hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
4a05dba10eba0cd46002ae358afad66ab3fbd5d0
16,627
py
Python
ceasiompy/BalanceUnconventional/func/AinFunc/getdatafromcpacs.py
lverdier1/CEASIOMpy
178d44b26ba1d9249928823c3896f7ad85d19de8
[ "Apache-2.0" ]
null
null
null
ceasiompy/BalanceUnconventional/func/AinFunc/getdatafromcpacs.py
lverdier1/CEASIOMpy
178d44b26ba1d9249928823c3896f7ad85d19de8
[ "Apache-2.0" ]
null
null
null
ceasiompy/BalanceUnconventional/func/AinFunc/getdatafromcpacs.py
lverdier1/CEASIOMpy
178d44b26ba1d9249928823c3896f7ad85d19de8
[ "Apache-2.0" ]
null
null
null
""" CEASIOMpy: Conceptual Aircraft Design Software Developed for CFS ENGINEERING, 1015 Lausanne, Switzerland This programm will read the xml file created by the weight module or the xml file in the cpacs file formatinside the ToolInput folder. The cpacs file Must contain the: * maximum_take_off_mass --In.: Maximum take off mass * mass_fuel_max --In.: Maximum fuel mass * mass_fuel_maxpass --In.: Maximum fuel with max passengers * operating_empty_mass --In.: Operating empty mass * mass_payload --In.: Payload mass The cpacs file Should also contain: * WING_MOUNTED --In.: True if the engine are placed on the rear of the aircraft. | Works with Python 2.7 | Author : Stefano Piccini | Date of creation: 2018-12-05 | Last modifiction: 2019-08-29 (AJ) """ #============================================================================= # IMPORTS #============================================================================= import numpy as np from ceasiompy.utils.ceasiomlogger import get_logger from ceasiompy.utils.cpacsfunctions import open_tixi,open_tigl, close_tixi, \ create_branch log = get_logger(__file__.split('.')[0]) #============================================================================= # CLASSES #============================================================================= """All classes are defined inside the classes folder and into the InputClasses/Uconventional folder""" #============================================================================= # FUNCTIONS #============================================================================= def get_user_fuel(fus_nb, ui, cpacs_in): """ Function to extract from the xml file the required input data, the code will use the default value when they are missing. INPUT (int) fus_nb --Arg.: Number of fuselage. (class) ui --Arg.: UserInputs class. ##======= Classes are defined in the InputClasses folder =======## (char) cpacs_in --Arg.: Relative location of the xml file in the ToolInput folder (cpacs option) or relative location of the temp. xml file in the ToolOutput folder (input option). OUTPUT (class) ui --Out.: UserInputs class. (file) cpacs_in --Out.: Updated cpasc file """ log.info('Starting data extraction from CPACS file') # Path creation ========================================================== tixi = open_tixi(cpacs_in) FUEL_PATH = '/cpacs/toolspecific/CEASIOMpy/fuels' create_branch(tixi, FUEL_PATH, False) if fus_nb: for i in range(0, fus_nb): if fus_nb > 1: F = 'fuelOnCabin' + str(i+1) else: F = 'fuelOnCabin' print((FUEL_PATH + '/' + F)) if not tixi.checkElement(FUEL_PATH + '/' + F): tixi.createElement(FUEL_PATH, F) tixi.updateDoubleElement(FUEL_PATH + '/' + F,\ ui.F_FUEL[i], '%g') else: ui.F_FUEL[i] = tixi.getDoubleElement(FUEL_PATH + '/' + F) else: if not tixi.checkElement(FUEL_PATH + '/fuelOnCabin'): tixi.createElement(FUEL_PATH, 'fuelOnCabin') tixi.updateDoubleElement(FUEL_PATH + '/fuelOnCabin',\ ui.FUEL_ON_CABIN, '%g') else: temp = tixi.updateDoubleElement(FUEL_PATH + '/fuelOnCabin',\ ui.FUEL_ON_CABIN, '%g') if temp != ui.FUEL_ON_CABIN and temp > 0: ui.FUEL_ON_CABIN = temp log.info('Data from CPACS file succesfully extracted') # Saving and closing the cpacs file -------------------------------------- tixi.saveDocument(cpacs_in) close_tixi(tixi, cpacs_in) # Openign and closing again the cpacs file ------------------------------- tixi = open_tixi(cpacs_in) tigl = open_tigl(tixi) tixi.saveDocument(cpacs_in) close_tixi(tixi, cpacs_in) return(ui) def get_data(ui, bi, mw, ed, cpacs_in): """ The function extracts from the xml file the required input data, the code will use the default value when they are missing. INPUT (class) ui --Arg.: UserInputs class. (class) bi --Arg.: BalanceInputs class. (class) mw --Arg.: MassesWeight class. (class) ed --Arg.: EngineData class. ##======= Classes are defined in the InputClasses folder =======## (char) cpacs_in --Arg.: Relative location of the xml file in the ToolInput folder (cpacs option) or relative location of the temp. xml file in the ToolOutput folder (input option). OUTPUT (class) mw --Out.: MassesWeight class updated. (class) ed --Out.: EngineData class updated. (file) cpacs_in --Out.: Updated cpasc file. """ log.info('CPACS file path check') # path definition ======================================================== # Opening CPACS file tixi = open_tixi(cpacs_in) TSPEC_PATH = '/cpacs/toolspecific/CEASIOMpy' GEOM_PATH = TSPEC_PATH + '/geometry' FMP_PATH = TSPEC_PATH + '/weight/passengers/fuelMassMaxpass/mass' PROP_PATH = TSPEC_PATH + '/propulsion' MASS_PATH = '/cpacs/vehicles/aircraft/model/analyses/massBreakdown' MTOM_PATH = MASS_PATH + '/designMasses/mTOM/mass' F_PATH = MASS_PATH + '/fuel/massDescription/mass' OEM_PATH = MASS_PATH + '/mOEM/massDescription/mass' PAY_PATH = MASS_PATH + '/payload/massDescription/mass' EN_PATH = '/cpacs/vehicles/engines/engine1/analysis/mass/mass' BC_PATH = TSPEC_PATH + '/balance/userBalance' create_branch(tixi, BC_PATH, False) # Compulsory path checks ================================================= if not tixi.checkElement(TSPEC_PATH): raise Exception('Missing required toolspecific path. Run '\ + 'Weight_unc_main.py,'\ + ' in the 4Weight_unc_module folder.') elif not tixi.checkElement(MASS_PATH): raise Exception('Missing required massBreakdown path. Run '\ + 'Weight_unc_main.py,'\ + ' in the 4Weight_unc_module folder.') elif not tixi.checkElement(MTOM_PATH): raise Exception('Missing required mTOM/mass path. Run '\ + 'Weight_unc_main.py,'\ + ' in the 4Weight_unc_module folder.') elif not tixi.checkElement(FMP_PATH): raise Exception('Missing required fuelMassMaxpass/mass path. Run '\ + 'Weight_unc_main.py,'\ + ' in the 4Weight_unc_module folder.') elif not tixi.checkElement(OEM_PATH): raise Exception('Missing required mOEM/massDescription/mass '\ + 'path. Run Weight_unc_main.py,'\ + ' in the 4Weight_unc_module folder.') elif not tixi.checkElement(PAY_PATH): raise Exception('Missing required payload/massDescription/mass '\ + 'path. Run Weight_unc_main.py,'\ + ' in the 4Weight_unc_module folder.') elif not tixi.checkElement(F_PATH): raise Exception('Missing required /fuel/massDescription/mass '\ + 'path. Run Weight_unc_main.py,'\ + ' in the 4Weight_unc_module folder.') elif not tixi.checkElement(EN_PATH): raise Exception('Missing required /cpacs/vehicles/engines/engine1'\ + '/analysis/mass path. Run Weight_unc_main.py,'\ + ' in the 4Weight_unc_module folder.') else: log.info('All path correctly defined in the toolinput.xml file, '\ + 'beginning data extracction.') # Gathering data ========================================================= ## Geometry Data if not tixi.checkElement(GEOM_PATH + '/floorsNb'): tixi.createElement(GEOM_PATH, 'floorsNb') tixi.updateDoubleElement(GEOM_PATH + '/floorsNb',\ ui.FLOORS_NB, '%g') else: temp = tixi.getDoubleElement(GEOM_PATH + '/floorsNb') if temp != ui.FLOORS_NB and temp > 0: ui.FLOORS_NB = temp if not tixi.checkElement(GEOM_PATH + '/cabinHeight'): tixi.createElement(GEOM_PATH, 'cabinHeight') tixi.updateDoubleElement(GEOM_PATH + '/cabinHeight',\ ui.H_LIM_CABIN, '%g') else: temp = tixi.getDoubleElement(GEOM_PATH + '/cabinHeight') if temp != ui.H_LIM_CABIN and temp > 0: ui.H_LIM_CABIN = temp ## User Case Balance if not tixi.checkElement(BC_PATH + '/userCase'): tixi.createElement(BC_PATH, 'userCase') if bi.USER_CASE: tixi.updateTextElement(BC_PATH + '/userCase', 'True') else: tixi.updateTextElement(BC_PATH + '/userCase', 'False') else: temp = tixi.getTextElement(BC_PATH + '/userCase') if temp == 'False': bi.USER_CASE = False else: bi.USER_CASE = True if bi.USER_CASE: if tixi.checkElement(BC_PATH + '/fuelPercentage'): bi.F_PERC=tixi.getDoubleElement(BC_PATH + '/fuelPercentage') elif bi.F_PERC: tixi.createElement(BC_PATH, 'fuelPercentage') tixi.updateDoubleElement(BC_PATH + '/fuelPercentage',\ bi.F_PERC, '%g') else: raise Exception('User balance option defined'\ + ' True but no fuel percentage data in the'\ + ' CPACS file or in th BalanceInput class.') if tixi.checkElement(BC_PATH + '/payloadPercentage'): bi.P_PERC=tixi.getDoubleElement(BC_PATH + '/payloadPercentage') elif bi.P_PERC: tixi.createElement(BC_PATH, 'payloadPercentage') tixi.updateDoubleElement(BC_PATH + '/payloadPercentage',\ bi.P_PERC, '%g') else: raise Exception('User balance option defined'\ + ' True but no payload percentage data in'\ + ' the CPACS file or in th BalanceInput class.') ## Engines Data ed.en_mass = tixi.getDoubleElement(EN_PATH) if not tixi.checkElement(PROP_PATH + '/wingMountedEngine'): create_branch(tixi, PROP_PATH, False) tixi.createElement(PROP_PATH, 'wingMountedEngine') if ed.WING_MOUNTED: tixi.updateTextElement(PROP_PATH + '/wingMountedEngine', 'True') else: tixi.updateTextElement(PROP_PATH + '/wingMountedEngine', 'False') else: temp = tixi.getTextElement(PROP_PATH + '/wingMountedEngine') if temp == 'False': ed.WING_MOUNTED = False else: ed.WING_MOUNTED = True if not tixi.checkElement(PROP_PATH + '/userEnginePlacement'): tixi.createElement(PROP_PATH, 'userEnginePlacement') if bi.USER_EN_PLACEMENT: tixi.updateTextElement(PROP_PATH + '/userEnginePlacement', 'True') else: tixi.updateTextElement(PROP_PATH + '/userEnginePlacement', 'False') else: temp = tixi.getTextElement(PROP_PATH + '/userEnginePlacement') if temp == 'False': bi.USER_EN_PLACEMENT = False else: bi.USER_EN_PLACEMENT = True if not tixi.checkElement(PROP_PATH + '/engineNumber'): create_branch(tixi, PROP_PATH, False) tixi.createElement(PROP_PATH, 'engineNumber') tixi.updateIntegerElement(PROP_PATH + '/engineNumber', ed.NE, '%i') else: ed.NE = tixi.getIntegerElement(PROP_PATH + '/engineNumber') ## User Engine Placement tp=[] ed.EN_NAME=[] if tixi.checkElement(EN_PATH): for e in range(0,ed.NE): EN_PATH = '/cpacs/vehicles/engines' if ed.NE > 1: EN_PATH += '/engine' + str(e+1) else: EN_PATH += '/engine' if not tixi.checkElement(EN_PATH): raise Exception('Engine definition inclomplete, missing'\ + ' one or more engines in the cpacs file') if not tixi.checkElement(EN_PATH + '/name'): ed.EN_NAME.append('Engine_' + str(e+1)) else: ed.EN_NAME.append(tixi.getTextElement(EN_PATH + '/name')) ENA_PATH = EN_PATH + '/analysis/mass' if tixi.checkElement(ENA_PATH): ed.en_mass = tixi.getDoubleElement(ENA_PATH + '/mass') tp.append(ed.en_mass) if e > 0 and ed.en_mass != tp[e-1]: log.warning('The engines have different masses,'\ + 'this can lead to an unbalanced aircraft') elif ed.en_mass: tixi.createElement(ENA_PATH, 'mass') tixi.updateDoubleElement(ENA_PATH + '/mass', ed.en_mass, '%g') else: raise Exception('Engine definition inclomplete, missing'\ + ' engine mass in the cpacs file') s = np.shape(ed.EN_PLACEMENT) warn = False if not ed.NE: raise Exception('No engine defined for the aircraft') elif s[0] < ed.NE or s[1] < 3 or np.any(ed.EN_PLACEMENT) == False: warn=True else: log.info('EngineData class defined correctly.') s = ed.EN_PLACEMENT if bi.USER_EN_PLACEMENT: ed.EN_PLACEMENT = [] for e in range(1,ed.NE+1): if ed.NE > 1: ENLOC_PATH = '/cpacs/vehicles/engines/engine' + str(e)\ + '/analysis/mass/location' else: ENLOC_PATH = '/cpacs/vehicles/engines/engine'\ + '/analysis/mass/location' if not tixi.checkElement(ENLOC_PATH) and warn: raise Exception('User engine Placement option defined'\ + ' True but no engine placement data in the'\ + ' CPACS file.') if not tixi.checkElement(ENLOC_PATH) and not warn: create_branch(tixi, ENLOC_PATH, False) tixi.createElement(ENLOC_PATH, 'x') tixi.createElement(ENLOC_PATH, 'y') tixi.createElement(ENLOC_PATH, 'z') tixi.updateDoubleElement(ENLOC_PATH +'/x', s[e-1][0], '%g') tixi.updateDoubleElement(ENLOC_PATH +'/y', s[e-1][1], '%g') tixi.updateDoubleElement(ENLOC_PATH +'/z', s[e-1][2], '%g') ed.EN_PLACEMENT.append([s[e-1][0], s[e-1][1], s[e-1][2]]) else: x=tixi.getDoubleElement(ENLOC_PATH + '/x') y=tixi.getDoubleElement(ENLOC_PATH + '/y') z=tixi.getDoubleElement(ENLOC_PATH + '/z') ed.EN_PLACEMENT.append([x,y,z]) ed.EN_PLACEMENT=np.array(ed.EN_PLACEMENT) ## REQUIRED TOOLSPECIFIC DATA ============================================ # Fuel mw.mass_fuel_maxpass = tixi.getDoubleElement(FMP_PATH) ## REQUIRED MASSBREAKDOWN DATA =========================================== mw.maximum_take_off_mass = tixi.getDoubleElement(MTOM_PATH) mw.operating_empty_mass = tixi.getDoubleElement(OEM_PATH) mw.mass_payload = tixi.getDoubleElement(PAY_PATH) mw.mass_fuel_tot = tixi.getDoubleElement(F_PATH) log.info('Data from CPACS file succesfully extracted') # Saving and closing the cpacs file ====================================== tixi.saveDocument(cpacs_in) close_tixi(tixi, cpacs_in) # Openign and closing again the cpacs file =============================== tixi = open_tixi(cpacs_in) tigl = open_tigl(tixi) tixi.saveDocument(cpacs_in) close_tixi(tixi, cpacs_in) return(mw, ed) #============================================================================= # MAIN #============================================================================= if __name__ == '__main__': log.warning('#########################################################') log.warning('# ERROR NOT A STANDALONE PROGRAM, RUN balanceuncmain.py #') log.warning('#########################################################')
41.987374
80
0.541168
4a05dc3d5c7aac5432c75f6e8642483918cb9c71
128
py
Python
modular/Demo02/Collections02.py
walkingtyphoon/Python-workspace
e872bce82b2bac3dd5d809f8576345ccc1c6afb7
[ "Apache-2.0" ]
null
null
null
modular/Demo02/Collections02.py
walkingtyphoon/Python-workspace
e872bce82b2bac3dd5d809f8576345ccc1c6afb7
[ "Apache-2.0" ]
null
null
null
modular/Demo02/Collections02.py
walkingtyphoon/Python-workspace
e872bce82b2bac3dd5d809f8576345ccc1c6afb7
[ "Apache-2.0" ]
null
null
null
from collections import deque q = deque([1, 2, 3]) print(q) q.append(6) print("追加后的元素:", q) q.appendleft(0) print("追加后的元素:", q)
16
29
0.664063
4a05dc8c69da0cb534547666277ceb977a4d720a
86
py
Python
components/stairs.py
thomerickson/roguelike
011a85d53685c922b2b3ddcd28d59818359d15dc
[ "MIT" ]
null
null
null
components/stairs.py
thomerickson/roguelike
011a85d53685c922b2b3ddcd28d59818359d15dc
[ "MIT" ]
null
null
null
components/stairs.py
thomerickson/roguelike
011a85d53685c922b2b3ddcd28d59818359d15dc
[ "MIT" ]
null
null
null
# stairs.py class Stairs(): def __init__(self, floor): self.floor = floor
17.2
30
0.616279
4a05dec61c3b0273598334f54da784d2d25e5ccb
348
py
Python
scrapinsta/domain/entities/IScrapinsta.py
matheuskolln/scrapinsta
47ec816f33a36e8570d4c56f921ba18a2d12a306
[ "MIT" ]
1
2021-09-05T05:37:22.000Z
2021-09-05T05:37:22.000Z
scrapinsta/domain/entities/IScrapinsta.py
matheuskolln/scrapinsta
47ec816f33a36e8570d4c56f921ba18a2d12a306
[ "MIT" ]
13
2020-11-06T17:43:46.000Z
2021-09-05T00:13:02.000Z
scrapinsta/domain/entities/IScrapinsta.py
matheuskolln/scrapinsta
47ec816f33a36e8570d4c56f921ba18a2d12a306
[ "MIT" ]
2
2020-11-09T20:39:57.000Z
2021-09-05T01:37:29.000Z
from abc import ABC, abstractmethod from typing import List class IScrapinsta(ABC): @abstractmethod def login(self) -> None: pass @abstractmethod def get_followers(self, user: str, amount: int) -> List[str]: pass @abstractmethod def get_following(self, user: str, amount: int) -> List[str]: pass
20.470588
65
0.646552
4a05df9337a4e69d1e8e148cf3341603a392a46b
1,501
py
Python
vscode/utils.py
TTitcombe/vscode-ext
925db8ba809621516722fd1557cc3fd701247497
[ "MIT" ]
140
2021-07-25T13:54:09.000Z
2022-02-23T23:52:53.000Z
vscode/utils.py
Nicholas-Schaub/vscode-ext
3a8b54146e368c67d3e6db7c3929d05e52cbd947
[ "MIT" ]
24
2021-07-25T14:22:57.000Z
2022-01-25T01:37:42.000Z
vscode/utils.py
Nicholas-Schaub/vscode-ext
3a8b54146e368c67d3e6db7c3929d05e52cbd947
[ "MIT" ]
19
2021-07-25T08:13:36.000Z
2022-02-12T20:52:04.000Z
from typing import Optional __all__ = ( "log", "camel_case_to_snake_case", "snake_case_to_camel_case", "snake_case_to_title_case", "python_condition_to_js_condition", ) def log(*args, **kwargs): kwargs["flush"] = True print(*args, **kwargs) def camel_case_to_snake_case(text: str) -> str: return "".join("_" + i.lower() if i.isupper() else i for i in text).lstrip("_") def snake_case_to_camel_case(text: Optional[str]) -> Optional[str]: if text is None: return None temp = text.split("_") return temp[0] + "".join(ele.title() for ele in temp[1:]) def snake_case_to_title_case(text: Optional[str]) -> Optional[str]: if text is None: return None return text.replace("_", " ").title() def python_condition_to_js_condition(condition: Optional[str]) -> Optional[str]: if condition is None: return None condition = " ".join( i if "_" not in i else snake_case_to_camel_case(i) for i in condition.split(" ") ) condition = condition.replace(" and ", " && ") condition = condition.replace(" or ", " || ") if " not " in condition: if "(" not in condition or ")" not in condition: raise SyntaxError( "Use parenthesis '()' while using 'not' otherwise your conditions might not work as expected!" ) else: condition = condition.replace(" not ", " !") return condition
27.796296
111
0.596935
4a05dff28e07fd05c42da14211d72b941f50d4f6
650
py
Python
app/display_modules/pathways/models.py
MetaGenScope/metagenscope-server
609cd57c626c857c8efde8237a1f22f4d1e6065d
[ "MIT" ]
null
null
null
app/display_modules/pathways/models.py
MetaGenScope/metagenscope-server
609cd57c626c857c8efde8237a1f22f4d1e6065d
[ "MIT" ]
null
null
null
app/display_modules/pathways/models.py
MetaGenScope/metagenscope-server
609cd57c626c857c8efde8237a1f22f4d1e6065d
[ "MIT" ]
null
null
null
"""Models for pathways.""" from app.extensions import mongoDB as mdb # Define aliases EmbeddedDoc = mdb.EmbeddedDocumentField # pylint: disable=invalid-name class PathwaySampleDocument(mdb.EmbeddedDocument): # pylint: disable=too-few-public-methods """Pathway for a single sample.""" pathway_abundances = mdb.MapField(mdb.FloatField(), required=True) pathway_coverages = mdb.MapField(mdb.FloatField(), required=True) class PathwayResult(mdb.EmbeddedDocument): # pylint: disable=too-few-public-methods """Set of pathway results.""" samples = mdb.MapField(field=EmbeddedDoc(PathwaySampleDocument), required=True)
30.952381
92
0.747692
4a05e069c8cf0c2aff65a77562170fc9441c2403
449
py
Python
processing/file_list.py
ssbgp/data-tools
ec8caf5831eae6a35fd95bb2fb86cf77434bf4d9
[ "MIT" ]
null
null
null
processing/file_list.py
ssbgp/data-tools
ec8caf5831eae6a35fd95bb2fb86cf77434bf4d9
[ "MIT" ]
null
null
null
processing/file_list.py
ssbgp/data-tools
ec8caf5831eae6a35fd95bb2fb86cf77434bf4d9
[ "MIT" ]
null
null
null
from pathlib import Path from typing import Iterator from collections import Iterable from processing.file_collection import FileCollection class FileList(FileCollection): """ A simple list of files """ def __init__(self, iterable: Iterable) -> None: self._list = list(iterable) def __iter__(self) -> Iterator[Path]: """ Returns an iterator to iterate over each file in the list """ return iter(self._list)
24.944444
73
0.706013
4a05e0b1f45dd90a9b2a99a5d94c4d051384ec1c
392
py
Python
app/modules.py
yusufsyaifudin/stex
ede1450fa1da296c52353a75f709302bc7bf6f38
[ "MIT" ]
null
null
null
app/modules.py
yusufsyaifudin/stex
ede1450fa1da296c52353a75f709302bc7bf6f38
[ "MIT" ]
null
null
null
app/modules.py
yusufsyaifudin/stex
ede1450fa1da296c52353a75f709302bc7bf6f38
[ "MIT" ]
null
null
null
from flask import render_template from app import app # Import a module / component using its blueprint handler variable from app.home_module.controllers import mod_home # Register blueprint(s) # app.register_blueprint(xyz_module) # .. app.register_blueprint(mod_home) # Sample HTTP error handling @app.errorhandler(404) def not_found(error): return render_template('404.html'), 404
21.777778
66
0.790816
4a05e1ecee90fe4c8e6643f031c5cfa7dcb965f6
932
py
Python
models/dqn_state.py
abefetterman/slither
fb5a45f40dbc806879caf4e0a758c074ad4d7aca
[ "MIT" ]
null
null
null
models/dqn_state.py
abefetterman/slither
fb5a45f40dbc806879caf4e0a758c074ad4d7aca
[ "MIT" ]
null
null
null
models/dqn_state.py
abefetterman/slither
fb5a45f40dbc806879caf4e0a758c074ad4d7aca
[ "MIT" ]
null
null
null
import torch.nn as nn import torch.nn.functional as F import math from methods.utils import conv_chain class DQN(nn.Module): def __init__(self, h, w, batch_norm=False): super(DQN, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1) self.conv2 = nn.Conv2d(32, 32, kernel_size=3, stride=1) conv_out_h, conv_out_w = conv_chain((h,w), [self.conv1, self.conv2]) self.hidden = nn.Linear(conv_out_h*conv_out_w*32, 256) self.head = nn.Linear(256, 4) if batch_norm: self.bn1 = nn.BatchNorm2d(32) self.bn2 = nn.BatchNorm2d(32) else: self.bn1 = lambda x: x self.bn2 = lambda x: x def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.hidden(x.view(x.size(0), -1))) #print(x.size()) return self.head(x)
31.066667
76
0.589056
4a05e1f188ae7cd1c99dc41e22303f5c9b66adc1
884
py
Python
tf2_models/utils.py
samiraabnar/DistillingInductiveBias
962f87e7d38a3d255846432286e048d176ed7a5d
[ "MIT" ]
10
2020-07-04T09:11:36.000Z
2021-12-16T13:06:35.000Z
tf2_models/utils.py
samiraabnar/DistillingInductiveBias
962f87e7d38a3d255846432286e048d176ed7a5d
[ "MIT" ]
null
null
null
tf2_models/utils.py
samiraabnar/DistillingInductiveBias
962f87e7d38a3d255846432286e048d176ed7a5d
[ "MIT" ]
3
2021-07-09T16:24:07.000Z
2022-02-07T15:49:05.000Z
import tensorflow as tf import re from tensorboard.compat.tensorflow_stub import tensor_shape def camel2snake(name): return name[0].lower() + re.sub(r'(?!^)[A-Z]', lambda x: '_' + x.group(0).lower(), name[1:]) def log_summary(log_value, log_name, summary_scope): """Produce scalar summaries.""" with tf.compat.v2.summary.experimental.summary_scope(summary_scope): tf.summary.scalar(log_name, log_value) def create_init_var(unnested_state_size, i, initializer_range): flat_dims = tensor_shape.as_shape(unnested_state_size).as_list() init_state_size = [1] + flat_dims return tf.Variable(shape=init_state_size, dtype=tf.float32, initial_value=tf.keras.initializers.TruncatedNormal(stddev=initializer_range)( shape=init_state_size), trainable=True, name="lstm_init_" + str(i))
32.740741
99
0.692308
4a05e2fa26cfc12ddc82be7f8599aa5d4e5546e6
1,329
py
Python
scripts/exponentiation_timing/expm_comparisons.py
Evan1415/QMLA
4521f7c08456a4494aed7c1b78d8ded5ea40f3d8
[ "MIT" ]
null
null
null
scripts/exponentiation_timing/expm_comparisons.py
Evan1415/QMLA
4521f7c08456a4494aed7c1b78d8ded5ea40f3d8
[ "MIT" ]
null
null
null
scripts/exponentiation_timing/expm_comparisons.py
Evan1415/QMLA
4521f7c08456a4494aed7c1b78d8ded5ea40f3d8
[ "MIT" ]
null
null
null
import os as os import warnings import numpy as np import itertools as itr import matplotlib.pyplot as plt import sys as sys import pandas as pd import warnings import time as time import logging import random import pickle pickle.HIGHEST_PROTOCOL = 4 p = os.path.abspath(os.path.realpath(__file__)) elements = p.split('/')[:-2] qmla_root = os.path.abspath('/'.join(elements)) sys.path.append(qmla_root) import qmla from qmla import construct_models from expm import expm from scipy.linalg import expm as lexpm num_iterations = 100 t_expm = 0 t_lexpm = 0 for i in range(num_iterations): model_params = { 'FH-hopping-sum_up_1h2_1h3_2h4_3h4_d4': np.random.uniform(0,1), 'FH-onsite-sum_1_2_3_4_d4': np.random.uniform(0,1), 'FH-hopping-sum_down_1h2_1h3_2h4_3h4_d4': np.random.uniform(0,1) } model = sum([ model_params[term] * qmla.construct_models.compute(term) for term in model_params ]) t = np.random.uniform(0,100) start_expm = time.time() u = expm(-1j*model*t) t_expm += time.time() - start_expm start_lexpm = time.time() u = lexpm(-1j*model*t) t_lexpm += time.time() - start_expm print("Total times taken:\n \texpm={} \n\tlexpm={} \n\tSpeedup={}".format( np.round(t_expm, 2), np.round(t_lexpm, 2), np.round(t_lexpm/t_expm, 2) ))
22.525424
89
0.69526
4a05e4d01b698a17f0f01a28150823fd8772b303
2,145
py
Python
src/lib/celery/__init__.py
Jiawei2333/holmuskTest
46d85619915f977c2ca8e8a431db3c916ac157c7
[ "MIT" ]
1
2019-08-31T02:19:33.000Z
2019-08-31T02:19:33.000Z
src/lib/celery/__init__.py
Jiawei2333/holmuskTest
46d85619915f977c2ca8e8a431db3c916ac157c7
[ "MIT" ]
7
2020-01-28T22:54:41.000Z
2022-02-10T00:15:57.000Z
src/lib/celery/__init__.py
kennethleung-holmusk/holmuskTest
7580f029a06d16a6a319965dd0d1ea466d0c0c64
[ "MIT" ]
null
null
null
'''library for the celery worker This contains a library that will generate a celery app. This is a library that is provided so that everything can be made as simple as possible. There is no need to change anything in this library, and this library should work as is. The currelt celery library works usign an updated logger, and this will create its own logger. All requirements for this library can be specified within the configuration file ``config/celery.json`` Currently this relies upon you geenrating the broker and results backend, all of which can be easily canged within the configuration file. .. code-block:: python :emphasize-lines: 2,9 { "base":{ "name" : "holmuskTest", "BROKER_URL" : "redis://localhost:6379/0", "BACKEND_URL" : "redis://localhost:6379/1", "include" : ["lib.celeryWorkerExample.worker_1"] }, "extra" : { "result_expires" : 3600 } } It is absolutely essential that you specify the ``"base"`` configuration. This is where information about the name (which defaults to the name of the project), the ``BROKER_URL`` and the ``BACKEND_URL`` must be specified. The default is a local Redis instance, and this will certainly have to be modified to suit your needs. All workers must be specified in the ``base.includes`` specification. You may specify as many as you want. All other information **must** be specified within the ``extra`` configuration. Once this is specified, it is possible to run a set of celery workers using the command ``make runCelery`` in the ``src`` folder. This will allow you run 4 parallel workers. If you want to start many more (depending upon your processor capabilities) you should start the celery worker yourself using the command: .. code-block:: bash celery -A lib.celery.App worker --concurrency=10 --loglevel=INFO Note that celery provides multiple ways of startng workers as shown [here](http://docs.celeryproject.org/en/latest/userguide/workers.html) including autoscaling, etc. and you are welcome to experiment with all its features. '''
38.303571
80
0.72028
4a05e53a1cb60e71bfce4960cd0a5062bcd88462
959
py
Python
boomerang/client.py
olalidmark/boomerang-client
c4a1d9d96190104b56e10faa78b37ee287929a17
[ "MIT" ]
null
null
null
boomerang/client.py
olalidmark/boomerang-client
c4a1d9d96190104b56e10faa78b37ee287929a17
[ "MIT" ]
null
null
null
boomerang/client.py
olalidmark/boomerang-client
c4a1d9d96190104b56e10faa78b37ee287929a17
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import urlparse import requests __author__ = 'ola' class BoomerangClient: BASE_URL = 'http://api.boomerang.io/v1' def __init__(self, project_id, api_key): self.url = "%s/api_key/%s/projects/%s/boomerangs/" % (self.BASE_URL, api_key, project_id) def boomerang_url(self, bid): return urlparse.urljoin(self.url, bid) def get_all_boomerangs(self): res = requests.get(self.url) return res def get_one_boomerang(self, boomerang_id): res = requests.get(self.boomerang_url(boomerang_id)) return res def create_boomerang(self, params): res = requests.post(self.url, params) return res def update_boomerang(self, boomerang_id): res = requests.put(self.boomerang_url(boomerang_id)) return res def delete_boomerang(self, boomerang_id): res = requests.delete(self.boomerang_url(boomerang_id)) return res
22.833333
97
0.662148
4a05e53bf4ea41ea3099120b9e36a93fab5e0658
447
py
Python
product/migrations/0005_review_date.py
MW982/Django-shop
da28348f93fbe4c545495b7ce43bca7db8f2308b
[ "MIT" ]
null
null
null
product/migrations/0005_review_date.py
MW982/Django-shop
da28348f93fbe4c545495b7ce43bca7db8f2308b
[ "MIT" ]
7
2020-06-06T01:07:24.000Z
2022-02-10T11:36:55.000Z
product/migrations/0005_review_date.py
MW982/Django-shop
da28348f93fbe4c545495b7ce43bca7db8f2308b
[ "MIT" ]
null
null
null
# Generated by Django 2.2.4 on 2019-09-10 11:37 from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ("product", "0004_auto_20190910_1318"), ] operations = [ migrations.AddField( model_name="review", name="date", field=models.DateTimeField(blank=True, default=django.utils.timezone.now), ), ]
22.35
86
0.630872
4a05e623ab936bb688a75022e7601b42d1d0bf60
3,641
py
Python
huaweicloud-sdk-ivs/huaweicloudsdkivs/v2/model/ivs_extention_by_name_and_id_request_body.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-ivs/huaweicloudsdkivs/v2/model/ivs_extention_by_name_and_id_request_body.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-ivs/huaweicloudsdkivs/v2/model/ivs_extention_by_name_and_id_request_body.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class IvsExtentionByNameAndIdRequestBody: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'meta': 'Meta', 'data': 'IvsExtentionByNameAndIdRequestBodyData' } attribute_map = { 'meta': 'meta', 'data': 'data' } def __init__(self, meta=None, data=None): """IvsExtentionByNameAndIdRequestBody - a model defined in huaweicloud sdk""" self._meta = None self._data = None self.discriminator = None self.meta = meta self.data = data @property def meta(self): """Gets the meta of this IvsExtentionByNameAndIdRequestBody. :return: The meta of this IvsExtentionByNameAndIdRequestBody. :rtype: Meta """ return self._meta @meta.setter def meta(self, meta): """Sets the meta of this IvsExtentionByNameAndIdRequestBody. :param meta: The meta of this IvsExtentionByNameAndIdRequestBody. :type: Meta """ self._meta = meta @property def data(self): """Gets the data of this IvsExtentionByNameAndIdRequestBody. :return: The data of this IvsExtentionByNameAndIdRequestBody. :rtype: IvsExtentionByNameAndIdRequestBodyData """ return self._data @data.setter def data(self, data): """Sets the data of this IvsExtentionByNameAndIdRequestBody. :param data: The data of this IvsExtentionByNameAndIdRequestBody. :type: IvsExtentionByNameAndIdRequestBodyData """ self._data = data def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, IvsExtentionByNameAndIdRequestBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
26.772059
85
0.569898
4a05e6a47091e892cbaed95b5add6eb85af36139
656
py
Python
api/drinks/views/uom.py
gthole/drink-stash
873393fddeaa8f58a8b70d082fbff60175901f97
[ "MIT" ]
7
2019-03-11T22:43:38.000Z
2022-02-21T13:18:39.000Z
api/drinks/views/uom.py
gthole/drink-stash
873393fddeaa8f58a8b70d082fbff60175901f97
[ "MIT" ]
62
2018-10-13T17:39:07.000Z
2022-02-26T06:21:41.000Z
api/drinks/views/uom.py
gthole/drink-stash
873393fddeaa8f58a8b70d082fbff60175901f97
[ "MIT" ]
1
2020-10-31T16:10:59.000Z
2020-10-31T16:10:59.000Z
from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from rest_framework.permissions import IsAuthenticated from drinks.models import Uom from drinks.serializers import UomSerializer from drinks.views.base import LazyViewSet class UomViewSet(LazyViewSet): audit_field = 'created' http_method_names = ['get', 'head'] queryset = Uom.objects.all().order_by('name') serializer_class = UomSerializer # Cache requested url for 2 hours @method_decorator(cache_page(60 * 60 * 2)) def list(self, request, format=None): return super(UomViewSet, self).list(request, format)
32.8
60
0.76372
4a05e7dc70bcd875370848e82717b563d83bc601
4,126
py
Python
sbcdb/spectra_utils.py
neilswainston/Grimoire
42775ff9a03fdbd3b47269b46c883fdf5b37a2be
[ "MIT" ]
9
2019-04-24T12:47:10.000Z
2021-05-12T12:46:33.000Z
sbcdb/spectra_utils.py
neilswainston/Grimoire
42775ff9a03fdbd3b47269b46c883fdf5b37a2be
[ "MIT" ]
1
2017-01-16T08:45:19.000Z
2017-01-16T08:45:19.000Z
sbcdb/spectra_utils.py
synbiochem/biochem4j
42775ff9a03fdbd3b47269b46c883fdf5b37a2be
[ "MIT" ]
5
2019-10-13T14:02:28.000Z
2020-12-23T18:44:29.000Z
''' SYNBIOCHEM-DB (c) University of Manchester 2015 SYNBIOCHEM-DB is licensed under the MIT License. To view a copy of this license, visit <http://opensource.org/licenses/MIT/>. @author: neilswainston ''' import os import tempfile from urllib import urlretrieve import zipfile import ijson __MONA_URL = 'http://mona.fiehnlab.ucdavis.edu/rest/downloads/retrieve/' + \ 'd2eb33f0-b22e-49a7-bc31-eb951f8347b2' __MONA_FILENAME = 'MoNA-export-All_Spectra.json' _NAME_MAP = {'kegg': 'kegg.compound', 'molecular formula': 'formula', 'total exact mass': 'monoisotopic_mass:float'} def load(writer, chem_manager, array_delimiter='|', url=__MONA_URL, filename=__MONA_FILENAME): '''Build Spectrum nodes and relationships.''' nodes = [] rels = [] records = _parse(_get_file(url, filename), array_delimiter) for record in records: chem_id, _ = chem_manager.add_chemical(record['chemical']) nodes.append(record['spectrum']) rels.append([chem_id, 'has', record['spectrum']['id:ID(Spectrum)']]) return [writer.write_nodes(nodes, 'Spectrum')], \ [writer.write_rels(rels, 'Chemical', 'Spectrum')] def _parse(filename, array_delimiter): '''Parses MoNA json file.''' records = [] record = {'chemical': {'names:string[]': []}, 'spectrum': {':LABEL': 'Spectrum', 'tags:string[]': []}} name = None for prefix, typ, value in ijson.parse(open(filename)): if prefix == 'item' and typ == 'start_map': record = {'chemical': {'names:string[]': []}, 'spectrum': {':LABEL': 'Spectrum', 'tags:string[]': []}} elif prefix == 'item.compound.item.inchi': record['chemical']['inchi'] = value elif prefix == 'item.compound.item.names.item.name': if 'name' not in record['chemical']: record['chemical']['name'] = value record['chemical']['names:string[]'].append(value) elif prefix == 'item.compound.item.metaData.item.name' or \ prefix == 'item.metaData.item.name': name = _normalise_name(value.lower()) elif prefix == 'item.compound.item.metaData.item.value': _parse_compound_metadata(name, value, record) name = None elif prefix == 'item.id': record['spectrum']['id:ID(Spectrum)'] = value elif prefix == 'item.metaData.item.value': record['spectrum'][name] = value name = None elif prefix == 'item.spectrum': values = [float(val) for term in value.split() for val in term.split(':')] record['spectrum']['m/z:float[]'] = \ array_delimiter.join(map(str, values[0::2])) record['spectrum']['I:float[]'] = \ array_delimiter.join(map(str, values[1::2])) elif prefix == 'item.tags.item.text': record['spectrum']['tags:string[]'].append(value) elif prefix == 'item' and typ == 'end_map': records.append(record) return records def _get_file(url, filename): '''Gets file from url.''' destination = os.path.join(os.path.expanduser('~'), 'MoNA') if not os.path.exists(destination): os.makedirs(destination) filepath = os.path.join(destination, filename) if not os.path.exists(filepath): tmp_file = tempfile.NamedTemporaryFile(delete=False) urlretrieve(url, tmp_file.name) zfile = zipfile.ZipFile(tmp_file.name, 'r') filepath = os.path.join(destination, zfile.namelist()[0]) zfile.extractall(destination) return filepath def _parse_compound_metadata(name, value, record): '''Parses compound metadata.''' if name == 'chebi' and isinstance(value, unicode): value = value.replace('CHEBI:', '').split()[0] record['chemical'][_normalise_name(name)] = value def _normalise_name(name): '''Normalises name in name:value pairs.''' if name in _NAME_MAP: return _NAME_MAP[name] return name.replace(':', '_')
33.819672
76
0.601794
4a05e830d8a9b6f40ea8a9a41b40e80734cca218
6,279
py
Python
djangocms_blog/forms.py
kapt-labs/djangocms-blog
d18382808766548c0ec1b9f0dabe443d5430aebf
[ "BSD-3-Clause" ]
1
2022-01-09T20:23:10.000Z
2022-01-09T20:23:10.000Z
djangocms_blog/forms.py
kapt-labs/djangocms-blog
d18382808766548c0ec1b9f0dabe443d5430aebf
[ "BSD-3-Clause" ]
null
null
null
djangocms_blog/forms.py
kapt-labs/djangocms-blog
d18382808766548c0ec1b9f0dabe443d5430aebf
[ "BSD-3-Clause" ]
1
2021-05-26T15:17:13.000Z
2021-05-26T15:17:13.000Z
from django import forms from django.conf import settings from django.contrib.auth import get_user_model from django.core.validators import MaxLengthValidator from django.utils.functional import cached_property from parler.forms import TranslatableModelForm from taggit_autosuggest.widgets import TagAutoSuggest from .models import BlogCategory, BlogConfig, Post from .settings import PERMALINK_TYPE_CATEGORY, get_setting User = get_user_model() class ConfigFormBase: """Base form class for all models depends on app_config.""" @cached_property def app_config(self): """ Return the currently selected app_config, whether it's an instance attribute or passed in the request """ if getattr(self.instance, "app_config_id", None): return self.instance.app_config elif "app_config" in self.initial: return BlogConfig.objects.get(pk=self.initial["app_config"]) elif self.data.get("app_config", None): return BlogConfig.objects.get(pk=self.data["app_config"]) return None class CategoryAdminForm(ConfigFormBase, TranslatableModelForm): def __init__(self, *args, **kwargs): self.base_fields["meta_description"].validators = [MaxLengthValidator(get_setting("META_DESCRIPTION_LENGTH"))] original_attrs = self.base_fields["meta_description"].widget.attrs if "cols" in original_attrs: del original_attrs["cols"] if "rows" in original_attrs: del original_attrs["rows"] original_attrs["maxlength"] = get_setting("META_DESCRIPTION_LENGTH") self.base_fields["meta_description"].widget = forms.TextInput(original_attrs) super().__init__(*args, **kwargs) if "parent" in self.fields: qs = self.fields["parent"].queryset if self.instance.pk: qs = qs.exclude(pk__in=[self.instance.pk] + [child.pk for child in self.instance.descendants()]) config = None if getattr(self.instance, "app_config_id", None): qs = qs.namespace(self.instance.app_config.namespace) elif "app_config" in self.initial: config = BlogConfig.objects.get(pk=self.initial["app_config"]) elif self.data.get("app_config", None): config = BlogConfig.objects.get(pk=self.data["app_config"]) if config: qs = qs.namespace(config.namespace) self.fields["parent"].queryset = qs class Meta: model = BlogCategory fields = "__all__" class BlogPluginForm(forms.ModelForm): """Base plugin form to inject the list of configured template folders from BLOG_PLUGIN_TEMPLATE_FOLDERS.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if "template_folder" in self.fields: self.fields["template_folder"].choices = get_setting("PLUGIN_TEMPLATE_FOLDERS") class LatestEntriesForm(BlogPluginForm): """Custom forms for BlogLatestEntriesPlugin to properly load taggit-autosuggest.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["tags"].widget = TagAutoSuggest("taggit.Tag") class Media: css = {"all": ("{}djangocms_blog/css/{}".format(settings.STATIC_URL, "djangocms_blog_admin.css"),)} class AuthorPostsForm(BlogPluginForm): """Custom form for BlogAuthorPostsPlugin to apply distinct to the list of authors in plugin changeform.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # apply distinct due to django issue #11707 self.fields["authors"].queryset = User.objects.filter(djangocms_blog_post_author__publish=True).distinct() class PostAdminFormBase(ConfigFormBase, TranslatableModelForm): """ Common methods between the admin and wizard form """ class Meta: model = Post fields = "__all__" @cached_property def available_categories(self): qs = BlogCategory.objects if self.app_config: return qs.namespace(self.app_config.namespace).active_translations() return qs def _post_clean_translation(self, translation): # This is a quickfix for https://github.com/django-parler/django-parler/issues/236 # which needs to be fixed in parler # operating at form level ensure that if the model is validated outside the form # the uniqueness check is not disabled super()._post_clean_translation(translation) self._validate_unique = False class PostAdminForm(PostAdminFormBase): def __init__(self, *args, **kwargs): self.base_fields["meta_description"].validators = [MaxLengthValidator(get_setting("META_DESCRIPTION_LENGTH"))] original_attrs = self.base_fields["meta_description"].widget.attrs if "cols" in original_attrs: del original_attrs["cols"] if "rows" in original_attrs: del original_attrs["rows"] original_attrs["maxlength"] = get_setting("META_DESCRIPTION_LENGTH") self.base_fields["meta_description"].widget = forms.TextInput(original_attrs) self.base_fields["meta_title"].validators = [MaxLengthValidator(get_setting("META_TITLE_LENGTH"))] super().__init__(*args, **kwargs) if "categories" in self.fields: if self.app_config and self.app_config.url_patterns == PERMALINK_TYPE_CATEGORY: self.fields["categories"].required = True self.fields["categories"].queryset = self.available_categories if "app_config" in self.fields: # Don't allow app_configs to be added here. The correct way to add an # apphook-config is to create an apphook on a cms Page. self.fields["app_config"].widget.can_add_related = False if self.app_config: if not self.initial.get("main_image_full", ""): self.initial["main_image_full"] = self.app_config.app_data["config"].get("default_image_full") if not self.initial.get("main_image_thumbnail", ""): self.initial["main_image_thumbnail"] = self.app_config.app_data["config"].get( "default_image_thumbnail" )
42.714286
118
0.675426
4a05e8e44751a8c358d2dd267db6c60b64abbabc
2,903
py
Python
sync_traccar_erpnext.py
Nayar/frappe-fleet-management-system
0cea9f5397aa87e7f11eaf6cbe6943b2199b37e6
[ "MIT" ]
null
null
null
sync_traccar_erpnext.py
Nayar/frappe-fleet-management-system
0cea9f5397aa87e7f11eaf6cbe6943b2199b37e6
[ "MIT" ]
null
null
null
sync_traccar_erpnext.py
Nayar/frappe-fleet-management-system
0cea9f5397aa87e7f11eaf6cbe6943b2199b37e6
[ "MIT" ]
3
2019-09-09T17:18:37.000Z
2020-09-15T14:34:25.000Z
import http.client from base64 import b64encode import json class Settings: traccar_server='10.65.35.27:8082' erpnext_server='10.65.35.117:8000' traccar_auth_header={ 'Authorization' : 'Basic %s' % (b64encode(b"admin:admin").decode("ascii")) } erpnext_headers = False class MeraFrappeHelper: def curl(): pass class Vehicle: def getVehiclesFromTraccar(): conn = http.client.HTTPConnection(Settings.traccar_server) conn.request("GET", "/api/devices",headers=Settings.traccar_auth_header) r1 = conn.getresponse() body = r1.read().decode('UTF-8') return json.loads(body) pass def getGroupsFromTraccar(): conn = http.client.HTTPConnection(Settings.traccar_server) conn.request("GET", "/api/groups",headers=Settings.traccar_auth_header) r1 = conn.getresponse() body = r1.read().decode('UTF-8') return json.loads(body) pass def getVehiclesFromErpnext(): conn = http.client.HTTPConnection(Settings.erpnext_server) if(Settings.erpnext_headers == False): conn = http.client.HTTPConnection(Settings.erpnext_server) conn.request("GET", "/api/method/login?usr=Administrator&pwd=lol", headers={}) r1 = conn.getresponse() headers = r1.getheaders() for name,value in headers: if (name == 'Set-Cookie' and 'sid' in value): Settings.erpnext_headers = {'Cookie': value} conn.request("POST", "/api/method/login?usr=Administrator&pwd=lol", headers=Settings.erpnext_headers) r1 = conn.getresponse() response = r1.read().decode('UTF-8') conn.request("GET", '/api/resource/Vehicle',headers=Settings.erpnext_headers) r1 = conn.getresponse() response = r1.read().decode('UTF-8') return json.loads(response)['data'] def sync_erpnext_traccar(): erpnext_vehicles = [] traccar_vehicles = [] for vehicle in Vehicle.getVehiclesFromTraccar(): traccar_vehicles.append(vehicle['name']) if(vehicle['name'] not in erpnext_vehicles): #print(vehicle['name'] + ' needs sync') pass for vehicle in Vehicle.getVehiclesFromErpnext(): erpnext_vehicles.append(vehicle['name']) if(vehicle['name'] not in traccar_vehicles): print(vehicle['name'] + ' needs sync to traccar') conn = http.client.HTTPConnection(Settings.traccar_server) Settings.traccar_auth_header['Content-type'] = 'application/json' conn.request("POST", "/api/devices",headers=Settings.traccar_auth_header,body='{"uniqueId": "%s", "name" : "%s", "groupId" : 2}' % (vehicle['name'],vehicle['name'])) r1 = conn.getresponse() body = r1.read().decode('UTF-8') print(body) pass class Driver: pass print(Vehicle.getVehiclesFromTraccar()) print() print() #Vehicle.getVehiclesFromErpnext() Vehicle.sync_erpnext_traccar() print(Vehicle.getGroupsFromTraccar())
34.559524
173
0.67413
4a05e9a36bf772824d1148b769f5b914ca430f3d
9,323
py
Python
kedro/extras/datasets/pandas/parquet_dataset.py
austospumanto/kedro
4f89c8fd32c6660affa5ff7d4fe2b096d5de9c95
[ "Apache-2.0" ]
null
null
null
kedro/extras/datasets/pandas/parquet_dataset.py
austospumanto/kedro
4f89c8fd32c6660affa5ff7d4fe2b096d5de9c95
[ "Apache-2.0" ]
null
null
null
kedro/extras/datasets/pandas/parquet_dataset.py
austospumanto/kedro
4f89c8fd32c6660affa5ff7d4fe2b096d5de9c95
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. """``ParquetDataSet`` loads/saves data from/to a Parquet file using an underlying filesystem (e.g.: local, S3, GCS). It uses pandas to handle the Parquet file. """ import logging from copy import deepcopy from io import BytesIO from pathlib import Path, PurePosixPath from typing import Any, Dict import fsspec import pandas as pd import pyarrow.parquet as pq from kedro.io.core import ( PROTOCOL_DELIMITER, AbstractVersionedDataSet, DataSetError, Version, get_filepath_str, get_protocol_and_path, ) logger = logging.getLogger(__name__) class ParquetDataSet(AbstractVersionedDataSet): """``ParquetDataSet`` loads/saves data from/to a Parquet file using an underlying filesystem (e.g.: local, S3, GCS). It uses pandas to handle the Parquet file. Example: :: >>> from kedro.extras.datasets.pandas import ParquetDataSet >>> import pandas as pd >>> >>> data = pd.DataFrame({'col1': [1, 2], 'col2': [4, 5], >>> 'col3': [5, 6]}) >>> >>> # data_set = ParquetDataSet(filepath="gcs://bucket/test.parquet") >>> data_set = ParquetDataSet(filepath="test.parquet") >>> data_set.save(data) >>> reloaded = data_set.load() >>> assert data.equals(reloaded) """ DEFAULT_LOAD_ARGS = {} # type: Dict[str, Any] DEFAULT_SAVE_ARGS = {} # type: Dict[str, Any] # pylint: disable=too-many-arguments def __init__( self, filepath: str, load_args: Dict[str, Any] = None, save_args: Dict[str, Any] = None, version: Version = None, credentials: Dict[str, Any] = None, fs_args: Dict[str, Any] = None, ) -> None: """Creates a new instance of ``ParquetDataSet`` pointing to a concrete Parquet file on a specific filesystem. Args: filepath: Filepath in POSIX format to a Parquet file prefixed with a protocol like `s3://`. If prefix is not provided, `file` protocol (local filesystem) will be used. The prefix should be any protocol supported by ``fsspec``. It can also be a path to a directory. If the directory is provided then it can be used for reading partitioned parquet files. Note: `http(s)` doesn't support versioning. load_args: Additional options for loading Parquet file(s). Here you can find all available arguments when reading single file: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_parquet.html Here you can find all available arguments when reading partitioned datasets: https://arrow.apache.org/docs/python/generated/pyarrow.parquet.ParquetDataset.html#pyarrow.parquet.ParquetDataset.read All defaults are preserved. save_args: Additional saving options for saving Parquet file(s). Here you can find all available arguments: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_parquet.html All defaults are preserved. ``partition_cols`` is not supported. version: If specified, should be an instance of ``kedro.io.core.Version``. If its ``load`` attribute is None, the latest version will be loaded. If its ``save`` attribute is None, save version will be autogenerated. credentials: Credentials required to get access to the underlying filesystem. E.g. for ``GCSFileSystem`` it should look like `{"token": None}`. fs_args: Extra arguments to pass into underlying filesystem class constructor (e.g. `{"project": "my-project"}` for ``GCSFileSystem``). """ _fs_args = deepcopy(fs_args) or {} _credentials = deepcopy(credentials) or {} protocol, path = get_protocol_and_path(filepath, version) if protocol == "file": _fs_args.setdefault("auto_mkdir", True) self._protocol = protocol self._storage_options = {**_credentials, **_fs_args} self._fs = fsspec.filesystem(self._protocol, **self._storage_options) super().__init__( filepath=PurePosixPath(path), version=version, exists_function=self._fs.exists, glob_function=self._fs.glob, ) # Handle default load and save arguments self._load_args = deepcopy(self.DEFAULT_LOAD_ARGS) if load_args is not None: self._load_args.update(load_args) self._save_args = deepcopy(self.DEFAULT_SAVE_ARGS) if save_args is not None: self._save_args.update(save_args) if "storage_options" in self._save_args or "storage_options" in self._load_args: logger.warning( "Dropping `storage_options` for %s, " "please specify them under `fs_args` or `credentials`.", self._filepath, ) self._save_args.pop("storage_options", None) self._load_args.pop("storage_options", None) def _describe(self) -> Dict[str, Any]: return dict( filepath=self._filepath, protocol=self._protocol, load_args=self._load_args, save_args=self._save_args, version=self._version, ) def _load(self) -> pd.DataFrame: load_path = get_filepath_str(self._get_load_path(), self._protocol) if self._fs.isdir(load_path): # It doesn't work at least on S3 if root folder was created manually # https://issues.apache.org/jira/browse/ARROW-7867 data = ( pq.ParquetDataset(load_path, filesystem=self._fs) .read(**self._load_args) .to_pandas() ) else: data = self._load_from_pandas() return data def _load_from_pandas(self): load_path = str(self._get_load_path()) if self._protocol == "file": # file:// protocol seems to misbehave on Windows # (<urlopen error file not on local host>), # so we don't join that back to the filepath; # storage_options also don't work with local paths return pd.read_parquet(load_path, **self._load_args) load_path = f"{self._protocol}{PROTOCOL_DELIMITER}{load_path}" return pd.read_parquet( load_path, storage_options=self._storage_options, **self._load_args ) def _save(self, data: pd.DataFrame) -> None: save_path = get_filepath_str(self._get_save_path(), self._protocol) if Path(save_path).is_dir(): raise DataSetError( f"Saving {self.__class__.__name__} to a directory is not supported." ) if "partition_cols" in self._save_args: raise DataSetError( f"{self.__class__.__name__} does not support save argument " f"`partition_cols`. Please use `kedro.io.PartitionedDataSet` instead." ) bytes_buffer = BytesIO() data.to_parquet(bytes_buffer, **self._save_args) with self._fs.open(save_path, mode="wb") as fs_file: fs_file.write(bytes_buffer.getvalue()) self._invalidate_cache() def _exists(self) -> bool: try: load_path = get_filepath_str(self._get_load_path(), self._protocol) except DataSetError: return False return self._fs.exists(load_path) def _release(self) -> None: super()._release() self._invalidate_cache() def _invalidate_cache(self) -> None: """Invalidate underlying filesystem caches.""" filepath = get_filepath_str(self._filepath, self._protocol) self._fs.invalidate_cache(filepath)
40.890351
134
0.644642
4a05e9c86052bb44d80b048c87a4d4415d10cc4b
705
py
Python
djact/apps/authentication/serializers.py
baoooliang/ColleegeApp
1030cf3af34f8a98ca88327511956e7289c85fe4
[ "MIT" ]
9
2020-08-28T08:27:18.000Z
2022-03-27T12:54:28.000Z
djact/apps/authentication/serializers.py
baoooliang/ColleegeApp
1030cf3af34f8a98ca88327511956e7289c85fe4
[ "MIT" ]
5
2020-08-05T18:38:07.000Z
2022-02-28T15:53:04.000Z
djact/apps/authentication/serializers.py
baoooliang/ColleegeApp
1030cf3af34f8a98ca88327511956e7289c85fe4
[ "MIT" ]
7
2020-08-10T17:28:07.000Z
2021-07-07T15:01:13.000Z
from rest_framework import serializers from .models import User class UserSerializer(serializers.ModelSerializer): email = serializers.EmailField(required=True) username = serializers.CharField() password = serializers.CharField(min_length=8, write_only=True) class Meta: model = User fields = ('email', 'username', 'password') extra_kwargs = {'password': {'write_only': True}} def create(self, validated_data): password = validated_data.pop('password', None) instance = self.Meta.model(**validated_data) if password is not None: instance.set_password(password) instance.save() return instance
28.2
67
0.666667
4a05eaa125af0c2c385fbe7c9dcd329ba86fadf3
267
py
Python
codeEval/medium/overlapping_rectangles.py
gauravsingh58/algo
397859a53429e7a585e5f6964ad24146c6261326
[ "WTFPL" ]
1
2020-09-30T19:53:08.000Z
2020-09-30T19:53:08.000Z
codeEval/medium/overlapping_rectangles.py
gauravsingh58/algo
397859a53429e7a585e5f6964ad24146c6261326
[ "WTFPL" ]
null
null
null
codeEval/medium/overlapping_rectangles.py
gauravsingh58/algo
397859a53429e7a585e5f6964ad24146c6261326
[ "WTFPL" ]
1
2020-10-15T09:10:57.000Z
2020-10-15T09:10:57.000Z
import sys def overlap(ls): if max(ls[0], ls[4]) > min(ls[2], ls[6]) or max(ls[3], ls[7]) > min(ls[1], ls[5]): return False return True test_cases = open(sys.argv[1], 'r') for test in test_cases: print overlap(map(int, test.split(","))) test_cases.close()
24.272727
84
0.621723
4a05eabb29b4b4f0d46a3dfcaddbd1880f14746e
20,799
py
Python
reference/django-survey/survey/views.py
FiaDot/programmer-competency-matrix
c44a328e9b51ab9ade1e36798dfff50741d74ae5
[ "MIT" ]
2
2018-03-11T22:46:12.000Z
2018-03-13T01:30:08.000Z
reference/django-survey/survey/views.py
FiaDot/programmer-competency-matrix
c44a328e9b51ab9ade1e36798dfff50741d74ae5
[ "MIT" ]
null
null
null
reference/django-survey/survey/views.py
FiaDot/programmer-competency-matrix
c44a328e9b51ab9ade1e36798dfff50741d74ae5
[ "MIT" ]
null
null
null
from datetime import datetime import os from django.db import models from django.db.models import Q from django.conf import settings from django.core.cache import cache from django.core.urlresolvers import reverse from django.contrib.auth.decorators import login_required from django.contrib.auth.views import redirect_to_login from django.http import HttpResponseRedirect, HttpResponse, Http404 from django.http import HttpResponseNotFound from django.template import loader, RequestContext from django.template.defaultfilters import slugify from django.shortcuts import get_object_or_404, render_to_response from django.utils.translation import ugettext_lazy as _ from django.views.generic.list_detail import object_list from django.views.generic.create_update import delete_object from survey.forms import forms_for_survey, SurveyForm, QuestionForm, ChoiceForm from survey.models import Survey, Answer, Question, Choice def _survey_redirect(request, survey, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/thankyou.html', extra_context=None, *args, **kw): """ Conditionally redirect to the appropriate page; if there is a "next" value in the GET URL parameter, go to the URL specified under Next. If there is no "next" URL specified, then go to the survey results page...but only if it is viewable by the user. Otherwise, only direct the user to a page showing their own survey answers...assuming they have answered any questions. If all else fails, go to the Thank You page. """ if ('next' in request.REQUEST and request.REQUEST['next'].startswith('http:') and request.REQUEST['next'] != request.path): return HttpResponseRedirect(request.REQUEST['next']) if survey.answers_viewable_by(request.user): return HttpResponseRedirect(reverse('survey-results', None, (), {'survey_slug': survey.slug})) # For this survey, have they answered any questions? if (hasattr(request, 'session') and Answer.objects.filter( session_key=request.session.session_key.lower(), question__survey__visible=True, question__survey__slug=survey.slug).count()): return HttpResponseRedirect( reverse('answers-detail', None, (), {'survey_slug': survey.slug, 'key': request.session.session_key.lower()})) # go to thank you page return render_to_response(template_name, {'survey': survey, 'title': _('Thank You')}, context_instance=RequestContext(request)) def survey_detail(request, survey_slug, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/survey_detail.html', extra_context=None, allow_edit_existing_answers=False, *args, **kw): """ """ survey = get_object_or_404(Survey.objects.filter(visible=True), slug=survey_slug) if survey.closed: if survey.answers_viewable_by(request.user): return HttpResponseRedirect(reverse('survey-results', None, (), {'survey_slug': survey_slug})) raise Http404 #(_('Page not found.')) # unicode + exceptions = bad # if user has a session and have answered some questions # and the survey does not accept multiple answers, # go ahead and redirect to the answers, or a thank you if (hasattr(request, 'session') and survey.has_answers_from(request.session.session_key) and not survey.allows_multiple_interviews and not allow_edit_existing_answers): return _survey_redirect(request, survey,group_slug=group_slug) # if the survey is restricted to authentified user redirect # annonymous user to the login page if survey.restricted and str(request.user) == "AnonymousUser": return HttpResponseRedirect(reverse("auth_login")+"?next=%s" % request.path) if request.POST and not hasattr(request, 'session'): return HttpResponse(unicode(_('Cookies must be enabled.')), status=403) if hasattr(request, 'session'): skey = 'survey_%d' % survey.id request.session[skey] = (request.session.get(skey, False) or request.method == 'POST') request.session.modified = True ## enforce the cookie save. survey.forms = forms_for_survey(survey, request, allow_edit_existing_answers) if (request.POST and all(form.is_valid() for form in survey.forms)): for form in survey.forms: form.save() return _survey_redirect(request, survey,group_slug=group_slug) # Redirect either to 'survey.template_name' if this attribute is set or # to the default template return render_to_response(survey.template_name or template_name, {'survey': survey, 'title': survey.title, 'group_slug': group_slug}, context_instance=RequestContext(request)) # TODO: ajaxify this page (jquery) : add a date picker, ... # TODO: Fix the bug that make the questions and the choices unordered @login_required() def survey_edit(request,survey_slug, group_slug=None, group_slug_field=None, group_qs=None, template_name = "survey/survey_edit.html", extra_context=None, *args, **kw): survey = get_object_or_404(Survey, slug=survey_slug) return render_to_response(template_name, {'survey': survey, 'group_slug': group_slug}, context_instance=RequestContext(request)) # TODO: Refactor the object add to avoid the code duplication. # def object_add(request, object, form, template_name, # post_create_redirect, extra_context): @login_required() def survey_add(request, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/survey_add.html', extra_context=None, *args, **kw): if request.method == "POST": request_post = request.POST.copy() survey_form = SurveyForm(request_post) if survey_form.is_valid(): new_survey = survey_form.save(commit=False) new_survey.created_by = request.user new_survey.editable_by = request.user new_survey.slug = slugify(new_survey.title) if group_slug: group = get_object_or_404(group_qs,slug=group_slug) new_survey.recipient = group new_survey.save() return HttpResponseRedirect(reverse("surveys-editable",kwargs={})) else: survey_form = SurveyForm() return render_to_response(template_name, {'title': _("Add a survey"), 'form' : survey_form}, context_instance=RequestContext(request)) @login_required() def survey_update(request, survey_slug, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/survey_add.html', extra_context=None, *args, **kw): if request.method == "POST": request_post = request.POST.copy() survey = get_object_or_404(Survey, slug=survey_slug) survey_form = SurveyForm(instance=survey,data=request_post) if survey_form.is_valid(): new_survey = survey_form.save(commit=False) new_survey.created_by = request.user new_survey.editable_by = request.user new_survey.slug = slugify(new_survey.title) new_survey.save() return HttpResponseRedirect(reverse("survey-edit",None,(),{"survey_slug":survey_slug})) else: survey = get_object_or_404(Survey, slug=survey_slug) survey_form = SurveyForm(instance=survey) return render_to_response(template_name, {'title': _("Update '%s'") % survey.title, 'survey' : survey, 'form' : survey_form}, context_instance=RequestContext(request)) @login_required() def survey_delete(request,survey_slug=None, group_slug=None, group_slug_field=None, group_qs=None, template_name = "survey/editable_survey_list.html", extra_context=None, *args, **kw): # TRICK: The following line does not have any logical explination # except than working around a bug in FF. It has been suggested there # http://groups.google.com/group/django-users/browse_thread/thread/e6c96ab0538a544e/0e01cdda3668dfce#0e01cdda3668dfce request_post = request.POST.copy() return delete_object(request, slug=survey_slug, **{"model":Survey, "post_delete_redirect": reverse("surveys-editable",kwargs={}), "template_object_name":"survey", "login_required": True, 'extra_context': {'title': _('Delete survey')} }) @login_required() def question_add(request,survey_slug, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/question_add.html', extra_context=None, *args, **kw): survey = get_object_or_404(Survey, slug=survey_slug) if request.method == "POST": request_post = request.POST.copy() question_form = QuestionForm(data=request_post,files=request.FILES) if question_form.is_valid(): new_question = question_form.save(commit=False) new_question.survey = survey new_question.save() return HttpResponseRedirect(reverse("survey-edit",None,(), {"survey_slug":survey_slug})) else: question_form = QuestionForm() return render_to_response(template_name, {'title': _("Add a question"), 'form' : question_form}, context_instance=RequestContext(request)) @login_required() def question_update(request,survey_slug,question_id, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/question_add.html', extra_context=None, *args, **kw): survey = get_object_or_404(Survey, slug=survey_slug) question = get_object_or_404(Question,id=question_id) if question not in survey.questions.iterator(): raise Http404() if request.method == "POST": request_post = request.POST.copy() question_form = QuestionForm(instance=question,data=request_post, files=request.FILES) if question_form.is_valid(): new_question = question_form.save(commit=False) new_question.survey = survey new_question.save() return HttpResponseRedirect(reverse("survey-edit",None,(), {"survey_slug":survey_slug})) else: question_form = QuestionForm(instance=question) return render_to_response(template_name, {'title': _("Update question"), 'question' : question, 'model_string' : "Question", 'form' : question_form}, context_instance=RequestContext(request)) @login_required() def question_delete(request,survey_slug,question_id, group_slug=None, group_slug_field=None, group_qs=None, template_name = None, extra_context=None, *args, **kw): # TRICK: The following line does not have any logical explination # except than working around a bug in FF. It has been suggested there # http://groups.google.com/group/django-users/browse_thread/thread/e6c96ab0538a544e/0e01cdda3668dfce#0e01cdda3668dfce request_post = request.POST.copy() return delete_object(request, object_id=question_id, **{"model":Question, "post_delete_redirect": reverse("survey-edit",None,(), {"survey_slug":survey_slug, "group_slug":group_slug}), "template_object_name":"question", "login_required": True, 'extra_context': {'title': _('Delete question')} }) @login_required() def choice_add(request,question_id, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/choice_add.html', extra_context=None, *args, **kw): question = get_object_or_404(Question, id=question_id) if request.method == "POST": request_post = request.POST.copy() choice_form = ChoiceForm(data=request_post,files=request.FILES) if choice_form.is_valid(): new_choice = choice_form.save(commit=False) new_choice.question = question new_choice.save() return HttpResponseRedirect(reverse("survey-edit",None,(), {"survey_slug":question.survey.slug})) else: choice_form = ChoiceForm() return render_to_response(template_name, {'title': _("Add a choice"), 'form' : choice_form}, context_instance=RequestContext(request)) @login_required() def choice_update(request,question_id, choice_id, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/choice_add.html', extra_context=None, *args, **kw): question = get_object_or_404(Question, id=question_id) choice = get_object_or_404(Choice, id=choice_id) if choice not in question.choices.iterator(): raise Http404() if request.method == "POST": request_post = request.POST.copy() choice_form = ChoiceForm(instance=choice,data=request_post, files=request.FILES) if choice_form.is_valid(): new_choice = choice_form.save(commit=False) new_choice.question = question new_choice.save() return HttpResponseRedirect(reverse("survey-edit",None,(), {"survey_slug":question.survey.slug})) else: choice_form = ChoiceForm(instance=choice) return render_to_response(template_name, {'title': _("Update choice"), 'choice' : choice, 'model_string' : "Choice", 'form' : choice_form}, context_instance=RequestContext(request)) @login_required() def choice_delete(request,survey_slug,choice_id, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/choice_add.html', extra_context=None, *args, **kw): # TRICK: The following line does not have any logical explination # except than working around a bug in FF. It has been suggested there # http://groups.google.com/group/django-users/browse_thread/thread/e6c96ab0538a544e/0e01cdda3668dfce#0e01cdda3668dfce request_post = request.POST.copy() return delete_object(request, object_id=choice_id, **{"model":Choice, "post_delete_redirect": reverse("survey-edit",None,(), {"survey_slug":survey_slug}), "template_object_name":"choice", "login_required": True, 'extra_context': {'title': _('Delete choice')} }) def visible_survey_list(request, group_slug=None, group_slug_field=None, group_qs=None, login_required = False, template_name = "survey/survey_list.html", extra_context=None, *args, **kw): login_user= request.user if login_required and not login_user.is_authenticated(): return redirect_to_login(request.path) else: return object_list(request, **{ 'queryset': Survey.objects.filter(visible=True), 'allow_empty': True, 'template_name':template_name, 'extra_context': {'title': _('Surveys')}} ) @login_required() def editable_survey_list(request, group_slug=None, group_slug_field=None, group_qs=None, template_name = "survey/editable_survey_list.html", extra_context=None, *args, **kw): login_user= request.user return object_list(request, **{ 'queryset': Survey.objects.filter(Q(created_by=login_user) | Q(editable_by=login_user)), 'allow_empty': True, 'template_name':template_name, 'extra_context': {'title': _('Surveys'), 'group_slug': group_slug } }) def answers_list(request, survey_slug, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/answers_list.html', extra_context=None, *args, **kw): """ Shows a page showing survey results for an entire survey. """ survey = get_object_or_404(Survey.objects.filter(visible=True), slug=survey_slug) # if the user lacks permissions, show an "Insufficient Permissions page" if not survey.answers_viewable_by(request.user): if (hasattr(request, 'session') and survey.has_answers_from(request.session.session_key)): return HttpResponseRedirect( reverse('answers-detail', None, (), {'survey_slug': survey.slug, 'key': request.session.session_key.lower()})) return HttpResponse(unicode(_('Insufficient Privileges.')), status=403) return render_to_response(template_name, { 'survey': survey, 'view_submissions': request.user.has_perm('survey.view_submissions'), 'title': survey.title + u' - ' + unicode(_('Results'))}, context_instance=RequestContext(request)) def answers_detail(request, survey_slug, key, group_slug=None, group_slug_field=None, group_qs=None, template_name = 'survey/answers_detail.html', extra_context=None, *args, **kw): """ Shows a page with survey results for a single person. If the user lacks permissions, show an "Insufficient Permissions page". """ answers = Answer.objects.filter(session_key=key.lower(), question__survey__visible=True, question__survey__slug=survey_slug) if not answers.count(): raise Http404 survey = answers[0].question.survey mysubmission = (hasattr(request, 'session') and request.session.session_key.lower() == key.lower()) if (not mysubmission and (not request.user.has_perm('survey.view_submissions') or not survey.answers_viewable_by(request.user))): return HttpResponse(unicode(_('Insufficient Privileges.')), status=403) return render_to_response(template_name, {'survey': survey, 'submission': answers, 'title': survey.title + u' - ' + unicode(_('Submission'))}, context_instance=RequestContext(request)) def delete_image(request, model_string,object_id): model = models.get_model("survey", model_string) object = get_object_or_404(model, id=object_id) if object.image == None: raise Http404('No image for the given object : %s ' %object) if request.method == "POST": request_post = request.POST.copy() if os.path.isfile(object.get_image_filename()): os.remove(object.get_image_filename()) object.image = None object.save() return HttpResponseRedirect(object.get_update_url()) return render_to_response('survey/image_confirm_delete.html', {"object" : object}, context_instance=RequestContext(request))
44.253191
121
0.60926
4a05eb3f34e6f5cf2523239c05d9ce4ebb1b0b5d
199,126
py
Python
python/cudf/cudf/tests/test_dataframe.py
marlenezw/cudf
f6e14facc37fa270d302a8e1c39abffb6675c53e
[ "Apache-2.0" ]
1
2021-03-01T05:41:41.000Z
2021-03-01T05:41:41.000Z
python/cudf/cudf/tests/test_dataframe.py
marlenezw/cudf
f6e14facc37fa270d302a8e1c39abffb6675c53e
[ "Apache-2.0" ]
null
null
null
python/cudf/cudf/tests/test_dataframe.py
marlenezw/cudf
f6e14facc37fa270d302a8e1c39abffb6675c53e
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018-2020, NVIDIA CORPORATION. import array as arr import io import operator import random import re import textwrap import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf as gd from cudf.core.column import column from cudf.core.dataframe import DataFrame, Series from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = DataFrame(data) assert_eq(pdf, gdf) @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = DataFrame(data) assert_eq(pdf, gdf, check_like=True) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = gd.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = gd.Series(dict_of_series[key]) gdf = gd.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = gd.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = gd.DataFrame( { "a": gd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": gd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = Series([data_np[0], data_np[2]]) s_cp = Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = Series() got = sr1.to_string() print(got) expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = Series(None) got = sr2.to_string() print(got) expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = gd.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T print(expect) print(mat) np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() def test_dataframe_drop_method(): df = DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data df["c"] = data assert tuple(df.columns) == ("a", "b", "c") assert tuple(df.drop("a").columns) == ("b", "c") assert tuple(df.drop("a", axis=1).columns) == ("b", "c") assert tuple(df.columns) == ("a", "b", "c") assert tuple(df.drop(["a", "b"]).columns) == ("c",) assert tuple(df.drop(["a", "a", "b"]).columns) == ("c",) assert tuple(df.columns) == ("a", "b", "c") assert tuple(df.drop(["a", "b"]).columns) == ("c",) assert tuple(df.columns) == ("a", "b", "c") assert tuple(df.drop(columns=["a", "b"]).columns) == ("c",) assert tuple(df.columns) == ("a", "b", "c") assert tuple(df.drop(columns="a").columns) == ("b", "c") assert tuple(df.columns) == ("a", "b", "c") assert tuple(df.drop(columns=["a"]).columns) == ("b", "c") assert tuple(df.columns) == ("a", "b", "c") assert tuple(df.drop(columns=["a", "b", "c"]).columns) == tuple() assert tuple(df.columns) == ("a", "b", "c") # Test drop error with pytest.raises(NameError) as raises: df.drop("d") raises.match("column 'd' does not exist") with pytest.raises(NameError) as raises: df.drop(["a", "d", "b"]) raises.match("column 'd' does not exist") with pytest.raises(ValueError) as raises: df.drop("a", axis=1, columns="a") raises.match("Cannot specify both") with pytest.raises(ValueError) as raises: df.drop(axis=1) raises.match("Need to specify at least") def test_dataframe_column_add_drop_via_setitem(): df = DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): got = gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas(nullable_pd_dtype=False) expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) gdf = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) rename_mapper = {"a": "z", "b": "z", "c": "z"} expect = DataFrame({"z": [1, 2, 3], "z_1": [4, 5, 6], "z_2": [7, 8, 9]}) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]}) string = str(df) print(string) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() print(string) assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = DataFrame({"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]}) data = np.arange(6) mask = np.zeros(1, dtype=gd.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is None pd.options.display.max_rows = 10 got = df.to_string() print(got) expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(): # Test basic df = DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() print(got) expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = DataFrame() got = df.to_string() print(got) expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() print(got) expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg from copy import copy df = DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() print(got) expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() print(got) expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = DataFrame({k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()}) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_assign(): gdf = DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas(nullable_pd_dtype=False) for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = ( row.key + 100 if valid else np.iinfo(gdf["val"].dtype).min ) got_value = row.val assert expected_value == got_value @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas(nullable_pd_dtype=False) for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = ( row.val - 100 if valid else np.iinfo(gdf["val"].dtype).min ) got_value = row.key assert expected_value == got_value @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(ValueError): gd.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = gd.concat([gd.from_pandas(df1), gd.from_pandas(df2)]) assert_eq(gd.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = gd.Series([42], dtype=np.float) df2 = gd.Series(["a"], dtype="category") with pytest.raises(ValueError): gd.concat([df1, df2]) df2 = gd.Series(["a string"]) with pytest.raises(TypeError): gd.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [DataFrame({"a": [1, 2], "b": [1, 3]}), DataFrame({})] ) @pytest.mark.parametrize( "df_2", [DataFrame({"a": [], "b": []}), DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = gd.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = gd.concat( [DataFrame(df1_d), DataFrame(df2_d), DataFrame(df1_d)], sort=False ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize("ser_1", [pd.Series([1, 2, 3]), pd.Series([])]) @pytest.mark.parametrize("ser_2", [pd.Series([])]) def test_concat_empty_series(ser_1, ser_2): got = gd.concat([Series(ser_1), Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = gd.from_pandas(df1) cdf2 = gd.from_pandas(df2) # concat only dataframes concat_cdf = gd.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = gd.Series.from_pandas(df1.x) cs2 = gd.Series.from_pandas(df1.y) concat_cdf_s = gd.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = gd.Series.from_pandas(s3) concat_cdf_all = gd.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = gd.from_pandas(df1) midf1.index = gd.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = gd.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas(nullable_pd_dtype=False) mipdf2 = midf2.to_pandas(nullable_pd_dtype=False) assert_eq(gd.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(gd.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( gd.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = gd.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas(nullable_pd_dtype=False) pdg2 = gdg2.to_pandas(nullable_pd_dtype=False) assert_eq(gd.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(gd.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas(nullable_pd_dtype=False) pdgz2 = gdgz2.to_pandas(nullable_pd_dtype=False) assert_eq(gd.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(gd.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = gd.DataFrame.from_pandas(df) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) s = df.x gs = gd.Series.from_pandas(s) assert isinstance(gs, gd.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = gd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) gdf = gd.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = gd.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) def test_from_gpu_matrix(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = gd.DataFrame.from_gpu_matrix(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) gdf = gd.DataFrame.from_gpu_matrix(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) gdf = gd.DataFrame.from_gpu_matrix(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) gdf = gd.DataFrame.from_gpu_matrix(d_ary, index=0) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) gdf = gd.DataFrame.from_gpu_matrix(d_ary, index=1) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) def test_from_gpu_matrix_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="matrix dimension expected 2 but found 3" ): gd.DataFrame.from_gpu_matrix(d_ary) def test_from_gpu_matrix_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="index length expected 2 but found 1" ): gd.DataFrame.from_gpu_matrix(d_ary, index=["a"]) with pytest.raises(KeyError): gd.DataFrame.from_gpu_matrix(d_ary, index="a") @pytest.mark.xfail(reason="constructor does not coerce index inputs") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = gd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = gd.DataFrame.from_arrow(padf) assert isinstance(gdf, gd.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = gd.Series.from_arrow(s) assert isinstance(gs, gd.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = gd.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = gd.Series.from_arrow(s1) assert isinstance(gs1, gd.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = gd.Series.from_arrow(s2) assert isinstance(gs2, gd.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = gd.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = gd.Series(pa_cat) assert isinstance(gd_cat, gd.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = gd.Series(pa_cat) assert isinstance(gd_cat, gd.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): from datetime import date scalar = np.datetime64(date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = gd.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = gd.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series() cs = Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() from string import ascii_lowercase null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() from string import ascii_lowercase for i in range(num_cols): colname = ascii_lowercase[i] data = pd.Series(list(ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return gd.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) print(func(pdf, skipna=skipna)) gdf = DataFrame.from_pandas(pdf) print(func(gdf, skipna=skipna)) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = DataFrame(data) assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = gd.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, gd.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) def test_quantile(pdf, gdf, q): assert_eq(pdf["x"].quantile(q), gdf["x"].quantile(q)) assert_eq(pdf.quantile(q), gdf.quantile(q)) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = gd.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = gd.from_pandas(pdf) assert isinstance(gdf, gd.DataFrame) assert_eq(pdf, gdf) gdf = gd.from_pandas(pdf.x) assert isinstance(gdf, gd.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): gd.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, gd.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = gd.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = gd.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = gd.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = gd.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): import cudf ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = DataFrame.from_pandas(pdf) gdf_mask = DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas(nullable_pd_dtype=False) assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_series_digitize(num_rows, num_bins, right, dtype): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = Series(data) indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = gd.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data).astype("float64") got = Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = gd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = DataFrame() gdf["id"] = Series(["a", "b"], dtype=np.object) gdf["v"] = Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas(nullable_pd_dtype=False).tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize("drop", [True, False]) def test_set_index(pdf, gdf, drop): for col in pdf.columns: assert_eq(pdf.set_index(col, drop=drop), gdf.set_index(col, drop=drop)) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = gd.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = gd.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = gd.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = gd.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = gd.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas(nullable_pd_dtype=False) assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = gd.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = gd.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) with pytest.raises(TypeError): assert_eq( pdf.select_dtypes(include=["Foo"]), gdf.select_dtypes(include=["Foo"]), ) with pytest.raises(ValueError): gdf.select_dtypes(exclude=np.number, include=np.number) with pytest.raises(ValueError): pdf.select_dtypes(exclude=np.number, include=np.number) gdf = DataFrame({"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]}) pdf = gdf.to_pandas(nullable_pd_dtype=False) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = gd.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas(nullable_pd_dtype=False) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) with pytest.raises(ValueError): pdf.select_dtypes() with pytest.raises(ValueError): gdf.select_dtypes() gdf = gd.DataFrame( {"a": gd.Series([], dtype="int"), "b": gd.Series([], dtype="str")} ) pdf = gdf.to_pandas(nullable_pd_dtype=False) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = gd.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() assert_eq(gdf[["timestamp"]], gdf.select_dtypes("datetime64")) assert_eq(gdf[["timestamp"]], gdf.select_dtypes(np.dtype("datetime64"))) assert_eq(gdf[["timestamp"]], gdf.select_dtypes(include="datetime64")) assert_eq(gdf[["timestamp"]], gdf.select_dtypes("datetime64[ms]")) assert_eq( gdf[["timestamp"]], gdf.select_dtypes(np.dtype("datetime64[ms]")) ) assert_eq(gdf[["timestamp"]], gdf.select_dtypes(include="datetime64[ms]")) def test_array_ufunc(): gdf = gd.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) def test_series_describe_numeric(dtype): pdf = pd.Series([0, 1, 2, 3]) gdf = Series.from_pandas(pdf).astype(dtype) gdf_results = gdf.describe().to_pandas() pdf_results = gdf.to_pandas().describe() np.testing.assert_array_almost_equal( gdf_results.values, pdf_results.values, decimal=4 ) @pytest.mark.xfail( raises=NotImplementedError, reason="Describing non-numeric columns is not yet supported.", ) def test_series_describe_datetime(): pdf = pd.Series([0, 1, 2, 3]).astype("datetime64[ms]") gdf = Series.from_pandas(pdf) gdf_results = gdf.describe() pdf_results = pdf.describe() np.testing.assert_array_almost_equal( gdf_results.values, pdf_results.values, decimal=4 ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]).to_pandas() pdf_results = pdf.describe(exclude=["float"]) np.testing.assert_array_almost_equal( gdf_results.values, pdf_results.values, decimal=4 ) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]).to_pandas() pdf_results = pdf.describe(include=["int"]) np.testing.assert_array_almost_equal( gdf_results.values, pdf_results.values, decimal=4 ) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe().to_pandas() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) @pytest.mark.xfail( raises=AssertionError, reason="Describing non-numeric columns is not yet supported.", ) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all").to_pandas() pdf_results = pdf.describe(include="all") np.testing.assert_array_almost_equal( gdf_results.values, pdf_results.values, decimal=4 ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles).to_pandas() pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = gd.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = DataFrame({"a": Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = DataFrame({"a": Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) def test_isnull_isna(): # float & strings some missing ps = pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], } ) ps.index = ["q", "w", "e", "r", "t", "y", "u"] gs = DataFrame.from_pandas(ps) assert_eq(ps.a.isnull(), gs.a.isnull()) assert_eq(ps.isnull(), gs.isnull()) assert_eq(ps.a.isna(), gs.a.isna()) assert_eq(ps.isna(), gs.isna()) # integer & string none missing ps = pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}) gs = DataFrame.from_pandas(ps) assert_eq(ps.a.isnull(), gs.a.isnull()) assert_eq(ps.isnull(), gs.isnull()) assert_eq(ps.a.isna(), gs.a.isna()) assert_eq(ps.isna(), gs.isna()) # all missing ps = pd.DataFrame( {"a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None]} ) gs = DataFrame.from_pandas(ps) assert_eq(ps.a.isnull(), gs.a.isnull()) assert_eq(ps.isnull(), gs.isnull()) assert_eq(ps.a.isna(), gs.a.isna()) assert_eq(ps.isna(), gs.isna()) # empty ps = pd.DataFrame({"a": []}) gs = DataFrame.from_pandas(ps) assert_eq(ps.a.isnull(), gs.a.isnull()) assert_eq(ps.isnull(), gs.isnull()) assert_eq(ps.a.isna(), gs.a.isna()) assert_eq(ps.isna(), gs.isna()) # one missing ps = pd.DataFrame({"a": [np.nan], "b": [None]}) gs = DataFrame.from_pandas(ps) assert_eq(ps.a.isnull(), gs.a.isnull()) assert_eq(ps.isnull(), gs.isnull()) assert_eq(ps.a.isna(), gs.a.isna()) assert_eq(ps.isna(), gs.isna()) # strings missing ps = pd.DataFrame({"a": ["a", "b", "c", None, "e"]}) gs = DataFrame.from_pandas(ps) assert_eq(ps.a.isnull(), gs.a.isnull()) assert_eq(ps.isnull(), gs.isnull()) assert_eq(ps.a.isna(), gs.a.isna()) assert_eq(ps.isna(), gs.isna()) # strings none missing ps = pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}) gs = DataFrame.from_pandas(ps) assert_eq(ps.a.isnull(), gs.a.isnull()) assert_eq(ps.isnull(), gs.isnull()) assert_eq(ps.a.isna(), gs.a.isna()) assert_eq(ps.isna(), gs.isna()) # unnamed series ps = pd.Series([0, 1, 2, np.nan, 4, None, 6]) gs = Series.from_pandas(ps) assert_eq(ps.isnull(), gs.isnull()) assert_eq(ps.isna(), gs.isna()) def test_notna_notnull(): # float & strings some missing ps = pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], } ) gs = DataFrame.from_pandas(ps) assert_eq(ps.notna(), gs.notna()) assert_eq(ps.a.notna(), gs.a.notna()) assert_eq(ps.notnull(), gs.notnull()) assert_eq(ps.a.notnull(), gs.a.notnull()) # integer & string none missing ps = pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}) gs = DataFrame.from_pandas(ps) assert_eq(ps.notna(), gs.notna()) assert_eq(ps.a.notna(), gs.a.notna()) assert_eq(ps.notnull(), gs.notnull()) assert_eq(ps.a.notnull(), gs.a.notnull()) # all missing ps = pd.DataFrame( {"a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None]} ) gs = DataFrame.from_pandas(ps) assert_eq(ps.notna(), gs.notna()) assert_eq(ps.a.notna(), gs.a.notna()) assert_eq(ps.notnull(), gs.notnull()) assert_eq(ps.a.notnull(), gs.a.notnull()) # empty ps = pd.DataFrame({"a": []}) gs = DataFrame.from_pandas(ps) assert_eq(ps.notna(), gs.notna()) assert_eq(ps.a.notna(), gs.a.notna()) assert_eq(ps.notnull(), gs.notnull()) assert_eq(ps.a.notnull(), gs.a.notnull()) # one missing ps = pd.DataFrame({"a": [np.nan], "b": [None]}) gs = DataFrame.from_pandas(ps) assert_eq(ps.notna(), gs.notna()) assert_eq(ps.a.notna(), gs.a.notna()) assert_eq(ps.notnull(), gs.notnull()) assert_eq(ps.a.notnull(), gs.a.notnull()) # strings missing ps = pd.DataFrame({"a": ["a", "b", "c", None, "e"]}) gs = DataFrame.from_pandas(ps) assert_eq(ps.notna(), gs.notna()) assert_eq(ps.a.notna(), gs.a.notna()) assert_eq(ps.notnull(), gs.notnull()) assert_eq(ps.a.notnull(), gs.a.notnull()) # strings none missing ps = pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}) gs = DataFrame.from_pandas(ps) assert_eq(ps.notna(), gs.notna()) assert_eq(ps.a.notna(), gs.a.notna()) assert_eq(ps.notnull(), gs.notnull()) assert_eq(ps.a.notnull(), gs.a.notnull()) # unnamed series ps = pd.Series([0, 1, 2, np.nan, 4, None, 6]) gs = Series.from_pandas(ps) assert_eq(ps.notna(), gs.notna()) assert_eq(ps.notnull(), gs.notnull()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series() gs = Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "arr", [ np.random.normal(-100, 100, 1000), np.random.randint(-50, 50, 1000), np.zeros(100), np.repeat([-0.6459412758761901], 100), np.repeat(np.nan, 100), np.array([1.123, 2.343, np.nan, 0.0]), ], ) @pytest.mark.parametrize( "decimal", [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, pytest.param( -1, marks=[ pytest.mark.xfail(reason="NotImplementedError: decimals < 0") ], ), ], ) def test_round(arr, decimal): pser = pd.Series(arr) ser = Series(arr) result = ser.round(decimal) expected = pser.round(decimal) assert_eq(result, expected) # with nulls, maintaining existing null mask arr = arr.astype("float64") # for pandas nulls mask = np.random.randint(0, 2, arr.shape[0]) arr[mask == 1] = np.nan pser = pd.Series(arr) ser = Series(arr) result = ser.round(decimal) expected = pser.round(decimal) assert_eq(result, expected) np.array_equal(ser.nullmask.to_array(), result.to_array()) @pytest.mark.parametrize( "series", [ Series([1.0, None, np.nan, 4.0], nan_as_null=False), Series([1.24430, None, np.nan, 4.423530], nan_as_null=False), Series([1.24430, np.nan, 4.423530], nan_as_null=False), Series([-1.24430, np.nan, -4.423530], nan_as_null=False), Series(np.repeat(np.nan, 100)), ], ) @pytest.mark.parametrize("decimal", [0, 1, 2, 3]) def test_round_nan_as_null_false(series, decimal): pser = series.to_pandas() ser = Series(series) result = ser.round(decimal) expected = pser.round(decimal) np.testing.assert_array_almost_equal( result.to_pandas(), expected, decimal=10 ) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = pd.Series(data).replace([None], False) gdata = Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = pd.Series(data) gdata = Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = gd.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = DataFrame.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): from cudf.core.column import column col = column.as_column(Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = Series(col) pds = pd.Series(pd.Series([])) assert_eq(pds, gds) col = column.as_column(Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([]) gds = Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = Series(column.as_column(Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = Series(column.as_column(Series([1.2, 18.0, 9.0]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = Series(column.as_column(Series([1.2, 18.0, 9.0]), dtype="str")) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = Series(gd.core.index.StringIndex(["1", "18", "9"]), dtype="int") assert_eq(pds, gds) def test_one_row_head(): gdf = DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas(nullable_pd_dtype=False) head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = gd.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = gd.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = gd.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = gd.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = gd.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = gd.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = gd.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = gd.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = gd.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = gd.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = gd.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = gd.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(gd.Series(data, dtype="str"), gd.Series(data).astype("str")) assert_eq( gd.Series(data, dtype="category"), gd.Series(data).astype("category") ) assert_eq( gd.Series(data, dtype="float32"), gd.Series(data, dtype="int32").astype("float32"), ) assert_eq( gd.Series(data, dtype="float32"), gd.Series(data, dtype="uint32").astype("float32"), ) assert_eq( gd.Series(data, dtype="datetime64[ms]"), gd.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( gd.Series(data, dtype="str"), gd.Series(data, dtype="category").astype("str"), ) assert_eq( gd.Series(data, dtype="float32"), gd.Series(data, dtype="category").astype("float32"), ) assert_eq( gd.Series(data, dtype="datetime64[ms]"), gd.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( gd.Series([1, 2, None, 3], dtype="int32"), gd.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( gd.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), gd.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( gd.Series(["a", "b", "c", None], dtype="category").to_pandas(), gd.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( Series(data), Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), gd.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = gd.Series([None, None, None], dtype="category") expect = gd.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = pd.Series(data) gds = Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = pd.Series(data) gds = Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], pd.Series(pd.date_range("2010-01-01", "2010-02-01")), pd.Series([None, None], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("nulls", ["none", "some"]) def test_datetime_value_counts(data, nulls): psr = pd.Series(data) if len(data) > 0: if nulls == "one": p = np.random.randint(0, len(data)) psr[p] = None elif nulls == "some": p = np.random.randint(0, len(data), 2) psr[p] = None gsr = Series.from_pandas(psr) expected = psr.value_counts() got = gsr.value_counts() pandas_dict = expected.to_dict() gdf_dict = got.to_pandas().to_dict() assert pandas_dict == gdf_dict @pytest.mark.parametrize("num_elements", [10, 100, 1000]) def test_categorical_value_counts(num_elements): from string import ascii_letters, digits # create categorical series np.random.seed(12) pd_cat = pd.Categorical( pd.Series( np.random.choice(list(ascii_letters + digits), num_elements), dtype="category", ) ) # gdf gdf = DataFrame() gdf["a"] = Series.from_categorical(pd_cat) gdf_value_counts = gdf["a"].value_counts() # pandas pdf = pd.DataFrame() pdf["a"] = pd_cat pdf_value_counts = pdf["a"].value_counts() # verify pandas_dict = pdf_value_counts.to_dict() gdf_dict = gdf_value_counts.to_pandas().to_dict() assert pandas_dict == gdf_dict def test_series_value_counts(): for size in [10 ** x for x in range(5)]: arr = np.random.randint(low=-1, high=10, size=size) mask = arr != -1 sr = Series.from_masked_array(arr, Series(mask).as_mask()) sr.name = "col" df = pd.DataFrame(data=arr[mask], columns=["col"]) expect = df.col.value_counts().sort_index() got = sr.value_counts().sort_index() assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize("ascending", [True, False]) def test_series_value_counts_optional_arguments(ascending): psr = pd.Series([1.0, 2.0, 2.0, 3.0, 3.0, 3.0, None]) gsr = Series.from_pandas(psr) expect = psr.value_counts(ascending=ascending) got = gsr.value_counts(ascending=ascending) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = pd.Series(data, index=index) gsr = Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = pd.Series(data) gsr = Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=[ pytest.mark.xfail( reason="pandas's failure here seems like a bug " "given the reverse succeeds" ) ], ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = pd.Series(data) gsr = Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = pd.Series(data) gsr = Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = pd.Series(data) gsr = Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = gd.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = gd.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: with pytest.raises((ValueError, TypeError)): expected = pmdx.isin(values, level=level) with pytest.raises(err): got = gmdx.isin(values, level=level) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): from cudf.utils.dtypes import is_scalar pdf = data gdf = gd.from_pandas(pdf) if is_scalar(values): with pytest.raises(TypeError): pdf.isin(values) with pytest.raises(TypeError): gdf.isin(values) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": # xref https://github.com/pandas-dev/pandas/issues/34256 pytest.xfail( "https://github.com/pandas-dev/pandas/issues/34256" ) if isinstance(values, (pd.DataFrame, pd.Series)): values = gd.