=['a', 'b'], align='center') @check_figures_equal(extensions=["png"]) def test_bar_decimal_center(fig_test, fig_ref): ax = fig_test.subplots() x0 = [1.5, 8.4, 5.3, 4.2] y0 = [1.1, 2.2, 3.3, 4.4] x = [Decimal(x) for x in x0] y = [Decimal(y) for y in y0] # Test image - vertical, align-center bar chart with Decimal() input ax.bar(x, y, align='center') # Reference image ax = fig_ref.subplots() ax.bar(x0, y0, align='center') @check_figures_equal(extensions=["png"]) def test_barh_decimal_center(fig_test, fig_ref): ax = fig_test.subplots() x0 = [1.5, 8.4, 5.3, 4.2] y0 = [1.1, 2.2, 3.3, 4.4] x = [Decimal(x) for x in x0] y = [Decimal(y) for y in y0] # Test image - horizontal, align-center bar chart with Decimal() input ax.barh(x, y, height=[0.5, 0.5, 1, 1], align='center') # Reference image ax = fig_ref.subplots() ax.barh(x0, y0, height=[0.5, 0.5, 1, 1], align='center') @check_figures_equal(extensions=["png"]) def test_bar_decimal_width(fig_test, fig_ref): x = [1.5, 8.4, 5.3, 4.2] y = [1.1, 2.2, 3.3, 4.4] w0 = [0.7, 1.45, 1, 2] w = [Decimal(i) for i in w0] # Test image - vertical bar chart with Decimal() width ax = fig_test.subplots() ax.bar(x, y, width=w, align='center') # Reference image ax = fig_ref.subplots() ax.bar(x, y, width=w0, align='center') @check_figures_equal(extensions=["png"]) def test_barh_decimal_height(fig_test, fig_ref): x = [1.5, 8.4, 5.3, 4.2] y = [1.1, 2.2, 3.3, 4.4] h0 = [0.7, 1.45, 1, 2] h = [Decimal(i) for i in h0] # Test image - horizontal bar chart with Decimal() height ax = fig_test.subplots() ax.barh(x, y, height=h, align='center') # Reference image ax = fig_ref.subplots() ax.barh(x, y, height=h0, align='center') def test_bar_color_none_alpha(): ax = plt.gca() rects = ax.bar([1, 2], [2, 4], alpha=0.3, color='none', edgecolor='r') for rect in rects: assert rect.get_facecolor() == (0, 0, 0, 0) assert rect.get_edgecolor() == (1, 0, 0, 0.3) def test_bar_edgecolor_none_alpha(): ax = plt.gca() rects = ax.bar([1, 2], [2, 4], alpha=0.3, color='r', edgecolor='none') for rect in rects: assert rect.get_facecolor() == (1, 0, 0, 0.3) assert rect.get_edgecolor() == (0, 0, 0, 0) @image_comparison(['barh_tick_label.png']) def test_barh_tick_label(): # From 2516: plot barh with array of string labels for y axis ax = plt.gca() ax.barh([1, 2.5], [1, 2], height=[0.2, 0.5], tick_label=['a', 'b'], align='center') def test_bar_timedelta(): """Smoketest that bar can handle width and height in delta units.""" fig, ax = plt.subplots() ax.bar(datetime.datetime(2018, 1, 1), 1., width=datetime.timedelta(hours=3)) ax.bar(datetime.datetime(2018, 1, 1), 1., xerr=datetime.timedelta(hours=2), width=datetime.timedelta(hours=3)) fig, ax = plt.subplots() ax.barh(datetime.datetime(2018, 1, 1), 1, height=datetime.timedelta(hours=3)) ax.barh(datetime.datetime(2018, 1, 1), 1, height=datetime.timedelta(hours=3), yerr=datetime.timedelta(hours=2)) fig, ax = plt.subplots() ax.barh([datetime.datetime(2018, 1, 1), datetime.datetime(2018, 1, 1)], np.array([1, 1.5]), height=datetime.timedelta(hours=3)) ax.barh([datetime.datetime(2018, 1, 1), datetime.datetime(2018, 1, 1)], np.array([1, 1.5]), height=[datetime.timedelta(hours=t) for t in [1, 2]]) ax.broken_barh([(datetime.datetime(2018, 1, 1), datetime.timedelta(hours=1))], (10, 20)) def test_boxplot_dates_pandas(pd): # smoke test for boxplot and dates in pandas data = np.random.rand(5, 2) years = pd.date_range('1/1/2000', periods=2, freq=pd.DateOffset(years=1)).year plt.figure() plt.boxplot(data, positions=years) def test_pcolor_regression(pd): from pandas.plotting import ( register_matplotlib_converters, deregister_matplotlib_converters, ) fig = plt.figure() ax = fig.add_subplot(111) times = [datetime.datetime(2021, 1, 1)] while len(times) < 7: times.append(times[-1] + datetime.timedelta(seconds=120)) y_vals = np.arange(5) time_axis, y_axis = np.meshgrid(times, y_vals) shape = (len(y_vals) - 1, len(times) - 1) z_data = np.arange(shape[0] * shape[1]) z_data.shape = shape try: register_matplotlib_converters() im = ax.pcolormesh(time_axis, y_axis, z_data) # make sure this does not raise! fig.canvas.draw() finally: deregister_matplotlib_converters() def test_bar_pandas(pd): # Smoke test for pandas df = pd.DataFrame( {'year': [2018, 2018, 2018], 'month': [1, 1, 1], 'day': [1, 2, 3], 'value': [1, 2, 3]}) df['date'] = pd.to_datetime(df[['year', 'month', 'day']]) monthly = df[['date', 'value']].groupby(['date']).sum() dates = monthly.index forecast = monthly['value'] baseline = monthly['value'] fig, ax = plt.subplots() ax.bar(dates, forecast, width=10, align='center') ax.plot(dates, baseline, color='orange', lw=4) def test_bar_pandas_indexed(pd): # Smoke test for indexed pandas df = pd.DataFrame({"x": [1., 2., 3.], "width": [.2, .4, .6]}, index=[1, 2, 3]) fig, ax = plt.subplots() ax.bar(df.x, 1., width=df.width) @check_figures_equal() @pytest.mark.style('default') def test_bar_hatches(fig_test, fig_ref): ax_test = fig_test.subplots() ax_ref = fig_ref.subplots() x = [1, 2] y = [2, 3] hatches = ['x', 'o'] for i in range(2): ax_ref.bar(x[i], y[i], color='C0', hatch=hatches[i]) ax_test.bar(x, y, hatch=hatches) def test_pandas_minimal_plot(pd): # smoke test that series and index objcets do not warn x = pd.Series([1, 2], dtype="float64") plt.plot(x, x) plt.plot(x.index, x) plt.plot(x) plt.plot(x.index) @image_comparison(['hist_log'], remove_text=True) def test_hist_log(): data0 = np.linspace(0, 1, 200)**3 data = np.concatenate([1 - data0, 1 + data0]) fig, ax = plt.subplots() ax.hist(data, fill=False, log=True) @check_figures_equal(extensions=["png"]) def test_hist_log_2(fig_test, fig_ref): axs_test = fig_test.subplots(2, 3) axs_ref = fig_ref.subplots(2, 3) for i, histtype in enumerate(["bar", "step", "stepfilled"]): # Set log scale, then call hist(). axs_test[0, i].set_yscale("log") axs_test[0, i].hist(1, 1, histtype=histtype) # Call hist(), then set log scale. axs_test[1, i].hist(1, 1, histtype=histtype) axs_test[1, i].set_yscale("log") # Use hist(..., log=True). for ax in axs_ref[:, i]: ax.hist(1, 1, log=True, histtype=histtype) def test_hist_log_barstacked(): fig, axs = plt.subplots(2) axs[0].hist([[0], [0, 1]], 2, histtype="barstacked") axs[0].set_yscale("log") axs[1].hist([0, 0, 1], 2, histtype="barstacked") axs[1].set_yscale("log") fig.canvas.draw() assert axs[0].get_ylim() == axs[1].get_ylim() @image_comparison(['hist_bar_empty.png'], remove_text=True) def test_hist_bar_empty(): # From #3886: creating hist from empty dataset raises ValueError ax = plt.gca() ax.hist([], histtype='bar') @image_comparison(['hist_step_empty.png'], remove_text=True) def test_hist_step_empty(): # From #3886: creating hist from empty dataset raises ValueError ax = plt.gca() ax.hist([], histtype='step') @image_comparison(['hist_step_filled.png'], remove_text=True) def test_hist_step_filled(): np.random.seed(0) x = np.random.randn(1000, 3) n_bins = 10 kwargs = [{'fill': True}, {'fill': False}, {'fill': None}, {}]*2 types = ['step']*4+['stepfilled']*4 fig, axs = plt.subplots(nrows=2, ncols=4) for kg, _type, ax in zip(kwargs, types, axs.flat): ax.hist(x, n_bins, histtype=_type, stacked=True, **kg) ax.set_title('%s/%s' % (kg, _type)) ax.set_ylim(bottom=-50) patches = axs[0, 0].patches assert all(p.get_facecolor() == p.get_edgecolor() for p in patches) @image_comparison(['hist_density.png']) def test_hist_density(): np.random.seed(19680801) data = np.random.standard_normal(2000) fig, ax = plt.subplots() ax.hist(data, density=True) def test_hist_unequal_bins_density(): # Test correct behavior of normalized histogram with unequal bins # https://github.com/matplotlib/matplotlib/issues/9557 rng = np.random.RandomState(57483) t = rng.randn(100) bins = [-3, -1, -0.5, 0, 1, 5] mpl_heights, _, _ = plt.hist(t, bins=bins, density=True) np_heights, _ = np.histogram(t, bins=bins, density=True) assert_allclose(mpl_heights, np_heights) def test_hist_datetime_datasets(): data = [[datetime.datetime(2017, 1, 1), datetime.datetime(2017, 1, 1)], [datetime.datetime(2017, 1, 1), datetime.datetime(2017, 1, 2)]] fig, ax = plt.subplots() ax.hist(data, stacked=True) ax.hist(data, stacked=False) @pytest.mark.parametrize("bins_preprocess", [mpl.dates.date2num, lambda bins: bins, lambda bins: np.asarray(bins).astype('datetime64')], ids=['date2num', 'datetime.datetime', 'np.datetime64']) def test_hist_datetime_datasets_bins(bins_preprocess): data = [[datetime.datetime(2019, 1, 5), datetime.datetime(2019, 1, 11), datetime.datetime(2019, 2, 1), datetime.datetime(2019, 3, 1)], [datetime.datetime(2019, 1, 11), datetime.datetime(2019, 2, 5), datetime.datetime(2019, 2, 18), datetime.datetime(2019, 3, 1)]] date_edges = [datetime.datetime(2019, 1, 1), datetime.datetime(2019, 2, 1), datetime.datetime(2019, 3, 1)] fig, ax = plt.subplots() _, bins, _ = ax.hist(data, bins=bins_preprocess(date_edges), stacked=True) np.testing.assert_allclose(bins, mpl.dates.date2num(date_edges)) _, bins, _ = ax.hist(data, bins=bins_preprocess(date_edges), stacked=False) np.testing.assert_allclose(bins, mpl.dates.date2num(date_edges)) @pytest.mark.parametrize('data, expected_number_of_hists', [([], 1), ([[]], 1), ([[], []], 2)]) def test_hist_with_empty_input(data, expected_number_of_hists): hists, _, _ = plt.hist(data) hists = np.asarray(hists) if hists.ndim == 1: assert 1 == expected_number_of_hists else: assert hists.shape[0] == expected_number_of_hists @pytest.mark.parametrize("histtype, zorder", [("bar", mpl.patches.Patch.zorder), ("step", mpl.lines.Line2D.zorder), ("stepfilled", mpl.patches.Patch.zorder)]) def test_hist_zorder(histtype, zorder): ax = plt.figure().add_subplot() ax.hist([1, 2], histtype=histtype) assert ax.patches for patch in ax.patches: assert patch.get_zorder() == zorder @check_figures_equal(extensions=['png']) def test_stairs(fig_test, fig_ref): import matplotlib.lines as mlines y = np.array([6, 14, 32, 37, 48, 32, 21, 4]) # hist x = np.array([1., 2., 3., 4., 5., 6., 7., 8., 9.]) # bins test_axes = fig_test.subplots(3, 2).flatten() test_axes[0].stairs(y, x, baseline=None) test_axes[1].stairs(y, x, baseline=None, orientation='horizontal') test_axes[2].stairs(y, x) test_axes[3].stairs(y, x, orientation='horizontal') test_axes[4].stairs(y, x) test_axes[4].semilogy() test_axes[5].stairs(y, x, orientation='horizontal') test_axes[5].semilogx() # defaults of `PathPatch` to be used for all following Line2D style = {'solid_joinstyle': 'miter', 'solid_capstyle': 'butt'} ref_axes = fig_ref.subplots(3, 2).flatten() ref_axes[0].plot(x, np.append(y, y[-1]), drawstyle='steps-post', **style) ref_axes[1].plot(np.append(y[0], y), x, drawstyle='steps-post', **style) ref_axes[2].plot(x, np.append(y, y[-1]), drawstyle='steps-post', **style) ref_axes[2].add_line(mlines.Line2D([x[0], x[0]], [0, y[0]], **style)) ref_axes[2].add_line(mlines.Line2D([x[-1], x[-1]], [0, y[-1]], **style)) ref_axes[2].set_ylim(0, None) ref_axes[3].plot(np.append(y[0], y), x, drawstyle='steps-post', **style) ref_axes[3].add_line(mlines.Line2D([0, y[0]], [x[0], x[0]], **style)) ref_axes[3].add_line(mlines.Line2D([0, y[-1]], [x[-1], x[-1]], **style)) ref_axes[3].set_xlim(0, None) ref_axes[4].plot(x, np.append(y, y[-1]), drawstyle='steps-post', **style) ref_axes[4].add_line(mlines.Line2D([x[0], x[0]], [0, y[0]], **style)) ref_axes[4].add_line(mlines.Line2D([x[-1], x[-1]], [0, y[-1]], **style)) ref_axes[4].semilogy() ref_axes[5].plot(np.append(y[0], y), x, drawstyle='steps-post', **style) ref_axes[5].add_line(mlines.Line2D([0, y[0]], [x[0], x[0]], **style)) ref_axes[5].add_line(mlines.Line2D([0, y[-1]], [x[-1], x[-1]], **style)) ref_axes[5].semilogx() @check_figures_equal(extensions=['png']) def test_stairs_fill(fig_test, fig_ref): h, bins = [1, 2, 3, 4, 2], [0, 1, 2, 3, 4, 5] bs = -2 # Test test_axes = fig_test.subplots(2, 2).flatten() test_axes[0].stairs(h, bins, fill=True) test_axes[1].stairs(h, bins, orientation='horizontal', fill=True) test_axes[2].stairs(h, bins, baseline=bs, fill=True) test_axes[3].stairs(h, bins, baseline=bs, orientation='horizontal', fill=True) # # Ref ref_axes = fig_ref.subplots(2, 2).flatten() ref_axes[0].fill_between(bins, np.append(h, h[-1]), step='post', lw=0) ref_axes[0].set_ylim(0, None) ref_axes[1].fill_betweenx(bins, np.append(h, h[-1]), step='post', lw=0) ref_axes[1].set_xlim(0, None) ref_axes[2].fill_between(bins, np.append(h, h[-1]), np.ones(len(h)+1)*bs, step='post', lw=0) ref_axes[2].set_ylim(bs, None) ref_axes[3].fill_betweenx(bins, np.append(h, h[-1]), np.ones(len(h)+1)*bs, step='post', lw=0) ref_axes[3].set_xlim(bs, None) @check_figures_equal(extensions=['png']) def test_stairs_update(fig_test, fig_ref): # fixed ylim because stairs() does autoscale, but updating data does not ylim = -3, 4 # Test test_ax = fig_test.add_subplot() h = test_ax.stairs([1, 2, 3]) test_ax.set_ylim(ylim) h.set_data([3, 2, 1]) h.set_data(edges=np.arange(4)+2) h.set_data([1, 2, 1], np.arange(4)/2) h.set_data([1, 2, 3]) h.set_data(None, np.arange(4)) assert np.allclose(h.get_data()[0], np.arange(1, 4)) assert np.allclose(h.get_data()[1], np.arange(4)) h.set_data(baseline=-2) assert h.get_data().baseline == -2 # Ref ref_ax = fig_ref.add_subplot() h = ref_ax.stairs([1, 2, 3], baseline=-2) ref_ax.set_ylim(ylim) @check_figures_equal(extensions=['png']) def test_stairs_baseline_0(fig_test, fig_ref): # Test test_ax = fig_test.add_subplot() test_ax.stairs([5, 6, 7], baseline=None) # Ref ref_ax = fig_ref.add_subplot() style = {'solid_joinstyle': 'miter', 'solid_capstyle': 'butt'} ref_ax.plot(range(4), [5, 6, 7, 7], drawstyle='steps-post', **style) ref_ax.set_ylim(0, None) def test_stairs_empty(): ax = plt.figure().add_subplot() ax.stairs([], [42]) assert ax.get_xlim() == (39, 45) assert ax.get_ylim() == (-0.06, 0.06) def test_stairs_invalid_nan(): with pytest.raises(ValueError, match='Nan values in "edges"'): plt.stairs([1, 2], [0, np.nan, 1]) def test_stairs_invalid_mismatch(): with pytest.raises(ValueError, match='Size mismatch'): plt.stairs([1, 2], [0, 1]) def test_stairs_invalid_update(): h = plt.stairs([1, 2], [0, 1, 2]) with pytest.raises(ValueError, match='Nan values in "edges"'): h.set_data(edges=[1, np.nan, 2]) def test_stairs_invalid_update2(): h = plt.stairs([1, 2], [0, 1, 2]) with pytest.raises(ValueError, match='Size mismatch'): h.set_data(edges=np.arange(5)) @image_comparison(['test_stairs_options.png'], remove_text=True) def test_stairs_options(): x, y = np.array([1, 2, 3, 4, 5]), np.array([1, 2, 3, 4]).astype(float) yn = y.copy() yn[1] = np.nan fig, ax = plt.subplots() ax.stairs(y*3, x, color='green', fill=True, label="A") ax.stairs(y, x*3-3, color='red', fill=True, orientation='horizontal', label="B") ax.stairs(yn, x, color='orange', ls='--', lw=2, label="C") ax.stairs(yn/3, x*3-2, ls='--', lw=2, baseline=0.5, orientation='horizontal', label="D") ax.stairs(y[::-1]*3+13, x-1, color='red', ls='--', lw=2, baseline=None, label="E") ax.stairs(y[::-1]*3+14, x, baseline=26, color='purple', ls='--', lw=2, label="F") ax.stairs(yn[::-1]*3+15, x+1, baseline=np.linspace(27, 25, len(y)), color='blue', ls='--', lw=2, label="G", fill=True) ax.stairs(y[:-1][::-1]*2+11, x[:-1]+0.5, color='black', ls='--', lw=2, baseline=12, hatch='//', label="H") ax.legend(loc=0) @image_comparison(['test_stairs_datetime.png']) def test_stairs_datetime(): f, ax = plt.subplots(constrained_layout=True) ax.stairs(np.arange(36), np.arange(np.datetime64('2001-12-27'), np.datetime64('2002-02-02'))) plt.xticks(rotation=30) def contour_dat(): x = np.linspace(-3, 5, 150) y = np.linspace(-3, 5, 120) z = np.cos(x) + np.sin(y[:, np.newaxis]) return x, y, z @image_comparison(['contour_hatching'], remove_text=True, style='mpl20') def test_contour_hatching(): x, y, z = contour_dat() fig, ax = plt.subplots() ax.contourf(x, y, z, 7, hatches=['/', '\\', '//', '-'], cmap=plt.get_cmap('gray'), extend='both', alpha=0.5) @image_comparison(['contour_colorbar'], style='mpl20') def test_contour_colorbar(): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False x, y, z = contour_dat() fig, ax = plt.subplots() cs = ax.contourf(x, y, z, levels=np.arange(-1.8, 1.801, 0.2), cmap=plt.get_cmap('RdBu'), vmin=-0.6, vmax=0.6, extend='both') cs1 = ax.contour(x, y, z, levels=np.arange(-2.2, -0.599, 0.2), colors=['y'], linestyles='solid', linewidths=2) cs2 = ax.contour(x, y, z, levels=np.arange(0.6, 2.2, 0.2), colors=['c'], linewidths=2) cbar = fig.colorbar(cs, ax=ax) cbar.add_lines(cs1) cbar.add_lines(cs2, erase=False) @image_comparison(['hist2d', 'hist2d'], remove_text=True, style='mpl20') def test_hist2d(): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False np.random.seed(0) # make it not symmetric in case we switch x and y axis x = np.random.randn(100)*2+5 y = np.random.randn(100)-2 fig, ax = plt.subplots() ax.hist2d(x, y, bins=10, rasterized=True) # Reuse testcase from above for a labeled data test data = {"x": x, "y": y} fig, ax = plt.subplots() ax.hist2d("x", "y", bins=10, data=data, rasterized=True) @image_comparison(['hist2d_transpose'], remove_text=True, style='mpl20') def test_hist2d_transpose(): # Remove this line when this test image is regenerated. plt.rcParams['pcolormesh.snap'] = False np.random.seed(0) # make sure the output from np.histogram is transposed before # passing to pcolorfast x = np.array([5]*100) y = np.random.randn(100)-2 fig, ax = plt.subplots() ax.hist2d(x, y, bins=10, rasterized=True) def test_hist2d_density(): x, y = np.random.random((2, 100)) ax = plt.figure().subplots() for obj in [ax, plt]: obj.hist2d(x, y, density=True) class TestScatter: @image_comparison(['scatter'], style='mpl20', remove_text=True) def test_scatter_plot(self): data = {"x": np.array([3, 4, 2, 6]), "y": np.array([2, 5, 2, 3]), "c": ['r', 'y', 'b', 'lime'], "s": [24, 15, 19, 29], "c2": ['0.5', '0.6', '0.7', '0.8']} fig, ax = plt.subplots() ax.scatter(data["x"] - 1., data["y"] - 1., c=data["c"], s=data["s"]) ax.scatter(data["x"] + 1., data["y"] + 1., c=data["c2"], s=data["s"]) ax.scatter("x", "y", c="c", s="s", data=data) @image_comparison(['scatter_marker.png'], remove_text=True) def test_scatter_marker(self): fig, (ax0, ax1, ax2) = plt.subplots(ncols=3) ax0.scatter([3, 4, 2, 6], [2, 5, 2, 3], c=[(1, 0, 0), 'y', 'b', 'lime'], s=[60, 50, 40, 30], edgecolors=['k', 'r', 'g', 'b'], marker='s') ax1.scatter([3, 4, 2, 6], [2, 5, 2, 3], c=[(1, 0, 0), 'y', 'b', 'lime'], s=[60, 50, 40, 30], edgecolors=['k', 'r', 'g', 'b'], marker=mmarkers.MarkerStyle('o', fillstyle='top')) # unit area ellipse rx, ry = 3, 1 area = rx * ry * np.pi theta = np.linspace(0, 2 * np.pi, 21) verts = np.column_stack([np.cos(theta) * rx / area, np.sin(theta) * ry / area]) ax2.scatter([3, 4, 2, 6], [2, 5, 2, 3], c=[(1, 0, 0), 'y', 'b', 'lime'], s=[60, 50, 40, 30], edgecolors=['k', 'r', 'g', 'b'], marker=verts) @image_comparison(['scatter_2D'], remove_text=True, extensions=['png']) def test_scatter_2D(self): x = np.arange(3) y = np.arange(2) x, y = np.meshgrid(x, y) z = x + y fig, ax = plt.subplots() ax.scatter(x, y, c=z, s=200, edgecolors='face') @check_figures_equal(extensions=["png"]) def test_scatter_decimal(self, fig_test, fig_ref): x0 = np.array([1.5, 8.4, 5.3, 4.2]) y0 = np.array([1.1, 2.2, 3.3, 4.4]) x = np.array([Decimal(i) for i in x0]) y = np.array([Decimal(i) for i in y0]) c = ['r', 'y', 'b', 'lime'] s = [24, 15, 19, 29] # Test image - scatter plot with Decimal() input ax = fig_test.subplots() ax.scatter(x, y, c=c, s=s) # Reference image ax = fig_ref.subplots() ax.scatter(x0, y0, c=c, s=s) def test_scatter_color(self): # Try to catch cases where 'c' kwarg should have been used. with pytest.raises(ValueError): plt.scatter([1, 2], [1, 2], color=[0.1, 0.2]) with pytest.raises(ValueError): plt.scatter([1, 2, 3], [1, 2, 3], color=[1, 2, 3]) def test_scatter_unfilled(self): coll = plt.scatter([0, 1, 2], [1, 3, 2], c=['0.1', '0.3', '0.5'], marker=mmarkers.MarkerStyle('o', fillstyle='none'), linewidths=[1.1, 1.2, 1.3]) assert coll.get_facecolors().shape == (0, 4) # no facecolors assert_array_equal(coll.get_edgecolors(), [[0.1, 0.1, 0.1, 1], [0.3, 0.3, 0.3, 1], [0.5, 0.5, 0.5, 1]]) assert_array_equal(coll.get_linewidths(), [1.1, 1.2, 1.3]) @pytest.mark.style('default') def test_scatter_unfillable(self): coll = plt.scatter([0, 1, 2], [1, 3, 2], c=['0.1', '0.3', '0.5'], marker='x', linewidths=[1.1, 1.2, 1.3]) assert_array_equal(coll.get_facecolors(), coll.get_edgecolors()) assert_array_equal(coll.get_edgecolors(), [[0.1, 0.1, 0.1, 1], [0.3, 0.3, 0.3, 1], [0.5, 0.5, 0.5, 1]]) assert_array_equal(coll.get_linewidths(), [1.1, 1.2, 1.3]) def test_scatter_size_arg_size(self): x = np.arange(4) with pytest.raises(ValueError, match='same size as x and y'): plt.scatter(x, x, x[1:]) with pytest.raises(ValueError, match='same size as x and y'): plt.scatter(x[1:], x[1:], x) with pytest.raises(ValueError, match='float array-like'): plt.scatter(x, x, 'foo') def test_scatter_edgecolor_RGB(self): # Github issue 19066 coll = plt.scatter([1, 2, 3], [1, np.nan, np.nan], edgecolor=(1, 0, 0)) assert mcolors.same_color(coll.get_edgecolor(), (1, 0, 0)) coll = plt.scatter([1, 2, 3, 4], [1, np.nan, np.nan, 1], edgecolor=(1, 0, 0, 1)) assert mcolors.same_color(coll.get_edgecolor(), (1, 0, 0, 1)) @check_figures_equal(extensions=["png"]) def test_scatter_invalid_color(self, fig_test, fig_ref): ax = fig_test.subplots() cmap = plt.get_cmap("viridis", 16) cmap.set_bad("k", 1) # Set a nonuniform size to prevent the last call to `scatter` (plotting # the invalid points separately in fig_ref) from using the marker # stamping fast path, which would result in slightly offset markers. ax.scatter(range(4), range(4), c=[1, np.nan, 2, np.nan], s=[1, 2, 3, 4], cmap=cmap, plotnonfinite=True) ax = fig_ref.subplots() cmap = plt.get_cmap("viridis", 16) ax.scatter([0, 2], [0, 2], c=[1, 2], s=[1, 3], cmap=cmap) ax.scatter([1, 3], [1, 3], s=[2, 4], color="k") @check_figures_equal(extensions=["png"]) def test_scatter_no_invalid_color(self, fig_test, fig_ref): # With plotninfinite=False we plot only 2 points. ax = fig_test.subplots() cmap = plt.get_cmap("viridis", 16) cmap.set_bad("k", 1) ax.scatter(range(4), range(4), c=[1, np.nan, 2, np.nan], s=[1, 2, 3, 4], cmap=cmap, plotnonfinite=False) ax = fig_ref.subplots() ax.scatter([0, 2], [0, 2], c=[1, 2], s=[1, 3], cmap=cmap) @check_figures_equal(extensions=["png"]) def test_scatter_norm_vminvmax(self, fig_test, fig_ref): """Parameters vmin, vmax should be ignored if norm is given.""" x = [1, 2, 3] ax = fig_ref.subplots() ax.scatter(x, x, c=x, vmin=0, vmax=5) ax = fig_test.subplots() with pytest.warns(MatplotlibDeprecationWarning, match="Passing parameters norm and vmin/vmax " "simultaneously is deprecated."): ax.scatter(x, x, c=x, norm=mcolors.Normalize(-10, 10), vmin=0, vmax=5) @check_figures_equal(extensions=["png"]) def test_scatter_single_point(self, fig_test, fig_ref): ax = fig_test.subplots() ax.scatter(1, 1, c=1) ax = fig_ref.subplots() ax.scatter([1], [1], c=[1]) @check_figures_equal(extensions=["png"]) def test_scatter_different_shapes(self, fig_test, fig_ref): x = np.arange(10) ax = fig_test.subplots() ax.scatter(x, x.reshape(2, 5), c=x.reshape(5, 2)) ax = fig_ref.subplots() ax.scatter(x.reshape(5, 2), x, c=x.reshape(2, 5)) # Parameters for *test_scatter_c*. NB: assuming that the # scatter plot will have 4 elements. The tuple scheme is: # (*c* parameter case, exception regexp key or None if no exception) params_test_scatter_c = [ # single string: ('0.5', None), # Single letter-sequences (["rgby"], "conversion"), # Special cases ("red", None), ("none", None), (None, None), (["r", "g", "b", "none"], None), # Non-valid color spec (FWIW, 'jaune' means yellow in French) ("jaune", "conversion"), (["jaune"], "conversion"), # wrong type before wrong size (["jaune"]*4, "conversion"), # Value-mapping like ([0.5]*3, None), # should emit a warning for user's eyes though ([0.5]*4, None), # NB: no warning as matching size allows mapping ([0.5]*5, "shape"), # list of strings: (['0.5', '0.4', '0.6', '0.7'], None), (['0.5', 'red', '0.6', 'C5'], None), (['0.5', 0.5, '0.6', 'C5'], "conversion"), # RGB values ([[1, 0, 0]], None), ([[1, 0, 0]]*3, "shape"), ([[1, 0, 0]]*4, None), ([[1, 0, 0]]*5, "shape"), # RGBA values ([[1, 0, 0, 0.5]], None), ([[1, 0, 0, 0.5]]*3, "shape"), ([[1, 0, 0, 0.5]]*4, None), ([[1, 0, 0, 0.5]]*5, "shape"), # Mix of valid color specs ([[1, 0, 0, 0.5]]*3 + [[1, 0, 0]], None), ([[1, 0, 0, 0.5], "red", "0.0"], "shape"), ([[1, 0, 0, 0.5], "red", "0.0", "C5"], None), ([[1, 0, 0, 0.5], "red", "0.0", "C5", [0, 1, 0]], "shape"), # Mix of valid and non valid color specs ([[1, 0, 0, 0.5], "red", "jaune"], "conversion"), ([[1, 0, 0, 0.5], "red", "0.0", "jaune"], "conversion"), ([[1, 0, 0, 0.5], "red", "0.0", "C5", "jaune"], "conversion"), ] @pytest.mark.parametrize('c_case, re_key', params_test_scatter_c) def test_scatter_c(self, c_case, re_key): def get_next_color(): return 'blue' # currently unused xsize = 4 # Additional checking of *c* (introduced in #11383). REGEXP = { "shape": "^'c' argument has [0-9]+ elements", # shape mismatch "conversion": "^'c' argument must be a color", # bad vals } if re_key is None: mpl.axes.Axes._parse_scatter_color_args( c=c_case, edgecolors="black", kwargs={}, xsize=xsize, get_next_color_func=get_next_color) else: with pytest.raises(ValueError, match=REGEXP[re_key]): mpl.axes.Axes._parse_scatter_color_args( c=c_case, edgecolors="black", kwargs={}, xsize=xsize, get_next_color_func=get_next_color) @pytest.mark.style('default') @check_figures_equal(extensions=["png"]) def test_scatter_single_color_c(self, fig_test, fig_ref): rgb = [[1, 0.5, 0.05]] rgba = [[1, 0.5, 0.05, .5]] # set via color kwarg ax_ref = fig_ref.subplots() ax_ref.scatter(np.ones(3), range(3), color=rgb) ax_ref.scatter(np.ones(4)*2, range(4), color=rgba) # set via broadcasting via c ax_test = fig_test.subplots() ax_test.scatter(np.ones(3), range(3), c=rgb) ax_test.scatter(np.ones(4)*2, range(4), c=rgba) def test_scatter_linewidths(self): x = np.arange(5) fig, ax = plt.subplots() for i in range(3): pc = ax.scatter(x, np.full(5, i), c=f'C{i}', marker='x', s=100, linewidths=i + 1) assert pc.get_linewidths() == i + 1 pc = ax.scatter(x, np.full(5, 3), c='C3', marker='x', s=100, linewidths=[*range(1, 5), None]) assert_array_equal(pc.get_linewidths(), [*range(1, 5), mpl.rcParams['lines.linewidth']]) def _params(c=None, xsize=2, *, edgecolors=None, **kwargs): return (c, edgecolors, kwargs if kwargs is not None else {}, xsize) _result = namedtuple('_result', 'c, colors') @pytest.mark.parametrize( 'params, expected_result', [(_params(), _result(c='b', colors=np.array([[0, 0, 1, 1]]))), (_params(c='r'), _result(c='r', colors=np.array([[1, 0, 0, 1]]))), (_params(c='r', colors='b'), _result(c='r', colors=np.array([[1, 0, 0, 1]]))), # color (_params(color='b'), _result(c='b', colors=np.array([[0, 0, 1, 1]]))), (_params(color=['b', 'g']), _result(c=['b', 'g'], colors=np.array([[0, 0, 1, 1], [0, .5, 0, 1]]))), ]) def test_parse_scatter_color_args(params, expected_result): def get_next_color(): return 'blue' # currently unused c, colors, _edgecolors = mpl.axes.Axes._parse_scatter_color_args( *params, get_next_color_func=get_next_color) assert c == expected_result.c assert_allclose(colors, expected_result.colors) del _params del _result @pytest.mark.parametrize( 'kwargs, expected_edgecolors', [(dict(), None), (dict(c='b'), None), (dict(edgecolors='r'), 'r'), (dict(edgecolors=['r', 'g']), ['r', 'g']), (dict(edgecolor='r'), 'r'), (dict(edgecolors='face'), 'face'), (dict(edgecolors='none'), 'none'), (dict(edgecolor='r', edgecolors='g'), 'r'), (dict(c='b', edgecolor='r', edgecolors='g'), 'r'), (dict(color='r'), 'r'), (dict(color='r', edgecolor='g'), 'g'), ]) def test_parse_scatter_color_args_edgecolors(kwargs, expected_edgecolors): def get_next_color(): return 'blue' # currently unused c = kwargs.pop('c', None) edgecolors = kwargs.pop('edgecolors', None) _, _, result_edgecolors = \ mpl.axes.Axes._parse_scatter_color_args( c, edgecolors, kwargs, xsize=2, get_next_color_func=get_next_color) assert result_edgecolors == expected_edgecolors def test_parse_scatter_color_args_error(): def get_next_color(): return 'blue' # currently unused with pytest.raises(ValueError, match="RGBA values should be within 0-1 range"): c = np.array([[0.1, 0.2, 0.7], [0.2, 0.4, 1.4]]) # value > 1 mpl.axes.Axes._parse_scatter_color_args( c, None, kwargs={}, xsize=2, get_next_color_func=get_next_color) def test_as_mpl_axes_api(): # tests the _as_mpl_axes api from matplotlib.projections.polar import PolarAxes class Polar: def __init__(self): self.theta_offset = 0 def _as_mpl_axes(self): # implement the matplotlib axes interface return PolarAxes, {'theta_offset': self.theta_offset} prj = Polar() prj2 = Polar() prj2.theta_offset = np.pi prj3 = Polar() # testing axes creation with plt.axes ax = plt.axes([0, 0, 1, 1], projection=prj) assert type(ax) == PolarAxes with pytest.warns( MatplotlibDeprecationWarning, match=r'Calling gca\(\) with keyword arguments was deprecated'): ax_via_gca = plt.gca(projection=prj) assert ax_via_gca is ax plt.close() # testing axes creation with gca with pytest.warns( MatplotlibDeprecationWarning, match=r'Calling gca\(\) with keyword arguments was deprecated'): ax = plt.gca(projection=prj) assert type(ax) == mpl.axes._subplots.subplot_class_factory(PolarAxes) with pytest.warns( MatplotlibDeprecationWarning, match=r'Calling gca\(\) with keyword arguments was deprecated'): ax_via_gca = plt.gca(projection=prj) assert ax_via_gca is ax # try getting the axes given a different polar projection with pytest.warns( MatplotlibDeprecationWarning, match=r'Calling gca\(\) with keyword arguments was deprecated'): ax_via_gca = plt.gca(projection=prj2) assert ax_via_gca is ax assert ax.get_theta_offset() == 0 # try getting the axes given an == (not is) polar projection with pytest.warns( MatplotlibDeprecationWarning, match=r'Calling gca\(\) with keyword arguments was deprecated'): ax_via_gca = plt.gca(projection=prj3) assert ax_via_gca is ax plt.close() # testing axes creation with subplot ax = plt.subplot(121, projection=prj) assert type(ax) == mpl.axes._subplots.subplot_class_factory(PolarAxes) plt.close() def test_pyplot_axes(): # test focusing of Axes in other Figure fig1, ax1 = plt.subplots() fig2, ax2 = plt.subplots() plt.sca(ax1) assert ax1 is plt.gca() assert fig1 is plt.gcf() plt.close(fig1) plt.close(fig2) @image_comparison(['log_scales']) def test_log_scales(): fig, ax = plt.subplots() ax.plot(np.log(np.linspace(0.1, 100))) ax.set_yscale('log', base=5.5) ax.invert_yaxis() ax.set_xscale('log', base=9.0) def test_log_scales_no_data(): _, ax = plt.subplots() ax.set(xscale="log", yscale="log") ax.xaxis.set_major_locator(mticker.MultipleLocator(1)) assert ax.get_xlim() == ax.get_ylim() == (1, 10) def test_log_scales_invalid(): fig, ax = plt.subplots() ax.set_xscale('log') with pytest.warns(UserWarning, match='Attempted to set non-positive'): ax.set_xlim(-1, 10) ax.set_yscale('log') with pytest.warns(UserWarning, match='Attempted to set non-positive'): ax.set_ylim(-1, 10) @image_comparison(['stackplot_test_image', 'stackplot_test_image']) def test_stackplot(): fig = plt.figure() x = np.linspace(0, 10, 10) y1 = 1.0 * x y2 = 2.0 * x + 1 y3 = 3.0 * x + 2 ax = fig.add_subplot(1, 1, 1) ax.stackplot(x, y1, y2, y3) ax.set_xlim((0, 10)) ax.set_ylim((0, 70)) # Reuse testcase from above for a labeled data test data = {"x": x, "y1": y1, "y2": y2, "y3": y3} fig, ax = plt.subplots() ax.stackplot("x", "y1", "y2", "y3", data=data) ax.set_xlim((0, 10)) ax.set_ylim((0, 70)) @image_comparison(['stackplot_test_baseline'], remove_text=True) def test_stackplot_baseline(): np.random.seed(0) def layers(n, m): a = np.zeros((m, n)) for i in range(n): for j in range(5): x = 1 / (.1 + np.random.random()) y = 2 * np.random.random() - .5 z = 10 / (.1 + np.random.random()) a[:, i] += x * np.exp(-((np.arange(m) / m - y) * z) ** 2) return a d = layers(3, 100) d[50, :] = 0 # test for fixed weighted wiggle (issue #6313) fig, axs = plt.subplots(2, 2) axs[0, 0].stackplot(range(100), d.T, baseline='zero') axs[0, 1].stackplot(range(100), d.T, baseline='sym') axs[1, 0].stackplot(range(100), d.T, baseline='wiggle') axs[1, 1].stackplot(range(100), d.T, baseline='weighted_wiggle') def _bxp_test_helper( stats_kwargs={}, transform_stats=lambda s: s, bxp_kwargs={}): np.random.seed(937) logstats = mpl.cbook.boxplot_stats( np.random.lognormal(mean=1.25, sigma=1., size=(37, 4)), **stats_kwargs) fig, ax = plt.subplots() if bxp_kwargs.get('vert', True): ax.set_yscale('log') else: ax.set_xscale('log') # Work around baseline images generate back when bxp did not respect the # boxplot.boxprops.linewidth rcParam when patch_artist is False. if not bxp_kwargs.get('patch_artist', False): mpl.rcParams['boxplot.boxprops.linewidth'] = \ mpl.rcParams['lines.linewidth'] ax.bxp(transform_stats(logstats), **bxp_kwargs) @image_comparison(['bxp_baseline.png'], savefig_kwarg={'dpi': 40}, style='default') def test_bxp_baseline(): _bxp_test_helper() @image_comparison(['bxp_rangewhis.png'], savefig_kwarg={'dpi': 40}, style='default') def test_bxp_rangewhis(): _bxp_test_helper(stats_kwargs=dict(whis=[0, 100])) @image_comparison(['bxp_percentilewhis.png'], savefig_kwarg={'dpi': 40}, style='default') def test_bxp_percentilewhis(): _bxp_test_helper(stats_kwargs=dict(whis=[5, 95])) @image_comparison(['bxp_with_xlabels.png'], savefig_kwarg={'dpi': 40}, style='default') def test_bxp_with_xlabels(): def transform(stats): for s, label in zip(stats, list('ABCD')): s['label'] = label return stats _bxp_test_helper(transform_stats=transform) @image_comparison(['bxp_horizontal.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default', tol=0.1) def test_bxp_horizontal(): _bxp_test_helper(bxp_kwargs=dict(vert=False)) @image_comparison(['bxp_with_ylabels.png'], savefig_kwarg={'dpi': 40}, style='default', tol=0.1) def test_bxp_with_ylabels(): def transform(stats): for s, label in zip(stats, list('ABCD')): s['label'] = label return stats _bxp_test_helper(transform_stats=transform, bxp_kwargs=dict(vert=False)) @image_comparison(['bxp_patchartist.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_patchartist(): _bxp_test_helper(bxp_kwargs=dict(patch_artist=True)) @image_comparison(['bxp_custompatchartist.png'], remove_text=True, savefig_kwarg={'dpi': 100}, style='default') def test_bxp_custompatchartist(): _bxp_test_helper(bxp_kwargs=dict( patch_artist=True, boxprops=dict(facecolor='yellow', edgecolor='green', ls=':'))) @image_comparison(['bxp_customoutlier.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_customoutlier(): _bxp_test_helper(bxp_kwargs=dict( flierprops=dict(linestyle='none', marker='d', mfc='g'))) @image_comparison(['bxp_withmean_custompoint.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_showcustommean(): _bxp_test_helper(bxp_kwargs=dict( showmeans=True, meanprops=dict(linestyle='none', marker='d', mfc='green'), )) @image_comparison(['bxp_custombox.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_custombox(): _bxp_test_helper(bxp_kwargs=dict( boxprops=dict(linestyle='--', color='b', lw=3))) @image_comparison(['bxp_custommedian.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_custommedian(): _bxp_test_helper(bxp_kwargs=dict( medianprops=dict(linestyle='--', color='b', lw=3))) @image_comparison(['bxp_customcap.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_customcap(): _bxp_test_helper(bxp_kwargs=dict( capprops=dict(linestyle='--', color='g', lw=3))) @image_comparison(['bxp_customwhisker.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_customwhisker(): _bxp_test_helper(bxp_kwargs=dict( whiskerprops=dict(linestyle='-', color='m', lw=3))) @image_comparison(['bxp_withnotch.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_shownotches(): _bxp_test_helper(bxp_kwargs=dict(shownotches=True)) @image_comparison(['bxp_nocaps.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_nocaps(): _bxp_test_helper(bxp_kwargs=dict(showcaps=False)) @image_comparison(['bxp_nobox.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_nobox(): _bxp_test_helper(bxp_kwargs=dict(showbox=False)) @image_comparison(['bxp_no_flier_stats.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_no_flier_stats(): def transform(stats): for s in stats: s.pop('fliers', None) return stats _bxp_test_helper(transform_stats=transform, bxp_kwargs=dict(showfliers=False)) @image_comparison(['bxp_withmean_point.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_showmean(): _bxp_test_helper(bxp_kwargs=dict(showmeans=True, meanline=False)) @image_comparison(['bxp_withmean_line.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_showmeanasline(): _bxp_test_helper(bxp_kwargs=dict(showmeans=True, meanline=True)) @image_comparison(['bxp_scalarwidth.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_scalarwidth(): _bxp_test_helper(bxp_kwargs=dict(widths=.25)) @image_comparison(['bxp_customwidths.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_customwidths(): _bxp_test_helper(bxp_kwargs=dict(widths=[0.10, 0.25, 0.65, 0.85])) @image_comparison(['bxp_custompositions.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_bxp_custompositions(): _bxp_test_helper(bxp_kwargs=dict(positions=[1, 5, 6, 7])) def test_bxp_bad_widths(): with pytest.raises(ValueError): _bxp_test_helper(bxp_kwargs=dict(widths=[1])) def test_bxp_bad_positions(): with pytest.raises(ValueError): _bxp_test_helper(bxp_kwargs=dict(positions=[2, 3])) @image_comparison(['boxplot', 'boxplot'], tol=1.28, style='default') def test_boxplot(): # Randomness used for bootstrapping. np.random.seed(937) x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, ax = plt.subplots() ax.boxplot([x, x], bootstrap=10000, notch=1) ax.set_ylim((-30, 30)) # Reuse testcase from above for a labeled data test data = {"x": [x, x]} fig, ax = plt.subplots() ax.boxplot("x", bootstrap=10000, notch=1, data=data) ax.set_ylim((-30, 30)) @image_comparison(['boxplot_sym2.png'], remove_text=True, style='default') def test_boxplot_sym2(): # Randomness used for bootstrapping. np.random.seed(937) x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, [ax1, ax2] = plt.subplots(1, 2) ax1.boxplot([x, x], bootstrap=10000, sym='^') ax1.set_ylim((-30, 30)) ax2.boxplot([x, x], bootstrap=10000, sym='g') ax2.set_ylim((-30, 30)) @image_comparison(['boxplot_sym.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_boxplot_sym(): x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, ax = plt.subplots() ax.boxplot([x, x], sym='gs') ax.set_ylim((-30, 30)) @image_comparison(['boxplot_autorange_false_whiskers.png', 'boxplot_autorange_true_whiskers.png'], style='default') def test_boxplot_autorange_whiskers(): # Randomness used for bootstrapping. np.random.seed(937) x = np.ones(140) x = np.hstack([0, x, 2]) fig1, ax1 = plt.subplots() ax1.boxplot([x, x], bootstrap=10000, notch=1) ax1.set_ylim((-5, 5)) fig2, ax2 = plt.subplots() ax2.boxplot([x, x], bootstrap=10000, notch=1, autorange=True) ax2.set_ylim((-5, 5)) def _rc_test_bxp_helper(ax, rc_dict): x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) with matplotlib.rc_context(rc_dict): ax.boxplot([x, x]) return ax @image_comparison(['boxplot_rc_parameters'], savefig_kwarg={'dpi': 100}, remove_text=True, tol=1, style='default') def test_boxplot_rc_parameters(): # Randomness used for bootstrapping. np.random.seed(937) fig, ax = plt.subplots(3) rc_axis0 = { 'boxplot.notch': True, 'boxplot.whiskers': [5, 95], 'boxplot.bootstrap': 10000, 'boxplot.flierprops.color': 'b', 'boxplot.flierprops.marker': 'o', 'boxplot.flierprops.markerfacecolor': 'g', 'boxplot.flierprops.markeredgecolor': 'b', 'boxplot.flierprops.markersize': 5, 'boxplot.flierprops.linestyle': '--', 'boxplot.flierprops.linewidth': 2.0, 'boxplot.boxprops.color': 'r', 'boxplot.boxprops.linewidth': 2.0, 'boxplot.boxprops.linestyle': '--', 'boxplot.capprops.color': 'c', 'boxplot.capprops.linewidth': 2.0, 'boxplot.capprops.linestyle': '--', 'boxplot.medianprops.color': 'k', 'boxplot.medianprops.linewidth': 2.0, 'boxplot.medianprops.linestyle': '--', } rc_axis1 = { 'boxplot.vertical': False, 'boxplot.whiskers': [0, 100], 'boxplot.patchartist': True, } rc_axis2 = { 'boxplot.whiskers': 2.0, 'boxplot.showcaps': False, 'boxplot.showbox': False, 'boxplot.showfliers': False, 'boxplot.showmeans': True, 'boxplot.meanline': True, 'boxplot.meanprops.color': 'c', 'boxplot.meanprops.linewidth': 2.0, 'boxplot.meanprops.linestyle': '--', 'boxplot.whiskerprops.color': 'r', 'boxplot.whiskerprops.linewidth': 2.0, 'boxplot.whiskerprops.linestyle': '-.', } dict_list = [rc_axis0, rc_axis1, rc_axis2] for axis, rc_axis in zip(ax, dict_list): _rc_test_bxp_helper(axis, rc_axis) assert (matplotlib.patches.PathPatch in [type(t) for t in ax[1].get_children()]) @image_comparison(['boxplot_with_CIarray.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_boxplot_with_CIarray(): # Randomness used for bootstrapping. np.random.seed(937) x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, ax = plt.subplots() CIs = np.array([[-1.5, 3.], [-1., 3.5]]) # show a boxplot with Matplotlib medians and confidence intervals, and # another with manual values ax.boxplot([x, x], bootstrap=10000, usermedians=[None, 1.0], conf_intervals=CIs, notch=1) ax.set_ylim((-30, 30)) @image_comparison(['boxplot_no_inverted_whisker.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_boxplot_no_weird_whisker(): x = np.array([3, 9000, 150, 88, 350, 200000, 1400, 960], dtype=np.float64) ax1 = plt.axes() ax1.boxplot(x) ax1.set_yscale('log') ax1.yaxis.grid(False, which='minor') ax1.xaxis.grid(False) def test_boxplot_bad_medians(): x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, ax = plt.subplots() with pytest.raises(ValueError): ax.boxplot(x, usermedians=[1, 2]) with pytest.raises(ValueError): ax.boxplot([x, x], usermedians=[[1, 2], [1, 2]]) def test_boxplot_bad_ci(): x = np.linspace(-7, 7, 140) x = np.hstack([-25, x, 25]) fig, ax = plt.subplots() with pytest.raises(ValueError): ax.boxplot([x, x], conf_intervals=[[1, 2]]) with pytest.raises(ValueError): ax.boxplot([x, x], conf_intervals=[[1, 2], [1]]) def test_boxplot_zorder(): x = np.arange(10) fix, ax = plt.subplots() assert ax.boxplot(x)['boxes'][0].get_zorder() == 2 assert ax.boxplot(x, zorder=10)['boxes'][0].get_zorder() == 10 def test_boxplot_marker_behavior(): plt.rcParams['lines.marker'] = 's' plt.rcParams['boxplot.flierprops.marker'] = 'o' plt.rcParams['boxplot.meanprops.marker'] = '^' fig, ax = plt.subplots() test_data = np.arange(100) test_data[-1] = 150 # a flier point bxp_handle = ax.boxplot(test_data, showmeans=True) for bxp_lines in ['whiskers', 'caps', 'boxes', 'medians']: for each_line in bxp_handle[bxp_lines]: # Ensure that the rcParams['lines.marker'] is overridden by '' assert each_line.get_marker() == '' # Ensure that markers for fliers and means aren't overridden with '' assert bxp_handle['fliers'][0].get_marker() == 'o' assert bxp_handle['means'][0].get_marker() == '^' @image_comparison(['boxplot_mod_artists_after_plotting.png'], remove_text=True, savefig_kwarg={'dpi': 40}, style='default') def test_boxplot_mod_artist_after_plotting(): x = [0.15, 0.11, 0.06, 0.06, 0.12, 0.56, -0.56] fig, ax = plt.subplots() bp = ax.boxplot(x, sym="o") for key in bp: for obj in bp[key]: obj.set_color('green') @image_comparison(['violinplot_vert_baseline.png', 'violinplot_vert_baseline.png']) def test_vert_violinplot_baseline(): # First 9 digits of frac(sqrt(2)) np.random.seed(414213562) data = [np.random.normal(size=100) for _ in range(4)] ax = plt.axes() ax.violinplot(data, positions=range(4), showmeans=0, showextrema=0, showmedians=0) # Reuse testcase from above for a labeled data test data = {"d": data} fig, ax = plt.subplots() ax.violinplot("d", positions=range(4), showmeans=0, showextrema=0, showmedians=0, data=data) @image_comparison(['violinplot_vert_showmeans.png']) def test_vert_violinplot_showmeans(): ax = plt.axes() # First 9 digits of frac(sqrt(3)) np.random.seed(732050807) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), showmeans=1, showextrema=0, showmedians=0) @image_comparison(['violinplot_vert_showextrema.png']) def test_vert_violinplot_showextrema(): ax = plt.axes() # First 9 digits of frac(sqrt(5)) np.random.seed(236067977) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), showmeans=0, showextrema=1, showmedians=0) @image_comparison(['violinplot_vert_showmedians.png']) def test_vert_violinplot_showmedians(): ax = plt.axes() # First 9 digits of frac(sqrt(7)) np.random.seed(645751311) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), showmeans=0, showextrema=0, showmedians=1) @image_comparison(['violinplot_vert_showall.png']) def test_vert_violinplot_showall(): ax = plt.axes() # First 9 digits of frac(sqrt(11)) np.random.seed(316624790) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), showmeans=1, showextrema=1, showmedians=1, quantiles=[[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6]]) @image_comparison(['violinplot_vert_custompoints_10.png']) def test_vert_violinplot_custompoints_10(): ax = plt.axes() # First 9 digits of frac(sqrt(13)) np.random.seed(605551275) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), showmeans=0, showextrema=0, showmedians=0, points=10) @image_comparison(['violinplot_vert_custompoints_200.png']) def test_vert_violinplot_custompoints_200(): ax = plt.axes() # First 9 digits of frac(sqrt(17)) np.random.seed(123105625) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), showmeans=0, showextrema=0, showmedians=0, points=200) @image_comparison(['violinplot_horiz_baseline.png']) def test_horiz_violinplot_baseline(): ax = plt.axes() # First 9 digits of frac(sqrt(19)) np.random.seed(358898943) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=0, showmedians=0) @image_comparison(['violinplot_horiz_showmedians.png']) def test_horiz_violinplot_showmedians(): ax = plt.axes() # First 9 digits of frac(sqrt(23)) np.random.seed(795831523) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=0, showmedians=1) @image_comparison(['violinplot_horiz_showmeans.png']) def test_horiz_violinplot_showmeans(): ax = plt.axes() # First 9 digits of frac(sqrt(29)) np.random.seed(385164807) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=1, showextrema=0, showmedians=0) @image_comparison(['violinplot_horiz_showextrema.png']) def test_horiz_violinplot_showextrema(): ax = plt.axes() # First 9 digits of frac(sqrt(31)) np.random.seed(567764362) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=1, showmedians=0) @image_comparison(['violinplot_horiz_showall.png']) def test_horiz_violinplot_showall(): ax = plt.axes() # First 9 digits of frac(sqrt(37)) np.random.seed(82762530) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=1, showextrema=1, showmedians=1, quantiles=[[0.1, 0.9], [0.2, 0.8], [0.3, 0.7], [0.4, 0.6]]) @image_comparison(['violinplot_horiz_custompoints_10.png']) def test_horiz_violinplot_custompoints_10(): ax = plt.axes() # First 9 digits of frac(sqrt(41)) np.random.seed(403124237) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=0, showmedians=0, points=10) @image_comparison(['violinplot_horiz_custompoints_200.png']) def test_horiz_violinplot_custompoints_200(): ax = plt.axes() # First 9 digits of frac(sqrt(43)) np.random.seed(557438524) data = [np.random.normal(size=100) for _ in range(4)] ax.violinplot(data, positions=range(4), vert=False, showmeans=0, showextrema=0, showmedians=0, points=200) def test_violinplot_bad_positions(): ax = plt.axes() # First 9 digits of frac(sqrt(47)) np.random.seed(855654600) data = [np.random.normal(size=100) for _ in range(4)] with pytest.raises(ValueError): ax.violinplot(data, positions=range(5)) def test_violinplot_bad_widths(): ax = plt.axes() # First 9 digits of frac(sqrt(53)) np.random.seed(280109889) data = [np.random.normal(size=100) for _ in range(4)] with pytest.raises(ValueError): ax.violinplot(data, positions=range(4), widths=[1, 2, 3]) def test_violinplot_bad_quantiles(): ax = plt.axes() # First 9 digits of frac(sqrt(73)) np.random.seed(544003745) data = [np.random.normal(size=100)] # Different size quantile list and plots with pytest.raises(ValueError): ax.violinplot(data, quantiles=[[0.1, 0.2], [0.5, 0.7]]) def test_violinplot_outofrange_quantiles(): ax = plt.axes() # First 9 digits of frac(sqrt(79)) np.random.seed(888194417) data = [np.random.normal(size=100)] # Quantile value above 100 with pytest.raises(ValueError): ax.violinplot(data, quantiles=[[0.1, 0.2, 0.3, 1.05]]) # Quantile value below 0 with pytest.raises(ValueError): ax.violinplot(data, quantiles=[[-0.05, 0.2, 0.3, 0.75]]) @check_figures_equal(extensions=["png"]) def test_violinplot_single_list_quantiles(fig_test, fig_ref): # Ensures quantile list for 1D can be passed in as single list # First 9 digits of frac(sqrt(83)) np.random.seed(110433579) data = [np.random.normal(size=100)] # Test image ax = fig_test.subplots() ax.violinplot(data, quantiles=[0.1, 0.3, 0.9]) # Reference image ax = fig_ref.subplots() ax.violinplot(data, quantiles=[[0.1, 0.3, 0.9]]) @check_figures_equal(extensions=["png"]) def test_violinplot_pandas_series(fig_test, fig_ref, pd): np.random.seed(110433579) s1 = pd.Series(np.random.normal(size=7), index=[9, 8, 7, 6, 5, 4, 3]) s2 = pd.Series(np.random.normal(size=9), index=list('ABCDEFGHI')) s3 = pd.Series(np.random.normal(size=11)) fig_test.subplots().violinplot([s1, s2, s3]) fig_ref.subplots().violinplot([s1.values, s2.values, s3.values]) def test_manage_xticks(): _, ax = plt.subplots() ax.set_xlim(0, 4) old_xlim = ax.get_xlim() np.random.seed(0) y1 = np.random.normal(10, 3, 20) y2 = np.random.normal(3, 1, 20) ax.boxplot([y1, y2], positions=[1, 2], manage_ticks=False) new_xlim = ax.get_xlim() assert_array_equal(old_xlim, new_xlim) def test_boxplot_not_single(): fig, ax = plt.subplots() ax.boxplot(np.random.rand(100), positions=[3]) ax.boxplot(np.random.rand(100), positions=[5]) fig.canvas.draw() assert ax.get_xlim() == (2.5, 5.5) assert list(ax.get_xticks()) == [3, 5] assert [t.get_text() for t in ax.get_xticklabels()] == ["3", "5"] def test_tick_space_size_0(): # allow font size to be zero, which affects ticks when there is # no other text in the figure. plt.plot([0, 1], [0, 1]) matplotlib.rcParams.update({'font.size': 0}) b = io.BytesIO() plt.savefig(b, dpi=80, format='raw') @image_comparison(['errorbar_basic', 'errorbar_mixed', 'errorbar_basic']) def test_errorbar(): x = np.arange(0.1, 4, 0.5) y = np.exp(-x) yerr = 0.1 + 0.2*np.sqrt(x) xerr = 0.1 + yerr # First illustrate basic pyplot interface, using defaults where possible. fig = plt.figure() ax = fig.gca() ax.errorbar(x, y, xerr=0.2, yerr=0.4) ax.set_title("Simplest errorbars, 0.2 in x, 0.4 in y") # Now switch to a more OO interface to exercise more features. fig, axs = plt.subplots(nrows=2, ncols=2, sharex=True) ax = axs[0, 0] ax.errorbar(x, y, yerr=yerr, fmt='o') ax.set_title('Vert. symmetric') # With 4 subplots, reduce the number of axis ticks to avoid crowding. ax.locator_params(nbins=4) ax = axs[0, 1] ax.errorbar(x, y, xerr=xerr, fmt='o', alpha=0.4) ax.set_title('Hor. symmetric w/ alpha') ax = axs[1, 0] ax.errorbar(x, y, yerr=[yerr, 2*yerr], xerr=[xerr, 2*xerr], fmt='--o') ax.set_title('H, V asymmetric') ax = axs[1, 1] ax.set_yscale('log') # Here we have to be careful to keep all y values positive: ylower = np.maximum(1e-2, y - yerr) yerr_lower = y - ylower ax.errorbar(x, y, yerr=[yerr_lower, 2*yerr], xerr=xerr, fmt='o', ecolor='g', capthick=2) ax.set_title('Mixed sym., log y') fig.suptitle('Variable errorbars') # Reuse the first testcase from above for a labeled data test data = {"x": x, "y": y} fig = plt.figure() ax = fig.gca() ax.errorbar("x", "y", xerr=0.2, yerr=0.4, data=data) ax.set_title("Simplest errorbars, 0.2 in x, 0.4 in y") def test_errorbar_colorcycle(): f, ax = plt.subplots() x = np.arange(10) y = 2*x e1, _, _ = ax.errorbar(x, y, c=None) e2, _, _ = ax.errorbar(x, 2*y, c=None) ln1, = ax.plot(x, 4*y) assert mcolors.to_rgba(e1.get_color()) == mcolors.to_rgba('C0') assert mcolors.to_rgba(e2.get_color()) == mcolors.to_rgba('C1') assert mcolors.to_rgba(ln1.get_color()) == mcolors.to_rgba('C2') @check_figures_equal() def test_errorbar_cycle_ecolor(fig_test, fig_ref): x = np.arange(0.1, 4, 0.5) y = [np.exp(-x+n) for n in range(4)] axt = fig_test.subplots() axr = fig_ref.subplots() for yi, color in zip(y, ['C0', 'C1', 'C2', 'C3']): axt.errorbar(x, yi, yerr=(yi * 0.25), linestyle='-', marker='o', ecolor='black') axr.errorbar(x, yi, yerr=(yi * 0.25), linestyle='-', marker='o', color=color, ecolor='black') def test_errorbar_shape(): fig = plt.figure() ax = fig.gca() x = np.arange(0.1, 4, 0.5) y = np.exp(-x) yerr1 = 0.1 + 0.2*np.sqrt(x) yerr = np.vstack((yerr1, 2*yerr1)).T xerr = 0.1 + yerr with pytest.raises(ValueError): ax.errorbar(x, y, yerr=yerr, fmt='o') with pytest.raises(ValueError): ax.errorbar(x, y, xerr=xerr, fmt='o') with pytest.raises(ValueError): ax.errorbar(x, y, yerr=yerr, xerr=xerr, fmt='o') @image_comparison(['errorbar_limits']) def test_errorbar_limits(): x = np.arange(0.5, 5.5, 0.5) y = np.exp(-x) xerr = 0.1 yerr = 0.2 ls = 'dotted' fig, ax = plt.subplots() # standard error bars ax.errorbar(x, y, xerr=xerr, yerr=yerr, ls=ls, color='blue') # including upper limits uplims = np.zeros_like(x) uplims[[1, 5, 9]] = True ax.errorbar(x, y+0.5, xerr=xerr, yerr=yerr, uplims=uplims, ls=ls, color='green') # including lower limits lolims = np.zeros_like(x) lolims[[2, 4, 8]] = True ax.errorbar(x, y+1.0, xerr=xerr, yerr=yerr, lolims=lolims, ls=ls, color='red') # including upper and lower limits ax.errorbar(x, y+1.5, marker='o', ms=8, xerr=xerr, yerr=yerr, lolims=lolims, uplims=uplims, ls=ls, color='magenta') # including xlower and xupper limits xerr = 0.2 yerr = np.full_like(x, 0.2) yerr[[3, 6]] = 0.3 xlolims = lolims xuplims = uplims lolims = np.zeros_like(x) uplims = np.zeros_like(x) lolims[[6]] = True uplims[[3]] = True ax.errorbar(x, y+2.1, marker='o', ms=8, xerr=xerr, yerr=yerr, xlolims=xlolims, xuplims=xuplims, uplims=uplims, lolims=lolims, ls='none', mec='blue', capsize=0, color='cyan') ax.set_xlim((0, 5.5)) ax.set_title('Errorbar upper and lower limits') def test_errobar_nonefmt(): # Check that passing 'none' as a format still plots errorbars x = np.arange(5) y = np.arange(5) plotline, _, barlines = plt.errorbar(x, y, xerr=1, yerr=1, fmt='none') assert plotline is None for errbar in barlines: assert np.all(errbar.get_color() == mcolors.to_rgba('C0')) def test_errorbar_line_specific_kwargs(): # Check that passing line-specific keyword arguments will not result in # errors. x = np.arange(5) y = np.arange(5) plotline, _, _ = plt.errorbar(x, y, xerr=1, yerr=1, ls='None', marker='s', fillstyle='full', drawstyle='steps-mid', dash_capstyle='round', dash_joinstyle='miter', solid_capstyle='butt', solid_joinstyle='bevel') assert plotline.get_fillstyle() == 'full' assert plotline.get_drawstyle() == 'steps-mid' @check_figures_equal(extensions=['png']) def test_errorbar_with_prop_cycle(fig_test, fig_ref): ax = fig_ref.subplots() ax.errorbar(x=[2, 4, 10], y=[0, 1, 2], yerr=0.5, ls='--', marker='s', mfc='k') ax.errorbar(x=[2, 4, 10], y=[2, 3, 4], yerr=0.5, color='tab:green', ls=':', marker='s', mfc='y') ax.errorbar(x=[2, 4, 10], y=[4, 5, 6], yerr=0.5, fmt='tab:blue', ls='-.', marker='o', mfc='c') ax.set_xlim(1, 11) _cycle = cycler(ls=['--', ':', '-.'], marker=['s', 's', 'o'], mfc=['k', 'y', 'c'], color=['b', 'g', 'r']) plt.rc("axes", prop_cycle=_cycle) ax = fig_test.subplots() ax.errorbar(x=[2, 4, 10], y=[0, 1, 2], yerr=0.5) ax.errorbar(x=[2, 4, 10], y=[2, 3, 4], yerr=0.5, color='tab:green') ax.errorbar(x=[2, 4, 10], y=[4, 5, 6], yerr=0.5, fmt='tab:blue') ax.set_xlim(1, 11) def test_errorbar_every_invalid(): x = np.linspace(0, 1, 15) y = x * (1-x) yerr = y/6 ax = plt.figure().subplots() with pytest.raises(ValueError, match='not a tuple of two integers'): ax.errorbar(x, y, yerr, errorevery=(1, 2, 3)) with pytest.raises(ValueError, match='not a tuple of two integers'): ax.errorbar(x, y, yerr, errorevery=(1.3, 3)) with pytest.raises(ValueError, match='not a valid NumPy fancy index'): ax.errorbar(x, y, yerr, errorevery=[False, True]) with pytest.raises(ValueError, match='not a recognized value'): ax.errorbar(x, y, yerr, errorevery='foobar') @check_figures_equal() def test_errorbar_every(fig_test, fig_ref): x = np.linspace(0, 1, 15) y = x * (1-x) yerr = y/6 ax_ref = fig_ref.subplots() ax_test = fig_test.subplots() for color, shift in zip('rgbk', [0, 0, 2, 7]): y += .02 # Check errorevery using an explicit offset and step. ax_test.errorbar(x, y, yerr, errorevery=(shift, 4), capsize=4, c=color) # Using manual errorbars # n.b. errorbar draws the main plot at z=2.1 by default ax_ref.plot(x, y, c=color, zorder=2.1) ax_ref.errorbar(x[shift::4], y[shift::4], yerr[shift::4], capsize=4, c=color, fmt='none') # Check that markevery is propagated to line, without affecting errorbars. ax_test.errorbar(x, y + 0.1, yerr, markevery=(1, 4), capsize=4, fmt='o') ax_ref.plot(x[1::4], y[1::4] + 0.1, 'o', zorder=2.1) ax_ref.errorbar(x, y + 0.1, yerr, capsize=4, fmt='none') # Check that passing a slice to markevery/errorevery works. ax_test.errorbar(x, y + 0.2, yerr, errorevery=slice(2, None, 3), markevery=slice(2, None, 3), capsize=4, c='C0', fmt='o') ax_ref.plot(x[2::3], y[2::3] + 0.2, 'o', c='C0', zorder=2.1) ax_ref.errorbar(x[2::3], y[2::3] + 0.2, yerr[2::3], capsize=4, c='C0', fmt='none') # Check that passing an iterable to markevery/errorevery works. ax_test.errorbar(x, y + 0.2, yerr, errorevery=[False, True, False] * 5, markevery=[False, True, False] * 5, capsize=4, c='C1', fmt='o') ax_ref.plot(x[1::3], y[1::3] + 0.2, 'o', c='C1', zorder=2.1) ax_ref.errorbar(x[1::3], y[1::3] + 0.2, yerr[1::3], capsize=4, c='C1', fmt='none') @pytest.mark.parametrize('elinewidth', [[1, 2, 3], np.array([1, 2, 3]), 1]) def test_errorbar_linewidth_type(elinewidth): plt.errorbar([1, 2, 3], [1, 2, 3], yerr=[1, 2, 3], elinewidth=elinewidth) @image_comparison(['hist_stacked_stepfilled', 'hist_stacked_stepfilled']) def test_hist_stacked_stepfilled(): # make some data d1 = np.linspace(1, 3, 20) d2 = np.linspace(0, 10, 50) fig, ax = plt.subplots() ax.hist((d1, d2), histtype="stepfilled", stacked=True) # Reuse testcase from above for a labeled data test data = {"x": (d1, d2)} fig, ax = plt.subplots() ax.hist("x", histtype="stepfilled", stacked=True, data=data) @image_comparison(['hist_offset']) def test_hist_offset(): # make some data d1 = np.linspace(0, 10, 50) d2 = np.linspace(1, 3, 20) fig, ax = plt.subplots() ax.hist(d1, bottom=5) ax.hist(d2, bottom=15) @image_comparison(['hist_step.png'], remove_text=True) def test_hist_step(): # make some data d1 = np.linspace(1, 3, 20) fig, ax = plt.subplots() ax.hist(d1, histtype="step") ax.set_ylim(0, 10) ax.set_xlim(-1, 5) @image_comparison(['hist_step_horiz.png']) def test_hist_step_horiz(): # make some data d1 = np.linspace(0, 10, 50) d2 = np.linspace(1, 3, 20) fig, ax = plt.subplots() ax.hist((d1, d2), histtype="step", orientation="horizontal") @image_comparison(['hist_stacked_weights']) def test_hist_stacked_weighted(): # make some data d1 = np.linspace(0, 10, 50) d2 = np.linspace(1, 3, 20) w1 = np.linspace(0.01, 3.5, 50) w2 = np.linspace(0.05, 2., 20) fig, ax = plt.subplots() ax.hist((d1, d2), weights=(w1, w2), histtype="stepfilled", stacked=True) @pytest.mark.parametrize("use_line_collection", [True, False], ids=['w/ line collection', 'w/o line collection']) @image_comparison(['stem.png'], style='mpl20', remove_text=True) def test_stem(use_line_collection): x = np.linspace(0.1, 2 * np.pi, 100) fig, ax = plt.subplots() # Label is a single space to force a legend to be drawn, but to avoid any # text being drawn ax.stem(x, np.cos(x), linefmt='C2-.', markerfmt='k+', basefmt='C1-.', label=' ', use_line_collection=use_line_collection) ax.legend() def test_stem_args(): fig, ax = plt.subplots() x = list(range(10)) y = list(range(10)) # Test the call signatures ax.stem(y) ax.stem(x, y) ax.stem(x, y, 'r--') ax.stem(x, y, 'r--', basefmt='b--') def test_stem_dates(): fig, ax = plt.subplots(1, 1) xs = [dateutil.parser.parse("2013-9-28 11:00:00"), dateutil.parser.parse("2013-9-28 12:00:00")] ys = [100, 200] ax.stem(xs, ys, "*-") @pytest.mark.parametrize("use_line_collection", [True, False], ids=['w/ line collection', 'w/o line collection']) @image_comparison(['stem_orientation.png'], style='mpl20', remove_text=True) def test_stem_orientation(use_line_collection): x = np.linspace(0.1, 2*np.pi, 50) fig, ax = plt.subplots() ax.stem(x, np.cos(x), linefmt='C2-.', markerfmt='kx', basefmt='C1-.', use_line_collection=use_line_collection, orientation='horizontal') @image_comparison(['hist_stacked_stepfilled_alpha']) def test_hist_stacked_stepfilled_alpha(): # make some data d1 = np.linspace(1, 3, 20) d2 = np.linspace(0, 10, 50) fig, ax = plt.subplots() ax.hist((d1, d2), histtype="stepfilled", stacked=True, alpha=0.5) @image_comparison(['hist_stacked_step']) def test_hist_stacked_step(): # make some data d1 = np.linspace(1, 3, 20) d2 = np.linspace(0, 10, 50) fig, ax = plt.subplots() ax.hist((d1, d2), histtype="step", stacked=True) @image_comparison(['hist_stacked_normed']) def test_hist_stacked_density(): # make some data d1 = np.linspace(1, 3, 20) d2 = np.linspace(0, 10, 50) fig, ax = plt.subplots() ax.hist((d1, d2), stacked=True, density=True) @image_comparison(['hist_step_bottom.png'], remove_text=True) def test_hist_step_bottom(): # make some data d1 = np.linspace(1, 3, 20) fig, ax = plt.subplots() ax.hist(d1, bottom=np.arange(10), histtype="stepfilled") def test_hist_stepfilled_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, histtype='stepfilled') xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0], [2, 0], [2, 0], [1, 0], [1, 0], [0, 0]] assert_array_equal(polygon.get_xy(), xy) def test_hist_step_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, histtype='step') xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stepfilled_bottom_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, bottom=[1, 