python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Puppeteers for gift_refinements.""" from collections.abc import Mapping import dm_env from meltingpot.utils.puppeteers import puppeteer import numpy as np import tree Observation = Mapping[str, tree.Structure[np.ndarray]] class GiftRefinementsCooperator(puppeteer.Puppeteer[tuple[()]]): """Cooperator puppeteer for gift refinements. This puppeteer expresses a cooperative high level policy: 1. Collect tokens when the inventory is empty. 2. If the inventory is not empty, check if there are any refined tokens, if not, the gift some tokens. 3. If there the player has refined tokens, consume. This means that a GiftRefinementsCooperator will start by grabbing a token, and then gift it. As soon as they receive any gift from anyone, they would consume. """ def __init__( self, *, collect_goal: puppeteer.PuppetGoal, gift_goal: puppeteer.PuppetGoal, consume_goal: puppeteer.PuppetGoal, ): """Initializes the puppeteer. Args: collect_goal: goal to emit to puppet when "collecting" gift_goal: goal to emit to puppet when "gifting" consume_goal: goal to emit to puppet when "consuming" """ self._collect_goal = collect_goal self._gift_goal = gift_goal self._consume_goal = consume_goal def initial_state(self) -> tuple[()]: """See base class.""" return () def should_consume(self, observation: Observation) -> bool: """Decides whether we should consume tokens in our inventory.""" _, refined, twice_refined = observation['INVENTORY'] return bool(refined) or bool(twice_refined) def step(self, timestep: dm_env.TimeStep, prev_state: tuple[()]) -> tuple[dm_env.TimeStep, tuple[()]]: """See base class.""" if np.sum(timestep.observation['INVENTORY']): if self.should_consume(timestep.observation): goal = self._consume_goal else: goal = self._gift_goal else: goal = self._collect_goal # Return the encoded cumulant associated with the current goal. timestep = puppeteer.puppet_timestep(timestep, goal) return timestep, prev_state class GiftRefinementsExtremeCooperator(GiftRefinementsCooperator): """Cooperator that gifts until it has tokens of type 2 (double refinement). This means that a GiftRefinementsExtremeCooperator, like the cooperator above, will start by grabbing a token, and then gift it. However, upon receiving a gift, they would gift back. Only will they consume if they receive a doubly refined token. """ def should_consume(self, observation: Observation) -> bool: """See base class.""" _, _, twice_refined = observation['INVENTORY'] return bool(twice_refined > 0)
meltingpot-main
meltingpot/utils/puppeteers/gift_refinements.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Puppeteers for coins.""" import dataclasses import dm_env from meltingpot.utils.puppeteers import puppeteer @dataclasses.dataclass(frozen=True) class ReciprocatorState: """Current state of the Reciprocator. Attributes: step_count: number of timesteps previously seen in this episode. spite_until: earliest step_count after which to stop being spiteful. defect_until: earliest step_count after which to stop defecting. recent_defection: level of defection on previous timesteps (ordered from oldest to most recent). """ step_count: int spite_until: int defect_until: int recent_defection: tuple[int, ...] class Reciprocator(puppeteer.Puppeteer[ReciprocatorState]): """Puppeteer for a reciprocating agent. This puppeteer's behavior depends on the behavior of others. In particular, it tracks the total amount of others' defection, and integrates this signal using a rolling window. Initially, the puppet will be in a cooperation mode where it will direct the puppet to cooperate with others. However, once the total level of defection reaches threshold, the puppeteer will switch to a defection routine. This routine starts with some amount of spite, then plain defection. Once the routine is complete, the puppeteer will return to the cooperative mode. At any point, if the integrated level of defection again reaches threshold, the defection routine will be triggered again from the beginning. """ def __init__( self, *, cooperate_goal: puppeteer.PuppetGoal, defect_goal: puppeteer.PuppetGoal, spite_goal: puppeteer.PuppetGoal, partner_defection_signal: str, recency_window: int, threshold: int, frames_to_punish: int, spiteful_punishment_window: int, ) -> None: """Initializes the puppeteer. Args: cooperate_goal: goal to emit to puppet when "cooperating". defect_goal: goal to emit to puppet when "defecting". spite_goal: goal to emit to puppet when being "spiteful". partner_defection_signal: key in observations that provides the level of partner defection in the previous timestep. recency_window: number of steps over which to remember others' behavior. threshold: if the total number of (nonunique) cooperators over the remembered period reaches this threshold, the puppeteer will direct the puppet to cooperate. frames_to_punish: the number of steps to not cooperate for when triggered by others' behavior. spiteful_punishment_window: the number of steps to bne spiteful for when triggered by others' behavior. """ self._cooperate_goal = cooperate_goal self._defect_goal = defect_goal self._spite_goal = spite_goal self._partner_defection_signal = partner_defection_signal if threshold > 0: self._threshold = threshold else: raise ValueError('threshold must be positive') if recency_window > 0: self._recency_window = recency_window else: raise ValueError('recency_window must be positive') if frames_to_punish > 0: self._frames_to_punish = frames_to_punish else: raise ValueError('frames_to_punish must be positive.') if 0 <= spiteful_punishment_window <= frames_to_punish: self._spiteful_punishment_window = spiteful_punishment_window else: raise ValueError('spiteful_punishment_window must nonegative and lower ' 'than frames_to_punish') def initial_state(self) -> ReciprocatorState: """See base class.""" return ReciprocatorState( step_count=0, spite_until=0, defect_until=0, recent_defection=()) def step( self, timestep: dm_env.TimeStep, prev_state: ReciprocatorState ) -> tuple[dm_env.TimeStep, ReciprocatorState]: """See base class.""" if timestep.first(): prev_state = self.initial_state() step_count = prev_state.step_count spite_until = prev_state.spite_until defect_until = prev_state.defect_until recent_defection = prev_state.recent_defection partner_defection = int( timestep.observation[self._partner_defection_signal]) recent_defection += (partner_defection,) recent_defection = recent_defection[-self._recency_window:] total_recent_defection = sum(recent_defection) if total_recent_defection >= self._threshold: spite_until = step_count + self._spiteful_punishment_window defect_until = step_count + self._frames_to_punish recent_defection = () if step_count < spite_until: goal = self._spite_goal elif step_count < defect_until: goal = self._defect_goal else: goal = self._cooperate_goal timestep = puppeteer.puppet_timestep(timestep, goal) next_state = ReciprocatorState( step_count=step_count + 1, spite_until=spite_until, defect_until=defect_until, recent_defection=recent_defection) return timestep, next_state
meltingpot-main
meltingpot/utils/puppeteers/coins.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for coins puppeteers.""" from unittest import mock from absl.testing import absltest from absl.testing import parameterized from meltingpot.testing import puppeteers from meltingpot.utils.puppeteers import coins _COOPERATE = mock.sentinel.cooperate _DEFECT = mock.sentinel.defect _SPITE = mock.sentinel.spite _NUM_DEFECTIONS_KEY = 'DEFECTIONS' def _goals(puppeteer, num_defections, state=None): observations = [{_NUM_DEFECTIONS_KEY: n} for n in num_defections] goals, state = puppeteers.goals_from_observations( puppeteer, observations, state ) return goals, state class ReciprocatorTest(parameterized.TestCase): def test_threshold(self): puppeteer = coins.Reciprocator( cooperate_goal=_COOPERATE, defect_goal=_DEFECT, spite_goal=_SPITE, partner_defection_signal=_NUM_DEFECTIONS_KEY, recency_window=1, threshold=3, frames_to_punish=1, spiteful_punishment_window=0, ) num_defections = [0, 1, 2, 3] expected = [_COOPERATE, _COOPERATE, _COOPERATE, _DEFECT] actual, _ = _goals(puppeteer, num_defections) self.assertSequenceEqual(actual, expected) @parameterized.parameters( [(1, 0, 0, 1), (_COOPERATE, _COOPERATE, _COOPERATE, _COOPERATE)], [(1, 0, 1), (_COOPERATE, _COOPERATE, _DEFECT)], [(1, 1), (_COOPERATE, _DEFECT)], ) def test_recency_window(self, num_defections, expected): puppeteer = coins.Reciprocator( cooperate_goal=_COOPERATE, defect_goal=_DEFECT, spite_goal=_SPITE, partner_defection_signal=_NUM_DEFECTIONS_KEY, recency_window=3, threshold=2, frames_to_punish=1, spiteful_punishment_window=0, ) actual, _ = _goals(puppeteer, num_defections) self.assertSequenceEqual(actual, expected) @parameterized.parameters(1, 2, 3) def test_defect_duration(self, duration): puppeteer = coins.Reciprocator( cooperate_goal=_COOPERATE, defect_goal=_DEFECT, spite_goal=_SPITE, partner_defection_signal=_NUM_DEFECTIONS_KEY, recency_window=1, threshold=1, frames_to_punish=duration, spiteful_punishment_window=1, ) num_defections = [1, 0, 0, 0] expected = ( [_SPITE] + [_DEFECT] * (duration - 1) + [_COOPERATE] * (4 - duration)) actual, _ = _goals(puppeteer, num_defections) self.assertSequenceEqual(actual, expected) @parameterized.parameters(1, 2, 4) def test_spite_duration(self, duration): puppeteer = coins.Reciprocator( cooperate_goal=_COOPERATE, defect_goal=_DEFECT, spite_goal=_SPITE, partner_defection_signal=_NUM_DEFECTIONS_KEY, recency_window=1, threshold=1, frames_to_punish=4, spiteful_punishment_window=duration, ) num_defections = [1, 0, 0, 0] expected = [_SPITE] * duration + [_DEFECT] * (4 - duration) actual, _ = _goals(puppeteer, num_defections) self.assertSequenceEqual(actual, expected) def test_resets_on_first(self): puppeteer = coins.Reciprocator( cooperate_goal=_COOPERATE, defect_goal=_DEFECT, spite_goal=_SPITE, partner_defection_signal=_NUM_DEFECTIONS_KEY, recency_window=8, threshold=1, frames_to_punish=8, spiteful_punishment_window=8, ) _, state = _goals(puppeteer, [0, 0, 1, 0]) num_defections = [0, 0, 0, 0] expected = [_COOPERATE, _COOPERATE, _COOPERATE, _COOPERATE] actual, _ = _goals(puppeteer, num_defections, state) self.assertSequenceEqual(actual, expected) def test_defection_during_defect_resets_spite(self): puppeteer = coins.Reciprocator( cooperate_goal=_COOPERATE, defect_goal=_DEFECT, spite_goal=_SPITE, partner_defection_signal=_NUM_DEFECTIONS_KEY, recency_window=1, threshold=1, frames_to_punish=3, spiteful_punishment_window=1, ) num_defections = [1, 0, 1, 0, 0, 0] expected = [_SPITE, _DEFECT, _SPITE, _DEFECT, _DEFECT, _COOPERATE] actual, _ = _goals(puppeteer, num_defections) self.assertSequenceEqual(actual, expected) def test_defection_during_spite_extends_spite(self): puppeteer = coins.Reciprocator( cooperate_goal=_COOPERATE, defect_goal=_DEFECT, spite_goal=_SPITE, partner_defection_signal=_NUM_DEFECTIONS_KEY, recency_window=1, threshold=1, frames_to_punish=3, spiteful_punishment_window=2, ) num_defections = [1, 0, 1, 0, 0, 0] expected = [_SPITE, _SPITE, _SPITE, _SPITE, _DEFECT, _COOPERATE] actual, _ = _goals(puppeteer, num_defections) self.assertSequenceEqual(actual, expected) def test_impulse_response(self): puppeteer = coins.Reciprocator( cooperate_goal=_COOPERATE, defect_goal=_DEFECT, spite_goal=_SPITE, partner_defection_signal=_NUM_DEFECTIONS_KEY, recency_window=4, threshold=1, frames_to_punish=2, spiteful_punishment_window=1, ) num_defections = [1, 0, 0, 0] expected = [_SPITE, _DEFECT, _COOPERATE, _COOPERATE] actual, _ = _goals(puppeteer, num_defections) self.assertSequenceEqual(actual, expected) def test_boxcar_response(self): puppeteer = coins.Reciprocator( cooperate_goal=_COOPERATE, defect_goal=_DEFECT, spite_goal=_SPITE, partner_defection_signal=_NUM_DEFECTIONS_KEY, recency_window=4, threshold=1, frames_to_punish=2, spiteful_punishment_window=1, ) num_defections = [1, 1, 1, 0, 0, 0] expected = [_SPITE, _SPITE, _SPITE, _DEFECT, _COOPERATE, _COOPERATE] actual, _ = _goals(puppeteer, num_defections) self.assertSequenceEqual(actual, expected) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/puppeteers/coins_test.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for in_the_matrix Puppeteers.""" import itertools from unittest import mock from absl.testing import absltest from absl.testing import parameterized import dm_env import immutabledict from meltingpot.testing import puppeteers from meltingpot.utils.puppeteers import in_the_matrix import numpy as np _RESOURCE_0 = in_the_matrix.Resource( index=0, collect_goal=mock.sentinel.collect_0, interact_goal=mock.sentinel.interact_0, ) _RESOURCE_1 = in_the_matrix.Resource( index=1, collect_goal=mock.sentinel.collect_1, interact_goal=mock.sentinel.interact_1, ) _RESOURCE_2 = in_the_matrix.Resource( index=2, collect_goal=mock.sentinel.collect_2, interact_goal=mock.sentinel.interact_2, ) _INTERACTION = (np.array([1, 1, 1]), np.array([1, 1, 1])) _NO_INTERACTION = (np.array([-1, -1, -1]), np.array([-1, -1, -1])) class HelperFunctionTest(parameterized.TestCase): @parameterized.parameters( [_INTERACTION, _INTERACTION[1]], [_NO_INTERACTION, None], ) def test_get_partner_interaction_inventory(self, interaction, expected): timestep = dm_env.restart(_observation(None, interaction)) actual = in_the_matrix.get_partner_interaction_inventory(timestep) np.testing.assert_equal(actual, expected) @parameterized.parameters( [_INTERACTION, True], [_NO_INTERACTION, False], ) def test_has_interaction(self, interaction, expected): timestep = dm_env.restart(_observation(None, interaction)) actual = in_the_matrix.has_interaction(timestep) self.assertEqual(actual, expected) @parameterized.parameters( [(0, 0, 0), (mock.ANY, 0)], [(1, 0, 0), (0, 1)], [(0, 3, 1), (1, 2)], [(3, 0, 7), (2, 4)], ) def test_max_resource_and_margin(self, inventory, expected): actual = in_the_matrix.max_resource_and_margin(np.array(inventory)) self.assertEqual(actual, expected) @parameterized.parameters( [(1, 2, 3), 0, 1, False], [(1, 2, 3), 1, 1, False], [(1, 2, 3), 2, 1, True], [(1, 2, 3), 2, 2, False], [(1, 2, 5), 2, 1, True], [(1, 2, 5), 2, 3, True], ) def test_has_sufficient(self, inventory, target, margin, expected): actual = in_the_matrix.has_collected_sufficient( np.array(inventory), target, margin) self.assertEqual(actual, expected) @parameterized.parameters( [(1, 2, 3), 2], [(1, 2, 5), 2], [(1, 0, 0), 0], [(1, 2, 0), 1], ) def test_partner_max_resource(self, inventory, expected): timestep = dm_env.restart({ 'INTERACTION_INVENTORIES': (None, np.array(inventory)), }) actual = in_the_matrix.partner_max_resource(timestep) self.assertEqual(actual, expected) @parameterized.parameters( [(1, 2, 3), _RESOURCE_0, 1, _RESOURCE_0.collect_goal], [(1, 2, 3), _RESOURCE_1, 1, _RESOURCE_1.collect_goal], [(1, 2, 3), _RESOURCE_2, 1, _RESOURCE_2.interact_goal], [(1, 2, 3), _RESOURCE_2, 2, _RESOURCE_2.collect_goal], [(1, 2, 5), _RESOURCE_2, 1, _RESOURCE_2.interact_goal], [(1, 2, 5), _RESOURCE_2, 3, _RESOURCE_2.interact_goal], ) @mock.patch.object(immutabledict, 'immutabledict', dict) def test_collect_or_interact_puppet_timestep( self, inventory, target, margin, goal): timestep = dm_env.restart({'INVENTORY': np.array(inventory)}) actual = in_the_matrix.collect_or_interact_puppet_timestep( timestep, target, margin) expected = dm_env.restart({'INVENTORY': np.array(inventory), 'GOAL': goal}) np.testing.assert_equal(actual, expected) def _observation(inventory, interaction=None): if interaction is None: interaction = _NO_INTERACTION return { 'INVENTORY': np.array(inventory), 'INTERACTION_INVENTORIES': np.array(interaction), } def _goals_from_observations(puppeteer, inventories, interactions=(), state=None): observations = [] for inventory, interaction in itertools.zip_longest(inventories, interactions): observations.append(_observation(inventory, interaction)) return puppeteers.goals_from_observations(puppeteer, observations, state) class SpecialistTest(parameterized.TestCase): def test(self): puppeteer = in_the_matrix.Specialist( target=_RESOURCE_1, margin=1, ) inventories = [(1, 1, 1), (1, 2, 1), (1, 2, 2), (1, 3, 2)] expected = [ _RESOURCE_1.collect_goal, _RESOURCE_1.interact_goal, _RESOURCE_1.collect_goal, _RESOURCE_1.interact_goal, ] actual, _ = _goals_from_observations(puppeteer, inventories) self.assertEqual(actual, expected) class ScheduledFlipTest(parameterized.TestCase): def test(self): puppeteer = in_the_matrix.ScheduledFlip( threshold=1, initial_target=_RESOURCE_1, final_target=_RESOURCE_2, initial_margin=1, final_margin=2, ) inventories = [(1, 1, 1), (1, 2, 1), (1, 2, 2), (1, 2, 4)] interactions = [ _NO_INTERACTION, _NO_INTERACTION, _INTERACTION, _INTERACTION ] expected = [ _RESOURCE_1.collect_goal, _RESOURCE_1.interact_goal, _RESOURCE_2.collect_goal, _RESOURCE_2.interact_goal, ] actual, _ = _goals_from_observations(puppeteer, inventories, interactions) self.assertEqual(actual, expected) class GrimTriggerTest(parameterized.TestCase): def test_trigger(self): puppeteer = in_the_matrix.GrimTrigger( threshold=2, cooperate_resource=_RESOURCE_1, defect_resource=_RESOURCE_0, margin=1, ) inventories = [ (1, 1), (1, 2), (2, 2), (2, 2), (3, 2), (3, 2), ] interactions = [ ((-1, -1), (-1, -1)), # neither ((-1, -1), (1, 0)), # defection ((-1, -1), (0, 1)), # cooperation ((-1, -1), (1, 0)), # defection ((-1, -1), (0, 1)), # cooperation ((-1, -1), (0, 1)), # cooperation ] expected = [ _RESOURCE_1.collect_goal, # cooperate _RESOURCE_1.interact_goal, # cooperate _RESOURCE_1.collect_goal, # cooperate _RESOURCE_0.collect_goal, # defect _RESOURCE_0.interact_goal, # defect _RESOURCE_0.interact_goal, # defect ] actual, _ = _goals_from_observations(puppeteer, inventories, interactions) self.assertEqual(actual, expected) def test_not_grim_after_reset(self): puppeteer = in_the_matrix.GrimTrigger( threshold=2, cooperate_resource=_RESOURCE_1, defect_resource=_RESOURCE_0, margin=1, ) inventories = [ (1, 1), (1, 2), (2, 2), (2, 2), (3, 2), (3, 2), ] interactions = [ ((-1, -1), (-1, -1)), # neither ((-1, -1), (1, 0)), # defection ((-1, -1), (0, 1)), # cooperation ((-1, -1), (1, 0)), # defection ((-1, -1), (0, 1)), # cooperation ((-1, -1), (0, 1)), # cooperation ] expected = [ _RESOURCE_1.collect_goal, # cooperate _RESOURCE_1.interact_goal, # cooperate _RESOURCE_1.collect_goal, # cooperate _RESOURCE_0.collect_goal, # defect _RESOURCE_0.interact_goal, # defect _RESOURCE_0.interact_goal, # defect ] _, state = _goals_from_observations(puppeteer, inventories, interactions) actual, _ = _goals_from_observations(puppeteer, inventories, interactions, state) self.assertEqual(actual, expected) class TitForTatTest(parameterized.TestCase): def test(self): puppeteer = in_the_matrix.TitForTat( cooperate_resource=_RESOURCE_1, defect_resource=_RESOURCE_0, margin=1, tremble_probability=0, ) inventories = [ (1, 1, 0), # not ready to interact (1, 2, 0), # ready to interact if cooperating (3, 2, 0), # ready to interact if defecting (2, 3, 0), # ready to interact if cooperating (3, 2, 0), # ready to interact if defecting (2, 2, 0), # not ready to interact ] interactions = [ ((-1, -1, -1), (2, 2, 0)), # coplayer cooperates and defects ((-1, -1, -1), (1, 0, 0)), # coplayer defects ((-1, -1, -1), (0, 0, 1)), # coplayer plays other ((-1, -1, -1), (0, 1, 0)), # coplayer cooperates ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (2, 1, 1)), # coplayer defects ] expected = [ _RESOURCE_1.collect_goal, # cooperate _RESOURCE_0.collect_goal, # defect _RESOURCE_0.interact_goal, # continue defecting _RESOURCE_1.interact_goal, # cooperate _RESOURCE_1.collect_goal, # continue cooperating _RESOURCE_0.collect_goal, # defect ] actual, _ = _goals_from_observations(puppeteer, inventories, interactions) self.assertEqual(actual, expected) def test_with_tremble(self): puppeteer = in_the_matrix.TitForTat( cooperate_resource=_RESOURCE_1, defect_resource=_RESOURCE_0, margin=1, tremble_probability=1, ) inventories = [ (1, 1, 0), # not ready to interact (1, 2, 0), # ready to interact if cooperating (3, 2, 0), # ready to interact if defecting (2, 3, 0), # ready to interact if cooperating (3, 2, 0), # ready to interact if defecting (2, 2, 0), # not ready to interact ] interactions = [ ((-1, -1, -1), (2, 2, 0)), # coplayer cooperates and defects ((-1, -1, -1), (1, 0, 0)), # coplayer defects ((-1, -1, -1), (0, 0, 1)), # coplayer plays other ((-1, -1, -1), (0, 1, 0)), # coplayer cooperates ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (2, 1, 1)), # coplayer defects ] expected = [ _RESOURCE_0.collect_goal, # cooperate but tremble and defect _RESOURCE_1.interact_goal, # defect but tremble and cooperate _RESOURCE_1.collect_goal, # continue cooperating _RESOURCE_0.collect_goal, # cooperate but tremble and defect _RESOURCE_0.interact_goal, # continue defecting _RESOURCE_1.collect_goal, # defect but tremble and cooperate ] actual, _ = _goals_from_observations(puppeteer, inventories, interactions) self.assertEqual(actual, expected) class CorrigibleTest(parameterized.TestCase): def test(self): puppeteer = in_the_matrix.Corrigible( threshold=1, cooperate_resource=_RESOURCE_1, defect_resource=_RESOURCE_0, margin=2, tremble_probability=0, ) inventories = [ (2, 0, 1), # not ready to interact (4, 1, 0), # ready to interact if defecting (2, 1, 0), # not ready to interact (1, 2, 0), # not ready to interact (2, 1, 0), # not ready to interact (1, 4, 0), # ready to interact if cooperating (3, 1, 0), # ready to interact if defecting ] interactions = [ ((-1, -1, -1), (0, 1, 0)), # coplayer cooperates ((-1, -1, -1), (0, 0, 1)), # coplayer plays other ((-1, -1, -1), (1, 0, 0)), # coplayer defects ((-1, -1, -1), (0, 1, 0)), # coplayer cooperates ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (1, 1, 0)), # coplayer cooperates and defects ((-1, -1, -1), (2, 0, 1)), # coplayer defects ] expected = [ _RESOURCE_0.collect_goal, # defect _RESOURCE_0.interact_goal, # continue defecting _RESOURCE_1.collect_goal, # cooperate _RESOURCE_1.collect_goal, # cooperate _RESOURCE_1.collect_goal, # continue cooperating _RESOURCE_1.interact_goal, # continue cooperating _RESOURCE_0.interact_goal, # defect ] actual, _ = _goals_from_observations(puppeteer, inventories, interactions) self.assertEqual(actual, expected) def test_tremble(self): puppeteer = in_the_matrix.Corrigible( threshold=1, cooperate_resource=_RESOURCE_1, defect_resource=_RESOURCE_0, margin=2, tremble_probability=1, ) inventories = [ (2, 0, 1), # not ready to interact (4, 1, 0), # ready to interact if defecting (2, 1, 0), # not ready to interact (1, 2, 0), # not ready to interact (2, 1, 0), # not ready to interact (1, 4, 0), # ready to interact if cooperating (3, 1, 0), # ready to interact if defecting ] interactions = [ ((-1, -1, -1), (0, 1, 0)), # coplayer cooperates ((-1, -1, -1), (0, 0, 1)), # coplayer plays other ((-1, -1, -1), (1, 0, 0)), # coplayer defects ((-1, -1, -1), (0, 1, 0)), # coplayer cooperates ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (1, 1, 0)), # coplayer cooperates and defects ((-1, -1, -1), (2, 0, 1)), # coplayer defects ] expected = [ _RESOURCE_0.collect_goal, # defect _RESOURCE_0.interact_goal, # continue defecting _RESOURCE_0.collect_goal, # cooperate but tremble and defect _RESOURCE_0.collect_goal, # cooperate but tremble and defect _RESOURCE_0.collect_goal, # continue defecting _RESOURCE_0.collect_goal, # continue defecting _RESOURCE_1.collect_goal, # defect but tremble and cooperate ] actual, _ = _goals_from_observations(puppeteer, inventories, interactions) self.assertEqual(actual, expected) class RespondToPreviousTest(parameterized.TestCase): def test(self): puppeteer = in_the_matrix.RespondToPrevious( responses={ _RESOURCE_0: _RESOURCE_2, _RESOURCE_1: _RESOURCE_0, _RESOURCE_2: _RESOURCE_1, }, margin=1, ) inventories = [ (1, 1, 1), (1, 2, 1), (1, 2, 3), (2, 3, 1), (3, 2, 1), (3, 2, 1), (2, 3, 1), ] interactions = [ ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (1, 0, 0)), # opponent plays 0 ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (0, 1, 0)), # opponent plays 1 ((-1, -1, -1), (1, 1, 1)), # no clear interaction ((-1, -1, -1), (0, 0, 1)), # opponent plays 2 ((-1, -1, -1), (-1, -1, -1)), # no interaction ] expected = [ mock.ANY, # random _RESOURCE_2.collect_goal, _RESOURCE_2.interact_goal, _RESOURCE_0.collect_goal, _RESOURCE_0.interact_goal, _RESOURCE_1.collect_goal, _RESOURCE_1.interact_goal, ] actual, _ = _goals_from_observations(puppeteer, inventories, interactions) self.assertEqual(actual, expected) class AlternatingSpecialistTest(parameterized.TestCase): def testOneInteractionPerOption(self): puppeteer = in_the_matrix.AlternatingSpecialist( targets=[_RESOURCE_0, _RESOURCE_1, _RESOURCE_2], interactions_per_target=1, margin=1, ) inventories = [ (1, 1, 1), (1, 2, 1), (1, 2, 3), (2, 3, 1), (3, 2, 1), (3, 2, 1), (2, 3, 1), ] interactions = [ ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (1, 0, 0)), # opponent plays 0 ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (0, 1, 0)), # opponent plays 1 ((-1, -1, -1), (2, 2, 2)), # no clear interaction ((-1, -1, -1), (0, 0, 1)), # opponent plays 2 ((-1, -1, -1), (-1, -1, -1)), # no interaction ] expected = [ _RESOURCE_0.collect_goal, _RESOURCE_1.interact_goal, _RESOURCE_1.collect_goal, _RESOURCE_2.collect_goal, _RESOURCE_0.interact_goal, _RESOURCE_1.collect_goal, _RESOURCE_1.interact_goal, ] actual, _ = _goals_from_observations( puppeteer, inventories, interactions) self.assertEqual(actual, expected) def testTwoInteractionsPerOption(self): puppeteer = in_the_matrix.AlternatingSpecialist( targets=[_RESOURCE_0, _RESOURCE_1, _RESOURCE_2], interactions_per_target=2, margin=1, ) inventories = [ (1, 1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 1), (1, 2, 3), (1, 2, 3), (2, 3, 1), (2, 3, 1), (3, 2, 1), (3, 2, 1), (3, 2, 1), (3, 2, 1), (2, 3, 1), (2, 3, 1), ] interactions = [ ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (1, 0, 0)), # opponent plays 0 ((-1, -1, -1), (1, 0, 0)), # opponent plays 0 ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (0, 1, 0)), # opponent plays 1 ((-1, -1, -1), (0, 1, 0)), # opponent plays 1 ((-1, -1, -1), (2, 2, 2)), # no clear interaction ((-1, -1, -1), (2, 2, 2)), # no clear interaction ((-1, -1, -1), (0, 0, 1)), # opponent plays 2 ((-1, -1, -1), (0, 0, 1)), # opponent plays 2 ((-1, -1, -1), (-1, -1, -1)), # no interaction ((-1, -1, -1), (-1, -1, -1)), # no interaction ] expected = [ _RESOURCE_0.collect_goal, _RESOURCE_0.collect_goal, _RESOURCE_0.collect_goal, _RESOURCE_1.interact_goal, _RESOURCE_1.collect_goal, _RESOURCE_1.collect_goal, _RESOURCE_1.interact_goal, _RESOURCE_2.collect_goal, _RESOURCE_2.collect_goal, _RESOURCE_0.interact_goal, _RESOURCE_0.interact_goal, _RESOURCE_1.collect_goal, _RESOURCE_1.interact_goal, _RESOURCE_1.interact_goal, ] actual, _ = _goals_from_observations( puppeteer, inventories, interactions) self.assertEqual(actual, expected) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/puppeteers/in_the_matrix_test.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Puppeteers for *_coordination_in_the_matrix.""" from typing import Iterable from meltingpot.utils.puppeteers import in_the_matrix class CoordinateWithPrevious(in_the_matrix.RespondToPrevious): """Puppeteer to use in pure/rationalizable coordination in the matrix. This bot will always play the same strategy to whatever its partner played in the previous interaction. So if its last partner played resource A then it will target resource A, if its last partner played resource B then it will target resource B, and so on. Important note: this puppeteer does not discriminate between coplayers. It may not make sense to use this beyond two-player substrates. """ def __init__( self, resources: Iterable[in_the_matrix.Resource], margin: int, ) -> None: """Initializes the puppeteer. Args: resources: The collectible resources to coordinate on. margin: Try to collect `margin` more of the target resource than the other resource before interacting. """ responses = {resource: resource for resource in resources} super().__init__(responses, margin)
meltingpot-main
meltingpot/utils/puppeteers/coordination_in_the_matrix.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Puppeteers for puppet bots.""" import abc from typing import Generic, Mapping, NewType, Sequence, Tuple, TypeVar import dm_env import immutabledict import numpy as np State = TypeVar('State') PuppetGoal = NewType('PuppetGoal', np.ndarray) _GOAL_OBSERVATION_KEY = 'GOAL' _GOAL_DTYPE = np.int32 class Puppeteer(Generic[State], metaclass=abc.ABCMeta): """A puppeteer that controls the timestep forwarded to the puppet. Must not possess any mutable state not in `initial_state`. """ @abc.abstractmethod def initial_state(self) -> State: """Returns the initial state of the puppeteer. Must not have any side effects. """ @abc.abstractmethod def step(self, timestep: dm_env.TimeStep, prev_state: State) -> Tuple[dm_env.TimeStep, State]: """Steps the puppeteer. Must not have any side effects. Args: timestep: information from the environment. prev_state: the previous state of the puppeteer. Returns: timestep: the timestep to forward to the puppet. next_state: the state for the next step call. """ def puppet_timestep(timestep: dm_env.TimeStep, goal: PuppetGoal) -> dm_env.TimeStep: """Returns a timestep with a goal observation added.""" puppet_observation = immutabledict.immutabledict( timestep.observation, **{_GOAL_OBSERVATION_KEY: goal}) return timestep._replace(observation=puppet_observation) def puppet_goals(names: Sequence[str], dtype: ... = _GOAL_DTYPE) -> Mapping[str, PuppetGoal]: """Returns a mapping from goal name to a one-hot goal vector for a puppet. Args: names: names for each of the corresponding goals. dtype: dtype of the one-hot goals to return. """ goals = np.eye(len(names), dtype=dtype) goals.setflags(write=False) return immutabledict.immutabledict(zip(names, goals))
meltingpot-main
meltingpot/utils/puppeteers/puppeteer.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for gift_refinements puppeteers.""" from unittest import mock from absl.testing import absltest from absl.testing import parameterized from meltingpot.testing import puppeteers from meltingpot.utils.puppeteers import gift_refinements _COLLECT = mock.sentinel.collect _CONSUME = mock.sentinel.consume _GIFT = mock.sentinel.gift class GiftRefinementsCooperatorTest(parameterized.TestCase): @parameterized.parameters( [(0, 0, 0), _COLLECT], [(0, 0, 1), _CONSUME], [(1, 0, 0), _GIFT], [(2, 0, 0), _GIFT], [(2, 0, 2), _CONSUME], [(1, 1, 0), _CONSUME], [(1, 1, 1), _CONSUME], [(5, 2, 0), _CONSUME], [(5, 5, 5), _CONSUME], ) def test(self, inventory, expected): puppeteer = gift_refinements.GiftRefinementsCooperator( collect_goal=_COLLECT, consume_goal=_CONSUME, gift_goal=_GIFT, ) (actual,), _ = puppeteers.goals_from_observations( puppeteer, [{'INVENTORY': inventory}] ) self.assertEqual(actual, expected) class GiftRefinementsExtremeCooperatorTest(parameterized.TestCase): @parameterized.parameters( [(0, 0, 0), _COLLECT], [(0, 0, 1), _CONSUME], [(1, 0, 0), _GIFT], [(2, 0, 2), _CONSUME], [(1, 1, 0), _GIFT], [(1, 1, 1), _CONSUME], [(5, 2, 0), _GIFT], [(5, 5, 5), _CONSUME], ) def test(self, inventory, expected): puppeteer = gift_refinements.GiftRefinementsExtremeCooperator( collect_goal=_COLLECT, consume_goal=_CONSUME, gift_goal=_GIFT, ) (actual,), _ = puppeteers.goals_from_observations( puppeteer, [{'INVENTORY': inventory}] ) self.assertEqual(actual, expected) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/puppeteers/gift_refinements_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Puppet policy implementation.""" from typing import Generic, Tuple, TypeVar import dm_env from meltingpot.utils.policies import policy from meltingpot.utils.puppeteers import puppeteer as puppeteer_lib PuppeteerState = TypeVar('PuppeteerState') PolicyState = TypeVar('PolicyState') class PuppetPolicy(policy.Policy[Tuple[PuppeteerState, PolicyState]], Generic[PuppeteerState, PolicyState]): """A puppet policy controlled by a puppeteer function.""" def __init__( self, puppeteer: puppeteer_lib.Puppeteer[PuppeteerState], puppet: policy.Policy[PolicyState]) -> None: """Creates a new PuppetBot. Args: puppeteer: Puppeteer that will be called at every step to modify the timestep forwarded to the underlying puppet. puppet: The puppet policy. Will be closed with this wrapper. """ self._puppeteer = puppeteer self._puppet = puppet def step( self, timestep: dm_env.TimeStep, prev_state: Tuple[PuppeteerState, PolicyState], ) -> Tuple[int, Tuple[PuppeteerState, PolicyState]]: """See base class.""" puppeteer_state, puppet_state = prev_state puppet_timestep, puppeteer_state = self._puppeteer.step( timestep, puppeteer_state) action, puppet_state = self._puppet.step(puppet_timestep, puppet_state) next_state = (puppeteer_state, puppet_state) return action, next_state def initial_state(self) -> Tuple[PuppeteerState, PolicyState]: """See base class.""" return (self._puppeteer.initial_state(), self._puppet.initial_state()) def close(self) -> None: """See base class.""" self._puppet.close()
meltingpot-main
meltingpot/utils/policies/puppet_policy.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Policy from a Saved Model.""" import contextlib import random import dm_env from meltingpot.utils.policies import permissive_model from meltingpot.utils.policies import policy import numpy as np import tensorflow as tf import tree def _numpy_to_placeholder( template: tree.Structure[np.ndarray], prefix: str ) -> tree.Structure[tf.Tensor]: """Returns placeholders that matches a given template. Args: template: template numpy arrays. prefix: a prefix to add to the placeholder names. Returns: A tree of placeholders matching the template arrays' specs. """ def fn(path, x): name = '.'.join(str(x) for x in path) return tf.compat.v1.placeholder(shape=x.shape, dtype=x.dtype, name=f'{prefix}.{name}') return tree.map_structure_with_path(fn, template) def _downcast(x): """Downcasts input to 32-bit precision.""" if not isinstance(x, np.ndarray): return x elif x.dtype == np.float64: return np.asarray(x, dtype=np.float32) elif x.dtype == np.int64: return np.asarray(x, dtype=np.int32) else: return x class TF2SavedModelPolicy(policy.Policy[tree.Structure[tf.Tensor]]): """Policy wrapping a saved model for TF2 inference. Note: the model should have methods: 1. `initial_state(random_key)` 2. `step(key, timestep, prev_state)` that accept unbatched inputs. """ def __init__(self, model_path: str, device_name: str = 'cpu') -> None: """Initialize a policy instance. Args: model_path: Path to the SavedModel. device_name: Device to load SavedModel onto. Defaults to a cpu device. See tf.device for supported device names. """ self._strategy = tf.distribute.OneDeviceStrategy(device_name) with self._strategy.scope(): model = tf.saved_model.load(model_path) self._model = permissive_model.PermissiveModel(model) def step( self, timestep: dm_env.TimeStep, prev_state: tree.Structure[tf.Tensor], ) -> tuple[int, tree.Structure[tf.Tensor]]: """See base class.""" prev_key, prev_state = prev_state timestep = timestep._replace( step_type=int(timestep.step_type), observation=tree.map_structure(_downcast, timestep.observation), ) next_key, outputs = self._strategy.run( self._model.step, [prev_key, timestep, prev_state]) (action, _), next_state = outputs return int(action.numpy()), (next_key, next_state) def initial_state(self) -> tree.Structure[tf.Tensor]: """See base class.""" random_seed = random.getrandbits(32) seed_key = np.array([0, random_seed], dtype=np.uint32) key, state = self._strategy.run(self._model.initial_state, [seed_key]) return key, state def close(self) -> None: """See base class.""" class TF1SavedModelPolicy(policy.Policy[tree.Structure[np.ndarray]]): """Policy wrapping a saved model for TF1 inference. Note: the model should have methods: 1. `initial_state(batch_size, trainable)` 2. `step(step_type, reward, discount, observation, prev_state)` that accept batched inputs and produce batched outputs. """ def __init__(self, model_path: str, device_name: str = 'cpu') -> None: """Initialize a policy instance. Args: model_path: Path to the SavedModel. device_name: Device to load SavedModel onto. Defaults to a cpu device. See tf.device for supported device names. """ self._device_name = device_name self._graph = tf.compat.v1.Graph() self._session = tf.compat.v1.Session(graph=self._graph) with self._build_context(): model = tf.compat.v1.saved_model.load_v2(model_path) self._model = permissive_model.PermissiveModel(model) self._initial_state_outputs = None self._step_inputs = None self._step_outputs = None @contextlib.contextmanager def _build_context(self): with self._graph.as_default(): # pylint: disable=not-context-manager with tf.compat.v1.device(self._device_name): yield def _build_initial_state_graph(self) -> None: """Builds the TF1 subgraph for the initial_state operation.""" with self._build_context(): key_in = tf.compat.v1.placeholder(shape=[2], dtype=np.uint32) self._initial_state_outputs = self._model.initial_state(key_in) self._initial_state_input = key_in def _build_step_graph(self, timestep, prev_state) -> None: """Builds the TF1 subgraph for the step operation. Args: timestep: an example timestep. prev_state: an example previous state. """ if not self._initial_state_outputs: self._build_initial_state_graph() with self._build_context(): step_type_in = tf.compat.v1.placeholder( shape=[], dtype=np.int32, name='step_type') reward_in = tf.compat.v1.placeholder( shape=[], dtype=np.float32, name='reward') discount_in = tf.compat.v1.placeholder( shape=[], dtype=np.float32, name='discount') observation_in = _numpy_to_placeholder( timestep.observation, prefix='observation') timestep_in = dm_env.TimeStep( step_type=step_type_in, reward=reward_in, discount=discount_in, observation=observation_in) prev_key_in, prev_state_in = _numpy_to_placeholder( prev_state, prefix='prev_state') next_key, outputs = self._model.step(prev_key_in, timestep_in, prev_state_in) (action, _), next_state = outputs input_values = tree.flatten_with_path({ 'timestep': timestep_in, 'prev_state': (prev_key_in, prev_state_in), }) self._step_inputs = dict(input_values) self._step_outputs = (action, (next_key, next_state)) self._graph.finalize() def step( self, timestep: dm_env.TimeStep, prev_state: tree.Structure[np.ndarray] ) -> tuple[int, tree.Structure[np.ndarray]]: """See base class.""" timestep = timestep._replace( step_type=int(timestep.step_type), observation=tree.map_structure(_downcast, timestep.observation), ) if not self._step_inputs: self._build_step_graph(timestep, prev_state) input_values = tree.flatten_with_path({ 'timestep': timestep, 'prev_state': prev_state, }) feed_dict = { self._step_inputs[path]: value for path, value in input_values if path in self._step_inputs } action, next_state = self._session.run(self._step_outputs, feed_dict) return int(action), next_state def initial_state(self) -> tree.Structure[np.ndarray]: """See base class.""" if not self._initial_state_outputs: self._build_initial_state_graph() random_seed = random.getrandbits(32) seed_key = np.array([0, random_seed], dtype=np.uint32) feed_dict = {self._initial_state_input: seed_key} return self._session.run(self._initial_state_outputs, feed_dict) def close(self) -> None: """See base class.""" self._session.close() if tf.executing_eagerly(): SavedModelPolicy = TF2SavedModelPolicy else: SavedModelPolicy = TF1SavedModelPolicy
meltingpot-main
meltingpot/utils/policies/saved_model_policy.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bot policy implementations.""" import abc from typing import Generic, Tuple, TypeVar import dm_env State = TypeVar('State') class Policy(Generic[State], metaclass=abc.ABCMeta): """Abstract base class for a policy. Must not possess any mutable state not in `initial_state`. """ @abc.abstractmethod def initial_state(self) -> State: """Returns the initial state of the agent. Must not have any side effects. """ raise NotImplementedError() @abc.abstractmethod def step(self, timestep: dm_env.TimeStep, prev_state: State) -> Tuple[int, State]: """Steps the agent. Must not have any side effects. Args: timestep: information from the environment prev_state: the previous state of the agent. Returns: action: the action to send to the environment. next_state: the state for the next step call. """ raise NotImplementedError() @abc.abstractmethod def close(self) -> None: """Closes the policy.""" raise NotImplementedError() def __enter__(self): return self def __exit__(self, *args, **kwargs): del args, kwargs self.close()
meltingpot-main
meltingpot/utils/policies/policy.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
meltingpot-main
meltingpot/utils/policies/__init__.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Policy that always returns a fixed action.""" from typing import Tuple import dm_env from meltingpot.utils.policies import policy class FixedActionPolicy(policy.Policy[Tuple[()]]): """Always performs the same action, regardless of observations.""" def __init__(self, action: int): """Initializes the policy. Args: action: The action that that the policy will always emit, regardless of its observations. """ self._action = action def step(self, timestep: dm_env.TimeStep, prev_state: Tuple[()]) -> Tuple[int, Tuple[()]]: """See base class.""" return self._action, prev_state def initial_state(self) -> Tuple[()]: """See base class.""" return () def close(self) -> None: """See base class."""
meltingpot-main
meltingpot/utils/policies/fixed_action_policy.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # LINT.IfChange """A permissive wrapper for a SavedModel.""" import copy import inspect from typing import Any, Callable, NamedTuple from absl import logging import tensorflow as tf import tree class _Function(NamedTuple): """Function exposing signature and expected canonical arguments.""" func: Callable[..., Any] signature: inspect.Signature structured_specs: Any def __call__(self, *args, **kwargs): return self.func(*args, **kwargs) @property def canonical_arguments(self) -> inspect.BoundArguments: args, kwargs = copy.deepcopy(self.structured_specs) return self.signature.bind(*args, **kwargs) class PermissiveModel: """A permissive wrapper for a SavedModel.""" # Disable pytype attribute error checks. _HAS_DYNAMIC_ATTRIBUTES = True def __init__(self, model): self.model = model self._tables = self.model.function_tables() self._initialized_tables = {} def build_parameters(params): params = [ inspect.Parameter(str(param[0], "utf-8"), param[1]) for param in params ] # Always include a VAR_KEYWORD to capture any extraneous arguments. if all([p.kind != inspect.Parameter.VAR_KEYWORD for p in params]): params.append( inspect.Parameter("__unused_kwargs", inspect.Parameter.VAR_KEYWORD)) return params signatures = self.model.function_signatures() if tf.executing_eagerly(): signatures = tree.map_structure(lambda x: x.numpy(), signatures) else: with tf.compat.v1.Session() as sess: signatures = sess.run(signatures) signatures = { func_name: inspect.Signature(build_parameters(func_params)) for func_name, func_params in signatures.items() } self.signatures = signatures # Attach deepfuncs. for name in self.signatures.keys(): setattr(self, name, self._make_permissive_function(name)) def _maybe_init_tables(self, concrete_func: Any, name: str): """Initialise all tables for a function if they are not initialised. Some functions rely on hash-tables that must be externally initialized. This method will perform a one-time initialisation of the tables. It does so by finding the corresponding op that creates the hash-table handles (these will be different from the ones observed in the initial deepfuncs), and import the corresponding keys and values. Args: concrete_func: A tf.ConcreteFunction corresponding to a deepfunc. name: The name of the deepfunc. """ if name not in self._tables: return all_nodes = dict( main={n.name: n for n in concrete_func.graph.as_graph_def().node}) for func_def in concrete_func.graph.as_graph_def().library.function: all_nodes[func_def.signature.name] = { n.name: n for n in func_def.node_def } for table_name, (table_keys, table_values) in self._tables[name].items(): table_op = None for nodes in all_nodes.values(): if table_name in nodes: if table_op is not None: raise ValueError(f"Duplicate table op found for {table_name}") table_op = nodes[table_name] logging.info("Initialising table for Op `%s`", table_name) table_handle_name = table_op.attr["shared_name"].s # pytype: disable=attribute-error table_handle = tf.raw_ops.HashTableV2( key_dtype=table_keys.dtype, value_dtype=table_values.dtype, shared_name=table_handle_name) tf.raw_ops.LookupTableImportV2( table_handle=table_handle, keys=table_keys, values=table_values) self._initialized_tables[name] = self._tables.pop(name) # Only init once. def _make_permissive_function(self, name: str) -> Callable[..., Any]: """Create a permissive version of a function in the SavedModel.""" if name not in self.signatures: raise ValueError(f"No function named {name} in SavedModel, " "options are {self.signatures}") tf_func = getattr(self.model, name) if hasattr(tf_func, "concrete_functions"): # tf.RestoredFunction concrete_func, = tf_func.concrete_functions # Expect only one. elif hasattr(tf_func, "_list_all_concrete_functions"): # tf.Function all_concrete_funcs = tf_func._list_all_concrete_functions() # pylint: disable=protected-access all_concrete_signatures = [ f.structured_input_signature for f in all_concrete_funcs ] # This is necessary as tf.saved_model.save can force a retrace on # tf.Function, resulting in another concrete function with identical # signature. unique_concrete_signatures = set([ tuple(tree.flatten_with_path(sig)) for sig in all_concrete_signatures ]) if len(unique_concrete_signatures) != 1: raise ValueError( "Expected exactly one unique concrete_function signature, found " f"the following: {all_concrete_signatures}") concrete_func = all_concrete_funcs[0] else: raise ValueError(f"No concrete functions found on {tf_func}") self._maybe_init_tables(concrete_func, name) def func(*args, **kwargs): bound_args = self.signatures[name].bind(*args, **kwargs) canonical_args = concrete_func.structured_input_signature flat_bound_args = tree.flatten_with_path( (bound_args.args, bound_args.kwargs)) flat_canonical_args = tree.flatten_with_path(canonical_args) # Check for missing arguments. flat_bound_args_dict = dict(flat_bound_args) for arg_path, arg_spec in flat_canonical_args: if arg_path in flat_bound_args_dict and arg_spec is None: arg_value = flat_bound_args_dict[arg_path] if arg_value is not None: logging.log_first_n( logging.WARNING, "Received unexpected argument `%s` for path %s, replaced with " "None.", 20, arg_value, arg_path) flat_bound_args_dict[arg_path] = None # Filter out extraneous arguments and dictionary keys. flat_canonical_args_dict = dict(flat_canonical_args) filtered_flat_bound_args = { arg_path: arg_value for arg_path, arg_value in flat_bound_args_dict.items() if arg_path in flat_canonical_args_dict } full_flat_bound_args = [ filtered_flat_bound_args.get(arg_path, None) for arg_path, _ in flat_canonical_args ] filtered_args, filtered_kwargs = tree.unflatten_as( canonical_args, full_flat_bound_args) return tf_func(*filtered_args, **filtered_kwargs) return _Function( func, copy.deepcopy(self.signatures[name]), copy.deepcopy(concrete_func.structured_input_signature), ) # Changes should be pushed back to internal version. # LINT.ThenChange(//internal/permissive_model.py)
meltingpot-main
meltingpot/utils/policies/permissive_model.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Factory for constructing policies.""" import abc from typing import Callable import dm_env from meltingpot.utils.policies import policy class PolicyFactory(metaclass=abc.ABCMeta): """Factory for producing instances of a specific policy.""" def __init__( self, *, timestep_spec: dm_env.TimeStep, action_spec: dm_env.specs.DiscreteArray, builder: Callable[[], policy.Policy], ) -> None: """Initializes the object. Args: timestep_spec: spec of the timestep expected by the policy. action_spec: spec of the action returned by the policy. builder: callable that builds the policy. """ self._timestep_spec = timestep_spec self._action_spec = action_spec self._builder = builder def timestep_spec(self) -> dm_env.TimeStep: """Returns spec of the timestep expected by the policy.""" return self._timestep_spec def action_spec(self) -> dm_env.specs.DiscreteArray: """Returns spec of the action returned by the policy.""" return self._action_spec def build(self) -> policy.Policy: """Returns a policy for the bot.""" return self._builder()
meltingpot-main
meltingpot/utils/policies/policy_factory.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Factory class for building scenarios.""" from collections.abc import Collection, Mapping, Sequence from typing import Callable, Optional import dm_env import immutabledict from meltingpot.utils.policies import policy_factory from meltingpot.utils.scenarios import scenario as scenario_lib from meltingpot.utils.substrates import substrate as substrate_lib from meltingpot.utils.substrates import substrate_factory SubstrateTransform = Callable[[substrate_lib.Substrate], substrate_lib.Substrate] class ScenarioFactory: """Constructs populations of bots.""" def __init__( self, *, substrate: substrate_factory.SubstrateFactory, bots: Mapping[str, policy_factory.PolicyFactory], bots_by_role: Mapping[str, Collection[str]], roles: Sequence[str], is_focal: Sequence[bool], permitted_observations: Collection[str], ) -> None: """Initializes the instance. Args: substrate: the factory for the substrate underlying the scenario. bots: the factory for the policies underlying the background population. bots_by_role: dict mapping role to bot names that can fill it. roles: specifies which role should fill the corresponding player slot. is_focal: which player slots are allocated to focal players. permitted_observations: the substrate observation keys permitted to be exposed by the scenario to focal agents. """ if len(roles) != len(is_focal): raise ValueError('roles and is_focal must be the same length') self._substrate = substrate self._bots = immutabledict.immutabledict(bots) self._roles = tuple(roles) self._is_focal = tuple(is_focal) self._bots_by_role = immutabledict.immutabledict({ role: tuple(bots) for role, bots in bots_by_role.items() }) self._permitted_observations = frozenset(permitted_observations) def num_focal_players(self) -> int: """Returns the number of players the scenario supports.""" return sum(self._is_focal) def focal_player_roles(self) -> Sequence[str]: """Returns the roles of the focal players.""" return tuple( role for n, role in enumerate(self._roles) if self._is_focal[n]) def timestep_spec(self) -> dm_env.TimeStep: """Returns spec of timestep sent to a single focal player.""" substrate_timestep_spec = self._substrate.timestep_spec() substrate_observation_spec = substrate_timestep_spec.observation focal_observation_spec = immutabledict.immutabledict({ key: spec for key, spec in substrate_observation_spec.items() if key in self._permitted_observations }) return substrate_timestep_spec._replace(observation=focal_observation_spec) def action_spec(self) -> dm_env.specs.DiscreteArray: """Returns spec of action expected from a single focal player.""" return self._substrate.action_spec() def build(self) -> scenario_lib.Scenario: """Builds the scenario. Returns: The constructed scenario. """ return scenario_lib.build_scenario( substrate=self._substrate.build(self._roles), bots={name: factory.build() for name, factory in self._bots.items()}, bots_by_role=self._bots_by_role, roles=self._roles, is_focal=self._is_focal, permitted_observations=self._permitted_observations) def build_transformed( self, substrate_transform: Optional[SubstrateTransform] = None ) -> scenario_lib.Scenario: """Builds the scenario with a transformed substrate. This method is designed to allow the addition of a wrapper to the underlying substrate for training purposes. It should not be used during evaluation. The observations will be unrestricted, and the timestep spec of the returned scenario will not match self.timestep_spec(). Args: substrate_transform: transform to apply to underlying substrate. Returns: The constructed scenario. """ substrate = self._substrate.build(self._roles) if substrate_transform: substrate = substrate_transform(substrate) all_observations = frozenset().union(*substrate.observation_spec()) return scenario_lib.build_scenario( substrate=substrate, bots={name: factory.build() for name, factory in self._bots.items()}, bots_by_role=self._bots_by_role, roles=self._roles, is_focal=self._is_focal, permitted_observations=all_observations)
meltingpot-main
meltingpot/utils/scenarios/scenario_factory.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests of scenarios.""" from unittest import mock from absl.testing import absltest from absl.testing import parameterized import dm_env import immutabledict from meltingpot.utils.policies import policy from meltingpot.utils.scenarios import population from meltingpot.utils.scenarios import scenario as scenario_utils from meltingpot.utils.substrates import substrate as substrate_lib def _track(source, fields): destination = [] for field in fields: getattr(source, field).subscribe( on_next=destination.append, on_error=lambda e: destination.append(type(e)), on_completed=lambda: destination.append('DONE'), ) return destination @parameterized.parameters( ((), (), (), ()), (('a',), (True,), ('a',), ()), (('a',), (False,), (), ('a',)), (('a', 'b', 'c'), (True, True, False), ('a', 'b'), ('c',)), (('a', 'b', 'c'), (False, True, False), ('b',), ('a', 'c')), ) class PartitionMergeTest(parameterized.TestCase): def test_partition(self, merged, is_focal, *expected): actual = scenario_utils._partition(merged, is_focal) self.assertEqual(actual, expected) def test_merge(self, expected, is_focal, *partions): actual = scenario_utils._merge(*partions, is_focal) self.assertEqual(actual, expected) class ScenarioWrapperTest(absltest.TestCase): def test_scenario(self): substrate = mock.Mock(spec_set=substrate_lib.Substrate) substrate.reset.return_value = dm_env.TimeStep( step_type=dm_env.StepType.FIRST, discount=0, reward=(10, 20, 30, 40), observation=( immutabledict.immutabledict(ok=10, not_ok=100), immutabledict.immutabledict(ok=20, not_ok=200), immutabledict.immutabledict(ok=30, not_ok=300), immutabledict.immutabledict(ok=40, not_ok=400), ), ) substrate.step.return_value = dm_env.transition( reward=(11, 21, 31, 41), observation=( immutabledict.immutabledict(ok=11, not_ok=101), immutabledict.immutabledict(ok=21, not_ok=201), immutabledict.immutabledict(ok=31, not_ok=301), immutabledict.immutabledict(ok=41, not_ok=401), ), ) substrate.events.return_value = ( mock.sentinel.event_0, mock.sentinel.event_1) substrate.action_spec.return_value = tuple( f'action_spec_{n}' for n in range(4) ) substrate.observation_spec.return_value = tuple( immutabledict.immutabledict( ok=f'ok_spec_{n}', not_ok=f'not_ok_spec_{n}') for n in range(4) ) substrate.reward_spec.return_value = tuple( f'reward_spec_{n}' for n in range(4) ) substrate.observation.return_value = ( immutabledict.immutabledict(ok=10, not_ok=100), immutabledict.immutabledict(ok=20, not_ok=200), immutabledict.immutabledict(ok=30, not_ok=300), immutabledict.immutabledict(ok=40, not_ok=400), ) bots = {} for n in range(2): bot = mock.Mock(spec_set=policy.Policy) bot.initial_state.return_value = f'bot_state_{n}' bot.step.return_value = (n + 10, f'bot_state_{n}') bots[f'bot_{n}'] = bot background_population = population.Population( policies=bots, names_by_role={'role_0': {'bot_0'}, 'role_1': {'bot_1'}}, roles=['role_0', 'role_1'], ) with scenario_utils.Scenario( substrate=substrate_lib.Substrate(substrate), background_population=background_population, is_focal=[True, False, True, False], permitted_observations={'ok'}) as scenario: observables = scenario.observables() received = { 'base': _track(observables, ['events', 'action', 'timestep']), 'background': _track(observables.background, ['action', 'timestep']), 'substrate': _track( observables.substrate, ['events', 'action', 'timestep']), } action_spec = scenario.action_spec() observation_spec = scenario.observation_spec() reward_spec = scenario.reward_spec() observation = scenario.observation() initial_timestep = scenario.reset() step_timestep = scenario.step([0, 1]) with self.subTest(name='action_spec'): self.assertEqual(action_spec, ('action_spec_0', 'action_spec_2')) with self.subTest(name='observation_spec'): self.assertEqual(observation_spec, (immutabledict.immutabledict(ok='ok_spec_0'), immutabledict.immutabledict(ok='ok_spec_2'))) with self.subTest(name='reward_spec'): self.assertEqual(reward_spec, ('reward_spec_0', 'reward_spec_2')) with self.subTest(name='observation'): expected = ( immutabledict.immutabledict(ok=10), immutabledict.immutabledict(ok=30), ) self.assertEqual(observation, expected) with self.subTest(name='events'): self.assertEmpty(scenario.events()) with self.subTest(name='initial_timestep'): expected = dm_env.TimeStep( step_type=dm_env.StepType.FIRST, discount=0, reward=(10, 30), observation=( immutabledict.immutabledict(ok=10), immutabledict.immutabledict(ok=30), ), ) self.assertEqual(initial_timestep, expected) with self.subTest(name='step_timestep'): expected = dm_env.transition( reward=(11, 31), observation=( immutabledict.immutabledict(ok=11), immutabledict.immutabledict(ok=31), ), ) self.assertEqual(step_timestep, expected) with self.subTest(name='substrate_step'): substrate.step.assert_called_once_with((0, 10, 1, 11)) with self.subTest(name='bot_0_step'): actual = bots['bot_0'].step.call_args_list[0] expected = mock.call( timestep=dm_env.TimeStep( step_type=dm_env.StepType.FIRST, discount=0, reward=20, observation=immutabledict.immutabledict(ok=20, not_ok=200), ), prev_state='bot_state_0') self.assertEqual(actual, expected) with self.subTest(name='bot_1_step'): actual = bots['bot_1'].step.call_args_list[0] expected = mock.call( timestep=dm_env.TimeStep( step_type=dm_env.StepType.FIRST, discount=0, reward=40, observation=immutabledict.immutabledict(ok=40, not_ok=400), ), prev_state='bot_state_1') self.assertEqual(actual, expected) with self.subTest(name='base_observables'): expected = [ dm_env.TimeStep( step_type=dm_env.StepType.FIRST, discount=0, reward=(10, 30), observation=( immutabledict.immutabledict(ok=10), immutabledict.immutabledict(ok=30), ), ), [0, 1], dm_env.transition( reward=(11, 31), observation=( immutabledict.immutabledict(ok=11), immutabledict.immutabledict(ok=31), ), ), 'DONE', 'DONE', 'DONE', ] self.assertEqual(received['base'], expected) with self.subTest(name='substrate_observables'): expected = [ dm_env.TimeStep( step_type=dm_env.StepType.FIRST, discount=0, reward=(10, 20, 30, 40), observation=( immutabledict.immutabledict(ok=10, not_ok=100), immutabledict.immutabledict(ok=20, not_ok=200), immutabledict.immutabledict(ok=30, not_ok=300), immutabledict.immutabledict(ok=40, not_ok=400), ), ), mock.sentinel.event_0, mock.sentinel.event_1, (0, 10, 1, 11), dm_env.transition( reward=(11, 21, 31, 41), observation=( immutabledict.immutabledict(ok=11, not_ok=101), immutabledict.immutabledict(ok=21, not_ok=201), immutabledict.immutabledict(ok=31, not_ok=301), immutabledict.immutabledict(ok=41, not_ok=401), ), ), mock.sentinel.event_0, mock.sentinel.event_1, 'DONE', 'DONE', 'DONE', ] self.assertEqual(received['substrate'], expected) with self.subTest(name='background_observables'): expected = [ dm_env.TimeStep( step_type=dm_env.StepType.FIRST, discount=0, reward=(20, 40), observation=( immutabledict.immutabledict(ok=20, not_ok=200), immutabledict.immutabledict(ok=40, not_ok=400), ), ), (10, 11), dm_env.transition( reward=(21, 41), observation=( immutabledict.immutabledict(ok=21, not_ok=201), immutabledict.immutabledict(ok=41, not_ok=401), ), ), 'DONE', 'DONE', ] self.assertEqual(received['background'], expected) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/scenarios/scenario_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Scenario factory.""" import concurrent import random import threading from typing import Callable, Collection, List, Mapping, Sequence import chex import dm_env from meltingpot.utils.policies import policy as policy_lib import reactivex from reactivex import subject def _step_fn(policy: policy_lib.Policy, lock: threading.Lock) -> Callable[[dm_env.TimeStep], int]: """Threadsafe stateful step function where the state is encapsulated. Args: policy: the underlying policy to use. lock: a lock that controls access to the policy. Returns: A step function that returns an action in response to a timestep. """ with lock: state = policy.initial_state() def step(timestep: dm_env.TimeStep) -> int: nonlocal state with lock: action, state = policy.step(timestep=timestep, prev_state=state) return action return step @chex.dataclass(frozen=True) # works with tree. class PopulationObservables: """Observables for a population. Attributes: names: emits the names of the sampled population on a reset. action: emits actions sent to the substrate by the poulation. timestep: emits timesteps sent from the substrate to the population. """ names: reactivex.Observable[Sequence[str]] action: reactivex.Observable[Sequence[int]] timestep: reactivex.Observable[dm_env.TimeStep] class Population: """A population of policies to use in a scenario.""" def __init__( self, *, policies: Mapping[str, policy_lib.Policy], names_by_role: Mapping[str, Collection[str]], roles: Sequence[str]) -> None: """Initializes the population. Args: policies: the policies to sample from (with replacement) each episode. Will be closed when the Population is closed. names_by_role: dict mapping role to bot names that can fill it. roles: specifies which role should fill the corresponding player slot. """ self._policies = dict(policies) self._names_by_role = { role: tuple(set(names)) for role, names in names_by_role.items()} self._roles = tuple(roles) self._locks = {name: threading.Lock() for name in self._policies} self._executor = concurrent.futures.ThreadPoolExecutor( max_workers=len(roles)) self._step_fns: List[Callable[[dm_env.TimeStep], int]] = [] self._action_futures: List[concurrent.futures.Future[int]] = [] self._names_subject = subject.Subject() self._action_subject = subject.Subject() self._timestep_subject = subject.Subject() self._observables = PopulationObservables( # pylint: disable=unexpected-keyword-arg names=self._names_subject, action=self._action_subject, timestep=self._timestep_subject, ) def close(self): """Closes the population.""" for future in self._action_futures: future.cancel() self._executor.shutdown(wait=False) for policy in self._policies.values(): policy.close() self._names_subject.on_completed() self._action_subject.on_completed() self._timestep_subject.on_completed() def _sample_names(self) -> Sequence[str]: """Returns a sample of policy names for the population.""" return [random.choice(self._names_by_role[role]) for role in self._roles] def reset(self) -> None: """Resamples the population.""" names = self._sample_names() self._names_subject.on_next(names) self._step_fns = [ _step_fn(policy=self._policies[name], lock=self._locks[name]) for name in names ] for future in self._action_futures: future.cancel() self._action_futures.clear() def send_timestep(self, timestep: dm_env.TimeStep) -> None: """Sends timestep to population for asynchronous processing. Args: timestep: The substrate timestep for the population. Raises: RuntimeError: previous action has not been awaited. """ if self._action_futures: raise RuntimeError('Previous action not retrieved.') self._timestep_subject.on_next(timestep) for n, step_fn in enumerate(self._step_fns): bot_timestep = timestep._replace( observation=timestep.observation[n], reward=timestep.reward[n]) future = self._executor.submit(step_fn, bot_timestep) self._action_futures.append(future) def await_action(self) -> Sequence[int]: """Waits for the population action in response to last timestep. Returns: The action for the population. Raises: RuntimeError: no timestep has been sent. """ if not self._action_futures: raise RuntimeError('No timestep sent.') actions = tuple(future.result() for future in self._action_futures) self._action_futures.clear() self._action_subject.on_next(actions) return actions def observables(self) -> PopulationObservables: """Returns the observables for the population.""" return self._observables
meltingpot-main
meltingpot/utils/scenarios/population.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
meltingpot-main
meltingpot/utils/scenarios/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Scenario class.""" from collections.abc import Collection, Iterable, Mapping, Sequence from typing import Any, TypeVar import chex import dm_env import immutabledict from meltingpot.utils.policies import policy from meltingpot.utils.scenarios import population from meltingpot.utils.substrates import substrate as substrate_lib from meltingpot.utils.substrates.wrappers import observables import numpy as np import reactivex from reactivex import subject T = TypeVar('T') def _restrict_observation( observation: Mapping[str, T], permitted_observations: Collection[str], ) -> Mapping[str, T]: """Restricts an observation to only the permitted keys.""" return immutabledict.immutabledict({ key: observation[key] for key in observation if key in permitted_observations }) def _restrict_observations( observations: Iterable[Mapping[str, T]], permitted_observations: Collection[str], ) -> Sequence[Mapping[str, T]]: """Restricts multiple observations to only the permitted keys.""" return tuple( _restrict_observation(observation, permitted_observations) for observation in observations ) def _partition( values: Sequence[T], is_focal: Sequence[bool], ) -> tuple[Sequence[T], Sequence[T]]: """Partitions a sequence into focal and background sequences.""" focal_values = [] background_values = [] for focal, value in zip(is_focal, values): if focal: focal_values.append(value) else: background_values.append(value) return tuple(focal_values), tuple(background_values) def _merge( focal_values: Sequence[T], background_values: Sequence[T], is_focal: Sequence[bool], ) -> Sequence[T]: """Merges focal and background sequences into one.""" focal_values = iter(focal_values) background_values = iter(background_values) return tuple( next(focal_values if focal else background_values) for focal in is_focal ) @chex.dataclass(frozen=True) # works with tree. class ScenarioObservables(substrate_lib.SubstrateObservables): """Observables for a Scenario. Attributes: action: emits actions sent to the scenario from (focal) players. timestep: emits timesteps sent from the scenario to (focal) players. events: will never emit any events since things like player index are hard to interpret for a Scenario. Use substrate.events instead. dmlab2d: will never emit any events since things like player index are hard to interpret for a Scenario. Use substrate.dmlab2d instead. background: observables from the perspective of the background players. substrate: observables for the underlying substrate. """ background: population.PopulationObservables substrate: substrate_lib.SubstrateObservables class Scenario(substrate_lib.Substrate): """An substrate where a number of player slots are filled by bots.""" def __init__( self, substrate: substrate_lib.Substrate, background_population: population.Population, is_focal: Sequence[bool], permitted_observations: Collection[str]) -> None: """Initializes the scenario. Args: substrate: the substrate to add bots to. Will be closed with the scenario. background_population: the background population to sample bots from. Will be closed with the scenario. is_focal: which player slots are allocated to focal players. permitted_observations: the substrate observation keys permitted to be exposed by the scenario to focal agents. """ num_players = len(substrate.action_spec()) if len(is_focal) != num_players: raise ValueError(f'is_focal is length {len(is_focal)} but substrate is ' f'{num_players}-player.') self._substrate = substrate self._background_population = background_population self._is_focal = is_focal self._permitted_observations = frozenset(permitted_observations) self._focal_action_subject = subject.Subject() self._focal_timestep_subject = subject.Subject() self._background_action_subject = subject.Subject() self._background_timestep_subject = subject.Subject() self._events_subject = subject.Subject() self._dmlab2d_observables = observables.Lab2dObservables( action=reactivex.empty(), events=reactivex.empty(), timestep=reactivex.empty(), ) self._substrate_observables = self._substrate.observables() self._observables = ScenarioObservables( # pylint: disable=unexpected-keyword-arg action=self._focal_action_subject, events=self._events_subject, timestep=self._focal_timestep_subject, background=self._background_population.observables(), substrate=self._substrate_observables, dmlab2d=self._dmlab2d_observables, ) def close(self) -> None: """See base class.""" self._background_population.close() self._substrate.close() self._focal_action_subject.on_completed() self._focal_timestep_subject.on_completed() self._events_subject.on_completed() def _await_full_action(self, focal_action: Sequence[int]) -> Sequence[int]: """Returns full action after awaiting bot actions.""" self._focal_action_subject.on_next(focal_action) background_action = self._background_population.await_action() return _merge(focal_action, background_action, self._is_focal) def _split_timestep( self, timestep: dm_env.TimeStep ) -> tuple[dm_env.TimeStep, dm_env.TimeStep]: """Splits multiplayer timestep as needed by agents and bots.""" focal_rewards, background_rewards = _partition(timestep.reward, self._is_focal) focal_observations, background_observations = _partition( timestep.observation, self._is_focal) focal_observations = _restrict_observations(focal_observations, self._permitted_observations) focal_timestep = timestep._replace( reward=focal_rewards, observation=focal_observations) background_timestep = timestep._replace( reward=background_rewards, observation=background_observations) return focal_timestep, background_timestep def _send_full_timestep(self, timestep: dm_env.TimeStep) -> dm_env.TimeStep: """Returns focal timestep and sends background timestep to bots.""" focal_timestep, background_timestep = self._split_timestep(timestep) self._background_population.send_timestep(background_timestep) self._focal_timestep_subject.on_next(focal_timestep) return focal_timestep def reset(self) -> dm_env.TimeStep: """See base class.""" timestep = self._substrate.reset() self._background_population.reset() focal_timestep = self._send_full_timestep(timestep) for event in self.events(): self._events_subject.on_next(event) return focal_timestep def step(self, action: Sequence[int]) -> dm_env.TimeStep: """See base class.""" action = self._await_full_action(focal_action=action) timestep = self._substrate.step(action) if timestep.step_type.first(): self._background_population.reset() focal_timestep = self._send_full_timestep(timestep) for event in self.events(): self._events_subject.on_next(event) return focal_timestep def observation(self) -> Sequence[Mapping[str, np.ndarray]]: observations = self._substrate.observation() focal_observations, _ = _partition(observations, self._is_focal) focal_observations = _restrict_observations(focal_observations, self._permitted_observations) return focal_observations def events(self) -> Sequence[tuple[str, Any]]: """See base class.""" # Do not emit substrate events as these may not make sense in the context # of a scenario (e.g. player indices may have changed). return () def action_spec(self) -> Sequence[dm_env.specs.DiscreteArray]: """See base class.""" action_spec = self._substrate.action_spec() focal_action_spec, _ = _partition(action_spec, self._is_focal) return focal_action_spec def observation_spec(self) -> Sequence[Mapping[str, dm_env.specs.Array]]: """See base class.""" observation_spec = self._substrate.observation_spec() focal_observation_spec, _ = _partition(observation_spec, self._is_focal) return _restrict_observations(focal_observation_spec, self._permitted_observations) def reward_spec(self) -> Sequence[dm_env.specs.Array]: """See base class.""" reward_spec = self._substrate.reward_spec() focal_reward_spec, _ = _partition(reward_spec, self._is_focal) return focal_reward_spec def discount_spec(self, *args, **kwargs) -> ...: """See base class.""" return self._substrate.discount_spec(*args, **kwargs) def list_property(self, *args, **kwargs) -> ...: """See base class.""" return self._substrate.list_property(*args, **kwargs) def write_property(self, *args, **kwargs) -> ...: """See base class.""" return self._substrate.write_property(*args, **kwargs) def read_property(self, *args, **kwargs) -> ...: """See base class.""" return self._substrate.read_property(*args, **kwargs) def observables(self) -> ScenarioObservables: """Returns the observables for the scenario.""" return self._observables def build_scenario( *, substrate: substrate_lib.Substrate, bots: Mapping[str, policy.Policy], bots_by_role: Mapping[str, Collection[str]], roles: Sequence[str], is_focal: Sequence[bool], permitted_observations: Collection[str], ) -> Scenario: """Builds the specified scenario. Args: substrate: the substrate underlying the scenario. Will be closed with the scenario. bots: the policies underlying the background population. Will be closed when the Population is closed. bots_by_role: dict mapping role to bot names that can fill it. roles: specifies which role should fill the corresponding player slot. is_focal: which player slots are allocated to focal players. permitted_observations: the substrate observation keys permitted to be exposed by the scenario to focal agents. If None will permit any observation. Returns: The constructed scenario. """ if len(roles) != len(is_focal): raise ValueError('roles and is_focal must be the same length.') background_roles = [role for n, role in enumerate(roles) if not is_focal[n]] background_population = population.Population( policies=bots, names_by_role=bots_by_role, roles=background_roles) return Scenario( substrate=substrate, background_population=background_population, is_focal=is_focal, permitted_observations=permitted_observations)
meltingpot-main
meltingpot/utils/scenarios/scenario.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for defining substrate specs. Used to allow substrates to easily define the single-player specs within their configs. """ from typing import Mapping, Optional import dm_env import immutabledict import numpy as np STEP_TYPE = dm_env.specs.BoundedArray( shape=(), dtype=np.int64, minimum=min(dm_env.StepType), maximum=max(dm_env.StepType), name='step_type', ) DISCOUNT = dm_env.specs.BoundedArray( shape=(), dtype=np.float64, minimum=0, maximum=1, name='discount') REWARD = dm_env.specs.Array(shape=(), dtype=np.float64, name='reward') OBSERVATION = immutabledict.immutabledict({ 'READY_TO_SHOOT': dm_env.specs.Array( shape=(), dtype=np.float64, name='READY_TO_SHOOT'), 'RGB': dm_env.specs.Array(shape=(88, 88, 3), dtype=np.uint8, name='RGB'), 'POSITION': dm_env.specs.Array(shape=(2,), dtype=np.int32, name='POSITION'), 'ORIENTATION': dm_env.specs.Array( shape=(), dtype=np.int32, name='ORIENTATION'), }) _ACTION = dm_env.specs.DiscreteArray( num_values=1, dtype=np.int64, name='action') def float32(*shape: int, name: Optional[str] = None) -> dm_env.specs.Array: """Returns the spec for an np.float32 tensor. Args: *shape: the shape of the tensor. name: optional name for the spec. """ return dm_env.specs.Array(shape=shape, dtype=np.float32, name=name) def float64(*shape: int, name: Optional[str] = None) -> dm_env.specs.Array: """Returns the spec for an np.float64 tensor. Args: *shape: the shape of the tensor. name: optional name for the spec. """ return dm_env.specs.Array(shape=shape, dtype=np.float64, name=name) def int32(*shape: int, name: Optional[str] = None) -> dm_env.specs.Array: """Returns the spec for an np.int32 tensor. Args: *shape: the shape of the tensor. name: optional name for the spec. """ return dm_env.specs.Array(shape=shape, dtype=np.int32, name=name) def int64(*shape: int, name: Optional[str] = None) -> dm_env.specs.Array: """Returns the spec for an np.int32 tensor. Args: *shape: the shape of the tensor. name: optional name for the spec. """ return dm_env.specs.Array(shape=shape, dtype=np.int64, name=name) def action(num_actions: int) -> dm_env.specs.DiscreteArray: """Returns the spec for an action. Args: num_actions: the number of actions that can be taken. """ return _ACTION.replace(num_values=num_actions) def rgb(height: int, width: int, name: Optional[str] = 'RGB') -> dm_env.specs.Array: """Returns the spec for an RGB observation. Args: height: the height of the observation. width: the width of the observation. name: optional name for the spec. """ return OBSERVATION['RGB'].replace(shape=(height, width, 3), name=name) def world_rgb(ascii_map: str, sprite_size: int, name: Optional[str] = 'WORLD.RGB') -> dm_env.specs.Array: """Returns the spec for a WORLD.RGB observation. Args: ascii_map: the height of the observation. sprite_size: the width of the observation. name: optional name for the spec. """ lines = ascii_map.strip().split('\n') height = len(lines) * sprite_size width = len(lines[0]) * sprite_size if height else 0 return rgb(height, width, name) def inventory(num_resources: int, name: Optional[str] = 'INVENTORY') -> dm_env.specs.Array: """Returns the spec for an INVENTORY observation. Args: num_resources: the number of resource types in the inventory. name: optional name for the spec. """ return float64(num_resources, name=name) def interaction_inventories( num_resources: int, name: Optional[str] = 'INTERACTION_INVENTORIES') -> dm_env.specs.Array: """Returns the spec for an INTERACTION_INVENTORIES observation. Args: num_resources: the number of resource types in the inventory. name: optional name for the spec. """ return float64(2, num_resources, name=name) def timestep( observation_spec: Mapping[str, dm_env.specs.Array]) -> dm_env.TimeStep: """Returns the spec for a timestep. Args: observation_spec: the observation spec. Spec names will be overwritten with their key. """ observation_spec = immutabledict.immutabledict({ name: spec.replace(name=name) for name, spec in observation_spec.items() }) return dm_env.TimeStep( step_type=STEP_TYPE, discount=DISCOUNT, reward=REWARD, observation=observation_spec, )
