python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
"""Functions for the optimisation (including evolution) and evaluation. Arnheim 3 - Collage Piotr Mirowski, Dylan Banarse, Mateusz Malinowski, Yotam Doron, Oriol Vinyals, Simon Osindero, Chrisantha Fernando DeepMind, 2021-2022 Copyright 2021 DeepMind Technologies Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import clip from matplotlib import pyplot as plt import numpy as np import time import torch import torchvision.transforms as transforms from .video_utils import show_and_save # Show each image being evaluated for debugging purposes. VISUALISE_BATCH_IMAGES = False def augmentation_transforms(canvas_width, use_normalized_clip=False, use_augmentation=False): """Image transforms to produce distorted crops to augment the evaluation. Args: canvas_width: width of the drawing canvas use_normalized_clip: Normalisation to better suit CLIP's training data use_augmentation: Image augmentation by affine transform Returns: transforms """ if use_normalized_clip and use_augmentation: augment_trans = transforms.Compose( [transforms.RandomPerspective(fill=1, p=1, distortion_scale=0.6), transforms.RandomResizedCrop(canvas_width, scale=(0.7, 0.9)), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))]) elif use_augmentation: augment_trans = transforms.Compose([ transforms.RandomPerspective(fill=1, p=1, distortion_scale=0.6), transforms.RandomResizedCrop(canvas_width, scale=(0.7, 0.9)), ]) elif use_normalized_clip: augment_trans = transforms.Normalize( (0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) else: augment_trans = transforms.RandomPerspective( fill=1, p=0, distortion_scale=0) return augment_trans def moving_average(a, n=3): ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n def plot_and_save_losses( loss_history, title="Losses", filename=None, show=True): """Plot losses and save to file.""" losses = np.array(loss_history) if filename: np.save(filename + ".npy", losses, allow_pickle=True) if show: plt.figure(figsize=(10, 10)) plt.xlabel("Training steps") plt.ylabel("Loss") plt.title(title) plt.plot(moving_average(losses, n=3)) plt.savefig(filename + ".png") def make_optimizer(generator, learning_rate): """Make optimizer for generator's parameters. Args: generator: generator model learning_rate: learning rate Returns: optimizer """ my_list = ["positions_top"] params = list(map(lambda x: x[1], list(filter(lambda kv: kv[0] in my_list, generator.named_parameters())))) base_params = list(map( lambda x: x[1], list(filter( lambda kv: kv[0] not in my_list, generator.named_parameters())))) lr_scheduler = torch.optim.SGD([{"params": base_params}, {"params": params, "lr": learning_rate}], lr=learning_rate) return lr_scheduler def compute_text_features(prompts, clip_model, device): """Compute CLIP features for all prompts.""" text_inputs = [] for prompt in prompts: text_inputs.append(clip.tokenize(prompt).to(device)) features = [] with torch.no_grad(): for text_input in text_inputs: features.append(clip_model.encode_text(text_input)) return features def create_augmented_batch(images, augment_trans, text_features, config): """Create batch of images to be evaluated. Args: images: batch of images to be augmented [N, C, H, W] augment_trans: transformations for augmentations text_features: text feature per image config: dictionary with config Returns: img_batch: Augmented versions of the original images [N*num_augs, C, H, W] num_augs: number of images per original image expanded_text_features: a text feature for each augmentation loss_weights: weights for the losses corresponding to each augmentation """ images = images.permute(0, 3, 1, 2) # NHWC -> NCHW expanded_text_features = [] if config["use_image_augmentations"]: num_augs = config["num_augs"] img_augs = [] for _ in range(num_augs): img_n = augment_trans(images) img_augs.append(img_n) expanded_text_features.append(text_features[0]) img_batch = torch.cat(img_augs) # Given images [P0, P1] and augmentations [a0(), a1()], output format: # [a0(P0), a0(P1), a1(P0), a1(P1)] else: num_augs = 1 img_batch = augment_trans(images) expanded_text_features.append(text_features[0]) return img_batch, num_augs, expanded_text_features, [1] * config["num_augs"] def create_compositional_batch(images, augment_trans, text_features): """Create 10 sub-images per image by augmenting each with 3x3 crops. Args: images: population of N images, format [N, C, H, W] augment_trans: transformations for augmentations text_features: text feature per image Returns: Tensor of all compositional sub-images + originals; [N*10, C, H, W] format: [x0_y0(P0) ... x0_y0(PN), ..., x2_y2(P0) ... x2_y2(PN), P0, ..., PN] 10: Number of sub-images + whole, per original image. expanded_text_features: list of text features, 1 for each composition image loss_weights: weights for the losses corresponding to each composition image """ if len(text_features) != 10: # text_features should already be 10 in size. raise ValueError( "10 text prompts required for compositional image creation") resize_for_clip = transforms.Compose([transforms.Resize((224, 224))]) img_swap = torch.swapaxes(images, 3, 1) ims = [] i = 0 for x in range(3): for y in range(3): for k in range(images.shape[0]): ims.append(resize_for_clip( img_swap[k][:, y * 112 : y * 112 + 224, x * 112 : x * 112 + 224])) i += 1 # Top-level (whole) images for k in range(images.shape[0]): ims.append(resize_for_clip(img_swap[k])) all_img = torch.stack(ims) all_img = torch.swapaxes(all_img, 1, 3) all_img = all_img.permute(0, 3, 1, 2) # NHWC -> NCHW all_img = augment_trans(all_img) # Last image gets 9 times as much weight common_weight = 1 / 5 loss_weights = [common_weight] * 9 loss_weights.append(9 * common_weight) return all_img, 10, text_features, loss_weights def evaluation(t, clip_enc, generator, augment_trans, text_features, prompts, config, device): """Do a step of evaluation, returning images and losses. Args: t: step count clip_enc: model for CLIP encoding generator: drawing generator to optimise augment_trans: transforms for image augmentation text_features: tuple with the prompt two negative prompts prompts: for debugging/visualisation - the list of text prompts config: dictionary with hyperparameters device: torch device Returns: loss: torch.Tensor of single combines loss losses_separate_np: numpy array of loss for each image losses_individuals_np: numpy array with loss for each population individual img_np: numpy array of images from the generator """ # Annealing parameters. params = {"gamma": t / config["optim_steps"]} # Rebuild the generator. img = generator(params) img_np = img.detach().cpu().numpy() # Create images for different regions pop_size = img.shape[0] if config["compositional_image"]: (img_batch, num_augs, text_features, loss_weights ) = create_compositional_batch(img, augment_trans, text_features) else: (img_batch, num_augs, text_features, loss_weights ) = create_augmented_batch(img, augment_trans, text_features, config) losses = torch.zeros(pop_size, num_augs).to(device) # Compute and add losses after augmenting the image with transforms. img_batch = torch.clip(img_batch, 0, 1) # clip the images. image_features = clip_enc.encode_image(img_batch) count = 0 for n in range(num_augs): # number of augmentations or composition images for p in range(pop_size): loss = torch.cosine_similarity( text_features[n], image_features[count:count+1], dim=1 )[0] * loss_weights[n] losses[p, n] -= loss if VISUALISE_BATCH_IMAGES and t % 500 == 0: # Show all the images in the batch along with their losses. if config["compositional_image"]: print(f"Loss {loss} for image region with prompt {prompts[n]}:") else: print(f"Loss {loss} for image augmentation with prompt {prompts[0]}:") show_and_save(img_batch[count].unsqueeze(0), config, img_format="SCHW", show=config["gui"]) count += 1 loss = torch.sum(losses) / pop_size losses_separate_np = losses.detach().cpu().numpy() # Sum losses for all each population individual. losses_individuals_np = losses_separate_np.sum(axis=1) return loss, losses_separate_np, losses_individuals_np, img_np def step_optimization(t, clip_enc, lr_scheduler, generator, augment_trans, text_features, prompts, config, device, final_step=False): """Do a step of optimization. Args: t: step count clip_enc: model for CLIP encoding lr_scheduler: optimizer generator: drawing generator to optimise augment_trans: transforms for image augmentation text_features: list or 1 or 9 prompts for normal and compositional creation prompts: for debugging/visualisation - the list of text prompts config: dictionary with hyperparameters device: CUDA device final_step: if True does extras such as saving the model Returns: losses_np: numpy array with loss for each population individual losses_separate_np: numpy array of loss for each image """ # Anneal learning rate and other parameters. t0 = time.time() if t == int(config["optim_steps"] / 3): for g in lr_scheduler.param_groups: g["lr"] = g["lr"] / 2.0 if t == int(config["optim_steps"] * (2/3)): for g in lr_scheduler.param_groups: g["lr"] = g["lr"] / 2.0 # Forward pass. lr_scheduler.zero_grad() loss, losses_separate_np, losses_np, img_np = evaluation( t=t, clip_enc=clip_enc, generator=generator, augment_trans=augment_trans, text_features=text_features, prompts=prompts, config=config, device=device) # Backpropagate the gradients. loss.backward() torch.nn.utils.clip_grad_norm(generator.parameters(), config["gradient_clipping"]) # Decay the learning rate. lr_scheduler.step() # Render the big version. if final_step: show_and_save( img_np, config, t=t, img_format="SHWC", show=config["gui"]) output_dir = config["output_dir"] print(f"Saving model to {output_dir}...") torch.save(generator.state_dict(), f"{output_dir}/generator.pt") if t % config["trace_every"] == 0: output_dir = config["output_dir"] filename = f"{output_dir}/optim_{t}" show_and_save(img_np, config, max_display=config["max_multiple_visualizations"], stitch=True, img_format="SHWC", show=config["gui"], filename=filename) t1 = time.time() print("Iteration {:3d}, rendering loss {:.6f}, {:.3f}s/iter".format( t, loss.item(), t1-t0)) return losses_np, losses_separate_np, img_np def population_evolution_step(generator, config, losses): """GA for the population.""" if config["ga_method"] == "Microbial": # Competition between 2 random individuals; mutated winner replaces loser. indices = list(range(len(losses))) np.random.shuffle(indices) select_1, select_2 = indices[0], indices[1] if losses[select_1] < losses[select_2]: generator.copy_and_mutate_s(select_1, select_2) else: generator.copy_and_mutate_s(select_2, select_1) elif config["ga_method"] == "Evolutionary Strategies": # Replace rest of population with mutants of the best. winner = np.argmin(losses) for other in range(len(losses)): if other == winner: continue generator.copy_and_mutate_s(winner, other)
arnheim-main
arnheim_3/src/training.py
# coding=utf8 # Copyright 2019 the wasserstein_fairness Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Algorithms relating to optimal transport.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools from absl import logging import numpy as np import scipy.sparse as sparse # The inner calculation of the sorted Wasserstein coupling in # wasserstein_coupling_on_the_real_line depends only on the lengths of the # vector arguments to that function. We can cache those couplings and # avoid a costly loop. _WCOTRL_CACHE = {} def sinkhorn(cost, lambda_, distn_a, distn_b, tolerance=0.0000001): """Use the Sinkhorn algorithm to find an optimum coupling. An implementation of the algorithm described in https://papers.nips.cc/paper/4927-sinkhorn-distances-lightspeed-computation-of-optimal-transport.pdf with variable names referring to notation found there. Args: cost: I am pretty sure that this matrix should be square (NxN) and strictly positive. lambda_: Regulariser. distn_a: Input distribution a. A vector of length N. distn_b: Input distribution b. A vector of length N. tolerance: Stopping tolerance for the iteration. Returns: A 3-tuple with the following members: [0]: the left matrix scaling factor u (size: [N]), [1]: the right matrix scaling factor v (size: [N]), [2]: the optimum coupling between distn_a and distn_b. """ big_k = np.exp(-lambda_ * cost) big_k_tilde = np.dot(np.diag(1.0 / distn_a), big_k) # was matmul u = np.ones_like(distn_a) / len(distn_a) old_u = u + tolerance iteration = itertools.count() while np.linalg.norm(old_u - u) > tolerance: old_u = u u = 1.0 / np.dot(big_k_tilde, (distn_b / np.dot(big_k.T, u))) # was matmul logging.debug('Sinkhorn iteration: %d', next(iteration)) v = distn_b / np.dot(big_k.T, u) coupling = np.dot(np.dot(np.diag(u), big_k), np.diag(v)) # was matmul return u, v, coupling def wasserstein_coupling_on_the_real_line(x1, x2): """Compute the Wasserstein coupling between two sets of real numbers. Args: x1: A vector of real numbers. x2: A vector of real numbers. Need not be the same length as x1. Returns: The Wasserstein coupling. """ # If x1 and x2 were sorted, then the coupling matrix would only depend on # their lengths. The sort order of x1 and x2 only require us to permute the # coupling matrix to match. So, we first compute the coupling matrix for a # sorted x1, x2: l1 = len(x1) l2 = len(x2) # Shortcut 1: the coupling matrix for sorted vectors of the same length is the # identity matrix, scaled. if l1 == l2: return sparse.spdiags([np.ones_like(x1) / l1], [0], l1, l1) # Shortcut 2: we may have cached the sorted coupling matrix that we're about # to compute. elif (l1, l2) in _WCOTRL_CACHE: coupling = _WCOTRL_CACHE[(l1, l2)] # Alas, we need to compute the coupling matrix after all. else: # coupling = np.zeros((l1, l2)) data = [] rows = [] cols = [] i, j = 0, 0 while i < l1 and j < l2: logging.debug('WCOTRL: %d,%d', i, j) il2 = i * l2 jl1 = j * l1 il2_limit = il2 + l2 - 1 jl1_limit = jl1 + l1 - 1 intersection_size = max( 0, 1 + min(il2_limit, jl1_limit) - max(il2, jl1) ) # coupling[i, j] = intersection_size data.append(intersection_size) rows.append(i) cols.append(j) if il2_limit <= jl1_limit: i += 1 if il2_limit >= jl1_limit: j += 1 coupling = sparse.csr_matrix((data, (rows, cols)), shape=(l1, l2)) _WCOTRL_CACHE[(l1, l2)] = coupling # Cache for later. # Now we permute the rows and columns of the coupling matrix to match the sort # orders of x1 and x2. row_inds = np.argsort(np.argsort(x1)) # ⍋⍋x1 col_inds = np.argsort(np.argsort(x2)) coupling = coupling[row_inds, :] coupling = coupling[:, col_inds] return coupling / (l1 * l2)
wasserstein_fairness-master
wasserstein_fairness/optimal_transport.py
# Copyright 2019 the wasserstein_fairness Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic components of the costs that combine in Wasserstein Fairness. The functions in this file are centred around the calculation of individual costs/losses. Functions that combine these costs (and gradients thereof) appear in `combined_costs.py`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import scipy.sparse as sparse import scipy.special as scisp import sklearn.metrics as skmet # Use scipy.special's expit for the logistic; it's numerically stable. sigmoid = scisp.expit def regression_loss(y_pred, y_true): """Logistic regression loss.""" # Aldo's logistic regression loss is the same loss that scikit-learn expresses # but with the arguments reversed (and some numerical precautions absent). return skmet.log_loss(y_true, y_pred) def regression_loss_gradient(x, y, theta): """Gradient of the logistic loss with respect to theta. The regression parameters `theta` may have one more entry than there are features (columns) in `x`, in which case an intercept term will be added to `x` prior to computing the gradient. Args: x: Feature inputs to the regression (each row a data point). An MxN matrix. y: Target outputs of the regression; a vector of length M. theta: Regression parameters; a vector of length N or N+1. Returns: The gradient as described. """ x = _maybe_add_intercept(x, theta) h = sigmoid(np.dot(x, theta)) # was matmul return np.dot(x.T, (h - y)) / y.size # was matmul def wasserstein_two_loss_gradient(x1, x2, coupling, theta): """Gradient of the Wasserstein-2 distance loss with respect to theta. The regression parameters `theta` may have one more entry than there are features (columns) in `x1` or `x2`, in which case an intercept term will be added to both prior to computing the gradient. Args: x1: A subset of feature inputs to the regression: a JxN matrix. x2: Another subset of feature inputs to the regression: a KxN matrix. coupling: A JxK Wasserstein distance coupling matrix of the kind computed by `optimal_transport.wasserstein_coupling_on_the_real_line`. Can be a scipy.sparse sparse matrix. theta: Regression parameters; a vector of length N or N+1. Returns: The gradient as described. """ x1 = _maybe_add_intercept(x1, theta) x2 = _maybe_add_intercept(x2, theta) weights_1 = np.asarray(np.sum(coupling, axis=1)).ravel() weights_2 = np.asarray(np.sum(coupling, axis=0)).ravel() # The prior two lines used to be as follows, but are revised to the above to # allow use of sparse matrices. # weights_1 = np.sum(coupling, axis=1) # weights_2 = np.sum(coupling, axis=0) h1 = sigmoid(np.dot(x1, theta)) # was matmul h2 = sigmoid(np.dot(x2, theta)) # was matmul nh1p1 = 1 - h1 # The name means "negative h1 plus 1". nh2p1 = 1 - h2 term_1 = 2 * np.dot(weights_1 * nh1p1 * h1**2, x1) # was matmul term_2 = 2 * np.dot(weights_2 * nh2p1 * h2**2, x2) # was matmul term_3 = -2 * (np.dot(coupling.dot(h2) * h1 * nh1p1, x1) + # was matmul np.dot(coupling.T.dot(h1) * h2 * nh2p1, x2)) # was matmul # The last line of term_3 used to be as follows, but is revised to the # above to allow use of sparse matrices. # np.dot(np.dot(h1, coupling) * h2 * nh2p1, x2)) # was matmul return term_1 + term_2 + term_3 def wass_one_barycenter_loss_gradient(b, x2, coupling, theta, delta): """Gradient of the Wass1 barycenter loss with respect to theta. Args: b: barycenter distribution as a column Lx1 of scores. x2: A subset of feature inputs to the regression: a KxN matrix. coupling: A LxK Wasserstein distance coupling matrix of the kind computed by `optimal_transport.wasserstein_coupling_on_the_real_line`. Can be a scipy.sparse sparse matrix. theta: Regression parameters; a vector of length N or N+1. delta: pseudo-Huber loss parameter. Returns: The gradient as described. """ x2 = _maybe_add_intercept(x2, theta) h2 = sigmoid(np.dot(x2, theta)) # was matmul mask = (coupling != 0.0) if sparse.issparse(coupling): diff = (mask.dot(sparse.spdiags(h2, 0, len(h2), len(h2))) - sparse.spdiags(b, 0, len(b), len(b)).dot(mask)) else: diff = h2.reshape((1, -1)) - b.reshape((-1, 1)) denom = (diff / delta).power(2.0) # For dense matrices, entries in denom denom[mask] += 1.0 # and d_huber_d_diff that correspond to denom = np.sqrt(denom) # zero entries in mask will be nonsense # and should be ignored. The elementwise d_huber_d_diff = diff.copy() # multiplication with coupling below will d_huber_d_diff[mask] /= denom[mask] # zero out those entries. if sparse.issparse(coupling): coupling_d_huber_d_diff = coupling.multiply(d_huber_d_diff) else: coupling_d_huber_d_diff = np.multiply(coupling, d_huber_d_diff) d_h2_d_logits2 = h2 * (1 - h2) # Now we create weight vectors that measure how much the sigmoid and pseudo- # Huber derivatives weight the data points (which are the derivatives of the # logits with respect to theta. weights2 = (d_h2_d_logits2 * np.asarray(np.sum(coupling_d_huber_d_diff, axis=0)).ravel()) # Finally, the gradient of theta itself. return np.dot(weights2, x2) def wasserstein_one_loss_gradient_method_one(x1, x2, coupling, theta, delta): """Gradient of the Wasserstein-1 distance loss with respect to theta. To ensure differentiability, we substitute a pseudo-Huber loss term for the absolute value difference used by the true Wasserstein-1 gradient. The delta parameter controls how curvy the minimum is---but also controls the how steep the gradient is far away from 0. See Wikipedia for more details: https://en.wikipedia.org/wiki/Huber_loss#Pseudo-Huber_loss_function. The regression parameters `theta` may have one more entry than there are features (columns) in `x1` or `x2`, in which case an intercept term will be added to both prior to computing the gradient. The `wasserstein_one_loss_gradient_method_two` function is an alternative implementation of this method. Args: x1: A subset of feature inputs to the regression: a JxN matrix. x2: Another subset of feature inputs to the regression: a KxN matrix. coupling: A JxK Wasserstein distance coupling matrix of the kind computed by `optimal_transport.wasserstein_coupling_on_the_real_line`. Must be a scipy.sparse sparse matrix. theta: Regression parameters; a vector of length N or N+1. delta: The pseudo-Huber loss delta parameter. Returns: The gradient as described. Raises: TypeError: coupling is not a scipy.sparse matrix. """ if not sparse.issparse(coupling): raise TypeError( 'The `coupling` argument to `wasserstein_one_loss_gradient` must be ' 'a scipy.sparse sparse matrix.') x1 = _maybe_add_intercept(x1, theta) x2 = _maybe_add_intercept(x2, theta) # The predictions for the inputs: logits1 = np.dot(x1, theta) logits2 = np.dot(x2, theta) h1 = sigmoid(logits1) h2 = sigmoid(logits2) # First, we compute a matrix where element j,k expresses: # coupling[j,k] * diff[j,k] / sqrt(1 + (diff[j,k] / delta)^2) # where # diff[j,k] = h1[j] - h2[k]. # If coupling is sparse, we only compute diff entries where coupling != 0. mask = (coupling != 0.0) if sparse.issparse(coupling): diff = (sparse.spdiags(h1, 0, len(h1), len(h1)).dot(mask) - mask.dot(sparse.spdiags(h2, 0, len(h2), len(h2)))) else: diff = h1.reshape((-1, 1)) - h2.reshape((1, -1)) denom = (diff / delta).power(2.0) # For dense matrices, entries in denom denom[mask] += 1.0 # and d_huber_d_diff that correspond to denom = np.sqrt(denom) # zero entries in mask will be nonsense # and should be ignored. The elementwise d_huber_d_diff = diff.copy() # multiplication with coupling below will d_huber_d_diff[mask] /= denom[mask] # zero out those entries. if sparse.issparse(coupling): coupling_d_huber_d_diff = coupling.multiply(d_huber_d_diff) else: coupling_d_huber_d_diff = np.multiply(coupling, d_huber_d_diff) # Differentiate the sigmoids w.r.t. their arguments. This is required for # differentiation of diff, which is required by the chain rule. d_h1_d_logits1 = h1 * (1 - h1) d_h2_d_logits2 = h2 * (1 - h2) # Now we create weight vectors that measure how much the sigmoid and pseudo- # Huber derivatives weight the data points (which are the derivatives of the # logits with respect to theta. weights1 = (d_h1_d_logits1 * np.asarray(np.sum(coupling_d_huber_d_diff, axis=1)).ravel()) weights2 = (d_h2_d_logits2 * np.asarray(np.sum(coupling_d_huber_d_diff, axis=0)).ravel()) # Finally, the gradient of theta itself. term1 = np.dot(weights1, x1) term2 = np.dot(weights2, x2) return term1 - term2 def wasserstein_one_loss_gradient_method_two(x1, x2, coupling, theta, delta): """Compute Wasserstein-1 loss gradient using the Wass-2 gradient. To ensure differentiability, we substitute a pseudo-Huber loss term for the absolute value difference used by the true Wasserstein-1 gradient. The delta parameter controls how curvy the minimum is---but also controls the how steep the gradient is far away from 0. See Wikipedia for more details: https://en.wikipedia.org/wiki/Huber_loss#Pseudo-Huber_loss_function. The regression parameters `theta` may have one more entry than there are features (columns) in `x1` or `x2`, in which case an intercept term will be added to both prior to computing the gradient. The `wasserstein_one_loss_gradient_method_one` function is an alternative implementation of this method. Args: x1: A subset of feature inputs to the regression: a JxN matrix. x2: Another subset of feature inputs to the regression: a KxN matrix. coupling: A JxK Wasserstein distance coupling matrix of the kind computed by `optimal_transport.wasserstein_coupling_on_the_real_line`. Must be a scipy.sparse sparse matrix. theta: Regression parameters; a vector of length N or N+1. delta: The pseudo-Huber loss delta parameter. Returns: The gradient as described. Raises: TypeError: coupling is not a scipy.sparse matrix. """ xx1 = _maybe_add_intercept(x1, theta) xx2 = _maybe_add_intercept(x2, theta) h1 = sigmoid(np.dot(xx1, theta)) h2 = sigmoid(np.dot(xx2, theta)) mask = (coupling != 0.0) if sparse.issparse(coupling): diff = (sparse.spdiags(h1, 0, len(h1), len(h1)).dot(mask) - mask.dot(sparse.spdiags(h2, 0, len(h2), len(h2)))) else: diff = h1.reshape((-1, 1)) - h2.reshape((1, -1)) denom = (diff / delta).power(2.0) denom[mask] += 1.0 denom = np.sqrt(denom) multiplier = (0.5 * denom.power(-1)) return wasserstein_two_loss_gradient( x1, x2, coupling.multiply(multiplier), theta) def predict_prob(x, theta): """Predict probabilities for input datapoints x.""" x = _maybe_add_intercept(x, theta) return sigmoid(np.dot(x, theta)) # was matmul def predict(x, theta, threshold): """Predict outcomes for input datapoints x via thresholding.""" return predict_prob(x, theta) > threshold ### Private helpers ### def _maybe_add_intercept(x, theta): """Append intercept column to feature data `x` if `theta` needs one. Also converts x to a numpy array if needed. Args: x: Feature matrix; MxN. Each row is a data point. theta: Regression parameters; a vector of length N or N+1. Returns: `x` if `x` is as wide as `theta` is long; otherwise, `x` with an additional intercept column of ones. Raises: ValueError: `len(theta)` isn't in `[len(x[0]), len(x[0]) + 1]`. """ x = np.asarray(x) theta = np.asarray(theta) if x.shape[1] == theta.shape[-1] - 1: return _add_intercept(x) elif x.shape[1] == theta.shape[-1]: return x else: raise ValueError( 'Shape mismatch when deciding whether to add an intercept column to ' 'the data: x.shape={}, theta.shape={}'.format(x.shape, theta.shape)) def _add_intercept(x): """Append an intercept column to the feature data `x`.""" return np.pad(x, ((0, 0), (0, 1)), mode='constant', constant_values=((0., 0.), (0., 1.)))
wasserstein_fairness-master
wasserstein_fairness/basic_costs.py
# Copyright 2019 the wasserstein_fairness Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
wasserstein_fairness-master
wasserstein_fairness/__init__.py
# Copyright 2019 the wasserstein_fairness Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Gradient functions etc. combining multiple Wasserstein Fairness objectives. A companion module to the `basic_costs.py` module, where individual component losses that are combined in this module's methods are defined. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import numpy as np import scipy.sparse as sparse from wasserstein_fairness import basic_costs from wasserstein_fairness import optimal_transport def gradient_smoothed_logistic(dataframes_all_data, dataframes_protected, theta, lambda_, beta, alpha, distance='wasserstein-2', delta=0.1, baryscore=None): """Calculate parameter gradient for Wasserstein-fair logistic regression. This function uses the Sinkhorn algorithm to compute a smoothed coupling between predictions for separate datasets. The regression parameters `theta` may have one more entry than there are features (columns) in the input data, in which case an intercept term will be added to that data prior to calculating the gradient. Args: dataframes_all_data: a 2-tuple whose members are [0] feature data inputs to the regression as a Pandas dataframe and [1] {0, 1} target outputs of the regression as a Pandas dataframe. dataframes_protected: a collection of feature data inputs (like the first element of `dataframes_all_data`) whose rows are limited to only those entries concerning members of protected categories, etc. theta: Regression parameters; a vector of length N or N+1. lambda_: A regulariser for computing the Wasserstein coupling. beta: Penalisation weight for the Wasserstein fairness loss. alpha: Tradeoff penalty weight between regression loss(/gradient) and the Wasserstein loss(/gradient): `loss = alpha * logistic_loss + (1-alpha) * beta * Wasserstein_loss`. distance: selects the distribution distance to use for computing fairness gradients and costs. Valid values are 'wasserstein-1' and 'wasserstein-2'. delta: delta parameter for keeping the 'wasserstein-1' difference differentiable. (We replace the absolute value function with the pseudo-Huber loss.) (The actual Wasserstein cost still uses the absolute value.) baryscore: (d,) array that distributes as the barycenter of distributions. Returns: A 3-tuple with the following members: [0]: Wasserstein-fair logistic regression gradient. [1]: Regression objective cost. [2]: Wasserstein objective cost, unscaled (i.e. not multiplied by beta.) """ def get_coupling(outputs_all_data, op): """Compute smoothed Wasserstein coupling.""" cost_matrix = ( (np.reshape(outputs_all_data**2, (-1, 1)) + np.reshape(op**2, (1, -1))) - 2.0 * np.outer(outputs_all_data, op)) p = np.ones_like(outputs_all_data) / len(outputs_all_data) q = np.ones_like(op) / len(op) _, _, coupling = optimal_transport.sinkhorn(cost_matrix, lambda_, p, q) return coupling return _gradient_function_core( dataframes_all_data, dataframes_protected, theta, get_coupling, beta, alpha, distance, delta, baryscore) def gradient_line_logistic(dataframes_all_data, dataframes_protected, theta, beta, alpha, distance='wasserstein-2', delta=0.1, baryscore=None): """Calculate parameter gradient for Wasserstein-fair logistic regression. This function uses the "hard" Wasserstein coupling between predictions for separate datasets. The regression parameters `theta` may have one more entry than there are features (columns) in the input data, in which case an intercept term will be added to that data prior to calculating the gradient. Args: dataframes_all_data: a 2-tuple whose members are [0] feature data inputs to the regression as a Pandas dataframe and [1] {0, 1} target outputs of the regression as a Pandas dataframe. dataframes_protected: a collection of feature data inputs (like the first element of `dataframes_all_data`) whose rows are limited to only those entries concerning members of protected categories, etc. theta: Regression parameters; a vector of length N or N+1. beta: Penalisation weight for the Wasserstein fairness loss. alpha: Tradeoff penalty weight between regression loss(/gradient) and the Wasserstein loss(/gradient): `loss = alpha * logistic_loss + (1-alpha) * beta * Wasserstein_loss`. distance: selects the distribution distance to use for computing fairness gradients and costs. Valid values are 'wasserstein-1' and 'wasserstein-2'. delta: delta parameter for keeping the 'wasserstein-1' difference differentiable. (We replace the absolute value function with the pseudo-Huber loss.) (The actual Wasserstein cost still uses the absolute value.) baryscore: (d,) array that distributes as the barycenter of distributions. Returns: A 3-tuple with the following members: [0]: Wasserstein-fair logistic regression gradient. [1]: Regression objective cost. [2]: Wasserstein objective cost, unscaled (i.e. not multiplied by beta.) """ def get_coupling(outputs_all_data, op): return optimal_transport.wasserstein_coupling_on_the_real_line( outputs_all_data, op) return _gradient_function_core( dataframes_all_data, dataframes_protected, theta, get_coupling, beta, alpha, distance, delta, baryscore) def _gradient_function_core(dataframes_all_data, dataframes_protected, theta, get_coupling, beta, alpha, distance, delta, baryscore): """Common implementation for both `gradient_*` functions. Args: dataframes_all_data: a 2-tuple whose members are [0] feature data inputs to the regression as a Pandas dataframe and [1] {0, 1} target outputs of the regression as a Pandas dataframe. dataframes_protected: a collection of feature data inputs (like the first element of `dataframes_all_data`) whose rows are limited to only those entries concerning members of protected categories, etc. theta: Regression parameters; a vector of length N or N+1. get_coupling: a function taking two arguments: outputs_all_data, N regression predictions for the entire dataset. op, M predictions for a subset expressing some sensitive attribute. This function should return an NxM coupling matrix, which can be a scipy.sparse matrix if desired. beta: Penalisation weight for the Wasserstein fairness loss. alpha: Tradeoff penalty weight between regression loss(/gradient) and the Wasserstein loss(/gradient): `loss = alpha * logistic_loss + (1-alpha) * beta * Wasserstein_loss`. distance: selects the distribution distance to use for computing fairness gradients and costs. Valid values are 'wasserstein-1' and 'wasserstein-2'. delta: delta parameter for keeping the 'wasserstein-1' difference differentiable. (We replace the absolute value function with the pseudo-Huber loss.) (The actual Wasserstein cost still uses the absolute value.) baryscore: (d,) array that distributes as the barycenter of distributions. Returns: A 3-tuple with the following members: [0]: Wasserstein-fair logistic regression gradient. [1]: Regression objective cost. [2]: Wasserstein objective cost, unscaled (i.e. not multiplied by beta.) Raises: ValueError: unrecognised distance type specified for `distance`. """ # Gather input data. x_all_data = np.array(dataframes_all_data[0]) y_all_data = np.array(dataframes_all_data[1]) x_protected = [np.array(dp) for dp in dataframes_protected] # Run model on all and on protected inputs. outputs_all_data = basic_costs.predict_prob(x_all_data, theta) outputs_protected = [ basic_costs.predict_prob(xp, theta) for xp in x_protected] # Compute the gradient and cost of the logistic regression for all data. grad_logistic = basic_costs.regression_loss_gradient( x_all_data, y_all_data, theta) cost_logistic = basic_costs.regression_loss( outputs_all_data, y_all_data) # Compute the gradient and cost of the Wasserstein loss for each protected # group. Wasserstein comparisons are between the predictions for the protected # group and the predictions for all data. grad_wasserstein = np.zeros_like(theta) cost_wasserstein = 0.0 if beta > 0.0: for xp, op in zip(x_protected, outputs_protected): # Compute fairness costs and gradients. if distance == 'wasserstein-2': assert baryscore is None # Compute coupling matrix. This may be sparse. coupling = get_coupling(outputs_all_data, op) # Compute the Wasserstein-2 cost. The naive way to implement this # calculation is: # np.trace(np.dot(cost_matrix, coupling.T)) # or # np.trace(np.dot(coupling, cost_matrix.T)) # where # cost_matrix = ( # (np.reshape(outputs_all_data**2, (-1, 1)) + # np.reshape(op**2, (1, -1))) - # 2.0 * np.outer(outputs_all_data, op)) # but the resulting cost_matrix is huge. Instead, we can compute costs # by summing the trace of all three terms in cost_matrix, which reduces # memory use considerably and avoids costly matrix multiplications. cost_wasserstein += np.array( coupling.sum(axis=1)).ravel().dot(outputs_all_data**2) cost_wasserstein += coupling.dot(op**2).sum() cost_wasserstein -= 2.0 * coupling.dot(op).dot(outputs_all_data) # Compute the Wasserstein gradient. grad_wasserstein += basic_costs.wasserstein_two_loss_gradient( x_all_data, xp, coupling, theta) elif distance == 'wasserstein-1': # Compute the Wasserstein-1 cost. This calculation is much like the # Wasserstein-1 cost, where a naive calculation of the cost matrix # would be: # cost_matrix = ans( # np.reshape(outputs_all_data, (-1, 1)) - # np.reshape(op, (1, -1)) if baryscore is not None: od = baryscore else: od = outputs_all_data # Compute coupling matrix. This may be sparse. coupling = get_coupling(od, op) if sparse.issparse(coupling): cost_wasserstein += abs( sparse.spdiags(od, 0, len(od), len(od)).dot(coupling) - coupling.dot(sparse.spdiags(op, 0, len(op), len(op)))).sum() else: cost_wasserstein += abs( od.reshape((-1, 1)) * coupling - coupling * od.reshape((1, -1))).sum() # Compute the Wasserstein gradient. if baryscore is not None: grad_wasserstein += basic_costs.wass_barycenter_loss_gradient( baryscore, xp, coupling, theta, delta) else: grad_wasserstein += basic_costs.wasserstein_one_loss_gradient( x_all_data, xp, coupling, theta, delta) # All done. Totalise and return. logging.debug(' logistic cost: %f', cost_logistic) logging.debug('wasserstein cost: %f', cost_wasserstein) return (alpha * grad_logistic + (1 - alpha) * beta * grad_wasserstein, cost_logistic, cost_wasserstein)
wasserstein_fairness-master
wasserstein_fairness/combined_costs.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
streetlearn-master
streetlearn/__init__.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Main experiment file for the StreetLearn agent, based on an implementation of Importance Weighted Actor-Learner Architectures. For details and theory see: "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Espeholt, Soyer, Munos et al. See https://arxiv.org/abs/1802.01561 for the full paper. Note that this derives from code previously published by Lasse Espeholt under an Apache license at: https://github.com/deepmind/scalable_agent """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import contextlib import functools import os import sys import time import numpy as np from six.moves import range import sonnet as snt import tensorflow.compat.v1 as tf from streetlearn.python.agents import goal_nav_agent from streetlearn.python.agents import city_nav_agent from streetlearn.python.scalable_agent import py_process from streetlearn.python.scalable_agent import vtrace from streetlearn.python.environment import default_config from streetlearn.python.environment import streetlearn from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import staging as contrib_staging nest = contrib_framework.nest flags = tf.app.flags FLAGS = tf.app.flags.FLAGS flags.DEFINE_string('logdir', '/tmp/agent', 'TensorFlow log directory.') flags.DEFINE_enum('mode', 'train', ['train', 'test'], 'Training or test mode.') # Flags used for testing. flags.DEFINE_integer('test_num_episodes', 10, 'Number of episodes per level.') # Flags used for distributed training. flags.DEFINE_integer('task', -1, 'Task id. Use -1 for local training.') flags.DEFINE_enum('job_name', 'learner', ['learner', 'actor'], 'Job name. Ignored when task is set to -1.') flags.DEFINE_string('master', '', 'Session master.') # Training. flags.DEFINE_integer('total_environment_frames', int(1e9), 'Total environment frames to train for.') flags.DEFINE_integer('num_actors', 1, 'Number of actors.') flags.DEFINE_integer('batch_size', 1, 'Batch size for training.') flags.DEFINE_integer('unroll_length', 50, 'Unroll length in agent steps.') flags.DEFINE_integer('seed', 1, 'Random seed.') # Loss settings. flags.DEFINE_float('entropy_cost', 0.00025, 'Entropy cost/multiplier.') flags.DEFINE_float('baseline_cost', .5, 'Baseline cost/multiplier.') flags.DEFINE_float('discounting', .99, 'Discounting factor.') flags.DEFINE_enum('reward_clipping', 'abs_one', ['abs_one', 'soft_asymmetric'], 'Reward clipping.') flags.DEFINE_float('heading_prediction_cost', 1.0, 'Auxiliary cost/multiplier for heading prediction.') flags.DEFINE_float('xy_prediction_cost', 1.0, 'Auxiliary cost/multiplier for XY position prediction.') flags.DEFINE_float('target_xy_prediction_cost', 1.0, 'Auxiliary cost/multiplier for XY target prediction.') # Environment settings. flags.DEFINE_string('game_name', 'curriculum_courier_game', 'Game name for the StreetLearn agent.') flags.DEFINE_string('level_names', 'manhattan_lowres', 'Lavel name for the StreetLearn agent.') flags.DEFINE_string('dataset_paths', None, 'Path were the levels are stored.') flags.DEFINE_integer('width', 84, 'Width of observation.') flags.DEFINE_integer('height', 84, 'Height of observation.') flags.DEFINE_integer('graph_width', 84, 'Width of graph visualisation.') flags.DEFINE_integer('graph_height', 84, 'Height of graph visualisation.') flags.DEFINE_integer('graph_zoom', 1, 'Zoom in graph visualisation.') flags.DEFINE_string('start_pano', '', 'Pano at root of partial graph (default: full graph).') flags.DEFINE_integer('graph_depth', 200, 'Depth of the pano graph.') flags.DEFINE_integer('frame_cap', 1000, 'Number of frames / episode.') flags.DEFINE_string('action_set', 'streetlearn_fast_rotate', 'Set of actions used by the agent.') flags.DEFINE_float('rotation_speed', 22.5, 'Rotation speed of the actor.') flags.DEFINE_string('observations', 'view_image;graph_image;latlng;target_latlng;yaw;yaw_label;' 'latlng_label;target_latlng_label', 'Observations used by the agent.') flags.DEFINE_float('timestamp_start_curriculum', time.time(), 'Timestamp at the start of the curriculum.') flags.DEFINE_float('hours_curriculum_part_1', 0.0, 'Number of hours for 1st part of curriculum.') flags.DEFINE_float('hours_curriculum_part_2', 24.0, 'Number of hours for 2nd part of curriculum.') flags.DEFINE_float('min_goal_distance_curriculum', 500.0, 'Maximum distance to goal at beginning of curriculum.') flags.DEFINE_float('max_goal_distance_curriculum', 3500.0, 'Maximum distance to goal at end of curriculum.') flags.DEFINE_float('bbox_lat_min', 0, 'Minimum latitude.') flags.DEFINE_float('bbox_lat_max', 100, 'Maximum latitude.') flags.DEFINE_float('bbox_lng_min', 0, 'Minimum longitude.') flags.DEFINE_float('bbox_lng_max', 100, 'Maximum longitude.') flags.DEFINE_float('min_radius_meters', 100.0, 'Radius of goal area.') flags.DEFINE_float('max_radius_meters', 200.0, 'Radius of early rewards.') flags.DEFINE_float('proportion_of_panos_with_coins', 0, 'Proportion of coins.') # Agent settings. flags.DEFINE_string('agent', 'city_nav_agent', 'Agent name.') # Optimizer settings. flags.DEFINE_float('learning_rate', 0.001, 'Learning rate.') flags.DEFINE_float('decay', .99, 'RMSProp optimizer decay.') flags.DEFINE_float('momentum', 0., 'RMSProp momentum.') flags.DEFINE_float('epsilon', .1, 'RMSProp epsilon.') # Structure to be sent from actors to learner. ActorOutput = collections.namedtuple( 'ActorOutput', 'level_name agent_state env_outputs agent_outputs') AgentOutput = collections.namedtuple('AgentOutput', 'action policy_logits baseline heading') def is_single_machine(): return FLAGS.task == -1 StepOutputInfo = collections.namedtuple('StepOutputInfo', 'episode_return episode_step') StepOutput = collections.namedtuple('StepOutput', 'reward info done observation') class FlowEnvironment(object): """An environment that returns a new state for every modifying method. The environment returns a new environment state for every modifying action and forces previous actions to be completed first. Similar to `flow` for `TensorArray`. Note that this is a copy of the code previously published by Lasse Espeholt under an Apache license at: https://github.com/deepmind/scalable_agent """ def __init__(self, env): """Initializes the environment. Args: env: An environment with `initial()` and `step(action)` methods where `initial` returns the initial observations and `step` takes an action and returns a tuple of (reward, done, observation). `observation` should be the observation after the step is taken. If `done` is True, the observation should be the first observation in the next episode. """ self._env = env def initial(self): """Returns the initial output and initial state. Returns: A tuple of (`StepOutput`, environment state). The environment state should be passed in to the next invocation of `step` and should not be used in any other way. The reward and transition type in the `StepOutput` is the reward/transition type that lead to the observation in `StepOutput`. """ with tf.name_scope('flow_environment_initial'): initial_reward = tf.constant(0.) initial_info = StepOutputInfo(tf.constant(0.), tf.constant(0)) initial_done = tf.constant(True) initial_observation = self._env.initial() initial_output = StepOutput(initial_reward, initial_info, initial_done, initial_observation) # Control dependency to make sure the next step can't be taken before the # initial output has been read from the environment. with tf.control_dependencies(nest.flatten(initial_output)): initial_flow = tf.constant(0, dtype=tf.int64) initial_state = (initial_flow, initial_info) return initial_output, initial_state def step(self, action, state): """Takes a step in the environment. Args: action: An action tensor suitable for the underlying environment. state: The environment state from the last step or initial state. Returns: A tuple of (`StepOutput`, environment state). The environment state should be passed in to the next invocation of `step` and should not be used in any other way. On episode end (i.e. `done` is True), the returned reward should be included in the sum of rewards for the ending episode and not part of the next episode. """ with tf.name_scope('flow_environment_step'): flow, info = nest.map_structure(tf.convert_to_tensor, state) # Make sure the previous step has been executed before running the next # step. with tf.control_dependencies([flow]): reward, done, observation = self._env.step(action) with tf.control_dependencies(nest.flatten(observation)): new_flow = tf.add(flow, 1) # When done, include the reward in the output info but not in the # state for the next step. new_info = StepOutputInfo(info.episode_return + reward, info.episode_step + 1) new_state = new_flow, nest.map_structure( lambda a, b: tf.where(done, a, b), StepOutputInfo(tf.constant(0.), tf.constant(0)), new_info) output = StepOutput(reward, new_info, done, observation) return output, new_state class StreetLearnImpalaAdapter(streetlearn.StreetLearn): def __init__(self, dataset_path, config, game): super(StreetLearnImpalaAdapter, self).__init__(dataset_path, config, game) self.reset() def initial(self): """Returns the original observation.""" super(StreetLearnImpalaAdapter, self).step([0.0, 0.0, 0.0, 0.0]) observation = self._reshape_observation(self.observation()) return observation def step(self, action): """Takes a step in the environment. Args: action: a 1d array containing a combination of actions. Returns: reward: float value. done: boolean indicator. observation: observation at the last step. """ (observation, reward, done, _) = super( StreetLearnImpalaAdapter, self).step(action) reward = np.array(reward, dtype=np.float32) observation = self._reshape_observation(observation) return reward, done, observation def _reshape_observation(self, observation): return [ np.transpose(np.reshape(observation['view_image'], [3, FLAGS.height, FLAGS.width]), axes=(1, 2, 0)), np.transpose(np.reshape(observation['graph_image'], [3, FLAGS.graph_height, FLAGS.graph_width]), axes=(1, 2, 0)), observation['latlng'], observation['target_latlng'], observation['yaw'], observation['yaw_label'], observation['latlng_label'], observation['target_latlng_label'], ] @staticmethod def _tensor_specs(method_name, unused_kwargs, constructor_kwargs): """Returns a nest of `TensorSpec` with the method's output specification.""" observation_spec = [ contrib_framework.TensorSpec([FLAGS.height, FLAGS.width, 3], tf.uint8), contrib_framework.TensorSpec([FLAGS.graph_height, FLAGS.graph_width, 3], tf.uint8), contrib_framework.TensorSpec([ 2, ], tf.float64), contrib_framework.TensorSpec([ 2, ], tf.float64), contrib_framework.TensorSpec([], tf.float64), contrib_framework.TensorSpec([], tf.uint8), contrib_framework.TensorSpec([], tf.int32), contrib_framework.TensorSpec([], tf.int32), ] if method_name == 'initial': return observation_spec elif method_name == 'step': return ( contrib_framework.TensorSpec([], tf.float32), contrib_framework.TensorSpec([], tf.bool), observation_spec, ) def build_actor(agent, env, level_name, action_set): """Builds the actor loop.""" # Initial values. initial_env_output, initial_env_state = env.initial() initial_agent_state = agent.initial_state(1) initial_action = tf.zeros([1], dtype=tf.int32) dummy_agent_output, _ = agent( (initial_action, nest.map_structure(lambda t: tf.expand_dims(t, 0), initial_env_output)), initial_agent_state) initial_agent_output = nest.map_structure( lambda t: tf.zeros(t.shape, t.dtype), dummy_agent_output) # All state that needs to persist across training iterations. This includes # the last environment output, agent state and last agent output. These # variables should never go on the parameter servers. def create_state(t): # Creates a unique variable scope to ensure the variable name is unique. with tf.variable_scope(None, default_name='state'): return tf.get_local_variable(t.op.name, initializer=t, use_resource=True) persistent_state = nest.map_structure( create_state, (initial_env_state, initial_env_output, initial_agent_state, initial_agent_output)) def step(input_, unused_i): """Steps through the agent and the environment.""" env_state, env_output, agent_state, agent_output = input_ # Run agent. action = agent_output[0] batched_env_output = nest.map_structure(lambda t: tf.expand_dims(t, 0), env_output) agent_output, agent_state = agent((action, batched_env_output), agent_state) # Convert action index to the native action. action = agent_output[0][0] raw_action = tf.gather(action_set, action) env_output, env_state = env.step(raw_action, env_state) return env_state, env_output, agent_state, agent_output # Run the unroll. `read_value()` is needed to make sure later usage will # return the first values and not a new snapshot of the variables. first_values = nest.map_structure(lambda v: v.read_value(), persistent_state) _, first_env_output, first_agent_state, first_agent_output = first_values # Use scan to apply `step` multiple times, therefore unrolling the agent # and environment interaction for `FLAGS.unroll_length`. `tf.scan` forwards # the output of each call of `step` as input of the subsequent call of `step`. # The unroll sequence is initialized with the agent and environment states # and outputs as stored at the end of the previous unroll. # `output` stores lists of all states and outputs stacked along the entire # unroll. Note that the initial states and outputs (fed through `initializer`) # are not in `output` and will need to be added manually later. output = tf.scan(step, tf.range(FLAGS.unroll_length), first_values) _, env_outputs, _, agent_outputs = output # Update persistent state with the last output from the loop. assign_ops = nest.map_structure(lambda v, t: v.assign(t[-1]), persistent_state, output) # The control dependency ensures that the final agent and environment states # and outputs are stored in `persistent_state` (to initialize next unroll). with tf.control_dependencies(nest.flatten(assign_ops)): # Remove the batch dimension from the agent state/output. first_agent_state = nest.map_structure(lambda t: t[0], first_agent_state) first_agent_output = nest.map_structure(lambda t: t[0], first_agent_output) agent_outputs = nest.map_structure(lambda t: t[:, 0], agent_outputs) # Concatenate first output and the unroll along the time dimension. full_agent_outputs, full_env_outputs = nest.map_structure( lambda first, rest: tf.concat([[first], rest], 0), (first_agent_output, first_env_output), (agent_outputs, env_outputs)) output = ActorOutput( level_name=level_name, agent_state=first_agent_state, env_outputs=full_env_outputs, agent_outputs=full_agent_outputs) # No backpropagation should be done here. return nest.map_structure(tf.stop_gradient, output) def compute_baseline_loss(advantages): # Loss for the baseline, summed over the time dimension. # Multiply by 0.5 to match the standard update rule: # d(loss) / d(baseline) = advantage return .5 * tf.reduce_sum(tf.square(advantages)) def compute_entropy_loss(logits): policy = tf.nn.softmax(logits) log_policy = tf.nn.log_softmax(logits) entropy_per_timestep = tf.reduce_sum(-policy * log_policy, axis=-1) return -tf.reduce_sum(entropy_per_timestep) def compute_classification_loss(logits, labels): classification_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels) return tf.reduce_sum(classification_loss) def compute_policy_gradient_loss(logits, actions, advantages): cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=actions, logits=logits) advantages = tf.stop_gradient(advantages) policy_gradient_loss_per_timestep = cross_entropy * advantages return tf.reduce_sum(policy_gradient_loss_per_timestep) def plot_logits_2d(logits, num_x, num_y): """Plot logits as 2D images.""" logits_2d = tf.reshape(logits, shape=[-1, num_y, num_x]) logits_2d = tf.expand_dims(tf.expand_dims(logits_2d[:, ::-1, :], 1), -1) return logits_2d def build_learner(agent, agent_state, env_outputs, agent_outputs): """Builds the learner loop. Args: agent: A snt.RNNCore module outputting `AgentOutput` named tuples, with an `unroll` call for computing the outputs for a whole trajectory. agent_state: The initial agent state for each sequence in the batch. env_outputs: A `StepOutput` namedtuple where each field is of shape [T+1, ...]. agent_outputs: An `AgentOutput` namedtuple where each field is of shape [T+1, ...]. Returns: A tuple of (done, infos, and environment frames) where the environment frames tensor causes an update. """ learner_outputs, _ = agent.unroll(agent_outputs.action, env_outputs, agent_state) # Use last baseline value (from the value function) to bootstrap. bootstrap_value = learner_outputs.baseline[-1] # At this point, the environment outputs at time step `t` are the inputs that # lead to the learner_outputs at time step `t`. After the following shifting, # the actions in agent_outputs and learner_outputs at time step `t` is what # leads to the environment outputs at time step `t`. agent_outputs = nest.map_structure(lambda t: t[1:], agent_outputs) rewards, infos, done, observations = nest.map_structure( lambda t: t[1:], env_outputs) learner_outputs = nest.map_structure(lambda t: t[:-1], learner_outputs) observation_names = FLAGS.observations.split(';') if FLAGS.reward_clipping == 'abs_one': clipped_rewards = tf.clip_by_value(rewards, -1, 1) elif FLAGS.reward_clipping == 'soft_asymmetric': squeezed = tf.tanh(rewards / 5.0) # Negative rewards are given less weight than positive rewards. clipped_rewards = tf.where(rewards < 0, .3 * squeezed, squeezed) * 5. discounts = tf.to_float(~done) * FLAGS.discounting # Compute V-trace returns and weights. # Note, this is put on the CPU because it's faster than on GPU. It can be # improved further with XLA-compilation or with a custom TensorFlow operation. with tf.device('/cpu'): vtrace_returns = vtrace.from_logits( behaviour_policy_logits=agent_outputs.policy_logits, target_policy_logits=learner_outputs.policy_logits, actions=agent_outputs.action, discounts=discounts, rewards=clipped_rewards, values=learner_outputs.baseline, bootstrap_value=bootstrap_value) # Compute loss as a weighted sum of the baseline loss, the policy gradient # loss and an entropy regularization term. rl_loss_policy_gradient = compute_policy_gradient_loss( learner_outputs.policy_logits, agent_outputs.action, vtrace_returns.pg_advantages) rl_loss_baseline = FLAGS.baseline_cost * compute_baseline_loss( vtrace_returns.vs - learner_outputs.baseline) rl_loss_entropy = FLAGS.entropy_cost * compute_entropy_loss( learner_outputs.policy_logits) total_loss = rl_loss_policy_gradient + rl_loss_baseline + rl_loss_entropy # Add auxiliary loss for heading prediction. if 'yaw_label' in observation_names: idx_yaw_label = observation_names.index('yaw_label') yaw_logits = learner_outputs.heading yaw_labels = tf.cast(observations[idx_yaw_label], dtype=tf.int32) heading_loss = FLAGS.heading_prediction_cost * compute_classification_loss( yaw_logits, yaw_labels) total_loss += heading_loss # Add auxiliary loss for XY position and XY target position prediction. if 'latlng_label' in observation_names: idx_latlng_label = observation_names.index('latlng_label') xy_logits = learner_outputs.xy xy_labels = tf.cast(observations[idx_latlng_label], dtype=tf.int32) xy_loss = FLAGS.xy_prediction_cost * compute_classification_loss( xy_logits, xy_labels) total_loss += xy_loss if 'target_latlng_label' in observation_names: idx_target_latlng_label = observation_names.index('target_latlng_label') target_xy_logits = learner_outputs.target_xy target_xy_labels = tf.cast(observations[idx_target_latlng_label], dtype=tf.int32) target_xy_loss = ( FLAGS.target_xy_prediction_cost * compute_classification_loss( target_xy_logits, target_xy_labels)) total_loss += target_xy_loss # Optimization num_env_frames = tf.train.get_global_step() learning_rate = tf.train.polynomial_decay(FLAGS.learning_rate, num_env_frames, FLAGS.total_environment_frames, 0) optimizer = tf.train.RMSPropOptimizer(learning_rate, FLAGS.decay, FLAGS.momentum, FLAGS.epsilon) train_op = optimizer.minimize(total_loss) # Merge updating the network and environment frames into a single tensor. with tf.control_dependencies([train_op]): num_env_frames_and_train = num_env_frames.assign_add( FLAGS.batch_size * FLAGS.unroll_length) # Adding a few summaries: RL losses and actions. tf.summary.scalar('learning_rate', learning_rate) tf.summary.scalar('rl_loss_policy_gradient', rl_loss_policy_gradient) tf.summary.scalar('rl_loss_baseline', rl_loss_baseline) tf.summary.scalar('rl_loss_entropy', rl_loss_entropy) if 'yaw_label' in observation_names: tf.summary.scalar('heading_loss', heading_loss) if 'latlng_label' in observation_names: tf.summary.scalar('xy_loss', xy_loss) if 'target_latlng_label' in observation_names: tf.summary.scalar('target_xy_loss', target_xy_loss) tf.summary.scalar('total_loss', total_loss) tf.summary.histogram('action', agent_outputs.action) # Adding a few summaries: agent's view and graph. idx_frame = observation_names.index('view_image') frame = observations[idx_frame] tf.summary.image('frame', frame[:3, 0, :, :, :]) idx_graph = observation_names.index('graph_image') street_graph = observations[idx_graph] tf.summary.image('street_graph', street_graph[:3, 0, :, :, :]) # Adding a few summaries: current and target lat/lng. idx_latlng = observation_names.index('latlng') latlng = observations[idx_latlng] tf.summary.histogram('current_lat', latlng[:, 0, 0]) tf.summary.histogram('current_lng', latlng[:, 0, 1]) idx_target_latlng = observation_names.index('target_latlng') target_latlng = observations[idx_target_latlng] target_latlng = tf.Print(target_latlng, [target_latlng]) tf.summary.histogram('target_lat', target_latlng[:, 0, 0]) tf.summary.histogram('target_lng', target_latlng[:, 0, 1]) # Adding a few summaries: yaw. if 'yaw' in observation_names: idx_yaw = observation_names.index('yaw') yaw = observations[idx_yaw] tf.summary.histogram('yaw', yaw[:, 0]) # Adding a few summaries: heading prediction. if 'yaw_label' in observation_names: img_yaw_labels = tf.expand_dims( tf.expand_dims(tf.one_hot(tf.cast(yaw_labels, tf.int32), 16), 1), -1) img_yaw_logits = tf.expand_dims( tf.expand_dims(tf.nn.softmax(tf.cast(yaw_logits, tf.float32)), 1), -1) tf.summary.image("yaw_labels", img_yaw_labels[:, :, 0, :, :]) tf.summary.image("yaw_logits", img_yaw_logits[:, :, 0, :, :]) # Adding a few summaries: XY position prediction. if 'latlng_label' in observation_names: img_xy_labels = plot_logits_2d( tf.one_hot(tf.cast(xy_labels[:, 0], tf.int32), 32*32), 32, 32) img_xy_logits = plot_logits_2d( tf.nn.softmax(tf.cast(xy_logits[:, 0, :], tf.float32)), 32, 32) tf.summary.image("xy_labels", img_xy_labels[:, 0, :, :, :]) tf.summary.image("xy_logits", img_xy_logits[:, 0, :, :, :]) # Adding a few summaries: XY position prediction. if 'target_latlng_label' in observation_names: img_target_xy_labels = plot_logits_2d( tf.one_hot(tf.cast(target_xy_labels[:, 0], tf.int32), 32*32), 32, 32) img_target_xy_logits = plot_logits_2d( tf.nn.softmax(tf.cast(target_xy_logits, tf.float32)), 32, 32) tf.summary.image("target_xy_labels", img_target_xy_labels[:, 0, :, :, :]) tf.summary.image("target_xy_logits", img_target_xy_logits[:, 0, :, :, :]) return done, infos, num_env_frames_and_train def create_environment(level_name, seed, is_test=False): """Creates an environment wrapped in a `FlowEnvironment`.""" observations = FLAGS.observations.split(';') tf.logging.info('Observations requested:') tf.logging.info(observations) config = { 'status_height': 0, 'width': FLAGS.width, 'height': FLAGS.height, 'graph_width': FLAGS.graph_width, 'graph_height': FLAGS.graph_height, 'graph_zoom': FLAGS.graph_zoom, 'game_name': FLAGS.game_name, 'goal_timeout': FLAGS.frame_cap, 'frame_cap': FLAGS.frame_cap, 'full_graph': (FLAGS.start_pano == ''), 'start_pano': FLAGS.start_pano, 'min_graph_depth': FLAGS.graph_depth, 'max_graph_depth': FLAGS.graph_depth, 'proportion_of_panos_with_coins': FLAGS.proportion_of_panos_with_coins, 'timestamp_start_curriculum': FLAGS.timestamp_start_curriculum, 'hours_curriculum_part_1': FLAGS.hours_curriculum_part_1, 'hours_curriculum_part_2': FLAGS.hours_curriculum_part_2, 'min_goal_distance_curriculum': FLAGS.min_goal_distance_curriculum, 'max_goal_distance_curriculum': FLAGS.max_goal_distance_curriculum, 'observations': observations, 'bbox_lat_min': FLAGS.bbox_lat_min, 'bbox_lat_max': FLAGS.bbox_lat_max, 'bbox_lng_min': FLAGS.bbox_lng_min, 'bbox_lng_max': FLAGS.bbox_lng_max, 'min_radius_meters': FLAGS.min_radius_meters, 'max_radius_meters': FLAGS.max_radius_meters, } config = default_config.ApplyDefaults(config) tf.logging.info(config) game = default_config.CreateGame(config['game_name'], config) dataset_path = FLAGS.dataset_paths + '/' + level_name tf.logging.info(dataset_path) p = py_process.PyProcess( StreetLearnImpalaAdapter, dataset_path, config, game) return FlowEnvironment(p.proxy) @contextlib.contextmanager def pin_global_variables(device): """Pins global variables to the specified device.""" def getter(getter, *args, **kwargs): var_collections = kwargs.get('collections', None) if var_collections is None: var_collections = [tf.GraphKeys.GLOBAL_VARIABLES] if tf.GraphKeys.GLOBAL_VARIABLES in var_collections: with tf.device(device): return getter(*args, **kwargs) else: return getter(*args, **kwargs) with tf.variable_scope('', custom_getter=getter) as vs: yield vs def create_agent(num_actions): """Create the agent.""" assert FLAGS.agent in ['goal_nav_agent', 'city_nav_agent'] if FLAGS.agent == 'city_nav_agent': agent = city_nav_agent.CityNavAgent( num_actions, observation_names=FLAGS.observations) else: agent = goal_nav_agent.GoalNavAgent( num_actions, observation_names=FLAGS.observations) return agent def train(action_set, level_names): """Train.""" if is_single_machine(): local_job_device = '' shared_job_device = '' is_actor_fn = lambda i: True is_learner = True global_variable_device = '/gpu' server = tf.train.Server.create_local_server() server_target = FLAGS.master filters = [] else: local_job_device = '/job:%s/task:%d' % (FLAGS.job_name, FLAGS.task) shared_job_device = '/job:learner/task:0' is_actor_fn = lambda i: FLAGS.job_name == 'actor' and i == FLAGS.task is_learner = FLAGS.job_name == 'learner' # Placing the variable on CPU, makes it cheaper to send it to all the # actors. Continual copying the variables from the GPU is slow. global_variable_device = shared_job_device + '/cpu' cluster = tf.train.ClusterSpec({ 'actor': ['localhost:%d' % (8001 + i) for i in range(FLAGS.num_actors)], 'learner': ['localhost:8000'] }) server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task) server_target = server.target filters = [shared_job_device, local_job_device] # Only used to find the actor output structure. with tf.Graph().as_default(): agent = create_agent(len(action_set)) env = create_environment(level_names[0], seed=1) structure = build_actor(agent, env, level_names[0], action_set) flattened_structure = nest.flatten(structure) dtypes = [t.dtype for t in flattened_structure] shapes = [t.shape.as_list() for t in flattened_structure] with tf.Graph().as_default(), \ tf.device(local_job_device + '/cpu'), \ pin_global_variables(global_variable_device): tf.set_random_seed(FLAGS.seed) # Makes initialization deterministic. # Create Queue and Agent on the learner. with tf.device(shared_job_device): queue = tf.FIFOQueue(1, dtypes, shapes, shared_name='buffer') agent = create_agent(len(action_set)) # Build actors and ops to enqueue their output. enqueue_ops = [] for i in range(FLAGS.num_actors): if is_actor_fn(i): level_name = level_names[i % len(level_names)] tf.logging.info('Creating actor %d with level %s', i, level_name) env = create_environment(level_name, seed=i + 1) actor_output = build_actor(agent, env, level_name, action_set) with tf.device(shared_job_device): enqueue_ops.append(queue.enqueue(nest.flatten(actor_output))) # If running in a single machine setup, run actors with QueueRunners # (separate threads). if is_learner and enqueue_ops: tf.train.add_queue_runner(tf.train.QueueRunner(queue, enqueue_ops)) # Build learner. if is_learner: # Create global step, which is the number of environment frames processed. tf.get_variable( 'num_environment_frames', initializer=tf.zeros_initializer(), shape=[], dtype=tf.int64, trainable=False, collections=[tf.GraphKeys.GLOBAL_STEP, tf.GraphKeys.GLOBAL_VARIABLES]) # Create batch (time major) and recreate structure. dequeued = queue.dequeue_many(FLAGS.batch_size) dequeued = nest.pack_sequence_as(structure, dequeued) def make_time_major(s): return nest.map_structure( lambda t: tf.transpose(t, [1, 0] + list(range(t.shape.ndims))[2:]), s) dequeued = dequeued._replace( env_outputs=make_time_major(dequeued.env_outputs), agent_outputs=make_time_major(dequeued.agent_outputs)) with tf.device('/gpu'): # Using StagingArea allows us to prepare the next batch and send it to # the GPU while we're performing a training step. This adds up to 1 step # policy lag. flattened_output = nest.flatten(dequeued) area = contrib_staging.StagingArea([t.dtype for t in flattened_output], [t.shape for t in flattened_output]) stage_op = area.put(flattened_output) data_from_actors = nest.pack_sequence_as(structure, area.get()) # Unroll agent on sequence, create losses and update ops. output = build_learner(agent, data_from_actors.agent_state, data_from_actors.env_outputs, data_from_actors.agent_outputs) # Create MonitoredSession (to run the graph, checkpoint and log). tf.logging.info('Creating MonitoredSession, is_chief %s', is_learner) # config = tf.ConfigProto(allow_soft_placement=True) config = tf.ConfigProto(allow_soft_placement=True, device_filters=filters) with tf.train.MonitoredTrainingSession( server_target, is_chief=is_learner, checkpoint_dir=FLAGS.logdir, save_checkpoint_secs=600, save_summaries_secs=30, log_step_count_steps=50000, config=config, hooks=[py_process.PyProcessHook()]) as session: if is_learner: tf.logging.info('is_learner') # Logging. level_returns = {level_name: [] for level_name in level_names} summary_writer = tf.summary.FileWriterCache.get(FLAGS.logdir) # Prepare data for first run. session.run_step_fn( lambda step_context: step_context.session.run(stage_op)) # Execute learning and track performance. num_env_frames_v = 0 while num_env_frames_v < FLAGS.total_environment_frames: tf.logging.info(num_env_frames_v) level_names_v, done_v, infos_v, num_env_frames_v, _ = session.run( (data_from_actors.level_name,) + output + (stage_op,)) level_names_v = np.repeat([level_names_v], done_v.shape[0], 0) for level_name, episode_return, episode_step in zip( level_names_v[done_v], infos_v.episode_return[done_v], infos_v.episode_step[done_v]): episode_frames = episode_step tf.logging.info('Level: %s Episode return: %f', level_name, episode_return) summary = tf.summary.Summary() summary.value.add(tag=level_name + '/episode_return', simple_value=episode_return) summary.value.add(tag=level_name + '/episode_frames', simple_value=episode_frames) summary_writer.add_summary(summary, num_env_frames_v) else: tf.logging.info('actor') # Execute actors (they just need to enqueue their output). while True: session.run(enqueue_ops) def test(action_set, level_names): """Test.""" level_returns = {level_name: [] for level_name in level_names} with tf.Graph().as_default(): agent = create_agent(len(action_set)) outputs = {} for level_name in level_names: env = create_environment(level_name, seed=1, is_test=True) outputs[level_name] = build_actor(agent, env, level_name, action_set) with tf.train.SingularMonitoredSession( checkpoint_dir=FLAGS.logdir, hooks=[py_process.PyProcessHook()]) as session: for level_name in level_names: tf.logging.info('Testing level: %s', level_name) while True: done_v, infos_v = session.run(( outputs[level_name].env_outputs.done, outputs[level_name].env_outputs.info )) returns = level_returns[level_name] returns.extend(infos_v.episode_return[1:][done_v[1:]]) if len(returns) >= FLAGS.test_num_episodes: tf.logging.info('Mean episode return: %f', np.mean(returns)) break def main(_): tf.logging.set_verbosity(tf.logging.INFO) action_set = streetlearn.get_action_set(FLAGS.action_set, FLAGS.rotation_speed) tf.logging.info(action_set) level_names = FLAGS.level_names.split(',') tf.logging.info(level_names) if FLAGS.mode == 'train': train(action_set, level_names) else: test(action_set, level_names) if __name__ == '__main__': tf.app.run()
streetlearn-master
streetlearn/python/experiment.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic oracle agent for StreetLearn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time from absl import app from absl import flags from absl import logging import numpy as np import pygame from six.moves import range from streetlearn.python.environment import default_config from streetlearn.python.environment import goal_instruction_game from streetlearn.python.environment import incremental_instruction_game from streetlearn.python.environment import step_by_step_instruction_game from streetlearn.python.environment import streetlearn FLAGS = flags.FLAGS flags.DEFINE_integer('width', 400, 'Observation and map width.') flags.DEFINE_integer('height', 400, 'Observation and map height.') flags.DEFINE_integer('field_of_view', 60, 'Field of view.') flags.DEFINE_integer('graph_zoom', 1, 'Zoom level.') flags.DEFINE_boolean('graph_black_on_white', False, 'Show graph as black on white. False by default.') flags.DEFINE_integer('width_text', 300, 'Text width.') flags.DEFINE_integer('font_size', 16, 'Font size.') flags.DEFINE_float('horizontal_rot', 10, 'Horizontal rotation step (deg).') flags.DEFINE_string('dataset_path', None, 'Dataset path.') flags.DEFINE_string('instruction_file', None, 'Instruction path.') flags.DEFINE_string( 'game', 'incremental_instruction_game', 'Game name [goal_instruction_game|' 'incremental_instruction_game|step_by_step_instruction_game]') flags.DEFINE_float('reward_at_waypoint', 0.5, 'Reward at waypoint.') flags.DEFINE_float('reward_at_goal', 1.0, 'Reward at waypoint.') flags.DEFINE_integer('num_instructions', 5, 'Number of instructions.') flags.DEFINE_integer('max_instructions', 5, 'Maximum number of instructions.') flags.DEFINE_string('start_pano', '', 'Pano at root of partial graph (default: full graph).') flags.DEFINE_integer('graph_depth', 200, 'Depth of the pano graph.') flags.DEFINE_boolean('show_shortest_path', True, 'Whether to highlight the shortest path in the UI.') flags.DEFINE_integer('frame_cap', 1000, 'Number of frames / episode.') flags.DEFINE_string('stats_path', None, 'Statistics path.') flags.mark_flag_as_required('dataset_path') flags.mark_flag_as_required('instruction_file') COLOR_WAYPOINT = (0, 178, 178) COLOR_GOAL = (255, 0, 0) COLOR_INSTRUCTION = (255, 255, 255) def blit_instruction(screen, instruction, font, color, x_min, y, x_max): """Render and blit a multiline instruction onto the PyGame screen.""" words = instruction.split() space_width = font.size(' ')[0] x = x_min for word in words: word_surface = font.render(word, True, color) word_width, word_height = word_surface.get_size() if x + word_width >= x_max: x = x_min y += word_height screen.blit(word_surface, (x, y)) x += word_width + space_width def loop(env, screen, x_max, y_max, subsampling, font): """Main loop of the oracle agent.""" screen_buffer = np.zeros((x_max, y_max, 3), np.uint8) action = np.array([0, 0, 0, 0]) action_spec = env.action_spec() sum_rewards = 0 sum_rewards_at_goal = 0 previous_goal_id = None while True: # Take a step given the previous action and record the reward. observation, reward, done, info = env.step(action) sum_rewards += reward if (reward > 0) and (info['current_goal_id'] is not previous_goal_id): sum_rewards_at_goal += reward previous_goal_id = info['current_goal_id'] if done: print('Episode reward: {}'.format(sum_rewards)) if FLAGS.stats_path: with open(FLAGS.stats_path, 'a') as f: f.write(str(sum_rewards) + '\t' + str(sum_rewards_at_goal) + '\n') sum_rewards = 0 sum_rewards_at_goal = 0 # Determine the next pano and bearing to that pano. current_pano_id = info['current_pano_id'] next_pano_id = info['next_pano_id'] bearing_info = info['bearing_to_next_pano'] bearing = observation['ground_truth_direction'] logging.info('Current pano: %s, next pano %s at %f (%f)', current_pano_id, next_pano_id, bearing, bearing_info) current_step = info.get('current_step', -1) # Bearing-based navigation. if bearing > FLAGS.horizontal_rot: if bearing > FLAGS.horizontal_rot + 2 * FLAGS.horizontal_rot: action = 3 * FLAGS.horizontal_rot * action_spec['horizontal_rotation'] else: action = FLAGS.horizontal_rot * action_spec['horizontal_rotation'] elif bearing < -FLAGS.horizontal_rot: if bearing < -FLAGS.horizontal_rot - 2 * FLAGS.horizontal_rot: action = -3 * FLAGS.horizontal_rot * action_spec['horizontal_rotation'] else: action = -FLAGS.horizontal_rot * action_spec['horizontal_rotation'] else: action = action_spec['move_forward'] # Draw the observations (view, graph, thumbnails, instructions). view_image = observation['view_image_hwc'] graph_image = observation['graph_image_hwc'] screen_buffer[:FLAGS.width, :FLAGS.height, :] = view_image.swapaxes(0, 1) screen_buffer[:FLAGS.width, FLAGS.height:(FLAGS.height*2), :] = ( graph_image.swapaxes(0, 1)) thumb_image = np.copy(observation['thumbnails']) for k in range(FLAGS.max_instructions+1): if k != current_step: thumb_image[k, :, :, :] = thumb_image[k, :, :, :] / 2 thumb_image = thumb_image.reshape( FLAGS.height * (FLAGS.max_instructions + 1), FLAGS.width, 3) thumb_image = thumb_image.swapaxes(0, 1) thumb_image = thumb_image[::subsampling, ::subsampling, :] screen_buffer[FLAGS.width:(FLAGS.width+thumb_image.shape[0]), 0:thumb_image.shape[1], :] = thumb_image pygame.surfarray.blit_array(screen, screen_buffer) instructions = observation['instructions'].decode('utf-8') instructions = instructions.split('|') instructions.append('[goal]') x_min = x_max - FLAGS.width_text + 10 y = 10 for k in range(len(instructions)): instruction = instructions[k] if k == current_step: color = COLOR_WAYPOINT elif k == len(instructions) - 1: color = COLOR_GOAL else: color = COLOR_INSTRUCTION blit_instruction(screen, instruction, font, color, x_min, y, x_max) y += int(FLAGS.height / subsampling) pygame.display.update() for event in pygame.event.get(): if (event.type == pygame.QUIT or (event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE)): return if event.type == pygame.KEYDOWN: if event.key == pygame.K_p: filename = time.strftime('/tmp/oracle_agent_%Y%m%d_%H%M%S.bmp') pygame.image.save(screen, filename) def main(argv): config = {'width': FLAGS.width, 'height': FLAGS.height, 'field_of_view': FLAGS.field_of_view, 'status_height': 0, 'graph_width': FLAGS.width, 'graph_height': FLAGS.height, 'graph_zoom': FLAGS.graph_zoom, 'graph_black_on_white': FLAGS.graph_black_on_white, 'show_shortest_path': FLAGS.show_shortest_path, 'calculate_ground_truth': True, 'goal_timeout': FLAGS.frame_cap, 'frame_cap': FLAGS.frame_cap, 'full_graph': (FLAGS.start_pano == ''), 'start_pano': FLAGS.start_pano, 'min_graph_depth': FLAGS.graph_depth, 'max_graph_depth': FLAGS.graph_depth, 'reward_at_waypoint': FLAGS.reward_at_waypoint, 'reward_at_goal': FLAGS.reward_at_goal, 'instruction_file': FLAGS.instruction_file, 'num_instructions': FLAGS.num_instructions, 'max_instructions': FLAGS.max_instructions, 'proportion_of_panos_with_coins': 0.0, 'action_spec': 'streetlearn_fast_rotate', 'observations': ['view_image_hwc', 'graph_image_hwc', 'yaw', 'thumbnails', 'instructions', 'ground_truth_direction']} # Configure game and environment. config = default_config.ApplyDefaults(config) if FLAGS.game == 'goal_instruction_game': game = goal_instruction_game.GoalInstructionGame(config) elif FLAGS.game == 'incremental_instruction_game': game = incremental_instruction_game.IncrementalInstructionGame(config) elif FLAGS.game == 'step_by_step_instruction_game': game = step_by_step_instruction_game.StepByStepInstructionGame(config) else: print('Unknown game: [{}]'.format(FLAGS.game)) print('Run instruction_following_oracle_agent --help.') return env = streetlearn.StreetLearn(FLAGS.dataset_path, config, game) env.reset() # Configure pygame. pygame.init() pygame.font.init() subsampling = int(np.ceil((FLAGS.max_instructions + 1) / 2)) x_max = FLAGS.width + int(FLAGS.width / subsampling) + FLAGS.width_text y_max = FLAGS.height * 2 logging.info('Rendering images at %dx%d, thumbnails subsampled by %d', x_max, y_max, subsampling) screen = pygame.display.set_mode((x_max, y_max)) font = pygame.font.SysFont('arial', FLAGS.font_size) loop(env, screen, x_max, y_max, subsampling, font) if __name__ == '__main__': app.run(main)
streetlearn-master