2, 1.5], histtype='stepfilled') xy = [[0, 1], [0, 3], [1, 3], [1, 5], [2, 5], [2, 2.5], [3, 2.5], [3, 1.5], [2, 1.5], [2, 2], [1, 2], [1, 1], [0, 1]] assert_array_equal(polygon.get_xy(), xy) def test_hist_step_bottom_geometry(): bins = [0, 1, 2, 3] data = [0, 0, 1, 1, 1, 2] _, _, (polygon, ) = plt.hist(data, bins=bins, bottom=[1, 2, 1.5], histtype='step') xy = [[0, 1], [0, 3], [1, 3], [1, 5], [2, 5], [2, 2.5], [3, 2.5], [3, 1.5]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stacked_stepfilled_geometry(): bins = [0, 1, 2, 3] data_1 = [0, 0, 1, 1, 1, 2] data_2 = [0, 1, 2] _, _, patches = plt.hist([data_1, data_2], bins=bins, stacked=True, histtype='stepfilled') assert len(patches) == 2 polygon, = patches[0] xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0], [2, 0], [2, 0], [1, 0], [1, 0], [0, 0]] assert_array_equal(polygon.get_xy(), xy) polygon, = patches[1] xy = [[0, 2], [0, 3], [1, 3], [1, 4], [2, 4], [2, 2], [3, 2], [3, 1], [2, 1], [2, 3], [1, 3], [1, 2], [0, 2]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stacked_step_geometry(): bins = [0, 1, 2, 3] data_1 = [0, 0, 1, 1, 1, 2] data_2 = [0, 1, 2] _, _, patches = plt.hist([data_1, data_2], bins=bins, stacked=True, histtype='step') assert len(patches) == 2 polygon, = patches[0] xy = [[0, 0], [0, 2], [1, 2], [1, 3], [2, 3], [2, 1], [3, 1], [3, 0]] assert_array_equal(polygon.get_xy(), xy) polygon, = patches[1] xy = [[0, 2], [0, 3], [1, 3], [1, 4], [2, 4], [2, 2], [3, 2], [3, 1]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stacked_stepfilled_bottom_geometry(): bins = [0, 1, 2, 3] data_1 = [0, 0, 1, 1, 1, 2] data_2 = [0, 1, 2] _, _, patches = plt.hist([data_1, data_2], bins=bins, stacked=True, bottom=[1, 2, 1.5], histtype='stepfilled') assert len(patches) == 2 polygon, = patches[0] xy = [[0, 1], [0, 3], [1, 3], [1, 5], [2, 5], [2, 2.5], [3, 2.5], [3, 1.5], [2, 1.5], [2, 2], [1, 2], [1, 1], [0, 1]] assert_array_equal(polygon.get_xy(), xy) polygon, = patches[1] xy = [[0, 3], [0, 4], [1, 4], [1, 6], [2, 6], [2, 3.5], [3, 3.5], [3, 2.5], [2, 2.5], [2, 5], [1, 5], [1, 3], [0, 3]] assert_array_equal(polygon.get_xy(), xy) def test_hist_stacked_step_bottom_geometry(): bins = [0, 1, 2, 3] data_1 = [0, 0, 1, 1, 1, 2] data_2 = [0, 1, 2] _, _, patches = plt.hist([data_1, data_2], bins=bins, stacked=True, bottom=[1, 2, 1.5], histtype='step') assert len(patches) == 2 polygon, = patches[0] xy = [[0, 1], [0, 3], [1, 3], [1, 5], [2, 5], [2, 2.5], [3, 2.5], [3, 1.5]] assert_array_equal(polygon.get_xy(), xy) polygon, = patches[1] xy = [[0, 3], [0, 4], [1, 4], [1, 6], [2, 6], [2, 3.5], [3, 3.5], [3, 2.5]] assert_array_equal(polygon.get_xy(), xy) @image_comparison(['hist_stacked_bar']) def test_hist_stacked_bar(): # make some data d = [[100, 100, 100, 100, 200, 320, 450, 80, 20, 600, 310, 800], [20, 23, 50, 11, 100, 420], [120, 120, 120, 140, 140, 150, 180], [60, 60, 60, 60, 300, 300, 5, 5, 5, 5, 10, 300], [555, 555, 555, 30, 30, 30, 30, 30, 100, 100, 100, 100, 30, 30], [30, 30, 30, 30, 400, 400, 400, 400, 400, 400, 400, 400]] colors = [(0.5759849696758961, 1.0, 0.0), (0.0, 1.0, 0.350624650815206), (0.0, 1.0, 0.6549834156005998), (0.0, 0.6569064625276622, 1.0), (0.28302699607823545, 0.0, 1.0), (0.6849123462299822, 0.0, 1.0)] labels = ['green', 'orange', ' yellow', 'magenta', 'black'] fig, ax = plt.subplots() ax.hist(d, bins=10, histtype='barstacked', align='mid', color=colors, label=labels) ax.legend(loc='upper right', bbox_to_anchor=(1.0, 1.0), ncol=1) def test_hist_barstacked_bottom_unchanged(): b = np.array([10, 20]) plt.hist([[0, 1], [0, 1]], 2, histtype="barstacked", bottom=b) assert b.tolist() == [10, 20] def test_hist_emptydata(): fig, ax = plt.subplots() ax.hist([[], range(10), range(10)], histtype="step") def test_hist_labels(): # test singleton labels OK fig, ax = plt.subplots() _, _, bars = ax.hist([0, 1], label=0) assert bars[0].get_label() == '0' _, _, bars = ax.hist([0, 1], label=[0]) assert bars[0].get_label() == '0' _, _, bars = ax.hist([0, 1], label=None) assert bars[0].get_label() == '_nolegend_' _, _, bars = ax.hist([0, 1], label='0') assert bars[0].get_label() == '0' _, _, bars = ax.hist([0, 1], label='00') assert bars[0].get_label() == '00' @image_comparison(['transparent_markers'], remove_text=True) def test_transparent_markers(): np.random.seed(0) data = np.random.random(50) fig, ax = plt.subplots() ax.plot(data, 'D', mfc='none', markersize=100) @image_comparison(['rgba_markers'], remove_text=True) def test_rgba_markers(): fig, axs = plt.subplots(ncols=2) rcolors = [(1, 0, 0, 1), (1, 0, 0, 0.5)] bcolors = [(0, 0, 1, 1), (0, 0, 1, 0.5)] alphas = [None, 0.2] kw = dict(ms=100, mew=20) for i, alpha in enumerate(alphas): for j, rcolor in enumerate(rcolors): for k, bcolor in enumerate(bcolors): axs[i].plot(j+1, k+1, 'o', mfc=bcolor, mec=rcolor, alpha=alpha, **kw) axs[i].plot(j+1, k+3, 'x', mec=rcolor, alpha=alpha, **kw) for ax in axs: ax.axis([-1, 4, 0, 5]) @image_comparison(['mollweide_grid'], remove_text=True) def test_mollweide_grid(): # test that both horizontal and vertical gridlines appear on the Mollweide # projection fig = plt.figure() ax = fig.add_subplot(projection='mollweide') ax.grid() def test_mollweide_forward_inverse_closure(): # test that the round-trip Mollweide forward->inverse transformation is an # approximate identity fig = plt.figure() ax = fig.add_subplot(projection='mollweide') # set up 1-degree grid in longitude, latitude lon = np.linspace(-np.pi, np.pi, 360) lat = np.linspace(-np.pi / 2.0, np.pi / 2.0, 180) lon, lat = np.meshgrid(lon, lat) ll = np.vstack((lon.flatten(), lat.flatten())).T # perform forward transform xy = ax.transProjection.transform(ll) # perform inverse transform ll2 = ax.transProjection.inverted().transform(xy) # compare np.testing.assert_array_almost_equal(ll, ll2, 3) def test_mollweide_inverse_forward_closure(): # test that the round-trip Mollweide inverse->forward transformation is an # approximate identity fig = plt.figure() ax = fig.add_subplot(projection='mollweide') # set up grid in x, y x = np.linspace(0, 1, 500) x, y = np.meshgrid(x, x) xy = np.vstack((x.flatten(), y.flatten())).T # perform inverse transform ll = ax.transProjection.inverted().transform(xy) # perform forward transform xy2 = ax.transProjection.transform(ll) # compare np.testing.assert_array_almost_equal(xy, xy2, 3) @image_comparison(['test_alpha'], remove_text=True) def test_alpha(): np.random.seed(0) data = np.random.random(50) fig, ax = plt.subplots() # alpha=.5 markers, solid line ax.plot(data, '-D', color=[1, 0, 0], mfc=[1, 0, 0, .5], markersize=20, lw=10) # everything solid by kwarg ax.plot(data + 2, '-D', color=[1, 0, 0, .5], mfc=[1, 0, 0, .5], markersize=20, lw=10, alpha=1) # everything alpha=.5 by kwarg ax.plot(data + 4, '-D', color=[1, 0, 0], mfc=[1, 0, 0], markersize=20, lw=10, alpha=.5) # everything alpha=.5 by colors ax.plot(data + 6, '-D', color=[1, 0, 0, .5], mfc=[1, 0, 0, .5], markersize=20, lw=10) # alpha=.5 line, solid markers ax.plot(data + 8, '-D', color=[1, 0, 0, .5], mfc=[1, 0, 0], markersize=20, lw=10) @image_comparison(['eventplot', 'eventplot'], remove_text=True) def test_eventplot(): np.random.seed(0) data1 = np.random.random([32, 20]).tolist() data2 = np.random.random([6, 20]).tolist() data = data1 + data2 num_datasets = len(data) colors1 = [[0, 1, .7]] * len(data1) colors2 = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, .75, 0], [1, 0, 1], [0, 1, 1]] colors = colors1 + colors2 lineoffsets1 = 12 + np.arange(0, len(data1)) * .33 lineoffsets2 = [-15, -3, 1, 1.5, 6, 10] lineoffsets = lineoffsets1.tolist() + lineoffsets2 linelengths1 = [.33] * len(data1) linelengths2 = [5, 2, 1, 1, 3, 1.5] linelengths = linelengths1 + linelengths2 fig = plt.figure() axobj = fig.add_subplot() colls = axobj.eventplot(data, colors=colors, lineoffsets=lineoffsets, linelengths=linelengths) num_collections = len(colls) assert num_collections == num_datasets # Reuse testcase from above for a labeled data test data = {"pos": data, "c": colors, "lo": lineoffsets, "ll": linelengths} fig = plt.figure() axobj = fig.add_subplot() colls = axobj.eventplot("pos", colors="c", lineoffsets="lo", linelengths="ll", data=data) num_collections = len(colls) assert num_collections == num_datasets @image_comparison(['test_eventplot_defaults.png'], remove_text=True) def test_eventplot_defaults(): """ test that eventplot produces the correct output given the default params (see bug #3728) """ np.random.seed(0) data1 = np.random.random([32, 20]).tolist() data2 = np.random.random([6, 20]).tolist() data = data1 + data2 fig = plt.figure() axobj = fig.add_subplot() axobj.eventplot(data) @pytest.mark.parametrize(('colors'), [ ('0.5',), # string color with multiple characters: not OK before #8193 fix ('tab:orange', 'tab:pink', 'tab:cyan', 'bLacK'), # case-insensitive ('red', (0, 1, 0), None, (1, 0, 1, 0.5)), # a tricky case mixing types ]) def test_eventplot_colors(colors): """Test the *colors* parameter of eventplot. Inspired by issue #8193.""" data = [[0], [1], [2], [3]] # 4 successive events of different nature # Build the list of the expected colors expected = [c if c is not None else 'C0' for c in colors] # Convert the list into an array of RGBA values # NB: ['rgbk'] is not a valid argument for to_rgba_array, while 'rgbk' is. if len(expected) == 1: expected = expected[0] expected = np.broadcast_to(mcolors.to_rgba_array(expected), (len(data), 4)) fig, ax = plt.subplots() if len(colors) == 1: # tuple with a single string (like '0.5' or 'rgbk') colors = colors[0] collections = ax.eventplot(data, colors=colors) for coll, color in zip(collections, expected): assert_allclose(coll.get_color(), color) @image_comparison(['test_eventplot_problem_kwargs.png'], remove_text=True) def test_eventplot_problem_kwargs(recwarn): """ test that 'singular' versions of LineCollection props raise an IgnoredKeywordWarning rather than overriding the 'plural' versions (e.g. to prevent 'color' from overriding 'colors', see issue #4297) """ np.random.seed(0) data1 = np.random.random([20]).tolist() data2 = np.random.random([10]).tolist() data = [data1, data2] fig = plt.figure() axobj = fig.add_subplot() axobj.eventplot(data, colors=['r', 'b'], color=['c', 'm'], linewidths=[2, 1], linewidth=[1, 2], linestyles=['solid', 'dashed'], linestyle=['dashdot', 'dotted']) # check that three IgnoredKeywordWarnings were raised assert len(recwarn) == 3 assert all(issubclass(wi.category, MatplotlibDeprecationWarning) for wi in recwarn) def test_empty_eventplot(): fig, ax = plt.subplots(1, 1) ax.eventplot([[]], colors=[(0.0, 0.0, 0.0, 0.0)]) plt.draw() @pytest.mark.parametrize('data', [[[]], [[], [0, 1]], [[0, 1], []]]) @pytest.mark.parametrize( 'orientation', ['_empty', 'vertical', 'horizontal', None, 'none']) def test_eventplot_orientation(data, orientation): """Introduced when fixing issue #6412.""" opts = {} if orientation == "_empty" else {'orientation': orientation} fig, ax = plt.subplots(1, 1) with (pytest.warns(MatplotlibDeprecationWarning) if orientation in [None, 'none'] else nullcontext()): ax.eventplot(data, **opts) plt.draw() @image_comparison(['marker_styles.png'], remove_text=True) def test_marker_styles(): fig, ax = plt.subplots() for y, marker in enumerate(sorted(matplotlib.markers.MarkerStyle.markers, key=lambda x: str(type(x))+str(x))): ax.plot((y % 2)*5 + np.arange(10)*10, np.ones(10)*10*y, linestyle='', marker=marker, markersize=10+y/5, label=marker) @image_comparison(['rc_markerfill.png']) def test_markers_fillstyle_rcparams(): fig, ax = plt.subplots() x = np.arange(7) for idx, (style, marker) in enumerate( [('top', 's'), ('bottom', 'o'), ('none', '^')]): matplotlib.rcParams['markers.fillstyle'] = style ax.plot(x+idx, marker=marker) @image_comparison(['vertex_markers.png'], remove_text=True) def test_vertex_markers(): data = list(range(10)) marker_as_tuple = ((-1, -1), (1, -1), (1, 1), (-1, 1)) marker_as_list = [(-1, -1), (1, -1), (1, 1), (-1, 1)] fig, ax = plt.subplots() ax.plot(data, linestyle='', marker=marker_as_tuple, mfc='k') ax.plot(data[::-1], linestyle='', marker=marker_as_list, mfc='b') ax.set_xlim([-1, 10]) ax.set_ylim([-1, 10]) @image_comparison(['vline_hline_zorder', 'errorbar_zorder'], tol=0 if platform.machine() == 'x86_64' else 0.02) def test_eb_line_zorder(): x = list(range(10)) # First illustrate basic pyplot interface, using defaults where possible. fig = plt.figure() ax = fig.gca() ax.plot(x, lw=10, zorder=5) ax.axhline(1, color='red', lw=10, zorder=1) ax.axhline(5, color='green', lw=10, zorder=10) ax.axvline(7, color='m', lw=10, zorder=7) ax.axvline(2, color='k', lw=10, zorder=3) ax.set_title("axvline and axhline zorder test") # Now switch to a more OO interface to exercise more features. fig = plt.figure() ax = fig.gca() x = list(range(10)) y = np.zeros(10) yerr = list(range(10)) ax.errorbar(x, y, yerr=yerr, zorder=5, lw=5, color='r') for j in range(10): ax.axhline(j, lw=5, color='k', zorder=j) ax.axhline(-j, lw=5, color='k', zorder=j) ax.set_title("errorbar zorder test") @check_figures_equal() def test_axline_loglog(fig_test, fig_ref): ax = fig_test.subplots() ax.set(xlim=(0.1, 10), ylim=(1e-3, 1)) ax.loglog([.3, .6], [.3, .6], ".-") ax.axline((1, 1e-3), (10, 1e-2), c="k") ax = fig_ref.subplots() ax.set(xlim=(0.1, 10), ylim=(1e-3, 1)) ax.loglog([.3, .6], [.3, .6], ".-") ax.loglog([1, 10], [1e-3, 1e-2], c="k") @check_figures_equal() def test_axline(fig_test, fig_ref): ax = fig_test.subplots() ax.set(xlim=(-1, 1), ylim=(-1, 1)) ax.axline((0, 0), (1, 1)) ax.axline((0, 0), (1, 0), color='C1') ax.axline((0, 0.5), (1, 0.5), color='C2') # slopes ax.axline((-0.7, -0.5), slope=0, color='C3') ax.axline((1, -0.5), slope=-0.5, color='C4') ax.axline((-0.5, 1), slope=float('inf'), color='C5') ax = fig_ref.subplots() ax.set(xlim=(-1, 1), ylim=(-1, 1)) ax.plot([-1, 1], [-1, 1]) ax.axhline(0, color='C1') ax.axhline(0.5, color='C2') # slopes ax.axhline(-0.5, color='C3') ax.plot([-1, 1], [0.5, -0.5], color='C4') ax.axvline(-0.5, color='C5') @check_figures_equal() def test_axline_transaxes(fig_test, fig_ref): ax = fig_test.subplots() ax.set(xlim=(-1, 1), ylim=(-1, 1)) ax.axline((0, 0), slope=1, transform=ax.transAxes) ax.axline((1, 0.5), slope=1, color='C1', transform=ax.transAxes) ax.axline((0.5, 0.5), slope=0, color='C2', transform=ax.transAxes) ax.axline((0.5, 0), (0.5, 1), color='C3', transform=ax.transAxes) ax = fig_ref.subplots() ax.set(xlim=(-1, 1), ylim=(-1, 1)) ax.plot([-1, 1], [-1, 1]) ax.plot([0, 1], [-1, 0], color='C1') ax.plot([-1, 1], [0, 0], color='C2') ax.plot([0, 0], [-1, 1], color='C3') @check_figures_equal() def test_axline_transaxes_panzoom(fig_test, fig_ref): # test that it is robust against pan/zoom and # figure resize after plotting ax = fig_test.subplots() ax.set(xlim=(-1, 1), ylim=(-1, 1)) ax.axline((0, 0), slope=1, transform=ax.transAxes) ax.axline((0.5, 0.5), slope=2, color='C1', transform=ax.transAxes) ax.axline((0.5, 0.5), slope=0, color='C2', transform=ax.transAxes) ax.set(xlim=(0, 5), ylim=(0, 10)) fig_test.set_size_inches(3, 3) ax = fig_ref.subplots() ax.set(xlim=(0, 5), ylim=(0, 10)) fig_ref.set_size_inches(3, 3) ax.plot([0, 5], [0, 5]) ax.plot([0, 5], [0, 10], color='C1') ax.plot([0, 5], [5, 5], color='C2') def test_axline_args(): """Exactly one of *xy2* and *slope* must be specified.""" fig, ax = plt.subplots() with pytest.raises(TypeError): ax.axline((0, 0)) # missing second parameter with pytest.raises(TypeError): ax.axline((0, 0), (1, 1), slope=1) # redundant parameters ax.set_xscale('log') with pytest.raises(TypeError): ax.axline((0, 0), slope=1) ax.set_xscale('linear') ax.set_yscale('log') with pytest.raises(TypeError): ax.axline((0, 0), slope=1) ax.set_yscale('linear') with pytest.raises(ValueError): ax.axline((0, 0), (0, 0)) # two identical points are not allowed plt.draw() @image_comparison(['vlines_basic', 'vlines_with_nan', 'vlines_masked'], extensions=['png']) def test_vlines(): # normal x1 = [2, 3, 4, 5, 7] y1 = [2, -6, 3, 8, 2] fig1, ax1 = plt.subplots() ax1.vlines(x1, 0, y1, colors='g', linewidth=5) # GH #7406 x2 = [2, 3, 4, 5, 6, 7] y2 = [2, -6, 3, 8, np.nan, 2] fig2, (ax2, ax3, ax4) = plt.subplots(nrows=3, figsize=(4, 8)) ax2.vlines(x2, 0, y2, colors='g', linewidth=5) x3 = [2, 3, 4, 5, 6, 7] y3 = [np.nan, 2, -6, 3, 8, 2] ax3.vlines(x3, 0, y3, colors='r', linewidth=3, linestyle='--') x4 = [2, 3, 4, 5, 6, 7] y4 = [np.nan, 2, -6, 3, 8, np.nan] ax4.vlines(x4, 0, y4, colors='k', linewidth=2) # tweak the x-axis so we can see the lines better for ax in [ax1, ax2, ax3, ax4]: ax.set_xlim(0, 10) # check that the y-lims are all automatically the same assert ax1.get_ylim() == ax2.get_ylim() assert ax1.get_ylim() == ax3.get_ylim() assert ax1.get_ylim() == ax4.get_ylim() fig3, ax5 = plt.subplots() x5 = np.ma.masked_equal([2, 4, 6, 8, 10, 12], 8) ymin5 = np.ma.masked_equal([0, 1, -1, 0, 2, 1], 2) ymax5 = np.ma.masked_equal([13, 14, 15, 16, 17, 18], 18) ax5.vlines(x5, ymin5, ymax5, colors='k', linewidth=2) ax5.set_xlim(0, 15) def test_vlines_default(): fig, ax = plt.subplots() with mpl.rc_context({'lines.color': 'red'}): lines = ax.vlines(0.5, 0, 1) assert mpl.colors.same_color(lines.get_color(), 'red') @image_comparison(['hlines_basic', 'hlines_with_nan', 'hlines_masked'], extensions=['png']) def test_hlines(): # normal y1 = [2, 3, 4, 5, 7] x1 = [2, -6, 3, 8, 2] fig1, ax1 = plt.subplots() ax1.hlines(y1, 0, x1, colors='g', linewidth=5) # GH #7406 y2 = [2, 3, 4, 5, 6, 7] x2 = [2, -6, 3, 8, np.nan, 2] fig2, (ax2, ax3, ax4) = plt.subplots(nrows=3, figsize=(4, 8)) ax2.hlines(y2, 0, x2, colors='g', linewidth=5) y3 = [2, 3, 4, 5, 6, 7] x3 = [np.nan, 2, -6, 3, 8, 2] ax3.hlines(y3, 0, x3, colors='r', linewidth=3, linestyle='--') y4 = [2, 3, 4, 5, 6, 7] x4 = [np.nan, 2, -6, 3, 8, np.nan] ax4.hlines(y4, 0, x4, colors='k', linewidth=2) # tweak the y-axis so we can see the lines better for ax in [ax1, ax2, ax3, ax4]: ax.set_ylim(0, 10) # check that the x-lims are all automatically the same assert ax1.get_xlim() == ax2.get_xlim() assert ax1.get_xlim() == ax3.get_xlim() assert ax1.get_xlim() == ax4.get_xlim() fig3, ax5 = plt.subplots() y5 = np.ma.masked_equal([2, 4, 6, 8, 10, 12], 8) xmin5 = np.ma.masked_equal([0, 1, -1, 0, 2, 1], 2) xmax5 = np.ma.masked_equal([13, 14, 15, 16, 17, 18], 18) ax5.hlines(y5, xmin5, xmax5, colors='k', linewidth=2) ax5.set_ylim(0, 15) def test_hlines_default(): fig, ax = plt.subplots() with mpl.rc_context({'lines.color': 'red'}): lines = ax.hlines(0.5, 0, 1) assert mpl.colors.same_color(lines.get_color(), 'red') @pytest.mark.parametrize('data', [[1, 2, 3, np.nan, 5], np.ma.masked_equal([1, 2, 3, 4, 5], 4)]) @check_figures_equal(extensions=["png"]) def test_lines_with_colors(fig_test, fig_ref, data): test_colors = ['red', 'green', 'blue', 'purple', 'orange'] fig_test.add_subplot(2, 1, 1).vlines(data, 0, 1, colors=test_colors, linewidth=5) fig_test.add_subplot(2, 1, 2).hlines(data, 0, 1, colors=test_colors, linewidth=5) expect_xy = [1, 2, 3, 5] expect_color = ['red', 'green', 'blue', 'orange'] fig_ref.add_subplot(2, 1, 1).vlines(expect_xy, 0, 1, colors=expect_color, linewidth=5) fig_ref.add_subplot(2, 1, 2).hlines(expect_xy, 0, 1, colors=expect_color, linewidth=5) @image_comparison(['step_linestyle', 'step_linestyle'], remove_text=True) def test_step_linestyle(): x = y = np.arange(10) # First illustrate basic pyplot interface, using defaults where possible. fig, ax_lst = plt.subplots(2, 2) ax_lst = ax_lst.flatten() ln_styles = ['-', '--', '-.', ':'] for ax, ls in zip(ax_lst, ln_styles): ax.step(x, y, lw=5, linestyle=ls, where='pre') ax.step(x, y + 1, lw=5, linestyle=ls, where='mid') ax.step(x, y + 2, lw=5, linestyle=ls, where='post') ax.set_xlim([-1, 5]) ax.set_ylim([-1, 7]) # Reuse testcase from above for a labeled data test data = {"X": x, "Y0": y, "Y1": y+1, "Y2": y+2} fig, ax_lst = plt.subplots(2, 2) ax_lst = ax_lst.flatten() ln_styles = ['-', '--', '-.', ':'] for ax, ls in zip(ax_lst, ln_styles): ax.step("X", "Y0", lw=5, linestyle=ls, where='pre', data=data) ax.step("X", "Y1", lw=5, linestyle=ls, where='mid', data=data) ax.step("X", "Y2", lw=5, linestyle=ls, where='post', data=data) ax.set_xlim([-1, 5]) ax.set_ylim([-1, 7]) @image_comparison(['mixed_collection'], remove_text=True) def test_mixed_collection(): # First illustrate basic pyplot interface, using defaults where possible. fig, ax = plt.subplots() c = mpatches.Circle((8, 8), radius=4, facecolor='none', edgecolor='green') # PDF can optimize this one p1 = mpl.collections.PatchCollection([c], match_original=True) p1.set_offsets([[0, 0], [24, 24]]) p1.set_linewidths([1, 5]) # PDF can't optimize this one, because the alpha of the edge changes p2 = mpl.collections.PatchCollection([c], match_original=True) p2.set_offsets([[48, 0], [-32, -16]]) p2.set_linewidths([1, 5]) p2.set_edgecolors([[0, 0, 0.1, 1.0], [0, 0, 0.1, 0.5]]) ax.patch.set_color('0.5') ax.add_collection(p1) ax.add_collection(p2) ax.set_xlim(0, 16) ax.set_ylim(0, 16) def test_subplot_key_hash(): ax = plt.subplot(np.int32(5), np.int64(1), 1) ax.twinx() assert ax.get_subplotspec().get_geometry() == (5, 1, 0, 0) @image_comparison( ["specgram_freqs.png", "specgram_freqs_linear.png", "specgram_noise.png", "specgram_noise_linear.png"], remove_text=True, tol=0.07, style="default") def test_specgram(): """Test axes.specgram in default (psd) mode.""" # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' n = 1000 Fs = 10. fstims = [[Fs/4, Fs/5, Fs/11], [Fs/4.7, Fs/5.6, Fs/11.9]] NFFT_freqs = int(10 * Fs / np.min(fstims)) x = np.arange(0, n, 1/Fs) y_freqs = np.concatenate( np.sin(2 * np.pi * np.multiply.outer(fstims, x)).sum(axis=1)) NFFT_noise = int(10 * Fs / 11) np.random.seed(0) y_noise = np.concatenate([np.random.standard_normal(n), np.random.rand(n)]) all_sides = ["default", "onesided", "twosided"] for y, NFFT in [(y_freqs, NFFT_freqs), (y_noise, NFFT_noise)]: noverlap = NFFT // 2 pad_to = int(2 ** np.ceil(np.log2(NFFT))) for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides) for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, scale="linear", norm=matplotlib.colors.LogNorm()) @image_comparison( ["specgram_magnitude_freqs.png", "specgram_magnitude_freqs_linear.png", "specgram_magnitude_noise.png", "specgram_magnitude_noise_linear.png"], remove_text=True, tol=0.07, style="default") def test_specgram_magnitude(): """Test axes.specgram in magnitude mode.""" # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' n = 1000 Fs = 10. fstims = [[Fs/4, Fs/5, Fs/11], [Fs/4.7, Fs/5.6, Fs/11.9]] NFFT_freqs = int(100 * Fs / np.min(fstims)) x = np.arange(0, n, 1/Fs) y = np.sin(2 * np.pi * np.multiply.outer(fstims, x)).sum(axis=1) y[:, -1] = 1 y_freqs = np.hstack(y) NFFT_noise = int(10 * Fs / 11) np.random.seed(0) y_noise = np.concatenate([np.random.standard_normal(n), np.random.rand(n)]) all_sides = ["default", "onesided", "twosided"] for y, NFFT in [(y_freqs, NFFT_freqs), (y_noise, NFFT_noise)]: noverlap = NFFT // 2 pad_to = int(2 ** np.ceil(np.log2(NFFT))) for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, mode="magnitude") for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, mode="magnitude", scale="linear", norm=matplotlib.colors.LogNorm()) @image_comparison( ["specgram_angle_freqs.png", "specgram_phase_freqs.png", "specgram_angle_noise.png", "specgram_phase_noise.png"], remove_text=True, tol=0.07, style="default") def test_specgram_angle(): """Test axes.specgram in angle and phase modes.""" # use former defaults to match existing baseline image matplotlib.rcParams['image.interpolation'] = 'nearest' n = 1000 Fs = 10. fstims = [[Fs/4, Fs/5, Fs/11], [Fs/4.7, Fs/5.6, Fs/11.9]] NFFT_freqs = int(10 * Fs / np.min(fstims)) x = np.arange(0, n, 1/Fs) y = np.sin(2 * np.pi * np.multiply.outer(fstims, x)).sum(axis=1) y[:, -1] = 1 y_freqs = np.hstack(y) NFFT_noise = int(10 * Fs / 11) np.random.seed(0) y_noise = np.concatenate([np.random.standard_normal(n), np.random.rand(n)]) all_sides = ["default", "onesided", "twosided"] for y, NFFT in [(y_freqs, NFFT_freqs), (y_noise, NFFT_noise)]: noverlap = NFFT // 2 pad_to = int(2 ** np.ceil(np.log2(NFFT))) for mode in ["angle", "phase"]: for ax, sides in zip(plt.figure().subplots(3), all_sides): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, mode=mode) with pytest.raises(ValueError): ax.specgram(y, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, sides=sides, mode=mode, scale="dB") def test_specgram_fs_none(): """Test axes.specgram when Fs is None, should not throw error.""" spec, freqs, t, im = plt.specgram(np.ones(300), Fs=None, scale='linear') xmin, xmax, freq0, freq1 = im.get_extent() assert xmin == 32 and xmax == 96 @check_figures_equal(extensions=["png"]) def test_specgram_origin_rcparam(fig_test, fig_ref): """Test specgram ignores image.origin rcParam and uses origin 'upper'.""" t = np.arange(500) signal = np.sin(t) plt.rcParams["image.origin"] = 'upper' # Reference: First graph using default origin in imshow (upper), fig_ref.subplots().specgram(signal) # Try to overwrite the setting trying to flip the specgram plt.rcParams["image.origin"] = 'lower' # Test: origin='lower' should be ignored fig_test.subplots().specgram(signal) def test_specgram_origin_kwarg(): """Ensure passing origin as a kwarg raises a TypeError.""" t = np.arange(500) signal = np.sin(t) with pytest.raises(TypeError): plt.specgram(signal, origin='lower') @image_comparison( ["psd_freqs.png", "csd_freqs.png", "psd_noise.png", "csd_noise.png"], remove_text=True, tol=0.002) def test_psd_csd(): n = 10000 Fs = 100. fstims = [[Fs/4, Fs/5, Fs/11], [Fs/4.7, Fs/5.6, Fs/11.9]] NFFT_freqs = int(1000 * Fs / np.min(fstims)) x = np.arange(0, n, 1/Fs) ys_freqs = np.sin(2 * np.pi * np.multiply.outer(fstims, x)).sum(axis=1) NFFT_noise = int(1000 * Fs / 11) np.random.seed(0) ys_noise = [np.random.standard_normal(n), np.random.rand(n)] all_kwargs = [{"sides": "default"}, {"sides": "onesided", "return_line": False}, {"sides": "twosided", "return_line": True}] for ys, NFFT in [(ys_freqs, NFFT_freqs), (ys_noise, NFFT_noise)]: noverlap = NFFT // 2 pad_to = int(2 ** np.ceil(np.log2(NFFT))) for ax, kwargs in zip(plt.figure().subplots(3), all_kwargs): ret = ax.psd(np.concatenate(ys), NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, **kwargs) assert len(ret) == 2 + kwargs.get("return_line", False) ax.set(xlabel="", ylabel="") for ax, kwargs in zip(plt.figure().subplots(3), all_kwargs): ret = ax.csd(*ys, NFFT=NFFT, Fs=Fs, noverlap=noverlap, pad_to=pad_to, **kwargs) assert len(ret) == 2 + kwargs.get("return_line", False) ax.set(xlabel="", ylabel="") @image_comparison( ["magnitude_spectrum_freqs_linear.png", "magnitude_spectrum_freqs_dB.png", "angle_spectrum_freqs.png", "phase_spectrum_freqs.png", "magnitude_spectrum_noise_linear.png", "magnitude_spectrum_noise_dB.png", "angle_spectrum_noise.png", "phase_spectrum_noise.png"], remove_text=True) def test_spectrum(): n = 10000 Fs = 100. fstims1 = [Fs/4, Fs/5, Fs/11] NFFT = int(1000 * Fs / min(fstims1)) pad_to = int(2 ** np.ceil(np.log2(NFFT))) x = np.arange(0, n, 1/Fs) y_freqs = ((np.sin(2 * np.pi * np.outer(x, fstims1)) * 10**np.arange(3)) .sum(axis=1)) np.random.seed(0) y_noise = np.hstack([np.random.standard_normal(n), np.random.rand(n)]) - .5 all_sides = ["default", "onesided", "twosided"] kwargs = {"Fs": Fs, "pad_to": pad_to} for y in [y_freqs, y_noise]: for ax, sides in zip(plt.figure().subplots(3), all_sides): spec, freqs, line = ax.magnitude_spectrum(y, sides=sides, **kwargs) ax.set(xlabel="", ylabel="") for ax, sides in zip(plt.figure().subplots(3), all_sides): spec, freqs, line = ax.magnitude_spectrum(y, sides=sides, **kwargs, scale="dB") ax.set(xlabel="", ylabel="") for ax, sides in zip(plt.figure().subplots(3), all_sides): spec, freqs, line = ax.angle_spectrum(y, sides=sides, **kwargs) ax.set(xlabel="", ylabel="") for ax, sides in zip(plt.figure().subplots(3), all_sides): spec, freqs, line = ax.phase_spectrum(y, sides=sides, **kwargs) ax.set(xlabel="", ylabel="") @image_comparison(['twin_spines.png'], remove_text=True) def test_twin_spines(): def make_patch_spines_invisible(ax): ax.set_frame_on(True) ax.patch.set_visible(False) ax.spines[:].set_visible(False) fig = plt.figure(figsize=(4, 3)) fig.subplots_adjust(right=0.75) host = fig.add_subplot() par1 = host.twinx() par2 = host.twinx() # Offset the right spine of par2. The ticks and label have already been # placed on the right by twinx above. par2.spines.right.set_position(("axes", 1.2)) # Having been created by twinx, par2 has its frame off, so the line of # its detached spine is invisible. First, activate the frame but make # the patch and spines invisible. make_patch_spines_invisible(par2) # Second, show the right spine. par2.spines.right.set_visible(True) p1, = host.plot([0, 1, 2], [0, 1, 2], "b-") p2, = par1.plot([0, 1, 2], [0, 3, 2], "r-") p3, = par2.plot([0, 1, 2], [50, 30, 15], "g-") host.set_xlim(0, 2) host.set_ylim(0, 2) par1.set_ylim(0, 4) par2.set_ylim(1, 65) host.yaxis.label.set_color(p1.get_color()) par1.yaxis.label.set_color(p2.get_color()) par2.yaxis.label.set_color(p3.get_color()) tkw = dict(size=4, width=1.5) host.tick_params(axis='y', colors=p1.get_color(), **tkw) par1.tick_params(axis='y', colors=p2.get_color(), **tkw) par2.tick_params(axis='y', colors=p3.get_color(), **tkw) host.tick_params(axis='x', **tkw) @image_comparison(['twin_spines_on_top.png', 'twin_spines_on_top.png'], remove_text=True) def test_twin_spines_on_top(): matplotlib.rcParams['axes.linewidth'] = 48.0 matplotlib.rcParams['lines.linewidth'] = 48.0 fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) data = np.array([[1000, 1100, 1200, 1250], [310, 301, 360, 400]]) ax2 = ax1.twinx() ax1.plot(data[0], data[1]/1E3, color='#BEAED4') ax1.fill_between(data[0], data[1]/1E3, color='#BEAED4', alpha=.8) ax2.plot(data[0], data[1]/1E3, color='#7FC97F') ax2.fill_between(data[0], data[1]/1E3, color='#7FC97F', alpha=.5) # Reuse testcase from above for a labeled data test data = {"i": data[0], "j": data[1]/1E3} fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) ax2 = ax1.twinx() ax1.plot("i", "j", color='#BEAED4', data=data) ax1.fill_between("i", "j", color='#BEAED4', alpha=.8, data=data) ax2.plot("i", "j", color='#7FC97F', data=data) ax2.fill_between("i", "j", color='#7FC97F', alpha=.5, data=data) @pytest.mark.parametrize("grid_which, major_visible, minor_visible", [ ("both", True, True), ("major", True, False), ("minor", False, True), ]) def test_rcparam_grid_minor(grid_which, major_visible, minor_visible): mpl.rcParams.update({"axes.grid": True, "axes.grid.which": grid_which}) fig, ax = plt.subplots() fig.canvas.draw() assert all(tick.gridline.get_visible() == major_visible for tick in ax.xaxis.majorTicks) assert all(tick.gridline.get_visible() == minor_visible for tick in ax.xaxis.minorTicks) def test_grid(): fig, ax = plt.subplots() ax.grid() fig.canvas.draw() assert ax.xaxis.majorTicks[0].gridline.get_visible() ax.grid(visible=False) fig.canvas.draw() assert not ax.xaxis.majorTicks[0].gridline.get_visible() ax.grid(visible=True) fig.canvas.draw() assert ax.xaxis.majorTicks[0].gridline.get_visible() ax.grid() fig.canvas.draw() assert not ax.xaxis.majorTicks[0].gridline.get_visible() def test_reset_grid(): fig, ax = plt.subplots() ax.tick_params(reset=True, which='major', labelsize=10) assert not ax.xaxis.majorTicks[0].gridline.get_visible() ax.grid(color='red') # enables grid assert ax.xaxis.majorTicks[0].gridline.get_visible() with plt.rc_context({'axes.grid': True}): ax.clear() ax.tick_params(reset=True, which='major', labelsize=10) assert ax.xaxis.majorTicks[0].gridline.get_visible() def test_vline_limit(): fig = plt.figure() ax = fig.gca() ax.axvline(0.5) ax.plot([-0.1, 0, 0.2, 0.1]) assert_allclose(ax.get_ylim(), (-.1, .2)) @pytest.mark.parametrize('fv, fh, args', [[plt.axvline, plt.axhline, (1,)], [plt.axvspan, plt.axhspan, (1, 1)]]) def test_axline_minmax(fv, fh, args): bad_lim = matplotlib.dates.num2date(1) # Check vertical functions with pytest.raises(ValueError, match='ymin must be a single scalar value'): fv(*args, ymin=bad_lim, ymax=1) with pytest.raises(ValueError, match='ymax must be a single scalar value'): fv(*args, ymin=1, ymax=bad_lim) # Check horizontal functions with pytest.raises(ValueError, match='xmin must be a single scalar value'): fh(*args, xmin=bad_lim, xmax=1) with pytest.raises(ValueError, match='xmax must be a single scalar value'): fh(*args, xmin=1, xmax=bad_lim) def test_empty_shared_subplots(): # empty plots with shared axes inherit limits from populated plots fig, axs = plt.subplots(nrows=1, ncols=2, sharex=True, sharey=True) axs[0].plot([1, 2, 3], [2, 4, 6]) x0, x1 = axs[1].get_xlim() y0, y1 = axs[1].get_ylim() assert x0 <= 1 assert x1 >= 3 assert y0 <= 2 assert y1 >= 6 def test_shared_with_aspect_1(): # allow sharing one axis for adjustable in ['box', 'datalim']: fig, axs = plt.subplots(nrows=2, sharex=True) axs[0].set_aspect(2, adjustable=adjustable, share=True) assert axs[1].get_aspect() == 2 assert axs[1].get_adjustable() == adjustable fig, axs = plt.subplots(nrows=2, sharex=True) axs[0].set_aspect(2, adjustable=adjustable) assert axs[1].get_aspect() == 'auto' def test_shared_with_aspect_2(): # Share 2 axes only with 'box': fig, axs = plt.subplots(nrows=2, sharex=True, sharey=True) axs[0].set_aspect(2, share=True) axs[0].plot([1, 2], [3, 4]) axs[1].plot([3, 4], [1, 2]) plt.draw() # Trigger apply_aspect(). assert axs[0].get_xlim() == axs[1].get_xlim() assert axs[0].get_ylim() == axs[1].get_ylim() def test_shared_with_aspect_3(): # Different aspect ratios: for adjustable in ['box', 'datalim']: fig, axs = plt.subplots(nrows=2, sharey=True) axs[0].set_aspect(2, adjustable=adjustable) axs[1].set_aspect(0.5, adjustable=adjustable) axs[0].plot([1, 2], [3, 4]) axs[1].plot([3, 4], [1, 2]) plt.draw() # Trigger apply_aspect(). assert axs[0].get_xlim() != axs[1].get_xlim() assert axs[0].get_ylim() == axs[1].get_ylim() fig_aspect = fig.bbox_inches.height / fig.bbox_inches.width for ax in axs: p = ax.get_position() box_aspect = p.height / p.width lim_aspect = ax.viewLim.height / ax.viewLim.width expected = fig_aspect * box_aspect / lim_aspect assert round(expected, 4) == round(ax.get_aspect(), 4) @pytest.mark.parametrize('twin', ('x', 'y')) def test_twin_with_aspect(twin): fig, ax = plt.subplots() # test twinx or twiny ax_twin = getattr(ax, 'twin{}'.format(twin))() ax.set_aspect(5) ax_twin.set_aspect(2) assert_array_equal(ax.bbox.extents, ax_twin.bbox.extents) def test_relim_visible_only(): x1 = (0., 10.) y1 = (0., 10.) x2 = (-10., 20.) y2 = (-10., 30.) fig = matplotlib.figure.Figure() ax = fig.add_subplot() ax.plot(x1, y1) assert ax.get_xlim() == x1 assert ax.get_ylim() == y1 line, = ax.plot(x2, y2) assert ax.get_xlim() == x2 assert ax.get_ylim() == y2 line.set_visible(False) assert ax.get_xlim() == x2 assert ax.get_ylim() == y2 ax.relim(visible_only=True) ax.autoscale_view() assert ax.get_xlim() == x1 assert ax.get_ylim() == y1 def test_text_labelsize(): """ tests for issue #1172 """ fig = plt.figure() ax = fig.gca() ax.tick_params(labelsize='large') ax.tick_params(direction='out') @image_comparison(['pie_default.png']) def test_pie_default(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') fig1, ax1 = plt.subplots(figsize=(8, 6)) ax1.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90) @image_comparison(['pie_linewidth_0', 'pie_linewidth_0', 'pie_linewidth_0'], extensions=['png']) def test_pie_linewidth_0(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') # Reuse testcase from above for a labeled data test data = {"l": labels, "s": sizes, "c": colors, "ex": explode} fig = plt.figure() ax = fig.gca() ax.pie("s", explode="ex", labels="l", colors="c", autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, data=data) ax.axis('equal') # And again to test the pyplot functions which should also be able to be # called with a data kwarg plt.figure() plt.pie("s", explode="ex", labels="l", colors="c", autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, data=data) plt.axis('equal') @image_comparison(['pie_center_radius.png']) def test_pie_center_radius(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, center=(1, 2), radius=1.5) plt.annotate("Center point", xy=(1, 2), xytext=(1, 1.3), arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), bbox=dict(boxstyle="square", facecolor="lightgrey")) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_linewidth_2.png']) def test_pie_linewidth_2(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 2}) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_ccw_true.png']) def test_pie_ccw_true(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, counterclock=True) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_frame_grid.png']) def test_pie_frame_grid(): # The slices will be ordered and plotted counter-clockwise. labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] # only "explode" the 2nd slice (i.e. 'Hogs') explode = (0, 0.1, 0, 0) plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, frame=True, center=(2, 2)) plt.pie(sizes[::-1], explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, frame=True, center=(5, 2)) plt.pie(sizes, explode=explode[::-1], labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, wedgeprops={'linewidth': 0}, frame=True, center=(3, 5)) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_rotatelabels_true.png']) def test_pie_rotatelabels_true(): # The slices will be ordered and plotted counter-clockwise. labels = 'Hogwarts', 'Frogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, rotatelabels=True) # Set aspect ratio to be equal so that pie is drawn as a circle. plt.axis('equal') @image_comparison(['pie_no_label.png']) def test_pie_nolabel_but_legend(): labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' sizes = [15, 30, 45, 10] colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90, labeldistance=None, rotatelabels=True) plt.axis('equal') plt.ylim(-1.2, 1.2) plt.legend() def test_pie_textprops(): data = [23, 34, 45] labels = ["Long name 1", "Long name 2", "Long name 3"] textprops = dict(horizontalalignment="center", verticalalignment="top", rotation=90, rotation_mode="anchor", size=12, color="red") _, texts, autopct = plt.gca().pie(data, labels=labels, autopct='%.2f', textprops=textprops) for labels in [texts, autopct]: for tx in labels: assert tx.get_ha() == textprops["horizontalalignment"] assert tx.get_va() == textprops["verticalalignment"] assert tx.get_rotation() == textprops["rotation"] assert tx.get_rotation_mode() == textprops["rotation_mode"] assert tx.get_size() == textprops["size"] assert tx.get_color() == textprops["color"] def test_pie_get_negative_values(): # Test the ValueError raised when feeding negative values into axes.pie fig, ax = plt.subplots() with pytest.raises(ValueError): ax.pie([5, 5, -3], explode=[0, .1, .2]) def test_normalize_kwarg_warn_pie(): fig, ax = plt.subplots() with pytest.warns(MatplotlibDeprecationWarning): ax.pie(x=[0], normalize=None) def test_normalize_kwarg_pie(): fig, ax = plt.subplots() x = [0.3, 0.3, 0.1] t1 = ax.pie(x=x, normalize=True) assert abs(t1[0][-1].theta2 - 360.) < 1e-3 t2 = ax.pie(x=x, normalize=False) assert abs(t2[0][-1].theta2 - 360.) > 1e-3 @image_comparison(['set_get_ticklabels.png']) def test_set_get_ticklabels(): # test issue 2246 fig, ax = plt.subplots(2) ha = ['normal', 'set_x/yticklabels'] ax[0].plot(np.arange(10)) ax[0].set_title(ha[0]) ax[1].plot(np.arange(10)) ax[1].set_title(ha[1]) # set ticklabel to 1 plot in normal way ax[0].set_xticks(range(10)) ax[0].set_yticks(range(10)) ax[0].set_xticklabels(['a', 'b', 'c', 'd'] + 6 * ['']) ax[0].set_yticklabels(['11', '12', '13', '14'] + 6 * ['']) # set ticklabel to the other plot, expect the 2 plots have same label # setting pass get_ticklabels return value as ticklabels argument ax[1].set_xticks(ax[0].get_xticks()) ax[1].set_yticks(ax[0].get_yticks()) ax[1].set_xticklabels(ax[0].get_xticklabels()) ax[1].set_yticklabels(ax[0].get_yticklabels()) def test_subsampled_ticklabels(): # test issue 11937 fig, ax = plt.subplots() ax.plot(np.arange(10)) ax.xaxis.set_ticks(np.arange(10) + 0.1) ax.locator_params(nbins=5) ax.xaxis.set_ticklabels([c for c in "bcdefghijk"]) plt.draw() labels = [t.get_text() for t in ax.xaxis.get_ticklabels()] assert labels == ['b', 'd', 'f', 'h', 'j'] def test_mismatched_ticklabels(): fig, ax = plt.subplots() ax.plot(np.arange(10)) ax.xaxis.set_ticks([1.5, 2.5]) with pytest.raises(ValueError): ax.xaxis.set_ticklabels(['a', 'b', 'c']) def test_empty_ticks_fixed_loc(): # Smoke test that [] can be used to unset all tick labels fig, ax = plt.subplots() ax.bar([1, 2], [1, 2]) ax.set_xticks([1, 2]) ax.set_xticklabels([]) @image_comparison(['retain_tick_visibility.png']) def test_retain_tick_visibility(): fig, ax = plt.subplots() plt.plot([0, 1, 2], [0, -1, 4]) plt.setp(ax.get_yticklabels(), visible=False) ax.tick_params(axis="y", which="both", length=0) def test_tick_label_update(): # test issue 9397 fig, ax = plt.subplots() # Set up a dummy formatter def formatter_func(x, pos): return "unit value" if x == 1 else "" ax.xaxis.set_major_formatter(plt.FuncFormatter(formatter_func)) # Force some of the x-axis ticks to be outside of the drawn range ax.set_xticks([-1, 0, 1, 2, 3]) ax.set_xlim(-0.5, 2.5) ax.figure.canvas.draw() tick_texts = [tick.get_text() for tick in ax.xaxis.get_ticklabels()] assert tick_texts == ["", "", "unit value", "", ""] @image_comparison(['o_marker_path_snap.png'], savefig_kwarg={'dpi': 72}) def test_o_marker_path_snap(): fig, ax = plt.subplots() ax.margins(.1) for ms in range(1, 15): ax.plot([1, 2, ], np.ones(2) + ms, 'o', ms=ms) for ms in np.linspace(1, 10, 25): ax.plot([3, 4, ], np.ones(2) + ms, 'o', ms=ms) def test_margins(): # test all ways margins can be called data = [1, 10] xmin = 0.0 xmax = len(data) - 1.0 ymin = min(data) ymax = max(data) fig1, ax1 = plt.subplots(1, 1) ax1.plot(data) ax1.margins(1) assert ax1.margins() == (1, 1) assert ax1.get_xlim() == (xmin - (xmax - xmin) * 1, xmax + (xmax - xmin) * 1) assert ax1.get_ylim() == (ymin - (ymax - ymin) * 1, ymax + (ymax - ymin) * 1) fig2, ax2 = plt.subplots(1, 1) ax2.plot(data) ax2.margins(0.5, 2) assert ax2.margins() == (0.5, 2) assert ax2.get_xlim() == (xmin - (xmax - xmin) * 0.5, xmax + (xmax - xmin) * 0.5) assert ax2.get_ylim() == (ymin - (ymax - ymin) * 2, ymax + (ymax - ymin) * 2) fig3, ax3 = plt.subplots(1, 1) ax3.plot(data) ax3.margins(x=-0.2, y=0.5) assert ax3.margins() == (-0.2, 0.5) assert ax3.get_xlim() == (xmin - (xmax - xmin) * -0.2, xmax + (xmax - xmin) * -0.2) assert ax3.get_ylim() == (ymin - (ymax - ymin) * 0.5, ymax + (ymax - ymin) * 0.5) def test_set_margin_updates_limits(): mpl.style.use("default") fig, ax = plt.subplots() ax.plot([1, 2], [1, 2]) ax.set(xscale="log", xmargin=0) assert ax.get_xlim() == (1, 2) def test_length_one_hist(): fig, ax = plt.subplots() ax.hist(1) ax.hist([1]) def test_pathological_hexbin(): # issue #2863 mylist = [10] * 100 fig, ax = plt.subplots(1, 1) ax.hexbin(mylist, mylist) fig.savefig(io.BytesIO()) # Check that no warning is emitted. def test_color_None(): # issue 3855 fig, ax = plt.subplots() ax.plot([1, 2], [1, 2], color=None) def test_color_alias(): # issues 4157 and 4162 fig, ax = plt.subplots() line = ax.plot([0, 1], c='lime')[0] assert 'lime' == line.get_color() def test_numerical_hist_label(): fig, ax = plt.subplots() ax.hist([range(15)] * 5, label=range(5)) ax.legend() def test_unicode_hist_label(): fig, ax = plt.subplots() a = (b'\xe5\xbe\x88\xe6\xbc\x82\xe4\xba\xae, ' + b'r\xc3\xb6m\xc3\xa4n ch\xc3\xa4r\xc3\xa1ct\xc3\xa8rs') b = b'\xd7\xa9\xd7\x9c\xd7\x95\xd7\x9d' labels = [a.decode('utf-8'), 'hi aardvark', b.decode('utf-8'), ] ax.hist([range(15)] * 3, label=labels) ax.legend() def test_move_offsetlabel(): data = np.random.random(10) * 1e-22 fig, ax = plt.subplots() ax.plot(data) fig.canvas.draw() before = ax.yaxis.offsetText.get_position() assert ax.yaxis.offsetText.get_horizontalalignment() == 'left' ax.yaxis.tick_right() fig.canvas.draw() after = ax.yaxis.offsetText.get_position() assert after[0] > before[0] and after[1] == before[1] assert ax.yaxis.offsetText.get_horizontalalignment() == 'right' fig, ax = plt.subplots() ax.plot(data) fig.canvas.draw() before = ax.xaxis.offsetText.get_position() assert ax.xaxis.offsetText.get_verticalalignment() == 'top' ax.xaxis.tick_top() fig.canvas.draw() after = ax.xaxis.offsetText.get_position() assert after[0] == before[0] and after[1] > before[1] assert ax.xaxis.offsetText.get_verticalalignment() == 'bottom' @image_comparison(['rc_spines.png'], savefig_kwarg={'dpi': 40}) def test_rc_spines(): rc_dict = { 'axes.spines.left': False, 'axes.spines.right': False, 'axes.spines.top': False, 'axes.spines.bottom': False} with matplotlib.rc_context(rc_dict): plt.subplots() # create a figure and axes with the spine properties @image_comparison(['rc_grid.png'], savefig_kwarg={'dpi': 40}) def test_rc_grid(): fig = plt.figure() rc_dict0 = { 'axes.grid': True, 'axes.grid.axis': 'both' } rc_dict1 = { 'axes.grid': True, 'axes.grid.axis': 'x' } rc_dict2 = { 'axes.grid': True, 'axes.grid.axis': 'y' } dict_list = [rc_dict0, rc_dict1, rc_dict2] for i, rc_dict in enumerate(dict_list, 1): with matplotlib.rc_context(rc_dict): fig.add_subplot(3, 1, i) def test_rc_tick(): d = {'xtick.bottom': False, 'xtick.top': True, 'ytick.left': True, 'ytick.right': False} with plt.rc_context(rc=d): fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) xax = ax1.xaxis yax = ax1.yaxis # tick1On bottom/left assert not xax._major_tick_kw['tick1On'] assert xax._major_tick_kw['tick2On'] assert not xax._minor_tick_kw['tick1On'] assert xax._minor_tick_kw['tick2On'] assert yax._major_tick_kw['tick1On'] assert not yax._major_tick_kw['tick2On'] assert yax._minor_tick_kw['tick1On'] assert not yax._minor_tick_kw['tick2On'] def test_rc_major_minor_tick(): d = {'xtick.top': True, 'ytick.right': True, # Enable all ticks 'xtick.bottom': True, 'ytick.left': True, # Selectively disable 'xtick.minor.bottom': False, 'xtick.major.bottom': False, 'ytick.major.left': False, 'ytick.minor.left': False} with plt.rc_context(rc=d): fig = plt.figure() ax1 = fig.add_subplot(1, 1, 1) xax = ax1.xaxis yax = ax1.yaxis # tick1On bottom/left assert not xax._major_tick_kw['tick1On'] assert xax._major_tick_kw['tick2On'] assert not xax._minor_tick_kw['tick1On'] assert xax._minor_tick_kw['tick2On'] assert not yax._major_tick_kw['tick1On'] assert yax._major_tick_kw['tick2On'] assert not yax._minor_tick_kw['tick1On'] assert yax._minor_tick_kw['tick2On'] def test_square_plot(): x = np.arange(4) y = np.array([1., 3., 5., 7.]) fig, ax = plt.subplots() ax.plot(x, y, 'mo') ax.axis('square') xlim, ylim = ax.get_xlim(), ax.get_ylim() assert np.diff(xlim) == np.diff(ylim) assert ax.get_aspect() == 1 assert_array_almost_equal( ax.get_position(original=True).extents, (0.125, 0.1, 0.9, 0.9)) assert_array_almost_equal( ax.get_position(original=False).extents, (0.2125, 0.1, 0.8125, 0.9)) def test_bad_plot_args(): with pytest.raises(ValueError): plt.plot(None) with pytest.raises(ValueError): plt.plot(None, None) with pytest.raises(ValueError): plt.plot(np.zeros((2, 2)), np.zeros((2, 3))) with pytest.raises(ValueError): plt.plot((np.arange(5).reshape((1, -1)), np.arange(5).reshape(-1, 1))) @pytest.mark.parametrize( "xy, cls", [ ((), mpl.image.AxesImage), # (0, N) (((3, 7), (2, 6)), mpl.image.AxesImage), # (xmin, xmax) ((range(5), range(4)), mpl.image.AxesImage), # regular grid (([1, 2, 4, 8, 16], [0, 1, 2, 3]), # irregular grid mpl.image.PcolorImage), ((np.random.random((4, 5)), np.random.random((4, 5))), # 2D coords mpl.collections.QuadMesh), ] ) @pytest.mark.parametrize( "data", [np.arange(12).reshape((3, 4)), np.random.rand(3, 4, 3)] ) def test_pcolorfast(xy, data, cls): fig, ax = plt.subplots() assert type(ax.pcolorfast(*xy, data)) == cls def test_shared_scale(): fig, axs = plt.subplots(2, 2, sharex=True, sharey=True) axs[0, 0].set_xscale("log") axs[0, 0].set_yscale("log") for ax in axs.flat: assert ax.get_yscale() == 'log' assert ax.get_xscale() == 'log' axs[1, 1].set_xscale("linear") axs[1, 1].set_yscale("linear") for ax in axs.flat: assert ax.get_yscale() == 'linear' assert ax.get_xscale() == 'linear' def test_shared_bool(): with pytest.raises(TypeError): plt.subplot(sharex=True) with pytest.raises(TypeError): plt.subplot(sharey=True) def test_violin_point_mass(): """Violin plot should handle point mass pdf gracefully.""" plt.violinplot(np.array([0, 0])) def generate_errorbar_inputs(): base_xy = cycler('x', [np.arange(5)]) + cycler('y', [np.ones(5)]) err_cycler = cycler('err', [1, [1, 1, 1, 1, 1], [[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], np.ones(5), np.ones((2, 5)), None ]) xerr_cy = cycler('xerr', err_cycler) yerr_cy = cycler('yerr', err_cycler) empty = ((cycler('x', [[]]) + cycler('y', [[]])) * cycler('xerr', [[], None]) * cycler('yerr', [[], None])) xerr_only = base_xy * xerr_cy yerr_only = base_xy * yerr_cy both_err = base_xy * yerr_cy * xerr_cy return [*xerr_only, *yerr_only, *both_err, *empty] @pytest.mark.parametrize('kwargs', generate_errorbar_inputs()) def test_errorbar_inputs_shotgun(kwargs): ax = plt.gca() eb = ax.errorbar(**kwargs) eb.remove() @image_comparison(["dash_offset"], remove_text=True) def test_dash_offset(): fig, ax = plt.subplots() x = np.linspace(0, 10) y = np.ones_like(x) for j in range(0, 100, 2): ax.plot(x, j*y, ls=(j, (10, 10)), lw=5, color='k') def test_title_pad(): # check that title padding puts the title in the right # place... fig, ax = plt.subplots() ax.set_title('aardvark', pad=30.) m = ax.titleOffsetTrans.get_matrix() assert m[1, -1] == (30. / 72. * fig.dpi) ax.set_title('aardvark', pad=0.) m = ax.titleOffsetTrans.get_matrix() assert m[1, -1] == 0. # check that it is reverted... ax.set_title('aardvark', pad=None) m = ax.titleOffsetTrans.get_matrix() assert m[1, -1] == (matplotlib.rcParams['axes.titlepad'] / 72. * fig.dpi) def test_title_location_roundtrip(): fig, ax = plt.subplots() # set default title location plt.rcParams['axes.titlelocation'] = 'center' ax.set_title('aardvark') ax.set_title('left', loc='left') ax.set_title('right', loc='right') assert 'left' == ax.get_title(loc='left') assert 'right' == ax.get_title(loc='right') assert 'aardvark' == ax.get_title(loc='center') with pytest.raises(ValueError): ax.get_title(loc='foo') with pytest.raises(ValueError): ax.set_title('fail', loc='foo') @image_comparison(["loglog.png"], remove_text=True, tol=0.02) def test_loglog(): fig, ax = plt.subplots() x = np.arange(1, 11) ax.loglog(x, x**3, lw=5) ax.tick_params(length=25, width=2) ax.tick_params(length=15, width=2, which='minor') @pytest.mark.parametrize("new_api", [False, True]) @image_comparison(["test_loglog_nonpos.png"], remove_text=True, style='mpl20') def test_loglog_nonpos(new_api): fig, axs = plt.subplots(3, 3) x = np.arange(1, 11) y = x**3 y[7] = -3. x[4] = -10 for (i, j), ax in np.ndenumerate(axs): mcx = ['mask', 'clip', ''][j] mcy = ['mask', 'clip', ''][i] if new_api: if mcx == mcy: if mcx: ax.loglog(x, y**3, lw=2, nonpositive=mcx) else: ax.loglog(x, y**3, lw=2) else: ax.loglog(x, y**3, lw=2) if mcx: ax.set_xscale("log", nonpositive=mcx) if mcy: ax.set_yscale("log", nonpositive=mcy) else: kws = {} if mcx: kws['nonposx'] = mcx if mcy: kws['nonposy'] = mcy with (pytest.warns(MatplotlibDeprecationWarning) if kws else nullcontext()): ax.loglog(x, y**3, lw=2, **kws) @pytest.mark.style('default') def test_axes_margins(): fig, ax = plt.subplots() ax.plot([0, 1, 2, 3]) assert ax.get_ybound()[0] != 0 fig, ax = plt.subplots() ax.bar([0, 1, 2, 3], [1, 1, 1, 1]) assert ax.get_ybound()[0] == 0 fig, ax = plt.subplots() ax.barh([0, 1, 2, 3], [1, 1, 1, 1]) assert ax.get_xbound()[0] == 0 fig, ax = plt.subplots() ax.pcolor(np.zeros((10, 10))) assert ax.get_xbound() == (0, 10) assert ax.get_ybound() == (0, 10) fig, ax = plt.subplots() ax.pcolorfast(np.zeros((10, 10))) assert ax.get_xbound() == (0, 10) assert ax.get_ybound() == (0, 10) fig, ax = plt.subplots() ax.hist(np.arange(10)) assert ax.get_ybound()[0] == 0 fig, ax = plt.subplots() ax.imshow(np.zeros((10, 10))) assert ax.get_xbound() == (-0.5, 9.5) assert ax.get_ybound() == (-0.5, 9.5) @pytest.fixture(params=['x', 'y']) def shared_axis_remover(request): def _helper_x(ax): ax2 = ax.twinx() ax2.remove() ax.set_xlim(0, 15) r = ax.xaxis.get_major_locator()() assert r[-1] > 14 def _helper_y(ax): ax2 = ax.twiny() ax2.remove() ax.set_ylim(0, 15) r = ax.yaxis.get_major_locator()() assert r[-1] > 14 return {"x": _helper_x, "y": _helper_y}[request.param] @pytest.fixture(params=['gca', 'subplots', 'subplots_shared', 'add_axes']) def shared_axes_generator(request): # test all of the ways to get fig/ax sets if request.param == 'gca': fig = plt.figure() ax = fig.gca() elif request.param == 'subplots': fig, ax = plt.subplots() elif request.param == 'subplots_shared': fig, ax_lst = plt.subplots(2, 2, sharex='all', sharey='all') ax = ax_lst[0][0] elif request.param == 'add_axes': fig = plt.figure() ax = fig.add_axes([.1, .1, .8, .8]) return fig, ax def test_remove_shared_axes(shared_axes_generator, shared_axis_remover): # test all of the ways to get fig/ax sets fig, ax = shared_axes_generator shared_axis_remover(ax) def test_remove_shared_axes_relim(): fig, ax_lst = plt.subplots(2, 2, sharex='all', sharey='all') ax = ax_lst[0][0] orig_xlim = ax_lst[0][1].get_xlim() ax.remove() ax.set_xlim(0, 5) assert_array_equal(ax_lst[0][1].get_xlim(), orig_xlim) def test_shared_axes_autoscale(): l = np.arange(-80, 90, 40) t = np.random.random_sample((l.size, l.size)) fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, sharey=True) ax1.set_xlim(-1000, 1000) ax1.set_ylim(-1000, 1000) ax1.contour(l, l, t) ax2.contour(l, l, t) assert not ax1.get_autoscalex_on() and not ax2.get_autoscalex_on() assert not ax1.get_autoscaley_on() and not ax2.get_autoscaley_on() assert ax1.get_xlim() == ax2.get_xlim() == (-1000, 1000) assert ax1.get_ylim() == ax2.get_ylim() == (-1000, 1000) def test_adjust_numtick_aspect(): fig, ax = plt.subplots() ax.yaxis.get_major_locator().set_params(nbins='auto') ax.set_xlim(0, 1000) ax.set_aspect('equal') fig.canvas.draw() assert len(ax.yaxis.get_major_locator()()) == 2 ax.set_ylim(0, 1000) fig.canvas.draw() assert len(ax.yaxis.get_major_locator()()) > 2 @image_comparison(["auto_numticks.png"], style='default') def test_auto_numticks(): # Make tiny, empty subplots, verify that there are only 3 ticks. plt.subplots(4, 4) @image_comparison(["auto_numticks_log.png"], style='default') def test_auto_numticks_log(): # Verify that there are not too many ticks with a large log range. fig, ax = plt.subplots() matplotlib.rcParams['axes.autolimit_mode'] = 'round_numbers' ax.loglog([1e-20, 1e5], [1e-16, 10]) def test_broken_barh_empty(): fig, ax = plt.subplots() ax.broken_barh([], (.1, .5)) def test_broken_barh_timedelta(): """Check that timedelta works as x, dx pair for this method.""" fig, ax = plt.subplots() d0 = datetime.datetime(2018, 11, 9, 0, 0, 0) pp = ax.broken_barh([(d0, datetime.timedelta(hours=1))], [1, 2]) assert pp.get_paths()[0].vertices[0, 0] == mdates.date2num(d0) assert pp.get_paths()[0].vertices[2, 0] == mdates.date2num(d0) + 1 / 24 def test_pandas_pcolormesh(pd): time = pd.date_range('2000-01-01', periods=10) depth = np.arange(20) data = np.random.rand(19, 9) fig, ax = plt.subplots() ax.pcolormesh(time, depth, data) def test_pandas_indexing_dates(pd): dates = np.arange('2005-02', '2005-03', dtype='datetime64[D]') values = np.sin(np.array(range(len(dates)))) df = pd.DataFrame({'dates': dates, 'values': values}) ax = plt.gca() without_zero_index = df[np.array(df.index) % 2 == 1].copy() ax.plot('dates', 'values', data=without_zero_index) def test_pandas_errorbar_indexing(pd): df = pd.DataFrame(np.random.uniform(size=(5, 4)), columns=['x', 'y', 'xe', 'ye'], index=[1, 2, 3, 4, 5]) fig, ax = plt.subplots() ax.errorbar('x', 'y', xerr='xe', yerr='ye', data=df) def test_pandas_index_shape(pd): df = pd.DataFrame({"XX": [4, 5, 6], "YY": [7, 1, 2]}) fig, ax = plt.subplots() ax.plot(df.index, df['YY']) def test_pandas_indexing_hist(pd): ser_1 = pd.Series(data=[1, 2, 2, 3, 3, 4, 4, 4, 4, 5]) ser_2 = ser_1.iloc[1:] fig, ax = plt.subplots() ax.hist(ser_2) def test_pandas_bar_align_center(pd): # Tests fix for issue 8767 df = pd.DataFrame({'a': range(2), 'b': range(2)}) fig, ax = plt.subplots(1) ax.bar(df.loc[df['a'] == 1, 'b'], df.loc[df['a'] == 1, 'b'], align='center') fig.canvas.draw() def test_axis_set_tick_params_labelsize_labelcolor(): # Tests fix for issue 4346 axis_1 = plt.subplot() axis_1.yaxis.set_tick_params(labelsize=30, labelcolor='red', direction='out') # Expected values after setting the ticks assert axis_1.yaxis.majorTicks[0]._size == 4.0 assert axis_1.yaxis.majorTicks[0].tick1line.get_color() == 'k' assert axis_1.yaxis.majorTicks[0].label1.get_size() == 30.0 assert axis_1.yaxis.majorTicks[0].label1.get_color() == 'red' def test_axes_tick_params_gridlines(): # Now treating grid params like other Tick params ax = plt.subplot() ax.tick_params(grid_color='b', grid_linewidth=5, grid_alpha=0.5, grid_linestyle='dashdot') for axis in ax.xaxis, ax.yaxis: assert axis.majorTicks[0].gridline.get_color() == 'b' assert axis.majorTicks[0].gridline.get_linewidth() == 5 assert axis.majorTicks[0].gridline.get_alpha() == 0.5 assert axis.majorTicks[0].gridline.get_linestyle() == '-.' def test_axes_tick_params_ylabelside(): # Tests fix for issue 10267 ax = plt.subplot() ax.tick_params(labelleft=False, labelright=True, which='major') ax.tick_params(labelleft=False, labelright=True, which='minor') # expects left false, right true assert ax.yaxis.majorTicks[0].label1.get_visible() is False assert ax.yaxis.majorTicks[0].label2.get_visible() is True assert ax.yaxis.minorTicks[0].label1.get_visible() is False assert ax.yaxis.minorTicks[0].label2.get_visible() is True def test_axes_tick_params_xlabelside(): # Tests fix for issue 10267 ax = plt.subplot() ax.tick_params(labeltop=True, labelbottom=False, which='major') ax.tick_params(labeltop=True, labelbottom=False, which='minor') # expects top True, bottom False # label1.get_visible() mapped to labelbottom # label2.get_visible() mapped to labeltop assert ax.xaxis.majorTicks[0].label1.get_visible() is False assert ax.xaxis.majorTicks[0].label2.get_visible() is True assert ax.xaxis.minorTicks[0].label1.get_visible() is False assert ax.xaxis.minorTicks[0].label2.get_visible() is True def test_none_kwargs(): ax = plt.figure().subplots() ln, = ax.plot(range(32), linestyle=None) assert ln.get_linestyle() == '-' def test_bar_uint8(): xs = [0, 1, 2, 3] b = plt.bar(np.array(xs, dtype=np.uint8), [2, 3, 4, 5], align="edge") for (patch, x) in zip(b.patches, xs): assert patch.xy[0] == x @image_comparison(['date_timezone_x.png'], tol=1.0) def test_date_timezone_x(): # Tests issue 5575 time_index = [datetime.datetime(2016, 2, 22, hour=x, tzinfo=dateutil.tz.gettz('Canada/Eastern')) for x in range(3)] # Same Timezone plt.figure(figsize=(20, 12)) plt.subplot(2, 1, 1) plt.plot_date(time_index, [3] * 3, tz='Canada/Eastern') # Different Timezone plt.subplot(2, 1, 2) plt.plot_date(time_index, [3] * 3, tz='UTC') @image_comparison(['date_timezone_y.png']) def test_date_timezone_y(): # Tests issue 5575 time_index = [datetime.datetime(2016, 2, 22, hour=x, tzinfo=dateutil.tz.gettz('Canada/Eastern')) for x in range(3)] # Same Timezone plt.figure(figsize=(20, 12)) plt.subplot(2, 1, 1) plt.plot_date([3] * 3, time_index, tz='Canada/Eastern', xdate=False, ydate=True) # Different Timezone plt.subplot(2, 1, 2) plt.plot_date([3] * 3, time_index, tz='UTC', xdate=False, ydate=True) @image_comparison(['date_timezone_x_and_y.png'], tol=1.0) def test_date_timezone_x_and_y(): # Tests issue 5575 UTC = datetime.timezone.utc time_index = [datetime.datetime(2016, 2, 22, hour=x, tzinfo=UTC) for x in range(3)] # Same Timezone plt.figure(figsize=(20, 12)) plt.subplot(2, 1, 1) plt.plot_date(time_index, time_index, tz='UTC', ydate=True) # Different Timezone plt.subplot(2, 1, 2) plt.plot_date(time_index, time_index, tz='US/Eastern', ydate=True) @image_comparison(['axisbelow.png'], remove_text=True) def test_axisbelow(): # Test 'line' setting added in 6287. # Show only grids, not frame or ticks, to make this test # independent of future change to drawing order of those elements. axs = plt.figure().subplots(ncols=3, sharex=True, sharey=True) settings = (False, 'line', True) for ax, setting in zip(axs, settings): ax.plot((0, 10), (0, 10), lw=10, color='m') circ = mpatches.Circle((3, 3), color='r') ax.add_patch(circ) ax.grid(color='c', linestyle='-', linewidth=3) ax.tick_params(top=False, bottom=False, left=False, right=False) ax.spines[:].set_visible(False) ax.set_axisbelow(setting) def test_titletwiny(): plt.style.use('mpl20') fig, ax = plt.subplots(dpi=72) ax2 = ax.twiny() xlabel2 = ax2.set_xlabel('Xlabel2') title = ax.set_title('Title') fig.canvas.draw() renderer = fig.canvas.get_renderer() # ------- Test that title is put above Xlabel2 (Xlabel2 at top) ---------- bbox_y0_title = title.get_window_extent(renderer).y0 # bottom of title bbox_y1_xlabel2 = xlabel2.get_window_extent(renderer).y1 # top of xlabel2 y_diff = bbox_y0_title - bbox_y1_xlabel2 assert np.isclose(y_diff, 3) def test_titlesetpos(): # Test that title stays put if we set it manually fig, ax = plt.subplots() fig.subplots_adjust(top=0.8) ax2 = ax.twiny() ax.set_xlabel('Xlabel') ax2.set_xlabel('Xlabel2') ax.set_title('Title') pos = (0.5, 1.11) ax.title.set_position(pos) renderer = fig.canvas.get_renderer() ax._update_title_position(renderer) assert ax.title.get_position() == pos def test_title_xticks_top(): # Test that title moves if xticks on top of axes. mpl.rcParams['axes.titley'] = None fig, ax = plt.subplots() ax.xaxis.set_ticks_position('top') ax.set_title('xlabel top') fig.canvas.draw() assert