index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/KMeansModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class KMeansModelOutputV3 extends ModelOutputSchemaV3 { /** * Cluster Centers[k][features] */ public TwoDimTableV3 centers; /** * Cluster Centers[k][features] on Standardized Data */ @SerializedName("centers_std") public TwoDimTableV3 centersStd; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public KMeansModelOutputV3() { status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/KMeansModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class KMeansModelV3 extends ModelSchemaV3<KMeansParametersV3, KMeansModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public KMeansParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public KMeansModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public KMeansModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/KMeansParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class KMeansParametersV3 extends ClusteringModelParametersSchemaV3 { /** * This option allows you to specify a dataframe, where each row represents an initial cluster center. The user- * specified points must have the same number of columns as the training observations. The number of rows must equal * the number of clusters */ @SerializedName("user_points") public FrameKeyV3 userPoints; /** * Maximum training iterations (if estimate_k is enabled, then this is for each inner Lloyds iteration) */ @SerializedName("max_iterations") public int maxIterations; /** * Standardize columns before computing distances */ public boolean standardize; /** * RNG Seed */ public long seed; /** * Initialization mode */ public KMeansInitialization init; /** * Whether to estimate the number of clusters (<=k) iteratively and deterministically. */ @SerializedName("estimate_k") public boolean estimateK; /** * An array specifying the minimum number of points that should be in each cluster. The length of the constraints * array has to be the same as the number of clusters. */ @SerializedName("cluster_size_constraints") public int[] clusterSizeConstraints; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The max. number of clusters. If estimate_k is disabled, the model will find k centroids, otherwise it will find // up to k centroids. public int k; // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public KMeansParametersV3() { maxIterations = 10; standardize = true; seed = -1L; init = KMeansInitialization.Furthest; estimateK = false; k = 1; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/KMeansV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class KMeansV3 extends ClusteringModelBuilderSchema { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public KMeansParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public KMeansV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/KeyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class KeyV3 extends SchemaV3 { /** * Name (string representation) for this Key. */ public String name; /** * Name (string representation) for the type of Keyed this Key points to. */ public String type; /** * URL for the resource that this Key points to, if one exists. */ @SerializedName("URL") public String url; /** * Public constructor */ public KeyV3() { name = ""; type = ""; url = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/KeyValueV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class KeyValueV3 extends SchemaV3 { /** * Key */ public String key; /** * Value */ public double value; /** * Public constructor */ public KeyValueV3() { key = ""; value = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/KillMinus3V3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class KillMinus3V3 extends RequestSchemaV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public KillMinus3V3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/LeaderboardV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class LeaderboardV99 extends SchemaV3 { /** * Identifier for models that should be grouped together in the leaderboard */ @SerializedName("project_name") public String projectName; /** * List of models for this leaderboard, sorted by metric so that the best is first */ public ModelKeyV3[] models; /** * Frame for this leaderboard */ @SerializedName("leaderboard_frame") public FrameKeyV3 leaderboardFrame; /** * Checksum for the Frame for this leaderboard */ @SerializedName("leaderboard_frame_checksum") public long leaderboardFrameChecksum; /** * Sort metrics for the models in this leaderboard, in the same order as the models */ @SerializedName("sort_metrics") public double[] sortMetrics; /** * Metric used to sort this leaderboard */ @SerializedName("sort_metric") public String sortMetric; /** * Metric direction used in the sort */ @SerializedName("sort_decreasing") public boolean sortDecreasing; /** * A table representation of this leaderboard, for easy rendering */ public TwoDimTableV3 table; /** * Public constructor */ public LeaderboardV99() { projectName = "<default>"; leaderboardFrameChecksum = 0L; sortMetric = ""; sortDecreasing = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/LeaderboardsV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class LeaderboardsV99 extends RequestSchemaV3 { /** * Name of project of interest */ @SerializedName("project_name") public String projectName; /** * List of extension columns to add to leaderboard */ public String[] extensions; /** * Leaderboards */ public LeaderboardV99[] leaderboards; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public LeaderboardsV99() { projectName = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ListRequestV4.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ListRequestV4 extends OutputSchemaV4 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Url describing the schema of the current object. public String __schema; */ /** * Public constructor */ public ListRequestV4() { __schema = "/4/schemas/ListRequestV4"; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/LogAndEchoV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class LogAndEchoV3 extends RequestSchemaV3 { /** * Message to be Logged and Echoed */ public String message; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public LogAndEchoV3() { message = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/LoggingLevel.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum LoggingLevel { DEBUG, ERROR, INFO, TRACE, WARN, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/LogsV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class LogsV3 extends RequestSchemaV3 { /** * Identifier of the node to get logs from. It can be either node index starting from (0-based), where -1 means * current node, or IP and port. */ public String nodeidx; /** * Which specific log file to read from the log file directory. If left unspecified, the system chooses a default * for you. */ public String name; /** * Content of log file */ public String log; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public LogsV3() { nodeidx = ""; name = ""; log = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/MakeGLMModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class MakeGLMModelV3 extends SchemaV3 { /** * source model */ public ModelKeyV3 model; /** * destination key */ public ModelKeyV3 dest; /** * coefficient names */ public String[] names; /** * new glm coefficients */ public double[] beta; /** * decision threshold for label-generation */ public float threshold; /** * Public constructor */ public MakeGLMModelV3() { threshold = 0.5f; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/MetadataV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class MetadataV3 extends RequestSchemaV3 { /** * Number for specifying an endpoint */ public int num; /** * HTTP method (GET, POST, DELETE) if fetching by path */ @SerializedName("http_method") public String httpMethod; /** * Path for specifying an endpoint */ public String path; /** * Class name, for fetching docs for a schema (DEPRECATED) */ public String classname; /** * Schema name (e.g., DocsV1), for fetching docs for a schema */ public String schemaname; /** * List of endpoint routes */ public RouteV3[] routes; /** * List of schemas */ public SchemaMetadataV3[] schemas; /** * Table of Contents Markdown */ public String markdown; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public MetadataV3() { num = 0; httpMethod = ""; path = ""; classname = ""; schemaname = ""; markdown = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/MissingInserterV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class MissingInserterV3 extends RequestSchemaV3 { /** * dataset */ public FrameKeyV3 dataset; /** * Fraction of data to replace with a missing value */ public double fraction; /** * Seed */ public long seed; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public MissingInserterV3() { fraction = 0.0; seed = -4773443660025852529L; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelBuilderBuilderVisibility.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum ModelBuilderBuilderVisibility { AlwaysVisible, Beta, Experimental, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelBuilderSchema.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelBuilderSchema<P extends ModelParametersSchemaV3> extends RequestSchemaV3 { /** * Model builder parameters. */ public P parameters; /** * The algo name for this ModelBuilder. */ public String algo; /** * The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). */ @SerializedName("algo_full_name") public String algoFullName; /** * Model categories this ModelBuilder can build. */ @SerializedName("can_build") public ModelCategory[] canBuild; /** * Indicator whether the model is supervised or not. */ public boolean supervised; /** * Should the builder always be visible, be marked as beta, or only visible if the user starts up with the * experimental flag? */ public ModelBuilderBuilderVisibility visibility; /** * Job Key */ public JobV3 job; /** * Parameter validation messages */ public ValidationMessageV3[] messages; /** * Count of parameter validation errors */ @SerializedName("error_count") public int errorCount; /** * HTTP status to return for this build. */ @SerializedName("__http_status") public int __httpStatus; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ModelBuilderSchema() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelBuilderV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelBuilderV3 extends SchemaV3 { /** * Model builder parameters. */ public ModelParametersSchemaV3 parameters; /** * Info, warning and error messages; NOTE: can be appended to while the Job is running */ public ValidationMessageV3[] messages; /** * Count of error messages */ @SerializedName("error_count") public int errorCount; /** * Public constructor */ public ModelBuilderV3() { errorCount = 0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelBuildersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; import java.util.Map; public class ModelBuildersV3 extends RequestSchemaV3 { /** * Algo of ModelBuilder of interest */ public String algo; /** * ModelBuilders */ @SerializedName("model_builders") public Map<String,ModelBuilderSchema> modelBuilders; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ModelBuildersV3() { algo = ""; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelCategory.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum ModelCategory { AutoEncoder, Binomial, BinomialUplift, Clustering, DimReduction, Multinomial, Ordinal, Regression, Unknown, WordEmbedding, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelContributionsContributionsOutputFormat.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum ModelContributionsContributionsOutputFormat { Compact, Original, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelExportV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelExportV3 extends RequestSchemaV3 { /** * Name of Model of interest */ @SerializedName("model_id") public ModelKeyV3 modelId; /** * Destination file (hdfs, s3, local) */ public String dir; /** * Overwrite destination file in case it exists or throw exception if set to false. */ public boolean force; /** * Flag indicating whether the exported model artifact should also include CV Holdout Frame predictions */ @SerializedName("export_cross_validation_predictions") public boolean exportCrossValidationPredictions; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ModelExportV3() { dir = ""; force = true; exportCrossValidationPredictions = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelIdV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelIdV3 extends SchemaV3 { /** * Model ID */ @SerializedName("model_id") public String modelId; /** * Public constructor */ public ModelIdV3() { modelId = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelImportV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelImportV3 extends RequestSchemaV3 { /** * Save imported model under given key into DKV. */ @SerializedName("model_id") public ModelKeyV3 modelId; /** * Source directory (hdfs, s3, local) containing serialized model */ public String dir; /** * Override existing model in case it exists or throw exception if set to false */ public boolean force; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ModelImportV3() { dir = ""; force = true; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelInfoV4.