streetlearn/python/ui/instruction_following_oracle_agent.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic oracle agent for StreetLearn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from absl import logging import copy import time import numpy as np import pygame from streetlearn.python.environment import courier_game from streetlearn.python.environment import default_config from streetlearn.python.environment import batched_streetlearn FLAGS = flags.FLAGS flags.DEFINE_integer('batch_size', 4, 'Batch size.') flags.DEFINE_integer('num_env_per_shared_cache', 4, 'Num env per shared cache.') flags.DEFINE_integer('width', 168, 'Observation and map width.') flags.DEFINE_integer('height', 168, 'Observation and map height.') flags.DEFINE_integer('field_of_view', 60, 'Field of view.') flags.DEFINE_integer('graph_zoom', 1, 'Zoom level.') flags.DEFINE_boolean('graph_black_on_white', False, 'Show graph as black on white. False by default.') flags.DEFINE_float('horizontal_rot', 22.5, 'Horizontal rotation step (deg).') flags.DEFINE_string('dataset_path', None, 'Dataset path.') flags.DEFINE_integer('max_cache_size', 30000, 'Max cache size.') flags.DEFINE_string('start_pano', '', 'Pano at root of partial graph (default: full graph).') flags.DEFINE_integer('graph_depth', 200, 'Depth of the pano graph.') flags.DEFINE_integer('frame_cap', 1000, 'Number of frames / episode.') flags.DEFINE_string('stats_path', None, 'Statistics path.') flags.DEFINE_float('proportion_of_panos_with_coins', 0, 'Proportion of coins.') flags.mark_flag_as_required('dataset_path') TOL_BEARING = 30 def loop(env, screen): """Main loop of the oracle agent.""" action = [] sum_rewards = [] sum_rewards_at_goal = [] previous_goal_id = [] seen_pano_ids = [] for _ in range(FLAGS.batch_size): action.append(np.array([0, 0, 0, 0])) sum_rewards.append(0) sum_rewards_at_goal.append(0) previous_goal_id.append(None) seen_pano_ids.append({}) action_spec = env.action_spec() save_video = False frame = 0 horizontal_rotation = action_spec['horizontal_rotation'] move_forward = action_spec['move_forward'] while True: # Read the keyboard. for event in pygame.event.get(): if (event.type == pygame.QUIT or (event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE)): return if event.type == pygame.KEYDOWN: if event.key == pygame.K_p: filename = time.strftime('/tmp/oracle_agent_%Y%m%d_%H%M%S.bmp') pygame.image.save(screen, filename) if event.key == pygame.K_v: save_video = True if event.key == pygame.K_c: save_video = False elif event.key == pygame.K_i: for k in range(FLAGS.batch_size): action[k] += action_spec['map_zoom'] print('zoom in') elif event.key == pygame.K_o: for k in range(FLAGS.batch_size): action[k] -= action_spec['map_zoom'] print('zoom out') # Take a step given the previous action. observations, reward, done, info = env.step(action) # Visualise the observations. images = [] for k in range(FLAGS.batch_size): view_image = observations['view_image_hwc'][k, ...] graph_image = observations['graph_image_hwc'][k, ...] image_k = np.concatenate((view_image, graph_image), axis=0) images.append(image_k) screen_buffer = np.concatenate(images, axis=1) pygame.surfarray.blit_array(screen, screen_buffer.swapaxes(0, 1)) pygame.display.update() # Save a video? if save_video: filename = time.strftime('/tmp/oracle_agent_video_%Y%m%d_%H%M%S') filename += '_' + str(frame) + '.bmp' pygame.image.save(screen, filename) frame += 1 # Record the reward. for k in range(FLAGS.batch_size): sum_rewards[k] += reward[k] if ((reward[k] > 0) and (info[k]['current_goal_id'] is not previous_goal_id[k])): sum_rewards_at_goal[k] += reward[k] seen_pano_ids[k] = {} previous_goal_id[k] = info[k]['current_goal_id'] if done[k]: num_successes = info[k]['num_successes'] spl = info[k]['spl'] spl_without_last_goal = info[k]['spl_without_last_goal'] print('Episode [{}] reward: {}, goals: {}, SPL: {}/{}'.format( k, sum_rewards[k], num_successes, spl, spl_without_last_goal)) if FLAGS.stats_path: with open(FLAGS.stats_path, 'a') as f: f.write('{}\t{}\t{}\t{}\t{}\t{}\n'.format( k, sum_rewards[k], sum_rewards_at_goal[k], num_successes, spl, spl_without_last_goal)) sum_rewards[k] = 0 sum_rewards_at_goal[k] = 0 # logging.info('Cache size: %d', env.cache_size()) # Determine the next pano and bearing to that pano. for k in range(FLAGS.batch_size): current_pano_id = info[k]['current_pano_id'] next_pano_id = info[k]['next_pano_id'] bearing = info[k]['bearing_to_next_pano'] logging.info('Current pano %d: %s, next pano %s at %f, cache size %d', k, current_pano_id, next_pano_id, bearing, env.cache_size[k]) # Maintain the count of pano visits, in case the agent gets stuck. if current_pano_id in seen_pano_ids[k]: seen_pano_ids[k][current_pano_id] += 1 else: seen_pano_ids[k][current_pano_id] = 1 # Bearing-based navigation. if bearing > TOL_BEARING: if bearing > TOL_BEARING + 2 * FLAGS.horizontal_rot: action[k] = copy.copy(3 * FLAGS.horizontal_rot * horizontal_rotation) else: action[k] = copy.copy(FLAGS.horizontal_rot * horizontal_rotation) elif bearing < -TOL_BEARING: if bearing < -TOL_BEARING - 2 * FLAGS.horizontal_rot: action[k] = copy.copy(-3 * FLAGS.horizontal_rot * horizontal_rotation) else: action[k] = copy.copy(-FLAGS.horizontal_rot * horizontal_rotation) else: action[k] = copy.copy(move_forward) # Sometimes, two panos B and C are close to each other, which causes # cyclic loops: A -> C -> A -> C -> A... whereas agent wants to go # A -> B. There is a simple strategy to get out of that A - C loop: # detect that A has been visited a large number of times in the current # trajectory, then instead of moving forward A -> B and ending up in C, # directly jump to B. First, we check if the agent has spent more time # in a pano than required to make a full U-turn... if seen_pano_ids[k][current_pano_id] > (180.0 / FLAGS.horizontal_rot): # ... then we teleport to the desired location and turn randomly. logging.info('Teleporting from %s to %s', current_pano_id, next_pano_id) _ = env.goto(k, next_pano_id, np.random.randint(359)) def main(argv): config = {'width': FLAGS.width, 'height': FLAGS.height, 'field_of_view': FLAGS.field_of_view, 'graph_width': FLAGS.width, 'graph_height': FLAGS.height, 'graph_zoom': FLAGS.graph_zoom, 'graph_black_on_white': FLAGS.graph_black_on_white, 'goal_timeout': FLAGS.frame_cap, 'frame_cap': FLAGS.frame_cap, 'full_graph': (FLAGS.start_pano == ''), 'start_pano': FLAGS.start_pano, 'min_graph_depth': FLAGS.graph_depth, 'max_graph_depth': FLAGS.graph_depth, 'max_cache_size': FLAGS.max_cache_size, 'proportion_of_panos_with_coins': FLAGS.proportion_of_panos_with_coins, 'action_spec': 'streetlearn_fast_rotate', 'observations': ['view_image_hwc', 'graph_image_hwc', 'yaw', 'pitch']} config = default_config.ApplyDefaults(config) # Create as many configs and games as the batch size. games = [] configs = [] for k in range(FLAGS.batch_size): this_config = copy.copy(config) this_config['seed'] = k configs.append(this_config) games.append(courier_game.CourierGame(this_config)) env = batched_streetlearn.BatchedStreetLearn( FLAGS.dataset_path, configs, games, num_env_per_shared_cache=FLAGS.num_env_per_shared_cache) env.reset() pygame.init() screen = pygame.display.set_mode( (FLAGS.width * FLAGS.batch_size, FLAGS.height * 2)) loop(env, screen) if __name__ == '__main__': app.run(main)
streetlearn-master
streetlearn/python/ui/batched_oracle_agent.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic human agent for StreetLearn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time from absl import app from absl import flags from absl import logging import numpy as np import pygame from six.moves import range from streetlearn.engine.python import color from streetlearn.python.environment import coin_game from streetlearn.python.environment import courier_game from streetlearn.python.environment import default_config from streetlearn.python.environment import goal_instruction_game from streetlearn.python.environment import incremental_instruction_game from streetlearn.python.environment import step_by_step_instruction_game from streetlearn.python.environment import streetlearn FLAGS = flags.FLAGS flags.DEFINE_integer('width', 400, 'Observation and map width.') flags.DEFINE_integer('height', 400, 'Observation and map height.') flags.DEFINE_integer('field_of_view', 60, 'Field of view.') flags.DEFINE_integer('graph_zoom', 1, 'Zoom level.') flags.DEFINE_integer('width_text', 300, 'Text width.') flags.DEFINE_integer('font_size', 16, 'Font size.') flags.DEFINE_float('horizontal_rot', 10, 'Horizontal rotation step (deg).') flags.DEFINE_float('vertical_rot', 10, 'Vertical rotation step (deg).') flags.DEFINE_string('dataset_path', None, 'Dataset path.') flags.DEFINE_string('instruction_file', None, 'Instruction path.') flags.DEFINE_string( 'game', 'coin_game', 'Game name [coin_game|courier_game|goal_instruction_game|' 'incremental_instruction_game|step_by_step_instruction_game]') flags.DEFINE_float('reward_at_waypoint', 0.5, 'Reward at waypoint.') flags.DEFINE_float('reward_at_goal', 1.0, 'Reward at waypoint.') flags.DEFINE_integer('num_instructions', 5, 'Number of instructions.') flags.DEFINE_integer('max_instructions', 5, 'Maximum number of instructions.') flags.DEFINE_string('start_pano', '', 'Pano at root of partial graph (default: full graph).') flags.DEFINE_integer('graph_depth', 200, 'Depth of the pano graph.') flags.DEFINE_boolean('graph_black_on_white', False, 'Show graph as black on white. False by default.') flags.DEFINE_boolean('hide_goal', False, 'Whether to hide the goal location on the graph.') flags.DEFINE_boolean('show_shortest_path', True, 'Whether to highlight the shortest path in the UI.') flags.DEFINE_integer('frame_cap', 1000, 'Number of frames / episode.') flags.DEFINE_float('proportion_of_panos_with_coins', 0.0, 'Proportion of coins.') flags.mark_flag_as_required('dataset_path') COLOR_WAYPOINT = (0, 178, 178) COLOR_GOAL = (255, 0, 0) COLOR_INSTRUCTION = (255, 255, 255) def blit_instruction(screen, instruction, font, color, x_min, y, x_max): """Render and blit a multiline instruction onto the PyGame screen.""" words = instruction.split() space_width = font.size(' ')[0] x = x_min for word in words: word_surface = font.render(word, True, color) word_width, word_height = word_surface.get_size() if x + word_width >= x_max: x = x_min y += word_height screen.blit(word_surface, (x, y)) x += word_width + space_width def loop(env, screen, x_max, y_max, subsampling=None, font=None): """Main loop of the human agent.""" screen_buffer = np.zeros((x_max, y_max, 3), np.uint8) action = np.array([0, 0, 0, 0]) action_spec = env.action_spec() sum_rewards = 0 sum_rewards_at_goal = 0 previous_goal_id = None while True: # Take a step through the environment and record the reward. observation, reward, done, info = env.step(action) sum_rewards += reward pano_id = env.current_pano_id if reward > 0: print('Collected reward of {} at {}'.format(reward, pano_id)) if done: print('Episode reward: {}'.format(sum_rewards)) sum_rewards = 0 sum_rewards_at_goal = 0 # Draw the observations (view, graph). observation = env.observation() view_image = observation['view_image_hwc'] graph_image = observation['graph_image_hwc'] if FLAGS.game == 'coin_game' or FLAGS.game == 'courier_game': screen_buffer = np.concatenate((view_image, graph_image), axis=0) pygame.surfarray.blit_array(screen, screen_buffer.swapaxes(0, 1)) else: # Draw extra observations (thumbnails, instructions). screen_buffer[:FLAGS.width, :FLAGS.height, :] = view_image.swapaxes(0, 1) screen_buffer[:FLAGS.width, FLAGS.height:(FLAGS.height*2), :] = ( graph_image.swapaxes(0, 1)) thumb_image = np.copy(observation['thumbnails']) current_step = info.get('current_step', -1) for k in range(FLAGS.max_instructions+1): if k != current_step: thumb_image[k, :, :, :] = thumb_image[k, :, :, :] / 2 thumb_image = thumb_image.reshape( FLAGS.height * (FLAGS.max_instructions + 1), FLAGS.width, 3) thumb_image = thumb_image.swapaxes(0, 1) thumb_image = thumb_image[::subsampling, ::subsampling, :] screen_buffer[FLAGS.width:(FLAGS.width+thumb_image.shape[0]), 0:thumb_image.shape[1], :] = thumb_image pygame.surfarray.blit_array(screen, screen_buffer) instructions = observation['instructions'].decode('utf-8') instructions = instructions.split('|') instructions.append('[goal]') x_min = x_max - FLAGS.width_text + 10 y = 10 for k in range(len(instructions)): instruction = instructions[k] if k == current_step: color = COLOR_WAYPOINT elif k == len(instructions) - 1: color = COLOR_GOAL else: color = COLOR_INSTRUCTION blit_instruction(screen, instruction, font, color, x_min, y, x_max) y += int(FLAGS.height / subsampling) pygame.display.update() action_spec = env.action_spec() action = np.array([0, 0, 0, 0]) while True: event = pygame.event.wait() if event.type == pygame.QUIT: return elif event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: print(pano_id + ': exit') return if event.key == pygame.K_SPACE: action = action_spec['move_forward'] print(pano_id + ': move') elif event.key == pygame.K_p: filename = time.strftime('/tmp/human_agent_%Y%m%d_%H%M%S.bmp') pygame.image.save(screen, filename) elif event.key == pygame.K_i: action = action_spec['map_zoom'] print(pano_id + ': zoom in') elif event.key == pygame.K_o: action = -1 * action_spec['map_zoom'] print(pano_id + ': zoom out') elif event.key == pygame.K_a: action = -FLAGS.horizontal_rot * action_spec['horizontal_rotation'] print(pano_id + ': rotate left') elif event.key == pygame.K_d: action = FLAGS.horizontal_rot * action_spec['horizontal_rotation'] print(pano_id + ': rotate right') elif event.key == pygame.K_w: action = -FLAGS.vertical_rot * action_spec['vertical_rotation'] print(pano_id + ': look up') elif event.key == pygame.K_s: action = FLAGS.vertical_rot * action_spec['vertical_rotation'] print(pano_id + ': look down') elif event.type == pygame.KEYUP: break def main(argv): config = {'width': FLAGS.width, 'height': FLAGS.height, 'field_of_view': FLAGS.field_of_view, 'graph_width': FLAGS.width, 'graph_height': FLAGS.height, 'graph_zoom': FLAGS.graph_zoom, 'graph_black_on_white': FLAGS.graph_black_on_white, 'show_shortest_path': FLAGS.show_shortest_path, 'goal_timeout': FLAGS.frame_cap, 'frame_cap': FLAGS.frame_cap, 'full_graph': (FLAGS.start_pano == ''), 'start_pano': FLAGS.start_pano, 'min_graph_depth': FLAGS.graph_depth, 'max_graph_depth': FLAGS.graph_depth, 'reward_at_waypoint': FLAGS.reward_at_waypoint, 'reward_at_goal': FLAGS.reward_at_goal, 'instruction_file': FLAGS.instruction_file, 'num_instructions': FLAGS.num_instructions, 'max_instructions': FLAGS.max_instructions, 'proportion_of_panos_with_coins': FLAGS.proportion_of_panos_with_coins, 'observations': ['view_image_hwc', 'graph_image_hwc', 'yaw', 'thumbnails', 'pitch', 'instructions', 'latlng', 'target_latlng']} if FLAGS.hide_goal: config['color_for_goal'] = color.Color(1.0, 1.0, 1.0) config = default_config.ApplyDefaults(config) if FLAGS.game == 'coin_game': game = coin_game.CoinGame(config) elif FLAGS.game == 'courier_game': game = courier_game.CourierGame(config) elif FLAGS.game == 'goal_instruction_game': game = goal_instruction_game.GoalInstructionGame(config) elif FLAGS.game == 'incremental_instruction_game': game = incremental_instruction_game.IncrementalInstructionGame(config) elif FLAGS.game == 'step_by_step_instruction_game': game = step_by_step_instruction_game.StepByStepInstructionGame(config) else: print('Unknown game: [{}]'.format(FLAGS.game)) print('Run with --help for available options.') return env = streetlearn.StreetLearn(FLAGS.dataset_path, config, game) env.reset() # Configure pygame. pygame.init() pygame.font.init() if FLAGS.game == 'coin_game' or FLAGS.game == 'courier_game': subsampling = 1 x_max = FLAGS.width y_max = FLAGS.height * 2 logging.info('Rendering images at %dx%d', x_max, y_max) else: subsampling = int(np.ceil((FLAGS.max_instructions + 1) / 2)) x_max = FLAGS.width + int(FLAGS.width / subsampling) + FLAGS.width_text y_max = FLAGS.height * 2 logging.info('Rendering images at %dx%d, thumbnails subsampled by %d', x_max, y_max, subsampling) screen = pygame.display.set_mode((x_max, y_max)) font = pygame.font.SysFont('arial', FLAGS.font_size) loop(env, screen, x_max, y_max, subsampling, font) if __name__ == '__main__': app.run(main)
streetlearn-master
streetlearn/python/ui/human_agent.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic panorama scanning agent for StreetLearn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from absl import logging import time import numpy as np import pygame from streetlearn.python.environment import coin_game from streetlearn.python.environment import default_config from streetlearn.python.environment import streetlearn FLAGS = flags.FLAGS flags.DEFINE_integer("width", 400, "Observation and map width.") flags.DEFINE_integer("height", 400, "Observation and map height.") flags.DEFINE_integer('field_of_view', 60, 'Field of view.') flags.DEFINE_string("dataset_path", None, "Dataset path.") flags.DEFINE_string("list_pano_ids_yaws", None, "List of pano IDs and yaws.") flags.DEFINE_bool("save_images", False, "Save the images?") flags.mark_flag_as_required("dataset_path") flags.mark_flag_as_required("list_pano_ids_yaws") def loop(env, screen, pano_ids_yaws): """Main loop of the scan agent.""" for (pano_id, yaw) in pano_ids_yaws: # Retrieve the observation at a specified pano ID and heading. logging.info('Retrieving view at pano ID %s and yaw %f', pano_id, yaw) observation = env.goto(pano_id, yaw) current_yaw = observation["yaw"] view_image = observation["view_image_hwc"] graph_image = observation["graph_image_hwc"] screen_buffer = np.concatenate((view_image, graph_image), axis=0) pygame.surfarray.blit_array(screen, screen_buffer.swapaxes(0, 1)) pygame.display.update() for event in pygame.event.get(): if (event.type == pygame.QUIT or (event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE)): return if FLAGS.save_images: filename = 'scan_agent_{}_{}.bmp'.format(pano_id, yaw) pygame.image.save(screen, filename) def main(argv): config = {'width': FLAGS.width, 'height': FLAGS.height, 'field_of_view': FLAGS.field_of_view, 'graph_width': FLAGS.width, 'graph_height': FLAGS.height, 'graph_zoom': 1, 'full_graph': True, 'proportion_of_panos_with_coins': 0.0, 'action_spec': 'streetlearn_fast_rotate', 'observations': ['view_image_hwc', 'graph_image_hwc', 'yaw']} with open(FLAGS.list_pano_ids_yaws, 'r') as f: lines = f.readlines() pano_ids_yaws = [(line.split('\t')[0], float(line.split('\t')[1])) for line in lines] config = default_config.ApplyDefaults(config) game = coin_game.CoinGame(config) env = streetlearn.StreetLearn(FLAGS.dataset_path, config, game) env.reset() pygame.init() screen = pygame.display.set_mode((FLAGS.width, FLAGS.height * 2)) loop(env, screen, pano_ids_yaws) if __name__ == '__main__': app.run(main)
streetlearn-master
streetlearn/python/ui/scan_agent.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Basic oracle agent for StreetLearn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags from absl import logging import copy import time import numpy as np import pygame from streetlearn.python.environment import courier_game from streetlearn.python.environment import default_config from streetlearn.python.environment import streetlearn FLAGS = flags.FLAGS flags.DEFINE_integer('width', 400, 'Observation and map width.') flags.DEFINE_integer('height', 400, 'Observation and map height.') flags.DEFINE_integer('field_of_view', 60, 'Field of view.') flags.DEFINE_integer('graph_zoom', 1, 'Zoom level.') flags.DEFINE_boolean('graph_black_on_white', False, 'Show graph as black on white. False by default.') flags.DEFINE_float('horizontal_rot', 22.5, 'Horizontal rotation step (deg).') flags.DEFINE_string('dataset_path', None, 'Dataset path.') flags.DEFINE_integer('max_cache_size', 30000, 'Max cache size.') flags.DEFINE_string('start_pano', '', 'Pano at root of partial graph (default: full graph).') flags.DEFINE_integer('graph_depth', 200, 'Depth of the pano graph.') flags.DEFINE_integer('frame_cap', 1000, 'Number of frames / episode.') flags.DEFINE_string('stats_path', None, 'Statistics path.') flags.DEFINE_float('proportion_of_panos_with_coins', 0, 'Proportion of coins.') flags.mark_flag_as_required('dataset_path') TOL_BEARING = 30 def loop(env, screen): """Main loop of the oracle agent.""" action = np.array([0, 0, 0, 0]) action_spec = env.action_spec() sum_rewards = 0 sum_rewards_at_goal = 0 previous_goal_id = None seen_pano_ids = {} save_video = False frame = 0 while True: # Read the keyboard. for event in pygame.event.get(): if (event.type == pygame.QUIT or (event.type == pygame.KEYDOWN and event.key == pygame.K_ESCAPE)): return if event.type == pygame.KEYDOWN: if event.key == pygame.K_p: filename = time.strftime('/tmp/oracle_agent_%Y%m%d_%H%M%S.bmp') pygame.image.save(screen, filename) if event.key == pygame.K_v: save_video = True if event.key == pygame.K_c: save_video = False elif event.key == pygame.K_i: action += action_spec['map_zoom'] print('zoom in') elif event.key == pygame.K_o: action -= action_spec['map_zoom'] print('zoom out') # Take a step given the previous action. observation, reward, done, info = env.step(action) # Visualise the observations. view_image = observation["view_image_hwc"] graph_image = observation['graph_image_hwc'] screen_buffer = np.concatenate((view_image, graph_image), axis=0) pygame.surfarray.blit_array(screen, screen_buffer.swapaxes(0, 1)) pygame.display.update() # Save a video? if save_video: filename = time.strftime('/tmp/oracle_agent_video_%Y%m%d_%H%M%S') filename += '_' + str(frame) + '.bmp' pygame.image.save(screen, filename) frame += 1 # Record the reward. logging.info('Rewards: current %f, previous %f, target %s', reward, observation['prev_reward'], observation['target_latlng']) sum_rewards += reward if (reward > 0) and (info['current_goal_id'] is not previous_goal_id): sum_rewards_at_goal += reward seen_pano_ids = {} previous_goal_id = info['current_goal_id'] if done: num_successes = info['num_successes'] spl = info['spl'] spl_without_last_goal = info['spl_without_last_goal'] print('Episode reward: {}, goals: {}, SPL: {}/{}'.format( sum_rewards, num_successes, spl, spl_without_last_goal)) if FLAGS.stats_path: with open(FLAGS.stats_path, 'a') as f: f.write(str(sum_rewards) + '\t' + str(sum_rewards_at_goal) + '\t') f.write(str(num_successes) + '\t' + str(spl) + '\t') f.write(str(spl_without_last_goal) + '\n') sum_rewards = 0 sum_rewards_at_goal = 0 # Determine the next pano and bearing to that pano. current_pano_id = info['current_pano_id'] next_pano_id = info['next_pano_id'] bearing = info['bearing_to_next_pano'] logging.info('Current pano: %s, next pano %s at %f', current_pano_id, next_pano_id, bearing) # Maintain the count of pano visits, in case the agent gets stuck. if current_pano_id in seen_pano_ids: seen_pano_ids[current_pano_id] += 1 else: seen_pano_ids[current_pano_id] = 1 # Bearing-based navigation. if bearing > TOL_BEARING: if bearing > TOL_BEARING + 2 * FLAGS.horizontal_rot: action = copy.copy( 3 * FLAGS.horizontal_rot * action_spec['horizontal_rotation']) else: action = copy.copy( FLAGS.horizontal_rot * action_spec['horizontal_rotation']) elif bearing < -TOL_BEARING: if bearing < -TOL_BEARING - 2 * FLAGS.horizontal_rot: action = copy.copy( -3 * FLAGS.horizontal_rot * action_spec['horizontal_rotation']) else: action = copy.copy( -FLAGS.horizontal_rot * action_spec['horizontal_rotation']) else: action = copy.copy(action_spec['move_forward']) # Sometimes, two panos B and C are close to each other, which causes # cyclic loops: A -> C -> A -> C -> A... whereas agent wants to go A -> B. # There is a simple strategy to get out of that A - C loop: detect that A # has been visited a large number of times in the current trajectory, then # instead of moving forward A -> B and ending up in C, directly jump to B. # First, we check if the agent has spent more time in a pano than required # to make a full U-turn... if seen_pano_ids[current_pano_id] > (180.0 / FLAGS.horizontal_rot): # ... then we teleport to the desired location and turn randomly. logging.info('Teleporting from %s to %s', current_pano_id, next_pano_id) _ = env.goto(next_pano_id, np.random.randint(359)) def main(argv): config = {'width': FLAGS.width, 'height': FLAGS.height, 'field_of_view': FLAGS.field_of_view, 'graph_width': FLAGS.width, 'graph_height': FLAGS.height, 'graph_zoom': FLAGS.graph_zoom, 'graph_black_on_white': FLAGS.graph_black_on_white, 'goal_timeout': FLAGS.frame_cap, 'frame_cap': FLAGS.frame_cap, 'full_graph': (FLAGS.start_pano == ''), 'start_pano': FLAGS.start_pano, 'min_graph_depth': FLAGS.graph_depth, 'max_graph_depth': FLAGS.graph_depth, 'max_cache_size': FLAGS.max_cache_size, 'proportion_of_panos_with_coins': FLAGS.proportion_of_panos_with_coins, 'action_spec': 'streetlearn_fast_rotate', 'observations': ['view_image_hwc', 'graph_image_hwc', 'target_latlng', 'prev_reward', 'prev_action']} config = default_config.ApplyDefaults(config) game = courier_game.CourierGame(config) env = streetlearn.StreetLearn(FLAGS.dataset_path, config, game) env.reset() pygame.init() screen = pygame.display.set_mode((FLAGS.width, FLAGS.height * 2)) loop(env, screen) if __name__ == '__main__': app.run(main)
streetlearn-master
streetlearn/python/ui/oracle_agent.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for Importance Weighted Actor-Learner Architectures. For details and theory see: "IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures" by Espeholt, Soyer, Munos et al. See https://arxiv.org/abs/1802.01561 for the full paper. Note that this is a copy of the code previously published by Lasse Espeholt under an Apache license at: https://github.com/deepmind/scalable_agent """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from streetlearn.python.agents.city_nav_agent import CityNavAgent from streetlearn.python.agents.goal_nav_agent import GoalNavAgent from streetlearn.python.agents.locale_pathway import LocalePathway from streetlearn.python.agents.plain_agent import PlainAgent
streetlearn-master
streetlearn/python/agents/__init__.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Importance Weighted Actor-Learner Architecture goalless navigation agent. Note that this is a modification of code previously published by Lasse Espeholt under an Apache license at: https://github.com/deepmind/scalable_agent """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools from six.moves import range from six.moves import zip import sonnet as snt import tensorflow.compat.v1 as tf from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import rnn as contrib_rnn nest = contrib_framework.nest AgentOutput = collections.namedtuple('AgentOutput', 'action policy_logits baseline') class PlainAgent(snt.RNNCore): """Agent with a simple residual convnet and LSTM.""" def __init__(self, num_actions, observation_names, lstm_num_hiddens=256, feed_action_and_reward=True, max_reward=1.0, name="streetlearn_core"): """Initializes an agent core designed to be used with A3C/IMPALA. Supports a single visual observation tensor and outputs a single, scalar discrete action with policy logits and a baseline value. Args: num_actions: Number of actions available. observation_names: String with observation types separated by semi-colon. lstm_num_hiddens: Number of hiddens in the LSTM core. feed_action_and_reward: If True, the last action (one hot) and last reward (scalar) will be concatenated to the torso. max_reward: If `feed_action_and_reward` is True, the last reward will be clipped to `[-max_reward, max_reward]`. If `max_reward` is None, no clipping will be applied. N.B., this is different from reward clipping during gradient descent, or reward clipping by the environment. name: Optional name for the module. """ super(PlainAgent, self).__init__(name='agent') # Policy config self._num_actions = num_actions tf.logging.info('Agent trained on %d-action policy', self._num_actions) # Append last reward (clipped) and last action? self._feed_action_and_reward = feed_action_and_reward self._max_reward = max_reward # Policy LSTM core config self._lstm_num_hiddens = lstm_num_hiddens # Extract the observation names observation_names = observation_names.split(';') self._idx_frame = observation_names.index('view_image') with self._enter_variable_scope(): tf.logging.info('LSTM core with %d hiddens', self._lstm_num_hiddens) self._core = contrib_rnn.LSTMBlockCell(self._lstm_num_hiddens) def initial_state(self, batch_size): """Return initial state with zeros, for a given batch size and data type.""" tf.logging.info("Initial state consists of the LSTM core initial state.") return self._core.zero_state(batch_size, tf.float32) def _torso(self, input_): """Processing of all the visual and language inputs to the LSTM core.""" # Extract the inputs last_action, env_output = input_ last_reward, _, _, observation = env_output if type(observation) == list: frame = observation[self._idx_frame] else: frame = observation # Convert to image to floats and normalise. frame = tf.to_float(frame) frame /= 255 # Feed image through convnet. with tf.variable_scope('convnet'): conv_out = frame for i, (num_ch, num_blocks) in enumerate([(16, 2), (32, 2), (32, 2)]): # Downscale. conv_out = snt.Conv2D(num_ch, 3, stride=1, padding='SAME')(conv_out) conv_out = tf.nn.pool( conv_out, window_shape=[3, 3], pooling_type='MAX', padding='SAME', strides=[2, 2]) # Residual block(s). for j in range(num_blocks): with tf.variable_scope('residual_%d_%d' % (i, j)): block_input = conv_out conv_out = tf.nn.relu(conv_out) conv_out = snt.Conv2D(num_ch, 3, stride=1, padding='SAME')(conv_out) conv_out = tf.nn.relu(conv_out) conv_out = snt.Conv2D(num_ch, 3, stride=1, padding='SAME')(conv_out) conv_out += block_input # Fully connected layer. conv_out = tf.nn.relu(conv_out) conv_out = snt.BatchFlatten()(conv_out) conv_out = snt.Linear(256)(conv_out) conv_out = tf.nn.relu(conv_out) # Concatenate outputs of the visual and instruction pathways. if self._feed_action_and_reward: # Append clipped last reward and one hot last action. tf.logging.info('Append last reward clipped to: %f', self._max_reward) clipped_last_reward = tf.expand_dims( tf.clip_by_value(last_reward, -self._max_reward, self._max_reward), -1) tf.logging.info('Append last action (one-hot of %d)', self._num_actions) one_hot_last_action = tf.one_hot(last_action, self._num_actions) core_input = tf.concat( [conv_out, clipped_last_reward, one_hot_last_action], axis=1) else: core_input = conv_out return core_input def _head(self, core_output): """Build the head of the agent: linear policy and value function.""" policy_logits = snt.Linear( self._num_actions, name='policy_logits')( core_output) baseline = tf.squeeze(snt.Linear(1, name='baseline')(core_output), axis=-1) # Sample an action from the policy. new_action = tf.multinomial( policy_logits, num_samples=1, output_dtype=tf.int32) new_action = tf.squeeze(new_action, 1, name='new_action') return AgentOutput(new_action, policy_logits, baseline) def _build(self, input_, core_state): """Assemble the network components.""" action, env_output = input_ actions, env_outputs = nest.map_structure(lambda t: tf.expand_dims(t, 0), (action, env_output)) outputs, core_state = self.unroll(actions, env_outputs, core_state) return nest.map_structure(lambda t: tf.squeeze(t, 0), outputs), core_state @snt.reuse_variables def unroll(self, actions, env_outputs, core_state): """Manual implementation of the network unroll.""" _, _, done, _ = env_outputs torso_outputs = snt.BatchApply(self._torso)((actions, env_outputs)) # Note, in this implementation we can't use CuDNN RNN to speed things up due # to the state reset. This can be XLA-compiled (LSTMBlockCell needs to be # changed to implement snt.LSTMCell). initial_core_state = self._core.zero_state(tf.shape(actions)[1], tf.float32) core_output_list = [] for input_, d in zip(tf.unstack(torso_outputs), tf.unstack(done)): # If the episode ended, the core state should be reset before the next. core_state = nest.map_structure( functools.partial(tf.where, d), initial_core_state, core_state) core_output, core_state = self._core(input_, core_state) core_output_list.append(core_output) return snt.BatchApply(self._head)(tf.stack(core_output_list)), core_state
streetlearn-master
streetlearn/python/agents/plain_agent.py
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements the goal-driven StreetLearn CityNavAgent with auxiliary losses.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import tensorflow.compat.v1 as tf import sonnet as snt import streetlearn.python.agents.goal_nav_agent as goal_nav_agent import streetlearn.python.agents.locale_pathway as locale_pathway from tensorflow.contrib import rnn as contrib_rnn class CityNavAgent(goal_nav_agent.GoalNavAgent): """Core with A2C/A3C-compatible outputs for simple visual observations.""" def __init__(self, num_actions, observation_names, goal_type='target_latlng', heading_stop_gradient=False, heading_num_hiddens=256, heading_num_bins=16, xy_stop_gradient=True, xy_num_hiddens=256, xy_num_bins_lat=32, xy_num_bins_lng=32, target_xy_stop_gradient=True, locale_lstm_num_hiddens=256, dropout=0.5, locale_bottleneck_num_hiddens=64, skip_connection=True, policy_lstm_num_hiddens=256, feed_action_and_reward=True, max_reward=1.0, name="streetlearn_core"): """Initializes an agent core designed to be used with A3C/IMPALA. Supports a single visual observation tensor and goal instruction tensor and outputs a single, scalar discrete action with policy logits and a baseline value, as well as the agent heading, XY position and target XY predictions. Args: num_actions: Number of actions available. observation_names: String with observation names separated by semi-colon. goal_type: String with the name of the target observation field, can be `target_latlng` or `target_landmarks`. heading_stop_gradient: Boolean for stopping gradient between the LSTM core and the heading prediction MLP. heading_num_hiddens: Number of hiddens in the heading prediction MLP. heading_num_bins: Number of outputs in the heading prediction MLP. xy_stop_gradient: Boolean for stopping gradient between the LSTM core and the XY position prediction MLP. xy_num_hiddens: Number of hiddens in the XY position prediction MLP. xy_num_bins_lat: Number of lat outputs in the XY position prediction MLP. xy_num_bins_lng: Number of lng outputs in the XY position prediction MLP. target_xy_stop_gradient: Boolean for stopping gradient between the LSTM core and the target XY position prediction MLP. locale_lstm_num_hiddens: Number of hiddens in the locale pathway core. dropout: Dropout probabibility after the locale pathway. locale_bottleneck_num_hiddens: Number of hiddens in the bottleneck after the locale pathway. skip_connection: Is there a direct connection from convnet to policy LSTM? policy_lstm_num_hiddens: Number of hiddens in the policy LSTM core. feed_action_and_reward: If True, the last action (one hot) and last reward (scalar) will be concatenated to the torso. max_reward: If `feed_action_and_reward` is True, the last reward will be clipped to `[-max_reward, max_reward]`. If `max_reward` is None, no clipping will be applied. N.B., this is different from reward clipping during gradient descent, or reward clipping by the environment. name: Optional name for the module. """ super(CityNavAgent, self).__init__( num_actions, observation_names, goal_type, heading_stop_gradient, heading_num_hiddens, heading_num_bins, xy_stop_gradient, xy_num_hiddens, xy_num_bins_lat, xy_num_bins_lng, target_xy_stop_gradient, dropout, lstm_num_hiddens=locale_lstm_num_hiddens, feed_action_and_reward=feed_action_and_reward, max_reward=max_reward, name=name) # Skip connection for convnet, short-circuiting the global pathway? self._skip_connection = skip_connection tf.logging.info("Convnet skip connection? " + str(self._skip_connection)) with self._enter_variable_scope(): # Recurrent policy LSTM core of the agent. tf.logging.info('LSTM core with %d hiddens', policy_lstm_num_hiddens) self._policy_lstm = contrib_rnn.LSTMBlockCell( policy_lstm_num_hiddens, name="policy_lstm") # Add an optional bottleneck after the global LSTM if locale_bottleneck_num_hiddens > 0: self._locale_bottleneck = snt.nets.MLP( output_sizes=(locale_bottleneck_num_hiddens,), activation=tf.nn.tanh, activate_final=True, name="locale_bottleneck") tf.logging.info("Auxiliary global pathway bottleneck with %d hiddens", locale_bottleneck_num_hiddens) else: self._locale_bottleneck = tf.identity def initial_state(self, batch_size): """Returns an initial state with zeros, for a batch size and data type.""" tf.logging.info("Initial state consists of the locale pathway and policy " "LSTM core initial states.") initial_state_list = [] initial_state_list.append(self._policy_lstm.zero_state( batch_size, tf.float32)) initial_state_list.append(self._locale_pathway.initial_state(batch_size)) return tuple(initial_state_list) def _core(self, core_input, core_state): """Assemble the recurrent core network components.""" (conv_output, action_reward, goal) = core_input # Get the states policy_state, locale_state = core_state # Locale-specific pathway locale_input = conv_output locale_output, locale_state = self._locale_pathway((locale_input, goal), locale_state) (lstm_output, heading_output, xy_output, target_xy_output) = locale_output # Policy LSTM policy_input = self._locale_bottleneck(lstm_output) if self._skip_connection: policy_input = tf.concat([policy_input, conv_output], axis=1) if self._feed_action_and_reward: policy_input = tf.concat([policy_input, action_reward], axis=1) policy_input = tf.identity(policy_input, name="policy_input") policy_output, policy_state = self._policy_lstm(policy_input, policy_state) core_output = (policy_output, heading_output, xy_output, target_xy_output) core_state_list = [] core_state_list.append(policy_state) core_state_list.append(locale_state) core_state = tuple(core_state_list) return core_output, core_state
streetlearn-master
streetlearn/python/agents/city_nav_agent.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Importance Weighted Actor-Learner Architecture goalless navigation agent. Note that this is a modification of code previously published by Lasse Espeholt under an Apache license at: https://github.com/deepmind/scalable_agent """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools from six.moves import range from six.moves import zip import sonnet as snt import tensorflow.compat.v1 as tf import streetlearn.python.agents.locale_pathway as locale_pathway from tensorflow.contrib import framework as contrib_framework nest = contrib_framework.nest AgentOutput = collections.namedtuple( "AgentOutput", "action policy_logits baseline heading xy target_xy") class GoalNavAgent(snt.RNNCore): """Agent with a simple residual convnet and LSTM.""" def __init__(self, num_actions, observation_names, goal_type='target_latlng', heading_stop_gradient=False, heading_num_hiddens=256, heading_num_bins=16, xy_stop_gradient=True, xy_num_hiddens=256, xy_num_bins_lat=32, xy_num_bins_lng=32, target_xy_stop_gradient=True, dropout=0.5, lstm_num_hiddens=256, feed_action_and_reward=True, max_reward=1.0, name="streetlearn_core"): """Initializes an agent core designed to be used with A3C/IMPALA. Supports a single visual observation tensor and goal instruction tensor and outputs a single, scalar discrete action with policy logits and a baseline value, as well as the agent heading prediction. Args: num_actions: Number of actions available. observation_names: String with observation names separated by semi-colon. goal_type: String with the name of the target observation field, can be `target_latlng` or `target_landmarks`. heading_stop_gradient: Boolean for stopping gradient between the LSTM core and the heading prediction MLP. heading_num_hiddens: Number of hiddens in the heading prediction MLP. heading_num_bins: Number of outputs in the heading prediction MLP. xy_stop_gradient: Boolean for stopping gradient between the LSTM core and the XY position prediction MLP. xy_num_hiddens: Number of hiddens in the XY position prediction MLP. xy_num_bins_lat: Number of lat outputs in the XY position prediction MLP. xy_num_bins_lng: Number of lng outputs in the XY position prediction MLP. target_xy_stop_gradient: Boolean for stopping gradient between the LSTM core and the target XY position prediction MLP. dropout: Dropout probabibility after the locale pathway. lstm_num_hiddens: Number of hiddens in the LSTM core. feed_action_and_reward: If True, the last action (one hot) and last reward (scalar) will be concatenated to the torso. max_reward: If `feed_action_and_reward` is True, the last reward will be clipped to `[-max_reward, max_reward]`. If `max_reward` is None, no clipping will be applied. N.B., this is different from reward clipping during gradient descent, or reward clipping by the environment. name: Optional name for the module. """ super(GoalNavAgent, self).__init__(name='agent') # Policy config self._num_actions = num_actions tf.logging.info('Agent trained on %d-action policy', self._num_actions) # Append last reward (clipped) and last action? self._feed_action_and_reward = feed_action_and_reward self._max_reward = max_reward # Policy LSTM core config self._lstm_num_hiddens = lstm_num_hiddens # Extract the observation names observation_names = observation_names.split(';') self._idx_frame = observation_names.index('view_image') tf.logging.info('Looking for goal of type %s', goal_type) self._idx_goal = observation_names.index(goal_type) with self._enter_variable_scope(): # Convnet self._convnet = snt.nets.ConvNet2D( output_channels=(16, 32), kernel_shapes=(8, 4), strides=(4, 2), paddings=[snt.VALID], activation=tf.nn.relu, activate_final=True) # Recurrent LSTM core of the agent. tf.logging.info('Locale pathway LSTM core with %d hiddens', self._lstm_num_hiddens) self._locale_pathway = locale_pathway.LocalePathway( heading_stop_gradient, heading_num_hiddens, heading_num_bins, xy_stop_gradient, xy_num_hiddens, xy_num_bins_lat, xy_num_bins_lng, target_xy_stop_gradient, lstm_num_hiddens, dropout) def initial_state(self, batch_size): """Return initial state with zeros, for a given batch size and data type.""" tf.logging.info("Initial state consists of the LSTM core initial state.") return self._locale_pathway.initial_state(batch_size) def _torso(self, input_): """Processing of all the visual and language inputs to the LSTM core.""" # Extract the inputs last_action, env_output = input_ last_reward, _, _, observation = env_output frame = observation[self._idx_frame] goal = observation[self._idx_goal] goal = tf.to_float(goal) # Convert to image to floats and normalise. frame = tf.to_float(frame) frame = snt.FlattenTrailingDimensions(dim_from=3)(frame) frame /= 255.0 # Feed image through convnet. with tf.variable_scope('convnet'): # Convolutional layers. conv_out = self._convnet(frame) # Fully connected layer. conv_out = snt.BatchFlatten()(conv_out) conv_out = snt.Linear(256)(conv_out) conv_out = tf.nn.relu(conv_out) # Concatenate outputs of the visual and instruction pathways. if self._feed_action_and_reward: # Append clipped last reward and one hot last action. tf.logging.info('Append last reward clipped to: %f', self._max_reward) clipped_last_reward = tf.expand_dims( tf.clip_by_value(last_reward, -self._max_reward, self._max_reward), -1) tf.logging.info('Append last action (one-hot of %d)', self._num_actions) one_hot_last_action = tf.one_hot(last_action, self._num_actions) tf.logging.info('Append goal:') tf.logging.info(goal) action_and_reward = tf.concat([clipped_last_reward, one_hot_last_action], axis=1) else: action_and_reward = tf.constant([0], dtype=tf.float32) return conv_out, action_and_reward, goal def _core(self, core_input, core_state): """Assemble the recurrent core network components.""" (conv_output, action_reward, goal) = core_input locale_input = tf.concat([conv_output, action_reward], axis=1) core_output, core_state = self._locale_pathway((locale_input, goal), core_state) return core_output, core_state def _head(self, policy_input, heading, xy, target_xy): """Build the head of the agent: linear policy and value function, and pass the auxiliary outputs through. """ # Linear policy and value function. policy_logits = snt.Linear( self._num_actions, name='policy_logits')(policy_input) baseline = tf.squeeze(snt.Linear(1, name='baseline')(policy_input), axis=-1) # Sample an action from the policy. new_action = tf.multinomial( policy_logits, num_samples=1, output_dtype=tf.int32) new_action = tf.squeeze(new_action, 1, name='new_action') return AgentOutput( new_action, policy_logits, baseline, heading, xy, target_xy) def _build(self, input_, core_state): """Assemble the network components.""" action, env_output = input_ actions, env_outputs = nest.map_structure(lambda t: tf.expand_dims(t, 0), (action, env_output)) outputs, core_state = self.unroll(actions, env_outputs, core_state) return nest.map_structure(lambda t: tf.squeeze(t, 0), outputs), core_state @snt.reuse_variables def unroll(self, actions, env_outputs, core_state): """Manual implementation of the network unroll.""" _, _, done, _ = env_outputs torso_outputs = snt.BatchApply(self._torso)((actions, env_outputs)) tf.logging.info(torso_outputs) conv_outputs, actions_and_rewards, goals = torso_outputs # Note, in this implementation we can't use CuDNN RNN to speed things up due # to the state reset. This can be XLA-compiled (LSTMBlockCell needs to be # changed to implement snt.LSTMCell). initial_core_state = self.initial_state(tf.shape(actions)[1]) policy_input_list = [] heading_output_list = [] xy_output_list = [] target_xy_output_list = [] for torso_output_, action_and_reward_, goal_, done_ in zip( tf.unstack(conv_outputs), tf.unstack(actions_and_rewards), tf.unstack(goals), tf.unstack(done)): # If the episode ended, the core state should be reset before the next. core_state = nest.map_structure( functools.partial(tf.where, done_), initial_core_state, core_state) core_output, core_state = self._core( (torso_output_, action_and_reward_, goal_), core_state) policy_input_list.append(core_output[0]) heading_output_list.append(core_output[1]) xy_output_list.append(core_output[2]) target_xy_output_list.append(core_output[3]) head_output = snt.BatchApply(self._head)(tf.stack(policy_input_list), tf.stack(heading_output_list), tf.stack(xy_output_list), tf.stack(target_xy_output_list)) return head_output, core_state
streetlearn-master
streetlearn/python/agents/goal_nav_agent.py
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements the locale-specific core for StreetLearn agents.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import sonnet as snt import tensorflow.compat.v1 as tf # Outputs of the global city-specific pathway LocalePathwayOutput = collections.namedtuple( "LocalePathwayOutput", ["lstm_output", "heading", "xy", "target_xy"]) class LocalePathway(snt.RNNCore): """City-specific locale core, operating on visual embeddings.""" def __init__(self, heading_stop_gradient=False, heading_num_hiddens=256, heading_num_bins=16, xy_stop_gradient=True, xy_num_hiddens=256, xy_num_bins_lat=32, xy_num_bins_lng=32, target_xy_stop_gradient=True, lstm_num_hiddens=256, dropout=0.5, name="locale_pathway_core"): """Initializes a city-specific global localisation core, operating on visual embeddings and target positions. Supports a single embedding tensor and a single target position tensor, and outputs a single hidden state as well as auxiliary localisation outputs. Relies on a recurrent LSTM core. Args: aux_config: ConfigDict with additional ConfigDict for auxiliary tasks. name: Optional name for the module. Returns: """ super(LocalePathway, self).__init__(name=name) self._heading_stop_gradient = heading_stop_gradient self._xy_stop_gradient = xy_stop_gradient self._target_xy_stop_gradient = target_xy_stop_gradient tf.logging.info("Stop gradient? heading:%s, XY:%s and target XY:%s", str(heading_stop_gradient), str(xy_stop_gradient), str(target_xy_stop_gradient)) self._lstm_num_hiddens = lstm_num_hiddens tf.logging.info("Number of hiddens in locale-specific LSTM: %d", lstm_num_hiddens) self._dropout = dropout tf.logging.info("Dropout after LSTM: %f", dropout) with self._enter_variable_scope(): # Add an LSTM for global landmark, heading and XY prediction tasks tf.logging.info("Auxiliary global pathway LSTM with %d hiddens", self._lstm_num_hiddens) assert(self._lstm_num_hiddens > 0) self._lstm = tf.contrib.rnn.LSTMBlockCell(self._lstm_num_hiddens, name="global_pathway_lstm") # Add an MLP head for absolute heading (north) bin prediction tf.logging.info("%d-bin absolute heading prediction with %s hiddens", heading_num_bins, heading_num_hiddens) self._heading_logits = snt.nets.MLP( output_sizes=(heading_num_hiddens, heading_num_bins), activate_final=False, name="heading_logits") # Add an MLP head for XY location bin prediction xy_num_bins = xy_num_bins_lat * xy_num_bins_lng tf.logging.info("%d-bin XY location prediction (%d lat, %d lng)", xy_num_bins, xy_num_bins_lat, xy_num_bins_lng) tf.logging.info("with %s hiddens", xy_num_hiddens) self._xy_logits = snt.nets.MLP( output_sizes=(xy_num_hiddens, xy_num_bins), activate_final=False, name="xy_logits") # Add an MLP head for XY target location bin prediction tf.logging.info("%d-bin target XY location prediction (%d lat, %d lng)", xy_num_bins, xy_num_bins_lat, xy_num_bins_lng) tf.logging.info("with %s hiddens", xy_num_hiddens) self._target_xy_logits = snt.nets.MLP( output_sizes=(xy_num_hiddens, xy_num_bins), activate_final=False, name="target_xy_logits") def _build(self, input_, state): """Connects the core into the graph. This core is designed to be used for embeddings coming from a convnet. Args: embedding: The result of convnet embedding. target_position: Representation of the target position. state: The current state of the global LSTM component of the core. Returns: A tuple `(action, other_output), next_state`, where: * `action` is the action selected by the core. An iterable containing a single Tensor with shape `[batch, 1]`, which is the zero-based index of the selected action. * `other_output` is a namedtuple with fields `policy_logits` (a Tensor of shape `[batch, num_actions]`) and `baseline` (a Tensor of shape `[batch]`). * `next_state` is the output of the LSTM component of the core. """ (embedding, target_position) = input_ with tf.name_scope("targets") as scope: lstm_input = tf.concat([embedding, tf.cast(target_position, dtype=tf.float32)], axis=1) # Global pathway tasks with tf.name_scope("locale_pathway") as scope: lstm_output, next_state = self._lstm(lstm_input, state) # Heading decoding or prediction if self._heading_stop_gradient: input_heading = tf.stop_gradient(lstm_output, name='heading_stop_gradient') else: input_heading = lstm_output heading = self._heading_logits(input_heading) # XY decoding or prediction if self._xy_stop_gradient: input_xy = tf.stop_gradient(lstm_output, name='xy_stop_gradient') else: input_xy = lstm_output xy = self._xy_logits(input_xy) # Target XY decoding if self._target_xy_stop_gradient: input_target_xy = tf.stop_gradient(lstm_output, name='target_xy_stop_gradient') else: input_target_xy = lstm_output target_xy = self._target_xy_logits(input_target_xy) # Add dropout if self._dropout > 0: lstm_output = tf.nn.dropout(lstm_output, keep_prob=self._dropout, name="lstm_output_dropout") else: lstm_output = tf.identity(lstm_output, name="lstm_output_without_dropout") # Outputs core_output = LocalePathwayOutput(lstm_output=lstm_output, heading=heading, xy=xy, target_xy=target_xy) return core_output, next_state def initial_state(self, batch_size): """Returns an initial state with zeros, for a batch size and data type.""" tf.logging.info("Initial state includes the locale LSTM") return self._lstm.zero_state(batch_size, tf.float32)
streetlearn-master
streetlearn/python/agents/locale_pathway.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """StreetLearn level for the curriculum-based courier task. This is a version of the courier task that increases the distance to the goal with each episode using the given annealing rate. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import numpy as np import time from streetlearn.python.environment import courier_game _SECONDS_IN_HOUR = 3600 class CurriculumCourierGame(courier_game.CourierGame): """Coin game that gives extra reward for finding the goal pano. A courier goal is randomly selected from panos in the graph according to a curriculum that starts with panos within a maximum distance from the current agent position, then anneals it with time. On success or timeout, a new goal is chosen. The episode ends after a fixed episode length. """ def __init__(self, config): """Creates an instance of the RandomTaxiCurriculum level. This coin game gives extra reward for finding the goal pano, and resets the goal once the goal has been found (or on timeout). Panos can be assigned rewards (coins) randomly and the agent will receive the reward the first time they visit these panos. Goal panos are assigned within a circle whose radius grows in time from min_goal_distance to max_goal_distance. Args: config: config dict of various settings. """ super(CurriculumCourierGame, self).__init__(config) self._timestamp_start = config['timestamp_start_curriculum'] self._annealing_rate = config['annealing_rate_curriculum'] self._hours_curriculum_part_1 = config['hours_curriculum_part_1'] self._hours_curriculum_part_2 = config['hours_curriculum_part_2'] self._min_goal_distance = config['min_goal_distance_curriculum'] self._max_goal_distance = config['max_goal_distance_curriculum'] self._allowed_goal_distance = self._min_goal_distance assert self._timestamp_start <= time.time() assert self._annealing_rate > 0 assert self._hours_curriculum_part_1 >= 0 assert self._hours_curriculum_part_2 > 0 assert self._min_goal_distance < self._max_goal_distance logging.info( 'Curriculum: starts at t=%d, dist <= %f in P1 (%f h)', self._timestamp_start, self._min_goal_distance, self._hours_curriculum_part_1) logging.info( 'Curriculum: then %f < dist <= %f in P2 (%f h)', self._min_goal_distance, self._max_goal_distance, self._hours_curriculum_part_2) logging.info('Curriculum: annealing rate: %f', self._annealing_rate) def _update_curriculum_goal_distance(self): """Updates the allowed distance to the goal according to the curriculum.""" hours_train = max(0, (time.time() - self._timestamp_start) / _SECONDS_IN_HOUR) if hours_train <= self._hours_curriculum_part_1: # During part 1 of the curriculum, sample goals within a minimal distance. self._allowed_goal_distance = self._min_goal_distance else: # During part 2 of the curriculum, sample goals within a distance # that grows from a minimum value to a maximum value. numerator = hours_train - self._hours_curriculum_part_1 denom = self._hours_curriculum_part_2 time_factor = pow(min(1, max(0, numerator / denom)), self._annealing_rate) self._allowed_goal_distance = ( (self._max_goal_distance - self._min_goal_distance ) * time_factor + self._min_goal_distance) def on_reset(self, streetlearn): """Gets called after StreetLearn:reset(). Selects a random pano as goal destination. If there are any coins, clears the set of touched panos and randomly generates reward-yielding coins and populates pano_id_to_color. Args: streetlearn: a streetlearn instance. Returns: A newly populated pano_id_to_color dictionary. """ # Update the allowed distance to the goal according to the curriculum. self._update_curriculum_goal_distance() # Populate the list of panos and assign optional coins to panos. # Assign the goal location to one of the panos. return super(CurriculumCourierGame, self).on_reset(streetlearn) def get_info(self, streetlearn): """"Returns current information about the state of the environment. Args: streetlearn: a StreetLearn instance. Returns: info: information from the environment at the last step. """ info = super(CurriculumCourierGame, self).get_info(streetlearn) info['allowed_goal_distance'] = self._allowed_goal_distance return info def _sample_random_goal(self, streetlearn): """Randomly sets a new pano for the current goal according to a curriculum. Args: streetlearn: The StreetLearn environment. """ # Sample a goal among the pano ids that is within that distance. goals = [goal for goal in streetlearn.graph if ((goal != self._current_goal_id) and (goal != streetlearn.current_pano_id))] self._initial_distance_to_goal = float('inf') while self._initial_distance_to_goal > self._allowed_goal_distance: self._current_goal_id = np.random.choice(goals) self._min_distance_reached = streetlearn.engine.GetPanoDistance( streetlearn.current_pano_id, self._current_goal_id) self._initial_distance_to_goal = self._min_distance_reached logging.info( 'seed %d, frame %d: distance to goal: %f (max allowed: %f)', streetlearn.seed, streetlearn.frame_count, self._initial_distance_to_goal, self._allowed_goal_distance)
streetlearn-master
streetlearn/python/environment/curriculum_courier_game.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Batched StreetLearn RL environment. Episodes take place either in a mini-map created by performing a breadth-first traversal of the StreetView graph starting from a starting location, or in the entire fully-connected graph. Multiple StreetLearn environments are instantiated, sharing the same cache of panoramas, action space and observation specs. Observations: { view_image: numpy array of dimension [batch_size, 3, height, width] containing the street imagery. graph_image: numpy array of dimension [batch_size, 3, graph_height, graph_width] containing the map graph images. view_image_hwc: numpy array of dimension [batch_size, height, width, 3] containing the street imagery. graph_image_hwc: numpy array, dimension [batch_size, graph_height, graph_width, 3] containing the map graph images. } """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import numpy as np from streetlearn.python.environment import streetlearn class BatchedStreetLearn(object): """The Batched Streetlearn environment.""" def __init__(self, dataset_path, configs, games, num_env_per_shared_cache=1): """Construct the StreetLearn environment. Args: dataset_path: filesystem path where the dataset resides. configs: list of batch_size elements, each element being a dictionary containing various config settings, that will be extended with defaults from default_config.DEFAULT_CONFIG. games: list of batch_size instances of Game. num_env_per_shared_cache: number of environments that share the same cache By default equal to 1 (no cache sharing). """ # Check that batch_size is a multiple of num_env_per_shared_cache and that # the action_spec, rotation_speed and observations are compatible between # all environments. batch_size = len(games) assert batch_size > 0 assert num_env_per_shared_cache > 0 num_env_per_shared_cache = min(num_env_per_shared_cache, batch_size) num_unique_node_caches = int(batch_size / num_env_per_shared_cache) logging.info('batch_size: %d, num_env_per_shared_cache: %d', batch_size, num_env_per_shared_cache) logging.info('num_unique_node_caches: %d', num_unique_node_caches) assert (num_env_per_shared_cache * num_unique_node_caches) == batch_size assert len(configs) == batch_size for k in range(1, batch_size): assert configs[0]['action_spec'] == configs[k]['action_spec'] assert configs[0]['rotation_speed'] == configs[k]['rotation_speed'] observations = configs[k]['observations'].sort() assert configs[0]['observations'].sort() == observations # Instantiate the environments. self._envs = [] k = 0 for i in range(num_unique_node_caches): logging.info('Instantiating environment %d with a new node_cache', k) self._envs.append(streetlearn.StreetLearn( dataset_path, configs[k], games[k])) k += 1 for j in range(1, num_env_per_shared_cache): logging.info('Instantiating environment %d reusing last node_cache', k) self._envs.append(streetlearn.StreetLearn( dataset_path, configs[k], games[k], self._envs[k-1].engine)) k += 1 # Preallocate the matrices for the batch observations. self._observation_batch = {} for item in self._envs[0]._observations: if item.observation_spec == [0]: batched_shape = [batch_size,] else: batched_shape = [batch_size,] + item.observation_spec batched_obs = np.zeros(batched_shape, dtype=item.observation_spec_dtypes) self._observation_batch[item.name] = batched_obs self._batch_size = batch_size @property def config(self): return [env.config for env in self._envs] @property def seed(self): return [env.seed for env in self._envs] @property def game(self): return [env.game for env in self._envs] @property def field_of_view(self): return [env.field_of_view for env in self._envs] @property def current_pano_id(self): return [env.current_pano_id for env in self._envs] @property def frame_cap(self): return [env.frame_cap for env in self._envs] @frame_cap.setter def frame_cap(self, value): for env in self._envs: env.frame_cap(value) @property def frame_count(self): return [env.frame_count for env in self._envs] def graph(self): """Return a list of graphs for all the environments.""" return [env.graph for env in self._envs] @property def neighbor_resolution(self): return [env.neighbor_resolution for env in self._envs] @property def bbox_lat_min(self): return [env.bbox_lat_min for env in self._envs] @property def bbox_lat_max(self): return [env.bbox_lat_max for env in self._envs] @property def bbox_lng_min(self): return [env.bbox_lng_min for env in self._envs] @property def bbox_lng_max(self): return [env.bbox_lng_max for env in self._envs] def observation_spec(self): """Returns the observation spec, dependent on the observation format.""" return {name: list(item.shape) for name, item in self._observation_batch.items()} def action_set(self): """Returns the set of actions, mapping integer actions to 1D arrays.""" return self._envs[0].action_set() def action_spec(self): """Returns the action spec.""" return self._envs[0].action_spec() def reset(self): """Start a new episode in all environments.""" for env in self._envs: env.reset() def goto(self, env_id, pano_id, yaw): """Go to a specific pano and yaw in the environment. Args: env_id: an integer ID for the environment. pano_id: a string containing the ID of a pano. yaw: a float with relative yaw w.r.t. north. Returns: observation: tuple with observations. """ return self._envs[env_id].goto(pano_id, yaw) def step(self, action): """Takes a step in all the environments, and returns results in all envs. Args: action: a list of 1d arrays containing a combination of actions in each environment. Returns: observation: tuple with batched observations for the last time step. reward: list of scalar rewards at the last time step. done: list of booleans indicating the end of an episode. info: list of dictionaries with additional debug information. """ for action_k, env in zip(action, self._envs): env.step(action_k) # Return return self.observation(), self.reward(), self.done(), self.info() def observation(self): """Returns the batched observations for the last time step.""" for k in range(self._batch_size): env = self._envs[k] for name in self._observation_batch: obs_k = env.observation()[name] if obs_k is not None: self._observation_batch[name][k, ...] = obs_k return {name:item for name, item in self._observation_batch.items()} def reward(self): """Returns the list of rewards for the last time step.""" return [env.reward() for env in self._envs] def prev_reward(self): """Returns the list of rewards for the previous time step.""" return [env.prev_reward() for env in self._envs] def prev_action(self): """Returns the list of actions for the previous time step.""" return [env.prev_action() for env in self._envs] def done(self): """Return the list of flags indicating the end of the current episode.""" return [env.done() for env in self._envs] def info(self): """Return a list of dictionaries with env. info at the current step.""" return [env.info() for env in self._envs] def get_metadata(self, pano_id): """Return the metadata corresponding to the selected pano. Args: pano_id: a string containing the ID of a pano. Returns: metadata: a protocol buffer with the pano metadata. """ return self._envs[0].get_metadata(pano_id) @property def cache_size(self): return [env._engine.GetNodeCacheSize() for env in self._envs] def render(self): """Empty function, for compatibility with OpenAI Gym.""" pass
streetlearn-master
streetlearn/python/environment/batched_streetlearn.py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """StreetLearn basic level for the instruction-following task. In this environment, the agent receives a reward for every waypoint it hits as well as a larger reward for reaching the final goal. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from absl import logging import numpy as np from streetlearn.engine.python import color from streetlearn.python.environment import coin_game from streetlearn.python.environment import thumbnail_helper TrajectoryStep = collections.namedtuple( 'TrajectoryStep', 'waypoint_index pano lat lng heading_deg length instruction') Trajectory = collections.namedtuple('Trajectory', 'steps goal') class InstructionsBase(coin_game.CoinGame): """Instruction following game.""" def __init__(self, config): """Creates an instance of the StreetLearn level. Args: config: config dict of various settings. """ super(InstructionsBase, self).__init__(config) self._colors.update({ 'goal': color.Color(*config['color_for_goal']), 'waypoint': color.Color(*config['color_for_waypoint']), 'shortest_path': color.Color(*config['color_for_shortest_path']), }) self._reward_at_waypoint = config['reward_at_waypoint'] self._reward_at_goal = config['reward_at_goal'] self._instruction_file = config['instruction_file'] self._num_instructions = config['num_instructions'] self._max_instructions = config['max_instructions'] self._thumbnail_helper = thumbnail_helper.ThumbnailHelper() self._thumbnails = np.zeros( [self._max_instructions + 1, config['height'], config['width'], 3], dtype=np.uint8) logging.info('Using %d instructions', self._num_instructions) logging.info('Padding to %d instructions', self._max_instructions) self._instructions = [] self._step_counter = 1 self._reward_pano_id_list = {} self._reward_pano_id_to_family = {} self._reward_family = {} self._pano_id_to_color = {} self._goal_pano_id = None self._trajectory = None self._show_shortest_path = config['show_shortest_path'] self._calculate_ground_truth = config['calculate_ground_truth'] # Ground truth direction (for imitation learning agents). self._gt_direction = 0 # Trajectories self._num_trajectories = 0 self._trajectory_data = [] self._loaded_trajectories = False def _load_trajectories(self): """Load the trajectories into memory.""" logging.info('Loading trajectories from %s', self._instruction_file) steps = [] current_trajectory_index = 0 with open(self._instruction_file, 'r') as f: for line in f: tokens = line.strip().split('\t') trajectory_index = int(tokens[0]) waypoint_index = int(tokens[1]) lat = float(tokens[2]) lng = float(tokens[3]) heading_deg = float(tokens[4]) length = float(tokens[5]) pano_id = tokens[6] instruction = tokens[7] step = TrajectoryStep( waypoint_index=waypoint_index, pano=pano_id, lat=lat, lng=lng, heading_deg=heading_deg, length=length, instruction=instruction) if trajectory_index != current_trajectory_index: self._add_trajectory(steps) steps = [] current_trajectory_index = trajectory_index steps.append(step) self._add_trajectory(steps) logging.info('Loaded %d trajectories', self._num_trajectories) self._loaded_trajectories = True def _add_trajectory(self, steps): """Store a trajectory.""" num_steps = len(steps) if num_steps > 0: # Separate goal from waypoints. goal = steps[num_steps-1] steps = steps[:(num_steps-1)] # Store the trajectory in a hashtable. trajectory = Trajectory(steps=steps, goal=goal) self._trajectory_data.append(trajectory) self._num_trajectories += 1 if self._num_trajectories % 1000 == 0: logging.info('Stored %d trajectories', self._num_trajectories) def on_reset(self, streetlearn): """Gets called after StreetLearn:reset(). Selects a random trajectory, extracts the instructions and panos at goal and waypoints, computes the shortest paths between each start, each waypoint and the goal. Args: streetlearn: a streetlearn instance. Returns: A newly populated pano_id_to_color dictionary. """ # Initialise graph of rewards and colors with coins super(InstructionsBase, self).on_reset(streetlearn) self._current_step = 0 self._step_counter = 1 self._step_by_pano = {} self._pano_by_step = {} self._reward_pano_id_list = {} self._reward_pano_id_to_family = {} self._reward_family = {} self._pano_id_to_color = {} self._num_steps_this_goal = 0 # Randomly sample a trajectory. if self._loaded_trajectories == False: self._load_trajectories() trajectory = self._sample_trajectory(streetlearn) start = max(len(trajectory.steps) - self._num_instructions, 0) logging.info('Trajectory of length %d (max %d), starting at %d', len(trajectory.steps), self._num_instructions, start) num_steps = 0 start_pano_id = None self._instructions = [] self._thumbnails[:] = 0 pano_list = [] for step in trajectory.steps[start:]: pano_id = step.pano pano_list.append(pano_id) # Even if we do not take rewards for waypoints, we store them to keep # track of the agent's position along the trajectory. if num_steps == 0: start_pano_id = pano_id if num_steps > 0: self._add_reward_to_pano(pano_id, self._reward_at_waypoint, self._colors['waypoint'], streetlearn) self._instructions.append(step.instruction) # Fetch the thumbnail for the current step of the trajectory. step_thumbnail = self._thumbnail_helper.get_thumbnail( streetlearn, pano_id, step.heading_deg) if step_thumbnail is not None: self._thumbnails[num_steps] = step_thumbnail if self._reward_at_waypoint: logging.info('Waypoint %d at pano %s, yields reward of %f', num_steps, pano_id, self._reward_at_waypoint) else: logging.info('Waypoint %d at pano %s', num_steps, pano_id) num_steps += 1 # Set the goal. self._goal_pano_id = trajectory.goal.pano self._add_reward_to_pano(self._goal_pano_id, self._reward_at_goal, self._colors['goal'], streetlearn) pano_list.append(self._goal_pano_id) # Store the previously defined coin rewards and colours for pano_id in self._coin_pano_id_set: self._add_coin_reward_to_pano(pano_id) # Add goal pano thumbnail at the end. goal_thumbnail = self._thumbnail_helper.get_thumbnail( streetlearn, self._goal_pano_id, trajectory.goal.heading_deg) if goal_thumbnail is not None: self._thumbnails[num_steps] = goal_thumbnail # Move and rotate player into start position. streetlearn.engine.SetPosition(start_pano_id) streetlearn.currentpano_id = start_pano_id streetlearn.engine.RotateObserver(trajectory.steps[start].heading_deg, 0) logging.info('From: %s (%f, %f), To: %s', start_pano_id, trajectory.steps[start].lat, trajectory.steps[start].lng, self._goal_pano_id) logging.info('Trajectory with %d waypoints (goal included)', num_steps) if self._calculate_ground_truth or self._show_shortest_path: # Update the shortest path to the goal or first waypoint. self._update_shortest_path(streetlearn, start_pano_id) if self._show_shortest_path: # Use the computed shortest path to color the panos. self._color_shortest_path(streetlearn) # By default, direction is forward. self._gt_direction = 0 return self._pano_id_to_color def _update_shortest_path(self, streetlearn, start_pano_id): """Update the target of the shortest paths and color panos along that path. Args: streetlearn: the streetlearn environment. start_pano_id: a string for the current pano ID, for computing the optimal path. """ step = self._current_step + 1 logging.info(self._pano_by_step) logging.info('Reached step %d', step) if step in self._pano_by_step: target_pano_id = self._pano_by_step[step] self._shortest_path, num_panos = self._shortest_paths( streetlearn, target_pano_id, start_pano_id) logging.info('Shortest path from %s to waypoint/goal %s covers %d panos', start_pano_id, target_pano_id, num_panos) def _color_shortest_path(self, streetlearn): """Color panos along the current shortest path to the current target. Args: streetlearn: the streetlearn environment. """ for pano_id in self._shortest_path: self._pano_id_to_color.setdefault(pano_id, self._colors['shortest_path']) @property def trajectory(self): return self._trajectory def _sample_trajectory(self, streetlearn): """Sample a trajectory. Args: streetlearn: Streetlearn instance. Returns: trajectory object. """ trajectory_index = np.random.randint(len(self._trajectory_data)) self._trajectory = self._trajectory_data[trajectory_index] return self.trajectory def _add_reward_to_pano(self, pano_id, reward, color, streetlearn): """Add reward to a pano and all its neighbours. Args: pano_id: centroid pano id. reward: Amount of reward to attach to this and neighbouring panos. color: Color for the goal in the minimap. streetlearn: Streetlearn instance """ # If this already has a reward indirectly through a neighbour, undo that. if pano_id in self._reward_pano_id_list: if self._reward_pano_id_to_family[pano_id] == pano_id: # This was already made a reward field; update reward only. for neighbor in self._reward_family[pano_id]: # Replace reward and colour. self._reward_pano_id_list[neighbor] = reward self._pano_id_to_color[neighbor] = color return else: # This was previously an indirect reward field. # Remove from other family,: continue with default operation. self._reward_family[self._reward_pano_id_to_family[pano_id]].remove( pano_id) self._reward_pano_id_to_family[pano_id] = None # Define family around this id. self._add_family(pano_id, streetlearn) # Add reward and colour to family and links into family. for neighbor in self._reward_family[pano_id]: self._reward_pano_id_list[neighbor] = reward self._reward_pano_id_to_family[neighbor] = pano_id self._pano_id_to_color[neighbor] = color def _add_coin_reward_to_pano(self, pano_id): """Add coin reward to a pano, but only if that pano has no reward yet. Args: pano_id: centroid pano id. """ if pano_id not in self._reward_pano_id_list: self._reward_pano_id_list[pano_id] = self._reward_per_coin self._reward_pano_id_to_family[pano_id] = pano_id self._reward_family[pano_id] = {pano_id} self._pano_id_to_color[pano_id] = self._colors['coin'] def _add_family(self, pano_id, streetlearn): """Add all neighbours of a pano to a list (family) of pano IDs. Args: pano_id: centroid pano id. streetlearn: streetlearn graph for establishing neighbours. """ # If the pano is already part of a reward, do not mess with it. if pano_id in self._reward_family: return # Assign each waypoint with a pano group counter. Used when adding waypoints # one by one, in the order of the trajectory. if pano_id not in self._step_by_pano: logging.info('Added waypoint %d at pano %s', self._step_counter, pano_id) self._step_by_pano[pano_id] = self._step_counter self._pano_by_step[self._step_counter] = pano_id self._step_counter += 1 # Add the same logic to the immediate neighbours of the pano. self._reward_family[pano_id] = set({pano_id}) pano_metadata = streetlearn.engine.GetMetadata(pano_id) for neighbor in pano_metadata.neighbors: if neighbor.id not in self._reward_pano_id_to_family: self._reward_pano_id_to_family[neighbor.id] = pano_id self._reward_family[pano_id].add(neighbor.id) def _check_reward(self, pano_id, streetlearn): """Check what reward the current pano yields, based on instructions. Args: pano_id: centroid pano id. streetlearn: streetlearn graph for establishing neighbours. Returns: The reward for the current step. """ reward = 0 self._reached_goal = False # Check if pano ID is in the list of pano IDs that yield rewards. if pano_id in self._reward_pano_id_list: reward = self._reward_pano_id_list[pano_id] family_id = self._reward_pano_id_to_family[pano_id] # If the family_id matches the goal, we have finished the trajectory. previous_step = self._current_step self._current_step = self._step_by_pano[family_id] if family_id == self._goal_pano_id: self._reached_goal = True logging.info('%d: Completed level', streetlearn.frame_count) # It appears the level does not end immediately, so we need to reset the # step counter manually at this stage to prevent overflow. self._current_step = 0 else: logging.info('%d: Moved from %d to %d', streetlearn.frame_count, previous_step, self._current_step) if self._calculate_ground_truth or self._show_shortest_path: # Update the shortest path to the goal or next waypoint. self._update_shortest_path(streetlearn, pano_id) if self._show_shortest_path: # Use the computed shortest path to color the panos. self._color_shortest_path(streetlearn) for i in self._reward_family[family_id]: del self._reward_pano_id_list[i] del self._reward_pano_id_to_family[i] del self._pano_id_to_color[i] del self._reward_family[family_id] # The value of the reward determines if the goal was reached and the # episode can now end. logging.info('%d: Picked up reward of %f at pano %s.', streetlearn.frame_count, reward, pano_id) # Add optional coin rewards. if pano_id in self._coin_pano_id_set: reward += self._reward_per_coin self._coin_pano_id_set.remove(pano_id) return reward def get_reward(self, streetlearn): """Looks at current_pano_id and collects any reward found there. Args: streetlearn: the streetlearn environment. Returns: reward: the reward from the last step. """ # Calculate coin, waypoint and goal rewards, determine if end of episode. current_pano_id = streetlearn.current_pano_id reward = self._check_reward(current_pano_id, streetlearn) self._num_steps_this_goal += 1 return reward def get_info(self, streetlearn): """"Returns current information about the state of the environment. Args: streetlearn: a StreetLearn instance. Returns: info: information from the environment at the last step. """ info = super(InstructionsBase, self).get_info(streetlearn) info['num_steps_this_goal'] = self._num_steps_this_goal info['current_step'] = self._current_step info['current_goal_id'] = self._goal_pano_id info['distance_to_goal'] = streetlearn.engine.GetPanoDistance( streetlearn.current_pano_id, self._goal_pano_id) info['reward_current_goal'] = self._reward_at_goal if self._calculate_ground_truth: current_pano_id = streetlearn.current_pano_id next_pano_id = self._panos_to_goal[current_pano_id] info['next_pano_id'] = next_pano_id if next_pano_id: bearing_to_next_pano = streetlearn.engine.GetPanoBearing( current_pano_id, next_pano_id) - streetlearn.engine.GetYaw() else: bearing_to_next_pano = 0 info['bearing_to_next_pano'] = (bearing_to_next_pano + 180) % 360 - 180 return info def done(self): """Returns a flag indicating the end of the current episode. This game ends only at the end of the episode or if the goal is reached. """ if self._reached_goal: self._reached_goal = False return True else: return False def thumbnails(self): """Returns extra observation thumbnails. Args: include_goal_thumb: Bool (default: False) of whether we add the goal. Returns: thumbnails: Thumbnails array of shape (batch_size, 3, h, w) """ return self._thumbnails def instructions(self): """Returns instructions. Args: None Returns: instructions: string containing game specific instructions. """ return self._instructions @property def goal_id(self): """Returns the id of the goal Pano.""" return self._goal_pano_id def on_step(self, streetlearn): """Update the ground truth direction to take and the set of touched panos. Args: streetlearn: the streetlearn environment. """ super(InstructionsBase, self).on_step(streetlearn) if self._calculate_ground_truth: # streetlearn.current_pano_id is not always updated. current_pano_id = streetlearn.engine.GetPano().id # What is the next pano and what is the direction to the pano? next_pano_id = self._panos_to_goal[current_pano_id] if next_pano_id: yaw = streetlearn.engine.GetYaw() bearing = streetlearn.engine.GetPanoBearing( current_pano_id, next_pano_id) - yaw self._gt_direction = (bearing + 180) % 360 - 180 else: self._gt_direction = 0 def ground_truth_direction(self): """Returns the ground truth direction to take. Returns: ground_truth_direction: Float angle with the ground truth direction to be taken for the agent to go towards the goal. """ return self._gt_direction