ax.title.get_position()[1] > 1.04 def test_title_xticks_top_both(): # Test that title moves if xticks on top of axes. mpl.rcParams['axes.titley'] = None fig, ax = plt.subplots() ax.tick_params(axis="x", bottom=True, top=True, labelbottom=True, labeltop=True) ax.set_title('xlabel top') fig.canvas.draw() assert ax.title.get_position()[1] > 1.04 def test_title_no_move_off_page(): # If an axes is off the figure (ie. if it is cropped during a save) # make sure that the automatic title repositioning does not get done. mpl.rcParams['axes.titley'] = None fig = plt.figure() ax = fig.add_axes([0.1, -0.5, 0.8, 0.2]) ax.tick_params(axis="x", bottom=True, top=True, labelbottom=True, labeltop=True) tt = ax.set_title('Boo') fig.canvas.draw() assert tt.get_position()[1] == 1.0 def test_offset_label_color(): # Tests issue 6440 fig, ax = plt.subplots() ax.plot([1.01e9, 1.02e9, 1.03e9]) ax.yaxis.set_tick_params(labelcolor='red') assert ax.yaxis.get_offset_text().get_color() == 'red' def test_offset_text_visible(): fig, ax = plt.subplots() ax.plot([1.01e9, 1.02e9, 1.03e9]) ax.yaxis.set_tick_params(label1On=False, label2On=True) assert ax.yaxis.get_offset_text().get_visible() ax.yaxis.set_tick_params(label2On=False) assert not ax.yaxis.get_offset_text().get_visible() def test_large_offset(): fig, ax = plt.subplots() ax.plot((1 + np.array([0, 1.e-12])) * 1.e27) fig.canvas.draw() def test_barb_units(): fig, ax = plt.subplots() dates = [datetime.datetime(2017, 7, 15, 18, i) for i in range(0, 60, 10)] y = np.linspace(0, 5, len(dates)) u = v = np.linspace(0, 50, len(dates)) ax.barbs(dates, y, u, v) def test_quiver_units(): fig, ax = plt.subplots() dates = [datetime.datetime(2017, 7, 15, 18, i) for i in range(0, 60, 10)] y = np.linspace(0, 5, len(dates)) u = v = np.linspace(0, 50, len(dates)) ax.quiver(dates, y, u, v) def test_bar_color_cycle(): to_rgb = mcolors.to_rgb fig, ax = plt.subplots() for j in range(5): ln, = ax.plot(range(3)) brs = ax.bar(range(3), range(3)) for br in brs: assert to_rgb(ln.get_color()) == to_rgb(br.get_facecolor()) def test_tick_param_label_rotation(): fix, (ax, ax2) = plt.subplots(1, 2) ax.plot([0, 1], [0, 1]) ax2.plot([0, 1], [0, 1]) ax.xaxis.set_tick_params(which='both', rotation=75) ax.yaxis.set_tick_params(which='both', rotation=90) for text in ax.get_xticklabels(which='both'): assert text.get_rotation() == 75 for text in ax.get_yticklabels(which='both'): assert text.get_rotation() == 90 ax2.tick_params(axis='x', labelrotation=53) ax2.tick_params(axis='y', rotation=35) for text in ax2.get_xticklabels(which='major'): assert text.get_rotation() == 53 for text in ax2.get_yticklabels(which='major'): assert text.get_rotation() == 35 @pytest.mark.style('default') def test_fillbetween_cycle(): fig, ax = plt.subplots() for j in range(3): cc = ax.fill_between(range(3), range(3)) target = mcolors.to_rgba('C{}'.format(j)) assert tuple(cc.get_facecolors().squeeze()) == tuple(target) for j in range(3, 6): cc = ax.fill_betweenx(range(3), range(3)) target = mcolors.to_rgba('C{}'.format(j)) assert tuple(cc.get_facecolors().squeeze()) == tuple(target) target = mcolors.to_rgba('k') for al in ['facecolor', 'facecolors', 'color']: cc = ax.fill_between(range(3), range(3), **{al: 'k'}) assert tuple(cc.get_facecolors().squeeze()) == tuple(target) edge_target = mcolors.to_rgba('k') for j, el in enumerate(['edgecolor', 'edgecolors'], start=6): cc = ax.fill_between(range(3), range(3), **{el: 'k'}) face_target = mcolors.to_rgba('C{}'.format(j)) assert tuple(cc.get_facecolors().squeeze()) == tuple(face_target) assert tuple(cc.get_edgecolors().squeeze()) == tuple(edge_target) def test_log_margins(): plt.rcParams['axes.autolimit_mode'] = 'data' fig, ax = plt.subplots() margin = 0.05 ax.set_xmargin(margin) ax.semilogx([10, 100], [10, 100]) xlim0, xlim1 = ax.get_xlim() transform = ax.xaxis.get_transform() xlim0t, xlim1t = transform.transform([xlim0, xlim1]) x0t, x1t = transform.transform([10, 100]) delta = (x1t - x0t) * margin assert_allclose([xlim0t + delta, xlim1t - delta], [x0t, x1t]) def test_color_length_mismatch(): N = 5 x, y = np.arange(N), np.arange(N) colors = np.arange(N+1) fig, ax = plt.subplots() with pytest.raises(ValueError): ax.scatter(x, y, c=colors) c_rgb = (0.5, 0.5, 0.5) ax.scatter(x, y, c=c_rgb) ax.scatter(x, y, c=[c_rgb] * N) def test_eventplot_legend(): plt.eventplot([1.0], label='Label') plt.legend() def test_bar_broadcast_args(): fig, ax = plt.subplots() # Check that a bar chart with a single height for all bars works. ax.bar(range(4), 1) # Check that a horizontal chart with one width works. ax.barh(0, 1, left=range(4), height=1) # Check that edgecolor gets broadcast. rect1, rect2 = ax.bar([0, 1], [0, 1], edgecolor=(.1, .2, .3, .4)) assert rect1.get_edgecolor() == rect2.get_edgecolor() == (.1, .2, .3, .4) def test_invalid_axis_limits(): plt.plot([0, 1], [0, 1]) with pytest.raises(ValueError): plt.xlim(np.nan) with pytest.raises(ValueError): plt.xlim(np.inf) with pytest.raises(ValueError): plt.ylim(np.nan) with pytest.raises(ValueError): plt.ylim(np.inf) # Test all 4 combinations of logs/symlogs for minorticks_on() @pytest.mark.parametrize('xscale', ['symlog', 'log']) @pytest.mark.parametrize('yscale', ['symlog', 'log']) def test_minorticks_on(xscale, yscale): ax = plt.subplot() ax.plot([1, 2, 3, 4]) ax.set_xscale(xscale) ax.set_yscale(yscale) ax.minorticks_on() def test_twinx_knows_limits(): fig, ax = plt.subplots() ax.axvspan(1, 2) xtwin = ax.twinx() xtwin.plot([0, 0.5], [1, 2]) # control axis fig2, ax2 = plt.subplots() ax2.axvspan(1, 2) ax2.plot([0, 0.5], [1, 2]) assert_array_equal(xtwin.viewLim.intervalx, ax2.viewLim.intervalx) def test_zero_linewidth(): # Check that setting a zero linewidth doesn't error plt.plot([0, 1], [0, 1], ls='--', lw=0) def test_empty_errorbar_legend(): fig, ax = plt.subplots() ax.errorbar([], [], xerr=[], label='empty y') ax.errorbar([], [], yerr=[], label='empty x') ax.legend() @check_figures_equal(extensions=["png"]) def test_plot_decimal(fig_test, fig_ref): x0 = np.arange(-10, 10, 0.3) y0 = [5.2 * x ** 3 - 2.1 * x ** 2 + 7.34 * x + 4.5 for x in x0] x = [Decimal(i) for i in x0] y = [Decimal(i) for i in y0] # Test image - line plot with Decimal input fig_test.subplots().plot(x, y) # Reference image fig_ref.subplots().plot(x0, y0) # pdf and svg tests fail using travis' old versions of gs and inkscape. @check_figures_equal(extensions=["png"]) def test_markerfacecolor_none_alpha(fig_test, fig_ref): fig_test.subplots().plot(0, "o", mfc="none", alpha=.5) fig_ref.subplots().plot(0, "o", mfc="w", alpha=.5) def test_tick_padding_tightbbox(): """Test that tick padding gets turned off if axis is off""" plt.rcParams["xtick.direction"] = "out" plt.rcParams["ytick.direction"] = "out" fig, ax = plt.subplots() bb = ax.get_tightbbox(fig.canvas.get_renderer()) ax.axis('off') bb2 = ax.get_tightbbox(fig.canvas.get_renderer()) assert bb.x0 < bb2.x0 assert bb.y0 < bb2.y0 def test_inset(): """ Ensure that inset_ax argument is indeed optional """ dx, dy = 0.05, 0.05 # generate 2 2d grids for the x & y bounds y, x = np.mgrid[slice(1, 5 + dy, dy), slice(1, 5 + dx, dx)] z = np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x) fig, ax = plt.subplots() ax.pcolormesh(x, y, z[:-1, :-1]) ax.set_aspect(1.) ax.apply_aspect() # we need to apply_aspect to make the drawing below work. xlim = [1.5, 2.15] ylim = [2, 2.5] rect = [xlim[0], ylim[0], xlim[1] - xlim[0], ylim[1] - ylim[0]] rec, connectors = ax.indicate_inset(bounds=rect) assert connectors is None fig.canvas.draw() xx = np.array([[1.5, 2.], [2.15, 2.5]]) assert np.all(rec.get_bbox().get_points() == xx) def test_zoom_inset(): dx, dy = 0.05, 0.05 # generate 2 2d grids for the x & y bounds y, x = np.mgrid[slice(1, 5 + dy, dy), slice(1, 5 + dx, dx)] z = np.sin(x)**10 + np.cos(10 + y*x) * np.cos(x) fig, ax = plt.subplots() ax.pcolormesh(x, y, z[:-1, :-1]) ax.set_aspect(1.) ax.apply_aspect() # we need to apply_aspect to make the drawing below work. # Make the inset_axes... Position axes coordinates... axin1 = ax.inset_axes([0.7, 0.7, 0.35, 0.35]) # redraw the data in the inset axes... axin1.pcolormesh(x, y, z[:-1, :-1]) axin1.set_xlim([1.5, 2.15]) axin1.set_ylim([2, 2.5]) axin1.set_aspect(ax.get_aspect()) rec, connectors = ax.indicate_inset_zoom(axin1) assert len(connectors) == 4 fig.canvas.draw() xx = np.array([[1.5, 2.], [2.15, 2.5]]) assert(np.all(rec.get_bbox().get_points() == xx)) xx = np.array([[0.6325, 0.692308], [0.8425, 0.907692]]) np.testing.assert_allclose( axin1.get_position().get_points(), xx, rtol=1e-4) @pytest.mark.parametrize('x_inverted', [False, True]) @pytest.mark.parametrize('y_inverted', [False, True]) def test_indicate_inset_inverted(x_inverted, y_inverted): """ Test that the inset lines are correctly located with inverted data axes. """ fig, (ax1, ax2) = plt.subplots(1, 2) x = np.arange(10) ax1.plot(x, x, 'o') if x_inverted: ax1.invert_xaxis() if y_inverted: ax1.invert_yaxis() rect, bounds = ax1.indicate_inset([2, 2, 5, 4], ax2) lower_left, upper_left, lower_right, upper_right = bounds sign_x = -1 if x_inverted else 1 sign_y = -1 if y_inverted else 1 assert sign_x * (lower_right.xy2[0] - lower_left.xy2[0]) > 0 assert sign_x * (upper_right.xy2[0] - upper_left.xy2[0]) > 0 assert sign_y * (upper_left.xy2[1] - lower_left.xy2[1]) > 0 assert sign_y * (upper_right.xy2[1] - lower_right.xy2[1]) > 0 def test_set_position(): fig, ax = plt.subplots() ax.set_aspect(3.) ax.set_position([0.1, 0.1, 0.4, 0.4], which='both') assert np.allclose(ax.get_position().width, 0.1) ax.set_aspect(2.) ax.set_position([0.1, 0.1, 0.4, 0.4], which='original') assert np.allclose(ax.get_position().width, 0.15) ax.set_aspect(3.) ax.set_position([0.1, 0.1, 0.4, 0.4], which='active') assert np.allclose(ax.get_position().width, 0.1) def test_spines_properbbox_after_zoom(): fig, ax = plt.subplots() bb = ax.spines.bottom.get_window_extent(fig.canvas.get_renderer()) # this is what zoom calls: ax._set_view_from_bbox((320, 320, 500, 500), 'in', None, False, False) bb2 = ax.spines.bottom.get_window_extent(fig.canvas.get_renderer()) np.testing.assert_allclose(bb.get_points(), bb2.get_points(), rtol=1e-6) def test_cartopy_backcompat(): class Dummy(matplotlib.axes.Axes): ... class DummySubplot(matplotlib.axes.SubplotBase, Dummy): _axes_class = Dummy matplotlib.axes._subplots._subplot_classes[Dummy] = DummySubplot FactoryDummySubplot = matplotlib.axes.subplot_class_factory(Dummy) assert DummySubplot is FactoryDummySubplot def test_gettightbbox_ignore_nan(): fig, ax = plt.subplots() remove_ticks_and_titles(fig) ax.text(np.NaN, 1, 'Boo') renderer = fig.canvas.get_renderer() np.testing.assert_allclose(ax.get_tightbbox(renderer).width, 496) def test_scatter_series_non_zero_index(pd): # create non-zero index ids = range(10, 18) x = pd.Series(np.random.uniform(size=8), index=ids) y = pd.Series(np.random.uniform(size=8), index=ids) c = pd.Series([1, 1, 1, 1, 1, 0, 0, 0], index=ids) plt.scatter(x, y, c) def test_scatter_empty_data(): # making sure this does not raise an exception plt.scatter([], []) plt.scatter([], [], s=[], c=[]) @image_comparison(['annotate_across_transforms.png'], style='mpl20', remove_text=True) def test_annotate_across_transforms(): x = np.linspace(0, 10, 200) y = np.exp(-x) * np.sin(x) fig, ax = plt.subplots(figsize=(3.39, 3)) ax.plot(x, y) axins = ax.inset_axes([0.4, 0.5, 0.3, 0.3]) axins.set_aspect(0.2) axins.xaxis.set_visible(False) axins.yaxis.set_visible(False) ax.annotate("", xy=(x[150], y[150]), xycoords=ax.transData, xytext=(1, 0), textcoords=axins.transAxes, arrowprops=dict(arrowstyle="->")) @image_comparison(['secondary_xy.png'], style='mpl20') def test_secondary_xy(): fig, axs = plt.subplots(1, 2, figsize=(10, 5), constrained_layout=True) def invert(x): with np.errstate(divide='ignore'): return 1 / x for nn, ax in enumerate(axs): ax.plot(np.arange(2, 11), np.arange(2, 11)) if nn == 0: secax = ax.secondary_xaxis else: secax = ax.secondary_yaxis secax(0.2, functions=(invert, invert)) secax(0.4, functions=(lambda x: 2 * x, lambda x: x / 2)) secax(0.6, functions=(lambda x: x**2, lambda x: x**(1/2))) secax(0.8) def test_secondary_fail(): fig, ax = plt.subplots() ax.plot(np.arange(2, 11), np.arange(2, 11)) with pytest.raises(ValueError): ax.secondary_xaxis(0.2, functions=(lambda x: 1 / x)) with pytest.raises(ValueError): ax.secondary_xaxis('right') with pytest.raises(ValueError): ax.secondary_yaxis('bottom') def test_secondary_resize(): fig, ax = plt.subplots(figsize=(10, 5)) ax.plot(np.arange(2, 11), np.arange(2, 11)) def invert(x): with np.errstate(divide='ignore'): return 1 / x ax.secondary_xaxis('top', functions=(invert, invert)) fig.canvas.draw() fig.set_size_inches((7, 4)) assert_allclose(ax.get_position().extents, [0.125, 0.1, 0.9, 0.9]) def test_secondary_minorloc(): fig, ax = plt.subplots(figsize=(10, 5)) ax.plot(np.arange(2, 11), np.arange(2, 11)) def invert(x): with np.errstate(divide='ignore'): return 1 / x secax = ax.secondary_xaxis('top', functions=(invert, invert)) assert isinstance(secax._axis.get_minor_locator(), mticker.NullLocator) secax.minorticks_on() assert isinstance(secax._axis.get_minor_locator(), mticker.AutoMinorLocator) ax.set_xscale('log') plt.draw() assert isinstance(secax._axis.get_minor_locator(), mticker.LogLocator) ax.set_xscale('linear') plt.draw() assert isinstance(secax._axis.get_minor_locator(), mticker.NullLocator) def test_secondary_formatter(): fig, ax = plt.subplots() ax.set_xscale("log") secax = ax.secondary_xaxis("top") secax.xaxis.set_major_formatter(mticker.ScalarFormatter()) fig.canvas.draw() assert isinstance( secax.xaxis.get_major_formatter(), mticker.ScalarFormatter) def color_boxes(fig, axs): """ Helper for the tests below that test the extents of various axes elements """ fig.canvas.draw() renderer = fig.canvas.get_renderer() bbaxis = [] for nn, axx in enumerate([axs.xaxis, axs.yaxis]): bb = axx.get_tightbbox(renderer) if bb: axisr = plt.Rectangle( (bb.x0, bb.y0), width=bb.width, height=bb.height, linewidth=0.7, edgecolor='y', facecolor="none", transform=None, zorder=3) fig.add_artist(axisr) bbaxis += [bb] bbspines = [] for nn, a in enumerate(['bottom', 'top', 'left', 'right']): bb = axs.spines[a].get_window_extent(renderer) spiner = plt.Rectangle( (bb.x0, bb.y0), width=bb.width, height=bb.height, linewidth=0.7, edgecolor="green", facecolor="none", transform=None, zorder=3) fig.add_artist(spiner) bbspines += [bb] bb = axs.get_window_extent() rect2 = plt.Rectangle( (bb.x0, bb.y0), width=bb.width, height=bb.height, linewidth=1.5, edgecolor="magenta", facecolor="none", transform=None, zorder=2) fig.add_artist(rect2) bbax = bb bb2 = axs.get_tightbbox(renderer) rect2 = plt.Rectangle( (bb2.x0, bb2.y0), width=bb2.width, height=bb2.height, linewidth=3, edgecolor="red", facecolor="none", transform=None, zorder=1) fig.add_artist(rect2) bbtb = bb2 return bbaxis, bbspines, bbax, bbtb def test_normal_axes(): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) fig.canvas.draw() plt.close(fig) bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) # test the axis bboxes target = [ [123.375, 75.88888888888886, 983.25, 33.0], [85.51388888888889, 99.99999999999997, 53.375, 993.0] ] for nn, b in enumerate(bbaxis): targetbb = mtransforms.Bbox.from_bounds(*target[nn]) assert_array_almost_equal(b.bounds, targetbb.bounds, decimal=2) target = [ [150.0, 119.999, 930.0, 11.111], [150.0, 1080.0, 930.0, 0.0], [150.0, 119.9999, 11.111, 960.0], [1068.8888, 119.9999, 11.111, 960.0] ] for nn, b in enumerate(bbspines): targetbb = mtransforms.Bbox.from_bounds(*target[nn]) assert_array_almost_equal(b.bounds, targetbb.bounds, decimal=2) target = [150.0, 119.99999999999997, 930.0, 960.0] targetbb = mtransforms.Bbox.from_bounds(*target) assert_array_almost_equal(bbax.bounds, targetbb.bounds, decimal=2) target = [85.5138, 75.88888, 1021.11, 1017.11] targetbb = mtransforms.Bbox.from_bounds(*target) assert_array_almost_equal(bbtb.bounds, targetbb.bounds, decimal=2) # test that get_position roundtrips to get_window_extent axbb = ax.get_position().transformed(fig.transFigure).bounds assert_array_almost_equal(axbb, ax.get_window_extent().bounds, decimal=2) def test_nodecorator(): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) fig.canvas.draw() ax.set(xticklabels=[], yticklabels=[]) bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) # test the axis bboxes for nn, b in enumerate(bbaxis): assert b is None target = [ [150.0, 119.999, 930.0, 11.111], [150.0, 1080.0, 930.0, 0.0], [150.0, 119.9999, 11.111, 960.0], [1068.8888, 119.9999, 11.111, 960.0] ] for nn, b in enumerate(bbspines): targetbb = mtransforms.Bbox.from_bounds(*target[nn]) assert_allclose(b.bounds, targetbb.bounds, atol=1e-2) target = [150.0, 119.99999999999997, 930.0, 960.0] targetbb = mtransforms.Bbox.from_bounds(*target) assert_allclose(bbax.bounds, targetbb.bounds, atol=1e-2) target = [150., 120., 930., 960.] targetbb = mtransforms.Bbox.from_bounds(*target) assert_allclose(bbtb.bounds, targetbb.bounds, atol=1e-2) def test_displaced_spine(): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) ax.set(xticklabels=[], yticklabels=[]) ax.spines.bottom.set_position(('axes', -0.1)) fig.canvas.draw() bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) targets = [ [150., 24., 930., 11.111111], [150.0, 1080.0, 930.0, 0.0], [150.0, 119.9999, 11.111, 960.0], [1068.8888, 119.9999, 11.111, 960.0] ] for target, bbspine in zip(targets, bbspines): targetbb = mtransforms.Bbox.from_bounds(*target) assert_allclose(bbspine.bounds, targetbb.bounds, atol=1e-2) target = [150.0, 119.99999999999997, 930.0, 960.0] targetbb = mtransforms.Bbox.from_bounds(*target) assert_allclose(bbax.bounds, targetbb.bounds, atol=1e-2) target = [150., 24., 930., 1056.] targetbb = mtransforms.Bbox.from_bounds(*target) assert_allclose(bbtb.bounds, targetbb.bounds, atol=1e-2) def test_tickdirs(): """ Switch the tickdirs and make sure the bboxes switch with them """ targets = [[[150.0, 120.0, 930.0, 11.1111], [150.0, 120.0, 11.111, 960.0]], [[150.0, 108.8889, 930.0, 11.111111111111114], [138.889, 120, 11.111, 960.0]], [[150.0, 114.44444444444441, 930.0, 11.111111111111114], [144.44444444444446, 119.999, 11.111, 960.0]]] for dnum, dirs in enumerate(['in', 'out', 'inout']): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) ax.tick_params(direction=dirs) fig.canvas.draw() bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) for nn, num in enumerate([0, 2]): targetbb = mtransforms.Bbox.from_bounds(*targets[dnum][nn]) assert_allclose( bbspines[num].bounds, targetbb.bounds, atol=1e-2) def test_minor_accountedfor(): with rc_context({'_internal.classic_mode': False}): fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) fig.canvas.draw() ax.tick_params(which='both', direction='out') bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) targets = [[150.0, 108.88888888888886, 930.0, 11.111111111111114], [138.8889, 119.9999, 11.1111, 960.0]] for n in range(2): targetbb = mtransforms.Bbox.from_bounds(*targets[n]) assert_allclose( bbspines[n * 2].bounds, targetbb.bounds, atol=1e-2) fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) fig.canvas.draw() ax.tick_params(which='both', direction='out') ax.minorticks_on() ax.tick_params(axis='both', which='minor', length=30) fig.canvas.draw() bbaxis, bbspines, bbax, bbtb = color_boxes(fig, ax) targets = [[150.0, 36.66666666666663, 930.0, 83.33333333333334], [66.6667, 120.0, 83.3333, 960.0]] for n in range(2): targetbb = mtransforms.Bbox.from_bounds(*targets[n]) assert_allclose( bbspines[n * 2].bounds, targetbb.bounds, atol=1e-2) @check_figures_equal(extensions=["png"]) def test_axis_bool_arguments(fig_test, fig_ref): # Test if False and "off" give the same fig_test.add_subplot(211).axis(False) fig_ref.add_subplot(211).axis("off") # Test if True after False gives the same as "on" ax = fig_test.add_subplot(212) ax.axis(False) ax.axis(True) fig_ref.add_subplot(212).axis("on") def test_axis_extent_arg(): fig, ax = plt.subplots() xmin = 5 xmax = 10 ymin = 15 ymax = 20 extent = ax.axis([xmin, xmax, ymin, ymax]) # test that the docstring is correct assert tuple(extent) == (xmin, xmax, ymin, ymax) # test that limits were set per the docstring assert (xmin, xmax) == ax.get_xlim() assert (ymin, ymax) == ax.get_ylim() def test_datetime_masked(): # make sure that all-masked data falls back to the viewlim # set in convert.axisinfo.... x = np.array([datetime.datetime(2017, 1, n) for n in range(1, 6)]) y = np.array([1, 2, 3, 4, 5]) m = np.ma.masked_greater(y, 0) fig, ax = plt.subplots() ax.plot(x, m) dt = mdates.date2num(np.datetime64('0000-12-31')) assert ax.get_xlim() == (730120.0 + dt, 733773.0 + dt) def test_hist_auto_bins(): _, bins, _ = plt.hist([[1, 2, 3], [3, 4, 5, 6]], bins='auto') assert bins[0] <= 1 assert bins[-1] >= 6 def test_hist_nan_data(): fig, (ax1, ax2) = plt.subplots(2) data = [1, 2, 3] nan_data = data + [np.nan] bins, edges, _ = ax1.hist(data) with np.errstate(invalid='ignore'): nanbins, nanedges, _ = ax2.hist(nan_data) np.testing.assert_allclose(bins, nanbins) np.testing.assert_allclose(edges, nanedges) def test_hist_range_and_density(): _, bins, _ = plt.hist(np.random.rand(10), "auto", range=(0, 1), density=True) assert bins[0] == 0 assert bins[-1] == 1 def test_bar_errbar_zorder(): # Check that the zorder of errorbars is always greater than the bar they # are plotted on fig, ax = plt.subplots() x = [1, 2, 3] barcont = ax.bar(x=x, height=x, yerr=x, capsize=5, zorder=3) data_line, caplines, barlinecols = barcont.errorbar.lines for bar in barcont.patches: for capline in caplines: assert capline.zorder > bar.zorder for barlinecol in barlinecols: assert barlinecol.zorder > bar.zorder def test_set_ticks_inverted(): fig, ax = plt.subplots() ax.invert_xaxis() ax.set_xticks([.3, .7]) assert ax.get_xlim() == (1, 0) def test_aspect_nonlinear_adjustable_box(): fig = plt.figure(figsize=(10, 10)) # Square. ax = fig.add_subplot() ax.plot([.4, .6], [.4, .6]) # Set minpos to keep logit happy. ax.set(xscale="log", xlim=(1, 10), yscale="logit", ylim=(1/11, 1/1001), aspect=1, adjustable="box") ax.margins(0) pos = fig.transFigure.transform_bbox(ax.get_position()) assert pos.height / pos.width == pytest.approx(2) def test_aspect_nonlinear_adjustable_datalim(): fig = plt.figure(figsize=(10, 10)) # Square. ax = fig.add_axes([.1, .1, .8, .8]) # Square. ax.plot([.4, .6], [.4, .6]) # Set minpos to keep logit happy. ax.set(xscale="log", xlim=(1, 100), yscale="logit", ylim=(1 / 101, 1 / 11), aspect=1, adjustable="datalim") ax.margins(0) ax.apply_aspect() assert ax.get_xlim() == pytest.approx([1*10**(1/2), 100/10**(1/2)]) assert ax.get_ylim() == (1 / 101, 1 / 11) def test_box_aspect(): # Test if axes with box_aspect=1 has same dimensions # as axes with aspect equal and adjustable="box" fig1, ax1 = plt.subplots() axtwin = ax1.twinx() axtwin.plot([12, 344]) ax1.set_box_aspect(1) fig2, ax2 = plt.subplots() ax2.margins(0) ax2.plot([0, 2], [6, 8]) ax2.set_aspect("equal", adjustable="box") fig1.canvas.draw() fig2.canvas.draw() bb1 = ax1.get_position() bbt = axtwin.get_position() bb2 = ax2.get_position() assert_array_equal(bb1.extents, bb2.extents) assert_array_equal(bbt.extents, bb2.extents) def test_box_aspect_custom_position(): # Test if axes with custom position and box_aspect # behaves the same independent of the order of setting those. fig1, ax1 = plt.subplots() ax1.set_position([0.1, 0.1, 0.9, 0.2]) fig1.canvas.draw() ax1.set_box_aspect(1.) fig2, ax2 = plt.subplots() ax2.set_box_aspect(1.) fig2.canvas.draw() ax2.set_position([0.1, 0.1, 0.9, 0.2]) fig1.canvas.draw() fig2.canvas.draw() bb1 = ax1.get_position() bb2 = ax2.get_position() assert_array_equal(bb1.extents, bb2.extents) def test_bbox_aspect_axes_init(): # Test that box_aspect can be given to axes init and produces # all equal square axes. fig, axs = plt.subplots(2, 3, subplot_kw=dict(box_aspect=1), constrained_layout=True) fig.canvas.draw() renderer = fig.canvas.get_renderer() sizes = [] for ax in axs.flat: bb = ax.get_window_extent(renderer) sizes.extend([bb.width, bb.height]) assert_allclose(sizes, sizes[0]) def test_redraw_in_frame(): fig, ax = plt.subplots(1, 1) ax.plot([1, 2, 3]) fig.canvas.draw() ax.redraw_in_frame() def test_invisible_axes(): # invisible axes should not respond to events... fig, ax = plt.subplots() assert fig.canvas.inaxes((200, 200)) is not None ax.set_visible(False) assert fig.canvas.inaxes((200, 200)) is None def test_xtickcolor_is_not_markercolor(): plt.rcParams['lines.markeredgecolor'] = 'white' ax = plt.axes() ticks = ax.xaxis.get_major_ticks() for tick in ticks: assert tick.tick1line.get_markeredgecolor() != 'white' def test_ytickcolor_is_not_markercolor(): plt.rcParams['lines.markeredgecolor'] = 'white' ax = plt.axes() ticks = ax.yaxis.get_major_ticks() for tick in ticks: assert tick.tick1line.get_markeredgecolor() != 'white' @pytest.mark.parametrize('axis', ('x', 'y')) @pytest.mark.parametrize('auto', (True, False, None)) def test_unautoscale(axis, auto): fig, ax = plt.subplots() x = np.arange(100) y = np.linspace(-.1, .1, 100) ax.scatter(y, x) get_autoscale_on = getattr(ax, f'get_autoscale{axis}_on') set_lim = getattr(ax, f'set_{axis}lim') get_lim = getattr(ax, f'get_{axis}lim') post_auto = get_autoscale_on() if auto is None else auto set_lim((-0.5, 0.5), auto=auto) assert post_auto == get_autoscale_on() fig.canvas.draw() assert_array_equal(get_lim(), (-0.5, 0.5)) @check_figures_equal(extensions=["png"]) def test_polar_interpolation_steps_variable_r(fig_test, fig_ref): l, = fig_test.add_subplot(projection="polar").plot([0, np.pi/2], [1, 2]) l.get_path()._interpolation_steps = 100 fig_ref.add_subplot(projection="polar").plot( np.linspace(0, np.pi/2, 101), np.linspace(1, 2, 101)) @pytest.mark.style('default') def test_autoscale_tiny_sticky(): fig, ax = plt.subplots() ax.bar(0, 1e-9) fig.canvas.draw() assert ax.get_ylim() == (0, 1.05e-9) def test_xtickcolor_is_not_xticklabelcolor(): plt.rcParams['xtick.color'] = 'yellow' plt.rcParams['xtick.labelcolor'] = 'blue' ax = plt.axes() ticks = ax.xaxis.get_major_ticks() for tick in ticks: assert tick.tick1line.get_color() == 'yellow' assert tick.label1.get_color() == 'blue' def test_ytickcolor_is_not_yticklabelcolor(): plt.rcParams['ytick.color'] = 'yellow' plt.rcParams['ytick.labelcolor'] = 'blue' ax = plt.axes() ticks = ax.yaxis.get_major_ticks() for tick in ticks: assert tick.tick1line.get_color() == 'yellow' assert tick.label1.get_color() == 'blue' @pytest.mark.parametrize('size', [size for size in mfont_manager.font_scalings if size is not None] + [8, 10, 12]) @pytest.mark.style('default') def test_relative_ticklabel_sizes(size): mpl.rcParams['xtick.labelsize'] = size mpl.rcParams['ytick.labelsize'] = size fig, ax = plt.subplots() fig.canvas.draw() for name, axis in zip(['x', 'y'], [ax.xaxis, ax.yaxis]): for tick in axis.get_major_ticks(): assert tick.label1.get_size() == axis._get_tick_label_size(name) def test_multiplot_autoscale(): fig = plt.figure() ax1, ax2 = fig.subplots(2, 1, sharex='all') ax1.scatter([1, 2, 3, 4], [2, 3, 2, 3]) ax2.axhspan(-5, 5) xlim = ax1.get_xlim() assert np.allclose(xlim, [0.5, 4.5]) def test_sharing_does_not_link_positions(): fig = plt.figure() ax0 = fig.add_subplot(221) ax1 = fig.add_axes([.6, .6, .3, .3], sharex=ax0) init_pos = ax1.get_position() fig.subplots_adjust(left=0) assert (ax1.get_position().get_points() == init_pos.get_points()).all() @check_figures_equal(extensions=["pdf"]) def test_2dcolor_plot(fig_test, fig_ref): color = np.array([0.1, 0.2, 0.3]) # plot with 1D-color: axs = fig_test.subplots(5) axs[0].plot([1, 2], [1, 2], c=color.reshape(-1)) axs[1].scatter([1, 2], [1, 2], c=color.reshape(-1)) axs[2].step([1, 2], [1, 2], c=color.reshape(-1)) axs[3].hist(np.arange(10), color=color.reshape(-1)) axs[4].bar(np.arange(10), np.arange(10), color=color.reshape(-1)) # plot with 2D-color: axs = fig_ref.subplots(5) axs[0].plot([1, 2], [1, 2], c=color.reshape((1, -1))) axs[1].scatter([1, 2], [1, 2], c=color.reshape((1, -1))) axs[2].step([1, 2], [1, 2], c=color.reshape((1, -1))) axs[3].hist(np.arange(10), color=color.reshape((1, -1))) axs[4].bar(np.arange(10), np.arange(10), color=color.reshape((1, -1))) @check_figures_equal(extensions=['png']) def test_shared_axes_clear(fig_test, fig_ref): x = np.arange(0.0, 2*np.pi, 0.01) y = np.sin(x) axs = fig_ref.subplots(2, 2, sharex=True, sharey=True) for ax in axs.flat: ax.plot(x, y) axs = fig_test.subplots(2, 2, sharex=True, sharey=True) for ax in axs.flat: ax.clear() ax.plot(x, y) def test_shared_axes_retick(): fig, axs = plt.subplots(2, 2, sharex='all', sharey='all') for ax in axs.flat: ax.plot([0, 2], 'o-') axs[0, 0].set_xticks([-0.5, 0, 1, 1.5]) # should affect all axes xlims for ax in axs.flat: assert ax.get_xlim() == axs[0, 0].get_xlim() axs[0, 0].set_yticks([-0.5, 0, 2, 2.5]) # should affect all axes ylims for ax in axs.flat: assert ax.get_ylim() == axs[0, 0].get_ylim() @pytest.mark.parametrize('ha', ['left', 'center', 'right']) def test_ylabel_ha_with_position(ha): fig = Figure() ax = fig.subplots() ax.set_ylabel("test", y=1, ha=ha) ax.yaxis.set_label_position("right") assert ax.yaxis.get_label().get_ha() == ha def test_bar_label_location_vertical(): ax = plt.gca() xs, heights = [1, 2], [3, -4] rects = ax.bar(xs, heights) labels = ax.bar_label(rects) assert labels[0].xy == (xs[0], heights[0]) assert labels[0].get_ha() == 'center' assert labels[0].get_va() == 'bottom' assert labels[1].xy == (xs[1], heights[1]) assert labels[1].get_ha() == 'center' assert labels[1].get_va() == 'top' def test_bar_label_location_horizontal(): ax = plt.gca() ys, widths = [1, 2], [3, -4] rects = ax.barh(ys, widths) labels = ax.bar_label(rects) assert labels[0].xy == (widths[0], ys[0]) assert labels[0].get_ha() == 'left' assert labels[0].get_va() == 'center' assert labels[1].xy == (widths[1], ys[1]) assert labels[1].get_ha() == 'right' assert labels[1].get_va() == 'center' def test_bar_label_location_center(): ax = plt.gca() ys, widths = [1, 2], [3, -4] rects = ax.barh(ys, widths) labels = ax.bar_label(rects, label_type='center') assert labels[0].xy == (widths[0] / 2, ys[0]) assert labels[0].get_ha() == 'center' assert labels[0].get_va() == 'center' assert labels[1].xy == (widths[1] / 2, ys[1]) assert labels[1].get_ha() == 'center' assert labels[1].get_va() == 'center' def test_bar_label_location_errorbars(): ax = plt.gca() xs, heights = [1, 2], [3, -4] rects = ax.bar(xs, heights, yerr=1) labels = ax.bar_label(rects) assert labels[0].xy == (xs[0], heights[0] + 1) assert labels[0].get_ha() == 'center' assert labels[0].get_va() == 'bottom' assert labels[1].xy == (xs[1], heights[1] - 1) assert labels[1].get_ha() == 'center' assert labels[1].get_va() == 'top' def test_bar_label_fmt(): ax = plt.gca() rects = ax.bar([1, 2], [3, -4]) labels = ax.bar_label(rects, fmt='%.2f') assert labels[0].get_text() == '3.00' assert labels[1].get_text() == '-4.00' def test_bar_label_labels(): ax = plt.gca() rects = ax.bar([1, 2], [3, -4]) labels = ax.bar_label(rects, labels=['A', 'B']) assert labels[0].get_text() == 'A' assert labels[1].get_text() == 'B' def test_bar_label_nan_ydata(): ax = plt.gca() bars = ax.bar([2, 3], [np.nan, 1]) labels = ax.bar_label(bars) assert [l.get_text() for l in labels] == ['', '1'] assert labels[0].xy == (2, 0) assert labels[0].get_va() == 'bottom' def test_patch_bounds(): # PR 19078 fig, ax = plt.subplots() ax.add_patch(mpatches.Wedge((0, -1), 1.05, 60, 120, 0.1)) bot = 1.9*np.sin(15*np.pi/180)**2 np.testing.assert_array_almost_equal_nulp( np.array((-0.525, -(bot+0.05), 1.05, bot+0.1)), ax.dataLim.bounds, 16) @pytest.mark.style('default') def test_warn_ignored_scatter_kwargs(): with pytest.warns(UserWarning, match=r"You passed a edgecolor/edgecolors"): c = plt.scatter( [0], [0], marker="+", s=500, facecolor="r", edgecolor="b" )
33.11763
89
0.596016
7950e61f996e5d8be1560adeccfb2e045356dd7e
1,309
py
Python
tests/test_transaction.py
nikola-kocic/sqlalchemy-continuum
45b8ada3162435670dbe844b3d630823fa50f6fc
[ "BSD-3-Clause" ]
1
2015-04-25T18:42:22.000Z
2015-04-25T18:42:22.000Z
tests/test_transaction.py
nikola-kocic/sqlalchemy-continuum
45b8ada3162435670dbe844b3d630823fa50f6fc
[ "BSD-3-Clause" ]
null
null
null
tests/test_transaction.py
nikola-kocic/sqlalchemy-continuum
45b8ada3162435670dbe844b3d630823fa50f6fc
[ "BSD-3-Clause" ]
null
null
null
from sqlalchemy_continuum import versioning_manager from tests import TestCase class TestTransaction(TestCase): def setup_method(self, method): TestCase.setup_method(self, method) self.article = self.Article() self.article.name = u'Some article' self.article.content = u'Some content' self.article.tags.append(self.Tag(name=u'Some tag')) self.session.add(self.article) self.session.commit() def test_relationships(self): tx = self.article.versions[0].transaction assert tx.id == self.article.versions[0].transaction_id assert tx.articles == [self.article.versions[0]] def test_only_saves_transaction_if_actual_modifications(self): self.article.name = u'Some article' self.session.commit() self.article.name = u'Some article' self.session.commit() assert self.session.query( versioning_manager.transaction_cls ).count() == 1 def test_repr(self): transaction = self.session.query( versioning_manager.transaction_cls ).first() assert ( '<Transaction id=%d, issued_at=%r>' % ( transaction.id, transaction.issued_at ) == repr(transaction) )
32.725
66
0.625668
7950e6322810b6d2c32bb03365b23aa9091e390d
389
py
Python
oo/pessoa.py
Francisco-Mario/pythonbirds
a2aeec8821481d740d208462c620a542e761b2c6
[ "MIT" ]
null
null
null
oo/pessoa.py
Francisco-Mario/pythonbirds
a2aeec8821481d740d208462c620a542e761b2c6
[ "MIT" ]
null
null
null
oo/pessoa.py
Francisco-Mario/pythonbirds
a2aeec8821481d740d208462c620a542e761b2c6
[ "MIT" ]
null
null
null
class Pessoa: def __init__(self, nome=None, idade=57): self.idade = idade self.nome = nome def cumprimentar(self): return f'Olá! {id(self)}' if __name__ == '__main__': p = Pessoa('Francisco') print(Pessoa.cumprimentar(p)) print(id(p)) print(p.cumprimentar()) print(p.nome) p.nome = 'Mario' print(p.nome) print(p.idade)
17.681818
44
0.583548
7950e648c001033379e1384ba37cc9b6354835e1
3,882
py
Python
venv/Lib/site-packages/wand/compat.py
18813684097/new_di
cb8f117dee65bdf2cb8d8db5d3a585e23e73cb86
[ "MIT" ]
null
null
null
venv/Lib/site-packages/wand/compat.py
18813684097/new_di
cb8f117dee65bdf2cb8d8db5d3a585e23e73cb86
[ "MIT" ]
null
null
null
venv/Lib/site-packages/wand/compat.py
18813684097/new_di
cb8f117dee65bdf2cb8d8db5d3a585e23e73cb86
[ "MIT" ]
null
null
null
""":mod:`wand.compat` --- Compatibility layer ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This module provides several subtle things to support multiple Python versions (2.6, 2.7, 3.3+) and VM implementations (CPython, PyPy). """ import collections try: import collections.abc except ImportError: pass import contextlib import io import sys import types __all__ = ('PY3', 'abc', 'binary', 'binary_type', 'encode_filename', 'file_types', 'nested', 'string_type', 'text', 'text_type', 'xrange') #: (:class:`bool`) Whether it is Python 3.x or not. PY3 = sys.version_info >= (3,) #: (:class:`module`) Module containing abstract base classes. #: :mod:`collections` in Python 2 and :mod:`collections.abc` in Python 3. abc = collections.abc if PY3 else collections #: (:class:`type`) Type for representing binary data. :class:`str` in Python 2 #: and :class:`bytes` in Python 3. binary_type = bytes if PY3 else str #: (:class:`type`) Type for text data. :class:`basestring` in Python 2 #: and :class:`str` in Python 3. string_type = str if PY3 else basestring # noqa #: (:class:`type`) Type for representing Unicode textual data. #: :class:`unicode` in Python 2 and :class:`str` in Python 3. text_type = str if PY3 else unicode # noqa def binary(string, var=None): """Makes ``string`` to :class:`str` in Python 2. Makes ``string`` to :class:`bytes` in Python 3. :param string: a string to cast it to :data:`binary_type` :type string: :class:`bytes`, :class:`str`, :class:`unicode` :param var: an optional variable name to be used for error message :type var: :class:`str` """ if isinstance(string, text_type): return string.encode() elif isinstance(string, binary_type): return string if var: raise TypeError('{0} must be a string, not {1!r}'.format(var, string)) raise TypeError('expected a string, not ' + repr(string)) if PY3: def text(string): if isinstance(string, bytes): return string.decode('utf-8') return string else: def text(string): """Makes ``string`` to :class:`str` in Python 3. Does nothing in Python 2. :param string: a string to cast it to :data:`text_type` :type string: :class:`bytes`, :class:`str`, :class:`unicode` """ return string #: The :func:`xrange()` function. Alias for :func:`range()` in Python 3. xrange = range if PY3 else xrange # noqa #: (:class:`type`, :class:`tuple`) Types for file objects that have #: ``fileno()``. file_types = io.RawIOBase if PY3 else (io.RawIOBase, types.FileType) def encode_filename(filename): """If ``filename`` is a :data:`text_type`, encode it to :data:`binary_type` according to filesystem's default encoding. """ if isinstance(filename, text_type): return filename.encode(sys.getfilesystemencoding()) return filename try: nested = contextlib.nested except AttributeError: # http://hg.python.org/cpython/file/v2.7.6/Lib/contextlib.py#l88 @contextlib.contextmanager def nested(*managers): exits = [] vars = [] exc = (None, None, None) try: for mgr in managers: exit = mgr.__exit__ enter = mgr.__enter__ vars.append(enter()) exits.append(exit) yield vars except: # noqa: E722 exc = sys.exc_info() finally: while exits: exit = exits.pop() try: if exit(*exc): exc = (None, None, None) except: # noqa: E722 exc = sys.exc_info() if exc != (None, None, None): # PEP 3109 e = exc[0](exc[1]) e.__traceback__ = e[2] raise e
29.861538
79
0.592478
7950ea522362ceb79971dd8de968586eea9b62b1
1,888
py
Python
Utils/createBenchmark.py
Azoy/swift-experimental-string-processing
93b569d0b32be4fc666fec0b2ffe903b4c40eb20
[ "Apache-2.0" ]
null
null
null
Utils/createBenchmark.py
Azoy/swift-experimental-string-processing
93b569d0b32be4fc666fec0b2ffe903b4c40eb20
[ "Apache-2.0" ]
null
null
null
Utils/createBenchmark.py
Azoy/swift-experimental-string-processing
93b569d0b32be4fc666fec0b2ffe903b4c40eb20
[ "Apache-2.0" ]
null
null
null
# python3 createBenchmark.py MyRegexBenchmark # reference: https://github.com/apple/swift/blob/main/benchmark/scripts/create_benchmark.py import argparse import os template = """import _StringProcessing extension BenchmarkRunner {{ mutating func add{name}() {{ }} }} """ def main(): p = argparse.ArgumentParser() p.add_argument("name", help="The name of the new benchmark to be created") args = p.parse_args() # create a file in Sources/RegexBenchmark/Suite with the benchmark template create_benchmark_file(args.name) # add to the registration function in BenchmarkRunner register_benchmark(args.name) def create_benchmark_file(name): contents = template.format(name= name) relative_path = create_relative_path("../Sources/RegexBenchmark/Suite/") source_file_path = os.path.join(relative_path, name + ".swift") print(f"Creating new benchmark file: {source_file_path}") with open(source_file_path, "w") as f: f.write(contents) def register_benchmark(name): relative_path = create_relative_path("../Sources/RegexBenchmark/BenchmarkRegistration.swift") # read current contents into an array file_contents = [] with open(relative_path, "r") as f: file_contents = f.readlines() new_file_contents = [] for line in file_contents: if "end of registrations" not in line: new_file_contents.append(line) else: # add the newest benchmark new_file_contents.append(f" benchmark.add{name}()\n") new_file_contents.append(line) # write the new contents with open(relative_path, "w") as f: for line in new_file_contents: f.write(line) def create_relative_path(file_path): return os.path.join(os.path.dirname(__file__), file_path) if __name__ == "__main__": main()
30.451613
97
0.684322
7950eaecf262415712d4b25140aaeb9dd30ffc5d
10,352
py
Python
Detection/ImageTaggingTool/helpers.py
mohabouje/cntk-hotel-pictures-classificator
a5b37dd90f5e7abf0c752b55b9b06951e4ffc4d1
[ "MIT" ]
28
2018-09-02T09:01:20.000Z
2022-01-20T12:55:49.000Z
Detection/ImageTaggingTool/helpers.py
mohabouje/cntk-hotel-pictures-classificator
a5b37dd90f5e7abf0c752b55b9b06951e4ffc4d1
[ "MIT" ]
6
2018-01-24T10:21:00.000Z
2018-04-17T17:39:17.000Z
Detection/ImageTaggingTool/helpers.py
karolzak/cntk-hotel-pictures-classificator
a5b37dd90f5e7abf0c752b55b9b06951e4ffc4d1
[ "MIT" ]
13
2018-09-02T09:01:23.000Z
2020-11-20T23:00:29.000Z
from __future__ import print_function from builtins import str import os import numpy as np import copy import cv2 from PIL import Image, ImageFont, ImageDraw from PIL.ExifTags import TAGS available_font = "arial.ttf" try: dummy = ImageFont.truetype(available_font, 16) except: available_font = "FreeMono.ttf" def imresizeMaxDim(img, maxDim, boUpscale = False, interpolation = cv2.INTER_LINEAR): scale = 1.0 * maxDim / max(img.shape[:2]) if scale < 1 or boUpscale: img = imresize(img, scale, interpolation) else: scale = 1.0 return img, scale def imresize(img, scale, interpolation = cv2.INTER_LINEAR): return cv2.resize(img, (0,0), fx=scale, fy=scale, interpolation=interpolation) def imread(imgPath, boThrowErrorIfExifRotationTagSet = True): if not os.path.exists(imgPath): print("ERROR: image path does not exist.") error rotation = rotationFromExifTag(imgPath) if boThrowErrorIfExifRotationTagSet and rotation != 0: print ("Error: exif roation tag set, image needs to be rotated by %d degrees." % rotation) img = cv2.imread(imgPath) if img is None: print ("ERROR: cannot load image " + imgPath) error if rotation != 0: img = imrotate(img, -90).copy() # got this error occassionally without copy "TypeError: Layout of the output array img is incompatible with cv::Mat" return img def rotationFromExifTag(imgPath): TAGSinverted = {v: k for k, v in TAGS.items()} orientationExifId = TAGSinverted['Orientation'] try: imageExifTags = Image.open(imgPath)._getexif() except: imageExifTags = None # rotate the image if orientation exif tag is present rotation = 0 if imageExifTags != None and orientationExifId != None and orientationExifId in imageExifTags: orientation = imageExifTags[orientationExifId] # print ("orientation = " + str(imageExifTags[orientationExifId])) if orientation == 1 or orientation == 0: rotation = 0 # no need to do anything elif orientation == 6: rotation = -90 elif orientation == 8: rotation = 90 else: print ("ERROR: orientation = " + str(orientation) + " not_supported!") error return rotation def drawRectangles(img, rects, color = (0, 255, 0), thickness = 2): for rect in rects: pt1 = tuple(ToIntegers(rect[0:2])) pt2 = tuple(ToIntegers(rect[2:])) cv2.rectangle(img, pt1, pt2, color, thickness) def getDrawTextWidth(text): textLen=len(text) textWidth=50 if textLen <6: textWidth = 60 elif textLen <13 : textWidth = len(text)*9 +26 else : textWidth = len(text)*9 +30 return textWidth def getColorsPalette(): colors = [[255,0,0], [0,255,0], [0,0,255], [255,255,0], [255,0,255]] for i in range(5): for dim in range(0,3): for s in (0.25, 0.5, 0.75): if colors[i][dim] != 0: newColor = copy.deepcopy(colors[i]) newColor[dim] = int(round(newColor[dim] * s)) colors.append(newColor) return colors def ToIntegers(list1D): return [int(float(x)) for x in list1D] def drawCrossbar(img, pt): (x,y) = pt cv2.rectangle(img, (0, y), (x, y), (255, 255, 0), 1) cv2.rectangle(img, (x, 0), (x, y), (255, 255, 0), 1) cv2.rectangle(img, (img.shape[1],y), (x, y), (255, 255, 0), 1) cv2.rectangle(img, (x, img.shape[0]), (x, y), (255, 255, 0), 1) def imconvertPil2Cv(pilImg): rgb = pilImg.convert('RGB') return np.array(rgb).copy()[:, :, ::-1] def imconvertCv2Pil(img): cv2_im = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) return Image.fromarray(cv2_im) def cv2DrawText(img, pt, text, color = (255,255,255), colorBackground = None): # Write some Text font = cv2.FONT_HERSHEY_SIMPLEX fontScale = 0.6 lineType =1 cv2.putText(img,text, pt, font, fontScale, color, lineType) def pilDrawText(pilImg, pt, text, textWidth=None, color = (255,255,255), colorBackground = None, font = ImageFont.truetype(available_font, 16)): textY = pt[1] draw = ImageDraw.Draw(pilImg) if textWidth == None: lines = [text] else: lines = textwrap.wrap(text, width=textWidth) for line in lines: width, height = font.getsize(line) if colorBackground != None: draw.rectangle((pt[0], pt[1], pt[0] + width, pt[1] + height), fill=tuple(colorBackground[::-1])) draw.text(pt, line, fill = tuple(color), font = font) textY += height return pilImg def drawText(img, pt, text, textWidth=None, color = (255,255,255), colorBackground = None, font = ImageFont.truetype(available_font, 16)): pilImg = imconvertCv2Pil(img) pilImg = pilDrawText(pilImg, pt, text, textWidth, color, colorBackground, font) return imconvertPil2Cv(pilImg) def imWidth(input): return imWidthHeight(input)[0] def imHeight(input): return imWidthHeight(input)[1] def imWidthHeight(input): width, height = Image.open(input).size # this does not load the full image return width, height def imArrayWidth(input): return imArrayWidthHeight(input)[0] def imArrayHeight(input): return imArrayWidthHeight(input)[1] def imArrayWidthHeight(input): width = input.shape[1] height = input.shape[0] return width, height def ptClip(pt, maxWidth, maxHeight): pt = list(pt) pt[0] = max(pt[0], 0) pt[1] = max(pt[1], 0) pt[0] = min(pt[0], maxWidth) pt[1] = min(pt[1], maxHeight) return pt def deleteFile(filePath): if os.path.exists(filePath): os.remove(filePath) def writeFile(outputFile, lines): with open(outputFile,'w') as f: for line in lines: f.write("%s\n" % line) def writeTable(outputFile, table): lines = tableToList1D(table) writeFile(outputFile, lines) def deleteFile(filePath): if os.path.exists(filePath): os.remove(filePath) def tableToList1D(table, delimiter='\t'): return [delimiter.join([str(s) for s in row]) for row in table] def getFilesInDirectory(directory, postfix = ""): fileNames = [s for s in os.listdir(directory) if not os.path.isdir(os.path.join(directory, s))] if not postfix or postfix == "": return fileNames else: return [s for s in fileNames if s.lower().endswith(postfix)] def readTable(inputFile, delimiter='\t', columnsToKeep=None): lines = readFile(inputFile); if columnsToKeep != None: header = lines[0].split(delimiter) columnsToKeepIndices = listFindItems(header, columnsToKeep) else: columnsToKeepIndices = None; return splitStrings(lines, delimiter, columnsToKeepIndices) def readFile(inputFile): #reading as binary, to avoid problems with end-of-text characters #note that readlines() does not remove the line ending characters with open(inputFile,'rb') as f: lines = f.readlines() return [removeLineEndCharacters(s) for s in lines] def removeLineEndCharacters(line): if line.endswith(b'\r\n'): return line[:-2] elif line.endswith(b'\n'): return line[:-1] else: return line def splitStrings(strings, delimiter, columnsToKeepIndices=None): table = [splitString(string, delimiter, columnsToKeepIndices) for string in strings] return table; def splitString(string, delimiter='\t', columnsToKeepIndices=None): if string == None: return None items = string.decode('utf-8').split(delimiter) if columnsToKeepIndices != None: items = getColumns([items], columnsToKeepIndices) items = items[0] return items; class Bbox: MAX_VALID_DIM = 100000 left = top = right = bottom = None def __init__(self, left, top, right, bottom): self.left = int(round(float(left))) self.top = int(round(float(top))) self.right = int(round(float(right))) self.bottom = int(round(float(bottom))) self.standardize() def __str__(self): return ("Bbox object: left = {0}, top = {1}, right = {2}, bottom = {3}".format(self.left, self.top, self.right, self.bottom)) def __repr__(self): return str(self) def rect(self): return [self.left, self.top, self.right, self.bottom] def max(self): return max([self.left, self.top, self.right, self.bottom]) def min(self): return min([self.left, self.top, self.right, self.bottom]) def width(self): width = self.right - self.left + 1 assert(width>=0) return width def height(self): height = self.bottom - self.top + 1 assert(height>=0) return height def surfaceArea(self): return self.width() * self.height() def getOverlapBbox(self, bbox): left1, top1, right1, bottom1 = self.rect() left2, top2, right2, bottom2 = bbox.rect() overlapLeft = max(left1, left2) overlapTop = max(top1, top2) overlapRight = min(right1, right2) overlapBottom = min(bottom1, bottom2) if (overlapLeft>overlapRight) or (overlapTop>overlapBottom): return None else: return Bbox(overlapLeft, overlapTop, overlapRight, overlapBottom) def standardize(self): #NOTE: every setter method should call standardize leftNew = min(self.left, self.right) topNew = min(self.top, self.bottom) rightNew = max(self.left, self.right) bottomNew = max(self.top, self.bottom) self.left = leftNew self.top = topNew self.right = rightNew self.bottom = bottomNew def crop(self, maxWidth, maxHeight): leftNew = min(max(self.left, 0), maxWidth) topNew = min(max(self.top, 0), maxHeight) rightNew = min(max(self.right, 0), maxWidth) bottomNew = min(max(self.bottom, 0), maxHeight) return Bbox(leftNew, topNew, rightNew, bottomNew) def isValid(self): if self.left>=self.right or self.top>=self.bottom: return False if min(self.rect()) < -self.MAX_VALID_DIM or max(self.rect()) > self.MAX_VALID_DIM: return False return True
32.656151
157
0.629927
7950ec0299238aa8c62f5331485aa0412e1170bb
935
py
Python
countries_field/bitfield/query.py
egosko/django-countries-field
0710f6d148dfefd5c56767bc5203081e96b8dee4
[ "Unlicense" ]
3
2016-02-18T15:06:41.000Z
2019-12-25T15:34:28.000Z
countries_field/bitfield/query.py
egosko/django-countries-field
0710f6d148dfefd5c56767bc5203081e96b8dee4
[ "Unlicense" ]
2
2016-02-19T07:54:56.000Z
2018-05-15T14:46:31.000Z
countries_field/bitfield/query.py
egosko/django-countries-field
0710f6d148dfefd5c56767bc5203081e96b8dee4
[ "Unlicense" ]
8
2015-03-24T10:27:28.000Z
2020-11-30T09:56:19.000Z
class BitQueryLookupWrapper(object): def __init__(self, alias, column, bit): self.table_alias = alias self.column = column self.bit = bit def as_sql(self, qn, connection=None): """ Create the proper SQL fragment. This inserts something like "(T0.flags & value) != 0". This will be called by Where.as_sql() """ query = '%s.%s | %d' if self.bit else '%s.%s & %d' return query % (qn(self.table_alias), qn(self.column), self.bit.mask), [] class BitQuerySaveWrapper(BitQueryLookupWrapper): def as_sql(self, qn, connection): """ Create the proper SQL fragment. This inserts something like "(T0.flags & value) != 0". This will be called by Where.as_sql() """ query = '%s.%s | %d' if self.bit else '%s.%s & ~%d' return query % (qn(self.table_alias), qn(self.column), self.bit.mask), []
31.166667
81
0.57754
7950ec16c31dbe0b4ad2c84949152dd1363122f4
502
py
Python
setup.py
sebastien-boulle/changelog-generator
97ee0037f904c133b8182a894dc8ce45d2cb4faa
[ "Unlicense", "MIT" ]
null
null
null
setup.py
sebastien-boulle/changelog-generator
97ee0037f904c133b8182a894dc8ce45d2cb4faa
[ "Unlicense", "MIT" ]
null
null
null
setup.py
sebastien-boulle/changelog-generator
97ee0037f904c133b8182a894dc8ce45d2cb4faa
[ "Unlicense", "MIT" ]
null
null
null
from setuptools import setup, find_namespace_packages setup( name="changelog-generator", version="0.1.0dev", packages=find_namespace_packages(include=["changelog_generator.*"]), maintainer="LumApps core team", maintainer_email="core@lumapps.com", url="https://github.com/lumapps/changelog-generator", python_requires="~=3.7", setup_requires=["wheel"], install_requires=["gitpython", "jinja2"], extras_require={}, package_data={}, test_suite="tests", )
27.888889
72
0.697211
7950ec43598cb8155eec12a93e8e4d0f0990fcb9
699
py
Python
eap/sitecustomize.py
destexheteam/neuroneap
4dc4ab20c4ff6729718ad3e9abdb85d28299c433
[ "CC-BY-4.0", "MIT" ]
2
2016-11-25T22:32:05.000Z
2021-09-02T10:46:59.000Z
eap/sitecustomize.py
destexheteam/neuroneap
4dc4ab20c4ff6729718ad3e9abdb85d28299c433
[ "CC-BY-4.0", "MIT" ]
1
2016-02-04T22:26:08.000Z
2016-02-04T22:54:54.000Z
eap/sitecustomize.py
btel/neuroneap
f8846bb8a7487a1e252a2a6359142530f21b424f
[ "CC-BY-4.0", "MIT" ]
null
null
null
#!/usr/bin/env python #coding=utf-8 ## {{{ http://code.activestate.com/recipes/65287/ (r5) # code snippet, to be included in 'sitecustomize.py' import sys def info(type, value, tb): if hasattr(sys, 'ps1') or not sys.stderr.isatty(): # we are in interactive mode or we don't have a tty-like # device, so we call the default hook sys.__excepthook__(type, value, tb) else: import traceback, pdb # we are NOT in interactive mode, print the exception... traceback.print_exception(type, value, tb) print # ...then start the debugger in post-mortem mode. pdb.pm() sys.excepthook = info ## end of http://code.activestate.com/recipes/65287/ }}}
30.391304
62
0.660944
7950ec473265b9c2f1844e9a00a864f7ca8355dc
5,927
py
Python
captioning/models/m2/m2transformer/models/transformer/decoders.py
linzhlalala/self-critical.pytorch
b856250ac52ba63656b1b03cdc3d7e830ed43f68
[ "MIT" ]
1
2020-11-19T11:11:01.000Z
2020-11-19T11:11:01.000Z
captioning/models/m2/m2transformer/models/transformer/decoders.py
linzhlalala/self-critical.pytorch
b856250ac52ba63656b1b03cdc3d7e830ed43f68
[ "MIT" ]
null
null
null
captioning/models/m2/m2transformer/models/transformer/decoders.py
linzhlalala/self-critical.pytorch
b856250ac52ba63656b1b03cdc3d7e830ed43f68
[ "MIT" ]
null
null
null
import torch from torch import nn from torch.nn import functional as F import numpy as np from .attention import MultiHeadAttention from .utils import sinusoid_encoding_table, PositionWiseFeedForward from ..containers import Module, ModuleList class MeshedDecoderLayer(Module): def __init__(self, d_model=512, d_k=64, d_v=64, h=8, d_ff=2048, dropout=.1, self_att_module=None, enc_att_module=None, self_att_module_kwargs=None, enc_att_module_kwargs=None): super(MeshedDecoderLayer, self).__init__() self.self_att = MultiHeadAttention(d_model, d_k, d_v, h, dropout, can_be_stateful=True, attention_module=self_att_module, attention_module_kwargs=self_att_module_kwargs) self.enc_att = MultiHeadAttention(d_model, d_k, d_v, h, dropout, can_be_stateful=False, attention_module=enc_att_module, attention_module_kwargs=enc_att_module_kwargs) self.pwff = PositionWiseFeedForward(d_model, d_ff, dropout) self.fc_alpha1 = nn.Linear(d_model + d_model, d_model) self.fc_alpha2 = nn.Linear(d_model + d_model, d_model) self.fc_alpha3 = nn.Linear(d_model + d_model, d_model) self.init_weights() def init_weights(self): nn.init.xavier_uniform_(self.fc_alpha1.weight) nn.init.xavier_uniform_(self.fc_alpha2.weight) nn.init.xavier_uniform_(self.fc_alpha3.weight) nn.init.constant_(self.fc_alpha1.bias, 0) nn.init.constant_(self.fc_alpha2.bias, 0) nn.init.constant_(self.fc_alpha3.bias, 0) def forward(self, input, enc_output, mask_pad, mask_self_att, mask_enc_att): self_att = self.self_att(input, input, input, mask_self_att) self_att = self_att * mask_pad # print('enc_output[:, 0]', enc_output.size()) # print('enc_output.size()', enc_output.size()) enc_att1 = self.enc_att(self_att, enc_output[:, 0], enc_output[:, 0], mask_enc_att) * mask_pad enc_att2 = self.enc_att(self_att, enc_output[:, 1], enc_output[:, 1], mask_enc_att) * mask_pad enc_att3 = self.enc_att(self_att, enc_output[:, 2], enc_output[:, 2], mask_enc_att) * mask_pad alpha1 = torch.sigmoid(self.fc_alpha1(torch.cat([self_att, enc_att1], -1))) alpha2 = torch.sigmoid(self.fc_alpha2(torch.cat([self_att, enc_att2], -1))) alpha3 = torch.sigmoid(self.fc_alpha3(torch.cat([self_att, enc_att3], -1))) enc_att = (enc_att1 * alpha1 + enc_att2 * alpha2 + enc_att3 * alpha3) / np.sqrt(3) enc_att = enc_att * mask_pad ff = self.pwff(enc_att) ff = ff * mask_pad return ff class MeshedDecoder(Module): def __init__(self, vocab_size, max_len, N_dec, padding_idx, d_model=512, d_k=64, d_v=64, h=8, d_ff=2048, dropout=.1, self_att_module=None, enc_att_module=None, self_att_module_kwargs=None, enc_att_module_kwargs=None): super(MeshedDecoder, self).__init__() self.d_model = d_model self.word_emb = nn.Embedding(vocab_size, d_model, padding_idx=padding_idx) self.pos_emb = nn.Embedding.from_pretrained(sinusoid_encoding_table(max_len + 1, d_model, 0), freeze=True) self.layers = ModuleList( [MeshedDecoderLayer(d_model, d_k, d_v, h, d_ff, dropout, self_att_module=self_att_module, enc_att_module=enc_att_module, self_att_module_kwargs=self_att_module_kwargs, enc_att_module_kwargs=enc_att_module_kwargs) for _ in range(N_dec)]) self.fc = nn.Linear(d_model, vocab_size, bias=False) self.max_len = max_len self.padding_idx = padding_idx self.N = N_dec self.register_state('running_mask_self_attention', torch.zeros((1, 1, 0)).byte()) # running_seq is the position_ix self.register_state('running_seq', torch.zeros((1,)).long()) def forward(self, input, encoder_output, mask_encoder): # input (b_s, seq_len) print('forward function MeshedDecoder Class') b_s, seq_len = input.shape[:2] mask_queries = (input != self.padding_idx).unsqueeze(-1).float() # (b_s, seq_len, 1) mask_self_attention = torch.triu(torch.ones((seq_len, seq_len), dtype=torch.uint8, device=input.device), diagonal=1) mask_self_attention = mask_self_attention.unsqueeze(0).unsqueeze(0) # (1, 1, seq_len, seq_len) mask_self_attention = mask_self_attention + (input == self.padding_idx).unsqueeze(1).unsqueeze(1).byte() mask_self_attention = mask_self_attention.gt(0) # (b_s, 1, seq_len, seq_len) if self._is_stateful: self.running_mask_self_attention = torch.cat([self.running_mask_self_attention.bool(), mask_self_attention], -1) mask_self_attention = self.running_mask_self_attention seq = torch.arange(1, seq_len + 1).view(1, -1).expand(b_s, -1).to(input.device) # (b_s, seq_len) seq = seq.masked_fill(mask_queries.squeeze(-1) == 0, 0) if self._is_stateful: self.running_seq.add_(1) seq = self.running_seq # RT note: this is for my own use. # When there is a no <pad> token in the vocab, you can use -1 as <pad> # since Embedding would fail for -1, here I manually alter the input # Since we have mask_self_attention, this change won't affect result. input = input.clone().detach() # rtchange if self.padding_idx == -1: input[input == self.padding_idx] = 0 # rtchange out = self.word_emb(input) + self.pos_emb(seq) for i, l in enumerate(self.layers): out = l(out, encoder_output, mask_queries, mask_self_attention, mask_encoder) out = self.fc(out) return F.log_softmax(out, dim=-1)
53.396396
124
0.655644
7950ed055f94a76a8d92f95d3161bda9657bd049
820
py
Python
histograms/histogram_equalization_clahe.py
vibinash/vision
7d775d6a877412c963965ecca2eea71ee2def007
[ "MIT" ]
null
null
null
histograms/histogram_equalization_clahe.py
vibinash/vision
7d775d6a877412c963965ecca2eea71ee2def007
[ "MIT" ]
null
null
null
histograms/histogram_equalization_clahe.py
vibinash/vision
7d775d6a877412c963965ecca2eea71ee2def007
[ "MIT" ]
null
null
null
import cv2 import numpy as np # CLAHE: contrast Limited Adaptive histogram equalization # Sometimes global contrast of the image is not a good idea # since certain parts of the image can face over-brightness # Adaptive histogram equalization is where the image is divided into small # blocks called 'tiles'. Contrast Limiting is used to prevent noise being # amplified. If any bin is above the specified limit (default: 40), those # pixels are clipped and distributed uniformly to other bins before applying # equalization. Bilinear interopation is applied to remove artifacts in the # tile borders img = cv2.imread('../images/victoria.jpg', 0) # Create a CLAHE object clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8)) cl1 = clahe.apply(img) cv2.imshow('clahe', cl1) cv2.waitKey(0) cv2.destroyAllWindows()
34.166667
76
0.776829
7950eead1d5a259f62f77862fcc45f86ba7eb684
3,590
py
Python
tensorflow/contrib/slim/python/slim/nets/inception_v4_resnet_v2.py
alikewater/tensorflow
697929b163102db63fcf0599eb718e49d5ecd2c2
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/slim/python/slim/nets/inception_v4_resnet_v2.py
alikewater/tensorflow
697929b163102db63fcf0599eb718e49d5ecd2c2
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/slim/python/slim/nets/inception_v4_resnet_v2.py
alikewater/tensorflow
697929b163102db63fcf0599eb718e49d5ecd2c2
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- import tensorflow as tf import tensorflow.contrib.slim as slim #v4.default_image_size = 229 def v4(inputs, sc='Inception-ResNet-v2'): ''' Inception-V4 Inception-ResNet-v2 结构 net structs -------------------------------------- input | 229 x 229 x 3 3x3 conv / s2 | 149 x 149 x 32 3x3 conv / s1 | 147 x 147 x 32 3x3 conv / s1 | 147 x 147 x 64 3x3 conv / s1 | 147 x 147 x 32 3x3 conv / s1 | 147 x 147 x 64 -------------------------------------- 3x3 maxpool / s2 | 73 x 73 x 64 + 3x3 conv / s2 | 73 x 73 x 96 -------------------------------------- concat | 73 x 73 x 160 -------------------------------------- 1x1 conv / s1 | 73 x 73 x 64 #1x1就是为了降维(或是说成将上一层输出的深度压缩)的,将上面的160维降到64维 3x3 conv / s1 | 71 x 71 x 96 + 1x1 conv / s1 | 73 x 73 x 64 7x1 conv / s1 | 73 x 73 x 64 1x7 conv / s1 | 73 x 73 x 64 3x3 conv / s1 | 71 x 71 x 96 -------------------------------------- concat | 71 x 71 x 192 -------------------------------------- 3x3 maxpool / s2 | 35 x 35 x 192 + 3x3 conv / s2 | 35 x 35 x 192 -------------------------------------- concat | 35 x 35 x 384 -------------------------------------- ''' end_points = {} with tf.variable_scope(sc): with slim.arg_scope([slim.conv2d, slim.max_pool2d],stride=1,padding='SAME'): net = slim.conv2d(inputs, 32, [3, 3], stride=2, scope='conv_1') end_points['conv_1'] = net net = slim.conv2d(net, 32, [3, 3], padding='VALID', name='conv_2') end_points['conv_2'] = net net = slim.conv2d(net, 64, [3, 3], name='conv_3') end_points['conv_3'] = net with tf.variable_scope('mixed_1'): with tf.variable_scope('branch_0'): branch_0 = slim.max_pool2d(net, [3, 3], stride=2, name='branch_0_mp') with tf.variable_scope('branch_1'): branch_1 = slim.conv2d(net, 96, [3, 3], stride=2, name='branch_1_conv') net = tf.concat([branch_0, branch_1], 3) end_points['mixed_1'] = net with tf.variable_scope('mixed_2'): with tf.variable_scope('branch_0'): branch_0 = slim.conv2d(net, 64, [1, 1], name='branch_0_conv1') branch_0 = slim.conv2d(branch_0, 96, [3, 3], padding='VALID', name='branch_0_conv2') with tf.variable_scope('branch_1'): branch_1 = slim.conv2d(net, 64, [1, 1], name='branch_1_conv1') branch_1 = slim.conv2d(branch_1, 64, [7, 1], name='branch_1_conv1') branch_1 = slim.conv2d(branch_1, 64, [1, 7], name='branch_1_conv1') branch_1 = slim.conv2d(branch_1, 96, [3, 3], padding='VALID', name='branch_1_conv1') net = tf.concat([branch_0, branch_1], 3) end_points['mixed_2'] = net with tf.variable_scope('mixed_3'): with tf.variable_scope('branch_0'): branch_0 = slim.max_pool2d(net, [3, 3], stride=2, name='branch_0_mp') with tf.variable_scope('branch_1'): branch_1 = slim.conv2d(net, 192, [3, 3], stride=2, name='branch_1_conv') net = tf.concat([branch_0, branch_1], 3) end_points['mixed_3'] = net end_points['net'] = net return net, end_points
