partition
stringclasses 3
values | func_name
stringlengths 1
134
| docstring
stringlengths 1
46.9k
| path
stringlengths 4
223
| original_string
stringlengths 75
104k
| code
stringlengths 75
104k
| docstring_tokens
listlengths 1
1.97k
| repo
stringlengths 7
55
| language
stringclasses 1
value | url
stringlengths 87
315
| code_tokens
listlengths 19
28.4k
| sha
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|---|
test
|
SampleTrainer.itertrain
|
Train a model using a training and validation set.
This method yields a series of monitor values to the caller. After every
iteration, a pair of monitor dictionaries is generated: one evaluated on
the training dataset, and another evaluated on the validation dataset.
The validation monitors might not be updated during every training
iteration; in this case, the most recent validation monitors will be
yielded along with the training monitors.
Parameters
----------
train : :class:`Dataset <theanets.dataset.Dataset>`
A set of training data for computing updates to model parameters.
valid : :class:`Dataset <theanets.dataset.Dataset>`
A set of validation data for computing monitor values and
determining when the loss has stopped improving.
Yields
------
training : dict
A dictionary mapping monitor names to values, evaluated on the
training dataset.
validation : dict
A dictionary containing monitor values evaluated on the validation
dataset.
|
theanets/trainer.py
|
def itertrain(self, train, valid=None, **kwargs):
'''Train a model using a training and validation set.
This method yields a series of monitor values to the caller. After every
iteration, a pair of monitor dictionaries is generated: one evaluated on
the training dataset, and another evaluated on the validation dataset.
The validation monitors might not be updated during every training
iteration; in this case, the most recent validation monitors will be
yielded along with the training monitors.
Parameters
----------
train : :class:`Dataset <theanets.dataset.Dataset>`
A set of training data for computing updates to model parameters.
valid : :class:`Dataset <theanets.dataset.Dataset>`
A set of validation data for computing monitor values and
determining when the loss has stopped improving.
Yields
------
training : dict
A dictionary mapping monitor names to values, evaluated on the
training dataset.
validation : dict
A dictionary containing monitor values evaluated on the validation
dataset.
'''
ifci = itertools.chain.from_iterable
def first(x):
return x[0] if isinstance(x, (tuple, list)) else x
def last(x):
return x[-1] if isinstance(x, (tuple, list)) else x
odim = idim = None
for t in train:
idim = first(t).shape[-1]
odim = last(t).shape[-1]
rng = kwargs.get('rng')
if rng is None or isinstance(rng, int):
rng = np.random.RandomState(rng)
# set output (decoding) weights on the network.
samples = ifci(last(t) for t in train)
for param in self.network.layers[-1].params:
shape = param.get_value(borrow=True).shape
if len(shape) == 2 and shape[1] == odim:
arr = np.vstack(SampleTrainer.reservoir(samples, shape[0], rng))
util.log('setting {}: {}', param.name, shape)
param.set_value(arr / np.sqrt((arr * arr).sum(axis=1))[:, None])
# set input (encoding) weights on the network.
samples = ifci(first(t) for t in train)
for layer in self.network.layers:
for param in layer.params:
shape = param.get_value(borrow=True).shape
if len(shape) == 2 and shape[0] == idim:
arr = np.vstack(SampleTrainer.reservoir(samples, shape[1], rng)).T
util.log('setting {}: {}', param.name, shape)
param.set_value(arr / np.sqrt((arr * arr).sum(axis=0)))
samples = ifci(self.network.feed_forward(
first(t))[i-1] for t in train)
yield dict(loss=0), dict(loss=0)
|
def itertrain(self, train, valid=None, **kwargs):
'''Train a model using a training and validation set.
This method yields a series of monitor values to the caller. After every
iteration, a pair of monitor dictionaries is generated: one evaluated on
the training dataset, and another evaluated on the validation dataset.
The validation monitors might not be updated during every training
iteration; in this case, the most recent validation monitors will be
yielded along with the training monitors.