meltingpot-main
meltingpot/utils/substrates/specs.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools to help with parsing and procedurally generating ascii maps.""" from collections.abc import Mapping, Sequence from typing import Any, Union def a_or_b_with_odds(a_descriptor: Union[str, Mapping[str, Any]], b_descriptor: Union[str, Mapping[str, Any]], odds: Sequence[int]) -> Mapping[str, Any]: """Return a versus b with specified odds. Args: a_descriptor: One possibility. May be either a string or a dict that can be read by the map parser. b_descriptor: The other possibility. May be either a string or a dict that can be read by the map parser. odds: odds[0] is the number of outcomes where a is returned. odds[1] is the number of outcomes where b is returned. Thus the probability of returning a is odds[0] / sum(odds) and the probability of returning b is odds[1] / sum(odds). Returns: The dict descriptor that can be used with the map parser to sample either a or b at the specified odds. """ a_odds, b_odds = odds choices = [a_descriptor] * a_odds + [b_descriptor] * b_odds return {"type": "choice", "list": choices}
meltingpot-main
meltingpot/utils/substrates/map_helpers.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A set of commonly used ASCII art shape and helper functions for DMLab2D.""" import colorsys from typing import Dict, Optional, Tuple, Union ColorRGBA = Tuple[int, int, int, int] ColorRGB = Tuple[int, int, int] Color = Union[ColorRGB, ColorRGBA] VEGETAL_GREEN = (100, 120, 0, 255) LEAF_GREEN = (64, 140, 0, 255) ALPHA = (0, 0, 0, 0) WHITE = (255, 255, 255, 255) BLACK = (0, 0, 0, 255) DARK_GRAY = (60, 60, 60, 255) TREE_BROWN = (128, 92, 0, 255) DARK_FLAME = (226, 88, 34, 255) LIGHT_FLAME = (226, 184, 34, 255) DARK_STONE = (153, 153, 153, 255) LIGHT_STONE = (204, 204, 204, 255) def rgb_to_rgba(rgb: ColorRGB, alpha: int = 255) -> ColorRGBA: return (rgb[0], rgb[1], rgb[2], alpha) def scale_color(color_tuple: ColorRGBA, factor: float, alpha: Optional[int] = None) -> ColorRGBA: """Scale an RGBA color tuple by a given factor. This function scales, multiplicatively, the RGB values of a color tuple by the given amount, clamped to a maximum of 255. The alpha channel is either overwritten by the specified one, or if none is specified, it is inherited by the original color. Args: color_tuple: The original color to scale. factor: The factor to multiplicatively scale the RGB channels by. alpha: If provided, the new color will have this alpha, otherwise, inherit from original color_tuple. Returns: A new color tuple, with its RGB channels scaled. """ if len(color_tuple) == 3: color_tuple = rgb_to_rgba(color_tuple) # pytype: disable=wrong-arg-types scaled = [int(min(x * factor, 255)) for x in color_tuple] scaled[3] = alpha if alpha is not None else color_tuple[-1] return tuple(scaled) # LINT.IfChange def get_palette(color: Color) -> Dict[str, ColorRGBA]: """Convert provided color to a palette suitable for the player text shape. The overall palette is: 'x' Transparent ',' Black 'O' Dark gray 'o' 45% darker color than the base palette color '&' 25% darker color than the base palette color '*' The base color of the palette '@' 25% lighter color than the base palette color '#' White 'r' A rotation of the main color: RGB -> RBG 'R' A 25% lighter color than the rotation of the main color: RGB -> RBG Args: color (tuple of length 4): Red, Green, Blue, Alpha (transparency). Returns: palette (dict): maps palette symbols to suitable colors. """ palette = { "*": (color[0], color[1], color[2], 255), "&": scale_color(color, 0.75, 255), "o": scale_color(color, 0.55, 255), "!": scale_color(color, 0.65, 255), "~": scale_color(color, 0.9, 255), "@": scale_color(color, 1.25, 255), "r": (color[0], color[2], color[1], 255), "R": scale_color((color[0], color[2], color[1], 255), 1.25, 255), "%": (178, 206, 234, 255), "#": WHITE, "O": DARK_GRAY, ",": BLACK, "x": ALPHA, } return palette # LINT.ThenChange(//meltingpot/lua/modules/colors.lua) def flip_horizontal(sprite: str) -> str: flipped = "" for line in sprite.split("\n"): flipped += line[::-1] + "\n" return flipped[:-1] def flip_vertical(sprite: str) -> str: flipped = "" for line in sprite[1:].split("\n"): flipped = line + "\n" + flipped return flipped def convert_rgb_to_rgba(rgb_tuple: ColorRGB) -> ColorRGBA: rgba_tuple = (rgb_tuple[0], rgb_tuple[1], rgb_tuple[2], 255) return rgba_tuple def adjust_color_brightness( color_tuple: Union[ColorRGB, ColorRGBA], factor: float) -> ColorRGBA: """Adjust color brightness by first converting to hsv and then back to rgb.""" hsv = colorsys.rgb_to_hsv(color_tuple[0], color_tuple[1], color_tuple[2]) adjusted_hsv = (hsv[0], hsv[1], hsv[2] * factor) adjusted_rgb = colorsys.hsv_to_rgb(*adjusted_hsv) if len(color_tuple) == 3: output_color = (adjusted_rgb[0], adjusted_rgb[1], adjusted_rgb[2], 255) elif len(color_tuple) == 4: output_color = ( adjusted_rgb[0], adjusted_rgb[1], adjusted_rgb[2], color_tuple[3]) return tuple([int(x) for x in output_color]) def get_diamond_palette( base_color: ColorRGB) -> Dict[str, ColorRGBA]: return { "x": ALPHA, "a": (252, 252, 252, 255), "b": convert_rgb_to_rgba(base_color), "c": adjust_color_brightness(base_color, 0.25), "d": convert_rgb_to_rgba(base_color) } HD_AVATAR_N = """ xxxxxxxxxxxxxxxx xxxx*xxxxxxx*xxx xxxxx*xxxxx*xxxx xxxxx*&xxx*&xxxx xxxx@**&@**&@xxx xx@x@@*&@*&@*x@x xx@&@@@@@@@@*&*x xx*x@@@@@@@**x&x xxxx@@@@@****xxx xxxxx@******xxxx xxxxxxooOOOxxxxx xxxxx*@@@**&xxxx xxx@@x@@@**x&*xx xxxx*xOOOOOx*xxx xxxxxxx&xoxxxxxx xxxxx@**x@**xxxx """ HD_AVATAR_E = """ xxxxxxxxxxxxxxxx xxxxxx*xxxx*xxxx xxxxxxx*xx*xxxxx xxxxxxx*&x&xxxxx xxxxx@@@@@@*xxxx xxx@*@@@RRRr*xxx xxx**&o@R,r,*&xx xxx@&o@@R,r,&xxx xxxx@@@*Rrrr&xxx xxxxxx****o*xxxx xxxxxx&&OOOxxxxx xxxxx&*@@**xxxxx xxxx&&o*@**&xxxx xxxxoxoOOOO&xxxx xxxxxxx&xoxxxxxx xxxxxxx@**@*xxxx """ HD_AVATAR_S = """ xxxxxxxxxxxxxxxx xxxx*xxxxxxx*xxx xxxxx*xxxxx*xxxx xxxxx*&xxx*&xxxx xxxx@@@@@@@@*xxx xx@x@RRRRRRr*x@x xx@&@R,RRR,r*&*x xx*x@R,RRR,r*x&x xxxx@RRRRrrr*xxx xxxx@@@ooo***xxx xxxxxxooOOOxxxxx xxxxx*@@@**&xxxx xxx@@x@@@**x&*xx xxxx*xOOOOOx*xxx xxxxxxx&xoxxxxxx xxxxx@**x@**xxxx """ HD_AVATAR_W = """ xxxxxxxxxxxxxxxx xxxxx*xxxx*xxxxx xxxxxx*xx*xxxxxx xxxxxx&x*&xxxxxx xxxxx@@@@***xxxx xxxx@RRRr**&@&xx xxx*@,R,r*&@**xx xxxx@,R,r**&*&xx xxxx@Rrrr**o&xxx xxxxx@o@**ooxxxx xxxxxx&&&ooxxxxx xxxxxx@@***&xxxx xxxxx&@@**&&&xxx xxxxx&OOOO&xoxxx xxxxxxx&xoxxxxxx xxxxx@*@**xxxxxx """ HD_AVATAR = [HD_AVATAR_N, HD_AVATAR_E, HD_AVATAR_S, HD_AVATAR_W] HD_AVATAR_N_W_BADGE = """ xxxxxxxxxxxxxxxx xxxx*xxxxxxx*xxx xxxxx*xxxxx*xxxx xxxxx*&xxx*&xxxx xxxx@**&@**&@xxx xx@x@@*&@*&@*x@x xx@&@@@@@@@@*&*x xx*x@@@@@@@**x&x xxxx@@@@@****xxx xxxxx@******xxxx xxxxxxooOOOxxxxx xxxxx*@ab**&xxxx xxx@@x@cd**x&*xx xxxx*xOOOOOx*xxx xxxxxxx&xoxxxxxx xxxxx@**x@**xxxx """ HD_AVATAR_E_W_BADGE = """ xxxxxxxxxxxxxxxx xxxxxx*xxxx*xxxx xxxxxxx*xx*xxxxx xxxxxxx*&x&xxxxx xxxxx@@@@@@*xxxx xxx@*@@@RRRr*xxx xxx**&o@R,r,*&xx xxx@&o@@R,r,&xxx xxxx@@@*Rrrr&xxx xxxxxx****o*xxxx xxxxxx&&OOOxxxxx xxxxx&*ab**xxxxx xxxx&&ocd**&xxxx xxxxoxoOOOO&xxxx xxxxxxx&xoxxxxxx xxxxxxx@**@*xxxx """ HD_AVATAR_S_W_BADGE = """ xxxxxxxxxxxxxxxx xxxx*xxxxxxx*xxx xxxxx*xxxxx*xxxx xxxxx*&xxx*&xxxx xxxx@@@@@@@@*xxx xx@x@RRRRRRr*x@x xx@&@R,RRR,r*&*x xx*x@R,RRR,r*x&x xxxx@RRRRrrr*xxx xxxx@@@ooo***xxx xxxxxxooOOOxxxxx xxxxx*@ab**&xxxx xxx@@x@cd**x&*xx xxxx*xOOOOOx*xxx xxxxxxx&xoxxxxxx xxxxx@**x@**xxxx """ HD_AVATAR_W_W_BADGE = """ xxxxxxxxxxxxxxxx xxxxx*xxxx*xxxxx xxxxxx*xx*xxxxxx xxxxxx&x*&xxxxxx xxxxx@@@@***xxxx xxxx@RRRr**&@&xx xxx*@,R,r*&@**xx xxxx@,R,r**&*&xx xxxx@Rrrr**o&xxx xxxxx@o@**ooxxxx xxxxxx&&&ooxxxxx xxxxxx@ab**&xxxx xxxxx&@cd*&&&xxx xxxxx&OOOO&xoxxx xxxxxxx&xoxxxxxx xxxxx@*@**xxxxxx """ HD_AVATAR_W_BADGE = [HD_AVATAR_N_W_BADGE, HD_AVATAR_E_W_BADGE, HD_AVATAR_S_W_BADGE, HD_AVATAR_W_W_BADGE] CUTE_AVATAR_N = """ xxxxxxxx xx*xx*xx xx****xx xx&&&&xx x******x x&****&x xx****xx xx&xx&xx """ CUTE_AVATAR_E = """ xxxxxxxx xx*x*xxx xx****xx xx*O*Oxx x**##*&x x&****&x xx****xx xx&&x&xx """ CUTE_AVATAR_S = """ xxxxxxxx xx*xx*xx xx****xx xxO**Oxx x&*##*&x x&****&x xx****xx xx&xx&xx """ CUTE_AVATAR_W = """ xxxxxxxx xxx*x*xx xx****xx xxO*O*xx x&*##**x x&****&x xx****xx xx&x&&xx """ CUTE_AVATAR = [CUTE_AVATAR_N, CUTE_AVATAR_E, CUTE_AVATAR_S, CUTE_AVATAR_W] CUTE_AVATAR_ALERT_SPRITE = """ xxxxxxxx xx*xx*xx xx****xx x&O**O&x x&*##*&x xx****xx xx****xx xx&xx&xx """ CUTE_AVATAR_ALERT = [CUTE_AVATAR_ALERT_SPRITE] * 4 CUTE_AVATAR_SIT_SPRITE = """ xxxxxxxx xxxxxxxx xx*xx*xx xx****xx xxO**Oxx x&*##*&x x&****BB xx*&&*bb """ CUTE_AVATAR_SIT = [CUTE_AVATAR_SIT_SPRITE] * 4 CUTE_AVATAR_EAT_SPRITE = """ xxxxxxxx xxxxxxxx xx*xx*xx xx****xx xxO**Oxx x&*##*&x x&*BB*&x xx*bb*xx """ CUTE_AVATAR_EAT = [CUTE_AVATAR_EAT_SPRITE] * 4 CUTE_AVATAR_FIRST_BITE_SPRITE = """ xxxxxxxx xxxxxxxx xx*xx*xx xx****xx xxO**Oxx x&*BB*&x x&*bb*&x xx*&&*xx """ CUTE_AVATAR_FIRST_BITE = [CUTE_AVATAR_FIRST_BITE_SPRITE] * 4 CUTE_AVATAR_SECOND_BITE_SPRITE = """ xxxxxxxx xxxxxxxx xx*xx*xx xx****xx xxO**Oxx x&*bb*&x x&****&x xx*&&*xx """ CUTE_AVATAR_SECOND_BITE = [CUTE_AVATAR_SECOND_BITE_SPRITE] * 4 CUTE_AVATAR_LAST_BITE_SPRITE = """ xxxxxxxx xxxxxxxx xx*xx*xx xx****xx xxO**Oxx x&*##*&x x&****&x xx*&&*xx """ CUTE_AVATAR_LAST_BITE = [CUTE_AVATAR_LAST_BITE_SPRITE] * 4 CUTE_AVATAR_W_SHORTS_N = """ xxxxxxxx xx*xx*xx xx****xx xx&&&&xx x******x x&****&x xxabcdxx xx&xx&xx """ CUTE_AVATAR_W_SHORTS_E = """ xxxxxxxx xx*x*xxx xx****xx xx*O*Oxx x**##*&x x&****&x xxabcdxx xx&&x&xx """ CUTE_AVATAR_W_SHORTS_S = """ xxxxxxxx xx*xx*xx xx****xx xxO**Oxx x&*##*&x x&****&x xxabcdxx xx&xx&xx """ CUTE_AVATAR_W_SHORTS_W = """ xxxxxxxx xxx*x*xx xx****xx xxO*O*xx x&*##**x x&****&x xxabcdxx xx&x&&xx """ CUTE_AVATAR_W_SHORTS = [CUTE_AVATAR_W_SHORTS_N, CUTE_AVATAR_W_SHORTS_E, CUTE_AVATAR_W_SHORTS_S, CUTE_AVATAR_W_SHORTS_W] PERSISTENCE_PREDATOR_N = """ xxexxexx xxhhhhxx xhhhhhhx shhhhhhs slhlhlha aullllua xauuuuax xxexxexx """ PERSISTENCE_PREDATOR_E = """ xxexxxex xxsssssx xshyhhys shhhhhhh slhlhlhl aulllllu xauuuuua xxexxxex """ PERSISTENCE_PREDATOR_S = """ xxexxexx xxssssxx xsyhhysx shhhhhhs ahlhlhls aullllua xauuuuax xxexxexx """ PERSISTENCE_PREDATOR_W = """ xexxxexx xsssssxx syhhyhsx hhhhhhhs lhlhlhls ulllllua auuuuuax xexxxexx """ PERSISTENCE_PREDATOR = [PERSISTENCE_PREDATOR_N, PERSISTENCE_PREDATOR_E, PERSISTENCE_PREDATOR_S, PERSISTENCE_PREDATOR_W] AVATAR_DEFAULT = """ xxxx@@@@@@@@xxxx xxxx@@@@@@@@xxxx xxxx@@@@@@@@xxxx xxxx@@@@@@@@xxxx xxxx********xxxx xxxx********xxxx xx@@**####**@@xx xx@@**####**@@xx xx************xx xx************xx xx************xx xx************xx xxxx**xxxx**xxxx xxxx**xxxx**xxxx xxxx**xxxx**xxxx xxxx**xxxx**xxxx """ AVATAR_BIMANUAL = """ xx@@xxxxxxxx@@xx xx@@xxxxxxxx@@xx xx@@xx@@@@xx@@xx xx@@xx@@@@xx@@xx xx@@xx****xx@@xx xx@@xx****xx@@xx xx@@@@####@@@@xx xx@@@@####@@@@xx xxxx********xxxx xxxx********xxxx xxxx********xxxx xxxx********xxxx xxxx**xxxx**xxxx xxxx**xxxx**xxxx xxxx**xxxx**xxxx xxxx**xxxx**xxxx """ UNRIPE_BERRY = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxx#xxxxxxxx xxxxx******xxxxx xxxx********xxxx xxx**********xxx xxxxx******xxxxx xxxxxx****xxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ BERRY = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxx#xxxxxxx xxxxxxx##xxxxxxx xxx****##****xxx xx************xx x**************x x***@**@*******x xx***@********xx xxx**********xxx xxxx********xxxx xxxxx******xxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ LEGACY_APPLE = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxx##xxxxx xxxxxxxx##xxxxxx xxxxxx@##@xxxxxx xxxxx@@@@@@xxxxx xxx&&&&&&&&&&xxx xxx&*&&&&&&&&xxx xxx&***&&&&&&xxx xxx**********xxx xxxxx******xxxxx xxxxxxx***xxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ HD_APPLE = """ xxxxxxxxxxxxxxxx xx&&&&xxxxxxxxxx xxxxoo&xxxxxxxxx xxxxxxxoxOOxxxxx xxxxxxxxOOxxxxxx xxxx@@xxOx@*xxxx xx@@***O&&***&xx x@@*#*&O&****&&x x@*#***&*****&&x x@*#********&&ox xx*********&&oxx xx********&&&oxx xxx***&&*&&&oxxx xxxx&ooxx&ooxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ BADGE = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx x#####xxxxxxxxxx x#####xxxxxxxxxx x#####xxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ COIN = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxx@###xxxxxx xxxxx@@@@##xxxxx xxxx&&&@@@@#xxxx xxx&&&&&&&@@#xxx xxx&*&&&&&&&&xxx xxx&***&&&&&&xxx xxx**********xxx xxxx********xxxx xxxxx******xxxxx xxxxxx****xxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ WALL = """ &&&&##&&&&&&&&&& &@@@##@@@@@@@@@@ ****##********** ****##********** ################ ################ &&&@@@@@@@##@@&& &&@@@@@@@@##@@@& **********##**** **********##**** ################ ################ ****##********** ****##********** @@@@##@@@@@@@@@@ &&&&##@@@@@@@@@@ """ TILE = """ otooooxoxooootoo tttooxoooxoottto ttttxoooooxttttt tttxtoooootxttto otxtttoootttxtoo oxtttttotttttxoo xootttoootttooxo ooootoooootoooox xootttoootttooxo oxtttttotttttxoo otxtttoootttxtoo tttxtoooootxttto ttttxoooooxttttt tttooxoooxoottto otooooxoxooootoo oooooooxoooooooo """ TILE1 = """ otooooxo tttooxoo ttttxooo tttxtooo otxtttoo oxttttto xootttoo ooootooo """ TILE2 = """ xooootoo oxoottto ooxttttt ootxttto otttxtoo tttttxoo otttooxo ootoooox """ BRICK_WALL_NW_CORNER = """ iiiiiiii iicccccc iccccccc iccooooo iccoobbb iccobooo iccoboob iccobobo """ BRICK_WALL_NE_CORNER = """ iiiiiiii ccccccii ccccccci ooooocci bbboocci ooobocci boobocci obobocci """ BRICK_WALL_SE_CORNER = """ obobocci boobocci ooobocci bbboocci ooooocci ccccccci ccccccii iiiiiiii """ BRICK_WALL_SW_CORNER = """ iccobobo iccoboob iccobooo iccoobbb iccooooo iccccccc iicccccc iiiiiiii """ BRICK_WALL_INNER_NW_CORNER = """ oooooooo oobbobbb oboooooo oboobbob oboboooo oooboccc oboboccc oboooccc """ BRICK_WALL_INNER_NE_CORNER = """ oooooooo bbobbboo oooooobo bobboobo oooobooo cccooobo cccobobo cccobobo """ BRICK_WALL_INNER_SW_CORNER = """ oboboccc oboooccc oboboccc oooboooo oboobobb oboooooo oobbbbob oooooooo """ BRICK_WALL_INNER_SE_CORNER = """ cccobobo cccobooo cccooobo oooobobo bobboobo oooooobo bbbobboo oooooooo """ BRICK_WALL_NORTH = """ iiiiiiii cccccccc cccccccc oooooooo bbbbobbb oooooooo bobbbbob oooooooo """ BRICK_WALL_EAST = """ obobocci ooobocci obobocci obooocci obobocci obobocci ooobocci obobocci """ BRICK_WALL_SOUTH = """ oooooooo bobbbbob oooooooo bbbobbbb oooooooo cccccccc cccccccc iiiiiiii """ BRICK_WALL_WEST = """ iccobobo iccobooo iccobobo iccooobo iccobobo iccobobo iccobooo iccobobo """ FILL = """ iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii """ TILED_FLOOR_GREY = """ ooo-ooo- ooo-ooo- ooo-ooo- -------- ooo-ooo- ooo-ooo- ooo-ooo- -------- """ ACORN = """ xxxxxxxx xxoooxxx xoooooxx xo***oxx xx@*@xxx xxxxxxxx xxxxxxxx xxxxxxxx """ GRASS_STRAIGHT = """ ******** *@*@**** *@*@**** ******** *****@*@ *****@*@ ******** ******** """ GRASS_STRAIGHT_N_EDGE = """ ****x*x* *@*@**** *@*@**** ******** *****@*@ *****@*@ ******** ******** """ GRASS_STRAIGHT_E_EDGE = """ ******** *@*@**** *@*@***x ******** *****@*@ *****@*@ *******x ******** """ GRASS_STRAIGHT_S_EDGE = """ ******** *@*@**** *@*@**** ******** *****@*@ *****@*@ ******** **x*x*** """ GRASS_STRAIGHT_W_EDGE = """ ******** x@*@**** *@*@**** ******** x****@*@ *****@*@ x******* ******** """ GRASS_STRAIGHT_NW_CORNER = """ x***x*** *@*@**** *@*@**** x******* *****@*@ *****@*@ ******** ******** """ GRASS_STRAIGHT_NE_CORNER = """ ****x**x *@*@**** *@*@**** *******x *****@*@ *****@*@ ******** ******** """ GRASS_STRAIGHT_SE_CORNER = """ ******** *@*@**** *@*@***x ******** *****@*@ *****@*@ ******** ***x***x """ GRASS_STRAIGHT_SW_CORNER = """ ******** *@*@**** *@*@**** x******* *****@*@ *****@*@ ******** x***x*** """ BUTTON = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xx************xx xx************xx xx**########**xx xx**########**xx xx**########**xx xx**########**xx xx**########**xx xx**########**xx xx**########**xx xx**########**xx xx************xx xx************xx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ PLUS_IN_BOX = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xx************xx xx************xx xx**##@@@@##**xx xx**##@@@@##**xx xx**@@@@@@@@**xx xx**@@@@@@@@**xx xx**@@@@@@@@**xx xx**@@@@@@@@**xx xx**##@@@@##**xx xx**##@@@@##**xx xx************xx xx************xx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ TREE = """ xx@@@@@@@@@@@@xx xx@@@@@@@@@@@@xx xx@@@@@@@@@@@@xx xx@@@@@@@@@@@@xx xx@@@@@@@@@@@@xx xx@@@@@@@@@@@@xx xxxx@@****@@xxxx xxxx@@****@@xxxx xxxxxx****xxxxxx xxxxxx****xxxxxx xxxxxx****xxxxxx xxxxxx****xxxxxx xxxxxx****xxxxxx xxxxxx****xxxxxx xxxxxx****xxxxxx xxxxxx****xxxxxx """ POTATO_PATCH = """ xx@@xxxxxxxxxx@@ xx@@xxxxxxxxxx@@ xxxx@@xxxxxxxx@@ xxxx@@xxxxxx@@xx xxxxxx@@@@xx@@xx xxxxxx@@@@xx@@xx @@@@@@****@@xxxx @@@@@@****@@xxxx xxxx@@****@@xxxx xxxx@@****@@xxxx xx@@xx@@@@xx@@xx xx@@xx@@@@xx@@@@ @@xxxxxx@@xx@@@@ @@xxxxxx@@xxxxxx @@xxxxxxxx@@xxxx @@xxxxxxxx@@xxxx """ FIRE = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxx&&&&xx&&xx xxxxxx&&&&xx&&xx xx&&xx****xx**xx xx&&xx****xx**xx xx************xx xx************xx xx@@@@****@@@@xx xx@@@@****@@@@xx xxxx@@@@@@@@xxxx xxxx@@@@@@@@xxxx xx@@@@xxxx@@@@xx xx@@@@xxxx@@@@xx """ STONE_QUARRY = """ @@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@ @@xx##xxxxxx##@@ @@xx##xxxxxx##@@ @@xxxx##xx##xx@@ @@xxxx##xx##xx@@ @@xx##xxxxxx##@@ @@xx##xxxxxx##@@ @@##xxxx##xxxx@@ @@##xxxx##xxxx@@ @@xx##xxxxxx##@@ @@xx##xxxxxx##@@ @@##xxxxxx##xx@@ @@##xxxxxx##xx@@ @@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@ """ WATER_1 = """ **~~*ooo~~~oo~** ~~~o**~~~~~~~**o ooo~***~~~~~***~ o~~~~**~~*****~~ ~~~~*****@@**~~o o~**********~oo~ o**~~~~~~***o~~~ *oo~~~~~~o**~~~~ ~~~ooooooo~**~** *~~~~oooo~~*@~** **~~~~oo~~~~**~~ ~**~~~~oo~~~**~~ ~*@*~~~~oo~~**~~ ~~*@**~~~~o**~~~ ~~~~********~~~~ ~~**~~~~ooo~***~ """ WATER_2 = """ *~~*~oo~~~~oo~~* ~~oo*~~~~~~~~**~ oo~~~**~~~***~~o ~~~*********~~~~ ~~~****@@**~~~oo o~**********oo~~ ~***~~~~~~***~~~ *~~oooo~ooo**~~~ ~~~~~~oooo~~*@** *~~~~~~~~oo~***~ ~**~~~~~~~o~**~~ ~~**~~~~~~o**~~~ ~~*@**~~~~**~~~~ ~~~~********~~~~ ~~~**~~~~oo***~~ ~***~~~oo~~~~**~ """ WATER_3 = """ ***oooo~~~oo**~* oo~**~~~~~~~**oo ~~~***~~~~~***~~ o~~~~********ooo ~ooo~*@@*****~~~ ~~o*****oo****~~ ~~**~~oooo~***~~ ~*~~~~~~~oo~**~~ *~~~~~~~~~oo*@** *~~~~~~~~~~***~~ *~~~~~~~~~**o~~~ ~**~~~~~~**~oo~~ ~*@**~~~**~~~o~~ ~~*@******~~o~~~ ~~**~~~~~***~~~~ ~**~~~~ooo~~***~ """ WATER_4 = """ *~~*~oo~~ooo~~~* ~ooo*~~~~~~~***o o~~~~**~~~**~~~~ ~~~**@******~~~~ o~~***@@@**~~~oo ~o**********oo~~ ~***~~~~~o***~~~ *~oooo~oooo**~~~ ~~~~~oooo~~~*@** *~~~~~~ooo~~***~ ~**~~~~~~oo~**~~ ~~**~~~~~~o***~~ ~~**~~~~~~o**~~~ ~~~*@@*~~~**o~~~ ~~~~**@******~~~ ~***~~~oo~~~~**~ """ BOAT_FRONT_L = """ xxxxxxxxxxxxx*** xxxxxxxxxxxx*@@@ xxxxxxxxxxx**ooo xxxxxxxxxx*&*@@@ xxxxxxxx**@&*@@@ xxxxxxx*@@o@&*** xxxxxx*@@o@***&& xxxxx*@@o@*&&*&& xxxx*@@o@*&&&*&& xxxx*@@@*&&&&&*& xxx*@o@*&&&***@* xx*@@o*&&***@o@* xx*@@o***@@*o@@* x*@@@***o@@*o@@* x*@@@*@*@o@***** *@@@*@@*@o@*@@o* """ BOAT_FRONT_R = """ ***xxxxxxxxxxxxx @@@*xxxxxxxxxxxx ooo**xxxxxxxxxxx @@@*&*xxxxxxxxxx @@@*&@**xxxxxxxx ***&@o@@*xxxxxxx &&***@o@@*xxxxxx &&*&&*@o@@*xxxxx &&*&&&*@o@@*xxxx &*&&&&&*@@@*xxxx @@***&&&*@o@*xxx @o@@***&&*o@@*xx @@@@*@@***o@@*xx @@oo*@@@***o@@*x @o@@*****@*@o@*x @o@@*@o@*@@*o@@* """ BOAT_REAR_L = """ *@@o*@o*@o@*@@@* x**@@*@*@o@***** x*@*****@o@*@@@* xx*&o@***@@*@@@* xx*&&o@@@***@@@* xxx*&&ooo@@***** xxxx*&&@@oo@*@@@ xxxx*&&&@@@o*ooo xxxxx*&&&@@@*@@@ xxxxxx*&&&&@*ooo xxxxxxx*&&&&*@@@ xxxxxxxx**&&*&&& xxxxxxxxxx*&*&&& xxxxxxxxxxx**&&& xxxxxxxxxxxx*&&& xxxxxxxxxxxxx*** """ BOAT_REAR_R = """ @o@*@@o*@o@*@o@* @o@*@@o*o@*@o**x @o@**********&*x @@o*@@****o@&*xx @@o****@@o@&&*xx *****@@oo@&&*xxx @@@*@oo@@&&*xxxx ooo*o@@@&&&*xxxx @@@*@@@&&&*xxxxx ooo*@&&&&*xxxxxx @@@*&&&&*xxxxxxx &&&*&&**xxxxxxxx &&&*&*xxxxxxxxxx &&&**xxxxxxxxxxx &&&*xxxxxxxxxxxx ***xxxxxxxxxxxxx """ BOAT_SEAT_L = """ *@@o*@@o*@@@*@o* *@@o*o@o*@o@*@o* *@@o*@@o*@o@**** *@@o*@o@*@o@*@@* *@@o*******@*o@* *@o@*@oo@@@***** *@o@*@@@oooooo@@ *@o@******@@@oo@ *@o@*&&&&&****** *@o@*****&&&&&&& *o@@*@@@******** *o@@*&&&*&&@*@@* *o@@*&&&*&&&*&&* *o@@*****&&&*&&* *@@@*@@@*&&&*&&* *@@o*@o@*o@@*@o* """ BOAT_SEAT_R = """ o@@*@@@*@o@*o@@* o@@*@@@*@@@*o@@* @o@*****o@o*@@@* @o@*@@@*ooo*@@@* @@@*@*******@@o* *****ooo@o@*@@o* @@o@o@@@o@@*@@o* @@@@@@******@o@* ******&&&&&*@o@* &&&&&&&*****@o@* ********@o@*@@o* @o@*o@&*&&&*o@o* ****&&&*&&&*@o@* &&&*&&&*****@o@* &&&*&&&*@o@*@o@* @@@*@@o*@o@*@o@* """ OAR_DOWN_L = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxx**** xxxxx#xxx***#@&& xx##xx***#@@&*** xxxxx*#@&&***xxx xx#xxx****xx#xxx xxx##xxxxxx#xxxx x#xxx###x##xxxxx xxxxxxxxxxxxx#xx xx##xxxxxxx##xxx xxxxxx###xxxxxxx """ OAR_UP_L = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xx****xxxxxxxxxx x*@@##**xxxxxxxx *&@@@@#**xxxxxxx *&&@@@@@#****xxx x*&&&***&@@@#*** xx***xxx****&@@# xxxxxxxxxxxx**** xxxxxxxxxxxxxxxx xx#xx#xxxxxxxxxx xxx##xxxx#xxxxxx #xxxxxxx#xxxxxxx xx##xx#xxxx##xxx xxxxxxxx##xxxxxx xx####xxxxxxxxxx """ OAR_DOWN_R = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx ****xxxxxxxxxxxx &&@#***xxx#xxxxx ***&@@#***xx##xx xxx***&&@#*xxxxx xxx#xx****xxx#xx xxxx#xxxxxx##xxx xxxxx##x###xxx#x xx#xxxxxxxxxxxxx xxx##xxxxxxx##xx xxxxxxx###xxxxxx """ OAR_UP_R = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxx****xx xxxxxxxx**##@@*x xxxxxxx**#@@@@&* xxx****#@@@@@&&* ***#@@@&***&&&*x #@@&****xxx***xx ****xxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxx#xx#xx xxxxxx#xxxx##xxx xxxxxxx#xxxxxxx# xxx##xxxx#xx##xx xxxxxx##xxxxxxxx xxxxxxxxxx####xx """ BARRIER_ON = """ x*xxxxxxxxxxxxxx *#*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx ***************x *&@@@@@@@@@@@##* *&&&@@@@@@@@@@&* ***************x *&*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx *&*xxxxxxxxxxxxx ***xxxxxxxxxxxxx """ BARRIER_OFF = """ x*x**xxxxxxxxxxx *#*##*xxxxxxxxxx *@*@#*xxxxxxxxxx *&*@@*xxxxxxxxxx **@@&*xxxxxxxxxx **@@*xxxxxxxxxxx **@@*xxxxxxxxxxx *@@&*xxxxxxxxxxx *&&*xxxxxxxxxxxx ****xxxxxxxxxxxx *&*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx *@*xxxxxxxxxxxxx *&*xxxxxxxxxxxxx ***xxxxxxxxxxxxx """ FLAG = """ xO@@xxxx xO**@xxx xO***xxx xOxx&&xx xOxxxoox xOxxxxxx xOxxxxxx xxxxxxxx """ FLAG_HELD_N = """ xO@@@xxx xO***xxx xO**&&xx xOxxx&&x xxxxxxox xxxxxxxx xxxxxxxx xxxxxxxx """ FLAG_HELD_E = """ xxxx@*Ox xx@***Ox x&***oOx *&oxxxOx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ FLAG_HELD_S = """ x@xxxxxx xx&*x@Ox xxx&**Ox xxxxo&Ox xxxxxxOx xxxxxxxx xxxxxxxx xxxxxxxx """ FLAG_HELD_W = """ xxxO@xxx xxxOO*@x xxxxOo&* xxxxOOx* xxxxxOxx xxxxxxxx xxxxxxxx xxxxxxxx """ FLAG_HELD = [FLAG_HELD_N, FLAG_HELD_E, FLAG_HELD_S, FLAG_HELD_W] ROCK = """ xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxllllllllxxxx xxxlr***kkkrrxxx xxlr*****kkkksxx xxrr****kkkkksxx xxr****kkkkkksxx xxr*****kkkkksxx xxr******kksssxx xxr*****kkksssxx xxr****kkkssssxx xxrr***ssspspsxx xxxlspspppppsxxx xxxxlsssssssxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ PAPER = """ xxxxxxxxxxxxxxxx x**************x x@@@***@@**@@@*x x@**@*@**@*@**@x x@@@**@@@@*@@@*x x@****@**@*@***x x@****@**@*@***x x**************x x**************x x**@@@@**@@@***x x**@*****@**@**x x**@@@***@@@***x x**@*****@**@**x x**@@@@**@**@**x x**************x xxxxxxxxxxxxxxxx """ SCISSORS = """ xx##xxxxxxxxx##x xx*x#xxxxxxx#x*x xx*xx#xxxxx#xx*x xx*xxx#xxx#xxx*x xx*xxx##xx#xxx*x xxx****##xx***xx xxxxxxx>##xxxxxx xxxxxxxx>##xxxxx xxxxx#xxx>##xxxx xxxx##>xxx>##xxx xxx##>xxxxx>##xx xx##>xxxxxxx>##x x##>xxxxxxxxx>## x#>xxxxxxxxxxx># x>xxxxxxxxxxxxx> xxxxxxxxxxxxxxxx """ SPACER_N = """ xx****xx x*****~x x**&!~~x **&&!o~~ ~~o!!o~~ ~~oooo~~ x~~~~~~x x~~xx~~x """ SPACER_E = """ xxx****x xx*****~ &&**#%%% &!**%%%% !o~***** oo~~***~ xx~~~~~~ xx~~xx~~ """ SPACER_S = """ xx***~xx x*****~x x*#%%%~x **%%%%~~ ~*****~~ ~~~**~~~ x~~~~~~x x~~xx~~x """ SPACER_W = """ x***~xxx *****~xx #%%%*~!! %%%%*~!o *****~oo ~***~~oo ~~~~~~xx ~~xx~~xx """ SPACER_TAGGED_S = """ xxxxxxxx x##xxxxx xx##x##x xxx##xxx x*****~x x~~**~~x x~~~~~~x x~~xx~~x """ SPACER = [SPACER_N, SPACER_E, SPACER_S, SPACER_W] SPACER_TAGGED = [SPACER_TAGGED_S, SPACER_TAGGED_S, SPACER_TAGGED_S, SPACER_TAGGED_S] NW_SHIP_WALL = """ oooooooo o####### o####### o####### o####### o####### o####### o######x """ NS_SHIP_WALL = """ oooooooo ######## ######## ######## ######## ######## ######## xxxxxxxx """ NE_SHIP_WALL = """ oooooooo #######x #######x #######x #######x #######x #######x o######x """ EW_SHIP_WALL = """ o######x o######x o######x o######x o######x o######x o######x o######x """ SE_SHIP_WALL = """ o######x #######x #######x #######x #######x #######x #######x xxxxxxxx """ SW_SHIP_WALL = """ o######x o####### o####### o####### o####### o####### o####### xxxxxxxx """ SHIP_WALL_CAP_S = """ o######x o######x o######x o######x o######x o######x o######x xxxxxxxx """ SHIP_WALL_TCOUPLING_W = """ o######x o####### o####### o####### o####### o####### o####### o######x """ SHIP_WALL_TCOUPLING_E = """ o######x #######x #######x #######x #######x #######x #######x o######x """ SHIP_WALL_TCOUPLING_N = """ oooooooo ######## ######## ######## ######## ######## ######## o######x """ SHIP_WALL_TCOUPLING_S = """ o######x ######## ######## ######## ######## ######## ######## xxxxxxxx """ N_SHIP_SOLID_WALL = """ oooooooo ######## ######## ######## ######## ######## ######## ######## """ E_SHIP_SOLID_WALL = """ #######x #######x #######x #######x #######x #######x #######x #######x """ S_SHIP_SOLID_WALL = """ ######## ######## ######## ######## ######## ######## ######## xxxxxxxx """ W_SHIP_SOLID_WALL = """ o####### o####### o####### o####### o####### o####### o####### o####### """ NW_GRATE = """ X******* X*@&&&&& X*&&&x&x X*&&&x&x o*&&&x&x o*&&&x&x o*&&&x&x o*&&&x&x """ N_GRATE = """ ******** &&&&&&&& &x&x&x&x &x&x&x&x &x&x&x&x &x&x&x&x &x&x&x&x &x&x&x&x """ NE_GRATE = """ ******** &&&&&&@~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ """ W_GRATE = """ X*&&&&&& X*&&&x&x X*&&&x&x X*&&&x&x o*&&&x&x o*&&&x&x o*&&&x&x o*&&&&&& """ INNER_GRATE = """ &&&&&&&& &x&x&x&x &x&x&x&x &x&x&x&x &x&x&x&x &x&x&x&x &x&x&x&x &&&&&&&& """ E_GRATE = """ &&&&&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &&&&&&&~ """ SE_GRATE = """ &x&x&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &x&x&&&~ &&&&&&@~ ~~~~~~~~ """ S_GRATE = """ &x&x&x&x &x&x&x&x &x&x&x&x &x&x&x&x &x&x&x&x &x&x&x&x &&&&&&&& ~~~~~~~~ """ SW_GRATE = """ X*&&&x&x X*&&&x&x X*&&&x&x X*&&&x&x o*&&&x&x o*&&&x&x o*@&&&&& o*~~~~~~ """ GLASS_WALL = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx ******@@ @@****** !!!!!!!! """ WOOD_FLOOR = """ xxx-xxxx -------- x-xxxxxx -------- xxxxx-xx -------- xxxxxxx- -------- """ METAL_TILE = """ oxxOoxxO xxxoxxxo xxxxxxxx xxOxxxOx xOoxxOox xoxxxoxx xxxxxxxx OxxxOxxx """ METAL_PANEL = """ ///////- ///////- ///////- ///////- -------- ////-/// ////-/// -------- """ THRESHOLD = """ xxxxxxxx XXXXXXXX xxxxxxxx XXXXXXXX xxxxxxxx XXXXXXXX xxxxxxxx XXXXXXXX """ THRESHOLD_VERTICAL = """ xXxXxXxX xXxXxXxX xXxXxXxX xXxXxXxX xXxXxXxX xXxXxXxX xXxXxXxX xXxXxXxX """ CHECKERED_TILE = """ XXXXxxxx XXXXxxxx XXXXxxxx XXXXxxxx xxxxXXXX xxxxXXXX xxxxXXXX xxxxXXXX """ GEM = """ xxxxxxxx xxx~~xxx xx~**&xx xx~*!&xx xx~!!&xx xxx&&xxx xxxxxxxx xxxxxxxx """ SMALL_SPHERE = """ xxxxxxxx xx+~~+xx xx~@*&xx xx~**&xx xx+&&+xx xxxxxxxx xxxxxxxx xxxxxxxx """ DIRT_PATTERN = """ xxxxxxxx xXXXxxxx xXXXxxxx xxxxxxxx xxxxXXXx xxxxxXXx xxxXXxxx xxxxXXXX """ FRUIT_TREE = """ x@@@@@@x x@Z@Z@@x x@@Z@Z@x xx@**@xx xxx**xxx xxx**xxx xxx**xxx xxxxxxxx """ BATTERY_FLOOR = """ xxxxxxxx xxxxxxxx xxxxxxxx aaaaafwx aaaaaxxx AAAAAgwx xxxxxxxx xxxxxxxx """ BATTERY_GRASPED = """ xxxxxxxx xxxxxxxx xxxxxxxx adddafwx ADDDAxxx AAAAAgwx xxxxxxxx xxxxxxxx """ BATTERY_FULL = """ xxxxxxxx xxxxxxxx xxxxxxxx xxaoooax xxaoooaf xxAOOOAg xxxxxxxx xxxxxxxx """ BATTERY_DRAINED_ONE = """ xxxxxxxx xxxxxxxx xxxxxxxx xxa#ooax xxa#ooaf xxA#OOAg xxxxxxxx xxxxxxxx """ BATTERY_DRAINED_TWO = """ xxxxxxxx xxxxxxxx xxxxxxxx xxa##oax xxa##oaf xxA##OAg xxxxxxxx xxxxxxxx """ BATTERY_DRAINED = """ xxxxxxxx xxxxxxxx xxxxxxxx xxa###ax xxa###af xxAAAAAg xxxxxxxx xxxxxxxx """ BATTERY_FLASHING = """ xxxxxxxx xxxxxxxx xxxxxxxx xx#####x xx#####f xx#####g xxxxxxxx xxxxxxxx """ WIRES = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxwff xxxxxxxg xxxxxwgx xxxxxxxx xxxxxxxx """ PLUG_SOCKET = """ xxxxxxxx xxxxsssx xxxxsAsx xxxxsgff xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ CONSUMPTION_STARS = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxx-xx xxxx---x xx-xx-xx x---xxxx xx-xxxxx """ CONSUMPTION_STARS_2 = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxx-xx xxxx---x xx-xx-xx x---xxxx xx-xxxxx """ # Positional Goods sprites. CROWN = """ x#@#x@#x xx####xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ BRONZE_CAP = """ xxxxxxxx xx####xx xx####xx x@xxxx@x xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ # Boat Race 2.0 sprites. SEMAPHORE_FLAG = """ xxxxxxxx x*@xxxxx x*&@xxxx x*&@@xxx x*&@@xxx x|xxxxxx x|xxxxxx xxxxxxxx """ # Allelopathic Harvest 2.0 sprites. SOIL = """ xXDxDDxx XdDdDDDx DdDDdDdd dDdDDdDd xDdDdDdX DDDDDDXd ddDdDDdD xDdDdDDx """ BERRY_SEEDS = """ xxxxxxxx xxxxxxxx xxxOxxxx xxxxoxOx xxoxxxxx xxxxxxxx xxxxoxxx xxxxxxxx """ BERRY_RIPE = """ xxxxxxxx xxxxxxxx xxooxxxx xxooOOxx xxxdOOxx xxxddxxx xxxxxxxx xxxxxxxx """ # Territory 2.0 sprites. NW_HIGHLIGHT = """ x******* *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx """ NE_HIGHLIGHT = """ *******x xxxxxxxo xxxxxxxo xxxxxxxo xxxxxxxo xxxxxxxo xxxxxxxo xxxxxxxo """ E_W_HIGHLIGHT = """ *xxxxxxo *xxxxxxo *xxxxxxo *xxxxxxo *xxxxxxo *xxxxxxo *xxxxxxo *xxxxxxo """ N_S_HIGHLIGHT = """ ******** xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx oooooooo """ SE_HIGHLIGHT = """ xxxxxxxo xxxxxxxo xxxxxxxo xxxxxxxo xxxxxxxo xxxxxxxo xxxxxxxo ooooooox """ SW_HIGHLIGHT = """ *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx xooooooo """ CUTE_AVATAR_HOLDING_PAINTBRUSH_N = """ xxxxxOOO xx*xx*+x xx****-x xx&&&&&x x******x x&****xx xx****xx xx&xx&xx """ CUTE_AVATAR_HOLDING_PAINTBRUSH_E = """ xxxxxxxx xx*x*xxx xx****xx xx*,*,xx x**##*&& x&****xx xx****xx xx&&x&xx """ CUTE_AVATAR_HOLDING_PAINTBRUSH_S = """ xxxxxxxx xx*xx*xx xx****xx xx,**,xx x&*##*&x x&****&x xx****-x xx&xx&+x """ CUTE_AVATAR_HOLDING_PAINTBRUSH_W = """ xxxxxxxx xxx*x*xx xx****xx xx,*,*xx &&*##**x xx****&x xx****xx xx&x&&xx """ CUTE_AVATAR_HOLDING_PAINTBRUSH = [CUTE_AVATAR_HOLDING_PAINTBRUSH_N, CUTE_AVATAR_HOLDING_PAINTBRUSH_E, CUTE_AVATAR_HOLDING_PAINTBRUSH_S, CUTE_AVATAR_HOLDING_PAINTBRUSH_W ] PAINTBRUSH_N = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxx*&o xxxxx*k& xxxxxkkk """ PAINTBRUSH_E = """ xxxxxxxx xxxxxxxx xxxxxxxx xxOk**xx -+Okk&xx xxOk&oxx xxxxxxxx xxxxxxxx """ PAINTBRUSH_S = """ xxxxxOOO xxxxxkkk xxxxx&k* xxxxxo&* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ PAINTBRUSH_W = flip_horizontal(PAINTBRUSH_E) PAINTBRUSH = [PAINTBRUSH_N, PAINTBRUSH_E, PAINTBRUSH_S, PAINTBRUSH_W] WALL = """ **#***** **#***** ######## *****#** *****#** ######## **#***** **#***** """ GRAINY_FLOOR = """ +*+*++*+ *+*+**+* +*+****+ ****+*+* *+*+**** **+***++ +*+*+**+ ***+**+* """ GRASS_STRAIGHT_N_CAP = """ x***x**x *@*@**** *@*@**** x******* *****@*@ *****@*x ******** ******** """ SHADOW_W = """ #@*xxxxx #*x~xxxx #@*xxxxx #*x~xxxx #@*xxxxx #*x~xxxx #@*xxxxx #*x~xxxx """ SHADOW_E = """ xxxxx*@# xxxx~x*# xxxxx*@# xxxx~x*# xxxxx*@# xxxx~x*# xxxxx*@# xxxx~x*# """ SHADOW_N = """ ######## xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ APPLE_TREE_STOUT = """ xxxxxxxx xaxaaaax aabbaaoa baaaoaax bobaaaob bbbabIbb xbIbbbIx xxIxxxIx """ BANANA_TREE = """ xxaaaxax xaoaabba abooaaaa bbbbaaob bobIboob xooxIIbx xxxxIxxx xxxxIxxx """ ORANGE_TREE = """ xxaaaxxx xaoaabba abaoaaaa bbbbaaob bobIbaab xbbIIbbx xxxxIxxx xxxxIxxx """ GOLD_MINE_TREE = """ xxxxxxxx xaaaaxax aobbaaaa baIoIIax boIIIoob bbbabIbb xbbxbbbx xxxxxxxx """ FENCE_NW_CORNER = """ aaaxxaax aaaxxaax bbbdcbbd cddedbbe aaexxbcx aaedcbcd bbe#ebbe cd####b# """ FENCE_N = """ xaaxxaax xaaxxaax cbbdcbbd dbbedcbe xbbxxcbx cbbdcbbd dbb#dbbe #b####b# """ FENCE_NE_CORNER = """ xaaaxxxx xaaaxxxx cbbbxxxx dbcdxxxx xbaa##xx cbaa##xx d#bb#xxx ##cd#xxx """ FENCE_INNER_NE_CORNER = """ ##aa##xx x#aa##xx xxbb#xxx xxcd#xxx xxaa##xx xxaa##xx xxbb#xxx xxcd#xxx """ FENCE_E = """ xxaa##xx xxaa##xx xxbb#xxx xxcd#xxx xxaa##xx xxaa##xx xxbb#xxx xxcd#xxx """ FENCE_SE_CORNER = """ xaaa##xx xaaa##xx cbbd#xxx dcbb#xxx xbbb##xx dccb##xx #ccc#xxx ##c##xxx """ FENCE_S = """ xaaxxaax xaaxxaax cbbdcbbd dbbedcbe xbbxxcbx cbbdcbbd dbb#dbbe #b####b# """ FENCE_SW_CORNER = """ aaa#xaax aaa#xaax cbbdcbbd bbcedbbe bbb#xbcx bccdcbcd ccc#ebbe #c####b# """ FENCE_W = """ aa##xxxx aa##xxxx bb#xxxxx cd#xxxxx aa##xxxx aa##xxxx bb#xxxxx cd#xxxxx """ FENCE_INNER_NW_CORNER = """ aa###### aa##xx## bb#xxxxx cd#xxxxx aa##xxxx aa##xxxx bb#xxxxx cd#xxxxx """ FENCE_SHADOW_S = """ ######## xx##xx## xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ FENCE_SHADOW_SE = """ ######xx xx####xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ FENCE_SHADOW_S = """ ######## xx##xx## xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ FENCE_SHADOW_SW = """ x####### xx##xx## xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ MAGIC_GRAPPLED_AVATAR = """ xpPppPpx pP*PP*Pp pP****Pp pPO**OPp P&*##*&P P&****&P pP****Pp pP&PP&Pp """ MAGIC_HOLDING_SHELL = """ x~*~~*~x ~*~**~*~ ~*~~~~*~ ~*~~~~*~ *~~~~~~* *~~~~~~* ~*~~~~*~ ~*~**~*~ """ MAGIC_BEAM_N_FACING = """ xx~~~~xx xx*~~*xx xx*~~*xx xx*~~*xx xx*~~*xx xx*~~*xx xx*~~*xx xx~~~~xx """ MAGIC_BEAM_E_FACING = """ xxxxxxxx xxxxxxxx xxxxxxxx ~******* ~~~~~~~~ ~******* xxxxxxxx xxxxxxxx """ MAGIC_BEAM_S_FACING = flip_vertical(MAGIC_BEAM_N_FACING) MAGIC_BEAM_W_FACING = flip_horizontal(MAGIC_BEAM_E_FACING) MAGIC_BEAM = [MAGIC_BEAM_N_FACING, MAGIC_BEAM_E_FACING, MAGIC_BEAM_S_FACING, MAGIC_BEAM_W_FACING] MAGIC_HANDS_N_FACING = """ xx~xx~xx x~xxxx~x ~*xxxx*~ *~xxxx~* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ MAGIC_HANDS_E_FACING = """ xxxxxxxx xxxxx~xx xx*~~~~* x*x*~~*x xx*~~~~* xxxx~xxx xxxxxxxx xxxxxxxx """ MAGIC_HANDS_S_FACING = flip_vertical(MAGIC_HANDS_N_FACING) MAGIC_HANDS_W_FACING = """ xxxxxxxx xxxxxxxx xxxxxxxx x*xxxx*x *x*xx*x* ~*~xx~*~ x~~~~~~x xx~~~~xx """ FRUIT_TREE = """ x#x####x ##ww##o# w###o##w x####### wow###ow wwwwwIww xwIwwwIx xxIxxxIx """ FRUIT_TREE_BARREN = """ x#x####x ##ww#### w######w x####### w#w####w wwwwwIww xwIwwwIx xxIxxxIx """ DIAMOND_PRINCESS_CUT = """ xxxxxxxx xxxaaaxx xxdbabdx xxbdbdbx xxxcbcxx xxxxcxxx xxxxxxxx xxxxxxxx """ INNER_WALLS_NW = """ xbbbbbbb bbaaaaaa babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb """ INNER_WALLS_NE = """ bbbbbbbx aaaaaabd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd """ INNER_WALLS_W_INTERSECT_SE = """ babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb babbbbbc babbbbcd """ INNER_WALLS_W = """ babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb """ INNER_WALLS_SE = """ bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd ccccccdd dddddddx """ INNER_WALLS_SW = """ babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb babbbbbb bbcccccc xddddddd """ INNER_WALLS_E_INTERSECT_SW = """ bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd ccbbbbcd ddbbbbcd """ INNER_WALLS_E = """ bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd bbbbbbcd """ INNER_WALLS_VERTICAL = """ babbbbcd babbbbcd babbbbcd babbbbcd babbbbcd babbbbcd babbbbcd babbbbcd """ INNER_WALLS_S_CAP = """ babbbbcd babbbbcd babbbbcd babbbbcd babbbbcd bbbbbbcd xbccccdd xddddddx """ INNER_WALLS_N_CAP = """ xbbbbbbx bbaaaabd babbbbcd babbbbcd babbbbcd babbbbcd babbbbcd babbbbcd """ CONVERTER_HOPPER = """ xxxxxxxx eeeeeeee e>>>>>>e e<<<<<<e e,,,,,,e e,,,,,,e e,,,,,,e e,,,,,,e """ CONVERTER_ACCEPTANCE_INDICATOR = """ ecccccee gcddddfg gcd[]dfg gcd_]dfg gcddddfg gcddddfg gcddddfg gaaaaacg """ CONVERTER_IDLE = """ ga`bb`cg gabbbbcg gccccccg ghhhhhhg ghhAAhhg hhBBBChh xxAAABxx xxBBBCxx """ CONVERTER_ON = """ ga!bb!cg gabbbbcg gccccccg ghhhhhhg ghhAAhhg hhBBBChh xxAAABxx xxBBBCxx """ CONVERTER_ON_FIRST = """ ga!bb!cg gabbbbcg gccccccg ghhhhhhg ghhBBhhg hhAAABhh xBBBBCCx xxAAABxx """ CONVERTER_ON_SECOND = """ ga!bb!cg gabbbbcg gccccccg ghhhhhhg ghhBBhhg hhAAABhh xxBBBCxx xAAAABBx """ CONVERTER_ON_THIRD = """ ga`bb!cg gabbbbcg gccccccg ghhhhhhg ghhAAhhg hhBBBChh xxAAABxx xxBBBCxx """ CONVERTER_ON_FOURTH = """ ga`bb!cg gabbbbcg gccccccg ghhhhhhg ghhBBhhg hhAAABhh xBBBBCCx xxAAABxx """ CONVERTER_ON_FIFTH = """ ga`bb!cg gabbbbcg gccccccg ghhhhhhg ghhBBhhg hhAAABhh xxBBBCxx xAAAABBx """ CONVERTER_DISPENSER_IDLE = """ xxAAABxx *ffffff* hhhhhhhh h<,,,,<h h>>>>>>h hhhhhhhh xxxxxxxx xxxxxxxx xxxxxxxx """ CONVERTER_DISPENSER_RETRIEVING = """ *ffffff* hhhhhhhh h<,,,,<h h>>>>>>h hhhhhhhh xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ CONVERTER_DISPENSER_DISPENSING = """ xxAAABxx xxBBBCxx *ffffff* hhhhhhhh h<,,,,<h h>>>>>>h hhhhhhhh xxxxxxxx xxxxxxxx """ SQUARE = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ CYTOAVATAR_EMPTY_N = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx&**xxx x&****xx x&****xx xx&&&xxx """ CYTOAVATAR_EMPTY_E = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx&***xx x&*,*,*x x&*****x xx&&&&xx """ CYTOAVATAR_EMPTY_S = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx&**xxx x&,*,*xx x&****xx xx&&&xxx """ CYTOAVATAR_EMPTY_W = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx****xx x&,*,**x x&*****x xx&&&&xx """ CYTOAVATAR_EMPTY = [CYTOAVATAR_EMPTY_N, CYTOAVATAR_EMPTY_E, CYTOAVATAR_EMPTY_S, CYTOAVATAR_EMPTY_W] CYTOAVATAR_HOLDING_ONE_N = """ xxxxxxxx xx&**xxx x&****xx x&&&&&xx &&ooo&&x &ooooo&x &&ooo&&x x&&&&&xx """ CYTOAVATAR_HOLDING_ONE_E = """ xxxxxxxx xx&***xx x&*,*,*x x&*****x &&oooo*x &ooooo&x &&ooo&&x x&&&&&xx """ CYTOAVATAR_HOLDING_ONE_S = """ xxxxxxxx xx&**xxx x&,*,*xx x&****xx &&ooo**x &ooooo&x &&ooo&&x x&&&&&xx """ CYTOAVATAR_HOLDING_ONE_W = """ xxxxxxxx x****xxx &,*,**xx &*****xx &oooo**x &ooooo&x &&ooo&&x x&&&&&xx """ CYTOAVATAR_HOLDING_ONE = [CYTOAVATAR_HOLDING_ONE_N, CYTOAVATAR_HOLDING_ONE_E, CYTOAVATAR_HOLDING_ONE_S, CYTOAVATAR_HOLDING_ONE_W] CYTOAVATAR_HOLDING_MULTI_N = """ xx&***xx x&*****x x&&&&&&x &&oooo&& &oooooo& &oooooo& &&oooo&& x&&&&&&x """ CYTOAVATAR_HOLDING_MULTI_E = """ xx&***xx x&*,*,*x x&*****x &&oooo&& &oooooo& &oooooo& &&oooo&& x&&&&&&x """ CYTOAVATAR_HOLDING_MULTI_S = """ xx&***xx x&,**,*x x&*****x &&oooo&& &oooooo& &oooooo& &&oooo&& x&&&&&&x """ CYTOAVATAR_HOLDING_MULTI_W = """ xx&***xx x&,*,**x x&*****x &&oooo&& &oooooo& &oooooo& &&oooo&& x&&&&&&x """ CYTOAVATAR_HOLDING_MULTI = [CYTOAVATAR_HOLDING_MULTI_N, CYTOAVATAR_HOLDING_MULTI_E, CYTOAVATAR_HOLDING_MULTI_S, CYTOAVATAR_HOLDING_MULTI_W] SINGLE_HOLDING_LIQUID = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xlllxxxx xxlllxxx xxxxxxxx """ SINGLE_HOLDING_SOLID = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxSsxx xxxxssxx xxxxxxxx """ MULTI_HOLDING_SECOND_LIQUID = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxLLxxx xxxxLLLx xxxxxLxx xxxxxxxx """ MULTI_HOLDING_SOLID = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxSsxx xxxxssxx xxxxxxxx xxxxxxxx """ PETRI_DISH_NW_WALL_CORNER = """ xxx&&&&& xx&~~~~~ x&*ooooo &~o*oooo &~oo*o&& &~ooo&@@ &~oo&@@@ &~oo&@@# """ PETRI_DISH_NE_WALL_CORNER = flip_horizontal(PETRI_DISH_NW_WALL_CORNER) PETRI_DISH_SE_WALL_CORNER = flip_vertical(PETRI_DISH_NE_WALL_CORNER) PETRI_DISH_SW_WALL_CORNER = flip_vertical(PETRI_DISH_NW_WALL_CORNER) PETRI_DISH_N_WALL = """ &&&&&&&& ~~~~~~~~ oooooooo oooooooo &&&&&&&& @@@@@@@@ @@@@@@@@ ######## """ PETRI_DISH_W_WALL = """ &~oo&@@# &~oo&@@# &~oo&@@# &~oo&@@# &~oo&@@# &~oo&@@# &~oo&@@# &~oo&@@# """ GRID_FLOOR_LARGE = """ @@@@@@@# @@@@@@@# @@@@@@@# @@@@@@@# @@@@@@@# @@@@@@@# @@@@@@@# ######## """ PETRI_DISH_E_WALL = flip_horizontal(PETRI_DISH_W_WALL) PETRI_DISH_S_WALL = flip_vertical(PETRI_DISH_N_WALL) SOLID = """ xxxxxxxb xxxxxxxb xxxSsxxb xxSSssxb xxssZZxb xxxsZxxb xxxxxxxb bbbbbbbb """ GAS = """ xxxxxxgx GxxGxGxx xxGxxxGg xxggxgxx xGgxgGgx GxxxGgxx xxgxxxxx xxxxxxgx """ LIQUID = """ xxxxxxxb xxxxxxxb xwwwllxb wwlllxxb xxLwwllb xwwwllxb xxllwwLl bbbbbbbb """ SOLID_S_CAP = """ xxxxxxxx xxxxxxxx xxxSsxxx xxSSssxx xxssZZxx xxxsZxxx xxxsZxxx xxxsZxxx """ SOLID_E_CAP = """ xxxxxxxx xxxxxxxx xxxSsxxx xxSSssss xxssZZZZ xxxsZxxx xxxxxxxx xxxxxxxx """ SOLID_N_CAP = """ xxxSsxxx xxxSsxxx xxxSsxxx xxSSssxx xxssZZxx xxxsZxxx xxxxxxxx xxxxxxxx """ SOLID_W_CAP = """ xxxxxxxx xxxxxxxx xxxSsxxx SSSSssxx ssssZZxx xxxsZxxx xxxxxxxx xxxxxxxx """ SOLID_X_COUPLING = """ xxx*sxxx xxx*sxxx xxxSsxxx SSSSssss ssssZZZZ xxxsZxxx xxxsZxxx xxxsZxxx """ SOLID_ES_COUPLING = """ xxxxxxxx xxxxxxxx xxxSsxxx xxSSssss xxssZZZZ xxxsZxxx xxxsZxxx xxxsZxxx """ SOLID_SW_COUPLING = """ xxxxxxxx xxxxxxxx xxxSsxxx SSSSssxx ssssZZxx xxxsZxxx xxxsZxxx xxxsZxxx """ SOLID_NW_COUPLING = """ xxxSsxxx xxxSsxxx xxxSsxxx SSSSssxx ssssZZxx xxxsZxxx xxxxxxxx xxxxxxxx """ SOLID_NE_COUPLING = """ xxxSsxxx xxxSsxxx xxxSsxxx xxSSssss xxssZZZZ xxxsZxxx xxxxxxxx xxxxxxxx """ SOLID_S_TCOUPLING = """ xxxSsxxx xxxSsxxx xxxSsxxx SSSSssss ssssZZZZ xxxsZxxx xxxxxxxx xxxxxxxx """ SOLID_E_TCOUPLING = """ xxxSsxxx xxxSsxxx xxxSsxxx SSSSssxx ssssZZxx xxxsZxxx xxxsZxxx xxxsZxxx """ SOLID_N_TCOUPLING = """ xxxxxxxx xxxxxxxx xxxSsxxx SSSSssss ssssZZZZ xxxsZxxx xxxsZxxx xxxsZxxx """ SOLID_W_TCOUPLING = """ xxxSsxxx xxxSsxxx xxxSsxxx xxSSssss xxssZZZZ xxxsZxxx xxxsZxxx xxxsZxxx """ SOLID_NS_COUPLING = """ xxxSsxxx xxxSsxxx xxxSsxxx xxSSssxx xxssZZxx xxxsZxxx xxxsZxxx xxxsZxxx """ SOLID_EW_COUPLING = """ xxxxxxxx xxxxxxxx xxxSsxxx SSSSssss ssssZZZZ xxxsZxxx xxxxxxxx xxxxxxxx """ APPLE = """ xxxxxxxx xxxxxxxx xxo|*xxx x*#|**xx x*****xx x#***#xx xx###xxx xxxxxxxx """ APPLE_JUMP = """ xxxxxxxx xxo|*xxx x*#|**xx x*****xx x#***#xx xx###xxx xxxxxxxx xxxxxxxx """ N_EDGE = """ ******** xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ N_HALF_EDGE = """ xxxx**** xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ W_EDGE = """ *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx *xxxxxxx """ S_EDGE = flip_vertical(N_EDGE) E_EDGE = flip_horizontal(W_EDGE) PAINTER_STAND_S_FACING = """ xxxxxxxx xxxxxxxx xxxxxxxx xoooooox xo!**!ox ******** *WWWWWW* wWWWWWWx """ PAINTER_STAND_E_FACING = """ xxxxx**x xxxxx*WW xxxxx*WW xxxx**WW xxxx**WW xxxxx*WW xxxxx*WW xxxxx**w """ PAINTER_STAND_N_FACING = flip_vertical(PAINTER_STAND_S_FACING) PAINTER_STAND_W_FACING = flip_horizontal(PAINTER_STAND_E_FACING) PAINTER_COVER = """ xWWWWWWx xWWWWWWw wWWWWWWw wWWWWWWx xWWWWWWw wWWWWWWx wWWWWWWw xWWWWWWx """ RECEIVER_MOUTH = """ @~!!&&&& *~GGGgl& *~BBGgl& *~BBGgl& *~BBGgl& *~BBGgl& *~GGGgl& ~~!!!&&& """ RECEIVER_BACK = """ xxxx@@@@ exxx@*** eded@*** aded@*** bded@*** ceae@*** cxxx@*** xxxx~~~~ """ CARBON_INDICATOR = """ xxxxxxxx xxxxxxxx xxxxxOoO xxxxxoOo xxxxxOoO xxxxxsSs xxxxxxxx xxxxxxxx """ WOOD_INDICATOR = """ xxxxxxxx xxxxxxxx xxxxxOOO xxxxxooo xxxxxOOO xxxxxsss xxxxxxxx xxxxxxxx """ METAL_INDICATOR = """ xxxxxxxx xxxxxxxx xxxxxOOO xxxxxOOO xxxxxOOO xxxxxsss xxxxxxxx xxxxxxxx """ CONVEYOR_BELT_1 = """ YYYBBBBY Mhshshsh Mhyyshyy Myyhsyyh Myyhsyyh Mhyyshyy Mhshshsh BYYYYBBB """ CONVEYOR_BELT_2 = """ YBBBBYYY shshshMh yyshyyMh yhsyyhMy yhsyyhMy yyshyyMh shshshMh YYYBBBBY """ CONVEYOR_BELT_3 = """ BBBYYYYB shshMhsh shyyMhyy syyhMyyh syyhMyyh shyyMhyy shshMhsh YBBBBYYY """ CONVEYOR_BELT_4 = """ BYYYYBBB shMhshsh yyMhyysh yhMyyhsy yhMyyhsy yyMhyysh shMhshsh BBBYYYYB """ CONVEYOR_BELT_S_1 = """ YhyhhyhB BsyyyysB BhhyyhhB BssssssY BhyhhyhY YsyyyysY YhhyyhhY YMMMMMMB """ CONVEYOR_BELT_S_2 = """ YhhyyhhY YMMMMMMB YhyhhyhB BsyyyysB BhhyyhhB BssssssY BhyhhyhY YsyyyysY """ CONVEYOR_BELT_S_3 = """ BhyhhyhY YsyyyysY YhhyyhhY YMMMMMMB YhyhhyhB BsyyyysB BhhyyhhB BssssssY """ CONVEYOR_BELT_S_4 = """ BhhyyhhB BssssssY BhyhhyhY YsyyyysY YhhyyhhY YMMMMMMB YhyhhyhB BsyyyysB """ CONVEYOR_BELT_ANCHOR_TOP_RIGHT = """ :xxxxxxx :,xxxxxx :,xxxxxx :,xxxxxx :,xxxxxx :,xxxxxx :,xxxxxx :,xxxxxx """ CONVEYOR_BELT_ANCHOR_RIGHT = """ :,xxxxxx :,xxxxxx :,xxxxxx :,xxxxxx :,xxxxxx :,xxxxxx :,xxxxxx :,xxxxxx """ CONVEYOR_BELT_ANCHOR_TOP_LEFT = """ xxxxxxxxg xxxxxxxgG xxxxxxxgG xxxxxxxgG xxxxxxxgG xxxxxxxgG xxxxxxxgG xxxxxxxgG """ CONVEYOR_BELT_ANCHOR_LEFT = """ xxxxxxxgG xxxxxxxgG xxxxxxxgG xxxxxxxgG xxxxxxxgG xxxxxxxgG xxxxxxxgG xxxxxxxgG """ METAL_FLOOR_DOUBLE_SPACED = """ -------- ----xo-- -------- --xo---- -------- xo------ -------- -------- """ CARBON_OBJECT = """ xxxxxxxx xx*!*!xx xx!*!*xx xx*!*!xx xx!*!*xx xxsSsSxx xxxxxxxx xxxxxxxx """ WOOD_OBJECT = """ xxxxxxxx xx!!!!xx xx***@xx xx!!!!xx xx***@xx xxSSSSxx xxxxxxxx xxxxxxxx """ METAL_OBJECT = """ xxxxxxxx xx***#xx xx*@@#xx xx*@@#xx xx####xx xxxxxxxx xxxxxxxx xxxxxxxx """ METAL_DROPPING_1 = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxx@@#xx xxx@@#xx xxx###xx xxxxxxxx """ METAL_DROPPING_2 = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xx##xxxx xx##xxxx """ CARBON_DROPPING_1 = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxsSsxx xxxSsSxx xxxsSsxx xxxxxxxx """ CARBON_DROPPING_2 = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxsSxxxx xxSsxxxx """ RECEIVER_PUSHING_1 = """ xxxx@@@@ xexx@*** xede@*** xade@*** xbde@*** xcea@*** xcxx@*** xxxx~~~~ """ RECEIVER_PUSHING_2 = """ xxxx@@@@ exxd@*** eded@*** aded@*** bded@*** ceae@*** cxxe@*** xxxx~~~~ """ RECEIVER_PUSHING_3 = """ xxxx@@@@ exex@*** eded@*** aded@*** bded@*** ceae@*** cxax@*** xxxx~~~~ """ RECEIVER_PUSHING_4 = """ xxxx@@@@ edxx@*** eded@*** aded@*** bded@*** ceae@*** cexx@*** xxxx~~~~ """ DIAMOND = """ xxxabxxx xxaabbxx xaaabbbx aaaabbbb ddddcccc xdddcccx xxddccxx xxxdcxxx """ SMALL_DIAMOND = """ xxxxxxxx xxxabxxx xxaabbxx xaaabbbx xdddcccx xxddccxx xxxdcxxx xxxxxxxx """ CUTE_AVATAR_RANK_FIRST_N = """ xxxxxx,, x*xx*x,, x****,xx x&&&&xxx ******xx &****&xx x****xxx x&xx&xxx """ CUTE_AVATAR_RANK_FIRST_E = """ xxxxx,,, x*x*xx,, x****x,, x*O*O,xx **##*&xx &****&xx x****xxx x&&x&xxx """ CUTE_AVATAR_RANK_FIRST_S = """ xxxxxx,, x*xx*x,, x****,xx xO**Oxxx &*##*&xx &****&xx x****xxx x&xx&xxx """ CUTE_AVATAR_RANK_FIRST_W = """ xxxxx,,, xx*x*x,, x****x,, xO*O*,xx &*##**xx &****&xx x****xxx x&x&&xxx """ CUTE_AVATAR_RANK_FIRST = [CUTE_AVATAR_RANK_FIRST_N, CUTE_AVATAR_RANK_FIRST_E, CUTE_AVATAR_RANK_FIRST_S, CUTE_AVATAR_RANK_FIRST_W] CUTE_AVATAR_RANK_SECOND_N = """ xxxxxx,, x*xx*x,, x****,xx x&&&&xxx ******xx &****&xx x****xxx x&xx&xxx """ CUTE_AVATAR_RANK_SECOND_E = """ xxxxx,,, x*x*xx,, x****x,, x*O*O,xx **##*&xx &****&xx x****xxx x&&x&xxx """ CUTE_AVATAR_RANK_SECOND_S = """ xxxxxx,, x*xx*x,, x****,xx xO**Oxxx &*##*&xx &****&xx x****xxx x&xx&xxx """ CUTE_AVATAR_RANK_SECOND_W = """ xxxxx,,, xx*x*x,, x****x,, xO*O*,xx &*##**xx &****&xx x****xxx x&x&&xxx """ CUTE_AVATAR_RANK_SECOND = [CUTE_AVATAR_RANK_SECOND_N, CUTE_AVATAR_RANK_SECOND_E, CUTE_AVATAR_RANK_SECOND_S, CUTE_AVATAR_RANK_SECOND_W] CUTE_AVATAR_RANK_RUNNER_UP_N = """ xxxxxx,, x*xx*x,, x****,xx x&&&&xxx ******xx &****&xx x****xxx x&xx&xxx """ CUTE_AVATAR_RANK_RUNNER_UP_E = """ xxxxx,,, x*x*xx,, x****x,, x*O*O,xx **##*&xx &****&xx x****xxx x&&x&xxx """ CUTE_AVATAR_RANK_RUNNER_UP_S = """ xxxxxx,, x*xx*x,, x****,xx xO**Oxxx &*##*&xx &****&xx x****xxx x&xx&xxx """ CUTE_AVATAR_RANK_RUNNER_UP_W = """ xxxxx,,, xx*x*x,, x****x,, xO*O*,xx &*##**xx &****&xx x****xxx x&x&&xxx """ CUTE_AVATAR_RANK_RUNNER_UP = [ CUTE_AVATAR_RANK_RUNNER_UP_N, CUTE_AVATAR_RANK_RUNNER_UP_E, CUTE_AVATAR_RANK_RUNNER_UP_S, CUTE_AVATAR_RANK_RUNNER_UP_W ] CUTE_AVATAR_ARMS_UP_N = """ xxpxxpxx xp*xx*px pP****Pp P&&&&&&P x******x xx****xx xx****xx xx&xx&xx """ CUTE_AVATAR_ARMS_UP_E = """ xxxxxxxx xx*x*xxx xx****xx xx*O*OpP x*&##*&& xx****pP xx****xx xx&&x&xx """ CUTE_AVATAR_ARMS_UP_S = """ xxxxxxxx xx*xx*xx xx****xx xPO**OPx P&*##*&P pP****Pp xp****px xx&pp&xx """ CUTE_AVATAR_ARMS_UP_W = """ xxxxxxxx xxx*x*xx xx****xx PpO*O*xx &&*##&*x Pp****xx xx****xx xx&x&&xx """ CUTE_AVATAR_ARMS_UP = [CUTE_AVATAR_ARMS_UP_N, CUTE_AVATAR_ARMS_UP_E, CUTE_AVATAR_ARMS_UP_S, CUTE_AVATAR_ARMS_UP_W] COIN_MAGICALLY_HELD = """ xxxx,,,,,,,,xxxx xxxx,,,,,,,,xxxx xxxx,,,,,,,,xxxx xxxx~~@###~~xxxx ,,,~~@@@@##~~,,, ,,~~&&&@@@@#~~,, ,,~&&&&&&&@@#~,, ,,~&*&&&&&&&&~,, ,,~&***&&&&&&~,, ,,~**********~,, ,,~~********~~,, ,,,~~******~~,,, xxxx~~****~~xxxx xxxx,,,,,,,,xxxx xxxx,,,,,,,,xxxx xxxx,,,,,,,,xxxx """ MARKET_CHAIR = """ ,,,,,,,, ,,,,,,,, ,,,,,,,, ,,,**,,, ,,*++*,, ,,+*+*,, ,,,,,,,, ,,,,,,,, """ # Externality Mushrooms sprites. MUSHROOM = """ xxxxxxxx xxxxxxxx xxxxxxxx xxoOOOox xxO*OOOx xxOOOO*x xxwiiiwx xxx!!!xx """ # Factory sprites. NW_PERSPECTIVE_WALL = """ -------- -------- -------- -------- -----GGG -----gGg -----GgG -----ggg """ PERSPECTIVE_WALL = """ -------- -------- -------- -------- GGGGGGGG GgGgGgGg gGgGgGgG gggggggg """ PERSPECTIVE_WALL_T_COUPLING = """ -------- -------- -------- -------- G-----GG G-----Gg g-----gG g-----gg """ NE_PERSPECTIVE_WALL = """ -------- -------- -------- -------- GGG----- GgG----- gGg----- ggg----- """ W_PERSPECTIVE_WALL = """ -----xxx -----xxx -----xxx -----xxx -----xxx -----xxx -----xxx -----xxx """ MID_PERSPECTIVE_WALL = """ x-----xx x-----xx x-----xx x-----xx x-----xx x-----xx x-----xx x-----xx """ E_PERSPECTIVE_WALL = """ xxx----- xxx----- xxx----- xxx----- xxx----- xxx----- xxx----- xxx----- """ PERSPECTIVE_THRESHOLD = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx EEEEEEEE eeeeeeee EEEEEEEE eeeeeeee """ PERSPECTIVE_WALL_PALETTE = { # Palette for PERSPECTIVE_WALL sprites. "-": (130, 112, 148, 255), "G": (74, 78, 99, 255), "g": (79, 84, 107, 255), "E": (134, 136, 138, 255), "e": (143, 146, 148, 255), "x": (0, 0, 0, 0), } HOPPER_BODY = """ xaaaaaax xaaaaaax caaaaaab faaaaaab gaaaaaab caaaaaac caaaaaac cbbbbbbc """ HOPPER_BODY_ACTIVATED = """ xaaaaaax xaaaaaab caaaaaab faaaaaab gaaaaaab caaaaaab caaaaaac cbbbbbbc """ DISPENSER_BODY = """ xaaaaaax xaaaaaax maaaaaax maaaaaax maaaaaax xaaaaaax xaaaaaax xbbbbbbx """ DISPENSER_BODY_ACTIVATED = """ xaaaaaax maaaaaax maaaaaax maaaaaax maaaaaax maaaaaax xaaaaaax xbbbbbbx """ HOPPER_CLOSED = """ ceeeeeec ceccccec ceccccec ceccccec ceeeeeec cddddddc cccccccc xxxxxxxx """ HOPPER_CLOSING = """ ceeeeeec cec##cec cec--cec cec--cec ceeeeeec cddddddc cccccccc xxxxxxxx """ HOPPER_OPEN = """ ceeeeeec ce####ec ce#--#ec ce#--#ec ceeeeeec cddddddc cccccccc xxxxxxxx """ DISPENSER_BELT_OFF = """ xbaaaabx xbaaaabx xejjjjex xejjjjex xejjjjex xejjjjex xdaaaadx xxxxxxxx """ DISPENSER_BELT_ON_POSITION_1 = """ xbaaaabx xboaaobx xejOOjex xejjjjex xeOjjOex xejOOjex xdaaaadx xxxxxxxx """ DISPENSER_BELT_ON_POSITION_2 = """ xbaooabx xbaaaabx xeOjjOex xejOOjex xejjjjex xeOjjOex xdaooadx xxxxxxxx """ DISPENSER_BELT_ON_POSITION_3 = """ xboaaobx xbaooabx xejjjjex xeOjjOex xejOOjex xejjjjex xdoaaodx xxxxxxxx """ FLOOR_MARKING = """ -------- --xx-xx- -x-xx-x- -xx-xx-- --xx-xx- -x-xx-x- -xx-xx-- -------- """ FLOOR_MARKING_LONG_TOP = """ -------- --xx-xx- -x-xx-x- -xx-xx-- --xx-xx- -x-xx-x- -xx-xx-- --xx-xx- """ FLOOR_MARKING_LONG_BOTTOM = """ -x-xx-x- -xx-xx-- --xx-xx- -x-xx-x- -xx-xx-- --xx-xx- -x-xx-x- -------- """ APPLE_CUBE_INDICATOR = """ xxxxxxxx xxgsxxxx xxffxxxx xxxxxxxx xxxxaaxx xxxxaaxx xxxxxxxx xxxxxxxx """ APPLE_INDICATOR = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxgsxxx xxxffxxx xxxxxxxx xxxxxxxx xxxxxxxx """ DOUBLE_APPLE_INDICATOR = """ xxxxxxxx xxgsxxxx xxffxxxx xxxxxxxx xxxxgsxx xxxxffxx xxxxxxxx xxxxxxxx """ APPLE_INDICATOR_FADE = """ xxxxxxxx xxxxxxxx xxxGSxxx xxxFFxxx xxxFFxxx xxxxxxxx xxxxxxxx xxxxxxxx """ APPLE_DISPENSING_ANIMATION_1 = """ xxFffFxx xxxFFxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ APPLE_DISPENSING_ANIMATION_2 = """ xxxxxxxx xxxgsxxx xxFffFxx xxFffFxx xxxFFxxx xxxxxxxx xxxxxxxx xxxxxxxx """ APPLE_DISPENSING_ANIMATION_3 = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxgsxxx xxFffFxx xxFffFxx xxxFFxxx """ BANANA_DISPENSING_ANIMATION_1 = """ xxxBbbxx xxbbbBxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ BANANA_DISPENSING_ANIMATION_3 = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxsxx xxxxBbxx xxxBbbxx xxbbbBxx """ CUBE_DISPENSING_ANIMATION_1 = """ xxxaaAxx xxxaA&xx xxxA&&xx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ CUBE_DISPENSING_ANIMATION_2 = """ xxxxxxxx xxxxxxxx xxxaaAxx xxxaA&xx xxxA&&xx xxxxxxxx xxxxxxxx xxxxxxxx """ CUBE_DISPENSING_ANIMATION_3 = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxaaAxx xxxaA&xx xxxA&&xx """ BANANA = """ xxxxxxxx xxxxxsxx xxxxBbxx xxxBbbxx xxbbbBxx xxxxxxxx xxxxxxxx xxxxxxxx """ BANANA_DROP_1 = """ xxxxxxxx xxxxxsxx xxxxBbxx xxxBbxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ BANANA_DROP_2 = """ xxxxxxxx xxxxxxxx xxxxBxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ BLOCK = """ xxxxxxxx xxxxxxxx xxaaAxxx xxaA&xxx xxA&&xxx xxxxxxxx xxxxxxxx xxxxxxxx """ BLOCK_DROP_1 = """ xxxxxxxx xxxxxxxx xxxaAxxx xxxA&xxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ BLOCK_DROP_2 = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxx&xxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ HOPPER_INDICATOR_SINGLE_BLOCK = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxaaxxx xxxaaxxx xxxxxxxx xxxxxxxx xxxxxxxx """ HOPPER_INDICATOR_SINGLE_BANANA = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxbxx xxxbbxxx xxxxxxxx xxxxxxxx xxxxxxxx """ HOPPER_INDICATOR_TWO_BLOCKS = """ xxxxxxxx xxxxaaxx xxxxaaxx xxxxxxxx xxaaxxxx xxaaxxxx xxxxxxxx xxxxxxxx """ HOPPER_INDICATOR_ONE_BLOCK = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxaaxxxx xxaaxxxx xxxxxxxx xxxxxxxx """ HOPPER_INDICATOR_ON = """ xxxxxxxx xxxxxbxx xxxbbxxx xxxxxxxx xxaaxxxx xxaaxxxx xxxxxxxx xxxxxxxx """ HOPPER_INDICATOR_BANANA = """ xxxxxxxx xxxxxbxx xxxbbxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ HOPPER_INDICATOR_BLOCK = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxaaxxxx xxaaxxxx xxxxxxxx xxxxxxxx """ HOPPER_INDICATOR_FADE = """ xxxxxxxx xxxxxBxx xxxBBxxx xxxxxxxx xxEExxxx xxEExxxx xxxxxxxx xxxxxxxx """ FACTORY_MACHINE_BODY_PALETTE = { # Palette for DISPENSER_BODY, HOPPER_BODY, and HOPPER sprites "a": (140, 129, 129, 255), "b": (84, 77, 77, 255), "f": (62, 123, 214, 255), "g": (214, 71, 71, 255), "c": (92, 98, 120, 255), "d": (64, 68, 82, 255), "m": (105, 97, 97, 255), "e": (120, 128, 156, 255), "h": (64, 68, 82, 255), "#": (51, 51, 51, 255), "-": (0, 0, 0, 255), "x": (0, 0, 0, 0), } CUTE_AVATAR_W_BUBBLE_N = """ xxxxxx,, x*xx*x,, x****,xx x&&&&xxx ******xx &****&xx x****xxx x&xx&xxx """ CUTE_AVATAR_W_BUBBLE_E = """ xxxxx,,, x*x*xx,, x****x,, x*O*O,xx **##*&xx &****&xx x****xxx x&&x&xxx """ CUTE_AVATAR_W_BUBBLE_S = """ xxxxxx,, x*xx*x,, x****,xx xO**Oxxx &*##*&xx &****&xx x****xxx x&xx&xxx """ CUTE_AVATAR_W_BUBBLE_W = """ xxxxx,,, xx*x*x,, x****x,, xO*O*,xx &*##**xx &****&xx x****xxx x&x&&xxx """ CUTE_AVATAR_W_BUBBLE = [CUTE_AVATAR_W_BUBBLE_N, CUTE_AVATAR_W_BUBBLE_E, CUTE_AVATAR_W_BUBBLE_S, CUTE_AVATAR_W_BUBBLE_W] CUTE_AVATAR_FROZEN = """ ######## ##O##O## ##OOOO## ##,OO,## #OO##OO# #OOOOOO# ##OOOO## ##O##O## """ # Suggested base colour for the palette: (190, 190, 50, 255) HD_CROWN_N = """ xxxxxxxxoxxxxxxx xxxx#xxoooxxoxxx xxxx@oxoooxooxxx xxxxx@oo@oooxxxx xxxx#@@&r*o@Oxxx xxx#@@@*R*@*oOxx xxx###@*r*oOOOxx xxxxx#####OOxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ HD_CROWN_E = """ xxxxxxxxxxxx*xxx xxx#xxx*xxx*&xxx xxx@*xx*&x*&&rxx xxxr@@@*&&&oRrxx xxxx@@**&&&orxxx xxx#@**&###OOxxx xxx###@#xxxxxxxx xxxxx##xxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ HD_CROWN_S = """ xxxxxxxx@xxxxxxx xxxx@xx#r*xxoxxx xxxx@ox%Rrx&oxxx xxxxx@&RRr&oxxxx xxxx#@@*r*&oOxxx xxx#@#####OOoOxx xxx###xxxxxOOOxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ HD_CROWN_W = """ xxxx#xxxxxxxxxxx xxxx@@xxx*xxx*xx xxx%@@*x*&x*&&xx xxxRr@@*&&&oorxx xxxxr@**&&&ooxxx xxxx#####**&&Oxx xxxxxxxxx#&OOOxx xxxxxxxxxxOOxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx """ HD_CROWN = [HD_CROWN_N, HD_CROWN_E, HD_CROWN_S, HD_CROWN_W] JUST_BADGE = """ xxxx xabx xcdx xxxx """ EMPTY_TREE = """ x@@@@@@x x@@@@@@@x x@@@@@@x xx@**@xx xxx**xxx xxx**xxx xxx**xxx xxxxxxxx """ EMPTY_SHRUB = """ xxxxxxxx xxxxxxxx xxxxxxxx xx@@@@xx x@@@@@@x x@@@@@@x x@@@@@@x xxxxxxxx """ FRUIT_SHRUB = """ xxxxxxxx xxxxxxxx xxxxxxxx xx@@@@xx x@@Z@Z@x x@Z@Z@@x x@@@@@@x xxxxxxxx """ FRUIT_IN_SHRUB = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxZxZxx xxZxZxxx xxxxxxxx """ FRUIT_IN_TREE = """ xxxxxxxx xxZxZxxx xxxZxZxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx """ GRASP_SHAPE = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xoxxxxox xxooooxx """ CUTE_AVATAR_CHILD_N = """ xxxxxxxx xxxxxxxx xx*xx*xx xx****xx xx&&&&xx x******x xx&xx&xx xxxxxxxx """ CUTE_AVATAR_CHILD_E = """ xxxxxxxx xxxxxxxx xx*x*xxx xx****xx xx*O*Oxx x**##*&x xx&&x&xx xxxxxxxx """ CUTE_AVATAR_CHILD_S = """ xxxxxxxx xxxxxxxx xx*xx*xx xx****xx xxO**Oxx x&*##*&x xx&xx&xx xxxxxxxx """ CUTE_AVATAR_CHILD_W = """ xxxxxxxx xxxxxxxx xxx*x*xx xx****xx xxO*O*xx x&*##**x xx&x&&xx xxxxxxxx """ CUTE_AVATAR_CHILD = [ CUTE_AVATAR_CHILD_N, CUTE_AVATAR_CHILD_E, CUTE_AVATAR_CHILD_S, CUTE_AVATAR_CHILD_W ] GEM_PALETTE = { "e": (119, 255, 239, 255), "r": (106, 241, 225, 255), "t": (61, 206, 189, 255), "d": (78, 218, 202, 255), "x": ALPHA } GRATE_PALETTE = { "*": (59, 59, 59, 255), "@": (70, 70, 70, 255), "&": (48, 48, 48, 255), "~": (31, 31, 31, 255), "X": (104, 91, 91, 255), "o": (109, 98, 98, 255), "x": ALPHA } GRASS_PALETTE = { "*": (124, 153, 115, 255), "@": (136, 168, 126, 255), "x": (204, 199, 192, 255) } GLASS_PALETTE = { "@": (218, 243, 245, 150), "*": (186, 241, 245, 150), "!": (134, 211, 217, 150), "x": ALPHA } WOOD_FLOOR_PALETTE = { "-": (130, 100, 70, 255), "x": (148, 109, 77, 255) } METAL_FLOOR_PALETTE = { "o": (90, 92, 102, 255), "O": (117, 120, 133, 255), "x": (99, 101, 112, 255) } METAL_PANEL_FLOOR_PALETTE = { "-": (142, 149, 163, 255), "#": (144, 152, 166, 255), "/": (151, 159, 173, 255) } SHIP_PALETTE = { "o": (90, 105, 136, 255), "#": (58, 68, 102, 255), "x": (38, 43, 68, 255) } TILE_FLOOR_PALETTE = { "t": (235, 228, 216, 255), "x": (222, 215, 202, 255), "o": (214, 207, 195, 255) } ROCK_PALETTE = { "l": (20, 30, 40, 255), "r": (30, 40, 50, 255), "k": (100, 120, 120, 255), "*": (90, 100, 110, 255), "s": (45, 55, 65, 255), "p": (40, 60, 60, 255), "x": ALPHA, } PAPER_PALETTE = { "*": (250, 250, 250, 255), "@": (20, 20, 20, 255), "x": ALPHA, } MOULD_PALETTE = { "@": (179, 255, 0, 255), "~": (140, 232, 0, 255), "*": (132, 222, 0, 255), "&": (119, 194, 0, 255), "+": (153, 219, 0, 80), "x": ALPHA } SCISSORS_PALETTE = { "*": (89, 26, 180, 255), ">": (100, 100, 100, 255), "#": (127, 127, 127, 255), "x": ALPHA, } WATER_PALETTE = { "@": (150, 190, 255, 255), "*": (0, 100, 120, 255), "o": (0, 70, 90, 255), "~": (0, 55, 74, 255), "x": ALPHA, } BOAT_PALETTE = { "*": (90, 70, 20, 255), "&": (120, 100, 30, 255), "o": (160, 125, 35, 255), "@": (180, 140, 40, 255), "#": (255, 255, 240, 255), "x": ALPHA, } GRAY_PALETTE = { "*": (30, 30, 30, 255), "&": (130, 130, 130, 255), "@": (200, 200, 200, 255), "#": (230, 230, 230, 255), "x": ALPHA } WALL_PALETTE = { "*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255), "x": ALPHA } BRICK_WALL_PALETTE = { "b": (166, 162, 139, 255), "c": (110, 108, 92, 255), "o": (78, 78, 78, 255), "i": (138, 135, 116, 255), "x": ALPHA } COIN_PALETTE = { "*": (90, 90, 20, 255), "@": (220, 220, 60, 255), "&": (180, 180, 40, 255), "#": (255, 255, 240, 255), "x": ALPHA } RED_COIN_PALETTE = { "*": (90, 20, 20, 255), "@": (220, 60, 60, 255), "&": (180, 40, 40, 255), "#": (255, 240, 240, 255), "x": ALPHA } GREEN_COIN_PALETTE = { "*": (20, 90, 20, 255), "@": (60, 220, 60, 255), "&": (40, 180, 40, 255), "#": (240, 255, 240, 255), "x": ALPHA } TILED_FLOOR_GREY_PALETTE = { "o": (204, 199, 192, 255), "-": (194, 189, 182, 255), "x": ALPHA } INVISIBLE_PALETTE = { "*": ALPHA, "@": ALPHA, "&": ALPHA, "#": ALPHA, "x": ALPHA } TREE_PALETTE = { "*": TREE_BROWN, "@": LEAF_GREEN, "x": ALPHA } POTATO_PATCH_PALETTE = { "*": VEGETAL_GREEN, "@": LEAF_GREEN, "x": ALPHA } FIRE_PALETTE = { "@": TREE_BROWN, "*": DARK_FLAME, "&": LIGHT_FLAME, "x": ALPHA } STONE_QUARRY_PALETTE = { "@": DARK_STONE, "#": LIGHT_STONE, "x": ALPHA } PRED1_PALETTE = { "e": (80, 83, 115, 255), "h": (95, 98, 135, 255), "s": (89, 93, 128, 255), "l": (117, 121, 158, 255), "u": (113, 117, 153, 255), "a": (108, 111, 145, 255), "y": (255, 227, 71, 255), "x": ALPHA } CROWN_PALETTE = { "*": (190, 190, 50, 255), "&": (150, 150, 45, 255), "o": (100, 100, 30, 255), "@": (240, 240, 62, 255), "r": (170, 0, 0, 255), "R": (220, 0, 0, 255), "%": (255, 80, 80, 255), "#": (255, 255, 255, 255), "O": (160, 160, 160, 255), "x": (0, 0, 0, 0), } FENCE_PALETTE_BROWN = { "a": (196, 155, 123, 255), "b": (167, 131, 105, 255), "c": (146, 114, 90, 255), "d": (122, 94, 75, 255), "e": (89, 67, 55, 255), "x": (0, 0, 0, 0), "#": (0, 0, 0, 38), } MUSHROOM_GREEN_PALETTE = { "|": (245, 240, 206, 255), "!": (224, 216, 173, 255), "i": (191, 185, 147, 255), "w": (37, 161, 72, 255), "O": (90, 224, 116, 255), "o": (90, 224, 116, 75), "*": (186, 238, 205, 255), "x": (0, 0, 0, 0), } MUSHROOM_RED_PALETTE = { "|": (245, 240, 206, 255), "!": (224, 216, 173, 255), "i": (191, 185, 147, 255), "w": (184, 99, 92, 255), "O": (239, 132, 240, 255), "o": (239, 132, 240, 75), "*": (235, 192, 236, 255), "x": (0, 0, 0, 0), } MUSHROOM_BLUE_PALETTE = { "|": (245, 240, 206, 255), "!": (224, 216, 173, 255), "i": (191, 185, 147, 255), "w": (30, 168, 161, 255), "O": (41, 210, 227, 255), "o": (41, 210, 227, 75), "*": (187, 228, 226, 255), "x": (0, 0, 0, 0), } MUSHROOM_ORANGE_PALETTE = { "|": (245, 240, 206, 255), "!": (224, 216, 173, 255), "i": (191, 185, 147, 255), "w": (242, 140, 40, 255), "O": (255, 165, 0, 255), "o": (255, 172, 28, 75), "*": (197, 208, 216, 255), "x": (0, 0, 0, 0), } DISPENSER_BELT_PALETTE = { # Palette for DISPENSER_BELT sprites "a": (140, 129, 129, 255), "b": (84, 77, 77, 255), "e": (120, 128, 156, 255), "j": (181, 167, 167, 255), "o": (174, 127, 19, 255), "-": (222, 179, 80, 255), "O": (230, 168, 25, 255), "d": (64, 68, 82, 255), "x": (0, 0, 0, 0), } FACTORY_OBJECTS_PALETTE = { # Palette for BANANA, BLOCK, APPLE and HOPPER_INDICATOR sprites "a": (120, 210, 210, 255), "A": (100, 190, 190, 255), "&": (90, 180, 180, 255), "x": (0, 0, 0, 0), "b": (245, 230, 27, 255), "B": (245, 230, 27, 145), "s": (94, 54, 67, 255), "E": (124, 224, 230, 104), "f": (169, 59, 59, 255), "g": (57, 123, 68, 255), "F": (140, 49, 49, 255), "G": (57, 123, 68, 115), "S": (94, 54, 67, 115), } BATTERY_PALETTE = { # Palette for BATTERY andd WIRES sprites "a": (99, 92, 92, 255), "A": (71, 66, 66, 255), "d": (78, 122, 86, 255), "D": (60, 89, 86, 255), "f": (62, 123, 214, 255), "g": (214, 71, 71, 255), "s": (181, 167, 167, 255), "w": (223, 246, 245, 255), "o": (111, 196, 20, 255), "O": (98, 173, 17, 255), "#": (0, 0, 0, 255), "W": (255, 255, 255, 255), "x": (0, 0, 0, 0), } STARS_PALETTE = { "-": (223, 237, 19, 255), "x": (0, 0, 0, 0), } GOLD_CROWN_PALETTE = { "#": (244, 180, 27, 255), "@": (186, 136, 20, 150), "x": (0, 0, 0, 0) } SILVER_CROWN_PALETTE = { "#": (204, 203, 200, 255), "@": (171, 170, 167, 150), "x": (0, 0, 0, 0), } BRONZE_CAP_PALETTE = { "#": (102, 76, 0, 255), "@": (87, 65, 0, 255), "x": (0, 0, 0, 0) } YELLOW_FLAG_PALETTE = { "*": (255, 216, 0, 255), "@": (230, 195, 0, 255), "&": (204, 173, 0, 255), "|": (102, 51, 61, 255), "x": (0, 0, 0, 0) } RED_FLAG_PALETTE = { "*": (207, 53, 29, 255), "@": (181, 46, 25, 255), "&": (156, 40, 22, 255), "|": (102, 51, 61, 255), "x": (0, 0, 0, 0) } GREEN_FLAG_PALETTE = { "*": (23, 191, 62, 255), "@": (20, 166, 54, 255), "&": (17, 140, 46, 255), "|": (102, 51, 61, 255), "x": (0, 0, 0, 0) } HIGHLIGHT_PALETTE = { "*": (255, 255, 255, 35), "o": (0, 0, 0, 35), "x": (0, 0, 0, 0) } BRUSH_PALETTE = { "-": (143, 96, 74, 255), "+": (117, 79, 61, 255), "k": (199, 176, 135, 255) } MAGIC_BEAM_PALETTE = { "*": (196, 77, 190, 200), "~": (184, 72, 178, 150), "x": (0, 0, 0, 0), } FRUIT_TREE_PALETTE = { "#": (113, 170, 52, 255), "w": (57, 123, 68, 255), "I": (71, 45, 60, 255), "x": (0, 0, 0, 0), } CYTOAVATAR_PALETTE = { "*": (184, 61, 187, 255), "&": (161, 53, 146, 255), "o": (110, 15, 97, 255), ",": (0, 0, 0, 255), "x": (0, 0, 0, 0), "#": (255, 255, 255, 255), } PETRI_DISH_PALETTE = { "@": (238, 245, 245, 255), "~": (212, 234, 232, 255), "*": (188, 220, 220, 255), "o": (182, 204, 201, 255), "&": (168, 189, 189, 255), "x": (0, 0, 0, 0), "#": (255, 255, 255, 255), } MATTER_PALETTE = { "S": (138, 255, 228, 255), "s": (104, 247, 214, 255), "Z": (96, 230, 198, 255), "G": (104, 247, 214, 100), "g": (71, 222, 187, 175), "L": (48, 194, 160, 255), "l": (41, 166, 137, 255), "w": (41, 186, 154, 255), "x": (0, 0, 0, 0), } CONVEYOR_BELT_PALETTE = { "B": (48, 44, 46, 255), "Y": (250, 197, 75, 255), "y": (212, 177, 97, 255), "M": (117, 108, 103, 255), "h": (161, 147, 141, 255), "s": (148, 135, 130, 255), } PAINTER_STAND_BLUE_PALETTE = { "*": (70, 147, 199, 255), "@": (98, 176, 222, 255), "!": (47, 95, 158, 255), "o": (41, 77, 128, 255), "W": (255, 255, 255, 175), "w": (255, 255, 255, 150), "x": (255, 255, 255, 0), } OBJECT_INDICATOR_PALETTE = { "O": (229, 221, 212, 255), "o": (185, 178, 170, 255), "S": (105, 101, 96, 255), "s": (122, 118, 113, 255), "x": (0, 0, 0, 0), } BLUE_INDICATOR_PALETTE = { "O": (111, 191, 237, 255), "o": (81, 160, 207, 255), "S": (33, 102, 148, 255), "s": (29, 89, 130, 255), "x": (0, 0, 0, 0), } MONOCHROME_OBJECT_PALETTE = { "*": (255, 247, 235, 255), "@": (245, 237, 225, 255), "#": (232, 225, 213, 255), "!": (215, 210, 198, 255), "S": (145, 141, 136, 255), "s": (172, 168, 163, 255), "x": (0, 0, 0, 0), "o": (107, 86, 85, 255), "|": (89, 71, 70, 255), } PAINTER_STAND_BLUE_PALETTE = { "*": (70, 147, 199, 255), "@": (98, 176, 222, 255), "!": (47, 95, 158, 255), "o": (41, 77, 128, 255), "W": (255, 255, 255, 175), "w": (255, 255, 255, 150), "x": (255, 255, 255, 0), } OBJECT_INDICATOR_PALETTE = { "O": (229, 221, 212, 255), "o": (185, 178, 170, 255), "S": (105, 101, 96, 255), "s": (122, 118, 113, 255), "x": (0, 0, 0, 0), } BLUE_INDICATOR_PALETTE = { "O": (111, 191, 237, 255), "o": (81, 160, 207, 255), "S": (33, 102, 148, 255), "s": (29, 89, 130, 255), "x": (0, 0, 0, 0), } MONOCHROME_OBJECT_PALETTE = { "*": (255, 247, 235, 255), "@": (245, 237, 225, 255), "#": (232, 225, 213, 255), "!": (215, 210, 198, 255), "S": (145, 141, 136, 255), "s": (172, 168, 163, 255), "x": (0, 0, 0, 0), "o": (107, 86, 85, 255), "|": (89, 71, 70, 255), } CONVERTER_PALETTE = { "a": (178, 171, 164, 255), "b": (163, 156, 150, 255), "c": (150, 144, 138, 255), "d": (138, 129, 123, 255), "e": (128, 120, 113, 255), "f": (122, 114, 109, 255), "g": (112, 108, 101, 255), "h": (71, 69, 64, 255), "A": (129, 143, 142, 255), "B": (110, 122, 121, 255), "C": (92, 102, 101, 255), ">": (51, 51, 51, 255), "<": (30, 30, 30, 255), ",": (0, 0, 0, 255), "x": (0, 0, 0, 0), "`": (138, 96, 95, 255), "!": (253, 56, 38, 255), "[": (74, 167, 181, 255), "_": (67, 150, 163, 255), "]": (61, 136, 148, 255), "*": (0, 0, 0, 73), } FACTORY_FLOOR_PALETTE = { "-": (204, 204, 188, 255), "x": (194, 194, 178, 255), "o": (212, 212, 195, 255) } CONVEYOR_BELT_PALETTE_MONOCHROME = { "y": (181, 170, 168, 255), "h": (158, 148, 147, 255), "s": (150, 139, 138, 255), "M": (135, 124, 123, 255), "Y": (194, 160, 81, 255), "B": (73, 66, 75, 255) } CONVEYOR_BELT_GREEN_ANCHOR_PALETTE = { ":": (135, 143, 116, 255), ",": (113, 120, 89, 255), "G": (148, 156, 126, 255), "g": (129, 138, 103, 255), "x": (0, 0, 0, 0) } BLUE_OBJECT_PALETTE = { "@": (51, 170, 189, 255), "*": (56, 186, 207, 255), "#": (45, 152, 168, 255), "x": (0, 0, 0, 0) } APPLE_RED_PALETTE = { "x": (0, 0, 0, 0), "*": (171, 32, 32, 255), "#": (140, 27, 27, 255), "o": (43, 127, 53, 255), "|": (79, 47, 44, 255), } DIAMOND_PALETTE = { "a": (227, 255, 231, 255), "b": (183, 247, 224, 255), "c": (166, 224, 203, 255), "d": (157, 212, 191, 255), "x": (0, 0, 0, 0), } WALLS_PALETTE = { "a": (191, 183, 180, 255), "b": (143, 137, 134, 255), "c": (135, 123, 116, 255), "d": (84, 76, 72, 255), "x": (0, 0, 0, 0), } APPLE_TREE_PALETTE = { "a": (124, 186, 58, 255), "b": (105, 158, 49, 255), "o": (199, 33, 8, 255), "I": (122, 68, 74, 255), "x": (0, 0, 0, 0), } BANANA_TREE_PALETTE = { "a": (43, 135, 52, 255), "b": (37, 115, 45, 255), "o": (222, 222, 13, 255), "I": (122, 68, 74, 255), "x": (0, 0, 0, 0), } ORANGE_TREE_PALETTE = { "a": (78, 110, 49, 255), "b": (37, 115, 45, 255), "o": (222, 222, 13, 255), "I": (122, 68, 74, 255), "x": (0, 0, 0, 0), } GOLD_MINE_PALETTE = { "a": (32, 32, 32, 255), "b": (27, 27, 27, 255), "o": (255, 215, 0, 255), "I": (5, 5, 5, 255), "x": (0, 0, 0, 0), } FENCE_PALETTE = { "a": (208, 145, 94, 255), "b": (191, 121, 88, 255), "c": (160, 91, 83, 255), "d": (122, 68, 74, 255), "e": (94, 54, 67, 255), "x": (0, 0, 0, 0), "#": (0, 0, 0, 38), } SHADOW_PALETTE = { "~": (0, 0, 0, 20), "*": (0, 0, 0, 43), "@": (0, 0, 0, 49), "#": (0, 0, 0, 55), "x": (0, 0, 0, 0), }
meltingpot-main
meltingpot/utils/substrates/shapes.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Substrate builder.""" from collections.abc import Collection, Mapping, Sequence from typing import Any import chex import dm_env from meltingpot.utils.substrates import builder from meltingpot.utils.substrates.wrappers import base from meltingpot.utils.substrates.wrappers import collective_reward_wrapper from meltingpot.utils.substrates.wrappers import discrete_action_wrapper from meltingpot.utils.substrates.wrappers import multiplayer_wrapper from meltingpot.utils.substrates.wrappers import observables from meltingpot.utils.substrates.wrappers import observables_wrapper import reactivex from reactivex import subject @chex.dataclass(frozen=True) class SubstrateObservables: """Observables for a substrate. Attributes: action: emits actions sent to the substrate from players. timestep: emits timesteps sent from the substrate to players. events: emits environment-specific events resulting from any interactions with the Substrate. Each individual event is emitted as a single element: (event_name, event_item). dmlab2d: Observables from the underlying dmlab2d environment. """ action: reactivex.Observable[Sequence[int]] timestep: reactivex.Observable[dm_env.TimeStep] events: reactivex.Observable[tuple[str, Any]] dmlab2d: observables.Lab2dObservables class Substrate(base.Lab2dWrapper): """Specific subclass of Wrapper with overridden spec types.""" def __init__(self, env: observables.ObservableLab2d) -> None: """See base class.""" super().__init__(env) self._action_subject = subject.Subject() self._timestep_subject = subject.Subject() self._events_subject = subject.Subject() self._observables = SubstrateObservables( action=self._action_subject, events=self._events_subject, timestep=self._timestep_subject, dmlab2d=env.observables(), ) def reset(self) -> dm_env.TimeStep: """See base class.""" timestep = super().reset() self._timestep_subject.on_next(timestep) for event in super().events(): self._events_subject.on_next(event) return timestep def step(self, action: Sequence[int]) -> dm_env.TimeStep: """See base class.""" self._action_subject.on_next(action) timestep = super().step(action) self._timestep_subject.on_next(timestep) for event in super().events(): self._events_subject.on_next(event) return timestep def reward_spec(self) -> Sequence[dm_env.specs.Array]: """See base class.""" return self._env.reward_spec() def observation_spec(self) -> Sequence[Mapping[str, dm_env.specs.Array]]: """See base class.""" return self._env.observation_spec() def action_spec(self) -> Sequence[dm_env.specs.DiscreteArray]: """See base class.""" return self._env.action_spec() def close(self) -> None: """See base class.""" super().close() self._action_subject.on_completed() self._timestep_subject.on_completed() self._events_subject.on_completed() def observables(self) -> SubstrateObservables: """Returns observables for the substrate.""" return self._observables def build_substrate( *, lab2d_settings: builder.Settings, individual_observations: Collection[str], global_observations: Collection[str], action_table: Sequence[Mapping[str, int]], ) -> Substrate: """Builds a Melting Pot substrate. Args: lab2d_settings: the lab2d settings for building the lab2d environment. individual_observations: names of the player-specific observations to make available to each player. global_observations: names of the dmlab2d observations to make available to all players. action_table: the possible actions. action_table[i] defines the dmlab2d action that will be forwarded to the wrapped dmlab2d environment for the discrete Melting Pot action i. Returns: The constructed substrate. """ env = builder.builder(lab2d_settings) env = observables_wrapper.ObservablesWrapper(env) env = multiplayer_wrapper.Wrapper( env, individual_observation_names=individual_observations, global_observation_names=global_observations) env = discrete_action_wrapper.Wrapper(env, action_table=action_table) # Add a wrapper that augments adds an observation of the collective # reward (sum of all players' rewards). env = collective_reward_wrapper.CollectiveRewardWrapper(env) return Substrate(env)
meltingpot-main
meltingpot/utils/substrates/substrate.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for shapes.""" from absl.testing import absltest from absl.testing import parameterized from meltingpot.utils.substrates import shapes class ShapesTest(parameterized.TestCase): @parameterized.parameters([ [""" a b c """, """ c b a """], [""" """, """ """], [""" abc def ghi """, """ ghi def abc """], ]) def test_flip_vertical(self, original, expected): actual = shapes.flip_vertical(original) self.assertEqual(actual, expected) @parameterized.parameters([ [""" a b c """, """ a b c """], [""" """, """ """], [""" abc def ghi """, """ cba fed ihg """], ]) def test_flip_horizontal(self, original, expected): actual = shapes.flip_horizontal(original) self.assertEqual(actual, expected) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/substrates/shapes_test.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Substrate factory.""" from collections.abc import Collection, Mapping, Sequence, Set from typing import Callable import dm_env from meltingpot.utils.substrates import builder from meltingpot.utils.substrates import substrate class SubstrateFactory: """Factory for building specific substrates.""" def __init__( self, *, lab2d_settings_builder: Callable[[Sequence[str]], builder.Settings], individual_observations: Collection[str], global_observations: Collection[str], action_table: Sequence[Mapping[str, int]], timestep_spec: dm_env.TimeStep, action_spec: dm_env.specs.DiscreteArray, valid_roles: Collection[str], default_player_roles: Sequence[str], ) -> None: """Initializes the factory. Args: lab2d_settings_builder: callable that takes a sequence of player roles and returns the lab2d settings for the substrate. individual_observations: names of the player-specific observations to make available to each player. global_observations: names of the dmlab2d observations to make available to all players. action_table: the possible actions. action_table[i] defines the dmlab2d action that will be forwarded to the wrapped dmlab2d environment for the discrete Melting Pot action i. timestep_spec: spec of timestep sent to a single player. action_spec: spec of action expected from a single player. valid_roles: player roles the substrate supports. default_player_roles: the default player roles vector that should be used for training. """ self._lab2d_settings_builder = lab2d_settings_builder self._individual_observations = frozenset(individual_observations) self._global_observations = frozenset(global_observations) self._action_table = tuple(dict(row) for row in action_table) self._timestep_spec = timestep_spec self._action_spec = action_spec self._valid_roles = frozenset(valid_roles) self._default_player_roles = tuple(default_player_roles) def valid_roles(self) -> Set[str]: """Returns the roles the substrate supports.""" return self._valid_roles def default_player_roles(self) -> Sequence[str]: """Returns the player roles used by scenarios.""" return self._default_player_roles def timestep_spec(self) -> dm_env.TimeStep: """Returns spec of timestep sent to a single player.""" return self._timestep_spec def action_spec(self) -> dm_env.specs.DiscreteArray: """Returns spec of action expected from a single player.""" return self._action_spec def build(self, roles: Sequence[str]) -> substrate.Substrate: """Builds the substrate. Args: roles: the role each player will take. Returns: The constructed substrate. """ return substrate.build_substrate( lab2d_settings=self._lab2d_settings_builder(roles), individual_observations=self._individual_observations, global_observations=self._global_observations, action_table=self._action_table)