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = DataFrame() gdf["foo"] = Series(data, dtype=dtype) gdf["bar"] = Series(data, dtype=dtype) insert_data = Series(data, dtype=dtype) expect = DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = Series.from_pandas(pd.Series(data, dtype="str")) expect_data = Series(data, dtype=as_dtype) gdf = DataFrame() expect = DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = DataFrame() expect = DataFrame() gdf["foo"] = Series(data, dtype="datetime64[ms]") gdf["bar"] = Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = Series(data, dtype="str") expect["bar"] = Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = Series(gdf["foo"], dtype="category") expect["bar"] = Series(gdf["bar"], dtype="category") else: expect["foo"] = Series(data, dtype=as_dtype) expect["bar"] = Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = gd.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = Series(data, dtype=dtype) expect = DataFrame() expect["foo"] = sr expect["bar"] = sr got = DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ gd.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), gd.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), gd.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), pytest.param( gd.DataFrame(), marks=[ pytest.mark.xfail( reason="_apply_support_method fails on empty dataframes." ) ], ), pytest.param( gd.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), marks=[ pytest.mark.xfail( reason="Rowwise ops do not currently support nulls." ) ], ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops(data, op): gdf = data pdf = gdf.to_pandas(nullable_pd_dtype=False) if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0) got = getattr(gdf, op)(axis=1, ddof=0) else: expected = getattr(pdf, op)(axis=1) got = getattr(gdf, op)(axis=1) assert_eq(expected, got, check_less_precise=7) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = gd.datasets.randomdata(10) pdf = gdf.to_pandas(nullable_pd_dtype=False) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = gd.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ Series([1, 2, 3]), Series([1, 2, 3], index=["a", "b", "c"]), Series([1, 2, 3], index=["a", "b", "d"]), Series([1, 2], index=["a", "b"]), Series([1, 2, 3], index=gd.core.index.RangeIndex(0, 3)), pytest.param( Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas(nullable_pd_dtype=False) expect = op(pdf, psr) got = op(gdf, gsr) assert_eq(expect.astype(float), got.astype(float)) expect = op(psr, pdf) got = op(psr, pdf) assert_eq(expect.astype(float), got.astype(float)) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) @pytest.mark.parametrize( "gsr", [Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas(nullable_pd_dtype=False) expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = gd.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = gd.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = gd.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = gd.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = gd.datasets.randomdata(5) with pytest.raises( ValueError, match=("All values must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(gd.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(gd.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(gd.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = gd.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, gd.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = gd.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): from cudf._lib.table import Table df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = Table(odict) result = DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = gd.from_pandas(pd_idx1) gd_idx2 = gd.from_pandas(pd_idx2) gd_series1 = gd.Series([1, 2, 3], index=gd_idx1) gd_series2 = gd.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = gd.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = gd.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a": pd.Series([1, 2, 3, 2, 5]), "b": pd.Series([1, 2, 3, 2, 5]), } ), NotImplementedError, ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_df_sr_mask_where(data, condition, other, error, inplace): ps_where = data gs_where = gd.from_pandas(data) ps_mask = ps_where.copy(deep=True) gs_mask = gs_where.copy(deep=True) if hasattr(condition, "__cuda_array_interface__"): if type(condition).__module__.split(".")[0] == "cupy": ps_condition = cupy.asnumpy(condition) else: ps_condition = np.array(condition).astype("bool") else: ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = gd.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = gd.from_pandas(other) else: gs_other = other if error is None: expect_where = ps_where.where( ps_condition, other=ps_other, inplace=inplace ) got_where = gs_where.where( gs_condition, other=gs_other, inplace=inplace ) expect_mask = ps_mask.mask( ps_condition, other=ps_other, inplace=inplace ) got_mask = gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) if inplace: expect_where = ps_where got_where = gs_where expect_mask = ps_mask got_mask = gs_mask if pd.api.types.is_categorical_dtype(expect_where): np.testing.assert_array_equal( expect_where.cat.codes, got_where.cat.codes.astype(expect_where.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_where.cat.categories, got_where.cat.categories) np.testing.assert_array_equal( expect_mask.cat.codes, got_mask.cat.codes.astype(expect_mask.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_mask.cat.categories, got_mask.cat.categories) else: assert_eq( expect_where.fillna(-1), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1), got_mask.fillna(-1), check_dtype=False ) else: with pytest.raises(error): ps_where.where(ps_condition, other=ps_other, inplace=inplace) with pytest.raises(error): gs_where.where(gs_condition, other=gs_other, inplace=inplace) with pytest.raises(error): ps_mask.mask(ps_condition, other=ps_other, inplace=inplace) with pytest.raises(error): gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) @pytest.mark.parametrize( "data,condition,other,has_cat", [ ( pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ), pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ) != "a", None, None, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", "a", True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", "a", True, ), ], ) def test_df_string_cat_types_mask_where(data, condition, other, has_cat): ps = data gs = gd.from_pandas(data) ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = gd.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = gd.from_pandas(other) else: gs_other = other expect_where = ps.where(ps_condition, other=ps_other) got_where = gs.where(gs_condition, other=gs_other) expect_mask = ps.mask(ps_condition, other=ps_other) got_mask = gs.mask(gs_condition, other=gs_other) if has_cat is None: assert_eq( expect_where.fillna(-1).astype("str"), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1).astype("str"), got_mask.fillna(-1), check_dtype=False, ) else: assert_eq(expect_where, got_where, check_dtype=False) assert_eq(expect_mask, got_mask, check_dtype=False) @pytest.mark.parametrize( "data,expected_upcast_type,error", [ ( pd.Series([random.random() for _ in range(10)], dtype="float32"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float16"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float64"), np.dtype("float64"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float128"), None, NotImplementedError, ), ], ) def test_from_pandas_unsupported_types(data, expected_upcast_type, error): pdf = pd.DataFrame({"one_col": data}) if error == NotImplementedError: with pytest.raises(error): df = gd.from_pandas(data) with pytest.raises(error): df = gd.Series(data) with pytest.raises(error): df = gd.from_pandas(pdf) with pytest.raises(error): df = gd.DataFrame(pdf) else: df = gd.from_pandas(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = gd.Series(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = gd.from_pandas(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type df = gd.DataFrame(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type @pytest.mark.parametrize("nan_as_null", [True, False]) @pytest.mark.parametrize("index", [None, "a", ["a", "b"]]) def test_from_pandas_nan_as_null(nan_as_null, index): data = [np.nan, 2.0, 3.0] if index is None: pdf = pd.DataFrame({"a": data, "b": data}) expected = DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) else: pdf = pd.DataFrame({"a": data, "b": data}).set_index(index) expected = DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = expected.set_index(index) got = gd.from_pandas(pdf, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("nan_as_null", [True, False]) def test_from_pandas_for_series_nan_as_null(nan_as_null): data = [np.nan, 2.0, 3.0] psr = pd.Series(data) expected = Series(column.as_column(data, nan_as_null=nan_as_null)) got = gd.from_pandas(psr, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_copy(copy): gdf = DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas(nullable_pd_dtype=False) assert_eq( gdf.astype(dtype="float", copy=copy), pdf.astype(dtype="float", copy=copy), ) assert_eq(gdf, pdf) gsr = Series([1, 2]) psr = gsr.to_pandas(nullable_pd_dtype=False) assert_eq( gsr.astype(dtype="float", copy=copy), psr.astype(dtype="float", copy=copy), ) assert_eq(gsr, psr) gsr = Series([1, 2]) psr = gsr.to_pandas(nullable_pd_dtype=False) actual = gsr.astype(dtype="int64", copy=copy) expected = psr.astype(dtype="int64", copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_dtype_dict(copy): gdf = DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas(nullable_pd_dtype=False) assert_eq( gdf.astype(dtype={"col1": "float"}, copy=copy), pdf.astype(dtype={"col1": "float"}, copy=copy), ) assert_eq(gdf, pdf) gsr = Series([1, 2]) psr = gsr.to_pandas(nullable_pd_dtype=False) assert_eq( gsr.astype(dtype={None: "float"}, copy=copy), psr.astype(dtype={None: "float"}, copy=copy), ) assert_eq(gsr, psr) with pytest.raises(KeyError): gsr.astype(dtype={"a": "float"}, copy=copy) with pytest.raises(KeyError): psr.astype(dtype={"a": "float"}, copy=copy) gsr = Series([1, 2]) psr = gsr.to_pandas(nullable_pd_dtype=False) actual = gsr.astype({None: "int64"}, copy=copy) expected = psr.astype({None: "int64"}, copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize( "data,columns", [ ([1, 2, 3, 100, 112, 35464], ["a"]), (range(100), None), ([], None), ((-10, 21, 32, 32, 1, 2, 3), ["p"]), ((), None), ([[1, 2, 3], [1, 2, 3]], ["col1", "col2", "col3"]), ([range(100), range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3), (1, 2, 3)), ["tuple0", "tuple1", "tuple2"]), ([[1, 2, 3]], ["list col1", "list col2", "list col3"]), ([range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3),), ["k1", "k2", "k3"]), ], ) def test_dataframe_init_1d_list(data, columns): expect = pd.DataFrame(data, columns=columns) actual = DataFrame(data, columns=columns) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) expect = pd.DataFrame(data, columns=None) actual = DataFrame(data, columns=None) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) @pytest.mark.parametrize( "data,cols,index", [ ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], ["a", "b", "c", "d"], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 20, 30, 10], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 1, 2, 3], ), (np.array([11, 123, -2342, 232]), ["a"], [1, 2, 11, 12]), (np.array([11, 123, -2342, 232]), ["a"], ["khsdjk", "a", "z", "kk"]), ( cupy.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "z"], ["a", "z", "a", "z"], ), (cupy.array([11, 123, -2342, 232]), ["z"], [0, 1, 1, 0]), (cupy.array([11, 123, -2342, 232]), ["z"], [1, 2, 3, 4]), (cupy.array([11, 123, -2342, 232]), ["z"], ["a", "z", "d", "e"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), ], ) def test_dataframe_init_from_arrays_cols(data, cols, index): gd_data = data if isinstance(data, cupy.core.ndarray): # pandas can't handle cupy arrays in general pd_data = data.get() # additional test for building DataFrame with gpu array whose # cuda array interface has no `descr` attribute numba_data = cuda.as_cuda_array(data) else: pd_data = data numba_data = None # verify with columns & index pdf = pd.DataFrame(pd_data, columns=cols, index=index) gdf = DataFrame(gd_data, columns=cols, index=index) assert_eq(pdf, gdf, check_dtype=False) # verify with columns pdf = pd.DataFrame(pd_data, columns=cols) gdf = DataFrame(gd_data, columns=cols) assert_eq(pdf, gdf, check_dtype=False) pdf = pd.DataFrame(pd_data) gdf = DataFrame(gd_data) assert_eq(pdf, gdf, check_dtype=False) if numba_data is not None: gdf = DataFrame(numba_data) assert_eq(pdf, gdf, check_dtype=False) @pytest.mark.parametrize( "col_data", [ range(5), ["a", "b", "x", "y", "z"], [1.0, 0.213, 0.34332], ["a"], [1], [0.2323], [], ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar(col_data, assign_val): pdf = pd.DataFrame({"a": col_data}) gdf = DataFrame({"a": col_data}) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) @pytest.mark.parametrize( "col_data", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) @pytest.mark.parametrize( "assign_val", [ 1, 2, np.array(2), cupy.array(2), 0.32324, np.array(0.34248), cupy.array(0.34248), "abc", np.array("abc", dtype="object"), np.array("abc", dtype="str"), np.array("abc"), None, ], ) def test_dataframe_assign_scalar_with_scalar_cols(col_data, assign_val): pdf = pd.DataFrame( { "a": cupy.asnumpy(col_data) if isinstance(col_data, cupy.ndarray) else col_data }, index=["dummy_mandatory_index"], ) gdf = DataFrame({"a": col_data}, index=["dummy_mandatory_index"]) pdf["b"] = ( cupy.asnumpy(assign_val) if isinstance(assign_val, cupy.ndarray) else assign_val ) gdf["b"] = assign_val assert_eq(pdf, gdf) def test_dataframe_info_basic(): buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 10 entries, a to 1111 Data columns (total 10 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64 dtypes: float64(10) memory usage: 859.0+ bytes """ ) df = pd.DataFrame( np.random.randn(10, 10), index=["a", "2", "3", "4", "5", "6", "7", "8", "100", "1111"], ) gd.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s def test_dataframe_info_verbose_mem_usage(): buffer = io.StringIO() df = pd.DataFrame({"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) gd.from_pandas(df).info(buf=buffer, verbose=True) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 3 entries, 0 to 2 Columns: 2 entries, a to b dtypes: int64(1), object(1) memory usage: 56.0+ bytes """ ) gd.from_pandas(df).info(buf=buffer, verbose=False) s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) df = pd.DataFrame( {"a": [1, 2, 3], "b": ["safdas", "assa", "asdasd"]}, index=["sdfdsf", "sdfsdfds", "dsfdf"], ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> StringIndex: 3 entries, sdfdsf to dsfdf Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 3 non-null int64 1 b 3 non-null object dtypes: int64(1), object(1) memory usage: 91.0 bytes """ ) gd.from_pandas(df).info(buf=buffer, verbose=True, memory_usage="deep") s = buffer.getvalue() assert str_cmp == s buffer.truncate(0) buffer.seek(0) int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = gd.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0 bytes """ ) df.info(buf=buffer, verbose=True, memory_usage="deep") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) def test_dataframe_info_null_counts(): int_values = [1, 2, 3, 4, 5] text_values = ["alpha", "beta", "gamma", "delta", "epsilon"] float_values = [0.0, 0.25, 0.5, 0.75, 1.0] df = gd.DataFrame( { "int_col": int_values, "text_col": text_values, "float_col": float_values, } ) buffer = io.StringIO() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Dtype --- ------ ----- 0 int_col int64 1 text_col object 2 float_col float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes """ ) df.info(buf=buffer, verbose=True, null_counts=False) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, verbose=True, max_cols=0) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = DataFrame() str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 0 entries Empty DataFrame""" ) df.info(buf=buffer, verbose=True) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df = gd.DataFrame( { "a": [1, 2, 3, None, 10, 11, 12, None], "b": ["a", "b", "c", "sd", "sdf", "sd", None, None], } ) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Dtype --- ------ ----- 0 a int64 1 b object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) pd.options.display.max_info_rows = 2 df.info(buf=buffer, max_cols=2, null_counts=None) pd.reset_option("display.max_info_rows") actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) str_cmp = textwrap.dedent( """\ <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 8 entries, 0 to 7 Data columns (total 2 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 a 6 non-null int64 1 b 6 non-null object dtypes: int64(1), object(1) memory usage: 238.0+ bytes """ ) df.info(buf=buffer, max_cols=2, null_counts=None) actual_string = buffer.getvalue() assert str_cmp == actual_string buffer.truncate(0) buffer.seek(0) df.info(buf=buffer, null_counts=True) actual_string = buffer.getvalue() assert str_cmp == actual_string @pytest.mark.parametrize( "data1", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [1, 2, 3, 4, 5, 6, 7], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [ 1.9876543, 2.9876654, 3.9876543, 4.1234587, 5.23, 6.88918237, 7.00001, ], [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, -0.1221, -2.1221, -0.112121, 21.1212, ], ], ) @pytest.mark.parametrize("rtol", [0, 0.01, 1e-05, 1e-08, 5e-1, 50.12]) @pytest.mark.parametrize("atol", [0, 0.01, 1e-05, 1e-08, 50.12]) def test_cudf_isclose(data1, data2, rtol, atol): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = gd.Series(cupy.isclose(array1, array2, rtol=rtol, atol=atol)) actual = gd.isclose( gd.Series(data1), gd.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = gd.isclose(data1, data2, rtol=rtol, atol=atol) assert_eq(expected, actual) actual = gd.isclose( cupy.array(data1), cupy.array(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) actual = gd.isclose(np.array(data1), np.array(data2), rtol=rtol, atol=atol) assert_eq(expected, actual) actual = gd.isclose( pd.Series(data1), pd.Series(data2), rtol=rtol, atol=atol ) assert_eq(expected, actual) @pytest.mark.parametrize( "data1", [ [ -1.9876543, -2.9876654, np.nan, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, np.nan, -21.1212, ], ], ) @pytest.mark.parametrize( "data2", [ [ -1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -6.88918237, -7.00001, ], [ 1.987654321, 2.987654321, 3.987654321, 0.1221, 2.1221, 0.112121, -21.1212, ], [ -1.987654321, -2.987654321, -3.987654321, np.nan, np.nan, np.nan, 21.1212, ], ], ) @pytest.mark.parametrize("equal_nan", [True, False]) def test_cudf_isclose_nulls(data1, data2, equal_nan): array1 = cupy.array(data1) array2 = cupy.array(data2) expected = gd.Series(cupy.isclose(array1, array2, equal_nan=equal_nan)) actual = gd.isclose( gd.Series(data1), gd.Series(data2), equal_nan=equal_nan ) assert_eq(expected, actual, check_dtype=False) actual = gd.isclose(data1, data2, equal_nan=equal_nan) assert_eq(expected, actual, check_dtype=False) def test_cudf_isclose_different_index(): s1 = gd.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = gd.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 3, 4, 2], ) expected = gd.Series([True] * 6, index=s1.index) assert_eq(expected, gd.isclose(s1, s2)) s1 = gd.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[0, 1, 2, 3, 4, 5], ) s2 = gd.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 5, 10, 4, 2], ) expected = gd.Series([True, True, True, False, True, True], index=s1.index) assert_eq(expected, gd.isclose(s1, s2)) s1 = gd.Series( [-1.9876543, -2.9876654, -3.9876543, -4.1234587, -5.23, -7.00001], index=[100, 1, 2, 3, 4, 5], ) s2 = gd.Series( [-1.9876543, -2.9876654, -7.00001, -4.1234587, -5.23, -3.9876543], index=[0, 1, 100, 10, 4, 2], ) expected = gd.Series( [False, True, True, False, True, False], index=s1.index ) assert_eq(expected, gd.isclose(s1, s2)) def test_dataframe_to_dict_error(): df = gd.DataFrame({"a": [1, 2, 3], "b": [9, 5, 3]}) with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df.to_dict() with pytest.raises( TypeError, match=re.escape( r"cuDF does not support conversion to host memory " r"via `to_dict()` method. Consider using " r"`.to_pandas().to_dict()` to construct a Python dictionary." ), ): df["a"].to_dict() @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]}), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], } ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=[10, 20, 30, 40, 50, 60], ), pd.DataFrame( { "one": [1, 2, 3, 4, 5, 10], "two": ["abc", "def", "ghi", "xyz", "pqr", "abc"], }, index=["a", "b", "c", "d", "e", "f"], ), pd.DataFrame(index=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(columns=["a", "b", "c", "d", "e", "f"]), pd.DataFrame(index=[10, 11, 12]), pd.DataFrame(columns=[10, 11, 12]), pd.DataFrame(), pd.DataFrame({"one": [], "two": []}), pd.DataFrame({2: [], 1: []}), pd.DataFrame( { 0: [1, 2, 3, 4, 5, 10], 1: ["abc", "def", "ghi", "xyz", "pqr", "abc"], 100: ["a", "b", "b", "x", "z", "a"], }, index=[10, 20, 30, 40, 50, 60], ), ], ) def test_dataframe_keys(df): gdf = gd.from_pandas(df) assert_eq(df.keys(), gdf.keys()) @pytest.mark.parametrize( "ps", [ pd.Series([1, 2, 3, 4, 5, 10, 11, 12, 33, 55, 19]), pd.Series(["abc", "def", "ghi", "xyz", "pqr", "abc"]), pd.Series( [1, 2, 3, 4, 5, 10], index=["abc", "def", "ghi", "xyz", "pqr", "abc"], ), pd.Series( ["abc", "def", "ghi", "xyz", "pqr", "abc"], index=[1, 2, 3, 4, 5, 10], ), pd.Series(index=["a", "b", "c", "d", "e", "f"]), pd.Series(index=[10, 11, 12]), pd.Series(), pd.Series([]), ], ) def test_series_keys(ps): gds = gd.from_pandas(ps) if len(ps) == 0 and not isinstance(ps.index, pd.RangeIndex): assert_eq(ps.keys().astype("float64"), gds.keys()) else: assert_eq(ps.keys(), gds.keys()) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), pd.DataFrame(), pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), pd.DataFrame([]), pd.DataFrame([], index=[100]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_dataframe(df, other, sort, ignore_index): pdf = df other_pd = other gdf = gd.from_pandas(df) other_gd = gd.from_pandas(other) expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame([[1, 2], [3, 4]], columns=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[0, 1], index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=[1, 0], index=[7, 8]), pd.DataFrame( { 23: [315.3324, 3243.32432, 3232.332, -100.32], 33: [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { 0: [315.3324, 3243.32432, 3232.332, -100.32], 1: [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), ], ) @pytest.mark.parametrize( "other", [ pd.Series([10, 11, 23, 234, 13]), pytest.param( pd.Series([10, 11, 23, 234, 13], index=[11, 12, 13, 44, 33]), marks=pytest.mark.xfail( reason="pandas bug: " "https://github.com/pandas-dev/pandas/issues/35092" ), ), {1: 1}, {0: 10, 1: 100, 2: 102}, ], ) @pytest.mark.parametrize("sort", [False, True]) def test_dataframe_append_series_dict(df, other, sort): pdf = df other_pd = other gdf = gd.from_pandas(df) if isinstance(other, pd.Series): other_gd = gd.from_pandas(other) else: other_gd = other expected = pdf.append(other_pd, ignore_index=True, sort=sort) actual = gdf.append(other_gd, ignore_index=True, sort=sort) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[10, 20, 30]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ [pd.DataFrame([[5, 6], [7, 8]], columns=list("AB"))], [ pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), pd.DataFrame([[5, 6], [7, 8]], columns=list("BD")), pd.DataFrame([[5, 6], [7, 8]], columns=list("DE")), ], [pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame()], [ pd.DataFrame( {"c": [10, 11, 22, 33, 44, 100]}, index=[7, 8, 9, 10, 11, 20] ), pd.DataFrame(), pd.DataFrame(), pd.DataFrame([[5, 6], [7, 8]], columns=list("AB")), ], [ pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[200]), ], [pd.DataFrame([]), pd.DataFrame([], index=[100])], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], [ pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[0, 100, 200, 300], ), ], ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_dataframe_lists(df, other, sort, ignore_index): pdf = df other_pd = other gdf = gd.from_pandas(df) other_gd = [ gd.from_pandas(o) if isinstance(o, pd.DataFrame) else o for o in other ] expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB")), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[10, 20]), pd.DataFrame([[1, 2], [3, 4]], columns=list("AB"), index=[7, 8]), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], } ), pd.DataFrame( { "a": [315.3324, 3243.32432, 3232.332, -100.32], "z": [0.3223, 0.32, 0.0000232, 0.32224], }, index=[7, 20, 11, 9], ), pd.DataFrame({"l": [10]}), pd.DataFrame({"l": [10]}, index=[100]), pd.DataFrame({"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}), pd.DataFrame( {"f": [10.2, 11.2332, 0.22, 3.3, 44.23, 10.0]}, index=[100, 200, 300, 400, 500, 0], ), ], ) @pytest.mark.parametrize( "other", [ [[1, 2], [10, 100]], [[1, 2, 10, 100, 0.1, 0.2, 0.0021]], [[]], [[], [], [], []], [[0.23, 0.00023, -10.00, 100, 200, 1000232, 1232.32323]], ], ) @pytest.mark.parametrize("sort", [False, True]) @pytest.mark.parametrize("ignore_index", [True, False]) def test_dataframe_append_lists(df, other, sort, ignore_index): pdf = df other_pd = other gdf = gd.from_pandas(df) other_gd = [ gd.from_pandas(o) if isinstance(o, pd.DataFrame) else o for o in other ] expected = pdf.append(other_pd, sort=sort, ignore_index=ignore_index) actual = gdf.append(other_gd, sort=sort, ignore_index=ignore_index) if expected.shape != df.shape: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq( expected, actual, check_index_type=False if gdf.empty else True ) def test_dataframe_append_error(): df = gd.DataFrame({"a": [1, 2, 3]}) ps = gd.Series([1, 2, 3]) with pytest.raises( TypeError, match="Can only append a Series if ignore_index=True " "or if the Series has a name", ): df.append(ps) def test_cudf_arrow_array_error(): df = gd.DataFrame({"a": [1, 2, 3]}) with pytest.raises( TypeError, match="Implicit conversion to a host PyArrow Table via __arrow_array__" " is not allowed, To explicitly construct a PyArrow Table, consider " "using .to_arrow()", ): df.__arrow_array__() sr = gd.Series([1, 2, 3]) with pytest.raises( TypeError, match="Implicit conversion to a host PyArrow Array via __arrow_array__" " is not allowed, To explicitly construct a PyArrow Array, consider " "using .to_arrow()", ): sr.__arrow_array__() sr = gd.Series(["a", "b", "c"]) with pytest.raises( TypeError, match="Implicit conversion to a host PyArrow Array via __arrow_array__" " is not allowed, To explicitly construct a PyArrow Array, consider " "using .to_arrow()", ): sr.__arrow_array__() @pytest.mark.parametrize("n", [0, 2, 5, 10, None]) @pytest.mark.parametrize("frac", [0.1, 0.5, 1, 2, None]) @pytest.mark.parametrize("replace", [True, False]) @pytest.mark.parametrize("axis", [0, 1]) def test_dataframe_sample_basic(n, frac, replace, axis): # as we currently don't support column with same name if axis == 1 and replace: return pdf = pd.DataFrame( { "a": [1, 2, 3, 4, 5], "float": [0.05, 0.2, 0.3, 0.2, 0.25], "int": [1, 3, 5, 4, 2], }, index=[1, 2, 3, 4, 5], ) df = DataFrame.from_pandas(pdf) random_state = 0 kind = None try: pout = pdf.sample( n=n, frac=frac, replace=replace, random_state=random_state, axis=axis, ) except BaseException as e: kind = type(e) msg = str(e) if kind is not None: with pytest.raises(kind, match=msg): gout = df.sample( n=n, frac=frac, replace=replace, random_state=random_state, axis=axis, ) else: gout = df.sample( n=n, frac=frac, replace=replace, random_state=random_state, axis=axis, ) if kind is not None: return assert pout.shape == gout.shape @pytest.mark.parametrize("replace", [True, False]) def test_dataframe_reproducibility(replace): df = DataFrame({"a": cupy.arange(0, 1024)}) expected = df.sample(1024, replace=replace, random_state=1) out = df.sample(1024, replace=replace, random_state=1) assert_eq(expected, out) @pytest.mark.parametrize("n", [0, 2, 5, 10, None]) @pytest.mark.parametrize("frac", [0.1, 0.5, 1, 2, None]) @pytest.mark.parametrize("replace", [True, False]) def test_series_sample_basic(n, frac, replace): psr = pd.Series([1, 2, 3, 4, 5]) sr = Series.from_pandas(psr) random_state = 0 kind = None try: pout = psr.sample( n=n, frac=frac, replace=replace, random_state=random_state ) except BaseException as e: kind = type(e) msg = str(e) if kind is not None: with pytest.raises(kind, match=msg): gout = sr.sample( n=n, frac=frac, replace=replace, random_state=random_state ) else: gout = sr.sample( n=n, frac=frac, replace=replace, random_state=random_state ) if kind is not None: return assert pout.shape == gout.shape @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[100, 10, 1, 0]), pd.DataFrame(columns=["a", "b", "c", "d"]), pd.DataFrame(columns=["a", "b", "c", "d"], index=[100]), pd.DataFrame( columns=["a", "b", "c", "d"], index=[100, 10000, 2131, 133] ), pd.DataFrame({"a": [1, 2, 3], "b": ["abc", "xyz", "klm"]}), ], ) def test_dataframe_empty(df): pdf = df gdf = gd.from_pandas(pdf) assert_eq(pdf.empty, gdf.empty) @pytest.mark.parametrize( "df", [ pd.DataFrame(), pd.DataFrame(index=[100, 10, 1, 0]), pd.DataFrame(columns=["a", "b", "c", "d"]), pd.DataFrame(columns=["a", "b", "c", "d"], index=[100]), pd.DataFrame( columns=["a", "b", "c", "d"], index=[100, 10000, 2131, 133] ), pd.DataFrame({"a": [1, 2, 3], "b": ["abc", "xyz", "klm"]}), ], ) def test_dataframe_size(df): pdf = df gdf = gd.from_pandas(pdf) assert_eq(pdf.size, gdf.size) @pytest.mark.parametrize( "ps", [ pd.Series(), pd.Series(index=[100, 10, 1, 0]), pd.Series([]), pd.Series(["a", "b", "c", "d"]), pd.Series(["a", "b", "c", "d"], index=[0, 1, 10, 11]), ], ) def test_series_empty(ps): ps = ps gs = gd.from_pandas(ps) assert_eq(ps.empty, gs.empty) @pytest.mark.parametrize( "data", [ [], [1], {"a": [10, 11, 12]}, { "a": [10, 11, 12], "another column name": [12, 22, 34], "xyz": [0, 10, 11], }, ], ) @pytest.mark.parametrize("columns", [["a"], ["another column name"], None]) def test_dataframe_init_with_columns(data, columns): pdf = pd.DataFrame(data, columns=columns) gdf = gd.DataFrame(data, columns=columns) assert_eq( pdf, gdf, check_index_type=False if len(pdf.index) == 0 else True, check_dtype=False if pdf.empty and len(pdf.columns) else True, ) @pytest.mark.parametrize( "data, ignore_dtype", [ ([pd.Series([1, 2, 3])], False), ([pd.Series(index=[1, 2, 3])], False), ([pd.Series(name="empty series name")], False), ([pd.Series([1]), pd.Series([]), pd.Series([3])], False), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([]), pd.Series([3], name="series that is named"), ], False, ), ([pd.Series([1, 2, 3], name="hi")] * 10, False), ([pd.Series([1, 2, 3], name=None, index=[10, 11, 12])] * 10, False), ( [ pd.Series([1, 2, 3], name=None, index=[10, 11, 12]), pd.Series([1, 2, 30], name=None, index=[13, 144, 15]), ], True, ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([]), pd.Series(index=[10, 11, 12]), ], False, ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([], name="abc"), pd.Series(index=[10, 11, 12]), ], False, ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([1, -100, 200, -399, 400], name="abc"), pd.Series([111, 222, 333], index=[10, 11, 12]), ], False, ), ], ) @pytest.mark.parametrize( "columns", [None, ["0"], [0], ["abc"], [144, 13], [2, 1, 0]] ) def test_dataframe_init_from_series_list(data, ignore_dtype, columns): gd_data = [gd.from_pandas(obj) for obj in data] expected = pd.DataFrame(data, columns=columns) actual = gd.DataFrame(gd_data, columns=columns) if ignore_dtype: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq(expected, actual) @pytest.mark.parametrize( "data, ignore_dtype, index", [ ([pd.Series([1, 2, 3])], False, ["a", "b", "c"]), ([pd.Series(index=[1, 2, 3])], False, ["a", "b"]), ([pd.Series(name="empty series name")], False, ["index1"]), ( [pd.Series([1]), pd.Series([]), pd.Series([3])], False, ["0", "2", "1"], ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([]), pd.Series([3], name="series that is named"), ], False, ["_", "+", "*"], ), ([pd.Series([1, 2, 3], name="hi")] * 10, False, ["mean"] * 10), ( [pd.Series([1, 2, 3], name=None, index=[10, 11, 12])] * 10, False, ["abc"] * 10, ), ( [ pd.Series([1, 2, 3], name=None, index=[10, 11, 12]), pd.Series([1, 2, 30], name=None, index=[13, 144, 15]), ], True, ["set_index_a", "set_index_b"], ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([]), pd.Series(index=[10, 11, 12]), ], False, ["a", "b", "c"], ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([], name="abc"), pd.Series(index=[10, 11, 12]), ], False, ["a", "v", "z"], ), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([1, -100, 200, -399, 400], name="abc"), pd.Series([111, 222, 333], index=[10, 11, 12]), ], False, ["a", "v", "z"], ), ], ) @pytest.mark.parametrize( "columns", [None, ["0"], [0], ["abc"], [144, 13], [2, 1, 0]] ) def test_dataframe_init_from_series_list_with_index( data, ignore_dtype, index, columns ): gd_data = [gd.from_pandas(obj) for obj in data] expected = pd.DataFrame(data, columns=columns, index=index) actual = gd.DataFrame(gd_data, columns=columns, index=index) if ignore_dtype: assert_eq(expected.fillna(-1), actual.fillna(-1), check_dtype=False) else: assert_eq(expected, actual) @pytest.mark.parametrize( "data, index", [ ([pd.Series([1, 2]), pd.Series([1, 2])], ["a", "b", "c"]), ( [ pd.Series([1, 0.324234, 32424.323, -1233, 34242]), pd.Series([]), pd.Series([3], name="series that is named"), ], ["_", "+"], ), ([pd.Series([1, 2, 3], name="hi")] * 10, ["mean"] * 9), ], ) def test_dataframe_init_from_series_list_with_index_error(data, index): gd_data = [gd.from_pandas(obj) for obj in data] try: pd.DataFrame(data, index=index) except Exception as e: with pytest.raises(type(e), match=re.escape(str(e))): gd.DataFrame(gd_data, index=index) else: raise AssertionError( "expected pd.DataFrame to because of index mismatch " "with data dimensions" ) @pytest.mark.parametrize( "data", [ [pd.Series([1, 2, 3], index=["a", "a", "a"])], [pd.Series([1, 2, 3], index=["a", "a", "a"])] * 4, [ pd.Series([1, 2, 3], index=["a", "b", "a"]), pd.Series([1, 2, 3], index=["b", "b", "a"]), ], [ pd.Series([1, 2, 3], index=["a", "b", "z"]), pd.Series([1, 2, 3], index=["u", "b", "a"]), pd.Series([1, 2, 3], index=["u", "b", "u"]), ], ], ) def test_dataframe_init_from_series_list_duplicate_index_error(data): gd_data = [gd.from_pandas(obj) for obj in data] try: pd.DataFrame(data) except Exception as e: with pytest.raises(ValueError, match=re.escape(str(e))): gd.DataFrame(gd_data) else: raise AssertionError( "expected pd.DataFrame to because of duplicates in index" ) def test_dataframe_iterrows_itertuples(): df = gd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) with pytest.raises( TypeError, match=re.escape( "cuDF does not support iteration of DataFrame " "via itertuples. Consider using " "`.to_pandas().itertuples()` " "if you wish to iterate over namedtuples." ), ): df.itertuples() with pytest.raises( TypeError, match=re.escape( "cuDF does not support iteration of DataFrame " "via iterrows. Consider using " "`.to_pandas().iterrows()` " "if you wish to iterate over each row." ), ): df.iterrows()
28.634743
79
0.547287
4a05ec7469ebc8bab4e637bf0a4cd9f50029cd13
269
py
Python
os_scrapy_rq_crawler/__init__.py
zanachka/os-scrapy-rq-crawler
f861f5633b90ce4e2c3a5488a14ed77b1c40d7af
[ "MIT" ]
3
2020-05-13T12:55:03.000Z
2021-03-15T10:09:12.000Z
os_scrapy_rq_crawler/__init__.py
zanachka/os-scrapy-rq-crawler
f861f5633b90ce4e2c3a5488a14ed77b1c40d7af
[ "MIT" ]
null
null
null
os_scrapy_rq_crawler/__init__.py
zanachka/os-scrapy-rq-crawler
f861f5633b90ce4e2c3a5488a14ed77b1c40d7af
[ "MIT" ]
1
2020-10-29T18:15:25.000Z
2020-10-29T18:15:25.000Z
from .asyncio.rq import AsyncRequestQueue from .upstream import MultiUpstreamRequestQueue from .utils import HTTPRequestQueue, MemoryRequestQueue __all__ = [ "MemoryRequestQueue", "AsyncRequestQueue", "HTTPRequestQueue", "MultiUpstreamRequestQueue", ]
24.454545
55
0.784387
4a05ecb0dfd4dab6e0d0f2ea82a8fe1f5f558c6f
758
py
Python
Setup.py
linard-y/pySolanio
3bbb689ee7b9ccfca6ea52f99f84263dd03b1045
[ "MIT" ]
null
null
null
Setup.py
linard-y/pySolanio
3bbb689ee7b9ccfca6ea52f99f84263dd03b1045
[ "MIT" ]
null
null
null
Setup.py
linard-y/pySolanio
3bbb689ee7b9ccfca6ea52f99f84263dd03b1045
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages import pySolanio setup( name='pySolanio', version=pySolanio.__version__, packages=find_packages(), author="Linard Y.", author_email="yldev@free.fr", description="Solution analysis input/output", long_description=open('README.md').read(), include_package_data=True, url='http://github.com/linard-y/pySolanio', classifiers=[ "Programming Language :: Python", "Development Status :: 1 - Planning", "License :: OSI Approved :: MIT License", "Natural Language :: French", "Operating System :: OS Independent", "Programming Language :: Python :: 3.6", "Topic :: Chemical Data Manipulation", ] )
21.055556
49
0.627968
4a05ed6ae9de38ebef33b780fbce89622cc49d69
6,797
py
Python
salt/modules/win_service.py
moniker-dns/salt
0e1cd880dc7831b9f937a213dd90cc32e2a09884
[ "Apache-2.0" ]
1
2016-03-13T09:05:15.000Z
2016-03-13T09:05:15.000Z
salt/modules/win_service.py
moniker-dns/salt
0e1cd880dc7831b9f937a213dd90cc32e2a09884
[ "Apache-2.0" ]
null
null
null
salt/modules/win_service.py
moniker-dns/salt
0e1cd880dc7831b9f937a213dd90cc32e2a09884
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- ''' Windows Service module. ''' # Import python libs import time import salt.utils def __virtual__(): ''' Only works on Windows systems ''' if salt.utils.is_windows(): return 'service' return False def get_enabled(): ''' Return the enabled services CLI Example: .. code-block:: bash salt '*' service.get_enabled ''' ret = set() services = [] cmd = 'sc query type= service state= all' lines = __salt__['cmd.run'](cmd).splitlines() for line in lines: if 'SERVICE_NAME:' in line: comps = line.split(':', 1) if not len(comps) > 1: continue services.append(comps[1].strip()) for service in services: cmd2 = 'sc qc "{0}"'.format(service) lines = __salt__['cmd.run'](cmd2).splitlines() for line in lines: if 'AUTO_START' in line: ret.add(service) return sorted(ret) def get_disabled(): ''' Return the disabled services CLI Example: .. code-block:: bash salt '*' service.get_disabled ''' ret = set() services = [] cmd = 'sc query type= service state= all' lines = __salt__['cmd.run'](cmd).splitlines() for line in lines: if 'SERVICE_NAME:' in line: comps = line.split(':', 1) if not len(comps) > 1: continue services.append(comps[1].strip()) for service in services: cmd2 = 'sc qc "{0}"'.format(service) lines = __salt__['cmd.run'](cmd2).splitlines() for line in lines: if 'DEMAND_START' in line: ret.add(service) elif 'DISABLED' in line: ret.add(service) return sorted(ret) def available(name): ''' Returns ``True`` if the specified service is available, otherwise returns ``False``. CLI Example: .. code-block:: bash salt '*' service.available <service name> ''' return name in get_all() def get_all(): ''' Return all installed services CLI Example: .. code-block:: bash salt '*' service.get_all ''' return sorted(get_enabled() + get_disabled()) def get_service_name(*args): ''' The Display Name is what is displayed in Windows when services.msc is executed. Each Display Name has an associated Service Name which is the actual name of the service. This function allows you to discover the Service Name by returning a dictionary of Display Names and Service Names, or filter by adding arguments of Display Names. If no args are passed, return a dict of all services where the keys are the service Display Names and the values are the Service Names. If arguments are passed, create a dict of Display Names and Service Names CLI Example: .. code-block:: bash salt '*' service.get_service_name salt '*' service.get_service_name 'Google Update Service (gupdate)' 'DHCP Client' ''' ret = {} services = [] display_names = [] cmd = 'sc query type= service state= all' lines = __salt__['cmd.run'](cmd).splitlines() for line in lines: if 'SERVICE_NAME:' in line: comps = line.split(':', 1) if not len(comps) > 1: continue services.append(comps[1].strip()) if 'DISPLAY_NAME:' in line: comps = line.split(':', 1) if not len(comps) > 1: continue display_names.append(comps[1].strip()) if len(services) == len(display_names): service_dict = dict(zip(display_names, services)) else: return 'Service Names and Display Names mismatch' if len(args) == 0: return service_dict for arg in args: if arg in service_dict: ret[arg] = service_dict[arg] return ret def start(name): ''' Start the specified service CLI Example: .. code-block:: bash salt '*' service.start <service name> ''' cmd = 'sc start "{0}"'.format(name) return not __salt__['cmd.retcode'](cmd) def stop(name): ''' Stop the specified service CLI Example: .. code-block:: bash salt '*' service.stop <service name> ''' cmd = 'sc stop "{0}"'.format(name) return not __salt__['cmd.retcode'](cmd) def restart(name): ''' Restart the named service CLI Example: .. code-block:: bash salt '*' service.restart <service name> ''' stop(name) for idx in xrange(5): if status(name): time.sleep(2) continue return start(name) return False def status(name, sig=None): ''' Return the status for a service, returns the PID or an empty string if the service is running or not, pass a signature to use to find the service via ps CLI Example: .. code-block:: bash salt '*' service.status <service name> [service signature] ''' cmd = 'sc query "{0}"'.format(name) statuses = __salt__['cmd.run'](cmd).splitlines() for line in statuses: if 'RUNNING' in line: return True elif 'STOP_PENDING' in line: return True return False def getsid(name): ''' Return the sid for this windows service CLI Example: .. code-block:: bash salt '*' service.getsid <service name> ''' cmd = 'sc showsid "{0}"'.format(name) lines = __salt__['cmd.run'](cmd).splitlines() for line in lines: if 'SERVICE SID:' in line: comps = line.split(':', 1) if comps[1] > 1: return comps[1].strip() else: return None def enable(name, **kwargs): ''' Enable the named service to start at boot CLI Example: .. code-block:: bash salt '*' service.enable <service name> ''' cmd = 'sc config "{0}" start= auto'.format(name) return not __salt__['cmd.retcode'](cmd) def disable(name, **kwargs): ''' Disable the named service to start at boot CLI Example: .. code-block:: bash salt '*' service.disable <service name> ''' cmd = 'sc config "{0}" start= demand'.format(name) return not __salt__['cmd.retcode'](cmd) def enabled(name): ''' Check to see if the named service is enabled to start on boot CLI Example: .. code-block:: bash salt '*' service.enabled <service name> ''' return name in get_enabled() def disabled(name): ''' Check to see if the named service is disabled to start on boot CLI Example: .. code-block:: bash salt '*' service.disabled <service name> ''' return name in get_disabled()
22.885522
89
0.576872
4a05edb6c0bca8e76cd51c3be4bdfd6230c29623
39,981
py
Python
week/migrations/0001_initial.py
uno-isqa-8950/fitgirl-inc
2656e7340e85ab8cbeb0de19dcbc81030b9b5b81
[ "MIT" ]
6
2018-09-11T15:30:10.000Z
2020-01-14T17:29:07.000Z
week/migrations/0001_initial.py
uno-isqa-8950/fitgirl-inc
2656e7340e85ab8cbeb0de19dcbc81030b9b5b81
[ "MIT" ]
722
2018-08-29T17:27:38.000Z
2022-03-11T23:28:33.000Z
week/migrations/0001_initial.py
uno-isqa-8950/fitgirl-inc
2656e7340e85ab8cbeb0de19dcbc81030b9b5b81
[ "MIT" ]
13
2018-08-29T07:42:01.000Z
2019-04-21T22:34:30.000Z
# Generated by Django 2.2.4 on 2020-05-03 17:02 import datetime from django.conf import settings from django.db import migrations, models import django.db.models.deletion import modelcluster.fields import wagtail.core.fields class Migration(migrations.Migration): initial = True dependencies = [ ('wagtailimages', '0001_squashed_0021'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('wagtailcore', '0041_group_collection_permissions_verbose_name_plural'), ('account', '0001_initial'), ] operations = [ migrations.CreateModel( name='AnnouncementAlertPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('announcements', wagtail.core.fields.RichTextField(blank=True)), ('display_warning', models.BooleanField(default=False, help_text='Check this box to display warning announcement on the website')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='Disclaimerlink', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('disclaimer', wagtail.core.fields.RichTextField(blank=True)), ('disclaimer2', models.CharField(blank=True, max_length=10000)), ('disclaimer3', models.CharField(blank=True, max_length=10000)), ('disclaimer4', models.CharField(blank=True, max_length=10000)), ('disclaimer5', models.CharField(blank=True, max_length=10000)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='DisclaimerPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('disclaimer', wagtail.core.fields.RichTextField(blank=True)), ('disclaimer2', models.CharField(blank=True, max_length=10000)), ('disclaimer3', models.CharField(blank=True, max_length=10000)), ('disclaimer4', models.CharField(blank=True, max_length=10000)), ('disclaimer5', models.CharField(blank=True, max_length=10000)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='EmailTemplates', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('subject_for_inactivity', models.CharField(blank=True, max_length=10000)), ('subject_for_group', models.CharField(blank=True, max_length=10000)), ('group_message', wagtail.core.fields.RichTextField(blank=True)), ('inactivity_message', wagtail.core.fields.RichTextField(blank=True)), ('subject_for_rewards_notification', models.CharField(blank=True, max_length=10000)), ('rewards_message', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='ExtrasIndexPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('description', wagtail.core.fields.RichTextField(blank=True)), ('additional', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='KindnessCardPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('KindnessCard', models.CharField(blank=True, max_length=10000)), ('KindnessCard2', models.CharField(blank=True, max_length=10000)), ('KindnessCard3', models.CharField(blank=True, max_length=10000)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='PreassessmentPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('thank_you_text', wagtail.core.fields.RichTextField(blank=True)), ('points_for_this_activity', models.IntegerField(blank=True, default=0)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='Print', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('body', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='PrivacyPolicyLink', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('policy', wagtail.core.fields.RichTextField(blank=True)), ('policy2', models.CharField(blank=True, max_length=10000)), ('attach_file', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='ProgramIndexPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('description', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='QuestionPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('thank_you_text', wagtail.core.fields.RichTextField(blank=True)), ('points_for_this_activity', models.IntegerField(blank=True, default=0)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='QuestionPageText', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('description', wagtail.core.fields.RichTextField(blank=True)), ('thank_you_text', wagtail.core.fields.RichTextField(blank=True)), ('points_for_this_activity', models.IntegerField(blank=True, default=0)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='RewardsIndexPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('description', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='SidebarContentPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('subject_for_announcement1', models.CharField(blank=True, max_length=10000)), ('message_announcement1', wagtail.core.fields.RichTextField(blank=True)), ('subject_for_announcement2', models.CharField(blank=True, max_length=10000)), ('message_announcement2', wagtail.core.fields.RichTextField(blank=True)), ('subject_for_announcement3', models.CharField(blank=True, max_length=10000)), ('message_announcement3', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='SidebarImagePage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('subject_for_advertisement', models.CharField(blank=True, max_length=10000)), ('advertisement_image', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='StatementsPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('mission', models.CharField(blank=True, max_length=200)), ('vision', models.CharField(blank=True, max_length=200)), ('values', models.CharField(blank=True, max_length=200)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='WeekPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('description', wagtail.core.fields.RichTextField(blank=True)), ('start_date', models.DateTimeField(blank=True, null=True, verbose_name='Start Date')), ('end_date', models.DateTimeField(blank=True, null=True, verbose_name='End Date')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='welcomepage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('text1', wagtail.core.fields.RichTextField(blank=True)), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='UserActivity', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Activity', models.CharField(max_length=50)), ('Week', models.IntegerField(null=True)), ('DayOfWeek', models.CharField(max_length=10)), ('points_earned', models.IntegerField(null=True)), ('creation_date', models.DateField()), ('updated_date', models.DateField()), ('program', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='account.Program')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Sensitive', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('description', wagtail.core.fields.RichTextField(blank=True)), ('body', wagtail.core.fields.RichTextField(blank=True)), ('age_group_content', models.IntegerField(blank=True, default=0, verbose_name='Enter the age group to show the content to: 1 for 6 or younger; 2 for ages 7-10; 3 for ages 11-13; 4 for ages 14-16; 5 for 17+')), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='QuestionTextFormField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sort_order', models.IntegerField(blank=True, editable=False, null=True)), ('label', models.CharField(help_text='The label of the form field', max_length=255, verbose_name='label')), ('field_type', models.CharField(choices=[('singleline', 'Single line text'), ('multiline', 'Multi-line text'), ('email', 'Email'), ('number', 'Number'), ('url', 'URL'), ('checkbox', 'Checkbox'), ('checkboxes', 'Checkboxes'), ('dropdown', 'Drop down'), ('multiselect', 'Multiple select'), ('radio', 'Radio buttons'), ('date', 'Date'), ('datetime', 'Date/time'), ('hidden', 'Hidden field')], max_length=16, verbose_name='field type')), ('required', models.BooleanField(default=True, verbose_name='required')), ('choices', models.TextField(blank=True, help_text='Comma separated list of choices. Only applicable in checkboxes, radio and dropdown.', verbose_name='choices')), ('default_value', models.CharField(blank=True, help_text='Default value. Comma separated values supported for checkboxes.', max_length=255, verbose_name='default value')), ('help_text', models.CharField(blank=True, max_length=255, verbose_name='help text')), ('page', modelcluster.fields.ParentalKey(on_delete=django.db.models.deletion.CASCADE, related_name='form_field', to='week.QuestionPageText')), ], options={ 'ordering': ['sort_order'], 'abstract': False, }, ), migrations.CreateModel( name='QuestionFormField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sort_order', models.IntegerField(blank=True, editable=False, null=True)), ('label', models.CharField(help_text='The label of the form field', max_length=255, verbose_name='label')), ('field_type', models.CharField(choices=[('singleline', 'Single line text'), ('multiline', 'Multi-line text'), ('email', 'Email'), ('number', 'Number'), ('url', 'URL'), ('checkbox', 'Checkbox'), ('checkboxes', 'Checkboxes'), ('dropdown', 'Drop down'), ('multiselect', 'Multiple select'), ('radio', 'Radio buttons'), ('date', 'Date'), ('datetime', 'Date/time'), ('hidden', 'Hidden field')], max_length=16, verbose_name='field type')), ('required', models.BooleanField(default=True, verbose_name='required')), ('choices', models.TextField(blank=True, help_text='Comma separated list of choices. Only applicable in checkboxes, radio and dropdown.', verbose_name='choices')), ('default_value', models.CharField(blank=True, help_text='Default value. Comma separated values supported for checkboxes.', max_length=255, verbose_name='default value')), ('help_text', models.CharField(blank=True, max_length=255, verbose_name='help text')), ('page', modelcluster.fields.ParentalKey(on_delete=django.db.models.deletion.CASCADE, related_name='form_fields', to='week.QuestionPage')), ], options={ 'ordering': ['sort_order'], 'abstract': False, }, ), migrations.CreateModel( name='PreassessmentFormField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sort_order', models.IntegerField(blank=True, editable=False, null=True)), ('label', models.CharField(help_text='The label of the form field', max_length=255, verbose_name='label')), ('field_type', models.CharField(choices=[('singleline', 'Single line text'), ('multiline', 'Multi-line text'), ('email', 'Email'), ('number', 'Number'), ('url', 'URL'), ('checkbox', 'Checkbox'), ('checkboxes', 'Checkboxes'), ('dropdown', 'Drop down'), ('multiselect', 'Multiple select'), ('radio', 'Radio buttons'), ('date', 'Date'), ('datetime', 'Date/time'), ('hidden', 'Hidden field')], max_length=16, verbose_name='field type')), ('required', models.BooleanField(default=True, verbose_name='required')), ('choices', models.TextField(blank=True, help_text='Comma separated list of choices. Only applicable in checkboxes, radio and dropdown.', verbose_name='choices')), ('default_value', models.CharField(blank=True, help_text='Default value. Comma separated values supported for checkboxes.', max_length=255, verbose_name='default value')), ('help_text', models.CharField(blank=True, max_length=255, verbose_name='help text')), ('page', modelcluster.fields.ParentalKey(on_delete=django.db.models.deletion.CASCADE, related_name='form_fields', to='week.PreassessmentPage')), ], options={ 'ordering': ['sort_order'], 'abstract': False, }, ), migrations.CreateModel( name='PostassessmentPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('thank_you_text', wagtail.core.fields.RichTextField(blank=True)), ('points_for_this_activity', models.IntegerField(blank=True, default=0)), ('start_date', models.DateTimeField(blank=True, null=True, verbose_name='Start Date')), ('end_date', models.DateTimeField(blank=True, null=True, verbose_name='End Date')), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='PostassessmentFormField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sort_order', models.IntegerField(blank=True, editable=False, null=True)), ('label', models.CharField(help_text='The label of the form field', max_length=255, verbose_name='label')), ('field_type', models.CharField(choices=[('singleline', 'Single line text'), ('multiline', 'Multi-line text'), ('email', 'Email'), ('number', 'Number'), ('url', 'URL'), ('checkbox', 'Checkbox'), ('checkboxes', 'Checkboxes'), ('dropdown', 'Drop down'), ('multiselect', 'Multiple select'), ('radio', 'Radio buttons'), ('date', 'Date'), ('datetime', 'Date/time'), ('hidden', 'Hidden field')], max_length=16, verbose_name='field type')), ('required', models.BooleanField(default=True, verbose_name='required')), ('choices', models.TextField(blank=True, help_text='Comma separated list of choices. Only applicable in checkboxes, radio and dropdown.', verbose_name='choices')), ('default_value', models.CharField(blank=True, help_text='Default value. Comma separated values supported for checkboxes.', max_length=255, verbose_name='default value')), ('help_text', models.CharField(blank=True, max_length=255, verbose_name='help text')), ('page', modelcluster.fields.ParentalKey(on_delete=django.db.models.deletion.CASCADE, related_name='form_fields', to='week.PostassessmentPage')), ], options={ 'ordering': ['sort_order'], 'abstract': False, }, ), migrations.CreateModel( name='PhysicalPostPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('strength', wagtail.core.fields.RichTextField(blank=True)), ('agility', wagtail.core.fields.RichTextField(blank=True)), ('flexibility', wagtail.core.fields.RichTextField(blank=True)), ('points_for_this_activity', models.IntegerField(blank=True, default=0)), ('timer_for_this_activity', models.CharField(blank=True, default=datetime.time(0, 11), help_text='Time format should be in MM:SS', max_length=20)), ('thank_you_text', wagtail.core.fields.RichTextField(blank=True)), ('start_date', models.DateTimeField(blank=True, null=True, verbose_name='Start Date')), ('end_date', models.DateTimeField(blank=True, null=True, verbose_name='End Date')), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='PhysicalFormField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sort_order', models.IntegerField(blank=True, editable=False, null=True)), ('label', models.CharField(help_text='The label of the form field', max_length=255, verbose_name='label')), ('field_type', models.CharField(choices=[('singleline', 'Single line text'), ('multiline', 'Multi-line text'), ('email', 'Email'), ('number', 'Number'), ('url', 'URL'), ('checkbox', 'Checkbox'), ('checkboxes', 'Checkboxes'), ('dropdown', 'Drop down'), ('multiselect', 'Multiple select'), ('radio', 'Radio buttons'), ('date', 'Date'), ('datetime', 'Date/time'), ('hidden', 'Hidden field')], max_length=16, verbose_name='field type')), ('required', models.BooleanField(default=True, verbose_name='required')), ('choices', models.TextField(blank=True, help_text='Comma separated list of choices. Only applicable in checkboxes, radio and dropdown.', verbose_name='choices')), ('default_value', models.CharField(blank=True, help_text='Default value. Comma separated values supported for checkboxes.', max_length=255, verbose_name='default value')), ('help_text', models.CharField(blank=True, max_length=255, verbose_name='help text')), ('page', modelcluster.fields.ParentalKey(on_delete=django.db.models.deletion.CASCADE, related_name='form_fields', to='week.PhysicalPostPage')), ], options={ 'ordering': ['sort_order'], 'abstract': False, }, ), migrations.CreateModel( name='NutritionPostPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('body', wagtail.core.fields.RichTextField(blank=True)), ('morecontent', wagtail.core.fields.RichTextField(blank=True)), ('facts', wagtail.core.fields.RichTextField(blank=True)), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='NutritionGame', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('body', wagtail.core.fields.RichTextField(blank=True)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='ModelIndexPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('description', wagtail.core.fields.RichTextField(blank=True)), ('intro', models.CharField(blank=True, max_length=255)), ('ad_url', models.URLField(blank=True)), ('vertical_url', models.URLField(blank=True)), ('announcements', wagtail.core.fields.RichTextField(blank=True)), ('ad_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ('vertical_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='MentalPostPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('body', wagtail.core.fields.RichTextField(blank=True)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='MentalArtPostPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('body', wagtail.core.fields.RichTextField(blank=True)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='LandingIndexPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('description', wagtail.core.fields.RichTextField(blank=True)), ('additional', wagtail.core.fields.RichTextField(blank=True)), ('physical', wagtail.core.fields.RichTextField(blank=True)), ('nutritional', wagtail.core.fields.RichTextField(blank=True)), ('mental', wagtail.core.fields.RichTextField(blank=True)), ('relational', wagtail.core.fields.RichTextField(blank=True)), ('physicaldesc', wagtail.core.fields.RichTextField(blank=True)), ('nutritionaldesc', wagtail.core.fields.RichTextField(blank=True)), ('mentaldesc', wagtail.core.fields.RichTextField(blank=True)), ('relationaldesc', wagtail.core.fields.RichTextField(blank=True)), ('card_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ('card_imageb', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ('card_imagec', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ('card_imaged', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='FunStuffGames', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('callout_intro', wagtail.core.fields.RichTextField(blank=True)), ('callout_message', wagtail.core.fields.RichTextField(blank=True)), ('body', wagtail.core.fields.RichTextField(blank=True)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='FunStuffArt', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('callout_intro', wagtail.core.fields.RichTextField(blank=True)), ('callout_message', wagtail.core.fields.RichTextField(blank=True)), ('body', wagtail.core.fields.RichTextField(blank=True)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='Fact', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('description', wagtail.core.fields.RichTextField(blank=True)), ('body', wagtail.core.fields.RichTextField(blank=True)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='BonusQuestionPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('thank_you_text', wagtail.core.fields.RichTextField(blank=True)), ('points_for_this_activity', models.IntegerField(blank=True, default=0)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='BonusQuestionFormField', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('sort_order', models.IntegerField(blank=True, editable=False, null=True)), ('label', models.CharField(help_text='The label of the form field', max_length=255, verbose_name='label')), ('field_type', models.CharField(choices=[('singleline', 'Single line text'), ('multiline', 'Multi-line text'), ('email', 'Email'), ('number', 'Number'), ('url', 'URL'), ('checkbox', 'Checkbox'), ('checkboxes', 'Checkboxes'), ('dropdown', 'Drop down'), ('multiselect', 'Multiple select'), ('radio', 'Radio buttons'), ('date', 'Date'), ('datetime', 'Date/time'), ('hidden', 'Hidden field')], max_length=16, verbose_name='field type')), ('required', models.BooleanField(default=True, verbose_name='required')), ('choices', models.TextField(blank=True, help_text='Comma separated list of choices. Only applicable in checkboxes, radio and dropdown.', verbose_name='choices')), ('default_value', models.CharField(blank=True, help_text='Default value. Comma separated values supported for checkboxes.', max_length=255, verbose_name='default value')), ('help_text', models.CharField(blank=True, max_length=255, verbose_name='help text')), ('page', modelcluster.fields.ParentalKey(on_delete=django.db.models.deletion.CASCADE, related_name='form_fields', to='week.BonusQuestionPage')), ], options={ 'ordering': ['sort_order'], 'abstract': False, }, ), migrations.CreateModel( name='addstudentoftheweek', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('student_name', models.CharField(blank=True, max_length=200)), ('my_favorite_color', models.CharField(blank=True, max_length=200)), ('my_favorite_healthy_snack', models.CharField(blank=True, max_length=200)), ('my_favorite_sport', models.CharField(blank=True, max_length=200)), ('my_favorite_athlete', models.CharField(blank=True, max_length=200)), ('my_friends_would_describe_me_as', models.CharField(blank=True, max_length=300)), ('am_good_at', models.CharField(blank=True, max_length=300)), ('display_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='AboutUsIndexPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', wagtail.core.fields.RichTextField(blank=True)), ('description', wagtail.core.fields.RichTextField(blank=True)), ('ad_url', models.URLField(blank=True)), ('ad_image', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image')), ], options={ 'abstract': False, }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='CustomFormSubmission', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('form_data', models.TextField()), ('submit_time', models.DateTimeField(auto_now_add=True, verbose_name='submit time')), ('page', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='wagtailcore.Page')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='question_form', to=settings.AUTH_USER_MODEL)), ], options={ 'unique_together': {('page', 'user')}, }, ), ]
63.461905
449
0.602586
4a05edbb09bf4e5a77939b0ec51765a45de8b739
2,529
py
Python
tensorflow_probability/python/bijectors/softsign.py
m-colombo/probability
74037f90010c08e17a567c281ff3f70f4157364a
[ "Apache-2.0" ]
1
2018-09-15T05:02:30.000Z
2018-09-15T05:02:30.000Z
tensorflow_probability/python/bijectors/softsign.py
snehil03july/probability
5f576230f1e261a823e20a49c442ff38c8f381d3
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/bijectors/softsign.py
snehil03july/probability
5f576230f1e261a823e20a49c442ff38c8f381d3
[ "Apache-2.0" ]
1
2019-10-13T19:52:57.000Z
2019-10-13T19:52:57.000Z
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Softsign bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops.distributions import bijector __all__ = [ "Softsign", ] class Softsign(bijector.Bijector): """Bijector which computes `Y = g(X) = X / (1 + |X|)`. The softsign `Bijector` has the following two useful properties: * The domain is all real numbers * `softsign(x) approx sgn(x)`, for large `|x|`. #### Examples ```python # Create the Y = softsign(X) transform. softsign = Softsign() x = [[[1., 2], [3, 4]], [[5, 6], [7, 8]]] x / (1 + abs(x)) == softsign.forward(x) x / (1 - abs(x)) == softsign.inverse(x) ``` """ def __init__(self, validate_args=False, name="softsign"): super(Softsign, self).__init__( forward_min_event_ndims=0, validate_args=validate_args, name=name) def _forward(self, x): return x / (1. + tf.abs(x)) def _inverse(self, y): y = self._maybe_assert_valid_y(y) return y / (1. - tf.abs(y)) def _forward_log_det_jacobian(self, x): return -2. * tf.log1p(tf.abs(x)) def _inverse_log_det_jacobian(self, y): y = self._maybe_assert_valid_y(y) return -2. * tf.log1p(-tf.abs(y)) def _maybe_assert_valid_y(self, y): if not self.validate_args: return y is_valid = [ tf.assert_greater( y, tf.cast(-1., dtype=y.dtype.base_dtype), message="Inverse transformation input must be greater than -1."), tf.assert_less( y, tf.cast(1., dtype=y.dtype.base_dtype), message="Inverse transformation input must be less than 1.") ] return control_flow_ops.with_dependencies(is_valid, y)
28.738636
78
0.642151
4a05ee9ddfedf06c42ef4d8cb985400a44472736
4,757
py
Python
tests/util.py
questdb/pykit
c8aac35ab57b88d422f40126380f11f1d1e2d143
[ "Apache-2.0" ]
7
2021-10-04T12:28:17.000Z
2022-01-13T16:41:47.000Z
tests/util.py
questdb/pykit
c8aac35ab57b88d422f40126380f11f1d1e2d143
[ "Apache-2.0" ]
null
null
null
tests/util.py
questdb/pykit
c8aac35ab57b88d422f40126380f11f1d1e2d143
[ "Apache-2.0" ]
1
2022-02-10T05:53:24.000Z
2022-02-10T05:53:24.000Z
# # ___ _ ____ ____ # / _ \ _ _ ___ ___| |_| _ \| __ ) # | | | | | | |/ _ \/ __| __| | | | _ \ # | |_| | |_| | __/\__ \ |_| |_| | |_) | # \__\_\\__,_|\___||___/\__|____/|____/ # # Copyright (c) 2014-2019 Appsicle # Copyright (c) 2019-2020 QuestDB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest import os import psycopg2 import numpy as np import mmap from pathlib import Path import pandas as pd from pandas.core.internals import (BlockManager, make_block) from pandas.core.indexes.base import Index from pykit import ( select_all, with_cursor, Cursor ) from pykit.internal import ( MemSnapshot, mem_snapshot, mem_snapshot_diff ) class BaseTestTest(unittest.TestCase): def assert_table_content(self, table_name: str, expected: str) -> None: results = '' for row in select_all(table_name): results += str(row) + os.linesep self.assertEqual(expected, results) def take_mem_snapshot(self): return mem_snapshot() def report_mem_snapshot_diff(self, snapshot_start: MemSnapshot, heading: str = None) -> MemSnapshot: snapshot_now = mem_snapshot() if heading is not None: print(heading) print(mem_snapshot_diff(snapshot_start, snapshot_now)) return snapshot_now def create_rnd_table(self, table_name: str, num_rows: int = 10): def _create_rnd_table(stmt_cursor: Cursor) -> None: statement = f'CREATE TABLE {table_name} AS(' statement += 'SELECT' statement += ' rnd_long(0, 9223372036854775807, 1) long, ' statement += ' rnd_int(0, 2147483647, 1) int, ' statement += ' rnd_boolean() boolean, ' statement += " rnd_date(to_date('1978', 'yyyy'), to_date('2021', 'yyyy'), 1) date, " statement += ' rnd_double(1) double, ' statement += " rnd_timestamp(to_timestamp('1978', 'yyyy'), to_timestamp('2021', 'yyyy'), 0) ts " statement += 'FROM' statement += f' long_sequence({num_rows})' statement += ') timestamp(ts) partition by YEAR;' stmt_cursor.execute(statement) try: with_cursor(_create_rnd_table) except (Exception, psycopg2.Error) as create_error: print(f'Error while creating rnd table [{table_name}]: {create_error}') def dataframe(file_path: Path, col_name: str, row_count: int, dtype: np.dtype, storage: int, na_value: int, cls=None): return pd.DataFrame( data=BlockManagerUnconsolidated( blocks=(make_block( values=mmap_column(file_path, row_count, dtype, storage, na_value, cls), placement=(0,) ),), axes=[ Index(data=[col_name]), pd.RangeIndex(name='Idx', start=0, stop=row_count, step=1) ], verify_integrity=False), copy=False) def mmap_column(file_path: Path, nrows: int, dtype: np.dtype, storage: int, na_value: int, cls=None): with open(file_path, mode='rb') as col_file: col_mmap = mmap.mmap( col_file.fileno(), length=nrows * storage, flags=mmap.MAP_SHARED, access=mmap.ACCESS_READ, offset=0) column_array = np.ndarray(shape=(nrows,), dtype=dtype, buffer=col_mmap, offset=0, order='C') column_array.flags['WRITEABLE'] = False column_array.flags['ALIGNED'] = True mask_array = np.zeros((nrows,), dtype=bool, order='C') for null_idx in np.where(column_array == na_value): mask_array[null_idx] = True np.save(Path('resources') / 'null_mask.npy', mask_array, allow_pickle=False) constructor = pd.arrays.IntegerArray if cls is None else cls return constructor(column_array, mask_array) class BlockManagerUnconsolidated(BlockManager): def __init__(self, *args, **kwargs): BlockManager.__init__(self, *args, **kwargs) self._is_consolidated = False self._known_consolidated = True def _consolidate_inplace(self): pass def _consolidate(self): return self.blocks
35.237037
109
0.622031
4a05ef7b8a5251310d48536430191c6293e4faa7
4,577
py
Python
gn/compile_sksl_tests.py
borodust/skia
bbbf1a7f50a303bd76163793bd5968c72f5f4432
[ "BSD-3-Clause" ]
null
null
null
gn/compile_sksl_tests.py
borodust/skia
bbbf1a7f50a303bd76163793bd5968c72f5f4432
[ "BSD-3-Clause" ]
null
null
null
gn/compile_sksl_tests.py
borodust/skia
bbbf1a7f50a303bd76163793bd5968c72f5f4432
[ "BSD-3-Clause" ]
1
2021-06-06T21:31:52.000Z
2021-06-06T21:31:52.000Z
#!/usr/bin/env python # # Copyright 2020 Google LLC # # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import shlex import subprocess import sys import tempfile batchCompile = True skslc = sys.argv[1] lang = sys.argv[2] settings = sys.argv[3] with open(sys.argv[4], 'r') as reader: inputs = shlex.split(reader.read()) def pairwise(iterable): # Iterate over an array pairwise (two elements at a time). a = iter(iterable) return zip(a, a) def executeWorklist(input, worklist): # Invoke skslc, passing in the worklist. worklist.close() try: output = subprocess.check_output([skslc, worklist.name], stderr=subprocess.STDOUT) except subprocess.CalledProcessError as err: if err.returncode != 1: print("### " + input + " skslc error:\n") print("\n".join(err.output.splitlines())) sys.exit(err.returncode) pass # Compile errors (exit code 1) are expected and normal in test code # Delete the worklist file now that execution is complete. os.remove(worklist.name) def makeEmptyFile(path): try: open(path, 'wb').close() except OSError: pass def extensionForSpirvAsm(ext): return ext if (ext == '.frag' or ext == '.vert' or ext == '.geom') else '.frag' if settings != "--settings" and settings != "--nosettings": sys.exit("### Expected --settings or --nosettings, got " + settings) targets = [] worklist = tempfile.NamedTemporaryFile(suffix='.worklist', delete=False) # The `inputs` array pairs off input files with their matching output directory, e.g.: # //skia/tests/sksl/shared/test.sksl # //skia/tests/sksl/shared/golden/ # //skia/tests/sksl/intrinsics/abs.sksl # //skia/tests/sksl/intrinsics/golden/ # ... (etc) ... # Here we loop over these inputs and convert them into a worklist file for skslc. for input, targetDir in pairwise(inputs): noExt, ext = os.path.splitext(input) head, tail = os.path.split(noExt) if not os.path.isdir(targetDir): os.mkdir(targetDir) target = os.path.join(targetDir, tail) if settings == "--nosettings": target += "StandaloneSettings" targets.append(target) if lang == "--fp": worklist.write(input + "\n") worklist.write(target + ".cpp\n") worklist.write(settings + "\n\n") worklist.write(input + "\n") worklist.write(target + ".h\n") worklist.write(settings + "\n\n") elif lang == "--glsl": worklist.write(input + "\n") worklist.write(target + ".glsl\n") worklist.write(settings + "\n\n") elif lang == "--metal": worklist.write(input + "\n") worklist.write(target + ".metal\n") worklist.write(settings + "\n\n") elif lang == "--spirv": worklist.write(input + "\n") worklist.write(target + ".asm" + extensionForSpirvAsm(ext) + "\n") worklist.write(settings + "\n\n") elif lang == "--skvm": worklist.write(input + "\n") worklist.write(target + ".skvm\n") worklist.write(settings + "\n\n") elif lang == "--stage": worklist.write(input + "\n") worklist.write(target + ".stage\n") worklist.write(settings + "\n\n") else: sys.exit("### Expected one of: --fp --glsl --metal --spirv --skvm --stage, got " + lang) # Compile items one at a time. if not batchCompile: executeWorklist(input, worklist) worklist = tempfile.NamedTemporaryFile(suffix='.worklist', delete=False) # Compile everything all in one go. if batchCompile: executeWorklist("", worklist) else: worklist.close() os.remove(worklist.name) # A special case cleanup pass, just for CPP and H files: if either one of these files starts with # `### Compilation failed`, its sibling should be replaced by an empty file. This improves clarity # during code review; a failure on either file means that success on the sibling is irrelevant. if lang == "--fp": for target in targets: cppFile = open(target + '.cpp', 'r') hFile = open(target + '.h', 'r') if cppFile.readline().startswith("### Compilation failed"): # The CPP had a compilation failure. Clear the header file. hFile.close() makeEmptyFile(target + '.h') elif hFile.readline().startswith("### Compilation failed"): # The header had a compilation failure. Clear the CPP file. cppFile.close() makeEmptyFile(target + '.cpp')
34.413534
98
0.626393
4a05f012a3c41cbd4cedd528f8e799f99b9f7fed
35,825
py
Python
src/auto-posture-evaluator/testers/vpc_tester.py
antstackio/coralogix-aws-serverless
00d49bc8bb22d2ec466d68a3d77d967d6ead5fa8
[ "Apache-2.0" ]
null
null
null
src/auto-posture-evaluator/testers/vpc_tester.py
antstackio/coralogix-aws-serverless
00d49bc8bb22d2ec466d68a3d77d967d6ead5fa8
[ "Apache-2.0" ]
null
null
null
src/auto-posture-evaluator/testers/vpc_tester.py
antstackio/coralogix-aws-serverless
00d49bc8bb22d2ec466d68a3d77d967d6ead5fa8
[ "Apache-2.0" ]
null
null
null
import time import boto3 import interfaces import json def _format_string_to_json(text): return json.loads(text) class Tester(interfaces.TesterInterface): def __init__(self): self.aws_vpc_client = boto3.client('ec2') self.cache = {} self.user_id = boto3.client('sts').get_caller_identity().get('UserId') self.account_arn = boto3.client('sts').get_caller_identity().get('Arn') self.account_id = boto3.client('sts').get_caller_identity().get('Account') self.all_vpc_details = self._get_all_vpc() self.all_ami_images = self._get_all_ami_images() def _get_all_vpc(self): response = self.aws_vpc_client.describe_vpcs() vpc_detail = [] # If you have the required permissions, the error response is DryRunOperation . # Otherwise, it is UnauthorizedOperation . if response and 'Vpcs' in response and response['Vpcs']: vpc_detail.extend(response['Vpcs']) while 'NextToken' in response and response['NextToken']: response = self.aws_vpc_client.describe_vpcs(NextToken=response['NextToken']) if response and 'Vpcs' in response and response['Vpcs']: vpc_detail.extend(response['Vpcs']) return vpc_detail def _get_all_ami_images(self): response_of_describe_images = self.aws_vpc_client.describe_images() if response_of_describe_images and 'Images' in response_of_describe_images and response_of_describe_images[ 'Images']: return response_of_describe_images['Images'] return [] def declare_tested_service(self) -> str: return 'vpc' def declare_tested_provider(self) -> str: return 'aws' def run_tests(self) -> list: return self.detect_vpc_logging_status() + \ self.detect_vpc_endpoint_publicly_accessibility() + \ self.detect_network_acl_restriction_status() + \ self.detect_vpc_network_acl_inbound_and_outbound_traffic_rules() + \ self.detect_default_nacl_used() + \ self.detect_vpc_dnc_resolution_enabled() + \ self.detect_vpc_unrestricted_icmp_access() + \ self.detect_securitygroup_inbound_rule_without_specified_protocol() + \ self.detect_public_and_not_encrypted_ami_images() + \ self.detect_vpc_peering_connection() + \ self.detect_unrestricted_ssh_access() + \ self.detect_vpc_unrestricted_smb_access() + \ self.detect_vpc_unrestricted_dns_tcp_access() + \ self.detect_vpc_unrestricted_vnc_server_access() + \ self.detect_vpc_unrestricted_dns_udp_access() + \ self.detect_vpc_unrestricted_ftp_access() + \ self.detect_vpc_unrestricted_cifs_access() + \ self.detect_vpc_default_security_groups_in_use() + \ self.detect_vpc_unrestricted_telnet_access() + \ self.detect_vpc_unrestricted_rdp_access() + \ self.detect_vpc_unrestricted_ftp_data_access() + \ self.detect_vpc_unrestricted_smtp_access() + \ self.detect_vpc_unrestricted_sql_server_tcp_access() + \ self.detect_vpc_unrestricted_sql_server_udp_access() + \ self.detect_vpc_unrestricted_net_bios_access() + \ self.detect_vpc_unrestricted_mysql_access() + \ self.detect_vpc_unrestricted_postgre_sql_access() + \ self.detect_vpc_unrestricted_vnc_listener_access() + \ self.detect_vpc_eip_in_use() + \ self.detect_vpc_security_group_per_vpc_limit() def _append_vpc_test_result(self, vpc_detail, test_name, issue_status): return { "user": self.user_id, "account_arn": self.account_arn, "account": self.account_id, "timestamp": time.time(), "item": vpc_detail['VpcId'], "item_type": "vpc", "test_name": test_name, "test_result": issue_status } def _append_vpc_acm_test_result(self, acm_image_id, test_name, issue_status): return { "user": self.user_id, "account_arn": self.account_arn, "account": self.account_id, "timestamp": time.time(), "item": acm_image_id, "item_type": "vpc", "test_name": test_name, "test_result": issue_status } def _check_logging_status(self, test_name, ): logging_result = [] for vpc_detail in self.all_vpc_details: result = self.aws_vpc_client.describe_flow_logs(Filters=[ { 'Name': 'resource-id', 'Values': [vpc_detail['VpcId']] }, ]) if result and result['FlowLogs']: logging_result.append(self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) else: logging_result.append(self._append_vpc_test_result(vpc_detail, test_name, 'issue_found')) return logging_result def _check_vpc_public_accessibility(self, test_name): vpc_public_accessible = [] for vpc_detail in self.all_vpc_details: result = self.aws_vpc_client.describe_vpc_endpoints(Filters=[ { 'Name': 'vpc-id', 'Values': [vpc_detail['VpcId']] }, ]) if result and 'VpcEndpoints' in result and result['VpcEndpoints']: for vpc_end_point_data in result['VpcEndpoints']: if 'PolicyDocument' in vpc_end_point_data and vpc_end_point_data['PolicyDocument']: policy_document_json_data = _format_string_to_json(vpc_end_point_data['PolicyDocument']) if 'Statement' in policy_document_json_data: issue_found = False for statement_dict in policy_document_json_data['Statement']: if 'Principal' in statement_dict and statement_dict[ 'Principal'] == '*' or 'Principal' in statement_dict and 'AWS' in statement_dict[ 'Principal'] and statement_dict['Principal']['AWS'] == '*': issue_found = True break if issue_found: vpc_public_accessible.append( self._append_vpc_test_result(vpc_detail, test_name, 'issue_found')) else: vpc_public_accessible.append( self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) else: vpc_public_accessible.append( self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) return vpc_public_accessible def _check_ingress_administration_ports_range_for_network_acls_inbound_rule(self, test_name): ingress_traffic_test_result = [] for vpc_detail in self.all_vpc_details: vpc_id = vpc_detail['VpcId'] response = self.aws_vpc_client.describe_network_acls(Filters=[{ 'Name': 'vpc-id', 'Values': [vpc_id] }, ]) if response and 'NetworkAcls' in response and len(response['NetworkAcls']): for acl in response['NetworkAcls']: issue_found = False for network_acl_rules in acl['Entries']: if 'Egress' in network_acl_rules and not network_acl_rules['Egress'] and network_acl_rules[ 'RuleAction'].lower() == 'allow': if 'PortRange' not in network_acl_rules: issue_found = True break # elif 'PortRange' in network_acl_rules and network_acl_rules['PortRange'] == []: if issue_found: ingress_traffic_test_result.append( self._append_vpc_test_result(vpc_detail, test_name, 'issue_found')) else: ingress_traffic_test_result.append( self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) else: ingress_traffic_test_result.append( self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) return ingress_traffic_test_result def _check_securitygroup_inbound_rule_without_specified_protocol(self, test_name): security_groups_inbound_rule_result = [] for vpc_detail in self.all_vpc_details: security_groups_response = self.aws_vpc_client.describe_security_groups(Filters=[{ 'Name': 'vpc-id', 'Values': [vpc_detail['VpcId']] }]) issue_found = False if security_groups_response and 'SecurityGroups' in security_groups_response and security_groups_response[ 'SecurityGroups']: for security_groups_dict in security_groups_response['SecurityGroups']: if issue_found: break if 'IpPermissions' in security_groups_dict and security_groups_dict['IpPermissions']: for ip_permission_dict in security_groups_dict['IpPermissions']: if 'IpProtocol' in ip_permission_dict and str( ip_permission_dict['IpProtocol']) == '-1' or str( ip_permission_dict['IpProtocol']).lower() == 'all': issue_found = True break else: issue_found = True break else: issue_found = True if issue_found: security_groups_inbound_rule_result.append( self._append_vpc_test_result(vpc_detail, test_name, 'issue_found')) else: security_groups_inbound_rule_result.append( self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) return security_groups_inbound_rule_result def _check_default_nacl_used(self, test_name): default_nacl_used_result = [] for vpc_detail in self.all_vpc_details: network_acls_response = self.aws_vpc_client.describe_network_acls(Filters=[{ 'Name': 'vpc-id', 'Values': [vpc_detail['VpcId']] }]) issue_found = False if 'NetworkAcls' in network_acls_response and network_acls_response['NetworkAcls']: for network_acls_dict in network_acls_response['NetworkAcls']: if 'IsDefault' in network_acls_dict and network_acls_dict['IsDefault']: issue_found = True break else: issue_found = True if issue_found: default_nacl_used_result.append(self._append_vpc_test_result(vpc_detail, test_name, 'issue_found')) else: default_nacl_used_result.append(self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) return default_nacl_used_result def _check_vpc_dns_resolution_enabled(self, test_name): vpc_dns_resolution_result = [] for vpc_detail in self.all_vpc_details: dns_support_response = self.aws_vpc_client.describe_vpc_attribute( Attribute='enableDnsSupport', VpcId=vpc_detail['VpcId'] ) if 'EnableDnsSupport' in dns_support_response and dns_support_response['EnableDnsSupport'] and 'Value' in \ dns_support_response['EnableDnsSupport'] and dns_support_response['EnableDnsSupport']['Value']: vpc_dns_resolution_result.append(self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) else: vpc_dns_resolution_result.append(self._append_vpc_test_result(vpc_detail, test_name, 'issue_found')) return vpc_dns_resolution_result def _check_vpc_unrestricted_icmp_access(self, test_name): vpc_unrestricted_icmp_access = [] for vpc_detail in self.all_vpc_details: issue_found = False security_groups_response = self.aws_vpc_client.describe_security_groups(Filters=[{ 'Name': 'vpc-id', 'Values': [vpc_detail['VpcId']] }, { 'Name': 'ip-permission.protocol', 'Values': ['icmp'] }, { 'Name': 'ip-permission.cidr', 'Values': ['0.0.0.0/0'] } , { 'Name': 'ip-permission.ipv6-cidr', 'Values': ['::/0'] }]) if security_groups_response and 'SecurityGroups' in security_groups_response and security_groups_response[ 'SecurityGroups']: for security_groups_response_dict in security_groups_response['SecurityGroups']: if 'IpPermissions' in security_groups_response_dict and security_groups_response_dict[ 'IpPermissions']: issue_found = True break if issue_found: vpc_unrestricted_icmp_access.append(self._append_vpc_test_result(vpc_detail, test_name, 'issue_found')) else: vpc_unrestricted_icmp_access.append( self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) return vpc_unrestricted_icmp_access def _check_inbound_traffic(self, ): inbound_traffic_result = [] for vpc_detail in self.all_vpc_details: vpc_id = vpc_detail['VpcId'] response = self.aws_vpc_client.describe_network_acls(Filters=[{ 'Name': 'vpc-id', 'Values': [vpc_id] }, ]) inoutbound_allow_rule_number = [] inoutbound_deny_rule_number = [] inoutbound_allow_rule_asterisk = '' if response and 'NetworkAcls' in response: issue_found = False for network_acl_rules_dict in response['NetworkAcls']: if issue_found: break for network_acl_rules in network_acl_rules_dict['Entries']: if 'Egress' in network_acl_rules and not network_acl_rules['Egress'] and network_acl_rules[ 'CidrBlock'] == '0.0.0.0/0': if network_acl_rules[ 'RuleAction'].lower() == 'allow': if str(network_acl_rules['RuleNumber']) == '*': inoutbound_allow_rule_asterisk = '*' else: inoutbound_allow_rule_number.append(network_acl_rules['RuleNumber']) else: inoutbound_deny_rule_number.append(network_acl_rules['RuleNumber']) inoutbound_allow_rule_number.sort() inoutbound_deny_rule_number.sort() if len(inoutbound_allow_rule_number) and len( inoutbound_deny_rule_number) and inoutbound_allow_rule_number[0] <= \ inoutbound_deny_rule_number[ 0] or inoutbound_allow_rule_asterisk == '*': issue_found = True if issue_found: inbound_traffic_result.append( self._append_vpc_test_result(vpc_detail, 'network_acl_inbound_traffic_is_restricted', 'issue_found')) else: inbound_traffic_result.append( self._append_vpc_test_result(vpc_detail, 'network_acl_inbound_traffic_is_restricted', 'no_issue_found')) return inbound_traffic_result def _check_outbound_traffic(self): outbound_traffic_result = [] for vpc_detail in self.all_vpc_details: vpc_id = vpc_detail['VpcId'] response = self.aws_vpc_client.describe_network_acls(Filters=[{ 'Name': 'vpc-id', 'Values': [vpc_id] }, ]) outbound_allow_rule_number = [] outbound_deny_rule_number = [] outbound_allow_rule_asterisk = '' if response and 'NetworkAcls' in response: issue_found = False for network_acl_rules_dict in response['NetworkAcls']: if issue_found: break for network_acl_rules in network_acl_rules_dict['Entries']: if 'Egress' in network_acl_rules and network_acl_rules['Egress'] and network_acl_rules[ 'CidrBlock'] == '0.0.0.0/0': if network_acl_rules[ 'RuleAction'].lower() == 'allow': if str(network_acl_rules['RuleNumber']) == '*': outbound_allow_rule_asterisk = '*' else: outbound_allow_rule_number.append(network_acl_rules['RuleNumber']) else: outbound_deny_rule_number.append(network_acl_rules['RuleNumber']) outbound_allow_rule_number.sort() outbound_deny_rule_number.sort() if len(outbound_allow_rule_number) and len( outbound_deny_rule_number) and outbound_allow_rule_number[0] <= outbound_deny_rule_number[ 0] or outbound_allow_rule_asterisk == '*': issue_found = True if issue_found: outbound_traffic_result.append( self._append_vpc_test_result(vpc_detail, 'network_acl_outbound_traffic_is_restricted', 'issue_found')) else: outbound_traffic_result.append( self._append_vpc_test_result(vpc_detail, 'network_acl_outbound_traffic_is_restricted', 'no_issue_found')) return outbound_traffic_result def _all_check_unrestricted_ssh_access(self, response): issue_list = [] if 'SecurityGroups' in response and response['SecurityGroups']: for security_group_dict in response['SecurityGroups']: for ip_permission_dict in security_group_dict['IpPermissions']: if ip_permission_dict['IpProtocol'] in ['tcp', '6', '-1'] and ( ('FromPort' in ip_permission_dict and ip_permission_dict[ 'FromPort'] <= 22 and 'ToPort' in ip_permission_dict and ip_permission_dict[ 'ToPort'] >= 22) or ( str('FromPort' in ip_permission_dict and ip_permission_dict[ 'FromPort']) == '-1' and str( 'ToPort' in ip_permission_dict and ip_permission_dict['ToPort']) == '-1')): issue_list.append(security_group_dict['GroupId']) break return issue_list def _find_all_vpc_unrestricted_protocol_access(self, response, port_number_list, protocol_list): issue_list = [] if 'SecurityGroups' in response and response['SecurityGroups']: for security_group_dict in response['SecurityGroups']: for ip_permission_dict in security_group_dict['IpPermissions']: for port_number in port_number_list: if ip_permission_dict['IpProtocol'] in protocol_list and ( ('FromPort' in ip_permission_dict and ip_permission_dict[ 'FromPort'] <= port_number and 'ToPort' in ip_permission_dict and ip_permission_dict[ 'ToPort'] >= port_number) or ( str('FromPort' in ip_permission_dict and ip_permission_dict[ 'FromPort']) == '-1' and str( 'ToPort' in ip_permission_dict and ip_permission_dict['ToPort']) == '-1')): issue_list.append(security_group_dict['GroupId']) if issue_list: break return issue_list def _find_security_group_response(self, port_number, protocol_list, test_name): result = [] for vpc_detail in self.all_vpc_details: ipv4_response = self.aws_vpc_client.describe_security_groups( Filters=[ { 'Name': 'vpc-id', 'Values': [vpc_detail['VpcId']] }, {'Name': "ip-permission.cidr", "Values": ['0.0.0.0/0']} ]) issue_list = self._find_all_vpc_unrestricted_protocol_access(ipv4_response, port_number, protocol_list) ipv6_response = self.aws_vpc_client.describe_security_groups( Filters=[ { 'Name': 'vpc-id', 'Values': [vpc_detail['VpcId']] }, {'Name': 'ip-permission.ipv6-cidr', 'Values': ['::/0']} ]) issue_list.extend( self._find_all_vpc_unrestricted_protocol_access(ipv6_response, port_number, protocol_list)) issue_found = list(dict.fromkeys(issue_list)) if issue_found: vpc_id = vpc_detail['VpcId'] for data in issue_found: vpc_detail['VpcId'] = vpc_id + '@@' + data result.append( self._append_vpc_test_result(vpc_detail, test_name, 'issue_found')) vpc_detail['VpcId'] = vpc_id else: result.append( self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) return result def _append_epi_test_result(self, eip_detail, test_name, issue_status): return { "user": self.user_id, "account_arn": self.account_arn, "account": self.account_id, "timestamp": time.time(), "item": eip_detail['AllocationId'], "item_type": "vpc_elastic_ip", "test_name": test_name, "test_result": issue_status } def detect_vpc_logging_status(self) -> list: return self._check_logging_status('vpc_flow_logging_is_enabled_in_all_vpcs') def detect_vpc_endpoint_publicly_accessibility(self): return self._check_vpc_public_accessibility('vpc_endpoint_publicly_accessible') def detect_vpc_network_acl_inbound_and_outbound_traffic_rules(self): return self._check_outbound_traffic() + self._check_inbound_traffic() def detect_network_acl_restriction_status(self): return self._check_ingress_administration_ports_range_for_network_acls_inbound_rule( 'network_acl_do_not_allow_ingress_from_0.0.0.0/0_to_remote_server_administration_ports') def detect_securitygroup_inbound_rule_without_specified_protocol(self): return self._check_securitygroup_inbound_rule_without_specified_protocol( 'vpc_securitygroup_inbound_rule_without_specified_protocol') def detect_default_nacl_used(self): return self._check_default_nacl_used('vpc_default_nacl_used') def detect_vpc_dnc_resolution_enabled(self): return self._check_vpc_dns_resolution_enabled('vpc_default_nacl_used') def detect_vpc_unrestricted_icmp_access(self): return self._check_vpc_unrestricted_icmp_access('vpc_unrestricted_icmp_access') def detect_public_and_not_encrypted_ami_images(self): public_ami_result = [] encrypted_ami_result = [] for ami_images_dict in self.all_ami_images: issue_found_on_public_acm = False issue_found_on_encrypted_acm = False if 'Public' in ami_images_dict and ami_images_dict['Public']: issue_found_on_public_acm = True if 'BlockDeviceMappings' in ami_images_dict and ami_images_dict['BlockDeviceMappings']: for blocked_device_dict in ami_images_dict['BlockDeviceMappings']: if 'Ebs' in blocked_device_dict and blocked_device_dict['Ebs'] and 'Encrypted' in \ blocked_device_dict['Ebs'] and blocked_device_dict['Ebs']['Encrypted']: issue_found_on_encrypted_acm = True break else: issue_found_on_encrypted_acm = True if issue_found_on_public_acm: public_ami_result.append( self._append_vpc_acm_test_result(ami_images_dict['ImageId'], 'public_ami_detected', 'issue_found')) else: public_ami_result.append( self._append_vpc_acm_test_result(ami_images_dict['ImageId'], 'public_ami_detected', 'no_issue_found')) if issue_found_on_encrypted_acm: encrypted_ami_result.append(self._append_vpc_acm_test_result(ami_images_dict['ImageId'], 'source_ami_snapshot_is_not_encrypted', 'issue_found')) else: encrypted_ami_result.append(self._append_vpc_acm_test_result(ami_images_dict['ImageId'], 'source_ami_snapshot_is_not_encrypted', 'no_issue_found')) return public_ami_result + encrypted_ami_result def detect_unrestricted_ssh_access(self): unrestricted_ssh_access_result = [] for vpc_detail in self.all_vpc_details: vpc_id = vpc_detail['VpcId'] response = self.aws_vpc_client.describe_security_groups( Filters=[ { 'Name': 'vpc-id', 'Values': [vpc_id] }, {'Name': "ip-permission.cidr", "Values": ['0.0.0.0/0']} ] ) issue_found = self._all_check_unrestricted_ssh_access(response) ipv6_response = self.aws_vpc_client.describe_security_groups( Filters=[ { 'Name': 'vpc-id', 'Values': [vpc_id] }, {'Name': 'ip-permission.ipv6-cidr', 'Values': ['::/0']} ]) issue_found.extend(self._all_check_unrestricted_ssh_access(ipv6_response)) issue_found = list(dict.fromkeys(issue_found)) if issue_found: vpc_id = vpc_detail['VpcId'] for data in issue_found: vpc_detail['VpcId'] = vpc_id + '@@' + data unrestricted_ssh_access_result.append( self._append_vpc_test_result(vpc_detail, 'unrestricted_ssh_access', 'issue_found')) else: unrestricted_ssh_access_result.append( self._append_vpc_test_result(vpc_detail, 'unrestricted_ssh_access', 'no_issue_found')) return unrestricted_ssh_access_result def detect_vpc_peering_connection(self): vpc_peering_connection_status = [] for vpc_detail in self.all_vpc_details: issue_found = [] vpc_peering_connection_response = self.aws_vpc_client.describe_vpc_peering_connections(Filters=[ { 'Name': 'requester-vpc-info.vpc-id', 'Values': [vpc_detail['VpcId']] } ]) if vpc_peering_connection_response and 'VpcPeeringConnections' in vpc_peering_connection_response and \ vpc_peering_connection_response['VpcPeeringConnections']: for vpc_peering_connection_dict in vpc_peering_connection_response['VpcPeeringConnections']: if vpc_peering_connection_dict['AccepterVpcInfo']['OwnerId'] != \ vpc_peering_connection_dict['RequesterVpcInfo']['OwnerId']: issue_found.append(vpc_peering_connection_dict['VpcPeeringConnectionId']) if issue_found: vpc_id = vpc_detail['VpcId'] for data in issue_found: vpc_detail['VpcId'] = vpc_id + '@@' + data vpc_peering_connection_status.append( self._append_vpc_test_result(vpc_detail, 'unauthorized_vpc_peering', 'issue_found')) else: vpc_peering_connection_status.append( self._append_vpc_test_result(vpc_detail, 'unauthorized_vpc_peering', 'no_issue_found')) return vpc_peering_connection_status def detect_vpc_unrestricted_smb_access(self): return self._find_security_group_response([445], ['tcp', '6', '-1'], 'vpc_unrestricted_smb_access') def detect_vpc_unrestricted_dns_tcp_access(self): return self._find_security_group_response([53], ['tcp', '6', '-1'], 'vpc_unrestricted_dns_tcp_access') def detect_vpc_unrestricted_vnc_server_access(self): return self._find_security_group_response([5800, 5900], ['tcp', '6', '-1'], 'vpc_unrestricted_vnc_server_access') def detect_vpc_unrestricted_dns_udp_access(self): return self._find_security_group_response([53], ['udp', '17', '-1'], 'vpc_unrestricted_dns_udp_access') def detect_vpc_unrestricted_ftp_access(self): return self._find_security_group_response([21], ['tcp', '6', '-1'], 'vpc_unrestricted_ftp_access') def detect_vpc_unrestricted_cifs_access(self): return self._find_security_group_response([445], ['udp', '17', '-1'], 'vpc_unrestricted_cifs_access') def detect_vpc_default_security_groups_in_use(self): result = [] test_name = 'vpc_default_security_groups_in_use' all_ec2_instance = [] ec2_response = self.aws_vpc_client.describe_instances() if ec2_response and 'Reservations' in ec2_response and ec2_response['Reservations']: for reservations_dict in ec2_response['Reservations']: if 'Instances' in reservations_dict and reservations_dict['Instances']: all_ec2_instance.extend(reservations_dict['Instances']) for ec2_instance_dict in all_ec2_instance: response = self.aws_vpc_client.describe_security_groups( Filters=[ { 'Name': 'group-id', 'Values': [security_group_dict['GroupId'] for security_group_dict in ec2_instance_dict['SecurityGroups']] } ]) if 'SecurityGroups' in response and response['SecurityGroups']: for security_groups_dict in response['SecurityGroups']: if 'GroupName' in security_groups_dict and security_groups_dict['GroupName'] == 'default': ec2_instance_dict['VpcId'] = security_groups_dict['VpcId'] + '@@' + security_groups_dict[ 'GroupId'] result.append(self._append_vpc_test_result(ec2_instance_dict, test_name, 'issue_found')) ec2_instance_dict['VpcId'] = security_groups_dict['VpcId'] else: result.append(self._append_vpc_test_result(ec2_instance_dict, test_name, 'no_issue_found')) return result def detect_vpc_unrestricted_telnet_access(self): return self._find_security_group_response([23], ['tcp', '6', '-1'], 'vpc_unrestricted_telnet_access') def detect_vpc_unrestricted_rdp_access(self): return self._find_security_group_response([3389], ['tcp', '6', '-1'], 'vpc_unrestricted_rdp_access') def detect_vpc_unrestricted_ftp_data_access(self): return self._find_security_group_response([20], ['tcp', '6', '-1'], 'vpc_unrestricted_ftp_data_access') def detect_vpc_unrestricted_smtp_access(self): return self._find_security_group_response([25], ['tcp', '6', '-1'], 'vpc_unrestricted_smtp_access') def detect_vpc_unrestricted_sql_server_tcp_access(self): return self._find_security_group_response([1433], ['tcp', '6', '-1'], 'vpc_unrestricted_sql_server_tcp_access') def detect_vpc_unrestricted_sql_server_udp_access(self): return self._find_security_group_response([1433], ['udp', '17', '-1'], 'vpc_unrestricted_sql_server_udp_access') def detect_vpc_unrestricted_net_bios_access(self): return self._find_security_group_response([137, 138], ['udp', '17', '-1'], 'vpc_unrestricted_net_bios_access') def detect_vpc_unrestricted_mysql_access(self): return self._find_security_group_response([4333], ['tcp', '6', '-1'], 'vpc_unrestricted_mysql_access') def detect_vpc_unrestricted_postgre_sql_access(self): return self._find_security_group_response([5432], ['tcp', '6', '-1'], 'vpc_unrestricted_postgre_sql_access') def detect_vpc_unrestricted_vnc_listener_access(self): return self._find_security_group_response([5500], ['tcp', '6', '-1'], 'vpc_unrestricted_vnc_listener_access') def detect_vpc_eip_in_use(self): result = [] test_name = 'vpc_ip_address_is_attached_to_a_host_or_eni' response = self.aws_vpc_client.describe_addresses() for address_dict in response['Addresses']: if 'AssociationId' not in address_dict or ( 'AssociationId' in address_dict and not address_dict['AssociationId']): result.append(self._append_epi_test_result(address_dict, test_name, 'issue_found')) else: result.append(self._append_epi_test_result(address_dict, test_name, 'no_issue_found')) return result def detect_vpc_security_group_per_vpc_limit(self): result = [] test_name = 'detect_vp_security_group_per_vpc_limit' for vpc_detail in self.all_vpc_details: security_groups_response = self.aws_vpc_client.describe_security_groups( Filters=[{'Name': 'vpc-id', 'Values': [vpc_detail['VpcId']]}], MaxResults=451) count = len(security_groups_response['SecurityGroups']) if count >= 450: result.append(self._append_vpc_test_result(vpc_detail, test_name, 'issue_found')) else: result.append(self._append_vpc_test_result(vpc_detail, test_name, 'no_issue_found')) return result