Parameters
----------
train : :class:`Dataset <theanets.dataset.Dataset>`
A set of training data for computing updates to model parameters.
valid : :class:`Dataset <theanets.dataset.Dataset>`
A set of validation data for computing monitor values and
determining when the loss has stopped improving.
Yields
------
training : dict
A dictionary mapping monitor names to values, evaluated on the
training dataset.
validation : dict
A dictionary containing monitor values evaluated on the validation
dataset.
'''
ifci = itertools.chain.from_iterable
def first(x):
return x[0] if isinstance(x, (tuple, list)) else x
def last(x):
return x[-1] if isinstance(x, (tuple, list)) else x
odim = idim = None
for t in train:
idim = first(t).shape[-1]
odim = last(t).shape[-1]
rng = kwargs.get('rng')
if rng is None or isinstance(rng, int):
rng = np.random.RandomState(rng)
# set output (decoding) weights on the network.
samples = ifci(last(t) for t in train)
for param in self.network.layers[-1].params:
shape = param.get_value(borrow=True).shape
if len(shape) == 2 and shape[1] == odim:
arr = np.vstack(SampleTrainer.reservoir(samples, shape[0], rng))
util.log('setting {}: {}', param.name, shape)
param.set_value(arr / np.sqrt((arr * arr).sum(axis=1))[:, None])
# set input (encoding) weights on the network.
samples = ifci(first(t) for t in train)
for layer in self.network.layers:
for param in layer.params:
shape = param.get_value(borrow=True).shape
if len(shape) == 2 and shape[0] == idim:
arr = np.vstack(SampleTrainer.reservoir(samples, shape[1], rng)).T
util.log('setting {}: {}', param.name, shape)
param.set_value(arr / np.sqrt((arr * arr).sum(axis=0)))
samples = ifci(self.network.feed_forward(
first(t))[i-1] for t in train)
yield dict(loss=0), dict(loss=0)
|
[
"Train",
"a",
"model",
"using",
"a",
"training",
"and",
"validation",
"set",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/trainer.py#L93-L158
|
[
"def",
"itertrain",
"(",
"self",
",",
"train",
",",
"valid",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"ifci",
"=",
"itertools",
".",
"chain",
".",
"from_iterable",
"def",
"first",
"(",
"x",
")",
":",
"return",
"x",
"[",
"0",
"]",
"if",
"isinstance",
"(",
"x",
",",
"(",
"tuple",
",",
"list",
")",
")",
"else",
"x",
"def",
"last",
"(",
"x",
")",
":",
"return",
"x",
"[",
"-",
"1",
"]",
"if",
"isinstance",
"(",
"x",
",",
"(",
"tuple",
",",
"list",
")",
")",
"else",
"x",
"odim",
"=",
"idim",
"=",
"None",
"for",
"t",
"in",
"train",
":",
"idim",
"=",
"first",
"(",
"t",
")",
".",
"shape",
"[",
"-",
"1",
"]",
"odim",
"=",
"last",
"(",
"t",
")",
".",
"shape",
"[",
"-",
"1",
"]",
"rng",
"=",
"kwargs",
".",
"get",
"(",
"'rng'",
")",
"if",
"rng",
"is",
"None",
"or",
"isinstance",
"(",
"rng",
",",
"int",
")",
":",
"rng",
"=",
"np",
".",
"random",
".",
"RandomState",
"(",
"rng",
")",
"# set output (decoding) weights on the network.",
"samples",
"=",
"ifci",
"(",
"last",
"(",
"t",
")",
"for",
"t",
"in",
"train",
")",
"for",
"param",
"in",
"self",
".",
"network",
".",
"layers",
"[",
"-",
"1",
"]",
".",
"params",
":",
"shape",
"=",
"param",
".",
"get_value",
"(",
"borrow",
"=",
"True",
")",
".",
"shape",
"if",
"len",
"(",
"shape",
")",
"==",
"2",
"and",
"shape",
"[",
"1",
"]",
"==",
"odim",
":",
"arr",
"=",
"np",
".",
"vstack",
"(",
"SampleTrainer",
".",
"reservoir",
"(",
"samples",
",",
"shape",
"[",
"0",
"]",
",",
"rng",
")",
")",
"util",
".",