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelInfoV4 extends OutputSchemaV4 { /** * Algorithm name, such as 'gbm', 'deeplearning', etc. */ public String algo; /** * Development status of the algorithm: alpha, beta, or stable. */ public String maturity; /** * Does the model support generation of POJOs? */ @SerializedName("have_pojo") public boolean havePojo; /** * Does the model support generation of MOJOs? */ @SerializedName("have_mojo") public boolean haveMojo; /** * Mojo version number for this algorithm. */ @SerializedName("mojo_version") public String mojoVersion; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Url describing the schema of the current object. public String __schema; */ /** * Public constructor */ public ModelInfoV4() { algo = ""; maturity = ""; havePojo = false; haveMojo = false; mojoVersion = ""; __schema = "/4/schemas/ModelInfoV4"; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelKeyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelKeyV3 extends KeyV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Name (string representation) for this Key. public String name; // Name (string representation) for the type of Keyed this Key points to. public String type; // URL for the resource that this Key points to, if one exists. public String url; */ /** * Public constructor */ public ModelKeyV3() { name = ""; type = ""; url = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelLeafNodeAssignmentLeafNodeAssignmentType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum ModelLeafNodeAssignmentLeafNodeAssignmentType { Node_ID, Path, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsAnomalyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsAnomalyV3 extends ModelMetricsBaseV3 { /** * Mean Anomaly Score. */ @SerializedName("mean_score") public double meanScore; /** * Mean Normalized Anomaly Score. */ @SerializedName("mean_normalized_score") public double meanNormalizedScore; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsAnomalyV3() { meanScore = 0.0; meanNormalizedScore = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsAutoEncoderV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsAutoEncoderV3 extends ModelMetricsBaseV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsAutoEncoderV3() { modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsBaseV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsBaseV3 extends SchemaV3 { /** * The model used for this scoring run. */ public ModelKeyV3 model; /** * The checksum for the model used for this scoring run. */ @SerializedName("model_checksum") public long modelChecksum; /** * The frame used for this scoring run. */ public FrameKeyV3 frame; /** * The checksum for the frame used for this scoring run. */ @SerializedName("frame_checksum") public long frameChecksum; /** * Optional description for this scoring run (to note out-of-bag, sampled data, etc.) */ public String description; /** * The category (e.g., Clustering) for the model used for this scoring run. */ @SerializedName("model_category") public ModelCategory modelCategory; /** * The time in mS since the epoch for the start of this scoring run. */ @SerializedName("scoring_time") public long scoringTime; /** * Predictions Frame. */ public FrameV3 predictions; /** * The Mean Squared Error of the prediction for this scoring run. */ @SerializedName("MSE") public double mse; /** * The Root Mean Squared Error of the prediction for this scoring run. */ @SerializedName("RMSE") public double rmse; /** * Number of observations. */ public long nobs; /** * Name of custom metric */ @SerializedName("custom_metric_name") public String customMetricName; /** * Value of custom metric */ @SerializedName("custom_metric_value") public double customMetricValue; /** * Public constructor */ public ModelMetricsBaseV3() { modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsBinomialGLMGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsBinomialGLMGenericV3 extends ModelMetricsBinomialGenericV3 { /** * residual deviance */ @SerializedName("residual_deviance") public double residualDeviance; /** * null deviance */ @SerializedName("null_deviance") public double nullDeviance; /** * AIC */ @SerializedName("AIC") public double aic; /** * log likelihood */ public double loglikelihood; /** * null DOF */ @SerializedName("null_degrees_of_freedom") public long nullDegreesOfFreedom; /** * residual DOF */ @SerializedName("residual_degrees_of_freedom") public long residualDegreesOfFreedom; /** * coefficients_table */ @SerializedName("coefficients_table") public TwoDimTableV3 coefficientsTable; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The logarithmic loss for this scoring run. public double logloss; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The AUC for this scoring run. public double auc; // The precision-recall AUC for this scoring run. public double prAuc; // The Gini score for this scoring run. public double gini; // The mean misclassification error per class. public double meanPerClassError; // The class labels of the response. public String[] domain; // The ConfusionMatrix at the threshold for maximum F1. public ConfusionMatrixV3 cm; // The Metrics for various thresholds. public TwoDimTableV3 thresholdsAndMetricScores; // The Metrics for various criteria. public TwoDimTableV3 maxCriteriaAndMetricScores; // Gains and Lift table. public TwoDimTableV3 gainsLiftTable; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsBinomialGLMGenericV3() { residualDeviance = 0.0; nullDeviance = 0.0; aic = 0.0; loglikelihood = 0.0; nullDegreesOfFreedom = 0L; residualDegreesOfFreedom = 0L; r2 = 0.0; logloss = 0.0; loglikelihood = 0.0; aic = 0.0; auc = 0.0; prAuc = 0.0; gini = 0.0; meanPerClassError = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsBinomialGLMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsBinomialGLMV3 extends ModelMetricsBinomialV3 { /** * residual deviance */ @SerializedName("residual_deviance") public double residualDeviance; /** * null deviance */ @SerializedName("null_deviance") public double nullDeviance; /** * AIC */ @SerializedName("AIC") public double aic; /** * log likelihood */ public double loglikelihood; /** * null DOF */ @SerializedName("null_degrees_of_freedom") public long nullDegreesOfFreedom; /** * residual DOF */ @SerializedName("residual_degrees_of_freedom") public long residualDegreesOfFreedom; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The logarithmic loss for this scoring run. public double logloss; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The AUC for this scoring run. public double auc; // The precision-recall AUC for this scoring run. public double prAuc; // The Gini score for this scoring run. public double gini; // The mean misclassification error per class. public double meanPerClassError; // The class labels of the response. public String[] domain; // The ConfusionMatrix at the threshold for maximum F1. public ConfusionMatrixV3 cm; // The Metrics for various thresholds. public TwoDimTableV3 thresholdsAndMetricScores; // The Metrics for various criteria. public TwoDimTableV3 maxCriteriaAndMetricScores; // Gains and Lift table. public TwoDimTableV3 gainsLiftTable; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsBinomialGLMV3() { residualDeviance = 0.0; nullDeviance = 0.0; aic = 0.0; loglikelihood = 0.0; nullDegreesOfFreedom = 0L; residualDegreesOfFreedom = 0L; r2 = 0.0; logloss = 0.0; loglikelihood = 0.0; aic = 0.0; auc = 0.0; prAuc = 0.0; gini = 0.0; meanPerClassError = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsBinomialGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsBinomialGenericV3 extends ModelMetricsBinomialV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The logarithmic loss for this scoring run. public double logloss; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The AUC for this scoring run. public double auc; // The precision-recall AUC for this scoring run. public double prAuc; // The Gini score for this scoring run. public double gini; // The mean misclassification error per class. public double meanPerClassError; // The class labels of the response. public String[] domain; // The ConfusionMatrix at the threshold for maximum F1. public ConfusionMatrixV3 cm; // The Metrics for various thresholds. public TwoDimTableV3 thresholdsAndMetricScores; // The Metrics for various criteria. public TwoDimTableV3 maxCriteriaAndMetricScores; // Gains and Lift table. public TwoDimTableV3 gainsLiftTable; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsBinomialGenericV3() { r2 = 0.0; logloss = 0.0; loglikelihood = 0.0; aic = 0.0; auc = 0.0; prAuc = 0.0; gini = 0.0; meanPerClassError = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsBinomialUpliftGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsBinomialUpliftGenericV3 extends ModelMetricsBinomialUpliftV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Average Treatment Effect. public double ate; // Average Treatment Effect on the Treated. public double att; // Average Treatment Effect on the Control. public double atc; // The default AUUC for this scoring run. public double auuc; // The default normalized AUUC for this scoring run. public double auucNormalized; // The Qini value for this scoring run. public double qini; // The class labels of the response. public String[] domain; // The metrics for various thresholds. public TwoDimTableV3 thresholdsAndMetricScores; // Table of all types of AUUC. public TwoDimTableV3 auucTable; // Table of all types of AECU values. public TwoDimTableV3 aecuTable; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsBinomialUpliftGenericV3() { ate = 0.0; att = 0.0; atc = 0.0; auuc = 0.0; auucNormalized = 0.0; qini = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsBinomialUpliftV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsBinomialUpliftV3 extends ModelMetricsBaseV3 { /** * Average Treatment Effect. */ public double ate; /** * Average Treatment Effect on the Treated. */ public double att; /** * Average Treatment Effect on the Control. */ public double atc; /** * The default AUUC for this scoring run. */ @SerializedName("AUUC") public double auuc; /** * The default normalized AUUC for this scoring run. */ @SerializedName("auuc_normalized") public double auucNormalized; /** * The Qini value for this scoring run. */ public double qini; /** * The class labels of the response. */ public String[] domain; /** * The metrics for various thresholds. */ @SerializedName("thresholds_and_metric_scores") public TwoDimTableV3 thresholdsAndMetricScores; /** * Table of all types of AUUC. */ @SerializedName("auuc_table") public TwoDimTableV3 auucTable; /** * Table of all types of AECU values. */ @SerializedName("aecu_table") public TwoDimTableV3 aecuTable; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsBinomialUpliftV3() { ate = 0.0; att = 0.0; atc = 0.0; auuc = 0.0; auucNormalized = 0.0; qini = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsBinomialV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsBinomialV3 extends ModelMetricsBaseV3 { /** * The R^2 for this scoring run. */ public double r2; /** * The logarithmic loss for this scoring run. */ public double logloss; /** * The logarithmic likelihood for this scoring run. */ public double loglikelihood; /** * The AIC for this scoring run. */ @SerializedName("AIC") public double aic; /** * The AUC for this scoring run. */ @SerializedName("AUC") public double auc; /** * The precision-recall AUC for this scoring run. */ @SerializedName("pr_auc") public double prAuc; /** * The Gini score for this scoring run. */ @SerializedName("Gini") public double gini; /** * The mean misclassification error per class. */ @SerializedName("mean_per_class_error") public double meanPerClassError; /** * The class labels of the response. */ public String[] domain; /** * The ConfusionMatrix at the threshold for maximum F1. */ public ConfusionMatrixV3 cm; /** * The Metrics for various thresholds. */ @SerializedName("thresholds_and_metric_scores") public TwoDimTableV3 thresholdsAndMetricScores; /** * The Metrics for various criteria. */ @SerializedName("max_criteria_and_metric_scores") public TwoDimTableV3 maxCriteriaAndMetricScores; /** * Gains and Lift table. */ @SerializedName("gains_lift_table") public TwoDimTableV3 gainsLiftTable; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsBinomialV3() { r2 = 0.0; logloss = 0.0; loglikelihood = 0.0; aic = 0.0; auc = 0.0; prAuc = 0.0; gini = 0.0; meanPerClassError = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsClusteringV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsClusteringV3 extends ModelMetricsBaseV3 { /** * Within Cluster Sum of Square Error */ @SerializedName("tot_withinss") public double totWithinss; /** * Total Sum of Square Error to Grand Mean */ public double totss; /** * Between Cluster Sum of Square Error */ public double betweenss; /** * Centroid Statistics */ @SerializedName("centroid_stats") public TwoDimTableV3 centroidStats; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsClusteringV3() { totWithinss = 0.0; totss = 0.0; betweenss = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsGLRMV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsGLRMV99 extends ModelMetricsBaseV3 { /** * Sum of Squared Error (Numeric Cols) */ public double numerr; /** * Misclassification Error (Categorical Cols) */ public double caterr; /** * Number of Non-Missing Numeric Values */ public long numcnt; /** * Number of Non-Missing Categorical Values */ public long catcnt; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsGLRMV99() { numerr = 0.0; caterr = 0.0; numcnt = 0L; catcnt = 0L; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsListSchemaV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsListSchemaV3 extends RequestSchemaV3 { /** * Key of Model of interest (optional) */ public ModelKeyV3 model; /** * Key of Frame of interest (optional) */ public FrameKeyV3 frame; /** * Key of predictions frame, if predictions are requested (optional) */ @SerializedName("predictions_frame") public FrameKeyV3 predictionsFrame; /** * Key for the frame containing per-observation deviances (optional) */ @SerializedName("deviances_frame") public FrameKeyV3 deviancesFrame; /** * Compute reconstruction error (optional, only for Deep Learning AutoEncoder models) */ @SerializedName("reconstruction_error") public boolean reconstructionError; /** * Compute reconstruction error per feature (optional, only for Deep Learning AutoEncoder models) */ @SerializedName("reconstruction_error_per_feature") public boolean reconstructionErrorPerFeature; /** * Extract Deep Features for given hidden layer (optional, only for Deep Learning