52.223032
120
0.588193
4a05f13866efb2e81f652438cd856acad4f0f1e0
1,866
py
Python
react_new.py
megapod/create-react-web-app-from-cache
41457e29a4d6acdfc8cae408917de589e35d8145
[ "MIT" ]
null
null
null
react_new.py
megapod/create-react-web-app-from-cache
41457e29a4d6acdfc8cae408917de589e35d8145
[ "MIT" ]
null
null
null
react_new.py
megapod/create-react-web-app-from-cache
41457e29a4d6acdfc8cae408917de589e35d8145
[ "MIT" ]
null
null
null
import subprocess import os import sys # if a project name was passed as a cli argument. if len(sys.argv) > 1: # extract the template to the new project directory try: subprocess.run( ["7z", "x", "react_project_template.7z", "-o./" + sys.argv[1]], stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL) exit(0) except IndexError: print("Failed!") else: print("Successfully created the new project " + sys.argv[1]) else: print('Updating...') # update procedure from here on # extract the template try: subprocess.run( ["7z", "x", "react_project_template.7z", "-o./react_project_template"], stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL) except OSError: print("Couldn't find: react_project_template.7z") else: print("Successfully extracted the react_project_template.7z file") # get the path dir_path = os.path.dirname(os.path.realpath(__file__)) extracted_path = dir_path + "/react_project_template/" # update the template try: # Change Working Directory and update subprocess.run( ["npm", "update"], cwd=extracted_path) except OSError: print("Couldn't update node packages") else: print("Successfully updated template") # repackage the template try: subprocess.run( ["7z", "u", "react_project_template", "./react_project_template/."], stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL) except OSError: print("Couldn't Overwrite: react_project_template.7z") else: print("Successfully updated react_project_template.7z") # cleanup try: # delete the intermidiate folder subprocess.run( ["rm", "-rf", "./react_project_template"]) except OSError: print("Couldn't delete intermidiate folder: react_project_template") else: print("Successfully deleted the intermidiate folder")
29.15625
79
0.691854
4a05f1a51a603bb275f191c85025605717ffa6fa
10,531
py
Python
bin/wgc/quota.py
orionzhou/nf
cb56f9b17c7c9352e34a3d89c8c38b777085a057
[ "MIT" ]
null
null
null
bin/wgc/quota.py
orionzhou/nf
cb56f9b17c7c9352e34a3d89c8c38b777085a057
[ "MIT" ]
null
null
null
bin/wgc/quota.py
orionzhou/nf
cb56f9b17c7c9352e34a3d89c8c38b777085a057
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ Quota synteny alignment (QUOTA-ALIGN) %prog [options] anchorsfile --qbed=qbedfile --sbed=sbedfile This python program does the following: 1. merge 2D-overlapping blocks (now skipped, but existed in original version) 2. build constraints that represent 1D-overlap among blocks 3. feed the data into the linear programming solver The algorithm is described in Tang et al. BMC Bioinformatics 2011. "Screening synteny blocks in pairwise genome comparisons through integer programming." """ from __future__ import print_function import os.path as op import sys from six.moves import StringIO import logging from jcvi.utils.range import range_overlap from jcvi.utils.grouper import Grouper from jcvi.algorithms.lpsolve import GLPKSolver, SCIPSolver from jcvi.compara.synteny import AnchorFile, _score, check_beds from jcvi.formats.base import must_open from jcvi.apps.base import OptionParser def get_1D_overlap(eclusters, depth=1): """ Find blocks that are 1D overlapping, returns cliques of block ids that are in conflict """ overlap_set = set() active = set() ends = [] for i, (chr, left, right) in enumerate(eclusters): ends.append((chr, left, 0, i)) # 0/1 for left/right-ness ends.append((chr, right, 1, i)) ends.sort() chr_last = "" for chr, pos, left_right, i in ends: if chr != chr_last: active.clear() if left_right == 0: active.add(i) else: active.remove(i) if len(active) > depth: overlap_set.add(tuple(sorted(active))) chr_last = chr return overlap_set def get_2D_overlap(chain, eclusters): """ Implements a sweep line algorithm, that has better running time than naive O(n^2): assume block has x_ends, and y_ends for the bounds 1. sort x_ends, and take a sweep line to scan the x_ends 2. if left end, test y-axis intersection of current block with `active` set; also put this block in the `active` set 3. if right end, remove block from the `active` set """ mergeables = Grouper() active = set() x_ends = [] for i, (range_x, range_y, score) in enumerate(eclusters): chr, left, right = range_x x_ends.append((chr, left, 0, i)) # 0/1 for left/right-ness x_ends.append((chr, right, 1, i)) x_ends.sort() chr_last = "" for chr, pos, left_right, i in x_ends: if chr != chr_last: active.clear() if left_right == 0: active.add(i) for x in active: # check y-overlap if range_overlap(eclusters[x][1], eclusters[i][1]): mergeables.join(x, i) else: # right end active.remove(i) chr_last = chr return mergeables def make_range(clusters, extend=0): """ Convert to interval ends from a list of anchors extend modifies the xmax, ymax boundary of the box, which can be positive or negative very useful when we want to make the range as fuzzy as we specify """ eclusters = [] for cluster in clusters: xlist, ylist, scores = zip(*cluster) score = _score(cluster) xchr, xmin = min(xlist) xchr, xmax = max(xlist) ychr, ymin = min(ylist) ychr, ymax = max(ylist) # allow fuzziness to the boundary xmax += extend ymax += extend # because extend can be negative values, we don't want it to be less than min if xmax < xmin: xmin, xmax = xmax, xmin if ymax < ymin: ymin, ymax = ymax, ymin eclusters.append(((xchr, xmin, xmax), (ychr, ymin, ymax), score)) return eclusters def get_constraints(clusters, quota=(1, 1), Nmax=0): """ Check pairwise cluster comparison, if they overlap then mark edge as conflict """ qa, qb = quota eclusters = make_range(clusters, extend=-Nmax) # (1-based index, cluster score) nodes = [(i + 1, c[-1]) for i, c in enumerate(eclusters)] eclusters_x, eclusters_y, scores = zip(*eclusters) # represents the contraints over x-axis and y-axis constraints_x = get_1D_overlap(eclusters_x, qa) constraints_y = get_1D_overlap(eclusters_y, qb) return nodes, constraints_x, constraints_y def format_lp(nodes, constraints_x, qa, constraints_y, qb): """ Maximize 4 x1 + 2 x2 + 3 x3 + x4 Subject To x1 + x2 <= 1 End """ lp_handle = StringIO() lp_handle.write("Maximize\n ") records = 0 for i, score in nodes: lp_handle.write("+ %d x%d " % (score, i)) # SCIP does not like really long string per row records += 1 if records % 10 == 0: lp_handle.write("\n") lp_handle.write("\n") num_of_constraints = 0 lp_handle.write("Subject To\n") for c in constraints_x: additions = " + ".join("x%d" % (x + 1) for x in c) lp_handle.write(" %s <= %d\n" % (additions, qa)) num_of_constraints += len(constraints_x) # non-self if not (constraints_x is constraints_y): for c in constraints_y: additions = " + ".join("x%d" % (x + 1) for x in c) lp_handle.write(" %s <= %d\n" % (additions, qb)) num_of_constraints += len(constraints_y) print( "number of variables (%d), number of constraints (%d)" % (len(nodes), num_of_constraints), file=sys.stderr, ) lp_handle.write("Binary\n") for i, score in nodes: lp_handle.write(" x%d\n" % i) lp_handle.write("End\n") lp_data = lp_handle.getvalue() lp_handle.close() return lp_data def solve_lp( clusters, quota, work_dir="work", Nmax=0, self_match=False, solver="SCIP", verbose=False, ): """ Solve the formatted LP instance """ qb, qa = quota # flip it nodes, constraints_x, constraints_y = get_constraints(clusters, (qa, qb), Nmax=Nmax) if self_match: constraints_x = constraints_y = constraints_x | constraints_y lp_data = format_lp(nodes, constraints_x, qa, constraints_y, qb) if solver == "SCIP": filtered_list = SCIPSolver(lp_data, work_dir, verbose=verbose).results if not filtered_list: print("SCIP fails... trying GLPK", file=sys.stderr) filtered_list = GLPKSolver(lp_data, work_dir, verbose=verbose).results elif solver == "GLPK": filtered_list = GLPKSolver(lp_data, work_dir, verbose=verbose).results if not filtered_list: print("GLPK fails... trying SCIP", file=sys.stderr) filtered_list = SCIPSolver(lp_data, work_dir, verbose=verbose).results return filtered_list def read_clusters(qa_file, qorder, sorder): af = AnchorFile(qa_file) blocks = af.blocks clusters = [] for block in blocks: cluster = [] for a, b, score in block: ia, oa = qorder[a] ib, ob = sorder[b] ca, cb = oa.seqid, ob.seqid cluster.append(((ca, ia), (cb, ib), score)) clusters.append(cluster) return clusters def main(args): p = OptionParser(__doc__) p.set_beds() p.add_option( "--quota", default="1:1", help="`quota mapping` procedure -- screen blocks to constrain mapping" " (useful for orthology), " "put in the format like (#subgenomes expected for genome X):" "(#subgenomes expected for genome Y) " "[default: %default]", ) p.add_option( "--Nm", dest="Nmax", type="int", default=10, help="distance cutoff to tolerate two blocks that are " "slightly overlapping (cutoff for `quota mapping`) " "[default: %default units (gene or bp dist)]", ) supported_solvers = ("SCIP", "GLPK") p.add_option( "--self", dest="self_match", action="store_true", default=False, help="you might turn this on when screening paralogous blocks, " "esp. if you have reduced mirrored blocks into non-redundant set", ) p.add_option( "--solver", default="SCIP", choices=supported_solvers, help="use MIP solver [default: %default]", ) p.set_verbose(help="Show verbose solver output") p.add_option( "--screen", default=False, action="store_true", help="generate new anchors file [default: %default]", ) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) qa_file, = args qbed, sbed, qorder, sorder, is_self = check_beds(qa_file, p, opts) # sanity check for the quota if opts.quota: try: qa, qb = opts.quota.split(":") qa, qb = int(qa), int(qb) except: print( "quota string should be the form x:x (2:4, 1:3, etc.)", file=sys.stderr ) sys.exit(1) if opts.self_match and qa != qb: raise Exception( "when comparing genome to itself, " "quota must be the same number " "(like 1:1, 2:2) you have %s" % opts.quota ) quota = (qa, qb) self_match = opts.self_match clusters = read_clusters(qa_file, qorder, sorder) for cluster in clusters: assert len(cluster) > 0 # below runs `quota mapping` work_dir = op.join(op.dirname(op.abspath(qa_file)), "work") selected_ids = solve_lp( clusters, quota, work_dir=work_dir, Nmax=opts.Nmax, self_match=self_match, solver=opts.solver, verbose=opts.verbose, ) logging.debug("Selected {0} blocks.".format(len(selected_ids))) prefix = qa_file.rsplit(".", 1)[0] suffix = "{0}x{1}".format(qa, qb) outfile = ".".join((prefix, suffix)) fw = must_open(outfile, "w") print(",".join(str(x) for x in selected_ids), file=fw) fw.close() logging.debug("Screened blocks ids written to `{0}`.".format(outfile)) if opts.screen: from jcvi.compara.synteny import screen new_qa_file = ".".join((prefix, suffix, "anchors")) largs = [qa_file, new_qa_file, "--ids", outfile] if opts.qbed and opts.sbed: largs += ["--qbed={0}".format(opts.qbed)] largs += ["--sbed={0}".format(opts.sbed)] screen(largs) if __name__ == "__main__": main(sys.argv[1:])
28.852055
88
0.600608
4a05f1c1b4025f03075abd9ec1d4d3ace24a66ec
1,775
py
Python
test/appendixA/test_dFBT.py
omelchert/dFBT-FJ
31ba7b2733558ad3096fa0de689407a22bbda5e8
[ "BSD-3-Clause" ]
1
2020-12-16T10:58:25.000Z
2020-12-16T10:58:25.000Z
test/appendixA/test_dFBT.py
omelchert/dFBT-FJ
31ba7b2733558ad3096fa0de689407a22bbda5e8
[ "BSD-3-Clause" ]
null
null
null
test/appendixA/test_dFBT.py
omelchert/dFBT-FJ
31ba7b2733558ad3096fa0de689407a22bbda5e8
[ "BSD-3-Clause" ]
null
null
null
import unittest import dFBT import scipy.special as scs import numpy as np def FBPair(): f = lambda r: np.exp(-r*r/4/np.pi) F0 = lambda r: np.exp(-r*r*np.pi)*2*np.pi return f, F0 def eRMS(Fn,Fx): return np.sqrt(((Fn-Fx)**2).mean()/(Fx*Fx).mean()) class FourierBesselTransformTestCase(unittest.TestCase): def setUp(self): self.r = np.linspace(0.0, 20.0, 1000) self.f, self.Fx = FBPair() self.T, self.N = 18.0, 20 def tearDown(self): del self.N, self.T, self.r, self.f, self.Fx def test_dFBT_fourierPair(self): rhoFJC,F0FJC,T = dFBT.fwdTrafo(self.r,self.f,self.T,self.N) F0FJCEx = dFBT.extrapolate(self.r,F0FJC,self.T) print eRMS(F0FJCEx,self.Fx(self.r)) self.assertLessEqual(eRMS(F0FJCEx,self.Fx(self.r)), 1e-6) def test_dFBT_selfReciprocality(self): rhoFJC,F0FJC,T = dFBT.fwdTrafo(self.r,self.f,self.T,self.N) fFJC = dFBT.bckwdTrafo(self.r,F0FJC,self.T) print eRMS(fFJC,self.f(self.r)) self.assertLessEqual(eRMS(fFJC,self.f(self.r)), 1e-6) def test_dFBT_generalizedParsevalTheorem(self): j = scs.jn_zeros(0,self.N) Fm = np.zeros(self.N) Y = lambda m,k: 2.0*scs.j0(j[m]*j[k]/j[-1])/j[-1]/scs.j1(j[k])**2 rhoFJC,F0FJC,T = dFBT.fwdTrafo(self.r,self.f,self.T,self.N) fk = F0FJC*2./(self.T*self.T*scs.j1(j)**2) for im in range(self.N): for ik in range(self.N): Fm[im] += Y(im,ik)*fk[ik] fkScaled = fk /scs.j1(j) FmScaled = Fm /scs.j1(j) print np.sum(FmScaled**2) - np.sum(fkScaled**2) self.assertAlmostEqual(np.sum(FmScaled**2), np.sum(fkScaled**2), 6) if __name__ == "__main__": unittest.main()
29.098361
75
0.591549
4a05f1ca1ef669ad3006a53f2b09e833ffd0c47c
1,430
py
Python
workflow/notebooks/analysis/scripts/imports.py
CambridgeSemiticsLab/BH_time_collocations
2d1864b6e9cd26624c769ee1e970d69d19da7fbf
[ "CC-BY-4.0" ]
5
2019-06-19T19:42:21.000Z
2021-04-20T22:43:45.000Z
workflow/notebooks/analysis/scripts/imports.py
CambridgeSemiticsLab/BHTenseAndAspect
2d1864b6e9cd26624c769ee1e970d69d19da7fbf
[ "CC-BY-4.0" ]
2
2020-02-25T10:19:40.000Z
2020-03-13T15:29:01.000Z
workflow/notebooks/analysis/scripts/imports.py
CambridgeSemiticsLab/BHTenseAndAspect
2d1864b6e9cd26624c769ee1e970d69d19da7fbf
[ "CC-BY-4.0" ]
null
null
null
""" Standard imports for the analysis notebooks. """ import re import json import matplotlib.pyplot as plt import seaborn as sns import pandas as pd pd.set_option('display.max_rows', 200) idx = pd.IndexSlice from adjustText import adjust_text from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA scaler = StandardScaler() from scripts.stats.pca import apply_pca from scripts.stats import significance as sig from scripts.df_styles import TextShower, df_highlighter from scripts.counting import pivot_ct, join_ct_pr import numpy as np from bidi.algorithm import get_display as bidi_get_display def remove_shindots(string): """Remove dots from ש""" return( string .replace('\u05c1', '') .replace('\u05c2', '') ) # mod get display to remove shin dots def get_display(string): rem_accents = ''.join(re.findall('[\u05D0-\u05EA]', string)) return bidi_get_display(rem_accents) # latex tags def textheb(string): return '\\texthebrew{%s}'%string # custom modules from .paths import paths from .export import Exporter from .plotting import heatmap from .string_refs import get_verserefs # load the data df = pd.read_csv(paths['time_dataset'], index_col='node') df_sg = df.query("(n_times == 1) and (is_advb == False)").copy() # pretty-show Hebrew text from a df ts = TextShower( default=['verse', 'clause'], stylize=['clause'] )
25.535714
64
0.731469
4a05f2046d838c38e363d8c7f5389e6438f1b560
10,045
py
Python
process/LidarAutoCalibration.py
sameeptandon/sail-car-log
0ee3d598bb09d389bcbd2ebf73cd4b2411e796be
[ "BSD-2-Clause" ]
1
2021-02-24T03:11:13.000Z
2021-02-24T03:11:13.000Z
process/LidarAutoCalibration.py
sameeptandon/sail-car-log
0ee3d598bb09d389bcbd2ebf73cd4b2411e796be
[ "BSD-2-Clause" ]
null
null
null
process/LidarAutoCalibration.py
sameeptandon/sail-car-log
0ee3d598bb09d389bcbd2ebf73cd4b2411e796be
[ "BSD-2-Clause" ]
3
2015-03-18T14:36:04.000Z
2018-07-04T02:57:24.000Z
from LidarTransforms import * import sys, os from VideoReader import * import cv2 from cv2 import imshow, waitKey from numpy.linalg import norm from ColorMap import * from numpy import exp, log, sqrt from transformations import euler_matrix import scipy.weave import itertools from ArgParser import * def computeDistanceTransform(D, gamma, alpha): logD = np.log(D); logD = logD.astype(np.float32) logD = computeLogDistanceTransform(logD, gamma) F = np.exp(logD) return alpha*D + (1-alpha)*F def computeLogDistanceTransformSlow(D, gamma): # assume that D is logarithmic in the edges width = D.shape[0] height = D.shape[1] lg = log(gamma) for x in range(1,width): for y in range(1,height): D[x,y] = max(D[x,y], D[x-1,y]+lg, D[x,y-1]+lg, D[x-1,y-1]+lg) for x in reversed(range(width-1)): for y in reversed(range(height-1)): D[x,y] = max(D[x,y], D[x+1,y]+lg, D[x,y+1]+lg, D[x+1,y+1]+lg) #print D return D def computeLogDistanceTransform(D, gamma): # assume that D is logarithmic in the edges width = D.shape[0] height = D.shape[1] lg = log(gamma) code = \ """ using namespace std; for (int x = 1; x < width; x++) { for (int y = 1; y < height; y++) { float l = lg; float p1 = D(x,y); float p2 = D(x-1,y) + l; float p3 = D(x,y-1) + l; float p4 = D(x-1,y-1) + l; D(x,y) = max(p1,max(p2,max(p3,p4))); } } for (int x = width-2; x >= 0 ; x--) { for (int y = height-2; y >= 0; y--) { float l = lg; float p1 = D(x,y); float p2 = D(x+1,y) + l; float p3 = D(x,y+1) + l; float p4 = D(x+1,y+1) + l; D(x,y) = max(p1,max(p2,max(p3,p4))); } } """ scipy.weave.inline(code, ['D', 'width', 'height', 'lg'], headers=['<algorithm>'], type_converters=scipy.weave.converters.blitz) return D def generateEdgeFilterKernels(): kernels = [] for x in range(3): for y in range(3): K = np.zeros((3,3)) K[1,1] = 1.0 K[x,y] = -1.0 if (x != 1 and y != 1): kernels.append(K) return kernels def processPointCloud(raw_pts): # add rotational angle and distance to pts pts = np.zeros((raw_pts.shape[0], raw_pts.shape[1]+2), dtype=np.float32) pts[:,:-2] = raw_pts pts[:,-2] = np.arctan2(pts[:,1], pts[:,0]) + np.pi pts[:,-1] = np.sqrt(np.sum( pts[:, 0:3] ** 2, axis=1 )) pts = pts[ pts[:,-2].argsort() ] # sort on rotational angle pts = pts[ pts[:,4].argsort(kind='mergesort') ] # stable sort on laser num pts[0,3] = 0.0; pts[-1,3] = 0.0 """ pts[1:-1,3] = np.maximum(pts[0:-2,-1] - pts[1:-1, -1], pts[2:, -1] - pts[1:-1, -1]) pts[1:-1,3] = np.maximum(pts[1:-1,3], 0) """ for idx in range(1,pts.shape[0]-1): if pts[idx,4] == pts[idx-1,4] and pts[idx,4] == pts[idx+1,4]: pts[idx,3] = max(pts[idx-1,-1] - pts[idx,-1], pts[idx+1,-1] - pts[idx,-1], 0) else: pts[idx,3] = 0.0 #pts = pts[pts[:,0] > 0, :] pts = pts[pts[:,3] > 2.0, :] return pts def computeReprojection(C, raw_pts, cam): pts = raw_pts[:, 0:3].copy() pts[:, 0] += C[0] pts[:, 1] += C[1] pts[:, 2] += C[2] R = euler_matrix(C[3], C[4], C[5])[0:3,0:3] pts_wrt_cam = np.dot(R, np.dot(R_to_c_from_l_old(cam), pts.transpose())) pix = np.around(np.dot(cam['KK'], np.divide(pts_wrt_cam[0:3,:], pts_wrt_cam[2, :]))) pix = pix.astype(np.int32) return (pix, pts_wrt_cam) def computeMask(pix, pts_wrt_cam): width = 8 mask = np.logical_and(True, pix[0,:] > 0 + width / 2) mask = np.logical_and(mask, pix[1,:] > 0 + width / 2) mask = np.logical_and(mask, pix[0,:] < 2080 - width / 2) mask = np.logical_and(mask, pix[1,:] < 1552 - width / 2) mask = np.logical_and(mask, pts_wrt_cam[2,:] > 0) return mask def computeReprojectionScore(C, pts, I, cam): (pix, pts_wrt_cam) = computeReprojection(C, pts, cam) mask = computeMask(pix, pts_wrt_cam) px = pix[1,mask] py = pix[0,mask] return np.sum(I[px,py]) def gridsearch(C, batch, cam): m = range(-1,2) step_t = 0.01 step_r = 0.003 best_score = -float("inf") best_d = None #scores = np.zeros((729,1)) scores = np.zeros((3**3,1)) idx = 0 for delta in itertools.product(m, repeat=3): #(dtx, dty, dtz, drx, dry, drz) = delta #d = np.array([step_t*dtx, step_t*dty, step_t*dtz, step_r*drx, step_r*dry, step_r*drz]) (drx, dry, drz) = delta d = step_r * np.array([drx, dry, drz]) C_new = C.copy() C_new[3:6] += d score = 0 for p in batch: E = p[2] proc_pts = p[3] score = score + computeReprojectionScore(C_new, proc_pts, E, cam) scores[idx] = score if score > best_score: best_score = score best_C = C_new.copy() if np.all(np.array(delta)) == 0: current_score = score idx = idx + 1 print scores print current_score if np.sum( scores > current_score ) >= 3**3 / 2: return (best_C, best_score) else: return (C, current_score) def drawReprojection(C, pts, I, cam): (pix, pts_wrt_cam) = computeReprojection(C, pts, cam) mask = computeMask(pix, pts_wrt_cam) px = pix[1,mask] py = pix[0,mask] intensity = pts[mask, 3] colors = heatColorMapFast(intensity, 0, 100) I[px,py,:] = colors[0,:,:] imshow('display', I) waitKey(10) def getNextData(reader, LDRFrameMap): for idx in range(15): (success, img) = reader.getNextFrame() #img = cv2.flip(img,-1) if not success: reader.setFrame(3) ldr_frame = loadLDR(LDRFrameMap[reader.framenum]) return (success, img, ldr_frame) def processData(data): I, pts = data E = processImage(I); proc_pts = processPointCloud(pts) dist = np.sqrt(np.sum( proc_pts[:, 0:3] ** 2, axis = 1)) proc_pts = proc_pts[ dist > 3, : ] #proc_pts = proc_pts[ proc_pts[:, 3] > 2.0, :] return [I, pts, E, proc_pts] def processBatch(batch): processed = [ ] count = 0 for data in batch: print 'Processing:', count, 'out of', len(batch) count += 1 output = processData(data) processed.append(output) return processed def gauss_filt(sigma): # Isotropic w = 2 * int(np.ceil(sigma)) G = np.array(xrange(-w, w + 1)) ** 2 G = G.reshape((G.size, 1)) + G G = np.exp(-G / (2.0 * sigma * sigma)) G /= np.sum(G) return G def dgauss_filt(sigma): ''' Generate a derivative of Gaussian filter in x (left-to-right) and y (top-to-bottom) directions ''' G = gauss_filt(sigma) G_y, G_x = np.gradient(G) G_x *= 2.0 / np.sum(np.abs(G_x)) G_y *= 2.0 / np.sum(np.abs(G_y)) return G_x, G_y """ def processImage(I): from scipy.signal import convolve2d E = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY) G_x, G_y = dgauss_filt(0.02) I_x = -convolve2d(E, G_x, mode='same') I_y = -convolve2d(E, G_y, mode='same') I_mag = np.sqrt(I_x ** 2 + I_y ** 2) edges = computeDistanceTransform(I_mag, 0.98, 1.0/2.0) return edges """ def processImage(I): kernels = generateEdgeFilterKernels() # convert the image to grayscale E = cv2.cvtColor(I, cv2.COLOR_BGR2GRAY) # run an edge filter edges = cv2.filter2D(E, cv2.CV_8U, np.zeros((1,1))) for k in kernels: edges = np.maximum(edges, np.abs(cv2.filter2D(E, cv2.CV_8U, k))) edges = computeDistanceTransform(edges+1, 0.98, 1.0/1.8) return edges if __name__ == '__main__': args = parse_args(sys.argv[1], sys.argv[2]) cam_num = int(sys.argv[2][-5]) video_file = args['video'] params = args['params'] cam = params['cam'][cam_num-1] video_reader = VideoReader(video_file) ldr_map = loadLDRCamMap(args['map']) #(tx,ty,tz) = (-0.50000000000000004, -0.2875, 0.34) (tx,ty,tz) = (-0.50000000000000004, 0.03, 0.34) (rx,ry,rz) = (0.0,0.0,0.0) C_current = np.array([tx,ty,tz,rx,ry,rz]) BATCH_SIZE = 30 from multiprocessing import Pool pool = Pool(10) while True: batch_data = [ ] while len(batch_data) < BATCH_SIZE: (success, I, raw_pts) = getNextData(video_reader, ldr_map) if not success: break batch_data.append( [I.copy(), raw_pts] ) batch_data = pool.map(processData, batch_data) #batch_data = processBatch(batch_data) count = 0 while count < 20: count +=1 out = gridsearch(C_current, batch_data, cam) print out[1] print out[0] if np.all(C_current == out[0]): break C_current = out[0] for idx in range(len(batch_data)): if idx != len(batch_data)-1: continue proc_pts = batch_data[idx][3] (pix, pts_wrt_cam) = computeReprojection(C_current, proc_pts, cam) mask = computeMask(pix, pts_wrt_cam) px = pix[1,mask] py = pix[0,mask] pts = batch_data[idx][1] #drawReprojection(C_current, pts, batch_data[idx][0].copy(), cam) E_show = batch_data[idx][2].copy() for p in range(4): E_show[px+p,py] = 255 E_show[px,py+p] = 255 E_show[px-p,py] = 255 E_show[px,py-p] = 255 imshow('viz', cv2.pyrDown(E_show/255.0)) waitKey(5) #imshow('display', I) #key = chr((waitKey() & 255))
29.544118
95
0.534793
4a05f4ad6d27ff369daa090e737e5c9ca3268ba9
9,631
py
Python
modules/graph_age_params.py
enflujo/COVID_schools_dashboard
702c9c3c91938e514e56f4cf6f325ed954d7bc3e
[ "Apache-2.0" ]
null
null
null
modules/graph_age_params.py
enflujo/COVID_schools_dashboard
702c9c3c91938e514e56f4cf6f325ed954d7bc3e
[ "Apache-2.0" ]
null
null
null
modules/graph_age_params.py
enflujo/COVID_schools_dashboard
702c9c3c91938e514e56f4cf6f325ed954d7bc3e
[ "Apache-2.0" ]
null
null
null
import pandas as pd import numpy as np2 def build(args): # Get medians def get_medians(df_p, last): df_res = df_p.iloc[-last:].groupby(["param"]).median().reset_index()["median"][0] return df_res def medians_params(df_list, age_group, last): params_def = ["age", "beta", "IFR", "RecPeriod", "alpha", "sigma"] params_val = [ age_group, get_medians(df_list[0], last), get_medians(df_list[1], last), get_medians(df_list[2], last), get_medians(df_list[3], last), get_medians(df_list[4], last), ] res = dict(zip(params_def, params_val)) return res params_data_BOG = pd.read_csv(args.params_data_path, encoding="unicode_escape", delimiter=",") # Ages 0-19 young_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "0-19"]) young_ages_beta = pd.DataFrame(young_ages_params[young_ages_params["param"] == "contact_rate"]) young_ages_IFR = pd.DataFrame(young_ages_params[young_ages_params["param"] == "IFR"]) young_ages_RecPeriod = pd.DataFrame(young_ages_params[young_ages_params["param"] == "recovery_period"]) young_ages_alpha = pd.DataFrame(young_ages_params[young_ages_params["param"] == "report_rate"]) young_ages_sigma = pd.DataFrame(young_ages_params[young_ages_params["param"] == "relative_asymp_transmission"]) young_params = [young_ages_beta, young_ages_IFR, young_ages_RecPeriod, young_ages_alpha, young_ages_sigma] # Ages 20-39 youngAdults_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "20-39"]) youngAdults_ages_beta = pd.DataFrame(youngAdults_ages_params[youngAdults_ages_params["param"] == "contact_rate"]) youngAdults_ages_IFR = pd.DataFrame(youngAdults_ages_params[youngAdults_ages_params["param"] == "IFR"]) youngAdults_ages_RecPeriod = pd.DataFrame( youngAdults_ages_params[youngAdults_ages_params["param"] == "recovery_period"] ) youngAdults_ages_alpha = pd.DataFrame(youngAdults_ages_params[youngAdults_ages_params["param"] == "report_rate"]) youngAdults_ages_sigma = pd.DataFrame( youngAdults_ages_params[youngAdults_ages_params["param"] == "relative_asymp_transmission"] ) youngAdults_params = [ youngAdults_ages_beta, youngAdults_ages_IFR, youngAdults_ages_RecPeriod, youngAdults_ages_alpha, youngAdults_ages_sigma, ] # Ages 40-49 adults_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "40-49"]) adults_ages_beta = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "contact_rate"]) adults_ages_IFR = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "IFR"]) adults_ages_RecPeriod = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "recovery_period"]) adults_ages_alpha = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "report_rate"]) adults_ages_sigma = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "relative_asymp_transmission"]) adults_params = [adults_ages_beta, adults_ages_IFR, adults_ages_RecPeriod, adults_ages_alpha, adults_ages_sigma] # Ages 50-59 seniorAdults_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "50-59"]) seniorAdults_ages_beta = pd.DataFrame(seniorAdults_ages_params[seniorAdults_ages_params["param"] == "contact_rate"]) seniorAdults_ages_IFR = pd.DataFrame(seniorAdults_ages_params[seniorAdults_ages_params["param"] == "IFR"]) seniorAdults_ages_RecPeriod = pd.DataFrame( seniorAdults_ages_params[seniorAdults_ages_params["param"] == "recovery_period"] ) seniorAdults_ages_alpha = pd.DataFrame(seniorAdults_ages_params[seniorAdults_ages_params["param"] == "report_rate"]) seniorAdults_ages_sigma = pd.DataFrame( seniorAdults_ages_params[seniorAdults_ages_params["param"] == "relative_asymp_transmission"] ) seniorAdults_params = [ seniorAdults_ages_beta, seniorAdults_ages_IFR, seniorAdults_ages_RecPeriod, seniorAdults_ages_alpha, seniorAdults_ages_sigma, ] # Ages 60-69 senior_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "60-69"]) senior_ages_beta = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "contact_rate"]) senior_ages_IFR = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "IFR"]) senior_ages_RecPeriod = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "recovery_period"]) senior_ages_alpha = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "report_rate"]) senior_ages_sigma = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "relative_asymp_transmission"]) senior_params = [senior_ages_beta, senior_ages_IFR, senior_ages_RecPeriod, senior_ages_alpha, senior_ages_sigma] # Ages 70+ elderly_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "70-90+"]) elderly_ages_beta = pd.DataFrame(elderly_ages_params[elderly_ages_params["param"] == "contact_rate"]) elderly_ages_IFR = pd.DataFrame(elderly_ages_params[elderly_ages_params["param"] == "IFR"]) elderly_ages_RecPeriod = pd.DataFrame(elderly_ages_params[elderly_ages_params["param"] == "recovery_period"]) elderly_ages_alpha = pd.DataFrame(elderly_ages_params[elderly_ages_params["param"] == "report_rate"]) elderly_ages_sigma = pd.DataFrame( elderly_ages_params[elderly_ages_params["param"] == "relative_asymp_transmission"] ) elderly_params = [ elderly_ages_beta, elderly_ages_IFR, elderly_ages_RecPeriod, elderly_ages_alpha, elderly_ages_sigma, ] young_params_medians = medians_params(young_params, "0-19", last=15) # Schools youngAdults_params_medians = medians_params(youngAdults_params, "20-39", last=15) # Adults adults_params_medians = medians_params(adults_params, "40-49", last=15) # Adults seniorAdults_params_medians = medians_params(seniorAdults_params, "50-59", last=15) # Adults senior_params_medians = medians_params(senior_params, "60-69", last=15) # Elders elderly_params_medians = medians_params(elderly_params, "70-90+", last=15) # Elders # Simplify, get medians of values params_desc = ["age", "beta", "IFR", "RecPeriod", "alpha", "sigma"] main_adults_params_values = [ "20-59", np2.median( [youngAdults_params_medians["beta"], adults_params_medians["beta"], seniorAdults_params_medians["beta"]] ), np2.median( [youngAdults_params_medians["IFR"], adults_params_medians["IFR"], seniorAdults_params_medians["IFR"]] ), np2.median( [ youngAdults_params_medians["RecPeriod"], adults_params_medians["RecPeriod"], seniorAdults_params_medians["RecPeriod"], ] ), np2.median( [youngAdults_params_medians["alpha"], adults_params_medians["alpha"], seniorAdults_params_medians["alpha"]] ), np2.median( [youngAdults_params_medians["sigma"], adults_params_medians["sigma"], seniorAdults_params_medians["sigma"]] ), ] main_adults_params_medians = dict(zip(params_desc, main_adults_params_values)) main_elders_params_values = [ "60-90+", np2.median([senior_params_medians["beta"], elderly_params_medians["beta"]]), np2.median([senior_params_medians["IFR"], elderly_params_medians["IFR"]]), np2.median([senior_params_medians["RecPeriod"], elderly_params_medians["RecPeriod"]]), np2.median([senior_params_medians["alpha"], elderly_params_medians["alpha"]]), np2.median([senior_params_medians["sigma"], elderly_params_medians["sigma"]]), ] main_elders_params_medians = dict(zip(params_desc, main_elders_params_values)) # Define parameters per layers def calculate_R0(IFR, alpha, beta, RecPeriod, sigma): return (1 - IFR) * (alpha * beta * RecPeriod + (1 - alpha) * beta * sigma * RecPeriod) def model_params(params_dict, layer): layer_params = { "layer": layer, "RecPeriod": params_dict["RecPeriod"], "R0": calculate_R0( params_dict["IFR"], params_dict["alpha"], params_dict["beta"], params_dict["RecPeriod"], params_dict["sigma"], ), } return layer_params school_params = model_params(young_params_medians, "schools") adults_params = model_params(main_adults_params_medians, "adults") elders_params = model_params(main_elders_params_medians, "elders") params_def = ["layer", "RecPeriod", "R0"] run_params = [ [school_params["layer"], adults_params["layer"], elders_params["layer"]], [school_params["RecPeriod"], adults_params["RecPeriod"], elders_params["RecPeriod"]], [school_params["R0"], adults_params["R0"], elders_params["R0"]], ] run_params = dict(zip(params_def, run_params)) return run_params def cache(args): ########################### Static params ################################################ params = { "bogota": { "layer": ["schools", "adults", "elders"], "RecPeriod": [3.4474289566430567, 3.199665313607661, 3.5877699639670877], "R0": [2.341839924665767, 2.4098569613929888, 2.404539370553576], } } return pd.DataFrame(params[args.city])
49.137755
120
0.692555
4a05f4d2a6c88116db4d09a27db737b1ba69ded3
78
py
Python
plugins/rapid7_tcell/komand_rapid7_tcell/actions/list_inline_scripts/__init__.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
46
2019-06-05T20:47:58.000Z
2022-03-29T10:18:01.000Z
plugins/rapid7_tcell/komand_rapid7_tcell/actions/list_inline_scripts/__init__.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
386
2019-06-07T20:20:39.000Z
2022-03-30T17:35:01.000Z
plugins/rapid7_tcell/komand_rapid7_tcell/actions/list_inline_scripts/__init__.py
lukaszlaszuk/insightconnect-plugins
8c6ce323bfbb12c55f8b5a9c08975d25eb9f8892
[ "MIT" ]
43
2019-07-09T14:13:58.000Z
2022-03-28T12:04:46.000Z
# GENERATED BY KOMAND SDK - DO NOT EDIT from .action import ListInlineScripts
26
39
0.794872
4a05f55cc3d1dda1d8422d44ce69cad96b69b695
9,159
py
Python
cloudflare/tests/unit/test__hook.py
DriesSchulten/dehydrated-pi
5700b736f60b47a729538b5515728d14f1c58d57
[ "MIT" ]
1
2022-02-23T16:25:48.000Z
2022-02-23T16:25:48.000Z
cloudflare/tests/unit/test__hook.py
DriesSchulten/dehydrated-pi
5700b736f60b47a729538b5515728d14f1c58d57
[ "MIT" ]
null
null
null
cloudflare/tests/unit/test__hook.py
DriesSchulten/dehydrated-pi
5700b736f60b47a729538b5515728d14f1c58d57
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import collections import json import os import re import tempfile import mock import requests_mock from six.moves.urllib import parse as urlparse import testtools # Setup dummy environment variables so 'hook' can be imported os.environ['CF_EMAIL'] = "email@example'com" os.environ['CF_KEY'] = "a_cloudflare_example_key" import hook # noqa CF_API_HOST = "api.cloudflare.com" CF_API_PATH = "/client/v4" CF_API_SCHEME = "https" class TestBase(testtools.TestCase): def setUp(self): super(TestBase, self).setUp() self.expected_headers = { 'Content-Type': 'application/json', 'X-Auth-Email': "email@example'com", 'X-Auth-Key': 'a_cloudflare_example_key', } ExpectedRequestsData = collections.namedtuple( 'ExpectedRequestsData', ['method', 'path', 'query', 'json_body']) @requests_mock.Mocker() class TestRequestCallers(TestBase): def setUp(self): super(TestRequestCallers, self).setUp() self.matcher = re.compile(r'^https://api.cloudflare.com/client/v4/') def _validate_requests_calls(self, mock_request, expected_data_list): """Helper function to check values of calls to requests""" # Make sure our call count matches up with what we expect self.assertEqual(len(expected_data_list), mock_request.call_count) for index, expected_data in enumerate(expected_data_list): # Provide a bit more info if a test fails expected_str = "Info: {}".format(expected_data) request_obj = mock_request.request_history[index] parsed_url = urlparse.urlparse(request_obj.url) self.assertEqual(expected_data.method.upper(), request_obj.method) self.assertEqual(CF_API_SCHEME, parsed_url.scheme) self.assertEqual(CF_API_HOST, parsed_url.netloc) self.assertEqual( "{}/{}".format(CF_API_PATH, expected_data.path), parsed_url.path) self.assertEqual(expected_data.query, request_obj.qs, expected_str) if expected_data.json_body is not None: self.assertEqual(expected_data.json_body, json.loads(request_obj._request.body), expected_str) def test__get_zone_id(self, mock_request): expected_list = [ ExpectedRequestsData( method='get', path="zones", query={'name': ['example.com']}, json_body=None, ), ] mock_request.get(self.matcher, text=ZONE_RESPONSE) auth, result = hook._get_zone_id("example.com") expected_id = "023e105f4ecef8ad9ca31a8372d0c353" self.assertEqual(expected_id, result) self._validate_requests_calls(mock_request=mock_request, expected_data_list=expected_list) def test__get_txt_record_id_found(self, mock_request): expected_list = [ ExpectedRequestsData( method='get', path='zones/ZONE_ID/dns_records', query={'content': ['token'], 'name': ['example.com'], 'type': ['txt']}, json_body=None, ), ] mock_request.get(self.matcher, text=DNS_RECORDS_RESPONSE) result = hook._get_txt_record_id({}, "ZONE_ID", "example.com", "TOKEN") expected_id = "372e67954025e0ba6aaa6d586b9e0b59" self.assertEqual(expected_id, result) self._validate_requests_calls(mock_request=mock_request, expected_data_list=expected_list) def test__get_txt_record_id_not_found(self, mock_request): expected_list = [ ExpectedRequestsData( method='get', path="zones/ZONE_ID/dns_records", query={'content': ['token'], 'name': ['example.com'], 'type': ['txt']}, json_body=None, ), ] mock_request.get(self.matcher, text=DNS_RECORDS_RESPONSE_NOT_FOUND) result = hook._get_txt_record_id({}, "ZONE_ID", "example.com", "TOKEN") self.assertEqual(None, result) self._validate_requests_calls(mock_request=mock_request, expected_data_list=expected_list) @mock.patch.object(hook, '_get_txt_record_id', lambda auth, zone_id, name, token: None) @mock.patch.object(hook, '_get_txt_record_id', lambda auth, zone_id, name, token: None) def test_create_txt_record(self, mock_request): expected_list = [ ExpectedRequestsData( method='get', path="zones", query={'name': ['example.com']}, json_body=None, ), ExpectedRequestsData( method='post', path=("zones/023e105f4ecef8ad9ca31a8372d0c353/" "dns_records"), query={}, json_body={'content': 'TOKEN', 'type': 'TXT', 'ttl': 120, 'name': '_acme-challenge.example.com', }, ) ] mock_request.get(self.matcher, text=ZONE_RESPONSE) mock_request.post(self.matcher, text=CREATE_DNS_RECORD_RESPONSE) args = ['example.com', 'CHALLENGE', 'TOKEN'] result = hook.create_txt_record(args) self._validate_requests_calls(mock_request=mock_request, expected_data_list=expected_list) self.assertEqual(None, result) # Sample responses ZONE_RESPONSE = """ { "success": true, "errors": [ {} ], "messages": [ {} ], "result": [ { "id": "023e105f4ecef8ad9ca31a8372d0c353", "name": "example.com", "development_mode": 7200, "original_name_servers": [ "ns1.originaldnshost.com", "ns2.originaldnshost.com" ], "original_registrar": "GoDaddy", "original_dnshost": "NameCheap", "created_on": "2014-01-01T05:20:00.12345Z", "modified_on": "2014-01-01T05:20:00.12345Z", "owner": { "id": "7c5dae5552338874e5053f2534d2767a", "email": "user@example.com", "owner_type": "user" }, "permissions": [ "#zone:read", "#zone:edit" ], "plan": { "id": "e592fd9519420ba7405e1307bff33214", "name": "Pro Plan", "price": 20, "currency": "USD", "frequency": "monthly", "legacy_id": "pro", "is_subscribed": true, "can_subscribe": true }, "plan_pending": { "id": "e592fd9519420ba7405e1307bff33214", "name": "Pro Plan", "price": 20, "currency": "USD", "frequency": "monthly", "legacy_id": "pro", "is_subscribed": true, "can_subscribe": true }, "status": "active", "paused": false, "type": "full", "name_servers": [ "tony.ns.cloudflare.com", "woz.ns.cloudflare.com" ] } ], "result_info": { "page": 1, "per_page": 20, "count": 1, "total_count": 2000 } } """ DNS_RECORDS_RESPONSE = """ { "success": true, "errors": [], "messages": [], "result": [ { "id": "372e67954025e0ba6aaa6d586b9e0b59", "type": "TXT", "name": "_acme-challenge.test.example.com", "content": "WyIlYaKOp62zaDu_JDKwfXVCnr4q4ntYtmkZ3y5BF2w", "proxiable": false, "proxied": false, "ttl": 120, "locked": false, "zone_id": "023e105f4ecef8ad9ca31a8372d0c353", "zone_name": "example.com", "created_on": "2014-01-01T05:20:00.12345Z", "modified_on": "2014-01-01T05:20:00.12345Z", "data": {} } ], "result_info": { "page": 1, "per_page": 20, "count": 1, "total_count": 2000 } } """ DNS_RECORDS_RESPONSE_NOT_FOUND = """ { "success": true, "errors": [], "messages": [], "result": [], "result_info": { "page": 1, "per_page": 20, "count": 1, "total_count": 2000 } } """ CREATE_DNS_RECORD_RESPONSE = """ { "success": true, "errors": [ {} ], "messages": [ {} ], "result": { "id": "372e67954025e0ba6aaa6d586b9e0b59", "type": "A", "name": "example.com", "content": "1.2.3.4", "proxiable": true, "proxied": false, "ttl": 120, "locked": false, "zone_id": "023e105f4ecef8ad9ca31a8372d0c353", "zone_name": "example.com", "created_on": "2014-01-01T05:20:00.12345Z", "modified_on": "2014-01-01T05:20:00.12345Z", "data": {} } } """
29.737013
79
0.554318
4a05f67f820c17453193e913343b790ebd144787
3,409
py
Python
bin/MSVC-Setup.py
antonelloceravola/ToolBOSCore
b03414a867a9f0585e06bb8e4f299c4be1357f3a
[ "BSD-3-Clause" ]
null
null
null
bin/MSVC-Setup.py
antonelloceravola/ToolBOSCore
b03414a867a9f0585e06bb8e4f299c4be1357f3a
[ "BSD-3-Clause" ]
null
null
null
bin/MSVC-Setup.py
antonelloceravola/ToolBOSCore
b03414a867a9f0585e06bb8e4f299c4be1357f3a
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Configures the user's shell environment to use MSVC (with Wine) # # Copyright (c) Honda Research Institute Europe GmbH # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # #---------------------------------------------------------------------------- # Includes #---------------------------------------------------------------------------- import logging import os from ToolBOSCore.Settings.UserSetup import setupMSVC from ToolBOSCore.Util import ArgsManagerV2 from ToolBOSCore.Settings import ToolBOSSettings #---------------------------------------------------------------------------- # Commandline parsing #---------------------------------------------------------------------------- desc = "Configures the user's shell environment to use MSVC (with Wine)." argman = ArgsManagerV2.ArgsManager( desc ) argman.addArgument( '-p', '--path', help='Wine config directory (default: $HOME/.wine)' ) argman.addArgument( '-m', '--msvc-version', type=int, help='SDK version to setup (default: 2017)' ) argman.addExample( '%(prog)s' ) args = vars( argman.run() ) path = args['path'] version = args['msvc_version'] if not path: path = os.path.expandvars( '${HOME}/.wine' ) if not version: version = ToolBOSSettings.getConfigOption( 'msvcVersion') #---------------------------------------------------------------------------- # Main program #---------------------------------------------------------------------------- logging.info( 'Wine config directory: %s', path ) if version not in ( 2008, 2010, 2012, 2017 ): logging.error( 'Unsupported MSVC version %s', version ) try: setupMSVC( path, version ) logging.info( 'OK, MSVC compiler is ready.' ) except ( EnvironmentError, OSError, ValueError ) as details: logging.error( details ) logging.error( 'MSVC setup failed!' ) # EOF
34.434343
77
0.622177
4a05f6880a67b163e419871abffe6de9f36489c9
5,903
py
Python
tensorflow_probability/python/distributions/chi.py
cafeal/probability
f968a32d601d29ec31a10568ccfe30263cf91ef2
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/chi.py
cafeal/probability
f968a32d601d29ec31a10568ccfe30263cf91ef2
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/chi.py
cafeal/probability
f968a32d601d29ec31a10568ccfe30263cf91ef2
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The Chi distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import invert as invert_bijector from tensorflow_probability.python.bijectors import square as square_bijector from tensorflow_probability.python.distributions import chi2 from tensorflow_probability.python.distributions import kullback_leibler from tensorflow_probability.python.distributions import transformed_distribution from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import tensor_util class Chi(transformed_distribution.TransformedDistribution): """Chi distribution. The Chi distribution is defined over nonnegative real numbers and uses a degrees of freedom ('df') parameter. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; df, x >= 0) = x**(df - 1) exp(-0.5 x**2) / Z Z = 2**(0.5 df - 1) Gamma(0.5 df) ``` where: * `df` denotes the degrees of freedom, * `Z` is the normalization constant, and, * `Gamma` is the [gamma function]( https://en.wikipedia.org/wiki/Gamma_function). The Chi distribution is a transformation of the Chi2 distribution; it is the distribution of the positive square root of a variable obeying a Chi2 distribution. """ def __init__(self, df, validate_args=False, allow_nan_stats=True, name='Chi'): """Construct Chi distributions with parameter `df`. Args: df: Floating point tensor, the degrees of freedom of the distribution(s). `df` must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value `NaN` to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Default value: `'Chi'`. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([df], dtype_hint=tf.float32) self._df = tensor_util.convert_nonref_to_tensor( df, name='df', dtype=dtype) super(Chi, self).__init__( distribution=chi2.Chi2(df=self._df, validate_args=validate_args, allow_nan_stats=allow_nan_stats), bijector=invert_bijector.Invert( square_bijector.Square(validate_args=validate_args)), validate_args=validate_args, parameters=parameters, name=name) @classmethod def _params_event_ndims(cls): return dict(df=0) @property def df(self): """Distribution parameter for degrees of freedom.""" return self._df def _mean(self, df=None): df = tf.convert_to_tensor(self.df if df is None else df) return np.sqrt(2.) * tf.exp( tf.math.lgamma(0.5 * (df + 1.)) - tf.math.lgamma(0.5 * df)) def _variance(self): df = tf.convert_to_tensor(self.df) return df - self._mean(df) ** 2 def _entropy(self): df = tf.convert_to_tensor(self.df) return (tf.math.lgamma(0.5 * df) + 0.5 * (df - np.log(2.) - (df - 1.) * tf.math.digamma(0.5 * df))) def _parameter_control_dependencies(self, is_init): if not self.validate_args: return [] assertions = [] if is_init != tensor_util.is_ref(self._df): assertions.append(assert_util.assert_positive( self._df, message='Argument `df` must be positive.')) return assertions def _sample_control_dependencies(self, x): assertions = [] if not self.validate_args: return assertions assertions.append(assert_util.assert_non_negative( x, message='Sample must be non-negative.')) return assertions @kullback_leibler.RegisterKL(Chi, Chi) def _kl_chi_chi(a, b, name=None): """Calculate the batched KL divergence KL(a || b) with a and b Chi. Args: a: instance of a Chi distribution object. b: instance of a Chi distribution object. name: (optional) Name to use for created operations. default is 'kl_chi_chi'. Returns: Batchwise KL(a || b) """ with tf.name_scope(name or 'kl_chi_chi'): a_df = tf.convert_to_tensor(a.df) b_df = tf.convert_to_tensor(b.df) # Consistent with # https://mast.queensu.ca/~communications/Papers/gil-msc11.pdf, page 118 # The paper introduces an additional scaling parameter; setting that # parameter to 1 and simplifying yields the expression we use here. return (0.5 * tf.math.digamma(0.5 * a_df) * (a_df - b_df) + tf.math.lgamma(0.5 * b_df) - tf.math.lgamma(0.5 * a_df))
36.438272
80
0.682026
4a05f6945c2575980830ca1c491b7e1b2f6004b6
1,596
py
Python
rocketgram/keyboards/reply.py
waneroy/rocketgram
b84d12772a743a534878e417cd8c1f3c7d4ace1f
[ "MIT" ]
null
null
null
rocketgram/keyboards/reply.py
waneroy/rocketgram
b84d12772a743a534878e417cd8c1f3c7d4ace1f
[ "MIT" ]
null
null
null
rocketgram/keyboards/reply.py
waneroy/rocketgram
b84d12772a743a534878e417cd8c1f3c7d4ace1f
[ "MIT" ]
1
2021-02-26T14:21:59.000Z
2021-02-26T14:21:59.000Z
# Copyright (C) 2015-2019 by Vd. # This file is part of RocketGram, the modern Telegram bot framework. # RocketGram is released under the MIT License (see LICENSE). from .keyboard import Keyboard class ReplyKeyboard(Keyboard): def __init__(self, *, selective=False, one_time=False, resize=False): super().__init__() self._keyboard_type = 'keyboard' self.set_selective(selective) self.set_one_time(one_time) self.set_resize(resize) def set_selective(self, selective=False): if selective: self._options['selective'] = True elif 'selective' in self._options: del self._options['selective'] return self def set_one_time(self, one_time_keyboard=False): if one_time_keyboard: self._options['one_time_keyboard'] = True elif 'one_time_keyboard' in self._options: del self._options['one_time_keyboard'] return self def set_resize(self, resize_keyboard=False): if resize_keyboard: self._options['resize_keyboard'] = True elif 'resize_keyboard' in self._options: del self._options['resize_keyboard'] return self def text(self, text): btn = {'text': text} self._buttons.append(btn) return self def contact(self, text): btn = {'text': text, 'request_contact': True} self._buttons.append(btn) return self def location(self, text): btn = {'text': text, 'request_location': True} self._buttons.append(btn) return self
30.692308
73
0.635965
4a05f6e2e824f4c68af9351af34d058ab8702266
11,740
py
Python
exe/db_petit-saut.py
Tristanovsk/trios
d84a498f0b562d7a792a4588e4d983be885f24b9
[ "MIT" ]
null
null
null
exe/db_petit-saut.py
Tristanovsk/trios
d84a498f0b562d7a792a4588e4d983be885f24b9
[ "MIT" ]
null
null
null
exe/db_petit-saut.py
Tristanovsk/trios
d84a498f0b562d7a792a4588e4d983be885f24b9
[ "MIT" ]
null
null
null
import glob import re import matplotlib as mpl import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 18}) from scipy.interpolate import interp1d import pyodbc import fiona import pandas as pd import pandas_access as pda import geopandas as gpd fiona.drvsupport.supported_drivers['kml'] = 'rw' # enable KML support which is disabled by default fiona.drvsupport.supported_drivers['KML'] = 'rw' # enable KML support which is disabled by default from trios.utils.sunposition import sunpos from trios.utils import utils as u from trios.utils.utils import plot as up from trios.process import * project_folder = '/DATA/projet/petit-saut/' dirfig = os.path.join(project_folder, 'fig') odir = os.path.join(project_folder, 'data/L2') coordf = os.path.join(project_folder, 'data/gps_points.kml') coords = gpd.read_file(coordf) awrfiles = glob.glob(os.path.join(project_folder, 'data/csv/aw*.csv')) swrfiles = glob.glob(os.path.join(project_folder, 'data/csv/Lu0*.csv')) # get idpr idprs = np.unique([re.split('\.', re.split(r'idpr', x)[1])[0] for x in awrfiles]) idprs = np.unique(np.append(idprs, [re.split('\.', re.split(r'idpr', x)[1])[0] for x in swrfiles])) idpr = idprs[0] for idpr in idprs: name = idpr for idx, p in enumerate(coords.Name): if p in idpr: break c = coords.iloc[idx] print(c) lat = c.geometry.y lon = c.geometry.x alt = 35 # c.geometry.z.values[0] # ----------------------------------------------- # SWR processing # ----------------------------------------------- uswr = u.swr_data(idpr, swrfiles) if uswr.file: df, wl_swr = uswr.reader(lat, lon, alt) df['sza', ''] = np.nan for index, row in df.iterrows(): # print index sza = sunpos(index, lat, lon, alt)[1] df.at[index, 'sza'] = sza swr = swr_process(df, wl_swr) Rrs_swr = swr.call_process() date = index.date().__str__() mpl.rcParams.update({'font.size': 18}) fig, ax = plt.subplots( figsize=(7, 6)) up.add_curve(ax, wl_swr, Rrs_swr.transpose().mean(axis=1), Rrs_swr.transpose().std(axis=1), label='swr', c='black') ax.set_ylabel(r'$R_{rs}\ (sr^{-1})$') ax.set_xlabel(r'Wavelength (nm)') ax.set_title('ID: '+idpr+', '+date+', sza=' + str(round(sza.mean(), 2))) fig.savefig(os.path.join(dirfig, 'trios_swr_' + date + '_idpr' + idpr + '.png'), bbox_inches='tight') plt.close() ofile = os.path.join(odir, 'Rrs_swr_' + date + '_idpr' + idpr + '_PSA_guyane.csv') Rrs_stat = Rrs_swr.describe() Rrs_stat.columns=Rrs_stat.columns.droplevel() Rrs_stat = Rrs_stat.T Rrs_stat.to_csv(ofile,mode='a') # # ----------------------------------------------- # AWR processing # ----------------------------------------------- azi = 135 vza = 40 awr = u.awr_data(idpr, awrfiles) if awr.Edf: index_idx = [0] d = u.data(index_idx) Ed, wl_Ed = d.load_csv(awr.Edf) Lsky, wl_Lsky = d.load_csv(awr.Lskyf) Lt, wl_Lt = d.load_csv(awr.Ltf) # ''' interpolate Ed and Lsky data upon Lt wavelength''' wl = wl_Lt Lt.columns = pd.MultiIndex.from_tuples(zip(['Lt'] * len(wl), wl), names=['param', 'wl']) intEd = interp1d(wl_Ed, Ed.values, fill_value='extrapolate')(wl) newEd = pd.DataFrame(index=Ed.index, columns=pd.MultiIndex.from_tuples(zip(['Ed'] * len(wl), wl), names=['param', 'wl']), data=intEd) intLsky = interp1d(wl_Lsky, Lsky.values, fill_value='extrapolate')(wl) newLsky = pd.DataFrame(index=Lsky.index, columns=pd.MultiIndex.from_tuples(zip(['Lsky'] * len(wl), wl), names=['param', 'wl']), data=intLsky) awr = awr_process() ws = [2] print(azi, vza) Lsky = newLsky # .loc[(newLsky.index.get_level_values(1) == vza) & (newLsky.index.get_level_values(2) == azi)] Ed = newEd # .loc[(newEd.index.get_level_values(1) == vza) & (newEd.index.get_level_values(2) == azi)] # Lsky_idx = Lsky.index # Ed_idx= Ed.index # Lt_idx = Lt.index # Lsky.reset_index(level=[1,2],inplace=True) # Ed.reset_index(level=[1,2],inplace=True) # Lt.reset_index(level=[1,2],inplace=True) # merge sensor data on time raw = pd.merge_asof(Lt, Ed, left_index=True, right_index=True, tolerance=pd.Timedelta("2 seconds"), direction="nearest") raw = pd.merge_asof(raw, Lsky, left_index=True, right_index=True, tolerance=pd.Timedelta("2 seconds"), direction="nearest") # add solar angle data and idpr # compute solar angle (mean between fisrt and last aqcuisition time raw['sza', ''] = np.nan for index, row in raw.iterrows(): # print index sza = sunpos(index, lat, lon, alt)[1] raw.at[index, 'sza'] = sza # ------------------ # filtering # ------------------ ind = awr.filtering(raw.Lt, raw.Lsky, raw.Ed) clean = raw[ind] Lt, Lsky, Ed, sza = clean.Lt.values, clean.Lsky.values, clean.Ed.values, clean.sza.values # ----------------------------- # data processing # ----------------------------- Rrs99, rho99 = awr.process_wrapper(wl, clean, clean.sza, ws=ws, azi=azi) Rrs15, rho15 = awr.process_wrapper(wl, clean, clean.sza, ws=ws, azi=azi, method='M15') Rrs_h, rho_h = awr.process_wrapper(wl, clean, clean.sza, ws=ws, azi=azi, method='osoaa') Rrs_opt, Rrs_opt_std = awr.process_optimization(wl, Lt, Lsky, Ed, sza, azi=azi) wl = Rrs99.T.index.get_level_values(1) date = Rrs99.index.get_level_values(0).date[0].__str__() # ------------------ # plotting # ------------------ Ltm = Lt.mean(axis=0) Edm = Ed.mean(axis=0) mpl.rcParams.update({'font.size': 18}) fig, axs = plt.subplots(nrows=2, ncols=3, figsize=(20, 12)) fig.subplots_adjust(left=0.1, right=0.9, hspace=.5, wspace=0.45) # ---- Ed ax = axs[0, 0] up.add_curve(ax, wl, Ed.mean(axis=0), label=r'$L_{sky}$', c='red') # just to put the two labels up.add_curve(ax, wl, Ed.mean(axis=0), Ed.std(axis=0), label=r'$E_s$', c='black') ax.set_ylabel(r'$E_{d}(0^{+})$') # ---- Lsky ax2 = ax.twinx() up.add_curve(ax2, wl, Lsky.mean(axis=0), Lsky.std(axis=0), label=r'$L_{sky}$', c='red') ax2.set_ylabel(r'$L_{sky}$', color='r') ax2.tick_params('y', colors='r') ax.set_xlabel(r'Wavelength (nm)') ax.legend(loc='best', frameon=False) # ---- Lt vs Lsurf ax = axs[0, 1] up.add_curve(ax, wl, Lt.mean(axis=0), Lt.std(axis=0), label=r'$L_t$', c='black') up.add_curve(ax, wl, Lsky.mean(axis=0) * rho15, Lsky.std(axis=0) * rho15, label='M2015 (' + str(round(rho15, 4)) + ')', c='violet') up.add_curve(ax, wl, Lsky.mean(axis=0) * rho99, Lsky.std(axis=0) * rho99, c='orange', label='M1999(' + str(round(rho99, 4)) + ')') up.add_curve(ax, wl, Lsky.mean(axis=0) * rho_h, Lsky.std(axis=0) * rho_h, c='green', label='h(' + str(round(rho_h.mean(), 4)) + ')') ax.set_ylabel(r'$L_t\ or L_{surf}$') ax.set_xlabel(r'Wavelength (nm)') # ---- Proportion o(Lt - Lsurf ) /Lt ax = axs[0, 2] up.add_curve(ax, wl, Lsky.mean(axis=0) * rho15 / Ltm, Lsky.std(axis=0) * rho15, label='M2015 (' + str(round(rho15, 4)) + ')', c='violet') up.add_curve(ax, wl, Lsky.mean(axis=0) * rho99 / Ltm, Lsky.std(axis=0) * rho99, c='orange', label='M1999(' + str(round(rho99, 4)) + ')') up.add_curve(ax, wl, Lsky.mean(axis=0) * rho_h / Ltm, Lsky.std(axis=0) * rho_h, c='green', label='h(' + str(round(rho_h.mean(), 4)) + ')') ax.set_ylabel(r'$L_{surf}/L_t$') ax.set_xlabel(r'Wavelength (nm)') # ---- Lw ax = axs[1, 0] up.add_curve(ax, wl, Rrs15.mean(axis=0) * Edm, Rrs15.std(axis=0) * Edm, label='M2015 (' + str(round(rho15, 4)) + ')', c='violet') up.add_curve(ax, wl, Rrs99.mean(axis=0) * Edm, Rrs99.std(axis=0) * Edm, c='orange', label='M1999(' + str(round(rho99, 4)) + ')') up.add_curve(ax, wl, Rrs_h.mean(axis=0) * Edm, Rrs_h.std(axis=0) * Edm, c='green', label='h(' + str(round(rho_h.mean(), 4)) + ')') up.add_curve(ax, wl, Rrs_opt * Edm, Rrs_opt_std * Edm, c='blue', label='Optimization') ax.set_ylabel(r'$L_{w}\ (sr^{-1})$') ax.set_xlabel(r'Wavelength (nm)') # ---- Rrs ax = axs[1, 1] up.add_curve(ax, wl_swr, Rrs_swr.transpose().mean(axis=1), Rrs_swr.transpose().std(axis=1), label='swr', c='black') up.add_curve(ax, wl, Rrs15.transpose().mean(axis=1), Rrs15.transpose().std(axis=1), label='M2015 (' + str(round(rho15, 4)) + ')', c='violet') up.add_curve(ax, wl, Rrs99.transpose().mean(axis=1), Rrs99.transpose().std(axis=1), c='orange', label='M1999(' + str(round(rho99, 4)) + ')') up.add_curve(ax, wl, Rrs_h.transpose().mean(axis=1), Rrs_h.transpose().std(axis=1), c='green', label='h(' + str(round(rho_h.mean(), 4)) + ')') up.add_curve(ax, wl, Rrs_opt, Rrs_opt_std, c='blue', label='Optimization') ax.set_ylabel(r'$R_{rs}\ (sr^{-1})$') ax.set_xlabel(r'Wavelength (nm)') ax.set_title('azi=' + str(azi) + ', vza=' + str(vza) + ', sza=' + str(round(sza.mean(), 2))) # ---- delta Rrs ax = axs[1, 2] Rrs_swr_ = interp1d(wl_swr, Rrs_swr.transpose().mean(axis=1), fill_value='extrapolate')(wl) Rrs_swr_[wl > 850] = np.nan up.add_curve(ax, wl, (Rrs15.mean(axis=0) - Rrs_swr_) / Rrs_swr_, label='M2015 (' + str(round(rho15, 4)) + ')', c='violet') up.add_curve(ax, wl, (Rrs99.mean(axis=0) - Rrs_swr_) / Rrs_swr_, c='orange', label='M1999(' + str(round(rho99, 4)) + ')') up.add_curve(ax, wl, (Rrs_h.mean(axis=0) - Rrs_swr_) / Rrs_swr_, c='green', label='h(' + str(round(rho_h.mean(), 4)) + ')') up.add_curve(ax, wl, (Rrs_opt - Rrs_swr_) / Rrs_swr_, c='blue', label='Optimization') ax.set_ylabel(r'$\Delta^{rel} R_{rs} $') ax.set_xlabel(r'Wavelength (nm)') ax.legend(loc='best', frameon=False) fig.suptitle('trios_awr ' + name + ' idpr' + idpr, fontsize=16) fig.savefig(os.path.join(dirfig, 'trios_awr_' + name + '_idpr' + idpr + '.png')) plt.close() # # # # date = c['Date_prel'].dt.strftime('%Y%m%d') # # dbf = '/DATA/projet/petit-saut/data/dataTrios_Guyane_20190523.mdb' # #data = pda.read_table(dbf,'tblData') # # # # # driver='DRIVER={Microsoft Access Driver (*.mdb, *.accdb)}' # driver='DRIVER={'+pyodbc.drivers()[2]+'}' # # connect to bd TRIOS # odbc = pyodbc.connect(driver+';DBQ=' + dbf) # # query = 'SELECT * FROM tblData WHERE ((tblData.IDDataType LIKE \'SPECTRUM\') )) ' AND ' \ # '((tblData.IDDataTypeSub1 LIKE \'CALIBRATED\') OR (tblData.IDDataTypeSub1 LIKE \'CALCULATED\')))' # # ramses_df = pd.read_sql(query, odbc) # #
41.338028
121
0.538671
4a05f73f6b7ace0e28c57cbe3b21760a41918c8b
1,258
py
Python
app/models.py
UMCUGenetics/illumina-runinfo
48c451fe034670c9b15289f6f94226757147941d
[ "MIT" ]
1
2018-06-18T16:23:08.000Z
2018-06-18T16:23:08.000Z
app/models.py
UMCUGenetics/illumina-runinfo
48c451fe034670c9b15289f6f94226757147941d
[ "MIT" ]
null
null
null
app/models.py
UMCUGenetics/illumina-runinfo
48c451fe034670c9b15289f6f94226757147941d
[ "MIT" ]
1
2021-02-10T13:45:45.000Z
2021-02-10T13:45:45.000Z
from app import db class RunInfo(db.Model): ## Required id = db.Column(db.Integer, primary_key=True) run_id = db.Column(db.String(50), nullable=False, unique=True) experiment_name = db.Column(db.String(100), nullable=False) run_start_date = db.Column(db.Date, nullable=False) barcode = db.Column(db.String(50), nullable=False) run_mode = db.Column(db.String(50)) paired_end = db.Column(db.Boolean) read_1 = db.Column(db.Integer) read_2 = db.Column(db.Integer) index_read_1 = db.Column(db.Integer) index_read_2 = db.Column(db.Integer) pe = db.Column(db.String(50)) platform_id = db.Column(db.Integer, db.ForeignKey('platform.id'), nullable=False) def __repr__(self): return "{} \t {} \t {}".format(self.run_id, self.experiment_name, self.run_start_date) class Platform(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50), unique=True) application_name = db.Column(db.String(80), unique=True) runs = db.relationship('RunInfo', backref='platform', lazy='dynamic') def __init__(self, name, application_name): self.name = name self.application_name = application_name def __repr__(self): return self.name
34.944444
94
0.682035
4a05f860cc7ff28ad07d992d289994698550398a
9,879
py
Python
tg_bot/functions.py
EeOneDown/spbu4u
2ad01088fb167c80c53b757a0247fc5cde34c20f
[ "Apache-2.0" ]
30
2017-09-14T20:25:43.000Z
2022-03-12T09:55:35.000Z
tg_bot/functions.py
EeOneDown/spbu4u
2ad01088fb167c80c53b757a0247fc5cde34c20f
[ "Apache-2.0" ]
59
2018-01-12T18:29:24.000Z
2019-03-08T21:08:40.000Z
tg_bot/functions.py
EeOneDown/spbu4u
2ad01088fb167c80c53b757a0247fc5cde34c20f
[ "Apache-2.0" ]
8
2017-12-01T18:36:04.000Z
2020-11-22T00:36:15.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals import json from datetime import datetime, date, timedelta import pymysql import spbu from app.constants import emoji, subject_short_types server_timedelta = timedelta(hours=0) def parse_event_time(event): return "{0} {1:0>2}:{2:0>2}{3}{4:0>2}:{5:0>2}".format( emoji["clock"], datetime_from_string(event["Start"]).time().hour, datetime_from_string(event["Start"]).time().minute, emoji["en_dash"], datetime_from_string(event["End"]).time().hour, datetime_from_string(event["End"]).time().minute ) def parse_event_subject(event): answer = "" subject_name = ", ".join(event["Subject"].split(", ")[:-1]) subject_type = event["Subject"].split(", ")[-1] stripped_subject_type = " ".join(subject_type.split()[:2]) if stripped_subject_type in subject_short_types.keys(): answer += subject_short_types[stripped_subject_type] + " - " else: answer += subject_type.upper() + " - " answer += subject_name return answer def parse_event_location(location, full_place=True, have_chosen_educator=False, chosen_educator=None): answer = "" if location["IsEmpty"]: return answer if have_chosen_educator and not chosen_educator.issuperset( {edu["Item2"].split(", ")[0] for edu in location["EducatorIds"]} ): return answer if full_place: location_name = location["DisplayName"].strip(", ").strip() else: location_name = location["DisplayName"].split(", ")[-1].strip() answer += location_name if location["HasEducators"]: educators = [educator["Item2"].split(", ")[0] for educator in location["EducatorIds"]] if len(educators): answer += " <i>({0})</i>".format("; ".join(educators)) return answer def insert_skip(event_name, types, event_day, event_time, educators, user_id, is_choose_educator=False): sql_con = get_connection() cursor = sql_con.cursor() try: cursor.execute("""INSERT INTO lessons (name, types, day, time, educators) VALUES (%s, %s, %s, %s, %s)""", (event_name, types, event_day, event_time, educators)) sql_con.commit() except pymysql.IntegrityError: sql_con.rollback() finally: cursor.execute("""SELECT id FROM lessons WHERE name = %s AND types = %s AND day = %s AND time = %s AND educators = %s""", (event_name, types, event_day, event_time, educators)) lesson_id = cursor.fetchone()[0] try: if is_choose_educator: cursor.execute("""INSERT INTO user_educators VALUES (%s, %s)""", (user_id, lesson_id)) else: cursor.execute("""INSERT INTO skips VALUES (%s, %s)""", (lesson_id, user_id)) sql_con.commit() except pymysql.IntegrityError: sql_con.rollback() finally: cursor.close() sql_con.close() def get_hide_lessons_data(user_id, week_day=None, is_educator=False): sql_con = get_connection() cursor = sql_con.cursor() sql_req = """SELECT s.lesson_id, l.name, l.types, l.day, l.time, l.educators """ if is_educator: sql_req += """FROM user_educators AS s JOIN lessons AS l ON l.id = s.lesson_id """ else: sql_req += """FROM skips AS s JOIN lessons AS l ON l.id = s.lesson_id """ sql_req += """WHERE user_id = %s""" req_param = (user_id,) if week_day: sql_req += " AND (day = 'all' OR day = %s)" req_param += (week_day, ) cursor.execute(sql_req, req_param) data = cursor.fetchall() cursor.close() sql_con.close() return data def get_connection(): import sqlite3 return sqlite3.connect("app.db") def date_from_iso(iso): return datetime.strptime("%d%02d%d" % (iso[0], iso[1], iso[2]), "%Y%W%w").date() def get_current_monday_date(): iso_day_date = list((date.today() + server_timedelta).isocalendar()) if iso_day_date[2] == 7: iso_day_date[1] += 1 iso_day_date[2] = 1 monday_date = date_from_iso(iso_day_date) return monday_date def delete_symbols(json_obj): return json.loads( json.dumps(json_obj).replace("<", "").replace(">", "").replace("&", "") ) def get_chosen_educators(user_id): sql_con = get_connection() cursor = sql_con.cursor() data = {} sql_req = """SELECT lessons.name, lessons.educators FROM user_educators JOIN lessons ON user_educators.lesson_id = lessons.id WHERE user_educators.user_id = %s""" cursor.execute(sql_req, (user_id,)) for row in cursor.fetchall(): if row[0] in data.keys(): data[row[0]].add(row[1]) else: data[row[0]] = {row[1]} return data def datetime_from_string(dt_string): return datetime.strptime(dt_string, "%Y-%m-%dT%H:%M:%S") def is_event_in_skips(event, skips, week_day_string): event_educators = [] for educator in event["EducatorIds"]: event_educators.append(educator["Item2"].split(", ")[0]) event_educators = set(event_educators) for skip_lesson in skips: skip_educators = set(skip_lesson[5].split("; ")) stripped_type = " ".join(event["Subject"].split(", ")[-1].split()[:2]) if skip_lesson[1] == ", ".join(event["Subject"].split(", ")[:-1]) and \ (skip_lesson[2] == "all" or stripped_type in skip_lesson[2].split("; ")) and \ (skip_lesson[3] == "all" or skip_lesson[3] == week_day_string) and \ (skip_lesson[4] == "all" or skip_lesson[4] == parse_event_time(event)) and \ (skip_lesson[5] == "all" or event_educators.issubset(skip_educators)): return True return False def get_json_week_data(user_id, next_week=False, for_day=None): sql_con = get_connection() cursor = sql_con.cursor() cursor.execute("""SELECT group_id FROM user_data WHERE id= %s""", (user_id,)) group_id = cursor.fetchone()[0] cursor.close() sql_con.close() if for_day: monday_date = for_day elif next_week: monday_date = get_current_monday_date() monday_date += timedelta(days=7) else: monday_date = get_current_monday_date() json_week_data = spbu.get_group_events(group_id=group_id, from_date=monday_date) return delete_symbols(json_week_data) def get_json_day_data(user_id, day_date, json_week_data=None, next_week=False): if json_week_data is None: json_week_data = get_json_week_data(user_id, next_week) for day_info in json_week_data["Days"]: if datetime_from_string(day_info["Day"]).date() == day_date: return day_info return None def get_lessons_with_educators(user_id, day_date): json_day = get_json_day_data(user_id, day_date) answer = "" day_study_events = json_day["DayStudyEvents"] count = 0 for event in day_study_events: event_text = "" if (event["IsCancelled"] or len([loc for loc in event["EventLocations"] if loc["HasEducators"]]) < 2): continue subject_name = ", ".join(event["Subject"].split(", ")[:-1]) event_text += "{0}</b>".format(subject_name) if is_event_in_skips(event, get_hide_lessons_data( user_id, week_day=json_day["DayString"].split(", ")[0]), json_day["DayString"].split(", ")[0]): event_text += " {0}".format(emoji["cross_mark"]) event_text += "\n" chosen_educators = get_chosen_educators(user_id) have_chosen_educator = False if subject_name in chosen_educators.keys() \ and any( ch_edu in [ edu["Item2"].split(", ")[0] for edu in event["EducatorIds"] ] for ch_edu in chosen_educators[subject_name] ): have_chosen_educator = True for location in event["EventLocations"]: event_text += location["DisplayName"].strip(", ") educators = {educator["Item2"].split(", ")[0] for educator in location["EducatorIds"]} if len(educators): event_text += " <i>({0})</i>".format("; ".join(educators)) if have_chosen_educator and educators.issubset(chosen_educators[ subject_name]): event_text += " {0}".format(emoji["heavy_check_mark"]) event_text += "\n" if event_text not in answer: count += 1 answer += "<b>{0}. {1}\n".format(count, event_text) if answer == "": data = {"is_empty": True, "answer": "Подходящих занятий нет", "date": json_day["DayString"].capitalize()} else: data = {"is_empty": False, "answer": answer.strip("\n\n"), "date": json_day["DayString"].capitalize()} return data
33.716724
79
0.551675
4a05f8dc94cf74888fc19e7d9d1ea25746586951
1,933
py
Python
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/subscriptions/v2018_06_01/models/__init__.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2019-05-17T21:24:53.000Z
2020-02-12T11:13:42.000Z
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/subscriptions/v2018_06_01/models/__init__.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
15
2019-07-12T18:18:04.000Z
2019-07-25T20:55:51.000Z
sdk/resources/azure-mgmt-resource/azure/mgmt/resource/subscriptions/v2018_06_01/models/__init__.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- try: from ._models_py3 import Location from ._models_py3 import LocationListResult from ._models_py3 import Operation from ._models_py3 import OperationDisplay from ._models_py3 import OperationListResult from ._models_py3 import Subscription from ._models_py3 import SubscriptionListResult from ._models_py3 import SubscriptionPolicies from ._models_py3 import TenantIdDescription from ._models_py3 import TenantListResult except (SyntaxError, ImportError): from ._models import Location # type: ignore from ._models import LocationListResult # type: ignore from ._models import Operation # type: ignore from ._models import OperationDisplay # type: ignore from ._models import OperationListResult # type: ignore from ._models import Subscription # type: ignore from ._models import SubscriptionListResult # type: ignore from ._models import SubscriptionPolicies # type: ignore from ._models import TenantIdDescription # type: ignore from ._models import TenantListResult # type: ignore from ._subscription_client_enums import ( SpendingLimit, SubscriptionState, ) __all__ = [ 'Location', 'LocationListResult', 'Operation', 'OperationDisplay', 'OperationListResult', 'Subscription', 'SubscriptionListResult', 'SubscriptionPolicies', 'TenantIdDescription', 'TenantListResult', 'SpendingLimit', 'SubscriptionState', ]
37.901961
94
0.691671
4a05fa517e7c5b3e5eb0ae582b36d2c7b4d9e1a1
855
py
Python
tests/test_data.py
mikemhenry/pyscreener
9894eaac59a8648c55e834e061c31daa85fb74bd
[ "MIT" ]
34
2021-01-08T00:32:01.000Z
2022-02-20T20:02:55.000Z
tests/test_data.py
mikemhenry/pyscreener
9894eaac59a8648c55e834e061c31daa85fb74bd
[ "MIT" ]
24
2021-01-29T18:28:45.000Z
2022-03-22T21:48:01.000Z
tests/test_data.py
mikemhenry/pyscreener
9894eaac59a8648c55e834e061c31daa85fb74bd
[ "MIT" ]
13
2021-01-09T11:07:03.000Z
2022-02-10T23:08:11.000Z
import random import uuid import pytest from pyscreener.docking import CalculationData, Result from pyscreener.exceptions import InvalidResultError, NotSimulatedError @pytest.fixture( params=["CCCCCCC", "C1CCC1", "CC(=O)CC", "CCCCCCCC", "CCCC1CC1"] ) def smi(request): return request.param def test_notsimulated(smi): data = CalculationData(smi, None, None, None, None) with pytest.raises(NotSimulatedError): data.score def test_invalid_result(smi): data = CalculationData(smi, None, None, None, None) data.result = {"score": random.random()} with pytest.raises(InvalidResultError): data.score def test_score(smi): data = CalculationData(smi, None, None, None, None) score = random.random() data.result = Result(smi, 'ligand', str(uuid.uuid4()), score) assert data.result.score == score
25.909091
71
0.708772
4a05fb3796e881a1620c454a358c17b5b4abb745
3,217
py
Python
backend/migrations/0002_auto_20190814_1719.py
animeshk08/voting-ethereum
60c8e97a7bd5124cda295237d7b6919b3bb1f9b7
[ "MIT" ]
null
null
null
backend/migrations/0002_auto_20190814_1719.py
animeshk08/voting-ethereum
60c8e97a7bd5124cda295237d7b6919b3bb1f9b7
[ "MIT" ]
6
2021-03-19T11:44:10.000Z
2021-05-11T19:18:34.000Z
backend/migrations/0002_auto_20190814_1719.py
animeshk08/voting-ethereum
60c8e97a7bd5124cda295237d7b6919b3bb1f9b7
[ "MIT" ]
null
null
null
# Generated by Django 2.2.4 on 2019-08-14 17:19 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('backend', '0001_initial'), ] operations = [ migrations.CreateModel( name='AadharDetail', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=100)), ('mobile_num', models.CharField(max_length=20)), ('aadhar_num', models.CharField(max_length=20)), ('finger_print', models.TextField(max_length=255)), ('age', models.IntegerField()), ('gender', models.CharField(max_length=20)), ('address', models.TextField(max_length=255)), ('pincode', models.CharField(max_length=20)), ], ), migrations.CreateModel( name='Constituency', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='Election', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=100)), ('start_date', models.DateField()), ('end_date', models.DateField()), ], ), migrations.CreateModel( name='ElectionConstituency', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('constituency_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='backend.Constituency')), ('election_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='backend.Election')), ], ), migrations.CreateModel( name='Party', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=100)), ], ), migrations.CreateModel( name='PartyCandidate', fields=[ ('id', models.IntegerField(primary_key=True, serialize=False)), ('aadhar_detail_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='backend.AadharDetail')), ('constituency_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='backend.Constituency')), ('election_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='backend.Election')), ('party_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='backend.Party')), ], ), migrations.DeleteModel( name='AadharData', ), migrations.AddField( model_name='aadhardetail', name='constituency_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='backend.Constituency'), ), ]
41.24359
128
0.565434
4a05fbf1070daad181d215f558e8cb4f14cf7efa
23,335
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_04_01/operations/_azure_firewalls_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
3
2020-06-23T02:25:27.000Z
2021-09-07T18:48:11.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_04_01/operations/_azure_firewalls_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
510
2019-07-17T16:11:19.000Z
2021-08-02T08:38:32.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_04_01/operations/_azure_firewalls_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
5
2019-09-04T12:51:37.000Z
2020-09-16T07:28:40.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class AzureFirewallsOperations(object): """AzureFirewallsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_04_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _delete_initial( self, resource_group_name, # type: str azure_firewall_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str azure_firewall_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified Azure Firewall. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param azure_firewall_name: The name of the Azure Firewall. :type azure_firewall_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the ARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, azure_firewall_name=azure_firewall_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore def get( self, resource_group_name, # type: str azure_firewall_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.AzureFirewall" """Gets the specified Azure Firewall. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param azure_firewall_name: The name of the Azure Firewall. :type azure_firewall_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AzureFirewall, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_04_01.models.AzureFirewall :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewall"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('AzureFirewall', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str azure_firewall_name, # type: str parameters, # type: "_models.AzureFirewall" **kwargs # type: Any ): # type: (...) -> "_models.AzureFirewall" cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewall"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'AzureFirewall') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('AzureFirewall', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('AzureFirewall', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str azure_firewall_name, # type: str parameters, # type: "_models.AzureFirewall" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.AzureFirewall"] """Creates or updates the specified Azure Firewall. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param azure_firewall_name: The name of the Azure Firewall. :type azure_firewall_name: str :param parameters: Parameters supplied to the create or update Azure Firewall operation. :type parameters: ~azure.mgmt.network.v2018_04_01.models.AzureFirewall :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the ARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either AzureFirewall or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2018_04_01.models.AzureFirewall] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewall"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, azure_firewall_name=azure_firewall_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('AzureFirewall', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'azureFirewallName': self._serialize.url("azure_firewall_name", azure_firewall_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls/{azureFirewallName}'} # type: ignore def list( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.AzureFirewallListResult"] """Lists all Azure Firewalls in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AzureFirewallListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_04_01.models.AzureFirewallListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewallListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('AzureFirewallListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/azureFirewalls'} # type: ignore def list_all( self, **kwargs # type: Any ): # type: (...) -> Iterable["_models.AzureFirewallListResult"] """Gets all the Azure Firewalls in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either AzureFirewallListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_04_01.models.AzureFirewallListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AzureFirewallListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-04-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_all.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('AzureFirewallListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_all.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/azureFirewalls'} # type: ignore
48.21281
197
0.659567
4a05fcc1af80d1bf00710e4fa64fabcf5c7f6780
9,567
py
Python
regression/efas/boxplot_reg.py
b8raoult/magics
eb2c86ec6e392e89c90044128dc671f22283d6ad
[ "ECL-2.0", "Apache-2.0" ]
41
2018-12-07T23:10:50.000Z
2022-02-19T03:01:49.000Z
regression/efas/boxplot_reg.py
b8raoult/magics
eb2c86ec6e392e89c90044128dc671f22283d6ad
[ "ECL-2.0", "Apache-2.0" ]
59
2019-01-04T15:43:30.000Z
2022-03-31T09:48:15.000Z
regression/efas/boxplot_reg.py
b8raoult/magics
eb2c86ec6e392e89c90044128dc671f22283d6ad
[ "ECL-2.0", "Apache-2.0" ]
13
2019-01-07T14:36:33.000Z
2021-09-06T14:48:36.000Z
# (C) Copyright 1996-2016 ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation nor # does it submit to any jurisdiction. from csv import reader from datetime import datetime from Magics.macro import * #read input file f= file('boxplot.data','rb') r= reader(f,delimiter=';') rows= [] for row in r: #skip useless lines if row[0][0]=='X': continue if row[0][0]=='-': continue if row[0][0]==' ': continue rows+= [row] f.close() #limit values max_date= '0' min_date= '9' max_y= -10000000000 min_y= 10000000000 #dictionary structure data= {} data['WB_FOR']= {} data['WB_FOR']['DATE']= [] data['WB_FOR']['DWD']= [] data['WB_FOR']['EUD']= [] data['WB_OBS']= {} data['WB_OBS']['DATE']= [] data['WB_OBS']['OBS']= [] data['WB_OBS']= {} data['WB_OBS']['DATE']= [] data['WB_OBS']['OBS']= [] data['FOR_DETETMINISTIC']= {} data['FOR_DETETMINISTIC']['DATE']= [] data['FOR_DETETMINISTIC']['DWD']= [] data['FOR_DETETMINISTIC']['EUD']= [] data['FOR_PROBABILISTIC']= {} data['FOR_PROBABILISTIC']['DATE']= [] data['FOR_PROBABILISTIC']['QMIN']= [] data['FOR_PROBABILISTIC']['Q25']= [] data['FOR_PROBABILISTIC']['QMED']= [] data['FOR_PROBABILISTIC']['Q75']= [] data['FOR_PROBABILISTIC']['QMAX']= [] #fill the dictionary row_type= '' for row in rows: f1= row[0] if f1.find('WB_FOR')==0: row_type= 'FOR' continue if f1.find('WB_OBS')==0: row_type= 'OBS' continue if f1.find('FOR_DETETMINISTIC')==0: row_type= 'DET' continue if f1.find('FOR_PROBABILISTIC')==0: row_type= 'PRO' continue if f1.find('THlow')==0: data['THlow']= float(row[0].split('=')[1]) data['THmedium']= float(row[1].split('=')[1]) data['THHigh']= float(row[2].split('=')[1]) data['THextreme']= float(row[3].split('=')[1]) continue #convert numbers format row= [row[0]]+[float(ele) for ele in row[1:]] if row_type=='FOR': date= datetime.strptime(row[0],'%m/%d/%Y %I:%M:%S %p') row[0]= datetime.strftime(date,'%Y-%m-%d %H:%M:%S') data['WB_FOR']['DATE']+= [row[0]] data['WB_FOR']['DWD']+= [row[1]] data['WB_FOR']['EUD']+= [row[2]] if row_type=='OBS': date= datetime.strptime(row[0],'%m/%d/%Y %I:%M:%S %p') row[0]= datetime.strftime(date,'%Y-%m-%d %H:%M:%S') data['WB_OBS']['DATE']+= [row[0]] data['WB_OBS']['OBS']+= [row[1]] if row_type=='DET': date= datetime.strptime(row[0],'%d/%m/%Y %I:%M %p') row[0]= datetime.strftime(date,'%Y-%m-%d %H:%M:00') data['FOR_DETETMINISTIC']['DATE']+= [row[0]] data['FOR_DETETMINISTIC']['DWD']+= [row[1]] data['FOR_DETETMINISTIC']['EUD']+= [row[2]] if row_type=='PRO': date= datetime.strptime(row[0],'%m/%d/%Y %I:%M:%S %p') row[0]= datetime.strftime(date,'%Y-%m-%d %H:%M:%S') data['FOR_PROBABILISTIC']['DATE']+= [row[0]] data['FOR_PROBABILISTIC']['QMIN']+= [row[1]] data['FOR_PROBABILISTIC']['Q25']+= [row[2]] data['FOR_PROBABILISTIC']['QMED']+= [row[3]] data['FOR_PROBABILISTIC']['Q75']+= [row[4]] data['FOR_PROBABILISTIC']['QMAX']+= [row[5]] #calculate range of dates max_date= max(max_date,row[0]) min_date= min(min_date,row[0]) #do not use missing values when calculating extreme values values= [ele for ele in row[1:] if ele!=1.7e+308] max_y= max([max_y]+values) min_y= min([min_y]+values) ################################################################# #test for key in data: obj= data[key] if type(obj)==type({}): for k2 in obj: print key,k2,obj[k2] else: print key, obj print 'limits values:' print 'x:',[min_date,max_date] print 'y:',[min_y,max_y] ################################################################# output = output(output_formats=['png'], output_name_first_page_number='off', output_name="boxplot_reg") min = round(min_y - ((max_y-min_y)*0.1)) max = round(max_y + ((max_y-min_y)*0.1)) # Setting the cartesian view projection = mmap( subpage_y_position=2., subpage_map_projection='cartesian', subpage_x_axis_type='date', subpage_y_axis_type='regular', subpage_x_date_min=min_date, subpage_x_date_max=max_date, subpage_y_min=min, subpage_y_max=max, ) # Vertical axis vertical = maxis( axis_orientation='vertical', axis_type='regular', axis_tick_label_height=0.40, axis_tick_label_colour='navy', axis_grid='on', axis_grid_colour='grey', axis_grid_thickness=1, axis_grid_line_style='dot', axis_title='on', axis_title_text='Discharge (m3/s)', axis_title_font_style='bold', ) # Horizontal axis horizontal = maxis( axis_orientation='horizontal', axis_type='date', axis_grid='on', axis_days_label_height=0.40, axis_months_label_height=0.40, axis_years_label_height=0.50, axis_grid_colour='grey', axis_grid_thickness=1, axis_grid_line_style='dot', axis_title='on', axis_title_text='Date (days)', axis_title_font_style='bold', ) # dwd black curve dwd_input = minput(input_x_type='date', input_date_x_values=data['FOR_DETETMINISTIC']['DATE'], input_y_values=data['FOR_DETETMINISTIC']['DWD']) dwd_graph = mgraph(graph_line_colour='black', graph_line_thickness=4, legend='on', legend_user_text="DWD") # eud red curve eud_input = minput(input_x_type='date', input_date_x_values=data['FOR_DETETMINISTIC']['DATE'], input_y_values=data['FOR_DETETMINISTIC']['EUD']) eud_graph = mgraph(graph_line_colour='red', graph_line_thickness=4, legend='on', legend_user_text="ECMWF") # box plot boxplot = mboxplot(boxplot_date_positions=data['FOR_PROBABILISTIC']['DATE'], boxplot_minimum_values = [x-50. for x in data['FOR_PROBABILISTIC']['QMIN']], boxplot_maximum_values = [x +50. for x in data['FOR_PROBABILISTIC']['QMAX']], boxplot_box_upper_values = [x +50. for x in data['FOR_PROBABILISTIC']['Q75']], boxplot_box_lower_values = data['FOR_PROBABILISTIC']['Q25'], boxplot_median_values = data['FOR_PROBABILISTIC']['QMED'], boxplot_box_colour = "rgb(0.65,0.58,0.92)") # wb_obs obs_input = minput(input_x_type='date', input_date_x_values=data['WB_OBS']['DATE'], input_y_values=data['WB_OBS']['OBS']) # obs plotting obs_symb = msymb( symbol_type='marker', symbol_colour='black', symbol_height=0.5, symbol_marker_index=15, legend='on', legend_user_text="WB_obs" ) # wb_for for eud eud_for_input = minput(input_x_type='date', input_date_x_values=data['WB_FOR']['DATE'], input_y_values=data['WB_FOR']['EUD']) # obs plotting eud_symb = msymb( symbol_type='marker', symbol_colour='black', symbol_height=0.3, symbol_connect_line='false', symbol_marker_index=15, legend='on', legend_user_text="WB_ECMWF" ) # wb_for for dwd dwd_for_input = minput(input_x_type='date', input_date_x_values=data['WB_FOR']['DATE'], input_y_values=data['WB_FOR']['DWD']) # obs plotting dwd_symb = msymb( symbol_type='marker', symbol_colour='red', symbol_height=0.3, symbol_marker_index=15, legend='on', legend_user_text="WB_DWD", ) # wb_for for dwd dates = [min_date, max_date] print data["THlow"] lows = [data["THlow"], data["THlow"]] mediums = [data["THmedium"], data["THmedium"]] highs = [data["THHigh"], data["THHigh"]] extremes = [data["THextreme"], data["THextreme"]] green ='rgb(0.78,0.95,0.17)' yellow ='rgb(0.98,0.96,0.02)' red ='rgb(0.93,0.34,0.35)' purple ='rgb(0.79,0.35,0.95)' low = mgraph( x_date_values = dates, x2_date_values = dates, y_values = lows, y2_values = mediums, graph_line_colour=green, graph_shade_colour=green, graph_line_thickness=4, graph_type='area', graph_shade='on', legend='on', legend_user_text="Low%.2f"% (data["THlow"])) medium = mgraph( x_date_values = dates, x2_date_values = dates, y_values = mediums, y2_values = highs, graph_line_colour=yellow, graph_shade_colour=yellow, graph_line_thickness=4, graph_type='area', graph_shade='on', legend='on', legend_user_text="Med-%.2f"% (data["THmedium"])) high = mgraph( x_date_values = dates, x2_date_values = dates, y_values = highs, y2_values = extremes, graph_line_colour=red, graph_shade_colour=red, graph_line_thickness=4, graph_type='area', graph_shade='on', legend='on', legend_user_text="High-%.2f" % (data["THHigh"])) extreme = mgraph( x_date_values = dates, x2_date_values = dates, y_values = extremes, y2_values = [max, max], graph_line_colour="yellow", graph_shade_colour=purple, graph_line_thickness=6, graph_type='area', graph_shade='on', legend='on', legend_user_text="Sev-%.2f" % (data["THextreme"])) plot(output, projection, vertical, horizontal, low , medium, high, extreme, eud_input, eud_graph, dwd_input, dwd_graph, boxplot, eud_for_input, eud_symb, dwd_for_input, dwd_symb, obs_input, obs_symb )
28.72973
86
0.618062
4a05fdb4d1902a1a453a65b732fcef322fbc5c00
5,844
py
Python
planemo/lint.py
TMiguelT/planemo
deccc48cb15ea9e670f1dbbc0d6dd1e96fe96418
[ "CC-BY-3.0" ]
null
null
null
planemo/lint.py
TMiguelT/planemo
deccc48cb15ea9e670f1dbbc0d6dd1e96fe96418
[ "CC-BY-3.0" ]
null
null
null
planemo/lint.py
TMiguelT/planemo
deccc48cb15ea9e670f1dbbc0d6dd1e96fe96418
[ "CC-BY-3.0" ]
null
null
null
"""Utilities to help linting various targets.""" from __future__ import absolute_import import os import requests from galaxy.tool_util.lint import LintContext from six.moves.urllib.request import urlopen import planemo.linters.biocontainer_registered import planemo.linters.conda_requirements import planemo.linters.doi import planemo.linters.urls import planemo.linters.xsd from planemo.io import error from planemo.shed import find_urls_for_xml from planemo.xml import validation def build_lint_args(ctx, **kwds): """Handle common report, error, and skip linting arguments.""" report_level = kwds.get("report_level", "all") fail_level = kwds.get("fail_level", "warn") skip = kwds.get("skip", None) if skip is None: skip = ctx.global_config.get("lint_skip", "") if isinstance(skip, list): skip = ",".join(skip) skip_types = [s.strip() for s in skip.split(",")] lint_args = dict( level=report_level, fail_level=fail_level, extra_modules=_lint_extra_modules(**kwds), skip_types=skip_types, ) return lint_args # TODO: Move this back to tool_lint. def _lint_extra_modules(**kwds): linters = [] if kwds.get("xsd", True): linters.append(planemo.linters.xsd) if kwds.get("doi", False): linters.append(planemo.linters.doi) if kwds.get("urls", False): linters.append(planemo.linters.urls) if kwds.get("conda_requirements", False): linters.append(planemo.linters.conda_requirements) if kwds.get("biocontainer", False): linters.append(planemo.linters.biocontainer_registered) return linters def setup_lint(ctx, **kwds): """Prepare lint_args and lint_ctx to begin linting a target.""" lint_args = build_lint_args(ctx, **kwds) lint_ctx = LintContext(lint_args["level"]) return lint_args, lint_ctx def handle_lint_complete(lint_ctx, lint_args, failed=False): """Complete linting of a target and decide exit code.""" if not failed: failed = lint_ctx.failed(lint_args["fail_level"]) if failed: error("Failed linting") return 1 if failed else 0 def lint_dois(tool_xml, lint_ctx): """Find referenced DOIs and check they have valid with https://doi.org.""" dois = find_dois_for_xml(tool_xml) for publication in dois: is_doi(publication, lint_ctx) def find_dois_for_xml(tool_xml): dois = [] for element in tool_xml.getroot().findall("citations"): for citation in list(element): if citation.tag == 'citation' and citation.attrib.get('type', '') == 'doi': dois.append(citation.text) return dois def is_doi(publication_id, lint_ctx): """Check if dx.doi knows about the ``publication_id``.""" base_url = "https://doi.org" if publication_id is None: lint_ctx.error('Empty DOI citation') return publication_id = publication_id.strip() doiless_publication_id = publication_id.split("doi:", 1)[-1] if not doiless_publication_id: lint_ctx.error('Empty DOI citation') return url = "%s/%s" % (base_url, doiless_publication_id) r = requests.get(url) if r.status_code == 200: if publication_id != doiless_publication_id: lint_ctx.error("%s is valid, but Galaxy expects DOI without 'doi:' prefix" % publication_id) else: lint_ctx.info("%s is a valid DOI" % publication_id) elif r.status_code == 404: lint_ctx.error("%s is not a valid DOI" % publication_id) else: lint_ctx.warn("dx.doi returned unexpected status code %d" % r.status_code) def lint_xsd(lint_ctx, schema_path, path): """Lint XML at specified path with supplied schema.""" name = lint_ctx.object_name or os.path.basename(path) validator = validation.get_validator(require=True) validation_result = validator.validate(schema_path, path) if not validation_result.passed: msg = "Invalid XML found in file: %s. Errors [%s]" msg = msg % (name, validation_result.output) lint_ctx.error(msg) else: lint_ctx.info("File validates against XML schema.") def lint_urls(root, lint_ctx): """Find referenced URLs and verify they are valid.""" urls, docs = find_urls_for_xml(root) # This is from Google Chome on macOS, current at time of writing: BROWSER_USER_AGENT = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.75 Safari/537.36" def validate_url(url, lint_ctx, user_agent=None): is_valid = True if url.startswith('http://') or url.startswith('https://'): if user_agent: headers = {"User-Agent": user_agent, 'Accept': '*/*'} else: headers = None r = None try: r = requests.get(url, headers=headers, stream=True) r.raise_for_status() next(r.iter_content(1000)) except Exception as e: if r and r.status_code == 429: # too many requests pass else: is_valid = False lint_ctx.error("Error '%s' accessing %s" % (e, url)) else: try: with urlopen(url) as handle: handle.read(100) except Exception as e: is_valid = False lint_ctx.error("Error '%s' accessing %s" % (e, url)) if is_valid: lint_ctx.info("URL OK %s" % url) for url in urls: validate_url(url, lint_ctx) for url in docs: validate_url(url, lint_ctx, BROWSER_USER_AGENT) __all__ = ( "build_lint_args", "handle_lint_complete", "lint_dois", "lint_urls", "lint_xsd", )
32.648045
147
0.636721
4a06002baa15e09aa4e8731bb03e95e0b8385d23
893
py
Python
tests/unit/test_models/test_submodels/test_external_circuit/test_function_control.py
danieljtait/PyBaMM
f9d6143770e4a01099f06e3574142424730f731a
[ "BSD-3-Clause" ]
null
null
null
tests/unit/test_models/test_submodels/test_external_circuit/test_function_control.py
danieljtait/PyBaMM
f9d6143770e4a01099f06e3574142424730f731a
[ "BSD-3-Clause" ]
null
null
null
tests/unit/test_models/test_submodels/test_external_circuit/test_function_control.py
danieljtait/PyBaMM
f9d6143770e4a01099f06e3574142424730f731a
[ "BSD-3-Clause" ]
null
null
null
# # Test function control submodel # import pybamm import tests import unittest def external_circuit_function(variables): I = variables["Current [A]"] V = variables["Terminal voltage [V]"] return V + I - pybamm.FunctionParameter("Current plus voltage function", pybamm.t) class TestFunctionControl(unittest.TestCase): def test_public_functions(self): param = pybamm.standard_parameters_lithium_ion submodel = pybamm.external_circuit.FunctionControl( param, external_circuit_function ) variables = {"Terminal voltage [V]": pybamm.Scalar(0)} std_tests = tests.StandardSubModelTests(submodel, variables) std_tests.test_all() if __name__ == "__main__": print("Add -v for more debug output") import sys if "-v" in sys.argv: debug = True pybamm.settings.debug_mode = True unittest.main()
26.264706
86
0.68981
4a06002e3484652559a2192c44b953a2233ab840
1,463
py
Python
setup.py
iPlantCollaborativeOpenSource/rfive
6a50bfe9c646f23b4dfde7e7bbda2381f33552af
[ "BSD-3-Clause" ]
null
null
null
setup.py
iPlantCollaborativeOpenSource/rfive
6a50bfe9c646f23b4dfde7e7bbda2381f33552af
[ "BSD-3-Clause" ]
null
null
null
setup.py
iPlantCollaborativeOpenSource/rfive
6a50bfe9c646f23b4dfde7e7bbda2381f33552af
[ "BSD-3-Clause" ]
2
2019-12-04T22:35:59.000Z
2019-12-11T22:37:02.000Z