"log",
"(",
"'setting {}: {}'",
",",
"param",
".",
"name",
",",
"shape",
")",
"param",
".",
"set_value",
"(",
"arr",
"/",
"np",
".",
"sqrt",
"(",
"(",
"arr",
"*",
"arr",
")",
".",
"sum",
"(",
"axis",
"=",
"1",
")",
")",
"[",
":",
",",
"None",
"]",
")",
"# set input (encoding) weights on the network.",
"samples",
"=",
"ifci",
"(",
"first",
"(",
"t",
")",
"for",
"t",
"in",
"train",
")",
"for",
"layer",
"in",
"self",
".",
"network",
".",
"layers",
":",
"for",
"param",
"in",
"layer",
".",
"params",
":",
"shape",
"=",
"param",
".",
"get_value",
"(",
"borrow",
"=",
"True",
")",
".",
"shape",
"if",
"len",
"(",
"shape",
")",
"==",
"2",
"and",
"shape",
"[",
"0",
"]",
"==",
"idim",
":",
"arr",
"=",
"np",
".",
"vstack",
"(",
"SampleTrainer",
".",
"reservoir",
"(",
"samples",
",",
"shape",
"[",
"1",
"]",
",",
"rng",
")",
")",
".",
"T",
"util",
".",
"log",
"(",
"'setting {}: {}'",
",",
"param",
".",
"name",
",",
"shape",
")",
"param",
".",
"set_value",
"(",
"arr",
"/",
"np",
".",
"sqrt",
"(",
"(",
"arr",
"*",
"arr",
")",
".",
"sum",
"(",
"axis",
"=",
"0",
")",
")",
")",
"samples",
"=",
"ifci",
"(",
"self",
".",
"network",
".",
"feed_forward",
"(",
"first",
"(",
"t",
")",
")",
"[",
"i",
"-",
"1",
"]",
"for",
"t",
"in",
"train",
")",
"yield",
"dict",
"(",
"loss",
"=",
"0",
")",
",",
"dict",
"(",
"loss",
"=",
"0",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
SupervisedPretrainer.itertrain
|
Train a model using a training and validation set.
This method yields a series of monitor values to the caller. After every
iteration, a pair of monitor dictionaries is generated: one evaluated on
the training dataset, and another evaluated on the validation dataset.
The validation monitors might not be updated during every training
iteration; in this case, the most recent validation monitors will be
yielded along with the training monitors.
Parameters
----------
train : :class:`Dataset <theanets.dataset.Dataset>`
A set of training data for computing updates to model parameters.
valid : :class:`Dataset <theanets.dataset.Dataset>`
A set of validation data for computing monitor values and
determining when the loss has stopped improving.
Yields
------
training : dict
A dictionary mapping monitor names to values, evaluated on the
training dataset.
validation : dict
A dictionary containing monitor values evaluated on the validation
dataset.
|
theanets/trainer.py
|
def itertrain(self, train, valid=None, **kwargs):
'''Train a model using a training and validation set.
This method yields a series of monitor values to the caller. After every
iteration, a pair of monitor dictionaries is generated: one evaluated on
the training dataset, and another evaluated on the validation dataset.
The validation monitors might not be updated during every training
iteration; in this case, the most recent validation monitors will be
yielded along with the training monitors.
Parameters
----------
train : :class:`Dataset <theanets.dataset.Dataset>`
A set of training data for computing updates to model parameters.
valid : :class:`Dataset <theanets.dataset.Dataset>`
A set of validation data for computing monitor values and
determining when the loss has stopped improving.
Yields
------
training : dict
A dictionary mapping monitor names to values, evaluated on the
training dataset.
validation : dict
A dictionary containing monitor values evaluated on the validation
dataset.
