import sys import time import inspect from transformers import AutoTokenizer from typing import Any import numpy as np from tqdm import tqdm import json import argparse import os def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task") parser.add_argument( "--batch_size", type=int, default=512, ) parser.add_argument( "--source_file", type=str, ) parser.add_argument( "--chunk_size", type=int, default=512, ) args = parser.parse_args() return args args = parse_args() print('args.source_file',args.source_file) data = open(args.source_file).readlines() base_name = os.path.basename(args.source_file) file_name, _ = os.path.splitext(base_name) bs = args.batch_size print('############ Start data reading ###########') local_cnt = 0 temp_dic_list = [] dic_list = [] chunk_size = args.chunk_size for idx, line in enumerate(data): temp_dic = json.loads(line) temp_dic_list.append(temp_dic) local_cnt = local_cnt + 1 if local_cnt == chunk_size: local_cnt = 0 dic_list.append(temp_dic_list) temp_dic_list = [] print("len(dic_list)",len(dic_list)) with open(file_name+'_bs_'+str(bs)+'.jsonl', 'w') as f: for idx in range(0, len(dic_list)-bs, bs): for line_i in range(len(dic_list[0])): for i in range(bs): f.write(json.dumps(dic_list[idx+i][line_i]) + "\n")