import os import setuptools from rfive.version import get_version readme = open('README.md').read() long_description = """ rfive %s A unified interface into multiple cloud providers. To install use pip install git+git://git@github.com:iPlantCollaborativeOpenSource/rfive.git ---- %s ---- For more information, please see: https://github.com/iPlantCollaborativeOpenSource/rfive """ % (get_version('short'), readme) with open('requirements.txt') as r: required = r.readlines() setuptools.setup( name='rfive', version=get_version('short'), author='iPlant Collaborative', author_email='atmodevs@gmail.com', description="A unified interface into multiple cloud providers.", long_description=long_description, license="Apache License, Version 2.0", url="https://github.com/iPlantCollaborativeOpenSource/rfive", packages=setuptools.find_packages(), install_requires=required, classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Information Technology", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Software Development :: Libraries", "Topic :: System", "Topic :: System :: Clustering", "Topic :: System :: Distributed Computing", "Topic :: System :: Systems Administration" ])
29.857143
91
0.683527
4a0601bd18a7344cd3e88615f713f901a87bc362
4,213
py
Python
Examples/Example_6/run.py
mrslezak/Engine
c46ff278a2c5f4162db91a7ab500a0bb8cef7657
[ "BSD-3-Clause" ]
335
2016-10-07T16:31:10.000Z
2022-03-02T07:12:03.000Z
Examples/Example_6/run.py
mrslezak/Engine
c46ff278a2c5f4162db91a7ab500a0bb8cef7657
[ "BSD-3-Clause" ]
59
2016-10-31T04:20:24.000Z
2022-01-03T16:39:57.000Z
Examples/Example_6/run.py
mrslezak/Engine
c46ff278a2c5f4162db91a7ab500a0bb8cef7657
[ "BSD-3-Clause" ]
180
2016-10-08T14:23:50.000Z
2022-03-28T10:43:05.000Z
#!/usr/bin/env python import sys import os sys.path.append('../') from ore_examples_helper import OreExample oreex = OreExample(sys.argv[1] if len(sys.argv)>1 else False) # Portfolio 1 run oreex.print_headline("Run ORE to produce NPV cube and exposures for portfolio 1") oreex.run("Input/ore_portfolio_1.xml") oreex.get_times("Output/portfolio_1/log.txt") oreex.print_headline("Plot results for portfolio 1") oreex.setup_plot("portfolio_1") oreex.plot(os.path.join("portfolio_1", "exposure_trade_swap_01.csv"), 2, 3, 'b', "EPE Swap") oreex.plot(os.path.join("portfolio_1", "exposure_trade_collar_01.csv"), 2, 4, 'r', "ENE Collar") oreex.plot(os.path.join("portfolio_1", "exposure_nettingset_CPTY_A.csv"), 2, 4, 'g', "ENE Netting") #oreex.plot(os.path.join("portfolio_1", "exposure_nettingset_CPTY_A.csv"), 2, 3, 'g', "EPE Netting") oreex.decorate_plot(title="Example 6, Portfolio 1") oreex.save_plot_to_file(os.path.join("Output", "portfolio_1")) # Portfolio 2 run oreex.print_headline("Run ORE to produce NPV cube and exposures for portfolio 2") oreex.run("Input/ore_portfolio_2.xml") oreex.get_times("Output/portfolio_2/log.txt") oreex.print_headline("Plot results for portfolio 2") oreex.setup_plot("portfolio_2") oreex.plot(os.path.join("portfolio_2", "exposure_trade_floor_01.csv"), 2, 3, 'b', "EPE Floor") oreex.plot(os.path.join("portfolio_2", "exposure_trade_cap_01.csv"), 2, 4, 'r', "ENE Cap") oreex.plot(os.path.join("portfolio_2", "exposure_nettingset_CPTY_B.csv"), 2, 3, 'g', "EPE Net Cap and Floor") oreex.plot(os.path.join("portfolio_2", "exposure_trade_collar_02.csv"), 2, 4, 'g', "ENE Collar", offset=1, marker='o', linestyle='') oreex.decorate_plot(title="Example 6, Portfolio 2") oreex.save_plot_to_file(os.path.join("Output", "portfolio_2")) # Portfolio 3 run oreex.print_headline("Run ORE to produce NPV cube and exposures for portfolio 3") oreex.run("Input/ore_portfolio_3.xml") oreex.get_times("Output/portfolio_3/log.txt") oreex.print_headline("Plot results for portfolio 3") oreex.setup_plot("portfolio_3") oreex.plot(os.path.join("portfolio_3", "exposure_trade_cap_02.csv"), 2, 3, 'b', "EPE Cap") oreex.plot(os.path.join("portfolio_3", "exposure_trade_cap_03.csv"), 2, 4, 'r', "ENE Amortising Cap") oreex.plot(os.path.join("portfolio_3", "exposure_nettingset_CPTY_B.csv"), 2, 3, 'g', "EPE Netted") oreex.decorate_plot(title="Example 6, Portfolio 3") oreex.save_plot_to_file(os.path.join("Output", "portfolio_3")) # Portfolio 4 run oreex.print_headline("Run ORE to produce NPV cube and exposures for portfolio 4") oreex.run("Input/ore_portfolio_4.xml") oreex.get_times("Output/portfolio_4/log.txt") oreex.print_headline("Plot results for portfolio 4") oreex.setup_plot("portfolio_4") oreex.plot(os.path.join("portfolio_4", "exposure_nettingset_CPTY_A.csv"), 2, 3, 'b', "EPE Swap + Collar") oreex.plot(os.path.join("portfolio_4", "exposure_nettingset_CPTY_A.csv"), 2, 4, 'r', "ENE Swap + Collar") oreex.plot(os.path.join("portfolio_4", "exposure_nettingset_CPTY_B.csv"), 2, 3, 'b', "EPE CapFloored Swap", offset=1, marker='o', linestyle='') oreex.plot(os.path.join("portfolio_4", "exposure_nettingset_CPTY_B.csv"), 2, 4, 'r', "ENE CapFloored Swap", offset=1, marker='o', linestyle='') oreex.decorate_plot(title="Example 6, Portfolio 4") oreex.save_plot_to_file(os.path.join("Output", "portfolio_4")) # Portfolio 5 run oreex.print_headline("Run ORE to produce NPV cube and exposures for portfolio 5") oreex.run("Input/ore_portfolio_5.xml") oreex.get_times("Output/portfolio_5/log.txt") oreex.print_headline("Plot results for portfolio 5") oreex.setup_plot("portfolio_5") oreex.plot(os.path.join("portfolio_5", "exposure_nettingset_CPTY_A.csv"), 2, 3, 'b', "EPE Capped swap") oreex.plot(os.path.join("portfolio_5", "exposure_nettingset_CPTY_A.csv"), 2, 4, 'r', "ENE Capped swap") oreex.plot(os.path.join("portfolio_5", "exposure_nettingset_CPTY_B.csv"), 2, 3, 'b', "EPE Swap + Cap", offset=1, marker='o', linestyle='') oreex.plot(os.path.join("portfolio_5", "exposure_nettingset_CPTY_B.csv"), 2, 4, 'r', "ENE Swap + Cap", offset=1, marker='o', linestyle='') oreex.decorate_plot(title="Example 6, Portfolio 5") oreex.save_plot_to_file(os.path.join("Output", "portfolio_5"))
50.759036
143
0.745075
4a06042c989cba7437d95ac442d69d1549bd29e1
12,632
py
Python
analysis/interaction_analysis_all_dbs.py
broncio123/mpmodeling
4910d6fc8822fd7358edeca1ed2e57383ec5bc35
[ "MIT" ]
null
null
null
analysis/interaction_analysis_all_dbs.py
broncio123/mpmodeling
4910d6fc8822fd7358edeca1ed2e57383ec5bc35
[ "MIT" ]
null
null
null
analysis/interaction_analysis_all_dbs.py
broncio123/mpmodeling
4910d6fc8822fd7358edeca1ed2e57383ec5bc35
[ "MIT" ]
null
null
null
import os import sys import numpy import pandas as pd import json import subprocess import isambard_dev import operator import matplotlib.pyplot as plt plt.switch_backend('agg') from operator import itemgetter import seaborn as sns from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker ########################################################## modules_paths = [ "/home/ba13026/mpmodeling/analysis", "/home/ba13026/mpmodeling/protocols" ] for path in modules_paths: if path not in sys.path: sys.path.append(path) ########################################################## from cluster_transfer import BG import setup_geometry_interactions_db from setup_geometry_interactions_db import \ Json,Tags,RigidBody,RadialProfiles,Miscellaneous,Interhelix_Interactions, Base from insert2db_geometry_interactions import interaction_direction import geometry_interactions from geometry_interactions import Models, Analyse_Interactions, start_session, sort_superbase ########################################################## inter_type = sys.argv[1] # Define either 'kihs' or 'hbonds' start_frame_no = int(sys.argv[2]) WD = BG.workdir+'md_100ns_dbs/' ########################################################## class MyDB: def __init__(self): self.db_path = '' self.name = '' self.tags = [] self.id_extractor = '' ########################################################## # DOCKED MODELS docked = MyDB() db_path = WD+'mutants_docked_geometry-interactions.db' docked.db_path = db_path docked.name = 'docked' docked.tags = [ json.dumps(['cWza','conformation0']), json.dumps(['cWza','conformation1']), json.dumps(['cWza-K375C','conformation0']), json.dumps(['cWza-K375C','conformation1']), json.dumps(['cWza-S355C','conformation0']), json.dumps(['cWza-S355C','conformation1']), json.dumps(['cWza-Y373C','conformation0']) ] # STUFF FOR DATABASE ID EXTRACTION with open(WD+'filtered_ids_new.json','r') as fp: Filtered_IDs = json.load(fp) def extractor_docked(session, tags): mutant, group = json.loads(tags) return list(Filtered_IDs[mutant][group]) docked.id_extractor = extractor_docked ########################################################## # EMMD MODELS emmd = MyDB() db_path = WD+'mutants_em-conformations_geometry-interactions.db' emmd.db_path = db_path emmd.name = 'emmd' emmd.tags = [ json.dumps(['cWza','em-conformation0']), json.dumps(['cWza','em-conformation1']), json.dumps(['cWza-K375C','em-conformation0']), json.dumps(['cWza-K375C','em-conformation1']), json.dumps(['cWza-S355C','em-conformation0']), json.dumps(['cWza-S355C','em-conformation1']), json.dumps(['cWza-Y373C','em-conformation1']) ] def extractor_emmd(mysession, tags): mutant, group = json.loads(tags) return [x[0] for x in mysession.query(Tags.id).filter_by(mutant=mutant,group=group).all()] emmd.id_extractor = extractor_emmd ########################################################## # PRMD MODELS prmd = MyDB() db_path = WD+'mutants_prmd-conformations_geometry-interactions.db' prmd.db_path = db_path prmd.name = 'prmd' prmd.tags = [ json.dumps(['cWza','conformation0']), json.dumps(['cWza','conformation1']), json.dumps(['cWza-K375C','conformation0']), json.dumps(['cWza-K375C','conformation1']), json.dumps(['cWza-S355C','conformation0']), json.dumps(['cWza-S355C','conformation1']), json.dumps(['cWza-Y373C','conformation1']) ] def get_ModelsIDs_prmd(session): inter_tags = { 'hbonds': Interhelix_Interactions.hbonds, 'kihs': Interhelix_Interactions.kihs } with open(WD+'mutants_prmd_conformations_pdb_paths.json','r') as fp: DBTags = json.load(fp) FrameRange = range(40,51) ModelsIDs_per_tag = {} for tag in prmd.tags: ModelsIDs_per_tag[tag] = [] for info in DBTags: mutant, group, pdb_name = info[0] conformation, stage_name, frame_no = group.split(':') db_tag = json.dumps([mutant, conformation]) if (db_tag == tag) and (int(frame_no) in FrameRange): try: db_id = session.query(Tags.id).filter_by(mutant=mutant,group=group,pdb_name=pdb_name).first()[0] ModelsIDs_per_tag[tag].append(db_id) except: print("No ID for model: ", mutant, group, pdb_name) # Find IDs with no interaction data IDs_to_remove = [] for i in range(len(prmd.tags)): for id in list(ModelsIDs_per_tag[prmd.tags[i]]): for inter_type in inter_tags.keys(): try: data = session.query(inter_tags[inter_type]).filter_by(id=id).first()[0] except: IDs_to_remove.append([prmd.tags[i], id]) # Remove IDs with no interaction data for x in IDs_to_remove: tag, id = x try: ModelsIDs_per_tag[tag].remove(id) except: pass return ModelsIDs_per_tag def extractor_prmd(session, db_tag): ModelsIDs_per_tag = get_ModelsIDs_prmd(session) return ModelsIDs_per_tag[db_tag] prmd.id_extractor = extractor_prmd ########################################################## # URMD MODELS urmd = MyDB() n = start_frame_no db_path = WD+'mutants_urmd_'+str(n)+'-'+str(n+10)+'ns-conformations_geometry-interactions.db' urmd.db_path = db_path urmd.name = 'urmd_'+str(n)+'-'+str(n+10)+'ns' urmd.tags = [ json.dumps(['cWza','conformation0']), json.dumps(['cWza','conformation1']), json.dumps(['cWza-K375C','conformation0']), json.dumps(['cWza-K375C','conformation1']), json.dumps(['cWza-S355C','conformation0']), json.dumps(['cWza-S355C','conformation1']), json.dumps(['cWza-Y373C','conformation1']) ] ########################################################## # STUFF FOR DATABASE ID EXTRACTION ########################################################## def get_ModelsIDs_urmd(session): inter_tags = { 'hbonds': Interhelix_Interactions.hbonds, 'kihs': Interhelix_Interactions.kihs } n = start_frame_no with open(WD+'mutants_urmd_'+str(n)+'-'+str(n+10)+'ns-conformations_pdb_paths.json','r') as fp: DBTags = json.load(fp) FrameRange = range(start_frame_no,start_frame_no+11) ModelsIDs_per_tag = {} for tag in urmd.tags: ModelsIDs_per_tag[tag] = [] for info in DBTags: mutant, group, pdb_name = info[0] conformation, stage_name, frame_no = group.split(':') db_tag = json.dumps([mutant, conformation]) if (db_tag == tag) and (int(frame_no) in FrameRange): try: db_id = session.query(Tags.id).filter_by(mutant=mutant,group=group,pdb_name=pdb_name).first()[0] ModelsIDs_per_tag[tag].append(db_id) except: print("No ID available for model: ", mutant, group, pdb_name) # Find IDs with no interaction data IDs_to_remove = [] for i in range(len(urmd.tags)): for id in list(ModelsIDs_per_tag[urmd.tags[i]]): for inter_type in inter_tags.keys(): try: data = session.query(inter_tags[inter_type]).filter_by(id=id).first()[0] except: IDs_to_remove.append([urmd.tags[i], id]) # Remove IDs with no interaction data for x in IDs_to_remove: tag, id = x try: ModelsIDs_per_tag[tag].remove(id) except: pass return ModelsIDs_per_tag def extractor_urmd(session, db_tag): ModelsIDs_per_tag = get_ModelsIDs_urmd(session) return ModelsIDs_per_tag[db_tag] urmd.id_extractor = extractor_urmd ########################################################## def visualise_data0(df, Labels, stage, dc, inter_type): Inter_Labels = { 'hbonds': 'HO-atoms', 'kihs': 'KIH-atoms' } fig,ax = plt.subplots(2,2,figsize=(14,16)) mutant_names = ['cWza','cWza-K375C','cWza-S355C','cWza-Y373C'] axes = { 'cWza':ax[0,0], 'cWza-K375C':ax[0,1], 'cWza-S355C':ax[1,0], 'cWza-Y373C':ax[1,1] } DFColumns = { 'cWza':[0+dc,1+dc], 'cWza-K375C':[2+dc,3+dc], 'cWza-S355C':[4+dc,5+dc], 'cWza-Y373C':[6+dc] } Colors = { 'cWza':['blue','green'], 'cWza-K375C':['blue','green'], 'cWza-S355C':['blue','green'], 'cWza-Y373C':['green'] } Conformation = { 'cWza':['Narrow', 'Wide'], 'cWza-K375C':['Narrow', 'Wide'], 'cWza-S355C':['Narrow', 'Wide'], 'cWza-Y373C':['Single'], } for mutant in mutant_names: df.plot(kind='barh', y=DFColumns[mutant],color=Colors[mutant],ax=axes[mutant]) axes[mutant].legend(Conformation[mutant],loc='best',fontsize=15) axes[mutant].set_xlim(0,1) axes[mutant].tick_params(axis='both',direction='in') axes[mutant].set_title(mutant+" : "+stage.name, fontsize=28) ax[1,0].set_xlabel("probability", fontsize=22) ax[1,1].set_xlabel("probability", fontsize=22) ax[0,0].set_ylabel("") ax[1,0].set_ylabel("") ax[0,1].set_ylabel(Inter_Labels[inter_type], fontsize=25) ax[1,1].set_ylabel(Inter_Labels[inter_type], fontsize=25) axes['cWza'].set_yticklabels(itemgetter(*list(df.index))(Labels), fontsize=15) axes['cWza-S355C'].set_yticklabels(itemgetter(*list(df.index))(Labels), fontsize=15) axes['cWza-K375C'].set_yticklabels("") axes['cWza-Y373C'].set_yticklabels("") fig.tight_layout() plt.show() filename = WD+inter_type+'_'+stage.name+'_'+urmd.name+'.png' plt.savefig(filename) ########################################################## # PERFORM CALCULATION STAGES = [docked, emmd, prmd, urmd] ########################################################## Superbases = {} Interaction_data = {} Analyses = {} for stage in STAGES: stage_session = start_session(stage.db_path) models = Models(stage_session) MyTags = stage.tags Interaction_data[stage.name] = {} Superbases[stage.name] = {} Analyses[stage.name] = {} for tags in MyTags: mutant, group = json.loads(tags) models.ids = stage.id_extractor(models.session, tags) analysis = Analyse_Interactions(models) Analyses[stage.name][tags] = analysis Interaction_data[stage.name][tags] = analysis.get_interaction_data(inter_type) sbase = analysis.get_superbase(inter_type) Superbases[stage.name][tags] = sbase def NestedDictValues(d): for v in d.values(): if isinstance(v, dict): yield from NestedDictValues(v) else: yield v unified_sbase = set() for sb in list(NestedDictValues(Superbases)): unified_sbase = unified_sbase.union(set(sb)) sbase = list(unified_sbase) sbase0 = sort_superbase(list(sbase), N_residues=32) with open(WD+"superbase_"+inter_type+"_docked2urmd.json",'w') as fp: json.dump(fp,sbase0,indent=4) ########################################################### # Probabilities are determined relative to the superbase Probs = {} for stage in STAGES: MyTags = stage.tags Probs[stage.name] = {} for tags in MyTags: analysis = Analyses[stage.name][tags] atoms = Interaction_data[stage.name][tags] stats = analysis.get_interaction_stats(sbase0, atoms) prob = analysis.get_interaction_probability(sbase0, stats) Probs[stage.name][tags] = prob tools = geometry_interactions.Tools() Labels = tools.labels_df(sbase0,inter_type) ########################################################### # FRAME AND FILTER PROBABILITY DATA SortedData = [] for stage in STAGES: MyTags = stage.tags for tag in MyTags: SortedData.append(Probs[stage.name][tag]) SortedData = numpy.array(SortedData).T import pandas as pd df = pd.DataFrame( SortedData ) tolerance = 0.05 df = df[df > tolerance] df = df[df.notnull().any(axis=1)] # Save DataFrame df.to_json(WD+'df_'+inter_type+'_docked_to_'+urmd.name+'.json') ########################################################## # PLOT ALL DATA AND SAVE FIGURES dc = 0 for stage in STAGES: visualise_data0(df, Labels, stage, dc, inter_type) dc = dc + 7
34.326087
116
0.584706
4a06049b9c90d256cd4b76da3077eb6a2675fdcc
2,401
py
Python
ramp-frontend/ramp_frontend/tests/test_utils.py
frcaud/ramp-board
3df90e51a4faeb0c03bab5dc13e12311807a618e
[ "BSD-3-Clause" ]
13
2019-02-16T22:30:11.000Z
2021-01-11T10:13:47.000Z
ramp-frontend/ramp_frontend/tests/test_utils.py
frcaud/ramp-board
3df90e51a4faeb0c03bab5dc13e12311807a618e
[ "BSD-3-Clause" ]
427
2018-11-22T22:01:47.000Z
2022-03-15T17:35:57.000Z
ramp-frontend/ramp_frontend/tests/test_utils.py
frcaud/ramp-board
3df90e51a4faeb0c03bab5dc13e12311807a618e
[ "BSD-3-Clause" ]
18
2018-11-22T16:22:18.000Z
2021-12-07T14:42:41.000Z
import shutil import pytest from ramp_utils import generate_flask_config from ramp_utils import read_config from ramp_utils.testing import database_config_template from ramp_utils.testing import ramp_config_template from ramp_database.model import Model from ramp_database.testing import create_toy_db from ramp_database.utils import setup_db from ramp_database.utils import session_scope from ramp_database.tools.user import get_user_by_name from ramp_frontend import create_app from ramp_frontend import mail from ramp_frontend.utils import body_formatter_user from ramp_frontend.utils import send_mail from ramp_frontend.testing import _fail_no_smtp_server @pytest.fixture(scope="module") def client_session(database_connection): database_config = read_config(database_config_template()) ramp_config = ramp_config_template() try: deployment_dir = create_toy_db(database_config, ramp_config) flask_config = generate_flask_config(database_config) app = create_app(flask_config) app.config["TESTING"] = True app.config["WTF_CSRF_ENABLED"] = False with session_scope(database_config["sqlalchemy"]) as session: yield app.test_client(), session finally: shutil.rmtree(deployment_dir, ignore_errors=True) try: # In case of failure we should close the global flask engine from ramp_frontend import db as db_flask db_flask.session.close() except RuntimeError: pass db, _ = setup_db(database_config["sqlalchemy"]) Model.metadata.drop_all(db) @_fail_no_smtp_server def test_send_mail(client_session): client, _ = client_session with client.application.app_context(): with mail.record_messages() as outbox: send_mail("xx@gmail.com", "subject", "body") assert len(outbox) == 1 assert outbox[0].subject == "subject" assert outbox[0].body == "body" assert outbox[0].recipients == ["xx@gmail.com"] def test_body_formatter_user(client_session): _, session = client_session user = get_user_by_name(session, "test_user") for word in [ "test_user", "User", "Test", "linkedin", "twitter", "facebook", "github", "notes", "bio", ]: assert word in body_formatter_user(user)
31.592105
72
0.700541
4a0604b3e522eb57e403b23823c3ab7432552069
4,861
py
Python
async_limits/storage/memory.py
anomit/limits
a02d3234664d2b4da9968fd5ad25899ce106517a
[ "MIT" ]
1
2021-06-21T13:51:56.000Z
2021-06-21T13:51:56.000Z
async_limits/storage/memory.py
anomit/limits
a02d3234664d2b4da9968fd5ad25899ce106517a
[ "MIT" ]
null
null
null
async_limits/storage/memory.py
anomit/limits
a02d3234664d2b4da9968fd5ad25899ce106517a
[ "MIT" ]
null
null
null
import threading import time from collections import Counter from .base import Storage class LockableEntry(threading._RLock): __slots__ = ["atime", "expiry"] def __init__(self, expiry): self.atime = time.time() self.expiry = self.atime + expiry super(LockableEntry, self).__init__() class MemoryStorage(Storage): """ rate limit storage using :class:`collections.Counter` as an in memory storage for fixed and elastic window strategies, and a simple list to implement moving window strategy. """ STORAGE_SCHEME = ["memory"] def __init__(self, uri=None, **_): self.storage = Counter() self.expirations = {} self.events = {} self.timer = threading.Timer(0.01, self.__expire_events) self.timer.start() super(MemoryStorage, self).__init__(uri) def __expire_events(self): for key in self.events.keys(): for event in list(self.events[key]): with event: if ( event.expiry <= time.time() and event in self.events[key] ): self.events[key].remove(event) for key in list(self.expirations.keys()): if self.expirations[key] <= time.time(): self.storage.pop(key, None) self.expirations.pop(key, None) def __schedule_expiry(self): if not self.timer.is_alive(): self.timer = threading.Timer(0.01, self.__expire_events) self.timer.start() def incr(self, key, expiry, elastic_expiry=False): """ increments the counter for a given rate limit key :param str key: the key to increment :param int expiry: amount in seconds for the key to expire in :param bool elastic_expiry: whether to keep extending the rate limit window every hit. """ self.get(key) self.__schedule_expiry() self.storage[key] += 1 if elastic_expiry or self.storage[key] == 1: self.expirations[key] = time.time() + expiry return self.storage.get(key, 0) def get(self, key): """ :param str key: the key to get the counter value for """ if self.expirations.get(key, 0) <= time.time(): self.storage.pop(key, None) self.expirations.pop(key, None) return self.storage.get(key, 0) def clear(self, key): """ :param str key: the key to clear rate async_limits for """ self.storage.pop(key, None) self.expirations.pop(key, None) self.events.pop(key, None) def acquire_entry(self, key, limit, expiry, no_add=False): """ :param str key: rate limit key to acquire an entry in :param int limit: amount of entries allowed :param int expiry: expiry of the entry :param bool no_add: if False an entry is not actually acquired but instead serves as a 'check' :rtype: bool """ self.events.setdefault(key, []) self.__schedule_expiry() timestamp = time.time() try: entry = self.events[key][limit - 1] except IndexError: entry = None if entry and entry.atime >= timestamp - expiry: return False else: if not no_add: self.events[key].insert(0, LockableEntry(expiry)) return True def get_expiry(self, key): """ :param str key: the key to get the expiry for """ return int(self.expirations.get(key, -1)) def get_num_acquired(self, key, expiry): """ returns the number of entries already acquired :param str key: rate limit key to acquire an entry in :param int expiry: expiry of the entry """ timestamp = time.time() return len([ k for k in self.events[key] if k.atime >= timestamp - expiry ]) if self.events.get(key) else 0 def get_moving_window(self, key, limit, expiry): """ returns the starting point and the number of entries in the moving window :param str key: rate limit key :param int expiry: expiry of entry :return: (start of window, number of acquired entries) """ timestamp = time.time() acquired = self.get_num_acquired(key, expiry) for item in self.events.get(key, []): if item.atime >= timestamp - expiry: return int(item.atime), acquired return int(timestamp), acquired def check(self): """ check if storage is healthy """ return True def reset(self): self.storage.clear() self.expirations.clear() self.events.clear()
31.771242
76
0.575396
4a0605b04f9c93869d9a94979c835c3987fbaccb
1,929
py
Python
django/contrib/gis/db/backends/oracle/adapter.py
Yoann-Vie/esgi-hearthstone
115d03426c7e8e80d89883b78ac72114c29bed12
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/contrib/gis/db/backends/oracle/adapter.py
Yoann-Vie/esgi-hearthstone
115d03426c7e8e80d89883b78ac72114c29bed12
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
django/contrib/gis/db/backends/oracle/adapter.py
Yoann-Vie/esgi-hearthstone
115d03426c7e8e80d89883b78ac72114c29bed12
[ "PSF-2.0", "BSD-3-Clause" ]
null
null
null
from cx_Oracle import CLOB from django.contrib.gis.db.backends.base.adapter import WKTAdapter from django.contrib.gis.geos import GeometryCollection, Polygon class OracleSpatialAdapter(WKTAdapter): input_size = CLOB def __init__(self, geom): """ Oracle requires that polygon rings are in proper orientation. This affects spatial operations and an invalid orientation may cause failures. Correct orientations are: * Outer ring - counter clockwise * Inner ring(s) - clockwise """ if isinstance(geom, Polygon): self._fix_polygon(geom) elif isinstance(geom, GeometryCollection): self._fix_geometry_collection(geom) self.wkt = geom.wkt self.srid = geom.srid def _fix_polygon(self, poly): """Fix single polygon orientation as described in __init__().""" if self._isClockwise(poly.exterior_ring): poly.exterior_ring = list(reversed(poly.exterior_ring)) for i in range(1, len(poly)): if not self._isClockwise(poly[i]): poly[i] = list(reversed(poly[i])) return poly def _fix_geometry_collection(self, coll): """ Fix polygon orientations in geometry collections as described in __init__(). """ for i, geom in enumerate(coll): if isinstance(geom, Polygon): coll[i] = self._fix_polygon(geom) def _isClockwise(self, coords): """ A modified shoelace algorithm to determine polygon orientation. See https://en.wikipedia.org/wiki/Shoelace_formula. """ n = len(coords) area = 0.0 for i in range(n): j = (i + 1) % n area += coords[i][0] * coords[j][1] area -= coords[j][0] * coords[i][1] return area < 0.0
33.258621
75
0.587869
4a06071390e7618760ca6bac7689a3cad3e9ad9d
28,467
py
Python
qiskit/aqua/quantum_instance.py
stefan-woerner/aqua
12e1b867e254977d9c5992612a7919d8fe016cb4
[ "Apache-2.0" ]
504
2018-12-15T16:34:03.000Z
2022-03-26T11:24:53.000Z
qiskit/aqua/quantum_instance.py
stefan-woerner/aqua
12e1b867e254977d9c5992612a7919d8fe016cb4
[ "Apache-2.0" ]
746
2018-12-16T16:44:42.000Z
2021-07-10T16:59:43.000Z
qiskit/aqua/quantum_instance.py
stefan-woerner/aqua
12e1b867e254977d9c5992612a7919d8fe016cb4
[ "Apache-2.0" ]
421
2018-12-22T14:49:00.000Z
2022-03-04T09:47:07.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Quantum Instance module """ from typing import Optional, List, Union, Dict, Callable, Tuple import copy import logging import time import numpy as np from qiskit.providers import Backend, BaseBackend from qiskit.transpiler import CouplingMap, PassManager from qiskit.transpiler.layout import Layout from qiskit.assembler.run_config import RunConfig from qiskit.circuit import QuantumCircuit from qiskit.result import Result from qiskit.qobj import Qobj from qiskit import compiler try: from qiskit.providers.aer.noise import NoiseModel # pylint: disable=unused-import except ImportError as ex: pass from .aqua_error import AquaError from .utils.backend_utils import (is_ibmq_provider, is_statevector_backend, is_simulator_backend, is_local_backend, is_aer_qasm, is_basicaer_provider, support_backend_options) from .utils.circuit_utils import summarize_circuits logger = logging.getLogger(__name__) class QuantumInstance: """Quantum Backend including execution setting.""" _BACKEND_CONFIG = ['basis_gates', 'coupling_map'] _COMPILE_CONFIG = ['initial_layout', 'seed_transpiler', 'optimization_level'] _RUN_CONFIG = ['shots', 'max_credits', 'memory', 'seed_simulator'] _QJOB_CONFIG = ['timeout', 'wait'] _NOISE_CONFIG = ['noise_model'] # https://github.com/Qiskit/qiskit-aer/blob/master/qiskit/providers/aer/backends/qasm_simulator.py _BACKEND_OPTIONS_QASM_ONLY = ["statevector_sample_measure_opt", "max_parallel_shots"] _BACKEND_OPTIONS = ["initial_statevector", "chop_threshold", "max_parallel_threads", "max_parallel_experiments", "statevector_parallel_threshold", "statevector_hpc_gate_opt"] + _BACKEND_OPTIONS_QASM_ONLY def __init__(self, backend: Union[Backend, BaseBackend], # run config shots: int = 1024, seed_simulator: Optional[int] = None, max_credits: int = 10, # backend properties basis_gates: Optional[List[str]] = None, coupling_map: Optional[Union[CouplingMap, List[List]]] = None, # transpile initial_layout: Optional[Union[Layout, Dict, List]] = None, pass_manager: Optional[PassManager] = None, seed_transpiler: Optional[int] = None, optimization_level: Optional[int] = None, # simulation backend_options: Optional[Dict] = None, noise_model: Optional['NoiseModel'] = None, # job timeout: Optional[float] = None, wait: float = 5., # others skip_qobj_validation: bool = True, measurement_error_mitigation_cls: Optional[Callable] = None, cals_matrix_refresh_period: int = 30, measurement_error_mitigation_shots: Optional[int] = None, job_callback: Optional[Callable] = None) -> None: """ Quantum Instance holds a Qiskit Terra backend as well as configuration for circuit transpilation and execution. When provided to an Aqua algorithm the algorithm will execute the circuits it needs to run using the instance. Args: backend: Instance of selected backend shots: Number of repetitions of each circuit, for sampling seed_simulator: Random seed for simulators max_credits: Maximum credits to use basis_gates: List of basis gate names supported by the target. Defaults to basis gates of the backend. coupling_map: Coupling map (perhaps custom) to target in mapping initial_layout: Initial layout of qubits in mapping pass_manager: Pass manager to handle how to compile the circuits seed_transpiler: The random seed for circuit mapper optimization_level: How much optimization to perform on the circuits. Higher levels generate more optimized circuits, at the expense of longer transpilation time. backend_options: All running options for backend, please refer to the provider of the backend for information as to what options it supports. noise_model: noise model for simulator timeout: Seconds to wait for job. If None, wait indefinitely. wait: Seconds between queries for job result skip_qobj_validation: Bypass Qobj validation to decrease circuit processing time during submission to backend. measurement_error_mitigation_cls: The approach to mitigate measurement errors. Qiskit Ignis provides fitter classes for this functionality and CompleteMeasFitter from qiskit.ignis.mitigation.measurement module can be used here. (TensoredMeasFitter is not supported). cals_matrix_refresh_period: How often to refresh the calibration matrix in measurement mitigation. in minutes measurement_error_mitigation_shots: The number of shots number for building calibration matrix. If None, the main `shots` parameter value is used. job_callback: Optional user supplied callback which can be used to monitor job progress as jobs are submitted for processing by an Aqua algorithm. The callback is provided the following arguments: `job_id, job_status, queue_position, job` Raises: AquaError: the shots exceeds the maximum number of shots AquaError: set noise model but the backend does not support that AquaError: set backend_options but the backend does not support that """ from .deprecation import warn_class warn_class('aqua.QuantumInstance', 'qiskit.utils.QuantumInstance', 'qiskit-terra') self._backend = backend self._pass_manager = pass_manager # setup run config if shots is not None: if self.is_statevector and shots != 1: logger.info("statevector backend only works with shot=1, changing " "shots from %s to 1.", shots) shots = 1 max_shots = self._backend.configuration().max_shots if max_shots is not None and shots > max_shots: raise AquaError('The maximum shots supported by the selected backend is {} ' 'but you specified {}'.format(max_shots, shots)) run_config = RunConfig(shots=shots, max_credits=max_credits) if seed_simulator is not None: run_config.seed_simulator = seed_simulator self._run_config = run_config # setup backend config basis_gates = basis_gates or backend.configuration().basis_gates coupling_map = coupling_map or getattr(backend.configuration(), 'coupling_map', None) self._backend_config = { 'basis_gates': basis_gates, 'coupling_map': coupling_map } # setup compile config self._compile_config = { 'initial_layout': initial_layout, 'seed_transpiler': seed_transpiler, 'optimization_level': optimization_level } # setup job config self._qjob_config = {'timeout': timeout} if self.is_local \ else {'timeout': timeout, 'wait': wait} # setup noise config self._noise_config = {} if noise_model is not None: if is_simulator_backend(self._backend) and not is_basicaer_provider(self._backend): self._noise_config = {'noise_model': noise_model} else: raise AquaError("The noise model is not supported on the selected backend {} ({}) " "only certain backends, such as Aer qasm simulator " "support noise.".format(self.backend_name, self._backend.provider())) # setup backend options for run self._backend_options = {} if backend_options is not None: if support_backend_options(self._backend): self._backend_options = {'backend_options': backend_options} else: raise AquaError("backend_options can not used with the backends in IBMQ provider.") # setup measurement error mitigation self._meas_error_mitigation_cls = None if self.is_statevector: if measurement_error_mitigation_cls is not None: raise AquaError("Measurement error mitigation does not work " "with the statevector simulation.") else: self._meas_error_mitigation_cls = measurement_error_mitigation_cls self._meas_error_mitigation_fitters: Dict[str, Tuple[np.ndarray, float]] = {} # TODO: support different fitting method in error mitigation? self._meas_error_mitigation_method = 'least_squares' self._cals_matrix_refresh_period = cals_matrix_refresh_period self._meas_error_mitigation_shots = measurement_error_mitigation_shots if self._meas_error_mitigation_cls is not None: logger.info("The measurement error mitigation is enabled. " "It will automatically submit an additional job to help " "calibrate the result of other jobs. " "The current approach will submit a job with 2^N circuits " "to build the calibration matrix, " "where N is the number of measured qubits. " "Furthermore, Aqua will re-use the calibration matrix for %s minutes " "and re-build it after that.", self._cals_matrix_refresh_period) # setup others if is_ibmq_provider(self._backend): if skip_qobj_validation: logger.info("skip_qobj_validation was set True but this setting is not " "supported by IBMQ provider and has been ignored.") skip_qobj_validation = False self._skip_qobj_validation = skip_qobj_validation self._circuit_summary = False self._job_callback = job_callback self._time_taken = 0. logger.info(self) def __str__(self) -> str: """Overload string. Returns: str: the info of the object. """ # pylint: disable=import-outside-toplevel from qiskit import __version__ as terra_version info = "\nQiskit Terra version: {}\n".format(terra_version) info += "Backend: '{} ({})', with following setting:\n{}\n{}\n{}\n{}\n{}\n{}".format( self.backend_name, self._backend.provider(), self._backend_config, self._compile_config, self._run_config, self._qjob_config, self._backend_options, self._noise_config) info += "\nMeasurement mitigation: {}".format(self._meas_error_mitigation_cls) return info def transpile(self, circuits: Union[QuantumCircuit, List[QuantumCircuit]]) -> List[QuantumCircuit]: """ A wrapper to transpile circuits to allow algorithm access the transpiled circuits. Args: circuits: circuits to transpile Returns: The transpiled circuits, it is always a list even though the length is one. """ if self._pass_manager is not None: transpiled_circuits = self._pass_manager.run(circuits) else: transpiled_circuits = compiler.transpile(circuits, self._backend, **self._backend_config, **self._compile_config) if not isinstance(transpiled_circuits, list): transpiled_circuits = [transpiled_circuits] if logger.isEnabledFor(logging.DEBUG) and self._circuit_summary: logger.debug("==== Before transpiler ====") logger.debug(summarize_circuits(circuits)) if transpiled_circuits is not None: logger.debug("==== After transpiler ====") logger.debug(summarize_circuits(transpiled_circuits)) return transpiled_circuits def assemble(self, circuits: Union[QuantumCircuit, List[QuantumCircuit]]) -> Qobj: """ assemble circuits """ return compiler.assemble(circuits, **self._run_config.to_dict()) def execute(self, circuits: Union[QuantumCircuit, List[QuantumCircuit]], had_transpiled: bool = False) -> Result: """ A wrapper to interface with quantum backend. Args: circuits: circuits to execute had_transpiled: whether or not circuits had been transpiled Returns: Result object TODO: Maybe we can combine the circuits for the main ones and calibration circuits before assembling to the qobj. """ # pylint: disable=import-outside-toplevel from .utils.run_circuits import run_qobj from .utils.measurement_error_mitigation import (get_measured_qubits_from_qobj, build_measurement_error_mitigation_qobj) # maybe compile if not had_transpiled: circuits = self.transpile(circuits) # assemble qobj = self.assemble(circuits) if self._meas_error_mitigation_cls is not None: qubit_index, qubit_mappings = get_measured_qubits_from_qobj(qobj) qubit_index_str = '_'.join([str(x) for x in qubit_index]) + \ "_{}".format(self._meas_error_mitigation_shots or self._run_config.shots) meas_error_mitigation_fitter, timestamp = \ self._meas_error_mitigation_fitters.get(qubit_index_str, (None, 0.)) if meas_error_mitigation_fitter is None: # check the asked qubit_index are the subset of build matrices for key, _ in self._meas_error_mitigation_fitters.items(): stored_qubit_index = [int(x) for x in key.split("_")[:-1]] stored_shots = int(key.split("_")[-1]) if len(qubit_index) < len(stored_qubit_index): tmp = list(set(qubit_index + stored_qubit_index)) if sorted(tmp) == sorted(stored_qubit_index) and \ self._run_config.shots == stored_shots: # the qubit used in current job is the subset and shots are the same meas_error_mitigation_fitter, timestamp = \ self._meas_error_mitigation_fitters.get(key, (None, 0.)) meas_error_mitigation_fitter = \ meas_error_mitigation_fitter.subset_fitter( # type: ignore qubit_sublist=qubit_index) logger.info("The qubits used in the current job is the subset of " "previous jobs, " "reusing the calibration matrix if it is not out-of-date.") build_cals_matrix = self.maybe_refresh_cals_matrix(timestamp) or \ meas_error_mitigation_fitter is None if build_cals_matrix: logger.info("Updating qobj with the circuits for measurement error mitigation.") use_different_shots = not ( self._meas_error_mitigation_shots is None or self._meas_error_mitigation_shots == self._run_config.shots) temp_run_config = copy.deepcopy(self._run_config) if use_different_shots: temp_run_config.shots = self._meas_error_mitigation_shots cals_qobj, state_labels, circuit_labels = \ build_measurement_error_mitigation_qobj(qubit_index, self._meas_error_mitigation_cls, self._backend, self._backend_config, self._compile_config, temp_run_config) if use_different_shots or is_aer_qasm(self._backend): cals_result = run_qobj(cals_qobj, self._backend, self._qjob_config, self._backend_options, self._noise_config, self._skip_qobj_validation, self._job_callback) self._time_taken += cals_result.time_taken result = run_qobj(qobj, self._backend, self._qjob_config, self._backend_options, self._noise_config, self._skip_qobj_validation, self._job_callback) self._time_taken += result.time_taken else: # insert the calibration circuit into main qobj if the shots are the same qobj.experiments[0:0] = cals_qobj.experiments result = run_qobj(qobj, self._backend, self._qjob_config, self._backend_options, self._noise_config, self._skip_qobj_validation, self._job_callback) self._time_taken += result.time_taken cals_result = result logger.info("Building calibration matrix for measurement error mitigation.") meas_error_mitigation_fitter = \ self._meas_error_mitigation_cls(cals_result, state_labels, qubit_list=qubit_index, circlabel=circuit_labels) self._meas_error_mitigation_fitters[qubit_index_str] = \ (meas_error_mitigation_fitter, time.time()) else: result = run_qobj(qobj, self._backend, self._qjob_config, self._backend_options, self._noise_config, self._skip_qobj_validation, self._job_callback) self._time_taken += result.time_taken if meas_error_mitigation_fitter is not None: logger.info("Performing measurement error mitigation.") skip_num_circuits = len(result.results) - len(circuits) # remove the calibration counts from result object to assure the length of # ExperimentalResult is equal length to input circuits result.results = result.results[skip_num_circuits:] tmp_result = copy.deepcopy(result) for qubit_index_str, c_idx in qubit_mappings.items(): curr_qubit_index = [int(x) for x in qubit_index_str.split("_")] tmp_result.results = [result.results[i] for i in c_idx] if curr_qubit_index == qubit_index: tmp_fitter = meas_error_mitigation_fitter else: tmp_fitter = \ meas_error_mitigation_fitter.subset_fitter( # type: ignore curr_qubit_index) tmp_result = tmp_fitter.filter.apply( # type: ignore tmp_result, self._meas_error_mitigation_method ) for i, n in enumerate(c_idx): result.results[n] = tmp_result.results[i] else: result = run_qobj(qobj, self._backend, self._qjob_config, self._backend_options, self._noise_config, self._skip_qobj_validation, self._job_callback) self._time_taken += result.time_taken if self._circuit_summary: self._circuit_summary = False return result def set_config(self, **kwargs): """Set configurations for the quantum instance.""" for k, v in kwargs.items(): if k in QuantumInstance._RUN_CONFIG: setattr(self._run_config, k, v) elif k in QuantumInstance._QJOB_CONFIG: self._qjob_config[k] = v elif k in QuantumInstance._COMPILE_CONFIG: self._compile_config[k] = v elif k in QuantumInstance._BACKEND_CONFIG: self._backend_config[k] = v elif k in QuantumInstance._BACKEND_OPTIONS: if not support_backend_options(self._backend): raise AquaError("backend_options can not be used with this backend " "{} ({}).".format(self.backend_name, self._backend.provider())) if k in QuantumInstance._BACKEND_OPTIONS_QASM_ONLY and self.is_statevector: raise AquaError("'{}' is only applicable for qasm simulator but " "statevector simulator is used as the backend.") if 'backend_options' not in self._backend_options: self._backend_options['backend_options'] = {} self._backend_options['backend_options'][k] = v elif k in QuantumInstance._NOISE_CONFIG: if not is_simulator_backend(self._backend) or is_basicaer_provider(self._backend): raise AquaError( "The noise model is not supported on the selected backend {} ({}) " "only certain backends, such as Aer qasm support " "noise.".format(self.backend_name, self._backend.provider())) self._noise_config[k] = v else: raise ValueError("unknown setting for the key ({}).".format(k)) @property def time_taken(self) -> float: """Accumulated time taken for execution.""" return self._time_taken def reset_execution_results(self) -> None: """ Reset execution results """ self._time_taken = 0. @property def qjob_config(self): """Getter of qjob_config.""" return self._qjob_config @property def backend_config(self): """Getter of backend_config.""" return self._backend_config @property def compile_config(self): """Getter of compile_config.""" return self._compile_config @property def run_config(self): """Getter of run_config.""" return self._run_config @property def noise_config(self): """Getter of noise_config.""" return self._noise_config @property def backend_options(self): """Getter of backend_options.""" return self._backend_options @property def circuit_summary(self): """Getter of circuit summary.""" return self._circuit_summary @circuit_summary.setter def circuit_summary(self, new_value): """ sets circuit summary """ self._circuit_summary = new_value @property def measurement_error_mitigation_cls(self): # pylint: disable=invalid-name """ returns measurement error mitigation cls """ return self._meas_error_mitigation_cls @measurement_error_mitigation_cls.setter def measurement_error_mitigation_cls(self, new_value): # pylint: disable=invalid-name """ sets measurement error mitigation cls """ self._meas_error_mitigation_cls = new_value @property def cals_matrix_refresh_period(self): """ returns matrix refresh period """ return self._cals_matrix_refresh_period @cals_matrix_refresh_period.setter def cals_matrix_refresh_period(self, new_value): """ sets matrix refresh period """ self._cals_matrix_refresh_period = new_value @property def measurement_error_mitigation_shots(self): # pylint: disable=invalid-name """ returns measurement error mitigation shots """ return self._meas_error_mitigation_shots @measurement_error_mitigation_shots.setter def measurement_error_mitigation_shots(self, new_value): # pylint: disable=invalid-name """ sets measurement error mitigation shots """ self._meas_error_mitigation_shots = new_value @property def backend(self): """Return BaseBackend backend object.""" return self._backend @property def backend_name(self): """Return backend name.""" return self._backend.name() @property def is_statevector(self): """Return True if backend is a statevector-type simulator.""" return is_statevector_backend(self._backend) @property def is_simulator(self): """Return True if backend is a simulator.""" return is_simulator_backend(self._backend) @property def is_local(self): """Return True if backend is a local backend.""" return is_local_backend(self._backend) @property def skip_qobj_validation(self): """ checks if skip qobj validation """ return self._skip_qobj_validation @skip_qobj_validation.setter def skip_qobj_validation(self, new_value): """ sets skip qobj validation flag """ self._skip_qobj_validation = new_value def maybe_refresh_cals_matrix(self, timestamp: Optional[float] = None) -> bool: """ Calculate the time difference from the query of last time. Args: timestamp: timestamp Returns: Whether or not refresh the cals_matrix """ timestamp = timestamp or 0. ret = False curr_timestamp = time.time() difference = int(curr_timestamp - timestamp) / 60.0 if difference > self._cals_matrix_refresh_period: ret = True return ret def cals_matrix(self, qubit_index: Optional[List[int]] = None) -> \ Optional[Union[Tuple[np.ndarray, float], Dict[str, Tuple[np.ndarray, float]]]]: """ Get the stored calibration matrices and its timestamp. Args: qubit_index: the qubit index of corresponding calibration matrix. If None, return all stored calibration matrices. Returns: The calibration matrix and the creation timestamp if qubit_index is not None otherwise, return all matrices and their timestamp in a dictionary. """ shots = self._meas_error_mitigation_shots or self._run_config.shots if qubit_index: qubit_index_str = '_'.join([str(x) for x in qubit_index]) + "_{}".format(shots) fitter, timestamp = self._meas_error_mitigation_fitters.get(qubit_index_str, None) if fitter is not None: return fitter.cal_matrix, timestamp # type: ignore else: return {k: (v.cal_matrix, t) for k, (v, t) # type: ignore in self._meas_error_mitigation_fitters.items()} return None
46.287805
102
0.597745
4a0607ae66550506dccafaa1d750e5ae53d907a2
12,827
py
Python
catamount/tests/full/tf_word2vec.py
jthestness/catamount
9de3090f1a02a04774f28a0d10f677a76f50446f
[ "Apache-2.0" ]
null
null
null
catamount/tests/full/tf_word2vec.py
jthestness/catamount
9de3090f1a02a04774f28a0d10f677a76f50446f
[ "Apache-2.0" ]
2
2021-05-18T20:31:42.000Z
2021-05-18T20:43:43.000Z
catamount/tests/full/tf_word2vec.py
jthestness/catamount
9de3090f1a02a04774f28a0d10f677a76f50446f
[ "Apache-2.0" ]
null
null
null
import argparse import numpy as np import pickle import re import sympy import sys sys.setrecursionlimit(50000) from catamount.api import utils import catamount.frameworks.tensorflow from catamount.ops.constant import * from catamount.ops.unknown_op import UnknownOp from catamount.ops.variable import * is_pytest_run = False def test_tf_w2v_model(): global is_pytest_run is_pytest_run = True run_tf_w2v_model() def run_tf_w2v_model(): global is_pytest_run graph_meta = 'catamount/frameworks/example_graphs/tensorflow/full_models/language_models/word2vec_n200-latest_model.meta' graph = catamount.frameworks.tensorflow.import_graph(graph_meta) assert graph.isValid() # ============ TO REMOVE INITIALIZATION OPS! ============= # NOTE: This code is pretty general and is likely to be migrated into # Catamount code for removing TF-specific initialization ops from catamount.ops import AssignOp from catamount.ops import VariableOp assign_ops = set() for op in graph.opsByName.values(): if isinstance(op, AssignOp): assign_ops.add(op) for assign_op in assign_ops: my_ancestors = set() my_frontier = set() my_frontier.add(assign_op) while len(my_frontier) > 0: next_op = my_frontier.pop() for in_tensor in next_op.inputs: if not isinstance(in_tensor.producer, VariableOp): my_frontier.add(in_tensor.producer) my_ancestors.add(next_op) for next_op in my_ancestors: graph.removeOp(next_op) assert graph.isValid() # Next, remove ops that are not executed during a standard training step: graph_ops = list(graph._ops_by_name.values()) for op in graph_ops: # Certain ops are only used for inference if 'Model/NceLoss_1_3/' in op.name or \ 'Model/Collapse_1/' in op.name or \ 'Model/Embedding_1_3/' in op.name or \ 'Model/Labels_1/' in op.name or \ 'Model/SkipGramSampler_1/' in op.name or \ 'Model/Mask_1/' in op.name: graph.removeOp(op) elif \ op.name == 'Model/Cast_1' or \ op.name == 'Model/Sum_1' or \ op.name == 'Model/Size_1' or \ op.name == 'Model/Exp_1' or \ op.name == 'Model/truediv_2' or \ op.name == 'Model/truediv_3': graph.removeOp(op) if not is_pytest_run: print('Initial graph:\n{}\n'.format(graph)) init_params = graph.calcModelParameters() print('Initial parameters: {}'.format(init_params)) print('Initial Flops: {}\n'.format(graph.calcAlgFlops())) print('Placeholders:') for op in graph.getPlaceholders(): print(op.debugString()) print('') # Set up symbols to name dimensions skip_window_symbol = utils.getPositiveIntSymbolFromString('skip_window') num_skips_symbol = utils.getPositiveIntSymbolFromString('num_skips') nce_samples_symbol = utils.getPositiveIntSymbolFromString('nce_samples') hidden_dim_symbol = utils.getIntSymbolFromString('hidden_dim') vocab_size_symbol = utils.getIntSymbolFromString('vocab_size') subbatch_size_symbol = utils.getIntSymbolFromString('subbatch_size') sequence_length_symbol = utils.getIntSymbolFromString('sequence_length') batch_times_seq_symbol = sequence_length_symbol * subbatch_size_symbol graph_iters_symbol = utils.getIntSymbolFromString('graph::iters') # For simplicity, assign samples symbol in the op nce_samp_op = graph.opsByName['Model/NceLoss_1_1/nce_loss/LogUniformCandidateSampler'] nce_samp_op._num_samples_symbol = nce_samples_symbol # Convert these constant dimensions to symbols base_skip_window = 8 base_num_skips = 8 base_nce_samples = 64 base_hidden_dim = 400 base_vocab_size = 40004 base_sequence_length = 32 base_subbatch_size = 1 # Find and set constants that contain model hyperparameters const_dict = { 'Model/Gradient/Compute/gradients/Model/NceLoss_1_1/nce_loss/sub_1_grad/Shape_1': [nce_samples_symbol], 'Model/SkipGramSampler/Const': 2 * skip_window_symbol, 'Model/SkipGramSampler/strided_slice/stack': [0, skip_window_symbol], 'Model/SkipGramSampler/strided_slice/stack_1': [0, -skip_window_symbol], 'Model/Collapse/Reshape/shape': [-1, hidden_dim_symbol], 'Model/Gradient/Compute/gradients/Model/Embedding_1_1/Gather_grad/Shape': [vocab_size_symbol, hidden_dim_symbol], 'Model/Gradient/Compute/gradients/Model/NceLoss_1_1/nce_loss/embedding_lookup_1_grad/Shape': [vocab_size_symbol], 'Model/Gradient/Compute/gradients/Model/NceLoss_1_1/nce_loss/embedding_lookup_grad/Shape': [vocab_size_symbol, hidden_dim_symbol], 'Model/Mask/NotEqual/y': vocab_size_symbol - 3, 'Model/SkipGramSampler/Const_2': num_skips_symbol, 'Model/SkipGramSampler/Tile_1/multiples': [1, num_skips_symbol], 'Model/SkipGramSampler/Tile/multiples': [1, num_skips_symbol], } graph.bindConstantValues(const_dict) # Next, bind the constant, placeholder, and variable shapes and propagate bind_dict = { # Constants # Placeholders 'Input/Input': [subbatch_size_symbol, sequence_length_symbol], 'Labels/Labels': [subbatch_size_symbol, sequence_length_symbol], # Variables 'Model/NceLoss_1/b_Softmax': [vocab_size_symbol], 'Model/NceLoss_1/W_Softmax': [vocab_size_symbol, hidden_dim_symbol], 'Model/Embedding_1/EmbeddingWeights': [vocab_size_symbol, hidden_dim_symbol], } print('Binding variables') # HACK: For now, manually set GatherNd op shapes. Later, implement GatherNd gnd_op = graph.opsByName['Model/SkipGramSampler/GatherNd'] gnd_op.outputs[0].mergeShape([subbatch_size_symbol, num_skips_symbol * (sequence_length_symbol - 2 * skip_window_symbol)]) graph.bindShapesAndPropagate(bind_dict, warn_if_ill_defined=(not is_pytest_run), make_symbolic=True) assert graph.isValid() if not is_pytest_run: print('\n\nCleaned Graph:\n{}'.format(graph)) print('\n\nBound values') bind_subs = { graph_iters_symbol: 1, hidden_dim_symbol: base_hidden_dim, sequence_length_symbol: base_sequence_length, subbatch_size_symbol: base_subbatch_size, vocab_size_symbol: base_vocab_size, skip_window_symbol: base_skip_window, num_skips_symbol: base_num_skips, nce_samples_symbol: base_nce_samples, } # Verify parameter counts first parameters = graph.calcModelParameters() correct_params = 32043205 correct_flops = 21148823 correct_bytes = 23762537 correct_total_footprint = 137949925 print('Symbol associations: {}\n'.format(bind_subs)) # Calculate model parameter count resolved_params = parameters.subs(bind_subs) try: resolved_params = int(resolved_params) except: print('ERROR: resolved_params should be int, but is {} = {}'.format( type(resolved_params), resolved_params)) assert resolved_params == correct_params, \ 'Incorrect model params: {}'.format(resolved_params) print('Parameters: {}\nWith specified dims: {}\n'.format(parameters, resolved_params)) # Calculate algorithmic Flops alg_flops = graph.calcAlgFlops() resolved_flops = alg_flops.subs(bind_subs) try: resolved_flops = int(resolved_flops) except: print('ERROR: resolved_flops should be int, but is {} = {}'.format( type(resolved_flops), resolved_flops)) assert resolved_flops == correct_flops, \ 'Incorrect algorithmic flops: {}'.format(resolved_flops) print('Algorithmic Flops: {}\nWith specified dims: {}\n'.format(alg_flops, resolved_flops)) # Calculate algorthmic Bytes accessed alg_bytes = graph.calcAlgBytes() resolved_bytes = alg_bytes.subs(bind_subs) try: resolved_bytes = int(resolved_bytes) except: print('ERROR: resolved_bytes should be int, but is {} = {}'.format( type(resolved_bytes), resolved_bytes)) assert resolved_bytes == correct_bytes, \ 'Incorrect algorithmic bytes: {}'.format(resolved_bytes) print('Alg bytes accessed: {}\nWith specified dims: {}\n'.format(alg_bytes, resolved_bytes)) # Calculate total memory footprint alg_footprint = graph.calcAlgFootprint() resolved_footprint = alg_footprint.subs(bind_subs) try: resolved_footprint = int(resolved_footprint) except: print('ERROR: resolved_footprint should be int, but is {} = {}'.format( type(resolved_footprint), resolved_footprint)) assert resolved_footprint == correct_total_footprint, \ 'Incorrect algorithmic footprint: {}'.format(resolved_footprint) print('Alg mem footprint: {}\nWith specified dims: {}\n'.format(alg_footprint, resolved_footprint)) # Calculate minimal memory footprint alg_min_footprint = graph.calcMinimalFootprint(symbol_subs=bind_subs) print('Alg minimal footprint (With specified dims): {}\n'.format(alg_min_footprint)) # Calculate algorithmic IO per step total_io_footprint = 0 for op in graph.getPlaceholders(): total_io_footprint += op.calcAlgFootprint() if isinstance(total_io_footprint, int): resolved_io_footprint = total_io_footprint else: resolved_io_footprint = total_io_footprint.subs(bind_subs) print('Alg IO footprint: {}\nWith specified dims: {}\n'.format(total_io_footprint, resolved_io_footprint)) if not is_pytest_run: print('VERBOSE ALGORTHMIC FLOPS:') graph.calcAlgFlops(verbose=True) print('') print('VERBOSE ALGORTHMIC BYTES:') graph.calcAlgBytes(verbose=True) print('') print('VERBOSE ALGORTHMIC FOOTPRINT:') graph.calcAlgFootprint(verbose=True) print('') # HACKY WAY TO SAVE MODELS FOR NOW! pickle.dump(graph, open('catamount/frameworks/example_graphs/tensorflow/full_models/language_models/graph_word2vec.p', 'wb')) if is_pytest_run: return print('\n\n======= Algorithmic graph-level analytics: =======') hidden_dims = [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 18, 20, 25, 28, 35, 40, 50, 56, 69, 78, 86, 96, 108, 119, 123, 133, 148, 163, 182, 202, 221, 246, 273, 297, 329, 330, 364, 396, 436, 437, 520, 572, 617, 676, 740, 796, 869, 948, 1017, 1106, 1202, 1286, 1394, 1510, 1611, 1742, 1882, 2004, 2161, 2476, 3040, 3714, 4520, 5478, 6628, 8019, 9702, 11739, 14204, 17186, 20795, 25161, 30444, 36837, 38100] bind_subs.pop(hidden_dim_symbol) resolved_params = parameters.subs(bind_subs) print('Symbol associations: {}\n'.format(bind_subs)) print('Algorithmic Flops by hidden dimension, params, and per-batch-sample:') resolved_flops = alg_flops.subs(bind_subs) for hid_dim in hidden_dims: graph_params = resolved_params.subs({hidden_dim_symbol: hid_dim}) graph_flops = resolved_flops.subs({hidden_dim_symbol: hid_dim}) graph_flops_per_sample = float(graph_flops) / \ bind_subs[subbatch_size_symbol] print('{}\t{}\t{}\t{}'.format(hid_dim, graph_params, graph_flops, int(graph_flops_per_sample))) print('\nAlgorithmic bytes accessed by hidden dimension, params:') resolved_bytes = alg_bytes.subs(bind_subs) for hid_dim in hidden_dims: graph_params = resolved_params.subs({hidden_dim_symbol: hid_dim}) graph_bytes = resolved_bytes.subs({hidden_dim_symbol: hid_dim}) print('{}\t{}\t{}'.format(hid_dim, graph_params, graph_bytes)) print('\nAlgorithmic total memory footprint by hidden dimension, params:') resolved_footprint = alg_footprint.subs(bind_subs) for hid_dim in hidden_dims: graph_params = resolved_params.subs({hidden_dim_symbol: hid_dim}) graph_footprint = resolved_footprint.subs({hidden_dim_symbol: hid_dim}) print('{}\t{}\t{}'.format(hid_dim, graph_params, graph_footprint)) print('\nAlgorithmic minimal memory footprint by hidden dimension, params:') full_subs = dict(bind_subs) for hid_dim in hidden_dims: graph_params = resolved_params.subs({hidden_dim_symbol: hid_dim}) full_subs[hidden_dim_symbol] = hid_dim graph_min_foot = graph.calcMinimalFootprint(symbol_subs=full_subs) print('{}\t{}\t{}'.format(hid_dim, graph_params, graph_min_foot)) if __name__ == "__main__": test_tf_w2v_model()
43.043624
402
0.682701
4a06095a9535022895b7813a89fd0c87995d6625
5,697
py
Python
edu/class3/vit_answer.py
h1063135843/PaddleViT
6f150b82d801b082cc7af09af396bfe2f6bf9987
[ "Apache-2.0" ]
1
2021-12-12T12:34:01.000Z
2021-12-12T12:34:01.000Z
edu/class3/vit_answer.py
h1063135843/PaddleViT
6f150b82d801b082cc7af09af396bfe2f6bf9987
[ "Apache-2.0" ]
null
null
null
edu/class3/vit_answer.py
h1063135843/PaddleViT
6f150b82d801b082cc7af09af396bfe2f6bf9987
[ "Apache-2.0" ]
null
null
null
# ViT Online Class # Author: Dr. Zhu # Project: PaddleViT (https:///github.com/BR-IDL/PaddleViT) # 2021.11 import copy import paddle import paddle.nn as nn class Identity(nn.Layer): def __init__(self): super().__init__() def forward(self, x): return x class Mlp(nn.Layer): def __init__(self, embed_dim, mlp_ratio, dropout=0.): super().__init__() self.fc1 = nn.Linear(embed_dim, int(embed_dim * mlp_ratio)) self.fc2 = nn.Linear(int(embed_dim * mlp_ratio), embed_dim) self.act = nn.GELU() self.dropout = nn.Dropout(dropout) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.dropout(x) x = self.fc2(x) x = self.dropout(x) return x class PatchEmbedding(nn.Layer): def __init__(self, image_size=224, patch_size=16, in_channels=3, embed_dim=768, dropout=0.): super().__init__() n_patches = (image_size // patch_size) * (image_size // patch_size) self.patch_embedding = nn.Conv2D(in_channels=in_channels, out_channels=embed_dim, kernel_size=patch_size, stride=patch_size) self.position_embeddings = paddle.create_parameter( shape=[1, n_patches + 1, embed_dim], dtype='float32', default_initializer=nn.initializer.TruncatedNormal(std=.02)) self.cls_token = paddle.create_parameter( shape=[1, 1, embed_dim], dtype='float32', default_initializer=nn.initializer.Constant(0)) self.dropout = nn.Dropout(dropout) def forward(self, x): # [n, c, h, w] cls_tokens = self.cls_token.expand((x.shape[0], -1, -1)) x = self.patch_embedding(x) # [n, c', h', w'] x = x.flatten(2) # [n, c', h'*w'] x = x.transpose([0, 2, 1]) # [n, h'*w', c'] x = paddle.concat((cls_tokens, x), axis=1) embeddings = x + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class Attention(nn.Layer): """multi-head self attention""" def __init__(self, embed_dim, num_heads, qkv_bias=True, dropout=0., attention_dropout=0.): super().__init__() self.num_heads = num_heads self.head_dim = int(embed_dim / num_heads) self.all_head_dim = self.head_dim * num_heads self.scales = self.head_dim ** -0.5 self.qkv = nn.Linear(embed_dim, self.all_head_dim * 3) self.proj = nn.Linear(embed_dim, embed_dim) self.dropout = nn.Dropout(dropout) self.attention_dropout = nn.Dropout(attention_dropout) self.softmax = nn.Softmax(axis=-1) def transpose_multihead(self, x): # x: [N, num_patches, all_head_dim] -> [N, n_heads, num_patches, head_dim] new_shape = x.shape[:-1] + [self.num_heads, self.head_dim] x = x.reshape(new_shape) x = x.transpose([0, 2, 1, 3]) return x def forward(self, x): B, N, _ = x.shape # x -> [N, num_patches, dim] # x -> q, k, v qkv = self.qkv(x).chunk(3, axis=-1) # list of tensors q, k, v = map(self.transpose_multihead, qkv) attn = paddle.matmul(q, k, transpose_y=True) # q * k' attn = attn * self.scales attn = self.softmax(attn) attn = self.attention_dropout(attn) out = paddle.matmul(attn, v) out = out.transpose([0, 2, 1, 3]) out = out.reshape([B, N, -1]) out = self.proj(out) out = self.dropout(out) return out class EncoderLayer(nn.Layer): def __init__(self, embed_dim=768, num_heads=4, qkv_bias=True, mlp_ratio=4.0, dropout=0., attention_dropout=0.): super().__init__() self.attn_norm = nn.LayerNorm(embed_dim) self.attn = Attention(embed_dim, num_heads) self.mlp_norm = nn.LayerNorm(embed_dim) self.mlp = Mlp(embed_dim, mlp_ratio) def forward(self, x): h = x x = self.attn_norm(x) x = self.attn(x) x = x + h h = x x = self.mlp_norm(x) x = self.mlp(x) x = x + h return x class Encoder(nn.Layer): def __init__(self, embed_dim, depth): super().__init__() layer_list = [] for i in range(depth): encoder_layer = EncoderLayer() layer_list.append(encoder_layer) self.layers = nn.LayerList(layer_list) self.norm = nn.LayerNorm(embed_dim) def forward(self, x): for layer in self.layers: x = layer(x) x = self.norm(x) return x class VisualTransformer(nn.Layer): def __init__(self, image_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dim=768, depth=3, num_heads=8, mlp_ratio=4, qkv_bias=True, dropout=0., attention_dropout=0., droppath=0.): super().__init__() self.patch_embedding = PatchEmbedding(image_size, patch_size, in_channels, embed_dim) self.encoder = Encoder(embed_dim, depth) self.classifier = nn.Linear(embed_dim, num_classes) def forward(self, x): x = self.patch_embedding(x) x = self.encoder(x) x = self.classifier(x[:, 0]) return x def main(): vit = VisualTransformer() print(vit) paddle.summary(vit, (4, 3, 224, 224)) # must be tuple if __name__ == "__main__": main()
29.518135
115
0.560821
4a060a5fe19d83183ca65dc405df06de0aec0fc6
798
py
Python
timesketch/lib/analyzers/sigma_tagger_test.py
dmdicki/timesketch
f0ae4230a88edbe62aa0ad1ce74b7dda844df731
[ "Apache-2.0" ]
1
2020-03-06T18:20:53.000Z
2020-03-06T18:20:53.000Z
timesketch/lib/analyzers/sigma_tagger_test.py
dmdicki/timesketch
f0ae4230a88edbe62aa0ad1ce74b7dda844df731
[ "Apache-2.0" ]
null
null
null
timesketch/lib/analyzers/sigma_tagger_test.py
dmdicki/timesketch
f0ae4230a88edbe62aa0ad1ce74b7dda844df731
[ "Apache-2.0" ]
1
2021-11-16T00:01:18.000Z
2021-11-16T00:01:18.000Z
"""Tests for SigmaPlugin.""" from __future__ import unicode_literals import mock from timesketch.lib.analyzers import sigma_tagger from timesketch.lib.testlib import BaseTest from timesketch.lib.testlib import MockDataStore class TestSigmaPlugin(BaseTest): """Tests the functionality of the analyzer.""" def __init__(self, *args, **kwargs): super(TestSigmaPlugin, self).__init__(*args, **kwargs) self.test_index = 'test_index' # Mock the Elasticsearch datastore. @mock.patch( 'timesketch.lib.analyzers.interface.ElasticsearchDataStore', MockDataStore) def test_analyzer(self): """Test analyzer.""" # TODO: Add more tests _ = sigma_tagger.LinuxRulesSigmaPlugin( sketch_id=1, index_name=self.test_index)
27.517241
68
0.705514
4a060a8d352289575fd1cc751e41166c3de46ade
6,470
py
Python
src/main.py
MayD524/May-s-2D-Adventure
4038b1f2fcbddca9ae526fc7ba5e3e3a98d65a7a
[ "MIT" ]
null
null
null
src/main.py
MayD524/May-s-2D-Adventure
4038b1f2fcbddca9ae526fc7ba5e3e3a98d65a7a
[ "MIT" ]
null
null
null
src/main.py
MayD524/May-s-2D-Adventure
4038b1f2fcbddca9ae526fc7ba5e3e3a98d65a7a
[ "MIT" ]
null
null
null
from game_files.projectile import mayProjectile from game_files.gameHandler import GameHandler from game_files.collectables import * from game_files.gameConsts import * from game_files.floor import mayFloor from game_files.player import player from game_files.npc import mayNPC import pyxel import json class App(GameHandler): def __init__(self): GameHandler.__init__(self) pyxel.init(208, 160, caption="Pyxel Game", fps=DEFAULT_FPS) pyxel.load("my_resource.pyxres") self.scene = SCENE_PLAYING ## i may change this later with open("./levels/level_selector.json") as f: self.level_selc = json.load(f) self.load_level("level_1") #self.game_Init() pyxel.run(self.update, self.draw) def get_level_path(self, level:str) -> str: return self.level_selc[level] def load_level(self, level:str) -> None: with open(self.level_selc[level],'rb') as f: byte_list = f.read() start_x = 0 start_y = 0 prev_byte = 0 prev_cnt = 8 ## 20 x 25 cur_x = 0 cur_y = 0 for (i, byte) in enumerate(byte_list): if byte is prev_byte and not i == len(byte_list) - 1: prev_cnt += 8 else: if prev_byte == 20: ## Master Floor floor = mayFloor(start_x, start_y, prev_cnt+8, 8) floor.name = "master_floor" self.gameObjects.append(floor) elif prev_byte == 34: ## Grass Floor floor = mayFloor(start_x, start_y, prev_cnt+8, 8) floor.name = "grass_floor_generic" self.gameObjects.append(floor) elif prev_byte == 143: ## Anti Floor floor = mayFloor(start_x, start_y, prev_cnt+8, 8) floor.name = "grass_floor_anti" floor.isInverted = True self.gameObjects.append(floor) elif prev_byte == 240: ## Player self.player = player(start_x, start_y, TILEOFFSET + 1, TILEOFFSET + 1, p_health=PLAYER_DEFAULT_HEALTH) elif prev_byte == 201 or prev_byte == 85: ## NPC Spawn npc = mayNPC(start_x, start_y, 8, 8, 100, .4, NPC_SIMPLE_ENEMY if prev_byte == 201 else NPC_RANGED_ENEMY ,"enemy-npc-1") self.gameObjects.append(npc) elif prev_byte == 154: ## Coin self.gameObjects.append(mayCoin(start_x, start_y)) elif prev_byte == 148: ## Health Kit self.gameObjects.append(mayHealthKit(start_x, start_y)) prev_byte = byte prev_cnt = 8 start_x = cur_x start_y = cur_y cur_x += 8 if cur_x >= 208: cur_y += 8 cur_x = 0 ## made a separate function so that we can call it later def game_Init(self) -> None: self.gameObjects = [] self.scene = SCENE_PLAYING self.score = 0 self.pHealth = PLAYER_DEFAULT_HEALTH gameFloor = mayFloor(0, pyxel.height - 20, 208, 20) gameFloor.name = "master_floor" testFloor = mayFloor(10, pyxel.height - 28, 48, 8) test2Floor = mayFloor(60, pyxel.height - 50, 48, 8) test3Floor = mayFloor(110, 30, 16, 8) self.gameObjects.append(mayCoin(60, 120)) self.gameObjects.append(mayHealthKit(80, 120)) test2Floor.imgID = 1 test2Floor.name = "test2_floor" testFloor.name = "test_floor" testFloor.imgID = 1 self.gameObjects.append(gameFloor) self.gameObjects.append(testFloor) self.gameObjects.append(test2Floor) self.gameObjects.append(test3Floor) #npc = mayNPC(30, pyxel.height - 50, 8, 8, 100, .4, NPC_SIMPLE_ENEMY ,"enemy-npc-1") #self.gameObjects.append(npc) npc = mayNPC(60, pyxel.height - 50, 8, 8, 100, .4, NPC_RANGED_ENEMY ,"enemy-npc-1") self.gameObjects.append(npc) self.player = player(pyxel.width / 2, pyxel.height - 40, TILEOFFSET + 1, TILEOFFSET + 1, p_health=self.pHealth) def update(self) -> None: if pyxel.btnp(pyxel.KEY_Q): pyxel.quit() if pyxel.btnp(pyxel.KEY_R): proj = mayProjectile(0, pyxel.height - 50, 10, 5, 6, 10, 1, 10) self.gameObjects.append(proj) if self.scene == SCENE_PLAYING: self.update_play() elif self.scene == SCENE_END: self.update_gameOver() def draw(self) -> None: pyxel.cls(0) if self.scene == SCENE_PLAYING: self.draw_play_scene() elif self.scene == SCENE_END: self.draw_game_over() def update_gameOver(self) -> None: if pyxel.btnp(pyxel.KEY_Q): pyxel.quit() if pyxel.btnp(pyxel.KEY_ENTER): self.game_Init() def update_play(self) -> None: self.player._update() self.score = self.player.score self.pHealth = self.player.health if self.pHealth <= 0: self.scene = SCENE_END self.check_collision(self.player) self.updateList(self.gameObjects) self._cleanup() def draw_game_over(self) -> None: pyxel.text(pyxel.width / 2, pyxel.height / 2, "GAME OVER", 7) pyxel.text(pyxel.width / 2, (pyxel.height / 2) + 8, f"Score: {self.score}", 6) def draw_play_scene(self) -> None: self.player._draw() pyxel.text(0, 0, f"Score: {self.score}", 6) pyxel.text(0, 8, f"Health: {self.pHealth}", 6) self.drawList(self.gameObjects) if __name__ == "__main__": App()
36.145251
142
0.510819
4a060b631c8c4a94a492929f476c36d24069d91e
15,479
py
Python
tardis/plasma/base.py
bartnikm/tardis-bartnikm
2b0f3110fefd6740349ca7b33fe72bf025c88452
[ "BSD-3-Clause" ]
null
null
null
tardis/plasma/base.py
bartnikm/tardis-bartnikm
2b0f3110fefd6740349ca7b33fe72bf025c88452
[ "BSD-3-Clause" ]
null
null
null
tardis/plasma/base.py
bartnikm/tardis-bartnikm
2b0f3110fefd6740349ca7b33fe72bf025c88452
[ "BSD-3-Clause" ]
null
null
null
import os import re import logging import tempfile import fileinput import networkx as nx from tardis.plasma.exceptions import PlasmaMissingModule, NotInitializedModule from tardis.plasma.properties.base import * from tardis.io.util import PlasmaWriterMixin logger = logging.getLogger(__name__) class BasePlasma(PlasmaWriterMixin): outputs_dict = {} hdf_name = "plasma" def __init__(self, plasma_properties, property_kwargs=None, **kwargs): self.outputs_dict = {} self.input_properties = [] self.plasma_properties = self._init_properties( plasma_properties, property_kwargs, **kwargs ) self._build_graph() self.update(**kwargs) def __getattr__(self, item): if item in self.outputs_dict: return self.get_value(item) else: super(BasePlasma, self).__getattribute__(item) def __setattr__(self, key, value): if key != "module_dict" and key in self.outputs_dict: raise AttributeError( "Plasma inputs can only be updated using " "the 'update' method" ) else: super(BasePlasma, self).__setattr__(key, value) def __dir__(self): attrs = [item for item in self.__dict__ if not item.startswith("_")] attrs += [ item for item in self.__class__.__dict__ if not item.startswith("_") ] attrs += self.outputs_dict.keys() return attrs @property def plasma_properties_dict(self): return {item.name: item for item in self.plasma_properties} def get_value(self, item): return getattr(self.outputs_dict[item], item) def _build_graph(self): """ Builds the directed Graph using network X :param plasma_modules: :return: """ self.graph = nx.DiGraph() # Adding all nodes self.graph.add_nodes_from( [ (plasma_property.name, {}) for plasma_property in self.plasma_properties ] ) # Flagging all input modules self.input_properties = [ item for item in self.plasma_properties if not hasattr(item, "inputs") ] for plasma_property in self.plasma_properties: # Skipping any module that is an input module if plasma_property in self.input_properties: continue for input in plasma_property.inputs: if input not in self.outputs_dict: raise PlasmaMissingModule( f"Module {plasma_property.name} requires input " f"{input} which has not been added" f" to this plasma" ) try: position = self.outputs_dict[input].outputs.index(input) label = self.outputs_dict[input].latex_name[position] label = "$" + label + "$" label = label.replace("\\", "\\\\") except: label = input.replace("_", "-") self.graph.add_edge( self.outputs_dict[input].name, plasma_property.name, label=label, ) def _init_properties( self, plasma_properties, property_kwargs=None, **kwargs ): """ Builds a dictionary with the plasma module names as keys Parameters ---------- plasma_modules : list list of Plasma properties property_kwargs : dict dict of plasma module : kwargs pairs. kwargs should be a dict of arguments that will be passed to the __init__ method of the respective plasma module. kwargs : dictionary input values for input properties. For example, t_rad=[5000, 6000,], j_blues=[..] """ if property_kwargs is None: property_kwargs = {} plasma_property_objects = [] self.previous_iteration_properties = [] self.outputs_dict = {} for plasma_property in plasma_properties: if issubclass(plasma_property, PreviousIterationProperty): current_property_object = plasma_property( **property_kwargs.get(plasma_property, {}) ) current_property_object.set_initial_value(kwargs) self.previous_iteration_properties.append( current_property_object ) elif issubclass(plasma_property, Input): if not set(kwargs.keys()).issuperset(plasma_property.outputs): missing_input_values = set(plasma_property.outputs) - set( kwargs.keys() ) raise NotInitializedModule( f"Input {missing_input_values} required for " f"plasma but not given when " f"instantiating the " f"plasma" ) current_property_object = plasma_property( **property_kwargs.get(plasma_property, {}) ) else: current_property_object = plasma_property( self, **property_kwargs.get(plasma_property, {}) ) for output in plasma_property.outputs: self.outputs_dict[output] = current_property_object plasma_property_objects.append(current_property_object) return plasma_property_objects def store_previous_properties(self): for property in self.previous_iteration_properties: p = property.outputs[0] self.outputs_dict[p].set_value( self.get_value(re.sub(r"^previous_", "", p)) ) def update(self, **kwargs): for key in kwargs: if key not in self.outputs_dict: raise PlasmaMissingModule( f"Trying to update property {key}" f" that is unavailable" ) self.outputs_dict[key].set_value(kwargs[key]) for module_name in self._resolve_update_list(kwargs.keys()): self.plasma_properties_dict[module_name].update() def freeze(self, *args): """ Freeze plama properties. This method freezes plasma properties to prevent them from being updated: the values of a frozen property are fixed in the plasma calculation. This is useful for example for setting up test cases. Parameters ---------- args : iterable of str Names of plasma properties to freeze. Examples -------- >>> plasma.freeze('t_electrons') """ for key in args: if key not in self.outputs_dict: raise PlasmaMissingModule( "Trying to freeze property {0}" " that is unavailable".format(key) ) self.outputs_dict[key].frozen = True def thaw(self, *args): """ Thaw plama properties. This method thaws (unfreezes) plasma properties allowing them to be updated again. Parameters ---------- args : iterable of str Names of plasma properties to unfreeze. Examples -------- >>> plasma.thaw('t_electrons') """ for key in args: if key not in self.outputs_dict: raise PlasmaMissingModule( "Trying to thaw property {0}" " that is unavailable".format(key) ) self.outputs_dict[key].frozen = False def _update_module_type_str(self): for node in self.graph: self.outputs_dict[node]._update_type_str() def _resolve_update_list(self, changed_properties): """ Returns a list of all plasma models which are affected by the changed_modules due to there dependency in the the plasma_graph. Parameters ---------- changed_modules : list all modules changed in the plasma Returns ------- : list all affected modules. """ descendants_ob = [] for plasma_property in changed_properties: node_name = self.outputs_dict[plasma_property].name descendants_ob += nx.descendants(self.graph, node_name) descendants_ob = list(set(descendants_ob)) sort_order = list(nx.topological_sort(self.graph)) descendants_ob.sort(key=lambda val: sort_order.index(val)) logger.debug( f"Updating modules in the following order:" f'{"->".join(descendants_ob)}' ) return descendants_ob def write_to_dot(self, fname, args=None, latex_label=True): """ This method takes the NetworkX Graph generated from the _build_graph method, converts it into a DOT code, and saves it to a file Parameters ---------- fname: str the name of the file the graph will be saved to args: list a list of optional settings for displaying the graph written in DOT format latex_label: boolean enables/disables writing LaTeX equations and edge labels into the file. """ try: import pygraphviz except: logger.warn( "pygraphviz missing. Plasma graph will not be " "generated." ) return print_graph = self.graph.copy() print_graph = self.remove_hidden_properties(print_graph) for node in print_graph: if latex_label: if hasattr(self.plasma_properties_dict[node], "latex_formula"): print_graph.nodes[str(node)][ "label" ] = f"\\\\textrm{{{node}: }}" node_list = self.plasma_properties_dict[node] formulae = node_list.latex_formula for output in range(0, len(formulae)): formula = formulae[output] label = formula.replace("\\", "\\\\") print_graph.nodes[str(node)]["label"] += label else: print_graph.nodes[str(node)][ "label" ] = f"\\\\textrm{{{node}}}" else: print_graph.nodes[str(node)]["label"] = node for edge in print_graph.edges: label = print_graph.edges[edge]["label"] print_graph.edges[edge]["label"] = "-" print_graph.edges[edge]["texlbl"] = label nx.drawing.nx_agraph.write_dot(print_graph, fname) for line in fileinput.FileInput(fname, inplace=1): if latex_label: print( line.replace( r'node [label="\N"]', r'node [texmode="math"]', ), end="", ) else: print( line.replace( r'node [label="\N"];', "", ), end="", ) if args is not None: with open(fname, "r") as file: lines = file.readlines() for newline in args: lines.insert(1, f"\t{newline};\n") with open(fname, "w") as f: lines = "".join(lines) f.write(lines) def write_to_tex(self, fname_graph, scale=0.5, args=None, latex_label=True): """ This method takes the NetworkX Graph generated from the _build_graph method, converts it into a LaTeX friendly format, and saves it to a file Parameters ---------- fname_graph: str the name of the file the graph will be saved to args: list a list of optional settings for displaying the graph written in DOT format scale: float a scaling factor to expand/contract the generated graph latex_label: boolean enables/disables writing LaTeX equations and edge labels into the file. """ try: import dot2tex except: logger.warn( "dot2tex missing. Plasma graph will not be " "generated." ) return temp_fname = tempfile.NamedTemporaryFile().name self.write_to_dot(temp_fname, args=args, latex_label=latex_label) with open(temp_fname, "r") as file: dot_string = file.read().replace("\\\\", "\\") texcode = dot2tex.dot2tex( dot_string, format="tikz", crop=True, valignmode="dot" ) with open(fname_graph, "w") as file: file.write(texcode) for line in fileinput.input(fname_graph, inplace=1): print( line.replace( r"\documentclass{article}", r"\documentclass[class=minimal,border=20pt]{standalone}", ), end="", ) for line in fileinput.input(fname_graph, inplace=1): print(line.replace(r"\enlargethispage{100cm}", ""), end="") for line in fileinput.input(fname_graph, inplace=1): print( line.replace( r"\begin{tikzpicture}[>=latex',line join=bevel,]", r"\begin{tikzpicture}" r"[>=latex',line join=bevel," rf"scale={scale}]", ), end="", ) def remove_hidden_properties(self, print_graph): for item in self.plasma_properties_dict.values(): module = self.plasma_properties_dict[item.name].__class__ if issubclass(module, HiddenPlasmaProperty): output = module.outputs[0] for value in self.plasma_properties_dict.keys(): if output in getattr( self.plasma_properties_dict[value], "inputs", [] ): for input in self.plasma_properties_dict[ item.name ].inputs: try: position = self.outputs_dict[ input ].outputs.index(input) label = self.outputs_dict[input].latex_name[ position ] label = "$" + label + "$" label = label.replace("\\", "\\\\") except: label = input.replace("_", "-") self.graph.add_edge( self.outputs_dict[input].name, value, label=label, ) print_graph.remove_node(str(item.name)) return print_graph
34.551339
80
0.520964
4a060be1d633c688810302c28abf45c39d401eb0
2,016
py
Python
src/federator-draft/test_federator_metrics.py
TaoHaoTian/federated-recommender-system
65a151238e1a419fc713d26fa11ecfe4536d94ee
[ "MIT" ]
3
2020-10-18T13:45:33.000Z
2021-12-14T13:01:52.000Z
src/federator-draft/test_federator_metrics.py
TaoHaoTian/federated-recommender-system
65a151238e1a419fc713d26fa11ecfe4536d94ee
[ "MIT" ]
1
2019-09-23T22:08:57.000Z
2019-09-23T22:08:57.000Z
src/federator-draft/test_federator_metrics.py
TaoHaoTian/federated-recommender-system
65a151238e1a419fc713d26fa11ecfe4536d94ee
[ "MIT" ]
2
2020-09-08T08:18:03.000Z
2021-02-22T02:53:25.000Z
from lightfm_alg import LightFMAlg from surprise_svd import SurpriseSVD from data_handler import DataHandler from definitions import ROOT_DIR import helpers import matplotlib.pyplot as plt def test_alg_times(): dh = DataHandler(filename=ROOT_DIR + "/datasets/ml-25m/ratings.csv") dh.dataset = dh.sort_dataset_randomly() # Test benchmark times ratings_sizes = [100, 1000, 10000, 100000, 1000000, 10000000] for i in ratings_sizes: ds = dh.dataset[:i] user = ds[:, 0][0] #lfm = LightFMAlg(ds=dh.dataset, labels_ds="/datasets/ml-latest-small/movies.csv") #lfm.generate_rec(user) filename = "test_metrics_%d" % i svd = SurpriseSVD(ds=ds, sl_filename=filename, movies_filename="/datasets/ml-25m/movies.csv") svd.get_top_n(user) def plot_thresholds(rating_threshold, ratings, users, items): fig = plt.figure() fig.set_size_inches(6.4, 2.4) ax = plt.subplot(111) plt.title("Users and Movies with Ratings Above Threshold") plt.ylabel("Users/Items Above Threshold") plt.xlabel("Rating Threshold") #ax.plot(rating_threshold, ratings, label="total ratings") ax.plot(rating_threshold, users, label="users") ax.plot(rating_threshold, items, label="movies") ax.legend() # Put a legend below current axis save_filename = "zipfs_law.pdf" fig.savefig(save_filename, format="pdf", bbox_inches='tight') fig.show() def calculate_thresholds(): dh = DataHandler(filename=ROOT_DIR + "/datasets/ml-25m/ratings.csv") thresholds = [0, 10, 25, 50, 100, 250, 500, 750, 1000] ratings = [] users = [] items = [] for t in thresholds: _, _, results = helpers.remove_below_threshold_user_and_items(dh.dataset, u_thresh=t, i_thresh=t) ratings.append(results[1]) users.append(results[3]) items.append(results[5]) plot_thresholds(thresholds, ratings, users, items) """ Run methods """ #test_alg_times() calculate_thresholds()
32.516129
105
0.679563
4a060cce92c56f3c8f8a4e3dc340246bff20659b
66,516
py
Python
cinder/tests/unit/volume/drivers/test_nfs.py
mail2nsrajesh/cinder
a688b872bec6d1abd4dcd852bdb8e8a921369d2e
[ "Apache-2.0" ]
null
null
null
cinder/tests/unit/volume/drivers/test_nfs.py
mail2nsrajesh/cinder
a688b872bec6d1abd4dcd852bdb8e8a921369d2e
[ "Apache-2.0" ]
2
2018-10-25T13:04:01.000Z
2019-08-17T13:15:24.000Z
cinder/tests/unit/volume/drivers/test_nfs.py
mail2nsrajesh/cinder
a688b872bec6d1abd4dcd852bdb8e8a921369d2e
[ "Apache-2.0" ]
2
2018-10-17T13:32:50.000Z
2018-11-08T08:39:39.000Z
# Copyright (c) 2012 NetApp, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Unit tests for the NFS driver module.""" import ddt import errno import os import six import uuid import mock from oslo_utils import imageutils from oslo_utils import units from cinder import context from cinder import exception from cinder.image import image_utils from cinder import test from cinder.tests.unit import fake_snapshot from cinder.tests.unit import fake_volume from cinder.volume import configuration as conf from cinder.volume.drivers import nfs from cinder.volume.drivers import remotefs class RemoteFsDriverTestCase(test.TestCase): TEST_FILE_NAME = 'test.txt' TEST_EXPORT = 'nas-host1:/export' TEST_MNT_POINT = '/mnt/nas' def setUp(self): super(RemoteFsDriverTestCase, self).setUp() self._driver = remotefs.RemoteFSDriver() self.configuration = mock.Mock(conf.Configuration) self.configuration.append_config_values(mock.ANY) self.configuration.nas_secure_file_permissions = 'false' self.configuration.nas_secure_file_operations = 'false' self.configuration.nfs_snapshot_support = True self.configuration.max_over_subscription_ratio = 1.0 self.configuration.reserved_percentage = 5 self._driver = remotefs.RemoteFSDriver( configuration=self.configuration) mock_exc = mock.patch.object(self._driver, '_execute') self._execute = mock_exc.start() self.addCleanup(mock_exc.stop) def test_create_sparsed_file(self): self._driver._create_sparsed_file('/path', 1) self._execute.assert_called_once_with('truncate', '-s', '1G', '/path', run_as_root=True) def test_create_regular_file(self): self._driver._create_regular_file('/path', 1) self._execute.assert_called_once_with('dd', 'if=/dev/zero', 'of=/path', 'bs=1M', 'count=1024', run_as_root=True) def test_create_qcow2_file(self): file_size = 1 self._driver._create_qcow2_file('/path', file_size) self._execute.assert_called_once_with('qemu-img', 'create', '-f', 'qcow2', '-o', 'preallocation=metadata', '/path', '%s' % str(file_size * units.Gi), run_as_root=True) def test_set_rw_permissions_for_all(self): self._driver._set_rw_permissions_for_all('/path') self._execute.assert_called_once_with('chmod', 'ugo+rw', '/path', run_as_root=True) @mock.patch.object(remotefs, 'LOG') def test_set_rw_permissions_with_secure_file_permissions(self, LOG): self._driver._mounted_shares = [self.TEST_EXPORT] self.configuration.nas_secure_file_permissions = 'true' self._driver._set_rw_permissions(self.TEST_FILE_NAME) self.assertFalse(LOG.warning.called) @mock.patch.object(remotefs, 'LOG') def test_set_rw_permissions_without_secure_file_permissions(self, LOG): self.configuration.nas_secure_file_permissions = 'false' self._driver._set_rw_permissions(self.TEST_FILE_NAME) self.assertTrue(LOG.warning.called) warn_msg = "%(path)s is being set with open permissions: %(perm)s" LOG.warning.assert_called_once_with( warn_msg, {'path': self.TEST_FILE_NAME, 'perm': 'ugo+rw'}) @mock.patch('os.path.join') @mock.patch('os.path.isfile', return_value=False) def test_determine_nas_security_options_when_auto_and_new_install( self, mock_isfile, mock_join): """Test the setting of the NAS Security Option In this test case, we will create the marker file. No pre-exxisting Cinder volumes found during bootup. """ self._driver._mounted_shares = [self.TEST_EXPORT] file_path = '%s/.cinderSecureEnvIndicator' % self.TEST_MNT_POINT is_new_install = True self._driver._ensure_shares_mounted = mock.Mock() nas_mount = self._driver._get_mount_point_for_share = mock.Mock( return_value=self.TEST_MNT_POINT) mock_join.return_value = file_path secure_file_permissions = 'auto' nas_option = self._driver._determine_nas_security_option_setting( secure_file_permissions, nas_mount, is_new_install) self.assertEqual('true', nas_option) secure_file_operations = 'auto' nas_option = self._driver._determine_nas_security_option_setting( secure_file_operations, nas_mount, is_new_install) self.assertEqual('true', nas_option) @mock.patch('os.path.join') @mock.patch('os.path.isfile') def test_determine_nas_security_options_when_auto_and_new_install_exists( self, isfile, join): """Test the setting of the NAS Security Option In this test case, the marker file already exists. Cinder volumes found during bootup. """ drv = self._driver drv._mounted_shares = [self.TEST_EXPORT] file_path = '%s/.cinderSecureEnvIndicator' % self.TEST_MNT_POINT is_new_install = False drv._ensure_shares_mounted = mock.Mock() nas_mount = drv._get_mount_point_for_share = mock.Mock( return_value=self.TEST_MNT_POINT) join.return_value = file_path isfile.return_value = True secure_file_permissions = 'auto' nas_option = drv._determine_nas_security_option_setting( secure_file_permissions, nas_mount, is_new_install) self.assertEqual('true', nas_option) secure_file_operations = 'auto' nas_option = drv._determine_nas_security_option_setting( secure_file_operations, nas_mount, is_new_install) self.assertEqual('true', nas_option) @mock.patch('os.path.join') @mock.patch('os.path.isfile') def test_determine_nas_security_options_when_auto_and_old_install(self, isfile, join): """Test the setting of the NAS Security Option In this test case, the marker file does not exist. There are also pre-existing Cinder volumes. """ drv = self._driver drv._mounted_shares = [self.TEST_EXPORT] file_path = '%s/.cinderSecureEnvIndicator' % self.TEST_MNT_POINT is_new_install = False drv._ensure_shares_mounted = mock.Mock() nas_mount = drv._get_mount_point_for_share = mock.Mock( return_value=self.TEST_MNT_POINT) join.return_value = file_path isfile.return_value = False secure_file_permissions = 'auto' nas_option = drv._determine_nas_security_option_setting( secure_file_permissions, nas_mount, is_new_install) self.assertEqual('false', nas_option) secure_file_operations = 'auto' nas_option = drv._determine_nas_security_option_setting( secure_file_operations, nas_mount, is_new_install) self.assertEqual('false', nas_option) def test_determine_nas_security_options_when_admin_set_true(self): """Test the setting of the NAS Security Option In this test case, the Admin set the flag to 'true'. """ drv = self._driver drv._mounted_shares = [self.TEST_EXPORT] is_new_install = False drv._ensure_shares_mounted = mock.Mock() nas_mount = drv._get_mount_point_for_share = mock.Mock( return_value=self.TEST_MNT_POINT) secure_file_permissions = 'true' nas_option = drv._determine_nas_security_option_setting( secure_file_permissions, nas_mount, is_new_install) self.assertEqual('true', nas_option) secure_file_operations = 'true' nas_option = drv._determine_nas_security_option_setting( secure_file_operations, nas_mount, is_new_install) self.assertEqual('true', nas_option) def test_determine_nas_security_options_when_admin_set_false(self): """Test the setting of the NAS Security Option In this test case, the Admin set the flag to 'false'. """ drv = self._driver drv._mounted_shares = [self.TEST_EXPORT] is_new_install = False drv._ensure_shares_mounted = mock.Mock() nas_mount = drv._get_mount_point_for_share = mock.Mock( return_value=self.TEST_MNT_POINT) secure_file_permissions = 'false' nas_option = drv._determine_nas_security_option_setting( secure_file_permissions, nas_mount, is_new_install) self.assertEqual('false', nas_option) secure_file_operations = 'false' nas_option = drv._determine_nas_security_option_setting( secure_file_operations, nas_mount, is_new_install) self.assertEqual('false', nas_option) @mock.patch.object(remotefs, 'LOG') def test_set_nas_security_options(self, LOG): """Test setting of NAS Security options. The RemoteFS driver will force set options to false. The derived objects will provide an inherited interface to properly set options. """ drv = self._driver is_new_install = False drv.set_nas_security_options(is_new_install) self.assertEqual('false', drv.configuration.nas_secure_file_operations) self.assertEqual('false', drv.configuration.nas_secure_file_permissions) self.assertTrue(LOG.warning.called) def test_secure_file_operations_enabled_true(self): """Test nas_secure_file_operations = 'true' Networked file system based drivers may support secure file operations. This test verifies the settings when secure. """ drv = self._driver self.configuration.nas_secure_file_operations = 'true' ret_flag = drv.secure_file_operations_enabled() self.assertTrue(ret_flag) def test_secure_file_operations_enabled_false(self): """Test nas_secure_file_operations = 'false' Networked file system based drivers may support secure file operations. This test verifies the settings when not secure. """ drv = self._driver self.configuration.nas_secure_file_operations = 'false' ret_flag = drv.secure_file_operations_enabled() self.assertFalse(ret_flag) # NFS configuration scenarios NFS_CONFIG1 = {'max_over_subscription_ratio': 1.0, 'reserved_percentage': 0, 'nfs_sparsed_volumes': True, 'nfs_qcow2_volumes': False, 'nas_secure_file_permissions': 'false', 'nas_secure_file_operations': 'false'} NFS_CONFIG2 = {'max_over_subscription_ratio': 10.0, 'reserved_percentage': 5, 'nfs_sparsed_volumes': False, 'nfs_qcow2_volumes': True, 'nas_secure_file_permissions': 'true', 'nas_secure_file_operations': 'true'} NFS_CONFIG3 = {'max_over_subscription_ratio': 15.0, 'reserved_percentage': 10, 'nfs_sparsed_volumes': False, 'nfs_qcow2_volumes': False, 'nas_secure_file_permissions': 'auto', 'nas_secure_file_operations': 'auto'} NFS_CONFIG4 = {'max_over_subscription_ratio': 20.0, 'reserved_percentage': 60, 'nfs_sparsed_volumes': True, 'nfs_qcow2_volumes': True, 'nas_secure_file_permissions': 'false', 'nas_secure_file_operations': 'true'} QEMU_IMG_INFO_OUT1 = """image: %(volid)s file format: raw virtual size: %(size_gb)sG (%(size_b)s bytes) disk size: 173K """ QEMU_IMG_INFO_OUT2 = """image: %(volid)s file format: qcow2 virtual size: %(size_gb)sG (%(size_b)s bytes) disk size: 196K cluster_size: 65536 Format specific information: compat: 1.1 lazy refcounts: false refcount bits: 16 corrupt: false """ QEMU_IMG_INFO_OUT3 = """image: volume-%(volid)s.%(snapid)s file format: qcow2 virtual size: %(size_gb)sG (%(size_b)s bytes) disk size: 196K cluster_size: 65536 backing file: volume-%(volid)s backing file format: qcow2 Format specific information: compat: 1.1 lazy refcounts: false refcount bits: 16 corrupt: false """ QEMU_IMG_INFO_OUT4 = """image: volume-%(volid)s.