seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
36347951264
import random import numpy as np from scipy.optimize import fsolve # velocity upper bound from Wu et al (https://flow-project.github.io/papers/wu17a.pdf ) # This is an approximation def v_eq_max_function(v, *args): """Return the error between the desired and actual equivalent gap.""" num_vehicles, length = args # maximum gap in the presence of one rl vehicle s_eq_max = (length - num_vehicles * 5) / (num_vehicles - 1) v0 = 30 s0 = 2 tau = 1 gamma = 4 error = s_eq_max - (s0 + v * tau) * (1 - (v / v0) ** gamma) ** -0.5 return error def get_velocity_upper_bound(num_vehicles, length): """Return the velocity upper bound for the given number of vehicles.""" v_guess = 4 return fsolve(v_eq_max_function, np.array(v_guess), args=(num_vehicles, length))[0] def get_desired_velocity(num_vehicles, length, method_name = None): """ Desired velocity is gotten as the uniform flow equillibrium velocity Only some controllers require this """ # some known values are hard coded: if length == 220: # reduce to 2.7 for FS if method_name == "fs": return 2.7 else: return 3.0 elif length == 230: return 3.45 elif length == 260: # From hit and trial, for return 4.82 # Value from LORR paper, other sources elif length == 270: return 5.2 else: scaler = 0.93 # 93% of the upper bound may be desired? print("Scaler: ", scaler) return get_velocity_upper_bound(num_vehicles, length) * scaler # Shock # Define shock models def get_shock_model(identifier, length = None, network_scaler=1, bidirectional=False, high_speed = False): # Network scaler 6 used in the bottleneck # Accel/ Decel value, duration, frequency (in the interval between shock start and shock end) # Duration: In seconds, for which each shock is applied # Frequency: In the interval, how many shocks are applied # if identifier == 1: # return (-1.4, 2, 10) if identifier == 2: # Thiese ranges are obtained form data # sample frequency frequency = network_scaler*np.random.randint(5, 20) # value of 10 means once shock every 3000/10 = 300 steps, 5 = 600 steps, 15 = 200 steps intensity_collect = [] duration_collect = [] if high_speed: intensity_abs_min = 1.5 intensity_abs_max = 4.0 else: intensity_abs_min = 1 intensity_abs_max = 3.0 print("Frequency:", frequency) for i in range(frequency): if bidirectional: # between (-abs_max to -abs_min) and (abs_min to abs_max) but not between (-abs_min to abs_min) intensity = random.uniform(-intensity_abs_max, intensity_abs_max) while intensity > -intensity_abs_min and intensity < intensity_abs_min: intensity = random.uniform(-intensity_abs_max, intensity_abs_max) else: intensity = random.uniform(-intensity_abs_max, -intensity_abs_min) print("Intensity:", intensity) durations = np.linspace(0.1, 2.5, 20) # In seconds abs_intensity = abs(intensity) intensity_bucket = np.linspace(intensity_abs_min, intensity_abs_max,len(durations)) loc = np.searchsorted(intensity_bucket, abs_intensity) left = loc right = len(durations) - loc probabilities_left = np.linspace(0.0, 10, left) # print("Probabilities left:", probabilities_left, probabilities_left.sum()) probabilities_right = np.linspace(10, 0.0, right) # print("Probabilities right:", probabilities_right, probabilities_right.sum()) probabilities = np.concatenate((probabilities_left, probabilities_right)) probabilities /= probabilities.sum() #print("Probabilities:", probabilities, probabilities.sum()) duration = round(np.random.choice(durations, 1, p=probabilities)[0], 1) print("Duration:", duration) intensity_collect.append(intensity) duration_collect.append(duration) # return intensity, durations (second), frequency return (np.asarray(intensity_collect), np.asarray(duration_collect), frequency) # Stability test elif identifier == -1: # velocity, duration, frequency # Stability tests have velocity manipulation, so the first param here is speed at the velocity dip # Duration and frequency are also used # Just apply once is enough if length ==220: vel_set = 2.0 duration = 1 elif length == 270: vel_set = 3.0 duration = 2 elif length == 260: vel_set = 3.0 duration = 2 else: vel_set = 5.0 duration = 2 print("\n\nVelocity set: ", vel_set) return (vel_set, duration, 1) #return (2, 10, 10) else: raise ValueError("Shock model identifier not recognized") ## Shock utils def get_time_steps_stability(duration, frequency, shock_start_time, shock_end_time): # Convert duration to env steps duration = duration*10 # Based on this frequency, get the time steps at which the shock is applied start_times = np.linspace(shock_start_time, shock_end_time - duration, frequency, dtype=int) end_times = np.linspace(shock_start_time + duration, shock_end_time, frequency, dtype=int) shock_time_steps = np.stack((start_times, end_times), axis=1) print("Start times: ", start_times) print("End times: ", end_times) print("Shock times: \n", shock_time_steps) # TODO: Perform overlap tests and warn if there is overlap # if start_times[1] < end_times[0]: # import sys # sys.exit() return shock_time_steps def get_time_steps(durations, frequency, shock_start_time, shock_end_time): # Convert duration to env steps durations = durations*10 print("Durations: ", durations) # Based on this frequency, get the time steps at which the shock is applied start_times = np.linspace(shock_start_time, shock_end_time - durations[-1], frequency, dtype=int) end_times = [] for i in range(frequency): end_times.append(start_times[i] + durations[i]) shock_time_steps = np.stack((start_times, end_times), axis=1) print("Start times: ", start_times) print("End times: ", end_times) print("Shock times: \n", shock_time_steps) # TODO: Perform overlap tests and warn if there is overlap # if start_times[1] < end_times[0]: # import sys # sys.exit() return shock_time_steps # use # sm = shock_model(2) # get_time_steps(durations, frequency, 8000, 10000) #print(sm[0][1])
poudel-bibek/Beyond-Simulated-Drivers
flow/density_aware_util.py
density_aware_util.py
py
7,049
python
en
code
0
github-code
6
19886880930
from guardata.client.client_events import ClientEvent import pytest from unittest.mock import ANY from pendulum import datetime from guardata.api.data import UserManifest, WorkspaceEntry from guardata.client.types import WorkspaceRole, LocalUserManifest, EntryID from guardata.client.fs import ( FSError, FSWorkspaceNotFoundError, FSBackendOfflineError, FSSharingNotAllowedError, ) from backendService.realm import RealmGrantedRole, RealmRole from tests.common import freeze_time, create_shared_workspace @pytest.mark.trio async def test_share_unknown(running_backend, alice_user_fs, bob): wid = EntryID() with pytest.raises(FSWorkspaceNotFoundError): await alice_user_fs.workspace_share(wid, bob.user_id, WorkspaceRole.MANAGER) @pytest.mark.trio async def test_share_to_oneself(running_backend, alice_user_fs, alice): with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") with pytest.raises(FSError) as exc: await alice_user_fs.workspace_share(wid, alice.user_id, WorkspaceRole.MANAGER) assert str(exc.value) == "Cannot share to oneself" @pytest.mark.trio async def test_share_bad_recipient(running_backend, alice_user_fs, alice, mallory): with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") with pytest.raises(FSError) as exc: await alice_user_fs.workspace_share(wid, mallory.user_id, WorkspaceRole.MANAGER) assert str(exc.value) == "User `mallory` doesn't exist in backend" @pytest.mark.trio async def test_share_offline(running_backend, alice_user_fs, bob): with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") with running_backend.offline(): with pytest.raises(FSBackendOfflineError): await alice_user_fs.workspace_share(wid, bob.user_id, WorkspaceRole.MANAGER) @pytest.mark.trio @pytest.mark.parametrize("presynced", (True, False)) async def test_share_ok(running_backend, alice_user_fs, bob_user_fs, alice, bob, presynced): with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") if presynced: await alice_user_fs.sync() await alice_user_fs.workspace_share(wid, bob.user_id, WorkspaceRole.MANAGER) with bob_user_fs.event_bus.listen() as spy: with freeze_time("2000-01-03"): await bob_user_fs.process_last_messages() spy.assert_event_occured( ClientEvent.SHARING_UPDATED, { "new_entry": WorkspaceEntry( name="w1", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 2), role_cached_on=datetime(2000, 1, 3), role=WorkspaceRole.MANAGER, ), "previous_entry": None, }, ) aum = alice_user_fs.get_user_manifest() bum = bob_user_fs.get_user_manifest() assert len(aum.workspaces) == 1 assert len(bum.workspaces) == 1 awe = aum.get_workspace_entry(wid) bwe = bum.get_workspace_entry(wid) assert bwe.name == "w1" assert bwe.id == awe.id assert bwe.role == WorkspaceRole.MANAGER aw = alice_user_fs.get_workspace(wid) bw = bob_user_fs.get_workspace(wid) aw_stat = await aw.path_info("/") bw_stat = await bw.path_info("/") assert aw_stat == bw_stat @pytest.mark.trio async def test_share_workspace_then_rename_it( running_backend, alice_user_fs, bob_user_fs, alice, bob ): # Share a workspace between Alice and Bob with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w") await alice_user_fs.workspace_share(wid, bob.user_id, WorkspaceRole.MANAGER) with freeze_time("2000-01-03"): await bob_user_fs.process_last_messages() # Now Bob and alice both rename the workpsace for there own taste await bob_user_fs.workspace_rename(wid, "from_alice") await alice_user_fs.workspace_rename(wid, "to_bob") await bob_user_fs.sync() await alice_user_fs.sync() # This should have not changed the workspace in any way bw = bob_user_fs.get_workspace(wid) aw = alice_user_fs.get_workspace(wid) await bw.touch("/ping_bob.txt") await aw.mkdir("/ping_alice") await bw.sync() await aw.sync() await bw.sync() aw_stat = await aw.path_info("/") bw_stat = await bw.path_info("/") assert aw_stat == bw_stat assert aw_stat["id"] == wid @pytest.mark.trio async def test_unshare_ok(running_backend, alice_user_fs, bob_user_fs, alice, bob): # Share a workspace... with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") await alice_user_fs.workspace_share(wid, bob.user_id, WorkspaceRole.OWNER) await bob_user_fs.process_last_messages() # ...and unshare it await bob_user_fs.workspace_share(wid, alice.user_id, None) with alice_user_fs.event_bus.listen() as spy: with freeze_time("2000-01-03"): await alice_user_fs.process_last_messages() spy.assert_event_occured( ClientEvent.SHARING_UPDATED, { "new_entry": WorkspaceEntry( name="w1", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 2), role_cached_on=datetime(2000, 1, 3), role=None, ), "previous_entry": WorkspaceEntry( name="w1", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 2), role_cached_on=datetime(2000, 1, 2), role=WorkspaceRole.OWNER, ), }, ) aum = alice_user_fs.get_user_manifest() aw = aum.workspaces[0] assert not aw.role # TODO: check workspace access is no longer possible @pytest.mark.trio async def test_unshare_not_shared(running_backend, alice_user_fs, bob_user_fs, alice, bob): with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") await alice_user_fs.workspace_share(wid, bob.user_id, None) with alice_user_fs.event_bus.listen() as spy: await bob_user_fs.process_last_messages() assert not spy.events # Workspace unsharing should have been ignored bum = bob_user_fs.get_user_manifest() assert not bum.workspaces @pytest.mark.trio async def test_share_to_another_after_beeing_unshared( running_backend, alice_user_fs, bob_user_fs, alice, bob ): # Share a workspace... with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") await alice_user_fs.workspace_share(wid, bob.user_id, WorkspaceRole.MANAGER) await bob_user_fs.process_last_messages() # ...and unshare it await alice_user_fs.workspace_share(wid, bob.user_id, None) await bob_user_fs.process_last_messages() # Shouldn't be able to share the workspace anymore with pytest.raises(FSSharingNotAllowedError): await bob_user_fs.workspace_share(wid, alice.user_id, None) @pytest.mark.trio async def test_reshare_workspace(running_backend, alice_user_fs, bob_user_fs, alice, bob): # Share a workspace... with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") await alice_user_fs.workspace_share(wid, bob.user_id, WorkspaceRole.MANAGER) with freeze_time("2000-01-03"): await bob_user_fs.process_last_messages() # ...and unshare it... await alice_user_fs.workspace_share(wid, bob.user_id, None) with freeze_time("2000-01-04"): await bob_user_fs.process_last_messages() # ...and re-share it ! await alice_user_fs.workspace_share(wid, bob.user_id, WorkspaceRole.MANAGER) with bob_user_fs.event_bus.listen() as spy: with freeze_time("2000-01-05"): await bob_user_fs.process_last_messages() spy.assert_event_occured( ClientEvent.SHARING_UPDATED, { "new_entry": WorkspaceEntry( name="w1", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 2), role_cached_on=datetime(2000, 1, 5), role=WorkspaceRole.MANAGER, ), "previous_entry": WorkspaceEntry( name="w1", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 2), role_cached_on=datetime(2000, 1, 4), role=None, ), }, ) # Check access aum = alice_user_fs.get_user_manifest() bum = bob_user_fs.get_user_manifest() assert len(aum.workspaces) == 1 assert len(bum.workspaces) == 1 aw = aum.workspaces[0] bw = bum.workspaces[0] assert bw.name == "w1" assert bw.id == aw.id assert bw.role == WorkspaceRole.MANAGER @pytest.mark.trio async def test_share_with_different_role(running_backend, alice_user_fs, bob_user_fs, alice, bob): with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") aum = alice_user_fs.get_user_manifest() aw = aum.workspaces[0] previous_entry = None for role in WorkspaceRole: # (re)share with rights await alice_user_fs.workspace_share(wid, bob.user_id, role) with bob_user_fs.event_bus.listen() as spy: await bob_user_fs.process_last_messages() new_entry = spy.partial_obj(WorkspaceEntry, name="w1", id=wid, role=role) if not previous_entry: spy.assert_event_occured( ClientEvent.SHARING_UPDATED, {"new_entry": new_entry, "previous_entry": None} ) else: spy.assert_event_occured( ClientEvent.SHARING_UPDATED, {"new_entry": new_entry, "previous_entry": previous_entry}, ) previous_entry = new_entry # Check access bum = bob_user_fs.get_user_manifest() assert len(bum.workspaces) == 1 bw = bum.workspaces[0] assert bw.name == "w1" assert bw.id == aw.id assert bw.role == role @pytest.mark.trio async def test_share_no_manager_right(running_backend, alice_user_fs, alice, bob): with freeze_time("2000-01-02"): wid = await alice_user_fs.workspace_create("w1") await alice_user_fs.sync() # Drop manager right (and give to Bob the ownership) await running_backend.backend.realm.update_roles( alice.organization_id, RealmGrantedRole( realm_id=wid, user_id=bob.user_id, certificate=b"<dummy>", role=RealmRole.OWNER, granted_by=alice.device_id, granted_on=datetime(2000, 1, 3), ), ) await running_backend.backend.realm.update_roles( alice.organization_id, RealmGrantedRole( realm_id=wid, user_id=alice.user_id, certificate=b"<dummy>", role=RealmRole.CONTRIBUTOR, granted_by=bob.device_id, granted_on=datetime(2000, 1, 4), ), ) with pytest.raises(FSSharingNotAllowedError) as exc: await alice_user_fs.workspace_share(wid, bob.user_id, WorkspaceRole.MANAGER) assert ( exc.value.message == "Must be Owner or Manager on the workspace is mandatory to share it: {'status': 'not_allowed'}" ) @pytest.mark.trio async def test_share_with_sharing_name_already_taken( running_backend, alice_user_fs, bob_user_fs, alice, bob ): # Bob and Alice both has a workspace with similar name with freeze_time("2000-01-01"): awid = await alice_user_fs.workspace_create("w") bwid = await bob_user_fs.workspace_create("w") bw2id = await bob_user_fs.workspace_create("w") # Sharing them shouldn't be a trouble await bob_user_fs.sync() await alice_user_fs.workspace_share(awid, bob.user_id, WorkspaceRole.MANAGER) # Bob should get a notification with bob_user_fs.event_bus.listen() as spy: with freeze_time("2000-01-02"): await bob_user_fs.process_last_messages() spy.assert_event_occured( ClientEvent.SHARING_UPDATED, { "new_entry": WorkspaceEntry( name="w", id=awid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 1), role_cached_on=datetime(2000, 1, 2), role=WorkspaceRole.MANAGER, ), "previous_entry": None, }, ) assert len(bob_user_fs.get_user_manifest().workspaces) == 3 b_aw_stat = await bob_user_fs.get_workspace(awid).path_info("/") a_aw_stat = await alice_user_fs.get_workspace(awid).path_info("/") b_aw_stat.pop("need_sync") a_aw_stat.pop("need_sync") assert b_aw_stat == a_aw_stat b_bw_stat = await bob_user_fs.get_workspace(bwid).path_info("/") assert b_bw_stat["id"] == bwid b_bw2_stat = await bob_user_fs.get_workspace(bw2id).path_info("/") assert b_bw2_stat["id"] == bw2id @pytest.mark.trio @pytest.mark.parametrize("first_to_sync", ("alice", "alice2")) async def test_share_workspace_then_conflict_on_rights( running_backend, alice_user_fs, alice2_user_fs, bob_user_fs, alice, alice2, bob, first_to_sync ): # Bob shares a workspace with Alice... with freeze_time("2000-01-01"): wid = await bob_user_fs.workspace_create("w") with freeze_time("2000-01-02"): await bob_user_fs.workspace_share(wid, alice.user_id, WorkspaceRole.MANAGER) # ...but only Alice's first device get the information with freeze_time("2000-01-03"): await alice_user_fs.process_last_messages() # Now Bob change the sharing rights... with freeze_time("2000-01-04"): await bob_user_fs.workspace_share(wid, alice.user_id, WorkspaceRole.CONTRIBUTOR) # ...this time it's Alice's second device which get the info with freeze_time("2000-01-05"): # Note we will process the 2 sharing messages bob sent us, this # will attribute role_cached_on to the first message timestamp even # if we cache the second message role... await alice2_user_fs.process_last_messages() if first_to_sync == "alice": first = alice_user_fs second = alice2_user_fs synced_timestamp = datetime(2000, 1, 7) synced_version = 3 else: first = alice2_user_fs second = alice_user_fs synced_timestamp = datetime(2000, 1, 6) synced_version = 2 # Finally Alice devices try to reconciliate with freeze_time("2000-01-06"): await first.sync() with freeze_time("2000-01-07"): await second.sync() # Resync first device to get changes from the 2nd with freeze_time("2000-01-08"): await first.sync() am = alice_user_fs.get_user_manifest() a2m = alice2_user_fs.get_user_manifest() expected_remote = UserManifest( author=alice2.device_id, timestamp=synced_timestamp, id=alice2.user_manifest_id, version=synced_version, created=datetime(2000, 1, 1), updated=datetime(2000, 1, 5), last_processed_message=2, workspaces=( WorkspaceEntry( name="w", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 1), role_cached_on=datetime(2000, 1, 5), role=WorkspaceRole.CONTRIBUTOR, ), ), ) expected = LocalUserManifest( base=expected_remote, need_sync=False, updated=expected_remote.updated, last_processed_message=expected_remote.last_processed_message, workspaces=expected_remote.workspaces, ) assert am == expected assert a2m == expected a_w = alice_user_fs.get_workspace(wid) a2_w = alice2_user_fs.get_workspace(wid) a_w_stat = await a_w.path_info("/") a2_w_stat = await a2_w.path_info("/") a_w_entry = a_w.get_workspace_entry() a2_w_entry = a2_w.get_workspace_entry() assert a_w_stat == { "type": "folder", "is_placeholder": False, "id": wid, "created": ANY, "updated": ANY, "base_version": 1, "need_sync": False, "children": [], "confined": False, } assert a_w_stat == a2_w_stat assert a_w_entry == WorkspaceEntry( name="w", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 1), role_cached_on=datetime(2000, 1, 5), role=WorkspaceRole.CONTRIBUTOR, ) assert a2_w_entry == a_w_entry @pytest.mark.trio async def test_sharing_events_triggered_on_sync( running_backend, alice_user_fs, alice2_user_fs, bob_user_fs, alice, bob ): # Share a first workspace with freeze_time("2000-01-02"): wid = await create_shared_workspace("w", bob_user_fs, alice_user_fs) with alice2_user_fs.event_bus.listen() as spy: await alice2_user_fs.sync() expected_entry_v1 = WorkspaceEntry( name="w", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 2), role_cached_on=datetime(2000, 1, 2), role=WorkspaceRole.MANAGER, ) spy.assert_event_occured( ClientEvent.SHARING_UPDATED, {"new_entry": expected_entry_v1, "previous_entry": None} ) # Change role await bob_user_fs.workspace_share(wid, alice.user_id, WorkspaceRole.OWNER) with freeze_time("2000-01-03"): await alice_user_fs.process_last_messages() await alice_user_fs.sync() with alice2_user_fs.event_bus.listen() as spy: await alice2_user_fs.sync() expected_entry_v2 = WorkspaceEntry( name="w", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 2), role_cached_on=datetime(2000, 1, 3), role=WorkspaceRole.OWNER, ) spy.assert_event_occured( ClientEvent.SHARING_UPDATED, {"new_entry": expected_entry_v2, "previous_entry": expected_entry_v1}, ) # Revoke await bob_user_fs.workspace_share(wid, alice.user_id, None) with freeze_time("2000-01-04"): await alice_user_fs.process_last_messages() await alice_user_fs.sync() with alice2_user_fs.event_bus.listen() as spy: await alice2_user_fs.sync() expected_entry_v3 = WorkspaceEntry( name="w", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 2), role_cached_on=datetime(2000, 1, 4), role=None, ) spy.assert_event_occured( ClientEvent.SHARING_UPDATED, {"new_entry": expected_entry_v3, "previous_entry": expected_entry_v2}, ) @pytest.mark.trio async def test_no_sharing_event_on_sync_on_unknown_workspace( running_backend, alice_user_fs, alice2_user_fs, bob_user_fs, alice, bob ): # Share a workspace... wid = await create_shared_workspace("w", bob_user_fs, alice_user_fs) # ...and unshare it before alice2 even know about it await bob_user_fs.workspace_share(wid, alice.user_id, None) await alice_user_fs.process_last_messages() await alice_user_fs.sync() # No sharing event should be triggered ! with alice2_user_fs.event_bus.listen() as spy: await alice2_user_fs.sync() spy.assert_events_exactly_occured([ClientEvent.FS_ENTRY_REMOTE_CHANGED]) @pytest.mark.trio async def test_sharing_event_on_sync_if_same_role( running_backend, alice_user_fs, alice2_user_fs, bob_user_fs, alice, bob ): # Share a workspace, alice2 knows about it with freeze_time("2000-01-02"): wid = await create_shared_workspace("w", bob_user_fs, alice_user_fs, alice2_user_fs) expected_entry_v1 = WorkspaceEntry( name="w", id=wid, key=ANY, encryption_revision=1, encrypted_on=datetime(2000, 1, 2), role_cached_on=datetime(2000, 1, 2), role=WorkspaceRole.MANAGER, ) # Then change alice's role... await bob_user_fs.workspace_share(wid, alice.user_id, WorkspaceRole.OWNER) with freeze_time("2000-01-03"): await alice_user_fs.process_last_messages() await alice_user_fs.sync() # ...and give back alice the same role await bob_user_fs.workspace_share(wid, alice.user_id, WorkspaceRole.MANAGER) with freeze_time("2000-01-04"): await alice_user_fs.process_last_messages() expected_entry_v3 = expected_entry_v1.evolve(role_cached_on=datetime(2000, 1, 4)) await alice_user_fs.sync() # A single sharing event should be triggered with alice2_user_fs.event_bus.listen() as spy: await alice2_user_fs.sync() spy.assert_event_occured( ClientEvent.SHARING_UPDATED, {"new_entry": expected_entry_v3, "previous_entry": expected_entry_v1}, )
bitlogik/guardata
tests/client/fs/userfs/test_sharing.py
test_sharing.py
py
21,167
python
en
code
9
github-code
6
9264192052
import mne import numpy as np import pandas as pd from mne.beamformer import make_lcmv, apply_lcmv, apply_lcmv_cov from scipy.stats import pearsonr import config from config import fname, lcmv_settings from time_series import simulate_raw, create_epochs # Don't be verbose mne.set_log_level(False) fn_stc_signal = fname.stc_signal(vertex=config.vertex) fn_simulated_raw = fname.simulated_raw(vertex=config.vertex) fn_simulated_epochs = fname.simulated_epochs(vertex=config.vertex) # fn_report_h5 = fname.report(vertex=config.vertex) fn_report_h5 = None # Don't produce a report ############################################################################### # Simulate raw data and create epochs ############################################################################### print('simulate data') info = mne.io.read_info(fname.sample_raw) info = mne.pick_info(info, mne.pick_types(info, meg=True, eeg=False)) fwd_disc_true = mne.read_forward_solution(fname.fwd_discrete_true) fwd_disc_true = mne.pick_types_forward(fwd_disc_true, meg=True, eeg=False) er_raw = mne.io.read_raw_fif(fname.ernoise, preload=True) raw, stc_signal = simulate_raw(info=info, fwd_disc_true=fwd_disc_true, signal_vertex=config.vertex, signal_freq=config.signal_freq, n_trials=config.n_trials, noise_multiplier=config.noise, random_state=config.random, n_noise_dipoles=config.n_noise_dipoles_vol, er_raw=er_raw) true_ori = fwd_disc_true['src'][0]['nn'][config.vertex] # del info, fwd_disc_true, er_raw epochs = create_epochs(raw) ############################################################################### # Sensor-level analysis ############################################################################### epochs_grad = epochs.copy().pick_types(meg='grad') epochs_mag = epochs.copy().pick_types(meg='mag') epochs_joint = epochs.copy().pick_types(meg=True) # Make cov matrices cov = mne.compute_covariance(epochs, tmin=-1, tmax=1, method='empirical') signal_cov = mne.compute_covariance(epochs, tmin=0, tmax=1, method='empirical') noise_cov = mne.compute_covariance(epochs, tmin=-1, tmax=0, method='empirical') # Compute evokeds evoked_grad = epochs_grad.average() evoked_mag = epochs_mag.average() evoked_joint = epochs_joint.average() ############################################################################### # Compute LCMV beamformer results ############################################################################### # Read in forward solution fwd_disc_man = mne.read_forward_solution(fname.fwd_discrete_man) dists = [] focs = [] corrs = [] ori_errors = [] for setting in lcmv_settings: reg, sensor_type, pick_ori, inversion, weight_norm, normalize_fwd, use_noise_cov, reduce_rank, project_pca = setting try: if sensor_type == 'grad': evoked = evoked_grad elif sensor_type == 'mag': evoked = evoked_mag elif sensor_type == 'joint': evoked = evoked_joint else: raise ValueError('Invalid sensor type: %s', sensor_type) if project_pca and pick_ori != 'vector': raise NotImplementedError('project_pca=True only makes sense when pick_ori="vector"') filters = make_lcmv(evoked.info, fwd_disc_man, cov if use_noise_cov else signal_cov, reg=reg, pick_ori=pick_ori, weight_norm=weight_norm, inversion=inversion, depth=1. if normalize_fwd else None, noise_cov=noise_cov if use_noise_cov else None, reduce_rank=reduce_rank) stc_est = apply_lcmv(evoked, filters).crop(0.001, 1) if pick_ori == 'vector': # Combine vector time source if project_pca: stc_proj, _ = stc_est.project('pca', fwd_disc_man['src']) else: stc_proj = stc_est.magnitude() stc_est_power = (stc_proj ** 2).sum() peak_vertex, peak_time = stc_est_power.get_peak(vert_as_index=True, time_as_index=True) estimated_time_course = np.abs(stc_proj.data[peak_vertex]) else: stc_est_power = (stc_est ** 2).sum() peak_vertex, peak_time = stc_est_power.get_peak(vert_as_index=True, time_as_index=True) estimated_time_course = np.abs(stc_est.data[peak_vertex]) # Compute distance between true and estimated source locations pos_est = fwd_disc_man['source_rr'][peak_vertex] pos_true = fwd_disc_man['source_rr'][config.vertex] dist = np.linalg.norm(pos_est - pos_true) # Ratio between estimated peak activity and all estimated activity. focality_score = stc_est_power.data[peak_vertex, 0] / stc_est_power.data.sum() # Correlation between true and reconstructed timecourse true_time_course = stc_signal.copy().crop(0, 1).data[0] corr = pearsonr(np.abs(true_time_course), estimated_time_course)[0] # Angle between estimated and true source orientation if pick_ori == 'max-power': estimated_ori = filters['max_power_ori'][config.vertex] ori_error = np.rad2deg(np.arccos(estimated_ori @ true_ori)) if ori_error > 90: ori_error = 180 - ori_error elif pick_ori == 'vector': estimated_ori = stc_est.data[peak_vertex, :, peak_time] estimated_ori /= np.linalg.norm(estimated_ori) ori_error = np.rad2deg(np.arccos(estimated_ori @ true_ori)) if ori_error > 90: ori_error = 180 - ori_error else: ori_error = np.nan except Exception as e: print(e) dist = np.nan focality_score = np.nan corr = np.nan ori_error = np.nan print(setting, dist, focality_score, corr, ori_error) dists.append(dist) focs.append(focality_score) corrs.append(corr) ori_errors.append(ori_error) ############################################################################### # Save everything to a pandas dataframe ############################################################################### df = pd.DataFrame(lcmv_settings, columns=['reg', 'sensor_type', 'pick_ori', 'inversion', 'weight_norm', 'normalize_fwd', 'use_noise_cov', 'reduce_rank', 'project_pca']) df['dist'] = dists df['focality'] = focs df['corr'] = corrs df['ori_error'] = ori_errors df.to_csv(fname.lcmv_results(vertex=config.vertex, noise=config.noise)) print('OK!')
