| import sys | |
| import time | |
| import inspect | |
| from transformers import AutoTokenizer | |
| from typing import Any | |
| import numpy as np | |
| from tqdm import tqdm | |
| import json | |
| import argparse | |
| import os | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task") | |
| parser.add_argument( | |
| "--batch_size", | |
| type=int, | |
| default=512, | |
| ) | |
| parser.add_argument( | |
| "--source_file", | |
| type=str, | |
| ) | |
| parser.add_argument( | |
| "--chunk_size", | |
| type=int, | |
| default=512, | |
| ) | |
| args = parser.parse_args() | |
| return args | |
| args = parse_args() | |
| print('args.source_file',args.source_file) | |
| data = open(args.source_file).readlines() | |
| base_name = os.path.basename(args.source_file) | |
| file_name, _ = os.path.splitext(base_name) | |
| bs = args.batch_size | |
| print('############ Start data reading ###########') | |
| local_cnt = 0 | |
| temp_dic_list = [] | |
| dic_list = [] | |
| chunk_size = args.chunk_size | |
| for idx, line in enumerate(data): | |
| temp_dic = json.loads(line) | |
| temp_dic_list.append(temp_dic) | |
| local_cnt = local_cnt + 1 | |
| if local_cnt == chunk_size: | |
| local_cnt = 0 | |
| dic_list.append(temp_dic_list) | |
| temp_dic_list = [] | |
| print("len(dic_list)",len(dic_list)) | |
| with open(file_name+'_bs_'+str(bs)+'.jsonl', 'w') as f: | |
| for idx in range(0, len(dic_list)-bs, bs): | |
| for line_i in range(len(dic_list[0])): | |
| for i in range(bs): | |
| f.write(json.dumps(dic_list[idx+i][line_i]) + "\n") |