46.025641
104
0.477437
7950efb9dad19789ca07c1c2b8d7c9c6f6d68f40
918
py
Python
themis/modules/collecting/collector.py
addam128/themis
113b818d593342f94f9c6c438bbfb0cc7c4f705b
[ "MIT" ]
null
null
null
themis/modules/collecting/collector.py
addam128/themis
113b818d593342f94f9c6c438bbfb0cc7c4f705b
[ "MIT" ]
null
null
null
themis/modules/collecting/collector.py
addam128/themis
113b818d593342f94f9c6c438bbfb0cc7c4f705b
[ "MIT" ]
null
null
null
import lddwrap as ldd import uuid from pathlib import Path from zipfile import ZipFile from themis.modules.common.config import Config class Collector: def __init__( self, config: Config, path: str, name: str ) -> None: self._path = path self._config = config self._name = name self._deps = None def collect( self ) -> 'Collector': self._deps = list( map( lambda dep: str(dep.path), ldd.list_dependencies(Path(self._path)) ) ) return self def archive( self ) -> None: with ZipFile(f"{self._config.sample_dir}/{self._name}_{uuid.uuid4()}.zip", mode='x') as zf: for dep in self._deps: if dep is None or dep == "None": continue zf.write(dep)
18.36
99
0.508715
7950f1284e644b7560f75d5f8af07e8146821db0
292
py
Python
artist/views.py
rijkerd/music_stream
ff0d7c629c89a07f08a10ed700e703b54704f500
[ "MIT", "Unlicense" ]
1
2020-06-10T23:26:39.000Z
2020-06-10T23:26:39.000Z
artist/views.py
rijkerd/music_stream
ff0d7c629c89a07f08a10ed700e703b54704f500
[ "MIT", "Unlicense" ]
8
2021-03-30T18:05:18.000Z
2022-03-12T00:16:55.000Z
artist/views.py
rijkerd/music_stream
ff0d7c629c89a07f08a10ed700e703b54704f500
[ "MIT", "Unlicense" ]
null
null
null
from django.shortcuts import render from rest_framework.viewsets import ModelViewSet from .models import Artist from .serializers import ArtistSerializer class ArtistViewSet(ModelViewSet): lookup_field = "id" queryset = Artist.objects.all() serializer_class = ArtistSerializer
24.333333
48
0.80137
7950f15e69fb5f86ad00af93252871a9b0551928
597
py
Python
src/lib/Server/Plugins/Packages/PackagesConfig.py
pcmxgti/bcfg2
33aaf9c6bbeb0d20eef084b1347a0fce42086663
[ "mpich2" ]
null
null
null
src/lib/Server/Plugins/Packages/PackagesConfig.py
pcmxgti/bcfg2
33aaf9c6bbeb0d20eef084b1347a0fce42086663
[ "mpich2" ]
null
null
null
src/lib/Server/Plugins/Packages/PackagesConfig.py
pcmxgti/bcfg2
33aaf9c6bbeb0d20eef084b1347a0fce42086663
[ "mpich2" ]
null
null
null
import Bcfg2.Server.Plugin class PackagesConfig(Bcfg2.Server.Plugin.SimpleConfig): _required = False def Index(self): """ Build local data structures """ Bcfg2.Server.Plugin.SimpleConfig.Index(self) if hasattr(self.plugin, "sources") and self.plugin.sources.loaded: # only reload Packages plugin if sources have been loaded. # otherwise, this is getting called on server startup, and # we have to wait until all sources have been indexed # before we can call Packages.Reload() self.plugin.Reload()
37.3125
74
0.654941
7950f160d55695a961111d226a1accb377e7a5b9
1,233
py
Python
tools/skp/page_sets/skia_ynevsvg_desktop.py
pospx/external_skia
7a135275c9fc2a4b3cbdcf9a96e7102724752234
[ "BSD-3-Clause" ]
2,151
2020-04-18T07:31:17.000Z
2022-03-31T08:39:18.000Z
tools/skp/page_sets/skia_ynevsvg_desktop.py
pospx/external_skia
7a135275c9fc2a4b3cbdcf9a96e7102724752234
[ "BSD-3-Clause" ]
395
2020-04-18T08:22:18.000Z
2021-12-08T13:04:49.000Z
tools/skp/page_sets/skia_ynevsvg_desktop.py
pospx/external_skia
7a135275c9fc2a4b3cbdcf9a96e7102724752234
[ "BSD-3-Clause" ]
338
2020-04-18T08:03:10.000Z
2022-03-29T12:33:22.000Z
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # pylint: disable=W0401,W0614 from telemetry import story from telemetry.page import page as page_module from telemetry.page import shared_page_state class SkiaBuildbotDesktopPage(page_module.Page): def __init__(self, url, page_set): super(SkiaBuildbotDesktopPage, self).__init__( url=url, name=url, page_set=page_set, shared_page_state_class=shared_page_state.SharedDesktopPageState) self.archive_data_file = 'data/skia_ynevsvg_desktop.json' def RunNavigateSteps(self, action_runner): action_runner.Navigate(self.url) action_runner.Wait(5) class SkiaYnevsvgDesktopPageSet(story.StorySet): """ Pages designed to represent the median, not highly optimized web """ def __init__(self): super(SkiaYnevsvgDesktopPageSet, self).__init__( archive_data_file='data/skia_ynevsvg_desktop.json') urls_list = [ # Why: from skbug.com/4713 'http://www.googledrive.com/host/0B5nDjttF0gt9QjRKdEZ5MEVYc2c', ] for url in urls_list: self.AddStory(SkiaBuildbotDesktopPage(url, self))
29.357143
74
0.74777
7950f1db64fe206fcc5ecf3419dcfb6889c94d05
8,702
py
Python
salt/modules/incron.py
casselt/salt
d8a2ef4e0cd544656489d23d161928879b1fc1c0
[ "Apache-2.0" ]
12
2015-01-21T00:18:25.000Z
2021-07-11T07:35:26.000Z
salt/modules/incron.py
casselt/salt
d8a2ef4e0cd544656489d23d161928879b1fc1c0
[ "Apache-2.0" ]
2
2019-03-06T20:43:44.000Z
2019-04-10T23:56:02.000Z
salt/modules/incron.py
casselt/salt
d8a2ef4e0cd544656489d23d161928879b1fc1c0
[ "Apache-2.0" ]
12
2015-01-05T09:50:42.000Z
2019-08-19T01:43:40.000Z
# -*- coding: utf-8 -*- ''' Work with incron ''' from __future__ import absolute_import, print_function, unicode_literals # Import python libs import logging import os # Import salt libs from salt.ext import six from salt.ext.six.moves import range import salt.utils.data import salt.utils.files import salt.utils.functools import salt.utils.stringutils # Set up logging log = logging.getLogger(__name__) TAG = '# Line managed by Salt, do not edit' _INCRON_SYSTEM_TAB = '/etc/incron.d/' _MASK_TYPES = [ 'IN_ACCESS', 'IN_ATTRIB', 'IN_CLOSE_WRITE', 'IN_CLOSE_NOWRITE', 'IN_CREATE', 'IN_DELETE', 'IN_DELETE_SELF', 'IN_MODIFY', 'IN_MOVE_SELF', 'IN_MOVED_FROM', 'IN_MOVED_TO', 'IN_OPEN', 'IN_ALL_EVENTS', 'IN_MOVE', 'IN_CLOSE', 'IN_DONT_FOLLOW', 'IN_ONESHOT', 'IN_ONLYDIR', 'IN_NO_LOOP' ] def _needs_change(old, new): if old != new: if new == 'random': # Allow switch from '*' or not present to 'random' if old == '*': return True elif new is not None: return True return False def _render_tab(lst): ''' Takes a tab list structure and renders it to a list for applying it to a file ''' ret = [] for pre in lst['pre']: ret.append('{0}\n'.format(pre)) for cron in lst['crons']: ret.append('{0} {1} {2} {3}\n'.format(cron['path'], cron['mask'], cron['cmd'], TAG ) ) return ret def _get_incron_cmdstr(path): ''' Returns a format string, to be used to build an incrontab command. ''' return 'incrontab {0}'.format(path) def write_incron_file(user, path): ''' Writes the contents of a file to a user's incrontab CLI Example: .. code-block:: bash salt '*' incron.write_incron_file root /tmp/new_incron ''' return __salt__['cmd.retcode'](_get_incron_cmdstr(path), runas=user, python_shell=False) == 0 def write_incron_file_verbose(user, path): ''' Writes the contents of a file to a user's incrontab and return error message on error CLI Example: .. code-block:: bash salt '*' incron.write_incron_file_verbose root /tmp/new_incron ''' return __salt__['cmd.run_all'](_get_incron_cmdstr(path), runas=user, python_shell=False) def _write_incron_lines(user, lines): ''' Takes a list of lines to be committed to a user's incrontab and writes it ''' if user == 'system': ret = {} ret['retcode'] = _write_file(_INCRON_SYSTEM_TAB, 'salt', ''.join(lines)) return ret else: path = salt.utils.files.mkstemp() with salt.utils.files.fopen(path, 'wb') as fp_: fp_.writelines(salt.utils.data.encode(lines)) if __grains__['os_family'] == 'Solaris' and user != "root": __salt__['cmd.run']('chown {0} {1}'.format(user, path), python_shell=False) ret = __salt__['cmd.run_all'](_get_incron_cmdstr(path), runas=user, python_shell=False) os.remove(path) return ret def _write_file(folder, filename, data): ''' Writes a file to disk ''' path = os.path.join(folder, filename) if not os.path.exists(folder): msg = '{0} cannot be written. {1} does not exist'.format(filename, folder) log.error(msg) raise AttributeError(six.text_type(msg)) with salt.utils.files.fopen(path, 'w') as fp_: fp_.write(salt.utils.stringutils.to_str(data)) return 0 def _read_file(folder, filename): ''' Reads and returns the contents of a file ''' path = os.path.join(folder, filename) try: with salt.utils.files.fopen(path, 'rb') as contents: return salt.utils.data.decode(contents.readlines()) except (OSError, IOError): return '' def raw_system_incron(): ''' Return the contents of the system wide incrontab CLI Example: .. code-block:: bash salt '*' incron.raw_system_incron ''' log.debug("read_file {0}" . format(_read_file(_INCRON_SYSTEM_TAB, 'salt'))) return ''.join(_read_file(_INCRON_SYSTEM_TAB, 'salt')) def raw_incron(user): ''' Return the contents of the user's incrontab CLI Example: .. code-block:: bash salt '*' incron.raw_incron root ''' if __grains__['os_family'] == 'Solaris': cmd = 'incrontab -l {0}'.format(user) else: cmd = 'incrontab -l -u {0}'.format(user) return __salt__['cmd.run_stdout'](cmd, rstrip=False, runas=user, python_shell=False) def list_tab(user): ''' Return the contents of the specified user's incrontab CLI Example: .. code-block:: bash salt '*' incron.list_tab root ''' if user == 'system': data = raw_system_incron() else: data = raw_incron(user) log.debug("user data {0}" . format(data)) ret = {'crons': [], 'pre': [] } flag = False comment = None tag = '# Line managed by Salt, do not edit' for line in data.splitlines(): if line.endswith(tag): if len(line.split()) > 3: # Appears to be a standard incron line comps = line.split() path = comps[0] mask = comps[1] (cmd, comment) = ' '.join(comps[2:]).split(' # ') dat = {'path': path, 'mask': mask, 'cmd': cmd, 'comment': comment} ret['crons'].append(dat) comment = None else: ret['pre'].append(line) return ret # For consistency's sake ls = salt.utils.functools.alias_function(list_tab, 'ls') def set_job(user, path, mask, cmd): ''' Sets an incron job up for a specified user. CLI Example: .. code-block:: bash salt '*' incron.set_job root '/root' 'IN_MODIFY' 'echo "$$ $@ $# $% $&"' ''' # Scrub the types mask = six.text_type(mask).upper() # Check for valid mask types for item in mask.split(','): if item not in _MASK_TYPES: return 'Invalid mask type: {0}' . format(item) updated = False arg_mask = mask.split(',') arg_mask.sort() lst = list_tab(user) updated_crons = [] # Look for existing incrons that have cmd, path and at least one of the MASKS # remove and replace with the one we're passed for item, cron in enumerate(lst['crons']): if path == cron['path']: if cron['cmd'] == cmd: cron_mask = cron['mask'].split(',') cron_mask.sort() if cron_mask == arg_mask: return 'present' if any([x in cron_mask for x in arg_mask]): updated = True else: updated_crons.append(cron) else: updated_crons.append(cron) else: updated_crons.append(cron) cron = {'cmd': cmd, 'path': path, 'mask': mask} updated_crons.append(cron) lst['crons'] = updated_crons comdat = _write_incron_lines(user, _render_tab(lst)) if comdat['retcode']: # Failed to commit, return the error return comdat['stderr'] if updated: return 'updated' else: return 'new' def rm_job(user, path, mask, cmd): ''' Remove a incron job for a specified user. If any of the day/time params are specified, the job will only be removed if the specified params match. CLI Example: .. code-block:: bash salt '*' incron.rm_job root /path ''' # Scrub the types mask = six.text_type(mask).upper() # Check for valid mask types for item in mask.split(','): if item not in _MASK_TYPES: return 'Invalid mask type: {0}' . format(item) lst = list_tab(user) ret = 'absent' rm_ = None for ind in range(len(lst['crons'])): if rm_ is not None: break if path == lst['crons'][ind]['path']: if cmd == lst['crons'][ind]['cmd']: if mask == lst['crons'][ind]['mask']: rm_ = ind if rm_ is not None: lst['crons'].pop(rm_) ret = 'removed' comdat = _write_incron_lines(user, _render_tab(lst)) if comdat['retcode']: # Failed to commit, return the error return comdat['stderr'] return ret rm = salt.utils.functools.alias_function(rm_job, 'rm')
27.109034
97
0.565502
7950f4be74d9af708627bb7450f83dbc913266df
830
py
Python
src/main/strategy_context.py
BMW-InnovationLab/BMW-Anonymization-API
6acc59fa18f1e668e6e80a7990aebbf2ab4ade5e
[ "Apache-2.0" ]
108
2021-04-08T13:23:03.000Z
2022-03-30T14:22:13.000Z
src/main/strategy_context.py
Elio-hanna/BMW-Anonymization-API
c8707bb8cae6524a8c46a6aaadac24fef051c1db
[ "Apache-2.0" ]
1
2021-10-06T08:25:51.000Z
2021-10-11T08:07:08.000Z
src/main/strategy_context.py
Elio-hanna/BMW-Anonymization-API
c8707bb8cae6524a8c46a6aaadac24fef051c1db
[ "Apache-2.0" ]
12
2021-04-10T07:17:56.000Z
2022-03-26T17:48:12.000Z
from anonymization.base_anonymization import BaseAnonymization class StrategyContext: def __init__(self): pass def anonymize(self, detection_type: BaseAnonymization, technique: str, image, response, degree,label_id, mask): """ :param detection_type: Either it is semantic segmentation or object detection :param technique: The anonymization method :param image: Input image :param response: The bounding boxes taken from the output of the inference api :param degree: The degree used to specify the opacity of the anonymization :param label_id: The id of the detected class :param mask: The mask used to apply the anonymzation :return: """ return getattr(detection_type, technique)(image, response, degree, label_id, mask)
41.5
115
0.704819
7950f50c97ccc84243f6b35582bf0bfd56475fb1
4,053
py
Python
test/python/transpiler/test_decompose.py
TanveshT/qiskit-terra
dc3a2a667b8dc22512ca409ecae347d8dbdd944c
[ "Apache-2.0" ]
1
2021-07-11T18:17:38.000Z
2021-07-11T18:17:38.000Z
test/python/transpiler/test_decompose.py
TanveshT/qiskit-terra
dc3a2a667b8dc22512ca409ecae347d8dbdd944c
[ "Apache-2.0" ]
null
null
null
test/python/transpiler/test_decompose.py
TanveshT/qiskit-terra
dc3a2a667b8dc22512ca409ecae347d8dbdd944c
[ "Apache-2.0" ]
1
2020-10-31T09:26:39.000Z
2020-10-31T09:26:39.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2017, 2018. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Test the decompose pass""" from numpy import pi from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit from qiskit.transpiler.passes import Decompose from qiskit.converters import circuit_to_dag from qiskit.circuit.library import HGate from qiskit.circuit.library import CCXGate from qiskit.quantum_info.operators import Operator from qiskit.test import QiskitTestCase class TestDecompose(QiskitTestCase): """Tests the decompose pass.""" def test_basic(self): """Test decompose a single H into u2. """ qr = QuantumRegister(1, 'qr') circuit = QuantumCircuit(qr) circuit.h(qr[0]) dag = circuit_to_dag(circuit) pass_ = Decompose(HGate) after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 1) self.assertEqual(op_nodes[0].name, 'u2') def test_decompose_only_h(self): """Test to decompose a single H, without the rest """ qr = QuantumRegister(2, 'qr') circuit = QuantumCircuit(qr) circuit.h(qr[0]) circuit.cx(qr[0], qr[1]) dag = circuit_to_dag(circuit) pass_ = Decompose(HGate) after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 2) for node in op_nodes: self.assertIn(node.name, ['cx', 'u2']) def test_decompose_toffoli(self): """Test decompose CCX. """ qr1 = QuantumRegister(2, 'qr1') qr2 = QuantumRegister(1, 'qr2') circuit = QuantumCircuit(qr1, qr2) circuit.ccx(qr1[0], qr1[1], qr2[0]) dag = circuit_to_dag(circuit) pass_ = Decompose(CCXGate) after_dag = pass_.run(dag) op_nodes = after_dag.op_nodes() self.assertEqual(len(op_nodes), 15) for node in op_nodes: self.assertIn(node.name, ['h', 't', 'tdg', 'cx']) def test_decompose_conditional(self): """Test decompose a 1-qubit gates with a conditional. """ qr = QuantumRegister(1, 'qr') cr = ClassicalRegister(1, 'cr') circuit = QuantumCircuit(qr, cr) circuit.h(qr).c_if(cr, 1) circuit.x(qr).c_if(cr, 1) dag = circuit_to_dag(circuit) pass_ = Decompose(HGate) after_dag = pass_.run(dag) ref_circuit = QuantumCircuit(qr, cr) ref_circuit.u2(0, pi, qr[0]).c_if(cr, 1) ref_circuit.x(qr).c_if(cr, 1) ref_dag = circuit_to_dag(ref_circuit) self.assertEqual(after_dag, ref_dag) def test_decompose_oversized_instruction(self): """Test decompose on a single-op gate that doesn't use all qubits.""" # ref: https://github.com/Qiskit/qiskit-terra/issues/3440 qc1 = QuantumCircuit(2) qc1.x(0) gate = qc1.to_gate() qc2 = QuantumCircuit(2) qc2.append(gate, [0, 1]) output = qc2.decompose() self.assertEqual(qc1, output) def test_decompose_global_phase_1q(self): """Test decomposition of circuit with global phase""" qc = QuantumCircuit(1) qc.rz(0.1, 0) qc.ry(0.5, 0) qc.global_phase += pi/4 qcd = qc.decompose() self.assertEqual(Operator(qc), Operator(qcd)) def test_decompose_global_phase_2q(self): """Test decomposition of circuit with global phase""" qc = QuantumCircuit(2, global_phase=pi/4) qc.rz(0.1, 0) qc.rxx(0.2, 0, 1) qcd = qc.decompose() self.assertEqual(Operator(qc), Operator(qcd))
33.495868
77
0.631878
7950f51d516fd9bcae861542d0961d7b7300447e
20,695
py
Python
train_cls.py
mhwasil/3DmFV-Net
9cf8fe5f3875e97dd34997182c5087193a9c15bc
[ "MIT" ]
102
2018-07-06T13:39:33.000Z
2022-03-27T10:13:58.000Z
train_cls.py
mhwasil/3DmFV-Net
9cf8fe5f3875e97dd34997182c5087193a9c15bc
[ "MIT" ]
7
2018-11-08T00:31:48.000Z
2021-10-06T08:51:10.000Z
train_cls.py
mhwasil/3DmFV-Net
9cf8fe5f3875e97dd34997182c5087193a9c15bc
[ "MIT" ]
38
2018-07-07T12:57:28.000Z
2021-09-28T02:04:00.000Z
import os import sys import numpy as np import matplotlib matplotlib.use('pdf') # import matplotlib.pyplot as plt import importlib import argparse import tensorflow as tf import pickle BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, 'models')) sys.path.append(os.path.join(BASE_DIR, 'utils')) import tf_util import visualization import provider import utils # ModelNet40 official train/test split. MOdelNet10 requires separate downloading and sampling. MAX_N_POINTS = 2048 NUM_CLASSES = 40 TRAIN_FILES = provider.getDataFiles( \ os.path.join(BASE_DIR, 'data/modelnet'+str(NUM_CLASSES)+'_ply_hdf5_'+ str(MAX_N_POINTS)+ '/train_files.txt')) TEST_FILES = provider.getDataFiles(\ os.path.join(BASE_DIR, 'data/modelnet'+str(NUM_CLASSES)+'_ply_hdf5_'+ str(MAX_N_POINTS)+ '/test_files.txt')) LABEL_MAP = provider.getDataFiles(\ os.path.join(BASE_DIR, 'data/modelnet'+str(NUM_CLASSES)+'_ply_hdf5_'+ str(MAX_N_POINTS)+ '/shape_names.txt')) print( "Loading Modelnet" + str(NUM_CLASSES)) #Execute #python train_cls.py --gpu=0 --log_dir='log' --batch_size=64 --num_point=1024 --num_gaussians=8 --gmm_variance=0.0156 --gmm_type='grid' --learning_rate=0.001 --model='voxnet_pfv' --max_epoch=200 --momentum=0.9 --optimizer='adam' --decay_step=200000 --weight_decay=0.0 --decay_rate=0.7 augment_rotation, augment_scale, augment_translation, augment_jitter, augment_outlier = (False, True, True, True, False) parser = argparse.ArgumentParser() #Parameters for learning parser.add_argument('--gpu', type=int, default=2, help='GPU to use [default: GPU 0]') parser.add_argument('--model', default='3dmfv_net_cls', help='Model name [default: 3dmfv_net_cls]') parser.add_argument('--log_dir', default='log_trial', help='Log dir [default: log]') parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]') parser.add_argument('--max_epoch', type=int, default=200, help='Epoch to run [default: 200]') parser.add_argument('--batch_size', type=int, default=64, help='Batch Size during training [default: 64]') parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]') parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]') parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]') parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]') parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]') parser.add_argument('--weight_decay', type=float, default=0.0, help='weight decay coef [default: 0.0]') # Parameters for GMM parser.add_argument('--gmm_type', default='grid', help='type of gmm [grid/learn], learn uses expectation maximization algorithm (EM) [default: grid]') parser.add_argument('--num_gaussians', type=int , default=5, help='number of gaussians for gmm, if grid specify subdivisions, if learned specify actual number[default: 5, for grid it means 125 gaussians]') parser.add_argument('--gmm_variance', type=float, default=0.04, help='variance for grid gmm, relevant only for grid type') FLAGS = parser.parse_args() N_GAUSSIANS = FLAGS.num_gaussians GMM_TYPE = FLAGS.gmm_type GMM_VARIANCE = FLAGS.gmm_variance BATCH_SIZE = FLAGS.batch_size NUM_POINT = FLAGS.num_point MAX_EPOCH = FLAGS.max_epoch BASE_LEARNING_RATE = FLAGS.learning_rate GPU_INDEX = FLAGS.gpu MOMENTUM = FLAGS.momentum OPTIMIZER = FLAGS.optimizer DECAY_STEP = FLAGS.decay_step DECAY_RATE = FLAGS.decay_rate WEIGHT_DECAY = FLAGS.weight_decay MODEL = importlib.import_module(FLAGS.model) # import network module MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py') #Creat log directory ant prevent over-write by creating numbered subdirectories LOG_DIR = 'log/modelnet' + str(NUM_CLASSES) + '/' + FLAGS.model + '/'+ GMM_TYPE + str(N_GAUSSIANS) + '_' + FLAGS.log_dir if not os.path.exists(LOG_DIR): os.makedirs(LOG_DIR) else: print('Log dir already exists! creating a new one..............') n = 0 while True: n+=1 new_log_dir = LOG_DIR+'/'+str(n) if not os.path.exists(new_log_dir): os.makedirs(new_log_dir) print('New log dir:'+new_log_dir) break FLAGS.log_dir = new_log_dir LOG_DIR = new_log_dir os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def os.system('cp train_cls.py %s' % (LOG_DIR)) # bkp of train procedure pickle.dump(FLAGS, open( os.path.join(LOG_DIR, 'parameters.p'), "wb" ) ) LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w') LOG_FOUT.write(str(FLAGS)+'\n') LOG_FOUT.write("augmentation RSTJ = " + str((augment_rotation, augment_scale, augment_translation, augment_jitter, augment_outlier))) #log augmentaitons FAIL_CASES_FOUT = open(os.path.join(LOG_DIR, 'fail_cases.txt'), 'w') BN_INIT_DECAY = 0.5 BN_DECAY_DECAY_RATE = 0.5 BN_DECAY_DECAY_STEP = float(DECAY_STEP) BN_DECAY_CLIP = 0.99 LIMIT_GPU = True MAX_ACCURACY = 0.0 MAX_CLASS_ACCURACY = 0.0 def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def get_learning_rate(batch): learning_rate = tf.train.exponential_decay( BASE_LEARNING_RATE, # Base learning rate. batch * BATCH_SIZE, # Current index into the dataset. DECAY_STEP, # Decay step. DECAY_RATE, # Decay rate. staircase=True) learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( BN_INIT_DECAY, batch*BATCH_SIZE, BN_DECAY_DECAY_STEP, BN_DECAY_DECAY_RATE, staircase=True) bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum) return bn_decay def train(gmm): global MAX_ACCURACY, MAX_CLASS_ACCURACY # n_fv_features = 7 * len(gmm.weights_) # Build Graph, train and classify with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): points_pl, labels_pl, w_pl, mu_pl, sigma_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, gmm ) is_training_pl = tf.placeholder(tf.bool, shape=()) # Note the global_step=batch parameter to minimize. # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains. batch = tf.Variable(0) bn_decay = get_bn_decay(batch) tf.summary.scalar('bn_decay', bn_decay) # Get model and loss pred, fv = MODEL.get_model(points_pl, w_pl, mu_pl, sigma_pl, is_training_pl, bn_decay=bn_decay, weigth_decay=WEIGHT_DECAY, add_noise=False, num_classes=NUM_CLASSES) loss = MODEL.get_loss(pred, labels_pl) tf.summary.scalar('loss', loss) # Get accuracy correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(labels_pl)) accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(BATCH_SIZE) tf.summary.scalar('accuracy', accuracy) # Get training operator learning_rate = get_learning_rate(batch) tf.summary.scalar('learning_rate', learning_rate) if OPTIMIZER == 'momentum': optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM) elif OPTIMIZER == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=batch)#, aggregation_method = tf.AggregationMethod.EXPERIMENTAL_TREE) #consider using: tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N # Add ops to save and restore all the variables. saver = tf.train.Saver() # Create a session sess = tf_util.get_session(GPU_INDEX, limit_gpu=LIMIT_GPU) # Add summary writers merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'), sess.graph) test_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'test')) # Init variables init = tf.global_variables_initializer() sess.run(init, {is_training_pl: True}) ops = {'points_pl': points_pl, 'labels_pl': labels_pl, 'w_pl': w_pl, 'mu_pl': mu_pl, 'sigma_pl': sigma_pl, 'is_training_pl': is_training_pl, 'fv': fv, 'pred': pred, 'loss': loss, 'train_op': train_op, 'merged': merged, 'step': batch} for epoch in range(MAX_EPOCH): log_string('**** EPOCH %03d ****' % (epoch)) sys.stdout.flush() train_one_epoch(sess, ops, gmm, train_writer) acc, acc_avg_cls = eval_one_epoch(sess, ops, gmm, test_writer) # Save the variables to disk. if epoch % 10 == 0: save_path = saver.save(sess, os.path.join(LOG_DIR, "model.ckpt")) log_string("Model saved in file: %s" % save_path) if acc > MAX_ACCURACY: MAX_ACCURACY = acc MAX_CLASS_ACCURACY = acc_avg_cls log_string("Best test accuracy: %f" % MAX_ACCURACY) log_string("Best test class accuracy: %f" % MAX_CLASS_ACCURACY) def train_one_epoch(sess, ops, gmm, train_writer): """ ops: dict mapping from string to tf ops """ is_training = True # Shuffle train files train_file_idxs = np.arange(0, len(TRAIN_FILES)) np.random.shuffle(train_file_idxs) for fn in range(len(TRAIN_FILES)): log_string('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TRAIN_FILES[train_file_idxs[fn]], compensate = False) # points_idx = range(0,NUM_POINT) points_idx = np.random.choice(range(0,2048),NUM_POINT) current_data = current_data[:, points_idx, :] current_data, current_label, _ = provider.shuffle_data(current_data, np.squeeze(current_label)) current_label = np.squeeze(current_label) file_size = current_data.shape[0] num_batches = file_size / BATCH_SIZE total_correct = 0 total_seen = 0 loss_sum = 0 for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx + 1) * BATCH_SIZE # Augment batched point clouds by rotation and jittering augmented_data = current_data[start_idx:end_idx, :, :] if augment_scale: augmented_data = provider.scale_point_cloud(augmented_data, smin=0.66, smax=1.5) if augment_rotation: augmented_data = provider.rotate_point_cloud(augmented_data) if augment_translation: augmented_data = provider.translate_point_cloud(augmented_data, tval = 0.2) if augment_jitter: augmented_data = provider.jitter_point_cloud(augmented_data, sigma=0.01, clip=0.05) # default sigma=0.01, clip=0.05 if augment_outlier: augmented_data = provider.insert_outliers_to_point_cloud(augmented_data, outlier_ratio=0.02) feed_dict = {ops['points_pl']: augmented_data, ops['labels_pl']: current_label[start_idx:end_idx], ops['w_pl']: gmm.weights_, ops['mu_pl']: gmm.means_, ops['sigma_pl']: np.sqrt(gmm.covariances_), ops['is_training_pl']: is_training, } summary, step, _, loss_val, pred_val = sess.run([ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['pred']], feed_dict=feed_dict) train_writer.add_summary(summary, step) pred_val = np.argmax(pred_val, 1) correct = np.sum(pred_val == current_label[start_idx:end_idx]) total_correct += correct total_seen += BATCH_SIZE loss_sum += loss_val log_string('mean loss: %f' % (loss_sum / float(num_batches))) log_string('accuracy: %f' % (total_correct / float(total_seen))) def eval_one_epoch(sess, ops, gmm, test_writer): """ ops: dict mapping from string to tf ops """ is_training = False total_correct = 0 total_seen = 0 loss_sum = 0 total_seen_class = [0 for _ in range(NUM_CLASSES)] total_correct_class = [0 for _ in range(NUM_CLASSES)] fail_cases_true_labels_final = [] fail_cases_false_labes_final = [] fail_cases_idx_final = [] # points_idx = np.random.choice(range(0, 2048), NUM_POINT) points_idx = range(NUM_POINT) for fn in range(len(TEST_FILES)): log_string('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TEST_FILES[fn], compensate=False) current_data = current_data[:, points_idx, :] current_label = np.squeeze(current_label) file_size = current_data.shape[0] num_batches = file_size / BATCH_SIZE for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx + 1) * BATCH_SIZE feed_dict = {ops['points_pl']: current_data[start_idx:end_idx, :, :] , ops['labels_pl']: current_label[start_idx:end_idx], ops['w_pl']: gmm.weights_, ops['mu_pl']: gmm.means_, ops['sigma_pl']: np.sqrt(gmm.covariances_), ops['is_training_pl']: is_training} summary, step, loss_val, pred_val = sess.run([ops['merged'], ops['step'], ops['loss'], ops['pred']], feed_dict=feed_dict) test_writer.add_summary(summary, step) pred_val = np.argmax(pred_val, 1) correct = np.sum(pred_val == current_label[start_idx:end_idx]) #Find the fail cases batch_current_label = current_label[start_idx:end_idx] false_idx = pred_val != batch_current_label fail_cases_true_labels = batch_current_label[np.where(false_idx)] if batch_idx==0 else np.concatenate([fail_cases_true_labels,batch_current_label[np.where(false_idx)]] ) fail_cases_false_labes = pred_val[np.where(false_idx)] if batch_idx==0 else np.concatenate([fail_cases_false_labes, pred_val[np.where(false_idx)]]) fail_cases_idx = false_idx if batch_idx == 0 else np.concatenate([fail_cases_idx, false_idx]) total_correct += correct total_seen += BATCH_SIZE loss_sum += (loss_val * BATCH_SIZE) for i in range(start_idx, end_idx): l = current_label[i] total_seen_class[l] += 1 total_correct_class[l] += (pred_val[i - start_idx] == l) fail_cases_true_labels_final.append(fail_cases_true_labels) fail_cases_false_labes_final.append(fail_cases_false_labes) fail_cases_idx_final.append(fail_cases_idx) acc = total_correct / float(total_seen) acc_avg_cls = np.mean(np.array(total_correct_class) / np.array(total_seen_class, dtype=np.float)) log_string('eval mean loss: %f' % (loss_sum / float(total_seen))) log_string('eval accuracy: %f' % (acc)) log_string('eval avg class acc: %f' % (acc_avg_cls)) FAIL_CASES_FOUT.write('True:' + str(fail_cases_true_labels) + '\n') FAIL_CASES_FOUT.write('Pred:' + str(fail_cases_false_labes) + '\n') FAIL_CASES_FOUT.write('Idx:' + str(fail_cases_idx) + '\n') FAIL_CASES_FOUT.flush() dump_dic = {'true_labels': fail_cases_true_labels_final, 'false_pred_labels': fail_cases_false_labes_final, 'idxs': fail_cases_idx_final} # pickle.dump([fail_cases_true_labels, fail_cases_false_labes], open(os.path.join(LOG_DIR, 'fail_cases.p'), "wb")) pickle.dump(dump_dic, open(os.path.join(LOG_DIR, 'fail_cases.p'), "wb")) return (acc, acc_avg_cls) def export_visualizations(gmm, log_dir): """ Visualizes and saves the images of the confusion matrix and fv representations :param gmm: instance of sklearn GaussianMixture (GMM) object Gauassian mixture model :param log_dir: path to the trained model :return None (exports images) """ # load the model model_checkpoint = os.path.join(log_dir, "model.ckpt") if not(os.path.isfile(model_checkpoint+".meta")): raise ValueError("No log folder availabe with name " + str(log_dir)) # reBuild Graph with tf.Graph().as_default(): with tf.device('/gpu:'+str(GPU_INDEX)): points_pl, labels_pl, w_pl, mu_pl, sigma_pl, = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, gmm,) is_training_pl = tf.placeholder(tf.bool, shape=()) # Get model and loss pred, fv = MODEL.get_model(points_pl, w_pl, mu_pl, sigma_pl, is_training_pl, num_classes=NUM_CLASSES) ops = {'points_pl': points_pl, 'labels_pl': labels_pl, 'w_pl': w_pl, 'mu_pl': mu_pl, 'sigma_pl': sigma_pl, 'is_training_pl': is_training_pl, 'pred': pred, 'fv': fv} # Add ops to save and restore all the variables. saver = tf.train.Saver() # Create a session sess = tf_util.get_session(GPU_INDEX, limit_gpu=LIMIT_GPU) # Restore variables from disk. saver.restore(sess, model_checkpoint) print("Model restored.") # Load the test data for fn in range(len(TEST_FILES)): log_string('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TEST_FILES[fn]) current_data = current_data[:, 0:NUM_POINT, :] current_label = np.squeeze(current_label) file_size = current_data.shape[0] num_batches = file_size / BATCH_SIZE for batch_idx in range(num_batches): start_idx = batch_idx * BATCH_SIZE end_idx = (batch_idx + 1) * BATCH_SIZE feed_dict = {ops['points_pl']: current_data[start_idx:end_idx, :, :], ops['labels_pl']: current_label[start_idx:end_idx], ops['w_pl']: gmm.weights_, ops['mu_pl']: gmm.means_, ops['sigma_pl']: np.sqrt(gmm.covariances_), ops['is_training_pl']: False} pred_label, fv_data = sess.run([ops['pred'], ops['fv']], feed_dict=feed_dict) pred_label = np.argmax(pred_label, 1) all_fv_data = fv_data if (fn==0 and batch_idx==0) else np.concatenate([all_fv_data, fv_data],axis=0) true_labels = current_label[start_idx:end_idx] if (fn==0 and batch_idx==0) else np.concatenate([true_labels, current_label[start_idx:end_idx]],axis=0) all_pred_labels = pred_label if (fn==0 and batch_idx==0) else np.concatenate([all_pred_labels, pred_label],axis=0) # Export Confusion Matrix visualization.visualize_confusion_matrix(true_labels, all_pred_labels, classes=LABEL_MAP, normalize=False, export=True, display=False, filename=os.path.join(log_dir,'confusion_mat'), n_classes=NUM_CLASSES) # Export Fishre Vector Visualization label_tags = [LABEL_MAP[i] for i in true_labels] visualization.visualize_fv(all_fv_data, gmm, label_tags, export=True, display=False,filename=os.path.join(log_dir,'fisher_vectors')) # plt.show() #uncomment this to see the images in addition to saving them print("Confusion matrix and Fisher vectores were saved to /" + str(log_dir)) if __name__ == "__main__": gmm = utils.get_3d_grid_gmm(subdivisions=[N_GAUSSIANS, N_GAUSSIANS, N_GAUSSIANS], variance=GMM_VARIANCE) pickle.dump(gmm, open(os.path.join(LOG_DIR, 'gmm.p'), "wb")) train(gmm) #export_visualizations(gmm, LOG_DIR,n_model_limit=None) LOG_FOUT.close()
44.89154
287
0.636482
7950f6088d314f0ad41e46e38621d8f687d515b6
89,392
py
Python
scipy/optimize/tests/test_optimize.py
jcharlong/scipy
153467a9174b0c6f4b90ffeed5871e5018658108
[ "BSD-3-Clause" ]
11
2020-06-28T04:30:26.000Z
2022-03-26T08:40:47.000Z
scipy/optimize/tests/test_optimize.py
jcharlong/scipy
153467a9174b0c6f4b90ffeed5871e5018658108
[ "BSD-3-Clause" ]
25
2020-11-16T15:36:41.000Z
2021-06-01T05:15:31.000Z
scipy/optimize/tests/test_optimize.py
jcharlong/scipy
153467a9174b0c6f4b90ffeed5871e5018658108
[ "BSD-3-Clause" ]
20
2021-11-07T13:55:56.000Z
2021-12-02T10:54:01.000Z
""" Unit tests for optimization routines from optimize.py Authors: Ed Schofield, Nov 2005 Andrew Straw, April 2008 To run it in its simplest form:: nosetests test_optimize.py """ import itertools import numpy as np from numpy.testing import (assert_allclose, assert_equal, assert_, assert_almost_equal, assert_no_warnings, assert_warns, assert_array_less, suppress_warnings) import pytest from pytest import raises as assert_raises from scipy import optimize from scipy.optimize._minimize import MINIMIZE_METHODS, MINIMIZE_SCALAR_METHODS from scipy.optimize._linprog import LINPROG_METHODS from scipy.optimize._root import ROOT_METHODS from scipy.optimize._root_scalar import ROOT_SCALAR_METHODS from scipy.optimize._qap import QUADRATIC_ASSIGNMENT_METHODS from scipy.optimize._differentiable_functions import ScalarFunction from scipy.optimize.optimize import MemoizeJac, show_options def test_check_grad(): # Verify if check_grad is able to estimate the derivative of the # logistic function. def logit(x): return 1 / (1 + np.exp(-x)) def der_logit(x): return np.exp(-x) / (1 + np.exp(-x))**2 x0 = np.array([1.5]) r = optimize.check_grad(logit, der_logit, x0) assert_almost_equal(r, 0) r = optimize.check_grad(logit, der_logit, x0, epsilon=1e-6) assert_almost_equal(r, 0) # Check if the epsilon parameter is being considered. r = abs(optimize.check_grad(logit, der_logit, x0, epsilon=1e-1) - 0) assert_(r > 1e-7) class CheckOptimize: """ Base test case for a simple constrained entropy maximization problem (the machine translation example of Berger et al in Computational Linguistics, vol 22, num 1, pp 39--72, 1996.) """ def setup_method(self): self.F = np.array([[1, 1, 1], [1, 1, 0], [1, 0, 1], [1, 0, 0], [1, 0, 0]]) self.K = np.array([1., 0.3, 0.5]) self.startparams = np.zeros(3, np.float64) self.solution = np.array([0., -0.524869316, 0.487525860]) self.maxiter = 1000 self.funccalls = 0 self.gradcalls = 0 self.trace = [] def func(self, x): self.funccalls += 1 if self.funccalls > 6000: raise RuntimeError("too many iterations in optimization routine") log_pdot = np.dot(self.F, x) logZ = np.log(sum(np.exp(log_pdot))) f = logZ - np.dot(self.K, x) self.trace.append(np.copy(x)) return f def grad(self, x): self.gradcalls += 1 log_pdot = np.dot(self.F, x) logZ = np.log(sum(np.exp(log_pdot))) p = np.exp(log_pdot - logZ) return np.dot(self.F.transpose(), p) - self.K def hess(self, x): log_pdot = np.dot(self.F, x) logZ = np.log(sum(np.exp(log_pdot))) p = np.exp(log_pdot - logZ) return np.dot(self.F.T, np.dot(np.diag(p), self.F - np.dot(self.F.T, p))) def hessp(self, x, p): return np.dot(self.hess(x), p) class CheckOptimizeParameterized(CheckOptimize): def test_cg(self): # conjugate gradient optimization routine if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': self.disp, 'return_all': False} res = optimize.minimize(self.func, self.startparams, args=(), method='CG', jac=self.grad, options=opts) params, fopt, func_calls, grad_calls, warnflag = \ res['x'], res['fun'], res['nfev'], res['njev'], res['status'] else: retval = optimize.fmin_cg(self.func, self.startparams, self.grad, (), maxiter=self.maxiter, full_output=True, disp=self.disp, retall=False) (params, fopt, func_calls, grad_calls, warnflag) = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # Ensure that function call counts are 'known good'; these are from # SciPy 0.7.0. Don't allow them to increase. assert_(self.funccalls == 9, self.funccalls) assert_(self.gradcalls == 7, self.gradcalls) # Ensure that the function behaves the same; this is from SciPy 0.7.0 assert_allclose(self.trace[2:4], [[0, -0.5, 0.5], [0, -5.05700028e-01, 4.95985862e-01]], atol=1e-14, rtol=1e-7) def test_cg_cornercase(self): def f(r): return 2.5 * (1 - np.exp(-1.5*(r - 0.5)))**2 # Check several initial guesses. (Too far away from the # minimum, the function ends up in the flat region of exp.) for x0 in np.linspace(-0.75, 3, 71): sol = optimize.minimize(f, [x0], method='CG') assert_(sol.success) assert_allclose(sol.x, [0.5], rtol=1e-5) def test_bfgs(self): # Broyden-Fletcher-Goldfarb-Shanno optimization routine if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': self.disp, 'return_all': False} res = optimize.minimize(self.func, self.startparams, jac=self.grad, method='BFGS', args=(), options=opts) params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag = ( res['x'], res['fun'], res['jac'], res['hess_inv'], res['nfev'], res['njev'], res['status']) else: retval = optimize.fmin_bfgs(self.func, self.startparams, self.grad, args=(), maxiter=self.maxiter, full_output=True, disp=self.disp, retall=False) (params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag) = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # Ensure that function call counts are 'known good'; these are from # SciPy 0.7.0. Don't allow them to increase. assert_(self.funccalls == 10, self.funccalls) assert_(self.gradcalls == 8, self.gradcalls) # Ensure that the function behaves the same; this is from SciPy 0.7.0 assert_allclose(self.trace[6:8], [[0, -5.25060743e-01, 4.87748473e-01], [0, -5.24885582e-01, 4.87530347e-01]], atol=1e-14, rtol=1e-7) def test_bfgs_infinite(self): # Test corner case where -Inf is the minimum. See gh-2019. func = lambda x: -np.e**-x fprime = lambda x: -func(x) x0 = [0] with np.errstate(over='ignore'): if self.use_wrapper: opts = {'disp': self.disp} x = optimize.minimize(func, x0, jac=fprime, method='BFGS', args=(), options=opts)['x'] else: x = optimize.fmin_bfgs(func, x0, fprime, disp=self.disp) assert_(not np.isfinite(func(x))) def test_powell(self): # Powell (direction set) optimization routine if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': self.disp, 'return_all': False} res = optimize.minimize(self.func, self.startparams, args=(), method='Powell', options=opts) params, fopt, direc, numiter, func_calls, warnflag = ( res['x'], res['fun'], res['direc'], res['nit'], res['nfev'], res['status']) else: retval = optimize.fmin_powell(self.func, self.startparams, args=(), maxiter=self.maxiter, full_output=True, disp=self.disp, retall=False) (params, fopt, direc, numiter, func_calls, warnflag) = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # params[0] does not affect the objective function assert_allclose(params[1:], self.solution[1:], atol=5e-6) # Ensure that function call counts are 'known good'; these are from # SciPy 0.7.0. Don't allow them to increase. # # However, some leeway must be added: the exact evaluation # count is sensitive to numerical error, and floating-point # computations are not bit-for-bit reproducible across # machines, and when using e.g., MKL, data alignment # etc., affect the rounding error. # assert_(self.funccalls <= 116 + 20, self.funccalls) assert_(self.gradcalls == 0, self.gradcalls) @pytest.mark.xfail(reason="This part of test_powell fails on some " "platforms, but the solution returned by powell is " "still valid.") def test_powell_gh14014(self): # This part of test_powell started failing on some CI platforms; # see gh-14014. Since the solution is still correct and the comments # in test_powell suggest that small differences in the bits are known # to change the "trace" of the solution, seems safe to xfail to get CI # green now and investigate later. # Powell (direction set) optimization routine if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': self.disp, 'return_all': False} res = optimize.minimize(self.func, self.startparams, args=(), method='Powell', options=opts) params, fopt, direc, numiter, func_calls, warnflag = ( res['x'], res['fun'], res['direc'], res['nit'], res['nfev'], res['status']) else: retval = optimize.fmin_powell(self.func, self.startparams, args=(), maxiter=self.maxiter, full_output=True, disp=self.disp, retall=False) (params, fopt, direc, numiter, func_calls, warnflag) = retval # Ensure that the function behaves the same; this is from SciPy 0.7.0 assert_allclose(self.trace[34:39], [[0.72949016, -0.44156936, 0.47100962], [0.72949016, -0.44156936, 0.48052496], [1.45898031, -0.88313872, 0.95153458], [0.72949016, -0.44156936, 0.47576729], [1.72949016, -0.44156936, 0.47576729]], atol=1e-14, rtol=1e-7) def test_powell_bounded(self): # Powell (direction set) optimization routine # same as test_powell above, but with bounds bounds = [(-np.pi, np.pi) for _ in self.startparams] if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': self.disp, 'return_all': False} res = optimize.minimize(self.func, self.startparams, args=(), bounds=bounds, method='Powell', options=opts) params, fopt, direc, numiter, func_calls, warnflag = ( res['x'], res['fun'], res['direc'], res['nit'], res['nfev'], res['status']) assert func_calls == self.funccalls assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # Ensure that function call counts are 'known good'. # Generally, this takes 131 function calls. However, on some CI # checks it finds 138 funccalls. This 20 call leeway was also # included in the test_powell function. # The exact evaluation count is sensitive to numerical error, and # floating-point computations are not bit-for-bit reproducible # across machines, and when using e.g. MKL, data alignment etc. # affect the rounding error. assert self.funccalls <= 131 + 20 assert self.gradcalls == 0 def test_neldermead(self): # Nelder-Mead simplex algorithm if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': self.disp, 'return_all': False} res = optimize.minimize(self.func, self.startparams, args=(), method='Nelder-mead', options=opts) params, fopt, numiter, func_calls, warnflag = ( res['x'], res['fun'], res['nit'], res['nfev'], res['status']) else: retval = optimize.fmin(self.func, self.startparams, args=(), maxiter=self.maxiter, full_output=True, disp=self.disp, retall=False) (params, fopt, numiter, func_calls, warnflag) = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # Ensure that function call counts are 'known good'; these are from # SciPy 0.7.0. Don't allow them to increase. assert_(self.funccalls == 167, self.funccalls) assert_(self.gradcalls == 0, self.gradcalls) # Ensure that the function behaves the same; this is from SciPy 0.7.0 assert_allclose(self.trace[76:78], [[0.1928968, -0.62780447, 0.35166118], [0.19572515, -0.63648426, 0.35838135]], atol=1e-14, rtol=1e-7) def test_neldermead_initial_simplex(self): # Nelder-Mead simplex algorithm simplex = np.zeros((4, 3)) simplex[...] = self.startparams for j in range(3): simplex[j+1, j] += 0.1 if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': False, 'return_all': True, 'initial_simplex': simplex} res = optimize.minimize(self.func, self.startparams, args=(), method='Nelder-mead', options=opts) params, fopt, numiter, func_calls, warnflag = (res['x'], res['fun'], res['nit'], res['nfev'], res['status']) assert_allclose(res['allvecs'][0], simplex[0]) else: retval = optimize.fmin(self.func, self.startparams, args=(), maxiter=self.maxiter, full_output=True, disp=False, retall=False, initial_simplex=simplex) (params, fopt, numiter, func_calls, warnflag) = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # Ensure that function call counts are 'known good'; these are from # SciPy 0.17.0. Don't allow them to increase. assert_(self.funccalls == 100, self.funccalls) assert_(self.gradcalls == 0, self.gradcalls) # Ensure that the function behaves the same; this is from SciPy 0.15.0 assert_allclose(self.trace[50:52], [[0.14687474, -0.5103282, 0.48252111], [0.14474003, -0.5282084, 0.48743951]], atol=1e-14, rtol=1e-7) def test_neldermead_initial_simplex_bad(self): # Check it fails with a bad simplices bad_simplices = [] simplex = np.zeros((3, 2)) simplex[...] = self.startparams[:2] for j in range(2): simplex[j+1, j] += 0.1 bad_simplices.append(simplex) simplex = np.zeros((3, 3)) bad_simplices.append(simplex) for simplex in bad_simplices: if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': False, 'return_all': False, 'initial_simplex': simplex} assert_raises(ValueError, optimize.minimize, self.func, self.startparams, args=(), method='Nelder-mead', options=opts) else: assert_raises(ValueError, optimize.fmin, self.func, self.startparams, args=(), maxiter=self.maxiter, full_output=True, disp=False, retall=False, initial_simplex=simplex) def test_ncg_negative_maxiter(self): # Regression test for gh-8241 opts = {'maxiter': -1} result = optimize.minimize(self.func, self.startparams, method='Newton-CG', jac=self.grad, args=(), options=opts) assert_(result.status == 1) def test_ncg(self): # line-search Newton conjugate gradient optimization routine if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': self.disp, 'return_all': False} retval = optimize.minimize(self.func, self.startparams, method='Newton-CG', jac=self.grad, args=(), options=opts)['x'] else: retval = optimize.fmin_ncg(self.func, self.startparams, self.grad, args=(), maxiter=self.maxiter, full_output=False, disp=self.disp, retall=False) params = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # Ensure that function call counts are 'known good'; these are from # SciPy 0.7.0. Don't allow them to increase. assert_(self.funccalls == 7, self.funccalls) assert_(self.gradcalls <= 22, self.gradcalls) # 0.13.0 # assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0 # assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0 # assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0 # Ensure that the function behaves the same; this is from SciPy 0.7.0 assert_allclose(self.trace[3:5], [[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01], [-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]], atol=1e-6, rtol=1e-7) def test_ncg_hess(self): # Newton conjugate gradient with Hessian if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': self.disp, 'return_all': False} retval = optimize.minimize(self.func, self.startparams, method='Newton-CG', jac=self.grad, hess=self.hess, args=(), options=opts)['x'] else: retval = optimize.fmin_ncg(self.func, self.startparams, self.grad, fhess=self.hess, args=(), maxiter=self.maxiter, full_output=False, disp=self.disp, retall=False) params = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # Ensure that function call counts are 'known good'; these are from # SciPy 0.7.0. Don't allow them to increase. assert_(self.funccalls <= 7, self.funccalls) # gh10673 assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0 # assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0 # assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0 # Ensure that the function behaves the same; this is from SciPy 0.7.0 assert_allclose(self.trace[3:5], [[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01], [-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]], atol=1e-6, rtol=1e-7) def test_ncg_hessp(self): # Newton conjugate gradient with Hessian times a vector p. if self.use_wrapper: opts = {'maxiter': self.maxiter, 'disp': self.disp, 'return_all': False} retval = optimize.minimize(self.func, self.startparams, method='Newton-CG', jac=self.grad, hessp=self.hessp, args=(), options=opts)['x'] else: retval = optimize.fmin_ncg(self.func, self.startparams, self.grad, fhess_p=self.hessp, args=(), maxiter=self.maxiter, full_output=False, disp=self.disp, retall=False) params = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # Ensure that function call counts are 'known good'; these are from # SciPy 0.7.0. Don't allow them to increase. assert_(self.funccalls <= 7, self.funccalls) # gh10673 assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0 # assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0 # assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0 # Ensure that the function behaves the same; this is from SciPy 0.7.0 assert_allclose(self.trace[3:5], [[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01], [-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]], atol=1e-6, rtol=1e-7) def test_obj_func_returns_scalar(): match = ("The user-provided " "objective function must " "return a scalar value.") with assert_raises(ValueError, match=match): optimize.minimize(lambda x: x, np.array([1, 1]), method='BFGS') def test_neldermead_xatol_fatol(): # gh4484 # test we can call with fatol, xatol specified func = lambda x: x[0]**2 + x[1]**2 optimize._minimize._minimize_neldermead(func, [1, 1], maxiter=2, xatol=1e-3, fatol=1e-3) assert_warns(DeprecationWarning, optimize._minimize._minimize_neldermead, func, [1, 1], xtol=1e-3, ftol=1e-3, maxiter=2) def test_neldermead_adaptive(): func = lambda x: np.sum(x**2) p0 = [0.15746215, 0.48087031, 0.44519198, 0.4223638, 0.61505159, 0.32308456, 0.9692297, 0.4471682, 0.77411992, 0.80441652, 0.35994957, 0.75487856, 0.99973421, 0.65063887, 0.09626474] res = optimize.minimize(func, p0, method='Nelder-Mead') assert_equal(res.success, False) res = optimize.minimize(func, p0, method='Nelder-Mead', options={'adaptive': True}) assert_equal(res.success, True) def test_bounded_powell_outsidebounds(): # With the bounded Powell method if you start outside the bounds the final # should still be within the bounds (provided that the user doesn't make a # bad choice for the `direc` argument). func = lambda x: np.sum(x**2) bounds = (-1, 1), (-1, 1), (-1, 1) x0 = [-4, .5, -.8] # we're starting outside the bounds, so we should get a warning with assert_warns(optimize.OptimizeWarning): res = optimize.minimize(func, x0, bounds=bounds, method="Powell") assert_allclose(res.x, np.array([0.] * len(x0)), atol=1e-6) assert_equal(res.success, True) assert_equal(res.status, 0) # However, now if we change the `direc` argument such that the # set of vectors does not span the parameter space, then we may # not end up back within the bounds. Here we see that the first # parameter cannot be updated! direc = [[0, 0, 0], [0, 1, 0], [0, 0, 1]] # we're starting outside the bounds, so we should get a warning with assert_warns(optimize.OptimizeWarning): res = optimize.minimize(func, x0, bounds=bounds, method="Powell", options={'direc': direc}) assert_allclose(res.x, np.array([-4., 0, 0]), atol=1e-6) assert_equal(res.success, False) assert_equal(res.status, 4) def test_bounded_powell_vs_powell(): # here we test an example where the bounded Powell method # will return a different result than the standard Powell # method. # first we test a simple example where the minimum is at # the origin and the minimum that is within the bounds is # larger than the minimum at the origin. func = lambda x: np.sum(x**2) bounds = (-5, -1), (-10, -0.1), (1, 9.2), (-4, 7.6), (-15.9, -2) x0 = [-2.1, -5.2, 1.9, 0, -2] options = {'ftol': 1e-10, 'xtol': 1e-10} res_powell = optimize.minimize(func, x0, method="Powell", options=options) assert_allclose(res_powell.x, 0., atol=1e-6) assert_allclose(res_powell.fun, 0., atol=1e-6) res_bounded_powell = optimize.minimize(func, x0, options=options, bounds=bounds, method="Powell") p = np.array([-1, -0.1, 1, 0, -2]) assert_allclose(res_bounded_powell.x, p, atol=1e-6) assert_allclose(res_bounded_powell.fun, func(p), atol=1e-6) # now we test bounded Powell but with a mix of inf bounds. bounds = (None, -1), (-np.inf, -.1), (1, np.inf), (-4, None), (-15.9, -2) res_bounded_powell = optimize.minimize(func, x0, options=options, bounds=bounds, method="Powell") p = np.array([-1, -0.1, 1, 0, -2]) assert_allclose(res_bounded_powell.x, p, atol=1e-6) assert_allclose(res_bounded_powell.fun, func(p), atol=1e-6) # next we test an example where the global minimum is within # the bounds, but the bounded Powell method performs better # than the standard Powell method. def func(x): t = np.sin(-x[0]) * np.cos(x[1]) * np.sin(-x[0] * x[1]) * np.cos(x[1]) t -= np.cos(np.sin(x[1] * x[2]) * np.cos(x[2])) return t**2 bounds = [(-2, 5)] * 3 x0 = [-0.5, -0.5, -0.5] res_powell = optimize.minimize(func, x0, method="Powell") res_bounded_powell = optimize.minimize(func, x0, bounds=bounds, method="Powell") assert_allclose(res_powell.fun, 0.007136253919761627, atol=1e-6) assert_allclose(res_bounded_powell.fun, 0, atol=1e-6) # next we test the previous example where the we provide Powell # with (-inf, inf) bounds, and compare it to providing Powell # with no bounds. They should end up the same. bounds = [(-np.inf, np.inf)] * 3 res_bounded_powell = optimize.minimize(func, x0, bounds=bounds, method="Powell") assert_allclose(res_powell.fun, res_bounded_powell.fun, atol=1e-6) assert_allclose(res_powell.nfev, res_bounded_powell.nfev, atol=1e-6) assert_allclose(res_powell.x, res_bounded_powell.x, atol=1e-6) # now test when x0 starts outside of the bounds. x0 = [45.46254415, -26.52351498, 31.74830248] bounds = [(-2, 5)] * 3 # we're starting outside the bounds, so we should get a warning with assert_warns(optimize.OptimizeWarning): res_bounded_powell = optimize.minimize(func, x0, bounds=bounds, method="Powell") assert_allclose(res_bounded_powell.fun, 0, atol=1e-6) def test_onesided_bounded_powell_stability(): # When the Powell method is bounded on only one side, a # np.tan transform is done in order to convert it into a # completely bounded problem. Here we do some simple tests # of one-sided bounded Powell where the optimal solutions # are large to test the stability of the transformation. kwargs = {'method': 'Powell', 'bounds': [(-np.inf, 1e6)] * 3, 'options': {'ftol': 1e-8, 'xtol': 1e-8}} x0 = [1, 1, 1] # df/dx is constant. f = lambda x: -np.sum(x) res = optimize.minimize(f, x0, **kwargs) assert_allclose(res.fun, -3e6, atol=1e-4) # df/dx gets smaller and smaller. def f(x): return -np.abs(np.sum(x)) ** (0.1) * (1 if np.all(x > 0) else -1) res = optimize.minimize(f, x0, **kwargs) assert_allclose(res.fun, -(3e6) ** (0.1)) # df/dx gets larger and larger. def f(x): return -np.abs(np.sum(x)) ** 10 * (1 if np.all(x > 0) else -1) res = optimize.minimize(f, x0, **kwargs) assert_allclose(res.fun, -(3e6) ** 10, rtol=1e-7) # df/dx gets larger for some of the variables and smaller for others. def f(x): t = -np.abs(np.sum(x[:2])) ** 5 - np.abs(np.sum(x[2:])) ** (0.1) t *= (1 if np.all(x > 0) else -1) return t kwargs['bounds'] = [(-np.inf, 1e3)] * 3 res = optimize.minimize(f, x0, **kwargs) assert_allclose(res.fun, -(2e3) ** 5 - (1e6) ** (0.1), rtol=1e-7) class TestOptimizeWrapperDisp(CheckOptimizeParameterized): use_wrapper = True disp = True class TestOptimizeWrapperNoDisp(CheckOptimizeParameterized): use_wrapper = True disp = False class TestOptimizeNoWrapperDisp(CheckOptimizeParameterized): use_wrapper = False disp = True class TestOptimizeNoWrapperNoDisp(CheckOptimizeParameterized): use_wrapper = False disp = False class TestOptimizeSimple(CheckOptimize): def test_bfgs_nan(self): # Test corner case where nan is fed to optimizer. See gh-2067. func = lambda x: x fprime = lambda x: np.ones_like(x) x0 = [np.nan] with np.errstate(over='ignore', invalid='ignore'): x = optimize.fmin_bfgs(func, x0, fprime, disp=False) assert_(np.isnan(func(x))) def test_bfgs_nan_return(self): # Test corner cases where fun returns NaN. See gh-4793. # First case: NaN from first call. func = lambda x: np.nan with np.errstate(invalid='ignore'): result = optimize.minimize(func, 0) assert_(np.isnan(result['fun'])) assert_(result['success'] is False) # Second case: NaN from second call. func = lambda x: 0 if x == 0 else np.nan fprime = lambda x: np.ones_like(x) # Steer away from zero. with np.errstate(invalid='ignore'): result = optimize.minimize(func, 0, jac=fprime) assert_(np.isnan(result['fun'])) assert_(result['success'] is False) def test_bfgs_numerical_jacobian(self): # BFGS with numerical Jacobian and a vector epsilon parameter. # define the epsilon parameter using a random vector epsilon = np.sqrt(np.spacing(1.)) * np.random.rand(len(self.solution)) params = optimize.fmin_bfgs(self.func, self.startparams, epsilon=epsilon, args=(), maxiter=self.maxiter, disp=False) assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) def test_finite_differences(self): methods = ['BFGS', 'CG', 'TNC'] jacs = ['2-point', '3-point', None] for method, jac in itertools.product(methods, jacs): result = optimize.minimize(self.func, self.startparams, method=method, jac=jac) assert_allclose(self.func(result.x), self.func(self.solution), atol=1e-6) def test_bfgs_gh_2169(self): def f(x): if x < 0: return 1.79769313e+308 else: return x + 1./x xs = optimize.fmin_bfgs(f, [10.], disp=False) assert_allclose(xs, 1.0, rtol=1e-4, atol=1e-4) def test_bfgs_double_evaluations(self): # check BFGS does not evaluate twice in a row at same point def f(x): xp = float(x) assert xp not in seen seen.add(xp) return 10*x**2, 20*x seen = set() optimize.minimize(f, -100, method='bfgs', jac=True, tol=1e-7) def test_l_bfgs_b(self): # limited-memory bound-constrained BFGS algorithm retval = optimize.fmin_l_bfgs_b(self.func, self.startparams, self.grad, args=(), maxiter=self.maxiter) (params, fopt, d) = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) # Ensure that function call counts are 'known good'; these are from # SciPy 0.7.0. Don't allow them to increase. assert_(self.funccalls == 7, self.funccalls) assert_(self.gradcalls == 5, self.gradcalls) # Ensure that the function behaves the same; this is from SciPy 0.7.0 # test fixed in gh10673 assert_allclose(self.trace[3:5], [[8.117083e-16, -5.196198e-01, 4.897617e-01], [0., -0.52489628, 0.48753042]], atol=1e-14, rtol=1e-7) def test_l_bfgs_b_numjac(self): # L-BFGS-B with numerical Jacobian retval = optimize.fmin_l_bfgs_b(self.func, self.startparams, approx_grad=True, maxiter=self.maxiter) (params, fopt, d) = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) def test_l_bfgs_b_funjac(self): # L-BFGS-B with combined objective function and Jacobian def fun(x): return self.func(x), self.grad(x) retval = optimize.fmin_l_bfgs_b(fun, self.startparams, maxiter=self.maxiter) (params, fopt, d) = retval assert_allclose(self.func(params), self.func(self.solution), atol=1e-6) def test_l_bfgs_b_maxiter(self): # gh7854 # Ensure that not more than maxiters are ever run. class Callback: def __init__(self): self.nit = 0 self.fun = None self.x = None def __call__(self, x): self.x = x self.fun = optimize.rosen(x) self.nit += 1 c = Callback() res = optimize.minimize(optimize.rosen, [0., 0.], method='l-bfgs-b', callback=c, options={'maxiter': 5}) assert_equal(res.nit, 5) assert_almost_equal(res.x, c.x) assert_almost_equal(res.fun, c.fun) assert_equal(res.status, 1) assert_(res.success is False) assert_equal(res.message, 'STOP: TOTAL NO. of ITERATIONS REACHED LIMIT') def test_minimize_l_bfgs_b(self): # Minimize with L-BFGS-B method opts = {'disp': False, 'maxiter': self.maxiter} r = optimize.minimize(self.func, self.startparams, method='L-BFGS-B', jac=self.grad, options=opts) assert_allclose(self.func(r.x), self.func(self.solution), atol=1e-6) assert self.gradcalls == r.njev self.funccalls = self.gradcalls = 0 # approximate jacobian ra = optimize.minimize(self.func, self.startparams, method='L-BFGS-B', options=opts) # check that function evaluations in approximate jacobian are counted # assert_(ra.nfev > r.nfev) assert self.funccalls == ra.nfev assert_allclose(self.func(ra.x), self.func(self.solution), atol=1e-6) self.funccalls = self.gradcalls = 0 # approximate jacobian ra = optimize.minimize(self.func, self.startparams, jac='3-point', method='L-BFGS-B', options=opts) assert self.funccalls == ra.nfev assert_allclose(self.func(ra.x), self.func(self.solution), atol=1e-6) def test_minimize_l_bfgs_b_ftol(self): # Check that the `ftol` parameter in l_bfgs_b works as expected v0 = None for tol in [1e-1, 1e-4, 1e-7, 1e-10]: opts = {'disp': False, 'maxiter': self.maxiter, 'ftol': tol} sol = optimize.minimize(self.func, self.startparams, method='L-BFGS-B', jac=self.grad, options=opts) v = self.func(sol.x) if v0 is None: v0 = v else: assert_(v < v0) assert_allclose(v, self.func(self.solution), rtol=tol) def test_minimize_l_bfgs_maxls(self): # check that the maxls is passed down to the Fortran routine sol = optimize.minimize(optimize.rosen, np.array([-1.2, 1.0]), method='L-BFGS-B', jac=optimize.rosen_der, options={'disp': False, 'maxls': 1}) assert_(not sol.success) def test_minimize_l_bfgs_b_maxfun_interruption(self): # gh-6162 f = optimize.rosen g = optimize.rosen_der values = [] x0 = np.full(7, 1000) def objfun(x): value = f(x) values.append(value) return value # Look for an interesting test case. # Request a maxfun that stops at a particularly bad function # evaluation somewhere between 100 and 300 evaluations. low, medium, high = 30, 100, 300 optimize.fmin_l_bfgs_b(objfun, x0, fprime=g, maxfun=high) v, k = max((y, i) for i, y in enumerate(values[medium:])) maxfun = medium + k # If the minimization strategy is reasonable, # the minimize() result should not be worse than the best # of the first 30 function evaluations. target = min(values[:low]) xmin, fmin, d = optimize.fmin_l_bfgs_b(f, x0, fprime=g, maxfun=maxfun) assert_array_less(fmin, target) def test_custom(self): # This function comes from the documentation example. def custmin(fun, x0, args=(), maxfev=None, stepsize=0.1, maxiter=100, callback=None, **options): bestx = x0 besty = fun(x0) funcalls = 1 niter = 0 improved = True stop = False while improved and not stop and niter < maxiter: improved = False niter += 1 for dim in range(np.size(x0)): for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]: testx = np.copy(bestx) testx[dim] = s testy = fun(testx, *args) funcalls += 1 if testy < besty: besty = testy bestx = testx improved = True if callback is not None: callback(bestx) if maxfev is not None and funcalls >= maxfev: stop = True break return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter, nfev=funcalls, success=(niter > 1)) x0 = [1.35, 0.9, 0.8, 1.1, 1.2] res = optimize.minimize(optimize.rosen, x0, method=custmin, options=dict(stepsize=0.05)) assert_allclose(res.x, 1.0, rtol=1e-4, atol=1e-4) def test_gh10771(self): # check that minimize passes bounds and constraints to a custom # minimizer without altering them. bounds = [(-2, 2), (0, 3)] constraints = 'constraints' def custmin(fun, x0, **options): assert options['bounds'] is bounds assert options['constraints'] is constraints return optimize.OptimizeResult() x0 = [1, 1] optimize.minimize(optimize.rosen, x0, method=custmin, bounds=bounds, constraints=constraints) def test_minimize_tol_parameter(self): # Check that the minimize() tol= argument does something def func(z): x, y = z return x**2*y**2 + x**4 + 1 def dfunc(z): x, y = z return np.array([2*x*y**2 + 4*x**3, 2*x**2*y]) for method in ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg', 'l-bfgs-b', 'tnc', 'cobyla', 'slsqp']: if method in ('nelder-mead', 'powell', 'cobyla'): jac = None else: jac = dfunc sol1 = optimize.minimize(func, [1, 1], jac=jac, tol=1e-10, method=method) sol2 = optimize.minimize(func, [1, 1], jac=jac, tol=1.0, method=method) assert_(func(sol1.x) < func(sol2.x), "%s: %s vs. %s" % (method, func(sol1.x), func(sol2.x))) @pytest.mark.parametrize('method', ['fmin', 'fmin_powell', 'fmin_cg', 'fmin_bfgs', 'fmin_ncg', 'fmin_l_bfgs_b', 'fmin_tnc', 'fmin_slsqp'] + MINIMIZE_METHODS) def test_minimize_callback_copies_array(self, method): # Check that arrays passed to callbacks are not modified # inplace by the optimizer afterward # cobyla doesn't have callback if method == 'cobyla': return if method in ('fmin_tnc', 'fmin_l_bfgs_b'): func = lambda x: (optimize.rosen(x), optimize.rosen_der(x)) else: func = optimize.rosen jac = optimize.rosen_der hess = optimize.rosen_hess x0 = np.zeros(10) # Set options kwargs = {} if method.startswith('fmin'): routine = getattr(optimize, method) if method == 'fmin_slsqp': kwargs['iter'] = 5 elif method == 'fmin_tnc': kwargs['maxfun'] = 100 else: kwargs['maxiter'] = 5 else: def routine(*a, **kw): kw['method'] = method return optimize.minimize(*a, **kw) if method == 'tnc': kwargs['options'] = dict(maxfun=100) else: kwargs['options'] = dict(maxiter=5) if method in ('fmin_ncg',): kwargs['fprime'] = jac elif method in ('newton-cg',): kwargs['jac'] = jac elif method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg', 'trust-constr'): kwargs['jac'] = jac kwargs['hess'] = hess # Run with callback results = [] def callback(x, *args, **kwargs): results.append((x, np.copy(x))) routine(func, x0, callback=callback, **kwargs) # Check returned arrays coincide with their copies # and have no memory overlap assert_(len(results) > 2) assert_(all(np.all(x == y) for x, y in results)) assert_(not any(np.may_share_memory(x[0], y[0]) for x, y in itertools.combinations(results, 2))) @pytest.mark.parametrize('method', ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg', 'l-bfgs-b', 'tnc', 'cobyla', 'slsqp']) def test_no_increase(self, method): # Check that the solver doesn't return a value worse than the # initial point. def func(x): return (x - 1)**2 def bad_grad(x): # purposefully invalid gradient function, simulates a case # where line searches start failing return 2*(x - 1) * (-1) - 2 x0 = np.array([2.0]) f0 = func(x0) jac = bad_grad if method in ['nelder-mead', 'powell', 'cobyla']: jac = None sol = optimize.minimize(func, x0, jac=jac, method=method, options=dict(maxiter=20)) assert_equal(func(sol.x), sol.fun) if method == 'slsqp': pytest.xfail("SLSQP returns slightly worse") assert_(func(sol.x) <= f0) def test_slsqp_respect_bounds(self): # Regression test for gh-3108 def f(x): return sum((x - np.array([1., 2., 3., 4.]))