meltingpot-main
meltingpot/utils/substrates/substrate_factory.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
meltingpot-main
meltingpot/utils/substrates/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for game_object_utils.""" from absl.testing import absltest from absl.testing import parameterized from meltingpot.utils.substrates import game_object_utils def get_transform(x, y, orientation): return game_object_utils.Transform(position=game_object_utils.Position(x, y), orientation=orientation) class ParseMapTest(parameterized.TestCase): @parameterized.parameters( ('\nHello', 'H', 1), ('\nHello', 'h', 0), ('\nHello', 'l', 2), ('\nHello\nWorld', 'l', 3), ('\nHello\nWorld', 'o', 2), ('\nHello\nWorld', 'd', 1), ('\nHello\nWorld', 'W', 1), ('\nWWWW\nW AW\nWWWW', 'A', 1), ('\nWWWW\nW AW\nWWWW', 'W', 10), ('\nWWWW\nW AW\nWWWW', 'P', 0), ) def test_get_positions_length(self, ascii_map, char, exp_len): transforms = game_object_utils.get_game_object_positions_from_map( ascii_map, char) self.assertLen(transforms, exp_len) def test_get_positions(self): # Locations of 'A' -> (2, 1) # Locations of ' ' -> (1, 1), (3, 1) and (4, 1) ascii_map = ''' WWWWWW W A W WWWWWW ''' transforms = game_object_utils.get_game_object_positions_from_map( ascii_map, 'A') self.assertSameElements( [get_transform(2, 1, game_object_utils.Orientation.NORTH)], transforms) transforms = game_object_utils.get_game_object_positions_from_map( ascii_map, ' ') self.assertSameElements( [ get_transform(1, 1, game_object_utils.Orientation.NORTH), get_transform(3, 1, game_object_utils.Orientation.NORTH), get_transform(4, 1, game_object_utils.Orientation.NORTH) ], transforms) transforms = game_object_utils.get_game_object_positions_from_map( ascii_map, 'W') self.assertSameElements( [ # Top walls get_transform(0, 0, game_object_utils.Orientation.NORTH), get_transform(1, 0, game_object_utils.Orientation.NORTH), get_transform(2, 0, game_object_utils.Orientation.NORTH), get_transform(3, 0, game_object_utils.Orientation.NORTH), get_transform(4, 0, game_object_utils.Orientation.NORTH), get_transform(5, 0, game_object_utils.Orientation.NORTH), # Side walls get_transform(0, 1, game_object_utils.Orientation.NORTH), get_transform(5, 1, game_object_utils.Orientation.NORTH), # Bottom walls get_transform(0, 2, game_object_utils.Orientation.NORTH), get_transform(1, 2, game_object_utils.Orientation.NORTH), get_transform(2, 2, game_object_utils.Orientation.NORTH), get_transform(3, 2, game_object_utils.Orientation.NORTH), get_transform(4, 2, game_object_utils.Orientation.NORTH), get_transform(5, 2, game_object_utils.Orientation.NORTH), ], transforms) def test_get_game_objects(self): ascii_map = ''' WWWWWW W A W WWWWWW ''' wall = { 'name': 'wall', 'components': [ { 'component': 'PieceTypeManager', 'kwargs': { 'initialPieceType': 'wall', 'pieceTypeConfigs': [{'pieceType': 'wall',}], }, }, { 'component': 'Transform', 'kwargs': { 'position': (0, 0), 'orientation': 'N' }, }, ] } apple = { 'name': 'apple', 'components': [ { 'component': 'PieceTypeManager', 'kwargs': { 'initialPieceType': 'apple', 'pieceTypeConfigs': [{'pieceType': 'apple',}], }, }, { 'component': 'Transform', 'kwargs': { 'position': (0, 0), 'orientation': 'N' }, }, ] } prefabs = {'wall': wall, 'apple': apple} game_objects = game_object_utils.get_game_objects_from_map( ascii_map, {'W': 'wall', 'A': 'apple'}, prefabs) self.assertLen(game_objects, 15) self.assertEqual( 1, sum([1 if go['name'] == 'apple' else 0 for go in game_objects])) self.assertEqual( 14, sum([1 if go['name'] == 'wall' else 0 for go in game_objects])) positions = [] for go in game_objects: if go['name'] == 'wall': positions.append(game_object_utils.get_first_named_component( go, 'Transform')['kwargs']['position']) self.assertSameElements( [ (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), # Top walls (0, 1), (5, 1), # Side walls (0, 2), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), # Bottom walls ], positions) AVATAR = { 'name': 'avatar', 'components': [ { 'component': 'StateManager', 'kwargs': { 'initialState': 'player', 'stateConfigs': [ {'state': 'player', 'layer': 'upperPhysical', 'sprite': 'Avatar',}, # Will be overridden {'state': 'playerWait',}, ] } }, { 'component': 'Transform', 'kwargs': { 'position': (0, 0), 'orientation': 'N' } }, { 'component': 'Appearance', 'kwargs': { 'renderMode': 'ascii_shape', 'spriteNames': ['Avatar'], # Will be overridden 'spriteShapes': ["""*"""], 'palettes': [(0, 0, 255, 255)], # Will be overridden 'noRotates': [True] } }, { 'component': 'Avatar', 'kwargs': { 'index': -1, # Will be overridden 'spawnGroup': 'spawnPoints', 'aliveState': 'player', 'waitState': 'playerWait', 'actionOrder': ['move'], 'actionSpec': { 'move': {'default': 0, 'min': 0, 'max': 4}, }, } }, ], } BADGE = { 'name': 'avatar_badge', 'components': [ { 'component': 'StateManager', 'kwargs': { 'initialState': 'badgeWait', 'stateConfigs': [ {'state': 'badge', 'layer': 'overlay', 'sprite': 'Badge', 'groups': ['badges']}, {'state': 'badgeWait', 'groups': ['badgeWaits']}, ] } }, { 'component': 'Transform', 'kwargs': { 'position': (0, 0), 'orientation': 'N' } }, { 'component': 'Appearance', 'kwargs': { 'renderMode': 'ascii_shape', 'spriteNames': ['Badge'], 'spriteShapes': ['*'], 'palettes': [(0, 0, 255, 255)], 'noRotates': [False] } }, { 'component': 'AvatarConnector', 'kwargs': { 'playerIndex': -1, # player index to be overwritten. 'aliveState': 'badge', 'waitState': 'badgeWait' } }, ] } class BuildAvatarObjectsTest(parameterized.TestCase): @parameterized.parameters( [1], [2], [3], [4], [5] ) def test_simple_build(self, num_players): prefabs = {'avatar': AVATAR} avatars = game_object_utils.build_avatar_objects( num_players=num_players, prefabs=prefabs, player_palettes=None, ) self.assertLen(avatars, num_players) def test_with_palette_build(self): palettes = [(255, 0, 0, 255), (0, 255, 0, 255)] prefabs = {'avatar': AVATAR} avatars = game_object_utils.build_avatar_objects( num_players=2, prefabs=prefabs, player_palettes=palettes, ) self.assertLen(avatars, 2) self.assertEqual( game_object_utils.get_first_named_component( avatars[0], 'Appearance')['kwargs']['palettes'][0], palettes[0]) self.assertEqual( game_object_utils.get_first_named_component( avatars[1], 'Appearance')['kwargs']['palettes'][0], palettes[1]) class BuildAvatarBadgesTest(parameterized.TestCase): @parameterized.parameters( [1], [2], [3], [4], [5] ) def test_simple_build(self, num_players): prefabs = {'avatar_badge': BADGE} badges = game_object_utils.build_avatar_badges( num_players=num_players, prefabs=prefabs, badge_palettes=None, ) self.assertLen(badges, num_players) def test_with_palette_build(self): palettes = [(255, 0, 0, 255), (0, 255, 0, 255)] prefabs = {'avatar_badge': BADGE} badges = game_object_utils.build_avatar_badges( num_players=2, prefabs=prefabs, badge_palettes=palettes, ) self.assertLen(badges, 2) self.assertEqual( game_object_utils.get_first_named_component( badges[0], 'Appearance')['kwargs']['palettes'][0], palettes[0]) self.assertEqual( game_object_utils.get_first_named_component( badges[1], 'Appearance')['kwargs']['palettes'][0], palettes[1]) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/substrates/game_object_utils_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multi-player environment builder for Melting Pot levels.""" from collections.abc import Mapping import copy import itertools import os import random from typing import Any, Optional, Union from absl import logging import dmlab2d from dmlab2d import runfiles_helper from dmlab2d import settings_helper from meltingpot.utils.substrates import game_object_utils from meltingpot.utils.substrates.wrappers import reset_wrapper from ml_collections import config_dict import tree Settings = Union[config_dict.ConfigDict, Mapping[str, Any]] _MAX_SEED = 2 ** 32 - 1 _DMLAB2D_ROOT = runfiles_helper.find() def _find_root() -> str: import re # pylint: disable=g-import-not-at-top return re.sub('^(.*)/meltingpot/.*?$', r'\1', __file__) _MELTINGPOT_ROOT = _find_root() # Although to_dict in ConfigDict is recursive, it is not enough for our use case # because the recursion will _not_ go into the list elements. And we have plenty # of those in our configs. def _config_dict_to_dict(value): if isinstance(value, config_dict.ConfigDict): return tree.map_structure(_config_dict_to_dict, value.to_dict()) return value def parse_python_settings_for_dmlab2d( lab2d_settings: config_dict.ConfigDict) -> dict[str, Any]: """Flatten lab2d_settings into Lua-friendly properties.""" # Since config_dicts disallow "." in keys, we must use a different character, # "$", in our config and then convert it to "." here. This is particularly # important for levels with config keys like 'player.%default' in DMLab2D. lab2d_settings = _config_dict_to_dict(lab2d_settings) lab2d_settings = settings_helper.flatten_args(lab2d_settings) lab2d_settings_dict = {} for key, value in lab2d_settings.items(): converted_key = key.replace("$", ".") lab2d_settings_dict[converted_key] = str(value) return lab2d_settings_dict def apply_prefab_overrides( lab2d_settings: config_dict.ConfigDict, prefab_overrides: Optional[Settings] = None) -> None: """Apply prefab overrides to lab2d_settings.""" if "gameObjects" not in lab2d_settings.simulation: lab2d_settings.simulation.gameObjects = [] # Edit prefabs with the overrides, both in lab2d_settings and in prefabs. if prefab_overrides: for prefab, override in prefab_overrides.items(): for component, arg_overrides in override.items(): for arg_name, arg_override in arg_overrides.items(): if prefab not in lab2d_settings.simulation.prefabs: raise ValueError(f"Prefab override for '{prefab}' given, but not " + "available in `prefabs`.") game_object_utils.get_first_named_component( lab2d_settings.simulation.prefabs[prefab], component)["kwargs"][arg_name] = arg_override def maybe_build_and_add_avatar_objects( lab2d_settings: config_dict.ConfigDict) -> None: """If requested, build the avatar objects and add them to lab2d_settings. Avatars will be built here if and only if: 1) An 'avatar' prefab is supplied in lab2d_settings.simulation.prefabs; and 2) lab2d_settings.simulation.buildAvatars is not True. Avatars built here will have their colors set from the palette provided in lab2d_settings.simulation.playerPalettes, or if none is provided, using the first num_players colors in the colors.py module. Args: lab2d_settings: A writable version of the lab2d_settings. Avatar objects, if they are to be built here, will be added as game objects in lab2d_settings.simulation.gameObjects. """ # Whether the avatars will be built in Lua (False) or here (True). This is # roughly the opposite of the `buildAvatars` setting. build_avatars_here = ("avatar" in lab2d_settings.simulation.prefabs) if ("buildAvatars" in lab2d_settings.simulation and lab2d_settings.simulation.buildAvatars): build_avatars_here = False if "avatar" not in lab2d_settings.simulation.prefabs: raise ValueError( "Deferring avatar building to Lua, yet no 'avatar' prefab given.") if build_avatars_here: palettes = (lab2d_settings.simulation.playerPalettes if "playerPalettes" in lab2d_settings.simulation else None) if "gameObjects" not in lab2d_settings.simulation: lab2d_settings.simulation.gameObjects = [] # Create avatars. logging.info("Building avatars in `meltingpot.builder` with palettes: %s", lab2d_settings.simulation.playerPalettes) avatar_objects = game_object_utils.build_avatar_objects( int(lab2d_settings.numPlayers), lab2d_settings.simulation.prefabs, palettes) lab2d_settings.simulation.gameObjects += avatar_objects def locate_and_overwrite_level_directory( lab2d_settings: config_dict.ConfigDict) -> None: """Locates the run files, and overwrites the levelDirectory with it.""" # Locate runfiles. level_name = lab2d_settings.get("levelName") level_dir = lab2d_settings.get("levelDirectory") if level_dir: lab2d_settings.levelName = os.path.join(level_dir, level_name) lab2d_settings.levelDirectory = _MELTINGPOT_ROOT def builder( lab2d_settings: Settings, prefab_overrides: Optional[Settings] = None, env_seed: Optional[int] = None, **settings) -> dmlab2d.Environment: """Builds a Melting Pot environment. Args: lab2d_settings: a dict of environment designation args. prefab_overrides: overrides for prefabs. env_seed: the seed to pass to the environment. **settings: Other settings which are not used by Melting Pot but can still be passed from the environment builder. Returns: A multi-player Melting Pot environment. """ del settings # Not currently used by DMLab2D. assert "simulation" in lab2d_settings # Copy config, so as not to modify it. lab2d_settings = config_dict.ConfigDict( copy.deepcopy(lab2d_settings)).unlock() apply_prefab_overrides(lab2d_settings, prefab_overrides) maybe_build_and_add_avatar_objects(lab2d_settings) locate_and_overwrite_level_directory(lab2d_settings) # Convert settings from python to Lua format. lab2d_settings_dict = parse_python_settings_for_dmlab2d(lab2d_settings) if env_seed is None: # Select a long seed different than zero. env_seed = random.randint(1, _MAX_SEED) env_seeds = (seed % (_MAX_SEED + 1) for seed in itertools.count(env_seed)) def build_environment(): seed = next(env_seeds) lab2d_settings_dict["env_seed"] = str(seed) # Sets the Lua seed. env_raw = dmlab2d.Lab2d(_DMLAB2D_ROOT, lab2d_settings_dict) observation_names = env_raw.observation_names() return dmlab2d.Environment( env=env_raw, observation_names=observation_names, seed=seed) # Add a wrapper that rebuilds the environment when reset is called. env = reset_wrapper.ResetWrapper(build_environment) return env
meltingpot-main
meltingpot/utils/substrates/builder.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for substrate.""" import dataclasses from unittest import mock from absl.testing import absltest from absl.testing import parameterized from meltingpot.utils.substrates import substrate from meltingpot.utils.substrates.wrappers import observables as observables_lib class SubstrateTest(parameterized.TestCase): def test_observables(self): base = mock.create_autospec( observables_lib.ObservableLab2d, instance=True, spec_set=True) with substrate.Substrate(base) as env: received = [] observables = env.observables() for field in dataclasses.fields(observables): getattr(observables, field.name).subscribe( on_next=received.append, on_error=lambda e: received.append(type(e)), on_completed=lambda: received.append('DONE'), ) base.reset.return_value = mock.sentinel.timestep_0 base.events.return_value = [mock.sentinel.events_0] env.reset() base.step.return_value = mock.sentinel.timestep_1 base.events.return_value = [mock.sentinel.events_1] env.step(mock.sentinel.action_1) base.step.return_value = mock.sentinel.timestep_2 base.events.return_value = [mock.sentinel.events_2] env.step(mock.sentinel.action_2) self.assertSequenceEqual(received, [ mock.sentinel.timestep_0, mock.sentinel.events_0, mock.sentinel.action_1, mock.sentinel.timestep_1, mock.sentinel.events_1, mock.sentinel.action_2, mock.sentinel.timestep_2, mock.sentinel.events_2, 'DONE', 'DONE', 'DONE', ]) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/substrates/substrate_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for DMLab2D Game Objects.""" import copy import enum from typing import List, Mapping, NamedTuple, Optional, Sequence, Tuple, Union from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import shapes import numpy as np # Type of a GameObject prefab configuration: A recursive string mapping. # pytype: disable=not-supported-yet PrefabConfig = Mapping[str, "PrefabConfigValue"] PrefabConfigValue = Union[str, float, List["PrefabConfigValue"], PrefabConfig] # pytype: enable=not-supported-yet class Position(NamedTuple): x: int y: int class Orientation(enum.Enum): NORTH = "N" EAST = "E" SOUTH = "S" WEST = "W" class Transform(NamedTuple): position: Position orientation: Optional[Orientation] = None # Special char to prefab mappings TYPE_ALL = "all" TYPE_CHOICE = "choice" def get_named_components( game_object_config: PrefabConfig, name: str): return [component for component in game_object_config["components"] if component["component"] == name] def get_first_named_component( game_object_config: PrefabConfig, name: str): named = get_named_components(game_object_config, name) if not named: raise ValueError(f"No component with name '{name}' found.") return named[0] def build_game_objects( num_players: int, ascii_map: str, prefabs: Optional[Mapping[str, PrefabConfig]] = None, char_prefab_map: Optional[PrefabConfig] = None, player_palettes: Optional[Sequence[shapes.Color]] = None, use_badges: bool = False, badge_palettes: Optional[Sequence[shapes.Color]] = None, ) -> Tuple[List[PrefabConfig], List[PrefabConfig]]: """Build all avatar and normal game objects based on the config and map.""" game_objects = get_game_objects_from_map(ascii_map, char_prefab_map, prefabs) avatar_objects = build_avatar_objects(num_players, prefabs, player_palettes) if use_badges: game_objects += build_avatar_badges(num_players, prefabs, badge_palettes) return game_objects, avatar_objects def build_avatar_objects( num_players: int, prefabs: Optional[Mapping[str, PrefabConfig]] = None, player_palettes: Optional[Sequence[shapes.Color]] = None, ) -> List[PrefabConfig]: """Build all avatar and their associated game objects from the prefabs.""" if not prefabs or "avatar" not in prefabs: raise ValueError( "Building avatar objects requested, but no avatar prefab provided.") if not player_palettes: player_palettes = [ shapes.get_palette(colors.palette[i]) for i in range(num_players)] avatar_objects = [] for idx in range(0, num_players): game_object = copy.deepcopy(prefabs["avatar"]) color_palette = player_palettes[idx] # Lua is 1-indexed. lua_index = idx + 1 # First, modify the prefab's sprite name. sprite_name = get_first_named_component( game_object, "Appearance")["kwargs"]["spriteNames"][0] new_sprite_name = sprite_name + str(lua_index) get_first_named_component( game_object, "Appearance")["kwargs"]["spriteNames"][0] = new_sprite_name # Second, name the same sprite in the prefab's stateManager. state_configs = get_first_named_component( game_object, "StateManager")["kwargs"]["stateConfigs"] for state_config in state_configs: if "sprite" in state_config and state_config["sprite"] == sprite_name: state_config["sprite"] = new_sprite_name # Third, override the prefab's color palette for this sprite. get_first_named_component( game_object, "Appearance")["kwargs"]["palettes"][0] = color_palette # Fourth, override the avatar's player id. get_first_named_component( game_object, "Avatar")["kwargs"]["index"] = lua_index avatar_objects.append(game_object) return avatar_objects def build_avatar_badges( num_players: int, prefabs: Optional[Mapping[str, PrefabConfig]] = None, badge_palettes: Optional[Sequence[shapes.Color]] = None, ) -> List[PrefabConfig]: """Build all avatar and their associated game objects from the prefabs.""" if not prefabs or "avatar_badge" not in prefabs: raise ValueError( "Building avatar badges requested, but no avatar_badge prefab " + "provided.") game_objects = [] if badge_palettes is None: badge_palettes = [ shapes.get_palette(colors.palette[i]) for i in range(num_players)] for idx in range(0, num_players): lua_index = idx + 1 # Add the overlaid badge on top of each avatar. badge_object = copy.deepcopy(prefabs["avatar_badge"]) sprite_name = get_first_named_component( badge_object, "Appearance")["kwargs"]["spriteNames"][0] new_sprite_name = sprite_name + str(lua_index) get_first_named_component( badge_object, "Appearance")["kwargs"]["spriteNames"][0] = new_sprite_name get_first_named_component( badge_object, "StateManager")["kwargs"]["stateConfigs"][0]["sprite"] = ( new_sprite_name) get_first_named_component( badge_object, "AvatarConnector")["kwargs"]["playerIndex"] = lua_index get_first_named_component( badge_object, "Appearance")["kwargs"]["palettes"][0] = badge_palettes[idx] game_objects.append(badge_object) return game_objects def get_game_object_positions_from_map( ascii_map: str, char: str, orientation_mode: str = "always_north" ) -> Sequence[Transform]: """Extract the occurrences of a character in the ascii map into transforms. For all occurrences of the given `char`, retrieves a Transform containing the position and orientation of the instance. Args: ascii_map: the ascii map. char: the character to extract transforms from the ascii map. orientation_mode: select a method for choosing orientations. Returns: A list of Transforms containing all the positions and orientations of all occurrences of the character in the map. """ transforms = [] rows = ascii_map.split("\n") # Assume the first line of the string consists only of '\n'. This means we # need to skip the first row. for i, row in enumerate(rows[1:]): indices = [i for i, c in enumerate(row) if char == c] for j in indices: if orientation_mode == "always_north": orientation = Orientation.NORTH else: raise ValueError("Other orientation modes are not yet implemented.") transform = Transform(position=Position(j, i), orientation=orientation) transforms.append(transform) return transforms def _create_game_object( prefab: PrefabConfig, transform: Transform) -> PrefabConfig: game_object = copy.deepcopy(prefab) go_transform = get_first_named_component(game_object, "Transform") go_transform["kwargs"] = { "position": (transform.position.x, transform.position.y), "orientation": (transform.orientation.value if transform.orientation is not None else Orientation.NORTH.value), } return game_object def get_game_objects_from_map( ascii_map: str, char_prefab_map: Mapping[str, str], prefabs: Mapping[str, PrefabConfig], random: np.random.RandomState = np.random.RandomState() ) -> List[PrefabConfig]: """Returns a list of game object configurations from the map and prefabs. Each prefab will have its `Transform` component overwritten to its actual location (and orientation, although it is all 'N' by default) in the ASCII map. Args: ascii_map: The map for the level. Defines which prefab to use at each position in the map, which is a string defining a matrix of characters. char_prefab_map: A dictionary mapping characters in the ascii_map to prefab names. prefabs: A collection of named prefabs that define a GameObject configuration. random: An optional random number generator. Returns: A list of game object configurations from the map and prefabs. """ game_objects = [] for char, prefab in char_prefab_map.items(): transforms = get_game_object_positions_from_map(ascii_map, char) for transform in transforms: if hasattr(prefab, "items"): assert "type" in prefab assert "list" in prefab if prefab["type"] == TYPE_ALL: for p in prefab["list"]: game_objects.append(_create_game_object(prefabs[p], transform)) elif prefab["type"] == TYPE_CHOICE: game_objects.append( _create_game_object(prefabs[random.choice(prefab["list"])], transform)) else: # Typical case, since named prefab. game_objects.append(_create_game_object(prefabs[prefab], transform)) return game_objects
meltingpot-main
meltingpot/utils/substrates/game_object_utils.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for builder.py.""" import copy from absl.testing import absltest from absl.testing import parameterized from meltingpot.configs.substrates import running_with_scissors_in_the_matrix__repeated as test_substrate from meltingpot.utils.substrates import builder import numpy as np def _get_test_settings(): config = test_substrate.get_config() return test_substrate.build(config, config.default_player_roles) _TEST_SETTINGS = _get_test_settings() def _get_lua_randomization_map(): """Replaces first row of walls with items randomized by Lua.""" head, line, *tail = _TEST_SETTINGS['simulation']['map'].split('\n') # Replace line 1 (walls) with a row of 'a' (items randomized by Lua). new_map = '\n'.join([head, 'a' * len(line), *tail]) return new_map _LUA_RANDOMIZED_LINE = 1 _LUA_RANDOMIZATION_MAP = _get_lua_randomization_map() class GeneralTestCase(parameterized.TestCase): @parameterized.product(seed=[42, 123, 1337, 12481632]) def test_seed_causes_determinism(self, seed): env1 = self.enter_context(builder.builder(_TEST_SETTINGS, env_seed=seed)) env2 = self.enter_context(builder.builder(_TEST_SETTINGS, env_seed=seed)) for episode in range(5): obs1 = env1.reset().observation['WORLD.RGB'] obs2 = env2.reset().observation['WORLD.RGB'] np.testing.assert_equal( obs1, obs2, f'Episode {episode} mismatch: {obs1} != {obs2} ') @parameterized.product(seed=[None, 42, 123, 1337, 12481632]) def test_episodes_are_randomized(self, seed): env = self.enter_context(builder.builder(_TEST_SETTINGS, env_seed=seed)) obs = env.reset().observation['WORLD.RGB'] for episode in range(4): last_obs = obs obs = env.reset().observation['WORLD.RGB'] with self.assertRaises( AssertionError, msg=f'Episodes {episode} and {episode+1} match: {last_obs} == {obs}'): np.testing.assert_equal(last_obs, obs) def test_no_seed_causes_nondeterminism(self): env1 = self.enter_context(builder.builder(_TEST_SETTINGS, env_seed=None)) env2 = self.enter_context(builder.builder(_TEST_SETTINGS, env_seed=None)) for episode in range(5): obs1 = env1.reset().observation['WORLD.RGB'] obs2 = env2.reset().observation['WORLD.RGB'] with self.assertRaises( AssertionError, msg=f'Episode {episode} match: {obs1} == {obs2}'): np.testing.assert_equal(obs1, obs2) @parameterized.product(seed=[None, 42, 123, 1337, 12481632]) def test_episodes_are_randomized_in_lua(self, seed): lab2d_settings = copy.deepcopy(_TEST_SETTINGS) lab2d_settings['simulation']['map'] = _LUA_RANDOMIZATION_MAP env = self.enter_context(builder.builder(lab2d_settings, env_seed=seed)) obs = env.reset().observation['WORLD.RGB'][_LUA_RANDOMIZED_LINE] for episode in range(4): last_obs = obs obs = env.reset().observation['WORLD.RGB'][_LUA_RANDOMIZED_LINE] with self.assertRaises( AssertionError, msg=f'Episodes {episode} and {episode+1} match: {last_obs} == {obs}'): np.testing.assert_equal(last_obs, obs) def test_no_seed_causes_nondeterminism_for_lua(self): lab2d_settings = copy.deepcopy(_TEST_SETTINGS) lab2d_settings['simulation']['map'] = _LUA_RANDOMIZATION_MAP env1 = self.enter_context(builder.builder(lab2d_settings)) env2 = self.enter_context(builder.builder(lab2d_settings)) for episode in range(5): obs1 = env1.reset().observation['WORLD.RGB'][_LUA_RANDOMIZED_LINE] obs2 = env2.reset().observation['WORLD.RGB'][_LUA_RANDOMIZED_LINE] with self.assertRaises( AssertionError, msg=f'Episode {episode} match {obs1} == {obs2}'): np.testing.assert_equal(obs1, obs2) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/substrates/builder_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A set of 62 visually distinct colors.""" # LINT.IfChange palette = ( (1, 0, 103), (213, 255, 0), (255, 0, 86), (158, 0, 142), (14, 76, 161), (255, 229, 2), (0, 95, 57), (0, 255, 0), (149, 0, 58), (255, 147, 126), (164, 36, 0), (0, 21, 68), (145, 208, 203), (98, 14, 0), (107, 104, 130), (0, 0, 255), (0, 125, 181), (106, 130, 108), (0, 174, 126), (194, 140, 159), (190, 153, 112), (0, 143, 156), (95, 173, 78), (255, 0, 0), (255, 0, 246), (255, 2, 157), (104, 61, 59), (255, 116, 163), (150, 138, 232), (152, 255, 82), (167, 87, 64), (1, 255, 254), (255, 238, 232), (254, 137, 0), (189, 198, 255), (1, 208, 255), (187, 136, 0), (117, 68, 177), (165, 255, 210), (255, 166, 254), (119, 77, 0), (122, 71, 130), (38, 52, 0), (0, 71, 84), (67, 0, 44), (181, 0, 255), (255, 177, 103), (255, 219, 102), (144, 251, 146), (126, 45, 210), (189, 211, 147), (229, 111, 254), (222, 255, 116), (0, 255, 120), (0, 155, 255), (0, 100, 1), (0, 118, 255), (133, 169, 0), (0, 185, 23), (120, 130, 49), (0, 255, 198), (255, 110, 65), ) # LINT.ThenChange(//meltingpot/lua/modules/colors.lua) human_readable = ( (45, 110, 220), (125, 50, 200), (205, 5, 165), (245, 65, 65), (245, 130, 0), (195, 180, 0), (125, 185, 65), (35, 185, 175), (160, 15, 200), (230, 50, 95), (230, 90, 55), (220, 140, 15), (180, 195, 0), (25, 210, 140), (25, 170, 200), (85, 80, 210), ) desaturated_avatar_palette = ( (30, 115, 200), (120, 90, 135), (100, 145, 100), (180, 45, 120), (200, 125, 20), (180, 155, 0), (50, 115, 180), (115, 70, 160), ) light_desaturated_avatar_palette = ( (70, 130, 200), (105, 105, 190), (200, 200, 0), (200, 150, 50), (200, 100, 100), (155, 90, 155), (105, 190, 105), )
meltingpot-main
meltingpot/utils/substrates/colors.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for base wrapper.""" import inspect from unittest import mock from absl.testing import absltest from absl.testing import parameterized import dmlab2d from meltingpot.utils.substrates.wrappers import base _WRAPPED_METHODS = tuple([ name for name, _ in inspect.getmembers(dmlab2d.Environment) if not name.startswith('_') ]) class WrapperTest(parameterized.TestCase): def test_instance(self): env = mock.Mock(spec_set=dmlab2d.Environment) wrapped = base.Lab2dWrapper(env=env) self.assertIsInstance(wrapped, dmlab2d.Environment) @parameterized.named_parameters( (name, name) for name in _WRAPPED_METHODS ) def test_wrapped(self, method): env = mock.Mock(spec_set=dmlab2d.Environment) env_method = getattr(env, method) env_method.return_value = mock.sentinel wrapped = base.Lab2dWrapper(env=env) args = [object()] kwargs = {'a': object()} actual = getattr(wrapped, method)(*args, **kwargs) with self.subTest('args'): env_method.assert_called_once_with(*args, **kwargs) with self.subTest('return_value'): self.assertEqual(actual, env_method.return_value) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/substrates/wrappers/base_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrapper that rebuilds the Lab2d environment on every reset.""" from typing import Callable import dm_env import dmlab2d from meltingpot.utils.substrates.wrappers import base class ResetWrapper(base.Lab2dWrapper): """Wrapper that rebuilds the environment on reset.""" def __init__(self, build_environment: Callable[[], dmlab2d.Environment]): """Initializes the object. Args: build_environment: Called to build the underlying environment. """ env = build_environment() super().__init__(env) self._rebuild_environment = build_environment self._reset = False def reset(self) -> dm_env.TimeStep: """Rebuilds the environment and calls reset on it.""" if self._reset: self._env.close() self._env = self._rebuild_environment() else: # Don't rebuild on very first reset call (it's inefficient). self._reset = True return super().reset()
meltingpot-main
meltingpot/utils/substrates/wrappers/reset_wrapper.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for multiplayer_wrapper.""" from unittest import mock from absl.testing import absltest import dm_env import dmlab2d from meltingpot.utils.substrates.wrappers import multiplayer_wrapper import numpy as np ACT_SPEC = dm_env.specs.BoundedArray( shape=(), minimum=0, maximum=4, dtype=np.int8) ACT_VALUE = np.ones([], dtype=np.int8) RGB_SPEC = dm_env.specs.Array(shape=(8, 8, 3), dtype=np.int8) RGB_VALUE = np.ones((8, 8, 3), np.int8) REWARD_SPEC = dm_env.specs.Array(shape=(), dtype=np.float32) REWARD_VALUE = np.ones((), dtype=np.float32) class Lab2DToListsWrapperTest(absltest.TestCase): def test_get_num_players(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = { '1.MOVE': ACT_SPEC, '2.MOVE': ACT_SPEC, '3.MOVE': ACT_SPEC } wrapped = multiplayer_wrapper.Wrapper( env, individual_observation_names=[], global_observation_names=[]) self.assertEqual(wrapped._get_num_players(), 3) def test_get_rewards(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = { '1.MOVE': ACT_SPEC, '2.MOVE': ACT_SPEC, '3.MOVE': ACT_SPEC } wrapped = multiplayer_wrapper.Wrapper( env, individual_observation_names=[], global_observation_names=[]) source = { '1.RGB': RGB_VALUE, '2.RGB': RGB_VALUE * 2, '3.RGB': RGB_VALUE * 3, '1.REWARD': 10, '2.REWARD': 20, '3.REWARD': 30, 'WORLD.RGB': RGB_VALUE } rewards = wrapped._get_rewards(source) self.assertEqual(rewards, [10, 20, 30]) def test_get_observations(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = { '1.MOVE': ACT_SPEC, '2.MOVE': ACT_SPEC, '3.MOVE': ACT_SPEC, } wrapped = multiplayer_wrapper.Wrapper( env, individual_observation_names=['RGB'], global_observation_names=['WORLD.RGB']) source = { '1.RGB': RGB_VALUE * 1, '2.RGB': RGB_VALUE * 2, '3.RGB': RGB_VALUE * 3, '1.OTHER': RGB_SPEC, '2.OTHER': RGB_SPEC, '3.OTHER': RGB_SPEC, 'WORLD.RGB': RGB_VALUE, } actual = wrapped._get_observations(source) expected = [ {'RGB': RGB_VALUE * 1, 'WORLD.RGB': RGB_VALUE}, {'RGB': RGB_VALUE * 2, 'WORLD.RGB': RGB_VALUE}, {'RGB': RGB_VALUE * 3, 'WORLD.RGB': RGB_VALUE}, ] np.testing.assert_equal(actual, expected) def test_get_action(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = { '1.MOVE': ACT_SPEC, '2.MOVE': ACT_SPEC, '3.MOVE': ACT_SPEC, } wrapped = multiplayer_wrapper.Wrapper( env, individual_observation_names=[], global_observation_names=[]) source = [ {'MOVE': ACT_VALUE * 1}, {'MOVE': ACT_VALUE * 2}, {'MOVE': ACT_VALUE * 3}, ] actual = wrapped._get_action(source) expected = { '1.MOVE': ACT_VALUE * 1, '2.MOVE': ACT_VALUE * 2, '3.MOVE': ACT_VALUE * 3, } np.testing.assert_equal(actual, expected) def test_spec(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = { '1.MOVE': ACT_SPEC, '2.MOVE': ACT_SPEC, '3.MOVE': ACT_SPEC, } env.observation_spec.return_value = { '1.RGB': RGB_SPEC, '2.RGB': RGB_SPEC, '3.RGB': RGB_SPEC, '1.OTHER': RGB_SPEC, '2.OTHER': RGB_SPEC, '3.OTHER': RGB_SPEC, '1.REWARD': REWARD_SPEC, '2.REWARD': REWARD_SPEC, '3.REWARD': REWARD_SPEC, 'WORLD.RGB': RGB_SPEC } wrapped = multiplayer_wrapper.Wrapper( env, individual_observation_names=['RGB'], global_observation_names=['WORLD.RGB']) with self.subTest('action_spec'): self.assertEqual(wrapped.action_spec(), [ {'MOVE': ACT_SPEC.replace(name='MOVE')}, {'MOVE': ACT_SPEC.replace(name='MOVE')}, {'MOVE': ACT_SPEC.replace(name='MOVE')}, ]) with self.subTest('observation_spec'): self.assertEqual(wrapped.observation_spec(), [ {'RGB': RGB_SPEC, 'WORLD.RGB': RGB_SPEC}, {'RGB': RGB_SPEC, 'WORLD.RGB': RGB_SPEC}, {'RGB': RGB_SPEC, 'WORLD.RGB': RGB_SPEC}, ]) with self.subTest('reward_spec'): self.assertEqual( wrapped.reward_spec(), [REWARD_SPEC, REWARD_SPEC, REWARD_SPEC]) def test_step(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = { '1.MOVE': ACT_VALUE * 1, '2.MOVE': ACT_VALUE * 2, '3.MOVE': ACT_VALUE * 3, } env.step.return_value = dm_env.transition(1, { '1.RGB': RGB_VALUE * 1, # Intentionally missing 2.RGB '3.RGB': RGB_VALUE * 3, '1.OTHER': RGB_VALUE, '2.OTHER': RGB_VALUE, '3.OTHER': RGB_VALUE, '1.REWARD': REWARD_VALUE * 10, '2.REWARD': REWARD_VALUE * 20, '3.REWARD': REWARD_VALUE * 30, 'WORLD.RGB': RGB_VALUE, }) wrapped = multiplayer_wrapper.Wrapper( env, individual_observation_names=['RGB'], global_observation_names=['WORLD.RGB']) actions = [ {'MOVE': ACT_VALUE * 1}, {'MOVE': ACT_VALUE * 2}, {'MOVE': ACT_VALUE * 3}, ] actual = wrapped.step(actions) expected = dm_env.transition( reward=[ REWARD_VALUE * 10, REWARD_VALUE * 20, REWARD_VALUE * 30, ], observation=[ {'RGB': RGB_VALUE * 1, 'WORLD.RGB': RGB_VALUE}, {'WORLD.RGB': RGB_VALUE}, {'RGB': RGB_VALUE * 3, 'WORLD.RGB': RGB_VALUE}, ]) with self.subTest('timestep'): np.testing.assert_equal(actual, expected) with self.subTest('action'): (action,), _ = env.step.call_args np.testing.assert_equal(action, { '1.MOVE': ACT_VALUE * 1, '2.MOVE': ACT_VALUE * 2, '3.MOVE': ACT_VALUE * 3, }) def test_reset(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = { '1.MOVE': ACT_VALUE * 1, '2.MOVE': ACT_VALUE * 2, '3.MOVE': ACT_VALUE * 3, } env.reset.return_value = dm_env.restart({ '1.RGB': RGB_VALUE * 1, '2.RGB': RGB_VALUE * 2, '3.RGB': RGB_VALUE * 3, '1.OTHER': RGB_VALUE, '2.OTHER': RGB_VALUE, '3.OTHER': RGB_VALUE, '1.REWARD': REWARD_VALUE * 0, '2.REWARD': REWARD_VALUE * 0, '3.REWARD': REWARD_VALUE * 0, 'WORLD.RGB': RGB_VALUE, }) wrapped = multiplayer_wrapper.Wrapper( env, individual_observation_names=['RGB'], global_observation_names=['WORLD.RGB']) actual = wrapped.reset() expected = dm_env.TimeStep( step_type=dm_env.StepType.FIRST, reward=[ REWARD_VALUE * 0, REWARD_VALUE * 0, REWARD_VALUE * 0, ], discount=0., observation=[ {'RGB': RGB_VALUE * 1, 'WORLD.RGB': RGB_VALUE}, {'RGB': RGB_VALUE * 2, 'WORLD.RGB': RGB_VALUE}, {'RGB': RGB_VALUE * 3, 'WORLD.RGB': RGB_VALUE}, ]) np.testing.assert_equal(actual, expected) def test_observation(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = { '1.MOVE': ACT_SPEC, '2.MOVE': ACT_SPEC, '3.MOVE': ACT_SPEC, } env.observation.return_value = { '1.RGB': RGB_VALUE * 1, '2.RGB': RGB_VALUE * 2, '3.RGB': RGB_VALUE * 3, '1.OTHER': RGB_VALUE, '2.OTHER': RGB_VALUE, '3.OTHER': RGB_VALUE, '1.REWARD': REWARD_VALUE * 0, '2.REWARD': REWARD_VALUE * 0, '3.REWARD': REWARD_VALUE * 0, 'WORLD.RGB': RGB_VALUE, } wrapped = multiplayer_wrapper.Wrapper( env, individual_observation_names=['RGB'], global_observation_names=['WORLD.RGB']) actual = wrapped.observation() expected = [ {'RGB': RGB_VALUE * 1, 'WORLD.RGB': RGB_VALUE}, {'RGB': RGB_VALUE * 2, 'WORLD.RGB': RGB_VALUE}, {'RGB': RGB_VALUE * 3, 'WORLD.RGB': RGB_VALUE}, ] np.testing.assert_equal(actual, expected) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/substrates/wrappers/multiplayer_wrapper_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for discrete_action_wrapper.""" from unittest import mock from absl.testing import absltest from absl.testing import parameterized import dm_env import dmlab2d from meltingpot.utils.substrates.wrappers import discrete_action_wrapper import numpy as np MOVE_SPEC = dm_env.specs.BoundedArray( shape=(), minimum=0, maximum=3, dtype=np.int8, name='MOVE') TURN_SPEC = dm_env.specs.BoundedArray( shape=(), minimum=0, maximum=3, dtype=np.int8, name='TURN') VALID_VALUE_0 = np.zeros([], dtype=np.int8) VALID_VALUE_1 = np.array(3, dtype=np.int8) INVALID_VALUE = np.array(4, dtype=np.int8) class Lab2DToListsWrapperTest(parameterized.TestCase): def test_valid_set(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = [ {'MOVE': MOVE_SPEC, 'TURN': TURN_SPEC}, {'MOVE': MOVE_SPEC, 'TURN': TURN_SPEC}, ] discrete_action_wrapper.Wrapper(env, action_table=[ {'MOVE': VALID_VALUE_0, 'TURN': VALID_VALUE_0}, {'MOVE': VALID_VALUE_0, 'TURN': VALID_VALUE_1}, {'MOVE': VALID_VALUE_1, 'TURN': VALID_VALUE_0}, {'MOVE': VALID_VALUE_1, 'TURN': VALID_VALUE_1}, ]) @parameterized.named_parameters( ('empty', []), ('out_of_bounds', [{'MOVE': INVALID_VALUE, 'TURN': VALID_VALUE_0}]), ('missing_key', [{'TURN': VALID_VALUE_0}]), ('extra_key', [{'INVALID': VALID_VALUE_0}]), ) def test_invalid_set(self, action_table): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = [ {'MOVE': MOVE_SPEC, 'TURN': TURN_SPEC}, {'MOVE': MOVE_SPEC, 'TURN': TURN_SPEC}, ] with self.assertRaises(ValueError): discrete_action_wrapper.Wrapper(env, action_table=action_table) def test_action_spec(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = [ {'MOVE': MOVE_SPEC, 'TURN': TURN_SPEC}, {'MOVE': MOVE_SPEC, 'TURN': TURN_SPEC}, ] wrapped = discrete_action_wrapper.Wrapper(env, action_table=[ {'MOVE': VALID_VALUE_0, 'TURN': VALID_VALUE_0}, {'MOVE': VALID_VALUE_0, 'TURN': VALID_VALUE_1}, {'MOVE': VALID_VALUE_1, 'TURN': VALID_VALUE_0}, ]) actual = wrapped.action_spec() expected = ( dm_env.specs.DiscreteArray(num_values=3, dtype=np.int64, name='action'), ) * 2 self.assertEqual(actual, expected) def test_step(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.action_spec.return_value = [ {'MOVE': MOVE_SPEC, 'TURN': TURN_SPEC}, {'MOVE': MOVE_SPEC, 'TURN': TURN_SPEC}, ] env.step.return_value = mock.sentinel.timestep wrapped = discrete_action_wrapper.Wrapper(env, action_table=[ {'MOVE': VALID_VALUE_0, 'TURN': VALID_VALUE_0}, {'MOVE': VALID_VALUE_0, 'TURN': VALID_VALUE_1}, {'MOVE': VALID_VALUE_1, 'TURN': VALID_VALUE_0}, ]) actual = wrapped.step([0, 2]) with self.subTest('timestep'): np.testing.assert_equal(actual, mock.sentinel.timestep) with self.subTest('action'): (action,), _ = env.step.call_args self.assertEqual(action, [ {'MOVE': VALID_VALUE_0, 'TURN': VALID_VALUE_0}, {'MOVE': VALID_VALUE_1, 'TURN': VALID_VALUE_0}, ]) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/substrates/wrappers/discrete_action_wrapper_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrapper that exposes Lab2d timesteps, actions, and events as observables.""" from typing import Mapping, Union import dm_env import dmlab2d from meltingpot.utils.substrates.wrappers import observables import numpy as np from reactivex import subject Action = Union[int, float, np.ndarray] class ObservablesWrapper(observables.ObservableLab2dWrapper): """Wrapper exposes timesteps, actions, and events as observables.""" def __init__(self, env: dmlab2d.Environment): """Initializes the object. Args: env: The environment to wrap. """ super().__init__(env) self._action_subject = subject.Subject() self._timestep_subject = subject.Subject() self._events_subject = subject.Subject() self._observables = observables.Lab2dObservables( action=self._action_subject, events=self._events_subject, timestep=self._timestep_subject, ) def reset(self) -> dm_env.TimeStep: """See base class.""" timestep = super().reset() self._timestep_subject.on_next(timestep) for event in super().events(): self._events_subject.on_next(event) return timestep def step(self, action: Mapping[str, Action]) -> dm_env.TimeStep: """See base class.""" self._action_subject.on_next(action) timestep = super().step(action) self._timestep_subject.on_next(timestep) for event in super().events(): self._events_subject.on_next(event) return timestep def close(self) -> None: """See base class.""" super().close() self._action_subject.on_completed() self._timestep_subject.on_completed() self._events_subject.on_completed() def observables(self) -> observables.Lab2dObservables: """See base class.""" return self._observables
meltingpot-main
meltingpot/utils/substrates/wrappers/observables_wrapper.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrapper that adds the sum of all players' rewards to observations.""" import copy from typing import Mapping, Sequence, TypeVar import dm_env from meltingpot.utils.substrates.wrappers import observables import numpy as np T = TypeVar("T") _COLLECTIVE_REWARD_OBS = "COLLECTIVE_REWARD" class CollectiveRewardWrapper(observables.ObservableLab2dWrapper): """Wrapper that adds an observation of the sum of all players' rewards.""" def __init__(self, env): """Initializes the object. Args: env: environment to wrap. """ self._env = env def _get_timestep(self, input_timestep: dm_env.TimeStep) -> dm_env.TimeStep: """Returns timestep augmented with `collective_reward'. Args: input_timestep: input_timestep before adding `collective_reward'. """ return dm_env.TimeStep( step_type=input_timestep.step_type, reward=input_timestep.reward, discount=input_timestep.discount, observation=[{_COLLECTIVE_REWARD_OBS: np.sum(input_timestep.reward), **obs} for obs in input_timestep.observation]) def reset(self, *args, **kwargs) -> dm_env.TimeStep: """See base class.""" timestep = super().reset() return self._get_timestep(timestep) def step( self, actions: Sequence[Mapping[str, np.ndarray]]) -> dm_env.TimeStep: """See base class.""" timestep = super().step(actions) return self._get_timestep(timestep) def observation_spec(self) -> Sequence[Mapping[str, dm_env.specs.Array]]: """See base class.""" observation_spec = copy.copy(super().observation_spec()) for obs in observation_spec: obs[_COLLECTIVE_REWARD_OBS] = dm_env.specs.Array( shape=(), dtype=np.float64, name=_COLLECTIVE_REWARD_OBS) return observation_spec
meltingpot-main
meltingpot/utils/substrates/wrappers/collective_reward_wrapper.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
meltingpot-main
meltingpot/utils/substrates/wrappers/__init__.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrapper that converts action dictionary to a one hot vector.""" import functools from typing import Mapping, Sequence, TypeVar, Union import dm_env import immutabledict from meltingpot.utils.substrates.wrappers import observables import numpy as np T = TypeVar('T') Numeric = Union[int, float, np.ndarray] def _validate_action( action: Mapping[str, np.ndarray], action_spec: Mapping[str, dm_env.specs.Array]) -> None: """Raises ValueError if action does not matches the action_spec.""" if set(action) != set(action_spec): raise ValueError('Keys do not match.') for key, spec in action_spec.items(): spec.validate(action[key]) def _validate_action_table( action_table: Sequence[Mapping[str, np.ndarray]], action_spec: Mapping[str, dm_env.specs.Array]) -> None: """Raises ValueError if action_table does not matches the action_spec.""" if not action_table: raise ValueError('action_table must not be empty') for action_index, action in enumerate(action_table): try: _validate_action(action, action_spec) except ValueError: raise ValueError(f'Action {action_index} ({action}) does not match ' f'action_spec ({action_spec}).') from None def _immutable_action( action: Mapping[str, Numeric], action_spec: Mapping[str, dm_env.specs.Array], ) -> Mapping[str, np.ndarray]: """Returns an immutable action.""" new_action = {} for key, value in action.items(): if isinstance(value, np.ndarray): value = np.copy(value) else: value = np.array(value, dtype=action_spec[key].dtype) value.flags.writeable = False new_action[key] = value return immutabledict.immutabledict(new_action) def _immutable_action_table( action_table: Sequence[Mapping[str, Numeric]], action_spec: Mapping[str, dm_env.specs.Array], ) -> Sequence[Mapping[str, np.ndarray]]: """Returns an immutable action table.""" return tuple( _immutable_action(action, action_spec) for action in action_table) class Wrapper(observables.ObservableLab2dWrapper): """Wrapper that maps a discrete action to an entry in an a table.""" def __init__(self, env, action_table: Sequence[Mapping[str, Numeric]]): """Constructor. Args: env: environment to wrap. When the adaptor closes env will also be closed. Note that each player must have the same action spec. action_table: Actions that are permissable. The same action lookup is used by each player. action_table[i] defines the action that will be forwarded to the wrapped environment for discrete action i. """ action_spec = env.action_spec() if any(action_spec[0] != spec for spec in action_spec[1:]): raise ValueError('Environment has heterogeneous action specs.') super().__init__(env) self._action_table = _immutable_action_table(action_table, action_spec[0]) _validate_action_table(self._action_table, action_spec[0]) def step(self, action: Sequence[int]): """See base class.""" action = [self._action_table[player_action] for player_action in action] return super().step(action) @functools.lru_cache(maxsize=1) def action_spec(self) -> Sequence[dm_env.specs.DiscreteArray]: """See base class.""" spec = dm_env.specs.DiscreteArray( num_values=len(self._action_table), dtype=np.int64, name='action') return tuple(spec for _ in super().action_spec())
meltingpot-main
meltingpot/utils/substrates/wrappers/discrete_action_wrapper.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for multiplayer_wrapper.""" from unittest import mock from absl.testing import absltest import dm_env import dmlab2d from meltingpot.utils.substrates.wrappers import collective_reward_wrapper import numpy as np RGB_SPEC = dm_env.specs.Array(shape=(2, 1), dtype=np.int8) COLLECTIVE_REWARD_SPEC = dm_env.specs.Array(shape=(), dtype=np.float64) NUM_PLAYERS = 3 REWARDS = [1.0, 2.0, 3.0] RGB = np.zeros((2, 1)) class CollectiveRewardWrapperTest(absltest.TestCase): def test_get_timestep(self): env = mock.Mock(spec_set=dmlab2d.Environment) wrapped = collective_reward_wrapper.CollectiveRewardWrapper(env) source = dm_env.TimeStep( step_type=dm_env.StepType.MID, reward=REWARDS, discount=1.0, observation=[{'RGB': RGB} for _ in range(NUM_PLAYERS)]) actual = wrapped._get_timestep(source) added_key = collective_reward_wrapper._COLLECTIVE_REWARD_OBS collective_reward = np.sum(REWARDS) expected_observation = [ {'RGB': RGB, added_key: collective_reward}, ] * NUM_PLAYERS expected_timestep = dm_env.TimeStep( step_type=dm_env.StepType.MID, reward=REWARDS, discount=1.0, observation=expected_observation) np.testing.assert_equal(actual, expected_timestep) def test_spec(self): env = mock.Mock(spec_set=dmlab2d.Environment) env.observation_spec.return_value = [{ 'RGB': RGB_SPEC, }] * NUM_PLAYERS wrapped = collective_reward_wrapper.CollectiveRewardWrapper(env) added_key = collective_reward_wrapper._COLLECTIVE_REWARD_OBS self.assertEqual(wrapped.observation_spec(), [ {'RGB': RGB_SPEC, added_key: COLLECTIVE_REWARD_SPEC}] * NUM_PLAYERS) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/substrates/wrappers/collective_reward_wrapper_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for observables_wrapper.""" import dataclasses from unittest import mock from absl.testing import absltest from absl.testing import parameterized import dmlab2d from meltingpot.utils.substrates.wrappers import observables_wrapper class ObservablesWrapperTest(parameterized.TestCase): def test_observables(self): base = mock.create_autospec( dmlab2d.Environment, instance=True, spec_set=True) with observables_wrapper.ObservablesWrapper(base) as env: received = [] observables = env.observables() for field in dataclasses.fields(observables): getattr(observables, field.name).subscribe( on_next=received.append, on_error=lambda e: received.append(type(e)), on_completed=lambda: received.append('DONE'), ) base.reset.return_value = mock.sentinel.timestep_0 base.events.return_value = [mock.sentinel.events_0] env.reset() base.step.return_value = mock.sentinel.timestep_1 base.events.return_value = [mock.sentinel.events_1] env.step(mock.sentinel.action_1) base.step.return_value = mock.sentinel.timestep_2 base.events.return_value = [mock.sentinel.events_2] env.step(mock.sentinel.action_2) self.assertSequenceEqual(received, [ mock.sentinel.timestep_0, mock.sentinel.events_0, mock.sentinel.action_1, mock.sentinel.timestep_1, mock.sentinel.events_1, mock.sentinel.action_2, mock.sentinel.timestep_2, mock.sentinel.events_2, 'DONE', 'DONE', 'DONE', ]) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/substrates/wrappers/observables_wrapper_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for wrappers. Wrappers are assumed to own the wrapped environment and that they have the **only** reference to it. This means that they will: 1. Close the environment when they close. 2. Modify the environment specs and timesteps inplace. """ import abc from typing import Any, Sequence import chex import dm_env import dmlab2d from meltingpot.utils.substrates.wrappers import base import reactivex @chex.dataclass(frozen=True) class Lab2dObservables: """Observables for a Lab2D environment. Attributes: action: emits actions sent to the substrate from players. timestep: emits timesteps sent from the substrate to players. events: emits environment-specific events resulting from any interactions with the Substrate. Each individual event is emitted as a single element: (event_name, event_item). """ action: reactivex.Observable[Sequence[int]] timestep: reactivex.Observable[dm_env.TimeStep] events: reactivex.Observable[tuple[str, Any]] class ObservableLab2d(dmlab2d.Environment): """A DM Lab2D environment which is observable.""" @abc.abstractmethod def observables(self) -> Lab2dObservables: """The observables of the Lab2D environment.""" class ObservableLab2dWrapper(base.Lab2dWrapper, ObservableLab2d): """Base class for wrappers of ObservableLab2d.""" def observables(self, *args, **kwargs) -> ...: """See base class.""" return self._env.observables(*args, **kwargs)
meltingpot-main
meltingpot/utils/substrates/wrappers/observables.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for wrappers. Wrappers are assumed to own the wrapped environment and that they have the **only** reference to it. This means that they will: 1. Close the environment when they close. 2. Modify the environment specs and timesteps inplace. """ import dmlab2d class Lab2dWrapper(dmlab2d.Environment): """Base class for wrappers of dmlab2d.Environments.""" def __init__(self, env): """Initializes the wrapper. Args: env: An environment to wrap. This environment will be closed with this wrapper. """ self._env = env def reset(self, *args, **kwargs) -> ...: """See base class.""" return self._env.reset(*args, **kwargs) def step(self, *args, **kwargs) -> ...: """See base class.""" return self._env.step(*args, **kwargs) def reward_spec(self, *args, **kwargs) -> ...: """See base class.""" return self._env.reward_spec(*args, **kwargs) def discount_spec(self, *args, **kwargs) -> ...: """See base class.""" return self._env.discount_spec(*args, **kwargs) def observation_spec(self, *args, **kwargs) -> ...: """See base class.""" return self._env.observation_spec(*args, **kwargs) def action_spec(self, *args, **kwargs) -> ...: """See base class.""" return self._env.action_spec(*args, **kwargs) def close(self, *args, **kwargs) -> ...: """See base class.""" return self._env.close(*args, **kwargs) def observation(self, *args, **kwargs) -> ...: """See base class.""" return self._env.observation(*args, **kwargs) def events(self, *args, **kwargs) -> ...: """See base class.""" return self._env.events(*args, **kwargs) def list_property(self, *args, **kwargs) -> ...: """See base class.""" return self._env.list_property(*args, **kwargs) def write_property(self, *args, **kwargs) -> ...: """See base class.""" return self._env.write_property(*args, **kwargs) def read_property(self, *args, **kwargs) -> ...: """See base class.""" return self._env.read_property(*args, **kwargs)
meltingpot-main
meltingpot/utils/substrates/wrappers/base.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrapper that converts the DMLab2D specs into lists of action/observation.""" from collections.abc import Collection, Iterator, Mapping, Sequence from typing import TypeVar import dm_env from meltingpot.utils.substrates.wrappers import observables import numpy as np T = TypeVar("T") def _player_observations(observations: Mapping[str, T], suffix: str, num_players: int) -> Iterator[T]: """Yields observations for each player. Args: observations: dmlab2d observations source to check. suffix: suffix of player key to return. num_players: the number of players. """ for player_index in range(num_players): try: value = observations[f"{player_index + 1}.{suffix}"] except KeyError: pass else: if isinstance(value, dm_env.specs.Array): value = value.replace(name=suffix) yield player_index, value class Wrapper(observables.ObservableLab2dWrapper): """Wrapper that converts the environment to multiplayer lists. Ensures: - observations are returned as lists of dictionary observations - rewards are returned as lists of scalars - actions are received as lists of dictionary observations - discounts are never None """ def __init__(self, env, individual_observation_names: Collection[str], global_observation_names: Collection[str]): """Constructor. Args: env: environment to wrap. When this wrapper closes env will also be closed. individual_observation_names: the per-player observations to make available to the players. global_observation_names: the observations that are available to all players and analytics. """ super().__init__(env) self._num_players = self._get_num_players() self._individual_observation_suffixes = set(individual_observation_names) self._global_observation_names = set(global_observation_names) def _get_num_players(self) -> int: """Returns maximum player index in dmlab2d action spec.""" action_spec_keys = super().action_spec().keys() lua_player_indices = (int(key.split(".", 1)[0]) for key in action_spec_keys) return max(lua_player_indices) def _get_observations( self, source: Mapping[str, T]) -> Sequence[Mapping[str, T]]: """Returns multiplayer observations from dmlab2d observations. Args: source: dmlab2d observations source to check. """ player_observations = [{} for i in range(self._num_players)] for suffix in self._individual_observation_suffixes: for i, value in _player_observations(source, suffix, self._num_players): player_observations[i][suffix] = value for name in self._global_observation_names: value = source[name] for i in range(self._num_players): player_observations[i][name] = value return player_observations def _get_rewards(self, source: Mapping[str, T]) -> Sequence[T]: """Returns multiplayer rewards from dmlab2d observations. Args: source: dmlab2d observations source to check. """ rewards = [None] * self._num_players for i, value in _player_observations(source, "REWARD", self._num_players): rewards[i] = value return rewards def _get_timestep(self, source: dm_env.TimeStep) -> dm_env.TimeStep: """Returns multiplayer timestep from dmlab2d observations. Args: source: dmlab2d observations source to check. """ return dm_env.TimeStep( step_type=source.step_type, reward=self._get_rewards(source.observation), discount=0. if source.discount is None else source.discount, observation=self._get_observations(source.observation)) def _get_action(self, source: Sequence[Mapping[str, T]]) -> Mapping[str, T]: """Returns dmlab2 action from multiplayer actions. Args: source: multiplayer actions. """ dmlab2d_actions = {} for player_index, action in enumerate(source): for key, value in action.items(): dmlab2d_actions[f"{player_index + 1}.{key}"] = value return dmlab2d_actions def reset(self) -> dm_env.TimeStep: """See base class.""" timestep = super().reset() return self._get_timestep(timestep) def step( self, actions: Sequence[Mapping[str, np.ndarray]]) -> dm_env.TimeStep: """See base class.""" action = self._get_action(actions) timestep = super().step(action) return self._get_timestep(timestep) def observation(self) -> Sequence[Mapping[str, np.ndarray]]: """See base class.""" observation = super().observation() return self._get_observations(observation) def action_spec(self) -> Sequence[Mapping[str, dm_env.specs.Array]]: """See base class.""" source = super().action_spec() action_spec = [{} for _ in range(self._num_players)] for key, spec in source.items(): lua_player_index, suffix = key.split(".", 1) player_index = int(lua_player_index) - 1 action_spec[player_index][suffix] = spec.replace(name=suffix) return action_spec def observation_spec(self) -> Sequence[Mapping[str, dm_env.specs.Array]]: """See base class.""" source = super().observation_spec() return self._get_observations(source) def reward_spec(self) -> Sequence[dm_env.specs.Array]: """See base class.""" source = super().observation_spec() return self._get_rewards(source)
meltingpot-main
meltingpot/utils/substrates/wrappers/multiplayer_wrapper.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluation utilities.""" import collections from collections.abc import Collection, Iterator, Mapping import contextlib import os from typing import Optional, TypeVar import uuid from absl import logging import cv2 import dm_env import meltingpot from meltingpot.utils.policies import policy as policy_lib from meltingpot.utils.policies import saved_model_policy from meltingpot.utils.scenarios import population as population_lib from meltingpot.utils.scenarios import scenario as scenario_lib from meltingpot.utils.substrates import substrate as substrate_lib import numpy as np import pandas as pd from reactivex import operators as ops from reactivex import subject T = TypeVar('T') def run_episode( population: population_lib.Population, substrate: substrate_lib.Substrate, ) -> None: """Runs a population on a substrate for one episode.""" population.reset() timestep = substrate.reset() population.send_timestep(timestep) actions = population.await_action() while not timestep.step_type.last(): timestep = substrate.step(actions) population.send_timestep(timestep) actions = population.await_action() class VideoSubject(subject.Subject): """Subject that emits a video at the end of each episode.""" def __init__( self, root: str, *, extension: str = 'webm', codec: str = 'vp90', fps: int = 30, ) -> None: """Initializes the instance. Args: root: directory to write videos in. extension: file extention of file. codec: codex to write with. fps: frames-per-second for videos. """ super().__init__() self._root = root self._extension = extension self._codec = codec self._fps = fps self._path = None self._writer = None def on_next(self, timestep: dm_env.TimeStep) -> None: """Called on each timestep. Args: timestep: the most recent timestep. """ rgb_frame = timestep.observation[0]['WORLD.RGB'] if timestep.step_type.first(): self._path = os.path.join( self._root, f'{uuid.uuid4().hex}.{self._extension}') height, width, _ = rgb_frame.shape self._writer = cv2.VideoWriter( filename=self._path, fourcc=cv2.VideoWriter_fourcc(*self._codec), fps=self._fps, frameSize=(width, height), isColor=True) elif self._writer is None: raise ValueError('First timestep must be StepType.FIRST.') bgr_frame = cv2.cvtColor(rgb_frame, cv2.COLOR_RGB2BGR) assert self._writer.isOpened() # Catches any cv2 usage errors. self._writer.write(bgr_frame) if timestep.step_type.last(): self._writer.release() super().on_next(self._path) self._path = None self._writer = None def dispose(self): """See base class.""" if self._writer is not None: self._writer.release() super().dispose() class ReturnSubject(subject.Subject): """Subject that emits the player returns at the end of each episode.""" def on_next(self, timestep: dm_env.TimeStep): """Called on each timestep. Args: timestep: the most recent timestep. """ if timestep.step_type.first(): self._return = np.zeros_like(timestep.reward) self._return += timestep.reward if timestep.step_type.last(): super().on_next(self._return) self._return = None def run_and_observe_episodes( population: population_lib.Population, substrate: substrate_lib.Substrate, num_episodes: int, video_root: Optional[str] = None, ) -> pd.DataFrame: """Runs a population on a substrate and returns results. Args: population: the population to run. substrate: the substrate to run on. num_episodes: the number of episodes to gather data for. video_root: path to directory to save videos in. Returns: A dataframe of results. One row for each episode with columns: background_player_names: the names of each background player. background_player_returns: the episode returns for each background player. focal_player_names: the names of each focal player. focal_player_returns: the episode returns for each focal player. video_path: a path to a video of the episode. """ focal_observables = population.observables() if isinstance(substrate, scenario_lib.Scenario): substrate_observables = substrate.observables().substrate background_observables = substrate.observables().background else: substrate_observables = substrate.observables() background_observables = population_lib.PopulationObservables( names=focal_observables.names.pipe(ops.map(lambda x: ())), action=focal_observables.action.pipe(ops.map(lambda x: ())), timestep=focal_observables.timestep.pipe( ops.map(lambda t: t._replace(observation=(), reward=())))) data = collections.defaultdict(list) with contextlib.ExitStack() as stack: def subscribe(observable, *args, **kwargs): disposable = observable.subscribe(*args, **kwargs) # pytype: disable=wrong-keyword-args stack.callback(disposable.dispose) if video_root: video_subject = VideoSubject(video_root) subscribe(substrate_observables.timestep, video_subject) subscribe(video_subject, on_next=data['video_path'].append) focal_return_subject = ReturnSubject() subscribe(focal_observables.timestep, focal_return_subject) subscribe(focal_return_subject, on_next=data['focal_player_returns'].append) subscribe(focal_return_subject.pipe(ops.map(np.mean)), on_next=data['focal_per_capita_return'].append) subscribe(focal_observables.names, on_next=data['focal_player_names'].append) background_return_subject = ReturnSubject() subscribe(background_observables.timestep, background_return_subject) subscribe(background_return_subject, on_next=data['background_player_returns'].append) subscribe(background_return_subject.pipe(ops.map(np.mean)), on_next=data['background_per_capita_return'].append) subscribe(background_observables.names, on_next=data['background_player_names'].append) for n in range(num_episodes): run_episode(population, substrate) logging.info('%4d / %4d episodes completed...', n + 1, num_episodes) return pd.DataFrame(data).sort_index(axis=1) def evaluate_population_on_scenario( population: Mapping[str, policy_lib.Policy], names_by_role: Mapping[str, Collection[str]], scenario: str, num_episodes: int = 100, video_root: Optional[str] = None, ) -> pd.DataFrame: """Evaluates a population on a scenario. Args: population: the population to evaluate. names_by_role: the names of the policies that support specific roles. scenario: the scenario to evaluate on. num_episodes: the number of episodes to run. video_root: path to directory to save videos in. Returns: A dataframe of results. One row for each episode with columns: background_player_names: the names of each background player. background_player_returns: the episode returns for each background player. focal_player_names: the names of each focal player. focal_player_returns: the episode returns for each focal player. video_path: a path to a video of the episode. """ factory = meltingpot.scenario.get_factory(scenario) focal_population = population_lib.Population( policies=population, names_by_role=names_by_role, roles=factory.focal_player_roles()) with factory.build() as env: return run_and_observe_episodes( population=focal_population, substrate=env, num_episodes=num_episodes, video_root=video_root) def evaluate_population_on_substrate( population: Mapping[str, policy_lib.Policy], names_by_role: Mapping[str, Collection[str]], substrate: str, num_episodes: int = 100, video_root: Optional[str] = None, ) -> pd.DataFrame: """Evaluates a population on a substrate. Args: population: the population to evaluate. names_by_role: the names of the policies that support specific roles. substrate: the substrate to evaluate on. num_episodes: the number of episodes to run. video_root: path to directory to save videos in. Returns: A dataframe of results. One row for each episode with columns: background_player_names: the names of each background player. background_player_returns: the episode returns for each background player. focal_player_names: the names of each focal player. focal_player_returns: the episode returns for each focal player. video_path: a path to a video of the episode. """ factory = meltingpot.substrate.get_factory(substrate) roles = factory.default_player_roles() focal_population = population_lib.Population( policies=population, names_by_role=names_by_role, roles=roles) with factory.build(roles) as env: return run_and_observe_episodes( population=focal_population, substrate=env, num_episodes=num_episodes, video_root=video_root) def evaluate_population( population: Mapping[str, policy_lib.Policy], names_by_role: Mapping[str, Collection[str]], scenario: str, num_episodes: int = 100, video_root: Optional[str] = None, ) -> pd.DataFrame: """Evaluates a population on a scenario (or a substrate). Args: population: the population to evaluate. names_by_role: the names of the policies that support specific roles. scenario: the scenario (or substrate) to evaluate on. num_episodes: the number of episodes to run. video_root: path to directory to save videos under. Returns: A dataframe of results. One row for each episode with columns: background_player_names: the names of each background player. background_player_returns: the episode returns for each background player. focal_player_names: the names of each focal player. focal_player_returns: the episode returns for each focal player. video_path: a path to a video of the episode. """ if scenario in meltingpot.scenario.SCENARIOS: return evaluate_population_on_scenario( population=population, names_by_role=names_by_role, scenario=scenario, num_episodes=num_episodes, video_root=video_root) elif scenario in meltingpot.substrate.SUBSTRATES: return evaluate_population_on_substrate( population=population, names_by_role=names_by_role, substrate=scenario, num_episodes=num_episodes, video_root=video_root) else: raise ValueError(f'Unknown substrate or scenario: {scenario!r}') @contextlib.contextmanager def build_saved_model_population( saved_models: Mapping[str, str], ) -> Iterator[Mapping[str, policy_lib.Policy]]: """Builds a population from the specified saved models. Args: saved_models: a mapping form name to saved model path. Yields: A mapping from name to policy. """ with contextlib.ExitStack() as stack: yield { name: stack.enter_context(saved_model_policy.SavedModelPolicy(path)) for name, path in saved_models.items() } def evaluate_saved_models_on_scenario( saved_models: Mapping[str, str], names_by_role: Mapping[str, Collection[str]], scenario: str, num_episodes: int = 100, video_root: Optional[str] = None, ) -> pd.DataFrame: """Evaluates saved models on a scenario. Args: saved_models: names and paths of the saved_models to evaluate. names_by_role: the names of the policies that support specific roles. scenario: the scenario to evaluate on. num_episodes: the number of episodes to run. video_root: path to directory to save videos in. Returns: A dataframe of results. One row for each episode with columns: background_player_names: the names of each background player. background_player_returns: the episode returns for each background player. focal_player_names: the names of each focal player. focal_player_returns: the episode returns for each focal player. video_path: a path to a video of the episode. """ with build_saved_model_population(saved_models) as population: return evaluate_population_on_scenario( population=population, names_by_role=names_by_role, scenario=scenario, num_episodes=num_episodes, video_root=video_root) def evaluate_saved_models_on_substrate( saved_models: Mapping[str, str], names_by_role: Mapping[str, Collection[str]], substrate: str, num_episodes: int = 100, video_root: Optional[str] = None, ) -> pd.DataFrame: """Evaluates saved models on a substrate. Args: saved_models: names and paths of the saved_models to evaluate. names_by_role: the names of the policies that support specific roles. substrate: the substrate to evaluate on. num_episodes: the number of episodes to run. video_root: path to directory to save videos in. Returns: A dataframe of results. One row for each episode with columns: background_player_names: the names of each background player. background_player_returns: the episode returns for each background player. focal_player_names: the names of each focal player. focal_player_returns: the episode returns for each focal player. video_path: a path to a video of the episode. """ with build_saved_model_population(saved_models) as population: return evaluate_population_on_substrate( population=population, names_by_role=names_by_role, substrate=substrate, num_episodes=num_episodes, video_root=video_root) def evaluate_saved_models( saved_models: Mapping[str, str], names_by_role: Mapping[str, Collection[str]], scenario: str, num_episodes: int = 100, video_root: Optional[str] = None, ) -> pd.DataFrame: """Evaluates saved models on a substrate and it's scenarios. Args: saved_models: names and paths of the saved_models to evaluate. names_by_role: the names of the policies that support specific roles. scenario: the scenario (or substrate) to evaluate on. num_episodes: the number of episodes to run. video_root: path to directory to save videos under. Returns: A dataframe of results. One row for each episode with columns: background_player_names: the names of each background player. background_player_returns: the episode returns for each background player. focal_player_names: the names of each focal player. focal_player_returns: the episode returns for each focal player. video_path: a path to a video of the episode. """ with build_saved_model_population(saved_models) as population: return evaluate_population( population=population, names_by_role=names_by_role, scenario=scenario, num_episodes=num_episodes, video_root=video_root)
meltingpot-main
meltingpot/utils/evaluation/evaluation.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
meltingpot-main
meltingpot/utils/evaluation/__init__.py
# Copyright 2023 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile from absl.testing import absltest import cv2 import dm_env from meltingpot.utils.evaluation import evaluation import numpy as np def _as_timesteps(frames): first, *mids, last = frames yield dm_env.restart(observation=[{'WORLD.RGB': first}]) for frame in mids: yield dm_env.transition(observation=[{'WORLD.RGB': frame}], reward=0) yield dm_env.termination(observation=[{'WORLD.RGB': last}], reward=0) def _get_frames(path): capture = cv2.VideoCapture(path) while capture.isOpened(): ret, bgr_frame = capture.read() if not ret: break rgb_frame = cv2.cvtColor(bgr_frame, cv2.COLOR_BGR2RGB) yield rgb_frame capture.release() FRAME_SHAPE = (4, 8) ZERO = np.zeros(FRAME_SHAPE, np.uint8) EYE = np.eye(*FRAME_SHAPE, dtype=np.uint8) * 255 RED_EYE = np.stack([EYE, ZERO, ZERO], axis=-1) GREEN_EYE = np.stack([ZERO, EYE, ZERO], axis=-1) BLUE_EYE = np.stack([ZERO, ZERO, EYE], axis=-1) class EvaluationTest(absltest.TestCase): def test_video_subject(self): video_path = None step_written = None def save_path(path): nonlocal video_path video_path = path tempdir = tempfile.mkdtemp() assert os.path.exists(tempdir) # Use lossless compression for test. subject = evaluation.VideoSubject(tempdir, extension='avi', codec='png ') subject.subscribe(on_next=save_path) frames = [RED_EYE, GREEN_EYE, BLUE_EYE] for n, timestep in enumerate(_as_timesteps(frames)): subject.on_next(timestep) if step_written is None and video_path is not None: step_written = n with self.subTest('video_exists'): self.assertTrue(video_path and os.path.exists(video_path)) with self.subTest('written_on_final_step'): self.assertEqual(step_written, 2) with self.subTest('contents'): written = list(_get_frames(video_path)) np.testing.assert_equal(written, frames) def test_return_subject(self): episode_return = None step_written = None def save_return(ret): nonlocal episode_return episode_return = ret subject = evaluation.ReturnSubject() subject.subscribe(on_next=save_return) timesteps = [ dm_env.restart(observation=[{}])._replace(reward=[0, 0]), dm_env.transition(observation=[{}], reward=[2, 4]), dm_env.termination(observation=[{}], reward=[1, 3]), ] for n, timestep in enumerate(timesteps): subject.on_next(timestep) if step_written is None and episode_return is not None: step_written = n with self.subTest('written_on_final_step'): self.assertEqual(step_written, 2) with self.subTest('contents'): np.testing.assert_equal(episode_return, [3, 7]) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/utils/evaluation/evaluation_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test utilities for substrates.""" from absl.testing import parameterized class SubstrateTestCase(parameterized.TestCase): """Base class for tests of substrates.""" def assert_step_matches_specs(self, env): """Asserts that env accepts an action permitted by its spec. Args: env: environment to check. Raises: AssertionError: the env doesn't match its spec. """ env.reset() action = [spec.maximum for spec in env.action_spec()] try: timestep = env.step(action) except Exception: # pylint: disable=broad-except self.fail(f'Failure when passing action {action!r}.') try: env.discount_spec().validate(timestep.discount) except ValueError: self.fail('Discount does not match spec.') reward_spec = env.reward_spec() if len(reward_spec) != len(timestep.reward): self.fail(f'Spec is length {len(reward_spec)} but reward is length ' f'{len(timestep.reward)}.') for n, spec in enumerate(reward_spec): try: spec.validate(timestep.reward[n]) except ValueError: self.fail(f'Reward {n} does not match spec.') observations = timestep.observation observation_specs = env.observation_spec() if len(observation_specs) != len(observations): self.fail(f'Spec is length {len(observation_specs)} but observations ' f'are length {len(observations)}') for n, (observation, spec) in enumerate( zip(observations, observation_specs)): if set(spec) != set(observation): self.fail(f'Observation {n} keys {set(observation)!r} do not match ' f'spec keys {set(observation)!r}.') for key in spec: try: spec[key].validate(observation[key]) except ValueError: self.fail(f'Observation {n} key {key!r} does not match spec.')
