focus-data / preprocess_longtext_streaming_step1.py
leezythu's picture
Add files using upload-large-folder tool
861f9fc verified
import sys
import time
import inspect
from transformers import AutoTokenizer
from typing import Any
import numpy as np
from tqdm import tqdm
import json
import argparse
import os
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task")
parser.add_argument(
"--source_file",
type=str,
)
parser.add_argument(
"--max_length",
type=int,
default=512,
)
parser.add_argument(
"--chunk_size",
type=int,
default=1024,
)
parser.add_argument(
"--tokenizer_path",
type=str,
)
args = parser.parse_args()
return args
def get_tokenizer(tokenizer_path):
tokenizer = tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path, use_fast=not False, trust_remote_code=False
)
# special_tokens_dict = {'additional_special_tokens': ['<pad>']}
# tokenizer.add_special_tokens(special_tokens_dict)
return tokenizer
def convert_data_to_id(tokenizer: AutoTokenizer, data: Any):
input_ids = tokenizer.encode(data)
ids = input_ids
ids = np.array(ids, dtype=np.int32)
return ids
args = parse_args()
tokenizer = get_tokenizer(args.tokenizer_path)
infile = open(args.source_file, 'r', encoding='utf-8')
file_name, _ = os.path.splitext(os.path.basename(args.source_file))
print("source file - ", args.source_file)
print('############ Start data reading ###########')
idx = 0
max_length = args.max_length
chunk_size = args.chunk_size
token_ids = np.array([], dtype=np.int32)
with open(file_name+'_streaming_'+str(max_length)+'.jsonl', 'w') as f:
for line in infile:
idx += 1
if idx % 10000 == 0:
print('Cur idx - ', idx)
try:
line = json.loads(line)
cur_texts = []
if 'text' in line:
temp = line['text'] + "\n"
elif 'raw_content_lines' in line:
temp = "\n".join(line['raw_content_lines']) + "\n"
else:
print("error")
exit()
try:
token_id = convert_data_to_id(tokenizer, temp)
token_ids = np.concatenate((token_ids, token_id), dtype=np.int32)
except UnicodeDecodeError:
print('Error line - encoding: ', idx)
if len(token_ids) > max_length*chunk_size:
while len(token_ids) > max_length:
try:
temp_text = tokenizer.decode(token_ids[: max_length])
temp_dic = {'text': temp_text}
f.write(json.dumps(temp_dic) + "\n")
token_ids = token_ids[max_length:]
except UnicodeDecodeError:
print('Error line - decoding: ', idx)
token_ids = token_ids[max_length:]
except:
print("error source file - ", args.source_file)
print('Error line: ', idx)
continue
infile.close()