**2) def cons(x): a = np.array([[-1, -1, -1, -1], [-3, -3, -2, -1]]) return np.concatenate([np.dot(a, x) + np.array([5, 10]), x]) x0 = np.array([0.5, 1., 1.5, 2.]) res = optimize.minimize(f, x0, method='slsqp', constraints={'type': 'ineq', 'fun': cons}) assert_allclose(res.x, np.array([0., 2, 5, 8])/3, atol=1e-12) @pytest.mark.parametrize('method', ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG', 'L-BFGS-B', 'SLSQP', 'trust-constr', 'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov']) def test_respect_maxiter(self, method): # Check that the number of iterations equals max_iter, assuming # convergence doesn't establish before MAXITER = 4 x0 = np.zeros(10) sf = ScalarFunction(optimize.rosen, x0, (), optimize.rosen_der, optimize.rosen_hess, None, None) # Set options kwargs = {'method': method, 'options': dict(maxiter=MAXITER)} if method in ('Newton-CG',): kwargs['jac'] = sf.grad elif method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg', 'trust-constr'): kwargs['jac'] = sf.grad kwargs['hess'] = sf.hess sol = optimize.minimize(sf.fun, x0, **kwargs) assert sol.nit == MAXITER assert sol.nfev >= sf.nfev if hasattr(sol, 'njev'): assert sol.njev >= sf.ngev # method specific tests if method == 'SLSQP': assert sol.status == 9 # Iteration limit reached def test_respect_maxiter_trust_constr_ineq_constraints(self): # special case of minimization with trust-constr and inequality # constraints to check maxiter limit is obeyed when using internal # method 'tr_interior_point' MAXITER = 4 f = optimize.rosen jac = optimize.rosen_der hess = optimize.rosen_hess fun = lambda x: np.array([0.2 * x[0] - 0.4 * x[1] - 0.33 * x[2]]) cons = ({'type': 'ineq', 'fun': fun},) x0 = np.zeros(10) sol = optimize.minimize(f, x0, constraints=cons, jac=jac, hess=hess, method='trust-constr', options=dict(maxiter=MAXITER)) assert sol.nit == MAXITER def test_minimize_automethod(self): def f(x): return x**2 def cons(x): return x - 2 x0 = np.array([10.]) sol_0 = optimize.minimize(f, x0) sol_1 = optimize.minimize(f, x0, constraints=[{'type': 'ineq', 'fun': cons}]) sol_2 = optimize.minimize(f, x0, bounds=[(5, 10)]) sol_3 = optimize.minimize(f, x0, constraints=[{'type': 'ineq', 'fun': cons}], bounds=[(5, 10)]) sol_4 = optimize.minimize(f, x0, constraints=[{'type': 'ineq', 'fun': cons}], bounds=[(1, 10)]) for sol in [sol_0, sol_1, sol_2, sol_3, sol_4]: assert_(sol.success) assert_allclose(sol_0.x, 0, atol=1e-7) assert_allclose(sol_1.x, 2, atol=1e-7) assert_allclose(sol_2.x, 5, atol=1e-7) assert_allclose(sol_3.x, 5, atol=1e-7) assert_allclose(sol_4.x, 2, atol=1e-7) def test_minimize_coerce_args_param(self): # Regression test for gh-3503 def Y(x, c): return np.sum((x-c)**2) def dY_dx(x, c=None): return 2*(x-c) c = np.array([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]) xinit = np.random.randn(len(c)) optimize.minimize(Y, xinit, jac=dY_dx, args=(c), method="BFGS") def test_initial_step_scaling(self): # Check that optimizer initial step is not huge even if the # function and gradients are scales = [1e-50, 1, 1e50] methods = ['CG', 'BFGS', 'L-BFGS-B', 'Newton-CG'] def f(x): if first_step_size[0] is None and x[0] != x0[0]: first_step_size[0] = abs(x[0] - x0[0]) if abs(x).max() > 1e4: raise AssertionError("Optimization stepped far away!") return scale*(x[0] - 1)**2 def g(x): return np.array([scale*(x[0] - 1)]) for scale, method in itertools.product(scales, methods): if method in ('CG', 'BFGS'): options = dict(gtol=scale*1e-8) else: options = dict() if scale < 1e-10 and method in ('L-BFGS-B', 'Newton-CG'): # XXX: return initial point if they see small gradient continue x0 = [-1.0] first_step_size = [None] res = optimize.minimize(f, x0, jac=g, method=method, options=options) err_msg = "{0} {1}: {2}: {3}".format(method, scale, first_step_size, res) assert_(res.success, err_msg) assert_allclose(res.x, [1.0], err_msg=err_msg) assert_(res.nit <= 3, err_msg) if scale > 1e-10: if method in ('CG', 'BFGS'): assert_allclose(first_step_size[0], 1.01, err_msg=err_msg) else: # Newton-CG and L-BFGS-B use different logic for the first # step, but are both scaling invariant with step sizes ~ 1 assert_(first_step_size[0] > 0.5 and first_step_size[0] < 3, err_msg) else: # step size has upper bound of ||grad||, so line # search makes many small steps pass @pytest.mark.parametrize('method', ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg', 'l-bfgs-b', 'tnc', 'cobyla', 'slsqp', 'trust-constr', 'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov']) def test_nan_values(self, method): # Check nan values result to failed exit status np.random.seed(1234) count = [0] def func(x): return np.nan def func2(x): count[0] += 1 if count[0] > 2: return np.nan else: return np.random.rand() def grad(x): return np.array([1.0]) def hess(x): return np.array([[1.0]]) x0 = np.array([1.0]) needs_grad = method in ('newton-cg', 'trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg') needs_hess = method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg') funcs = [func, func2] grads = [grad] if needs_grad else [grad, None] hesss = [hess] if needs_hess else [hess, None] with np.errstate(invalid='ignore'), suppress_warnings() as sup: sup.filter(UserWarning, "delta_grad == 0.*") sup.filter(RuntimeWarning, ".*does not use Hessian.*") sup.filter(RuntimeWarning, ".*does not use gradient.*") for f, g, h in itertools.product(funcs, grads, hesss): count = [0] sol = optimize.minimize(f, x0, jac=g, hess=h, method=method, options=dict(maxiter=20)) assert_equal(sol.success, False) @pytest.mark.parametrize('method', ['nelder-mead', 'cg', 'bfgs', 'l-bfgs-b', 'tnc', 'cobyla', 'slsqp', 'trust-constr', 'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov']) def test_duplicate_evaluations(self, method): # check that there are no duplicate evaluations for any methods jac = hess = None if method in ('newton-cg', 'trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg'): jac = self.grad if method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg'): hess = self.hess with np.errstate(invalid='ignore'), suppress_warnings() as sup: # for trust-constr sup.filter(UserWarning, "delta_grad == 0.*") optimize.minimize(self.func, self.startparams, method=method, jac=jac, hess=hess) for i in range(1, len(self.trace)): if np.array_equal(self.trace[i - 1], self.trace[i]): raise RuntimeError( "Duplicate evaluations made by {}".format(method)) class TestLBFGSBBounds: def setup_method(self): self.bounds = ((1, None), (None, None)) self.solution = (1, 0) def fun(self, x, p=2.0): return 1.0 / p * (x[0]**p + x[1]**p) def jac(self, x, p=2.0): return x**(p - 1) def fj(self, x, p=2.0): return self.fun(x, p), self.jac(x, p) def test_l_bfgs_b_bounds(self): x, f, d = optimize.fmin_l_bfgs_b(self.fun, [0, -1], fprime=self.jac, bounds=self.bounds) assert_(d['warnflag'] == 0, d['task']) assert_allclose(x, self.solution, atol=1e-6) def test_l_bfgs_b_funjac(self): # L-BFGS-B with fun and jac combined and extra arguments x, f, d = optimize.fmin_l_bfgs_b(self.fj, [0, -1], args=(2.0, ), bounds=self.bounds) assert_(d['warnflag'] == 0, d['task']) assert_allclose(x, self.solution, atol=1e-6) def test_minimize_l_bfgs_b_bounds(self): # Minimize with method='L-BFGS-B' with bounds res = optimize.minimize(self.fun, [0, -1], method='L-BFGS-B', jac=self.jac, bounds=self.bounds) assert_(res['success'], res['message']) assert_allclose(res.x, self.solution, atol=1e-6) @pytest.mark.parametrize('bounds', [ ([(10, 1), (1, 10)]), ([(1, 10), (10, 1)]), ([(10, 1), (10, 1)]) ]) def test_minimize_l_bfgs_b_incorrect_bounds(self, bounds): with pytest.raises(ValueError, match='.*bounds.*'): optimize.minimize(self.fun, [0, -1], method='L-BFGS-B', jac=self.jac, bounds=bounds) def test_minimize_l_bfgs_b_bounds_FD(self): # test that initial starting value outside bounds doesn't raise # an error (done with clipping). # test all different finite differences combos, with and without args jacs = ['2-point', '3-point', None] argss = [(2.,), ()] for jac, args in itertools.product(jacs, argss): res = optimize.minimize(self.fun, [0, -1], args=args, method='L-BFGS-B', jac=jac, bounds=self.bounds, options={'finite_diff_rel_step': None}) assert_(res['success'], res['message']) assert_allclose(res.x, self.solution, atol=1e-6) class TestOptimizeScalar: def setup_method(self): self.solution = 1.5 def fun(self, x, a=1.5): """Objective function""" return (x - a)**2 - 0.8 def test_brent(self): x = optimize.brent(self.fun) assert_allclose(x, self.solution, atol=1e-6) x = optimize.brent(self.fun, brack=(-3, -2)) assert_allclose(x, self.solution, atol=1e-6) x = optimize.brent(self.fun, full_output=True) assert_allclose(x[0], self.solution, atol=1e-6) x = optimize.brent(self.fun, brack=(-15, -1, 15)) assert_allclose(x, self.solution, atol=1e-6) def test_golden(self): x = optimize.golden(self.fun) assert_allclose(x, self.solution, atol=1e-6) x = optimize.golden(self.fun, brack=(-3, -2)) assert_allclose(x, self.solution, atol=1e-6) x = optimize.golden(self.fun, full_output=True) assert_allclose(x[0], self.solution, atol=1e-6) x = optimize.golden(self.fun, brack=(-15, -1, 15)) assert_allclose(x, self.solution, atol=1e-6) x = optimize.golden(self.fun, tol=0) assert_allclose(x, self.solution) maxiter_test_cases = [0, 1, 5] for maxiter in maxiter_test_cases: x0 = optimize.golden(self.fun, maxiter=0, full_output=True) x = optimize.golden(self.fun, maxiter=maxiter, full_output=True) nfev0, nfev = x0[2], x[2] assert_equal(nfev - nfev0, maxiter) def test_fminbound(self): x = optimize.fminbound(self.fun, 0, 1) assert_allclose(x, 1, atol=1e-4) x = optimize.fminbound(self.fun, 1, 5) assert_allclose(x, self.solution, atol=1e-6) x = optimize.fminbound(self.fun, np.array([1]), np.array([5])) assert_allclose(x, self.solution, atol=1e-6) assert_raises(ValueError, optimize.fminbound, self.fun, 5, 1) def test_fminbound_scalar(self): with pytest.raises(ValueError, match='.*must be scalar.*'): optimize.fminbound(self.fun, np.zeros((1, 2)), 1) x = optimize.fminbound(self.fun, 1, np.array(5)) assert_allclose(x, self.solution, atol=1e-6) def test_gh11207(self): def fun(x): return x**2 optimize.fminbound(fun, 0, 0) def test_minimize_scalar(self): # combine all tests above for the minimize_scalar wrapper x = optimize.minimize_scalar(self.fun).x assert_allclose(x, self.solution, atol=1e-6) x = optimize.minimize_scalar(self.fun, method='Brent') assert_(x.success) x = optimize.minimize_scalar(self.fun, method='Brent', options=dict(maxiter=3)) assert_(not x.success) x = optimize.minimize_scalar(self.fun, bracket=(-3, -2), args=(1.5, ), method='Brent').x assert_allclose(x, self.solution, atol=1e-6) x = optimize.minimize_scalar(self.fun, method='Brent', args=(1.5,)).x assert_allclose(x, self.solution, atol=1e-6) x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15), args=(1.5, ), method='Brent').x assert_allclose(x, self.solution, atol=1e-6) x = optimize.minimize_scalar(self.fun, bracket=(-3, -2), args=(1.5, ), method='golden').x assert_allclose(x, self.solution, atol=1e-6) x = optimize.minimize_scalar(self.fun, method='golden', args=(1.5,)).x assert_allclose(x, self.solution, atol=1e-6) x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15), args=(1.5, ), method='golden').x assert_allclose(x, self.solution, atol=1e-6) x = optimize.minimize_scalar(self.fun, bounds=(0, 1), args=(1.5,), method='Bounded').x assert_allclose(x, 1, atol=1e-4) x = optimize.minimize_scalar(self.fun, bounds=(1, 5), args=(1.5, ), method='bounded').x assert_allclose(x, self.solution, atol=1e-6) x = optimize.minimize_scalar(self.fun, bounds=(np.array([1]), np.array([5])), args=(np.array([1.5]), ), method='bounded').x assert_allclose(x, self.solution, atol=1e-6) assert_raises(ValueError, optimize.minimize_scalar, self.fun, bounds=(5, 1), method='bounded', args=(1.5, )) assert_raises(ValueError, optimize.minimize_scalar, self.fun, bounds=(np.zeros(2), 1), method='bounded', args=(1.5, )) x = optimize.minimize_scalar(self.fun, bounds=(1, np.array(5)), method='bounded').x assert_allclose(x, self.solution, atol=1e-6) def test_minimize_scalar_custom(self): # This function comes from the documentation example. def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1, maxiter=100, callback=None, **options): bestx = (bracket[1] + bracket[0]) / 2.0 besty = fun(bestx) funcalls = 1 niter = 0 improved = True stop = False while improved and not stop and niter < maxiter: improved = False niter += 1 for testx in [bestx - stepsize, bestx + stepsize]: testy = fun(testx, *args) funcalls += 1 if testy < besty: besty = testy bestx = testx improved = True if callback is not None: callback(bestx) if maxfev is not None and funcalls >= maxfev: stop = True break return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter, nfev=funcalls, success=(niter > 1)) res = optimize.minimize_scalar(self.fun, bracket=(0, 4), method=custmin, options=dict(stepsize=0.05)) assert_allclose(res.x, self.solution, atol=1e-6) def test_minimize_scalar_coerce_args_param(self): # Regression test for gh-3503 optimize.minimize_scalar(self.fun, args=1.5) @pytest.mark.parametrize('method', ['brent', 'bounded', 'golden']) def test_nan_values(self, method): # Check nan values result to failed exit status np.random.seed(1234) count = [0] def func(x): count[0] += 1 if count[0] > 4: return np.nan else: return x**2 + 0.1 * np.sin(x) bracket = (-1, 0, 1) bounds = (-1, 1) with np.errstate(invalid='ignore'), suppress_warnings() as sup: sup.filter(UserWarning, "delta_grad == 0.*") sup.filter(RuntimeWarning, ".*does not use Hessian.*") sup.filter(RuntimeWarning, ".*does not use gradient.*") count = [0] sol = optimize.minimize_scalar(func, bracket=bracket, bounds=bounds, method=method, options=dict(maxiter=20)) assert_equal(sol.success, False) def test_brent_negative_tolerance(): assert_raises(ValueError, optimize.brent, np.cos, tol=-.01) class TestNewtonCg: def test_rosenbrock(self): x0 = np.array([-1.2, 1.0]) sol = optimize.minimize(optimize.rosen, x0, jac=optimize.rosen_der, hess=optimize.rosen_hess, tol=1e-5, method='Newton-CG') assert_(sol.success, sol.message) assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4) def test_himmelblau(self): x0 = np.array(himmelblau_x0) sol = optimize.minimize(himmelblau, x0, jac=himmelblau_grad, hess=himmelblau_hess, method='Newton-CG', tol=1e-6) assert_(sol.success, sol.message) assert_allclose(sol.x, himmelblau_xopt, rtol=1e-4) assert_allclose(sol.fun, himmelblau_min, atol=1e-4) def test_line_for_search(): # _line_for_search is only used in _linesearch_powell, which is also # tested below. Thus there are more tests of _line_for_search in the # test_linesearch_powell_bounded function. line_for_search = optimize.optimize._line_for_search # args are x0, alpha, lower_bound, upper_bound # returns lmin, lmax lower_bound = np.array([-5.3, -1, -1.5, -3]) upper_bound = np.array([1.9, 1, 2.8, 3]) # test when starting in the bounds x0 = np.array([0., 0, 0, 0]) # and when starting outside of the bounds x1 = np.array([0., 2, -3, 0]) all_tests = ( (x0, np.array([1., 0, 0, 0]), -5.3, 1.9), (x0, np.array([0., 1, 0, 0]), -1, 1), (x0, np.array([0., 0, 1, 0]), -1.5, 2.8), (x0, np.array([0., 0, 0, 1]), -3, 3), (x0, np.array([1., 1, 0, 0]), -1, 1), (x0, np.array([1., 0, -1, 2]), -1.5, 1.5), (x0, np.array([2., 0, -1, 2]), -1.5, 0.95), (x1, np.array([1., 0, 0, 0]), -5.3, 1.9), (x1, np.array([0., 1, 0, 0]), -3, -1), (x1, np.array([0., 0, 1, 0]), 1.5, 5.8), (x1, np.array([0., 0, 0, 1]), -3, 3), (x1, np.array([1., 1, 0, 0]), -3, -1), (x1, np.array([1., 0, -1, 0]), -5.3, -1.5), ) for x, alpha, lmin, lmax in all_tests: mi, ma = line_for_search(x, alpha, lower_bound, upper_bound) assert_allclose(mi, lmin, atol=1e-6) assert_allclose(ma, lmax, atol=1e-6) # now with infinite bounds lower_bound = np.array([-np.inf, -1, -np.inf, -3]) upper_bound = np.array([np.inf, 1, 2.8, np.inf]) all_tests = ( (x0, np.array([1., 0, 0, 0]), -np.inf, np.inf), (x0, np.array([0., 1, 0, 0]), -1, 1), (x0, np.array([0., 0, 1, 0]), -np.inf, 2.8), (x0, np.array([0., 0, 0, 1]), -3, np.inf), (x0, np.array([1., 1, 0, 0]), -1, 1), (x0, np.array([1., 0, -1, 2]), -1.5, np.inf), (x1, np.array([1., 0, 0, 0]), -np.inf, np.inf), (x1, np.array([0., 1, 0, 0]), -3, -1), (x1, np.array([0., 0, 1, 0]), -np.inf, 5.8), (x1, np.array([0., 0, 0, 1]), -3, np.inf), (x1, np.array([1., 1, 0, 0]), -3, -1), (x1, np.array([1., 0, -1, 0]), -5.8, np.inf), ) for x, alpha, lmin, lmax in all_tests: mi, ma = line_for_search(x, alpha, lower_bound, upper_bound) assert_allclose(mi, lmin, atol=1e-6) assert_allclose(ma, lmax, atol=1e-6) def test_linesearch_powell(): # helper function in optimize.py, not a public function. linesearch_powell = optimize.optimize._linesearch_powell # args are func, p, xi, fval, lower_bound=None, upper_bound=None, tol=1e-3 # returns new_fval, p + direction, direction func = lambda x: np.sum((x - np.array([-1., 2., 1.5, -.4]))**2) p0 = np.array([0., 0, 0, 0]) fval = func(p0) lower_bound = np.array([-np.inf] * 4) upper_bound = np.array([np.inf] * 4) all_tests = ( (np.array([1., 0, 0, 0]), -1), (np.array([0., 1, 0, 0]), 2), (np.array([0., 0, 1, 0]), 1.5), (np.array([0., 0, 0, 1]), -.4), (np.array([-1., 0, 1, 0]), 1.25), (np.array([0., 0, 1, 1]), .55), (np.array([2., 0, -1, 1]), -.65), ) for xi, l in all_tests: f, p, direction = linesearch_powell(func, p0, xi, fval=fval, tol=1e-5) assert_allclose(f, func(l * xi), atol=1e-6) assert_allclose(p, l * xi, atol=1e-6) assert_allclose(direction, l * xi, atol=1e-6) f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5, lower_bound=lower_bound, upper_bound=upper_bound, fval=fval) assert_allclose(f, func(l * xi), atol=1e-6) assert_allclose(p, l * xi, atol=1e-6) assert_allclose(direction, l * xi, atol=1e-6) def test_linesearch_powell_bounded(): # helper function in optimize.py, not a public function. linesearch_powell = optimize.optimize._linesearch_powell # args are func, p, xi, fval, lower_bound=None, upper_bound=None, tol=1e-3 # returns new_fval, p+direction, direction func = lambda x: np.sum((x-np.array([-1., 2., 1.5, -.4]))**2) p0 = np.array([0., 0, 0, 0]) fval = func(p0) # first choose bounds such that the same tests from # test_linesearch_powell should pass. lower_bound = np.array([-2.]*4) upper_bound = np.array([2.]*4) all_tests = ( (np.array([1., 0, 0, 0]), -1), (np.array([0., 1, 0, 0]), 2), (np.array([0., 0, 1, 0]), 1.5), (np.array([0., 0, 0, 1]), -.4), (np.array([-1., 0, 1, 0]), 1.25), (np.array([0., 0, 1, 1]), .55), (np.array([2., 0, -1, 1]), -.65), ) for xi, l in all_tests: f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5, lower_bound=lower_bound, upper_bound=upper_bound, fval=fval) assert_allclose(f, func(l * xi), atol=1e-6) assert_allclose(p, l * xi, atol=1e-6) assert_allclose(direction, l * xi, atol=1e-6) # now choose bounds such that unbounded vs bounded gives different results lower_bound = np.array([-.3]*3 + [-1]) upper_bound = np.array([.45]*3 + [.9]) all_tests = ( (np.array([1., 0, 0, 0]), -.3), (np.array([0., 1, 0, 0]), .45), (np.array([0., 0, 1, 0]), .45), (np.array([0., 0, 0, 1]), -.4), (np.array([-1., 0, 1, 0]), .3), (np.array([0., 0, 1, 1]), .45), (np.array([2., 0, -1, 1]), -.15), ) for xi, l in all_tests: f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5, lower_bound=lower_bound, upper_bound=upper_bound, fval=fval) assert_allclose(f, func(l * xi), atol=1e-6) assert_allclose(p, l * xi, atol=1e-6) assert_allclose(direction, l * xi, atol=1e-6) # now choose as above but start outside the bounds p0 = np.array([-1., 0, 0, 2]) fval = func(p0) all_tests = ( (np.array([1., 0, 0, 0]), .7), (np.array([0., 1, 0, 0]), .45), (np.array([0., 0, 1, 0]), .45), (np.array([0., 0, 0, 1]), -2.4), ) for xi, l in all_tests: f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5, lower_bound=lower_bound, upper_bound=upper_bound, fval=fval) assert_allclose(f, func(p0 + l * xi), atol=1e-6) assert_allclose(p, p0 + l * xi, atol=1e-6) assert_allclose(direction, l * xi, atol=1e-6) # now mix in inf p0 = np.array([0., 0, 0, 0]) fval = func(p0) # now choose bounds that mix inf lower_bound = np.array([-.3, -np.inf, -np.inf, -1]) upper_bound = np.array([np.inf, .45, np.inf, .9]) all_tests = ( (np.array([1., 0, 0, 0]), -.3), (np.array([0., 1, 0, 0]), .45), (np.array([0., 0, 1, 0]), 1.5), (np.array([0., 0, 0, 1]), -.4), (np.array([-1., 0, 1, 0]), .3), (np.array([0., 0, 1, 1]), .55), (np.array([2., 0, -1, 1]), -.15), ) for xi, l in all_tests: f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5, lower_bound=lower_bound, upper_bound=upper_bound, fval=fval) assert_allclose(f, func(l * xi), atol=1e-6) assert_allclose(p, l * xi, atol=1e-6) assert_allclose(direction, l * xi, atol=1e-6) # now choose as above but start outside the bounds p0 = np.array([-1., 0, 0, 2]) fval = func(p0) all_tests = ( (np.array([1., 0, 0, 0]), .7), (np.array([0., 1, 0, 0]), .45), (np.array([0., 0, 1, 0]), 1.5), (np.array([0., 0, 0, 1]), -2.4), ) for xi, l in all_tests: f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5, lower_bound=lower_bound, upper_bound=upper_bound, fval=fval) assert_allclose(f, func(p0 + l * xi), atol=1e-6) assert_allclose(p, p0 + l * xi, atol=1e-6) assert_allclose(direction, l * xi, atol=1e-6) class TestRosen: def test_hess(self): # Compare rosen_hess(x) times p with rosen_hess_prod(x,p). See gh-1775. x = np.array([3, 4, 5]) p = np.array([2, 2, 2]) hp = optimize.rosen_hess_prod(x, p) dothp = np.dot(optimize.rosen_hess(x), p) assert_equal(hp, dothp) def himmelblau(p): """ R^2 -> R^1 test function for optimization. The function has four local minima where himmelblau(xopt) == 0. """ x, y = p a = x*x + y - 11 b = x + y*y - 7 return a*a + b*b def himmelblau_grad(p): x, y = p return np.array([4*x**3 + 4*x*y - 42*x + 2*y**2 - 14, 2*x**2 + 4*x*y + 4*y**3 - 26*y - 22]) def himmelblau_hess(p): x, y = p return np.array([[12*x**2 + 4*y - 42, 4*x + 4*y], [4*x + 4*y, 4*x + 12*y**2 - 26]]) himmelblau_x0 = [-0.27, -0.9] himmelblau_xopt = [3, 2] himmelblau_min = 0.0 def test_minimize_multiple_constraints(): # Regression test for gh-4240. def func(x): return np.array([25 - 0.2 * x[0] - 0.4 * x[1] - 0.33 * x[2]]) def func1(x): return np.array([x[1]]) def func2(x): return np.array([x[2]]) cons = ({'type': 'ineq', 'fun': func}, {'type': 'ineq', 'fun': func1}, {'type': 'ineq', 'fun': func2}) f = lambda x: -1 * (x[0] + x[1] + x[2]) res = optimize.minimize(f, [0, 0, 0], method='SLSQP', constraints=cons) assert_allclose(res.x, [125, 0, 0], atol=1e-10) class TestOptimizeResultAttributes: # Test that all minimizers return an OptimizeResult containing # all the OptimizeResult attributes def setup_method(self): self.x0 = [5, 5] self.func = optimize.rosen self.jac = optimize.rosen_der self.hess = optimize.rosen_hess self.hessp = optimize.rosen_hess_prod self.bounds = [(0., 10.), (0., 10.)] def test_attributes_present(self): attributes = ['nit', 'nfev', 'x', 'success', 'status', 'fun', 'message'] skip = {'cobyla': ['nit']} for method in MINIMIZE_METHODS: with suppress_warnings() as sup: sup.filter(RuntimeWarning, ("Method .+ does not use (gradient|Hessian.*)" " information")) res = optimize.minimize(self.func, self.x0, method=method, jac=self.jac, hess=self.hess, hessp=self.hessp) for attribute in attributes: if method in skip and attribute in skip[method]: continue assert hasattr(res, attribute) assert_(attribute in dir(res)) # gh13001, OptimizeResult.message should be a str assert isinstance(res.message, str) def f1(z, *params): x, y = z a, b, c, d, e, f, g, h, i, j, k, l, scale = params return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f) def f2(z, *params): x, y = z a, b, c, d, e, f, g, h, i, j, k, l, scale = params return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale)) def f3(z, *params): x, y = z a, b, c, d, e, f, g, h, i, j, k, l, scale = params return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale)) def brute_func(z, *params): return f1(z, *params) + f2(z, *params) + f3(z, *params) class TestBrute: # Test the "brute force" method def setup_method(self): self.params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5) self.rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25)) self.solution = np.array([-1.05665192, 1.80834843]) def brute_func(self, z, *params): # an instance method optimizing return brute_func(z, *params) def test_brute(self): # test fmin resbrute = optimize.brute(brute_func, self.rranges, args=self.params, full_output=True, finish=optimize.fmin) assert_allclose(resbrute[0], self.solution, atol=1e-3) assert_allclose(resbrute[1], brute_func(self.solution, *self.params), atol=1e-3) # test minimize resbrute = optimize.brute(brute_func, self.rranges, args=self.params, full_output=True, finish=optimize.minimize) assert_allclose(resbrute[0], self.solution, atol=1e-3) assert_allclose(resbrute[1], brute_func(self.solution, *self.params), atol=1e-3) # test that brute can optimize an instance method (the other tests use # a non-class based function resbrute = optimize.brute(self.brute_func, self.rranges, args=self.params, full_output=True, finish=optimize.minimize) assert_allclose(resbrute[0], self.solution, atol=1e-3) def test_1D(self): # test that for a 1-D problem the test function is passed an array, # not a scalar. def f(x): assert_(len(x.shape) == 1) assert_(x.shape[0] == 1) return x ** 2 optimize.brute(f, [(-1, 1)], Ns=3, finish=None) def test_workers(self): # check that parallel evaluation works resbrute = optimize.brute(brute_func, self.rranges, args=self.params, full_output=True, finish=None) resbrute1 = optimize.brute(brute_func, self.rranges, args=self.params, full_output=True, finish=None, workers=2) assert_allclose(resbrute1[-1], resbrute[-1]) assert_allclose(resbrute1[0], resbrute[0]) def test_cobyla_threadsafe(): # Verify that cobyla is threadsafe. Will segfault if it is not. import concurrent.futures import time def objective1(x): time.sleep(0.1) return x[0]**2 def objective2(x): time.sleep(0.1) return (x[0]-1)**2 min_method = "COBYLA" def minimizer1(): return optimize.minimize(objective1, [0.0], method=min_method) def minimizer2(): return optimize.minimize(objective2, [0.0], method=min_method) with concurrent.futures.ThreadPoolExecutor() as pool: tasks = [] tasks.append(pool.submit(minimizer1)) tasks.append(pool.submit(minimizer2)) for t in tasks: res = t.result() class TestIterationLimits: # Tests that optimisation does not give up before trying requested # number of iterations or evaluations. And that it does not succeed # by exceeding the limits. def setup_method(self): self.funcalls = 0 def slow_func(self, v): self.funcalls += 1 r, t = np.sqrt(v[0]**2+v[1]**2), np.arctan2(v[0], v[1]) return np.sin(r*20 + t)+r*0.5 def test_neldermead_limit(self): self.check_limits("Nelder-Mead", 200) def test_powell_limit(self): self.check_limits("powell", 1000) def check_limits(self, method, default_iters): for start_v in [[0.1, 0.1], [1, 1], [2, 2]]: for mfev in [50, 500, 5000]: self.funcalls = 0 res = optimize.minimize(self.slow_func, start_v, method=method, options={"maxfev": mfev}) assert_(self.funcalls == res["nfev"]) if res["success"]: assert_(res["nfev"] < mfev) else: assert_(res["nfev"] >= mfev) for mit in [50, 500, 5000]: res = optimize.minimize(self.slow_func, start_v, method=method, options={"maxiter": mit}) if res["success"]: assert_(res["nit"] <= mit) else: assert_(res["nit"] >= mit) for mfev, mit in [[50, 50], [5000, 5000], [5000, np.inf]]: self.funcalls = 0 res = optimize.minimize(self.slow_func, start_v, method=method, options={"maxiter": mit, "maxfev": mfev}) assert_(self.funcalls == res["nfev"]) if res["success"]: assert_(res["nfev"] < mfev and res["nit"] <= mit) else: assert_(res["nfev"] >= mfev or res["nit"] >= mit) for mfev, mit in [[np.inf, None], [None, np.inf]]: self.funcalls = 0 res = optimize.minimize(self.slow_func, start_v, method=method, options={"maxiter": mit, "maxfev": mfev}) assert_(self.funcalls == res["nfev"]) if res["success"]: if mfev is None: assert_(res["nfev"] < default_iters*2) else: assert_(res["nit"] <= default_iters*2) else: assert_(res["nfev"] >= default_iters*2 or res["nit"] >= default_iters*2) def test_result_x_shape_when_len_x_is_one(): def fun(x): return x * x def jac(x): return 2. * x def hess(x): return np.array([[2.]]) methods = ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'L-BFGS-B', 'TNC', 'COBYLA', 'SLSQP'] for method in methods: res = optimize.minimize(fun, np.array([0.1]), method=method) assert res.x.shape == (1,) # use jac + hess methods = ['trust-constr', 'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov', 'Newton-CG'] for method in methods: res = optimize.minimize(fun, np.array([0.1]), method=method, jac=jac, hess=hess) assert res.x.shape == (1,) class FunctionWithGradient: def __init__(self): self.number_of_calls = 0 def __call__(self, x): self.number_of_calls += 1 return np.sum(x**2), 2 * x @pytest.fixture def function_with_gradient(): return FunctionWithGradient() def test_memoize_jac_function_before_gradient(function_with_gradient): memoized_function = MemoizeJac(function_with_gradient) x0 = np.array([1.0, 2.0]) assert_allclose(memoized_function(x0), 5.0) assert function_with_gradient.number_of_calls == 1 assert_allclose(memoized_function.derivative(x0), 2 * x0) assert function_with_gradient.number_of_calls == 1, \ "function is not recomputed " \ "if gradient is requested after function value" assert_allclose( memoized_function(2 * x0), 20.0, err_msg="different input triggers new computation") assert function_with_gradient.number_of_calls == 2, \ "different input triggers new computation" def test_memoize_jac_gradient_before_function(function_with_gradient): memoized_function = MemoizeJac(function_with_gradient) x0 = np.array([1.0, 2.0]) assert_allclose(memoized_function.derivative(x0), 2 * x0) assert function_with_gradient.number_of_calls == 1 assert_allclose(memoized_function(x0), 5.0) assert function_with_gradient.number_of_calls == 1, \ "function is not recomputed " \ "if function value is requested after gradient" assert_allclose( memoized_function.derivative(2 * x0), 4 * x0, err_msg="different input triggers new computation") assert function_with_gradient.number_of_calls == 2, \ "different input triggers new computation" def test_memoize_jac_with_bfgs(function_with_gradient): """ Tests that using MemoizedJac in combination with ScalarFunction and BFGS does not lead to repeated function evaluations. Tests changes made in response to GH11868. """ memoized_function = MemoizeJac(function_with_gradient) jac = memoized_function.derivative hess = optimize.BFGS() x0 = np.array([1.0, 0.5]) scalar_function = ScalarFunction( memoized_function, x0, (), jac, hess, None, None) assert function_with_gradient.number_of_calls == 1 scalar_function.fun(x0 + 0.1) assert function_with_gradient.number_of_calls == 2 scalar_function.fun(x0 + 0.2) assert function_with_gradient.number_of_calls == 3 def test_gh12696(): # Test that optimize doesn't throw warning gh-12696 with assert_no_warnings(): optimize.fminbound( lambda x: np.array([x**2]), -np.pi, np.pi, disp=False) def test_show_options(): solver_methods = { 'minimize': MINIMIZE_METHODS, 'minimize_scalar': MINIMIZE_SCALAR_METHODS, 'root': ROOT_METHODS, 'root_scalar': ROOT_SCALAR_METHODS, 'linprog': LINPROG_METHODS, 'quadratic_assignment': QUADRATIC_ASSIGNMENT_METHODS, } for solver, methods in solver_methods.items(): for method in methods: # testing that `show_options` works without error show_options(solver, method) unknown_solver_method = { 'minimize': "ekki", # unknown method 'maximize': "cg", # unknown solver 'maximize_scalar': "ekki", # unknown solver and method } for solver, method in unknown_solver_method.items(): # testing that `show_options` raises ValueError assert_raises(ValueError, show_options, solver, method) def test_bounds_with_list(): # gh13501. Bounds created with lists weren't working for Powell. bounds = optimize.Bounds(lb=[5., 5.], ub=[10., 10.]) optimize.minimize( optimize.rosen, x0=np.array([9, 9]), method='Powell', bounds=bounds ) def test_x_overwritten_user_function(): # if the user overwrites the x-array in the user function it's likely # that the minimizer stops working properly. # gh13740 def fquad(x): a = np.arange(np.size(x)) x -= a x *= x return np.sum(x) def fquad_jac(x): a = np.arange(np.size(x)) x *= 2 x -= 2 * a return x fquad_hess = lambda x: np.eye(np.size(x)) * 2.0 meth_jac = [ 'newton-cg', 'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov', 'trust-constr' ] meth_hess = [ 'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov', 'trust-constr' ] x0 = np.ones(5) * 1.5 for meth in MINIMIZE_METHODS: jac = None hess = None if meth in meth_jac: jac = fquad_jac if meth in meth_hess: hess = fquad_hess res = optimize.minimize(fquad, x0, method=meth, jac=jac, hess=hess) assert_allclose(res.x, np.arange(np.size(x0)), atol=2e-4)
39.087014
79
0.525506
7950f6320393a5974a5c16dba6523991a0aa7159
707
py
Python
Code/PasswordFromString/StringFunctions.py
dealom/Package-Project
1feb1c2fc6f12e812a0f732debd2bfdb76588954
[ "MIT" ]
null
null
null
Code/PasswordFromString/StringFunctions.py
dealom/Package-Project
1feb1c2fc6f12e812a0f732debd2bfdb76588954
[ "MIT" ]
null
null
null
Code/PasswordFromString/StringFunctions.py
dealom/Package-Project
1feb1c2fc6f12e812a0f732debd2bfdb76588954
[ "MIT" ]
null
null
null
def alpharight(pw,n=1): newpw = "" alpha = "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz" ALPHA = "ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ" for l in pw: if l in alpha: l = alpha[alpha.index(l)+n] elif l in ALPHA: l = ALPHA[ALPHA.index(l)+n] newpw += l return newpw def keyright(pw,n=1): newpw = "" alpha = "qwertyuiopasdfghjklzxcvbnmqwertyuiopasdfghjklzxcvbnm" ALPHA = "QWERTYUIOPASDFGHJKLZXCVBNMQWERTYUIOPASDFGHJKLZXCVBNM" for l in pw: if l in alpha: l = alpha[alpha.index(l)+n] elif l in ALPHA: l = ALPHA[ALPHA.index(l)+n] newpw += l return newpw
29.458333
66
0.61669
7950f6e458b64342634585205c22e732a2c9e2ea
2,114
py
Python
Data-Structures/Trees/BinaryTreeIteration.py
kimjiwook0129/Coding-Interivew-Cheatsheet
574e6acecdb617b9c3cef7ec3b154ab183d8b99a
[ "MIT" ]
3
2022-01-09T04:33:04.000Z
2022-02-04T17:40:43.000Z
Data-Structures/Trees/BinaryTreeIteration.py
kimjiwook0129/Coding-Interivew-Cheatsheet
574e6acecdb617b9c3cef7ec3b154ab183d8b99a
[ "MIT" ]
null
null
null
Data-Structures/Trees/BinaryTreeIteration.py
kimjiwook0129/Coding-Interivew-Cheatsheet
574e6acecdb617b9c3cef7ec3b154ab183d8b99a
[ "MIT" ]
null
null
null
from collections import deque # Same BinaryTree, but the print methods are implemented using iterations class BinaryTree: def __init__(self, data, left = None, right = None): self.data = data self.left = left self.right = right def preOrderPrint(self): s = deque([self]) while s: curNode = s.pop() print(curNode.data, end = " ") if curNode.right: s.append(curNode.right) if curNode.left: s.append(curNode.left) def inOrderPrint(self): s = deque([]) while True: if self: s.append(self) self = self.left else: if len(s) == 0: break self = s.pop() print(self.data, end = " ") self = self.right def postOrderPrint(self): s1 = deque([self]) s2 = deque([]) while s1: curNode = s1.pop() s2.append(curNode) if curNode.left: s1.append(curNode.left) if curNode.right: s1.append(curNode.right) while s2: print(s2.pop().data, end = " ") def postOrderPrintOneStack(self): pass def levelOrderPrint(self): q = deque([]) q.append(self) while q: curNode = q.popleft() print(curNode.data, end = " ") if curNode.left: q.append(curNode.left) if curNode.right: q.append(curNode.right) if __name__ == "__main__": tree = BinaryTree(1, BinaryTree(2, BinaryTree(4)), \ BinaryTree(3, BinaryTree(5, None, BinaryTree(7)), BinaryTree(6, BinaryTree(8), BinaryTree(9)))) tree.preOrderPrint() # 1, 2, 4, 3, 5, 7, 6, 8, 9 print() tree.inOrderPrint() # 4, 2, 1, 5, 7, 3, 8, 6, 9 print() tree.postOrderPrint() # 4, 2, 7, 5, 8, 9, 6, 3, 1 print() # tree.postOrderPrintOneStack() # 4, 2, 7, 5, 8, 9, 6, 3, 1 # print() tree.levelOrderPrint() # 1, 2, 3, 4, 5, 6, 7, 8, 9 print()
29.774648
103
0.497635
7950f8b5eb70c4f20082a5323c5618258b677bb9
5,070
py
Python
optimize_gan_bo.py
miyamotononno/airfoil-opt-gan
997c1060dd3dd22572c16101e703e0bf93a316f1
[ "MIT" ]
null
null
null
optimize_gan_bo.py
miyamotononno/airfoil-opt-gan
997c1060dd3dd22572c16101e703e0bf93a316f1
[ "MIT" ]
null
null
null
optimize_gan_bo.py
miyamotononno/airfoil-opt-gan
997c1060dd3dd22572c16101e703e0bf93a316f1
[ "MIT" ]
null
null
null
""" Optimize the airfoil shape in the latent space using Bayesian optimization, constrained on the running time Author(s): Wei Chen (wchen459@umd.edu) """ from __future__ import division import time import argparse import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from importlib import import_module import sklearn.gaussian_process as gp from gan import GAN from simulation import evaluate from bayesian_opt import normalize, neg_expected_improvement, sample_next_point from utils import mean_err def synthesize(z, model): airfoil = model.synthesize(z) if airfoil[0,1] < airfoil[-1,1]: mean = .5*(airfoil[0,1]+airfoil[-1,1]) airfoil[0,1] = airfoil[-1,1] = mean return airfoil def optimize(latent_dim, bounds, n_eval, run_id): # Optimize in the latent space n_pre_samples = 10 bounds = np.tile(bounds, (latent_dim,1)) kernel = gp.kernels.Matern() gp_model = gp.GaussianProcessRegressor(kernel=kernel, alpha=1e-4, n_restarts_optimizer=100, normalize_y=False) zp = [] perfs = [] opt_perfs = [0] s = 1.0 gamma = 0.99 for i in range(n_eval): if i < n_pre_samples: z = np.random.uniform(bounds[:,0], bounds[:,1], size=latent_dim) else: perf_normalized = normalize(perfs) gp_model.fit(np.array(zp), np.array(perf_normalized)) length_scale = gp_model.kernel_.length_scale print('Length scale = {}'.format(length_scale)) previous_optimum = perf_normalized[opt_idx] if np.all(np.array(perfs[-5:])==-1): # in case getting stuck in infeasible region print('Back to {} ...'.format(opt_z)) previous_point = opt_z else: previous_point = z # z = sample_next_point(latent_dim, neg_expected_improvement, gp_model, previous_optimum, bounds, n_restarts=100) z = sample_next_point(latent_dim, neg_expected_improvement, gp_model, previous_optimum, bounds=None, random_search=100000, previous_point=previous_point, scale=s) s *= gamma x = synthesize(z.reshape(1,-1), model) perf = evaluate(x) z = np.squeeze(z) zp.append(z) perfs.append(perf) opt_idx = np.argmax(perfs) opt_z = zp[opt_idx] opt_perf = perfs[opt_idx] opt_perfs.append(opt_perf) # Best performance so far print('GAN-BO {}-{}: z {} CL/CD {:.2f} best-so-far {:.2f}'.format(run_id, i+1, z, perf, opt_perf)) opt_z = opt_z.reshape(1,-1) opt_airfoil = synthesize(opt_z, model) print('Optimal: z {} CL/CD {}'.format(opt_z, opt_perfs[-1])) return opt_airfoil, opt_perfs if __name__ == "__main__": # Arguments parser = argparse.ArgumentParser(description='Optimize') parser.add_argument('--n_runs', type=int, default=10, help='number of runs') parser.add_argument('--n_eval', type=int, default=1000, help='number of evaluations per run') args = parser.parse_args() n_runs = args.n_runs n_eval = args.n_eval # Airfoil parameters latent_dim = 3 noise_dim = 10 n_points = 192 bezier_degree = 32 bounds = (0., 1.) # Restore trained model model = GAN(latent_dim, noise_dim, n_points, bezier_degree, bounds) model.restore() opt_airfoil_runs = [] opt_perfs_runs = [] time_runs = [] for i in range(n_runs): start_time = time.time() opt_airfoil, opt_perfs = optimize(latent_dim, bounds, n_eval, i+1) end_time = time.time() opt_airfoil_runs.append(opt_airfoil) opt_perfs_runs.append(opt_perfs) time_runs.append(end_time-start_time) opt_airfoil_runs = np.array(opt_airfoil_runs) opt_perfs_runs = np.array(opt_perfs_runs) np.save('opt_results/gan_bo/opt_airfoil.npy', opt_airfoil_runs) np.save('opt_results/gan_bo/opt_history.npy', opt_perfs_runs) # Plot optimization history mean_perfs_runs = np.mean(opt_perfs_runs, axis=0) plt.figure() plt.plot(np.arange(n_eval+1, dtype=int), mean_perfs_runs) plt.title('Optimization History') plt.xlabel('Number of Evaluations') plt.ylabel('Optimal CL/CD') # plt.xticks(np.linspace(0, n_eval+1, 5, dtype=int)) plt.savefig('opt_results/gan_bo/opt_history.svg') plt.close() # Plot the optimal airfoil mean_time_runs, err_time_runs = mean_err(time_runs) mean_final_perf_runs, err_final_perf_runs = mean_err(opt_perfs_runs[:,-1]) plt.figure() for opt_airfoil in opt_airfoil_runs: plt.plot(opt_airfoil[:,0], opt_airfoil[:,1], '-', c='k', alpha=1.0/n_runs) plt.title('CL/CD: %.2f+/-%.2f time: %.2f+/-%.2f min' % (mean_final_perf_runs, err_final_perf_runs, mean_time_runs/60, err_time_runs/60)) plt.axis('equal') plt.savefig('opt_results/gan_bo/opt_airfoil.svg') plt.close() print 'GAN-BO completed :)'
35.704225
124
0.64497
7950fa30a66be88652713ca49d525d8f474d2650
327
py
Python
app/Connection/socket.py
alexanderscpo/UCi_Desktop
a923dd78d2f4df95fdd56c0afc52fc3557b8d4a7
[ "MIT" ]
null
null
null
app/Connection/socket.py
alexanderscpo/UCi_Desktop
a923dd78d2f4df95fdd56c0afc52fc3557b8d4a7
[ "MIT" ]
null
null
null
app/Connection/socket.py
alexanderscpo/UCi_Desktop
a923dd78d2f4df95fdd56c0afc52fc3557b8d4a7
[ "MIT" ]
null
null
null
import socket import os import struct import threading def enviar_archivos(url: str, host: str, port: int): # Creamos el objeto para la conexión usando (ip4 y TCP) sck = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Conectamos con el Host with sck.connect((host, port)) as conexion: pass
20.4375
59
0.69419
7950faaf8969b4bfd67614a72bff42f402a632e6
357
py
Python
bookwyrm/activitypub/image.py
mouse-reeve/fedireads
e3471fcc3500747a1b1deaaca662021aae5b08d4
[ "CC0-1.0" ]
270
2020-01-27T06:06:07.000Z
2020-06-21T00:28:18.000Z
bookwyrm/activitypub/image.py
mouse-reeve/fedireads
e3471fcc3500747a1b1deaaca662021aae5b08d4
[ "CC0-1.0" ]
158
2020-02-10T20:36:54.000Z
2020-06-26T17:12:54.000Z
bookwyrm/activitypub/image.py
mouse-reeve/fedireads
e3471fcc3500747a1b1deaaca662021aae5b08d4
[ "CC0-1.0" ]
15
2020-02-13T21:53:33.000Z
2020-06-17T16:52:46.000Z
""" an image, nothing fancy """ from dataclasses import dataclass from .base_activity import ActivityObject @dataclass(init=False) class Document(ActivityObject): """a document""" url: str name: str = "" type: str = "Document" id: str = None @dataclass(init=False) class Image(Document): """an image""" type: str = "Image"
17
41
0.64986
7950fcbd2f6ab009ee65cce62d72ff7f54f81ced
2,454
py
Python
config/settings/local.py
black-redoc/django_crud_example
143ef8edfd5346087d1c577491460507c87e8e22
[ "MIT" ]
null
null
null
config/settings/local.py
black-redoc/django_crud_example
143ef8edfd5346087d1c577491460507c87e8e22
[ "MIT" ]
null
null
null
config/settings/local.py
black-redoc/django_crud_example
143ef8edfd5346087d1c577491460507c87e8e22
[ "MIT" ]
null
null
null
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = True # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env( "DJANGO_SECRET_KEY", default="kPVUeeHnUxaqrVpYDTQwm23hclk9CPXGwyaoyuZzTu7dSCFuXvXm1Nm9rAEXJD87", ) # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = ["localhost", "0.0.0.0", "127.0.0.1"] # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "", } } # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env( "DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.console.EmailBackend" ) # WhiteNoise # ------------------------------------------------------------------------------ # http://whitenoise.evans.io/en/latest/django.html#using-whitenoise-in-development INSTALLED_APPS = ["whitenoise.runserver_nostatic"] + INSTALLED_APPS # noqa F405 # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites INSTALLED_APPS += ["debug_toolbar"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware MIDDLEWARE += ["debug_toolbar.middleware.DebugToolbarMiddleware"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config DEBUG_TOOLBAR_CONFIG = { "DISABLE_PANELS": ["debug_toolbar.panels.redirects.RedirectsPanel"], "SHOW_TEMPLATE_CONTEXT": True, } # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips INTERNAL_IPS = ["127.0.0.1", "192.168.1.29"] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ["django_extensions"] # noqa F405 # Your stuff... # ------------------------------------------------------------------------------
40.229508
97
0.579462
7950fff4e7c74a6a68098f27ded64d477358dec9
424
py
Python
ch05-a-realistic-api/api/weather_api.py
hedrickbt/talkpython-fastapi
633ee7b6ebfa78933b14fceed0c62884382363a1
[ "MIT" ]
null
null
null
ch05-a-realistic-api/api/weather_api.py
hedrickbt/talkpython-fastapi
633ee7b6ebfa78933b14fceed0c62884382363a1
[ "MIT" ]
null
null
null
ch05-a-realistic-api/api/weather_api.py
hedrickbt/talkpython-fastapi
633ee7b6ebfa78933b14fceed0c62884382363a1
[ "MIT" ]
null
null
null
from typing import Optional import fastapi from fastapi import Depends from models.location import Location from services import openweather_service router = fastapi.APIRouter() @router.get('/api/weather/{city}') async def weather(loc: Location = Depends(), units: Optional[str] = 'metric'): report = await openweather_service.get_report_async(loc.city, loc.state, loc.country, units) return report
24.941176
96
0.75
79510010034adafaaddb52db78bf489e225e8c97
1,401
py
Python
chapter2/problem1.py
hahnicity/ace
60e934304b94614c435c7f3da60e3ea13622173e
[ "Unlicense" ]
5
2017-07-06T07:08:03.000Z
2020-03-11T17:48:02.000Z
chapter2/problem1.py
lnsongxf/ace
60e934304b94614c435c7f3da60e3ea13622173e
[ "Unlicense" ]
null
null
null
chapter2/problem1.py
lnsongxf/ace
60e934304b94614c435c7f3da60e3ea13622173e
[ "Unlicense" ]
5
2017-07-06T07:08:15.000Z
2020-12-19T21:52:07.000Z
""" Solve some matrix operations """ from numpy import array from ace.solvers import gauss_jacobi, gauss_seidel, lu_decomposition def part_a(a, b): """ Solve using LU decomposition """ x = lu_decomposition(a, b) print x return x def part_b(a, b, x_exact): """ Solve using Gauss-Jacobi """ for iterations in xrange(1, 100): x = gauss_jacobi(a, b, iterations) if _check_for_significant_digits(x, x_exact, 4): print iterations, x return def part_c(a, b, x_exact): """ Solve using Gauss-Seidel """ for iterations in xrange(1, 100): x = gauss_seidel(a, b, iterations) if _check_for_significant_digits(x, x_exact, 4): print iterations, x return def _check_for_significant_digits(x, x_exact, desired_digits): number_validated = 0 for i, xi in enumerate(x_exact): comparator = int(xi * 10 ** desired_digits) if int(x[i] * 10 ** desired_digits) == comparator: number_validated += 1 if number_validated == len(x_exact): return True return False if __name__ == "__main__": a = array([[54, 14, -11, 2], [14, 50, -4, 29], [-11, -4, 55, 22], [2, 29, 22, 95]]) b = array([1, 1, 1, 1]) x_exact = part_a(a, b) part_b(a, b, x_exact) part_c(a, b, x_exact)
23.35
68
0.576017
79510022ea5cd314612fe677a6fb15092158876e
8,196
py
Python
docs/conf.py
farzadghanei/distutilazy
c3c7d062f7cb79abb7677cac57dd752127ff78e7
[ "MIT" ]
null
null
null
docs/conf.py
farzadghanei/distutilazy
c3c7d062f7cb79abb7677cac57dd752127ff78e7
[ "MIT" ]
2
2016-06-16T14:12:48.000Z
2018-07-22T12:44:21.000Z
docs/conf.py
farzadghanei/distutilazy
c3c7d062f7cb79abb7677cac57dd752127ff78e7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # Distutilazy documentation build configuration file, created by # sphinx-quickstart on Tue Oct 13 14:17:16 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Distutilazy' copyright = u'2015, Farzad Ghanei' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.4.0' # The full version, including alpha/beta/rc tags. release = '0.4.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Distutilazydoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'Distutilazy.tex', u'Distutilazy Documentation', u'Farzad Ghanei', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'distutilazy', u'Distutilazy Documentation', [u'Farzad Ghanei'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Distutilazy', u'Distutilazy Documentation', u'Farzad Ghanei', 'Distutilazy', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False
31.644788
79
0.719253
795104180d5390d7bdc3dbd6b7961610117cffa4
1,825
py
Python
moltres-thermal-fluids/full-assembly/auxiliary.py
arfc/mhtgr350-benchmark
18f7b3fe5742dabb1114c3bf7760b84590d16062
[ "BSD-3-Clause" ]
null
null
null
moltres-thermal-fluids/full-assembly/auxiliary.py
arfc/mhtgr350-benchmark
18f7b3fe5742dabb1114c3bf7760b84590d16062
[ "BSD-3-Clause" ]
51
2020-05-26T16:17:57.000Z
2021-02-22T20:08:59.000Z
moltres-thermal-fluids/full-assembly/auxiliary.py
arfc/mhtgr350-benchmark
18f7b3fe5742dabb1114c3bf7760b84590d16062
[ "BSD-3-Clause" ]
2
2020-01-02T19:22:59.000Z
2020-01-11T15:42:36.000Z
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.cbook import get_sample_data import matplotlib.patches as mpatches def add_legends_full_assembly(): ''' This function adds legends to 'full-assem-mesh'. ''' figure = 'full-assem-mesh' save = 'full-assem-mesh2' red = mpatches.Patch(color=(1., 0., 0.), label='Fuel') green = mpatches.Patch(color=(0., 1., 0.), label='Gap') gray = mpatches.Patch(color=(0.91, 0.91, 0.91), label='Moderator') yellow = mpatches.Patch(color=(1., 1., 0.), label='Film') blue = mpatches.Patch(color=(0., 0., 1.), label='Coolant') cwd = os.getcwd() fname = get_sample_data('{0}/{1}.png'.format(cwd, figure)) im = plt.imread(fname) plt.imshow(im) plt.legend(handles=[red, gray, blue], loc="upper left", bbox_to_anchor=(1.0, 1.0), fancybox=True) plt.axis('off') plt.savefig(save, dpi=300, bbox_inches="tight") plt.close() def full_assembly_convergence(): ''' This function plots the values from cool and fuel vs dofs in a figure. ''' cool = [1060.405, 1062.230, 1063.999, 1065.128, 1065.318] fuel = [1204.485, 1217.320, 1225.565, 1233.442, 1234.928] dofs = [524291, 665893, 932129, 1317444, 1524595] elements = [1025400, 1305800, 1833000, 2596000, 3006200] plt.plot(dofs, cool, marker='o', label='Coolant') plt.plot(dofs, fuel, marker='o', label='Fuel') plt.legend(loc='best') plt.ylabel(r'Temperature [$^{\circ}$C]') plt.xlabel('Number of DoFs') plt.savefig('full-assem-convergence', dpi=300, bbox_inches="tight") plt.close() if __name__ == "__main__": # adds legends to mesh figure add_legends_full_assembly() # plots the convergence of the temperatures full_assembly_convergence()
30.416667
74
0.648767
795104c125f710fb199a77f6e793117d15f0886e
30,760
py
Python
genres_holder/Homans_3_a.py
mmehrani/homans_project
37bddd6ed0686739674373264526873f92640346
[ "MIT" ]
null
null
null
genres_holder/Homans_3_a.py
mmehrani/homans_project
37bddd6ed0686739674373264526873f92640346
[ "MIT" ]
30
2019-10-14T15:40:31.000Z
2020-09-20T06:34:51.000Z
genres_holder/Homans_3_a.py
mmehrani/homans_project
37bddd6ed0686739674373264526873f92640346
[ "MIT" ]
null
null
null