streetlearn-master
streetlearn/python/environment/instructions_base.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for all StreetLearn levels.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import math import numpy as np from absl import logging import six from streetlearn.engine.python import color EMPTY_THUMBMNAILS = np.empty((0, 3, 0, 0)) EMPTY_GT_DIRECTION = np.empty((0,)) # When computing which panos B_i are immediately reachable from a given pano A, # we look at all panos B_i up to depth TOL_DEPTH in a graph whose root is A, # with a difference in altitude less than TOL_ALT meters, and within a cone # of TOL_BEARING degrees. TOL_ALT = 2.0 TOL_DEPTH = 3 TOL_BEARING = 30 @six.add_metaclass(abc.ABCMeta) class Game(object): """Base class for streetlearn levels.""" @abc.abstractmethod def on_reset(self, streetlearn): """Gets called after StreetLearn:reset(). Args: streetlearn: a StreetLearn instance. Returns: Dictionary that maps certain pano IDs to colors. """ return {} @abc.abstractmethod def on_step(self, streetlearn): """"Gets called after StreetLearn:step(). Args: streetlearn: a StreetLearn instance. """ @abc.abstractmethod def get_reward(self, streetlearn): """Returns the reward from the last step. Args: streetlearn: a StreetLearn instance. Returns: reward: the reward from the last step. """ @abc.abstractmethod def get_info(self, streetlearn): """"Returns current information about the environment. Args: streetlearn: a StreetLearn instance. Returns: info: information from the environment at the last step. """ @property def goal_id(self): """Returns the id of the goal pano, if there is one.""" return None def ground_truth_direction(self): """Returns the float angle with the ground truth direction for the agent.""" return EMPTY_GT_DIRECTION def thumbnails(self): """Returns observation thumbnails array of shape (batch_size, 3, h, w).""" return EMPTY_THUMBMNAILS def instructions(self): """Returns a string containing game specific instructions.""" return str() def highlighted_panos(self): """Returns the list of highlighted panos and their colors.""" return {} @property def done(self): """Returns a flag indicating the end of the current episode.""" return True def _compute_extended_graphs(self, streetlearn): """Compute an extended directed graph accessible to the StreeLearn agent. Args: streetlearn: the streetlearn environment. """ # Some datasets contain unidirectional connections: make them bidirectional. for pano_id in six.iterkeys(streetlearn.graph): neighbors = streetlearn.graph[pano_id] for neighbor_id in neighbors: neighbor_neighbors = streetlearn.graph[neighbor_id] if pano_id not in neighbor_neighbors: streetlearn.graph[neighbor_id].append(pano_id) logging.info('Adding neighbor %s to %s to satisfy cycle', pano_id, neighbor_id) logging.info('Storing the altitudes of each pano for faster retrieval.') altitudes = {} for pano_id in six.iterkeys(streetlearn.graph): altitudes[pano_id] = streetlearn.engine.GetMetadata(pano_id).pano.alt logging.info('Computing the extended directed graph.') self._extended_graph_from = {} self._extended_graph_to = collections.defaultdict(list) num_panos = 0 num_panos_total = len(streetlearn.graph) num_edges_extended = 0 for current_id in six.iterkeys(streetlearn.graph): # Find the neighbors up to depth 3 of the current pano, not separated # by a drop of 2m in altitude. visited = {} queue_panos = [(current_id, 0)] while queue_panos: elem = queue_panos.pop(0) pano_id = elem[0] depth = elem[1] current_alt = altitudes[current_id] if depth > 0: # Store the distance and bearing to each neighbor. dist = streetlearn.engine.GetPanoDistance(current_id, pano_id) bearing = streetlearn.engine.GetPanoBearing(current_id, pano_id) visited[pano_id] = (dist, bearing) # Look for new neighbors recursively. if depth < TOL_DEPTH: neighbors = streetlearn.graph[pano_id] for neighbor_id in neighbors: if neighbor_id not in visited: neighbor_alt = altitudes[neighbor_id] if depth == 0 or abs(neighbor_alt - current_alt) < TOL_ALT: queue_panos.append((neighbor_id, depth+1)) if current_id in visited: visited.pop(current_id) # Select only neighbors that are the closest within a tolerance cone, # and create extended graphs. self._extended_graph_from[current_id] = {} for pano_id, (dist, bearing) in six.iteritems(visited): retain_pano_id = True for other_id, (other_dist, other_bearing) in six.iteritems(visited): if ((pano_id != other_id) and (180 - abs(abs(bearing - other_bearing) - 180) < TOL_BEARING) and (other_dist < dist)): retain_pano_id = False if retain_pano_id: self._extended_graph_from[current_id][pano_id] = (dist, bearing) num_edges_extended += 1 self._extended_graph_to[pano_id].append((current_id, dist, bearing)) num_panos += 1 if num_panos % 1000 == 0: logging.info('Processed %d/%d panos, %d extended directed edges', num_panos, num_panos_total, num_edges_extended) def _bfs(self, queue_panos, graph, flagged, visited): """Compute the shortest paths using BFS given a queue and pano graph. Args: queue_panos: list of tuples (parent_pano_id, child_pano_id). graph: dictionary with pano_id keys and lists of pano_id values. flagged: dictionary with pano_id keys and boolean values. visited: dictionary with child pano_id keys and parent pano id values. Returns: flagged: dictionary with pano_id keys and boolean values. visited: dictionary with child pano_id keys and parent pano id values. """ while queue_panos: # Mark the pano at the top of the queue as visited. elem = queue_panos.pop(0) current_pano_id = elem[0] parent_pano_id = elem[1] depth = elem[2] visited[current_pano_id] = (parent_pano_id, depth) # Add the neighbors of the pano. if current_pano_id in graph: neighbors = graph[current_pano_id] for neighbor_id in neighbors: if isinstance(neighbor_id, tuple): neighbor_id = neighbor_id[0] if neighbor_id not in flagged: flagged.add(neighbor_id) queue_panos.append((neighbor_id, current_pano_id, depth+1)) return flagged, visited def _shortest_paths(self, streetlearn, target_pano_id, start_pano_id): """Compute the shortest paths from all the panos to a given start pano. Args: streetlearn: the streetlearn environment. target_pano_id: a string for the target pano ID. start_pano_id: a string for the current pano ID, for computing the optimal path. Returns: shortest_path: dictionary containing (current_pano_id, next_pano_id) as (key, value) pairs. num_panos: integer number of panos in the shortest path. """ # The shortest path relies on the extended directed graph. if not hasattr(self, '_extended_graph_from'): self._compute_extended_graphs(streetlearn) # Compute the shortest paths from all the panos to the target pano # using the direct connection graph. logging.info('Computing shortest paths to %s using BFS on direct graph', target_pano_id) flagged_direct = set([target_pano_id]) (_, visited_direct) = self._bfs( [(target_pano_id, None, 0)], streetlearn.graph, flagged_direct, {}) # Compute the shortest paths from all the panos to the target pano # using the extended (reachable) graph, with shortcuts. logging.info('Computing shortest paths to %s using BFS on extended graph', target_pano_id) flagged_extended = set([target_pano_id]) (_, visited_extended) = self._bfs( [(target_pano_id, None, 0)], self._extended_graph_to, flagged_extended, {}) # Some panos may have been missed during the shortest path computation # on the extended graph because of the preferential choice of one pano # over the other. In order to make sure that there is a path from every # pano of the graph to the goal pano, we backfill visited_extended # with visited_direct, which is computed on the direct connection graph. self._panos_to_goal = {} for child, (parent, _) in six.iteritems(visited_direct): if child in visited_extended: (parent, _) = visited_extended[child] self._panos_to_goal[child] = parent # Extract the shortest path, from the current starting position, by # following the panos to goal as computed by the BFS search that started # from the goal. current_pano_id = start_pano_id list_panos = [current_pano_id] next_pano_id = self._panos_to_goal[current_pano_id] while next_pano_id: list_panos.append(next_pano_id) current_pano_id = next_pano_id next_pano_id = self._panos_to_goal[current_pano_id] # Because of the Street View direct graph connectivity and because of how # the StreetLearn extended graph adds edges when two panos that are distant # by up to 2 links can still be directly reached, we need to "iron out" # the path at street intersections. This code transforms a -> b -> c -> d # into a -> b' -> c' -> d if the latter is shorter (in metric distance) # and a -> b -> c into a -> b' -> c' -> c if the latter is shorter. shortest_path = {} num_panos = 0 while num_panos < len(list_panos)-3: a = list_panos[num_panos] b = list_panos[num_panos+1] c = list_panos[num_panos+2] d = list_panos[num_panos+3] skipped = 1 shortest_path[a] = b if (a in self._extended_graph_from and b in self._extended_graph_from and c in self._extended_graph_from and b in self._extended_graph_from[a] and c in self._extended_graph_from[b] and d in self._extended_graph_from[c]): (dist_ab, _) = self._extended_graph_from[a][b] (dist_bc, _) = self._extended_graph_from[b][c] (dist_cd, _) = self._extended_graph_from[c][d] dist_abc = dist_ab + dist_bc dist_abcd = dist_abc + dist_cd for b2 in six.iterkeys(self._extended_graph_from[a]): if b2 != b: for c2 in six.iterkeys(self._extended_graph_from[b2]): for d2 in six.iterkeys(self._extended_graph_from[c2]): if d2 == c or d2 == d: (dist_ab2, _) = self._extended_graph_from[a][b2] (dist_bc2, _) = self._extended_graph_from[b2][c2] (dist_cd2, _) = self._extended_graph_from[c2][d2] dist_abcd2 = dist_ab2 + dist_bc2 + dist_cd2 if d2 == c and dist_abcd2 < dist_abc: self._panos_to_goal[a] = b2 self._panos_to_goal[b2] = c2 self._panos_to_goal[c2] = c shortest_path[a] = b2 shortest_path[b2] = c2 shortest_path[c2] = c logging.info('Replaced %s, %s, %s by %s, %s, %s, %s', a, b, c, a, b2, c2, d2) skipped = 2 if d2 == d and dist_abcd2 < dist_abcd: self._panos_to_goal[a] = b2 self._panos_to_goal[b2] = c2 self._panos_to_goal[c2] = d shortest_path[a] = b2 shortest_path[b2] = c2 shortest_path[c2] = d logging.info('Replaced %s, %s, %s, %s by %s, %s, %s, %s', a, b, c, d, a, b2, c2, d2) skipped = 3 num_panos += skipped while num_panos < len(list_panos)-1: shortest_path[list_panos[num_panos]] = list_panos[num_panos+1] num_panos +=1 return shortest_path, num_panos
streetlearn-master
streetlearn/python/environment/game.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classes to handle the various StreetLearn observation types.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import numpy as np import six _METADATA_COUNT = 14 _NUM_HEADING_BINS = 16 _NUM_LAT_BINS = 32 _NUM_LNG_BINS = 32 def reshape_hwc(array, c, w, h): """Turn a planar RGB array into an interleaved one. Args: array: An array of bytes consisting the planar RGB image of size (c, w, h). c: Number of channels in the image. w: Width of the image. h: Height of the image. Returns: An interleaved array of bytes shape shaped (h, w, c). """ arr = array.reshape(c, w * h) return np.ravel((arr[0], arr[1], arr[2]), order='F').reshape(h, w, 3) class Observation(six.with_metaclass(abc.ABCMeta, object)): """Base class for all observations.""" def __init__(self, streetlearn): self._streetlearn = streetlearn @abc.abstractproperty def observation_spec(self): """The observation_spec for this observation.""" pass @abc.abstractproperty def observation(self): """The observation data.""" pass @classmethod def create(cls, name, streetlearn): """Dispatches an Observation based on `name`.""" observations = [ViewImage, GraphImage, ViewImageHWC, GraphImageHWC, Yaw, Pitch, Metadata, TargetMetadata, LatLng, TargetLatLng, YawLabel, Neighbors, LatLngLabel, TargetLatLngLabel, Thumbnails, Instructions, GroundTruthDirection, PrevReward, PrevAction] dispatch = {o.name: o for o in observations} try: return dispatch[name](streetlearn) except KeyError: raise ValueError('No Observation named %s found' % name) class ViewImage(Observation): """RGB pixel data of the view with shape (C, H, W) where C = 3.""" name = 'view_image' observation_spec_dtypes = np.uint8 def __init__(self, streetlearn): super(ViewImage, self).__init__(streetlearn) self._width = streetlearn.config["width"] self._height = streetlearn.config["height"] self._depth = 3 self._buffer = np.empty(self._depth * self._width * self._height, dtype=np.uint8) @property def observation_spec(self): return [self._depth, self._height, self._width] @property def observation(self): return self._streetlearn.engine.RenderObservation(self._buffer) class ViewImageHWC(ViewImage): """RGB pixel data of the view with shape (H, W, C) where C = 3.""" name = 'view_image_hwc' observation_spec_dtypes = np.uint8 @property def observation_spec(self): return [self._height, self._width, self._depth] @property def observation(self): self._streetlearn.engine.RenderObservation(self._buffer) return reshape_hwc(self._buffer, self._depth, self._width, self._height) class GraphImage(Observation): """RGB pixel data of the graph with shape (C, H, W) where C = 3.""" name = 'graph_image' observation_spec_dtypes = np.uint8 def __init__(self, streetlearn): super(GraphImage, self).__init__(streetlearn) self._width = streetlearn.config["graph_width"] self._height = streetlearn.config["graph_height"] self._depth = 3 self._buffer = np.empty(self._depth * self._width * self._height, dtype=np.uint8) @property def observation_spec(self): return [self._depth, self._height, self._width] @property def observation(self): highlighted_panos = self._streetlearn.game.highlighted_panos() return self._streetlearn.engine.DrawGraph(highlighted_panos, self._buffer) class GraphImageHWC(GraphImage): """RGB pixel data of the graph with shape (H, W, C) where C = 3.""" name = 'graph_image_hwc' observation_spec_dtypes = np.uint8 @property def observation_spec(self): return [self._height, self._width, self._depth] @property def observation(self): highlighted_panos = self._streetlearn.game.highlighted_panos() self._streetlearn.engine.DrawGraph(highlighted_panos, self._buffer) return reshape_hwc(self._buffer, self._depth, self._width, self._height) class Yaw(Observation): """The agent's current yaw (different from the current pano heading).""" name = 'yaw' observation_spec_dtypes = np.float64 @property def observation_spec(self): return [1] @property def observation(self): return np.array(self._streetlearn.engine.GetYaw(), dtype=np.float64) class Pitch(Observation): """The agent's current pitch.""" name = 'pitch' observation_spec_dtypes = np.float64 @property def observation_spec(self): return [1] @property def observation(self): return np.array(self._streetlearn.engine.GetPitch(), dtype=np.float64) class YawLabel(Observation): """The agent's current yaw (different from the current pano heading).""" name = 'yaw_label' observation_spec_dtypes = np.uint8 @property def observation_spec(self): return [1] @property def observation(self): yaw = self._streetlearn.engine.GetYaw() % 360.0 return np.array(yaw * _NUM_HEADING_BINS / 360.0, dtype=np.uint8) class Metadata(Observation): """Metadata about the current pano.""" name = 'metadata' observation_spec_dtypes = bytearray @property def observation_spec(self): return [_METADATA_COUNT] @property def observation(self): pano_id = self._streetlearn.current_pano_id return bytearray(self._streetlearn.engine.GetMetadata( pano_id).pano.SerializeToString()) class TargetMetadata(Observation): """Metadata about the target pano.""" name = 'target_metadata' observation_spec_dtypes = bytearray @property def observation_spec(self): return [_METADATA_COUNT] @property def observation(self): goal_id = self._streetlearn.game.goal_id if goal_id: return bytearray(self._streetlearn.engine.GetMetadata( goal_id).pano.SerializeToString()) return bytearray() class LatLng(Observation): """The agent's current lat/lng coordinates, scaled according to config params using bbox_lat_min and bbox_lat_max, as well as bbox_lng_min and bbox_lng_max, so that scaled lat/lng take values between 0 and 1 within the bounding box. """ name = 'latlng' observation_spec_dtypes = np.float64 def _scale_lat(self, lat): den = self._streetlearn.bbox_lat_max - self._streetlearn.bbox_lat_min return ((lat - self._streetlearn.bbox_lat_min) / den if (den > 0) else 0) def _scale_lng(self, lng): den = self._streetlearn.bbox_lng_max - self._streetlearn.bbox_lng_min return ((lng - self._streetlearn.bbox_lng_min) / den if (den > 0) else 0) @property def observation_spec(self): return [2] @property def observation(self): pano_id = self._streetlearn.current_pano_id pano_data = self._streetlearn.engine.GetMetadata(pano_id).pano lat_scaled = self._scale_lat(pano_data.coords.lat) lng_scaled = self._scale_lng(pano_data.coords.lng) return np.array([lat_scaled, lng_scaled], dtype=np.float64) class LatLngLabel(LatLng): """The agent's current yaw (different from the current pano heading).""" name = 'latlng_label' observation_spec_dtypes = np.int32 def _latlng_bin(self, pano_id): pano_data = self._streetlearn.engine.GetMetadata(pano_id).pano lat_bin = np.floor(self._scale_lat(pano_data.coords.lat) * _NUM_LAT_BINS) lat_bin = np.max([np.min([lat_bin, _NUM_LAT_BINS-1]), 0]) lng_bin = np.floor(self._scale_lng(pano_data.coords.lng) * _NUM_LNG_BINS) lng_bin = np.max([np.min([lng_bin, _NUM_LNG_BINS-1]), 0]) latlng_bin = lat_bin * _NUM_LNG_BINS + lng_bin return latlng_bin @property def observation_spec(self): return [1] @property def observation(self): pano_id = self._streetlearn.current_pano_id return np.array(self._latlng_bin(pano_id), dtype=np.int32) class TargetLatLng(LatLng): """The agent's target lat/lng coordinates.""" name = 'target_latlng' @property def observation(self): goal_id = self._streetlearn.game.goal_id if goal_id: pano_data = self._streetlearn.engine.GetMetadata(goal_id).pano lat_scaled = self._scale_lat(pano_data.coords.lat) lng_scaled = self._scale_lng(pano_data.coords.lng) return np.array([lat_scaled, lng_scaled], dtype=np.float64) return np.array([0, 0], dtype=np.float64) class TargetLatLngLabel(LatLngLabel): """The agent's current yaw (different from the current pano heading).""" name = 'target_latlng_label' @property def observation(self): goal_id = self._streetlearn.game.goal_id if goal_id: return np.array(self._latlng_bin(goal_id), dtype=np.int32) return np.array(0, dtype=np.int32) class Thumbnails(Observation): """Thumbnails' pixel data.""" name = 'thumbnails' observation_spec_dtypes = np.uint8 @property def observation_spec(self): return self._streetlearn.game.thumbnails().shape @property def observation(self): return self._streetlearn.game.thumbnails() class Instructions(Observation): """StreetLang instructions.""" name = 'instructions' observation_spec_dtypes = str @property def observation_spec(self): return [1] @property def observation(self): return ('|'.join(self._streetlearn.game.instructions())).encode('utf-8') class GroundTruthDirection(Observation): """Direction in degrees that the agent needs to take now.""" name = 'ground_truth_direction' observation_spec_dtypes = np.float32 @property def observation_spec(self): return [1] @property def observation(self): return np.array(self._streetlearn.game.ground_truth_direction(), dtype=np.float32) class Neighbors(Observation): """IDs of neighboring panos.""" name = 'neighbors' observation_spec_dtypes = np.uint8 @property def observation_spec(self): return [self._streetlearn.neighbor_resolution] @property def observation(self): return np.asarray( self._streetlearn.engine.GetNeighborOccupancy( self._streetlearn.neighbor_resolution), dtype=np.uint8) class PrevReward(Observation): """The agent's reward at the previous time step.""" name = 'prev_reward' observation_spec_dtypes = np.float32 @property def observation_spec(self): return [1] @property def observation(self): return np.array(self._streetlearn.prev_reward(), dtype=np.float32) class PrevAction(Observation): """The agent's action at the previous time step.""" name = 'prev_action' observation_spec_dtypes = np.float32 @property def observation_spec(self): return [4] @property def observation(self): return np.array(self._streetlearn.prev_action(), dtype=np.float32)
streetlearn-master
streetlearn/python/environment/observations.py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """StreetLearn level with reward circles around each waypoint. This file extends the instruction-following game by adding reward densification, giving fractional reward to agents as they approach a waypoint. At any point in time, the level will project a reward cone around the next waypoint given the most recently passed waypoint. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging from streetlearn.python.environment import instructions_curriculum class InstructionsDensification( instructions_curriculum.InstructionsCurriculum): """StreetLang game with a cone around each waypoint reward.""" def __init__(self, config): """Creates an instance of the StreetLang level. Args: config: config dict of various settings. """ super(InstructionsDensification, self).__init__(config) self._max_reward_per_cone = config['max_reward_per_cone'] self._cone_radius_meters = config['cone_radius_meters'] self._min_distance_reached = float('inf') self._distance_to_next_waypoint = float('inf') # We cannot have coins in this game. assert config['proportion_of_panos_with_coins'] == 0 def on_reset(self, streetlearn): """Gets called after StreetLearn:reset(). Args: streetlearn: a streetlearn instance. Returns: A newly populated pano_id_to_color dictionary. """ self._min_distance_reached = float('inf') self._distance_to_next_waypoint = float('inf') return super(InstructionsDensification, self).on_reset(streetlearn) def get_reward(self, streetlearn): """Returns the reward from the last step. Args: streetlearn: a StreetLearn instance. Returns: reward: the reward from the last step. """ # Calculate distance to next waypoint for _check_reward to use. next_waypoint_pano = self._pano_by_step[self._current_step + 1] self._distance_to_next_waypoint = streetlearn.engine.GetPanoDistance( streetlearn.current_pano_id, next_waypoint_pano) # Check if pano ID is within a cone from the next waypoint. dense_reward = 0 if self._distance_to_next_waypoint < min(self._cone_radius_meters, self._min_distance_reached): dense_reward = ( self._max_reward_per_cone * (self._cone_radius_meters - self._distance_to_next_waypoint) / self._cone_radius_meters) self._min_distance_reached = self._distance_to_next_waypoint logging.info('distance_to_next_waypoint=%f, extra reward=%f', self._distance_to_next_waypoint, dense_reward) # Compute the regular reward using the logic from the base class. prev_step = self._current_step reward = super(InstructionsDensification, self).get_reward(streetlearn) # Reset the minimum distance threshold? if prev_step != self._current_step: self._min_distance_reached = float('inf') return reward + dense_reward
streetlearn-master
streetlearn/python/environment/instructions_densification.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Python interface to the StreetLearn engine. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from streetlearn.python.environment.coin_game import CoinGame from streetlearn.python.environment.courier_game import CourierGame from streetlearn.python.environment.curriculum_courier_game import CurriculumCourierGame from streetlearn.python.environment.default_config import ApplyDefaults from streetlearn.python.environment.default_config import CreateGame from streetlearn.python.environment.exploration_game import ExplorationGame from streetlearn.python.environment.game import Game from streetlearn.python.environment.goal_instruction_game import GoalInstructionGame from streetlearn.python.environment.incremental_instruction_game import IncrementalInstructionGame from streetlearn.python.environment.observations import Observation from streetlearn.python.environment.step_by_step_instruction_game import StepByStepInstructionGame from streetlearn.python.environment.streetlearn import get_action_set from streetlearn.python.environment.streetlearn import StreetLearn from streetlearn.python.environment.thumbnail_helper import ThumbnailHelper
streetlearn-master
streetlearn/python/environment/__init__.py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """StreetLearn level for the goal reward instruction-following game. In this environment, the agent receives a reward for reaching the goal of a given set of instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging from streetlearn.python.environment import instructions_curriculum class GoalInstructionGame(instructions_curriculum.InstructionsCurriculum): """StreetLang game with goal reward only.""" def __init__(self, config): """Creates an instance of the StreetLearn level. Args: config: config dict of various settings. """ super(GoalInstructionGame, self).__init__(config) # Disable waypoint rewards. self._reward_at_waypoint = 0
streetlearn-master
streetlearn/python/environment/goal_instruction_game.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The StreetLearn RL environment. Episodes take place either in a mini-map created by performing a breadth-first traversal of the StreetView graph starting from a starting location, or in the entire fully-connected graph. Observations: { view_image: numpy array of dimension [3, height, width] containing the street imagery. graph_image: numpy array of dimension [3, graph_height, graph_width] containing the map graph image. view_image_hwc: numpy array of dimension [height, width, 3] containing the street imagery. graph_image_hwc: numpy array of dimension [graph_height, graph_width, 3] containing the map graph images. metadata: learning_deepmind.datasets.street_learn.Pano proto without compressed_image. target_metadata: learning_deepmind.datasets.street_learn.Pano proto without compressed_image. } """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import inflection import numpy as np import six import time from streetlearn.engine.python import color from streetlearn.engine.python import streetlearn_engine from streetlearn.python.environment import default_config from streetlearn.python.environment import observations _MIN_ZOOM = 1 _MAX_ZOOM = 32 def _action(*entries): return np.array(entries, dtype=np.float) ACTIONS = { 'move_forward': _action(1, 0.0, 0.0, 0.0), 'horizontal_rotation': _action(0, 1.0, 0.0, 0.0), 'vertical_rotation': _action(0, 0.0, 1.0, 0.0), 'map_zoom': _action(0, 0.0, 0.0, 1.0), } NUM_ACTIONS = 4 ACTION_SETS = { "streetlearn_default": lambda rotation_speed: ( ACTIONS["move_forward"], ACTIONS["horizontal_rotation"] * (-rotation_speed), ACTIONS["horizontal_rotation"] * rotation_speed), "streetlearn_fast_rotate": lambda rotation_speed: ( ACTIONS["move_forward"], ACTIONS["horizontal_rotation"] * (-rotation_speed), ACTIONS["horizontal_rotation"] * (-rotation_speed * 3), ACTIONS["horizontal_rotation"] * rotation_speed, ACTIONS["horizontal_rotation"] * rotation_speed * 3), "streetlearn_tilt": lambda rotation_speed: ( ACTIONS["move_forward"], ACTIONS["horizontal_rotation"] * (-rotation_speed), ACTIONS["horizontal_rotation"] * rotation_speed, ACTIONS["vertical_rotation"] * rotation_speed, ACTIONS["vertical_rotation"] * (-rotation_speed)), } def get_action_set(action_spec, rotation_speed): """Returns the set of StreetLearn actions for the given action_spec.""" # If action_spec is a string, it should be the name of a standard action set. if isinstance(action_spec, six.string_types): if action_spec not in ACTION_SETS: raise ValueError("Unrecognized action specification %s." % action_spec) else: return np.array(ACTION_SETS[action_spec](rotation_speed), dtype=np.float) raise ValueError("Action specification %s not a string." % action_spec) def _log_dictionary(dictionary): for k, v in dictionary.items(): v = dictionary[k] if isinstance(v, (int, float, bool, list, str)): logging.info(k + ': ' + str(v)) class StreetLearn(object): """The Streetlearn environment.""" def __init__(self, dataset_path, config, game, engine=None): """Construct the StreetLearn environment. Args: dataset_path: filesystem path where the dataset resides. config: dictionary containing various config settings. Will be extended with defaults from default_config.DEFAULT_CONFIG. game: an instance of Game. engine: an instance of the StreetLearn engine (used when cloning an environment). """ assert game, "Did not provide game." logging.info('dataset_path:') logging.info(dataset_path) logging.info('config:') _log_dictionary(config) logging.info('game:') logging.info(game) self._config = default_config.ApplyDefaults(config) self._seed = self._config["seed"] self._start_pano_id = self._config["start_pano"] self._zoom = self._config["graph_zoom"] self._black_on_white = self._config["graph_black_on_white"] self._frame_cap = self._config["frame_cap"] self._field_of_view = self._config["field_of_view"] self._neighbor_resolution = self._config["neighbor_resolution"] self._sample_graph_depth = self._config["sample_graph_depth"] self._min_graph_depth = self._config["min_graph_depth"] self._max_graph_depth = self._config["max_graph_depth"] self._full_graph = self._config["full_graph"] self._color_for_observer = color.Color(*self._config["color_for_observer"]) self._action_spec = self._config["action_spec"] self._rotation_speed = self._config["rotation_speed"] self._auto_reset = self._config["auto_reset"] self._action_set = get_action_set(self._action_spec, self._rotation_speed) logging.info('Action set:') logging.info(self._action_set) self._bbox_lat_min = self._config["bbox_lat_min"] self._bbox_lat_max = self._config["bbox_lat_max"] self._bbox_lng_min = self._config["bbox_lng_min"] self._bbox_lng_max = self._config["bbox_lng_max"] self._game = game self._current_pano_id = None self._episode_id = -1 self._frame_count = 0 self._prev_reset = time.time() if engine: logging.info("Cloning an existing StreetLearnEngine.") self._engine = engine.Clone( width=self._config["width"], height=self._config["height"], graph_width=self._config["graph_width"], graph_height=self._config["graph_height"], status_height=self._config["status_height"], field_of_view=self._field_of_view, min_graph_depth=self._min_graph_depth, max_graph_depth=self._max_graph_depth) else: logging.info("Creating an new StreetLearnEngine.") self._engine = streetlearn_engine.StreetLearnEngine.Create( dataset_path, width=self._config["width"], height=self._config["height"], graph_width=self._config["graph_width"], graph_height=self._config["graph_height"], status_height=self._config["status_height"], field_of_view=self._field_of_view, min_graph_depth=self._min_graph_depth, max_graph_depth=self._max_graph_depth, max_cache_size=self._config["max_cache_size"]) assert self._engine, "Could not initialise engine from %r." % dataset_path self._observations = [] for name in self._config["observations"]: try: self._observations.append(observations.Observation.create(name, self)) except ValueError as e: logging.warning(str(e)) self._reward = 0 self._prev_reward = 0 self._prev_action = self._action_set[0] self._done = False self._info = {} @property def config(self): return self._config @property def seed(self): return self._seed @property def game(self): return self._game @property def field_of_view(self): return self._field_of_view @property def current_pano_id(self): return self._current_pano_id @property def frame_cap(self): return self._frame_cap @frame_cap.setter def frame_cap(self, value): self._frame_cap = value @property def frame_count(self): return self._frame_count @property def graph(self): return self._graph @property def engine(self): return self._engine @property def neighbor_resolution(self): return self._neighbor_resolution @property def bbox_lat_min(self): return self._bbox_lat_min @property def bbox_lat_max(self): return self._bbox_lat_max @property def bbox_lng_min(self): return self._bbox_lng_min @property def bbox_lng_max(self): return self._bbox_lng_max @property def cache_size(self): return self._engine.GetNodeCacheSize() def observation_spec(self): """Returns the observation spec, dependent on the observation format.""" return {observation.name: observation.observation_spec for observation in self._observations} def action_set(self): """Returns the set of actions, mapping integer actions to 1D arrays.""" return self._action_set def action_spec(self): """Returns the action spec.""" return ACTIONS def reset(self): """Start a new episode.""" reset_time = time.time() logging.info('reset: seed %d, previous episode (%d frames) lasted %f sec', self._seed, self._frame_count, reset_time - self._prev_reset) self._prev_reset = reset_time self._prev_reward = 0 self._prev_action = self._action_set[0] self._frame_count = 0 self._episode_id += 1 if self._sample_graph_depth: max_depth = np.random.randint(self._min_graph_depth, self._max_graph_depth + 1) self._engine.SetGraphDepth(self._min_graph_depth, max_depth) self._engine.InitEpisode(self._episode_id, self._seed) # Build a new graph if we don't have one yet. if not self._current_pano_id: if self._full_graph: self._current_pano_id = self._engine.BuildEntireGraph() elif self._start_pano_id: self._current_pano_id = self._engine.BuildGraphWithRoot( self._start_pano_id) else: self._current_pano_id = self._engine.BuildRandomGraph() logging.info('seed %d: built new graph with root %s', self._seed, self._current_pano_id) # else respawn in current graph. elif not self._start_pano_id: self._current_pano_id = np.random.choice( list(self._engine.GetGraph().keys())) self._engine.SetPosition(self._current_pano_id) logging.info('seed %d: reusing existing graph and respawning at %s', self._seed, self._current_pano_id) self._graph = self._engine.GetGraph() highlighted_panos = self._game.on_reset(self) self._engine.InitGraphRenderer(self._color_for_observer, highlighted_panos, self._black_on_white) self._engine.SetZoom(_MAX_ZOOM) def goto(self, pano_id, yaw): """Go to a specific pano and yaw in the environment. Args: pano_id: a string containing the ID of a pano. yaw: a float with relative yaw w.r.t. north. Returns: observation: tuple with observations. """ current_pano_id = self._engine.SetPosition(pano_id) assert pano_id == current_pano_id yaw = (yaw + 180) % 360 - 180 self._engine.RotateObserver(yaw, 0.0) assert yaw == self._engine.GetYaw() return self.observation() def step(self, action): """Takes a step in the environment. Args: action: a 1d array containing a combination of actions. Returns: observation: tuple with observations for the last time step. reward: scalar reward at the last time step. done: boolean indicating the end of an episode. info: dictionary with additional debug information. """ self._frame_count += 1 if type(action) != np.ndarray: action = np.array(action, dtype=np.float) self._prev_action = action assert action.size == NUM_ACTIONS, "Wrong number of actions." move_forward = np.dot(action, ACTIONS['move_forward']) horizontal_rotation = np.dot(action, ACTIONS['horizontal_rotation']) vertical_rotation = np.dot(action, ACTIONS['vertical_rotation']) map_zoom = np.dot(action, ACTIONS['map_zoom']) if move_forward: self._current_pano_id = self._engine.MoveToNextPano() if map_zoom > 0: self._zoom = min(self._zoom * 2, _MAX_ZOOM) elif map_zoom < 0: self._zoom = max(self._zoom / 2, _MIN_ZOOM) if horizontal_rotation or vertical_rotation: self._engine.RotateObserver(horizontal_rotation, vertical_rotation) self._engine.SetZoom(self._zoom) self._game.on_step(self) # Update the reward and done flag. Because we do not know the code logic # inside each game, it is safer to obtain these immediately after step(), # and store them for subsequent calls to reward(), done() and info(). self._prev_reward = self._reward self._reward = self._game.get_reward(self) self._done = (self._frame_count > self._frame_cap) or self._game.done() self._info = self._game.get_info(self) if self._auto_reset and self._done: self.reset() # Return return self.observation(), self.reward(), self.done(), self.info() def observation(self): """Returns the observations for the last time step.""" return {item.name: item.observation for item in self._observations} def reward(self): """Returns the reward for the last time step.""" return self._reward def done(self): """Return a flag indicating the end of the current episode.""" return self._done def info(self): """Return a dictionary with environment information at the current step.""" return self._info def prev_reward(self): """Returns the reward for the previous time step.""" return self._prev_reward def prev_action(self): """Returns the action for the previous time step.""" return self._prev_action def get_metadata(self, pano_id): """Return the metadata corresponding to the selected pano. Args: pano_id: a string containing the ID of a pano. Returns: metadata: a protocol buffer with the pano metadata. """ if hasattr(self, '_graph') and pano_id in self.graph: return self._engine.GetMetadata(pano_id) else: return None def render(self): """Empty function, for compatibility with OpenAI Gym.""" pass
streetlearn-master
streetlearn/python/environment/streetlearn.py
"""Thumbnail helper class used in Taxi and Streetlang levels.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np class ThumbnailHelper(object): """Thumbnail helper class.""" def __init__(self): self._width = None self._height = None def get_thumbnail(self, streetlearn, pano_id, heading): """Fetch the thumbnail from the environment. Args: streetlearn: a streetlearn instance. pano_id: Pano id of the thumbnail. heading: Heading in degrees for the thumbnail. Returns: Thumbnail ndarray. """ observation = streetlearn.goto(pano_id, heading) thumbnail = observation['view_image_hwc'] if not self._width: self._width = streetlearn.config['width'] self._height = streetlearn.config['height'] thumbnail = thumbnail.reshape([self._height, self._width, 3]) return thumbnail
streetlearn-master
streetlearn/python/environment/thumbnail_helper.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Coin game level with early termination. In this environment, the agent receives a reward for every coin it collects, and the episode ends when all the coins are collected. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from streetlearn.python.environment import coin_game class ExplorationGame(coin_game.CoinGame): def done(self): """Returns a flag indicating the end of the current episode. This game ends when all the coins are collected. """ return not bool(self._coin_pano_id_set)
streetlearn-master
streetlearn/python/environment/exploration_game.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """StreetLearn level for the courier task with random goals/targets. In this environment, the agent receives a reward for every coin it collects and an extra reward for locating the goal pano. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import numpy as np import six from streetlearn.engine.python import color from streetlearn.python.environment import coin_game class CourierGame(coin_game.CoinGame): """Coin game that gives extra reward for finding the goal pano. A courier goal is randomly selected from panos in the graph. On success or timeout, a new goal is chosen. The episode ends after a fixed episode length. """ def __init__(self, config): """Constructor. This coin game gives extra reward for finding the goal pano, and resets the goal once the goal has been found (or on timeout). Panos can be assigned rewards (coins) randomly and the agent will receive the reward the first time they visit these panos. Args: config: config dict of various settings. """ super(CourierGame, self).__init__(config) self._reward_current_goal = config['max_reward_per_goal'] self._min_radius_meters = config['min_radius_meters'] self._max_radius_meters = config['max_radius_meters'] self._goal_timeout = config['goal_timeout'] self._colors['goal'] = color.Color(*config['color_for_goal']) self._colors['shortest_path'] = color.Color( *config['color_for_shortest_path']) self._num_steps_this_goal = 0 self._success_inverse_path_len = [] self._min_distance_reached = np.finfo(np.float32).max self._initial_distance_to_goal = np.finfo(np.float32).max self._current_goal_id = None self._visited_panos = set() self._shortest_path = {} self._timed_out = False def on_reset(self, streetlearn): """Gets called after StreetLearn:reset(). Selects a random pano as goal destination and resets episode statistics. If there are any coins, clears the set of touched panos and randomly generates reward-yielding coins and populates pano_id_to_color. Args: streetlearn: a streetlearn instance. Returns: A newly populated pano_id_to_color dictionary. """ # Populate the list of panos and assign optional coins to panos. pano_id_to_color = super(CourierGame, self).on_reset(streetlearn) # Assign the goal location to one of the panos. self._pick_random_goal(streetlearn) # Resets the episode statistics. self._num_steps_this_goal = 0 self._success_inverse_path_len = [] return pano_id_to_color @property def goal_id(self): """Returns the ID of the goal Pano.""" return self._current_goal_id def get_reward(self, streetlearn): """Looks at current_pano_id and collects any reward found there. Args: streetlearn: A streetlearn instance. Returns: reward: the reward from the last step. """ # If we have exceeded the maximum steps to look for a goal, reset the goal. if self._num_steps_this_goal > self._goal_timeout: logging.info('seed %d, frame %d: courier target TIMEOUT (%d steps)', streetlearn.seed, streetlearn.frame_count, self._num_steps_this_goal) self._num_steps_this_goal = 0 self._pick_random_goal(streetlearn) (reward, found_goal) = self._compute_reward(streetlearn) # If we have found the goal, set a new one and update episode statistics. if found_goal: logging.info('seed %d, frame %d: courier target FOUND (%d steps)', streetlearn.seed, streetlearn.frame_count, self._num_steps_this_goal) _, num_remaining_panos_to_goal_center = self._shortest_paths( streetlearn, self._current_goal_id, streetlearn.current_pano_id) self._success_inverse_path_len.append( self._compute_spl_current_goal(streetlearn)) self._pick_random_goal(streetlearn) self._num_steps_this_goal = 0 # Give additional reward if current pano has a coin. if streetlearn.current_pano_id in self._coin_pano_id_set: reward += self._reward_per_coin self._coin_pano_id_set.remove(streetlearn.current_pano_id) self._num_steps_this_goal += 1 return reward def get_info(self, streetlearn): """"Returns current information about the state of the environment. Args: streetlearn: a StreetLearn instance. Returns: info: information from the environment at the last step. """ info = super(CourierGame, self).get_info(streetlearn) info['num_steps_this_goal'] = self._num_steps_this_goal info['current_goal_id'] = self._current_goal_id info['min_distance_reached'] = self._min_distance_reached info['initial_distance_to_goal'] = self._initial_distance_to_goal info['reward_current_goal'] = self._reward_current_goal num_successes = len(self._success_inverse_path_len) info['num_successes'] = num_successes info['spl'] = sum(self._success_inverse_path_len) / (num_successes + 1) if num_successes > 0: info['spl_without_last_goal'] = ( sum(self._success_inverse_path_len) / num_successes) else: info['spl_without_last_goal'] = 0 next_pano_id = self._panos_to_goal[streetlearn.current_pano_id] info['next_pano_id'] = next_pano_id bearing_to_next_pano = streetlearn.engine.GetPanoBearing( streetlearn.current_pano_id, next_pano_id) - streetlearn.engine.GetYaw() info['bearing_to_next_pano'] = (bearing_to_next_pano + 180) % 360 - 180 return info def done(self): """Returns a flag indicating the end of the current episode. This game ends only at the end of the episode or if the goal times out. During a single episode, every time a goal is found, a new one is chosen, until the time runs out. """ if self._timed_out: self._timed_out = False return True else: return False def _sample_random_goal(self, streetlearn): """Randomly sets a new pano for the current goal. Args: streetlearn: The StreetLearn environment. """ goals = [goal for goal in streetlearn.graph if ((goal != self._current_goal_id) and (goal != streetlearn.current_pano_id))] self._current_goal_id = np.random.choice(goals) self._min_distance_reached = streetlearn.engine.GetPanoDistance( streetlearn.current_pano_id, self._current_goal_id) self._initial_distance_to_goal = self._min_distance_reached def _pick_random_goal(self, streetlearn): """Randomly sets a new pano for the current goal. Args: streetlearn: The StreetLearn environment. """ self._visited_panos.clear() self._sample_random_goal(streetlearn) logging.info('seed %d, frame %d: new goal id: %s distance: %f', streetlearn.seed, streetlearn.frame_count, self.goal_id, self._min_distance_reached) pano_data = streetlearn.engine.GetMetadata(self.goal_id).pano logging.info('seed %d: new goal at (%f, %f)', streetlearn.seed, pano_data.coords.lat, pano_data.coords.lng) # Compute the extended graph and shortest path to goal to estimate # the reward to give to the agent. shortest_path, num_panos = self._shortest_paths( streetlearn, self._current_goal_id, streetlearn.current_pano_id) self._reward_current_goal = num_panos logging.info('seed %d: goal reward depends on #panos to goal: %d', streetlearn.seed, self._reward_current_goal) # Decorate the graph. self._pano_id_to_color = {coin_pano_id: self._colors['coin'] for coin_pano_id in self._coin_pano_id_set} self._update_pano_id_to_color() for pano_id in six.iterkeys(shortest_path): self._pano_id_to_color[pano_id] = self._colors['shortest_path'] self._pano_id_to_color[self.goal_id] = self._colors['goal'] def _compute_reward(self, streetlearn): """Reward is a piecewise linear function of distance to the goal. If agent is greater than max_radius_meters from the goal, reward is 0. If agent is less than min_radius_reters, reward is max_reward_per_goal. Between min and max radius the reward is linear between 0 and max_reward_per_goal. Args: streetlearn: The StreetLearn environment. Returns: The reward for the current step. """ # Do not give rewards for already visited panos. reward = 0 found_goal = False if streetlearn.current_pano_id in self._visited_panos: return (reward, found_goal) # Mark the pano as visited and compute distance to goal. self._visited_panos.add(streetlearn.current_pano_id) distance_to_goal = streetlearn.engine.GetPanoDistance( streetlearn.current_pano_id, self.goal_id) if distance_to_goal < self._min_radius_meters: # Have we reached the goal? reward = self._reward_current_goal found_goal = True logging.info( 'seed %d, frame %d: reached goal, distance_to_goal=%s, reward=%s', streetlearn.seed, streetlearn.frame_count, distance_to_goal, reward) else: if distance_to_goal < self._max_radius_meters: # Early reward shaping. if distance_to_goal < self._min_distance_reached: reward = (self._reward_current_goal * (self._max_radius_meters - distance_to_goal) / (self._max_radius_meters - self._min_radius_meters)) self._min_distance_reached = distance_to_goal logging.info('seed %d, frame %d: distance_to_goal=%f, reward=%d', streetlearn.seed, streetlearn.frame_count, distance_to_goal, reward) return (reward, found_goal) def _compute_spl_current_goal(self, streetlearn): """Compute the success weighted by inverse path length for the current goal. We use the SPL definition from Eq. 1 in the following paper: Anderson et al. (2018) "On Evaluation of Embodied Navigation Agents" https://arxiv.org/pdf/1807.06757.pdf Args: streetlearn: The StreetLearn environment. Returns: The SPL metric for the current goal. """ # Since reaching the goal is defined as being within a circle around the # goal pano, we subtract the panoramas within that circle from the shortest # path length estimate, as well as from the actual path length. # We add 1 to handle cases when the agent spawned within that circle. _, num_remaining_panos_to_goal = self._shortest_paths( streetlearn, self._current_goal_id, streetlearn.current_pano_id) shortest_path_len = self._reward_current_goal - num_remaining_panos_to_goal shortest_path_len = max(shortest_path_len, 1) actual_path_len = len(self._visited_panos) - num_remaining_panos_to_goal actual_path_len = max(actual_path_len, 1) return shortest_path_len / max(actual_path_len, shortest_path_len)
streetlearn-master
streetlearn/python/environment/courier_game.py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """StreetLearn level for the single instruction-following game with curriculum. In this environment, the agent receives a reward for every waypoint it hits as well as a larger reward for reaching the final goal. At any point in time the agent will receive exactly one instruction, matching the next waypoint. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging from streetlearn.python.environment import instructions_densification class StepByStepInstructionGame( instructions_densification.InstructionsDensification): """StreetLang game for following a single instructions at a time.""" def on_reset(self, streetlearn): """Gets called after StreetLearn:reset(). Args: streetlearn: a streetlearn instance. Returns: A newly populated pano_id_to_color dictionary. """ super(StepByStepInstructionGame, self).on_reset(streetlearn) # Save instruction and thumbnail vectors into a separate holder. # It is sufficient to use _with_goal as this is a superset of the other. self._all_thumbs = self._thumbnails.copy() self._all_instrs = self._instructions # Initialise everything to the first entry self._thumbnails[2:, :] = 0 # Zero all but the first and second one. self._instructions = [self._all_instrs[0]] logging.info(self._all_instrs) logging.info(self._instructions) return self._pano_id_to_color def _check_reward(self, pano_id, streetlearn): """Check what reward the current pano yields, based on instructions. Args: pano_id: centroid pano id. streetlearn: streetlearn graph for establishing neighbours. Returns: The reward for the current step. """ reward = 0 previous_step = self._current_step reward = super(StepByStepInstructionGame, self)._check_reward( pano_id, streetlearn) if previous_step != self._current_step and not self._reached_goal: # If we changed the step, but haven't terminated the game, update instrs. self._thumbnails[0, :] = self._all_thumbs[self._current_step] self._thumbnails[1, :] = ( self._all_thumbs[self._current_step + 1]) self._instructions = [self._all_instrs[self._current_step]] # Remove epsilon from reward to avoid triggering the waypoint switchers. epsilon = 0.01 reward -= epsilon logging.info('Switched from step %d to step %d.', previous_step, self._current_step) logging.info(self._instructions) return reward def get_info(self, streetlearn): """"Returns current information about the state of the environment. Args: streetlearn: a StreetLearn instance. Returns: info: information from the environment at the last step. """ info = super(StepByStepInstructionGame, self).get_info(streetlearn) info['current_step'] = 0 return info
streetlearn-master
streetlearn/python/environment/step_by_step_instruction_game.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Settings for the StreetLearn environment.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy from streetlearn.python.environment import coin_game from streetlearn.python.environment import courier_game from streetlearn.python.environment import curriculum_courier_game from streetlearn.python.environment import exploration_game from streetlearn.python.environment import goal_instruction_game from streetlearn.python.environment import incremental_instruction_game from streetlearn.python.environment import step_by_step_instruction_game DEFAULT_CONFIG = { 'seed': 1234, 'width': 320, 'height': 240, 'graph_width': 320, 'graph_height': 240, 'status_height': 10, 'field_of_view': 60, 'min_graph_depth': 200, 'max_graph_depth': 200, 'max_cache_size': 1000, 'bbox_lat_min': -90.0, 'bbox_lat_max': 90.0, 'bbox_lng_min': -180.0, 'bbox_lng_max': 180.0, 'max_reward_per_goal': 10.0, 'min_radius_meters': 100.0, 'max_radius_meters': 200.0, 'timestamp_start_curriculum': 0.0, 'annealing_rate_curriculum': 2.0, 'hours_curriculum_part_1': 0.0, 'hours_curriculum_part_2': 24.0, 'min_goal_distance_curriculum': 500.0, 'max_goal_distance_curriculum': 3500.0, 'instruction_curriculum_type': 0, 'curriculum_num_instructions_part_1': 2, 'curriculum_bin_distance': 100.0, 'curriculum_frame_cap': False, 'curriculum_frame_cap_part_1': 100, 'max_reward_per_cone': 0.49, 'cone_radius_meters': 50.0, 'goal_timeout': 1000, 'frame_cap': 1000, 'full_graph': True, 'sample_graph_depth': True, 'start_pano': '', 'graph_zoom': 32, 'graph_black_on_white': False, 'show_shortest_path': False, 'calculate_ground_truth': False, 'neighbor_resolution': 8, 'color_for_touched_pano': (1.0, 0.5, 0.5), 'color_for_observer': (0.5, 0.5, 1.0), 'color_for_coin': (1.0, 1.0, 0.0), 'color_for_goal': (1.0, 0.0, 0.0), 'color_for_shortest_path': (1.0, 0.0, 1.0), 'color_for_waypoint': (0, 0.7, 0.7), 'observations': ['view_image', 'graph_image'], 'reward_per_coin': 1.0, 'reward_at_waypoint': 0.5, 'reward_at_goal': 1.0, 'instruction_file': None, 'num_instructions': 5, 'max_instructions': 5, 'proportion_of_panos_with_coins': 0.5, 'game_name': 'coin_game', 'action_spec': 'streetlearn_fast_rotate', 'rotation_speed': 22.5, 'auto_reset': True, } NAME_TO_GAME = { 'coin_game': coin_game.CoinGame, 'courier_game': courier_game.CourierGame, 'curriculum_courier_game': curriculum_courier_game.CurriculumCourierGame, 'exploration_game': exploration_game.ExplorationGame, 'goal_instruction_game': goal_instruction_game.GoalInstructionGame, 'incremental_instruction_game': incremental_instruction_game.IncrementalInstructionGame, 'step_by_step_instruction_game': step_by_step_instruction_game.StepByStepInstructionGame, } def ApplyDefaults(config): result = copy.copy(config) for default_key, default_value in DEFAULT_CONFIG.items(): if not default_key in result: result[default_key] = default_value else: if type(default_value) != type(None): assert type(default_value) == type(result[default_key]) return result def CreateGame(name, config): assert name in NAME_TO_GAME, "Unknown game name: %r" % name return NAME_TO_GAME[name](config)
streetlearn-master
streetlearn/python/environment/default_config.py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """StreetLearn level for the instruction-following game with a curriculum. This environment implements the instruction-following game and selects levels given a particular curriculum strategy, either by slowly increasing the number of instructions per episode, the maximum distance of routes, or both. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import time from absl import logging import numpy as np import six from six.moves import range from streetlearn.python.environment import instructions_base _SECONDS_IN_HOUR = 3600 # Curriculum constants. CURRICULUM_NONE = 0 CURRICULUM_LENGTH_BASED = 1 CURRICULUM_INSTR_BASED = 2 CURRICULUM_LENGTH_INSTR_BASED = 3 # Verbosity constants NUM_TRAJECTORIES_VERBOSE = 10000 class InstructionsCurriculum(instructions_base.InstructionsBase): """Instruction following game with curriculum on distance or #instructions.""" def __init__(self, config): """Creates an instance of the StreetLearn level. Args: config: config dict of various settings. """ super(InstructionsCurriculum, self).__init__(config) # Curriculum types: 0 = none, 1 = dist. to goal, 2 = instructions self._curriculum_type = config['instruction_curriculum_type'] self._timestamp_start = config['timestamp_start_curriculum'] self._hours_curriculum_part_1 = config['hours_curriculum_part_1'] self._hours_curriculum_part_2 = config['hours_curriculum_part_2'] self._steps_plateau = config.get('curriculum_steps_plateau', 0) self._steps_ramp = config.get('curriculum_steps_ramp', 0) self._curriculum_num_instructions_part_1 = config[ 'curriculum_num_instructions_part_1'] self._min_goal_distance = config['min_goal_distance_curriculum'] self._max_goal_distance = config['max_goal_distance_curriculum'] self._curriculum_bin_distance = config['curriculum_bin_distance'] if self._curriculum_type != CURRICULUM_NONE: logging.info('Curriculum starting at time %f', self._timestamp_start) if (self._curriculum_type == CURRICULUM_LENGTH_BASED) or ( self._curriculum_type == CURRICULUM_LENGTH_INSTR_BASED): logging.info('Initial plateau: trajectories of distance at most %f', self._min_goal_distance) logging.info('Training ramps up to trajectories of distance at most %f', self._max_goal_distance) logging.info('Trajectories sorted in bins of distance length %f', self._curriculum_bin_distance) if (self._curriculum_type == CURRICULUM_INSTR_BASED) or ( self._curriculum_type == CURRICULUM_LENGTH_INSTR_BASED): logging.info('Initial plateau: trajectories with %d instructions', self._curriculum_num_instructions_part_1) logging.info('Training ramps up to trajectories with %d instructions', self._num_instructions) logging.info('Initial training plateau lasts for %f hours', self._hours_curriculum_part_1) logging.info('Training ramps up to longer traj. for %f hours', self._hours_curriculum_part_2) # Frame cap curriculum self._curriculum_frame_cap = config['curriculum_frame_cap'] self._curriculum_frame_cap_part_1 = config['curriculum_frame_cap_part_1'] self._curriculum_frame_cap_extra_steps = max( 0, config['frame_cap'] - self._curriculum_frame_cap_part_1) if self._curriculum_frame_cap: logging.info('Initial plateau: trajectories with %d frames', self._curriculum_frame_cap_part_1) logging.info('Training ramps up to trajectories with %d extra frames', self._curriculum_frame_cap_extra_steps) self._init_complete = self.initialize_curricula(True) def initialize_curricula(self, first_init=False): """Initializes the curriculum code. Args: first_init: If true, container variables are created. Should be false for all subsequent calls. Returns: True if curriculum has been fully established, False otherwise. """ num_bins_distance = int(math.ceil( self._max_goal_distance / self._curriculum_bin_distance)) if first_init: self._curriculum_count = 0 self._trajectory_data_map_per_distance = { k: [] for k in range(num_bins_distance + 1) } self._trajectory_data_map_per_waypoints = { k: [] for k in range(self._num_instructions + 1) } if self._curriculum_type == CURRICULUM_LENGTH_BASED: # Bin the trajectories by length for index in range(self._num_trajectories): v = self._trajectory_data[index] self._curriculum_count += 1 # Note: goal.length stores the overall length of a route. bin_distance = int( math.ceil(v.goal.length / self._curriculum_bin_distance)) for k in range(bin_distance, num_bins_distance + 1): self._trajectory_data_map_per_distance[k].append(index) if (self._curriculum_count % NUM_TRAJECTORIES_VERBOSE) == 0: logging.info('Processed %d trajectories', self._curriculum_count) return False for k in range(num_bins_distance + 1): logging.info('%d trajectories with distance at most %f', len(self._trajectory_data_map_per_distance[k]), k * self._curriculum_bin_distance) if self._curriculum_type == CURRICULUM_INSTR_BASED: # Bin the trajectories by number of instructions (waypoints) for index in range(self._num_trajectories): v = self._trajectory_data[index] self._curriculum_count += 1 num_waypoints = len(v.steps) for k in range(num_waypoints, self._num_instructions + 1): self._trajectory_data_map_per_waypoints[k].append(index) if (self._curriculum_count % NUM_TRAJECTORIES_VERBOSE) == 0: logging.info('Processed %d trajectories', self._curriculum_count) return False for k in range(self._num_instructions + 1): logging.info('%d trajectories with %d instructions', len(self._trajectory_data_map_per_waypoints[k]), k) if self._curriculum_type == CURRICULUM_LENGTH_INSTR_BASED: # Bin the trajectories by length and instructions for index in range(self._num_trajectories): v = self._trajectory_data[index] self._curriculum_count += 1 bin_distance = int( math.ceil(v.goal.length / self._curriculum_bin_distance)) for k in range(bin_distance, num_bins_distance + 1): self._trajectory_data_map_per_distance[k].append(index) num_waypoints = len(v.steps) for k in range(num_waypoints, self._num_instructions + 1): self._trajectory_data_map_per_waypoints[k].append(index) if (self._curriculum_count % NUM_TRAJECTORIES_VERBOSE) == 0: logging.info('Processed %d trajectories', self._curriculum_count) return False for k in range(num_bins_distance + 1): logging.info('%d trajectories with distance at most %f', len(self._trajectory_data_map_per_distance[k]), k * self._curriculum_bin_distance) for k in range(self._num_instructions + 1): logging.info('%d trajectories with %d instructions', len(self._trajectory_data_map_per_waypoints[k]), k) return True def on_reset(self, streetlearn): """Gets called after StreetLearn:reset(). Args: streetlearn: a streetlearn instance. Returns: A newly populated pano_id_to_color dictionary. """ # Continue initialization of the curricula. if not self._init_complete: self._init_complete = self.initialize_curricula() return super(InstructionsCurriculum, self).on_reset(streetlearn) def _ratio_training(self): """Updates the fraction of training curriculum based on elapsed time.""" hours_train = (time.time() - self._timestamp_start) / _SECONDS_IN_HOUR if hours_train > self._hours_curriculum_part_1: ratio_training = hours_train - self._hours_curriculum_part_1 ratio_training /= self._hours_curriculum_part_2 ratio_training = max(min(ratio_training, 1.0), 0.0) else: ratio_training = 0 logging.info('Hours elapsed: %f, ratio: %f', hours_train, ratio_training) return ratio_training def _sample_trajectory(self, streetlearn): """Sample a trajectory. Args: streetlearn: Streetlearn instance. Returns: trajectory object. """ if self._curriculum_type != CURRICULUM_NONE or self._curriculum_frame_cap: ratio_training = self._ratio_training() if self._curriculum_frame_cap: # Is there a curriculum on the cap on the number of frames? prev_frame_cap = streetlearn.frame_cap frame_cap = int( math.ceil(self._curriculum_frame_cap_part_1 + ratio_training * self._curriculum_frame_cap_extra_steps)) streetlearn.frame_cap = frame_cap if prev_frame_cap != frame_cap: logging.info('Changing frame cap from %d to %d', prev_frame_cap, frame_cap) if self._curriculum_type == CURRICULUM_NONE: # Skip the curriculum sampling return super(InstructionsCurriculum, self)._sample_trajectory(streetlearn) if self._curriculum_type == CURRICULUM_LENGTH_BASED: # Curriculum based on the length/distance (in m) from start to goal. max_distance = self._min_goal_distance extra_distance = max(0, self._max_goal_distance - self._min_goal_distance) max_distance += math.ceil(extra_distance * ratio_training) logging.info('Max distance: %f', max_distance) bin_distance = int(math.ceil( max_distance / self._curriculum_bin_distance)) map_trajectories = self._trajectory_data_map_per_distance[bin_distance] if self._curriculum_type == CURRICULUM_INSTR_BASED: # Curriculum based on the number of instructions/waypoints. max_num_instructions = self._curriculum_num_instructions_part_1 num_extra_instructions = max( 0, self._num_instructions - self._curriculum_num_instructions_part_1) max_num_instructions += math.ceil(num_extra_instructions * ratio_training) logging.info('Max #instructions: %d', max_num_instructions) map_trajectories = self._trajectory_data_map_per_waypoints[ max_num_instructions] if self._curriculum_type == CURRICULUM_LENGTH_INSTR_BASED: # Curriculum based both on the number of instructions and on length; # at the beginning, only short trajectories with few waypoints are sampled # and at the end, long trajectories with may waypoints are sampled too. # The final set of trajectories from which one can sample is the # intersection of the set of length-based curriculum trajectories and of # the set of instruction-based curriculum trajectories. max_distance = self._min_goal_distance extra_distance = max(0, self._max_goal_distance - self._min_goal_distance) max_distance += math.ceil(extra_distance * ratio_training) logging.info('Max distance: %f', max_distance) bin_distance = int(math.ceil( max_distance / self._curriculum_bin_distance)) map_trajectories_1 = self._trajectory_data_map_per_distance[bin_distance] max_num_instructions = self._curriculum_num_instructions_part_1 num_extra_instructions = max( 0, self._num_instructions - self._curriculum_num_instructions_part_1) max_num_instructions += math.ceil(num_extra_instructions * ratio_training) logging.info('Max #instructions: %d', max_num_instructions) map_trajectories_2 = self._trajectory_data_map_per_waypoints[ max_num_instructions] map_trajectories = list(set(map_trajectories_1) & set(map_trajectories_2)) logging.info('Intersection of two sets: %d & %d -> %d', len(map_trajectories_1), len(map_trajectories_2), len(map_trajectories)) if map_trajectories: i = np.random.choice(map_trajectories) self._trajectory = self._trajectory_data[i] return self._trajectory logging.info('Could not find trajectories for ratio training time/steps %f', ratio_training) logging.info('Sampling trajectory without curriculum') self._trajectory = super(StreetLangTimedCurriculum, self)._sample_trajectory(streetlearn) return self._trajectory
streetlearn-master
streetlearn/python/environment/instructions_curriculum.py
# Copyright 2019 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """StreetLearn level for the single instruction-following game with curriculum. In this environment, the agent receives a reward for every waypoint it hits as well as a larger reward for reaching the final goal. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging from streetlearn.python.environment import instructions_densification class IncrementalInstructionGame( instructions_densification.InstructionsDensification): """StreetLang game with goal and waypoint rewards.""" def __init__(self, config): """Creates an instance of the StreetLearn level. Args: config: config dict of various settings. """ super(IncrementalInstructionGame, self).__init__(config) # Verify that waypoints receive reward. assert self._reward_at_waypoint > 0, "Waypoint reward should be nonzero."
streetlearn-master
streetlearn/python/environment/incremental_instruction_game.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Coin game level. In this environment, the agent receives a reward for every coin it collects. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import numpy as np from streetlearn.engine.python import color from streetlearn.python.environment import game class CoinGame(game.Game): """A simple game that allows an agent to explore the environment and collect coins yielding rewards, randomly scattered through the environment. Can be extended as needed to add more complex game logic.""" def __init__(self, config): """Constructor. Panos can be assigned rewards (coins) randomly and the agent will receive the reward the first time they visit these panos. Args: config: config dict of various settings. """ super(CoinGame, self).__init__() # Create colors from the input lists. self._colors = { 'coin': color.Color(*config['color_for_coin']), 'touched': color.Color(*config['color_for_touched_pano']), } self._reward_per_coin = config['reward_per_coin'] # List of panos (will be populated using the streetlearn object). self._pano_ids = None # Association between pano id and color. self._pano_id_to_color = {} # Panos that (can) contain coins. self._proportion_of_panos_with_coins = config[ 'proportion_of_panos_with_coins'] self._touched_pano_id_set = set() self._coin_pano_id_set = [] self._num_coins = 0 logging.info('Proportion of panos with coins: %f', self._proportion_of_panos_with_coins) logging.info('Reward per coin: %f', self._reward_per_coin) def on_step(self, streetlearn): """Gets called after StreetLearn:step(). Updates the set of touched panos. Args: streetlearn: A streetlearn instance. """ self._touched_pano_id_set.add(streetlearn.current_pano_id) self._update_pano_id_to_color() def on_reset(self, streetlearn): """Gets called after StreetLearn:reset(). Clears the set of touched panos and randomly generates reward-yielding coins and populates pano_id_to_color. Args: streetlearn: a streetlearn instance. Returns: A newly populated pano_id_to_color dictionary. """ logging.info('seed %d, %d/%d coins left, cache size %d, current pano: %s', streetlearn.seed, len(self._coin_pano_id_set), self._num_coins, streetlearn.cache_size, streetlearn.current_pano_id) # Populate list of available panos. if not self._pano_ids: self._pano_ids = sorted(streetlearn.graph) self._touched_pano_id_set.clear() num_pano_ids = len(self._pano_ids) self._num_coins = int(self._proportion_of_panos_with_coins * num_pano_ids) print("Sampling {} coins in graph of {} panos.".format( self._num_coins, num_pano_ids)) self._coin_pano_id_set = np.random.choice( self._pano_ids, self._num_coins, replace=False).tolist() self._pano_id_to_color = {coin_pano_id: self._colors['coin'] for coin_pano_id in self._coin_pano_id_set} return self._pano_id_to_color def get_reward(self, streetlearn): """Returns the reward from the last step. In this game, we give rewards when a coin is collected. Coins can be collected only once per episode and do not reappear. Args: streetlearn: a StreetLearn instance. Returns: reward: the reward from the last step. """ if streetlearn.current_pano_id in self._coin_pano_id_set: reward = self._reward_per_coin self._coin_pano_id_set.remove(streetlearn.current_pano_id) else: reward = 0 return reward def get_info(self, streetlearn): """"Returns current information about the state of the environment. Args: streetlearn: a StreetLearn instance. Returns: info: information from the environment at the last step. """ info = {} info['num_coins_left'] = len(self._coin_pano_id_set) info['num_coins'] = self._num_coins info['current_pano_id'] = streetlearn.current_pano_id return info def done(self): """Returns a flag indicating the end of the current episode. This game does not end when all the coins are collected. """ return False def highlighted_panos(self): """Returns the list of highlighted panos and their colors.""" return self._pano_id_to_color def _update_pano_id_to_color(self): """Update the pano id to color table.""" self._pano_id_to_color.update({touched_pano_id: self._colors['touched'] for touched_pano_id in self._touched_pano_id_set})
streetlearn-master
streetlearn/python/environment/coin_game.py
# Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Setup module for turning StreetLearn into a pip package. Based on: https://github.com/google/nucleus/blob/master/nucleus/pip_package/setup.py This should be invoked through build_pip_package.sh, rather than run directly. """ import fnmatch import os from setuptools import find_packages from setuptools import setup def find_files(pattern, root): """Return all the files matching pattern below root dir.""" for dirpath, _, files in os.walk(root): for filename in fnmatch.filter(files, pattern): yield os.path.join(dirpath, filename) def is_python_file(fn): return fn.endswith('.py') or fn.endswith('.pyc') headers = list(find_files('*.h', 'streetlearn')) matches = ['../' + x for x in find_files('*', 'external') if not is_python_file(x)] so_lib_paths = [ i for i in os.listdir('.') if os.path.isdir(i) and fnmatch.fnmatch(i, '_solib_*') ] for path in so_lib_paths: matches.extend(['../' + x for x in find_files('*', path) if not is_python_file(x)]) setup( name='streetlearn', version='0.1.0', description='A library to aid navigation research.', long_description= """ TODO """, url='https://github.com/deepmind/streetlearn', author='The StreetLearn Team at DeepMind', author_email='streetlearn@google.com', license='Apache 2.0', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Software Development :: Libraries :: Python Modules', ], keywords='navigation tensorflow machine learning', packages=find_packages(exclude=['g3doc', 'testdata']), install_requires=['six', 'absl-py', 'inflection', 'wrapt', 'numpy', 'dm-sonnet', 'tensorflow', 'tensorflow-probability'], headers=headers, include_package_data=True, package_data={'streetlearn': matches}, data_files=[], entry_points={}, project_urls={ 'Source': 'https://github.com/deepmind/streetlearn', 'Bug Reports': 'https://github.com/deepmind/streetlearn/issues', }, zip_safe=False, )
streetlearn-master
streetlearn/pip_package/setup.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for streetlearn_engine clif bindings.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from absl.testing import absltest from streetlearn.engine.python import streetlearn_engine from streetlearn.engine.python.test_dataset import TestDataset _PANO_OFFSET = 32 class StreetlearnEngineTest(absltest.TestCase): def setUp(self): TestDataset.Generate() self.dataset_path = TestDataset.GetPath() def test_build_graph(self): engine = streetlearn_engine.StreetLearnEngine.Create( self.dataset_path, TestDataset.kImageWidth, TestDataset.kImageHeight) engine.InitEpisode(0, 0) root = engine.BuildGraphWithRoot('1') self.assertEqual(root, '1') # Check that the right sized graph is returned. engine.BuildRandomGraph() graph = engine.GetGraph() self.assertEqual(len(graph), TestDataset.kPanoCount) def test_set_position(self): engine = streetlearn_engine.StreetLearnEngine.Create( self.dataset_path, TestDataset.kImageWidth, TestDataset.kImageHeight) engine.InitEpisode(0, 0) engine.BuildGraphWithRoot('1') # Set position a couple of times and check the result. self.assertEqual(engine.SetPosition('1'), '1') self.assertEqual(engine.GetPano().id, '1') self.assertEqual(engine.SetPosition('2'), '2') self.assertEqual(engine.GetPano().id, '2') # Currently facing north so cannot move to the next pano. self.assertEqual(engine.MoveToNextPano(), '2') # Rotate to face the next pano and move should succeed. engine.RotateObserver(_PANO_OFFSET, 0.0) self.assertEqual(engine.MoveToNextPano(), '3') self.assertEqual(engine.GetPano().id, '3') def test_pano_calculations(self): engine = streetlearn_engine.StreetLearnEngine.Create( self.dataset_path, TestDataset.kImageWidth, TestDataset.kImageHeight) engine.InitEpisode(0, 0) engine.BuildGraphWithRoot('1') self.assertEqual(engine.GetPitch(), 0) self.assertEqual(engine.GetYaw(), 0) self.assertAlmostEqual(engine.GetPanoDistance('1', '2'), 130.902, 3) def test_observation(self): engine = streetlearn_engine.StreetLearnEngine.Create( self.dataset_path, TestDataset.kImageWidth, TestDataset.kImageHeight) engine.InitEpisode(0, 0) engine.BuildGraphWithRoot('1') # Check that obervations have the right values. buffer_size = 3 * TestDataset.kImageWidth * TestDataset.kImageHeight obs = np.zeros(buffer_size, dtype=np.ubyte) engine.RenderObservation(obs) for i in range(0, TestDataset.kImageHeight): for j in range(0, TestDataset.kImageWidth): index = i * TestDataset.kImageWidth + j self.assertIn(obs[index], range(0, 232)) def test_neighbors(self): engine = streetlearn_engine.StreetLearnEngine.Create( self.dataset_path, TestDataset.kImageWidth, TestDataset.kImageHeight) engine.InitEpisode(0, 0) engine.BuildGraphWithRoot('1') engine.SetPosition('2') # Should have two neighbors. occupancy = engine.GetNeighborOccupancy(4) self.assertEqual(len(occupancy), 4) self.assertEqual(occupancy[0], 1) self.assertEqual(occupancy[1], 0) self.assertEqual(occupancy[2], 1) self.assertEqual(occupancy[3], 0) def test_metadata(self): engine = streetlearn_engine.StreetLearnEngine.Create( self.dataset_path, TestDataset.kImageWidth, TestDataset.kImageHeight) engine.InitEpisode(0, 0) engine.BuildGraphWithRoot('1') # Check that the right metadata is returned. metadata = engine.GetMetadata('1') self.assertEqual(metadata.pano.id, '1') self.assertEqual(len(metadata.neighbors), 1) self.assertEqual(metadata.neighbors[0].id, '2') self.assertEqual(metadata.graph_depth, 10) if __name__ == '__main__': absltest.main()
streetlearn-master
streetlearn/engine/python/streetlearn_engine_test.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
streetlearn-master
streetlearn/engine/python/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XManager."""