models) */ @SerializedName("deep_features_hidden_layer") public int deepFeaturesHiddenLayer; /** * Extract Deep Features for given hidden layer by name (optional, only for Deep Water models) */ @SerializedName("deep_features_hidden_layer_name") public String deepFeaturesHiddenLayerName; /** * Reconstruct original training frame (optional, only for GLRM models) */ @SerializedName("reconstruct_train") public boolean reconstructTrain; /** * Project GLRM archetypes back into original feature space (optional, only for GLRM models) */ @SerializedName("project_archetypes") public boolean projectArchetypes; /** * Reverse transformation applied during training to model output (optional, only for GLRM models) */ @SerializedName("reverse_transform") public boolean reverseTransform; /** * Return the leaf node assignment (optional, only for DRF/GBM models) */ @SerializedName("leaf_node_assignment") public boolean leafNodeAssignment; /** * Type of the leaf node assignment (optional, only for DRF/GBM models) */ @SerializedName("leaf_node_assignment_type") public ModelLeafNodeAssignmentLeafNodeAssignmentType leafNodeAssignmentType; /** * Predict the class probabilities at each stage (optional, only for GBM models) */ @SerializedName("predict_staged_proba") public boolean predictStagedProba; /** * Predict the feature contributions - Shapley values (optional, only for DRF, GBM and XGBoost models) */ @SerializedName("predict_contributions") public boolean predictContributions; /** * Return which row is used in which tree (optional, only for GBM models) */ @SerializedName("row_to_tree_assignment") public boolean rowToTreeAssignment; /** * Specify how to output feature contributions in XGBoost - XGBoost by default outputs contributions for 1-hot * encoded features, specifying a Compact output format will produce a per-feature contribution */ @SerializedName("predict_contributions_output_format") public ModelContributionsContributionsOutputFormat predictContributionsOutputFormat; /** * Only for predict_contributions function - sort Shapley values and return top_n highest (optional) */ @SerializedName("top_n") public int topN; /** * Only for predict_contributions function - sort Shapley values and return bottom_n lowest (optional) */ @SerializedName("bottom_n") public int bottomN; /** * Only for predict_contributions function - sort absolute Shapley values (optional) */ @SerializedName("compare_abs") public boolean compareAbs; /** * Retrieve the feature frequencies on paths in trees in tree-based models (optional, only for GBM, DRF and * Isolation Forest) */ @SerializedName("feature_frequencies") public boolean featureFrequencies; /** * Retrieve all members for a given exemplar (optional, only for Aggregator models) */ @SerializedName("exemplar_index") public int exemplarIndex; /** * Compute the deviances per row (optional, only for classification or regression models) */ public boolean deviances; /** * Reference to custom evaluation function, format: `language:keyName=funcName` */ @SerializedName("custom_metric_func") public String customMetricFunc; /** * Set default multinomial AUC type. Must be one of: "AUTO", "NONE", "MACRO_OVR", "WEIGHTED_OVR", "MACRO_OVO", * "WEIGHTED_OVO". Default is "NONE" (optional, only for multinomial classification). */ @SerializedName("auc_type") public String aucType; /** * Set default AUUC type for uplift binomial classification. Must be one of: "AUTO", "qini", "lift", "gain". Default * is "AUTO" (optional, only for uplift binomial classification). */ @SerializedName("auuc_type") public String auucType; /** * Custom AUUC thresholds (for uplift binomial classification). */ @SerializedName("custom_auuc_thresholds") public double[] customAuucThresholds; /** * Set number of bins to calculate AUUC. Must be -1 or higher than 0. Default is -1 which means 1000 (optional, only * for uplift binomial classification). */ @SerializedName("auuc_nbins") public int auucNbins; /** * Specify background frame used as a reference for calculating SHAP. */ @SerializedName("background_frame") public FrameKeyV3 backgroundFrame; /** * If true, transform contributions so that they sum up to the difference in the output space (applicable iff * contributions are in link space). Note that this transformation is an approximation and the contributions won't * be exact SHAP values. */ @SerializedName("output_space") public boolean outputSpace; /** * If true, return contributions against each background sample (aka reference), i.e. phi(feature, x, bg), otherwise * return contributions averaged over the background sample (phi(feature, x) = E_{bg} phi(feature, x, bg)) */ @SerializedName("output_per_reference") public boolean outputPerReference; /** * ModelMetrics */ @SerializedName("model_metrics") public ModelMetricsBaseV3[] modelMetrics; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ModelMetricsListSchemaV3() { reconstructionError = false; reconstructionErrorPerFeature = false; deepFeaturesHiddenLayer = -1; deepFeaturesHiddenLayerName = ""; reconstructTrain = false; projectArchetypes = false; reverseTransform = false; leafNodeAssignment = false; predictStagedProba = false; predictContributions = false; rowToTreeAssignment = false; topN = 0; bottomN = 0; compareAbs = false; featureFrequencies = false; exemplarIndex = -1; deviances = false; customMetricFunc = ""; aucType = ""; auucType = ""; auucNbins = 0; outputSpace = false; outputPerReference = false; modelMetrics = new ModelMetricsBaseV3[]{}; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsMakerSchemaV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsMakerSchemaV3 extends SchemaV3 { /** * Predictions Frame. */ @SerializedName("predictions_frame") public String predictionsFrame; /** * Actuals Frame. */ @SerializedName("actuals_frame") public String actualsFrame; /** * Weights Frame. */ @SerializedName("weights_frame") public String weightsFrame; /** * Treatment Frame. */ @SerializedName("treatment_frame") public String treatmentFrame; /** * Domain (for classification). */ public String[] domain; /** * Distribution (for regression). */ public GenmodelutilsDistributionFamily distribution; /** * Default AUC type (for multinomial classification). */ @SerializedName("auc_type") public MultinomialAucType aucType; /** * Default AUUC type (for uplift binomial classification). */ @SerializedName("auuc_type") public AUUCType auucType; /** * Number of bins to calculate AUUC (for uplift binomial classification). */ @SerializedName("auuc_nbins") public int auucNbins; /** * Custom AUUC thresholds (for uplift binomial classification). */ @SerializedName("custom_auuc_thresholds") public double[] customAuucThresholds; /** * Model Metrics. */ @SerializedName("model_metrics") public ModelMetricsBaseV3 modelMetrics; /** * Public constructor */ public ModelMetricsMakerSchemaV3() { predictionsFrame = ""; actualsFrame = ""; weightsFrame = ""; treatmentFrame = ""; auucNbins = 0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsMultinomialGLMGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsMultinomialGLMGenericV3 extends ModelMetricsMultinomialV3 { /** * residual deviance */ @SerializedName("residual_deviance") public double residualDeviance; /** * null deviance */ @SerializedName("null_deviance") public double nullDeviance; /** * AIC */ @SerializedName("AIC") public double aic; /** * log likelihood */ public double loglikelihood; /** * null DOF */ @SerializedName("null_degrees_of_freedom") public long nullDegreesOfFreedom; /** * residual DOF */ @SerializedName("residual_degrees_of_freedom") public long residualDegreesOfFreedom; /** * coefficients_table */ @SerializedName("coefficients_table") public TwoDimTableV3 coefficientsTable; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The hit ratio table for this scoring run. public TwoDimTableV3 hitRatioTable; // The ConfusionMatrix object for this scoring run. public ConfusionMatrixV3 cm; // The logarithmic loss for this scoring run. public double logloss; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The mean misclassification error per class. public double meanPerClassError; // The average AUC for this scoring run. public double auc; // The average precision-recall AUC for this scoring run. public double prAuc; // The multinomial AUC values. public TwoDimTableV3 multinomialAucTable; // The multinomial PR AUC values. public TwoDimTableV3 multinomialAucprTable; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsMultinomialGLMGenericV3() { residualDeviance = 0.0; nullDeviance = 0.0; aic = 0.0; loglikelihood = 0.0; nullDegreesOfFreedom = 0L; residualDegreesOfFreedom = 0L; r2 = 0.0; logloss = 0.0; loglikelihood = 0.0; aic = 0.0; meanPerClassError = 0.0; auc = 0.0; prAuc = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsMultinomialGLMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsMultinomialGLMV3 extends ModelMetricsMultinomialV3 { /** * residual deviance */ @SerializedName("residual_deviance") public double residualDeviance; /** * null deviance */ @SerializedName("null_deviance") public double nullDeviance; /** * AIC */ @SerializedName("AIC") public double aic; /** * log likelihood */ public double loglikelihood; /** * null DOF */ @SerializedName("null_degrees_of_freedom") public long nullDegreesOfFreedom; /** * residual DOF */ @SerializedName("residual_degrees_of_freedom") public long residualDegreesOfFreedom; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The hit ratio table for this scoring run. public TwoDimTableV3 hitRatioTable; // The ConfusionMatrix object for this scoring run. public ConfusionMatrixV3 cm; // The logarithmic loss for this scoring run. public double logloss; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The mean misclassification error per class. public double meanPerClassError; // The average AUC for this scoring run. public double auc; // The average precision-recall AUC for this scoring run. public double prAuc; // The multinomial AUC values. public TwoDimTableV3 multinomialAucTable; // The multinomial PR AUC values. public TwoDimTableV3 multinomialAucprTable; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsMultinomialGLMV3() { residualDeviance = 0.0; nullDeviance = 0.0; aic = 0.0; loglikelihood = 0.0; nullDegreesOfFreedom = 0L; residualDegreesOfFreedom = 0L; r2 = 0.0; logloss = 0.0; loglikelihood = 0.0; aic = 0.0; meanPerClassError = 0.0; auc = 0.0; prAuc = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsMultinomialGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsMultinomialGenericV3 extends ModelMetricsMultinomialV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The hit ratio table for this scoring run. public TwoDimTableV3 hitRatioTable; // The ConfusionMatrix object for this scoring run. public ConfusionMatrixV3 cm; // The logarithmic loss for this scoring run. public double logloss; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The mean misclassification error per class. public double meanPerClassError; // The average AUC for this scoring run. public double auc; // The average precision-recall AUC for this scoring run. public double prAuc; // The multinomial AUC values. public TwoDimTableV3 multinomialAucTable; // The multinomial PR AUC values. public TwoDimTableV3 multinomialAucprTable; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsMultinomialGenericV3() { r2 = 0.0; logloss = 0.0; loglikelihood = 0.0; aic = 0.0; meanPerClassError = 0.0; auc = 0.0; prAuc = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsMultinomialV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsMultinomialV3 extends ModelMetricsBaseV3 { /** * The R^2 for this scoring run. */ public double r2; /** * The hit ratio table for this scoring run. */ @SerializedName("hit_ratio_table") public TwoDimTableV3 hitRatioTable; /** * The ConfusionMatrix object for this scoring run. */ public ConfusionMatrixV3 cm; /** * The logarithmic loss for this scoring run. */ public double logloss; /** * The logarithmic likelihood for this scoring run. */ public double loglikelihood; /** * The AIC for this scoring run. */ @SerializedName("AIC") public double aic; /** * The mean misclassification error per class. */ @SerializedName("mean_per_class_error") public double meanPerClassError; /** * The average AUC for this scoring run. */ @SerializedName("AUC") public double auc; /** * The average precision-recall AUC for this scoring run. */ @SerializedName("pr_auc") public double prAuc; /** * The multinomial AUC values. */ @SerializedName("multinomial_auc_table") public TwoDimTableV3 multinomialAucTable; /** * The multinomial PR AUC values. */ @SerializedName("multinomial_aucpr_table") public TwoDimTableV3 multinomialAucprTable; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsMultinomialV3() { r2 = 0.0; logloss = 0.0; loglikelihood = 0.0; aic = 0.0; meanPerClassError = 0.0; auc = 0.0; prAuc = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsOrdinalGLMGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsOrdinalGLMGenericV3 extends ModelMetricsOrdinalGenericV3 { /** * residual deviance */ @SerializedName("residual_deviance") public double residualDeviance; /** * null deviance */ @SerializedName("null_deviance") public double nullDeviance; /** * AIC */ @SerializedName("AIC") public double aic; /** * log likelihood */ public double loglikelihood; /** * null DOF */ @SerializedName("null_degrees_of_freedom") public long nullDegreesOfFreedom; /** * residual DOF */ @SerializedName("residual_degrees_of_freedom") public long residualDegreesOfFreedom; /** * coefficients_table */ @SerializedName("coefficients_table") public TwoDimTableV3 coefficientsTable; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The hit ratio table for this scoring run. public TwoDimTableV3 hitRatioTable; // The ConfusionMatrix object for this scoring run. public ConfusionMatrixV3 cm; // The logarithmic loss for this scoring run. public double logloss; // The mean misclassification error per class. public double meanPerClassError; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsOrdinalGLMGenericV3() { residualDeviance = 