'''
net = self.network
original = list(net.layers)
output_name = original[-1].output_name
tied = any(isinstance(l, layers.Tied) for l in original)
L = 1 + len(original) // 2 if tied else len(original) - 1
for i in range(1, L):
tail = []
if i == L - 1:
net.layers = original
elif tied:
net.layers = original[:i+1]
for j in range(i):
prev = tail[-1] if tail else net.layers[-1]
tail.append(layers.Layer.build(
'tied', partner=original[i-j].name, inputs=prev.name))
net.layers = original[:i+1] + tail
else:
tail.append(layers.Layer.build(
'feedforward',
name='lwout',
inputs=original[i].output_name,
size=original[-1].output_size,
activation=original[-1].kwargs['activation']))
net.layers = original[:i+1] + tail
util.log('layerwise: training {}',
' -> '.join(l.name for l in net.layers))
[l.bind(net, initialize=False) for l in net.layers]
[l.setup() for l in tail]
net.losses[0].output_name = net.layers[-1].output_name
trainer = DownhillTrainer(self.algo, net)
for monitors in trainer.itertrain(train, valid, **kwargs):
yield monitors
net.layers = original
net.losses[0].output_name = output_name
|
def itertrain(self, train, valid=None, **kwargs):
'''Train a model using a training and validation set.
This method yields a series of monitor values to the caller. After every
iteration, a pair of monitor dictionaries is generated: one evaluated on
the training dataset, and another evaluated on the validation dataset.
The validation monitors might not be updated during every training
iteration; in this case, the most recent validation monitors will be
yielded along with the training monitors.
Parameters
----------
train : :class:`Dataset <theanets.dataset.Dataset>`
A set of training data for computing updates to model parameters.
valid : :class:`Dataset <theanets.dataset.Dataset>`
A set of validation data for computing monitor values and
determining when the loss has stopped improving.
Yields
------
training : dict
A dictionary mapping monitor names to values, evaluated on the
training dataset.
validation : dict
A dictionary containing monitor values evaluated on the validation
dataset.
'''
net = self.network
original = list(net.layers)
output_name = original[-1].output_name
tied = any(isinstance(l, layers.Tied) for l in original)
L = 1 + len(original) // 2 if tied else len(original) - 1
for i in range(1, L):
tail = []
if i == L - 1:
net.layers = original
elif tied:
net.layers = original[:i+1]
for j in range(i):
prev = tail[-1] if tail else net.layers[-1]
tail.append(layers.Layer.build(
'tied', partner=original[i-j].name, inputs=prev.name))
net.layers = original[:i+1] + tail
else:
tail.append(layers.Layer.build(
'feedforward',
name='lwout',
inputs=original[i].output_name,
size=original[-1].output_size,
activation=original[-1].kwargs['activation']))
net.layers = original[:i+1] + tail
util.log('layerwise: training {}',
' -> '.join(l.name for l in net.layers))
[l.bind(net, initialize=False) for l in net.layers]
[l.setup() for l in tail]
net.losses[0].output_name = net.layers[-1].output_name
trainer = DownhillTrainer(self.algo, net)
for monitors in trainer.itertrain(train, valid, **kwargs):
yield monitors
net.layers = original
net.losses[0].output_name = output_name
|
[
"Train",
"a",
"model",
"using",
"a",
"training",
"and",
"validation",
"set",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/trainer.py#L202-L262
|
[
"def",
"itertrain",
"(",
"self",
",",
"train",
",",
"valid",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"net",
"=",
"self",
".",
"network",
"original",
"=",
"list",
"(",
"net",
".",
"layers",
")",
"output_name",
"=",
"original",
"[",