""" Created on Mon Aug 12 10:12:03 2019 @author: Taha Enayat, Mohsen Mehrani Main file Model's engine """ import numpy as np import matplotlib.pyplot as plt from datetime import datetime #import winsound import pickle import Analysis_Tools_Homans import os import sys from decimal import * """Platform Detection""" pd = {'win32':'\\', 'linux':'/'} if sys.platform.startswith('win32'): plat = 'win32' elif sys.platform.startswith('linux'): plat = 'linux' start_time = datetime.now() # ============================================================================= """Class""" class NegativeProbability(Exception): pass class Agent(): """ Properties and variables related to an agent """ def __init__(self,money,approval,situation): self.money = money self.approval = approval self.neighbor = np.zeros(N,dtype=int) #number of interactions self.value = np.full(N,-1,dtype=float) self.time = np.full((N,memory_size),-1) self.situation = situation self.active_neighbor = {} #dictianary; keys are active neighbor indexes; values are probabilities self.sigma = Decimal('0') #sum of probabilities. used in normalization self.feeling = np.zeros(N) self.worth_ratio = self.approval/self.money self.asset = self.money + self.approval / self.worth_ratio return def asset_updater(self): self.asset = self.money + self.approval / self.worth_ratio return def worth_ratio_calculator(self): """ calculates worth ratio i.e. averages over neighbors' money and approval. Used in transaction function. """ self.n_avg = {'money':0, 'approval':0} for j in self.active_neighbor.keys(): self.n_avg['money'] += A[j].money self.n_avg['approval'] += A[j].approval self.n_avg['money'] += self.money self.n_avg['approval'] += self.approval self.n_avg['money'] = self.n_avg['money'] / (len(self.active_neighbor)+1) self.n_avg['approval'] = self.n_avg['approval'] / (len(self.active_neighbor)+1) self.n_average = self.n_avg['approval'] / self.n_avg['money'] return self.n_average def probability_factor(self,neighbor,t): ''' Calculates the factor for choosing each neighbor that converts to probability in neighbor_concatenation function. This factor is multiplication of effect of value (proposition3), frequency (proposition4), and feeling (proposition5). ''' p0 = np.exp(self.value[neighbor] * prob0_magnify_factor) p1 = self.frequency_to_probability(neighbor,t) * prob1_magnify_factor - (prob1_magnify_factor -1) p2 = np.exp(self.feeling[neighbor]) * prob2_magnify_factor - (prob2_magnify_factor -1) # p0 = 1.0 #for when we need to turn off the effect # p1 = 1.0 #for when we need to turn off the effect # p2 = 1.0 #for when we need to turn off the effect p0_tracker.append(p0) #tracking p1_tracker.append(p1) p2_tracker.append(p2) probability = p0 * p1 * p2 #not normalized. normalization occurs in neighbor_concatenation() return Decimal(str(probability)).quantize(Decimal('1e-5'),rounding = ROUND_DOWN) if probability < 10**8 else Decimal('1e8') def frequency_to_probability(self,neighbor,t): """ Homans' proposition 4. Although he doesn't talk about effect of longterm memory on probability, it is here to see whether it makes the results more real or not. """ mask = (self.time[neighbor] > t-10) & (self.time[neighbor] != -1) n1 = np.size(self.time[neighbor][mask]) short_term = np.exp(- alpha * n1 / 10) # n2 = self.neighbor[neighbor] # long_term = 1 + beta * (n2 * len(self.active_neighbor) /(t*np.average(num_transaction_tot[:t-1]) ) ) long_term = 1.0 #for when we need to turn off the effect prob = short_term * long_term return prob def neighbor_concatenation(self,self_index,new_neighbor,t): """ Adds new neighbor to memory and converts factor obtained from probability_factor() function to probability (that sums to one). """ for j in self.active_neighbor.keys(): self.active_neighbor[j] *= self.sigma grade_new_neighbor = self.probability_factor(new_neighbor,t) if new_neighbor in self.active_neighbor: self.sigma += grade_new_neighbor - self.active_neighbor[new_neighbor] else: self.sigma += grade_new_neighbor self.active_neighbor[new_neighbor] = grade_new_neighbor for j in self.active_neighbor.keys(): if j!=new_neighbor: self.active_neighbor[j] /= self.sigma self.active_neighbor[j] = Decimal( str(self.active_neighbor[j]) ).quantize(Decimal('1e-5'),rounding = ROUND_DOWN) if new_neighbor in self.active_neighbor: self.active_neighbor[new_neighbor] = 1 - ( sum(self.active_neighbor.values()) - self.active_neighbor[new_neighbor]) else: self.active_neighbor[new_neighbor] = 1 - sum(self.active_neighbor.values()) """Error finding""" if self.active_neighbor[new_neighbor] < 0: raise NegativeProbability('self index:',self_index,'neighbor',new_neighbor) elif np.size(np.array(list(self.active_neighbor.values()))[np.array(list(self.active_neighbor.values()))>1]) != 0: raise NegativeProbability('self index:',self_index,'neighbor',new_neighbor) elif sum(list(self.active_neighbor.values())) > 1.01 or sum(list(self.active_neighbor.values())) < 0.99: raise NegativeProbability('not one',sum(list(self.active_neighbor.values()))) return def second_agent(self,self_index,self_active_neighbor): """ Homans' proposition 6 Returns an agent in memory with maximum utility to intract with. Utility = Value * Acceptance Probability """ """Proposition 6""" i = 0 Max = 0 for j in self_active_neighbor: value = self.value[j] other_probability = float(A[j].active_neighbor[self_index]) utility = value * other_probability if utility >= Max: Max = utility chosen_agent = j chosen_agent_index = i i += 1 """random choice""" # chosen_agent_index = np.random.choice(range(len(self_active_neighbor))) # chosen_agent = self_active_neighbor[chosen_agent_index] return chosen_agent , chosen_agent_index # ============================================================================= """Functions""" def transaction(index1,index2,t): """ Transaction with two agents agent1 proposes to agent2 Uses proposition 3 (value) and proposition 5 (feeling) """ agent1 = A[index1] agent2 = A[index2] number_of_transaction1 = agent1.neighbor[index2] number_of_transaction2 = agent2.neighbor[index1] if len(agent1.active_neighbor) != 0: worth_ratio1 = agent1.worth_ratio_calculator() else: worth_ratio1 = agent1.worth_ratio if len(agent2.active_neighbor) != 0: worth_ratio2 = agent2.worth_ratio_calculator() else: worth_ratio2 = agent2.worth_ratio amount = transaction_percentage * agent1.money agreement_point = (worth_ratio2 - worth_ratio1)/(worth_ratio2 + worth_ratio1) * amount * worth_ratio1 #x=(E2-E1/E2+E1)*AE1 """Acceptances""" """although it seems obvious that the agent2 has to accept the transaction according to what he thinks of agent1, here in the code it is redundancy; Because in the code we are sure that agent1 have chosen agent2 according to maximizing utility, i.e. agent2 is "the chosen one"! The problem if this acceptance is on is that probabilities attributed to neighbors are in the order of 1/N and with N=100 it means that most of the time transactions are rejected. """ # if index1 in agent2.active_neighbor: # p = agent2.active_neighbor[index1] # acceptance_util = np.random.choice([0,1],p=[1-p,p]) # else: # acceptance_util = 1 acceptance_util = 1 #for turning off the effect of utility acceptance if agent2.approval > 0.001 and agent2.approval - ( np.round(amount*worth_ratio1 + agreement_point,3) ) > 0.001: acceptance_neg = 1 #not negative checking acceptance else: acceptance_neg = 0 # if True: #for turning off the effect of worth ratio acceptance if worth_ratio2 >= worth_ratio1: acceptance_worth = 1 else: p = np.exp( -(worth_ratio1 - worth_ratio2)/normalization_factor ) acceptance_worth = np.random.choice([0,1],p=[1-p,p]) acceptance_worth = acceptance_worth * acceptance_neg # p = np.exp( -np.abs(agent1.asset - agent2.asset)/param ) # acceptance_asset = np.random.choice([0,1],p=[1-p,p]) acceptance_asset = 1 #for turning off the effect of asset acceptance threshold = threshold_percentage[index2] * agent2.approval if threshold > (amount * worth_ratio1 + agreement_point): acceptance_thr = 1 else: acceptance_thr = 0 acceptance = acceptance_worth * acceptance_thr * acceptance_asset * acceptance_util acceptance_manager([acceptance_worth, acceptance_thr, acceptance_asset, acceptance_util],index1,t) #tracking if acceptance: #transaction accepts num_transaction_tot[t-1] += 1 """Calculate feeling and value""" feeling = agreement_point / worth_ratio1 #is equal for both (from definition) value1 = + amount + agreement_point/worth_ratio1 value2 = + amount agent1.neighbor[index2] += 1 agent2.neighbor[index1] += 1 agent1.feeling[index2] = feeling agent2.feeling[index1] = feeling """Updating memory""" agent1.money -= np.round(amount,3) agent2.money += np.round(amount,3) agent1.approval += np.round(amount*worth_ratio1 + agreement_point,3) agent2.approval -= np.round(amount*worth_ratio1 + agreement_point,3) agent1.worth_ratio = lamda * agent1.worth_ratio + (1-lamda) * (amount*worth_ratio1 + agreement_point) / amount agent2.worth_ratio = lamda * agent2.worth_ratio + (1-lamda) * (amount*worth_ratio1 + agreement_point) / amount agent1.asset_updater() agent2.asset_updater() agent1.value[index2] = value1 agent2.value[index1] = value2 asset_tracker[index1].append(agent1.asset) #tracker asset_tracker[index2].append(agent2.asset) #tracker if number_of_transaction1 < memory_size: #if memory is not full empty_memory = number_of_transaction1 agent1.time [index2,empty_memory] = t else: shift_memory( agent1 , index2) agent1.time [index2,memory_size-1] = t if number_of_transaction2 < memory_size: #if memory is not full empty_memory = number_of_transaction2 agent2.time [index1,empty_memory] = t else: shift_memory(agent2,index1) agent2.time [index1,memory_size-1] = t agent1.neighbor_concatenation(index1,index2,t) agent2.neighbor_concatenation(index2,index1,t) return acceptance # ============================================================================= def shift_memory(agent,index): temp = np.delete(agent.time[index],0) agent.time[index] = np.concatenate((temp,[-1])) return # ============================================================================= def acceptance_manager(accept_list,agent,t): """ To track acceptances through time """ dic_value = conditions_glossary_dict[tuple(accept_list)] rejection_agent[agent,dic_value] += 1 rejection_time[t-1,dic_value] += 1 return # ============================================================================= def explore(index,t): """ Chooses another agent which is not in his memory Uses proposition 2 (similar situation) """ agent = A[index] mask = np.ones(N,dtype=bool) mask[index] = False agent_active_neighbor = list(agent.active_neighbor.keys()) self_similarity = agent.situation num_explore[t-1] += 1 global counter_accept_nei, counter_accept_ran if len(agent_active_neighbor) != N-1: if len(agent_active_neighbor) != 0: """Finding neighbors of neighbors""" neighbors_of_neighbors_not_flat = [] for j in agent_active_neighbor: neighbors_of_neighbors_not_flat.append(A[j].active_neighbor.keys()) neighbors_of_neighbors = [] for sublist in neighbors_of_neighbors_not_flat: for item in sublist: neighbors_of_neighbors.append(item) neighbors_of_neighbors = list(set(neighbors_of_neighbors)) neighbors_of_neighbors.remove(index) for nei in neighbors_of_neighbors: if nei in agent_active_neighbor: neighbors_of_neighbors.remove(nei) """Proposing""" if len(neighbors_of_neighbors) != 0: model_neighbor_index = np.random.choice(agent_active_neighbor,p=list(agent.active_neighbor.values())) #Bias neighbor model_situation = A[model_neighbor_index].situation if len(neighbors_of_neighbors) >= num_of_tries2: arri_choice = np.random.choice(neighbors_of_neighbors,size=num_of_tries2,replace=False) else: arri_choice = np.array(neighbors_of_neighbors) for other_index in arri_choice: other_situation = A[other_index].situation if other_situation > (model_situation-similarity) and other_situation < (model_situation+similarity): #if matches the criteria """Waiting for the answer of the proposed neighbor""" other_agent = A[other_index] if len(other_agent.active_neighbor) != 0: nearest_choice = 1 #maximum possible situation difference for k in other_agent.active_neighbor.keys(): diff_abs = np.abs(A[k].situation - self_similarity) if diff_abs < nearest_choice: nearest_choice = diff_abs nearest_choice_index = k p = other_agent.active_neighbor[nearest_choice_index] acceptance = np.random.choice([0,1],p=[1-p,p]) if acceptance == 1: transaction(index,other_index,t) else: transaction(index,other_index,t) if other_index in agent.active_neighbor: #which means transaction has been accepted counter_accept_nei += 1 break anyof = True for i in arri_choice: if i in agent.active_neighbor: anyof = False """When nobody is the right fit, the agent looks for a random agent""" if anyof: mask[agent_active_neighbor] = False if np.size(mask[mask==True]) >= num_of_tries3: arri_choice = np.random.choice(np.arange(N)[mask],size=num_of_tries3,replace=False) #difference with above else: num_true_in_mask = np.size(mask[mask==True]) arri_choice = np.random.choice(np.arange(N)[mask],size=num_true_in_mask,replace=False) for other_index in arri_choice: other_situation = A[other_index].situation if other_situation > (model_situation-similarity) and other_situation < (model_situation+similarity): other_agent = A[other_index] if len(other_agent.active_neighbor) != 0: nearest_choice = 1 #maximum possible situation difference for k in other_agent.active_neighbor.keys(): diff_abs = np.abs(A[k].situation - self_similarity) if diff_abs < nearest_choice: nearest_choice = diff_abs nearest_choice_index = k p = other_agent.active_neighbor[nearest_choice_index] acceptance = np.random.choice([0,1],p=[1-p,p]) if acceptance == 1: transaction(index,other_index,t) else: transaction(index,other_index,t) if other_index in agent.active_neighbor: #which means transaction has been accepted counter_accept_ran += 1 break else: """Nobody is in memory so choose with no model neighbor""" other_index = np.random.choice(np.arange(N)[mask]) other_agent = A[other_index] other_situation = other_agent.situation if len(other_agent.active_neighbor) != 0: nearest_choice = 1 #maximum possible situation difference for k in other_agent.active_neighbor.keys(): diff_abs = np.abs(A[k].situation - self_similarity) if diff_abs < nearest_choice: nearest_choice = diff_abs nearest_choice_index = k p = other_agent.active_neighbor[nearest_choice_index] acceptance = np.random.choice([0,1],p=[1-p,p]) if acceptance == 1: transaction(index,other_index,t) else: transaction(index,other_index,t) else: other_index = np.random.choice(np.arange(N)[mask]) other_agent = A[other_index] other_situation = other_agent.situation if len(other_agent.active_neighbor) != 0: nearest_choice = 1 #maximum possible situation difference for k in other_agent.active_neighbor.keys(): diff_abs = np.abs(A[k].situation - self_similarity) if diff_abs < nearest_choice: nearest_choice = diff_abs nearest_choice_index = k p = other_agent.active_neighbor[nearest_choice_index] acceptance = np.random.choice([0,1],p=[1-p,p]) if acceptance == 1: transaction(index,other_index,t) else: transaction(index,other_index,t) return # ============================================================================= def make_directories(version): """ Making directories before running the simulation It also makes a file of initial conditions and parameters """ current_path = os.getcwd() try: os.mkdir(current_path+pd[plat]+'runned_files') except OSError: print ("runned_files already exists") try: os.mkdir(current_path+pd[plat]+'runned_files'+pd[plat]+'N%d_T%d'%(N,T)) except OSError: print ("version already exists") path = current_path+pd[plat]+'runned_files'+pd[plat]+'N%d_T%d'%(N,T)+pd[plat]+version+pd[plat] try: os.mkdir(path) except OSError: print ("Creation of the directory failed") with open(path + 'Initials.txt','w') as initf: initf.write(str(N)+'\n') initf.write(str(T)+'\n') initf.write(str(sampling_time)+'\n') initf.write(str(saving_time_step)+'\n') initf.write(str(version)+'\n') initf.write('respectively: \n') initf.write('N, T, sampling time, saving time step, version \n\n') initf.write(str(initial_for_trans_time) + ': initial for trans time \n') initf.write(str(trans_saving_interval) + ': trans time interval \n') initf.write(str(similarity) + ': similarity \n') initf.write(str(num_of_tries1) + ': num of tries 1 \n') initf.write(str(num_of_tries2) + ': num of tries 2 \n') initf.write(str(num_of_tries3) + ': num of tries 3 \n') initf.write(str(prob0_magnify_factor) + ': probability 0 magnify factor \n') initf.write(str(prob1_magnify_factor) + ': probability 1 magnify factor \n') initf.write(str(prob2_magnify_factor) + ': probability 2 magnify factor \n') initf.write(str(lamda) + ': lambda \n') return path def save_it(version,t): """ Saves essential data and makes corresponding directories """ global tracker current_path = os.getcwd() path = current_path+pd[plat]+'runned_files'+pd[plat]+'N%d_T%d'%(N,T)+pd[plat]+version+ pd[plat]+'0_%d'%(t)+pd[plat] try: os.mkdir(path) except OSError: print ("Creation of the subdirectory failed") with open(path + 'Agents.pkl','wb') as agent_file: pickle.dump(A,agent_file,pickle.HIGHEST_PROTOCOL) with open(path + 'Other_data.pkl','wb') as data: pickle.dump(num_transaction_tot[t-sampling_time:t],data,pickle.HIGHEST_PROTOCOL) #should save the midway num_trans pickle.dump(explore_prob_array,data,pickle.HIGHEST_PROTOCOL) pickle.dump(rejection_agent,data,pickle.HIGHEST_PROTOCOL) with open(path + 'Tracker.pkl','wb') as tracker_file: pickle.dump(tracker,tracker_file,pickle.HIGHEST_PROTOCOL) return path # ============================================================================= """Distinctive parameters""" #necessary for recalling for analysis N = 100 #Number of agents """Parameters"""#XXX similarity = 0.05 #difference allowed between model neighbor and new found agent. in explore() memory_size = 10 #how many time of transaction for each agent is stored in memory of one agent transaction_percentage = 0.1 #percent of amount of money the first agent proposes from his asset num_of_tries1 = 20 #in main part num_of_tries2 = 20 #in function explore(); tries from neighbors of neighbors num_of_tries3 = 1 #in function explore(); tries from random agents (if no neighbor of neighbor have found) threshold_percentage =np.full(N,1) #the maximum amount which the agent is willing to give normalization_factor = 1 #rejection rate of acceptance_worth; used in transaction() prob0_magnify_factor = 0.5 #magnifying factor of P0; in probability_factor() prob1_magnify_factor = 1 #magnifying factor of P1; in probability_factor(); use with caution prob2_magnify_factor = 1 #magnifying factor of P2; in probability_factor(); use with caution alpha = 2.0 #in short-term effect of the frequency of transaction beta = 3 #in long-term effect of the frequency of transaction param = 2 #a normalizing factor in assigning the acceptance probability. It normalizes difference of money of both sides lamda = 0 #how much one agent relies on his last worth_ratio and how much relies on current transaction's worth_ratio sampling_time = 1000 #time interval used for making network: [T-sampling_time , T] saving_time_step = T #for saving multiple files change it from T to your desired interval (better for T to be devidable to your number) initial_for_trans_time = T - 1000 #initial time for trans_time to start recording trans_saving_interval = 1000 #the interval the trans_time will record if sampling_time > T: sampling_time = T if saving_time_step < sampling_time: saving_time_step = sampling_time """Initial Condition""" situation_arr = np.random.random(N) #randomly distributed #money = np.full(N,5.5) money = np.round(np.random.rand(N) * 9 + 1 ,decimals=3) #randomly between [1,10] approval = np.full(N,5.5) #approval = np.round(np.random.rand(N) * 9 + 1 ,decimals=3) #randomly between [1,10] A = np.zeros(N,dtype=object) for i in np.arange(N): A[i]=Agent( money[i], approval[i], situation_arr[i]) """trackers""" explore_prob_array = np.zeros(T) num_transaction_tot = np.zeros(T) rejection_time = np.zeros((T,16)) rejection_agent = np.zeros((N,16)) binary = [0,1] conditions_glossary = [(x,y,z,w) for x in binary for y in binary for z in binary for w in binary] conditions_glossary_dict = { cond:x for cond,x in zip(conditions_glossary,range(16))} conditions_glossary_string = ['{0}'.format(x) for x in conditions_glossary] tracker = Analysis_Tools_Homans.Tracker(N,T,memory_size,A,trans_saving_interval,saving_time_step) num_explore = np.zeros(T) p0_tracker = [] p1_tracker = [] p2_tracker = [] asset_tracker = [ [] for _ in np.arange(N) ] counter_entrance = 0 counter_accept_nei = 0 counter_accept_ran = 0 """preparing for writing files""" path = make_directories(version) # ============================================================================= """Main""" """ Choose one agent, find another agent through calculating probability, explores for new agent (expand memory) """ for t in np.arange(T)+1:#t goes from 1 to T """computations""" print(t,'/',T) tau = (t-1) shuffled_agents=np.arange(N) np.random.shuffle(shuffled_agents) for i in shuffled_agents: person = A[i] person_active_neighbor_size = len(person.active_neighbor) exploration_probability = (N-1-person_active_neighbor_size)/(N-1)#(2*N-2) explore_prob_array[tau] += exploration_probability if person_active_neighbor_size != 0: #memory is not empty rand = np.random.choice([1,0],size=1,p=[1-exploration_probability,exploration_probability]) if rand==1: person_active_neighbor = np.array(list(person.active_neighbor.keys())) if person_active_neighbor_size < num_of_tries1: num_of_choice = person_active_neighbor_size else: num_of_choice = num_of_tries1 choice_arr = np.zeros(num_of_choice,dtype=int) for k in np.arange(num_of_choice): choice_arr[k] , chosen_index = person.second_agent(i,person_active_neighbor) person_active_neighbor = np.delete(person_active_neighbor, chosen_index) for j in choice_arr: if transaction(i,j,t): break else: counter_entrance += 1 explore(i,t) else: counter_entrance += 1 explore(i,t) """trackers""" tracker.update_A(A) tracker.get_list('self_value',tau) tracker.get_list('valuable_to_others',tau) tracker.get_list('correlation_mon',tau) tracker.get_list('correlation_situ',tau) tracker.get_list('money',tau) tracker.get_list('approval',tau) tracker.get_list('asset',tau) if t>2: tracker.get_list('worth_ratio',tau-2) if tau == saving_time_step - sampling_time: tracker.get_list('sample_time_trans',tau) if t % saving_time_step == 0 or t == 1: boolean = False if t % saving_time_step == 0 and t >= saving_time_step: tracker.get_list('rejection',tau,array=rejection_time) save_it(version,t) #Write File if t >= initial_for_trans_time and t < initial_for_trans_time + trans_saving_interval: boolean = True else: boolean = False t_prime = t - initial_for_trans_time if boolean: tracker.get_list('trans_time',t_prime) explore_prob_array[tau] /= N # ============================================================================= """Pre-Analysis and Measurements""" tracker.get_path(path) tracker.plot_general(explore_prob_array * N,title='Average Exploration Probability',explore=True,N=N) tracker.plot_general(num_transaction_tot,title='Number of Transaction',trans=True) plt.figure() plt.plot(p0_tracker[::2]) plt.plot(p1_tracker[::2]) plt.plot(p2_tracker[::2]) plt.title('P0 & P1 & P2') plt.savefig(path+'P0 & P1 & P2') plt.close() tracker.hist_general(p0_tracker,title='p0') tracker.hist_general(p1_tracker,title='p1') tracker.hist_general(p2_tracker,title='p2') tracker.hist_log_log_general(p0_tracker,title='P0') tracker.hist_log_log_general(p1_tracker,title='P1') tracker.hist_log_log_general(p2_tracker,title='P2') plt.figure() for i in np.arange(N): plt.plot(asset_tracker[i]) plt.title('Asset Tracker') plt.savefig(path+'Asset Tracker') plt.close() with open(path + 'Explore_data.txt','w') as ex_file: ex_file.write('Enterance to exploration \n') ex_file.write(str(counter_entrance) + '\n\n') ex_file.write('Total accepted explorations \n') ex_file.write(str(counter_accept_nei + counter_accept_ran) + '\n\n') ex_file.write('Accepted in neighbor of neighbor part \n') ex_file.write(str(counter_accept_nei) + '\n\n') ex_file.write('Accepted in random part \n') ex_file.write(str(counter_accept_ran) + '\n\n') ex_file.write('Neighbor to random ratio \n') ex_file.write(str(counter_accept_ran / counter_accept_nei) + '\n\n') ex_file.write('Total accepted to entrance ratio \n') ex_file.write(str((counter_accept_nei+counter_accept_ran) / counter_entrance) + '\n\n') ex_file.write('\nRun Time:') ex_file.write(str(datetime.now() - start_time)) """Time Evaluation""" duration = 500 # millisecond freq = 2000 # Hz #winsound.Beep(freq, duration) print (datetime.now() - start_time)
44.195402
150
0.604421
795104fd451102ab74a6f058c4e2dc425a73fbc9
17,466
py
Python
owslib/fes2.py
pmav99/OWSLib
414375413c9e2bab33a2d09608ab209875ce6daf
[ "BSD-3-Clause" ]
218
2015-01-09T12:55:09.000Z
2022-03-29T12:22:54.000Z
owslib/fes2.py
pmav99/OWSLib
414375413c9e2bab33a2d09608ab209875ce6daf
[ "BSD-3-Clause" ]
512
2015-01-01T09:52:58.000Z
2022-03-30T11:57:07.000Z
owslib/fes2.py
pmav99/OWSLib
414375413c9e2bab33a2d09608ab209875ce6daf
[ "BSD-3-Clause" ]
218
2015-01-01T09:44:06.000Z
2022-03-31T14:09:13.000Z
# -*- coding: ISO-8859-15 -*- # ============================================================================= # Copyright (c) 2021 Tom Kralidis # # Authors : Tom Kralidis <tomkralidis@gmail.com> # # Contact email: tomkralidis@gmail.com # ============================================================================= """ API for OGC Filter Encoding (FE) constructs and metadata. Filter Encoding: http://www.opengeospatial.org/standards/filter Supports version 2.0.2 (09-026r2). """ from owslib.etree import etree from owslib import util from owslib.namespaces import Namespaces from abc import ABCMeta, abstractmethod # default variables def get_namespaces(): n = Namespaces() ns = n.get_namespaces(["dif", "fes", "gml", "ogc", "ows110", "xs", "xsi"]) ns[None] = n.get_namespace("fes") return ns namespaces = get_namespaces() schema = 'http://schemas.opengis.net/filter/2.0/filterAll.xsd' schema_location = '%s %s' % (namespaces['fes'], schema) class FilterRequest(object): """ filter class """ def __init__(self, parent=None, version='2.0.0'): """ filter Constructor Parameters ---------- - parent: parent etree.Element object (default is None) - version: version (default is '2.0.0') """ self.version = version self._root = etree.Element(util.nspath_eval('fes:Filter', namespaces)) if parent is not None: self._root.set(util.nspath_eval('xsi:schemaLocation', namespaces), schema_location) def set(self, parent=False, qtype=None, keywords=[], typenames='csw:Record', propertyname='csw:AnyText', bbox=None, identifier=None): """ Construct and process a GetRecords request Parameters ---------- - parent: the parent Element object. If this is not, then generate a standalone request - qtype: type of resource to query (i.e. service, dataset) - keywords: list of keywords - propertyname: the ValueReference to Filter against - bbox: the bounding box of the spatial query in the form [minx,miny,maxx,maxy] - identifier: the dc:identifier to query against with a PropertyIsEqualTo. Ignores all other inputs. """ # Set the identifier if passed. Ignore other parameters dc_identifier_equals_filter = None if identifier is not None: dc_identifier_equals_filter = PropertyIsEqualTo('dc:identifier', identifier) self._root.append(dc_identifier_equals_filter.toXML()) return self._root # Set the query type if passed dc_type_equals_filter = None if qtype is not None: dc_type_equals_filter = PropertyIsEqualTo('dc:type', qtype) # Set a bbox query if passed bbox_filter = None if bbox is not None: bbox_filter = BBox(bbox) # Set a keyword query if passed keyword_filter = None if len(keywords) > 0: if len(keywords) > 1: # loop multiple keywords into an Or ks = [] for i in keywords: ks.append(PropertyIsLike(propertyname, "*%s*" % i, wildCard="*")) keyword_filter = Or(operations=ks) elif len(keywords) == 1: # one keyword keyword_filter = PropertyIsLike(propertyname, "*%s*" % keywords[0], wildCard="*") # And together filters if more than one exists filters = [_f for _f in [keyword_filter, bbox_filter, dc_type_equals_filter] if _f] if len(filters) == 1: self._root.append(filters[0].toXML()) elif len(filters) > 1: self._root.append(And(operations=filters).toXML()) return self._root def setConstraint(self, constraint, tostring=False): """ Construct and process a GetRecords request Parameters ---------- - constraint: An OgcExpression object - tostring (optional): return as string """ self._root.append(constraint.toXML()) if tostring: return util.element_to_string(self._root, xml_declaration=False) return self._root def setConstraintList(self, constraints, tostring=False): """ Construct and process a GetRecords request Parameters ---------- - constraints: A list of OgcExpression objects The list is interpretted like so: [a,b,c] a || b || c [[a,b,c]] a && b && c [[a,b],[c],[d],[e]] or [[a,b],c,d,e] (a && b) || c || d || e - tostring (optional): return as string """ ors = [] if len(constraints) == 1: if isinstance(constraints[0], OgcExpression): flt = self.setConstraint(constraints[0]) else: self._root.append(And(operations=constraints[0]).toXML()) flt = self._root if tostring: return util.element_to_string(flt, xml_declaration=False) else: return flt for c in constraints: if isinstance(c, OgcExpression): ors.append(c) elif isinstance(c, list) or isinstance(c, tuple): if len(c) == 1: ors.append(c[0]) elif len(c) >= 2: ands = [] for sub in c: if isinstance(sub, OgcExpression): ands.append(sub) ors.append(And(operations=ands)) self._root.append(Or(operations=ors).toXML()) if tostring: return util.element_to_string(self._root, xml_declaration=False) return self._root class FilterCapabilities(object): """Abstraction for Filter_Capabilities 2.0""" def __init__(self, elem): if elem is None: self.spatial_operands = [] self.spatial_operators = [] self.temporal_operators = [] self.temporal_operands = [] self.scalar_comparison_operators = [] self.conformance = {} return # Spatial_Capabilities self.spatial_operands = [f.attrib.get('name') for f in elem.findall(util.nspath_eval( 'fes:Spatial_Capabilities/fes:GeometryOperands/fes:GeometryOperand', namespaces))] self.spatial_operators = [] for f in elem.findall(util.nspath_eval( 'fes:Spatial_Capabilities/fes:SpatialOperators/fes:SpatialOperator', namespaces)): self.spatial_operators.append(f.attrib['name']) # Temporal_Capabilities self.temporal_operands = [f.attrib.get('name') for f in elem.findall(util.nspath_eval( 'fes:Temporal_Capabilities/fes:TemporalOperands/fes:TemporalOperand', namespaces))] self.temporal_operators = [] for f in elem.findall(util.nspath_eval( 'fes:Temporal_Capabilities/fes:TemporalOperators/fes:TemporalOperator', namespaces)): self.temporal_operators.append(f.attrib['name']) # Scalar_Capabilities self.scalar_comparison_operators = [f.text for f in elem.findall(util.nspath_eval( 'fes:Scalar_Capabilities/fes:ComparisonOperators/fes:ComparisonOperator', namespaces))] # Conformance self.conformance = {} for f in elem.findall(util.nspath_eval('fes:Conformance/fes:Constraint', namespaces)): self.conformance[f.attrib.get('name')] = f.find(util.nspath_eval('ows110:DefaultValue', namespaces)).text def setsortby(parent, propertyname, order='ASC'): """ constructs a SortBy element Parameters ---------- - parent: parent etree.Element object - propertyname: the ValueReference - order: the SortOrder (default is 'ASC') """ tmp = etree.SubElement(parent, util.nspath_eval('fes:SortBy', namespaces)) tmp2 = etree.SubElement(tmp, util.nspath_eval('fes:SortProperty', namespaces)) etree.SubElement(tmp2, util.nspath_eval('fes:ValueReference', namespaces)).text = propertyname etree.SubElement(tmp2, util.nspath_eval('fes:SortOrder', namespaces)).text = order class SortProperty(object): def __init__(self, propertyname, order='ASC'): self.propertyname = propertyname self.order = order.upper() if self.order not in ['DESC', 'ASC']: raise ValueError("SortOrder can only be 'ASC' or 'DESC'") def toXML(self): node0 = etree.Element(util.nspath_eval("fes:SortProperty", namespaces)) etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname etree.SubElement(node0, util.nspath_eval('fes:SortOrder', namespaces)).text = self.order return node0 class SortBy(object): def __init__(self, properties): self.properties = properties def toXML(self): node0 = etree.Element(util.nspath_eval("fes:SortBy", namespaces)) for prop in self.properties: node0.append(prop.toXML()) return node0 class OgcExpression(object): def __init__(self): pass class BinaryComparisonOpType(OgcExpression): """ Super class of all the property operation classes""" def __init__(self, propertyoperator, propertyname, literal, matchcase=True): self.propertyoperator = propertyoperator self.propertyname = propertyname self.literal = literal self.matchcase = matchcase def toXML(self): node0 = etree.Element(util.nspath_eval(self.propertyoperator, namespaces)) if not self.matchcase: node0.set('matchCase', 'false') etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname etree.SubElement(node0, util.nspath_eval('fes:Literal', namespaces)).text = self.literal return node0 class PropertyIsEqualTo(BinaryComparisonOpType): """ PropertyIsEqualTo class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsEqualTo', propertyname, literal, matchcase) class PropertyIsNotEqualTo(BinaryComparisonOpType): """ PropertyIsNotEqualTo class """ def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsNotEqualTo', propertyname, literal, matchcase) class PropertyIsLessThan(BinaryComparisonOpType): """PropertyIsLessThan class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsLessThan', propertyname, literal, matchcase) class PropertyIsGreaterThan(BinaryComparisonOpType): """PropertyIsGreaterThan class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsGreaterThan', propertyname, literal, matchcase) class PropertyIsLessThanOrEqualTo(BinaryComparisonOpType): """PropertyIsLessThanOrEqualTo class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsLessThanOrEqualTo', propertyname, literal, matchcase) class PropertyIsGreaterThanOrEqualTo(BinaryComparisonOpType): """PropertyIsGreaterThanOrEqualTo class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsGreaterThanOrEqualTo', propertyname, literal, matchcase) class PropertyIsLike(OgcExpression): """PropertyIsLike class""" def __init__(self, propertyname, literal, escapeChar='\\', singleChar='_', wildCard='%', matchCase=True): self.propertyname = propertyname self.literal = literal self.escapeChar = escapeChar self.singleChar = singleChar self.wildCard = wildCard self.matchCase = matchCase def toXML(self): node0 = etree.Element(util.nspath_eval('fes:PropertyIsLike', namespaces)) node0.set('wildCard', self.wildCard) node0.set('singleChar', self.singleChar) node0.set('escapeChar', self.escapeChar) if not self.matchCase: node0.set('matchCase', 'false') etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname etree.SubElement(node0, util.nspath_eval('fes:Literal', namespaces)).text = self.literal return node0 class PropertyIsNull(OgcExpression): """PropertyIsNull class""" def __init__(self, propertyname): self.propertyname = propertyname def toXML(self): node0 = etree.Element(util.nspath_eval('fes:PropertyIsNull', namespaces)) etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname return node0 class PropertyIsBetween(OgcExpression): """PropertyIsBetween class""" def __init__(self, propertyname, lower, upper): self.propertyname = propertyname self.lower = lower self.upper = upper def toXML(self): node0 = etree.Element(util.nspath_eval('fes:PropertyIsBetween', namespaces)) etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname node1 = etree.SubElement(node0, util.nspath_eval('fes:LowerBoundary', namespaces)) etree.SubElement(node1, util.nspath_eval('fes:Literal', namespaces)).text = '%s' % self.lower node2 = etree.SubElement(node0, util.nspath_eval('fes:UpperBoundary', namespaces)) etree.SubElement(node2, util.nspath_eval('fes:Literal', namespaces)).text = '%s' % self.upper return node0 class BBox(OgcExpression): """Construct a BBox, two pairs of coordinates (west-south and east-north)""" def __init__(self, bbox, crs=None): self.bbox = bbox self.crs = crs def toXML(self): tmp = etree.Element(util.nspath_eval('fes:BBOX', namespaces)) etree.SubElement(tmp, util.nspath_eval('fes:ValueReference', namespaces)).text = 'ows:BoundingBox' tmp2 = etree.SubElement(tmp, util.nspath_eval('gml:Envelope', namespaces)) if self.crs is not None: tmp2.set('srsName', self.crs) etree.SubElement(tmp2, util.nspath_eval('gml:lowerCorner', namespaces)).text = '{} {}'.format( self.bbox[0], self.bbox[1]) etree.SubElement(tmp2, util.nspath_eval('gml:upperCorner', namespaces)).text = '{} {}'.format( self.bbox[2], self.bbox[3]) return tmp class Filter(OgcExpression): def __init__(self, filter): self.filter = filter def toXML(self): node = etree.Element(util.nspath_eval("fes:Filter", namespaces)) node.append(self.filter.toXML()) return node class TopologicalOpType(OgcExpression, metaclass=ABCMeta): """Abstract base class for topological operators.""" @property @abstractmethod def operation(self): """This is a mechanism to ensure this class is subclassed by an actual operation.""" pass def __init__(self, propertyname, geometry): self.propertyname = propertyname self.geometry = geometry def toXML(self): node = etree.Element(util.nspath_eval(f"fes:{self.operation}", namespaces)) etree.SubElement(node, util.nspath_eval("fes:ValueReference", namespaces)).text = self.propertyname node.append(self.geometry.toXML()) return node class Intersects(TopologicalOpType): operation = "Intersects" class Contains(TopologicalOpType): operation = "Contains" class Disjoint(TopologicalOpType): operation = "Disjoint" class Within(TopologicalOpType): operation = "Within" class Touches(TopologicalOpType): operation = "Touches" class Overlaps(TopologicalOpType): operation = "Overlaps" class Equals(TopologicalOpType): operation = "Equals" # BINARY class BinaryLogicOpType(OgcExpression): """ Binary Operators: And / Or """ def __init__(self, binary_operator, operations): self.binary_operator = binary_operator try: assert len(operations) >= 2 self.operations = operations except Exception: raise ValueError("Binary operations (And / Or) require a minimum of two operations to operate against") def toXML(self): node0 = etree.Element(util.nspath_eval(self.binary_operator, namespaces)) for op in self.operations: node0.append(op.toXML()) return node0 class And(BinaryLogicOpType): def __init__(self, operations): super(And, self).__init__('fes:And', operations) class Or(BinaryLogicOpType): def __init__(self, operations): super(Or, self).__init__('fes:Or', operations) # UNARY class UnaryLogicOpType(OgcExpression): """ Unary Operator: Not """ def __init__(self, unary_operator, operations): self.unary_operator = unary_operator self.operations = operations def toXML(self): node0 = etree.Element(util.nspath_eval(self.unary_operator, namespaces)) for op in self.operations: node0.append(op.toXML()) return node0 class Not(UnaryLogicOpType): def __init__(self, operations): super(Not, self).__init__('fes:Not', operations)
35.072289
119
0.64262
795105870929ac55e13dc4859ab6ef5980891470
1,239
py
Python
mnelab/dialogs/filterdialog.py
yop0/mnelab
12b62d0611ebc63bc23f7c9101d7eabdc1175055
[ "BSD-3-Clause" ]
null
null
null
mnelab/dialogs/filterdialog.py
yop0/mnelab
12b62d0611ebc63bc23f7c9101d7eabdc1175055
[ "BSD-3-Clause" ]
null
null
null
mnelab/dialogs/filterdialog.py
yop0/mnelab
12b62d0611ebc63bc23f7c9101d7eabdc1175055
[ "BSD-3-Clause" ]
null
null
null
# Authors: Clemens Brunner <clemens.brunner@gmail.com> # # License: BSD (3-clause) from PySide6.QtWidgets import (QDialog, QDialogButtonBox, QGridLayout, QLabel, QLineEdit, QVBoxLayout) class FilterDialog(QDialog): def __init__(self, parent): super().__init__(parent) self.setWindowTitle("Filter data") vbox = QVBoxLayout(self) grid = QGridLayout() grid.addWidget(QLabel("Low cutoff frequency (Hz):"), 0, 0) self.lowedit = QLineEdit() grid.addWidget(self.lowedit, 0, 1) grid.addWidget(QLabel("High cutoff frequency (Hz):"), 1, 0) self.highedit = QLineEdit() grid.addWidget(self.highedit, 1, 1) vbox.addLayout(grid) buttonbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) vbox.addWidget(buttonbox) buttonbox.accepted.connect(self.accept) buttonbox.rejected.connect(self.reject) vbox.setSizeConstraint(QVBoxLayout.SetFixedSize) @property def low(self): low = self.lowedit.text() return float(low) if low else None @property def high(self): high = self.highedit.text() return float(high) if high else None
33.486486
89
0.642454
7951060aa182d017c73ec27e51125688668499de
11,062
py
Python
sdk/python/pulumi_azure_nextgen/network/v20200601/get_load_balancer.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/network/v20200601/get_load_balancer.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/network/v20200601/get_load_balancer.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetLoadBalancerResult', 'AwaitableGetLoadBalancerResult', 'get_load_balancer', ] @pulumi.output_type class GetLoadBalancerResult: """ LoadBalancer resource. """ def __init__(__self__, backend_address_pools=None, etag=None, frontend_ip_configurations=None, id=None, inbound_nat_pools=None, inbound_nat_rules=None, load_balancing_rules=None, location=None, name=None, outbound_rules=None, probes=None, provisioning_state=None, resource_guid=None, sku=None, tags=None, type=None): if backend_address_pools and not isinstance(backend_address_pools, list): raise TypeError("Expected argument 'backend_address_pools' to be a list") pulumi.set(__self__, "backend_address_pools", backend_address_pools) if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if frontend_ip_configurations and not isinstance(frontend_ip_configurations, list): raise TypeError("Expected argument 'frontend_ip_configurations' to be a list") pulumi.set(__self__, "frontend_ip_configurations", frontend_ip_configurations) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if inbound_nat_pools and not isinstance(inbound_nat_pools, list): raise TypeError("Expected argument 'inbound_nat_pools' to be a list") pulumi.set(__self__, "inbound_nat_pools", inbound_nat_pools) if inbound_nat_rules and not isinstance(inbound_nat_rules, list): raise TypeError("Expected argument 'inbound_nat_rules' to be a list") pulumi.set(__self__, "inbound_nat_rules", inbound_nat_rules) if load_balancing_rules and not isinstance(load_balancing_rules, list): raise TypeError("Expected argument 'load_balancing_rules' to be a list") pulumi.set(__self__, "load_balancing_rules", load_balancing_rules) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if outbound_rules and not isinstance(outbound_rules, list): raise TypeError("Expected argument 'outbound_rules' to be a list") pulumi.set(__self__, "outbound_rules", outbound_rules) if probes and not isinstance(probes, list): raise TypeError("Expected argument 'probes' to be a list") pulumi.set(__self__, "probes", probes) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if resource_guid and not isinstance(resource_guid, str): raise TypeError("Expected argument 'resource_guid' to be a str") pulumi.set(__self__, "resource_guid", resource_guid) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter(name="backendAddressPools") def backend_address_pools(self) -> Optional[Sequence['outputs.BackendAddressPoolResponse']]: """ Collection of backend address pools used by a load balancer. """ return pulumi.get(self, "backend_address_pools") @property @pulumi.getter def etag(self) -> str: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter(name="frontendIPConfigurations") def frontend_ip_configurations(self) -> Optional[Sequence['outputs.FrontendIPConfigurationResponse']]: """ Object representing the frontend IPs to be used for the load balancer. """ return pulumi.get(self, "frontend_ip_configurations") @property @pulumi.getter def id(self) -> Optional[str]: """ Resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter(name="inboundNatPools") def inbound_nat_pools(self) -> Optional[Sequence['outputs.InboundNatPoolResponse']]: """ Defines an external port range for inbound NAT to a single backend port on NICs associated with a load balancer. Inbound NAT rules are created automatically for each NIC associated with the Load Balancer using an external port from this range. Defining an Inbound NAT pool on your Load Balancer is mutually exclusive with defining inbound Nat rules. Inbound NAT pools are referenced from virtual machine scale sets. NICs that are associated with individual virtual machines cannot reference an inbound NAT pool. They have to reference individual inbound NAT rules. """ return pulumi.get(self, "inbound_nat_pools") @property @pulumi.getter(name="inboundNatRules") def inbound_nat_rules(self) -> Optional[Sequence['outputs.InboundNatRuleResponse']]: """ Collection of inbound NAT Rules used by a load balancer. Defining inbound NAT rules on your load balancer is mutually exclusive with defining an inbound NAT pool. Inbound NAT pools are referenced from virtual machine scale sets. NICs that are associated with individual virtual machines cannot reference an Inbound NAT pool. They have to reference individual inbound NAT rules. """ return pulumi.get(self, "inbound_nat_rules") @property @pulumi.getter(name="loadBalancingRules") def load_balancing_rules(self) -> Optional[Sequence['outputs.LoadBalancingRuleResponse']]: """ Object collection representing the load balancing rules Gets the provisioning. """ return pulumi.get(self, "load_balancing_rules") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ Resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="outboundRules") def outbound_rules(self) -> Optional[Sequence['outputs.OutboundRuleResponse']]: """ The outbound rules. """ return pulumi.get(self, "outbound_rules") @property @pulumi.getter def probes(self) -> Optional[Sequence['outputs.ProbeResponse']]: """ Collection of probe objects used in the load balancer. """ return pulumi.get(self, "probes") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the load balancer resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceGuid") def resource_guid(self) -> str: """ The resource GUID property of the load balancer resource. """ return pulumi.get(self, "resource_guid") @property @pulumi.getter def sku(self) -> Optional['outputs.LoadBalancerSkuResponse']: """ The load balancer SKU. """ return pulumi.get(self, "sku") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type. """ return pulumi.get(self, "type") class AwaitableGetLoadBalancerResult(GetLoadBalancerResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetLoadBalancerResult( backend_address_pools=self.backend_address_pools, etag=self.etag, frontend_ip_configurations=self.frontend_ip_configurations, id=self.id, inbound_nat_pools=self.inbound_nat_pools, inbound_nat_rules=self.inbound_nat_rules, load_balancing_rules=self.load_balancing_rules, location=self.location, name=self.name, outbound_rules=self.outbound_rules, probes=self.probes, provisioning_state=self.provisioning_state, resource_guid=self.resource_guid, sku=self.sku, tags=self.tags, type=self.type) def get_load_balancer(expand: Optional[str] = None, load_balancer_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetLoadBalancerResult: """ LoadBalancer resource. :param str expand: Expands referenced resources. :param str load_balancer_name: The name of the load balancer. :param str resource_group_name: The name of the resource group. """ __args__ = dict() __args__['expand'] = expand __args__['loadBalancerName'] = load_balancer_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:network/v20200601:getLoadBalancer', __args__, opts=opts, typ=GetLoadBalancerResult).value return AwaitableGetLoadBalancerResult( backend_address_pools=__ret__.backend_address_pools, etag=__ret__.etag, frontend_ip_configurations=__ret__.frontend_ip_configurations, id=__ret__.id, inbound_nat_pools=__ret__.inbound_nat_pools, inbound_nat_rules=__ret__.inbound_nat_rules, load_balancing_rules=__ret__.load_balancing_rules, location=__ret__.location, name=__ret__.name, outbound_rules=__ret__.outbound_rules, probes=__ret__.probes, provisioning_state=__ret__.provisioning_state, resource_guid=__ret__.resource_guid, sku=__ret__.sku, tags=__ret__.tags, type=__ret__.type)
41.743396
572
0.6742
79510663a0962d73b9a7337e1963c47edb3c462c
520
py
Python
app.py
andrewst93/strava_snooper_dashboard
c7ed786a88e8f7116ce8a24a570752ffb84688ba
[ "MIT" ]
null
null
null
app.py
andrewst93/strava_snooper_dashboard
c7ed786a88e8f7116ce8a24a570752ffb84688ba
[ "MIT" ]
null
null
null
app.py
andrewst93/strava_snooper_dashboard
c7ed786a88e8f7116ce8a24a570752ffb84688ba
[ "MIT" ]
null
null
null
import dash import dash_bootstrap_components as dbc # used for debugging GCP app engine deployment issues try: import googleclouddebugger googleclouddebugger.enable(breakpoint_enable_canary=True) except ImportError: pass app = dash.Dash( __name__, external_stylesheets=[dbc.themes.UNITED], meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=1"}], ) # dbc.themes.UNITED app.title = "Strava Snooper" server = app.server app.config.suppress_callback_exceptions = True
26
87
0.759615
795106b0d72a2830f09c77655f36b0673c2d6017
1,606
py
Python
sources/model/finetuning/model_loaders/mobilenetv2.py
lthamm/concept-embeddings-and-ilp
27592c6424147a2fbb54d7daebc92cd72b3f4a0c
[ "MIT" ]
3
2020-11-02T12:21:29.000Z
2021-08-02T14:01:37.000Z
sources/model/finetuning/model_loaders/mobilenetv2.py
lthamm/concept-embeddings-and-ilp
27592c6424147a2fbb54d7daebc92cd72b3f4a0c
[ "MIT" ]
2
2020-11-06T07:58:13.000Z
2022-03-13T16:11:30.000Z
sources/model/finetuning/model_loaders/mobilenetv2.py
lthamm/concept-embeddings-and-ilp
27592c6424147a2fbb54d7daebc92cd72b3f4a0c
[ "MIT" ]
1
2020-11-03T14:54:16.000Z
2020-11-03T14:54:16.000Z
"""Loader of modified MobileNetV2 for finetuning on picasso dataset.""" from typing import Sequence, Dict import torch from torchvision.models import MobileNetV2, mobilenet_v2 from ..defaults import NUM_CLASSES MOBILENETV2_FINETUNE_LAYERS: Sequence[str] = ( 'features.17', 'features.18', 'classifier', ) """Layers to finetune (layer names from model.named_modules()) for modified ResNeXt.""" def modified_mobilenetv2(state_dict: Dict[str, torch.Tensor] = None, *, pretrained: bool = False, num_classes: int = NUM_CLASSES) -> MobileNetV2: """Modify a ResNeXt50 model to have num_classes output classes. A MobileNetV2 instance is created (initialized according to pretrained) and modified as follows: The last (and only) fully connected layer is replaced by one with num_classes output classes. :param pretrained: whether to initialize the model with the pretrained VGG16 weights where applicable; overridden by state_dict :param state_dict: state dict with which to initialize parameters :param num_classes: number of output classes of the modified model (no sigmoid applied) :return: the modified VGG instance; all non-modified layers are initialized with the pretrained weights if pretrained is True """ mobilenetv2: MobileNetV2 = mobilenet_v2(pretrained=pretrained) # Add fine-tuning/transfer learning modules mobilenetv2.classifier[1] = torch.nn.Linear(1280, num_classes) if state_dict is not None: mobilenetv2.load_state_dict(state_dict) return mobilenetv2
42.263158
100
0.733499
79510739c44972099a6d333af0af3b24386c65b9
17,382
py
Python
bot/cogs/bot.py
ScarletKing001/bot
b27c286f2ce648d021eed0c8e07476066b86dd98
[ "MIT" ]
null
null
null
bot/cogs/bot.py
ScarletKing001/bot
b27c286f2ce648d021eed0c8e07476066b86dd98
[ "MIT" ]
null
null
null
bot/cogs/bot.py
ScarletKing001/bot
b27c286f2ce648d021eed0c8e07476066b86dd98
[ "MIT" ]
null
null
null
import ast import logging import re import time from typing import Optional, Tuple from discord import Embed, Message, RawMessageUpdateEvent, TextChannel from discord.ext.commands import Cog, Context, command, group from bot.bot import Bot from bot.cogs.token_remover import TokenRemover from bot.constants import Categories, Channels, DEBUG_MODE, Guild, MODERATION_ROLES, Roles, URLs from bot.decorators import with_role from bot.utils.messages import wait_for_deletion log = logging.getLogger(__name__) RE_MARKDOWN = re.compile(r'([*_~`|>])') class BotCog(Cog, name="Bot"): """Bot information commands.""" def __init__(self, bot: Bot): self.bot = bot # Stores allowed channels plus epoch time since last call. self.channel_cooldowns = { Channels.python_discussion: 0, } # These channels will also work, but will not be subject to cooldown self.channel_whitelist = ( Channels.bot_commands, ) # Stores improperly formatted Python codeblock message ids and the corresponding bot message self.codeblock_message_ids = {} @group(invoke_without_command=True, name="bot", hidden=True) @with_role(Roles.verified) async def botinfo_group(self, ctx: Context) -> None: """Bot informational commands.""" await ctx.send_help(ctx.command) @botinfo_group.command(name='about', aliases=('info',), hidden=True) @with_role(Roles.verified) async def about_command(self, ctx: Context) -> None: """Get information about the bot.""" embed = Embed( description="A utility bot designed just for the Python server! Try `!help` for more info.", url="https://github.com/python-discord/bot" ) embed.add_field(name="Total Users", value=str(len(self.bot.get_guild(Guild.id).members))) embed.set_author( name="Python Bot", url="https://github.com/python-discord/bot", icon_url=URLs.bot_avatar ) await ctx.send(embed=embed) @command(name='echo', aliases=('print',)) @with_role(*MODERATION_ROLES) async def echo_command(self, ctx: Context, channel: Optional[TextChannel], *, text: str) -> None: """Repeat the given message in either a specified channel or the current channel.""" if channel is None: await ctx.send(text) else: await channel.send(text) @command(name='embed') @with_role(*MODERATION_ROLES) async def embed_command(self, ctx: Context, channel: Optional[TextChannel], *, text: str) -> None: """Send the input within an embed to either a specified channel or the current channel.""" embed = Embed(description=text) if channel is None: await ctx.send(embed=embed) else: await channel.send(embed=embed) def codeblock_stripping(self, msg: str, bad_ticks: bool) -> Optional[Tuple[Tuple[str, ...], str]]: """ Strip msg in order to find Python code. Tries to strip out Python code out of msg and returns the stripped block or None if the block is a valid Python codeblock. """ if msg.count("\n") >= 3: # Filtering valid Python codeblocks and exiting if a valid Python codeblock is found. if re.search("```(?:py|python)\n(.*?)```", msg, re.IGNORECASE | re.DOTALL) and not bad_ticks: log.trace( "Someone wrote a message that was already a " "valid Python syntax highlighted code block. No action taken." ) return None else: # Stripping backticks from every line of the message. log.trace(f"Stripping backticks from message.\n\n{msg}\n\n") content = "" for line in msg.splitlines(keepends=True): content += line.strip("`") content = content.strip() # Remove "Python" or "Py" from start of the message if it exists. log.trace(f"Removing 'py' or 'python' from message.\n\n{content}\n\n") pycode = False if content.lower().startswith("python"): content = content[6:] pycode = True elif content.lower().startswith("py"): content = content[2:] pycode = True if pycode: content = content.splitlines(keepends=True) # Check if there might be code in the first line, and preserve it. first_line = content[0] if " " in content[0]: first_space = first_line.index(" ") content[0] = first_line[first_space:] content = "".join(content) # If there's no code we can just get rid of the first line. else: content = "".join(content[1:]) # Strip it again to remove any leading whitespace. This is neccessary # if the first line of the message looked like ```python <code> old = content.strip() # Strips REPL code out of the message if there is any. content, repl_code = self.repl_stripping(old) if old != content: return (content, old), repl_code # Try to apply indentation fixes to the code. content = self.fix_indentation(content) # Check if the code contains backticks, if it does ignore the message. if "`" in content: log.trace("Detected ` inside the code, won't reply") return None else: log.trace(f"Returning message.\n\n{content}\n\n") return (content,), repl_code def fix_indentation(self, msg: str) -> str: """Attempts to fix badly indented code.""" def unindent(code: str, skip_spaces: int = 0) -> str: """Unindents all code down to the number of spaces given in skip_spaces.""" final = "" current = code[0] leading_spaces = 0 # Get numbers of spaces before code in the first line. while current == " ": current = code[leading_spaces + 1] leading_spaces += 1 leading_spaces -= skip_spaces # If there are any, remove that number of spaces from every line. if leading_spaces > 0: for line in code.splitlines(keepends=True): line = line[leading_spaces:] final += line return final else: return code # Apply fix for "all lines are overindented" case. msg = unindent(msg) # If the first line does not end with a colon, we can be # certain the next line will be on the same indentation level. # # If it does end with a colon, we will need to indent all successive # lines one additional level. first_line = msg.splitlines()[0] code = "".join(msg.splitlines(keepends=True)[1:]) if not first_line.endswith(":"): msg = f"{first_line}\n{unindent(code)}" else: msg = f"{first_line}\n{unindent(code, 4)}" return msg def repl_stripping(self, msg: str) -> Tuple[str, bool]: """ Strip msg in order to extract Python code out of REPL output. Tries to strip out REPL Python code out of msg and returns the stripped msg. Returns True for the boolean if REPL code was found in the input msg. """ final = "" for line in msg.splitlines(keepends=True): if line.startswith(">>>") or line.startswith("..."): final += line[4:] log.trace(f"Formatted: \n\n{msg}\n\n to \n\n{final}\n\n") if not final: log.trace(f"Found no REPL code in \n\n{msg}\n\n") return msg, False else: log.trace(f"Found REPL code in \n\n{msg}\n\n") return final.rstrip(), True def has_bad_ticks(self, msg: Message) -> bool: """Check to see if msg contains ticks that aren't '`'.""" not_backticks = [ "'''", '"""', "\u00b4\u00b4\u00b4", "\u2018\u2018\u2018", "\u2019\u2019\u2019", "\u2032\u2032\u2032", "\u201c\u201c\u201c", "\u201d\u201d\u201d", "\u2033\u2033\u2033", "\u3003\u3003\u3003" ] return msg.content[:3] in not_backticks @Cog.listener() async def on_message(self, msg: Message) -> None: """ Detect poorly formatted Python code in new messages. If poorly formatted code is detected, send the user a helpful message explaining how to do properly formatted Python syntax highlighting codeblocks. """ is_help_channel = ( getattr(msg.channel, "category", None) and msg.channel.category.id in (Categories.help_available, Categories.help_in_use) ) parse_codeblock = ( ( is_help_channel or msg.channel.id in self.channel_cooldowns or msg.channel.id in self.channel_whitelist ) and not msg.author.bot and len(msg.content.splitlines()) > 3 and not TokenRemover.find_token_in_message(msg) ) if parse_codeblock: # no token in the msg on_cooldown = (time.time() - self.channel_cooldowns.get(msg.channel.id, 0)) < 300 if not on_cooldown or DEBUG_MODE: try: if self.has_bad_ticks(msg): ticks = msg.content[:3] content = self.codeblock_stripping(f"```{msg.content[3:-3]}```", True) if content is None: return content, repl_code = content if len(content) == 2: content = content[1] else: content = content[0] space_left = 204 if len(content) >= space_left: current_length = 0 lines_walked = 0 for line in content.splitlines(keepends=True): if current_length + len(line) > space_left or lines_walked == 10: break current_length += len(line) lines_walked += 1 content = content[:current_length] + "#..." content_escaped_markdown = RE_MARKDOWN.sub(r'\\\1', content) howto = ( "It looks like you are trying to paste code into this channel.\n\n" "You seem to be using the wrong symbols to indicate where the codeblock should start. " f"The correct symbols would be \\`\\`\\`, not `{ticks}`.\n\n" "**Here is an example of how it should look:**\n" f"\\`\\`\\`python\n{content_escaped_markdown}\n\\`\\`\\`\n\n" "**This will result in the following:**\n" f"```python\n{content}\n```" ) else: howto = "" content = self.codeblock_stripping(msg.content, False) if content is None: return content, repl_code = content # Attempts to parse the message into an AST node. # Invalid Python code will raise a SyntaxError. tree = ast.parse(content[0]) # Multiple lines of single words could be interpreted as expressions. # This check is to avoid all nodes being parsed as expressions. # (e.g. words over multiple lines) if not all(isinstance(node, ast.Expr) for node in tree.body) or repl_code: # Shorten the code to 10 lines and/or 204 characters. space_left = 204 if content and repl_code: content = content[1] else: content = content[0] if len(content) >= space_left: current_length = 0 lines_walked = 0 for line in content.splitlines(keepends=True): if current_length + len(line) > space_left or lines_walked == 10: break current_length += len(line) lines_walked += 1 content = content[:current_length] + "#..." content_escaped_markdown = RE_MARKDOWN.sub(r'\\\1', content) howto += ( "It looks like you're trying to paste code into this channel.\n\n" "Discord has support for Markdown, which allows you to post code with full " "syntax highlighting. Please use these whenever you paste code, as this " "helps improve the legibility and makes it easier for us to help you.\n\n" f"**To do this, use the following method:**\n" f"\\`\\`\\`python\n{content_escaped_markdown}\n\\`\\`\\`\n\n" "**This will result in the following:**\n" f"```python\n{content}\n```" ) log.debug(f"{msg.author} posted something that needed to be put inside python code " "blocks. Sending the user some instructions.") else: log.trace("The code consists only of expressions, not sending instructions") if howto != "": # Increase amount of codeblock correction in stats self.bot.stats.incr("codeblock_corrections") howto_embed = Embed(description=howto) bot_message = await msg.channel.send(f"Hey {msg.author.mention}!", embed=howto_embed) self.codeblock_message_ids[msg.id] = bot_message.id self.bot.loop.create_task( wait_for_deletion(bot_message, user_ids=(msg.author.id,), client=self.bot) ) else: return if msg.channel.id not in self.channel_whitelist: self.channel_cooldowns[msg.channel.id] = time.time() except SyntaxError: log.trace( f"{msg.author} posted in a help channel, and when we tried to parse it as Python code, " "ast.parse raised a SyntaxError. This probably just means it wasn't Python code. " f"The message that was posted was:\n\n{msg.content}\n\n" ) @Cog.listener() async def on_raw_message_edit(self, payload: RawMessageUpdateEvent) -> None: """Check to see if an edited message (previously called out) still contains poorly formatted code.""" if ( # Checks to see if the message was called out by the bot payload.message_id not in self.codeblock_message_ids # Makes sure that there is content in the message or payload.data.get("content") is None # Makes sure there's a channel id in the message payload or payload.data.get("channel_id") is None ): return # Retrieve channel and message objects for use later channel = self.bot.get_channel(int(payload.data.get("channel_id"))) user_message = await channel.fetch_message(payload.message_id) # Checks to see if the user has corrected their codeblock. If it's fixed, has_fixed_codeblock will be None has_fixed_codeblock = self.codeblock_stripping(payload.data.get("content"), self.has_bad_ticks(user_message)) # If the message is fixed, delete the bot message and the entry from the id dictionary if has_fixed_codeblock is None: bot_message = await channel.fetch_message(self.codeblock_message_ids[payload.message_id]) await bot_message.delete() del self.codeblock_message_ids[payload.message_id] log.trace("User's incorrect code block has been fixed. Removing bot formatting message.") def setup(bot: Bot) -> None: """Load the Bot cog.""" bot.add_cog(BotCog(bot))
45.031088
117
0.532562
7951076e110e17f2b5c45264d7c7e1a8114f5963
6,305
py
Python
postgresqleu/confreg/campaigns.py
dlangille/pgeu-system
3f1910010063bab118e94a55ed757b23f1d36bf5
[ "MIT" ]
null
null
null
postgresqleu/confreg/campaigns.py
dlangille/pgeu-system
3f1910010063bab118e94a55ed757b23f1d36bf5
[ "MIT" ]
null
null
null
postgresqleu/confreg/campaigns.py
dlangille/pgeu-system
3f1910010063bab118e94a55ed757b23f1d36bf5
[ "MIT" ]
null
null
null