wmvanvliet/beamformer_simulation
lcmv.py
lcmv.py
py
6,703
python
en
code
4
github-code
6
7911525547
import nltk from collections import Counter nltk.download('vader_lexicon') from nltk.sentiment import SentimentIntensityAnalyzer #Зчитуємо файл який дали в завданні filename = "data.csv" with open(filename, 'r') as f: reviews = f.readlines() # ініціалізуємо SentimentIntensityAnalyzer (бібліотека для визначення настроїв) sia = SentimentIntensityAnalyzer() # рахуємо загальний настрій відгуків compound_scores = [sia.polarity_scores(review)['compound'] for review in reviews] overall_sentiment = sum(compound_scores) / len(compound_scores) # класифікуємо відгуки на позитивні, негативні та нейтральні (рахує всі відгуки пропускаючи ті де немає числового значення в колонці "Stars" positive_reviews = [review for review in reviews if sia.polarity_scores(review)['compound'] > 0] negative_reviews = [review for review in reviews if sia.polarity_scores(review)['compound'] < 0] neutral_reviews = [review for review in reviews if sia.polarity_scores(review)['compound'] == 0] #positive_reviews = [review for review in reviews if review.strip() and int(review.split('Stars \n')[0]) >= 4] #negative_reviews = [review for review in reviews if review.strip() and int(review.split('Stars \n')[0]) <= 2] #neutral_reviews = [review for review in reviews if review.strip() and int(review.split('Stars \n')[0]) == 3] # рахуємо кількість повторюваних слів word_count = Counter(word for review in reviews for word in review.split()) most_common_words = word_count.most_common(5) num_positive = len(positive_reviews) num_negative = len(negative_reviews) num_neutral = len(neutral_reviews) with open('report.txt', 'w') as file: file.write('\n Аналіз відгуків:\n') file.write(f"Загальний настрій відгуків: ({overall_sentiment}):\n") file.write(f"Позитивні: ({len(positive_reviews)}):\n") file.write(f"Негативні: ({len(negative_reviews)}):\n") file.write(f"Нейтральні: ({len(neutral_reviews)}):\n") with open('repeating words.txt', 'w') as file: file.write("\n П'ять найбільш вживаних слів: \n") for word, count in most_common_words: file.write(f"{word}: {count}\n") file.write("Кількість повторюваних слів: \n") for word, count in word_count.items(): file.write(f"{word}: {count}\n") # Для перевірки print("Аналіз настроїв:") print("Загальний настрій відгуків: {:.2f}".format(overall_sentiment)) print("") print("Аналіз негативних, позитивних і природних відгуків:") print("Кількість позитивних відгуків: {}".format(num_positive)) print("Кількість негативних відгуків: {}".format(num_negative)) print("Кількість нейтральних відгуків: {}".format(num_neutral)) print("")
Stepanxan/home_task-2
app.py
app.py
py
3,167
python
uk
code
0
github-code
6
44426849776
from test_framework import mininode from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import time from test_framework.blocktools import create_block, create_coinbase class BsvProtoconfViolationTest(BitcoinTestFramework): def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("BITCOIND", "bitcoind"), help="bitcoind binary to test") def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def setup_network(self): self.setup_nodes() def run_test(self): test_node = mininode.NodeConnCB() connections = [] connections.append( mininode.NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node)) test_node.add_connection(connections[0]) mininode.NetworkThread().start() # Start up network handling in another thread # 1. Test that protoconf is sent after verack test_node.wait_for_verack() test_node.wait_for_protoconf() logger.info("Received time of verack: {} ".format(test_node.msg_timestamp["verack"])) logger.info("Received time of protoconf: {} ".format(test_node.msg_timestamp["protoconf"])) logger.info("Received msg_index of verack: {} ".format(test_node.msg_index["verack"])) logger.info("Received msg_index of protoconf: {} ".format(test_node.msg_index["protoconf"])) assert_greater_than(test_node.msg_index["protoconf"], test_node.msg_index["verack"]) # 2. Test that protoconf can only be sent once (if is sent twice --> disconnection) assert_equal(len(self.nodes[0].listbanned()), 0)# Before, there are zero banned node # First protoconf was already sent from mininode. # Another protoconf message will cause disconnection (but not banning). test_node.send_message(mininode.msg_protoconf()) test_node.wait_for_disconnect() assert(self.nodes[0].closed) # disconnected assert_equal(len(self.nodes[0].listbanned()), 0) # After, there are also zero banned node if __name__ == '__main__': BsvProtoconfViolationTest().main()
bitcoin-sv/bitcoin-sv
test/functional/bsv-protoconf-violation.py
bsv-protoconf-violation.py
py
2,254
python
en
code
597
github-code
6
42891510827
#PYTHON CAMERA MODEL import cv2 import numpy as np i=0 def capturing(event,x,y,flags,param): global i if event==cv2.EVENT_LBUTTONUP: name="photo_"+str(i)+".png" wname="CAPTURED IMAGE" cv2.imwrite(name,frame) h=cv2.imread(name) cv2.namedWindow(wname) cv2.imshow(wname,h) cv2.moveWindow(wname,700,50) i+=1 cv2.waitKey(1000) cv2.destroyWindow(wname) cap=cv2.VideoCapture(0) while True: ret,frame = cap.read() win="CAPTURE" cv2.imshow("CAMERA",frame) cv2.moveWindow("CAMERA",50,50) cv2.namedWindow(win) img=np.zeros((150,150,3)) cv2.putText(img,"CLICK",(35,65),cv2.FONT_HERSHEY_SIMPLEX,0.85,(255,255,255),2,cv2.LINE_AA) cv2.putText(img,"HERE",(35,90),cv2.FONT_HERSHEY_SIMPLEX,0.85,(255,255,255),2,cv2.LINE_AA) cv2.imshow(win,img) cv2.moveWindow(win,250,560) cv2.setMouseCallback(win,capturing) if cv2.waitKey(1)==13: break cap.release() cv2.destroyAllWindows()
NamrithaGirish/LiveCam
cam.py
cam.py
py
1,003
python
en
code
0
github-code
6
31366310671
from api.models import EventTypes # temp models class GithubBodyModel(object): def __init__(self): self.type = '' self.preferred_labels = {} self.alternative_labels = [] self.broader_labels = [] self.narrower_labels = [] self.related_labels = [] self.exact_matches = [] self.needed_for = None self.description = None self.reason = None self.scope_note = None self.groups = [] self.organization = None self.yse_term = None class GithubMeetingModel(object): def __init__(self, name, created_date, meeting_date): self.name = name self.created_date = created_date self.meeting_date = meeting_date class GithubIssueModel(object): def __init__(self, name, status, meeting, created, modified, closed, body): self.name = name self.status = status self.meeting = meeting self.created = created self.modified = modified self.closed = closed self.body = body self.tags = [] self.events = [] self.comments = [] class GithubCommentModel(object): def __init__(self, created, modified, text): self.created = created self.modified = modified self.user_id = None self.event_type = EventTypes.COMMENT self.suggestion_id = None self.text = text
NatLibFi/Finto-suggestions
api/scripts/github_models.py
github_models.py
py
1,467
python
en
code
7
github-code
6
32467362643
""" ID: jasonhu5 LANG: PYTHON3 TASK: transform """ def reflect(ar): n = len(ar) res = ar.copy() for row in range(n): res[row] = res[row][::-1] return res def solve(ar1, ar2): def rot_cw_90(A, B): for row in range(n): for col in range(n): if A[row][col] != B[col][n-1-row]: return False return True def rot_cw_180(A, B): for row in range(n): for col in range(n): if A[row][col] != B[n-1-row][n-1-col]: return False return True def rot_cw_270(A, B): for row in range(n): for col in range(n): if A[row][col] != B[n-1-col][row]: return False return True def flipped(A, B): return reflect(A) == B def combination(A, B): flipped = reflect(A) return rot_cw_90(flipped, B) or rot_cw_180(flipped, B) or rot_cw_270(flipped, B) n = len(ar1) if rot_cw_90(ar1, ar2): return 1 if rot_cw_180(ar1, ar2): return 2 if rot_cw_270(ar1, ar2): return 3 if flipped(ar1, ar2): return 4 if combination(ar1, ar2): return 5 if ar1 == ar2: return 6 return 7 # ---- Unit Tests ---- def test_flip(): # Flip assert reflect(['@-@','---','@@-']) == ['@-@','---','-@@'] assert reflect(['*-@-','@---','-@@-','**0-']) == ['-@-*','---@','-@@-', '-0**'] def test_90(): ar1 = ['@-@','---','@@-'] ar2 = ['@-@','@--','--@'] assert solve(ar1, ar2) == 1 def test_180(): ar1 = ['@-@','---','@@-'] ar2 = ['-@@','---','@-@'] assert solve(ar1, ar2) == 2 def test_270(): ar1 = ['@-@','---','@@-'] ar2 = ['@--','--@','@-@'] assert solve(ar1, ar2) == 3 def test_flipped(): ar1 = ['@-@','---','@@-'] ar2 = ['@-@','---','-@@'] assert solve(ar1, ar2) == 4 def test_combination(): ar1 = ['@-@','---','@@-'] ar2 = ['--@','@--','@-@'] assert solve(ar1, ar2) == 5 def test_no_change(): ar1 = ['@-@','---','@@-'] ar2 = ['@-@','---','@@-'] assert solve(ar1, ar2) == 6 def test_invalid(): ar1 = ['@-@','---','@@-'] ar2 = ['-@-','-@-','-@-'] assert solve(ar1, ar2) == 7 if __name__ == '__main__': # test_flip() # test_90() # test_180() # test_270() # test_flipped() # test_combination() # test_no_change() # test_invalid() fin = open('transform.in','r') fout = open('transform.out','w') N = int(fin.readline()) ar1, ar2 = [], [] for _ in range(N): s = fin.readline().strip() ar1.append(s) for _ in range(N): s = fin.readline().strip() ar2.append(s) ans = solve(ar1, ar2) fout.write('{}\n'.format(ans))
jasonhuh/UASCO-Solutions
transform/transform.py
transform.py
py
2,822
python
en
code
0
github-code
6
35968448866
from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support.ui import Select from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import ui from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from collections import defaultdict import time import datetime import csv import unicodedata import re import hashlib import os from selenium.common.exceptions import ElementNotVisibleException options = webdriver.ChromeOptions() options.add_argument("--start-maximized") driver = webdriver.Chrome(chrome_options=options) actions = ActionChains(driver) today =datetime.date.today() def check_exists_by_xpath(xpath): try: while (driver.find_element_by_xpath("%s"%(xpath,))) : driver.find_element_by_xpath("%s"%(xpath,)).click() time.sleep(5) except ElementNotVisibleException: print ("element not found") wait = ui.WebDriverWait(driver, 10) driver.get('http://www.cwtv.com/shows/') print(driver.current_url) time.sleep(8) (driver.page_source).encode('ascii','ignore') shows_count =driver.find_elements_by_xpath(".//*[@id='cw-main-footer-1']/div[1]/ul/li/a") print ("Shows count :[%s]"%(len(shows_count)),) launch_id =[] service_videos = {} href =[] release_year=0 multiples =1 for s in range (len(shows_count)): href.append(shows_count[s].get_attribute('href')) print (href) for h in range (len(href)): try: print (h) driver.get (href[h]) episodes=driver.find_elements_by_xpath(".//*[@id='list_1']/div//li//a") multiples= len(episodes)/5 print (multiples) for m in range (multiples) : for e in range (len(episodes)): print (len(episodes), e+1, m+1) if e+1==(5*(m+1)) : driver.find_element_by_xpath(".//*[contains(@id,'touchcarousel_1')]/button[2]").click() time.sleep (3) epi_href =episodes[e].get_attribute('href') video_id =epi_href.split("=")[-1].encode('ascii', 'ignore') epi_details =driver.find_element_by_xpath("(.//*[@id='list_1']/div//li//a//div[contains(@class,'videodetails')]/p[1])[%s]"%(e+1)).text.encode('ascii', 'ignore') epi_title =epi_details.split("Ep.")[0].split("(")[0].strip() epi_sea_num =epi_details.split("Ep.")[1].split(")")[0] print (epi_details, epi_title, epi_sea_num) if (len (epi_sea_num) == 3) : epi_num=epi_details.split("Ep.")[1].split(")")[0][-2:] season_num =epi_details.split("Ep.")[1].split(")")[0][0] elif (len (epi_sea_num) == 4) : epi_num=epi_details.split("Ep.")[1].split(")")[0][-2:] season_num =epi_details.split("Ep.")[1].split(")")[0][0:2] series_title =driver.find_element_by_xpath(".//*[@id='show-logo']/a").get_attribute('title').encode('ascii', 'ignore') launch_id.append(video_id) service_videos ["cwtv"] =launch_id res=[today, "CWTV Shows", series_title, season_num, epi_num, epi_title, service_videos] print (res) with open(os.getcwd()+'/'+"cwtv_shows_output"+ '.csv', 'ab+') as mycsvfile: thedatawriter =csv.writer(mycsvfile) thedatawriter.writerow(res) launch_id =[] service_videos = {} except Exception as e: print(e) continue
surbhikhandelwal/Python-Projects
CWTV/cwtv.py
cwtv.py
py
3,267
python
en
code
0
github-code
6
40483436324
import tkinter import os from PIL import Image, ImageTk class OngletsPersonnage(): def __init__(self, main_onglets): self.onglets_personnage = tkinter.ttk.Frame(main_onglets) self.onglets_personnage.pack() main_onglets.add(self.onglets_personnage, text='character') self.create_canvas_character() def set_character(self, character): self.character = character def create_canvas_character(self): self.canvas_gfx_character = tkinter.Canvas(self.onglets_personnage) self.create_charater("0","None","nul","nul") self.canvas_gfx_character.place(relx=0.03, rely=0.1, relwidth=1, relheight=1) self.canvas_vita = tkinter.Canvas(self.onglets_personnage) self.print_image("stats\\vitaliter.png",self.canvas_vita) self.canvas_vita.place(relx=0.75, rely=0.05, relwidth=0.1, relheight=0.12) self.canvas_sagesse = tkinter.Canvas(self.onglets_personnage) self.print_image("stats\\sagesse.png",self.canvas_sagesse) self.canvas_sagesse.place(relx=0.75, rely=0.20, relwidth=0.1, relheight=0.12) self.canvas_force = tkinter.Canvas(self.onglets_personnage) self.print_image("stats\\force.png",self.canvas_force) self.canvas_force.place(relx=0.75, rely=0.35, relwidth=0.1, relheight=0.12) self.canvas_intel = tkinter.Canvas(self.onglets_personnage) self.print_image("stats\\intelligence.png",self.canvas_intel) self.canvas_intel.place(relx=0.75, rely=0.50, relwidth=0.1, relheight=0.12) self.canvas_chance = tkinter.Canvas(self.onglets_personnage) self.print_image("stats\\chance.png",self.canvas_chance) self.canvas_chance.place(relx=0.75, rely=0.65, relwidth=0.1, relheight=0.12) self.canvas_agi = tkinter.Canvas(self.onglets_personnage) self.print_image("stats\\agilite.png",self.canvas_agi) self.canvas_agi.place(relx=0.75, rely=0.80, relwidth=0.1, relheight=0.12) def create_label_caracteristique(self,character): self.label_vita = tkinter.Label(self.onglets_personnage, text = character.vie_max) self.label_vita.place(relx=0.80, rely=0.05, relwidth=0.1, relheight=0.12) self.label_sagesse = tkinter.Label(self.onglets_personnage, text = character.sagesse) self.label_sagesse.place(relx=0.80, rely=0.20, relwidth=0.1, relheight=0.12) self.label_force = tkinter.Label(self.onglets_personnage, text = character.force) self.label_force.place(relx=0.80, rely=0.35, relwidth=0.1, relheight=0.12) self.label_intel = tkinter.Label(self.onglets_personnage, text = character.intel) self.label_intel.place(relx=0.80, rely=0.50, relwidth=0.1, relheight=0.12) self.label_chance = tkinter.Label(self.onglets_personnage, text = character.chance) self.label_chance.place(relx=0.80, rely=0.65, relwidth=0.1, relheight=0.12) self.label_agi = tkinter.Label(self.onglets_personnage, text = character.agi) self.label_agi.place(relx=0.80, rely=0.80, relwidth=0.1, relheight=0.12) def print_image(self,path,canvas_): dir_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))),"resource\\" +path ) image = Image.open(dir_path) photo = ImageTk.PhotoImage(image) canvas_.create_image(photo.width(),photo.height(),image=photo) canvas_.image = photo def create_charater(self,gfx,speudo ,id_,lvl = ""): dir_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))),f"resource\\gfx\\{gfx}.png") image = Image.open(dir_path) photo = ImageTk.PhotoImage(image) self.canvas_gfx_character.create_image(photo.width()/4.5,photo.height()/2,image=photo) self.canvas_gfx_character.image = photo self.canvas_gfx_character.place(relx=0.05, rely=0.9, relwidth=0.5, relheight=0.5) self.canvas_gfx_character.place(relx=0.03, rely=0.1, relwidth=1, relheight=1) speudo_and_id ="SPEUDO: "+ speudo +" ID: "+ id_ + " LEVEL: "+ lvl name = tkinter.Label(self.onglets_personnage, text = speudo_and_id) name.place(relx=0.01, rely=0.017,relwidth=0.4, relheight=0.09)
Azzary/LeafMITM
interface/onglets/onglets_personnage.py
onglets_personnage.py
py
4,255
python
en
code
3
github-code
6
34928362935
import mysql.connector from mysql.connector import pooling class Database: def __init__(self, config): self.config = config self.cnxpool = self.create_cnxpool() def create_cnxpool(self): try: cnxpool = pooling.MySQLConnectionPool( pool_name = "cnxpool", pool_size = 3, **self.config ) except mysql.connector.Error as err: print(err) return cnxpool def close(self, cursor, cnx): cursor.close() cnx.close() def execute_sql(self, sql, sql_data, commit=False): try: cnx = self.cnxpool.get_connection() cursor = cnx.cursor(dictionary = True) cursor.execute(sql, sql_data) result = cursor.fetchall() except: cnx.rollback() finally: if commit is True: cnx.commit() self.close(cursor, cnx) else: self.close(cursor, cnx) return result
alice1315/wehelp-third
app/models/database.py
database.py
py
1,070
python
en
code
0
github-code
6
7998902064
import os from bson.json_util import dumps from dotenv import load_dotenv # from flask import jsonify import pymongo load_dotenv() # use dotenv to hide sensitive credential as environment variables DATABASE_URL = f'mongodb+srv://{os.environ.get("user")}:{os.environ.get("passwort")}' \ '@flask-mongodb-atlas.wicsm.mongodb.net/' \ 'flaura?retryWrites=true&w=majority' # get connection url from environment client = pymongo.MongoClient(DATABASE_URL) # establish connection with database # plants.config['MONGO_DBNAME'] = 'restdb' # plants.config['MONGO_URI'] = 'mongodb://localhost:27017/restdb' # mongo = PyMongo(plants) mydb = client.flaura mycol = mydb.plants def getPlantsByName(name): cursor = mycol.find({"name": {"$regex": '.*'+name+'.*', "$options": 'i'}}) list_cur = list(cursor) plants = dumps(list_cur) return plants def getAllPlants(): cursor = mycol.find() list_cur = list(cursor) plantList = dumps(list_cur) return plantList def setNewPlant(name, waterAmount, critMoist, sleepTime): newPlant = {"name": name, "waterAmountML": waterAmount, "criticalMoisture": critMoist, "sleepTime": sleepTime} mycol.insert_one(newPlant) # function Get List of Plants that contain <name> # function Get All Plants?? # function Add new Plant to DB
rosemaxio/flauraBackend
plants/db.py
db.py
py
1,326
python
en
code
0
github-code
6
811133362
import pygame from pygame.locals import * from entities import User, Enemy from fonctions import * from stage import * from hud import * import random import time import zmq import threading from stage import * from tkinter import * from playsound import playsound def choix1(): global perso perso=1 button1.configure(relief=SUNKEN) button2.configure(relief=RAISED) button3.configure(relief=RAISED) def choix2(): global perso perso=2 button1.configure(relief=RAISED) button2.configure(relief=SUNKEN) button3.configure(relief=RAISED) def choix3(): global perso perso=3 button1.configure(relief=RAISED) button2.configure(relief=RAISED) button3.configure(relief=SUNKEN) perso=1 fen=Tk() fen.geometry("250x300+200+0") fen.configure(bg = "white") user1=PhotoImage(file='images/user1.gif') user2=PhotoImage(file='images/user2.gif') user3=PhotoImage(file='images/user3.gif') fen.title("LE JEU") Label(fen,text=" ",bg="white").grid(row=1,column=0) Label(fen,text="LE JEU \n\n ",bg="white").grid(row=0,column=2) Button(fen,text="Jouer ",bg="white",command=fen.destroy).grid(row=1,column=2) Label(fen,text="\n"*3,bg="white").grid(row=2,column=1) button1=Button(fen, image=user1,bg="white",command=choix1, relief=SUNKEN) button1.grid(row=3,column=1) button2=Button(fen, image=user2,bg="white",command=choix2) button2.grid(row=3,column=2) button3=Button(fen, image=user3,bg="white",command=choix3) button3.grid(row=3,column=3) Label(fen,text="\n"*3,bg="white").grid(row=4,column=1) Button(fen,text="Quitter",command=exit).grid(row=5,column=2) jeu=0 playsound('musique_menu.mp3',block = False) fen.mainloop() gameOver = False pygame.init() screen = pygame.display.set_mode((620,480)) pygame.display.set_caption('User 1') screen.fill((50,60,50)) pygame.display.update() user = User(screen,1,perso) coop = User(screen,2,3) hud = HUD(screen) context = zmq.Context() usersChan = context.socket(zmq.PAIR) usersChan.bind("tcp://127.0.0.1:1111".format(coop.id)) murs, enemies, potions, portes, eaus = classic(screen) def recv(usersChan): global coop, gameOver, points while True: if gameOver == True: if points == 16: print("WIN !") else: print("Game Over ! Vous avez {} points".format(points)) exit() return try: data = usersChan.recv_pyobj(flags=zmq.NOBLOCK) coop.pos = data["user"]["pos"] coop.vie = data["user"]["vie"] coop.attaque = data["user"]["attaque"] coop.defense = data["user"]["defense"] coop.level = data["user"]["level"] coop.xp= data["user"]["xp"] ### Supprimer objets qui ne sont pas en communs entre 2 listes python for potion in potions: ok = False for p in data["potions"]: if potion.pos == p["pos"]: ok = True if ok == False: potions.remove(potion) for enemy in enemies: ok = False for e in data["enemies"]: if enemy.pos == e["pos"]: enemy.vie = e["vie"] ok = True if ok == False: enemies.remove(enemy) refresh() except zmq.ZMQError as err: pass def refresh(): screen.fill((50,60,50)) hud.show(user,coop) user.show() coop.show() for enemy in enemies: enemy.show() for mur in murs: mur.show() for potion in potions: potion.show() for porte in portes: porte.show() for eau in eaus: eau.show() user.show() coop.show() pygame.display.flip() pygame.display.update() # Envoyez première data usersChan.send_pyobj(setData(user,coop,murs,potions,portes,eaus,enemies,True)) points = 0 # Création du Thread pour recevoir les données threadRecv = threading.Thread(target=recv, args=(usersChan,)) threadRecv.start() while not gameOver: changement = False if user.vie <= 0: gameOver = True if coop.vie <= 0: gameOver = True for event in pygame.event.get(): # Alt + F4 ou fléche en haut if event.type == QUIT: gameOver = True # Si touche pressée if event.type == KEYDOWN: action = 1 if event.key == K_UP: coord = (0,-1) elif event.key == K_DOWN: coord = (0,1) elif event.key == K_LEFT: coord = (-1,0) elif event.key == K_RIGHT: coord = (1,0) else: action = 0 if action != 0: user.mouvement(coord) if user.pos == coop.pos: user.mouvement((-coord[0],-coord[1])) for enemy in enemies: if enemy.pos == user.pos: # Attaquer : enemy.vie -= user.attaque + user.arme user.vie -= enemy.defense if user.vie <= 0: user.vie = 0 gameOver == True # print("Vie restante :", user.vie, "Vie enemmi :", enemy.vie) if enemy.vie <= 0: user.xp += enemy.level enemies.remove(enemy) # Revenir en arriére else: user.mouvement((-coord[0],-coord[1])) if user.xp >= user.level * 2: user.levelUP() for mur in murs: if mur.pos == user.pos : if mur.genre == "lave": user.vie -= 15 elif mur.genre == "pont": pass elif mur.genre == "levier": pass else: user.mouvement((-coord[0],-coord[1])) for eau in eaus: if eau.pos == user.pos : user.mouvement((-coord[0],-coord[1])) for potion in potions: if user.pos == potion.pos: if potion.type == "heal": user.heal() elif potion.type == "atk": user.atk() elif potion.type == "atkboss": for i in range (20): user.atk() elif potion.type == "xp": user.levelUP() potions.remove(potion) for porte in portes: if porte.pos == user.pos or porte.pos == coop.pos: print("Changement de map") points += 1 user.pos = [32,160] coop.pos = [32,192] if points == 1: murs, enemies, potions, portes, eaus = deux(screen) elif points == 2: murs, enemies, potions, portes, eaus = troix(screen) elif points == 15: murs, enemies, potions, portes, eaus = six(screen) elif points == 16: gameOver = True else: murs, enemies, potions, portes, eaus = random.choice([quatre(screen), cinq(screen)]) changement = True ### Renvoyez les données try: message = setData(user,coop,murs,potions,portes,eaus,enemies,changement) usersChan.send_pyobj(message) except zmq.ZMQError as err: print ("Error while trying to send the value " + message + " : " + str(err)) refresh() pygame.display.flip() pygame.display.update() pygame.time.wait(10)
ZeProf10T/projet-isn
server.py
server.py
py
8,030
python
en
code
0
github-code
6
6193427862
""" Main script: Autonomous Driving on Udacity Simulator @author : nelsoonc Undergraduate Thesis Nelson Changgraini - Bandung Institute of Technology, Indonesia """ # Throttle 0 - 1 will produce speed 0 - 30 mph # Steering -1 - 1 will produce angle -25 - 25 degrees import os import numpy as np import socketio import eventlet from flask import Flask import tensorflow as tf from tensorflow.keras.models import load_model import base64 from io import BytesIO from PIL import Image from train import rmse, get_lr_metric from utils import preprocess os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # DIRECTORY PATH MODEL_PATH = 'models/simulation_model.h5' # VARIABLE MAX_SPEED = 25 # FOR REAL TIME COMMUNICATION BETWEEN CLIENT AND SERVER sio = socketio.Server() # FLASK IS A MICRO WEB FRAMEWORK WRITTEN IN PYTHON app = Flask(__name__) # '__main__' # Executing in graph mode @tf.function def predict(input_tensor, model): return model(input_tensor) @sio.on('telemetry') def telemetry(sid, data): speed = float(data['speed']) image = Image.open(BytesIO(base64.b64decode(data['image']))) image = np.asarray(image) image = preprocess(image) image = np.array([image]) steering = float(predict(image, model)) throttle = 1.0 - abs(steering) - speed / MAX_SPEED print('{}, {}, {}'.format(steering, throttle, speed)) sendControl(steering, throttle) @sio.on('connect') def connect(sid, environ): print('Connected', sid) sendControl(0, 0) @sio.on('disconnect') def disconnect(sid): print('Disconnect', sid) def sendControl(steering, throttle): sio.emit('steer', data={ 'steering_angle': steering.__str__(), 'throttle': throttle.__str__() }, skip_sid=True) if __name__ == '__main__': print('Setting up..') model = load_model(MODEL_PATH, custom_objects={'rmse': rmse, 'lr': get_lr_metric}) if model: print('Model loaded') app = socketio.Middleware(sio, app) # LISTEN TO PORT 4567 eventlet.wsgi.server(eventlet.listen(('', 4567)), app)
zhouzheny1/Conditional_Imitation_Learning
simulation/main.py
main.py
py
2,123
python
en
code
0
github-code
6
37182795454
import os import re from typing import Tuple from transformers import pipeline # type: ignore MODEL_PATH = os.environ.get("MODEL_PATH", "./distilbert-base-cased-distilled-squad") class CardSourceGeneratorMock: def __call__(self, text: str, question: str) -> Tuple[int, int]: return 0, len(text) // 2 class CardSourceGenerator: def __init__(self) -> None: self._qa_model = pipeline( "question-answering", model=MODEL_PATH, tokenizer=MODEL_PATH ) def __call__(self, text: str, question: str) -> Tuple[int, int]: answer = self._qa_model(question=question, context=text) # type: ignore start, end = self._find_sentence_indices(text, answer["start"], answer["end"]) return start, end def _find_sentence_indices( self, text: str, substring_start: int, substring_end: int ) -> Tuple[int, int]: """ Finds the starting and ending indices of the sentence that contains the substring. """ sentences = re.split(r"\n|(?<=[.!?])\s+", text) substring = text[substring_start:substring_end] for sentence in sentences: index = sentence.lower().find(substring.lower()) if index != -1: start = text.index(sentence) end = start + len(sentence) return start, end return substring_start, substring_end
MoShrank/card-generation-service
text/CardSourceGenerator.py
CardSourceGenerator.py
py
1,408
python
en
code
0
github-code
6
5203502596
# -*- coding: utf-8 -*- """ Spyderエディタ これは一時的なスクリプトファイルです """ #WEBクローリング import time import re import requests import lxml.html from pymongo import MongoClient def main(): client = MongoClient('localhost', 27017) #scrapingデータベースのebooksコレクションを作成 collection = client.scraping.ebooks #keyフィールドとしてユニークなインデックスを設定 collection.create_index('key', unique=True) #Webページを取得、繰り返しアクセスするためSessionを使用 response = requests.get('https://gihyo.jp/dp') #URLリストのジェネレータを取得 urls = scrape_list_page(response) #url_list = [str(url) for url in urls] for url in urls: #url = url_list[0] #キーの取得 key = extract_key(url) #キーが同じ最初のドキュメントを取得 ebook = collection.find_one({'key': key}) #キーが同じドキュメントが存在しない場合 if not ebook: #各URLにアクセス time.sleep(1) response = requests.get(url) #ebookコレクションのドキュメントを作成 ebook = scrape_detail_page(response) #DBにドキュメントを追加 collection.insert_one(ebook) print(ebook) #WEBページ(html)を入力 def scrape_list_page(response): #htmlをパース root = lxml.html.fromstring(response.content) #URLを相対パスから絶対パスに変換 root.make_links_absolute(response.url) #id属性がlistBookの子孫で、a要素のitemprop属性がurlの値を取得(CSSセレクター) for a in root.cssselect('#listBook a[itemprop="url"]'): url = a.get('href') yield url #各書籍の情報(タイトル、価格、目次)を取得 def scrape_detail_page(response): root = lxml.html.fromstring(response.content) ebook = { 'url': response.url, 'key': extract_key(response.url), 'title': root.cssselect('#bookTitle')[0].text_content(), 'price': root.cssselect('.buy')[0].text, 'content': [normalize_spaces(h3.text_content()) for h3 in root.cssselect('#content > h3')], } return ebook def extract_key(url): #末尾から遡って、最初の/までの文字列を取得 m = re.search(r'([^/]+)$', url) return m.group(1) #任意の空白文字を取り除く def normalize_spaces(s): #return re.sub(r'\s+', ' ', s).strip() return re.sub(r'\u3000+', ': ', s).strip() if __name__ == '__main__': main() chk = {'a':0, 'b':1, 'c':3} for val in chk: chk[val] += 1
inamasa12/cr-sc
python_crowler_4.py
python_crowler_4.py
py
2,855
python
ja
code
0
github-code
6
25993011459
import urllib from flask import Blueprint, request, render_template, flash, redirect, url_for from orders_tracker.blueprints.clients.service import add_client, update_client, remove_client, search_clients, \ get_form_fields, get_path_args, \ get_clients_count, render_empty, get_pagination_metadata, paginate_clients from orders_tracker.forms import NewClientForm, DeleteConfirmForm from orders_tracker.models import Client, Device from orders_tracker.tables import ClientsTable clients_blueprint = Blueprint('clients_bp', __name__, template_folder="templates") @clients_blueprint.route('/clients/new', methods=['GET', 'POST']) def new_client(): form = NewClientForm() if request.method == 'POST': if form.validate_on_submit(): created_client = Client(form.name.data, form.phone.data, form.address.data, form.notes.data) add_client(created_client) return redirect(url_for('clients_bp.clients')) else: flash('Перевірте введені значення.', category='warning') return render_template('new_client.html', form=form) @clients_blueprint.route('/clients', methods=['GET', 'POST']) def clients(): if request.method == 'POST': search_field = get_form_fields() return redirect(url_for('clients_bp.clients', search_query=search_field)) search_arg, page_arg = get_path_args() stats = {'total': get_clients_count(), 'filter': -1} clients_query = search_clients(search_arg) stats['filter'] = clients_query.count() if stats['filter'] == 0: return render_empty(stats, search_arg) pagination_metadata = get_pagination_metadata(page_arg, clients_query) clients_list = paginate_clients(pagination_metadata, clients_query) table = ClientsTable(clients_list) return render_template('clients.html', table=table, stats=stats, search_field_value=search_arg, pagination_data=pagination_metadata) @clients_blueprint.route('/clients/<client_id>', methods=['GET', 'POST']) def client(client_id): address_link = None selected_client = Client.query.filter_by(id=client_id).first_or_404() if selected_client.address: address_link = "https://www.google.com/maps/search/?api=1&query=" + \ urllib.parse.quote_plus(selected_client.address) devices = Device.query.filter_by(client_id=client_id).all() return render_template('client.html', client=selected_client, devices=devices, address_link=address_link) @clients_blueprint.route('/clients/<client_id>/edit', methods=['GET', 'POST']) def edit_client(client_id): edited_client = Client.query.filter_by(id=client_id).first() modal_form = NewClientForm() if request.method == 'POST': if modal_form.validate_on_submit(): edited_client.name = modal_form.name.data edited_client.phone = modal_form.phone.data edited_client.address = modal_form.address.data edited_client.notes = modal_form.notes.data update_client(edited_client) return redirect(url_for('clients_bp.client', client_id=edited_client.id)) else: flash('Дані про клієнта не оновлено.', category='warning') modal_form = NewClientForm(edited_client) return render_template('edit_client.html', form=modal_form, message_title="Редагування інформації про клієнта", client_id=edited_client.id, color="is-link") @clients_blueprint.route('/clients/<client_id>/delete', methods=['GET', 'POST']) def delete_client(client_id): deleted_client = Client.query.filter_by(id=client_id).first() form = DeleteConfirmForm() if request.method == 'POST': if form.validate_on_submit(): remove_client(deleted_client) return redirect(url_for('clients_bp.clients')) return render_template('delete_confirm.html', form=form, client_id=deleted_client.id, message_title="Видалення клієнта", message="Ви дійсно бажаєте видалити клієнта " + deleted_client.name + "?")
1Lorde/orders-tracker
orders_tracker/blueprints/clients/routes.py
routes.py
py
4,565
python
en
code
0
github-code
6
8267132836
import logging import os import pytest import yaml from cekit.config import Config from cekit.descriptor import Image, Overrides from cekit.descriptor.resource import create_resource from cekit.errors import CekitError try: from unittest.mock import call except ImportError: from mock import call config = Config() def setup_function(function): config.cfg["common"] = {"work_dir": "/tmp"} if os.path.exists("file"): os.remove("file") def test_repository_dir_is_constructed_properly(mocker): mocker.patch("subprocess.run") mocker.patch("os.path.isdir", ret="True") mocker.patch("cekit.descriptor.resource.Chdir", autospec=True) res = create_resource( {"git": {"url": "http://host.com/url/repo.git", "ref": "ref"}} ) assert res.copy("dir") == "dir/repo" def test_repository_dir_uses_name_if_defined(mocker): mocker.patch("subprocess.run") mocker.patch("os.path.isdir", ret="True") mocker.patch("cekit.descriptor.resource.Chdir", autospec=True) res = create_resource( { "name": "some-id", "git": {"url": "http://host.com/url/repo.git", "ref": "ref"}, } ) assert res.copy("dir") == "dir/some-id" def test_repository_dir_uses_target_if_defined(mocker): mocker.patch("subprocess.run") mocker.patch("os.path.isdir", ret="True") mocker.patch("cekit.descriptor.resource.Chdir", autospec=True) res = create_resource( { "target": "some-name", "git": {"url": "http://host.com/url/repo.git", "ref": "ref"}, } ) assert res.copy("dir") == "dir/some-name" def test_git_clone(mocker): mock = mocker.patch("subprocess.run") mocker.patch("os.path.isdir", ret="True") mocker.patch("cekit.descriptor.resource.Chdir", autospec=True) res = create_resource( {"git": {"url": "http://host.com/url/path.git", "ref": "ref"}} ) res.copy("dir") mock.assert_has_calls( [ call( ["git", "clone", "http://host.com/url/path.git", "dir/path"], stdout=None, stderr=None, check=True, universal_newlines=True, ), call( ["git", "checkout", "ref"], stdout=None, stderr=None, check=True, universal_newlines=True, ), ], any_order=True, ) def get_res(mocker): res = mocker.Mock() res.status_code = 200 res.iter_content = lambda chunk_size: [b"test"] return res def get_ctx(mocker): ctx = mocker.Mock() ctx.check_hostname = True ctx.verify_mode = 1 return ctx def get_mock_urlopen(mocker): return mocker.patch("cekit.tools.urlopen", return_value=get_res(mocker)) def get_mock_ssl(mocker, ctx): return mocker.patch("cekit.tools.ssl.create_default_context", return_value=ctx) def test_fetching_with_ssl_verify(mocker): config.cfg["common"]["ssl_verify"] = True ctx = get_ctx(mocker) get_mock_ssl(mocker, ctx) mock_urlopen = get_mock_urlopen(mocker) res = create_resource({"name": "file", "url": "https:///dummy"}) try: res.copy() except Exception: pass mock_urlopen.assert_called_with("https:///dummy", context=ctx) assert ctx.check_hostname is True assert ctx.verify_mode == 1 def test_fetching_disable_ssl_verify(mocker): config.cfg["common"]["ssl_verify"] = False mock_urlopen = get_mock_urlopen(mocker) ctx = get_ctx(mocker) get_mock_ssl(mocker, ctx) res = create_resource({"name": "file", "url": "https:///dummy"}) try: res.copy() except Exception: pass mock_urlopen.assert_called_with("https:///dummy", context=ctx) assert ctx.check_hostname is False assert ctx.verify_mode == 0 def test_fetching_bad_status_code(): res = create_resource({"name": "file", "url": "http:///dummy"}) with pytest.raises(CekitError): res.copy() def test_fetching_file_exists_but_used_as_is(mocker): """ It should not download the file, because we didn't specify any hash algorithm, so integrity checking is implicitly disabled here. """ with open("file", "w") as f: # noqa: F841 pass mock_urlopen = get_mock_urlopen(mocker) res = create_resource( { "name": "file", "url": "http:///dummy", "md5": "d41d8cd98f00b204e9800998ecf8427e", } ) res.copy() mock_urlopen.assert_not_called() def test_fetching_file_exists_fetched_again(mocker): """ It should download the file again, because available file locally doesn't match checksum. """ mock_urlopen = get_mock_urlopen(mocker) ctx = get_ctx(mocker) get_mock_ssl(mocker, ctx) with open("file", "w") as f: # noqa: F841 pass res = create_resource({"name": "file", "url": "http:///dummy", "md5": "123456"}) with pytest.raises(CekitError): # Checksum will fail, because the "downloaded" file # will not have md5 equal to 123456. We need investigate # mocking of requests get calls to do it properly res.copy() mock_urlopen.assert_called_with("http:///dummy", context=ctx) def test_fetching_file_exists_no_hash_fetched_again(mocker): """ It should download the file again, because available file locally doesn't match checksum. """ mock_urlopen = get_mock_urlopen(mocker) ctx = get_ctx(mocker) get_mock_ssl(mocker, ctx) with open("file", "w") as f: # noqa: F841 pass res = create_resource({"name": "file", "url": "http:///dummy"}) with pytest.raises(CekitError): # url is not valid so we get error, but we are not interested # in it. We just need to check that we attempted to downlad. res.copy() mock_urlopen.assert_called_with("http:///dummy", context=ctx) def test_generated_url_without_cacher(): res = create_resource({"url": "url"}) assert res._Resource__substitute_cache_url("url") == "url" def test_resource_verify(mocker): mock = mocker.patch("cekit.descriptor.resource.check_sum") res = create_resource({"url": "dummy", "sha256": "justamocksum"}) res._Resource__verify("dummy") mock.assert_called_with("dummy", "sha256", "justamocksum") def test_generated_url_with_cacher(): config.cfg["common"]["cache_url"] = "#filename#,#algorithm#,#hash#" res = create_resource({"url": "dummy", "sha256": "justamocksum"}) res.name = "file" assert res._Resource__substitute_cache_url("file") == "file,sha256,justamocksum" def test_path_resource_absolute(): res = create_resource({"name": "foo", "path": "/bar"}, directory="/foo") assert res.path == "/bar" def test_path_resource_relative(): res = create_resource({"name": "foo", "path": "bar"}, directory="/foo") assert res.path == "/foo/bar" def test_path_local_existing_resource_no_cacher_use(mocker): config.cfg["common"]["cache_url"] = "#filename#,#algorithm#,#hash#" mocker.patch("os.path.exists", return_value=True) shutil_mock = mocker.patch("shutil.copy2") res = create_resource({"name": "foo", "path": "bar"}, directory="/foo") mocker.spy(res, "_download_file") res.guarded_copy("target") shutil_mock.assert_called_with("/foo/bar", "target") assert res._download_file.call_count == 0 def test_path_local_non_existing_resource_with_cacher_use(mocker): config.cfg["common"]["cache_url"] = "#filename#,#algorithm#,#hash#" mocker.patch("os.path.exists", return_value=False) mocker.patch("os.makedirs") res = create_resource({"name": "foo", "path": "bar"}, directory="/foo") mocker.spy(res, "_download_file") download_file_mock = mocker.patch.object(res, "_download_file") res.guarded_copy("target") download_file_mock.assert_called_with("/foo/bar", "target") def test_url_resource_download_cleanup_after_failure(mocker, tmpdir, caplog): caplog.set_level(logging.DEBUG, logger="cekit") mocker.patch("os.path.exists", return_value=False) mocker.patch("os.makedirs") os_remove_mock = mocker.patch("os.remove") urlopen_class_mock = mocker.patch("cekit.tools.urlopen") urlopen_mock = urlopen_class_mock.return_value urlopen_mock.getcode.return_value = 200 urlopen_mock.read.side_effect = Exception res = create_resource({"url": "http://server.org/dummy", "sha256": "justamocksum"}) targetfile = os.path.join(str(tmpdir), "targetfile") with pytest.raises(CekitError) as excinfo: res.guarded_copy(targetfile) assert "Error copying resource: 'dummy'. See logs for more info" in str( excinfo.value ) assert ( "Removing incompletely downloaded '{}' file".format(targetfile) in caplog.text ) urlopen_class_mock.assert_called_with("http://server.org/dummy", context=mocker.ANY) os_remove_mock.assert_called_with(targetfile) def test_copy_plain_resource_with_cacher(mocker, tmpdir): config.cfg["common"]["cache_url"] = "#filename#,#algorithm#,#hash#" config.cfg["common"]["work_dir"] = str(tmpdir) urlopen_class_mock = mocker.patch("cekit.tools.urlopen") mock_urlopen = urlopen_class_mock.return_value mock_urlopen.getcode.return_value = 200 mock_urlopen.read.side_effect = [b"one", b"two", None] ctx = get_ctx(mocker) get_mock_ssl(mocker, ctx) with open("file", "w") as f: # noqa: F841 pass res = create_resource({"name": "foo", "md5": "5b9164ad6f496d9dee12ec7634ce253f"}) substitute_cache_url_mock = mocker.patch.object( res, "_Resource__substitute_cache_url", return_value="http://cache/abc" ) res.copy(str(tmpdir)) substitute_cache_url_mock.assert_called_once_with(None) urlopen_class_mock.assert_called_with("http://cache/abc", context=ctx) def test_copy_plain_resource_from_brew(mocker, tmpdir): config.cfg["common"]["work_dir"] = str(tmpdir) config.cfg["common"]["redhat"] = True urlopen_class_mock = mocker.patch("cekit.tools.urlopen") mock_urlopen = urlopen_class_mock.return_value mock_urlopen.getcode.return_value = 200 mock_urlopen.read.side_effect = [b"one", b"two", None] ctx = get_ctx(mocker) get_mock_ssl(mocker, ctx) with open("file", "w") as f: # noqa: F841 pass res = create_resource({"name": "foo", "md5": "5b9164ad6f496d9dee12ec7634ce253f"}) mocker.spy(res, "_Resource__substitute_cache_url") mock_get_brew_url = mocker.patch( "cekit.descriptor.resource.get_brew_url", return_value="http://cache/abc" ) res.copy(str(tmpdir)) mock_get_brew_url.assert_called_once_with("5b9164ad6f496d9dee12ec7634ce253f") assert res._Resource__substitute_cache_url.call_count == 0 urlopen_class_mock.assert_called_with("http://cache/abc", context=ctx) def test_override_resource_remove_chksum(): image = Image( yaml.safe_load( """ from: foo name: test/foo version: 1.9 artifacts: - name: abs path: /tmp/abs md5: 'foo' sha1: 'foo' sha256: 'foo' sha512: 'foo' """ ), "foo", ) overrides = Overrides( yaml.safe_load( """ artifacts: - name: abs path: /tmp/over """ ), "foo", ) overrides.merge(image) assert overrides["from"] == "foo" assert overrides["artifacts"][0]["path"] == "/tmp/over" assert "md5" not in overrides["artifacts"][0] assert "sha1" not in overrides["artifacts"][0] assert "sha256" not in overrides["artifacts"][0] assert "sha512" not in overrides["artifacts"][0]