"-",
"1",
"]",
".",
"output_name",
"tied",
"=",
"any",
"(",
"isinstance",
"(",
"l",
",",
"layers",
".",
"Tied",
")",
"for",
"l",
"in",
"original",
")",
"L",
"=",
"1",
"+",
"len",
"(",
"original",
")",
"//",
"2",
"if",
"tied",
"else",
"len",
"(",
"original",
")",
"-",
"1",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"L",
")",
":",
"tail",
"=",
"[",
"]",
"if",
"i",
"==",
"L",
"-",
"1",
":",
"net",
".",
"layers",
"=",
"original",
"elif",
"tied",
":",
"net",
".",
"layers",
"=",
"original",
"[",
":",
"i",
"+",
"1",
"]",
"for",
"j",
"in",
"range",
"(",
"i",
")",
":",
"prev",
"=",
"tail",
"[",
"-",
"1",
"]",
"if",
"tail",
"else",
"net",
".",
"layers",
"[",
"-",
"1",
"]",
"tail",
".",
"append",
"(",
"layers",
".",
"Layer",
".",
"build",
"(",
"'tied'",
",",
"partner",
"=",
"original",
"[",
"i",
"-",
"j",
"]",
".",
"name",
",",
"inputs",
"=",
"prev",
".",
"name",
")",
")",
"net",
".",
"layers",
"=",
"original",
"[",
":",
"i",
"+",
"1",
"]",
"+",
"tail",
"else",
":",
"tail",
".",
"append",
"(",
"layers",
".",
"Layer",
".",
"build",
"(",
"'feedforward'",
",",
"name",
"=",
"'lwout'",
",",
"inputs",
"=",
"original",
"[",
"i",
"]",
".",
"output_name",
",",
"size",
"=",
"original",
"[",
"-",
"1",
"]",
".",
"output_size",
",",
"activation",
"=",
"original",
"[",
"-",
"1",
"]",
".",
"kwargs",
"[",
"'activation'",
"]",
")",
")",
"net",
".",
"layers",
"=",
"original",
"[",
":",
"i",
"+",
"1",
"]",
"+",
"tail",
"util",
".",
"log",
"(",
"'layerwise: training {}'",
",",
"' -> '",
".",
"join",
"(",
"l",
".",
"name",
"for",
"l",
"in",
"net",
".",
"layers",
")",
")",
"[",
"l",
".",
"bind",
"(",
"net",
",",
"initialize",
"=",
"False",
")",
"for",
"l",
"in",
"net",
".",
"layers",
"]",
"[",
"l",
".",
"setup",
"(",
")",
"for",
"l",
"in",
"tail",
"]",
"net",
".",
"losses",
"[",
"0",
"]",
".",
"output_name",
"=",
"net",
".",
"layers",
"[",
"-",
"1",
"]",
".",
"output_name",
"trainer",
"=",
"DownhillTrainer",
"(",
"self",
".",
"algo",
",",
"net",
")",
"for",
"monitors",
"in",
"trainer",
".",
"itertrain",
"(",
"train",
",",
"valid",
",",
"*",
"*",
"kwargs",
")",
":",
"yield",
"monitors",
"net",
".",
"layers",
"=",
"original",
"net",
".",
"losses",
"[",
"0",
"]",
".",
"output_name",
"=",
"output_name"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
UnsupervisedPretrainer.itertrain
|
Train a model using a training and validation set.
This method yields a series of monitor values to the caller. After every
iteration, a pair of monitor dictionaries is generated: one evaluated on
the training dataset, and another evaluated on the validation dataset.
The validation monitors might not be updated during every training
iteration; in this case, the most recent validation monitors will be
yielded along with the training monitors.
Parameters
----------
train : :class:`Dataset <theanets.dataset.Dataset>`
A set of training data for computing updates to model parameters.
valid : :class:`Dataset <theanets.dataset.Dataset>`
A set of validation data for computing monitor values and
determining when the loss has stopped improving.
Yields
------
training : dict
A dictionary mapping monitor names to values, evaluated on the
training dataset.
validation : dict
A dictionary containing monitor values evaluated on the validation
dataset.
|
theanets/trainer.py
|
def itertrain(self, train, valid=None, **kwargs):
'''Train a model using a training and validation set.
This method yields a series of monitor values to the caller. After every
iteration, a pair of monitor dictionaries is generated: one evaluated on
the training dataset, and another evaluated on the validation dataset.