xmanager-main
__init__.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup configuration specifying XManager dependencies.""" from setuptools import find_namespace_packages from setuptools import setup with open('README.md', 'r', encoding='utf-8') as fh: long_description = fh.read() setup( name='xmanager', version='0.4.0', description='A framework for managing machine learning experiments', long_description=long_description, long_description_content_type='text/markdown', author='DeepMind Technologies Limited', packages=find_namespace_packages(exclude=['examples.*']), package_data={'': ['*.sh', '*.sql', '*.ini', '*.mako']}, python_requires='>=3.10', install_requires=[ 'absl-py', 'alembic==1.4.3', 'async_generator', 'attrs', 'cloud-sql-python-connector', 'docker', 'etils[epath]', 'google-api-core', 'google-api-python-client', 'google-auth', 'google-cloud-aiplatform', 'google-cloud-storage', 'humanize', 'immutabledict', 'kubernetes', 'pyyaml', 'sqlalchemy==1.2.19', 'sqlparse', 'termcolor', ], entry_points={ 'console_scripts': [ 'xmanager = xmanager.cli.cli:entrypoint', ], }, # https://github.com/pypa/warehouse/blob/de4a2e5e2ec26d01bf7813da427ebc4725dccde9/warehouse/templates/packaging/detail.html#L20-L60 project_urls={ 'Homepage': 'https://github.com/deepmind/xmanager', 'Issue tracker': 'https://github.com/deepmind/xmanager/issues', }, )
xmanager-main
setup.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager launcher for CIFAR10 using TF's MultiWorkerMirroredStrategy using the Kubernetes back-end. Usage: xmanager launch examples/cifar10_tensorflow_k8s_multiworker/launcher.py -- \ --xm_wrap_late_bindings [--image_path=gcr.io/path/to/image/tag] """ import itertools from absl import app from xmanager import xm from xmanager import xm_local from xmanager.contrib import xm_tensorflow def main(_): with xm_local.create_experiment( experiment_title='kubernetes_multiworker' ) as experiment: spec = xm.PythonContainer( # Package the current directory that this script is in. path='.', base_image='gcr.io/deeplearning-platform-release/tf2-gpu.2-6', entrypoint=xm.ModuleName('cifar10'), ) [executable] = experiment.package( [ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Kubernetes.Spec(), args={}, ), ] ) learning_rates = [0.001] trials = list( dict([('learning_rate', lr)]) for (lr,) in itertools.product(learning_rates) ) builder = xm_tensorflow.MultiWorkerMirroredStrategyBuilder( experiment=experiment, worker_executable=executable, worker_executor=xm_local.Kubernetes( requirements=xm.JobRequirements(t4=1) ), worker_name='worker', num_workers=3, ) for hyperparameters in trials: experiment.add(builder.gen_job_group(), args=hyperparameters) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow_k8s_multiworker/launcher.py
# Copyright 2021 The Tensorflow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code based on https://www.tensorflow.org/tutorials/images/cnn.""" import os from absl import app from absl import flags import tensorflow as tf from tensorflow.keras import datasets from tensorflow.keras import layers from tensorflow.keras import models # When using Vertex Tensorboard, the tensorboard will be present as a # environment variable. LOG_DIR = os.environ.get('AIP_TENSORBOARD_LOG_DIR', '') FLAGS = flags.FLAGS flags.DEFINE_integer('epochs', 5, 'epochs') flags.DEFINE_float('learning_rate', 0.001, 'learning rate') def main(_): strategy = tf.distribute.MultiWorkerMirroredStrategy() with strategy.scope(): model = models.Sequential() model.add( layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)) ) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) optimizer = tf.keras.optimizers.Adam(learning_rate=FLAGS.learning_rate) model.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'], ) callbacks = [] if LOG_DIR: callbacks = [ tf.keras.callbacks.TensorBoard( log_dir=LOG_DIR, histogram_freq=1, ), ] (train_images, train_labels), (test_images, test_labels) = ( datasets.cifar10.load_data() ) # Normalize pixel values to be between 0 and 1 train_images, test_images = train_images / 255.0, test_images / 255.0 train_dataset = tf.data.Dataset.from_tensor_slices( (train_images, train_labels) ) validation_dataset = tf.data.Dataset.from_tensor_slices( (test_images, test_labels) ) train_dataset = train_dataset.batch(32) validation_dataset = validation_dataset.batch(32) options = tf.data.Options() options.experimental_distribute.auto_shard_policy = ( tf.data.experimental.AutoShardPolicy.DATA ) train_dataset.with_options(options) validation_dataset.with_options(options) model.fit( train_dataset, epochs=FLAGS.epochs, validation_data=validation_dataset, callbacks=callbacks, verbose=2, ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow_k8s_multiworker/cifar10.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager launcher for CIFAR10. Usage: xmanager launch examples/cifar10_tensorflow_tpu/launcher.py """ import asyncio import itertools import os from absl import app from absl import flags from xmanager import xm from xmanager import xm_local from xmanager.cloud import build_image from xmanager.cloud import vertex from xmanager.contrib import tpu FLAGS = flags.FLAGS flags.DEFINE_string('tensorboard', None, 'Tensorboard instance.') def main(_): with xm_local.create_experiment(experiment_title='cifar10') as experiment: directory = os.path.basename(os.path.dirname(os.path.realpath(__file__))) # pyformat: disable spec = xm.PythonContainer( # Package the current directory that this script is in. path='.', # tpuvm requires Python3.8 and GLIBC_2.29, which requires at least # debian:11 or ubuntu:20.04 base_image='ubuntu:20.04', docker_instructions=( ['RUN apt-get update && apt-get install -y python-is-python3 python3-pip wget'] + # pylint: disable=line-too-long build_image.default_steps(directory, use_deep_module=False) + tpu.tpuvm_docker_instructions()), entrypoint=xm.ModuleName('cifar10'), ) # pyformat: enable [executable] = experiment.package( [ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Vertex.Spec(), args={}, ), ] ) learning_rates = [0.1, 0.001] trials = list( dict([('learning_rate', lr)]) for (lr,) in itertools.product(learning_rates) ) tensorboard = FLAGS.tensorboard if not tensorboard: tensorboard = vertex.get_default_client().get_or_create_tensorboard( 'cifar10' ) tensorboard = asyncio.get_event_loop().run_until_complete(tensorboard) for i, hyperparameters in enumerate(trials): output_dir = os.environ.get('GOOGLE_CLOUD_BUCKET_NAME', None) if output_dir: output_dir = os.path.join( output_dir, str(experiment.experiment_id), str(i) ) tensorboard_capability = xm_local.TensorboardCapability( name=tensorboard, base_output_directory=output_dir ) experiment.add( xm.Job( executable=executable, executor=xm_local.Vertex( requirements=xm.JobRequirements(tpu_v2=8), tensorboard=tensorboard_capability, ), args=hyperparameters, ) ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow_tpu/launcher.py
# Copyright 2021 The Tensorflow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code based on https://www.tensorflow.org/tutorials/images/cnn.""" import os from absl import app from absl import flags import tensorflow as tf from tensorflow.keras import datasets from tensorflow.keras import layers from tensorflow.keras import models # When using Vertex Tensorboard, the tensorboard will be present as a # environment variable. LOG_DIR = os.environ.get('AIP_TENSORBOARD_LOG_DIR', '') FLAGS = flags.FLAGS flags.DEFINE_integer('epochs', 5, 'epochs') flags.DEFINE_float('learning_rate', 0.001, 'learning rate') def main(_): (train_images, train_labels), (test_images, test_labels) = ( datasets.cifar10.load_data() ) # Normalize pixel values to be between 0 and 1 train_images, test_images = train_images / 255.0, test_images / 255.0 resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='local') tf.config.experimental_connect_to_cluster(resolver) tf.tpu.experimental.initialize_tpu_system(resolver) strategy = tf.distribute.TPUStrategy(resolver) with strategy.scope(): model = models.Sequential() model.add( layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)) ) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) optimizer = tf.keras.optimizers.Adam(learning_rate=FLAGS.learning_rate) model.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'], ) callbacks = [] if LOG_DIR: callbacks = [ tf.keras.callbacks.TensorBoard( log_dir=LOG_DIR, histogram_freq=1, ), ] model.fit( train_images, train_labels, epochs=FLAGS.epochs, validation_data=(test_images, test_labels), callbacks=callbacks, verbose=2, ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow_tpu/cifar10.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager launcher for CIFAR10. Usage: xmanager launch examples/cifar10_torch/launcher.py -- \ --xm_wrap_late_bindings \ [--image_path=gcr.io/path/to/image/tag] \ [--platform=gpu] """ import itertools from absl import app from absl import flags from xmanager import xm from xmanager import xm_local FLAGS = flags.FLAGS flags.DEFINE_string('image_path', None, 'Image path.') flags.DEFINE_string('platform', 'cpu', 'cpu/gpu/tpu.') flags.DEFINE_integer('cores', 1, 'Number of cores. Use 8 if platform==tpu.') def main(_): with xm_local.create_experiment(experiment_title='cifar10') as experiment: if FLAGS.image_path: spec = xm.Container(image_path=FLAGS.image_path) else: # Package the current directory that this script is in. spec = xm.PythonContainer( path='.', # This base_image is experimental and works with cpu/gpu/tpu. # https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container base_image='gcr.io/deeplearning-platform-release/pytorch-xla.1-8', entrypoint=xm.ModuleName('cifar10'), ) [executable] = experiment.package( [ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Vertex.Spec(), args={'platform': FLAGS.platform}, ), ] ) batch_sizes = [64, 1024] learning_rates = [0.1, 0.001] trials = list( dict([('batch_size', bs), ('learning_rate', lr)]) for (bs, lr) in itertools.product(batch_sizes, learning_rates) ) requirements = xm.JobRequirements() if FLAGS.platform == 'gpu': requirements = xm.JobRequirements(t4=FLAGS.cores) elif FLAGS.platform == 'tpu': requirements = xm.JobRequirements(tpu_v3=8) for hyperparameters in trials: jobs = {} jobs['coordinator'] = xm.Job( executable=executable, executor=xm_local.Vertex(requirements), args=hyperparameters, ) experiment.add(xm.JobGroup(**jobs)) break print('Waiting for async launches to return values...') print('Launch completed and successful.') if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_torch_xla/launcher.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trainer for CIFAR-10 using PyTorch XLA on TPUs.""" import os from absl import app from absl import flags import torch from torch import nn from torch import optim import torch_xla # pylint: disable=unused-import from torch_xla.core import xla_model from torch_xla.debug import metrics from torch_xla.distributed import parallel_loader from torch_xla.distributed import xla_multiprocessing as xmp import torchvision from torchvision import datasets from torchvision import transforms FLAGS = flags.FLAGS flags.DEFINE_integer('epochs', 5, 'epochs') flags.DEFINE_integer('batch_size', 128, 'batch size') flags.DEFINE_float('learning_rate', 0.1, 'learning rate') flags.DEFINE_float('momentum', 0.9, 'momentum') flags.DEFINE_string('platform', 'cpu', 'cpu/gpu/tpu') _DATA_DIR = '/tmp/cifar10/' _SERIAL_EXEC = xmp.MpSerialExecutor() def get_dataset(): """Download the datasets.""" transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) train_dataset = datasets.CIFAR10( root=_DATA_DIR, train=True, download=True, transform=transform ) test_dataset = datasets.CIFAR10( root=_DATA_DIR, train=False, download=True, transform=transform ) return train_dataset, test_dataset def train(model, loader, optimizer, loss_fn): """Train the model.""" model.train() for images, labels in loader: optimizer.zero_grad() output = model(images) loss = loss_fn(output, labels) loss.backward() xla_model.optimizer_step(optimizer) def test(model, loader): """Test the model for accuracy.""" model.eval() total = 0 correct = 0 with torch.no_grad(): for images, labels in loader: output = model(images) predictions = output.max(1, keepdim=True)[1] total += labels.size(0) correct += predictions.eq(labels.view_as(predictions)).sum().item() return correct / total def _mp_fn(_, args): """Multiprocessing main function to call.""" torch.manual_seed(0) # Using the serial executor avoids multiple processes # to download the same data. train_dataset, test_dataset = _SERIAL_EXEC.run(get_dataset) train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, num_replicas=xla_model.xrt_world_size(), rank=xla_model.get_ordinal(), shuffle=True, ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args['batch_size'], sampler=train_sampler, drop_last=True, ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=args['batch_size'], shuffle=False, drop_last=True ) device = xla_model.xla_device() resnet_model = torchvision.models.resnet18(pretrained=False) wrapped_model = xmp.MpModelWrapper(resnet_model) model = wrapped_model.to(device) optimizer = optim.SGD( model.parameters(), lr=args['learning_rate'], momentum=args['momentum'] ) loss_fn = nn.NLLLoss() for epoch in range(args['epochs']): para_loader = parallel_loader.ParallelLoader(train_loader, [device]) train(model, para_loader.per_device_loader(device), optimizer, loss_fn) para_loader = parallel_loader.ParallelLoader(test_loader, [device]) accuracy = test(model, para_loader.per_device_loader(device)) xla_model.master_print('Finished training epoch {}'.format(epoch)) xla_model.master_print( '[xla:{}] Accuracy={:.2f}%'.format(xla_model.get_ordinal(), accuracy), flush=True, ) xla_model.master_print(metrics.metrics_report(), flush=True) def main(_): nprocs = 1 if FLAGS.platform == 'gpu': os.environ['GPU_NUM_DEVICES'] = str(torch.cuda.device_count()) os.environ['XLA_FLAGS'] = '--xla_gpu_cuda_data_dir=/usr/local/cuda/' nprocs = 1 elif FLAGS.platform == 'tpu': # Only import tensorflow to get TPUClusterResolver() import tensorflow as tf # pylint: disable=g-import-not-at-top cluster = tf.distribute.cluster_resolver.TPUClusterResolver() print('TPU master:', cluster.master()) master = cluster.master().split('://')[-1] os.environ['XRT_TPU_CONFIG'] = f'tpu_worker;0;{master}' nprocs = 8 # We convert FLAGS to a dict, so it can be passed to spawned processes. # When calling spawn, FLAGS will be reset and the parsed values are lost. # The FLAGS object cannot be passed via args because it cannot be pickled. args = dict(FLAGS.__flags) # pylint: disable=protected-access for k in args: args[k] = args[k].value if args[k].present else args[k].default xmp.spawn( _mp_fn, nprocs=nprocs, start_method='fork', args=(args,), ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_torch_xla/cifar10.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The entry point for running a Dopamine agent.""" import os from absl import app from absl import flags from absl import logging from dopamine.discrete_domains import run_experiment import tensorflow as tf FLAGS = flags.FLAGS flags.DEFINE_multi_string( 'gin_files', [], ( 'List of paths to gin configuration files (e.g.' '"dopamine/agents/dqn/dqn.gin").' ), ) # When using Vertex Tensorboard, the tensorboard will be present as a # environment variable. BASE_DIR = os.environ.get('AIP_TENSORBOARD_LOG_DIR', '/tmp/dopamine_runs') def main(unused_argv): logging.set_verbosity(logging.INFO) tf.compat.v1.disable_v2_behavior() run_experiment.load_gin_configs(FLAGS.gin_files, []) runner = run_experiment.create_runner(BASE_DIR) runner.run_experiment() if __name__ == '__main__': app.run(main)
xmanager-main
examples/dopamine/train.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Launcher for Dopamine. Usage: xmanager launch examples/dopaminelauncher.py -- \ --gin_file=https://raw.githubusercontent.com/google/dopamine/master/dopamine/agents/dqn/configs/dqn_mountaincar.gin """ import asyncio import os from absl import app from absl import flags from xmanager import xm from xmanager import xm_local from xmanager.cloud import vertex FLAGS = flags.FLAGS flags.DEFINE_string( 'gin_file', 'https://raw.githubusercontent.com/google/dopamine/master/dopamine/agents/dqn/configs/dqn_mountaincar.gin', 'Gin file pulled from https://github.com/google/dopamine.', ) flags.DEFINE_string('tensorboard', None, 'Tensorboard instance.') def main(_): with xm_local.create_experiment(experiment_title='dopamine') as experiment: gin_file = os.path.basename(FLAGS.gin_file) add_instruction = f'ADD {FLAGS.gin_file} {gin_file}' if FLAGS.gin_file.startswith('http'): add_instruction = f'RUN wget -O ./{gin_file} {FLAGS.gin_file}' spec = xm.PythonContainer( docker_instructions=[ 'RUN apt update && apt install -y python3-opencv', 'RUN pip install dopamine-rl', 'COPY dopamine/ workdir', 'WORKDIR workdir', add_instruction, ], entrypoint=xm.ModuleName('train'), ) [executable] = experiment.package( [ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Vertex.Spec(), args={ 'gin_files': gin_file, }, ), ] ) tensorboard = FLAGS.tensorboard if not tensorboard: tensorboard = vertex.get_default_client().get_or_create_tensorboard( 'cifar10' ) tensorboard = asyncio.get_event_loop().run_until_complete(tensorboard) output_dir = os.environ['GOOGLE_CLOUD_BUCKET_NAME'] output_dir = os.path.join(output_dir, str(experiment.experiment_id)) tensorboard_capability = xm_local.TensorboardCapability( name=tensorboard, base_output_directory=output_dir ) experiment.add( xm.Job( executable=executable, executor=xm_local.Vertex( xm.JobRequirements(t4=1), tensorboard=tensorboard_capability ), ) ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/dopamine/launcher.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager launcher for CIFAR10. Usage: xmanager launch examples/cifar10_torch/launcher.py -- \ --xm_wrap_late_bindings [--image_path=gcr.io/path/to/image/tag] """ import itertools from absl import app from absl import flags from xmanager import xm from xmanager import xm_local from xmanager.cloud import utils FLAGS = flags.FLAGS flags.DEFINE_string('image_path', None, 'Image path.') flags.DEFINE_integer('nodes', 1, 'Number of nodes.') flags.DEFINE_integer('gpus_per_node', 2, 'Number of GPUs per node.') @xm.run_in_asyncio_loop async def main(_): async with xm_local.create_experiment( experiment_title='cifar10' ) as experiment: if FLAGS.image_path: spec = xm.Container(image_path=FLAGS.image_path) else: spec = xm.PythonContainer( # Package the current directory that this script is in. path='.', base_image='gcr.io/deeplearning-platform-release/pytorch-gpu.1-12', entrypoint=xm.ModuleName('cifar10'), ) [executable] = experiment.package( [ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Vertex.Spec(), args={ # TODO: replace workerpool0 with the actual # name of the job when Vertex AI supports custom name worker # pools. 'master_addr_port': xm.ShellSafeArg( utils.get_workerpool_address('workerpool0') ), }, ), ] ) batch_sizes = [64, 1024] learning_rates = [0.1, 0.001] trials = list( dict([('batch_size', bs), ('learning_rate', lr)]) for (bs, lr) in itertools.product(batch_sizes, learning_rates) ) work_units = [] for hyperparameters in trials: job_group = xm.JobGroup() for i in range(FLAGS.nodes): hyperparameters = dict(hyperparameters) hyperparameters['world_size'] = FLAGS.nodes hyperparameters['rank'] = i job_group.jobs[f'node_{i}'] = xm.Job( executable=executable, executor=xm_local.Vertex( xm.JobRequirements(t4=FLAGS.gpus_per_node) ), args=hyperparameters, ) work_units.append(await experiment.add(job_group)) print('Waiting for async launches to return values...') for work_unit in work_units: await work_unit.wait_until_complete() print('Experiment completed.') if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_torch/launcher.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trainer for CIFAR-10 using PyTorch on GPUs. This script has been tested with image: nvidia/cuda:10.1 pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 CUDA >= 10.2 returns an NCCL error. """ from absl import app from absl import flags import numpy as np import torch from torch import distributed from torch import multiprocessing from torch import nn from torch import optim from torch.nn import parallel from torch.utils import data import torchvision from torchvision import transforms # pylint: disable=g-import-not-at-top try: from xmanager.cloud import utils as vertex_utils except ModuleNotFoundError: import vertex_utils # a copy of vertex_utils.py is present in the directory. # pylint: enable=g-import-not-at-top FLAGS = flags.FLAGS flags.DEFINE_string('master_addr_port', None, 'master address and port.') flags.DEFINE_integer( 'world_size', 1, 'Number of nodes/clusters participating in the job.' ) flags.DEFINE_integer('rank', 0, 'Rank of the current node/cluster.') flags.DEFINE_string('train_dir', '/tmp/cifar10/train', 'train directory') flags.DEFINE_string('test_dir', '/tmp/cifar10/test', 'test directory') flags.DEFINE_integer('epochs', 5, 'epochs') flags.DEFINE_integer('batch_size', 128, 'batch size') flags.DEFINE_float('learning_rate', 0.1, 'learning rate') flags.DEFINE_float('momentum', 0.9, 'momentum') def train(model, train_loader, device, optimizer, criterion): """Train the model.""" model.train() for images, labels in train_loader: images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() def test(model, device, test_loader): """Test the model.""" model.eval() total = 0 correct = 0 with torch.no_grad(): for images, labels in test_loader: images, labels = images.to(device), labels.to(device) output = model(images) predictions = output.max(1, keepdim=True)[1] total += labels.size(0) correct += predictions.eq(labels.view_as(predictions)).sum().item() return correct / total def main_worker( gpu, master_addr, master_port, world_size, node_rank, ngpus_per_node, args ): """The main method each spawned process runs.""" world_size = world_size * ngpus_per_node world_rank = node_rank * ngpus_per_node + gpu tcp_address = f'tcp://{master_addr}:{master_port}' distributed.init_process_group( backend='nccl', init_method=tcp_address, world_size=world_size, rank=world_rank, ) # It is the user's responsibility that each process has the same model. torch.manual_seed(0) np.random.seed(0) batch_size = args['batch_size'] // ngpus_per_node model = torchvision.models.resnet18(pretrained=False) device = torch.device('cuda:{}'.format(gpu)) model = model.to(device) model = parallel.DistributedDataParallel(model, device_ids=[gpu]) transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) train_set = torchvision.datasets.CIFAR10( root=args['train_dir'], train=True, download=False, transform=transform ) test_set = torchvision.datasets.CIFAR10( root=args['test_dir'], train=False, download=False, transform=transform ) train_sampler = data.distributed.DistributedSampler(dataset=train_set) train_loader = data.DataLoader( dataset=train_set, pin_memory=True, batch_size=batch_size, sampler=train_sampler, ) test_loader = data.DataLoader( dataset=test_set, pin_memory=True, shuffle=False ) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD( model.parameters(), lr=args['learning_rate'], momentum=args['momentum'] ) for epoch in range(args['epochs']): print('[rank:{}] epoch {}'.format(world_rank, epoch)) train(model, train_loader, device, optimizer, criterion) accuracy = test(model, device, test_loader) print('[rank:{}] accuracy: {}'.format(world_rank, accuracy)) def main(_): # Download the dataset from the main process only once. # Otherwise, each spawned process will try to download to the same directory. torchvision.datasets.CIFAR10(root=FLAGS.train_dir, train=True, download=True) torchvision.datasets.CIFAR10(root=FLAGS.test_dir, train=False, download=True) master_addr = None master_port = None if FLAGS.master_addr_port is not None: [master_addr, master_port] = FLAGS.master_addr_port.split(':') world_size = FLAGS.world_size node_rank = FLAGS.rank if master_addr is None or master_port is None: master_addr, master_port = vertex_utils.get_master_address_port() world_size, node_rank = vertex_utils.get_world_size_rank() ngpus_per_node = torch.cuda.device_count() # We convert FLAGS to a dict, so it can be passed to spawned processes. # When calling spawn, FLAGS will be reset and the parsed values are lost. # The FLAGS object cannot be passed via args because it cannot be pickled. args = dict(FLAGS.__flags) # pylint: disable=protected-access for k in args: args[k] = args[k].value if args[k].present else args[k].default multiprocessing.spawn( main_worker, nprocs=ngpus_per_node, args=( master_addr, master_port, world_size, node_rank, ngpus_per_node, args, ), ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_torch/cifar10.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XManager launcher that runs an image built from a Dockerfile.""" from typing import Sequence from absl import app from xmanager import xm from xmanager import xm_local def main(argv: Sequence[str]) -> None: del argv with xm_local.create_experiment( experiment_title='Example using Dockerfile()' ) as experiment: executable_spec = xm.Dockerfile() [executable] = experiment.package( [ xm.Packageable( executable_spec=executable_spec, executor_spec=xm_local.Vertex.Spec(), ), ] ) experiment.add( xm.Job( executable=executable, executor=xm_local.Vertex(), env_vars={'FOO': 'bar'}, args=['--a=1', '--b=2', '--c=3', '--d=4'], ) ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/dockerfile/launcher.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager launcher for a parameter controller example. The given program launches a dummy job on VertexAI, waits for its completion and then launches another job on Kubernetes. This kind of workflow can be used to define pipelines. Usage: xmanager launch examples/parameter_controller/launcher.py -- \ --xm_db_yaml_config=db_config.yaml [--xm_k8s_service_account_name=...] [--xm_gcp_service_account_name=...] The content of `db_config.yaml` must be updated to match the connection details to the DB used. """ import os from absl import app from absl import flags from xmanager import xm from xmanager import xm_local from xmanager.contrib import parameter_controller def main(_): with xm_local.create_experiment(experiment_title='cifar10') as experiment: @parameter_controller.controller( executor=xm_local.Kubernetes(), controller_args={ 'xm_k8s_service_account_name': ( flags.FLAGS.xm_k8s_service_account_name ), 'xm_gcp_service_account_name': ( flags.FLAGS.xm_gcp_service_account_name ), }, controller_env_vars={ 'GOOGLE_CLOUD_BUCKET_NAME': os.environ['GOOGLE_CLOUD_BUCKET_NAME'], }, # Package contents of this directory inside parameter controller job package_path='.', ) async def parameter_controller_example(experiment: xm.Experiment): spec = xm.PythonContainer( # Package contents of job to be launched path='inner_job', base_image='python:3.9', entrypoint=xm.ModuleName('wait_job'), ) [vertex_executable, k8s_executable] = experiment.package([ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Vertex.Spec(), args={'time_to_sleep': 10}, ), xm.Packageable( executable_spec=spec, executor_spec=xm_local.Kubernetes.Spec(), args={'time_to_sleep': 20}, ), ]) wu1 = await experiment.add(xm.Job(k8s_executable, xm_local.Kubernetes())) await wu1.wait_until_complete() wu2 = await experiment.add(xm.Job(vertex_executable, xm_local.Vertex())) await wu2.wait_until_complete() experiment.add(parameter_controller_example()) # pylint: disable=no-value-for-parameter if __name__ == '__main__': app.run(main)
xmanager-main
examples/parameter_controller/launcher.py
"""Job waiting.""" import time from absl import app from absl import flags _TIME_TO_SLEEP = flags.DEFINE_integer('time_to_sleep', 10, 'Time to sleep.') def main(_): print(f'Hello, waiting for {_TIME_TO_SLEEP.value}...') time.sleep(_TIME_TO_SLEEP.value) print('Done!') if __name__ == '__main__': app.run(main)
xmanager-main
examples/parameter_controller/inner_job/wait_job.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An HTTP server incrementing a value in Redis.""" from typing import Sequence from absl import app from absl import flags import bottle import bottle.ext.redis redis_host = flags.DEFINE_string('redis_host', None, "Redis' host.") server = bottle.Bottle() @server.route('/increment') def increment(rdb): return str(rdb.incr('counter')) def main(argv: Sequence[str]) -> None: del argv # Unused. server.install(bottle.ext.redis.RedisPlugin(host=redis_host.value)) bottle.run(server, host='0.0.0.0', port=8080, debug=True) if __name__ == '__main__': app.run(main)
xmanager-main
examples/local_container_links/server.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A launcher for server.py and Redis. See README.md for details. """ from typing import Sequence from absl import app from xmanager import xm from xmanager import xm_local def main(argv: Sequence[str]) -> None: del argv # Unused. with xm_local.create_experiment( experiment_title='local_container_links' ) as experiment: [redis, server] = experiment.package([ xm.Packageable( executable_spec=xm.Container(image_path='redis'), executor_spec=xm_local.Local.Spec(), ), xm.Packageable( executable_spec=xm.BazelContainer(label='//:server_image.tar'), executor_spec=xm_local.Local.Spec(), ), ]) async def generator(work_unit): work_unit.add( xm.JobGroup( server=xm.Job( executable=server, executor=xm_local.Local( docker_options=xm_local.DockerOptions(ports={8080: 8080}) ), args={'redis_host': work_unit.get_full_job_name('redis')}, ), redis=xm.Job( name='redis', executable=redis, executor=xm_local.Local( docker_options=xm_local.DockerOptions( volumes={'/tmp/redis': '/data'} ) ), ), ) ) experiment.add(generator) if __name__ == '__main__': app.run(main)
xmanager-main
examples/local_container_links/launcher.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager launcher for running CIFAR10 on Kubernetes with Tensorboard auxiliary job. Usage: xmanager launch examples/cifar10_tensorflow_k8s_tensorboard/launcher.py -- \ --tensorboard_log_dir=TENSORBOARD_LOG_DIR \ [--tensorboard_timeout_secs=TIMEOUT_SECS] """ import itertools import os from absl import app from absl import flags from xmanager import xm from xmanager import xm_local from xmanager.contrib import tensorboard _TENSORBOARD_LOG_DIR = flags.DEFINE_string( 'tensorboard_log_dir', None, 'Log directory to be used by workers and Tensorboard.', ) _TENSORBOARD_TIMEOUT_SECS = flags.DEFINE_integer( 'tensorboard_timeout_secs', 60 * 60, 'The amount of time the Tensorboard job should run for.', ) def main(_): with xm_local.create_experiment(experiment_title='cifar10') as experiment: spec = xm.PythonContainer( # Package the current directory that this script is in. path='.', base_image='gcr.io/deeplearning-platform-release/tf2-gpu.2-6', entrypoint=xm.ModuleName('cifar10'), ) [executable] = experiment.package( [ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Kubernetes.Spec(), ), ] ) learning_rates = [0.1, 0.001] trials = list( dict([('learning_rate', lr)]) for (lr,) in itertools.product(learning_rates) ) log_dir = None if _TENSORBOARD_LOG_DIR.value: log_dir = ( f'{_TENSORBOARD_LOG_DIR.value}/{str(experiment.experiment_id)}/logs' ) if log_dir: tensorboard.add_tensorboard( experiment, log_dir, executor=xm_local.Kubernetes(), timeout_secs=_TENSORBOARD_TIMEOUT_SECS.value, ) for i, hyperparameters in enumerate(trials): output_dir = os.path.join(log_dir, str(i)) experiment.add( xm.Job( executable=executable, executor=xm_local.Kubernetes(), args=dict({'tensorboard_log_dir': output_dir, **hyperparameters}), ) ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow_k8s_tensorboard/launcher.py
# Copyright 2021 The Tensorflow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code based on https://www.tensorflow.org/tutorials/images/cnn.""" from absl import app from absl import flags import tensorflow as tf from tensorflow.keras import datasets from tensorflow.keras import layers from tensorflow.keras import models _TENSORBOARD_LOG_DIR = flags.DEFINE_string('tensorboard_log_dir', None, '') FLAGS = flags.FLAGS flags.DEFINE_integer('epochs', 5, 'epochs') flags.DEFINE_float('learning_rate', 0.001, 'learning rate') def main(_): (train_images, train_labels), (test_images, test_labels) = ( datasets.cifar10.load_data() ) # Normalize pixel values to be between 0 and 1 train_images, test_images = train_images / 255.0, test_images / 255.0 strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model = models.Sequential() model.add( layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)) ) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) optimizer = tf.keras.optimizers.Adam(learning_rate=FLAGS.learning_rate) model.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'], ) callbacks = [] if _TENSORBOARD_LOG_DIR.value: callbacks = [ tf.keras.callbacks.TensorBoard( log_dir=_TENSORBOARD_LOG_DIR.value, histogram_freq=1, ), ] model.fit( train_images, train_labels, epochs=FLAGS.epochs, validation_data=(test_images, test_labels), callbacks=callbacks, verbose=2, ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow_k8s_tensorboard/cifar10.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager launcher for CIFAR10 using TF's ParameterServerStrategy. Usage: xmanager launch examples/cifar10_tensorflow_k8s__ps/launcher.py -- \ --xm_wrap_late_bindings [--image_path=gcr.io/path/to/image/tag] """ import itertools from absl import app from xmanager import xm from xmanager import xm_local from xmanager.contrib import xm_tensorflow def main(_): with xm_local.create_experiment( experiment_title='kubernetes_multiworker' ) as experiment: spec = xm.PythonContainer( # Package the current directory that this script is in. path='.', base_image='gcr.io/deeplearning-platform-release/tf2-gpu.2-6', entrypoint=xm.ModuleName('cifar10'), ) [executable] = experiment.package( [ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Kubernetes.Spec(), args={}, ) ] ) learning_rates = [0.001] trials = list( dict([('learning_rate', lr)]) for (lr,) in itertools.product(learning_rates) ) builder = xm_tensorflow.ParameterServerStrategyBuilder( experiment=experiment, chief_executable=executable, chief_executor=xm_local.Kubernetes( requirements=xm.JobRequirements(t4=1) ), worker_executable=executable, worker_executor=xm_local.Kubernetes( requirements=xm.JobRequirements(t4=1) ), worker_name='worker', ps_executable=executable, ps_executor=xm_local.Kubernetes(), ps_name='ps', num_workers=2, num_ps=1, ) for hyperparameters in trials: experiment.add(builder.gen_job_group(), args=hyperparameters) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow_k8s_ps/launcher.py
# Copyright 2021 The Tensorflow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code based on https://www.tensorflow.org/tutorials/images/cnn.""" import os from absl import app from absl import flags import tensorflow as tf from tensorflow.keras import datasets from tensorflow.keras import layers from tensorflow.keras import models FLAGS = flags.FLAGS flags.DEFINE_integer('epochs', 5, 'epochs') flags.DEFINE_float('learning_rate', 0.001, 'learning rate') def main(_): cluster_resolver = tf.distribute.cluster_resolver.TFConfigClusterResolver() if cluster_resolver.task_type in ('worker', 'ps'): os.environ['GRPC_FAIL_FAST'] = 'use_caller' server = tf.distribute.Server( cluster_resolver.cluster_spec(), job_name=cluster_resolver.task_type, task_index=cluster_resolver.task_id, protocol=cluster_resolver.rpc_layer or 'grpc', start=True, ) server.join() (train_images, train_labels), _ = datasets.cifar10.load_data() def dataset_fn(input_context): dataset = tf.data.Dataset.from_tensor_slices( (train_images, train_labels) ).repeat() dataset = dataset.shard( input_context.num_input_pipelines, input_context.input_pipeline_id ) dataset = dataset.batch(64) dataset = dataset.prefetch(2) return dataset strategy = tf.distribute.experimental.ParameterServerStrategy( cluster_resolver ) with strategy.scope(): model = models.Sequential() model.add( layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)) ) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) optimizer = tf.keras.optimizers.Adam(learning_rate=FLAGS.learning_rate) model.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'], ) model.fit( tf.keras.utils.experimental.DatasetCreator(dataset_fn), steps_per_epoch=1500, epochs=FLAGS.epochs, ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow_k8s_ps/cifar10.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager local launcher for CIFAR10 using GPUs. Usage: xmanager launch examples/local_container_gpu/launcher.py -- \ --xm_wrap_late_bindings """ from absl import app from absl import flags from xmanager import xm from xmanager import xm_local _EXP_NAME = flags.DEFINE_string( 'exp_name', 'local-cifar10-gpu', 'Name of the experiment.', short_name='n' ) _INTERACTIVE = flags.DEFINE_bool( 'interactive', False, 'Launch the container and allow interactive access to it.', ) def main(argv) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') create_experiment = xm_local.create_experiment with create_experiment(experiment_title=_EXP_NAME.value) as experiment: docker_options = xm_local.DockerOptions(interactive=_INTERACTIVE.value) # Creating local executor with extra flag to track job's progress. executor = xm_local.Local( xm.JobRequirements(local_gpu=2), experimental_stream_output=True, docker_options=docker_options, ) # Empty args means nothing is passed into the job. executable_args = {} (executable,) = experiment.package( [ xm.python_container( executor_spec=executor.Spec(), args=executable_args, # Package the current directory that this script is in. path='.', base_image='gcr.io/deeplearning-platform-release/tf2-gpu.2-6', entrypoint=xm.ModuleName('local_container_gpu.cifar10'), use_deep_module=True, ) ] ) job = xm.Job(executable, executor) experiment.add(job) if __name__ == '__main__': app.run(main)
xmanager-main
examples/local_container_gpu/launcher.py
# Copyright 2021 The Tensorflow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code based on https://www.tensorflow.org/tutorials/images/cnn.""" import os from absl import app from absl import flags import tensorflow as tf from tensorflow.keras import datasets from tensorflow.keras import layers from tensorflow.keras import models # When using Vertex Tensorboard, the tensorboard will be present as a # environment variable. LOG_DIR = os.environ.get('AIP_TENSORBOARD_LOG_DIR', '') FLAGS = flags.FLAGS flags.DEFINE_integer('epochs', 5, 'epochs') flags.DEFINE_float('learning_rate', 0.001, 'learning rate') def main(_): (train_images, train_labels), (test_images, test_labels) = ( datasets.cifar10.load_data() ) # Normalize pixel values to be between 0 and 1 train_images, test_images = train_images / 255.0, test_images / 255.0 strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model = models.Sequential() model.add( layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)) ) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) optimizer = tf.keras.optimizers.Adam(learning_rate=FLAGS.learning_rate) model.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'], ) callbacks = [] if LOG_DIR: callbacks = [ tf.keras.callbacks.TensorBoard( log_dir=LOG_DIR, histogram_freq=1, ), ] model.fit( train_images, train_labels, epochs=FLAGS.epochs, validation_data=(test_images, test_labels), callbacks=callbacks, verbose=2, ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/local_container_gpu/cifar10.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager launcher for Polynomial. Usage: xmanager launch examples/vizier/launcher.py -- \ --xm_wrap_late_bindings """ from absl import app from google.cloud import aiplatform_v1beta1 as aip from xmanager import xm from xmanager import xm_local from xmanager.vizier import vizier_cloud def get_study_spec() -> aip.StudySpec: return aip.StudySpec( algorithm=aip.StudySpec.Algorithm.RANDOM_SEARCH, parameters=[ aip.StudySpec.ParameterSpec( parameter_id='x', double_value_spec=aip.StudySpec.ParameterSpec.DoubleValueSpec( min_value=-2.0, max_value=2.0 ), ), aip.StudySpec.ParameterSpec( parameter_id='y', double_value_spec=aip.StudySpec.ParameterSpec.DoubleValueSpec( min_value=-2.0, max_value=2.0 ), ), ], metrics=[ aip.StudySpec.MetricSpec( metric_id='loss', goal=aip.StudySpec.MetricSpec.GoalType.MINIMIZE ) ], ) def main(_): with xm_local.create_experiment(experiment_title='polynomial') as experiment: spec = xm.PythonContainer( # Package the current directory that this script is in. path='.', base_image='gcr.io/deeplearning-platform-release/base-cpu', entrypoint=xm.ModuleName('polynomial'), ) [executable] = experiment.package( [ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Vertex.Spec(), ), ] ) vizier_cloud.VizierExploration( experiment=experiment, job=xm.Job( executable=executable, executor=xm_local.Vertex(), ), study_factory=vizier_cloud.NewStudy(study_config=get_study_spec()), num_trials_total=3, num_parallel_trial_runs=2, ).launch() if __name__ == '__main__': app.run(main)
xmanager-main
examples/vizier/launcher.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Compute the value of a bivariate quadratic polynomial. An example of finding the min values of x and y with auto hyperparam tuning. Set a, b, c, d, e, and f to constant args. Set x and y to be hyperparameters. """ from absl import app from absl import flags from vizier_worker import VizierWorker FLAGS = flags.FLAGS flags.DEFINE_integer('a', 1, 'a in ax^2 + by^2 + cxy + dx + ey + f') flags.DEFINE_integer('b', 1, 'b in ax^2 + by^2 + cxy + dx + ey + f') flags.DEFINE_integer('c', 0, 'c in ax^2 + by^2 + cxy + dx + ey + f') flags.DEFINE_integer('d', 1, 'd in ax^2 + by^2 + cxy + dx + ey + f') flags.DEFINE_integer('e', 1, 'e in ax^2 + by^2 + cxy + dx + ey + f') flags.DEFINE_integer('f', 1, 'f in ax^2 + by^2 + cxy + dx + ey + f') flags.DEFINE_float('x', 0, 'The hyperparameter variable X.') flags.DEFINE_float('y', 0, 'The hyperparameter variable Y.') flags.DEFINE_string( 'trial_name', None, ( 'Identifying the current job trial that measurements ' 'will be submitted to with `add_trial_measurement`. Format: ' 'projects/{project}/locations/{location}/studies/{study}/trials/{trial}' ), ) def main(_): worker = VizierWorker(FLAGS.trial_name) # dummy training loop: "train" for one epoch metric_value = float( FLAGS.a * FLAGS.x * FLAGS.x + FLAGS.b * FLAGS.y * FLAGS.y + FLAGS.c * FLAGS.x * FLAGS.y + FLAGS.d * FLAGS.x + FLAGS.e * FLAGS.y + FLAGS.f ) worker.add_trial_measurement(1, {'loss': metric_value}) if __name__ == '__main__': app.run(main)
xmanager-main
examples/vizier/polynomial.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""XManager launcher for CIFAR10. Usage: xmanager launch examples/cifar10_tensorflow/launcher.py -- \ --xm_wrap_late_bindings [--image_path=gcr.io/path/to/image/tag] """ import asyncio import itertools import os from absl import app from absl import flags from xmanager import xm from xmanager import xm_local from xmanager.cloud import vertex FLAGS = flags.FLAGS flags.DEFINE_string('tensorboard', None, 'Tensorboard instance.') def main(_): with xm_local.create_experiment(experiment_title='cifar10') as experiment: spec = xm.PythonContainer( # Package the current directory that this script is in. path='.', base_image='gcr.io/deeplearning-platform-release/tf2-gpu.2-6', entrypoint=xm.ModuleName('cifar10'), ) [executable] = experiment.package( [ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Vertex.Spec(), args={}, ), ] ) learning_rates = [0.1, 0.001] trials = list( dict([('learning_rate', lr)]) for (lr,) in itertools.product(learning_rates) ) tensorboard = FLAGS.tensorboard if not tensorboard: tensorboard = vertex.get_default_client().get_or_create_tensorboard( 'cifar10' ) tensorboard = asyncio.get_event_loop().run_until_complete(tensorboard) for i, hyperparameters in enumerate(trials): output_dir = os.environ.get('GOOGLE_CLOUD_BUCKET_NAME', None) if output_dir: output_dir = os.path.join( output_dir, str(experiment.experiment_id), str(i) ) tensorboard_capability = xm_local.TensorboardCapability( name=tensorboard, base_output_directory=output_dir ) experiment.add( xm.Job( executable=executable, executor=xm_local.Vertex(tensorboard=tensorboard_capability), args=hyperparameters, ) ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow/launcher.py
# Copyright 2021 The Tensorflow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Code based on https://www.tensorflow.org/tutorials/images/cnn.""" import os from absl import app from absl import flags import tensorflow as tf from tensorflow.keras import datasets from tensorflow.keras import layers from tensorflow.keras import models # When using Vertex Tensorboard, the tensorboard will be present as a # environment variable. LOG_DIR = os.environ.get('AIP_TENSORBOARD_LOG_DIR', '') FLAGS = flags.FLAGS flags.DEFINE_integer('epochs', 5, 'epochs') flags.DEFINE_float('learning_rate', 0.001, 'learning rate') def main(_): (train_images, train_labels), (test_images, test_labels) = ( datasets.cifar10.load_data() ) # Normalize pixel values to be between 0 and 1 train_images, test_images = train_images / 255.0, test_images / 255.0 strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model = models.Sequential() model.add( layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)) ) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) optimizer = tf.keras.optimizers.Adam(learning_rate=FLAGS.learning_rate) model.compile( optimizer=optimizer, loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'], ) callbacks = [] if LOG_DIR: callbacks = [ tf.keras.callbacks.TensorBoard( log_dir=LOG_DIR, histogram_freq=1, ), ] model.fit( train_images, train_labels, epochs=FLAGS.epochs, validation_data=(test_images, test_labels), callbacks=callbacks, verbose=2, ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/cifar10_tensorflow/cifar10.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XManager launcher that runs locally a binary built with Bazel. One must `cd` into xmanager/examples/local_arg_printer/ in order to run this example because Bazel needs to locate the WORKSPACE file. """ from typing import Sequence from absl import app from xmanager import xm from xmanager import xm_local def main(argv: Sequence[str]) -> None: del argv with xm_local.create_experiment( experiment_title='local_arg_printer' ) as experiment: [executable] = experiment.package( [ xm.Packageable( executable_spec=xm.BazelBinary( label='//:arg_printer' ), executor_spec=xm_local.Local.Spec(), ), ] ) experiment.add( xm.Job( executable=executable, executor=xm_local.Local(), env_vars={'OUTPUT_PATH': '/tmp/local_arg_printer.txt'}, ) ) if __name__ == '__main__': app.run(main)
xmanager-main
examples/local_arg_printer/launcher.py
# Copyright 2016 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pyformat: disable # Generated by the protocol buffer compiler. DO NOT EDIT! # pylint: skip-file # source: src/main/java/com/google/devtools/build/lib/buildeventstream/proto/build_event_stream.proto """Generated protocol buffer code.""" from google.protobuf.internal import builder as _builder from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import duration_pb2 as google_dot_protobuf_dot_duration__pb2 from google.protobuf import timestamp_pb2 as google_dot_protobuf_dot_timestamp__pb2 from . import command_line_pb2 as src_dot_main_dot_protobuf_dot_command__line__pb2 from . import failure_details_pb2 as src_dot_main_dot_protobuf_dot_failure__details__pb2 from . import invocation_policy_pb2 as src_dot_main_dot_protobuf_dot_invocation__policy__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n[src/main/java/com/google/devtools/build/lib/buildeventstream/proto/build_event_stream.proto\x12\x12\x62uild_event_stream\x1a\x1egoogle/protobuf/duration.proto\x1a\x1fgoogle/protobuf/timestamp.proto\x1a$src/main/protobuf/command_line.proto\x1a\'src/main/protobuf/failure_details.proto\x1a)src/main/protobuf/invocation_policy.proto\"\x86\x1a\n\x0c\x42uildEventId\x12G\n\x07unknown\x18\x01 \x01(\x0b\x32\x34.build_event_stream.BuildEventId.UnknownBuildEventIdH\x00\x12?\n\x08progress\x18\x02 \x01(\x0b\x32+.build_event_stream.BuildEventId.ProgressIdH\x00\x12\x42\n\x07started\x18\x03 \x01(\x0b\x32/.build_event_stream.BuildEventId.BuildStartedIdH\x00\x12_\n\x19unstructured_command_line\x18\x0b \x01(\x0b\x32:.build_event_stream.BuildEventId.UnstructuredCommandLineIdH\x00\x12[\n\x17structured_command_line\x18\x12 \x01(\x0b\x32\x38.build_event_stream.BuildEventId.StructuredCommandLineIdH\x00\x12N\n\x10workspace_status\x18\x0e \x01(\x0b\x32\x32.build_event_stream.BuildEventId.WorkspaceStatusIdH\x00\x12J\n\x0eoptions_parsed\x18\x0c \x01(\x0b\x32\x30.build_event_stream.BuildEventId.OptionsParsedIdH\x00\x12\x39\n\x05\x66\x65tch\x18\x11 \x01(\x0b\x32(.build_event_stream.BuildEventId.FetchIdH\x00\x12I\n\rconfiguration\x18\x0f \x01(\x0b\x32\x30.build_event_stream.BuildEventId.ConfigurationIdH\x00\x12P\n\x11target_configured\x18\x10 \x01(\x0b\x32\x33.build_event_stream.BuildEventId.TargetConfiguredIdH\x00\x12\x45\n\x07pattern\x18\x04 \x01(\x0b\x32\x32.build_event_stream.BuildEventId.PatternExpandedIdH\x00\x12M\n\x0fpattern_skipped\x18\n \x01(\x0b\x32\x32.build_event_stream.BuildEventId.PatternExpandedIdH\x00\x12G\n\tnamed_set\x18\r \x01(\x0b\x32\x32.build_event_stream.BuildEventId.NamedSetOfFilesIdH\x00\x12N\n\x10target_completed\x18\x05 \x01(\x0b\x32\x32.build_event_stream.BuildEventId.TargetCompletedIdH\x00\x12N\n\x10\x61\x63tion_completed\x18\x06 \x01(\x0b\x32\x32.build_event_stream.BuildEventId.ActionCompletedIdH\x00\x12R\n\x12unconfigured_label\x18\x13 \x01(\x0b\x32\x34.build_event_stream.BuildEventId.UnconfiguredLabelIdH\x00\x12N\n\x10\x63onfigured_label\x18\x15 \x01(\x0b\x32\x32.build_event_stream.BuildEventId.ConfiguredLabelIdH\x00\x12\x44\n\x0btest_result\x18\x08 \x01(\x0b\x32-.build_event_stream.BuildEventId.TestResultIdH\x00\x12\x46\n\x0ctest_summary\x18\x07 \x01(\x0b\x32..build_event_stream.BuildEventId.TestSummaryIdH\x00\x12J\n\x0etarget_summary\x18\x1a \x01(\x0b\x32\x30.build_event_stream.BuildEventId.TargetSummaryIdH\x00\x12J\n\x0e\x62uild_finished\x18\t \x01(\x0b\x32\x30.build_event_stream.BuildEventId.BuildFinishedIdH\x00\x12K\n\x0f\x62uild_tool_logs\x18\x14 \x01(\x0b\x32\x30.build_event_stream.BuildEventId.BuildToolLogsIdH\x00\x12H\n\rbuild_metrics\x18\x16 \x01(\x0b\x32/.build_event_stream.BuildEventId.BuildMetricsIdH\x00\x12G\n\tworkspace\x18\x17 \x01(\x0b\x32\x32.build_event_stream.BuildEventId.WorkspaceConfigIdH\x00\x12J\n\x0e\x62uild_metadata\x18\x18 \x01(\x0b\x32\x30.build_event_stream.BuildEventId.BuildMetadataIdH\x00\x12k\n\x1f\x63onvenience_symlinks_identified\x18\x19 \x01(\x0b\x32@.build_event_stream.BuildEventId.ConvenienceSymlinksIdentifiedIdH\x00\x1a&\n\x13UnknownBuildEventId\x12\x0f\n\x07\x64\x65tails\x18\x01 \x01(\t\x1a\"\n\nProgressId\x12\x14\n\x0copaque_count\x18\x01 \x01(\x05\x1a\x10\n\x0e\x42uildStartedId\x1a\x1b\n\x19UnstructuredCommandLineId\x1a\x35\n\x17StructuredCommandLineId\x12\x1a\n\x12\x63ommand_line_label\x18\x01 \x01(\t\x1a\x13\n\x11WorkspaceStatusId\x1a\x11\n\x0fOptionsParsedId\x1a\x16\n\x07\x46\x65tchId\x12\x0b\n\x03url\x18\x01 \x01(\t\x1a$\n\x11PatternExpandedId\x12\x0f\n\x07pattern\x18\x01 \x03(\t\x1a\x13\n\x11WorkspaceConfigId\x1a\x11\n\x0f\x42uildMetadataId\x1a\x33\n\x12TargetConfiguredId\x12\r\n\x05label\x18\x01 \x01(\t\x12\x0e\n\x06\x61spect\x18\x02 \x01(\t\x1a\x1f\n\x11NamedSetOfFilesId\x12\n\n\x02id\x18\x01 \x01(\t\x1a\x1d\n\x0f\x43onfigurationId\x12\n\n\x02id\x18\x01 \x01(\t\x1a{\n\x11TargetCompletedId\x12\r\n\x05label\x18\x01 \x01(\t\x12G\n\rconfiguration\x18\x03 \x01(\x0b\x32\x30.build_event_stream.BuildEventId.ConfigurationId\x12\x0e\n\x06\x61spect\x18\x02 \x01(\t\x1a\x83\x01\n\x11\x41\x63tionCompletedId\x12\x16\n\x0eprimary_output\x18\x01 \x01(\t\x12\r\n\x05label\x18\x02 \x01(\t\x12G\n\rconfiguration\x18\x03 \x01(\x0b\x32\x30.build_event_stream.BuildEventId.ConfigurationId\x1a$\n\x13UnconfiguredLabelId\x12\r\n\x05label\x18\x01 \x01(\t\x1ak\n\x11\x43onfiguredLabelId\x12\r\n\x05label\x18\x01 \x01(\t\x12G\n\rconfiguration\x18\x02 \x01(\x0b\x32\x30.build_event_stream.BuildEventId.ConfigurationId\x1a\x93\x01\n\x0cTestResultId\x12\r\n\x05label\x18\x01 \x01(\t\x12G\n\rconfiguration\x18\x05 \x01(\x0b\x32\x30.build_event_stream.BuildEventId.ConfigurationId\x12\x0b\n\x03run\x18\x02 \x01(\x05\x12\r\n\x05shard\x18\x03 \x01(\x05\x12\x0f\n\x07\x61ttempt\x18\x04 \x01(\x05\x1ag\n\rTestSummaryId\x12\r\n\x05label\x18\x01 \x01(\t\x12G\n\rconfiguration\x18\x02 \x01(\x0b\x32\x30.build_event_stream.BuildEventId.ConfigurationId\x1ai\n\x0fTargetSummaryId\x12\r\n\x05label\x18\x01 \x01(\t\x12G\n\rconfiguration\x18\x02 \x01(\x0b\x32\x30.build_event_stream.BuildEventId.ConfigurationId\x1a\x11\n\x0f\x42uildFinishedId\x1a\x11\n\x0f\x42uildToolLogsId\x1a\x10\n\x0e\x42uildMetricsId\x1a!\n\x1f\x43onvenienceSymlinksIdentifiedIdB\x04\n\x02id\"*\n\x08Progress\x12\x0e\n\x06stdout\x18\x01 \x01(\t\x12\x0e\n\x06stderr\x18\x02 \x01(\t\"\xbf\x02\n\x07\x41\x62orted\x12\x37\n\x06reason\x18\x01 \x01(\x0e\x32\'.build_event_stream.Aborted.AbortReason\x12\x13\n\x0b\x64\x65scription\x18\x02 \x01(\t\"\xe5\x01\n\x0b\x41\x62ortReason\x12\x0b\n\x07UNKNOWN\x10\x00\x12\x14\n\x10USER_INTERRUPTED\x10\x01\x12\x0e\n\nNO_ANALYZE\x10\x08\x12\x0c\n\x08NO_BUILD\x10\t\x12\x0c\n\x08TIME_OUT\x10\x02\x12\x1e\n\x1aREMOTE_ENVIRONMENT_FAILURE\x10\x03\x12\x0c\n\x08INTERNAL\x10\x04\x12\x13\n\x0fLOADING_FAILURE\x10\x05\x12\x14\n\x10\x41NALYSIS_FAILURE\x10\x06\x12\x0b\n\x07SKIPPED\x10\x07\x12\x0e\n\nINCOMPLETE\x10\n\x12\x11\n\rOUT_OF_MEMORY\x10\x0b\"\x81\x02\n\x0c\x42uildStarted\x12\x0c\n\x04uuid\x18\x01 \x01(\t\x12\x1d\n\x11start_time_millis\x18\x02 \x01(\x03\x42\x02\x18\x01\x12.\n\nstart_time\x18\t \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12\x1a\n\x12\x62uild_tool_version\x18\x03 \x01(\t\x12\x1b\n\x13options_description\x18\x04 \x01(\t\x12\x0f\n\x07\x63ommand\x18\x05 \x01(\t\x12\x19\n\x11working_directory\x18\x06 \x01(\t\x12\x1b\n\x13workspace_directory\x18\x07 \x01(\t\x12\x12\n\nserver_pid\x18\x08 \x01(\x03\"*\n\x0fWorkspaceConfig\x12\x17\n\x0flocal_exec_root\x18\x01 \x01(\t\"\'\n\x17UnstructuredCommandLine\x12\x0c\n\x04\x61rgs\x18\x01 \x03(\t\"\xcf\x01\n\rOptionsParsed\x12\x17\n\x0fstartup_options\x18\x01 \x03(\t\x12 \n\x18\x65xplicit_startup_options\x18\x02 \x03(\t\x12\x10\n\x08\x63md_line\x18\x03 \x03(\t\x12\x19\n\x11\x65xplicit_cmd_line\x18\x04 \x03(\t\x12\x44\n\x11invocation_policy\x18\x05 \x01(\x0b\x32).blaze.invocation_policy.InvocationPolicy\x12\x10\n\x08tool_tag\x18\x06 \x01(\t\"\x18\n\x05\x46\x65tch\x12\x0f\n\x07success\x18\x01 \x01(\x08\"m\n\x0fWorkspaceStatus\x12\x36\n\x04item\x18\x01 \x03(\x0b\x32(.build_event_stream.WorkspaceStatus.Item\x1a\"\n\x04Item\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t\"\x83\x01\n\rBuildMetadata\x12\x41\n\x08metadata\x18\x01 \x03(\x0b\x32/.build_event_stream.BuildMetadata.MetadataEntry\x1a/\n\rMetadataEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xd7\x01\n\rConfiguration\x12\x10\n\x08mnemonic\x18\x01 \x01(\t\x12\x15\n\rplatform_name\x18\x02 \x01(\t\x12\x0b\n\x03\x63pu\x18\x03 \x01(\t\x12J\n\rmake_variable\x18\x04 \x03(\x0b\x32\x33.build_event_stream.Configuration.MakeVariableEntry\x12\x0f\n\x07is_tool\x18\x05 \x01(\x08\x1a\x33\n\x11MakeVariableEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"\xa8\x01\n\x0fPatternExpanded\x12U\n\x15test_suite_expansions\x18\x01 \x03(\x0b\x32\x36.build_event_stream.PatternExpanded.TestSuiteExpansion\x1a>\n\x12TestSuiteExpansion\x12\x13\n\x0bsuite_label\x18\x01 \x01(\t\x12\x13\n\x0btest_labels\x18\x02 \x03(\t\"e\n\x10TargetConfigured\x12\x13\n\x0btarget_kind\x18\x01 \x01(\t\x12/\n\ttest_size\x18\x02 \x01(\x0e\x32\x1c.build_event_stream.TestSize\x12\x0b\n\x03tag\x18\x03 \x03(\t\"t\n\x04\x46ile\x12\x13\n\x0bpath_prefix\x18\x04 \x03(\t\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x03uri\x18\x02 \x01(\tH\x00\x12\x12\n\x08\x63ontents\x18\x03 \x01(\x0cH\x00\x12\x0e\n\x06\x64igest\x18\x05 \x01(\t\x12\x0e\n\x06length\x18\x06 \x01(\x03\x42\x06\n\x04\x66ile\"\x81\x01\n\x0fNamedSetOfFiles\x12\'\n\x05\x66iles\x18\x01 \x03(\x0b\x32\x18.build_event_stream.File\x12\x45\n\tfile_sets\x18\x02 \x03(\x0b\x32\x32.build_event_stream.BuildEventId.NamedSetOfFilesId\"\xae\x03\n\x0e\x41\x63tionExecuted\x12\x0f\n\x07success\x18\x01 \x01(\x08\x12\x0c\n\x04type\x18\x08 \x01(\t\x12\x11\n\texit_code\x18\x02 \x01(\x05\x12(\n\x06stdout\x18\x03 \x01(\x0b\x32\x18.build_event_stream.File\x12(\n\x06stderr\x18\x04 \x01(\x0b\x32\x18.build_event_stream.File\x12\x11\n\x05label\x18\x05 \x01(\tB\x02\x18\x01\x12K\n\rconfiguration\x18\x07 \x01(\x0b\x32\x30.build_event_stream.BuildEventId.ConfigurationIdB\x02\x18\x01\x12\x30\n\x0eprimary_output\x18\x06 \x01(\x0b\x32\x18.build_event_stream.File\x12\x14\n\x0c\x63ommand_line\x18\t \x03(\t\x12\x36\n\x14\x61\x63tion_metadata_logs\x18\n \x03(\x0b\x32\x18.build_event_stream.File\x12\x36\n\x0e\x66\x61ilure_detail\x18\x0b \x01(\x0b\x32\x1e.failure_details.FailureDetail\"|\n\x0bOutputGroup\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x45\n\tfile_sets\x18\x03 \x03(\x0b\x32\x32.build_event_stream.BuildEventId.NamedSetOfFilesId\x12\x12\n\nincomplete\x18\x04 \x01(\x08J\x04\x08\x02\x10\x03\"\xaa\x03\n\x0eTargetComplete\x12\x0f\n\x07success\x18\x01 \x01(\x08\x12\x17\n\x0btarget_kind\x18\x05 \x01(\tB\x02\x18\x01\x12\x33\n\ttest_size\x18\x06 \x01(\x0e\x32\x1c.build_event_stream.TestSizeB\x02\x18\x01\x12\x35\n\x0coutput_group\x18\x02 \x03(\x0b\x32\x1f.build_event_stream.OutputGroup\x12\x36\n\x10important_output\x18\x04 \x03(\x0b\x32\x18.build_event_stream.FileB\x02\x18\x01\x12\x32\n\x10\x64irectory_output\x18\x08 \x03(\x0b\x32\x18.build_event_stream.File\x12\x0b\n\x03tag\x18\x03 \x03(\t\x12 \n\x14test_timeout_seconds\x18\x07 \x01(\x03\x42\x02\x18\x01\x12/\n\x0ctest_timeout\x18\n \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x36\n\x0e\x66\x61ilure_detail\x18\t \x01(\x0b\x32\x1e.failure_details.FailureDetail\"\xd2\x07\n\nTestResult\x12.\n\x06status\x18\x05 \x01(\x0e\x32\x1e.build_event_stream.TestStatus\x12\x16\n\x0estatus_details\x18\t \x01(\t\x12\x16\n\x0e\x63\x61\x63hed_locally\x18\x04 \x01(\x08\x12+\n\x1ftest_attempt_start_millis_epoch\x18\x06 \x01(\x03\x42\x02\x18\x01\x12\x36\n\x12test_attempt_start\x18\n \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12(\n\x1ctest_attempt_duration_millis\x18\x03 \x01(\x03\x42\x02\x18\x01\x12\x38\n\x15test_attempt_duration\x18\x0b \x01(\x0b\x32\x19.google.protobuf.Duration\x12\x34\n\x12test_action_output\x18\x02 \x03(\x0b\x32\x18.build_event_stream.File\x12\x0f\n\x07warning\x18\x07 \x03(\t\x12\x44\n\x0e\x65xecution_info\x18\x08 \x01(\x0b\x32,.build_event_stream.TestResult.ExecutionInfo\x1a\x87\x04\n\rExecutionInfo\x12\x1b\n\x0ftimeout_seconds\x18\x01 \x01(\x05\x42\x02\x18\x01\x12\x10\n\x08strategy\x18\x02 \x01(\t\x12\x17\n\x0f\x63\x61\x63hed_remotely\x18\x06 \x01(\x08\x12\x11\n\texit_code\x18\x07 \x01(\x05\x12\x10\n\x08hostname\x18\x03 \x01(\t\x12V\n\x10timing_breakdown\x18\x04 \x01(\x0b\x32<.build_event_stream.TestResult.ExecutionInfo.TimingBreakdown\x12R\n\x0eresource_usage\x18\x05 \x03(\x0b\x32:.build_event_stream.TestResult.ExecutionInfo.ResourceUsage\x1a\xae\x01\n\x0fTimingBreakdown\x12K\n\x05\x63hild\x18\x01 \x03(\x0b\x32<.build_event_stream.TestResult.ExecutionInfo.TimingBreakdown\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x17\n\x0btime_millis\x18\x03 \x01(\x03\x42\x02\x18\x01\x12\'\n\x04time\x18\x04 \x01(\x0b\x32\x19.google.protobuf.Duration\x1a,\n\rResourceUsage\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\x03J\x04\x08\x01\x10\x02\"\x9b\x04\n\x0bTestSummary\x12\x36\n\x0eoverall_status\x18\x05 \x01(\x0e\x32\x1e.build_event_stream.TestStatus\x12\x17\n\x0ftotal_run_count\x18\x01 \x01(\x05\x12\x11\n\trun_count\x18\n \x01(\x05\x12\x15\n\rattempt_count\x18\x0f \x01(\x05\x12\x13\n\x0bshard_count\x18\x0b \x01(\x05\x12(\n\x06passed\x18\x03 \x03(\x0b\x32\x18.build_event_stream.File\x12(\n\x06\x66\x61iled\x18\x04 \x03(\x0b\x32\x18.build_event_stream.File\x12\x18\n\x10total_num_cached\x18\x06 \x01(\x05\x12#\n\x17\x66irst_start_time_millis\x18\x07 \x01(\x03\x42\x02\x18\x01\x12\x34\n\x10\x66irst_start_time\x18\r \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12!\n\x15last_stop_time_millis\x18\x08 \x01(\x03\x42\x02\x18\x01\x12\x32\n\x0elast_stop_time\x18\x0e \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12%\n\x19total_run_duration_millis\x18\t \x01(\x03\x42\x02\x18\x01\x12\x35\n\x12total_run_duration\x18\x0c \x01(\x0b\x32\x19.google.protobuf.Duration\"k\n\rTargetSummary\x12\x1d\n\x15overall_build_success\x18\x01 \x01(\x08\x12;\n\x13overall_test_status\x18\x02 \x01(\x0e\x32\x1e.build_event_stream.TestStatus\"\xd9\x02\n\rBuildFinished\x12\x1b\n\x0foverall_success\x18\x01 \x01(\x08\x42\x02\x18\x01\x12=\n\texit_code\x18\x03 \x01(\x0b\x32*.build_event_stream.BuildFinished.ExitCode\x12\x1e\n\x12\x66inish_time_millis\x18\x02 \x01(\x03\x42\x02\x18\x01\x12/\n\x0b\x66inish_time\x18\x05 \x01(\x0b\x32\x1a.google.protobuf.Timestamp\x12K\n\x0e\x61nomaly_report\x18\x04 \x01(\x0b\x32/.build_event_stream.BuildFinished.AnomalyReportB\x02\x18\x01\x1a&\n\x08\x45xitCode\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0c\n\x04\x63ode\x18\x02 \x01(\x05\x1a&\n\rAnomalyReport\x12\x15\n\rwas_suspended\x18\x01 \x01(\x08\"\xb9\x1a\n\x0c\x42uildMetrics\x12\x46\n\x0e\x61\x63tion_summary\x18\x01 \x01(\x0b\x32..build_event_stream.BuildMetrics.ActionSummary\x12\x46\n\x0ememory_metrics\x18\x02 \x01(\x0b\x32..build_event_stream.BuildMetrics.MemoryMetrics\x12\x46\n\x0etarget_metrics\x18\x03 \x01(\x0b\x32..build_event_stream.BuildMetrics.TargetMetrics\x12H\n\x0fpackage_metrics\x18\x04 \x01(\x0b\x32/.build_event_stream.BuildMetrics.PackageMetrics\x12\x46\n\x0etiming_metrics\x18\x05 \x01(\x0b\x32..build_event_stream.BuildMetrics.TimingMetrics\x12N\n\x12\x63umulative_metrics\x18\x06 \x01(\x0b\x32\x32.build_event_stream.BuildMetrics.CumulativeMetrics\x12J\n\x10\x61rtifact_metrics\x18\x07 \x01(\x0b\x32\x30.build_event_stream.BuildMetrics.ArtifactMetrics\x12O\n\x13\x62uild_graph_metrics\x18\x08 \x01(\x0b\x32\x32.build_event_stream.BuildMetrics.BuildGraphMetrics\x12\x46\n\x0eworker_metrics\x18\t \x03(\x0b\x32..build_event_stream.BuildMetrics.WorkerMetrics\x12H\n\x0fnetwork_metrics\x18\n \x01(\x0b\x32/.build_event_stream.BuildMetrics.NetworkMetrics\x1a\xc9\x03\n\rActionSummary\x12\x17\n\x0f\x61\x63tions_created\x18\x01 \x01(\x03\x12-\n%actions_created_not_including_aspects\x18\x03 \x01(\x03\x12\x18\n\x10\x61\x63tions_executed\x18\x02 \x01(\x03\x12N\n\x0b\x61\x63tion_data\x18\x04 \x03(\x0b\x32\x39.build_event_stream.BuildMetrics.ActionSummary.ActionData\x12\x1d\n\x11remote_cache_hits\x18\x05 \x01(\x03\x42\x02\x18\x01\x12P\n\x0crunner_count\x18\x06 \x03(\x0b\x32:.build_event_stream.BuildMetrics.ActionSummary.RunnerCount\x1ai\n\nActionData\x12\x10\n\x08mnemonic\x18\x01 \x01(\t\x12\x18\n\x10\x61\x63tions_executed\x18\x02 \x01(\x03\x12\x18\n\x10\x66irst_started_ms\x18\x03 \x01(\x03\x12\x15\n\rlast_ended_ms\x18\x04 \x01(\x03\x1a*\n\x0bRunnerCount\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\r\n\x05\x63ount\x18\x02 \x01(\x05\x1a\x93\x02\n\rMemoryMetrics\x12!\n\x19used_heap_size_post_build\x18\x01 \x01(\x03\x12\x1e\n\x16peak_post_gc_heap_size\x18\x02 \x01(\x03\x12,\n$peak_post_gc_tenured_space_heap_size\x18\x04 \x01(\x03\x12V\n\x0fgarbage_metrics\x18\x03 \x03(\x0b\x32=.build_event_stream.BuildMetrics.MemoryMetrics.GarbageMetrics\x1a\x39\n\x0eGarbageMetrics\x12\x0c\n\x04type\x18\x01 \x01(\t\x12\x19\n\x11garbage_collected\x18\x02 \x01(\x03\x1au\n\rTargetMetrics\x12\x16\n\x0etargets_loaded\x18\x01 \x01(\x03\x12\x1a\n\x12targets_configured\x18\x02 \x01(\x03\x12\x30\n(targets_configured_not_including_aspects\x18\x03 \x01(\x03\x1a)\n\x0ePackageMetrics\x12\x17\n\x0fpackages_loaded\x18\x01 \x01(\x03\x1a\x63\n\rTimingMetrics\x12\x16\n\x0e\x63pu_time_in_ms\x18\x01 \x01(\x03\x12\x17\n\x0fwall_time_in_ms\x18\x02 \x01(\x03\x12!\n\x19\x61nalysis_phase_time_in_ms\x18\x03 \x01(\x03\x1a=\n\x11\x43umulativeMetrics\x12\x14\n\x0cnum_analyses\x18\x0b \x01(\x05\x12\x12\n\nnum_builds\x18\x0c \x01(\x05\x1a\xcb\x03\n\x0f\x41rtifactMetrics\x12[\n\x15source_artifacts_read\x18\x02 \x01(\x0b\x32<.build_event_stream.BuildMetrics.ArtifactMetrics.FilesMetric\x12[\n\x15output_artifacts_seen\x18\x03 \x01(\x0b\x32<.build_event_stream.BuildMetrics.ArtifactMetrics.FilesMetric\x12h\n\"output_artifacts_from_action_cache\x18\x04 \x01(\x0b\x32<.build_event_stream.BuildMetrics.ArtifactMetrics.FilesMetric\x12Y\n\x13top_level_artifacts\x18\x05 \x01(\x0b\x32<.build_event_stream.BuildMetrics.ArtifactMetrics.FilesMetric\x1a\x33\n\x0b\x46ilesMetric\x12\x15\n\rsize_in_bytes\x18\x01 \x01(\x03\x12\r\n\x05\x63ount\x18\x02 \x01(\x05J\x04\x08\x01\x10\x02\x1a\xfd\x02\n\x11\x42uildGraphMetrics\x12!\n\x19\x61\x63tion_lookup_value_count\x18\x01 \x01(\x05\x12\x37\n/action_lookup_value_count_not_including_aspects\x18\x05 \x01(\x05\x12\x14\n\x0c\x61\x63tion_count\x18\x02 \x01(\x05\x12*\n\"action_count_not_including_aspects\x18\x06 \x01(\x05\x12*\n\"input_file_configured_target_count\x18\x07 \x01(\x05\x12+\n#output_file_configured_target_count\x18\x08 \x01(\x05\x12%\n\x1dother_configured_target_count\x18\t \x01(\x05\x12\x1d\n\x15output_artifact_count\x18\x03 \x01(\x05\x12+\n#post_invocation_skyframe_node_count\x18\x04 \x01(\x05\x1a\xe1\x02\n\rWorkerMetrics\x12\x15\n\tworker_id\x18\x01 \x01(\x05\x42\x02\x18\x01\x12\x12\n\nworker_ids\x18\x08 \x03(\r\x12\x12\n\nprocess_id\x18\x02 \x01(\r\x12\x10\n\x08mnemonic\x18\x03 \x01(\t\x12\x14\n\x0cis_multiplex\x18\x04 \x01(\x08\x12\x12\n\nis_sandbox\x18\x05 \x01(\x08\x12\x15\n\ris_measurable\x18\x06 \x01(\x08\x12P\n\x0cworker_stats\x18\x07 \x03(\x0b\x32:.build_event_stream.BuildMetrics.WorkerMetrics.WorkerStats\x1al\n\x0bWorkerStats\x12\x1a\n\x12\x63ollect_time_in_ms\x18\x01 \x01(\x03\x12\x1b\n\x13worker_memory_in_kb\x18\x02 \x01(\x05\x12$\n\x1clast_action_start_time_in_ms\x18\x03 \x01(\x03\x1a\xe5\x02\n\x0eNetworkMetrics\x12`\n\x14system_network_stats\x18\x01 \x01(\x0b\x32\x42.build_event_stream.BuildMetrics.NetworkMetrics.SystemNetworkStats\x1a\xf0\x01\n\x12SystemNetworkStats\x12\x12\n\nbytes_sent\x18\x01 \x01(\x04\x12\x12\n\nbytes_recv\x18\x02 \x01(\x04\x12\x14\n\x0cpackets_sent\x18\x03 \x01(\x04\x12\x14\n\x0cpackets_recv\x18\x04 \x01(\x04\x12\x1f\n\x17peak_bytes_sent_per_sec\x18\x05 \x01(\x04\x12\x1f\n\x17peak_bytes_recv_per_sec\x18\x06 \x01(\x04\x12!\n\x19peak_packets_sent_per_sec\x18\x07 \x01(\x04\x12!\n\x19peak_packets_recv_per_sec\x18\x08 \x01(\x04\"6\n\rBuildToolLogs\x12%\n\x03log\x18\x01 \x03(\x0b\x32\x18.build_event_stream.File\"e\n\x1d\x43onvenienceSymlinksIdentified\x12\x44\n\x14\x63onvenience_symlinks\x18\x01 \x03(\x0b\x32&.build_event_stream.ConvenienceSymlink\"\xa0\x01\n\x12\x43onvenienceSymlink\x12\x0c\n\x04path\x18\x01 \x01(\t\x12=\n\x06\x61\x63tion\x18\x02 \x01(\x0e\x32-.build_event_stream.ConvenienceSymlink.Action\x12\x0e\n\x06target\x18\x03 \x01(\t\"-\n\x06\x41\x63tion\x12\x0b\n\x07UNKNOWN\x10\x00\x12\n\n\x06\x43REATE\x10\x01\x12\n\n\x06\x44\x45LETE\x10\x02\"\x86\x0c\n\nBuildEvent\x12,\n\x02id\x18\x01 \x01(\x0b\x32 .build_event_stream.BuildEventId\x12\x32\n\x08\x63hildren\x18\x02 \x03(\x0b\x32 .build_event_stream.BuildEventId\x12\x14\n\x0clast_message\x18\x14 \x01(\x08\x12\x30\n\x08progress\x18\x03 \x01(\x0b\x32\x1c.build_event_stream.ProgressH\x00\x12.\n\x07\x61\x62orted\x18\x04 \x01(\x0b\x32\x1b.build_event_stream.AbortedH\x00\x12\x33\n\x07started\x18\x05 \x01(\x0b\x32 .build_event_stream.BuildStartedH\x00\x12P\n\x19unstructured_command_line\x18\x0c \x01(\x0b\x32+.build_event_stream.UnstructuredCommandLineH\x00\x12<\n\x17structured_command_line\x18\x16 \x01(\x0b\x32\x19.command_line.CommandLineH\x00\x12;\n\x0eoptions_parsed\x18\r \x01(\x0b\x32!.build_event_stream.OptionsParsedH\x00\x12?