import sys import time import inspect from transformers import AutoTokenizer from typing import Any import numpy as np from tqdm import tqdm import json import argparse import os def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task") parser.add_argument( "--source_file", type=str, ) parser.add_argument( "--max_length", type=int, default=512, ) parser.add_argument( "--chunk_size", type=int, default=1024, ) parser.add_argument( "--tokenizer_path", type=str, ) args = parser.parse_args() return args def get_tokenizer(tokenizer_path): tokenizer = tokenizer = AutoTokenizer.from_pretrained( tokenizer_path, use_fast=not False, trust_remote_code=False ) # special_tokens_dict = {'additional_special_tokens': ['']} # tokenizer.add_special_tokens(special_tokens_dict) return tokenizer def convert_data_to_id(tokenizer: AutoTokenizer, data: Any): input_ids = tokenizer.encode(data) ids = input_ids ids = np.array(ids, dtype=np.int32) return ids args = parse_args() tokenizer = get_tokenizer(args.tokenizer_path) infile = open(args.source_file, 'r', encoding='utf-8') file_name, _ = os.path.splitext(os.path.basename(args.source_file)) print("source file - ", args.source_file) print('############ Start data reading ###########') idx = 0 max_length = args.max_length chunk_size = args.chunk_size token_ids = np.array([], dtype=np.int32) with open(file_name+'_streaming_'+str(max_length)+'.jsonl', 'w') as f: for line in infile: idx += 1 if idx % 10000 == 0: print('Cur idx - ', idx) try: line = json.loads(line) cur_texts = [] if 'text' in line: temp = line['text'] + "\n" elif 'raw_content_lines' in line: temp = "\n".join(line['raw_content_lines']) + "\n" else: print("error") exit() try: token_id = convert_data_to_id(tokenizer, temp) token_ids = np.concatenate((token_ids, token_id), dtype=np.int32) except UnicodeDecodeError: print('Error line - encoding: ', idx) if len(token_ids) > max_length*chunk_size: while len(token_ids) > max_length: try: temp_text = tokenizer.decode(token_ids[: max_length]) temp_dic = {'text': temp_text} f.write(json.dumps(temp_dic) + "\n") token_ids = token_ids[max_length:] except UnicodeDecodeError: print('Error line - decoding: ', idx) token_ids = token_ids[max_length:] except: print("error source file - ", args.source_file) print('Error line: ', idx) continue infile.close()