%(snapid)s file format: raw virtual size: %(size_gb)sG (%(size_b)s bytes) disk size: 196K cluster_size: 65536 backing file: volume-%(volid)s backing file format: raw Format specific information: compat: 1.1 lazy refcounts: false refcount bits: 16 corrupt: false """ @ddt.ddt class NfsDriverTestCase(test.TestCase): """Test case for NFS driver.""" TEST_NFS_HOST = 'nfs-host1' TEST_NFS_SHARE_PATH = '/export' TEST_NFS_EXPORT1 = '%s:%s' % (TEST_NFS_HOST, TEST_NFS_SHARE_PATH) TEST_NFS_EXPORT2 = 'nfs-host2:/export' TEST_NFS_EXPORT2_OPTIONS = '-o intr' TEST_SIZE_IN_GB = 1 TEST_MNT_POINT = '/mnt/nfs' TEST_MNT_POINT_BASE_EXTRA_SLASH = '/opt/stack/data/cinder//mnt' TEST_MNT_POINT_BASE = '/mnt/test' TEST_LOCAL_PATH = '/mnt/nfs/volume-123' TEST_FILE_NAME = 'test.txt' TEST_SHARES_CONFIG_FILE = '/etc/cinder/test-shares.conf' TEST_NFS_EXPORT_SPACES = 'nfs-host3:/export this' TEST_MNT_POINT_SPACES = '/ 0 0 0 /foo' VOLUME_UUID = '69ad4ff6-b892-4215-aaaa-aaaaaaaaaaaa' def setUp(self): super(NfsDriverTestCase, self).setUp() self.configuration = mock.Mock(conf.Configuration) self.configuration.append_config_values(mock.ANY) self.configuration.max_over_subscription_ratio = 1.0 self.configuration.reserved_percentage = 5 self.configuration.nfs_shares_config = None self.configuration.nfs_sparsed_volumes = True self.configuration.nfs_reserved_percentage = 5.0 self.configuration.nfs_mount_point_base = self.TEST_MNT_POINT_BASE self.configuration.nfs_mount_options = None self.configuration.nfs_mount_attempts = 3 self.configuration.nfs_qcow2_volumes = False self.configuration.nas_secure_file_permissions = 'false' self.configuration.nas_secure_file_operations = 'false' self.configuration.nas_host = None self.configuration.nas_share_path = None self.configuration.nas_mount_options = None self.configuration.volume_dd_blocksize = '1M' self.context = context.get_admin_context() def _set_driver(self, extra_confs=None): # Overide the default configs if extra_confs: for config_name, config_value in extra_confs.items(): setattr(self.configuration, config_name, config_value) self._driver = nfs.NfsDriver(configuration=self.configuration) self._driver.shares = {} self.mock_object(self._driver, '_execute') @ddt.data(NFS_CONFIG1, NFS_CONFIG2, NFS_CONFIG3, NFS_CONFIG4) def test_local_path(self, nfs_config): """local_path common use case.""" self.configuration.nfs_mount_point_base = self.TEST_MNT_POINT_BASE self._set_driver(extra_confs=nfs_config) drv = self._driver volume = fake_volume.fake_volume_obj( self.context, provider_location=self.TEST_NFS_EXPORT1) self.assertEqual( '/mnt/test/2f4f60214cf43c595666dd815f0360a4/%s' % volume.name, drv.local_path(volume)) @ddt.data(NFS_CONFIG1, NFS_CONFIG2, NFS_CONFIG3, NFS_CONFIG4) def test_copy_image_to_volume(self, nfs_config): """resize_image common case usage.""" mock_resize = self.mock_object(image_utils, 'resize_image') mock_fetch = self.mock_object(image_utils, 'fetch_to_raw') self._set_driver() drv = self._driver volume = fake_volume.fake_volume_obj(self.context, size=self.TEST_SIZE_IN_GB) test_img_source = 'volume-%s' % volume.id self.mock_object(drv, 'local_path', return_value=test_img_source) data = mock.Mock() data.virtual_size = 1 * units.Gi self.mock_object(image_utils, 'qemu_img_info', return_value=data) drv.copy_image_to_volume(None, volume, None, None) mock_fetch.assert_called_once_with( None, None, None, test_img_source, mock.ANY, run_as_root=True, size=self.TEST_SIZE_IN_GB) mock_resize.assert_called_once_with(test_img_source, self.TEST_SIZE_IN_GB, run_as_root=True) def test_get_mount_point_for_share(self): """_get_mount_point_for_share should calculate correct value.""" self._set_driver() drv = self._driver self.configuration.nfs_mount_point_base = self.TEST_MNT_POINT_BASE self.assertEqual('/mnt/test/2f4f60214cf43c595666dd815f0360a4', drv._get_mount_point_for_share(self.TEST_NFS_EXPORT1)) def test_get_mount_point_for_share_given_extra_slash_in_state_path(self): """_get_mount_point_for_share should calculate correct value.""" # This test gets called with the extra slash self.configuration.nfs_mount_point_base = ( self.TEST_MNT_POINT_BASE_EXTRA_SLASH) # The driver gets called with the correct configuration and removes # the extra slash drv = nfs.NfsDriver(configuration=self.configuration) self.assertEqual('/opt/stack/data/cinder/mnt', drv.base) self.assertEqual( '/opt/stack/data/cinder/mnt/2f4f60214cf43c595666dd815f0360a4', drv._get_mount_point_for_share(self.TEST_NFS_EXPORT1)) def test_get_capacity_info(self): """_get_capacity_info should calculate correct value.""" self._set_driver() drv = self._driver stat_total_size = 2620544 stat_avail = 2129984 stat_output = '1 %d %d' % (stat_total_size, stat_avail) du_used = 490560 du_output = '%d /mnt' % du_used with mock.patch.object( drv, '_get_mount_point_for_share') as mock_get_mount: mock_get_mount.return_value = self.TEST_MNT_POINT drv._execute.side_effect = [(stat_output, None), (du_output, None)] self.assertEqual((stat_total_size, stat_avail, du_used), drv._get_capacity_info(self.TEST_NFS_EXPORT1)) mock_get_mount.assert_called_once_with(self.TEST_NFS_EXPORT1) calls = [mock.call('stat', '-f', '-c', '%S %b %a', self.TEST_MNT_POINT, run_as_root=True), mock.call('du', '-sb', '--apparent-size', '--exclude', '*snapshot*', self.TEST_MNT_POINT, run_as_root=True)] drv._execute.assert_has_calls(calls) def test_get_capacity_info_for_share_and_mount_point_with_spaces(self): """_get_capacity_info should calculate correct value.""" self._set_driver() drv = self._driver stat_total_size = 2620544 stat_avail = 2129984 stat_output = '1 %d %d' % (stat_total_size, stat_avail) du_used = 490560 du_output = '%d /mnt' % du_used with mock.patch.object( drv, '_get_mount_point_for_share') as mock_get_mount: mock_get_mount.return_value = self.TEST_MNT_POINT_SPACES drv._execute.side_effect = [(stat_output, None), (du_output, None)] self.assertEqual((stat_total_size, stat_avail, du_used), drv._get_capacity_info( self.TEST_NFS_EXPORT_SPACES)) mock_get_mount.assert_called_once_with( self.TEST_NFS_EXPORT_SPACES) calls = [mock.call('stat', '-f', '-c', '%S %b %a', self.TEST_MNT_POINT_SPACES, run_as_root=True), mock.call('du', '-sb', '--apparent-size', '--exclude', '*snapshot*', self.TEST_MNT_POINT_SPACES, run_as_root=True)] drv._execute.assert_has_calls(calls) def test_load_shares_config(self): self._set_driver() drv = self._driver drv.configuration.nfs_shares_config = self.TEST_SHARES_CONFIG_FILE with mock.patch.object( drv, '_read_config_file') as mock_read_config: config_data = [] config_data.append(self.TEST_NFS_EXPORT1) config_data.append('#' + self.TEST_NFS_EXPORT2) config_data.append('') config_data.append(self.TEST_NFS_EXPORT2 + ' ' + self.TEST_NFS_EXPORT2_OPTIONS) config_data.append('broken:share_format') mock_read_config.return_value = config_data drv._load_shares_config(drv.configuration.nfs_shares_config) mock_read_config.assert_called_once_with( self.TEST_SHARES_CONFIG_FILE) self.assertIn(self.TEST_NFS_EXPORT1, drv.shares) self.assertIn(self.TEST_NFS_EXPORT2, drv.shares) self.assertEqual(2, len(drv.shares)) self.assertEqual(self.TEST_NFS_EXPORT2_OPTIONS, drv.shares[self.TEST_NFS_EXPORT2]) def test_load_shares_config_nas_opts(self): self._set_driver() drv = self._driver drv.configuration.nas_host = self.TEST_NFS_HOST drv.configuration.nas_share_path = self.TEST_NFS_SHARE_PATH drv.configuration.nfs_shares_config = self.TEST_SHARES_CONFIG_FILE drv._load_shares_config(drv.configuration.nfs_shares_config) self.assertIn(self.TEST_NFS_EXPORT1, drv.shares) self.assertEqual(1, len(drv.shares)) def test_ensure_shares_mounted_should_save_mounting_successfully(self): """_ensure_shares_mounted should save share if mounted with success.""" self._set_driver() drv = self._driver config_data = [] config_data.append(self.TEST_NFS_EXPORT1) drv.configuration.nfs_shares_config = self.TEST_SHARES_CONFIG_FILE with mock.patch.object( drv, '_read_config_file') as mock_read_config: with mock.patch.object( drv, '_ensure_share_mounted') as mock_ensure: mock_read_config.return_value = config_data drv._ensure_share_mounted(self.TEST_NFS_EXPORT1) mock_ensure.assert_called_once_with(self.TEST_NFS_EXPORT1) @mock.patch.object(remotefs, 'LOG') def test_ensure_shares_mounted_should_not_save_mounting_with_error(self, LOG): """_ensure_shares_mounted should not save share if failed to mount.""" self._set_driver() drv = self._driver config_data = [] config_data.append(self.TEST_NFS_EXPORT1) drv.configuration.nfs_shares_config = self.TEST_SHARES_CONFIG_FILE with mock.patch.object( drv, '_read_config_file') as mock_read_config: with mock.patch.object( drv, '_ensure_share_mounted') as mock_ensure: mock_read_config.return_value = config_data drv._ensure_share_mounted() self.assertEqual(0, len(drv._mounted_shares)) mock_ensure.assert_called_once_with() def test_find_share_should_throw_error_if_there_is_no_mounted_share(self): """_find_share should throw error if there is no mounted shares.""" self._set_driver() drv = self._driver drv._mounted_shares = [] self.assertRaises(exception.NfsNoSharesMounted, drv._find_share, self._simple_volume()) def test_find_share(self): """_find_share simple use case.""" self._set_driver() drv = self._driver drv._mounted_shares = [self.TEST_NFS_EXPORT1, self.TEST_NFS_EXPORT2] volume = fake_volume.fake_volume_obj(self.context, size=self.TEST_SIZE_IN_GB) with mock.patch.object( drv, '_get_capacity_info') as mock_get_capacity_info: mock_get_capacity_info.side_effect = [ (5 * units.Gi, 2 * units.Gi, 2 * units.Gi), (10 * units.Gi, 3 * units.Gi, 1 * units.Gi)] self.assertEqual(self.TEST_NFS_EXPORT2, drv._find_share(volume)) calls = [mock.call(self.TEST_NFS_EXPORT1), mock.call(self.TEST_NFS_EXPORT2)] mock_get_capacity_info.assert_has_calls(calls) self.assertEqual(2, mock_get_capacity_info.call_count) def test_find_share_should_throw_error_if_there_is_not_enough_space(self): """_find_share should throw error if there is no share to host vol.""" self._set_driver() drv = self._driver drv._mounted_shares = [self.TEST_NFS_EXPORT1, self.TEST_NFS_EXPORT2] with mock.patch.object( drv, '_get_capacity_info') as mock_get_capacity_info: mock_get_capacity_info.side_effect = [ (5 * units.Gi, 0, 5 * units.Gi), (10 * units.Gi, 0, 10 * units.Gi)] self.assertRaises(exception.NfsNoSuitableShareFound, drv._find_share, self._simple_volume()) calls = [mock.call(self.TEST_NFS_EXPORT1), mock.call(self.TEST_NFS_EXPORT2)] mock_get_capacity_info.assert_has_calls(calls) self.assertEqual(2, mock_get_capacity_info.call_count) def _simple_volume(self, size=10): loc = self.TEST_NFS_EXPORT1 return fake_volume.fake_volume_obj(self.context, display_name='volume_name', provider_location=loc, size=size) def test_create_sparsed_volume(self): self._set_driver() drv = self._driver volume = self._simple_volume() self.override_config('nfs_sparsed_volumes', True) with mock.patch.object( drv, '_create_sparsed_file') as mock_create_sparsed_file: with mock.patch.object( drv, '_set_rw_permissions') as mock_set_rw_permissions: drv._do_create_volume(volume) mock_create_sparsed_file.assert_called_once_with(mock.ANY, mock.ANY) mock_set_rw_permissions.assert_called_once_with(mock.ANY) def test_create_nonsparsed_volume(self): self._set_driver() drv = self._driver self.configuration.nfs_sparsed_volumes = False volume = self._simple_volume() self.override_config('nfs_sparsed_volumes', False) with mock.patch.object( drv, '_create_regular_file') as mock_create_regular_file: with mock.patch.object( drv, '_set_rw_permissions') as mock_set_rw_permissions: drv._do_create_volume(volume) mock_create_regular_file.assert_called_once_with(mock.ANY, mock.ANY) mock_set_rw_permissions.assert_called_once_with(mock.ANY) @mock.patch.object(nfs, 'LOG') def test_create_volume_should_ensure_nfs_mounted(self, mock_log): """create_volume ensures shares provided in config are mounted.""" self._set_driver() drv = self._driver drv._find_share = mock.Mock() drv._find_share.return_value = self.TEST_NFS_EXPORT1 drv._do_create_volume = mock.Mock() with mock.patch.object( drv, '_ensure_share_mounted') as mock_ensure_share: drv._ensure_share_mounted() volume = fake_volume.fake_volume_obj(self.context, size=self.TEST_SIZE_IN_GB) drv.create_volume(volume) mock_ensure_share.assert_called_once_with() @mock.patch.object(nfs, 'LOG') def test_create_volume_should_return_provider_location(self, mock_log): """create_volume should return provider_location with found share.""" self._set_driver() drv = self._driver drv._ensure_shares_mounted = mock.Mock() drv._do_create_volume = mock.Mock() with mock.patch.object(drv, '_find_share') as mock_find_share: mock_find_share.return_value = self.TEST_NFS_EXPORT1 volume = fake_volume.fake_volume_obj(self.context, size=self.TEST_SIZE_IN_GB) result = drv.create_volume(volume) self.assertEqual(self.TEST_NFS_EXPORT1, result['provider_location']) mock_find_share.assert_called_once_with(volume) def test_delete_volume(self): """delete_volume simple test case.""" self._set_driver() drv = self._driver drv._ensure_share_mounted = mock.Mock() volume = fake_volume.fake_volume_obj( self.context, display_name='volume-123', provider_location=self.TEST_NFS_EXPORT1) with mock.patch.object(drv, 'local_path') as mock_local_path: mock_local_path.return_value = self.TEST_LOCAL_PATH drv.delete_volume(volume) mock_local_path.assert_called_with(volume) drv._execute.assert_called_once() def test_delete_should_ensure_share_mounted(self): """delete_volume should ensure that corresponding share is mounted.""" self._set_driver() drv = self._driver volume = fake_volume.fake_volume_obj( self.context, display_name='volume-123', provider_location=self.TEST_NFS_EXPORT1) with mock.patch.object(drv, '_ensure_share_mounted'): drv.delete_volume(volume) def test_delete_should_not_delete_if_provider_location_not_provided(self): """delete_volume shouldn't delete if provider_location missed.""" self._set_driver() drv = self._driver volume = fake_volume.fake_volume_obj(self.context, name='volume-123', provider_location=None) with mock.patch.object(drv, '_ensure_share_mounted'): drv.delete_volume(volume) self.assertFalse(drv._execute.called) def test_get_volume_stats(self): """get_volume_stats must fill the correct values.""" self._set_driver() drv = self._driver drv._mounted_shares = [self.TEST_NFS_EXPORT1, self.TEST_NFS_EXPORT2] with mock.patch.object( drv, '_ensure_shares_mounted') as mock_ensure_share: with mock.patch.object( drv, '_get_capacity_info') as mock_get_capacity_info: mock_get_capacity_info.side_effect = [ (10 * units.Gi, 2 * units.Gi, 2 * units.Gi), (20 * units.Gi, 3 * units.Gi, 3 * units.Gi)] drv._ensure_shares_mounted() drv.get_volume_stats() calls = [mock.call(self.TEST_NFS_EXPORT1), mock.call(self.TEST_NFS_EXPORT2)] mock_get_capacity_info.assert_has_calls(calls) self.assertTrue(mock_ensure_share.called) self.assertEqual(30.0, drv._stats['total_capacity_gb']) self.assertEqual(5.0, drv._stats['free_capacity_gb']) self.assertEqual(5, drv._stats['reserved_percentage']) self.assertTrue(drv._stats['sparse_copy_volume']) def test_get_volume_stats_with_non_zero_reserved_percentage(self): """get_volume_stats must fill the correct values.""" self.configuration.reserved_percentage = 10.0 drv = nfs.NfsDriver(configuration=self.configuration) drv._mounted_shares = [self.TEST_NFS_EXPORT1, self.TEST_NFS_EXPORT2] with mock.patch.object( drv, '_ensure_shares_mounted') as mock_ensure_share: with mock.patch.object( drv, '_get_capacity_info') as mock_get_capacity_info: mock_get_capacity_info.side_effect = [ (10 * units.Gi, 2 * units.Gi, 2 * units.Gi), (20 * units.Gi, 3 * units.Gi, 3 * units.Gi)] drv._ensure_shares_mounted() drv.get_volume_stats() calls = [mock.call(self.TEST_NFS_EXPORT1), mock.call(self.TEST_NFS_EXPORT2)] mock_get_capacity_info.assert_has_calls(calls) self.assertTrue(mock_ensure_share.called) self.assertEqual(30.0, drv._stats['total_capacity_gb']) self.assertEqual(5.0, drv._stats['free_capacity_gb']) self.assertEqual(10.0, drv._stats['reserved_percentage']) @ddt.data(True, False) def test_update_volume_stats(self, thin): self._set_driver() self._driver.configuration.max_over_subscription_ratio = 20.0 self._driver.configuration.reserved_percentage = 5.0 self._driver.configuration.nfs_sparsed_volumes = thin remotefs_volume_stats = { 'volume_backend_name': 'fake_backend_name', 'vendor_name': 'fake_vendor', 'driver_version': 'fake_version', 'storage_protocol': 'NFS', 'total_capacity_gb': 100.0, 'free_capacity_gb': 20.0, 'reserved_percentage': 5.0, 'QoS_support': False, } self.mock_object(remotefs.RemoteFSDriver, '_update_volume_stats') self._driver._stats = remotefs_volume_stats mock_get_provisioned_capacity = self.mock_object( self._driver, '_get_provisioned_capacity', return_value=25.0) self._driver._update_volume_stats() nfs_added_volume_stats = { 'provisioned_capacity_gb': 25.0 if thin else 80.0, 'max_over_subscription_ratio': 20.0, 'reserved_percentage': 5.0, 'thin_provisioning_support': thin, 'thick_provisioning_support': not thin, } expected = remotefs_volume_stats expected.update(nfs_added_volume_stats) self.assertEqual(expected, self._driver._stats) self.assertEqual(thin, mock_get_provisioned_capacity.called) def _check_is_share_eligible(self, total_size, total_available, total_allocated, requested_volume_size): self._set_driver() with mock.patch.object(self._driver, '_get_capacity_info')\ as mock_get_capacity_info: mock_get_capacity_info.return_value = (total_size, total_available, total_allocated) return self._driver._is_share_eligible('fake_share', requested_volume_size) def test_is_share_eligible(self): self._set_driver() total_size = 100.0 * units.Gi total_available = 90.0 * units.Gi total_allocated = 10.0 * units.Gi requested_volume_size = 1 # GiB self.assertTrue(self._check_is_share_eligible(total_size, total_available, total_allocated, requested_volume_size)) def test_share_eligibility_with_reserved_percentage(self): self._set_driver() total_size = 100.0 * units.Gi total_available = 4.0 * units.Gi total_allocated = 96.0 * units.Gi requested_volume_size = 1 # GiB # Check used > used_ratio statement entered self.assertFalse(self._check_is_share_eligible(total_size, total_available, total_allocated, requested_volume_size)) def test_is_share_eligible_above_oversub_ratio(self): self._set_driver() total_size = 100.0 * units.Gi total_available = 10.0 * units.Gi total_allocated = 90.0 * units.Gi requested_volume_size = 10 # GiB # Check apparent_available <= requested_volume_size statement entered self.assertFalse(self._check_is_share_eligible(total_size, total_available, total_allocated, requested_volume_size)) def test_is_share_eligible_reserved_space_above_oversub_ratio(self): self._set_driver() total_size = 100.0 * units.Gi total_available = 10.0 * units.Gi total_allocated = 100.0 * units.Gi requested_volume_size = 1 # GiB # Check total_allocated / total_size >= oversub_ratio # statement entered self.assertFalse(self._check_is_share_eligible(total_size, total_available, total_allocated, requested_volume_size)) def test_extend_volume(self): """Extend a volume by 1.""" self._set_driver() drv = self._driver volume = fake_volume.fake_volume_obj( self.context, id='80ee16b6-75d2-4d54-9539-ffc1b4b0fb10', size=1, provider_location='nfs_share') path = 'path' newSize = volume['size'] + 1 with mock.patch.object(image_utils, 'resize_image') as resize: with mock.patch.object(drv, 'local_path', return_value=path): with mock.patch.object(drv, '_is_share_eligible', return_value=True): with mock.patch.object(drv, '_is_file_size_equal', return_value=True): drv.extend_volume(volume, newSize) resize.assert_called_once_with(path, newSize, run_as_root=True) def test_extend_volume_failure(self): """Error during extend operation.""" self._set_driver() drv = self._driver volume = fake_volume.fake_volume_obj( self.context, id='80ee16b6-75d2-4d54-9539-ffc1b4b0fb10', size=1, provider_location='nfs_share') with mock.patch.object(image_utils, 'resize_image'): with mock.patch.object(drv, 'local_path', return_value='path'): with mock.patch.object(drv, '_is_share_eligible', return_value=True): with mock.patch.object(drv, '_is_file_size_equal', return_value=False): self.assertRaises(exception.ExtendVolumeError, drv.extend_volume, volume, 2) def test_extend_volume_insufficient_space(self): """Insufficient space on nfs_share during extend operation.""" self._set_driver() drv = self._driver volume = fake_volume.fake_volume_obj( self.context, id='80ee16b6-75d2-4d54-9539-ffc1b4b0fb10', size=1, provider_location='nfs_share') with mock.patch.object(image_utils, 'resize_image'): with mock.patch.object(drv, 'local_path', return_value='path'): with mock.patch.object(drv, '_is_share_eligible', return_value=False): with mock.patch.object(drv, '_is_file_size_equal', return_value=False): self.assertRaises(exception.ExtendVolumeError, drv.extend_volume, volume, 2) def test_is_file_size_equal(self): """File sizes are equal.""" self._set_driver() drv = self._driver path = 'fake/path' size = 2 data = mock.MagicMock() data.virtual_size = size * units.Gi with mock.patch.object(image_utils, 'qemu_img_info', return_value=data): self.assertTrue(drv._is_file_size_equal(path, size)) def test_is_file_size_equal_false(self): """File sizes are not equal.""" self._set_driver() drv = self._driver path = 'fake/path' size = 2 data = mock.MagicMock() data.virtual_size = (size + 1) * units.Gi with mock.patch.object(image_utils, 'qemu_img_info', return_value=data): self.assertFalse(drv._is_file_size_equal(path, size)) @mock.patch.object(nfs, 'LOG') def test_set_nas_security_options_when_true(self, LOG): """Test higher level setting of NAS Security options. The NFS driver overrides the base method with a driver specific version. """ self._set_driver() drv = self._driver drv._mounted_shares = [self.TEST_NFS_EXPORT1] is_new_install = True drv._ensure_shares_mounted = mock.Mock() drv._get_mount_point_for_share = mock.Mock( return_value=self.TEST_MNT_POINT) drv._determine_nas_security_option_setting = mock.Mock( return_value='true') drv.set_nas_security_options(is_new_install) self.assertEqual('true', drv.configuration.nas_secure_file_operations) self.assertEqual('true', drv.configuration.nas_secure_file_permissions) self.assertFalse(LOG.warning.called) @mock.patch.object(nfs, 'LOG') def test_set_nas_security_options_when_false(self, LOG): """Test higher level setting of NAS Security options. The NFS driver overrides the base method with a driver specific version. """ self._set_driver() drv = self._driver drv._mounted_shares = [self.TEST_NFS_EXPORT1] is_new_install = False drv._ensure_shares_mounted = mock.Mock() drv._get_mount_point_for_share = mock.Mock( return_value=self.TEST_MNT_POINT) drv._determine_nas_security_option_setting = mock.Mock( return_value='false') drv.set_nas_security_options(is_new_install) self.assertEqual('false', drv.configuration.nas_secure_file_operations) self.assertEqual('false', drv.configuration.nas_secure_file_permissions) self.assertTrue(LOG.warning.called) def test_set_nas_security_options_exception_if_no_mounted_shares(self): """Ensure proper exception is raised if there are no mounted shares.""" self._set_driver() drv = self._driver drv._ensure_shares_mounted = mock.Mock() drv._mounted_shares = [] is_new_cinder_install = 'does not matter' self.assertRaises(exception.NfsNoSharesMounted, drv.set_nas_security_options, is_new_cinder_install) def test_ensure_share_mounted(self): """Case where the mount works the first time.""" self._set_driver() self.mock_object(self._driver._remotefsclient, 'mount') drv = self._driver drv.configuration.nfs_mount_attempts = 3 drv.shares = {self.TEST_NFS_EXPORT1: ''} drv._ensure_share_mounted(self.TEST_NFS_EXPORT1) drv._remotefsclient.mount.called_once() @mock.patch('time.sleep') def test_ensure_share_mounted_exception(self, _mock_sleep): """Make the configured number of attempts when mounts fail.""" num_attempts = 3 self._set_driver() self.mock_object(self._driver._remotefsclient, 'mount', side_effect=Exception) drv = self._driver drv.configuration.nfs_mount_attempts = num_attempts drv.shares = {self.TEST_NFS_EXPORT1: ''} self.assertRaises(exception.NfsException, drv._ensure_share_mounted, self.TEST_NFS_EXPORT1) self.assertEqual(num_attempts, drv._remotefsclient.mount.call_count) def test_ensure_share_mounted_at_least_one_attempt(self): """Make at least one mount attempt even if configured for less.""" min_num_attempts = 1 num_attempts = 0 self._set_driver() self.mock_object(self._driver._remotefsclient, 'mount', side_effect=Exception) drv = self._driver drv.configuration.nfs_mount_attempts = num_attempts drv.shares = {self.TEST_NFS_EXPORT1: ''} self.assertRaises(exception.NfsException, drv._ensure_share_mounted, self.TEST_NFS_EXPORT1) self.assertEqual(min_num_attempts, drv._remotefsclient.mount.call_count) @ddt.data([NFS_CONFIG1, QEMU_IMG_INFO_OUT3], [NFS_CONFIG2, QEMU_IMG_INFO_OUT4], [NFS_CONFIG3, QEMU_IMG_INFO_OUT3], [NFS_CONFIG4, QEMU_IMG_INFO_OUT4]) @ddt.unpack def test_copy_volume_from_snapshot(self, nfs_conf, qemu_img_info): self._set_driver(extra_confs=nfs_conf) drv = self._driver dest_volume = self._simple_volume() src_volume = self._simple_volume() fake_snap = fake_snapshot.fake_snapshot_obj(self.context) fake_snap.volume = src_volume img_out = qemu_img_info % {'volid': src_volume.id, 'snapid': fake_snap.id, 'size_gb': src_volume.size, 'size_b': src_volume.size * units.Gi} img_info = imageutils.QemuImgInfo(img_out) mock_img_info = self.mock_object(image_utils, 'qemu_img_info') mock_img_info.return_value = img_info mock_convert_image = self.mock_object(image_utils, 'convert_image') vol_dir = os.path.join(self.TEST_MNT_POINT_BASE, drv._get_hash_str(src_volume.provider_location)) src_vol_path = os.path.join(vol_dir, img_info.backing_file) dest_vol_path = os.path.join(vol_dir, dest_volume.name) info_path = os.path.join(vol_dir, src_volume.name) + '.info' snap_file = dest_volume.name + '.' + fake_snap.id snap_path = os.path.join(vol_dir, snap_file) size = dest_volume.size mock_read_info_file = self.mock_object(drv, '_read_info_file') mock_read_info_file.return_value = {'active': snap_file, fake_snap.id: snap_file} mock_permission = self.mock_object(drv, '_set_rw_permissions_for_all') drv._copy_volume_from_snapshot(fake_snap, dest_volume, size) mock_read_info_file.assert_called_once_with(info_path) mock_img_info.assert_called_once_with(snap_path, run_as_root=True) used_qcow = nfs_conf['nfs_qcow2_volumes'] mock_convert_image.assert_called_once_with( src_vol_path, dest_vol_path, 'qcow2' if used_qcow else 'raw', run_as_root=True) mock_permission.assert_called_once_with(dest_vol_path) @ddt.data([NFS_CONFIG1, QEMU_IMG_INFO_OUT3], [NFS_CONFIG2, QEMU_IMG_INFO_OUT4], [NFS_CONFIG3, QEMU_IMG_INFO_OUT3], [NFS_CONFIG4, QEMU_IMG_INFO_OUT4]) @ddt.unpack def test_create_volume_from_snapshot(self, nfs_conf, qemu_img_info): self._set_driver(extra_confs=nfs_conf) drv = self._driver # Volume source of the snapshot we are trying to clone from. We need it # to have a different id than the default provided. src_volume = self._simple_volume(size=10) src_volume.id = six.text_type(uuid.uuid4()) src_volume_dir = os.path.join(self.TEST_MNT_POINT_BASE, drv._get_hash_str( src_volume.provider_location)) src_volume_path = os.path.join(src_volume_dir, src_volume.name) fake_snap = fake_snapshot.fake_snapshot_obj(self.context) # Fake snapshot based in the previous created volume snap_file = src_volume.name + '.' + fake_snap.id fake_snap.volume = src_volume fake_snap.status = 'available' fake_snap.size = 10 # New fake volume where the snap will be copied new_volume = self._simple_volume(size=10) new_volume_dir = os.path.join(self.TEST_MNT_POINT_BASE, drv._get_hash_str( src_volume.provider_location)) new_volume_path = os.path.join(new_volume_dir, new_volume.name) # Mocks img_out = qemu_img_info % {'volid': src_volume.id, 'snapid': fake_snap.id, 'size_gb': src_volume.size, 'size_b': src_volume.size * units.Gi} img_info = imageutils.QemuImgInfo(img_out) mock_img_info = self.mock_object(image_utils, 'qemu_img_info') mock_img_info.return_value = img_info mock_ensure = self.mock_object(drv, '_ensure_shares_mounted') mock_find_share = self.mock_object(drv, '_find_share', return_value=self.TEST_NFS_EXPORT1) mock_read_info_file = self.mock_object(drv, '_read_info_file') mock_read_info_file.return_value = {'active': snap_file, fake_snap.id: snap_file} mock_convert_image = self.mock_object(image_utils, 'convert_image') self.mock_object(drv, '_create_qcow2_file') self.mock_object(drv, '_create_regular_file') self.mock_object(drv, '_create_regular_file') self.mock_object(drv, '_set_rw_permissions') self.mock_object(drv, '_read_file') ret = drv.create_volume_from_snapshot(new_volume, fake_snap) # Test asserts self.assertEqual(self.TEST_NFS_EXPORT1, ret['provider_location']) used_qcow = nfs_conf['nfs_qcow2_volumes'] mock_convert_image.assert_called_once_with( src_volume_path, new_volume_path, 'qcow2' if used_qcow else 'raw', run_as_root=True) mock_ensure.assert_called_once() mock_find_share.assert_called_once_with(new_volume) def test_create_volume_from_snapshot_status_not_available(self): """Expect an error when the snapshot's status is not 'available'.""" self._set_driver() drv = self._driver src_volume = self._simple_volume() fake_snap = fake_snapshot.fake_snapshot_obj(self.context) fake_snap.volume = src_volume new_volume = self._simple_volume() new_volume['size'] = fake_snap['volume_size'] self.assertRaises(exception.InvalidSnapshot, drv.create_volume_from_snapshot, new_volume, fake_snap) @ddt.data([NFS_CONFIG1, QEMU_IMG_INFO_OUT1], [NFS_CONFIG2, QEMU_IMG_INFO_OUT2], [NFS_CONFIG3, QEMU_IMG_INFO_OUT1], [NFS_CONFIG4, QEMU_IMG_INFO_OUT2]) @ddt.unpack def test_initialize_connection(self, nfs_confs, qemu_img_info): self._set_driver(extra_confs=nfs_confs) drv = self._driver volume = self._simple_volume() vol_dir = os.path.join(self.TEST_MNT_POINT_BASE, drv._get_hash_str(volume.provider_location)) vol_path = os.path.join(vol_dir, volume.name) mock_img_utils = self.mock_object(image_utils, 'qemu_img_info') img_out = qemu_img_info % {'volid': volume.id, 'size_gb': volume.size, 'size_b': volume.size * units.Gi} mock_img_utils.return_value = imageutils.QemuImgInfo(img_out) self.mock_object(drv, '_read_info_file', return_value={'active': "volume-%s" % volume.id}) conn_info = drv.initialize_connection(volume, None) mock_img_utils.assert_called_once_with(vol_path, run_as_root=True) self.assertEqual('nfs', conn_info['driver_volume_type']) self.assertEqual(volume.name, conn_info['data']['name']) self.assertEqual(self.TEST_MNT_POINT_BASE, conn_info['mount_point_base']) @mock.patch.object(image_utils, 'qemu_img_info') def test_initialize_connection_raise_exception(self, mock_img_info): self._set_driver() drv = self._driver volume = self._simple_volume() qemu_img_output = """image: %s file format: iso virtual size: 1.0G (1073741824 bytes) disk size: 173K """ % volume['name'] mock_img_info.return_value = imageutils.QemuImgInfo(qemu_img_output) self.assertRaises(exception.InvalidVolume, drv.initialize_connection, volume, None) def test_create_snapshot(self): self._set_driver() drv = self._driver volume = self._simple_volume() self.configuration.nfs_snapshot_support = True fake_snap = fake_snapshot.fake_snapshot_obj(self.context) fake_snap.volume = volume vol_dir = os.path.join(self.TEST_MNT_POINT_BASE, drv._get_hash_str(self.TEST_NFS_EXPORT1)) snap_file = volume['name'] + '.' + fake_snap.id snap_path = os.path.join(vol_dir, snap_file) info_path = os.path.join(vol_dir, volume['name']) + '.info' with mock.patch.object(drv, '_local_path_volume_info', return_value=info_path), \ mock.patch.object(drv, '_read_info_file', return_value={}), \ mock.patch.object(drv, '_do_create_snapshot') \ as mock_do_create_snapshot, \ mock.patch.object(drv, '_write_info_file') \ as mock_write_info_file, \ mock.patch.object(drv, 'get_active_image_from_info', return_value=volume['name']), \ mock.patch.object(drv, '_get_new_snap_path', return_value=snap_path): self._driver.create_snapshot(fake_snap) mock_do_create_snapshot.assert_called_with(fake_snap, volume['name'], snap_path) mock_write_info_file.assert_called_with( info_path, {'active': snap_file, fake_snap.id: snap_file}) class NfsDriverDoSetupTestCase(test.TestCase): def setUp(self): super(NfsDriverDoSetupTestCase, self).setUp() self.context = mock.Mock() self.create_configuration() def create_configuration(self): config = conf.Configuration(None) config.append_config_values(nfs.nfs_opts) self.configuration = config def test_setup_should_throw_error_if_shares_config_not_configured(self): """do_setup should throw error if shares config is not configured.""" self.override_config('nfs_shares_config', None) drv = nfs.NfsDriver(configuration=self.configuration) mock_os_path_exists = self.mock_object(os.path, 'exists') with self.assertRaisesRegex(exception.NfsException, ".*no NFS config file configured.*"): drv.do_setup(self.context) self.assertEqual(0, mock_os_path_exists.call_count) def test_setup_should_throw_error_if_shares_file_does_not_exist(self): """do_setup should throw error if shares file does not exist.""" drv = nfs.NfsDriver(configuration=self.configuration) mock_os_path_exists = self.mock_object(os.path, 'exists') mock_os_path_exists.return_value = False with self.assertRaisesRegex(exception.NfsException, "NFS config file.*doesn't exist"): drv.do_setup(self.context) mock_os_path_exists.assert_has_calls( [mock.call(self.configuration.nfs_shares_config)]) def test_setup_should_not_throw_error_if_host_and_share_set(self): """do_setup shouldn't throw shares file error if host and share set.""" drv = nfs.NfsDriver(configuration=self.configuration) self.override_config('nas_host', 'nfs-host1') self.override_config('nas_share_path', '/export') mock_os_path_exists = self.mock_object(os.path, 'exists') mock_os_path_exists.return_value = False mock_set_nas_sec_options = self.mock_object(nfs.NfsDriver, 'set_nas_security_options') mock_set_nas_sec_options.return_value = True mock_execute = self.mock_object(drv, '_execute') mock_execute.return_value = True drv.do_setup(self.context) mock_os_path_exists.assert_not_called() def test_setup_throw_error_if_shares_file_does_not_exist_no_host(self): """do_setup should throw error if no shares file and no host set.""" drv = nfs.NfsDriver(configuration=self.configuration) self.override_config('nas_share_path', '/export') mock_os_path_exists = self.mock_object(os.path, 'exists') mock_os_path_exists.return_value = False with self.assertRaisesRegex(exception.NfsException, "NFS config file.*doesn't exist"): drv.do_setup(self.context) mock_os_path_exists.assert_has_calls( [mock.call(self.configuration.nfs_shares_config)]) def test_setup_throw_error_if_shares_file_does_not_exist_no_share(self): """do_setup should throw error if no shares file and no share set.""" drv = nfs.NfsDriver(configuration=self.configuration) self.override_config('nas_host', 'nfs-host1') mock_os_path_exists = self.mock_object(os.path, 'exists') mock_os_path_exists.return_value = False with self.assertRaisesRegex(exception.NfsException, "NFS config file.*doesn't exist"): drv.do_setup(self.context) mock_os_path_exists.assert_has_calls( [mock.call(self.configuration.nfs_shares_config)]) def test_setup_throw_error_if_shares_file_doesnt_exist_no_share_host(self): """do_setup should throw error if no shares file and no host/share.""" drv = nfs.NfsDriver(configuration=self.configuration) mock_os_path_exists = self.mock_object(os.path, 'exists') mock_os_path_exists.return_value = False with self.assertRaisesRegex(exception.NfsException, "NFS config file.*doesn't exist"): drv.do_setup(self.context) mock_os_path_exists.assert_has_calls( [mock.call(self.configuration.nfs_shares_config)]) def test_setup_should_throw_exception_if_nfs_client_is_not_installed(self): """do_setup should throw error if nfs client is not installed.""" drv = nfs.NfsDriver(configuration=self.configuration) mock_os_path_exists = self.mock_object(os.path, 'exists') mock_os_path_exists.return_value = True mock_execute = self.mock_object(drv, '_execute') mock_execute.side_effect = OSError( errno.ENOENT, 'No such file or directory.') with self.assertRaisesRegex(exception.NfsException, 'mount.nfs is not installed'): drv.do_setup(self.context) mock_os_path_exists.assert_has_calls( [mock.call(self.configuration.nfs_shares_config)]) mock_execute.assert_has_calls( [mock.call('mount.nfs', check_exit_code=False, run_as_root=True)]) def test_setup_should_throw_exception_if_mount_nfs_command_fails(self): """do_setup should throw error if mount.nfs fails with OSError This test covers the OSError path when mount.nfs is installed. """ drv = nfs.NfsDriver(configuration=self.configuration) mock_os_path_exists = self.mock_object(os.path, 'exists') mock_os_path_exists.return_value = True mock_execute = self.mock_object(drv, '_execute') mock_execute.side_effect = OSError( errno.EPERM, 'Operation... BROKEN') with self.assertRaisesRegex(OSError, '.*Operation... BROKEN'): drv.do_setup(self.context) mock_os_path_exists.assert_has_calls( [mock.call(self.configuration.nfs_shares_config)]) mock_execute.assert_has_calls( [mock.call('mount.nfs', check_exit_code=False, run_as_root=True)]) @mock.patch.object(os, 'rename') def test_update_migrated_available_volume(self, rename_volume): self._test_update_migrated_volume('available', rename_volume) @mock.patch.object(os, 'rename') def test_update_migrated_available_volume_rename_fail(self, rename_volume): self._test_update_migrated_volume('available', rename_volume, rename_exception=True) @mock.patch.object(os, 'rename') def test_update_migrated_in_use_volume(self, rename_volume): self._test_update_migrated_volume('in-use', rename_volume) def _test_update_migrated_volume(self, volume_status, rename_volume, rename_exception=False): drv = nfs.NfsDriver(configuration=self.configuration) fake_volume_id = 'f51b5730-13b7-11e6-a238-fa163e67a298' fake_new_volume_id = '12341234-13b7-11e6-a238-fa163e67a298' fake_provider_source = 'fake_provider_source' fake_provider = 'fake_provider' base_dir = '/dir_base/' volume_name_template = 'volume-%s' original_volume_name = volume_name_template % fake_volume_id current_name = volume_name_template % fake_new_volume_id original_volume_path = base_dir + original_volume_name current_path = base_dir + current_name volume = fake_volume.fake_volume_obj( self.context, id=fake_volume_id, size=1, provider_location=fake_provider_source, _name_id=None) new_volume = fake_volume.fake_volume_obj( self.context, id=fake_new_volume_id, size=1, provider_location=fake_provider, _name_id=None) with mock.patch.object(drv, 'local_path') as local_path: local_path.return_value = base_dir + current_name if volume_status == 'in-use': update = drv.update_migrated_volume(self.context, volume, new_volume, volume_status) self.assertEqual({'_name_id': fake_new_volume_id, 'provider_location': fake_provider}, update) elif rename_exception: rename_volume.side_effect = OSError update = drv.update_migrated_volume(self.context, volume, new_volume, volume_status) rename_volume.assert_called_once_with(current_path, original_volume_path) self.assertEqual({'_name_id': fake_new_volume_id, 'provider_location': fake_provider}, update) else: update = drv.update_migrated_volume(self.context, volume, new_volume, volume_status) rename_volume.assert_called_once_with(current_path, original_volume_path) self.assertEqual({'_name_id': None, 'provider_location': fake_provider}, update) def test_retype_is_there(self): "Ensure that driver.retype() is there.""" drv = nfs.NfsDriver(configuration=self.configuration) v1 = fake_volume.fake_volume_obj(self.context) ret = drv.retype(self.context, v1, mock.sentinel.new_type, mock.sentinel.diff, mock.sentinel.host) self.assertEqual((False, None), ret)
41.520599
79
0.620843
4a060e12fdc1396a0acd0d193d5623143bef1605
29,684
py
Python
setup.py
sagarjadhav1456/pygame
7d3900d5b04dc8102f218cc60f3fbf5e06dd8fa1
[ "Python-2.0", "OLDAP-2.3" ]
2
2021-04-03T20:01:35.000Z
2021-09-09T23:42:21.000Z
setup.py
sagarjadhav1456/pygame
7d3900d5b04dc8102f218cc60f3fbf5e06dd8fa1
[ "Python-2.0", "OLDAP-2.3" ]
null
null
null
setup.py
sagarjadhav1456/pygame
7d3900d5b04dc8102f218cc60f3fbf5e06dd8fa1
[ "Python-2.0", "OLDAP-2.3" ]
1
2020-10-31T11:32:34.000Z
2020-10-31T11:32:34.000Z
#!/usr/bin/env python # # This is the distutils setup script for pygame. # Full instructions are in https://www.pygame.org/wiki/GettingStarted # # To configure, compile, install, just run this script. # python setup.py install DESCRIPTION = """Pygame is a Python wrapper module for the SDL multimedia library. It contains python functions and classes that will allow you to use SDL's support for playing cdroms, audio and video output, and keyboard, mouse and joystick input.""" EXTRAS = {} METADATA = { "name": "pygame", "version": "2.0.0.dev11", "license": "LGPL", "url": "https://www.pygame.org", "author": "A community project.", "author_email": "pygame@pygame.org", "description": "Python Game Development", "long_description": DESCRIPTION, } import re import sys import os # just import these always and fail early if not present import distutils from setuptools import setup IS_PYPY = '__pypy__' in sys.builtin_module_names def compilation_help(): """ On failure point people to a web page for help. """ import platform the_system = platform.system() if the_system == 'Linux': if hasattr(platform, 'linux_distribution'): distro = platform.linux_distribution() if distro[0].lower() == 'ubuntu': the_system = 'Ubuntu' elif distro[0].lower() == 'debian': the_system = 'Debian' help_urls = { 'Linux': 'https://www.pygame.org/wiki/Compilation', 'Ubuntu': 'https://www.pygame.org/wiki/CompileUbuntu', 'Debian': 'https://www.pygame.org/wiki/CompileDebian', 'Windows': 'https://www.pygame.org/wiki/CompileWindows', 'Darwin': 'https://www.pygame.org/wiki/MacCompile', } default = 'https://www.pygame.org/wiki/Compilation' url = help_urls.get(the_system, default) if IS_PYPY: url += '\n https://www.pygame.org/wiki/CompilePyPy' print ('\n---') print ('For help with compilation see:') print (' %s' % url) print ('To contribute to pygame development see:') print (' https://www.pygame.org/contribute.html') print ('---\n') if not hasattr(sys, 'version_info') or sys.version_info < (2,7): compilation_help() raise SystemExit("Pygame requires Python version 2.7 or above.") if sys.version_info >= (3, 0) and sys.version_info < (3, 4): compilation_help() raise SystemExit("Pygame requires Python3 version 3.5 or above.") if IS_PYPY and sys.pypy_version_info < (7,): raise SystemExit("Pygame requires PyPy version 7.0.0 above, compatible with CPython 2.7 or CPython 3.5+") def consume_arg(name): if name in sys.argv: sys.argv.remove(name) return True return False #get us to the correct directory path = os.path.split(os.path.abspath(sys.argv[0]))[0] os.chdir(path) #os.environ["CFLAGS"] = "-W -Wall -Wpointer-arith -Wcast-qual -Winline " + \ # "-Wcast-align -Wconversion -Wstrict-prototypes " + \ # "-Wmissing-prototypes -Wmissing-declarations " + \ # "-Wnested-externs -Wshadow -Wredundant-decls" if consume_arg("-warnings"): os.environ["CFLAGS"] = "-W -Wimplicit-int " + \ "-Wimplicit-function-declaration " + \ "-Wimplicit -Wmain -Wreturn-type -Wunused -Wswitch " + \ "-Wcomment -Wtrigraphs -Wformat -Wchar-subscripts " + \ "-Wuninitialized -Wparentheses " +\ "-Wpointer-arith -Wcast-qual -Winline -Wcast-align " + \ "-Wconversion -Wstrict-prototypes " + \ "-Wmissing-prototypes -Wmissing-declarations " + \ "-Wnested-externs -Wshadow -Wredundant-decls" if consume_arg('-pygame-ci'): cflags = os.environ.get('CFLAGS', '') if cflags: cflags += ' ' cflags += '-Werror=nested-externs -Werror=switch -Werror=implicit ' + \ '-Werror=implicit-function-declaration -Werror=return-type ' + \ '-Werror=implicit-int -Werror=main -Werror=pointer-arith ' + \ '-Werror=format-security -Werror=uninitialized ' + \ '-Werror=trigraphs -Werror=parentheses -Werror=unused-value ' + \ '-Werror=cast-align -Werror=int-conversion ' + \ '-Werror=incompatible-pointer-types' os.environ['CFLAGS'] = cflags STRIPPED=False # STRIPPED builds don't have developer resources like docs or tests if "PYGAME_ANDROID" in os.environ: # test cases and docs are useless inside an APK STRIPPED=True if consume_arg('-stripped'): STRIPPED=True enable_arm_neon = False if consume_arg('-enable-arm-neon'): enable_arm_neon = True cflags = os.environ.get('CFLAGS', '') if cflags: cflags += ' ' cflags += '-mfpu=neon' os.environ['CFLAGS'] = cflags if consume_arg('cython'): # compile .pyx files # So you can `setup.py cython` or `setup.py cython install` try: from Cython.Build.Dependencies import cythonize_one except ImportError: print("You need cython. https://cython.org/, pip install cython --user") sys.exit(1) from Cython.Build.Dependencies import create_extension_list from Cython.Build.Dependencies import create_dependency_tree try: from Cython.Compiler.Main import Context from Cython.Compiler.Options import CompilationOptions, default_options c_options = CompilationOptions(default_options) ctx = Context.from_options(c_options) except ImportError: from Cython.Compiler.Main import Context, CompilationOptions, default_options c_options = CompilationOptions(default_options) ctx = c_options.create_context() import glob pyx_files = glob.glob(os.path.join('src_c', 'cython', 'pygame', '*.pyx')) + \ glob.glob(os.path.join('src_c', 'cython', 'pygame', '**', '*.pyx')) pyx_files, pyx_meta = create_extension_list(pyx_files, ctx=ctx) deps = create_dependency_tree(ctx) queue = [] for ext in pyx_files: pyx_file = ext.sources[0] # TODO: check all sources, extension c_file = os.path.splitext(pyx_file)[0].split(os.path.sep) del c_file[1:3] # output in src_c/ c_file = os.path.sep.join(c_file) + '.c' # update outdated .c files if os.path.isfile(c_file): c_timestamp = os.path.getmtime(c_file) if c_timestamp < deps.timestamp(pyx_file): dep_timestamp, dep = deps.timestamp(pyx_file), pyx_file priority = 0 else: dep_timestamp, dep = deps.newest_dependency(pyx_file) priority = 2 - (dep in deps.immediate_dependencies(pyx_file)) if dep_timestamp > c_timestamp: outdated = True else: outdated = False else: outdated = True priority = 0 if outdated: print('Compiling {} because it changed.'.format(pyx_file)) queue.append((priority, dict( pyx_file=pyx_file, c_file=c_file, fingerprint=None, quiet=False, options=c_options, full_module_name=ext.name, embedded_metadata=pyx_meta.get(ext.name) ))) # compile in right order queue.sort(key=lambda a: a[0]) queue = [pair[1] for pair in queue] count = len(queue) for i, kwargs in enumerate(queue): kwargs['progress'] = '[{}/{}] '.format(i + 1, count) cythonize_one(**kwargs) AUTO_CONFIG = False if consume_arg('-auto'): AUTO_CONFIG = True import os.path, glob, stat, shutil import distutils.sysconfig from distutils.core import setup, Command from distutils.extension import read_setup_file from distutils.command.install_data import install_data from distutils.command.sdist import sdist revision = '' def add_datafiles(data_files, dest_dir, pattern): """Add directory structures to data files according to a pattern""" src_dir, elements = pattern def do_directory(root_dest_path, root_src_path, elements): files = [] for e in elements: if isinstance(e, list): src_dir, elems = e dest_path = '/'.join([root_dest_path, src_dir]) src_path = os.path.join(root_src_path, src_dir) do_directory(dest_path, src_path, elems) else: files.extend(glob.glob(os.path.join(root_src_path, e))) if files: data_files.append((root_dest_path, files)) do_directory(dest_dir, src_dir, elements) # # allow optionally using setuptools for bdist_egg. # if consume_arg("-setuptools") in sys.argv: # from setuptools import setup # sys.argv.remove ("-setuptools") # we need to eat this argument in to distutils doesn't trip over it consume_arg("-setuptools") # NOTE: the bdist_mpkg_support is for darwin. try: import bdist_mpkg_support except ImportError: pass else: EXTRAS.update({ 'options': bdist_mpkg_support.options, 'setup_requires': ['bdist_mpkg>=0.4.2'], #'install_requires': ['pyobjc'], #'dependency_links': ['http://rene.f0o.com/~rene/stuff/macosx/'] }) #headers to install headers = glob.glob(os.path.join('src_c', '*.h')) headers.remove(os.path.join('src_c', 'scale.h')) headers.append(os.path.join('src_c', 'include')) import distutils.command.install_headers # monkey patch distutils header install to copy over directories def run_install_headers(self): headers = self.distribution.headers if not headers: return self.mkpath(self.install_dir) for header in headers: if os.path.isdir(header): destdir=os.path.join(self.install_dir, os.path.basename(header)) self.mkpath(destdir) for entry in os.listdir(header): header1=os.path.join(header, entry) if not os.path.isdir(header1): (out, _) = self.copy_file(header1, destdir) self.outfiles.append(out) else: (out, _) = self.copy_file(header, self.install_dir) self.outfiles.append(out) distutils.command.install_headers.install_headers.run = run_install_headers # option for not installing the headers. if consume_arg("-noheaders"): headers = [] #sanity check for any arguments if len(sys.argv) == 1 and sys.stdout.isatty(): if sys.version_info[0] >= 3: reply = input('\nNo Arguments Given, Perform Default Install? [Y/n]') else: reply = raw_input('\nNo Arguments Given, Perform Default Install? [Y/n]') if not reply or reply[0].lower() != 'n': sys.argv.append('install') #make sure there is a Setup file if AUTO_CONFIG or not os.path.isfile('Setup'): print ('\n\nWARNING, No "Setup" File Exists, Running "buildconfig/config.py"') import buildconfig.config try: buildconfig.config.main(AUTO_CONFIG) except: compilation_help() raise if '-config' in sys.argv: sys.exit(0) print ('\nContinuing With "setup.py"') try: s_mtime = os.stat("Setup")[stat.ST_MTIME] sin_mtime = os.stat(os.path.join('buildconfig', 'Setup.SDL1.in'))[stat.ST_MTIME] if sin_mtime > s_mtime: print ('\n\nWARNING, "buildconfig/Setup.SDL1.in" newer than "Setup",' 'you might need to modify "Setup".') except OSError: pass # get compile info for all extensions try: extensions = read_setup_file('Setup') except: print ("""Error with the "Setup" file, perhaps make a clean copy from "Setup.in".""") compilation_help() raise # Only define the ARM_NEON defines if they have been enabled at build time. if enable_arm_neon: for e in extensions: e.define_macros.append(('PG_ENABLE_ARM_NEON', '1')) # decide whether or not to enable new buffer protocol support (PEP 3118) # old CPython versions without newbuf are no longer supported! # new PYPY also supports PEP 3118 enable_newbuf = True # TODO: remove all PG_ENABLE_NEWBUF conditionals from C code # and just fail when PEP 3118 (Py_TPFLAGS_HAVE_NEWBUFFER) is not present # then remove this logic for e in extensions: e.define_macros.append(('ENABLE_NEWBUF', '1')) # if not building font, try replacing with ftfont alternate_font = os.path.join('src_py', 'font.py') if os.path.exists(alternate_font): os.remove(alternate_font) have_font = False have_freetype = False for e in extensions: if e.name == 'font': have_font = True if e.name == '_freetype': have_freetype = True if not have_font and have_freetype: shutil.copyfile(os.path.join('src_py', 'ftfont.py'), alternate_font) #extra files to install data_path = os.path.join(distutils.sysconfig.get_python_lib(), 'pygame') pygame_data_files = [] data_files = [('pygame', pygame_data_files)] #add files in distribution directory # pygame_data_files.append('LGPL') # pygame_data_files.append('readme.html') # pygame_data_files.append('install.html') add_stubs = True # add *.pyi files into distribution directory if add_stubs: type_files = glob.glob(os.path.join('buildconfig', 'pygame-stubs', '*.pyi')) for type_file in type_files: pygame_data_files.append(type_file) _sdl2 = glob.glob(os.path.join('buildconfig', 'pygame-stubs', '_sdl2', '*.pyi')) if _sdl2: _sdl2_data_files = [] data_files.append(('pygame/_sdl2', _sdl2_data_files)) for type_file in _sdl2: _sdl2_data_files.append(type_file) #add non .py files in lib directory for f in glob.glob(os.path.join('src_py', '*')): if not f[-3:] == '.py' and not f[-4:] == '.doc' and os.path.isfile(f): pygame_data_files.append(f) # We don't need to deploy tests, example code, or docs inside a game #tests/fixtures add_datafiles(data_files, 'pygame/tests', ['test', [['fixtures', [['xbm_cursors', ['*.xbm']], ['fonts', ['*.ttf', '*.otf', '*.bdf', '*.png']]]]]]) #examples add_datafiles(data_files, 'pygame/examples', ['examples', ['readme.rst', ['data', ['*']], ['macosx', ['*.py', ['aliens_app_example', ['*.py', 'README.txt', ['English.lproj', ['aliens.icns', ['MainMenu.nib', ['*']]]]]]]]]]) #docs add_datafiles(data_files, 'pygame/docs', ['docs', ['*.html', # Navigation and help pages '*.gif', # pygame logos '*.js', # For doc search ['ref', # pygame reference ['*.html', # Reference pages '*.js', # Comments script '*.json']], # Comment data ['c_api', # pygame C API ['*.html']], ['tut', # Tutorials ['*.html', ['tom', ['*.html', '*.png']]]], ['_static', # Sphinx added support files ['*.css', '*.png', '*.ico', '*.js']], ['_images', # Sphinx added reST ".. image::" refs ['*.jpg', '*.png', '*.gif']], ['_sources', # Used for ref search ['*.txt', ['ref', ['*.txt']]]]]]) #generate the version module def parse_version(ver): return ', '.join(s for s in re.findall(r'\d+', ver)[0:3]) def parse_source_version(): pgh_major = -1 pgh_minor = -1 pgh_patch = -1 major_exp_search = re.compile(r'define\s+PG_MAJOR_VERSION\s+([0-9]+)').search minor_exp_search = re.compile(r'define\s+PG_MINOR_VERSION\s+([0-9]+)').search patch_exp_search = re.compile(r'define\s+PG_PATCH_VERSION\s+([0-9]+)').search pg_header = os.path.join('src_c', 'include', '_pygame.h') with open(pg_header) as f: for line in f: if pgh_major == -1: m = major_exp_search(line) if m: pgh_major = int(m.group(1)) if pgh_minor == -1: m = minor_exp_search(line) if m: pgh_minor = int(m.group(1)) if pgh_patch == -1: m = patch_exp_search(line) if m: pgh_patch = int(m.group(1)) if pgh_major == -1: raise SystemExit("_pygame.h: cannot find PG_MAJOR_VERSION") if pgh_minor == -1: raise SystemExit("_pygame.h: cannot find PG_MINOR_VERSION") if pgh_patch == -1: raise SystemExit("_pygame.h: cannot find PG_PATCH_VERSION") return (pgh_major, pgh_minor, pgh_patch) def write_version_module(pygame_version, revision): vernum = parse_version(pygame_version) src_vernum = parse_source_version() if vernum != ', '.join(str(e) for e in src_vernum): raise SystemExit("_pygame.h version differs from 'METADATA' version" ": %s vs %s" % (vernum, src_vernum)) with open(os.path.join('buildconfig', 'version.py.in'), 'r') as header_file: header = header_file.read() with open(os.path.join('src_py', 'version.py'), 'w') as version_file: version_file.write(header) version_file.write('ver = "' + pygame_version + '" # pylint: disable=invalid-name\n') version_file.write('vernum = PygameVersion(%s)\n' % vernum) version_file.write('rev = "' + revision + '" # pylint: disable=invalid-name\n') version_file.write('\n__all__ = ["SDL", "ver", "vernum", "rev"]\n') write_version_module(METADATA['version'], revision) #required. This will be filled if doing a Windows build. cmdclass = {} def add_command(name): def decorator(command): assert issubclass(command, Command) cmdclass[name]=command return command return decorator #try to find DLLs and copy them too (only on windows) if sys.platform == 'win32': from distutils.command.build_ext import build_ext #add dependency DLLs to the project lib_dependencies = {} for e in extensions: if e.name.startswith('COPYLIB_'): lib_dependencies[e.name[8:]] = e.libraries def dependencies(roots): """Return a set of dependencies for the list of library file roots The return set is a dictionary keyed on library root name with values of 1. """ root_set = {} for root in roots: try: deps = lib_dependencies[root] except KeyError: pass else: root_set[root] = 1 root_set.update(dependencies(deps)) return root_set the_dlls = {} required_dlls = {} for e in extensions: if e.name.startswith('COPYLIB_'): the_dlls[e.name[8:]] = e.library_dirs[0] else: required_dlls.update(dependencies(e.libraries)) # join the required_dlls and the_dlls keys together. lib_names = {} for lib in list(required_dlls.keys()) + list(the_dlls.keys()): lib_names[lib] = 1 for lib in lib_names.keys(): #next DLL; a distutils bug requires the paths to have Windows separators f = the_dlls[lib].replace('/', os.sep) if f == '_': print ("WARNING, DLL for %s library not found." % lib) else: pygame_data_files.append(f) if '-enable-msvc-analyze' in sys.argv: # calculate the MSVC compiler version as an int msc_pos = sys.version.find('MSC v.') msc_ver = 1900 if msc_pos != -1: msc_ver = int(sys.version[msc_pos + 6:msc_pos + 10]) print ('Analyzing with MSC_VER =', msc_ver) # excluding system headers from analyze out put was only added after MSCV_VER 1913 if msc_ver >= 1913: os.environ['CAExcludePath'] = 'C:\\Program Files (x86)\\' for e in extensions: e.extra_compile_args += ['/analyze', '/experimental:external', '/external:W0', '/external:env:CAExcludePath' ] else: for e in extensions: e.extra_compile_args += ['/analyze'] def has_flag(compiler, flagname): """ Adapted from here: https://github.com/pybind/python_example/blob/master/setup.py#L37 """ from distutils.errors import CompileError import tempfile root_drive = os.path.splitdrive(sys.executable)[0] + '\\' with tempfile.NamedTemporaryFile('w', suffix='.cpp', delete=False) as f: f.write('int main (int argc, char **argv) { return 0; }') fname = f.name try: compiler.compile([fname], output_dir=root_drive, extra_postargs=[flagname]) except CompileError: return False else: try: base_file = os.path.splitext(fname)[0] obj_file = base_file + '.obj' os.remove(obj_file) except OSError: pass finally: try: os.remove(fname) except OSError: pass return True # filter flags, returns list of accepted flags def flag_filter(compiler, *flags): return [flag for flag in flags if has_flag(compiler, flag)] @add_command('build_ext') class WinBuildExt(build_ext): """This build_ext sets necessary environment variables for MinGW""" # __sdl_lib_dir is possible location of msvcrt replacement import # libraries, if they exist. Pygame module base only links to SDL so # should have the SDL library directory as its only -L option. for e in extensions: if e.name == 'base': __sdl_lib_dir = e.library_dirs[0].replace('/', os.sep) break def build_extensions(self): # Add supported optimisations flags to reduce code size with MSVC opts = flag_filter(self.compiler, "/GF", "/Gy") for extension in extensions: extension.extra_compile_args += opts build_ext.build_extensions(self) # Add the precompiled smooth scale MMX functions to transform. def replace_scale_mmx(): for e in extensions: if e.name == 'transform': if '64 bit' in sys.version: e.extra_objects.append( os.path.join('buildconfig', 'obj', 'win64', 'scale_mmx.obj')) else: e.extra_objects.append( os.path.join('buildconfig', 'obj', 'win32', 'scale_mmx.obj')) for i in range(len(e.sources)): if e.sources[i].endswith('scale_mmx.c'): del e.sources[i] return replace_scale_mmx() #clean up the list of extensions for e in extensions[:]: if e.name.startswith('COPYLIB_'): extensions.remove(e) #don't compile the COPYLIBs, just clean them else: e.name = 'pygame.' + e.name #prepend package name on modules #data installer with improved intelligence over distutils #data files are copied into the project directory instead #of willy-nilly @add_command('install_data') class smart_install_data(install_data): def run(self): #need to change self.install_dir to the actual library dir install_cmd = self.get_finalized_command('install') self.install_dir = getattr(install_cmd, 'install_lib') return install_data.run(self) @add_command('sdist') class OurSdist(sdist): def initialize_options(self): super(sdist, self).initialize_options() # we do not want MANIFEST.in to appear in the root cluttering up things. self.template = os.path.join('buildconfig', 'MANIFEST.in') if "bdist_msi" in sys.argv: # if you are making an msi, we want it to overwrite files # we also want to include the repository revision in the file name from distutils.command import bdist_msi import msilib @add_command('bdist_msi') class bdist_msi_overwrite_on_install(bdist_msi.bdist_msi): def run(self): bdist_msi.bdist_msi.run(self) # Remove obsolete files. comp = "pygame1" # Pygame component prop = comp # Directory property records = [("surfarray.pyd", comp, "SURFAR~1.PYD|surfarray.pyd", prop, 1), ("sndarray.pyd", comp, "SNDARRAY.PYD|sndarray.pyd", prop, 1), ("camera.pyd", comp, "CAMERA.PYD|camera.pyd", prop, 1), ("color.py", comp, "COLOR.PY|color.py", prop, 1), ("color.pyc", comp, "COLOR.PYC|color.pyc", prop, 1), ("color.pyo", comp, "COLOR.PYO|color.pyo", prop, 1)] msilib.add_data(self.db, "RemoveFile", records) # Overwrite outdated files. fullname = self.distribution.get_fullname() installer_name = self.get_installer_filename(fullname) print ("changing %s to overwrite files on install" % installer_name) msilib.add_data(self.db, "Property", [("REINSTALLMODE", "amus")]) self.db.Commit() def get_installer_filename(self, fullname): if revision: fullname += '-hg_' + revision return bdist_msi.bdist_msi.get_installer_filename(self, fullname) # test command. For doing 'python setup.py test' @add_command('test') class TestCommand(Command): user_options = [ ] def initialize_options(self): self._dir = os.getcwd() def finalize_options(self): pass def run(self): ''' runs the tests with default options. ''' import subprocess return subprocess.call([sys.executable, os.path.join('test', '__main__.py')]) @add_command('docs') class DocsCommand(Command): """ For building the pygame documentation with `python setup.py docs`. This generates html, and documentation .h header files. """ user_options = [ ] def initialize_options(self): self._dir = os.getcwd() def finalize_options(self): pass def run(self): ''' runs the tests with default options. ''' docs_help = ( "Building docs requires Python version 3.6 or above, and sphinx." ) if not hasattr(sys, 'version_info') or sys.version_info < (3, 6): raise SystemExit(docs_help) import subprocess try: return subprocess.call([ sys.executable, os.path.join('buildconfig', 'makeref.py')] ) except: print(docs_help) raise # Prune empty file lists. date_files = [(path, files) for path, files in data_files if files] #finally, #call distutils with all needed info PACKAGEDATA = { "cmdclass": cmdclass, "packages": ['pygame', 'pygame.threads', 'pygame._sdl2', 'pygame.tests', 'pygame.tests.test_utils', 'pygame.tests.run_tests__tests', 'pygame.tests.run_tests__tests.all_ok', 'pygame.tests.run_tests__tests.failures1', 'pygame.tests.run_tests__tests.incomplete', 'pygame.tests.run_tests__tests.infinite_loop', 'pygame.tests.run_tests__tests.print_stderr', 'pygame.tests.run_tests__tests.print_stdout', 'pygame.tests.run_tests__tests.incomplete_todo', 'pygame.tests.run_tests__tests.exclude', 'pygame.tests.run_tests__tests.timeout', 'pygame.tests.run_tests__tests.everything', 'pygame.docs', 'pygame.examples'], "package_dir": {'pygame': 'src_py', 'pygame._sdl2': 'src_py/_sdl2', 'pygame.threads': 'src_py/threads', 'pygame.tests': 'test', 'pygame.docs': 'docs', 'pygame.examples': 'examples'}, "headers": headers, "ext_modules": extensions, "data_files": data_files, "zip_safe": False, } if STRIPPED: PACKAGEDATA = { "cmdclass": cmdclass, "packages": ['pygame', 'pygame.threads', 'pygame._sdl2'], "package_dir": {'pygame': 'src_py', 'pygame._sdl2': 'src_py/_sdl2', 'pygame.threads': 'src_py/threads'}, "ext_modules": extensions, "zip_safe": False, } PACKAGEDATA.update(METADATA) PACKAGEDATA.update(EXTRAS) try: setup(**PACKAGEDATA) except: compilation_help() raise
35.850242
109
0.583681
4a060f0c75f66abe18e471a6b7e2ccdaaba062c3
37,665
py
Python
venv1/Lib/site-packages/tensorflow/contrib/eager/python/checkpointable_utils.py
Soum-Soum/Tensorflow_Face_Finder
fec6c15d2df7012608511ad87f4b55731bf99478
[ "Apache-2.0", "MIT" ]
null
null
null
venv1/Lib/site-packages/tensorflow/contrib/eager/python/checkpointable_utils.py
Soum-Soum/Tensorflow_Face_Finder
fec6c15d2df7012608511ad87f4b55731bf99478
[ "Apache-2.0", "MIT" ]
1
2021-05-20T00:58:04.000Z
2021-05-20T00:58:04.000Z
venv1/Lib/site-packages/tensorflow/contrib/eager/python/checkpointable_utils.py
Soum-Soum/Tensorflow_Face_Finder
fec6c15d2df7012608511ad87f4b55731bf99478
[ "Apache-2.0", "MIT" ]
null
null
null
"""Utilities for working with Checkpointable objects.""" # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import weakref from tensorflow.contrib.eager.proto import checkpointable_object_graph_pb2 from tensorflow.python import pywrap_tensorflow from tensorflow.python.client import session as session_lib from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.training import checkpointable as core_checkpointable from tensorflow.python.training import checkpointable_utils as core_checkpointable_utils from tensorflow.python.training import optimizer as optimizer_lib from tensorflow.python.training import saver as saver_lib from tensorflow.python.util import deprecation _ESCAPE_CHAR = "." # For avoiding conflicts with user-specified names. # Keyword for identifying that the next bit of a checkpoint variable name is a # slot name. Checkpoint names for slot variables look like: # # <path to variable>/<_OPTIMIZER_SLOTS_NAME>/<path to optimizer>/<slot name> # # Where <path to variable> is a full path from the checkpoint root to the # variable being slotted for. _OPTIMIZER_SLOTS_NAME = _ESCAPE_CHAR + "OPTIMIZER_SLOT" # Keyword for separating the path to an object from the name of an # attribute in checkpoint names. Used like: # <path to variable>/<_OBJECT_ATTRIBUTES_NAME>/<name of attribute> _OBJECT_ATTRIBUTES_NAME = _ESCAPE_CHAR + "ATTRIBUTES" # Key where the object graph proto is saved in a TensorBundle _OBJECT_GRAPH_PROTO_KEY = "_CHECKPOINTABLE_OBJECT_GRAPH" # TODO(allenl): If this ends up in a public API, consider adding LINT.IfChange # or consolidating the implementation with get_variable. def _default_getter(name, shape, dtype, initializer=None, partition_info=None, **kwargs): """A pared-down version of get_variable which does not reuse variables.""" dtype = dtypes.as_dtype(dtype) shape_object = tensor_shape.as_shape(shape) with ops.init_scope(): if initializer is None: initializer, initializing_from_value = ( variable_scope._get_default_variable_store()._get_default_initializer( # pylint: disable=protected-access name=name, shape=shape_object, dtype=dtype)) else: initializing_from_value = not callable(initializer) # Same logic as get_variable variable_dtype = dtype.base_dtype if initializing_from_value: if shape is not None: raise ValueError("If initializer is a constant, do not specify shape.") initial_value = initializer else: # Instantiate initializer if provided initializer is a type object. if isinstance(initializer, type(init_ops.Initializer)): initializer = initializer(dtype=dtype) def initial_value(): return initializer( shape_object.as_list(), dtype=dtype, partition_info=partition_info) return resource_variable_ops.ResourceVariable( initial_value=initial_value, name=name, dtype=variable_dtype, **kwargs ) def add_variable(checkpointable, name, shape=None, dtype=dtypes.float32, initializer=None): """Add a variable to a Checkpointable with no scope influence.""" return checkpointable._add_variable_with_custom_getter( # pylint: disable=protected-access name=name, shape=shape, dtype=dtype, initializer=initializer, getter=_default_getter) def _breadth_first_checkpointable_traversal(root_checkpointable): """Find shortest paths to all variables owned by dependencies of root.""" bfs_sorted = [] to_visit = collections.deque([root_checkpointable]) path_to_root = {root_checkpointable: ()} while to_visit: current_checkpointable = to_visit.popleft() current_checkpointable._maybe_initialize_checkpointable() # pylint: disable=protected-access bfs_sorted.append(current_checkpointable) for child_checkpointable in ( current_checkpointable._checkpoint_dependencies): # pylint: disable=protected-access if child_checkpointable.ref not in path_to_root: path_to_root[child_checkpointable.ref] = ( path_to_root[current_checkpointable] + (child_checkpointable,)) to_visit.append(child_checkpointable.ref) return bfs_sorted, path_to_root def _escape_local_name(name): # We need to support slashes in local names for compatibility, since this # naming scheme is being patched in to things like Layer.add_variable where # slashes were previously accepted. We also want to use slashes to indicate # edges traversed to reach the variable, so we escape forward slashes in # names. return (name.replace(_ESCAPE_CHAR, _ESCAPE_CHAR + _ESCAPE_CHAR) .replace(r"/", _ESCAPE_CHAR + "S")) def _object_prefix_from_path(path_to_root): return "/".join( (_escape_local_name(checkpointable.name) for checkpointable in path_to_root)) def _slot_variable_naming_for_optimizer(optimizer_path): """Make a function for naming slot variables in an optimizer.""" # Name slot variables: # # <variable name>/<_OPTIMIZER_SLOTS_NAME>/<optimizer path>/<slot name> # # where <variable name> is exactly the checkpoint name used for the original # variable, including the path from the checkpoint root and the local name in # the object which owns it. Note that we only save slot variables if the # variable it's slotting for is also being saved. optimizer_identifier = "/%s/%s/" % (_OPTIMIZER_SLOTS_NAME, optimizer_path) def _name_slot_variable(variable_path, slot_name): """With an optimizer specified, name a slot variable.""" return (variable_path + optimizer_identifier + _escape_local_name(slot_name)) return _name_slot_variable def _serialize_slot_variables(checkpointable_objects, node_ids, object_names): """Gather and name slot variables.""" non_slot_objects = list(checkpointable_objects) slot_variables = {} for checkpointable in non_slot_objects: if isinstance(checkpointable, optimizer_lib.Optimizer): naming_scheme = _slot_variable_naming_for_optimizer( optimizer_path=object_names[checkpointable]) slot_names = checkpointable.get_slot_names() for slot_name in slot_names: for original_variable_node_id, original_variable in enumerate( non_slot_objects): try: slot_variable = checkpointable.get_slot( original_variable, slot_name) except AttributeError: slot_variable = None if slot_variable is None: continue slot_variable._maybe_initialize_checkpointable() # pylint: disable=protected-access if slot_variable._checkpoint_dependencies: # pylint: disable=protected-access # TODO(allenl): Gather dependencies of slot variables. raise NotImplementedError( "Currently only variables with no dependencies can be saved as " "slot variables. File a feature request if this limitation " "bothers you.") if slot_variable in node_ids: raise NotImplementedError( "A slot variable was re-used as a dependency of a " "Checkpointable object. This is not currently allowed. File a " "feature request if this limitation bothers you.") checkpoint_name = naming_scheme( variable_path=object_names[original_variable], slot_name=slot_name) object_names[slot_variable] = checkpoint_name slot_variable_node_id = len(checkpointable_objects) node_ids[slot_variable] = slot_variable_node_id checkpointable_objects.append(slot_variable) slot_variable_proto = ( checkpointable_object_graph_pb2.CheckpointableObjectGraph .Object.SlotVariableReference( slot_name=slot_name, original_variable_node_id=original_variable_node_id, slot_variable_node_id=slot_variable_node_id)) slot_variables.setdefault(checkpointable, []).append( slot_variable_proto) return slot_variables def _serialize_checkpointables( checkpointable_objects, node_ids, object_names, slot_variables): """Name non-slot `Checkpointable`s and add them to `object_graph_proto`.""" object_graph_proto = ( checkpointable_object_graph_pb2.CheckpointableObjectGraph()) named_saveables = {} for checkpoint_id, checkpointable in enumerate(checkpointable_objects): assert node_ids[checkpointable] == checkpoint_id object_proto = object_graph_proto.nodes.add() object_proto.slot_variables.extend(slot_variables.get(checkpointable, ())) object_name = object_names[checkpointable] for name, saveable in ( checkpointable._gather_saveables_for_checkpoint().items()): # pylint: disable=protected-access attribute = object_proto.attributes.add() attribute.name = name attribute.checkpoint_key = "%s/%s/%s" % ( object_name, _OBJECT_ATTRIBUTES_NAME, _escape_local_name(name)) # Figure out the name-based Saver's name for this variable. saver_dict = saver_lib.BaseSaverBuilder.OpListToDict( [saveable], convert_variable_to_tensor=False) attribute.full_name, = saver_dict.keys() named_saveables[attribute.checkpoint_key] = saveable for child in checkpointable._checkpoint_dependencies: # pylint: disable=protected-access child_proto = object_proto.children.add() child_proto.node_id = node_ids[child.ref] child_proto.local_name = child.name return named_saveables, object_graph_proto def _serialize_object_graph(root_checkpointable): """Determine checkpoint keys for variables and build a serialized graph. Non-slot variables are keyed based on a shortest path from the root saveable to the object which owns the variable (i.e. the one which called `Checkpointable._add_variable` to create it). Slot variables are keyed based on a shortest path to the variable being slotted for, a shortest path to their optimizer, and the slot name. Args: root_checkpointable: A `Checkpointable` object whose variables (including the variables of dependencies, recursively) should be saved. Returns: A tuple of (named_variables, object_graph_proto): named_variables: A dictionary mapping names to variable objects. object_graph_proto: A CheckpointableObjectGraph protocol buffer containing the serialized object graph and variable references. Raises: ValueError: If there are invalid characters in an optimizer's slot names. """ checkpointable_objects, path_to_root = ( _breadth_first_checkpointable_traversal(root_checkpointable)) object_names = { obj: _object_prefix_from_path(path) for obj, path in path_to_root.items()} node_ids = {node: node_id for node_id, node in enumerate(checkpointable_objects)} slot_variables = _serialize_slot_variables( checkpointable_objects=checkpointable_objects, node_ids=node_ids, object_names=object_names) return _serialize_checkpointables( checkpointable_objects=checkpointable_objects, node_ids=node_ids, object_names=object_names, slot_variables=slot_variables) def gather_initializers(root_checkpointable): """Traverse the object graph and find initialization ops. Looks for `Checkpointable` objects which are dependencies of `root_checkpointable` and which have an `initializer` property. Includes initializers for slot variables only if the variable they are slotting for and the optimizer are dependencies of `root_checkpointable` (i.e. if they would be saved with a checkpoint). Args: root_checkpointable: A `Checkpointable` object to gather initializers for. Returns: A list of initialization ops. """ # TODO(allenl): Extract out gathering logic so the naming logic doesn't have # to run. checkpointable_objects, path_to_root = ( _breadth_first_checkpointable_traversal(root_checkpointable)) object_names = { obj: _object_prefix_from_path(path) for obj, path in path_to_root.items()} node_ids = {node: node_id for node_id, node in enumerate(checkpointable_objects)} _serialize_slot_variables( checkpointable_objects=checkpointable_objects, node_ids=node_ids, object_names=object_names) return [c.initializer for c in checkpointable_objects if hasattr(c, "initializer") and c.initializer is not None] class _NoRestoreSaveable(saver_lib.BaseSaverBuilder.SaveableObject): def __init__(self, tensor, name): spec = saver_lib.BaseSaverBuilder.SaveSpec(tensor, "", name) super(_NoRestoreSaveable, self).__init__(tensor, [spec], name) def restore(self, restored_tensors, restored_shapes): return control_flow_ops.no_op() class _LoadStatus(object): """Abstract base for load status callbacks.""" @abc.abstractmethod def assert_consumed(self): """Raises an exception unless a non-trivial restoration has completed.""" pass @abc.abstractmethod def run_restore_ops(self, session=None): """Runs restore ops from the checkpoint. Requires a valid checkpoint.""" pass @abc.abstractmethod def initialize_or_restore(self, session=None): """Runs restore ops from the checkpoint, or initializes variables.""" pass class CheckpointLoadStatus(_LoadStatus): """Checks the status of checkpoint loading and manages restore ops. Returned from `Saver.restore`. Since `restore` may defer the loading of values in the checkpoint which don't yet have corresponding Python objects, `CheckpointLoadStatus` provides a callback to verify that checkpoint loading is complete (`assert_consumed`). When graph building, `restore` does not run restore ops itself since their creation may be deferred. The `run_restore_ops` method must be called once all Python objects with values to restore have been created and added to the dependency graph (this does not necessarily have to be the whole checkpoint; calling `run_restore_ops` while `assert_consumed` fails is supported and will partially restore the checkpoint). See `Saver.restore` for usage examples. """ def __init__(self, checkpoint, feed_dict): self._checkpoint = checkpoint self._feed_dict = feed_dict def assert_consumed(self): """Asserts that all objects in the checkpoint have been created/matched. Returns: `self` for chaining. Raises: AssertionError: If there are any Python objects in the dependency graph which have not been restored from this checkpoint or a later `restore`, or if there are any checkpointed values which have not been matched to Python objects. """ for node_id, node in enumerate(self._checkpoint.object_graph_proto.nodes): checkpointable = self._checkpoint.object_by_proto_id.get(node_id, None) if checkpointable is None: raise AssertionError("Unresolved object in checkpoint: %s" % (node,)) if checkpointable._update_uid < self._checkpoint.restore_uid: # pylint: disable=protected-access raise AssertionError( "Object not assigned a value from checkpoint: %s" % (node,)) if self._checkpoint.slot_restorations: # Sanity check; this collection should be clear if everything has been # restored. raise AssertionError("Unresolved slot restorations: %s" % ( self._checkpoint.slot_restorations,)) if self._checkpoint.unused_attributes: raise AssertionError( ("Unused attributes in these objects (the attributes exist in the " "checkpoint but not in the objects): %s") % ( self._checkpoint.unused_attributes.items(),)) return self def run_restore_ops(self, session=None): """Run operations to restore objects in the dependency graph.""" if context.executing_eagerly(): return # Run eagerly if session is None: session = ops.get_default_session() session.run(self._checkpoint.restore_ops, feed_dict=self._feed_dict) def initialize_or_restore(self, session=None): """Alias for `run_restore_ops`. This method has a sibling in `InitializationOnlyStatus` which instead initializes variables. That type is returned if no checkpoint is specified in `Saver.restore`. Args: session: The session to run restore ops in. If `None`, uses the default session. """ self.run_restore_ops(session=session) class InitializationOnlyStatus(_LoadStatus): """Returned from `Saver.restore` when no checkpoint has been specified. Objects of this type have the same `assert_consumed` method as `CheckpointLoadStatus`, but it always fails. However, `initialize_or_restore` works on objects of both types, and will initialize variables in `InitializationOnlyStatus` objects or restore them otherwise. """ def __init__(self, root_checkpointable): self._root_checkpointable = root_checkpointable def assert_consumed(self): """Assertion for consistency with `CheckpointLoadStatus`. Always fails.""" raise AssertionError( "No checkpoint specified (save_path=None); nothing is being restored.") def run_restore_ops(self, session=None): """For consistency with `CheckpointLoadStatus`. Use `initialize_or_restore` for initializing if no checkpoint was passed to `Saver.restore` and restoring otherwise. Args: session: Not used. """ raise AssertionError( "No checkpoint specified, so no restore ops are available " "(save_path=None to Saver.restore).") def initialize_or_restore(self, session=None): """Runs initialization ops for variables. Only objects which would be saved by `Saver.save` will be initialized. See `gather_initializers` for details. This method does nothing when executing eagerly (initializers get run eagerly). Args: session: The session to run initialization ops in. If `None`, uses the default session. """ if context.executing_eagerly(): return # run eagerly if session is None: session = ops.get_default_session() session.run(gather_initializers(self._root_checkpointable)) _DEPRECATED_RESTORE_INSTRUCTIONS = ( "Restoring a name-based tf.train.Saver checkpoint using the object-based " "restore API. This mode uses global names to match variables, and so is " "somewhat fragile. It also adds new restore ops to the graph each time it " "is called. Prefer re-encoding training checkpoints in the object-based " "format: run save() on the object-based saver (the same one this message " "is coming from) and use that checkpoint in the future.") class NameBasedSaverStatus(_LoadStatus): """Status for loading a name-based training checkpoint.""" def __init__(self, object_saver, save_path): self._object_saver = object_saver self._save_path = save_path def assert_consumed(self): """Assertion for consistency with `CheckpointLoadStatus`. Always fails.""" raise AssertionError( "Restoring a name-based checkpoint. No load status is available.") @deprecation.deprecated( date=None, instructions=_DEPRECATED_RESTORE_INSTRUCTIONS) def run_restore_ops(self, session=None): """Load the name-based training checkpoint using a new `tf.train.Saver`.""" if session is None and not context.executing_eagerly(): session = ops.get_default_session() with ops.device("/cpu:0"): saver_lib.Saver(self._object_saver._global_variable_names()).restore( # pylint: disable=protected-access sess=session, save_path=self._save_path) def initialize_or_restore(self, session=None): """Alias for `run_restore_ops`.""" self.run_restore_ops(session=session) class _SessionWithFeedDictAdditions(session_lib.SessionInterface): """Pretends to be a session, inserts extra feeds on run().""" def __init__(self, session, feed_additions): self._wrapped_session = session self._feed_additions = feed_additions def run(self, fetches, feed_dict=None, **kwargs): if feed_dict is None: feed_dict = {} else: feed_dict = feed_dict.copy() feed_dict.update(self._feed_additions) return self._wrapped_session.run( fetches=fetches, feed_dict=feed_dict, **kwargs) class CheckpointableSaver(object): """Saves and restores a `Checkpointable` object and its dependencies. See `Checkpointable` for details of dependency management. `Saver` wraps `tf.train.Saver` for saving, including extra information about the graph of dependencies between Python objects. When restoring, it uses this information about the save-time dependency graph to more robustly match objects with their checkpointed values. When executing eagerly, it supports restoring variables on object creation (see `Saver.restore`). Values in a checkpoint are mapped to `Checkpointable` Python objects (`Variable`s, `Optimizer`s, `Layer`s) based on the names provided when the checkpoint was written. To avoid breaking existing checkpoints when modifying a class, dependency names (the names of attributes to which `Checkpointable` objects are assigned) may not change. These names are local to objects, in contrast to the `Variable.name`-based save/restore from `tf.train.Saver`, and so allow additional program transformations. """ def __init__(self, root_checkpointable): """Configure saving. Args: root_checkpointable: The root of the object graph to save/restore. This object and all of its dependencies are saved in the checkpoint. When restoring, objects are matched and restored starting from this root. """ # Allow passing in a weak reference to avoid reference cycles when # `Checkpointable` objects save themselves. self._root_checkpointable_ref = root_checkpointable if not context.executing_eagerly(): with ops.device("/cpu:0"): self._file_prefix_placeholder = constant_op.constant("model") else: self._file_prefix_placeholder = None # Op caching for save self._object_graph_feed_tensor = None self._last_save_object_graph = None self._last_save_saver = None # Op caching for restore self._object_graph_restore_tensor = None self._last_restore_object_graph = None self._last_restore_checkpoint = None @property def _root_checkpointable(self): if isinstance(self._root_checkpointable_ref, weakref.ref): derefed = self._root_checkpointable_ref() assert derefed is not None return derefed else: return self._root_checkpointable_ref def save(self, file_prefix, checkpoint_number=None, session=None): """Save a training checkpoint. The saved checkpoint includes variables created by this object and any Checkpointable objects it depends on at the time `Saver.save()` is called. Args: file_prefix: A prefix to use for the checkpoint filenames (/path/to/directory/and_a_prefix). Names are generated based on this prefix and `checkpoint_number`, if provided. checkpoint_number: An integer variable or Tensor, used to number checkpoints. Typically this value is saved along with other variables in training checkpoints, which will happen automatically if it was created by `root_checkpointable` or one of its dependencies (via `Checkpointable._add_variable`). session: The session to evaluate variables in. Ignored when executing eagerly. If not provided when graph building, the default session is used. Returns: The full path to the checkpoint. """ named_variables, graph_proto = _serialize_object_graph( self._root_checkpointable) in_graph_mode = not context.executing_eagerly() if in_graph_mode: if session is None: session = ops.get_default_session() if self._object_graph_feed_tensor is None: with ops.device("/cpu:0"): self._object_graph_feed_tensor = constant_op.constant( "", dtype=dtypes.string) object_graph_tensor = self._object_graph_feed_tensor feed_additions = {object_graph_tensor: graph_proto.SerializeToString()} else: session = None with ops.device("/cpu:0"): object_graph_tensor = constant_op.constant( graph_proto.SerializeToString(), dtype=dtypes.string) feed_additions = None assert _OBJECT_GRAPH_PROTO_KEY not in named_variables named_variables[_OBJECT_GRAPH_PROTO_KEY] = _NoRestoreSaveable( tensor=object_graph_tensor, name=_OBJECT_GRAPH_PROTO_KEY) if not in_graph_mode or self._last_save_object_graph != graph_proto: if self._last_save_object_graph is not None and in_graph_mode: raise NotImplementedError( "Using a single Saver to save a mutated object graph is not " "currently supported when graph building. Use a different Saver " "when the object graph changes (save ops will be duplicated), or " "file a feature request if this limitation bothers you.") saver = saver_lib.Saver(var_list=named_variables) if in_graph_mode: self._last_save_saver = saver self._last_save_object_graph = graph_proto else: saver = self._last_save_saver with ops.device("/cpu:0"): save_path = saver.save( sess=_SessionWithFeedDictAdditions( session=session, feed_additions=feed_additions), save_path=file_prefix, write_meta_graph=False, global_step=checkpoint_number) return save_path def _global_variable_names(self): """Generate a `tf.train.Saver`-style `var_list` using `variable.name`s.""" named_saveables, graph_proto = _serialize_object_graph( self._root_checkpointable) saver_names = {} for object_proto in graph_proto.nodes: for attribute_proto in object_proto.attributes: saver_names[attribute_proto.full_name] = named_saveables[ attribute_proto.checkpoint_key] return saver_names def restore(self, save_path, session=None): """Restore a training checkpoint. Restores `root_checkpointable` and any objects that it tracks (transitive). Either assigns values immediately if variables to restore have been created already, or defers restoration until the variables are created. Dependencies added to the `root_checkpointable` passed to the constructor after this call will be matched if they have a corresponding object in the checkpoint. When building a graph, restorations are added to the graph but not run. A session is required to retrieve checkpoint metadata. To disallow deferred loading, assert immediately that all checkpointed variables have been matched to variable objects: ```python saver = Saver(root) saver.restore(path).assert_consumed() ``` An exception will be raised unless every object was matched and its variables already exist. When graph building, `assert_consumed()` indicates that all of the restore ops which will be created for this checkpoint have been created. They can be run via the `run_restore_ops()` function of the status object: ```python saver.restore(path).assert_consumed().run_restore_ops() ``` If the checkpoint has not been consumed completely, then the list of restore ops will grow as more objects are added to the dependency graph. Name-based `tf.train.Saver` checkpoints can be loaded using this method. There is no deferred loading, and names are used to match variables. No restore ops are created/run until `run_restore_ops()` or `initialize_or_restore()` are called on the returned status object, even when executing eagerly. Re-encode name-based checkpoints using this object-based `Saver.save` as soon as possible. Args: save_path: The path to the checkpoint, as returned by `save` or `tf.train.latest_checkpoint`. If None (as when there is no latest checkpoint for `tf.train.latest_checkpoint` to return), returns an object which may run initializers for objects in the dependency graph. If the checkpoint was written by the name-based `tf.train.Saver`, names are used to match variables. session: The session to retrieve metadata with. Ignored when executing eagerly. If not provided when graph building, the default session is used. Returns: A load status object, which can be used to make assertions about the status of checkpoint restoration and run initialization/restore ops (of type `CheckpointLoadStatus`, or `InitializationOnlyStatus` if `save_path` is `None`). If `save_path` points to a name-based checkpoint, a `NameBasedSaverStatus` object is returned which runs restore ops from a name-based saver. """ if save_path is None: return InitializationOnlyStatus(self._root_checkpointable) in_graph_mode = not context.executing_eagerly() if in_graph_mode: if session is None: session = ops.get_default_session() file_prefix_tensor = self._file_prefix_placeholder file_prefix_feed_dict = {self._file_prefix_placeholder: save_path} else: session = None with ops.device("/cpu:0"): file_prefix_tensor = constant_op.constant(save_path) file_prefix_feed_dict = None try: if not in_graph_mode or self._object_graph_restore_tensor is None: with ops.device("/cpu:0"): object_graph_string, = io_ops.restore_v2( prefix=file_prefix_tensor, tensor_names=[_OBJECT_GRAPH_PROTO_KEY], shape_and_slices=[""], dtypes=[dtypes.string], name="object_graph_proto_read") if in_graph_mode: self._object_graph_restore_tensor = object_graph_string if in_graph_mode: object_graph_string = session.run( self._object_graph_restore_tensor, feed_dict=file_prefix_feed_dict) else: object_graph_string = object_graph_string.numpy() except errors_impl.NotFoundError: # The object graph proto does not exist in this checkpoint. Try again with # name-based saving. return NameBasedSaverStatus(self, save_path) object_graph_proto = ( checkpointable_object_graph_pb2.CheckpointableObjectGraph()) object_graph_proto.ParseFromString(object_graph_string) if in_graph_mode and object_graph_proto == self._last_restore_object_graph: checkpoint = self._last_restore_checkpoint else: if in_graph_mode: dtype_map = None else: reader = pywrap_tensorflow.NewCheckpointReader(save_path) dtype_map = reader.get_variable_to_dtype_map() checkpoint = core_checkpointable_utils._Checkpoint( # pylint: disable=protected-access object_graph_proto=object_graph_proto, save_path=file_prefix_tensor, dtype_map=dtype_map) if in_graph_mode: if self._last_restore_object_graph is not None: raise NotImplementedError( "Using a single Saver to restore different object graphs is not " "currently supported when graph building. Use a different Saver " "for each object graph (restore ops will be duplicated), or " "file a feature request if this limitation bothers you.") self._last_restore_checkpoint = checkpoint self._last_restore_object_graph = object_graph_proto core_checkpointable._CheckpointPosition( # pylint: disable=protected-access checkpoint=checkpoint, proto_id=0).restore(self._root_checkpointable) load_status = CheckpointLoadStatus( checkpoint, feed_dict=file_prefix_feed_dict) return load_status class Checkpoint(core_checkpointable.Checkpointable): """A utility class which groups `Checkpointable` objects. Accepts arbitrary keyword arguments to its constructor and saves those values with a checkpoint. Maintains a `save_counter` for numbering checkpoints. Example usage: ```python import tensorflow as tf import tensorflow.contrib.eager as tfe import os checkpoint_directory = "/tmp/training_checkpoints" checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt") root = tfe.Checkpoint(optimizer=optimizer, model=model) root.restore(tf.train.latest_checkpoint(checkpoint_directory)) for _ in range(num_training_steps): optimizer.minimize( ... ) root.save(file_prefix=checkpoint_prefix) ``` For more manual control over saving, use `tfe.CheckpointableSaver` directly. Attributes: save_counter: Incremented when `save()` is called. Used to number checkpoints. """ def __init__(self, **kwargs): """Group objects into a training checkpoint. Args: **kwargs: Keyword arguments are set as attributes of this object, and are saved with the checkpoint. Attribute values must derive from `CheckpointableBase`. Raises: ValueError: If objects in `kwargs` are not Checkpointable. """ super(Checkpoint, self).__init__() for k, v in sorted(kwargs.items(), key=lambda item: item[0]): if not isinstance(v, core_checkpointable.CheckpointableBase): raise ValueError( ("`Checkpoint` was expecting an object derived from " "`CheckpointableBase`, got %s.") % (v,)) setattr(self, k, v) self._save_counter = None # Created lazily for restore-on-create. self._saver = CheckpointableSaver(weakref.ref(self)) def _maybe_create_save_counter(self): """Create a save counter if it does not yet exist.""" if self._save_counter is None: # Initialized to 0 and incremented before saving. with ops.device("/cpu:0"): self._save_counter = add_variable( self, name="save_counter", initializer=0, dtype=dtypes.int64) @property def save_counter(self): """An integer variable which starts at zero and is incremented on save. Used to number checkpoints. Returns: The save counter variable. """ self._maybe_create_save_counter() return self._save_counter def save(self, file_prefix, session=None): """Save a checkpoint. Wraps `tfe.CheckpointableSaver.save`.""" in_graph_mode = not context.executing_eagerly() if in_graph_mode: if session is None: session = ops.get_default_session() if self._save_counter is None: # When graph building, if this is a new save counter variable then it # needs to be initialized before assign_add. This is only an issue if # restore() has not been called first. session.run(self.save_counter.initializer) with ops.colocate_with(self.save_counter): assign_op = self.save_counter.assign_add(1) if in_graph_mode: session.run(assign_op) return self._saver.save( file_prefix=file_prefix, checkpoint_number=self.save_counter, session=session) def restore(self, save_path): """Restore a checkpoint. Wraps `tfe.CheckpointableSaver.restore`.""" status = self._saver.restore(save_path=save_path) # Create the save counter now so it gets initialized with other variables # when graph building. Creating it earlier would lead to double # initialization when executing eagerly. self._maybe_create_save_counter() return status
42.801136
117
0.711881
4a0611ba960682f9f602f3ce36035e3958c86894
538
py
Python
doc/scripts/runtime_hook_subclass.py
jvail/xarray-simlab
3e8cb81775868e3e7c6495489ba351567e0d7e42
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
48
2017-06-19T16:31:37.000Z
2021-04-26T04:42:48.000Z
doc/scripts/runtime_hook_subclass.py
rlange2/xarray-simlab
45359e99cbf6341464b02cb937618c051a58a31c
[ "BSD-3-Clause" ]
108
2017-06-26T12:22:10.000Z
2021-03-09T08:57:02.000Z
doc/scripts/runtime_hook_subclass.py
rlange2/xarray-simlab
45359e99cbf6341464b02cb937618c051a58a31c
[ "BSD-3-Clause" ]
10
2017-08-11T04:56:20.000Z
2021-03-01T16:46:55.000Z
# TODO: use sphinx ipython directive when issue fixed # https://github.com/ipython/ipython/issues/11362 import xsimlab as xs import time class PrintStepTime(xs.RuntimeHook): @xs.runtime_hook("run_step", "model", "pre") def start_step(self, model, context, state): self._start_time = time.time() @xs.runtime_hook("run_step", "model", "post") def finish_step(self, model, context, state): step_time = time.time() - self._start_time print(f"Step {context['step']} took {step_time:.2e} seconds")
28.315789
69
0.684015
4a0611cbda4cb32530996863dd77a0a08ac658d6
7,530
py
Python
cohesity_management_sdk/models/vmware_restore_parameters.py
chandrashekar-cohesity/management-sdk-python
9e6ec99e8a288005804b808c4e9b19fd204e3a8b
[ "Apache-2.0" ]
1
2021-01-07T20:36:22.000Z
2021-01-07T20:36:22.000Z
cohesity_management_sdk/models/vmware_restore_parameters.py
chandrashekar-cohesity/management-sdk-python
9e6ec99e8a288005804b808c4e9b19fd204e3a8b
[ "Apache-2.0" ]
null
null
null
cohesity_management_sdk/models/vmware_restore_parameters.py
chandrashekar-cohesity/management-sdk-python
9e6ec99e8a288005804b808c4e9b19fd204e3a8b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2019 Cohesity Inc. import cohesity_management_sdk.models.network_mapping class VmwareRestoreParameters(object): """Implementation of the 'VmwareRestoreParameters' model. Specifies the information required for recovering or cloning VmWare VMs. Attributes: datastore_folder_id (long|int): Specifies the folder where the restore datastore should be created. This is applicable only when the VMs are being cloned. datastore_id (long|int): Specifies the datastore where the object's files should be recovered to. This field is mandatory to recover objects to a different resource pool or to a different parent source. If not specified, objects are recovered to their original datastore locations in the parent source. detach_network (bool): Specifies whether the network should be detached from the recovered or cloned VMs. disable_network (bool): Specifies whether the network should be left in disabled state. Attached network is enabled by default. Set this flag to true to disable it. network_id (long|int): Specifies a network configuration to be attached to the cloned or recovered object. For kCloneVMs and kRecoverVMs tasks, original network configuration is detached if the cloned or recovered object is kept under a different parent Protection Source or a different Resource Pool. By default, for kRecoverVMs task, original network configuration is preserved if the recovered object is kept under the same parent Protection Source and the same Resource Pool. Specify this field to override the preserved network configuration or to attach a new network configuration to the cloned or recovered objects. You can get the networkId of the kNetwork object by setting includeNetworks to 'true' in the GET /public/protectionSources operation. In the response, get the id of the desired kNetwork object, the resource pool, and the registered parent Protection Source. network_mappings (list of NetworkMapping): Specifies the parameters for mapping the source and target networks. This field can be used if restoring to a different parent source. This will replace the NetworkId and DisableNetwork that are used to provide configuration for a single network. Unless the support for mapping is available for all the entities old keys can be used to attach a new network. Supports 'kVMware' for now. powered_on (bool): Specifies the power state of the cloned or recovered objects. By default, the cloned or recovered objects are powered off. prefix (string): Specifies a prefix to prepended to the source object name to derive a new name for the recovered or cloned object. By default, cloned or recovered objects retain their original name. Length of this field is limited to 8 characters. resource_pool_id (long|int): Specifies the resource pool where the cloned or recovered objects are attached. This field is mandatory for kCloneVMs Restore Tasks always. For kRecoverVMs Restore Tasks, this field is mandatory only if newParentId field is specified. If this field is not specified, recovered objects are attached to the original resource pool under the original parent. suffix (string): Specifies a suffix to appended to the original source object name to derive a new name for the recovered or cloned object. By default, cloned or recovered objects retain their original name. Length of this field is limited to 8 characters. vm_folder_id (long|int): Specifies a folder where the VMs should be restored. This is applicable only when the VMs are being restored to an alternate location or if clone is being performed. """ # Create a mapping from Model property names to API property names _names = { "datastore_folder_id":'datastoreFolderId', "datastore_id":'datastoreId', "detach_network":'detachNetwork', "disable_network":'disableNetwork', "network_id":'networkId', "network_mappings":'networkMappings', "powered_on":'poweredOn', "prefix":'prefix', "resource_pool_id":'resourcePoolId', "suffix":'suffix', "vm_folder_id":'vmFolderId' } def __init__(self, datastore_folder_id=None, datastore_id=None, detach_network=None, disable_network=None, network_id=None, network_mappings=None, powered_on=None, prefix=None, resource_pool_id=None, suffix=None, vm_folder_id=None): """Constructor for the VmwareRestoreParameters class""" # Initialize members of the class self.datastore_folder_id = datastore_folder_id self.datastore_id = datastore_id self.detach_network = detach_network self.disable_network = disable_network self.network_id = network_id self.network_mappings = network_mappings self.powered_on = powered_on self.prefix = prefix self.resource_pool_id = resource_pool_id self.suffix = suffix self.vm_folder_id = vm_folder_id @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary datastore_folder_id = dictionary.get('datastoreFolderId') datastore_id = dictionary.get('datastoreId') detach_network = dictionary.get('detachNetwork') disable_network = dictionary.get('disableNetwork') network_id = dictionary.get('networkId') network_mappings = None if dictionary.get('networkMappings') != None: network_mappings = list() for structure in dictionary.get('networkMappings'): network_mappings.append(cohesity_management_sdk.models.network_mapping.NetworkMapping.from_dictionary(structure)) powered_on = dictionary.get('poweredOn') prefix = dictionary.get('prefix') resource_pool_id = dictionary.get('resourcePoolId') suffix = dictionary.get('suffix') vm_folder_id = dictionary.get('vmFolderId') # Return an object of this model return cls(datastore_folder_id, datastore_id, detach_network, disable_network, network_id, network_mappings, powered_on, prefix, resource_pool_id, suffix, vm_folder_id)