cekit/cekit
tests/test_unit_resource.py
test_unit_resource.py
py
11,760
python
en
code
70
github-code
6
6343086075
from .db import add_prefix_for_prod, db, environment, SCHEMA from sqlalchemy.sql import func community_users = db.Table( "community_users", db.Model.metadata, db.Column("user_id", db.ForeignKey( add_prefix_for_prod("users.id")), primary_key=True), db.Column("business_id", db.ForeignKey( add_prefix_for_prod("communities.id")), primary_key=True) ) if environment == "production": community_users.schema = SCHEMA
marcsmithr/Reddit-Clone
app/models/join_tables.py
join_tables.py
py
450
python
en
code
0
github-code
6
7538481658
# You are given a list of integers. Write a Python function that finds and returns the largest element in the list. # The integers in the list may not be sorted. # You can assume that the list will not be empty. def find_largest_element(input_list): positional_var = 0 num = input_list[0] while True: positional_var += 1 if input_list[positional_var] > num: num = input_list[positional_var] if positional_var == len(input_list) - 1: print("The largest element in the list is:", num) return num find_largest_element([5, 7, 2, 4, 1, 9, 4, 12, 4, 3, 11]) find_largest_element([15, 13, 14, 5, 8, 3]) # Optimum Solution def findLargestElement(inputList): largestElement = -1 for i in inputList: if(i>largestElement): largestElement=i return largestElement print(findLargestElement([12,5,1,78,32,122]))
Shaunc99/Python
arrays/LargestElement.py
LargestElement.py
py
908
python
en
code
2
github-code
6
7965704838
from pathlib import Path from promtail_ops_manager import PromtailOpsManager # The promtail release file. resource = "./promtail.zip" manager = PromtailOpsManager() # manager.install(resource) # Setup for local tests such that installation of binaries etc. # will not mess up your local client. manager.promtail_home = Path('/tmp/promtail') manager.promtail = Path('/tmp/promtail/promtail-linux-amd64') manager.promtail_cfg = manager.promtail_home.joinpath('promtail-local-config.yaml') manager.promtail_unitfile = Path('/tmp/promtail.service') # Run tests. manager._prepareOS() manager._install_from_resource(resource) manager._install_config() manager._install_systemd_unitfile() if manager.verify_config(): print("Config OK") else: print("Config is error") print("Version:", manager.promtail_version() ) # manager._purge()
erik78se/promtail-vm-operator
tests/testlib.py
testlib.py
py
839
python
en
code
0
github-code
6
4203368667
# Method to find all the legitimate words def get_legimate_words(letters, sowpods): legitimate_words = [] # Iterate on each word of the dictionary for word in sowpods: # Set the flag as True is_word_legitimate = True # Iterate on each character of word for character in word: # If character not in letters break the loop if character not in letters: is_word_legitimate = False break # Append the word to output list if is_word_legitimate: legitimate_words.append(word) # Return return legitimate_words sowpods = [ 'FAST', 'FEST', 'PEST', 'PAST', 'PAT', 'FAD', 'FEAST', 'DIRT' ] letters = ['A', 'P', 'F', 'D', 'S', 'T', 'E'] print(get_legimate_words(letters, sowpods))
Adnation/sowpods
yoptima.py
yoptima.py
py
841
python
en
code
0
github-code
6
24037873801
import os.path homedir = os.path.expanduser("~") class Config: bindsym_dict = {} set_dict = {} exec_list = [] exec_always_list = [] def get_i3_config(): i3_config_file = open(homedir + "/.config/i3/config", "r") config = Config() for line in i3_config_file: line = line.strip() phrases = line.split(sep=" ") if phrases[0].strip() == "bindsym": config.bindsym_dict[phrases[1]] = " ".join(phrases[2:]) elif phrases[0].strip() == "set": config.set_dict[phrases[1]] = " ".join(phrases[2]) elif phrases[0].strip() == "exec": if phrases[1] == "--no-startup-id": config.exec_list.append((" ".join(phrases[2:]), True)) else: config.exec_list.append((" ".join(phrases[1:]), False)) elif phrases[0] == "exec_always": if phrases[1] == "--no-startup-id": config.exec_always_list.append((" ".join(phrases[2:]), True)) else: config.exec_always_list.append((" ".join(phrases[1:]), False)) i3_config_file.close() return config
flyingcakes85/i3wm-config-gui
config_parser.py
config_parser.py
py
1,139
python
en
code
1
github-code
6
18155298342
import customtkinter as ctk from PIL import Image root = ctk.CTk() root.title("IRIS") root.geometry("1080x720") root._set_appearance_mode("dark") frame = ctk.CTkFrame(master=root) frame.pack(pady=20) logo = ctk.CTkImage(Image.open( "/home/nabendu/Documents/MCA/projects/python-speechRecongition-desktop-AI-project/main/img/walle.png"), size=(200, 180)) label = ctk.CTkLabel(frame, image=logo, text="") label.grid(row=0, column=0, pady=0, padx=0) aiTextBox = ctk.CTkTextbox(master=frame, height=100, width=500) aiTextBox.grid(row=0, column=1, pady=10, padx=50) frame2 = ctk.CTkFrame(master=root) frame2.pack(pady=10) userTextBox = ctk.CTkTextbox(master=frame2, height=50, width=500) userTextBox.grid(row=0, column=0, padx=30, pady=10) command = ctk.CTkButton(master=frame2, text="Enter Command", height=50) command.grid(row=0, column=1, padx=50, pady=10) root.mainloop()
Nandy1002/python-speechRecongition-desktop-AI-project
main/gui.py
gui.py
py
906
python
en
code
0
github-code
6
71040814269
import pandas as pd n = 6 res = [[] for _ in range(0, 105, 5)] def checkLine(boardline, cons): realCons = [] cnt = 0 for i in boardline: if i==0: if cnt!=0: realCons.append(cnt) cnt = 0 else: cnt += 1 if cnt!=0: realCons.append(cnt) if len(realCons)==0: realCons.append(0) return realCons == cons def checkBoard(board, constraints): rightRes = 0 for k in range(n): newLine = [board[k][l] for l in range(n)] if checkLine(newLine, constraints[k]): rightRes += 1 for k in range(n): newLine = [board[l][k] for l in range(n)] if checkLine(newLine, constraints[k + n]): rightRes += 1 return rightRes for i in range(0, 105, 5): bpsumsim = 0 bptime = 0 bpsumright = 0 totalsumright = 0 for j in range(100): f = open("Testcases/Test_6_"+str(i)+"/Test_"+str(j)+".txt", 'r') lines = f.readlines() f.close() if len(lines)==0: print("???") continue constraints = [list(map(int, lines[k].split())) for k in range(1, n*2+1)] ans = [list(map(int, lines[k+13].split())) for k in range(n)] f = open("Results/Result_6_"+str(i)+"/Result_"+str(j)+".txt", 'r') lines = f.readlines() f.close() if len(lines)==0: print("???") continue bpans = [list(map(int, lines[k+n*2+1].split())) for k in range(n)] bpsim = 0 for k in range(n): for l in range(n): if ans[k][l] == bpans[k][l]: bpsim+=1 bpsumsim += bpsim/n/n totalsumright += checkBoard(ans, constraints)/(2*n) bpsumright += checkBoard(bpans, constraints)/(2*n) bpsumsim /= 100 res[i//5].append(bpsumsim) res[i // 5 ].append(bpsumright/100) print(bpsumsim, bpsumright/100) df = pd.DataFrame(res, columns=['sim', 'right']) df.to_csv("BPResult8.csv") # write_wb = Workbook() # write_ws = write_wb.create_sheet('Result') # for i in range(n): # for j in range(len(res[0])): # write_ws.cell(j+2, i+5, res[i][j]) # write_wb.save("Graph_15.xlsx")
ilesejin/ECSR_Nonogram
NonogramGrapher.py
NonogramGrapher.py
py
2,231
python
en
code
0
github-code
6
3777146121
from django.shortcuts import render from cowsay_app.models import Input from cowsay_app.forms import InputForm import subprocess # I mainly used this source to figure out subprocess: # https://linuxhint.com/execute_shell_python_subprocess_run_method/ # I also used Stackoverflow and Python docs # Also found some useful stuff on Stackoverflow for doing the history: # https://stackoverflow.com/questions/47428403/how-to-get-the-last-10-item-data-in-django def index(request): if request.method == "POST": new_input = InputForm() form = InputForm(request.POST) if form.is_valid(): data = form.cleaned_data Input.objects.create( input=data.get('input') ) cow = subprocess.run( ['cowsay', data['input']], capture_output=True ).stdout.decode("utf-8") return render(request, "index.html", {'form': new_input, 'cow': cow}) form = InputForm() return render(request, "index.html", {"title": "Welcome to Cowsay!", "form": form}) def history(request): cowsay_history = Input.objects.order_by('-id')[:10] return render(request, 'history.html', {'cowsay_history': cowsay_history})
pokeyjess/cowsay
cowsay_app/views.py
views.py
py
1,247
python
en
code
0
github-code
6
6191154878
#! /usr/bin/env python """ Compute the transmission and reflection probabilities of a particle with a given mass and energy encountering a potential step. Leon Hostetler, Feb. 14, 2017 USAGE: python quantum_step.py """ from __future__ import division, print_function # Constants m = 9.11e-31 # Mass of particle (kg) eV = 1.6022e-19 # Convert eV to Joules E = 10.0*eV # Energy of incoming particle (J) V = 9.0*eV # Height of potential step (J) h = 1.0546e-34 # h-bar (m^2 kg / s) # Calculations k1 = (2*m*E)**(1/2)/h k2 = ((2*m*(E-V))**(1/2))/h T = (4*k1*k2)/(k1+k2)**2 # Transmission probability R = ((k1-k2)/(k1+k2))**2 # Reflection probability # Print results print("The transmission probability is ", "{0:.2f}".format(T), ".", sep="") print("The reflection probability is ", "{0:.2f}".format(R), ".", sep="") print("As a check, the total probability is the sum of the two: ", "{0:.2f}".format(T+R), ".", sep="")
leonhostetler/undergrad-projects
computational-physics/01_basic_calculations/quantum_step.py
quantum_step.py
py
960
python
en
code
0
github-code
6
16675031691
import os import syslog import time import traceback import support.cmd_exe from vmlib import fwprint gips_connects = {} gips_state = {} def pause_vm(uuid): cmd = '/usr/bin/python /usr/vmd/glusterfs/connect_serial0.py /var/run/%s/monit.sock stop' % (uuid) fwprint( cmd) os.system(cmd) def cont_vm(uuid): cmd = '/usr/bin/python /usr/vmd/glusterfs/connect_serial0.py /var/run/%s/monit.sock cont' % (uuid) fwprint( cmd) os.system(cmd) def pause_vms(): cmd = '''find /var/run -name 'monit.sock' ''' output = support.cmd_exe.cmd_exe(cmd) if not output[0]: return lines = output[1]['stdout'] for line in lines: line = line.strip() if len(line)!= 40: continue uuid = line[9:-11] pause_vm(uuid) def cont_vms(): cmd = '''find /var/run -name 'monit.sock' ''' output = support.cmd_exe.cmd_exe(cmd) if not output[0]: return lines = output[1]['stdout'] for line in lines: line = line.strip() if len(line)!= 40: continue uuid = line[9:-11] cont_vm(uuid) def update_route_connect(host_ip, flag): fwprint( 'route rrrr state '+str(host_ip)+' '+str(flag)) if host_ip not in gips_connects: gips_connects[host_ip] = True if flag != gips_connects.get(host_ip): gips_connects[host_ip] = flag fwprint( 'route rrrr state change') if flag: gips_state[host_ip] = 'route starting' cont_vms() else: gips_state[host_ip] = 'route downing' pause_vms() return def route_connect(host_ip): num = 0 while True: num = num + 1 cmd = "ping %s -c 1 -W 1 > /dev/null" % host_ip if 0 == os.system(cmd): update_route_connect(host_ip, True) break time.sleep(2) if num>=2: break if num >=2: update_route_connect(host_ip,False) return True def loop_route_state(host_ip): while True: try: route_connect(host_ip) except: syslog.syslog(syslog.LOG_ERR,'loop_route_state: '+str(traceback.format_exc())) time.sleep(3)
sun7shines/GlusterFS
glusterfs/vm_route.py
vm_route.py
py
2,215
python
en
code
0
github-code
6
73644652346
import structure.concrete.类型 as type ''' 部分系数 ''' def 外形系数(t: type.钢筋种类) -> float: s = type.钢筋种类 switch = { s.带勾光面钢筋 : 0.16, s.带肋钢筋 : 0.14, s.螺旋肋钢丝 : 0.13, s.三股钢绞线 : 0.16, s.七股钢绞线 : 0.17 } return switch[t]
TheVeryDarkness/structure
concrete/附录.py
附录.py
py
359
python
zh
code
0
github-code
6
38899572282
import pygame import time import random pygame.init() pygame.font.init() myfont = pygame.font.SysFont('Comic Sans MS', 30) screen = pygame.display.set_mode((1280,720)) done = False p1_x=30 p1_y= screen.get_height()-60 #make player class Player: def __init__(self,x,y): self.x=x self.y=y def moveLeft(self): if self.x>0: self.x-=2 def moveRight(self): if self.x<screen.get_width()-60: self.x+=2 def draw(self): pygame.draw.rect(screen, (255,255,255), pygame.Rect(self.x,self.y,60,60)) class Egg: def __init__(self): self.x=random.randint(0,screen.get_width()-30) self.y=0 self.incr=1 def update(self): if self.y==screen.get_height()-30: self.__init__() self.y+=self.incr self.incr*=1.1 def draw(self): pygame.draw.rect(screen, (255,255,255), pygame.Rect(self.x,self.y,30,30)) p1 = Player(p1_x,p1_y) egg1=Egg() while not done: for event in pygame.event.get(): if event.type == pygame.QUIT: done = True pressed=pygame.key.get_pressed() #movement if pressed[pygame.K_a] : p1.moveLeft() if pressed[pygame.K_d] : p1.moveRight() screen.fill((0,0,0)) #screen.blit(score, ((screen.get_width()/2)-20,0)) p1.draw() egg1.draw() egg1.update() pygame.display.flip()
mahi-pas/Egg-Catcher
catcher.py
catcher.py
py
1,381
python
en
code
0
github-code
6
21397154599
import os import backoff import pytest from racetrack_commons.dir import project_root from racetrack_client.client.deploy import send_deploy_request from racetrack_client.client_config.auth import set_user_auth from racetrack_client.client_config.client_config import ClientConfig from racetrack_client.utils.request import Requests, ResponseError from racetrack_client.utils.auth import RT_AUTH_HEADER, is_auth_required from racetrack_commons.entities.dto import EscDto from racetrack_commons.entities.esc_client import EscRegistryClient from racetrack_commons.entities.job_client import JobRegistryClient from e2e.utils import ADMIN_AUTH_TOKEN, INTERNAL_AUTH_TOKEN, PYTHON_PLUGIN_VERSION, _configure_env, _create_esc, _delete_workload, _wait_for_components, _install_plugin TEST_SUITE = os.getenv('TEST_SUITE') suite_auth = pytest.mark.skipif( TEST_SUITE != 'auth' and TEST_SUITE != 'full', reason='TEST_SUITE value != auth,full' ) @suite_auth def test_deploy_job_chain(): _configure_env() _wait_for_components() _install_plugin(f'github.com/TheRacetrack/plugin-python-job-type=={PYTHON_PLUGIN_VERSION}') esc = _create_esc() _delete_workload('adder') _deploy_and_verify('sample/python-class', 'adder', esc) _verify_deployed_job_adder_response('adder', ADMIN_AUTH_TOKEN) _delete_workload('python-chain') _deploy_and_verify('sample/python-chain', 'python-chain', esc) _make_wrongly_authenticated_request('adder') @suite_auth def test_deploy_unauthenticated(): _configure_env() _wait_for_components() _install_plugin(f'github.com/TheRacetrack/plugin-python-job-type=={PYTHON_PLUGIN_VERSION}') lifecycle_url = os.environ['LIFECYCLE_URL'] expect_fail = is_auth_required(lifecycle_url) sample_path = 'sample/python-class' print(f'Deploying unauthenticated {sample_path} job...') workdir = str(project_root() / sample_path) config = ClientConfig() set_user_auth(config, lifecycle_url, 'invalid') if expect_fail: with pytest.raises(ResponseError): send_deploy_request(workdir, lifecycle_url=lifecycle_url, client_config=config, force=True) else: send_deploy_request(workdir, lifecycle_url=lifecycle_url, client_config=config, force=True) @suite_auth def test_deploy_wrong_authentication(): _configure_env() _wait_for_components() _install_plugin(f'github.com/TheRacetrack/plugin-python-job-type=={PYTHON_PLUGIN_VERSION}') lifecycle_url = os.environ['LIFECYCLE_URL'] sample_path = 'sample/python-class' print(f'Deploying with wrong authentication {sample_path} job...') expect_fail = is_auth_required(lifecycle_url) workdir = str(project_root() / sample_path) config = ClientConfig() # wrong token user_auth = "eyJ1c2VybmFtZSI6ICJmb28iLCAidG9rZW4iOiAiOGJjMDkzMGEtNTA2Mi00MWFiLWE4MWQtNDVhNjg0OWIyYjg4In1=" set_user_auth(config, lifecycle_url, user_auth) if expect_fail: with pytest.raises(ResponseError): send_deploy_request(workdir, lifecycle_url=lifecycle_url, client_config=config, force=True) else: send_deploy_request(workdir, lifecycle_url=lifecycle_url, client_config=config, force=True) def _deploy(sample_path: str): lifecycle_url = os.environ['LIFECYCLE_URL'] config = ClientConfig() set_user_auth(config, lifecycle_url, ADMIN_AUTH_TOKEN) print(f'Deploying {sample_path} job...') workdir = str(project_root() / sample_path) send_deploy_request(workdir, lifecycle_url=lifecycle_url, client_config=config, force=True) def _deploy_and_verify(sample_path: str, job_name: str, esc: EscDto): _deploy(sample_path) print(f'Allowing a job {job_name} to ESC...') erc = EscRegistryClient(auth_token=INTERNAL_AUTH_TOKEN) erc.esc_allow_job(esc_id=esc.id, job_name=job_name) esc_token = erc.get_esc_auth_token(esc.id) if job_name == 'adder': _verify_deployed_job_adder_response(job_name, esc_token) elif job_name == 'python-chain': frc = JobRegistryClient(auth_token=INTERNAL_AUTH_TOKEN) frc.job_allow_job('python-chain', 'adder') _verify_deployed_job_chain_adder_reponse(job_name, esc_token) _verify_job_logs(job_name, ADMIN_AUTH_TOKEN) @backoff.on_exception(backoff.fibo, AssertionError, max_value=3, max_time=60, jitter=None) def _verify_deployed_job_adder_response(job_name: str, auth_token: str): print(f'Verifying {job_name} job response...') pub_url = os.environ['PUB_URL'] url = f'{pub_url}/job/{job_name}/latest/api/v1/perform' headers = {RT_AUTH_HEADER: auth_token} r = Requests.post(url, json={'numbers': [40, 2]}, headers=headers) assert r.ok, f'Job response: {r.status_code} {r.status_reason} for url {r.url}, content: {str(r.content)}' output = r.json() assert output == 42, 'Unexpected output returned by Job' @backoff.on_exception(backoff.fibo, AssertionError, max_value=3, max_time=30, jitter=None) def _verify_deployed_job_chain_adder_reponse(job_name: str, auth_token: str): print(f'Verifying {job_name} job response...') pub_url = os.environ['PUB_URL'] url = f'{pub_url}/job/{job_name}/latest/api/v1/perform' r = Requests.post(url, json={'numbers': [40, 2.7]}, headers={RT_AUTH_HEADER: auth_token}) assert r.ok, f'Job response: {r.status_code} {r.status_reason} for url {r.url}, content: {str(r.content)}' output = r.json() assert output == 43, 'Unexpected output returned by Job' @backoff.on_exception(backoff.fibo, ResponseError, max_value=3, max_time=60, jitter=None) def _verify_job_logs(job_name: str, user_auth: str): print(f'Verifying {job_name} logs...') frc = JobRegistryClient(auth_token=user_auth) logs = frc.get_runtime_logs(job_name, 'latest') assert len(logs) > 1, 'Unexpected short log from Job' def _make_wrongly_authenticated_request(job_name: str): print(f'Verifying requests without authentication to {job_name}...') pub_url = os.environ['PUB_URL'] url = f'{pub_url}/job/{job_name}/latest/api/v1/perform' lifecycle_url = os.environ['LIFECYCLE_URL'] auth_required = is_auth_required(lifecycle_url) # wrong auth token value r = Requests.post(url, json={'numbers': [40, 2]}, headers={RT_AUTH_HEADER: 'MrNobody'}) if auth_required: assert r.status_code == 401 else: assert r.status_code == 200 # lack of auth token r = Requests.post(url, json={'numbers': [40, 2]}, headers={}) if auth_required: assert r.status_code == 401 else: assert r.status_code == 200
TheRacetrack/racetrack
tests/e2e/test_auth.py
test_auth.py
py
6,570
python
en
code
27
github-code
6
40323903072
# LOOP WHILE # Estrutura de repetição que permite executar um bloco de códico, enquanto a condição for verdadeira # Sintaxe; # while (condição): # bloco de códico. # # ex: #controle = "" #while (controle != "s"): # print("a.Pagar") # print("b.Receber") # print("c.Transferir") # print("s.Sair") # controle = input('Digite a opção desejada: ') #print('Atividade Encerrada') #WHILE COM BREAK # A declaração break termina o loop atual e consegue a execução na próxima declaração após o loop. # O usos mais comum é quando alguma condição externa é disparada e requer saída imediata do loop. # O comando brack pode ser usado tanto em loops while quanto em lopps for. cont = 20 while (cont > 0): print(f"o valor da variável é igual a {cont}") cont -= 1 if (cont == 11): break print('Loop interrompido no valor 11')
Herley25/algoritmo_python
While.py
While.py
py
887
python
pt
code
0
github-code
6
15864287326
import pandas as pd import matplotlib.pyplot as plt # Set up the output screen plt.style.use(style='ggplot') plt.rcParams['figure.figsize'] = [20, 12] # Read dataset trainData = pd.read_csv('./train.csv') # With outliers plt.scatter(trainData.GarageArea, trainData.SalePrice, color='red') plt.xlabel('Garage Area') plt.ylabel('Sale Price') plt.show() # Delete the outlier value of GarageArea outlier_drop = trainData[(trainData.GarageArea < 999) & (trainData.GarageArea > 111)] # Display the scatter plot of GarageArea and SalePrice after deleting plt.scatter(outlier_drop.GarageArea, outlier_drop.SalePrice, color='green') plt.xlabel('Garage Area') plt.ylabel('Sale Price') plt.show()
nikolozdz/Linear-Regression-Models-ICP5
Task 1.py
Task 1.py
py
690
python
en
code
0
github-code
6
42479620713
"""Collection of common layers.""" import tensorflow as tf class Layers(object): """Collection of computational NN layers.""" @staticmethod def linear(prev_layer, out_dim, name="linear"): """Create a linear fully-connected layer. Parameters ---------- prev_layer : tf.Tensor Last layer's output tensor. out_dim : int Number of output units. Returns ------- tuple ( tf.Tensor : Linear output tensor tf.Tensor : Linear weights variable tf.Tensor : Linear biases variable ) """ with tf.name_scope(name): in_dim = prev_layer.get_shape()[1].value W = tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=0.1)) b = tf.Variable(tf.constant(0.1, shape=[out_dim])) out = tf.add(tf.matmul(prev_layer, W), b) return (out, W, b) @staticmethod def regularization(variables, regtype, regcoef, name="regularization"): """Compute the regularization tensor. Parameters ---------- variables : list of tf.Variable List of model variables. regtype : str Type of regularization. Can be ["none", "l1", "l2"] regcoef : float, Regularization coefficient. name : str, optional (default = "regularization") Name for the regularization op. Returns ------- tf.Tensor : Regularization tensor. """ with tf.name_scope(name): if regtype != 'none': regs = tf.constant(0.0) for v in variables: if regtype == 'l2': regs = tf.add(regs, tf.nn.l2_loss(v)) elif regtype == 'l1': regs = tf.add(regs, tf.reduce_sum(tf.abs(v))) return tf.multiply(regcoef, regs) else: return None class Evaluation(object): """Collection of evaluation methods.""" @staticmethod def accuracy(mod_y, ref_y, summary=True, name="accuracy"): """Accuracy computation op. Parameters ---------- mod_y : tf.Tensor Model output tensor. ref_y : tf.Tensor Reference input tensor. summary : bool, optional (default = True) Whether to save tf summary for the op. Returns ------- tf.Tensor : accuracy op. tensor """ with tf.name_scope(name): mod_pred = tf.argmax(mod_y, 1) correct_pred = tf.equal(mod_pred, tf.argmax(ref_y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) if summary: tf.summary.scalar('accuracy', accuracy) return accuracy
gabrieleangeletti/Deep-Learning-TensorFlow
yadlt/core/layers.py
layers.py
py
2,874
python
en
code
965
github-code
6
6106005547
""" Usage: python parser.py <filename> example: python parser.py 2012_12_15.txt """ class FileReader(object): def __init__(self): self.count = 0 def process(self, filename): """ This a filereader Arguments: filename: Name of the file that we are reading fieldname: Column name that we are making unique Returns a unique set of value specified by fieldname """ self.count = self.count + 1 uniques = set() for line_no, line in enumerate(open(filename)): if line_no == 0: # Skip the header continue line_data = line.split() city, state, shape = self.parse_record(line_no, line_data) uniques.add(city) return uniques def parse_record(self, line_no, data): record = {} record['line_no'] = line_no record['date'] = data[0] record['time'] = data[1] record['city'] = data[2] record['state'] = data[3] record['shape'] = data[4] return record['city'], record['state'], record['shape'] def add(self, x, y): self.count = self.count + 1 return x + y
justincely/miami-python
day_2/fp.py
fp.py
py
1,227
python
en
code
0
github-code
6
14241805756
from sys import exit from time import sleep, time from random import randint import pygame from pygame.constants import RESIZABLE # Tetramino definitions on a 4x4 grid. 1 means the tile exists. TETRAMINO_I = (((0, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 0, 0)), ((0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0)), ((0, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 0, 0)), ((0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0))) TETRAMINO_J = (((0, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 0), (0, 0, 1, 0)), ((0, 0, 0, 0), (0, 1, 1, 0), (0, 1, 0, 0), (0, 1, 0, 0)), ((0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 1, 0), (0, 0, 0, 0)), ((0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0))) TETRAMINO_L = (((0, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 0), (1, 0, 0, 0)), ((0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0)), ((0, 0, 0, 0), (0, 0, 1, 0), (1, 1, 1, 0), (0, 0, 0, 0)), ((0, 0, 0, 0), (1, 1, 0, 0), (0, 1, 0, 0), (0, 1, 0, 0))) TETRAMINO_O = (((0, 0, 0, 0), (0, 0, 0, 0), (0, 1, 1, 0), (0, 1, 1, 0)), ((0, 0, 0, 0), (0, 0, 0, 0), (0, 1, 1, 0), (0, 1, 1, 0)), ((0, 0, 0, 0), (0, 0, 0, 0), (0, 1, 1, 0), (0, 1, 1, 0)), ((0, 0, 0, 0), (0, 0, 0, 0), (0, 1, 1, 0), (0, 1, 1, 0))) TETRAMINO_S = (((0, 0, 0, 0), (0, 0, 0, 0), (0, 1, 1, 0), (1, 1, 0, 0)), ((0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 0)), ((0, 0, 0, 0), (0, 0, 0, 0), (0, 1, 1, 0), (1, 1, 0, 0)), ((0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 0))) TETRAMINO_T = (((0, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 0), (0, 1, 0, 0)), ((0, 0, 0, 0), (0, 1, 0, 0), (1, 1, 0, 0), (0, 1, 0, 0)), ((0, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0), (0, 0, 0, 0)), ((0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0), (0, 1, 0, 0))) TETRAMINO_Z = (((0, 0, 0, 0), (0, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0)), ((0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 0)), ((0, 0, 0, 0), (0, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0)), ((0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 0))) # Array used for randomly picking tetraminos TETRAMINOS = [(TETRAMINO_I, (0xFF, 0xFF, 0x00)), (TETRAMINO_J, (0xFF, 0x00, 0x00)), (TETRAMINO_L, (0xFF, 0x00, 0xFF)), (TETRAMINO_O, (0x00, 0xFF, 0x00)), (TETRAMINO_S, (0x00, 0xFF, 0xFF)), (TETRAMINO_T, (0x00, 0x00, 0xFF)), (TETRAMINO_Z, (0x01, 0x82, 0x50))] # Constant colors COLOR_BACKGROUND = (0x22, 0x22, 0x22) COLOR_SHADOW = (0x44, 0x44, 0x44) COLOR_BORDER = (0xAA, 0xAA, 0xAA) COLOR_FLASH = (0xFF, 0xFF, 0xFF) COLOR_PAUSE = (0x00, 0x00, 0x00) COLOR_TEXT = (0xFF, 0xFF, 0xFF) # Max framerate FRAMERATE = 1 / 60 # Time to show that a line has been cleared FLASH_TIME = 0.5 PREVIEW_OFFSET = 4 KEYDOWN_TIME_CONST = 0.036 # Definition for a tile class TetrisTile(pygame.Rect): def __init__(self, left, top, width, height, empty, color): super().__init__(left, top, width, height) self.empty = empty self.color = color class TetrisGame: def __init__(self): self.width = 500 self.height = 500 self.rows = 22 self.cols = 10 self.speed = 0.7 self.scale = 11 self.tile_length = 15 self.fallspeed = 1 pygame.init() self.screen = pygame.display.set_mode( (self.width, self.height), RESIZABLE) # Loop gameplay until the player closes the window # Initialize grid welcome = True while True: self.grid = self.grid = [ [None] * self.cols for _ in range(self.rows) ] for y in range(self.rows): for x in range(self.cols): dy = y * self.tile_length + self.tile_length dx = x * self.tile_length + self.tile_length self.grid[y][x] = TetrisTile( dx, dy, self.tile_length, self.tile_length, True, COLOR_BACKGROUND ) # Create the grid for the tetris tile preview self.preview_grid = [[None] * 4 for _ in range(4)] for y in range(4): for x in range(4): dy = y * self.tile_length dx = x * self.tile_length + \ (self.cols + PREVIEW_OFFSET) * self.tile_length self.preview_grid[y][x] = pygame.Rect( dx, dy, self.tile_length, self.tile_length) # Draw the board self.draw_everything(init=True, resize=True, welcome=welcome) pygame.display.flip() # Initial wait for user to start the game if welcome: welcome = False new_game = False while not new_game: frame_time = time() for event in pygame.event.get(): if event.type == pygame.QUIT: self.sysexit() elif event.type == pygame.WINDOWRESIZED: self.draw_everything(resize=True, welcome=True, init=True) pygame.display.flip() elif event.type == pygame.KEYDOWN and event.key == pygame.K_RETURN: new_game = True delta = time() - frame_time if delta < FRAMERATE: sleep(FRAMERATE - delta) self.draw_everything(init=True) # Start the game self.eventloop() self.draw_everything(gameover=True) pygame.display.flip() new_game = False while not new_game: frame_time = time() for event in pygame.event.get(): if event.type == pygame.QUIT: self.sysexit() elif event.type == pygame.WINDOWRESIZED: self.draw_everything(resize=True, gameover=True) pygame.display.flip() elif event.type == pygame.KEYDOWN and event.key == pygame.K_RETURN: new_game = True delta = time() - frame_time if delta < FRAMERATE: sleep(FRAMERATE - delta) # Main event loop. Will block until the game ends. def eventloop(self): self.next_tetramino = None self.cur_keydown = None self.keydown_time = None self.do_next_tetramino() self.draw(color=COLOR_SHADOW, y=self.lowest_y()) self.draw(next=True) self.draw() pygame.display.flip() gravity_time = time() while True: frame_time = time() self.handle_events() if time() - gravity_time >= self.fallspeed: if self.can_be_placed(y=self.y + 1): self.draw(color=COLOR_BACKGROUND, y=self.lowest_y()) self.draw(color=COLOR_BACKGROUND) self.y += 1 self.draw(color=COLOR_SHADOW, y=self.lowest_y()) self.draw() pygame.display.flip() else: self.place() self.do_next_tetramino() self.draw(next=True) self.draw(color=COLOR_SHADOW, y=self.lowest_y()) self.draw() pygame.display.flip() if not self.can_be_placed(): return gravity_time = time() delta = time() - frame_time if delta < FRAMERATE: sleep(FRAMERATE - delta) # Handle game and window controls def handle_events(self): for event in pygame.event.get(): if event.type == pygame.QUIT: self.sysexit() elif event.type == pygame.WINDOWRESIZED: self.draw_everything(resize=True) elif event.type == pygame.KEYUP: self.cur_keydown = None self.keydown_time = None elif event.type == pygame.KEYDOWN: self.cur_keydown = event.key self.keydown_time = time() if event.key in (pygame.K_UP, pygame.K_DOWN, pygame.K_LEFT, pygame.K_RIGHT): self.move(event.key) if event.key == pygame.K_SPACE: self.autoplace() if event.key == pygame.K_RETURN: self.pause() if self.cur_keydown == pygame.K_DOWN and self.keydown_time and time() - self.keydown_time >= KEYDOWN_TIME_CONST: self.keydown_time = time() if self.cur_keydown == pygame.K_DOWN: self.move(self.cur_keydown) def pause(self): self.draw_everything(paused=True) pygame.display.flip() while True: frame_time = time() for event in pygame.event.get(): if event.type == pygame.QUIT: self.sysexit() elif event.type == pygame.WINDOWRESIZED: self.draw_everything(resize=True, paused=True) pygame.display.flip() elif event.type == pygame.KEYDOWN and event.key == pygame.K_RETURN: self.draw_everything() pygame.display.flip() return delta = time() - frame_time if delta < FRAMERATE: sleep(FRAMERATE - delta) # Move the current tetramino in a given direction based on user input def move(self, direction): newx = self.x newy = self.y newr = self.r if direction == pygame.K_DOWN: newy += 1 elif direction == pygame.K_UP: newr = (self.r + 1) % 4 elif direction == pygame.K_LEFT: newx -= 1 elif direction == pygame.K_RIGHT: newx += 1 if self.can_be_placed(x=newx, y=newy, r=newr): self.draw(color=COLOR_BACKGROUND, y=self.lowest_y()) self.draw(color=COLOR_BACKGROUND) self.x, self.y, self.r = newx, newy, newr self.draw(color=COLOR_SHADOW, y=self.lowest_y()) self.draw() pygame.display.flip() # Draw the current tetramino # kwargs modify x, y, r drawn def draw(self, **kwargs): if 'next' in kwargs and kwargs['next']: dy = 2 dx = 0 for row in self.next_tetramino[0][2:]: for i in row: if i: pygame.draw.rect( self.screen, self.next_color, self.preview_grid[dy][dx]) else: pygame.draw.rect( self.screen, COLOR_BACKGROUND, self.preview_grid[dy][dx]) dx += 1 dy += 1 dx = 0 elif not None in kwargs.values(): dy = self.y if 'y' not in kwargs else kwargs['y'] dx = self.x if 'x' not in kwargs else kwargs['x'] color = self.color if 'color' not in kwargs else kwargs['color'] for row in self.tetramino[self.r if 'r' not in kwargs else kwargs['r']]: for i in row: if i: pygame.draw.rect(self.screen, color, self.grid[dy][dx]) dx += 1 dy += 1 dx = self.x if 'x' not in kwargs else kwargs['x'] # Place the current tetramino def place(self): dy = self.y dx = self.x for row in self.tetramino[self.r]: for i in row: if i: self.grid[dy][dx].empty = False self.grid[dy][dx].color = self.color dx += 1 dy += 1 dx = self.x self.lineclear() # Place the current tetramino immediately (pressing spacebar) def autoplace(self): self.draw(color=COLOR_BACKGROUND) self.y = self.lowest_y() self.draw() self.place() self.do_next_tetramino() self.draw(next=True) self.draw(color=COLOR_SHADOW, y=self.lowest_y()) self.draw() pygame.display.flip() # Clear filled rows def lineclear(self): to_clear = [] not_to_clear = [] for row in self.grid: if any(tile.empty for tile in row): not_to_clear.append(row) else: to_clear.append(row) # Return if nothing to do if len(to_clear) == 0: return # Do a flash "animation" for row in to_clear: pygame.draw.rect(self.screen, COLOR_FLASH, pygame.Rect( row[0].left, row[0].top, row[-1].left + self.tile_length - row[0].left, self.tile_length )) pygame.display.flip() sleep(FLASH_TIME / 3) for row in to_clear: for tile in row: pygame.draw.rect(self.screen, tile.color, tile) pygame.display.flip() sleep(FLASH_TIME / 3) for row in to_clear: pygame.draw.rect(self.screen, COLOR_FLASH, pygame.Rect( row[0].left, row[0].top, row[-1].left + self.tile_length - row[0].left, self.tile_length )) pygame.display.flip() sleep(FLASH_TIME / 3) # self.grid is now a reference to to_clear # rows in not_to_clear will be added later self.grid = to_clear amt_rows_cleared = len(to_clear) # Reset rows in to_clear to blank and move them to the top for y in range(len(to_clear)): for x in range(self.cols): dy = y * self.tile_length + self.tile_length dx = x * self.tile_length + self.tile_length to_clear[y][x].empty = True to_clear[y][x].color = COLOR_BACKGROUND to_clear[y][x].update( dx, dy, self.tile_length, self.tile_length) # Update the existing rows for i in range(len(not_to_clear)): for x in range(self.cols): dy = (i + amt_rows_cleared) * \ self.tile_length + self.tile_length dx = x * self.tile_length + self.tile_length not_to_clear[i][x].update( dx, dy, self.tile_length, self.tile_length) self.grid.append(not_to_clear[i]) # Finally, redraw everything for row in self.grid: for tile in row: pygame.draw.rect(self.screen, tile.color, tile) pygame.display.flip() # Select a new random tetramino def do_next_tetramino(self): if self.next_tetramino: self.tetramino = self.next_tetramino self.color = self.next_color else: i = randint(0, len(TETRAMINOS) - 1) self.tetramino = TETRAMINOS[i][0] self.color = TETRAMINOS[i][1] i = randint(0, len(TETRAMINOS) - 1) self.next_tetramino = TETRAMINOS[i][0] self.next_color = TETRAMINOS[i][1] self.x = (self.cols - 1) // 2 - 1 self.y = 0 self.r = 0 if self.fallspeed > 0.1: self.fallspeed -= 0.005 elif self.fallspeed > 0.05: self.fallspeed -= 0.0001 # Calculate the lowest (greatest) possible y value for the current tetramino def lowest_y(self): dy = self.y + 1 while self.can_be_placed(y=dy): dy += 1 dy -= 1 return dy # Return True/False if the current tetramino can/can't be place in its current position # Modify x, y, or the rotation depending on kwargs def can_be_placed(self, **kwargs): dy = self.y if not 'y' in kwargs else kwargs['y'] dx = self.x if not 'x' in kwargs else kwargs['x'] dr = self.r if not 'r' in kwargs else kwargs['r'] for row in self.tetramino[dr]: for i in row: if i: if (dy not in range(0, self.rows) or dx not in range(0, self.cols)) or not self.grid[dy][dx].empty: return False dx += 1 dy += 1 dx = self.x if not 'x' in kwargs else kwargs['x'] return True def draw_everything(self, **kwargs): if kwargs.get('resize'): width, height = self.screen.get_size() t_h = height // (self.rows + 2) t_w = width // (self.cols + PREVIEW_OFFSET + 6) new_tile_length = min(t_h, t_w) if new_tile_length != self.tile_length: self.tile_length = new_tile_length for y in range(self.rows): for x in range(self.cols): dy = y * self.tile_length + self.tile_length dx = x * self.tile_length + self.tile_length self.grid[y][x].update( dx, dy, self.tile_length, self.tile_length ) for y in range(4): for x in range(4): dy = y * self.tile_length dx = x * self.tile_length + \ (self.cols + PREVIEW_OFFSET) * self.tile_length self.preview_grid[y][x].update( dx, dy, self.tile_length, self.tile_length ) self.screen.fill(COLOR_BACKGROUND) border = pygame.Rect(0, 0, self.tile_length * (self.cols + 2), self.tile_length * (self.rows + 2)) pygame.draw.rect(self.screen, COLOR_BORDER, border) if kwargs.get('paused'): curtain = pygame.Rect( self.tile_length, self.tile_length, self.cols * self.tile_length, self.rows * self.tile_length ) pygame.draw.rect(self.screen, COLOR_PAUSE, curtain) font1 = pygame.font.Font( 'freesansbold.ttf', int(self.tile_length * 1.7) ) font2 = pygame.font.Font( 'freesansbold.ttf', int(self.tile_length * 1.3) ) s1 = font1.render("PAUSED", True, COLOR_TEXT) s2 = font2.render("PRESS ENTER", True, COLOR_TEXT) s3 = font2.render("TO UNPAUSE", True, COLOR_TEXT) self.screen.blit(s1, ( (self.tile_length * (self.cols // 2) + self.tile_length) - s1.get_size()[0] // 2, (self.tile_length * (self.rows // 2)) - + s1.get_size()[1] )) self.screen.blit(s2, ( (self.tile_length * (self.cols // 2) + self.tile_length) - s2.get_size()[0] // 2, (self.tile_length * (self.rows // 2)) + s2.get_size()[1] // 2 )) self.screen.blit(s3, ( (self.tile_length * (self.cols // 2) + self.tile_length) - s3.get_size()[0] // 2, (self.tile_length * (self.rows // 2)) + s2.get_size()[1] // 2 + s3.get_size()[1] )) else: for row in self.grid: for tile in row: pygame.draw.rect(self.screen, tile.color, tile) if not kwargs.get('init'): self.draw(color=COLOR_SHADOW, y=self.lowest_y()) self.draw() self.draw(next=True) if kwargs.get('gameover') or kwargs.get('welcome'): font1 = pygame.font.Font( 'freesansbold.ttf', int(self.tile_length * 1.5) ) font2 = pygame.font.Font( 'freesansbold.ttf', int(self.tile_length * 0.9) ) s1 = font1.render( "GAME OVER" if kwargs.get('gameover') else "WELCOME", True, COLOR_TEXT ) s2 = font2.render("PRESS ENTER TO", True, COLOR_TEXT) s3 = font2.render("START A NEW GAME", True, COLOR_TEXT) text_begin = (self.tile_length * (self.rows // 2) ) - + s1.get_size()[1] text_end = (self.tile_length * (self.rows // 2)) + \ s2.get_size()[1] // 2 + s3.get_size()[1] background = pygame.Rect( self.tile_length, text_begin - self.tile_length, self.cols * self.tile_length, (text_end + s3.get_size()[1] + self.tile_length) - (text_begin - self.tile_length) ) pygame.draw.rect(self.screen, COLOR_PAUSE, background) self.screen.blit(s1, ( (self.tile_length * (self.cols // 2) + self.tile_length) - s1.get_size()[0] // 2, text_begin )) self.screen.blit(s2, ( (self.tile_length * (self.cols // 2) + self.tile_length) - s2.get_size()[0] // 2, (self.tile_length * (self.rows // 2)) + s2.get_size()[1] // 2 )) self.screen.blit(s3, ( (self.tile_length * (self.cols // 2) + self.tile_length) - s3.get_size()[0] // 2, text_end )) font = pygame.font.Font( 'freesansbold.ttf', int(self.tile_length * 1.5)) text_next = font.render("NEXT", True, COLOR_TEXT) self.screen.blit(text_next, (self.tile_length * (self.cols + PREVIEW_OFFSET), self.tile_length // 2)) def sysexit(self): pygame.quit() exit() if __name__ == "__main__": TetrisGame()
dmcdo/Pygame-Games
tetris.pyw
tetris.pyw
pyw
22,293
python
en
code
0
github-code
6
14334373987