The validation monitors might not be updated during every training
iteration; in this case, the most recent validation monitors will be
yielded along with the training monitors.
Parameters
----------
train : :class:`Dataset <theanets.dataset.Dataset>`
A set of training data for computing updates to model parameters.
valid : :class:`Dataset <theanets.dataset.Dataset>`
A set of validation data for computing monitor values and
determining when the loss has stopped improving.
Yields
------
training : dict
A dictionary mapping monitor names to values, evaluated on the
training dataset.
validation : dict
A dictionary containing monitor values evaluated on the validation
dataset.
'''
from . import feedforward
original_layer_names = set(l.name for l in self.network.layers[:-1])
# construct a "shadow" of the input network, using the original
# network's encoding layers, with tied weights in an autoencoder
# configuration.
layers_ = list(l.to_spec() for l in self.network.layers[:-1])
for i, l in enumerate(layers_[::-1][:-2]):
layers_.append(dict(
form='tied', partner=l['name'], activation=l['activation']))
layers_.append(dict(
form='tied', partner=layers_[1]['name'], activation='linear'))
util.log('creating shadow network')
ae = feedforward.Autoencoder(layers=layers_)
# train the autoencoder using the supervised layerwise pretrainer.
pre = SupervisedPretrainer(self.algo, ae)
for monitors in pre.itertrain(train, valid, **kwargs):
yield monitors
# copy trained parameter values back to our original network.
for param in ae.params:
l, p = param.name.split('.')
if l in original_layer_names:
util.log('copying pretrained parameter {}', param.name)
self.network.find(l, p).set_value(param.get_value())
util.log('completed unsupervised pretraining')
|
def itertrain(self, train, valid=None, **kwargs):
'''Train a model using a training and validation set.
This method yields a series of monitor values to the caller. After every
iteration, a pair of monitor dictionaries is generated: one evaluated on
the training dataset, and another evaluated on the validation dataset.
The validation monitors might not be updated during every training
iteration; in this case, the most recent validation monitors will be
yielded along with the training monitors.
Parameters
----------
train : :class:`Dataset <theanets.dataset.Dataset>`
A set of training data for computing updates to model parameters.
valid : :class:`Dataset <theanets.dataset.Dataset>`
A set of validation data for computing monitor values and
determining when the loss has stopped improving.
Yields
------
training : dict
A dictionary mapping monitor names to values, evaluated on the
training dataset.
validation : dict
A dictionary containing monitor values evaluated on the validation
dataset.
'''
from . import feedforward
original_layer_names = set(l.name for l in self.network.layers[:-1])
# construct a "shadow" of the input network, using the original
# network's encoding layers, with tied weights in an autoencoder
# configuration.
layers_ = list(l.to_spec() for l in self.network.layers[:-1])
for i, l in enumerate(layers_[::-1][:-2]):
layers_.append(dict(
form='tied', partner=l['name'], activation=l['activation']))
layers_.append(dict(
form='tied', partner=layers_[1]['name'], activation='linear'))
util.log('creating shadow network')
ae = feedforward.Autoencoder(layers=layers_)
# train the autoencoder using the supervised layerwise pretrainer.
pre = SupervisedPretrainer(self.algo, ae)
for monitors in pre.itertrain(train, valid, **kwargs):
yield monitors
# copy trained parameter values back to our original network.
for param in ae.params:
l, p = param.name.split('.')