46.770186
129
0.65166
4a0611e36fa01a0e4ed61083842a0fdecae06e93
476
py
Python
lists.py
jplusplus/goodiebag
8f8f26719220fe69efd42edf4a1309e522146d41
[ "0BSD" ]
null
null
null
lists.py
jplusplus/goodiebag
8f8f26719220fe69efd42edf4a1309e522146d41
[ "0BSD" ]
null
null
null
lists.py
jplusplus/goodiebag
8f8f26719220fe69efd42edf4a1309e522146d41
[ "0BSD" ]
2
2015-10-19T08:16:02.000Z
2020-10-19T08:22:48.000Z
# -*- coding: utf-8 -*- def get_unique(list_): """Returnerar en lista där varje värde bara förekommer en gång. """ return list(set(list_)) def flatten_list(list_): """ Returnerar en endimensionell lista [a, b, c, d, e], givet en tvådimensionell [[a, b], [c], [d, e]] """ return [inner for outer in list_ for inner in outer] print(flatten_list([[1, 2], [3], [4, 5]])) print(get_unique([1, 2, 3, 1, 6, 1, 4, 5]))
20.695652
59
0.556723
4a06123eacb453444ef363610c58daf3ff7e762e
776
py
Python
send2trash/win/__init__.py
hsoft/send2trash
be402728fb7f5f889961d38ca10648ac97379845
[ "BSD-3-Clause" ]
147
2015-01-06T07:08:43.000Z
2020-05-20T12:52:01.000Z
send2trash/win/__init__.py
hsoft/send2trash
be402728fb7f5f889961d38ca10648ac97379845
[ "BSD-3-Clause" ]
43
2015-06-04T15:39:16.000Z
2020-06-03T17:05:31.000Z
send2trash/win/__init__.py
hsoft/send2trash
be402728fb7f5f889961d38ca10648ac97379845
[ "BSD-3-Clause" ]
32
2015-03-24T08:27:15.000Z
2020-05-21T16:20:16.000Z
# Copyright 2017 Virgil Dupras # This software is licensed under the "BSD" License as described in the "LICENSE" file, # which should be included with this package. The terms are also available at # http://www.hardcoded.net/licenses/bsd_license from __future__ import unicode_literals from platform import version # if windows is vista or newer and pywin32 is available use IFileOperation if int(version().split(".", 1)[0]) >= 6: try: # Attempt to use pywin32 to use IFileOperation from send2trash.win.modern import send2trash except ImportError: # use SHFileOperation as fallback from send2trash.win.legacy import send2trash else: # use SHFileOperation as fallback from send2trash.win.legacy import send2trash # noqa: F401
36.952381
87
0.743557
4a06127c59d0df4084773b6f7559d54908474033
1,884
py
Python
Projects/calc.py
SanjanaSogimatt/Python
a84b94aadd599eb189bf637eebd7f0db703d798d
[ "MIT" ]
12
2021-01-18T16:22:27.000Z
2021-11-30T04:38:27.000Z
Projects/calc.py
SanjanaSogimatt/Python
a84b94aadd599eb189bf637eebd7f0db703d798d
[ "MIT" ]
31
2021-03-02T16:33:16.000Z
2022-03-30T04:01:15.000Z
Projects/calc.py
SanjanaSogimatt/Python
a84b94aadd599eb189bf637eebd7f0db703d798d
[ "MIT" ]
31
2021-03-02T14:26:17.000Z
2022-01-30T16:51:08.000Z
# calculator function - which when called will function as a calculator def calculator(): print("Options:\n\t[1] Add \n\t[2] Subtract \n\t[3] Multiply \n\t[4] Divide \n\t[5] Power \n\t[6] Square root") ch = int(input("\t--> ")) # take option input from user #addition if ch == 1: num1 = float(input("1st number --> ")) num2 = float(input("2nd number --> ")) print(f"{num1} + {num2} = {num1 + num2}") #subtraction elif ch == 2: num1 = float(input("1st number --> ")) num2 = float(input("2nd number --> ")) print(f"{num1} - {num2} = {num1 - num2}") #multiplication elif ch == 3: num1 = float(input("1st number --> ")) num2 = float(input("2nd number --> ")) print(f"{num1} x {num2} = {num1 * num2}") #division elif ch == 4: num1 = float(input("Dividend --> ")) num2 = float(input("Divisor --> ")) # try-except which checks if divisor is zero (which isn't allowed) try: print(f"{num1} ÷ {num2} = {num1 / num2}") except ZeroDivisionError: print(f"{num1} ÷ {num2} = Error: Division by 0!") #power elif ch == 5: num = float(input("Number --> ")) power = float(input("Power --> ")) print(f"{num} ^ {power} = {num ** power}") #root elif ch == 6: num = float(input("Number --> ")) print(f"√{num} = {num**(1/2)}") else: print("Invalid input!!") #==================== # MAIN PROGRAM print("<-- Basic Calculator -->") print("Does what it says on the tin!") print("-" * 30) #decoration run = 'Y' while run == 'Y': calculator() print("-" * 30) print("Would you like calculate more?\n\t[Y] Yes\n\t[N] No") run = input("\t--> ").upper() while run not in ['Y','YES','N','NO']: run = input("\t--> ").upper() print("-" * 30)
31.4
115
0.508493
4a0612bb5b044dabde8552cba901dc29f29b24bf
1,404
py
Python
quotespage/urls.py
Cornell-CIS-Slack/cs-quotes
a4451ff0703acebb762641cbc236cc0e51e2d2fd
[ "BSD-3-Clause" ]
1
2017-10-04T16:16:22.000Z
2017-10-04T16:16:22.000Z
quotespage/urls.py
Cornell-CIS-Slack/cs-quotes
a4451ff0703acebb762641cbc236cc0e51e2d2fd
[ "BSD-3-Clause" ]
null
null
null
quotespage/urls.py
Cornell-CIS-Slack/cs-quotes
a4451ff0703acebb762641cbc236cc0e51e2d2fd
[ "BSD-3-Clause" ]
null
null
null
from django.urls import path, re_path from django.views.generic import TemplateView from quotespage import views app_name='quotespage' urlpatterns = [ path('', views.index, name='index'), path('submit/', views.submit, name='submit'), path('speakers/', views.speaker_list, name='speaker-list'), re_path(r'^speaker/(?P<speaker>[-,%.\w]+)/$', views.speaker_archive, name='speaker'), re_path(r'^speaker/(?P<speaker>[-,%.\w]+)/(?P<pagenum>\d+)/$', views.speaker_archive, name='speaker-pages'), path('random/', views.random_quote, name='random'), re_path(r'^random/(?P<year>\d{4})/$', views.random_quote, name='random-byyear'), path('byvotes/', views.top_voted, name='byvotes'), re_path(r'^byvotes/(?P<pagenum>\d+)/$', views.top_voted, name='byvotes-pages'), path('about/', TemplateView.as_view(template_name="quotespage/about.html"), name='about'), path('search/', views.search, name='search'), path('submit/success/', TemplateView.as_view(template_name="quotespage/success.html"), name='success'), re_path(r'^page/(?P<pagenum>\d+)/$', views.index, name='pages'), re_path(r'^quote/(?P<quoteid>\d+)/$', views.permalink, name='permalink'), path('api/vote/', views.vote, name='vote'), path('api/random/', views.json_random_quote, name='api-random'), path('api/genkey/', views.generate_api_key, name='genkey'), path('api/submit/', views.remote_submit, name='remote-submit'), ]
50.142857
109
0.687322
4a0612f4dcf19768617230233b7da3c0e42249f2
92,428
py
Python
nltk/downloader.py
PhanatosZou/nltk
750e488569b6f80c72ae6ca74eff90eae55e6c4e
[ "Apache-2.0" ]
null
null
null
nltk/downloader.py
PhanatosZou/nltk
750e488569b6f80c72ae6ca74eff90eae55e6c4e
[ "Apache-2.0" ]
null
null
null
nltk/downloader.py
PhanatosZou/nltk
750e488569b6f80c72ae6ca74eff90eae55e6c4e
[ "Apache-2.0" ]
null
null
null
# Natural Language Toolkit: Corpus & Model Downloader # # Copyright (C) 2001-2019 NLTK Project # Author: Edward Loper <edloper@gmail.com> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ The NLTK corpus and module downloader. This module defines several interfaces which can be used to download corpora, models, and other data packages that can be used with NLTK. Downloading Packages ==================== If called with no arguments, ``download()`` will display an interactive interface which can be used to download and install new packages. If Tkinter is available, then a graphical interface will be shown, otherwise a simple text interface will be provided. Individual packages can be downloaded by calling the ``download()`` function with a single argument, giving the package identifier for the package that should be downloaded: >>> download('treebank') # doctest: +SKIP [nltk_data] Downloading package 'treebank'... [nltk_data] Unzipping corpora/treebank.zip. NLTK also provides a number of \"package collections\", consisting of a group of related packages. To download all packages in a colleciton, simply call ``download()`` with the collection's identifier: >>> download('all-corpora') # doctest: +SKIP [nltk_data] Downloading package 'abc'... [nltk_data] Unzipping corpora/abc.zip. [nltk_data] Downloading package 'alpino'... [nltk_data] Unzipping corpora/alpino.zip. ... [nltk_data] Downloading package 'words'... [nltk_data] Unzipping corpora/words.zip. Download Directory ================== By default, packages are installed in either a system-wide directory (if Python has sufficient access to write to it); or in the current user's home directory. However, the ``download_dir`` argument may be used to specify a different installation target, if desired. See ``Downloader.default_download_dir()`` for more a detailed description of how the default download directory is chosen. NLTK Download Server ==================== Before downloading any packages, the corpus and module downloader contacts the NLTK download server, to retrieve an index file describing the available packages. By default, this index file is loaded from ``https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml``. If necessary, it is possible to create a new ``Downloader`` object, specifying a different URL for the package index file. Usage:: python nltk/downloader.py [-d DATADIR] [-q] [-f] [-k] PACKAGE_IDS or:: python -m nltk.downloader [-d DATADIR] [-q] [-f] [-k] PACKAGE_IDS """ # ---------------------------------------------------------------------- """ 0 1 2 3 [label][----][label][----] [column ][column ] Notes ===== Handling data files.. Some questions: * Should the data files be kept zipped or unzipped? I say zipped. * Should the data files be kept in svn at all? Advantages: history; automatic version numbers; 'svn up' could be used rather than the downloader to update the corpora. Disadvantages: they're big, which makes working from svn a bit of a pain. And we're planning to potentially make them much bigger. I don't think we want people to have to download 400MB corpora just to use nltk from svn. * Compromise: keep the data files in trunk/data rather than in trunk/nltk. That way you can check them out in svn if you want to; but you don't need to, and you can use the downloader instead. * Also: keep models in mind. When we change the code, we'd potentially like the models to get updated. This could require a little thought. * So.. let's assume we have a trunk/data directory, containing a bunch of packages. The packages should be kept as zip files, because we really shouldn't be editing them much (well -- we may edit models more, but they tend to be binary-ish files anyway, where diffs aren't that helpful). So we'll have trunk/data, with a bunch of files like abc.zip and treebank.zip and propbank.zip. For each package we could also have eg treebank.xml and propbank.xml, describing the contents of the package (name, copyright, license, etc). Collections would also have .xml files. Finally, we would pull all these together to form a single index.xml file. Some directory structure wouldn't hurt. So how about:: /trunk/data/ ....................... root of data svn index.xml ........................ main index file src/ ............................. python scripts packages/ ........................ dir for packages corpora/ ....................... zip & xml files for corpora grammars/ ...................... zip & xml files for grammars taggers/ ....................... zip & xml files for taggers tokenizers/ .................... zip & xml files for tokenizers etc. collections/ ..................... xml files for collections Where the root (/trunk/data) would contain a makefile; and src/ would contain a script to update the info.xml file. It could also contain scripts to rebuild some of the various model files. The script that builds index.xml should probably check that each zip file expands entirely into a single subdir, whose name matches the package's uid. Changes I need to make: - in index: change "size" to "filesize" or "compressed-size" - in index: add "unzipped-size" - when checking status: check both compressed & uncompressed size. uncompressed size is important to make sure we detect a problem if something got partially unzipped. define new status values to differentiate stale vs corrupt vs corruptly-uncompressed?? (we shouldn't need to re-download the file if the zip file is ok but it didn't get uncompressed fully.) - add other fields to the index: author, license, copyright, contact, etc. the current grammars/ package would become a single new package (eg toy-grammars or book-grammars). xml file should have: - authorship info - license info - copyright info - contact info - info about what type of data/annotation it contains? - recommended corpus reader? collections can contain other collections. they can also contain multiple package types (corpora & models). Have a single 'basics' package that includes everything we talk about in the book? n.b.: there will have to be a fallback to the punkt tokenizer, in case they didn't download that model. default: unzip or not? """ import time, os, zipfile, sys, textwrap, threading, itertools, shutil, functools import subprocess from hashlib import md5 from xml.etree import ElementTree try: TKINTER = True from tkinter import ( Tk, Frame, Label, Entry, Button, Canvas, Menu, IntVar, TclError, ) from tkinter.messagebox import showerror from nltk.draw.table import Table from nltk.draw.util import ShowText except ImportError: TKINTER = False TclError = ValueError from urllib.request import urlopen from urllib.error import HTTPError, URLError import nltk # urllib2 = nltk.internals.import_from_stdlib('urllib2') ###################################################################### # Directory entry objects (from the data server's index file) ###################################################################### class Package(object): """ A directory entry for a downloadable package. These entries are extracted from the XML index file that is downloaded by ``Downloader``. Each package consists of a single file; but if that file is a zip file, then it can be automatically decompressed when the package is installed. """ def __init__( self, id, url, name=None, subdir="", size=None, unzipped_size=None, checksum=None, svn_revision=None, copyright="Unknown", contact="Unknown", license="Unknown", author="Unknown", unzip=True, **kw ): self.id = id """A unique identifier for this package.""" self.name = name or id """A string name for this package.""" self.subdir = subdir """The subdirectory where this package should be installed. E.g., ``'corpora'`` or ``'taggers'``.""" self.url = url """A URL that can be used to download this package's file.""" self.size = int(size) """The filesize (in bytes) of the package file.""" self.unzipped_size = int(unzipped_size) """The total filesize of the files contained in the package's zipfile.""" self.checksum = checksum """The MD-5 checksum of the package file.""" self.svn_revision = svn_revision """A subversion revision number for this package.""" self.copyright = copyright """Copyright holder for this package.""" self.contact = contact """Name & email of the person who should be contacted with questions about this package.""" self.license = license """License information for this package.""" self.author = author """Author of this package.""" ext = os.path.splitext(url.split("/")[-1])[1] self.filename = os.path.join(subdir, id + ext) """The filename that should be used for this package's file. It is formed by joining ``self.subdir`` with ``self.id``, and using the same extension as ``url``.""" self.unzip = bool(int(unzip)) # '0' or '1' """A flag indicating whether this corpus should be unzipped by default.""" # Include any other attributes provided by the XML file. self.__dict__.update(kw) @staticmethod def fromxml(xml): if isinstance(xml, str): xml = ElementTree.parse(xml) for key in xml.attrib: xml.attrib[key] = str(xml.attrib[key]) return Package(**xml.attrib) def __lt__(self, other): return self.id < other.id def __repr__(self): return "<Package %s>" % self.id class Collection(object): """ A directory entry for a collection of downloadable packages. These entries are extracted from the XML index file that is downloaded by ``Downloader``. """ def __init__(self, id, children, name=None, **kw): self.id = id """A unique identifier for this collection.""" self.name = name or id """A string name for this collection.""" self.children = children """A list of the ``Collections`` or ``Packages`` directly contained by this collection.""" self.packages = None """A list of ``Packages`` contained by this collection or any collections it recursively contains.""" # Include any other attributes provided by the XML file. self.__dict__.update(kw) @staticmethod def fromxml(xml): if isinstance(xml, str): xml = ElementTree.parse(xml) for key in xml.attrib: xml.attrib[key] = str(xml.attrib[key]) children = [child.get("ref") for child in xml.findall("item")] return Collection(children=children, **xml.attrib) def __lt__(self, other): return self.id < other.id def __repr__(self): return "<Collection %s>" % self.id ###################################################################### # Message Passing Objects ###################################################################### class DownloaderMessage(object): """A status message object, used by ``incr_download`` to communicate its progress.""" class StartCollectionMessage(DownloaderMessage): """Data server has started working on a collection of packages.""" def __init__(self, collection): self.collection = collection class FinishCollectionMessage(DownloaderMessage): """Data server has finished working on a collection of packages.""" def __init__(self, collection): self.collection = collection class StartPackageMessage(DownloaderMessage): """Data server has started working on a package.""" def __init__(self, package): self.package = package class FinishPackageMessage(DownloaderMessage): """Data server has finished working on a package.""" def __init__(self, package): self.package = package class StartDownloadMessage(DownloaderMessage): """Data server has started downloading a package.""" def __init__(self, package): self.package = package class FinishDownloadMessage(DownloaderMessage): """Data server has finished downloading a package.""" def __init__(self, package): self.package = package class StartUnzipMessage(DownloaderMessage): """Data server has started unzipping a package.""" def __init__(self, package): self.package = package class FinishUnzipMessage(DownloaderMessage): """Data server has finished unzipping a package.""" def __init__(self, package): self.package = package class UpToDateMessage(DownloaderMessage): """The package download file is already up-to-date""" def __init__(self, package): self.package = package class StaleMessage(DownloaderMessage): """The package download file is out-of-date or corrupt""" def __init__(self, package): self.package = package class ErrorMessage(DownloaderMessage): """Data server encountered an error""" def __init__(self, package, message): self.package = package if isinstance(message, Exception): self.message = str(message) else: self.message = message class ProgressMessage(DownloaderMessage): """Indicates how much progress the data server has made""" def __init__(self, progress): self.progress = progress class SelectDownloadDirMessage(DownloaderMessage): """Indicates what download directory the data server is using""" def __init__(self, download_dir): self.download_dir = download_dir ###################################################################### # NLTK Data Server ###################################################################### class Downloader(object): """ A class used to access the NLTK data server, which can be used to download corpora and other data packages. """ # ///////////////////////////////////////////////////////////////// # Configuration # ///////////////////////////////////////////////////////////////// INDEX_TIMEOUT = 60 * 60 # 1 hour """The amount of time after which the cached copy of the data server index will be considered 'stale,' and will be re-downloaded.""" DEFAULT_URL = "https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml" """The default URL for the NLTK data server's index. An alternative URL can be specified when creating a new ``Downloader`` object.""" # ///////////////////////////////////////////////////////////////// # Status Constants # ///////////////////////////////////////////////////////////////// INSTALLED = "installed" """A status string indicating that a package or collection is installed and up-to-date.""" NOT_INSTALLED = "not installed" """A status string indicating that a package or collection is not installed.""" STALE = "out of date" """A status string indicating that a package or collection is corrupt or out-of-date.""" PARTIAL = "partial" """A status string indicating that a collection is partially installed (i.e., only some of its packages are installed.)""" # ///////////////////////////////////////////////////////////////// # Cosntructor # ///////////////////////////////////////////////////////////////// def __init__(self, server_index_url=None, download_dir=None): self._url = server_index_url or self.DEFAULT_URL """The URL for the data server's index file.""" self._collections = {} """Dictionary from collection identifier to ``Collection``""" self._packages = {} """Dictionary from package identifier to ``Package``""" self._download_dir = download_dir """The default directory to which packages will be downloaded.""" self._index = None """The XML index file downloaded from the data server""" self._index_timestamp = None """Time at which ``self._index`` was downloaded. If it is more than ``INDEX_TIMEOUT`` seconds old, it will be re-downloaded.""" self._status_cache = {} """Dictionary from package/collection identifier to status string (``INSTALLED``, ``NOT_INSTALLED``, ``STALE``, or ``PARTIAL``). Cache is used for packages only, not collections.""" self._errors = None """Flag for telling if all packages got successfully downloaded or not.""" # decide where we're going to save things to. if self._download_dir is None: self._download_dir = self.default_download_dir() # ///////////////////////////////////////////////////////////////// # Information # ///////////////////////////////////////////////////////////////// def list( self, download_dir=None, show_packages=True, show_collections=True, header=True, more_prompt=False, skip_installed=False, ): lines = 0 # for more_prompt if download_dir is None: download_dir = self._download_dir print("Using default data directory (%s)" % download_dir) if header: print("=" * (26 + len(self._url))) print(" Data server index for <%s>" % self._url) print("=" * (26 + len(self._url))) lines += 3 # for more_prompt stale = partial = False categories = [] if show_packages: categories.append("packages") if show_collections: categories.append("collections") for category in categories: print("%s:" % category.capitalize()) lines += 1 # for more_prompt for info in sorted(getattr(self, category)(), key=str): status = self.status(info, download_dir) if status == self.INSTALLED and skip_installed: continue if status == self.STALE: stale = True if status == self.PARTIAL: partial = True prefix = { self.INSTALLED: "*", self.STALE: "-", self.PARTIAL: "P", self.NOT_INSTALLED: " ", }[status] name = textwrap.fill( "-" * 27 + (info.name or info.id), 75, subsequent_indent=27 * " " )[27:] print(" [%s] %s %s" % (prefix, info.id.ljust(20, "."), name)) lines += len(name.split("\n")) # for more_prompt if more_prompt and lines > 20: user_input = input("Hit Enter to continue: ") if user_input.lower() in ("x", "q"): return lines = 0 print() msg = "([*] marks installed packages" if stale: msg += "; [-] marks out-of-date or corrupt packages" if partial: msg += "; [P] marks partially installed collections" print(textwrap.fill(msg + ")", subsequent_indent=" ", width=76)) def packages(self): self._update_index() return self._packages.values() def corpora(self): self._update_index() return [pkg for (id, pkg) in self._packages.items() if pkg.subdir == "corpora"] def models(self): self._update_index() return [pkg for (id, pkg) in self._packages.items() if pkg.subdir != "corpora"] def collections(self): self._update_index() return self._collections.values() # ///////////////////////////////////////////////////////////////// # Downloading # ///////////////////////////////////////////////////////////////// def _info_or_id(self, info_or_id): if isinstance(info_or_id, str): return self.info(info_or_id) else: return info_or_id # [xx] When during downloading is it 'safe' to abort? Only unsafe # time is *during* an unzip -- we don't want to leave a # partially-unzipped corpus in place because we wouldn't notice # it. But if we had the exact total size of the unzipped corpus, # then that would be fine. Then we could abort anytime we want! # So this is really what we should do. That way the threaded # downloader in the gui can just kill the download thread anytime # it wants. def incr_download(self, info_or_id, download_dir=None, force=False): # If they didn't specify a download_dir, then use the default one. if download_dir is None: download_dir = self._download_dir yield SelectDownloadDirMessage(download_dir) # If they gave us a list of ids, then download each one. if isinstance(info_or_id, (list, tuple)): for msg in self._download_list(info_or_id, download_dir, force): yield msg return # Look up the requested collection or package. try: info = self._info_or_id(info_or_id) except (IOError, ValueError) as e: yield ErrorMessage(None, "Error loading %s: %s" % (info_or_id, e)) return # Handle collections. if isinstance(info, Collection): yield StartCollectionMessage(info) for msg in self.incr_download(info.children, download_dir, force): yield msg yield FinishCollectionMessage(info) # Handle Packages (delegate to a helper function). else: for msg in self._download_package(info, download_dir, force): yield msg def _num_packages(self, item): if isinstance(item, Package): return 1 else: return len(item.packages) def _download_list(self, items, download_dir, force): # Look up the requested items. for i in range(len(items)): try: items[i] = self._info_or_id(items[i]) except (IOError, ValueError) as e: yield ErrorMessage(items[i], e) return # Download each item, re-scaling their progress. num_packages = sum(self._num_packages(item) for item in items) progress = 0 for i, item in enumerate(items): if isinstance(item, Package): delta = 1.0 / num_packages else: delta = len(item.packages) / num_packages for msg in self.incr_download(item, download_dir, force): if isinstance(msg, ProgressMessage): yield ProgressMessage(progress + msg.progress * delta) else: yield msg progress += 100 * delta def _download_package(self, info, download_dir, force): yield StartPackageMessage(info) yield ProgressMessage(0) # Do we already have the current version? status = self.status(info, download_dir) if not force and status == self.INSTALLED: yield UpToDateMessage(info) yield ProgressMessage(100) yield FinishPackageMessage(info) return # Remove the package from our status cache self._status_cache.pop(info.id, None) # Check for (and remove) any old/stale version. filepath = os.path.join(download_dir, info.filename) if os.path.exists(filepath): if status == self.STALE: yield StaleMessage(info) os.remove(filepath) # Ensure the download_dir exists if not os.path.exists(download_dir): os.mkdir(download_dir) if not os.path.exists(os.path.join(download_dir, info.subdir)): os.mkdir(os.path.join(download_dir, info.subdir)) # Download the file. This will raise an IOError if the url # is not found. yield StartDownloadMessage(info) yield ProgressMessage(5) try: infile = urlopen(info.url) with open(filepath, "wb") as outfile: num_blocks = max(1, info.size / (1024 * 16)) for block in itertools.count(): s = infile.read(1024 * 16) # 16k blocks. outfile.write(s) if not s: break if block % 2 == 0: # how often? yield ProgressMessage(min(80, 5 + 75 * (block / num_blocks))) infile.close() except IOError as e: yield ErrorMessage( info, "Error downloading %r from <%s>:" "\n %s" % (info.id, info.url, e), ) return yield FinishDownloadMessage(info) yield ProgressMessage(80) # If it's a zipfile, uncompress it. if info.filename.endswith(".zip"): zipdir = os.path.join(download_dir, info.subdir) # Unzip if we're unzipping by default; *or* if it's already # been unzipped (presumably a previous version). if info.unzip or os.path.exists(os.path.join(zipdir, info.id)): yield StartUnzipMessage(info) for msg in _unzip_iter(filepath, zipdir, verbose=False): # Somewhat of a hack, but we need a proper package reference msg.package = info yield msg yield FinishUnzipMessage(info) yield FinishPackageMessage(info) def download( self, info_or_id=None, download_dir=None, quiet=False, force=False, prefix="[nltk_data] ", halt_on_error=True, raise_on_error=False, print_error_to=sys.stderr, ): print_to = functools.partial(print, file=print_error_to) # If no info or id is given, then use the interactive shell. if info_or_id is None: # [xx] hmm -- changing self._download_dir here seems like # the wrong thing to do. Maybe the _interactive_download # function should make a new copy of self to use? if download_dir is not None: self._download_dir = download_dir self._interactive_download() return True else: # Define a helper function for displaying output: def show(s, prefix2=""): print_to( textwrap.fill( s, initial_indent=prefix + prefix2, subsequent_indent=prefix + prefix2 + " " * 4, ) ) for msg in self.incr_download(info_or_id, download_dir, force): # Error messages if isinstance(msg, ErrorMessage): show(msg.message) if raise_on_error: raise ValueError(msg.message) if halt_on_error: return False self._errors = True if not quiet: print_to("Error installing package. Retry? [n/y/e]") choice = input().strip() if choice in ["y", "Y"]: if not self.download( msg.package.id, download_dir, quiet, force, prefix, halt_on_error, raise_on_error, ): return False elif choice in ["e", "E"]: return False # All other messages if not quiet: # Collection downloading messages: if isinstance(msg, StartCollectionMessage): show("Downloading collection %r" % msg.collection.id) prefix += " | " print_to(prefix) elif isinstance(msg, FinishCollectionMessage): print_to(prefix) prefix = prefix[:-4] if self._errors: show( "Downloaded collection %r with errors" % msg.collection.id ) else: show("Done downloading collection %s" % msg.collection.id) # Package downloading messages: elif isinstance(msg, StartPackageMessage): show( "Downloading package %s to %s..." % (msg.package.id, download_dir) ) elif isinstance(msg, UpToDateMessage): show("Package %s is already up-to-date!" % msg.package.id, " ") # elif isinstance(msg, StaleMessage): # show('Package %s is out-of-date or corrupt' % # msg.package.id, ' ') elif isinstance(msg, StartUnzipMessage): show("Unzipping %s." % msg.package.filename, " ") # Data directory message: elif isinstance(msg, SelectDownloadDirMessage): download_dir = msg.download_dir return True def is_stale(self, info_or_id, download_dir=None): return self.status(info_or_id, download_dir) == self.STALE def is_installed(self, info_or_id, download_dir=None): return self.status(info_or_id, download_dir) == self.INSTALLED def clear_status_cache(self, id=None): if id is None: self._status_cache.clear() else: self._status_cache.pop(id, None) def status(self, info_or_id, download_dir=None): """ Return a constant describing the status of the given package or collection. Status can be one of ``INSTALLED``, ``NOT_INSTALLED``, ``STALE``, or ``PARTIAL``. """ if download_dir is None: download_dir = self._download_dir info = self._info_or_id(info_or_id) # Handle collections: if isinstance(info, Collection): pkg_status = [self.status(pkg.id) for pkg in info.packages] if self.STALE in pkg_status: return self.STALE elif self.PARTIAL in pkg_status: return self.PARTIAL elif self.INSTALLED in pkg_status and self.NOT_INSTALLED in pkg_status: return self.PARTIAL elif self.NOT_INSTALLED in pkg_status: return self.NOT_INSTALLED else: return self.INSTALLED # Handle packages: else: filepath = os.path.join(download_dir, info.filename) if download_dir != self._download_dir: return self._pkg_status(info, filepath) else: if info.id not in self._status_cache: self._status_cache[info.id] = self._pkg_status(info, filepath) return self._status_cache[info.id] def _pkg_status(self, info, filepath): if not os.path.exists(filepath): return self.NOT_INSTALLED # Check if the file has the correct size. try: filestat = os.stat(filepath) except OSError: return self.NOT_INSTALLED if filestat.st_size != int(info.size): return self.STALE # Check if the file's checksum matches if md5_hexdigest(filepath) != info.checksum: return self.STALE # If it's a zipfile, and it's been at least partially # unzipped, then check if it's been fully unzipped. if filepath.endswith(".zip"): unzipdir = filepath[:-4] if not os.path.exists(unzipdir): return self.INSTALLED # but not unzipped -- ok! if not os.path.isdir(unzipdir): return self.STALE unzipped_size = sum( os.stat(os.path.join(d, f)).st_size for d, _, files in os.walk(unzipdir) for f in files ) if unzipped_size != info.unzipped_size: return self.STALE # Otherwise, everything looks good. return self.INSTALLED def update(self, quiet=False, prefix="[nltk_data] "): """ Re-download any packages whose status is STALE. """ self.clear_status_cache() for pkg in self.packages(): if self.status(pkg) == self.STALE: self.download(pkg, quiet=quiet, prefix=prefix) # ///////////////////////////////////////////////////////////////// # Index # ///////////////////////////////////////////////////////////////// def _update_index(self, url=None): """A helper function that ensures that self._index is up-to-date. If the index is older than self.INDEX_TIMEOUT, then download it again.""" # Check if the index is aleady up-to-date. If so, do nothing. if not ( self._index is None or url is not None or time.time() - self._index_timestamp > self.INDEX_TIMEOUT ): return # If a URL was specified, then update our URL. self._url = url or self._url # Download the index file. self._index = nltk.internals.ElementWrapper( ElementTree.parse(urlopen(self._url)).getroot() ) self._index_timestamp = time.time() # Build a dictionary of packages. packages = [Package.fromxml(p) for p in self._index.findall("packages/package")] self._packages = dict((p.id, p) for p in packages) # Build a dictionary of collections. collections = [ Collection.fromxml(c) for c in self._index.findall("collections/collection") ] self._collections = dict((c.id, c) for c in collections) # Replace identifiers with actual children in collection.children. for collection in self._collections.values(): for i, child_id in enumerate(collection.children): if child_id in self._packages: collection.children[i] = self._packages[child_id] elif child_id in self._collections: collection.children[i] = self._collections[child_id] else: print( "removing collection member with no package: {}".format( child_id ) ) del collection.children[i] # Fill in collection.packages for each collection. for collection in self._collections.values(): packages = {} queue = [collection] for child in queue: if isinstance(child, Collection): queue.extend(child.children) elif isinstance(child, Package): packages[child.id] = child else: pass collection.packages = packages.values() # Flush the status cache self._status_cache.clear() def index(self): """ Return the XML index describing the packages available from the data server. If necessary, this index will be downloaded from the data server. """ self._update_index() return self._index def info(self, id): """Return the ``Package`` or ``Collection`` record for the given item.""" self._update_index() if id in self._packages: return self._packages[id] if id in self._collections: return self._collections[id] raise ValueError("Package %r not found in index" % id) def xmlinfo(self, id): """Return the XML info record for the given item""" self._update_index() for package in self._index.findall("packages/package"): if package.get("id") == id: return package for collection in self._index.findall("collections/collection"): if collection.get("id") == id: return collection raise ValueError("Package %r not found in index" % id) # ///////////////////////////////////////////////////////////////// # URL & Data Directory # ///////////////////////////////////////////////////////////////// def _get_url(self): """The URL for the data server's index file.""" return self._url def _set_url(self, url): """ Set a new URL for the data server. If we're unable to contact the given url, then the original url is kept. """ original_url = self._url try: self._update_index(url) except: self._url = original_url raise url = property(_get_url, _set_url) def default_download_dir(self): """ Return the directory to which packages will be downloaded by default. This value can be overridden using the constructor, or on a case-by-case basis using the ``download_dir`` argument when calling ``download()``. On Windows, the default download directory is ``PYTHONHOME/lib/nltk``, where *PYTHONHOME* is the directory containing Python, e.g. ``C:\\Python25``. On all other platforms, the default directory is the first of the following which exists or which can be created with write permission: ``/usr/share/nltk_data``, ``/usr/local/share/nltk_data``, ``/usr/lib/nltk_data``, ``/usr/local/lib/nltk_data``, ``~/nltk_data``. """ # Check if we are on GAE where we cannot write into filesystem. if "APPENGINE_RUNTIME" in os.environ: return # Check if we have sufficient permissions to install in a # variety of system-wide locations. for nltkdir in nltk.data.path: if os.path.exists(nltkdir) and nltk.internals.is_writable(nltkdir): return nltkdir # On Windows, use %APPDATA% if sys.platform == "win32" and "APPDATA" in os.environ: homedir = os.environ["APPDATA"] # Otherwise, install in the user's home directory. else: homedir = os.path.expanduser("~/") if homedir == "~/": raise ValueError("Could not find a default download directory") # append "nltk_data" to the home directory return os.path.join(homedir, "nltk_data") def _get_download_dir(self): """ The default directory to which packages will be downloaded. This defaults to the value returned by ``default_download_dir()``. To override this default on a case-by-case basis, use the ``download_dir`` argument when calling ``download()``. """ return self._download_dir def _set_download_dir(self, download_dir): self._download_dir = download_dir # Clear the status cache. self._status_cache.clear() download_dir = property(_get_download_dir, _set_download_dir) # ///////////////////////////////////////////////////////////////// # Interactive Shell # ///////////////////////////////////////////////////////////////// def _interactive_download(self): # Try the GUI first; if that doesn't work, try the simple # interactive shell. if TKINTER: try: DownloaderGUI(self).mainloop() except TclError: DownloaderShell(self).run() else: DownloaderShell(self).run() class DownloaderShell(object): def __init__(self, dataserver): self._ds = dataserver def _simple_interactive_menu(self, *options): print("-" * 75) spc = (68 - sum(len(o) for o in options)) // (len(options) - 1) * " " print(" " + spc.join(options)) print("-" * 75) def run(self): print("NLTK Downloader") while True: self._simple_interactive_menu( "d) Download", "l) List", " u) Update", "c) Config", "h) Help", "q) Quit", ) user_input = input("Downloader> ").strip() if not user_input: print() continue command = user_input.lower().split()[0] args = user_input.split()[1:] try: if command == "l": print() self._ds.list(self._ds.download_dir, header=False, more_prompt=True) elif command == "h": self._simple_interactive_help() elif command == "c": self._simple_interactive_config() elif command in ("q", "x"): return elif command == "d": self._simple_interactive_download(args) elif command == "u": self._simple_interactive_update() else: print("Command %r unrecognized" % user_input) except HTTPError as e: print("Error reading from server: %s" % e) except URLError as e: print("Error connecting to server: %s" % e.reason) # try checking if user_input is a package name, & # downloading it? print() def _simple_interactive_download(self, args): if args: for arg in args: try: self._ds.download(arg, prefix=" ") except (IOError, ValueError) as e: print(e) else: while True: print() print("Download which package (l=list; x=cancel)?") user_input = input(" Identifier> ") if user_input.lower() == "l": self._ds.list( self._ds.download_dir, header=False, more_prompt=True, skip_installed=True, ) continue elif user_input.lower() in ("x", "q", ""): return elif user_input: for id in user_input.split(): try: self._ds.download(id, prefix=" ") except (IOError, ValueError) as e: print(e) break def _simple_interactive_update(self): while True: stale_packages = [] stale = partial = False for info in sorted(getattr(self._ds, "packages")(), key=str): if self._ds.status(info) == self._ds.STALE: stale_packages.append((info.id, info.name)) print() if stale_packages: print("Will update following packages (o=ok; x=cancel)") for pid, pname in stale_packages: name = textwrap.fill( "-" * 27 + (pname), 75, subsequent_indent=27 * " " )[27:] print(" [ ] %s %s" % (pid.ljust(20, "."), name)) print() user_input = input(" Identifier> ") if user_input.lower() == "o": for pid, pname in stale_packages: try: self._ds.download(pid, prefix=" ") except (IOError, ValueError) as e: print(e) break elif user_input.lower() in ("x", "q", ""): return else: print("Nothing to update.") return def _simple_interactive_help(self): print() print("Commands:") print( " d) Download a package or collection u) Update out of date packages" ) print(" l) List packages & collections h) Help") print(" c) View & Modify Configuration q) Quit") def _show_config(self): print() print("Data Server:") print(" - URL: <%s>" % self._ds.url) print((" - %d Package Collections Available" % len(self._ds.collections()))) print((" - %d Individual Packages Available" % len(self._ds.packages()))) print() print("Local Machine:") print(" - Data directory: %s" % self._ds.download_dir) def _simple_interactive_config(self): self._show_config() while True: print() self._simple_interactive_menu( "s) Show Config", "u) Set Server URL", "d) Set Data Dir", "m) Main Menu" ) user_input = input("Config> ").strip().lower() if user_input == "s": self._show_config() elif user_input == "d": new_dl_dir = input(" New Directory> ").strip() if new_dl_dir in ("", "x", "q", "X", "Q"): print(" Cancelled!") elif os.path.isdir(new_dl_dir): self._ds.download_dir = new_dl_dir else: print(("Directory %r not found! Create it first." % new_dl_dir)) elif user_input == "u": new_url = input(" New URL> ").strip() if new_url in ("", "x", "q", "X", "Q"): print(" Cancelled!") else: if not new_url.startswith(("http://", "https://")): new_url = "http://" + new_url try: self._ds.url = new_url except Exception as e: print("Error reading <%r>:\n %s" % (new_url, e)) elif user_input == "m": break class DownloaderGUI(object): """ Graphical interface for downloading packages from the NLTK data server. """ # ///////////////////////////////////////////////////////////////// # Column Configuration # ///////////////////////////////////////////////////////////////// COLUMNS = [ "", "Identifier", "Name", "Size", "Status", "Unzipped Size", "Copyright", "Contact", "License", "Author", "Subdir", "Checksum", ] """A list of the names of columns. This controls the order in which the columns will appear. If this is edited, then ``_package_to_columns()`` may need to be edited to match.""" COLUMN_WEIGHTS = {"": 0, "Name": 5, "Size": 0, "Status": 0} """A dictionary specifying how columns should be resized when the table is resized. Columns with weight 0 will not be resized at all; and columns with high weight will be resized more. Default weight (for columns not explicitly listed) is 1.""" COLUMN_WIDTHS = { "": 1, "Identifier": 20, "Name": 45, "Size": 10, "Unzipped Size": 10, "Status": 12, } """A dictionary specifying how wide each column should be, in characters. The default width (for columns not explicitly listed) is specified by ``DEFAULT_COLUMN_WIDTH``.""" DEFAULT_COLUMN_WIDTH = 30 """The default width for columns that are not explicitly listed in ``COLUMN_WIDTHS``.""" INITIAL_COLUMNS = ["", "Identifier", "Name", "Size", "Status"] """The set of columns that should be displayed by default.""" # Perform a few import-time sanity checks to make sure that the # column configuration variables are defined consistently: for c in COLUMN_WEIGHTS: assert c in COLUMNS for c in COLUMN_WIDTHS: assert c in COLUMNS for c in INITIAL_COLUMNS: assert c in COLUMNS # ///////////////////////////////////////////////////////////////// # Color Configuration # ///////////////////////////////////////////////////////////////// _BACKDROP_COLOR = ("#000", "#ccc") _ROW_COLOR = { Downloader.INSTALLED: ("#afa", "#080"), Downloader.PARTIAL: ("#ffa", "#880"), Downloader.STALE: ("#faa", "#800"), Downloader.NOT_INSTALLED: ("#fff", "#888"), } _MARK_COLOR = ("#000", "#ccc") # _FRONT_TAB_COLOR = ('#ccf', '#008') # _BACK_TAB_COLOR = ('#88a', '#448') _FRONT_TAB_COLOR = ("#fff", "#45c") _BACK_TAB_COLOR = ("#aaa", "#67a") _PROGRESS_COLOR = ("#f00", "#aaa") _TAB_FONT = "helvetica -16 bold" # ///////////////////////////////////////////////////////////////// # Constructor # ///////////////////////////////////////////////////////////////// def __init__(self, dataserver, use_threads=True): self._ds = dataserver self._use_threads = use_threads # For the threaded downloader: self._download_lock = threading.Lock() self._download_msg_queue = [] self._download_abort_queue = [] self._downloading = False # For tkinter after callbacks: self._afterid = {} # A message log. self._log_messages = [] self._log_indent = 0 self._log("NLTK Downloader Started!") # Create the main window. top = self.top = Tk() top.geometry("+50+50") top.title("NLTK Downloader") top.configure(background=self._BACKDROP_COLOR[1]) # Set up some bindings now, in case anything goes wrong. top.bind("<Control-q>", self.destroy) top.bind("<Control-x>", self.destroy) self._destroyed = False self._column_vars = {} # Initialize the GUI. self._init_widgets() self._init_menu() try: self._fill_table() except HTTPError as e: showerror("Error reading from server", e) except URLError as e: showerror("Error connecting to server", e.reason) self._show_info() self._select_columns() self._table.select(0) # Make sure we get notified when we're destroyed, so we can # cancel any download in progress. self._table.bind("<Destroy>", self._destroy) def _log(self, msg): self._log_messages.append( "%s %s%s" % (time.ctime(), " | " * self._log_indent, msg) ) # ///////////////////////////////////////////////////////////////// # Internals # ///////////////////////////////////////////////////////////////// def _init_widgets(self): # Create the top-level frame structures f1 = Frame(self.top, relief="raised", border=2, padx=8, pady=0) f1.pack(sid="top", expand=True, fill="both") f1.grid_rowconfigure(2, weight=1) f1.grid_columnconfigure(0, weight=1) Frame(f1, height=8).grid(column=0, row=0) # spacer tabframe = Frame(f1) tabframe.grid(column=0, row=1, sticky="news") tableframe = Frame(f1) tableframe.grid(column=0, row=2, sticky="news") buttonframe = Frame(f1) buttonframe.grid(column=0, row=3, sticky="news") Frame(f1, height=8).grid(column=0, row=4) # spacer infoframe = Frame(f1) infoframe.grid(column=0, row=5, sticky="news") Frame(f1, height=8).grid(column=0, row=6) # spacer progressframe = Frame( self.top, padx=3, pady=3, background=self._BACKDROP_COLOR[1] ) progressframe.pack(side="bottom", fill="x") self.top["border"] = 0 self.top["highlightthickness"] = 0 # Create the tabs self._tab_names = ["Collections", "Corpora", "Models", "All Packages"] self._tabs = {} for i, tab in enumerate(self._tab_names): label = Label(tabframe, text=tab, font=self._TAB_FONT) label.pack(side="left", padx=((i + 1) % 2) * 10) label.bind("<Button-1>", self._select_tab) self._tabs[tab.lower()] = label # Create the table. column_weights = [self.COLUMN_WEIGHTS.get(column, 1) for column in self.COLUMNS] self._table = Table( tableframe, self.COLUMNS, column_weights=column_weights, highlightthickness=0, listbox_height=16, reprfunc=self._table_reprfunc, ) self._table.columnconfig(0, foreground=self._MARK_COLOR[0]) # marked for i, column in enumerate(self.COLUMNS): width = self.COLUMN_WIDTHS.get(column, self.DEFAULT_COLUMN_WIDTH) self._table.columnconfig(i, width=width) self._table.pack(expand=True, fill="both") self._table.focus() self._table.bind_to_listboxes("<Double-Button-1>", self._download) self._table.bind("<space>", self._table_mark) self._table.bind("<Return>", self._download) self._table.bind("<Left>", self._prev_tab) self._table.bind("<Right>", self._next_tab) self._table.bind("<Control-a>", self._mark_all) # Create entry boxes for URL & download_dir infoframe.grid_columnconfigure(1, weight=1) info = [ ("url", "Server Index:", self._set_url), ("download_dir", "Download Directory:", self._set_download_dir), ] self._info = {} for (i, (key, label, callback)) in enumerate(info): Label(infoframe, text=label).grid(column=0, row=i, sticky="e") entry = Entry( infoframe, font="courier", relief="groove", disabledforeground="black" ) self._info[key] = (entry, callback) entry.bind("<Return>", self._info_save) entry.bind("<Button-1>", lambda e, key=key: self._info_edit(key)) entry.grid(column=1, row=i, sticky="ew") # If the user edits url or download_dir, and then clicks outside # the entry box, then save their results. self.top.bind("<Button-1>", self._info_save) # Create Download & Refresh buttons. self._download_button = Button( buttonframe, text="Download", command=self._download, width=8 ) self._download_button.pack(side="left") self._refresh_button = Button( buttonframe, text="Refresh", command=self._refresh, width=8 ) self._refresh_button.pack(side="right") # Create Progress bar self._progresslabel = Label( progressframe, text="", foreground=self._BACKDROP_COLOR[0], background=self._BACKDROP_COLOR[1], ) self._progressbar = Canvas( progressframe, width=200, height=16, background=self._PROGRESS_COLOR[1], relief="sunken", border=1, ) self._init_progressbar() self._progressbar.pack(side="right") self._progresslabel.pack(side="left") def _init_menu(self): menubar = Menu(self.top) filemenu = Menu(menubar, tearoff=0) filemenu.add_command( label="Download", underline=0, command=self._download, accelerator="Return" ) filemenu.add_separator() filemenu.add_command( label="Change Server Index", underline=7, command=lambda: self._info_edit("url"), ) filemenu.add_command( label="Change Download Directory", underline=0, command=lambda: self._info_edit("download_dir"), ) filemenu.add_separator() filemenu.add_command(label="Show Log", underline=5, command=self._show_log) filemenu.add_separator() filemenu.add_command( label="Exit", underline=1, command=self.destroy, accelerator="Ctrl-x" ) menubar.add_cascade(label="File", underline=0, menu=filemenu) # Create a menu to control which columns of the table are # shown. n.b.: we never hide the first two columns (mark and # identifier). viewmenu = Menu(menubar, tearoff=0) for column in self._table.column_names[2:]: var = IntVar(self.top) assert column not in self._column_vars self._column_vars[column] = var if column in self.INITIAL_COLUMNS: var.set(1) viewmenu.add_checkbutton( label=column, underline=0, variable=var, command=self._select_columns ) menubar.add_cascade(label="View", underline=0, menu=viewmenu) # Create a sort menu # [xx] this should be selectbuttons; and it should include # reversed sorts as options. sortmenu = Menu(menubar, tearoff=0) for column in self._table.column_names[1:]: sortmenu.add_command( label="Sort by %s" % column, command=(lambda c=column: self._table.sort_by(c, "ascending")), ) sortmenu.add_separator() # sortmenu.add_command(label='Descending Sort:') for column in self._table.column_names[1:]: sortmenu.add_command( label="Reverse sort by %s" % column, command=(lambda c=column: self._table.sort_by(c, "descending")), ) menubar.add_cascade(label="Sort", underline=0, menu=sortmenu) helpmenu = Menu(menubar, tearoff=0) helpmenu.add_command(label="About", underline=0, command=self.about) helpmenu.add_command( label="Instructions", underline=0, command=self.help, accelerator="F1" ) menubar.add_cascade(label="Help", underline=0, menu=helpmenu) self.top.bind("<F1>", self.help) self.top.config(menu=menubar) def _select_columns(self): for (column, var) in self._column_vars.items(): if var.get(): self._table.show_column(column) else: self._table.hide_column(column) def _refresh(self): self._ds.clear_status_cache() try: self._fill_table() except HTTPError as e: showerror("Error reading from server", e) except URLError as e: showerror("Error connecting to server", e.reason) self._table.select(0) def _info_edit(self, info_key): self._info_save() # just in case. (entry, callback) = self._info[info_key] entry["state"] = "normal" entry["relief"] = "sunken" entry.focus() def _info_save(self, e=None): focus = self._table for entry, callback in self._info.values(): if entry["state"] == "disabled": continue if e is not None and e.widget is entry and e.keysym != "Return": focus = entry else: entry["state"] = "disabled" entry["relief"] = "groove" callback(entry.get()) focus.focus() def _table_reprfunc(self, row, col, val): if self._table.column_names[col].endswith("Size"): if isinstance(val, str): return " %s" % val elif val < 1024 ** 2: return " %.1f KB" % (val / 1024.0 ** 1) elif val < 1024 ** 3: return " %.1f MB" % (val / 1024.0 ** 2) else: return " %.1f GB" % (val / 1024.0 ** 3) if col in (0, ""): return str(val) else: return " %s" % val def _set_url(self, url): if url == self._ds.url: return try: self._ds.url = url self._fill_table() except IOError as e: showerror("Error Setting Server Index", str(e)) self._show_info() def _set_download_dir(self, download_dir): if self._ds.download_dir == download_dir: return # check if the dir exists, and if not, ask if we should create it? # Clear our status cache, & re-check what's installed self._ds.download_dir = download_dir try: self._fill_table() except HTTPError as e: showerror("Error reading from server", e) except URLError as e: showerror("Error connecting to server", e.reason) self._show_info() def _show_info(self): print("showing info", self._ds.url) for entry, cb in self._info.values(): entry["state"] = "normal" entry.delete(0, "end") self._info["url"][0].insert(0, self._ds.url) self._info["download_dir"][0].insert(0, self._ds.download_dir) for entry, cb in self._info.values(): entry["state"] = "disabled" def _prev_tab(self, *e): for i, tab in enumerate(self._tab_names): if tab.lower() == self._tab and i > 0: self._tab = self._tab_names[i - 1].lower() try: return self._fill_table() except HTTPError as e: showerror("Error reading from server", e) except URLError as e: showerror("Error connecting to server", e.reason) def _next_tab(self, *e): for i, tab in enumerate(self._tab_names): if tab.lower() == self._tab and i < (len(self._tabs) - 1): self._tab = self._tab_names[i + 1].lower() try: return self._fill_table() except HTTPError as e: showerror("Error reading from server", e) except URLError as e: showerror("Error connecting to server", e.reason) def _select_tab(self, event): self._tab = event.widget["text"].lower() try: self._fill_table() except HTTPError as e: showerror("Error reading from server", e) except URLError as e: showerror("Error connecting to server", e.reason) _tab = "collections" # _tab = 'corpora' _rows = None def _fill_table(self): selected_row = self._table.selected_row() self._table.clear() if self._tab == "all packages": items = self._ds.packages() elif self._tab == "corpora": items = self._ds.corpora() elif self._tab == "models": items = self._ds.models() elif self._tab == "collections": items = self._ds.collections() else: assert 0, "bad tab value %r" % self._tab rows = [self._package_to_columns(item) for item in items] self._table.extend(rows) # Highlight the active tab. for tab, label in self._tabs.items(): if tab == self._tab: label.configure( foreground=self._FRONT_TAB_COLOR[0], background=self._FRONT_TAB_COLOR[1], ) else: label.configure( foreground=self._BACK_TAB_COLOR[0], background=self._BACK_TAB_COLOR[1], ) self._table.sort_by("Identifier", order="ascending") self._color_table() self._table.select(selected_row) # This is a hack, because the scrollbar isn't updating its # position right -- I'm not sure what the underlying cause is # though. (This is on OS X w/ python 2.5) The length of # delay that's necessary seems to depend on how fast the # comptuer is. :-/ self.top.after(150, self._table._scrollbar.set, *self._table._mlb.yview()) self.top.after(300, self._table._scrollbar.set, *self._table._mlb.yview()) def _update_table_status(self): for row_num in range(len(self._table)): status = self._ds.status(self._table[row_num, "Identifier"]) self._table[row_num, "Status"] = status self._color_table() def _download(self, *e): # If we're using threads, then delegate to the threaded # downloader instead. if self._use_threads: return self._download_threaded(*e) marked = [ self._table[row, "Identifier"] for row in range(len(self._table)) if self._table[row, 0] != "" ] selection = self._table.selected_row() if not marked and selection is not None: marked = [self._table[selection, "Identifier"]] download_iter = self._ds.incr_download(marked, self._ds.download_dir) self._log_indent = 0 self._download_cb(download_iter, marked) _DL_DELAY = 10 def _download_cb(self, download_iter, ids): try: msg = next(download_iter) except StopIteration: # self._fill_table(sort=False) self._update_table_status() afterid = self.top.after(10, self._show_progress, 0) self._afterid["_download_cb"] = afterid return def show(s): self._progresslabel["text"] = s self._log(s) if isinstance(msg, ProgressMessage): self._show_progress(msg.progress) elif isinstance(msg, ErrorMessage): show(msg.message) if msg.package is not None: self._select(msg.package.id) self._show_progress(None) return # halt progress. elif isinstance(msg, StartCollectionMessage): show("Downloading collection %s" % msg.collection.id) self._log_indent += 1 elif isinstance(msg, StartPackageMessage): show("Downloading package %s" % msg.package.id) elif isinstance(msg, UpToDateMessage): show("Package %s is up-to-date!" % msg.package.id) # elif isinstance(msg, StaleMessage): # show('Package %s is out-of-date or corrupt' % msg.package.id) elif isinstance(msg, FinishDownloadMessage): show("Finished downloading %r." % msg.package.id) elif isinstance(msg, StartUnzipMessage): show("Unzipping %s" % msg.package.filename) elif isinstance(msg, FinishCollectionMessage): self._log_indent -= 1 show("Finished downloading collection %r." % msg.collection.id) self._clear_mark(msg.collection.id) elif isinstance(msg, FinishPackageMessage): self._clear_mark(msg.package.id) afterid = self.top.after(self._DL_DELAY, self._download_cb, download_iter, ids) self._afterid["_download_cb"] = afterid def _select(self, id): for row in range(len(self._table)): if self._table[row, "Identifier"] == id: self._table.select(row) return def _color_table(self): # Color rows according to status. for row in range(len(self._table)): bg, sbg = self._ROW_COLOR[self._table[row, "Status"]] fg, sfg = ("black", "white") self._table.rowconfig( row, foreground=fg, selectforeground=sfg, background=bg, selectbackground=sbg, ) # Color the marked column self._table.itemconfigure( row, 0, foreground=self._MARK_COLOR[0], background=self._MARK_COLOR[1] ) def _clear_mark(self, id): for row in range(len(self._table)): if self._table[row, "Identifier"] == id: self._table[row, 0] = "" def _mark_all(self, *e): for row in range(len(self._table)): self._table[row, 0] = "X" def _table_mark(self, *e): selection = self._table.selected_row() if selection >= 0: if self._table[selection][0] != "": self._table[selection, 0] = "" else: self._table[selection, 0] = "X" self._table.select(delta=1) def _show_log(self): text = "\n".join(self._log_messages) ShowText(self.top, "NLTK Downloader Log", text) def _package_to_columns(self, pkg): """ Given a package, return a list of values describing that package, one for each column in ``self.COLUMNS``. """ row = [] for column_index, column_name in enumerate(self.COLUMNS): if column_index == 0: # Mark: row.append("") elif column_name == "Identifier": row.append(pkg.id) elif column_name == "Status": row.append(self._ds.status(pkg)) else: attr = column_name.lower().replace(" ", "_") row.append(getattr(pkg, attr, "n/a")) return row # ///////////////////////////////////////////////////////////////// # External Interface # ///////////////////////////////////////////////////////////////// def destroy(self, *e): if self._destroyed: return self.top.destroy() self._destroyed = True def _destroy(self, *e): if self.top is not None: for afterid in self._afterid.values(): self.top.after_cancel(afterid) # Abort any download in progress. if self._downloading and self._use_threads: self._abort_download() # Make sure the garbage collector destroys these now; # otherwise, they may get destroyed when we're not in the main # thread, which would make Tkinter unhappy. self._column_vars.clear() def mainloop(self, *args, **kwargs): self.top.mainloop(*args, **kwargs) # ///////////////////////////////////////////////////////////////// # HELP # ///////////////////////////////////////////////////////////////// HELP = textwrap.dedent( """\ This tool can be used to download a variety of corpora and models that can be used with NLTK. Each corpus or model is distributed in a single zip file, known as a \"package file.\" You can download packages individually, or you can download pre-defined collections of packages. When you download a package, it will be saved to the \"download directory.\" A default download directory is chosen when you run the downloader; but you may also select a different download directory. On Windows, the default download directory is \"package.\" The NLTK downloader can be used to download a variety of corpora, models, and other data packages. Keyboard shortcuts:: [return]\t Download [up]\t Select previous package [down]\t Select next package [left]\t Select previous tab [right]\t Select next tab """ ) def help(self, *e): # The default font's not very legible; try using 'fixed' instead. try: ShowText( self.top, "Help: NLTK Dowloader", self.HELP.strip(), width=75, font="fixed", ) except: ShowText(self.top, "Help: NLTK Downloader", self.HELP.strip(), width=75) def about(self, *e): ABOUT = "NLTK Downloader\n" + "Written by Edward Loper" TITLE = "About: NLTK Downloader" try: from tkinter.messagebox import Message Message(message=ABOUT, title=TITLE).show() except ImportError: ShowText(self.top, TITLE, ABOUT) # ///////////////////////////////////////////////////////////////// # Progress Bar # ///////////////////////////////////////////////////////////////// _gradient_width = 5 def _init_progressbar(self): c = self._progressbar width, height = int(c["width"]), int(c["height"]) for i in range(0, (int(c["width"]) * 2) // self._gradient_width): c.create_line( i * self._gradient_width + 20, -20, i * self._gradient_width - height - 20, height + 20, width=self._gradient_width, fill="#%02x0000" % (80 + abs(i % 6 - 3) * 12), ) c.addtag_all("gradient") c.itemconfig("gradient", state="hidden") # This is used to display progress c.addtag_withtag( "redbox", c.create_rectangle(0, 0, 0, 0, fill=self._PROGRESS_COLOR[0]) ) def _show_progress(self, percent): c = self._progressbar if percent is None: c.coords("redbox", 0, 0, 0, 0) c.itemconfig("gradient", state="hidden") else: width, height = int(c["width"]), int(c["height"]) x = percent * int(width) // 100 + 1 c.coords("redbox", 0, 0, x, height + 1) def _progress_alive(self): c = self._progressbar if not self._downloading: c.itemconfig("gradient", state="hidden") else: c.itemconfig("gradient", state="normal") x1, y1, x2, y2 = c.bbox("gradient") if x1 <= -100: c.move("gradient", (self._gradient_width * 6) - 4, 0) else: c.move("gradient", -4, 0) afterid = self.top.after(200, self._progress_alive) self._afterid["_progress_alive"] = afterid # ///////////////////////////////////////////////////////////////// # Threaded downloader # ///////////////////////////////////////////////////////////////// def _download_threaded(self, *e): # If the user tries to start a new download while we're already # downloading something, then abort the current download instead. if self._downloading: self._abort_download() return # Change the 'download' button to an 'abort' button. self._download_button["text"] = "Cancel" marked = [ self._table[row, "Identifier"] for row in range(len(self._table)) if self._table[row, 0] != "" ] selection = self._table.selected_row() if not marked and selection is not None: marked = [self._table[selection, "Identifier"]] # Create a new data server object for the download operation, # just in case the user modifies our data server during the # download (e.g., clicking 'refresh' or editing the index url). ds = Downloader(self._ds.url, self._ds.download_dir) # Start downloading in a separate thread. assert self._download_msg_queue == [] assert self._download_abort_queue == [] self._DownloadThread( ds, marked, self._download_lock, self._download_msg_queue, self._download_abort_queue, ).start() # Monitor the download message queue & display its progress. self._log_indent = 0 self._downloading = True self._monitor_message_queue() # Display an indication that we're still alive and well by # cycling the progress bar. self._progress_alive() def _abort_download(self): if self._downloading: self._download_lock.acquire() self._download_abort_queue.append("abort") self._download_lock.release() class _DownloadThread(threading.Thread): def __init__(self, data_server, items, lock, message_queue, abort): self.data_server = data_server self.items = items self.lock = lock self.message_queue = message_queue self.abort = abort threading.Thread.__init__(self) def run(self): for msg in self.data_server.incr_download(self.items): self.lock.acquire() self.message_queue.append(msg) # Check if we've been told to kill ourselves: if self.abort: self.message_queue.append("aborted") self.lock.release() return self.lock.release() self.lock.acquire() self.message_queue.append("finished") self.lock.release() _MONITOR_QUEUE_DELAY = 100 def _monitor_message_queue(self): def show(s): self._progresslabel["text"] = s self._log(s) # Try to acquire the lock; if it's busy, then just try again later. if not self._download_lock.acquire(): return for msg in self._download_msg_queue: # Done downloading? if msg == "finished" or msg == "aborted": # self._fill_table(sort=False) self._update_table_status() self._downloading = False self._download_button["text"] = "Download" del self._download_msg_queue[:] del self._download_abort_queue[:] self._download_lock.release() if msg == "aborted": show("Download aborted!") self._show_progress(None) else: afterid = self.top.after(100, self._show_progress, None) self._afterid["_monitor_message_queue"] = afterid return # All other messages elif isinstance(msg, ProgressMessage): self._show_progress(msg.progress) elif isinstance(msg, ErrorMessage): show(msg.message) if msg.package is not None: self._select(msg.package.id) self._show_progress(None) self._downloading = False return # halt progress. elif isinstance(msg, StartCollectionMessage): show("Downloading collection %r" % msg.collection.id) self._log_indent += 1 elif isinstance(msg, StartPackageMessage): self._ds.clear_status_cache(msg.package.id) show("Downloading package %r" % msg.package.id) elif isinstance(msg, UpToDateMessage): show("Package %s is up-to-date!" % msg.package.id) # elif isinstance(msg, StaleMessage): # show('Package %s is out-of-date or corrupt; updating it' % # msg.package.id) elif isinstance(msg, FinishDownloadMessage): show("Finished downloading %r." % msg.package.id) elif isinstance(msg, StartUnzipMessage): show("Unzipping %s" % msg.package.filename) elif isinstance(msg, FinishUnzipMessage): show("Finished installing %s" % msg.package.id) elif isinstance(msg, FinishCollectionMessage): self._log_indent -= 1 show("Finished downloading collection %r." % msg.collection.id) self._clear_mark(msg.collection.id) elif isinstance(msg, FinishPackageMessage): self._update_table_status() self._clear_mark(msg.package.id) # Let the user know when we're aborting a download (but # waiting for a good point to abort it, so we don't end up # with a partially unzipped package or anything like that). if self._download_abort_queue: self._progresslabel["text"] = "Aborting download..." # Clear the message queue and then release the lock del self._download_msg_queue[:] self._download_lock.release() # Check the queue again after MONITOR_QUEUE_DELAY msec. afterid = self.top.after(self._MONITOR_QUEUE_DELAY, self._monitor_message_queue) self._afterid["_monitor_message_queue"] = afterid ###################################################################### # Helper Functions ###################################################################### # [xx] It may make sense to move these to nltk.internals. def md5_hexdigest(file): """ Calculate and return the MD5 checksum for a given file. ``file`` may either be a filename or an open stream. """ if isinstance(file, str): with open(file, "rb") as infile: return _md5_hexdigest(infile) return _md5_hexdigest(file) def _md5_hexdigest(fp): md5_digest = md5() while True: block = fp.read(1024 * 16) # 16k blocks if not block: break md5_digest.update(block) return md5_digest.hexdigest() # change this to periodically yield progress messages? # [xx] get rid of topdir parameter -- we should be checking # this when we build the index, anyway. def unzip(filename, root, verbose=True): """ Extract the contents of the zip file ``filename`` into the directory ``root``. """ for message in _unzip_iter(filename, root, verbose): if isinstance(message, ErrorMessage): raise Exception(message) def _unzip_iter(filename, root, verbose=True): if verbose: sys.stdout.write("Unzipping %s" % os.path.split(filename)[1]) sys.stdout.flush() try: zf = zipfile.ZipFile(filename) except zipfile.error as e: yield ErrorMessage(filename, "Error with downloaded zip file") return except Exception as e: yield ErrorMessage(filename, e) return zf.extractall(root) if verbose: print() ###################################################################### # Index Builder ###################################################################### # This may move to a different file sometime. def build_index(root, base_url): """ Create a new data.xml index file, by combining the xml description files for various packages and collections. ``root`` should be the path to a directory containing the package xml and zip files; and the collection xml files. The ``root`` directory is expected to have the following subdirectories:: root/ packages/ .................. subdirectory for packages corpora/ ................. zip & xml files for corpora grammars/ ................ zip & xml files for grammars taggers/ ................. zip & xml files for taggers tokenizers/ .............. zip & xml files for tokenizers etc. collections/ ............... xml files for collections For each package, there should be two files: ``package.zip`` (where *package* is the package name) which contains the package itself as a compressed zip file; and ``package.xml``, which is an xml description of the package. The zipfile ``package.zip`` should expand to a single subdirectory named ``package/``. The base filename ``package`` must match the identifier given in the package's xml file. For each collection, there should be a single file ``collection.zip`` describing the collection, where *collection* is the name of the collection. All identifiers (for both packages and collections) must be unique. """ # Find all packages. packages = [] for pkg_xml, zf, subdir in _find_packages(os.path.join(root, "packages")): zipstat = os.stat(zf.filename) url = "%s/%s/%s" % (base_url, subdir, os.path.split(zf.filename)[1]) unzipped_size = sum(zf_info.file_size for zf_info in zf.infolist()) # Fill in several fields of the package xml with calculated values. pkg_xml.set("unzipped_size", "%s" % unzipped_size) pkg_xml.set("size", "%s" % zipstat.st_size) pkg_xml.set("checksum", "%s" % md5_hexdigest(zf.filename)) pkg_xml.set("subdir", subdir) # pkg_xml.set('svn_revision', _svn_revision(zf.filename)) if not pkg_xml.get("url"): pkg_xml.set("url", url) # Record the package. packages.append(pkg_xml) # Find all collections collections = list(_find_collections(os.path.join(root, "collections"))) # Check that all UIDs are unique uids = set() for item in packages + collections: if item.get("id") in uids: raise ValueError("Duplicate UID: %s" % item.get("id")) uids.add(item.get("id")) # Put it all together top_elt = ElementTree.Element("nltk_data") top_elt.append(ElementTree.Element("packages")) for package in packages: top_elt[0].append(package) top_elt.append(ElementTree.Element("collections")) for collection in collections: top_elt[1].append(collection) _indent_xml(top_elt) return top_elt def _indent_xml(xml, prefix=""): """ Helper for ``build_index()``: Given an XML ``ElementTree``, modify it (and its descendents) ``text`` and ``tail`` attributes to generate an indented tree, where each nested element is indented by 2 spaces with respect to its parent. """ if len(xml) > 0: xml.text = (xml.text or "").strip() + "\n" + prefix + " " for child in xml: _indent_xml(child, prefix + " ") for child in xml[:-1]: child.tail = (child.tail or "").strip() + "\n" + prefix + " " xml[-1].tail = (xml[-1].tail or "").strip() + "\n" + prefix def _check_package(pkg_xml, zipfilename, zf): """ Helper for ``build_index()``: Perform some checks to make sure that the given package is consistent. """ # The filename must patch the id given in the XML file. uid = os.path.splitext(os.path.split(zipfilename)[1])[0] if pkg_xml.get("id") != uid: raise ValueError( "package identifier mismatch (%s vs %s)" % (pkg_xml.get("id"), uid) ) # Zip file must expand to a subdir whose name matches uid. if sum((name != uid and not name.startswith(uid + "/")) for name in zf.namelist()): raise ValueError( "Zipfile %s.zip does not expand to a single " "subdirectory %s/" % (uid, uid) ) # update for git? def _svn_revision(filename): """ Helper for ``build_index()``: Calculate the subversion revision number for a given file (by using ``subprocess`` to run ``svn``). """ p = subprocess.Popen( ["svn", "status", "-v", filename], stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) (stdout, stderr) = p.communicate() if p.returncode != 0 or stderr or not stdout: raise ValueError( "Error determining svn_revision for %s: %s" % (os.path.split(filename)[1], textwrap.fill(stderr)) ) return stdout.split()[2] def _find_collections(root): """ Helper for ``build_index()``: Yield a list of ElementTree.Element objects, each holding the xml for a single package collection. """ packages = [] for dirname, subdirs, files in os.walk(root): for filename in files: if filename.endswith(".xml"): xmlfile = os.path.join(dirname, filename) yield ElementTree.parse(xmlfile).getroot() def _find_packages(root): """ Helper for ``build_index()``: Yield a list of tuples ``(pkg_xml, zf, subdir)``, where: - ``pkg_xml`` is an ``ElementTree.Element`` holding the xml for a package - ``zf`` is a ``zipfile.ZipFile`` for the package's contents. - ``subdir`` is the subdirectory (relative to ``root``) where the package was found (e.g. 'corpora' or 'grammars'). """ from nltk.corpus.reader.util import _path_from # Find all packages. packages = [] for dirname, subdirs, files in os.walk(root): relpath = "/".join(_path_from(root, dirname)) for filename in files: if filename.endswith(".xml"): xmlfilename = os.path.join(dirname, filename) zipfilename = xmlfilename[:-4] + ".zip" try: zf = zipfile.ZipFile(zipfilename) except Exception as e: raise ValueError("Error reading file %r!\n%s" % (zipfilename, e)) try: pkg_xml = ElementTree.parse(xmlfilename).getroot() except Exception as e: raise ValueError("Error reading file %r!\n%s" % (xmlfilename, e)) # Check that the UID matches the filename uid = os.path.split(xmlfilename[:-4])[1] if pkg_xml.get("id") != uid: raise ValueError( "package identifier mismatch (%s " "vs %s)" % (pkg_xml.get("id"), uid) ) # Check that the zipfile expands to a subdir whose # name matches the uid. if sum( (name != uid and not name.startswith(uid + "/")) for name in zf.namelist() ): raise ValueError( "Zipfile %s.zip does not expand to a " "single subdirectory %s/" % (uid, uid) ) yield pkg_xml, zf, relpath # Don't recurse into svn subdirectories: try: subdirs.remove(".svn") except ValueError: pass ###################################################################### # Main: ###################################################################### # There should be a command-line interface # Aliases _downloader = Downloader() download = _downloader.download def download_shell(): DownloaderShell(_downloader).run() def download_gui(): DownloaderGUI(_downloader).mainloop() def update(): _downloader.update() if __name__ == "__main__": from optparse import OptionParser parser = OptionParser() parser.add_option( "-d", "--dir", dest="dir", help="download package to directory DIR", metavar="DIR", ) parser.add_option( "-q", "--quiet", dest="quiet", action="store_true", default=False, help="work quietly", ) parser.add_option( "-f", "--force", dest="force", action="store_true", default=False, help="download even if already installed", ) parser.add_option( "-e", "--exit-on-error", dest="halt_on_error", action="store_true", default=False, help="exit if an error occurs", ) parser.add_option( "-u", "--url", dest="server_index_url", default=os.environ.get("NLTK_DOWNLOAD_URL"), help="download server index url", ) (options, args) = parser.parse_args() downloader = Downloader(server_index_url=options.server_index_url) if args: for pkg_id in args: rv = downloader.download( info_or_id=pkg_id, download_dir=options.dir, quiet=options.quiet, force=options.force, halt_on_error=options.halt_on_error, ) if rv == False and options.halt_on_error: break else: downloader.download( download_dir=options.dir, quiet=options.quiet, force=options.force, halt_on_error=options.halt_on_error, )
36.260494
88
0.55217
4a06151399105912117de07d65803a53ec84bb93
32,563
py
Python
qe_reader.py
Paul-St-Young/solid_hydrogen
dd218cd431a283dc1a371a0af5696074d63b8c6c
[ "MIT" ]
2
2020-08-13T23:32:03.000Z
2021-03-28T01:14:06.000Z
qe_reader.py
Paul-St-Young/solid_hydrogen
dd218cd431a283dc1a371a0af5696074d63b8c6c
[ "MIT" ]
null
null
null
qe_reader.py
Paul-St-Young/solid_hydrogen
dd218cd431a283dc1a371a0af5696074d63b8c6c
[ "MIT" ]
null
null
null
import numpy as np from mmap import mmap from qharv.reel.ascii_out import read, name_sep_val, all_lines_with_tag def read_first_energy(scf_out): with open(scf_out,'r+') as f: mm = mmap(f.fileno(),0) # end with idx = mm.find(b'!') mm.seek(idx) eline = mm.readline().decode() energy = float( eline.split()[-2] ) return energy # end def def read_forces(scf_out,ndim=3,which='total'): """ read the forces in a pwscf output, assume only one force block 'which' decides which block of forces to read, choices are: ['total', 'non-local', 'local', 'ionic', 'core', 'Hubbard', 'scf'] !!!! assuming QE uses Ry, will convert to Ha """ Ry = 0.5 # Ha begin_tag_dict = { 'total':'Forces acting on atoms', 'non-local':'The non-local contrib. to forces', 'ionic':'The ionic contribution to forces', 'local':'The local contribution to forces', 'core':'The core correction contribution to forces', 'Hubbard':'The Hubbard contrib. to forces', 'scf':'The SCF correction term to forces' } end_tag_dict = { 'total':'The non-local contrib. to forces', 'non-local':'The ionic contribution to forces', 'ionic':'The local contribution to forces', 'local':'The core correction contribution to forces', 'core':'The Hubbard contrib. to forces', 'Hubbard':'The SCF correction term to forces', 'scf':'Total force =' } fhandle = open(scf_out,'r+') mm = mmap(fhandle.fileno(),0) natom = name_sep_val(mm,'number of atoms',dtype=int) # locate force block begin_tag = begin_tag_dict[which] end_tag = end_tag_dict[which] begin_idx = mm.find(begin_tag.encode()) end_idx = mm.find(end_tag.encode()) if begin_idx == -1: raise RuntimeError('cannot locate %s'%begin_tag) elif end_idx == -1: # maybe verbosity='low' end_idx = mm.find(b'Total force =') if end_idx == -1: raise RuntimeError('cannot locate %s'%end_tag) # end if # end if force_block = mm[begin_idx:end_idx] # parse force block for forces forces = np.zeros([natom,ndim]) iatom = 0 for line in force_block.split(b'\n'): if line.strip().startswith(b'atom'): tokens = line.split() if len(tokens)==9: # found an atom myforce = np.array(tokens[-3:],dtype=float) forces[iatom,:] = tokens[-3:] iatom += 1 # end if # end if # end for if iatom != natom: raise RuntimeError('found %d forces for %d atoms'%(iatom,natom)) # end if fhandle.close() return forces*Ry # end def def retrieve_occupations(nscf_outfile, max_nbnd_lines=10): """ read the eigenvalues and occupations of DFT orbitals at every available kpoint in an non-scf output produced by pwscf """ from qharv.reel import ascii_out span = 7 def scanf_7f(line, n): """ implement scanf("%7.*f") """ numl = [] for i in range(n): token = line[span*i:span*(i+1)] num = float(token) numl.append(num) return numl fhandle = open(nscf_outfile,'r+') mm = mmap(fhandle.fileno(),0) # read number of k points nk_prefix = b"number of k points=" idx = mm.find(nk_prefix) mm.seek(idx) nk_line = mm.readline() nk = int( nk_line.strip(nk_prefix).split()[0] ) # skip to the end of band structure calculation idx = mm.find(b'End of self-consistent calculation') idx = mm.find(b'End of band structure calculation') mm.seek(idx) # read the eigenvalues and occupations at each kpoint kpt_prefix = "k =" data = [] for ik in range(nk): idx = mm.find(kpt_prefix.encode()) mm.seek(idx) kpt_line = mm.readline() kxkykz = ascii_out.lr_mark(kpt_line, '=', '(') kpt = scanf_7f(kxkykz, 3) mm.readline() # skip empty line eval_arr = np.array([]) for iline in range(max_nbnd_lines): tokens = mm.readline().split() if len(tokens)==0: break # end if eval_arr = np.append(eval_arr, map(float,tokens)) # end for iline idx = mm.find(b'occupation numbers') mm.seek(idx) mm.readline() # skip current line occ_arr = np.array([]) for iline in range(100): tokens = mm.readline().split() if len(tokens)==0: break # end if occ_arr = np.append(occ_arr, map(float,tokens)) # end for iline entry = {'ik':ik,'kpt':list(kpt),'eval':list(eval_arr),'occ':list(occ_arr)} data.append(entry) # end for mm.close() fhandle.close() return data # end def import subprocess as sp def find_pwscf_io(path,infile_subfix='-scf.in',outfile_subfix='.out',use_last=False): # assuming there is only 1 pair of pw.x input and output in path # return the names of the input and output files out = sp.check_output(['ls',path]) infile = '' outfile = '' found_in = False found_out = False for fname in out.split('\n')[:-1]: if fname.endswith(infile_subfix): if found_in and not use_last: raise NotImplementedError('multiple inputs found in %s'%path) # end if infile = fname found_in = True elif fname.endswith(outfile_subfix): if found_out and not use_last: raise NotImplementedError('multiple outputs found in %s'%path) # end if outfile = fname found_out = True # end if # end for fname if not found_in: raise IOError('infile not found in %s'%path) elif not found_out: raise IOError('outfile not found in %s'%path) # end if return infile,outfile # end def find_pwscf_io import struct def available_structures(pw_out,nstruct_max=10000,natom_max=1000,ndim=3 ,variable_cell=False): """ find all available structures in a pwscf output """ fhandle = open(pw_out,'r+') mm = mmap(fhandle.fileno(),0) idx = mm.find(b'lattice parameter') mm.seek(idx) lat_line = mm.readline() alat = float( lat_line.split()[-2] ) # locate all axes axes_tag = 'CELL_PARAMETERS ('.encode() axes_starts = all_lines_with_tag(mm,axes_tag,nstruct_max) naxes = len(axes_starts) if (naxes != 0) and (not variable_cell): raise NotImplementedError('CELL_PARAMETERS found, are you sure this is not a variable cell run?') # end if # crystal coords crystal_pos = False # locate all atomic cd positions pos_tag = 'ATOMIC_POSITIONS'.encode() pos_starts = all_lines_with_tag(mm,pos_tag,nstruct_max) npos = len(pos_starts) if variable_cell and (npos != naxes): raise NotImplementedError('expect same number of cells as atomic positions in a variable cell calculation. got (naxes,npos)=(%d,%d)'%(naxes,npos)) # end if # count number of atoms mm.seek(pos_starts[0]) mm.readline() # skip tag line natom = 0 for iatom in range(natom_max): line = mm.readline() tokens = line.split() if len(tokens) != 4: break # end if natom += 1 # end for iatom # read initial crystal axes axes = np.zeros([ndim,ndim]) if not variable_cell: idx = all_lines_with_tag(mm,'crystal axes'.encode(),nstruct_max)[0] mm.seek(idx) tag_line = mm.readline() unit_text= tag_line.split()[-1].strip('()') for idim in range(ndim): line = mm.readline() axes[idim,:] = line.split()[3:3+ndim] if 'alat' in unit_text: axes[idim,:] *= alat else: raise NotImplementedError('crystal axes: what unit is %s?'%unit_text) # end if # end for # end if bohr = 0.52917721067 # angstrom (CODATA 2014) nstructs = max(naxes,npos) all_axes = np.zeros([nstructs,ndim,ndim]) all_pos = np.zeros([nstructs,natom,ndim]) for istruct in range(nstructs): if variable_cell: # read cell parameters cell_idx = axes_starts[istruct] mm.seek(cell_idx) tag_line = mm.readline() # get unit from tag line axes_unit = tag_line.split('(')[-1].replace(')','') if not axes_unit.startswith('alat'): raise RuntimeError('unknown CELL_PARAMETERS unit %s'%axes_unit) # end if alat = float(axes_unit.split('=')[-1]) axes_text = '' for idim in range(ndim): axes[idim,:] = mm.readline().split() # end for idim axes *= alat # end if variable_cell all_axes[istruct,:,:] = axes pos_idx = pos_starts[istruct] mm.seek(pos_idx) tag_line = mm.readline() unit_text= tag_line.split()[-1] au2unit = 1. # !!!! assume bohr if 'angstrom' in unit_text: au2unit = 1./bohr elif 'bohr' in unit_text: au2unit = 1. elif 'alat' in unit_text: au2unit = alat elif 'crystal' in unit_text: crystal_pos = True else: raise NotImplementedError('what unit is this? %s' % unit_text) # end if for iatom in range(natom): line = mm.readline() name = line.split()[0] pos_text = line.strip(name) try: name,xpos,ypos,zpos = struct.unpack('4sx14sx14sx13s',pos_text) pos = np.array([xpos,ypos,zpos],dtype=float) * au2unit if crystal_pos: pos = np.dot(pos,axes) all_pos[istruct,iatom,:] = pos except: msg = 'failed to read (istruct, iatom)=(%d, %d)' %\ (istruct,iatom) print(msg) # end try # end for iatom # end for istruct fhandle.close() return all_axes,all_pos # end def available_structures def md_traces(md_out,nstep=2000): """ extract scalar traces from pwscf md output md_out look for tags defined in line_tag_map """ fhandle = open(md_out,'r+') mm = mmap(fhandle.fileno(),0) line_tag_map = { # unique identifier of the line that contains each key 'fermi energy':'the Fermi energy is', 'total energy':'!', 'kinetic energy':'kinetic energy', 'temperature':'temperature', 'econst':'Ekin + Etot' } val_idx_map = {} # assume -2 val_type_map = {} # assume float mm.seek(0) data = [] for istep in range(nstep): if mm.tell() >= mm.size(): break # end if found_stuff = False entry = {'istep':istep} for label in line_tag_map.keys(): # locate line with value for label idx = mm.find(line_tag_map[label].encode()) if idx == -1: continue # end if found_stuff = True mm.seek(idx) line = mm.readline() # locate value in line rval_idx = -2 # assume patten "label = value unit" if label in val_idx_map.keys(): rval_idx = val_idx_map[label] # end if rval = line.split()[rval_idx] # convert value val_type = float if label in val_type_map.keys(): val_type = val_type_map[key] # end if value = val_type(rval) entry[label] = value # !!!! assume float value # end for if found_stuff: data.append(entry) else: break # end if # end for istep if istep >= nstep-1: msg = "WARNING: %d/%d structures found," % (istep, nstep) msg += " nstep may need to be increased" print(msg) # end if fhandle.close() return data # end def md_traces def pos_in_box(pos,axes): """ return atomic positions 'pos' in simulation box specified by 'axes' """ # convert positions to fractional coordinates inv_axes = np.linalg.inv(axes) upos = np.dot(pos,inv_axes) upos -= np.floor(upos) # convert back newpos = np.dot(upos,axes) return newpos # end def def input_structure(scf_in,put_in_box=True): ndim = 3 # assume 3 dimensions with open(scf_in,'r+') as f: mm = mmap(f.fileno(),0) # end with from qharv.reel.ascii_out import name_sep_val ntyp = name_sep_val(mm, 'ntyp', dtype=int) if ntyp != 1: raise NotImplementedError('only support 1 type of atom for now') # end if # read lattice mm.seek(0) idx = mm.find(b'ibrav') mm.seek(idx) ibrav_line = mm.readline() ibrav = int(ibrav_line.split('=')[-1]) if ibrav != 0: raise NotImplementedError('only ibrav = 0 is supported') # end if idx = mm.find(b'CELL_PARAMETERS') mm.seek(idx) header = mm.readline() unit = header.split()[-1] axes = np.zeros([ndim,ndim]) for idim in range(ndim): line = mm.readline() axes[idim,:] = map(float,line.split()) # end for cell = {'unit':unit,'axes':axes} # read atomic positions mm.seek(0) # rewind idx = mm.find(b'nat') mm.seek(idx) nat_line = mm.readline() nat = int(nat_line.split('=')[-1]) idx = mm.find(b'ATOMIC_POSITIONS') mm.seek(idx) header = mm.readline() unit = header.split()[-1] pos = np.zeros([nat,ndim]) for iat in range(nat): line = mm.readline() pos[iat,:] = map(float,line.split()[-3:]) # end for iat try: line = mm.readline() float(line.split()[-3:]) raise RuntimeError('next lines looks like positions too!\n%s'%line) except: pass # expect to see an empty line # end try if put_in_box: atpos = {'pos_unit':unit,'pos':pos_in_box(np.array(pos),np.array(axes)).tolist()} else: atpos = {'pos_unit':unit,'pos':pos} # end if entry = {'infile':scf_in} entry.update(cell) entry.update(atpos) return entry # end def input_structure def read_stress(pw_out,stress_tag = 'total stress (Ry/bohr**3)',nstruct_max=4096): """ read all stress tensors from a quantum espresso output Args: pw_out (str): output filename stress_tag (str): tag at the beginning of each text block containing the stress tensor nstruct_max (int): maximum number of blocks to look for Returns: (list[np.array],list[np.array]): (au_mat_list,kbar_mat_list), lists of stress tensors read """ with open(pw_out,'r+') as f: mm = mmap(f.fileno(),0) # end with au_mat_list = [] kbar_mat_list = [] stress_starts = all_lines_with_tag(mm,stress_tag,nstruct_max) for idx in stress_starts: mm.seek(idx) header = mm.readline().decode() tokens = header.split() # make sure we are about to read the correct block of text assert tokens[2].strip('()') == 'Ry/bohr**3' assert tokens[3].strip('()') == 'kbar' idx = header.find(b'P=') press = float(header[idx:].strip('P=')) # average pressure in kbar, used for checking only au_mat = [] # pressure in Ry/bohr**3 kbar_mat = [] # pressure in kbar for idim in range(3): # assume 3 dimensions line = mm.readline() tokens = line.split() assert len(tokens) == 6 au_mat.append(tokens[:3]) kbar_mat.append(tokens[3:]) # end for idim kbar_mat = np.array(kbar_mat,dtype=float) assert np.isclose(np.diagonal(kbar_mat).mean(),press) kbar_mat_list.append(kbar_mat) au_mat_list.append(np.array(au_mat,dtype=float)) # end for idx return au_mat_list,kbar_mat_list # end def read_stress def vc_relax_output(fout): all_axes,all_pos = available_structures(fout,variable_cell=True) amats,kmats = read_stress(fout) data = [] for i in range(len(all_axes)): axes = all_axes[i] pos = all_pos[i] entry = {'istep':i,'axes':axes,'pos':pos, 'amat':amats[i],'kmat':kmats[i]} data.append(entry) # end for i return data # end def vc_relax_output def relax_forces(fout,nstruct_max=4096): """ read all force blocks from a relax output (may also work on md output) Args: fout (str): quantum espresso output, expected scf='relax' nstruct_max (int): maximum number of force blocks to be read Return: np.array: shape (nstep,natom,ndim), forces on atoms at each optimization step """ nheader_before_forces = 2 """ e.g. Forces acting on atoms (Ry/au): # header line 1 # header line 2 atom 1 type 1 force = -0.00000000 -0.00012993 -0.00008628 """ # get a memory map of the file fhandle = open(fout,'r+') mm = mmap(fhandle.fileno(),0) # decide on array size ndim = 3 # !!!! assume 3 dimensions natom = value_by_label_sep_pos(mm,'number of atoms',dtype=int) idx_list = all_lines_with_tag(mm,'Forces acting on atoms (Ry/au)',nstruct_max) nstep = len(idx_list) forces = np.zeros([nstep,natom,ndim]) # go through each force block for istep in range(nstep): mm.seek( idx_list[istep] ) for iheader in range(nheader_before_forces): mm.readline() # skip headers for iatom in range(natom): line = mm.readline() tokens = line.split() if len(tokens) != 9: raise RuntimeError('invalid force block %s' % line) # end if forces[istep,iatom,:] = map(float,tokens[-3:]) # end for iatom # end for istep # check that all forces have been read line = mm.readline() if line.startswith('atom'): raise RuntimeError('extra force line %s before memory idx %d'%(line,mm.tell())) # end if return forces # end def relax_forces def relax_output(fout): all_axes,all_pos = available_structures(fout,variable_cell=False) forces = relax_forces(fout) data = [] assert len(forces) == len(all_axes) for i in range(len(all_axes)): axes = all_axes[i] pos = all_pos[i] entry = {'istep':i,'axes':axes,'pos':pos,'forces':forces[i]} data.append(entry) # end for i return data # end def relax_output def get_axsf_normal_mode(faxsf,imode): """ extract the first normal mode labeled by 'PRIMCOORD {imode:d}' assume the following format: PRIMCOORD 1 16 1 H 0.00000 0.00000 1.50303 -0.00000 0.00000 0.02501 H 0.63506 0.63506 0.00000 0.00000 -0.00000 0.02500 ... Args: faxsf (str): name of axsf file imode (int): index of normal mode Return: tuple: (elem,data), elem is a list of atomic symbols, data is a np.array of floats (6 columns in above example). """ from qharv.reel import ascii_out mm = ascii_out.read(faxsf) # search through all modes for requested imode all_idx = ascii_out.all_lines_with_tag(mm,'PRIMCOORD') found = False for idx in all_idx: mm.seek(idx) line = mm.readline() myi = int(line.split()[1]) if myi != imode: continue # found imode found = True # get number of atoms line = mm.readline() natom = int(line.split()[0]) # get atomic symbols, positions and normal mode elem = [] data = [] for iatom in range(natom): line = mm.readline() tokens = line.split() elem.append(tokens[0]) data.append(map(float,tokens[1:])) # end for iatom # check that the next line is either next mode or empty line = mm.readline() expected = (line == '') or (line.startswith('PRIMCOORD')) if not expected: raise RuntimeError('failed to read mode %d correctly'%imode) # end if break # end for idx if not found: raise RuntimeError('failed to find mode %d in %s'%(imode,faxsf)) # end if return elem,np.array(data) # end def get_axsf_normal_mode def parse_output(floc): """ get energy, volume and pressure from QE output """ etot = read_first_energy(floc) entry = {'energy':etot/2.} # Ry to ha mm = read(floc) label_map = { 'volume':'unit-cell volume', 'natom':'number of atoms/cell' } for key in label_map.keys(): val = name_sep_val(mm, label_map[key]) entry[key] = val # end for au_stressl,kbar_stressl = read_stress(floc) assert len(au_stressl) == 1 au_stress = au_stressl[0] entry['pressure'] = np.diag(au_stress).mean()/2. # Ry to ha entry['stress'] = au_stress/2. # Ry to ha return entry # end def parse_output def parse_bands_out(bout, max_evline=1024): fp = open(bout, 'r') header = fp.readline() nbnd, nks = [int(keyval.split('=')[1].strip('\n').strip('/')) for keyval in header.split(',')] kvecs = [] etable = [] for iks in xrange(nks): kline = fp.readline() kvecs.append( map(float, kline.split()) ) evl = [] mynbnd = 0 for i in xrange(max_evline): bline = fp.readline() nums = map(float, bline.split()) evl.append( nums ) mynbnd += len(nums) if mynbnd >= nbnd: break # end for eva = [a for b in evl for a in b] if not len(eva) == nbnd: raise RuntimeError('increase max_evline') etable.append(eva) # end for if len(fp.readline()) != 0: raise RuntimeError('wrong nbnd') fp.close() return np.array(kvecs), np.array(etable) # end def parse_bands_out def parse_nscf_bands(nscf_out, span=7, trailer='occupation numbers'): data = {} # build a dictionary as return value def scanf_7f(line, n): """ implement scanf("%7.*f") """ numl = [] for i in range(n): token = line[span*i:span*(i+1)] num = float(token) numl.append(num) return numl def parse_float_body(body): """ parse a blob of floats """ lines = body.split('\n') numl = [] for line in lines: if len(line) == 0: continue numl += map(float, line.split()) return numl from qharv.reel import ascii_out ndim = 3 mm = ascii_out.read(nscf_out) alat = ascii_out.name_sep_val(mm, 'lattice parameter (alat)') blat = 2*np.pi/alat # find the beginnings of each band bhead = ' k =' idxl = ascii_out.all_lines_with_tag(mm, bhead) nkpt = len(idxl) data['nkpt'] = nkpt # estimate the end of the last band idx1 = ascii_out.all_lines_with_tag(mm, trailer)[-1] # trick to use no if statement in the loop idxl = idxl + [idx1] kvecs = [] # (nkpt, ndim) mat = [] # (nkpt, nbnd) for ikpt in range(nkpt): # specify beginning and end of the band output idx0 = idxl[ikpt] idx1 = idxl[ikpt+1] # parse band output # first read header mm.seek(idx0) header = mm.readline().decode() if not 'bands (ev)' in header: continue kxkykz = ascii_out.lr_mark(header, '=', '(') kvec = scanf_7f(kxkykz, ndim) kvecs.append(kvec) # then read body body = mm[mm.tell():idx1].decode().strip('\n') if trailer in body: idx2 = mm.find(trailer.encode()) body = mm[mm.tell():idx2].strip('\n') row = parse_float_body(body) mat.append(row) # end for ikpt data['kvecs'] = blat*np.array(kvecs) data['bands'] = np.array(mat) return data def parse_kline(line, ik=None): from qharv.reel import ascii_out assert 'k(' in line ikt, kvect, wkt = line.split('=') myik = int(ascii_out.lr_mark(ikt, '(', ')')) if ik is not None: # check k index assert ik == myik-1 # fortran 1-based indexing wk = float(wkt) klist = ascii_out.lr_mark(kvect, '(', ')').split() kvec = np.array(klist, dtype=float) return kvec, wk def read_kpoints(scf_out): from qharv.reel import ascii_out mm = ascii_out.read(scf_out) # get lattice units alat = ascii_out.name_sep_val(mm, 'lattice parameter (alat)') blat = 2*np.pi/alat # start parsing k points idx = mm.find(b'number of k points') mm.seek(idx) # read first line # e.g. number of k points= 32 Fermi-Dirac smearing ... line = mm.readline().decode() nk = int(line.split('=')[1].split()[0]) # confirm units in second line line = mm.readline().decode() assert '2pi/alat' in line # start parsing kvectors data = np.zeros([nk, 4]) # ik, kx, ky, kz, wk for ik in range(nk): line = mm.readline().decode() kvec, wk = parse_kline(line, ik=ik) data[ik, :3] = kvec*blat data[ik, 3] = wk return data def read_kfracs(scf_out): from qharv.reel import ascii_out mm = ascii_out.read(scf_out) # get number of kpoints idx = mm.find(b'number of k points') mm.seek(idx) line = mm.readline().decode() nk = int(line.split('=')[1].split()[0]) # find first line idx = mm.find(b'cryst. coord.') mm.seek(idx) mm.readline() # read kpoints and weights data = np.zeros([nk, 4]) for ik in range(nk): line = mm.readline().decode() kvec, wk = parse_kline(line) data[ik, :3] = kvec data[ik, 3] = wk return data def parse_scf_conv(scf_out): from qharv.reel import ascii_out mm = ascii_out.read(scf_out) idxl = ascii_out.all_lines_with_tag(mm, 'iteration #') data = [] for idx in idxl: mm.seek(idx) # read iteration number iternow = ascii_out.name_sep_val(mm, 'iteration', sep='#', dtype=int) # find total energy and other info (!!!! must be in order) try: time = ascii_out.name_sep_val(mm, 'cpu time spent up to now', sep='is') enow = ascii_out.name_sep_val(mm, 'total energy') except: continue entry = {'istep':iternow, 'energy':enow, 'time':time} data.append(entry) return data def get_efermi(fout): from qharv.reel import ascii_out mm = ascii_out.read(fout) efermi = ascii_out.name_sep_val(mm, 'the Fermi energy', sep='is') return efermi def get_gc_occ(mat, efermi): """ get grand canonical occupation vector example: data = qer.parse_nscf_bands(scf_out) kvecs = data['kvecs'] bands = np.array(data['bands']) mm = ascii_out.read(scf_out) efermi = ascii_out.name_sep_val(mm, 'the Fermi energy', sep='is') norbs = get_gc_occ(bands, efermi) Args: mat (np.array): Kohn-Sham eigenvalues (nkpt, nband) efermi (float): Fermi energy Return: np.array: number of occupied orbitals at each kpoint """ norbl = [] nkpt, nbnd = mat.shape for ikpt in range(nkpt): row = mat[ikpt] sel = row<=efermi norb = len(row[sel]) norbl.append(norb) # end for norbs = np.array(norbl) return norbs def get_occ_df(kvecs, norbs): """ save grand canonical occupation vector with twists Args: kvecs (np.array): twist vectors, user-defined units norbs (np.array): a list of integers """ import pandas as pd cols = ('kmag', 'norb', 'kx', 'ky', 'kz') kmags = np.linalg.norm(kvecs, axis=1) data = np.zeros([len(norbs), len(cols)]) data[:, 0] = kmags data[:, 1] = norbs data[:, 2:] = kvecs mydf = pd.DataFrame(data, columns=cols) mydf['norb'] = mydf['norb'].astype(int) mydf['group'] = mydf.index return mydf def read_cell(scf_in, ndim=3): with open(scf_in,'r+') as f: mm = mmap(f.fileno(), 0) idx = mm.find(b'CELL_PARAMETERS') mm.seek(idx) header = mm.readline() unit = header.split()[-1] mat = np.zeros([ndim, ndim]) for idim in range(ndim): line = mm.readline() vec = np.array(line.split(), dtype=float) mat[idim, :] = vec data = { 'unit': str(unit), 'axes': mat } return data def read_out_cell(scf_out, ndim=3): axes = np.zeros([ndim, ndim]) from qharv.reel import ascii_out mm = ascii_out.read(scf_out) idx = mm.find(b'crystal axes') mm.seek(idx) mm.readline() for idim in range(ndim): line = mm.readline() right = line.split('=')[-1] text = ascii_out.lr_mark(right, '(', ')') axes[idim, :] = map(float, text.split()) return axes def get_occupation_numbers(nscf_out, nmax=1024): from qharv.reel import ascii_out mm = ascii_out.read(nscf_out) idx = ascii_out.all_lines_with_tag(mm, 'occupation numbers') occl = [] for i in idx: mm.seek(i) mm.readline() occ = [] for j in range(nmax): line = mm.readline() tokens = line.split() if len(tokens) == 0: break occ += map(float, tokens) next_line = mm.readline() occl.append(occ) return np.array(occl) def read_sym_ops(scf_out, ndim=3): """ read symmetry operators Args: scf_out (str): QE output file ndim (int, optional): number of spatial dimensions, default is 3 Return: list: all symmetry operators, each is represented as a dictionary isym is index, name is description, vec is shift, mat is rotation """ from qharv.reel import ascii_out mm = ascii_out.read(scf_out) # find starting location of symmetry operator output idx = mm.find(b'Sym. Ops.') if idx == -1: msg = 'no symmetry operations printed in %s. Is verbosity high?' % scf_out raise RuntimeError(msg) # rewind to beginning of line idx0 = mm.rfind(b'\n', 0, idx) mm.seek(idx0+1) header = mm.readline().decode() nsym = int(header.split()[0]) # check the number of symmetry outputs idxl = ascii_out.all_lines_with_tag(mm, 'isym = ') if len(idxl) != nsym: raise RuntimeError('found %d symm. expected %d' % (len(idxl), nsym)) # parse symmetry operators symops = [] for idx in idxl: mm.seek(idx) # read symmetry index and name: isym, name line0 = mm.readline().decode() text0 = line0.split('=')[1] tokens0 = text0.split() isym = int(tokens0[0]) name = ' '.join(tokens0[1:]) # read translation vector: vec vec = [0]*ndim if 'cart. axis' in name: vect = ascii_out.lr_mark(line0, '[', ']') vec[:] = list(map(float, vect.split(','))) # read rotation matrix: mat mat = [] idx = mm.find(b'cryst.') mm.readline() # skip empty line for idim in range(ndim): line = mm.readline().decode() if 'cryst.' in line: line = line.split('=')[1] text = ascii_out.lr_mark(line, '(', ')') mat.append(list(map(float, text.split()))) entry = { 'isym': isym, 'name': name, 'vec': vec, 'mat': mat } symops.append(entry) mm.close() return symops def get_weights(nscf_out, remove_copy=False, atol=1e-10): from qharv.reel import ascii_out mm = ascii_out.read(nscf_out) idx = ascii_out.all_lines_with_tag(mm, 'wk =') lines = ascii_out.all_lines_at_idx(mm, idx) weights = [] for line in lines: wt = float(line.strip('\n').split('wk =')[-1]) weights.append(wt) mm.close() nt = len(weights) if remove_copy: weights = weights[:nt/2] wtot = sum(weights) if not np.isclose(wtot, 2.0, atol=atol): raise RuntimeError('wrong weight sum %3.2f; expected 2.0' % wtot) return np.array(weights) def get_gc_occ(bands, efermi): norbl = [] nkpt, nbnd = bands.shape for ikpt in range(nkpt): row = bands[ikpt] sel = row<=efermi norb = len(row[sel]) norbl.append(norb) norbs = np.array(norbl) return norbs def get_tgrid_tshift(nscf_in): from qharv.reel import ascii_out mm = ascii_out.read(nscf_in) idx = mm.find(b'K_POINTS automatic') mm.seek(idx) mm.readline() kline = mm.readline() mm.close() nums = list(map(int, kline.split())) tgrid = np.array(nums[:3]) tshift = np.array(nums[3:]) return tgrid, tshift def get_axes(nscf_in, ndim=3): from qharv.reel import ascii_out mm = ascii_out.read(nscf_in) idx = mm.find(b'CELL_PARAMETERS') mm.seek(idx) mm.readline() cell = [] for idim in range(ndim): line = mm.readline().decode() nums = list(map(float, line.split())) cell.append(nums) mm.close() axes = np.array(cell) return axes def get_tgrid_raxes(nscf_in, ndim=3): from qharv.inspect import axes_pos tgrid, tshift = get_tgrid_tshift(nscf_in) axes = get_axes(nscf_in, ndim=ndim) raxes = axes_pos.raxes(axes) return tgrid, raxes def get_elem_pos(nscf_in): from qharv.reel import ascii_out mm = ascii_out.read(nscf_in) natom = ascii_out.name_sep_val(mm, 'nat', '=', dtype=int) idx = mm.find(b'ATOMIC_POSITIONS') mm.seek(idx) header = mm.readline().decode() eleml = [] posl = [] for iatom in range(natom): line = mm.readline() tokens = line.split() eleml.append(tokens[0]) posl.append(tokens[1:]) mm.close() elem = np.array(eleml, dtype=str) pos = np.array(posl, dtype=float) return elem, pos, header