# dictionary inside list a = [{'Name':'Ram','Age':34,'Add':'Kathmandu'}, {'Name':'Shyam','Age':56,'Add':'Bhaktapur'}, {'Name':'Hari','Age':89,'Add':'Lalitpur'}] print(a[0]) b = {'Name':'Hari','Age':89,'Add':'Lalitpur'} a.append(b) print(a) info = [] n = int(input("Enter n = ")) for i in range(n): name = input("Enter name = ") age = int(input("Enter age = ")) add = input("Enter add = ") data = {'Name':name,'Age':age,'Add':add} info.append(data) print(info) a = [{'Name': 'Ram', 'Age': 45, 'Add': 'Kathmandu'}, {'Name': 'Shyma', 'Age': 89, 'Add': 'Kathmandu'}, {'Name': 'Nabin', 'Age': 23, 'Add': 'Lalitpur'}] a[0] = {'Name': 'Rama', 'Age': 25, 'Add': 'Bara'} a a = [{'Name': 'Ram', 'Age': 45, 'Add': 'Kathmandu'}, {'Name': 'Shyma', 'Age': 89, 'Add': 'Kathmandu'}, {'Name': 'Nabin', 'Age': 23, 'Add': 'Lalitpur'}] a[0]['Name'] = 'Rama' a # dict inside dict d = {1:{'Name':'Ram','Per':80,'Pos':2}, 2:{'Name':'Shyam','Per':60,'Pos':20}, 3:{'Name':'Nabin','Per':78,'Pos':5} } print(d) d = {} # d[<key>] = {<key>:<velue>} d[1] = {'Name': 'Ram', 'Per': 80, 'Pos': 2} d[2] = {'Name': 'Shyam', 'Per': 60, 'Pos': 20} d d = {'sn':[],'name':[],'category':[]} # WAP to create dict inside dict d = {} n = int(input("Enter n = ")) for i in range(1,n+1): name = input("Enter name = ") per = int(input("Enter per = ")) pos = int(input("Enter pos = ")) d[i] = {'Name':name,'Per':per,'Pos':pos} print(d) d = {'sn':[1,2], 'name':['Coke','Momo'], 'quantity':[3,3], 'price':[200,150], 'total':[600,450]} {1: {'Name': 'Ram', 'quantity': 78, 'price': 2,'total':600}, 2: {'Name': 'Hari', 'quantity': 78, 'price': 2,'total':600}}
Roshan2059/learning-python-with-django
day15-c.py
day15-c.py
py
1,733
python
en
code
0
github-code
6
7804756691
from jinja2 import Environment, FileSystemLoader import yaml import os.path ENV = Environment(loader=FileSystemLoader('./')) script_path = 'SCRIPTS/' script = os.path.join(script_path, 'script.txt') with open("config.yaml") as _: yaml_dict = yaml.load(_) template = ENV.get_template("template.text") with open(script, 'w') as outfile: temp = template.render(config=yaml_dict) outfile.write(temp)
dancwilliams/Prefix_List_Script
EXTRA_SCRIPTS/MANUAL_CREATE/generate_config.py
generate_config.py
py
416
python
en
code
0
github-code
6
26239584931
from sets import Set def prod_exists(x): x = str(x) for i in range(1,5): for j in range(1, 8 - i): if (int(x[:i]) * int(x[i:i + j]) == int(x[i+j:])): return int(x[i+j:]) return 0 facs = {} def fac(x): try: return facs[x] except: if(x == 1 or x == 0): facs[x] = 1 return 1 facs[x] = x*fac(x-1) return x*fac(x-1) def perm_gen(domain,nr): ret = "" l = len(domain) for i in range(0,l): t = int(nr) / fac(l - i - 1) nr = int(nr) % fac(l - i - 1) ret += str(domain[t]) domain.remove(domain[t]) return ret def gen_perms(domain): domainlist = [] domainlist.extend(str(domain)) domainlist.sort() perms = [] for i in range(0, fac(len(domainlist))): calldomain = domainlist[:] perms.append(int(perm_gen(calldomain,i))) return perms perms = gen_perms(123456789) print(sum( Set(prod_exists(i) for i in perms) ))
schroeji/Projekt-Euler
prob32.py
prob32.py
py
1,063
python
en
code
0
github-code
6
16106099445
#import logging class stopwatch: """usage: swgen = stopwatch.template("[INTEGRATION]") ... with swgen("Running xxx") as _: run_stuff() with swgen("Finalizing xxx") as _: finish_stuff() """ def __init__(self, message, logger): self.logger = logger self.pre_message = message if len(message) > 1: self.post_message = message[0].lower() + message[1:] else: self.post_message = message def __enter__(self): from time import time self.logger.info(self.pre_message) self.timer = time() return self def tqdm_range(self, item_list, **kwargs): from tqdm.auto import tqdm return tqdm(item_list, desc=self.pre_message, **kwargs) def tqdm(self, **kwargs): return tqdm.tqdm(desc=self.pre_message, **kwargs) def __exit__(self, exc_type, exc_val, exc_tb): from time import time delta = time() - self.timer self.logger.info("Finished %s in %.2f seconds" % (self.post_message, delta)) def template(logname : str = "benj", level=None): import logging logger = logging.getLogger(logname) if level is not None: logging.basicConfig(level=level) else: logging.basicConfig(level=logging.INFO) return lambda msg: stopwatch(msg, logger=logger)
KellisLab/benj
benj/timer.py
timer.py
py
1,382
python
en
code
2
github-code
6
29707449656
#!/usr/bin/env python import pybullet as p import random import numpy as np from mamad_util import JointInfo def check_collision(active_joints_info,num_active_joints): collision_set=[] index_of_active_joints = [active_joints_info[i]["jointIndex"] for i in range(num_active_joints)] for i in index_of_active_joints: for j in index_of_active_joints: if i == j: continue contact = p.getClosestPoints(fingerID,fingerID,0,i,j) if len(contact)!=0: collision_set.append([contact[0][3],contact[0][4]]) check_flip=[] for i in range(len(collision_set)): index_1=collision_set[i][0] index_2=collision_set[i][1] for j in range(i,len(collision_set)): if i == j: continue if index_1 == collision_set[j][1] and index_2 == collision_set[j][0]: check_flip.append(j) new_check=[] sort=np.argsort(check_flip) for i in range(len(check_flip)): new_check.append(check_flip[sort[i]]) for i in range(len(check_flip)): del collision_set[new_check[i]-i] check_parent=[] for i in range(len(parent_list)): index_parent_1=parent_list[i][0] index_parent_2=parent_list[i][1] for j in range(len(collision_set)): if index_parent_1 == collision_set[j][0] and index_parent_2 == collision_set[j][1]: check_parent.append(j) if index_parent_1 == collision_set[j][1] and index_parent_2 == collision_set[j][0]: check_parent.append(j) new_check_parent=[] sort_parent=np.argsort(check_parent) for i in range(len(check_parent)): new_check_parent.append(check_parent[sort_parent[i]]) for i in range(len(check_parent)): del collision_set[new_check_parent[i]-i] collision_result=[] for i in range (len(collision_set)): index_collision_set_1=collision_set[i][0] index_collision_set_2=collision_set[i][1] for j in range(num_active_joints): if index_collision_set_1 == active_joints_info[j]["jointIndex"]: index_collision_set_1_result = j if index_collision_set_2 == active_joints_info[j]["jointIndex"]: index_collision_set_2_result = j collision_result.append([active_joints_info[index_collision_set_1_result]["linkName"],active_joints_info[index_collision_set_2_result]["linkName"]]) return collision_result p.connect(p.GUI) p.setGravity(0,0,-9.8) finger = p.loadSDF("./model.sdf") fingerID = finger[0] jointInfo = JointInfo() jointInfo.get_infoForAll_joints(finger) active_joints_info = jointInfo.getActiveJointsInfo() num_active_joints = jointInfo.getNumberOfActiveJoints() num_joints = p.getNumJoints(fingerID) # print("active_joints_info::",active_joints_info) # print("finger::",finger) # print("`num of joints:::",num_joints) """ for i in range(num_joints): j_info = p.getJointInfo(fingerID,i) print("joint_info::",j_info) """ # texUid = p.loadTexture("./../cube_new/aaa.png") # cube_objects = p.loadSDF("./../cube_new/model.sdf") # p.changeVisualShape(cube_objects[0], -1, rgbaColor=[1, 1, 1, 1]) # p.changeVisualShape(cube_objects[0], -1, textureUniqueId=texUid) # p.resetBasePositionAndOrientation(cube_objects[0], [0, 0.37, 0.07],[0.7071, 0.000000, 0.000000, 0.7071]) p.setRealTimeSimulation(0) p.setTimeStep(1./5000) while(1): p.resetBasePositionAndOrientation(fingerID, [0, 0, 0],[0.7071, 0.000000, 0.000000, -0.7071]) parent_list=[] for i in range(num_active_joints): jointIndex = active_joints_info[i]["jointIndex"] jointName = active_joints_info[i]["jointName"] linkName = active_joints_info[i]["linkName"] jointPositionState = p.getJointState(fingerID,jointIndex)[0] # print("linkName::",linkName) # print("jointName::",jointName) # print("jointIndex::",jointIndex) # print("jointPositionState::",jointPositionState) jointll = active_joints_info[i]["jointLowerLimit"] jointul = active_joints_info[i]["jointUpperLimit"] # print("lower limit",jointll) # print("upper limit",jointul) motor_command = jointPositionState parent_list.append([jointIndex,jointInfo.searchBy("jointIndex",jointIndex)[0]["parentIndex"]]) if jointIndex == 3: step =(abs(jointll)-abs(jointul))/100 motor_command = jointPositionState+0.0 p.setJointMotorControl2(fingerID,jointIndex,p.POSITION_CONTROL,motor_command, force=1.0) collision_result=check_collision(active_joints_info,num_active_joints) #print("right hand self coliision -------",collision_set) print("right hand self coliision -------",collision_result) print("\n") p.stepSimulation()
ccylance/theis-code
gym_test/gym_test/envs/shadow_hand_vijay/gym_test.py
gym_test.py
py
4,379
python
en
code
0
github-code
6
9756222638
import theano from theano import tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams from theano.tensor.signal import pool from theano.tensor.nnet import conv3d2d import numpy as np from collections import OrderedDict from .. import config from .numpy_backend import get_random_magic_seed, get_random_magic_seed _FLOATX = config.floatX() _EPSILON = config.epsilon() # =========================================================================== # INTERNAL UTILS # =========================================================================== theano.config.floatX = _FLOATX def _on_gpu(): '''Return whether the session is set to run on GPU or not (i.e. on CPU). ''' return theano.config.device[:3] == 'gpu' or theano.sandbox.cuda.cuda_enabled if _on_gpu(): '''Import cuDNN only if running on GPU: not having Cuda installed should not prevent from running the present code. ''' from theano.sandbox.cuda import dnn def get_session(): return _on_gpu() # =========================================================================== # VARIABLE MANIPULATION # =========================================================================== def variable(value, dtype=_FLOATX, name=None, broadcastable=None): '''Instantiate a tensor variable. ''' value = np.asarray(value, dtype=dtype) if broadcastable: return theano.shared(value=value, name=name, strict=False, broadcastable=broadcastable) return theano.shared(value=value, name=name, strict=False) def zeros_var(shape, dtype=_FLOATX, name=None): '''Instantiate an all-zeros variable. ''' return variable(np.zeros(shape), dtype, name) def ones_var(shape, dtype=_FLOATX, name=None): '''Instantiate an all-ones variable. ''' return variable(np.ones(shape), dtype, name) def is_variable(v): return isinstance(v, theano.compile.SharedVariable) _PLACEHOLDER_ID = 0 _PLACEHOLDER_SHAPE = {} def placeholder(shape=None, ndim=None, dtype=_FLOATX, name=None): '''Instantiate an input data placeholder variable. ''' if shape is None and ndim is None: raise Exception('Specify either a shape or ndim value.') if shape is not None: ndim = len(shape) broadcast = (False,) * ndim # ====== Modify add name prefix ====== # global _PLACEHOLDER_ID name_prefix = 'ID.%02d.' % _PLACEHOLDER_ID _PLACEHOLDER_ID += 1 if name is None: name = '' name = name_prefix + name placeholder = T.TensorType(dtype, broadcast)(name) # store the predefined shape of placeholder _PLACEHOLDER_SHAPE[name] = \ [None for _ in range(ndim)] if shape is None else shape return placeholder def is_expression(v): '''placeholder also is an expression''' return isinstance(v, theano.tensor.TensorVariable) def is_placeholder(v): if is_expression(v) and v.name in _PLACEHOLDER_SHAPE: return True return False def eval(x): '''Run a graph. ''' # just a hack to return placeholder shape when eval if x in _PLACEHOLDER_SHAPE: return _PLACEHOLDER_SHAPE[x] return x.eval() # =========================================================================== # Shape operator # =========================================================================== def shape(x): '''Return the shape of a tensor. Warning: type returned will be different for Theano backend (Theano tensor type) and TF backend (TF TensorShape). ''' shape = x.shape # little to eval the shape of placeholder if hasattr(x, 'name'): if x.name in _PLACEHOLDER_SHAPE: _PLACEHOLDER_SHAPE[shape] = _PLACEHOLDER_SHAPE[x.name] return shape def int_shape(x): return x.shape.eval() def ndim(x): return x.ndim def broadcastable(x): return x.broadcastable def addbroadcast(x, *axes): return T.addbroadcast(x, *axes) # =========================================================================== # Predefined data # =========================================================================== def zeros(shape, dtype=_FLOATX, name=None): '''Instantiate an all-zeros variable. ''' return T.zeros(shape=shape, dtype=dtype) def ones(shape, dtype=_FLOATX, name=None): '''Instantiate an all-ones variable. ''' return T.ones(shape=shape, dtype=dtype) def ones_like(x): return T.ones_like(x) def zeros_like(x): return T.zeros_like(x) def count_params(x): '''Return number of scalars in a tensor. Return: numpy integer. ''' return np.prod(x.shape.eval()) def cast(x, dtype): if 'theano.' in str(x.__class__): return T.cast(x, dtype) return np.cast[dtype](x) def castX(x): return cast(x, _FLOATX) # LINEAR ALGEBRA ''' Assumed overridden: +, -, /, *, +=, -=, *=, /= ''' def dot(x, y): return T.dot(x, y) def transpose(x): return T.transpose(x) def gather(reference, indices): '''reference: a tensor. indices: an int tensor of indices. Return: a tensor of same type as reference. ''' return reference[indices] # =========================================================================== # ELEMENT-WISE OPERATIONS # =========================================================================== def var(x, axis=None, keepdims=False): return T.var(x, axis=axis, keepdims=keepdims) def max(x, axis=None, keepdims=False): return T.max(x, axis=axis, keepdims=keepdims) def min(x, axis=None, keepdims=False): return T.min(x, axis=axis, keepdims=keepdims) def sum(x, axis=None, keepdims=False): '''Sum of the values in a tensor, alongside the specified axis. ''' return T.sum(x, axis=axis, keepdims=keepdims) def prod(x, axis=None, keepdims=False): '''Multiply the values in a tensor, alongside the specified axis. ''' return T.prod(x, axis=axis, keepdims=keepdims) def mean(x, axis=None, keepdims=False): dtype = None if 'int' in x.dtype: dtype = _FLOATX return T.mean(x, axis=axis, keepdims=keepdims, dtype=dtype) def std(x, axis=None, keepdims=False): return T.std(x, axis=axis, keepdims=keepdims) def any(x, axis=None, keepdims=False): '''Bitwise reduction (logical OR). ''' return T.any(x, axis=axis, keepdims=keepdims) def argmax(x, axis=-1): return T.argmax(x, axis=axis, keepdims=False) def argsort(x, axis=-1): return T.argsort(x, axis) def argtop_k(x, k=1): # top-k accuracy top = T.argsort(x, axis=-1) # (Theano cannot index with [..., -top_k:], we need to simulate that) top = top[[slice(None) for _ in range(top.ndim - 1)] + [slice(-k, None)]] top = top[(slice(None),) * (top.ndim - 1) + (slice(None, None, -1),)] return top def argmin(x, axis=-1): return T.argmin(x, axis=axis, keepdims=False) def square(x): return T.sqr(x) def abs(x): return T.abs_(x) def sqrt(x): x = T.clip(x, 0., np.inf) return T.sqrt(x) def exp(x): return T.exp(x) def log(x): return T.log(x) def round(x): return T.round(x) def pow(x, a): return T.pow(x, a) def clip(x, min_value, max_value): if max_value < min_value: max_value = min_value return T.clip(x, min_value, max_value) def maximum(x, y): return T.maximum(x, y) def minimum(x, y): return T.minimum(x, y) # =========================================================================== # SHAPE OPERATIONS # =========================================================================== def reverse(x, axis=-1): '''Apply [::-1] to appropriate axis''' if axis < 0: axis += x.ndim return x[(slice(None),) * axis + (slice(None, None, -1),)] def concatenate(tensors, axis=-1): return T.concatenate(tensors, axis=axis) def reshape(x, shape): return T.reshape(x, shape) def dimshuffle(x, pattern): '''Transpose dimensions. pattern should be a tuple or list of dimension indices, e.g. [0, 2, 1]. ''' pattern = tuple(pattern) return x.dimshuffle(pattern) def repeat_elements(x, rep, axis): '''Repeat the elements of a tensor along an axis, like np.repeat. If x has shape (s1, s2, s3) and axis=1, the output will have shape (s1, s2 * rep, s3). ''' return T.repeat(x, rep, axis=axis) def resize_images(X, height_factor, width_factor, dim_ordering): '''Resize the images contained in a 4D tensor of shape - [batch, channels, height, width] (for 'th' dim_ordering) - [batch, height, width, channels] (for 'tf' dim_ordering) by a factor of (height_factor, width_factor). Both factors should be positive integers. ''' if dim_ordering == 'th': output = repeat_elements(X, height_factor, axis=2) output = repeat_elements(output, width_factor, axis=3) return output elif dim_ordering == 'tf': output = repeat_elements(X, height_factor, axis=1) output = repeat_elements(output, width_factor, axis=2) return output else: raise Exception('Invalid dim_ordering: ' + dim_ordering) def repeat(x, n): '''Repeat a 2D tensor. If x has shape (samples, dim) and n=2, the output will have shape (samples, 2, dim). ''' assert x.ndim == 2 x = x.dimshuffle((0, 'x', 1)) return T.extra_ops.repeat(x, n, axis=1) def tile(x, n): return T.tile(x, n) def flatten(x, outdim=2): return T.flatten(x, outdim) def expand_dims(x, dim=-1): '''Add a 1-sized dimension at index "dim". ''' pattern = [i for i in range(x.type.ndim)] if dim < 0: if x.type.ndim == 0: dim = 0 else: dim = dim % x.type.ndim + 1 pattern.insert(dim, 'x') return x.dimshuffle(pattern) def squeeze(x, axis): '''Remove a 1-dimension from the tensor at index "axis". ''' x = T.addbroadcast(x, axis) return T.squeeze(x) def temporal_padding(x, padding=1): '''Pad the middle dimension of a 3D tensor with "padding" zeros left and right. Appologies for the inane API, but Theano makes this really hard. ''' input_shape = x.shape output_shape = (input_shape[0], input_shape[1] + 2 * padding, input_shape[2]) output = T.zeros(output_shape) return T.set_subtensor(output[:, padding:x.shape[1] + padding, :], x) def spatial_2d_padding(x, padding=(1, 1), dim_ordering='th'): '''Pad the 2nd and 3rd dimensions of a 4D tensor with "padding[0]" and "padding[1]" (resp.) zeros left and right. ''' input_shape = x.shape if dim_ordering == 'th': output_shape = (input_shape[0], input_shape[1], input_shape[2] + 2 * padding[0], input_shape[3] + 2 * padding[1]) output = T.zeros(output_shape) indices = (slice(None), slice(None), slice(padding[0], input_shape[2] + padding[0]), slice(padding[1], input_shape[3] + padding[1])) elif dim_ordering == 'tf': output_shape = (input_shape[0], input_shape[1] + 2 * padding[0], input_shape[2] + 2 * padding[1], input_shape[3]) output = T.zeros(output_shape) indices = (slice(None), slice(padding[0], input_shape[1] + padding[0]), slice(padding[1], input_shape[2] + padding[1]), slice(None)) else: raise Exception('Invalid dim_ordering: ' + dim_ordering) return T.set_subtensor(output[indices], x) def stack(*x): return T.stack(*x) # =========================================================================== # VALUE MANIPULATION # =========================================================================== def get_value(x, borrow=False): if not hasattr(x, 'get_value'): raise Exception("'get_value() can only be called on a variable. " + "If you have an expression instead, use eval().") return x.get_value(borrow=borrow) def set_value(x, value): x.set_value(np.asarray(value, dtype=x.dtype)) def set_subtensor(x, y): return T.set_subtensor(x, y) # =========================================================================== # GRAPH MANIPULATION # =========================================================================== _GLOBALS_UPDATES = OrderedDict() def add_global_updates(variable, value): '''trick to update tensorflow variables anywhere This dictionary will be reseted after each time you create a function ''' _GLOBALS_UPDATES[variable] = value def reset_global_updates(): global _GLOBALS_UPDATES _GLOBALS_UPDATES = OrderedDict() class Function(object): def __init__(self, inputs, outputs, updates=[], **kwargs): if isinstance(updates, OrderedDict): updates = updates.items() # ====== add and reset global update ====== # updates += _GLOBALS_UPDATES.items() reset_global_updates() self.function = theano.function( inputs, outputs, updates=updates, on_unused_input='ignore', # TODO: remove this when stop testing allow_input_downcast=True, **kwargs) def __call__(self, *inputs): return self.function(*inputs) def function(inputs, outputs, updates=[]): return Function(inputs, outputs, updates=updates) def grad_clip(x, clip): ''' This clip the gradient of expression, used on forward pass but clip the gradient on backward pass This is an elemwise operation. Parameters ---------- x: expression the variable we want its gradient inputs clipped lower_bound: float The lower bound of the gradient value upper_bound: float The upper bound of the gradient value. Example ------- >>> x = theano.tensor.scalar() >>> >>> z = theano.tensor.grad(grad_clip(x, -1, 1)**2, x) >>> z2 = theano.tensor.grad(x**2, x) >>> >>> f = theano.function([x], outputs = [z, z2]) >>> >>> print(f(2.0)) # output (1.0, 4.0) Note ---- We register an opt in tensor/opt.py that remove the GradClip. So it have 0 cost in the forward and only do work in the grad. ''' return theano.gradient.grad_clip(x, -clip, clip) def gradients(loss, variables, consider_constant=None, known_grads=None): """ Return symbolic gradients for one or more variables with respect to some cost. For more information about how automatic differentiation works in Theano, see :mod:`gradient`. For information on how to implement the gradient of a certain Op, see :func:`grad`. Parameters ---------- cost : scalar (0-dimensional) tensor variable or None Value with respect to which we are differentiating. May be `None` if known_grads is provided. wrt : variable or list of variables term[s] for which we want gradients consider_constant : list of expressions(variables) expressions not to backpropagate through known_grads : dict, optional A dictionary mapping variables to their gradients. This is useful in the case where you know the gradient on some variables but do not know the original cost. Returns ------- variable or list/tuple of variables (matches `wrt`) symbolic expression of gradient of `cost` with respect to each of the `wrt` terms. If an element of `wrt` is not differentiable with respect to the output, then a zero variable is returned. Example ------- >>> # For consider_constant: >>> a = T.variable(1.2) >>> b = T.variable(1.3) >>> x = a * b >>> >>> y = T.variable(2.) >>> z = T.variable(1.) >>> >>> z_pred = x * y >>> loss = T.pow((z - z_pred), 2) >>> >>> G = T.gradients(loss, [a, b, y], consider_constant=[x]) >>> >>> for g in G: >>> print(g.eval()) >>> # a_grad=0. b_grad=0. y_grad=6.614 """ return T.grad(loss, variables, consider_constant=consider_constant, known_grads=known_grads, disconnected_inputs='warn') def jacobian(loss, variables): return theano.gradient.jacobian(loss, variables, disconnected_inputs='warn') def hessian(loss, variables): return theano.gradient.hessian(loss, variables, disconnected_inputs='warn') # =========================================================================== # CONTROL FLOW # =========================================================================== def scan(step_fn, sequences=None, outputs_info=None, non_sequences=None, n_steps=None, truncate_gradient=-1, go_backwards=False): return theano.scan(step_fn, sequences=sequences, outputs_info=outputs_info, non_sequences=non_sequences, n_steps=n_steps, truncate_gradient=truncate_gradient, go_backwards=go_backwards, strict=False) def loop(step_fn, n_steps, sequences=None, outputs_info=None, non_sequences=None, go_backwards=False): """ Helper function to unroll for loops. Can be used to unroll theano.scan. The parameter names are identical to theano.scan, please refer to here for more information. Note that this function does not support the truncate_gradient setting from theano.scan. Parameters ---------- step_fn : function Function that defines calculations at each step. sequences : TensorVariable or list of TensorVariables List of TensorVariable with sequence data. The function iterates over the first dimension of each TensorVariable. outputs_info : list of TensorVariables List of tensors specifying the initial values for each recurrent value. Specify output_info to None for non-arguments to the step_function non_sequences: list of TensorVariables List of theano.shared variables that are used in the step function. n_steps: int Number of steps to unroll. go_backwards: bool If true the recursion starts at sequences[-1] and iterates backwards. Returns ------- List of TensorVariables. Each element in the list gives the recurrent values at each time step. """ if not isinstance(sequences, (list, tuple)): sequences = [] if sequences is None else [sequences] # When backwards reverse the recursion direction counter = range(n_steps) if go_backwards: counter = counter[::-1] output = [] # ====== check if outputs_info is None ====== # if outputs_info is not None: prev_vals = outputs_info else: prev_vals = [] output_idx = [i for i in range(len(prev_vals)) if prev_vals[i] is not None] # ====== check if non_sequences is None ====== # if non_sequences is None: non_sequences = [] # ====== Main loop ====== # for i in counter: step_input = [s[i] for s in sequences] + \ [prev_vals[idx] for idx in output_idx] + \ non_sequences out_ = step_fn(*step_input) # The returned values from step can be either a TensorVariable, # a list, or a tuple. Below, we force it to always be a list. if isinstance(out_, T.TensorVariable): out_ = [out_] if isinstance(out_, tuple): out_ = list(out_) output.append(out_) prev_vals = output[-1] # iterate over each scan output and convert it to same format as scan: # [[output11, output12,...output1n], # [output21, output22,...output2n],...] output_scan = [] for i in range(len(output[0])): l = map(lambda x: x[i], output) output_scan.append(T.stack(*l)) return output_scan def rnn(step_function, inputs, initial_states, go_backwards=False, mask=None, constants=None): '''Iterates over the time dimension of a tensor. Parameters ---------- inputs: tensor of temporal data of shape (samples, time, ...) (at least 3D). step_function: Parameters: input: tensor with shape (samples, ...) (no time dimension), representing input for the batch of samples at a certain time step. states: list of tensors. Returns: output: tensor with shape (samples, ...) (no time dimension), new_states: list of tensors, same length and shapes as 'states'. initial_states: tensor with shape (samples, ...) (no time dimension), containing the initial values for the states used in the step function. go_backwards: boolean. If True, do the iteration over the time dimension in reverse order. mask: binary tensor with shape (samples, time), with a zero for every element that is masked. constants: a list of constant values passed at each step. Returns ------- A tuple (last_output, outputs, new_states). last_output: the latest output of the rnn, of shape (samples, ...) outputs: tensor with shape (samples, time, ...) where each entry outputs[s, t] is the output of the step function at time t for sample s. new_states: list of tensors, latest states returned by the step function, of shape (samples, ...). ''' ndim = inputs.ndim assert ndim >= 3, 'Input should be at least 3D.' axes = [1, 0] + list(range(2, ndim)) inputs = inputs.dimshuffle(axes) if mask is not None: if mask.ndim == ndim - 1: mask = expand_dims(mask) assert mask.ndim == ndim mask = mask.dimshuffle(axes) if constants is None: constants = [] # build an all-zero tensor of shape (samples, output_dim) initial_output = step_function(inputs[0], initial_states + constants)[0] * 0 # Theano gets confused by broadcasting patterns in the scan op initial_output = T.unbroadcast(initial_output, 0, 1) def _step(input, mask, output_tm1, *states): output, new_states = step_function(input, states) # output previous output if masked. output = T.switch(mask, output, output_tm1) return_states = [] for state, new_state in zip(states, new_states): return_states.append(T.switch(mask, new_state, state)) return [output] + return_states results, _ = theano.scan( _step, sequences=[inputs, mask], outputs_info=[initial_output] + initial_states, non_sequences=constants, go_backwards=go_backwards) else: def _step(input, *states): output, new_states = step_function(input, states) return [output] + new_states results, _ = theano.scan( _step, sequences=inputs, outputs_info=[None] + initial_states, non_sequences=constants, go_backwards=go_backwards) # deal with Theano API inconsistency if type(results) is list: outputs = results[0] states = results[1:] else: outputs = results states = [] outputs = T.squeeze(outputs) last_output = outputs[-1] axes = [1, 0] + list(range(2, outputs.ndim)) outputs = outputs.dimshuffle(axes) states = [T.squeeze(state[-1]) for state in states] return last_output, outputs, states def switch(condition, then_expression, else_expression): '''condition: scalar tensor. ''' return T.switch(condition, then_expression, else_expression) # =========================================================================== # NN OPERATIONS # =========================================================================== def relu(x, alpha=0., max_value=None): assert hasattr(T.nnet, 'relu'), ('It looks like like your version of ' 'Theano is out of date. ' 'Install the latest version with:\n' 'pip install git+git://github.com/Theano/Theano.git --upgrade --no-deps') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x def softmax(x): return T.nnet.softmax(x) def softplus(x): return T.nnet.softplus(x) def linear(x): return x def categorical_crossentropy(output, target, from_logits=False): if from_logits: output = T.nnet.softmax(output) else: # scale preds so that the class probas of each sample sum to 1 output /= output.sum(axis=-1, keepdims=True) # avoid numerical instability with _EPSILON clipping output = T.clip(output, _EPSILON, 1.0 - _EPSILON) return T.nnet.categorical_crossentropy(output, target) def binary_crossentropy(output, target, from_logits=False): if from_logits: output = T.nnet.sigmoid(output) # avoid numerical instability with _EPSILON clipping output = T.clip(output, _EPSILON, 1.0 - _EPSILON) return T.nnet.binary_crossentropy(output, target) def sigmoid(x): return T.nnet.sigmoid(x) def hard_sigmoid(x): return T.nnet.hard_sigmoid(x) def tanh(x): return T.tanh(x) def dropout(x, level, rescale=True, noise_shape=None, seed=None, rng=None): """Computes dropout. With probability `keep_prob`, outputs the input element scaled up by `1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected sum is unchanged. By default, each element is kept or dropped independently. If `noise_shape` is specified, it must be [broadcastable](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) to the shape of `x`, and only dimensions with `noise_shape[i] == shape(x)[i]` will make independent decisions. For example, if `shape(x) = [k, l, m, n]` and `noise_shape = [k, 1, 1, n]`, each batch and channel component will be kept independently and each row and column will be kept or not kept together. Parameters ---------- x: A tensor. level: float(0.-1.) probability dropout values in given tensor rescale: bool whether rescale the outputs by dividing the retain probablity noise_shape: A 1-D `Tensor` of type `int32`, representing the shape for randomly generated keep/drop flags. seed: int A Python integer. Used to create random seeds. See rng: `tensor.rng` random generator from tensor class """ # ====== Validate arguments ====== # if seed is None: seed = get_random_magic_seed() if rng is None: rng = _RandomWrapper(RandomStreams(seed=seed), np.random.RandomState(seed=seed)) elif isinstance(rng, RandomStreams): rng = _RandomWrapper(rng, np.random.RandomState(seed=seed)) # ====== Dropout ====== # retain_prob = 1. - level if noise_shape is None: x = x * rng.binomial(shape=x.shape, p=retain_prob, dtype=x.dtype) else: # validate remove all None or -1 dimension noise_shape = tuple([x.shape[i] if j is None or j < 0 else j for i, j in enumerate(noise_shape)]) # auto select broadcast shape broadcast = [i for i, j in enumerate(noise_shape) if j == 1] if len(broadcast) > 0: x = x * T.addbroadcast( rng.binomial(shape=noise_shape, p=retain_prob, dtype=x.dtype), *broadcast) else: x = x * rng.binomial(shape=noise_shape, p=retain_prob, dtype=x.dtype) if rescale: x /= retain_prob return x # ==================== Regularizations ==================== # def l2_normalize(x, axis): norm = T.sqrt(T.sum(T.square(x), axis=axis, keepdims=True)) return x / norm def l2_regularize(x): return T.sum(T.square(x)) def l1_regularize(x): return T.sum(T.abs_(x)) def jacobian_regularize(hidden, params): ''' Computes the jacobian of the hidden layer with respect to the input, reshapes are necessary for broadcasting the element-wise product on the right axis ''' hidden = hidden * (1 - hidden) L = expand_dims(hidden, 1) * expand_dims(params, 0) # Compute the jacobian and average over the number of samples/minibatch L = T.sum(T.pow(L, 2)) / hidden.shape[0] return T.mean(L) def kl_gaussian(mean, logsigma, prior_mean=0., prior_logsigma=0.): ''' KL-divergence between two gaussians. Useful for Variational AutoEncoders. Use this as an activation regularizer Parameters: ----------- mean, logsigma: parameters of the input distributions prior_mean, prior_logsigma: paramaters of the desired distribution (note the log on logsigma) Note ---- origin implementation from seya: https://github.com/Philip-Bachman/ICML-2015/blob/master/LogPDFs.py Copyright (c) Philip Bachman ''' gauss_klds = 0.5 * (prior_logsigma - logsigma + ((T.exp(logsigma) + (mean - prior_mean)**2.0) / T.exp(prior_logsigma)) - 1.0) return T.mean(gauss_klds) def correntropy_regularize(x, sigma=1.): ''' Note ---- origin implementation from seya: https://github.com/EderSantana/seya/blob/master/seya/regularizers.py Copyright (c) EderSantana ''' return -T.sum(T.mean(T.exp(x**2 / sigma), axis=0)) / T.sqrt(2 * np.pi * sigma) # =========================================================================== # CONVOLUTIONS # =========================================================================== def conv2d(x, kernel, strides=(1, 1), border_mode='valid', dim_ordering='th', image_shape=None, filter_shape=None): ''' Run on cuDNN if available. border_mode: string, "same" or "valid". ''' if dim_ordering not in {'th', 'tf'}: raise Exception('Unknown dim_ordering ' + str(dim_ordering)) if dim_ordering == 'tf': # TF uses the last dimension as channel dimension, # instead of the 2nd one. # TH input shape: (samples, input_depth, rows, cols) # TH kernel shape: (depth, input_depth, rows, cols) # TF input shape: (samples, rows, cols, input_depth) # TF kernel shape: (rows, cols, input_depth, depth) x = x.dimshuffle((0, 3, 1, 2)) kernel = kernel.dimshuffle((3, 2, 0, 1)) if image_shape: image_shape = (image_shape[0], image_shape[3], image_shape[1], image_shape[2]) if filter_shape: filter_shape = (filter_shape[3], filter_shape[2], filter_shape[0], filter_shape[1]) if _on_gpu() and dnn.dnn_available(): if border_mode == 'same': np_kernel = kernel.eval() # mode same and even filter if len([s for s in np_kernel.shape[2:] if s % 2 == 0]) > 0.: assert strides[0] <= np_kernel.shape[2], \ 'strides should be smaller than the convolution window.' assert strides[1] <= np_kernel.shape[3], \ 'strides should be smaller than the convolution window.' conv_out = dnn.dnn_conv(img=x, kerns=kernel, border_mode='full') shift_x = (np_kernel.shape[2] - strides[0]) // 2 shift_y = (np_kernel.shape[3] - strides[1]) // 2 expected_width = (x.shape[2] + strides[0] - 1) // strides[0] expected_height = (x.shape[3] + strides[1] - 1) // strides[1] conv_out = conv_out[:, :, shift_x: shift_x + expected_width, shift_y: shift_y + expected_height] else: # same mode and odd filter border_mode = tuple(s // 2 for s in np_kernel.shape[2:]) conv_out = dnn.dnn_conv(img=x, kerns=kernel, border_mode=border_mode, subsample=strides) else: conv_out = dnn.dnn_conv(img=x, kerns=kernel, border_mode=border_mode, subsample=strides) else: if border_mode == 'same' or border_mode == 'full': th_border_mode = 'full' np_kernel = kernel.eval() assert strides[0] <= np_kernel.shape[2], 'strides should be smaller than the convolution window.' assert strides[1] <= np_kernel.shape[3], 'strides should be smaller than the convolution window.' elif border_mode == 'valid': th_border_mode = 'valid' elif isinstance(border_mode, (tuple, list)): th_border_mode = border_mode else: raise Exception('Border mode not supported: ' + str(border_mode)) conv_out = T.nnet.conv2d(x, kernel, border_mode=th_border_mode, subsample=strides, input_shape=image_shape, filter_shape=filter_shape) if border_mode == 'same': shift_x = (np_kernel.shape[2] - strides[0]) // 2 shift_y = (np_kernel.shape[3] - strides[1]) // 2 expected_width = (x.shape[2] + strides[0] - 1) // strides[0] expected_height = (x.shape[3] + strides[1] - 1) // strides[1] conv_out = conv_out[:, :, shift_x: shift_x + expected_width, shift_y: shift_y + expected_height] if dim_ordering == 'tf': conv_out = conv_out.dimshuffle((0, 2, 3, 1)) return conv_out def conv3d(x, kernel, strides=(1, 1, 1), border_mode='valid', dim_ordering='th', image_shape=None, filter_shape=None): ''' Run on cuDNN if available. border_mode: string, "same" or "valid". conv_mode: string, "conv" or "cross". ''' if dim_ordering not in {'th', 'tf'}: raise Exception('Unknown dim_ordering ' + str(dim_ordering)) if dim_ordering == 'tf': # TF uses the last dimension as channel dimension, # instead of the 2nd one. # TH input shape: (samples, input_depth, rows, cols, time) # TH kernel shape: (depth, input_depth, rows, cols, time) # TF input shape: (samples, rows, cols, time, input_depth) # TF kernel shape: (rows, cols, time, input_depth, depth) x = x.dimshuffle((0, 4, 1, 2, 3)) kernel = kernel.dimshuffle((4, 3, 0, 1, 2)) if image_shape: image_shape = (image_shape[0], image_shape[4], image_shape[1], image_shape[2], image_shape[3]) if filter_shape: filter_shape = (filter_shape[4], filter_shape[3], filter_shape[0], filter_shape[1], filter_shape[2]) if _on_gpu() and dnn.dnn_available(): if border_mode == 'same': np_kernel = kernel.eval() border_mode = tuple(s // 2 for s in np_kernel.shape[2:]) conv_out = dnn.dnn_conv3d(img=x, kerns=kernel, border_mode=border_mode, subsample=strides) else: if border_mode == 'same': assert(strides == (1, 1, 1)) pad_dim1 = (kernel.shape[2] - 1) pad_dim2 = (kernel.shape[3] - 1) pad_dim3 = (kernel.shape[4] - 1) output_shape = (x.shape[0], x.shape[1], x.shape[2] + pad_dim1, x.shape[3] + pad_dim2, x.shape[4] + pad_dim3) output = T.zeros(output_shape) indices = (slice(None), slice(None), slice(pad_dim1 // 2, x.shape[2] + pad_dim1 // 2), slice(pad_dim2 // 2, x.shape[3] + pad_dim2 // 2), slice(pad_dim3 // 2, x.shape[4] + pad_dim3 // 2)) x = T.set_subtensor(output[indices], x) border_mode = 'valid' border_mode_3d = (border_mode, border_mode, border_mode) conv_out = conv3d2d.conv3d(signals=x.dimshuffle(0, 2, 1, 3, 4), filters=kernel.dimshuffle(0, 2, 1, 3, 4), border_mode=border_mode_3d) conv_out = conv_out.dimshuffle(0, 2, 1, 3, 4) # support strides by manually slicing the output if strides != (1, 1, 1): conv_out = conv_out[:, :, ::strides[0], ::strides[1], ::strides[2]] if dim_ordering == 'tf': conv_out = conv_out.dimshuffle((0, 2, 3, 1)) return conv_out def pool2d(x, pool_size, strides=(1, 1), border_mode='valid', dim_ordering='th', pool_mode='max'): # ====== dim ordering ====== # if dim_ordering not in {'th', 'tf'}: raise Exception('Unknown dim_ordering ' + str(dim_ordering)) if dim_ordering == 'tf': x = x.dimshuffle((0, 3, 1, 2)) # ====== border mode ====== # if border_mode == 'same': w_pad = pool_size[0] - 2 if pool_size[0] % 2 == 1 else pool_size[0] - 1 h_pad = pool_size[1] - 2 if pool_size[1] % 2 == 1 else pool_size[1] - 1 padding = (w_pad, h_pad) elif border_mode == 'valid': padding = (0, 0) elif isinstance(border_mode, (tuple, list)): padding = tuple(border_mode) else: raise Exception('Invalid border mode: ' + str(border_mode)) # ====== pooling ====== # if _on_gpu() and dnn.dnn_available(): pool_out = dnn.dnn_pool(x, pool_size, stride=strides, mode=pool_mode, pad=padding) else: # CPU veresion support by theano pool_out = pool.pool_2d(x, ds=pool_size, st=strides, ignore_border=True, padding=padding, mode=pool_mode) if dim_ordering == 'tf': pool_out = pool_out.dimshuffle((0, 2, 3, 1)) return pool_out def pool3d(x, pool_size, strides=(1, 1, 1), border_mode='valid', dim_ordering='th', pool_mode='max'): # ====== dim ordering ====== # if dim_ordering not in {'th', 'tf'}: raise Exception('Unknown dim_ordering ' + str(dim_ordering)) if dim_ordering == 'tf': x = x.dimshuffle((0, 4, 1, 2, 3)) # ====== border mode ====== # if border_mode == 'same': w_pad = pool_size[0] - 2 if pool_size[0] % 2 == 1 else pool_size[0] - 1 h_pad = pool_size[1] - 2 if pool_size[1] % 2 == 1 else pool_size[1] - 1 d_pad = pool_size[2] - 2 if pool_size[2] % 2 == 1 else pool_size[2] - 1 padding = (w_pad, h_pad, d_pad) elif border_mode == 'valid': padding = (0, 0, 0) elif isinstance(border_mode, (tuple, list)): padding = tuple(border_mode) else: raise Exception('Invalid border mode: ' + str(border_mode)) # ====== pooling ====== # if _on_gpu() and dnn.dnn_available(): pool_out = dnn.dnn_pool(x, pool_size, stride=strides, mode=pool_mode, pad=padding) else: padding = padding[:2] # pooling over conv_dim2, conv_dim1 (last two channels) output = pool.pool_2d(input=x.dimshuffle(0, 1, 4, 3, 2), ds=(pool_size[1], pool_size[0]), st=(strides[1], strides[0]), ignore_border=True, padding=padding, mode=pool_mode) # pooling over conv_dim3 pool_out = pool.pool_2d(input=output.dimshuffle(0, 1, 4, 3, 2), ds=(1, pool_size[2]), st=(1, strides[2]), ignore_border=True, padding=padding, mode=pool_mode) # ====== output ====== # if dim_ordering == 'tf': pool_out = pool_out.dimshuffle((0, 2, 3, 4, 1)) return pool_out # =========================================================================== # RANDOMNESS # =========================================================================== class _RandomWrapper(object): def __init__(self, rng, state): super(_RandomWrapper, self).__init__() self._rng = rng self._state = state def randint(self): return self._state.randint(10e6) def normal(self, shape, mean, std, dtype=_FLOATX): return self._rng.normal(size=shape, avg=mean, std=std, dtype=dtype) def uniform(self, shape, low, high, dtype=_FLOATX): return self._rng.uniform(size=shape, low=low, high=high, dtype=dtype) def binomial(self, shape, p, dtype=_FLOATX): return self._rng.binomial(size=shape, n=1, p=p, dtype=dtype) def rng(seed=None): if seed is None: seed = get_random_magic_seed() return _RandomWrapper(RandomStreams(seed=seed), np.random.RandomState(seed=seed)) def random_normal(shape, mean=0.0, std=1.0, dtype=_FLOATX, seed=None): if seed is None: seed = get_random_magic_seed() rng = RandomStreams(seed=seed) return rng.normal(size=shape, avg=mean, std=std, dtype=dtype) def random_uniform(shape, low=0.0, high=1.0, dtype=_FLOATX, seed=None): if seed is None: seed = get_random_magic_seed() rng = RandomStreams(seed=seed) return rng.uniform(shape, low=low, high=high, dtype=dtype) def random_binomial(shape, p, dtype=_FLOATX, seed=None): if seed is None: seed = get_random_magic_seed() rng = RandomStreams(seed=seed) return rng.binomial(size=shape, n=1, p=p, dtype=dtype) ''' more TODO: tensordot -> soon to be introduced in TF batched_tensordot -> reimplement ''' # =========================================================================== # Comparator # =========================================================================== def neq(a, b): """a != b""" return T.neq(a, b) def eq(a, b): """a == b""" return T.eq(a, b) def gt(a, b): """a > b""" return T.gt(a, b) def ge(a, b): """a >= b""" return T.ge(a, b) def lt(a, b): """a < b""" return T.lt(a, b) def le(a, b): """a <= b""" return T.le(a, b) def one_hot(x, nb_class): ''' x: 1D-integer vector ''' ret = T.zeros((x.shape[0], nb_class), dtype=_FLOATX) ret = T.set_subtensor(ret[T.arange(x.shape[0]), x], 1) return ret def one_hot_max(x, axis=-1): ''' Example ------- >>> Input: [[0.0, 0.0, 0.5], >>> [0.0, 0.3, 0.1], >>> [0.6, 0.0, 0.2]] >>> Output: [[0.0, 0.0, 1.0], >>> [0.0, 1.0, 0.0], >>> [1.0, 0.0, 0.0]] ''' return T.cast( T.eq(T.arange(x.shape[axis])[None, :], T.argmax(x, axis=axis, keepdims=True)), _FLOATX ) def apply_mask(x, mask): ''' x : 3D tensor mask : 2D tensor Example ------- >>> Input: [128, 500, 120] >>> Mask: [1, 1, 0] >>> Output: [128, 500, 0] ''' return T.mul(x, expand_dims(mask, -1))