meltingpot-main
meltingpot/testing/substrates.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for testing bots.""" from absl.testing import absltest from absl.testing import parameterized import dm_env from meltingpot.utils.policies import policy as policy_lib import tree class BotTestCase(parameterized.TestCase): """Base test case for bots.""" def assert_compatible( self, policy: policy_lib.Policy, timestep_spec: dm_env.TimeStep, action_spec: dm_env.specs.DiscreteArray, ) -> None: """Asserts that policy matches the given spec. Args: policy: policy to check. timestep_spec: the timestep spec to check the policy against. action_spec: the action spec to check the policy against. Raises: AssertionError: the env doesn't match its spec. """ timestep = tree.map_structure( lambda spec: spec.generate_value(), timestep_spec) prev_state = policy.initial_state() try: action, _ = policy.step(timestep, prev_state) except Exception: # pylint: disable=broad-except self.fail(f'Failed step with timestep matching spec {timestep_spec!r}.') try: action_spec.validate(action) except ValueError: self.fail(f'Returned action {action!r} does not match action_spec ' f'{action_spec!r}.') if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/testing/bots.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
meltingpot-main
meltingpot/testing/__init__.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Puppeteer test utilities.""" from typing import Any, Iterable, Iterator, Mapping, Optional, Sequence, TypeVar import dm_env from meltingpot.utils.puppeteers import puppeteer as puppeteer_lib GOAL_KEY = puppeteer_lib._GOAL_OBSERVATION_KEY # pylint: disable=protected-access State = TypeVar('State') def step_many( puppeteer: puppeteer_lib.Puppeteer[State], timesteps: Iterable[dm_env.TimeStep], state: Optional[State] = None, ) -> Iterator[tuple[dm_env.TimeStep, State]]: """Yields multiple puppeteeer steps.""" if state is None: state = puppeteer.initial_state() for timestep in timesteps: transformed_timestep, state = puppeteer.step(timestep, state) yield transformed_timestep, state def goals_from_timesteps( puppeteer: puppeteer_lib.Puppeteer[State], timesteps: Iterable[dm_env.TimeStep], state: Optional[State] = None, ) -> tuple[Sequence[puppeteer_lib.PuppetGoal], State]: """Returns puppet goals for each timestep.""" goals = [] for timestep, state in step_many(puppeteer, timesteps, state): goals.append(timestep.observation[GOAL_KEY]) return goals, state def episode_timesteps( observations: Sequence[Mapping[str, Any]]) -> Iterator[dm_env.TimeStep]: """Yields an episode timestep for each observation.""" for n, observation in enumerate(observations): if n == 0: yield dm_env.restart(observation=observation) elif n == len(observations) - 1: yield dm_env.termination(observation=observation, reward=0) else: yield dm_env.transition(observation=observation, reward=0) def goals_from_observations( puppeteer: puppeteer_lib.Puppeteer[State], observations: Sequence[Mapping[str, Any]], state: Optional[State] = None, ) -> tuple[Sequence[puppeteer_lib.PuppetGoal], State]: """Returns puppet goals from an episode of the provided observations.""" timesteps = episode_timesteps(observations) return goals_from_timesteps(puppeteer, timesteps, state)
meltingpot-main
meltingpot/testing/puppeteers.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest import dm_env from meltingpot.testing import mocks from meltingpot.testing import substrates from meltingpot.utils.substrates import specs as meltingpot_specs from meltingpot.utils.substrates import substrate import numpy as np class MocksTest(substrates.SubstrateTestCase): def test_value_from_specs(self): specs = ( {'a': dm_env.specs.Array([1, 2, 3], dtype=np.uint8)}, {'b': dm_env.specs.Array([1, 2, 3], dtype=np.uint8)}, ) actual = mocks._values_from_specs(specs) expected = ( {'a': np.zeros([1, 2, 3], dtype=np.uint8)}, {'b': np.ones([1, 2, 3], dtype=np.uint8)}, ) np.testing.assert_equal(actual, expected) def test_mock_substrate(self): num_players = 2 num_actions = 3 observation_spec = {'a': dm_env.specs.Array([], dtype=np.uint8)} mock = mocks.build_mock_substrate( num_players=num_players, num_actions=num_actions, observation_spec=observation_spec) expected_observation = ( {'a': np.zeros([], dtype=np.uint8)}, {'a': np.ones([], dtype=np.uint8)}, ) expected_reward = tuple(float(n) for n in range(num_players)) with self.subTest('is_substrate'): self.assertIsInstance(mock, substrate.Substrate) with self.subTest('error_getting_invalid'): with self.assertRaises(AttributeError): mock.no_such_method() # pytype: disable=attribute-error with self.subTest('error_setting_invalid'): with self.assertRaises(AttributeError): mock.no_such_method = None with self.subTest('can_enter_context'): with mock as c: self.assertEqual(c.discount_spec(), mock.discount_spec()) with self.subTest('action_spec'): self.assertEqual(mock.action_spec(), (meltingpot_specs.action(3),) * 2) with self.subTest('reward_spec'): self.assertLen(mock.reward_spec(), num_players) with self.subTest('observation_spec'): self.assertLen(mock.observation_spec(), num_players) with self.subTest('reset'): expected = dm_env.TimeStep( step_type=dm_env.StepType.FIRST, observation=expected_observation, reward=(0.,) * num_players, discount=0., ) self.assertEqual(mock.reset(), expected) with self.subTest('step'): expected = dm_env.transition(expected_reward, expected_observation) self.assertEqual(mock.step([0, 0]), expected) with self.subTest('events'): self.assertEmpty(mock.events()) with self.subTest('observation'): self.assertEqual(mock.observation(), expected_observation) def test_mock_substrate_like(self): mock = mocks.build_mock_substrate_like('clean_up') self.assert_step_matches_specs(mock) def test_mock_scenario_like(self): mock = mocks.build_mock_scenario_like('clean_up_0') self.assert_step_matches_specs(mock) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/testing/mocks_test.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mocks of various Melting Pot classes for use in testing.""" from collections.abc import Mapping, Sequence from typing import Optional, Type, TypeVar from unittest import mock import dm_env import immutabledict import meltingpot from meltingpot.utils.scenarios import scenario from meltingpot.utils.substrates import specs as meltingpot_specs from meltingpot.utils.substrates import substrate import numpy as np import tree SUBSTRATE_OBSERVATION_SPEC = immutabledict.immutabledict({ # Observations present in all substrates. Sizes may vary. 'RGB': meltingpot_specs.OBSERVATION['RGB'], 'WORLD.RGB': meltingpot_specs.rgb(128, 256, name='WORLD.RGB'), }) SCENARIO_OBSERVATION_SPEC = immutabledict.immutabledict({ # Observations present in all scenarios. 'RGB': meltingpot_specs.OBSERVATION['RGB'], }) def _values_from_specs( specs: Sequence[tree.Structure[dm_env.specs.Array]] ) -> tree.Structure[np.ndarray]: values = tree.map_structure(lambda spec: spec.generate_value(), specs) return tuple( tree.map_structure(lambda v, n=n: np.full_like(v, n), value) for n, value in enumerate(values)) _AnySubstrate = TypeVar('_AnySubstrate', bound=substrate.Substrate) def _build_mock_substrate( *, spec: Type[_AnySubstrate], num_players: int, timestep_spec: dm_env.TimeStep, action_spec: dm_env.specs.DiscreteArray, ) -> ...: """Returns a mock Substrate for use in testing. Args: spec: the Substrate class to use as a spec. num_players: the number of players in the substrate. timestep_spec: the timestep spec for a single player. action_spec: the action spec for a single player. """ mock_substrate = mock.create_autospec(spec=spec, instance=True, spec_set=True) mock_substrate.__enter__.return_value = mock_substrate mock_substrate.__exit__.return_value = None mock_substrate.observation_spec.return_value = ( timestep_spec.observation,) * num_players mock_substrate.reward_spec.return_value = ( timestep_spec.reward,) * num_players mock_substrate.discount_spec.return_value = timestep_spec.discount mock_substrate.action_spec.return_value = (action_spec,) * num_players mock_substrate.events.return_value = () observation = _values_from_specs( (timestep_spec.observation,) * num_players) mock_substrate.observation.return_value = observation mock_substrate.reset.return_value = dm_env.TimeStep( step_type=dm_env.StepType.FIRST, reward=(timestep_spec.reward.generate_value(),) * num_players, discount=0., observation=observation, ) mock_substrate.step.return_value = dm_env.transition( reward=tuple(float(i) for i in range(num_players)), observation=observation, ) return mock_substrate def build_mock_substrate( *, num_players: int = 8, num_actions: int = 8, observation_spec: Mapping[str, dm_env.specs.Array] = SUBSTRATE_OBSERVATION_SPEC, ) -> ...: """Returns a mock Substrate for use in testing. Args: num_players: the number of players in the substrate. num_actions: the number of actions supported by the substrate. observation_spec: the observation spec for a single player. """ return _build_mock_substrate( spec=substrate.Substrate, num_players=num_players, action_spec=meltingpot_specs.action(num_actions), timestep_spec=meltingpot_specs.timestep(observation_spec), ) def build_mock_substrate_like(name: str, *, num_players: Optional[int] = None) -> ...: """Returns a mock of a specific Substrate for use in testing. Args: name: substrate to mock. num_players: number of players to support. """ factory = meltingpot.substrate.get_factory(name) if num_players is None: num_players = len(factory.default_player_roles()) return _build_mock_substrate( spec=substrate.Substrate, num_players=num_players, action_spec=factory.action_spec(), timestep_spec=factory.timestep_spec(), ) def build_mock_scenario( *, num_players: int = 8, num_actions: int = 8, observation_spec: Mapping[str, dm_env.specs.Array] = SCENARIO_OBSERVATION_SPEC, ) -> ...: """Returns a mock Scenario for use in testing. Args: num_players: the number of focal players in the scenario. num_actions: the number of actions supported by the scenario. observation_spec: the observation spec for a single focal player. """ return _build_mock_substrate( spec=scenario.Scenario, num_players=num_players, action_spec=meltingpot_specs.action(num_actions), timestep_spec=meltingpot_specs.timestep(observation_spec), ) def build_mock_scenario_like(name: str) -> ...: """Returns a mock of a specific Scenario for use in testing. Args: name: scenario to mock. """ factory = meltingpot.scenario.get_factory(name) return _build_mock_substrate( spec=scenario.Scenario, num_players=factory.num_focal_players(), action_spec=factory.action_spec(), timestep_spec=factory.timestep_spec(), )
meltingpot-main
meltingpot/testing/mocks.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `coop_mining`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the gift beam. Use `1` to consume tokens. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import coop_mining from meltingpot.human_players import level_playing_utils from ml_collections import config_dict environment_configs = { 'coop_mining': coop_mining, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'mine': level_playing_utils.get_space_key_pressed, } def verbose_fn(unused_env, unused_player_index, unused_current_player_index): pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='coop_mining', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_coop_mining.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing any `territory` substrate. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the zapper. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import territory__inside_out from meltingpot.configs.substrates import territory__open from meltingpot.configs.substrates import territory__rooms from meltingpot.human_players import level_playing_utils from ml_collections import config_dict environment_configs = { 'territory__open': territory__open, 'territory__rooms': territory__rooms, 'territory__inside_out': territory__inside_out, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'fireZap': level_playing_utils.get_space_key_pressed, 'fireClaim': level_playing_utils.get_left_shift_pressed, } def verbose_fn(unused_env, unused_player_index, unused_current_player_index): pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='territory__rooms', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_territory.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `*_in_the_matrix`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the interaction beam. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import bach_or_stravinsky_in_the_matrix__arena as bach_or_stravinsky_itm from meltingpot.configs.substrates import bach_or_stravinsky_in_the_matrix__repeated as bach_or_stravinsky_itm__repeated from meltingpot.configs.substrates import chicken_in_the_matrix__arena as chicken_itm from meltingpot.configs.substrates import chicken_in_the_matrix__repeated as chicken_itm__repeated from meltingpot.configs.substrates import prisoners_dilemma_in_the_matrix__arena as prisoners_dilemma_itm from meltingpot.configs.substrates import prisoners_dilemma_in_the_matrix__repeated as prisoners_dilemma_itm__repeated from meltingpot.configs.substrates import pure_coordination_in_the_matrix__arena as pure_coord_itm from meltingpot.configs.substrates import pure_coordination_in_the_matrix__repeated as pure_coord_itm__repeated from meltingpot.configs.substrates import rationalizable_coordination_in_the_matrix__arena as rational_coord_itm from meltingpot.configs.substrates import rationalizable_coordination_in_the_matrix__repeated as rational_coord_itm__repeated from meltingpot.configs.substrates import running_with_scissors_in_the_matrix__arena as rws_itm__arena from meltingpot.configs.substrates import running_with_scissors_in_the_matrix__one_shot as rws_itm from meltingpot.configs.substrates import running_with_scissors_in_the_matrix__repeated as rws_itm__repeated from meltingpot.configs.substrates import stag_hunt_in_the_matrix__arena as stag_hunt_itm from meltingpot.configs.substrates import stag_hunt_in_the_matrix__repeated as stag_hunt_itm__repeated from meltingpot.human_players import level_playing_utils from ml_collections import config_dict environment_configs = { 'bach_or_stravinsky_in_the_matrix__arena': bach_or_stravinsky_itm, 'bach_or_stravinsky_in_the_matrix__repeated': bach_or_stravinsky_itm__repeated, 'chicken_in_the_matrix__arena': chicken_itm, 'chicken_in_the_matrix__repeated': chicken_itm__repeated, 'prisoners_dilemma_in_the_matrix__arena': prisoners_dilemma_itm, 'prisoners_dilemma_in_the_matrix__repeated': prisoners_dilemma_itm__repeated, 'pure_coordination_in_the_matrix__arena': pure_coord_itm, 'pure_coordination_in_the_matrix__repeated': pure_coord_itm__repeated, 'rationalizable_coordination_in_the_matrix__arena': rational_coord_itm, 'rationalizable_coordination_in_the_matrix__repeated': rational_coord_itm__repeated, 'running_with_scissors_in_the_matrix__arena': rws_itm__arena, 'running_with_scissors_in_the_matrix__one_shot': rws_itm, 'running_with_scissors_in_the_matrix__repeated': rws_itm__repeated, 'stag_hunt_in_the_matrix__arena': stag_hunt_itm, 'stag_hunt_in_the_matrix__repeated': stag_hunt_itm__repeated, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'interact': level_playing_utils.get_space_key_pressed, } def verbose_fn(env_timestep, player_index, current_player_index): """Print using this function once enabling the option --verbose=True.""" lua_index = player_index + 1 collected_resource_1 = env_timestep.observation[ f'{lua_index}.COLLECTED_RESOURCE_1'] collected_resource_2 = env_timestep.observation[ f'{lua_index}.COLLECTED_RESOURCE_2'] destroyed_resource_1 = env_timestep.observation[ f'{lua_index}.DESTROYED_RESOURCE_1'] destroyed_resource_2 = env_timestep.observation[ f'{lua_index}.DESTROYED_RESOURCE_2'] interacted_this_step = env_timestep.observation[ f'{lua_index}.INTERACTED_THIS_STEP'] argmax_interact_inventory_1 = env_timestep.observation[ f'{lua_index}.ARGMAX_INTERACTION_INVENTORY_WAS_1'] argmax_interact_inventory_2 = env_timestep.observation[ f'{lua_index}.ARGMAX_INTERACTION_INVENTORY_WAS_2'] # Only print observations from current player. if player_index == current_player_index: print( f'player: {player_index} --- \n' + f' collected_resource_1: {collected_resource_1} \n' + f' collected_resource_2: {collected_resource_2} \n' + f' destroyed_resource_1: {destroyed_resource_1} \n' + f' destroyed_resource_1: {destroyed_resource_2} \n' + f' interacted_this_step: {interacted_this_step} \n' + f' argmax_interaction_inventory_1: {argmax_interact_inventory_1} \n' + f' argmax_interaction_inventory_2: {argmax_interact_inventory_2} \n' ) def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='prisoners_dilemma_in_the_matrix__repeated', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_anything_in_the_matrix.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing any `paintball__*` substrate. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the zapper. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import paintball__capture_the_flag from meltingpot.configs.substrates import paintball__king_of_the_hill from meltingpot.human_players import level_playing_utils from ml_collections import config_dict def get_zap() -> int: """Sets zap to either 0, 1, or 2.""" if level_playing_utils.get_right_shift_pressed(): return 2 if level_playing_utils.get_space_key_pressed(): return 1 return 0 environment_configs = { 'paintball__capture_the_flag': paintball__capture_the_flag, 'paintball__king_of_the_hill': paintball__king_of_the_hill, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'fireZap': get_zap, } def verbose_fn(unused_env, unused_player_index, unused_current_player_index): pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='paintball__capture_the_flag', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_paintball.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `boat_race`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use ` ` to row (effectively, but needs coordinated stroke). Use `x` to flail (row ineffectively, but with safe steady progress). Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import boat_race__eight_races from meltingpot.human_players import level_playing_utils from meltingpot.utils.substrates import game_object_utils from ml_collections import config_dict MAX_SCREEN_WIDTH = 600 MAX_SCREEN_HEIGHT = 800 FRAMES_PER_SECOND = 8 environment_configs = { 'boat_race__eight_races': boat_race__eight_races, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'row': level_playing_utils.get_space_key_pressed, 'flail': level_playing_utils.get_key_x_pressed, } def verbose_fn(env_timestep, player_index, current_player_index): lua_index = player_index + 1 if (env_timestep.observation['WORLD.RACE_START'].any() and player_index == current_player_index): print('WORLD.RACE_START', env_timestep.observation['WORLD.RACE_START']) for obs in [f'{lua_index}.PADDLES', f'{lua_index}.FLAILS']: if env_timestep.observation[obs]: print(obs, env_timestep.observation[obs]) def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='boat_race__eight_races', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') parser.add_argument( '--override_flail_effectiveness', type=float, default=0.1, help='Override flail effectiveness to make debugging easier.') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) # For easier debug, override the flailEffectiveness game_object_utils.get_first_named_component( env_config.lab2d_settings['simulation']['prefabs']['seat_L'], 'BoatManager' )['kwargs']['flailEffectiveness'] = args.override_flail_effectiveness level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, MAX_SCREEN_WIDTH, MAX_SCREEN_HEIGHT, FRAMES_PER_SECOND, verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_boat_race.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `coins`. Use `WASD` keys to move the character around. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import coins from meltingpot.human_players import level_playing_utils from ml_collections import config_dict MAX_SCREEN_WIDTH = 600 MAX_SCREEN_HEIGHT = 450 FRAMES_PER_SECOND = 8 environment_configs = { 'coins': coins, } def no_op() -> int: """Gets direction pressed.""" return level_playing_utils.MOVEMENT_MAP['NONE'] _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, } def verbose_fn(env_timestep, player_index, current_player_index): del env_timestep, player_index, current_player_index pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='coins', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, MAX_SCREEN_WIDTH, MAX_SCREEN_HEIGHT, FRAMES_PER_SECOND, verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_coins.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing factory_commons. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `Z` to pick-up pickuppable objects. Use `SPACE` to grasp a movable block. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import factory_commons__either_or from meltingpot.human_players import level_playing_utils from ml_collections import config_dict def get_push_pull() -> int: """Sets shove to either -1, 0, or 1.""" if level_playing_utils.get_right_shift_pressed(): return 1 if level_playing_utils.get_left_control_pressed(): return -1 return 0 environment_configs = { 'factory_commons__either_or': factory_commons__either_or, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'pickup': level_playing_utils.get_key_z_pressed, 'grasp': level_playing_utils.get_key_x_pressed, # Grappling actions 'hold': level_playing_utils.get_space_key_pressed, 'shove': get_push_pull, } def verbose_fn(unused_env, unused_player_index, unused_current_player_index): pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='factory_commons__either_or', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_factory_commons.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `externality_mushrooms`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the zapper. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import externality_mushrooms__dense from meltingpot.human_players import level_playing_utils from ml_collections import config_dict environment_configs = { 'externality_mushrooms__dense': externality_mushrooms__dense, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'fireZap': level_playing_utils.get_space_key_pressed, } def verbose_fn(env_timestep, player_index, current_player_index): """Print using this function once enabling the option --verbose=True.""" lua_index = player_index + 1 ate_hihe = env_timestep.observation[f'{lua_index}.ATE_MUSHROOM_HIHE'] ate_fize = env_timestep.observation[f'{lua_index}.ATE_MUSHROOM_FIZE'] ate_zife = env_timestep.observation[f'{lua_index}.ATE_MUSHROOM_ZIFE'] destroyed_hihe = env_timestep.observation[ f'{lua_index}.DESTROYED_MUSHROOM_HIHE'] destroyed_fize = env_timestep.observation[ f'{lua_index}.DESTROYED_MUSHROOM_FIZE'] destroyed_zife = env_timestep.observation[ f'{lua_index}.DESTROYED_MUSHROOM_ZIFE'] at_least_one_nonzero = (ate_hihe + ate_fize + ate_zife + destroyed_hihe + destroyed_fize + destroyed_zife) # Only print observations from player 0. if player_index == current_player_index and at_least_one_nonzero > 0: print( f'player: {player_index} --- \n' + f' ate_hihe: {ate_hihe} \n' + f' ate_fize: {ate_fize} \n' + f' ate_zife: {ate_zife} \n' + f' destroyed_hihe: {destroyed_hihe} \n' + f' destroyed_fize: {destroyed_fize} \n' + f' destroyed_zife: {destroyed_zife} \n' ) def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='externality_mushrooms__dense', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_externality_mushrooms.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for playing the `Hidden Agenda` level interactively. Use `WASD` keys to move the character around. `Q` and `E` to turn. Use 'Space' key for the impostor to fire a beam. Use numerical keys to vote. Use 'Tab' to switch between players. """ import argparse import json from meltingpot.configs.substrates import hidden_agenda from meltingpot.human_players import level_playing_utils from ml_collections import config_dict MAX_SCREEN_WIDTH = 800 MAX_SCREEN_HEIGHT = 600 FRAMES_PER_SECOND = 8 _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'tag': level_playing_utils.get_space_key_pressed, 'vote': level_playing_utils.get_key_number_pressed, } environment_configs = { 'hidden_agenda': hidden_agenda, } def verbose_fn(env_timestep, player_index, current_player_index): """Prints out relevant observations and rewards at every timestep.""" del current_player_index lua_index = player_index + 1 for obs in ['VOTING']: obs_name = f'{lua_index}.{obs}' if env_timestep.observation[obs_name].any(): print(obs_name, env_timestep.observation[obs_name]) def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='hidden_agenda', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, MAX_SCREEN_WIDTH, MAX_SCREEN_HEIGHT, FRAMES_PER_SECOND, verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_hidden_agenda.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
meltingpot-main
meltingpot/human_players/__init__.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `gift_refinements`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the gift beam. Use `1` to consume tokens. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import gift_refinements from meltingpot.human_players import level_playing_utils from ml_collections import config_dict environment_configs = { 'gift_refinements': gift_refinements, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'refineAndGift': level_playing_utils.get_space_key_pressed, 'consumeTokens': level_playing_utils.get_key_number_one_pressed, } def verbose_fn(unused_env, unused_player_index, unused_current_player_index): pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='gift_refinements', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_gift_refinements.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `commons_harvest`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the zapper. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import commons_harvest__closed from meltingpot.configs.substrates import commons_harvest__open from meltingpot.configs.substrates import commons_harvest__partnership from meltingpot.human_players import level_playing_utils from ml_collections import config_dict environment_configs = { 'commons_harvest__closed': commons_harvest__closed, 'commons_harvest__open': commons_harvest__open, 'commons_harvest__partnership': commons_harvest__partnership, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'fireZap': level_playing_utils.get_space_key_pressed, } def verbose_fn(unused_env, unused_player_index, unused_current_player_index): pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='commons_harvest__closed', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_commons_harvest.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A human player for testing fruit_market. Note: The real agents can make and accept offers up to size 3 (up to 3 apples for up to 3 bananas). However this human player script only allows offers up to size 1. The reason is just that we started to run out of keys on the keyboard to represent higher offers. Use `WASD` keys to move the player around. Use `Q and E` to turn the player. Use `TAB` to switch which player you are controlling. Use 'Z' to eat an apple from your inventory. Use 'X' to eat a banana from your inventory. """ import argparse import json from meltingpot.configs.substrates import fruit_market__concentric_rivers from meltingpot.human_players import level_playing_utils from ml_collections import config_dict import pygame def get_offer_apple_pressed() -> int: """Sets apple offer to either -1, 0, or 1.""" key_pressed = pygame.key.get_pressed() if key_pressed[pygame.K_1]: return -1 if key_pressed[pygame.K_2]: return 1 return 0 def get_offer_banana_pressed() -> int: """Sets banana offer to either -1, 0, or 1.""" key_pressed = pygame.key.get_pressed() if key_pressed[pygame.K_3]: return -1 if key_pressed[pygame.K_4]: return 1 return 0 def get_push_pull() -> int: """Sets shove to either -1, 0, or 1.""" if level_playing_utils.get_right_shift_pressed(): return 1 if level_playing_utils.get_left_control_pressed(): return -1 return 0 environment_configs = { 'fruit_market__concentric_rivers': fruit_market__concentric_rivers, } _ACTION_MAP = { # Basic movement actions 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, # Trade actions 'eat_apple': level_playing_utils.get_key_z_pressed, 'eat_banana': level_playing_utils.get_key_x_pressed, 'offer_apple': get_offer_apple_pressed, # 1 and 2 'offer_banana': get_offer_banana_pressed, # 3 and 4 'offer_cancel': level_playing_utils.get_key_number_five_pressed, # Grappling actions 'hold': level_playing_utils.get_space_key_pressed, 'shove': get_push_pull, } def verbose_fn(env_timestep, player_index, current_player_index): """Print using this function once enabling the option --verbose=True.""" lua_index = player_index + 1 inventory = env_timestep.observation[f'{lua_index}.INVENTORY'] hunger = env_timestep.observation[f'{lua_index}.HUNGER'] my_offer = env_timestep.observation[f'{lua_index}.MY_OFFER'] offers = env_timestep.observation[f'{lua_index}.OFFERS'] # Only print offer observations from player 0. if player_index == current_player_index: print( f'player: {player_index} --- inventory: {inventory}, hunger: {hunger}') print(f'**player 0 view of offers:\n{offers}') print(f'**player 0 view of own offer: {my_offer}') def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='fruit_market__concentric_rivers', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_fruit_market.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for human_players.""" from unittest import mock from absl.testing import absltest from absl.testing import parameterized from meltingpot.configs.substrates import allelopathic_harvest__open from meltingpot.configs.substrates import boat_race__eight_races from meltingpot.configs.substrates import chemistry__three_metabolic_cycles from meltingpot.configs.substrates import chemistry__three_metabolic_cycles_with_plentiful_distractors from meltingpot.configs.substrates import chemistry__two_metabolic_cycles from meltingpot.configs.substrates import chemistry__two_metabolic_cycles_with_distractors from meltingpot.configs.substrates import clean_up from meltingpot.configs.substrates import coins from meltingpot.configs.substrates import collaborative_cooking__asymmetric from meltingpot.configs.substrates import commons_harvest__closed from meltingpot.configs.substrates import coop_mining from meltingpot.configs.substrates import daycare from meltingpot.configs.substrates import externality_mushrooms__dense from meltingpot.configs.substrates import factory_commons__either_or from meltingpot.configs.substrates import fruit_market__concentric_rivers from meltingpot.configs.substrates import gift_refinements from meltingpot.configs.substrates import paintball__capture_the_flag from meltingpot.configs.substrates import paintball__king_of_the_hill from meltingpot.configs.substrates import predator_prey__alley_hunt from meltingpot.configs.substrates import predator_prey__orchard from meltingpot.configs.substrates import prisoners_dilemma_in_the_matrix__arena from meltingpot.configs.substrates import territory__rooms from meltingpot.human_players import level_playing_utils from meltingpot.human_players import play_allelopathic_harvest from meltingpot.human_players import play_anything_in_the_matrix from meltingpot.human_players import play_boat_race from meltingpot.human_players import play_chemistry from meltingpot.human_players import play_clean_up from meltingpot.human_players import play_coins from meltingpot.human_players import play_collaborative_cooking from meltingpot.human_players import play_commons_harvest from meltingpot.human_players import play_coop_mining from meltingpot.human_players import play_daycare from meltingpot.human_players import play_externality_mushrooms from meltingpot.human_players import play_factory_commons from meltingpot.human_players import play_fruit_market from meltingpot.human_players import play_gift_refinements from meltingpot.human_players import play_paintball from meltingpot.human_players import play_predator_and_prey from meltingpot.human_players import play_territory from ml_collections import config_dict import pygame class PlayLevelTest(parameterized.TestCase): @parameterized.named_parameters( ('allelopathic_harvest__open', allelopathic_harvest__open, play_allelopathic_harvest), ('boat_race__eight_races', boat_race__eight_races, play_boat_race), ('chemistry__three_metabolic_cycles', chemistry__three_metabolic_cycles, play_chemistry), ('chemistry__three_metabolic_cycles_with_plentiful_distractors', chemistry__three_metabolic_cycles_with_plentiful_distractors, play_chemistry), ('chemistry__two_metabolic_cycles', chemistry__two_metabolic_cycles, play_chemistry), ('chemistry__two_metabolic_cycles_with_distractors', chemistry__two_metabolic_cycles_with_distractors, play_chemistry), ('clean_up', clean_up, play_clean_up), ('coins', coins, play_coins), ('collaborative_cooking__asymmetric', collaborative_cooking__asymmetric, play_collaborative_cooking), ('commons_harvest__closed', commons_harvest__closed, play_commons_harvest), ('coop_mining', coop_mining, play_coop_mining), ('daycare', daycare, play_daycare), ('externality_mushrooms__dense', externality_mushrooms__dense, play_externality_mushrooms), ('factory_commons__either_or', factory_commons__either_or, play_factory_commons), ('fruit_market__concentric_rivers', fruit_market__concentric_rivers, play_fruit_market), ('gift_refinements', gift_refinements, play_gift_refinements), ('paintball__capture_the_flag', paintball__capture_the_flag, play_paintball), ('paintball__king_of_the_hill', paintball__king_of_the_hill, play_paintball), ('predator_prey__alley_hunt', predator_prey__alley_hunt, play_predator_and_prey), ('predator_prey__orchard', predator_prey__orchard, play_predator_and_prey), ('prisoners_dilemma_in_the_matrix__arena', prisoners_dilemma_in_the_matrix__arena, play_anything_in_the_matrix), ('territory__rooms', territory__rooms, play_territory), ) @mock.patch.object(pygame, 'key') @mock.patch.object(pygame, 'display') @mock.patch.object(pygame, 'event') @mock.patch.object(pygame, 'time') def test_run_level( self, config_module, play_module, unused_k, unused_d, unused_e, unused_t): env_module = config_module env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) env_config['lab2d_settings']['maxEpisodeLengthFrames'] = 10 level_playing_utils.run_episode( 'RGB', {}, play_module._ACTION_MAP, env_config) if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/human_players/play_level_test.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing a Melting Pot level. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the zapper. Use `TAB` to switch between players. """ import collections import enum from typing import Any, Callable, Dict, Mapping, Optional, Sequence, Tuple import dm_env import dmlab2d from meltingpot.utils.substrates import builder from ml_collections import config_dict import numpy as np import pygame WHITE = (255, 255, 255) MOVEMENT_MAP = { 'NONE': 0, 'FORWARD': 1, 'RIGHT': 2, 'BACKWARD': 3, 'LEFT': 4, } EnvBuilder = Callable[..., dmlab2d.Environment] # Only supporting kwargs. ActionMap = Mapping[str, Callable[[], int]] class RenderType(enum.Enum): NONE = 0 PYGAME = 1 def get_random_direction() -> int: """Gets a random direction.""" return np.random.choice(list(MOVEMENT_MAP.values())) def get_random_turn() -> int: """Gets a random turn.""" return np.random.choice([-1, 0, 1]) def get_random_fire() -> int: """Gets a random fire.""" return np.random.choice([0, 1]) def get_direction_pressed() -> int: """Gets direction pressed.""" key_pressed = pygame.key.get_pressed() if key_pressed[pygame.K_UP] or key_pressed[pygame.K_w]: return MOVEMENT_MAP['FORWARD'] if key_pressed[pygame.K_RIGHT] or key_pressed[pygame.K_d]: return MOVEMENT_MAP['RIGHT'] if key_pressed[pygame.K_DOWN] or key_pressed[pygame.K_s]: return MOVEMENT_MAP['BACKWARD'] if key_pressed[pygame.K_LEFT] or key_pressed[pygame.K_a]: return MOVEMENT_MAP['LEFT'] return MOVEMENT_MAP['NONE'] def get_turn_pressed() -> int: """Calculates turn increment.""" key_pressed = pygame.key.get_pressed() if key_pressed[pygame.K_DELETE] or key_pressed[pygame.K_q]: return -1 if key_pressed[pygame.K_PAGEDOWN] or key_pressed[pygame.K_e]: return 1 return 0 def get_space_key_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_SPACE] else 0 def get_key_number_pressed() -> int: number_keys = [pygame.K_0, pygame.K_1, pygame.K_2, pygame.K_3, pygame.K_4, pygame.K_5, pygame.K_6, pygame.K_7, pygame.K_8, pygame.K_9] for num in range(len(number_keys)): if pygame.key.get_pressed()[number_keys[num]]: return num return -1 def get_key_number_one_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_1] else 0 def get_key_number_two_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_2] else 0 def get_key_number_three_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_3] else 0 def get_key_number_four_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_4] else 0 def get_key_number_five_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_5] else 0 def get_left_control_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_LCTRL] else 0 def get_left_shift_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_LSHIFT] else 0 def get_right_shift_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_RSHIFT] else 0 def get_key_c_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_c] else 0 def get_key_z_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_z] else 0 def get_key_x_pressed() -> int: return 1 if pygame.key.get_pressed()[pygame.K_x] else 0 def _split_key(key: str) -> Tuple[str, str]: """Splits the key into player index and name.""" return tuple(key.split('.', maxsplit=1)) def _get_rewards(timestep: dm_env.TimeStep) -> Mapping[str, float]: """Gets the list of rewards, one for each player.""" rewards = {} for key in timestep.observation.keys(): if key.endswith('.REWARD'): player_prefix, name = _split_key(key) if name == 'REWARD': rewards[player_prefix] = timestep.observation[key] return rewards class ActionReader(object): """Convert keyboard actions to environment actions.""" def __init__(self, env: dmlab2d.Environment, action_map: ActionMap): # Actions are named "<player_prefix>.<action_name>" self._action_map = action_map self._action_spec = env.action_spec() assert isinstance(self._action_spec, dict) self._action_names = set() for action_key in self._action_spec.keys(): _, action_name = _split_key(action_key) self._action_names.add(action_name) def step(self, player_prefix: str) -> Mapping[str, int]: """Update the actions of player `player_prefix`.""" actions = {action_key: 0 for action_key in self._action_spec.keys()} for action_name in self._action_names: actions[f'{player_prefix}.{action_name}'] = self._action_map[ action_name]() return actions def run_episode( render_observation: str, config_overrides: Dict[str, Any], action_map: ActionMap, full_config: config_dict.ConfigDict, interactive: RenderType = RenderType.PYGAME, screen_width: int = 800, screen_height: int = 600, fps: int = 8, verbose_fn: Optional[Callable[[dm_env.TimeStep, int, int], None]] = None, text_display_fn: Optional[Callable[[dm_env.TimeStep, int], str]] = None, text_font_size: int = 36, text_x_pos: int = 20, text_y_pos: int = 20, text_color: Tuple[int, ...] = WHITE, env_builder: EnvBuilder = builder.builder, print_events: Optional[bool] = False, player_prefixes: Optional[Sequence[str]] = None, default_observation: str = 'WORLD.RGB', reset_env_when_done: bool = False, initial_player_index: int = 0, ) -> None: """Run multiplayer environment, with per player rendering and actions. This function initialises a Melting Pot environment with the given configuration (including possible config overrides), and optionally launches the episode as an interactive game using pygame. The controls are described in the action_map, whose keys correspond to discrete actions of the environment. Args: render_observation: A string consisting of the observation name to render. Usually 'RGB' for the third person world view. config_overrides: A dictionary of settings to override from the original `full_config.lab2d_settings`. Typically these are used to set the number of players. action_map: A dictionary of (discrete) action names to functions that detect the keys that correspond to its possible action values. For example, for movement, we might want to have WASD navigation tied to the 'move' action name using `get_direction_pressed`. See examples in the various play_*.py scripts. full_config: The full configuration for the Melting Pot environment. These usually come from meltingpot/python/configs/environments. interactive: A RenderType representing whether the episode should be run with PyGame, or without any interface. Setting interactive to false enables running e.g. a random agent via the action_map returning actions without polling PyGame (or any human input). Non interactive runs ignore the screen_width, screen_height and fps parameters. screen_width: Width, in pixels, of the window to render the game. screen_height: Height, in pixels, of the window to render the game. fps: Frames per second of the game. verbose_fn: An optional function that will be executed for every step of the environment. It receives the environment timestep, a player index (will be called for every index), and the current player index. This is typically used to print extra information that would be useful for debugging a running episode. text_display_fn: An optional function for displaying text on screen. It receives the environment and the player index, and returns a string to display on the pygame screen. text_font_size: the font size of onscreen text (from `text_display_fn`) text_x_pos: the x position of onscreen text (from `text_display_fn`) text_y_pos: the x position of onscreen text (from `text_display_fn`) text_color: RGB color of onscreen text (from `text_display_fn`) env_builder: The environment builder function to use. By default it is meltingpot.builder. print_events: An optional bool that if enabled will print events captured from the dmlab2d events API on any timestep where they occur. player_prefixes: If given, use these as the prefixes of player actions. Pressing TAB will cycle through these. If not given, use the standard ('1', '2', ..., numPlayers). default_observation: Default observation to render if 'render_observation' or '{player_prefix}.{render_observation}' is not found in the dict. reset_env_when_done: if True, reset the environment once the episode has terminated; useful for playing multiple episodes in a row. Note this will cause this function to loop infinitely. initial_player_index: Initial index of the player to play as. Defaults to 0. (Players are always switchable via the tab key.) """ full_config.lab2d_settings.update(config_overrides) if player_prefixes is None: player_count = full_config.lab2d_settings.get('numPlayers', 1) # By default, we use lua indices (which start at 1) as player prefixes. player_prefixes = [f'{i+1}' for i in range(player_count)] else: player_count = len(player_prefixes) print(f'Running an episode with {player_count} players: {player_prefixes}.') with env_builder(**full_config) as env: if len(player_prefixes) != player_count: raise ValueError('Player prefixes, when specified, must be of the same ' 'length as the number of players.') player_index = initial_player_index timestep = env.reset() score = collections.defaultdict(float) action_reader = ActionReader(env, action_map) if interactive == RenderType.PYGAME: pygame.init() pygame.display.set_caption('Melting Pot: {}'.format( full_config.lab2d_settings.levelName)) font = pygame.font.SysFont(None, text_font_size) scale = 1 observation_spec = env.observation_spec() if render_observation in observation_spec: obs_spec = observation_spec[render_observation] elif f'1.{render_observation}' in observation_spec: # This assumes all players have the same observation, which is true for # MeltingPot environments. obs_spec = observation_spec[f'1.{render_observation}'] else: # Falls back to 'default_observation.' obs_spec = observation_spec[default_observation] observation_shape = obs_spec.shape observation_height = observation_shape[0] observation_width = observation_shape[1] scale = min(screen_height // observation_height, screen_width // observation_width) if interactive == RenderType.PYGAME: game_display = pygame.display.set_mode( (observation_width * scale, observation_height * scale)) clock = pygame.time.Clock() stop = False # Game loop while True: # Check for pygame controls if interactive == RenderType.PYGAME: for event in pygame.event.get(): if event.type == pygame.QUIT: stop = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_TAB: player_index = (player_index + 1) % player_count break player_prefix = player_prefixes[player_index] if player_prefixes else '' if stop: break # Compute next timestep actions = action_reader.step(player_prefix) if player_count else [] timestep = env.step(actions) if timestep.step_type == dm_env.StepType.LAST: if reset_env_when_done: timestep = env.reset() else: break rewards = _get_rewards(timestep) for i, prefix in enumerate(player_prefixes): if verbose_fn: verbose_fn(timestep, i, player_index) score[prefix] += rewards[prefix] if i == player_index and rewards[prefix] != 0: print(f'Player {prefix} Score: {score[prefix]}') # Print events if applicable if print_events and hasattr(env, 'events'): events = env.events() # Only print events on timesteps when there are events to print. if events: print(events) # pygame display if interactive == RenderType.PYGAME: # show visual observation if render_observation in timestep.observation: obs = timestep.observation[render_observation] elif f'{player_prefix}.{render_observation}' in timestep.observation: obs = timestep.observation[f'{player_prefix}.{render_observation}'] else: # Fall back to default_observation. obs = timestep.observation[default_observation] obs = np.transpose(obs, (1, 0, 2)) # PyGame is column major! surface = pygame.surfarray.make_surface(obs) rect = surface.get_rect() surf = pygame.transform.scale( surface, (rect[2] * scale, rect[3] * scale)) game_display.blit(surf, dest=(0, 0)) # show text if text_display_fn: if player_count == 1: text_str = text_display_fn(timestep, 0) else: text_str = text_display_fn(timestep, player_index) img = font.render(text_str, True, text_color) game_display.blit(img, (text_x_pos, text_y_pos)) # tick pygame.display.update() clock.tick(fps) if interactive == RenderType.PYGAME: pygame.quit() for prefix in player_prefixes: print('Player %s: score is %g' % (prefix, score[prefix]))
meltingpot-main
meltingpot/human_players/level_playing_utils.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `collaborative_cooking`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to use the interact action. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import collaborative_cooking__asymmetric from meltingpot.configs.substrates import collaborative_cooking__circuit from meltingpot.configs.substrates import collaborative_cooking__cramped from meltingpot.configs.substrates import collaborative_cooking__crowded from meltingpot.configs.substrates import collaborative_cooking__figure_eight from meltingpot.configs.substrates import collaborative_cooking__forced from meltingpot.configs.substrates import collaborative_cooking__ring from meltingpot.human_players import level_playing_utils from ml_collections import config_dict MAX_SCREEN_WIDTH = 800 MAX_SCREEN_HEIGHT = 600 FRAMES_PER_SECOND = 8 _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'interact': level_playing_utils.get_space_key_pressed, } environment_configs = { 'collaborative_cooking__asymmetric': collaborative_cooking__asymmetric, 'collaborative_cooking__circuit': collaborative_cooking__circuit, 'collaborative_cooking__cramped': collaborative_cooking__cramped, 'collaborative_cooking__crowded': collaborative_cooking__crowded, 'collaborative_cooking__figure_eight': collaborative_cooking__figure_eight, 'collaborative_cooking__forced': collaborative_cooking__forced, 'collaborative_cooking__ring': collaborative_cooking__ring, } def verbose_fn(env_timestep, player_index, current_player_index): if player_index != current_player_index: return for obs in ['ADDED_INGREDIENT_TO_COOKING_POT', 'COLLECTED_SOUP_FROM_COOKING_POT']: lua_index = player_index + 1 if env_timestep.observation[f'{lua_index}.{obs}']: print(obs, env_timestep.observation[f'{lua_index}.{obs}']) def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='collaborative_cooking__cramped', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, MAX_SCREEN_WIDTH, MAX_SCREEN_HEIGHT, FRAMES_PER_SECOND, verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_collaborative_cooking.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `allelopathic_harvest`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the zapper. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import allelopathic_harvest__open from meltingpot.human_players import level_playing_utils from ml_collections import config_dict environment_configs = { 'allelopathic_harvest__open': allelopathic_harvest__open, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'fireZap': level_playing_utils.get_space_key_pressed, 'fire_1': level_playing_utils.get_key_number_one_pressed, 'fire_2': level_playing_utils.get_key_number_two_pressed, 'fire_3': level_playing_utils.get_key_number_three_pressed, } def verbose_fn(unused_env, unused_player_index, unused_current_player_index): pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='allelopathic_harvest__open', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_allelopathic_harvest.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing the `predator_prey__*` substrates. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `TAB` to switch between players. Use `space bar` to select the 'eat' (i.e. the `interact` action). """ import argparse import json from meltingpot.configs.substrates import predator_prey__alley_hunt from meltingpot.configs.substrates import predator_prey__open from meltingpot.configs.substrates import predator_prey__orchard from meltingpot.configs.substrates import predator_prey__random_forest from meltingpot.human_players import level_playing_utils from ml_collections import config_dict MAX_SCREEN_WIDTH = 800 MAX_SCREEN_HEIGHT = 600 FRAMES_PER_SECOND = 8 environment_configs = { 'predator_prey__alley_hunt': predator_prey__alley_hunt, 'predator_prey__open': predator_prey__open, 'predator_prey__orchard': predator_prey__orchard, 'predator_prey__random_forest': predator_prey__random_forest, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, # 'interact' is the 'eat' action for this substrate. 'interact': level_playing_utils.get_space_key_pressed, } def verbose_fn(env_timestep, player_index, current_player_index): """Print using this function once enabling the option --verbose=True.""" lua_index = player_index + 1 stamina = env_timestep.observation[f'{lua_index}.STAMINA'] # Only print observations from current player. if player_index == current_player_index: print(f'player: {player_index} --- stamina: {stamina}') def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='predator_prey__alley_hunt', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, MAX_SCREEN_WIDTH, MAX_SCREEN_HEIGHT, FRAMES_PER_SECOND, verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_predator_and_prey.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `clean_up`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to fire the zapper. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import clean_up from meltingpot.human_players import level_playing_utils from ml_collections import config_dict environment_configs = { 'clean_up': clean_up, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'fireZap': level_playing_utils.get_key_number_one_pressed, 'fireClean': level_playing_utils.get_key_number_two_pressed, } def verbose_fn(env_timestep, player_index, current_player_index): """Print using this function once enabling the option --verbose=True.""" lua_index = player_index + 1 cleaned = env_timestep.observation[f'{lua_index}.PLAYER_CLEANED'] ate = env_timestep.observation[f'{lua_index}.PLAYER_ATE_APPLE'] num_zapped_this_step = env_timestep.observation[ f'{lua_index}.NUM_OTHERS_PLAYER_ZAPPED_THIS_STEP'] num_others_cleaned = env_timestep.observation[ f'{lua_index}.NUM_OTHERS_WHO_CLEANED_THIS_STEP'] num_others_ate = env_timestep.observation[ f'{lua_index}.NUM_OTHERS_WHO_ATE_THIS_STEP'] # Only print observations from current player. if player_index == current_player_index: print(f'player: {player_index} --- player_cleaned: {cleaned} --- ' + f'player_ate_apple: {ate} --- num_others_cleaned: ' + f'{num_others_cleaned} --- num_others_ate: {num_others_ate} ' + f'---num_others_player_zapped_this_step: {num_zapped_this_step}') def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='clean_up', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_clean_up.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `daycare`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import daycare from meltingpot.human_players import level_playing_utils from ml_collections import config_dict MAX_SCREEN_WIDTH = 800 MAX_SCREEN_HEIGHT = 600 FRAMES_PER_SECOND = 8 environment_configs = { 'daycare': daycare, } _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'eat': level_playing_utils.get_key_z_pressed, 'grasp': level_playing_utils.get_space_key_pressed, } def verbose_fn(env_timestep, player_index, current_player_index): del env_timestep, player_index, current_player_index pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='daycare', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, MAX_SCREEN_WIDTH, MAX_SCREEN_HEIGHT, FRAMES_PER_SECOND, verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_daycare.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple human player for testing `chemistry`. Use `WASD` keys to move the character around. Use `Q and E` to turn the character. Use `SPACE` to select the `endocytose` action. Use `TAB` to switch between players. """ import argparse import json from meltingpot.configs.substrates import chemistry__three_metabolic_cycles from meltingpot.configs.substrates import chemistry__three_metabolic_cycles_with_plentiful_distractors from meltingpot.configs.substrates import chemistry__two_metabolic_cycles from meltingpot.configs.substrates import chemistry__two_metabolic_cycles_with_distractors from meltingpot.human_players import level_playing_utils from ml_collections import config_dict MAX_SCREEN_WIDTH = 800 MAX_SCREEN_HEIGHT = 600 FRAMES_PER_SECOND = 8 _ACTION_MAP = { 'move': level_playing_utils.get_direction_pressed, 'turn': level_playing_utils.get_turn_pressed, 'ioAction': level_playing_utils.get_space_key_pressed, } environment_configs = { 'chemistry__three_metabolic_cycles': ( chemistry__three_metabolic_cycles), 'chemistry__three_metabolic_cycles_with_plentiful_distractors': ( chemistry__three_metabolic_cycles_with_plentiful_distractors), 'chemistry__two_metabolic_cycles': chemistry__two_metabolic_cycles, 'chemistry__two_metabolic_cycles_with_distractors': ( chemistry__two_metabolic_cycles_with_distractors), } def verbose_fn(unused_env, unused_player_index, unused_current_player_index): """Activate verbose printing with --verbose=True.""" pass def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--level_name', type=str, default='chemistry__two_metabolic_cycles', choices=environment_configs.keys(), help='Level name to load') parser.add_argument( '--observation', type=str, default='RGB', help='Observation to render') parser.add_argument( '--settings', type=json.loads, default={}, help='Settings as JSON string') # Activate verbose mode with --verbose=True. parser.add_argument( '--verbose', type=bool, default=False, help='Print debug information') # Activate events printing mode with --print_events=True. parser.add_argument( '--print_events', type=bool, default=False, help='Print events') args = parser.parse_args() env_module = environment_configs[args.level_name] env_config = env_module.get_config() with config_dict.ConfigDict(env_config).unlocked() as env_config: roles = env_config.default_player_roles env_config.lab2d_settings = env_module.build(roles, env_config) level_playing_utils.run_episode( args.observation, args.settings, _ACTION_MAP, env_config, level_playing_utils.RenderType.PYGAME, verbose_fn=verbose_fn if args.verbose else None, print_events=args.print_events) if __name__ == '__main__': main()
meltingpot-main
meltingpot/human_players/play_chemistry.py
# Copyright 2020 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
meltingpot-main
meltingpot/configs/__init__.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests of the bot configs.""" import collections import os from absl.testing import absltest from absl.testing import parameterized from meltingpot.configs import bots from meltingpot.configs import substrates def _subdirs(root): for file in os.listdir(root): if os.path.isdir(os.path.join(root, file)): yield file def _models(models_root=bots.MODELS_ROOT): for substrate in _subdirs(models_root): for model in _subdirs(os.path.join(models_root, substrate)): yield os.path.join(models_root, substrate, model) BOT_CONFIGS = bots.BOT_CONFIGS AVAILABLE_MODELS = frozenset(_models()) AVAILABLE_SUBSTRATES = frozenset(substrates.SUBSTRATES) class BotConfigTest(parameterized.TestCase): @parameterized.named_parameters(BOT_CONFIGS.items()) def test_has_valid_substrate(self, bot): self.assertIn(bot.substrate, AVAILABLE_SUBSTRATES) @parameterized.named_parameters(BOT_CONFIGS.items()) def test_model_exists(self, bot): self.assertTrue( os.path.isdir(bot.model_path), f'Missing model {bot.model_path!r}.') @parameterized.named_parameters(BOT_CONFIGS.items()) def test_substrate_matches_model(self, bot): substrate = os.path.basename(os.path.dirname(bot.model_path)) self.assertEqual(bot.substrate, substrate, f'{bot} substrate does not match model path.') def test_no_duplicates(self): seen = collections.defaultdict(set) for name, config in BOT_CONFIGS.items(): seen[config].add(name) duplicates = {names for _, names in seen.items() if len(names) > 1} self.assertEmpty(duplicates, f'Duplicate configs found: {duplicates!r}.') def test_models_used_by_bots(self): used = {bot.model_path for bot in BOT_CONFIGS.values()} unused = AVAILABLE_MODELS - used self.assertEmpty(unused, f'Models not used by any bot: {unused!r}') if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/configs/bots/bot_configs_test.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library of stored bots for MeltingPot scenarios.""" import dataclasses import functools import os from typing import AbstractSet, Callable, Iterable, Literal, Mapping, Optional, Sequence import immutabledict from meltingpot.utils.puppeteers import alternator from meltingpot.utils.puppeteers import clean_up from meltingpot.utils.puppeteers import coins from meltingpot.utils.puppeteers import coordination_in_the_matrix from meltingpot.utils.puppeteers import fixed_goal from meltingpot.utils.puppeteers import gift_refinements from meltingpot.utils.puppeteers import in_the_matrix from meltingpot.utils.puppeteers import puppeteer from meltingpot.utils.puppeteers import running_with_scissors_in_the_matrix def _find_models_root() -> str: import re # pylint: disable=g-import-not-at-top return re.sub('^(.*)/meltingpot/.*?$', r'\1/meltingpot/assets/saved_models/', __file__) MODELS_ROOT = _find_models_root() # pylint: disable=line-too-long # Ordered puppet goals must match the order used in bot training. _PUPPET_GOALS = immutabledict.immutabledict( # keep-sorted start numeric=yes block=yes bach_or_stravinsky_in_the_matrix__arena=puppeteer.puppet_goals([ 'COLLECT_BACH', 'COLLECT_STRAVINSKY', 'INTERACT_PLAYING_BACH', 'INTERACT_PLAYING_STRAVINSKY', ]), bach_or_stravinsky_in_the_matrix__repeated=puppeteer.puppet_goals([ 'COLLECT_BACH', 'COLLECT_STRAVINSKY', 'INTERACT_PLAYING_BACH', 'INTERACT_PLAYING_STRAVINSKY', ]), chicken_in_the_matrix__arena=puppeteer.puppet_goals([ 'COLLECT_DOVE', 'COLLECT_HAWK', 'INTERACT_PLAYING_DOVE', 'INTERACT_PLAYING_HAWK', ]), chicken_in_the_matrix__repeated=puppeteer.puppet_goals([ 'COLLECT_DOVE', 'COLLECT_HAWK', 'INTERACT_PLAYING_DOVE', 'INTERACT_PLAYING_HAWK', ]), clean_up=puppeteer.puppet_goals([ 'EAT', 'CLEAN', ]), coins=puppeteer.puppet_goals([ 'COOPERATE', 'DEFECT', 'SPITE', ]), coop_mining=puppeteer.puppet_goals([ 'EXTRACT_IRON', 'MINE_GOLD', 'EXTRACT_GOLD', 'EXTRACT_ALL', ]), externality_mushrooms__dense=puppeteer.puppet_goals([ 'COLLECT_MUSHROOM_HIHE', 'COLLECT_MUSHROOM_FIZE', 'COLLECT_MUSHROOM_ZIFE', 'COLLECT_MUSHROOM_NINE', 'DESTROY_MUSHROOM_HIHE', 'DESTROY_MUSHROOM_FIZE', 'DESTROY_MUSHROOM_ZIFE', ]), gift_refinements=puppeteer.puppet_goals([ 'COLLECT_TOKENS', 'GIFT', 'CONSUME_SIMPLE_TOKENS', 'CONSUME_TOKENS', 'FORAGE', ]), prisoners_dilemma_in_the_matrix__arena=puppeteer.puppet_goals([ 'COLLECT_COOPERATE', 'COLLECT_DEFECT', 'INTERACT_COOPERATE', 'INTERACT_DEFECT', ]), prisoners_dilemma_in_the_matrix__repeated=puppeteer.puppet_goals([ 'COLLECT_COOPERATE', 'COLLECT_DEFECT', 'INTERACT_COOPERATE', 'INTERACT_DEFECT', ]), pure_coordination_in_the_matrix__arena=puppeteer.puppet_goals([ 'COLLECT_RED', 'COLLECT_GREEN', 'COLLECT_BLUE', 'INTERACT_PLAYING_RED', 'INTERACT_PLAYING_GREEN', 'INTERACT_PLAYING_BLUE', 'COLLECT_RED_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_GREEN_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_BLUE_IGNORING_OTHER_CONSIDERATIONS', ]), pure_coordination_in_the_matrix__repeated=puppeteer.puppet_goals([ 'COLLECT_RED', 'COLLECT_GREEN', 'COLLECT_BLUE', 'INTERACT_PLAYING_RED', 'INTERACT_PLAYING_GREEN', 'INTERACT_PLAYING_BLUE', 'COLLECT_RED_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_GREEN_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_BLUE_IGNORING_OTHER_CONSIDERATIONS', ]), rationalizable_coordination_in_the_matrix__arena=puppeteer.puppet_goals([ 'COLLECT_YELLOW', 'COLLECT_VIOLET', 'COLLECT_CYAN', 'INTERACT_PLAYING_YELLOW', 'INTERACT_PLAYING_VIOLET', 'INTERACT_PLAYING_CYAN', 'COLLECT_YELLOW_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_VIOLET_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_CYAN_IGNORING_OTHER_CONSIDERATIONS', ]), rationalizable_coordination_in_the_matrix__repeated=puppeteer.puppet_goals([ 'COLLECT_YELLOW', 'COLLECT_VIOLET', 'COLLECT_CYAN', 'INTERACT_PLAYING_YELLOW', 'INTERACT_PLAYING_VIOLET', 'INTERACT_PLAYING_CYAN', 'COLLECT_YELLOW_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_VIOLET_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_CYAN_IGNORING_OTHER_CONSIDERATIONS', ]), running_with_scissors_in_the_matrix__arena=puppeteer.puppet_goals([ 'COLLECT_ROCK', 'COLLECT_PAPER', 'COLLECT_SCISSORS', 'INTERACT_PLAYING_ROCK', 'INTERACT_PLAYING_PAPER', 'INTERACT_PLAYING_SCISSORS', 'COLLECT_ROCK_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_PAPER_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_SCISSORS_IGNORING_OTHER_CONSIDERATIONS', ]), running_with_scissors_in_the_matrix__one_shot=puppeteer.puppet_goals([ 'COLLECT_ROCK', 'COLLECT_PAPER', 'COLLECT_SCISSORS', 'INTERACT_PLAYING_ROCK', 'INTERACT_PLAYING_PAPER', 'INTERACT_PLAYING_SCISSORS', 'COLLECT_ROCK_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_PAPER_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_SCISSORS_IGNORING_OTHER_CONSIDERATIONS', ]), running_with_scissors_in_the_matrix__repeated=puppeteer.puppet_goals([ 'COLLECT_ROCK', 'COLLECT_PAPER', 'COLLECT_SCISSORS', 'INTERACT_PLAYING_ROCK', 'INTERACT_PLAYING_PAPER', 'INTERACT_PLAYING_SCISSORS', 'COLLECT_ROCK_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_PAPER_IGNORING_OTHER_CONSIDERATIONS', 'COLLECT_SCISSORS_IGNORING_OTHER_CONSIDERATIONS', ]), stag_hunt_in_the_matrix__arena=puppeteer.puppet_goals([ 'COLLECT_STAG', 'COLLECT_HARE', 'INTERACT_PLAYING_STAG', 'INTERACT_PLAYING_HARE', ]), stag_hunt_in_the_matrix__repeated=puppeteer.puppet_goals([ 'COLLECT_STAG', 'COLLECT_HARE', 'INTERACT_PLAYING_STAG', 'INTERACT_PLAYING_HARE', ]), # keep-sorted end ) _RESOURCES = immutabledict.immutabledict( # keep-sorted start numeric=yes block=yes bach_or_stravinsky_in_the_matrix__arena=immutabledict.immutabledict({ 'BACH': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['bach_or_stravinsky_in_the_matrix__arena']['COLLECT_BACH'], interact_goal=_PUPPET_GOALS['bach_or_stravinsky_in_the_matrix__arena']['INTERACT_PLAYING_BACH'], ), 'STRAVINSKY': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['bach_or_stravinsky_in_the_matrix__arena']['COLLECT_STRAVINSKY'], interact_goal=_PUPPET_GOALS['bach_or_stravinsky_in_the_matrix__arena']['INTERACT_PLAYING_STRAVINSKY'], ), }), bach_or_stravinsky_in_the_matrix__repeated=immutabledict.immutabledict({ 'BACH': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['bach_or_stravinsky_in_the_matrix__repeated']['COLLECT_BACH'], interact_goal=_PUPPET_GOALS['bach_or_stravinsky_in_the_matrix__repeated']['INTERACT_PLAYING_BACH'], ), 'STRAVINSKY': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['bach_or_stravinsky_in_the_matrix__repeated']['COLLECT_STRAVINSKY'], interact_goal=_PUPPET_GOALS['bach_or_stravinsky_in_the_matrix__repeated']['INTERACT_PLAYING_STRAVINSKY'], ), }), chicken_in_the_matrix__arena=immutabledict.immutabledict({ 'DOVE': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['chicken_in_the_matrix__arena']['COLLECT_DOVE'], interact_goal=_PUPPET_GOALS['chicken_in_the_matrix__arena']['INTERACT_PLAYING_DOVE'], ), 'HAWK': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['chicken_in_the_matrix__arena']['COLLECT_HAWK'], interact_goal=_PUPPET_GOALS['chicken_in_the_matrix__arena']['INTERACT_PLAYING_HAWK'], ), }), chicken_in_the_matrix__repeated=immutabledict.immutabledict({ 'DOVE': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['chicken_in_the_matrix__repeated']['COLLECT_DOVE'], interact_goal=_PUPPET_GOALS['chicken_in_the_matrix__repeated']['INTERACT_PLAYING_DOVE'], ), 'HAWK': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['chicken_in_the_matrix__repeated']['COLLECT_HAWK'], interact_goal=_PUPPET_GOALS['chicken_in_the_matrix__repeated']['INTERACT_PLAYING_HAWK'], ), }), prisoners_dilemma_in_the_matrix__arena=immutabledict.immutabledict({ 'COOPERATE': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['prisoners_dilemma_in_the_matrix__arena']['COLLECT_COOPERATE'], interact_goal=_PUPPET_GOALS['prisoners_dilemma_in_the_matrix__arena']['INTERACT_COOPERATE'], ), 'DEFECT': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['prisoners_dilemma_in_the_matrix__arena']['COLLECT_DEFECT'], interact_goal=_PUPPET_GOALS['prisoners_dilemma_in_the_matrix__arena']['INTERACT_DEFECT'], ), }), prisoners_dilemma_in_the_matrix__repeated=immutabledict.immutabledict({ 'COOPERATE': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['prisoners_dilemma_in_the_matrix__repeated']['COLLECT_COOPERATE'], interact_goal=_PUPPET_GOALS['prisoners_dilemma_in_the_matrix__repeated']['INTERACT_COOPERATE'], ), 'DEFECT': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['prisoners_dilemma_in_the_matrix__repeated']['COLLECT_DEFECT'], interact_goal=_PUPPET_GOALS['prisoners_dilemma_in_the_matrix__repeated']['INTERACT_DEFECT'], ), }), pure_coordination_in_the_matrix__arena=immutabledict.immutabledict({ 'RED': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__arena']['COLLECT_RED'], interact_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__arena']['INTERACT_PLAYING_RED'], ), 'GREEN': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__arena']['COLLECT_GREEN'], interact_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__arena']['INTERACT_PLAYING_GREEN'], ), 'BLUE': in_the_matrix.Resource( index=2, collect_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__arena']['COLLECT_BLUE'], interact_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__arena']['INTERACT_PLAYING_BLUE'], ), }), pure_coordination_in_the_matrix__repeated=immutabledict.immutabledict({ 'RED': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__repeated']['COLLECT_RED'], interact_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__repeated']['INTERACT_PLAYING_RED'], ), 'GREEN': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__repeated']['COLLECT_GREEN'], interact_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__repeated']['INTERACT_PLAYING_GREEN'], ), 'BLUE': in_the_matrix.Resource( index=2, collect_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__repeated']['COLLECT_BLUE'], interact_goal=_PUPPET_GOALS['pure_coordination_in_the_matrix__repeated']['INTERACT_PLAYING_BLUE'], ), }), rationalizable_coordination_in_the_matrix__arena=immutabledict.immutabledict({ 'YELLOW': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__arena']['COLLECT_YELLOW'], interact_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__arena']['INTERACT_PLAYING_YELLOW'], ), 'VIOLET': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__arena']['COLLECT_VIOLET'], interact_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__arena']['INTERACT_PLAYING_VIOLET'], ), 'CYAN': in_the_matrix.Resource( index=2, collect_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__arena']['COLLECT_CYAN'], interact_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__arena']['INTERACT_PLAYING_CYAN'], ), }), rationalizable_coordination_in_the_matrix__repeated=immutabledict.immutabledict({ 'YELLOW': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__repeated']['COLLECT_YELLOW'], interact_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__repeated']['INTERACT_PLAYING_YELLOW'], ), 'VIOLET': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__repeated']['COLLECT_VIOLET'], interact_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__repeated']['INTERACT_PLAYING_VIOLET'], ), 'CYAN': in_the_matrix.Resource( index=2, collect_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__repeated']['COLLECT_CYAN'], interact_goal=_PUPPET_GOALS['rationalizable_coordination_in_the_matrix__repeated']['INTERACT_PLAYING_CYAN'], ), }), running_with_scissors_in_the_matrix__arena=immutabledict.immutabledict({ 'ROCK': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__arena']['COLLECT_ROCK'], interact_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__arena']['INTERACT_PLAYING_ROCK'], ), 'PAPER': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__arena']['COLLECT_PAPER'], interact_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__arena']['INTERACT_PLAYING_PAPER'], ), 'SCISSORS': in_the_matrix.Resource( index=2, collect_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__arena']['COLLECT_SCISSORS'], interact_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__arena']['INTERACT_PLAYING_SCISSORS'], ), }), running_with_scissors_in_the_matrix__one_shot=immutabledict.immutabledict({ 'ROCK': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__one_shot']['COLLECT_ROCK'], interact_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__one_shot']['INTERACT_PLAYING_ROCK'], ), 'PAPER': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__one_shot']['COLLECT_PAPER'], interact_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__one_shot']['INTERACT_PLAYING_PAPER'], ), 'SCISSORS': in_the_matrix.Resource( index=2, collect_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__one_shot']['COLLECT_SCISSORS'], interact_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__one_shot']['INTERACT_PLAYING_SCISSORS'], ), }), running_with_scissors_in_the_matrix__repeated=immutabledict.immutabledict({ 'ROCK': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__repeated']['COLLECT_ROCK'], interact_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__repeated']['INTERACT_PLAYING_ROCK'], ), 'PAPER': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__repeated']['COLLECT_PAPER'], interact_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__repeated']['INTERACT_PLAYING_PAPER'], ), 'SCISSORS': in_the_matrix.Resource( index=2, collect_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__repeated']['COLLECT_SCISSORS'], interact_goal=_PUPPET_GOALS['running_with_scissors_in_the_matrix__repeated']['INTERACT_PLAYING_SCISSORS'], ), }), stag_hunt_in_the_matrix__arena=immutabledict.immutabledict({ 'STAG': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['stag_hunt_in_the_matrix__arena']['COLLECT_STAG'], interact_goal=_PUPPET_GOALS['stag_hunt_in_the_matrix__arena']['INTERACT_PLAYING_STAG'], ), 'HARE': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['stag_hunt_in_the_matrix__arena']['COLLECT_HARE'], interact_goal=_PUPPET_GOALS['stag_hunt_in_the_matrix__arena']['INTERACT_PLAYING_HARE'], ), }), stag_hunt_in_the_matrix__repeated=immutabledict.immutabledict({ 'STAG': in_the_matrix.Resource( index=0, collect_goal=_PUPPET_GOALS['stag_hunt_in_the_matrix__repeated']['COLLECT_STAG'], interact_goal=_PUPPET_GOALS['stag_hunt_in_the_matrix__repeated']['INTERACT_PLAYING_STAG'], ), 'HARE': in_the_matrix.Resource( index=1, collect_goal=_PUPPET_GOALS['stag_hunt_in_the_matrix__repeated']['COLLECT_HARE'], interact_goal=_PUPPET_GOALS['stag_hunt_in_the_matrix__repeated']['INTERACT_PLAYING_HARE'], ), }), # keep-sorted end ) @dataclasses.dataclass(frozen=True) class BotConfig: """Bot config. Attributes: substrate: the substrate the bot was trained for. roles: the roles the bot was trained for. model_path: the path to the bot's saved model. model_version: whether the bot is a "1.0" bot or a new "1.1" bot. puppeteer_builder: returns the puppeteer used to control the bot. """ substrate: str roles: AbstractSet[str] model_path: str puppeteer_builder: Optional[Callable[[], puppeteer.Puppeteer]] def __post_init__(self): object.