from django import forms from django.core.exceptions import ValidationError from django.http import Http404, HttpResponse from django.utils.dateparse import parse_datetime, parse_duration from postgresqleu.confreg.jinjafunc import JinjaTemplateValidator, render_sandboxed_template from postgresqleu.util.widgets import MonospaceTextarea from postgresqleu.confreg.models import ConferenceSession, Track from postgresqleu.confreg.twitter import post_conference_tweet import datetime import random def _timestamps_for_tweets(conference, starttime, interval, randint, num): if isinstance(starttime, datetime.datetime): t = starttime else: t = parse_datetime(starttime) if isinstance(interval, datetime.time): ival = datetime.timedelta(hours=interval.hour, minutes=interval.minute, seconds=interval.second) else: ival = parse_duration(interval) if isinstance(randint, datetime.time): rsec = datetime.timedelta(hours=randint.hour, minutes=randint.minute, seconds=randint.second).total_seconds() else: rsec = parse_duration(randint).total_seconds() for i in range(num): yield t t += ival t += datetime.timedelta(seconds=rsec * random.random()) if t.time() > conference.twitter_timewindow_end: t = datetime.datetime.combine(t.date() + datetime.timedelta(days=1), conference.twitter_timewindow_start) class BaseCampaignForm(forms.Form): starttime = forms.DateTimeField(label="Date and time of first tweet", initial=datetime.datetime.now) timebetween = forms.TimeField(label="Time between tweets", initial=datetime.time(6, 0, 0)) timerandom = forms.TimeField(label="Time randomization", initial=datetime.time(0, 30, 0), help_text="A random time from zero to this is added after each time interval") content_template = forms.CharField(max_length=2000, widget=MonospaceTextarea, required=True) dynamic_preview_fields = ['content_template', ] confirm = forms.BooleanField(help_text="Confirm that you want to generate all the tweets for this campaign at this time", required=False) def __init__(self, conference, *args, **kwargs): self.conference = conference self.field_order = ['starttime', 'timebetween', 'timerandom', 'content_template'] + self.custom_fields + ['confirm', ] super(BaseCampaignForm, self).__init__(*args, *kwargs) if not all([self.data.get(f) for f in ['starttime', 'timebetween', 'timerandom', 'content_template'] + self.custom_fields]): del self.fields['confirm'] else: num = self.get_queryset().count() tsl = list(_timestamps_for_tweets(conference, self.data.get('starttime'), self.data.get('timebetween'), self.data.get('timerandom'), num, )) if tsl: approxend = tsl[-1] self.fields['confirm'].help_text = "Confirm that you want to generate all the tweets for this campaign at this time. Campaign will go on until approximately {}, with {} posts.".format(approxend, num) else: self.fields['confirm'].help_text = "Campaign matches no entries. Try again." def clean_confirm(self): if not self.cleaned_data['confirm']: if self.get_queryset().count == 0: del self.fields['confirm'] else: raise ValidationError("Please check thix box to confirm that you want to generate all tweets!") def clean(self): if self.get_queryset().count() == 0: self.add_error(None, 'Current filters return no entries. Fix your filters and try again!') del self.fields['confirm'] return self.cleaned_data class ApprovedSessionsCampaignForm(BaseCampaignForm): tracks = forms.ModelMultipleChoiceField(required=True, queryset=Track.objects.all()) custom_fields = ['tracks', ] def __init__(self, *args, **kwargs): super(ApprovedSessionsCampaignForm, self).__init__(*args, **kwargs) self.fields['tracks'].queryset = Track.objects.filter(conference=self.conference) @classmethod def generate_tweet(cls, conference, session, s): return render_sandboxed_template(s, { 'conference': conference, 'session': session, }).strip()[:249] def get_queryset(self): return ConferenceSession.objects.filter(conference=self.conference, status=1, cross_schedule=False, track__in=self.data.getlist('tracks')) def generate_tweets(self, author): sessions = list(self.get_queryset().order_by('?')) for ts, session in zip(_timestamps_for_tweets(self.conference, self.cleaned_data['starttime'], self.cleaned_data['timebetween'], self.cleaned_data['timerandom'], len(sessions)), sessions): post_conference_tweet(self.conference, self.generate_tweet(self.conference, session, self.cleaned_data['content_template']), approved=False, posttime=ts, author=author) class ApprovedSessionsCampaign(object): name = "Approved sessions campaign" form = ApprovedSessionsCampaignForm note = "This campaign will create one tweet for each approved session in the system." @classmethod def get_dynamic_preview(self, conference, fieldname, s): if fieldname == 'content_template': # Generate a preview of 3 (an arbitrary number) sessions return HttpResponse("\n\n-------------------------------\n\n".join([ self.form.generate_tweet(conference, session, s) for session in ConferenceSession.objects.filter(conference=conference, status=1, cross_schedule=False)[:3] ]), content_type='text/plain') allcampaigns = ( (1, ApprovedSessionsCampaign), ) def get_campaign_from_id(id): for i, c in allcampaigns: if i == int(id): return c raise Http404()
44.716312
215
0.644409
79510915e3a84e62793522fc762dfb767a3322dd
3,256
py
Python
recipe_server/settings.py
Shouyin/Recipe
dffaafdebefd7c39a1438444db910f5d7943cf1f
[ "MIT" ]
null
null
null
recipe_server/settings.py
Shouyin/Recipe
dffaafdebefd7c39a1438444db910f5d7943cf1f
[ "MIT" ]
null
null
null
recipe_server/settings.py
Shouyin/Recipe
dffaafdebefd7c39a1438444db910f5d7943cf1f
[ "MIT" ]
null
null
null
""" Django settings for recipe_server project. Generated by 'django-admin startproject' using Django 2.1.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'wqk&u-eqcds3hp8hwr_a88(=n3$nh!nmc&pxub-c%yknibua*+' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["0.0.0.0", "127.0.0.1"] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'recipe_server.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, "recipe_server//templates")], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'recipe_server.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "recipe_server/static") ]
26.258065
91
0.698403
795109620dee96ad8eef48181ff1ae3077d016d2
477
py
Python
TradzQAI/tools/indicators/moving_average_convergence_divergence.py
kkuette/AI_project
1f46cb2536b24cb3716250f1e9705daa76af4f60
[ "Apache-2.0" ]
164
2017-11-24T13:07:04.000Z
2022-03-10T04:54:46.000Z
TradzQAI/tools/indicators/moving_average_convergence_divergence.py
kkuette/AI_project
1f46cb2536b24cb3716250f1e9705daa76af4f60
[ "Apache-2.0" ]
21
2018-09-29T10:27:10.000Z
2019-06-12T07:01:58.000Z
TradzQAI/tools/indicators/moving_average_convergence_divergence.py
kkuette/AI_project
1f46cb2536b24cb3716250f1e9705daa76af4f60
[ "Apache-2.0" ]
49
2018-05-09T17:28:52.000Z
2022-02-27T04:50:45.000Z
from .catch_errors import check_for_period_error from .exponential_moving_average import exponential_moving_average as ema def moving_average_convergence_divergence(data, short_period, long_period): """ Moving Average Convergence Divergence. Formula: EMA(DATA, P1) - EMA(DATA, P2) """ check_for_period_error(data, short_period) check_for_period_error(data, long_period) macd = ema(data, short_period) - ema(data, long_period) return macd
29.8125
75
0.761006
795109640595dd9efe5b95216067e6fd4053d037
2,795
py
Python
model/bisenet/cityscapes.bisenet.X39.speed/config.py
akinoriosamura/TorchSeg-mirror
34033fe85fc24015bcef7a92aad39d2a25a001a5
[ "MIT" ]
null
null
null
model/bisenet/cityscapes.bisenet.X39.speed/config.py
akinoriosamura/TorchSeg-mirror
34033fe85fc24015bcef7a92aad39d2a25a001a5
[ "MIT" ]
1
2021-06-08T20:36:43.000Z
2021-06-08T20:36:43.000Z
model/bisenet/cityscapes.bisenet.X39.speed/config.py
akinoriosamura/TorchSeg-mirror
34033fe85fc24015bcef7a92aad39d2a25a001a5
[ "MIT" ]
null
null
null
# encoding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path as osp import sys import time import numpy as np from easydict import EasyDict as edict import argparse import torch.utils.model_zoo as model_zoo C = edict() config = C cfg = C C.seed = 12345 """please config ROOT_dir and user when u first using""" C.repo_name = 'TorchSeg' C.abs_dir = osp.realpath(".") C.this_dir = C.abs_dir.split(osp.sep)[-1] C.root_dir = C.abs_dir[:C.abs_dir.index(C.repo_name) + len(C.repo_name)] C.log_dir = osp.abspath(osp.join(C.root_dir, 'log', C.this_dir)) C.log_dir_link = osp.join(C.abs_dir, 'log') C.snapshot_dir = osp.abspath(osp.join(C.log_dir, "snapshot")) exp_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) C.log_file = C.log_dir + '/log_' + exp_time + '.log' C.link_log_file = C.log_file + '/log_last.log' C.val_log_file = C.log_dir + '/val_' + exp_time + '.log' C.link_val_log_file = C.log_dir + '/val_last.log' """Data Dir and Weight Dir""" C.dataset_path = "./Cityscapes/" C.img_root_folder = C.dataset_path C.gt_root_folder = C.dataset_path C.train_source = osp.join(C.dataset_path, "config_new/train.txt") C.eval_source = osp.join(C.dataset_path, "config_new/val.txt") C.test_source = osp.join(C.dataset_path, "config_new/test.txt") C.is_test = False """Path Config""" def add_path(path): if path not in sys.path: sys.path.insert(0, path) add_path(osp.join(C.root_dir, 'furnace')) """Image Config""" C.num_classes = 19 C.background = -1 C.image_mean = np.array([0.485, 0.456, 0.406]) # 0.485, 0.456, 0.406 C.image_std = np.array([0.229, 0.224, 0.225]) C.target_size = 1024 C.base_size = 832 C.image_height = 768 C.image_width = 1536 C.gt_down_sampling = 8 C.num_train_imgs = 2975 C.num_eval_imgs = 500 """ Settings for network, this would be different for each kind of model""" C.fix_bias = True C.fix_bn = False C.sync_bn = True C.bn_eps = 1e-5 C.bn_momentum = 0.1 C.pretrained_model = None """Train Config""" C.lr = 1e-2 C.lr_power = 0.9 C.momentum = 0.9 C.weight_decay = 5e-4 C.batch_size = 16 #4 * C.num_gpu C.nepochs = 140 C.niters_per_epoch = 1000 C.num_workers = 24 C.train_scale_array = [0.5, 0.75, 1, 1.25, 1.5, 1.75] """Eval Config""" C.eval_iter = 30 C.eval_stride_rate = 2 / 3 C.eval_scale_array = [1, ] C.eval_flip = False C.eval_height = 768 C.eval_width = 1536 """Display Config""" C.snapshot_iter = 50 C.record_info_iter = 20 C.display_iter = 50 def open_tensorboard(): pass if __name__ == '__main__': print(config.epoch_num) parser = argparse.ArgumentParser() parser.add_argument( '-tb', '--tensorboard', default=False, action='store_true') args = parser.parse_args() if args.tensorboard: open_tensorboard()
24.517544
75
0.705903
79510a132a03ad52247d6225179f22e115a72115
44
py
Python
template_globals.py
d7d4af8/2047
bd6781b9502c6fdbd4745be5084977f679fa3fc5
[ "MIT" ]
35
2020-09-01T00:34:50.000Z
2022-03-29T13:14:15.000Z
template_globals.py
d7d4af8/2047
bd6781b9502c6fdbd4745be5084977f679fa3fc5
[ "MIT" ]
3
2020-08-19T20:47:19.000Z
2021-09-06T23:55:49.000Z
template_globals.py
d7d4af8/2047
bd6781b9502c6fdbd4745be5084977f679fa3fc5
[ "MIT" ]
10
2020-08-07T02:20:09.000Z
2022-01-30T06:43:45.000Z
# ugh tgr = template_globals_registry = {}
11
36
0.704545
79510a13d24ba241a9d15975500dc74c0c44de73
1,184
py
Python
octavia/amphorae/backends/agent/api_server/certificate_update.py
zhangi/octavia
e68c851fecf55e1b5ffe7d5b849f729626af28a3
[ "Apache-2.0" ]
129
2015-06-23T08:06:23.000Z
2022-03-31T12:38:20.000Z
octavia/amphorae/backends/agent/api_server/certificate_update.py
zhangi/octavia
e68c851fecf55e1b5ffe7d5b849f729626af28a3
[ "Apache-2.0" ]
10
2020-09-18T12:17:59.000Z
2022-03-14T15:45:38.000Z
octavia/amphorae/backends/agent/api_server/certificate_update.py
zhangi/octavia
e68c851fecf55e1b5ffe7d5b849f729626af28a3
[ "Apache-2.0" ]
166
2015-07-15T16:24:05.000Z
2022-03-02T20:54:36.000Z
# Copyright 2015 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import stat import flask from oslo_config import cfg import webob BUFFER = 1024 CONF = cfg.CONF def upload_server_cert(): stream = flask.request.stream file_path = CONF.amphora_agent.agent_server_cert flags = os.O_WRONLY | os.O_CREAT | os.O_TRUNC # mode 00600 mode = stat.S_IRUSR | stat.S_IWUSR with os.fdopen(os.open(file_path, flags, mode), 'wb') as crt_file: b = stream.read(BUFFER) while b: crt_file.write(b) b = stream.read(BUFFER) return webob.Response(json={'message': 'OK'}, status=202)
29.6
75
0.715372
79510a60ecc896e04e7a1aee05ef5fd4c130061f
6,164
py
Python
ask-sdk-dynamodb-persistence-adapter/tests/unit/test_partition_keygen.py
P2707951/alexa-skills-kit-sdk-for-python
dd16873682ecb8061eec66835c1dbddbb121467d
[ "Apache-2.0" ]
1
2020-06-13T14:14:26.000Z
2020-06-13T14:14:26.000Z
ask-sdk-dynamodb-persistence-adapter/tests/unit/test_partition_keygen.py
P2707951/alexa-skills-kit-sdk-for-python
dd16873682ecb8061eec66835c1dbddbb121467d
[ "Apache-2.0" ]
null
null
null
ask-sdk-dynamodb-persistence-adapter/tests/unit/test_partition_keygen.py
P2707951/alexa-skills-kit-sdk-for-python
dd16873682ecb8061eec66835c1dbddbb121467d
[ "Apache-2.0" ]
2
2019-11-22T14:52:47.000Z
2021-06-18T13:46:15.000Z
# -*- coding: utf-8 -*- # # Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights # Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the # License. # import unittest from ask_sdk_model import RequestEnvelope, Context, User, Device from ask_sdk_model.interfaces.system import SystemState from ask_sdk_core.exceptions import PersistenceException from ask_sdk_dynamodb.partition_keygen import ( user_id_partition_keygen, device_id_partition_keygen) class TestPartitionKeyGenerators(unittest.TestCase): def setUp(self): self.request_envelope = RequestEnvelope() self.context = Context() self.system = SystemState() self.user = User() self.device = Device() def test_valid_user_id_partition_keygen(self): self.user.user_id = "123" self.system.user = self.user self.context.system = self.system self.request_envelope.context = self.context assert user_id_partition_keygen(self.request_envelope) == "123", ( "User Id Partition Key Generation retrieved wrong user id from " "valid request envelope") def test_user_id_partition_keygen_raise_error_when_request_envelope_null(self): with self.assertRaises(PersistenceException) as exc: user_id_partition_keygen(request_envelope=None) assert "Couldn't retrieve user id from request envelope" in str( exc.exception), ( "User Id Partition Key Generation didn't throw exception when " "null request envelope is provided") def test_user_id_partition_keygen_raise_error_when_context_null(self): with self.assertRaises(PersistenceException) as exc: user_id_partition_keygen(request_envelope=self.request_envelope) assert "Couldn't retrieve user id from request envelope" in str( exc.exception), ( "User Id Partition Key Generation didn't throw exception when " "null context provided in request envelope") def test_user_id_partition_keygen_raise_error_when_system_null(self): self.request_envelope.context = self.context with self.assertRaises(PersistenceException) as exc: user_id_partition_keygen(request_envelope=self.request_envelope) assert "Couldn't retrieve user id from request envelope" in str( exc.exception), ( "User Id Partition Key Generation didn't throw exception when " "null system provided in context of " "request envelope") def test_user_id_partition_keygen_raise_error_when_user_null(self): self.context.system = self.system self.request_envelope.context = self.context with self.assertRaises(PersistenceException) as exc: user_id_partition_keygen(request_envelope=self.request_envelope) assert "Couldn't retrieve user id from request envelope" in str( exc.exception), ( "User Id Partition Key Generation didn't throw exception when " "null user provided in context.system of " "request envelope") def test_valid_device_id_partition_keygen(self): self.device.device_id = "123" self.system.device = self.device self.context.system = self.system self.request_envelope.context = self.context assert device_id_partition_keygen(self.request_envelope) == "123", ( "Device Id Partition Key Generation retrieved wrong device id " "from valid request envelope") def test_device_id_partition_keygen_raise_error_when_request_envelope_null(self): with self.assertRaises(PersistenceException) as exc: device_id_partition_keygen(request_envelope=None) assert "Couldn't retrieve device id from request envelope" in str( exc.exception), ( "Device Id Partition Key Generation didn't throw exception when " "null request envelope is provided") def test_device_id_partition_keygen_raise_error_when_context_null(self): with self.assertRaises(PersistenceException) as exc: device_id_partition_keygen(request_envelope=self.request_envelope) assert "Couldn't retrieve device id from request envelope" in str( exc.exception), ( "Device Id Partition Key Generation didn't throw exception when " "null context provided in request envelope") def test_device_id_partition_keygen_raise_error_when_system_null(self): self.request_envelope.context = self.context with self.assertRaises(PersistenceException) as exc: device_id_partition_keygen(request_envelope=self.request_envelope) assert "Couldn't retrieve device id from request envelope" in str( exc.exception), ( "Device Id Partition Key Generation didn't throw exception when " "null system provided in context of " "request envelope") def test_device_id_partition_keygen_raise_error_when_device_null(self): self.context.system = self.system self.request_envelope.context = self.context with self.assertRaises(PersistenceException) as exc: device_id_partition_keygen(request_envelope=self.request_envelope) assert "Couldn't retrieve device id from request envelope" in str( exc.exception), ( "Device Id Partition Key Generation didn't throw exception when " "null device provided in context.system of " "request envelope") def tearDown(self): self.request_envelope = None self.context = None self.system = None self.user = None self.device = None
41.931973
85
0.701979
79510a77e47c0d173f9641b524ceef32d4c5a3a2
3,940
py
Python
apps/article/dashboard/views.py
kharann/onlineweb4
1130128c6233b623780779a25934ea73ef62c264
[ "MIT" ]
null
null
null
apps/article/dashboard/views.py
kharann/onlineweb4
1130128c6233b623780779a25934ea73ef62c264
[ "MIT" ]
null
null
null
apps/article/dashboard/views.py
kharann/onlineweb4
1130128c6233b623780779a25934ea73ef62c264
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- from collections import Counter from logging import getLogger from django.contrib import messages from django.contrib.contenttypes.models import ContentType from django.shortcuts import get_object_or_404, redirect, render from guardian.decorators import permission_required from taggit.models import TaggedItem from apps.article.dashboard.forms import ArticleForm from apps.article.models import Article from apps.dashboard.tools import check_access_or_403, get_base_context @permission_required('article.view_article', return_403=True) def article_index(request): check_access_or_403(request) context = get_base_context(request) context['articles'] = Article.objects.all().order_by('-published_date') context['years'] = sorted(list(set(a.published_date.year for a in context['articles'])), reverse=True) context['pages'] = list(range(1, context['articles'].count() // 10 + 2)) # Fetch 30 most popular tags from the Django-taggit registry, using a Counter queryset = TaggedItem.objects.filter(content_type=ContentType.objects.get_for_model(Article)) context['tags'] = Counter(map(lambda item: item.tag, queryset)).most_common(30) return render(request, 'article/dashboard/article_index.html', context) @permission_required('article.add_article', return_403=True) def article_create(request): check_access_or_403(request) form = ArticleForm() if request.method == 'POST': form = ArticleForm(request.POST) if form.is_valid(): instance = form.save(commit=False) instance.changed_by = request.user instance.created_by = request.user instance.save() form.save_m2m() messages.success(request, 'Artikkelen ble opprettet.') return redirect(article_detail, article_id=instance.pk) else: messages.error(request, 'Noen av de påkrevde feltene inneholder feil.') context = get_base_context(request) context['form'] = form return render(request, 'article/dashboard/article_create.html', context) @permission_required('article.view_article', return_403=True) def article_detail(request, article_id): check_access_or_403(request) article = get_object_or_404(Article, pk=article_id) context = get_base_context(request) context['article'] = article return render(request, 'article/dashboard/article_detail.html', context) @permission_required('article.change_article', return_403=True) def article_edit(request, article_id): check_access_or_403(request) article = get_object_or_404(Article, pk=article_id) form = ArticleForm(instance=article) if request.method == 'POST': if 'action' in request.POST and request.POST['action'] == 'delete': instance = get_object_or_404(Article, pk=article_id) article_heading = instance.heading article_id = instance.id instance.delete() messages.success(request, '%s ble slettet.' % article_heading) getLogger(__name__).info('%s deleted article %d (%s)' % (request.user, article_id, article_heading)) return redirect(article_index) form = ArticleForm(request.POST, instance=article) if form.is_valid(): instance = form.save(commit=False) instance.changed_by = request.user instance.save() form.save_m2m() messages.success(request, 'Artikkelen ble lagret.') getLogger(__name__).info('%s edited article %d (%s)' % (request.user, instance.id, instance.heading)) return redirect(article_index) else: messages.error(request, 'Noen av de påkrevde feltene inneholder feil.') context = get_base_context(request) context['form'] = form context['edit'] = True return render(request, 'article/dashboard/article_create.html', context)
36.146789
113
0.702284
79510be763eb0609efcba32abd9bcc49040f3f65
6,951
py
Python
tempest/tests/cmd/test_tempest_init.py
mail2nsrajesh/tempest
1a3b3dc50b418d3a15839830d7d1ff88c8c76cff
[ "Apache-2.0" ]
1
2021-05-21T08:24:02.000Z
2021-05-21T08:24:02.000Z
tempest/tests/cmd/test_tempest_init.py
mail2nsrajesh/tempest
1a3b3dc50b418d3a15839830d7d1ff88c8c76cff
[ "Apache-2.0" ]
null
null
null
tempest/tests/cmd/test_tempest_init.py
mail2nsrajesh/tempest
1a3b3dc50b418d3a15839830d7d1ff88c8c76cff
[ "Apache-2.0" ]
5
2016-06-24T20:03:52.000Z
2020-02-05T10:14:54.000Z
# Copyright 2015 Hewlett-Packard Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import fixtures from tempest.cmd import init from tempest.tests import base class TestTempestInit(base.TestCase): def test_generate_testr_conf(self): # Create fake conf dir conf_dir = self.useFixture(fixtures.TempDir()) init_cmd = init.TempestInit(None, None) init_cmd.generate_testr_conf(conf_dir.path) # Generate expected file contents top_level_path = os.path.dirname(os.path.dirname(init.__file__)) discover_path = os.path.join(top_level_path, 'test_discover') testr_conf_file = init.TESTR_CONF % (top_level_path, discover_path) conf_path = conf_dir.join('.testr.conf') with open(conf_path, 'r') as conf_file: self.assertEqual(conf_file.read(), testr_conf_file) def test_generate_sample_config(self): local_dir = self.useFixture(fixtures.TempDir()) etc_dir_path = os.path.join(local_dir.path, 'etc/') os.mkdir(etc_dir_path) init_cmd = init.TempestInit(None, None) local_sample_conf_file = os.path.join(etc_dir_path, 'tempest.conf.sample') # Verify no sample config file exist self.assertFalse(os.path.isfile(local_sample_conf_file)) init_cmd.generate_sample_config(local_dir.path) # Verify sample config file exist with some content self.assertTrue(os.path.isfile(local_sample_conf_file)) self.assertGreater(os.path.getsize(local_sample_conf_file), 0) def test_update_local_conf(self): local_dir = self.useFixture(fixtures.TempDir()) etc_dir_path = os.path.join(local_dir.path, 'etc/') os.mkdir(etc_dir_path) lock_dir = os.path.join(local_dir.path, 'tempest_lock') config_path = os.path.join(etc_dir_path, 'tempest.conf') log_dir = os.path.join(local_dir.path, 'logs') init_cmd = init.TempestInit(None, None) # Generate the config file init_cmd.generate_sample_config(local_dir.path) # Create a conf file with populated values config_parser_pre = init_cmd.get_configparser(config_path) with open(config_path, 'w+') as conf_file: # create the same section init will check for and add values to config_parser_pre.add_section('oslo_concurrency') config_parser_pre.set('oslo_concurrency', 'TEST', local_dir.path) # create a new section config_parser_pre.add_section('TEST') config_parser_pre.set('TEST', 'foo', "bar") config_parser_pre.write(conf_file) # Update the config file the same way tempest init does init_cmd.update_local_conf(config_path, lock_dir, log_dir) # parse the new config file to verify it config_parser_post = init_cmd.get_configparser(config_path) # check that our value in oslo_concurrency wasn't overwritten self.assertTrue(config_parser_post.has_section('oslo_concurrency')) self.assertEqual(config_parser_post.get('oslo_concurrency', 'TEST'), local_dir.path) # check that the lock directory was set correctly self.assertEqual(config_parser_post.get('oslo_concurrency', 'lock_path'), lock_dir) # check that our new section still exists and wasn't modified self.assertTrue(config_parser_post.has_section('TEST')) self.assertEqual(config_parser_post.get('TEST', 'foo'), 'bar') # check that the DEFAULT values are correct # NOTE(auggy): has_section ignores DEFAULT self.assertEqual(config_parser_post.get('DEFAULT', 'log_dir'), log_dir) def test_create_working_dir_with_existing_local_dir_non_empty(self): fake_local_dir = self.useFixture(fixtures.TempDir()) fake_local_conf_dir = self.useFixture(fixtures.TempDir()) open("%s/foo" % fake_local_dir.path, 'w').close() _init = init.TempestInit(None, None) self.assertRaises(OSError, _init.create_working_dir, fake_local_dir.path, fake_local_conf_dir.path) def test_create_working_dir(self): fake_local_dir = self.useFixture(fixtures.TempDir()) fake_local_conf_dir = self.useFixture(fixtures.TempDir()) os.rmdir(fake_local_dir.path) # Create a fake conf file fake_file = fake_local_conf_dir.join('conf_file.conf') open(fake_file, 'w').close() init_cmd = init.TempestInit(None, None) init_cmd.create_working_dir(fake_local_dir.path, fake_local_conf_dir.path) # Assert directories are created lock_path = os.path.join(fake_local_dir.path, 'tempest_lock') etc_dir = os.path.join(fake_local_dir.path, 'etc') log_dir = os.path.join(fake_local_dir.path, 'logs') testr_dir = os.path.join(fake_local_dir.path, '.testrepository') self.assertTrue(os.path.isdir(lock_path)) self.assertTrue(os.path.isdir(etc_dir)) self.assertTrue(os.path.isdir(log_dir)) self.assertTrue(os.path.isdir(testr_dir)) # Assert file creation fake_file_moved = os.path.join(etc_dir, 'conf_file.conf') local_conf_file = os.path.join(etc_dir, 'tempest.conf') local_testr_conf = os.path.join(fake_local_dir.path, '.testr.conf') self.assertTrue(os.path.isfile(fake_file_moved)) self.assertTrue(os.path.isfile(local_conf_file)) self.assertTrue(os.path.isfile(local_testr_conf)) def test_take_action_fails(self): class ParsedArgs(object): workspace_dir = self.useFixture(fixtures.TempDir()).path workspace_path = os.path.join(workspace_dir, 'workspace.yaml') name = 'test' dir_base = self.useFixture(fixtures.TempDir()).path dir = os.path.join(dir_base, 'foo', 'bar') config_dir = self.useFixture(fixtures.TempDir()).path show_global_dir = False pa = ParsedArgs() init_cmd = init.TempestInit(None, None) self.assertRaises(OSError, init_cmd.take_action, pa) # one more trying should be a same error not "workspace already exists" self.assertRaises(OSError, init_cmd.take_action, pa)
44.845161
79
0.670983
79510c133ad4c43a88f58ebb297137fca5dbc14c
664
py
Python
05.py
DarkMio/AOC2016
e3ca794a9deffcc6a4be629ba593147e622ce648
[ "MIT" ]
null
null
null
05.py
DarkMio/AOC2016
e3ca794a9deffcc6a4be629ba593147e622ce648
[ "MIT" ]
null
null
null
05.py
DarkMio/AOC2016
e3ca794a9deffcc6a4be629ba593147e622ce648
[ "MIT" ]
null
null
null
import hashlib def find_code(door_id): first = [] second = [None] * 8 i = 0 while None in second: m = hashlib.md5(door_id + str(i).encode('utf-8')).hexdigest() if m.startswith('00000'): print("{}: {}".format(door_id + str(i).encode('utf-8'), m)) location = int(m[5], 16) first.append(m[5]) if location < 8 and second[location] is None: second[location] = m[6] i += 1 return [''.join(first[:8]), ''.join(second)] door_id = 'uqwqemis'.encode('utf-8') code_part = find_code(door_id) print('MD5 Part1: {} \nMD5 Part2: {}'.format(code_part[0], code_part[1]))
31.619048
73
0.546687
79510cea1f28fb3fd3f65f82b2226f9c7d6b6fcb
10,821
py
Python
tests/integration/shell/test_key.py
guoxiaod/salt
2cd6c03b40932be137e6e8a672967b59025a2d34
[ "Apache-2.0" ]
null
null
null
tests/integration/shell/test_key.py
guoxiaod/salt
2cd6c03b40932be137e6e8a672967b59025a2d34
[ "Apache-2.0" ]
1
2019-08-18T07:03:30.000Z
2019-08-18T07:03:30.000Z
tests/integration/shell/test_key.py
guoxiaod/salt
2cd6c03b40932be137e6e8a672967b59025a2d34
[ "Apache-2.0" ]
2
2020-11-04T06:24:32.000Z
2020-11-06T11:00:57.000Z
# -*- coding: utf-8 -*- # Import Python libs from __future__ import absolute_import, print_function, unicode_literals import os import shutil import tempfile import textwrap # Import Salt Testing libs from tests.support.case import ShellCase from tests.support.paths import TMP from tests.support.mixins import ShellCaseCommonTestsMixin # Import 3rd-party libs from salt.ext import six # Import Salt libs import salt.utils.files import salt.utils.platform import salt.utils.yaml USERA = 'saltdev' USERA_PWD = 'saltdev' HASHED_USERA_PWD = '$6$SALTsalt$ZZFD90fKFWq8AGmmX0L3uBtS9fXL62SrTk5zcnQ6EkD6zoiM3kB88G1Zvs0xm/gZ7WXJRs5nsTBybUvGSqZkT.' class KeyTest(ShellCase, ShellCaseCommonTestsMixin): ''' Test salt-key script ''' _call_binary_ = 'salt-key' def _add_user(self): ''' helper method to add user ''' try: add_user = self.run_call('user.add {0} createhome=False'.format(USERA)) add_pwd = self.run_call('shadow.set_password {0} \'{1}\''.format(USERA, USERA_PWD if salt.utils.platform.is_darwin() else HASHED_USERA_PWD)) self.assertTrue(add_user) self.assertTrue(add_pwd) user_list = self.run_call('user.list_users') self.assertIn(USERA, six.text_type(user_list)) except AssertionError: self.run_call('user.delete {0} remove=True'.format(USERA)) self.skipTest( 'Could not add user or password, skipping test' ) def _remove_user(self): ''' helper method to remove user ''' user_list = self.run_call('user.list_users') for user in user_list: if USERA in user: self.run_call('user.delete {0} remove=True'.format(USERA)) def test_remove_key(self): ''' test salt-key -d usage ''' min_name = 'minibar' pki_dir = self.master_opts['pki_dir'] key = os.path.join(pki_dir, 'minions', min_name) with salt.utils.files.fopen(key, 'w') as fp: fp.write(textwrap.dedent('''\ -----BEGIN PUBLIC KEY----- MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAoqIZDtcQtqUNs0wC7qQz JwFhXAVNT5C8M8zhI+pFtF/63KoN5k1WwAqP2j3LquTG68WpxcBwLtKfd7FVA/Kr OF3kXDWFnDi+HDchW2lJObgfzLckWNRFaF8SBvFM2dys3CGSgCV0S/qxnRAjrJQb B3uQwtZ64ncJAlkYpArv3GwsfRJ5UUQnYPDEJwGzMskZ0pHd60WwM1gMlfYmNX5O RBEjybyNpYDzpda6e6Ypsn6ePGLkP/tuwUf+q9wpbRE3ZwqERC2XRPux+HX2rGP+ mkzpmuHkyi2wV33A9pDfMgRHdln2CLX0KgfRGixUQhW1o+Kmfv2rq4sGwpCgLbTh NwIDAQAB -----END PUBLIC KEY----- ''')) check_key = self.run_key('-p {0}'.format(min_name)) self.assertIn('Accepted Keys:', check_key) self.assertIn('minibar: -----BEGIN PUBLIC KEY-----', check_key) remove_key = self.run_key('-d {0} -y'.format(min_name)) check_key = self.run_key('-p {0}'.format(min_name)) self.assertEqual([], check_key) def test_list_accepted_args(self): ''' test salt-key -l for accepted arguments ''' for key in ('acc', 'pre', 'den', 'un', 'rej'): # These should not trigger any error data = self.run_key('-l {0}'.format(key), catch_stderr=True) self.assertNotIn('error:', '\n'.join(data[1])) data = self.run_key('-l foo-{0}'.format(key), catch_stderr=True) self.assertIn('error:', '\n'.join(data[1])) def test_list_all(self): ''' test salt-key -L ''' data = self.run_key('-L') expect = None if self.master_opts['transport'] in ('zeromq', 'tcp'): expect = [ 'Accepted Keys:', 'minion', 'sub_minion', 'Denied Keys:', 'Unaccepted Keys:', 'Rejected Keys:' ] elif self.master_opts['transport'] == 'raet': expect = [ 'Accepted Keys:', 'minion', 'sub_minion', 'Unaccepted Keys:', 'Rejected Keys:' ] self.assertEqual(data, expect) def test_list_json_out(self): ''' test salt-key -L --json-out ''' data = self.run_key('-L --out json') ret = {} try: import salt.utils.json ret = salt.utils.json.loads('\n'.join(data)) except ValueError: pass expect = None if self.master_opts['transport'] in ('zeromq', 'tcp'): expect = {'minions_rejected': [], 'minions_denied': [], 'minions_pre': [], 'minions': ['minion', 'sub_minion']} elif self.master_opts['transport'] == 'raet': expect = {'accepted': ['minion', 'sub_minion'], 'rejected': [], 'pending': []} self.assertEqual(ret, expect) def test_list_yaml_out(self): ''' test salt-key -L --yaml-out ''' data = self.run_key('-L --out yaml') ret = {} try: import salt.utils.yaml ret = salt.utils.yaml.safe_load('\n'.join(data)) except Exception: pass expect = [] if self.master_opts['transport'] in ('zeromq', 'tcp'): expect = {'minions_rejected': [], 'minions_denied': [], 'minions_pre': [], 'minions': ['minion', 'sub_minion']} elif self.master_opts['transport'] == 'raet': expect = {'accepted': ['minion', 'sub_minion'], 'rejected': [], 'pending': []} self.assertEqual(ret, expect) def test_list_raw_out(self): ''' test salt-key -L --raw-out ''' data = self.run_key('-L --out raw') self.assertEqual(len(data), 1) ret = {} try: import ast ret = ast.literal_eval(data[0]) except ValueError: pass expect = None if self.master_opts['transport'] in ('zeromq', 'tcp'): expect = {'minions_rejected': [], 'minions_denied': [], 'minions_pre': [], 'minions': ['minion', 'sub_minion']} elif self.master_opts['transport'] == 'raet': expect = {'accepted': ['minion', 'sub_minion'], 'rejected': [], 'pending': []} self.assertEqual(ret, expect) def test_list_acc(self): ''' test salt-key -l ''' data = self.run_key('-l acc') expect = ['Accepted Keys:', 'minion', 'sub_minion'] self.assertEqual(data, expect) def test_list_acc_eauth(self): ''' test salt-key -l with eauth ''' self._add_user() data = self.run_key('-l acc --eauth pam --username {0} --password {1}'.format(USERA, USERA_PWD)) expect = ['Accepted Keys:', 'minion', 'sub_minion'] self.assertEqual(data, expect) self._remove_user() def test_list_acc_eauth_bad_creds(self): ''' test salt-key -l with eauth and bad creds ''' self._add_user() data = self.run_key('-l acc --eauth pam --username {0} --password wrongpassword'.format(USERA)) expect = ['Authentication failure of type "eauth" occurred for user {0}.'.format(USERA)] self.assertEqual(data, expect) self._remove_user() def test_list_acc_wrong_eauth(self): ''' test salt-key -l with wrong eauth ''' data = self.run_key('-l acc --eauth wrongeauth --username {0} --password {1}'.format(USERA, USERA_PWD)) expect = r"^The specified external authentication system \"wrongeauth\" is not available\tAvailable eauth types: auto, .*" self.assertRegex("\t".join(data), expect) def test_list_un(self): ''' test salt-key -l ''' data = self.run_key('-l un') expect = ['Unaccepted Keys:'] self.assertEqual(data, expect) def test_keys_generation(self): tempdir = tempfile.mkdtemp(dir=TMP) arg_str = '--gen-keys minibar --gen-keys-dir {0}'.format(tempdir) self.run_key(arg_str) try: key_names = None if self.master_opts['transport'] in ('zeromq', 'tcp'): key_names = ('minibar.pub', 'minibar.pem') elif self.master_opts['transport'] == 'raet': key_names = ('minibar.key',) for fname in key_names: self.assertTrue(os.path.isfile(os.path.join(tempdir, fname))) finally: shutil.rmtree(tempdir) def test_keys_generation_keysize_minmax(self): tempdir = tempfile.mkdtemp(dir=TMP) arg_str = '--gen-keys minion --gen-keys-dir {0}'.format(tempdir) try: data, error = self.run_key( arg_str + ' --keysize=1024', catch_stderr=True ) self.assertIn( 'salt-key: error: The minimum value for keysize is 2048', error ) data, error = self.run_key( arg_str + ' --keysize=32769', catch_stderr=True ) self.assertIn( 'salt-key: error: The maximum value for keysize is 32768', error ) finally: shutil.rmtree(tempdir) def test_issue_7754(self): old_cwd = os.getcwd() config_dir = os.path.join(TMP, 'issue-7754') if not os.path.isdir(config_dir): os.makedirs(config_dir) os.chdir(config_dir) config_file_name = 'master' with salt.utils.files.fopen(self.get_config_file_path(config_file_name), 'r') as fhr: config = salt.utils.yaml.safe_load(fhr) config['log_file'] = 'file:///dev/log/LOG_LOCAL3' with salt.utils.files.fopen(os.path.join(config_dir, config_file_name), 'w') as fhw: salt.utils.yaml.safe_dump(config, fhw, default_flow_style=False) ret = self.run_script( self._call_binary_, '--config-dir {0} -L'.format( config_dir ), timeout=60 ) try: self.assertIn('minion', '\n'.join(ret)) self.assertFalse(os.path.isdir(os.path.join(config_dir, 'file:'))) finally: self.chdir(old_cwd) if os.path.isdir(config_dir): shutil.rmtree(config_dir)
34.906452
130
0.541355
79510e08a1ee4a653959189a5b449906796e6997
2,129
py
Python
DiscardIrregularFieldNumberLines.py
neil92/MiscScripts2
b65444d99c057c305c1bebb437402004c5345b7b
[ "MIT" ]
null
null
null
DiscardIrregularFieldNumberLines.py
neil92/MiscScripts2
b65444d99c057c305c1bebb437402004c5345b7b
[ "MIT" ]
null
null
null
DiscardIrregularFieldNumberLines.py
neil92/MiscScripts2
b65444d99c057c305c1bebb437402004c5345b7b
[ "MIT" ]
null
null
null
#!/usr/local/miniconda3/bin/python import argparse def parse_file(irregular_file, output_file, delimiter, number_of_fields): total_lines = 0 removed_lines = 0 with open(irregular_file, "r") as irregular_file_object, open(output_file, "w") as output_file_object: line = irregular_file_object.readline() while line: total_lines = total_lines + 1 split_line = line.split(sep=delimiter) if (total_lines == 3): print("Number of fields: {}".format(len(split_line))) if (len(split_line) == number_of_fields): output_file_object.write(line) else: removed_lines = removed_lines + 1 line = irregular_file_object.readline() return (total_lines, removed_lines) def setup_arguments(): """ This is the function that sets up the flags and the arguements you can pass to the script. :author: Neil A. Patel """ a_parser = argparse.ArgumentParser("Get's the arguments for the parse irregular file tool.") a_parser.add_argument("-f", "--file", action="store", dest="file_input_data", required=True, help="Please supply a file that has an irregular number of fields per line that you want to filter.") a_parser.add_argument("-n", "--number_fields", action="store", dest="number_fields", required=False, default=1, type=int, help="The number of fields per line (i.e. number of delimiters + 1).") a_parser.add_argument("-o", "--output_file", action="store", dest="output_file", required=False, default="output_file.txt", help="The output file that the filtered file goes into.") a_parser.add_argument("-d", "--delimiter", action="store", dest="delimiter", required=False, default="\t", help="The character used to seperate the fields in the line.") return a_parser.parse_args() def main(): args = setup_arguments() total_lines, removed_lines = parse_file(args.file_input_data, args.output_file, args.delimiter, args.number_fields) print("The total number of lines processed: {}".format(total_lines)) print("The total number removed lines: {}".format(removed_lines)) if __name__ == "__main__": main()
38.709091
117
0.708314
79510eddd055dd2ddc17dac656a2016026065919
16,067
py
Python
CodeAnalysis/SourceMeter_Interface/SourceMeter-8.2.0-x64-linux/Python/Demo/ceilometer/ceilometer/event/converter.py
ishtjot/susereumutep
56e20c1777e0c938ac42bd8056f84af9e0b76e46
[ "Apache-2.0" ]
2
2018-11-07T20:52:53.000Z
2019-10-20T15:57:01.000Z
CodeAnalysis/SourceMeter_Interface/SourceMeter-8.2.0-x64-linux/Python/Demo/ceilometer/ceilometer/event/converter.py
ishtjot/susereumutep
56e20c1777e0c938ac42bd8056f84af9e0b76e46
[ "Apache-2.0" ]
3
2021-12-14T20:57:54.000Z
2022-01-21T23:50:36.000Z
CodeAnalysis/SourceMeter_Interface/SourceMeter-8.2.0-x64-linux/Python/Demo/ceilometer/ceilometer/event/converter.py
ishtjot/susereumutep
56e20c1777e0c938ac42bd8056f84af9e0b76e46
[ "Apache-2.0" ]
2
2018-11-16T04:20:06.000Z
2019-03-28T23:49:13.000Z
# # Copyright 2013 Rackspace Hosting. # # Author: Monsyne Dragon <mdragon@rackspace.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import fnmatch import os import jsonpath_rw from oslo.config import cfg from oslo.utils import timeutils import six import yaml from ceilometer.openstack.common.gettextutils import _ from ceilometer.openstack.common import log from ceilometer.storage import models OPTS = [ cfg.StrOpt('definitions_cfg_file', default="event_definitions.yaml", help="Configuration file for event definitions." ), cfg.BoolOpt('drop_unmatched_notifications', default=False, help='Drop notifications if no event definition matches. ' '(Otherwise, we convert them with just the default traits)'), ] cfg.CONF.register_opts(OPTS, group='event') LOG = log.getLogger(__name__) class EventDefinitionException(Exception): def __init__(self, message, definition_cfg): super(EventDefinitionException, self).__init__(message) self.definition_cfg = definition_cfg def __str__(self): return '%s %s: %s' % (self.__class__.__name__, self.definition_cfg, self.message) class TraitDefinition(object): def __init__(self, name, trait_cfg, plugin_manager): self.cfg = trait_cfg self.name = name type_name = trait_cfg.get('type', 'text') if 'plugin' in trait_cfg: plugin_cfg = trait_cfg['plugin'] if isinstance(plugin_cfg, six.string_types): plugin_name = plugin_cfg plugin_params = {} else: try: plugin_name = plugin_cfg['name'] except KeyError: raise EventDefinitionException( _('Plugin specified, but no plugin name supplied for ' 'trait %s') % name, self.cfg) plugin_params = plugin_cfg.get('parameters') if plugin_params is None: plugin_params = {} try: plugin_ext = plugin_manager[plugin_name] except KeyError: raise EventDefinitionException( _('No plugin named %(plugin)s available for ' 'trait %(trait)s') % dict(plugin=plugin_name, trait=name), self.cfg) plugin_class = plugin_ext.plugin self.plugin = plugin_class(**plugin_params) else: self.plugin = None if 'fields' not in trait_cfg: raise EventDefinitionException( _("Required field in trait definition not specified: " "'%s'") % 'fields', self.cfg) fields = trait_cfg['fields'] if not isinstance(fields, six.string_types): # NOTE(mdragon): if not a string, we assume a list. if len(fields) == 1: fields = fields[0] else: fields = '|'.join('(%s)' % path for path in fields) try: self.fields = jsonpath_rw.parse(fields) except Exception as e: raise EventDefinitionException( _("Parse error in JSONPath specification " "'%(jsonpath)s' for %(trait)s: %(err)s") % dict(jsonpath=fields, trait=name, err=e), self.cfg) self.trait_type = models.Trait.get_type_by_name(type_name) if self.trait_type is None: raise EventDefinitionException( _("Invalid trait type '%(type)s' for trait %(trait)s") % dict(type=type_name, trait=name), self.cfg) def _get_path(self, match): if match.context is not None: for path_element in self._get_path(match.context): yield path_element yield str(match.path) def to_trait(self, notification_body): values = [match for match in self.fields.find(notification_body) if match.value is not None] if self.plugin is not None: value_map = [('.'.join(self._get_path(match)), match.value) for match in values] value = self.plugin.trait_value(value_map) else: value = values[0].value if values else None if value is None: return None # NOTE(mdragon): some openstack projects (mostly Nova) emit '' # for null fields for things like dates. if self.trait_type != models.Trait.TEXT_TYPE and value == '': return None value = models.Trait.convert_value(self.trait_type, value) return models.Trait(self.name, self.trait_type, value) class EventDefinition(object): DEFAULT_TRAITS = dict( service=dict(type='text', fields='publisher_id'), request_id=dict(type='text', fields='_context_request_id'), tenant_id=dict(type='text', fields=['payload.tenant_id', '_context_tenant']), ) def __init__(self, definition_cfg, trait_plugin_mgr): self._included_types = [] self._excluded_types = [] self.traits = dict() self.cfg = definition_cfg try: event_type = definition_cfg['event_type'] traits = definition_cfg['traits'] except KeyError as err: raise EventDefinitionException( _("Required field %s not specified") % err.args[0], self.cfg) if isinstance(event_type, six.string_types): event_type = [event_type] for t in event_type: if t.startswith('!'): self._excluded_types.append(t[1:]) else: self._included_types.append(t) if self._excluded_types and not self._included_types: self._included_types.append('*') for trait_name in self.DEFAULT_TRAITS: self.traits[trait_name] = TraitDefinition( trait_name, self.DEFAULT_TRAITS[trait_name], trait_plugin_mgr) for trait_name in traits: self.traits[trait_name] = TraitDefinition( trait_name, traits[trait_name], trait_plugin_mgr) def included_type(self, event_type): for t in self._included_types: if fnmatch.fnmatch(event_type, t): return True return False def excluded_type(self, event_type): for t in self._excluded_types: if fnmatch.fnmatch(event_type, t): return True return False def match_type(self, event_type): return (self.included_type(event_type) and not self.excluded_type(event_type)) @property def is_catchall(self): return '*' in self._included_types and not self._excluded_types @staticmethod def _extract_when(body): """Extract the generated datetime from the notification.""" # NOTE: I am keeping the logic the same as it was in the collector, # However, *ALL* notifications should have a 'timestamp' field, it's # part of the notification envelope spec. If this was put here because # some openstack project is generating notifications without a # timestamp, then that needs to be filed as a bug with the offending # project (mdragon) when = body.get('timestamp', body.get('_context_timestamp')) if when: return timeutils.normalize_time(timeutils.parse_isotime(when)) return timeutils.utcnow() def to_event(self, notification_body): event_type = notification_body['event_type'] message_id = notification_body['message_id'] when = self._extract_when(notification_body) traits = (self.traits[t].to_trait(notification_body) for t in self.traits) # Only accept non-None value traits ... traits = [trait for trait in traits if trait is not None] event = models.Event(message_id, event_type, when, traits) return event class NotificationEventsConverter(object): """Notification Event Converter The NotificationEventsConverter handles the conversion of Notifications from openstack systems into Ceilometer Events. The conversion is handled according to event definitions in a config file. The config is a list of event definitions. Order is significant, a notification will be processed according to the LAST definition that matches it's event_type. (We use the last matching definition because that allows you to use YAML merge syntax in the definitions file.) Each definition is a dictionary with the following keys (all are required): - event_type: this is a list of notification event_types this definition will handle. These can be wildcarded with unix shell glob (not regex!) wildcards. An exclusion listing (starting with a '!') will exclude any types listed from matching. If ONLY exclusions are listed, the definition will match anything not matching the exclusions. This item can also be a string, which will be taken as equivalent to 1 item list. Examples: * ['compute.instance.exists'] will only match compute.intance.exists notifications * "compute.instance.exists" Same as above. * ["image.create", "image.delete"] will match image.create and image.delete, but not anything else. * "compute.instance.*" will match compute.instance.create.start but not image.upload * ['*.start','*.end', '!scheduler.*'] will match compute.instance.create.start, and image.delete.end, but NOT compute.instance.exists or scheduler.run_instance.start * '!image.*' matches any notification except image notifications. * ['*', '!image.*'] same as above. - traits: (dict) The keys are trait names, the values are the trait definitions. Each trait definition is a dictionary with the following keys: - type (optional): The data type for this trait. (as a string) Valid options are: 'text', 'int', 'float' and 'datetime', defaults to 'text' if not specified. - fields: a path specification for the field(s) in the notification you wish to extract. The paths can be specified with a dot syntax (e.g. 'payload.host') or dictionary syntax (e.g. 'payload[host]') is also supported. In either case, if the key for the field you are looking for contains special characters, like '.', it will need to be quoted (with double or single quotes) like so:: "payload.image_meta.'org.openstack__1__architecture'" The syntax used for the field specification is a variant of JSONPath, and is fairly flexible. (see: https://github.com/kennknowles/python-jsonpath-rw for more info) Specifications can be written to match multiple possible fields, the value for the trait will be derived from the matching fields that exist and have a non-null (i.e. is not None) values in the notification. By default the value will be the first such field. (plugins can alter that, if they wish) This configuration value is normally a string, for convenience, it can be specified as a list of specifications, which will be OR'ed together (a union query in jsonpath terms) - plugin (optional): (dictionary) with the following keys: - name: (string) name of a plugin to load - parameters: (optional) Dictionary of keyword args to pass to the plugin on initialization. See documentation on each plugin to see what arguments it accepts. For convenience, this value can also be specified as a string, which is interpreted as a plugin name, which will be loaded with no parameters. """ def __init__(self, events_config, trait_plugin_mgr, add_catchall=True): self.definitions = [ EventDefinition(event_def, trait_plugin_mgr) for event_def in reversed(events_config)] if add_catchall and not any(d.is_catchall for d in self.definitions): event_def = dict(event_type='*', traits={}) self.definitions.append(EventDefinition(event_def, trait_plugin_mgr)) def to_event(self, notification_body): event_type = notification_body['event_type'] message_id = notification_body['message_id'] edef = None for d in self.definitions: if d.match_type(event_type): edef = d break if edef is None: msg = (_('Dropping Notification %(type)s (uuid:%(msgid)s)') % dict(type=event_type, msgid=message_id)) if cfg.CONF.event.drop_unmatched_notifications: LOG.debug(msg) else: # If drop_unmatched_notifications is False, this should # never happen. (mdragon) LOG.error(msg) return None return edef.to_event(notification_body) def get_config_file(): config_file = cfg.CONF.event.definitions_cfg_file if not os.path.exists(config_file): config_file = cfg.CONF.find_file(config_file) return config_file def setup_events(trait_plugin_mgr): """Setup the event definitions from yaml config file.""" config_file = get_config_file() if config_file is not None: LOG.debug(_("Event Definitions configuration file: %s"), config_file) with open(config_file) as cf: config = cf.read() try: events_config = yaml.safe_load(config) except yaml.YAMLError as err: if hasattr(err, 'problem_mark'): mark = err.problem_mark errmsg = (_("Invalid YAML syntax in Event Definitions file " "%(file)s at line: %(line)s, column: %(column)s.") % dict(file=config_file, line=mark.line + 1, column=mark.column + 1)) else: errmsg = (_("YAML error reading Event Definitions file " "%(file)s") % dict(file=config_file)) LOG.error(errmsg) raise else: LOG.debug(_("No Event Definitions configuration file found!" " Using default config.")) events_config = [] LOG.info(_("Event Definitions: %s"), events_config) allow_drop = cfg.CONF.event.drop_unmatched_notifications return NotificationEventsConverter(events_config, trait_plugin_mgr, add_catchall=not allow_drop)
40.1675
79
0.594759
79510f532e108c2302f5d7535d5a431f4d3ea1e7
3,060
py
Python
smpp_client/settings.py
m4rtinpf/smpp-client
58f3b891121050861176e7c1ad9b4198d757d1f6
[ "MIT" ]
null
null
null
smpp_client/settings.py
m4rtinpf/smpp-client
58f3b891121050861176e7c1ad9b4198d757d1f6
[ "MIT" ]
1
2022-02-23T20:04:03.000Z
2022-02-23T20:04:03.000Z
smpp_client/settings.py
m4rtinpf/smpp-client
58f3b891121050861176e7c1ad9b4198d757d1f6
[ "MIT" ]
null
null
null
""" Django settings for smpp_client project. Generated by 'django-admin startproject' using Django 3.2.11. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'api.apps.ApiConfig', 'rest_framework', 'frontend.apps.FrontendConfig', 'channels', ] SESSION_ENGINE = "django.contrib.sessions.backends.cache" MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'smpp_client.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'smpp_client.wsgi.application' ASGI_APPLICATION = 'smpp_client.asgi.application' CHANNEL_LAYERS = { 'default': { 'BACKEND': 'channels_redis.core.RedisChannelLayer', 'CONFIG': { "hosts": [('127.0.0.1', 6379)], 'capacity': 1000, }, }, } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators # AUTH_PASSWORD_VALIDATORS = [ # { # 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', # }, # { # 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', # }, # ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # REST_FRAMEWORK = { # 'DEFAULT_AUTHENTICATION_CLASSES': [], # 'DEFAULT_PERMISSION_CLASSES': [], # 'UNAUTHENTICATED_USER': None, # } # Override production variables if DJANGO_DEVELOPMENT env variable is set if os.environ.get('DJANGO_DEVELOPMENT'): from .settings_development import * else: from .settings_production import *
26.153846
93
0.678105
795110179f342684a0c8eede7312c8c870ed189e
14,935
py
Python
conrad/cli.py
ashikjm/conrad
df9b99479c29906498c046724558222949439f1c
[ "Apache-2.0" ]
null
null
null
conrad/cli.py
ashikjm/conrad
df9b99479c29906498c046724558222949439f1c
[ "Apache-2.0" ]
null
null
null
conrad/cli.py
ashikjm/conrad
df9b99479c29906498c046724558222949439f1c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import os import re import json import hashlib import datetime as dt import click import requests import sqlalchemy import textdistance from colorama import Fore, Style from cli_helpers import tabular_output from . import __version__, CONRAD_HOME from .db import engine, Session from .models import Base, Event, Reminder from .utils import initialize_database, validate def set_default_pager(): os_environ_pager = os.environ.get("PAGER") if os_environ_pager == "less": os.environ["LESS"] = "-SRXF" def get_events(): click.echo("Fetching latest events!") response = requests.get( "https://raw.githubusercontent.com/vinayak-mehta/conrad/master/data/events.json" ) with open(os.path.join(CONRAD_HOME, "events.json"), "w") as f: f.write(json.dumps(response.json())) def rebuild_events_table(): with open(os.path.join(CONRAD_HOME, "events.json"), "r") as f: events = json.load(f) session = Session() for event in events: event_id = hashlib.md5( (event["name"] + event["start_date"]).encode("utf-8") ).hexdigest() e = Event( id=event_id[:6], name=event["name"], url=event["url"], city=event["city"], state=event["state"], country=event["country"], cfp_open=event["cfp_open"], cfp_end_date=dt.datetime.strptime(event["cfp_end_date"], "%Y-%m-%d"), start_date=dt.datetime.strptime(event["start_date"], "%Y-%m-%d"), end_date=dt.datetime.strptime(event["end_date"], "%Y-%m-%d"), source=event["source"], tags=json.dumps(event["tags"]), kind=event["kind"], by=event["by"], ) session.add(e) session.commit() session.close() def initialize_conrad(): conrad_update = os.path.join(CONRAD_HOME, ".conrad-update") if not os.path.exists(conrad_update): with open(conrad_update, "w") as f: f.write(dt.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")) if not os.path.exists(os.path.join(CONRAD_HOME, "conrad.db")): get_events() initialize_database() rebuild_events_table() def refresh_conrad(): get_events() if not os.path.exists(os.path.join(CONRAD_HOME, "conrad.db")): initialize_database() else: Event.__table__.drop(engine) Base.metadata.tables["event"].create(bind=engine) rebuild_events_table() def update_conrad_update(): conrad_update = os.path.join(CONRAD_HOME, ".conrad-update") with open(conrad_update, "w") as f: f.write(dt.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")) def clean_old_events(): session = Session() now = dt.datetime.now() reminders = list( session.query(Event, Reminder) .filter(Event.id == Reminder.id, Event.cfp_end_date < now) .all() ) for r, __ in reminders: session.query(Reminder).filter(Reminder.id == r.id).delete() events = list(session.query(Event).filter(Event.end_date < now).all()) for e in events: session.query(Event).filter(Event.id == e.id).delete() session.commit() session.close() def auto_refresh(): conrad_update = os.path.join(CONRAD_HOME, ".conrad-update") if not os.path.exists(conrad_update): update_conrad_update() with open(conrad_update, "r") as f: last_update = dt.datetime.strptime(f.read().strip(), "%Y-%m-%dT%H:%M:%S") if (dt.datetime.now() - last_update) > dt.timedelta(days=1): refresh_conrad() clean_old_events() update_conrad_update() # https://stackoverflow.com/a/50889894 def make_exclude_hook_command(callback): """for any command that is not decorated, call the callback""" hook_attr_name = "hook_" + callback.__name__ class HookGroup(click.Group): """group to hook context invoke to see if the callback is needed""" def group(self, *args, **kwargs): """new group decorator to make sure sub groups are also hooked""" if "cls" not in kwargs: kwargs["cls"] = type(self) return super(HookGroup, self).group(*args, **kwargs) def command(self, *args, **kwargs): """new command decorator to monkey patch command invoke""" cmd = super(HookGroup, self).command(*args, **kwargs) def hook_command_decorate(f): # decorate the command ret = cmd(f) # grab the original command invoke orig_invoke = ret.invoke def invoke(ctx): """call the call back right before command invoke""" parent = ctx.parent sub_cmd = ( parent and parent.command.commands[parent.invoked_subcommand] ) if ( not sub_cmd or not isinstance(sub_cmd, click.Group) and getattr(sub_cmd, hook_attr_name, True) ): # invoke the callback callback() return orig_invoke(ctx) # hook our command invoke to command and return cmd ret.invoke = invoke return ret # return hooked command decorator return hook_command_decorate def decorator(func=None): if func is None: # if called other than as decorator, return group class return HookGroup setattr(func, hook_attr_name, False) return decorator bypass_auto_refresh = make_exclude_hook_command(auto_refresh) @click.group(name="conrad", cls=bypass_auto_refresh()) @click.version_option(version=__version__) @click.pass_context def cli(ctx, *args, **kwargs): """conrad: Track conferences and meetups on your terminal!""" set_default_pager() @bypass_auto_refresh @cli.command("refresh", short_help="Refresh event database.") @click.confirmation_option(prompt="Would you like conrad to look for new events?") @click.pass_context def _refresh(ctx, *args, **kwargs): # TODO: print("10 new events found!") refresh_conrad() click.echo("All done! ✨ 🍰 ✨") click.echo("Event database updated.") @cli.command("show", short_help="Show all saved events.") @click.option( "--cfp", "-c", is_flag=True, help="Show only events which have an open CFP (call for proposals).", ) @click.option( "--tag", "-t", default="", help="Look at conferences with a specific tag." ) @click.option( "--name", "-n", default="", help="Look at conferences containing a specific word in their name.", ) @click.option( "--location", "-l", default="", help="Look at conferences in a specific city, state or country.", ) @click.option( "--date", "-d", default=[], multiple=True, help='Look at conferences based on when they\'re happening. For example: conrad show --date ">= 2019-10-01" --date "<= 2020-01-01".', ) @click.pass_context def _show(ctx, *args, **kwargs): # TODO: conrad show --new initialize_conrad() cfp = kwargs["cfp"] tag = kwargs["tag"] name = kwargs["name"] date = list(kwargs["date"]) location = kwargs["location"] filters = [] if cfp: filters.append(Event.cfp_open.is_(cfp)) if tag: filters.append(Event.tags.contains(tag)) if name: filters.append(Event.name.ilike(f"%{name}%")) if date: date_filters = [] for d in date: cmp, date = d.split(" ") if not (">" in cmp or "<" in cmp): raise click.UsageError("Wrong comparison operator!") try: __ = dt.datetime.strptime(date, "%Y-%m-%d") except ValueError: raise click.UsageError("Wrong date format!") if ">" in cmp: date_filters.append(Event.start_date >= date) elif "<" in cmp: date_filters.append(Event.start_date <= date) filters.append(sqlalchemy.and_(*date_filters)) if location: filters.append( sqlalchemy.or_( Event.city.ilike(f"%{location}%"), Event.state.ilike(f"%{location}%"), Event.country.ilike(f"%{location}%"), ) ) session = Session() events = list( session.query(Event).filter(*filters).order_by(Event.start_date).all() ) if len(events) > 0: header = [ "id", "Name", "Website", "City", "State", "Country", "Start Date", "End Date", ] events_output = [] for event in events: events_output.append( [ event.id, event.name, event.url, event.city, event.state, event.country, event.start_date.strftime("%Y-%m-%d"), event.end_date.strftime("%Y-%m-%d"), ] ) session.close() formatted = tabular_output.format_output( events_output, header, format_name="ascii" ) click.echo_via_pager("\n".join(formatted)) else: click.echo("No events found!") @cli.command("remind", short_help="Set and display reminders.") @click.option("--id", "-i", default=None, help="Conference identifier.") @click.pass_context def _remind(ctx, *args, **kwargs): initialize_conrad() _id = kwargs["id"] if _id is None: session = Session() reminders = list( session.query(Event, Reminder) .filter(Event.id == Reminder.id) .order_by(Event.start_date) .all() ) if len(reminders) > 0: header = ["id", "Name", "Start Date", "Days Left"] reminders_output = [] for reminder, __ in reminders: start = dt.datetime.now() cfp_days_left = (reminder.cfp_end_date - start).days event_days_left = (reminder.start_date - start).days if reminder.cfp_open and cfp_days_left >= 0: days_left = cfp_days_left days_left_output = f"{days_left} days left to cfp deadline!" elif event_days_left >= 0: days_left = event_days_left days_left_output = f"{days_left} days left!" else: days_left = -1 days_left_output = "Event ended." if days_left >= 30: style = f"{Fore.GREEN}{Style.BRIGHT}" elif 30 > days_left >= 10: style = f"{Fore.YELLOW}{Style.BRIGHT}" elif 10 > days_left >= 0: style = f"{Fore.RED}{Style.BRIGHT}" else: style = "" days_left_output = ( f"{style}{days_left_output}{Style.RESET_ALL}" ) reminders_output.append( [ reminder.id, reminder.name, reminder.start_date.strftime("%Y-%m-%d"), days_left_output, ] ) session.close() formatted = tabular_output.format_output( reminders_output, header, format_name="ascii" ) click.echo("\n".join(formatted)) else: click.echo("No reminders found!") else: try: session = Session() if session.query(Event).filter(Event.id == _id).first() is None: click.echo("Event not found!") else: reminder = Reminder(id=_id) session.add(reminder) session.commit() session.close() click.echo("Reminder set!") except sqlalchemy.exc.IntegrityError: session.rollback() if click.confirm("Do you want to remove this reminder?"): session = Session() session.query(Reminder).filter(Reminder.id == _id).delete() session.commit() session.close() click.echo("Reminder removed!") @bypass_auto_refresh @cli.command("import", short_help="Import new events into conrad.") @click.option("--file", "-f", default=None, help="JSON file to import.") @click.pass_context def _import(ctx, *args, **kwargs): file = kwargs["file"] EVENTS_PATH = os.path.join(os.getcwd(), "data", "events.json") if file is None: raise click.UsageError("No file provided!") if not os.path.exists(file): raise click.UsageError("File does not exist!") with open(file, "r") as f: input_events = json.load(f) failures = validate(input_events) if len(failures) > 0: raise click.UsageError( "The following validations failed!\n{}".format( "".join( list(map(lambda x: "- " + x + "\n", failures[:-1])) + list(map(lambda x: "- " + x, failures[-1:])) ) ) ) with open(EVENTS_PATH, "r") as f: old_events = json.load(f) now = dt.datetime.now() events = [] for e in old_events: event_end_date = dt.datetime.strptime(e["end_date"], "%Y-%m-%d") if event_end_date < now: continue events.append(e) removed = len(old_events) - len(events) s = "s" if removed > 1 else "" click.echo(f"Removed {removed} old event{s}!") # TODO: update cfp to false when cfp_end_date < now pattern = "[0-9]" new_events = [] for ie in input_events: match = False for e in events: input_event_name = ie["name"].replace(" ", "").lower() input_event_name = re.sub(pattern, "", input_event_name) event_name = e["name"].replace(" ", "").lower() event_name = re.sub(pattern, "", event_name) similarity = textdistance.levenshtein.normalized_similarity( input_event_name, event_name ) if similarity > 0.9: click.echo(f"Updating {e['name']}") e.update(ie) match = True if not match: click.echo(f"Adding {ie['name']}") new_events.append(ie) events.extend(new_events) s = "s" if len(new_events) > 1 else "" click.echo(f"Added {len(new_events)} new event{s}!") with open(EVENTS_PATH, "w") as f: f.write(json.dumps(events, indent=4, sort_keys=True))