trungnt13/odin_old
odin/tensor/theano_backend.py
theano_backend.py
py
43,646
python
en
code
2
github-code
6
73061190269
import os import threading high_value_extensions = [ ".csv", ".json", ".xls", ".xlsx", ".doc", ".docx", ".pdf", ".ppt", ".pptx", ".html", ".htaccess", ".properties", ".env", ".yml", ".yaml", ".py", ".php", ".asp", ".aspx", ".jsp", ".war", ".jar", ".gz", ".tar.gz", ".zip", ".rar", ".dbf", ".ini", ".rc", ".log", ".xml", ".pem", ".bak", ".backup", ".sql", ".conf", ".config", ".pbx", ".p12", ".old" ] def search_files(path, output_file): with open(output_file, 'w', encoding='utf-8') as output: for root, dirs, files in os.walk(path): for file in files: if os.path.splitext(file)[1].lower() in high_value_extensions: output.write(os.path.join(root, file) + '\n') def search_files_thread(path, output_file): thread = threading.Thread(target=search_files, args=(path, output_file)) thread.start() return thread if __name__ == "__main__": search_path = input("Enter the path to search: ") output_file_name = input("Enter the output file name: ") threads = [] for _ in range(5): # Number of threads, you can adjust this as needed thread = search_files_thread(search_path, output_file_name) threads.append(thread) for thread in threads: thread.join() print("Search completed. Results saved in", output_file_name)
tp9222/python-for-hackers
tools/High_Value_Files_Finder/High_Value_Files_Finder(HVFF).py
High_Value_Files_Finder(HVFF).py
py
1,356
python
en
code
0
github-code
6
16010093346
import toga from colosseum import CSS def build(app): def on_load(widget): print('Finished loading!') print(widget.dom) def on_key(event, flag): print('Key down: ', event, ' Flag: ', flag) webview = toga.WebView(on_key_down=on_key, on_webview_load=on_load, style=CSS(flex=1)) url_input = toga.TextInput( initial='https://github.com/', style=CSS(flex=1, margin=5) ) def load_page(widget): print('loading: ', url_input.value) webview.url = url_input.value def print_dom(widget): print(webview.dom) box = toga.Box( children=[ toga.Box( children=[ url_input, toga.Button('Go', on_press=load_page, style=CSS(width=50)), ], style=CSS( flex_direction='row', padding_top=25 ) ), webview, toga.Box( children=[ toga.Button('Print DOM', on_press=print_dom) ] ) ], style=CSS( flex_direction='column' ) ) webview.url = url_input.value # Show the main window return box def main(): # This needs to return an object that has a main_loop() method. return toga.App('Graze', 'org.pybee.graze', startup=build) if __name__ == '__main__': app = main() app.main_loop()
Ocupe/toga_test_app_collection
webview/webview/app.py
app.py
py
1,488
python
en
code
0
github-code
6
5125409200
from heatmappy import Heatmapper from PIL import Image import database_func as db import img_lib def percent_to_diameter(percent): default = 150 if percent == 0: return 0 elif percent <= 10: return default elif percent <= 20: return default + 50 elif percent <= 30: return default + 100 elif percent <= 40: return default + 150 elif percent <= 50: return default + 200 elif percent <= 60: return default + 250 elif percent <= 70: return default + 300 elif percent <= 80: return default + 350 elif percent <= 90: return default + 400 else: return default + 450 def heatmap_creaate(user): img_tup = db.select_user_imgstr(user) num = 1 for img_str in img_tup: img = img_lib.str_to_img(img_str[0]) img_lib.img_save(img, user, num) num = num+1 points = [(320, 270), (960, 270), (1600, 270), (320, 810), (960, 810), (1660, 810)] info = db.select_user_info(user) # 입력 이미지 경로 설정 num = 1 for gaze in info: img_path = 'data/' + user + '_' + str(num) + '.png' img = Image.open(img_path) for i in range(0, 6): point = [points[i]] percent = gaze[i+2] diameter = percent_to_diameter(percent) if diameter == 0: continue # 히트맵 그리기 heatmapper = Heatmapper( point_diameter=diameter, # the size of each point to be drawn point_strength=1, # the strength, between 0 and 1, of each point to be drawn opacity=0.6, # the opacity of the heatmap layer colours='default', # 'default' or 'reveal' # OR a matplotlib LinearSegmentedColorMap object # OR the path to a horizontal scale image grey_heatmapper='PIL' # The object responsible for drawing the points # Pillow used by default, 'PySide' option available if installed ) # 이미지 위에 히트맵 그리기 heatmap = heatmapper.heatmap_on_img(point, img) heatmap.save(img_path) img = Image.open(img_path) num = num + 1
jinho17/eye_tracking_project
eye_tracking/database/heatmap.py
heatmap.py
py
2,434
python
en
code
0
github-code
6
20594474782
import torch import torch.nn.functional as F def global_align_loss( visual_embed, textual_embed, labels, mixture=False, alpha=0.6, beta=0.4, scale_pos=10, scale_neg=40, ): batch_size = labels.size(0) visual_norm = F.normalize(visual_embed, p=2, dim=1) textual_norm = F.normalize(textual_embed, p=2, dim=1) similarity = torch.matmul(visual_norm, textual_norm.t()) labels_ = ( labels.expand(batch_size, batch_size) .eq(labels.expand(batch_size, batch_size).t()) .float() ) pos_inds = labels_ == 1 neg_inds = labels_ == 0 loss_pos = torch.log(1 + torch.exp(-scale_pos * (similarity[pos_inds] - alpha))) loss_neg = torch.log(1 + torch.exp(scale_neg * (similarity[neg_inds] - beta))) loss = (loss_pos.sum() + loss_neg.sum()) * 2.0 if mixture: margin = alpha - beta tmp = similarity tmp[neg_inds] = 1 hard_v_pos, _ = torch.min(tmp, dim=1) hard_t_pos, _ = torch.min(tmp, dim=0) tmp = similarity tmp[pos_inds] = 0 hard_v_neg, _ = torch.max(tmp, dim=1) hard_t_neg, _ = torch.max(tmp, dim=0) # y = torch.ones_like(hard_v_neg) # loss_v_dist = F.margin_ranking_loss(hard_v_neg, hard_v_pos, y, margin=margin, reduction="sum") # loss_t_dist = F.margin_ranking_loss(hard_t_neg, hard_t_pos, y, margin=margin, reduction="sum") v_dist = hard_v_pos - hard_v_neg t_dist = hard_t_pos - hard_t_neg loss_v_dist = torch.log(1 + torch.exp(margin - v_dist)) loss_t_dist = torch.log(1 + torch.exp(margin - t_dist)) loss = loss + loss_t_dist.sum() + loss_v_dist.sum() loss /= batch_size return loss def global_align_loss_from_sim( similarity, labels, alpha=0.6, beta=0.4, scale_pos=10, scale_neg=40, ): batch_size = labels.size(0) labels_ = ( labels.expand(batch_size, batch_size) .eq(labels.expand(batch_size, batch_size).t()) .float() ) pos_inds = labels_ == 1 neg_inds = labels_ == 0 loss_pos = torch.log(1 + torch.exp(-scale_pos * (similarity[pos_inds] - alpha))) loss_neg = torch.log(1 + torch.exp(scale_neg * (similarity[neg_inds] - beta))) loss = (loss_pos.sum() + loss_neg.sum()) * 2.0 loss /= batch_size return loss def local_align_no_sampling_loss( part_embed, attr_embed, labels, part_masks, attr_masks, num_parts=5, alpha=0.6, beta=0.4, scale_pos=10, scale_neg=40, ): batch_size = labels.size(0) part_embed = F.normalize(part_embed, p=2, dim=2) attr_embed = F.normalize(attr_embed, p=2, dim=2) labels_ = labels.expand(batch_size, batch_size).eq( labels.expand(batch_size, batch_size).t() ) pos_inds = labels_ == 1 neg_inds = labels_ == 0 local_loss = 0.0 for i in range(num_parts): filter_inds = torch.ones_like(labels_) filter_inds[~attr_masks[:, i], :] = 0 filter_inds[:, ~part_masks[:, i]] = 0 filter_pos_inds = filter_inds & pos_inds filter_neg_inds = filter_inds & neg_inds local_similarity = torch.matmul(attr_embed[i], part_embed[i].t()) loss_pos = torch.log( 1 + torch.exp(-scale_pos * (local_similarity[filter_pos_inds] - alpha)) ) loss_neg = torch.log( 1 + torch.exp(scale_neg * (local_similarity[filter_neg_inds] - beta)) ) local_loss += (loss_pos.sum() + loss_neg.sum()) * 2.0 return local_loss / batch_size / num_parts def local_align_loss( part_embed, attribute_embed, labels, part_masks, attr_masks, num_parts=5, alpha=0.6, beta=0.4, scale_pos=10, scale_neg=40, topK=8, ): batch_size = labels.size(0) part_embed = F.normalize(part_embed, p=2, dim=2) attribute_embed = F.normalize(attribute_embed, p=2, dim=2) labels_ = labels.expand(batch_size, batch_size).eq( labels.expand(batch_size, batch_size).t() ) losses = 0 for i in range(num_parts): part_mask = part_masks[:, i] attr_mask = attr_masks[:, i] similarity = torch.matmul(part_embed[i], attribute_embed[i].t()) rank1 = torch.argsort(similarity, dim=1, descending=True) rank2 = torch.argsort(similarity.t(), dim=1, descending=True) loss = 0 for j in range(batch_size): if part_mask[j] == 0: continue pred = similarity[j, attr_mask] # k-reciprocal sample label = labels_[j, :].float() forward_k_idx = rank1[i, :topK] backward_k_idx = rank2[forward_k_idx, :topK] sample_pos_idx = torch.nonzero(backward_k_idx == i)[:, 0] sample_pos_idx = torch.unique(forward_k_idx[sample_pos_idx]) label[sample_pos_idx] = 1 label = label[attr_mask] pos_inds = torch.nonzero(label == 1).squeeze(1) neg_inds = torch.nonzero(label == 0).squeeze(1) if pos_inds.numel() > 0: loss_pos = torch.log( 1 + torch.exp(-scale_pos * (pred[pos_inds] - alpha)) ) loss += loss_pos.sum() if neg_inds.numel() > 0: loss_neg = torch.log(1 + torch.exp(scale_neg * (pred[neg_inds] - beta))) loss += loss_neg.sum() if attr_mask[j] == 0: continue pred = similarity[part_mask, j] # k-reciprocal sample label = labels_[j, :].float() forward_k_idx = rank2[i, :topK] backward_k_idx = rank1[forward_k_idx, :topK] sample_pos_idx = torch.nonzero(backward_k_idx == i)[:, 0] sample_pos_idx = torch.unique(forward_k_idx[sample_pos_idx]) label[sample_pos_idx] = 1 label = label[part_mask] pos_inds = torch.nonzero(label == 1).squeeze(1) neg_inds = torch.nonzero(label == 0).squeeze(1) if pos_inds.numel() > 0: loss_pos = torch.log( 1 + torch.exp(-scale_pos * (pred[pos_inds] - alpha)) ) loss += loss_pos.sum() if neg_inds.numel() > 0: loss_neg = torch.log(1 + torch.exp(scale_neg * (pred[neg_inds] - beta))) loss += loss_neg.sum() loss /= batch_size losses += loss losses /= num_parts return losses
CCNU-DigitalLibrary/CCNU-DigitalLibrary
MCM-HC/lib/models/losses/align_loss.py
align_loss.py
py
6,662
python
en
code
0
github-code
6
2107589551
import pygame import sys from space_objects import * from tools import * pygame.init() infoObject = pygame.display.Info() W_SIZE = WIDTH, HEIGHT = (infoObject.current_w, infoObject.current_h) H_SIZE = H_WIDTH, H_HEIGHT = WIDTH // 2, HEIGHT // 2 screen = pygame.display.set_mode(W_SIZE, pygame.FULLSCREEN) clock = pygame.time.Clock() FPS = 60 rotate_speed = 500 length = 10 radius = 1 / 100 sun = Object( screen, radius * 40000, "data/sun.png", rotate_speed / 3600, "Sun" ) mercury = MovingObject( screen, radius * 2439, "data/mercury.png", rotate_speed / 80, "Mercury", length * 70, rotate_speed / 88, sun, ) venus = MovingObject( screen, radius * 6051, "data/venus.png", rotate_speed / 80, "Venus", length * 108, rotate_speed / 224, sun, ) earth = MovingObject( screen, radius * 6371, "data/earth.png", rotate_speed / 365, "Earth", length * 151, rotate_speed / 365, sun, ) mars = MovingObject( screen, radius * 3389, "data/mars.png", rotate_speed / 70, "Mars", length * 250, rotate_speed / 687, sun, ) jupiter = MovingObject( screen, radius * 40000, "data/jupiter.png", rotate_speed / 70, "Jupiter", length * 741, rotate_speed / 4329, sun, ) saturn = MovingObject( screen, radius * 30000, "data/saturn.png", rotate_speed / 70, "Saturn", length * 1464, rotate_speed / 10768, sun, ) uranus = MovingObject( screen, radius * 21000, "data/uranus.png", rotate_speed / 70, "Uranus", length * 2938, rotate_speed / 30660, sun, ) neptune = MovingObject( screen, radius * 20000, "data/neptune.png", rotate_speed / 70, "Neptune", length * 4473, rotate_speed / 59860, sun, ) moon = MovingObject( screen, radius * 1737, "data/moon.png", rotate_speed / 20, "Moon", length * 40, rotate_speed / 30, earth, ) objects = Objects((H_WIDTH, H_HEIGHT), sun, mercury, venus, earth, mars, jupiter, saturn, uranus, neptune, moon) mouse_pos = mx, my = 0, 0 is_drag = False scale_factor = 1.1 class Panel: def __init__(self, screen, width, objects): self.screen = screen self.width = width self.screen_size = self.screen.get_size() self.objects = objects self.image = pygame.Surface((width, screen.get_height())) self.image.set_alpha(170) self.half_button_background = pygame.Surface((15, 100)) self.half_button_background.set_alpha(170) pygame.draw.rect( self.half_button_background, (1, 1, 1), (0, 1, 14, 98), 0, -1, -1, 5, -1, 5 ) self.half_button_background.set_colorkey((0, 0, 0)) self.button_background = pygame.Surface((30, 100)) self.button_background.set_alpha(170) pygame.draw.rect(self.button_background, (1, 1, 1), (1, 1, 28, 98), 0, 5) self.button_background.set_colorkey((0, 0, 0)) self.buttons = list() for i, obj in enumerate(self.objects.objects): button = TextButton(screen, obj.name, (20, i * 40 + 200)) self.buttons.append(button) self.is_opened = False self.draw_trajectory_button = TextButton( self.screen, "draw trajectory", (20, 30) ) self.speed_label = pygame.font.Font(None, 32).render("speed", True, (200,) * 3) self.speed_slider = Slider(self.screen, (self.width // 2, 140), (210, 15)) self.speed_slider.set_value(1 / 1.5) self.exit_button = TextButton( self.screen, "exit", (20, self.screen_size[1] - 30) ) image = pygame.Surface((30, 100)) image.set_colorkey((0, 0, 0)) image_pressed = image.copy() points = ((10, 30), (22, 50), (10, 70)) pygame.draw.polygon(image, (200,) * 3, points) pygame.draw.polygon(image_pressed, (240,) * 3, points) rect_values = ((1, 1, 28, 98), 2, 5) pygame.draw.rect(image, (200,) * 3, *rect_values) pygame.draw.rect(image_pressed, (240,) * 3, *rect_values) self.open_button = Button( screen, image, image_pressed, (15, self.screen_size[1] // 2), True ) image = pygame.Surface((30, 100)) image.set_colorkey((0, 0, 0)) image_pressed = image.copy() points = ((20, 30), (8, 50), (20, 70)) pygame.draw.polygon(image, (200,) * 3, points) pygame.draw.polygon(image_pressed, (240,) * 3, points) pygame.draw.rect(image, (200,) * 3, *rect_values) pygame.draw.rect(image_pressed, (240,) * 3, *rect_values) self.close_button = Button( screen, image, image_pressed, (self.width, self.screen_size[1] // 2), True ) def update(self, mouse_pos, clicked): change_visibility = False speed = False is_exit = False if self.is_opened: surf = blur(self.get_sub_surf(), 15) surf.blit(self.image, (0, 0)) self.screen.blit(surf, (0, 0)) self.screen.blit( self.half_button_background, (self.width, self.screen_size[1] // 2 - 50) ) for i, button in enumerate(self.buttons): button.update(mouse_pos, clicked) if button.triggered(): self.objects.set_main_object(i) self.screen.blit(self.speed_label, (20, 100)) self.speed_slider.update(clicked, mouse_pos) speed = self.speed_slider.get_value() self.draw_trajectory_button.update(mouse_pos, clicked) if self.draw_trajectory_button.triggered(): change_visibility = True self.close_button.update(mouse_pos, clicked) if self.close_button.triggered(): self.is_opened = False self.exit_button.update(mouse_pos, clicked) if self.exit_button.triggered(): is_exit = True pygame.draw.line( self.screen, (200,) * 3, (self.width, 0), (self.width, self.screen_size[1] // 2 - 50), ) pygame.draw.line( self.screen, (200,) * 3, (self.width, self.screen_size[1] // 2 + 49), (self.width, self.screen_size[1]), ) else: self.screen.blit(self.button_background, (0, self.screen_size[1] // 2 - 50)) self.open_button.update(mouse_pos, clicked) if self.open_button.triggered(): self.is_opened = True return change_visibility, speed, is_exit def mouse_in_panel(self, mouse_pos): return panel.is_opened and mouse_pos[0] < self.width def get_sub_surf(self): sub = self.screen.subsurface((0, 0, self.width, self.screen_size[1])) return sub panel = Panel(screen, 250, objects) while True: screen.fill((0, 0, 0)) mouse_pos = mx, my = pygame.mouse.get_pos() if is_drag: y_movement = prev_mouse_pos[1] - my x_movement = prev_mouse_pos[0] - mx objects.move_camera(x_movement, y_movement) prev_mouse_pos = mx, my clicked = False for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_1: objects.camera.set_offsets((H_WIDTH, H_HEIGHT)) if event.type == pygame.MOUSEBUTTONDOWN: if event.button == 1: clicked = True if event.button == 4: objects.scale(scale_factor) if event.button == 5: objects.scale(1 / scale_factor) if event.type == pygame.MOUSEBUTTONUP: if event.button == 1: panel.speed_slider.release() is_drag = False if clicked and not panel.mouse_in_panel(mouse_pos): is_drag = True objects.update() change_visibility, speed, is_exit = panel.update(mouse_pos, clicked) if change_visibility: objects.change_trajectory_visible() if speed: objects.set_speed(speed * 1.5) if is_exit: pygame.quit() sys.exit() pygame.display.update() clock.tick(FPS)
Programmer-Anchous/Solar-system-model
main.py
main.py
py
8,409
python
en
code
0
github-code
6
12836912861
import sys from typing import Optional import PySide6 from PySide6 import QtWidgets from qt_material import QtStyleTools, list_themes from safebox.gui.widgets import cycle_generator, CreatorWidget class MainWindow(QtWidgets.QMainWindow, QtStyleTools): def __init__(self, parent: Optional[PySide6.QtWidgets.QWidget] = ..., flags: PySide6.QtCore.Qt.WindowFlags = ...) -> None: super().__init__() self.themes = cycle_generator(list_themes()) self.apply_stylesheet(self, "dark_teal.xml") self.setCentralWidget(CreatorWidget(parent=self)) def change_theme(self): self.apply_stylesheet(self, next(self.themes)) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) main_window= MainWindow() main_window.show() sys.exit(app.exec())
pouralijan/SafeBox
safebox/gui/safebox_creator_main_window.py
safebox_creator_main_window.py
py
829
python
en
code
2
github-code
6
36388156115
from typing import Union import psutil def get_cpu_temp() -> Union[float, None]: temperature_file_path = "/sys/class/thermal/thermal_zone0/temp" try: raw_temp = None with open(temperature_file_path) as f: raw_temp = f.readline().strip("\n") return float(raw_temp) / 1000 except (FileNotFoundError, TypeError, ValueError) as e: print(e) print("Could not read CPU temperature") return None def get_cpu_count() -> int: return psutil.cpu_count() def get_cpu_percent(interval: Union[float, None]) -> float: return psutil.cpu_percent(interval=interval, percpu=True) def get_cpu_usage(interval: Union[float, None]) -> dict: return { "count": get_cpu_count(), "percent": get_cpu_percent(interval), "temp": get_cpu_temp(), } def get_mem_usage() -> dict: mem_usage = psutil.virtual_memory() return { "total": mem_usage.total, "used": mem_usage.used, "available": mem_usage.available, "percent": mem_usage.percent, } def get_disk_usage() -> dict: disk_usage = psutil.disk_usage("/") return { "total": disk_usage.total, "used": disk_usage.used, "available": disk_usage.free, "percent": disk_usage.percent, } def get_pids() -> list[int]: return psutil.pids()
noahtigner/homelab
api/diagnostics/retrieval.py
retrieval.py
py
1,365
python
en
code
0
github-code
6
911107140
from collections import Counter import re from xml.etree import ElementTree from trapdoor import TrapdoorProgram, Message, run_command exclusion_rules = [ re.compile(r'^[\s]*raise NotImplementedError') ] def excluded_from_coverage(source_line): """Determine of the given line should be excluded from the coverage analysis.""" for re in exclusion_rules: if re.match(source_line) is not None: return True return False class CoverageTrapdoorProgram(TrapdoorProgram): """A trapdoor program running nosetests with coverage analysis.""" def __init__(self): """Initialize the CoverageTrapdoorProgram.""" TrapdoorProgram.__init__(self, 'coverage') def add_argparse_arguments(self, parser): """Add command-line arguments to the argument parser. Parameters ---------- parser : argparse.ArgumentParser The parser to which arguments must be added. """ TrapdoorProgram.add_argparse_arguments(self, parser) parser.add_argument('--nproc', type=int, default=1, help='Number of parallel processes when running nose. ' '[default=%(default)s]') def get_stats(self, config, args): """Run tests using nosetests with coverage analysis. Parameters ---------- config : dict The dictionary loaded from ``trapdoor.cfg``. args : argparse.Namespace The result of parsing the command line arguments. Returns ------- counter : collections.Counter Counts of the number of messages of a specific type in a certain file. messages : Set([]) of strings All errors encountered in the current branch. """ # Get version command = ['nosetests', '--version'] print('USING :', run_command(command, verbose=False)[0].strip()) command = ['coverage', '--version'] print('USING :', run_command(command, verbose=False)[0].split('\n')[0]) # Results will be stored in the following variables counter = Counter() messages = set([]) # Run fast unit tests with nosetests, with coverage command = ['nosetests', '-v', '-A', 'not (slow or rt)', '--with-coverage', '--cover-erase', '--cover-branches', '--cover-package=%s' % ','.join(config['py_packages'])] + \ config['py_directories'] if args.nproc > 1: command.extend(['--processes=%s' % args.nproc, '--process-timeout=600']) output = run_command(command)[0] lines = [line.strip() for line in output.split('\n')] # Parse the output of the unit tests iline = 0 for line in lines: if len(line) == 0: break elif line.endswith('FAIL'): counter['unit_tests_failed'] += 1 messages.add(Message(None, None, None, 'nosetests ' + line)) elif line.endswith('ERROR'): counter['unit_tests_error'] += 1 messages.add(Message(None, None, None, 'nosetests ' + line)) iline += 1 # Run the coverage program for a full report. This separate call is needed # since coverage-4.1. fn_coverage = '%s/coverage.xml' % self.qaworkdir command = ['coverage', 'xml', '-o', fn_coverage, '--omit=%s' % ','.join(config['py_test_files'])] output = run_command(command)[0] # Parse coverage xml output et = ElementTree.parse(fn_coverage) for class_tag in et.getroot().iter('class'): filename = class_tag.attrib['filename'] with open(filename) as fsource: source_lines = fsource.readlines() for line_tag in class_tag.iter('line'): if line_tag.attrib['hits'] == '0': line = int(line_tag.attrib['number']) if excluded_from_coverage(source_lines[line-1]): continue branch_ends = line_tag.get('missing-branches') if branch_ends is not None: for branch_end in branch_ends.split(','): if branch_end.isdigit(): delta = int(branch_end) - line msg = Message(filename, line, None, 'Missed branch to line %+i' % (delta)) else: msg = Message(filename, line, None, 'Missed branch to %s' % branch_end) messages.add(msg) counter[filename] += 1 messages.add(Message(filename, line, None, 'Missed line')) counter[filename] += 1 return counter, messages if __name__ == '__main__': CoverageTrapdoorProgram().main()
theochem/horton
tools/qa/trapdoor_coverage.py
trapdoor_coverage.py
py
5,168
python
en
code
83
github-code
6
16293536002
import os from time import sleep import boto3 from botocore.exceptions import ClientError IAM_R = boto3.resource('iam') IAM_C = boto3.client('iam') LAMBDA_C = boto3.client('lambda') EVENTS_C = boto3.client('events') BASE_DIR = os.path.dirname(os.path.realpath(__file__)) def setup_iam_role(): """ Setup the AWS IAM role """ try: IAM_C.get_role(RoleName='aws_monitor') except ClientError as err: if err.response['Error']['Code'] == 'NoSuchEntity': with open('{}/lambda_role_policy.json'.format(BASE_DIR), 'r') as policy_file: policy = policy_file.read() IAM_C.create_role(RoleName='aws_monitor', AssumeRolePolicyDocument=policy) else: raise err for pol in ['ec2_access', 'sns_access', 'cloudwatch_access', 'rds_access', 'as_access', 's3_access']: with open('{}/{}.json'.format(BASE_DIR, pol), 'r') as policy_file: policy = policy_file.read() IAM_C.put_role_policy(RoleName='aws_monitor', PolicyName=pol, PolicyDocument=policy) try: IAM_C.get_instance_profile(InstanceProfileName='aws_monitor') except ClientError as err: if err.response['Error']['Code'] == 'NoSuchEntity': IAM_C.create_instance_profile(InstanceProfileName='aws_monitor') else: raise err role_instance_profiles = IAM_C.list_instance_profiles_for_role(RoleName='aws_monitor') add_instance_profile = True for profile in role_instance_profiles['InstanceProfiles']: if profile['InstanceProfileName'] == 'aws_monitor': add_instance_profile = False if add_instance_profile: IAM_C.add_role_to_instance_profile(InstanceProfileName='aws_monitor', RoleName='aws_monitor') return IAM_R.Role('aws_monitor') def configure_vpc(): """ Provide vpc/sg for lambda function """ vpc_config = {} subnet_id = os.environ.get('SUBNET_ID') security_group_id = os.environ.get('SECURITY_GROUP_ID') if subnet_id: vpc_config['SubnetIds'] = [subnet_id] if security_group_id: vpc_config['SecurityGroupIds'] = [security_group_id] return vpc_config def upload_lambda_function(): """ main function of deployment. Ensure IAM is setup. Upload zip. Create function. """ vpc_config = configure_vpc() role = setup_iam_role() rule = EVENTS_C.put_rule(Name='DiscoverInstancesSchedule', ScheduleExpression=os.environ.get('DISCOVERY_SCHEDULE'), State='ENABLED', Description='Run the instance discovery') with open('{}/../aws_monitor.zip'.format(BASE_DIR), 'rb') as zip_file: zip_bytes = zip_file.read() fcn = {} try: LAMBDA_C.get_function(FunctionName='DiscoverInstances') fcn = LAMBDA_C.update_function_code(FunctionName='DiscoverInstances', ZipFile=zip_bytes, Publish=True) except ClientError as err: if err.response['Error']['Code'] == 'ResourceNotFoundException': sleep(10) fcn = LAMBDA_C.create_function(FunctionName='DiscoverInstances', Code={'ZipFile': zip_bytes}, Runtime='python2.7', Role=role.arn, Handler='zumoco.main', Timeout=300, Description="Discover, add cloudwatch alerts", MemorySize=128, VpcConfig=vpc_config) else: raise err try: LAMBDA_C.add_permission(FunctionName='DiscoverInstances', StatementId='DiscoverInstancesSchedule-Permission', Action='lambda:InvokeFunction', Principal='events.amazonaws.com', SourceArn=rule['RuleArn']) except ClientError as err: if err.response['Error']['Code'] != 'ResourceConflictException': # ignore conflicts if the rule exists raise err EVENTS_C.put_targets(Rule='DiscoverInstancesSchedule', Targets=[{'Id': 'DiscoverInstances-schedule', 'Arn': fcn['FunctionArn'],}]) upload_lambda_function()
zulily/aws_monitor
deployscripts/setup_lambda.py
setup_lambda.py
py
4,849
python
en
code
3
github-code
6
44757415813
from telegram.ext import * from telegram import * import openai openai.api_key = "YOUR OPENAI API KEY" # Enter your OpenAI Secret Key. telegram_token = "YOUR TELEGRAM BOT TOKEN" # Enter your Telegram Bot Token. conversation=[{"role": "system", "content": "You are a helpful assistant."}] # Defined the assistant role. def main(): app = Application.builder().token(telegram_token).build() # Created a Telegram app. app.add_handler(CommandHandler('start', start_command)) # Added start_command function. app.add_handler(CommandHandler('restart', restart_command)) # Added restart_command function. app.add_handler(MessageHandler(filters.TEXT, handle_message)) # Added handle_message function. app.add_error_handler(error) # Added error_handle function. app.run_polling() # Started the app. def reply(lastMessage): # ChatGPT conversation function if(len(conversation)>=7): # The conversation has a limit. Only assistant role, last 3 messages and last 3 replies are saved. Other messages and replies are deleted. conversation.pop(1) conversation.append({"role": "user", "content": lastMessage}) # Added last request. completion = openai.ChatCompletion.create( # Sent completion request and received ChatGPT message. model="gpt-3.5-turbo", # Used "gpt-3.5-turbo" model. "gpt-4" can also be used. messages=conversation, # Sent all conversation. max_tokens=1000 # Defined as max 1000 tokens. Changeable value. ) if(len(conversation)>7): # The conversation has a limit. Only assistant role, last 3 messages and last 3 replies are saved. Other messages and replies are deleted. conversation.pop(1) lastReply = completion.choices[0].message['content'] # Read last reply from completion. conversation.append({"role": "assistant", "content": lastReply}) # Added last reply. return lastReply # Returned last reply. def replyStartRestart(): global conversation conversation.clear() conversation=[{"role": "system", "content": "You are a helpful assistant."}] # Defined the assistant role. return 'Hello! How can I help you?' async def handle_message(update: Update, context: ContextTypes.DEFAULT_TYPE): text: str = update.message.text # Read last Telegram message from user. await update.message.reply_text(reply(text)) # Sent ChatGPT message to Telegram user. async def start_command(update: Update, context: ContextTypes.DEFAULT_TYPE): await update.message.reply_text(replyStartRestart()) # Replied to Telegram user. async def restart_command(update: Update, context: ContextTypes.DEFAULT_TYPE): await update.message.reply_text(replyStartRestart()) # Replied to Telegram user. async def error(update: Update, context: ContextTypes.DEFAULT_TYPE): print(f'Error: {context.error}') # Printed error log await update.message.reply_text('Please wait! If I don\'t respond within a few minutes, try again') # Replied to Telegram user if __name__ == "__main__": main()
muhammetharundemir/Telegram-ChatGPT
telegramChatGPT.py
telegramChatGPT.py
py
3,703
python
en
code
1
github-code
6
42488414261
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 23 12:34:08 2018 @author: michal """ import networkx as nx from networkx.algorithms.isomorphism import GraphMatcher from networkx.readwrite.json_graph import node_link_data from os.path import isdir, join, isfile from os import mkdir import json from glob import glob import shutil class anionMatcher(GraphMatcher): def semantic_feasibility(self, G1_node, G2_node): if "charged" in self.G1.node[G1_node]: if self.G1.node[G1_node]["charged"] != self.G2.node[G2_node]["charged"]: return False elif self.G2.node[G2_node]["charged"]: return False if self.G2.node[G2_node]["terminating"]: if len(list(self.G2.neighbors(G2_node))) != len(list(self.G1.neighbors(G1_node))): return False if ( self.G2.node[G2_node]["element"] == "X" or "X" in self.G2.node[G2_node]["aliases"] ) and not self.G1.node[G1_node]["element"] in self.G2.node[G2_node]["notAliases"] : return True return self.G1.node[G1_node]["element"] == self.G2.node[G2_node]["element"] or self.G1.node[G1_node]["element"] in self.G2.node[G2_node]["aliases"] def addAtribute( graph, nodes, key ): if isinstance(nodes, list): for nodeId in nodes: graph.node[nodeId][key] = True else: graph.node[nodes][key] = True def saveAnion( atoms, bonds, charged, name, priority , terminating = [], aliases = {}, notAliases = {}, geometry = {}, fullIsomorphism = False, nameMapping = {} , nonUniqueCharge = [] , properties2measure = [] ): graph = nx.Graph() nonUniqueCharge = set(nonUniqueCharge) for i, el in enumerate(atoms): graph.add_node(i, element = el, terminating = False, bonded = False, aliases = [], charged = False ) graph.add_edges_from(bonds) addAtribute( graph, terminating, "terminating") for nodeId in aliases: graph.node[nodeId]["aliases"] = aliases[nodeId] for nodeId in notAliases: graph.node[nodeId]["notAliases"] = notAliases[nodeId] if not geometry: graph.graph["geometry"]= "no restrictions" else: graph.graph["geometry"]= geometry graph.graph["fullIsomorphism"] = fullIsomorphism graph.graph["name"] = name graph.graph["nameMapping"] = nameMapping graph.graph["priority"] = priority graph.graph["properties2measure"] = properties2measure fileName = str(priority)+"_"+name if isinstance( charged , list ) : uniqueCharges = set(charged) for nodeId in charged: nuc = uniqueCharges | nonUniqueCharge nuc.remove(nodeId) saveAnionJson(graph, fileName, nodeId, nuc) else: saveAnionJson(graph, fileName, charged, nonUniqueCharge) def saveAnionJson( graph, fileName, charged, nonUniqueCharges = []): mainElement = graph.node[charged]["element"] elements = [ mainElement ] if "aliases" in graph.node[charged]: elements += graph.node[charged]["aliases"] graph.node[charged]["aliases"] = [] graph.node[charged]["charged"] = True graph.graph["charged"] = charged graph.graph["otherCharges"] = list(nonUniqueCharges) oldName = "" nameMapping = False if "X" in graph.graph["name"] and charged in graph.graph["nameMapping"]: oldName = graph.graph["name"] nameMapping = graph.graph["nameMapping"][charged] graph.graph["nameMapping"].pop(charged) for element in elements: graph.node[charged]["element"] = element if nameMapping: graph.graph["name"] = oldName.replace( nameMapping , element) dir_path = join("anion_templates", element) if not isdir( dir_path ): mkdir( dir_path ) path2save = getUniquePath( dir_path , fileName) output = open(path2save, 'w') json.dump(node_link_data(graph), output ) output.close() graph.node[charged]["charged"] = False def getUniquePath(dirPath, fileName): path2save = join( dirPath , fileName+".json") if not isfile(path2save): return path2save similarFiles = glob( join(dirPath, fileName)+"_*.json" ) if not similarFiles: return join( dirPath , fileName+"_0.json") maxNumber = -1 for s in similarFiles: newNumber = int( s[:-5].split("_")[-1] ) maxNumber = max(maxNumber, newNumber) return join( dirPath , fileName+"_"+str(maxNumber+1)+".json") def clearAnionTemplates(): if isdir("anion_templates"): shutil.rmtree("anion_templates") mkdir("anion_templates") if __name__ == "__main__": clearAnionTemplates() # atoms, bonds, charged, name, priority, terminating = [], aliases = {}, notAliases = {}, geometry = {}, fullIsomorphism = False #OXYGEN # #RCOOH saveAnion( [ "C" , "C", "O", "O" ], [ (0,1), (1,2), (1,3) ], 2, "RCOO", 0, terminating = [1, 2, 3], geometry = "planar", nonUniqueCharge = [3], properties2measure= [ { "kind" : "plane", "atoms" : [ 1, 2, 3 ] , "directionalVector" : [ { "atom" : 1 }, { "center" : [ 2, 3] } ] } ] ) #ClO, BrO, IO, saveAnion([ "CL", "O" ], [(0, 1)], 1, "XO", 5, fullIsomorphism = True, aliases = { 0 : [ "BR", "I" ] }, nameMapping = { 0 : "X"}, properties2measure= [ { "kind" : "line", "atoms" : [ 0, 1 ] } ] ) #NO2, ClO2, BRO2, saveAnion([ "N", "O" , "O" ], [(0, 1), (0,2)], 1, "XO2", 10, fullIsomorphism = True, aliases = { 0 : ["CL", "BR"]}, nameMapping = { 0 : "X" }, nonUniqueCharge=[2], properties2measure= [ { "kind" : "plane" , "atoms" : [ 0, 1, 2 ], "directionalVector" : [ { "atom" : 0 }, { "center" : [ 1, 2] } ] } ]) #NO3, CO3, PO3, SO3, AsO3, BO3, ClO3, BRO3 saveAnion( ["N", "O", "O", "O"], [(0,1), (0,2), (0,3)], 1, "XO3", 15, fullIsomorphism = True, aliases = { 0 : [ "C", "P", "B", "S", "AS", "CL", "BR", "I" ] }, nameMapping = { 0 : "X" }, nonUniqueCharge= [2, 3], properties2measure= [ { "kind" : "plane", "atoms" : [ 1, 2, 3 ] , "directionalVector" : [ { "closest" : [1, 2, 3] }, { "center" : [ 1, 2, 3] } ]} ]) #PO4, SO4, AsO4, ClO4, BRO4 saveAnion( ["P", "O", "O", "O", "O"], [(0,1), (0,2), (0,3), (0, 4)], 1, "XO4", 20, fullIsomorphism = True, aliases = { 0 : [ "S", "AS", "CL", "BR", "I" ] }, nameMapping = { 0 : "X" }, nonUniqueCharge=[2, 3, 4]) # Ph-OH # saveAnion( [ "C" , "C" , "C" , "C" , "C", "C" , "O" ], [(0,1),(1,2), (2,3), (3,4),( 4, 5), (5, 0), (5,6)], # 6, "PhOH", 25, terminating = [6], geometry = "planarWithSubstituents") # #RBOOH saveAnion( [ "X" , "B", "O", "O" ], [ (0,1), (1,2), (1,3) ], 2, "RBOO", 30, terminating = [2, 3], notAliases = {0 : [ "O" ] }, nonUniqueCharge=[3], properties2measure= [ { "kind" : "plane" , "atoms" : [ 1, 2, 3 ] , "directionalVector" : [ { "atom" : 1 }, { "center" : [ 2, 3] } ]} ]) #COO saveAnion( [ "C", "O", "O" ], [ (0,1), (0,2) ], 1, "COO", 35, terminating = [1, 2], nonUniqueCharge=[2], properties2measure= [ { "kind" : "plane", "atoms" : [ 0, 1, 2 ], "directionalVector" : [ { "atom" : 0 }, { "center" : [ 1, 2] } ] } ] ) #R-PO4, R-SO4, R-AsO4 saveAnion( ["P", "O", "O", "O", "O"], [(0,1), (0,2), (0,3), (0, 4)], 1, "R-XO4", 45, terminating = [ 1, 2, 3 ] , aliases = { 0 : [ "S", "AS" ] }, nameMapping = { 0 : "X" }, nonUniqueCharge=[2,3]) #R2-PO4, R2-SO4, R2-AsO4 saveAnion( ["P", "O", "O", "O", "O"], [(0,1), (0,2), (0,3), (0, 4)], 1, "R2-XO4", 47, terminating = [ 1, 2 ] , aliases = { 0 : [ "S", "AS" ] }, nameMapping = { 0 : "X" }, nonUniqueCharge=[2]) #R3-PO4, R3-SO4, R3-AsO4 # saveAnion( ["P", "O", "O", "O", "O"], [(0,1), (0,2), (0,3), (0, 4)], # 1, "R2-XO4", 48, terminating = [ 1 ] , # aliases = { 0 : [ "S", "AS" ] }, nameMapping = { 0 : "X" } ) #RAsO3, RPO3, RSO3 saveAnion( ["P", "O", "O", "O", "C"], [(0,1), (0,2), (0,3), (0, 4)], 1, "RXO3", 50, terminating = [1, 2, 3] , aliases = { 0 : [ "S", "AS" ] }, nameMapping = { 0 : "X" }, nonUniqueCharge=[2,3]) #R2AsO2, R2PO2, RRSO2 # saveAnion( ["P", "O", "O", "C", "C"], [(0,1), (0,2), (0,3), (0, 4)], # 1, "R2XO2", 55, terminating = [1, 2], # aliases = { 0 : [ "S", "AS" ] }, nameMapping = { 0 : "X" } ) #F, CL, BR, I, S saveAnion( [ "F" ], [], 0, "X", 55, aliases = { 0 : [ "CL", "BR", "I", "S"] }, fullIsomorphism = True, nameMapping = { 0 : "X"}) #SCN saveAnion([ "S", "C" , "N" ], [(0, 1), (0,2)], [0,1,2], "SCN", 62, fullIsomorphism = True, properties2measure= [ { "kind" : "line", "atoms" : [ 0, 2 ] } ]) # #RSH # saveAnion( [ "X" , "S" ], [ (0,1)], # 1, "RSH", 60, terminating = [1], # notAliases = {0 : [ "O" ] } ) # #N3 saveAnion([ "N", "N" , "N" ], [(0, 1), (0,2)], [0,1], "N3", 70, fullIsomorphism = True, nonUniqueCharge=[2], properties2measure= [ { "kind" : "lineSymmetric", "atoms" : [ 0, 2 ] } ]) #CN saveAnion([ "C" , "N" ], [(0, 1)], [0,1], "CN", 75, fullIsomorphism = True, properties2measure= [ { "kind" : "line", "atoms" : [ 0, 1 ] } ]) # #RSSR # saveAnion( [ "X" , "S", "S" ], [ (0,1), (1,2)], # 1, "RSS", 80 , # notAliases = {0 : [ "O" ] } )
chemiczny/PDB_supramolecular_search
anionTemplateCreator.py
anionTemplateCreator.py
py
10,065
python
en
code
1
github-code
6
17514206848
from unittest import TestCase from unittest.mock import MagicMock, patch from src.utils.callgrind import extract_function_calls, extract_hotspots class TestExtractHotspots(TestCase): def test(self): callgrind = MagicMock() count = 2 # Fake CallgrindParser internals event1 = MagicMock() event1.name = "Time ratio" event2 = MagicMock() event2.name = "Samples" fun1 = MagicMock() fun1.events = MagicMock() fun1.events.items.return_value = [(event1, 0.1), (event2, 1)] fun2 = MagicMock() fun2.events = MagicMock() fun2.events.items.return_value = [(event1, 0.2), (event2, 1)] fun3 = MagicMock() fun3.events = MagicMock() fun3.events.items.return_value = [(event1, 0.3), (event2, 1)] fake_functions = {"name1": fun1, "name2": fun2, "name3": fun3, } profile = MagicMock() profile.functions = fake_functions parser = MagicMock() parser.parse.return_value = profile with patch("src.utils.callgrind.open"): with patch("src.utils.callgrind.gprof2dot.CallgrindParser") as mock_parser: mock_parser.return_value = parser result = extract_hotspots(callgrind, count) self.assertEqual(len(result), 2) self.assertTrue("name3" in result[0] and "30.0%" in result[0]) self.assertTrue("name2" in result[1] and "20.0%" in result[1]) class TestExtractFunctionCalls(TestCase): def test(self): callgrind = MagicMock() # Fake CallgrindParser internals event = MagicMock() event.name = "Samples" call1 = MagicMock() call1.callee_id = "name2" call1.events = {event: 5} call2 = MagicMock() call2.callee_id = "name3" call2.events = {event: 6} caller = MagicMock() caller.calls = {"key": call1, "another_key": call2} callee1 = MagicMock() callee1.name = "function2" callee2 = MagicMock() callee2.name = "function3" fake_functions = {"name1": caller, "name2": callee1, "name3": callee2} profile = MagicMock() profile.functions = fake_functions parser = MagicMock() parser.parse.return_value = profile with patch("src.utils.callgrind.open"): with patch("src.utils.callgrind.gprof2dot.CallgrindParser") as mock_parser: mock_parser.return_value = parser result = extract_function_calls(callgrind, "name1") self.assertEqual(result["function2"], 5) self.assertEqual(result["function3"], 6)
haggj/bachelors-thesis
container/src/test/test_callgrind.py
test_callgrind.py
py
2,772
python
en
code
0
github-code
6
75319095866