__setattr__(self, 'roles', frozenset(self.roles)) def saved_model(*, substrate: str, roles: Iterable[str] = ('default',), model: str, models_root: str = MODELS_ROOT) -> BotConfig: """Returns the config for a saved model bot. Args: substrate: the substrate on which the bot was trained. roles: the roles the bot was trained for. model: the name of the model. models_root: The path to the directory containing the saved_models. """ model_path = os.path.join(models_root, substrate, model) return BotConfig( substrate=substrate, roles=frozenset(roles), model_path=model_path, puppeteer_builder=None) def puppet(*, substrate: str, roles: Iterable[str] = ('default',), model: str, puppeteer_builder: Callable[[], puppeteer.Puppeteer], models_root: str = MODELS_ROOT) -> BotConfig: """Returns the config for a puppet bot. Args: substrate: the substrate on which the bot was trained. roles: the roles the bot was trained for. model: the name of the model. puppeteer_builder: returns the puppeteer used to control the bot. models_root: the path to the directory containing the saved_models. """ puppet_path = os.path.join(models_root, substrate, model) return BotConfig( substrate=substrate, roles=frozenset(roles), model_path=puppet_path, puppeteer_builder=puppeteer_builder) BOT_CONFIGS: Mapping[str, BotConfig] = immutabledict.immutabledict( # keep-sorted start numeric=yes block=yes allelopathic_harvest__open__bot_that_supports_green_0=saved_model( substrate='allelopathic_harvest__open', model='bot_that_loves_green_0', roles=('default', 'player_who_likes_red', 'player_who_likes_green',), ), allelopathic_harvest__open__bot_that_supports_green_1=saved_model( substrate='allelopathic_harvest__open', model='bot_that_loves_green_1', roles=('default', 'player_who_likes_red', 'player_who_likes_green',), ), allelopathic_harvest__open__bot_that_supports_green_2=saved_model( substrate='allelopathic_harvest__open', model='bot_that_loves_green_2', roles=('default', 'player_who_likes_red', 'player_who_likes_green',), ), allelopathic_harvest__open__bot_that_supports_green_3=saved_model( substrate='allelopathic_harvest__open', model='bot_that_loves_green_3', roles=('default', 'player_who_likes_red', 'player_who_likes_green',), ), allelopathic_harvest__open__bot_that_supports_red_0=saved_model( substrate='allelopathic_harvest__open', model='bot_that_loves_red_0', roles=('default', 'player_who_likes_red', 'player_who_likes_green',), ), allelopathic_harvest__open__bot_that_supports_red_1=saved_model( substrate='allelopathic_harvest__open', model='bot_that_loves_red_1', roles=('default', 'player_who_likes_red', 'player_who_likes_green',), ), allelopathic_harvest__open__bot_that_supports_red_2=saved_model( substrate='allelopathic_harvest__open', model='bot_that_loves_red_2', roles=('default', 'player_who_likes_red', 'player_who_likes_green',), ), allelopathic_harvest__open__bot_that_supports_red_3=saved_model( substrate='allelopathic_harvest__open', model='bot_that_loves_red_3', roles=('default', 'player_who_likes_red', 'player_who_likes_green',), ), bach_or_stravinsky_in_the_matrix__arena__bach_picker_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__arena', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['bach_or_stravinsky_in_the_matrix__arena']['BACH'], margin=3, ), ), bach_or_stravinsky_in_the_matrix__arena__stravinsky_picker_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__arena', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['bach_or_stravinsky_in_the_matrix__arena']['STRAVINSKY'], margin=3, ), ), bach_or_stravinsky_in_the_matrix__arena__turn_taking_initial_bach_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__arena', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.AlternatingSpecialist, targets=[ _RESOURCES['bach_or_stravinsky_in_the_matrix__arena']['BACH'], _RESOURCES['bach_or_stravinsky_in_the_matrix__arena']['STRAVINSKY'], ], interactions_per_target=2, margin=2, ), ), bach_or_stravinsky_in_the_matrix__arena__turn_taking_initial_stravinsky_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__arena', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.AlternatingSpecialist, targets=[ _RESOURCES['bach_or_stravinsky_in_the_matrix__arena']['STRAVINSKY'], _RESOURCES['bach_or_stravinsky_in_the_matrix__arena']['BACH'], ], interactions_per_target=2, margin=2, ), ), bach_or_stravinsky_in_the_matrix__repeated__bach_picker_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['BACH'], margin=5, ), ), bach_or_stravinsky_in_the_matrix__repeated__bach_tft_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['BACH'], defect_resource=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['STRAVINSKY'], tremble_probability=0, margin=5, ), ), bach_or_stravinsky_in_the_matrix__repeated__bach_tft_tremble_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['BACH'], defect_resource=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['STRAVINSKY'], tremble_probability=0.25, margin=5, ), ), bach_or_stravinsky_in_the_matrix__repeated__stravinsky_picker_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['STRAVINSKY'], margin=5, ), ), bach_or_stravinsky_in_the_matrix__repeated__stravinsky_tft_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['STRAVINSKY'], defect_resource=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['BACH'], tremble_probability=0, margin=5, ), ), bach_or_stravinsky_in_the_matrix__repeated__stravinsky_tft_tremble_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['STRAVINSKY'], defect_resource=_RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['BACH'], tremble_probability=0.25, margin=5, ), ), bach_or_stravinsky_in_the_matrix__repeated__turn_taking_initial_bach_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.AlternatingSpecialist, targets=[ _RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['BACH'], _RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['STRAVINSKY'], ], interactions_per_target=1, margin=5, ), ), bach_or_stravinsky_in_the_matrix__repeated__turn_taking_initial_bach_1=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.AlternatingSpecialist, targets=[ _RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['BACH'], _RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['STRAVINSKY'], ], interactions_per_target=3, margin=5, ), ), bach_or_stravinsky_in_the_matrix__repeated__turn_taking_initial_stravinsky_0=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.AlternatingSpecialist, targets=[ _RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['STRAVINSKY'], _RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['BACH'], ], interactions_per_target=1, margin=5, ), ), bach_or_stravinsky_in_the_matrix__repeated__turn_taking_initial_stravinsky_1=puppet( substrate='bach_or_stravinsky_in_the_matrix__repeated', model='puppet_0', roles=('default', 'bach_fan', 'stravinsky_fan',), puppeteer_builder=functools.partial( in_the_matrix.AlternatingSpecialist, targets=[ _RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['STRAVINSKY'], _RESOURCES['bach_or_stravinsky_in_the_matrix__repeated']['BACH'], ], interactions_per_target=3, margin=5, ), ), boat_race__eight_races__cooperator_0=saved_model( substrate='boat_race__eight_races', model='cooperator_0', roles=('default', 'target'), ), boat_race__eight_races__defector_0=saved_model( substrate='boat_race__eight_races', model='defector_0', roles=('default',), ), chemistry__three_metabolic_cycles__blue_0=saved_model( substrate='chemistry__three_metabolic_cycles', model='blue_0', ), chemistry__three_metabolic_cycles__green_0=saved_model( substrate='chemistry__three_metabolic_cycles', model='green_0', ), chemistry__three_metabolic_cycles__yellow_0=saved_model( substrate='chemistry__three_metabolic_cycles', model='yellow_0', ), chemistry__three_metabolic_cycles_with_plentiful_distractors__blue_0=saved_model( substrate='chemistry__three_metabolic_cycles_with_plentiful_distractors', model='blue_0', ), chemistry__three_metabolic_cycles_with_plentiful_distractors__green_0=saved_model( substrate='chemistry__three_metabolic_cycles_with_plentiful_distractors', model='green_0', ), chemistry__three_metabolic_cycles_with_plentiful_distractors__yellow_0=saved_model( substrate='chemistry__three_metabolic_cycles_with_plentiful_distractors', model='yellow_0', ), chemistry__two_metabolic_cycles__blue_0=saved_model( substrate='chemistry__two_metabolic_cycles', model='blue_0', ), chemistry__two_metabolic_cycles__green_0=saved_model( substrate='chemistry__two_metabolic_cycles', model='green_0', ), chemistry__two_metabolic_cycles_with_distractors__blue_0=saved_model( substrate='chemistry__two_metabolic_cycles_with_distractors', model='blue_0', ), chemistry__two_metabolic_cycles_with_distractors__green_0=saved_model( substrate='chemistry__two_metabolic_cycles_with_distractors', model='green_0', ), chicken_in_the_matrix__arena__puppet_dove_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['chicken_in_the_matrix__arena']['DOVE'], margin=1, ), ), chicken_in_the_matrix__arena__puppet_dove_margin_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['chicken_in_the_matrix__arena']['DOVE'], margin=5, ), ), chicken_in_the_matrix__arena__puppet_grim_one_strike_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__arena']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__arena']['HAWK'], threshold=1, margin=1, ), ), chicken_in_the_matrix__arena__puppet_grim_one_strike_margin_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__arena']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__arena']['HAWK'], threshold=1, margin=5, ), ), chicken_in_the_matrix__arena__puppet_grim_three_strikes_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__arena']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__arena']['HAWK'], threshold=3, margin=1, ), ), chicken_in_the_matrix__arena__puppet_grim_three_strikes_margin_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__arena']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__arena']['HAWK'], threshold=3, margin=5, ), ), chicken_in_the_matrix__arena__puppet_grim_two_strikes_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__arena']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__arena']['HAWK'], threshold=2, margin=1, ), ), chicken_in_the_matrix__arena__puppet_grim_two_strikes_margin_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__arena']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__arena']['HAWK'], threshold=2, margin=5, ), ), chicken_in_the_matrix__arena__puppet_hawk_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['chicken_in_the_matrix__arena']['HAWK'], margin=1, ), ), chicken_in_the_matrix__arena__puppet_hawk_margin_0=puppet( substrate='chicken_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['chicken_in_the_matrix__arena']['HAWK'], margin=5, ), ), chicken_in_the_matrix__repeated__puppet_corrigible_0=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Corrigible, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], threshold=3, margin=5, tremble_probability=0, ), ), chicken_in_the_matrix__repeated__puppet_corrigible_tremble_0=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Corrigible, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], threshold=3, margin=5, tremble_probability=0.15, ), ), chicken_in_the_matrix__repeated__puppet_dove_margin_0=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], margin=5, ), ), chicken_in_the_matrix__repeated__puppet_dove_margin_1=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], margin=7, ), ), chicken_in_the_matrix__repeated__puppet_flip_0=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, initial_target=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], final_target=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], threshold=3, initial_margin=1, final_margin=5, ), ), chicken_in_the_matrix__repeated__puppet_grim_one_strike_margin_0=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], threshold=1, margin=5, ), ), chicken_in_the_matrix__repeated__puppet_grim_one_strike_margin_1=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], threshold=1, margin=7, ), ), chicken_in_the_matrix__repeated__puppet_grim_two_strikes_margin_0=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], threshold=2, margin=5, ), ), chicken_in_the_matrix__repeated__puppet_grim_two_strikes_margin_1=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], threshold=2, margin=7, ), ), chicken_in_the_matrix__repeated__puppet_hawk_margin_0=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], margin=5, ), ), chicken_in_the_matrix__repeated__puppet_hawk_margin_1=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], margin=7, ), ), chicken_in_the_matrix__repeated__puppet_tft_margin_0=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], tremble_probability=0, margin=5, ), ), chicken_in_the_matrix__repeated__puppet_tft_margin_1=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], tremble_probability=0, margin=7, ), ), chicken_in_the_matrix__repeated__puppet_tft_tremble_margin_0=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], tremble_probability=0.15, margin=5, ), ), chicken_in_the_matrix__repeated__puppet_tft_tremble_margin_1=puppet( substrate='chicken_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['chicken_in_the_matrix__repeated']['DOVE'], defect_resource=_RESOURCES['chicken_in_the_matrix__repeated']['HAWK'], tremble_probability=0.15, margin=7, ), ), clean_up__cleaner_0=saved_model( substrate='clean_up', model='cleaner_0', ), clean_up__cleaner_1=saved_model( substrate='clean_up', model='cleaner_1', ), clean_up__consumer_0=saved_model( substrate='clean_up', model='consumer_0', ), clean_up__consumer_1=saved_model( substrate='clean_up', model='consumer_1', ), clean_up__puppet_alternator_first_cleans_0=puppet( substrate='clean_up', model='puppet_0', roles=('default',), puppeteer_builder=functools.partial( alternator.Alternator, goals=[ _PUPPET_GOALS['clean_up']['CLEAN'], _PUPPET_GOALS['clean_up']['EAT'], ], steps_per_goal=200, )), clean_up__puppet_alternator_first_eats_0=puppet( substrate='clean_up', model='puppet_0', roles=('default',), puppeteer_builder=functools.partial( alternator.Alternator, goals=[ _PUPPET_GOALS['clean_up']['EAT'], _PUPPET_GOALS['clean_up']['CLEAN'], ], steps_per_goal=200, ), ), clean_up__puppet_high_threshold_reciprocator_0=puppet( substrate='clean_up', model='puppet_0', roles=('default',), puppeteer_builder=functools.partial( clean_up.ConditionalCleaner, clean_goal=_PUPPET_GOALS['clean_up']['CLEAN'], eat_goal=_PUPPET_GOALS['clean_up']['EAT'], coplayer_cleaning_signal='NUM_OTHERS_WHO_CLEANED_THIS_STEP', threshold=3, recency_window=5, reciprocation_period=75, niceness_period=0, ), ), clean_up__puppet_low_threshold_reciprocator_0=puppet( substrate='clean_up', model='puppet_0', roles=('default',), puppeteer_builder=functools.partial( clean_up.ConditionalCleaner, clean_goal=_PUPPET_GOALS['clean_up']['CLEAN'], eat_goal=_PUPPET_GOALS['clean_up']['EAT'], coplayer_cleaning_signal='NUM_OTHERS_WHO_CLEANED_THIS_STEP', threshold=2, recency_window=5, reciprocation_period=75, niceness_period=0, ), ), clean_up__puppet_nice_low_threshold_reciprocator_0=puppet( substrate='clean_up', model='puppet_0', roles=('default',), puppeteer_builder=functools.partial( clean_up.ConditionalCleaner, clean_goal=_PUPPET_GOALS['clean_up']['CLEAN'], eat_goal=_PUPPET_GOALS['clean_up']['EAT'], coplayer_cleaning_signal='NUM_OTHERS_WHO_CLEANED_THIS_STEP', threshold=2, recency_window=5, reciprocation_period=75, niceness_period=200, ), ), coins__puppet_cooperator_0=puppet( substrate='coins', model='puppet_1', puppeteer_builder=functools.partial( fixed_goal.FixedGoal, goal=_PUPPET_GOALS['coins']['COOPERATE'], ), ), coins__puppet_defector_0=puppet( substrate='coins', model='puppet_1', puppeteer_builder=functools.partial( fixed_goal.FixedGoal, goal=_PUPPET_GOALS['coins']['DEFECT'], ), ), coins__puppet_one_strike_reciprocator_0=puppet( substrate='coins', model='puppet_1', puppeteer_builder=functools.partial( coins.Reciprocator, cooperate_goal=_PUPPET_GOALS['coins']['COOPERATE'], defect_goal=_PUPPET_GOALS['coins']['DEFECT'], spite_goal=_PUPPET_GOALS['coins']['SPITE'], partner_defection_signal='MISMATCHED_COIN_COLLECTED_BY_PARTNER', recency_window=100, threshold=1, frames_to_punish=100, spiteful_punishment_window=0, ), ), coins__puppet_one_strike_strong_reciprocator_0=puppet( substrate='coins', model='puppet_1', puppeteer_builder=functools.partial( coins.Reciprocator, cooperate_goal=_PUPPET_GOALS['coins']['COOPERATE'], defect_goal=_PUPPET_GOALS['coins']['DEFECT'], spite_goal=_PUPPET_GOALS['coins']['SPITE'], partner_defection_signal='MISMATCHED_COIN_COLLECTED_BY_PARTNER', recency_window=100, threshold=1, frames_to_punish=100, spiteful_punishment_window=50, ), ), coins__puppet_three_strikes_reciprocator_0=puppet( substrate='coins', model='puppet_1', puppeteer_builder=functools.partial( coins.Reciprocator, cooperate_goal=_PUPPET_GOALS['coins']['COOPERATE'], defect_goal=_PUPPET_GOALS['coins']['DEFECT'], spite_goal=_PUPPET_GOALS['coins']['SPITE'], partner_defection_signal='MISMATCHED_COIN_COLLECTED_BY_PARTNER', recency_window=150, threshold=3, frames_to_punish=150, spiteful_punishment_window=0, ), ), coins__puppet_three_strikes_strong_reciprocator_0=puppet( substrate='coins', model='puppet_1', puppeteer_builder=functools.partial( coins.Reciprocator, cooperate_goal=_PUPPET_GOALS['coins']['COOPERATE'], defect_goal=_PUPPET_GOALS['coins']['DEFECT'], spite_goal=_PUPPET_GOALS['coins']['SPITE'], partner_defection_signal='MISMATCHED_COIN_COLLECTED_BY_PARTNER', recency_window=150, threshold=3, frames_to_punish=150, spiteful_punishment_window=75, ), ), collaborative_cooking__asymmetric__apprentice_0=saved_model( substrate='collaborative_cooking__asymmetric', model='apprentice_0', ), collaborative_cooking__asymmetric__apprentice_1=saved_model( substrate='collaborative_cooking__asymmetric', model='apprentice_1', ), collaborative_cooking__asymmetric__chef_0=saved_model( substrate='collaborative_cooking__asymmetric', model='chef_0', ), collaborative_cooking__asymmetric__chef_1=saved_model( substrate='collaborative_cooking__asymmetric', model='chef_1', ), collaborative_cooking__circuit__apprentice_0=saved_model( substrate='collaborative_cooking__circuit', model='apprentice_0', ), collaborative_cooking__circuit__apprentice_1=saved_model( substrate='collaborative_cooking__circuit', model='apprentice_1', ), collaborative_cooking__circuit__chef_0=saved_model( substrate='collaborative_cooking__circuit', model='chef_0', ), collaborative_cooking__circuit__chef_1=saved_model( substrate='collaborative_cooking__circuit', model='chef_1', ), collaborative_cooking__cramped__apprentice_0=saved_model( substrate='collaborative_cooking__cramped', model='apprentice_0', ), collaborative_cooking__cramped__apprentice_1=saved_model( substrate='collaborative_cooking__cramped', model='apprentice_1', ), collaborative_cooking__cramped__chef_0=saved_model( substrate='collaborative_cooking__cramped', model='chef_0', ), collaborative_cooking__cramped__chef_1=saved_model( substrate='collaborative_cooking__cramped', model='chef_1', ), collaborative_cooking__crowded__independent_chef_0=saved_model( substrate='collaborative_cooking__crowded', model='independent_chef_0', ), collaborative_cooking__crowded__robust_chef_0=saved_model( substrate='collaborative_cooking__crowded', model='robust_chef_0', ), collaborative_cooking__figure_eight__independent_chef_0=saved_model( substrate='collaborative_cooking__figure_eight', model='independent_chef_0', ), collaborative_cooking__figure_eight__robust_chef_0=saved_model( substrate='collaborative_cooking__figure_eight', model='robust_chef_0', ), collaborative_cooking__forced__apprentice_0=saved_model( substrate='collaborative_cooking__forced', model='apprentice_0', ), collaborative_cooking__forced__apprentice_1=saved_model( substrate='collaborative_cooking__forced', model='apprentice_1', ), collaborative_cooking__forced__chef_0=saved_model( substrate='collaborative_cooking__forced', model='chef_0', ), collaborative_cooking__forced__chef_1=saved_model( substrate='collaborative_cooking__forced', model='chef_1', ), collaborative_cooking__ring__apprentice_0=saved_model( substrate='collaborative_cooking__ring', model='apprentice_0', ), collaborative_cooking__ring__apprentice_1=saved_model( substrate='collaborative_cooking__ring', model='apprentice_1', ), collaborative_cooking__ring__chef_0=saved_model( substrate='collaborative_cooking__ring', model='chef_0', ), collaborative_cooking__ring__chef_1=saved_model( substrate='collaborative_cooking__ring', model='chef_1', ), commons_harvest__closed__free_0=saved_model( substrate='commons_harvest__closed', model='free_0', ), commons_harvest__closed__free_1=saved_model( substrate='commons_harvest__closed', model='free_1', ), commons_harvest__closed__free_2=saved_model( substrate='commons_harvest__closed', model='free_2', ), commons_harvest__closed__free_3=saved_model( substrate='commons_harvest__closed', model='free_3', ), commons_harvest__closed__pacifist_0=saved_model( substrate='commons_harvest__closed', model='pacifist_0', ), commons_harvest__closed__pacifist_1=saved_model( substrate='commons_harvest__closed', model='pacifist_1', ), commons_harvest__closed__pacifist_2=saved_model( substrate='commons_harvest__closed', model='pacifist_2', ), commons_harvest__open__free_0=saved_model( substrate='commons_harvest__open', model='free_0', ), commons_harvest__open__free_1=saved_model( substrate='commons_harvest__open', model='free_1', ), commons_harvest__open__pacifist_0=saved_model( substrate='commons_harvest__open', model='pacifist_0', ), commons_harvest__open__pacifist_1=saved_model( substrate='commons_harvest__open', model='pacifist_1', ), commons_harvest__partnership__free_0=saved_model( substrate='commons_harvest__partnership', model='free_0', ), commons_harvest__partnership__free_1=saved_model( substrate='commons_harvest__partnership', model='free_1', ), commons_harvest__partnership__free_2=saved_model( substrate='commons_harvest__partnership', model='free_2', ), commons_harvest__partnership__good_partner_0=saved_model( substrate='commons_harvest__partnership', model='good_partner_0', ), commons_harvest__partnership__good_partner_1=saved_model( substrate='commons_harvest__partnership', model='good_partner_1', ), commons_harvest__partnership__good_partner_2=saved_model( substrate='commons_harvest__partnership', model='good_partner_2', ), commons_harvest__partnership__pacifist_0=saved_model( substrate='commons_harvest__partnership', model='pacifist_0', ), commons_harvest__partnership__pacifist_1=saved_model( substrate='commons_harvest__partnership', model='pacifist_1', ), commons_harvest__partnership__pacifist_2=saved_model( substrate='commons_harvest__partnership', model='pacifist_2', ), commons_harvest__partnership__sustainable_fighter_0=saved_model( substrate='commons_harvest__partnership', model='sustainable_fighter_0', ), commons_harvest__partnership__sustainable_fighter_1=saved_model( substrate='commons_harvest__partnership', model='sustainable_fighter_1', ), coop_mining__cooperator_0=puppet( substrate='coop_mining', model='puppet_0', roles=('default', 'target'), puppeteer_builder=functools.partial( fixed_goal.FixedGoal, _PUPPET_GOALS['coop_mining']['EXTRACT_GOLD'], ), ), coop_mining__defector_0=puppet( substrate='coop_mining', model='puppet_0', roles=('default',), puppeteer_builder=functools.partial( fixed_goal.FixedGoal, _PUPPET_GOALS['coop_mining']['EXTRACT_IRON'], ), ), coop_mining__mixed_0=puppet( substrate='coop_mining', model='puppet_0', roles=('default', 'target'), puppeteer_builder=functools.partial( alternator.Alternator, goals=[ _PUPPET_GOALS['coop_mining']['EXTRACT_IRON'], _PUPPET_GOALS['coop_mining']['EXTRACT_GOLD'], ], steps_per_goal=100, ), ), daycare__foraging_child_0=saved_model( substrate='daycare', model='foraging_child_0', roles=('child',), ), daycare__foraging_parent_0=saved_model( substrate='daycare', model='foraging_parent_0', roles=('parent',), ), daycare__helping_parent_0=saved_model( substrate='daycare', model='helping_parent_0', roles=('parent',), ), daycare__pointing_child_0=saved_model( substrate='daycare', model='pointing_child_0', roles=('child',), ), externality_mushrooms__dense__puppet_fize_0=puppet( substrate='externality_mushrooms__dense', model='puppet_0', roles=('default',), puppeteer_builder=functools.partial( fixed_goal.FixedGoal, (_PUPPET_GOALS['externality_mushrooms__dense'] ['COLLECT_MUSHROOM_FIZE'])), ), externality_mushrooms__dense__puppet_hihe_0=puppet( substrate='externality_mushrooms__dense', model='puppet_0', roles=('default',), puppeteer_builder=functools.partial( fixed_goal.FixedGoal, (_PUPPET_GOALS['externality_mushrooms__dense'] ['COLLECT_MUSHROOM_HIHE'])), ), factory_commons__either_or__sustainable_0=saved_model( substrate='factory_commons__either_or', model='sustainable_0', roles=('default',), ), factory_commons__either_or__sustainable_1=saved_model( substrate='factory_commons__either_or', model='sustainable_1', roles=('default',), ), factory_commons__either_or__sustainable_2=saved_model( substrate='factory_commons__either_or', model='sustainable_2', roles=('default',), ), factory_commons__either_or__unsustainable_0=saved_model( substrate='factory_commons__either_or', model='unsustainable_0', roles=('default',), ), factory_commons__either_or__unsustainable_1=saved_model( substrate='factory_commons__either_or', model='unsustainable_1', roles=('default',), ), factory_commons__either_or__unsustainable_2=saved_model( substrate='factory_commons__either_or', model='unsustainable_2', roles=('default',), ), fruit_market__concentric_rivers__apple_farmer_0=saved_model( substrate='fruit_market__concentric_rivers', model='apple_farmer_0', roles=('apple_farmer',), ), fruit_market__concentric_rivers__apple_farmer_1=saved_model( substrate='fruit_market__concentric_rivers', model='apple_farmer_1', roles=('apple_farmer',), ), fruit_market__concentric_rivers__apple_farmer_2=saved_model( substrate='fruit_market__concentric_rivers', model='apple_farmer_2', roles=('apple_farmer',), ), fruit_market__concentric_rivers__banana_farmer_0=saved_model( substrate='fruit_market__concentric_rivers', model='banana_farmer_0', roles=('banana_farmer',), ), fruit_market__concentric_rivers__banana_farmer_1=saved_model( substrate='fruit_market__concentric_rivers', model='banana_farmer_1', roles=('banana_farmer',), ), fruit_market__concentric_rivers__banana_farmer_2=saved_model( substrate='fruit_market__concentric_rivers', model='banana_farmer_2', roles=('banana_farmer',), ), gift_refinements__cooperator_0=puppet( substrate='gift_refinements', roles=('default', 'target'), model='puppet_0', puppeteer_builder=functools.partial( gift_refinements.GiftRefinementsCooperator, collect_goal=_PUPPET_GOALS['gift_refinements']['COLLECT_TOKENS'], consume_goal=_PUPPET_GOALS['gift_refinements']['CONSUME_TOKENS'], gift_goal=_PUPPET_GOALS['gift_refinements']['GIFT'], ), ), gift_refinements__defector_0=puppet( substrate='gift_refinements', roles=('default', 'target'), model='puppet_0', puppeteer_builder=functools.partial( fixed_goal.FixedGoal, goal=_PUPPET_GOALS['gift_refinements']['FORAGE'], ), ), gift_refinements__extreme_cooperator_0=puppet( substrate='gift_refinements', roles=('default', 'target'), model='puppet_0', puppeteer_builder=functools.partial( gift_refinements.GiftRefinementsExtremeCooperator, collect_goal=_PUPPET_GOALS['gift_refinements']['COLLECT_TOKENS'], consume_goal=_PUPPET_GOALS['gift_refinements']['CONSUME_TOKENS'], gift_goal=_PUPPET_GOALS['gift_refinements']['GIFT'], ), ), hidden_agenda__collector_crew_0=saved_model( substrate='hidden_agenda', model='collector_crew_0', roles=('crewmate',), ), hidden_agenda__collector_crew_1=saved_model( substrate='hidden_agenda', model='collector_crew_1', roles=('crewmate',), ), hidden_agenda__hunter_impostor_0=saved_model( substrate='hidden_agenda', model='hunter_impostor_0', roles=('impostor',), ), paintball__capture_the_flag__shaped_bot_0=saved_model( substrate='paintball__capture_the_flag', model='shaped_0', roles=('default',), ), paintball__capture_the_flag__shaped_bot_1=saved_model( substrate='paintball__capture_the_flag', model='shaped_1', roles=('default',), ), paintball__capture_the_flag__shaped_bot_2=saved_model( substrate='paintball__capture_the_flag', model='shaped_2', roles=('default',), ), paintball__capture_the_flag__shaped_bot_3=saved_model( substrate='paintball__capture_the_flag', model='shaped_3', roles=('default',), ), paintball__king_of_the_hill__free_0=saved_model( substrate='paintball__king_of_the_hill', model='free_bot_0', roles=('default',), ), paintball__king_of_the_hill__free_1=saved_model( substrate='paintball__king_of_the_hill', model='free_bot_1', roles=('default',), ), paintball__king_of_the_hill__free_2=saved_model( substrate='paintball__king_of_the_hill', model='free_bot_2', roles=('default',), ), paintball__king_of_the_hill__spawn_camper_0=saved_model( substrate='paintball__king_of_the_hill', model='spawn_camper_0', roles=('default',), ), paintball__king_of_the_hill__spawn_camper_1=saved_model( substrate='paintball__king_of_the_hill', model='spawn_camper_1', roles=('default',), ), paintball__king_of_the_hill__spawn_camper_2=saved_model( substrate='paintball__king_of_the_hill', model='spawn_camper_2', roles=('default',), ), paintball__king_of_the_hill__spawn_camper_3=saved_model( substrate='paintball__king_of_the_hill', model='spawn_camper_3', roles=('default',), ), predator_prey__alley_hunt__predator_0=saved_model( substrate='predator_prey__alley_hunt', model='basic_predator_0', roles=('predator',), ), predator_prey__alley_hunt__predator_1=saved_model( substrate='predator_prey__alley_hunt', model='basic_predator_1', roles=('predator',), ), predator_prey__alley_hunt__predator_2=saved_model( substrate='predator_prey__alley_hunt', model='basic_predator_2', roles=('predator',), ), predator_prey__alley_hunt__prey_0=saved_model( substrate='predator_prey__alley_hunt', model='basic_prey_0', roles=('prey',), ), predator_prey__alley_hunt__prey_1=saved_model( substrate='predator_prey__alley_hunt', model='basic_prey_1', roles=('prey',), ), predator_prey__alley_hunt__prey_2=saved_model( substrate='predator_prey__alley_hunt', model='basic_prey_2', roles=('prey',), ), predator_prey__open__basic_predator_0=saved_model( substrate='predator_prey__open', model='basic_predator_0', roles=('predator',), ), predator_prey__open__basic_predator_1=saved_model( substrate='predator_prey__open', model='basic_predator_1', roles=('predator',), ), predator_prey__open__basic_prey_0=saved_model( substrate='predator_prey__open', model='basic_prey_0', roles=('prey',), ), predator_prey__open__basic_prey_1=saved_model( substrate='predator_prey__open', model='basic_prey_1', roles=('prey',), ), predator_prey__open__basic_prey_2=saved_model( substrate='predator_prey__open', model='basic_prey_2', roles=('prey',), ), predator_prey__open__smart_prey_0=saved_model( substrate='predator_prey__open', model='smart_prey_0', roles=('prey',), ), predator_prey__open__smart_prey_1=saved_model( substrate='predator_prey__open', model='smart_prey_1', roles=('prey',), ), predator_prey__open__smart_prey_2=saved_model( substrate='predator_prey__open', model='smart_prey_2', roles=('prey',), ), predator_prey__orchard__acorn_specialist_prey_0=saved_model( substrate='predator_prey__orchard', model='acorn_specialist_prey_0', roles=('prey',), ), predator_prey__orchard__acorn_specialist_prey_1=saved_model( substrate='predator_prey__orchard', model='acorn_specialist_prey_1', roles=('prey',), ), predator_prey__orchard__acorn_specialist_prey_2=saved_model( substrate='predator_prey__orchard', model='acorn_specialist_prey_2', roles=('prey',), ), predator_prey__orchard__acorn_specialist_prey_3=saved_model( substrate='predator_prey__orchard', model='acorn_specialist_prey_3', roles=('prey',), ), predator_prey__orchard__acorn_specialist_prey_4=saved_model( substrate='predator_prey__orchard', model='acorn_specialist_prey_4', roles=('prey',), ), predator_prey__orchard__basic_predator_0=saved_model( substrate='predator_prey__orchard', model='basic_predator_0', roles=('predator',), ), predator_prey__orchard__basic_predator_1=saved_model( substrate='predator_prey__orchard', model='basic_predator_1', roles=('predator',), ), predator_prey__orchard__basic_predator_2=saved_model( substrate='predator_prey__orchard', model='basic_predator_2', roles=('predator',), ), predator_prey__orchard__basic_prey_0=saved_model( substrate='predator_prey__orchard', model='basic_prey_0', roles=('prey',), ), predator_prey__orchard__basic_prey_1=saved_model( substrate='predator_prey__orchard', model='basic_prey_1', roles=('prey',), ), predator_prey__orchard__basic_prey_2=saved_model( substrate='predator_prey__orchard', model='basic_prey_2', roles=('prey',), ), predator_prey__orchard__basic_prey_3=saved_model( substrate='predator_prey__orchard', model='basic_prey_3', roles=('prey',), ), predator_prey__orchard__basic_prey_4=saved_model( substrate='predator_prey__orchard', model='basic_prey_4', roles=('prey',), ), predator_prey__orchard__basic_prey_5=saved_model( substrate='predator_prey__orchard', model='basic_prey_5', roles=('prey',), ), predator_prey__random_forest__basic_predator_0=saved_model( substrate='predator_prey__random_forest', model='basic_predator_0', roles=('predator',), ), predator_prey__random_forest__basic_predator_1=saved_model( substrate='predator_prey__random_forest', model='basic_predator_1', roles=('predator',), ), predator_prey__random_forest__basic_predator_2=saved_model( substrate='predator_prey__random_forest', model='basic_predator_2', roles=('predator',), ), predator_prey__random_forest__basic_prey_0=saved_model( substrate='predator_prey__random_forest', model='basic_prey_0', roles=('prey',), ), predator_prey__random_forest__basic_prey_1=saved_model( substrate='predator_prey__random_forest', model='basic_prey_1', roles=('prey',), ), predator_prey__random_forest__basic_prey_2=saved_model( substrate='predator_prey__random_forest', model='basic_prey_2', roles=('prey',), ), prisoners_dilemma_in_the_matrix__arena__puppet_cooperator_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['COOPERATE'], margin=1, ), ), prisoners_dilemma_in_the_matrix__arena__puppet_cooperator_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['COOPERATE'], margin=5, ), ), prisoners_dilemma_in_the_matrix__arena__puppet_defector_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['DEFECT'], margin=1, ), ), prisoners_dilemma_in_the_matrix__arena__puppet_defector_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['DEFECT'], margin=5, ), ), prisoners_dilemma_in_the_matrix__arena__puppet_grim_one_strike_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['DEFECT'], threshold=1, margin=1, ), ), prisoners_dilemma_in_the_matrix__arena__puppet_grim_one_strike_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['DEFECT'], threshold=1, margin=5, ), ), prisoners_dilemma_in_the_matrix__arena__puppet_grim_three_strikes_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['DEFECT'], threshold=3, margin=1, ), ), prisoners_dilemma_in_the_matrix__arena__puppet_grim_three_strikes_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['DEFECT'], threshold=3, margin=5, ), ), prisoners_dilemma_in_the_matrix__arena__puppet_grim_two_strikes_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['DEFECT'], threshold=2, margin=1, ), ), prisoners_dilemma_in_the_matrix__arena__puppet_grim_two_strikes_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__arena']['DEFECT'], threshold=2, margin=5, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_cooperator_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], margin=5, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_cooperator_margin_1=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], margin=7, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_corrigible_0=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Corrigible, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], threshold=3, margin=5, tremble_probability=0, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_corrigible_tremble_0=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Corrigible, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], threshold=3, margin=5, tremble_probability=0.15, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_defector_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], margin=5, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_defector_margin_1=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], margin=7, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_flip_0=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, initial_target=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], final_target=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], threshold=3, initial_margin=1, final_margin=5, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_grim_one_strike_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], threshold=1, margin=5, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_grim_one_strike_margin_1=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], threshold=1, margin=7, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_grim_two_strikes_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], threshold=2, margin=5, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_grim_two_strikes_margin_1=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], threshold=2, margin=7, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_tft_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], tremble_probability=0, margin=5, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_tft_margin_1=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], tremble_probability=0, margin=7, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_tft_tremble_margin_0=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], tremble_probability=0.15, margin=5, ), ), prisoners_dilemma_in_the_matrix__repeated__puppet_tft_tremble_margin_1=puppet( substrate='prisoners_dilemma_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['COOPERATE'], defect_resource=_RESOURCES['prisoners_dilemma_in_the_matrix__repeated']['DEFECT'], tremble_probability=0.15, margin=7, ), ), pure_coordination_in_the_matrix__arena__flip_a2b_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['RED'], final_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['GREEN'], initial_margin=1, final_margin=1, ), ), pure_coordination_in_the_matrix__arena__flip_a2c_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['RED'], final_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['BLUE'], initial_margin=1, final_margin=1, ), ), pure_coordination_in_the_matrix__arena__flip_b2a_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['GREEN'], final_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['RED'], initial_margin=1, final_margin=1, ), ), pure_coordination_in_the_matrix__arena__flip_b2c_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['GREEN'], final_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['BLUE'], initial_margin=1, final_margin=1, ), ), pure_coordination_in_the_matrix__arena__flip_c2a_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['BLUE'], final_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['RED'], initial_margin=1, final_margin=1, ), ), pure_coordination_in_the_matrix__arena__flip_c2b_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['BLUE'], final_target=_RESOURCES['pure_coordination_in_the_matrix__arena']['GREEN'], initial_margin=1, final_margin=1, ), ), pure_coordination_in_the_matrix__arena__pure_a_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['pure_coordination_in_the_matrix__arena']['RED'], margin=1, ), ), pure_coordination_in_the_matrix__arena__pure_b_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['pure_coordination_in_the_matrix__arena']['GREEN'], margin=1, ), ), pure_coordination_in_the_matrix__arena__pure_c_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['pure_coordination_in_the_matrix__arena']['BLUE'], margin=1, ), ), pure_coordination_in_the_matrix__arena__pure_greedy_a_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['pure_coordination_in_the_matrix__arena']['RED'], margin=6, ), ), pure_coordination_in_the_matrix__arena__pure_greedy_b_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['pure_coordination_in_the_matrix__arena']['GREEN'], margin=6, ), ), pure_coordination_in_the_matrix__arena__pure_greedy_c_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['pure_coordination_in_the_matrix__arena']['BLUE'], margin=6, ), ), pure_coordination_in_the_matrix__arena__resp2prev_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( coordination_in_the_matrix.CoordinateWithPrevious, resources=( _RESOURCES['pure_coordination_in_the_matrix__arena']['RED'], _RESOURCES['pure_coordination_in_the_matrix__arena']['GREEN'], _RESOURCES['pure_coordination_in_the_matrix__arena']['BLUE'], ), margin=1, ), ), pure_coordination_in_the_matrix__arena__resp2prev_greedy_0=puppet( substrate='pure_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( coordination_in_the_matrix.CoordinateWithPrevious, resources=( _RESOURCES['pure_coordination_in_the_matrix__arena']['RED'], _RESOURCES['pure_coordination_in_the_matrix__arena']['GREEN'], _RESOURCES['pure_coordination_in_the_matrix__arena']['BLUE'], ), margin=6, ), ), pure_coordination_in_the_matrix__repeated__flip_a2b_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_a2b_1=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_a2c_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_a2c_1=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_b2a_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_b2a_1=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_b2c_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_b2c_1=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_c2a_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_c2a_1=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_c2b_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__flip_c2b_1=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], final_target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], initial_margin=5, final_margin=5, ), ), pure_coordination_in_the_matrix__repeated__pure_a_margin_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], margin=5, ), ), pure_coordination_in_the_matrix__repeated__pure_b_margin_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], margin=5, ), ), pure_coordination_in_the_matrix__repeated__pure_c_margin_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], margin=5, ), ), pure_coordination_in_the_matrix__repeated__resp2prev_margin_0=puppet( substrate='pure_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( coordination_in_the_matrix.CoordinateWithPrevious, resources=( _RESOURCES['pure_coordination_in_the_matrix__repeated']['RED'], _RESOURCES['pure_coordination_in_the_matrix__repeated']['GREEN'], _RESOURCES['pure_coordination_in_the_matrix__repeated']['BLUE'], ), margin=5, ), ), rationalizable_coordination_in_the_matrix__arena__flip_a2b_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['YELLOW'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['VIOLET'], initial_margin=1, final_margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__flip_a2c_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['YELLOW'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['CYAN'], initial_margin=1, final_margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__flip_b2a_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['VIOLET'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['YELLOW'], initial_margin=1, final_margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__flip_b2c_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['VIOLET'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['CYAN'], initial_margin=1, final_margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__flip_c2a_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['CYAN'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['YELLOW'], initial_margin=1, final_margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__flip_c2b_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=5, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['CYAN'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['VIOLET'], initial_margin=1, final_margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__pure_a_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['YELLOW'], margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__pure_b_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['VIOLET'], margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__pure_c_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['CYAN'], margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__pure_greedy_a_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['YELLOW'], margin=6, ), ), rationalizable_coordination_in_the_matrix__arena__pure_greedy_b_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['VIOLET'], margin=6, ), ), rationalizable_coordination_in_the_matrix__arena__pure_greedy_c_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['rationalizable_coordination_in_the_matrix__arena']['CYAN'], margin=6, ), ), rationalizable_coordination_in_the_matrix__arena__resp2prev_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( coordination_in_the_matrix.CoordinateWithPrevious, resources=( _RESOURCES['rationalizable_coordination_in_the_matrix__arena']['YELLOW'], _RESOURCES['rationalizable_coordination_in_the_matrix__arena']['VIOLET'], _RESOURCES['rationalizable_coordination_in_the_matrix__arena']['CYAN'], ), margin=1, ), ), rationalizable_coordination_in_the_matrix__arena__resp2prev_greedy_0=puppet( substrate='rationalizable_coordination_in_the_matrix__arena', model='puppet_0', puppeteer_builder=functools.partial( coordination_in_the_matrix.CoordinateWithPrevious, resources=( _RESOURCES['rationalizable_coordination_in_the_matrix__arena']['YELLOW'], _RESOURCES['rationalizable_coordination_in_the_matrix__arena']['VIOLET'], _RESOURCES['rationalizable_coordination_in_the_matrix__arena']['CYAN'], ), margin=6, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_a2b_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_a2b_1=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_a2c_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_a2c_1=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_b2a_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_b2a_1=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_b2c_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_b2c_1=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_c2a_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_c2a_1=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_c2b_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=4, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__flip_c2b_1=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=12, initial_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], final_target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], initial_margin=5, final_margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__pure_a_margin_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__pure_b_margin_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__pure_c_margin_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], margin=5, ), ), rationalizable_coordination_in_the_matrix__repeated__resp2prev_margin_0=puppet( substrate='rationalizable_coordination_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( coordination_in_the_matrix.CoordinateWithPrevious, resources=( _RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['YELLOW'], _RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['VIOLET'], _RESOURCES['rationalizable_coordination_in_the_matrix__repeated']['CYAN'], ), margin=5, ), ), running_with_scissors_in_the_matrix__arena__flip_p2r_0=puppet( substrate='running_with_scissors_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=3, initial_target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['PAPER'], final_target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['SCISSORS'], initial_margin=1, final_margin=5, ), ), running_with_scissors_in_the_matrix__arena__flip_r2s_0=puppet( substrate='running_with_scissors_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=3, initial_target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['ROCK'], final_target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['SCISSORS'], initial_margin=1, final_margin=5, ), ), running_with_scissors_in_the_matrix__arena__flip_s2p_0=puppet( substrate='running_with_scissors_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=3, initial_target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['SCISSORS'], final_target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['PAPER'], initial_margin=1, final_margin=5, ), ), running_with_scissors_in_the_matrix__arena__free_0=saved_model( substrate='running_with_scissors_in_the_matrix__arena', model='free_0', ), running_with_scissors_in_the_matrix__arena__paper_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['PAPER'], margin=3, ), ), running_with_scissors_in_the_matrix__arena__paper_margin_1=puppet( substrate='running_with_scissors_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['PAPER'], margin=5, ), ), running_with_scissors_in_the_matrix__arena__rock_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['ROCK'], margin=3, ), ), running_with_scissors_in_the_matrix__arena__rock_margin_1=puppet( substrate='running_with_scissors_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['ROCK'], margin=5, ), ), running_with_scissors_in_the_matrix__arena__scissors_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['SCISSORS'], margin=3, ), ), running_with_scissors_in_the_matrix__arena__scissors_margin_1=puppet( substrate='running_with_scissors_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__arena']['SCISSORS'], margin=5, ), ), running_with_scissors_in_the_matrix__one_shot__paper_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__one_shot', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__one_shot']['PAPER'], margin=3, ), ), running_with_scissors_in_the_matrix__one_shot__rock_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__one_shot', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__one_shot']['ROCK'], margin=3, ), ), running_with_scissors_in_the_matrix__one_shot__scissors_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__one_shot', model='puppet_0', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__one_shot']['SCISSORS'], margin=3, ), ), running_with_scissors_in_the_matrix__repeated__flip_p2r_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=3, initial_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['PAPER'], final_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['ROCK'], initial_margin=1, final_margin=5, ), ), running_with_scissors_in_the_matrix__repeated__flip_p2r_1=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=2, initial_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['PAPER'], final_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['ROCK'], initial_margin=5, final_margin=5, ), ), running_with_scissors_in_the_matrix__repeated__flip_r2s_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=3, initial_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['ROCK'], final_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['SCISSORS'], initial_margin=1, final_margin=5, ), ), running_with_scissors_in_the_matrix__repeated__flip_r2s_1=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=2, initial_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['ROCK'], final_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['SCISSORS'], initial_margin=5, final_margin=5, ), ), running_with_scissors_in_the_matrix__repeated__flip_s2p_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=3, initial_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['SCISSORS'], final_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['PAPER'], initial_margin=1, final_margin=5, ), ), running_with_scissors_in_the_matrix__repeated__flip_s2p_1=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, threshold=2, initial_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['SCISSORS'], final_target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['PAPER'], initial_margin=5, final_margin=5, ), ), running_with_scissors_in_the_matrix__repeated__free_0=saved_model( substrate='running_with_scissors_in_the_matrix__repeated', model='free_0', ), running_with_scissors_in_the_matrix__repeated__paper_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['PAPER'], margin=1, ), ), running_with_scissors_in_the_matrix__repeated__paper_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['PAPER'], margin=5, ), ), running_with_scissors_in_the_matrix__repeated__resp2prev_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( running_with_scissors_in_the_matrix.CounterPrevious, rock_resource=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['ROCK'], paper_resource=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['PAPER'], scissors_resource=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['SCISSORS'], margin=5, ), ), running_with_scissors_in_the_matrix__repeated__rock_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['ROCK'], margin=1, ), ), running_with_scissors_in_the_matrix__repeated__rock_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['ROCK'], margin=5, ), ), running_with_scissors_in_the_matrix__repeated__scissors_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['SCISSORS'], margin=1, ), ), running_with_scissors_in_the_matrix__repeated__scissors_margin_0=puppet( substrate='running_with_scissors_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['running_with_scissors_in_the_matrix__repeated']['SCISSORS'], margin=5, ), ), stag_hunt_in_the_matrix__arena__puppet_grim_one_strike_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['HARE'], threshold=1, margin=1, ), ), stag_hunt_in_the_matrix__arena__puppet_grim_one_strike_margin_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['HARE'], threshold=1, margin=5, ), ), stag_hunt_in_the_matrix__arena__puppet_grim_three_strikes_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['HARE'], threshold=3, margin=1, ), ), stag_hunt_in_the_matrix__arena__puppet_grim_three_strikes_margin_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['HARE'], threshold=3, margin=5, ), ), stag_hunt_in_the_matrix__arena__puppet_grim_two_strikes_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['HARE'], threshold=2, margin=1, ), ), stag_hunt_in_the_matrix__arena__puppet_grim_two_strikes_margin_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__arena']['HARE'], threshold=2, margin=5, ), ), stag_hunt_in_the_matrix__arena__puppet_hare_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['stag_hunt_in_the_matrix__arena']['HARE'], margin=1, ), ), stag_hunt_in_the_matrix__arena__puppet_hare_margin_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['stag_hunt_in_the_matrix__arena']['HARE'], margin=5, ), ), stag_hunt_in_the_matrix__arena__puppet_stag_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['stag_hunt_in_the_matrix__arena']['STAG'], margin=1, ), ), stag_hunt_in_the_matrix__arena__puppet_stag_margin_0=puppet( substrate='stag_hunt_in_the_matrix__arena', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['stag_hunt_in_the_matrix__arena']['STAG'], margin=5, ), ), stag_hunt_in_the_matrix__repeated__puppet_corrigible_0=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Corrigible, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], threshold=3, margin=5, tremble_probability=0, ), ), stag_hunt_in_the_matrix__repeated__puppet_corrigible_tremble_0=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Corrigible, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], threshold=3, margin=5, tremble_probability=0.15, ), ), stag_hunt_in_the_matrix__repeated__puppet_flip_0=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.ScheduledFlip, initial_target=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], final_target=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], threshold=3, initial_margin=1, final_margin=5, ), ), stag_hunt_in_the_matrix__repeated__puppet_grim_one_strike_margin_0=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], threshold=1, margin=5, ), ), stag_hunt_in_the_matrix__repeated__puppet_grim_one_strike_margin_1=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], threshold=1, margin=7, ), ), stag_hunt_in_the_matrix__repeated__puppet_grim_two_strikes_margin_0=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], threshold=2, margin=5, ), ), stag_hunt_in_the_matrix__repeated__puppet_grim_two_strikes_margin_1=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.GrimTrigger, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], threshold=2, margin=7, ), ), stag_hunt_in_the_matrix__repeated__puppet_hare_margin_0=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], margin=5, ), ), stag_hunt_in_the_matrix__repeated__puppet_hare_margin_1=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], margin=7, ), ), stag_hunt_in_the_matrix__repeated__puppet_stag_margin_0=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], margin=5, ), ), stag_hunt_in_the_matrix__repeated__puppet_stag_margin_1=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.Specialist, target=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], margin=7, ), ), stag_hunt_in_the_matrix__repeated__puppet_tft_margin_0=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], tremble_probability=0, margin=5, ), ), stag_hunt_in_the_matrix__repeated__puppet_tft_margin_1=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], tremble_probability=0, margin=7, ), ), stag_hunt_in_the_matrix__repeated__puppet_tft_tremble_margin_0=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], tremble_probability=0.15, margin=5, ), ), stag_hunt_in_the_matrix__repeated__puppet_tft_tremble_margin_1=puppet( substrate='stag_hunt_in_the_matrix__repeated', model='puppet_1', puppeteer_builder=functools.partial( in_the_matrix.TitForTat, cooperate_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['STAG'], defect_resource=_RESOURCES['stag_hunt_in_the_matrix__repeated']['HARE'], tremble_probability=0.15, margin=7, ), ), territory__inside_out__aggressor_0=saved_model( substrate='territory__inside_out', model='aggressor_0', ), territory__inside_out__aggressor_1=saved_model( substrate='territory__inside_out', model='aggressor_1', ), territory__inside_out__aggressor_2=saved_model( substrate='territory__inside_out', model='aggressor_2', ), territory__inside_out__aggressor_3=saved_model( substrate='territory__inside_out', model='aggressor_3', ), territory__inside_out__aggressor_with_extra_training_0=saved_model( substrate='territory__inside_out', model='aggressor_with_extra_training_0', ), territory__inside_out__somewhat_tolerant_bot_0=saved_model( substrate='territory__inside_out', model='somewhat_tolerant_bot_0', ), territory__inside_out__somewhat_tolerant_bot_1=saved_model( substrate='territory__inside_out', model='somewhat_tolerant_bot_1', ), territory__open__aggressor_0=saved_model( substrate='territory__open', model='aggressor_0', ), territory__open__aggressor_1=saved_model( substrate='territory__open', model='aggressor_1', ), territory__open__aggressor_2=saved_model( substrate='territory__open', model='aggressor_2', ), territory__open__aggressor_3=saved_model( substrate='territory__open', model='aggressor_3', ), territory__open__aggressor_with_extra_training_0=saved_model( substrate='territory__open', model='aggressor_with_extra_training_0', ), territory__rooms__aggressor_0=saved_model( substrate='territory__rooms', model='aggressor_0', ), territory__rooms__aggressor_1=saved_model( substrate='territory__rooms', model='aggressor_1', ), territory__rooms__aggressor_2=saved_model( substrate='territory__rooms', model='aggressor_2', ), territory__rooms__aggressor_3=saved_model( substrate='territory__rooms', model='aggressor_3', ), territory__rooms__aggressor_with_extra_training_0=saved_model( substrate='territory__rooms', model='aggressor_with_extra_training_0', ), # keep-sorted end )
meltingpot-main
meltingpot/configs/bots/__init__.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests of the scenario configs.""" import collections from absl.testing import absltest from absl.testing import parameterized from meltingpot import bot as bot_factory from meltingpot.configs import bots from meltingpot.configs import scenarios from meltingpot.configs import substrates SCENARIO_CONFIGS = scenarios.SCENARIO_CONFIGS AVAILABLE_BOTS = bot_factory.BOTS AVAILABLE_SUBSTRATES = frozenset(substrates.SUBSTRATES) def _is_compatible(bot_name, substrate, role): if bot_name == bot_factory.NOOP_BOT_NAME: return True bot_config = bots.BOT_CONFIGS[bot_name] return substrate == bot_config.substrate and role in bot_config.roles class ScenarioConfigTest(parameterized.TestCase): @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_has_description(self, scenario): self.assertNotEmpty(scenario.description) @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_has_tags(self, scenario): self.assertNotEmpty(scenario.tags) @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_has_valid_substrate(self, scenario): self.assertIn(scenario.substrate, AVAILABLE_SUBSTRATES) @parameterized.named_parameters( (name, name, scenario) for name, scenario in SCENARIO_CONFIGS.items()) def test_name_starts_with_substrate_name(self, name, scenario): self.assertStartsWith(name, scenario.substrate) @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_has_focal_players(self, scenario): self.assertTrue(any(scenario.is_focal)) @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_has_matching_sizes(self, scenario): self.assertLen(scenario.is_focal, len(scenario.roles)) @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_has_valid_roles(self, scenario): valid_roles = substrates.get_config(scenario.substrate).valid_roles self.assertContainsSubset(scenario.roles, valid_roles) @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_has_valid_bots(self, scenario): scenario_bots = set().union(*scenario.bots_by_role.values()) self.assertContainsSubset(scenario_bots, AVAILABLE_BOTS) @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_bots_compatible(self, scenario): for role, bot_names in scenario.bots_by_role.items(): incompatible = { bot_name for bot_name in bot_names if not _is_compatible(bot_name, scenario.substrate, role) } with self.subTest(role): self.assertEmpty( incompatible, f'Substrate {scenario.substrate!r}, role {role!r} not supported ' f'by: {incompatible!r}.') @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_no_missing_role_assigments(self, scenario): background_roles = set(role for n, role in enumerate(scenario.roles) if not scenario.is_focal[n]) supported_roles = { role for role, bots in scenario.bots_by_role.items() if bots} unsupported_roles = background_roles - supported_roles self.assertEmpty(unsupported_roles, f'Background roles {unsupported_roles!r} have not been ' f'assigned bots.') @parameterized.named_parameters(SCENARIO_CONFIGS.items()) def test_no_unused_role_assignments(self, scenario): background_roles = set(role for n, role in enumerate(scenario.roles) if not scenario.is_focal[n]) redundant_roles = set(scenario.bots_by_role) - background_roles self.assertEmpty(redundant_roles, f'Bots assigned to {redundant_roles!r} are unused.') def test_no_duplicates(self): seen = collections.defaultdict(set) for name, config in SCENARIO_CONFIGS.items(): seen[config].add(name) duplicates = {names for _, names in seen.items() if len(names) > 1} self.assertEmpty(duplicates, f'Duplicate configs found: {duplicates!r}.') def test_all_substrates_used_by_scenarios(self): used = {scenario.substrate for scenario in SCENARIO_CONFIGS.values()} unused = AVAILABLE_SUBSTRATES - used self.assertEmpty(unused, f'Substrates not used by any scenario: {unused!r}') def test_all_bots_used_by_scenarios(self): used = set() for scenario in SCENARIO_CONFIGS.values(): used.update(*scenario.bots_by_role.values()) unused = AVAILABLE_BOTS - used self.assertEmpty(unused, f'Bots not used by any scenario: {unused!r}') if __name__ == '__main__': absltest.main()
meltingpot-main
meltingpot/configs/scenarios/scenario_configs_test.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test scenario configurations.""" import collections import dataclasses from typing import AbstractSet, Collection, Mapping, Optional, Sequence import immutabledict @dataclasses.dataclass(frozen=True) class ScenarioConfig: """Scenario config. Attributes: description: a description of the scenario. tags: tags for the scenario. substrate: the substrate the scenario is based on. roles: indicates what role the player in the corresponding player slot has. is_focal: indicates whether the corresponding player slot is to be filled by a focal player or a bot. bots_by_role: names of the bots to sample from to fill the bot slots with the corresponding role. """ description: str tags: AbstractSet[str] substrate: str roles: Sequence[str] is_focal: Sequence[bool] bots_by_role: Mapping[str, AbstractSet[str]] def __post_init__(self): object.__setattr__(self, 'tags', frozenset(self.tags)) object.__setattr__(self, 'roles', tuple(self.roles)) object.__setattr__(self, 'is_focal', tuple(self.is_focal)) bots_by_role = immutabledict.immutabledict({ role: frozenset(bots) for role, bots in self.bots_by_role.items() }) object.__setattr__(self, 'bots_by_role', bots_by_role) # Local additions/overrides. SCENARIO_CONFIGS: Mapping[str, ScenarioConfig] = immutabledict.immutabledict( # keep-sorted start numeric=yes block=yes allelopathic_harvest__open_0=ScenarioConfig( description=( 'visiting a population where planting green berries is the ' + 'prevailing convention'), tags={ 'visitor', 'convention_following', }, substrate='allelopathic_harvest__open', roles=['player_who_likes_red',] * 8 + ['player_who_likes_green',] * 8, is_focal=(True,) * 4 + (False,) * 12, bots_by_role={ # The same bots can play both roles. 'player_who_likes_red': { 'allelopathic_harvest__open__bot_that_supports_green_0', 'allelopathic_harvest__open__bot_that_supports_green_1', 'allelopathic_harvest__open__bot_that_supports_green_2', 'allelopathic_harvest__open__bot_that_supports_green_3', }, 'player_who_likes_green': { 'allelopathic_harvest__open__bot_that_supports_green_0', 'allelopathic_harvest__open__bot_that_supports_green_1', 'allelopathic_harvest__open__bot_that_supports_green_2', 'allelopathic_harvest__open__bot_that_supports_green_3', }, }, ), allelopathic_harvest__open_1=ScenarioConfig( description=( 'visiting a population where planting red berries is the ' + 'prevailing convention'), tags={ 'visitor', 'convention_following', }, substrate='allelopathic_harvest__open', roles=['player_who_likes_red',] * 8 + ['player_who_likes_green',] * 8, is_focal=(True,) * 4 + (False,) * 12, bots_by_role={ # The same bots can play both roles. 'player_who_likes_red': { 'allelopathic_harvest__open__bot_that_supports_red_0', 'allelopathic_harvest__open__bot_that_supports_red_1', 'allelopathic_harvest__open__bot_that_supports_red_2', 'allelopathic_harvest__open__bot_that_supports_red_3', }, 'player_who_likes_green': { 'allelopathic_harvest__open__bot_that_supports_red_0', 'allelopathic_harvest__open__bot_that_supports_red_1', 'allelopathic_harvest__open__bot_that_supports_red_2', 'allelopathic_harvest__open__bot_that_supports_red_3', }, }, ), allelopathic_harvest__open_2=ScenarioConfig( description=( 'focals are resident and visited by bots who plant either red or ' + 'green'), tags={ 'resident', }, substrate='allelopathic_harvest__open', roles=['player_who_likes_red',] * 8 + ['player_who_likes_green',] * 8, is_focal=(True,) * 14 + (False,) * 2, bots_by_role={ 'player_who_likes_green': { 'allelopathic_harvest__open__bot_that_supports_red_0', 'allelopathic_harvest__open__bot_that_supports_red_1', 'allelopathic_harvest__open__bot_that_supports_red_2', 'allelopathic_harvest__open__bot_that_supports_red_3', 'allelopathic_harvest__open__bot_that_supports_green_0', 'allelopathic_harvest__open__bot_that_supports_green_1', 'allelopathic_harvest__open__bot_that_supports_green_2', 'allelopathic_harvest__open__bot_that_supports_green_3', }, }, ), bach_or_stravinsky_in_the_matrix__arena_0=ScenarioConfig( description='visiting background population who picks bach', tags={ 'convention_following', 'versus_pure_bach', 'visitor', }, substrate='bach_or_stravinsky_in_the_matrix__arena', roles=('bach_fan',) * 4 + ('stravinsky_fan',) * 4, is_focal=(True,) * 1 + (False,) * 7, bots_by_role=immutabledict.immutabledict( bach_fan=( 'bach_or_stravinsky_in_the_matrix__arena__bach_picker_0', ), stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__arena__bach_picker_0', ), ), ), bach_or_stravinsky_in_the_matrix__arena_1=ScenarioConfig( description='visiting background population who picks stravinsky', tags={ 'convention_following', 'versus_pure_stravinsky', 'visitor', }, substrate='bach_or_stravinsky_in_the_matrix__arena', roles=('bach_fan',) * 4 + ('stravinsky_fan',) * 4, is_focal=(True,) * 1 + (False,) * 7, bots_by_role=immutabledict.immutabledict( bach_fan=( 'bach_or_stravinsky_in_the_matrix__arena__stravinsky_picker_0', ), stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__arena__stravinsky_picker_0', ), ), ), bach_or_stravinsky_in_the_matrix__arena_2=ScenarioConfig( description='visited by a pure bot', tags={ 'resident', 'versus_pure_all' }, substrate='bach_or_stravinsky_in_the_matrix__arena', roles=('bach_fan',) * 4 + ('stravinsky_fan',) * 4, is_focal=(True,) * 7 + (False,) * 1, bots_by_role=immutabledict.immutabledict( stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__arena__bach_picker_0', 'bach_or_stravinsky_in_the_matrix__arena__stravinsky_picker_0', ), ), ), bach_or_stravinsky_in_the_matrix__arena_3=ScenarioConfig( description='visited by three pure bach pickers', tags={ 'resident', 'versus_pure_bach' }, substrate='bach_or_stravinsky_in_the_matrix__arena', roles=('bach_fan',) * 4 + ('stravinsky_fan',) * 4, is_focal=(True,) * 5 + (False,) * 3, bots_by_role=immutabledict.immutabledict( stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__arena__bach_picker_0', ), ), ), bach_or_stravinsky_in_the_matrix__arena_4=ScenarioConfig( description='visited by three pure stravinsky pickers', tags={ 'resident', 'versus_pure_stravinsky' }, substrate='bach_or_stravinsky_in_the_matrix__arena', roles=('bach_fan',) * 4 + ('stravinsky_fan',) * 4, is_focal=(True,) * 5 + (False,) * 3, bots_by_role=immutabledict.immutabledict( stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__arena__stravinsky_picker_0', ), ), ), bach_or_stravinsky_in_the_matrix__arena_5=ScenarioConfig( description=('visiting background population who alternates, ' + 'starting from stravinsky, repeating each twice'), tags={ 'visitor', 'turn_taking', 'convention_following', }, substrate='bach_or_stravinsky_in_the_matrix__arena', roles=('bach_fan',) * 4 + ('stravinsky_fan',) * 4, is_focal=(True,) * 1 + (False,) * 7, bots_by_role=immutabledict.immutabledict( bach_fan=( 'bach_or_stravinsky_in_the_matrix__arena__turn_taking_initial_stravinsky_0', ), stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__arena__turn_taking_initial_stravinsky_0', ), ), ), bach_or_stravinsky_in_the_matrix__arena_6=ScenarioConfig( description=('visiting background population who alternates, ' + 'starting from bach, repeating each twice'), tags={ 'visitor', 'turn_taking', 'convention_following', }, substrate='bach_or_stravinsky_in_the_matrix__arena', roles=('bach_fan',) * 4 + ('stravinsky_fan',) * 4, is_focal=(True,) * 1 + (False,) * 7, bots_by_role=immutabledict.immutabledict( bach_fan=( 'bach_or_stravinsky_in_the_matrix__arena__turn_taking_initial_bach_0', ), stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__arena__turn_taking_initial_bach_0', ), ), ), bach_or_stravinsky_in_the_matrix__repeated_0=ScenarioConfig( description='meeting a stubborn bach picker', tags={ 'convention_following', 'versus_pure_bach', 'half_and_half', }, substrate='bach_or_stravinsky_in_the_matrix__repeated', roles=('stravinsky_fan',) + ('bach_fan',), is_focal=(True,) + (False,), bots_by_role=immutabledict.immutabledict( bach_fan=( 'bach_or_stravinsky_in_the_matrix__repeated__bach_picker_0', ), ), ), bach_or_stravinsky_in_the_matrix__repeated_1=ScenarioConfig( description='meeting a bot who plays bach despite not being a fan', tags={ 'convention_following', 'versus_pure_bach', 'half_and_half', }, substrate='bach_or_stravinsky_in_the_matrix__repeated', roles=('bach_fan',) + ('stravinsky_fan',), is_focal=(True,) + (False,), bots_by_role=immutabledict.immutabledict( stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__repeated__bach_picker_0', ), ), ), bach_or_stravinsky_in_the_matrix__repeated_2=ScenarioConfig( description=('meeting a bot who plays stravinsky despite not being a ' + 'fan'), tags={ 'convention_following', 'versus_pure_stravinsky', 'half_and_half', }, substrate='bach_or_stravinsky_in_the_matrix__repeated', roles=('stravinsky_fan',) + ('bach_fan',), is_focal=(True,) + (False,), bots_by_role=immutabledict.immutabledict( bach_fan=( 'bach_or_stravinsky_in_the_matrix__repeated__stravinsky_picker_0', ), ), ), bach_or_stravinsky_in_the_matrix__repeated_3=ScenarioConfig( description='meeting a stubborn stravinsky picker', tags={ 'convention_following', 'versus_pure_stravinsky', 'half_and_half', }, substrate='bach_or_stravinsky_in_the_matrix__repeated', roles=('bach_fan',) + ('stravinsky_fan',), is_focal=(True,) + (False,), bots_by_role=immutabledict.immutabledict( stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__repeated__stravinsky_picker_0', ), ), ), bach_or_stravinsky_in_the_matrix__repeated_4=ScenarioConfig( description='bach fan focal agent meets an imperfectly copying partner', tags={ 'versus_tft', 'half_and_half', }, substrate='bach_or_stravinsky_in_the_matrix__repeated', roles=('bach_fan',) + ('stravinsky_fan',), is_focal=(True,) + (False,), bots_by_role=immutabledict.immutabledict( stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__repeated__bach_tft_0', 'bach_or_stravinsky_in_the_matrix__repeated__bach_tft_tremble_0', 'bach_or_stravinsky_in_the_matrix__repeated__stravinsky_tft_0', 'bach_or_stravinsky_in_the_matrix__repeated__stravinsky_tft_tremble_0', ), ), ), bach_or_stravinsky_in_the_matrix__repeated_5=ScenarioConfig( description=('stravinsky fan focal agent meets an imperfectly ' + 'copying partner'), tags={ 'versus_tft', 'half_and_half', }, substrate='bach_or_stravinsky_in_the_matrix__repeated', roles=('stravinsky_fan',) + ('bach_fan',), is_focal=(True,) + (False,), bots_by_role=immutabledict.immutabledict( bach_fan=( 'bach_or_stravinsky_in_the_matrix__repeated__bach_tft_0', 'bach_or_stravinsky_in_the_matrix__repeated__bach_tft_tremble_0', 'bach_or_stravinsky_in_the_matrix__repeated__stravinsky_tft_0', 'bach_or_stravinsky_in_the_matrix__repeated__stravinsky_tft_tremble_0', ), ), ), bach_or_stravinsky_in_the_matrix__repeated_6=ScenarioConfig( description=('bach fan focal agent meets a turn-taking partner'), tags={ 'turn_taking', 'half_and_half', }, substrate='bach_or_stravinsky_in_the_matrix__repeated', roles=('bach_fan',) + ('stravinsky_fan',), is_focal=(True,) + (False,), bots_by_role=immutabledict.immutabledict( stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__repeated__turn_taking_initial_bach_0', 'bach_or_stravinsky_in_the_matrix__repeated__turn_taking_initial_stravinsky_0', ), ), ), bach_or_stravinsky_in_the_matrix__repeated_7=ScenarioConfig( description=('bach fan focal agent meets a turn-taking partner who ' + 'repeats each goal/resource three times before switching'), tags={ 'turn_taking', 'half_and_half', }, substrate='bach_or_stravinsky_in_the_matrix__repeated', roles=('bach_fan',) + ('stravinsky_fan',), is_focal=(True,) + (False,), bots_by_role=immutabledict.immutabledict( stravinsky_fan=( 'bach_or_stravinsky_in_the_matrix__repeated__turn_taking_initial_bach_1', 'bach_or_stravinsky_in_the_matrix__repeated__turn_taking_initial_stravinsky_1', ), ), ), boat_race__eight_races_0=ScenarioConfig( description='visiting cooperators', tags={ 'visitor', }, substrate='boat_race__eight_races', roles=('default',) * 6, is_focal=(True,) * 1 + (False,) * 5, bots_by_role=immutabledict.immutabledict( default=('boat_race__eight_races__cooperator_0',), ), ), boat_race__eight_races_1=ScenarioConfig( description='visiting defectors', tags={ 'visitor', }, substrate='boat_race__eight_races', roles=('default',) * 6, is_focal=(True,) * 1 + (False,) * 5, bots_by_role=immutabledict.immutabledict( default=('boat_race__eight_races__defector_0',), ), ), boat_race__eight_races_2=ScenarioConfig( description='visited by a population of cooperators', tags={ 'resident', }, substrate='boat_race__eight_races', roles=('default',) * 6, is_focal=(True,) * 5 + (False,) * 1, bots_by_role=immutabledict.immutabledict( default=('boat_race__eight_races__cooperator_0',), ), ), boat_race__eight_races_3=ScenarioConfig( description='visited by a population of defectors', tags={ 'resident', }, substrate='boat_race__eight_races', roles=('default',) * 6, is_focal=(True,) * 5 + (False,) * 1, bots_by_role=immutabledict.immutabledict( default=('boat_race__eight_races__defector_0',), ), ), boat_race__eight_races_4=ScenarioConfig( description='find the cooperator partner', tags={ 'partner_choice', }, substrate='boat_race__eight_races', roles=('default',) * 5 + ('target',), is_focal=(True,) * 1 + (False,) * 5, bots_by_role=immutabledict.immutabledict( default=('boat_race__eight_races__defector_0',), target=('boat_race__eight_races__cooperator_0',), ), ), chemistry__three_metabolic_cycles_0=ScenarioConfig( description=('resident focal population meets a small mixture of ' + 'background bots'), tags={ 'resident', }, substrate='chemistry__three_metabolic_cycles', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'chemistry__three_metabolic_cycles__blue_0', 'chemistry__three_metabolic_cycles__green_0', 'chemistry__three_metabolic_cycles__yellow_0', }, }, ), chemistry__three_metabolic_cycles_1=ScenarioConfig( description='meeting bots running blue and yellow', tags={ 'half_and_half', }, substrate='chemistry__three_metabolic_cycles', roles=('default',) * 8, is_focal=(True,) * 4 + (False,) * 4, bots_by_role={ 'default': { 'chemistry__three_metabolic_cycles__blue_0', 'chemistry__three_metabolic_cycles__yellow_0', }, }, ), chemistry__three_metabolic_cycles_2=ScenarioConfig( description='meeting one-sided bots running green', tags={ 'half_and_half', }, substrate='chemistry__three_metabolic_cycles', roles=('default',) * 8, is_focal=(True,) * 4 + (False,) * 4, bots_by_role={ 'default': { 'chemistry__three_metabolic_cycles__green_0', }, }, ), chemistry__three_metabolic_cycles_3=ScenarioConfig( description='visit a resident population with mixed specialties', tags={ 'visitor', }, substrate='chemistry__three_metabolic_cycles', roles=('default',) * 8, is_focal=(True,) * 2 + (False,) * 6, bots_by_role={ 'default': { 'chemistry__three_metabolic_cycles__blue_0', 'chemistry__three_metabolic_cycles__yellow_0', 'chemistry__three_metabolic_cycles__green_0', }, }, ), chemistry__three_metabolic_cycles_with_plentiful_distractors_0=ScenarioConfig( description=('resident focal population meets a small mixture of ' + 'background bots, must avoid distractor molecules'), tags={ 'resident', }, substrate='chemistry__three_metabolic_cycles_with_plentiful_distractors', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'chemistry__three_metabolic_cycles_with_plentiful_distractors__blue_0', 'chemistry__three_metabolic_cycles_with_plentiful_distractors__green_0', 'chemistry__three_metabolic_cycles_with_plentiful_distractors__yellow_0', }, }, ), chemistry__three_metabolic_cycles_with_plentiful_distractors_1=ScenarioConfig( description='meeting bots running blue, avoid distractors', tags={ 'half_and_half', }, substrate='chemistry__three_metabolic_cycles_with_plentiful_distractors', roles=('default',) * 8, is_focal=(True,) * 4 + (False,) * 4, bots_by_role={ 'default': { 'chemistry__three_metabolic_cycles_with_plentiful_distractors__blue_0', }, }, ), chemistry__three_metabolic_cycles_with_plentiful_distractors_2=ScenarioConfig( description='meeting bots running green and yellow, avoid distractors', tags={ 'half_and_half', }, substrate='chemistry__three_metabolic_cycles_with_plentiful_distractors', roles=('default',) * 8, is_focal=(True,) * 4 + (False,) * 4, bots_by_role={ 'default': { 'chemistry__three_metabolic_cycles_with_plentiful_distractors__green_0', 'chemistry__three_metabolic_cycles_with_plentiful_distractors__yellow_0', }, }, ), chemistry__three_metabolic_cycles_with_plentiful_distractors_3=ScenarioConfig( description=('visit a resident population with mixed specialties and ' + 'avoid distractor molecules'), tags={ 'visitor', }, substrate='chemistry__three_metabolic_cycles_with_plentiful_distractors', roles=('default',) * 8, is_focal=(True,) * 2 + (False,) * 6, bots_by_role={ 'default': { 'chemistry__three_metabolic_cycles_with_plentiful_distractors__blue_0', 'chemistry__three_metabolic_cycles_with_plentiful_distractors__yellow_0', 'chemistry__three_metabolic_cycles_with_plentiful_distractors__green_0', }, }, ), chemistry__two_metabolic_cycles_0=ScenarioConfig( description=('resident focal population meets a small mixture of ' + 'background bots'), tags={ 'resident', }, substrate='chemistry__two_metabolic_cycles', roles=('default',) * 8, is_focal=(True,) * 6 + (False,) * 2, bots_by_role={ 'default': { 'chemistry__two_metabolic_cycles__blue_0', 'chemistry__two_metabolic_cycles__green_0', }, }, ), chemistry__two_metabolic_cycles_1=ScenarioConfig( description='meeting one-sided bots running blue', tags={ 'half_and_half', }, substrate='chemistry__two_metabolic_cycles', roles=('default',) * 8, is_focal=(True,) * 4 + (False,) * 4, bots_by_role={ 'default': { 'chemistry__two_metabolic_cycles__blue_0', }, }, ), chemistry__two_metabolic_cycles_2=ScenarioConfig( description='meeting one-sided bots running green', tags={ 'half_and_half', }, substrate='chemistry__two_metabolic_cycles', roles=('default',) * 8, is_focal=(True,) * 4 + (False,) * 4, bots_by_role={ 'default': { 'chemistry__two_metabolic_cycles__green_0', }, }, ), chemistry__two_metabolic_cycles_3=ScenarioConfig( description=('visit a resident background population with mixed ' + 'specialties'), tags={ 'visitor', }, substrate='chemistry__two_metabolic_cycles', roles=('default',) * 8, is_focal=(True,) * 2 + (False,) * 6, bots_by_role={ 'default': { 'chemistry__two_metabolic_cycles__blue_0', 'chemistry__two_metabolic_cycles__green_0', }, }, ), chemistry__two_metabolic_cycles_with_distractors_0=ScenarioConfig( description=('resident focal population meets a small mixture of ' + 'background bots, must avoid distractor molecules'), tags={ 'resident', }, substrate='chemistry__two_metabolic_cycles_with_distractors', roles=('default',) * 8, is_focal=(True,) * 6 + (False,) * 2, bots_by_role={ 'default': { 'chemistry__two_metabolic_cycles_with_distractors__blue_0', 'chemistry__two_metabolic_cycles_with_distractors__green_0', }, }, ), chemistry__two_metabolic_cycles_with_distractors_1=ScenarioConfig( description=('meeting one-sided bots running blue and avoid ' + 'distractor molecules'), tags={ 'half_and_half', }, substrate='chemistry__two_metabolic_cycles_with_distractors', roles=('default',) * 8, is_focal=(True,) * 4 + (False,) * 4, bots_by_role={ 'default': { 'chemistry__two_metabolic_cycles_with_distractors__blue_0', }, }, ), chemistry__two_metabolic_cycles_with_distractors_2=ScenarioConfig( description=('meeting one-sided bots running green and avoid ' + 'distractor molecules'), tags={ 'half_and_half', }, substrate='chemistry__two_metabolic_cycles_with_distractors', roles=('default',) * 8, is_focal=(True,) * 4 + (False,) * 4, bots_by_role={ 'default': { 'chemistry__two_metabolic_cycles_with_distractors__green_0', }, }, ), chemistry__two_metabolic_cycles_with_distractors_3=ScenarioConfig( description=('visit a resident background population with mixed ' + 'specialties and avoid distractor molecules'), tags={ 'visitor', }, substrate='chemistry__two_metabolic_cycles_with_distractors', roles=('default',) * 8, is_focal=(True,) * 2 + (False,) * 6, bots_by_role={ 'default': { 'chemistry__two_metabolic_cycles_with_distractors__blue_0', 'chemistry__two_metabolic_cycles_with_distractors__green_0', }, }, ), chicken_in_the_matrix__arena_0=ScenarioConfig( description='visiting unconditional dove players', tags={ 'visitor', 'versus_pure_dove_players', }, substrate='chicken_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'chicken_in_the_matrix__arena__puppet_dove_0', 'chicken_in_the_matrix__arena__puppet_dove_margin_0', }, }, ), chicken_in_the_matrix__arena_1=ScenarioConfig( description=('focals are resident and visitors are unconditional ' + 'dove players'), tags={ 'resident', 'versus_pure_dove_players', }, substrate='chicken_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'chicken_in_the_matrix__arena__puppet_dove_0', 'chicken_in_the_matrix__arena__puppet_dove_margin_0', }, }, ), chicken_in_the_matrix__arena_2=ScenarioConfig( description=('focals are resident and visitors are unconditional' + 'hawk players'), tags={ 'resident', 'versus_pure_hawk_players', }, substrate='chicken_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'chicken_in_the_matrix__arena__puppet_hawk_0', 'chicken_in_the_matrix__arena__puppet_hawk_margin_0', }, }, ), chicken_in_the_matrix__arena_3=ScenarioConfig( description=('visiting a population of hair-trigger grim ' + 'reciprocator bots who initially cooperate but, if ' + 'defected on once, will retaliate by defecting in all ' + 'future interactions'), tags={ 'visitor', 'reciprocity', }, substrate='chicken_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'chicken_in_the_matrix__arena__puppet_grim_one_strike_0', 'chicken_in_the_matrix__arena__puppet_grim_one_strike_margin_0', }, }, ), chicken_in_the_matrix__arena_4=ScenarioConfig( description=('visiting a population of two-strikes grim ' + 'reciprocator bots who initially cooperate but, if ' + 'defected on twice, will retaliate by defecting in all ' + 'future interactions'), tags={ 'visitor', 'reciprocity', }, substrate='chicken_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'chicken_in_the_matrix__arena__puppet_grim_two_strikes_0', 'chicken_in_the_matrix__arena__puppet_grim_two_strikes_margin_0', }, }, ), chicken_in_the_matrix__arena_5=ScenarioConfig( description=( 'visiting a mixed population of k-strikes grim reciprocator bots ' + 'with k values from 1 to 3, they initially cooperate but, if ' + 'defected on k times, they retaliate in all future interactions' ), tags={ 'visitor', 'reciprocity', }, substrate='chicken_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 3 + (False,) * 5, bots_by_role={ 'default': { 'chicken_in_the_matrix__arena__puppet_grim_one_strike_0', 'chicken_in_the_matrix__arena__puppet_grim_one_strike_margin_0', 'chicken_in_the_matrix__arena__puppet_grim_three_strikes_0', 'chicken_in_the_matrix__arena__puppet_grim_three_strikes_margin_0', 'chicken_in_the_matrix__arena__puppet_grim_two_strikes_0', 'chicken_in_the_matrix__arena__puppet_grim_two_strikes_margin_0', }, }, ), chicken_in_the_matrix__arena_6=ScenarioConfig( description='visiting a mixture of pure hawk and pure dove players', tags={ 'visitor', 'versus_pure_all', }, substrate='chicken_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 3 + (False,) * 5, bots_by_role={ 'default': { 'chicken_in_the_matrix__arena__puppet_dove_0', 'chicken_in_the_matrix__arena__puppet_dove_margin_0', 'chicken_in_the_matrix__arena__puppet_hawk_0', 'chicken_in_the_matrix__arena__puppet_hawk_margin_0', }, }, ), chicken_in_the_matrix__repeated_0=ScenarioConfig( description='partner may play either hawk or dove', tags={ 'half_and_half', 'versus_pure_all', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_dove_margin_0', 'chicken_in_the_matrix__repeated__puppet_dove_margin_1', 'chicken_in_the_matrix__repeated__puppet_hawk_margin_0', 'chicken_in_the_matrix__repeated__puppet_hawk_margin_1', }, }, ), chicken_in_the_matrix__repeated_1=ScenarioConfig( description='partner typically plays dove', tags={ 'half_and_half', 'versus_pure_dove', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_dove_margin_0', 'chicken_in_the_matrix__repeated__puppet_dove_margin_1', }, }, ), chicken_in_the_matrix__repeated_2=ScenarioConfig( description='partner typically plays hawk', tags={ 'half_and_half', 'versus_pure_hawk', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_hawk_margin_0', 'chicken_in_the_matrix__repeated__puppet_hawk_margin_1', }, }, ), chicken_in_the_matrix__repeated_3=ScenarioConfig( description=('partner is a hair-trigger grim reciprocator, i.e. one ' + 'who initially cooperates but, if defected on once, will' + ' retaliate by defecting forever after'), tags={ 'half_and_half', 'reciprocity', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_grim_one_strike_margin_0', 'chicken_in_the_matrix__repeated__puppet_grim_one_strike_margin_1', }, }, ), chicken_in_the_matrix__repeated_4=ScenarioConfig( description=('partner is a two-strikes grim reciprocator, i.e. one ' + 'who initially cooperates, but if defected on twice, ' + 'will retaliate by defecting forever after'), tags={ 'half_and_half', 'reciprocity', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_grim_two_strikes_margin_0', 'chicken_in_the_matrix__repeated__puppet_grim_two_strikes_margin_1', }, }, ), chicken_in_the_matrix__repeated_5=ScenarioConfig( description='partner is a tit-for-tat conditional cooperator', tags={ 'half_and_half', 'reciprocity', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_tft_margin_0', 'chicken_in_the_matrix__repeated__puppet_tft_margin_1', }, }, ), chicken_in_the_matrix__repeated_6=ScenarioConfig( description=('partner is a tit-for-tat conditional cooperator who ' + 'occasionally plays hawk instead of dove'), tags={ 'half_and_half', 'reciprocity', 'forgiveness', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_tft_tremble_margin_0', 'chicken_in_the_matrix__repeated__puppet_tft_tremble_margin_1', }, }, ), chicken_in_the_matrix__repeated_7=ScenarioConfig( description='partner plays dove for a while then switches to hawk', tags={ 'half_and_half', 'flexibility', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_flip_0', }, }, ), chicken_in_the_matrix__repeated_8=ScenarioConfig( description=('partner tries to take advantage of the focal player ' + 'by playing hawk, but if punished, partner then ' + 'switches to tit-for-tat conditional cooperation'), tags={ 'half_and_half', 'teaching', 'reciprocity', 'forgiveness', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_corrigible_0', }, }, ), chicken_in_the_matrix__repeated_9=ScenarioConfig( description=('partner