0.0; nullDeviance = 0.0; aic = 0.0; loglikelihood = 0.0; nullDegreesOfFreedom = 0L; residualDegreesOfFreedom = 0L; r2 = 0.0; logloss = 0.0; meanPerClassError = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsOrdinalGLMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsOrdinalGLMV3 extends ModelMetricsOrdinalV3 { /** * residual deviance */ @SerializedName("residual_deviance") public double residualDeviance; /** * null deviance */ @SerializedName("null_deviance") public double nullDeviance; /** * AIC */ @SerializedName("AIC") public double aic; /** * log likelihood */ public double loglikelihood; /** * null DOF */ @SerializedName("null_degrees_of_freedom") public long nullDegreesOfFreedom; /** * residual DOF */ @SerializedName("residual_degrees_of_freedom") public long residualDegreesOfFreedom; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The hit ratio table for this scoring run. public TwoDimTableV3 hitRatioTable; // The ConfusionMatrix object for this scoring run. public ConfusionMatrixV3 cm; // The logarithmic loss for this scoring run. public double logloss; // The mean misclassification error per class. public double meanPerClassError; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsOrdinalGLMV3() { residualDeviance = 0.0; nullDeviance = 0.0; aic = 0.0; loglikelihood = 0.0; nullDegreesOfFreedom = 0L; residualDegreesOfFreedom = 0L; r2 = 0.0; logloss = 0.0; meanPerClassError = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsOrdinalGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsOrdinalGenericV3 extends ModelMetricsBaseV3 { /** * The R^2 for this scoring run. */ public double r2; /** * The hit ratio table for this scoring run. */ @SerializedName("hit_ratio_table") public TwoDimTableV3 hitRatioTable; /** * The ConfusionMatrix object for this scoring run. */ public ConfusionMatrixV3 cm; /** * The logarithmic loss for this scoring run. */ public double logloss; /** * The mean misclassification error per class. */ @SerializedName("mean_per_class_error") public double meanPerClassError; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsOrdinalGenericV3() { r2 = 0.0; logloss = 0.0; meanPerClassError = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsOrdinalV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsOrdinalV3 extends ModelMetricsBaseV3 { /** * The R^2 for this scoring run. */ public double r2; /** * The hit ratio table for this scoring run. */ @SerializedName("hit_ratio_table") public TwoDimTableV3 hitRatioTable; /** * The ConfusionMatrix object for this scoring run. */ public ConfusionMatrixV3 cm; /** * The logarithmic loss for this scoring run. */ public double logloss; /** * The mean misclassification error per class. */ @SerializedName("mean_per_class_error") public double meanPerClassError; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsOrdinalV3() { r2 = 0.0; logloss = 0.0; meanPerClassError = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsPCAV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsPCAV3 extends ModelMetricsBaseV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsPCAV3() { modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsRegressionCoxPHGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsRegressionCoxPHGenericV3 extends ModelMetricsRegressionV3 { /** * Concordance metric (c-index) */ public double concordance; /** * Number of concordant pairs */ public long concordant; /** * Number of discordant pairs. */ public long discordant; /** * Number of tied pairs */ @SerializedName("tied_y") public long tiedY; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The mean residual deviance for this scoring run. public double meanResidualDeviance; // The mean absolute error for this scoring run. public double mae; // The root mean squared log error for this scoring run. public double rmsle; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsRegressionCoxPHGenericV3() { concordance = 0.0; concordant = 0L; discordant = 0L; tiedY = 0L; r2 = 0.0; meanResidualDeviance = 0.0; mae = 0.0; rmsle = 0.0; loglikelihood = 0.0; aic = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsRegressionCoxPHV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsRegressionCoxPHV3 extends ModelMetricsRegressionV3 { /** * concordance index */ public double concordance; /** * number of concordant pairs */ public long concordant; /** * number of discordant pairs */ public long discordant; /** * number of pairs tied in Y value */ @SerializedName("tied_y") public long tiedY; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The mean residual deviance for this scoring run. public double meanResidualDeviance; // The mean absolute error for this scoring run. public double mae; // The root mean squared log error for this scoring run. public double rmsle; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsRegressionCoxPHV3() { concordance = 0.0; concordant = 0L; discordant = 0L; tiedY = 0L; r2 = 0.0; meanResidualDeviance = 0.0; mae = 0.0; rmsle = 0.0; loglikelihood = 0.0; aic = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsRegressionGLMGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsRegressionGLMGenericV3 extends ModelMetricsRegressionV3 { /** * residual deviance */ @SerializedName("residual_deviance") public double residualDeviance; /** * null deviance */ @SerializedName("null_deviance") public double nullDeviance; /** * AIC */ @SerializedName("AIC") public double aic; /** * log likelihood */ public double loglikelihood; /** * null DOF */ @SerializedName("null_degrees_of_freedom") public long nullDegreesOfFreedom; /** * residual DOF */ @SerializedName("residual_degrees_of_freedom") public long residualDegreesOfFreedom; /** * coefficients_table */ @SerializedName("coefficients_table") public TwoDimTableV3 coefficientsTable; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The mean residual deviance for this scoring run. public double meanResidualDeviance; // The mean absolute error for this scoring run. public double mae; // The root mean squared log error for this scoring run. public double rmsle; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsRegressionGLMGenericV3() { residualDeviance = 0.0; nullDeviance = 0.0; aic = 0.0; loglikelihood = 0.0; nullDegreesOfFreedom = 0L; residualDegreesOfFreedom = 0L; r2 = 0.0; meanResidualDeviance = 0.0; mae = 0.0; rmsle = 0.0; loglikelihood = 0.0; aic = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsRegressionGLMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsRegressionGLMV3 extends ModelMetricsRegressionV3 { /** * residual deviance */ @SerializedName("residual_deviance") public double residualDeviance; /** * null deviance */ @SerializedName("null_deviance") public double nullDeviance; /** * AIC */ @SerializedName("AIC") public double aic; /** * log likelihood */ public double loglikelihood; /** * null DOF */ @SerializedName("null_degrees_of_freedom") public long nullDegreesOfFreedom; /** * residual DOF */ @SerializedName("residual_degrees_of_freedom") public long residualDegreesOfFreedom; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The R^2 for this scoring run. public double r2; // The mean residual deviance for this scoring run. public double meanResidualDeviance; // The mean absolute error for this scoring run. public double mae; // The root mean squared log error for this scoring run. public double rmsle; // The logarithmic likelihood for this scoring run. public double loglikelihood; // The AIC for this scoring run. public double aic; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsRegressionGLMV3() { residualDeviance = 0.0; nullDeviance = 0.0; aic = 0.0; loglikelihood = 0.0; nullDegreesOfFreedom = 0L; residualDegreesOfFreedom = 0L; r2 = 0.0; meanResidualDeviance = 0.0; mae = 0.0; rmsle = 0.0; loglikelihood = 0.0; aic = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsRegressionGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsRegressionGenericV3 extends ModelMetricsBaseV3 { /** * The mean residual deviance for this scoring run. */ @SerializedName("mean_residual_deviance") public double meanResidualDeviance; /** * The mean absolute error for this scoring run. */ public double mae; /** * The root mean squared log error for this scoring run. */ public double rmsle; /** * The logarithmic likelihood for this scoring run. */ public double loglikelihood; /** * The AIC for this scoring run. */ @SerializedName("AIC") public double aic; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsRegressionGenericV3() { meanResidualDeviance = 0.0; mae = 0.0; rmsle = 0.0; loglikelihood = 0.0; aic = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsRegressionHGLMGenericV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsRegressionHGLMGenericV3 extends ModelMetricsRegressionHGLMV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // fixed coefficient) public double[] beta; // random coefficients public double[][] ubeta; // log likelihood public double logLikelihood; // interclass correlation public double[] icc; // iterations taken to build model public int iterations; // covariance matrix of random effects public double[][] tmat; // variance of residual error public double varResidual; // mean square error of fixed effects only public double mseFixed; // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsRegressionHGLMGenericV3() { logLikelihood = 0.0; iterations = 0; varResidual = 0.0; mseFixed = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsRegressionHGLMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsRegressionHGLMV3 extends ModelMetricsBaseV3 { /** * fixed coefficient) */ public double[] beta; /** * random coefficients */ public double[][] ubeta; /** * log likelihood */ @SerializedName("log_likelihood") public double logLikelihood; /** * interclass correlation */ public double[] icc; /** * iterations taken to build model */ public int iterations; /** * covariance matrix of random effects */ public double[][] tmat; /** * variance of residual error */ @SerializedName("var_residual") public double varResidual; /** * mean square error of fixed effects only */ @SerializedName("mse_fixed") public double mseFixed; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsRegressionHGLMV3() { logLikelihood = 0.0; iterations = 0; varResidual = 0.0; mseFixed = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsRegressionV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsRegressionV3 extends ModelMetricsBaseV3 { /** * The R^2 for this scoring run. */ public double r2; /** * The mean residual deviance for this scoring run. */ @SerializedName("mean_residual_deviance") public double meanResidualDeviance; /** * The mean absolute error for this scoring run. */ public double mae; /** * The root mean squared log error for this scoring run. */ public double rmsle; /** * The logarithmic likelihood for this scoring run. */ public double loglikelihood; /** * The AIC for this scoring run. */ @SerializedName("AIC") public double aic; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsRegressionV3() { r2 = 0.0; meanResidualDeviance = 0.0; mae = 0.0; rmsle = 0.0; loglikelihood = 0.0; aic = 0.0; modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelMetricsSVDV99.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelMetricsSVDV99 extends ModelMetricsBaseV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The model used for this scoring run. public ModelKeyV3 model; // The checksum for the model used for this scoring run. public long modelChecksum; // The frame used for this scoring run. public FrameKeyV3 frame; // The checksum for the frame used for this scoring run. public long frameChecksum; // Optional description for this scoring run (to note out-of-bag, sampled data, etc.) public String description; // The category (e.g., Clustering) for the model used for this scoring run. public ModelCategory modelCategory; // The time in mS since the epoch for the start of this scoring run. public long scoringTime; // Predictions Frame. public FrameV3 predictions; // The Mean Squared Error of the prediction for this scoring run. public double mse; // The Root Mean Squared Error of the prediction for this scoring run. public double rmse; // Number of observations. public long nobs; // Name of custom metric public String customMetricName; // Value of custom metric public double customMetricValue; */ /** * Public constructor */ public ModelMetricsSVDV99() { modelChecksum = 0L; frameChecksum = 0L; description = ""; scoringTime = 0L; mse = 0.0; rmse = 0.0; nobs = 0L; customMetricName = ""; customMetricValue = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelOutputSchemaV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; import java.util.Map; public class ModelOutputSchemaV3 extends SchemaV3 { /** * Column names */ public String[] names; /** * Original column names */ @SerializedName("original_names") public String[] originalNames; /** * Column types */ @SerializedName("column_types") public String[] columnTypes; /** * Domains for categorical columns */ public String[][] domains; /** * Cross-validation models (model ids) */ @SerializedName("cross_validation_models") public ModelKeyV3[] crossValidationModels; /** * Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id * instead) */ @SerializedName("cross_validation_predictions") public FrameKeyV3[] crossValidationPredictions; /** * Cross-validation holdout predictions (full out-of-sample predictions on training data) */ @SerializedName("cross_validation_holdout_predictions_frame_id") public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; /** * Cross-validation fold assignment (each row is assigned to one holdout fold) */ @SerializedName("cross_validation_fold_assignment_frame_id") public FrameKeyV3 crossValidationFoldAssignmentFrameId; /** * Category of the model (e.g., Binomial) */ @SerializedName("model_category") public ModelCategory modelCategory; /** * Model summary */ @SerializedName("model_summary") public TwoDimTableV3 modelSummary; /** * Scoring history */ @SerializedName("scoring_history") public TwoDimTableV3 