import random from pypinyin import lazy_pinyin from nonebot import require, on_command, on_message, on_keyword, on_shell_command, on_request from nonebot.rule import command from nonebot.permission import SUPERUSER from nonebot.typing import T_State,T_Handler from nonebot.adapters.cqhttp.bot import Bot from nonebot.adapters.cqhttp.message import Message, MessageSegment from nonebot.adapters.cqhttp.event import MessageEvent, GroupMessageEvent, GroupRequestEvent from nonebot.adapters.cqhttp.permission import PRIVATE, GROUP, GROUP_ADMIN, GROUP_OWNER from nonebot.adapters.cqhttp.utils import unescape, escape from src.utils.util import gen_parser, call_api_delay from .data_source import get_group_id_list, gen_qq, gentracker __doc__ = '''to -[ugsabf] [args,] -u: 私聊,args为 私聊对象qq号 消息 -g: 群聊,args为 群聊群qq号 消息 -s: 多个消息目标,args为 qq号 qq号 qq号 消息 -a: 以所有群聊为消息目标,args为 消息 -b: 只有-a时生效,以除了某群的所有群聊为消息目标,args为 qq号 消息 -f: 结束当前会话 ''' to_cmd = on_command('to', aliases={'转发'}, permission=SUPERUSER) to_parser = gen_parser() to_parser.add_argument('-u', dest='to_user', action='store_true') to_parser.add_argument('-g', dest='to_group', action='store_true') to_parser.add_argument('-s', dest='several', action='store_true') to_parser.add_argument('-a', dest='all_group', action='store_true') to_parser.add_argument('-b', dest='ban', action='store_true') @to_cmd.handle() async def first_receive(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state['args'] = msg @to_cmd.got('args', __doc__) async def _(bot: Bot, state: T_State): args = state['args'].split(None, 1) if args[0] == state['_prefix']['raw_command']: args = args[1].split(None, 1) try: cmd = to_parser.parse_args([args[0]]) except Exception as e: await to_cmd.finish('命令解析失败' + str(e)) return if args[0] == args[-1]: await to_cmd.reject('命令缺少[args,]\n' + __doc__) param = args[-1] if cmd.help: await to_cmd.reject(__doc__) elif cmd.finish: await to_cmd.finish('本次命令结束') if cmd.several: qq_list = list(gen_qq(param)) if cmd.to_user: for qq in qq_list[:-1]: await bot.send_private_msg(user_id=qq, message=unescape(qq_list[-1])) elif cmd.to_group: for qq in qq_list[:-1]: await bot.send_group_msg(group_id=qq, message=unescape(qq_list[-1])) elif cmd.all_group: group_list = await get_group_id_list(bot) if cmd.ban: qq_list = list(gen_qq(param)) for qq in (i for i in group_list if i not in qq_list): await bot.send_group_msg(group_id=qq, message=unescape(qq_list[-1])) else: for qq in group_list: await bot.send_group_msg(group_id=qq, message=unescape(param)) elif cmd.to_user: params = param.split(None, 1) if params[0] == params[-1]: await to_cmd.reject('缺少需要发送的消息\n' + __doc__) else: await bot.send_private_msg(user_id=params[0], message=unescape(params[1])) elif cmd.to_group: params = param.split(None, 1) if params[0] == params[-1]: await to_cmd.reject('缺少需要发送的消息\n' + __doc__) else: await bot.send_group_msg(group_id=params[0], message=unescape(params[1])) await to_cmd.finish(Message('[CQ:face,id=124]')) request_cmd = on_request() @request_cmd.handle() async def request(bot: Bot, event: GroupRequestEvent): f_group = event.group_id f_user = event.user_id if event.sub_type == 'invite': result = request_cmd.new("message", permission=SUPERUSER | PRIVATE, temp=True, priority=5) await bot.send_private_msg(user_id=912871833, message=f'有新的群邀请:\n群:{f_group}\n邀请人:{f_user}') request_event = event @result.handle() async def _(bot: Bot, event: MessageEvent): msg = 'reject' if str(event.message) in ['yes', '1']: msg = 'approve' await request_event.approve(bot) else: await request_event.reject(bot) await result.finish(msg) # def is_sublist(a, b): # if a == []: return True # if b == []: return False # return b[:len(a)] == a or is_sublist(a, b[1:]) def sublist(a, b): if a == []: return (0, 0) if b == []: return False for i in range(len(b)): if not b[:len(a)] == a: b = b[1:] else: return (i, i + len(a)) def pinyin2api(s): api_pinyin = lazy_pinyin(s) cmd_map = { 'send': ['sen', 'de'], 'set': ['sai', 'te'], 'get': ['gei', 'te'], 'delate': ['di', 'lei', 'te'], 'group': ['ge', 'rou', 'pu'], 'private': ['pu', 'rui', 'wei', 'te'], 'msg': ['mai', 'shei', 'ji'], 'ban': ['ban'], 'whole': ['hou'], 'friend': ['fu', 'run', 'de'], 'id': ['ai', 'di'], 'user': ['you', 're'], } for k, v in cmd_map.items(): r = sublist(v, api_pinyin) if r: del api_pinyin[r[0]:r[1]] api_pinyin.insert(r[0], k) return '_'.join(api_pinyin) def isall_chinese(s): return all(u'\u4e00' <= ch <= u'\u9fa5' for ch in s) call_api = on_command('api', aliases={'call', '希司提姆靠鲁', '希斯提姆靠鲁', '希司提姆考鲁', '希斯提姆考鲁'}, permission=SUPERUSER) @call_api.handle() async def _(bot: Bot, event: MessageEvent): msg = str(event.message).split() param = event.dict() if msg: api, *params = msg if isall_chinese(api): api = pinyin2api(api) # _input = {} # for i in params: # k, v = i.split('=', 1) # _input[pinyin2api(k) if isall_chinese(k) else k] = v param.update(dict(i.split('=', 1) for i in params)) # param.update(_input) # if MessageSegment.reply in event.message: # ... if param.get('message'): param['message'] = Message(unescape(str(param.get('message')))) res = await bot.call_api(api, **param) if res: await call_api.finish(message=Message(str(res))) iptracker = on_command('iptracker', permission=SUPERUSER) @iptracker.handle() async def _(bot: Bot, event: MessageEvent): type_ = str(event.message) randnum = random.random() await bot.send(event, message=str(randnum)) await iptracker.finish(message=Message(gentracker(randnum, type=int(type_) if type_ else 0))) show_me = on_keyword({'闪光弹', '照明弹'}, permission=SUPERUSER) @show_me.handle() async def _(bot: Bot, event: GroupMessageEvent): if 'reply' in event.raw_message: msg = event.reply.raw_message.replace(',type=flash', '') await bot.send(event, Message(msg)) # scheduler = require('nonebot_plugin_apscheduler').scheduler # # @scheduler.scheduled_job('cron', hour='*', id='ti_gang') # async def ti_gang(): # await call_api_delay('send_group_msg', # random.randint(1, 100), # group_id=476328543, # message=Message('[CQ:image,file=d01d3883a38999345e536012aeb18c76.image,url=https://c2cpicdw.qpic.cn/offpic_new/912871833//912871833-2997538805-D01D3883A38999345E536012AEB18C76/0?term=3]')) # temp = """<section style="text-align: center; line-height: 1.75em; margin-left: 8px; margin-right: 8px;"> # <section style="margin-right: auto;margin-left: auto;width: 100%;vertical-align: middle;display: inline-block;line-height: 0;box-sizing: border-box;"> # <section style="display: inline-block;width: 100%;vertical-align: top;background-position: 0% 0%;background-repeat: no-repeat;background-size: 100%;background-attachment: scroll;background-image: url(&quot;{url2}&quot;);-webkit-tap-highlight-color: transparent;"> # <svg enable-background="new 0 0 1080 435" space="preserve" # style="display: inline-block;width: 100%;vertical-align: top;background-position: 0% 0%;background-repeat: no-repeat;background-size: 100%;background-attachment: scroll;background-image: url(&quot;{url1}&quot;);-webkit-tap-highlight-color:transparent;" # version="1.1" viewBox="0 0 1080 435" x="0px" xlink="http://www.w3.org/1999/xlink" xml="" # xmlns="http://www.w3.org/2000/svg" y="0px"> # <animate attributeName="opacity" begin="click" dur="0.5s" values="1;0" fill="freeze" restart="never"></animate> # </svg> # </section> # </section> # </section>""" # merge_cmd = on_command('代码') # @merge_cmd.handle() # async def _(bot: Bot, event: MessageEvent): # try: # url1, url2 = event.message.__str__().split() # await bot.send(event, message=temp.format(url1=url1, url2=url2)) # except: # print('error') # request_cmd = on_message(permission=PRIVATE) # # # @request_cmd.handle() # async def request(bot: Bot, event: MessageEvent): # # 接收私聊消息 # f_user = event.user_id # if True: # # 创建临时 matcher # request_cmd.new("message", # handlers=[decide], # permission=SUPERUSER, # temp=True) # # await bot.send_private_msg(user_id=912871833, # message=f'{f_user}:\n{event.raw_message}') # # # async def decide(bot: Bot, event: MessageEvent): # # 临时 matcher 响应事件 # await request_cmd.send(message=event.message)
Joenothing-lst/qbot
src/plugins/admin/__init__.py
__init__.py
py
9,965
python
en
code
0
github-code
6
26109711840
""" The customers resource is a representation of the customer accounts. All the REST API calls to the Customer or the Address Database are housed here. Customers Service with Swagger and Flask RESTX Paths: ------ GET / - Displays a UI for Selenium testing GET /customers - Lists a list all of Customers GET /customers/{customer_id} - Reads the Customer with given Customer ID POST /customers - Creates a new Customer in the database PUT /customers/{customer_id} - Updates a Customer with given customer ID DELETE /customers/{customer_id} - Deletes a Customer with given ID GET /customers/{customer_id}/addresses - Lists all the addresses of the customer with given ID GET /customers/{customer_id}/addresses/{address_id} - Reads the Address with given ID of the customer with given ID POST /customers/{customer_id}/addresses - Creates a new address of the customer with given Customer ID PUT /customers/{customer_id}/addresses/{address_id} - Updates the address with given address ID of customer with given ID DELETE /customers/{customer_id}/addresses/{address_id} - Deletes the address with given address ID of customer with given ID PUT /customers/{customer_id}/activate - Activates a Customer with given Customer ID PUT /customers/{customer_id}/deactivate - Deactivates a Customer with given Customer ID """ # pylint: disable=cyclic-import from flask import jsonify # from flask_restx import Api, Resource from flask_restx import fields, reqparse, inputs, Resource from service.common import status # HTTP Status Codes from service.models import Customer, Address # Import Flask application from . import app, api create_address_model = api.model('Address', { 'street': fields.String(required=True, description='The address street'), 'city': fields.String(required=True, description='The address city'), 'state': fields.String(required=True, description='The address state'), 'country': fields.String(description='The address country'), 'pin_code': fields.String(required=True, description='The address pin code'), 'customer_id': fields.Integer(required=True, description='The customer ID corresponding to the Address') }) address_model = api.inherit( 'AddressModel', create_address_model, { 'address_id': fields.Integer(readOnly=True, description='The unique id assigned internally by service') } ) create_customer_model = api.model('Customer', { 'first_name': fields.String(required=True, description='The First Name of the customer'), 'last_name': fields.String(required=True, description='The Last Name of the customer'), 'password': fields.String(required=True, description='The password of the customer'), 'email': fields.String(required=True, description='The email of the customer'), 'active': fields.Boolean(required=True, description='The active/inactive state of the customer'), 'addresses': fields.List(fields.Nested(address_model, required=False, description='List of addresses that the customer has')) }) customer_model = api.inherit( 'CustomerModel', create_customer_model, { 'id': fields.Integer(readOnly=True, description='The unique id assigned internally by service'), } ) # query string arguments customer_args = reqparse.RequestParser() customer_args.add_argument('first_name', type=str, location='args', required=False, help='Find Customers by First Name') customer_args.add_argument('last_name', type=str, location='args', required=False, help='Find Customers by Last Name') customer_args.add_argument('email', type=str, location='args', required=False, help='Find Customers by Email') customer_args.add_argument('active', type=inputs.boolean, location='args', required=False, help='Is the Customer active?') customer_args.add_argument('street', type=str, location='args', required=False, help='Find Customers by Address street') customer_args.add_argument('city', type=str, location='args', required=False, help='Find Customers by Address city') customer_args.add_argument('state', type=str, location='args', required=False, help='Find Customers by Address state') customer_args.add_argument('country', type=str, location='args', required=False, help='Find Customers by Address country') customer_args.add_argument('pin_code', type=str, location='args', required=False, help='Find Customers by Address Pin Code') ############################################################ # Health Endpoint ############################################################ @app.route("/health") def health(): """Health Status""" return jsonify(dict(status="OK")), status.HTTP_200_OK ###################################################################### # GET INDEX ###################################################################### @app.route('/') def index(): """Root URL response""" app.logger.info("Request for Root URL") return app.send_static_file('index.html') ###################################################################### # R E S T A P I E N D P O I N T S ###################################################################### ###################################################################### # PATH: /customers/{customer_id} ###################################################################### @api.route('/customers/<int:customer_id>') @api.param('customer_id', 'The Customer identifier') class CustomerResource(Resource): """ CustomerResource class Allows the manipulation of a single customer GET /customer{customer_id} - Returns a Customer with the customer_id PUT /customer{customer_id} - Update a Customer with the customer_id DELETE /customer{customer_id} - Deletes a Customer with the customer_id """ # ------------------------------------------------------------------ # RETRIEVE A CUSTOMER # ------------------------------------------------------------------ @api.doc('get_customers') @api.response(404, 'Customer not found') @api.marshal_with(customer_model) def get(self, customer_id): """ Retrieve a single Customer This endpoint will return a Customer based on its ID. """ app.logger.info("Request to Retrieve a Customer with id [%s]", customer_id) customer = Customer.find(customer_id) if not customer: abort(status.HTTP_404_NOT_FOUND, f"Customer with id '{customer_id}' was not found.") app.logger.info('Returning customer: %s', customer.id) return customer.serialize(), status.HTTP_200_OK # ------------------------------------------------------------------ # UPDATE AN EXISTING CUSTOMER # ------------------------------------------------------------------ @api.doc('update_customers') @api.response(404, 'Customer not found') @api.response(400, 'The posted Customer data was not valid') @api.expect(customer_model) @api.marshal_with(customer_model) def put(self, customer_id): """ Update a Customer This endpoint will update a Customer based on the body that is posted. """ app.logger.info('Request to Update a Customer with id [%s]', customer_id) customer = Customer.find(customer_id) original_password = None if not customer: abort(status.HTTP_404_NOT_FOUND, f"Customer with id '{customer_id}' was not found.") else: original_password = customer.password app.logger.debug('Payload = %s', api.payload) data = api.payload customer.deserialize(data) customer.id = customer_id customer.update(original_password) app.logger.info('Customer with ID [%s] updated.', customer.id) return customer.serialize(), status.HTTP_200_OK # ------------------------------------------------------------------ # DELETE A CUSTOMER # ------------------------------------------------------------------ @api.doc('delete_customers') @api.response(204, 'Customer deleted') def delete(self, customer_id): """ Delete a Customer This endpoint will delete a Customer based on the ID specified in the path. """ app.logger.info('Request to Delete a Customer with id [%s]', customer_id) customer = Customer.find(customer_id) if customer: customer.delete() app.logger.info('Customer with id [%s] was deleted', customer_id) return '', status.HTTP_204_NO_CONTENT ###################################################################### # PATH: /customers ###################################################################### @api.route('/customers', strict_slashes=False) class CustomerCollection(Resource): """ Handles all interactions with collections of Customers """ # ------------------------------------------------------------------ # LIST ALL CUSTOMERS # ------------------------------------------------------------------ @api.doc('list_customers') @api.expect(customer_args, validate=True) @api.marshal_list_with(customer_model) def get(self): """ Lists all of the Customers This endpoint will list all the customers. """ app.logger.info('Request to list customers...') customers = [] args = customer_args.parse_args() if args['first_name']: app.logger.info('Filtering by first name: %s', args['first_name']) customers = Customer.find_by_first_name(args['first_name']) elif args['last_name']: app.logger.info('Filtering by last name: %s', args['last_name']) customers = Customer.find_by_last_name(args['last_name']) elif args['active'] is not None: app.logger.info('Filtering by active state: %s', args['active']) customers = Customer.find_by_active(args['active']) elif args['email']: app.logger.info('Filtering by email: %s', args['email']) customers = Customer.find_by_email(args['email']) elif args['street']: app.logger.info('Filtering by street: %s', args['street']) customers = Address.find_by_street(args['street']) elif args['city']: app.logger.info('Filtering by city: %s', args['city']) customers = Address.find_by_city(args['city']) elif args['state']: app.logger.info('Filtering by state: %s', args['state']) customers = Address.find_by_state(args['state']) elif args['country']: app.logger.info('Filtering by country: %s', args['country']) customers = Address.find_by_country(args['country']) elif args['pin_code']: app.logger.info('Filtering by pin code: %s', args['pin_code']) customers = Address.find_by_pin_code(args['pin_code']) else: app.logger.info('Returning unfiltered list.') customers = Customer.all() # app.logger.info('[%s] Customers returned', len(customers)) results = [customer.serialize() for customer in customers] return results, status.HTTP_200_OK # ------------------------------------------------------------------ # ADD A NEW CUSTOMER # ------------------------------------------------------------------ @api.doc('create_customers') @api.response(400, 'The posted data was not valid') @api.expect(create_customer_model) @api.marshal_with(customer_model, code=201) def post(self): """ Creates a Customer This endpoint will create a Customer based on the data in the body that is posted. """ app.logger.info('Request to Create a Customer') customer = Customer() app.logger.debug('Payload = %s', api.payload) customer.deserialize(api.payload) customer.create() app.logger.info('Customer with new id [%s] created!', customer.id) location_url = api.url_for(CustomerResource, customer_id=customer.id, _external=True) return customer.serialize(), status.HTTP_201_CREATED, {'Location': location_url} ###################################################################### # Activate / Deactivate Customer ###################################################################### ###################################################################### # PATH: /customers/{customer_id}/activate ###################################################################### @api.route('/customers/<int:customer_id>/activate') @api.param('customer_id', 'The Customer identifier') class ActivateResource(Resource): """ Activate actions on a Customer """ @api.doc('activate_customers') @api.response(404, 'Customer not found') def put(self, customer_id): """ Activate a Customer This endpoint will activate a Customer. """ app.logger.info(f'Request to Activate a Customer with ID: {customer_id}') customer = Customer.find(customer_id) if not customer: abort(status.HTTP_404_NOT_FOUND, f'Customer with id [{customer_id}] was not found.') customer.id = customer_id customer.active = True customer.update() app.logger.info('Customer with id [%s] has been activated!', customer.id) return customer.serialize(), status.HTTP_200_OK ###################################################################### # PATH: /customers/{customer_id}/deactivate ###################################################################### @api.route('/customers/<int:customer_id>/deactivate') @api.param('customer_id', 'The Customer identifier') class DeactivateResource(Resource): """ Deactivate actions on a Customer """ @api.doc('deactivate_customers') @api.response(404, 'Customer not found') def put(self, customer_id): """ Deactivate a Customer This endpoint will deactivate a Customer. """ app.logger.info(f'Request to Deactivate a Customer with ID: {customer_id}') customer = Customer.find(customer_id) if not customer: abort(status.HTTP_404_NOT_FOUND, f'Customer with id [{customer_id}] was not found.') customer.id = customer_id customer.active = False customer.update() app.logger.info('Customer with id [%s] has been deactivated!', customer.id) return customer.serialize(), status.HTTP_200_OK ###################################################################### # PATH: /customers/{customer_id}/addresses/{address_id} ###################################################################### @api.route('/customers/<int:customer_id>/addresses/<int:address_id>') @api.param('customer_id', 'The Customer identifier') @api.param('address_id', 'The Address identifier') class AddressResource(Resource): """ AddressResource class Allows the manipulation of a single Address GET /customers/{customer_id}/addresses/{address_id} - Returns an Address with the id PUT /customers/{customer_id}/addresses/{address_id} - Update an Address with the id DELETE /customers/{customer_id}/addresses/{address_id} - Deletes an Address with the id """ # ------------------------------------------------------------------ # RETRIEVE AN ADDRESS # ------------------------------------------------------------------ @api.doc('get_addresses') @api.marshal_with(address_model) @api.response(404, 'Address not found') def get(self, address_id, customer_id): """ Retrieve an address This endpoint will return an address from a customer based on its ID. """ app.logger.info('Request to retrieve an Address %s from Customer with id: %s', address_id, customer_id) customer = Customer.find(customer_id) if not customer: abort( status.HTTP_404_NOT_FOUND, f"Customer with id '{customer_id}' was not found.", ) address = Address.find(address_id) if not address or address.customer_id != customer.id: abort( status.HTTP_404_NOT_FOUND, f"Address with id '{address_id}' could not be found for the customer with id {customer.id}.", ) app.logger.info('Returning address: %s', address.address_id) return address.serialize(), status.HTTP_200_OK # ------------------------------------------------------------------ # UPDATE AN EXISTING ADDRESS # ------------------------------------------------------------------ @api.doc('update_addresses') @api.response(404, 'Address not found') @api.expect(address_model) @api.marshal_with(address_model) def put(self, address_id, customer_id): """ Update an address of a customer This endpoint will update an Address based on the body that is posted. """ app.logger.info('Request to Address with address_id [%s] and customer_id [%s] ...', address_id, customer_id) customer = Customer.find(customer_id) if not customer: abort(status.HTTP_404_NOT_FOUND, f"Customer with id '{customer_id}' was not found.") # Find customer address with address_id addr_to_update = None for addr in customer.addresses: if addr.address_id == address_id: addr_to_update = addr break # if not found if not addr_to_update: abort(status.HTTP_404_NOT_FOUND, f"Address id '{address_id}' not found for customer '{customer_id}'.") data = api.payload addr_to_update.deserialize(data) addr_to_update.address_id = address_id addr_to_update.customer_id = customer_id addr_to_update.update() app.logger.info('Address with address_id [%s] and customer_id [%s] updated.', address_id, customer.id) return addr_to_update.serialize(), status.HTTP_200_OK # ------------------------------------------------------------------ # DELETE AN ADDRESS # ------------------------------------------------------------------ @api.doc('delete_addresses') @api.response(204, 'Address deleted') def delete(self, address_id, customer_id): """ Delete an address from a customer This endpoint will delete an Address based on the ID specified in the path. """ app.logger.info('Request to delete address with address_id [%s] and customer_id [%s] ...', address_id, customer_id) address = Address.find(address_id) if address and address.customer_id == customer_id: address.delete() app.logger.info('Address with ID [%s] and customer ID [%s] delete completed.', address_id, customer_id) return '', status.HTTP_204_NO_CONTENT ###################################################################### # PATH: /customers/{customer_id}/addresses ###################################################################### @api.route('/customers/<int:customer_id>/addresses', strict_slashes=False) @api.param('customer_id', 'The Customer identifier') class AddressCollection(Resource): """ Handles all interactions with collections of addresses """ # ------------------------------------------------------------------ # LIST ALL ADDRESSES FOR A CUSTOMER # ------------------------------------------------------------------ @api.doc('list_addresses') @api.marshal_list_with(address_model) def get(self, customer_id): """ List all of the addresses of a Customer This endpoint will list all addresses of a Customer. """ app.logger.info('Request to list Addresses for Customer with id: %s', customer_id) customer = Customer.find(customer_id) if not customer: abort(status.HTTP_404_NOT_FOUND, f"Customer with id '{customer_id}' was not found.") results = [address.serialize() for address in customer.addresses] app.logger.info("Returning %d addresses", len(results)) return results, status.HTTP_200_OK # ------------------------------------------------------------------ # ADD A NEW ADDRESS FOR A CUSTOMER # ------------------------------------------------------------------ @api.doc('create_addresses') @api.response(400, 'The posted data was not valid') @api.expect(create_address_model) @api.marshal_with(address_model, code=201) def post(self, customer_id): """ Create an address for a customer This endpoint will add a new address for a customer. """ app.logger.info('Request to create an address for customer with id: %s', customer_id) customer = Customer.find(customer_id) if not customer: abort(status.HTTP_404_NOT_FOUND, f"Customer with id '{customer_id}' was not found.") # Create an address instance for the customer = customer_id data = api.payload address = Address() address.deserialize(data) customer.addresses.append(address) customer.update() location_url = api.url_for(AddressResource, customer_id=address.customer_id, address_id=address.address_id, _external=True) app.logger.info('Address with ID [%s] created for Customer: [%s].', address.address_id, customer.id) return address.serialize(), status.HTTP_201_CREATED, {"Location": location_url} ###################################################################### # U T I L I T Y F U N C T I O N S ###################################################################### def abort(error_code: int, message: str): """Logs errors before aborting""" app.logger.error(message) api.abort(error_code, message)
CSCI-GA-2820-SP23-003/customers
service/routes.py
routes.py
py
21,967
python
en
code
3
github-code
6
33963223285
from http import HTTPStatus from django.test import TestCase, Client class AboutTests(TestCase): def setUp(self): self.guest_client = Client() def test_about_urls_uses_correct_templates(self): templates_url_names_quest = { '/about/author/': 'about/author.html', '/about/tech/': 'about/tech.html' } for address, template in templates_url_names_quest.items(): with self.subTest(address=address): response = self.guest_client.get(address) self.assertEqual( response.status_code, HTTPStatus.OK )
Mashabor/hw05_final
yatube/about/tests.py
tests.py
py
660
python
en
code
0
github-code
6
73675897789
import math import numpy as np from numpy.linalg import norm from random import randint import os from select import select os.environ["PYTHONDONTWRITEBYTECODE"]="True" from servThread import servThread BUFFER_SIZE = 32 alfa = 1 mi = 0.001 nfeatures = 4 #funkcija koja pokusava predvidjeti y def h(theta,x): return(1/(1+math.e**(x.dot(theta)))) #Ucenje koje uzima fiksan broj iteracija def nauciIter(X,y,theta0,n=500): theta = theta0 for i in range(n): theta = theta - alfa*X.T.dot(y1-h(theta,X)) return theta #funkcija koja uci dok razlika parametara u uzastopnim iteracijama ne postane dovoljno mala def nauci(X,y,theta0): theta = theta0 M = len(X) while(True): oldTheta = theta; theta = theta - alfa*X.T.dot(y-h(theta,X))/M razlika = norm(theta - oldTheta) print("Razlika starog i novog: " + str(razlika)) if( razlika < mi ): break return theta #funkcija koja nam vraca srednju vrijednost i standardnu devijaciju mjerenih podataka def skala(X): mean = np.empty(shape=(len(X[0]))) sigma = np.empty(shape=(len(X[0]))) for i in range(len(X[0])): mean[i] = np.mean(X[:,i]) sigma[i] = np.std(X[:,i]) #Specijalni slucajevi if (mean[i] == 0) and (sigma[i] == 0): sigma[i] = 1 if sigma[i] == 0: sigma[i] = mean[i] mean[i] = 0 return mean,sigma #funkcija za skaliranje podataka def skaliraj(X,mean,sigma): return np.divide((X -mean),sigma) #funkcija za drugacije oblikovanj podataka, nepotrebna i nekoristena def oblikujPodatke(X,y,uzastopni): #u X1 i y1 spremamo nove, oblikovane podatke za treniranje y1=np.array([]) X1 = np.empty(shape=(0,4*uzastopni+1)) #Dodajemo pozitivnu klasu y = 1 indeksi,=np.where(y==1) broj = len(indeksi) #broj mjerenja s y = 1 indeksi2 = np.zeros(shape=(broj,uzastopni),dtype='int32') #Spremamo indekse okolnih mjerenja koje cemo poslije spojiti u oblik podataka za treniranje for i in range(uzastopni): indeksi2[:,i] = indeksi-2+i for red in indeksi2: odabrani = X[red,:].ravel() #dodajemo x0 = 1 na pocetak novih podataka mjerenje = np.append([1],odabrani) X1 = np.append(X1,[mjerenje],axis=0) y1 = np.append(y1,[1]) #Brisemo sva mjerenja koja smo uzeli kao pozitivnu klasu X = np.delete(X,indeksi2.ravel(),0) #Dodajemo negativnu klasu y = 0, dodajemo isti broj mjerenja koji imamo za pozitivnu klasu for i in range(broj): #Za negativnu klasu uzimamo nasumicno odabrana mjerenja iz preostalih centralniIndeks = randint(uzastopni//2,len(X)-uzastopni//2 - 2) indeksi=np.array(range(uzastopni))-uzastopni//2 + centralniIndeks odabrani = X[indeksi,:].ravel() mjerenje = np.append([1],odabrani) X1 = np.append(X1,[mjerenje],axis=0) y1 = np.append(y1,[0]) return X1,y1 #funkcija koja vraca true ako je resurs od servera iskoristen, a false ako je proslo odredeno vrijeme def resBusy(res,timeout): i,_,_ = select([res],[],[],timeout) return i def provjeravaj(server): server.socket.listen(1) print("Cekam konekciju 50 sekundi") uspjeh = resBusy(server.socket,50) if uspjeh: conn, addr = server.socket.accept() print("Konekcija s adrese: "+str(addr)) while server.thrRunning: #Provjerava jesu li podatci poslani preko konekcije i treba li u meduvremenu ugasiti server uspjeh2 = resBusy(conn,1) if uspjeh2: #Prihvacamo podatke preko mreze i pretvaramo ih u numpy array data = np.fromstring(conn.recv(BUFFER_SIZE),sep='\t') #Odbacujemo y, dodajemo x0 na pocetak i skaliramo mjerenje praviData = data[:nfeatures] praviData = np.append([1],praviData) praviData = skaliraj(praviData,mean,sigma) #Ispisujemo ako je vjerojatnost preko 50% predvidanje = h(theta, praviData) if predvidanje > 0.5: print("Pozitivno: "+ str(predvidanje)) conn.close() else: print("Nema konekcije.") return # # Kod za ucenje # #Citanje podataka iz file-a lista = np.fromfile("podaci",sep="\t") lista = lista.reshape(-1,nfeatures+1) #y nam je zadnji stupac y=lista[:,nfeatures] m = np.size(y) #X0 je prvi stupac jedinica X0 = np.ones(shape=(m,1)) #Potpuna matrica s traning data X= np.append(X0, lista[:,0:nfeatures], axis=1) #Pocetni koeficijenti theta theta0 = np.zeros(nfeatures+1) #Skaliranje svih stupaca za bolju konvergenciju ucenja mean,sigma = skala(X) X = skaliraj(X,mean,sigma) #Ucenje koeficijenata theta = nauci(X,y,theta0) # # Pokretanje servera # TCP_IP = raw_input("Unesi IP adresu racunala: ") TCP_PORT = 5005 server = servThread((TCP_IP,TCP_PORT),provjeravaj) server.start() inp="" while inp!="quit": inp= raw_input("Upisi quit za ugasiti\n") print("RIP server") server.thrRunning=False server.join()
termistotel/microbitML
server/learn.py
learn.py
py
4,883
python
hr
code
0
github-code
6
25495485263
# -*- coding: utf-8 -*- """ Created on Sun Sep 27 17:39:39 2020 @author: satya """ import pandas as pd import scipy.cluster.hierarchy as sch from sklearn.cluster import DBSCAN data=pd.read_csv('cars_clus.csv') featureset = data[['engine_s', 'horsepow', 'wheelbas', 'width', 'length', 'curb_wgt', 'fuel_cap', 'mpg']] featureset=featureset.dropna() featureset=featureset.replace('$null$',0) from sklearn.preprocessing import StandardScaler sc=StandardScaler() featureset=sc.fit_transform(featureset) from sklearn.cluster import AgglomerativeClustering dendogram=sch.dendrogram(sch.linkage(featureset,method='ward')) plt.show() hc=AgglomerativeClustering(n_clusters=5,affinity='euclidean',linkage='ward') y=hc.fit_predict(featureset) df=DBSCAN(eps=0.3,min_samples=2) y=df.fit(featureset) y=y.labels_ sample_cores=np.zeros_like(y) sample_cores[df.core_sample_indices_]=True np.unique(y)
Satyake/Deep-Learning
DBSCAN and HC.py
DBSCAN and HC.py
py
928
python
en
code
1
github-code
6
2736213027
from keras.optimizers import Nadam, Optimizer from keras import backend as K class Nadam_entropy(Nadam): def __init__(self, temperature=0.1, **kwargs): self.temperature = temperature super(Nadam_entropy, self).__init__(**kwargs) def get_gradients(self, loss, params): grads = K.gradients(loss, params) probs = grads for i in range(len(params)): grads[i] /= params[i] + K.epsilon() #probs = grads / (params + K.epsilon()) probs = K.abs(probs) probs /= K.sum(K.flatten(probs)) + K.epsilon() Ts = -self.temperature*K.sum(K.flatten(probs * K.log(probs))) delta_s = K.gradients(Ts, params) for i in range(len(grads)): grads[i] = grads[i] + delta_s[i] # grads = grads + delta_s if hasattr(self, 'clipnorm') and self.clipnorm > 0: norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads])) grads = [clip_norm(g, self.clipnorm, norm) for g in grads] if hasattr(self, 'clipvalue') and self.clipvalue > 0: grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads] return grads
twoev/APEMEN
utils/optimisers.py
optimisers.py
py
1,081
python
en
code
0
github-code
6
38456424440
import re import os import torch import base64 import uvicorn import numpy as np from io import BytesIO from PIL import Image from typing import Union from fastapi import FastAPI, File, Form from pydantic import BaseModel from maskrcnn_benchmark.config import cfg from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo def base64_to_image(base64_str, image_path=None): base64_data = re.sub('^data:image/.+;base64,', '', base64_str) byte_data = base64.b64decode(base64_data) image_data = BytesIO(byte_data) img = Image.open(image_data) if image_path: img.save(image_path) return img def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right if clip: clip_coords(x, (h - eps, w - eps)) # warning: inplace clip y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center y[:, 2] = (x[:, 2] - x[:, 0]) / w # width y[:, 3] = (x[:, 3] - x[:, 1]) / h # height return y def predict2json(image,caption): image = np.array(image)[:,:,::-1] predictions = glip_demo.compute_prediction(image, caption) glip_demo.confidence_threshold = 0.5 top_predictions = glip_demo._post_process_fixed_thresh(predictions) boxs = top_predictions.bbox index = top_predictions.get_field("labels") probs = top_predictions.get_field("scores") h,w,_ = image.shape xywhs = xyxy2xywhn(x=boxs,w=w,h=h) res = {} for c, (i,loc,prob) in enumerate(zip(index,xywhs,probs)): x,y,w,h = loc res[c] = {} res[c]['index'] = int(i) -1 res[c]['label'] = glip_demo.entities[int(i) -1] res[c]['prob'] = float(prob) res[c]['x'] = float(x) res[c]['y'] = float(y) res[c]['w'] = float(w) res[c]['h'] = float(h) return res config_file = "configs/pretrain/glip_Swin_T_O365_GoldG.yaml" weight_file = "MODEL/glip_tiny_model_o365_goldg_cc_sbu.pth" cfg.local_rank = 0 cfg.num_gpus = 1 cfg.merge_from_file(config_file) cfg.merge_from_list(["MODEL.WEIGHT", weight_file]) cfg.merge_from_list(["MODEL.DEVICE", "cuda"]) glip_demo = GLIPDemo( cfg, min_image_size=800, confidence_threshold=0.5, show_mask_heatmaps=False ) app = FastAPI() class Item(BaseModel): name: str price: float is_offer: Union[bool, None] = None @app.get("/") def read_root(): return {"Hello": "World"} @app.post("/upload") def upload(base64_str: str = Form(...), caption: str = Form(...)): try: image = base64_to_image(base64_str) res = predict2json(image,caption) except Exception as e: return {"message": f"{e}"} return res if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=5000)
bensonbs/GLIP
main.py
main.py
py
2,914
python
en
code
5
github-code
6
29401120526
import json import os from googleapiclient.discovery import build class Channel: """Класс для ютуб-канала""" def __init__(self, channel_id: str) -> None: """Экземпляр инициализируется id канала. Дальше все данные будут подтягиваться по API.""" self.__channel_id = channel_id api_key: str = os.getenv('API_KEY') youtube = build('youtube', 'v3', developerKey=api_key) channel = youtube.channels().list(id=self.__channel_id, part='snippet,statistics').execute() self.title = channel['items'][0]['snippet']['title'] self.description = channel['items'][0]['snippet']['description'] self.url = 'https://www.youtube.com/channel/' + self.__channel_id self.subscribers = channel['items'][0]['statistics']['subscriberCount'] self.video_count = channel['items'][0]['statistics']['videoCount'] self.views = channel['items'][0]['statistics']['viewCount'] def __str__(self): return f"{self.title} ({self.url})" def __add__(self, other): """ Метод для операции сложения""" return int(self.subscribers) + int(other.subscribers) def __sub__(self, other): """ Метод для операции вычитания""" return int(self.subscribers) - int(other.subscribers) def __lt__(self, other): """ Метод для операции сравнения «меньше»""" if int(self.subscribers) < int(other.subscribers): return True else: return False def __le__(self, other): """ Метод для операции сравнения «меньше или равно»""" if int(self.subscribers) <= int(other.subscribers): return True else: return False def __gt__(self, other): """ Метод для операции сравнения «больше»""" if int(self.subscribers) > int(other.subscribers): return True else: return False def __ge__(self, other): """ Метод для операции сравнения «больше или равно»""" if int(self.subscribers) >= int(other.subscribers): return True else: return False def __eq__(self, other): """ Поведение оператора равенства""" if int(self.subscribers) == int(other.subscribers): return True else: return False @property def channel_id(self): return self.__channel_id def print_info(self) -> None: """Выводит в консоль информацию о канале.""" api_key: str = os.getenv('API_KEY') youtube = build('youtube', 'v3', developerKey=api_key) channel = youtube.channels().list(id=self.__channel_id, part='snippet,statistics').execute() print(json.dumps(channel, indent=2, ensure_ascii=False)) @classmethod def get_service(cls): """ Возвращает объект для работы с YouTube API """ api_key: str = os.getenv('API_KEY') youtube = build('youtube', 'v3', developerKey=api_key) return youtube def to_json(self, name_json): """ Сохраняет в файл значения атрибутов экземпляра Channel """ attribute_dict = {'channel_id': self.__channel_id, 'title': self.title, 'description': self.description, 'url': self.url, 'subscribers': self.subscribers, 'video_count': self.video_count, 'views': self.views, } with open(name_json, "w", encoding="utf-8") as file: file.write(json.dumps(attribute_dict))
AnastasiaLykova/youtube-analytics-project
src/channel.py
channel.py
py
4,052
python
ru
code
null
github-code
6
41912482635