if l in original_layer_names:
util.log('copying pretrained parameter {}', param.name)
self.network.find(l, p).set_value(param.get_value())
util.log('completed unsupervised pretraining')
|
[
"Train",
"a",
"model",
"using",
"a",
"training",
"and",
"validation",
"set",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/trainer.py#L281-L337
|
[
"def",
"itertrain",
"(",
"self",
",",
"train",
",",
"valid",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"from",
".",
"import",
"feedforward",
"original_layer_names",
"=",
"set",
"(",
"l",
".",
"name",
"for",
"l",
"in",
"self",
".",
"network",
".",
"layers",
"[",
":",
"-",
"1",
"]",
")",
"# construct a \"shadow\" of the input network, using the original",
"# network's encoding layers, with tied weights in an autoencoder",
"# configuration.",
"layers_",
"=",
"list",
"(",
"l",
".",
"to_spec",
"(",
")",
"for",
"l",
"in",
"self",
".",
"network",
".",
"layers",
"[",
":",
"-",
"1",
"]",
")",
"for",
"i",
",",
"l",
"in",
"enumerate",
"(",
"layers_",
"[",
":",
":",
"-",
"1",
"]",
"[",
":",
"-",
"2",
"]",
")",
":",
"layers_",
".",
"append",
"(",
"dict",
"(",
"form",
"=",
"'tied'",
",",
"partner",
"=",
"l",
"[",
"'name'",
"]",
",",
"activation",
"=",
"l",
"[",
"'activation'",
"]",
")",
")",
"layers_",
".",
"append",
"(",
"dict",
"(",
"form",
"=",
"'tied'",
",",
"partner",
"=",
"layers_",
"[",
"1",
"]",
"[",
"'name'",
"]",
",",
"activation",
"=",
"'linear'",
")",
")",
"util",
".",
"log",
"(",
"'creating shadow network'",
")",
"ae",
"=",
"feedforward",
".",
"Autoencoder",
"(",
"layers",
"=",
"layers_",
")",
"# train the autoencoder using the supervised layerwise pretrainer.",
"pre",
"=",
"SupervisedPretrainer",
"(",
"self",
".",
"algo",
",",
"ae",
")",
"for",
"monitors",
"in",
"pre",
".",
"itertrain",
"(",
"train",
",",
"valid",
",",
"*",
"*",
"kwargs",
")",
":",
"yield",
"monitors",
"# copy trained parameter values back to our original network.",
"for",
"param",
"in",
"ae",
".",
"params",
":",
"l",
",",
"p",
"=",
"param",
".",
"name",
".",
"split",
"(",
"'.'",
")",
"if",
"l",
"in",
"original_layer_names",
":",
"util",
".",
"log",
"(",
"'copying pretrained parameter {}'",
",",
"param",
".",
"name",
")",
"self",
".",
"network",
".",
"find",
"(",
"l",
",",
"p",
")",
".",
"set_value",
"(",
"param",
".",
"get_value",
"(",
")",
")",
"util",
".",
"log",
"(",
"'completed unsupervised pretraining'",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.add_layer
|
Add a :ref:`layer <layers>` to our network graph.
Parameters
----------
layer : int, tuple, dict, or :class:`Layer <theanets.layers.base.Layer>`
A value specifying the layer to add. For more information, please
see :ref:`guide-creating-specifying-layers`.
|
theanets/graph.py
|
def add_layer(self, layer=None, **kwargs):
'''Add a :ref:`layer <layers>` to our network graph.
Parameters
----------
layer : int, tuple, dict, or :class:`Layer <theanets.layers.base.Layer>`
A value specifying the layer to add. For more information, please
see :ref:`guide-creating-specifying-layers`.
'''
# if the given layer is a Layer instance, just add it and move on.
if isinstance(layer, layers.Layer):
self.layers.append(layer)
return
form = kwargs.pop('form', 'ff' if self.layers else 'input').lower()
if isinstance(layer, util.basestring):
if not layers.Layer.is_registered(layer):
raise util.ConfigurationError('unknown layer type: {}'.format(layer))
form = layer
layer = None
# if layer is a tuple/list of integers, assume it's a shape.
if isinstance(layer, (tuple, list)) and all(isinstance(x, int) for x in layer):
kwargs['shape'] = tuple(layer)
layer = None
# if layer is some other tuple/list, assume it's a list of:
# - the name of a layers.Layer class (str)
# - the name of an activation function (str)
# - the number of units in the layer (int)
if isinstance(layer, (tuple, list)):
for el in layer:
if isinstance(el, util.basestring) and layers.Layer.is_registered(el):
form = el
elif isinstance(el, util.basestring):
kwargs['activation'] = el
elif isinstance(el, int):
if 'size' in kwargs:
raise util.ConfigurationError(
'duplicate layer sizes! {}'.format(kwargs))