scoringHistory; /** * Cross-Validation scoring history */ @SerializedName("cv_scoring_history") public TwoDimTableV3[] cvScoringHistory; /** * Model reproducibility information */ @SerializedName("reproducibility_information_table") public TwoDimTableV3[] reproducibilityInformationTable; /** * Training data model metrics */ @SerializedName("training_metrics") public ModelMetricsBaseV3 trainingMetrics; /** * Validation data model metrics */ @SerializedName("validation_metrics") public ModelMetricsBaseV3 validationMetrics; /** * Cross-validation model metrics */ @SerializedName("cross_validation_metrics") public ModelMetricsBaseV3 crossValidationMetrics; /** * Cross-validation model metrics summary */ @SerializedName("cross_validation_metrics_summary") public TwoDimTableV3 crossValidationMetricsSummary; /** * Job status */ public String status; /** * Start time in milliseconds */ @SerializedName("start_time") public long startTime; /** * End time in milliseconds */ @SerializedName("end_time") public long endTime; /** * Runtime in milliseconds */ @SerializedName("run_time") public long runTime; /** * Default threshold used for predictions */ @SerializedName("default_threshold") public double defaultThreshold; /** * Help information for output fields */ public Map<String,String> help; /** * Public constructor */ public ModelOutputSchemaV3() { status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelParameterSchemaV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelParameterSchemaV3 extends SchemaV3 { /** * name in the JSON, e.g. "lambda" */ public String name; /** * [DEPRECATED] same as name. */ public String label; /** * help for the UI, e.g. "regularization multiplier, typically used for foo bar baz etc." */ public String help; /** * the field is required */ public boolean required; /** * Java type, e.g. "double" */ public String type; /** * default value, e.g. 1 */ @SerializedName("default_value") public Object defaultValue; /** * actual value as set by the user and / or modified by the ModelBuilder, e.g., 10 */ @SerializedName("actual_value") public Object actualValue; /** * input value as set by the user, e.g., 10 */ @SerializedName("input_value") public Object inputValue; /** * the importance of the parameter, used by the UI, e.g. "critical", "extended" or "expert" */ public String level; /** * list of valid values for use by the front-end */ public String[] values; /** * For Vec-type fields this is the set of Frame-type fields which must contain the named column; for example, for a * SupervisedModel the response_column must be in both the training_frame and (if it's set) the validation_frame */ @SerializedName("is_member_of_frames") public String[] isMemberOfFrames; /** * For Vec-type fields this is the set of other Vec-type fields which must contain mutually exclusive values; for * example, for a SupervisedModel the response_column must be mutually exclusive with the weights_column */ @SerializedName("is_mutually_exclusive_with") public String[] isMutuallyExclusiveWith; /** * Parameter can be used in grid call */ public boolean gridable; /** * Public constructor */ public ModelParameterSchemaV3() { name = ""; label = ""; help = ""; required = false; type = ""; level = ""; gridable = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelParametersCategoricalEncodingScheme.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum ModelParametersCategoricalEncodingScheme { AUTO, Binary, Eigen, Enum, EnumLimited, LabelEncoder, OneHotExplicit, OneHotInternal, SortByResponse, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelParametersFoldAssignmentScheme.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum ModelParametersFoldAssignmentScheme { AUTO, Modulo, Random, Stratified, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelParametersSchemaV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelParametersSchemaV3 extends SchemaV3 { /** * Destination id for this model; auto-generated if not specified. */ @SerializedName("model_id") public ModelKeyV3 modelId; /** * Id of the training data frame. */ @SerializedName("training_frame") public FrameKeyV3 trainingFrame; /** * Id of the validation data frame. */ @SerializedName("validation_frame") public FrameKeyV3 validationFrame; /** * Number of folds for K-fold cross-validation (0 to disable or >= 2). */ public int nfolds; /** * Whether to keep the cross-validation models. */ @SerializedName("keep_cross_validation_models") public boolean keepCrossValidationModels; /** * Whether to keep the predictions of the cross-validation models. */ @SerializedName("keep_cross_validation_predictions") public boolean keepCrossValidationPredictions; /** * Whether to keep the cross-validation fold assignment. */ @SerializedName("keep_cross_validation_fold_assignment") public boolean keepCrossValidationFoldAssignment; /** * Allow parallel training of cross-validation models */ @SerializedName("parallelize_cross_validation") public boolean parallelizeCrossValidation; /** * Distribution function */ public GenmodelutilsDistributionFamily distribution; /** * Tweedie power for Tweedie regression, must be between 1 and 2. */ @SerializedName("tweedie_power") public double tweediePower; /** * Desired quantile for Quantile regression, must be between 0 and 1. */ @SerializedName("quantile_alpha") public double quantileAlpha; /** * Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). */ @SerializedName("huber_alpha") public double huberAlpha; /** * Response variable column. */ @SerializedName("response_column") public ColSpecifierV3 responseColumn; /** * Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the * dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights * are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. * This is typically the number of times a row is repeated, but non-integer values are supported as well. During * training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 * for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate * prediction, remove all rows with weight == 0. */ @SerializedName("weights_column") public ColSpecifierV3 weightsColumn; /** * Offset column. This will be added to the combination of columns before applying the link function. */ @SerializedName("offset_column") public ColSpecifierV3 offsetColumn; /** * Column with cross-validation fold index assignment per observation. */ @SerializedName("fold_column") public ColSpecifierV3 foldColumn; /** * Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify * the folds based on the response variable, for classification problems. */ @SerializedName("fold_assignment") public ModelParametersFoldAssignmentScheme foldAssignment; /** * Encoding scheme for categorical features */ @SerializedName("categorical_encoding") public ModelParametersCategoricalEncodingScheme categoricalEncoding; /** * For every categorical feature, only use this many most frequent categorical levels for model training. Only used * for categorical_encoding == EnumLimited. */ @SerializedName("max_categorical_levels") public int maxCategoricalLevels; /** * Names of columns to ignore for training. */ @SerializedName("ignored_columns") public String[] ignoredColumns; /** * Ignore constant columns. */ @SerializedName("ignore_const_cols") public boolean ignoreConstCols; /** * Whether to score during each iteration of model training. */ @SerializedName("score_each_iteration") public boolean scoreEachIteration; /** * Model checkpoint to resume training with. */ public ModelKeyV3 checkpoint; /** * Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the * stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) */ @SerializedName("stopping_rounds") public int stoppingRounds; /** * Maximum allowed runtime in seconds for model training. Use 0 to disable. */ @SerializedName("max_runtime_secs") public double maxRuntimeSecs; /** * Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for * Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. */ @SerializedName("stopping_metric") public ScoreKeeperStoppingMetric stoppingMetric; /** * Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) */ @SerializedName("stopping_tolerance") public double stoppingTolerance; /** * Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. */ @SerializedName("gainslift_bins") public int gainsliftBins; /** * Reference to custom evaluation function, format: `language:keyName=funcName` */ @SerializedName("custom_metric_func") public String customMetricFunc; /** * Reference to custom distribution, format: `language:keyName=funcName` */ @SerializedName("custom_distribution_func") public String customDistributionFunc; /** * Automatically export generated models to this directory. */ @SerializedName("export_checkpoints_dir") public String exportCheckpointsDir; /** * Set default multinomial AUC type. */ @SerializedName("auc_type") public MultinomialAucType aucType; /** * Public constructor */ public ModelParametersSchemaV3() { nfolds = 0; keepCrossValidationModels = false; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = false; tweediePower = 0.0; quantileAlpha = 0.0; huberAlpha = 0.0; maxCategoricalLevels = 0; ignoreConstCols = false; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingTolerance = 0.0; gainsliftBins = 0; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelSchemaBaseV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelSchemaBaseV3 extends SchemaV3 { /** * Model key */ @SerializedName("model_id") public ModelKeyV3 modelId; /** * The algo name for this Model. */ public String algo; /** * The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). */ @SerializedName("algo_full_name") public String algoFullName; /** * The response column name for this Model (if applicable). Is null otherwise. */ @SerializedName("response_column_name") public String responseColumnName; /** * The treatment column name for this Model (if applicable). Is null otherwise. */ @SerializedName("treatment_column_name") public String treatmentColumnName; /** * The Model's training frame key */ @SerializedName("data_frame") public FrameKeyV3 dataFrame; /** * Timestamp for when this model was completed */ public long timestamp; /** * Indicator, whether export to POJO is available */ @SerializedName("have_pojo") public boolean havePojo; /** * Indicator, whether export to MOJO is available */ @SerializedName("have_mojo") public boolean haveMojo; /** * Public constructor */ public ModelSchemaBaseV3() { algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelSchemaV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelSchemaV3<P extends ModelParametersSchemaV3, O extends ModelOutputSchemaV3> extends ModelSchemaBaseV3 { /** * The build parameters for the model (e.g. K for KMeans). */ public P parameters; /** * The build output for the model (e.g. the cluster centers for KMeans). */ public O output; /** * Compatible frames, if requested */ @SerializedName("compatible_frames") public String[] compatibleFrames; /** * Checksum for all the things that go into building the Model. */ public long checksum; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public ModelSchemaV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelSelectionMode.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum ModelSelectionMode { allsubsets, backward, maxr, maxrsweep, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelSelectionModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelSelectionModelOutputV3 extends ModelOutputSchemaV3 { /** * Names of predictors in the best predictor subset */ @SerializedName("best_predictors_subset") public String[][] bestPredictorsSubset; /** * R2 values of all possible predictor subsets. Only for mode='allsubsets' or 'maxr'. */ @SerializedName("best_r2_values") public double[] bestR2Values; /** * at each predictor subset size, the predictor added is collected in this array. Not for mode = 'backward'. */ @SerializedName("predictors_added_per_step") public String[][] predictorsAddedPerStep; /** * at each predictor subset size, the predictor removed is collected in this array. */ @SerializedName("predictors_removed_per_step") public String[][] predictorsRemovedPerStep; /** * p-values of chosen predictor subsets at each subset size. Only for model='backward'. */ @SerializedName("coef_p_values") public double[][] coefPValues; /** * z-values of chosen predictor subsets at each subset size. Only for model='backward'. */ @SerializedName("z_values") public double[][] zValues; /** * Key of models containing best 1-predictor model, best 2-predictors model, .... */ @SerializedName("best_model_ids") public ModelKeyV3[] bestModelIds; /** * arrays of string arrays containing coefficient names of best 1-predictor model, best 2-predictors model, .... */ @SerializedName("coefficient_names") public String[][] coefficientNames; /** * store coefficient values for each predictor subset. Only for maxrsweep when build_glm_model is false. */ @SerializedName("coefficient_values") public double[][] coefficientValues; /** * store standardized coefficient values for each predictor subset. Only for maxrsweep when build_glm_model is * false. */ @SerializedName("coefficient_values_normalized") public double[][] coefficientValuesNormalized; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public ModelSelectionModelOutputV3() { status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelSelectionModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelSelectionModelV3 extends ModelSchemaV3<ModelSelectionParametersV3, ModelSelectionModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public ModelSelectionParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public ModelSelectionModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public ModelSelectionModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelSelectionParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelSelectionParametersV3 extends ModelParametersSchemaV3 { /** * Seed for pseudo random number generator (if applicable) */ public long seed; /** * Family. For maxr/maxrsweep, only gaussian. For backward, ordinal and