28.944889
154
0.604336
4a0619a07b5229fe16c99b58078c5eed1379b83d
3,038
py
Python
server/djangoapp/models.py
jalsop24/agfzb-CloudAppDevelopment_Capstone
494670b518f7dfe397700afd7f251b70287ee053
[ "Apache-2.0" ]
null
null
null
server/djangoapp/models.py
jalsop24/agfzb-CloudAppDevelopment_Capstone
494670b518f7dfe397700afd7f251b70287ee053
[ "Apache-2.0" ]
null
null
null
server/djangoapp/models.py
jalsop24/agfzb-CloudAppDevelopment_Capstone
494670b518f7dfe397700afd7f251b70287ee053
[ "Apache-2.0" ]
null
null
null
from django.db import models from django.utils.timezone import now # Create your models here. # <HINT> Create a Car Make model `class CarMake(models.Model)`: # - Name # - Description # - Any other fields you would like to include in car make model # - __str__ method to print a car make object class CarMake(models.Model): Name = models.TextField() Description = models.TextField() def __str__(self) -> str: return f"{self.Name}" def __repr__(self) -> str: return f"CarMake(Name={self.Name}, Description={self.Description})" # <HINT> Create a Car Model model `class CarModel(models.Model):`: # - Many-To-One relationship to Car Make model (One Car Make has many Car Models, using ForeignKey field) # - Name # - Dealer id, used to refer a dealer created in cloudant database # - Type (CharField with a choices argument to provide limited choices such as Sedan, SUV, WAGON, etc.) # - Year (DateField) # - Any other fields you would like to include in car model # - __str__ method to print a car make object class CarModel(models.Model): Name = models.TextField() Make = models.ForeignKey(CarMake, on_delete=models.DO_NOTHING) DealerId = models.IntegerField() Type = models.CharField(choices=[ ("Sedan", "Sedan"), ("SUV", "SUV"), ("Wagon", "Wagon"), ("Hatchback", "Hatchback"), ], max_length=50) Year = models.DateField() def __repr__(self) -> str: return f"CarModel(Make={self.Make}, DealerId={self.DealerId}, Type={self.Type}, Year={self.Year})" # <HINT> Create a plain Python class `CarDealer` to hold dealer data class CarDealer: def __init__(self, id, full_name, short_name, address, city, st, zip, lat, long): # Dealer id self.id = id # Dealer Full Name self.full_name = full_name # Dealer short name self.short_name = short_name # Dealer address self.address = address # Dealer city self.city = city # Dealer state self.st = st # Dealer zip self.zip = zip # Location lat self.lat = lat # Location long self.long = long def __str__(self): return f"Dealer name: {self.full_name!r}" # <HINT> Create a plain Python class `DealerReview` to hold review data class DealerReview: def __init__(self, id, name, text, dealer_id, car_make, car_model, car_year, did_purchase, purchase_date, sentiment=None): # Review id self.id = id # Customer name self.name = name # Review text / message self.text = text # Dealership self.dealer_id = dealer_id self.car_make = car_make self.car_model = car_model self.car_year = car_year self.did_purchase = did_purchase self.purchase_date = purchase_date self.sentiment = sentiment def __str__(self): return f"'{self.text}' - {self.name}"
29.211538
126
0.625741
4a061a659a16348cbc7b00e61595deccbac0a3a8
189
py
Python
data_collection/gazette/spiders/sc_jupia.py
kaiocp/querido-diario
86004049c6eee305e13066cf3607d30849bb099a
[ "MIT" ]
454
2018-04-07T03:32:57.000Z
2020-08-17T19:56:22.000Z
data_collection/gazette/spiders/sc_jupia.py
kaiocp/querido-diario
86004049c6eee305e13066cf3607d30849bb099a
[ "MIT" ]
254
2020-08-18T14:09:43.000Z
2022-03-28T11:30:51.000Z
data_collection/gazette/spiders/sc_jupia.py
kaiocp/querido-diario
86004049c6eee305e13066cf3607d30849bb099a
[ "MIT" ]
183
2018-04-11T15:09:37.000Z
2020-08-15T18:55:11.000Z
from gazette.spiders.base.fecam import FecamGazetteSpider class ScJupiaSpider(FecamGazetteSpider): name = "sc_jupia" FECAM_QUERY = "cod_entidade:143" TERRITORY_ID = "4209177"
23.625
57
0.761905
4a061b31351d9122b46f42c91c2fdde07f5a4de0
12,947
py
Python
src/ezdxf/entitydb.py
jpsantos-mf/ezdxf
2b542a551b2cfc3c0920a5dbf302ff58cea90fbd
[ "MIT" ]
1
2021-06-05T09:15:15.000Z
2021-06-05T09:15:15.000Z
src/ezdxf/entitydb.py
jpsantos-mf/ezdxf
2b542a551b2cfc3c0920a5dbf302ff58cea90fbd
[ "MIT" ]
null
null
null
src/ezdxf/entitydb.py
jpsantos-mf/ezdxf
2b542a551b2cfc3c0920a5dbf302ff58cea90fbd
[ "MIT" ]
null
null
null
# Copyright (c) 2019-2020, Manfred Moitzi # License: MIT License from typing import Optional, Iterable, Tuple, TYPE_CHECKING, Dict, Set from contextlib import contextmanager from ezdxf.tools.handle import HandleGenerator from ezdxf.lldxf.types import is_valid_handle from ezdxf.entities.dxfentity import DXFEntity from ezdxf.audit import AuditError, Auditor from ezdxf.lldxf.const import DXFInternalEzdxfError from ezdxf.entities.subentity import LinkedEntities from ezdxf.entities import factory if TYPE_CHECKING: from ezdxf.eztypes import TagWriter DATABASE_EXCLUDE = { 'SECTION', 'ENDSEC', 'EOF', 'TABLE', 'ENDTAB', 'CLASS', 'ACDSRECORD', 'ACDSSCHEMA' } class EntityDB: """ A simple key/entity database. Every entity/object, except tables and sections, are represented as DXFEntity or inherited types, this entities are stored in the DXF document database, database-key is the `handle` as string. """ class Trashcan: """ Store handles to entities which should be deleted later. """ def __init__(self, db: 'EntityDB'): self._database = db._database self._handles: Set[str] = set() def add(self, handle: str): """ Put handle into trashcan to delete the entity later, this is required for deleting entities while iterating the database. """ self._handles.add(handle) def clear(self): """ Remove handles in trashcan from database and destroy entities if still alive. """ db = self._database for handle in self._handles: entity = db.get(handle) if entity and entity.is_alive: entity.destroy() if handle in db: del db[handle] self._handles.clear() def __init__(self): self._database: Dict[str, DXFEntity] = {} # DXF handles of entities to delete later: self.handles = HandleGenerator() self.locked: bool = False # used only for debugging def __getitem__(self, handle: str) -> DXFEntity: """ Get entity by `handle`, does not filter destroyed entities nor entities in the trashcan. """ return self._database[handle] def __setitem__(self, handle: str, entity: DXFEntity) -> None: """ Set `entity` for `handle`. """ assert isinstance(handle, str), type(handle) assert isinstance(entity, DXFEntity), type(entity) assert entity.is_alive, 'Can not store destroyed entity.' if self.locked: raise DXFInternalEzdxfError('Locked entity database.') if handle == '0' or not is_valid_handle(handle): raise ValueError(f'Invalid handle {handle}.') self._database[handle] = entity def __delitem__(self, handle: str) -> None: """ Delete entity by `handle`. Removes entity only from database, does not destroy the entity. """ if self.locked: raise DXFInternalEzdxfError('Locked entity database.') del self._database[handle] def __contains__(self, handle: str) -> bool: """ ``True`` if database contains `handle`. """ if handle is None: return False assert isinstance(handle, str), type(handle) return handle in self._database def __len__(self) -> int: """ Count of database items. """ return len(self._database) def __iter__(self) -> Iterable[str]: """ Iterable of all handles, does filter destroyed entities but not entities in the trashcan. """ return self.keys() def get(self, handle: str) -> Optional[DXFEntity]: """ Returns entity for `handle` or ``None`` if no entry exist, does not filter destroyed entities. """ return self._database.get(handle) def next_handle(self) -> str: """ Returns next unique handle.""" while True: handle = self.handles.next() if handle not in self._database: return handle def keys(self) -> Iterable[str]: """ Iterable of all handles, does filter destroyed entities. """ return (handle for handle, entity in self.items()) def values(self) -> Iterable[DXFEntity]: """ Iterable of all entities, does filter destroyed entities. """ return (entity for handle, entity in self.items()) def items(self) -> Iterable[Tuple[str, DXFEntity]]: """ Iterable of all (handle, entities) pairs, does filter destroyed entities. """ return ( (handle, entity) for handle, entity in self._database.items() if entity.is_alive ) def add(self, entity: DXFEntity) -> None: """ Add `entity` to database, assigns a new handle to the `entity` if :attr:`entity.dxf.handle` is ``None``. Adding the same entity multiple times is possible and creates only a single database entry. """ if entity.dxftype() in DATABASE_EXCLUDE: if entity.dxf.handle is not None: # Mark existing entity handle as used to avoid # reassigning the same handle again. self[entity.dxf.handle] = entity return handle: str = entity.dxf.handle if handle is None: handle = self.next_handle() entity.update_handle(handle) self[handle] = entity # Add sub entities ATTRIB, VERTEX and SEQEND to database. if isinstance(entity, LinkedEntities): entity.add_sub_entities_to_entitydb(self) def delete_entity(self, entity: DXFEntity) -> None: """ Remove `entity` from database and destroy the `entity`. """ if entity.is_alive: del self[entity.dxf.handle] entity.destroy() def discard(self, entity: 'DXFEntity') -> None: """ Discard entity from database without destroying the entity. """ if entity.is_alive: if isinstance(entity, LinkedEntities): entity.process_sub_entities(lambda e: self.discard(e)) handle = entity.dxf.handle try: del self._database[handle] entity.dxf.handle = None except KeyError: pass def duplicate_entity(self, entity: DXFEntity) -> DXFEntity: """ Duplicates `entity` and its sub entities (VERTEX, ATTRIB, SEQEND) and store them with new handles in the entity database. Graphical entities have to be added to a layout by :meth:`~ezdxf.layouts.BaseLayout.add_entity`. To import DXF entities from another drawing use the :class:`~ezdxf.addons.importer.Importer` add-on. A new owner handle will be set by adding the duplicated entity to a layout. """ new_entity: DXFEntity = entity.copy() new_entity.dxf.handle = self.next_handle() factory.bind(new_entity, entity.doc) return new_entity def audit(self, auditor: 'Auditor'): """ Restore database integrity: - restore database entries with modified handles (key != entity.dxf.handle) - remove entities with invalid handles - empty trashcan - destroy all entities in the trashcan - removes destroyed database entries (purge) """ assert self.locked is False, 'Database is locked!' add_entities = [] with self.trashcan() as trash: for handle, entity in self.items(): # Destroyed entities are already filtered! if not is_valid_handle(handle): auditor.fixed_error( code=AuditError.INVALID_ENTITY_HANDLE, message=f'Removed entity {entity.dxftype()} with invalid ' f'handle "{handle}" from entity database.', ) trash.add(handle) if handle != entity.dxf.get('handle'): # database handle != stored entity handle # prevent entity from being destroyed: self._database[handle] = None trash.add(handle) add_entities.append(entity) # Remove all destroyed entities from database: self.purge() for entity in add_entities: handle = entity.dxf.get('handle') if handle is None: auditor.fixed_error( code=AuditError.INVALID_ENTITY_HANDLE, message=f'Removed entity {entity.dxftype()} without handle ' f'from entity database.', ) continue if not is_valid_handle(handle) or handle == '0': auditor.fixed_error( code=AuditError.INVALID_ENTITY_HANDLE, message=f'Removed entity {entity.dxftype()} with invalid ' f'handle "{handle}" from entity database.', ) continue self[handle] = entity def new_trashcan(self) -> 'EntityDB.Trashcan': """ Returns a new trashcan, empty trashcan manually by: : func:`Trashcan.clear()`. """ return EntityDB.Trashcan(self) @contextmanager def trashcan(self) -> 'EntityDB.Trashcan': """ Returns a new trashcan in context manager mode, trashcan will be emptied when leaving context. """ trashcan_ = self.new_trashcan() yield trashcan_ # try ... finally is not required, in case of an exception the database # is maybe already in an unreliable state. trashcan_.clear() def purge(self) -> None: """ Remove all destroyed entities from database, but does not empty the trashcan. """ # Important: operate on underlying data structure: db = self._database dead_handles = [ handle for handle, entity in db.items() if not entity.is_alive ] for handle in dead_handles: del db[handle] def dxf_types_in_use(self) -> Set[str]: return set(entity.dxftype() for entity in self.values()) class EntitySpace: """ An :class:`EntitySpace` is a collection of :class:`~ezdxf.entities.DXFEntity` objects, that stores only references to :class:`DXFEntity` objects. The :class:`~ezdxf.layouts.Modelspace`, any :class:`~ezdxf.layouts.Paperspace` layout and :class:`~ezdxf.layouts.BlockLayout` objects have an :class:`EntitySpace` container to store their entities. """ def __init__(self, entities=None): entities = entities or [] self.entities = list(e for e in entities if e.is_alive) def __iter__(self) -> Iterable['DXFEntity']: """ Iterable of all entities, filters destroyed entities. """ return (e for e in self.entities if e.is_alive) def __getitem__(self, index) -> 'DXFEntity': """ Get entity at index `item` :class:`EntitySpace` has a standard Python list like interface, therefore `index` can be any valid list indexing or slicing term, like a single index ``layout[-1]`` to get the last entity, or an index slice ``layout[:10]`` to get the first 10 or less entities as ``List[DXFEntity]``. Does not filter destroyed entities. """ return self.entities[index] def __len__(self) -> int: """ Count of entities inluding destroyed entities. """ return len(self.entities) def has_handle(self, handle: str) -> bool: """ ``True`` if `handle` is present, does filter destroyed entities. """ assert isinstance(handle, str), type(handle) return any(e.dxf.handle == handle for e in self) def purge(self): """ Remove all destroyed entities from entity space. """ self.entities = list(self) def add(self, entity: 'DXFEntity') -> None: """ Add `entity`. """ assert isinstance(entity, DXFEntity), type(entity) assert entity.is_alive, 'Can not store destroyed entities' self.entities.append(entity) def extend(self, entities: Iterable['DXFEntity']) -> None: """ Add multiple `entities`.""" for entity in entities: self.add(entity) def export_dxf(self, tagwriter: 'TagWriter') -> None: """ Export all entities into DXF file by `tagwriter`. (internal API) """ for entity in iter(self): entity.export_dxf(tagwriter) def remove(self, entity: 'DXFEntity') -> None: """ Remove `entity`. """ self.entities.remove(entity) def clear(self) -> None: """ Remove all entities. """ # Do not destroy entities! self.entities = list()
36.573446
83
0.599985
4a061b45912558814f2153090319c78d49b082d4
3,673
py
Python
nbgrader/apps/listapp.py
aliniknejad/nbgrader
124095e48a840ac2af6e3178eab7ed32089f3cd2
[ "BSD-3-Clause" ]
1
2019-10-02T11:06:32.000Z
2019-10-02T11:06:32.000Z
nbgrader/apps/listapp.py
aliniknejad/nbgrader
124095e48a840ac2af6e3178eab7ed32089f3cd2
[ "BSD-3-Clause" ]
4
2019-03-02T11:49:46.000Z
2020-09-07T10:17:52.000Z
nbgrader/apps/listapp.py
aliniknejad/nbgrader
124095e48a840ac2af6e3178eab7ed32089f3cd2
[ "BSD-3-Clause" ]
2
2019-05-31T08:53:48.000Z
2019-05-31T09:42:26.000Z
# coding: utf-8 from traitlets import default from .baseapp import NbGrader, nbgrader_aliases, nbgrader_flags from ..exchange import Exchange, ExchangeList, ExchangeError aliases = {} aliases.update(nbgrader_aliases) aliases.update({ "timezone": "Exchange.timezone", "course": "CourseDirectory.course_id", }) flags = {} flags.update(nbgrader_flags) flags.update({ 'inbound': ( {'ExchangeList' : {'inbound': True}}, "List inbound files rather than outbound." ), 'cached': ( {'ExchangeList' : {'cached': True}}, "List cached files rather than inbound/outbound." ), 'remove': ( {'ExchangeList' : {'remove': True}}, "Remove an assignment from the exchange." ), 'json': ( {'ExchangeList' : {'as_json': True}}, "Print out assignments as json." ), }) class ListApp(NbGrader): name = u'nbgrader-list' description = u'List assignments in the nbgrader exchange' aliases = aliases flags = flags examples = """ List assignments in the nbgrader exchange. For the usage of instructors and students. Students ======== To list assignments for a course, you must first know the `course_id` for your course. If you don't know it, ask your instructor. To list the released assignments for the course `phys101`: nbgrader list phys101 Instructors =========== To list outbound (released) or inbound (submitted) assignments for a course, you must configure the `course_id` in your config file or the command line. To see all of the released assignments, run nbgrader list # course_id in the config file or nbgrader list --course phys101 # course_id provided To see the inbound (submitted) assignments: nbgrader list --inbound You can use the `--student` and `--assignment` options to filter the list by student or assignment: nbgrader list --inbound --student=student1 --assignment=assignment1 If a student has submitted an assignment multiple times, the `list` command will show all submissions with their timestamps. The `list` command can optionally remove listed assignments by providing the `--remove` flag: nbgrader list --inbound --remove --student=student1 """ @default("classes") def _classes_default(self): classes = super(ListApp, self)._classes_default() classes.extend([Exchange, ExchangeList]) return classes def _load_config(self, cfg, **kwargs): if 'ListApp' in cfg: self.log.warning( "Use ExchangeList in config, not ListApp. Outdated config:\n%s", '\n'.join( 'ListApp.{key} = {value!r}'.format(key=key, value=value) for key, value in cfg.ListApp.items() ) ) cfg.ExchangeList.merge(cfg.ListApp) del cfg.ListApp super(ListApp, self)._load_config(cfg, **kwargs) def start(self): super(ListApp, self).start() # set assignemnt and course if len(self.extra_args) == 1: self.coursedir.assignment_id = self.extra_args[0] elif len(self.extra_args) > 2: self.fail("Too many arguments") lister = ExchangeList( coursedir=self.coursedir, authenticator=self.authenticator, parent=self) try: lister.start() except ExchangeError: self.fail("nbgrader list failed")
28.695313
84
0.604138
4a061bf6978a578c27d3169cde197363cfdfc223
2,939
py
Python
100dayspython/day003/main.py
mrqssjeff/project-python
b3b08f2acfe825640a5ee92cf9d6fa45ab580384
[ "MIT" ]
null
null
null
100dayspython/day003/main.py
mrqssjeff/project-python
b3b08f2acfe825640a5ee92cf9d6fa45ab580384
[ "MIT" ]
null
null
null
100dayspython/day003/main.py
mrqssjeff/project-python
b3b08f2acfe825640a5ee92cf9d6fa45ab580384
[ "MIT" ]
null
null
null
print(''' ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡠⠤⠒⠊⠉⠉⠓⠒⠒⠒⠢⢤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⠔⠊⠁⠀⠀⠀⠀⠀⠀⠀⢀⠰⡄⠠⡀⠈⠓⢦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⢀⡔⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠣⢣⠀⠹⡀⢣⠀⠱⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⣠⠋⠀⠀⢸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⠀⢱⠀⡇⢠⠁⡀⢱⡄⠘⢆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⣰⠃⠀⠀⡞⠆⢠⠀⠀⠀⢀⣠⣤⣴⣶⣾⣿⣿⣶⣷⣾⣦⣧⣸⡟⠀⠘⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⣸⠃⠀⠀⠀⠁⡀⠈⣦⣴⣾⣿⣿⣿⣿⣿⡿⠿⠟⠛⠛⠋⠉⠉⠉⢉⡍⠉⠉⠓⠒⠠⠤⠀⡤⠒⠤⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⢀⡇⠀⢠⠀⢹⣀⣽⣿⣿⣿⠿⠿⠛⠋⠉⠀⠀⠀⠀⠀⠀⠀⣀⣴⣾⠋⠀⠠⠩⠶⣄⣀⠀⢸⠁⠀⠀⠈⢢⡀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⢸⠁⠀⠘⡄⣰⣿⡿⠟⠋⠀⠰⠚⢁⣁⡶⠤⣤⣤⣶⣶⣾⣿⣿⣯⣤⣶⣦⣴⣴⣖⠢⠌⠁⢸⠀⠀⠀⠀⠀⡟⠢⡀⠀⠀⠀⠀⠀ ⠀⠀⢸⠀⠀⠀⣸⠟⢉⡴⠞⠛⣰⣶⡾⠋⠀⠀⠀⠘⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡁⠈⠙⠀⠀⣘⡄⠀⠀⠀⠀⢻⠀⠹⡄⠀⠀⠀⠀ ⠀⠀⠀⢧⡴⠊⠁⠀⢀⣤⣶⣿⣿⣿⠃⠀⠀⠀⠀⠀⠈⢿⣿⠙⣿⣿⣿⣿⣿⣿⣿⣿⣦⡀⢤⡶⡈⢻⡄⠀⠀⢀⣸⢀⢸⣿⠀⠀⠀⠀ ⠀⢀⡴⠋⠀⣀⣴⣶⣿⣿⣿⣿⣿⡏⠀⠀⠀⠀⠀⠀⠀⠈⢿⡇⠈⢿⣿⣿⣿⣿⣿⣿⣿⡿⢷⣷⡜⡀⣟⠛⣖⠉⢹⠸⠟⣿⠀⠀⠀⠀ ⡴⢋⠔⡶⣻⣿⣿⣿⣿⣿⣿⠃⣿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠘⡇⣀⡤⠿⣧⠻⣿⣿⣿⣿⣷⣄⢠⡅⢃⢸⠀⢿⡦⠸⡀⢠⠃⠀⠀⠀⠀ ⠔⢁⣤⣾⣿⠋⣿⣿⣿⣿⣿⠠⢽⢄⣀⠀⠀⠀⠀⠀⠀⠀⠴⠋⠁⣀⡀⣹⡀⢻⣿⣿⣿⣯⠙⠻⢇⡎⢸⠀⣿⣿⣆⣷⡃⠀⠀⠀⠀⠀ ⠀⡼⡽⡵⠁⢸⣿⣿⣿⢻⡏⠀⠘⠀⠀⠉⠉⠀⠠⡄⠀⠀⠀⣴⡾⡛⢛⣽⠇⣀⣿⢹⣿⣳⣷⢀⣞⣠⠼⠒⠉⠁⠀⠈⠉⠲⢄⡀⠀⠀ ⡾⠉⣠⡅⢰⣿⣿⣿⣿⠈⡇⢠⡴⠖⠻⠶⡆⠀⠀⠁⠀⠀⠀⠈⠐⠻⢍⣩⣖⡽⡍⢸⣶⣧⢘⡿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⡦⠀ ⡇⠖⡧⡇⢸⡟⡸⠛⣿⡀⠀⡈⠀⠀⠀⠀⠀⠀⠀⠙⠶⢀⣀⣠⠤⠒⠙⠁⠈⠀⡇⢸⣇⠜⡿⣿⠙⠆⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡇⠀ ⠙⡄⠇⠃⢎⠀⢻⠛⣿⡇⠀⣏⣹⠲⡶⠒⠒⠒⠒⠋⠉⠉⠀⠀⠀⠀⠀⠀⡠⢾⠇⢸⣡⣾⣧⠛⢀⣀⣠⠤⠒⠒⠉⠁⠀⠀⠀⠺⠀⠀ ⠁⠿⣀⠺⠶⡁⠘⡄⢾⣿⡀⢸⡙⠀⠀⠀⠀⠀⢀⣀⡠⠤⠄⠒⠒⠒⠒⠾⠳⡟⢀⡟⠩⢻⠻⣿⣾⣧⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⣄ ⣏⡒⠬⣙⠒⠚⣦⠘⠦⣙⢳⡀⢻⣦⣨⡦⠒⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⢀⠜⢡⡾⣇⣠⠂⢰⡇⡿⡏⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⣿ ⠀⠉⠓⠒⠦⠤⠤⠤⠤⠬⢍⠳⣄⠙⢧⡁⠀⠀⠀⠀⠀⠀⠀⢀⣤⣤⠖⣡⣶⠟⠀⠀⠌⡈⠈⣷⣄⣁⣷⡠⠤⠤⠴⠀⠀⠀⠀⠀⠀⠙ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼⣿⣷⣦⣍⣓⠒⠶⠦⠴⠟⠒⣋⣉⣴⣾⡟⠁⢀⠀⠀⠰⠀⣼⣿⣇⢸⡟⡆⠀⠀⠀⠀⢀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⣿⣿⣿⠁⠈⠉⠉⣛⣿⣿⣉⢿⡿⣻⡟⡀⠠⠋⠀⢀⠃⣼⣿⣿⣿⣷⢶⡧⣤⠤⠔⠛⠉⠀⠀⠀⢠⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⣿⣿⣿⣿⣄⠠⠤⣀⠙⠛⠟⢻⣿⣳⣟⡎⢠⠃⣀⣤⠞⣾⣿⣿⣿⣿⣿⣼⡗⠸⠀⠀⠀⠀⠀⢀⡴⠁⠐ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠹⣿⣿⡿⠻⣷⡄⠀⠈⠁⠒⠤⠄⠘⠿⠤⠗⠋⠁⠀⠈⠹⣿⣿⣿⣿⣿⣿⣿⣿⣖⢦⣤⣴⣾⣷⣦⣤⣶ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠸⣿⡁⠀⣸⣷⠀⠀⠀⠀⠀⠀⢸⠀⠀⠀⠀⠀⠀⢠⡄⢹⣿⣿⣿⣿⣿⣿⣿⣿⣾⣿⣿⣿⣿⣿⣿⣿ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⣿⣾⣿⣿⣷⣄⡀⠀⠀⠀⢸⠀⠀⠀⠀⢀⡴⡟⠀⠀⢻⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⠛⠻ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⣿⣿⠿⢿⡇⠙⢭⣗⣤⣀⠈⢆⠀⠠⠔⠓⠒⠃⠀⠀⠈⠻⠿⠿⠿⠿⠿⠿⠿⠷⠒⠚⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⡧⠀⠘⠿⠄⠀⠙⠂⠀⠀⢈⢀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ''') print("Welcome to Treasure Island.") print("Your mission is to find the treasure.") direction = str(input('You are at a cross road. Where do you want to go? Type "left" or "right": ')).strip().lower() if direction == "left": lake = str(input('You come to a lake. There is a island in the middle of the lake. ' 'Type "wait" to wait for a boat. Type "swim" to swim across: ')).strip().lower() if lake == "wait": island = str(input('You arrive at the island unharmed. There is a house with 3 doors. ' 'One Red, One Yellow, one Blue. Which color do you want to choose?: ')).strip().lower() blue = f'You enter a room full of starving dogs. Game Over!' red = "You enter a room where you see Jason Vorhees putin his mask on. Game Over!" yellow = 'You found the One Piece. Congratulations, you are the Pirate King!' if island == "blue": print(blue) elif island == "red": print(red) elif island == "yellow": print(yellow) else: print('You were caught and killed by the enemies. Game Over!') elif lake == "swim": swim = "You got eaten by a pack of piranhas. Game Over!" print(swim) else: print('You got eaten by a bear. Game Over!') elif direction == "right": right = 'You got ran over by a truck. Game Over!' print(right) else: cliff = 'You fell off a cliff. Game Over.' print(cliff)
43.865672
116
0.303505
4a061d548a5345a7d1cd70081c8acfd1cb7c8bd2
6,802
py
Python
tests/test_accounts.py
kullo/server
0ad28a9bf50346e654fcbf709d55c74bb48c98c7
[ "BSD-3-Clause" ]
1
2021-06-15T07:47:54.000Z
2021-06-15T07:47:54.000Z
tests/test_accounts.py
kullo/server
0ad28a9bf50346e654fcbf709d55c74bb48c98c7
[ "BSD-3-Clause" ]
null
null
null
tests/test_accounts.py
kullo/server
0ad28a9bf50346e654fcbf709d55c74bb48c98c7
[ "BSD-3-Clause" ]
null
null
null
# vim: set expandtab shiftwidth=4 : # pylint: disable=missing-docstring import json import requests from . import base from . import db from . import settings def make_body(user): return { 'address': user['address'], 'loginKey': user['loginKey'], 'privateDataKey': user['privateDataKey'], 'keypairEncryption': { 'pubkey': user['encryptionPubkey'], 'privkey': user['encryptionPrivkey'], }, 'keypairSigning': { 'pubkey': user['signingPubkey'], 'privkey': user['signingPrivkey'], }, 'acceptedTerms': user['acceptedTerms'], } def register_account(body, languages=None): headers = {'content-type': 'application/json'} if languages is not None: headers['Accept-Language'] = languages return requests.post( settings.SERVER + '/accounts', headers=headers, data=json.dumps(body)) def update_body_with_challenge(req_body, resp_body): req_body['challenge'] = resp_body['challenge'] req_body['challengeAuth'] = resp_body['challengeAuth'] class AccountsTest(base.BaseTest): def tearDown(self): with db.get_connection(settings.DB_CONNECTION_STRING) as conn: with conn.cursor() as cursor: for user in settings.NONEXISTING_USERS.itervalues(): db.delete_user(cursor, user) for user in settings.RESERVATION_USERS.itervalues(): db.delete_user(cursor, user) def send_initial_request( self, user, expected_challenge_type, expected_error_code=requests.codes.forbidden): req_body = make_body(user) resp = register_account(req_body) self.assertEqual(resp.status_code, expected_error_code) resp_body = json.loads(resp.text) if expected_challenge_type is not None: self.assertEqual( resp_body['challenge']['type'], expected_challenge_type) return req_body, resp_body def test_fail_on_existing_user(self): # send initial request with existing user self.send_initial_request( settings.EXISTING_USERS[1], None, requests.codes.conflict) def test_fail_on_inconsistent_user(self): user = settings.RESERVATION_USERS[1] # send initial request req_body, resp_body = self.send_initial_request(user, 'reservation') # reply with correct answer but modified address update_body_with_challenge(req_body, resp_body) req_body['challengeAnswer'] = user['reservation'] req_body['address'] = settings.RESERVATION_USERS[2]['address'] resp = register_account(req_body) self.assertEqual(resp.status_code, requests.codes.forbidden) def test_fail_on_modified_challenge(self): user = settings.RESERVATION_USERS[1] # send initial request req_body, resp_body = self.send_initial_request(user, 'reservation') # reply with correct answer but modified challenge for field, value in ( ('type', 'bad'), ('user', 'bad#kullo.test'), ('timestamp', 1234567890), ('text', 'bad')): update_body_with_challenge(req_body, resp_body) req_body['challengeAnswer'] = user['reservation'] req_body['challenge'][field] = value resp = register_account(req_body) self.assertEqual(resp.status_code, requests.codes.forbidden) # reply with correct answer but modified challenge auth update_body_with_challenge(req_body, resp_body) req_body['challengeAnswer'] = user['reservation'] req_body['challengeAuth'] = 'bad' resp = register_account(req_body) self.assertEqual(resp.status_code, requests.codes.forbidden) def test_reservation_fail_on_wrong_answer(self): user = settings.RESERVATION_USERS[1] # send initial request for reservation user req_body, resp_body = self.send_initial_request(user, 'reservation') # reply with wrong answer update_body_with_challenge(req_body, resp_body) req_body['challengeAnswer'] = 'bad' resp = register_account(req_body) self.assertEqual(resp.status_code, requests.codes.forbidden) def test_reservation_success(self): user = settings.RESERVATION_USERS[1] # send initial request for reservation user req_body, resp_body = self.send_initial_request(user, 'reservation') # reply with correct answer update_body_with_challenge(req_body, resp_body) req_body['challengeAnswer'] = user['reservation'] resp = register_account(req_body, languages='de-DE') self.assertEqual(resp.status_code, requests.codes.ok) #TODO check user inbox def test_fail_on_nonlocal_non_preregistered_address(self): user = settings.NONLOCAL_USERS[1] # send initial request for reservation user req_body, resp_body = self.send_initial_request(user, 'blocked') def test_reservation_success_with_nonlocal_address(self): user = settings.NONLOCAL_RESERVATION_USERS[1] # send initial request for reservation user req_body, resp_body = self.send_initial_request(user, 'reservation') # reply with correct answer update_body_with_challenge(req_body, resp_body) req_body['challengeAnswer'] = user['reservation'] resp = register_account(req_body) self.assertEqual(resp.status_code, requests.codes.ok) #TODO check user inbox def test_reset_fail_on_wrong_answer(self): user = settings.RESET_USERS[1] #TODO add some messages # send initial request for reset user req_body, resp_body = self.send_initial_request(user, 'reset') # reply with wrong answer update_body_with_challenge(req_body, resp_body) req_body['challengeAnswer'] = 'bad' resp = register_account(req_body) self.assertEqual(resp.status_code, requests.codes.forbidden) #TODO check that old login still works #TODO check that old messages are still there def test_reset_success(self): user = settings.RESET_USERS[1] #TODO add some messages # send initial request for reset user req_body, resp_body = self.send_initial_request(user, 'reset') # reply with correct answer update_body_with_challenge(req_body, resp_body) req_body['challengeAnswer'] = user['reset_code'] resp = register_account(req_body) self.assertEqual(resp.status_code, requests.codes.ok) #TODO check that new login works #TODO check that messages are deleted
35.8
76
0.661276
4a061d80ad25b36712618e4a697833d1550b8fd9
78,652
py
Python
pymc3/sampling.py
Sooner0931/pymc3
875efa0d3bb4ef682b736f92816a75fc378d5a6e
[ "Apache-2.0" ]
1
2020-09-05T05:52:09.000Z
2020-09-05T05:52:09.000Z
pymc3/sampling.py
pgerramirez/pymc3
458e513e47ed764c1ec4efcfce50ea7bd9fefbfd
[ "Apache-2.0" ]
null
null
null
pymc3/sampling.py
pgerramirez/pymc3
458e513e47ed764c1ec4efcfce50ea7bd9fefbfd
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The PyMC Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for MCMC sampling.""" from typing import Dict, List, Optional, TYPE_CHECKING, cast, Union, Any if TYPE_CHECKING: from typing import Tuple from typing import Iterable as TIterable from collections.abc import Iterable from collections import defaultdict from copy import copy import packaging import pickle import logging import time import warnings import arviz from arviz import InferenceData import numpy as np import theano.gradient as tg from theano.tensor import Tensor import xarray from .backends.base import BaseTrace, MultiTrace from .backends.ndarray import NDArray from .distributions.distribution import draw_values from .distributions.posterior_predictive import fast_sample_posterior_predictive from .model import modelcontext, Point, all_continuous, Model from .step_methods import ( NUTS, HamiltonianMC, Metropolis, BinaryMetropolis, BinaryGibbsMetropolis, CategoricalGibbsMetropolis, DEMetropolis, Slice, CompoundStep, arraystep, ) from .util import ( update_start_vals, get_untransformed_name, is_transformed_name, get_default_varnames, dataset_to_point_dict, chains_and_samples, ) from .vartypes import discrete_types from .exceptions import IncorrectArgumentsError from .parallel_sampling import _cpu_count, Draw from pymc3.step_methods.hmc import quadpotential import pymc3 as pm from fastprogress.fastprogress import progress_bar import sys sys.setrecursionlimit(10000) __all__ = [ "sample", "iter_sample", "sample_posterior_predictive", "sample_posterior_predictive_w", "init_nuts", "sample_prior_predictive", "fast_sample_posterior_predictive", ] STEP_METHODS = ( NUTS, HamiltonianMC, Metropolis, BinaryMetropolis, BinaryGibbsMetropolis, Slice, CategoricalGibbsMetropolis, ) ArrayLike = Union[np.ndarray, List[float]] PointType = Dict[str, np.ndarray] PointList = List[PointType] _log = logging.getLogger("pymc3") def instantiate_steppers(_model, steps, selected_steps, step_kwargs=None): """Instantiate steppers assigned to the model variables. This function is intended to be called automatically from ``sample()``, but may be called manually. Parameters ---------- model : Model object A fully-specified model object; legacy argument -- ignored steps : step function or vector of step functions One or more step functions that have been assigned to some subset of the model's parameters. Defaults to None (no assigned variables). selected_steps : dictionary of step methods and variables The step methods and the variables that have were assigned to them. step_kwargs : dict Parameters for the samplers. Keys are the lower case names of the step method, values a dict of arguments. Returns ------- methods : list List of step methods associated with the model's variables. """ if step_kwargs is None: step_kwargs = {} used_keys = set() for step_class, vars in selected_steps.items(): if len(vars) == 0: continue args = step_kwargs.get(step_class.name, {}) used_keys.add(step_class.name) step = step_class(vars=vars, **args) steps.append(step) unused_args = set(step_kwargs).difference(used_keys) if unused_args: raise ValueError("Unused step method arguments: %s" % unused_args) if len(steps) == 1: steps = steps[0] return steps def assign_step_methods(model, step=None, methods=STEP_METHODS, step_kwargs=None): """Assign model variables to appropriate step methods. Passing a specified model will auto-assign its constituent stochastic variables to step methods based on the characteristics of the variables. This function is intended to be called automatically from ``sample()``, but may be called manually. Each step method passed should have a ``competence()`` method that returns an ordinal competence value corresponding to the variable passed to it. This value quantifies the appropriateness of the step method for sampling the variable. Parameters ---------- model : Model object A fully-specified model object step : step function or vector of step functions One or more step functions that have been assigned to some subset of the model's parameters. Defaults to ``None`` (no assigned variables). methods : vector of step method classes The set of step methods from which the function may choose. Defaults to the main step methods provided by PyMC3. step_kwargs : dict Parameters for the samplers. Keys are the lower case names of the step method, values a dict of arguments. Returns ------- methods : list List of step methods associated with the model's variables. """ steps = [] assigned_vars = set() if step is not None: try: steps += list(step) except TypeError: steps.append(step) for step in steps: try: assigned_vars = assigned_vars.union(set(step.vars)) except AttributeError: for method in step.methods: assigned_vars = assigned_vars.union(set(method.vars)) # Use competence classmethods to select step methods for remaining # variables selected_steps = defaultdict(list) for var in model.free_RVs: if var not in assigned_vars: # determine if a gradient can be computed has_gradient = var.dtype not in discrete_types if has_gradient: try: tg.grad(model.logpt, var) except (AttributeError, NotImplementedError, tg.NullTypeGradError): has_gradient = False # select the best method selected = max( methods, key=lambda method, var=var, has_gradient=has_gradient: method._competence( var, has_gradient ), ) selected_steps[selected].append(var) return instantiate_steppers(model, steps, selected_steps, step_kwargs) def _print_step_hierarchy(s, level=0): if isinstance(s, (list, tuple)): _log.info(">" * level + "list") for i in s: _print_step_hierarchy(i, level + 1) elif isinstance(s, CompoundStep): _log.info(">" * level + "CompoundStep") for i in s.methods: _print_step_hierarchy(i, level + 1) else: varnames = ", ".join( [ get_untransformed_name(v.name) if is_transformed_name(v.name) else v.name for v in s.vars ] ) _log.info(">" * level + "{}: [{}]".format(s.__class__.__name__, varnames)) def sample( draws=1000, step=None, init="auto", n_init=200000, start=None, trace=None, chain_idx=0, chains=None, cores=None, tune=1000, progressbar=True, model=None, random_seed=None, discard_tuned_samples=True, compute_convergence_checks=True, callback=None, *, return_inferencedata=None, idata_kwargs: dict = None, mp_ctx=None, pickle_backend: str = "pickle", **kwargs, ): """Draw samples from the posterior using the given step methods. Multiple step methods are supported via compound step methods. Parameters ---------- draws : int The number of samples to draw. Defaults to 1000. The number of tuned samples are discarded by default. See ``discard_tuned_samples``. init : str Initialization method to use for auto-assigned NUTS samplers. * auto: Choose a default initialization method automatically. Currently, this is ``jitter+adapt_diag``, but this can change in the future. If you depend on the exact behaviour, choose an initialization method explicitly. * adapt_diag: Start with a identity mass matrix and then adapt a diagonal based on the variance of the tuning samples. All chains use the test value (usually the prior mean) as starting point. * jitter+adapt_diag: Same as ``adapt_diag``, but add uniform jitter in [-1, 1] to the starting point in each chain. * advi+adapt_diag: Run ADVI and then adapt the resulting diagonal mass matrix based on the sample variance of the tuning samples. * advi+adapt_diag_grad: Run ADVI and then adapt the resulting diagonal mass matrix based on the variance of the gradients during tuning. This is **experimental** and might be removed in a future release. * advi: Run ADVI to estimate posterior mean and diagonal mass matrix. * advi_map: Initialize ADVI with MAP and use MAP as starting point. * map: Use the MAP as starting point. This is discouraged. * adapt_full: Adapt a dense mass matrix using the sample covariances step : function or iterable of functions A step function or collection of functions. If there are variables without step methods, step methods for those variables will be assigned automatically. By default the NUTS step method will be used, if appropriate to the model; this is a good default for beginning users. n_init : int Number of iterations of initializer. Only works for 'ADVI' init methods. start : dict, or array of dict Starting point in parameter space (or partial point) Defaults to ``trace.point(-1))`` if there is a trace provided and model.test_point if not (defaults to empty dict). Initialization methods for NUTS (see ``init`` keyword) can overwrite the default. trace : backend, list, or MultiTrace This should be a backend instance, a list of variables to track, or a MultiTrace object with past values. If a MultiTrace object is given, it must contain samples for the chain number ``chain``. If None or a list of variables, the NDArray backend is used. Passing either "text" or "sqlite" is taken as a shortcut to set up the corresponding backend (with "mcmc" used as the base name). chain_idx : int Chain number used to store sample in backend. If ``chains`` is greater than one, chain numbers will start here. chains : int The number of chains to sample. Running independent chains is important for some convergence statistics and can also reveal multiple modes in the posterior. If ``None``, then set to either ``cores`` or 2, whichever is larger. cores : int The number of chains to run in parallel. If ``None``, set to the number of CPUs in the system, but at most 4. tune : int Number of iterations to tune, defaults to 1000. Samplers adjust the step sizes, scalings or similar during tuning. Tuning samples will be drawn in addition to the number specified in the ``draws`` argument, and will be discarded unless ``discard_tuned_samples`` is set to False. progressbar : bool, optional default=True Whether or not to display a progress bar in the command line. The bar shows the percentage of completion, the sampling speed in samples per second (SPS), and the estimated remaining time until completion ("expected time of arrival"; ETA). model : Model (optional if in ``with`` context) random_seed : int or list of ints A list is accepted if ``cores`` is greater than one. discard_tuned_samples : bool Whether to discard posterior samples of the tune interval. compute_convergence_checks : bool, default=True Whether to compute sampler statistics like Gelman-Rubin and ``effective_n``. callback : function, default=None A function which gets called for every sample from the trace of a chain. The function is called with the trace and the current draw and will contain all samples for a single trace. the ``draw.chain`` argument can be used to determine which of the active chains the sample is drawn from. Sampling can be interrupted by throwing a ``KeyboardInterrupt`` in the callback. return_inferencedata : bool, default=False Whether to return the trace as an :class:`arviz:arviz.InferenceData` (True) object or a `MultiTrace` (False) Defaults to `False`, but we'll switch to `True` in an upcoming release. idata_kwargs : dict, optional Keyword arguments for :func:`arviz:arviz.from_pymc3` mp_ctx : multiprocessing.context.BaseContent A multiprocessing context for parallel sampling. See multiprocessing documentation for details. pickle_backend : str One of `'pickle'` or `'dill'`. The library used to pickle models in parallel sampling if the multiprocessing context is not of type `fork`. Returns ------- trace : pymc3.backends.base.MultiTrace or arviz.InferenceData A ``MultiTrace`` or ArviZ ``InferenceData`` object that contains the samples. Notes ----- Optional keyword arguments can be passed to ``sample`` to be delivered to the ``step_method``s used during sampling. If your model uses only one step method, you can address step method kwargs directly. In particular, the NUTS step method has several options including: * target_accept : float in [0, 1]. The step size is tuned such that we approximate this acceptance rate. Higher values like 0.9 or 0.95 often work better for problematic posteriors * max_treedepth : The maximum depth of the trajectory tree * step_scale : float, default 0.25 The initial guess for the step size scaled down by :math:`1/n**(1/4)` If your model uses multiple step methods, aka a Compound Step, then you have two ways to address arguments to each step method: A: If you let ``sample()`` automatically assign the ``step_method``s, and you can correctly anticipate what they will be, then you can wrap step method kwargs in a dict and pass that to sample() with a kwarg set to the name of the step method. e.g. for a CompoundStep comprising NUTS and BinaryGibbsMetropolis, you could send: 1. ``target_accept`` to NUTS: nuts={'target_accept':0.9} 2. ``transit_p`` to BinaryGibbsMetropolis: binary_gibbs_metropolis={'transit_p':.7} Note that available names are: ``nuts``, ``hmc``, ``metropolis``, ``binary_metropolis``, ``binary_gibbs_metropolis``, ``categorical_gibbs_metropolis``, ``DEMetropolis``, ``DEMetropolisZ``, ``slice`` B: If you manually declare the ``step_method``s, within the ``step`` kwarg, then you can address the ``step_method`` kwargs directly. e.g. for a CompoundStep comprising NUTS and BinaryGibbsMetropolis, you could send: step=[pm.NUTS([freeRV1, freeRV2], target_accept=0.9), pm.BinaryGibbsMetropolis([freeRV3], transit_p=.7)] You can find a full list of arguments in the docstring of the step methods. Examples -------- .. code:: ipython >>> import pymc3 as pm ... n = 100 ... h = 61 ... alpha = 2 ... beta = 2 .. code:: ipython >>> with pm.Model() as model: # context management ... p = pm.Beta('p', alpha=alpha, beta=beta) ... y = pm.Binomial('y', n=n, p=p, observed=h) ... trace = pm.sample() >>> pm.summary(trace) mean sd mc_error hpd_2.5 hpd_97.5 p 0.604625 0.047086 0.00078 0.510498 0.694774 """ model = modelcontext(model) if cores is None: cores = min(4, _cpu_count()) if chains is None: chains = max(2, cores) if isinstance(start, dict): start = [start] * chains if random_seed == -1: random_seed = None if chains == 1 and isinstance(random_seed, int): random_seed = [random_seed] if random_seed is None or isinstance(random_seed, int): if random_seed is not None: np.random.seed(random_seed) random_seed = [np.random.randint(2 ** 30) for _ in range(chains)] if not isinstance(random_seed, Iterable): raise TypeError("Invalid value for `random_seed`. Must be tuple, list or int") if not discard_tuned_samples and not return_inferencedata: warnings.warn( "Tuning samples will be included in the returned `MultiTrace` object, which can lead to" " complications in your downstream analysis. Please consider to switch to `InferenceData`:\n" "`pm.sample(..., return_inferencedata=True)`", UserWarning, ) if return_inferencedata is None: v = packaging.version.parse(pm.__version__) if v.release[0] > 3 or v.release[1] >= 10: warnings.warn( "In an upcoming release, pm.sample will return an `arviz.InferenceData` object instead of a `MultiTrace` by default. " "You can pass return_inferencedata=True or return_inferencedata=False to be safe and silence this warning.", FutureWarning, ) # set the default return_inferencedata = False if start is not None: for start_vals in start: _check_start_shape(model, start_vals) # small trace warning if draws == 0: msg = "Tuning was enabled throughout the whole trace." _log.warning(msg) elif draws < 500: msg = "Only %s samples in chain." % draws _log.warning(msg) draws += tune if model.ndim == 0: raise ValueError("The model does not contain any free variables.") if step is None and init is not None and all_continuous(model.vars): try: # By default, try to use NUTS _log.info("Auto-assigning NUTS sampler...") start_, step = init_nuts( init=init, chains=chains, n_init=n_init, model=model, random_seed=random_seed, progressbar=progressbar, **kwargs, ) if start is None: start = start_ except (AttributeError, NotImplementedError, tg.NullTypeGradError): # gradient computation failed _log.info("Initializing NUTS failed. " "Falling back to elementwise auto-assignment.") _log.debug("Exception in init nuts", exec_info=True) step = assign_step_methods(model, step, step_kwargs=kwargs) else: step = assign_step_methods(model, step, step_kwargs=kwargs) if isinstance(step, list): step = CompoundStep(step) if start is None: start = {} if isinstance(start, dict): start = [start] * chains sample_args = { "draws": draws, "step": step, "start": start, "trace": trace, "chain": chain_idx, "chains": chains, "tune": tune, "progressbar": progressbar, "model": model, "random_seed": random_seed, "cores": cores, "callback": callback, "discard_tuned_samples": discard_tuned_samples, } parallel_args = { "pickle_backend": pickle_backend, "mp_ctx": mp_ctx, } sample_args.update(kwargs) has_population_samplers = np.any( [ isinstance(m, arraystep.PopulationArrayStepShared) for m in (step.methods if isinstance(step, CompoundStep) else [step]) ] ) parallel = cores > 1 and chains > 1 and not has_population_samplers t_start = time.time() if parallel: _log.info("Multiprocess sampling ({} chains in {} jobs)".format(chains, cores)) _print_step_hierarchy(step) try: trace = _mp_sample(**sample_args, **parallel_args) except pickle.PickleError: _log.warning("Could not pickle model, sampling singlethreaded.") _log.debug("Pickling error:", exec_info=True) parallel = False except AttributeError as e: if str(e).startswith("AttributeError: Can't pickle"): _log.warning("Could not pickle model, sampling singlethreaded.") _log.debug("Pickling error:", exec_info=True) parallel = False else: raise if not parallel: if has_population_samplers: has_demcmc = np.any( [ isinstance(m, DEMetropolis) for m in (step.methods if isinstance(step, CompoundStep) else [step]) ] ) _log.info("Population sampling ({} chains)".format(chains)) if has_demcmc and chains < 3: raise ValueError( "DEMetropolis requires at least 3 chains. " "For this {}-dimensional model you should use ≥{} chains".format( model.ndim, model.ndim + 1 ) ) if has_demcmc and chains <= model.ndim: warnings.warn( "DEMetropolis should be used with more chains than dimensions! " "(The model has {} dimensions.)".format(model.ndim), UserWarning, ) _print_step_hierarchy(step) trace = _sample_population(**sample_args, parallelize=cores > 1) else: _log.info("Sequential sampling ({} chains in 1 job)".format(chains)) _print_step_hierarchy(step) trace = _sample_many(**sample_args) t_sampling = time.time() - t_start # count the number of tune/draw iterations that happened # ideally via the "tune" statistic, but not all samplers record it! if "tune" in trace.stat_names: stat = trace.get_sampler_stats("tune", chains=0) # when CompoundStep is used, the stat is 2 dimensional! if len(stat.shape) == 2: stat = stat[:, 0] stat = tuple(stat) n_tune = stat.count(True) n_draws = stat.count(False) else: # these may be wrong when KeyboardInterrupt happened, but they're better than nothing n_tune = min(tune, len(trace)) n_draws = max(0, len(trace) - n_tune) if discard_tuned_samples: trace = trace[n_tune:] # save metadata in SamplerReport trace.report._n_tune = n_tune trace.report._n_draws = n_draws trace.report._t_sampling = t_sampling n_chains = len(trace.chains) _log.info( f'Sampling {n_chains} chain{"s" if n_chains > 1 else ""} for {n_tune:_d} tune and {n_draws:_d} draw iterations ' f"({n_tune*n_chains:_d} + {n_draws*n_chains:_d} draws total) " f"took {trace.report.t_sampling:.0f} seconds." ) idata = None if compute_convergence_checks or return_inferencedata: ikwargs = dict(model=model, save_warmup=not discard_tuned_samples) if idata_kwargs: ikwargs.update(idata_kwargs) idata = arviz.from_pymc3(trace, **ikwargs) if compute_convergence_checks: if draws - tune < 100: warnings.warn("The number of samples is too small to check convergence reliably.") else: trace.report._run_convergence_checks(idata, model) trace.report._log_summary() if return_inferencedata: return idata else: return trace def _check_start_shape(model, start): if not isinstance(start, dict): raise TypeError("start argument must be a dict or an array-like of dicts") e = "" for var in model.vars: if var.name in start.keys(): var_shape = var.shape.tag.test_value start_var_shape = np.shape(start[var.name]) if start_var_shape: if not np.array_equal(var_shape, start_var_shape): e += "\nExpected shape {} for var '{}', got: {}".format( tuple(var_shape), var.name, start_var_shape ) # if start var has no shape else: # if model var has a specified shape if var_shape.size > 0: e += "\nExpected shape {} for var " "'{}', got scalar {}".format( tuple(var_shape), var.name, start[var.name] ) if e != "": raise ValueError("Bad shape for start argument:{}".format(e)) def _sample_many( draws, chain: int, chains: int, start: list, random_seed: list, step, callback=None, **kwargs, ): """Samples all chains sequentially. Parameters ---------- draws: int The number of samples to draw chain: int Number of the first chain in the sequence. chains: int Total number of chains to sample. start: list Starting points for each chain random_seed: list A list of seeds, one for each chain step: function Step function Returns ------- trace: MultiTrace Contains samples of all chains """ traces = [] for i in range(chains): trace = _sample( draws=draws, chain=chain + i, start=start[i], step=step, random_seed=random_seed[i], callback=callback, **kwargs, ) if trace is None: if len(traces) == 0: raise ValueError("Sampling stopped before a sample was created.") else: break elif len(trace) < draws: if len(traces) == 0: traces.append(trace) break else: traces.append(trace) return MultiTrace(traces) def _sample_population( draws: int, chain: int, chains: int, start, random_seed, step, tune, model, progressbar: bool = True, parallelize=False, **kwargs, ): """Performs sampling of a population of chains using the ``PopulationStepper``. Parameters ---------- draws : int The number of samples to draw chain : int The number of the first chain in the population chains : int The total number of chains in the population start : list Start points for each chain random_seed : int or list of ints, optional A list is accepted if more if ``cores`` is greater than one. step : function Step function (should be or contain a population step method) tune : int, optional Number of iterations to tune, if applicable (defaults to None) model : Model (optional if in ``with`` context) progressbar : bool Show progress bars? (defaults to True) parallelize : bool Setting for multiprocess parallelization Returns ------- trace : MultiTrace Contains samples of all chains """ # create the generator that iterates all chains in parallel chains = [chain + c for c in range(chains)] sampling = _prepare_iter_population( draws, chains, step, start, parallelize, tune=tune, model=model, random_seed=random_seed, progressbar=progressbar, ) if progressbar: sampling = progress_bar(sampling, total=draws, display=progressbar) latest_traces = None for it, traces in enumerate(sampling): latest_traces = traces return MultiTrace(latest_traces) def _sample( chain: int, progressbar: bool, random_seed, start, draws: int, step=None, trace=None, tune=None, model: Optional[Model] = None, callback=None, **kwargs, ): """Main iteration for singleprocess sampling. Multiple step methods are supported via compound step methods. Parameters ---------- chain : int Number of the chain that the samples will belong to. progressbar : bool Whether or not to display a progress bar in the command line. The bar shows the percentage of completion, the sampling speed in samples per second (SPS), and the estimated remaining time until completion ("expected time of arrival"; ETA). random_seed : int or list of ints A list is accepted if ``cores`` is greater than one. start : dict Starting point in parameter space (or partial point) draws : int The number of samples to draw step : function Step function trace : backend, list, or MultiTrace This should be a backend instance, a list of variables to track, or a MultiTrace object with past values. If a MultiTrace object is given, it must contain samples for the chain number ``chain``. If None or a list of variables, the NDArray backend is used. tune : int, optional Number of iterations to tune, if applicable (defaults to None) model : Model (optional if in ``with`` context) Returns ------- strace : pymc3.backends.base.BaseTrace A ``BaseTrace`` object that contains the samples for this chain. """ skip_first = kwargs.get("skip_first", 0) sampling = _iter_sample(draws, step, start, trace, chain, tune, model, random_seed, callback) _pbar_data = {"chain": chain, "divergences": 0} _desc = "Sampling chain {chain:d}, {divergences:,d} divergences" if progressbar: sampling = progress_bar(sampling, total=draws, display=progressbar) sampling.comment = _desc.format(**_pbar_data) try: strace = None for it, (strace, diverging) in enumerate(sampling): if it >= skip_first and diverging: _pbar_data["divergences"] += 1 if progressbar: sampling.comment = _desc.format(**_pbar_data) except KeyboardInterrupt: pass return strace def iter_sample( draws: int, step, start: Optional[Dict[Any, Any]] = None, trace=None, chain=0, tune: Optional[int] = None, model: Optional[Model] = None, random_seed: Optional[Union[int, List[int]]] = None, callback=None, ): """Generate a trace on each iteration using the given step method. Multiple step methods ared supported via compound step methods. Returns the amount of time taken. Parameters ---------- draws : int The number of samples to draw step : function Step function start : dict Starting point in parameter space (or partial point). Defaults to trace.point(-1)) if there is a trace provided and model.test_point if not (defaults to empty dict) trace : backend, list, or MultiTrace This should be a backend instance, a list of variables to track, or a MultiTrace object with past values. If a MultiTrace object is given, it must contain samples for the chain number ``chain``. If None or a list of variables, the NDArray backend is used. chain : int, optional Chain number used to store sample in backend. If ``cores`` is greater than one, chain numbers will start here. tune : int, optional Number of iterations to tune, if applicable (defaults to None) model : Model (optional if in ``with`` context) random_seed : int or list of ints, optional A list is accepted if more if ``cores`` is greater than one. callback : A function which gets called for every sample from the trace of a chain. The function is called with the trace and the current draw and will contain all samples for a single trace. the ``draw.chain`` argument can be used to determine which of the active chains the sample is drawn from. Sampling can be interrupted by throwing a ``KeyboardInterrupt`` in the callback. Yields ------ trace : MultiTrace Contains all samples up to the current iteration Examples -------- :: for trace in iter_sample(500, step): ... """ sampling = _iter_sample(draws, step, start, trace, chain, tune, model, random_seed, callback) for i, (strace, _) in enumerate(sampling): yield MultiTrace([strace[: i + 1]]) def _iter_sample( draws, step, start=None, trace=None, chain=0, tune=None, model=None, random_seed=None, callback=None, ): """Generator for sampling one chain. (Used in singleprocess sampling.) Parameters ---------- draws : int The number of samples to draw step : function Step function start : dict, optional Starting point in parameter space (or partial point). Defaults to trace.point(-1)) if there is a trace provided and model.test_point if not (defaults to empty dict) trace : backend, list, MultiTrace, or None This should be a backend instance, a list of variables to track, or a MultiTrace object with past values. If a MultiTrace object is given, it must contain samples for the chain number ``chain``. If None or a list of variables, the NDArray backend is used. chain : int, optional Chain number used to store sample in backend. If ``cores`` is greater than one, chain numbers will start here. tune : int, optional Number of iterations to tune, if applicable (defaults to None) model : Model (optional if in ``with`` context) random_seed : int or list of ints, optional A list is accepted if more if ``cores`` is greater than one. Yields ------ strace : BaseTrace The trace object containing the samples for this chain diverging : bool Indicates if the draw is divergent. Only available with some samplers. """ model = modelcontext(model) draws = int(draws) if random_seed is not None: np.random.seed(random_seed) if draws < 1: raise ValueError("Argument `draws` must be greater than 0.") if start is None: start = {} strace = _choose_backend(trace, chain, model=model) if len(strace) > 0: update_start_vals(start, strace.point(-1), model) else: update_start_vals(start, model.test_point, model) try: step = CompoundStep(step) except TypeError: pass point = Point(start, model=model) if step.generates_stats and strace.supports_sampler_stats: strace.setup(draws, chain, step.stats_dtypes) else: strace.setup(draws, chain) try: step.tune = bool(tune) if hasattr(step, "reset_tuning"): step.reset_tuning() for i in range(draws): stats = None diverging = False if i == 0 and hasattr(step, "iter_count"): step.iter_count = 0 if i == tune: step = stop_tuning(step) if step.generates_stats: point, stats = step.step(point) if strace.supports_sampler_stats: strace.record(point, stats) diverging = i > tune and stats and stats[0].get("diverging") else: strace.record(point) else: point = step.step(point) strace.record(point) if callback is not None: warns = getattr(step, "warnings", None) callback( trace=strace, draw=Draw(chain, i == draws, i, i < tune, stats, point, warns), ) yield strace, diverging except KeyboardInterrupt: strace.close() if hasattr(step, "warnings"): warns = step.warnings() strace._add_warnings(warns) raise except BaseException: strace.close() raise else: strace.close() if hasattr(step, "warnings"): warns = step.warnings() strace._add_warnings(warns) class PopulationStepper: """Wraps population of step methods to step them in parallel with single or multiprocessing.""" def __init__(self, steppers, parallelize, progressbar=True): """Use multiprocessing to parallelize chains. Falls back to sequential evaluation if multiprocessing fails. In the multiprocessing mode of operation, a new process is started for each chain/stepper and Pipes are used to communicate with the main process. Parameters ---------- steppers : list A collection of independent step methods, one for each chain. parallelize : bool Indicates if parallelization via multiprocessing is desired. progressbar : bool Should we display a progress bar showing relative progress? """ self.nchains = len(steppers) self.is_parallelized = False self._primary_ends = [] self._processes = [] self._steppers = steppers if parallelize: try: # configure a child process for each stepper _log.info( "Attempting to parallelize chains to all cores. You can turn this off with `pm.sample(cores=1)`." ) import multiprocessing for c, stepper in ( enumerate(progress_bar(steppers)) if progressbar else enumerate(steppers) ): secondary_end, primary_end = multiprocessing.Pipe() stepper_dumps = pickle.dumps(stepper, protocol=4) process = multiprocessing.Process( target=self.__class__._run_secondary, args=(c, stepper_dumps, secondary_end), name="ChainWalker{}".format(c), ) # we want the child process to exit if the parent is terminated process.daemon = True # Starting the process might fail and takes time. # By doing it in the constructor, the sampling progress bar # will not be confused by the process start. process.start() self._primary_ends.append(primary_end) self._processes.append(process) self.is_parallelized = True except Exception: _log.info( "Population parallelization failed. " "Falling back to sequential stepping of chains." ) _log.debug("Error was: ", exec_info=True) else: _log.info( "Chains are not parallelized. You can enable this by passing " "`pm.sample(cores=n)`, where n > 1." ) return super().__init__() def __enter__(self): """Do nothing: processes are already started in ``__init__``.""" return def __exit__(self, exc_type, exc_val, exc_tb): if len(self._processes) > 0: try: for primary_end in self._primary_ends: primary_end.send(None) for process in self._processes: process.join(timeout=3) except Exception: _log.warning("Termination failed.") return @staticmethod def _run_secondary(c, stepper_dumps, secondary_end): """This method is started on a separate process to perform stepping of a chain. Parameters ---------- c : int number of this chain stepper : BlockedStep a step method such as CompoundStep secondary_end : multiprocessing.connection.PipeConnection This is our connection to the main process """ # re-seed each child process to make them unique np.random.seed(None) try: stepper = pickle.loads(stepper_dumps) # the stepper is not necessarily a PopulationArraySharedStep itself, # but rather a CompoundStep. PopulationArrayStepShared.population # has to be updated, therefore we identify the substeppers first. population_steppers = [] for sm in stepper.methods if isinstance(stepper, CompoundStep) else [stepper]: if isinstance(sm, arraystep.PopulationArrayStepShared): population_steppers.append(sm) while True: incoming = secondary_end.recv() # receiving a None is the signal to exit if incoming is None: break tune_stop, population = incoming if tune_stop: stop_tuning(stepper) # forward the population to the PopulationArrayStepShared objects # This is necessary because due to the process fork, the population # object is no longer shared between the steppers. for popstep in population_steppers: popstep.population = population update = stepper.step(population[c]) secondary_end.send(update) except Exception: _log.exception("ChainWalker{}".format(c)) return def step(self, tune_stop, population): """Step the entire population of chains. Parameters ---------- tune_stop : bool Indicates if the condition (i == tune) is fulfilled population : list Current Points of all chains Returns ------- update : list List of (Point, stats) tuples for all chains """ updates = [None] * self.nchains if self.is_parallelized: for c in range(self.nchains): self._primary_ends[c].send((tune_stop, population)) # Blockingly get the step outcomes for c in range(self.nchains): updates[c] = self._primary_ends[c].recv() else: for c in range(self.nchains): if tune_stop: self._steppers[c] = stop_tuning(self._steppers[c]) updates[c] = self._steppers[c].step(population[c]) return updates def _prepare_iter_population( draws: int, chains: list, step, start: list, parallelize: bool, tune=None, model=None, random_seed=None, progressbar=True, ): """Prepare a PopulationStepper and traces for population sampling. Parameters ---------- draws : int The number of samples to draw chains : list The chain numbers in the population step : function Step function (should be or contain a population step method) start : list Start points for each chain parallelize : bool Setting for multiprocess parallelization tune : int, optional Number of iterations to tune, if applicable (defaults to None) model : Model (optional if in ``with`` context) random_seed : int or list of ints, optional A list is accepted if more if ``cores`` is greater than one. progressbar : bool ``progressbar`` argument for the ``PopulationStepper``, (defaults to True) Returns ------- _iter_population : generator Yields traces of all chains at the same time """ # chains contains the chain numbers, but for indexing we need indices... nchains = len(chains) model = modelcontext(model) draws = int(draws) if random_seed is not None: np.random.seed(random_seed) if draws < 1: raise ValueError("Argument `draws` should be above 0.") # The initialization of traces, samplers and points must happen in the right order: # 1. traces are initialized and update_start_vals configures variable transforms # 2. population of points is created # 3. steppers are initialized and linked to the points object # 4. traces are configured to track the sampler stats # 5. a PopulationStepper is configured for parallelized stepping # 1. prepare a BaseTrace for each chain traces = [_choose_backend(None, chain, model=model) for chain in chains] for c, strace in enumerate(traces): # initialize the trace size and variable transforms if len(strace) > 0: update_start_vals(start[c], strace.point(-1), model) else: update_start_vals(start[c], model.test_point, model) # 2. create a population (points) that tracks each chain # it is updated as the chains are advanced population = [Point(start[c], model=model) for c in range(nchains)] # 3. Set up the steppers steppers = [None] * nchains for c in range(nchains): # need indepenent samplers for each chain # it is important to copy the actual steppers (but not the delta_logp) if isinstance(step, CompoundStep): chainstep = CompoundStep([copy(m) for m in step.methods]) else: chainstep = copy(step) # link population samplers to the shared population state for sm in chainstep.methods if isinstance(step, CompoundStep) else [chainstep]: if isinstance(sm, arraystep.PopulationArrayStepShared): sm.link_population(population, c) steppers[c] = chainstep # 4. configure tracking of sampler stats for c in range(nchains): if steppers[c].generates_stats and traces[c].supports_sampler_stats: traces[c].setup(draws, c, steppers[c].stats_dtypes) else: traces[c].setup(draws, c) # 5. configure the PopulationStepper (expensive call) popstep = PopulationStepper(steppers, parallelize, progressbar=progressbar) # Because the preparations above are expensive, the actual iterator is # in another method. This way the progbar will not be disturbed. return _iter_population(draws, tune, popstep, steppers, traces, population) def _iter_population(draws, tune, popstep, steppers, traces, points): """Iterate a ``PopulationStepper``. Parameters ---------- draws : int number of draws per chain tune : int number of tuning steps popstep : PopulationStepper the helper object for (parallelized) stepping of chains steppers : list The step methods for each chain traces : list Traces for each chain points : list population of chain states Yields ------ traces : list List of trace objects of the individual chains """ try: with popstep: # iterate draws of all chains for i in range(draws): # this call steps all chains and returns a list of (point, stats) # the `popstep` may interact with subprocesses internally updates = popstep.step(i == tune, points) # apply the update to the points and record to the traces for c, strace in enumerate(traces): if steppers[c].generates_stats: points[c], stats = updates[c] if strace.supports_sampler_stats: strace.record(points[c], stats) else: strace.record(points[c]) else: points[c] = updates[c] strace.record(points[c]) # yield the state of all chains in parallel yield traces except KeyboardInterrupt: for c, strace in enumerate(traces): strace.close() if hasattr(steppers[c], "report"): steppers[c].report._finalize(strace) raise except BaseException: for c, strace in enumerate(traces): strace.close() raise else: for c, strace in enumerate(traces): strace.close() if hasattr(steppers[c], "report"): steppers[c].report._finalize(strace) def _choose_backend(trace, chain, shortcuts=None, **kwds): """Selects or creates a trace backend (NDArray, Text, etc) for a particular chain. Parameters ---------- trace : backend, list, MultiTrace, or None This should be a BaseTrace, backend name (e.g. text, sqlite, or hdf5), list of variables to track, or a MultiTrace object with past values. If a MultiTrace object is given, it must contain samples for the chain number ``chain``. If None or a list of variables, the NDArray backend is used. chain : int Number of the chain of interest. shortcuts : dict, optional maps backend names to a dict of backend class and name (defaults to pm.backends._shortcuts) **kwds : keyword arguments to forward to the backend creation Returns ------- trace : BaseTrace A trace object for the selected chain """ if isinstance(trace, BaseTrace): return trace if isinstance(trace, MultiTrace): return trace._straces[chain] if trace is None: return NDArray(**kwds) if shortcuts is None: shortcuts = pm.backends._shortcuts try: backend = shortcuts[trace]["backend"] name = shortcuts[trace]["name"] return backend(name, **kwds) except TypeError: return NDArray(vars=trace, **kwds) except KeyError: raise ValueError("Argument `trace` is invalid.") def _mp_sample( draws: int, tune: int, step, chains: int, cores: int, chain: int, random_seed: list, start: list, progressbar=True, trace=None, model=None, callback=None, discard_tuned_samples=True, mp_ctx=None, pickle_backend="pickle", **kwargs, ): """Main iteration for multiprocess sampling. Parameters ---------- draws : int The number of samples to draw tune : int, optional Number of iterations to tune, if applicable (defaults to None) step : function Step function chains : int The number of chains to sample. cores : int The number of chains to run in parallel. chain : int Number of the first chain. random_seed : list of ints Random seeds for each chain. start : list Starting points for each chain. progressbar : bool Whether or not to display a progress bar in the command line. trace : backend, list, MultiTrace or None This should be a backend instance, a list of variables to track, or a MultiTrace object with past values. If a MultiTrace object is given, it must contain samples for the chain number ``chain``. If None or a list of variables, the NDArray backend is used. model : Model (optional if in ``with`` context) callback : Callable A function which gets called for every sample from the trace of a chain. The function is called with the trace and the current draw and will contain all samples for a single trace. the ``draw.chain`` argument can be used to determine which of the active chains the sample is drawn from. Sampling can be interrupted by throwing a ``KeyboardInterrupt`` in the callback. Returns ------- trace : pymc3.backends.base.MultiTrace A ``MultiTrace`` object that contains the samples for all chains. """ import pymc3.parallel_sampling as ps # We did draws += tune in pm.sample draws -= tune traces = [] for idx in range(chain, chain + chains): if trace is not None: strace = _choose_backend(copy(trace), idx, model=model) else: strace = _choose_backend(None, idx, model=model) # for user supply start value, fill-in missing value if the supplied # dict does not contain all parameters update_start_vals(start[idx - chain], model.test_point, model) if step.generates_stats and strace.supports_sampler_stats: strace.setup(draws + tune, idx + chain, step.stats_dtypes) else: strace.setup(draws + tune, idx + chain) traces.append(strace) sampler = ps.ParallelSampler( draws, tune, chains, cores, random_seed, start, step, chain, progressbar, mp_ctx=mp_ctx, pickle_backend=pickle_backend, ) try: try: with sampler: for draw in sampler: trace = traces[draw.chain - chain] if trace.supports_sampler_stats and draw.stats is not None: trace.record(draw.point, draw.stats) else: trace.record(draw.point) if draw.is_last: trace.close() if draw.warnings is not None: trace._add_warnings(draw.warnings) if callback is not None: callback(trace=trace, draw=draw) except ps.ParallelSamplingError as error: trace = traces[error._chain - chain] trace._add_warnings(error._warnings) for trace in traces: trace.close() multitrace = MultiTrace(traces) multitrace._report._log_summary() raise return MultiTrace(traces) except KeyboardInterrupt: if discard_tuned_samples: traces, length = _choose_chains(traces, tune) else: traces, length = _choose_chains(traces, 0) return MultiTrace(traces)[:length] finally: for trace in traces: trace.close() def _choose_chains(traces, tune): if tune is None: tune = 0 if not traces: return [] lengths = [max(0, len(trace) - tune) for trace in traces] if not sum(lengths): raise ValueError("Not enough samples to build a trace.") idxs = np.argsort(lengths)[::-1] l_sort = np.array(lengths)[idxs] final_length = l_sort[0] last_total = 0 for i, length in enumerate(l_sort): total = (i + 1) * length if total < last_total: use_until = i break last_total = total final_length = length else: use_until = len(lengths) return [traces[idx] for idx in idxs[:use_until]], final_length + tune def stop_tuning(step): """Stop tuning the current step method.""" step.stop_tuning() return step class _DefaultTrace: """ Utility for collecting samples into a dictionary. Name comes from its similarity to ``defaultdict``: entries are lazily created. Parameters ---------- samples : int The number of samples that will be collected, per variable, into the trace. Attributes ---------- trace_dict : Dict[str, np.ndarray] A dictionary constituting a trace. Should be extracted after a procedure has filled the `_DefaultTrace` using the `insert()` method """ trace_dict = {} # type: Dict[str, np.ndarray] _len = None # type: int def __init__(self, samples: int): self._len = samples self.trace_dict = {} def insert(self, k: str, v, idx: int): """ Insert `v` as the value of the `idx`th sample for the variable `k`. Parameters ---------- k: str Name of the variable. v: anything that can go into a numpy array (including a numpy array) The value of the `idx`th sample from variable `k` ids: int The index of the sample we are inserting into the trace. """ if hasattr(v, "shape"): value_shape = tuple(v.shape) # type: Tuple[int, ...] else: value_shape = () # initialize if necessary if k not in self.trace_dict: array_shape = (self._len,) + value_shape self.trace_dict[k] = np.empty(array_shape, dtype=np.array(v).dtype) # do the actual insertion if value_shape == (): self.trace_dict[k][idx] = v else: self.trace_dict[k][idx, :] = v def sample_posterior_predictive( trace, samples: Optional[int] = None, model: Optional[Model] = None, vars: Optional[TIterable[Tensor]] = None, var_names: Optional[List[str]] = None, size: Optional[int] = None, keep_size: Optional[bool] = False, random_seed=None, progressbar: bool = True, ) -> Dict[str, np.ndarray]: """Generate posterior predictive samples from a model given a trace. Parameters ---------- trace : backend, list, xarray.Dataset, arviz.InferenceData, or MultiTrace Trace generated from MCMC sampling, or a list of dicts (eg. points or from find_MAP()), or xarray.Dataset (eg. InferenceData.posterior or InferenceData.prior) samples : int Number of posterior predictive samples to generate. Defaults to one posterior predictive sample per posterior sample, that is, the number of draws times the number of chains. It is not recommended to modify this value; when modified, some chains may not be represented in the posterior predictive sample. model : Model (optional if in ``with`` context) Model used to generate ``trace`` vars : iterable Variables for which to compute the posterior predictive samples. Deprecated: please use ``var_names`` instead. var_names : Iterable[str] Names of variables for which to compute the posterior predictive samples. size : int The number of random draws from the distribution specified by the parameters in each sample of the trace. Not recommended unless more than ndraws times nchains posterior predictive samples are needed. keep_size : bool, optional Force posterior predictive sample to have the same shape as posterior and sample stats data: ``(nchains, ndraws, ...)``. Overrides samples and size parameters. random_seed : int Seed for the random number generator. progressbar : bool Whether or not to display a progress bar in the command line. The bar shows the percentage of completion, the sampling speed in samples per second (SPS), and the estimated remaining time until completion ("expected time of arrival"; ETA). Returns ------- samples : dict Dictionary with the variable names as keys, and values numpy arrays containing posterior predictive samples. """ _trace: Union[MultiTrace, PointList] if isinstance(trace, InferenceData): _trace = dataset_to_point_dict(trace.posterior) elif isinstance(trace, xarray.Dataset): _trace = dataset_to_point_dict(trace) else: _trace = trace nchain: int len_trace: int if isinstance(trace, (InferenceData, xarray.Dataset)): nchain, len_trace = chains_and_samples(trace) else: len_trace = len(_trace) try: nchain = _trace.nchains except AttributeError: nchain = 1 if keep_size and samples is not None: raise IncorrectArgumentsError("Should not specify both keep_size and samples arguments") if keep_size and size is not None: raise IncorrectArgumentsError("Should not specify both keep_size and size arguments") if samples is None: if isinstance(_trace, MultiTrace): samples = sum(len(v) for v in _trace._straces.values()) elif isinstance(_trace, list) and all((isinstance(x, dict) for x in _trace)): # this is a list of points samples = len(_trace) else: raise TypeError( "Do not know how to compute number of samples for trace argument of type %s" % type(_trace) ) assert samples is not None if samples < len_trace * nchain: warnings.warn( "samples parameter is smaller than nchains times ndraws, some draws " "and/or chains may not be represented in the returned posterior " "predictive sample" ) model = modelcontext(model) if var_names is not None: if vars is not None: raise IncorrectArgumentsError("Should not specify both vars and var_names arguments.") else: vars = [model[x] for x in var_names] elif vars is not None: # var_names is None, and vars is not. warnings.warn("vars argument is deprecated in favor of var_names.", DeprecationWarning) if vars is None: vars = model.observed_RVs if random_seed is not None: np.random.seed(random_seed) indices = np.arange(samples) if progressbar: indices = progress_bar(indices, total=samples, display=progressbar) ppc_trace_t = _DefaultTrace(samples) try: for idx in indices: if nchain > 1: # the trace object will either be a MultiTrace (and have _straces)... if hasattr(_trace, "_straces"): chain_idx, point_idx = np.divmod(idx, len_trace) param = cast(MultiTrace, _trace)._straces[chain_idx % nchain].point(point_idx) # ... or a PointList else: param = cast(PointList, _trace)[idx % len_trace] # there's only a single chain, but the index might hit it multiple times if # the number of indices is greater than the length of the trace. else: param = _trace[idx % len_trace] values = draw_values(vars, point=param, size=size) for k, v in zip(vars, values): ppc_trace_t.insert(k.name, v, idx) except KeyboardInterrupt: pass ppc_trace = ppc_trace_t.trace_dict if keep_size: for k, ary in ppc_trace.items(): ppc_trace[k] = ary.reshape((nchain, len_trace, *ary.shape[1:])) return ppc_trace def sample_posterior_predictive_w( traces, samples: Optional[int] = None, models: Optional[List[Model]] = None, weights: Optional[ArrayLike] = None, random_seed: Optional[int] = None, progressbar: bool = True, ): """Generate weighted posterior predictive samples from a list of models and a list of traces according to a set of weights. Parameters ---------- traces : list or list of lists List of traces generated from MCMC sampling (xarray.Dataset, arviz.InferenceData, or MultiTrace), or a list of list containing dicts from find_MAP() or points. The number of traces should be equal to the number of weights. samples : int, optional Number of posterior predictive samples to generate. Defaults to the length of the shorter trace in traces. models : list of Model List of models used to generate the list of traces. The number of models should be equal to the number of weights and the number of observed RVs should be the same for all models. By default a single model will be inferred from ``with`` context, in this case results will only be meaningful if all models share the same distributions for the observed RVs. weights : array-like, optional Individual weights for each trace. Default, same weight for each model. random_seed : int, optional Seed for the random number generator. progressbar : bool, optional default True Whether or not to display a progress bar in the command line. The bar shows the percentage of completion, the sampling speed in samples per second (SPS), and the estimated remaining time until completion ("expected time of arrival"; ETA). Returns ------- samples : dict Dictionary with the variables as keys. The values corresponding to the posterior predictive samples from the weighted models. """ np.random.seed(random_seed) if isinstance(traces[0], InferenceData): n_samples = [ trace.posterior.sizes["chain"] * trace.posterior.sizes["draw"] for trace in traces ] traces = [dataset_to_point_dict(trace.posterior) for trace in traces] elif isinstance(traces[0], xarray.Dataset): n_samples = [trace.sizes["chain"] * trace.sizes["draw"] for trace in traces] traces = [dataset_to_point_dict(trace) for trace in traces] else: n_samples = [len(i) * i.nchains for i in traces] if models is None: models = [modelcontext(models)] * len(traces) if weights is None: weights = [1] * len(traces) if len(traces) != len(weights): raise ValueError("The number of traces and weights should be the same") if len(models) != len(weights): raise ValueError("The number of models and weights should be the same") length_morv = len(models[0].observed_RVs) if not all(len(i.observed_RVs) == length_morv for i in models): raise ValueError("The number of observed RVs should be the same for all models") weights = np.asarray(weights) p = weights / np.sum(weights) min_tr = min(n_samples) n = (min_tr * p).astype("int") # ensure n sum up to min_tr idx = np.argmax(n) n[idx] = n[idx] + min_tr - np.sum(n) trace = [] for i, j in enumerate(n): tr = traces[i] len_trace = len(tr) try: nchain = tr.nchains except AttributeError: nchain = 1 indices = np.random.randint(0, nchain * len_trace, j) if nchain > 1: chain_idx, point_idx = np.divmod(indices, len_trace) for idx in zip(chain_idx, point_idx): trace.append(tr._straces[idx[0]].point(idx[1])) else: for idx in indices: trace.append(tr[idx]) obs = [x for m in models for x in m.observed_RVs] variables = np.repeat(obs, n) lengths = list(set([np.atleast_1d(observed).shape for observed in obs])) if len(lengths) == 1: size = [None for i in variables] elif len(lengths) > 2: raise ValueError("Observed variables could not be broadcast together") else: size = [] x = np.zeros(shape=lengths[0]) y = np.zeros(shape=lengths[1]) b = np.broadcast(x, y) for var in variables: shape = np.shape(np.atleast_1d(var.distribution.default())) if shape != b.shape: size.append(b.shape) else: size.append(None) len_trace = len(trace) if samples is None: samples = len_trace indices = np.random.randint(0, len_trace, samples) if progressbar: indices = progress_bar(indices, total=samples, display=progressbar) try: ppc = defaultdict(list) for idx in indices: param = trace[idx] var = variables[idx] # TODO sample_posterior_predictive_w is currently only work for model with # one observed. ppc[var.name].append(draw_values([var], point=param, size=size[idx])[0]) except KeyboardInterrupt: pass return {k: np.asarray(v) for k, v in ppc.items()} def sample_prior_predictive( samples=500, model: Optional[Model] = None, vars: Optional[TIterable[str]] = None, var_names: Optional[TIterable[str]] = None, random_seed=None, ) -> Dict[str, np.ndarray]: """Generate samples from the prior predictive distribution. Parameters ---------- samples : int Number of samples from the prior predictive to generate. Defaults to 500. model : Model (optional if in ``with`` context) vars : Iterable[str] A list of names of variables for which to compute the posterior predictive samples. *DEPRECATED* - Use ``var_names`` argument instead. var_names : Iterable[str] A list of names of variables for which to compute the posterior predictive samples. Defaults to both observed and unobserved RVs. random_seed : int Seed for the random number generator. Returns ------- dict Dictionary with variable names as keys. The values are numpy arrays of prior samples. """ model = modelcontext(model) if vars is None and var_names is None: prior_pred_vars = model.observed_RVs prior_vars = ( get_default_varnames(model.unobserved_RVs, include_transformed=True) + model.potentials ) vars_ = [var.name for var in prior_vars + prior_pred_vars] vars = set(vars_) elif vars is None: vars = var_names vars_ = vars elif vars is not None: warnings.warn("vars argument is deprecated in favor of var_names.", DeprecationWarning) vars_ = vars else: raise ValueError("Cannot supply both vars and var_names arguments.") vars = cast(TIterable[str], vars) # tell mypy that vars cannot be None here. if random_seed is not None: np.random.seed(random_seed) names = get_default_varnames(vars_, include_transformed=False) # draw_values fails with auto-transformed variables. transform them later! values = draw_values([model[name] for name in names], size=samples) data = {k: v for k, v in zip(names, values)} if data is None: raise AssertionError("No variables sampled: attempting to sample %s" % names) prior = {} # type: Dict[str, np.ndarray] for var_name in vars: if var_name in data: prior[var_name] = data[var_name] elif is_transformed_name(var_name): untransformed = get_untransformed_name(var_name) if untransformed in data: prior[var_name] = model[untransformed].transformation.forward_val( data[untransformed] ) return prior def init_nuts( init="auto", chains=1, n_init=500000, model=None, random_seed=None, progressbar=True, **kwargs, ): """Set up the mass matrix initialization for NUTS. NUTS convergence and sampling speed is extremely dependent on the choice of mass/scaling matrix. This function implements different methods for choosing or adapting the mass matrix. Parameters ---------- init : str Initialization method to use. * auto: Choose a default initialization method automatically. Currently, this is `'jitter+adapt_diag'`, but this can change in the future. If you depend on the exact behaviour, choose an initialization method explicitly. * adapt_diag: Start with a identity mass matrix and then adapt a diagonal based on the variance of the tuning samples. All chains use the test value (usually the prior mean) as starting point. * jitter+adapt_diag: Same as ``adapt_diag``, but use test value plus a uniform jitter in [-1, 1] as starting point in each chain. * advi+adapt_diag: Run ADVI and then adapt the resulting diagonal mass matrix based on the sample variance of the tuning samples. * advi+adapt_diag_grad: Run ADVI and then adapt the resulting diagonal mass matrix based on the variance of the gradients during tuning. This is **experimental** and might be removed in a future release. * advi: Run ADVI to estimate posterior mean and diagonal mass matrix. * advi_map: Initialize ADVI with MAP and use MAP as starting point. * map: Use the MAP as starting point. This is discouraged. * adapt_full: Adapt a dense mass matrix using the sample covariances. All chains use the test value (usually the prior mean) as starting point. * jitter+adapt_full: Same as ``adapt_full`, but use test value plus a uniform jitter in [-1, 1] as starting point in each chain. chains : int Number of jobs to start. n_init : int Number of iterations of initializer. Only works for 'ADVI' init methods. model : Model (optional if in ``with`` context) progressbar : bool Whether or not to display a progressbar for advi sampling. **kwargs : keyword arguments Extra keyword arguments are forwarded to pymc3.NUTS. Returns ------- start : ``pymc3.model.Point`` Starting point for sampler nuts_sampler : ``pymc3.step_methods.NUTS`` Instantiated and initialized NUTS sampler object """ model = modelcontext(model) vars = kwargs.get("vars", model.vars) if set(vars) != set(model.vars): raise ValueError("Must use init_nuts on all variables of a model.") if not all_continuous(vars): raise ValueError("init_nuts can only be used for models with only " "continuous variables.") if not isinstance(init, str): raise TypeError("init must be a string.") if init is not None: init = init.lower() if init == "auto": init = "jitter+adapt_diag" _log.info("Initializing NUTS using {}...".format(init)) if random_seed is not None: random_seed = int(np.atleast_1d(random_seed)[0]) np.random.seed(random_seed) cb = [ pm.callbacks.CheckParametersConvergence(tolerance=1e-2, diff="absolute"), pm.callbacks.CheckParametersConvergence(tolerance=1e-2, diff="relative"), ] if init == "adapt_diag": start = [model.test_point] * chains mean = np.mean([model.dict_to_array(vals) for vals in start], axis=0) var = np.ones_like(mean) potential = quadpotential.QuadPotentialDiagAdapt(model.ndim, mean, var, 10) elif init == "jitter+adapt_diag": start = [] for _ in range(chains): mean = {var: val.copy() for var, val in model.test_point.items()} for val in mean.values(): val[...] += 2 * np.random.rand(*val.shape) - 1 start.append(mean) mean = np.mean([model.dict_to_array(vals) for vals in start], axis=0) var = np.ones_like(mean) potential = quadpotential.QuadPotentialDiagAdapt(model.ndim, mean, var, 10) elif init == "advi+adapt_diag_grad": approx = pm.fit( random_seed=random_seed, n=n_init, method="advi", model=model, callbacks=cb, progressbar=progressbar, obj_optimizer=pm.adagrad_window, ) # type: pm.MeanField start = approx.sample(draws=chains) start = list(start) stds = approx.bij.rmap(approx.std.eval()) cov = model.dict_to_array(stds) ** 2 mean = approx.bij.rmap(approx.mean.get_value()) mean = model.dict_to_array(mean) weight = 50 potential = quadpotential.QuadPotentialDiagAdaptGrad(model.ndim, mean, cov, weight) elif init == "advi+adapt_diag": approx = pm.fit( random_seed=random_seed, n=n_init, method="advi", model=model, callbacks=cb, progressbar=progressbar, obj_optimizer=pm.adagrad_window, ) # type: pm.MeanField start = approx.sample(draws=chains) start = list(start) stds = approx.bij.rmap(approx.std.eval()) cov = model.dict_to_array(stds) ** 2 mean = approx.bij.rmap(approx.mean.get_value()) mean = model.dict_to_array(mean) weight = 50 potential = quadpotential.QuadPotentialDiagAdapt(model.ndim, mean, cov, weight) elif init == "advi": approx = pm.fit( random_seed=random_seed, n=n_init, method="advi", model=model, callbacks=cb, progressbar=progressbar, obj_optimizer=pm.adagrad_window, ) # type: pm.MeanField start = approx.sample(draws=chains) start = list(start) stds = approx.bij.rmap(approx.std.eval()) cov = model.dict_to_array(stds) ** 2 potential = quadpotential.QuadPotentialDiag(cov) elif init == "advi_map": start = pm.find_MAP(include_transformed=True) approx = pm.MeanField(model=model, start=start) pm.fit( random_seed=random_seed, n=n_init, method=pm.KLqp(approx), callbacks=cb, progressbar=progressbar, obj_optimizer=pm.adagrad_window, ) start = approx.sample(draws=chains) start = list(start) stds = approx.bij.rmap(approx.std.eval()) cov = model.dict_to_array(stds) ** 2 potential = quadpotential.QuadPotentialDiag(cov) elif init == "map": start = pm.find_MAP(include_transformed=True) cov = pm.find_hessian(point=start) start = [start] * chains potential = quadpotential.QuadPotentialFull(cov) elif init == "adapt_full": start = [model.test_point] * chains mean = np.mean([model.dict_to_array(vals) for vals in start], axis=0) cov = np.eye(model.ndim) potential = quadpotential.QuadPotentialFullAdapt(model.ndim, mean, cov, 10) elif init == "jitter+adapt_full": start = [] for _ in range(chains): mean = {var: val.copy() for var, val in model.test_point.items()} for val in mean.values(): val[...] += 2 * np.random.rand(*val.shape) - 1 start.append(mean) mean = np.mean([model.dict_to_array(vals) for vals in start], axis=0) cov = np.eye(model.ndim) potential = quadpotential.QuadPotentialFullAdapt(model.ndim, mean, cov, 10) else: raise ValueError("Unknown initializer: {}.".format(init)) step = pm.NUTS(potential=potential, model=model, **kwargs) return start, step