\n\x10workspace_status\x18\x10 \x01(\x0b\x32#.build_event_stream.WorkspaceStatusH\x00\x12*\n\x05\x66\x65tch\x18\x15 \x01(\x0b\x32\x19.build_event_stream.FetchH\x00\x12:\n\rconfiguration\x18\x11 \x01(\x0b\x32!.build_event_stream.ConfigurationH\x00\x12\x37\n\x08\x65xpanded\x18\x06 \x01(\x0b\x32#.build_event_stream.PatternExpandedH\x00\x12:\n\nconfigured\x18\x12 \x01(\x0b\x32$.build_event_stream.TargetConfiguredH\x00\x12\x34\n\x06\x61\x63tion\x18\x07 \x01(\x0b\x32\".build_event_stream.ActionExecutedH\x00\x12\x41\n\x12named_set_of_files\x18\x0f \x01(\x0b\x32#.build_event_stream.NamedSetOfFilesH\x00\x12\x37\n\tcompleted\x18\x08 \x01(\x0b\x32\".build_event_stream.TargetCompleteH\x00\x12\x35\n\x0btest_result\x18\n \x01(\x0b\x32\x1e.build_event_stream.TestResultH\x00\x12\x37\n\x0ctest_summary\x18\t \x01(\x0b\x32\x1f.build_event_stream.TestSummaryH\x00\x12;\n\x0etarget_summary\x18\x1c \x01(\x0b\x32!.build_event_stream.TargetSummaryH\x00\x12\x35\n\x08\x66inished\x18\x0e \x01(\x0b\x32!.build_event_stream.BuildFinishedH\x00\x12<\n\x0f\x62uild_tool_logs\x18\x17 \x01(\x0b\x32!.build_event_stream.BuildToolLogsH\x00\x12\x39\n\rbuild_metrics\x18\x18 \x01(\x0b\x32 .build_event_stream.BuildMetricsH\x00\x12=\n\x0eworkspace_info\x18\x19 \x01(\x0b\x32#.build_event_stream.WorkspaceConfigH\x00\x12;\n\x0e\x62uild_metadata\x18\x1a \x01(\x0b\x32!.build_event_stream.BuildMetadataH\x00\x12\\\n\x1f\x63onvenience_symlinks_identified\x18\x1b \x01(\x0b\x32\x31.build_event_stream.ConvenienceSymlinksIdentifiedH\x00\x42\t\n\x07payloadJ\x04\x08\x0b\x10\x0cJ\x04\x08\x13\x10\x14*G\n\x08TestSize\x12\x0b\n\x07UNKNOWN\x10\x00\x12\t\n\x05SMALL\x10\x01\x12\n\n\x06MEDIUM\x10\x02\x12\t\n\x05LARGE\x10\x03\x12\x0c\n\x08\x45NORMOUS\x10\x04*\xa4\x01\n\nTestStatus\x12\r\n\tNO_STATUS\x10\x00\x12\n\n\x06PASSED\x10\x01\x12\t\n\x05\x46LAKY\x10\x02\x12\x0b\n\x07TIMEOUT\x10\x03\x12\n\n\x06\x46\x41ILED\x10\x04\x12\x0e\n\nINCOMPLETE\x10\x05\x12\x12\n\x0eREMOTE_FAILURE\x10\x06\x12\x13\n\x0f\x46\x41ILED_TO_BUILD\x10\x07\x12\x1e\n\x1aTOOL_HALTED_BEFORE_TESTING\x10\x08\x42H\n.com.google.devtools.build.lib.buildeventstreamB\x16\x42uildEventStreamProtosb\x06proto3') _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'src.main.java.com.google.devtools.build.lib.buildeventstream.proto.build_event_stream_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'\n.com.google.devtools.build.lib.buildeventstreamB\026BuildEventStreamProtos' _BUILDSTARTED.fields_by_name['start_time_millis']._options = None _BUILDSTARTED.fields_by_name['start_time_millis']._serialized_options = b'\030\001' _BUILDMETADATA_METADATAENTRY._options = None _BUILDMETADATA_METADATAENTRY._serialized_options = b'8\001' _CONFIGURATION_MAKEVARIABLEENTRY._options = None _CONFIGURATION_MAKEVARIABLEENTRY._serialized_options = b'8\001' _ACTIONEXECUTED.fields_by_name['label']._options = None _ACTIONEXECUTED.fields_by_name['label']._serialized_options = b'\030\001' _ACTIONEXECUTED.fields_by_name['configuration']._options = None _ACTIONEXECUTED.fields_by_name['configuration']._serialized_options = b'\030\001' _TARGETCOMPLETE.fields_by_name['target_kind']._options = None _TARGETCOMPLETE.fields_by_name['target_kind']._serialized_options = b'\030\001' _TARGETCOMPLETE.fields_by_name['test_size']._options = None _TARGETCOMPLETE.fields_by_name['test_size']._serialized_options = b'\030\001' _TARGETCOMPLETE.fields_by_name['important_output']._options = None _TARGETCOMPLETE.fields_by_name['important_output']._serialized_options = b'\030\001' _TARGETCOMPLETE.fields_by_name['test_timeout_seconds']._options = None _TARGETCOMPLETE.fields_by_name['test_timeout_seconds']._serialized_options = b'\030\001' _TESTRESULT_EXECUTIONINFO_TIMINGBREAKDOWN.fields_by_name['time_millis']._options = None _TESTRESULT_EXECUTIONINFO_TIMINGBREAKDOWN.fields_by_name['time_millis']._serialized_options = b'\030\001' _TESTRESULT_EXECUTIONINFO.fields_by_name['timeout_seconds']._options = None _TESTRESULT_EXECUTIONINFO.fields_by_name['timeout_seconds']._serialized_options = b'\030\001' _TESTRESULT.fields_by_name['test_attempt_start_millis_epoch']._options = None _TESTRESULT.fields_by_name['test_attempt_start_millis_epoch']._serialized_options = b'\030\001' _TESTRESULT.fields_by_name['test_attempt_duration_millis']._options = None _TESTRESULT.fields_by_name['test_attempt_duration_millis']._serialized_options = b'\030\001' _TESTSUMMARY.fields_by_name['first_start_time_millis']._options = None _TESTSUMMARY.fields_by_name['first_start_time_millis']._serialized_options = b'\030\001' _TESTSUMMARY.fields_by_name['last_stop_time_millis']._options = None _TESTSUMMARY.fields_by_name['last_stop_time_millis']._serialized_options = b'\030\001' _TESTSUMMARY.fields_by_name['total_run_duration_millis']._options = None _TESTSUMMARY.fields_by_name['total_run_duration_millis']._serialized_options = b'\030\001' _BUILDFINISHED.fields_by_name['overall_success']._options = None _BUILDFINISHED.fields_by_name['overall_success']._serialized_options = b'\030\001' _BUILDFINISHED.fields_by_name['finish_time_millis']._options = None _BUILDFINISHED.fields_by_name['finish_time_millis']._serialized_options = b'\030\001' _BUILDFINISHED.fields_by_name['anomaly_report']._options = None _BUILDFINISHED.fields_by_name['anomaly_report']._serialized_options = b'\030\001' _BUILDMETRICS_ACTIONSUMMARY.fields_by_name['remote_cache_hits']._options = None _BUILDMETRICS_ACTIONSUMMARY.fields_by_name['remote_cache_hits']._serialized_options = b'\030\001' _BUILDMETRICS_WORKERMETRICS.fields_by_name['worker_id']._options = None _BUILDMETRICS_WORKERMETRICS.fields_by_name['worker_id']._serialized_options = b'\030\001' _TESTSIZE._serialized_start=13796 _TESTSIZE._serialized_end=13867 _TESTSTATUS._serialized_start=13870 _TESTSTATUS._serialized_end=14034 _BUILDEVENTID._serialized_start=303 _BUILDEVENTID._serialized_end=3637 _BUILDEVENTID_UNKNOWNBUILDEVENTID._serialized_start=2337 _BUILDEVENTID_UNKNOWNBUILDEVENTID._serialized_end=2375 _BUILDEVENTID_PROGRESSID._serialized_start=2377 _BUILDEVENTID_PROGRESSID._serialized_end=2411 _BUILDEVENTID_BUILDSTARTEDID._serialized_start=2413 _BUILDEVENTID_BUILDSTARTEDID._serialized_end=2429 _BUILDEVENTID_UNSTRUCTUREDCOMMANDLINEID._serialized_start=2431 _BUILDEVENTID_UNSTRUCTUREDCOMMANDLINEID._serialized_end=2458 _BUILDEVENTID_STRUCTUREDCOMMANDLINEID._serialized_start=2460 _BUILDEVENTID_STRUCTUREDCOMMANDLINEID._serialized_end=2513 _BUILDEVENTID_WORKSPACESTATUSID._serialized_start=2515 _BUILDEVENTID_WORKSPACESTATUSID._serialized_end=2534 _BUILDEVENTID_OPTIONSPARSEDID._serialized_start=2536 _BUILDEVENTID_OPTIONSPARSEDID._serialized_end=2553 _BUILDEVENTID_FETCHID._serialized_start=2555 _BUILDEVENTID_FETCHID._serialized_end=2577 _BUILDEVENTID_PATTERNEXPANDEDID._serialized_start=2579 _BUILDEVENTID_PATTERNEXPANDEDID._serialized_end=2615 _BUILDEVENTID_WORKSPACECONFIGID._serialized_start=2617 _BUILDEVENTID_WORKSPACECONFIGID._serialized_end=2636 _BUILDEVENTID_BUILDMETADATAID._serialized_start=2638 _BUILDEVENTID_BUILDMETADATAID._serialized_end=2655 _BUILDEVENTID_TARGETCONFIGUREDID._serialized_start=2657 _BUILDEVENTID_TARGETCONFIGUREDID._serialized_end=2708 _BUILDEVENTID_NAMEDSETOFFILESID._serialized_start=2710 _BUILDEVENTID_NAMEDSETOFFILESID._serialized_end=2741 _BUILDEVENTID_CONFIGURATIONID._serialized_start=2743 _BUILDEVENTID_CONFIGURATIONID._serialized_end=2772 _BUILDEVENTID_TARGETCOMPLETEDID._serialized_start=2774 _BUILDEVENTID_TARGETCOMPLETEDID._serialized_end=2897 _BUILDEVENTID_ACTIONCOMPLETEDID._serialized_start=2900 _BUILDEVENTID_ACTIONCOMPLETEDID._serialized_end=3031 _BUILDEVENTID_UNCONFIGUREDLABELID._serialized_start=3033 _BUILDEVENTID_UNCONFIGUREDLABELID._serialized_end=3069 _BUILDEVENTID_CONFIGUREDLABELID._serialized_start=3071 _BUILDEVENTID_CONFIGUREDLABELID._serialized_end=3178 _BUILDEVENTID_TESTRESULTID._serialized_start=3181 _BUILDEVENTID_TESTRESULTID._serialized_end=3328 _BUILDEVENTID_TESTSUMMARYID._serialized_start=3330 _BUILDEVENTID_TESTSUMMARYID._serialized_end=3433 _BUILDEVENTID_TARGETSUMMARYID._serialized_start=3435 _BUILDEVENTID_TARGETSUMMARYID._serialized_end=3540 _BUILDEVENTID_BUILDFINISHEDID._serialized_start=3542 _BUILDEVENTID_BUILDFINISHEDID._serialized_end=3559 _BUILDEVENTID_BUILDTOOLLOGSID._serialized_start=3561 _BUILDEVENTID_BUILDTOOLLOGSID._serialized_end=3578 _BUILDEVENTID_BUILDMETRICSID._serialized_start=3580 _BUILDEVENTID_BUILDMETRICSID._serialized_end=3596 _BUILDEVENTID_CONVENIENCESYMLINKSIDENTIFIEDID._serialized_start=3598 _BUILDEVENTID_CONVENIENCESYMLINKSIDENTIFIEDID._serialized_end=3631 _PROGRESS._serialized_start=3639 _PROGRESS._serialized_end=3681 _ABORTED._serialized_start=3684 _ABORTED._serialized_end=4003 _ABORTED_ABORTREASON._serialized_start=3774 _ABORTED_ABORTREASON._serialized_end=4003 _BUILDSTARTED._serialized_start=4006 _BUILDSTARTED._serialized_end=4263 _WORKSPACECONFIG._serialized_start=4265 _WORKSPACECONFIG._serialized_end=4307 _UNSTRUCTUREDCOMMANDLINE._serialized_start=4309 _UNSTRUCTUREDCOMMANDLINE._serialized_end=4348 _OPTIONSPARSED._serialized_start=4351 _OPTIONSPARSED._serialized_end=4558 _FETCH._serialized_start=4560 _FETCH._serialized_end=4584 _WORKSPACESTATUS._serialized_start=4586 _WORKSPACESTATUS._serialized_end=4695 _WORKSPACESTATUS_ITEM._serialized_start=4661 _WORKSPACESTATUS_ITEM._serialized_end=4695 _BUILDMETADATA._serialized_start=4698 _BUILDMETADATA._serialized_end=4829 _BUILDMETADATA_METADATAENTRY._serialized_start=4782 _BUILDMETADATA_METADATAENTRY._serialized_end=4829 _CONFIGURATION._serialized_start=4832 _CONFIGURATION._serialized_end=5047 _CONFIGURATION_MAKEVARIABLEENTRY._serialized_start=4996 _CONFIGURATION_MAKEVARIABLEENTRY._serialized_end=5047 _PATTERNEXPANDED._serialized_start=5050 _PATTERNEXPANDED._serialized_end=5218 _PATTERNEXPANDED_TESTSUITEEXPANSION._serialized_start=5156 _PATTERNEXPANDED_TESTSUITEEXPANSION._serialized_end=5218 _TARGETCONFIGURED._serialized_start=5220 _TARGETCONFIGURED._serialized_end=5321 _FILE._serialized_start=5323 _FILE._serialized_end=5439 _NAMEDSETOFFILES._serialized_start=5442 _NAMEDSETOFFILES._serialized_end=5571 _ACTIONEXECUTED._serialized_start=5574 _ACTIONEXECUTED._serialized_end=6004 _OUTPUTGROUP._serialized_start=6006 _OUTPUTGROUP._serialized_end=6130 _TARGETCOMPLETE._serialized_start=6133 _TARGETCOMPLETE._serialized_end=6559 _TESTRESULT._serialized_start=6562 _TESTRESULT._serialized_end=7540 _TESTRESULT_EXECUTIONINFO._serialized_start=7015 _TESTRESULT_EXECUTIONINFO._serialized_end=7534 _TESTRESULT_EXECUTIONINFO_TIMINGBREAKDOWN._serialized_start=7314 _TESTRESULT_EXECUTIONINFO_TIMINGBREAKDOWN._serialized_end=7488 _TESTRESULT_EXECUTIONINFO_RESOURCEUSAGE._serialized_start=7490 _TESTRESULT_EXECUTIONINFO_RESOURCEUSAGE._serialized_end=7534 _TESTSUMMARY._serialized_start=7543 _TESTSUMMARY._serialized_end=8082 _TARGETSUMMARY._serialized_start=8084 _TARGETSUMMARY._serialized_end=8191 _BUILDFINISHED._serialized_start=8194 _BUILDFINISHED._serialized_end=8539 _BUILDFINISHED_EXITCODE._serialized_start=8461 _BUILDFINISHED_EXITCODE._serialized_end=8499 _BUILDFINISHED_ANOMALYREPORT._serialized_start=8501 _BUILDFINISHED_ANOMALYREPORT._serialized_end=8539 _BUILDMETRICS._serialized_start=8542 _BUILDMETRICS._serialized_end=11927 _BUILDMETRICS_ACTIONSUMMARY._serialized_start=9304 _BUILDMETRICS_ACTIONSUMMARY._serialized_end=9761 _BUILDMETRICS_ACTIONSUMMARY_ACTIONDATA._serialized_start=9612 _BUILDMETRICS_ACTIONSUMMARY_ACTIONDATA._serialized_end=9717 _BUILDMETRICS_ACTIONSUMMARY_RUNNERCOUNT._serialized_start=9719 _BUILDMETRICS_ACTIONSUMMARY_RUNNERCOUNT._serialized_end=9761 _BUILDMETRICS_MEMORYMETRICS._serialized_start=9764 _BUILDMETRICS_MEMORYMETRICS._serialized_end=10039 _BUILDMETRICS_MEMORYMETRICS_GARBAGEMETRICS._serialized_start=9982 _BUILDMETRICS_MEMORYMETRICS_GARBAGEMETRICS._serialized_end=10039 _BUILDMETRICS_TARGETMETRICS._serialized_start=10041 _BUILDMETRICS_TARGETMETRICS._serialized_end=10158 _BUILDMETRICS_PACKAGEMETRICS._serialized_start=10160 _BUILDMETRICS_PACKAGEMETRICS._serialized_end=10201 _BUILDMETRICS_TIMINGMETRICS._serialized_start=10203 _BUILDMETRICS_TIMINGMETRICS._serialized_end=10302 _BUILDMETRICS_CUMULATIVEMETRICS._serialized_start=10304 _BUILDMETRICS_CUMULATIVEMETRICS._serialized_end=10365 _BUILDMETRICS_ARTIFACTMETRICS._serialized_start=10368 _BUILDMETRICS_ARTIFACTMETRICS._serialized_end=10827 _BUILDMETRICS_ARTIFACTMETRICS_FILESMETRIC._serialized_start=10770 _BUILDMETRICS_ARTIFACTMETRICS_FILESMETRIC._serialized_end=10821 _BUILDMETRICS_BUILDGRAPHMETRICS._serialized_start=10830 _BUILDMETRICS_BUILDGRAPHMETRICS._serialized_end=11211 _BUILDMETRICS_WORKERMETRICS._serialized_start=11214 _BUILDMETRICS_WORKERMETRICS._serialized_end=11567 _BUILDMETRICS_WORKERMETRICS_WORKERSTATS._serialized_start=11459 _BUILDMETRICS_WORKERMETRICS_WORKERSTATS._serialized_end=11567 _BUILDMETRICS_NETWORKMETRICS._serialized_start=11570 _BUILDMETRICS_NETWORKMETRICS._serialized_end=11927 _BUILDMETRICS_NETWORKMETRICS_SYSTEMNETWORKSTATS._serialized_start=11687 _BUILDMETRICS_NETWORKMETRICS_SYSTEMNETWORKSTATS._serialized_end=11927 _BUILDTOOLLOGS._serialized_start=11929 _BUILDTOOLLOGS._serialized_end=11983 _CONVENIENCESYMLINKSIDENTIFIED._serialized_start=11985 _CONVENIENCESYMLINKSIDENTIFIED._serialized_end=12086 _CONVENIENCESYMLINK._serialized_start=12089 _CONVENIENCESYMLINK._serialized_end=12249 _CONVENIENCESYMLINK_ACTION._serialized_start=12204 _CONVENIENCESYMLINK_ACTION._serialized_end=12249 _BUILDEVENT._serialized_start=12252 _BUILDEVENT._serialized_end=13794 # @@protoc_insertion_point(module_scope)
xmanager-main
xmanager/generated/build_event_stream_pb2.py
# Copyright 2015 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pyformat: disable # Generated by the protocol buffer compiler. DO NOT EDIT! # pylint: skip-file # source: src/main/protobuf/invocation_policy.proto """Generated protocol buffer code.""" from google.protobuf.internal import builder as _builder from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n)src/main/protobuf/invocation_policy.proto\x12\x17\x62laze.invocation_policy\"N\n\x10InvocationPolicy\x12:\n\rflag_policies\x18\x01 \x03(\x0b\x32#.blaze.invocation_policy.FlagPolicy\"\xb4\x02\n\nFlagPolicy\x12\x11\n\tflag_name\x18\x01 \x01(\t\x12\x10\n\x08\x63ommands\x18\x02 \x03(\t\x12\x36\n\tset_value\x18\x03 \x01(\x0b\x32!.blaze.invocation_policy.SetValueH\x00\x12:\n\x0buse_default\x18\x04 \x01(\x0b\x32#.blaze.invocation_policy.UseDefaultH\x00\x12\x42\n\x0f\x64isallow_values\x18\x05 \x01(\x0b\x32\'.blaze.invocation_policy.DisallowValuesH\x00\x12<\n\x0c\x61llow_values\x18\x06 \x01(\x0b\x32$.blaze.invocation_policy.AllowValuesH\x00\x42\x0b\n\toperation\"\xc6\x01\n\x08SetValue\x12\x12\n\nflag_value\x18\x01 \x03(\t\x12<\n\x08\x62\x65havior\x18\x04 \x01(\x0e\x32*.blaze.invocation_policy.SetValue.Behavior\"\\\n\x08\x42\x65havior\x12\r\n\tUNDEFINED\x10\x00\x12\x13\n\x0f\x41LLOW_OVERRIDES\x10\x01\x12\n\n\x06\x41PPEND\x10\x02\x12 \n\x1c\x46INAL_VALUE_IGNORE_OVERRIDES\x10\x03J\x04\x08\x02\x10\x03J\x04\x08\x03\x10\x04\"\x0c\n\nUseDefault\"\x97\x01\n\x0e\x44isallowValues\x12\x19\n\x11\x64isallowed_values\x18\x01 \x03(\t\x12\x13\n\tnew_value\x18\x03 \x01(\tH\x00\x12:\n\x0buse_default\x18\x04 \x01(\x0b\x32#.blaze.invocation_policy.UseDefaultH\x00\x42\x13\n\x11replacement_valueJ\x04\x08\x02\x10\x03\"\x91\x01\n\x0b\x41llowValues\x12\x16\n\x0e\x61llowed_values\x18\x01 \x03(\t\x12\x13\n\tnew_value\x18\x03 \x01(\tH\x00\x12:\n\x0buse_default\x18\x04 \x01(\x0b\x32#.blaze.invocation_policy.UseDefaultH\x00\x42\x13\n\x11replacement_valueJ\x04\x08\x02\x10\x03\x42-\n+com.google.devtools.build.lib.runtime.proto') _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'src.main.protobuf.invocation_policy_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'\n+com.google.devtools.build.lib.runtime.proto' _INVOCATIONPOLICY._serialized_start=70 _INVOCATIONPOLICY._serialized_end=148 _FLAGPOLICY._serialized_start=151 _FLAGPOLICY._serialized_end=459 _SETVALUE._serialized_start=462 _SETVALUE._serialized_end=660 _SETVALUE_BEHAVIOR._serialized_start=556 _SETVALUE_BEHAVIOR._serialized_end=648 _USEDEFAULT._serialized_start=662 _USEDEFAULT._serialized_end=674 _DISALLOWVALUES._serialized_start=677 _DISALLOWVALUES._serialized_end=828 _ALLOWVALUES._serialized_start=831 _ALLOWVALUES._serialized_end=976 # @@protoc_insertion_point(module_scope)
xmanager-main
xmanager/generated/invocation_policy_pb2.py
# Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pyformat: disable # Generated by the protocol buffer compiler. DO NOT EDIT! # pylint: skip-file # source: src/main/protobuf/option_filters.proto """Generated protocol buffer code.""" from google.protobuf.internal import builder as _builder from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n&src/main/protobuf/option_filters.proto\x12\x07options*\xea\x02\n\x0fOptionEffectTag\x12\x0b\n\x07UNKNOWN\x10\x00\x12\t\n\x05NO_OP\x10\x01\x12\x1b\n\x17LOSES_INCREMENTAL_STATE\x10\x02\x12\x12\n\x0e\x43HANGES_INPUTS\x10\x03\x12\x13\n\x0f\x41\x46\x46\x45\x43TS_OUTPUTS\x10\x04\x12\x18\n\x14\x42UILD_FILE_SEMANTICS\x10\x05\x12 \n\x1c\x42\x41ZEL_INTERNAL_CONFIGURATION\x10\x06\x12\x18\n\x14LOADING_AND_ANALYSIS\x10\x07\x12\r\n\tEXECUTION\x10\x08\x12\'\n#HOST_MACHINE_RESOURCE_OPTIMIZATIONS\x10\t\x12\x15\n\x11\x45\x41GERNESS_TO_EXIT\x10\n\x12\x14\n\x10\x42\x41ZEL_MONITORING\x10\x0b\x12\x13\n\x0fTERMINAL_OUTPUT\x10\x0c\x12\x18\n\x14\x41\x43TION_COMMAND_LINES\x10\r\x12\x0f\n\x0bTEST_RUNNER\x10\x0e*\xb2\x01\n\x11OptionMetadataTag\x12\x10\n\x0c\x45XPERIMENTAL\x10\x00\x12\x17\n\x13INCOMPATIBLE_CHANGE\x10\x01\x12\x0e\n\nDEPRECATED\x10\x02\x12\n\n\x06HIDDEN\x10\x03\x12\x0c\n\x08INTERNAL\x10\x04\x12\x1b\n\x17\x45XPLICIT_IN_OUTPUT_PATH\x10\x06\"\x04\x08\x05\x10\x05*%TRIGGERED_BY_ALL_INCOMPATIBLE_CHANGESB*\n(com.google.devtools.common.options.protob\x06proto3') _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'src.main.protobuf.option_filters_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'\n(com.google.devtools.common.options.proto' _OPTIONEFFECTTAG._serialized_start=52 _OPTIONEFFECTTAG._serialized_end=414 _OPTIONMETADATATAG._serialized_start=417 _OPTIONMETADATATAG._serialized_end=595 # @@protoc_insertion_point(module_scope)
xmanager-main
xmanager/generated/option_filters_pb2.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pyformat: disable # Generated by the protocol buffer compiler. DO NOT EDIT! # pylint: skip-file # source: xm_local/storage/data.proto """Generated protocol buffer code.""" from google.protobuf.internal import builder as _builder from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\x1bxm_local/storage/data.proto\x12\x08xmanager\"\x8a\x01\n\x03Job\x12#\n\x05local\x18\x01 \x01(\x0b\x32\x12.xmanager.LocalJobH\x00\x12\'\n\x04\x63\x61ip\x18\x02 \x01(\x0b\x32\x17.xmanager.AIPlatformJobH\x00\x12-\n\nkubernetes\x18\x03 \x01(\x0b\x32\x17.xmanager.KubernetesJobH\x00\x42\x06\n\x04kind\"7\n\x08LocalJob\x12\x0b\n\x03pid\x18\x01 \x01(\t\x12\x0b\n\x03\x63md\x18\x02 \x01(\t\x12\x11\n\ttimestamp\x18\x03 \x01(\x03\"&\n\rAIPlatformJob\x12\x15\n\rresource_name\x18\x01 \x01(\t\"4\n\rKubernetesJob\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x10\n\x08job_name\x18\x02 \x01(\tb\x06proto3') _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'xm_local.storage.data_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _JOB._serialized_start=42 _JOB._serialized_end=180 _LOCALJOB._serialized_start=182 _LOCALJOB._serialized_end=237 _AIPLATFORMJOB._serialized_start=239 _AIPLATFORMJOB._serialized_end=277 _KUBERNETESJOB._serialized_start=279 _KUBERNETESJOB._serialized_end=331 # @@protoc_insertion_point(module_scope)
xmanager-main
xmanager/generated/data_pb2.py
# Copyright 2020 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pyformat: disable # Generated by the protocol buffer compiler. DO NOT EDIT! # pylint: skip-file # source: src/main/protobuf/failure_details.proto """Generated protocol buffer code.""" from google.protobuf.internal import builder as _builder from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.protobuf import descriptor_pb2 as google_dot_protobuf_dot_descriptor__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\'src/main/protobuf/failure_details.proto\x12\x0f\x66\x61ilure_details\x1a google/protobuf/descriptor.proto\"*\n\x15\x46\x61ilureDetailMetadata\x12\x11\n\texit_code\x18\x01 \x01(\r\"\xe1\x1c\n\rFailureDetail\x12\x0f\n\x07message\x18\x01 \x01(\t\x12\x33\n\x0binterrupted\x18\x65 \x01(\x0b\x32\x1c.failure_details.InterruptedH\x00\x12\x42\n\x13\x65xternal_repository\x18g \x01(\x0b\x32#.failure_details.ExternalRepositoryH\x00\x12\x38\n\x0e\x62uild_progress\x18h \x01(\x0b\x32\x1e.failure_details.BuildProgressH\x00\x12\x38\n\x0eremote_options\x18j \x01(\x0b\x32\x1e.failure_details.RemoteOptionsH\x00\x12@\n\x12\x63lient_environment\x18k \x01(\x0b\x32\".failure_details.ClientEnvironmentH\x00\x12\'\n\x05\x63rash\x18l \x01(\x0b\x32\x16.failure_details.CrashH\x00\x12\x38\n\x0esymlink_forest\x18n \x01(\x0b\x32\x1e.failure_details.SymlinkForestH\x00\x12:\n\x0fpackage_options\x18r \x01(\x0b\x32\x1f.failure_details.PackageOptionsH\x00\x12<\n\x10remote_execution\x18s \x01(\x0b\x32 .failure_details.RemoteExecutionH\x00\x12/\n\texecution\x18t \x01(\x0b\x32\x1a.failure_details.ExecutionH\x00\x12\x31\n\nworkspaces\x18u \x01(\x0b\x32\x1b.failure_details.WorkspacesH\x00\x12\x36\n\rcrash_options\x18v \x01(\x0b\x32\x1d.failure_details.CrashOptionsH\x00\x12\x31\n\nfilesystem\x18w \x01(\x0b\x32\x1b.failure_details.FilesystemH\x00\x12>\n\x11\x65xecution_options\x18y \x01(\x0b\x32!.failure_details.ExecutionOptionsH\x00\x12+\n\x07\x63ommand\x18z \x01(\x0b\x32\x18.failure_details.CommandH\x00\x12\'\n\x05spawn\x18{ \x01(\x0b\x32\x16.failure_details.SpawnH\x00\x12\x32\n\x0bgrpc_server\x18| \x01(\x0b\x32\x1b.failure_details.GrpcServerH\x00\x12@\n\x12\x63\x61nonicalize_flags\x18} \x01(\x0b\x32\".failure_details.CanonicalizeFlagsH\x00\x12\x42\n\x13\x62uild_configuration\x18~ \x01(\x0b\x32#.failure_details.BuildConfigurationH\x00\x12\x34\n\x0cinfo_command\x18\x7f \x01(\x0b\x32\x1c.failure_details.InfoCommandH\x00\x12\x39\n\x0ememory_options\x18\x81\x01 \x01(\x0b\x32\x1e.failure_details.MemoryOptionsH\x00\x12(\n\x05query\x18\x82\x01 \x01(\x0b\x32\x16.failure_details.QueryH\x00\x12;\n\x0flocal_execution\x18\x84\x01 \x01(\x0b\x32\x1f.failure_details.LocalExecutionH\x00\x12\x35\n\x0c\x61\x63tion_cache\x18\x86\x01 \x01(\x0b\x32\x1c.failure_details.ActionCacheH\x00\x12\x37\n\rfetch_command\x18\x87\x01 \x01(\x0b\x32\x1d.failure_details.FetchCommandH\x00\x12\x35\n\x0csync_command\x18\x88\x01 \x01(\x0b\x32\x1c.failure_details.SyncCommandH\x00\x12,\n\x07sandbox\x18\x89\x01 \x01(\x0b\x32\x18.failure_details.SandboxH\x00\x12=\n\x10include_scanning\x18\x8b\x01 \x01(\x0b\x32 .failure_details.IncludeScanningH\x00\x12\x35\n\x0ctest_command\x18\x8c\x01 \x01(\x0b\x32\x1c.failure_details.TestCommandH\x00\x12\x35\n\x0c\x61\x63tion_query\x18\x8d\x01 \x01(\x0b\x32\x1c.failure_details.ActionQueryH\x00\x12;\n\x0ftarget_patterns\x18\x8e\x01 \x01(\x0b\x32\x1f.failure_details.TargetPatternsH\x00\x12\x37\n\rclean_command\x18\x90\x01 \x01(\x0b\x32\x1d.failure_details.CleanCommandH\x00\x12\x39\n\x0e\x63onfig_command\x18\x91\x01 \x01(\x0b\x32\x1e.failure_details.ConfigCommandH\x00\x12\x41\n\x12\x63onfigurable_query\x18\x92\x01 \x01(\x0b\x32\".failure_details.ConfigurableQueryH\x00\x12\x35\n\x0c\x64ump_command\x18\x93\x01 \x01(\x0b\x32\x1c.failure_details.DumpCommandH\x00\x12\x35\n\x0chelp_command\x18\x94\x01 \x01(\x0b\x32\x1c.failure_details.HelpCommandH\x00\x12\x39\n\x0emobile_install\x18\x96\x01 \x01(\x0b\x32\x1e.failure_details.MobileInstallH\x00\x12;\n\x0fprofile_command\x18\x97\x01 \x01(\x0b\x32\x1f.failure_details.ProfileCommandH\x00\x12\x33\n\x0brun_command\x18\x98\x01 \x01(\x0b\x32\x1b.failure_details.RunCommandH\x00\x12;\n\x0fversion_command\x18\x99\x01 \x01(\x0b\x32\x1f.failure_details.VersionCommandH\x00\x12\x44\n\x14print_action_command\x18\x9a\x01 \x01(\x0b\x32#.failure_details.PrintActionCommandH\x00\x12=\n\x10workspace_status\x18\x9e\x01 \x01(\x0b\x32 .failure_details.WorkspaceStatusH\x00\x12\x35\n\x0cjava_compile\x18\x9f\x01 \x01(\x0b\x32\x1c.failure_details.JavaCompileH\x00\x12=\n\x10\x61\x63tion_rewinding\x18\xa0\x01 \x01(\x0b\x32 .failure_details.ActionRewindingH\x00\x12\x33\n\x0b\x63pp_compile\x18\xa1\x01 \x01(\x0b\x32\x1b.failure_details.CppCompileH\x00\x12;\n\x0fstarlark_action\x18\xa2\x01 \x01(\x0b\x32\x1f.failure_details.StarlarkActionH\x00\x12\x35\n\x0cninja_action\x18\xa3\x01 \x01(\x0b\x32\x1c.failure_details.NinjaActionH\x00\x12?\n\x11\x64ynamic_execution\x18\xa4\x01 \x01(\x0b\x32!.failure_details.DynamicExecutionH\x00\x12\x33\n\x0b\x66\x61il_action\x18\xa6\x01 \x01(\x0b\x32\x1b.failure_details.FailActionH\x00\x12\x39\n\x0esymlink_action\x18\xa7\x01 \x01(\x0b\x32\x1e.failure_details.SymlinkActionH\x00\x12-\n\x08\x63pp_link\x18\xa8\x01 \x01(\x0b\x32\x18.failure_details.CppLinkH\x00\x12\x31\n\nlto_action\x18\xa9\x01 \x01(\x0b\x32\x1a.failure_details.LtoActionH\x00\x12\x33\n\x0btest_action\x18\xac\x01 \x01(\x0b\x32\x1b.failure_details.TestActionH\x00\x12*\n\x06worker\x18\xad\x01 \x01(\x0b\x32\x17.failure_details.WorkerH\x00\x12.\n\x08\x61nalysis\x18\xae\x01 \x01(\x0b\x32\x19.failure_details.AnalysisH\x00\x12;\n\x0fpackage_loading\x18\xaf\x01 \x01(\x0b\x32\x1f.failure_details.PackageLoadingH\x00\x12\x30\n\ttoolchain\x18\xb1\x01 \x01(\x0b\x32\x1a.failure_details.ToolchainH\x00\x12=\n\x10starlark_loading\x18\xb3\x01 \x01(\x0b\x32 .failure_details.StarlarkLoadingH\x00\x12\x37\n\rexternal_deps\x18\xb5\x01 \x01(\x0b\x32\x1d.failure_details.ExternalDepsH\x00\x12\x39\n\x0e\x64iff_awareness\x18\xb6\x01 \x01(\x0b\x32\x1e.failure_details.DiffAwarenessH\x00\x12=\n\x10modquery_command\x18\xb7\x01 \x01(\x0b\x32 .failure_details.ModqueryCommandH\x00\x12\x35\n\x0c\x62uild_report\x18\xb8\x01 \x01(\x0b\x32\x1c.failure_details.BuildReportH\x00\x42\n\n\x08\x63\x61tegoryJ\x04\x08\x02\x10\x65J\x04\x08\x66\x10gJ\x04\x08i\x10jJ\x04\x08m\x10nJ\x04\x08o\x10rJ\x04\x08x\x10yJ\x06\x08\x80\x01\x10\x81\x01J\x06\x08\x83\x01\x10\x84\x01J\x06\x08\x85\x01\x10\x86\x01J\x06\x08\x8a\x01\x10\x8b\x01J\x06\x08\x8f\x01\x10\x90\x01J\x06\x08\x95\x01\x10\x96\x01J\x06\x08\x9b\x01\x10\x9e\x01J\x06\x08\xa5\x01\x10\xa6\x01J\x06\x08\xaa\x01\x10\xac\x01J\x06\x08\xb0\x01\x10\xb1\x01J\x06\x08\xb2\x01\x10\xb3\x01J\x06\x08\xb4\x01\x10\xb5\x01\"\xa2\x05\n\x0bInterrupted\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.Interrupted.Code\"\xe1\x04\n\x04\x43ode\x12\x1e\n\x13INTERRUPTED_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08\x08\x12\x16\n\x0bINTERRUPTED\x10\x1c\x1a\x05\xb2\x43\x02\x08\x08\x12\x1b\n\x10\x44\x45PRECATED_BUILD\x10\x04\x1a\x05\xb2\x43\x02\x08\x08\x12&\n\x1b\x44\x45PRECATED_BUILD_COMPLETION\x10\x05\x1a\x05\xb2\x43\x02\x08\x08\x12*\n\x1f\x44\x45PRECATED_PACKAGE_LOADING_SYNC\x10\x06\x1a\x05\xb2\x43\x02\x08\x08\x12)\n\x1e\x44\x45PRECATED_EXECUTOR_COMPLETION\x10\x07\x1a\x05\xb2\x43\x02\x08\x08\x12&\n\x1b\x44\x45PRECATED_COMMAND_DISPATCH\x10\x08\x1a\x05\xb2\x43\x02\x08\x08\x12\x1f\n\x14\x44\x45PRECATED_INFO_ITEM\x10\t\x1a\x05\xb2\x43\x02\x08\x08\x12!\n\x16\x44\x45PRECATED_AFTER_QUERY\x10\n\x1a\x05\xb2\x43\x02\x08\x08\x12#\n\x18\x44\x45PRECATED_FETCH_COMMAND\x10\x11\x1a\x05\xb2\x43\x02\x08\x08\x12\"\n\x17\x44\x45PRECATED_SYNC_COMMAND\x10\x12\x1a\x05\xb2\x43\x02\x08\x08\x12#\n\x18\x44\x45PRECATED_CLEAN_COMMAND\x10\x14\x1a\x05\xb2\x43\x02\x08\x08\x12,\n!DEPRECATED_MOBILE_INSTALL_COMMAND\x10\x15\x1a\x05\xb2\x43\x02\x08\x08\x12\x1b\n\x10\x44\x45PRECATED_QUERY\x10\x16\x1a\x05\xb2\x43\x02\x08\x08\x12!\n\x16\x44\x45PRECATED_RUN_COMMAND\x10\x17\x1a\x05\xb2\x43\x02\x08\x08\x12%\n\x1a\x44\x45PRECATED_OPTIONS_PARSING\x10\x1b\x1a\x05\xb2\x43\x02\x08\x08\"\x04\x08\x01\x10\x03\"\x04\x08\x0b\x10\x10\"\x04\x08\x13\x10\x13\"\x04\x08\x18\x10\x1a\"\xc7\x04\n\x05Spawn\x12)\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1b.failure_details.Spawn.Code\x12\x14\n\x0c\x63\x61tastrophic\x18\x02 \x01(\x08\x12\x17\n\x0fspawn_exit_code\x18\x03 \x01(\x05\"\xe3\x03\n\x04\x43ode\x12\x18\n\rSPAWN_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x18\n\rNON_ZERO_EXIT\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12\x12\n\x07TIMEOUT\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\x18\n\rOUT_OF_MEMORY\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x1b\n\x10\x45XECUTION_FAILED\x10\x04\x1a\x05\xb2\x43\x02\x08\"\x12\x1b\n\x10\x45XECUTION_DENIED\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12\x1e\n\x13REMOTE_CACHE_FAILED\x10\x06\x1a\x05\xb2\x43\x02\x08\"\x12)\n\x1e\x43OMMAND_LINE_EXPANSION_FAILURE\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\x12\x1c\n\x11\x45XEC_IO_EXCEPTION\x10\x08\x1a\x05\xb2\x43\x02\x08$\x12\x1a\n\x0fINVALID_TIMEOUT\x10\t\x1a\x05\xb2\x43\x02\x08\x01\x12.\n#INVALID_REMOTE_EXECUTION_PROPERTIES\x10\n\x1a\x05\xb2\x43\x02\x08\x01\x12#\n\x18NO_USABLE_STRATEGY_FOUND\x10\x0b\x1a\x05\xb2\x43\x02\x08\x01\x12(\n\x1dUNSPECIFIED_EXECUTION_FAILURE\x10\x0c\x1a\x05\xb2\x43\x02\x08\x01\x12\x1a\n\x0f\x46ORBIDDEN_INPUT\x10\r\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14REMOTE_CACHE_EVICTED\x10\x0e\x1a\x05\xb2\x43\x02\x08\'\"\x84\x02\n\x12\x45xternalRepository\x12\x36\n\x04\x63ode\x18\x01 \x01(\x0e\x32(.failure_details.ExternalRepository.Code\"\xb5\x01\n\x04\x43ode\x12&\n\x1b\x45XTERNAL_REPOSITORY_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x32\n\'OVERRIDE_DISALLOWED_MANAGED_DIRECTORIES\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15\x42\x41\x44_DOWNLOADER_CONFIG\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12/\n$REPOSITORY_MAPPING_RESOLUTION_FAILED\x10\x03\x1a\x05\xb2\x43\x02\x08%\"\xa7\x06\n\rBuildProgress\x12\x31\n\x04\x63ode\x18\x01 \x01(\x0e\x32#.failure_details.BuildProgress.Code\"\xe2\x05\n\x04\x43ode\x12!\n\x16\x42UILD_PROGRESS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12 \n\x15OUTPUT_INITIALIZATION\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12.\n#BES_RUNS_PER_TEST_LIMIT_UNSUPPORTED\x10\x04\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15\x42\x45S_LOCAL_WRITE_ERROR\x10\x05\x1a\x05\xb2\x43\x02\x08$\x12#\n\x18\x42\x45S_INITIALIZATION_ERROR\x10\x06\x1a\x05\xb2\x43\x02\x08$\x12#\n\x18\x42\x45S_UPLOAD_TIMEOUT_ERROR\x10\x07\x1a\x05\xb2\x43\x02\x08&\x12!\n\x16\x42\x45S_FILE_WRITE_TIMEOUT\x10\x08\x1a\x05\xb2\x43\x02\x08&\x12\"\n\x17\x42\x45S_FILE_WRITE_IO_ERROR\x10\t\x1a\x05\xb2\x43\x02\x08&\x12%\n\x1a\x42\x45S_FILE_WRITE_INTERRUPTED\x10\n\x1a\x05\xb2\x43\x02\x08&\x12\"\n\x17\x42\x45S_FILE_WRITE_CANCELED\x10\x0b\x1a\x05\xb2\x43\x02\x08&\x12\'\n\x1c\x42\x45S_FILE_WRITE_UNKNOWN_ERROR\x10\x0c\x1a\x05\xb2\x43\x02\x08&\x12&\n\x1b\x42\x45S_UPLOAD_LOCAL_FILE_ERROR\x10\r\x1a\x05\xb2\x43\x02\x08&\x12*\n\x1f\x42\x45S_STREAM_NOT_RETRYING_FAILURE\x10\x0e\x1a\x05\xb2\x43\x02\x08-\x12\x37\n,BES_STREAM_COMPLETED_WITH_UNACK_EVENTS_ERROR\x10\x0f\x1a\x05\xb2\x43\x02\x08-\x12\x38\n-BES_STREAM_COMPLETED_WITH_UNSENT_EVENTS_ERROR\x10\x10\x1a\x05\xb2\x43\x02\x08-\x12\x31\n&BES_STREAM_COMPLETED_WITH_REMOTE_ERROR\x10\x13\x1a\x05\xb2\x43\x02\x08-\x12\x32\n\'BES_UPLOAD_RETRY_LIMIT_EXCEEDED_FAILURE\x10\x11\x1a\x05\xb2\x43\x02\x08&\"\x04\x08\x01\x10\x01\"\x04\x08\x02\x10\x02\"\x04\x08\x12\x10\x12\"\xc3\x02\n\rRemoteOptions\x12\x31\n\x04\x63ode\x18\x01 \x01(\x0e\x32#.failure_details.RemoteOptions.Code\"\xfe\x01\n\x04\x43ode\x12!\n\x16REMOTE_OPTIONS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x35\n*REMOTE_DEFAULT_EXEC_PROPERTIES_LOGIC_ERROR\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12#\n\x18\x43REDENTIALS_READ_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08$\x12$\n\x19\x43REDENTIALS_WRITE_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12(\n\x1d\x44OWNLOADER_WITHOUT_GRPC_CACHE\x10\x04\x1a\x05\xb2\x43\x02\x08\x02\x12\'\n\x1c\x45XECUTION_WITH_INVALID_CACHE\x10\x05\x1a\x05\xb2\x43\x02\x08\x02\"\x9a\x01\n\x11\x43lientEnvironment\x12\x35\n\x04\x63ode\x18\x01 \x01(\x0e\x32\'.failure_details.ClientEnvironment.Code\"N\n\x04\x43ode\x12%\n\x1a\x43LIENT_ENVIRONMENT_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1f\n\x14\x43LIENT_CWD_MALFORMED\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\"\xb5\x01\n\x05\x43rash\x12)\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1b.failure_details.Crash.Code\x12*\n\x06\x63\x61uses\x18\x02 \x03(\x0b\x32\x1a.failure_details.Throwable\x12\x1d\n\x15oom_detector_override\x18\x03 \x01(\x08\"6\n\x04\x43ode\x12\x18\n\rCRASH_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x14\n\tCRASH_OOM\x10\x01\x1a\x05\xb2\x43\x02\x08!\"J\n\tThrowable\x12\x17\n\x0fthrowable_class\x18\x01 \x01(\t\x12\x0f\n\x07message\x18\x02 \x01(\t\x12\x13\n\x0bstack_trace\x18\x03 \x03(\t\"\xe7\x01\n\rSymlinkForest\x12\x31\n\x04\x63ode\x18\x01 \x01(\x0e\x32#.failure_details.SymlinkForest.Code\"\xa2\x01\n\x04\x43ode\x12!\n\x16SYMLINK_FOREST_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x30\n%TOPLEVEL_OUTDIR_PACKAGE_PATH_CONFLICT\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12)\n\x1eTOPLEVEL_OUTDIR_USED_AS_SOURCE\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12\x1a\n\x0f\x43REATION_FAILED\x10\x03\x1a\x05\xb2\x43\x02\x08\x02\"\xc4\x01\n\x0b\x42uildReport\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.BuildReport.Code\"\x83\x01\n\x04\x43ode\x12\x1f\n\x14\x42UILD_REPORT_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x34\n)BUILD_REPORT_UPLOADER_NEEDS_PACKAGE_PATHS\x10\x01\x1a\x05\xb2\x43\x02\x08$\x12$\n\x19\x42UILD_REPORT_WRITE_FAILED\x10\x02\x1a\x05\xb2\x43\x02\x08$\"\x9d\x01\n\x0ePackageOptions\x12\x32\n\x04\x63ode\x18\x01 \x01(\x0e\x32$.failure_details.PackageOptions.Code\"W\n\x04\x43ode\x12\"\n\x17PACKAGE_OPTIONS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1f\n\x14PACKAGE_PATH_INVALID\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\"\x04\x08\x02\x10\x02\"\x04\x08\x03\x10\x03\"\xb3\x06\n\x0fRemoteExecution\x12\x33\n\x04\x63ode\x18\x01 \x01(\x0e\x32%.failure_details.RemoteExecution.Code\"\xea\x05\n\x04\x43ode\x12#\n\x18REMOTE_EXECUTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12%\n\x1a\x43\x41PABILITIES_QUERY_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\"\x12#\n\x18\x43REDENTIALS_INIT_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12\x1d\n\x12\x43\x41\x43HE_INIT_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08\x02\x12\x1a\n\x0fRPC_LOG_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08\x02\x12$\n\x19\x45XEC_CHANNEL_INIT_FAILURE\x10\x05\x1a\x05\xb2\x43\x02\x08\x02\x12%\n\x1a\x43\x41\x43HE_CHANNEL_INIT_FAILURE\x10\x06\x1a\x05\xb2\x43\x02\x08\x02\x12*\n\x1f\x44OWNLOADER_CHANNEL_INIT_FAILURE\x10\x07\x1a\x05\xb2\x43\x02\x08\x02\x12\"\n\x17LOG_DIR_CLEANUP_FAILURE\x10\x08\x1a\x05\xb2\x43\x02\x08$\x12%\n\x1a\x43LIENT_SERVER_INCOMPATIBLE\x10\t\x1a\x05\xb2\x43\x02\x08\"\x12-\n\"DOWNLOADED_INPUTS_DELETION_FAILURE\x10\n\x1a\x05\xb2\x43\x02\x08\"\x12@\n5REMOTE_DOWNLOAD_OUTPUTS_MINIMAL_WITHOUT_INMEMORY_DOTD\x10\x0b\x1a\x05\xb2\x43\x02\x08\x02\x12\x41\n6REMOTE_DOWNLOAD_OUTPUTS_MINIMAL_WITHOUT_INMEMORY_JDEPS\x10\x0c\x1a\x05\xb2\x43\x02\x08\x02\x12\x35\n*INCOMPLETE_OUTPUT_DOWNLOAD_CLEANUP_FAILURE\x10\r\x1a\x05\xb2\x43\x02\x08$\x12;\n0REMOTE_DEFAULT_PLATFORM_PROPERTIES_PARSE_FAILURE\x10\x0e\x1a\x05\xb2\x43\x02\x08\x01\x12\x19\n\x0eILLEGAL_OUTPUT\x10\x0f\x1a\x05\xb2\x43\x02\x08\x01\x12/\n$INVALID_EXEC_AND_PLATFORM_PROPERTIES\x10\x10\x1a\x05\xb2\x43\x02\x08\x01\"\xd8\r\n\tExecution\x12-\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1f.failure_details.Execution.Code\"\x9b\r\n\x04\x43ode\x12\x1c\n\x11\x45XECUTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12/\n$EXECUTION_LOG_INITIALIZATION_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12&\n\x1b\x45XECUTION_LOG_WRITE_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08$\x12$\n\x19\x45XECROOT_CREATION_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12\x38\n-TEMP_ACTION_OUTPUT_DIRECTORY_DELETION_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08$\x12\x38\n-TEMP_ACTION_OUTPUT_DIRECTORY_CREATION_FAILURE\x10\x05\x1a\x05\xb2\x43\x02\x08$\x12>\n3PERSISTENT_ACTION_OUTPUT_DIRECTORY_CREATION_FAILURE\x10\x06\x1a\x05\xb2\x43\x02\x08$\x12\x31\n&LOCAL_OUTPUT_DIRECTORY_SYMLINK_FAILURE\x10\x07\x1a\x05\xb2\x43\x02\x08$\x12+\n LOCAL_TEMPLATE_EXPANSION_FAILURE\x10\t\x1a\x05\xb2\x43\x02\x08$\x12-\n\"INPUT_DIRECTORY_CHECK_IO_EXCEPTION\x10\n\x1a\x05\xb2\x43\x02\x08$\x12/\n$EXTRA_ACTION_OUTPUT_CREATION_FAILURE\x10\x0b\x1a\x05\xb2\x43\x02\x08$\x12#\n\x18TEST_RUNNER_IO_EXCEPTION\x10\x0c\x1a\x05\xb2\x43\x02\x08$\x12\"\n\x17\x46ILE_WRITE_IO_EXCEPTION\x10\r\x1a\x05\xb2\x43\x02\x08$\x12$\n\x19TEST_OUT_ERR_IO_EXCEPTION\x10\x0e\x1a\x05\xb2\x43\x02\x08$\x12\x32\n\'SYMLINK_TREE_MANIFEST_COPY_IO_EXCEPTION\x10\x0f\x1a\x05\xb2\x43\x02\x08$\x12\x32\n\'SYMLINK_TREE_MANIFEST_LINK_IO_EXCEPTION\x10\x10\x1a\x05\xb2\x43\x02\x08$\x12-\n\"SYMLINK_TREE_CREATION_IO_EXCEPTION\x10\x11\x1a\x05\xb2\x43\x02\x08$\x12\x32\n\'SYMLINK_TREE_CREATION_COMMAND_EXCEPTION\x10\x12\x1a\x05\xb2\x43\x02\x08$\x12)\n\x1e\x41\x43TION_INPUT_READ_IO_EXCEPTION\x10\x13\x1a\x05\xb2\x43\x02\x08$\x12 \n\x15\x41\x43TION_NOT_UP_TO_DATE\x10\x14\x1a\x05\xb2\x43\x02\x08\x01\x12-\n\"PSEUDO_ACTION_EXECUTION_PROHIBITED\x10\x15\x1a\x05\xb2\x43\x02\x08\x01\x12*\n\x1f\x44ISCOVERED_INPUT_DOES_NOT_EXIST\x10\x16\x1a\x05\xb2\x43\x02\x08$\x12*\n\x1f\x41\x43TION_OUTPUTS_DELETION_FAILURE\x10\x17\x1a\x05\xb2\x43\x02\x08\x01\x12%\n\x1a\x41\x43TION_OUTPUTS_NOT_CREATED\x10\x18\x1a\x05\xb2\x43\x02\x08\x01\x12&\n\x1b\x41\x43TION_FINALIZATION_FAILURE\x10\x19\x1a\x05\xb2\x43\x02\x08\x01\x12\x1c\n\x11\x41\x43TION_INPUT_LOST\x10\x1a\x1a\x05\xb2\x43\x02\x08\x01\x12,\n!FILESYSTEM_CONTEXT_UPDATE_FAILURE\x10\x1b\x1a\x05\xb2\x43\x02\x08\x01\x12&\n\x1b\x41\x43TION_OUTPUT_CLOSE_FAILURE\x10\x1c\x1a\x05\xb2\x43\x02\x08\x01\x12\'\n\x1cINPUT_DISCOVERY_IO_EXCEPTION\x10\x1d\x1a\x05\xb2\x43\x02\x08\x01\x12\x33\n(TREE_ARTIFACT_DIRECTORY_CREATION_FAILURE\x10\x1e\x1a\x05\xb2\x43\x02\x08\x01\x12\x33\n(ACTION_OUTPUT_DIRECTORY_CREATION_FAILURE\x10\x1f\x1a\x05\xb2\x43\x02\x08\x01\x12\x36\n+ACTION_FS_OUTPUT_DIRECTORY_CREATION_FAILURE\x10 \x1a\x05\xb2\x43\x02\x08\x01\x12\x37\n,ACTION_FS_OUT_ERR_DIRECTORY_CREATION_FAILURE\x10!\x1a\x05\xb2\x43\x02\x08\x01\x12\'\n\x1cNON_ACTION_EXECUTION_FAILURE\x10\"\x1a\x05\xb2\x43\x02\x08\x01\x12\x10\n\x05\x43YCLE\x10#\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14SOURCE_INPUT_MISSING\x10$\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14UNEXPECTED_EXCEPTION\x10%\x1a\x05\xb2\x43\x02\x08\x01\x12$\n\x19SOURCE_INPUT_IO_EXCEPTION\x10\'\x1a\x05\xb2\x43\x02\x08\x01\"\x04\x08\x08\x10\x08\"\x04\x08&\x10&\"\xc4\x02\n\nWorkspaces\x12.\n\x04\x63ode\x18\x01 \x01(\x0e\x32 .failure_details.Workspaces.Code\"\x85\x02\n\x04\x43ode\x12\x1d\n\x12WORKSPACES_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x30\n%WORKSPACES_LOG_INITIALIZATION_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\'\n\x1cWORKSPACES_LOG_WRITE_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08$\x12\x42\n7ILLEGAL_WORKSPACE_FILE_SYMLINK_WITH_MANAGED_DIRECTORIES\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12?\n4WORKSPACE_FILE_READ_FAILURE_WITH_MANAGED_DIRECTORIES\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\"p\n\x0c\x43rashOptions\x12\x30\n\x04\x63ode\x18\x01 \x01(\x0e\x32\".failure_details.CrashOptions.Code\".\n\x04\x43ode\x12 \n\x15\x43RASH_OPTIONS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\"\x04\x08\x01\x10\x01\"\xb2\x02\n\nFilesystem\x12.\n\x04\x63ode\x18\x01 \x01(\x0e\x32 .failure_details.Filesystem.Code\"\xf3\x01\n\x04\x43ode\x12\x1d\n\x12\x46ILESYSTEM_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x30\n%EMBEDDED_BINARIES_ENUMERATION_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12+\n SERVER_PID_TXT_FILE_READ_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08$\x12$\n\x19SERVER_FILE_WRITE_FAILURE\x10\x05\x1a\x05\xb2\x43\x02\x08$\x12\x35\n*DEFAULT_DIGEST_HASH_FUNCTION_INVALID_VALUE\x10\x06\x1a\x05\xb2\x43\x02\x08\x02\"\x04\x08\x01\x10\x01\"\x04\x08\x02\x10\x02\"\x04\x08\x07\x10\x07\"\xea\x03\n\x10\x45xecutionOptions\x12\x34\n\x04\x63ode\x18\x01 \x01(\x0e\x32&.failure_details.ExecutionOptions.Code\"\x9f\x03\n\x04\x43ode\x12$\n\x19\x45XECUTION_OPTIONS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1b\n\x10INVALID_STRATEGY\x10\x03\x1a\x05\xb2\x43\x02\x08\x02\x12:\n/REQUESTED_STRATEGY_INCOMPATIBLE_WITH_SANDBOXING\x10\x04\x1a\x05\xb2\x43\x02\x08$\x12*\n\x1f\x44\x45PRECATED_LOCAL_RESOURCES_USED\x10\x05\x1a\x05\xb2\x43\x02\x08$\x12*\n\x1fINVALID_CYCLIC_DYNAMIC_STRATEGY\x10\x06\x1a\x05\xb2\x43\x02\x08$\x12\x32\n\'RESTRICTION_UNMATCHED_TO_ACTION_CONTEXT\x10\x07\x1a\x05\xb2\x43\x02\x08\x02\x12\x36\n+REMOTE_FALLBACK_STRATEGY_NOT_ABSTRACT_SPAWN\x10\x08\x1a\x05\xb2\x43\x02\x08\x02\x12\x1d\n\x12STRATEGY_NOT_FOUND\x10\t\x1a\x05\xb2\x43\x02\x08\x02\x12)\n\x1e\x44YNAMIC_STRATEGY_NOT_SANDBOXED\x10\n\x1a\x05\xb2\x43\x02\x08\x02\"\x04\x08\x01\x10\x01\"\x04\x08\x02\x10\x02\"\x96\x05\n\x07\x43ommand\x12+\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1d.failure_details.Command.Code\"\xdd\x04\n\x04\x43ode\x12\"\n\x17\x43OMMAND_FAILURE_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1c\n\x11\x43OMMAND_NOT_FOUND\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\"\n\x17\x41NOTHER_COMMAND_RUNNING\x10\x02\x1a\x05\xb2\x43\x02\x08\t\x12\x1e\n\x13PREVIOUSLY_SHUTDOWN\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12;\n0STARLARK_CPU_PROFILE_FILE_INITIALIZATION_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08$\x12\x38\n-STARLARK_CPU_PROFILING_INITIALIZATION_FAILURE\x10\x05\x1a\x05\xb2\x43\x02\x08$\x12\x32\n\'STARLARK_CPU_PROFILE_FILE_WRITE_FAILURE\x10\x06\x1a\x05\xb2\x43\x02\x08$\x12*\n\x1fINVOCATION_POLICY_PARSE_FAILURE\x10\x07\x1a\x05\xb2\x43\x02\x08\x02\x12$\n\x19INVOCATION_POLICY_INVALID\x10\x08\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15OPTIONS_PARSE_FAILURE\x10\t\x1a\x05\xb2\x43\x02\x08\x02\x12)\n\x1eSTARLARK_OPTIONS_PARSE_FAILURE\x10\n\x1a\x05\xb2\x43\x02\x08\x02\x12#\n\x18\x41RGUMENTS_NOT_RECOGNIZED\x10\x0b\x1a\x05\xb2\x43\x02\x08\x02\x12\x1b\n\x10NOT_IN_WORKSPACE\x10\x0c\x1a\x05\xb2\x43\x02\x08\x02\x12#\n\x18SPACES_IN_WORKSPACE_PATH\x10\r\x1a\x05\xb2\x43\x02\x08$\x12\x1e\n\x13IN_OUTPUT_DIRECTORY\x10\x0e\x1a\x05\xb2\x43\x02\x08\x02\"\xec\x01\n\nGrpcServer\x12.\n\x04\x63ode\x18\x01 \x01(\x0e\x32 .failure_details.GrpcServer.Code\"\xad\x01\n\x04\x43ode\x12\x1e\n\x13GRPC_SERVER_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12&\n\x1bGRPC_SERVER_NOT_COMPILED_IN\x10\x01\x1a\x05\xb2\x43\x02\x08%\x12\x1e\n\x13SERVER_BIND_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\x15\n\nBAD_COOKIE\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12 \n\x15NO_CLIENT_DESCRIPTION\x10\x04\x1a\x05\xb2\x43\x02\x08$\"\x04\x08\x05\x10\x05\"\x99\x01\n\x11\x43\x61nonicalizeFlags\x12\x35\n\x04\x63ode\x18\x01 \x01(\x0e\x32\'.failure_details.CanonicalizeFlags.Code\"M\n\x04\x43ode\x12%\n\x1a\x43\x41NONICALIZE_FLAGS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1e\n\x13\x46OR_COMMAND_INVALID\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\"\xc2\x04\n\x12\x42uildConfiguration\x12\x36\n\x04\x63ode\x18\x01 \x01(\x0e\x32(.failure_details.BuildConfiguration.Code\"\xf3\x03\n\x04\x43ode\x12&\n\x1b\x42UILD_CONFIGURATION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12.\n#PLATFORM_MAPPING_EVALUATION_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12.\n#PLATFORM_MAPPINGS_FILE_IS_DIRECTORY\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12+\n PLATFORM_MAPPINGS_FILE_NOT_FOUND\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x33\n(TOP_LEVEL_CONFIGURATION_CREATION_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12 \n\x15INVALID_CONFIGURATION\x10\x05\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15INVALID_BUILD_OPTIONS\x10\x06\x1a\x05\xb2\x43\x02\x08\x02\x12!\n\x16MULTI_CPU_PREREQ_UNMET\x10\x07\x1a\x05\xb2\x43\x02\x08\x02\x12\x33\n(HEURISTIC_INSTRUMENTATION_FILTER_INVALID\x10\x08\x1a\x05\xb2\x43\x02\x08\x02\x12\x10\n\x05\x43YCLE\x10\t\x1a\x05\xb2\x43\x02\x08\x02\x12%\n\x1a\x43ONFLICTING_CONFIGURATIONS\x10\n\x1a\x05\xb2\x43\x02\x08\x02\x12,\n!INVALID_OUTPUT_DIRECTORY_MNEMONIC\x10\x0b\x1a\x05\xb2\x43\x02\x08\x02\"\xe9\x01\n\x0bInfoCommand\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.InfoCommand.Code\"\xa8\x01\n\x04\x43ode\x12\x1f\n\x14INFO_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x18\n\rTOO_MANY_KEYS\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\x1d\n\x12KEY_NOT_RECOGNIZED\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12#\n\x18INFO_BLOCK_WRITE_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08\x07\x12!\n\x16\x41LL_INFO_WRITE_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08$\"\x83\x02\n\rMemoryOptions\x12\x31\n\x04\x63ode\x18\x01 \x01(\x0e\x32#.failure_details.MemoryOptions.Code\"\xbe\x01\n\x04\x43ode\x12!\n\x16MEMORY_OPTIONS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12@\n5EXPERIMENTAL_OOM_MORE_EAGERLY_THRESHOLD_INVALID_VALUE\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12Q\nDDEPRECATED_EXPERIMENTAL_OOM_MORE_EAGERLY_NO_TENURED_COLLECTORS_FOUND\x10\x02\x1a\x07\x08\x01\xb2\x43\x02\x08\x02\"\xf2\x0b\n\x05Query\x12)\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1b.failure_details.Query.Code\"\xbd\x0b\n\x04\x43ode\x12\x18\n\rQUERY_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x32\n\'QUERY_FILE_WITH_COMMAND_LINE_EXPRESSION\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\"\n\x17QUERY_FILE_READ_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12*\n\x1f\x43OMMAND_LINE_EXPRESSION_MISSING\x10\x03\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15OUTPUT_FORMAT_INVALID\x10\x04\x1a\x05\xb2\x43\x02\x08\x02\x12!\n\x16GRAPHLESS_PREREQ_UNMET\x10\x05\x1a\x05\xb2\x43\x02\x08\x02\x12%\n\x1aQUERY_OUTPUT_WRITE_FAILURE\x10\x06\x1a\x05\xb2\x43\x02\x08$\x12%\n\x1aQUERY_STDOUT_FLUSH_FAILURE\x10\r\x1a\x05\xb2\x43\x02\x08$\x12&\n\x1b\x41NALYSIS_QUERY_PREREQ_UNMET\x10\x0e\x1a\x05\xb2\x43\x02\x08\x02\x12&\n\x1bQUERY_RESULTS_FLUSH_FAILURE\x10\x0f\x1a\x05\xb2\x43\x02\x08$\x12\x39\n.DEPRECATED_UNCLOSED_QUOTATION_EXPRESSION_ERROR\x10\x10\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15VARIABLE_NAME_INVALID\x10\x11\x1a\x05\xb2\x43\x02\x08\x07\x12\x1d\n\x12VARIABLE_UNDEFINED\x10\x12\x1a\x05\xb2\x43\x02\x08\x07\x12\x44\n9BUILDFILES_AND_LOADFILES_CANNOT_USE_OUTPUT_LOCATION_ERROR\x10\x13\x1a\x05\xb2\x43\x02\x08\x02\x12\x1b\n\x10\x42UILD_FILE_ERROR\x10\x14\x1a\x05\xb2\x43\x02\x08\x07\x12\x10\n\x05\x43YCLE\x10\x15\x1a\x05\xb2\x43\x02\x08\x07\x12+\n UNIQUE_SKYKEY_THRESHOLD_EXCEEDED\x10\x16\x1a\x05\xb2\x43\x02\x08\x07\x12\'\n\x1cTARGET_NOT_IN_UNIVERSE_SCOPE\x10\x17\x1a\x05\xb2\x43\x02\x08\x02\x12+\n INVALID_FULL_UNIVERSE_EXPRESSION\x10\x18\x1a\x05\xb2\x43\x02\x08\x07\x12(\n\x1dUNIVERSE_SCOPE_LIMIT_EXCEEDED\x10\x19\x1a\x05\xb2\x43\x02\x08\x07\x12&\n\x1bINVALIDATION_LIMIT_EXCEEDED\x10\x1a\x1a\x05\xb2\x43\x02\x08\x07\x12%\n\x1aOUTPUT_FORMAT_PREREQ_UNMET\x10\x1b\x1a\x05\xb2\x43\x02\x08\x02\x12\x1c\n\x11\x41RGUMENTS_MISSING\x10\x1c\x1a\x05\xb2\x43\x02\x08\x07\x12\x31\n&RBUILDFILES_FUNCTION_REQUIRES_SKYQUERY\x10\x1d\x1a\x05\xb2\x43\x02\x08\x07\x12%\n\x1a\x46ULL_TARGETS_NOT_SUPPORTED\x10\x1e\x1a\x05\xb2\x43\x02\x08\x07\x12,\n!DEPRECATED_UNEXPECTED_TOKEN_ERROR\x10\x1f\x1a\x05\xb2\x43\x02\x08\x02\x12-\n\"DEPRECATED_INTEGER_LITERAL_MISSING\x10 \x1a\x05\xb2\x43\x02\x08\x02\x12\x36\n+DEPRECATED_INVALID_STARTING_CHARACTER_ERROR\x10!\x1a\x05\xb2\x43\x02\x08\x02\x12\x32\n\'DEPRECATED_PREMATURE_END_OF_INPUT_ERROR\x10\"\x1a\x05\xb2\x43\x02\x08\x02\x12\x17\n\x0cSYNTAX_ERROR\x10#\x1a\x05\xb2\x43\x02\x08\x02\x12(\n\x1dOUTPUT_FORMATTER_IO_EXCEPTION\x10$\x1a\x05\xb2\x43\x02\x08$\x12+\n SKYQUERY_TRANSITIVE_TARGET_ERROR\x10%\x1a\x05\xb2\x43\x02\x08\x07\x12$\n\x19SKYQUERY_TARGET_EXCEPTION\x10&\x1a\x05\xb2\x43\x02\x08\x07\x12&\n\x1bINVALID_LABEL_IN_TEST_SUITE\x10\'\x1a\x05\xb2\x43\x02\x08\x07\x12#\n\x18ILLEGAL_FLAG_COMBINATION\x10(\x1a\x05\xb2\x43\x02\x08\x02\x12\x1d\n\x12NON_DETAILED_ERROR\x10)\x1a\x05\xb2\x43\x02\x08\x01\"\x04\x08\x07\x10\x0c\"\x99\x01\n\x0eLocalExecution\x12\x32\n\x04\x63ode\x18\x01 \x01(\x0e\x32$.failure_details.LocalExecution.Code\"S\n\x04\x43ode\x12\"\n\x17LOCAL_EXECUTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\'\n\x1cLOCKFREE_OUTPUT_PREREQ_UNMET\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\"\x8a\x01\n\x0b\x41\x63tionCache\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.ActionCache.Code\"J\n\x04\x43ode\x12\x1f\n\x14\x41\x43TION_CACHE_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12!\n\x16INITIALIZATION_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08$\"\xe7\x01\n\x0c\x46\x65tchCommand\x12\x30\n\x04\x63ode\x18\x01 \x01(\x0e\x32\".failure_details.FetchCommand.Code\"\xa4\x01\n\x04\x43ode\x12 \n\x15\x46\x45TCH_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1d\n\x12\x45XPRESSION_MISSING\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\x1a\n\x0fOPTIONS_INVALID\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12\x1c\n\x11QUERY_PARSE_ERROR\x10\x03\x1a\x05\xb2\x43\x02\x08\x02\x12!\n\x16QUERY_EVALUATION_ERROR\x10\x04\x1a\x05\xb2\x43\x02\x08\x02\"\xf8\x01\n\x0bSyncCommand\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.SyncCommand.Code\"\xb7\x01\n\x04\x43ode\x12\x1f\n\x14SYNC_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1f\n\x14PACKAGE_LOOKUP_ERROR\x10\x01\x1a\x05\xb2\x43\x02\x08\x07\x12%\n\x1aWORKSPACE_EVALUATION_ERROR\x10\x02\x1a\x05\xb2\x43\x02\x08\x07\x12\"\n\x17REPOSITORY_FETCH_ERRORS\x10\x03\x1a\x05\xb2\x43\x02\x08\x07\x12\"\n\x17REPOSITORY_NAME_INVALID\x10\x04\x1a\x05\xb2\x43\x02\x08\x07\"\xfb\x03\n\x07Sandbox\x12+\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1d.failure_details.Sandbox.Code\"\xc2\x03\n\x04\x43ode\x12\"\n\x17SANDBOX_FAILURE_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12!\n\x16INITIALIZATION_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08$\x12!\n\x16\x45XECUTION_IO_EXCEPTION\x10\x02\x1a\x05\xb2\x43\x02\x08$\x12!\n\x16\x44OCKER_COMMAND_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x1a\n\x0fNO_DOCKER_IMAGE\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12+\n DOCKER_IMAGE_PREPARATION_FAILURE\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12&\n\x1b\x42IND_MOUNT_ANALYSIS_FAILURE\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12&\n\x1bMOUNT_SOURCE_DOES_NOT_EXIST\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\x12,\n!MOUNT_SOURCE_TARGET_TYPE_MISMATCH\x10\x08\x1a\x05\xb2\x43\x02\x08\x01\x12&\n\x1bMOUNT_TARGET_DOES_NOT_EXIST\x10\t\x1a\x05\xb2\x43\x02\x08\x01\x12\"\n\x17SUBPROCESS_START_FAILED\x10\n\x1a\x05\xb2\x43\x02\x08$\x12\x1a\n\x0f\x46ORBIDDEN_INPUT\x10\x0b\x1a\x05\xb2\x43\x02\x08\x01\"\x9d\x04\n\x0fIncludeScanning\x12\x33\n\x04\x63ode\x18\x01 \x01(\x0e\x32%.failure_details.IncludeScanning.Code\x12\x42\n\x14package_loading_code\x18\x02 \x01(\x0e\x32$.failure_details.PackageLoading.Code\"\x90\x03\n\x04\x43ode\x12#\n\x18INCLUDE_SCANNING_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12)\n\x1eINITIALIZE_INCLUDE_HINTS_ERROR\x10\x01\x1a\x05\xb2\x43\x02\x08$\x12 \n\x15SCANNING_IO_EXCEPTION\x10\x02\x1a\x05\xb2\x43\x02\x08$\x12,\n!INCLUDE_HINTS_FILE_NOT_IN_PACKAGE\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12%\n\x1aINCLUDE_HINTS_READ_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08$\x12 \n\x15ILLEGAL_ABSOLUTE_PATH\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14PACKAGE_LOAD_FAILURE\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12$\n\x19USER_PACKAGE_LOAD_FAILURE\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\x12&\n\x1bSYSTEM_PACKAGE_LOAD_FAILURE\x10\x08\x1a\x05\xb2\x43\x02\x08$\x12\x30\n%UNDIFFERENTIATED_PACKAGE_LOAD_FAILURE\x10\t\x1a\x05\xb2\x43\x02\x08\x01\"\xbc\x01\n\x0bTestCommand\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.TestCommand.Code\"|\n\x04\x43ode\x12\x1f\n\x14TEST_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1a\n\x0fNO_TEST_TARGETS\x10\x01\x1a\x05\xb2\x43\x02\x08\x04\x12\x1e\n\x13TEST_WITH_NOANALYZE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\x17\n\x0cTESTS_FAILED\x10\x03\x1a\x05\xb2\x43\x02\x08\x03\"\xa6\x05\n\x0b\x41\x63tionQuery\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.ActionQuery.Code\"\xe5\x04\n\x04\x43ode\x12\x1f\n\x14\x41\x43TION_QUERY_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12)\n\x1e\x43OMMAND_LINE_EXPANSION_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\x19\n\x0eOUTPUT_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x06\x12*\n\x1f\x43OMMAND_LINE_EXPRESSION_MISSING\x10\x03\x1a\x05\xb2\x43\x02\x08\x02\x12#\n\x18\x45XPRESSION_PARSE_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08\x02\x12\x36\n+SKYFRAME_STATE_WITH_COMMAND_LINE_EXPRESSION\x10\x05\x1a\x05\xb2\x43\x02\x08\x02\x12$\n\x19INVALID_AQUERY_EXPRESSION\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12&\n\x1bSKYFRAME_STATE_PREREQ_UNMET\x10\x07\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15\x41QUERY_OUTPUT_TOO_BIG\x10\x08\x1a\x05\xb2\x43\x02\x08\x07\x12!\n\x16ILLEGAL_PATTERN_SYNTAX\x10\t\x1a\x05\xb2\x43\x02\x08\x02\x12\x1e\n\x13INCORRECT_ARGUMENTS\x10\n\x1a\x05\xb2\x43\x02\x08\x02\x12>\n3TOP_LEVEL_TARGETS_WITH_SKYFRAME_STATE_NOT_SUPPORTED\x10\x0b\x1a\x05\xb2\x43\x02\x08\x02\x12)\n\x1eSKYFRAME_STATE_AFTER_EXECUTION\x10\x0c\x1a\x05\xb2\x43\x02\x08\x01\x12(\n\x1dLABELS_FUNCTION_NOT_SUPPORTED\x10\r\x1a\x05\xb2\x43\x02\x08\x02\x12%\n\x1aTEMPLATE_EXPANSION_FAILURE\x10\x0e\x1a\x05\xb2\x43\x02\x08\x02\"\xd7\x06\n\x0eTargetPatterns\x12\x32\n\x04\x63ode\x18\x01 \x01(\x0e\x32$.failure_details.TargetPatterns.Code\"\x90\x06\n\x04\x43ode\x12\"\n\x17TARGET_PATTERNS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x38\n-TARGET_PATTERN_FILE_WITH_COMMAND_LINE_PATTERN\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12+\n TARGET_PATTERN_FILE_READ_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12\'\n\x1cTARGET_PATTERN_PARSE_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x1c\n\x11PACKAGE_NOT_FOUND\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12 \n\x15TARGET_FORMAT_INVALID\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12*\n\x1f\x41\x42SOLUTE_TARGET_PATTERN_INVALID\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12\x30\n%CANNOT_DETERMINE_TARGET_FROM_FILENAME\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\x12\x1d\n\x12LABEL_SYNTAX_ERROR\x10\x08\x1a\x05\xb2\x43\x02\x08\x01\x12(\n\x1dTARGET_CANNOT_BE_EMPTY_STRING\x10\t\x1a\x05\xb2\x43\x02\x08\x01\x12+\n PACKAGE_PART_CANNOT_END_IN_SLASH\x10\n\x1a\x05\xb2\x43\x02\x08\x01\x12\x10\n\x05\x43YCLE\x10\x0b\x1a\x05\xb2\x43\x02\x08\x01\x12 \n\x15\x43\x41NNOT_PRELOAD_TARGET\x10\x0c\x1a\x05\xb2\x43\x02\x08\x01\x12\x1a\n\x0fTARGETS_MISSING\x10\r\x1a\x05\xb2\x43\x02\x08\x01\x12\x30\n%RECURSIVE_TARGET_PATTERNS_NOT_ALLOWED\x10\x0e\x1a\x05\xb2\x43\x02\x08\x01\x12*\n\x1fUP_LEVEL_REFERENCES_NOT_ALLOWED\x10\x0f\x1a\x05\xb2\x43\x02\x08\x01\x12.\n#NEGATIVE_TARGET_PATTERN_NOT_ALLOWED\x10\x10\x1a\x05\xb2\x43\x02\x08\x01\x12 \n\x15TARGET_MUST_BE_A_FILE\x10\x11\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14\x44\x45PENDENCY_NOT_FOUND\x10\x12\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14PACKAGE_NAME_INVALID\x10\x13\x1a\x05\xb2\x43\x02\x08\x01\"\xf5\x03\n\x0c\x43leanCommand\x12\x30\n\x04\x63ode\x18\x01 \x01(\x0e\x32\".failure_details.CleanCommand.Code\"\xb2\x03\n\x04\x43ode\x12 \n\x15\x43LEAN_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\'\n\x1cOUTPUT_SERVICE_CLEAN_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x06\x12%\n\x1a\x41\x43TION_CACHE_CLEAN_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08$\x12 \n\x15OUT_ERR_CLOSE_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12%\n\x1aOUTPUT_BASE_DELETE_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08$\x12(\n\x1dOUTPUT_BASE_TEMP_MOVE_FAILURE\x10\x05\x1a\x05\xb2\x43\x02\x08$\x12+\n ASYNC_OUTPUT_BASE_DELETE_FAILURE\x10\x06\x1a\x05\xb2\x43\x02\x08\x06\x12\"\n\x17\x45XECROOT_DELETE_FAILURE\x10\x07\x1a\x05\xb2\x43\x02\x08$\x12%\n\x1a\x45XECROOT_TEMP_MOVE_FAILURE\x10\x08\x1a\x05\xb2\x43\x02\x08$\x12(\n\x1d\x41SYNC_EXECROOT_DELETE_FAILURE\x10\t\x1a\x05\xb2\x43\x02\x08\x06\x12#\n\x18\x41RGUMENTS_NOT_RECOGNIZED\x10\n\x1a\x05\xb2\x43\x02\x08\x02\"\xb1\x01\n\rConfigCommand\x12\x31\n\x04\x63ode\x18\x01 \x01(\x0e\x32#.failure_details.ConfigCommand.Code\"m\n\x04\x43ode\x12!\n\x16\x43ONFIG_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1e\n\x13TOO_MANY_CONFIG_IDS\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\"\n\x17\x43ONFIGURATION_NOT_FOUND\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\"\xbb\x04\n\x11\x43onfigurableQuery\x12\x35\n\x04\x63ode\x18\x01 \x01(\x0e\x32\'.failure_details.ConfigurableQuery.Code\"\xee\x03\n\x04\x43ode\x12%\n\x1a\x43ONFIGURABLE_QUERY_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12*\n\x1f\x43OMMAND_LINE_EXPRESSION_MISSING\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12#\n\x18\x45XPRESSION_PARSE_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15\x46ILTERS_NOT_SUPPORTED\x10\x03\x1a\x05\xb2\x43\x02\x08\x02\x12,\n!BUILDFILES_FUNCTION_NOT_SUPPORTED\x10\x04\x1a\x05\xb2\x43\x02\x08\x02\x12*\n\x1fSIBLINGS_FUNCTION_NOT_SUPPORTED\x10\x05\x1a\x05\xb2\x43\x02\x08\x02\x12)\n\x1eVISIBLE_FUNCTION_NOT_SUPPORTED\x10\x06\x1a\x05\xb2\x43\x02\x08\x02\x12\x1c\n\x11\x41TTRIBUTE_MISSING\x10\x07\x1a\x05\xb2\x43\x02\x08\x02\x12*\n\x1fINCORRECT_CONFIG_ARGUMENT_ERROR\x10\x08\x1a\x05\xb2\x43\x02\x08\x02\x12\x19\n\x0eTARGET_MISSING\x10\t\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15STARLARK_SYNTAX_ERROR\x10\n\x1a\x05\xb2\x43\x02\x08\x02\x12\x1e\n\x13STARLARK_EVAL_ERROR\x10\x0b\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15\x46ORMAT_FUNCTION_ERROR\x10\x0c\x1a\x05\xb2\x43\x02\x08\x02\"\xa9\x02\n\x0b\x44umpCommand\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.DumpCommand.Code\"\xe8\x01\n\x04\x43ode\x12\x1f\n\x14\x44UMP_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1e\n\x13NO_OUTPUT_SPECIFIED\x10\x01\x1a\x05\xb2\x43\x02\x08\x07\x12#\n\x18\x41\x43TION_CACHE_DUMP_FAILED\x10\x02\x1a\x05\xb2\x43\x02\x08\x07\x12)\n\x1e\x43OMMAND_LINE_EXPANSION_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08\x07\x12#\n\x18\x41\x43TION_GRAPH_DUMP_FAILED\x10\x04\x1a\x05\xb2\x43\x02\x08\x07\x12$\n\x19STARLARK_HEAP_DUMP_FAILED\x10\x05\x1a\x05\xb2\x43\x02\x08\x08\"\x04\x08\x06\x10\x06\"\xa2\x01\n\x0bHelpCommand\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.HelpCommand.Code\"b\n\x04\x43ode\x12\x1f\n\x14HELP_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1b\n\x10MISSING_ARGUMENT\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\x1c\n\x11\x43OMMAND_NOT_FOUND\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\"\xb1\x02\n\rMobileInstall\x12\x31\n\x04\x63ode\x18\x01 \x01(\x0e\x32#.failure_details.MobileInstall.Code\"\xec\x01\n\x04\x43ode\x12!\n\x16MOBILE_INSTALL_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1e\n\x13\x43LASSIC_UNSUPPORTED\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\x1e\n\x13NO_TARGET_SPECIFIED\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12%\n\x1aMULTIPLE_TARGETS_SPECIFIED\x10\x03\x1a\x05\xb2\x43\x02\x08\x02\x12\x1e\n\x13TARGET_TYPE_INVALID\x10\x04\x1a\x05\xb2\x43\x02\x08\x06\x12\x18\n\rNON_ZERO_EXIT\x10\x05\x1a\x05\xb2\x43\x02\x08\x06\x12 \n\x15\x45RROR_RUNNING_PROGRAM\x10\x06\x1a\x05\xb2\x43\x02\x08\x06\"\xb8\x01\n\x0eProfileCommand\x12\x32\n\x04\x63ode\x18\x01 \x01(\x0e\x32$.failure_details.ProfileCommand.Code\"r\n\x04\x43ode\x12\"\n\x17PROFILE_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12(\n\x1dOLD_BINARY_FORMAT_UNSUPPORTED\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12\x1c\n\x11\x46ILE_READ_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\"\xc6\x05\n\nRunCommand\x12.\n\x04\x63ode\x18\x01 \x01(\x0e\x32 .failure_details.RunCommand.Code\"\x87\x05\n\x04\x43ode\x12\x1e\n\x13RUN_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1e\n\x13NO_TARGET_SPECIFIED\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12%\n\x1aTOO_MANY_TARGETS_SPECIFIED\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12 \n\x15TARGET_NOT_EXECUTABLE\x10\x03\x1a\x05\xb2\x43\x02\x08\x02\x12/\n$TARGET_BUILT_BUT_PATH_NOT_EXECUTABLE\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12\x32\n\'TARGET_BUILT_BUT_PATH_VALIDATION_FAILED\x10\x05\x1a\x05\xb2\x43\x02\x08$\x12%\n\x1aRUN_UNDER_TARGET_NOT_BUILT\x10\x06\x1a\x05\xb2\x43\x02\x08\x02\x12\x1b\n\x10RUN_PREREQ_UNMET\x10\x07\x1a\x05\xb2\x43\x02\x08\x02\x12\'\n\x1cTOO_MANY_TEST_SHARDS_OR_RUNS\x10\x08\x1a\x05\xb2\x43\x02\x08\x02\x12)\n\x1eTEST_ENVIRONMENT_SETUP_FAILURE\x10\t\x1a\x05\xb2\x43\x02\x08$\x12)\n\x1e\x43OMMAND_LINE_EXPANSION_FAILURE\x10\n\x1a\x05\xb2\x43\x02\x08$\x12\x1d\n\x12NO_SHELL_SPECIFIED\x10\x0b\x1a\x05\xb2\x43\x02\x08\x02\x12\x1f\n\x14SCRIPT_WRITE_FAILURE\x10\x0c\x1a\x05\xb2\x43\x02\x08\x06\x12\x30\n%RUNFILES_DIRECTORIES_CREATION_FAILURE\x10\r\x1a\x05\xb2\x43\x02\x08$\x12-\n\"RUNFILES_SYMLINKS_CREATION_FAILURE\x10\x0e\x1a\x05\xb2\x43\x02\x08$\x12-\n\"TEST_ENVIRONMENT_SETUP_INTERRUPTED\x10\x0f\x1a\x05\xb2\x43\x02\x08\x08\"\x8a\x01\n\x0eVersionCommand\x12\x32\n\x04\x63ode\x18\x01 \x01(\x0e\x32$.failure_details.VersionCommand.Code\"D\n\x04\x43ode\x12\"\n\x17VERSION_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x18\n\rNOT_AVAILABLE\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\"\x88\x02\n\x12PrintActionCommand\x12\x36\n\x04\x63ode\x18\x01 \x01(\x0e\x32(.failure_details.PrintActionCommand.Code\"\xb9\x01\n\x04\x43ode\x12\'\n\x1cPRINT_ACTION_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1b\n\x10TARGET_NOT_FOUND\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1e\x43OMMAND_LINE_EXPANSION_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\"\n\x17TARGET_KIND_UNSUPPORTED\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x1c\n\x11\x41\x43TIONS_NOT_FOUND\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\"\xc8\x02\n\x0fWorkspaceStatus\x12\x33\n\x04\x63ode\x18\x01 \x01(\x0e\x32%.failure_details.WorkspaceStatus.Code\"\xff\x01\n\x04\x43ode\x12#\n\x18WORKSPACE_STATUS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x18\n\rNON_ZERO_EXIT\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14\x41\x42NORMAL_TERMINATION\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\x16\n\x0b\x45XEC_FAILED\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x18\n\rPARSE_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08$\x12\x1d\n\x12VALIDATION_FAILURE\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12&\n\x1b\x43ONTENT_UPDATE_IO_EXCEPTION\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12\x1e\n\x13STDERR_IO_EXCEPTION\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\"\x94\x02\n\x0bJavaCompile\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.JavaCompile.Code\"\xd3\x01\n\x04\x43ode\x12\x1f\n\x14JAVA_COMPILE_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12$\n\x19REDUCED_CLASSPATH_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1e\x43OMMAND_LINE_EXPANSION_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\"\n\x17JDEPS_READ_IO_EXCEPTION\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12\x35\n*REDUCED_CLASSPATH_FALLBACK_CLEANUP_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08$\"\xba\x01\n\x0f\x41\x63tionRewinding\x12\x33\n\x04\x63ode\x18\x01 \x01(\x0e\x32%.failure_details.ActionRewinding.Code\"r\n\x04\x43ode\x12#\n\x18\x41\x43TION_REWINDING_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12$\n\x19LOST_INPUT_TOO_MANY_TIMES\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14LOST_INPUT_IS_SOURCE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\"\x8d\x04\n\nCppCompile\x12.\n\x04\x63ode\x18\x01 \x01(\x0e\x32 .failure_details.CppCompile.Code\"\xce\x03\n\x04\x43ode\x12\x1e\n\x13\x43PP_COMPILE_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12)\n\x1e\x46IND_USED_HEADERS_IO_EXCEPTION\x10\x01\x1a\x05\xb2\x43\x02\x08$\x12\x1f\n\x14\x43OPY_OUT_ERR_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08$\x12\x1e\n\x13\x44_FILE_READ_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08$\x12%\n\x1a\x43OMMAND_GENERATION_FAILURE\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12#\n\x18MODULE_EXPANSION_TIMEOUT\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1eINCLUDE_PATH_OUTSIDE_EXEC_ROOT\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12*\n\x1f\x46\x41KE_COMMAND_GENERATION_FAILURE\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\x12 \n\x15UNDECLARED_INCLUSIONS\x10\x08\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14\x44_FILE_PARSE_FAILURE\x10\t\x1a\x05\xb2\x43\x02\x08\x01\x12*\n\x1f\x43OVERAGE_NOTES_CREATION_FAILURE\x10\n\x1a\x05\xb2\x43\x02\x08\x01\x12(\n\x1dMODULE_EXPANSION_MISSING_DATA\x10\x0b\x1a\x05\xb2\x43\x02\x08\x01\"\xc9\x01\n\x0eStarlarkAction\x12\x32\n\x04\x63ode\x18\x01 \x01(\x0e\x32$.failure_details.StarlarkAction.Code\"\x82\x01\n\x04\x43ode\x12\"\n\x17STARLARK_ACTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12)\n\x1eUNUSED_INPUT_LIST_READ_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08$\x12+\n UNUSED_INPUT_LIST_FILE_NOT_FOUND\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\"\xb8\x01\n\x0bNinjaAction\x12/\n\x04\x63ode\x18\x01 \x01(\x0e\x32!.failure_details.NinjaAction.Code\"x\n\x04\x43ode\x12\x1f\n\x14NINJA_ACTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12.\n#INVALID_DEPFILE_DECLARED_DEPENDENCY\x10\x01\x1a\x05\xb2\x43\x02\x08$\x12\x1f\n\x14\x44_FILE_PARSE_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08$\"\xff\x01\n\x10\x44ynamicExecution\x12\x34\n\x04\x63ode\x18\x01 \x01(\x0e\x32&.failure_details.DynamicExecution.Code\"\xb4\x01\n\x04\x43ode\x12$\n\x19\x44YNAMIC_EXECUTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12%\n\x1aXCODE_RELATED_PREREQ_UNMET\x10\x01\x1a\x05\xb2\x43\x02\x08$\x12\"\n\x17\x41\x43TION_LOG_MOVE_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\x16\n\x0bRUN_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12#\n\x18NO_USABLE_STRATEGY_FOUND\x10\x04\x1a\x05\xb2\x43\x02\x08\x02\"\x92\x03\n\nFailAction\x12.\n\x04\x63ode\x18\x01 \x01(\x0e\x32 .failure_details.FailAction.Code\"\xd3\x02\n\x04\x43ode\x12\x1e\n\x13\x46\x41IL_ACTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1e\n\x13INTENTIONAL_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12#\n\x18INCORRECT_PYTHON_VERSION\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12!\n\x16PROGUARD_SPECS_MISSING\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12(\n\x1d\x44YNAMIC_LINKING_NOT_SUPPORTED\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14SOURCE_FILES_MISSING\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12\x1e\n\x13INCORRECT_TOOLCHAIN\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12!\n\x16\x46RAGMENT_CLASS_MISSING\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1e\x43\x41NT_BUILD_INCOMPATIBLE_TARGET\x10\n\x1a\x05\xb2\x43\x02\x08\x01\"\x04\x08\x08\x10\x08\"\x04\x08\t\x10\t\"\xb3\x02\n\rSymlinkAction\x12\x31\n\x04\x63ode\x18\x01 \x01(\x0e\x32#.failure_details.SymlinkAction.Code\"\xee\x01\n\x04\x43ode\x12!\n\x16SYMLINK_ACTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12$\n\x19\x45XECUTABLE_INPUT_NOT_FILE\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12\"\n\x17\x45XECUTABLE_INPUT_IS_NOT\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12.\n#EXECUTABLE_INPUT_CHECK_IO_EXCEPTION\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12%\n\x1aLINK_CREATION_IO_EXCEPTION\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12\"\n\x17LINK_TOUCH_IO_EXCEPTION\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\"\xae\x01\n\x07\x43ppLink\x12+\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1d.failure_details.CppLink.Code\"v\n\x04\x43ode\x12\x1b\n\x10\x43PP_LINK_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12%\n\x1a\x43OMMAND_GENERATION_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12*\n\x1f\x46\x41KE_COMMAND_GENERATION_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\"\xd7\x01\n\tLtoAction\x12-\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1f.failure_details.LtoAction.Code\"\x9a\x01\n\x04\x43ode\x12\x1d\n\x12LTO_ACTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12+\n INVALID_ABSOLUTE_PATH_IN_IMPORTS\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12 \n\x15MISSING_BITCODE_FILES\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12$\n\x19IMPORTS_READ_IO_EXCEPTION\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\"\x96\x02\n\nTestAction\x12.\n\x04\x63ode\x18\x01 \x01(\x0e\x32 .failure_details.TestAction.Code\"\xd7\x01\n\x04\x43ode\x12\x1e\n\x13TEST_ACTION_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12%\n\x1aNO_KEEP_GOING_TEST_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12\"\n\x17LOCAL_TEST_PREREQ_UNMET\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1e\x43OMMAND_LINE_EXPANSION_FAILURE\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x1d\n\x12\x44UPLICATE_CPU_TAGS\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12\x1a\n\x0fINVALID_CPU_TAG\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\"\xf1\x03\n\x06Worker\x12*\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1c.failure_details.Worker.Code\"\xba\x03\n\x04\x43ode\x12\x19\n\x0eWORKER_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12/\n$MULTIPLEXER_INSTANCE_REMOVAL_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12%\n\x1aMULTIPLEXER_DOES_NOT_EXIST\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\x13\n\x08NO_TOOLS\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x16\n\x0bNO_FLAGFILE\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12\x30\n%VIRTUAL_INPUT_MATERIALIZATION_FAILURE\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12\x19\n\x0e\x42ORROW_FAILURE\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12\x1b\n\x10PREFETCH_FAILURE\x10\x07\x1a\x05\xb2\x43\x02\x08$\x12\x1a\n\x0fPREPARE_FAILURE\x10\x08\x1a\x05\xb2\x43\x02\x08\x01\x12\x1a\n\x0fREQUEST_FAILURE\x10\t\x1a\x05\xb2\x43\x02\x08\x01\x12!\n\x16PARSE_RESPONSE_FAILURE\x10\n\x1a\x05\xb2\x43\x02\x08\x01\x12\x16\n\x0bNO_RESPONSE\x10\x0b\x1a\x05\xb2\x43\x02\x08\x01\x12\x19\n\x0e\x46INISH_FAILURE\x10\x0c\x1a\x05\xb2\x43\x02\x08\x01\x12\x1a\n\x0f\x46ORBIDDEN_INPUT\x10\r\x1a\x05\xb2\x43\x02\x08\x01\"\xbe\x06\n\x08\x41nalysis\x12,\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1e.failure_details.Analysis.Code\"\x83\x06\n\x04\x43ode\x12\x1b\n\x10\x41NALYSIS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x17\n\x0cLOAD_FAILURE\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12(\n\x1dGENERIC_LOADING_PHASE_FAILURE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12#\n\x18NOT_ALL_TARGETS_ANALYZED\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x10\n\x05\x43YCLE\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12\x31\n&PARAMETERIZED_TOP_LEVEL_ASPECT_INVALID\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12$\n\x19\x41SPECT_LABEL_SYNTAX_ERROR\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12\x1e\n\x13\x41SPECT_PREREQ_UNMET\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\x12\x1b\n\x10\x41SPECT_NOT_FOUND\x10\x08\x1a\x05\xb2\x43\x02\x08\x01\x12\x1a\n\x0f\x41\x43TION_CONFLICT\x10\t\x1a\x05\xb2\x43\x02\x08\x01\x12#\n\x18\x41RTIFACT_PREFIX_CONFLICT\x10\n\x1a\x05\xb2\x43\x02\x08\x01\x12(\n\x1dUNEXPECTED_ANALYSIS_EXCEPTION\x10\x0b\x1a\x05\xb2\x43\x02\x08\x01\x12\'\n\x1cTARGETS_MISSING_ENVIRONMENTS\x10\x0c\x1a\x05\xb2\x43\x02\x08\x01\x12\x1e\n\x13INVALID_ENVIRONMENT\x10\r\x1a\x05\xb2\x43\x02\x08\x01\x12*\n\x1f\x45NVIRONMENT_MISSING_FROM_GROUPS\x10\x0e\x1a\x05\xb2\x43\x02\x08\x01\x12\x1d\n\x12\x45XEC_GROUP_MISSING\x10\x0f\x1a\x05\xb2\x43\x02\x08\x01\x12%\n\x1aINVALID_EXECUTION_PLATFORM\x10\x10\x1a\x05\xb2\x43\x02\x08\x01\x12!\n\x16\x41SPECT_CREATION_FAILED\x10\x11\x1a\x05\xb2\x43\x02\x08\x01\x12+\n CONFIGURED_VALUE_CREATION_FAILED\x10\x12\x1a\x05\xb2\x43\x02\x08\x01\x12(\n\x1dINCOMPATIBLE_TARGET_REQUESTED\x10\x13\x1a\x05\xb2\x43\x02\x08\x01\x12.\n#ANALYSIS_FAILURE_PROPAGATION_FAILED\x10\x14\x1a\x05\xb2\x43\x02\x08\x01\"\xb8\t\n\x0ePackageLoading\x12\x32\n\x04\x63ode\x18\x01 \x01(\x0e\x32$.failure_details.PackageLoading.Code\"\xf1\x08\n\x04\x43ode\x12\"\n\x17PACKAGE_LOADING_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1f\n\x14WORKSPACE_FILE_ERROR\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1eMAX_COMPUTATION_STEPS_EXCEEDED\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\x1d\n\x12\x42UILD_FILE_MISSING\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x1d\n\x12REPOSITORY_MISSING\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12\x33\n(PERSISTENT_INCONSISTENT_FILESYSTEM_ERROR\x10\x05\x1a\x05\xb2\x43\x02\x08$\x12\x32\n\'TRANSIENT_INCONSISTENT_FILESYSTEM_ERROR\x10\x06\x1a\x05\xb2\x43\x02\x08$\x12\x17\n\x0cINVALID_NAME\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\x12#\n\x18\x45VAL_GLOBS_SYMLINK_ERROR\x10\t\x1a\x05\xb2\x43\x02\x08\x01\x12%\n\x1aIMPORT_STARLARK_FILE_ERROR\x10\n\x1a\x05\xb2\x43\x02\x08\x01\x12\x1a\n\x0fPACKAGE_MISSING\x10\x0b\x1a\x05\xb2\x43\x02\x08\x01\x12\x19\n\x0eTARGET_MISSING\x10\x0c\x1a\x05\xb2\x43\x02\x08\x01\x12\x18\n\rNO_SUCH_THING\x10\r\x1a\x05\xb2\x43\x02\x08\x01\x12\x1c\n\x11GLOB_IO_EXCEPTION\x10\x0e\x1a\x05\xb2\x43\x02\x08$\x12\x1a\n\x0f\x44UPLICATE_LABEL\x10\x0f\x1a\x05\xb2\x43\x02\x08\x01\x12(\n\x1dINVALID_PACKAGE_SPECIFICATION\x10\x10\x1a\x05\xb2\x43\x02\x08\x01\x12\x17\n\x0cSYNTAX_ERROR\x10\x11\x1a\x05\xb2\x43\x02\x08\x01\x12+\n ENVIRONMENT_IN_DIFFERENT_PACKAGE\x10\x12\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1e\x44\x45\x46\x41ULT_ENVIRONMENT_UNDECLARED\x10\x13\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1e\x45NVIRONMENT_IN_MULTIPLE_GROUPS\x10\x14\x1a\x05\xb2\x43\x02\x08\x01\x12%\n\x1a\x45NVIRONMENT_DOES_NOT_EXIST\x10\x15\x1a\x05\xb2\x43\x02\x08\x01\x12\x1e\n\x13\x45NVIRONMENT_INVALID\x10\x16\x1a\x05\xb2\x43\x02\x08\x01\x12#\n\x18\x45NVIRONMENT_NOT_IN_GROUP\x10\x17\x1a\x05\xb2\x43\x02\x08\x01\x12\x1f\n\x14PACKAGE_NAME_INVALID\x10\x18\x1a\x05\xb2\x43\x02\x08\x01\x12\x1e\n\x13STARLARK_EVAL_ERROR\x10\x19\x1a\x05\xb2\x43\x02\x08\x01\x12 \n\x15LICENSE_PARSE_FAILURE\x10\x1a\x1a\x05\xb2\x43\x02\x08\x01\x12&\n\x1b\x44ISTRIBUTIONS_PARSE_FAILURE\x10\x1b\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1eLABEL_CROSSES_PACKAGE_BOUNDARY\x10\x1c\x1a\x05\xb2\x43\x02\x08\x01\x12%\n\x1a\x42UILTINS_INJECTION_FAILURE\x10\x1d\x1a\x05\xb2\x43\x02\x08\x01\x12.