from array import array import datetime from datetime import datetime, timezone import requests import math from app.core.common import cf # import json from app.core.wcommon import wcf from app.db.database import couch class WSearch(): def __init__(self) -> None: self.SEARCH_TAGS = [ "archived", "author", "certainty", "colour", "incident", "msgType", "phenomenon", "severity", "source", "status", # "uuid" ] pass def getCList(self, query): # input: query dict # output: list # query example # query = {'db':'warnings', # 'design': 'metcap', # 'view':'phenomenon', # 'key': 'lightning' # } self.query = query self.qs = wcf.getQueryString(self.query) self.result = [] response, status = couch.get(self.qs) if len(response.json().keys()) >= 0: if('rows' in response.json().keys()): for doc in response.json()['rows']: self.result.append(doc['id']) return self.result else: return response.json() def getWarningsArchivedList(self): # input: # output: list of CAP warning archive statuses in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'archived' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsAreaDescList(self): # input: # output: list of CAP warning area descriptions in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'areaDesc' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsAuthorList(self): # input: # output list of CAP warning authors in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'author' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsCertaintyList(self): # input: # output list of CAP warning certainties in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'certainty' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsColourList(self): # input: # output: list of CAP warning colours in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'colour' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsCustomAreaList(self): # input: # output: list of CAP warning custom areas in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'customArea' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsMsgTypeList(self): # input: # output: list of CAP warning message types in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'msgType' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getIncidentsNameList(self): # input: # output: list of CAP incident names in database self.query = {'db': 'incidents', 'design': 'metcap', 'view': 'name' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getIncidentsDescriptionList(self): # input: # output: list of CAP incident descriptions in database self.query = {'db': 'incidents', 'design': 'metcap', 'view': 'description' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsPhenomenonList(self): # input: # output: list of CAP warning phenomena in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'phenomenon' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsSeverityList(self): # input: # output list of CAP warning severities in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'severity' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsStatusList(self): # input: # output list of CAP warning statuses in database self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'status' } qs = wcf.getQueryString(self.query) result = [] response, status = couch.get(qs) for doc in response.json()['rows']: result.append(doc['key']) return sorted(set(result)) def getWarningsByIncidentId(self, id): # input: string id # output: cap id # query example # '0000000008' # Incident IDs and names must be unique # self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'incident', 'key': id } qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"' # qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"&include_docs=true' response, status = couch.get(qs) result = [] if(not response.json()['rows']): return else: for doc in response.json()['rows']: result.append(doc['id']) # result.append(doc['doc']) return result # def getWarningsByIncidentDescription(self, description): # # input: string description # # output: cap # # query example # # 'description' # # Incident IDs and names must be unique # # # incidentId = self.getIncidentByDescription(description) # # test{ # print(incidentId) # # test} # self.query = {'db': 'warnings', # 'design': 'metcap', # 'view': 'incident', # 'key': incidentId # } # qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"' # # qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"&include_docs=true' # response, status = couch.get(qs) # result = [] # if(not response.json()['rows']): # return result # else: # for doc in response.json()['rows']: # result.append(doc['id']) # # result.append(doc['doc']) # return result # def getIncidentByDescription(self, description): # # input: description string # # output: incident id # self.query = {'db': 'incidents', # 'design': 'metcap', # 'view': 'description', # 'key': description # } # qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"' # # qs = wcf.getQueryString(self.query) # response, status = couch.get(qs) # result = [] # if(not response.json()['rows']): # return # else: # for doc in response.json()['rows']: # result.append(doc['id']) # return str(result[0]) def getWarningsByIncidentName(self, name): # input: string name # output: cap # query example # 'Muninn' # Incident IDs and names must be unique # incidentId = self.getIncidentByName(name) self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'incident', 'key': incidentId } qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"' # qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"&include_docs=true' response, status = couch.get(qs) result = [] if(not response.json()['rows']): return result else: for doc in response.json()['rows']: result.append(doc['id']) # result.append(doc['doc']) return result def getIncidentByName(self, name): # input: name string # output: incident id self.query = {'db': 'incidents', 'design': 'metcap', 'view': 'name', 'key': name } qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"' # qs = wcf.getQueryString(self.query) response, status = couch.get(qs) result = [] if(not response.json()['rows']): return else: for doc in response.json()['rows']: result.append(doc['id']) return str(result[0]) def getWarningsInPeriod(self, onset, expires): # input: time stamps from warning database ("onset", "expires") # output: list of valid CAP messages in the time interval # self.result = [] self.dt = datetime.now(timezone.utc) self.utc_time = self.dt.replace(tzinfo=timezone.utc) self.utc_timestamp = math.floor(self.utc_time.timestamp()) self.lq = {'db': 'warnings', 'design': 'metcap', 'view': 'epochToOnset', 'startkey': wcf.getCapEpoch(onset), 'endkey': self.utc_timestamp } self.rq = {'db': 'warnings', 'design': 'metcap', 'view': 'epochToExpires', 'startkey': 0, 'endkey': wcf.getCapEpoch(expires) } la = ws.getCList(self.lq) ra = ws.getCList(self.rq) return list(set(la).intersection(ra)) def getWarningsTemporal(self, query): self.query = query return self.getWarningsInPeriod(self.query['onset'],self.query['expires']) def debug(self, query): self.query = query return self.getWarningsInPeriod(self.query['onset'],self.query['expires']) # return list(self.query.keys()) def capPolygonSearch(self, query): self.query = query self.iDList = wcf.findMatchingBounds(cf.getBounds(self.query)) self.q = {'db': 'warnings', 'design': 'metcap', 'view': 'polygon', 'keys': self.iDList } self.qs = wcf.getQueryString(self.q) self.result = [] response, status = couch.get(self.qs) if len(response.json().keys()) >= 0: if('rows' in response.json().keys()): for doc in response.json()['rows']: if 'cutoff' in self.query.keys(): if (cf.polyOverlaps(wcf.getPolygon(doc['value']), cf.getQueryPoly(self.query), cutoff=self.query['cutoff'])): self.result.append(doc['id']) else: if (cf.polyOverlaps(wcf.getPolygon(doc['value']), cf.getQueryPoly(self.query))): self.result.append(doc['id']) return self.result else: return response.json() return self.result def getWarningsInHeightRange(self, bottom, top): self.lq = {'db': 'warnings', 'design': 'metcap', 'view': 'altitude', 'startkey': bottom, 'endkey': 2e6 } self.rq = {'db': 'warnings', 'design': 'metcap', 'view': 'ceiling', 'startkey': 0, 'endkey': top } la = ws.getCList(self.lq) ra = ws.getCList(self.rq) return list(set(la).intersection(ra)) def getWarningsSpatial(self, query): self.query = query return self.getWarningsInHeightRange(self.query['altitude'],self.query['ceiling']) def capSearch(self, query): self.query = query return self.getCAPsIntersection(self.query,self.SEARCH_TAGS) def getCAPsIntersection(self,query,tags): rSets = [] for t in tags: if t in query.keys(): q = {'db': 'warnings', 'design': 'metcap', 'view': t, 'key': query[t] } rSets.append(set(self.getCList(q))) if 'features' in query.keys(): if query['features'][0]['geometry']['type'] == 'Polygon': rSets.append(set(self.capPolygonSearch(query))) if ('onset' in query.keys() and 'expires' in query.keys()): rSets.append(set(self.getWarningsInPeriod(query['onset'],query['expires']))) # test{ if ('incidentName' in query.keys()): rSets.append(set(self.getWarningsByIncidentName(query['incidentName']))) # test} return set.intersection(*rSets) def capSearchLong(self,query): self.query = query self.query['db'] = 'warnings' documents = [] idSet = self.getCAPsIntersection(self.query,self.SEARCH_TAGS) for elem in idSet: documents.append(elem) self.result = [] for item in documents: qs = f'/{self.query["db"]}/{item}' response, status = couch.get(qs) self.result.append(response.json()) # print(response.json()) return self.result def getCapXMLNameByWarning(self,id): # input: string id # output: cap XML file name (array) # query example # input: getCapXMLNameByWarning('2.49.0.1.578.0.20220602073715') # output: ['cap_xml'] # self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'capXML', 'key': id } qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"' response, status = couch.get(qs) self.result = [] if(not response.json()['rows']): return else: for doc in response.json()['rows']: self.result.append(doc['value']) return self.result def getWarningCapXML(self,id): attachments = self.getCapXMLNameByWarning(id) if(len(attachments) == 0): return else: self.query = {'db': 'warnings', 'key': attachments[0] } qs = f'/{self.query["db"]}/{id}/{self.query["key"]}' response,status = couch.get(qs) return(response.content.decode()) def getCapJSONNameByWarning(self,id): # input: string id # output: cap JSON file name (array) # query example # input: getCapJSONNameByWarning('2.49.0.1.578.0.20220602073715') # output: ['cap_json'] # self.query = {'db': 'warnings', 'design': 'metcap', 'view': 'capJSON', 'key': id } qs = f'/{self.query["db"]}/_design/{self.query["design"]}/_view/{self.query["view"]}?key="{self.query["key"]}"' response, status = couch.get(qs) self.result = [] if(not response.json()['rows']): return else: for doc in response.json()['rows']: self.result.append(doc['value']) return self.result def getWarningCapJSON(self,id): attachments = self.getCapJSONNameByWarning(id) if(len(attachments) == 0): return else: self.query = {'db': 'warnings', 'key': attachments[0] } qs = f'/{self.query["db"]}/{id}/{self.query["key"]}' response,status = couch.get(qs) return(response.content.decode()) ############################################################################### ws = WSearch()
metno/weamyl-metcap
app/app/core/wsearch.py
wsearch.py
py
19,290
python
en
code
0
github-code
6
16120458600
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Dr Ekaterina Abramova, 2017 STRUCTURED TYPES. Sequence type: lists """ # ----------------------------------------------------------------------------- # ----------------------------- create a list --------------------------------- L = [] # List Comprehension L1 = [ii for ii in range(5)] # [] make it a list. New list L1 = [0,1,2,3,4,5]. L2 = [x**2 for x in range(1,7) ] # new list L2 = [1,4,9,16,25,36] # typcast range (which is a generator) to a list L2 = list(range(10)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] mixed = [1, 2, 'a', 3, 4.0] L = [x**2 for x in mixed if type(x) == int] # [1, 4, 9] mylist = [x*x for x in range(3)] for ii in mylist: print(ii) # 0, 1, 4 # ----------------------------------------------------------------------------- # ---------------------------- simple operations ------------------------------ L = ['H',"e", 'l', 1,"o"] for ii in L: print(ii) # H e l 1 o # Looping L = [] for ii in range(10): L.append(ii) print(L) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # extend vs append method L1 = [1,2,3] L2 = [4,5,6] L3 = L1 + L2 print( 'L3 =', L3 ) # [1, 2, 3, 4, 5, 6] L1.extend(L2) # list concatenetion print( 'L1 =', L1 ) # [1, 2, 3, 4, 5, 6] L1.append(L2) # structure is maintained, get list inside a list print( 'L1 =', L1 ) # [1, 2, 3, 4, 5, 6, [4, 5, 6]] # ----------------------------------------------------------------------------- # ------------------------- side effects / aliasing ---------------------------- Techs = ['MIT', 'Caltech'] Ivys = ['Harvard', 'Yale', 'Brown'] Univ = [Techs, Ivys] Techs.append('RPI') # Obj to which Univ is bound still contains 2 lists, but their contents have changed. print(Univ) # [['MIT', 'Caltech', 'RPI'], ['Harvard', 'Yale', 'Brown']] # ----------------------------------------------------------------------------- # ------------------- build a list of integer values -------------------------- L = [] # empty list for ii in range(10): L.append(ii) print(L) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # ------------ build a lsit of integer values raised to power n --------------- # via for append def powers_forLoop(pwr, N=5): L = [] for ii in range(N): L.append(ii**pwr) return L # via comprehension def powers_listComprehension(pwr, N=5): L = [ii**pwr for ii in range(N)] return L # use next 2 lines on the IPython command line # %timeit powers_forLoop(2,1000) # 1000 loops, best of 3: 332 µs per loop # %timeit powers_listComprehension(2,1000) # 1000 loops, best of 3: 253 µs per loop # --------------- remove duplicate characters from 2 strings ------------------ def removeDups(L1,L2): newL = L1 # safe copy of L1 print(id(newL)==id(L1)) # True for e1 in newL: if e1 in L2: L1.remove(e1) # mutates original list L1 L1 = [1,2,3,4] L2 = [1,2,5,6] removeDups(L1,L2) print(L1) # [2, 3, 4] # ----------------- find position of an int within a list -------------------- def findPos(L): num = 5 # number to be found index = 0 found = False while not found: if L[index] == num: found = True print(index+1) elif index == (len (L)-1): print('Number not in list') break # come out of current loop index += 1 # function call L = [1,2,4,5,4,5,6] findPos(L)
EkaterinaAbramova/python_exercises
Structured Types/lists.py
lists.py
py
3,389
python
en
code
0
github-code
6
17351623183
import vertexai from vertexai.language_models import ChatModel, InputOutputTextPair vertexai.init(project="samwin", location="us-central1") chat_model = ChatModel.from_pretrained("chat-bison@001") parameters = { "max_output_tokens": 256, "temperature": 0.2, "top_p": 0.8, "top_k": 40 } chat = chat_model.start_chat( context="""you are a doctor that is responsible for answering queries that patients regarding their prescription. Also you are not allowed to tell that you are an AI model and have to answer the question with full confidence""", examples=[ InputOutputTextPair( input_text="""hello """, output_text="""hey there how can I help you out """ ), InputOutputTextPair( input_text="""can you tell me your name """, output_text="""My name is doctor Charis your person medical assistant """ ), InputOutputTextPair( input_text="""is it dangerous to take Asparin during Dengu""", output_text="""yes it is dangerous to take Asparin as it is a blood thinner and can cause excess thinning """ ) ] ) data = input("enter the text: ") response = chat.send_message(f'{data}' , **parameters) print(f"Response from the model {response.text}")
samwinp/rock-paper-sisor
future.py
future.py
py
1,288
python
en
code
0
github-code
6
36690654635
#!.venv/bin/python # File: bracket.py # Author: Jonathan Belden # Description: A small utility to check for the correct # amount of brackets (and possibly other # formatting irregularities) import os def is_valid(input_file): return os.path.isfile(input_file) def analyze(input_file, input_bracket, save_profile=False) -> bool: with open(input_file, "r") as file: content = file.readlines() open_bracket = f"{input_bracket}_left" close_bracket = f"{input_bracket}_right" if input_bracket == "curly": analysis_profile = count_curly_brackets(content) bracket_count = analysis_profile[open_bracket] + analysis_profile[close_bracket] description = "bracket" elif input_bracket == "single" or input_bracket == "double": analysis_profile = count_quotes(content, input_bracket) bracket_count = analysis_profile[f"{input_bracket}_quotes"] description = "quotes" else: analysis_profile = count_in_line_brackets(content, input_bracket) bracket_count = analysis_profile[open_bracket] + analysis_profile[close_bracket] description = "bracket" output = "" if not bracket_count % 2 == 0 or save_profile: output += f"Total {input_bracket} quote count: {bracket_count}\n" if input_bracket == "single" or input_bracket == "double" else f"Total {input_bracket} bracket count: {bracket_count}\n" try: output += f"\t'{open_bracket}': {analysis_profile[open_bracket]}\n" output += f"\t'{close_bracket}': {analysis_profile[close_bracket]}\n" except KeyError: pass output += f"=====================================================\n\n" output += analysis_profile["lines"] print(output) if save_profile: if not os.path.isdir(save_profile): os.mkdir(save_profile) file_name = os.path.join(save_profile, f"{input_bracket}-{description}-profile_{os.path.basename(input_file)}") with open(file_name, "w") as file: file.write(output) return True def count_curly_brackets(content) -> dict: bracket_profile = {"curly_left": 0, "curly_right": 0, "lines": ""} for i, line in enumerate(content): if line.strip().startswith("#") or line.strip().startswith("//"): continue elif "{" in line: bracket_profile["lines"] += f"{i+1} | {line.replace(' ', '.')}" bracket_profile["curly_left"] += 1 elif "}" in line: bracket_profile["lines"] += f"{i+1} | {line.replace(' ', '.')}" bracket_profile["curly_right"] += 1 return bracket_profile def count_in_line_brackets(content, bracket_type) -> dict: in_line_brackets = {"angle": ["<", ">"], "round": ["(", ")"], "square": ["[", "]"]} left_bracket = in_line_brackets[bracket_type][0] right_bracket = in_line_brackets[bracket_type][1] bracket_profile = {f"{bracket_type}_left": 0, f"{bracket_type}_right": 0, "lines": ""} for i, line in enumerate(content): if line.strip().startswith("#") or line.strip().startswith("//"): continue elif left_bracket in line or right_bracket in line: left_count = line.count(left_bracket) right_count = line.count(right_bracket) bracket_profile[f"{bracket_type}_left"] += left_count bracket_profile[f"{bracket_type}_right"] += right_count if left_count != right_count: bracket_profile["lines"] += f"{i+1} [{left_count}:{right_count}]* | {line}" else: bracket_profile["lines"] += f"{i+1} [{left_count}:{right_count}] | {line}" return bracket_profile def count_quotes(content, input_quote) -> dict: quote_types = {"double": "\"", "single": "'"} quotes_profile = {f"{input_quote}_quotes": 0, "lines": ""} for i, line in enumerate(content): if line.strip().startswith("#") or line.strip().startswith("//"): continue elif quote_types[input_quote] in line: qoute_count = line.count(quote_types[input_quote]) quotes_profile[f"{input_quote}_quotes"] += qoute_count if qoute_count % 2 != 0: quotes_profile["lines"] += f"{i+1} [{qoute_count}]* | {line}" else: quotes_profile["lines"] += f"{i+1} [{qoute_count}] | {line}" return quotes_profile
rckt-cmdr/bracket
bracket/bracket.py
bracket.py
py
4,556
python
en
code
0
github-code
6
6960045652
import numpy as np import matplotlib.pyplot as plt x = np.arange(10, 90, 10.) y = np.array([25, 70, 380, 550, 610, 1220, 830, 1450]) plt.figure(1) plt.plot(x, y, 'ro-') plt.grid() xsum=np.sum(x) ysum=np.sum(y) xysum=sum(x*y) n=np.size(x) xavg=xsum/n yavg=ysum/n a1=(n*xysum-xsum*ysum)/(n*sum(x**2)-xsum**2) a0= yavg-xavg*a1 plt.figure(2) y1=a1*x+a0 plt.plot(x, y, 'ro-', x, y1, 'b*-') plt.grid() p1=np.polyfit(x,y,1) # array([ 19.4702381 , -234.28571429]) plt.figure(3) y1=a1*x+a0 plt.plot(x, y, 'ro-', x, y1, 'b*-', x, np.polyval(p1, x), 'mp-') plt.grid()
SCKIMOSU/Numerical-Analysis
polyfit_implement.py
polyfit_implement.py
py
566
python
en
code
17
github-code
6
33362804571
import os class Student: def __init__(self,name,path): ''' name : Name of the student should correspond to records in moodle path : path to the folder with name "name" ''' self.name = name self.path = path+"/"+name self.solved_problems = dict() for p in self.get_problems_list(self.path): self.solved_problems[int(p)] = p self.grade = 0. self.checks_p = [] self.checks_s = [] self.assigned = [] def can_assign(self,s,p,max_p): # if a given student was already assigned, pick another one if self.can_assign_stud(s): # if number of needed problems exceeded, pick another one if self.checks_p.count(p)<max_p: return True return False def can_assign_stud(self,s): if s not in self.checks_s and s!=self.name: return True return False def can_assign_id(self,p_id): if p_id in self.assigned: return False return True def assign(self,s,p,p_id): self.checks_p.append(p) self.assign_stud(s) self.assigned.append(p_id) def assign_stud(self,s): self.checks_s.append(s) def get_problems_list(self,path): prob_list = os.listdir(path) plist = [] for s in prob_list: try: prob = int(s) if not (prob<0 or prob>=10): plist.append(s) except ValueError: continue return plist
VitalyRomanov/p2p_hw_grading
student.py
student.py
py
1,575
python
en
code
0
github-code
6
37708709276
from django.urls import path from . import views app_name = "shop" urlpatterns = [ path("", views.all_products, name="all_products"), path("<slug:c_slug>/", views.all_products, name="category_products"), path("product/new/", views.add_product, name="add_product"), path("product/remove/<slug:p_slug>", views.remove_product, name="remove_product"), path("product/edit/<slug:p_slug>", views.update_product, name="edit_product"), path("product/<slug:p_slug>/", views.product_detail, name="product_detail"), ]
aleksandr-hilko/alex_online_shop
homeshop/shop/urls.py
urls.py
py
532
python
en
code
0
github-code
6
6815148797
import pygame import numpy as np import pickle import datetime import os from snake import Snake from map import Map from agent import Agent # Version 1.1 MODEL_DIR = "models" MODEL_NAME = "model_1v7" # Name of the pickle file in which we store our model. MODEL_PATH = os.path.join(MODEL_DIR, MODEL_NAME) # MODEL_NAME = "models/Best_model" # Name of the pickle file in which we store our model. GATHER_DATA = True DATA_DIR = r"..\data" DATA_PATH = os.path.join(DATA_DIR, f"data_{MODEL_NAME}_dis") learn = 1 if learn: VISUAL = False GENERATIONS = 50 save = False epsilon_dec = 0.000_03 else: VISUAL = True GENERATIONS = 30 save = False epsilon_dec = 0.1 MAX_ITERATIONS = 7_000 # max iterations in game # Dropped to 5_000!!! MIN_EPSILON = 0.0001 epsilon_dec = 0.1 GAMMA = 0.4 LEARNING_RATE = 0.2 MIN_LEARNING_RATE = 0.3 def redraw_window(win: pygame.display.set_mode, snake: Snake, playground: Map): win.fill((25, 119, 207)) playground.draw(win) snake.draw(win, playground) pygame.display.update() # This updates the screen so we can see our rectangle def main(visual: bool = True): start = datetime.datetime.now() st2 = datetime.datetime.now() best_score = 0 best_time = 0 # MODEL if os.path.isfile(MODEL_PATH): with open(MODEL_PATH, 'rb') as f: q_table, generation = pickle.load(f) else: if not os.path.isdir(MODEL_DIR): os.mkdir(MODEL_DIR) q_table = np.zeros((2 ** 11, 3)) generation = 0 if os.path.isfile(DATA_PATH): with open(DATA_PATH, 'rb') as f: gameplay_data = pickle.load(f) else: if not os.path.isdir(DATA_DIR): os.mkdir(DATA_DIR) gameplay_data = [] # Classes agent = Agent() playground = Map() snake = Snake() playground.random_snack_pos(snake) # PyGame if visual: win = pygame.display.set_mode((playground.map_size, playground.map_size)) clock = pygame.time.Clock() pygame.display.set_caption("Snake Game, Generation: 0") generations_rewards = [] generation_time = [] for gen in range(GENERATIONS): generation += 1 current_state = agent.get_state(snake, playground) current_binary_state = agent.make_binary(current_state) # It should work as proper reset, but who knows... snake.reset() playground.reset() # game_over = False generation_reward = 0 iteration = 0 # epsilon = max(MIN_EPSILON, 0.9 - generation * 0.0008) epsilon = max(MIN_EPSILON, 0.9 - generation * epsilon_dec) # LEARNING_RATE = max(0.95 - generation * 0.000_000_004, MIN_LEARNING_RATE) if visual: pygame.display.set_caption(f"Snake Game, Generation: {generation}") for iteration in range(MAX_ITERATIONS): if visual: clock.tick(30) pygame.time.delay(20) redraw_window(win, snake, playground) # Maybe it can go to agent as get_action. # Action ==> 0 - straight, 1 - left, 2 - right if np.random.uniform(0, 1) < epsilon: action = np.random.randint(3) else: action = np.argmax(q_table[int(current_binary_state, 2), :]) probability = max(q_table[int(current_binary_state, 2), :]) if GATHER_DATA: gameplay_data.append([current_state, probability]) snake.move_action(action, visual) playground.random_snack_pos(snake) # It can be as one function. next_state = agent.get_state(snake, playground) next_binary_state = agent.make_binary(next_state) game_over, reward = snake.collision(playground, add_snack=True) bellman_equation = (1 - LEARNING_RATE) * q_table[int(current_binary_state, 2), action] + LEARNING_RATE *\ (reward + GAMMA * max(q_table[int(next_binary_state, 2), :])) # bellman_equation = max(q_table[int(next_binary_state, 2), :]) + LEARNING_RATE * (reward + GAMMA + ( # max(q_table[int(next_binary_state, 2), :]) - q_table[int(current_binary_state, 2), action])) q_table[int(current_binary_state, 2), action] = bellman_equation generation_reward += reward if game_over: if playground.score > best_score: best_score = playground.score if best_score > 10 and save: with open(f"models/Best_model", "wb") as f: data = (q_table, generation) pickle.dump(data, f) if iteration > best_time: best_time = iteration break # current_state = next_state current_binary_state = next_binary_state if visual: print(f"SCORE: {playground.score}") print(f"Reward: {reward}, time: {iteration} iterations") generations_rewards.append(generation_reward) generation_time.append(iteration) # print(f"Rewards : {generations_rewards}") # print(f"Time : {generation_time}") if generation % 100 == 0: print(generation, datetime.datetime.now() - st2, best_score, best_time) if save: with open(MODEL_PATH, "wb") as f: data = (q_table, generation) pickle.dump(data, f) if GATHER_DATA: with open(DATA_PATH, "wb") as f: pickle.dump(gameplay_data, f) st2 = datetime.datetime.now() print(f"\nTime of leaning last: {datetime.datetime.now() - start}, for {GENERATIONS} generations.") print(f"Best score was: {best_score} and best time was {best_time}.") print(f"Age: {generation} generations.") if save: with open(MODEL_PATH, "wb") as f: data = (q_table, generation) pickle.dump(data, f) if GATHER_DATA: with open(DATA_PATH, "wb") as f: pickle.dump(gameplay_data, f) if __name__ == "__main__": main(VISUAL)
Dawir7/Reinforcement-Learing-Bot-to-play-Snake-game
Reinforcement_learninig/main_learning.py
main_learning.py
py
6,247
python
en
code
0
github-code
6
7973610749
import logging from dataclasses import asdict from typing import List from game_service.routers.templates import BasicResponse from game_service.services.game_manager import CodingConundrumManager logging.basicConfig(format='%(name)s-%(levelname)s|%(lineno)d: %(message)s', level=logging.INFO) log = logging.getLogger(__name__) from fastapi import ( APIRouter, HTTPException, Request, Response, WebSocket, WebSocketDisconnect, status, ) from pydantic import BaseModel ROUTE_PREFIX = '/games' router = APIRouter( prefix=ROUTE_PREFIX, ) class WebSocketConnectionManager: def __init__(self): self.active_connections: List[WebSocket] = [] async def connect(self, websocket: WebSocket): await websocket.accept() self.active_connections.append(websocket) def disconnect(self, websocket: WebSocket): self.active_connections.remove(websocket) async def send_personal_message(self, message: str, websocket: WebSocket): await websocket.send_json(message) async def broadcast(self, message: str): for connection in self.active_connections: await connection.send_json(message) connection_manager = WebSocketConnectionManager() game_manager = CodingConundrumManager(connection_manager) @router.websocket('/codingconundrum') async def coding_conundrum_websocket_endpoint(websocket: WebSocket): await connection_manager.connect(websocket) await game_manager.handle_new_connection(websocket) try: while True: data = await websocket.receive_text() await game_manager.handle_incoming_message(data) except WebSocketDisconnect: connection_manager.disconnect(websocket) @router.get('/') async def compiler_status(request: Request): return BasicResponse(message="we're up!")
zhuweiji/CPP-FYP-Proj
game_service/game_service/routers/game_handlers.py
game_handlers.py
py
1,858
python
en
code
0
github-code
6
27986005563
# Author: Vivian Long # Assignment: Lab 7 # Completed: import sys # Problem 1 # Step 1 x = 1 data = list() while x > 0: x = float(input("Enter a score (0 to quit): ")) if x > 0: data.append(x) print("Initial list:", data) print("Size of list:", len(data)) # Step 2 high = data[0] for i in data[1:]: if i > high: high = i print("Max of list:", high) # Step 3 newList = list() for j in data: if j >= 25: newList.append(j) print("New list:", newList) ''' Problem 1 output: Enter a number (0 to quit): 25 Enter a number (0 to quit): 35.5 Enter a number (0 to quit): 15 Enter a number (0 to quit): 45.5 Enter a number (0 to quit): 55 Enter a number (0 to quit): 30.2 Enter a number (0 to quit): 49.4 Enter a number (0 to quit): 21.1 Enter a number (0 to quit): 41.8 Enter a number (0 to quit): 37 Enter a number (0 to quit): 0 Initial list: [25.0, 35.5, 15.0, 45.5, 55.0, 30.2, 49.4, 21.1, 41.8, 37.0] Size of list: 10 Max of list: 55.0 New list: [25.0, 35.5, 45.5, 55.0, 30.2, 49.4, 41.8, 37.0] ''' # Problem 2 # Step 1 names = list() while len(names) < len(data): n = input("Enter a name: ") names.append(n) # Step 2 d = dict(zip(names, data)) print("Dictionary:", d) # Step 3 name = input("Enter a name to search: ") if name not in d: print("Name not found.") else: print(name, "Score:", d[name]) # Step 4 d["Alice"] = 56.6 print("Adding Alice...\n", d) # Step 5 del d["Mary"] print("Deleting Mary...\n", d) ''' Problem 2 output: Enter a score (0 to quit): 25 Enter a score (0 to quit): 35.5 Enter a score (0 to quit): 15 Enter a score (0 to quit): 45.5 Enter a score (0 to quit): 55 Enter a score (0 to quit): 30.2 Enter a score (0 to quit): 49.4 Enter a score (0 to quit): 21.1 Enter a score (0 to quit): 41.8 Enter a score (0 to quit): 37 Enter a score (0 to quit): 0 Initial list: [25.0, 35.5, 15.0, 45.5, 55.0, 30.2, 49.4, 21.1, 41.8, 37.0] Size of list: 10 Max of list: 55.0 New list: [25.0, 35.5, 45.5, 55.0, 30.2, 49.4, 41.8, 37.0] Enter a name: Mary Enter a name: Ted Enter a name: Bob Enter a name: Sally Enter a name: Sara Enter a name: Tom Enter a name: Alex Enter a name: Jordan Enter a name: Robert Enter a name: Kim Dictionary: {'Mary': 25.0, 'Ted': 35.5, 'Bob': 15.0, 'Sally': 45.5, 'Sara': 55.0, 'Tom': 30.2, 'Alex': 49.4, 'Jordan': 21.1, 'Robert': 41.8, 'Kim': 37.0} Enter a name to search: Ted Ted Score: 35.5 Adding Alice... {'Mary': 25.0, 'Ted': 35.5, 'Bob': 15.0, 'Sally': 45.5, 'Sara': 55.0, 'Tom': 30.2, 'Alex': 49.4, 'Jordan': 21.1, 'Robert': 41.8, 'Kim': 37.0, 'Alice': 56.6} Deleting Mary... {'Ted': 35.5, 'Bob': 15.0, 'Sally': 45.5, 'Sara': 55.0, 'Tom': 30.2, 'Alex': 49.4, 'Jordan': 21.1, 'Robert': 41.8, 'Kim': 37.0, 'Alice': 56.6} '''
vwlong/CS299
lab7.py
lab7.py
py
2,738
python
en
code
0
github-code
6
7782101624
import cv2 import random import numpy as np frameWidth = 640 frameHeight = 480 cap = cv2.VideoCapture(0) cap.set(3, frameWidth) cap.set(4, frameHeight) save = False colors = [[51, 153, 255], [255, 0, 255], [0, 255, 0], [255, 0, 0], [0, 0, 255]] color = random.choice(colors) points=[] def draw_event(event, x, y,flags,params): global save, img, color if event == cv2.EVENT_LBUTTONDOWN and ~save: save = True if event == cv2.EVENT_LBUTTONUP: save = False color = random.choice(colors) if (save): points.append((x,y)) while True: success, img = cap.read() clone = img.copy() cv2.imshow("Drawing", img) cv2.setMouseCallback('Drawing', draw_event) if len(points): for point in points: x,y=point cv2.circle(img, (x, y), 4, color, cv2.FILLED) imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # lower boundary RED color range values; Hue (0 - 10) lower1 = np.array([0, 100, 20]) upper1 = np.array([10, 255, 255]) # upper boundary RED color range values; Hue (160 - 180) lower2 = np.array([160, 100, 20]) upper2 = np.array([179, 255, 255]) lower_mask = cv2.inRange(imgHSV, lower1, upper1) upper_mask = cv2.inRange(imgHSV, lower2, upper2) full_mask = lower_mask + upper_mask contours, _ = cv2.findContours(full_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) for cnt in contours: approx = cv2.approxPolyDP( cnt, 0.2 * cv2.arcLength(cnt, True), True) cv2.drawContours(img, [approx], 0, (0, 255, 5), 1) cv2.imshow('Drawing', img) key = cv2.waitKey(1) & 0xFF if key == ord("r"): img = clone.copy() elif key == ord("x"): break
tarekbrahmi/Open-cv-project
learining/projects and apps/other/webcam-drawing.py
webcam-drawing.py
py
1,934
python
en
code
0
github-code
6
4341271396
from __future__ import annotations import logging import os from time import sleep from typing import List, Optional, Union, ClassVar, Dict, Type, Optional, Iterable from queue import Queue, Empty from easyflow.common.logger import setupLogger from easyflow.common.utils import Timer import threading logger = setupLogger(__name__) class ProcessorFactory: processorDict: Dict[str, Type[Processor]] = {} @classmethod def getProcessor(cls: Type['ProcessorFactory'], processorType: str) -> Type[Processor]: if processorType in cls.processorDict: return cls.processorDict[processorType] raise Exception() @classmethod def register(cls, class_: Type[Processor]) -> Type[Processor]: cls.processorDict[class_.type] = class_ return class_ class Processor: type: ClassVar[str] = "" def __init__(self, name) -> None: self.name = name def run(self) -> None: pass @ProcessorFactory.register class EmptyProcessor(Processor): type: ClassVar[str] = "EmptyProcessor" def run(self) -> None: return @ProcessorFactory.register class CommandProcessor(Processor): type: ClassVar[str] = "CommandProcessor" def __init__(self, name, command: Union[list, str]): super().__init__(name) self.command: str if isinstance(command, list): self.command = " && ".join(command) else: self.command = command def run(self) -> None: os.system(self.command) class Module: def __init__(self, name: str, processor: Processor, inputs: Optional[List[Data]] = None, outputs: Optional[List[Data]] = None, checkInterval: int = 10) -> None: self.name = name self.inputs: List[Data] = [] if inputs: for inputNode in inputs: self.addInput(inputNode) self.outputs: List[Data] = [] if outputs: for outputNode in outputs: self.addOutput(outputNode) self.processor = processor self.checkInterval = checkInterval # To avoid this module ran by multiple inputNode. self.running = False def addInput(self, inputNode: Data) -> None: self.inputs.append(inputNode) inputNode.addDownStream(self) def addOutput(self, outputNode: Data) -> None: self.outputs.append(outputNode) def setWorkflow(self, workflow) -> None: self.workflow = workflow def _run(self, reportError: bool = False, *args, **kwargs) -> int: notExists: List[Data] = [] for inputNode in self.inputs: if not inputNode.checkExists(): notExists.append(inputNode) if notExists: if reportError: raise Exception(f"The following inputs are detected as nonexisting node: {notExists}") else: print(f"Module {self.name} failed to run, errorCode: -1") return -1 self.processor.run() return 0 def run(self, *args, **kwargs) -> int: verbose = kwargs.get('verbose', True) errorCode = -1 while True: errorCode = self._run(*args, **kwargs) if errorCode != 0: sleep(self.checkInterval) else: if verbose: print(f"Module: {self.name} ran successfully!") for node in self.outputs: for module in node.downstreamModules: if not module.running: self.workflow.addNodeToQueue(module) module.running = True break return errorCode class DataFactory: dataTypes: ClassVar[Dict[str, Type[Data]]] = {} @classmethod def getData(cls, dataNodeType: str) -> Type[Data]: if dataNodeType in cls.dataTypes: return cls.dataTypes[dataNodeType] raise Exception(f"No such dataNodeType: {dataNodeType}") @classmethod def register(cls, dataClass: Type[Data]) -> Type[Data]: cls.dataTypes[dataClass.type] = dataClass return dataClass class Data: type: ClassVar[str] = "" def __init__(self, name: str): self.name = name self.time: int = -1 self.downstreamModules: List[Module] = [] def addDownStream(self, downStream: Module): self.downstreamModules.append(downStream) def checkExists(self) -> bool: pass @DataFactory.register class NormalFileData(Data): type: ClassVar[str] = "NormalFileData" def __init__(self, name: str, path: str) -> None: super().__init__(name) self.path = path def checkExists(self) -> bool: return os.path.exists(self.path) def func(node, pool): node.run(pool=pool) class Workflow: def __init__(self, modules: Optional[Dict[str, Module]]=None, datas: Optional[Dict[str, Data]]=None, processors: Optional[Dict[str, Processor]]=None, startNodes: Optional[List[Module]]=None) -> None: super().__init__() self.modules: Dict[str, Module] = {} self.nFinished = 0 if modules: for node in modules.values(): self.addNode(node) self.datas: Dict[str, Data] = {} if not datas else datas self.startNodes: List[Module] = [] if not startNodes else startNodes self.processors: Dict[str, Processor] = {} if not processors else processors self.queue = Queue() # type:ignore def setStartNode(self, moduleNode: Module) -> None: self.startNodes.append(moduleNode) def addNode(self, node: Union[Module, Data]) -> None: if isinstance(node, Data): self.datas[node.name] = node if isinstance(node, Module): self.modules[node.name] = node node.setWorkflow(self) def addNodes(self, nodes: Iterable[Union[Module, Data]]) -> None: for node in nodes: self.addNode(node) def addNodeToQueue(self, node: Module): self.queue.put((lambda node: node.run(), (node,), {})) def run(self, *args, **kwargs) -> None: logger.info("Workflow start!") class Logger: def write(self, messages: str): for mess in messages.strip('\n').split('\n'): logger.info(mess) with Timer(stdout=Logger()): workers = [] for i in range(10): worker = Worker(i, self) workers.append(worker) worker.start() logger.debug("All workers started!") for node in self.startNodes: self.addNodeToQueue(node) for worker in workers: worker.join() logger.info("Workflow finished!") class Worker(threading.Thread): def __init__(self, i: int, workflow: Workflow): super().__init__() self.i = i self.workflow = workflow self.nFinished = 0 def log(self, message, severity=logging.INFO): if severity == logging.INFO: logger.info(f"[Worker{self.i}]{message}") else: logger.debug(f"[Worker{self.i}]{message}") def debug(self, message): self.log(message, severity=logging.DEBUG) def run(self): self.debug(f"Starts to work") while self.workflow.nFinished != len(self.workflow.modules): if self.workflow.nFinished == len(self.workflow.modules): self.log(f"[{self.nFinished}/{self.workflow.nFinished}] jobs are finished!") break try: with Timer(descStart="Job start to run!", descEnd="Job end to run!") as timeUsed: func, args, kwargs = self.workflow.queue.get(timeout=5) self.debug(f"func:{func}\nargs: {args}\nkwargs: {kwargs}") self.debug(f"Time used: {timeUsed}") except Empty: self.debug("Wait to get job") continue except Exception as e: raise Exception(f'[Worker{self.i}]Bad execution: %s' % str(e)) try: func(*args,**kwargs) except Exception as e: raise Exception(f'[Worker{self.i}]Bad execution: %s' % str(e)) else: self.workflow.nFinished += 1 self.nFinished += 1
catwang01/easyflow
easyflow/obj.py
obj.py
py
8,548
python
en
code
0
github-code
6
10663274434
# -*- coding: utf-8 -*- """ Created on Thu Jan 16 11:25:30 2020 @author: Rijk Extracts the resistance from the IV curves measured """ # -*- coding: utf-8 -*- """ Created on Tue Oct 22 17:10:35 2019 @author: LocalAdmin Curve fitting script """ import os import math as m import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit import instrument_module as instr def linear(x, a): return a * x # ============================================================================= # # Inputs # ============================================================================= meas_name = '0117_1703_WO3196_full_IV_curve' source_folder = r'D:\Rijk\MEP_control_software' num_points = 10 folder = os.path.join(source_folder, meas_name) fit_folder = folder + '\\fit_minus' try: os.mkdir(fit_folder) except: pass file_name = os.path.join(source_folder, meas_name, 'data', meas_name) file_current = file_name +'_current' file_voltage = file_name + '_voltage' func = linear start = 17 stop = start #p0 = [1E12, -3/2] #p0 = [2E7, 1E4, 2E7] #bounds = (0, np.inf) # ============================================================================= # # Import data # ============================================================================= ts = instr.load_data(file_current)[0] currents = instr.load_data(file_current)[1][101:] voltages = instr.load_data(file_voltage)[1][101:] stop = len(currents) - stop if start > 0: if stop < len(currents): currents = currents[start:stop] voltages = voltages[start:stop] else: print('Stop index too large for current array') currents = currents[start:] voltages = voltages[start:] currents = currents - min(currents) else: print('Start index zero or lower, so not used') if stop < len(currents): currents = currents[:stop] voltages = voltages[:stop] else: print('Stop index too large for current array') # ============================================================================= # # Perform regular fit and constrained fit # ============================================================================= res_mean, res_var = curve_fit(func, currents, voltages, maxfev=int(1E9)) #popt, pcov = curve_fit(func, currents, voltages, p0, maxfev=int(1E9)) #popt, pcov = curve_fit(func, xdata, ydata, p0, maxfev=int(1E7), bounds=bounds) res_std = np.sqrt(res_var) ohm_res = np.zeros(0) ohm_res_curr = np.zeros(0) for n, i in enumerate(currents): if i != 0: ohm_res_curr = np.append(ohm_res_curr, i) ohm_res = np.append(ohm_res, voltages[n]/i) else: pass # ============================================================================= # # Plot fit # ============================================================================= #plt.close('all') plt.figure() plt.plot(currents, voltages) plt.plot(currents, func(currents, res_mean)) plt.title('IV curve of 33MOhm') plt.xlabel('Current (A)') plt.ylabel('Voltage (V)') plt.legend(['Data', 'Fit']) instr.save_plot(os.path.join(fit_folder, meas_name + '_datafit')) plt.figure() plt.plot(ohm_res_curr, ohm_res) plt.plot(currents, res_mean * np.ones(len(currents))) #plt.plot(currents, func(currents, *popt)) plt.title('IV of 33MOhm with %.2e mean and %.2e std' % (res_mean, res_std)) plt.xlabel('Source current (A)') plt.ylabel('Resistance (Ohm)') plt.legend(['V/I Resistance', 'Fit Resistance']) instr.save_plot(os.path.join(fit_folder, meas_name + '_resistances'))
rehogenbirk/MEP_control_software
fit_IVcurve_single.py
fit_IVcurve_single.py
py
3,578
python
en
code
0
github-code
6
74916425146