multinomial families are not supported */ public GLMFamily family; /** * Tweedie variance power */ @SerializedName("tweedie_variance_power") public double tweedieVariancePower; /** * Tweedie link power */ @SerializedName("tweedie_link_power") public double tweedieLinkPower; /** * Theta */ public double theta; /** * AUTO will set the solver based on given data and the other parameters. IRLSM is fast on on problems with small * number of predictors and for lambda-search with L1 penalty, L_BFGS scales better for datasets with many columns. */ public GLMSolver solver; /** * Distribution of regularization between the L1 (Lasso) and L2 (Ridge) penalties. A value of 1 for alpha represents * Lasso regression, a value of 0 produces Ridge regression, and anything in between specifies the amount of mixing * between the two. Default value of alpha is 0 when SOLVER = 'L-BFGS'; 0.5 otherwise. */ public double[] alpha; /** * Regularization strength */ public double[] lambda; /** * Use lambda search starting at lambda max, given lambda is then interpreted as lambda min */ @SerializedName("lambda_search") public boolean lambdaSearch; /** * For maxrsweep only. If enabled, will attempt to perform sweeping action using multiple nodes in the cluster. * Defaults to false. */ @SerializedName("multinode_mode") public boolean multinodeMode; /** * For maxrsweep mode only. If true, will return full blown GLM models with the desired predictorsubsets. If * false, only the predictor subsets, predictor coefficients are returned. This is forspeeding up the model * selection process. The users can choose to build the GLM models themselvesby using the predictor subsets * themselves. Defaults to false. */ @SerializedName("build_glm_model") public boolean buildGlmModel; /** * Stop early when there is no more relative improvement on train or validation (if provided) */ @SerializedName("early_stopping") public boolean earlyStopping; /** * Number of lambdas to be used in a search. Default indicates: If alpha is zero, with lambda search set to True, * the value of nlamdas is set to 30 (fewer lambdas are needed for ridge regression) otherwise it is set to 100. */ public int nlambdas; /** * Perform scoring for every score_iteration_interval iterations */ @SerializedName("score_iteration_interval") public int scoreIterationInterval; /** * Standardize numeric columns to have zero mean and unit variance */ public boolean standardize; /** * Only applicable to multiple alpha/lambda values. If false, build the next model for next set of alpha/lambda * values starting from the values provided by current model. If true will start GLM model from scratch. */ @SerializedName("cold_start") public boolean coldStart; /** * Handling of missing values. Either MeanImputation, Skip or PlugValues. */ @SerializedName("missing_values_handling") public GLMMissingValuesHandling missingValuesHandling; /** * Plug Values (a single row frame containing values that will be used to impute missing values of the * training/validation frame, use with conjunction missing_values_handling = PlugValues) */ @SerializedName("plug_values") public FrameKeyV3 plugValues; /** * Restrict coefficients (not intercept) to be non-negative */ @SerializedName("non_negative") public boolean nonNegative; /** * Maximum number of iterations */ @SerializedName("max_iterations") public int maxIterations; /** * Converge if beta changes less (using L-infinity norm) than beta esilon, ONLY applies to IRLSM solver */ @SerializedName("beta_epsilon") public double betaEpsilon; /** * Converge if objective value changes less than this. Default (of -1.0) indicates: If lambda_search is set to True * the value of objective_epsilon is set to .0001. If the lambda_search is set to False and lambda is equal to zero, * the value of objective_epsilon is set to .000001, for any other value of lambda the default value of * objective_epsilon is set to .0001. */ @SerializedName("objective_epsilon") public double objectiveEpsilon; /** * Converge if objective changes less (using L-infinity norm) than this, ONLY applies to L-BFGS solver. Default (of * -1.0) indicates: If lambda_search is set to False and lambda is equal to zero, the default value of * gradient_epsilon is equal to .000001, otherwise the default value is .0001. If lambda_search is set to True, the * conditional values above are 1E-8 and 1E-6 respectively. */ @SerializedName("gradient_epsilon") public double gradientEpsilon; /** * Likelihood divider in objective value computation, default (of -1.0) will set it to 1/nobs */ @SerializedName("obj_reg") public double objReg; /** * Link function. */ public GLMLink link; /** * Double array to initialize coefficients for GLM. */ public double[] startval; /** * If true, will return likelihood function value for GLM. */ @SerializedName("calc_like") public boolean calcLike; /** * Mode: Used to choose model selection algorithms to use. Options include 'allsubsets' for all subsets, 'maxr' * that uses sequential replacement and GLM to build all models, slow but works with cross-validation, validation * frames for more robust results, 'maxrsweep' that uses sequential replacement and sweeping action, much faster * than 'maxr', 'backward' for backward selection. */ public ModelSelectionMode mode; /** * Include constant term in the model */ public boolean intercept; /** * Prior probability for y==1. To be used only for logistic regression iff the data has been sampled and the mean of * response does not reflect reality. */ public double prior; /** * Minimum lambda used in lambda search, specified as a ratio of lambda_max (the smallest lambda that drives all * coefficients to zero). Default indicates: if the number of observations is greater than the number of variables, * then lambda_min_ratio is set to 0.0001; if the number of observations is less than the number of variables, then * lambda_min_ratio is set to 0.01. */ @SerializedName("lambda_min_ratio") public double lambdaMinRatio; /** * Beta constraints */ @SerializedName("beta_constraints") public FrameKeyV3 betaConstraints; /** * Maximum number of active predictors during computation. Use as a stopping criterion to prevent expensive model * building with many predictors. Default indicates: If the IRLSM solver is used, the value of max_active_predictors * is set to 5000 otherwise it is set to 100000000. */ @SerializedName("max_active_predictors") public int maxActivePredictors; /** * Balance training data class counts via over/under-sampling (for imbalanced data). */ @SerializedName("balance_classes") public boolean balanceClasses; /** * Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be * automatically computed to obtain class balance during training. Requires balance_classes. */ @SerializedName("class_sampling_factors") public float[] classSamplingFactors; /** * Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires * balance_classes. */ @SerializedName("max_after_balance_size") public float maxAfterBalanceSize; /** * [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs */ @SerializedName("max_confusion_matrix_size") public int maxConfusionMatrixSize; /** * Request p-values computation, p-values work only with IRLSM solver and no regularization */ @SerializedName("compute_p_values") public boolean computePValues; /** * In case of linearly dependent columns, remove some of the dependent columns */ @SerializedName("remove_collinear_columns") public boolean removeCollinearColumns; /** * Maximum number of predictors to be considered when building GLM models. Defaults to 1. */ @SerializedName("max_predictor_number") public int maxPredictorNumber; /** * For mode = 'backward' only. Minimum number of predictors to be considered when building GLM models starting with * all predictors to be included. Defaults to 1. */ @SerializedName("min_predictor_number") public int minPredictorNumber; /** * number of models to build in parallel. Defaults to 0.0 which is adaptive to the system capability */ public int nparallelism; /** * For mode='backward' only. If specified, will stop the model building process when all coefficientsp-values drop * below this threshold */ @SerializedName("p_values_threshold") public double pValuesThreshold; /** * If set to dfbetas will calculate the difference in beta when a datarow is included and excluded in the dataset. */ public GLMInfluence influence; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public ModelSelectionParametersV3() { seed = -1L; family = GLMFamily.AUTO; tweedieVariancePower = 0.0; tweedieLinkPower = 0.0; theta = 0.0; solver = GLMSolver.IRLSM; lambda = new double[]{0.0}; lambdaSearch = false; multinodeMode = false; buildGlmModel = false; earlyStopping = false; nlambdas = 0; scoreIterationInterval = 0; standardize = true; coldStart = false; missingValuesHandling = GLMMissingValuesHandling.MeanImputation; nonNegative = false; maxIterations = 0; betaEpsilon = 0.0001; objectiveEpsilon = -1.0; gradientEpsilon = -1.0; objReg = -1.0; link = GLMLink.family_default; calcLike = false; mode = ModelSelectionMode.maxr; intercept = true; prior = 0.0; lambdaMinRatio = 0.0; maxActivePredictors = -1; balanceClasses = false; maxAfterBalanceSize = 5.0f; maxConfusionMatrixSize = 20; computePValues = false; removeCollinearColumns = false; maxPredictorNumber = 1; minPredictorNumber = 1; nparallelism = 0; pValuesThreshold = 0.0; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelSelectionV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelSelectionV3 extends ModelBuilderSchema<ModelSelectionParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public ModelSelectionParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ModelSelectionV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelSynopsisV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelSynopsisV3 extends ModelSchemaBaseV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public ModelSynopsisV3() { algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelsInfoV4.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelsInfoV4 extends OutputSchemaV4 { /** * Generic information about each model supported in H2O. */ public ModelInfoV4[] models; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Url describing the schema of the current object. public String __schema; */ /** * Public constructor */ public ModelsInfoV4() { __schema = "/4/schemas/ModelsInfoV4"; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelsKeyV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelsKeyV3 extends KeyV3 { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Name (string representation) for this Key. public String name; // Name (string representation) for the type of Keyed this Key points to. public String type; // URL for the resource that this Key points to, if one exists. public String url; */ /** * Public constructor */ public ModelsKeyV3() { name = ""; type = ""; url = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ModelsV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ModelsV3 extends RequestSchemaV3 { /** * Name of Model of interest */ @SerializedName("model_id") public ModelKeyV3 modelId; /** * Return potentially abridged model suitable for viewing in a browser */ public boolean preview; /** * Find and return compatible frames? */ @SerializedName("find_compatible_frames") public boolean findCompatibleFrames; /** * Models */ public ModelSchemaBaseV3[] models; /** * Compatible frames */ @SerializedName("compatible_frames") public FrameV3[] compatibleFrames; /** * Flag indicating whether the exported model artifact should also include CV Holdout Frame predictions */ @SerializedName("export_cross_validation_predictions") public boolean exportCrossValidationPredictions; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ModelsV3() { preview = false; findCompatibleFrames = false; exportCrossValidationPredictions = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/MultinomialAucType.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum MultinomialAucType { AUTO, MACRO_OVO, MACRO_OVR, NONE, WEIGHTED_OVO, WEIGHTED_OVR, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NaiveBayesModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NaiveBayesModelOutputV3 extends ModelOutputSchemaV3 { /** * Categorical levels of the response */ public String[] levels; /** * A-priori probabilities of the response */ public TwoDimTableV3 apriori; /** * Conditional probabilities of the predictors */ public TwoDimTableV3[] pcond; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public NaiveBayesModelOutputV3() { status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NaiveBayesModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NaiveBayesModelV3 extends ModelSchemaV3<NaiveBayesParametersV3, NaiveBayesModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public NaiveBayesParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public NaiveBayesModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public NaiveBayesModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NaiveBayesParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NaiveBayesParametersV3 extends ModelParametersSchemaV3 { /** * Balance training data class counts via over/under-sampling (for imbalanced data). */ @SerializedName("balance_classes") public boolean balanceClasses; /** * Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be * automatically computed to obtain class balance during training. Requires balance_classes. */ @SerializedName("class_sampling_factors") public float[] classSamplingFactors; /** * Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires * balance_classes. */ @SerializedName("max_after_balance_size") public float maxAfterBalanceSize; /** * [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs */ @SerializedName("max_confusion_matrix_size") public int maxConfusionMatrixSize; /** * Laplace smoothing parameter */ public double laplace; /** * Min. standard deviation to use for observations with not enough data */ @SerializedName("min_sdev") public double minSdev; /** * Cutoff below which standard deviation is replaced with min_sdev */ @SerializedName("eps_sdev") public double epsSdev; /** * Min. probability to use for observations with not enough data */ @SerializedName("min_prob") public double minProb; /** * Cutoff below which probability is replaced with min_prob */ @SerializedName("eps_prob") public double epsProb; /** * Compute metrics on training data */ @SerializedName("compute_metrics") public boolean computeMetrics; /** * Seed for pseudo random number generator (only used for cross-validation and fold_assignment="Random" or "AUTO") */ public long seed; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public NaiveBayesParametersV3() { balanceClasses = false; maxAfterBalanceSize = 5.0f; maxConfusionMatrixSize = 20; laplace = 0.0; minSdev = 0.001; epsSdev = 0.0; minProb = 0.001; epsProb = 0.0; computeMetrics = true; seed = -1L; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NaiveBayesV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NaiveBayesV3 extends ModelBuilderSchema<NaiveBayesParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public NaiveBayesParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public NaiveBayesV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NetworkBenchV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NetworkBenchV3 extends RequestSchemaV3 { /** * NetworkBenchResults */ public TwoDimTableV3[] results; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public NetworkBenchV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NetworkEvent.