36.804867
134
0.622921
4a061e32da2df005310843b42da0ecb2fed7b711
6,146
py
Python
tests/unit/bokeh/server/test_util.py
Suicoleiro/bokeh
a212acdf091a7a4df639fa9d443be6ade0018039
[ "BSD-3-Clause" ]
15,193
2015-01-01T05:11:45.000Z
2022-03-31T19:30:20.000Z
tests/unit/bokeh/server/test_util.py
Suicoleiro/bokeh
a212acdf091a7a4df639fa9d443be6ade0018039
[ "BSD-3-Clause" ]
9,554
2015-01-01T03:16:54.000Z
2022-03-31T22:59:39.000Z
tests/unit/bokeh/server/test_util.py
Suicoleiro/bokeh
a212acdf091a7a4df639fa9d443be6ade0018039
[ "BSD-3-Clause" ]
4,829
2015-01-02T03:35:32.000Z
2022-03-30T16:40:26.000Z
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2021, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import annotations # isort:skip import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import socket # Module under test import bokeh.server.util as util # isort:skip #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- def test_bind_sockets_with_zero_port() -> None: ss, port = util.bind_sockets("127.0.0.1", 0) assert isinstance(ss, list) assert len(ss) == 1 assert isinstance(ss[0], socket.socket) assert isinstance(port, int) def test_check_allowlist_rejects_port_mismatch() -> None: assert False == util.check_allowlist("foo:100", ["foo:101", "foo:102"]) def test_check_allowlist_rejects_name_mismatch() -> None: assert False == util.check_allowlist("foo:100", ["bar:100", "baz:100"]) def test_check_allowlist_accepts_name_port_match() -> None: assert True == util.check_allowlist("foo:100", ["foo:100", "baz:100"]) def test_check_allowlist_accepts_implicit_port_80() -> None: assert True == util.check_allowlist("foo", ["foo:80"]) def test_check_allowlist_accepts_all_on_star() -> None: assert True == util.check_allowlist("192.168.0.1", ['*']) assert True == util.check_allowlist("192.168.0.1:80", ['*']) assert True == util.check_allowlist("192.168.0.1:5006", ['*']) assert True == util.check_allowlist("192.168.0.1:80", ['*:80']) assert False == util.check_allowlist("192.168.0.1:80", ['*:81']) assert True == util.check_allowlist("192.168.0.1:5006", ['*:*']) assert True == util.check_allowlist("192.168.0.1", ['192.168.0.*']) assert True == util.check_allowlist("192.168.0.1:5006", ['192.168.0.*']) assert False == util.check_allowlist("192.168.1.1", ['192.168.0.*']) assert True == util.check_allowlist("foobarbaz", ['*']) assert True == util.check_allowlist("192.168.0.1", ['192.168.0.*']) assert False == util.check_allowlist("192.168.1.1", ['192.168.0.*']) assert False == util.check_allowlist("192.168.0.1", ['192.168.0.*:5006']) assert True == util.check_allowlist("192.168.0.1", ['192.168.0.*:80']) assert True == util.check_allowlist("foobarbaz", ['*']) assert True == util.check_allowlist("foobarbaz", ['*:*']) assert True == util.check_allowlist("foobarbaz", ['*:80']) assert False == util.check_allowlist("foobarbaz", ['*:5006']) assert True == util.check_allowlist("foobarbaz:5006", ['*']) assert True == util.check_allowlist("foobarbaz:5006", ['*:*']) assert True == util.check_allowlist("foobarbaz:5006", ['*:5006']) def test_create_hosts_allowlist_no_host() -> None: hosts = util.create_hosts_allowlist(None, 1000) assert hosts == ["localhost:1000"] hosts = util.create_hosts_allowlist([], 1000) assert hosts == ["localhost:1000"] def test_create_hosts_allowlist_host_value_with_port_use_port() -> None: hosts = util.create_hosts_allowlist(["foo:1000"], 1000) assert hosts == ["foo:1000"] hosts = util.create_hosts_allowlist(["foo:1000","bar:2100"], 1000) assert hosts == ["foo:1000","bar:2100"] def test_create_hosts_allowlist_host_without_port_use_port_80() -> None: hosts = util.create_hosts_allowlist(["foo"], 1000) assert hosts == ["foo:80"] hosts = util.create_hosts_allowlist(["foo","bar"], 1000) assert hosts == ["foo:80","bar:80"] def test_create_hosts_allowlist_host_non_int_port_raises() -> None: with pytest.raises(ValueError): util.create_hosts_allowlist(["foo:xyz"], 1000) def test_create_hosts_allowlist_bad_host_raises() -> None: with pytest.raises(ValueError): util.create_hosts_allowlist([""], 1000) with pytest.raises(ValueError): util.create_hosts_allowlist(["a:b:c"], 1000) with pytest.raises(ValueError): util.create_hosts_allowlist([":80"], 1000) def test_match_host() -> None: assert util.match_host('192.168.0.1:80', '192.168.0.1:80') == True assert util.match_host('192.168.0.1:80', '192.168.0.1') == True assert util.match_host('192.168.0.1:80', '192.168.0.1:8080') == False assert util.match_host('192.168.0.1', '192.168.0.2') == False assert util.match_host('192.168.0.1', '192.168.*.*') == True assert util.match_host('alice', 'alice') == True assert util.match_host('alice:80', 'alice') == True assert util.match_host('alice', 'bob') == False assert util.match_host('foo.example.com', 'foo.example.com.net') == False assert util.match_host('alice', '*') == True assert util.match_host('alice', '*:*') == True assert util.match_host('alice:80', '*') == True assert util.match_host('alice:80', '*:80') == True assert util.match_host('alice:8080', '*:80') == False #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
44.861314
81
0.52587
4a061e874cefe709928978e63644b9bea854685c
521
py
Python
examples/alias_startup.py
rpavani1998/cmd2
77d9015986bca909aae9181e2d72d0d835aeaa09
[ "MIT" ]
null
null
null
examples/alias_startup.py
rpavani1998/cmd2
77d9015986bca909aae9181e2d72d0d835aeaa09
[ "MIT" ]
null
null
null
examples/alias_startup.py
rpavani1998/cmd2
77d9015986bca909aae9181e2d72d0d835aeaa09
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 """A simple example demonstrating the following: 1) How to add custom command aliases using the alias command 2) How to load an initialization script at startup """ import cmd2 class AliasAndStartup(cmd2.Cmd): """ Example cmd2 application where we create commands that just print the arguments they are called with.""" def __init__(self): super().__init__(startup_script='.cmd2rc') if __name__ == '__main__': app = AliasAndStartup() app.cmdloop()
26.05
112
0.710173
4a061f7139033bbae2e12a8c1a7e9c889dcc0bd8
7,195
py
Python
tracpro/polls/tests/test_views.py
rapidpro/tracpro
a68a782a7ff9bb0ccee85368132d8847c280fea3
[ "BSD-3-Clause" ]
5
2015-07-21T15:58:31.000Z
2019-09-14T22:34:00.000Z
tracpro/polls/tests/test_views.py
rapidpro/tracpro
a68a782a7ff9bb0ccee85368132d8847c280fea3
[ "BSD-3-Clause" ]
197
2015-03-24T15:26:04.000Z
2017-11-28T19:24:37.000Z
tracpro/polls/tests/test_views.py
rapidpro/tracpro
a68a782a7ff9bb0ccee85368132d8847c280fea3
[ "BSD-3-Clause" ]
10
2015-03-24T12:26:36.000Z
2017-02-21T13:08:57.000Z
# coding=utf-8 from __future__ import absolute_import, unicode_literals import csv import datetime from StringIO import StringIO import pytz from django.core.urlresolvers import reverse from tracpro.test.cases import TracProDataTest from ..models import Response from . import factories class PollCRUDLTest(TracProDataTest): def test_list(self): url = reverse('polls.poll_list') # log in as admin self.login(self.admin) response = self.url_get('unicef', url) self.assertEqual(response.status_code, 200) self.assertEqual(len(response.context['object_list']), 1) class ResponseCRUDLTest(TracProDataTest): def setUp(self): super(ResponseCRUDLTest, self).setUp() date0 = datetime.datetime(2014, 1, 1, 6, 59, 59, tzinfo=pytz.UTC) # Slightly earlier than date1 date1 = datetime.datetime(2014, 1, 1, 7, tzinfo=pytz.UTC) date2 = datetime.datetime(2014, 1, 1, 8, tzinfo=pytz.UTC) date3 = datetime.datetime(2014, 1, 2, 7, tzinfo=pytz.UTC) self.mock_temba_client.create_flow_start.return_value = [] # create non-regional pollrun with 4 responses (2 complete, 1 partial, 1 empty) self.pollrun1 = factories.UniversalPollRun( poll=self.poll1, conducted_on=date1) pollrun1_r0 = factories.Response( # Contact's first response pollrun=self.pollrun1, contact=self.contact1, created_on=date0, updated_on=date0, status=Response.STATUS_COMPLETE, is_active=False, # not active because it gets superseded ) # This answer is different than the next time they answer it factories.Answer( response=pollrun1_r0, question=self.poll1_question1, value="2.0000", category="1 - 10", submitted_on=date0) factories.Answer( response=pollrun1_r0, question=self.poll1_question2, value="Cloudy", category="All Responses", submitted_on=date0) # Same contact's second response to same poll, slightly later self.pollrun1_r1 = factories.Response( # Supersedes the one on date0, for most purposes pollrun=self.pollrun1, contact=self.contact1, created_on=date1, updated_on=date1, status=Response.STATUS_COMPLETE) factories.Answer( response=self.pollrun1_r1, question=self.poll1_question1, value="5.0000", category="1 - 10", submitted_on=date1) factories.Answer( response=self.pollrun1_r1, question=self.poll1_question2, value="Sunny", category="All Responses", submitted_on=date1) # Another contact's response self.pollrun1_r2 = factories.Response( pollrun=self.pollrun1, contact=self.contact2, created_on=date2, updated_on=date2, status=Response.STATUS_PARTIAL) factories.Answer( response=self.pollrun1_r2, question=self.poll1_question1, value="6.0000", category="1 - 10", submitted_on=date2) # Another contact's response self.pollrun1_r3 = factories.Response( pollrun=self.pollrun1, contact=self.contact4, created_on=date3, updated_on=date3, status=Response.STATUS_EMPTY) # create regional pollrun with 1 incomplete response self.pollrun2 = factories.RegionalPollRun( poll=self.poll1, region=self.region1, conducted_on=date3) self.pollrun2_r1 = factories.Response( pollrun=self.pollrun2, contact=self.contact1, created_on=date3, updated_on=date3, status=Response.STATUS_PARTIAL) def test_by_pollrun(self): url = reverse('polls.response_by_pollrun', args=[self.pollrun1.pk]) # log in as admin self.login(self.admin) # view responses for pollrun #1 response = self.url_get('unicef', url) self.assertContains(response, "Number of sheep", status_code=200) self.assertContains(response, "How is the weather?") responses = list(response.context['object_list']) self.assertEqual(len(responses), 2) # newest non-empty first self.assertEqual(responses, [self.pollrun1_r2, self.pollrun1_r1]) # can't restart from "All Regions" view of responses self.assertFalse(response.context['can_restart']) self.switch_region(self.region1) # can't restart as there is a later pollrun of the same poll in region #1 response = self.url_get('unicef', url) self.assertFalse(response.context['can_restart']) self.switch_region(self.region2) # can restart as this is the latest pollrun of this poll in region #2 response = self.url_get('unicef', url) self.assertTrue(response.context['can_restart']) def test_by_contact(self): # log in as admin self.login(self.admin) # view responses for contact #1 url = reverse('polls.response_by_contact', args=[self.contact1.pk]) response = self.url_get('unicef', url) responses = list(response.context['object_list']) self.assertEqual(len(responses), 2) # newest non-empty first self.assertEqual(responses, [self.pollrun2_r1, self.pollrun1_r1]) def test_fetching_pollruns_csv(self): # log in as admin self.login(self.admin) url = reverse('polls.response_by_pollrun', args=[self.pollrun1.pk]) + "?_format=csv" response = self.url_get('unicef', url) self.assertEqual(200, response.status_code) self.assertEqual('text/csv', response['Content-Type']) rows = [[element.decode('utf-8') for element in row] for row in csv.reader(StringIO(response.content.decode('utf-8')))] self.assertEqual(rows[0], ['Date', 'Name', 'URN', 'Panel', 'Cohorts', 'Number of sheep', 'How is the weather?']) self.assertEqual(rows[1], [ 'Jan 01, 2014 12:30', 'Bob', 'tel:2345', 'Kandahar', 'Farmers, Kandahar', '6.0000', '', ]) self.assertEqual(rows[2], [ 'Jan 01, 2014 11:30', 'Ann', 'tel:1234', 'Kandahar', 'Farmers, Teachers', '5.0000', 'Sunny', ]) self.assertEqual(rows[3], [ 'Jan 01, 2014 11:29', 'Ann', 'tel:1234', 'Kandahar', 'Farmers, Teachers', '2.0000', 'Cloudy', ]) self.assertEqual(4, len(rows))
40.195531
120
0.576233
4a061f9322b9e372c4baf60148a42dc6736985f0
6,066
py
Python
kart/__init__.py
giacomocaironi/Kart
29db924c69e679a19c508a5e41cc3ef3689e1a71
[ "MIT" ]
3
2020-03-24T17:02:20.000Z
2021-07-21T11:01:06.000Z
kart/__init__.py
giacomocaironi/Kart
29db924c69e679a19c508a5e41cc3ef3689e1a71
[ "MIT" ]
2
2020-09-13T16:18:29.000Z
2021-03-21T14:43:00.000Z
kart/__init__.py
giacomocaironi/Kart
29db924c69e679a19c508a5e41cc3ef3689e1a71
[ "MIT" ]
null
null
null
import argparse import fnmatch import shutil import threading import traceback from copy import deepcopy from http.server import HTTPServer from pathlib import Path from kart.utils import KartMap, KartObserver, KartRequestHandler, merge_dicts class Kart: """Main Kart class""" def __init__( self, miners: list = [], content_modifiers: list = [], mappers: list = [], map_modifiers: list = [], renderers: list = [], config: dict = {}, build_location: str = "_site", ): self.miners = miners self.content_modifiers = content_modifiers self.mappers = mappers self.map_modifiers = map_modifiers self.renderers = renderers self.config = config self.build_location = Path(build_location) self.lock = threading.Lock() def check_config(self): """Checks if the config has all the necessary fields and sets them to default values if not""" default = { "name": "Example", "site_url": "https://example.org", "pagination": {"per_page": 5, "skip": 0}, "timezone": "UTC", "serving": False, } merge_dicts(self.config, default) def mine_data(self, start: bool = True): """Calls miners and content modifiers""" self.site = {} for miner in self.miners: if start: miner.read_data(self.config) self.site.update(miner.collect(self.config)) for modifier in self.content_modifiers: modifier.modify(self.config, self.site) def create_map(self): """Calls mappers and map modifiers""" self.map = KartMap(site_url=self.config["site_url"]) for mapper in self.mappers: self.map.update(mapper.map(self.config, self.site)) for modifier in self.map_modifiers: modifier.modify(self.config, self.site, self.map) def write(self): """Calls renderers""" for renderer in self.renderers: renderer.render(self.config, self.site, self.map, self.build_location) def build(self): """Build the entire site""" self.check_config() self.mine_data() self.create_map() shutil.rmtree(self.build_location, ignore_errors=True) self.build_location.mkdir(parents=True, exist_ok=True) self.write() # _site and _map are set and retrieved with a threading lock to prevent data races # _site and _map are set only when the creation of the map has finished # therefore it is not possible to access only partial data, # preventing errors when serving the site during development def update_data(self): """Update the site data after a file has been changed""" self.mine_data(False) self.create_map() _site = deepcopy(self.site) _map = deepcopy(self.map) _urls = {} _regexes = {} for slug, page in self.map.items(): _urls[page["url"]] = slug if "*" in page["url"] or "?" in page["url"]: _regexes[page["url"]] = slug with self.lock: self._site = _site self._map = _map self._urls = _urls self._regexes = _regexes def serve_page(self, handler, url: str): """Serve a single page""" with self.lock: site_map = self._map urls = self._urls site = self._site regexes = self._regexes if url in urls: page = site_map[urls[url]] else: try: pattern = next((x for x in regexes if fnmatch.fnmatch(url, x))) page = site_map[regexes[pattern]] except StopIteration: page = None if page: renderer = self.renderer_dict[page["renderer"]] renderer.serve(handler, page, self.config, site, site_map) def serve(self, port: int = 9000): """Main loop for serving the site""" self.check_config() self.renderer_dict = {} observer = KartObserver(action=self.update_data) for miner in self.miners: miner.start_watching(self.config, observer) observer.start() for renderer in self.renderers: self.renderer_dict[renderer.name] = renderer renderer.start_serving(self.config) handler_class = KartRequestHandler handler_class.action = self.serve_page httpd = HTTPServer(("", port), handler_class) self.update_data() shutil.rmtree(self.build_location, ignore_errors=True) while True: try: httpd.handle_request() except KeyboardInterrupt: break except Exception: print(traceback.format_exc()) print("\rexiting") for miner in self.miners: miner.stop_watching(self.config) for renderer in self.renderers: renderer.stop_serving(self.config) observer.stop() observer.join() def run(self): """Starts the kart execution. See --help for more information""" parser = argparse.ArgumentParser() parser.add_argument( "command", help="command to execute", choices={"build", "serve"} ) parser.add_argument( "-p", "--port", help="port to bind to", default=9000, type=int ) parser.add_argument( "--dev-url", help="serve your site on a different url", type=str, ) args = parser.parse_args() if args.command == "build": self.config["serving"] = False self.build() if args.command == "serve": self.config["serving"] = True if args.dev_url: self.config["site_url"] = args.dev_url else: self.config["site_url"] = f"http://localhost:{args.port}" self.serve(args.port)
34.078652
102
0.576162
4a06206d8c8943ba6035bf4bd97e05a4bf6fe76b
2,349
py
Python
nets/autoencoder.py
mepittma/bmi203-final
ef60d91cafbd3372f13917aa67102ec8f19e7ee8
[ "Apache-2.0" ]
null
null
null
nets/autoencoder.py
mepittma/bmi203-final
ef60d91cafbd3372f13917aa67102ec8f19e7ee8
[ "Apache-2.0" ]
null
null
null
nets/autoencoder.py
mepittma/bmi203-final
ef60d91cafbd3372f13917aa67102ec8f19e7ee8
[ "Apache-2.0" ]
null
null
null
# Implement an 8x3x8 autoencoder. This neural network should take a matrix # input and returns the same matrix as an output. # First, represent the neural network as a list of layers, where each layer in # the network is represented as a class with a weight matrix, bias vector, # activation function, function's derivative. import numpy as np np.random.seed(1) # Sigmoid function (from https://iamtrask.github.io/2015/07/12/basic-python-network/) def sigmoid(x, deriv = False): if deriv == True: return x*(1-x) return 1/(1+np.exp(-x)) # Train a neural network with three layers, given input and output def create_nn(X, y, gamma, n_iter=60000): ncol = len(X[0]) nrow = len(X) # Initialize weights connecting layer 1 to layer 2, 2 to 3 w1_2 = 2*np.random.random((ncol,nrow)) - 1 w2_3 = 2*np.random.random((nrow,1)) - 1 # Initialize biases bias_1 = 1.0 bias_2 = 1.0 # Initialize output nodes l0 = np.array(X) l1 = sigmoid(np.dot(l0,w1_2)) l2 = sigmoid(np.dot(l1,w2_3)) for j in range(int(n_iter)): # Forward propogation: equal to the sigmoid of the dot product of previous layer and weights l1 = sigmoid(np.dot(l0,w1_2)) #+ bias_1 l2 = sigmoid(np.dot(l1,w2_3)) #+ bias_2 # Calculate the error and amount to alter weights l2_error = y - l2 l2_delta = l2_error*sigmoid(l2,deriv=True) l1_error = y - l1 l1_delta = l1_error*sigmoid(l1,deriv=True) # Update weights and biases w1_2 -= gamma * l0.T.dot(l1_delta) w2_3 -= gamma * l1.T.dot(l2_delta) #bias_1 -= gamma * l1_delta #bias_2 -= gamma * l2_delta # Print error value every 10,000 iterations if j%10000 == 0: print( "Error after {} iterations: {}".format(j,l2_error)) # Return the output layer return(l2) # Function to test the input/output of a binary test case def auto_test(X,y,gamma=0.1,n_iter=60000): print("Input vector: ", X) l2 = create_nn(X,y,n_iter,gamma) # Round each value in the output layer to 0 or 1 output = [[round(number) for number in row] for row in l2] print("Output vector: ", output) return(output) test_vec = [[0],[0],[0],[0],[0],[0],[1],[0]] output = create_nn(test_vec, test_vec, gamma = .01) auto_test(test_vec, test_vec)
30.115385
100
0.642401
4a06207ba60a7a4e5903af22eab19cfa826554ab
9,749
py
Python
commands.py
ShruthiChari/whyis
fcfb6a205c637eaf738babfbfac0bc537c6379bc
[ "Apache-2.0" ]
null
null
null
commands.py
ShruthiChari/whyis
fcfb6a205c637eaf738babfbfac0bc537c6379bc
[ "Apache-2.0" ]
null
null
null
commands.py
ShruthiChari/whyis
fcfb6a205c637eaf738babfbfac0bc537c6379bc
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- from flask_script import Command, Option, prompt_bool from flask_security.utils import encrypt_password, verify_password, get_hmac import flask from base64 import b64encode import os import datetime import rdflib from nanopub import Nanopublication from cookiecutter.main import cookiecutter import tempfile np = rdflib.Namespace("http://www.nanopub.org/nschema#") def rando(): return b64encode(os.urandom(24)).decode('utf-8') class Configure(Command): '''Create a Whyis configuration and customization directory.''' def get_options(self): return [ ] def run(self, extension_directory=None, extension_name=None): # Create project from the cookiecutter-pypackage/ template extra_context = { 'SECRET_KEY':rando(), 'SECURITY_PASSWORD_SALT': rando() } cookiecutter('config-template/', extra_context=extra_context) class LoadNanopub(Command): '''Add a nanopublication to the knowledge graph.''' def get_options(self): return [ Option('--input', '-i', dest='input_file', type=str), Option('--format', '-f', dest='file_format', type=str), Option('--revises', '-r', dest='was_revision_of', type=str), ] def run(self, input_file, file_format="trig", was_revision_of=None): if was_revision_of is not None: wasRevisionOf = set(flask.current_app.db.objects(predicate=np.hasAssertion, subject=rdflib.URIRef(was_revision_of))) if len(wasRevisionOf) == 0: print "Could not find active nanopublication to revise:", was_revision_of return was_revision_of = wasRevisionOf g = rdflib.ConjunctiveGraph(identifier=rdflib.BNode().skolemize(), store="Sleepycat") graph_tempdir = tempfile.mkdtemp() g.store.open(graph_tempdir, True) #g = rdflib.ConjunctiveGraph(identifier=rdflib.BNode().skolemize()) g1 = g.parse(location=input_file, format=file_format, publicID=flask.current_app.NS.local) if len(list(g.subjects(rdflib.RDF.type, np.Nanopublication))) == 0: print "Could not find existing nanopublications.", len(g1), len(g) new_np = Nanopublication(store=g1.store) new_np.add((new_np.identifier, rdflib.RDF.type, np.Nanopublication)) new_np.add((new_np.identifier, np.hasAssertion, g1.identifier)) new_np.add((g1.identifier, rdflib.RDF.type, np.Assertion)) nanopub_prepare_graph = rdflib.ConjunctiveGraph(store="Sleepycat") nanopub_prepare_graph_tempdir = tempfile.mkdtemp() nanopub_prepare_graph.store.open(nanopub_prepare_graph_tempdir, True) nanopubs = [] for npub in flask.current_app.nanopub_manager.prepare(g, store=nanopub_prepare_graph.store): if was_revision_of is not None: for r in was_revision_of: print "Marking as revision of", r npub.pubinfo.add((npub.assertion.identifier, flask.current_app.NS.prov.wasRevisionOf, r)) print 'Prepared', npub.identifier nanopubs.append(npub) flask.current_app.nanopub_manager.publish(*nanopubs) print "Published", npub.identifier class RetireNanopub(Command): '''Retire a nanopublication from the knowledge graph.''' def get_options(self): return [ Option('--nanopub_uri', '-n', dest='nanopub_uri', type=str), ] def run(self, nanopub_uri): flask.current_app.nanopub_manager.retire(nanopub_uri) class TestAgent(Command): '''Add a nanopublication to the knowledge graph.''' def get_options(self): return [ Option('--agent', '-a', dest='agent_path', type=str), Option('--dry-run', '-d', action="store_true", dest='dry_run'), ] def run(self, agent_path, dry_run=False): app = flask.current_app from pydoc import locate agent_class = locate(agent_path) agent = agent_class() agent.dry_run = dry_run if agent.dry_run: print "Dry run, not storing agent output." agent.app = app print agent.get_query() results = [] if agent.query_predicate == app.NS.whyis.globalChangeQuery: results.extend(agent.process_graph(app.db)) else: for resource in agent.getInstances(app.db): for np_uri, in app.db.query('''select ?np where { graph ?assertion { ?e ?p ?o.} ?np a np:Nanopublication; np:hasAssertion ?assertion. }''', initBindings={'e': resource.identifier}, initNs=app.NS.prefixes): np = app.nanopub_manager.get(np_uri) results.extend(agent.process_graph(np)) for np in results: print np.serialize(format="trig") class UpdateUser(Command): """Update a user in Whyis""" def get_options(self): return [ Option('--email', '-e', dest='email', type=str), Option('--password', '-p', dest='password', type=str), Option('--fn', '-f', dest='fn', type=str), Option('--ln', '-l', dest='ln', type=str), Option('--username', '-u', dest='identifier', type=str), Option('--add-roles', dest="add_roles", type=str), Option('--remove-roles', dest="remove_roles", type=str) ] def run(self, identifier, email, password, fn, ln, add_roles, remove_roles): user = flask.current_app.datastore.get_user(identifier) print "Modifying user", user.resUri if password is not None: verified = verify_password(password,encrypt_password(password)) if verified: user.password = encrypt_password(password) else: "User password not verified." roles = set(user.roles) if add_roles is not None: for r in add_roles.split(','): role = flask.current_app.datastore.find_or_create_role(name=r) roles.add(role) if remove_roles is not None: for r in remove_roles.split(','): role = flask.current_app.datastore.find_or_create_role(name=r) roles.remove(role) user.roles = list(roles) if email is not None: user.email = email if fn is not None: user.givenName = fn if ln is not None: user.familyName = ln flask.current_app.datastore.commit() print "Updated user: %s" % (user, ) class CreateUser(Command): """Add a user to Whyis""" def get_options(self): return [ Option('--email', '-e', dest='email', type=str), Option('--password', '-p', dest='password', type=str), Option('--fn', '-f', dest='fn', type=str), Option('--ln', '-l', dest='ln', type=str), Option('--username', '-u', dest='identifier', type=str), Option('--roles', dest="roles", type=str) ] def run(self, email, password, fn, ln, identifier, roles=[]): print 'Password verified:', verify_password(password,encrypt_password(password)) role_objects = [] if roles is not None: role_objects = [flask.current_app.datastore.find_or_create_role(name=r) for r in roles.split(',')] user = dict(identifier=identifier, email=email, password=encrypt_password(password), givenName=fn, familyName=ln, confirmed_at = datetime.datetime.utcnow(), roles = role_objects) user_obj = flask.current_app.datastore.create_user(**user) print "Created user: %s (%s)" % (user, ', '.join([r.resUri for r in role_objects])) class Test(Command): """ Run tests """ verbosity = 2 failfast = False def get_options(self): return [ Option('--verbosity', '-v', dest='verbose', type=int, default=self.verbosity), Option('--failfast', dest='failfast', default=self.failfast, action='store_false') ] def run(self, verbosity, failfast): import sys import glob import unittest exists = os.path.exists isdir = os.path.isdir join = os.path.join project_path = os.path.abspath(os.path.dirname('.')) sys.path.insert(0, project_path) # our special folder for blueprints if exists('apps'): sys.path.insert(0, join('apps')) loader = unittest.TestLoader() all_tests = [] if exists('apps'): for path in glob.glob('apps/*'): if isdir(path): tests_dir = join(path, 'tests') if exists(join(path, 'tests.py')): all_tests.append(loader.discover(path, 'tests.py')) elif exists(tests_dir): all_tests.append(loader.discover(tests_dir, pattern='test*.py')) if exists('tests') and isdir('tests'): all_tests.append(loader.discover('tests', pattern='test*.py')) elif exists('tests.py'): all_tests.append(loader.discover('.', pattern='tests.py')) test_suite = unittest.TestSuite(all_tests) unittest.TextTestRunner( verbosity=verbosity, failfast=failfast).run(test_suite)
38.231373
110
0.582008
4a0620a471a216f68190b6fab3267d48495239ae
5,219
py
Python
spark_auto_mapper_fhir/backbone_elements/implementation_guide_resource.py
imranq2/SparkAutoMapper.FHIR
dd23b218fb0097d1edc2f3e688e8d6d4d7278bd2
[ "Apache-2.0" ]
1
2020-10-31T23:25:07.000Z
2020-10-31T23:25:07.000Z
spark_auto_mapper_fhir/backbone_elements/implementation_guide_resource.py
icanbwell/SparkAutoMapper.FHIR
98f368e781b46523142c7cb513c670d659a93c9b
[ "Apache-2.0" ]
null
null
null
spark_auto_mapper_fhir/backbone_elements/implementation_guide_resource.py
icanbwell/SparkAutoMapper.FHIR
98f368e781b46523142c7cb513c670d659a93c9b
[ "Apache-2.0" ]
null
null
null
from __future__ import annotations from typing import Optional, TYPE_CHECKING from spark_auto_mapper_fhir.fhir_types.boolean import FhirBoolean from spark_auto_mapper_fhir.fhir_types.list import FhirList from spark_auto_mapper_fhir.fhir_types.string import FhirString from spark_auto_mapper_fhir.extensions.extension_base import ExtensionBase from spark_auto_mapper_fhir.fhir_types.id import FhirId from spark_auto_mapper_fhir.resources.resource import Resource from spark_auto_mapper_fhir.base_types.fhir_backbone_element_base import ( FhirBackboneElementBase, ) if TYPE_CHECKING: pass # id_ (string) # extension (Extension) # modifierExtension (Extension) # reference (Reference) from spark_auto_mapper_fhir.complex_types.reference import Reference # Imports for References for reference # fhirVersion (FHIRVersion) from spark_auto_mapper_fhir.value_sets.fhir_version import FHIRVersionCode # name (string) # description (string) # exampleBoolean (boolean) # exampleCanonical (canonical) from spark_auto_mapper_fhir.fhir_types.canonical import FhirCanonical # groupingId (id) # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class ImplementationGuideResource(FhirBackboneElementBase): """ ImplementationGuide.Resource A set of rules of how a particular interoperability or standards problem is solved - typically through the use of FHIR resources. This resource is used to gather all the parts of an implementation guide into a logical whole and to publish a computable definition of all the parts. """ # noinspection PyPep8Naming def __init__( self, *, id_: Optional[FhirString] = None, extension: Optional[FhirList[ExtensionBase]] = None, modifierExtension: Optional[FhirList[ExtensionBase]] = None, reference: Reference[Resource], fhirVersion: Optional[FhirList[FHIRVersionCode]] = None, name: Optional[FhirString] = None, description: Optional[FhirString] = None, exampleBoolean: Optional[FhirBoolean] = None, exampleCanonical: Optional[FhirCanonical] = None, groupingId: Optional[FhirId] = None, ) -> None: """ A set of rules of how a particular interoperability or standards problem is solved - typically through the use of FHIR resources. This resource is used to gather all the parts of an implementation guide into a logical whole and to publish a computable definition of all the parts. :param id_: None :param extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. :param modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). :param reference: Where this resource is found. :param fhirVersion: Indicates the FHIR Version(s) this artifact is intended to apply to. If no versions are specified, the resource is assumed to apply to all the versions stated in ImplementationGuide.fhirVersion. :param name: A human assigned name for the resource. All resources SHOULD have a name, but the name may be extracted from the resource (e.g. ValueSet.name). :param description: A description of the reason that a resource has been included in the implementation guide. :param exampleBoolean: None :param exampleCanonical: None :param groupingId: Reference to the id of the grouping this resource appears in. """ super().__init__( id_=id_, extension=extension, modifierExtension=modifierExtension, reference=reference, fhirVersion=fhirVersion, name=name, description=description, exampleBoolean=exampleBoolean, exampleCanonical=exampleCanonical, groupingId=groupingId, )
48.324074
288
0.720253
4a0620b81f4861f68faf121bb247ba73e4fcf275
74,104
py
Python
venv/lib/python3.8/site-packages/vsts/gallery/v4_0/gallery_client.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/vsts/gallery/v4_0/gallery_client.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/vsts/gallery/v4_0/gallery_client.py
amcclead7336/Enterprise_Data_Science_Final
ccdc0aa08d4726bf82d71c11a1cc0c63eb301a28
[ "Unlicense", "MIT" ]
2
2021-05-23T16:46:31.000Z
2021-05-26T23:51:09.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest import Serializer, Deserializer from ...vss_client import VssClient from . import models class GalleryClient(VssClient): """Gallery :param str base_url: Service URL :param Authentication creds: Authenticated credentials. """ def __init__(self, base_url=None, creds=None): super(GalleryClient, self).__init__(base_url, creds) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) resource_area_identifier = '69d21c00-f135-441b-b5ce-3626378e0819' def share_extension_by_id(self, extension_id, account_name): """ShareExtensionById. [Preview API] :param str extension_id: :param str account_name: """ route_values = {} if extension_id is not None: route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str') if account_name is not None: route_values['accountName'] = self._serialize.url('account_name', account_name, 'str') self._send(http_method='POST', location_id='1f19631b-a0b4-4a03-89c2-d79785d24360', version='4.0-preview.1', route_values=route_values) def unshare_extension_by_id(self, extension_id, account_name): """UnshareExtensionById. [Preview API] :param str extension_id: :param str account_name: """ route_values = {} if extension_id is not None: route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str') if account_name is not None: route_values['accountName'] = self._serialize.url('account_name', account_name, 'str') self._send(http_method='DELETE', location_id='1f19631b-a0b4-4a03-89c2-d79785d24360', version='4.0-preview.1', route_values=route_values) def share_extension(self, publisher_name, extension_name, account_name): """ShareExtension. [Preview API] :param str publisher_name: :param str extension_name: :param str account_name: """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if account_name is not None: route_values['accountName'] = self._serialize.url('account_name', account_name, 'str') self._send(http_method='POST', location_id='a1e66d8f-f5de-4d16-8309-91a4e015ee46', version='4.0-preview.1', route_values=route_values) def unshare_extension(self, publisher_name, extension_name, account_name): """UnshareExtension. [Preview API] :param str publisher_name: :param str extension_name: :param str account_name: """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if account_name is not None: route_values['accountName'] = self._serialize.url('account_name', account_name, 'str') self._send(http_method='DELETE', location_id='a1e66d8f-f5de-4d16-8309-91a4e015ee46', version='4.0-preview.1', route_values=route_values) def get_acquisition_options(self, item_id, installation_target, test_commerce=None, is_free_or_trial_install=None): """GetAcquisitionOptions. [Preview API] :param str item_id: :param str installation_target: :param bool test_commerce: :param bool is_free_or_trial_install: :rtype: :class:`<AcquisitionOptions> <gallery.v4_0.models.AcquisitionOptions>` """ route_values = {} if item_id is not None: route_values['itemId'] = self._serialize.url('item_id', item_id, 'str') query_parameters = {} if installation_target is not None: query_parameters['installationTarget'] = self._serialize.query('installation_target', installation_target, 'str') if test_commerce is not None: query_parameters['testCommerce'] = self._serialize.query('test_commerce', test_commerce, 'bool') if is_free_or_trial_install is not None: query_parameters['isFreeOrTrialInstall'] = self._serialize.query('is_free_or_trial_install', is_free_or_trial_install, 'bool') response = self._send(http_method='GET', location_id='9d0a0105-075e-4760-aa15-8bcf54d1bd7d', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('AcquisitionOptions', response) def request_acquisition(self, acquisition_request): """RequestAcquisition. [Preview API] :param :class:`<ExtensionAcquisitionRequest> <gallery.v4_0.models.ExtensionAcquisitionRequest>` acquisition_request: :rtype: :class:`<ExtensionAcquisitionRequest> <gallery.v4_0.models.ExtensionAcquisitionRequest>` """ content = self._serialize.body(acquisition_request, 'ExtensionAcquisitionRequest') response = self._send(http_method='POST', location_id='3adb1f2d-e328-446e-be73-9f6d98071c45', version='4.0-preview.1', content=content) return self._deserialize('ExtensionAcquisitionRequest', response) def get_asset_by_name(self, publisher_name, extension_name, version, asset_type, account_token=None, accept_default=None, **kwargs): """GetAssetByName. [Preview API] :param str publisher_name: :param str extension_name: :param str version: :param str asset_type: :param str account_token: :param bool accept_default: :rtype: object """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if version is not None: route_values['version'] = self._serialize.url('version', version, 'str') if asset_type is not None: route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str') query_parameters = {} if account_token is not None: query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str') if accept_default is not None: query_parameters['acceptDefault'] = self._serialize.query('accept_default', accept_default, 'bool') response = self._send(http_method='GET', location_id='7529171f-a002-4180-93ba-685f358a0482', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters, accept_media_type='application/octet-stream') if "callback" in kwargs: callback = kwargs["callback"] else: callback = None return self._client.stream_download(response, callback=callback) def get_asset(self, extension_id, version, asset_type, account_token=None, accept_default=None, **kwargs): """GetAsset. [Preview API] :param str extension_id: :param str version: :param str asset_type: :param str account_token: :param bool accept_default: :rtype: object """ route_values = {} if extension_id is not None: route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str') if version is not None: route_values['version'] = self._serialize.url('version', version, 'str') if asset_type is not None: route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str') query_parameters = {} if account_token is not None: query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str') if accept_default is not None: query_parameters['acceptDefault'] = self._serialize.query('accept_default', accept_default, 'bool') response = self._send(http_method='GET', location_id='5d545f3d-ef47-488b-8be3-f5ee1517856c', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters, accept_media_type='application/octet-stream') if "callback" in kwargs: callback = kwargs["callback"] else: callback = None return self._client.stream_download(response, callback=callback) def get_asset_authenticated(self, publisher_name, extension_name, version, asset_type, account_token=None, **kwargs): """GetAssetAuthenticated. [Preview API] :param str publisher_name: :param str extension_name: :param str version: :param str asset_type: :param str account_token: :rtype: object """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if version is not None: route_values['version'] = self._serialize.url('version', version, 'str') if asset_type is not None: route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str') query_parameters = {} if account_token is not None: query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str') response = self._send(http_method='GET', location_id='506aff36-2622-4f70-8063-77cce6366d20', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters, accept_media_type='application/octet-stream') if "callback" in kwargs: callback = kwargs["callback"] else: callback = None return self._client.stream_download(response, callback=callback) def associate_azure_publisher(self, publisher_name, azure_publisher_id): """AssociateAzurePublisher. [Preview API] :param str publisher_name: :param str azure_publisher_id: :rtype: :class:`<AzurePublisher> <gallery.v4_0.models.AzurePublisher>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') query_parameters = {} if azure_publisher_id is not None: query_parameters['azurePublisherId'] = self._serialize.query('azure_publisher_id', azure_publisher_id, 'str') response = self._send(http_method='PUT', location_id='efd202a6-9d87-4ebc-9229-d2b8ae2fdb6d', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('AzurePublisher', response) def query_associated_azure_publisher(self, publisher_name): """QueryAssociatedAzurePublisher. [Preview API] :param str publisher_name: :rtype: :class:`<AzurePublisher> <gallery.v4_0.models.AzurePublisher>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') response = self._send(http_method='GET', location_id='efd202a6-9d87-4ebc-9229-d2b8ae2fdb6d', version='4.0-preview.1', route_values=route_values) return self._deserialize('AzurePublisher', response) def get_categories(self, languages=None): """GetCategories. [Preview API] :param str languages: :rtype: [str] """ query_parameters = {} if languages is not None: query_parameters['languages'] = self._serialize.query('languages', languages, 'str') response = self._send(http_method='GET', location_id='e0a5a71e-3ac3-43a0-ae7d-0bb5c3046a2a', version='4.0-preview.1', query_parameters=query_parameters) return self._deserialize('[str]', self._unwrap_collection(response)) def get_category_details(self, category_name, languages=None, product=None): """GetCategoryDetails. [Preview API] :param str category_name: :param str languages: :param str product: :rtype: :class:`<CategoriesResult> <gallery.v4_0.models.CategoriesResult>` """ route_values = {} if category_name is not None: route_values['categoryName'] = self._serialize.url('category_name', category_name, 'str') query_parameters = {} if languages is not None: query_parameters['languages'] = self._serialize.query('languages', languages, 'str') if product is not None: query_parameters['product'] = self._serialize.query('product', product, 'str') response = self._send(http_method='GET', location_id='75d3c04d-84d2-4973-acd2-22627587dabc', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('CategoriesResult', response) def get_category_tree(self, product, category_id, lcid=None, source=None, product_version=None, skus=None, sub_skus=None): """GetCategoryTree. [Preview API] :param str product: :param str category_id: :param int lcid: :param str source: :param str product_version: :param str skus: :param str sub_skus: :rtype: :class:`<ProductCategory> <gallery.v4_0.models.ProductCategory>` """ route_values = {} if product is not None: route_values['product'] = self._serialize.url('product', product, 'str') if category_id is not None: route_values['categoryId'] = self._serialize.url('category_id', category_id, 'str') query_parameters = {} if lcid is not None: query_parameters['lcid'] = self._serialize.query('lcid', lcid, 'int') if source is not None: query_parameters['source'] = self._serialize.query('source', source, 'str') if product_version is not None: query_parameters['productVersion'] = self._serialize.query('product_version', product_version, 'str') if skus is not None: query_parameters['skus'] = self._serialize.query('skus', skus, 'str') if sub_skus is not None: query_parameters['subSkus'] = self._serialize.query('sub_skus', sub_skus, 'str') response = self._send(http_method='GET', location_id='1102bb42-82b0-4955-8d8a-435d6b4cedd3', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('ProductCategory', response) def get_root_categories(self, product, lcid=None, source=None, product_version=None, skus=None, sub_skus=None): """GetRootCategories. [Preview API] :param str product: :param int lcid: :param str source: :param str product_version: :param str skus: :param str sub_skus: :rtype: :class:`<ProductCategoriesResult> <gallery.v4_0.models.ProductCategoriesResult>` """ route_values = {} if product is not None: route_values['product'] = self._serialize.url('product', product, 'str') query_parameters = {} if lcid is not None: query_parameters['lcid'] = self._serialize.query('lcid', lcid, 'int') if source is not None: query_parameters['source'] = self._serialize.query('source', source, 'str') if product_version is not None: query_parameters['productVersion'] = self._serialize.query('product_version', product_version, 'str') if skus is not None: query_parameters['skus'] = self._serialize.query('skus', skus, 'str') if sub_skus is not None: query_parameters['subSkus'] = self._serialize.query('sub_skus', sub_skus, 'str') response = self._send(http_method='GET', location_id='31fba831-35b2-46f6-a641-d05de5a877d8', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('ProductCategoriesResult', response) def get_certificate(self, publisher_name, extension_name, version=None, **kwargs): """GetCertificate. [Preview API] :param str publisher_name: :param str extension_name: :param str version: :rtype: object """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if version is not None: route_values['version'] = self._serialize.url('version', version, 'str') response = self._send(http_method='GET', location_id='e905ad6a-3f1f-4d08-9f6d-7d357ff8b7d0', version='4.0-preview.1', route_values=route_values, accept_media_type='application/octet-stream') if "callback" in kwargs: callback = kwargs["callback"] else: callback = None return self._client.stream_download(response, callback=callback) def get_extension_events(self, publisher_name, extension_name, count=None, after_date=None, include=None, include_property=None): """GetExtensionEvents. [Preview API] Get install/uninstall events of an extension. If both count and afterDate parameters are specified, count takes precedence. :param str publisher_name: Name of the publisher :param str extension_name: Name of the extension :param int count: Count of events to fetch, applies to each event type. :param datetime after_date: Fetch events that occurred on or after this date :param str include: Filter options. Supported values: install, uninstall, review, acquisition, sales. Default is to fetch all types of events :param str include_property: Event properties to include. Currently only 'lastContactDetails' is supported for uninstall events :rtype: :class:`<ExtensionEvents> <gallery.v4_0.models.ExtensionEvents>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') query_parameters = {} if count is not None: query_parameters['count'] = self._serialize.query('count', count, 'int') if after_date is not None: query_parameters['afterDate'] = self._serialize.query('after_date', after_date, 'iso-8601') if include is not None: query_parameters['include'] = self._serialize.query('include', include, 'str') if include_property is not None: query_parameters['includeProperty'] = self._serialize.query('include_property', include_property, 'str') response = self._send(http_method='GET', location_id='3d13c499-2168-4d06-bef4-14aba185dcd5', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('ExtensionEvents', response) def publish_extension_events(self, extension_events): """PublishExtensionEvents. [Preview API] API endpoint to publish extension install/uninstall events. This is meant to be invoked by EMS only for sending us data related to install/uninstall of an extension. :param [ExtensionEvents] extension_events: """ content = self._serialize.body(extension_events, '[ExtensionEvents]') self._send(http_method='POST', location_id='0bf2bd3a-70e0-4d5d-8bf7-bd4a9c2ab6e7', version='4.0-preview.1', content=content) def query_extensions(self, extension_query, account_token=None): """QueryExtensions. [Preview API] :param :class:`<ExtensionQuery> <gallery.v4_0.models.ExtensionQuery>` extension_query: :param str account_token: :rtype: :class:`<ExtensionQueryResult> <gallery.v4_0.models.ExtensionQueryResult>` """ query_parameters = {} if account_token is not None: query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str') content = self._serialize.body(extension_query, 'ExtensionQuery') response = self._send(http_method='POST', location_id='eb9d5ee1-6d43-456b-b80e-8a96fbc014b6', version='4.0-preview.1', query_parameters=query_parameters, content=content) return self._deserialize('ExtensionQueryResult', response) def create_extension(self, upload_stream, **kwargs): """CreateExtension. [Preview API] :param object upload_stream: Stream to upload :rtype: :class:`<PublishedExtension> <gallery.v4_0.models.PublishedExtension>` """ if "callback" in kwargs: callback = kwargs["callback"] else: callback = None content = self._client.stream_upload(upload_stream, callback=callback) response = self._send(http_method='POST', location_id='a41192c8-9525-4b58-bc86-179fa549d80d', version='4.0-preview.2', content=content, media_type='application/octet-stream') return self._deserialize('PublishedExtension', response) def delete_extension_by_id(self, extension_id, version=None): """DeleteExtensionById. [Preview API] :param str extension_id: :param str version: """ route_values = {} if extension_id is not None: route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str') query_parameters = {} if version is not None: query_parameters['version'] = self._serialize.query('version', version, 'str') self._send(http_method='DELETE', location_id='a41192c8-9525-4b58-bc86-179fa549d80d', version='4.0-preview.2', route_values=route_values, query_parameters=query_parameters) def get_extension_by_id(self, extension_id, version=None, flags=None): """GetExtensionById. [Preview API] :param str extension_id: :param str version: :param str flags: :rtype: :class:`<PublishedExtension> <gallery.v4_0.models.PublishedExtension>` """ route_values = {} if extension_id is not None: route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str') query_parameters = {} if version is not None: query_parameters['version'] = self._serialize.query('version', version, 'str') if flags is not None: query_parameters['flags'] = self._serialize.query('flags', flags, 'str') response = self._send(http_method='GET', location_id='a41192c8-9525-4b58-bc86-179fa549d80d', version='4.0-preview.2', route_values=route_values, query_parameters=query_parameters) return self._deserialize('PublishedExtension', response) def update_extension_by_id(self, extension_id): """UpdateExtensionById. [Preview API] :param str extension_id: :rtype: :class:`<PublishedExtension> <gallery.v4_0.models.PublishedExtension>` """ route_values = {} if extension_id is not None: route_values['extensionId'] = self._serialize.url('extension_id', extension_id, 'str') response = self._send(http_method='PUT', location_id='a41192c8-9525-4b58-bc86-179fa549d80d', version='4.0-preview.2', route_values=route_values) return self._deserialize('PublishedExtension', response) def create_extension_with_publisher(self, upload_stream, publisher_name, **kwargs): """CreateExtensionWithPublisher. [Preview API] :param object upload_stream: Stream to upload :param str publisher_name: :rtype: :class:`<PublishedExtension> <gallery.v4_0.models.PublishedExtension>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if "callback" in kwargs: callback = kwargs["callback"] else: callback = None content = self._client.stream_upload(upload_stream, callback=callback) response = self._send(http_method='POST', location_id='e11ea35a-16fe-4b80-ab11-c4cab88a0966', version='4.0-preview.2', route_values=route_values, content=content, media_type='application/octet-stream') return self._deserialize('PublishedExtension', response) def delete_extension(self, publisher_name, extension_name, version=None): """DeleteExtension. [Preview API] :param str publisher_name: :param str extension_name: :param str version: """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') query_parameters = {} if version is not None: query_parameters['version'] = self._serialize.query('version', version, 'str') self._send(http_method='DELETE', location_id='e11ea35a-16fe-4b80-ab11-c4cab88a0966', version='4.0-preview.2', route_values=route_values, query_parameters=query_parameters) def get_extension(self, publisher_name, extension_name, version=None, flags=None, account_token=None): """GetExtension. [Preview API] :param str publisher_name: :param str extension_name: :param str version: :param str flags: :param str account_token: :rtype: :class:`<PublishedExtension> <gallery.v4_0.models.PublishedExtension>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') query_parameters = {} if version is not None: query_parameters['version'] = self._serialize.query('version', version, 'str') if flags is not None: query_parameters['flags'] = self._serialize.query('flags', flags, 'str') if account_token is not None: query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str') response = self._send(http_method='GET', location_id='e11ea35a-16fe-4b80-ab11-c4cab88a0966', version='4.0-preview.2', route_values=route_values, query_parameters=query_parameters) return self._deserialize('PublishedExtension', response) def update_extension(self, upload_stream, publisher_name, extension_name, **kwargs): """UpdateExtension. [Preview API] :param object upload_stream: Stream to upload :param str publisher_name: :param str extension_name: :rtype: :class:`<PublishedExtension> <gallery.v4_0.models.PublishedExtension>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if "callback" in kwargs: callback = kwargs["callback"] else: callback = None content = self._client.stream_upload(upload_stream, callback=callback) response = self._send(http_method='PUT', location_id='e11ea35a-16fe-4b80-ab11-c4cab88a0966', version='4.0-preview.2', route_values=route_values, content=content, media_type='application/octet-stream') return self._deserialize('PublishedExtension', response) def update_extension_properties(self, publisher_name, extension_name, flags): """UpdateExtensionProperties. [Preview API] :param str publisher_name: :param str extension_name: :param str flags: :rtype: :class:`<PublishedExtension> <gallery.v4_0.models.PublishedExtension>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') query_parameters = {} if flags is not None: query_parameters['flags'] = self._serialize.query('flags', flags, 'str') response = self._send(http_method='PATCH', location_id='e11ea35a-16fe-4b80-ab11-c4cab88a0966', version='4.0-preview.2', route_values=route_values, query_parameters=query_parameters) return self._deserialize('PublishedExtension', response) def extension_validator(self, azure_rest_api_request_model): """ExtensionValidator. [Preview API] :param :class:`<AzureRestApiRequestModel> <gallery.v4_0.models.AzureRestApiRequestModel>` azure_rest_api_request_model: """ content = self._serialize.body(azure_rest_api_request_model, 'AzureRestApiRequestModel') self._send(http_method='POST', location_id='05e8a5e1-8c59-4c2c-8856-0ff087d1a844', version='4.0-preview.1', content=content) def send_notifications(self, notification_data): """SendNotifications. [Preview API] Send Notification :param :class:`<NotificationsData> <gallery.v4_0.models.NotificationsData>` notification_data: Denoting the data needed to send notification """ content = self._serialize.body(notification_data, 'NotificationsData') self._send(http_method='POST', location_id='eab39817-413c-4602-a49f-07ad00844980', version='4.0-preview.1', content=content) def get_package(self, publisher_name, extension_name, version, account_token=None, accept_default=None, **kwargs): """GetPackage. [Preview API] :param str publisher_name: :param str extension_name: :param str version: :param str account_token: :param bool accept_default: :rtype: object """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if version is not None: route_values['version'] = self._serialize.url('version', version, 'str') query_parameters = {} if account_token is not None: query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str') if accept_default is not None: query_parameters['acceptDefault'] = self._serialize.query('accept_default', accept_default, 'bool') response = self._send(http_method='GET', location_id='7cb576f8-1cae-4c4b-b7b1-e4af5759e965', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters, accept_media_type='application/octet-stream') if "callback" in kwargs: callback = kwargs["callback"] else: callback = None return self._client.stream_download(response, callback=callback) def get_asset_with_token(self, publisher_name, extension_name, version, asset_type, asset_token=None, account_token=None, accept_default=None, **kwargs): """GetAssetWithToken. [Preview API] :param str publisher_name: :param str extension_name: :param str version: :param str asset_type: :param str asset_token: :param str account_token: :param bool accept_default: :rtype: object """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if version is not None: route_values['version'] = self._serialize.url('version', version, 'str') if asset_type is not None: route_values['assetType'] = self._serialize.url('asset_type', asset_type, 'str') if asset_token is not None: route_values['assetToken'] = self._serialize.url('asset_token', asset_token, 'str') query_parameters = {} if account_token is not None: query_parameters['accountToken'] = self._serialize.query('account_token', account_token, 'str') if accept_default is not None: query_parameters['acceptDefault'] = self._serialize.query('accept_default', accept_default, 'bool') response = self._send(http_method='GET', location_id='364415a1-0077-4a41-a7a0-06edd4497492', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters, accept_media_type='application/octet-stream') if "callback" in kwargs: callback = kwargs["callback"] else: callback = None return self._client.stream_download(response, callback=callback) def query_publishers(self, publisher_query): """QueryPublishers. [Preview API] :param :class:`<PublisherQuery> <gallery.v4_0.models.PublisherQuery>` publisher_query: :rtype: :class:`<PublisherQueryResult> <gallery.v4_0.models.PublisherQueryResult>` """ content = self._serialize.body(publisher_query, 'PublisherQuery') response = self._send(http_method='POST', location_id='2ad6ee0a-b53f-4034-9d1d-d009fda1212e', version='4.0-preview.1', content=content) return self._deserialize('PublisherQueryResult', response) def create_publisher(self, publisher): """CreatePublisher. [Preview API] :param :class:`<Publisher> <gallery.v4_0.models.Publisher>` publisher: :rtype: :class:`<Publisher> <gallery.v4_0.models.Publisher>` """ content = self._serialize.body(publisher, 'Publisher') response = self._send(http_method='POST', location_id='4ddec66a-e4f6-4f5d-999e-9e77710d7ff4', version='4.0-preview.1', content=content) return self._deserialize('Publisher', response) def delete_publisher(self, publisher_name): """DeletePublisher. [Preview API] :param str publisher_name: """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') self._send(http_method='DELETE', location_id='4ddec66a-e4f6-4f5d-999e-9e77710d7ff4', version='4.0-preview.1', route_values=route_values) def get_publisher(self, publisher_name, flags=None): """GetPublisher. [Preview API] :param str publisher_name: :param int flags: :rtype: :class:`<Publisher> <gallery.v4_0.models.Publisher>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') query_parameters = {} if flags is not None: query_parameters['flags'] = self._serialize.query('flags', flags, 'int') response = self._send(http_method='GET', location_id='4ddec66a-e4f6-4f5d-999e-9e77710d7ff4', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('Publisher', response) def update_publisher(self, publisher, publisher_name): """UpdatePublisher. [Preview API] :param :class:`<Publisher> <gallery.v4_0.models.Publisher>` publisher: :param str publisher_name: :rtype: :class:`<Publisher> <gallery.v4_0.models.Publisher>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') content = self._serialize.body(publisher, 'Publisher') response = self._send(http_method='PUT', location_id='4ddec66a-e4f6-4f5d-999e-9e77710d7ff4', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('Publisher', response) def get_questions(self, publisher_name, extension_name, count=None, page=None, after_date=None): """GetQuestions. [Preview API] Returns a list of questions with their responses associated with an extension. :param str publisher_name: Name of the publisher who published the extension. :param str extension_name: Name of the extension. :param int count: Number of questions to retrieve (defaults to 10). :param int page: Page number from which set of questions are to be retrieved. :param datetime after_date: If provided, results questions are returned which were posted after this date :rtype: :class:`<QuestionsResult> <gallery.v4_0.models.QuestionsResult>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') query_parameters = {} if count is not None: query_parameters['count'] = self._serialize.query('count', count, 'int') if page is not None: query_parameters['page'] = self._serialize.query('page', page, 'int') if after_date is not None: query_parameters['afterDate'] = self._serialize.query('after_date', after_date, 'iso-8601') response = self._send(http_method='GET', location_id='c010d03d-812c-4ade-ae07-c1862475eda5', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('QuestionsResult', response) def report_question(self, concern, pub_name, ext_name, question_id): """ReportQuestion. [Preview API] Flags a concern with an existing question for an extension. :param :class:`<Concern> <gallery.v4_0.models.Concern>` concern: User reported concern with a question for the extension. :param str pub_name: Name of the publisher who published the extension. :param str ext_name: Name of the extension. :param long question_id: Identifier of the question to be updated for the extension. :rtype: :class:`<Concern> <gallery.v4_0.models.Concern>` """ route_values = {} if pub_name is not None: route_values['pubName'] = self._serialize.url('pub_name', pub_name, 'str') if ext_name is not None: route_values['extName'] = self._serialize.url('ext_name', ext_name, 'str') if question_id is not None: route_values['questionId'] = self._serialize.url('question_id', question_id, 'long') content = self._serialize.body(concern, 'Concern') response = self._send(http_method='POST', location_id='784910cd-254a-494d-898b-0728549b2f10', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('Concern', response) def create_question(self, question, publisher_name, extension_name): """CreateQuestion. [Preview API] Creates a new question for an extension. :param :class:`<Question> <gallery.v4_0.models.Question>` question: Question to be created for the extension. :param str publisher_name: Name of the publisher who published the extension. :param str extension_name: Name of the extension. :rtype: :class:`<Question> <gallery.v4_0.models.Question>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') content = self._serialize.body(question, 'Question') response = self._send(http_method='POST', location_id='6d1d9741-eca8-4701-a3a5-235afc82dfa4', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('Question', response) def delete_question(self, publisher_name, extension_name, question_id): """DeleteQuestion. [Preview API] Deletes an existing question and all its associated responses for an extension. (soft delete) :param str publisher_name: Name of the publisher who published the extension. :param str extension_name: Name of the extension. :param long question_id: Identifier of the question to be deleted for the extension. """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if question_id is not None: route_values['questionId'] = self._serialize.url('question_id', question_id, 'long') self._send(http_method='DELETE', location_id='6d1d9741-eca8-4701-a3a5-235afc82dfa4', version='4.0-preview.1', route_values=route_values) def update_question(self, question, publisher_name, extension_name, question_id): """UpdateQuestion. [Preview API] Updates an existing question for an extension. :param :class:`<Question> <gallery.v4_0.models.Question>` question: Updated question to be set for the extension. :param str publisher_name: Name of the publisher who published the extension. :param str extension_name: Name of the extension. :param long question_id: Identifier of the question to be updated for the extension. :rtype: :class:`<Question> <gallery.v4_0.models.Question>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if question_id is not None: route_values['questionId'] = self._serialize.url('question_id', question_id, 'long') content = self._serialize.body(question, 'Question') response = self._send(http_method='PATCH', location_id='6d1d9741-eca8-4701-a3a5-235afc82dfa4', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('Question', response) def create_response(self, response, publisher_name, extension_name, question_id): """CreateResponse. [Preview API] Creates a new response for a given question for an extension. :param :class:`<Response> <gallery.v4_0.models.Response>` response: Response to be created for the extension. :param str publisher_name: Name of the publisher who published the extension. :param str extension_name: Name of the extension. :param long question_id: Identifier of the question for which response is to be created for the extension. :rtype: :class:`<Response> <gallery.v4_0.models.Response>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if question_id is not None: route_values['questionId'] = self._serialize.url('question_id', question_id, 'long') content = self._serialize.body(response, 'Response') response = self._send(http_method='POST', location_id='7f8ae5e0-46b0-438f-b2e8-13e8513517bd', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('Response', response) def delete_response(self, publisher_name, extension_name, question_id, response_id): """DeleteResponse. [Preview API] Deletes a response for an extension. (soft delete) :param str publisher_name: Name of the publisher who published the extension. :param str extension_name: Name of the extension. :param long question_id: Identifies the question whose response is to be deleted. :param long response_id: Identifies the response to be deleted. """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if question_id is not None: route_values['questionId'] = self._serialize.url('question_id', question_id, 'long') if response_id is not None: route_values['responseId'] = self._serialize.url('response_id', response_id, 'long') self._send(http_method='DELETE', location_id='7f8ae5e0-46b0-438f-b2e8-13e8513517bd', version='4.0-preview.1', route_values=route_values) def update_response(self, response, publisher_name, extension_name, question_id, response_id): """UpdateResponse. [Preview API] Updates an existing response for a given question for an extension. :param :class:`<Response> <gallery.v4_0.models.Response>` response: Updated response to be set for the extension. :param str publisher_name: Name of the publisher who published the extension. :param str extension_name: Name of the extension. :param long question_id: Identifier of the question for which response is to be updated for the extension. :param long response_id: Identifier of the response which has to be updated. :rtype: :class:`<Response> <gallery.v4_0.models.Response>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if question_id is not None: route_values['questionId'] = self._serialize.url('question_id', question_id, 'long') if response_id is not None: route_values['responseId'] = self._serialize.url('response_id', response_id, 'long') content = self._serialize.body(response, 'Response') response = self._send(http_method='PATCH', location_id='7f8ae5e0-46b0-438f-b2e8-13e8513517bd', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('Response', response) def get_extension_reports(self, publisher_name, extension_name, days=None, count=None, after_date=None): """GetExtensionReports. [Preview API] Returns extension reports :param str publisher_name: Name of the publisher who published the extension :param str extension_name: Name of the extension :param int days: Last n days report. If afterDate and days are specified, days will take priority :param int count: Number of events to be returned :param datetime after_date: Use if you want to fetch events newer than the specified date :rtype: object """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') query_parameters = {} if days is not None: query_parameters['days'] = self._serialize.query('days', days, 'int') if count is not None: query_parameters['count'] = self._serialize.query('count', count, 'int') if after_date is not None: query_parameters['afterDate'] = self._serialize.query('after_date', after_date, 'iso-8601') response = self._send(http_method='GET', location_id='79e0c74f-157f-437e-845f-74fbb4121d4c', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('object', response) def get_reviews(self, publisher_name, extension_name, count=None, filter_options=None, before_date=None, after_date=None): """GetReviews. [Preview API] Returns a list of reviews associated with an extension :param str publisher_name: Name of the publisher who published the extension :param str extension_name: Name of the extension :param int count: Number of reviews to retrieve (defaults to 5) :param str filter_options: FilterOptions to filter out empty reviews etcetera, defaults to none :param datetime before_date: Use if you want to fetch reviews older than the specified date, defaults to null :param datetime after_date: Use if you want to fetch reviews newer than the specified date, defaults to null :rtype: :class:`<ReviewsResult> <gallery.v4_0.models.ReviewsResult>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') query_parameters = {} if count is not None: query_parameters['count'] = self._serialize.query('count', count, 'int') if filter_options is not None: query_parameters['filterOptions'] = self._serialize.query('filter_options', filter_options, 'str') if before_date is not None: query_parameters['beforeDate'] = self._serialize.query('before_date', before_date, 'iso-8601') if after_date is not None: query_parameters['afterDate'] = self._serialize.query('after_date', after_date, 'iso-8601') response = self._send(http_method='GET', location_id='5b3f819f-f247-42ad-8c00-dd9ab9ab246d', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('ReviewsResult', response) def get_reviews_summary(self, pub_name, ext_name, before_date=None, after_date=None): """GetReviewsSummary. [Preview API] Returns a summary of the reviews :param str pub_name: Name of the publisher who published the extension :param str ext_name: Name of the extension :param datetime before_date: Use if you want to fetch summary of reviews older than the specified date, defaults to null :param datetime after_date: Use if you want to fetch summary of reviews newer than the specified date, defaults to null :rtype: :class:`<ReviewSummary> <gallery.v4_0.models.ReviewSummary>` """ route_values = {} if pub_name is not None: route_values['pubName'] = self._serialize.url('pub_name', pub_name, 'str') if ext_name is not None: route_values['extName'] = self._serialize.url('ext_name', ext_name, 'str') query_parameters = {} if before_date is not None: query_parameters['beforeDate'] = self._serialize.query('before_date', before_date, 'iso-8601') if after_date is not None: query_parameters['afterDate'] = self._serialize.query('after_date', after_date, 'iso-8601') response = self._send(http_method='GET', location_id='b7b44e21-209e-48f0-ae78-04727fc37d77', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('ReviewSummary', response) def create_review(self, review, pub_name, ext_name): """CreateReview. [Preview API] Creates a new review for an extension :param :class:`<Review> <gallery.v4_0.models.Review>` review: Review to be created for the extension :param str pub_name: Name of the publisher who published the extension :param str ext_name: Name of the extension :rtype: :class:`<Review> <gallery.v4_0.models.Review>` """ route_values = {} if pub_name is not None: route_values['pubName'] = self._serialize.url('pub_name', pub_name, 'str') if ext_name is not None: route_values['extName'] = self._serialize.url('ext_name', ext_name, 'str') content = self._serialize.body(review, 'Review') response = self._send(http_method='POST', location_id='e6e85b9d-aa70-40e6-aa28-d0fbf40b91a3', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('Review', response) def delete_review(self, pub_name, ext_name, review_id): """DeleteReview. [Preview API] Deletes a review :param str pub_name: Name of the pubilsher who published the extension :param str ext_name: Name of the extension :param long review_id: Id of the review which needs to be updated """ route_values = {} if pub_name is not None: route_values['pubName'] = self._serialize.url('pub_name', pub_name, 'str') if ext_name is not None: route_values['extName'] = self._serialize.url('ext_name', ext_name, 'str') if review_id is not None: route_values['reviewId'] = self._serialize.url('review_id', review_id, 'long') self._send(http_method='DELETE', location_id='e6e85b9d-aa70-40e6-aa28-d0fbf40b91a3', version='4.0-preview.1', route_values=route_values) def update_review(self, review_patch, pub_name, ext_name, review_id): """UpdateReview. [Preview API] Updates or Flags a review :param :class:`<ReviewPatch> <gallery.v4_0.models.ReviewPatch>` review_patch: ReviewPatch object which contains the changes to be applied to the review :param str pub_name: Name of the pubilsher who published the extension :param str ext_name: Name of the extension :param long review_id: Id of the review which needs to be updated :rtype: :class:`<ReviewPatch> <gallery.v4_0.models.ReviewPatch>` """ route_values = {} if pub_name is not None: route_values['pubName'] = self._serialize.url('pub_name', pub_name, 'str') if ext_name is not None: route_values['extName'] = self._serialize.url('ext_name', ext_name, 'str') if review_id is not None: route_values['reviewId'] = self._serialize.url('review_id', review_id, 'long') content = self._serialize.body(review_patch, 'ReviewPatch') response = self._send(http_method='PATCH', location_id='e6e85b9d-aa70-40e6-aa28-d0fbf40b91a3', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('ReviewPatch', response) def create_category(self, category): """CreateCategory. [Preview API] :param :class:`<ExtensionCategory> <gallery.v4_0.models.ExtensionCategory>` category: :rtype: :class:`<ExtensionCategory> <gallery.v4_0.models.ExtensionCategory>` """ content = self._serialize.body(category, 'ExtensionCategory') response = self._send(http_method='POST', location_id='476531a3-7024-4516-a76a-ed64d3008ad6', version='4.0-preview.1', content=content) return self._deserialize('ExtensionCategory', response) def get_gallery_user_settings(self, user_scope, key=None): """GetGalleryUserSettings. [Preview API] Get all setting entries for the given user/all-users scope :param str user_scope: User-Scope at which to get the value. Should be "me" for the current user or "host" for all users. :param str key: Optional key under which to filter all the entries :rtype: {object} """ route_values = {} if user_scope is not None: route_values['userScope'] = self._serialize.url('user_scope', user_scope, 'str') if key is not None: route_values['key'] = self._serialize.url('key', key, 'str') response = self._send(http_method='GET', location_id='9b75ece3-7960-401c-848b-148ac01ca350', version='4.0-preview.1', route_values=route_values) return self._deserialize('{object}', self._unwrap_collection(response)) def set_gallery_user_settings(self, entries, user_scope): """SetGalleryUserSettings. [Preview API] Set all setting entries for the given user/all-users scope :param {object} entries: A key-value pair of all settings that need to be set :param str user_scope: User-Scope at which to get the value. Should be "me" for the current user or "host" for all users. """ route_values = {} if user_scope is not None: route_values['userScope'] = self._serialize.url('user_scope', user_scope, 'str') content = self._serialize.body(entries, '{object}') self._send(http_method='PATCH', location_id='9b75ece3-7960-401c-848b-148ac01ca350', version='4.0-preview.1', route_values=route_values, content=content) def generate_key(self, key_type, expire_current_seconds=None): """GenerateKey. [Preview API] :param str key_type: :param int expire_current_seconds: """ route_values = {} if key_type is not None: route_values['keyType'] = self._serialize.url('key_type', key_type, 'str') query_parameters = {} if expire_current_seconds is not None: query_parameters['expireCurrentSeconds'] = self._serialize.query('expire_current_seconds', expire_current_seconds, 'int') self._send(http_method='POST', location_id='92ed5cf4-c38b-465a-9059-2f2fb7c624b5', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) def get_signing_key(self, key_type): """GetSigningKey. [Preview API] :param str key_type: :rtype: str """ route_values = {} if key_type is not None: route_values['keyType'] = self._serialize.url('key_type', key_type, 'str') response = self._send(http_method='GET', location_id='92ed5cf4-c38b-465a-9059-2f2fb7c624b5', version='4.0-preview.1', route_values=route_values) return self._deserialize('str', response) def update_extension_statistics(self, extension_statistics_update, publisher_name, extension_name): """UpdateExtensionStatistics. [Preview API] :param :class:`<ExtensionStatisticUpdate> <gallery.v4_0.models.ExtensionStatisticUpdate>` extension_statistics_update: :param str publisher_name: :param str extension_name: """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') content = self._serialize.body(extension_statistics_update, 'ExtensionStatisticUpdate') self._send(http_method='PATCH', location_id='a0ea3204-11e9-422d-a9ca-45851cc41400', version='4.0-preview.1', route_values=route_values, content=content) def get_extension_daily_stats(self, publisher_name, extension_name, days=None, aggregate=None, after_date=None): """GetExtensionDailyStats. [Preview API] :param str publisher_name: :param str extension_name: :param int days: :param str aggregate: :param datetime after_date: :rtype: :class:`<ExtensionDailyStats> <gallery.v4_0.models.ExtensionDailyStats>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') query_parameters = {} if days is not None: query_parameters['days'] = self._serialize.query('days', days, 'int') if aggregate is not None: query_parameters['aggregate'] = self._serialize.query('aggregate', aggregate, 'str') if after_date is not None: query_parameters['afterDate'] = self._serialize.query('after_date', after_date, 'iso-8601') response = self._send(http_method='GET', location_id='ae06047e-51c5-4fb4-ab65-7be488544416', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('ExtensionDailyStats', response) def get_extension_daily_stats_anonymous(self, publisher_name, extension_name, version): """GetExtensionDailyStatsAnonymous. [Preview API] This route/location id only supports HTTP POST anonymously, so that the page view daily stat can be incremented from Marketplace client. Trying to call GET on this route should result in an exception. Without this explicit implementation, calling GET on this public route invokes the above GET implementation GetExtensionDailyStats. :param str publisher_name: Name of the publisher :param str extension_name: Name of the extension :param str version: Version of the extension :rtype: :class:`<ExtensionDailyStats> <gallery.v4_0.models.ExtensionDailyStats>` """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if version is not None: route_values['version'] = self._serialize.url('version', version, 'str') response = self._send(http_method='GET', location_id='4fa7adb6-ca65-4075-a232-5f28323288ea', version='4.0-preview.1', route_values=route_values) return self._deserialize('ExtensionDailyStats', response) def increment_extension_daily_stat(self, publisher_name, extension_name, version, stat_type): """IncrementExtensionDailyStat. [Preview API] Increments a daily statistic associated with the extension :param str publisher_name: Name of the publisher :param str extension_name: Name of the extension :param str version: Version of the extension :param str stat_type: Type of stat to increment """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if version is not None: route_values['version'] = self._serialize.url('version', version, 'str') query_parameters = {} if stat_type is not None: query_parameters['statType'] = self._serialize.query('stat_type', stat_type, 'str') self._send(http_method='POST', location_id='4fa7adb6-ca65-4075-a232-5f28323288ea', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) def get_verification_log(self, publisher_name, extension_name, version, **kwargs): """GetVerificationLog. [Preview API] :param str publisher_name: :param str extension_name: :param str version: :rtype: object """ route_values = {} if publisher_name is not None: route_values['publisherName'] = self._serialize.url('publisher_name', publisher_name, 'str') if extension_name is not None: route_values['extensionName'] = self._serialize.url('extension_name', extension_name, 'str') if version is not None: route_values['version'] = self._serialize.url('version', version, 'str') response = self._send(http_method='GET', location_id='c5523abe-b843-437f-875b-5833064efe4d', version='4.0-preview.1', route_values=route_values, accept_media_type='application/octet-stream') if "callback" in kwargs: callback = kwargs["callback"] else: callback = None return self._client.stream_download(response, callback=callback)
53.776488
355
0.606418
4a062249caf6cf0bdd282a1a8bed382beb55f317
610
py
Python
iwant/core/engine/monitor/callbacks.py
nirvik/iWant
503b7289cac4056cb20cc156b746370def5e8e04
[ "MIT" ]
323
2017-06-24T09:31:52.000Z
2022-02-25T03:10:00.000Z
iwant/core/engine/monitor/callbacks.py
crypticterminal/iWant
503b7289cac4056cb20cc156b746370def5e8e04
[ "MIT" ]
7
2017-06-29T12:44:34.000Z
2021-06-04T23:37:19.000Z
iwant/core/engine/monitor/callbacks.py
crypticterminal/iWant
503b7289cac4056cb20cc156b746370def5e8e04
[ "MIT" ]
28
2017-06-30T01:10:04.000Z
2021-03-10T02:38:44.000Z
from iwant.core.protocols import FilemonitorClientFactory from iwant.core.config import SERVER_DAEMON_HOST, SERVER_DAEMON_PORT from twisted.internet import reactor from iwant.core.constants import INDEXED, FILE_SYS_EVENT def filechangeCB(updates): if len(updates['ADD']) != 0 or len(updates['DEL']) != 0: factory = FilemonitorClientFactory(FILE_SYS_EVENT, updates) reactor.connectTCP(SERVER_DAEMON_HOST, SERVER_DAEMON_PORT, factory) def fileindexedCB(files): factory = FilemonitorClientFactory(INDEXED, files) reactor.connectTCP(SERVER_DAEMON_HOST, SERVER_DAEMON_PORT, factory)
38.125
75
0.793443
4a06225b63aaf9906a84ad77df97e4e6bd7f55d3
4,567
py
Python
qa/rpc-tests/netutil.py
TrueDividendCrypto/truecrypto-oss
d6dda1a4f467b772cccece1b3915d3e391e9809f
[ "MIT" ]
null
null
null
qa/rpc-tests/netutil.py
TrueDividendCrypto/truecrypto-oss
d6dda1a4f467b772cccece1b3915d3e391e9809f
[ "MIT" ]
null
null
null
qa/rpc-tests/netutil.py
TrueDividendCrypto/truecrypto-oss
d6dda1a4f467b772cccece1b3915d3e391e9809f
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # Copyright (c) 2014-2019 The Bitcoin Core Developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Linux network utilities import sys import socket import fcntl import struct import array import os import binascii # Roughly based on http://voorloopnul.com/blog/a-python-netstat-in-less-than-100-lines-of-code/ by Ricardo Pascal STATE_ESTABLISHED = '01' STATE_SYN_SENT = '02' STATE_SYN_RECV = '03' STATE_FIN_WAIT1 = '04' STATE_FIN_WAIT2 = '05' STATE_TIME_WAIT = '06' STATE_CLOSE = '07' STATE_CLOSE_WAIT = '08' STATE_LAST_ACK = '09' STATE_LISTEN = '0A' STATE_CLOSING = '0B' def get_socket_inodes(pid): ''' Get list of socket inodes for process pid. ''' base = '/proc/%i/fd' % pid inodes = [] for item in os.listdir(base): target = os.readlink(os.path.join(base, item)) if target.startswith('socket:'): inodes.append(int(target[8:-1])) return inodes def _remove_empty(array): return [x for x in array if x !=''] def _convert_ip_port(array): host,port = array.split(':') # convert host from mangled-per-four-bytes form as used by kernel host = binascii.unhexlify(host) host_out = '' for x in range(0, len(host)/4): (val,) = struct.unpack('=I', host[x*4:(x+1)*4]) host_out += '%08x' % val return host_out,int(port,16) def netstat(typ='tcp'): ''' Function to return a list with status of tcp connections at linux systems To get pid of all network process running on system, you must run this script as superuser ''' with open('/proc/net/'+typ,'r') as f: content = f.readlines() content.pop(0) result = [] for line in content: line_array = _remove_empty(line.split(' ')) # Split lines and remove empty spaces. tcp_id = line_array[0] l_addr = _convert_ip_port(line_array[1]) r_addr = _convert_ip_port(line_array[2]) state = line_array[3] inode = int(line_array[9]) # Need the inode to match with process pid. nline = [tcp_id, l_addr, r_addr, state, inode] result.append(nline) return result def get_bind_addrs(pid): ''' Get bind addresses as (host,port) tuples for process pid. ''' inodes = get_socket_inodes(pid) bind_addrs = [] for conn in netstat('tcp') + netstat('tcp6'): if conn[3] == STATE_LISTEN and conn[4] in inodes: bind_addrs.append(conn[1]) return bind_addrs # from: http://code.activestate.com/recipes/439093/ def all_interfaces(): ''' Return all interfaces that are up ''' is_64bits = sys.maxsize > 2**32 struct_size = 40 if is_64bits else 32 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) max_possible = 8 # initial value while True: bytes = max_possible * struct_size names = array.array('B', '\0' * bytes) outbytes = struct.unpack('iL', fcntl.ioctl( s.fileno(), 0x8912, # SIOCGIFCONF struct.pack('iL', bytes, names.buffer_info()[0]) ))[0] if outbytes == bytes: max_possible *= 2 else: break namestr = names.tostring() return [(namestr[i:i+16].split('\0', 1)[0], socket.inet_ntoa(namestr[i+20:i+24])) for i in range(0, outbytes, struct_size)] def addr_to_hex(addr): ''' Convert string IPv4 or IPv6 address to binary address as returned by get_bind_addrs. Very naive implementation that certainly doesn't work for all IPv6 variants. ''' if '.' in addr: # IPv4 addr = [int(x) for x in addr.split('.')] elif ':' in addr: # IPv6 sub = [[], []] # prefix, suffix x = 0 addr = addr.split(':') for i,comp in enumerate(addr): if comp == '': if i == 0 or i == (len(addr)-1): # skip empty component at beginning or end continue x += 1 # :: skips to suffix assert(x < 2) else: # two bytes per component val = int(comp, 16) sub[x].append(val >> 8) sub[x].append(val & 0xff) nullbytes = 16 - len(sub[0]) - len(sub[1]) assert((x == 0 and nullbytes == 0) or (x == 1 and nullbytes > 0)) addr = sub[0] + ([0] * nullbytes) + sub[1] else: raise ValueError('Could not parse address %s' % addr) return binascii.hexlify(bytearray(addr))
32.621429
113
0.599956
4a0622a55249a81bccc64f18a69cc77c6fe70d69
2,196
py
Python
toyClassification/SGHMC-64/datasets.py
nicolasrosa-forks/evaluating_bdl
2973b0d018551de0c9f087e2ae4e6b2c22f2ce3c
[ "MIT" ]
null
null
null
toyClassification/SGHMC-64/datasets.py
nicolasrosa-forks/evaluating_bdl
2973b0d018551de0c9f087e2ae4e6b2c22f2ce3c
[ "MIT" ]
null
null
null
toyClassification/SGHMC-64/datasets.py
nicolasrosa-forks/evaluating_bdl
2973b0d018551de0c9f087e2ae4e6b2c22f2ce3c
[ "MIT" ]
null
null
null
# code-checked # server-checked import torch import torch.utils.data import torch.nn.functional as F from torch.autograd import Variable import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import pickle class ToyDataset(torch.utils.data.Dataset): def __init__(self): self.examples = [] with open("/workspace/evaluating_bdl/toyClassification/x.pkl", "rb") as file: # (needed for python3) x = pickle.load(file) # (shape: (2000, 2)) with open("/workspace/evaluating_bdl/toyClassification/y.pkl", "rb") as file: # (needed for python3) y = pickle.load(file) # (shape: (2000, )) x_1_train = [] x_2_train = [] y_train = [] for i in range(x.shape[0]): if x[i, 0] > 0: x_1_train.append(x[i, 0]) x_2_train.append(x[i, 1]) y_train.append(y[i]) y_train = np.array(y_train) x_train = np.zeros((len(y_train), 2), dtype=np.float32) x_train[:, 0] = np.array(x_1_train) x_train[:, 1] = np.array(x_2_train) x_train_false = x_train[y_train == 0] # (shape: (num_false, 2)) x_train_true = x_train[y_train == 1] # (shape: (num_true, 2)) print ("num_false: %d" % x_train_false.shape[0]) print ("num_true: %d" % x_train_true.shape[0]) plt.figure(1) plt.plot(x_train_false[:, 0], x_train_false[:, 1], "r.") plt.plot(x_train_true[:, 0], x_train_true[:, 1], "b.") plt.ylabel("x_2") plt.xlabel("x_1") plt.xlim([-3, 3]) plt.ylim([-3, 3]) plt.savefig("/workspace/evaluating_bdl/toyClassification/SGHMC-64/training_data.png") plt.close(1) for i in range(x_train.shape[0]): example = {} example["x"] = x_train[i] example["y"] = y_train[i] self.examples.append(example) self.num_examples = len(self.examples) def __getitem__(self, index): example = self.examples[index] x = example["x"] y = example["y"] return (x, y) def __len__(self): return self.num_examples #_ = ToyDataset()
29.28
108
0.575137
4a06232bf7a2b6ec78634f4d0539bd1be322f251
112
py
Python
python/2914_Copyright.py
anothel/BOJ
cfc693322e609d319aaa8705d4375d098c034b76
[ "MIT" ]
null
null
null
python/2914_Copyright.py
anothel/BOJ
cfc693322e609d319aaa8705d4375d098c034b76
[ "MIT" ]
null
null
null
python/2914_Copyright.py
anothel/BOJ
cfc693322e609d319aaa8705d4375d098c034b76
[ "MIT" ]
null
null
null
def main(): A, I = map(int, input().split()) print((I - 1) * A + 1) if __name__ == "__main__": main()
14
34
0.5
4a0623e34bbd6e03ab008f5f4496c6dc47d1e099
922
py
Python
app/ch16_mongodb/final/pypi_org/nosql/releases.py
tbensonwest/data-driven-web-apps-with-flask
be025c1c0190419019924f7516f49b3b8452cdf8
[ "MIT" ]
496
2019-07-03T05:13:24.000Z
2022-03-27T01:15:10.000Z
app/ch16_mongodb/final/pypi_org/nosql/releases.py
tbensonwest/data-driven-web-apps-with-flask
be025c1c0190419019924f7516f49b3b8452cdf8
[ "MIT" ]
20
2019-07-07T22:09:49.000Z
2021-12-28T03:03:09.000Z
app/ch16_mongodb/final/pypi_org/nosql/releases.py
tbensonwest/data-driven-web-apps-with-flask
be025c1c0190419019924f7516f49b3b8452cdf8
[ "MIT" ]
562
2019-07-03T14:35:21.000Z
2022-03-31T06:23:58.000Z
import datetime import mongoengine class Release(mongoengine.Document): package_id = mongoengine.StringField() major_ver = mongoengine.IntField() minor_ver = mongoengine.IntField() build_ver = mongoengine.IntField() created_date = mongoengine.DateTimeField(default=datetime.datetime.now) comment = mongoengine.StringField() url = mongoengine.StringField() size = mongoengine.IntField() meta = { 'db_alias': 'core', 'collection': 'releases', 'indexes': [ 'created_date', 'package_id', 'major_ver', 'minor_ver', 'build_ver', {'fields': ['major_ver', 'minor_ver', 'build_ver']}, {'fields': ['-major_ver', '-minor_ver', '-build_ver']}, ] } @property def version_text(self): return '{}.{}.{}'.format(self.major_ver, self.minor_ver, self.build_ver)
26.342857
80
0.597614
4a062527cea05ca0d2778e1faf4bd710c8d9380a
1,371
py
Python
.transform/keras2tf.py
klrc/food-segmentation
f661f53120bdfe3d94b72b91a33a2286c95ed824
[ "MIT" ]
null
null
null
.transform/keras2tf.py
klrc/food-segmentation
f661f53120bdfe3d94b72b91a33a2286c95ed824
[ "MIT" ]
null
null
null
.transform/keras2tf.py
klrc/food-segmentation
f661f53120bdfe3d94b72b91a33a2286c95ed824
[ "MIT" ]
null
null
null
from keras.models import load_model import tensorflow as tf import os import os.path as osp from keras import backend as K # 路径参数 input_path = 'input path' weight_file = 'weight.h5' weight_file_path = osp.join(input_path, weight_file) output_graph_name = weight_file[:-3] + '.pb' # 转换函数 def h5_to_pb(h5_model, output_dir, model_name, out_prefix="output_", log_tensorboard=True): if osp.exists(output_dir) == False: os.mkdir(output_dir) out_nodes = [] for i in range(len(h5_model.outputs)): out_nodes.append(out_prefix + str(i + 1)) tf.identity(h5_model.output[i], out_prefix + str(i + 1)) sess = K.get_session() from tensorflow.python.framework import graph_util, graph_io init_graph = sess.graph.as_graph_def() main_graph = graph_util.convert_variables_to_constants( sess, init_graph, out_nodes) graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False) if log_tensorboard: from tensorflow.python.tools import import_pb_to_tensorboard import_pb_to_tensorboard.import_to_tensorboard( osp.join(output_dir, model_name), output_dir) # 输出路径 output_dir = osp.join(os.getcwd(), "trans_model") # 加载模型 h5_model = load_model(weight_file_path) h5_to_pb(h5_model, output_dir=output_dir, model_name=output_graph_name) print('model saved')
34.275
91
0.726477
4a0625707b6b0d328dad1814d646016888e6f695
1,178
py
Python
scrapy_doubanmovie/scrapy_doubanmovie/pipelines.py
davidvivi/you-need-Python
0a9e1fcb1f1439006304ed57771e5e8ff3a28554
[ "MIT" ]
4
2018-06-12T01:05:13.000Z
2019-12-13T10:10:15.000Z
scrapy_doubanmovie/scrapy_doubanmovie/pipelines.py
davidvivi/you-need-Python
0a9e1fcb1f1439006304ed57771e5e8ff3a28554
[ "MIT" ]
8
2021-03-18T21:26:26.000Z
2022-03-11T23:33:18.000Z
scrapy_doubanmovie/scrapy_doubanmovie/pipelines.py
davidvivi/you-need-Python
0a9e1fcb1f1439006304ed57771e5e8ff3a28554
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymysql from . import settings class ScrapyDoubanmoviePipeline(object): def __init__(self): self.connect = pymysql.connect( host=settings.MYSQL_HOST, db=settings.MYSQL_DBNAME, user=settings.MYSQL_USER, password=settings.MYSQL_PASSWD, charset='utf8', use_unicode=True ) self.cursor = self.connect.cursor() def process_item(self, item, spider): try: self.cursor.execute( """ insert into doubantop250(title,introduce,star,evaluate,quote) value (%s,%s,%s,%s,%s) """, ( item['title'], item['introduce'], item['star'], item['evaluate'], item['quote'] ) ) self.connect.commit() except Exception as e: print("错误信息为:" + str(e)) return item
29.45
104
0.52292
4a0626e89bc46c8ad5430ed182a748b308ad744c
3,023
py
Python
FileI:O/file_input.py
mcorley-gba/IntroCS21-22
a823e17f2cb618be0e67468cb15f48873ae85152
[ "MIT" ]
null
null
null
FileI:O/file_input.py
mcorley-gba/IntroCS21-22
a823e17f2cb618be0e67468cb15f48873ae85152
[ "MIT" ]
null
null
null
FileI:O/file_input.py
mcorley-gba/IntroCS21-22
a823e17f2cb618be0e67468cb15f48873ae85152
[ "MIT" ]
null
null
null
#File Input.py #We will experiment with file inputs here. #Saved in pi_digits.txt is the first 30 decimal places of pi. #1. Open the file. #2. Read the entire contents #3. Do something (print) #with open('pi_digits.txt') as file_object: # contents = file_object.read() #more commands here #print(contents.rstrip()) #open keyword needs one argument: filename as a string #python will look for this file in the same directory as the script. #file_object is a local python variable where the file contents are located #with is a keyword that begins a block of code for working with the file and #it will automatically close the file when the block is complete #Data is in a sub-directory with open('data_files/pi_digits.txt') as file_object: contents = file_object.read() print(contents) #with open('subdir1/subdir2/subdir3.../pi_digits.txt') #In MacOS and Linux operating systems, filepaths are given with the forward slash / #In windows, filepaths are given with a backslash: C:...\my_file.docx # If you use the backslash in python, you get an error b/c backslash is special: # C:\path\to\my_file.txt #For python commands -- always use forward slash, even on windows. #The path 'data_files/pi_digits.txt' is called a relative filepath -- it is given in relation #to the current file position. #Python can also take 'absolute filepaths' -- an exact description from the top down of #where something is on the computer #Absolute filepaths are normally longer than relative filepaths -- store them in a string #before giving the open command. file_path = '/Users/michaelcorley/Movies/pi_digits.txt' with open(file_path) as file_object: contents = file_object.read() print(contents) #with open('pi_digits.txt') as file_object: # contents = file_object.read() #print(contents) #to read line by line, we will use for loops: with open(file_path) as file_object: for line in file_object: print(line.rstrip()) #Make a list from the lines of a file: with open(file_path) as file_object: lines = file_object.readlines() pi_string='' #empty string for storing all first 30 decimal places for line in lines: pi_string += line.strip() print(pi_string) print(len(pi_string)) #When python read text tiles all the data is read as string data. Convert using int(), eval(), or float() #Reading Large Data Files file_path = 'data_files/pi_million_digits.txt' with open(file_path) as file_object: lines = file_object.readlines() pi_string = '' for line in lines: pi_string += line.strip() print(f"{pi_string[:52]} ...") print(len(pi_string)) #Is your birthday in pi birthday = input("Enter your birthday in the form mmddyy: ") if birthday in pi_string: print("Your birthday appear in the first million decimal points of pi!") else: print("Your birthday does not appear in the first million decimal points of pi.") #Python has no limit to how much data it can process at once. The only limits will come from #Your own system's memory and storage.
30.846939
105
0.742971