tries to take advantage of the focal player ' + 'by playing hawk, but if punished, partner then ' + 'switches to noisy tit-for-tat conditional cooperation'), tags={ 'half_and_half', 'teaching', 'reciprocity', 'forgiveness', }, substrate='chicken_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'chicken_in_the_matrix__repeated__puppet_corrigible_tremble_0', }, }, ), clean_up_0=ScenarioConfig( description='visiting an altruistic population', tags={ 'versus_cleaners', 'visitor', }, substrate='clean_up', roles=('default',) * 7, is_focal=(True,) * 3 + (False,) * 4, bots_by_role={ 'default': { 'clean_up__cleaner_0', 'clean_up__cleaner_1', }, }, ), clean_up_1=ScenarioConfig( description='focals are resident and visitors ride free', tags={ 'resident', 'versus_consumers', }, substrate='clean_up', roles=('default',) * 7, is_focal=(True,) * 4 + (False,) * 3, bots_by_role={ 'default': { 'clean_up__consumer_0', 'clean_up__consumer_1', }, }, ), clean_up_2=ScenarioConfig( description='visiting a turn-taking population that cleans first', tags={ 'turn_taking', 'versus_puppet', 'visitor', }, substrate='clean_up', roles=('default',) * 7, is_focal=(True,) * 3 + (False,) * 4, bots_by_role={ 'default': {'clean_up__puppet_alternator_first_cleans_0',}, }, ), clean_up_3=ScenarioConfig( description='visiting a turn-taking population that eats first', tags={ 'turn_taking', 'versus_puppet', 'visitor', }, substrate='clean_up', roles=('default',) * 7, is_focal=(True,) * 3 + (False,) * 4, bots_by_role={ 'default': {'clean_up__puppet_alternator_first_eats_0',}, }, ), clean_up_4=ScenarioConfig( description='focals are visited by one reciprocator', tags={ 'resident', 'versus_puppet', }, substrate='clean_up', roles=('default',) * 7, is_focal=(True,) * 6 + (False,) * 1, bots_by_role={ 'default': {'clean_up__puppet_low_threshold_reciprocator_0',}, }, ), clean_up_5=ScenarioConfig( description='focals are visited by two suspicious reciprocators', tags={ 'resident', 'versus_puppet', }, substrate='clean_up', roles=('default',) * 7, is_focal=(True,) * 5 + (False,) * 2, bots_by_role={ 'default': {'clean_up__puppet_high_threshold_reciprocator_0',}, }, ), clean_up_6=ScenarioConfig( description='focals are visited by one suspicious reciprocator', tags={ 'resident', 'versus_puppet', }, substrate='clean_up', roles=('default',) * 7, is_focal=(True,) * 6 + (False,) * 1, bots_by_role={ 'default': {'clean_up__puppet_high_threshold_reciprocator_0',}, }, ), clean_up_7=ScenarioConfig( description='focals visit resident group of suspicious reciprocators', tags={ 'visitor', 'versus_puppet', }, substrate='clean_up', roles=('default',) * 7, is_focal=(True,) * 2 + (False,) * 5, bots_by_role={ 'default': {'clean_up__puppet_high_threshold_reciprocator_0',}, }, ), clean_up_8=ScenarioConfig( description='focals are visited by one nice reciprocator', tags={ 'resident', 'versus_puppet', }, substrate='clean_up', roles=('default',) * 7, is_focal=(True,) * 6 + (False,) * 1, bots_by_role={ 'default': {'clean_up__puppet_nice_low_threshold_reciprocator_0',}, }, ), coins_0=ScenarioConfig( description='partner is either a pure cooperator or a pure defector', tags={ 'versus_pure_all', 'half_and_half', }, substrate='coins', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': {'coins__puppet_cooperator_0', 'coins__puppet_defector_0',}, }, ), coins_1=ScenarioConfig( description=('partner is a high-threshold (generous) reciprocator'), tags={ 'versus_reciprocator', 'half_and_half', }, substrate='coins', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': {'coins__puppet_three_strikes_reciprocator_0',}, }, ), coins_2=ScenarioConfig( description=('partner is a low-threshold (harsh) reciprocator'), tags={ 'versus_reciprocator', 'half_and_half', }, substrate='coins', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': {'coins__puppet_one_strike_reciprocator_0',}, }, ), coins_3=ScenarioConfig( description=('partner is a high-threshold (generous) strong ' + 'reciprocator'), tags={ 'versus_reciprocator', 'half_and_half', }, substrate='coins', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': {'coins__puppet_three_strikes_strong_reciprocator_0',}, }, ), coins_4=ScenarioConfig( description=('partner is a low-threshold (harsh) strong reciprocator'), tags={ 'versus_reciprocator', 'half_and_half', }, substrate='coins', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': {'coins__puppet_one_strike_strong_reciprocator_0',}, }, ), coins_5=ScenarioConfig( description='partner is a cooperator', tags={ 'versus_pure_cooperator', 'half_and_half', }, substrate='coins', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': {'coins__puppet_cooperator_0',}, }, ), coins_6=ScenarioConfig( description='partner is a defector', tags={ 'versus_pure_defector', 'half_and_half', }, substrate='coins', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': {'coins__puppet_defector_0',}, }, ), collaborative_cooking__asymmetric_0=ScenarioConfig( description='collaborate with a skilled chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__asymmetric', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__asymmetric__chef_0', 'collaborative_cooking__asymmetric__chef_1', }, }, ), collaborative_cooking__asymmetric_1=ScenarioConfig( description='collaborate with a semi-skilled apprentice chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__asymmetric', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__asymmetric__apprentice_0', 'collaborative_cooking__asymmetric__apprentice_1', }, }, ), collaborative_cooking__asymmetric_2=ScenarioConfig( description='succeed despite an unhelpful partner', tags={ 'half_and_half', 'versus_noop', }, substrate='collaborative_cooking__asymmetric', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={'default': {'noop_bot'}}, ), collaborative_cooking__circuit_0=ScenarioConfig( description='collaborate with a skilled chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__circuit', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__circuit__chef_0', 'collaborative_cooking__circuit__chef_1', }, }, ), collaborative_cooking__circuit_1=ScenarioConfig( description='collaborate with a semi-skilled apprentice chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__circuit', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__circuit__apprentice_0', 'collaborative_cooking__circuit__apprentice_1', }, }, ), collaborative_cooking__circuit_2=ScenarioConfig( description='succeed despite an unhelpful partner', tags={ 'half_and_half', 'versus_noop', }, substrate='collaborative_cooking__circuit', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={'default': {'noop_bot'}}, ), collaborative_cooking__cramped_0=ScenarioConfig( description='collaborate with a skilled chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__cramped', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__cramped__chef_0', 'collaborative_cooking__cramped__chef_1', }, }, ), collaborative_cooking__cramped_1=ScenarioConfig( description='collaborate with a semi-skilled apprentice chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__cramped', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__cramped__apprentice_0', 'collaborative_cooking__cramped__apprentice_1', }, }, ), collaborative_cooking__cramped_2=ScenarioConfig( description='succeed despite an unhelpful partner', tags={ 'half_and_half', 'versus_noop', }, substrate='collaborative_cooking__cramped', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={'default': {'noop_bot'}}, ), collaborative_cooking__crowded_0=ScenarioConfig( description=( 'collaborate with an independent chef who expects others to get ' + 'out of their way'), tags={ 'resident', }, substrate='collaborative_cooking__crowded', roles=('default',) * 9, is_focal=(True,) * 8 + (False,), bots_by_role={ 'default': { 'collaborative_cooking__crowded__independent_chef_0', }, }, ), collaborative_cooking__crowded_1=ScenarioConfig( description=( 'collaborate with several chefs who can work together, but are ' + 'not very good at doing so'), tags={ 'resident', }, substrate='collaborative_cooking__crowded', roles=('default',) * 9, is_focal=(True,) * 6 + (False,) * 3, bots_by_role={ 'default': { 'collaborative_cooking__crowded__robust_chef_0', }, }, ), collaborative_cooking__crowded_2=ScenarioConfig( description=( 'no assistance from an unhelpful visiting noop bot'), tags={ 'resident', 'versus_noop', }, substrate='collaborative_cooking__crowded', roles=('default',) * 9, is_focal=(True,) * 8 + (False,), bots_by_role={'default': {'noop_bot'}}, ), collaborative_cooking__figure_eight_0=ScenarioConfig( description=( 'collaborate with an independent chef who expects others to get ' + 'out of their way'), tags={ 'resident', }, substrate='collaborative_cooking__figure_eight', roles=('default',) * 6, is_focal=(True,) * 5 + (False,), bots_by_role={ 'default': { 'collaborative_cooking__figure_eight__independent_chef_0', }, }, ), collaborative_cooking__figure_eight_1=ScenarioConfig( description=( 'collaborate with two chefs who can work together, but are ' + 'not very good at doing so'), tags={ 'resident', }, substrate='collaborative_cooking__figure_eight', roles=('default',) * 6, is_focal=(True,) * 4 + (False,) * 2, bots_by_role={ 'default': { 'collaborative_cooking__figure_eight__robust_chef_0', }, }, ), collaborative_cooking__figure_eight_2=ScenarioConfig( description=( 'no assistance from am unhelpful visiting noop bot'), tags={ 'resident', 'versus_noop', }, substrate='collaborative_cooking__figure_eight', roles=('default',) * 6, is_focal=(True,) * 5 + (False,), bots_by_role={'default': {'noop_bot'}}, ), collaborative_cooking__forced_0=ScenarioConfig( description='collaborate with a skilled chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__forced', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__forced__chef_0', 'collaborative_cooking__forced__chef_1', }, }, ), collaborative_cooking__forced_1=ScenarioConfig( description='collaborate with a semi-skilled apprentice chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__forced', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__forced__apprentice_0', 'collaborative_cooking__forced__apprentice_1', }, }, ), collaborative_cooking__ring_0=ScenarioConfig( description='collaborate with a skilled chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__ring', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__ring__chef_0', 'collaborative_cooking__ring__chef_1', }, }, ), collaborative_cooking__ring_1=ScenarioConfig( description='collaborate with a semi-skilled apprentice chef', tags={ 'half_and_half', }, substrate='collaborative_cooking__ring', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'collaborative_cooking__ring__apprentice_0', 'collaborative_cooking__ring__apprentice_1', }, }, ), commons_harvest__closed_0=ScenarioConfig( description='focals visit pacifist bots who harvest unsustainably', tags={ 'visitor', 'ownership', }, substrate='commons_harvest__closed', roles=('default',) * 7, is_focal=(True,) * 2 + (False,) * 5, bots_by_role={ 'default': {'commons_harvest__closed__pacifist_0', 'commons_harvest__closed__pacifist_1', 'commons_harvest__closed__pacifist_2',}, }, ), commons_harvest__closed_1=ScenarioConfig( description=('focals are resident and visited by pacifist bots who ' + 'harvest unsustainably'), tags={ 'resident', 'ownership', }, substrate='commons_harvest__closed', roles=('default',) * 7, is_focal=(True,) * 5 + (False,) * 2, bots_by_role={ 'default': {'commons_harvest__closed__pacifist_0', 'commons_harvest__closed__pacifist_1', 'commons_harvest__closed__pacifist_2',}, }, ), commons_harvest__closed_2=ScenarioConfig( description=('focals visit bots who zap and harvest sustainably if ' + 'they get a chance'), tags={ 'visitor', 'ownership', }, substrate='commons_harvest__closed', roles=('default',) * 7, is_focal=(True,) * 2 + (False,) * 5, bots_by_role={ 'default': {'commons_harvest__closed__free_0', 'commons_harvest__closed__free_1', 'commons_harvest__closed__free_2', 'commons_harvest__closed__free_3'}, }, ), commons_harvest__closed_3=ScenarioConfig( description=('focals are resident, and are visited by bots who zap ' + 'and harvest sustainably if they get a chance'), tags={ 'resident', 'ownership', }, substrate='commons_harvest__closed', roles=('default',) * 7, is_focal=(True,) * 5 + (False,) * 2, bots_by_role={ 'default': {'commons_harvest__closed__free_0', 'commons_harvest__closed__free_1', 'commons_harvest__closed__free_2', 'commons_harvest__closed__free_3'}, }, ), commons_harvest__open_0=ScenarioConfig( description=('focals are resident and visited by two bots who zap ' + 'and harvest unsustainably'), tags={ 'resident', }, substrate='commons_harvest__open', roles=('default',) * 7, is_focal=(True,) * 5 + (False,) * 2, bots_by_role={ 'default': {'commons_harvest__open__free_0', 'commons_harvest__open__free_1',}, }, ), commons_harvest__open_1=ScenarioConfig( description=('focals are resident and visited by two pacifists who ' + 'harvest unsustainably'), tags={ 'resident', }, substrate='commons_harvest__open', roles=('default',) * 7, is_focal=(True,) * 5 + (False,) * 2, bots_by_role={ 'default': {'commons_harvest__open__pacifist_0', 'commons_harvest__open__pacifist_1'}, }, ), commons_harvest__partnership_0=ScenarioConfig( description='meeting good partners', tags={ 'visitor', 'dyadic_trust', 'ownership', }, substrate='commons_harvest__partnership', roles=('default',) * 7, is_focal=(True,) * 1 + (False,) * 6, bots_by_role={ 'default': {'commons_harvest__partnership__good_partner_0', 'commons_harvest__partnership__good_partner_1', 'commons_harvest__partnership__good_partner_2',}, }, ), commons_harvest__partnership_1=ScenarioConfig( description='focals are resident and visitors are good partners', tags={ 'resident', 'dyadic_trust', 'ownership', }, substrate='commons_harvest__partnership', roles=('default',) * 7, is_focal=(True,) * 5 + (False,) * 2, bots_by_role={ 'default': {'commons_harvest__partnership__good_partner_0', 'commons_harvest__partnership__good_partner_1', 'commons_harvest__partnership__good_partner_2',}, }, ), commons_harvest__partnership_2=ScenarioConfig( description=('focals visit zappers who harvest sustainably but lack ' + 'trust'), tags={ 'visitor', 'dyadic_trust', 'ownership', }, substrate='commons_harvest__partnership', roles=('default',) * 7, is_focal=(True,) * 1 + (False,) * 6, bots_by_role={ 'default': {'commons_harvest__partnership__sustainable_fighter_0', 'commons_harvest__partnership__sustainable_fighter_1',}, }, ), commons_harvest__partnership_3=ScenarioConfig( description=('focals are resident and visited by zappers who harvest ' + 'sustainably but lack trust'), tags={ 'resident', 'dyadic_trust', 'ownership', }, substrate='commons_harvest__partnership', roles=('default',) * 7, is_focal=(True,) * 5 + (False,) * 2, bots_by_role={ 'default': {'commons_harvest__partnership__sustainable_fighter_0', 'commons_harvest__partnership__sustainable_fighter_1',}, }, ), commons_harvest__partnership_4=ScenarioConfig( description='focals visit pacifists who do not harvest sustainably', tags={ 'visitor', 'dyadic_trust', 'ownership', }, substrate='commons_harvest__partnership', roles=('default',) * 7, is_focal=(True,) * 2 + (False,) * 5, bots_by_role={ 'default': {'commons_harvest__partnership__pacifist_0', 'commons_harvest__partnership__pacifist_1', 'commons_harvest__partnership__pacifist_2',}, }, ), commons_harvest__partnership_5=ScenarioConfig( description='focals visit zappers who do not harvest sustainably', tags={ 'visitor', 'dyadic_trust', 'ownership', }, substrate='commons_harvest__partnership', roles=('default',) * 7, is_focal=(True,) * 2 + (False,) * 5, bots_by_role={ 'default': {'commons_harvest__partnership__free_0', 'commons_harvest__partnership__free_1', 'commons_harvest__partnership__free_2',}, }, ), coop_mining_0=ScenarioConfig( description='visiting cooperators', tags={ 'visitor', }, substrate='coop_mining', roles=('default',) * 6, is_focal=(True,) * 1 + (False,) * 5, bots_by_role={ 'default': {'coop_mining__cooperator_0',}, }, ), coop_mining_1=ScenarioConfig( description='visiting residents that extract both ores', tags={ 'visitor', }, substrate='coop_mining', roles=('default',) * 6, is_focal=(True,) * 1 + (False,) * 5, bots_by_role={ 'default': {'coop_mining__mixed_0',}, }, ), coop_mining_2=ScenarioConfig( description='visiting defectors', tags={ 'visitor', }, substrate='coop_mining', roles=('default',) * 6, is_focal=(True,) * 1 + (False,) * 5, bots_by_role={ 'default': {'coop_mining__defector_0'}, }, ), coop_mining_3=ScenarioConfig( description='residents visited by a cooperator', tags={ 'resident', }, substrate='coop_mining', roles=('default',) * 6, is_focal=(True,) * 5 + (False,) * 1, bots_by_role={ 'default': {'coop_mining__cooperator_0',}, }, ), coop_mining_4=ScenarioConfig( description='residents visited by a defector', tags={ 'resident', }, substrate='coop_mining', roles=('default',) * 6, is_focal=(True,) * 5 + (False,) * 1, bots_by_role={ 'default': {'coop_mining__defector_0',}, }, ), coop_mining_5=ScenarioConfig( description='find the cooperator partner', tags={ 'partner_choice', 'visitor', }, substrate='coop_mining', roles=('default',) * 5 + ('target',), is_focal=(True,) * 1 + (False,) * 5, bots_by_role={ 'default': {'coop_mining__defector_0',}, 'target': {'coop_mining__cooperator_0', 'coop_mining__mixed_0',}, }, ), daycare_0=ScenarioConfig( description='meeting a helpful parent', tags={ 'half_and_half', }, substrate='daycare', roles=('child',) + ('parent',), is_focal=(True,) + (False,), bots_by_role={ 'parent': {'daycare__helping_parent_0',}, }, ), daycare_1=ScenarioConfig( description='meeting a child who points to what they want', tags={ 'half_and_half', }, substrate='daycare', roles=('child',) + ('parent',), is_focal=(False,) + (True,), bots_by_role={ 'child': {'daycare__pointing_child_0',}, }, ), daycare_2=ScenarioConfig( description='meeting an unhelpful parent', tags={ 'half_and_half', }, substrate='daycare', roles=('child',) + ('parent',), is_focal=(True,) + (False,), bots_by_role={ 'parent': {'daycare__foraging_parent_0',}, }, ), daycare_3=ScenarioConfig( description='meeting an independent child', tags={ 'half_and_half', }, substrate='daycare', roles=('child',) + ('parent',), is_focal=(False,) + (True,), bots_by_role={ 'child': {'daycare__foraging_child_0',}, }, ), externality_mushrooms__dense_0=ScenarioConfig( description='visiting unconditional hihe (cooperator) players', tags={ 'visitor', }, substrate='externality_mushrooms__dense', roles=('default',) * 5, is_focal=(True,) + (False,) * 4, bots_by_role={ 'default': {'externality_mushrooms__dense__puppet_hihe_0',}, }, ), externality_mushrooms__dense_1=ScenarioConfig( description='visiting unconditional fize (defector) players', tags={ 'visitor', }, substrate='externality_mushrooms__dense', roles=('default',) * 5, is_focal=(True,) + (False,) * 4, bots_by_role={ 'default': {'externality_mushrooms__dense__puppet_fize_0',}, }, ), externality_mushrooms__dense_2=ScenarioConfig( description=('focals are resident and joined by two unconditional ' + 'hihe (cooperator) players'), tags={ 'resident', }, substrate='externality_mushrooms__dense', roles=('default',) * 5, is_focal=(True,) * 3 + (False,) * 2, bots_by_role={ 'default': {'externality_mushrooms__dense__puppet_hihe_0',}, }, ), externality_mushrooms__dense_3=ScenarioConfig( description=('focals are resident and joined by two unconditional ' + 'fize (defector) players'), tags={ 'resident', }, substrate='externality_mushrooms__dense', roles=('default',) * 5, is_focal=(True,) * 3 + (False,) * 2, bots_by_role={ 'default': {'externality_mushrooms__dense__puppet_fize_0',}, }, ), factory_commons__either_or_0=ScenarioConfig( description='visiting a sustainable background population', tags={ 'visitor', }, substrate='factory_commons__either_or', roles=('default',) * 3, is_focal=(True,) * 1 + (False,) * 2, bots_by_role={ 'default': {'factory_commons__either_or__sustainable_0', 'factory_commons__either_or__sustainable_1', 'factory_commons__either_or__sustainable_2',}, }, ), factory_commons__either_or_1=ScenarioConfig( description='visiting an unsustainable background population', tags={ 'visitor', }, substrate='factory_commons__either_or', roles=('default',) * 3, is_focal=(True,) * 1 + (False,) * 2, bots_by_role={ 'default': {'factory_commons__either_or__unsustainable_0', 'factory_commons__either_or__unsustainable_1', 'factory_commons__either_or__unsustainable_2',}, }, ), factory_commons__either_or_2=ScenarioConfig( description='resident focal agents are joined by a sustainable visitor', tags={ 'resident', }, substrate='factory_commons__either_or', roles=('default',) * 3, is_focal=(True,) * 2 + (False,) * 1, bots_by_role={ 'default': {'factory_commons__either_or__sustainable_0', 'factory_commons__either_or__sustainable_1', 'factory_commons__either_or__sustainable_2',}, }, ), factory_commons__either_or_3=ScenarioConfig( description=('resident focal agents are joined by an unsustainable ' + 'visitor'), tags={ 'resident', }, substrate='factory_commons__either_or', roles=('default',) * 3, is_focal=(True,) * 2 + (False,) * 1, bots_by_role={ 'default': {'factory_commons__either_or__unsustainable_0', 'factory_commons__either_or__unsustainable_1', 'factory_commons__either_or__unsustainable_2',}, }, ), fruit_market__concentric_rivers_0=ScenarioConfig( description='all apple farmers are focal', tags={ 'half_and_half', }, substrate='fruit_market__concentric_rivers', roles=('apple_farmer',) * 8 + ('banana_farmer',) * 8, is_focal=(True,) * 8 + (False,) * 8, bots_by_role={ 'banana_farmer': { 'fruit_market__concentric_rivers__banana_farmer_0', 'fruit_market__concentric_rivers__banana_farmer_1', 'fruit_market__concentric_rivers__banana_farmer_2', }, }, ), fruit_market__concentric_rivers_1=ScenarioConfig( description='all banana farmers are focal', tags={ 'half_and_half', }, substrate='fruit_market__concentric_rivers', roles=('apple_farmer',) * 8 + ('banana_farmer',) * 8, is_focal=(False,) * 8 + (True,) * 8, bots_by_role={ 'apple_farmer': { 'fruit_market__concentric_rivers__apple_farmer_0', 'fruit_market__concentric_rivers__apple_farmer_1', 'fruit_market__concentric_rivers__apple_farmer_2', }, }, ), fruit_market__concentric_rivers_2=ScenarioConfig( description='one focal apple farmer visits a background economy', tags={ 'visitor', }, substrate='fruit_market__concentric_rivers', roles=('apple_farmer',) * 8 + ('banana_farmer',) * 8, is_focal=(True,) * 1 + (False,) * 15, bots_by_role={ 'apple_farmer': { 'fruit_market__concentric_rivers__apple_farmer_0', 'fruit_market__concentric_rivers__apple_farmer_1', 'fruit_market__concentric_rivers__apple_farmer_2', }, 'banana_farmer': { 'fruit_market__concentric_rivers__banana_farmer_0', 'fruit_market__concentric_rivers__banana_farmer_1', 'fruit_market__concentric_rivers__banana_farmer_2', }, }, ), fruit_market__concentric_rivers_3=ScenarioConfig( description='one focal banana farmer visits a background economy', tags={ 'visitor', }, substrate='fruit_market__concentric_rivers', roles=('banana_farmer',) * 8 + ('apple_farmer',) * 8, is_focal=(True,) * 1 + (False,) * 15, bots_by_role={ 'apple_farmer': { 'fruit_market__concentric_rivers__apple_farmer_0', 'fruit_market__concentric_rivers__apple_farmer_1', 'fruit_market__concentric_rivers__apple_farmer_2', }, 'banana_farmer': { 'fruit_market__concentric_rivers__banana_farmer_0', 'fruit_market__concentric_rivers__banana_farmer_1', 'fruit_market__concentric_rivers__banana_farmer_2', }, }, ), gift_refinements_0=ScenarioConfig( description='visiting cooperators', tags={ 'visitor', }, substrate='gift_refinements', roles=('default',) * 6, is_focal=(True,) * 1 + (False,) * 5, bots_by_role=immutabledict.immutabledict( default=('gift_refinements__cooperator_0',), ), ), gift_refinements_1=ScenarioConfig( description='visiting defectors', tags={ 'visitor', }, substrate='gift_refinements', roles=('default',) * 6, is_focal=(True,) * 1 + (False,) * 5, bots_by_role=immutabledict.immutabledict( default=('gift_refinements__defector_0',), ), ), gift_refinements_2=ScenarioConfig( description='visited by a cooperator', tags={ 'resident', }, substrate='gift_refinements', roles=('default',) * 6, is_focal=(True,) * 5 + (False,) * 1, bots_by_role=immutabledict.immutabledict( default=('gift_refinements__cooperator_0',), ), ), gift_refinements_3=ScenarioConfig( description='visited by a defector', tags={ 'resident', }, substrate='gift_refinements', roles=('default',) * 6, is_focal=(True,) * 5 + (False,) * 1, bots_by_role=immutabledict.immutabledict( default=('gift_refinements__defector_0',), ), ), gift_refinements_4=ScenarioConfig( description='find the cooperator partner', tags={ 'partner_choice', }, substrate='gift_refinements', roles=('default',) * 5 + ('target',), is_focal=(True,) * 1 + (False,) * 5, bots_by_role=immutabledict.immutabledict( default=('gift_refinements__defector_0',), target=('gift_refinements__cooperator_0',), ), ), gift_refinements_5=ScenarioConfig( description='visiting extreme cooperators', tags={ 'visitor', }, substrate='gift_refinements', roles=('default',) * 6, is_focal=(True,) * 1 + (False,) * 5, bots_by_role=immutabledict.immutabledict( default=('gift_refinements__extreme_cooperator_0',), ), ), gift_refinements_6=ScenarioConfig( description='visited by an extreme cooperator', tags={ 'resident', }, substrate='gift_refinements', roles=('default',) * 6, is_focal=(True,) * 5 + (False,) * 1, bots_by_role=immutabledict.immutabledict( default=('gift_refinements__extreme_cooperator_0',), ), ), hidden_agenda_0=ScenarioConfig( description=( 'A focal population is visited by impostor which hunts crewmates'), tags={ 'resident', }, substrate='hidden_agenda', roles=('crewmate',) * 4 + ('impostor',), is_focal=(True,) * 4 + (False,) * 1, bots_by_role=immutabledict.immutabledict( impostor=('hidden_agenda__hunter_impostor_0',), ), ), hidden_agenda_1=ScenarioConfig( description='A focal impostor visits background crew who collect gems', tags={ 'visitor', 'learned_teamwork', }, substrate='hidden_agenda', roles=('crewmate',) * 4 + ('impostor',), is_focal=(False,) * 4 + (True,) * 1, bots_by_role=immutabledict.immutabledict( crewmate=('hidden_agenda__collector_crew_0', 'hidden_agenda__collector_crew_1'), ), ), hidden_agenda_2=ScenarioConfig( description=( 'Focal crew visits background impostor, and crew who collect gems'), tags={ 'ad_hoc_teamwork', 'half_and_half', }, substrate='hidden_agenda', roles=('crewmate',) * 4 + ('impostor',), is_focal=(True,) * 2 + (False,) * 3, bots_by_role=immutabledict.immutabledict( crewmate=('hidden_agenda__collector_crew_0', 'hidden_agenda__collector_crew_1'), impostor=('hidden_agenda__hunter_impostor_0',), ), ), paintball__capture_the_flag_0=ScenarioConfig( description='focal team versus shaped bot team', tags={ 'half_and_half', 'learned_teamwork', }, substrate='paintball__capture_the_flag', roles=('default',) * 8, is_focal=(True, False) * 4, bots_by_role={ 'default': {'paintball__capture_the_flag__shaped_bot_0', 'paintball__capture_the_flag__shaped_bot_1', 'paintball__capture_the_flag__shaped_bot_2', 'paintball__capture_the_flag__shaped_bot_3',}, }, ), paintball__capture_the_flag_1=ScenarioConfig( description='ad hoc teamwork with shaped bots', tags={ 'ad_hoc_teamwork', 'visitor', }, substrate='paintball__capture_the_flag', roles=('default',) * 8, is_focal=(True,) * 1 + (False,) * 7, bots_by_role={ 'default': {'paintball__capture_the_flag__shaped_bot_0', 'paintball__capture_the_flag__shaped_bot_1', 'paintball__capture_the_flag__shaped_bot_2', 'paintball__capture_the_flag__shaped_bot_3',}, }, ), paintball__king_of_the_hill_0=ScenarioConfig( description='focal team versus default bot team', tags={ 'half_and_half', 'learned_teamwork', }, substrate='paintball__king_of_the_hill', roles=('default',) * 8, is_focal=(True, False) * 4, bots_by_role={ 'default': {'paintball__king_of_the_hill__free_0', 'paintball__king_of_the_hill__free_1', 'paintball__king_of_the_hill__free_2',}, }, ), paintball__king_of_the_hill_1=ScenarioConfig( description='focal team versus shaped bot team', tags={ 'half_and_half', 'learned_teamwork', }, substrate='paintball__king_of_the_hill', roles=('default',) * 8, is_focal=(True, False) * 4, bots_by_role={ 'default': {'paintball__king_of_the_hill__spawn_camper_0', 'paintball__king_of_the_hill__spawn_camper_1', 'paintball__king_of_the_hill__spawn_camper_2', 'paintball__king_of_the_hill__spawn_camper_3',}, }, ), paintball__king_of_the_hill_2=ScenarioConfig( description='ad hoc teamwork with default bots', tags={ 'ad_hoc_teamwork', 'visitor', }, substrate='paintball__king_of_the_hill', roles=('default',) * 8, is_focal=(True,) * 1 + (False,) * 7, bots_by_role={ 'default': {'paintball__king_of_the_hill__free_0', 'paintball__king_of_the_hill__free_1', 'paintball__king_of_the_hill__free_2',}, }, ), paintball__king_of_the_hill_3=ScenarioConfig( description='ad hoc teamwork with shaped bots', tags={ 'ad_hoc_teamwork', 'visitor', }, substrate='paintball__king_of_the_hill', roles=('default',) * 8, is_focal=(True,) * 1 + (False,) * 7, bots_by_role={ 'default': {'paintball__king_of_the_hill__spawn_camper_0', 'paintball__king_of_the_hill__spawn_camper_1', 'paintball__king_of_the_hill__spawn_camper_2', 'paintball__king_of_the_hill__spawn_camper_3',}, }, ), predator_prey__alley_hunt_0=ScenarioConfig( description='focal prey visited by background predators', tags={ 'resident', }, substrate='predator_prey__alley_hunt', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(False,) * 5 + (True,) * 8, bots_by_role={ 'predator': {'predator_prey__alley_hunt__predator_0', 'predator_prey__alley_hunt__predator_1', 'predator_prey__alley_hunt__predator_2',}, }, ), predator_prey__alley_hunt_1=ScenarioConfig( description=( 'focal predators aim to eat resident prey'), tags={ 'visitor', }, substrate='predator_prey__alley_hunt', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(True,) * 5 + (False,) * 8, bots_by_role={ 'prey': {'predator_prey__alley_hunt__prey_0', 'predator_prey__alley_hunt__prey_1', 'predator_prey__alley_hunt__prey_2',}, }, ), predator_prey__alley_hunt_2=ScenarioConfig( description=( 'a focal predator competes with background predators to eat prey'), tags={ 'visitor', }, substrate='predator_prey__alley_hunt', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__alley_hunt__prey_0', 'predator_prey__alley_hunt__prey_1', 'predator_prey__alley_hunt__prey_2',}, 'predator': {'predator_prey__alley_hunt__predator_0', 'predator_prey__alley_hunt__predator_1', 'predator_prey__alley_hunt__predator_2',}, }, ), predator_prey__alley_hunt_3=ScenarioConfig( description=( 'one focal prey ad hoc cooperates with background prey to avoid ' + 'predation'), tags={ 'visitor', }, substrate='predator_prey__alley_hunt', roles=('prey',) * 8 + ('predator',) * 5, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__alley_hunt__prey_0', 'predator_prey__alley_hunt__prey_1', 'predator_prey__alley_hunt__prey_2',}, 'predator': {'predator_prey__alley_hunt__predator_0', 'predator_prey__alley_hunt__predator_1', 'predator_prey__alley_hunt__predator_2',}, }, ), predator_prey__open_0=ScenarioConfig( description='focal prey visited by background predators', tags={ 'resident', }, substrate='predator_prey__open', roles=('predator',) * 3 + ('prey',) * 10, is_focal=(False,) * 3 + (True,) * 10, bots_by_role={ 'predator': {'predator_prey__open__basic_predator_0', 'predator_prey__open__basic_predator_1',}, }, ), predator_prey__open_1=ScenarioConfig( description=( 'focal predators aim to eat basic resident prey'), tags={ 'visitor', }, substrate='predator_prey__open', roles=('predator',) * 3 + ('prey',) * 10, is_focal=(True,) * 3 + (False,) * 10, bots_by_role={ 'prey': {'predator_prey__open__basic_prey_0', 'predator_prey__open__basic_prey_1', 'predator_prey__open__basic_prey_2',}, }, ), predator_prey__open_2=ScenarioConfig( description=( 'a focal predator competes with background predators to hunt prey'), tags={ 'visitor', }, substrate='predator_prey__open', roles=('predator',) * 3 + ('prey',) * 10, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__open__basic_prey_0', 'predator_prey__open__basic_prey_1', 'predator_prey__open__basic_prey_2',}, 'predator': {'predator_prey__open__basic_predator_0', 'predator_prey__open__basic_predator_1',}, }, ), predator_prey__open_3=ScenarioConfig( description=( 'one focal prey ad hoc cooperates with background prey to avoid ' + 'predation'), tags={ 'visitor', }, substrate='predator_prey__open', roles=('prey',) * 10 + ('predator',) * 3, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__open__basic_prey_0', 'predator_prey__open__basic_prey_1', 'predator_prey__open__basic_prey_2',}, 'predator': {'predator_prey__open__basic_predator_0', 'predator_prey__open__basic_predator_1',}, }, ), predator_prey__open_4=ScenarioConfig( description=( 'focal predators hunt smarter resident prey'), tags={ 'visitor', }, substrate='predator_prey__open', roles=('predator',) * 3 + ('prey',) * 10, is_focal=(True,) * 3 + (False,) * 10, bots_by_role={ 'prey': {'predator_prey__open__smart_prey_0', 'predator_prey__open__smart_prey_1', 'predator_prey__open__smart_prey_2',}, }, ), predator_prey__open_5=ScenarioConfig( description=( 'a focal predator competes with background predators to hunt ' + 'smarter prey'), tags={ 'visitor', }, substrate='predator_prey__open', roles=('predator',) * 3 + ('prey',) * 10, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__open__smart_prey_0', 'predator_prey__open__smart_prey_1', 'predator_prey__open__smart_prey_2',}, 'predator': {'predator_prey__open__basic_predator_0', 'predator_prey__open__basic_predator_1',}, }, ), predator_prey__open_6=ScenarioConfig( description=( 'one focal prey ad hoc cooperates with background smart prey to ' + 'avoid predation'), tags={ 'visitor', }, substrate='predator_prey__open', roles=('prey',) * 10 + ('predator',) * 3, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__open__smart_prey_0', 'predator_prey__open__smart_prey_1', 'predator_prey__open__smart_prey_2',}, 'predator': {'predator_prey__open__basic_predator_0', 'predator_prey__open__basic_predator_1',}, }, ), predator_prey__orchard_0=ScenarioConfig( description='focal prey visited by background predators', tags={ 'resident', }, substrate='predator_prey__orchard', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(False,) * 5 + (True,) * 8, bots_by_role={ 'predator': {'predator_prey__orchard__basic_predator_0', 'predator_prey__orchard__basic_predator_1', 'predator_prey__orchard__basic_predator_2',}, }, ), predator_prey__orchard_1=ScenarioConfig( description=( 'focal predators aim to eat resident population of ' + 'unspecialized prey'), tags={ 'visitor', }, substrate='predator_prey__orchard', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(True,) * 5 + (False,) * 8, bots_by_role={ 'prey': {'predator_prey__orchard__basic_prey_0', 'predator_prey__orchard__basic_prey_1', 'predator_prey__orchard__basic_prey_2', 'predator_prey__orchard__basic_prey_3', 'predator_prey__orchard__basic_prey_4', 'predator_prey__orchard__basic_prey_5',}, }, ), predator_prey__orchard_2=ScenarioConfig( description=( 'a focal predator competes with background predators to eat ' + 'unspecialized prey'), tags={ 'visitor', }, substrate='predator_prey__orchard', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__orchard__basic_prey_0', 'predator_prey__orchard__basic_prey_1', 'predator_prey__orchard__basic_prey_2', 'predator_prey__orchard__basic_prey_3', 'predator_prey__orchard__basic_prey_4', 'predator_prey__orchard__basic_prey_5',}, 'predator': {'predator_prey__orchard__basic_predator_0', 'predator_prey__orchard__basic_predator_1', 'predator_prey__orchard__basic_predator_2',}, }, ), predator_prey__orchard_3=ScenarioConfig( description=( 'one focal prey ad hoc cooperates with unspecialized background ' + 'prey to avoid predation'), tags={ 'visitor', }, substrate='predator_prey__orchard', roles=('prey',) * 8 + ('predator',) * 5, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__orchard__basic_prey_0', 'predator_prey__orchard__basic_prey_1', 'predator_prey__orchard__basic_prey_2', 'predator_prey__orchard__basic_prey_3', 'predator_prey__orchard__basic_prey_4', 'predator_prey__orchard__basic_prey_5',}, 'predator': {'predator_prey__orchard__basic_predator_0', 'predator_prey__orchard__basic_predator_1', 'predator_prey__orchard__basic_predator_2',}, }, ), predator_prey__orchard_4=ScenarioConfig( description=( 'focal predators aim to eat resident population of acorn ' + 'specialist prey'), tags={ 'visitor', }, substrate='predator_prey__orchard', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(True,) * 5 + (False,) * 8, bots_by_role={ 'prey': {'predator_prey__orchard__acorn_specialist_prey_0', 'predator_prey__orchard__acorn_specialist_prey_1', 'predator_prey__orchard__acorn_specialist_prey_2', 'predator_prey__orchard__acorn_specialist_prey_3', 'predator_prey__orchard__acorn_specialist_prey_4',}, }, ), predator_prey__orchard_5=ScenarioConfig( description=( 'a focal predator competes with background predators to eat ' + 'acorn specialist prey'), tags={ 'visitor', }, substrate='predator_prey__orchard', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__orchard__acorn_specialist_prey_0', 'predator_prey__orchard__acorn_specialist_prey_1', 'predator_prey__orchard__acorn_specialist_prey_2', 'predator_prey__orchard__acorn_specialist_prey_3', 'predator_prey__orchard__acorn_specialist_prey_4',}, 'predator': {'predator_prey__orchard__basic_predator_0', 'predator_prey__orchard__basic_predator_1', 'predator_prey__orchard__basic_predator_2',}, }, ), predator_prey__orchard_6=ScenarioConfig( description=( 'one focal prey ad hoc cooperates with acorn specialized ' + 'background prey to avoid predation'), tags={ 'visitor', }, substrate='predator_prey__orchard', roles=('prey',) * 8 + ('predator',) * 5, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__orchard__acorn_specialist_prey_0', 'predator_prey__orchard__acorn_specialist_prey_1', 'predator_prey__orchard__acorn_specialist_prey_2', 'predator_prey__orchard__acorn_specialist_prey_3', 'predator_prey__orchard__acorn_specialist_prey_4',}, 'predator': {'predator_prey__orchard__basic_predator_0', 'predator_prey__orchard__basic_predator_1', 'predator_prey__orchard__basic_predator_2',}, }, ), predator_prey__random_forest_0=ScenarioConfig( description='focal prey visited by background predators', tags={ 'resident', }, substrate='predator_prey__random_forest', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(False,) * 5 + (True,) * 8, bots_by_role={ 'predator': {'predator_prey__random_forest__basic_predator_0', 'predator_prey__random_forest__basic_predator_1', 'predator_prey__random_forest__basic_predator_2',}, }, ), predator_prey__random_forest_1=ScenarioConfig( description=( 'focal predators aim to eat resident prey'), tags={ 'visitor', }, substrate='predator_prey__random_forest', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(True,) * 5 + (False,) * 8, bots_by_role={ 'prey': {'predator_prey__random_forest__basic_prey_0', 'predator_prey__random_forest__basic_prey_1', 'predator_prey__random_forest__basic_prey_2',}, }, ), predator_prey__random_forest_2=ScenarioConfig( description=( 'a focal predator competes with background predators to eat prey'), tags={ 'visitor', }, substrate='predator_prey__random_forest', roles=('predator',) * 5 + ('prey',) * 8, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__random_forest__basic_prey_0', 'predator_prey__random_forest__basic_prey_1', 'predator_prey__random_forest__basic_prey_2',}, 'predator': {'predator_prey__random_forest__basic_predator_0', 'predator_prey__random_forest__basic_predator_1', 'predator_prey__random_forest__basic_predator_2',}, }, ), predator_prey__random_forest_3=ScenarioConfig( description=( 'one focal prey ad hoc cooperates with background prey to avoid ' + 'predation'), tags={ 'visitor', }, substrate='predator_prey__random_forest', roles=('prey',) * 8 + ('predator',) * 5, is_focal=(True,) + (False,) * 12, bots_by_role={ 'prey': {'predator_prey__random_forest__basic_prey_0', 'predator_prey__random_forest__basic_prey_1', 'predator_prey__random_forest__basic_prey_2',}, 'predator': {'predator_prey__random_forest__basic_predator_0', 'predator_prey__random_forest__basic_predator_1', 'predator_prey__random_forest__basic_predator_2',}, }, ), prisoners_dilemma_in_the_matrix__arena_0=ScenarioConfig( description='visiting unconditional cooperators', tags={ 'visitor', 'versus_pure_cooperators', }, substrate='prisoners_dilemma_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__arena__puppet_cooperator_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_cooperator_margin_0', }, }, ), prisoners_dilemma_in_the_matrix__arena_1=ScenarioConfig( description=('focals are resident and visited by an unconditional ' + 'cooperator'), tags={ 'resident', 'versus_pure_cooperators', }, substrate='prisoners_dilemma_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 7 + (False,) * 1, bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__arena__puppet_cooperator_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_cooperator_margin_0', }, }, ), prisoners_dilemma_in_the_matrix__arena_2=ScenarioConfig( description='focals are resident and visitors defect unconditionally', tags={ 'resident', 'versus_pure_defectors', }, substrate='prisoners_dilemma_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 6 + (False,) * 2, bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__arena__puppet_defector_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_defector_margin_0', }, }, ), prisoners_dilemma_in_the_matrix__arena_3=ScenarioConfig( description=('visiting a population of hair-trigger grim ' + 'reciprocator bots who initially cooperate but, if ' + 'defected on once, will retaliate by defecting in all ' + 'future interactions'), tags={ 'visitor', 'reciprocity', }, substrate='prisoners_dilemma_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_one_strike_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_one_strike_margin_0', }, }, ), prisoners_dilemma_in_the_matrix__arena_4=ScenarioConfig( description=('visiting a population of two-strikes grim ' + 'reciprocator bots who initially cooperate but, if ' + 'defected on twice, will retaliate by defecting in all ' + 'future interactions'), tags={ 'visitor', 'reciprocity', }, substrate='prisoners_dilemma_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_two_strikes_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_two_strikes_margin_0', }, }, ), prisoners_dilemma_in_the_matrix__arena_5=ScenarioConfig( description=( 'visiting a mixed population of k-strikes grim reciprocator bots ' + 'with k values from 1 to 3, they initially cooperate but, if ' + 'defected on k times, they retaliate in all future interactions' ), tags={ 'visitor', 'reciprocity', }, substrate='prisoners_dilemma_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 3 + (False,) * 5, bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_one_strike_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_one_strike_margin_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_three_strikes_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_three_strikes_margin_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_two_strikes_0', 'prisoners_dilemma_in_the_matrix__arena__puppet_grim_two_strikes_margin_0', }, }, ), prisoners_dilemma_in_the_matrix__repeated_0=ScenarioConfig( description='partner may play either cooperate or defect', tags={ 'half_and_half', 'versus_pure_all', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_cooperator_margin_0', 'prisoners_dilemma_in_the_matrix__repeated__puppet_cooperator_margin_1', 'prisoners_dilemma_in_the_matrix__repeated__puppet_defector_margin_0', 'prisoners_dilemma_in_the_matrix__repeated__puppet_defector_margin_1', }, }, ), prisoners_dilemma_in_the_matrix__repeated_1=ScenarioConfig( description='partner typically plays cooperate', tags={ 'half_and_half', 'versus_pure_cooperator', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_cooperator_margin_0', 'prisoners_dilemma_in_the_matrix__repeated__puppet_cooperator_margin_1', }, }, ), prisoners_dilemma_in_the_matrix__repeated_2=ScenarioConfig( description='partner typically plays defect', tags={ 'half_and_half', 'versus_pure_defector', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_defector_margin_0', 'prisoners_dilemma_in_the_matrix__repeated__puppet_defector_margin_1', }, }, ), prisoners_dilemma_in_the_matrix__repeated_3=ScenarioConfig( description=('partner is a hair-trigger grim reciprocator, i.e. one ' + 'who initially cooperates but, if defected on once, will' + ' retaliate by defecting forever after'), tags={ 'half_and_half', 'reciprocity', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_grim_one_strike_margin_0', 'prisoners_dilemma_in_the_matrix__repeated__puppet_grim_one_strike_margin_1', }, }, ), prisoners_dilemma_in_the_matrix__repeated_4=ScenarioConfig( description=('partner is a two-strikes grim reciprocator, i.e. one ' + 'who initially cooperates, but if defected on twice, ' + 'will retaliate by defecting forever after'), tags={ 'half_and_half', 'reciprocity', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_grim_two_strikes_margin_0', 'prisoners_dilemma_in_the_matrix__repeated__puppet_grim_two_strikes_margin_1', }, }, ), prisoners_dilemma_in_the_matrix__repeated_5=ScenarioConfig( description='partner is a tit-for-tat conditional cooperator', tags={ 'half_and_half', 'reciprocity', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_tft_margin_0', 'prisoners_dilemma_in_the_matrix__repeated__puppet_tft_margin_1', }, }, ), prisoners_dilemma_in_the_matrix__repeated_6=ScenarioConfig( description=('partner is a tit-for-tat conditional cooperator who ' + 'occasionally plays defect instead of cooperate'), tags={ 'half_and_half', 'reciprocity', 'forgiveness', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_tft_tremble_margin_0', 'prisoners_dilemma_in_the_matrix__repeated__puppet_tft_tremble_margin_1', }, }, ), prisoners_dilemma_in_the_matrix__repeated_7=ScenarioConfig( description=('partner plays cooperate for a while then switches to ' + 'defect'), tags={ 'half_and_half', 'flexibility', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_flip_0', }, }, ), prisoners_dilemma_in_the_matrix__repeated_8=ScenarioConfig( description=('partner tries to take advantage of the focal player ' + 'by playing defect, but if punished, partner then ' + 'switches to tit-for-tat conditional cooperation'), tags={ 'half_and_half', 'teaching', 'reciprocity', 'forgiveness', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_corrigible_0', }, }, ), prisoners_dilemma_in_the_matrix__repeated_9=ScenarioConfig( description=('partner tries to take advantage of the focal player ' + 'by playing defect, but if punished, partner then ' + 'switches to noisy tit-for-tat conditional cooperation'), tags={ 'half_and_half', 'teaching', 'reciprocity', 'forgiveness', }, substrate='prisoners_dilemma_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'prisoners_dilemma_in_the_matrix__repeated__puppet_corrigible_tremble_0', }, }, ), pure_coordination_in_the_matrix__arena_0=ScenarioConfig( description=('focals are resident, a single visitor joins who may ' + 'prefer any option; whichever option it prefers, it ' + 'pursues it greedily'), tags={ 'resident', 'versus_pure_all', }, substrate='pure_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 7 + (False,) * 1, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__arena__pure_greedy_a_0', 'pure_coordination_in_the_matrix__arena__pure_greedy_b_0', 'pure_coordination_in_the_matrix__arena__pure_greedy_c_0', }, }, ), pure_coordination_in_the_matrix__arena_1=ScenarioConfig( description=('focals are resident, three visitors join who always ' + 'select the same option as their partner in the previous' + 'interaction and do so without being too greedy'), tags={ 'resident', 'versus_best_response', }, substrate='pure_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__arena__resp2prev_0', }, }, ), pure_coordination_in_the_matrix__arena_2=ScenarioConfig( description=('focals are resident, three visitors join who always ' + 'select the same option as their partner in the previous' + 'interaction and are greedy in doing so'), tags={ 'resident', 'versus_best_response', 'scarcity', }, substrate='pure_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__arena__resp2prev_greedy_0', }, }, ), pure_coordination_in_the_matrix__arena_3=ScenarioConfig( description=('visiting a background population where all initially ' + 'choose option A (without greed) and then switch '+ 'to either B or C after some time'), tags={ 'visitor', 'convention_following', 'flexibility', }, substrate='pure_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__arena__flip_a2b_0', 'pure_coordination_in_the_matrix__arena__flip_a2c_0', }, }, ), pure_coordination_in_the_matrix__arena_4=ScenarioConfig( description=('visiting a background population where all initially ' + 'choose option B (without greed) and then switch '+ 'to either A or C after some time'), tags={ 'visitor', 'convention_following', 'flexibility', }, substrate='pure_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__arena__flip_b2a_0', 'pure_coordination_in_the_matrix__arena__flip_b2c_0', }, }, ), pure_coordination_in_the_matrix__arena_5=ScenarioConfig( description=('visiting a background population where all initially ' + 'choose option C (without greed) and then switch '+ 'to either A or B after some time'), tags={ 'visitor', 'convention_following', 'flexibility', }, substrate='pure_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__arena__flip_c2a_0', 'pure_coordination_in_the_matrix__arena__flip_c2b_0', }, }, ), pure_coordination_in_the_matrix__arena_6=ScenarioConfig( description=('visiting a background population where all typically ' + 'choose option A and do not collect it too greedily'), tags={ 'visitor', 'versus_pure_type_a', 'convention_following', }, substrate='pure_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__arena__pure_a_0', }, }, ), pure_coordination_in_the_matrix__arena_7=ScenarioConfig( description=('visiting a background population where all typically ' + 'choose option B and do not collect it too greedily'), tags={ 'visitor', 'versus_pure_type_b', 'convention_following', }, substrate='pure_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__arena__pure_b_0', }, }, ), pure_coordination_in_the_matrix__arena_8=ScenarioConfig( description=('visiting a background population where all typically ' + 'choose option C and do not collect it too greedily'), tags={ 'visitor', 'versus_pure_type_c', 'convention_following', }, substrate='pure_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__arena__pure_c_0', }, }, ), pure_coordination_in_the_matrix__repeated_0=ScenarioConfig( description='meeting any pure strategy player', tags={ 'versus_pure_all', 'half_and_half', }, substrate='pure_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__repeated__pure_a_margin_0', 'pure_coordination_in_the_matrix__repeated__pure_b_margin_0', 'pure_coordination_in_the_matrix__repeated__pure_c_margin_0', }, }, ), pure_coordination_in_the_matrix__repeated_1=ScenarioConfig( description=('meeting an agent who plays the best response to ' + 'what the focal agent did in the last round.'), tags={ 'half_and_half', 'versus_best_response', }, substrate='pure_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__repeated__resp2prev_margin_0', }, }, ), pure_coordination_in_the_matrix__repeated_2=ScenarioConfig( description=('versus mixture of opponents who often flip to other ' + 'strategies after some number of interactions'), tags={ 'half_and_half', 'versus_strategy_flip', }, substrate='pure_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__repeated__pure_a_margin_0', 'pure_coordination_in_the_matrix__repeated__flip_a2b_0', 'pure_coordination_in_the_matrix__repeated__flip_a2b_1', 'pure_coordination_in_the_matrix__repeated__flip_a2c_0', 'pure_coordination_in_the_matrix__repeated__flip_a2c_1', 'pure_coordination_in_the_matrix__repeated__pure_b_margin_0', 'pure_coordination_in_the_matrix__repeated__flip_b2c_0', 'pure_coordination_in_the_matrix__repeated__flip_b2c_1', 'pure_coordination_in_the_matrix__repeated__flip_b2a_0', 'pure_coordination_in_the_matrix__repeated__flip_b2a_1', 'pure_coordination_in_the_matrix__repeated__pure_c_margin_0', 'pure_coordination_in_the_matrix__repeated__flip_c2a_0', 'pure_coordination_in_the_matrix__repeated__flip_c2a_1', 'pure_coordination_in_the_matrix__repeated__flip_c2b_0', 'pure_coordination_in_the_matrix__repeated__flip_c2b_1' }, }, ), pure_coordination_in_the_matrix__repeated_3=ScenarioConfig( description='meeting an agent who almost always chooses resource a', tags={ 'versus_pure_type_a', 'half_and_half', }, substrate='pure_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__repeated__pure_a_margin_0', }, }, ), pure_coordination_in_the_matrix__repeated_4=ScenarioConfig( description='meeting an agent who almost always chooses resource b', tags={ 'versus_pure_type_b', 'half_and_half', }, substrate='pure_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__repeated__pure_b_margin_0', }, }, ), pure_coordination_in_the_matrix__repeated_5=ScenarioConfig( description='meeting an agent who almost always chooses resource c', tags={ 'versus_pure_type_c', 'half_and_half', }, substrate='pure_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'pure_coordination_in_the_matrix__repeated__pure_c_margin_0', }, }, ), rationalizable_coordination_in_the_matrix__arena_0=ScenarioConfig( description=('focals are resident, a single visitor joins who may ' + 'prefer any option; whichever option it prefers, it ' + 'pursues it greedily'), tags={ 'resident', 'versus_pure_all', }, substrate='rationalizable_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 7 + (False,) * 1, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__arena__pure_greedy_a_0', 'rationalizable_coordination_in_the_matrix__arena__pure_greedy_b_0', 'rationalizable_coordination_in_the_matrix__arena__pure_greedy_c_0', }, }, ), rationalizable_coordination_in_the_matrix__arena_1=ScenarioConfig( description=('focals are resident, three visitors join who always ' + 'select the same option as their partner in the previous' + 'interaction and do so without being too greedy'), tags={ 'resident', 'versus_best_response', }, substrate='rationalizable_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__arena__resp2prev_0', }, }, ), rationalizable_coordination_in_the_matrix__arena_2=ScenarioConfig( description=('focals are resident, three visitors join who always ' + 'select the same option as their partner in the previous' + 'interaction and are greedy in doing so'), tags={ 'resident', 'versus_best_response', 'scarcity', }, substrate='rationalizable_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__arena__resp2prev_greedy_0', }, }, ), rationalizable_coordination_in_the_matrix__arena_3=ScenarioConfig( description=('visiting a background population where all initially ' + 'choose option A (without greed) and then switch '+ 'to either B or C after some time'), tags={ 'visitor', 'convention_following', 'flexibility', }, substrate='rationalizable_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__arena__flip_a2b_0', 'rationalizable_coordination_in_the_matrix__arena__flip_a2c_0', }, }, ), rationalizable_coordination_in_the_matrix__arena_4=ScenarioConfig( description=('visiting a background population where all initially ' + 'choose option B (without greed) and then switch '+ 'to either A or C after some time'), tags={ 'visitor', 'convention_following', 'flexibility', }, substrate='rationalizable_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__arena__flip_b2a_0', 'rationalizable_coordination_in_the_matrix__arena__flip_b2c_0', }, }, ), rationalizable_coordination_in_the_matrix__arena_5=ScenarioConfig( description=('visiting a background population where all initially ' + 'choose option C (without greed) and then switch '+ 'to either A or B after some time'), tags={ 'visitor', 'convention_following', 'flexibility', }, substrate='rationalizable_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__arena__flip_c2a_0', 'rationalizable_coordination_in_the_matrix__arena__flip_c2b_0', }, }, ), rationalizable_coordination_in_the_matrix__arena_6=ScenarioConfig( description=('visiting a background population where all typically ' + 'choose option A and do not collect it too greedily'), tags={ 'visitor', 'versus_pure_type_a', 'convention_following', }, substrate='rationalizable_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__arena__pure_a_0', }, }, ), rationalizable_coordination_in_the_matrix__arena_7=ScenarioConfig( description=('visiting a background population where all typically ' + 'choose option B and do not collect it too greedily'), tags={ 'visitor', 'versus_pure_type_b', 'convention_following', }, substrate='rationalizable_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__arena__pure_b_0', }, }, ), rationalizable_coordination_in_the_matrix__arena_8=ScenarioConfig( description=('visiting a background population where all typically ' + 'choose option C and do not collect it too greedily'), tags={ 'visitor', 'versus_pure_type_c', 'convention_following', }, substrate='rationalizable_coordination_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__arena__pure_c_0', }, }, ), rationalizable_coordination_in_the_matrix__repeated_0=ScenarioConfig( description='meeting any pure strategy player', tags={ 'versus_pure_all', 'half_and_half', }, substrate='rationalizable_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__repeated__pure_a_margin_0', 'rationalizable_coordination_in_the_matrix__repeated__pure_b_margin_0', 'rationalizable_coordination_in_the_matrix__repeated__pure_c_margin_0', }, }, ), rationalizable_coordination_in_the_matrix__repeated_1=ScenarioConfig( description=('meeting an agent who plays the best response to ' + 'what the focal agent did in the last round.'), tags={ 'half_and_half', 'versus_best_response', }, substrate='rationalizable_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__repeated__resp2prev_margin_0', }, }, ), rationalizable_coordination_in_the_matrix__repeated_2=ScenarioConfig( description=('versus mixture of opponents who often flip to other ' + 'strategies after some number of interactions'), tags={ 'half_and_half', 'versus_strategy_flip', }, substrate='rationalizable_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__repeated__pure_a_margin_0', 'rationalizable_coordination_in_the_matrix__repeated__flip_a2b_0', 'rationalizable_coordination_in_the_matrix__repeated__flip_a2b_1', 'rationalizable_coordination_in_the_matrix__repeated__flip_a2c_0', 'rationalizable_coordination_in_the_matrix__repeated__flip_a2c_1', 'rationalizable_coordination_in_the_matrix__repeated__pure_b_margin_0', 'rationalizable_coordination_in_the_matrix__repeated__flip_b2c_0', 'rationalizable_coordination_in_the_matrix__repeated__flip_b2c_1', 'rationalizable_coordination_in_the_matrix__repeated__flip_b2a_0', 'rationalizable_coordination_in_the_matrix__repeated__flip_b2a_1', 'rationalizable_coordination_in_the_matrix__repeated__pure_c_margin_0', 'rationalizable_coordination_in_the_matrix__repeated__flip_c2a_0', 'rationalizable_coordination_in_the_matrix__repeated__flip_c2a_1', 'rationalizable_coordination_in_the_matrix__repeated__flip_c2b_0', 'rationalizable_coordination_in_the_matrix__repeated__flip_c2b_1' }, }, ), rationalizable_coordination_in_the_matrix__repeated_3=ScenarioConfig( description='meeting an agent who almost always chooses resource a', tags={ 'versus_pure_type_a', 'half_and_half', }, substrate='rationalizable_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__repeated__pure_a_margin_0', }, }, ), rationalizable_coordination_in_the_matrix__repeated_4=ScenarioConfig( description='meeting an agent who almost always chooses resource b', tags={ 'versus_pure_type_b', 'half_and_half', }, substrate='rationalizable_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__repeated__pure_b_margin_0', }, }, ), rationalizable_coordination_in_the_matrix__repeated_5=ScenarioConfig( description='meeting an agent who almost always chooses resource c', tags={ 'versus_pure_type_c', 'half_and_half', }, substrate='rationalizable_coordination_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) * 1 + (False,) * 1, bots_by_role={ 'default': { 'rationalizable_coordination_in_the_matrix__repeated__pure_c_margin_0', }, }, ), running_with_scissors_in_the_matrix__arena_0=ScenarioConfig( description=('versus a background population containing bots ' + 'implementing all three pure strategies'), tags={ 'visitor', 'versus_pure_all', }, substrate='running_with_scissors_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 1 + (False,) * 7, bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__arena__rock_margin_0', 'running_with_scissors_in_the_matrix__arena__rock_margin_1', 'running_with_scissors_in_the_matrix__arena__paper_margin_0', 'running_with_scissors_in_the_matrix__arena__paper_margin_1', 'running_with_scissors_in_the_matrix__arena__scissors_margin_0', 'running_with_scissors_in_the_matrix__arena__scissors_margin_1', }, } ), running_with_scissors_in_the_matrix__arena_1=ScenarioConfig( description=('versus gullible bots'), tags={ 'deception', 'visitor', 'versus_gullible', }, substrate='running_with_scissors_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 1 + (False,) * 7, bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__arena__free_0', }, } ), running_with_scissors_in_the_matrix__arena_2=ScenarioConfig( description=('versus mixture of opponents who play rock and some who ' + 'flip to scissors after two interactions'), tags={ 'visitor', 'versus_strategy_flip', }, substrate='running_with_scissors_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 1 + (False,) * 7, bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__arena__rock_margin_0', 'running_with_scissors_in_the_matrix__arena__rock_margin_1', 'running_with_scissors_in_the_matrix__arena__flip_r2s_0', }, } ), running_with_scissors_in_the_matrix__arena_3=ScenarioConfig( description=('versus mixture of opponents who play paper and some ' + 'who flip to rock after two interactions'), tags={ 'visitor', 'versus_strategy_flip', }, substrate='running_with_scissors_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 1 + (False,) * 7, bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__arena__paper_margin_0', 'running_with_scissors_in_the_matrix__arena__paper_margin_1', 'running_with_scissors_in_the_matrix__arena__flip_p2r_0', }, } ), running_with_scissors_in_the_matrix__arena_4=ScenarioConfig( description=('versus mixture of opponents who play scissors and some ' + 'who flip to paper after two interactions'), tags={ 'visitor', 'versus_strategy_flip', }, substrate='running_with_scissors_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 1 + (False,) * 7, bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__arena__scissors_margin_0', 'running_with_scissors_in_the_matrix__arena__scissors_margin_1', 'running_with_scissors_in_the_matrix__arena__flip_s2p_0', }, } ), running_with_scissors_in_the_matrix__arena_5=ScenarioConfig( description=('visiting a population of pure paper bots'), tags={ 'visitor', 'versus_pure_paper', }, substrate='running_with_scissors_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__arena__paper_margin_0', 'running_with_scissors_in_the_matrix__arena__paper_margin_1', }, } ), running_with_scissors_in_the_matrix__arena_6=ScenarioConfig( description=('visiting a population of pure rock bots'), tags={ 'visitor', 'versus_pure_rock', }, substrate='running_with_scissors_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__arena__rock_margin_0', 'running_with_scissors_in_the_matrix__arena__rock_margin_1', }, } ), running_with_scissors_in_the_matrix__arena_7=ScenarioConfig( description=('visiting a population of pure scissors bots'), tags={ 'visitor', 'versus_pure_scissors', }, substrate='running_with_scissors_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__arena__scissors_margin_0', 'running_with_scissors_in_the_matrix__arena__scissors_margin_1', }, } ), running_with_scissors_in_the_matrix__one_shot_0=ScenarioConfig( description='versus mixed strategy opponent', tags={ 'half_and_half', 'versus_pure_all', }, substrate='running_with_scissors_in_the_matrix__one_shot', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__one_shot__rock_margin_0', 'running_with_scissors_in_the_matrix__one_shot__paper_margin_0', 'running_with_scissors_in_the_matrix__one_shot__scissors_margin_0', }, } ), running_with_scissors_in_the_matrix__one_shot_1=ScenarioConfig( description='versus pure rock opponent', tags={ 'half_and_half', 'versus_pure_rock', }, substrate='running_with_scissors_in_the_matrix__one_shot', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__one_shot__rock_margin_0', }, } ), running_with_scissors_in_the_matrix__one_shot_2=ScenarioConfig( description='versus pure paper opponent', tags={ 'half_and_half', 'versus_pure_paper', }, substrate='running_with_scissors_in_the_matrix__one_shot', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__one_shot__paper_margin_0', }, } ), running_with_scissors_in_the_matrix__one_shot_3=ScenarioConfig( description='versus pure scissors opponent', tags={ 'half_and_half', 'versus_pure_scissors', }, substrate='running_with_scissors_in_the_matrix__one_shot', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__one_shot__scissors_margin_0', }, } ), running_with_scissors_in_the_matrix__repeated_0=ScenarioConfig( description='versus mixed strategy opponent', tags={ 'half_and_half', 'versus_pure_all', }, substrate='running_with_scissors_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__repeated__rock_margin_0', 'running_with_scissors_in_the_matrix__repeated__paper_margin_0', 'running_with_scissors_in_the_matrix__repeated__scissors_margin_0', }, } ), running_with_scissors_in_the_matrix__repeated_1=ScenarioConfig( description=('versus opponent who plays the best response to ' + 'what the focal player did in the last round.'), tags={ 'half_and_half', 'versus_best_response', }, substrate='running_with_scissors_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__repeated__resp2prev_margin_0', }, } ), running_with_scissors_in_the_matrix__repeated_2=ScenarioConfig( description=('versus opponent who sometimes plays a pure strategy ' + 'but sometimes plays the best response to what the ' + 'focal player did in the last round'), tags={ 'half_and_half', 'versus_best_response', }, substrate='running_with_scissors_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__repeated__resp2prev_margin_0', 'running_with_scissors_in_the_matrix__repeated__rock_margin_0', 'running_with_scissors_in_the_matrix__repeated__paper_margin_0', 'running_with_scissors_in_the_matrix__repeated__scissors_margin_0', }, } ), running_with_scissors_in_the_matrix__repeated_3=ScenarioConfig( description=('versus mixture of opponents who often flip to other ' + 'strategies after two interactions'), tags={ 'half_and_half', 'versus_strategy_flip', }, substrate='running_with_scissors_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__repeated__rock_0', 'running_with_scissors_in_the_matrix__repeated__rock_margin_0', 'running_with_scissors_in_the_matrix__repeated__flip_r2s_0', 'running_with_scissors_in_the_matrix__repeated__paper_0', 'running_with_scissors_in_the_matrix__repeated__paper_margin_0', 'running_with_scissors_in_the_matrix__repeated__flip_p2r_0', 'running_with_scissors_in_the_matrix__repeated__scissors_0', 'running_with_scissors_in_the_matrix__repeated__scissors_margin_0', 'running_with_scissors_in_the_matrix__repeated__flip_s2p_0', }, } ), running_with_scissors_in_the_matrix__repeated_4=ScenarioConfig( description=('versus mixture of opponents who either flip to another ' + 'strategy after one interaction and keep it forever or ' + 'continue to change, always best responding to what ' + 'the focal player just did'), tags={ 'half_and_half', 'versus_strategy_flip', }, substrate='running_with_scissors_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__repeated__flip_r2s_1', 'running_with_scissors_in_the_matrix__repeated__flip_p2r_1', 'running_with_scissors_in_the_matrix__repeated__flip_s2p_1', 'running_with_scissors_in_the_matrix__repeated__resp2prev_margin_0', }, } ), running_with_scissors_in_the_matrix__repeated_5=ScenarioConfig( description='versus gullible opponent', tags={ 'deception', 'half_and_half', 'versus_gullible', }, substrate='running_with_scissors_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__repeated__free_0', }, } ), running_with_scissors_in_the_matrix__repeated_6=ScenarioConfig( description='versus pure rock opponent', tags={ 'half_and_half', 'versus_pure_rock', }, substrate='running_with_scissors_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__repeated__rock_margin_0', }, } ), running_with_scissors_in_the_matrix__repeated_7=ScenarioConfig( description='versus pure paper opponent', tags={ 'half_and_half', 'versus_pure_paper', }, substrate='running_with_scissors_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__repeated__paper_margin_0', }, } ), running_with_scissors_in_the_matrix__repeated_8=ScenarioConfig( description='versus pure scissors opponent', tags={ 'half_and_half', 'versus_pure_scissors', }, substrate='running_with_scissors_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'running_with_scissors_in_the_matrix__repeated__scissors_margin_0', }, } ), stag_hunt_in_the_matrix__arena_0=ScenarioConfig( description='visiting unconditional stag players', tags={ 'visitor', 'versus_pure_stag_players', 'convention_following', }, substrate='stag_hunt_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__arena__puppet_stag_0', 'stag_hunt_in_the_matrix__arena__puppet_stag_margin_0', }, }, ), stag_hunt_in_the_matrix__arena_1=ScenarioConfig( description='visiting unconditional hare players', tags={ 'visitor', 'versus_pure_hare_players', 'convention_following', }, substrate='stag_hunt_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__arena__puppet_hare_0', 'stag_hunt_in_the_matrix__arena__puppet_hare_margin_0', }, }, ), stag_hunt_in_the_matrix__arena_2=ScenarioConfig( description=('focals are resident and visitors are unconditional ' + 'stag players'), tags={ 'resident', 'versus_pure_stag_players', }, substrate='stag_hunt_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__arena__puppet_stag_0', 'stag_hunt_in_the_matrix__arena__puppet_stag_margin_0', }, }, ), stag_hunt_in_the_matrix__arena_3=ScenarioConfig( description=('focals are resident and visitors are unconditional' + 'hare players'), tags={ 'resident', 'versus_pure_hare_players', }, substrate='stag_hunt_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 5 + (False,) * 3, bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__arena__puppet_hare_0', 'stag_hunt_in_the_matrix__arena__puppet_hare_margin_0', }, }, ), stag_hunt_in_the_matrix__arena_4=ScenarioConfig( description=('visiting a population of hair-trigger grim ' + 'reciprocator bots who initially play stag but, if ' + 'any partner plays hare once, they give up on trying to ' + 'cooperate and play hare in all future interactions'), tags={ 'visitor', 'reciprocity', }, substrate='stag_hunt_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__arena__puppet_grim_one_strike_0', 'stag_hunt_in_the_matrix__arena__puppet_grim_one_strike_margin_0', }, }, ), stag_hunt_in_the_matrix__arena_5=ScenarioConfig( description=('visiting a population of two-strikes grim ' + 'reciprocator bots who initially play stag but, if ' + 'their partners play hare twice, they give up on trying ' + 'to cooperate and play hare in all future interactions'), tags={ 'visitor', 'reciprocity', }, substrate='stag_hunt_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) + (False,) * 7, bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__arena__puppet_grim_two_strikes_0', 'stag_hunt_in_the_matrix__arena__puppet_grim_two_strikes_margin_0', }, }, ), stag_hunt_in_the_matrix__arena_6=ScenarioConfig( description=( 'visiting a mixed population of k-strikes grim reciprocator bots ' + 'with k values from 1 to 3, they initially play stag but, if ' + 'their partners play hare k times, they then play hare in all ' + 'future interactions' ), tags={ 'visitor', 'reciprocity', }, substrate='stag_hunt_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 3 + (False,) * 5, bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__arena__puppet_grim_one_strike_0', 'stag_hunt_in_the_matrix__arena__puppet_grim_one_strike_margin_0', 'stag_hunt_in_the_matrix__arena__puppet_grim_three_strikes_0', 'stag_hunt_in_the_matrix__arena__puppet_grim_three_strikes_margin_0', 'stag_hunt_in_the_matrix__arena__puppet_grim_two_strikes_0', 'stag_hunt_in_the_matrix__arena__puppet_grim_two_strikes_margin_0', }, }, ), stag_hunt_in_the_matrix__arena_7=ScenarioConfig( description='visiting a mixture of pure hare and pure stag players', tags={ 'visitor', 'versus_pure_all', }, substrate='stag_hunt_in_the_matrix__arena', roles=('default',) * 8, is_focal=(True,) * 3 + (False,) * 5, bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__arena__puppet_stag_0', 'stag_hunt_in_the_matrix__arena__puppet_stag_margin_0', 'stag_hunt_in_the_matrix__arena__puppet_hare_0', 'stag_hunt_in_the_matrix__arena__puppet_hare_margin_0', }, }, ), stag_hunt_in_the_matrix__repeated_0=ScenarioConfig( description='partner may play either stag or hare', tags={ 'half_and_half', 'versus_pure_all', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_hare_margin_0', 'stag_hunt_in_the_matrix__repeated__puppet_hare_margin_1', 'stag_hunt_in_the_matrix__repeated__puppet_stag_margin_0', 'stag_hunt_in_the_matrix__repeated__puppet_stag_margin_1', }, }, ), stag_hunt_in_the_matrix__repeated_1=ScenarioConfig( description='partner typically plays stag', tags={ 'half_and_half', 'versus_pure_stag', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_stag_margin_0', 'stag_hunt_in_the_matrix__repeated__puppet_stag_margin_1', }, }, ), stag_hunt_in_the_matrix__repeated_2=ScenarioConfig( description='partner typically plays hare', tags={ 'half_and_half', 'versus_pure_hare', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_hare_margin_0', 'stag_hunt_in_the_matrix__repeated__puppet_hare_margin_1', }, }, ), stag_hunt_in_the_matrix__repeated_3=ScenarioConfig( description=('partner is a hair-trigger grim reciprocator, i.e. one ' + 'who initially cooperates but, if defected on once, will' + ' retaliate by defecting forever after'), tags={ 'half_and_half', 'reciprocity', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_grim_one_strike_margin_0', 'stag_hunt_in_the_matrix__repeated__puppet_grim_one_strike_margin_1', }, }, ), stag_hunt_in_the_matrix__repeated_4=ScenarioConfig( description=('partner is a two-strikes grim reciprocator, i.e. one ' + 'who initially cooperates, but if defected on twice, ' + 'will retaliate by defecting forever after'), tags={ 'half_and_half', 'reciprocity', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_grim_two_strikes_margin_0', 'stag_hunt_in_the_matrix__repeated__puppet_grim_two_strikes_margin_1', }, }, ), stag_hunt_in_the_matrix__repeated_5=ScenarioConfig( description='partner is a tit-for-tat conditional cooperator', tags={ 'half_and_half', 'reciprocity', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_tft_margin_0', 'stag_hunt_in_the_matrix__repeated__puppet_tft_margin_1', }, }, ), stag_hunt_in_the_matrix__repeated_6=ScenarioConfig( description=('partner is a tit-for-tat conditional cooperator who ' + 'occasionally plays hare instead of stag'), tags={ 'half_and_half', 'reciprocity', 'forgiveness', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_tft_tremble_margin_0', 'stag_hunt_in_the_matrix__repeated__puppet_tft_tremble_margin_1', }, }, ), stag_hunt_in_the_matrix__repeated_7=ScenarioConfig( description='partner plays stag for a while then switches to hare', tags={ 'half_and_half', 'flexibility', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_flip_0', }, }, ), stag_hunt_in_the_matrix__repeated_8=ScenarioConfig( description=('partner initially plays hare, but if punished, partner ' + 'then switches to tit-for-tat conditional cooperation'), tags={ 'half_and_half', 'teaching', 'reciprocity', 'forgiveness', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_corrigible_0', }, }, ), stag_hunt_in_the_matrix__repeated_9=ScenarioConfig( description=('partner initially plays hare, but if punished, partner ' + 'then switches to noisy tit-for-tat conditional ' + 'cooperation'), tags={ 'half_and_half', 'teaching', 'reciprocity', 'forgiveness', }, substrate='stag_hunt_in_the_matrix__repeated', roles=('default',) * 2, is_focal=(True,) + (False,), bots_by_role={ 'default': { 'stag_hunt_in_the_matrix__repeated__puppet_corrigible_tremble_0', }, }, ), territory__inside_out_0=ScenarioConfig( description='focals are resident and visited by an aggressor', tags={ 'resident', }, substrate='territory__inside_out', roles=('default',) * 5, is_focal=(True,) * 4 + (False,), bots_by_role={ 'default': { 'territory__inside_out__aggressor_0', 'territory__inside_out__aggressor_1', 'territory__inside_out__aggressor_2', 'territory__inside_out__aggressor_3', 'territory__inside_out__aggressor_with_extra_training_0', }, }, ), territory__inside_out_1=ScenarioConfig( description='visiting a population of aggressors', tags={ 'visitor', }, substrate='territory__inside_out', roles=('default',) * 5, is_focal=(True,) + (False,) * 4, bots_by_role={ 'default': { 'territory__inside_out__aggressor_0', 'territory__inside_out__aggressor_1', 'territory__inside_out__aggressor_2', 'territory__inside_out__aggressor_3', 'territory__inside_out__aggressor_with_extra_training_0', }, }, ), territory__inside_out_2=ScenarioConfig( description='focals are resident, visited by a bot that does nothing', tags={ 'resident', 'versus_noop', }, substrate='territory__inside_out', roles=('default',) * 5, is_focal=(True,) * 4 + (False,), bots_by_role={'default': {'noop_bot'}}, ), territory__inside_out_3=ScenarioConfig( description='focals visit a resident population that does nothing.', tags={ 'visitor', 'versus_noop', }, substrate='territory__inside_out', roles=('default',) * 5, is_focal=(True,) + (False,) * 4, bots_by_role={'default': {'noop_bot'}}, ), territory__inside_out_4=ScenarioConfig( description=('focals are resident, visited by a bot that claims a ' + 'moderate size territory and mostly tolerates its ' + 'neighbors'), tags={ 'resident', }, substrate='territory__inside_out', roles=('default',) * 5, is_focal=(True,) * 4 + (False,), bots_by_role={ 'default': { 'territory__inside_out__somewhat_tolerant_bot_0', 'territory__inside_out__somewhat_tolerant_bot_1',}, }, ), territory__inside_out_5=ScenarioConfig( description=('focals visit a resident population that claims a ' + 'moderate size territory and mostly tolerates its ' + 'neighbors'), tags={ 'visitor', }, substrate='territory__inside_out', roles=('default',) * 5, is_focal=(True,) + (False,) * 4, bots_by_role={ 'default': { 'territory__inside_out__somewhat_tolerant_bot_0', 'territory__inside_out__somewhat_tolerant_bot_1',}, }, ), territory__open_0=ScenarioConfig( description='focals are resident and visited by an aggressor', tags={ 'resident', }, substrate='territory__open', roles=('default',) * 9, is_focal=(True,) * 8 + (False,), bots_by_role={ 'default': { 'territory__open__aggressor_0', 'territory__open__aggressor_1', 'territory__open__aggressor_2', 'territory__open__aggressor_3', 'territory__open__aggressor_with_extra_training_0', }, }, ), territory__open_1=ScenarioConfig( description='visiting a population of aggressors', tags={ 'visitor', }, substrate='territory__open', roles=('default',) * 9, is_focal=(True,) + (False,) * 8, bots_by_role={ 'default': { 'territory__open__aggressor_0', 'territory__open__aggressor_1', 'territory__open__aggressor_2', 'territory__open__aggressor_3', 'territory__open__aggressor_with_extra_training_0', }, }, ), territory__open_2=ScenarioConfig( description='focals are resident, visited by a bot that does nothing', tags={ 'resident', 'versus_noop', }, substrate='territory__open', roles=('default',) * 9, is_focal=(True,) * 8 + (False,), bots_by_role={'default': {'noop_bot'}}, ), territory__open_3=ScenarioConfig( description='focals visit a resident population that does nothing', tags={ 'visitor', 'versus_noop', }, substrate='territory__open', roles=('default',) * 9, is_focal=(True,) + (False,) * 8, bots_by_role={'default': {'noop_bot'}}, ), territory__rooms_0=ScenarioConfig( description='focals are resident and visited by an aggressor', tags={ 'resident', }, substrate='territory__rooms', roles=('default',) * 9, is_focal=(True,) * 8 + (False,), bots_by_role={ 'default': { 'territory__rooms__aggressor_0', 'territory__rooms__aggressor_1', 'territory__rooms__aggressor_2', 'territory__rooms__aggressor_3', 'territory__rooms__aggressor_with_extra_training_0', }, }, ), territory__rooms_1=ScenarioConfig( description='visiting a population of aggressors', tags={ 'visitor', }, substrate='territory__rooms', roles=('default',) * 9, is_focal=(True,) + (False,) * 8, bots_by_role={ 'default': { 'territory__rooms__aggressor_0', 'territory__rooms__aggressor_1', 'territory__rooms__aggressor_2', 'territory__rooms__aggressor_3', 'territory__rooms__aggressor_with_extra_training_0', }, }, ), territory__rooms_2=ScenarioConfig( description='focals are resident, visited by a bot that does nothing', tags={ 'resident', 'versus_noop', }, substrate='territory__rooms', roles=('default',) * 9, is_focal=(True,) * 8 + (False,), bots_by_role={'default': {'noop_bot'}}, ), territory__rooms_3=ScenarioConfig( description='focals visit a resident population that does nothing', tags={ 'visitor', 'versus_noop', }, substrate='territory__rooms', roles=('default',) * 9, is_focal=(True,) + (False,) * 8, bots_by_role={'default': {'noop_bot'}}, ), # keep-sorted end )
meltingpot-main