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NetworkEvent extends EventV3 { /** * Boolean flag distinguishing between sends (true) and receives(false) */ @SerializedName("is_send") public boolean isSend; /** * network protocol (UDP/TCP) */ public String protocol; /** * UDP type (exec,ack, ackack,... */ @SerializedName("msg_type") public String msgType; /** * Sending node */ public String from; /** * Receiving node */ public String to; /** * Pretty print of the first few bytes of the msg payload. Contains class name for tasks. */ public String data; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Time when the event was recorded. Format is hh:mm:ss:ms public String date; // Time in nanos public long nanos; // type of recorded event public TimelineEventEventType type; */ /** * Public constructor */ public NetworkEvent() { isSend = false; protocol = "unknown"; msgType = "unknown"; from = "unknown"; to = "unknown"; data = "unknown"; date = ""; nanos = -1L; type = TimelineEventEventType.unknown; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NetworkTestV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NetworkTestV3 extends RequestSchemaV3 { /** * Collective broadcast/reduce times in microseconds (for each message size) */ @SerializedName("microseconds_collective") public double[] microsecondsCollective; /** * Collective bandwidths in Bytes/sec (for each message size, for each node) */ @SerializedName("bandwidths_collective") public double[] bandwidthsCollective; /** * Round-trip times in microseconds (for each message size, for each node) */ public double[][] microseconds; /** * Bi-directional bandwidths in Bytes/sec (for each message size, for each node) */ public double[][] bandwidths; /** * Nodes */ public String[] nodes; /** * NetworkTestResults */ public TwoDimTableV3 table; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public NetworkTestV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NodeMemoryInfoV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NodeMemoryInfoV3 extends SchemaV3 { /** * IP address and port in the form a.b.c.d:e */ @SerializedName("ip_port") public String ipPort; /** * Free heap */ @SerializedName("free_mem") public long freeMem; /** * Public constructor */ public NodeMemoryInfoV3() { ipPort = ""; freeMem = 0L; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NodePersistentStorageEntryV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NodePersistentStorageEntryV3 extends SchemaV3 { /** * Category name */ public String category; /** * Key name */ public String name; /** * Size in bytes of value */ public long size; /** * Epoch time in milliseconds of when the value was written */ @SerializedName("timestamp_millis") public long timestampMillis; /** * Public constructor */ public NodePersistentStorageEntryV3() { category = ""; name = ""; size = 0L; timestampMillis = 0L; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NodePersistentStorageV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NodePersistentStorageV3 extends RequestSchemaV3 { /** * Category name */ public String category; /** * Key name */ public String name; /** * Value */ public String value; /** * Configured */ public boolean configured; /** * Exists */ public boolean exists; /** * List of entries */ public NodePersistentStorageEntryV3[] entries; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public NodePersistentStorageV3() { category = ""; name = ""; value = ""; configured = false; exists = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/NodeV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class NodeV3 extends SchemaV3 { /** * IP */ public String h2o; /** * IP address and port in the form a.b.c.d:e */ @SerializedName("ip_port") public String ipPort; /** * (now-last_ping)<HeartbeatThread.TIMEOUT */ public boolean healthy; /** * Time (in msec) of last ping */ @SerializedName("last_ping") public long lastPing; /** * PID */ public int pid; /** * num_cpus */ @SerializedName("num_cpus") public int numCpus; /** * cpus_allowed */ @SerializedName("cpus_allowed") public int cpusAllowed; /** * nthreads */ public int nthreads; /** * System load; average #runnables/#cores */ @SerializedName("sys_load") public float sysLoad; /** * System CPU percentage used by this H2O process in last interval */ @SerializedName("my_cpu_pct") public int myCpuPct; /** * System CPU percentage used by everything in last interval */ @SerializedName("sys_cpu_pct") public int sysCpuPct; /** * Data on Node memory */ @SerializedName("mem_value_size") public long memValueSize; /** * Temp (non Data) memory */ @SerializedName("pojo_mem") public long pojoMem; /** * Free heap */ @SerializedName("free_mem") public long freeMem; /** * Maximum memory size for node */ @SerializedName("max_mem") public long maxMem; /** * Size of data on node's disk */ @SerializedName("swap_mem") public long swapMem; /** * #local keys */ @SerializedName("num_keys") public int numKeys; /** * Free disk */ @SerializedName("free_disk") public long freeDisk; /** * Max disk */ @SerializedName("max_disk") public long maxDisk; /** * Active Remote Procedure Calls */ @SerializedName("rpcs_active") public int rpcsActive; /** * F/J Thread count, by priority */ public short[] fjthrds; /** * F/J Task count, by priority */ public short[] fjqueue; /** * Open TCP connections */ @SerializedName("tcps_active") public int tcpsActive; /** * Open File Descripters */ @SerializedName("open_fds") public int openFds; /** * Linpack GFlops */ public double gflops; /** * Memory Bandwidth */ @SerializedName("mem_bw") public double memBw; /** * Public constructor */ public NodeV3() { h2o = ""; ipPort = ""; healthy = false; lastPing = 0L; pid = 0; numCpus = 0; cpusAllowed = 0; nthreads = 0; sysLoad = 0.0f; myCpuPct = 0; sysCpuPct = 0; memValueSize = 0L; pojoMem = 0L; freeMem = 0L; maxMem = 0L; swapMem = 0L; numKeys = 0; freeDisk = 0L; maxDisk = 0L; rpcsActive = 0; tcpsActive = 0; openFds = 0; gflops = 0.0; memBw = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/OutputSchemaV4.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class OutputSchemaV4 { /** * Url describing the schema of the current object. */ public String __schema; /** * Public constructor */ public OutputSchemaV4() { __schema = "/4/schemas/OutputSchemaV4"; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PCAImplementation.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum PCAImplementation { JAMA, MTJ_EVD_DENSEMATRIX, MTJ_EVD_SYMMMATRIX, MTJ_SVD_DENSEMATRIX, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PCAMethod.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; public enum PCAMethod { GLRM, GramSVD, Power, Randomized, }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PCAModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PCAModelOutputV3 extends ModelOutputSchemaV3 { /** * Standard deviation and importance of each principal component */ public TwoDimTableV3 importance; /** * Principal components matrix */ public TwoDimTableV3 eigenvectors; /** * Final value of GLRM squared loss function */ public double objective; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public PCAModelOutputV3() { objective = 0.0; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PCAModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PCAModelV3 extends ModelSchemaV3<PCAParametersV3, PCAModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public PCAParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public PCAModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public PCAModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PCAParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PCAParametersV3 extends ModelParametersSchemaV3 { /** * Transformation of training data */ public DataInfoTransformType transform; /** * Specify the algorithm to use for computing the principal components: GramSVD - uses a distributed computation of * the Gram matrix, followed by a local SVD; Power - computes the SVD using the power iteration method * (experimental); Randomized - uses randomized subspace iteration method; GLRM - fits a generalized low-rank model * with L2 loss function and no regularization and solves for the SVD using local matrix algebra (experimental) */ @SerializedName("pca_method") public PCAMethod pcaMethod; /** * Specify the implementation to use for computing PCA (via SVD or EVD): MTJ_EVD_DENSEMATRIX - eigenvalue * decompositions for dense matrix using MTJ; MTJ_EVD_SYMMMATRIX - eigenvalue decompositions for symmetric matrix * using MTJ; MTJ_SVD_DENSEMATRIX - singular-value decompositions for dense matrix using MTJ; JAMA - eigenvalue * decompositions for dense matrix using JAMA. References: JAMA - http://math.nist.gov/javanumerics/jama/; MTJ - * https://github.com/fommil/matrix-toolkits-java/ */ @SerializedName("pca_impl") public PCAImplementation pcaImpl; /** * Rank of matrix approximation */ public int k; /** * Maximum training iterations */ @SerializedName("max_iterations") public int maxIterations; /** * RNG seed for initialization */ public long seed; /** * Whether first factor level is included in each categorical expansion */ @SerializedName("use_all_factor_levels") public boolean useAllFactorLevels; /** * Whether to compute metrics on the training data */ @SerializedName("compute_metrics") public boolean computeMetrics; /** * Whether to impute missing entries with the column mean */ @SerializedName("impute_missing") public boolean imputeMissing; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public PCAParametersV3() { transform = DataInfoTransformType.NONE; pcaMethod = PCAMethod.GramSVD; k = 1; maxIterations = 1000; seed = -1L; useAllFactorLevels = false; computeMetrics = true; imputeMissing = false; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PCAV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PCAV3 extends ModelBuilderSchema<PCAParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public PCAParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public PCAV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PSVMModelOutputV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PSVMModelOutputV3 extends ModelOutputSchemaV3 { /** * Total number of support vectors */ @SerializedName("svs_count") public long svsCount; /** * Number of bounded support vectors */ @SerializedName("bsv_count") public long bsvCount; /** * rho */ public double rho; /** * Weights of support vectors */ @SerializedName("alpha_key") public FrameKeyV3 alphaKey; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Column names public String[] names; // Original column names public String[] originalNames; // Column types public String[] columnTypes; // Domains for categorical columns public String[][] domains; // Cross-validation models (model ids) public ModelKeyV3[] crossValidationModels; // Cross-validation predictions, one per cv model (deprecated, use cross_validation_holdout_predictions_frame_id // instead) public FrameKeyV3[] crossValidationPredictions; // Cross-validation holdout predictions (full out-of-sample predictions on training data) public FrameKeyV3 crossValidationHoldoutPredictionsFrameId; // Cross-validation fold assignment (each row is assigned to one holdout fold) public FrameKeyV3 crossValidationFoldAssignmentFrameId; // Category of the model (e.g., Binomial) public ModelCategory modelCategory; // Model summary public TwoDimTableV3 modelSummary; // Scoring history public TwoDimTableV3 scoringHistory; // Cross-Validation scoring history public TwoDimTableV3[] cvScoringHistory; // Model reproducibility information public TwoDimTableV3[] reproducibilityInformationTable; // Training data model metrics public ModelMetricsBaseV3 trainingMetrics; // Validation data model metrics public ModelMetricsBaseV3 validationMetrics; // Cross-validation model metrics public ModelMetricsBaseV3 crossValidationMetrics; // Cross-validation model metrics summary public TwoDimTableV3 crossValidationMetricsSummary; // Job status public String status; // Start time in milliseconds public long startTime; // End time in milliseconds public long endTime; // Runtime in milliseconds public long runTime; // Default threshold used for predictions public double defaultThreshold; // Help information for output fields public Map<String,String> help; */ /** * Public constructor */ public PSVMModelOutputV3() { svsCount = 0L; bsvCount = 0L; rho = 0.0; status = ""; startTime = 0L; endTime = 0L; runTime = 0L; defaultThreshold = 0.0; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PSVMModelV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PSVMModelV3 