\n#SYMLINK_CYCLE_OR_INFINITE_EXPANSION\x10\x1e\x1a\x05\xb2\x43\x02\x08\x01\x12\x1d\n\x12OTHER_IO_EXCEPTION\x10\x1f\x1a\x05\xb2\x43\x02\x08$\"\x04\x08\x08\x10\x08\"\xd4\x02\n\tToolchain\x12-\n\x04\x63ode\x18\x01 \x01(\x0e\x32\x1f.failure_details.Toolchain.Code\"\x97\x02\n\x04\x43ode\x12\x1c\n\x11TOOLCHAIN_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1b\n\x10MISSING_PROVIDER\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12#\n\x18INVALID_CONSTRAINT_VALUE\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12!\n\x16INVALID_PLATFORM_VALUE\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x1c\n\x11INVALID_TOOLCHAIN\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1eNO_MATCHING_EXECUTION_PLATFORM\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12 \n\x15NO_MATCHING_TOOLCHAIN\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12!\n\x16INVALID_TOOLCHAIN_TYPE\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\"\x8e\x03\n\x0fStarlarkLoading\x12\x33\n\x04\x63ode\x18\x01 \x01(\x0e\x32%.failure_details.StarlarkLoading.Code\"\xc5\x02\n\x04\x43ode\x12#\n\x18STARLARK_LOADING_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x10\n\x05\x43YCLE\x10\x01\x1a\x05\xb2\x43\x02\x08\x01\x12\x18\n\rCOMPILE_ERROR\x10\x02\x1a\x05\xb2\x43\x02\x08\x01\x12\x16\n\x0bPARSE_ERROR\x10\x03\x1a\x05\xb2\x43\x02\x08\x01\x12\x15\n\nEVAL_ERROR\x10\x04\x1a\x05\xb2\x43\x02\x08\x01\x12\'\n\x1c\x43ONTAINING_PACKAGE_NOT_FOUND\x10\x05\x1a\x05\xb2\x43\x02\x08\x01\x12\x1c\n\x11PACKAGE_NOT_FOUND\x10\x06\x1a\x05\xb2\x43\x02\x08\x01\x12\x13\n\x08IO_ERROR\x10\x07\x1a\x05\xb2\x43\x02\x08\x01\x12)\n\x1eLABEL_CROSSES_PACKAGE_BOUNDARY\x10\x08\x1a\x05\xb2\x43\x02\x08\x01\x12\x19\n\x0e\x42UILTINS_ERROR\x10\t\x1a\x05\xb2\x43\x02\x08\x01\x12\x1b\n\x10VISIBILITY_ERROR\x10\n\x1a\x05\xb2\x43\x02\x08\x01\"\x8a\x02\n\x0c\x45xternalDeps\x12\x30\n\x04\x63ode\x18\x01 \x01(\x0e\x32\".failure_details.ExternalDeps.Code\"\xc7\x01\n\x04\x43ode\x12 \n\x15\x45XTERNAL_DEPS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1b\n\x10MODULE_NOT_FOUND\x10\x01\x1a\x05\xb2\x43\x02\x08\x30\x12\x15\n\nBAD_MODULE\x10\x02\x1a\x05\xb2\x43\x02\x08\x30\x12#\n\x18VERSION_RESOLUTION_ERROR\x10\x03\x1a\x05\xb2\x43\x02\x08\x30\x12\x1f\n\x14INVALID_REGISTRY_URL\x10\x04\x1a\x05\xb2\x43\x02\x08\x30\x12#\n\x18\x45RROR_ACCESSING_REGISTRY\x10\x05\x1a\x05\xb2\x43\x02\x08 \"\x8a\x01\n\rDiffAwareness\x12\x31\n\x04\x63ode\x18\x01 \x01(\x0e\x32#.failure_details.DiffAwareness.Code\"F\n\x04\x43ode\x12!\n\x16\x44IFF_AWARENESS_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1b\n\x10\x44IFF_STAT_FAILED\x10\x01\x1a\x05\xb2\x43\x02\x08$\"\xcf\x01\n\x0fModqueryCommand\x12\x33\n\x04\x63ode\x18\x01 \x01(\x0e\x32%.failure_details.ModqueryCommand.Code\"\x86\x01\n\x04\x43ode\x12#\n\x18MODQUERY_COMMAND_UNKNOWN\x10\x00\x1a\x05\xb2\x43\x02\x08%\x12\x1c\n\x11MISSING_ARGUMENTS\x10\x01\x1a\x05\xb2\x43\x02\x08\x02\x12\x1d\n\x12TOO_MANY_ARGUMENTS\x10\x02\x1a\x05\xb2\x43\x02\x08\x02\x12\x1c\n\x11INVALID_ARGUMENTS\x10\x03\x1a\x05\xb2\x43\x02\x08\x02:\\\n\x08metadata\x12!.google.protobuf.EnumValueOptions\x18\xb6\x08 \x01(\x0b\x32&.failure_details.FailureDetailMetadataB&\n$com.google.devtools.build.lib.serverb\x06proto3') _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'src.main.protobuf.failure_details_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: google_dot_protobuf_dot_descriptor__pb2.EnumValueOptions.RegisterExtension(metadata) DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'\n$com.google.devtools.build.lib.server' _INTERRUPTED_CODE.values_by_name["INTERRUPTED_UNKNOWN"]._options = None _INTERRUPTED_CODE.values_by_name["INTERRUPTED_UNKNOWN"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["INTERRUPTED"]._options = None _INTERRUPTED_CODE.values_by_name["INTERRUPTED"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_BUILD"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_BUILD"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_BUILD_COMPLETION"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_BUILD_COMPLETION"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_PACKAGE_LOADING_SYNC"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_PACKAGE_LOADING_SYNC"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_EXECUTOR_COMPLETION"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_EXECUTOR_COMPLETION"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_COMMAND_DISPATCH"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_COMMAND_DISPATCH"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_INFO_ITEM"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_INFO_ITEM"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_AFTER_QUERY"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_AFTER_QUERY"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_FETCH_COMMAND"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_FETCH_COMMAND"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_SYNC_COMMAND"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_SYNC_COMMAND"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_CLEAN_COMMAND"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_CLEAN_COMMAND"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_MOBILE_INSTALL_COMMAND"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_MOBILE_INSTALL_COMMAND"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_QUERY"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_QUERY"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_RUN_COMMAND"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_RUN_COMMAND"]._serialized_options = b'\262C\002\010\010' _INTERRUPTED_CODE.values_by_name["DEPRECATED_OPTIONS_PARSING"]._options = None _INTERRUPTED_CODE.values_by_name["DEPRECATED_OPTIONS_PARSING"]._serialized_options = b'\262C\002\010\010' _SPAWN_CODE.values_by_name["SPAWN_UNKNOWN"]._options = None _SPAWN_CODE.values_by_name["SPAWN_UNKNOWN"]._serialized_options = b'\262C\002\010%' _SPAWN_CODE.values_by_name["NON_ZERO_EXIT"]._options = None _SPAWN_CODE.values_by_name["NON_ZERO_EXIT"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["TIMEOUT"]._options = None _SPAWN_CODE.values_by_name["TIMEOUT"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["OUT_OF_MEMORY"]._options = None _SPAWN_CODE.values_by_name["OUT_OF_MEMORY"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["EXECUTION_FAILED"]._options = None _SPAWN_CODE.values_by_name["EXECUTION_FAILED"]._serialized_options = b'\262C\002\010\"' _SPAWN_CODE.values_by_name["EXECUTION_DENIED"]._options = None _SPAWN_CODE.values_by_name["EXECUTION_DENIED"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["REMOTE_CACHE_FAILED"]._options = None _SPAWN_CODE.values_by_name["REMOTE_CACHE_FAILED"]._serialized_options = b'\262C\002\010\"' _SPAWN_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._options = None _SPAWN_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["EXEC_IO_EXCEPTION"]._options = None _SPAWN_CODE.values_by_name["EXEC_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _SPAWN_CODE.values_by_name["INVALID_TIMEOUT"]._options = None _SPAWN_CODE.values_by_name["INVALID_TIMEOUT"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["INVALID_REMOTE_EXECUTION_PROPERTIES"]._options = None _SPAWN_CODE.values_by_name["INVALID_REMOTE_EXECUTION_PROPERTIES"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["NO_USABLE_STRATEGY_FOUND"]._options = None _SPAWN_CODE.values_by_name["NO_USABLE_STRATEGY_FOUND"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["UNSPECIFIED_EXECUTION_FAILURE"]._options = None _SPAWN_CODE.values_by_name["UNSPECIFIED_EXECUTION_FAILURE"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["FORBIDDEN_INPUT"]._options = None _SPAWN_CODE.values_by_name["FORBIDDEN_INPUT"]._serialized_options = b'\262C\002\010\001' _SPAWN_CODE.values_by_name["REMOTE_CACHE_EVICTED"]._options = None _SPAWN_CODE.values_by_name["REMOTE_CACHE_EVICTED"]._serialized_options = b'\262C\002\010\'' _EXTERNALREPOSITORY_CODE.values_by_name["EXTERNAL_REPOSITORY_UNKNOWN"]._options = None _EXTERNALREPOSITORY_CODE.values_by_name["EXTERNAL_REPOSITORY_UNKNOWN"]._serialized_options = b'\262C\002\010%' _EXTERNALREPOSITORY_CODE.values_by_name["OVERRIDE_DISALLOWED_MANAGED_DIRECTORIES"]._options = None _EXTERNALREPOSITORY_CODE.values_by_name["OVERRIDE_DISALLOWED_MANAGED_DIRECTORIES"]._serialized_options = b'\262C\002\010\002' _EXTERNALREPOSITORY_CODE.values_by_name["BAD_DOWNLOADER_CONFIG"]._options = None _EXTERNALREPOSITORY_CODE.values_by_name["BAD_DOWNLOADER_CONFIG"]._serialized_options = b'\262C\002\010\002' _EXTERNALREPOSITORY_CODE.values_by_name["REPOSITORY_MAPPING_RESOLUTION_FAILED"]._options = None _EXTERNALREPOSITORY_CODE.values_by_name["REPOSITORY_MAPPING_RESOLUTION_FAILED"]._serialized_options = b'\262C\002\010%' _BUILDPROGRESS_CODE.values_by_name["BUILD_PROGRESS_UNKNOWN"]._options = None _BUILDPROGRESS_CODE.values_by_name["BUILD_PROGRESS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _BUILDPROGRESS_CODE.values_by_name["OUTPUT_INITIALIZATION"]._options = None _BUILDPROGRESS_CODE.values_by_name["OUTPUT_INITIALIZATION"]._serialized_options = b'\262C\002\010$' _BUILDPROGRESS_CODE.values_by_name["BES_RUNS_PER_TEST_LIMIT_UNSUPPORTED"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_RUNS_PER_TEST_LIMIT_UNSUPPORTED"]._serialized_options = b'\262C\002\010\002' _BUILDPROGRESS_CODE.values_by_name["BES_LOCAL_WRITE_ERROR"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_LOCAL_WRITE_ERROR"]._serialized_options = b'\262C\002\010$' _BUILDPROGRESS_CODE.values_by_name["BES_INITIALIZATION_ERROR"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_INITIALIZATION_ERROR"]._serialized_options = b'\262C\002\010$' _BUILDPROGRESS_CODE.values_by_name["BES_UPLOAD_TIMEOUT_ERROR"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_UPLOAD_TIMEOUT_ERROR"]._serialized_options = b'\262C\002\010&' _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_TIMEOUT"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_TIMEOUT"]._serialized_options = b'\262C\002\010&' _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_IO_ERROR"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_IO_ERROR"]._serialized_options = b'\262C\002\010&' _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_INTERRUPTED"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_INTERRUPTED"]._serialized_options = b'\262C\002\010&' _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_CANCELED"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_CANCELED"]._serialized_options = b'\262C\002\010&' _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_UNKNOWN_ERROR"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_FILE_WRITE_UNKNOWN_ERROR"]._serialized_options = b'\262C\002\010&' _BUILDPROGRESS_CODE.values_by_name["BES_UPLOAD_LOCAL_FILE_ERROR"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_UPLOAD_LOCAL_FILE_ERROR"]._serialized_options = b'\262C\002\010&' _BUILDPROGRESS_CODE.values_by_name["BES_STREAM_NOT_RETRYING_FAILURE"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_STREAM_NOT_RETRYING_FAILURE"]._serialized_options = b'\262C\002\010-' _BUILDPROGRESS_CODE.values_by_name["BES_STREAM_COMPLETED_WITH_UNACK_EVENTS_ERROR"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_STREAM_COMPLETED_WITH_UNACK_EVENTS_ERROR"]._serialized_options = b'\262C\002\010-' _BUILDPROGRESS_CODE.values_by_name["BES_STREAM_COMPLETED_WITH_UNSENT_EVENTS_ERROR"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_STREAM_COMPLETED_WITH_UNSENT_EVENTS_ERROR"]._serialized_options = b'\262C\002\010-' _BUILDPROGRESS_CODE.values_by_name["BES_STREAM_COMPLETED_WITH_REMOTE_ERROR"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_STREAM_COMPLETED_WITH_REMOTE_ERROR"]._serialized_options = b'\262C\002\010-' _BUILDPROGRESS_CODE.values_by_name["BES_UPLOAD_RETRY_LIMIT_EXCEEDED_FAILURE"]._options = None _BUILDPROGRESS_CODE.values_by_name["BES_UPLOAD_RETRY_LIMIT_EXCEEDED_FAILURE"]._serialized_options = b'\262C\002\010&' _REMOTEOPTIONS_CODE.values_by_name["REMOTE_OPTIONS_UNKNOWN"]._options = None _REMOTEOPTIONS_CODE.values_by_name["REMOTE_OPTIONS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _REMOTEOPTIONS_CODE.values_by_name["REMOTE_DEFAULT_EXEC_PROPERTIES_LOGIC_ERROR"]._options = None _REMOTEOPTIONS_CODE.values_by_name["REMOTE_DEFAULT_EXEC_PROPERTIES_LOGIC_ERROR"]._serialized_options = b'\262C\002\010\002' _REMOTEOPTIONS_CODE.values_by_name["CREDENTIALS_READ_FAILURE"]._options = None _REMOTEOPTIONS_CODE.values_by_name["CREDENTIALS_READ_FAILURE"]._serialized_options = b'\262C\002\010$' _REMOTEOPTIONS_CODE.values_by_name["CREDENTIALS_WRITE_FAILURE"]._options = None _REMOTEOPTIONS_CODE.values_by_name["CREDENTIALS_WRITE_FAILURE"]._serialized_options = b'\262C\002\010$' _REMOTEOPTIONS_CODE.values_by_name["DOWNLOADER_WITHOUT_GRPC_CACHE"]._options = None _REMOTEOPTIONS_CODE.values_by_name["DOWNLOADER_WITHOUT_GRPC_CACHE"]._serialized_options = b'\262C\002\010\002' _REMOTEOPTIONS_CODE.values_by_name["EXECUTION_WITH_INVALID_CACHE"]._options = None _REMOTEOPTIONS_CODE.values_by_name["EXECUTION_WITH_INVALID_CACHE"]._serialized_options = b'\262C\002\010\002' _CLIENTENVIRONMENT_CODE.values_by_name["CLIENT_ENVIRONMENT_UNKNOWN"]._options = None _CLIENTENVIRONMENT_CODE.values_by_name["CLIENT_ENVIRONMENT_UNKNOWN"]._serialized_options = b'\262C\002\010%' _CLIENTENVIRONMENT_CODE.values_by_name["CLIENT_CWD_MALFORMED"]._options = None _CLIENTENVIRONMENT_CODE.values_by_name["CLIENT_CWD_MALFORMED"]._serialized_options = b'\262C\002\010\002' _CRASH_CODE.values_by_name["CRASH_UNKNOWN"]._options = None _CRASH_CODE.values_by_name["CRASH_UNKNOWN"]._serialized_options = b'\262C\002\010%' _CRASH_CODE.values_by_name["CRASH_OOM"]._options = None _CRASH_CODE.values_by_name["CRASH_OOM"]._serialized_options = b'\262C\002\010!' _SYMLINKFOREST_CODE.values_by_name["SYMLINK_FOREST_UNKNOWN"]._options = None _SYMLINKFOREST_CODE.values_by_name["SYMLINK_FOREST_UNKNOWN"]._serialized_options = b'\262C\002\010%' _SYMLINKFOREST_CODE.values_by_name["TOPLEVEL_OUTDIR_PACKAGE_PATH_CONFLICT"]._options = None _SYMLINKFOREST_CODE.values_by_name["TOPLEVEL_OUTDIR_PACKAGE_PATH_CONFLICT"]._serialized_options = b'\262C\002\010\002' _SYMLINKFOREST_CODE.values_by_name["TOPLEVEL_OUTDIR_USED_AS_SOURCE"]._options = None _SYMLINKFOREST_CODE.values_by_name["TOPLEVEL_OUTDIR_USED_AS_SOURCE"]._serialized_options = b'\262C\002\010\002' _SYMLINKFOREST_CODE.values_by_name["CREATION_FAILED"]._options = None _SYMLINKFOREST_CODE.values_by_name["CREATION_FAILED"]._serialized_options = b'\262C\002\010\002' _BUILDREPORT_CODE.values_by_name["BUILD_REPORT_UNKNOWN"]._options = None _BUILDREPORT_CODE.values_by_name["BUILD_REPORT_UNKNOWN"]._serialized_options = b'\262C\002\010%' _BUILDREPORT_CODE.values_by_name["BUILD_REPORT_UPLOADER_NEEDS_PACKAGE_PATHS"]._options = None _BUILDREPORT_CODE.values_by_name["BUILD_REPORT_UPLOADER_NEEDS_PACKAGE_PATHS"]._serialized_options = b'\262C\002\010$' _BUILDREPORT_CODE.values_by_name["BUILD_REPORT_WRITE_FAILED"]._options = None _BUILDREPORT_CODE.values_by_name["BUILD_REPORT_WRITE_FAILED"]._serialized_options = b'\262C\002\010$' _PACKAGEOPTIONS_CODE.values_by_name["PACKAGE_OPTIONS_UNKNOWN"]._options = None _PACKAGEOPTIONS_CODE.values_by_name["PACKAGE_OPTIONS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _PACKAGEOPTIONS_CODE.values_by_name["PACKAGE_PATH_INVALID"]._options = None _PACKAGEOPTIONS_CODE.values_by_name["PACKAGE_PATH_INVALID"]._serialized_options = b'\262C\002\010\002' _REMOTEEXECUTION_CODE.values_by_name["REMOTE_EXECUTION_UNKNOWN"]._options = None _REMOTEEXECUTION_CODE.values_by_name["REMOTE_EXECUTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _REMOTEEXECUTION_CODE.values_by_name["CAPABILITIES_QUERY_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["CAPABILITIES_QUERY_FAILURE"]._serialized_options = b'\262C\002\010\"' _REMOTEEXECUTION_CODE.values_by_name["CREDENTIALS_INIT_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["CREDENTIALS_INIT_FAILURE"]._serialized_options = b'\262C\002\010\002' _REMOTEEXECUTION_CODE.values_by_name["CACHE_INIT_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["CACHE_INIT_FAILURE"]._serialized_options = b'\262C\002\010\002' _REMOTEEXECUTION_CODE.values_by_name["RPC_LOG_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["RPC_LOG_FAILURE"]._serialized_options = b'\262C\002\010\002' _REMOTEEXECUTION_CODE.values_by_name["EXEC_CHANNEL_INIT_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["EXEC_CHANNEL_INIT_FAILURE"]._serialized_options = b'\262C\002\010\002' _REMOTEEXECUTION_CODE.values_by_name["CACHE_CHANNEL_INIT_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["CACHE_CHANNEL_INIT_FAILURE"]._serialized_options = b'\262C\002\010\002' _REMOTEEXECUTION_CODE.values_by_name["DOWNLOADER_CHANNEL_INIT_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["DOWNLOADER_CHANNEL_INIT_FAILURE"]._serialized_options = b'\262C\002\010\002' _REMOTEEXECUTION_CODE.values_by_name["LOG_DIR_CLEANUP_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["LOG_DIR_CLEANUP_FAILURE"]._serialized_options = b'\262C\002\010$' _REMOTEEXECUTION_CODE.values_by_name["CLIENT_SERVER_INCOMPATIBLE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["CLIENT_SERVER_INCOMPATIBLE"]._serialized_options = b'\262C\002\010\"' _REMOTEEXECUTION_CODE.values_by_name["DOWNLOADED_INPUTS_DELETION_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["DOWNLOADED_INPUTS_DELETION_FAILURE"]._serialized_options = b'\262C\002\010\"' _REMOTEEXECUTION_CODE.values_by_name["REMOTE_DOWNLOAD_OUTPUTS_MINIMAL_WITHOUT_INMEMORY_DOTD"]._options = None _REMOTEEXECUTION_CODE.values_by_name["REMOTE_DOWNLOAD_OUTPUTS_MINIMAL_WITHOUT_INMEMORY_DOTD"]._serialized_options = b'\262C\002\010\002' _REMOTEEXECUTION_CODE.values_by_name["REMOTE_DOWNLOAD_OUTPUTS_MINIMAL_WITHOUT_INMEMORY_JDEPS"]._options = None _REMOTEEXECUTION_CODE.values_by_name["REMOTE_DOWNLOAD_OUTPUTS_MINIMAL_WITHOUT_INMEMORY_JDEPS"]._serialized_options = b'\262C\002\010\002' _REMOTEEXECUTION_CODE.values_by_name["INCOMPLETE_OUTPUT_DOWNLOAD_CLEANUP_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["INCOMPLETE_OUTPUT_DOWNLOAD_CLEANUP_FAILURE"]._serialized_options = b'\262C\002\010$' _REMOTEEXECUTION_CODE.values_by_name["REMOTE_DEFAULT_PLATFORM_PROPERTIES_PARSE_FAILURE"]._options = None _REMOTEEXECUTION_CODE.values_by_name["REMOTE_DEFAULT_PLATFORM_PROPERTIES_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\001' _REMOTEEXECUTION_CODE.values_by_name["ILLEGAL_OUTPUT"]._options = None _REMOTEEXECUTION_CODE.values_by_name["ILLEGAL_OUTPUT"]._serialized_options = b'\262C\002\010\001' _REMOTEEXECUTION_CODE.values_by_name["INVALID_EXEC_AND_PLATFORM_PROPERTIES"]._options = None _REMOTEEXECUTION_CODE.values_by_name["INVALID_EXEC_AND_PLATFORM_PROPERTIES"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["EXECUTION_UNKNOWN"]._options = None _EXECUTION_CODE.values_by_name["EXECUTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _EXECUTION_CODE.values_by_name["EXECUTION_LOG_INITIALIZATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["EXECUTION_LOG_INITIALIZATION_FAILURE"]._serialized_options = b'\262C\002\010\002' _EXECUTION_CODE.values_by_name["EXECUTION_LOG_WRITE_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["EXECUTION_LOG_WRITE_FAILURE"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["EXECROOT_CREATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["EXECROOT_CREATION_FAILURE"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["TEMP_ACTION_OUTPUT_DIRECTORY_DELETION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["TEMP_ACTION_OUTPUT_DIRECTORY_DELETION_FAILURE"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["TEMP_ACTION_OUTPUT_DIRECTORY_CREATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["TEMP_ACTION_OUTPUT_DIRECTORY_CREATION_FAILURE"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["PERSISTENT_ACTION_OUTPUT_DIRECTORY_CREATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["PERSISTENT_ACTION_OUTPUT_DIRECTORY_CREATION_FAILURE"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["LOCAL_OUTPUT_DIRECTORY_SYMLINK_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["LOCAL_OUTPUT_DIRECTORY_SYMLINK_FAILURE"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["LOCAL_TEMPLATE_EXPANSION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["LOCAL_TEMPLATE_EXPANSION_FAILURE"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["INPUT_DIRECTORY_CHECK_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["INPUT_DIRECTORY_CHECK_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["EXTRA_ACTION_OUTPUT_CREATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["EXTRA_ACTION_OUTPUT_CREATION_FAILURE"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["TEST_RUNNER_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["TEST_RUNNER_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["FILE_WRITE_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["FILE_WRITE_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["TEST_OUT_ERR_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["TEST_OUT_ERR_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["SYMLINK_TREE_MANIFEST_COPY_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["SYMLINK_TREE_MANIFEST_COPY_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["SYMLINK_TREE_MANIFEST_LINK_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["SYMLINK_TREE_MANIFEST_LINK_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["SYMLINK_TREE_CREATION_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["SYMLINK_TREE_CREATION_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["SYMLINK_TREE_CREATION_COMMAND_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["SYMLINK_TREE_CREATION_COMMAND_EXCEPTION"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["ACTION_INPUT_READ_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["ACTION_INPUT_READ_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["ACTION_NOT_UP_TO_DATE"]._options = None _EXECUTION_CODE.values_by_name["ACTION_NOT_UP_TO_DATE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["PSEUDO_ACTION_EXECUTION_PROHIBITED"]._options = None _EXECUTION_CODE.values_by_name["PSEUDO_ACTION_EXECUTION_PROHIBITED"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["DISCOVERED_INPUT_DOES_NOT_EXIST"]._options = None _EXECUTION_CODE.values_by_name["DISCOVERED_INPUT_DOES_NOT_EXIST"]._serialized_options = b'\262C\002\010$' _EXECUTION_CODE.values_by_name["ACTION_OUTPUTS_DELETION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["ACTION_OUTPUTS_DELETION_FAILURE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["ACTION_OUTPUTS_NOT_CREATED"]._options = None _EXECUTION_CODE.values_by_name["ACTION_OUTPUTS_NOT_CREATED"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["ACTION_FINALIZATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["ACTION_FINALIZATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["ACTION_INPUT_LOST"]._options = None _EXECUTION_CODE.values_by_name["ACTION_INPUT_LOST"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["FILESYSTEM_CONTEXT_UPDATE_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["FILESYSTEM_CONTEXT_UPDATE_FAILURE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["ACTION_OUTPUT_CLOSE_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["ACTION_OUTPUT_CLOSE_FAILURE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["INPUT_DISCOVERY_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["INPUT_DISCOVERY_IO_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["TREE_ARTIFACT_DIRECTORY_CREATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["TREE_ARTIFACT_DIRECTORY_CREATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["ACTION_OUTPUT_DIRECTORY_CREATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["ACTION_OUTPUT_DIRECTORY_CREATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["ACTION_FS_OUTPUT_DIRECTORY_CREATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["ACTION_FS_OUTPUT_DIRECTORY_CREATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["ACTION_FS_OUT_ERR_DIRECTORY_CREATION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["ACTION_FS_OUT_ERR_DIRECTORY_CREATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["NON_ACTION_EXECUTION_FAILURE"]._options = None _EXECUTION_CODE.values_by_name["NON_ACTION_EXECUTION_FAILURE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["CYCLE"]._options = None _EXECUTION_CODE.values_by_name["CYCLE"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["SOURCE_INPUT_MISSING"]._options = None _EXECUTION_CODE.values_by_name["SOURCE_INPUT_MISSING"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["UNEXPECTED_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["UNEXPECTED_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _EXECUTION_CODE.values_by_name["SOURCE_INPUT_IO_EXCEPTION"]._options = None _EXECUTION_CODE.values_by_name["SOURCE_INPUT_IO_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _WORKSPACES_CODE.values_by_name["WORKSPACES_UNKNOWN"]._options = None _WORKSPACES_CODE.values_by_name["WORKSPACES_UNKNOWN"]._serialized_options = b'\262C\002\010%' _WORKSPACES_CODE.values_by_name["WORKSPACES_LOG_INITIALIZATION_FAILURE"]._options = None _WORKSPACES_CODE.values_by_name["WORKSPACES_LOG_INITIALIZATION_FAILURE"]._serialized_options = b'\262C\002\010\002' _WORKSPACES_CODE.values_by_name["WORKSPACES_LOG_WRITE_FAILURE"]._options = None _WORKSPACES_CODE.values_by_name["WORKSPACES_LOG_WRITE_FAILURE"]._serialized_options = b'\262C\002\010$' _WORKSPACES_CODE.values_by_name["ILLEGAL_WORKSPACE_FILE_SYMLINK_WITH_MANAGED_DIRECTORIES"]._options = None _WORKSPACES_CODE.values_by_name["ILLEGAL_WORKSPACE_FILE_SYMLINK_WITH_MANAGED_DIRECTORIES"]._serialized_options = b'\262C\002\010\001' _WORKSPACES_CODE.values_by_name["WORKSPACE_FILE_READ_FAILURE_WITH_MANAGED_DIRECTORIES"]._options = None _WORKSPACES_CODE.values_by_name["WORKSPACE_FILE_READ_FAILURE_WITH_MANAGED_DIRECTORIES"]._serialized_options = b'\262C\002\010\001' _CRASHOPTIONS_CODE.values_by_name["CRASH_OPTIONS_UNKNOWN"]._options = None _CRASHOPTIONS_CODE.values_by_name["CRASH_OPTIONS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _FILESYSTEM_CODE.values_by_name["FILESYSTEM_UNKNOWN"]._options = None _FILESYSTEM_CODE.values_by_name["FILESYSTEM_UNKNOWN"]._serialized_options = b'\262C\002\010%' _FILESYSTEM_CODE.values_by_name["EMBEDDED_BINARIES_ENUMERATION_FAILURE"]._options = None _FILESYSTEM_CODE.values_by_name["EMBEDDED_BINARIES_ENUMERATION_FAILURE"]._serialized_options = b'\262C\002\010$' _FILESYSTEM_CODE.values_by_name["SERVER_PID_TXT_FILE_READ_FAILURE"]._options = None _FILESYSTEM_CODE.values_by_name["SERVER_PID_TXT_FILE_READ_FAILURE"]._serialized_options = b'\262C\002\010$' _FILESYSTEM_CODE.values_by_name["SERVER_FILE_WRITE_FAILURE"]._options = None _FILESYSTEM_CODE.values_by_name["SERVER_FILE_WRITE_FAILURE"]._serialized_options = b'\262C\002\010$' _FILESYSTEM_CODE.values_by_name["DEFAULT_DIGEST_HASH_FUNCTION_INVALID_VALUE"]._options = None _FILESYSTEM_CODE.values_by_name["DEFAULT_DIGEST_HASH_FUNCTION_INVALID_VALUE"]._serialized_options = b'\262C\002\010\002' _EXECUTIONOPTIONS_CODE.values_by_name["EXECUTION_OPTIONS_UNKNOWN"]._options = None _EXECUTIONOPTIONS_CODE.values_by_name["EXECUTION_OPTIONS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _EXECUTIONOPTIONS_CODE.values_by_name["INVALID_STRATEGY"]._options = None _EXECUTIONOPTIONS_CODE.values_by_name["INVALID_STRATEGY"]._serialized_options = b'\262C\002\010\002' _EXECUTIONOPTIONS_CODE.values_by_name["REQUESTED_STRATEGY_INCOMPATIBLE_WITH_SANDBOXING"]._options = None _EXECUTIONOPTIONS_CODE.values_by_name["REQUESTED_STRATEGY_INCOMPATIBLE_WITH_SANDBOXING"]._serialized_options = b'\262C\002\010$' _EXECUTIONOPTIONS_CODE.values_by_name["DEPRECATED_LOCAL_RESOURCES_USED"]._options = None _EXECUTIONOPTIONS_CODE.values_by_name["DEPRECATED_LOCAL_RESOURCES_USED"]._serialized_options = b'\262C\002\010$' _EXECUTIONOPTIONS_CODE.values_by_name["INVALID_CYCLIC_DYNAMIC_STRATEGY"]._options = None _EXECUTIONOPTIONS_CODE.values_by_name["INVALID_CYCLIC_DYNAMIC_STRATEGY"]._serialized_options = b'\262C\002\010$' _EXECUTIONOPTIONS_CODE.values_by_name["RESTRICTION_UNMATCHED_TO_ACTION_CONTEXT"]._options = None _EXECUTIONOPTIONS_CODE.values_by_name["RESTRICTION_UNMATCHED_TO_ACTION_CONTEXT"]._serialized_options = b'\262C\002\010\002' _EXECUTIONOPTIONS_CODE.values_by_name["REMOTE_FALLBACK_STRATEGY_NOT_ABSTRACT_SPAWN"]._options = None _EXECUTIONOPTIONS_CODE.values_by_name["REMOTE_FALLBACK_STRATEGY_NOT_ABSTRACT_SPAWN"]._serialized_options = b'\262C\002\010\002' _EXECUTIONOPTIONS_CODE.values_by_name["STRATEGY_NOT_FOUND"]._options = None _EXECUTIONOPTIONS_CODE.values_by_name["STRATEGY_NOT_FOUND"]._serialized_options = b'\262C\002\010\002' _EXECUTIONOPTIONS_CODE.values_by_name["DYNAMIC_STRATEGY_NOT_SANDBOXED"]._options = None _EXECUTIONOPTIONS_CODE.values_by_name["DYNAMIC_STRATEGY_NOT_SANDBOXED"]._serialized_options = b'\262C\002\010\002' _COMMAND_CODE.values_by_name["COMMAND_FAILURE_UNKNOWN"]._options = None _COMMAND_CODE.values_by_name["COMMAND_FAILURE_UNKNOWN"]._serialized_options = b'\262C\002\010%' _COMMAND_CODE.values_by_name["COMMAND_NOT_FOUND"]._options = None _COMMAND_CODE.values_by_name["COMMAND_NOT_FOUND"]._serialized_options = b'\262C\002\010\002' _COMMAND_CODE.values_by_name["ANOTHER_COMMAND_RUNNING"]._options = None _COMMAND_CODE.values_by_name["ANOTHER_COMMAND_RUNNING"]._serialized_options = b'\262C\002\010\t' _COMMAND_CODE.values_by_name["PREVIOUSLY_SHUTDOWN"]._options = None _COMMAND_CODE.values_by_name["PREVIOUSLY_SHUTDOWN"]._serialized_options = b'\262C\002\010$' _COMMAND_CODE.values_by_name["STARLARK_CPU_PROFILE_FILE_INITIALIZATION_FAILURE"]._options = None _COMMAND_CODE.values_by_name["STARLARK_CPU_PROFILE_FILE_INITIALIZATION_FAILURE"]._serialized_options = b'\262C\002\010$' _COMMAND_CODE.values_by_name["STARLARK_CPU_PROFILING_INITIALIZATION_FAILURE"]._options = None _COMMAND_CODE.values_by_name["STARLARK_CPU_PROFILING_INITIALIZATION_FAILURE"]._serialized_options = b'\262C\002\010$' _COMMAND_CODE.values_by_name["STARLARK_CPU_PROFILE_FILE_WRITE_FAILURE"]._options = None _COMMAND_CODE.values_by_name["STARLARK_CPU_PROFILE_FILE_WRITE_FAILURE"]._serialized_options = b'\262C\002\010$' _COMMAND_CODE.values_by_name["INVOCATION_POLICY_PARSE_FAILURE"]._options = None _COMMAND_CODE.values_by_name["INVOCATION_POLICY_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\002' _COMMAND_CODE.values_by_name["INVOCATION_POLICY_INVALID"]._options = None _COMMAND_CODE.values_by_name["INVOCATION_POLICY_INVALID"]._serialized_options = b'\262C\002\010\002' _COMMAND_CODE.values_by_name["OPTIONS_PARSE_FAILURE"]._options = None _COMMAND_CODE.values_by_name["OPTIONS_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\002' _COMMAND_CODE.values_by_name["STARLARK_OPTIONS_PARSE_FAILURE"]._options = None _COMMAND_CODE.values_by_name["STARLARK_OPTIONS_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\002' _COMMAND_CODE.values_by_name["ARGUMENTS_NOT_RECOGNIZED"]._options = None _COMMAND_CODE.values_by_name["ARGUMENTS_NOT_RECOGNIZED"]._serialized_options = b'\262C\002\010\002' _COMMAND_CODE.values_by_name["NOT_IN_WORKSPACE"]._options = None _COMMAND_CODE.values_by_name["NOT_IN_WORKSPACE"]._serialized_options = b'\262C\002\010\002' _COMMAND_CODE.values_by_name["SPACES_IN_WORKSPACE_PATH"]._options = None _COMMAND_CODE.values_by_name["SPACES_IN_WORKSPACE_PATH"]._serialized_options = b'\262C\002\010$' _COMMAND_CODE.values_by_name["IN_OUTPUT_DIRECTORY"]._options = None _COMMAND_CODE.values_by_name["IN_OUTPUT_DIRECTORY"]._serialized_options = b'\262C\002\010\002' _GRPCSERVER_CODE.values_by_name["GRPC_SERVER_UNKNOWN"]._options = None _GRPCSERVER_CODE.values_by_name["GRPC_SERVER_UNKNOWN"]._serialized_options = b'\262C\002\010%' _GRPCSERVER_CODE.values_by_name["GRPC_SERVER_NOT_COMPILED_IN"]._options = None _GRPCSERVER_CODE.values_by_name["GRPC_SERVER_NOT_COMPILED_IN"]._serialized_options = b'\262C\002\010%' _GRPCSERVER_CODE.values_by_name["SERVER_BIND_FAILURE"]._options = None _GRPCSERVER_CODE.values_by_name["SERVER_BIND_FAILURE"]._serialized_options = b'\262C\002\010\001' _GRPCSERVER_CODE.values_by_name["BAD_COOKIE"]._options = None _GRPCSERVER_CODE.values_by_name["BAD_COOKIE"]._serialized_options = b'\262C\002\010$' _GRPCSERVER_CODE.values_by_name["NO_CLIENT_DESCRIPTION"]._options = None _GRPCSERVER_CODE.values_by_name["NO_CLIENT_DESCRIPTION"]._serialized_options = b'\262C\002\010$' _CANONICALIZEFLAGS_CODE.values_by_name["CANONICALIZE_FLAGS_UNKNOWN"]._options = None _CANONICALIZEFLAGS_CODE.values_by_name["CANONICALIZE_FLAGS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _CANONICALIZEFLAGS_CODE.values_by_name["FOR_COMMAND_INVALID"]._options = None _CANONICALIZEFLAGS_CODE.values_by_name["FOR_COMMAND_INVALID"]._serialized_options = b'\262C\002\010\002' _BUILDCONFIGURATION_CODE.values_by_name["BUILD_CONFIGURATION_UNKNOWN"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["BUILD_CONFIGURATION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _BUILDCONFIGURATION_CODE.values_by_name["PLATFORM_MAPPING_EVALUATION_FAILURE"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["PLATFORM_MAPPING_EVALUATION_FAILURE"]._serialized_options = b'\262C\002\010\002' _BUILDCONFIGURATION_CODE.values_by_name["PLATFORM_MAPPINGS_FILE_IS_DIRECTORY"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["PLATFORM_MAPPINGS_FILE_IS_DIRECTORY"]._serialized_options = b'\262C\002\010\001' _BUILDCONFIGURATION_CODE.values_by_name["PLATFORM_MAPPINGS_FILE_NOT_FOUND"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["PLATFORM_MAPPINGS_FILE_NOT_FOUND"]._serialized_options = b'\262C\002\010\001' _BUILDCONFIGURATION_CODE.values_by_name["TOP_LEVEL_CONFIGURATION_CREATION_FAILURE"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["TOP_LEVEL_CONFIGURATION_CREATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _BUILDCONFIGURATION_CODE.values_by_name["INVALID_CONFIGURATION"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["INVALID_CONFIGURATION"]._serialized_options = b'\262C\002\010\002' _BUILDCONFIGURATION_CODE.values_by_name["INVALID_BUILD_OPTIONS"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["INVALID_BUILD_OPTIONS"]._serialized_options = b'\262C\002\010\002' _BUILDCONFIGURATION_CODE.values_by_name["MULTI_CPU_PREREQ_UNMET"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["MULTI_CPU_PREREQ_UNMET"]._serialized_options = b'\262C\002\010\002' _BUILDCONFIGURATION_CODE.values_by_name["HEURISTIC_INSTRUMENTATION_FILTER_INVALID"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["HEURISTIC_INSTRUMENTATION_FILTER_INVALID"]._serialized_options = b'\262C\002\010\002' _BUILDCONFIGURATION_CODE.values_by_name["CYCLE"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["CYCLE"]._serialized_options = b'\262C\002\010\002' _BUILDCONFIGURATION_CODE.values_by_name["CONFLICTING_CONFIGURATIONS"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["CONFLICTING_CONFIGURATIONS"]._serialized_options = b'\262C\002\010\002' _BUILDCONFIGURATION_CODE.values_by_name["INVALID_OUTPUT_DIRECTORY_MNEMONIC"]._options = None _BUILDCONFIGURATION_CODE.values_by_name["INVALID_OUTPUT_DIRECTORY_MNEMONIC"]._serialized_options = b'\262C\002\010\002' _INFOCOMMAND_CODE.values_by_name["INFO_COMMAND_UNKNOWN"]._options = None _INFOCOMMAND_CODE.values_by_name["INFO_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _INFOCOMMAND_CODE.values_by_name["TOO_MANY_KEYS"]._options = None _INFOCOMMAND_CODE.values_by_name["TOO_MANY_KEYS"]._serialized_options = b'\262C\002\010\002' _INFOCOMMAND_CODE.values_by_name["KEY_NOT_RECOGNIZED"]._options = None _INFOCOMMAND_CODE.values_by_name["KEY_NOT_RECOGNIZED"]._serialized_options = b'\262C\002\010\002' _INFOCOMMAND_CODE.values_by_name["INFO_BLOCK_WRITE_FAILURE"]._options = None _INFOCOMMAND_CODE.values_by_name["INFO_BLOCK_WRITE_FAILURE"]._serialized_options = b'\262C\002\010\007' _INFOCOMMAND_CODE.values_by_name["ALL_INFO_WRITE_FAILURE"]._options = None _INFOCOMMAND_CODE.values_by_name["ALL_INFO_WRITE_FAILURE"]._serialized_options = b'\262C\002\010$' _MEMORYOPTIONS_CODE.values_by_name["MEMORY_OPTIONS_UNKNOWN"]._options = None _MEMORYOPTIONS_CODE.values_by_name["MEMORY_OPTIONS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _MEMORYOPTIONS_CODE.values_by_name["EXPERIMENTAL_OOM_MORE_EAGERLY_THRESHOLD_INVALID_VALUE"]._options = None _MEMORYOPTIONS_CODE.values_by_name["EXPERIMENTAL_OOM_MORE_EAGERLY_THRESHOLD_INVALID_VALUE"]._serialized_options = b'\262C\002\010\002' _MEMORYOPTIONS_CODE.values_by_name["DEPRECATED_EXPERIMENTAL_OOM_MORE_EAGERLY_NO_TENURED_COLLECTORS_FOUND"]._options = None _MEMORYOPTIONS_CODE.values_by_name["DEPRECATED_EXPERIMENTAL_OOM_MORE_EAGERLY_NO_TENURED_COLLECTORS_FOUND"]._serialized_options = b'\010\001\262C\002\010\002' _QUERY_CODE.values_by_name["QUERY_UNKNOWN"]._options = None _QUERY_CODE.values_by_name["QUERY_UNKNOWN"]._serialized_options = b'\262C\002\010%' _QUERY_CODE.values_by_name["QUERY_FILE_WITH_COMMAND_LINE_EXPRESSION"]._options = None _QUERY_CODE.values_by_name["QUERY_FILE_WITH_COMMAND_LINE_EXPRESSION"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["QUERY_FILE_READ_FAILURE"]._options = None _QUERY_CODE.values_by_name["QUERY_FILE_READ_FAILURE"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["COMMAND_LINE_EXPRESSION_MISSING"]._options = None _QUERY_CODE.values_by_name["COMMAND_LINE_EXPRESSION_MISSING"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["OUTPUT_FORMAT_INVALID"]._options = None _QUERY_CODE.values_by_name["OUTPUT_FORMAT_INVALID"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["GRAPHLESS_PREREQ_UNMET"]._options = None _QUERY_CODE.values_by_name["GRAPHLESS_PREREQ_UNMET"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["QUERY_OUTPUT_WRITE_FAILURE"]._options = None _QUERY_CODE.values_by_name["QUERY_OUTPUT_WRITE_FAILURE"]._serialized_options = b'\262C\002\010$' _QUERY_CODE.values_by_name["QUERY_STDOUT_FLUSH_FAILURE"]._options = None _QUERY_CODE.values_by_name["QUERY_STDOUT_FLUSH_FAILURE"]._serialized_options = b'\262C\002\010$' _QUERY_CODE.values_by_name["ANALYSIS_QUERY_PREREQ_UNMET"]._options = None _QUERY_CODE.values_by_name["ANALYSIS_QUERY_PREREQ_UNMET"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["QUERY_RESULTS_FLUSH_FAILURE"]._options = None _QUERY_CODE.values_by_name["QUERY_RESULTS_FLUSH_FAILURE"]._serialized_options = b'\262C\002\010$' _QUERY_CODE.values_by_name["DEPRECATED_UNCLOSED_QUOTATION_EXPRESSION_ERROR"]._options = None _QUERY_CODE.values_by_name["DEPRECATED_UNCLOSED_QUOTATION_EXPRESSION_ERROR"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["VARIABLE_NAME_INVALID"]._options = None _QUERY_CODE.values_by_name["VARIABLE_NAME_INVALID"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["VARIABLE_UNDEFINED"]._options = None _QUERY_CODE.values_by_name["VARIABLE_UNDEFINED"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["BUILDFILES_AND_LOADFILES_CANNOT_USE_OUTPUT_LOCATION_ERROR"]._options = None _QUERY_CODE.values_by_name["BUILDFILES_AND_LOADFILES_CANNOT_USE_OUTPUT_LOCATION_ERROR"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["BUILD_FILE_ERROR"]._options = None _QUERY_CODE.values_by_name["BUILD_FILE_ERROR"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["CYCLE"]._options = None _QUERY_CODE.values_by_name["CYCLE"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["UNIQUE_SKYKEY_THRESHOLD_EXCEEDED"]._options = None _QUERY_CODE.values_by_name["UNIQUE_SKYKEY_THRESHOLD_EXCEEDED"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["TARGET_NOT_IN_UNIVERSE_SCOPE"]._options = None _QUERY_CODE.values_by_name["TARGET_NOT_IN_UNIVERSE_SCOPE"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["INVALID_FULL_UNIVERSE_EXPRESSION"]._options = None _QUERY_CODE.values_by_name["INVALID_FULL_UNIVERSE_EXPRESSION"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["UNIVERSE_SCOPE_LIMIT_EXCEEDED"]._options = None _QUERY_CODE.values_by_name["UNIVERSE_SCOPE_LIMIT_EXCEEDED"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["INVALIDATION_LIMIT_EXCEEDED"]._options = None _QUERY_CODE.values_by_name["INVALIDATION_LIMIT_EXCEEDED"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["OUTPUT_FORMAT_PREREQ_UNMET"]._options = None _QUERY_CODE.values_by_name["OUTPUT_FORMAT_PREREQ_UNMET"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["ARGUMENTS_MISSING"]._options = None _QUERY_CODE.values_by_name["ARGUMENTS_MISSING"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["RBUILDFILES_FUNCTION_REQUIRES_SKYQUERY"]._options = None _QUERY_CODE.values_by_name["RBUILDFILES_FUNCTION_REQUIRES_SKYQUERY"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["FULL_TARGETS_NOT_SUPPORTED"]._options = None _QUERY_CODE.values_by_name["FULL_TARGETS_NOT_SUPPORTED"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["DEPRECATED_UNEXPECTED_TOKEN_ERROR"]._options = None _QUERY_CODE.values_by_name["DEPRECATED_UNEXPECTED_TOKEN_ERROR"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["DEPRECATED_INTEGER_LITERAL_MISSING"]._options = None _QUERY_CODE.values_by_name["DEPRECATED_INTEGER_LITERAL_MISSING"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["DEPRECATED_INVALID_STARTING_CHARACTER_ERROR"]._options = None _QUERY_CODE.values_by_name["DEPRECATED_INVALID_STARTING_CHARACTER_ERROR"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["DEPRECATED_PREMATURE_END_OF_INPUT_ERROR"]._options = None _QUERY_CODE.values_by_name["DEPRECATED_PREMATURE_END_OF_INPUT_ERROR"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["SYNTAX_ERROR"]._options = None _QUERY_CODE.values_by_name["SYNTAX_ERROR"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["OUTPUT_FORMATTER_IO_EXCEPTION"]._options = None _QUERY_CODE.values_by_name["OUTPUT_FORMATTER_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _QUERY_CODE.values_by_name["SKYQUERY_TRANSITIVE_TARGET_ERROR"]._options = None _QUERY_CODE.values_by_name["SKYQUERY_TRANSITIVE_TARGET_ERROR"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["SKYQUERY_TARGET_EXCEPTION"]._options = None _QUERY_CODE.values_by_name["SKYQUERY_TARGET_EXCEPTION"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["INVALID_LABEL_IN_TEST_SUITE"]._options = None _QUERY_CODE.values_by_name["INVALID_LABEL_IN_TEST_SUITE"]._serialized_options = b'\262C\002\010\007' _QUERY_CODE.values_by_name["ILLEGAL_FLAG_COMBINATION"]._options = None _QUERY_CODE.values_by_name["ILLEGAL_FLAG_COMBINATION"]._serialized_options = b'\262C\002\010\002' _QUERY_CODE.values_by_name["NON_DETAILED_ERROR"]._options = None _QUERY_CODE.values_by_name["NON_DETAILED_ERROR"]._serialized_options = b'\262C\002\010\001' _LOCALEXECUTION_CODE.values_by_name["LOCAL_EXECUTION_UNKNOWN"]._options = None _LOCALEXECUTION_CODE.values_by_name["LOCAL_EXECUTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _LOCALEXECUTION_CODE.values_by_name["LOCKFREE_OUTPUT_PREREQ_UNMET"]._options = None _LOCALEXECUTION_CODE.values_by_name["LOCKFREE_OUTPUT_PREREQ_UNMET"]._serialized_options = b'\262C\002\010\002' _ACTIONCACHE_CODE.values_by_name["ACTION_CACHE_UNKNOWN"]._options = None _ACTIONCACHE_CODE.values_by_name["ACTION_CACHE_UNKNOWN"]._serialized_options = b'\262C\002\010%' _ACTIONCACHE_CODE.values_by_name["INITIALIZATION_FAILURE"]._options = None _ACTIONCACHE_CODE.values_by_name["INITIALIZATION_FAILURE"]._serialized_options = b'\262C\002\010$' _FETCHCOMMAND_CODE.values_by_name["FETCH_COMMAND_UNKNOWN"]._options = None _FETCHCOMMAND_CODE.values_by_name["FETCH_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _FETCHCOMMAND_CODE.values_by_name["EXPRESSION_MISSING"]._options = None _FETCHCOMMAND_CODE.values_by_name["EXPRESSION_MISSING"]._serialized_options = b'\262C\002\010\002' _FETCHCOMMAND_CODE.values_by_name["OPTIONS_INVALID"]._options = None _FETCHCOMMAND_CODE.values_by_name["OPTIONS_INVALID"]._serialized_options = b'\262C\002\010\002' _FETCHCOMMAND_CODE.values_by_name["QUERY_PARSE_ERROR"]._options = None _FETCHCOMMAND_CODE.values_by_name["QUERY_PARSE_ERROR"]._serialized_options = b'\262C\002\010\002' _FETCHCOMMAND_CODE.values_by_name["QUERY_EVALUATION_ERROR"]._options = None _FETCHCOMMAND_CODE.values_by_name["QUERY_EVALUATION_ERROR"]._serialized_options = b'\262C\002\010\002' _SYNCCOMMAND_CODE.values_by_name["SYNC_COMMAND_UNKNOWN"]._options = None _SYNCCOMMAND_CODE.values_by_name["SYNC_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _SYNCCOMMAND_CODE.values_by_name["PACKAGE_LOOKUP_ERROR"]._options = None _SYNCCOMMAND_CODE.values_by_name["PACKAGE_LOOKUP_ERROR"]._serialized_options = b'\262C\002\010\007' _SYNCCOMMAND_CODE.values_by_name["WORKSPACE_EVALUATION_ERROR"]._options = None _SYNCCOMMAND_CODE.values_by_name["WORKSPACE_EVALUATION_ERROR"]._serialized_options = b'\262C\002\010\007' _SYNCCOMMAND_CODE.values_by_name["REPOSITORY_FETCH_ERRORS"]._options = None _SYNCCOMMAND_CODE.values_by_name["REPOSITORY_FETCH_ERRORS"]._serialized_options = b'\262C\002\010\007' _SYNCCOMMAND_CODE.values_by_name["REPOSITORY_NAME_INVALID"]._options = None _SYNCCOMMAND_CODE.values_by_name["REPOSITORY_NAME_INVALID"]._serialized_options = b'\262C\002\010\007' _SANDBOX_CODE.values_by_name["SANDBOX_FAILURE_UNKNOWN"]._options = None _SANDBOX_CODE.values_by_name["SANDBOX_FAILURE_UNKNOWN"]._serialized_options = b'\262C\002\010%' _SANDBOX_CODE.values_by_name["INITIALIZATION_FAILURE"]._options = None _SANDBOX_CODE.values_by_name["INITIALIZATION_FAILURE"]._serialized_options = b'\262C\002\010$' _SANDBOX_CODE.values_by_name["EXECUTION_IO_EXCEPTION"]._options = None _SANDBOX_CODE.values_by_name["EXECUTION_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _SANDBOX_CODE.values_by_name["DOCKER_COMMAND_FAILURE"]._options = None _SANDBOX_CODE.values_by_name["DOCKER_COMMAND_FAILURE"]._serialized_options = b'\262C\002\010\001' _SANDBOX_CODE.values_by_name["NO_DOCKER_IMAGE"]._options = None _SANDBOX_CODE.values_by_name["NO_DOCKER_IMAGE"]._serialized_options = b'\262C\002\010\001' _SANDBOX_CODE.values_by_name["DOCKER_IMAGE_PREPARATION_FAILURE"]._options = None _SANDBOX_CODE.values_by_name["DOCKER_IMAGE_PREPARATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _SANDBOX_CODE.values_by_name["BIND_MOUNT_ANALYSIS_FAILURE"]._options = None _SANDBOX_CODE.values_by_name["BIND_MOUNT_ANALYSIS_FAILURE"]._serialized_options = b'\262C\002\010\001' _SANDBOX_CODE.values_by_name["MOUNT_SOURCE_DOES_NOT_EXIST"]._options = None _SANDBOX_CODE.values_by_name["MOUNT_SOURCE_DOES_NOT_EXIST"]._serialized_options = b'\262C\002\010\001' _SANDBOX_CODE.values_by_name["MOUNT_SOURCE_TARGET_TYPE_MISMATCH"]._options = None _SANDBOX_CODE.values_by_name["MOUNT_SOURCE_TARGET_TYPE_MISMATCH"]._serialized_options = b'\262C\002\010\001' _SANDBOX_CODE.values_by_name["MOUNT_TARGET_DOES_NOT_EXIST"]._options = None _SANDBOX_CODE.values_by_name["MOUNT_TARGET_DOES_NOT_EXIST"]._serialized_options = b'\262C\002\010\001' _SANDBOX_CODE.values_by_name["SUBPROCESS_START_FAILED"]._options = None _SANDBOX_CODE.values_by_name["SUBPROCESS_START_FAILED"]._serialized_options = b'\262C\002\010$' _SANDBOX_CODE.values_by_name["FORBIDDEN_INPUT"]._options = None _SANDBOX_CODE.values_by_name["FORBIDDEN_INPUT"]._serialized_options = b'\262C\002\010\001' _INCLUDESCANNING_CODE.values_by_name["INCLUDE_SCANNING_UNKNOWN"]._options = None _INCLUDESCANNING_CODE.values_by_name["INCLUDE_SCANNING_UNKNOWN"]._serialized_options = b'\262C\002\010%' _INCLUDESCANNING_CODE.values_by_name["INITIALIZE_INCLUDE_HINTS_ERROR"]._options = None _INCLUDESCANNING_CODE.values_by_name["INITIALIZE_INCLUDE_HINTS_ERROR"]._serialized_options = b'\262C\002\010$' _INCLUDESCANNING_CODE.values_by_name["SCANNING_IO_EXCEPTION"]._options = None _INCLUDESCANNING_CODE.values_by_name["SCANNING_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _INCLUDESCANNING_CODE.values_by_name["INCLUDE_HINTS_FILE_NOT_IN_PACKAGE"]._options = None _INCLUDESCANNING_CODE.values_by_name["INCLUDE_HINTS_FILE_NOT_IN_PACKAGE"]._serialized_options = b'\262C\002\010$' _INCLUDESCANNING_CODE.values_by_name["INCLUDE_HINTS_READ_FAILURE"]._options = None _INCLUDESCANNING_CODE.values_by_name["INCLUDE_HINTS_READ_FAILURE"]._serialized_options = b'\262C\002\010$' _INCLUDESCANNING_CODE.values_by_name["ILLEGAL_ABSOLUTE_PATH"]._options = None _INCLUDESCANNING_CODE.values_by_name["ILLEGAL_ABSOLUTE_PATH"]._serialized_options = b'\262C\002\010\001' _INCLUDESCANNING_CODE.values_by_name["PACKAGE_LOAD_FAILURE"]._options = None _INCLUDESCANNING_CODE.values_by_name["PACKAGE_LOAD_FAILURE"]._serialized_options = b'\262C\002\010\001' _INCLUDESCANNING_CODE.values_by_name["USER_PACKAGE_LOAD_FAILURE"]._options = None _INCLUDESCANNING_CODE.values_by_name["USER_PACKAGE_LOAD_FAILURE"]._serialized_options = b'\262C\002\010\001' _INCLUDESCANNING_CODE.values_by_name["SYSTEM_PACKAGE_LOAD_FAILURE"]._options = None _INCLUDESCANNING_CODE.values_by_name["SYSTEM_PACKAGE_LOAD_FAILURE"]._serialized_options = b'\262C\002\010$' _INCLUDESCANNING_CODE.values_by_name["UNDIFFERENTIATED_PACKAGE_LOAD_FAILURE"]._options = None _INCLUDESCANNING_CODE.values_by_name["UNDIFFERENTIATED_PACKAGE_LOAD_FAILURE"]._serialized_options = b'\262C\002\010\001' _TESTCOMMAND_CODE.values_by_name["TEST_COMMAND_UNKNOWN"]._options = None _TESTCOMMAND_CODE.values_by_name["TEST_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _TESTCOMMAND_CODE.values_by_name["NO_TEST_TARGETS"]._options = None _TESTCOMMAND_CODE.values_by_name["NO_TEST_TARGETS"]._serialized_options = b'\262C\002\010\004' _TESTCOMMAND_CODE.values_by_name["TEST_WITH_NOANALYZE"]._options = None _TESTCOMMAND_CODE.values_by_name["TEST_WITH_NOANALYZE"]._serialized_options = b'\262C\002\010\001' _TESTCOMMAND_CODE.values_by_name["TESTS_FAILED"]._options = None _TESTCOMMAND_CODE.values_by_name["TESTS_FAILED"]._serialized_options = b'\262C\002\010\003' _ACTIONQUERY_CODE.values_by_name["ACTION_QUERY_UNKNOWN"]._options = None _ACTIONQUERY_CODE.values_by_name["ACTION_QUERY_UNKNOWN"]._serialized_options = b'\262C\002\010%' _ACTIONQUERY_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._options = None _ACTIONQUERY_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._serialized_options = b'\262C\002\010\002' _ACTIONQUERY_CODE.values_by_name["OUTPUT_FAILURE"]._options = None _ACTIONQUERY_CODE.values_by_name["OUTPUT_FAILURE"]._serialized_options = b'\262C\002\010\006' _ACTIONQUERY_CODE.values_by_name["COMMAND_LINE_EXPRESSION_MISSING"]._options = None _ACTIONQUERY_CODE.values_by_name["COMMAND_LINE_EXPRESSION_MISSING"]._serialized_options = b'\262C\002\010\002' _ACTIONQUERY_CODE.values_by_name["EXPRESSION_PARSE_FAILURE"]._options = None _ACTIONQUERY_CODE.values_by_name["EXPRESSION_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\002' _ACTIONQUERY_CODE.values_by_name["SKYFRAME_STATE_WITH_COMMAND_LINE_EXPRESSION"]._options = None _ACTIONQUERY_CODE.values_by_name["SKYFRAME_STATE_WITH_COMMAND_LINE_EXPRESSION"]._serialized_options = b'\262C\002\010\002' _ACTIONQUERY_CODE.values_by_name["INVALID_AQUERY_EXPRESSION"]._options = None _ACTIONQUERY_CODE.values_by_name["INVALID_AQUERY_EXPRESSION"]._serialized_options = b'\262C\002\010\001' _ACTIONQUERY_CODE.values_by_name["SKYFRAME_STATE_PREREQ_UNMET"]._options = None _ACTIONQUERY_CODE.values_by_name["SKYFRAME_STATE_PREREQ_UNMET"]._serialized_options = b'\262C\002\010\002' _ACTIONQUERY_CODE.values_by_name["AQUERY_OUTPUT_TOO_BIG"]._options = None _ACTIONQUERY_CODE.values_by_name["AQUERY_OUTPUT_TOO_BIG"]._serialized_options = b'\262C\002\010\007' _ACTIONQUERY_CODE.values_by_name["ILLEGAL_PATTERN_SYNTAX"]._options = None _ACTIONQUERY_CODE.values_by_name["ILLEGAL_PATTERN_SYNTAX"]._serialized_options = b'\262C\002\010\002' _ACTIONQUERY_CODE.values_by_name["INCORRECT_ARGUMENTS"]._options = None _ACTIONQUERY_CODE.values_by_name["INCORRECT_ARGUMENTS"]._serialized_options = b'\262C\002\010\002' _ACTIONQUERY_CODE.values_by_name["TOP_LEVEL_TARGETS_WITH_SKYFRAME_STATE_NOT_SUPPORTED"]._options = None _ACTIONQUERY_CODE.values_by_name["TOP_LEVEL_TARGETS_WITH_SKYFRAME_STATE_NOT_SUPPORTED"]._serialized_options = b'\262C\002\010\002' _ACTIONQUERY_CODE.values_by_name["SKYFRAME_STATE_AFTER_EXECUTION"]._options = None _ACTIONQUERY_CODE.values_by_name["SKYFRAME_STATE_AFTER_EXECUTION"]._serialized_options = b'\262C\002\010\001' _ACTIONQUERY_CODE.values_by_name["LABELS_FUNCTION_NOT_SUPPORTED"]._options = None _ACTIONQUERY_CODE.values_by_name["LABELS_FUNCTION_NOT_SUPPORTED"]._serialized_options = b'\262C\002\010\002' _ACTIONQUERY_CODE.values_by_name["TEMPLATE_EXPANSION_FAILURE"]._options = None _ACTIONQUERY_CODE.values_by_name["TEMPLATE_EXPANSION_FAILURE"]._serialized_options = b'\262C\002\010\002' _TARGETPATTERNS_CODE.values_by_name["TARGET_PATTERNS_UNKNOWN"]._options = None _TARGETPATTERNS_CODE.values_by_name["TARGET_PATTERNS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _TARGETPATTERNS_CODE.values_by_name["TARGET_PATTERN_FILE_WITH_COMMAND_LINE_PATTERN"]._options = None _TARGETPATTERNS_CODE.values_by_name["TARGET_PATTERN_FILE_WITH_COMMAND_LINE_PATTERN"]._serialized_options = b'\262C\002\010\002' _TARGETPATTERNS_CODE.values_by_name["TARGET_PATTERN_FILE_READ_FAILURE"]._options = None _TARGETPATTERNS_CODE.values_by_name["TARGET_PATTERN_FILE_READ_FAILURE"]._serialized_options = b'\262C\002\010\002' _TARGETPATTERNS_CODE.values_by_name["TARGET_PATTERN_PARSE_FAILURE"]._options = None _TARGETPATTERNS_CODE.values_by_name["TARGET_PATTERN_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["PACKAGE_NOT_FOUND"]._options = None _TARGETPATTERNS_CODE.values_by_name["PACKAGE_NOT_FOUND"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["TARGET_FORMAT_INVALID"]._options = None _TARGETPATTERNS_CODE.values_by_name["TARGET_FORMAT_INVALID"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["ABSOLUTE_TARGET_PATTERN_INVALID"]._options = None _TARGETPATTERNS_CODE.values_by_name["ABSOLUTE_TARGET_PATTERN_INVALID"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["CANNOT_DETERMINE_TARGET_FROM_FILENAME"]._options = None _TARGETPATTERNS_CODE.values_by_name["CANNOT_DETERMINE_TARGET_FROM_FILENAME"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["LABEL_SYNTAX_ERROR"]._options = None _TARGETPATTERNS_CODE.values_by_name["LABEL_SYNTAX_ERROR"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["TARGET_CANNOT_BE_EMPTY_STRING"]._options = None _TARGETPATTERNS_CODE.values_by_name["TARGET_CANNOT_BE_EMPTY_STRING"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["PACKAGE_PART_CANNOT_END_IN_SLASH"]._options = None _TARGETPATTERNS_CODE.values_by_name["PACKAGE_PART_CANNOT_END_IN_SLASH"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["CYCLE"]._options = None _TARGETPATTERNS_CODE.values_by_name["CYCLE"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["CANNOT_PRELOAD_TARGET"]._options = None _TARGETPATTERNS_CODE.values_by_name["CANNOT_PRELOAD_TARGET"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["TARGETS_MISSING"]._options = None _TARGETPATTERNS_CODE.values_by_name["TARGETS_MISSING"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["RECURSIVE_TARGET_PATTERNS_NOT_ALLOWED"]._options = None _TARGETPATTERNS_CODE.values_by_name["RECURSIVE_TARGET_PATTERNS_NOT_ALLOWED"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["UP_LEVEL_REFERENCES_NOT_ALLOWED"]._options = None _TARGETPATTERNS_CODE.values_by_name["UP_LEVEL_REFERENCES_NOT_ALLOWED"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["NEGATIVE_TARGET_PATTERN_NOT_ALLOWED"]._options = None _TARGETPATTERNS_CODE.values_by_name["NEGATIVE_TARGET_PATTERN_NOT_ALLOWED"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["TARGET_MUST_BE_A_FILE"]._options = None _TARGETPATTERNS_CODE.values_by_name["TARGET_MUST_BE_A_FILE"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["DEPENDENCY_NOT_FOUND"]._options = None _TARGETPATTERNS_CODE.values_by_name["DEPENDENCY_NOT_FOUND"]._serialized_options = b'\262C\002\010\001' _TARGETPATTERNS_CODE.values_by_name["PACKAGE_NAME_INVALID"]._options = None _TARGETPATTERNS_CODE.values_by_name["PACKAGE_NAME_INVALID"]._serialized_options = b'\262C\002\010\001' _CLEANCOMMAND_CODE.values_by_name["CLEAN_COMMAND_UNKNOWN"]._options = None _CLEANCOMMAND_CODE.values_by_name["CLEAN_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _CLEANCOMMAND_CODE.values_by_name["OUTPUT_SERVICE_CLEAN_FAILURE"]._options = None _CLEANCOMMAND_CODE.values_by_name["OUTPUT_SERVICE_CLEAN_FAILURE"]._serialized_options = b'\262C\002\010\006' _CLEANCOMMAND_CODE.values_by_name["ACTION_CACHE_CLEAN_FAILURE"]._options = None _CLEANCOMMAND_CODE.values_by_name["ACTION_CACHE_CLEAN_FAILURE"]._serialized_options = b'\262C\002\010$' _CLEANCOMMAND_CODE.values_by_name["OUT_ERR_CLOSE_FAILURE"]._options = None _CLEANCOMMAND_CODE.values_by_name["OUT_ERR_CLOSE_FAILURE"]._serialized_options = b'\262C\002\010$' _CLEANCOMMAND_CODE.values_by_name["OUTPUT_BASE_DELETE_FAILURE"]._options = None _CLEANCOMMAND_CODE.values_by_name["OUTPUT_BASE_DELETE_FAILURE"]._serialized_options = b'\262C\002\010$' _CLEANCOMMAND_CODE.values_by_name["OUTPUT_BASE_TEMP_MOVE_FAILURE"]._options = None _CLEANCOMMAND_CODE.values_by_name["OUTPUT_BASE_TEMP_MOVE_FAILURE"]._serialized_options = b'\262C\002\010$' _CLEANCOMMAND_CODE.values_by_name["ASYNC_OUTPUT_BASE_DELETE_FAILURE"]._options = None _CLEANCOMMAND_CODE.values_by_name["ASYNC_OUTPUT_BASE_DELETE_FAILURE"]._serialized_options = b'\262C\002\010\006' _CLEANCOMMAND_CODE.values_by_name["EXECROOT_DELETE_FAILURE"]._options = None _CLEANCOMMAND_CODE.values_by_name["EXECROOT_DELETE_FAILURE"]._serialized_options = b'\262C\002\010$' _CLEANCOMMAND_CODE.values_by_name["EXECROOT_TEMP_MOVE_FAILURE"]._options = None _CLEANCOMMAND_CODE.values_by_name["EXECROOT_TEMP_MOVE_FAILURE"]._serialized_options = b'\262C\002\010$' _CLEANCOMMAND_CODE.values_by_name["ASYNC_EXECROOT_DELETE_FAILURE"]._options = None _CLEANCOMMAND_CODE.values_by_name["ASYNC_EXECROOT_DELETE_FAILURE"]._serialized_options = b'\262C\002\010\006' _CLEANCOMMAND_CODE.values_by_name["ARGUMENTS_NOT_RECOGNIZED"]._options = None _CLEANCOMMAND_CODE.values_by_name["ARGUMENTS_NOT_RECOGNIZED"]._serialized_options = b'\262C\002\010\002' _CONFIGCOMMAND_CODE.values_by_name["CONFIG_COMMAND_UNKNOWN"]._options = None _CONFIGCOMMAND_CODE.values_by_name["CONFIG_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _CONFIGCOMMAND_CODE.values_by_name["TOO_MANY_CONFIG_IDS"]._options = None _CONFIGCOMMAND_CODE.values_by_name["TOO_MANY_CONFIG_IDS"]._serialized_options = b'\262C\002\010\002' _CONFIGCOMMAND_CODE.values_by_name["CONFIGURATION_NOT_FOUND"]._options = None _CONFIGCOMMAND_CODE.values_by_name["CONFIGURATION_NOT_FOUND"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["CONFIGURABLE_QUERY_UNKNOWN"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["CONFIGURABLE_QUERY_UNKNOWN"]._serialized_options = b'\262C\002\010%' _CONFIGURABLEQUERY_CODE.values_by_name["COMMAND_LINE_EXPRESSION_MISSING"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["COMMAND_LINE_EXPRESSION_MISSING"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["EXPRESSION_PARSE_FAILURE"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["EXPRESSION_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["FILTERS_NOT_SUPPORTED"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["FILTERS_NOT_SUPPORTED"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["BUILDFILES_FUNCTION_NOT_SUPPORTED"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["BUILDFILES_FUNCTION_NOT_SUPPORTED"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["SIBLINGS_FUNCTION_NOT_SUPPORTED"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["SIBLINGS_FUNCTION_NOT_SUPPORTED"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["VISIBLE_FUNCTION_NOT_SUPPORTED"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["VISIBLE_FUNCTION_NOT_SUPPORTED"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["ATTRIBUTE_MISSING"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["ATTRIBUTE_MISSING"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["INCORRECT_CONFIG_ARGUMENT_ERROR"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["INCORRECT_CONFIG_ARGUMENT_ERROR"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["TARGET_MISSING"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["TARGET_MISSING"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["STARLARK_SYNTAX_ERROR"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["STARLARK_SYNTAX_ERROR"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["STARLARK_EVAL_ERROR"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["STARLARK_EVAL_ERROR"]._serialized_options = b'\262C\002\010\002' _CONFIGURABLEQUERY_CODE.values_by_name["FORMAT_FUNCTION_ERROR"]._options = None _CONFIGURABLEQUERY_CODE.values_by_name["FORMAT_FUNCTION_ERROR"]._serialized_options = b'\262C\002\010\002' _DUMPCOMMAND_CODE.values_by_name["DUMP_COMMAND_UNKNOWN"]._options = None _DUMPCOMMAND_CODE.values_by_name["DUMP_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _DUMPCOMMAND_CODE.values_by_name["NO_OUTPUT_SPECIFIED"]._options = None _DUMPCOMMAND_CODE.values_by_name["NO_OUTPUT_SPECIFIED"]._serialized_options = b'\262C\002\010\007' _DUMPCOMMAND_CODE.values_by_name["ACTION_CACHE_DUMP_FAILED"]._options = None _DUMPCOMMAND_CODE.values_by_name["ACTION_CACHE_DUMP_FAILED"]._serialized_options = b'\262C\002\010\007' _DUMPCOMMAND_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._options = None _DUMPCOMMAND_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._serialized_options = b'\262C\002\010\007' _DUMPCOMMAND_CODE.values_by_name["ACTION_GRAPH_DUMP_FAILED"]._options = None _DUMPCOMMAND_CODE.values_by_name["ACTION_GRAPH_DUMP_FAILED"]._serialized_options = b'\262C\002\010\007' _DUMPCOMMAND_CODE.values_by_name["STARLARK_HEAP_DUMP_FAILED"]._options = None _DUMPCOMMAND_CODE.values_by_name["STARLARK_HEAP_DUMP_FAILED"]._serialized_options = b'\262C\002\010\010' _HELPCOMMAND_CODE.values_by_name["HELP_COMMAND_UNKNOWN"]._options = None _HELPCOMMAND_CODE.values_by_name["HELP_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _HELPCOMMAND_CODE.values_by_name["MISSING_ARGUMENT"]._options = None _HELPCOMMAND_CODE.values_by_name["MISSING_ARGUMENT"]._serialized_options = b'\262C\002\010\002' _HELPCOMMAND_CODE.values_by_name["COMMAND_NOT_FOUND"]._options = None _HELPCOMMAND_CODE.values_by_name["COMMAND_NOT_FOUND"]._serialized_options = b'\262C\002\010\002' _MOBILEINSTALL_CODE.values_by_name["MOBILE_INSTALL_UNKNOWN"]._options = None _MOBILEINSTALL_CODE.values_by_name["MOBILE_INSTALL_UNKNOWN"]._serialized_options = b'\262C\002\010%' _MOBILEINSTALL_CODE.values_by_name["CLASSIC_UNSUPPORTED"]._options = None _MOBILEINSTALL_CODE.values_by_name["CLASSIC_UNSUPPORTED"]._serialized_options = b'\262C\002\010\002' _MOBILEINSTALL_CODE.values_by_name["NO_TARGET_SPECIFIED"]._options = None _MOBILEINSTALL_CODE.values_by_name["NO_TARGET_SPECIFIED"]._serialized_options = b'\262C\002\010\002' _MOBILEINSTALL_CODE.values_by_name["MULTIPLE_TARGETS_SPECIFIED"]._options = None _MOBILEINSTALL_CODE.values_by_name["MULTIPLE_TARGETS_SPECIFIED"]._serialized_options = b'\262C\002\010\002' _MOBILEINSTALL_CODE.values_by_name["TARGET_TYPE_INVALID"]._options = None _MOBILEINSTALL_CODE.values_by_name["TARGET_TYPE_INVALID"]._serialized_options = b'\262C\002\010\006' _MOBILEINSTALL_CODE.values_by_name["NON_ZERO_EXIT"]._options = None _MOBILEINSTALL_CODE.values_by_name["NON_ZERO_EXIT"]._serialized_options = b'\262C\002\010\006' _MOBILEINSTALL_CODE.values_by_name["ERROR_RUNNING_PROGRAM"]._options = None _MOBILEINSTALL_CODE.values_by_name["ERROR_RUNNING_PROGRAM"]._serialized_options = b'\262C\002\010\006' _PROFILECOMMAND_CODE.values_by_name["PROFILE_COMMAND_UNKNOWN"]._options = None _PROFILECOMMAND_CODE.values_by_name["PROFILE_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _PROFILECOMMAND_CODE.values_by_name["OLD_BINARY_FORMAT_UNSUPPORTED"]._options = None _PROFILECOMMAND_CODE.values_by_name["OLD_BINARY_FORMAT_UNSUPPORTED"]._serialized_options = b'\262C\002\010\001' _PROFILECOMMAND_CODE.values_by_name["FILE_READ_FAILURE"]._options = None _PROFILECOMMAND_CODE.values_by_name["FILE_READ_FAILURE"]._serialized_options = b'\262C\002\010\001' _RUNCOMMAND_CODE.values_by_name["RUN_COMMAND_UNKNOWN"]._options = None _RUNCOMMAND_CODE.values_by_name["RUN_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _RUNCOMMAND_CODE.values_by_name["NO_TARGET_SPECIFIED"]._options = None _RUNCOMMAND_CODE.values_by_name["NO_TARGET_SPECIFIED"]._serialized_options = b'\262C\002\010\002' _RUNCOMMAND_CODE.values_by_name["TOO_MANY_TARGETS_SPECIFIED"]._options = None _RUNCOMMAND_CODE.values_by_name["TOO_MANY_TARGETS_SPECIFIED"]._serialized_options = b'\262C\002\010\002' _RUNCOMMAND_CODE.values_by_name["TARGET_NOT_EXECUTABLE"]._options = None _RUNCOMMAND_CODE.values_by_name["TARGET_NOT_EXECUTABLE"]._serialized_options = b'\262C\002\010\002' _RUNCOMMAND_CODE.values_by_name["TARGET_BUILT_BUT_PATH_NOT_EXECUTABLE"]._options = None _RUNCOMMAND_CODE.values_by_name["TARGET_BUILT_BUT_PATH_NOT_EXECUTABLE"]._serialized_options = b'\262C\002\010\001' _RUNCOMMAND_CODE.values_by_name["TARGET_BUILT_BUT_PATH_VALIDATION_FAILED"]._options = None _RUNCOMMAND_CODE.values_by_name["TARGET_BUILT_BUT_PATH_VALIDATION_FAILED"]._serialized_options = b'\262C\002\010$' _RUNCOMMAND_CODE.values_by_name["RUN_UNDER_TARGET_NOT_BUILT"]._options = None _RUNCOMMAND_CODE.values_by_name["RUN_UNDER_TARGET_NOT_BUILT"]._serialized_options = b'\262C\002\010\002' _RUNCOMMAND_CODE.values_by_name["RUN_PREREQ_UNMET"]._options = None _RUNCOMMAND_CODE.values_by_name["RUN_PREREQ_UNMET"]._serialized_options = b'\262C\002\010\002' _RUNCOMMAND_CODE.values_by_name["TOO_MANY_TEST_SHARDS_OR_RUNS"]._options = None _RUNCOMMAND_CODE.values_by_name["TOO_MANY_TEST_SHARDS_OR_RUNS"]._serialized_options = b'\262C\002\010\002' _RUNCOMMAND_CODE.values_by_name["TEST_ENVIRONMENT_SETUP_FAILURE"]._options = None _RUNCOMMAND_CODE.values_by_name["TEST_ENVIRONMENT_SETUP_FAILURE"]._serialized_options = b'\262C\002\010$' _RUNCOMMAND_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._options = None _RUNCOMMAND_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._serialized_options = b'\262C\002\010$' _RUNCOMMAND_CODE.values_by_name["NO_SHELL_SPECIFIED"]._options = None _RUNCOMMAND_CODE.values_by_name["NO_SHELL_SPECIFIED"]._serialized_options = b'\262C\002\010\002' _RUNCOMMAND_CODE.values_by_name["SCRIPT_WRITE_FAILURE"]._options = None _RUNCOMMAND_CODE.values_by_name["SCRIPT_WRITE_FAILURE"]._serialized_options = b'\262C\002\010\006' _RUNCOMMAND_CODE.values_by_name["RUNFILES_DIRECTORIES_CREATION_FAILURE"]._options = None _RUNCOMMAND_CODE.values_by_name["RUNFILES_DIRECTORIES_CREATION_FAILURE"]._serialized_options = b'\262C\002\010$' _RUNCOMMAND_CODE.values_by_name["RUNFILES_SYMLINKS_CREATION_FAILURE"]._options = None _RUNCOMMAND_CODE.values_by_name["RUNFILES_SYMLINKS_CREATION_FAILURE"]._serialized_options = b'\262C\002\010$' _RUNCOMMAND_CODE.values_by_name["TEST_ENVIRONMENT_SETUP_INTERRUPTED"]._options = None _RUNCOMMAND_CODE.values_by_name["TEST_ENVIRONMENT_SETUP_INTERRUPTED"]._serialized_options = b'\262C\002\010\010' _VERSIONCOMMAND_CODE.values_by_name["VERSION_COMMAND_UNKNOWN"]._options = None _VERSIONCOMMAND_CODE.values_by_name["VERSION_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _VERSIONCOMMAND_CODE.values_by_name["NOT_AVAILABLE"]._options = None _VERSIONCOMMAND_CODE.values_by_name["NOT_AVAILABLE"]._serialized_options = b'\262C\002\010\002' _PRINTACTIONCOMMAND_CODE.values_by_name["PRINT_ACTION_COMMAND_UNKNOWN"]._options = None _PRINTACTIONCOMMAND_CODE.values_by_name["PRINT_ACTION_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _PRINTACTIONCOMMAND_CODE.values_by_name["TARGET_NOT_FOUND"]._options = None _PRINTACTIONCOMMAND_CODE.values_by_name["TARGET_NOT_FOUND"]._serialized_options = b'\262C\002\010\001' _PRINTACTIONCOMMAND_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._options = None _PRINTACTIONCOMMAND_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._serialized_options = b'\262C\002\010\001' _PRINTACTIONCOMMAND_CODE.values_by_name["TARGET_KIND_UNSUPPORTED"]._options = None _PRINTACTIONCOMMAND_CODE.values_by_name["TARGET_KIND_UNSUPPORTED"]._serialized_options = b'\262C\002\010\001' _PRINTACTIONCOMMAND_CODE.values_by_name["ACTIONS_NOT_FOUND"]._options = None _PRINTACTIONCOMMAND_CODE.values_by_name["ACTIONS_NOT_FOUND"]._serialized_options = b'\262C\002\010\001' _WORKSPACESTATUS_CODE.values_by_name["WORKSPACE_STATUS_UNKNOWN"]._options = None _WORKSPACESTATUS_CODE.values_by_name["WORKSPACE_STATUS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _WORKSPACESTATUS_CODE.values_by_name["NON_ZERO_EXIT"]._options = None _WORKSPACESTATUS_CODE.values_by_name["NON_ZERO_EXIT"]._serialized_options = b'\262C\002\010\001' _WORKSPACESTATUS_CODE.values_by_name["ABNORMAL_TERMINATION"]._options = None _WORKSPACESTATUS_CODE.values_by_name["ABNORMAL_TERMINATION"]._serialized_options = b'\262C\002\010\001' _WORKSPACESTATUS_CODE.values_by_name["EXEC_FAILED"]._options = None _WORKSPACESTATUS_CODE.values_by_name["EXEC_FAILED"]._serialized_options = b'\262C\002\010\001' _WORKSPACESTATUS_CODE.values_by_name["PARSE_FAILURE"]._options = None _WORKSPACESTATUS_CODE.values_by_name["PARSE_FAILURE"]._serialized_options = b'\262C\002\010$' _WORKSPACESTATUS_CODE.values_by_name["VALIDATION_FAILURE"]._options = None _WORKSPACESTATUS_CODE.values_by_name["VALIDATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _WORKSPACESTATUS_CODE.values_by_name["CONTENT_UPDATE_IO_EXCEPTION"]._options = None _WORKSPACESTATUS_CODE.values_by_name["CONTENT_UPDATE_IO_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _WORKSPACESTATUS_CODE.values_by_name["STDERR_IO_EXCEPTION"]._options = None _WORKSPACESTATUS_CODE.values_by_name["STDERR_IO_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _JAVACOMPILE_CODE.values_by_name["JAVA_COMPILE_UNKNOWN"]._options = None _JAVACOMPILE_CODE.values_by_name["JAVA_COMPILE_UNKNOWN"]._serialized_options = b'\262C\002\010%' _JAVACOMPILE_CODE.values_by_name["REDUCED_CLASSPATH_FAILURE"]._options = None _JAVACOMPILE_CODE.values_by_name["REDUCED_CLASSPATH_FAILURE"]._serialized_options = b'\262C\002\010\001' _JAVACOMPILE_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._options = None _JAVACOMPILE_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._serialized_options = b'\262C\002\010\001' _JAVACOMPILE_CODE.values_by_name["JDEPS_READ_IO_EXCEPTION"]._options = None _JAVACOMPILE_CODE.values_by_name["JDEPS_READ_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _JAVACOMPILE_CODE.values_by_name["REDUCED_CLASSPATH_FALLBACK_CLEANUP_FAILURE"]._options = None _JAVACOMPILE_CODE.values_by_name["REDUCED_CLASSPATH_FALLBACK_CLEANUP_FAILURE"]._serialized_options = b'\262C\002\010$' _ACTIONREWINDING_CODE.values_by_name["ACTION_REWINDING_UNKNOWN"]._options = None _ACTIONREWINDING_CODE.values_by_name["ACTION_REWINDING_UNKNOWN"]._serialized_options = b'\262C\002\010%' _ACTIONREWINDING_CODE.values_by_name["LOST_INPUT_TOO_MANY_TIMES"]._options = None _ACTIONREWINDING_CODE.values_by_name["LOST_INPUT_TOO_MANY_TIMES"]._serialized_options = b'\262C\002\010\001' _ACTIONREWINDING_CODE.values_by_name["LOST_INPUT_IS_SOURCE"]._options = None _ACTIONREWINDING_CODE.values_by_name["LOST_INPUT_IS_SOURCE"]._serialized_options = b'\262C\002\010\001' _CPPCOMPILE_CODE.values_by_name["CPP_COMPILE_UNKNOWN"]._options = None _CPPCOMPILE_CODE.values_by_name["CPP_COMPILE_UNKNOWN"]._serialized_options = b'\262C\002\010%' _CPPCOMPILE_CODE.values_by_name["FIND_USED_HEADERS_IO_EXCEPTION"]._options = None _CPPCOMPILE_CODE.values_by_name["FIND_USED_HEADERS_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _CPPCOMPILE_CODE.values_by_name["COPY_OUT_ERR_FAILURE"]._options = None _CPPCOMPILE_CODE.values_by_name["COPY_OUT_ERR_FAILURE"]._serialized_options = b'\262C\002\010$' _CPPCOMPILE_CODE.values_by_name["D_FILE_READ_FAILURE"]._options = None _CPPCOMPILE_CODE.values_by_name["D_FILE_READ_FAILURE"]._serialized_options = b'\262C\002\010$' _CPPCOMPILE_CODE.values_by_name["COMMAND_GENERATION_FAILURE"]._options = None _CPPCOMPILE_CODE.values_by_name["COMMAND_GENERATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _CPPCOMPILE_CODE.values_by_name["MODULE_EXPANSION_TIMEOUT"]._options = None _CPPCOMPILE_CODE.values_by_name["MODULE_EXPANSION_TIMEOUT"]._serialized_options = b'\262C\002\010\001' _CPPCOMPILE_CODE.values_by_name["INCLUDE_PATH_OUTSIDE_EXEC_ROOT"]._options = None _CPPCOMPILE_CODE.values_by_name["INCLUDE_PATH_OUTSIDE_EXEC_ROOT"]._serialized_options = b'\262C\002\010\001' _CPPCOMPILE_CODE.values_by_name["FAKE_COMMAND_GENERATION_FAILURE"]._options = None _CPPCOMPILE_CODE.values_by_name["FAKE_COMMAND_GENERATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _CPPCOMPILE_CODE.values_by_name["UNDECLARED_INCLUSIONS"]._options = None _CPPCOMPILE_CODE.values_by_name["UNDECLARED_INCLUSIONS"]._serialized_options = b'\262C\002\010\001' _CPPCOMPILE_CODE.values_by_name["D_FILE_PARSE_FAILURE"]._options = None _CPPCOMPILE_CODE.values_by_name["D_FILE_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\001' _CPPCOMPILE_CODE.values_by_name["COVERAGE_NOTES_CREATION_FAILURE"]._options = None _CPPCOMPILE_CODE.values_by_name["COVERAGE_NOTES_CREATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _CPPCOMPILE_CODE.values_by_name["MODULE_EXPANSION_MISSING_DATA"]._options = None _CPPCOMPILE_CODE.values_by_name["MODULE_EXPANSION_MISSING_DATA"]._serialized_options = b'\262C\002\010\001' _STARLARKACTION_CODE.values_by_name["STARLARK_ACTION_UNKNOWN"]._options = None _STARLARKACTION_CODE.values_by_name["STARLARK_ACTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _STARLARKACTION_CODE.values_by_name["UNUSED_INPUT_LIST_READ_FAILURE"]._options = None _STARLARKACTION_CODE.values_by_name["UNUSED_INPUT_LIST_READ_FAILURE"]._serialized_options = b'\262C\002\010$' _STARLARKACTION_CODE.values_by_name["UNUSED_INPUT_LIST_FILE_NOT_FOUND"]._options = None _STARLARKACTION_CODE.values_by_name["UNUSED_INPUT_LIST_FILE_NOT_FOUND"]._serialized_options = b'\262C\002\010\001' _NINJAACTION_CODE.values_by_name["NINJA_ACTION_UNKNOWN"]._options = None _NINJAACTION_CODE.values_by_name["NINJA_ACTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _NINJAACTION_CODE.values_by_name["INVALID_DEPFILE_DECLARED_DEPENDENCY"]._options = None _NINJAACTION_CODE.values_by_name["INVALID_DEPFILE_DECLARED_DEPENDENCY"]._serialized_options = b'\262C\002\010$' _NINJAACTION_CODE.values_by_name["D_FILE_PARSE_FAILURE"]._options = None _NINJAACTION_CODE.values_by_name["D_FILE_PARSE_FAILURE"]._serialized_options = b'\262C\002\010$' _DYNAMICEXECUTION_CODE.values_by_name["DYNAMIC_EXECUTION_UNKNOWN"]._options = None _DYNAMICEXECUTION_CODE.values_by_name["DYNAMIC_EXECUTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _DYNAMICEXECUTION_CODE.values_by_name["XCODE_RELATED_PREREQ_UNMET"]._options = None _DYNAMICEXECUTION_CODE.values_by_name["XCODE_RELATED_PREREQ_UNMET"]._serialized_options = b'\262C\002\010$' _DYNAMICEXECUTION_CODE.values_by_name["ACTION_LOG_MOVE_FAILURE"]._options = None _DYNAMICEXECUTION_CODE.values_by_name["ACTION_LOG_MOVE_FAILURE"]._serialized_options = b'\262C\002\010\001' _DYNAMICEXECUTION_CODE.values_by_name["RUN_FAILURE"]._options = None _DYNAMICEXECUTION_CODE.values_by_name["RUN_FAILURE"]._serialized_options = b'\262C\002\010\001' _DYNAMICEXECUTION_CODE.values_by_name["NO_USABLE_STRATEGY_FOUND"]._options = None _DYNAMICEXECUTION_CODE.values_by_name["NO_USABLE_STRATEGY_FOUND"]._serialized_options = b'\262C\002\010\002' _FAILACTION_CODE.values_by_name["FAIL_ACTION_UNKNOWN"]._options = None _FAILACTION_CODE.values_by_name["FAIL_ACTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _FAILACTION_CODE.values_by_name["INTENTIONAL_FAILURE"]._options = None _FAILACTION_CODE.values_by_name["INTENTIONAL_FAILURE"]._serialized_options = b'\262C\002\010\001' _FAILACTION_CODE.values_by_name["INCORRECT_PYTHON_VERSION"]._options = None _FAILACTION_CODE.values_by_name["INCORRECT_PYTHON_VERSION"]._serialized_options = b'\262C\002\010\001' _FAILACTION_CODE.values_by_name["PROGUARD_SPECS_MISSING"]._options = None _FAILACTION_CODE.values_by_name["PROGUARD_SPECS_MISSING"]._serialized_options = b'\262C\002\010\001' _FAILACTION_CODE.values_by_name["DYNAMIC_LINKING_NOT_SUPPORTED"]._options = None _FAILACTION_CODE.values_by_name["DYNAMIC_LINKING_NOT_SUPPORTED"]._serialized_options = b'\262C\002\010\001' _FAILACTION_CODE.values_by_name["SOURCE_FILES_MISSING"]._options = None _FAILACTION_CODE.values_by_name["SOURCE_FILES_MISSING"]._serialized_options = b'\262C\002\010\001' _FAILACTION_CODE.values_by_name["INCORRECT_TOOLCHAIN"]._options = None _FAILACTION_CODE.values_by_name["INCORRECT_TOOLCHAIN"]._serialized_options = b'\262C\002\010\001' _FAILACTION_CODE.values_by_name["FRAGMENT_CLASS_MISSING"]._options = None _FAILACTION_CODE.values_by_name["FRAGMENT_CLASS_MISSING"]._serialized_options = b'\262C\002\010\001' _FAILACTION_CODE.values_by_name["CANT_BUILD_INCOMPATIBLE_TARGET"]._options = None _FAILACTION_CODE.values_by_name["CANT_BUILD_INCOMPATIBLE_TARGET"]._serialized_options = b'\262C\002\010\001' _SYMLINKACTION_CODE.values_by_name["SYMLINK_ACTION_UNKNOWN"]._options = None _SYMLINKACTION_CODE.values_by_name["SYMLINK_ACTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _SYMLINKACTION_CODE.values_by_name["EXECUTABLE_INPUT_NOT_FILE"]._options = None _SYMLINKACTION_CODE.values_by_name["EXECUTABLE_INPUT_NOT_FILE"]._serialized_options = b'\262C\002\010\001' _SYMLINKACTION_CODE.values_by_name["EXECUTABLE_INPUT_IS_NOT"]._options = None _SYMLINKACTION_CODE.values_by_name["EXECUTABLE_INPUT_IS_NOT"]._serialized_options = b'\262C\002\010\001' _SYMLINKACTION_CODE.values_by_name["EXECUTABLE_INPUT_CHECK_IO_EXCEPTION"]._options = None _SYMLINKACTION_CODE.values_by_name["EXECUTABLE_INPUT_CHECK_IO_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _SYMLINKACTION_CODE.values_by_name["LINK_CREATION_IO_EXCEPTION"]._options = None _SYMLINKACTION_CODE.values_by_name["LINK_CREATION_IO_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _SYMLINKACTION_CODE.values_by_name["LINK_TOUCH_IO_EXCEPTION"]._options = None _SYMLINKACTION_CODE.values_by_name["LINK_TOUCH_IO_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _CPPLINK_CODE.values_by_name["CPP_LINK_UNKNOWN"]._options = None _CPPLINK_CODE.values_by_name["CPP_LINK_UNKNOWN"]._serialized_options = b'\262C\002\010%' _CPPLINK_CODE.values_by_name["COMMAND_GENERATION_FAILURE"]._options = None _CPPLINK_CODE.values_by_name["COMMAND_GENERATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _CPPLINK_CODE.values_by_name["FAKE_COMMAND_GENERATION_FAILURE"]._options = None _CPPLINK_CODE.values_by_name["FAKE_COMMAND_GENERATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _LTOACTION_CODE.values_by_name["LTO_ACTION_UNKNOWN"]._options = None _LTOACTION_CODE.values_by_name["LTO_ACTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _LTOACTION_CODE.values_by_name["INVALID_ABSOLUTE_PATH_IN_IMPORTS"]._options = None _LTOACTION_CODE.values_by_name["INVALID_ABSOLUTE_PATH_IN_IMPORTS"]._serialized_options = b'\262C\002\010\001' _LTOACTION_CODE.values_by_name["MISSING_BITCODE_FILES"]._options = None _LTOACTION_CODE.values_by_name["MISSING_BITCODE_FILES"]._serialized_options = b'\262C\002\010\001' _LTOACTION_CODE.values_by_name["IMPORTS_READ_IO_EXCEPTION"]._options = None _LTOACTION_CODE.values_by_name["IMPORTS_READ_IO_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _TESTACTION_CODE.values_by_name["TEST_ACTION_UNKNOWN"]._options = None _TESTACTION_CODE.values_by_name["TEST_ACTION_UNKNOWN"]._serialized_options = b'\262C\002\010%' _TESTACTION_CODE.values_by_name["NO_KEEP_GOING_TEST_FAILURE"]._options = None _TESTACTION_CODE.values_by_name["NO_KEEP_GOING_TEST_FAILURE"]._serialized_options = b'\262C\002\010\001' _TESTACTION_CODE.values_by_name["LOCAL_TEST_PREREQ_UNMET"]._options = None _TESTACTION_CODE.values_by_name["LOCAL_TEST_PREREQ_UNMET"]._serialized_options = b'\262C\002\010\001' _TESTACTION_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._options = None _TESTACTION_CODE.values_by_name["COMMAND_LINE_EXPANSION_FAILURE"]._serialized_options = b'\262C\002\010\001' _TESTACTION_CODE.values_by_name["DUPLICATE_CPU_TAGS"]._options = None _TESTACTION_CODE.values_by_name["DUPLICATE_CPU_TAGS"]._serialized_options = b'\262C\002\010\001' _TESTACTION_CODE.values_by_name["INVALID_CPU_TAG"]._options = None _TESTACTION_CODE.values_by_name["INVALID_CPU_TAG"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["WORKER_UNKNOWN"]._options = None _WORKER_CODE.values_by_name["WORKER_UNKNOWN"]._serialized_options = b'\262C\002\010%' _WORKER_CODE.values_by_name["MULTIPLEXER_INSTANCE_REMOVAL_FAILURE"]._options = None _WORKER_CODE.values_by_name["MULTIPLEXER_INSTANCE_REMOVAL_FAILURE"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["MULTIPLEXER_DOES_NOT_EXIST"]._options = None _WORKER_CODE.values_by_name["MULTIPLEXER_DOES_NOT_EXIST"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["NO_TOOLS"]._options = None _WORKER_CODE.values_by_name["NO_TOOLS"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["NO_FLAGFILE"]._options = None _WORKER_CODE.values_by_name["NO_FLAGFILE"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["VIRTUAL_INPUT_MATERIALIZATION_FAILURE"]._options = None _WORKER_CODE.values_by_name["VIRTUAL_INPUT_MATERIALIZATION_FAILURE"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["BORROW_FAILURE"]._options = None _WORKER_CODE.values_by_name["BORROW_FAILURE"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["PREFETCH_FAILURE"]._options = None _WORKER_CODE.values_by_name["PREFETCH_FAILURE"]._serialized_options = b'\262C\002\010$' _WORKER_CODE.values_by_name["PREPARE_FAILURE"]._options = None _WORKER_CODE.values_by_name["PREPARE_FAILURE"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["REQUEST_FAILURE"]._options = None _WORKER_CODE.values_by_name["REQUEST_FAILURE"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["PARSE_RESPONSE_FAILURE"]._options = None _WORKER_CODE.values_by_name["PARSE_RESPONSE_FAILURE"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["NO_RESPONSE"]._options = None _WORKER_CODE.values_by_name["NO_RESPONSE"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["FINISH_FAILURE"]._options = None _WORKER_CODE.values_by_name["FINISH_FAILURE"]._serialized_options = b'\262C\002\010\001' _WORKER_CODE.values_by_name["FORBIDDEN_INPUT"]._options = None _WORKER_CODE.values_by_name["FORBIDDEN_INPUT"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["ANALYSIS_UNKNOWN"]._options = None _ANALYSIS_CODE.values_by_name["ANALYSIS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _ANALYSIS_CODE.values_by_name["LOAD_FAILURE"]._options = None _ANALYSIS_CODE.values_by_name["LOAD_FAILURE"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["GENERIC_LOADING_PHASE_FAILURE"]._options = None _ANALYSIS_CODE.values_by_name["GENERIC_LOADING_PHASE_FAILURE"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["NOT_ALL_TARGETS_ANALYZED"]._options = None _ANALYSIS_CODE.values_by_name["NOT_ALL_TARGETS_ANALYZED"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["CYCLE"]._options = None _ANALYSIS_CODE.values_by_name["CYCLE"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["PARAMETERIZED_TOP_LEVEL_ASPECT_INVALID"]._options = None _ANALYSIS_CODE.values_by_name["PARAMETERIZED_TOP_LEVEL_ASPECT_INVALID"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["ASPECT_LABEL_SYNTAX_ERROR"]._options = None _ANALYSIS_CODE.values_by_name["ASPECT_LABEL_SYNTAX_ERROR"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["ASPECT_PREREQ_UNMET"]._options = None _ANALYSIS_CODE.values_by_name["ASPECT_PREREQ_UNMET"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["ASPECT_NOT_FOUND"]._options = None _ANALYSIS_CODE.values_by_name["ASPECT_NOT_FOUND"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["ACTION_CONFLICT"]._options = None _ANALYSIS_CODE.values_by_name["ACTION_CONFLICT"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["ARTIFACT_PREFIX_CONFLICT"]._options = None _ANALYSIS_CODE.values_by_name["ARTIFACT_PREFIX_CONFLICT"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["UNEXPECTED_ANALYSIS_EXCEPTION"]._options = None _ANALYSIS_CODE.values_by_name["UNEXPECTED_ANALYSIS_EXCEPTION"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["TARGETS_MISSING_ENVIRONMENTS"]._options = None _ANALYSIS_CODE.values_by_name["TARGETS_MISSING_ENVIRONMENTS"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["INVALID_ENVIRONMENT"]._options = None _ANALYSIS_CODE.values_by_name["INVALID_ENVIRONMENT"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["ENVIRONMENT_MISSING_FROM_GROUPS"]._options = None _ANALYSIS_CODE.values_by_name["ENVIRONMENT_MISSING_FROM_GROUPS"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["EXEC_GROUP_MISSING"]._options = None _ANALYSIS_CODE.values_by_name["EXEC_GROUP_MISSING"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["INVALID_EXECUTION_PLATFORM"]._options = None _ANALYSIS_CODE.values_by_name["INVALID_EXECUTION_PLATFORM"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["ASPECT_CREATION_FAILED"]._options = None _ANALYSIS_CODE.values_by_name["ASPECT_CREATION_FAILED"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["CONFIGURED_VALUE_CREATION_FAILED"]._options = None _ANALYSIS_CODE.values_by_name["CONFIGURED_VALUE_CREATION_FAILED"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["INCOMPATIBLE_TARGET_REQUESTED"]._options = None _ANALYSIS_CODE.values_by_name["INCOMPATIBLE_TARGET_REQUESTED"]._serialized_options = b'\262C\002\010\001' _ANALYSIS_CODE.values_by_name["ANALYSIS_FAILURE_PROPAGATION_FAILED"]._options = None _ANALYSIS_CODE.values_by_name["ANALYSIS_FAILURE_PROPAGATION_FAILED"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["PACKAGE_LOADING_UNKNOWN"]._options = None _PACKAGELOADING_CODE.values_by_name["PACKAGE_LOADING_UNKNOWN"]._serialized_options = b'\262C\002\010%' _PACKAGELOADING_CODE.values_by_name["WORKSPACE_FILE_ERROR"]._options = None _PACKAGELOADING_CODE.values_by_name["WORKSPACE_FILE_ERROR"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["MAX_COMPUTATION_STEPS_EXCEEDED"]._options = None _PACKAGELOADING_CODE.values_by_name["MAX_COMPUTATION_STEPS_EXCEEDED"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["BUILD_FILE_MISSING"]._options = None _PACKAGELOADING_CODE.values_by_name["BUILD_FILE_MISSING"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["REPOSITORY_MISSING"]._options = None _PACKAGELOADING_CODE.values_by_name["REPOSITORY_MISSING"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["PERSISTENT_INCONSISTENT_FILESYSTEM_ERROR"]._options = None _PACKAGELOADING_CODE.values_by_name["PERSISTENT_INCONSISTENT_FILESYSTEM_ERROR"]._serialized_options = b'\262C\002\010$' _PACKAGELOADING_CODE.values_by_name["TRANSIENT_INCONSISTENT_FILESYSTEM_ERROR"]._options = None _PACKAGELOADING_CODE.values_by_name["TRANSIENT_INCONSISTENT_FILESYSTEM_ERROR"]._serialized_options = b'\262C\002\010$' _PACKAGELOADING_CODE.values_by_name["INVALID_NAME"]._options = None _PACKAGELOADING_CODE.values_by_name["INVALID_NAME"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["EVAL_GLOBS_SYMLINK_ERROR"]._options = None _PACKAGELOADING_CODE.values_by_name["EVAL_GLOBS_SYMLINK_ERROR"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["IMPORT_STARLARK_FILE_ERROR"]._options = None _PACKAGELOADING_CODE.values_by_name["IMPORT_STARLARK_FILE_ERROR"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["PACKAGE_MISSING"]._options = None _PACKAGELOADING_CODE.values_by_name["PACKAGE_MISSING"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["TARGET_MISSING"]._options = None _PACKAGELOADING_CODE.values_by_name["TARGET_MISSING"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["NO_SUCH_THING"]._options = None _PACKAGELOADING_CODE.values_by_name["NO_SUCH_THING"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["GLOB_IO_EXCEPTION"]._options = None _PACKAGELOADING_CODE.values_by_name["GLOB_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _PACKAGELOADING_CODE.values_by_name["DUPLICATE_LABEL"]._options = None _PACKAGELOADING_CODE.values_by_name["DUPLICATE_LABEL"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["INVALID_PACKAGE_SPECIFICATION"]._options = None _PACKAGELOADING_CODE.values_by_name["INVALID_PACKAGE_SPECIFICATION"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["SYNTAX_ERROR"]._options = None _PACKAGELOADING_CODE.values_by_name["SYNTAX_ERROR"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_IN_DIFFERENT_PACKAGE"]._options = None _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_IN_DIFFERENT_PACKAGE"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["DEFAULT_ENVIRONMENT_UNDECLARED"]._options = None _PACKAGELOADING_CODE.values_by_name["DEFAULT_ENVIRONMENT_UNDECLARED"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_IN_MULTIPLE_GROUPS"]._options = None _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_IN_MULTIPLE_GROUPS"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_DOES_NOT_EXIST"]._options = None _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_DOES_NOT_EXIST"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_INVALID"]._options = None _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_INVALID"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_NOT_IN_GROUP"]._options = None _PACKAGELOADING_CODE.values_by_name["ENVIRONMENT_NOT_IN_GROUP"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["PACKAGE_NAME_INVALID"]._options = None _PACKAGELOADING_CODE.values_by_name["PACKAGE_NAME_INVALID"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["STARLARK_EVAL_ERROR"]._options = None _PACKAGELOADING_CODE.values_by_name["STARLARK_EVAL_ERROR"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["LICENSE_PARSE_FAILURE"]._options = None _PACKAGELOADING_CODE.values_by_name["LICENSE_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["DISTRIBUTIONS_PARSE_FAILURE"]._options = None _PACKAGELOADING_CODE.values_by_name["DISTRIBUTIONS_PARSE_FAILURE"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["LABEL_CROSSES_PACKAGE_BOUNDARY"]._options = None _PACKAGELOADING_CODE.values_by_name["LABEL_CROSSES_PACKAGE_BOUNDARY"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["BUILTINS_INJECTION_FAILURE"]._options = None _PACKAGELOADING_CODE.values_by_name["BUILTINS_INJECTION_FAILURE"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["SYMLINK_CYCLE_OR_INFINITE_EXPANSION"]._options = None _PACKAGELOADING_CODE.values_by_name["SYMLINK_CYCLE_OR_INFINITE_EXPANSION"]._serialized_options = b'\262C\002\010\001' _PACKAGELOADING_CODE.values_by_name["OTHER_IO_EXCEPTION"]._options = None _PACKAGELOADING_CODE.values_by_name["OTHER_IO_EXCEPTION"]._serialized_options = b'\262C\002\010$' _TOOLCHAIN_CODE.values_by_name["TOOLCHAIN_UNKNOWN"]._options = None _TOOLCHAIN_CODE.values_by_name["TOOLCHAIN_UNKNOWN"]._serialized_options = b'\262C\002\010%' _TOOLCHAIN_CODE.values_by_name["MISSING_PROVIDER"]._options = None _TOOLCHAIN_CODE.values_by_name["MISSING_PROVIDER"]._serialized_options = b'\262C\002\010\001' _TOOLCHAIN_CODE.values_by_name["INVALID_CONSTRAINT_VALUE"]._options = None _TOOLCHAIN_CODE.values_by_name["INVALID_CONSTRAINT_VALUE"]._serialized_options = b'\262C\002\010\001' _TOOLCHAIN_CODE.values_by_name["INVALID_PLATFORM_VALUE"]._options = None _TOOLCHAIN_CODE.values_by_name["INVALID_PLATFORM_VALUE"]._serialized_options = b'\262C\002\010\001' _TOOLCHAIN_CODE.values_by_name["INVALID_TOOLCHAIN"]._options = None _TOOLCHAIN_CODE.values_by_name["INVALID_TOOLCHAIN"]._serialized_options = b'\262C\002\010\001' _TOOLCHAIN_CODE.values_by_name["NO_MATCHING_EXECUTION_PLATFORM"]._options = None _TOOLCHAIN_CODE.values_by_name["NO_MATCHING_EXECUTION_PLATFORM"]._serialized_options = b'\262C\002\010\001' _TOOLCHAIN_CODE.values_by_name["NO_MATCHING_TOOLCHAIN"]._options = None _TOOLCHAIN_CODE.values_by_name["NO_MATCHING_TOOLCHAIN"]._serialized_options = b'\262C\002\010\001' _TOOLCHAIN_CODE.values_by_name["INVALID_TOOLCHAIN_TYPE"]._options = None _TOOLCHAIN_CODE.values_by_name["INVALID_TOOLCHAIN_TYPE"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["STARLARK_LOADING_UNKNOWN"]._options = None _STARLARKLOADING_CODE.values_by_name["STARLARK_LOADING_UNKNOWN"]._serialized_options = b'\262C\002\010%' _STARLARKLOADING_CODE.values_by_name["CYCLE"]._options = None _STARLARKLOADING_CODE.values_by_name["CYCLE"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["COMPILE_ERROR"]._options = None _STARLARKLOADING_CODE.values_by_name["COMPILE_ERROR"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["PARSE_ERROR"]._options = None _STARLARKLOADING_CODE.values_by_name["PARSE_ERROR"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["EVAL_ERROR"]._options = None _STARLARKLOADING_CODE.values_by_name["EVAL_ERROR"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["CONTAINING_PACKAGE_NOT_FOUND"]._options = None _STARLARKLOADING_CODE.values_by_name["CONTAINING_PACKAGE_NOT_FOUND"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["PACKAGE_NOT_FOUND"]._options = None _STARLARKLOADING_CODE.values_by_name["PACKAGE_NOT_FOUND"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["IO_ERROR"]._options = None _STARLARKLOADING_CODE.values_by_name["IO_ERROR"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["LABEL_CROSSES_PACKAGE_BOUNDARY"]._options = None _STARLARKLOADING_CODE.values_by_name["LABEL_CROSSES_PACKAGE_BOUNDARY"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["BUILTINS_ERROR"]._options = None _STARLARKLOADING_CODE.values_by_name["BUILTINS_ERROR"]._serialized_options = b'\262C\002\010\001' _STARLARKLOADING_CODE.values_by_name["VISIBILITY_ERROR"]._options = None _STARLARKLOADING_CODE.values_by_name["VISIBILITY_ERROR"]._serialized_options = b'\262C\002\010\001' _EXTERNALDEPS_CODE.values_by_name["EXTERNAL_DEPS_UNKNOWN"]._options = None _EXTERNALDEPS_CODE.values_by_name["EXTERNAL_DEPS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _EXTERNALDEPS_CODE.values_by_name["MODULE_NOT_FOUND"]._options = None _EXTERNALDEPS_CODE.values_by_name["MODULE_NOT_FOUND"]._serialized_options = b'\262C\002\0100' _EXTERNALDEPS_CODE.values_by_name["BAD_MODULE"]._options = None _EXTERNALDEPS_CODE.values_by_name["BAD_MODULE"]._serialized_options = b'\262C\002\0100' _EXTERNALDEPS_CODE.values_by_name["VERSION_RESOLUTION_ERROR"]._options = None _EXTERNALDEPS_CODE.values_by_name["VERSION_RESOLUTION_ERROR"]._serialized_options = b'\262C\002\0100' _EXTERNALDEPS_CODE.values_by_name["INVALID_REGISTRY_URL"]._options = None _EXTERNALDEPS_CODE.values_by_name["INVALID_REGISTRY_URL"]._serialized_options = b'\262C\002\0100' _EXTERNALDEPS_CODE.values_by_name["ERROR_ACCESSING_REGISTRY"]._options = None _EXTERNALDEPS_CODE.values_by_name["ERROR_ACCESSING_REGISTRY"]._serialized_options = b'\262C\002\010 ' _DIFFAWARENESS_CODE.values_by_name["DIFF_AWARENESS_UNKNOWN"]._options = None _DIFFAWARENESS_CODE.values_by_name["DIFF_AWARENESS_UNKNOWN"]._serialized_options = b'\262C\002\010%' _DIFFAWARENESS_CODE.values_by_name["DIFF_STAT_FAILED"]._options = None _DIFFAWARENESS_CODE.values_by_name["DIFF_STAT_FAILED"]._serialized_options = b'\262C\002\010$' _MODQUERYCOMMAND_CODE.values_by_name["MODQUERY_COMMAND_UNKNOWN"]._options = None _MODQUERYCOMMAND_CODE.values_by_name["MODQUERY_COMMAND_UNKNOWN"]._serialized_options = b'\262C\002\010%' _MODQUERYCOMMAND_CODE.values_by_name["MISSING_ARGUMENTS"]._options = None _MODQUERYCOMMAND_CODE.values_by_name["MISSING_ARGUMENTS"]._serialized_options = b'\262C\002\010\002' _MODQUERYCOMMAND_CODE.values_by_name["TOO_MANY_ARGUMENTS"]._options = None _MODQUERYCOMMAND_CODE.values_by_name["TOO_MANY_ARGUMENTS"]._serialized_options = b'\262C\002\010\002' _MODQUERYCOMMAND_CODE.values_by_name["INVALID_ARGUMENTS"]._options = None _MODQUERYCOMMAND_CODE.values_by_name["INVALID_ARGUMENTS"]._serialized_options = b'\262C\002\010\002' _FAILUREDETAILMETADATA._serialized_start=94 _FAILUREDETAILMETADATA._serialized_end=136 _FAILUREDETAIL._serialized_start=139 _FAILUREDETAIL._serialized_end=3820 _INTERRUPTED._serialized_start=3823 _INTERRUPTED._serialized_end=4497 _INTERRUPTED_CODE._serialized_start=3888 _INTERRUPTED_CODE._serialized_end=4497 _SPAWN._serialized_start=4500 _SPAWN._serialized_end=5083 _SPAWN_CODE._serialized_start=4600 _SPAWN_CODE._serialized_end=5083 _EXTERNALREPOSITORY._serialized_start=5086 _EXTERNALREPOSITORY._serialized_end=5346 _EXTERNALREPOSITORY_CODE._serialized_start=5165 _EXTERNALREPOSITORY_CODE._serialized_end=5346 _BUILDPROGRESS._serialized_start=5349 _BUILDPROGRESS._serialized_end=6156 _BUILDPROGRESS_CODE._serialized_start=5418 _BUILDPROGRESS_CODE._serialized_end=6156 _REMOTEOPTIONS._serialized_start=6159 _REMOTEOPTIONS._serialized_end=6482 _REMOTEOPTIONS_CODE._serialized_start=6228 _REMOTEOPTIONS_CODE._serialized_end=6482 _CLIENTENVIRONMENT._serialized_start=6485 _CLIENTENVIRONMENT._serialized_end=6639 _CLIENTENVIRONMENT_CODE._serialized_start=6561 _CLIENTENVIRONMENT_CODE._serialized_end=6639 _CRASH._serialized_start=6642 _CRASH._serialized_end=6823 _CRASH_CODE._serialized_start=6769 _CRASH_CODE._serialized_end=6823 _THROWABLE._serialized_start=6825 _THROWABLE._serialized_end=6899 _SYMLINKFOREST._serialized_start=6902 _SYMLINKFOREST._serialized_end=7133 _SYMLINKFOREST_CODE._serialized_start=6971 _SYMLINKFOREST_CODE._serialized_end=7133 _BUILDREPORT._serialized_start=7136 _BUILDREPORT._serialized_end=7332 _BUILDREPORT_CODE._serialized_start=7201 _BUILDREPORT_CODE._serialized_end=7332 _PACKAGEOPTIONS._serialized_start=7335 _PACKAGEOPTIONS._serialized_end=7492 _PACKAGEOPTIONS_CODE._serialized_start=7405 _PACKAGEOPTIONS_CODE._serialized_end=7492 _REMOTEEXECUTION._serialized_start=7495 _REMOTEEXECUTION._serialized_end=8314 _REMOTEEXECUTION_CODE._serialized_start=7568 _REMOTEEXECUTION_CODE._serialized_end=8314 _EXECUTION._serialized_start=8317 _EXECUTION._serialized_end=10069 _EXECUTION_CODE._serialized_start=8378 _EXECUTION_CODE._serialized_end=10069 _WORKSPACES._serialized_start=10072 _WORKSPACES._serialized_end=10396 _WORKSPACES_CODE._serialized_start=10135 _WORKSPACES_CODE._serialized_end=10396 _CRASHOPTIONS._serialized_start=10398 _CRASHOPTIONS._serialized_end=10510 _CRASHOPTIONS_CODE._serialized_start=10464 _CRASHOPTIONS_CODE._serialized_end=10510 _FILESYSTEM._serialized_start=10513 _FILESYSTEM._serialized_end=10819 _FILESYSTEM_CODE._serialized_start=10576 _FILESYSTEM_CODE._serialized_end=10819 _EXECUTIONOPTIONS._serialized_start=10822 _EXECUTIONOPTIONS._serialized_end=11312 _EXECUTIONOPTIONS_CODE._serialized_start=10897 _EXECUTIONOPTIONS_CODE._serialized_end=11312 _COMMAND._serialized_start=11315 _COMMAND._serialized_end=11977 _COMMAND_CODE._serialized_start=11372 _COMMAND_CODE._serialized_end=11977 _GRPCSERVER._serialized_start=11980 _GRPCSERVER._serialized_end=12216 _GRPCSERVER_CODE._serialized_start=12043 _GRPCSERVER_CODE._serialized_end=12216 _CANONICALIZEFLAGS._serialized_start=12219 _CANONICALIZEFLAGS._serialized_end=12372 _CANONICALIZEFLAGS_CODE._serialized_start=12295 _CANONICALIZEFLAGS_CODE._serialized_end=12372 _BUILDCONFIGURATION._serialized_start=12375 _BUILDCONFIGURATION._serialized_end=12953 _BUILDCONFIGURATION_CODE._serialized_start=12454 _BUILDCONFIGURATION_CODE._serialized_end=12953 _INFOCOMMAND._serialized_start=12956 _INFOCOMMAND._serialized_end=13189 _INFOCOMMAND_CODE._serialized_start=13021 _INFOCOMMAND_CODE._serialized_end=13189 _MEMORYOPTIONS._serialized_start=13192 _MEMORYOPTIONS._serialized_end=13451 _MEMORYOPTIONS_CODE._serialized_start=13261 _MEMORYOPTIONS_CODE._serialized_end=13451 _QUERY._serialized_start=13454 _QUERY._serialized_end=14976 _QUERY_CODE._serialized_start=13507 _QUERY_CODE._serialized_end=14976 _LOCALEXECUTION._serialized_start=14979 _LOCALEXECUTION._serialized_end=15132 _LOCALEXECUTION_CODE._serialized_start=15049 _LOCALEXECUTION_CODE._serialized_end=15132 _ACTIONCACHE._serialized_start=15135 _ACTIONCACHE._serialized_end=15273 _ACTIONCACHE_CODE._serialized_start=15199 _ACTIONCACHE_CODE._serialized_end=15273 _FETCHCOMMAND._serialized_start=15276 _FETCHCOMMAND._serialized_end=15507 _FETCHCOMMAND_CODE._serialized_start=15343 _FETCHCOMMAND_CODE._serialized_end=15507 _SYNCCOMMAND._serialized_start=15510 _SYNCCOMMAND._serialized_end=15758 _SYNCCOMMAND_CODE._serialized_start=15575 _SYNCCOMMAND_CODE._serialized_end=15758 _SANDBOX._serialized_start=15761 _SANDBOX._serialized_end=16268 _SANDBOX_CODE._serialized_start=15818 _SANDBOX_CODE._serialized_end=16268 _INCLUDESCANNING._serialized_start=16271 _INCLUDESCANNING._serialized_end=16812 _INCLUDESCANNING_CODE._serialized_start=16412 _INCLUDESCANNING_CODE._serialized_end=16812 _TESTCOMMAND._serialized_start=16815 _TESTCOMMAND._serialized_end=17003 _TESTCOMMAND_CODE._serialized_start=16879 _TESTCOMMAND_CODE._serialized_end=17003 _ACTIONQUERY._serialized_start=17006 _ACTIONQUERY._serialized_end=17684 _ACTIONQUERY_CODE._serialized_start=17071 _ACTIONQUERY_CODE._serialized_end=17684 _TARGETPATTERNS._serialized_start=17687 _TARGETPATTERNS._serialized_end=18542 _TARGETPATTERNS_CODE._serialized_start=17758 _TARGETPATTERNS_CODE._serialized_end=18542 _CLEANCOMMAND._serialized_start=18545 _CLEANCOMMAND._serialized_end=19046 _CLEANCOMMAND_CODE._serialized_start=18612 _CLEANCOMMAND_CODE._serialized_end=19046 _CONFIGCOMMAND._serialized_start=19049 _CONFIGCOMMAND._serialized_end=19226 _CONFIGCOMMAND_CODE._serialized_start=19117 _CONFIGCOMMAND_CODE._serialized_end=19226 _CONFIGURABLEQUERY._serialized_start=19229 _CONFIGURABLEQUERY._serialized_end=19800 _CONFIGURABLEQUERY_CODE._serialized_start=19306 _CONFIGURABLEQUERY_CODE._serialized_end=19800 _DUMPCOMMAND._serialized_start=19803 _DUMPCOMMAND._serialized_end=20100 _DUMPCOMMAND_CODE._serialized_start=19868 _DUMPCOMMAND_CODE._serialized_end=20100 _HELPCOMMAND._serialized_start=20103 _HELPCOMMAND._serialized_end=20265 _HELPCOMMAND_CODE._serialized_start=20167 _HELPCOMMAND_CODE._serialized_end=20265 _MOBILEINSTALL._serialized_start=20268 _MOBILEINSTALL._serialized_end=20573 _MOBILEINSTALL_CODE._serialized_start=20337 _MOBILEINSTALL_CODE._serialized_end=20573 _PROFILECOMMAND._serialized_start=20576 _PROFILECOMMAND._serialized_end=20760 _PROFILECOMMAND_CODE._serialized_start=20646 _PROFILECOMMAND_CODE._serialized_end=20760 _RUNCOMMAND._serialized_start=20763 _RUNCOMMAND._serialized_end=21473 _RUNCOMMAND_CODE._serialized_start=20826 _RUNCOMMAND_CODE._serialized_end=21473 _VERSIONCOMMAND._serialized_start=21476 _VERSIONCOMMAND._serialized_end=21614 _VERSIONCOMMAND_CODE._serialized_start=21546 _VERSIONCOMMAND_CODE._serialized_end=21614 _PRINTACTIONCOMMAND._serialized_start=21617 _PRINTACTIONCOMMAND._serialized_end=21881 _PRINTACTIONCOMMAND_CODE._serialized_start=21696 _PRINTACTIONCOMMAND_CODE._serialized_end=21881 _WORKSPACESTATUS._serialized_start=21884 _WORKSPACESTATUS._serialized_end=22212 _WORKSPACESTATUS_CODE._serialized_start=21957 _WORKSPACESTATUS_CODE._serialized_end=22212 _JAVACOMPILE._serialized_start=22215 _JAVACOMPILE._serialized_end=22491 _JAVACOMPILE_CODE._serialized_start=22280 _JAVACOMPILE_CODE._serialized_end=22491 _ACTIONREWINDING._serialized_start=22494 _ACTIONREWINDING._serialized_end=22680 _ACTIONREWINDING_CODE._serialized_start=22566 _ACTIONREWINDING_CODE._serialized_end=22680 _CPPCOMPILE._serialized_start=22683 _CPPCOMPILE._serialized_end=23208 _CPPCOMPILE_CODE._serialized_start=22746 _CPPCOMPILE_CODE._serialized_end=23208 _STARLARKACTION._serialized_start=23211 _STARLARKACTION._serialized_end=23412 _STARLARKACTION_CODE._serialized_start=23282 _STARLARKACTION_CODE._serialized_end=23412 _NINJAACTION._serialized_start=23415 _NINJAACTION._serialized_end=23599 _NINJAACTION_CODE._serialized_start=23479 _NINJAACTION_CODE._serialized_end=23599 _DYNAMICEXECUTION._serialized_start=23602 _DYNAMICEXECUTION._serialized_end=23857 _DYNAMICEXECUTION_CODE._serialized_start=23677 _DYNAMICEXECUTION_CODE._serialized_end=23857 _FAILACTION._serialized_start=23860 _FAILACTION._serialized_end=24262 _FAILACTION_CODE._serialized_start=23923 _FAILACTION_CODE._serialized_end=24262 _SYMLINKACTION._serialized_start=24265 _SYMLINKACTION._serialized_end=24572 _SYMLINKACTION_CODE._serialized_start=24334 _SYMLINKACTION_CODE._serialized_end=24572 _CPPLINK._serialized_start=24575 _CPPLINK._serialized_end=24749 _CPPLINK_CODE._serialized_start=24631 _CPPLINK_CODE._serialized_end=24749 _LTOACTION._serialized_start=24752 _LTOACTION._serialized_end=24967 _LTOACTION_CODE._serialized_start=24813 _LTOACTION_CODE._serialized_end=24967 _TESTACTION._serialized_start=24970 _TESTACTION._serialized_end=25248 _TESTACTION_CODE._serialized_start=25033 _TESTACTION_CODE._serialized_end=25248 _WORKER._serialized_start=25251 _WORKER._serialized_end=25748 _WORKER_CODE._serialized_start=25306 _WORKER_CODE._serialized_end=25748 _ANALYSIS._serialized_start=25751 _ANALYSIS._serialized_end=26581 _ANALYSIS_CODE._serialized_start=25810 _ANALYSIS_CODE._serialized_end=26581 _PACKAGELOADING._serialized_start=26584 _PACKAGELOADING._serialized_end=27792 _PACKAGELOADING_CODE._serialized_start=26655 _PACKAGELOADING_CODE._serialized_end=27792 _TOOLCHAIN._serialized_start=27795 _TOOLCHAIN._serialized_end=28135 _TOOLCHAIN_CODE._serialized_start=27856 _TOOLCHAIN_CODE._serialized_end=28135 _STARLARKLOADING._serialized_start=28138 _STARLARKLOADING._serialized_end=28536 _STARLARKLOADING_CODE._serialized_start=28211 _STARLARKLOADING_CODE._serialized_end=28536 _EXTERNALDEPS._serialized_start=28539 _EXTERNALDEPS._serialized_end=28805 _EXTERNALDEPS_CODE._serialized_start=28606 _EXTERNALDEPS_CODE._serialized_end=28805 _DIFFAWARENESS._serialized_start=28808 _DIFFAWARENESS._serialized_end=28946 _DIFFAWARENESS_CODE._serialized_start=28876 _DIFFAWARENESS_CODE._serialized_end=28946 _MODQUERYCOMMAND._serialized_start=28949 _MODQUERYCOMMAND._serialized_end=29156 _MODQUERYCOMMAND_CODE._serialized_start=29022 _MODQUERYCOMMAND_CODE._serialized_end=29156 # @@protoc_insertion_point(module_scope)
xmanager-main
xmanager/generated/failure_details_pb2.py
# Copyright 2017 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pyformat: disable # Generated by the protocol buffer compiler. DO NOT EDIT! # pylint: skip-file # source: src/main/protobuf/command_line.proto """Generated protocol buffer code.""" from google.protobuf.internal import builder as _builder from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from . import option_filters_pb2 as src_dot_main_dot_protobuf_dot_option__filters__pb2 DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n$src/main/protobuf/command_line.proto\x12\x0c\x63ommand_line\x1a&src/main/protobuf/option_filters.proto\"]\n\x0b\x43ommandLine\x12\x1a\n\x12\x63ommand_line_label\x18\x01 \x01(\t\x12\x32\n\x08sections\x18\x02 \x03(\x0b\x32 .command_line.CommandLineSection\"\x9b\x01\n\x12\x43ommandLineSection\x12\x15\n\rsection_label\x18\x01 \x01(\t\x12-\n\nchunk_list\x18\x02 \x01(\x0b\x32\x17.command_line.ChunkListH\x00\x12/\n\x0boption_list\x18\x03 \x01(\x0b\x32\x18.command_line.OptionListH\x00\x42\x0e\n\x0csection_type\"\x1a\n\tChunkList\x12\r\n\x05\x63hunk\x18\x01 \x03(\t\"2\n\nOptionList\x12$\n\x06option\x18\x01 \x03(\x0b\x32\x14.command_line.Option\"\xac\x01\n\x06Option\x12\x15\n\rcombined_form\x18\x01 \x01(\t\x12\x13\n\x0boption_name\x18\x02 \x01(\t\x12\x14\n\x0coption_value\x18\x03 \x01(\t\x12-\n\x0b\x65\x66\x66\x65\x63t_tags\x18\x04 \x03(\x0e\x32\x18.options.OptionEffectTag\x12\x31\n\rmetadata_tags\x18\x05 \x03(\x0e\x32\x1a.options.OptionMetadataTagB-\n+com.google.devtools.build.lib.runtime.protob\x06proto3') _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, globals()) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'src.main.protobuf.command_line_pb2', globals()) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'\n+com.google.devtools.build.lib.runtime.proto' _COMMANDLINE._serialized_start=94 _COMMANDLINE._serialized_end=187 _COMMANDLINESECTION._serialized_start=190 _COMMANDLINESECTION._serialized_end=345 _CHUNKLIST._serialized_start=347 _CHUNKLIST._serialized_end=373 _OPTIONLIST._serialized_start=375 _OPTIONLIST._serialized_end=425 _OPTION._serialized_start=428 _OPTION._serialized_end=600 # @@protoc_insertion_point(module_scope)
xmanager-main
xmanager/generated/command_line_pb2.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A mock implemenation of core XM objects. This module is mainly purposed for unit tests. It provides implementation of xm.Experiment, xm.WorkUnit, xm.MetadataContext which don't do much apart from allowing to inspect what methods were called. It also may be used as a stub implementation for cases when one doesn't care how experiment is set up, but wants to maintain API consistency. For examle if a framework provides own local run mode and wants to ignore any experiment metadata manipulations. """ import asyncio from concurrent import futures from typing import Any, Awaitable, Callable, List, Mapping, Optional, Set import attr from xmanager.xm import async_packager from xmanager.xm import core from xmanager.xm import id_predictor from xmanager.xm import job_blocks from xmanager.xm import metadata_context class MockContextAnnotations(metadata_context.ContextAnnotations): """ContextAnnotations which stores all data in memory.""" def __init__(self) -> None: self._title = '' self._tags = set() self._notes = '' @property def title(self) -> str: return self._title def set_title(self, title: str) -> None: self._title = title @property def tags(self) -> Set[str]: return self._tags def add_tags(self, *tags: str) -> None: self._tags.update(tags) def remove_tags(self, *tags: str) -> None: for tag in tags: self._tags.discard(tag) @property def notes(self) -> str: return self._notes def set_notes(self, notes: str) -> None: self._notes = notes class MockMetadataContext(metadata_context.MetadataContext): """A MetadataContext which stores all data in memory.""" def __init__(self) -> None: super().__init__(creator='unknown', annotations=MockContextAnnotations()) class MockExperimentUnit(core.WorkUnit): """A mock version of WorkUnit with abstract methods implemented.""" def __init__( self, experiment: core.Experiment, work_unit_id_predictor: id_predictor.Predictor, create_task: Callable[[Awaitable[Any]], futures.Future[Any]], launched_jobs: List[job_blocks.JobType], launched_jobs_args: List[Optional[Mapping[str, Any]]], args: Optional[Mapping[str, Any]], role: core.ExperimentUnitRole, identity: str = '', ) -> None: super().__init__(experiment, create_task, args, role, identity) self._launched_jobs = launched_jobs self._launched_jobs_args = launched_jobs_args self._work_unit_id = work_unit_id_predictor.reserve_id() async def _wait_until_complete(self) -> None: """Mock work unit is immediately complete.""" async def _launch_job_group( self, job_group: job_blocks.JobGroup, args: Optional[Mapping[str, Any]], identity: str, ) -> None: """Appends the job group to the launched_jobs list.""" self._launched_jobs.extend(job_group.jobs.values()) self._launched_jobs_args.append(args) @property def work_unit_id(self) -> int: return self._work_unit_id @property def experiment_unit_name(self) -> str: return f'{self.experiment_id}_{self._work_unit_id}' class MockExperiment(core.Experiment): """A mock version of Experiment with abstract methods implemented.""" constraints: List[job_blocks.JobType] _async_packager = async_packager.AsyncPackager( lambda packageables: [MockExecutable()] * len(packageables) ) def __init__(self) -> None: super().__init__() self.launched_jobs = [] self.launched_jobs_args = [] self._work_units = [] self._auxiliary_units = [] self._context = MockMetadataContext() def _create_experiment_unit( self, args: Optional[Mapping[str, Any]], role: core.ExperimentUnitRole = core.WorkUnitRole(), identity: str = '', ) -> Awaitable[MockExperimentUnit]: """Creates a new WorkUnit instance for the experiment.""" future = asyncio.Future(loop=self._event_loop) experiment_unit = MockExperimentUnit( self, self._work_unit_id_predictor, self._create_task, self.launched_jobs, self.launched_jobs_args, args, role, identity, ) if isinstance(role, core.WorkUnitRole): self._work_units.append(experiment_unit) elif isinstance(role, core.AuxiliaryUnitRole): self._auxiliary_units.append(experiment_unit) else: raise TypeError(f'Unsupported role: {role!r}') future.set_result(experiment_unit) return future @property def work_unit_count(self) -> int: return len(self.work_units) @property def work_units(self): return self._work_units @property def auxiliary_units(self): return self._auxiliary_units @property def experiment_id(self) -> int: return 1 @property def context(self) -> MockMetadataContext: """Returns metadata context for the experiment.""" return self._context def _should_reload_experiment_unit( self, role: core.ExperimentUnitRole ) -> bool: return False def _get_experiment_unit( self, experiment_id: int, identity: str, role: core.ExperimentUnitRole, args: Optional[Mapping[str, Any]] = None, ) -> Awaitable[core.ExperimentUnit]: del identity future = asyncio.Future() future.set_result(self.work_units[0]) return future class MockExecutable(job_blocks.Executable): """A mock version of Executable with abstract methods implemented.""" counter = 0 def __init__(self): super().__init__(name=f'{MockExecutable.counter}') MockExecutable.counter += 1 class MockExecutor(job_blocks.Executor): """A mock version of Executor with abstract methods implemented.""" Spec = job_blocks.ExecutorSpec # pylint: disable=invalid-name @attr.s(auto_attribs=True) class MockConstraint(job_blocks.Constraint): id: str
xmanager-main
xmanager/xm_mock/__init__.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convenience adapter for the standard client.""" import functools import subprocess from typing import Dict, List, Mapping, Optional, Sequence, Tuple, Union from absl import flags from absl import logging import docker from docker import errors from docker import types from docker.models import containers from docker.utils import utils _USE_SUBPROCESS = flags.DEFINE_bool( 'xm_subprocess_docker_impl', False, 'Launch docker using `subprocess` command.', ) Ports = Dict[Union[int, str], Union[None, int, Tuple[str, int], List[int]]] @functools.lru_cache() def instance() -> 'DockerAdapter': """Returns a thread-safe singleton adapter derived from the environment. Allows the user to ignore the complexities of the underlying library, and focus on a concrete small subset of required actions. """ return DockerAdapter(docker.from_env()) class DockerAdapter(object): """Convenience adapter for the standard client.""" def __init__(self, client: docker.DockerClient) -> None: self._client = client def has_network(self, name: str) -> bool: return bool(self._client.networks.list([name])) def create_network(self, name: str) -> str: return self._client.networks.create(name).id def get_client(self) -> docker.DockerClient: return self._client def is_registry_label(self, label: str) -> bool: try: self._client.images.get_registry_data(label) return True except errors.NotFound: return False def split_tag(self, image_tag: str) -> Tuple[str, str]: repository, tag = utils.parse_repository_tag(image_tag) return repository, tag or 'latest' def pull_image(self, image_tag: str) -> str: repository, tag = self.split_tag(image_tag) # Without a tag, Docker will try to pull every image instead of latest. # From docker>=4.4.0, use `client.image.pull(*args, all_tags=False)`. return self._client.images.pull(repository, tag=tag).id def load_image(self, path: str) -> str: with open(path, 'rb') as data: images = self._client.images.load(data) if len(images) != 1: raise ValueError(f'{path} must contain precisely one image') return images[0].id def run_container( self, name: str, image_id: str, args: Sequence[str], env_vars: Mapping[str, str], network: str, ports: Ports, volumes: Dict[str, str], gpu_count: int, interactive: bool = False, ) -> Optional[containers.Container]: """Runs a given container image.""" if _USE_SUBPROCESS.value or interactive: return self.run_container_subprocess( image_id, args, env_vars, network, ports, volumes, gpu_count, interactive, ) else: return self.run_container_client( name, image_id, args, env_vars, network, ports, volumes, gpu_count ) def run_container_client( self, name: str, image_id: str, args: Sequence[str], env_vars: Mapping[str, str], network: str, ports: Ports, volumes: Dict[str, str], gpu_count: int, ) -> containers.Container: """Runs a given container image using Python Docker client.""" make_mount = lambda guest: {'bind': guest, 'mode': 'rw'} device_requests = [ types.DeviceRequest(count=gpu_count, capabilities=[['gpu']]) ] return self._client.containers.run( image_id, name=name, hostname=name, network=network, detach=True, remove=True, command=args, environment=env_vars, ports=ports, volumes={host: make_mount(guest) for host, guest in volumes.items()}, runtime='nvidia' if gpu_count else None, device_requests=device_requests if gpu_count else None, ) def run_container_subprocess( self, image_id: str, args: Sequence[str], env_vars: Mapping[str, str], network: str, ports: Ports, volumes: Dict[str, str], gpu_count: int, interactive: bool, ) -> None: """Runs a given container image calling `docker` in a Subprocess.""" # TODO: consider using asyncio.create_subprocess_exec() to unify it # with LocalBinary processing. cmd = ['docker', 'run'] if network: cmd.extend(['--network', network]) for in_port, out_port in ports.items(): cmd.extend(['-p', f'{in_port}:{out_port}']) for key, value in env_vars.items(): cmd.extend(['-e', f'{key}={value}']) for key, value in volumes.items(): cmd.extend(['-v', f'{key}:{value}']) if gpu_count: cmd.extend(['--gpus', f'{gpu_count}']) cmd.extend(['--runtime', 'nvidia']) if interactive: print('Entering shell mode.') cmd.extend(['-it', '--entrypoint', 'bash', image_id]) else: cmd.extend([image_id] + list(args)) subprocess.run(args=cmd, check=True) return None def stop_container(self, container_id: str) -> None: try: self._client.containers.get(container_id).stop() except docker.errors.NotFound: logging.warning( ( 'Container %s could not be stopped as it was not found ' '(it may already have been stopped)' ), container_id, )
xmanager-main
xmanager/docker/docker_adapter.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Xmanager command-line interface.""" import errno import importlib import os import sys from absl import app _DEFAULT_ZONE = 'us-west1-b' _DEFAULT_CLUSTER_NAME = 'xmanager-via-caliban' def main(argv): if len(argv) < 3: raise app.UsageError('There must be at least 2 command-line arguments') cmd = argv[1] if cmd == 'launch': launch_script = argv[2] if not os.path.exists(launch_script): raise OSError(errno.ENOENT, f'File not found: {launch_script}') sys.path.insert(0, os.path.abspath(os.path.dirname(launch_script))) launch_module, _ = os.path.splitext(os.path.basename(launch_script)) m = importlib.import_module(launch_module) sys.path.pop(0) argv = [ launch_script, '--xm_launch_script={}'.format(launch_script), ] + argv[3:] app.run(m.main, argv=argv) elif cmd == 'cluster': caliban_gke = importlib.import_module('caliban.platform.gke.cli') caliban_gke_types = importlib.import_module('caliban.platform.gke.types') subcmd = argv[2] args = { 'dry_run': False, 'cluster_name': _DEFAULT_CLUSTER_NAME, 'zone': _DEFAULT_ZONE, 'release_channel': caliban_gke_types.ReleaseChannel.REGULAR, 'single_zone': True, } if subcmd == 'create': caliban_gke._cluster_create(args) # pylint: disable=protected-access elif subcmd == 'delete': caliban_gke._cluster_delete(args) # pylint: disable=protected-access else: raise app.UsageError( f'Subcommand `{cmd} {subcmd}` is not a supported subcommand' ) else: raise app.UsageError(f'Command `{cmd}` is not a supported command') def entrypoint(): app.run(main) if __name__ == '__main__': app.run(main)
xmanager-main
xmanager/cli/cli.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the xmanager.contrib.gcs module.""" import getpass from absl import app from absl.testing import absltest from absl.testing import flagsaver from absl.testing import parameterized from xmanager.contrib import gcs # Error patterns. _GCS_PATH_ERROR = ( '--xm_gcs_path not in gs://bucket/directory or /gcs/path format.' ) _PATH_ERROR = 'Path not in gs://bucket/directory or /gcs/path format' class GcsTest(parameterized.TestCase): def test_gcs_path_empty_flag(self): with self.assertRaisesRegex(app.UsageError, '--xm_gcs_path is missing'): gcs.get_gcs_path_or_fail('project') def test_gcs_path_correct_value(self): with flagsaver.flagsaver(xm_gcs_path='gs://bucket/dir'): self.assertEqual(gcs.get_gcs_path_or_fail('project'), 'gs://bucket/dir') def test_gcs_path_incorrect_value(self): with flagsaver.flagsaver(xm_gcs_path='file://dir'): with self.assertRaisesRegex(app.UsageError, _GCS_PATH_ERROR): gcs.get_gcs_path_or_fail('project') # pylint: disable=bad-whitespace @parameterized.named_parameters( ('gs_long', 'gs://a/b/c', True, False, True), ('gs_short', 'gs://d/e', True, False, True), ('gs_invalid', 'gs:/d/e', False, False, False), ('fuse_long', '/gcs/a/b/c', False, True, True), ('fuse_short', '/gcs/d/e', False, True, True), ('fuse_invalid', '/gcsc/d/e', False, False, False), ('invalid', 'a/b/f', False, False, False), ) # pyformat:disable # pylint: enable=bad-whitespace def test_is_path(self, path, expected_gs, expected_fuse, expected_gcs): self.assertEqual(gcs.is_gs_path(path), expected_gs) self.assertEqual(gcs.is_gcs_fuse_path(path), expected_fuse) self.assertEqual(gcs.is_gcs_path(path), expected_gcs) def test_get_gcs_url(self): self.assertEqual( gcs.get_gcs_url('gs://a/b/c'), f'{gcs.gcp_website_url}/storage/browser/a/b/c', ) self.assertEqual( gcs.get_gcs_url('gs://d/e'), f'{gcs.gcp_website_url}/storage/browser/d/e', ) self.assertEqual( gcs.get_gcs_url('/gcs/a/b/c'), f'{gcs.gcp_website_url}/storage/browser/a/b/c', ) self.assertEqual( gcs.get_gcs_url('/gcs/d/e'), f'{gcs.gcp_website_url}/storage/browser/d/e', ) with self.assertRaisesRegex(ValueError, _PATH_ERROR): gcs.get_gcs_url('a/b/f') def test_get_gcs_fuse_path(self): self.assertEqual(gcs.get_gcs_fuse_path('gs://a/b/c'), '/gcs/a/b/c') self.assertEqual(gcs.get_gcs_fuse_path('gs://d/e'), '/gcs/d/e') self.assertEqual(gcs.get_gcs_fuse_path('/gcs/a/b/c'), '/gcs/a/b/c') self.assertEqual(gcs.get_gcs_fuse_path('/gcs/d/e'), '/gcs/d/e') with self.assertRaisesRegex(ValueError, _PATH_ERROR): gcs.get_gcs_fuse_path('a/b/f') def test_get_gs_path(self): self.assertEqual(gcs.get_gs_path('gs://a/b/c'), 'gs://a/b/c') self.assertEqual(gcs.get_gs_path('gs://d/e'), 'gs://d/e') self.assertEqual(gcs.get_gs_path('/gcs/a/b/c'), 'gs://a/b/c') self.assertEqual(gcs.get_gs_path('/gcs/d/e'), 'gs://d/e') with self.assertRaisesRegex(ValueError, _PATH_ERROR): gcs.get_gcs_fuse_path('a/b/f') if __name__ == '__main__': absltest.main()
xmanager-main
xmanager/contrib/gcs_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for transforming source code using copybara. XManager primarily uses Copybara to run folder-to-folder workflows in the form: core.workflow( name = "folder_to_folder", origin = folder.origin(), destination = folder.destination(), ... ) Copybara allows for iterative local development on multiple platforms without needing to add/remove platform-specific code modifications. This allows you to preprocess source code so that it can be run on different platforms with different executors. e.g. local_version = run_workflow(config, 'local', path) vertex_version = run_workflow(config, 'vertex', path) local_spec = xm.PythonContainer(path=local_version, **kwargs) vertex_spec = xm.PythonContainer(path=vertex_version, **kwargs) [local_executable, vertex_executable] = experiment.package([ xm.Packageable( executable_spec=spec, executor_spec=xm_local.Local.Spec()), xm.Packageable( executable_spec=spec, executor_spec=xm_local.Vertex.Spec())]) Copybara has no release process, so you must compile copybara yourself: https://github.com/google/copybara """ import os import subprocess import tempfile from typing import Optional # Set with the compiled path to copybara e.g. # COPYBARA_BIN = 'bazel-bin/java/com/google/copybara/copybara_deploy.jar' COPYBARA_BIN = 'copybara' def run_workflow( config: str, workflow: str, origin_folder: str, destination_folder: Optional[str] = None, config_root: Optional[str] = None, ) -> str: """Run a workflow in a copybara config to transform origin to destination. Args: config: Path to the Copybara config. workflow: Name of a workflow in copybara config. origin_folder: The origin folder to use as input. This will passed to Copybara via the source_ref argument. destination_folder: The destination folder to output. config_root: Configuration root path to be used for resolving absolute config labels like '//foo/bar'. Returns: The output destination folder. """ origin_folder = os.path.abspath(origin_folder) if not destination_folder: destination_folder = tempfile.mkdtemp() command = [ COPYBARA_BIN, config, workflow, '--ignore-noop', origin_folder, '--folder-dir=' + destination_folder, ] if config_root: command += ['--config-root=' + config_root] print('Copybara command: ', command) subprocess.run(command, check=True) return destination_folder
xmanager-main
xmanager/contrib/copybara.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for setting up distributed TF experiments. Supported distributed setups: - tf.distribute.MultiWorkerMirroredStrategy - tf.distribute.ParameterServerStrategy """ import json from typing import Awaitable, Callable import attr from xmanager import xm from xmanager import xm_local from xmanager.contrib import addressing @attr.s(auto_attribs=True) class MultiWorkerMirroredStrategyBuilder: """Run a Tensorflow MultiWorkerMirroredStrategy experiment. https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy Usage: builder = MultiWorkerMirroredStrategyBuilder( experiment, worker_executable, worker_executor, num_workers=4) for hparams in hyperparameters: experiment.add(build.gen_job_group(), hparams) """ experiment: xm.Experiment worker_executable: xm.Executable worker_executor: xm.Executor worker_name: str = 'worker' num_workers: int = 1 def create_job_group( self, work_unit: xm.WorkUnit, hparams: xm.UserArgs ) -> xm.JobGroup: if isinstance(self.worker_executor, xm_local.Kubernetes): return self.create_kubernetes_job_group(work_unit, hparams) raise NotImplementedError( 'MultiWorkerMirrored is not supported for executor_type ' f'`{type(self.worker_executor)}`' ) def gen_job_group(self) -> Callable[[xm.WorkUnit], Awaitable[None]]: """Create a generator that can be be used with experiment.add(generator).""" async def _gen_job_group( work_unit: xm.WorkUnit, **hparams ) -> Awaitable[None]: job = self.create_job_group(work_unit, hparams) return work_unit.add(job) return _gen_job_group def create_kubernetes_job_group( self, work_unit: xm.WorkUnit, hparams: xm.UserArgs ) -> xm.JobGroup: """Builds a Kubernetes job group that can be added to an experiment.""" assert isinstance(self.worker_executor, xm_local.Kubernetes) worker_job_domains = {} for i in range(self.num_workers): job_name = f'{self.worker_name}-{i}' worker_job_domains[job_name] = addressing.k8s_pod_domain( job_name=job_name, experiment_id=self.experiment.experiment_id, work_unit_id=work_unit.work_unit_id, ) jobs = {} for i, worker_job_name in enumerate(worker_job_domains): tf_config = { 'cluster': {'worker': list(worker_job_domains.values())}, 'task': {'type': 'worker', 'index': i}, } jobs[worker_job_name] = xm.Job( executable=self.worker_executable, executor=self.worker_executor, args=hparams, env_vars={ 'TF_CONFIG': json.dumps(tf_config), }, ) return xm.JobGroup(**jobs) @attr.s(auto_attribs=True) class ParameterServerStrategyBuilder: """Builds a Tensorflow ParameterServer experiment in XManager. https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/ParameterServerStrategy Usage: builder = ParameterServerStrategyBuilder(experiment) for hparams in hyperparameters: experiment.add(builder.gen_job_group(), hparams) """ experiment: xm.Experiment chief_executable: xm.Executable chief_executor: xm.Executor worker_executable: xm.Executable worker_executor: xm.Executor ps_executable: xm.Executable ps_executor: xm.Executor chief_name: str = 'chief' worker_name: str = 'worker' ps_name: str = 'ps' num_workers: int = 1 num_ps: int = 1 def create_job_group( self, work_unit: xm.WorkUnit, hparams: xm.UserArgs ) -> xm.JobGroup: if isinstance(self.worker_executor, xm_local.Kubernetes): return self.create_kubernetes_job_group(work_unit, hparams) raise NotImplementedError( 'ParameterServerStrategy is not supported for executor_type ' f'`{type(self.worker_executor)}`' ) def gen_job_group(self) -> Callable[[xm.WorkUnit], Awaitable[None]]: """Create a generator that can be be used with experiment.add(generator).""" async def _gen_job_group( work_unit: xm.WorkUnit, **hparams ) -> Awaitable[None]: job = self.create_job_group(work_unit, hparams) return work_unit.add(job) return _gen_job_group def create_kubernetes_job_group( self, work_unit: xm.WorkUnit, hparams: xm.UserArgs ) -> xm.JobGroup: """Builds a Kubernetes job group that can be added to an experiment.""" assert isinstance(self.chief_executor, xm_local.Kubernetes) assert isinstance(self.worker_executor, xm_local.Kubernetes) assert isinstance(self.ps_executor, xm_local.Kubernetes) def _k8s_pod_domain(job_name: str) -> str: return addressing.k8s_pod_domain( job_name, self.experiment.experiment_id, work_unit.work_unit_id ) chief_domain = _k8s_pod_domain(self.chief_name) # pylint: disable=g-complex-comprehension worker_domains = [ addressing.k8s_pod_domain( f'{self.worker_name}-{i}', self.experiment.experiment_id, work_unit.work_unit_id, ) for i in range(self.num_workers) ] ps_domains = [ addressing.k8s_pod_domain( f'{self.ps_name}-{i}', self.experiment.experiment_id, work_unit.work_unit_id, ) for i in range(self.num_ps) ] # pylint: enable=g-complex-comprehension def _create_tf_config(task_type, task_index): return { 'cluster': { 'chief': [chief_domain], 'worker': worker_domains, 'ps': ps_domains, }, 'task': { 'type': task_type, 'index': task_index, }, } jobs = {} jobs[self.chief_name] = xm.Job( executable=self.chief_executable, executor=self.chief_executor, env_vars={'TF_CONFIG': json.dumps(_create_tf_config('chief', 0))}, ) for i in range(self.num_ps): ps_job_name = f'{self.ps_name}-{i}' jobs[ps_job_name] = xm.Job( executable=self.ps_executable, executor=self.ps_executor, args=hparams, env_vars={ 'TF_CONFIG': json.dumps(_create_tf_config('ps', i)), }, ) for i in range(self.num_workers): worker_job_name = f'{self.worker_name}-{i}' jobs[worker_job_name] = xm.Job( executable=self.worker_executable, executor=self.worker_executor, args=hparams, env_vars={ 'TF_CONFIG': json.dumps(_create_tf_config('worker', i)), }, ) return xm.JobGroup(**jobs)
xmanager-main
xmanager/contrib/xm_tensorflow.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a use of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools to write parameter controllers for XManager experiments. An async function decorated with @parameter_controller.controller() would return an xm.JobGenerator. When added to an experiment, an AUX unit would be started which would run the given function long-term. Usage: from xmanager.contrib import parameter_controller @parameter_controller.controller(...) async def my_controller(foo, bar, *, experiment: xm.Experiment) -> None: experiment.add(...) ... experiment.add(my_controller(foo=1, bar=2)) """ import asyncio import json import os import shutil from typing import Any, Callable, Dict, Optional from absl import flags import launchpad as lp import launchpad.nodes.python.xm_docker as lp_docker from xmanager import xm from xmanager import xm_local def _parameter_controller_job_args( controller_args: Dict[str, Any] ) -> Dict[str, Any]: """Converts given XM flags to coresponding Launchpad's `process_entry` flags. The XM client runs inside `process_entry`, but flags are not defined yet. The `flags_to_populate` flag in `process_entry` is used to define the given flags before calling `app.run()`. This function converts XM flags to the format desired by `process_entry`. Args: controller_args: XM flags to be passed. Returns: Flags used to populate XM flags in `process_entry` """ args = { 'lp_task_id': 0, 'flags_to_populate': xm.ShellSafeArg(json.dumps(controller_args)), } return args def _to_python_container( node: lp.PyNode, label: str, docker_config: lp.DockerConfig ) -> xm.PythonContainer: """Returns xm.PythonContainer embedding a lp.PyNode.""" return lp_docker.to_docker_executables( [node], label=label, docker_config=docker_config )[0][0] def _use_host_db_config( package_path: str, controller_args: Dict[str, Any], ) -> None: """Make DB config file used by host available to controller job. Involves copying the DB config file used by host to the package directory of the container and then setting the `--xm_db_yaml_config_path` accordingly. Args: package_path: The path of the package directory where the DB config should be copied. controller_args: The flag mapping used by the controller job. Used to update `--xm_db_yaml_config_path`. Raises: RuntimeError: The `--xm_db_yaml_config` flag will be overriden by this function. To avoid confusion about this behavior, an exception is thrown if it's already set. """ if 'xm_db_yaml_config_path' in controller_args: raise RuntimeError( "Parameter controller can't use host DB config " 'and also use `--xm_db_yaml_config_path` flag. Use ' '`use_host_db_config=False` or remove the flag.' ) config_path = xm.utils.resolve_path_relative_to_launcher( flags.FLAGS.xm_db_yaml_config_path ) if not os.path.isfile(os.path.join(package_path, config_path)): shutil.copy(config_path, package_path) controller_args['xm_db_yaml_config_path'] = os.path.basename(config_path) async def _launch_remote_controller( aux_unit: xm.ExperimentUnit, node: lp.PyNode, function_label: str, executor: xm.Executor, controller_name: str, controller_args: Dict[str, Any], controller_env_vars: Dict[str, str], package_path: str, use_host_db_config: bool, ) -> None: """Launches remote Job with the given controller.""" package_path = xm.utils.resolve_path_relative_to_launcher(package_path) if use_host_db_config: _use_host_db_config(package_path, controller_args) docker_requirements = os.path.join(package_path, 'requirements.txt') docker_config = lp.DockerConfig(package_path, docker_requirements) executable_spec = _to_python_container( node, f'{aux_unit.experiment_unit_name}_{function_label}', docker_config ) [executable] = await asyncio.get_running_loop().run_in_executor( None, aux_unit.experiment.package, [ xm.Packageable( executable_spec=executable_spec, executor_spec=executor.Spec(), ) ], ) controller_job = xm.Job( name=controller_name, executable=executable, executor=executor, args=_parameter_controller_job_args(controller_args) or {}, env_vars=controller_env_vars or {}, ) aux_unit.add(controller_job) def _populate_flags(controller_args: Dict[str, Any]) -> None: """Sets flag values at runtime. This is meant to be used in conjunction with the `flags_to_populate` flags of `process_entry`. Since flag values can't be passed normally, this function sets values programmatically. This function is meant to be serialized and run inside `process_entry` through `_controller_body`. Args: controller_args: Mapping of flag names and values to be set. """ for name, value in controller_args.items(): flags.FLAGS[name].value = value async def _controller_body( experiment_id, f, controller_args, *args, **kwargs ) -> None: _populate_flags(controller_args) async with xm_local.get_experiment(experiment_id) as experiment: await f(experiment, *args, **kwargs) def controller( *, executor: xm.Executor, controller_name: str = 'parameter_controller', controller_env_vars: Optional[Dict[str, str]] = None, controller_args: Optional[Dict[str, Any]] = None, package_path: Optional[str] = '.', use_host_db_config: bool = True, ): """Converts a function to a controller which can be added to an experiment. Calling the wrapped function would return an xm.JobGenerator which would run it as auxiliary unit on the specified executor. Args: executor: The executor to launch the controller job on. controller_name: Name of the parameter controller job. controller_env_vars: Mapping of env variable names and values to be passed to the parameter controller job. controller_args: Mapping of flag names and values to be used by the XM client running inside the parameter controller job. package_path: Path of directory where the parameter controller container will be packaged. This directory must contain a `requirements.txt` file for the job, as well as other things necessary to run the controller job, like a DB YAML config or things for the to be launched jobs. use_host_db_config: Specifies if the DB config used by the host should be copied and used by the parameter controller job. Defaults to True. Can't be used in conjuction with passing the `xm_db_yaml_config` flag to the controller job. Returns: A decorator to be applied to the function. """ def wrap(f: Callable[..., None]) -> Callable[..., xm.JobGeneratorType]: def make_controller(*args, **kwargs) -> xm.JobType: async def job_generator(aux_unit: xm.ExperimentUnit) -> None: experiment_id = aux_unit.experiment.experiment_id remote_controller = asyncio.create_task( _launch_remote_controller( aux_unit, lp.PyNode( xm.run_in_asyncio_loop(_controller_body), experiment_id, f, controller_args, *args, **kwargs, ), function_label=f.__name__, executor=executor, controller_name=controller_name, controller_args=controller_args, controller_env_vars=controller_env_vars, package_path=package_path, use_host_db_config=use_host_db_config, ) ) await remote_controller return xm.AuxiliaryUnitJob( job_generator, importance=xm.Importance.HIGH, # TODO: Add support for `termination_delay_secs`. termination_delay_secs=0, ) return make_controller return wrap
xmanager-main
xmanager/contrib/parameter_controller.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers to support GCS-based output dir. For the code running on Google Cloud a GCS directory should be used to store data. A GCS name should have a particular format 'gs://bucket/directory'. To ensure the format of the name is correct, and to suggest reasonable defaults for it, this file provides a flag and several helper functions. """ import datetime import getpass import os from absl import app from absl import flags _GCS_PATH = flags.DEFINE_string( 'xm_gcs_path', None, ( 'A GCS directory within a bucket to store output ' '(in gs://bucket/directory format).' ), ) _GS_PREFIX = 'gs://' _GCS_PREFIX = '/gcs/' _default_bucket_name = '<Your bucket>' def suggestion(project_name: str) -> str: """Returns a suggested GCS dir name for the given @project_name.""" return os.path.join( _GS_PREFIX, _default_bucket_name, getpass.getuser(), project_name + '-' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S'), ) def get_gcs_path_or_fail(project_name: str) -> str: """Returns value passed in the --xm_gcs_path flag; fails if nothing is passed. Args: project_name: a project name used to generate suggested GCS path. Returns: If the --xm_gcs_path flag is empty, or contains invalid value, raise an error. Otherwise, returns a flag value. """ if not _GCS_PATH.value: raise app.UsageError( '--xm_gcs_path is missing. Suggestion: ' + f'--xm_gcs_path={suggestion(project_name)}' ) elif not is_gcs_path(_GCS_PATH.value): raise app.UsageError( '--xm_gcs_path not in gs://bucket/directory or /gcs/path format. ' + f'Suggestion: --xm_gcs_path={suggestion(project_name)}' ) return str(_GCS_PATH.value) def is_gs_path(path: str) -> bool: """Given the path, checks whether it is a valid Google Storage URL. Args: path: a path. Returns: True iff a path starts with the 'gs://' prefix. """ return path.startswith(_GS_PREFIX) def is_gcs_fuse_path(path: str) -> bool: """Given the path, checks whether it is a valid gcs_fuse path. Args: path: a path. Returns: True iff a path starts with the '/gcs/' prefix. """ return path.startswith(_GCS_PREFIX) def is_gcs_path(path: str) -> bool: """Given the path, checks whether it is a valid GCS URL. Args: path: a path. Returns: True iff a path starts with either 'gs://' or '/gcs/' prefix. """ return is_gs_path(path) or is_gcs_fuse_path(path) def _gcs_path_no_prefix(path: str) -> str: """Given the GCS path in gs://bucket/directory format, strips 'gs://' from it. Args: path: GCS path in gs://bucket/directory format. Returns: Path without 'gs://' prefix. """ if is_gs_path(path): return path[len(_GS_PREFIX) :] if is_gcs_fuse_path(path): return path[len(_GCS_PREFIX) :] raise ValueError( f'Path not in gs://bucket/directory or /gcs/path format: {path}' ) # Exposed for testing. gcp_website_url = 'https://console.cloud.google.com' def get_gcs_url(path: str) -> str: """Given the GCS path, provides a GCS URL to access it. Args: path: GCS path in gs://bucket/directory format. Returns: GCS URL to access path. """ no_prefix = _gcs_path_no_prefix(path) return f'{gcp_website_url}/storage/browser/{no_prefix}' def get_gcs_fuse_path(path: str) -> str: """Given the GCS path, provides corresponding Cloud Storage FUSE path. See https://cloud.google.com/storage/docs/gcs-fuse for details. Args: path: GCS path in gs://bucket/directory format. Returns: Path in the /gcs/bucket/directory format. """ return _GCS_PREFIX + _gcs_path_no_prefix(path) def get_gs_path(path: str) -> str: """Given the GCS path, provides corresponding Cloud Storage URL. See https://cloud.google.com/storage/docs/gcs-fuse for details. Args: path: GCS path in /gcs/bucket/directory format. Returns: Path in the gs://bucket/directory format. """ return _GS_PREFIX + _gcs_path_no_prefix(path)