meltingpot/configs/scenarios/__init__.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for the substrate: fruit_market_concentric_rivers. Example video: https://youtu.be/djmylRv1i_w This substrate has three concentric rings of water that confer a small stamina cost to players who step on them. """ from meltingpot.configs.substrates import fruit_market as base_config from meltingpot.utils.substrates import specs from ml_collections import config_dict as configdict build = base_config.build ASCII_MAP = """ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x/___________________________+x x'###########################`x x!~~~~~~~~~~~~~~~~~~~~~~~~~~~|x x!~~~~~~~~~~~~~~~~~~~~~~~~~~~|x x!~~~LLLLLLLLLLLLLLLLLLLLL~~~|x x!~~~L~~~~~~~~~~~~~~~~~~~L~~~|x x!~~~L~~~~~~~~~~~~~~~~~~~L~~~|x x!~~~L~~LLLLLLLLLLLLLLL~~L~~~|x x!~~~L~~L~~~~~~~~~~~~~L~~L~~~|x x!~~~L~~L~~~~~~~~~~~~~L~~L~~~|x x!~~~L~~L~~LLLLLLLLL~~L~~L~~~|x x!~~~L~~L~~LP~P~P~PL~~L~~L~~~|x x!~~~L~~L~~L~P~P~P~L~~L~~L~~~|x x!~~~L~~L~~L~~P~P~~L~~L~~L~~~|x x!~~~L~~L~~L~P~P~P~L~~L~~L~~~|x x!~~~L~~L~~L~~P~P~~L~~L~~L~~~|x x!~~~L~~L~~L~P~P~P~L~~L~~L~~~|x x!~~~L~~L~~LP~P~P~PL~~L~~L~~~|x x!~~~L~~L~~LLLLLLLLL~~L~~L~~~|x x!~~~L~~L~~~~~~~~~~~~~L~~L~~~|x x!~~~L~~L~~~~~~~~~~~~~L~~L~~~|x x!~~~L~~LLLLLLLLLLLLLLL~~L~~~|x x!~~~L~~~~~~~~~~~~~~~~~~~L~~~|x x!~~~L~~~~~~~~~~~~~~~~~~~L~~~|x x!~~~LLLLLLLLLLLLLLLLLLLLL~~~|x x!~~~~~~~~~~~~~~~~~~~~~~~~~~~|x x!~~~~~~~~~~~~~~~~~~~~~~~~~~~|x x!~~~~~~~~~~~~~~~~~~~~~~~~~~~|x x(---------------------------)x x<###########################>x """ # Map a character to the prefab it represents in the ASCII map. CHAR_PREFAB_MAP = { # wall prefabs "/": {"type": "all", "list": ["ground", "nw_wall_corner"]}, "'": {"type": "all", "list": ["ground", "nw_inner_wall_corner"]}, "+": {"type": "all", "list": ["ground", "ne_wall_corner"]}, "`": {"type": "all", "list": ["ground", "ne_inner_wall_corner"]}, ")": {"type": "all", "list": ["ground", "se_wall_corner"]}, "(": {"type": "all", "list": ["ground", "sw_wall_corner"]}, "_": {"type": "all", "list": ["ground", "wall_north"]}, "|": {"type": "all", "list": ["ground", "wall_east"]}, "-": {"type": "all", "list": ["ground", "wall_south"]}, "!": {"type": "all", "list": ["ground", "wall_west"]}, "#": {"type": "all", "list": ["ground", "wall_shadow_s"]}, ">": {"type": "all", "list": ["ground", "wall_shadow_se"]}, "<": {"type": "all", "list": ["ground", "wall_shadow_sw"]}, # non-wall prefabs "L": "river", "P": {"type": "all", "list": ["ground", "potential_tree", "spawn_point"]}, "~": {"type": "all", "list": ["ground", "potential_tree"]}, "x": "ground", } def get_config(): """Configuration for this substrate.""" config = base_config.get_config() # Specify the number of players to particate in each episode (optional). config.recommended_num_players = 16 # Override the map layout settings. config.layout = configdict.ConfigDict() config.layout.ascii_map = ASCII_MAP config.layout.char_prefab_map = CHAR_PREFAB_MAP # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(base_config.ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], "STAMINA": specs.float64(), "INVENTORY": specs.int64(2), "MY_OFFER": specs.int64(2), "OFFERS": specs.int64(102), "HUNGER": specs.float64(), # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(248, 248,), }) # The roles assigned to each player. config.valid_roles = frozenset({"apple_farmer", "banana_farmer"}) config.default_player_roles = ("apple_farmer",) * 8 + ("banana_farmer",) * 8 return config
meltingpot-main
meltingpot/configs/substrates/fruit_market__concentric_rivers.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Rationalizable Coordination in the Matrix. Example video: https://youtu.be/IXakuZhvrxo See _Running with Scissors in the Matrix_ for a general description of the game dynamics. Here the payoff matrix represents a coordination game with `K = 3` different ways to coordinate. Coordinating on one of the three options yields a reward of 1 for both players, another yields a reward of 2, and the third yields a reward of 3. Players have the default `11 x 11` (off center) observation window. Both players are removed and their inventories are reset after each interaction. """ from typing import Any, Dict, Mapping, Sequence from meltingpot.configs.substrates import the_matrix from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import game_object_utils from meltingpot.utils.substrates import shapes from meltingpot.utils.substrates import specs from ml_collections import config_dict PrefabConfig = game_object_utils.PrefabConfig # Warning: setting `_ENABLE_DEBUG_OBSERVATIONS = True` may cause slowdown. _ENABLE_DEBUG_OBSERVATIONS = False # The number of resources must match the (square) size of the matrix. NUM_RESOURCES = 3 # This color is yellow. RESOURCE1_COLOR = (255, 227, 11, 255) RESOURCE1_HIGHLIGHT_COLOR = (255, 214, 91, 255) RESOURCE1_COLOR_DATA = (RESOURCE1_COLOR, RESOURCE1_HIGHLIGHT_COLOR) # This color is violet. RESOURCE2_COLOR = (109, 42, 255, 255) RESOURCE2_HIGHLIGHT_COLOR = (132, 91, 255, 255) RESOURCE2_COLOR_DATA = (RESOURCE2_COLOR, RESOURCE2_HIGHLIGHT_COLOR) # This color is cyan. RESOURCE3_COLOR = (42, 188, 255, 255) RESOURCE3_HIGHLIGHT_COLOR = (91, 214, 255, 255) RESOURCE3_COLOR_DATA = (RESOURCE3_COLOR, RESOURCE3_HIGHLIGHT_COLOR) # The procedural generator replaces all 'a' chars in the default map with chars # representing specific resources, i.e. with either '1' or '2'. ASCII_MAP = """ WWWWWWWWWWWWWWWWWWWWWWWWW WPPPP W W PPPPW WPPPP PPPPW WPPPP PPPPW WPPPP PPPPW W aa W W 11 aa W W 11 W W 11 W W WW W 222 W WW 33 W 222 W WWW 33 WWWWWWWWW W W 33 111 WWW W 111 W W 22 W W W 22 W WW W W 22 W333 W W 333 W W aa W WPPPP aa PPPPW WPPPP PPPPW WPPPP PPPPW WPPPP W PPPPW WWWWWWWWWWWWWWWWWWWWWWWWW """ _resource_names = [ "resource_class1", "resource_class2", "resource_class3", ] # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "a": {"type": "choice", "list": _resource_names}, "1": _resource_names[0], "2": _resource_names[1], "3": _resource_names[2], "P": "spawn_point", "W": "wall", } _COMPASS = ["N", "E", "S", "W"] WALL = { "name": "wall", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall", "stateConfigs": [{ "state": "wall", "layer": "upperPhysical", "sprite": "Wall", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Wall"], "spriteShapes": [shapes.WALL], "palettes": [{"*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255)}], "noRotates": [False] } }, { "component": "BeamBlocker", "kwargs": { "beamType": "gameInteraction" } }, ] } SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["spawnPoints"] }], } }, { "component": "Transform", }, ] } # PLAYER_COLOR_PALETTES is a list with each entry specifying the color to use # for the player at the corresponding index. NUM_PLAYERS_UPPER_BOUND = 32 PLAYER_COLOR_PALETTES = [] for idx in range(NUM_PLAYERS_UPPER_BOUND): PLAYER_COLOR_PALETTES.append(shapes.get_palette(colors.palette[idx])) # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "interact": 0} FORWARD = {"move": 1, "turn": 0, "interact": 0} STEP_RIGHT = {"move": 2, "turn": 0, "interact": 0} BACKWARD = {"move": 3, "turn": 0, "interact": 0} STEP_LEFT = {"move": 4, "turn": 0, "interact": 0} TURN_LEFT = {"move": 0, "turn": -1, "interact": 0} TURN_RIGHT = {"move": 0, "turn": 1, "interact": 0} INTERACT = {"move": 0, "turn": 0, "interact": 1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, INTERACT, ) TARGET_SPRITE_SELF = { "name": "Self", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((50, 100, 200)), "noRotate": True, } TARGET_SPRITE_OTHER = { "name": "Other", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((200, 100, 50)), "noRotate": True, } def create_scene(): """Creates the global scene.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform", }, { "component": "TheMatrix", "kwargs": { # Prevent interaction before both interactors have collected # at least one resource. "disallowUnreadyInteractions": True, "matrix": [ # 1 2 3 [1, 0, 0], # 1 [0, 2, 0], # 2 [0, 0, 3] # 3 ], "resultIndicatorColorIntervals": [ # red # yellow # green # blue (0.0, 0.5), (0.5, 1.5), (1.5, 2.5), (2.5, 3.0) ], } }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.2 } } ] } return scene def create_resource_prefab(resource_id, color_data): """Creates resource prefab with provided `resource_id` (num) and color.""" resource_name = "resource_class{}".format(resource_id) resource_prefab = { "name": resource_name, "components": [ { "component": "StateManager", "kwargs": { "initialState": resource_name, "stateConfigs": [ {"state": resource_name + "_wait", "groups": ["resourceWaits"]}, {"state": resource_name, "layer": "lowerPhysical", "sprite": resource_name + "_sprite"}, ] }, }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [resource_name + "_sprite"], "spriteShapes": [shapes.BUTTON], "palettes": [{"*": color_data[0], "#": color_data[1], "x": (0, 0, 0, 0)}], "noRotates": [False] }, }, { "component": "Resource", "kwargs": { "resourceClass": resource_id, "visibleType": resource_name, "waitState": resource_name + "_wait", "regenerationRate": 0.04, "regenerationDelay": 10, }, }, { "component": "Destroyable", "kwargs": { "waitState": resource_name + "_wait", # It is possible to destroy resources but takes concerted # effort to do so by zapping them `initialHealth` times. "initialHealth": 3, }, }, ] } return resource_prefab def create_prefabs() -> PrefabConfig: """Returns the prefabs. Prefabs are a dictionary mapping names to template game objects that can be cloned and placed in multiple locations accoring to an ascii map. """ prefabs = { "wall": WALL, "spawn_point": SPAWN_POINT, } prefabs["resource_class1"] = create_resource_prefab(1, RESOURCE1_COLOR_DATA) prefabs["resource_class2"] = create_resource_prefab(2, RESOURCE2_COLOR_DATA) prefabs["resource_class3"] = create_resource_prefab(3, RESOURCE3_COLOR_DATA) return prefabs def create_avatar_object(player_idx: int, all_source_sprite_names: Sequence[str], target_sprite_self: Dict[str, Any], target_sprite_other: Dict[str, Any]) -> Dict[str, Any]: """Create an avatar object given self vs other sprite data.""" # Lua is 1-indexed. lua_index = player_idx + 1 # Setup the self vs other sprite mapping. source_sprite_self = "Avatar" + str(lua_index) custom_sprite_map = {source_sprite_self: target_sprite_self["name"]} for name in all_source_sprite_names: if name != source_sprite_self: custom_sprite_map[name] = target_sprite_other["name"] live_state_name = "player{}".format(lua_index) avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ {"state": live_state_name, "layer": "upperPhysical", "sprite": source_sprite_self, "contact": "avatar", "groups": ["players"]}, {"state": "playerWait", "groups": ["playerWaits"]}, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "colored_square", "spriteNames": [source_sprite_self], # A white square should never be displayed. It will always be # remapped since this is self vs other observation mode. "spriteRGBColors": [(255, 255, 255, 255)], } }, { "component": "AdditionalSprites", "kwargs": { "renderMode": "ascii_shape", "customSpriteNames": [target_sprite_self["name"], target_sprite_other["name"]], "customSpriteShapes": [target_sprite_self["shape"], target_sprite_other["shape"]], "customPalettes": [target_sprite_self["palette"], target_sprite_other["palette"]], "customNoRotates": [target_sprite_self["noRotate"], target_sprite_other["noRotate"]], } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "waitState": "playerWait", "speed": 1.0, "spawnGroup": "spawnPoints", "actionOrder": ["move", "turn", "interact"], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "interact": {"default": 0, "min": 0, "max": 1}, }, "view": { "left": 5, "right": 5, "forward": 9, "backward": 1, "centered": False }, "spriteMap": custom_sprite_map, # The following kwarg makes it possible to get rewarded even # on frames when an avatar is "dead". It is needed for in the # matrix games in order to correctly handle the case of two # players getting hit simultaneously by the same beam. "skipWaitStateRewards": False, } }, { "component": "GameInteractionZapper", "kwargs": { "cooldownTime": 2, "beamLength": 3, "beamRadius": 1, "framesTillRespawn": 50, "numResources": NUM_RESOURCES, "endEpisodeOnFirstInteraction": False, # Reset both players' inventories after each interaction. "reset_winner_inventory": True, "reset_loser_inventory": True, # Both players get removed after each interaction. "losingPlayerDies": True, "winningPlayerDies": True, # `freezeOnInteraction` is the number of frames to display the # interaction result indicator, freeze, and delay delivering # all results of interacting. "freezeOnInteraction": 16, } }, { "component": "ReadyToShootObservation", "kwargs": { "zapperComponent": "GameInteractionZapper", } }, { "component": "InventoryObserver", "kwargs": { } }, { "component": "Taste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. # No resource is most tasty when mostTastyResourceClass == -1. "mostTastyReward": 0.1, } }, { "component": "InteractionTaste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. "zeroDefaultInteractionReward": False, "extraReward": 1.0, } }, { "component": "AvatarMetricReporter", "kwargs": { "metrics": [ { # Report the inventories of both players involved in # an interaction on this frame formatted as # (self inventory, partner inventory). "name": "INTERACTION_INVENTORIES", "type": "tensor.DoubleTensor", "shape": (2, NUM_RESOURCES), "component": "GameInteractionZapper", "variable": "latest_interaction_inventories", }, *the_matrix.get_cumulant_metric_configs(NUM_RESOURCES), ] } }, ] } if _ENABLE_DEBUG_OBSERVATIONS: avatar_object["components"].append({ "component": "LocationObserver", "kwargs": {"objectIsAvatar": True, "alsoReportOrientation": True}, }) return avatar_object def get_all_source_sprite_names(num_players): all_source_sprite_names = [] for player_idx in range(0, num_players): # Lua is 1-indexed. lua_index = player_idx + 1 all_source_sprite_names.append("Avatar" + str(lua_index)) return all_source_sprite_names def create_avatar_objects(num_players): """Returns list of avatar objects of length 'num_players'.""" all_source_sprite_names = get_all_source_sprite_names(num_players) avatar_objects = [] for player_idx in range(0, num_players): game_object = create_avatar_object(player_idx, all_source_sprite_names, TARGET_SPRITE_SELF, TARGET_SPRITE_OTHER) avatar_objects.append(game_object) readiness_marker = the_matrix.create_ready_to_interact_marker(player_idx) avatar_objects.append(readiness_marker) return avatar_objects def create_world_sprite_map( num_players: int, target_sprite_other: Dict[str, Any]) -> Dict[str, str]: all_source_sprite_names = get_all_source_sprite_names(num_players) world_sprite_map = {} for name in all_source_sprite_names: world_sprite_map[name] = target_sprite_other["name"] return world_sprite_map def get_config(): """Default configuration.""" config = config_dict.ConfigDict() # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "INVENTORY", "READY_TO_SHOOT", # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES", ] config.global_observation_names = [ "WORLD.RGB", ] # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "INVENTORY": specs.inventory(3), "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES": specs.interaction_inventories(3), "WORLD.RGB": specs.rgb(192, 200), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 8 return config def build( roles: Sequence[str], config: config_dict.ConfigDict, ) -> Mapping[str, Any]: """Build substrate definition given roles.""" del config num_players = len(roles) # Build the rest of the substrate definition. substrate_definition = dict( levelName="the_matrix", levelDirectory="meltingpot/lua/levels", numPlayers=num_players, # Define upper bound of episode length since episodes end stochastically. maxEpisodeLengthFrames=5000, spriteSize=8, topology="BOUNDED", # Choose from ["BOUNDED", "TORUS"], simulation={ "map": ASCII_MAP, "gameObjects": create_avatar_objects(num_players=num_players), "scene": create_scene(), "prefabs": create_prefabs(), "charPrefabMap": CHAR_PREFAB_MAP, # worldSpriteMap is needed to make the global view used in videos be # be informative in cases where individual avatar views have had # sprites remapped to one another (example: self vs other mode). "worldSpriteMap": create_world_sprite_map(num_players, TARGET_SPRITE_OTHER), } ) return substrate_definition
meltingpot-main
meltingpot/configs/substrates/rationalizable_coordination_in_the_matrix__arena.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Collaborative Cooking: Crowded. Example video: https://youtu.be/_6j3yYbf434 The recipe they must follow is for tomato soup: 1. Add three tomatoes to the cooking pot. 2. Wait for the soup to cook (status bar completion). 3. Bring a bowl to the pot and pour the soup from the pot into the bowl. 4. Deliver the bowl of soup at the goal location. This substrate is a pure common interest game. All players share all rewards. Players have a `5 x 5` observation window. Map: Crowded: here players can pass each other in the kitchen, allowing less coordinated yet inefficient strategies by individual players. The most efficient strategies involve passing ingredients over the central counter. There is a choke point where it is likely that players who do not work as a team will get in one another's way. """ from meltingpot.configs.substrates import collaborative_cooking as base_config from meltingpot.utils.substrates import specs from ml_collections import config_dict build = base_config.build # Crowded: notice that there are more spawn points than the recommended number # of players. Since players are spawned randomly this means the numbers starting # on either side of the divider will vary from episode to episode and generally # be imbalanced. ASCII_MAP = """ ###D###O#O### #P P# P ## # # P ## C P #P ## # #P T C P# P ## # P # P ## #P ## ############# """ def get_config(): """Default configuration.""" config = base_config.get_config() # Override the map layout settings. config.layout = config_dict.ConfigDict() config.layout.ascii_map = ASCII_MAP # The specs of the environment (from a single-agent perspective). config.timestep_spec = specs.timestep({ "RGB": specs.rgb(40, 40), # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(72, 104), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 9 return config
meltingpot-main
meltingpot/configs/substrates/collaborative_cooking__crowded.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Externality Mushrooms: Dense. Example video: https://youtu.be/MwHhg7sa0xs See base config: externality_mushrooms.py. Here the map is such that mushrooms may grow anywhere on the map and most of the map can become full of mushrooms. This may sometimes make it necessary to actively avoid or destroy undesirable mushrooms. """ from meltingpot.configs.substrates import externality_mushrooms as base_config from meltingpot.utils.substrates import specs from ml_collections import config_dict build = base_config.build ASCII_MAP = """ /_____________________+ '#####################` ! | ! R G | ! R | ! | ! G | ! B O | ! B | ! R | ! | ! B G | ! | (---------------------) """ # Map a character to the prefab it represents in the ASCII map. CHAR_PREFAB_MAP = { " ": {"type": "all", "list": ["dirt", "spawn_point", "potential_mushroom"]}, "R": {"type": "all", "list": ["dirt", "red_mushroom"]}, "G": {"type": "all", "list": ["dirt", "green_mushroom"]}, "B": {"type": "all", "list": ["dirt", "blue_mushroom"]}, "O": {"type": "all", "list": ["dirt", "orange_mushroom"]}, # fence prefabs "/": {"type": "all", "list": ["dirt", "nw_wall_corner"]}, "'": {"type": "all", "list": ["dirt", "nw_inner_wall_corner"]}, "+": {"type": "all", "list": ["dirt", "ne_wall_corner"]}, "`": {"type": "all", "list": ["dirt", "ne_inner_wall_corner"]}, ")": {"type": "all", "list": ["dirt", "se_wall_corner"]}, "(": {"type": "all", "list": ["dirt", "sw_wall_corner"]}, "_": {"type": "all", "list": ["dirt", "wall_north"]}, "|": {"type": "all", "list": ["dirt", "wall_east"]}, "-": {"type": "all", "list": ["dirt", "wall_south"]}, "!": {"type": "all", "list": ["dirt", "wall_west"]}, "#": {"type": "all", "list": ["dirt", "wall_shadow_s"]}, ">": {"type": "all", "list": ["dirt", "wall_shadow_se"]}, "<": {"type": "all", "list": ["dirt", "wall_shadow_sw"]}, } def get_config(): """Default configuration.""" config = base_config.get_config() # Override the map layout settings. config.layout = config_dict.ConfigDict() config.layout.ascii_map = ASCII_MAP config.layout.char_prefab_map = CHAR_PREFAB_MAP # The specs of the environment (from a single-agent perspective). config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(112, 184), }) config.default_player_roles = ("default",) * 5 return config
meltingpot-main
meltingpot/configs/substrates/externality_mushrooms__dense.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Running with Scissors in the Matrix (two player, repeated). Example video: https://youtu.be/rZH9nUKefcU Players can move around the map and collect resources of `K` discrete types. In addition to movement, the agents have an action to fire an "interaction" beam. All players carry an inventory with the count of resources picked up since last respawn. Players can observe their own inventory but not the inventories of their coplayers. When another agent is zapped with the interaction beam, an interaction occurs. The resolution of the interactions is determined by a traditional matrix game, where there is a `K x K` payoff matrix describing the reward produced by the pure strategies available to the two players. The resources map one-to-one to the pure strategies of the matrix game. Unless stated otherwise, for the purposes of resolving the interaction, the zapping agent is considered the row player, and the zapped agent the column player. The actual strategy played depends on the resources picked up before the interaction. The more resources of a given type an agent picks up, the more committed the agent becomes to the pure strategy corresponding to that resource. In the case of running with scissors, `K = 3`, corresponding to rock, paper, and scissors pure strategies respectively. The payoff matrix is the traditional rock-paper-scissors game matrix. Running with scissors was first described in Vezhnevets et al. (2020). Two players gather rock, paper or scissor resources in the environment and can challenge one another to a 'rock, paper scissor' game, the outcome of which depends on the resources they collected. It is possible to observe the policy that one's partner is starting to implement, either by watching them pick up resources or by noting which resources are missing, and then take countermeasures. This induces a wealth of possible feinting strategies. Players can also zap resources with their interaction beam to destroy them. This creates additional scope for feinting strategies. Players have a `5 x 5` observation window. The episode has a chance of ending stochastically on every 100 step interval after step 1000. This usually allows time for 8 or more interactions. Vezhnevets, A., Wu, Y., Eckstein, M., Leblond, R. and Leibo, J.Z., 2020. OPtions as REsponses: Grounding behavioural hierarchies in multi-agent reinforcement learning. In International Conference on Machine Learning (pp. 9733-9742). PMLR. """ from typing import Any, Dict, Mapping, Sequence, Tuple from meltingpot.configs.substrates import the_matrix from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import shapes from meltingpot.utils.substrates import specs from ml_collections import config_dict # Warning: setting `_ENABLE_DEBUG_OBSERVATIONS = True` may cause slowdown. _ENABLE_DEBUG_OBSERVATIONS = False # The number of resources must match the (square) size of the matrix. NUM_RESOURCES = 3 # This color is yellow. RESOURCE1_COLOR = (255, 227, 11, 255) RESOURCE1_HIGHLIGHT_COLOR = (255, 214, 91, 255) RESOURCE1_COLOR_DATA = (RESOURCE1_COLOR, RESOURCE1_HIGHLIGHT_COLOR) # This color is violet. RESOURCE2_COLOR = (109, 42, 255, 255) RESOURCE2_HIGHLIGHT_COLOR = (132, 91, 255, 255) RESOURCE2_COLOR_DATA = (RESOURCE2_COLOR, RESOURCE2_HIGHLIGHT_COLOR) # This color is cyan. RESOURCE3_COLOR = (42, 188, 255, 255) RESOURCE3_HIGHLIGHT_COLOR = (91, 214, 255, 255) RESOURCE3_COLOR_DATA = (RESOURCE3_COLOR, RESOURCE3_HIGHLIGHT_COLOR) ASCII_MAP = """ WWWWWWWWWWWWWWWWWWWWWWW Wn n nW W WWW W W WW W W W rra app W W Wn WW rra app WW nW W rra app W W W Wn WW n nW W WWWW W W ssa W W Wn W ssa W aaa W nW W W ssa W aaa WW W W WWWW W W W WWW W Wn n nW WWWWWWWWWWWWWWWWWWWWWWW """ _resource_names = [ "resource_class1", "resource_class2", "resource_class3", ] # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "a": {"type": "choice", "list": _resource_names}, "r": _resource_names[0], "p": _resource_names[1], "s": _resource_names[2], "n": "spawn_point", "W": "wall", } _COMPASS = ["N", "E", "S", "W"] WALL = { "name": "wall", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall", "stateConfigs": [{ "state": "wall", "layer": "upperPhysical", "sprite": "Wall", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Wall"], "spriteShapes": [shapes.WALL], "palettes": [{"*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255)}], "noRotates": [False] } }, { "component": "BeamBlocker", "kwargs": { "beamType": "gameInteraction" } }, ] } SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["spawnPoints"] }], } }, { "component": "Transform", }, ] } # PLAYER_COLOR_PALETTES is a list with each entry specifying the color to use # for the player at the corresponding index. NUM_PLAYERS_UPPER_BOUND = 8 PLAYER_COLOR_PALETTES = [] for idx in range(NUM_PLAYERS_UPPER_BOUND): PLAYER_COLOR_PALETTES.append(shapes.get_palette(colors.palette[idx])) # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "interact": 0} FORWARD = {"move": 1, "turn": 0, "interact": 0} STEP_RIGHT = {"move": 2, "turn": 0, "interact": 0} BACKWARD = {"move": 3, "turn": 0, "interact": 0} STEP_LEFT = {"move": 4, "turn": 0, "interact": 0} TURN_LEFT = {"move": 0, "turn": -1, "interact": 0} TURN_RIGHT = {"move": 0, "turn": 1, "interact": 0} INTERACT = {"move": 0, "turn": 0, "interact": 1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, INTERACT, ) TARGET_SPRITE_SELF = { "name": "Self", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((50, 100, 200)), "noRotate": True, } TARGET_SPRITE_OTHER = { "name": "Other", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((200, 100, 50)), "noRotate": True, } def create_scene(): """Creates the global scene.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform", }, { "component": "TheMatrix", "kwargs": { # Prevent interaction before both interactors have collected # at least one resource. "disallowUnreadyInteractions": True, "matrix": [ [0, -10, 10], [10, 0, -10], [-10, 10, 0] ], "resultIndicatorColorIntervals": [ (-10.0, -5.0), # red (-5.0, -2.5), # yellow (-2.5, 2.5), # green (2.5, 5.0), # blue (5.0, 10.0) # violet ], } }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.2 } } ] } return scene def create_resource_prefab( resource_id: int, resource_shape: str, resource_palette: Dict[str, Tuple[int, int, int, int]]): """Creates resource prefab with provided resource_id, shape, and palette.""" resource_name = "resource_class{}".format(resource_id) resource_prefab = { "name": resource_name, "components": [ { "component": "StateManager", "kwargs": { "initialState": resource_name, "stateConfigs": [ {"state": resource_name + "_wait", "groups": ["resourceWaits"]}, {"state": resource_name, "layer": "lowerPhysical", "sprite": resource_name + "_sprite"}, ] }, }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [resource_name + "_sprite"], "spriteShapes": [resource_shape], "palettes": [resource_palette], "noRotates": [True] }, }, { "component": "Resource", "kwargs": { "resourceClass": resource_id, "visibleType": resource_name, "waitState": resource_name + "_wait", "regenerationRate": 0.02, "regenerationDelay": 15, }, }, { "component": "Destroyable", "kwargs": { "waitState": resource_name + "_wait", # It is possible to destroy resources but takes concerted # effort to do so by zapping them `initialHealth` times. "initialHealth": 3, }, }, ] } return resource_prefab def create_avatar_object( player_idx: int, all_source_sprite_names: Sequence[str], target_sprite_self: Dict[str, Any], target_sprite_other: Dict[str, Any], turn_off_default_reward: bool = False) -> Dict[str, Any]: """Create an avatar object given self vs other sprite data.""" # Lua is 1-indexed. lua_index = player_idx + 1 # Setup the self vs other sprite mapping. source_sprite_self = "Avatar" + str(lua_index) custom_sprite_map = {source_sprite_self: target_sprite_self["name"]} for name in all_source_sprite_names: if name != source_sprite_self: custom_sprite_map[name] = target_sprite_other["name"] live_state_name = "player{}".format(lua_index) avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ {"state": live_state_name, "layer": "upperPhysical", "sprite": source_sprite_self, "contact": "avatar", "groups": ["players"]}, {"state": "playerWait", "groups": ["playerWaits"]}, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "colored_square", "spriteNames": [source_sprite_self], # A white square should never be displayed. It will always be # remapped since this is self vs other observation mode. "spriteRGBColors": [(255, 255, 255, 255)], } }, { "component": "AdditionalSprites", "kwargs": { "renderMode": "ascii_shape", "customSpriteNames": [target_sprite_self["name"], target_sprite_other["name"]], "customSpriteShapes": [target_sprite_self["shape"], target_sprite_other["shape"]], "customPalettes": [target_sprite_self["palette"], target_sprite_other["palette"]], "customNoRotates": [target_sprite_self["noRotate"], target_sprite_other["noRotate"]], } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "waitState": "playerWait", "speed": 1.0, "spawnGroup": "spawnPoints", "actionOrder": ["move", "turn", "interact"], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "interact": {"default": 0, "min": 0, "max": 1}, }, "view": { "left": 2, "right": 2, "forward": 3, "backward": 1, "centered": False }, "spriteMap": custom_sprite_map, # The following kwarg makes it possible to get rewarded even # on frames when an avatar is "dead". It is needed for in the # matrix games in order to correctly handle the case of two # players getting hit simultaneously by the same beam. "skipWaitStateRewards": False, } }, { "component": "GameInteractionZapper", "kwargs": { "cooldownTime": 2, "beamLength": 3, "beamRadius": 1, "framesTillRespawn": 5, "numResources": NUM_RESOURCES, "endEpisodeOnFirstInteraction": False, # Reset both players' inventories after each interaction. "reset_winner_inventory": True, "reset_loser_inventory": True, # Both players get removed after each interaction. "losingPlayerDies": True, "winningPlayerDies": True, # `freezeOnInteraction` is the number of frames to display the # interaction result indicator, freeze, and delay delivering # all results of interacting. "freezeOnInteraction": 16, } }, { "component": "ReadyToShootObservation", "kwargs": { "zapperComponent": "GameInteractionZapper", } }, { "component": "InventoryObserver", "kwargs": { } }, { "component": "SpawnResourcesWhenAllPlayersZapped", }, { "component": "Taste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. # No resource is most tasty when mostTastyResourceClass == -1. "mostTastyReward": 0.1, } }, { "component": "InteractionTaste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. "zeroDefaultInteractionReward": turn_off_default_reward, "extraReward": 1.0, } }, { "component": "AvatarMetricReporter", "kwargs": { "metrics": [ { # Report the inventories of both players involved in # an interaction on this frame formatted as # (self inventory, partner inventory). "name": "INTERACTION_INVENTORIES", "type": "tensor.DoubleTensor", "shape": (2, NUM_RESOURCES), "component": "GameInteractionZapper", "variable": "latest_interaction_inventories", }, *the_matrix.get_cumulant_metric_configs(NUM_RESOURCES), ] } }, ] } if _ENABLE_DEBUG_OBSERVATIONS: avatar_object["components"].append({ "component": "LocationObserver", "kwargs": {"objectIsAvatar": True, "alsoReportOrientation": True}, }) return avatar_object def create_prefabs(): """Returns a dictionary mapping names to template game objects.""" prefabs = { "wall": WALL, "spawn_point": SPAWN_POINT, } prefabs["resource_class1"] = create_resource_prefab( 1, shapes.BUTTON, {"*": RESOURCE1_COLOR_DATA[0], "#": RESOURCE1_COLOR_DATA[1], "x": (0, 0, 0, 0)}) prefabs["resource_class2"] = create_resource_prefab( 2, shapes.BUTTON, {"*": RESOURCE2_COLOR_DATA[0], "#": RESOURCE2_COLOR_DATA[1], "x": (0, 0, 0, 0)}) prefabs["resource_class3"] = create_resource_prefab( 3, shapes.BUTTON, {"*": RESOURCE3_COLOR_DATA[0], "#": RESOURCE3_COLOR_DATA[1], "x": (0, 0, 0, 0)}) return prefabs def get_all_source_sprite_names(num_players): all_source_sprite_names = [] for player_idx in range(0, num_players): # Lua is 1-indexed. lua_index = player_idx + 1 all_source_sprite_names.append("Avatar" + str(lua_index)) return all_source_sprite_names def create_avatar_objects(num_players, turn_off_default_reward: bool = False): """Returns list of avatar objects of length 'num_players'.""" all_source_sprite_names = get_all_source_sprite_names(num_players) avatar_objects = [] for player_idx in range(0, num_players): game_object = create_avatar_object( player_idx, all_source_sprite_names, TARGET_SPRITE_SELF, TARGET_SPRITE_OTHER, turn_off_default_reward=turn_off_default_reward) readiness_marker = the_matrix.create_ready_to_interact_marker(player_idx) avatar_objects.append(game_object) avatar_objects.append(readiness_marker) return avatar_objects def create_world_sprite_map( num_players: int, target_sprite_other: Dict[str, Any]) -> Dict[str, str]: all_source_sprite_names = get_all_source_sprite_names(num_players) world_sprite_map = {} for name in all_source_sprite_names: world_sprite_map[name] = target_sprite_other["name"] return world_sprite_map def get_config(): """Default configuration.""" config = config_dict.ConfigDict() # Other parameters that are useful to override in training config files. config.turn_off_default_reward = False # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "INVENTORY", "READY_TO_SHOOT", # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES", ] config.global_observation_names = [ "WORLD.RGB", ] # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.rgb(40, 40), "INVENTORY": specs.inventory(3), "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES": specs.interaction_inventories(3), "WORLD.RGB": specs.rgb(120, 184), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 2 return config def build( roles: Sequence[str], config: config_dict.ConfigDict, ) -> Mapping[str, Any]: """Build substrate definition given roles.""" del config num_players = len(roles) # Build the rest of the substrate definition. substrate_definition = dict( levelName="the_matrix", levelDirectory="meltingpot/lua/levels", numPlayers=num_players, # Define upper bound of episode length since episodes end stochastically. maxEpisodeLengthFrames=5000, spriteSize=8, topology="BOUNDED", # Choose from ["BOUNDED", "TORUS"], simulation={ "map": ASCII_MAP, "gameObjects": create_avatar_objects(num_players=num_players), "scene": create_scene(), "prefabs": create_prefabs(), "charPrefabMap": CHAR_PREFAB_MAP, # worldSpriteMap is needed to make the global view used in videos be # be informative in cases where individual avatar views have had # sprites remapped to one another (example: self vs other mode). "worldSpriteMap": create_world_sprite_map(num_players, TARGET_SPRITE_OTHER), } ) return substrate_definition
meltingpot-main
meltingpot/configs/substrates/running_with_scissors_in_the_matrix__repeated.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for predator_prey__alley_hunt. Example video: https://youtu.be/ctVjhn7VYgo See predator_prey.py for a detailed description applicable to all predator_prey substrates. In this variant prey must forage for apples in a maze with many dangerous dead-end corridors where they could easily be trapped by predators. """ from meltingpot.configs.substrates import predator_prey as base_config from meltingpot.utils.substrates import specs from ml_collections import config_dict build = base_config.build ASCII_MAP = """ ;________________________, !aa''''''''''''''''''''aa| !a'''''''''a''=+''''''''a| !''=~~~+''=+''|!''=~~~+''| !''[__,!''|!''|!''[___]''| !''''a|!''|!aa|!'''''''''| !''=~~J!''|L~~J!'a'=~~~+'| !''|///!''[____]'a'|///!a| !''|///!'''''''''''[__,L~J !''[___]'XX''''X''''<*[__, !''''''''''a''''XX''<****| !'aa'''X''''''a'''XX<****| !''''''''''a''''XX''<****| !''=~~~+'''''''X''''<*=~~J !''|///!'XX''''''''=~~J;_, !''|///!''=~~~~+'a'|///!a| !''[__,!''|;__,!'a'[___]'| !''''a|!''|!aa|!'''''''''| !''=~~J!''|!''|!''=~~~+''| !''[___]''[]''|!''[___]''| !a'''''''''a''[]''''''''a| !aa''''''''''''''''''''aa| L~~~~~~~~~~~~~~~~~~~~~~~~J """ # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "*": {"type": "all", "list": ["safe_grass", "spawn_point_prey"]}, "X": {"type": "all", "list": ["tiled_floor", "spawn_point_predator"]}, "a": {"type": "all", "list": ["tiled_floor", "apple"]}, ";": "nw_wall_corner", ",": "ne_wall_corner", "J": "se_wall_corner", "L": "sw_wall_corner", "_": "wall_north", "|": "wall_east", "~": "wall_south", "!": "wall_west", "=": "nw_inner_wall_corner", "+": "ne_inner_wall_corner", "]": "se_inner_wall_corner", "[": "sw_inner_wall_corner", "'": "tiled_floor", "<": "safe_grass_w_edge", ">": "safe_grass", "/": "fill", } def get_config(): """Default configuration.""" config = base_config.get_config() # Override the map layout settings. config.layout = config_dict.ConfigDict() config.layout.ascii_map = ASCII_MAP config.layout.char_prefab_map = CHAR_PREFAB_MAP # The specs of the environment (from a single-agent perspective). config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "STAMINA": specs.float64(), # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(184, 208), }) # The roles assigned to each player. config.default_player_roles = ("predator",) * 5 + ("prey",) * 8 return config
meltingpot-main
meltingpot/configs/substrates/predator_prey__alley_hunt.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for predator_prey__orchard. Example video: https://youtu.be/gtd-ziZYJRI See predator_prey.py for a detailed description applicable to all predator_prey substrates. In this variant there are two areas of the map containing food: an apple-rich region to the north of the safe tall grass and an acorn-rich region to the east. There are two possible prey strategies focusing on either apples or acorns. However, in this case it is clear that focusing on acorns is the better strategy since they are relatively close to the safe tall grass. They can easily be collected and brought back to safety for consumption. """ from meltingpot.configs.substrates import predator_prey as base_config from meltingpot.utils.substrates import specs from ml_collections import config_dict build = base_config.build ASCII_MAP = """ /;__________,;_______,/ ;]aa'X'XX''a|!a''''aA[, !a''aaaaaa'X[]''aa&''A| !X'aaAaaaaa''''aaaaa''| !'&'aaaaaa''Aa'aaaaaa'| !a'''X''''X'''a''''''a| !aa''aaa''''''''''''aa| L~+''aaa''=~~+XXXaA=~~J ;_]'''a'X'[_,L~~~~~J;_, !XX'''a'X'''[_______]'| !'''''a''''''XX'''''''| !'r^^^^^^l'''X'A'''A''| !'zv#****#^l'''''A''''| !'''<#***##j'''A'''A''| !''r###**#>''''''A'''X| !''zv##***#^l''A'''A''| !''''zvvvvvvj''''A'&''| L+'''''''''''''''''''=J /L~~~~~~~~~~~~~~~~~~~J/ """ # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "*": {"type": "all", "list": ["safe_grass", "spawn_point_prey"]}, "&": {"type": "all", "list": ["tiled_floor", "spawn_point_prey"]}, "X": {"type": "all", "list": ["tiled_floor", "spawn_point_predator"]}, "a": {"type": "all", "list": ["tiled_floor", "apple"]}, "A": {"type": "all", "list": ["tiled_floor", "floor_acorn"]}, ";": "nw_wall_corner", ",": "ne_wall_corner", "J": "se_wall_corner", "L": "sw_wall_corner", "_": "wall_north", "|": "wall_east", "~": "wall_south", "!": "wall_west", "=": "nw_inner_wall_corner", "+": "ne_inner_wall_corner", "]": "se_inner_wall_corner", "[": "sw_inner_wall_corner", "'": "tiled_floor", "#": "safe_grass", "<": "safe_grass_w_edge", "^": "safe_grass_n_edge", ">": "safe_grass_e_edge", "v": "safe_grass_s_edge", "l": "safe_grass_ne_corner", "j": "safe_grass_se_corner", "z": "safe_grass_sw_corner", "r": "safe_grass_nw_corner", "/": "fill", } def get_config(): """Default configuration.""" config = base_config.get_config() # Override the map layout settings. config.layout = config_dict.ConfigDict() config.layout.ascii_map = ASCII_MAP config.layout.char_prefab_map = CHAR_PREFAB_MAP # The specs of the environment (from a single-agent perspective). config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "STAMINA": specs.float64(), # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(152, 184), }) # The roles assigned to each player. config.default_player_roles = ("predator",) * 5 + ("prey",) * 8 return config
meltingpot-main
meltingpot/configs/substrates/predator_prey__orchard.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Allelopathic Harvest (open). Example video: https://youtu.be/Bb0duMG0YF4 This substrate contains three different varieties of berry (red, green, & blue) and a fixed number of berry patches, which could be replanted to grow any color variety of berry. The growth rate of each berry variety depends linearly on the fraction that that color comprises of the total. Players have three planting actions with which they can replant berries in their chosen color. All players prefer to eat red berries (reward of 2 per red berry they eat versus a reward of 1 per other colored berry). Players can achieve higher return by selecting just one single color of berry to plant, but which one to pick is, in principle, difficult to coordinate (start-up problem) -- though in this case all prefer red berries, suggesting a globally rational chioce. They also always prefer to eat berries over spending time planting (free-rider problem). Allelopathic Harvest was first described in Koster et al. (2020). Köster, R., McKee, K.R., Everett, R., Weidinger, L., Isaac, W.S., Hughes, E., Duenez-Guzman, E.A., Graepel, T., Botvinick, M. and Leibo, J.Z., 2020. Model-free conventions in multi-agent reinforcement learning with heterogeneous preferences. arXiv preprint arXiv:2010.09054. """ from meltingpot.configs.substrates import allelopathic_harvest as base_config OPEN_ASCII_MAP = """ 333PPPP12PPP322P32PPP1P13P3P3 1PPPP2PP122PPP3P232121P2PP2P1 P1P3P11PPP13PPP31PPPP23PPPPPP PPPPP2P2P1P2P3P33P23PP2P2PPPP P1PPPPPPP2PPP12311PP3321PPPPP 133P2PP2PPP3PPP1PPP2213P112P1 3PPPPPPPPPPPPP31PPPPPP1P3112P PP2P21P21P33PPPPPPP3PP2PPPP1P PPPPP1P1P32P3PPP22PP1P2PPPP2P PPP3PP3122211PPP2113P3PPP1332 PP12132PP1PP1P321PP1PPPPPP1P3 PPP222P12PPPP1PPPP1PPP321P11P PPP2PPPP3P2P1PPP1P23322PP1P13 23PPP2PPPP2P3PPPP3PP3PPP3PPP2 2PPPP3P3P3PP3PP3P1P3PP11P21P1 21PPP2PP331PP3PPP2PPPPP2PP3PP P32P2PP2P1PPPPPPP12P2PPP1PPPP P3PP3P2P21P3PP2PP11PP1323P312 2P1PPPPP1PPP1P2PPP3P32P2P331P PPPPP1312P3P2PPPP3P32PPPP2P11 P3PPPP221PPP2PPPPPPPP1PPP311P 32P3PPPPPPPPPP31PPPP3PPP13PPP PPP3PPPPP3PPPPPP232P13PPPPP1P P1PP1PPP2PP3PPPPP33321PP2P3PP P13PPPP1P333PPPP2PP213PP2P3PP 1PPPPP3PP2P1PP21P3PPPP231P2PP 1331P2P12P2PPPP2PPP3P23P21PPP P3P131P3PPP13P1PPP222PPPP11PP 2P3PPPPPPPP2P323PPP2PPP1PPP2P 21PPPPPPP12P23P1PPPPPP13P3P11 """ build = base_config.build def get_config(): """Adjust default configuration.""" config = base_config.get_config() config.ascii_map = OPEN_ASCII_MAP config.default_player_roles = ( ("player_who_likes_red",) * 8 + ("player_who_likes_green",) * 8) return config
meltingpot-main
meltingpot/configs/substrates/allelopathic_harvest__open.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Pure Coordination in the Matrix. Example video: https://youtu.be/LG_qvqujxPU See _Running with Scissors in the Matrix_ for a general description of the game dynamics. Here the payoff matrix represents a pure coordination game with `K = 3` different ways to coordinate, all equally beneficial. Players have the default `11 x 11` (off center) observation window. Both players are removed and their inventories are reset after each interaction. """ from typing import Any, Dict, Mapping, Sequence from meltingpot.configs.substrates import the_matrix from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import game_object_utils from meltingpot.utils.substrates import shapes from meltingpot.utils.substrates import specs from ml_collections import config_dict PrefabConfig = game_object_utils.PrefabConfig # Warning: setting `_ENABLE_DEBUG_OBSERVATIONS = True` may cause slowdown. _ENABLE_DEBUG_OBSERVATIONS = False # The number of resources must match the (square) size of the matrix. NUM_RESOURCES = 3 # This color is red. RESOURCE1_COLOR = (150, 0, 0, 255) RESOURCE1_HIGHLIGHT_COLOR = (200, 0, 0, 255) RESOURCE1_COLOR_DATA = (RESOURCE1_COLOR, RESOURCE1_HIGHLIGHT_COLOR) # This color is green. RESOURCE2_COLOR = (0, 150, 0, 255) RESOURCE2_HIGHLIGHT_COLOR = (0, 200, 0, 255) RESOURCE2_COLOR_DATA = (RESOURCE2_COLOR, RESOURCE2_HIGHLIGHT_COLOR) # This color is blue. RESOURCE3_COLOR = (0, 0, 150, 255) RESOURCE3_HIGHLIGHT_COLOR = (0, 0, 200, 255) RESOURCE3_COLOR_DATA = (RESOURCE3_COLOR, RESOURCE3_HIGHLIGHT_COLOR) # The procedural generator replaces all 'a' chars in the default map with chars # representing specific resources, i.e. with either '1' or '2'. ASCII_MAP = """ WWWWWWWWWWWWWWWWWWWWWWWWW WPPPP W W PPPPW WPPPP PPPPW WPPPP PPPPW WPPPP PPPPW W aa W W 11 aa W W 11 W W 11 W W WW W 222 W WW 33 W 222 W WWW 33 WWWWWWWWW W W 33 111 WWW W 111 W W 22 W W W 22 W WW W W 22 W333 W W 333 W W aa W WPPPP aa PPPPW WPPPP PPPPW WPPPP PPPPW WPPPP W PPPPW WWWWWWWWWWWWWWWWWWWWWWWWW """ _resource_names = [ "resource_class1", "resource_class2", "resource_class3", ] # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "a": {"type": "choice", "list": _resource_names}, "1": _resource_names[0], "2": _resource_names[1], "3": _resource_names[2], "P": "spawn_point", "W": "wall", } _COMPASS = ["N", "E", "S", "W"] WALL = { "name": "wall", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall", "stateConfigs": [{ "state": "wall", "layer": "upperPhysical", "sprite": "Wall", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Wall"], "spriteShapes": [shapes.WALL], "palettes": [{"*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255)}], "noRotates": [False] } }, { "component": "BeamBlocker", "kwargs": { "beamType": "gameInteraction" } }, ] } SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["spawnPoints"] }], } }, { "component": "Transform", }, ] } # PLAYER_COLOR_PALETTES is a list with each entry specifying the color to use # for the player at the corresponding index. NUM_PLAYERS_UPPER_BOUND = 32 PLAYER_COLOR_PALETTES = [] for idx in range(NUM_PLAYERS_UPPER_BOUND): PLAYER_COLOR_PALETTES.append(shapes.get_palette(colors.palette[idx])) # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "interact": 0} FORWARD = {"move": 1, "turn": 0, "interact": 0} STEP_RIGHT = {"move": 2, "turn": 0, "interact": 0} BACKWARD = {"move": 3, "turn": 0, "interact": 0} STEP_LEFT = {"move": 4, "turn": 0, "interact": 0} TURN_LEFT = {"move": 0, "turn": -1, "interact": 0} TURN_RIGHT = {"move": 0, "turn": 1, "interact": 0} INTERACT = {"move": 0, "turn": 0, "interact": 1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, INTERACT, ) TARGET_SPRITE_SELF = { "name": "Self", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((50, 100, 200)), "noRotate": True, } TARGET_SPRITE_OTHER = { "name": "Other", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((200, 100, 50)), "noRotate": True, } def create_scene(): """Creates the global scene.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform", }, { "component": "TheMatrix", "kwargs": { # Prevent interaction before both interactors have collected # at least one resource. "disallowUnreadyInteractions": True, "matrix": [ # 1 2 3 [1, 0, 0], # 1 [0, 1, 0], # 2 [0, 0, 1] # 3 ], "resultIndicatorColorIntervals": [ # red # yellow # green # blue # violet (0.0, 0.2), (0.2, 0.4), (0.4, 0.6), (0.6, 0.8), (0.8, 1.0) ], } }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.2 } } ] } return scene def create_resource_prefab(resource_id, color_data): """Creates resource prefab with provided `resource_id` (num) and color.""" resource_name = "resource_class{}".format(resource_id) resource_prefab = { "name": resource_name, "components": [ { "component": "StateManager", "kwargs": { "initialState": resource_name, "stateConfigs": [ {"state": resource_name + "_wait", "groups": ["resourceWaits"]}, {"state": resource_name, "layer": "lowerPhysical", "sprite": resource_name + "_sprite"}, ] }, }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [resource_name + "_sprite"], "spriteShapes": [shapes.BUTTON], "palettes": [{"*": color_data[0], "#": color_data[1], "x": (0, 0, 0, 0)}], "noRotates": [False] }, }, { "component": "Resource", "kwargs": { "resourceClass": resource_id, "visibleType": resource_name, "waitState": resource_name + "_wait", "regenerationRate": 0.04, "regenerationDelay": 10, }, }, { "component": "Destroyable", "kwargs": { "waitState": resource_name + "_wait", # It is possible to destroy resources but takes concerted # effort to do so by zapping them `initialHealth` times. "initialHealth": 3, }, }, ] } return resource_prefab def create_prefabs() -> PrefabConfig: """Returns the prefabs. Prefabs are a dictionary mapping names to template game objects that can be cloned and placed in multiple locations accoring to an ascii map. """ prefabs = { "wall": WALL, "spawn_point": SPAWN_POINT, } prefabs["resource_class1"] = create_resource_prefab(1, RESOURCE1_COLOR_DATA) prefabs["resource_class2"] = create_resource_prefab(2, RESOURCE2_COLOR_DATA) prefabs["resource_class3"] = create_resource_prefab(3, RESOURCE3_COLOR_DATA) return prefabs def create_avatar_object(player_idx: int, all_source_sprite_names: Sequence[str], target_sprite_self: Dict[str, Any], target_sprite_other: Dict[str, Any]) -> Dict[str, Any]: """Create an avatar object given self vs other sprite data.""" # Lua is 1-indexed. lua_index = player_idx + 1 # Setup the self vs other sprite mapping. source_sprite_self = "Avatar" + str(lua_index) custom_sprite_map = {source_sprite_self: target_sprite_self["name"]} for name in all_source_sprite_names: if name != source_sprite_self: custom_sprite_map[name] = target_sprite_other["name"] live_state_name = "player{}".format(lua_index) avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ {"state": live_state_name, "layer": "upperPhysical", "sprite": source_sprite_self, "contact": "avatar", "groups": ["players"]}, {"state": "playerWait", "groups": ["playerWaits"]}, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "colored_square", "spriteNames": [source_sprite_self], # A white square should never be displayed. It will always be # remapped since this is self vs other observation mode. "spriteRGBColors": [(255, 255, 255, 255)], } }, { "component": "AdditionalSprites", "kwargs": { "renderMode": "ascii_shape", "customSpriteNames": [target_sprite_self["name"], target_sprite_other["name"]], "customSpriteShapes": [target_sprite_self["shape"], target_sprite_other["shape"]], "customPalettes": [target_sprite_self["palette"], target_sprite_other["palette"]], "customNoRotates": [target_sprite_self["noRotate"], target_sprite_other["noRotate"]], } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "waitState": "playerWait", "speed": 1.0, "spawnGroup": "spawnPoints", "actionOrder": ["move", "turn", "interact"], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "interact": {"default": 0, "min": 0, "max": 1}, }, "view": { "left": 5, "right": 5, "forward": 9, "backward": 1, "centered": False }, "spriteMap": custom_sprite_map, # The following kwarg makes it possible to get rewarded even # on frames when an avatar is "dead". It is needed for in the # matrix games in order to correctly handle the case of two # players getting hit simultaneously by the same beam. "skipWaitStateRewards": False, } }, { "component": "GameInteractionZapper", "kwargs": { "cooldownTime": 2, "beamLength": 3, "beamRadius": 1, "framesTillRespawn": 50, "numResources": NUM_RESOURCES, "endEpisodeOnFirstInteraction": False, # Reset both players' inventories after each interaction. "reset_winner_inventory": True, "reset_loser_inventory": True, # Both players get removed after each interaction. "losingPlayerDies": True, "winningPlayerDies": True, # `freezeOnInteraction` is the number of frames to display the # interaction result indicator, freeze, and delay delivering # all results of interacting. "freezeOnInteraction": 16, } }, { "component": "ReadyToShootObservation", "kwargs": { "zapperComponent": "GameInteractionZapper", } }, { "component": "InventoryObserver", "kwargs": { } }, { "component": "Taste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. # No resource is most tasty when mostTastyResourceClass == -1. "mostTastyReward": 0.1, } }, { "component": "InteractionTaste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. "zeroDefaultInteractionReward": False, "extraReward": 1.0, } }, { "component": "AvatarMetricReporter", "kwargs": { "metrics": [ { # Report the inventories of both players involved in # an interaction on this frame formatted as # (self inventory, partner inventory). "name": "INTERACTION_INVENTORIES", "type": "tensor.DoubleTensor", "shape": (2, NUM_RESOURCES), "component": "GameInteractionZapper", "variable": "latest_interaction_inventories", }, *the_matrix.get_cumulant_metric_configs(NUM_RESOURCES), ] } }, ] } if _ENABLE_DEBUG_OBSERVATIONS: avatar_object["components"].append({ "component": "LocationObserver", "kwargs": {"objectIsAvatar": True, "alsoReportOrientation": True}, }) return avatar_object def get_all_source_sprite_names(num_players): all_source_sprite_names = [] for player_idx in range(0, num_players): # Lua is 1-indexed. lua_index = player_idx + 1 all_source_sprite_names.append("Avatar" + str(lua_index)) return all_source_sprite_names def create_avatar_objects(num_players): """Returns list of avatar objects of length 'num_players'.""" all_source_sprite_names = get_all_source_sprite_names(num_players) avatar_objects = [] for player_idx in range(0, num_players): game_object = create_avatar_object(player_idx, all_source_sprite_names, TARGET_SPRITE_SELF, TARGET_SPRITE_OTHER) avatar_objects.append(game_object) readiness_marker = the_matrix.create_ready_to_interact_marker(player_idx) avatar_objects.append(readiness_marker) return avatar_objects def create_world_sprite_map( num_players: int, target_sprite_other: Dict[str, Any]) -> Dict[str, str]: all_source_sprite_names = get_all_source_sprite_names(num_players) world_sprite_map = {} for name in all_source_sprite_names: world_sprite_map[name] = target_sprite_other["name"] return world_sprite_map def get_config(): """Default configuration.""" config = config_dict.ConfigDict() # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "INVENTORY", "READY_TO_SHOOT", # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES", ] config.global_observation_names = [ "WORLD.RGB", ] # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "INVENTORY": specs.inventory(3), "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES": specs.interaction_inventories(3), "WORLD.RGB": specs.rgb(192, 200), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 8 return config def build( roles: Sequence[str], config: config_dict.ConfigDict, ) -> Mapping[str, Any]: """Build substrate definition given roles.""" del config num_players = len(roles) # Build the rest of the substrate definition. substrate_definition = dict( levelName="the_matrix", levelDirectory="meltingpot/lua/levels", numPlayers=num_players, # Define upper bound of episode length since episodes end stochastically. maxEpisodeLengthFrames=5000, spriteSize=8, topology="BOUNDED", # Choose from ["BOUNDED", "TORUS"], simulation={ "map": ASCII_MAP, "gameObjects": create_avatar_objects(num_players=num_players), "scene": create_scene(), "prefabs": create_prefabs(), "charPrefabMap": CHAR_PREFAB_MAP, # worldSpriteMap is needed to make the global view used in videos be # be informative in cases where individual avatar views have had # sprites remapped to one another (example: self vs other mode). "worldSpriteMap": create_world_sprite_map(num_players, TARGET_SPRITE_OTHER), } ) return substrate_definition
meltingpot-main
meltingpot/configs/substrates/pure_coordination_in_the_matrix__arena.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Commons Harvest: Partnership. Example video: https://youtu.be/dH_0-APGKSs See _Commons Harvest: Open_ for the general description of the mechanics at play in this substrate. This substrate is similar to _Commons Harvest: Closed_, except that it now requires two players to work together to defend a room of apples (there are two entrance corridors to defend). It requires effective cooperation both to defend the doors and to avoid over-harvesting. It can be seen as a test of whether or not agents can learn to trust their partners to (a) defend their shared territory from invasion, and (b) act sustainably with regard to their shared resources. This is the kind of trust born of mutual self interest. To be successful, agents must recognize the alignment of their interests with those of their partner and act accordingly. """ from typing import Any, Dict, Mapping, Sequence from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import shapes from meltingpot.utils.substrates import specs from ml_collections import config_dict import numpy as np # Warning: setting `_ENABLE_DEBUG_OBSERVATIONS = True` may cause slowdown. _ENABLE_DEBUG_OBSERVATIONS = False APPLE_RESPAWN_RADIUS = 2.0 REGROWTH_PROBABILITIES = [0.0, 0.001, 0.005, 0.025] ASCII_MAP = """ WWWWWWWWWWWWWWWWWWWWWWWW WAAA A II A AAAW WAA AAA II AAA AAW WA AAAAAIIAAAAA AW W AAA II AAA W W A II A W W A II A W W AAA Q WW Q AAA W WAAAAA II AAAAAW W AAA WWWWWWWWWW AAA W W A WW A W WWWWWWWWWW WW WWWWWWWWWW W WW W W WWWWWWWWWWWWWWWWWW W W PPPPPPPPPPPPPPPPPP W W PPPPPPPPPPPPPPPPPPPP W WPPPPPPPPPPPPPPPPPPPPPPW WWWWWWWWWWWWWWWWWWWWWWWW """ # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "P": {"type": "all", "list": ["floor", "spawn_point"]}, "Q": {"type": "all", "list": ["floor", "inside_spawn_point"]}, " ": "floor", "W": "wall", "A": {"type": "all", "list": ["grass", "apple"]}, "I": {"type": "all", "list": [ "floor", "hidden_role_based_punishment_tile"]}, } _COMPASS = ["N", "E", "S", "W"] FLOOR = { "name": "floor", "components": [ { "component": "StateManager", "kwargs": { "initialState": "floor", "stateConfigs": [{ "state": "floor", "layer": "background", "sprite": "Floor", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Floor"], "spriteShapes": [shapes.GRAINY_FLOOR], "palettes": [{"*": (220, 205, 185, 255), "+": (210, 195, 175, 255),}], "noRotates": [False] } }, ] } GRASS = { "name": "grass", "components": [ { "component": "StateManager", "kwargs": { "initialState": "grass", "stateConfigs": [ { "state": "grass", "layer": "background", "sprite": "Grass" }, { "state": "dessicated", "layer": "background", "sprite": "Floor" }, ], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Grass", "Floor"], "spriteShapes": [ shapes.GRASS_STRAIGHT, shapes.GRAINY_FLOOR ], "palettes": [{ "*": (158, 194, 101, 255), "@": (170, 207, 112, 255) }, { "*": (220, 205, 185, 255), "+": (210, 195, 175, 255), }], "noRotates": [False, False] } }, ] } WALL = { "name": "wall", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall", "stateConfigs": [{ "state": "wall", "layer": "upperPhysical", "sprite": "Wall", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Wall"], "spriteShapes": [shapes.WALL], "palettes": [{"*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255)}], "noRotates": [False] } }, { "component": "BeamBlocker", "kwargs": { "beamType": "zapHit" } }, ] } SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["spawnPoints"] }], } }, { "component": "Transform", }, ] } INSIDE_SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["insideSpawnPoints"] }], } }, { "component": "Transform", }, ] } HIDDEN_ROLE_BASED_PUNISHMENT_TILE = { "name": "hiddenRoleBasedRewardTile", "components": [ { "component": "StateManager", "kwargs": { "initialState": "active", "stateConfigs": [{ "state": "active", "layer": "alternateLogic", }], } }, {"component": "Transform",}, {"component": "RoleBasedRewardTile", "kwargs": { "avatarRoleComponent": "Role", "getRoleFunction": "getRole", "rolesToRewards": {"putative_cooperator": -10}, }} ] } # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "fireZap": 0} FORWARD = {"move": 1, "turn": 0, "fireZap": 0} STEP_RIGHT = {"move": 2, "turn": 0, "fireZap": 0} BACKWARD = {"move": 3, "turn": 0, "fireZap": 0} STEP_LEFT = {"move": 4, "turn": 0, "fireZap": 0} TURN_LEFT = {"move": 0, "turn": -1, "fireZap": 0} TURN_RIGHT = {"move": 0, "turn": 1, "fireZap": 0} FIRE_ZAP = {"move": 0, "turn": 0, "fireZap": 1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, FIRE_ZAP, ) TARGET_SPRITE_SELF = { "name": "Self", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((50, 100, 200)), "noRotate": True, } def create_scene(): """Creates the scene with the provided args controlling apple regrowth.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform", }, { "component": "Neighborhoods", "kwargs": {} }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.15 } } ] } return scene def create_apple_prefab(regrowth_radius=-1.0, # pylint: disable=dangerous-default-value regrowth_probabilities=[0, 0.0, 0.0, 0.0]): """Creates the apple prefab with the provided settings.""" growth_rate_states = [ { "state": "apple", "layer": "lowerPhysical", "sprite": "Apple", "groups": ["apples"] }, { "state": "appleWait", "layer": "logic", "sprite": "AppleWait", }, ] # Enumerate all possible states for a potential apple. There is one state for # each regrowth rate i.e., number of nearby apples. upper_bound_possible_neighbors = np.floor(np.pi*regrowth_radius**2+1)+1 for i in range(int(upper_bound_possible_neighbors)): growth_rate_states.append(dict(state="appleWait_{}".format(i), layer="logic", groups=["waits_{}".format(i)], sprite="AppleWait")) apple_prefab = { "name": "apple", "components": [ { "component": "StateManager", "kwargs": { "initialState": "apple", "stateConfigs": growth_rate_states, } }, { "component": "Transform", "kwargs": { "position": (0, 0), "orientation": "N" } }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Apple", "AppleWait"], "spriteShapes": [shapes.APPLE, shapes.FILL], "palettes": [ {"x": (0, 0, 0, 0), "*": (214, 88, 88, 255), "#": (194, 79, 79, 255), "o": (53, 132, 49, 255), "|": (102, 51, 61, 255)}, {"i": (0, 0, 0, 0)}], "noRotates": [True, True] } }, { "component": "Edible", "kwargs": { "liveState": "apple", "waitState": "appleWait", "rewardForEating": 1.0, } }, { "component": "DensityRegrow", "kwargs": { "liveState": "apple", "waitState": "appleWait", "radius": regrowth_radius, "regrowthProbabilities": regrowth_probabilities, } }, ] } return apple_prefab def create_prefabs(regrowth_radius=-1.0, # pylint: disable=dangerous-default-value regrowth_probabilities=[0, 0.0, 0.0, 0.0]): """Returns a dictionary mapping names to template game objects.""" prefabs = { "floor": FLOOR, "grass": GRASS, "wall": WALL, "spawn_point": SPAWN_POINT, "inside_spawn_point": INSIDE_SPAWN_POINT, "hidden_role_based_punishment_tile": HIDDEN_ROLE_BASED_PUNISHMENT_TILE, } prefabs["apple"] = create_apple_prefab( regrowth_radius=regrowth_radius, regrowth_probabilities=regrowth_probabilities) return prefabs def create_avatar_object(player_idx: int, target_sprite_self: Dict[str, Any], spawn_group: str) -> Mapping[str, Any]: """Create an avatar object that always sees itself as blue.""" # Lua is 1-indexed. lua_index = player_idx + 1 # Setup the self vs other sprite mapping. source_sprite_self = "Avatar" + str(lua_index) custom_sprite_map = {source_sprite_self: target_sprite_self["name"]} live_state_name = "player{}".format(lua_index) avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ {"state": live_state_name, "layer": "upperPhysical", "sprite": source_sprite_self, "contact": "avatar", "groups": ["players"]}, {"state": "playerWait", "groups": ["playerWaits"]}, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [source_sprite_self], "spriteShapes": [shapes.CUTE_AVATAR], "palettes": [shapes.get_palette( colors.human_readable[player_idx])], "noRotates": [True] } }, { "component": "AdditionalSprites", "kwargs": { "renderMode": "ascii_shape", "customSpriteNames": [target_sprite_self["name"]], "customSpriteShapes": [target_sprite_self["shape"]], "customPalettes": [target_sprite_self["palette"]], "customNoRotates": [target_sprite_self["noRotate"]], } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "waitState": "playerWait", "speed": 1.0, "spawnGroup": spawn_group, "postInitialSpawnGroup": "spawnPoints", "actionOrder": ["move", "turn", "fireZap"], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "fireZap": {"default": 0, "min": 0, "max": 1}, }, "view": { "left": 5, "right": 5, "forward": 9, "backward": 1, "centered": False }, "spriteMap": custom_sprite_map, } }, { "component": "Zapper", "kwargs": { "cooldownTime": 1, "beamLength": 4, "beamRadius": 1, "framesTillRespawn": 100, "penaltyForBeingZapped": 0, "rewardForZapping": 0, } }, { "component": "ReadyToShootObservation", }, { "component": "Role", "kwargs": { "role": "none", } }, ] } if _ENABLE_DEBUG_OBSERVATIONS: avatar_object["components"].append({ "component": "LocationObserver", "kwargs": {"objectIsAvatar": True, "alsoReportOrientation": True}, }) return avatar_object def create_avatar_objects(num_players): """Returns list of avatar objects of length 'num_players'.""" avatar_objects = [] for player_idx in range(0, num_players): spawn_group = "spawnPoints" if player_idx < 2: # The first two player slots always spawn inside the rooms. spawn_group = "insideSpawnPoints" game_object = create_avatar_object(player_idx, TARGET_SPRITE_SELF, spawn_group=spawn_group) avatar_objects.append(game_object) return avatar_objects def get_config(): """Default configuration for training on the commons_harvest level.""" config = config_dict.ConfigDict() # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "READY_TO_SHOOT", ] config.global_observation_names = [ "WORLD.RGB", ] # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(144, 192), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 7 return config def build( roles: Sequence[str], config: config_dict.ConfigDict, ) -> Mapping[str, Any]: """Build substrate definition given player roles.""" del config num_players = len(roles) # Build the rest of the substrate definition. substrate_definition = dict( levelName="commons_harvest", levelDirectory="meltingpot/lua/levels", numPlayers=num_players, # Define upper bound of episode length since episodes end stochastically. maxEpisodeLengthFrames=5000, spriteSize=8, topology="BOUNDED", # Choose from ["BOUNDED", "TORUS"], simulation={ "map": ASCII_MAP, "gameObjects": create_avatar_objects(num_players), "prefabs": create_prefabs(APPLE_RESPAWN_RADIUS, REGROWTH_PROBABILITIES), "charPrefabMap": CHAR_PREFAB_MAP, "scene": create_scene(), }, ) return substrate_definition
meltingpot-main
meltingpot/configs/substrates/commons_harvest__partnership.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Collaborative Cooking: Circuit. Example video: https://youtu.be/2nXe5OPvJ7g The recipe they must follow is for tomato soup: 1. Add three tomatoes to the cooking pot. 2. Wait for the soup to cook (status bar completion). 3. Bring a bowl to the pot and pour the soup from the pot into the bowl. 4. Deliver the bowl of soup at the goal location. This substrate is a pure common interest game. All players share all rewards. Players have a `5 x 5` observation window. Map: Counter Circuit: Players are able to cook and deliver soups by themselves through walking around the entire circuit. However, there exists a more optimal coordinated strategy whereby players pass tomatoes across the counter. Additionally, there are the clockwise and anti-clockwise strategies as in the Ring layout. """ from meltingpot.configs.substrates import collaborative_cooking as base_config from meltingpot.utils.substrates import specs from ml_collections import config_dict build = base_config.build # Counter Circuit: Another layout where it is possible for agents to work # independently but more efficient if they work together, with one agent passing # tomatoes to the other. ASCII_MAP = """ x###CC### x#P # xD #### T x# P# x###OO### """ def get_config(): """Default configuration.""" config = base_config.get_config() # Override the map layout settings. config.layout = config_dict.ConfigDict() config.layout.ascii_map = ASCII_MAP # The specs of the environment (from a single-agent perspective). config.timestep_spec = specs.timestep({ "RGB": specs.rgb(40, 40), # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(40, 72), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 2 return config
meltingpot-main
meltingpot/configs/substrates/collaborative_cooking__circuit.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Commons Harvest: Open. Example video: https://youtu.be/lZ-qpPP4BNE Apples are spread around the map and can be consumed for a reward of 1. Apples that have been consumed regrow with a per-step probability that depends on the number of uneaten apples in a `L2` norm neighborhood of radius 2 (by default). After an apple has been eaten and thus removed, its regrowth probability depends on the number of uneaten apples still in its local neighborhood. With standard parameters, it the grown rate decreases as the number of uneaten apples in the neighborhood decreases and when there are zero uneaten apples in the neighborhood then the regrowth rate is zero. As a consequence, a patch of apples that collectively doesn't have any nearby apples, can be irrevocably lost if all apples in the patch are consumed. Therefore, agents must exercise restraint when consuming apples within a patch. Notice that in a single agent situation, there is no incentive to collect the last apple in a patch (except near the end of the episode). However, in a multi-agent situation, there is an incentive for any agent to consume the last apple rather than risk another agent consuming it. This creates a tragedy of the commons from which the substrate derives its name. This mechanism was first described in Janssen et al (2010) and adapted for multi-agent reinforcement learning in Perolat et al (2017). Janssen, M.A., Holahan, R., Lee, A. and Ostrom, E., 2010. Lab experiments for the study of social-ecological systems. Science, 328(5978), pp.613-617. Perolat, J., Leibo, J.Z., Zambaldi, V., Beattie, C., Tuyls, K. and Graepel, T., 2017. A multi-agent reinforcement learning model of common-pool resource appropriation. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 3646-3655). """ from typing import Any, Dict, Mapping, Sequence from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import shapes from meltingpot.utils.substrates import specs from ml_collections import config_dict import numpy as np # Warning: setting `_ENABLE_DEBUG_OBSERVATIONS = True` may cause slowdown. _ENABLE_DEBUG_OBSERVATIONS = False APPLE_RESPAWN_RADIUS = 2.0 REGROWTH_PROBABILITIES = [0.0, 0.0025, 0.005, 0.025] ASCII_MAP = """ WWWWWWWWWWWWWWWWWWWWWWWW WAAA A A AAAW WAA AAA AAA AAW WA AAAAA AAAAA AW W AAA AAA W W A A W W A A W W AAA Q Q AAA W WAAAAA AAAAAW W AAA AAA W W A A W W W W W W W W PPPPPPPPPPPPPPPPPP W W PPPPPPPPPPPPPPPPPPPP W WPPPPPPPPPPPPPPPPPPPPPPW WWWWWWWWWWWWWWWWWWWWWWWW """ # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "P": {"type": "all", "list": ["floor", "spawn_point"]}, "Q": {"type": "all", "list": ["floor", "inside_spawn_point"]}, " ": "floor", "W": "wall", "A": {"type": "all", "list": ["grass", "apple"]}, } _COMPASS = ["N", "E", "S", "W"] FLOOR = { "name": "floor", "components": [ { "component": "StateManager", "kwargs": { "initialState": "floor", "stateConfigs": [{ "state": "floor", "layer": "background", "sprite": "Floor", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Floor"], "spriteShapes": [shapes.GRAINY_FLOOR], "palettes": [{"*": (220, 205, 185, 255), "+": (210, 195, 175, 255),}], "noRotates": [False] } }, ] } GRASS = { "name": "grass", "components": [ { "component": "StateManager", "kwargs": { "initialState": "grass", "stateConfigs": [ { "state": "grass", "layer": "background", "sprite": "Grass" }, { "state": "dessicated", "layer": "background", "sprite": "Floor" }, ], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Grass", "Floor"], "spriteShapes": [ shapes.GRASS_STRAIGHT, shapes.GRAINY_FLOOR ], "palettes": [{ "*": (158, 194, 101, 255), "@": (170, 207, 112, 255) }, { "*": (220, 205, 185, 255), "+": (210, 195, 175, 255), }], "noRotates": [False, False] } }, ] } WALL = { "name": "wall", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall", "stateConfigs": [{ "state": "wall", "layer": "upperPhysical", "sprite": "Wall", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Wall"], "spriteShapes": [shapes.WALL], "palettes": [{"*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255)}], "noRotates": [False] } }, { "component": "BeamBlocker", "kwargs": { "beamType": "zapHit" } }, ] } SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["spawnPoints"] }], } }, { "component": "Transform", }, ] } INSIDE_SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["insideSpawnPoints"] }], } }, { "component": "Transform", }, ] } # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "fireZap": 0} FORWARD = {"move": 1, "turn": 0, "fireZap": 0} STEP_RIGHT = {"move": 2, "turn": 0, "fireZap": 0} BACKWARD = {"move": 3, "turn": 0, "fireZap": 0} STEP_LEFT = {"move": 4, "turn": 0, "fireZap": 0} TURN_LEFT = {"move": 0, "turn": -1, "fireZap": 0} TURN_RIGHT = {"move": 0, "turn": 1, "fireZap": 0} FIRE_ZAP = {"move": 0, "turn": 0, "fireZap": 1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, FIRE_ZAP, ) TARGET_SPRITE_SELF = { "name": "Self", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((50, 100, 200)), "noRotate": True, } def create_scene(): """Creates the scene with the provided args controlling apple regrowth.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform", }, { "component": "Neighborhoods", "kwargs": {} }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.15 } } ] } return scene def create_apple_prefab(regrowth_radius=-1.0, # pylint: disable=dangerous-default-value regrowth_probabilities=[0, 0.0, 0.0, 0.0]): """Creates the apple prefab with the provided settings.""" growth_rate_states = [ { "state": "apple", "layer": "lowerPhysical", "sprite": "Apple", "groups": ["apples"] }, { "state": "appleWait", "layer": "logic", "sprite": "AppleWait", }, ] # Enumerate all possible states for a potential apple. There is one state for # each regrowth rate i.e., number of nearby apples. upper_bound_possible_neighbors = np.floor(np.pi*regrowth_radius**2+1)+1 for i in range(int(upper_bound_possible_neighbors)): growth_rate_states.append(dict(state="appleWait_{}".format(i), layer="logic", groups=["waits_{}".format(i)], sprite="AppleWait")) apple_prefab = { "name": "apple", "components": [ { "component": "StateManager", "kwargs": { "initialState": "apple", "stateConfigs": growth_rate_states, } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Apple", "AppleWait"], "spriteShapes": [shapes.APPLE, shapes.FILL], "palettes": [ {"x": (0, 0, 0, 0), "*": (214, 88, 88, 255), "#": (194, 79, 79, 255), "o": (53, 132, 49, 255), "|": (102, 51, 61, 255)}, {"i": (0, 0, 0, 0)}], "noRotates": [True, True] } }, { "component": "Edible", "kwargs": { "liveState": "apple", "waitState": "appleWait", "rewardForEating": 1.0, } }, { "component": "DensityRegrow", "kwargs": { "liveState": "apple", "waitState": "appleWait", "radius": regrowth_radius, "regrowthProbabilities": regrowth_probabilities, } }, ] } return apple_prefab def create_prefabs(regrowth_radius=-1.0, # pylint: disable=dangerous-default-value regrowth_probabilities=[0, 0.0, 0.0, 0.0]): """Returns a dictionary mapping names to template game objects.""" prefabs = { "floor": FLOOR, "grass": GRASS, "wall": WALL, "spawn_point": SPAWN_POINT, "inside_spawn_point": INSIDE_SPAWN_POINT, } prefabs["apple"] = create_apple_prefab( regrowth_radius=regrowth_radius, regrowth_probabilities=regrowth_probabilities) return prefabs def create_avatar_object(player_idx: int, target_sprite_self: Dict[str, Any], spawn_group: str) -> Dict[str, Any]: """Create an avatar object that always sees itself as blue.""" # Lua is 1-indexed. lua_index = player_idx + 1 # Setup the self vs other sprite mapping. source_sprite_self = "Avatar" + str(lua_index) custom_sprite_map = {source_sprite_self: target_sprite_self["name"]} live_state_name = "player{}".format(lua_index) avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ {"state": live_state_name, "layer": "upperPhysical", "sprite": source_sprite_self, "contact": "avatar", "groups": ["players"]}, {"state": "playerWait", "groups": ["playerWaits"]}, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [source_sprite_self], "spriteShapes": [shapes.CUTE_AVATAR], "palettes": [shapes.get_palette( colors.human_readable[player_idx])], "noRotates": [True] } }, { "component": "AdditionalSprites", "kwargs": { "renderMode": "ascii_shape", "customSpriteNames": [target_sprite_self["name"]], "customSpriteShapes": [target_sprite_self["shape"]], "customPalettes": [target_sprite_self["palette"]], "customNoRotates": [target_sprite_self["noRotate"]], } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "waitState": "playerWait", "speed": 1.0, "spawnGroup": spawn_group, "postInitialSpawnGroup": "spawnPoints", "actionOrder": ["move", "turn", "fireZap"], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "fireZap": {"default": 0, "min": 0, "max": 1}, }, "view": { "left": 5, "right": 5, "forward": 9, "backward": 1, "centered": False }, "spriteMap": custom_sprite_map, } }, { "component": "Zapper", "kwargs": { "cooldownTime": 2, "beamLength": 3, "beamRadius": 1, "framesTillRespawn": 4, "penaltyForBeingZapped": 0, "rewardForZapping": 0, } }, { "component": "ReadyToShootObservation", }, ] } if _ENABLE_DEBUG_OBSERVATIONS: avatar_object["components"].append({ "component": "LocationObserver", "kwargs": {"objectIsAvatar": True, "alsoReportOrientation": True}, }) return avatar_object def create_avatar_objects(num_players): """Returns list of avatar objects of length 'num_players'.""" avatar_objects = [] for player_idx in range(0, num_players): spawn_group = "spawnPoints" if player_idx < 2: # The first two player slots always spawn closer to the apples. spawn_group = "insideSpawnPoints" game_object = create_avatar_object(player_idx, TARGET_SPRITE_SELF, spawn_group=spawn_group) avatar_objects.append(game_object) return avatar_objects def get_config(): """Default configuration for training on the commons_harvest level.""" config = config_dict.ConfigDict() # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "READY_TO_SHOOT", ] config.global_observation_names = [ "WORLD.RGB", ] # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(144, 192), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 7 return config def build( roles: Sequence[str], config: config_dict.ConfigDict, ) -> Mapping[str, Any]: """Build substrate definition given player roles.""" del config num_players = len(roles) # Build the rest of the substrate definition. substrate_definition = dict( levelName="commons_harvest", levelDirectory="meltingpot/lua/levels", numPlayers=num_players, # Define upper bound of episode length since episodes end stochastically. maxEpisodeLengthFrames=5000, spriteSize=8, topology="BOUNDED", # Choose from ["BOUNDED", "TORUS"], simulation={ "map": ASCII_MAP, "gameObjects": create_avatar_objects(num_players), "prefabs": create_prefabs(APPLE_RESPAWN_RADIUS, REGROWTH_PROBABILITIES), "charPrefabMap": CHAR_PREFAB_MAP, "scene": create_scene(), }, ) return substrate_definition
meltingpot-main