extends ModelSchemaV3<PSVMParametersV3, PSVMModelOutputV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // The build parameters for the model (e.g. K for KMeans). public PSVMParametersV3 parameters; // The build output for the model (e.g. the cluster centers for KMeans). public PSVMModelOutputV3 output; // Compatible frames, if requested public String[] compatibleFrames; // Checksum for all the things that go into building the Model. public long checksum; // Model key public ModelKeyV3 modelId; // The algo name for this Model. public String algo; // The pretty algo name for this Model (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // The response column name for this Model (if applicable). Is null otherwise. public String responseColumnName; // The treatment column name for this Model (if applicable). Is null otherwise. public String treatmentColumnName; // The Model's training frame key public FrameKeyV3 dataFrame; // Timestamp for when this model was completed public long timestamp; // Indicator, whether export to POJO is available public boolean havePojo; // Indicator, whether export to MOJO is available public boolean haveMojo; */ /** * Public constructor */ public PSVMModelV3() { checksum = 0L; algo = ""; algoFullName = ""; responseColumnName = ""; treatmentColumnName = ""; timestamp = 0L; havePojo = false; haveMojo = false; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PSVMParametersV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PSVMParametersV3 extends ModelParametersSchemaV3 { /** * Penalty parameter C of the error term */ @SerializedName("hyper_param") public double hyperParam; /** * Type of used kernel */ @SerializedName("kernel_type") public GenmodelalgospsvmKernelType kernelType; /** * Coefficient of the kernel (currently RBF gamma for gaussian kernel, -1 means 1/#features) */ public double gamma; /** * Desired rank of the ICF matrix expressed as an ration of number of input rows (-1 means use sqrt(#rows)). */ @SerializedName("rank_ratio") public double rankRatio; /** * Weight of positive (+1) class of observations */ @SerializedName("positive_weight") public double positiveWeight; /** * Weight of positive (-1) class of observations */ @SerializedName("negative_weight") public double negativeWeight; /** * Disable calculating training metrics (expensive on large datasets) */ @SerializedName("disable_training_metrics") public boolean disableTrainingMetrics; /** * Threshold for accepting a candidate observation into the set of support vectors */ @SerializedName("sv_threshold") public double svThreshold; /** * Maximum number of iteration of the algorithm */ @SerializedName("max_iterations") public int maxIterations; /** * Convergence threshold of the Incomplete Cholesky Factorization (ICF) */ @SerializedName("fact_threshold") public double factThreshold; /** * Convergence threshold for primal-dual residuals in the IPM iteration */ @SerializedName("feasible_threshold") public double feasibleThreshold; /** * Feasibility criterion of the surrogate duality gap (eta) */ @SerializedName("surrogate_gap_threshold") public double surrogateGapThreshold; /** * Increasing factor mu */ @SerializedName("mu_factor") public double muFactor; /** * Seed for pseudo random number generator (if applicable) */ public long seed; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Destination id for this model; auto-generated if not specified. public ModelKeyV3 modelId; // Id of the training data frame. public FrameKeyV3 trainingFrame; // Id of the validation data frame. public FrameKeyV3 validationFrame; // Number of folds for K-fold cross-validation (0 to disable or >= 2). public int nfolds; // Whether to keep the cross-validation models. public boolean keepCrossValidationModels; // Whether to keep the predictions of the cross-validation models. public boolean keepCrossValidationPredictions; // Whether to keep the cross-validation fold assignment. public boolean keepCrossValidationFoldAssignment; // Allow parallel training of cross-validation models public boolean parallelizeCrossValidation; // Distribution function public GenmodelutilsDistributionFamily distribution; // Tweedie power for Tweedie regression, must be between 1 and 2. public double tweediePower; // Desired quantile for Quantile regression, must be between 0 and 1. public double quantileAlpha; // Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). public double huberAlpha; // Response variable column. public ColSpecifierV3 responseColumn; // Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the // dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights // are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. // This is typically the number of times a row is repeated, but non-integer values are supported as well. During // training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 // for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate // prediction, remove all rows with weight == 0. public ColSpecifierV3 weightsColumn; // Offset column. This will be added to the combination of columns before applying the link function. public ColSpecifierV3 offsetColumn; // Column with cross-validation fold index assignment per observation. public ColSpecifierV3 foldColumn; // Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify // the folds based on the response variable, for classification problems. public ModelParametersFoldAssignmentScheme foldAssignment; // Encoding scheme for categorical features public ModelParametersCategoricalEncodingScheme categoricalEncoding; // For every categorical feature, only use this many most frequent categorical levels for model training. Only used // for categorical_encoding == EnumLimited. public int maxCategoricalLevels; // Names of columns to ignore for training. public String[] ignoredColumns; // Ignore constant columns. public boolean ignoreConstCols; // Whether to score during each iteration of model training. public boolean scoreEachIteration; // Model checkpoint to resume training with. public ModelKeyV3 checkpoint; // Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the // stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) public int stoppingRounds; // Maximum allowed runtime in seconds for model training. Use 0 to disable. public double maxRuntimeSecs; // Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for // Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. public ScoreKeeperStoppingMetric stoppingMetric; // Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) public double stoppingTolerance; // Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning. public int gainsliftBins; // Reference to custom evaluation function, format: `language:keyName=funcName` public String customMetricFunc; // Reference to custom distribution, format: `language:keyName=funcName` public String customDistributionFunc; // Automatically export generated models to this directory. public String exportCheckpointsDir; // Set default multinomial AUC type. public MultinomialAucType aucType; */ /** * Public constructor */ public PSVMParametersV3() { hyperParam = 1.0; kernelType = GenmodelalgospsvmKernelType.gaussian; gamma = -1.0; rankRatio = -1.0; positiveWeight = 1.0; negativeWeight = 1.0; disableTrainingMetrics = true; svThreshold = 0.0001; maxIterations = 200; factThreshold = 1e-05; feasibleThreshold = 0.001; surrogateGapThreshold = 0.001; muFactor = 10.0; seed = -1L; nfolds = 0; keepCrossValidationModels = true; keepCrossValidationPredictions = false; keepCrossValidationFoldAssignment = false; parallelizeCrossValidation = true; distribution = GenmodelutilsDistributionFamily.AUTO; tweediePower = 1.5; quantileAlpha = 0.5; huberAlpha = 0.9; foldAssignment = ModelParametersFoldAssignmentScheme.AUTO; categoricalEncoding = ModelParametersCategoricalEncodingScheme.AUTO; maxCategoricalLevels = 10; ignoreConstCols = true; scoreEachIteration = false; stoppingRounds = 0; maxRuntimeSecs = 0.0; stoppingMetric = ScoreKeeperStoppingMetric.AUTO; stoppingTolerance = 0.001; gainsliftBins = -1; customMetricFunc = ""; customDistributionFunc = ""; exportCheckpointsDir = ""; aucType = MultinomialAucType.AUTO; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/PSVMV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class PSVMV3 extends ModelBuilderSchema<PSVMParametersV3> { /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Model builder parameters. public PSVMParametersV3 parameters; // The algo name for this ModelBuilder. public String algo; // The pretty algo name for this ModelBuilder (e.g., Generalized Linear Model, rather than GLM). public String algoFullName; // Model categories this ModelBuilder can build. public ModelCategory[] canBuild; // Indicator whether the model is supervised or not. public boolean supervised; // Should the builder always be visible, be marked as beta, or only visible if the user starts up with the // experimental flag? public ModelBuilderBuilderVisibility visibility; // Job Key public JobV3 job; // Parameter validation messages public ValidationMessageV3[] messages; // Count of parameter validation errors public int errorCount; // HTTP status to return for this build. public int __httpStatus; // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public PSVMV3() { algo = ""; algoFullName = ""; supervised = false; errorCount = 0; __httpStatus = 0; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ParseSVMLightV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ParseSVMLightV3 extends RequestSchemaV3 { /** * Final frame name */ @SerializedName("destination_frame") public FrameKeyV3 destinationFrame; /** * Source frames */ @SerializedName("source_frames") public FrameKeyV3[] sourceFrames; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ParseSVMLightV3() { _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }
0
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings
java-sources/ai/h2o/h2o-bindings/3.46.0.7/water/bindings/pojos/ParseSetupV3.java
/* * This file is auto-generated by h2o-3/h2o-bindings/bin/gen_java.py * Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details) */ package water.bindings.pojos; import com.google.gson.Gson; import com.google.gson.annotations.*; public class ParseSetupV3 extends RequestSchemaV3 { /** * Source frames */ @SerializedName("source_frames") public FrameKeyV3[] sourceFrames; /** * Parser type */ @SerializedName("parse_type") public ApiParseTypeValuesProvider parseType; /** * Field separator */ public byte separator; /** * Single quotes */ @SerializedName("single_quotes") public boolean singleQuotes; /** * Check header: 0 means guess, +1 means 1st line is header not data, -1 means 1st line is data not header */ @SerializedName("check_header") public int checkHeader; /** * Column names */ @SerializedName("column_names") public String[] columnNames; /** * Skipped columns indices */ @SerializedName("skipped_columns") public int[] skippedColumns; /** * Value types for columns */ @SerializedName("column_types") public String[] columnTypes; /** * NA strings for columns */ @SerializedName("na_strings") public String[][] naStrings; /** * Regex for names of columns to return */ @SerializedName("column_name_filter") public String columnNameFilter; /** * Column offset to return */ @SerializedName("column_offset") public int columnOffset; /** * Number of columns to return */ @SerializedName("column_count") public int columnCount; /** * Suggested name */ @SerializedName("destination_frame") public String destinationFrame; /** * Number of header lines found */ @SerializedName("header_lines") public long headerLines; /** * Number of columns */ @SerializedName("number_columns") public int numberColumns; /** * Sample data */ public String[][] data; /** * Warnings */ public String[] warnings; /** * Size of individual parse tasks */ @SerializedName("chunk_size") public int chunkSize; /** * Total number of columns we would return with no column pagination */ @SerializedName("total_filtered_column_count") public int totalFilteredColumnCount; /** * Custom characters to be treated as non-data line markers */ @SerializedName("custom_non_data_line_markers") public String customNonDataLineMarkers; /** * Key-reference to an initialized instance of a Decryption Tool */ @SerializedName("decrypt_tool") public DecryptionToolKeyV3 decryptTool; /** * Names of the columns the persisted dataset has been partitioned by. */ @SerializedName("partition_by") public String[] partitionBy; /** * One ASCII character used to escape other characters. */ public byte escapechar; /** * If true, will force the column types to be either the ones in Parquet schema for Parquet files or the ones * specified in column_types. This parameter is used for numerical columns only. Other column settings will happen * without setting this parameter. Defaults to false. */ @SerializedName("force_col_types") public boolean forceColTypes; /** * Adjust the imported time from GMT timezone to cluster timezone. */ @SerializedName("tz_adjust_to_local") public boolean tzAdjustToLocal; /*------------------------------------------------------------------------------------------------------------------ // INHERITED //------------------------------------------------------------------------------------------------------------------ // Comma-separated list of JSON field paths to exclude from the result, used like: // "/3/Frames?_exclude_fields=frames/frame_id/URL,__meta" public String _excludeFields; */ /** * Public constructor */ public ParseSetupV3() { parseType = ApiParseTypeValuesProvider.GUESS; separator = 0; singleQuotes = false; checkHeader = 0; columnNameFilter = ""; columnOffset = 0; columnCount = 0; destinationFrame = ""; headerLines = 0L; numberColumns = 0; chunkSize = 4194304; totalFilteredColumnCount = 0; customNonDataLineMarkers = ""; escapechar = 0; forceColTypes = false; tzAdjustToLocal = false; _excludeFields = ""; } /** * Return the contents of this object as a JSON String. */ @Override public String toString() { return new Gson().toJson(this); } }