xmanager-main
xmanager/contrib/gcs.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for addressing.""" from absl.testing import absltest from xmanager.contrib import addressing class AddressingTest(absltest.TestCase): def test_k8s_pod_domain(self): address = addressing.k8s_pod_domain( job_name='cifar10', experiment_id=123, work_unit_id=4, service='best_service', namespace='best_namespace', ) self.assertEqual( address, '123-4-cifar10.best_service.best_namespace.svc.cluster.local:2222', ) if __name__ == '__main__': absltest.main()
xmanager-main
xmanager/contrib/addressing_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest from absl.testing import parameterized from xmanager import xm from xmanager.contrib import framework_defaults MLFramework = framework_defaults.MLFramework class FrameworkDefaultsTest(parameterized.TestCase): def test_known_frameworks(self): self.assertEqual( framework_defaults._get_framework('torch'), MLFramework.PYTORCH ) self.assertEqual( framework_defaults._get_framework('pytorch'), MLFramework.PYTORCH ) self.assertEqual(framework_defaults._get_framework('tf'), MLFramework.TF2) self.assertEqual(framework_defaults._get_framework('tf1'), MLFramework.TF1) self.assertEqual(framework_defaults._get_framework('tf2'), MLFramework.TF2) self.assertEqual( framework_defaults._get_framework('tensorflow 2.x'), MLFramework.TF2 ) self.assertEqual(framework_defaults._get_framework('jax'), MLFramework.JAX) self.assertEqual(framework_defaults._get_framework('flax'), MLFramework.JAX) def test_unknown_frameworks(self): self.assertEqual( framework_defaults._get_framework('huggingface'), MLFramework.UNKNOWN ) self.assertEqual( framework_defaults._get_framework('objax'), MLFramework.UNKNOWN ) self.assertEqual( framework_defaults._get_framework('not a framework name'), MLFramework.UNKNOWN, ) @parameterized.named_parameters( ('cpu', None), ('gpu', xm.ResourceType.V100), ('tpu', xm.ResourceType.TPU_V3), ) def test_jax_base_image(self, accelerator): base_image = framework_defaults.base_image(MLFramework.JAX, accelerator) self.assertStartsWith(base_image, 'gcr.io/deeplearning-platform-release/') # Jax uses CUDA images. self.assertContainsSubsequence(base_image, 'cu') @parameterized.named_parameters( ('cpu', None), ('gpu', xm.ResourceType.V100), ('tpu', xm.ResourceType.TPU_V3), ) def test_tf2_base_image(self, accelerator): base_image = framework_defaults.base_image(MLFramework.TF2, accelerator) self.assertStartsWith(base_image, 'gcr.io/deeplearning-platform-release/') self.assertContainsSubsequence(base_image, 'tf2-') @parameterized.named_parameters( ('cpu', None), ('gpu', xm.ResourceType.V100), ('tpu', xm.ResourceType.TPU_V3), ) def test_torch_base_image(self, accelerator): base_image = framework_defaults.base_image(MLFramework.PYTORCH, accelerator) self.assertStartsWith(base_image, 'gcr.io/') self.assertContainsSubsequence(base_image, 'pytorch') if accelerator in xm.TpuType: self.assertContainsSubsequence(base_image, 'tpu') @parameterized.named_parameters( ('cpu', None), ('gpu', xm.ResourceType.V100), ('tpu', xm.ResourceType.TPU_V3), ) def test_unsupported_tf1_base_image(self, accelerator): base_image = framework_defaults.base_image(MLFramework.TF1, accelerator) self.assertStartsWith(base_image, 'gcr.io/deeplearning-platform-release/') self.assertContainsSubsequence(base_image, 'tf') @parameterized.named_parameters( ('cpu', None), ('gpu', xm.ResourceType.V100), ('tpu', xm.ResourceType.TPU_V3), ) def test_unknown_base_image(self, accelerator): base_image = framework_defaults.base_image(MLFramework.UNKNOWN, accelerator) self.assertStartsWith(base_image, 'gcr.io/deeplearning-platform-release/') self.assertContainsSubsequence(base_image, 'base') if __name__ == '__main__': absltest.main()
xmanager-main
xmanager/contrib/framework_defaults_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
xmanager-main
xmanager/contrib/__init__.py
"""XMFlow-like feature.""" from __future__ import annotations import asyncio from collections.abc import Sequence from typing import Callable, Optional from absl import logging from xmanager import xm from xmanager.contrib import parameter_controller _Fn = Callable[[xm.Experiment], None] _AsyncFn = Callable[[], xm.JobGeneratorType] # The type of `parameter_controller.controller()` _Controller = Callable[[_Fn], _AsyncFn] class _UnlaunchedJobError(Exception): pass class _UnlaunchedJob: async def wait_until_complete(self): raise _UnlaunchedJobError class StopControllerError(Exception): pass def executable_graph( *, jobs: dict[str, xm.JobType], jobs_deps: dict[str, Sequence[str]], # Have to redefine external symbol to allow both # `flow.controller` and `flow.executable_graph(controller=)` controller: Optional[_Controller] = None, terminate_on_failure: bool = True, ) -> xm.JobGeneratorType: """Returns an executable which run the pipeline. Usage: ```python from xmanager.contrib import flow experiment.add(flow.executable_graph( jobs={ 'preprocessing': xm.Job(), 'train': xm.Job(), 'eval': xm.Job(), 'final': xm.Job(), }, jobs_deps={ 'train': ['preprocessing'], 'eval': ['preprocessing'], 'final': ['train', 'eval'], }, )) ``` Args: jobs: Jobs to run (in order defined by the `jobd_deps` graph). Jobs not defined in `jobs_deps` are assumed to not have any dependencies and run directly. jobs_deps: Mapping job-name to list of job dependencies. controller: A `flow.controller()` (alias of `xmanager.contrib.parameter_controller.controller()`) to customize the executor parameters. If missing, a default executor is used. terminate_on_failure: If true, terminate upon the the first failure. If false, continue to launch jobs whose dependencies are successful. Returns: The controller to pass to `experiment.add()` """ # Normalize the graph by adding missing values for job_name in jobs: jobs_deps.setdefault(job_name, []) _assert_valid_graph(jobs_deps=jobs_deps, jobs=jobs) log(f'jobs: {list(jobs)}') log(f'jobs_deps: {jobs_deps}') controller = controller or parameter_controller.controller( ) @controller async def run_graphs(experiment: xm.Experiment) -> None: jobs_launched = {job_name: asyncio.Future() for job_name in jobs} async def job_finished(job_name: str) -> bool: log(f'`Waiting for {job_name}` to be added to `experiment.add`') op = await jobs_launched[job_name] # Wait for the `experiment.add` try: log(f'`{job_name}` is running, waiting to finish') await op.wait_until_complete() # Wait for the job to complete except (xm.ExperimentUnitError, _UnlaunchedJobError) as e: log(f'`{job_name}` has failed.') if terminate_on_failure: raise StopControllerError() from e return False else: log(f'`{job_name}` has finished successfully.') return True async def launch_single_job(job_name: str) -> None: log(f'`Launching: {job_name}`, waiting for all the deps to schedule.') # Wait for all the deps to complete deps_finished = await asyncio.gather( *(job_finished(dep) for dep in jobs_deps[job_name]) ) # Schedule the job log(f'`All deps finished for: {job_name}`. Launching...') if all(deps_finished): op = await experiment.add(jobs[job_name], identity=job_name) else: op = _UnlaunchedJob() log(f'`{job_name}` launched. Notify other waiting jobs...') # Notify other waiting jobs jobs_launched[job_name].set_result(op) log(f'`{job_name}` complete.') try: await asyncio.gather(*(launch_single_job(job_name) for job_name in jobs)) except StopControllerError as e: log(str(e)) # This is expected, so exit normally. return return run_graphs() # pylint: disable=no-value-for-parameter def _quote_name(x: str) -> str: """Return a quoted name for a node in a graphviz graph.""" return '"' + x.replace('"', '\\"') + '"' def _make_dot_graph_url(jobs_deps: dict[str, Sequence[str]]) -> str: # First add all leaf (potential singleton) terms = [_quote_name(j) for j, deps in jobs_deps.items() if not deps] for job_name, job_deps in jobs_deps.items(): for dep in job_deps: terms.append(f'{_quote_name(dep)}->{_quote_name(job_name)}') dot = 'digraph{{{}}}'.format(' '.join(terms)) return dot def _assert_valid_graph( *, jobs: dict[str, xm.Job], jobs_deps: dict[str, Sequence[str]], ): """Validate the jobs are valid.""" all_job_names = set() for j, jd in jobs_deps.items(): all_job_names.add(j) all_job_names.update(jd) if extra_jobs := sorted(all_job_names - set(jobs)): raise ValueError( 'Invalid `jobs_deps`: Some dependencies are not present in the ' f'`jobs=`: {extra_jobs}' ) # Could also detect cycles, but likely over-engineered def log(msg: str) -> None: """Log messages.""" logging.info(msg)
xmanager-main
xmanager/contrib/flow.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions to create universal launchers. This module provides an `--xm_launch_mode` flag to specify a desired executor and two helper functions which return specific implementations of xm.Executor and `create_experiment()`. Usage: Example 1 (simple executor tuning): ``` from xmanager.contrib import executor_selector ... requirements = xm.JobRequirements(...) executor = executor_selector.get_executor()(requirements=requirements) ... with executor_selector.create_experiment(experiment_title='Run') as experiment: ... ``` Example 2 (involved executor tuning): ``` from xmanager.contrib import executor_selector ... executor_fn = executor_selector.get_executor() kwargs = {} if isinstance(executor, xm_local.Vertex): # Fill in Vertex executor args else: # Fill in Local executor args ``` executor = executor_fn(**kwargs) """ import enum from typing import Callable, List, Optional, Union from absl import flags from xmanager import xm from xmanager import xm_local class XMLaunchMode(enum.Enum): """Specifies an executor to run an experiment.""" VERTEX = 'vertex' LOCAL = 'local' INTERACTIVE = 'interactive' _XM_LAUNCH_MODE = flags.DEFINE_enum_class( 'xm_launch_mode', XMLaunchMode.VERTEX, XMLaunchMode, 'How to launch the experiment. Supports local and interactive execution, ' + 'launch on ' + 'Vertex.', ) def launch_mode() -> XMLaunchMode: return _XM_LAUNCH_MODE.value def create_experiment( experiment_title: Optional[str] = None, mode: Optional[XMLaunchMode] = None, ) -> xm.Experiment: """Creates an experiment depending on the launch mode. Args: experiment_title: Title of an experiment mode: Specifies which experiment to create. If None, the '--xm_launch_mode' flag value is used. Returns: A newly created experiment. Raises: ValueError: if provided `mode` is unknown. """ if mode is None: mode = launch_mode() if mode in ( XMLaunchMode.LOCAL, XMLaunchMode.INTERACTIVE, XMLaunchMode.VERTEX, ): # TODO: add import here? return xm_local.create_experiment(experiment_title) raise ValueError(f'Unknown launch mode: {mode}') def _local_executor(interactive: bool) -> Callable[..., xm.Executor]: """Helper to provide a local executor with appropriate `interactive` flag.""" def setup_local(*args, **kwargs_in) -> xm_local.Local: kwargs = {} # Copy supported arguments. if 'experimental_stream_output' in kwargs_in: kwargs['experimental_stream_output'] = kwargs_in[ 'experimental_stream_output' ] # Set the specified value of `interactive`. docker_options = kwargs_in.get('docker_options', xm_local.DockerOptions()) setattr(docker_options, 'interactive', interactive) kwargs['docker_options'] = docker_options return xm_local.Local(*args, **kwargs) return setup_local def get_executor( mode: Optional[XMLaunchMode] = None, ) -> Callable[..., xm.Executor]: """Select an `xm.Executor` specialization depending on the launch mode. Args: mode: Specifies which class to select. If None, the '--xm_launch_mode' flag value is used. Returns: An executor constructor. Raises: ValueError: if provided `mode` is unknown. """ if mode is None: mode = launch_mode() if mode == XMLaunchMode.VERTEX: return xm_local.Caip if mode == XMLaunchMode.LOCAL or mode == XMLaunchMode.INTERACTIVE: return _local_executor(mode == XMLaunchMode.INTERACTIVE) raise ValueError(f'Unknown launch mode: {mode}')
xmanager-main
xmanager/contrib/executor_selector.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper module for using TPUs.""" from typing import List # pylint: disable=line-too-long def tpuvm_docker_instructions() -> List[str]: return [ ( 'RUN wget' ' https://storage.googleapis.com/cloud-tpu-tpuvm-artifacts/libtpu/20210525/libtpu.so' ' -O /lib/libtpu.so' ), 'RUN chmod 700 /lib/libtpu.so', ( 'RUN wget ' 'https://storage.googleapis.com/cloud-tpu-tpuvm-artifacts/tensorflow/20210525/tf_nightly-2.6.0-cp38-cp38-linux_x86_64.whl' ), 'RUN pip3 install tf_nightly-2.6.0-cp38-cp38-linux_x86_64.whl', 'RUN rm tf_nightly-2.6.0-cp38-cp38-linux_x86_64.whl', ]
xmanager-main
xmanager/contrib/tpu.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Automatic selection of reasonable defaults based on input. This library aimed to provide recommended defaults for the choices that can be automated depending on the input. In particular, the choice of a base image depends on a framework and accelerator used for the experiment, and can change if a different accelerator is used. This module provides function `base_image`, which returns the recommended base image to use without the need to change the launcher's code. Please note that the recommendations are subject to change as we are trying to use the latest supported images for all frameworks. If a change in the recommendation breaks your code, try to replace this call with the explicit base image name. """ import enum from typing import Optional, Union from absl import logging from xmanager import xm class MLFramework(enum.Enum): """ML Framework used in the experiment code.""" UNKNOWN = 0 JAX = 1 PYTORCH = 2 TF2 = 3 TF1 = 4 # Unsupported FrameworkSpec = Union[str, MLFramework] def _get_framework(framework: str) -> MLFramework: """Given a framework name in a loose form, returns the most suitable enum.""" if framework == 'jax' or framework == 'flax': return MLFramework.JAX if 'torch' in framework: return MLFramework.PYTORCH if 'tf' in framework or 'tensorflow' in framework: # A variant of a Tensorflow. return MLFramework.TF1 if '1' in framework else MLFramework.TF2 # Framework not recognized. logging.error('Unrecognized framework "%s"', framework) return MLFramework.UNKNOWN def base_image( framework: FrameworkSpec, accelerator: Optional[xm.ResourceType] ) -> str: """Returns a base image recommendation depending on the input. Please note that the recommendations can change as we are trying to recommend the latest supported images for all frameworks. Currently most of the images are taken from https://cloud.google.com/deep-learning-containers/docs/choosing-container. Args: framework: a free-text framework name. Recognized options are `jax`, `pytorch`, `tf`, `tensorflow`. The enum value is also accepted. accelerator: Accelerator specification from xm.JobRequirements. If None, then execution on CPU is assumed. Returns: a name of a base image to pass to e.g. xm.python_container. """ if isinstance(framework, str): framework = _get_framework(framework) # LINT.IfChange(base_image_version) if framework == MLFramework.JAX: # JAX-based experiment use the same base image for all accelerators. return 'gcr.io/deeplearning-platform-release/base-cu113' elif framework == MLFramework.TF2: # TF experiments use the same base image for all accelerators. return 'gcr.io/deeplearning-platform-release/tf2-gpu.2-6' elif framework == MLFramework.PYTORCH: if accelerator in xm.TpuType: # Base image is taken from pytorch / XLA documentation. # https://github.com/pytorch/xla#-available-images-and-wheels return 'gcr.io/tpu-pytorch/xla:nightly_3.8_tpuvm_20220819' else: return 'gcr.io/deeplearning-platform-release/pytorch-gpu.1-12' # LINT.ThenChange(:tpu_runtime_version) elif framework == MLFramework.TF1: logging.warning('Tensorflow 1.x is not supported') return 'gcr.io/deeplearning-platform-release/tf-gpu.1-15' else: # Unrecognized framework: use the default CUDA image. return 'gcr.io/deeplearning-platform-release/base-cu113'
xmanager-main
xmanager/contrib/framework_defaults.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for getting the address of XManager jobs. Addresses in XManager can be statically evaluated because the experiment ID is known. Addressing should not involve tokens or late-bindings. """ def k8s_pod_domain( job_name: str, experiment_id: int, work_unit_id: int, service: str = 'experiments', namespace: str = 'default', ) -> str: """Returns the Kubernetes pod address of a job. Args: job_name: Job name. experiment_id: Experiment ID. work_unit_id: Work unit ID service: Name of the service for the job. Defaults to 'experiments' namespace: Namespace of the job. Defaults to 'default' """ return ( f'{experiment_id}-{work_unit_id}-{job_name}' f'.{service}.{namespace}.svc.cluster.local:2222' )
xmanager-main
xmanager/contrib/addressing.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for xm_tensorflow.""" import json from typing import cast from absl.testing import absltest from absl.testing import parameterized from xmanager import xm from xmanager import xm_local from xmanager.contrib import addressing from xmanager.contrib import xm_tensorflow class XmTensorflowTest(parameterized.TestCase): @parameterized.product(num_workers=[0, 2, 4]) def test_kubernetes_multiworker_strategy(self, num_workers): experiment = absltest.mock.MagicMock() type(experiment).experiment_id = absltest.mock.PropertyMock( return_value=123 ) work_unit = absltest.mock.MagicMock() type(work_unit).work_unit_id = absltest.mock.PropertyMock(return_value=42) executable = absltest.mock.MagicMock() executor = absltest.mock.MagicMock(spec=xm_local.Kubernetes) hparams = xm.SequentialArgs.from_collection({'a': 'b'}) worker_name = 'best_worker' builder = xm_tensorflow.MultiWorkerMirroredStrategyBuilder( experiment=experiment, worker_executable=executable, worker_executor=executor, num_workers=num_workers, worker_name=worker_name, ) job_group = builder.create_job_group(hparams=hparams, work_unit=work_unit) expected_job_names = [f'{worker_name}-{i}' for i in range(num_workers)] expected_worker_domains = [ addressing.k8s_pod_domain( job_name=job_name, experiment_id=123, work_unit_id=42 ) for job_name in expected_job_names ] self.assertSameElements(expected_job_names, list(job_group.jobs.keys())) for i, job_name in enumerate(expected_job_names): self.assertIsInstance(job_group.jobs[job_name], xm.Job) job = cast(xm.Job, job_group.jobs[job_name]) self.assertEqual(job.executable, executable) self.assertEqual(job.executor, executor) self.assertEqual(job.args, xm.SequentialArgs.from_collection(hparams)) tf_config = { 'cluster': {'worker': expected_worker_domains}, 'task': {'type': 'worker', 'index': i}, } self.assertEqual(job.env_vars, {'TF_CONFIG': json.dumps(tf_config)}) @parameterized.product(num_workers=[0, 2], num_ps=[0, 2]) def test_kubernetes_parameter_server_strategy(self, num_workers, num_ps): experiment = absltest.mock.MagicMock() type(experiment).experiment_id = absltest.mock.PropertyMock( return_value=123 ) work_unit = absltest.mock.MagicMock() type(work_unit).work_unit_id = absltest.mock.PropertyMock(return_value=42) chief_executable = absltest.mock.MagicMock() chief_executor = absltest.mock.MagicMock(spec=xm_local.Kubernetes) worker_executable = absltest.mock.MagicMock() worker_executor = absltest.mock.MagicMock(spec=xm_local.Kubernetes) ps_executable = absltest.mock.MagicMock() ps_executor = absltest.mock.MagicMock(spec=xm_local.Kubernetes) chief_name = 'best_chief' worker_name = 'best_worker' ps_name = 'best_ps' hparams = xm.SequentialArgs.from_collection({'a': 'b'}) builder = xm_tensorflow.ParameterServerStrategyBuilder( experiment, chief_executable, chief_executor, worker_executable, worker_executor, ps_executable, ps_executor, chief_name=chief_name, worker_name=worker_name, ps_name=ps_name, num_workers=num_workers, num_ps=num_ps, ) job_group = builder.create_job_group(work_unit=work_unit, hparams=hparams) expected_worker_job_names = [ f'{worker_name}-{i}' for i in range(num_workers) ] expected_ps_job_names = [f'{ps_name}-{i}' for i in range(num_ps)] self.assertSameElements( [chief_name] + expected_worker_job_names + expected_ps_job_names, list(job_group.jobs.keys()), ) expected_chief_domain = addressing.k8s_pod_domain( chief_name, experiment_id=123, work_unit_id=42 ) expected_worker_domains = [ addressing.k8s_pod_domain(worker_name, 123, 42) for worker_name in expected_worker_job_names ] expected_ps_domains = [ addressing.k8s_pod_domain(ps_name, 123, 42) for ps_name in expected_ps_job_names ] for job in job_group.jobs.values(): self.assertIsInstance(job, xm.Job) # Test chief job = cast(xm.Job, job_group.jobs[chief_name]) def _create_expected_tf_config(task_type, task_index): return { 'cluster': { 'chief': [expected_chief_domain], 'worker': expected_worker_domains, 'ps': expected_ps_domains, }, 'task': { 'type': task_type, 'index': task_index, }, } self.assertEqual(job.executable, chief_executable) self.assertEqual(job.executor, chief_executor) self.assertEqual( job.env_vars, {'TF_CONFIG': json.dumps(_create_expected_tf_config('chief', 0))}, ) # Test workers for i in range(num_workers): worker_job_name = expected_worker_job_names[i] job = cast(xm.Job, job_group.jobs[worker_job_name]) self.assertEqual(job.executable, worker_executable) self.assertEqual(job.executor, worker_executor) self.assertEqual(job.args, xm.SequentialArgs.from_collection(hparams)) self.assertEqual( job.env_vars, {'TF_CONFIG': json.dumps(_create_expected_tf_config('worker', i))}, ) # Test parameter servers for i in range(num_ps): ps_job_name = expected_ps_job_names[i] job = cast(xm.Job, job_group.jobs[ps_job_name]) self.assertEqual(job.executable, ps_executable) self.assertEqual(job.executor, ps_executor) self.assertEqual( job.env_vars, {'TF_CONFIG': json.dumps(_create_expected_tf_config('ps', i))}, ) if __name__ == '__main__': absltest.main()
xmanager-main
xmanager/contrib/xm_tensorflow_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the xmanager.contrib.tensoboard module.""" from typing import Any, Mapping from absl.testing import absltest from absl.testing import parameterized from xmanager import xm from xmanager import xm_local from xmanager.contrib import tensorboard class TensorboardTest(parameterized.TestCase): @parameterized.product( executor=[xm_local.Vertex(), xm_local.Kubernetes(), xm_local.Local()], logdir=['logs'], args=[{}, None, {'new': 0}], ) def test_add_tensorboard_negative_timeout( self, executor: xm.Executor, logdir: str, args: Mapping[str, Any] ): mock_experiment = absltest.mock.Mock() mock_experiment.add.return_value = None mock_executable = absltest.mock.Mock() mock_experiment.package.return_value = [mock_executable] with self.assertRaises(RuntimeError): tensorboard.add_tensorboard( mock_experiment, logdir=logdir, executor=executor, timeout_secs=-5, args=args, ) @parameterized.product( executor=[xm_local.Vertex(), xm_local.Kubernetes(), xm_local.Local()], logdir=['logs'], timeout_secs=[0, 5], args=[{}, None, {'new': 0}], ) def test_add_tensorboard( self, executor: xm.Executor, logdir: str, timeout_secs: int, args: Mapping[str, Any], ): mock_experiment = absltest.mock.Mock() mock_experiment.add.return_value = None mock_executable = absltest.mock.Mock() mock_experiment.package.return_value = [mock_executable] tensorboard.add_tensorboard( mock_experiment, logdir=logdir, executor=executor, timeout_secs=timeout_secs, args=args, ) expected_packageable_spec_arg = ( tensorboard.TensorboardProvider.get_tensorboard_packageable( timeout_secs=timeout_secs ) ) mock_experiment.package.assert_called_once() packageable_arg = mock_experiment.package.call_args[0][0][0] self.assertEqual( packageable_arg.executable_spec, expected_packageable_spec_arg ) self.assertEqual(packageable_arg.executor_spec, executor.Spec()) expected_job = xm.Job( executable=mock_executable, executor=executor, args=tensorboard.TensorboardProvider.get_tensorboard_job_args( logdir, additional_args=args ), name='tensorboard', ) mock_experiment.add.assert_called_once() auxiliary_job_arg = mock_experiment.add.call_args[0][0] self.assertIsInstance(auxiliary_job_arg, xm.AuxiliaryUnitJob) self.assertEqual(auxiliary_job_arg._job, expected_job) def test_get_tensorboard_packageable_negative_timeout(self): provider = tensorboard.TensorboardProvider with self.assertRaises(RuntimeError): provider.get_tensorboard_packageable(timeout_secs=-5) @parameterized.product(timeout_secs=[0, 5]) def test_get_tensorboard_packageable(self, timeout_secs: int): provider = tensorboard.TensorboardProvider packageable = provider.get_tensorboard_packageable( timeout_secs=timeout_secs ) self.assertIsInstance(packageable, xm.PythonContainer) self.assertEqual(packageable.base_image, 'tensorflow/tensorflow') @parameterized.product( log_dir=['logs'], port=[None, 6006, 2002], additional_args=[{}, None, {'logdir': 'logs_v2'}, {'new': 0}], ) def test_get_tensorboard_job_args( self, log_dir: str, port: int, additional_args: Mapping[str, Any] ): provider = tensorboard.TensorboardProvider args = provider.get_tensorboard_job_args(log_dir, port, additional_args) self.assertDictContainsSubset( dict( { 'logdir': log_dir, 'port': port or provider.DEFAULT_TENSORBOARD_PORT, }, **(additional_args if additional_args else {}), ), args, ) if __name__ == '__main__': absltest.main()
xmanager-main
xmanager/contrib/tensorboard_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper methods for running Tensorboard from the client.""" from typing import Any, Mapping, Optional from xmanager import xm class TensorboardProvider: """A class to generate package and job/args to Tensorboard jobs.""" DEFAULT_TENSORBOARD_PORT = 6006 @staticmethod def get_tensorboard_packageable(timeout_secs: int) -> xm.PythonContainer: """Creates container spec running TensorBoard server. Args: timeout_secs: Seconds to run the server for. Note that a value of 0 disables the associated timeout. Raises: RuntimeError: `timeout_secs` is negative. Returns: Spec of container running TensorBoard server for a specified period of time. """ if timeout_secs < 0: raise RuntimeError('`timeout_secs` must be a nonnegative number') return xm.PythonContainer( base_image='tensorflow/tensorflow', entrypoint=xm.CommandList([f'timeout {timeout_secs}s tensorboard']), ) @staticmethod def get_tensorboard_job_args( log_dir: str, port: Optional[int] = None, additional_args: Optional[Mapping[str, Any]] = None, ) -> Mapping[str, Any]: """Get arguments to start a Tensorboard job.""" args = { 'logdir': log_dir, 'port': port or TensorboardProvider.DEFAULT_TENSORBOARD_PORT, # Allows accessing visualisations from Docker container running locally. 'host': '0.0.0.0', # This is set to true by default when running Tensorboard. # Since it doesn't seem to be working well with GKE Workload Identity, # we set it to false for now. Can be overriden through the # `additional_args` param. # # https://github.com/tensorflow/tensorboard/issues/4784#issuecomment-868945650 'load_fast': 'false', } if additional_args: args.update(additional_args) return args def add_tensorboard( experiment: xm.Experiment, logdir: str, executor: xm.Executor, timeout_secs: int = 60 * 60 * 24, args: Optional[Mapping[str, Any]] = None, ) -> None: """Self-contained function which adds a Tensorboard auxiliary job to @experiment.""" provider = TensorboardProvider [executable] = experiment.package( [ xm.Packageable( provider.get_tensorboard_packageable(timeout_secs=timeout_secs), executor.Spec(), ) ] ) job = xm.Job( executable, executor, args=provider.get_tensorboard_job_args(logdir, additional_args=args), name='tensorboard', ) # TODO: Add support for `termination_delay_secs`. experiment.add(xm.AuxiliaryUnitJob(job, termination_delay_secs=0))
xmanager-main
xmanager/contrib/tensorboard.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A module for communicating with the Bazel server.""" import abc from typing import List, Sequence, Tuple import attr class BazelService(abc.ABC): """An interface for Bazel operations.""" @abc.abstractmethod def fetch_kinds(self, labels: Sequence[str]) -> List[str]: """Fetches kinds of given targets. See https://docs.bazel.build/versions/main/query.html#output-label_kind. Args: labels: Labels of the targets to query. Returns: A list of kinds, for example, `['py_binary rule']`. """ raise NotImplementedError @abc.abstractmethod def build_targets( self, labels: Sequence[str], tail_args: Sequence[str] ) -> List[List[str]]: """Builds given targets and returns paths to their important outputs. Args: labels: Labels of the targets to build. tail_args: Arguments to append to the Bazel command. Returns: For each label returns a list of its important outputs. """ raise NotImplementedError def _to_tuple(sequence: Sequence[str]) -> Tuple[str, ...]: """A standalone function to satisfy PyType.""" return tuple(sequence) @attr.s(auto_attribs=True, frozen=True) class BazelTarget: """A Bazel target to be built.""" label: str bazel_args: Tuple[str, ...] = attr.ib(converter=_to_tuple)
xmanager-main
xmanager/bazel/client.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A collection of tools for files operations.""" import os import tempfile class TemporaryFilePath: """A context manager providing a temporary file path. Unlike NamedTemporaryFile, TemporaryFilePath closes the file when one enters the context. """ _path: str def __enter__(self): fd, path = tempfile.mkstemp() os.close(fd) self._path = path return path def __exit__(self, error_type, error_value, traceback): os.remove(self._path)
xmanager-main
xmanager/bazel/file_utils.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions to authenticate with GCP.""" import functools import os from typing import Any, Iterable, Dict from absl import flags from google import auth from googleapiclient import discovery from googleapiclient import errors _DEFAULT_SCOPES = ('https://www.googleapis.com/auth/cloud-platform',) _GCP_SERVICE_ACCOUNT_NAME = flags.DEFINE_string( 'xm_gcp_service_account_name', 'xmanager', ( 'Specifies the user-managed service account name to be used by XManager' 'Note that user-managed service accounts have the following format: ' '`{service-account-name}@{project-id}.iam.gserviceaccount.com`, so only' 'the part before @ is required' ), ) def get_project_name() -> str: """Gets the Project ID of the GCP Project.""" _, project = auth.default() return project def get_project_number() -> str: """Gets the Project Number of the GCP Project.""" rm = discovery.build('cloudresourcemanager', 'v1') response = rm.projects().get(projectId=get_project_name()).execute() return response['projectNumber'] def get_creds(scopes: Iterable[str] = _DEFAULT_SCOPES): """Gets the google credentials to be used with GCP APIs.""" creds, _ = auth.default(scopes=scopes) return creds # The @lru_cache decorator causes this to only be run once per Python session. @functools.lru_cache() def enable_apis(): """Enables APIs on the GCP Project.""" resource = discovery.build('serviceusage', 'v1') body = { 'serviceIds': [ 'aiplatform.googleapis.com', 'cloudbuild.googleapis.com', 'cloudresourcemanager.googleapis.com', 'compute.googleapis.com', 'container.googleapis.com', 'containerregistry.googleapis.com', 'iam.googleapis.com', 'logging.googleapis.com', 'storage-api.googleapis.com', 'tpu.googleapis.com', ] } resource.services().batchEnable( parent=f'projects/{get_project_number()}', body=body ).execute() def get_service_account() -> str: """Gets or creates the service account for running XManager in GCP. The default Vertex AI Training Service Agent has limited scopes. It is more useful to use a custom service account that can access a greater number of GCP APIs. The `--xm_gcp_service_account_name` flag can be used to specify a user-managed service account to be used. If not specified, defaults to `xmanager`. Returns: The service account email. Raises: HttpError: if the response was not a 2xx or 403. """ service_account_name = _GCP_SERVICE_ACCOUNT_NAME.value service_account = ( f'{service_account_name}@{get_project_name()}.iam.gserviceaccount.com' ) try: _maybe_create_service_account(service_account) _maybe_grant_service_account_permissions(service_account) except errors.HttpError as e: # A 403 implies that the user is not an IAM Admin or Cloud Resource Manager # API is not enabled. # The project admin probably already has set up IAM roles, so the former # check can be skipped. if e.resp.status != 403 or 'cloudresourcemanager.googleapis.com' in e.uri: raise e return service_account def _maybe_create_service_account(service_account: str) -> None: """Creates the default service account if it does not exist.""" iam = discovery.build('iam', 'v1') accounts = ( iam.projects() .serviceAccounts() .list(name='projects/' + get_project_name()) .execute() ) for account in accounts.get('accounts', []): if account['email'] == service_account: return # https://cloud.google.com/iam/docs/reference/rest/v1/projects.serviceAccounts body = { 'accountId': service_account.split('@')[0], 'serviceAccount': { 'displayName': service_account.split('@')[0], 'description': 'XManager service account', }, } accounts = ( iam.projects() .serviceAccounts() .create(name='projects/' + get_project_name(), body=body) .execute() ) def _maybe_grant_service_account_permissions(service_account: str) -> None: """Grants the default service account IAM permissions if necessary.""" rm = discovery.build('cloudresourcemanager', 'v1') policy = rm.projects().getIamPolicy(resource=get_project_name()).execute() want_roles = ['roles/aiplatform.user', 'roles/storage.admin'] should_set = False for role in want_roles: member = 'serviceAccount:' + service_account changed = _add_member_to_iam_policy(policy, role, member) should_set = should_set or changed if not should_set: return None body = {'policy': policy} rm.projects().setIamPolicy(resource=get_project_name(), body=body).execute() def _add_member_to_iam_policy( policy: Dict[str, Any], role: str, member: str ) -> bool: """Modifies the IAM policy to add the member with the role.""" for i, binding in enumerate(policy['bindings']): if binding['role'] == role: if member in binding['members']: return False policy['bindings'][i]['members'].append(member) return True policy['bindings'].append({'role': role, 'members': [member]}) return True def get_bucket() -> str: bucket = os.environ.get('GOOGLE_CLOUD_BUCKET_NAME', None) if bucket: return bucket raise ValueError( '$GOOGLE_CLOUD_BUCKET_NAME is undefined. Run ' '`export GOOGLE_CLOUD_BUCKET_NAME=<bucket-name>`, ' 'replacing <bucket-name> with a Google Cloud Storage bucket. ' 'You can create a bucket with ' '`gsutil mb -l us-central1 gs://$GOOGLE_CLOUD_BUCKET_NAME`' )
xmanager-main
xmanager/cloud/auth.py
"""Tests for auth.""" import sys import unittest from unittest import mock from absl import flags from absl.testing import parameterized from googleapiclient import discovery from xmanager.cloud import auth _TEST_SERVICE_ACCOUNT_NAME = 'test-service-account' _DEFAULT_SERVICE_ACCOUNT_NAME = 'xmanager' _SERVICE_ACCOUNT_FLAG_TEST_PARAMETERS = [ { 'sys_argv': sys.argv, 'expected_account_name': _DEFAULT_SERVICE_ACCOUNT_NAME, }, { 'sys_argv': [ *sys.argv, f'--xm_gcp_service_account_name={_TEST_SERVICE_ACCOUNT_NAME}', ], 'expected_account_name': _TEST_SERVICE_ACCOUNT_NAME, }, ] class GetServiceAccountTest(parameterized.TestCase): def setUp(self): super().setUp() # Resets flags between runs flags.FLAGS.unparse_flags() @parameterized.parameters(_SERVICE_ACCOUNT_FLAG_TEST_PARAMETERS) def test_get_service_account_existing_account( self, sys_argv, expected_account_name ): """Tests that `get_service_account` does nothing on a properly configured account.""" flags.FLAGS(sys_argv) mock_service_accounts = mock.Mock() mock_service_accounts.list.return_value.execute.return_value = { 'accounts': [ { 'email': f'{expected_account_name}@test-project.iam.gserviceaccount.com' } ] } mock_service_accounts.create.return_value.execute.return_value = None mock_projects = mock.Mock() mock_projects.serviceAccounts.return_value = mock_service_accounts mock_projects.getIamPolicy.return_value.execute.return_value = { 'bindings': [ { 'role': 'roles/aiplatform.user', 'members': [ f'serviceAccount:{expected_account_name}' '@test-project.iam.gserviceaccount.com' ], }, { 'role': 'roles/storage.admin', 'members': [ f'serviceAccount:{expected_account_name}' '@test-project.iam.gserviceaccount.com' ], }, ] } mock_discovery_build = mock.Mock() mock_discovery_build.projects.return_value = mock_projects with mock.patch.object( auth, 'get_project_name', return_value='test-project' ), mock.patch.object(discovery, 'build', return_value=mock_discovery_build): auth.get_service_account() mock_service_accounts.create.assert_not_called() mock_projects.setIamPolicy.assert_not_called() @parameterized.parameters(_SERVICE_ACCOUNT_FLAG_TEST_PARAMETERS) def test_get_service_account_new_account( self, sys_argv, expected_account_name ): """Tests if `get_service_account` creates a new account and permissions properly.""" flags.FLAGS(sys_argv) mock_service_accounts = mock.Mock() mock_service_accounts.list.return_value.execute.return_value = {} mock_service_accounts.create.return_value.execute.return_value = None mock_projects = mock.Mock() mock_projects.serviceAccounts.return_value = mock_service_accounts mock_projects.getIamPolicy.return_value.execute.return_value = { 'bindings': [] } mock_discovery_build = mock.Mock() mock_discovery_build.projects.return_value = mock_projects with mock.patch.object( auth, 'get_project_name', return_value='test-project' ), mock.patch.object(discovery, 'build', return_value=mock_discovery_build): auth.get_service_account() mock_service_accounts.create.assert_called_once_with( name='projects/test-project', body={ 'accountId': expected_account_name, 'serviceAccount': { 'displayName': expected_account_name, 'description': 'XManager service account', }, }, ) mock_projects.setIamPolicy.assert_called_once_with( resource='test-project', body={ 'policy': { 'bindings': [ { 'role': 'roles/aiplatform.user', 'members': [ f'serviceAccount:{expected_account_name}' '@test-project.iam.gserviceaccount.com' ], }, { 'role': 'roles/storage.admin', 'members': [ f'serviceAccount:{expected_account_name}' '@test-project.iam.gserviceaccount.com' ], }, ] } }, ) @parameterized.parameters(_SERVICE_ACCOUNT_FLAG_TEST_PARAMETERS) def test_get_service_account_no_permissions( self, sys_argv, expected_account_name ): """Tests if `get_service_account` creates permissions properly for an existing account with no permissions.""" flags.FLAGS(sys_argv) mock_service_accounts = mock.Mock() mock_service_accounts.list.return_value.execute.return_value = { 'accounts': [ { 'email': f'{expected_account_name}@test-project.iam.gserviceaccount.com' } ] } mock_service_accounts.create.return_value.execute.return_value = None mock_projects = mock.Mock() mock_projects.serviceAccounts.return_value = mock_service_accounts mock_projects.getIamPolicy.return_value.execute.return_value = { 'bindings': [] } mock_discovery_build = mock.Mock() mock_discovery_build.projects.return_value = mock_projects with mock.patch.object( auth, 'get_project_name', return_value='test-project' ), mock.patch.object(discovery, 'build', return_value=mock_discovery_build): auth.get_service_account() mock_service_accounts.create.assert_not_called() mock_projects.setIamPolicy.assert_called_once_with( resource='test-project', body={ 'policy': { 'bindings': [ { 'role': 'roles/aiplatform.user', 'members': [ f'serviceAccount:{expected_account_name}' '@test-project.iam.gserviceaccount.com' ], }, { 'role': 'roles/storage.admin', 'members': [ f'serviceAccount:{expected_account_name}' '@test-project.iam.gserviceaccount.com' ], }, ] } }, ) @parameterized.parameters(_SERVICE_ACCOUNT_FLAG_TEST_PARAMETERS) def test_get_service_account_some_permissions( self, sys_argv, expected_account_name ): """Tests if `get_service_account` creates permissions properly for an existing account with some permissions.""" flags.FLAGS(sys_argv) mock_service_accounts = mock.Mock() mock_service_accounts.list.return_value.execute.return_value = { 'accounts': [ { 'email': ( f'{expected_account_name}' '@test-project.iam.gserviceaccount.com' ) }, { # Used to test that permissions of other users are not affected 'email': 'someone_else@test-project.iam.gserviceaccount.com' }, ] } mock_service_accounts.create.return_value.execute.return_value = None mock_projects = mock.Mock() mock_projects.serviceAccounts.return_value = mock_service_accounts mock_projects.getIamPolicy.return_value.execute.return_value = { 'bindings': [ { 'role': 'roles/aiplatform.user', 'members': [ f'serviceAccount:{expected_account_name}' '@test-project.iam.gserviceaccount.com' ], }, { 'role': 'roles/storage.admin', 'members': [ 'someone-else@test-project.iam.gserviceaccount.com' ], }, ] } mock_discovery_build = mock.Mock() mock_discovery_build.projects.return_value = mock_projects with mock.patch.object( auth, 'get_project_name', return_value='test-project' ), mock.patch.object(discovery, 'build', return_value=mock_discovery_build): auth.get_service_account() mock_service_accounts.create.assert_not_called() mock_projects.setIamPolicy.assert_called_once_with( resource='test-project', body={ 'policy': { 'bindings': [ { 'role': 'roles/aiplatform.user', 'members': [ f'serviceAccount:{expected_account_name}' '@test-project.iam.gserviceaccount.com' ], }, { 'role': 'roles/storage.admin', 'members': [ 'someone-else@test-project.iam.gserviceaccount.com', ( f'serviceAccount:{expected_account_name}' '@test-project.iam.gserviceaccount.com' ), ], }, ] } }, ) if __name__ == '__main__': unittest.main()
xmanager-main
xmanager/cloud/auth_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for xmanager.cloud.utils.""" import os import tempfile import unittest from xmanager.cloud import utils _CLUSTER_SPEC = """{ "cluster": { "workerpool0": ["cmle-training-workerpool0-ab-0:2222"], "workerpool1": ["cmle-training-workerpool1-ab-0:2222", "cmle-training-workerpool1-ab-1:2222"], "workerpool2": ["cmle-training-workerpool2-ab-0:2222", "cmle-training-workerpool2-ab-1:2222"] }, "environment": "cloud", "task": { "type": "workerpool1", "index": 1, "trial": "" } }""".replace( '\n', ' ' ) class UtilsTest(unittest.TestCase): def tearDown(self): super(UtilsTest, self).tearDown() os.environ['CLUSTER_SPEC'] = '' def test_get_master_address_port(self): os.environ['CLUSTER_SPEC'] = _CLUSTER_SPEC address, port = utils.get_master_address_port() self.assertEqual(address, 'cmle-training-workerpool0-ab-0') self.assertEqual(port, '2222') def test_get_master_address_port_default(self): address, port = utils.get_master_address_port() self.assertEqual(address, '127.0.0.1') self.assertEqual(port, '29500') def test_get_world_size_rank(self): os.environ['CLUSTER_SPEC'] = _CLUSTER_SPEC world_size, rank = utils.get_world_size_rank() self.assertEqual(world_size, 5) self.assertEqual(rank, 2) def test_get_world_size_rank_default(self): world_size, rank = utils.get_world_size_rank() self.assertEqual(world_size, 1) self.assertEqual(rank, 0) def test_wrap_and_unwrap_addresses(self): arg = '--master=' + utils.get_workerpool_address('workerpool0') self.assertEqual(arg, '--master=%objectname(workerpool0)%') os.environ['CLUSTER_SPEC'] = _CLUSTER_SPEC self.assertEqual( utils.map_workerpool_address_args([arg]), ['--master=cmle-training-workerpool0-ab-0:2222'], ) def test_create_workerpool_address_env_vars_script(self): os.environ['MY_WORKER'] = utils.get_workerpool_address('workerpool0') os.environ['CLUSTER_SPEC'] = _CLUSTER_SPEC t = tempfile.NamedTemporaryFile() utils.create_workerpool_address_env_vars_script(t.name) expected = """ #!/bin/bash export MY_WORKER=cmle-training-workerpool0-ab-0:2222 """ with open(t.name) as f: self.assertEqual(f.read(), expected.strip()) if __name__ == '__main__': unittest.main()
xmanager-main
xmanager/cloud/utils_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
xmanager-main
xmanager/cloud/__init__.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Client for interacting with Vertex AI. https://cloud.google.com/vertex-ai/docs/reference/rest """ import asyncio import logging import math import os from typing import Any, Dict, List, Optional, Sequence, Tuple import attr from google.cloud import aiplatform from google.cloud import aiplatform_v1 as aip_v1 from xmanager import xm from xmanager.cloud import auth from xmanager.xm import utils from xmanager.xm_local import executables as local_executables from xmanager.xm_local import execution as local_execution from xmanager.xm_local import executors as local_executors from xmanager.xm_local import status as local_status _DEFAULT_LOCATION = 'us-central1' # The only machines available on AI Platform are N1 machines and A2 machines. # https://cloud.google.com/ai-platform-unified/docs/predictions/machine-types#machine_type_comparison # TODO: Move lookup to a canonical place. _MACHINE_TYPE_TO_CPU_RAM = { 'n1-standard-4': (4, 15 * xm.GiB), 'n1-standard-8': (8, 30 * xm.GiB), 'n1-standard-16': (16, 60 * xm.GiB), 'n1-standard-32': (32, 120 * xm.GiB), 'n1-standard-64': (64, 240 * xm.GiB), 'n1-standard-96': (96, 360 * xm.GiB), 'n1-highmem-2': (2, 13 * xm.GiB), 'n1-highmem-4': (4, 26 * xm.GiB), 'n1-highmem-8': (8, 52 * xm.GiB), 'n1-highmem-16': (16, 104 * xm.GiB), 'n1-highmem-32': (32, 208 * xm.GiB), 'n1-highmem-64': (64, 416 * xm.GiB), 'n1-highmem-96': (96, 624 * xm.GiB), 'n1-highcpu-16': (16, 14 * xm.GiB), 'n1-highcpu-32': (32, 28 * xm.GiB), 'n1-highcpu-64': (64, 57 * xm.GiB), 'n1-highcpu-96': (96, 86 * xm.GiB), } _A100_GPUS_TO_MACHINE_TYPE = { 1: 'a2-highgpu-1g', 2: 'a2-highgpu-2g', 4: 'a2-highgpu-4g', 8: 'a2-highgpu-8g', 16: 'a2-megagpu-16g', } _CLOUD_TPU_ACCELERATOR_TYPES = { xm.ResourceType.TPU_V2: 'TPU_V2', xm.ResourceType.TPU_V3: 'TPU_V3', } _STATE_TO_STATUS = { aip_v1.JobState.JOB_STATE_SUCCEEDED: ( local_status.LocalWorkUnitStatusEnum.COMPLETED ), aip_v1.JobState.JOB_STATE_CANCELLED: ( local_status.LocalWorkUnitStatusEnum.CANCELLED ), aip_v1.JobState.JOB_STATE_QUEUED: ( local_status.LocalWorkUnitStatusEnum.RUNNING ), aip_v1.JobState.JOB_STATE_PENDING: ( local_status.LocalWorkUnitStatusEnum.RUNNING ), aip_v1.JobState.JOB_STATE_RUNNING: ( local_status.LocalWorkUnitStatusEnum.RUNNING ), aip_v1.JobState.JOB_STATE_CANCELLING: ( local_status.LocalWorkUnitStatusEnum.RUNNING ), aip_v1.JobState.JOB_STATE_PAUSED: ( local_status.LocalWorkUnitStatusEnum.RUNNING ), aip_v1.JobState.JOB_STATE_FAILED: ( local_status.LocalWorkUnitStatusEnum.FAILED ), } # Hide noisy warning regarding: # `file_cache is unavailable when using oauth2client >= 4.0.0 or google-auth` logging.getLogger('googleapiclient.discovery_cache').setLevel(logging.ERROR) _default_client = None def _vertex_job_predicate(job: xm.Job) -> bool: return isinstance(job.executor, local_executors.Vertex) class Client: """Client class for interacting with AI Platform (Unified).""" def __init__( self, project: Optional[str] = None, location: str = _DEFAULT_LOCATION ) -> None: """Create a client. Args: project: GCP project ID. location: Location of the API endpoint. Defaults to region us-central1. https://cloud.google.com/vertex-ai/docs/reference/rest#service-endpoint """ self.location = location self.project = project or auth.get_project_name() self.parent = f'projects/{self.project}/locations/{self.location}' aiplatform.init(project=self.project, location=self.location) def launch(self, name: str, jobs: Sequence[xm.Job]) -> str: """Launch jobs on AI Platform (Unified).""" pools = [] tensorboard, output_dir = self.get_tensorboard_settings(jobs) for i, job in enumerate(jobs): executable = job.executable if not isinstance( executable, local_executables.GoogleContainerRegistryImage ): raise ValueError( 'Executable {} has type {}. Executable must be of ' 'type GoogleContainerRegistryImage'.format( executable, type(executable) ) ) args = xm.merge_args(executable.args, job.args).to_list(utils.ARG_ESCAPER) env_vars = {**executable.env_vars, **job.env_vars} env = [{'name': k, 'value': v} for k, v in env_vars.items()] if i == 0 and job.executor.requirements.replicas > 1: raise ValueError( 'The first job in a JobGroup using the Vertex AI ' 'executor cannot have requirements.replicas > 1.' ) pool = aip_v1.WorkerPoolSpec( machine_spec=get_machine_spec(job), container_spec=aip_v1.ContainerSpec( image_uri=executable.image_path, args=args, env=env, ), replica_count=job.executor.requirements.replicas, ) pools.append(pool) # TOOD(chenandrew): Vertex Training only allows for 4 worker pools. # If Vertex does not implement more worker pools, another work-around # is to simply put all jobs into the same worker pool as replicas. # Each replica would contain the same image, but would execute different # modules based the replica index. A disadvantage of this implementation # is that every replica must have the same machine_spec. if len(pools) > 4: raise ValueError( 'Cloud Job for xm jobs {} contains {} worker types. ' 'Only 4 worker types are supported'.format(jobs, len(pools)) ) custom_job = aiplatform.CustomJob( project=self.project, location=self.location, display_name=name, worker_pool_specs=pools, base_output_dir=output_dir, staging_bucket=f'gs://{auth.get_bucket()}', ) # TODO Vertex AI can't use TPUs with SA. # https://github.com/deepmind/xmanager/issues/11 service_account = auth.get_service_account() for job in jobs: assert isinstance(job.executor, local_executors.Vertex) if job.executor.requirements.accelerator in xm.TpuType: service_account = None break custom_job.submit( service_account=service_account, tensorboard=tensorboard, enable_web_access=True, ) print(f'Job launched at: {custom_job._dashboard_uri()}') # pylint: disable=protected-access return custom_job.resource_name def get_tensorboard_settings(self, jobs: Sequence[xm.Job]) -> Tuple[str, str]: """Get the tensorboard settings for a sequence of Jobs.""" executors = [] for job in jobs: assert isinstance(job.executor, local_executors.Vertex) executors.append(job.executor) if all(not executor.tensorboard for executor in executors): return '', '' if not executors[0].tensorboard: raise ValueError( 'Jobs in this job group must have the same tensorboard settings. ' + 'jobs[0] has no tensorboard settings.' ) output_dir = executors[0].tensorboard.base_output_directory tensorboard = executors[0].tensorboard.name for i, executor in enumerate(executors): if not executor: raise ValueError( 'Jobs in this job group must have the same tensorboard settings. ' + 'jobs[i] has no tensorboard settings.' ) if ( executor.tensorboard.name != tensorboard or executor.tensorboard.base_output_directory != output_dir ): raise ValueError( 'Jobs in this job group must have the same tensorboard settings. ' + f'jobs[0] has tensorboard = {tensorboard} and output_dir =' + f'{output_dir}. jobs[{i}] has tensorboard = ' + f'{executor.tensorboard.name} and output_dir = ' f'{executor.tensorboard.base_output_directory}.' ) if output_dir and not output_dir.startswith('gs://'): output_dir = os.path.join('gs://', output_dir) return tensorboard, output_dir async def wait_for_job(self, job_name: str) -> None: job = aiplatform.CustomJob.get(job_name) loop = asyncio.get_event_loop() return await loop.run_in_executor(None, job._block_until_complete) # pylint: disable=protected-access def cancel(self, job_name: str) -> None: aiplatform.CustomJob.get(job_name).cancel() async def get_or_create_tensorboard(self, name: str) -> str: """Gets or creates a Vertex Tensorboard instance.""" tensorboard_client = aip_v1.TensorboardServiceAsyncClient( client_options={ 'api_endpoint': f'{self.location}-aiplatform.googleapis.com' } ) request = aip_v1.ListTensorboardsRequest( parent=self.parent, filter=f'displayName={name}' ) response = await tensorboard_client.list_tensorboards(request) async for page in response.pages: if page.tensorboards: return response.tensorboards[0].name return await self.create_tensorboard(name) async def create_tensorboard(self, name: str) -> str: """Creates a Vertex Tensorboard instance.""" tensorboard_client = aip_v1.TensorboardServiceAsyncClient( client_options={ 'api_endpoint': f'{self.location}-aiplatform.googleapis.com' } ) tensorboard = aip_v1.Tensorboard(display_name=name) op = await tensorboard_client.create_tensorboard( aip_v1.CreateTensorboardRequest( parent=self.parent, tensorboard=tensorboard, ) ) return (await op.result()).name def get_state(self, job_name: str) -> aip_v1.JobState: return aiplatform.CustomJob.get(job_name).state def set_default_client(client: Client) -> None: global _default_client _default_client = client def get_default_client(): global _default_client if _default_client is None: _default_client = Client() return _default_client def get_machine_spec(job: xm.Job) -> Dict[str, Any]: """Get the GCP machine type that best matches the Job's requirements.""" assert isinstance(job.executor, local_executors.Vertex) requirements = job.executor.requirements spec = {} for resource, value in requirements.task_requirements.items(): accelerator_type = None if resource in xm.GpuType: accelerator_type = 'NVIDIA_TESLA_' + str(resource).upper() elif resource in xm.TpuType: accelerator_type = _CLOUD_TPU_ACCELERATOR_TYPES[resource] if accelerator_type: spec['accelerator_type'] = aip_v1.AcceleratorType[accelerator_type] spec['accelerator_count'] = int(value) accelerator = spec.get('accelerator_type', None) if accelerator and accelerator == aip_v1.AcceleratorType.NVIDIA_TESLA_A100: for gpus, machine_type in sorted(_A100_GPUS_TO_MACHINE_TYPE.items()): if spec['accelerator_count'] <= gpus: spec['machine_type'] = machine_type break if not spec.get('machine_type', None): raise ValueError( 'a100={} does not fit in any valid machine type'.format( spec['accelerator_count'] ) ) elif ( accelerator == aip_v1.AcceleratorType.TPU_V2 or accelerator == aip_v1.AcceleratorType.TPU_V3 ): spec['machine_type'] = 'cloud-tpu' else: spec['machine_type'] = cpu_ram_to_machine_type( requirements.task_requirements.get(xm.ResourceType.CPU), requirements.task_requirements.get(xm.ResourceType.RAM), ) return spec @attr.s(auto_attribs=True) class VertexHandle(local_execution.ExecutionHandle): """A handle for referring to the launched container.""" job_name: str async def wait(self) -> None: await get_default_client().wait_for_job(self.job_name) def stop(self) -> None: get_default_client().cancel(self.job_name) def get_status(self) -> local_status.LocalWorkUnitStatus: state = get_default_client().get_state(self.job_name) status = _STATE_TO_STATUS[int(state)] return local_status.LocalWorkUnitStatus(status=status) # Must act on all jobs with `local_executors.Vertex` executor. def launch( experiment_title: str, work_unit_name: str, job_group: xm.JobGroup ) -> List[VertexHandle]: """Launch Vertex jobs in the job_group and return a handler.""" jobs = xm.job_operators.collect_jobs_by_filter( job_group, _vertex_job_predicate ) # As client creation may throw, do not initiate it if there are no jobs. if not jobs: return [] job_name = get_default_client().launch( name=f'{experiment_title}_{work_unit_name}', jobs=jobs, ) return [VertexHandle(job_name=job_name)] def cpu_ram_to_machine_type(cpu: Optional[int], ram: Optional[int]) -> str: """Convert a cpu and memory spec into a machine type.""" cpu = cpu or 0 ram = ram or 0 if cpu + ram == 0: return 'n1-standard-4' optimal_machine_type = '' optimal_excess_resources = math.inf for machine_type, ( machine_cpu, machine_ram, ) in _MACHINE_TYPE_TO_CPU_RAM.items(): if machine_cpu >= cpu and machine_ram >= ram: excess = machine_cpu + machine_ram - cpu - ram if excess < optimal_excess_resources: optimal_machine_type = machine_type optimal_excess_resources = excess if optimal_machine_type: return optimal_machine_type raise ValueError( '(cpu={}, ram={}) does not fit in any valid machine type'.format(cpu, ram) )
xmanager-main
xmanager/cloud/vertex.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest from xmanager import xm from xmanager.cloud import build_image class BuildImageTest(absltest.TestCase): def create_container(self, entrypoint) -> xm.PythonContainer: return xm.PythonContainer(entrypoint=entrypoint) def test_get_entrypoint_commands_module_adds_suffix(self): project = self.create_container(xm.ModuleName('some.python.module')) entrypoint_commands = build_image._get_entrypoint_commands(project) self.assertEndsWith(entrypoint_commands, ' "$@"') def test_get_entrypoint_commands_adds_suffix(self): commands = ['echo "aaa"'] project = self.create_container(xm.CommandList(commands)) entrypoint_commands = build_image._get_entrypoint_commands(project) self.assertEndsWith(entrypoint_commands, ' "$@"') def test_get_entrypoint_commands_no_dup_plain_suffix(self): commands = ['echo "aaa" $@'] project = self.create_container(xm.CommandList(commands)) entrypoint_commands = build_image._get_entrypoint_commands(project) self.assertEndsWith(entrypoint_commands, ' $@') def test_get_entrypoint_commands_no_dup_quoted_suffix(self): commands = ['echo "aaa" "$@"'] project = self.create_container(xm.CommandList(commands)) entrypoint_commands = build_image._get_entrypoint_commands(project) self.assertEndsWith(entrypoint_commands, ' "$@"') self.assertNotEndsWith(entrypoint_commands, ' "$@" "$@"') def test_get_entrypoint_commands_dup_single_quoted_suffix(self): commands = ['echo "aaa" \'$@\''] project = self.create_container(xm.CommandList(commands)) entrypoint_commands = build_image._get_entrypoint_commands(project) self.assertEndsWith(entrypoint_commands, ' \'$@\' "$@"') if __name__ == '__main__': absltest.main()
xmanager-main
xmanager/cloud/build_image_test.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper methods to find the cluster details when running on Vertex.""" import json import os import re from typing import List, Sequence, Tuple import urllib.request from absl import logging from google.cloud import storage def get_master_address_port() -> Tuple[str, str]: """Get the master worker from CLUSTER_SPEC. https://cloud.google.com/ai-platform/training/docs/distributed-training-containers#about-cluster-spec Returns: address string and port string """ cluster_spec = os.environ.get('CLUSTER_SPEC', None) logging.info('CLUSTER_SPEC: %s', cluster_spec) if not cluster_spec or 'workerpool0' not in cluster_spec: return '127.0.0.1', '29500' cluster_spec = json.loads(cluster_spec) master = cluster_spec['cluster']['workerpool0'][0] [addr, port] = master.split(':') return addr, port def get_world_size_rank() -> Tuple[int, int]: """Get the world size and rank of the current replica from CLUSTER_SPEC.""" cluster_spec = os.environ.get('CLUSTER_SPEC', None) if not cluster_spec: return 1, 0 cluster_spec = json.loads(cluster_spec) world_size = 0 for pool in cluster_spec['cluster']: if pool == cluster_spec['task']['type']: rank = world_size + cluster_spec['task']['index'] world_size += len(cluster_spec['cluster'][pool]) logging.info('WORLD SIZE: %d; RANK: %d', world_size, rank) return world_size, rank def create_cluster_specs(workers: Sequence[str]) -> List[str]: """Takes a list of domain names and constructs a CLUSTER_SPEC for each.""" cluster = {} for i, domain in enumerate(workers): cluster[f'workerpool{i}'] = [domain] specs = [] for i in range(len(workers)): spec = { 'cluster': cluster, 'task': {'type': f'workerpool{i}', 'index': i}, } specs.append(json.dumps(spec)) return specs def get_workerpool_address(workerpool: str) -> str: """Creates a late-binding that is mapped at runtime.""" return f'%objectname({workerpool})%' def map_workerpool_address_args(args: List[str]) -> List[str]: """Maps late-binding to workerpool addresses at runtime.""" cluster_spec = os.environ.get('CLUSTER_SPEC') if cluster_spec is None: return args # capture %objectname(<capture-group>)% late_bind_regex = re.compile(r'\%objectname\((.*)\)\%') cluster_spec = json.loads(cluster_spec)['cluster'] result = [] for arg in args: match = late_bind_regex.search(arg) if match is None: result.append(arg) else: worker_type = match.group(1) result.append( arg.replace( f'%objectname({worker_type})%', cluster_spec[worker_type][0] ) ) return result def print_workerpool_address_args(argv: List[str]) -> None: # Note that this is method is called by # third_party/py/xmanager/cloud/data/wrapped_entrypoint.sh for arg in map_workerpool_address_args(argv[1:]): print( arg, ) def create_workerpool_address_env_vars_script(path: str) -> None: """Create a script to map late-binding env vars to their value at runtime.""" with open(path, 'w') as f: f.write('#!/bin/bash\n\n') cluster_spec = os.environ.get('CLUSTER_SPEC', None) if cluster_spec is None: return content = [] # capture %objectname(<capture-group>)% late_bind_regex = re.compile(r'\%objectname\((.*)\)\%') cluster_spec = json.loads(cluster_spec)['cluster'] for key, value in os.environ.items(): match = late_bind_regex.match(value) if match: worker_type = match.group(1) content.append(f'export {key}={cluster_spec[worker_type][0]}') if content: with open(path, 'a') as f: f.write('\n'.join(content)) def get_region() -> str: """Get the region of the current GCE VM from metadata, e.g. us-central1.""" # Default VM instance metadata # https://cloud.google.com/compute/docs/metadata/default-metadata-values#vm_instance_metadata request = urllib.request.Request( 'http://metadata.google.internal/computeMetadata/v1/instance/zone' ) request.add_header('Metadata-Flavor', 'Google') response = urllib.request.urlopen(request) content = str(response.read()) zone = content.strip("'").split('/')[-1] region = zone[:-2] return region def get_closest_bucket(bucket_names: List[str]) -> str: """Get the closest bucket from a list of buckets.""" region = get_region() for name in bucket_names: b = storage.Bucket(client=storage.Client(), name=name) b.reload() # Only works for REGIONAL and MULT_REGIONAL. if region.startswith(b.location.lower()): return name logging.info('None of the buckets are close. Picking a random one.') return bucket_names[0]
xmanager-main
xmanager/cloud/utils.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Client for interacting with Kubernetes.""" import asyncio import functools from typing import Callable, Dict, List, Optional, Sequence from absl import flags import attr from kubernetes import client as k8s_client from kubernetes import config as k8s_config from xmanager import xm from xmanager.xm import utils from xmanager.xm_local import executables as local_executables from xmanager.xm_local import execution as local_execution from xmanager.xm_local import executors as local_executors from xmanager.xm_local import status as local_status _K8S_SERVICE_ACCOUNT_NAME = flags.DEFINE_string( 'xm_k8s_service_account_name', 'default', ( 'Specifies the Kubernetes Service Account name to be used by XManager' ' inthe pod specifications.' ), ) @functools.lru_cache() def client(): # Global singleton defers client creation until an actual launch. # If the user only launches local jobs, they don't need to create a client. return Client() def _kubernetes_job_predicate(job: xm.Job) -> bool: return isinstance(job.executor, local_executors.Kubernetes) def convert_to_valid_label(label: str) -> str: """Kubernetes labels must be RFC 1123 format compliant. https://github.com/kubernetes/kubernetes/blob/master/pkg/apis/apps/validation/validation.go A lowercase RFC 1123 label must consist of lower case alphanumeric characters or '-', and must start and end with an alphanumeric character (e.g. 'my-name', or '123-abc', regex used for validation is '[a-z0-9]([-a-z0-9]*[a-z0-9])?') Args: label: Label that may or may not be RFC 1123 compliant. Returns: A RFC 1123 format compliant label. """ return label.replace('_', '-') def _load_k8s_config() -> None: """Loads K8s config based on where the client is running (inside cluster or not).""" try: k8s_config.load_incluster_config() except k8s_config.ConfigException: # Client is not running inside cluster k8s_config.load_kube_config() class Client: """Client class for interacting with Kubernetes.""" def __init__(self, api_client: Optional[k8s_client.ApiClient] = None) -> None: if api_client is None: _load_k8s_config() api_client = k8s_client.ApiClient() self.api_client = api_client def launch( self, get_full_job_name: Callable[[str], str], jobs: Sequence[xm.Job], ) -> List[k8s_client.V1Job]: """Launches jobs on Kubernetes.""" batch_jobs = [] service = 'experiments' for job in jobs: executable = job.executable executor = job.executor if not isinstance( executable, local_executables.GoogleContainerRegistryImage ): raise ValueError( 'Executable {} has type {}. Executable must be of ' 'type GoogleContainerRegistryImage.'.format( executable, type(executable) ) ) all_env_vars = {**executable.env_vars, **job.env_vars} env = [k8s_client.V1EnvVar(k, v) for k, v in all_env_vars.items()] job_name = convert_to_valid_label(get_full_job_name(job.name)) container = k8s_client.V1Container( name=job_name, image=executable.image_path, resources=requirements_from_executor(executor), args=xm.merge_args(executable.args, job.args).to_list( utils.ARG_ESCAPER ), env=env, ) k8s_job = k8s_client.V1Job() k8s_job.metadata = k8s_client.V1ObjectMeta(name=job_name) k8s_job.spec = k8s_client.V1JobSpec( template=k8s_client.V1PodTemplateSpec( metadata=k8s_client.V1ObjectMeta( labels={'service': service}, annotations=annotations_from_executor(executor), ), spec=k8s_client.V1PodSpec( service_account=_K8S_SERVICE_ACCOUNT_NAME.value, hostname=job_name, subdomain=service, restart_policy='Never', containers=[container], node_selector=node_selector_from_executor(executor), ), ), backoff_limit=0, ) batch_jobs.append(k8s_job) self._create_service(service) batch_api = k8s_client.BatchV1Api(self.api_client) for k8s_job in batch_jobs: batch_api.create_namespaced_job(namespace='default', body=k8s_job) return batch_jobs def _create_service(self, service: str) -> None: """Creates a K8s service with an `service: {service}` selector.""" core_api = k8s_client.CoreV1Api(self.api_client) body = k8s_client.V1Service( metadata=k8s_client.V1ObjectMeta(name=service), spec=k8s_client.V1ServiceSpec( selector={'service': service}, cluster_ip='None', ), ) response = core_api.list_namespaced_service(namespace='default') for item in response.items: # service already exists if item.metadata.name == service: return core_api.create_namespaced_service(namespace='default', body=body) async def wait_for_job(self, job: k8s_client.V1Job) -> None: batch_api = k8s_client.BatchV1Api(self.api_client) backoff = 5 # seconds while True: await asyncio.sleep(backoff) response = batch_api.read_namespaced_job_status( namespace='default', name=job.metadata.name ) if response.status.completion_time: return @attr.s(auto_attribs=True) class KubernetesHandle(local_execution.ExecutionHandle): """A handle for referring to the launched container.""" jobs: List[k8s_client.V1Job] async def wait(self) -> None: await asyncio.gather(*[client().wait_for_job(job) for job in self.jobs]) def get_status(self) -> local_status.LocalWorkUnitStatus: raise NotImplementedError # Must act on all jobs with `local_executors.Kubernetes` executor. def launch( get_full_job_name: Callable[[str], str], job_group: xm.JobGroup ) -> List[KubernetesHandle]: """Launch K8s jobs in the job_group and return a handler.""" jobs = xm.job_operators.collect_jobs_by_filter( job_group, _kubernetes_job_predicate ) # As client creation may throw, do not initiate it if there are no jobs. if not jobs: return [] k8_jobs = client().launch( get_full_job_name=get_full_job_name, jobs=jobs, ) return [KubernetesHandle(jobs=k8_jobs)] def requirements_from_executor( executor: local_executors.Kubernetes, ) -> k8s_client.V1ResourceRequirements: """Get resource limits from the executor.""" limits = {} for resource, value in executor.requirements.task_requirements.items(): if resource in xm.GpuType: # TODO: Implement detection of whether an accelerator is an Nvidia # GPU. amd.com/gpu is another type of GPU that is not present in GCP. limits['nvidia.com/gpu'] = f'{value:g}' elif resource in xm.TpuType: pass else: # Converts resource amount to a string accepted by Kubernetes: # https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu # https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-memory limits[str(resource).lower()] = f'{value:.15g}' return k8s_client.V1ResourceRequirements(limits=limits) def annotations_from_executor( executor: local_executors.Kubernetes, ) -> Dict[str, str]: """Get Pod annotations from the executor for TPUs.""" if ( executor.cloud_provider != local_executors.GOOGLE_KUBERNETES_ENGINE_CLOUD_PROVIDER ): return {} if executor.requirements.accelerator in xm.TpuType: tpu_runtime_version = 'nightly' if executor.tpu_capability: tpu_runtime_version = executor.tpu_capability.tpu_runtime_version return {'tf-version.cloud-tpus.google.com': tpu_runtime_version} return {} def node_selector_from_executor( executor: local_executors.Kubernetes, ) -> Dict[str, str]: """Get Pod annotations from the executor for TPUs.""" if ( executor.cloud_provider != local_executors.GOOGLE_KUBERNETES_ENGINE_CLOUD_PROVIDER ): return {} for resource in executor.requirements.task_requirements: if resource in xm.GpuType: return { 'cloud.google.com/gke-accelerator': ( 'nvidia-tesla-' + str(resource).lower() ) } return {}
xmanager-main
xmanager/cloud/kubernetes.py