meltingpot/configs/substrates/commons_harvest__open.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Commons Harvest: Closed. Example video: https://youtu.be/WbkTSbiSOw0 See _Commons Harvest: Open_ for the general description of the mechanics at play in this substrate. In the case of _Commons Harvest: Closed, agents can learn to defend naturally enclosed regions. Once they have done that then they have an incentive to avoid overharvesting the patches within their region. It is usually much easier to learn sustainable strategies here than it is in _Commons Harvest: Open_. However, they usually involve significant inequality since many agents are excluded from any natural region. """ from typing import Any, Dict, Mapping, Sequence from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import shapes from meltingpot.utils.substrates import specs from ml_collections import config_dict import numpy as np # Warning: setting `_ENABLE_DEBUG_OBSERVATIONS = True` may cause slowdown. _ENABLE_DEBUG_OBSERVATIONS = False APPLE_RESPAWN_RADIUS = 2.0 REGROWTH_PROBABILITIES = [0.0, 0.001, 0.005, 0.025] ASCII_MAP = """ WWWWWWWWWWWWWWWWWWWWWWWW WAAA A WW A AAAW WAA AAA WW AAA AAW WA AAAAAWWAAAAA AW W AAA WW AAA W W A WW A W W A WW A W W AAA Q WW Q AAA W WAAAAA WW AAAAAW W AAA WWWWWWWWWW AAA W W A WW A W WWWWWWWWWW WW WWWWWWWWWW W WW W W WWWWWWWWWWWWWWWWWW W W PPPPPPPPPPPPPPPPPP W W PPPPPPPPPPPPPPPPPPPP W WPPPPPPPPPPPPPPPPPPPPPPW WWWWWWWWWWWWWWWWWWWWWWWW """ # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "P": {"type": "all", "list": ["floor", "spawn_point"]}, "Q": {"type": "all", "list": ["floor", "inside_spawn_point"]}, " ": "floor", "W": "wall", "A": {"type": "all", "list": ["grass", "apple"]}, } _COMPASS = ["N", "E", "S", "W"] FLOOR = { "name": "floor", "components": [ { "component": "StateManager", "kwargs": { "initialState": "floor", "stateConfigs": [{ "state": "floor", "layer": "background", "sprite": "Floor", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Floor"], "spriteShapes": [shapes.GRAINY_FLOOR], "palettes": [{"*": (220, 205, 185, 255), "+": (210, 195, 175, 255),}], "noRotates": [False] } }, ] } GRASS = { "name": "grass", "components": [ { "component": "StateManager", "kwargs": { "initialState": "grass", "stateConfigs": [ { "state": "grass", "layer": "background", "sprite": "Grass" }, { "state": "dessicated", "layer": "background", "sprite": "Floor" }, ], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Grass", "Floor"], "spriteShapes": [ shapes.GRASS_STRAIGHT, shapes.GRAINY_FLOOR ], "palettes": [{ "*": (158, 194, 101, 255), "@": (170, 207, 112, 255) }, { "*": (220, 205, 185, 255), "+": (210, 195, 175, 255), }], "noRotates": [False, False] } }, ] } WALL = { "name": "wall", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall", "stateConfigs": [{ "state": "wall", "layer": "upperPhysical", "sprite": "Wall", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Wall"], "spriteShapes": [shapes.WALL], "palettes": [{"*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255)}], "noRotates": [False] } }, { "component": "BeamBlocker", "kwargs": { "beamType": "zapHit" } }, ] } SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["spawnPoints"] }], } }, { "component": "Transform", }, ] } INSIDE_SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["insideSpawnPoints"] }], } }, { "component": "Transform", }, ] } # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "fireZap": 0} FORWARD = {"move": 1, "turn": 0, "fireZap": 0} STEP_RIGHT = {"move": 2, "turn": 0, "fireZap": 0} BACKWARD = {"move": 3, "turn": 0, "fireZap": 0} STEP_LEFT = {"move": 4, "turn": 0, "fireZap": 0} TURN_LEFT = {"move": 0, "turn": -1, "fireZap": 0} TURN_RIGHT = {"move": 0, "turn": 1, "fireZap": 0} FIRE_ZAP = {"move": 0, "turn": 0, "fireZap": 1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, FIRE_ZAP, ) TARGET_SPRITE_SELF = { "name": "Self", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((50, 100, 200)), "noRotate": True, } def create_scene(): """Creates the scene with the provided args controlling apple regrowth.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform", }, { "component": "Neighborhoods", "kwargs": {} }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.15 } } ] } return scene def create_apple_prefab(regrowth_radius=-1.0, # pylint: disable=dangerous-default-value regrowth_probabilities=[0, 0.0, 0.0, 0.0]): """Creates the apple prefab with the provided settings.""" growth_rate_states = [ { "state": "apple", "layer": "lowerPhysical", "sprite": "Apple", "groups": ["apples"] }, { "state": "appleWait", "layer": "logic", "sprite": "AppleWait", }, ] # Enumerate all possible states for a potential apple. There is one state for # each regrowth rate i.e., number of nearby apples. upper_bound_possible_neighbors = np.floor(np.pi*regrowth_radius**2+1)+1 for i in range(int(upper_bound_possible_neighbors)): growth_rate_states.append(dict(state="appleWait_{}".format(i), layer="logic", groups=["waits_{}".format(i)], sprite="AppleWait")) apple_prefab = { "name": "apple", "components": [ { "component": "StateManager", "kwargs": { "initialState": "apple", "stateConfigs": growth_rate_states, } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Apple", "AppleWait"], "spriteShapes": [shapes.APPLE, shapes.FILL], "palettes": [ {"x": (0, 0, 0, 0), "*": (214, 88, 88, 255), "#": (194, 79, 79, 255), "o": (53, 132, 49, 255), "|": (102, 51, 61, 255)}, {"i": (0, 0, 0, 0)}], "noRotates": [True, True] } }, { "component": "Edible", "kwargs": { "liveState": "apple", "waitState": "appleWait", "rewardForEating": 1.0, } }, { "component": "DensityRegrow", "kwargs": { "liveState": "apple", "waitState": "appleWait", "radius": regrowth_radius, "regrowthProbabilities": regrowth_probabilities, } }, ] } return apple_prefab def create_prefabs(regrowth_radius=-1.0, # pylint: disable=dangerous-default-value regrowth_probabilities=[0, 0.0, 0.0, 0.0]): """Returns a dictionary mapping names to template game objects.""" prefabs = { "floor": FLOOR, "grass": GRASS, "wall": WALL, "spawn_point": SPAWN_POINT, "inside_spawn_point": INSIDE_SPAWN_POINT, } prefabs["apple"] = create_apple_prefab( regrowth_radius=regrowth_radius, regrowth_probabilities=regrowth_probabilities) return prefabs def create_avatar_object(player_idx: int, target_sprite_self: Dict[str, Any], spawn_group: str) -> Dict[str, Any]: """Create an avatar object that always sees itself as blue.""" # Lua is 1-indexed. lua_index = player_idx + 1 # Setup the self vs other sprite mapping. source_sprite_self = "Avatar" + str(lua_index) custom_sprite_map = {source_sprite_self: target_sprite_self["name"]} live_state_name = "player{}".format(lua_index) avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ {"state": live_state_name, "layer": "upperPhysical", "sprite": source_sprite_self, "contact": "avatar", "groups": ["players"]}, {"state": "playerWait", "groups": ["playerWaits"]}, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [source_sprite_self], "spriteShapes": [shapes.CUTE_AVATAR], "palettes": [shapes.get_palette( colors.human_readable[player_idx])], "noRotates": [True] } }, { "component": "AdditionalSprites", "kwargs": { "renderMode": "ascii_shape", "customSpriteNames": [target_sprite_self["name"]], "customSpriteShapes": [target_sprite_self["shape"]], "customPalettes": [target_sprite_self["palette"]], "customNoRotates": [target_sprite_self["noRotate"]], } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "waitState": "playerWait", "speed": 1.0, "spawnGroup": spawn_group, "postInitialSpawnGroup": "spawnPoints", "actionOrder": ["move", "turn", "fireZap"], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "fireZap": {"default": 0, "min": 0, "max": 1}, }, "view": { "left": 5, "right": 5, "forward": 9, "backward": 1, "centered": False }, "spriteMap": custom_sprite_map, } }, { "component": "Zapper", "kwargs": { "cooldownTime": 1, "beamLength": 4, "beamRadius": 1, "framesTillRespawn": 100, "penaltyForBeingZapped": 0, "rewardForZapping": 0, } }, { "component": "ReadyToShootObservation", }, ] } if _ENABLE_DEBUG_OBSERVATIONS: avatar_object["components"].append({ "component": "LocationObserver", "kwargs": {"objectIsAvatar": True, "alsoReportOrientation": True}, }) return avatar_object def create_avatar_objects(num_players): """Returns list of avatar objects of length 'num_players'.""" avatar_objects = [] for player_idx in range(0, num_players): spawn_group = "spawnPoints" if player_idx < 2: # The first two player slots always spawn inside the rooms. spawn_group = "insideSpawnPoints" game_object = create_avatar_object(player_idx, TARGET_SPRITE_SELF, spawn_group=spawn_group) avatar_objects.append(game_object) return avatar_objects def get_config(): """Default configuration for training on the commons_harvest level.""" config = config_dict.ConfigDict() # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "READY_TO_SHOOT", ] config.global_observation_names = [ "WORLD.RGB", ] # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(144, 192), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 7 return config def build( roles: Sequence[str], config: config_dict.ConfigDict, ) -> Mapping[str, Any]: """Build substrate definition given player roles.""" del config num_players = len(roles) # Build the rest of the substrate definition. substrate_definition = dict( levelName="commons_harvest", levelDirectory="meltingpot/lua/levels", numPlayers=num_players, # Define upper bound of episode length since episodes end stochastically. maxEpisodeLengthFrames=5000, spriteSize=8, topology="BOUNDED", # Choose from ["BOUNDED", "TORUS"], simulation={ "map": ASCII_MAP, "gameObjects": create_avatar_objects(num_players), "prefabs": create_prefabs(APPLE_RESPAWN_RADIUS, REGROWTH_PROBABILITIES), "charPrefabMap": CHAR_PREFAB_MAP, "scene": create_scene(), }, ) return substrate_definition
meltingpot-main
meltingpot/configs/substrates/commons_harvest__closed.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Collaborative Cooking: Ring. Example video: https://youtu.be/j5v7B9pfG9I The recipe they must follow is for tomato soup: 1. Add three tomatoes to the cooking pot. 2. Wait for the soup to cook (status bar completion). 3. Bring a bowl to the pot and pour the soup from the pot into the bowl. 4. Deliver the bowl of soup at the goal location. This substrate is a pure common interest game. All players share all rewards. Players have a `5 x 5` observation window. Map: Coordination Ring: A layout with two equally successful movement strategies – (1) both players moving clockwise, and (2) both players moving anti-clockwise. If players do not coordinate, they will block each other’s movement. """ from meltingpot.configs.substrates import collaborative_cooking as base_config from meltingpot.utils.substrates import specs from ml_collections import config_dict build = base_config.build # Coordination Ring: Another tight layout requiring significant movement # coordination between the players, this time in terms of moving clockwise vs # counterclockwise. ASCII_MAP = """ xx###C#xx xx# Cxx xxDP# #xx xxO P #xx xx#OT##xx """ def get_config(): """Default configuration.""" config = base_config.get_config() # Override the map layout settings. config.layout = config_dict.ConfigDict() config.layout.ascii_map = ASCII_MAP # The specs of the environment (from a single-agent perspective). config.timestep_spec = specs.timestep({ "RGB": specs.rgb(40, 40), # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(40, 72), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 2 return config
meltingpot-main
meltingpot/configs/substrates/collaborative_cooking__ring.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Factory of the Commons.""" from typing import Any, Dict, Generator, Mapping, Sequence from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import shapes from meltingpot.utils.substrates import specs from ml_collections import config_dict # Warning: setting `_ENABLE_DEBUG_OBSERVATIONS = True` may cause slowdown. _ENABLE_DEBUG_OBSERVATIONS = False _COMPASS = ["N", "E", "S", "W"] INVISIBLE = (0, 0, 0, 0) GRASP_SHAPE = """ xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xoxxxxox xxooooxx """ FLOOR_MARKING = { "name": "floor_marking", "components": [ { "component": "StateManager", "kwargs": { "initialState": "floor_marking", "stateConfigs": [{ "state": "floor_marking", "layer": "lowestPhysical", "sprite": "floor_marking", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["floor_marking"], "spriteShapes": [shapes.FLOOR_MARKING], "palettes": [shapes.DISPENSER_BELT_PALETTE], "noRotates": [False] } }, ] } PINK_CUBE_DISPENSING_ANIMATION = { "name": "pink_cube_dispensing_animation", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "waitState", "layer": "overlay", }, { "state": "pink_cube_dispensing_1", "layer": "overlay", "sprite": "pink_cube_dispensing_1", }, { "state": "pink_cube_dispensing_2", "layer": "overlay", "sprite": "pink_cube_dispensing_2", }, { "state": "pink_cube_dispensing_3", "layer": "overlay", "sprite": "pink_cube_dispensing_3", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["pink_cube_dispensing_1", "pink_cube_dispensing_2", "pink_cube_dispensing_3"], "spriteShapes": [shapes.CUBE_DISPENSING_ANIMATION_1, shapes.CUBE_DISPENSING_ANIMATION_2, shapes.CUBE_DISPENSING_ANIMATION_3], "palettes": [{ "a": (255, 174, 182, 255), "A": (240, 161, 169, 255), "&": (237, 140, 151, 255), "x": (0, 0, 0, 0), }] * 3, "noRotates": [True] * 3, } }, { "component": "ObjectDispensingAnimation", "kwargs": { "frameOne": "pink_cube_dispensing_1", "frameTwo": "pink_cube_dispensing_2", "frameThree": "pink_cube_dispensing_3", "waitState": "waitState", } }, ] } DISPENSER_INDICATOR_PINK_CUBE = { "name": "dispenser_indicator_pink_cube", "components": [ { "component": "StateManager", "kwargs": { "initialState": "dispenser_pink_cube", "stateConfigs": [ { "state": "dispenser_pink_cube", "layer": "midPhysical", "sprite": "dispenser_pink_cube", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["dispenser_pink_cube"], "spriteShapes": [shapes.HOPPER_INDICATOR_SINGLE_BLOCK], "palettes": [{ "x": (0, 0, 0, 0), "a": (255, 174, 182, 255), }], "noRotates": [False] } }, { "component": "DispenserIndicator", "kwargs": { "objectOne": "PinkCube", "objectTwo": "NoneNeeded", } } ] } SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["spawnPoints"] }], } }, { "component": "Transform" }, ] } def get_blue_cube(initial_state: str): """Get a blue cube prefab.""" prefab = { "name": "blue_cube_live", "components": [ { "component": "StateManager", "kwargs": { "initialState": initial_state, "stateConfigs": [ { "state": "blue_cube", "layer": "lowerPhysical", "sprite": "blue_cube", }, { "state": "blue_jump", "layer": "lowerPhysical", "sprite": "blue_jump", }, { "state": "blue_cube_drop_one", "layer": "lowerPhysical", "sprite": "blue_cube_drop_one", }, { "state": "blue_cube_drop_two", "layer": "lowerPhysical", "sprite": "blue_cube_drop_two", }, { "state": "waitState", } ], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["blue_cube", "blue_cube_drop_one", "blue_cube_drop_two", "blue_jump"], "spriteShapes": [shapes.BLOCK, shapes.BLOCK_DROP_1, shapes.BLOCK_DROP_2, shapes.CUBE_DISPENSING_ANIMATION_1], "palettes": [shapes.FACTORY_OBJECTS_PALETTE,] * 4, "noRotates": [True] * 4 } }, { "component": "Receivable", "kwargs": { "waitState": "waitState", "liveState": "blue_cube", } }, { "component": "ReceiverDropAnimation", "kwargs": { "dropOne": "blue_cube_drop_one", "dropTwo": "blue_cube_drop_two", } }, { "component": "Token", "kwargs": { "type": "BlueCube" } }, { "component": "ObjectJumpAnimation", "kwargs": { "jump": "blue_jump", "drop": "blue_cube", "waitState": "waitState", } }, { "component": "Graspable", "kwargs": { "graspableStates": ("blue_cube",), "disconnectStates": ( "blue_jump", "blue_cube_drop_one", "blue_cube_drop_two", "waitState",), } } ] } return prefab BANANA = { "name": "banana", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "banana", "layer": "lowerPhysical", "sprite": "banana", }, { "state": "banana_jump", "layer": "lowerPhysical", "sprite": "banana_jump", }, { "state": "banana_drop_one", "layer": "lowerPhysical", "sprite": "banana_drop_one", }, { "state": "banana_drop_two", "layer": "lowerPhysical", "sprite": "banana_drop_two", }, { "state": "waitState" } ], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["banana", "banana_drop_one", "banana_drop_two", "banana_jump"], "spriteShapes": [shapes.BANANA, shapes.BANANA_DROP_1, shapes.BANANA_DROP_2, shapes.BANANA,], "palettes": [shapes.FACTORY_OBJECTS_PALETTE,] * 4, "noRotates": [True] * 4 } }, { "component": "Receivable", "kwargs": { "waitState": "waitState", "liveState": "banana", } }, { "component": "ReceiverDropAnimation", "kwargs": { "dropOne": "banana_drop_one", "dropTwo": "banana_drop_two", } }, { "component": "Token", "kwargs": { "type": "Banana" } }, { "component": "SecondObjectJumpAnimation", "kwargs": { "jump": "banana", "drop": "banana", "waitState": "waitState", } }, { "component": "Graspable", "kwargs": { "graspableStates": ("banana",), "disconnectStates": ( "banana_jump", "banana_drop_one", "banana_drop_two", "waitState",), } } ] } APPLE = { "name": "apples", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "waitState", }, { "state": "apple", "layer": "appleLayer", "sprite": "apple", }, { "state": "apple_jump_state", "layer": "appleLayer", "sprite": "apple_jump_sprite", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["apple", "apple_jump_sprite"], "spriteShapes": [shapes.APPLE, shapes.APPLE_JUMP], "palettes": [shapes.APPLE_RED_PALETTE] * 2, "noRotates": [True] * 2, } }, { "component": "Graspable", "kwargs": { "graspableStates": ("apple",), "disconnectStates": ("apple_jump_state", "waitState",), } }, { "component": "AppleComponent", "kwargs": { "liveState": "apple", "waitState": "waitState", "rewardForEating": 1, } }, { "component": "Token", "kwargs": { "type": "Apple" } }, { "component": "ObjectJumpAnimation", "kwargs": { "jump": "apple_jump_state", "drop": "apple", "waitState": "waitState", } }, { "component": "SecondObjectJumpAnimation", "kwargs": { "jump": "apple", "drop": "apple", "waitState": "waitState", } }, ] } PINK_CUBE = { "name": "pink_cube", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "pink_cube", "layer": "lowerPhysical", "sprite": "pink_cube", }, { "state": "pink_cube_drop_one", "layer": "lowerPhysical", "sprite": "pink_cube_drop_one", }, { "state": "pink_cube_drop_two", "layer": "lowerPhysical", "sprite": "pink_cube_drop_two", }, { "state": "pink_jump", "layer": "lowerPhysical", "sprite": "pink_jump", }, { "state": "waitState", } ], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["pink_cube", "pink_cube_drop_one", "pink_cube_drop_two", "pink_jump"], "spriteShapes": [shapes.BLOCK, shapes.BLOCK_DROP_1, shapes.BLOCK_DROP_2, shapes.CUBE_DISPENSING_ANIMATION_1], "palettes": [{ "a": (255, 174, 182, 255), "A": (240, 161, 169, 255), "&": (237, 140, 151, 255), "x": (0, 0, 0, 0), }] * 4, "noRotates": [True] * 4 } }, { "component": "Receivable", "kwargs": { "waitState": "waitState", "liveState": "pink_cube", } }, { "component": "Token", "kwargs": { "type": "PinkCube" } }, { "component": "ReceiverDropAnimation", "kwargs": { "dropOne": "pink_cube_drop_one", "dropTwo": "pink_cube_drop_two", } }, { "component": "ObjectJumpAnimation", "kwargs": { "jump": "pink_jump", "drop": "pink_cube", "waitState": "waitState", } }, { "component": "Graspable", "kwargs": { "graspableStates": ("pink_cube",), "disconnectStates": ( "pink_cube_drop_one", "pink_cube_drop_two", "pink_jump", "waitState",), } } ] } APPLE_DISPENSING = { "name": "apple_dispensing", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "waitState", "layer": "overlay", }, { "state": "apple_dispensing_1", "layer": "overlay", "sprite": "apple_dispensing_1", }, { "state": "apple_dispensing_2", "layer": "overlay", "sprite": "apple_dispensing_2", }, { "state": "apple_dispensing_3", "layer": "overlay", "sprite": "apple_dispensing_3", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["apple_dispensing_1", "apple_dispensing_2", "apple_dispensing_3"], "spriteShapes": [shapes.APPLE_DISPENSING_ANIMATION_1, shapes.APPLE_DISPENSING_ANIMATION_2, shapes.APPLE_DISPENSING_ANIMATION_3], "palettes": [shapes.FACTORY_OBJECTS_PALETTE] * 3, "noRotates": [True] * 3, } }, { "component": "ObjectDispensingAnimation", "kwargs": { "frameOne": "apple_dispensing_1", "frameTwo": "apple_dispensing_2", "frameThree": "apple_dispensing_3", "waitState": "waitState", } }, ] } CUBE_APPLE_DISPENSING_ANIMATION = { "name": "cube_apple_dispensing_animation", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "waitState", "layer": "overlay", }, { "state": "apple_dispensing_1", "layer": "overlay", "sprite": "apple_dispensing_1", }, { "state": "apple_dispensing_2", "layer": "overlay", "sprite": "apple_dispensing_2", }, { "state": "apple_dispensing_3", "layer": "overlay", "sprite": "apple_dispensing_3", }, { "state": "blue_cube_dispensing_1", "layer": "overlay", "sprite": "blue_cube_dispensing_1", }, { "state": "blue_cube_dispensing_2", "layer": "overlay", "sprite": "blue_cube_dispensing_2", }, { "state": "blue_cube_dispensing_3", "layer": "overlay", "sprite": "blue_cube_dispensing_3", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["apple_dispensing_1", "apple_dispensing_2", "apple_dispensing_3", "blue_cube_dispensing_1", "blue_cube_dispensing_2", "blue_cube_dispensing_3"], "spriteShapes": [shapes.APPLE_DISPENSING_ANIMATION_1, shapes.APPLE_DISPENSING_ANIMATION_2, shapes.APPLE_DISPENSING_ANIMATION_3, shapes.CUBE_DISPENSING_ANIMATION_1, shapes.CUBE_DISPENSING_ANIMATION_2, shapes.CUBE_DISPENSING_ANIMATION_3], "palettes": [shapes.FACTORY_OBJECTS_PALETTE] * 6, "noRotates": [True] * 6, } }, { "component": "DoubleObjectDispensingAnimation", "kwargs": { "frameOne": "blue_cube_dispensing_1", "frameTwo": "blue_cube_dispensing_2", "frameThree": "blue_cube_dispensing_3", "frameFour": "apple_dispensing_1", "frameFive": "apple_dispensing_2", "frameSix": "apple_dispensing_3", "waitState": "waitState", } }, ] } BANANA_CUBE_DISPENSING_ANIMATION = { "name": "banana_cube_dispensing_animation", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "waitState", "layer": "overlay", }, { "state": "banana_dispensing_1", "layer": "overlay", "sprite": "banana_dispensing_1", }, { "state": "banana_dispensing_2", "layer": "overlay", "sprite": "banana_dispensing_2", }, { "state": "banana_dispensing_3", "layer": "overlay", "sprite": "banana_dispensing_3", }, { "state": "blue_cube_dispensing_1", "layer": "overlay", "sprite": "blue_cube_dispensing_1", }, { "state": "blue_cube_dispensing_2", "layer": "overlay", "sprite": "blue_cube_dispensing_2", }, { "state": "blue_cube_dispensing_3", "layer": "overlay", "sprite": "blue_cube_dispensing_3", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["banana_dispensing_1", "banana_dispensing_2", "banana_dispensing_3", "blue_cube_dispensing_1", "blue_cube_dispensing_2", "blue_cube_dispensing_3"], "spriteShapes": [shapes.BANANA_DISPENSING_ANIMATION_1, shapes.BANANA, shapes.BANANA_DISPENSING_ANIMATION_3, shapes.CUBE_DISPENSING_ANIMATION_1, shapes.CUBE_DISPENSING_ANIMATION_2, shapes.CUBE_DISPENSING_ANIMATION_3], "palettes": [shapes.FACTORY_OBJECTS_PALETTE] * 6, "noRotates": [True] * 6, } }, { "component": "DoubleObjectDispensingAnimation", "kwargs": { "frameOne": "blue_cube_dispensing_1", "frameTwo": "blue_cube_dispensing_2", "frameThree": "blue_cube_dispensing_3", "frameFour": "banana_dispensing_1", "frameFive": "banana_dispensing_2", "frameSix": "banana_dispensing_3", "waitState": "waitState", } }, ] } PINK_CUBE_DISPENSING = { "name": "pink_cube_dispensing", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "waitState", "layer": "overlay", }, { "state": "pink_cube_dispensing_1", "layer": "overlay", "sprite": "pink_cube_dispensing_1", }, { "state": "pink_cube_dispensing_2", "layer": "overlay", "sprite": "pink_cube_dispensing_2", }, { "state": "pink_cube_dispensing_3", "layer": "overlay", "sprite": "pink_cube_dispensing_3", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["pink_cube_dispensing_1", "pink_cube_dispensing_2", "pink_cube_dispensing_3"], "spriteShapes": [shapes.CUBE_DISPENSING_ANIMATION_1, shapes.CUBE_DISPENSING_ANIMATION_2, shapes.CUBE_DISPENSING_ANIMATION_3], "palettes": [{ "a": (255, 174, 182, 255), "A": (240, 161, 169, 255), "&": (237, 140, 151, 255), "x": (0, 0, 0, 0), }] * 3, "noRotates": [True] * 3, } }, { "component": "DoubleObjectDispensingAnimation", "kwargs": { "frameOne": "pink_cube_dispensing_1", "frameTwo": "pink_cube_dispensing_2", "frameThree": "pink_cube_dispensing_3", "frameFour": "waitState", "frameFive": "waitState", "frameSix": "waitState", "waitState": "waitState", } }, ] } HOPPER_MOUTH = { "name": "hopper_mouth", "components": [ { "component": "StateManager", "kwargs": { "initialState": "hopper_mouth_open", "stateConfigs": [ { "state": "hopper_mouth_closed", "layer": "lowestPhysical", "sprite": "hopper_mouth_closed", }, { "state": "hopper_mouth_closing", "layer": "lowestPhysical", "sprite": "hopper_mouth_closing", }, { "state": "hopper_mouth_open", "layer": "lowestPhysical", "sprite": "hopper_mouth_open", }, { "state": "waitState" } ], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["hopper_mouth_closed", "hopper_mouth_closing", "hopper_mouth_open"], "spriteShapes": [shapes.HOPPER_CLOSED, shapes.HOPPER_CLOSING, shapes.HOPPER_OPEN], "palettes": [shapes.FACTORY_MACHINE_BODY_PALETTE] * 3, "noRotates": [False] * 3 } }, { "component": "Receiver" }, { "component": "HopperMouth", "kwargs": { "closed": "hopper_mouth_closed", "opening": "hopper_mouth_closing", "open": "hopper_mouth_open", } }, ] } HOPPER_BODY = { "name": "hopper_body", "components": [ { "component": "StateManager", "kwargs": { "initialState": "hopper_body", "stateConfigs": [ { "state": "hopper_body", "layer": "midPhysical", "sprite": "hopper_body", }, { "state": "hopper_body_activated", "layer": "midPhysical", "sprite": "hopper_body_activated", } ], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["hopper_body", "hopper_body_activated"], "spriteShapes": [shapes.HOPPER_BODY, shapes.HOPPER_BODY_ACTIVATED], "palettes": [{ "a": (140, 129, 129, 255), "b": (84, 77, 77, 255), "f": (92, 98, 120, 255), "g": (92, 98, 120, 255), "c": (92, 98, 120, 255), "x": (0, 0, 0, 0), }] * 2, "noRotates": [False] * 2 } }, ] } HOPPER_INDICATOR = { "name": "hopper_indicator", "components": [ { "component": "StateManager", "kwargs": { "initialState": "hopper_indicator_two", "stateConfigs": [ { "state": "waitState", }, { "state": "hopper_indicator_one", "layer": "upperPhysical", "sprite": "hopper_indicator_one", "groups": ["indicator"] }, { "state": "hopper_indicator_two", "layer": "upperPhysical", "sprite": "hopper_indicator_two", "groups": ["indicator"] }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [ "hopper_indicator_two", "hopper_indicator_one", ], "spriteShapes": [ shapes.HOPPER_INDICATOR_TWO_BLOCKS, shapes.HOPPER_INDICATOR_ONE_BLOCK,], "palettes": [shapes.FACTORY_OBJECTS_PALETTE] * 2, "noRotates": [False] * 2 } }, { "component": "ReceiverIndicator", "kwargs": { "waitState": "waitState", "liveState": "hopper_indicator_two", "secondLiveState": "hopper_indicator_one", "count": "Double", "type": "TwoBlocks", } } ] } HOPPER_INDICATOR_BLUE_CUBE = { "name": "hopper_indicator_blue_cube", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "waitState", }, { "state": "blue_cube_indicator", "layer": "upperPhysical", "sprite": "blue_cube_indicator", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["blue_cube_indicator"], "spriteShapes": [shapes.HOPPER_INDICATOR_SINGLE_BLOCK], "palettes": [shapes.FACTORY_OBJECTS_PALETTE], "noRotates": [False] } }, { "component": "ReceiverIndicator", "kwargs": { "waitState": "waitState", "liveState": "blue_cube_indicator", "secondLiveState": "waitState", "count": "Single", "type": "BlueCube" } } ] } HOPPER_INDICATOR_BANANA = { "name": "hopper_indicator_banana", "components": [ { "component": "StateManager", "kwargs": { "initialState": "hopper_banana", "stateConfigs": [ { "state": "hopper_banana", "layer": "upperPhysical", "sprite": "hopper_banana", }, { "state": "waitState" } ] } }, { "component": "ReceiverIndicator", "kwargs": { "waitState": "waitState", "liveState": "hopper_banana", "secondLiveState": "waitState", "count": "Single", "type": "Banana", } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["hopper_banana"], "spriteShapes": [shapes.HOPPER_INDICATOR_SINGLE_BANANA], "palettes": [shapes.FACTORY_OBJECTS_PALETTE], "noRotates": [False] } }, ] } HOPPER_INDICATOR_PINK_CUBE = { "name": "hopper_indicator_pink_cube", "components": [ { "component": "StateManager", "kwargs": { "initialState": "waitState", "stateConfigs": [ { "state": "waitState", }, { "state": "hopper_pink_cube", "layer": "upperPhysical", "sprite": "hopper_pink_cube", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["hopper_pink_cube"], "spriteShapes": [shapes.HOPPER_INDICATOR_SINGLE_BLOCK], "palettes": [{ "x": (0, 0, 0, 0), "a": (255, 174, 182, 255), }], "noRotates": [False] } }, { "component": "ReceiverIndicator", "kwargs": { "waitState": "waitState", "liveState": "hopper_pink_cube", "secondLiveState": "waitState", "count": "Single", "type": "PinkCube", } } ] } DISPENSER_INDICATOR_BANANA_CUBE = { "name": "dispenser_indicator_banana_cube", "components": [ { "component": "StateManager", "kwargs": { "initialState": "banana_cube", "stateConfigs": [ { "state": "banana_cube", "layer": "midPhysical", "sprite": "banana_cube", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["banana_cube"], "spriteShapes": [shapes.HOPPER_INDICATOR_ON], "palettes": [shapes.FACTORY_OBJECTS_PALETTE], "noRotates": [False] } }, { "component": "DispenserIndicator", "kwargs": { "objectOne": "BlueCube", "objectTwo": "Banana", } } ] } DISPENSER_INDICATOR_CUBE_APPLE = { "name": "dispenser_indicator_cube_apple", "components": [ { "component": "StateManager", "kwargs": { "initialState": "cube_apple", "stateConfigs": [ { "state": "cube_apple", "layer": "midPhysical", "sprite": "cube_apple", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["cube_apple"], "spriteShapes": [shapes.APPLE_CUBE_INDICATOR], "palettes": [shapes.FACTORY_OBJECTS_PALETTE], "noRotates": [False] } }, { "component": "DispenserIndicator", "kwargs": { "objectOne": "Apple", "objectTwo": "BlueCube", } } ] } DISPENSER_INDICATOR_APPLE = { "name": "dispenser_indicator_apple", "components": [ { "component": "StateManager", "kwargs": { "initialState": "dispenser_indicator_apple", "stateConfigs": [ { "state": "dispenser_indicator_apple", "layer": "midPhysical", "sprite": "dispenser_indicator_apple", "groups": ["indicator"] }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [ "dispenser_indicator_apple", ], "spriteShapes": [ shapes.APPLE_INDICATOR], "palettes": [shapes.FACTORY_OBJECTS_PALETTE], "noRotates": [False] } }, { "component": "DispenserIndicator", "kwargs": { "objectOne": "Apple", "objectTwo": "NoneNeeded", } } ] } DISPENSER_INDICATOR_TWO_APPLES = { "name": "dispenser_indicator_two_apples", "components": [ { "component": "StateManager", "kwargs": { "initialState": "two_apples", "stateConfigs": [ { "state": "two_apples", "layer": "midPhysical", "sprite": "two_apples", }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["two_apples"], "spriteShapes": [shapes.DOUBLE_APPLE_INDICATOR], "palettes": [shapes.FACTORY_OBJECTS_PALETTE], "noRotates": [False] } }, { "component": "DispenserIndicator", "kwargs": { "objectOne": "Apple", "objectTwo": "Apple", } } ] } DISPENSER_BODY = { "name": "dispenser_body", "components": [ { "component": "StateManager", "kwargs": { "initialState": "dispenser_body", "stateConfigs": [ { "state": "dispenser_body", "layer": "lowerPhysical", "sprite": "dispenser_body", "groups": ["dispenser"] }, { "state": "dispenser_body_activated", "layer": "lowerPhysical", "sprite": "dispenser_body_activated", "groups": ["dispenser"] }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [ "dispenser_body", "dispenser_body_activated", ], "spriteShapes": [ shapes.DISPENSER_BODY, shapes.DISPENSER_BODY_ACTIVATED, ], "palettes": [shapes.FACTORY_MACHINE_BODY_PALETTE] * 2, "noRotates": [False] * 2 } }, ] } DISPENSER_BELT = { "name": "dispenser_belt", "components": [ { "component": "StateManager", "kwargs": { "initialState": "dispenser_belt_deactivated", "stateConfigs": [ { "state": "dispenser_belt_deactivated", "layer": "lowestPhysical", "sprite": "dispenser_belt_deactivated", "groups": ["dispenser"] }, { "state": "dispenser_belt_on_position_1", "layer": "lowestPhysical", "sprite": "dispenser_belt_on_position_1", "groups": ["dispenser"] }, { "state": "dispenser_belt_on_position_2", "layer": "lowestPhysical", "sprite": "dispenser_belt_on_position_2", "groups": ["dispenser"] }, { "state": "dispenser_belt_on_position_3", "layer": "lowestPhysical", "sprite": "dispenser_belt_on_position_3", "groups": ["dispenser"] }, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [ "dispenser_belt_deactivated", "dispenser_belt_on_position_1", "dispenser_belt_on_position_2", "dispenser_belt_on_position_3", ], "spriteShapes": [ shapes.DISPENSER_BELT_OFF, shapes.DISPENSER_BELT_ON_POSITION_1, shapes.DISPENSER_BELT_ON_POSITION_2, shapes.DISPENSER_BELT_ON_POSITION_3, ], "palettes": [shapes.DISPENSER_BELT_PALETTE] * 4, "noRotates": [False] * 4 } }, { "component": "ConveyerBeltOnAnimation", "kwargs": { "waitState": "dispenser_belt_deactivated", "stateOne": "dispenser_belt_on_position_1", "stateTwo": "dispenser_belt_on_position_2", "stateThree": "dispenser_belt_on_position_3", } } ] } NW_WALL_CORNER = { "name": "nw_wall_corner", "components": [ { "component": "StateManager", "kwargs": { "initialState": "nw_wall_corner", "stateConfigs": [{ "state": "nw_wall_corner", "layer": "lowerPhysical", "sprite": "NwWallCorner", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["NwWallCorner"], "spriteShapes": [shapes.NW_PERSPECTIVE_WALL], "palettes": [shapes.PERSPECTIVE_WALL_PALETTE], "noRotates": [False] } }, {"component": "BeamBlocker", "kwargs": {"beamType": "hold"}}, {"component": "BeamBlocker", "kwargs": {"beamType": "shove"}}, ] } NE_WALL_CORNER = { "name": "ne_wall_corner", "components": [ { "component": "StateManager", "kwargs": { "initialState": "ne_wall_corner", "stateConfigs": [{ "state": "ne_wall_corner", "layer": "upperPhysical", "sprite": "NeWallCorner", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["NeWallCorner"], "spriteShapes": [shapes.NE_PERSPECTIVE_WALL], "palettes": [shapes.PERSPECTIVE_WALL_PALETTE], "noRotates": [False] } }, {"component": "BeamBlocker", "kwargs": {"beamType": "hold"}}, {"component": "BeamBlocker", "kwargs": {"beamType": "shove"}}, ] } WALL_HORIZONTAL = { "name": "wall_horizontal", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall_horizontal", "stateConfigs": [{ "state": "wall_horizontal", "layer": "lowerPhysical", "sprite": "WallHorizontal", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["WallHorizontal"], "spriteShapes": [shapes.PERSPECTIVE_WALL], "palettes": [shapes.PERSPECTIVE_WALL_PALETTE], "noRotates": [False] } }, {"component": "BeamBlocker", "kwargs": {"beamType": "hold"}}, {"component": "BeamBlocker", "kwargs": {"beamType": "shove"}}, ] } WALL_T_COUPLING = { "name": "wall_t_coupling", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall_t_coupling", "stateConfigs": [{ "state": "wall_t_coupling", "layer": "upperPhysical", "sprite": "WallTCoupling", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["WallTCoupling"], "spriteShapes": [shapes.PERSPECTIVE_WALL_T_COUPLING], "palettes": [shapes.PERSPECTIVE_WALL_PALETTE], "noRotates": [False] } }, {"component": "BeamBlocker", "kwargs": {"beamType": "hold"}}, {"component": "BeamBlocker", "kwargs": {"beamType": "shove"}}, ] } WALL_EAST = { "name": "wall_east", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall_east", "stateConfigs": [{ "state": "wall_east", "layer": "lowerPhysical", "sprite": "WallEast", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["WallEast"], "spriteShapes": [shapes.E_PERSPECTIVE_WALL], "palettes": [shapes.PERSPECTIVE_WALL_PALETTE], "noRotates": [False] } }, {"component": "BeamBlocker", "kwargs": {"beamType": "hold"}}, {"component": "BeamBlocker", "kwargs": {"beamType": "shove"}}, ] } WALL_WEST = { "name": "wall_west", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall_west", "stateConfigs": [{ "state": "wall_west", "layer": "lowerPhysical", "sprite": "WallWest", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["WallWest"], "spriteShapes": [shapes.W_PERSPECTIVE_WALL], "palettes": [shapes.PERSPECTIVE_WALL_PALETTE], "noRotates": [False] } }, {"component": "BeamBlocker", "kwargs": {"beamType": "hold"}}, {"component": "BeamBlocker", "kwargs": {"beamType": "shove"}}, ] } WALL_MIDDLE = { "name": "wall_middle", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall_middle", "stateConfigs": [{ "state": "wall_middle", "layer": "lowerPhysical", "sprite": "WallMiddle", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["WallMiddle"], "spriteShapes": [shapes.MID_PERSPECTIVE_WALL], "palettes": [shapes.PERSPECTIVE_WALL_PALETTE], "noRotates": [False] } }, {"component": "BeamBlocker", "kwargs": {"beamType": "hold"}}, {"component": "BeamBlocker", "kwargs": {"beamType": "shove"}}, ] } THRESHOLD = { "name": "threshold", "components": [ { "component": "StateManager", "kwargs": { "initialState": "threshold", "stateConfigs": [{ "state": "threshold", "layer": "lowestPhysical", "sprite": "Threshold", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Threshold"], "spriteShapes": [shapes.PERSPECTIVE_THRESHOLD], "palettes": [shapes.PERSPECTIVE_WALL_PALETTE], "noRotates": [False] } }, ] } TILED_FLOOR = { "name": "tiled_floor", "components": [ { "component": "StateManager", "kwargs": { "initialState": "tiled_floor", "stateConfigs": [{ "state": "tiled_floor", "layer": "background", "sprite": "tiled_floor", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["tiled_floor"], "spriteShapes": [shapes.METAL_FLOOR_DOUBLE_SPACED], "palettes": [shapes.FACTORY_FLOOR_PALETTE], "noRotates": [False] } }, ] } FLOOR_MARKING = { "name": "floor_marking", "components": [ { "component": "StateManager", "kwargs": { "initialState": "floor_marking", "stateConfigs": [{ "state": "floor_marking", "layer": "lowestPhysical", "sprite": "floor_marking", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["floor_marking"], "spriteShapes": [shapes.FLOOR_MARKING], "palettes": [shapes.DISPENSER_BELT_PALETTE], "noRotates": [False] } }, ] } FLOOR_MARKING_TOP = { "name": "floor_marking_top", "components": [ { "component": "StateManager", "kwargs": { "initialState": "floor_marking_top", "stateConfigs": [{ "state": "floor_marking_top", "layer": "lowestPhysical", "sprite": "floor_marking_top", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["floor_marking_top"], "spriteShapes": [shapes.FLOOR_MARKING_LONG_TOP], "palettes": [shapes.DISPENSER_BELT_PALETTE], "noRotates": [False] } }, ] } FLOOR_MARKING_BOTTOM = { "name": "floor_marking_bottom", "components": [ { "component": "StateManager", "kwargs": { "initialState": "floor_marking_bottom", "stateConfigs": [{ "state": "floor_marking_bottom", "layer": "lowestPhysical", "sprite": "floor_marking_bottom", }], } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["floor_marking_bottom"], "spriteShapes": [shapes.FLOOR_MARKING_LONG_BOTTOM], "palettes": [shapes.DISPENSER_BELT_PALETTE], "noRotates": [False] } }, ] } human_readable_colors = list(colors.human_readable) target_sprite_color = human_readable_colors.pop(0) grappling_target_color_palette = shapes.get_palette(target_sprite_color) # Add character mappings to avatar pallete for Magic Beam overlay grappling_target_color_palette["P"] = (196, 77, 190, 130) grappling_target_color_palette["p"] = (184, 72, 178, 80) TARGET_SPRITE_SELF = { "default": { "name": "Self", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette(target_sprite_color), "noRotate": True, }, "grappling": { "name": "SelfGrappling", "shape": shapes.CUTE_AVATAR_ARMS_UP, "palette": grappling_target_color_palette, "noRotate": True, }, "grappled": { "name": "SelfGrappled", "shape": shapes.MAGIC_GRAPPLED_AVATAR, "palette": grappling_target_color_palette, "noRotate": True, }, } # PREFABS is a dictionary mapping names to template game objects that can # be cloned and placed in multiple locations accoring to an ascii map.graspable PREFABS = { "spawn_point": SPAWN_POINT, # Graspable objects. "apple": APPLE, "blue_cube_live": get_blue_cube(initial_state="blue_cube"), "pink_cube": PINK_CUBE, "blue_cube_wait": get_blue_cube(initial_state="waitState"), "banana": BANANA, # Dynamic components. "hopper_body": HOPPER_BODY, "hopper_mouth": HOPPER_MOUTH, # Hopper indicators. "hopper_indicator": HOPPER_INDICATOR, "hopper_indicator_pink_cube": HOPPER_INDICATOR_PINK_CUBE, "hopper_indicator_blue_cube": HOPPER_INDICATOR_BLUE_CUBE, "hopper_indicator_banana": HOPPER_INDICATOR_BANANA, # Dispenser indicators. "dispenser_indicator_apple": DISPENSER_INDICATOR_APPLE, "dispenser_indicator_two_apples": DISPENSER_INDICATOR_TWO_APPLES, "dispenser_indicator_pink_cube": DISPENSER_INDICATOR_PINK_CUBE, "dispenser_indicator_banana_cube": DISPENSER_INDICATOR_BANANA_CUBE, "dispenser_indicator_cube_apple": DISPENSER_INDICATOR_CUBE_APPLE, "dispenser_body": DISPENSER_BODY, "dispenser_belt": DISPENSER_BELT, "apple_dispensing_animation": APPLE_DISPENSING, "pink_cube_dispensing_animation": PINK_CUBE_DISPENSING_ANIMATION, "banana_cube_dispensing_animation": BANANA_CUBE_DISPENSING_ANIMATION, "cube_apple_dispensing_animation": CUBE_APPLE_DISPENSING_ANIMATION, # Static components. "nw_wall_corner": NW_WALL_CORNER, "ne_wall_corner": NE_WALL_CORNER, "wall_horizontal": WALL_HORIZONTAL, "wall_t_coupling": WALL_T_COUPLING, "wall_east": WALL_EAST, "wall_west": WALL_WEST, "wall_middle": WALL_MIDDLE, "threshold": THRESHOLD, "tiled_floor": TILED_FLOOR, "floor_marking": FLOOR_MARKING, "floor_marking_top": FLOOR_MARKING_TOP, "floor_marking_bottom": FLOOR_MARKING_BOTTOM, } # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "pickup": 0, "grasp": 0, "hold": 0, "shove": 0} FORWARD = {"move": 1, "turn": 0, "pickup": 0, "grasp": 0, "hold": 0, "shove": 0} STEP_RIGHT = {"move": 2, "turn": 0, "pickup": 0, "grasp": 0, "hold": 0, "shove": 0} BACKWARD = {"move": 3, "turn": 0, "pickup": 0, "grasp": 0, "hold": 0, "shove": 0} STEP_LEFT = {"move": 4, "turn": 0, "pickup": 0, "grasp": 0, "hold": 0, "shove": 0} TURN_LEFT = {"move": 0, "turn": -1, "pickup": 0, "grasp": 0, "hold": 0, "shove": 0} TURN_RIGHT = {"move": 0, "turn": 1, "pickup": 0, "grasp": 0, "hold": 0, "shove": 0} PICKUP = {"move": 0, "turn": 0, "pickup": 1, "grasp": 0, "hold": 0, "shove": 0} GRASP = {"move": 0, "turn": 0, "pickup": 0, "grasp": 1, "hold": 0, "shove": 0} HOLD = {"move": 0, "turn": 0, "pickup": 0, "grasp": 0, "hold": 1, "shove": 0} # Notice that SHOVE includes both `hold` and `shove` parts. SHOVE = {"move": 0, "turn": 0, "pickup": 0, "grasp": 0, "hold": 1, "shove": 1} PULL = {"move": 0, "turn": 0, "pickup": 0, "grasp": 0, "hold": 1, "shove": -1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, PICKUP, GRASP, HOLD, SHOVE, PULL, ) def create_scene(): """Creates the global scene.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform" }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.1 } } ] } return scene def _create_stamina_overlay(player_idx: int, max_stamina_bar_states: int, ) -> Generator[Dict[str, Any], None, None]: """Create stamina marker overlay objects.""" # Lua is 1-indexed. lua_idx = player_idx + 1 stamina_bar_state_configs = [ # Invisible inactive (dead) overlay type. {"state": "staminaBarWait"}, ] stamina_bar_sprite_names = [] stamina_bar_sprite_shapes = [] # Each player's stamina bars must be in their own layer so they do not # interact/collide with other players' stamina bars. stamina_bar_layer = f"superOverlay_{player_idx}" # Declare one state per level of the stamina bar. for i in range(max_stamina_bar_states): sprite_name = f"sprite_for_level_{i}" stamina_bar_state_configs.append( {"state": f"level_{i}", "layer": stamina_bar_layer, "sprite": sprite_name}) stamina_bar_sprite_names.append(sprite_name) xs = "\nxxxxxxxx" blank_space = xs * 7 number_of_rs = max(6 - i, 0) number_of_ys = i if i < 7 else 12 - i number_of_gs = max(i - 6, 0) if i >= 13: level = blank_space + xs else: level = ( blank_space + "\nx" + "G" * number_of_gs + "Y" * number_of_ys + "R" * number_of_rs + "x" ) empty = "\n".join(["x" * 8] * 8) # Replace the east/south/west sprites with invisible sprites so the only # stamina bar rendered is the one in the direction that the current player # is facing. stamina_bar_sprite_shapes.append((level, empty, empty, empty)) # Create a stamina bar for each compass direction. Only the direction the # current player is facing is visible. for direction in ("N", "E", "S", "W"): yield { "name": "avatar_stamina_bar", "components": [ { "component": "StateManager", "kwargs": { "initialState": "staminaBarWait", "stateConfigs": stamina_bar_state_configs } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": stamina_bar_sprite_names, "spriteShapes": stamina_bar_sprite_shapes, "palettes": [{"G": (62, 137, 72, 255), "Y": (255, 216, 97, 255), "R": (162, 38, 51, 255), "x": INVISIBLE,}] * max_stamina_bar_states, "noRotates": [True] * max_stamina_bar_states } }, { "component": "StaminaBar", "kwargs": { "playerIndex": lua_idx, "waitState": "staminaBarWait", "layer": stamina_bar_layer, "direction": direction } }, ] } def create_avatar_object(player_idx: int, target_sprite_self: Dict[str, Any], max_stamina_bar_states: int) -> Dict[str, Any]: """Create an avatar object.""" # Lua is 1-indexed. lua_index = player_idx + 1 # Setup the self vs other sprite mapping. avatar_sprite_name = "avatarSprite{}".format(lua_index) grappling_sprite = "AvatarGrappling" + str(lua_index) grappled_sprite = "AvatarGrappled" + str(lua_index) custom_sprite_map = { avatar_sprite_name: target_sprite_self["default"]["name"], grappling_sprite: target_sprite_self["grappling"]["name"], grappled_sprite: target_sprite_self["grappled"]["name"], } live_state_name = "player{}".format(lua_index) grappling_state_name = f"player{lua_index}_grappling" grappled_state_name = f"player{lua_index}_grappled" color_palette = shapes.get_palette(colors.palette[player_idx]) # Add character mappings to avatar pallete for Magic Beam overlay color_palette["P"] = (196, 77, 190, 130) color_palette["p"] = (184, 72, 178, 80) spawn_group = "spawnPoints" avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ # Initial player state. { "state": live_state_name, "layer": "midPhysical", "sprite": avatar_sprite_name, "contact": "avatar", "groups": ["players"] }, { "state": grappling_state_name, "layer": "upperPhysical", "sprite": grappling_sprite, "contact": "avatar", "groups": ["players"] }, { "state": grappled_state_name, "layer": "upperPhysical", "sprite": grappled_sprite, "contact": "avatar", "groups": ["players"]}, # Player wait type for times when they are zapped out. { "state": "playerWait", "groups": ["playerWaits"] }, ] } }, { "component": "Transform" }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [avatar_sprite_name, grappling_sprite, grappled_sprite], "spriteShapes": [shapes.CUTE_AVATAR, shapes.CUTE_AVATAR_ARMS_UP, shapes.MAGIC_GRAPPLED_AVATAR], "palettes": [color_palette] * 3, "noRotates": [True] * 3 } }, { "component": "AdditionalSprites", "kwargs": { "renderMode": "ascii_shape", "customSpriteNames": [ target_sprite_self["default"]["name"], target_sprite_self["grappling"]["name"], target_sprite_self["grappled"]["name"], ], "customSpriteShapes": [ target_sprite_self["default"]["shape"], target_sprite_self["grappling"]["shape"], target_sprite_self["grappled"]["shape"], ], "customPalettes": [ target_sprite_self["default"]["palette"], target_sprite_self["grappling"]["palette"], target_sprite_self["grappled"]["palette"], ], "customNoRotates": [ target_sprite_self["default"]["noRotate"], target_sprite_self["grappling"]["noRotate"], target_sprite_self["grappled"]["noRotate"], ], } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "additionalLiveStates": [grappled_state_name, grappling_state_name], "waitState": "playerWait", "spawnGroup": spawn_group, "actionOrder": [ "move", "turn", "pickup", "grasp", # Grappling actions "hold", "shove", ], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "pickup": {"default": 0, "min": 0, "max": 1}, "grasp": {"default": 0, "min": 0, "max": 1}, # Grappling actions "hold": {"default": 0, "min": 0, "max": 1}, "shove": {"default": 0, "min": -1, "max": 1}, }, "view": { "left": 5, "right": 5, "forward": 9, "backward": 1, "centered": False }, "spriteMap": custom_sprite_map, } }, { "component": "AvatarGrasp", "kwargs": { "shape": GRASP_SHAPE, "palette": color_palette, "graspAction": "grasp", # If multiple objects are at the same position then grasp them # according to their layer in order `precedenceOrder`. "precedenceOrder": ("appleLayer", "lowerPhysical",), } }, { "component": "Grappling", "kwargs": { "shape": shapes.MAGIC_BEAM, "palette": shapes.MAGIC_BEAM_PALETTE, "liveState": live_state_name, "grappledState": grappled_state_name, "grapplingState": grappling_state_name, } }, { "component": "ReadyToShootObservation", "kwargs": { # In this case READY_TO_SHOOT will be 1 if hold is allowed and # will be 0 if not. "zapperComponent": "Grappling", } }, { "component": "Stamina", "kwargs": { "maxStamina": max_stamina_bar_states, "classConfig": { "name": "player", "greenFreezeTime": 0, "yellowFreezeTime": 2, "redFreezeTime": 6, # `decrementRate` = 0.5 means decrease stamina on every # other costly step. `decrementRate` = 1 means decrease # stamina on every costly step. "decrementRate": 1.0, }, "amountInvisible": 6, "amountGreen": 6, "amountYellow": 6, "amountRed": 1, "costlyActions": ["move",], } }, { "component": "StaminaObservation", "kwargs": { "staminaComponent": "Stamina", } }, ] } if _ENABLE_DEBUG_OBSERVATIONS: avatar_object["components"].append({ "component": "LocationObserver", "kwargs": {"objectIsAvatar": True, "alsoReportOrientation": True}, }) return avatar_object def create_avatar_objects(num_players: int, max_stamina_bar_states: int = 19): """Returns list of avatar objects of length 'num_players'.""" avatar_objects = [] for player_idx in range(num_players): avatar_object = create_avatar_object(player_idx, TARGET_SPRITE_SELF, max_stamina_bar_states - 1) stamina_bar_objects = _create_stamina_overlay(player_idx, max_stamina_bar_states) enter_obstacle = _create_enter_obstacle(player_idx) avatar_objects.append(avatar_object) avatar_objects.append(enter_obstacle) avatar_objects.extend(stamina_bar_objects) return avatar_objects def _create_enter_obstacle(player_idx: int) -> Dict[str, Any]: # Lua is 1-indexed. lua_idx = player_idx + 1 return { "name": "enter_obstacle", "components": [ { "component": "StateManager", "kwargs": { "initialState": "obstacleWait", "stateConfigs": [ { "state": "obstacleWait" }, { "state": "obstacleLive", "layer": "lowerPhysical", } ] } }, { "component": "Transform", }, { "component": "AvatarConnector", "kwargs": { "playerIndex": lua_idx, "aliveState": "obstacleLive", "waitState": "obstacleWait" } }, ] } def get_config(): """Default configuration for training on the factory2d level.""" config = config_dict.ConfigDict() # Specify the number of players to particate in each episode (optional). config.recommended_num_players = 12 # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "READY_TO_SHOOT", "STAMINA", ] config.global_observation_names = [ "WORLD.RGB", ] config.action_spec = specs.action(len(ACTION_SET)) config.valid_roles = frozenset({"default"}) return config def build( roles: Sequence[str], config: config_dict.ConfigDict, ) -> Mapping[str, Any]: """Build substrate definition given player roles.""" num_players = len(roles) # Build the rest of the substrate definition. substrate_definition = dict( levelName="factory_of_the_commons", levelDirectory="meltingpot/lua/levels", numPlayers=num_players, maxEpisodeLengthFrames=5000, # The maximum possible number of frames. spriteSize=8, topology="BOUNDED", # Choose from ["BOUNDED", "TORUS"], simulation={ "map": config.layout.ascii_map, "gameObjects": create_avatar_objects(num_players), "scene": create_scene(), "prefabs": PREFABS, "charPrefabMap": config.layout.char_prefab_map, }, ) return substrate_definition
meltingpot-main
meltingpot/configs/substrates/factory_commons.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Chicken in the Matrix (two player, repeated version). Example video: https://youtu.be/bFwV-udmRb4 See _Running with Scissors in the Matrix_ for a general description of the game dynamics. Here the payoff matrix represents the Chicken game. `K = 2` resources represent "hawk" and "dove" pure strategies. Players have a `5 x 5` observation window. The episode has a chance of ending stochastically on every 100 step interval after step 1000. This usually allows time for 8 or more interactions. """ from typing import Any, Dict, Mapping, Sequence, Tuple from meltingpot.configs.substrates import the_matrix from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import shapes from meltingpot.utils.substrates import specs from ml_collections import config_dict # Warning: setting `_ENABLE_DEBUG_OBSERVATIONS = True` may cause slowdown. _ENABLE_DEBUG_OBSERVATIONS = False # The number of resources must match the (square) size of the matrix. NUM_RESOURCES = 2 # This color is green. RESOURCE1_COLOR = (30, 225, 185, 255) RESOURCE1_HIGHLIGHT_COLOR = (98, 234, 206, 255) RESOURCE1_COLOR_DATA = (RESOURCE1_COLOR, RESOURCE1_HIGHLIGHT_COLOR) # This color is red. RESOURCE2_COLOR = (225, 30, 70, 255) RESOURCE2_HIGHLIGHT_COLOR = (234, 98, 126, 255) RESOURCE2_COLOR_DATA = (RESOURCE2_COLOR, RESOURCE2_HIGHLIGHT_COLOR) ASCII_MAP = """ WWWWWWWWWWWWWWWWWWWWWWW Wn n nW W WWW W W W WW W W W 11a W a22 W W Wn WW 11a W a22 WW nW W 11a a22 W W W Wn WW WW n WW WWW nW W W W 22a W a11 W Wn W 22a W a11 W nW W W 22a W a11 WW W W WWWW W W W WWW W Wn n nW WWWWWWWWWWWWWWWWWWWWWWW """ _resource_names = [ "resource_class1", # Dove "resource_class2", # Hawk ] # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "a": {"type": "choice", "list": _resource_names}, "1": _resource_names[0], "2": _resource_names[1], "n": "spawn_point", "W": "wall", } _COMPASS = ["N", "E", "S", "W"] WALL = { "name": "wall", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall", "stateConfigs": [{ "state": "wall", "layer": "upperPhysical", "sprite": "Wall", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Wall"], "spriteShapes": [shapes.WALL], "palettes": [{"*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255)}], "noRotates": [False] } }, { "component": "BeamBlocker", "kwargs": { "beamType": "gameInteraction" } }, ] } SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["spawnPoints"] }], } }, { "component": "Transform", }, ] } # PLAYER_COLOR_PALETTES is a list with each entry specifying the color to use # for the player at the corresponding index. NUM_PLAYERS_UPPER_BOUND = 8 PLAYER_COLOR_PALETTES = [] for idx in range(NUM_PLAYERS_UPPER_BOUND): PLAYER_COLOR_PALETTES.append(shapes.get_palette(colors.palette[idx])) # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "interact": 0} FORWARD = {"move": 1, "turn": 0, "interact": 0} STEP_RIGHT = {"move": 2, "turn": 0, "interact": 0} BACKWARD = {"move": 3, "turn": 0, "interact": 0} STEP_LEFT = {"move": 4, "turn": 0, "interact": 0} TURN_LEFT = {"move": 0, "turn": -1, "interact": 0} TURN_RIGHT = {"move": 0, "turn": 1, "interact": 0} INTERACT = {"move": 0, "turn": 0, "interact": 1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, INTERACT, ) TARGET_SPRITE_SELF = { "name": "Self", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((50, 100, 200)), "noRotate": True, } TARGET_SPRITE_OTHER = { "name": "Other", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette((200, 100, 50)), "noRotate": True, } def create_scene(): """Creates the global scene.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform", }, { "component": "TheMatrix", "kwargs": { # Prevent interaction before both interactors have collected # at least one resource. "disallowUnreadyInteractions": True, "matrix": [ # row player chooses a row of this matrix. # D H (conventionally D = dove and H = hawk) [3, 2], # D [5, 0], # H ], "columnPlayerMatrix": [ # column player chooses a column of this matrix. # D H (conventionally D = dove and H = hawk) [3, 5], # D [2, 0], # H ], "resultIndicatorColorIntervals": [ # red # yellow # green # blue (0.0, 1.5), (1.5, 2.5), (2.5, 3.5), (3.5, 5.0) ], } }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.1 } } ] } return scene def create_resource_prefab( resource_id: int, resource_shape: str, resource_palette: Dict[str, Tuple[int, int, int, int]]): """Creates resource prefab with provided resource_id, shape, and palette.""" resource_name = "resource_class{}".format(resource_id) resource_prefab = { "name": resource_name, "components": [ { "component": "StateManager", "kwargs": { "initialState": resource_name, "stateConfigs": [ {"state": resource_name + "_wait", "groups": ["resourceWaits"]}, {"state": resource_name, "layer": "lowerPhysical", "sprite": resource_name + "_sprite"}, ] }, }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [resource_name + "_sprite"], "spriteShapes": [resource_shape], "palettes": [resource_palette], "noRotates": [True] }, }, { "component": "Resource", "kwargs": { "resourceClass": resource_id, "visibleType": resource_name, "waitState": resource_name + "_wait", "regenerationRate": 0.02, "regenerationDelay": 10, }, }, { "component": "Destroyable", "kwargs": { "waitState": resource_name + "_wait", # It is possible to destroy resources but takes concerted # effort to do so by zapping them `initialHealth` times. "initialHealth": 3, }, }, ] } return resource_prefab def create_avatar_object( player_idx: int, all_source_sprite_names: Sequence[str], target_sprite_self: Dict[str, Any], target_sprite_other: Dict[str, Any], turn_off_default_reward: bool = False) -> Dict[str, Any]: """Create an avatar object given self vs other sprite data.""" # Lua is 1-indexed. lua_index = player_idx + 1 # Setup the self vs other sprite mapping. source_sprite_self = "Avatar" + str(lua_index) custom_sprite_map = {source_sprite_self: target_sprite_self["name"]} for name in all_source_sprite_names: if name != source_sprite_self: custom_sprite_map[name] = target_sprite_other["name"] live_state_name = "player{}".format(lua_index) avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ {"state": live_state_name, "layer": "upperPhysical", "sprite": source_sprite_self, "contact": "avatar", "groups": ["players"]}, {"state": "playerWait", "groups": ["playerWaits"]}, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "colored_square", "spriteNames": [source_sprite_self], # A white square should never be displayed. It will always be # remapped since this is self vs other observation mode. "spriteRGBColors": [(255, 255, 255, 255)], } }, { "component": "AdditionalSprites", "kwargs": { "renderMode": "ascii_shape", "customSpriteNames": [target_sprite_self["name"], target_sprite_other["name"]], "customSpriteShapes": [target_sprite_self["shape"], target_sprite_other["shape"]], "customPalettes": [target_sprite_self["palette"], target_sprite_other["palette"]], "customNoRotates": [target_sprite_self["noRotate"], target_sprite_other["noRotate"]], } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "waitState": "playerWait", "speed": 1.0, "spawnGroup": "spawnPoints", "actionOrder": ["move", "turn", "interact"], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "interact": {"default": 0, "min": 0, "max": 1}, }, "view": { "left": 2, "right": 2, "forward": 3, "backward": 1, "centered": False }, "spriteMap": custom_sprite_map, # The following kwarg makes it possible to get rewarded even # on frames when an avatar is "dead". It is needed for in the # matrix games in order to correctly handle the case of two # players getting hit simultaneously by the same beam. "skipWaitStateRewards": False, } }, { "component": "GameInteractionZapper", "kwargs": { "cooldownTime": 2, "beamLength": 3, "beamRadius": 1, "framesTillRespawn": 5, "numResources": NUM_RESOURCES, "endEpisodeOnFirstInteraction": False, # Reset both players' inventories after each interaction. "reset_winner_inventory": True, "reset_loser_inventory": True, # Both players get removed after each interaction. "losingPlayerDies": True, "winningPlayerDies": True, # `freezeOnInteraction` is the number of frames to display the # interaction result indicator, freeze, and delay delivering # all results of interacting. "freezeOnInteraction": 16, } }, { "component": "ReadyToShootObservation", "kwargs": { "zapperComponent": "GameInteractionZapper", } }, { "component": "InventoryObserver", "kwargs": { } }, { "component": "SpawnResourcesWhenAllPlayersZapped", }, { "component": "Taste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. # No resource is most tasty when mostTastyResourceClass == -1. "mostTastyReward": 0.1, } }, { "component": "InteractionTaste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. "zeroDefaultInteractionReward": turn_off_default_reward, "extraReward": 1.0, } }, { "component": "AvatarMetricReporter", "kwargs": { "metrics": [ { # Report the inventories of both players involved in # an interaction on this frame formatted as # (self inventory, partner inventory). "name": "INTERACTION_INVENTORIES", "type": "tensor.DoubleTensor", "shape": (2, NUM_RESOURCES), "component": "GameInteractionZapper", "variable": "latest_interaction_inventories", }, *the_matrix.get_cumulant_metric_configs(NUM_RESOURCES), ] } }, ] } if _ENABLE_DEBUG_OBSERVATIONS: avatar_object["components"].append( { "component": "LocationObserver", "kwargs": { "objectIsAvatar": True, "alsoReportOrientation": True } }, ) return avatar_object def create_prefabs(): """Returns a dictionary mapping names to template game objects.""" prefabs = { "wall": WALL, "spawn_point": SPAWN_POINT, } prefabs["resource_class1"] = create_resource_prefab( 1, shapes.BUTTON, {"*": RESOURCE1_COLOR_DATA[0], "#": RESOURCE1_COLOR_DATA[1], "x": (0, 0, 0, 0)}) prefabs["resource_class2"] = create_resource_prefab( 2, shapes.BUTTON, {"*": RESOURCE2_COLOR_DATA[0], "#": RESOURCE2_COLOR_DATA[1], "x": (0, 0, 0, 0)}) return prefabs def get_all_source_sprite_names(num_players): all_source_sprite_names = [] for player_idx in range(0, num_players): # Lua is 1-indexed. lua_index = player_idx + 1 all_source_sprite_names.append("Avatar" + str(lua_index)) return all_source_sprite_names def create_avatar_objects(num_players, turn_off_default_reward: bool = False): """Returns list of avatar objects of length 'num_players'.""" all_source_sprite_names = get_all_source_sprite_names(num_players) avatar_objects = [] for player_idx in range(0, num_players): game_object = create_avatar_object( player_idx, all_source_sprite_names, TARGET_SPRITE_SELF, TARGET_SPRITE_OTHER, turn_off_default_reward=turn_off_default_reward) readiness_marker = the_matrix.create_ready_to_interact_marker(player_idx) avatar_objects.append(game_object) avatar_objects.append(readiness_marker) return avatar_objects def create_world_sprite_map( num_players: int, target_sprite_other: Dict[str, Any]) -> Dict[str, str]: all_source_sprite_names = get_all_source_sprite_names(num_players) world_sprite_map = {} for name in all_source_sprite_names: world_sprite_map[name] = target_sprite_other["name"] return world_sprite_map def get_config(): """Default configuration.""" config = config_dict.ConfigDict() # Other parameters that are useful to override in training config files. config.turn_off_default_reward = False # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "INVENTORY", "READY_TO_SHOOT", # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES", ] config.global_observation_names = [ "WORLD.RGB", ] # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.rgb(40, 40), "INVENTORY": specs.inventory(2), "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES": specs.interaction_inventories(2), "WORLD.RGB": specs.rgb(120, 184), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 2 return config def build( roles: Sequence[str], config: config_dict.ConfigDict, ) -> Mapping[str, Any]: """Build substrate definition given roles.""" del config num_players = len(roles) # Build the rest of the substrate definition. substrate_definition = dict( levelName="the_matrix", levelDirectory="meltingpot/lua/levels", numPlayers=num_players, # Define upper bound of episode length since episodes end stochastically. maxEpisodeLengthFrames=5000, spriteSize=8, topology="BOUNDED", # Choose from ["BOUNDED", "TORUS"], simulation={ "map": ASCII_MAP, "gameObjects": create_avatar_objects(num_players=num_players), "scene": create_scene(), "prefabs": create_prefabs(), "charPrefabMap": CHAR_PREFAB_MAP, # worldSpriteMap is needed to make the global view used in videos be # be informative in cases where individual avatar views have had # sprites remapped to one another (example: self vs other mode). "worldSpriteMap": create_world_sprite_map(num_players, TARGET_SPRITE_OTHER), } ) return substrate_definition
meltingpot-main
meltingpot/configs/substrates/chicken_in_the_matrix__repeated.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Running with Scissors in the Matrix (arena version). Example video: https://youtu.be/6BL6JIbS2cE This substrate is the same as _Running with Scissors in the Matrix_ except in this case there are eight players and the map layout is different. Even though there are eight players, they still interact in dyadic pairs via the usual rock-paper-scissors payoff matrix. Players have the default `11 x 11` (off center) observation window. """ from typing import Any, Dict, Mapping, Sequence from meltingpot.configs.substrates import the_matrix from meltingpot.utils.substrates import colors from meltingpot.utils.substrates import game_object_utils from meltingpot.utils.substrates import shapes from meltingpot.utils.substrates import specs from ml_collections import config_dict PrefabConfig = game_object_utils.PrefabConfig # Warning: setting `_ENABLE_DEBUG_OBSERVATIONS = True` may cause slowdown. _ENABLE_DEBUG_OBSERVATIONS = False # The number of resources must match the (square) size of the matrix. NUM_RESOURCES = 3 # This color is yellow. RESOURCE1_COLOR = (255, 227, 11, 255) RESOURCE1_HIGHLIGHT_COLOR = (255, 214, 91, 255) RESOURCE1_COLOR_DATA = (RESOURCE1_COLOR, RESOURCE1_HIGHLIGHT_COLOR) # This color is violet. RESOURCE2_COLOR = (109, 42, 255, 255) RESOURCE2_HIGHLIGHT_COLOR = (132, 91, 255, 255) RESOURCE2_COLOR_DATA = (RESOURCE2_COLOR, RESOURCE2_HIGHLIGHT_COLOR) # This color is cyan. RESOURCE3_COLOR = (42, 188, 255, 255) RESOURCE3_HIGHLIGHT_COLOR = (91, 214, 255, 255) RESOURCE3_COLOR_DATA = (RESOURCE3_COLOR, RESOURCE3_HIGHLIGHT_COLOR) # The map parser replaces all 'a' chars in the default map with chars # representing specific resources, i.e. with either '1' or '2'. ASCII_MAP = """ WWWWWWWWWWWWWWWWWWWWWWWWW WPPPP W W PPPPW WPPPP PPPPW WPPPP PPPPW WPPPP PPPPW W aa W W 11 aa W W 11 W W 11 W W WW W 222 W WW 33 W 222 W WWW 33 WWWWWWWWW W W 33 111 WWW W 111 W W 22 W W W 22 W WW W W 22 W333 W W 333 W W aa W WPPPP aa PPPPW WPPPP PPPPW WPPPP PPPPW WPPPP W PPPPW WWWWWWWWWWWWWWWWWWWWWWWWW """ _resource_names = [ "resource_class1", "resource_class2", "resource_class3", ] # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "a": {"type": "choice", "list": _resource_names}, "1": _resource_names[0], "2": _resource_names[1], "3": _resource_names[2], "P": "spawn_point", "W": "wall", } _COMPASS = ["N", "E", "S", "W"] WALL = { "name": "wall", "components": [ { "component": "StateManager", "kwargs": { "initialState": "wall", "stateConfigs": [{ "state": "wall", "layer": "upperPhysical", "sprite": "Wall", }], } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": ["Wall"], "spriteShapes": [shapes.WALL], "palettes": [{"*": (95, 95, 95, 255), "&": (100, 100, 100, 255), "@": (109, 109, 109, 255), "#": (152, 152, 152, 255)}], "noRotates": [False] } }, { "component": "BeamBlocker", "kwargs": { "beamType": "gameInteraction" } }, ] } SPAWN_POINT = { "name": "spawnPoint", "components": [ { "component": "StateManager", "kwargs": { "initialState": "spawnPoint", "stateConfigs": [{ "state": "spawnPoint", "layer": "alternateLogic", "groups": ["spawnPoints"] }], } }, { "component": "Transform", }, ] } # Remove the first entry from human_readable_colors after using it for the self # color to prevent it from being used again as another avatar color. human_readable_colors = list(colors.human_readable) TARGET_SPRITE_SELF = { "name": "Self", "shape": shapes.CUTE_AVATAR, "palette": shapes.get_palette(human_readable_colors.pop(0)), "noRotate": True, } # PLAYER_COLOR_PALETTES is a list with each entry specifying the color to use # for the player at the corresponding index. PLAYER_COLOR_PALETTES = [] for human_readable_color in human_readable_colors: PLAYER_COLOR_PALETTES.append(shapes.get_palette(human_readable_color)) # Primitive action components. # pylint: disable=bad-whitespace # pyformat: disable NOOP = {"move": 0, "turn": 0, "interact": 0} FORWARD = {"move": 1, "turn": 0, "interact": 0} STEP_RIGHT = {"move": 2, "turn": 0, "interact": 0} BACKWARD = {"move": 3, "turn": 0, "interact": 0} STEP_LEFT = {"move": 4, "turn": 0, "interact": 0} TURN_LEFT = {"move": 0, "turn": -1, "interact": 0} TURN_RIGHT = {"move": 0, "turn": 1, "interact": 0} INTERACT = {"move": 0, "turn": 0, "interact": 1} # pyformat: enable # pylint: enable=bad-whitespace ACTION_SET = ( NOOP, FORWARD, BACKWARD, STEP_LEFT, STEP_RIGHT, TURN_LEFT, TURN_RIGHT, INTERACT, ) def create_scene(): """Creates the global scene.""" scene = { "name": "scene", "components": [ { "component": "StateManager", "kwargs": { "initialState": "scene", "stateConfigs": [{ "state": "scene", }], } }, { "component": "Transform", }, { "component": "TheMatrix", "kwargs": { # Prevent interaction before both interactors have collected # at least one resource. "disallowUnreadyInteractions": True, "matrix": [ [0, -10, 10], [10, 0, -10], [-10, 10, 0] ], "resultIndicatorColorIntervals": [ (-10.0, -5.0), # red (-5.0, -2.5), # yellow (-2.5, 2.5), # green (2.5, 5.0), # blue (5.0, 10.0) # violet ], } }, { "component": "StochasticIntervalEpisodeEnding", "kwargs": { "minimumFramesPerEpisode": 1000, "intervalLength": 100, # Set equal to unroll length. "probabilityTerminationPerInterval": 0.2 } } ] } return scene def create_resource_prefab(resource_id, color_data): """Creates resource prefab with provided `resource_id` (num) and color.""" resource_name = "resource_class{}".format(resource_id) resource_prefab = { "name": resource_name, "components": [ { "component": "StateManager", "kwargs": { "initialState": resource_name, "stateConfigs": [ {"state": resource_name + "_wait", "groups": ["resourceWaits"]}, {"state": resource_name, "layer": "lowerPhysical", "sprite": resource_name + "_sprite"}, ] }, }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [resource_name + "_sprite"], "spriteShapes": [shapes.BUTTON], "palettes": [{"*": color_data[0], "#": color_data[1], "x": (0, 0, 0, 0)}], "noRotates": [False] }, }, { "component": "Resource", "kwargs": { "resourceClass": resource_id, "visibleType": resource_name, "waitState": resource_name + "_wait", "regenerationRate": 0.04, "regenerationDelay": 10, }, }, { "component": "Destroyable", "kwargs": { "waitState": resource_name + "_wait", # It is possible to destroy resources but takes concerted # effort to do so by zapping them `initialHealth` times. "initialHealth": 3, }, }, ] } return resource_prefab def create_prefabs() -> PrefabConfig: """Returns the prefabs. Prefabs are a dictionary mapping names to template game objects that can be cloned and placed in multiple locations accoring to an ascii map. """ prefabs = { "wall": WALL, "spawn_point": SPAWN_POINT, } prefabs["resource_class1"] = create_resource_prefab(1, RESOURCE1_COLOR_DATA) prefabs["resource_class2"] = create_resource_prefab(2, RESOURCE2_COLOR_DATA) prefabs["resource_class3"] = create_resource_prefab(3, RESOURCE3_COLOR_DATA) return prefabs def create_avatar_object( player_idx: int, target_sprite_self: Dict[str, Any], turn_off_default_reward: bool = False) -> Dict[str, Any]: """Create an avatar object that always sees itself as blue.""" # Lua is 1-indexed. lua_index = player_idx + 1 # Setup the self vs other sprite mapping. source_sprite_self = "Avatar" + str(lua_index) custom_sprite_map = {source_sprite_self: target_sprite_self["name"]} live_state_name = "player{}".format(lua_index) avatar_object = { "name": "avatar", "components": [ { "component": "StateManager", "kwargs": { "initialState": live_state_name, "stateConfigs": [ {"state": live_state_name, "layer": "upperPhysical", "sprite": source_sprite_self, "contact": "avatar", "groups": ["players"]}, {"state": "playerWait", "groups": ["playerWaits"]}, ] } }, { "component": "Transform", }, { "component": "Appearance", "kwargs": { "renderMode": "ascii_shape", "spriteNames": [source_sprite_self], "spriteShapes": [shapes.CUTE_AVATAR], "palettes": [shapes.get_palette( human_readable_colors[player_idx])], "noRotates": [True] } }, { "component": "AdditionalSprites", "kwargs": { "renderMode": "ascii_shape", "customSpriteNames": [target_sprite_self["name"]], "customSpriteShapes": [target_sprite_self["shape"]], "customPalettes": [target_sprite_self["palette"]], "customNoRotates": [target_sprite_self["noRotate"]], } }, { "component": "Avatar", "kwargs": { "index": lua_index, "aliveState": live_state_name, "waitState": "playerWait", "speed": 1.0, "spawnGroup": "spawnPoints", "actionOrder": ["move", "turn", "interact"], "actionSpec": { "move": {"default": 0, "min": 0, "max": len(_COMPASS)}, "turn": {"default": 0, "min": -1, "max": 1}, "interact": {"default": 0, "min": 0, "max": 1}, }, "view": { "left": 5, "right": 5, "forward": 9, "backward": 1, "centered": False }, "spriteMap": custom_sprite_map, # The following kwarg makes it possible to get rewarded even # on frames when an avatar is "dead". It is needed for in the # matrix games in order to correctly handle the case of two # players getting hit simultaneously by the same beam. "skipWaitStateRewards": False, } }, { "component": "GameInteractionZapper", "kwargs": { "cooldownTime": 2, "beamLength": 3, "beamRadius": 1, "framesTillRespawn": 50, "numResources": NUM_RESOURCES, "endEpisodeOnFirstInteraction": False, # Reset both players' inventories after each interaction. "reset_winner_inventory": True, "reset_loser_inventory": True, # Both players get removed after each interaction. "losingPlayerDies": True, "winningPlayerDies": True, # `freezeOnInteraction` is the number of frames to display the # interaction result indicator, freeze, and delay delivering # all results of interacting. "freezeOnInteraction": 16, } }, { "component": "ReadyToShootObservation", "kwargs": { "zapperComponent": "GameInteractionZapper", } }, { "component": "InventoryObserver", "kwargs": { } }, { "component": "Taste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. "mostTastyReward": 1.0, # reward for most tasty. "defaultTastinessReward": 0.0, # reward for others. } }, { "component": "InteractionTaste", "kwargs": { "mostTastyResourceClass": -1, # -1 indicates no preference. "zeroDefaultInteractionReward": turn_off_default_reward, "extraReward": 1.0, } }, { "component": "AvatarMetricReporter", "kwargs": { "metrics": [ { # Report the inventories of both players involved in # an interaction on this frame formatted as # (self inventory, partner inventory). "name": "INTERACTION_INVENTORIES", "type": "tensor.DoubleTensor", "shape": (2, NUM_RESOURCES), "component": "GameInteractionZapper", "variable": "latest_interaction_inventories", }, *the_matrix.get_cumulant_metric_configs(NUM_RESOURCES), ] } }, ] } if _ENABLE_DEBUG_OBSERVATIONS: avatar_object["components"].append({ "component": "LocationObserver", "kwargs": {"objectIsAvatar": True, "alsoReportOrientation": True}, }) return avatar_object def create_avatar_objects( num_players: int, turn_off_default_reward: bool = False) -> Sequence[PrefabConfig]: """Returns all game objects for the map. Args: num_players: number of players to create avatars for. turn_off_default_reward: if true then zero the main game reward. This is used for training specialist background populations. """ avatar_objects = [] for player_idx in range(num_players): avatar = create_avatar_object( player_idx, TARGET_SPRITE_SELF, turn_off_default_reward=turn_off_default_reward) readiness_marker = the_matrix.create_ready_to_interact_marker(player_idx) avatar_objects.append(avatar) avatar_objects.append(readiness_marker) return avatar_objects def get_config(): """Default configuration.""" config = config_dict.ConfigDict() # Other parameters that are useful to override in training config files. config.turn_off_default_reward = False # Action set configuration. config.action_set = ACTION_SET # Observation format configuration. config.individual_observation_names = [ "RGB", "INVENTORY", "READY_TO_SHOOT", # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES", ] config.global_observation_names = [ "WORLD.RGB", ] # The specs of the environment (from a single-agent perspective). config.action_spec = specs.action(len(ACTION_SET)) config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "INVENTORY": specs.inventory(3), "READY_TO_SHOOT": specs.OBSERVATION["READY_TO_SHOOT"], # Debug only (do not use the following observations in policies). "INTERACTION_INVENTORIES": specs.interaction_inventories(3), "WORLD.RGB": specs.rgb(192, 200), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 8 return config def build( roles: Sequence[str], config: config_dict.ConfigDict, ) -> Mapping[str, Any]: """Build substrate definition given roles.""" del config num_players = len(roles) # Build the rest of the substrate definition. substrate_definition = dict( levelName="the_matrix", levelDirectory="meltingpot/lua/levels", numPlayers=num_players, # Define upper bound of episode length since episodes end stochastically. maxEpisodeLengthFrames=5000, spriteSize=8, topology="BOUNDED", # Choose from ["BOUNDED", "TORUS"], simulation={ "map": ASCII_MAP, "gameObjects": create_avatar_objects(num_players=num_players), "scene": create_scene(), "prefabs": create_prefabs(), "charPrefabMap": CHAR_PREFAB_MAP, } ) return substrate_definition
meltingpot-main
meltingpot/configs/substrates/running_with_scissors_in_the_matrix__arena.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Collaborative Cooking: Figure Eight. Example video: https://youtu.be/hUCbOL5l-Gw The recipe they must follow is for tomato soup: 1. Add three tomatoes to the cooking pot. 2. Wait for the soup to cook (status bar completion). 3. Bring a bowl to the pot and pour the soup from the pot into the bowl. 4. Deliver the bowl of soup at the goal location. This substrate is a pure common interest game. All players share all rewards. Players have a `5 x 5` observation window. Map: Figure Eight: The map is a figure eight shaped maze that generates numerous places where players might get in one another's way, blocking critical paths. While it is technically possible for a single player to complete the task on their own it is very unlikely that poor performing partners would get out of its way, so in practice, collaboration is essential. """ from meltingpot.configs.substrates import collaborative_cooking as base_config from meltingpot.utils.substrates import specs from ml_collections import config_dict build = base_config.build # Figure Eight: Strong performance on this map requires two stages of teamwork. ASCII_MAP = """ ################ ####C#C##C#C#### # P P # ## ########## ## # P P # ## ########## ## # P P # ### #ODTTOD# ### ################ """ def get_config(): """Default configuration.""" config = base_config.get_config() # Override the map layout settings. config.layout = config_dict.ConfigDict() config.layout.ascii_map = ASCII_MAP # The specs of the environment (from a single-agent perspective). config.timestep_spec = specs.timestep({ "RGB": specs.rgb(40, 40), # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(72, 128), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 6 return config
meltingpot-main
meltingpot/configs/substrates/collaborative_cooking__figure_eight.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for Collaborative Cooking: Cramped. Example video: https://youtu.be/8qQFbxO8UNY The recipe they must follow is for tomato soup: 1. Add three tomatoes to the cooking pot. 2. Wait for the soup to cook (status bar completion). 3. Bring a bowl to the pot and pour the soup from the pot into the bowl. 4. Deliver the bowl of soup at the goal location. This substrate is a pure common interest game. All players share all rewards. Players have a `5 x 5` observation window. Map: Cramped Room: A tight layout requiring significant movement coordination between the players in order to avoid being blocked by each other. """ from meltingpot.configs.substrates import collaborative_cooking as base_config from meltingpot.utils.substrates import specs from ml_collections import config_dict build = base_config.build # Cramped Room: A tight layout requiring significant movement coordination # between the players in order to avoid being blocked by each other. ASCII_MAP = """ xx##C##xx xxOP POxx xx# #xx xx#D#T#xx xxxxxxxxx """ def get_config(): """Default configuration.""" config = base_config.get_config() # Override the map layout settings. config.layout = config_dict.ConfigDict() config.layout.ascii_map = ASCII_MAP # The specs of the environment (from a single-agent perspective). config.timestep_spec = specs.timestep({ "RGB": specs.rgb(40, 40), # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(40, 72), }) # The roles assigned to each player. config.valid_roles = frozenset({"default"}) config.default_player_roles = ("default",) * 2 return config
meltingpot-main
meltingpot/configs/substrates/collaborative_cooking__cramped.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for predator_prey__random_forest. Example video: https://youtu.be/ZYkXwvn5_Sc See predator_prey.py for a detailed description applicable to all predator_prey substrates. In this variant there are only acorns, no apples. And, there is no fully safe tall grass. The tall grass that there is on this map is never large enough for prey to be fully safe from predation. The grass merely provides an obstacle that predators must navigate around while chasing prey. """ from meltingpot.configs.substrates import predator_prey as base_config from meltingpot.utils.substrates import map_helpers from meltingpot.utils.substrates import specs from ml_collections import config_dict build = base_config.build ASCII_MAP = """ /;___________________,/ ;]XAXXXXXXXAXXXXXXXAX[, !XXXXXXXXXXXXXXXXXXXXX| !''''M'M''MMM''M'M''''| !'M''M'MM''Q''MM'M''M'| !'MQ'M''MMMMMMM''M'QM'| !''''''QM'''''MQ''''''| !M'MMMMMM@@@@@MMMMMM'M| !M''''''@@@@@@@''''''M| !Q'MMQ''@@@A@@@''QMM'Q| !M''''''@@@@@@@''''''M| !M'MMMMMM@@@@@MMMMMM'M| !''''''QM'''''MQ''''''| !'MQ'M''MMMMMMM''M'QM'| !'M''M'MM''Q''MM'M''M'| !''''M'M''MMM''M'M''''| !XXXXXXXXXXXXXXXXXXXXX| L+XAXXXXXXXAXXXXXXXAX=J /L~~~~~~~~~~~~~~~~~~~J/ """ prey_spawn_point = {"type": "all", "list": ["tiled_floor", "spawn_point_prey"]} predator_spawn_point = {"type": "all", "list": ["tiled_floor", "spawn_point_predator"]} acorn = {"type": "all", "list": ["tiled_floor", "floor_acorn"]} # `prefab` determines which prefab game object to use for each `char` in the # ascii map. CHAR_PREFAB_MAP = { "@": prey_spawn_point, "*": {"type": "all", "list": ["safe_grass", "spawn_point_prey"]}, "&": {"type": "all", "list": ["tiled_floor", "apple", "spawn_point_prey"]}, "X": predator_spawn_point, "a": {"type": "all", "list": ["tiled_floor", "apple"]}, "A": acorn, ";": "nw_wall_corner", ",": "ne_wall_corner", "J": "se_wall_corner", "L": "sw_wall_corner", "_": "wall_north", "|": "wall_east", "~": "wall_south", "!": "wall_west", "=": "nw_inner_wall_corner", "+": "ne_inner_wall_corner", "]": "se_inner_wall_corner", "[": "sw_inner_wall_corner", "'": "tiled_floor", "#": "safe_grass", "<": "safe_grass_w_edge", "^": "safe_grass_n_edge", ">": "safe_grass_e_edge", "v": "safe_grass_s_edge", "l": "safe_grass_ne_corner", "j": "safe_grass_se_corner", "z": "safe_grass_sw_corner", "r": "safe_grass_nw_corner", "/": "fill", "Q": map_helpers.a_or_b_with_odds(acorn, "tiled_floor", odds=(1, 2)), "M": map_helpers.a_or_b_with_odds("safe_grass", "tiled_floor", odds=(1, 2)), } def get_config(): """Default configuration.""" config = base_config.get_config() # Override the map layout settings. config.layout = config_dict.ConfigDict() config.layout.ascii_map = ASCII_MAP config.layout.char_prefab_map = CHAR_PREFAB_MAP # The specs of the environment (from a single-agent perspective). config.timestep_spec = specs.timestep({ "RGB": specs.OBSERVATION["RGB"], "STAMINA": specs.float64(), # Debug only (do not use the following observations in policies). "WORLD.RGB": specs.rgb(152, 184), }) # The roles assigned to each player. config.default_player_roles = ("predator",) * 5 + ("prey",) * 8 return config
meltingpot-main
meltingpot/configs/substrates/predator_prey__random_forest.py