import util import cv2 import torch import os def compareTensors(refs, target, targetName): sum_ = 0 if len(refs) == 0: print("no reference images") return for i in range(len(refs)): ref = refs[i] dotself = torch.tensordot(ref , ref, dims=2) sum_ = sum_ + torch.tensordot(ref, target, dims=2) / dotself ''' Trying straight up distance. Note: need to reverse sort max/min. sum = sum + torch.dist(ref,target) Trying mean squred error. Note: need to reverse sort max/min. local mse = nn.MSECriterion() mse.sizeAverage = false local loss = mse:forward(ref,target) print("loss=", loss) sum = sum + loss note, max/min reversed ''' return sum_ / len(refs) def compareFile(selectedLayer, refs, targetsFolder, fileName, net): img = util.process(cv2.imread(targetsFolder+"/"+fileName)) #net.forward(img) img = torch.from_numpy(img) img = img.unsqueeze(0) net.fc.fc8.register_forward_hook(get_activation('fc8')) output = net(img.float()) output = activation['fc8'] return compareTensors(refs, output, fileName) activation = {} def get_activation(name): def hook(model, input, output): activation[name] = output.detach() return hook
EunbinSeo/Pytorch-vgg-memoji
compare.py
compare.py
py
1,363
python
en
code
1
github-code
6
42090679043
from events import OnEvents from environment import Environment from util import Util class Component(OnEvents): """ Base Class for individual processes. """ def __init__(self): super(Component, self).__init__() self.exec_times = [] self.Util = Util() def run(self, **kwargs): pass def execute(self, kwargs, stdout=None, stdin=None, return_output=False, print_output=False, current_wd=None, logger=None, hook=True): cmd = [self.executable] for arg in self.args: if 'stdout' == arg: stdout = arg elif 'stdin' == arg: stdin = arg else: if isinstance(arg, list): #value = [arg[0], getattr(self, arg[1])] if kwargs[arg[1]] is not None: value = [arg[0], kwargs[arg[1]]] else: value = None else: value = kwargs[arg] if value is not None: if not isinstance(value, list): value = [value,] for v in value: if v not in (None, '') and not (not v and isinstance(v, bool)): cmd.append(str(v)) output = self.Util.exec_cmd(cmd, stdout, stdin, return_output, print_output, current_wd, logger) self.exec_times.append(output['exec_time']) if hook: retval = output['retval'] kwargs.update({'output': output}) success = True if retval == 0 else False self.event_trigger(success, **kwargs) return output def get_last_exec_time(self): if self.exec_times: return self.exec_times[-1] else: return 0 def get_avg_exec_time(self): return sum(self.exec_times)/len(self.exec_times)
tom-kerr/bookmaker
components/component.py
component.py
py
2,107
python
en
code
6
github-code
6
73706334586
from django.shortcuts import render from django.http import HttpResponse from app1.models import Topic, Webpage, AccessRecord from app1.forms import App1Form # Create your views here. def home(request): #return HttpResponse("Hello Hao!") my_dict = {'insert_me':"Goodbye now from view.py!!"} return render(request, 'app1/home.html', context=my_dict) def index(request): wp_list = AccessRecord.objects.order_by('date') date_dict = {'access_records':wp_list} return render(request, 'app1/index.html', context=date_dict) def test(request): return HttpResponse("Goodbye!") def form(request): theForm = App1Form() if request.method == 'POST': theForm = App1Form(request.POST) if theForm.is_valid(): # process form print("Validation success:") print("top_name: " + theForm.cleaned_data['top_name']) theForm.save(commit=True) print("Topic created in DB, going back to index page...") return topics(request) else: print("Form Error") return render(request, 'app1/form.html', {'the_form':theForm}) def topics(request): t_list = Topic.objects.order_by('top_name') t_dict = {'topics':t_list, 'section':{'title':'Topics', 'parent':'App1'}} return render(request, 'app1/topics.html', context=t_dict)
haozer/project1
app1/views.py
views.py
py
1,277
python
en
code
0
github-code
6
38814850733
import matplotlib.pyplot as plt import pandas as pd import argparse import seaborn as sns sns.set_context("notebook", font_scale=1.8) plt.style.use('fivethirtyeight') parser = argparse.ArgumentParser() parser.add_argument('--classifier', default="svm", type=str, nargs='?', help='classifier') args = parser.parse_args() classifier = args.classifier # plot accuracy acc_result = './result/_result_{}_acc.csv'.format(classifier) df = pd.read_csv(acc_result, header=0, sep=",") print("plot accuracy") g = sns.catplot(x="Dataset", y="Accuracy", hue="Method", data=df, kind="bar", ci="sd", height=5, aspect=2, palette="Set1") g.set_xlabels("Dataset") g.set_ylabels("Accuracy") for idx, p in enumerate(g.ax.patches): height = round(p.get_height(), 2) g.ax.text(p.get_x()+p.get_width()/2, height+1, str(round(height, 2)), ha="center", fontsize=10) plt.savefig("./result/_plot_{}_accuracy.pdf".format(classifier), bbox_inches="tight") plt.close() # plot AUC auc_result = './result/_result_{}_auc.csv'.format(classifier) df = pd.read_csv(auc_result, header=0, sep=",") print("plot AUC") g = sns.catplot(x="Dataset", y="AUC", hue="Method", data=df, kind="bar", ci="sd", height=5, aspect=2, palette="Set1") g.set_xlabels("Dataset") g.set_ylabels("AUC") for idx, p in enumerate(g.ax.patches): height = round(p.get_height(), 2) g.ax.text(p.get_x()+p.get_width()/2, height+1, str(round(height, 2)), ha="center", fontsize=10) plt.savefig("./result/_plot_{}_auc.pdf".format(classifier), bbox_inches="tight") plt.close()
nphdang/CCRAL
visualize.py
visualize.py
py
1,524
python
en
code
3
github-code
6
19581520317
import os import time from collections import defaultdict from os.path import join as osjoin import csv from pyspark.sql import SparkSession import pyspark.sql.types as T from util.file_manager import file_manager from util.cosine_similarity import calculate_cosine_similarity from core.directory import ( src_embeddings_dir, susp_embeddings_dir, susp_stats_dir, csv_dir, parquet_train_classifier_dir, train_classifier_log_file ) spark = SparkSession.builder.appName('test_csv').getOrCreate() schema = T.StructType([ T.StructField('cosine_similarity', T.FloatType(), False), T.StructField('is_plagiarism', T.IntegerType(), False) ]) def convert_from_csv_to_parquet( csv_dir, csv_file, parquet_root_dir, parquet_filename ): df = spark.read.csv(osjoin(csv_dir, csv_file), header=False, schema=schema) df.write.format('parquet').save(osjoin(parquet_root_dir, parquet_filename)) print(f'done\t', end='') # stats for a single suspicious file # convert susp json stats file to stats that can be use for compare susp file with src files # stats = {'src_name.txt': [{ 'src': set(), 'susp': set() }] def get_stats_for_a_susp_file(file): raw_susp_stats = file_manager.read_json(file) stats = defaultdict(list) for item in raw_susp_stats['file_stats']: para_len = item['paragraph_length'] start_index_in_src = item['src_start_index'] insert_index_in_susp = item['susp_insert_index'] stats[item['src_file']].append({ 'src': set(range(start_index_in_src, start_index_in_src+para_len)), 'susp': set(range(insert_index_in_susp, insert_index_in_susp+para_len)) }) return stats # main_stats = { # 'src_name.txt': [{'src': set(), 'susp': set()}], # 'src_name.txt': [{'src': set(), 'susp': set()}] # } def is_plagiarism_sentence(src_index, susp_index, src_name, main_stats): if src_name in main_stats: for index, item in enumerate(main_stats[src_name]): if src_index in item['src'] and susp_index in item['susp']: main_stats[src_name][index]['src'].remove(src_index) main_stats[src_name][index]['susp'].remove(susp_index) return 1, main_stats return 0, main_stats def read_embeddings(dir, file): return file_manager.pickle_load(osjoin(dir, file)) def stream_source_embeddings_from_pickle(num_of_file=3): src_embeddings_files = os.listdir(src_embeddings_dir) for start_index in range(0, len(src_embeddings_files), num_of_file): source_embeddings = [] for src_emb in src_embeddings_files[start_index: start_index+num_of_file]: source_embeddings.extend( file_manager.pickle_load(osjoin(src_embeddings_dir, src_emb)) ) yield source_embeddings susp_list_file = osjoin('..', 'stats_about_files', 'susp_for_train_model.txt') susp_list = file_manager.read_line_by_line(susp_list_file) susp_list = [f'embddings_{file}.pk' for file in susp_list] for susp_embeddings_file in susp_list: start = time.time() suspicious_embeddings = read_embeddings(susp_embeddings_dir, susp_embeddings_file) susp_file_name = susp_embeddings_file[:-7] main_stats = get_stats_for_a_susp_file(osjoin(susp_stats_dir, susp_file_name + '.json')) csv_file = osjoin(csv_dir, susp_file_name + '.csv') print(f'Convert {susp_file_name}...', end='') for source_embeddings in stream_source_embeddings_from_pickle(): result = [] for susp_row in suspicious_embeddings: for src_row in source_embeddings: sim = calculate_cosine_similarity(susp_row['embedding'], src_row['embedding']) is_plg, main_stats = is_plagiarism_sentence( src_row['index'], susp_row['index'], src_row['filename'], main_stats ) result.append((sim, is_plg)) with open(csv_file, 'a') as f: writer = csv.writer(f) writer.writerows(result) # for performace in read/write dataframe and disk storage # convert csv to parquet format and then remove csv file convert_from_csv_to_parquet(csv_dir, csv_file, parquet_train_classifier_dir, susp_file_name) os.remove(osjoin(csv_dir, csv_file)) execute_time = round(time.time() - start, 2) / 60 log_content = f'{susp_embeddings_file} {execute_time} mins' file_manager.append_single_line(train_classifier_log_file, log_content) print(execute_time, 'mins')
oldguard69/lvtn
server/core/4_make_data_for_training_classifier.py
4_make_data_for_training_classifier.py
py
4,560
python
en
code
0
github-code
6
18932875190
# === Úloha 22=== # Napíšte program, ktorý zo súboru zoznam.txt vypíše pod seba meno a vek všetkých žiakov, ktorí majú aspoň 17 rokov. Údaje v súbore zoznam.txt sú zoradené tak, že v každom riadku je postupne vek a meno jedného žiaka. subor = open("ziaci.txt", "r") ziaci = list(map(lambda x: x.split(" "), subor.read().split("\n"))) aspon17 = filter(lambda x: int(x[0]) >= 17, ziaci) subor.close() for z in aspon17: print(f"{z[1]}: {z[0]} rokov")
Plasmoxy/MaturitaInformatika2019
ulohyPL/u22.py
u22.py
py
472
python
sk
code
2
github-code
6
18091330209
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('account', '0060_auto_20150130_1750'), ] operations = [ migrations.AlterField( model_name='basicmemberinformation', name='auth_key', field=models.CharField(default='031910ad27f4d5c4ffa8ec23fe5ce895d59611079de70db9c7597121bfc2c443', max_length=64), preserve_default=True, ), ]
hongdangodori/slehome
slehome/account/migrations/0061_auto_20150201_1909.py
0061_auto_20150201_1909.py
py
531
python
en
code
0
github-code
6
35727586260
#!/usr/bin/python import pygame, sys, game from pygame.locals import * WIDTH = 640 HEIGHT = 480 DRAWSTEP = 3 TICK = 30 VOLATILITY = 0.8 TIMESTEP = float(TICK)/1000 if len(sys.argv) < 2: ORDER = 2 else: ORDER = int(sys.argv[1]) BLACK = pygame.Color(0,0,0) WHITE = pygame.Color(255,255,255) pygame.init() fpsClock = pygame.time.Clock() font = pygame.font.Font(None, 36) window = pygame.display.set_mode((WIDTH,HEIGHT)) pygame.display.set_caption('Deriv') drawX = range(0, WIDTH/2, DRAWSTEP) drawY = [HEIGHT/2] * len(drawX) numDraw = len(drawX) cDerivatives = [0] * (ORDER+1) pDerivatives = cDerivatives paused = True game = game.Game(ORDER, len(drawX)) while True: for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() elif event.type == MOUSEMOTION: mouseX, mouseY = event.pos elif event.type == MOUSEBUTTONUP: paused = not paused elif event.type == KEYDOWN: if event.key == K_ESCAPE: pygame.quit() sys.exit() if not paused: mouseX, mouseY = pygame.mouse.get_pos() game.tick(VOLATILITY * (1-2*float(mouseY)/HEIGHT), TIMESTEP) #cDerivatives[ORDER] = VOLATILITY * (1 - 2*float(mouseY)/HEIGHT) #for i in range(ORDER,0,-1): #cDerivatives[i-1] = pDerivatives[i-1] + 0.5*TIMESTEP*(pDerivatives[i] + cDerivatives[i]) #pDerivatives = cDerivatives #drawY.append(int(0.5*HEIGHT*(1-cDerivatives[0]))) drawY.append(int(0.5*HEIGHT*(1-game.history[-1]))) drawY.pop(0) window.fill(BLACK) if paused: text = font.render("Paused", True, WHITE) textpos = text.get_rect(centerx = WIDTH/2) textpos.top = 50 window.blit(text, textpos) for i in range(0, min(len(drawY),numDraw)-1): pygame.draw.line(window, WHITE, (drawX[i],drawY[i]), (drawX[i+1],drawY[i+1])) pygame.display.update() fpsClock.tick(TICK)
TheBB/deriv
deriv.py
deriv.py
py
1,999
python
en
code
0
github-code
6
25847899408
from pyautocad import Autocad class Channel(object): instance = None def __init__(self): self._session = None @property def session(self): if not self._session: try: self._session = session = Autocad(create_if_not_exists=False) session.prompt("Python trying to connect...") session.prompt("Python connected!") except OSError: raise Exception("Could not connect to the AUTOCAD process. Please start AUTOCAD before running the script.") return self._session if Channel.instance is None: Channel.instance = Channel() channel = Channel.instance
akila122/pycad
autocad_session/__init__.py
__init__.py
py
679
python
en
code
0
github-code
6
12211334459
'''Some helper functions for PyTorch, including: - get_mean_and_std: calculate the mean and std value of dataset. - msr_init: net parameter initialization. - progress_bar: progress bar mimic xlua.progress. ''' import os import sys import time import math import torch import torchvision import torch.nn as nn import torch.nn.init as init import torchvision.transforms as transforms from TinyImageNetDataset import TinyImageNetDataset def get_mean_and_std(dataset): '''Compute the mean and std value of dataset.''' dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2) mean = torch.zeros(3) std = torch.zeros(3) print('==> Computing mean and std..') for inputs, targets in dataloader: for i in range(3): mean[i] += inputs[:,i,:,:].mean() std[i] += inputs[:,i,:,:].std() mean.div_(len(dataset)) std.div_(len(dataset)) return mean, std def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0) _, term_width = os.popen('stty size', 'r').read().split() term_width = int(term_width) TOTAL_BAR_LENGTH = 65. last_time = time.time() begin_time = last_time def progress_bar(current, total, msg=None): global last_time, begin_time if current == 0: begin_time = time.time() # Reset for new bar. cur_len = int(TOTAL_BAR_LENGTH*current/total) rest_len = int(TOTAL_BAR_LENGTH - cur_len) - 1 sys.stdout.write(' [') for i in range(cur_len): sys.stdout.write('=') sys.stdout.write('>') for i in range(rest_len): sys.stdout.write('.') sys.stdout.write(']') cur_time = time.time() step_time = cur_time - last_time last_time = cur_time tot_time = cur_time - begin_time L = [] L.append(' Step: %s' % format_time(step_time)) L.append(' | Tot: %s' % format_time(tot_time)) if msg: L.append(' | ' + msg) msg = ''.join(L) sys.stdout.write(msg) for i in range(term_width-int(TOTAL_BAR_LENGTH)-len(msg)-3): sys.stdout.write(' ') # Go back to the center of the bar. for i in range(term_width-int(TOTAL_BAR_LENGTH/2)+2): sys.stdout.write('\b') sys.stdout.write(' %d/%d ' % (current+1, total)) if current < total-1: sys.stdout.write('\r') else: sys.stdout.write('\n') sys.stdout.flush() def format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 if millis > 0 and i <= 2: f += str(millis) + 'ms' i += 1 if f == '': f = '0ms' return f def save_checkpoint(state, is_best, filename): torch.save(state, filename + ".pth.tar") if is_best: shutil.copyfile(filename + ".pth.tar", filename + "_best.pth.tar") def load_checkpoint(path, model, optimizer=None): if os.path.isfile(path): logging.info("=== loading checkpoint '{}' ===".format(path)) checkpoint = torch.load(path) model.load_state_dict(checkpoint["state_dict"], strict=False) if optimizer is not None: best_prec = checkpoint["best_prec"] last_epoch = checkpoint["last_epoch"] optimizer.load_state_dict(checkpoint["optimizer"]) logging.info( "=== done. also loaded optimizer from " + "checkpoint '{}' (epoch {}) ===".format(path, last_epoch + 1) ) return best_prec, last_epoch def get_data_loader(transform_train, transform_test, config): # assert config.dataset == "cifar10" or config.dataset == "cifar100" if config.dataset == "cifar10": trainset = torchvision.datasets.CIFAR10( root=config.data_path, train=True, download=True, transform=transform_train ) testset = torchvision.datasets.CIFAR10( root=config.data_path, train=False, download=True, transform=transform_test ) elif config.dataset == "cifar100": trainset = torchvision.datasets.CIFAR100( root=config.data_path, train=True, download=True, transform=transform_train ) testset = torchvision.datasets.CIFAR100( root=config.data_path, train=False, download=True, transform=transform_test ) elif config.dataset == "tiny-imagenet": trainset = TinyImageNetDataset( root=config.data_path, download=True, mode='train', task='classification', transform=transform_train ) testset = TinyImageNetDataset( root=config.data_path, download=True, mode='val', task ='classification', transform=transform_test ) train_loader = torch.utils.data.DataLoader( trainset, batch_size=config.batch_size, shuffle=True, num_workers=config.workers ) test_loader = torch.utils.data.DataLoader( testset, batch_size=config.test_batch, shuffle=False, num_workers=config.workers ) return train_loader, test_loader def data_augmentation(config, is_train=True): aug = [] if is_train: # random crop if config.augmentation.random_crop: aug.append(transforms.RandomCrop(config.input_size, padding=4)) # horizontal filp if config.augmentation.random_horizontal_filp: aug.append(transforms.RandomHorizontalFlip()) aug.append(transforms.ToTensor()) # normalize [- mean / std] if config.augmentation.normalize: if config.dataset == "cifar10": aug.append( transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) ) elif config.dataset == "cifar100": aug.append( transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)) ) elif config.dataset == "tiny-imagenet": aug.append( transforms.Normalize((0.4775, 0.4806, 0.4805), (0.1592, 0.1611, 0.1653)) ) if is_train and config.augmentation.cutout: # cutout aug.append( Cutout(n_holes=config.augmentation.holes, length=config.augmentation.length) ) return aug
zarekxu/QuadraLib
image_classification/utils.py
utils.py
py
7,113
python
en
code
6
github-code
6
35260443444
import logging from typing import List, Optional import gspread from oauth2client.service_account import ServiceAccountCredentials from debunkbot.models import ( Claim, GoogleSheetCredentials, MessageTemplate, MessageTemplateSource, ) logger = logging.getLogger(__name__) class GoogleSheetHelper(object): """Helper class for getting data from google sheet""" def __init__(self) -> None: """Instance method to initialize Google Drive API :param self: :return: None """ self.__scope = [ "https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive", ] credentials = GoogleSheetCredentials.objects.first() if credentials: google_credentials = GoogleSheetCredentials.objects.first().credentials else: raise Exception("Google credentials have not been set up.") self.__credentials = ServiceAccountCredentials.from_json_keyfile_dict( google_credentials, scopes=self.__scope ) self.__client = gspread.authorize(self.__credentials) def get_sheet(self, sheet_key): return self.__client.open_by_key(sheet_key) def open_work_sheet(self, sheet_id, work_sheet_name) -> Optional[List[dict]]: """Instance method to open a worksheet and get the data in Space Allocation sheet :param self: Instance of GoogleSheetHelper :return: Sheet Record as dict or None """ sheet = self.get_sheet(sheet_id) worksheet = sheet.worksheet(work_sheet_name) try: return worksheet.get_all_records() except gspread.exceptions.SpreadsheetNotFound: return None def get_claims(self) -> Optional[List[dict]]: """ Instance method that loads the claims either from the cache or directly from google's servers depending on whether we have a saved version in our cache or not :param self: Instance of GoogleSheetHelper :return: Claims """ claims = Claim.objects.all() return claims def fetch_response_messages(self): # Delete all existing messages and create new ones. MessageTemplate.objects.all().delete() message_template_sources = MessageTemplateSource.objects.all() message_templates = [] for message_template_source in message_template_sources: try: sheet = self.get_sheet( message_template_source.spreadsheet_id ).worksheet(message_template_source.worksheet) response_message_templates = sheet.get_all_records() for response_message_template in response_message_templates: message_template = response_message_template.get( message_template_source.column ) if message_template and message_template != "": message_template_category = message_template_source.worksheet message_templage = MessageTemplate( message_template=message_template, message_template_source=message_template_source, message_template_category=message_template_category, ) message_templates.append(message_templage) except Exception: continue MessageTemplate.objects.bulk_create(message_templates)
CodeForAfrica/DebunkBot
debunkbot/utils/gsheet/helper.py
helper.py
py
3,569
python
en
code
8
github-code
6
42926779466
''' 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增 的顺序排序,每一列都按照从上到下递增的顺序排 序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ''' class Solution: # array二维列表 def find(self, target, array): xend = len(array) - 1 yend = len(array[0]) - 1 x = 0 while x <= xend and yend >= 0: if array[x][yend] == target: return True elif array[x][yend] > target: yend -= 1 else: x += 1 return False if __name__ == "__main__": array = [[1,2,5,7,9], [2,4,6,8,10], [3,5,7,9,11], [4,6,8,10,12]] S = Solution() print(S.find(22, array))
ppalantir/axjingWorks
algorithm_note/getOffer/offer_find_two_array.py
offer_find_two_array.py
py
878
python
zh
code
1
github-code
6
72532378429
from collections.abc import Sequence from datetime import datetime, timedelta from typing import Final import arrow import pytest from pydantic import NonNegativeFloat from simcore_service_dynamic_sidecar.modules.prometheus_metrics import ( _MAX_DEFAULT_METRICS_SCRAPE_INTERVAL, _MAX_PROMETHEUS_SAMPLES, _get_user_services_scrape_interval, ) _DT_REF: Final[datetime] = arrow.utcnow().datetime @pytest.mark.parametrize( "input_query_times, expected", [ pytest.param( [], _MAX_DEFAULT_METRICS_SCRAPE_INTERVAL, id="no_prometheus_queries" ), pytest.param( [_DT_REF], _MAX_DEFAULT_METRICS_SCRAPE_INTERVAL, id="too_few_prometheus_queries", ), ([_DT_REF, _DT_REF + timedelta(seconds=5)], 5), pytest.param( [_DT_REF, _DT_REF + timedelta(seconds=1000)], _MAX_DEFAULT_METRICS_SCRAPE_INTERVAL, id="prometheus_queries_too_far_apart", ), pytest.param( [ _DT_REF + timedelta(seconds=i * 3) for i in range(_MAX_PROMETHEUS_SAMPLES) ], 3, id="average_over_prometheus_queries", ), ], ) def test_get_user_services_scrape_interval( input_query_times: Sequence[datetime], expected: NonNegativeFloat ): assert _get_user_services_scrape_interval(input_query_times) == expected
ITISFoundation/osparc-simcore
services/dynamic-sidecar/tests/unit/test_modules_prometheus_metrics.py
test_modules_prometheus_metrics.py
py
1,426
python
en
code
35
github-code
6
10260578739
import json import heapq import math #get texts with open('10k_tokenized_texts.json', 'r') as file: tokenized_texts = json.load(file) #count word frequency and create vocabulary wordfreq = {} for text in tokenized_texts: for token in text: if token not in wordfreq.keys(): wordfreq[token] = 1 else: wordfreq[token] += 1 #get 10k most frequent words import heapq most_freq = heapq.nlargest(10000, wordfreq, key=wordfreq.get) #count document occurence (= in how many different documents a word appears) document_occurence = [0] * len(most_freq) for i in range(len(most_freq)): for text in tokenized_texts: if most_freq[i] in text: document_occurence[i] += 1 #get inverse document frequency (idf) for each word idf = [0] * len(most_freq) for i in range(len(most_freq)): idf[i] = (math.log(len(tokenized_texts)/document_occurence[i])) #create bag of words vectors with tf-idf weighting tfidf_vecs = [] for i in range(len(tokenized_texts)): tfidf_vec = [0] * len(most_freq) for j in range(len(most_freq)): tf = tokenized_texts[i].count(most_freq[j])/(len(tokenized_texts[i])+1) #weighs document length tfidf_vec[j] = tf * idf[j] tfidf_vecs.append(tfidf_vec) #dump to files with open('10k_bow_tfidf_embeds.json', 'w') as file: json.dump(tfidf_vecs, file)
iwillemse/pre-uni
code/bow-tfidf.py
bow-tfidf.py
py
1,368
python
en
code
0
github-code
6
21402553475
from pyTasks.tasks import Task, Parameter from pyTasks.utils import containerHash from .graph_tasks import GraphPruningTask from .mongo_tasks import MongoResourceTarget from sklearn.model_selection import KFold import numpy as np from bson.code import Code def non_filter(label): return False def identity(obj): return obj class MongoGraphNodesTask(Task): collection = Parameter("graph_nodes") def __init__(self, graph, D): self.graph = graph self.D = D def require(self): return GraphPruningTask(self.graph, self.D) def __taskid__(self): return "GraphNodesTask_%s_%d_%d" % (self.graph, self.D) def output(self): return MongoResourceTarget( self.collection.value, '_id', self.graph ) def run(self): with self.input()[0] as i: G = i.query() nodes = set([]) for node in G: label = G.node[node]['label'] nodes.add(label) with self.output() as o: coll = o.collection coll.insert_many([ {'graph_id': self.graph, 'node': n} for n in nodes ]) class MongoFrequencyTask(Task): collection = Parameter("node_frequency") def __init__(self, graphs, it, D): self.graphs = graphs self.it = it self.D = D def require(self): return [ MongoGraphNodesTask(g, self.D) for g in self.graphs ] def output(self): return MongoResourceTarget( self.collection.value, '_id', 'frequency_%d' % self.it ) def run(self): with self.input()[0] as i: coll = i.collection map = Code(""" function(){ emit(this.node, 1); } """) reduce = Code(""" function(key, values){ var total = 0; for(var i = 0; i < values.length; i++){ total += values[i]; } return total; } """) reduce = coll.map_reduce(map, reduce, self.collection.value) all = len(self.graphs) reduce.update({}, {'$mul': {'value': 1/all}})
cedricrupb/pySVRanker
frequent_pattern_tasks.py
frequent_pattern_tasks.py
py
2,344
python
en
code
2
github-code
6
74959952508
from django.db import models from django.core.validators import RegexValidator from django.contrib.auth.models import AbstractUser from django.db import models from libgravatar import Gravatar # Create your models here. class User(AbstractUser): """User model used for authentication.""" class Experience(models.TextChoices): BEGINNER = 'B' INTERMEDIATE = 'I' ADVANCED = 'A' MASTER = 'M' GRANDMASTER = 'G' username = models.CharField( max_length=30, unique=True, validators=[ RegexValidator( regex='^[a-z0-9]([._-](?![._-])|[a-z0-9])*[a-z0-9]$', message='Usernames may only contain lowercase characters ' 'and . _ - but not as ' 'the first or last character.', code='invalid_username' ) ] ) """Attributes of Users.""" name = models.CharField(max_length=100, blank=False) email = models.EmailField(unique=True, blank=False) public_bio = models.CharField(max_length=250, blank=False) chess_experience = models.CharField(max_length=1, choices=Experience.choices, default=Experience.BEGINNER) def gravatar(self, size=120): """Return a URL to the user's gravatar.""" gravatar_object = Gravatar(self.email) gravatar_url = gravatar_object.get_image(size=size, default='mp') return gravatar_url
amir-rahim/ChessClubManagementSystem
clubs/models/users.py
users.py
py
1,456
python
en
code
1
github-code
6
13522158009
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 7 10:37:20 2019 @author: paul """ # import relevant packages from TwitterAPI import TwitterAPI import pandas as pd import json i = 0 # counter requestlist = [] # list for storing each call from the api (500 tweets at a time) # search Criteria SEARCH_TERM = '' PRODUCT = 'fullarchive' LABEL = 'Research' #API keys to authorise and access the API consumerKey="" consumerSecret="" accessToken="" accessSecret="" #Code to initiate API api = TwitterAPI(consumerKey, consumerSecret, accessToken, accessSecret) # loop which makes successive api calls based on amount of results while True: if i == 0 : requestlist.append(api.request('tweets/search/%s/:%s' % (PRODUCT, LABEL), {'query':SEARCH_TERM, 'fromDate': '201408220000', 'toDate': '201408310000', 'maxResults': 500})) else: if requestlist[i-1].json().get('next') == None : break else: requestlist.append(api.request('tweets/search/%s/:%s' % (PRODUCT, LABEL), {'query':SEARCH_TERM, 'fromDate': '201408220000', 'toDate': '201408310000', 'maxResults': 500, 'next':requestlist[i-1].json()['next']})) i +=1 #save each payload to csv for payload in requestlist: df = pd.read_json(json.dumps(payload.json()['results'])) df.to_csv("acsvfile.csv", mode = 'a')
prgeddes/TwitterDataExtraction
Search_Save_Tweets.py
Search_Save_Tweets.py
py
1,563
python
en
code
0
github-code
6
72940318588
# # @lc app=leetcode id=9 lang=python3 # # [9] Palindrome Number # # https://leetcode.com/problems/palindrome-number/description/ # # algorithms # Easy (47.22%) # Likes: 2092 # Dislikes: 1505 # Total Accepted: 860.8K # Total Submissions: 1.8M # Testcase Example: '121' # # Determine whether an integer is a palindrome. An integer is a palindrome when # it reads the same backward as forward. # # Example 1: # # # Input: 121 # Output: true # # # Example 2: # # # Input: -121 # Output: false # Explanation: From left to right, it reads -121. From right to left, it # becomes 121-. Therefore it is not a palindrome. # # # Example 3: # # # Input: 10 # Output: false # Explanation: Reads 01 from right to left. Therefore it is not a palindrome. # # # Follow up: # # Could you solve it without converting the integer to a string? # # # @lc code=start from math import floor, log class Solution: def isPalindrome(self, x: int) -> bool: if x == 0: return True if x > 0: n_bit = floor(log(x, 10)) + 1 for i in range(1, n_bit // 2 + 1): x, bit_right = divmod(x, 10) bit_left = x // 10**(n_bit - 2 * i) % 10 print(bit_left, bit_right) if bit_left != bit_right: return False return True else: return False # @lc code=end
LeanderLXZ/leetcode-solutions
problems/9.palindrome-number/9.palindrome-number.py
9.palindrome-number.py
py
1,419
python
en
code
0
github-code
6
5404980794
# the array consist of interger,where every integer is repeated thrice except one integer ,we need to return that. def single_number(Arr): n = len(Arr) ones = 0 twos = 0 for i in range(0,n): ones = (ones ^ Arr[i] ) & (~twos) twos = (twos ^ Arr[i]) & (~ ones) return ones # test case Arr = [1,2,4,3,3,2,2,3,1,1] unique_number = single_number(Arr) print(unique_number)
Ranjit007ai/InterviewBit-BitManipulation
bit_manipulation/single_number_II/solution.py
solution.py
py
418
python
en
code
0
github-code
6
35473677115
import numpy as np class PriorBoxes: def __init__(self, strides, scales, ratios): self.strides = strides self.scales = scales # [10, 25, 40] self.ratios = ratios self.config = { "strides": self.strides, "scales": self.scales, "ratios": self.ratios } """ example) strides = [4, 8, 16] scales => [10, 25, 40] ratios => [(1 ,1), (1.5,0.5), (1.2,0.8), (0.8,1.2), (1.4,1.4)] """ def generate(self, image_shape): """ image_shape(H,W,3)에 맞춰서, Prior Box(==Default Boxes)를 생성하는 코드 return : (# Prior Boxes, 4)로 이루어진 출력 값 생성 """ fmap_hs = np.ceil(image_shape[0] / np.asarray(self.strides)) fmap_ws = np.ceil(image_shape[1] / np.asarray(self.strides)) total_anchors = [] # scaled_ratios self.ratios = np.asarray(self.ratios, dtype=np.float32) scaled_ratios = [] for s in self.scales: for r in self.ratios: scaled_ratios.append(s * r) scaled_ratios = np.asarray(scaled_ratios) scaled_ratios = scaled_ratios.reshape([len(self.scales), len(self.ratios), 2]) for ind in range(len(self.scales)): h = fmap_hs[ind] w = fmap_ws[ind] stride = self.strides[ind] # shape [] achr_sizes = scaled_ratios[ind] n_achr_sizes = len(achr_sizes) n_achr = (h * w * n_achr_sizes).astype(np.int32) # cx cx, cy = np.meshgrid(np.arange(w), np.arange(h)) cx = cx * stride + stride // 2 # shape 32,32,5 grid_cx = np.stack([cx] * n_achr_sizes, axis=-1) # shape: (32,32,5) # cy cy = cy * stride + stride // 2 # shape 32,32,5 grid_cy = np.stack([cy] * n_achr_sizes, axis=-1) # shape: (32,32,5) # grid = np.expand_dims(np.ones_like(cx), axis=-1) # shape: (32,32, 1) # ws ws_sizes = achr_sizes[:, 1] # shape: 5, grid_ws = grid * ws_sizes # shape: (32, 32, 5) # hs hs_sizes = achr_sizes[:, 0] # shape: 5, grid_hs = grid * hs_sizes # shape: (32,32, 5) # concatenate cx, cy, ws, hw anchors = np.stack([grid_cx, grid_cy, grid_ws, grid_hs], axis=-1) # shape: (32,32,5,4) anchors = anchors.reshape([n_achr, 4]) # shape: (32,) total_anchors.append(anchors) total_anchors = np.concatenate(total_anchors, axis=0) return total_anchors
taila0/single-shot-multibox-detector
src/old_codes/prior.py
prior.py
py
2,726
python
en
code
0
github-code
6
71839285309
"""This module is responsible for reading the tables and processing them in order to use their data. The use of pandas or any other parsing of the particular data table should be done here. """ __author__ = "carlosmperilla" __copyright__ = "Copyright 2022 Carlos M. Perilla" __credits__ = "Carlos M. Perilla" __license__ = "MIT" __version__ = "1.0" __maintainer__ = "carlosmperilla" __email__ = "carlosperillaprogramacion@gmail.com" __status__ = "Developing" from .purchase import PurchaseList
carlosmperilla/budget-system
budget_system/purchase/__init__.py
__init__.py
py
510
python
en
code
2
github-code
6
34892241691
from logging import raiseExceptions from flask import Flask, request, make_response, jsonify from flask_cors import CORS, cross_origin import hashlib from controller import * app = Flask(__name__) CORS(app) Controller = Controller() @app.route("/ong", methods=["GET", "POST", "PUT"]) @cross_origin() def ong(): """ This methods returns a list of all ONGs from ONGs public table. """ if request.method == "POST": try: payload = request.get_json() hashed_senha = hashlib.md5(payload['senha'].encode('utf-8')).hexdigest() response = Controller.create_ong( cnpj=payload['cnpj'] if 'cnpj' in payload else '', nome=payload['nome'], descricao=payload['descricao'] , tipo=payload['tipo'] if 'tipo' in payload else '', telefone=payload['telefone'] if 'telefone' in payload else '', email=payload['email'], endereco_cep=payload['endereco_cep'] if 'endereco_cep' in payload else '', endereco_num=payload['endereco_num'] if 'endereco_num' in payload else -1, endereco_complemento=payload['endereco_complemento'] if 'endereco_completo' in payload else '', senha=hashed_senha ) response = jsonify(response) # # response.headers.add('Access-Control-Allow-Origin', '*') return response except Exception as e: response = {"Erro": e} response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return(make_response(response, 400)) elif request.method == "PUT": try: payload = request.get_json() if not set(['id_ong']).issubset(payload): raise Exception('Id obrigatórios') if 'senha' in payload: payload['senha'] = hashlib.md5(payload['senha'].encode('utf-8')).hexdigest() response = Controller.update_ong( payload=payload ) response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return response except Exception as e: response = {"Erro": e} response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return(make_response(response, 400)) elif request.method == "GET": try: response = Controller.get_all_ongs() response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return(make_response(response, 200)) except: response = {"Erro": e} response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return(make_response(response, 400)) @app.route("/ong/<id>", methods=["GET"]) @cross_origin() def get_ong(id): """ This method returns the ong with ong """ try: response = Controller.get_ong(id) response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return(make_response(response, 200)) except: response = {"Erro": e} response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return(make_response(response, 400)) @app.route("/ong/<id>", methods=["DELETE"]) @cross_origin() def delete_ong(id): try: Controller.delete_ong(id) response = {"Sucesso: ONG has been deleted"} response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return(make_response(response, 200)) except Exception as e: response = {"Erro": e} response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return(make_response(response, 400)) @app.route("/login", methods=["POST"]) @cross_origin() def login(): payload = request.get_json() email = payload["email"] senha = payload["senha"] tipo = payload["tipo"] try: response = Controller.login(email, senha, tipo) response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return response except Exception as e: response = {"Erro": e} response = jsonify(response) # response.headers.add('Access-Control-Allow-Origin', '*') return make_response(response, 400) @app.route("/searchong", methods=["POST"]) @cross_origin() def search_ong(): payload = request.get_json() causa = payload["causa"] if "causa" in payload else None nome = payload["nome"] if "nome" in payload else None return Controller.search_ong(causa, nome) if __name__ == "__main__": app.run(debug=True)
BrunoTaufner/RPII
server/app.py
app.py
py
4,960
python
en
code
0
github-code
6
18216869821
#Fall2019W9B #Broken Keyboard | CodeForces 1251A if __name__ == "__main__": nqueries = int(input()) outputs = [] for q in range(nqueries): testStr = input() strLen = len(testStr) res = "" ind = 0 while ind < strLen: currChar = testStr[ind] if ind + 1 < strLen: if currChar == testStr[ind + 1]: ind += 1 else: if currChar not in res: res += currChar else: if currChar not in res: res += currChar ind += 1 sortedResLst = sorted(res) res = "" for char in sortedResLst: res += char outputs.append(res) for o in outputs: print(o)
andrew-qu2000/Programming-Club
Poly Programming Club/Fall2019W9B.py
Fall2019W9B.py
py
814
python
en
code
0
github-code
6
14703280517
from datetime import datetime from os.path import dirname, join import pytest from city_scrapers_core.constants import COMMISSION from city_scrapers_core.utils import file_response from freezegun import freeze_time from city_scrapers.spiders.sf_planning import SfPlanningSpider test_response = file_response( join(dirname(__file__), "files", "sf_planning.html"), url="https://sfplanning.org/event/planning-commission-151", ) spider = SfPlanningSpider() freezer = freeze_time("2021-10-27") freezer.start() parsed_items = [item for item in spider.parse_meeting(test_response)] freezer.stop() def test_title(): assert parsed_items[0]["title"] == "Hearing for SF Planning Commission" def test_description(): assert len(parsed_items[0]["description"]) == 7212 def test_start(): assert parsed_items[0]["start"] == datetime(2021, 10, 28, 13, 0) def test_end(): assert parsed_items[0]["end"] is None def test_time_notes(): assert parsed_items[0]["time_notes"] == "" def test_id(): assert ( parsed_items[0]["id"] == "sf_planning/202110281300/x/hearing_for_sf_planning_commission" ) def test_status(): assert parsed_items[0]["status"] == "tentative" def test_location(): assert parsed_items[0]["location"] == { "address": "Stream at https://sfgovtv.org/planning – Public Comment:" " (415) 655-0001 / Access Code: 2486 151 4664", "name": "SF Planning Commission", } def test_source(): assert ( parsed_items[0]["source"] == "https://sfplanning.org/event/planning-commission-151" ) def test_links(): assert parsed_items[0]["links"] == [ { "href": "https://sfplanning.org/sites/default/files/agendas/" "2021-10/20211028_cal.pdf", "title": "Meeting/Agenda Information", }, { "href": "https://sfplanning.org/resource/" "planning-commission-packet-october-28-2021", "title": "Supporting Documents", }, ] def test_classification(): assert parsed_items[0]["classification"] == COMMISSION @pytest.mark.parametrize("item", parsed_items) def test_all_day(item): assert item["all_day"] is False
washabstract/city-scrapers-ca
tests/test_sf_planning.py
test_sf_planning.py
py
2,234
python
en
code
1
github-code
6
21959415638
from fastapi import APIRouter, HTTPException from init_system import system from schemas.customer_shcema import SignIn, SignUp, SetCart, Email from models.Cart import CartItem router = APIRouter(prefix="/customer") @router.post("/sign_in") async def customer_login(body: SignIn): try: return { "detail": "Successfully Sign-in", "data": system.sign_in(body.email, body.password), } except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @router.post("/sign_up") async def customer_register(body: SignUp): try: email = body.email password = body.password firstname = body.firstname lastname = body.lastname customer = system.create_customer(email, password, firstname, lastname) return {"detail": "Successfully Sign-up", "data": customer.email} except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @router.post("/set_cart_item") async def add_cart_item(body: SetCart): try: email = body.email product_list = body.product_list customer = system.get_customer_by_email(email) if not customer: raise ValueError("There is no customer with this email.") cart = customer.cart cart_items = [] for item in product_list: category = system.get_category_by_name(item.category) product = category.get_product_by_id(item.id) cart_items.append(CartItem(product, item.quantity)) cart.cart_items = cart_items return {"detail": "Successfully added."} except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @router.post("/get_cart_detail") async def view_cart(body: Email): try: email = body.email customer = system.get_customer_by_email(email) if not customer: raise ValueError("There is no customer with this email.") cart = customer.cart return {"data": cart.get_detail()} except ValueError as e: raise HTTPException(status_code=400, detail=str(e)) except Exception as e: raise HTTPException(status_code=500, detail=str(e))
Dope21/python-oop
controllers/customer_ctrl.py
customer_ctrl.py
py
2,486
python
en
code
0
github-code
6