31.179541
137
0.550318
795110eaf93dc3b5ca004c203631c279010872ec
34,839
py
Python
var/spack/repos/builtin/packages/rust/package.py
MiddelkoopT/spack
4d94c4c4600f42a7a3bb3d06ec879140bc259304
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/rust/package.py
MiddelkoopT/spack
4d94c4c4600f42a7a3bb3d06ec879140bc259304
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/rust/package.py
MiddelkoopT/spack
4d94c4c4600f42a7a3bb3d06ec879140bc259304
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from six import iteritems class Rust(Package): """The Rust programming language toolchain This package can bootstrap any version of the Rust compiler since Rust 1.23. It does this by downloading the platform-appropriate binary distribution of the desired version of the rust compiler, and then building that compiler from source. """ homepage = "https://www.rust-lang.org" url = "https://static.rust-lang.org/dist/rustc-1.42.0-src.tar.gz" git = "https://github.com/rust-lang/rust.git" maintainers = ["AndrewGaspar"] phases = ['configure', 'build', 'install'] extendable = True variant( 'rustfmt', default=True, description='Formatting tool for Rust code' ) variant( 'analysis', default=True, description='Outputs code analysis that can be consumed by other tools' ) variant( 'clippy', default=True, description='Linting tool for Rust' ) variant( 'rls', default=False, description='The Rust Language Server can be used for IDE integration' ) variant( 'src', default=True, description='Install Rust source files' ) variant( 'extra_targets', default='none', multi=True, description='Triples for extra targets to enable. For supported targets, see: https://doc.rust-lang.org/nightly/rustc/platform-support.html' ) depends_on('python@2.7:', type='build') depends_on('python@2.7:2.8', when='@:1.43', type='build') depends_on('gmake@3.81:', type='build') depends_on('cmake@3.4.3:', type='build') depends_on('ninja', when='@1.48.0:', type='build') depends_on('pkgconfig', type='build') depends_on('openssl') depends_on('libssh2') depends_on('libgit2') # Pre-release Versions version('master', branch='master', submodules=True) # These version strings are officially supported, but aren't explicitly # listed because there's no stable checksum for them. # version('nightly') # version('beta') # Version Notes: # Here's some information on why your favorite Rust version may be missing. # # < 1.23: # Rust seems to eagerly search for ar next to cc. Spack makes wrappers for # cc and c++, but not for ar, so no ar is found. In future versions, ar # can be specified in the config. # # < 1.17: # The `x.py` bootstrapping script did not exist prior to Rust 1.17. It # would be possible to support both, but for simplicitly, we only support # Rust 1.17 and newer version('1.48.0', sha256='0e763e6db47d5d6f91583284d2f989eacc49b84794d1443355b85c58d67ae43b') version('1.47.0', sha256='3185df064c4747f2c8b9bb8c4468edd58ff4ad6d07880c879ac1b173b768d81d') version('1.46.0', sha256='2d6a3b7196db474ba3f37b8f5d50a1ecedff00738d7846840605b42bfc922728') version('1.45.1', sha256='ea53e6424e3d1fe56c6d77a00e72c5d594b509ec920c5a779a7b8e1dbd74219b') version('1.44.1', sha256='7e2e64cb298dd5d5aea52eafe943ba0458fa82f2987fdcda1ff6f537b6f88473') version('1.44.0', sha256='bf2df62317e533e84167c5bc7d4351a99fdab1f9cd6e6ba09f51996ad8561100') version('1.43.1', sha256='cde177b4a8c687da96f20de27630a1eb55c9d146a15e4c900d5c31cd3c3ac41d') version('1.43.0', sha256='75f6ac6c9da9f897f4634d5a07be4084692f7ccc2d2bb89337be86cfc18453a1') version('1.42.0', sha256='d2e8f931d16a0539faaaacd801e0d92c58df190269014b2360c6ab2a90ee3475') version('1.41.1', sha256='38c93d016e6d3e083aa15e8f65511d3b4983072c0218a529f5ee94dd1de84573') version('1.41.0', sha256='5546822c09944c4d847968e9b7b3d0e299f143f307c00fa40e84a99fabf8d74b') version('1.40.0', sha256='dd97005578defc10a482bff3e4e728350d2099c60ffcf1f5e189540c39a549ad') version('1.39.0', sha256='b4a1f6b6a93931f270691aba4fc85eee032fecda973e6b9c774cd06857609357') version('1.38.0', sha256='644263ca7c7106f8ee8fcde6bb16910d246b30668a74be20b8c7e0e9f4a52d80') version('1.37.0', sha256='120e7020d065499cc6b28759ff04153bfdc2ac9b5adeb252331a4eb87cbe38c3') version('1.36.0', sha256='04c4e4d7213d036d6aaed392841496d272146312c0290f728b7400fccd15bb1b') version('1.35.0', sha256='5a4d637a716bac18d085f44dd87ef48b32195f71b967d872d80280b38cff712d') version('1.34.2', sha256='c69a4a85a1c464368597df8878cb9e1121aae93e215616d45ad7d23af3052f56') version('1.34.1', sha256='b0c785264d17e1dac4598627c248a2d5e07dd39b6666d1881fcfc8e2cf4c40a7') version('1.34.0', sha256='7ac85acffd79dd3a7c44305d9eaabd1f1e7116e2e6e11e770e4bf5f92c0f1f59') version('1.33.0', sha256='5a01a8d7e65126f6079042831385e77485fa5c014bf217e9f3e4aff36a485d94') version('1.32.0', sha256='4c594c7712a0e7e8eae6526c464bf6ea1d82f77b4f61717c3fc28fb27ba2224a') version('1.31.1', sha256='91d2fc22f08d986adab7a54eb3a6a9b99e490f677d2d092e5b9e4e069c23686a') version('1.30.1', sha256='36a38902dbd9a3e1240d46ab0f2ca40d2fd07c2ab6508ed7970c6c4c036b5b29') version('1.30.0', sha256='cd0ba83fcca55b64c0c9f23130fe731dfc1882b73ae21bef96be8f2362c108ee') version('1.29.2', sha256='5088e796aa2e47478cdf41e7243fc5443fafab0a7c70a11423e57c80c04167c9') version('1.29.1', sha256='f1b0728b66ce6bce6d72bbe5ea9e3a24ea22a045665da2ed8fcdfad14f61a349') version('1.29.0', sha256='a4eb34ffd47f76afe2abd813f398512d5a19ef00989d37306217c9c9ec2f61e9') version('1.28.0', sha256='1d5a81729c6f23a0a23b584dd249e35abe9c6f7569cee967cc42b1758ecd6486') version('1.27.2', sha256='9a818c50cdb7880abeaa68b3d97792711e6c64c1cdfb6efdc23f75b8ced0e15d') version('1.27.1', sha256='2133beb01ddc3aa09eebc769dd884533c6cfb08ce684f042497e097068d733d1') version('1.27.0', sha256='2cb9803f690349c9fd429564d909ddd4676c68dc48b670b8ddf797c2613e2d21') version('1.26.2', sha256='fb9ecf304488c9b56600ab20cfd1937482057f7e5db7899fddb86e0774548700') version('1.26.1', sha256='70a7961bd8ec43b2c01e9896e90b0a06804a7fbe0a5c05acc7fd6fed19500df0') version('1.26.0', sha256='4fb09bc4e233b71dcbe08a37a3f38cabc32219745ec6a628b18a55a1232281dd') version('1.25.0', sha256='eef63a0aeea5147930a366aee78cbde248bb6e5c6868801bdf34849152965d2d') version('1.24.1', sha256='3ea53d45e8d2e9a41afb3340cf54b9745f845b552d802d607707cf04450761ef') version('1.24.0', sha256='bb8276f6044e877e447f29f566e4bbf820fa51fea2f912d59b73233ffd95639f') version('1.23.0', sha256='7464953871dcfdfa8afcc536916a686dd156a83339d8ec4d5cb4eb2fe146cb91') # The Rust bootstrapping process requires a bootstrapping compiler. The # easiest way to do this is to download the binary distribution of the # same version of the compiler and build with that. # # This dictionary contains a version: hash dictionary for each supported # Rust target. rust_releases = { '1.48.0': { 'x86_64-unknown-linux-gnu': '950420a35b2dd9091f1b93a9ccd5abc026ca7112e667f246b1deb79204e2038b', 'powerpc64le-unknown-linux-gnu': 'e6457a0214f3b1b04bd5b2618bba7e3826e254216420dede2971b571a1c13bb1', 'aarch64-unknown-linux-gnu': 'c4769418d8d89f432e4a3a21ad60f99629e4b13bbfc29aef7d9d51c4e8ee8a8a', 'x86_64-apple-darwin': 'f30ce0162b39dc7cf877020cec64d4826cad50467af493d180b5b28cf5eb50b3' }, '1.47.0': { 'x86_64-unknown-linux-gnu': 'd0e11e1756a072e8e246b05d54593402813d047d12e44df281fbabda91035d96', 'powerpc64le-unknown-linux-gnu': '5760c3b1897ea70791320c2565f3eef700a3d54059027b84bbe6b8d6157f81c8', 'aarch64-unknown-linux-gnu': '753c905e89a714ab9bce6fe1397b721f29c0760c32f09d2f328af3d39919c8e6', 'x86_64-apple-darwin': '84e5be6c5c78734deba911dcf80316be1e4c7da2c59413124d039ad96620612f' }, '1.46.0': { 'x86_64-unknown-linux-gnu': 'e3b98bc3440fe92817881933f9564389eccb396f5f431f33d48b979fa2fbdcf5', 'powerpc64le-unknown-linux-gnu': '89e2f4761d257f017a4b6aa427f36ac0603195546fa2cfded8c899789832941c', 'aarch64-unknown-linux-gnu': 'f0c6d630f3dedb3db69d69ed9f833aa6b472363096f5164f1068c7001ca42aeb', 'x86_64-apple-darwin': '82d61582a3772932432a99789c3b3bd4abe6baca339e355048ca9efb9ea5b4db' }, '1.45.1': { 'x86_64-unknown-linux-gnu': '76dc9f05b3bfd0465d6e6d22bc9fd5db0b473e3548e8b3d266ecfe4d9e5dca16', 'powerpc64le-unknown-linux-gnu': '271846e4f5adc9a33754794c2ffab851f9e0313c8c1315264e7db5c8f63ab7ab', 'aarch64-unknown-linux-gnu': 'd17fd560e8d5d12304835b71a7e22ac2c3babf4b9768db6a0e89868b4444f728', 'x86_64-apple-darwin': '7334c927e4d2d12d209bf941b97ba309e548413e241d2d263c39c6e12b3ce154' }, '1.44.1': { 'x86_64-unknown-linux-gnu': 'a41df89a461a580536aeb42755e43037556fba2e527dd13a1e1bb0749de28202', 'powerpc64le-unknown-linux-gnu': '22deeca259459db31065af7c862fcab7fbfb623200520c65002ed2ba93d87ad2', 'aarch64-unknown-linux-gnu': 'a2d74ebeec0b6778026b6c37814cdc91d14db3b0d8b6d69d036216f4d9cf7e49', 'x86_64-apple-darwin': 'a5464e7bcbce9647607904a4afa8362382f1fc55d39e7bbaf4483ac00eb5d56a' }, '1.44.0': { 'x86_64-unknown-linux-gnu': 'eaa34271b4ac4d2c281831117d4d335eed0b37fe7a34477d9855a6f1d930a624', 'powerpc64le-unknown-linux-gnu': '97038ea935c7a5b21f5aaaaad409c514e2b2ae8ea55994ba39645f453e98bc9f', 'aarch64-unknown-linux-gnu': 'bcc916003cb9c7ff44f5f9af348020b422dbc5bd4fe49bdbda2de6ce0a1bb745', 'x86_64-apple-darwin': 'f20388b80b2b0a8b122d89058f785a2cf3b14e93bcac53471d60fdb4106ffa35' }, '1.43.1': { 'x86_64-unknown-linux-gnu': '25cd71b95bba0daef56bad8c943a87368c4185b90983f4412f46e3e2418c0505', 'powerpc64le-unknown-linux-gnu': '1670f00b00cc1bed38d523a25dba7420de3c06986c15a0248e06299f80ce6124', 'aarch64-unknown-linux-gnu': 'fbb612387a64c9da2869725afffc1f66a72d6e7ba6667ba717cd52c33080b7fb', 'x86_64-apple-darwin': 'e1c3e1426a9e615079159d6b619319235e3ca7b395e7603330375bfffcbb7003' }, '1.43.0': { 'x86_64-unknown-linux-gnu': '069f34fa5cef92551724c83c36360df1ac66fe3942bc1d0e4d341ce79611a029', 'powerpc64le-unknown-linux-gnu': 'c75c7ae4c94715fd6cc43d1d6fdd0952bc151f7cbe3054f66d99a529d5bb996f', 'aarch64-unknown-linux-gnu': 'e5fa55f333c10cdae43d147438a80ffb435d6c7b9681cd2e2f0857c024556856', 'x86_64-apple-darwin': '504e8efb2cbb36f5a3db7bb36f339a1e5216082c910ad19039c370505cfbde99' }, '1.42.0': { 'x86_64-unknown-linux-gnu': '7d1e07ad9c8a33d8d039def7c0a131c5917aa3ea0af3d0cc399c6faf7b789052', 'powerpc64le-unknown-linux-gnu': '805b08fa1e0aad4d706301ca1f13e2d80810d385cece2c15070360b3c4bd6e4a', 'aarch64-unknown-linux-gnu': 'fdd39f856a062af265012861949ff6654e2b7103be034d046bec84ebe46e8d2d', 'x86_64-apple-darwin': 'db1055c46e0d54b99da05e88c71fea21b3897e74a4f5ff9390e934f3f050c0a8' }, '1.41.1': { 'x86_64-unknown-linux-gnu': 'a6d5a3b3f574aafc8f787fea37aad9fb8a7946b383ae5348146927192ff0bef0', 'powerpc64le-unknown-linux-gnu': 'f9b53ca636625b3a2dd87600b6274223c11f866c9b5a34b638ea0013186659d3', 'aarch64-unknown-linux-gnu': 'd54c0f9165b86216b6f1b499f451141407939c5dc6b36c89a3772895a1370242', 'x86_64-apple-darwin': '16615288cf74239783de1b435d329f3d56ed13803c7c10cd4b207d7c8ffa8f67' }, '1.41.0': { 'x86_64-unknown-linux-gnu': '343ba8ef7397eab7b3bb2382e5e4cb08835a87bff5c8074382c0b6930a41948b', 'powerpc64le-unknown-linux-gnu': 'ba231b0d8273d6928f61e2be3456e816a1de8050135e20c0623dc7a6ea03ba68', 'aarch64-unknown-linux-gnu': '79ddfb5e2563d0ee09a567fbbe121a2aed3c3bc61255b2787f2dd42183a10f27', 'x86_64-apple-darwin': 'b6504003ab70b11f278e0243a43ba9d6bf75e8ad6819b4058a2b6e3991cc8d7a' }, '1.40.0': { 'x86_64-unknown-linux-gnu': 'fc91f8b4bd18314e83a617f2389189fc7959146b7177b773370d62592d4b07d0', 'powerpc64le-unknown-linux-gnu': 'b1a23e35c383f99e647df6a9239b1dc9313e293deb70a76ba58e8ebe55ef623b', 'aarch64-unknown-linux-gnu': '639271f59766d291ebdade6050e7d05d61cb5c822a3ef9a1e2ab185fed68d729', 'x86_64-apple-darwin': '749ca5e0b94550369cc998416b8854c13157f5d11d35e9b3276064b6766bcb83' }, '1.39.0': { 'x86_64-unknown-linux-gnu': 'b10a73e5ba90034fe51f0f02cb78f297ed3880deb7d3738aa09dc5a4d9704a25', 'powerpc64le-unknown-linux-gnu': '53b3fd942c52709f7e6fe11ea572d086e315a57a40b84b9b3290ac0ec8c7c84a', 'aarch64-unknown-linux-gnu': 'e27dc8112fe577012bd88f30e7c92dffd8c796478ce386c49465c03b6db8209f', 'x86_64-apple-darwin': '3736d49c5e9592844e1a5d5452883aeaf8f1e25d671c1bc8f01e81c1766603b5' }, '1.38.0': { 'x86_64-unknown-linux-gnu': 'adda26b3f0609dbfbdc2019da4a20101879b9db2134fae322a4e863a069ec221', 'powerpc64le-unknown-linux-gnu': 'f9ed1bb6525abdd4dd6ef10782ad45d2f71496e0c3c88e806b510c81a91c4ff7', 'aarch64-unknown-linux-gnu': '06afd6d525326cea95c3aa658aaa8542eab26f44235565bb16913ac9d12b7bda', 'x86_64-apple-darwin': 'bd301b78ddcd5d4553962b115e1dca5436dd3755ed323f86f4485769286a8a5a' }, '1.37.0': { 'x86_64-unknown-linux-gnu': 'cb573229bfd32928177c3835fdeb62d52da64806b844bc1095c6225b0665a1cb', 'powerpc64le-unknown-linux-gnu': '27c59ec40e9e9f71490dc00bf165156ae3ea77c20ffa4b5e5fd712e67527b477', 'aarch64-unknown-linux-gnu': '263ef98fa3a6b2911b56f89c06615cdebf6ef676eb9b2493ad1539602f79b6ba', 'x86_64-apple-darwin': 'b2310c97ffb964f253c4088c8d29865f876a49da2a45305493af5b5c7a3ca73d' }, '1.36.0': { 'x86_64-unknown-linux-gnu': '15e592ec52f14a0586dcebc87a957e472c4544e07359314f6354e2b8bd284c55', 'powerpc64le-unknown-linux-gnu': '654a7a18d881811c09f630b0c917825b586e94a6142eceaede6b8046718e4054', 'aarch64-unknown-linux-gnu': 'db78c24d93756f9fe232f081dbc4a46d38f8eec98353a9e78b9b164f9628042d', 'x86_64-apple-darwin': '91f151ec7e24f5b0645948d439fc25172ec4012f0584dd16c3fb1acb709aa325' }, '1.35.0': { 'x86_64-unknown-linux-gnu': 'cf600e2273644d8629ed57559c70ca8db4023fd0156346facca9ab3ad3e8f86c', 'powerpc64le-unknown-linux-gnu': 'a933955adec386d75d126e78df5b9941936e156acb3353fc44b85995a81c7bb2', 'aarch64-unknown-linux-gnu': '31e6da56e67838fd2874211ae896a433badf67c13a7b68481f1d5f7dedcc5952', 'x86_64-apple-darwin': 'ac14b1c7dc330dcb53d8641d74ebf9b32aa8b03b9d650bcb9258030d8b10dbd6' }, '1.34.2': { 'x86_64-unknown-linux-gnu': '2bf6622d980a52832bae141304e96f317c8a1ccd2dfd69a134a14033e6e43c0f', 'powerpc64le-unknown-linux-gnu': '4ddd55014bbd954b3499859bfa3146bff471de21c1d73fc6e7cccde290fc1918', 'aarch64-unknown-linux-gnu': '15fc6b7ec121df9d4e42483dd12c677203680bec8c69b6f4f62e5a35a07341a8', 'x86_64-apple-darwin': '6fdd4bf7fe26dded0cd57b41ab5f0500a5a99b7bc770523a425e9e34f63d0fd8' }, '1.34.1': { 'x86_64-unknown-linux-gnu': '8e2eead11bd5bf61409e29018d007c6fc874bcda2ff54db3d04d1691e779c14e', 'powerpc64le-unknown-linux-gnu': '94ac92d08afcfa2d77ae207e91b57c00cb48ff7ba08a27ed3deb2493f33e8fb1', 'aarch64-unknown-linux-gnu': '0565e50dae58759a3a5287abd61b1a49dfc086c4d6acf2ce604fe1053f704e53', 'x86_64-apple-darwin': 'f4e46b9994ccfab4a84059298d1dc8fd446b1bbb7449462e0459948f7debea0e' }, '1.34.0': { 'x86_64-unknown-linux-gnu': '170647ed41b497dc937a6b2556700210bc4be187b1735029ef9ccf52e2cb5ab8', 'powerpc64le-unknown-linux-gnu': '3027e87802e161cce6f3a23d961f6d73b9ed6e829b2cd7af5dfccf6e1207e552', 'aarch64-unknown-linux-gnu': '370c3a8fb9a69df36d645a95e622fb59ac5b513baecddde706cedaf20defa269', 'x86_64-apple-darwin': 'e6bea8d865cc7341c17fa3b8f25f7989e6b04f53e9da24878addc524f3a32664' }, '1.33.0': { 'x86_64-unknown-linux-gnu': '6623168b9ee9de79deb0d9274c577d741ea92003768660aca184e04fe774393f', 'powerpc64le-unknown-linux-gnu': 'db885aa4c2c6896c85257be2ade5c9edea660ca6878970683e8d5796618329b5', 'aarch64-unknown-linux-gnu': 'a308044e4076b62f637313ea803fa0a8f340b0f1b53136856f2c43afcabe5387', 'x86_64-apple-darwin': '864e7c074a0b88e38883c87c169513d072300bb52e1d320a067bd34cf14f66bd' }, '1.32.0': { 'x86_64-unknown-linux-gnu': 'e024698320d76b74daf0e6e71be3681a1e7923122e3ebd03673fcac3ecc23810', 'powerpc64le-unknown-linux-gnu': 'd6d5c9154f4459465d68ebd4fa1e17bad4b6cfe219667dddd9123c3bfb5dd839', 'aarch64-unknown-linux-gnu': '60def40961728212da4b3a9767d5a2ddb748400e150a5f8a6d5aa0e1b8ba1cee', 'x86_64-apple-darwin': 'f0dfba507192f9b5c330b5984ba71d57d434475f3d62bd44a39201e36fa76304' }, '1.31.1': { 'x86_64-unknown-linux-gnu': 'a64685535d0c457f49a8712a096a5c21564cd66fd2f7da739487f028192ebe3c', 'powerpc64le-unknown-linux-gnu': 'a6f61b7a8a06a2b0a785391cc3e6bb8004aa72095eea80db1561039f5bb3e975', 'aarch64-unknown-linux-gnu': '29a7c6eb536fefd0ca459e48dfaea006aa8bff8a87aa82a9b7d483487033632a', 'x86_64-apple-darwin': '8398b1b303bdf0e7605d08b87070a514a4f588797c6fb3593718cb9cec233ad6' }, '1.30.1': { 'x86_64-unknown-linux-gnu': 'a01a493ed8946fc1c15f63e74fc53299b26ebf705938b4d04a388a746dfdbf9e', 'powerpc64le-unknown-linux-gnu': 'a7d4806e6702bdbad5017eeddc62f7ff7eb2438b1b9c39cbc90c2b1207f8e65f', 'aarch64-unknown-linux-gnu': '6d87d81561285abd6c1987e07b60b2d723936f037c4b46eedcc12e8566fd3874', 'x86_64-apple-darwin': '3ba1704a7defe3d9a6f0c1f68792c084da83bcba85e936d597bac0c019914b94' }, '1.30.0': { 'x86_64-unknown-linux-gnu': 'f620e3125cc505c842150bd873c0603432b6cee984cdae8b226cf92c8aa1a80f', 'powerpc64le-unknown-linux-gnu': '0b53e257dc3d9f3d75cd97be569d3bf456d2c0af57ed0bd5e7a437227d8f465a', 'aarch64-unknown-linux-gnu': '9690c7c50eba5a8461184ee4138b4c284bad31ccc4aa1f2ddeec58b253e6363e', 'x86_64-apple-darwin': '07008d90932712282bc599f1e9a226e97879c758dc1f935e6e2675e45694cc1b' }, '1.29.2': { 'x86_64-unknown-linux-gnu': 'e9809825c546969a9609ff94b2793c9107d7d9bed67d557ed9969e673137e8d8', 'powerpc64le-unknown-linux-gnu': '344003b808c20424c4699c9452bd37cdee23857dd4aa125e67d1d6e4bc992091', 'aarch64-unknown-linux-gnu': 'e11461015ca7106ef8ebf00859842bf4be518ee170226cb8eedaaa666946509f', 'x86_64-apple-darwin': '63f54e3013406b39fcb5b84bcf5e8ce85860d0b97a1e156700e467bf5fb5d5f2' }, '1.29.1': { 'x86_64-unknown-linux-gnu': 'b36998aea6d58525f25d89f1813b6bfd4cad6ff467e27bd11e761a20dde43745', 'powerpc64le-unknown-linux-gnu': '26a6d652ade6b6a96e6af18e846701ee28f912233372dfe15432139252f88958', 'aarch64-unknown-linux-gnu': '2685224f67b2ef951e0e8b48829f786cbfed95e19448ba292ac33af719843dbe', 'x86_64-apple-darwin': '07b07fbd6fab2390e19550beb8008745a8626cc5e97b72dc659061c1c3b3d008' }, '1.29.0': { 'x86_64-unknown-linux-gnu': '09f99986c17b1b6b1bfbc9dd8785e0e4693007c5feb67915395d115c1a3aea9d', 'powerpc64le-unknown-linux-gnu': 'd6954f1da53f7b3618fba3284330d99b6142bb25d9febba6dbfedad59ca53329', 'aarch64-unknown-linux-gnu': '0ed3be0fd9f847afeb4e587fff61f6769ea61b53719d3ea999326284e8975b36', 'x86_64-apple-darwin': '28a0473637585742f6d80ccd8afd88b6b400e65d623c33cb892412759444da93' }, '1.28.0': { 'x86_64-unknown-linux-gnu': '2a1390340db1d24a9498036884e6b2748e9b4b057fc5219694e298bdaa37b810', 'powerpc64le-unknown-linux-gnu': '255818156ec1f795ed808a44b4fdb8019187d5ebb7f837ae8f55a1ca40862bb6', 'aarch64-unknown-linux-gnu': '9b6fbcee73070332c811c0ddff399fa31965bec62ef258656c0c90354f6231c1', 'x86_64-apple-darwin': '5d7a70ed4701fe9410041c1eea025c95cad97e5b3d8acc46426f9ac4f9f02393' }, '1.27.2': { 'x86_64-unknown-linux-gnu': '5028a18e913ef3eb53e8d8119d2cc0594442725e055a9361012f8e26f754f2bf', 'powerpc64le-unknown-linux-gnu': '11034d150e811d4903b09fd42f0cb76d467a6365a158101493405fff1054572f', 'aarch64-unknown-linux-gnu': 'cf84da70269c0e50bb3cc3d248bae1ffcd70ee69dc5a4e3513b54fefc6685fb4', 'x86_64-apple-darwin': '30c5cc58759caa4efdf2ea7d8438633139c98bee3408beb29ceb26985f3f5f70' }, '1.27.1': { 'x86_64-unknown-linux-gnu': '435778a837af764da2a7a7fb4d386b7b78516c7dfc732d892858e9a8a539989b', 'powerpc64le-unknown-linux-gnu': 'a08e6b6fed3329fcd1220b2ee4cd7a311d99121cf780fb6e1c6353bfeddfb176', 'aarch64-unknown-linux-gnu': 'd1146b240e6f628224c3a67e3aae2a57e6c25d544115e5ece9ce91861ec92b3a', 'x86_64-apple-darwin': '475be237962d6aef1038a2faada26fda1e0eaea5d71d6950229a027a9c2bfe08' }, '1.27.0': { 'x86_64-unknown-linux-gnu': '235ad78e220b10a2d0267aea1e2c0f19ef5eaaff53ad6ff8b12c1d4370dec9a3', 'powerpc64le-unknown-linux-gnu': '847774a751e848568215739d384e3baf4d6ec37d27fb3add7a8789208c213aff', 'aarch64-unknown-linux-gnu': 'e74ebc33dc3fc19e501a677a87b619746efdba2901949a0319176352f556673a', 'x86_64-apple-darwin': 'a1d48190992e01aac1a181bce490c80cb2c1421724b4ff0e2fb7e224a958ce0f' }, '1.26.2': { 'x86_64-unknown-linux-gnu': 'd2b4fb0c544874a73c463993bde122f031c34897bb1eeb653d2ba2b336db83e6', 'powerpc64le-unknown-linux-gnu': 'ea045869074ae3617eeb51207ce183e6915784b9ed615ecb92ce082ddb86ec1f', 'aarch64-unknown-linux-gnu': '3dfad0dc9c795f7ee54c2099c9b7edf06b942adbbf02e9ed9e5d4b5e3f1f3759', 'x86_64-apple-darwin': 'f193705d4c0572a358670dbacbf0ffadcd04b3989728b442f4680fa1e065fa72' }, '1.26.1': { 'x86_64-unknown-linux-gnu': 'b7e964bace1286696d511c287b945f3ece476ba77a231f0c31f1867dfa5080e0', 'powerpc64le-unknown-linux-gnu': 'ad8b2f6dd8c5cca1251d65b75ed2120aae3c5375d2c8ed690259cf4a652d7d3c', 'aarch64-unknown-linux-gnu': 'd4a369053c2dfd5f457de6853557dab563944579fa4bb55bc919bacf259bff6d', 'x86_64-apple-darwin': 'ebf898b9fa7e2aafc53682a41f18af5ca6660ebe82dd78f28cd9799fe4dc189a' }, '1.26.0': { 'x86_64-unknown-linux-gnu': '13691d7782577fc9f110924b26603ade1990de0b691a3ce2dc324b4a72a64a68', 'powerpc64le-unknown-linux-gnu': '3ba3a4905730ec01007ca1096d9fc3780f4e81f71139a619e1f526244301b7f4', 'aarch64-unknown-linux-gnu': 'e12dc84bdb569cdb382268a5fe6ae6a8e2e53810cb890ec3a7133c20ba8451ac', 'x86_64-apple-darwin': '38708803c3096b8f101d1919ee2d7e723b0adf1bc1bb986b060973b57d8c7c28' }, '1.25.0': { 'x86_64-unknown-linux-gnu': '06fb45fb871330a2d1b32a27badfe9085847fe824c189ddc5204acbe27664f5e', 'powerpc64le-unknown-linux-gnu': '79eeb2a7fafa2e0f65f29a1dc360df69daa725347e4b6a533684f1c07308cc6e', 'aarch64-unknown-linux-gnu': '19a43451439e515a216d0a885d14203f9a92502ee958abf86bf7000a7d73d73d', 'x86_64-apple-darwin': 'fcd0302b15e857ba4a80873360cf5453275973c64fa82e33bfbed02d88d0ad17' }, '1.24.1': { 'x86_64-unknown-linux-gnu': '4567e7f6e5e0be96e9a5a7f5149b5452828ab6a386099caca7931544f45d5327', 'powerpc64le-unknown-linux-gnu': '6f6c4bebbd7d6dc9989bf372c512dea55af8f56a1a0cfe97784667f0ac5430ee', 'aarch64-unknown-linux-gnu': '64bb25a9689b18ddadf025b90d9bdb150b809ebfb74432dc69cc2e46120adbb2', 'x86_64-apple-darwin': '9d4aacdb5849977ea619d399903c9378163bd9c76ea11dac5ef6eca27849f501' }, '1.24.0': { 'x86_64-unknown-linux-gnu': '336cf7af6c857cdaa110e1425719fa3a1652351098dc73f156e5bf02ed86443c', 'powerpc64le-unknown-linux-gnu': '25d9b965a63ad2f345897028094d4c7eafa432237b478754ccbcc299f80629c8', 'aarch64-unknown-linux-gnu': 'a981de306164b47f3d433c1d53936185260642849c79963af7e07d36b063a557', 'x86_64-apple-darwin': '1aecba7cab4bc1a9e0e931c04aa00849e930b567d243da7b676ede8f527a2992' }, '1.23.0': { 'x86_64-unknown-linux-gnu': '9a34b23a82d7f3c91637e10ceefb424539dcfa327c2dcd292ff10c047b1fdc7e', 'powerpc64le-unknown-linux-gnu': '60f1a1cc182c516de08c1f42ada01604a3d94383e9dded6b237ae2233999437b', 'aarch64-unknown-linux-gnu': '38379fbd976d2286cb73f21466db40a636a583b9f8a80af5eea73617c7912bc7', 'x86_64-apple-darwin': '9274e977322bb4b153f092255ac9bd85041142c73eaabf900cb2ef3d3abb2eba' } } # This dictionary maps Rust target architectures to Spack constraints that # match that target. rust_archs = { 'x86_64-unknown-linux-gnu': [ {'platform': 'linux', 'target': 'x86_64:'}, {'platform': 'cray', 'target': 'x86_64:'} ], 'powerpc64le-unknown-linux-gnu': [ {'platform': 'linux', 'target': 'ppc64le:'}, {'platform': 'cray', 'target': 'ppc64le:'} ], 'aarch64-unknown-linux-gnu': [ {'platform': 'linux', 'target': 'aarch64:'}, {'platform': 'cray', 'target': 'aarch64:'} ], 'x86_64-apple-darwin': [ {'platform': 'darwin', 'target': 'x86_64:'} ] } # Specifies the strings which represent a pre-release Rust version. These # always bootstrap with the latest beta release. # # NOTE: These are moving targets, and therefore have no stable checksum. Be # sure to specify "-n" or "--no-checksum" when installing these versions. rust_prerelease_versions = ["beta", "nightly", "master"] for prerelease_version in rust_prerelease_versions: for rust_target, rust_arch_list in iteritems(rust_archs): for rust_arch in rust_arch_list: # All pre-release builds are built with the latest beta # compiler. resource( name='rust-beta-{target}'.format( target=rust_target ), url='https://static.rust-lang.org/dist/rust-beta-{target}.tar.gz'.format( target=rust_target ), # Fake SHA - checksums should never be checked for # pre-release builds, anyway sha256='0000000000000000000000000000000000000000000000000000000000000000', destination='spack_bootstrap_stage', when='@{version} platform={platform} target={target}'\ .format( version=prerelease_version, platform=rust_arch['platform'], target=rust_arch['target'] ) ) # This loop generates resources for each binary distribution, and maps # them to the version of the compiler they bootstrap. This is in place # of listing each resource explicitly, which would be potentially even # more verbose. # # NOTE: This loop should technically specify the architecture to be the # _host_ architecture, not the target architecture, in order to support # cross compiling. I'm not sure Spack provides a way to specify a # distinction in the when clause, though. for rust_version, rust_targets in iteritems(rust_releases): for rust_target, rust_sha256 in iteritems(rust_targets): for rust_arch in rust_archs[rust_target]: resource( name='rust-{version}-{target}'.format( version=rust_version, target=rust_target ), url='https://static.rust-lang.org/dist/rust-{version}-{target}.tar.gz'.format( version=rust_version, target=rust_target ), sha256=rust_sha256, destination='spack_bootstrap_stage', when='@{ver} platform={platform} target={target}'.format( ver=rust_version, platform=rust_arch['platform'], target=rust_arch['target'] ) ) # This routine returns the target architecture we intend to build for. def get_rust_target(self): if 'platform=linux' in self.spec or 'platform=cray' in self.spec: if 'target=x86_64:' in self.spec: return 'x86_64-unknown-linux-gnu' elif 'target=ppc64le:' in self.spec: return 'powerpc64le-unknown-linux-gnu' elif 'target=aarch64:' in self.spec: return 'aarch64-unknown-linux-gnu' elif 'platform=darwin target=x86_64:' in self.spec: return 'x86_64-apple-darwin' raise InstallError( "rust is not supported for '{0}'".format( self.spec.architecture )) def check_newer(self, version): if '@master' in self.spec or '@beta' in self.spec or \ '@nightly' in self.spec: return True return '@{0}:'.format(version) in self.spec def configure(self, spec, prefix): target = self.get_rust_target() # Bootstrapping compiler selection: # Pre-release compilers use the latest beta release for the # bootstrapping compiler. # Versioned releases bootstrap themselves. if '@beta' in spec or '@nightly' in spec or '@master' in spec: bootstrap_version = 'beta' else: bootstrap_version = spec.version # See the NOTE above the resource loop - should be host architecture, # not target aarchitecture if we're to support cross-compiling. bootstrapping_install = Executable( './spack_bootstrap_stage/rust-{version}-{target}/install.sh' .format( version=bootstrap_version, target=target ) ) # install into the staging area bootstrapping_install('--prefix={0}'.format( join_path(self.stage.source_path, 'spack_bootstrap') )) boot_bin = join_path(self.stage.source_path, 'spack_bootstrap/bin') # Always build rustc and cargo tools = ['rustc', 'cargo'] # Only make additional components available in 'rust-bootstrap' if '+rustfmt' in self.spec: tools.append('rustfmt') if '+analysis' in self.spec: tools.append('analysis') if '@1.33: +clippy' in self.spec: tools.append('clippy') if '+rls' in self.spec: tools.append('rls') if '+src' in self.spec: tools.append('src') ar = which('ar', required=True) extra_targets = [] if not self.spec.satisfies('extra_targets=none'): extra_targets = list(self.spec.variants['extra_targets'].value) targets = [self.get_rust_target()] + extra_targets target_spec = 'target=[' + \ ','.join('"{0}"'.format(target) for target in targets) + ']' target_specs = '\n'.join( '[target.{0}]\nar = "{1}"\n'.format(target, ar.path) for target in targets) # build.tools was introduced in Rust 1.25 tools_spec = \ 'tools={0}'.format(tools) if self.check_newer('1.25') else '' # This is a temporary fix due to rust 1.42 breaking self bootstrapping # See: https://github.com/rust-lang/rust/issues/69953 # # In general, this should be safe because bootstrapping typically # ensures everything but the bootstrapping script is warning free for # the latest set of warning. deny_warnings_spec = \ 'deny-warnings = false' if '@1.42.0' in self.spec else '' # "Nightly" and master builds want a path to rustfmt - otherwise, it # will try to download rustfmt from the Internet. We'll give it rustfmt # for the bootstrapping compiler, but it ultimately shouldn't matter # because this package never invokes it. To be clear, rustfmt from the # bootstrapping compiler is probably incorrect. See: src/stage0.txt in # Rust to see what the current "official" rustfmt version for Rust is. if '@master' in spec or '@nightly' in spec: rustfmt_spec = \ 'rustfmt="{0}"'.format(join_path(boot_bin, 'rustfmt')) else: rustfmt_spec = '' with open('config.toml', 'w') as out_file: out_file.write("""\ [build] cargo = "{cargo}" rustc = "{rustc}" docs = false vendor = true extended = true verbose = 2 {target_spec} {tools_spec} {rustfmt_spec} [rust] channel = "stable" rpath = true {deny_warnings_spec} {target_specs} [install] prefix = "{prefix}" sysconfdir = "etc" """.format( cargo=join_path(boot_bin, 'cargo'), rustc=join_path(boot_bin, 'rustc'), prefix=prefix, deny_warnings_spec=deny_warnings_spec, target_spec=target_spec, target_specs=target_specs, tools_spec=tools_spec, rustfmt_spec=rustfmt_spec ) ) def build(self, spec, prefix): python('./x.py', 'build', extra_env={ # vendored libgit2 wasn't correctly building (couldn't find the # vendored libssh2), so let's just have spack build it 'LIBSSH2_SYS_USE_PKG_CONFIG': '1', 'LIBGIT2_SYS_USE_PKG_CONFIG': '1' }) def install(self, spec, prefix): python('./x.py', 'install')
57.872093
148
0.686472
7951121c0e28cb94ce2d862a2f81545ccdf04f04
1,063
py
Python
migrations/versions/b1983f13bd19_.py
lmontero88/Backend_FinalProject4Geek
36a7452723c250bd5fa2b3cd1d1f43b24b4db836
[ "MIT" ]
null
null
null
migrations/versions/b1983f13bd19_.py
lmontero88/Backend_FinalProject4Geek
36a7452723c250bd5fa2b3cd1d1f43b24b4db836
[ "MIT" ]
null
null
null
migrations/versions/b1983f13bd19_.py
lmontero88/Backend_FinalProject4Geek
36a7452723c250bd5fa2b3cd1d1f43b24b4db836
[ "MIT" ]
2
2020-12-07T12:20:40.000Z
2020-12-10T18:52:50.000Z
"""empty message Revision ID: b1983f13bd19 Revises: 0d697c545a40 Create Date: 2020-12-10 01:37:03.316289 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'b1983f13bd19' down_revision = '0d697c545a40' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('Friend', sa.Column('id', sa.Integer(), autoincrement=True, nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('friend_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['friend_id'], ['user.id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.add_column('Match', sa.Column('status_request', sa.Integer(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('Match', 'status_request') op.drop_table('Friend') # ### end Alembic commands ###
27.973684
84
0.678269
795112f83a5eed89af4c656dc5bbaa66a10380a2
946
py
Python
UrlChecker.py
evanRubinsteinIT/URLChecker
65f24c504a0885c6758753287512398590ecde9b
[ "MIT" ]
2
2021-04-07T10:06:13.000Z
2021-04-07T14:42:42.000Z
UrlChecker.py
evanRubinsteinIT/URLChecker
65f24c504a0885c6758753287512398590ecde9b
[ "MIT" ]
null
null
null
UrlChecker.py
evanRubinsteinIT/URLChecker
65f24c504a0885c6758753287512398590ecde9b
[ "MIT" ]
null
null
null
import requests def fileRead(): filePath = input("Please type in the path to the file you would like to use: ") subdomainArray = [] with open(filePath) as domainFile: for line in domainFile: line = line.strip() subdomainArray.append(line) return(subdomainArray) def makeRequests(subdomainList): validSubdomains = [] checkedFile = open('checkedSubdomains.txt','w+') for x in subdomainList: http = "http://"+x https = "https://"+x try: domainCheck = requests.get(http, timeout=1.5) print(x,domainCheck.status_code) validSubdomains.append(http) except requests.ConnectionError as exception: print("Valid URL not found for:",x) for x in validSubdomains: checkedFile.write(x) checkedFile.write('\n') checkedFile.close() print("Results written to file!") makeRequests(fileRead())
29.5625
83
0.624736
7951143fd0976ee97b216eb5679e8e5f8dfe16c5
18,855
py
Python
django/db/backends/sqlite3/base.py
limbongofficial/django-framework
f3fa86a89b3b85242f49b2b9acf58b5ea35acc1f
[ "PSF-2.0", "BSD-3-Clause" ]
1
2020-01-10T23:06:36.000Z
2020-01-10T23:06:36.000Z
django/db/backends/sqlite3/base.py
limbongofficial/django-framework
f3fa86a89b3b85242f49b2b9acf58b5ea35acc1f
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/db/backends/sqlite3/base.py
limbongofficial/django-framework
f3fa86a89b3b85242f49b2b9acf58b5ea35acc1f
[ "PSF-2.0", "BSD-3-Clause" ]
1
2018-12-10T03:06:36.000Z
2018-12-10T03:06:36.000Z
""" SQLite3 backend for the sqlite3 module in the standard library. """ import datetime import decimal import math import operator import re import warnings from sqlite3 import dbapi2 as Database import pytz from django.core.exceptions import ImproperlyConfigured from django.db import utils from django.db.backends import utils as backend_utils from django.db.backends.base.base import BaseDatabaseWrapper from django.utils import timezone from django.utils.dateparse import parse_datetime, parse_time from django.utils.duration import duration_microseconds from .client import DatabaseClient # isort:skip from .creation import DatabaseCreation # isort:skip from .features import DatabaseFeatures # isort:skip from .introspection import DatabaseIntrospection # isort:skip from .operations import DatabaseOperations # isort:skip from .schema import DatabaseSchemaEditor # isort:skip def decoder(conv_func): """ Convert bytestrings from Python's sqlite3 interface to a regular string. """ return lambda s: conv_func(s.decode()) Database.register_converter("bool", b'1'.__eq__) Database.register_converter("time", decoder(parse_time)) Database.register_converter("datetime", decoder(parse_datetime)) Database.register_converter("timestamp", decoder(parse_datetime)) Database.register_converter("TIMESTAMP", decoder(parse_datetime)) Database.register_adapter(decimal.Decimal, str) class DatabaseWrapper(BaseDatabaseWrapper): vendor = 'sqlite' display_name = 'SQLite' # SQLite doesn't actually support most of these types, but it "does the right # thing" given more verbose field definitions, so leave them as is so that # schema inspection is more useful. data_types = { 'AutoField': 'integer', 'BigAutoField': 'integer', 'BinaryField': 'BLOB', 'BooleanField': 'bool', 'CharField': 'varchar(%(max_length)s)', 'DateField': 'date', 'DateTimeField': 'datetime', 'DecimalField': 'decimal', 'DurationField': 'bigint', 'FileField': 'varchar(%(max_length)s)', 'FilePathField': 'varchar(%(max_length)s)', 'FloatField': 'real', 'IntegerField': 'integer', 'BigIntegerField': 'bigint', 'IPAddressField': 'char(15)', 'GenericIPAddressField': 'char(39)', 'NullBooleanField': 'bool', 'OneToOneField': 'integer', 'PositiveIntegerField': 'integer unsigned', 'PositiveSmallIntegerField': 'smallint unsigned', 'SlugField': 'varchar(%(max_length)s)', 'SmallIntegerField': 'smallint', 'TextField': 'text', 'TimeField': 'time', 'UUIDField': 'char(32)', } data_type_check_constraints = { 'PositiveIntegerField': '"%(column)s" >= 0', 'PositiveSmallIntegerField': '"%(column)s" >= 0', } data_types_suffix = { 'AutoField': 'AUTOINCREMENT', 'BigAutoField': 'AUTOINCREMENT', } # SQLite requires LIKE statements to include an ESCAPE clause if the value # being escaped has a percent or underscore in it. # See http://www.sqlite.org/lang_expr.html for an explanation. operators = { 'exact': '= %s', 'iexact': "LIKE %s ESCAPE '\\'", 'contains': "LIKE %s ESCAPE '\\'", 'icontains': "LIKE %s ESCAPE '\\'", 'regex': 'REGEXP %s', 'iregex': "REGEXP '(?i)' || %s", 'gt': '> %s', 'gte': '>= %s', 'lt': '< %s', 'lte': '<= %s', 'startswith': "LIKE %s ESCAPE '\\'", 'endswith': "LIKE %s ESCAPE '\\'", 'istartswith': "LIKE %s ESCAPE '\\'", 'iendswith': "LIKE %s ESCAPE '\\'", } # The patterns below are used to generate SQL pattern lookup clauses when # the right-hand side of the lookup isn't a raw string (it might be an expression # or the result of a bilateral transformation). # In those cases, special characters for LIKE operators (e.g. \, *, _) should be # escaped on database side. # # Note: we use str.format() here for readability as '%' is used as a wildcard for # the LIKE operator. pattern_esc = r"REPLACE(REPLACE(REPLACE({}, '\', '\\'), '%%', '\%%'), '_', '\_')" pattern_ops = { 'contains': r"LIKE '%%' || {} || '%%' ESCAPE '\'", 'icontains': r"LIKE '%%' || UPPER({}) || '%%' ESCAPE '\'", 'startswith': r"LIKE {} || '%%' ESCAPE '\'", 'istartswith': r"LIKE UPPER({}) || '%%' ESCAPE '\'", 'endswith': r"LIKE '%%' || {} ESCAPE '\'", 'iendswith': r"LIKE '%%' || UPPER({}) ESCAPE '\'", } Database = Database SchemaEditorClass = DatabaseSchemaEditor # Classes instantiated in __init__(). client_class = DatabaseClient creation_class = DatabaseCreation features_class = DatabaseFeatures introspection_class = DatabaseIntrospection ops_class = DatabaseOperations def get_connection_params(self): settings_dict = self.settings_dict if not settings_dict['NAME']: raise ImproperlyConfigured( "settings.DATABASES is improperly configured. " "Please supply the NAME value.") kwargs = { 'database': settings_dict['NAME'], 'detect_types': Database.PARSE_DECLTYPES | Database.PARSE_COLNAMES, **settings_dict['OPTIONS'], } # Always allow the underlying SQLite connection to be shareable # between multiple threads. The safe-guarding will be handled at a # higher level by the `BaseDatabaseWrapper.allow_thread_sharing` # property. This is necessary as the shareability is disabled by # default in pysqlite and it cannot be changed once a connection is # opened. if 'check_same_thread' in kwargs and kwargs['check_same_thread']: warnings.warn( 'The `check_same_thread` option was provided and set to ' 'True. It will be overridden with False. Use the ' '`DatabaseWrapper.allow_thread_sharing` property instead ' 'for controlling thread shareability.', RuntimeWarning ) kwargs.update({'check_same_thread': False, 'uri': True}) return kwargs def get_new_connection(self, conn_params): conn = Database.connect(**conn_params) conn.create_function("django_date_extract", 2, _sqlite_date_extract) conn.create_function("django_date_trunc", 2, _sqlite_date_trunc) conn.create_function("django_datetime_cast_date", 2, _sqlite_datetime_cast_date) conn.create_function("django_datetime_cast_time", 2, _sqlite_datetime_cast_time) conn.create_function("django_datetime_extract", 3, _sqlite_datetime_extract) conn.create_function("django_datetime_trunc", 3, _sqlite_datetime_trunc) conn.create_function("django_time_extract", 2, _sqlite_time_extract) conn.create_function("django_time_trunc", 2, _sqlite_time_trunc) conn.create_function("django_time_diff", 2, _sqlite_time_diff) conn.create_function("django_timestamp_diff", 2, _sqlite_timestamp_diff) conn.create_function("regexp", 2, _sqlite_regexp) conn.create_function("django_format_dtdelta", 3, _sqlite_format_dtdelta) conn.create_function("django_power", 2, _sqlite_power) conn.create_function('LPAD', 3, _sqlite_lpad) conn.create_function('REPEAT', 2, operator.mul) conn.create_function('RPAD', 3, _sqlite_rpad) conn.execute('PRAGMA foreign_keys = ON') return conn def init_connection_state(self): pass def create_cursor(self, name=None): return self.connection.cursor(factory=SQLiteCursorWrapper) def close(self): self.validate_thread_sharing() # If database is in memory, closing the connection destroys the # database. To prevent accidental data loss, ignore close requests on # an in-memory db. if not self.is_in_memory_db(): BaseDatabaseWrapper.close(self) def _savepoint_allowed(self): # Two conditions are required here: # - A sufficiently recent version of SQLite to support savepoints, # - Being in a transaction, which can only happen inside 'atomic'. # When 'isolation_level' is not None, sqlite3 commits before each # savepoint; it's a bug. When it is None, savepoints don't make sense # because autocommit is enabled. The only exception is inside 'atomic' # blocks. To work around that bug, on SQLite, 'atomic' starts a # transaction explicitly rather than simply disable autocommit. return self.features.uses_savepoints and self.in_atomic_block def _set_autocommit(self, autocommit): if autocommit: level = None else: # sqlite3's internal default is ''. It's different from None. # See Modules/_sqlite/connection.c. level = '' # 'isolation_level' is a misleading API. # SQLite always runs at the SERIALIZABLE isolation level. with self.wrap_database_errors: self.connection.isolation_level = level def disable_constraint_checking(self): if self.in_atomic_block: # sqlite3 cannot disable constraint checking inside a transaction. return False self.cursor().execute('PRAGMA foreign_keys = OFF') return True def enable_constraint_checking(self): self.cursor().execute('PRAGMA foreign_keys = ON') def check_constraints(self, table_names=None): """ Check each table name in `table_names` for rows with invalid foreign key references. This method is intended to be used in conjunction with `disable_constraint_checking()` and `enable_constraint_checking()`, to determine if rows with invalid references were entered while constraint checks were off. """ with self.cursor() as cursor: if table_names is None: table_names = self.introspection.table_names(cursor) for table_name in table_names: primary_key_column_name = self.introspection.get_primary_key_column(cursor, table_name) if not primary_key_column_name: continue key_columns = self.introspection.get_key_columns(cursor, table_name) for column_name, referenced_table_name, referenced_column_name in key_columns: cursor.execute( """ SELECT REFERRING.`%s`, REFERRING.`%s` FROM `%s` as REFERRING LEFT JOIN `%s` as REFERRED ON (REFERRING.`%s` = REFERRED.`%s`) WHERE REFERRING.`%s` IS NOT NULL AND REFERRED.`%s` IS NULL """ % ( primary_key_column_name, column_name, table_name, referenced_table_name, column_name, referenced_column_name, column_name, referenced_column_name, ) ) for bad_row in cursor.fetchall(): raise utils.IntegrityError( "The row in table '%s' with primary key '%s' has an " "invalid foreign key: %s.%s contains a value '%s' that " "does not have a corresponding value in %s.%s." % ( table_name, bad_row[0], table_name, column_name, bad_row[1], referenced_table_name, referenced_column_name, ) ) def is_usable(self): return True def _start_transaction_under_autocommit(self): """ Start a transaction explicitly in autocommit mode. Staying in autocommit mode works around a bug of sqlite3 that breaks savepoints when autocommit is disabled. """ self.cursor().execute("BEGIN") def is_in_memory_db(self): return self.creation.is_in_memory_db(self.settings_dict['NAME']) FORMAT_QMARK_REGEX = re.compile(r'(?<!%)%s') class SQLiteCursorWrapper(Database.Cursor): """ Django uses "format" style placeholders, but pysqlite2 uses "qmark" style. This fixes it -- but note that if you want to use a literal "%s" in a query, you'll need to use "%%s". """ def execute(self, query, params=None): if params is None: return Database.Cursor.execute(self, query) query = self.convert_query(query) return Database.Cursor.execute(self, query, params) def executemany(self, query, param_list): query = self.convert_query(query) return Database.Cursor.executemany(self, query, param_list) def convert_query(self, query): return FORMAT_QMARK_REGEX.sub('?', query).replace('%%', '%') def _sqlite_date_extract(lookup_type, dt): if dt is None: return None try: dt = backend_utils.typecast_timestamp(dt) except (ValueError, TypeError): return None if lookup_type == 'week_day': return (dt.isoweekday() % 7) + 1 elif lookup_type == 'week': return dt.isocalendar()[1] elif lookup_type == 'quarter': return math.ceil(dt.month / 3) else: return getattr(dt, lookup_type) def _sqlite_date_trunc(lookup_type, dt): try: dt = backend_utils.typecast_timestamp(dt) except (ValueError, TypeError): return None if lookup_type == 'year': return "%i-01-01" % dt.year elif lookup_type == 'quarter': month_in_quarter = dt.month - (dt.month - 1) % 3 return '%i-%02i-01' % (dt.year, month_in_quarter) elif lookup_type == 'month': return "%i-%02i-01" % (dt.year, dt.month) elif lookup_type == 'week': dt = dt - datetime.timedelta(days=dt.weekday()) return "%i-%02i-%02i" % (dt.year, dt.month, dt.day) elif lookup_type == 'day': return "%i-%02i-%02i" % (dt.year, dt.month, dt.day) def _sqlite_time_trunc(lookup_type, dt): try: dt = backend_utils.typecast_time(dt) except (ValueError, TypeError): return None if lookup_type == 'hour': return "%02i:00:00" % dt.hour elif lookup_type == 'minute': return "%02i:%02i:00" % (dt.hour, dt.minute) elif lookup_type == 'second': return "%02i:%02i:%02i" % (dt.hour, dt.minute, dt.second) def _sqlite_datetime_parse(dt, tzname): if dt is None: return None try: dt = backend_utils.typecast_timestamp(dt) except (ValueError, TypeError): return None if tzname is not None: dt = timezone.localtime(dt, pytz.timezone(tzname)) return dt def _sqlite_datetime_cast_date(dt, tzname): dt = _sqlite_datetime_parse(dt, tzname) if dt is None: return None return dt.date().isoformat() def _sqlite_datetime_cast_time(dt, tzname): dt = _sqlite_datetime_parse(dt, tzname) if dt is None: return None return dt.time().isoformat() def _sqlite_datetime_extract(lookup_type, dt, tzname): dt = _sqlite_datetime_parse(dt, tzname) if dt is None: return None if lookup_type == 'week_day': return (dt.isoweekday() % 7) + 1 elif lookup_type == 'week': return dt.isocalendar()[1] elif lookup_type == 'quarter': return math.ceil(dt.month / 3) else: return getattr(dt, lookup_type) def _sqlite_datetime_trunc(lookup_type, dt, tzname): dt = _sqlite_datetime_parse(dt, tzname) if dt is None: return None if lookup_type == 'year': return "%i-01-01 00:00:00" % dt.year elif lookup_type == 'quarter': month_in_quarter = dt.month - (dt.month - 1) % 3 return '%i-%02i-01 00:00:00' % (dt.year, month_in_quarter) elif lookup_type == 'month': return "%i-%02i-01 00:00:00" % (dt.year, dt.month) elif lookup_type == 'week': dt = dt - datetime.timedelta(days=dt.weekday()) return "%i-%02i-%02i 00:00:00" % (dt.year, dt.month, dt.day) elif lookup_type == 'day': return "%i-%02i-%02i 00:00:00" % (dt.year, dt.month, dt.day) elif lookup_type == 'hour': return "%i-%02i-%02i %02i:00:00" % (dt.year, dt.month, dt.day, dt.hour) elif lookup_type == 'minute': return "%i-%02i-%02i %02i:%02i:00" % (dt.year, dt.month, dt.day, dt.hour, dt.minute) elif lookup_type == 'second': return "%i-%02i-%02i %02i:%02i:%02i" % (dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second) def _sqlite_time_extract(lookup_type, dt): if dt is None: return None try: dt = backend_utils.typecast_time(dt) except (ValueError, TypeError): return None return getattr(dt, lookup_type) def _sqlite_format_dtdelta(conn, lhs, rhs): """ LHS and RHS can be either: - An integer number of microseconds - A string representing a datetime """ try: real_lhs = datetime.timedelta(0, 0, lhs) if isinstance(lhs, int) else backend_utils.typecast_timestamp(lhs) real_rhs = datetime.timedelta(0, 0, rhs) if isinstance(rhs, int) else backend_utils.typecast_timestamp(rhs) if conn.strip() == '+': out = real_lhs + real_rhs else: out = real_lhs - real_rhs except (ValueError, TypeError): return None # typecast_timestamp returns a date or a datetime without timezone. # It will be formatted as "%Y-%m-%d" or "%Y-%m-%d %H:%M:%S[.%f]" return str(out) def _sqlite_time_diff(lhs, rhs): left = backend_utils.typecast_time(lhs) right = backend_utils.typecast_time(rhs) return ( (left.hour * 60 * 60 * 1000000) + (left.minute * 60 * 1000000) + (left.second * 1000000) + (left.microsecond) - (right.hour * 60 * 60 * 1000000) - (right.minute * 60 * 1000000) - (right.second * 1000000) - (right.microsecond) ) def _sqlite_timestamp_diff(lhs, rhs): left = backend_utils.typecast_timestamp(lhs) right = backend_utils.typecast_timestamp(rhs) return duration_microseconds(left - right) def _sqlite_regexp(re_pattern, re_string): return bool(re.search(re_pattern, str(re_string))) if re_string is not None else False def _sqlite_lpad(text, length, fill_text): if len(text) >= length: return text[:length] return (fill_text * length)[:length - len(text)] + text def _sqlite_rpad(text, length, fill_text): return (text + fill_text * length)[:length] def _sqlite_power(x, y): return x ** y
38.479592
115
0.624662
795114d037a9b6a713dca7d1b1231ec64d2c69c1
1,176
py
Python
Emotion_Model/voting.py
rogeroyer/2019-CCF-BDCI-Finance-Information-Negative-Judgment
06e0582b06f99ce3348ad91ea687ab3e9a0cf363
[ "MIT" ]
30
2020-02-28T13:33:09.000Z
2021-09-30T08:21:26.000Z
Emotion_Model/voting.py
williamjiamin/2019-CCF-BDCI-Finance-Information-Negative-Judgment
06e0582b06f99ce3348ad91ea687ab3e9a0cf363
[ "MIT" ]
1
2020-07-23T07:20:08.000Z
2020-07-24T13:29:58.000Z
Emotion_Model/voting.py
williamjiamin/2019-CCF-BDCI-Finance-Information-Negative-Judgment
06e0582b06f99ce3348ad91ea687ab3e9a0cf363
[ "MIT" ]
21
2020-03-18T14:43:53.000Z
2022-03-09T08:34:12.000Z
import os import path import numpy as np import pandas as pd from collections import Counter sub_path = './submit/' sub1 = pd.read_csv(sub_path + 'emotion_res_1.csv', encoding='utf-8')[['id', 'negative']] sub2 = pd.read_csv(sub_path + 'emotion_res_2.csv', encoding='utf-8')[['id', 'negative']] sub3 = pd.read_csv('./roberta_wwm_large_ext_emotion_xiong/result/submit_emotion.csv', encoding='utf-8')[['id', 'negative']] sub1.columns = ['id', 'negative_1'] sub2.columns = ['id', 'negative_2'] sub3.columns = ['id', 'negative_3'] sub = sub1.merge(sub2, on='id', how='left') sub = sub.merge(sub3, on='id', how='left') print(sub) def vote(value_1, value_2, value_3): count = Counter() count[value_1] += 1 count[value_2] += 1 count[value_3] += 1 # print(count) return count.most_common(1)[0][0] sub['negative'] = sub.apply(lambda index: vote(index.negative_1, index.negative_2, index.negative_3), axis=1) sub['key_entity'] = [np.nan for index in range(len(sub))] print(sub) sub[['id', 'negative', 'key_entity']].to_csv('./submit/emotion_voting_three_models.csv', encoding='utf-8', index=None) print('store done.') print(sub[sub['negative'] == 1].shape)
33.6
123
0.684524
7951156f1997765b869b5944c1eb717852c1a89f
996
py
Python
checkov/kubernetes/checks/ApiServerServiceAccountLookup.py
kylelaker/checkov
6eada26030a87f397a6bf1831827b3dc6c5dad2d
[ "Apache-2.0" ]
5
2021-07-29T18:08:40.000Z
2022-03-21T04:39:32.000Z
checkov/kubernetes/checks/ApiServerServiceAccountLookup.py
kylelaker/checkov
6eada26030a87f397a6bf1831827b3dc6c5dad2d
[ "Apache-2.0" ]
16
2021-03-09T07:38:38.000Z
2021-06-09T03:53:55.000Z
checkov/kubernetes/checks/ApiServerServiceAccountLookup.py
kylelaker/checkov
6eada26030a87f397a6bf1831827b3dc6c5dad2d
[ "Apache-2.0" ]
2
2021-08-23T13:25:36.000Z
2021-11-05T21:44:52.000Z
from checkov.common.models.enums import CheckCategories, CheckResult from checkov.kubernetes.base_spec_check import BaseK8Check class ApiServerServiceAccountLookup(BaseK8Check): def __init__(self): id = "CKV_K8S_96" name = "Ensure that the --service-account-lookup argument is set to true" categories = [CheckCategories.KUBERNETES] supported_entities = ['containers'] super().__init__(name=name, id=id, categories=categories, supported_entities=supported_entities) def get_resource_id(self, conf): return f'{conf["parent"]} - {conf["name"]}' def scan_spec_conf(self, conf): if conf.get("command") is not None: if "kube-apiserver" in conf["command"]: if "--service-account-lookup=false" in conf["command"] or "--service-account-lookup=true" not in conf["command"]: return CheckResult.FAILED return CheckResult.PASSED check = ApiServerServiceAccountLookup()
41.5
129
0.678715
795115b2c7d3ee67116697dcc2ee4a742e6c328e
2,371
py
Python
pyleecan/Methods/Geometry/Surface/split_line.py
IrakozeFD/pyleecan
5a93bd98755d880176c1ce8ac90f36ca1b907055
[ "Apache-2.0" ]
2
2020-08-28T14:54:55.000Z
2021-03-13T19:34:45.000Z
pyleecan/Methods/Geometry/Surface/split_line.py
IrakozeFD/pyleecan
5a93bd98755d880176c1ce8ac90f36ca1b907055
[ "Apache-2.0" ]
null
null
null
pyleecan/Methods/Geometry/Surface/split_line.py
IrakozeFD/pyleecan
5a93bd98755d880176c1ce8ac90f36ca1b907055
[ "Apache-2.0" ]
null
null
null
from ....Classes.Segment import Segment from ....definitions import PACKAGE_NAME def split_line(self, Z1, Z2, is_top=True, is_join=False, label_join=""): """Cut the Surface according to a line defined by two complex Parameters ---------- self : Surface An Surface object Z1 : complex First point of the cutting Line Z2 : complex Second point of the cutting Line is_top : bool True to keep the part above the cutting line. "Above" is in the coordinate system with Z1 in 0 and Z2 on the X>0 axis is_join : bool True to join the split_list with Segment on the cutting line label_join : str Label of the join line Returns ------- split_surf : SurfLine The selected part of the Surface """ # Dynamic import to avoid import loop module = __import__(PACKAGE_NAME + ".Classes.SurfLine", fromlist=["SurfLine"]) SurfLine = getattr(module, "SurfLine") # Split all the lines of the surface lines = self.get_lines() split_list = list() for line in lines: split_list.extend( line.split_line( Z1=Z1, Z2=Z2, is_top=is_top, is_join=is_join, label_join=label_join ) ) # Make sure that the surface is closed (if needed) if is_join: final_list = list() for ii in range(len(split_list) - 1): final_list.append(split_list[ii]) if abs(split_list[ii].get_end() - split_list[ii + 1].get_begin()) > 1e-6: final_list.append( Segment( begin=split_list[ii].get_end(), end=split_list[ii + 1].get_begin(), label=label_join, ) ) final_list.append(split_list[-1]) # Add last line if abs(split_list[-1].get_end() - split_list[0].get_begin()) > 1e-6: final_list.append( Segment( begin=split_list[-1].get_end(), end=split_list[0].get_begin(), label=label_join, ) ) split_list = final_list # Create the resulting surface and update ref point surf = SurfLine(label=self.label, line_list=split_list) surf.comp_point_ref(is_set=True) return surf
32.040541
85
0.571489
79511647deea627d21740b9d8e33f38b6db8b387
565
py
Python
variables_and_types/script.py
fabiomilheiro/Python-Experiments
9f5c3ab73dfb8ca5dde5a71393a3cf55ee81c641
[ "Unlicense" ]
null
null
null
variables_and_types/script.py
fabiomilheiro/Python-Experiments
9f5c3ab73dfb8ca5dde5a71393a3cf55ee81c641
[ "Unlicense" ]
null
null
null
variables_and_types/script.py
fabiomilheiro/Python-Experiments
9f5c3ab73dfb8ca5dde5a71393a3cf55ee81c641
[ "Unlicense" ]
null
null
null
x = 1000 y = 3.14 print(x) print(y) print(float(7)) name = 'John Smith' print(name) name = "John Smith's jacket" print(name) one = 1 two = 2 three = one + two print(three) hello = "hello" world = "world" hello_word = hello + " " + world print(hello_word) a, b = 3, 4 print(a, b, "something else") mystring = "hello" myfloat = 10.0 myint = 20 if mystring == "hello": print("String %s" % mystring) if isinstance(myfloat, float) and myfloat == 10.0: print("Float: %f" % myfloat) if isinstance(myint, int) and myint == 20: print("Integer: %d" % myint)
16.617647
50
0.635398
7951164e57e08ce004b584eaa9f49f327d04a151
4,772
py
Python
demos/demo_2d_tracer.py
jhill1/thetis
1be5d28d5d0d7248f2bbce4986b3e886116e103a
[ "MIT" ]
null
null
null
demos/demo_2d_tracer.py
jhill1/thetis
1be5d28d5d0d7248f2bbce4986b3e886116e103a
[ "MIT" ]
null
null
null
demos/demo_2d_tracer.py
jhill1/thetis
1be5d28d5d0d7248f2bbce4986b3e886116e103a
[ "MIT" ]
null
null
null
# 2D tracer transport # =================== # # This demo shows how the Firedrake DG advection equation # `demo <https://firedrakeproject.org/demos/DG_advection.py.html>`__ # can be implemented in Thetis. # # The test case is the classic cosine-bell--cone--slotted-cylinder # advection test case of :cite:`LeVeque:1996`. The domain is the unit # square :math:`\Omega=[0,1]^2` and the velocity corresponds to the # solid body rotation :math:`\vec{u} = (0.5 - y, x - 0.5)`. # # As usual, we start by importing Thetis. :: from thetis import * # Define a 40-by-40 mesh of squares. :: mesh2d = UnitSquareMesh(40, 40, quadrilateral=True) # We will solve a pure advection problem in non-conservative form, # with no hydrodynamics. Therefore, bathymetry is not actually # important. We set an arbitrary postive value, as this is required # by Thetis to construct the solver object. :: P1_2d = FunctionSpace(mesh2d, "CG", 1) bathymetry2d = Function(P1_2d) bathymetry2d.assign(1.0) solver_obj = solver2d.FlowSolver2d(mesh2d, bathymetry2d) # To activate the tracer functionality, we set the option # ``solve_tracer = True``. As mentioned above, we are only solving # the tracer equation, which can be specified by setting # ``tracer_only = True``. options = solver_obj.options options.solve_tracer = True options.tracer_only = True options.fields_to_export = ['tracer_2d'] # We will run for time :math:`2\pi` -- a full rotation -- using a # strong stability preserving third order Runge-Kutta method (SSPRK33). # For consistency with the Firedrake demo, Thetis' automatic timestep # computation functionality is switched off and the simulation time is # split into 600 steps, giving a timestep close to the CFL limit. :: options.timestepper_type = 'SSPRK33' options.timestep = pi/300.0 options.simulation_end_time = 2*pi options.simulation_export_time = pi/15.0 options.timestepper_options.use_automatic_timestep = False # We have a pure advection problem with no diffusivity or source terms. However, # such terms can be specified by replacing the ``None`` values below. For # consistency with the Firedrake demo, we do not use stabilization or slope # limiters, both of which are used by default in Thetis. Slope limiters are used # to obtain non-oscillatory solutions. :: options.horizontal_diffusivity = None options.tracer_source_2d = None options.use_lax_friedrichs_tracer = False options.use_limiter_for_tracers = False # The background tracer value is imposed as an upwind inflow condition. # In general, this would be a ``Function``, but here we just use a ``Constant`` # value. :: solver_obj.bnd_functions['tracer'] = {'on_boundary': {'value': Constant(1.0)}} # The velocity field is set up using a simple analytic expression. :: vP1_2d = VectorFunctionSpace(mesh2d, "CG", 1) x, y = SpatialCoordinate(mesh2d) uv_init = interpolate(as_vector([0.5 - y, x - 0.5]), vP1_2d) # Now, we set up the cosine-bell--cone--slotted-cylinder initial condition. The # first four lines declare various parameters relating to the positions of these # objects, while the analytic expressions appear in the last three lines. This # code is simply copied from the Firedrake version of the demo. :: bell_r0 = 0.15; bell_x0 = 0.25; bell_y0 = 0.5 cone_r0 = 0.15; cone_x0 = 0.5; cone_y0 = 0.25 cyl_r0 = 0.15; cyl_x0 = 0.5; cyl_y0 = 0.75 slot_left = 0.475; slot_right = 0.525; slot_top = 0.85 bell = 0.25*(1+cos(pi*min_value(sqrt(pow(x-bell_x0, 2) + pow(y-bell_y0, 2))/bell_r0, 1.0))) cone = 1.0 - min_value(sqrt(pow(x-cone_x0, 2) + pow(y-cone_y0, 2))/cone_r0, 1.0) slot_cyl = conditional(sqrt(pow(x-cyl_x0, 2) + pow(y-cyl_y0, 2)) < cyl_r0, conditional(And(And(x > slot_left, x < slot_right), y < slot_top), 0.0, 1.0), 0.0) # We then declare the inital condition, ``q_init``, to be the sum of these fields. # Furthermore, we add 1 to this, so that the initial field lies between 1 and 2, # rather than between 0 and 1. This ensures that we can't get away with # neglecting the inflow boundary condition. We also save the initial state so # that we can check the :math:`L^2`-norm error at the end. :: q_init = interpolate(1.0 + bell + cone + slot_cyl, P1_2d) solver_obj.assign_initial_conditions(uv=uv_init, tracer_2d=q_init) # Now we are in a position to run the time loop. :: solver_obj.iterate() # Finally, we display the normalised :math:`L^2` error, by comparing to the initial condition. :: q = solver_obj.fields.tracer_2d L2_err = sqrt(assemble((q - q_init)*(q - q_init)*dx)) L2_init = sqrt(assemble(q_init*q_init*dx)) print_output(L2_err/L2_init) # This tutorial can be dowloaded as a Python script `here <demo_2d_tracer.py>`__. # # # .. rubric:: References # # .. bibliography:: demo_references.bib # :filter: docname in docnames
40.10084
97
0.732188