kwargs['size'] = el
layer = None
# if layer is a dictionary, try to extract a form for the layer, and
# override our default keyword arguments with the rest.
if isinstance(layer, dict):
for key, value in layer.items():
if key == 'form':
form = value.lower()
else:
kwargs[key] = value
layer = None
# if neither shape nor size have been specified yet, check that the
# "layer" param is an int and use it for "size".
if 'shape' not in kwargs and 'size' not in kwargs and isinstance(layer, int):
kwargs['size'] = layer
# if it hasn't been provided in some other way yet, set input
# dimensionality based on the model.
if form == 'input' and 'shape' not in kwargs:
kwargs.setdefault('ndim', self.INPUT_NDIM)
# set some default layer parameters.
if form != 'input':
kwargs.setdefault('inputs', self.layers[-1].output_name)
kwargs.setdefault('rng', self._rng)
if form.lower() == 'tied' and 'partner' not in kwargs:
# we look backward through our list of layers for a partner.
# any "tied" layer that we find increases a counter by one,
# and any "untied" layer decreases the counter by one. our
# partner is the first layer we find with count zero.
#
# this is intended to handle the hopefully common case of a
# (possibly deep) tied-weights autoencoder.
tied = 1
partner = None
for l in self.layers[::-1]:
tied += 1 if isinstance(l, layers.Tied) else -1
if tied == 0:
partner = l.name
break
else:
raise util.ConfigurationError(
'cannot find partner for "{}"'.format(kwargs))
kwargs['partner'] = partner
layer = layers.Layer.build(form, **kwargs)
# check that graph inputs have unique names.
if isinstance(layer, layers.Input):
if any(layer.name == i.name for i in self.inputs):
raise util.ConfigurationError(
'"{}": duplicate input name!'.format(layer.name))
self.layers.append(layer)
|
def add_layer(self, layer=None, **kwargs):
'''Add a :ref:`layer <layers>` to our network graph.
Parameters
----------
layer : int, tuple, dict, or :class:`Layer <theanets.layers.base.Layer>`
A value specifying the layer to add. For more information, please
see :ref:`guide-creating-specifying-layers`.
'''
# if the given layer is a Layer instance, just add it and move on.
if isinstance(layer, layers.Layer):
self.layers.append(layer)
return
form = kwargs.pop('form', 'ff' if self.layers else 'input').lower()
if isinstance(layer, util.basestring):
if not layers.Layer.is_registered(layer):
raise util.ConfigurationError('unknown layer type: {}'.format(layer))
form = layer
layer = None
# if layer is a tuple/list of integers, assume it's a shape.
if isinstance(layer, (tuple, list)) and all(isinstance(x, int) for x in layer):
kwargs['shape'] = tuple(layer)
layer = None
# if layer is some other tuple/list, assume it's a list of:
# - the name of a layers.Layer class (str)
# - the name of an activation function (str)
# - the number of units in the layer (int)
if isinstance(layer, (tuple, list)):
for el in layer:
if isinstance(el, util.basestring) and layers.Layer.is_registered(el):
form = el
elif isinstance(el, util.basestring):
kwargs['activation'] = el
elif isinstance(el, int):
if 'size' in kwargs:
raise util.ConfigurationError(
'duplicate layer sizes! {}'.format(kwargs))
kwargs['size'] = el
layer = None
# if layer is a dictionary, try to extract a form for the layer, and
# override our default keyword arguments with the rest.
if isinstance(layer, dict):
for key, value in layer.items():
if key == 'form':
form = value.lower()
else:
kwargs[key] = value
layer = None
# if neither shape nor size have been specified yet, check that the
# "layer" param is an int and use it for "size".
if 'shape' not in kwargs and 'size' not in kwargs and isinstance(layer, int):
kwargs['size'] = layer
# if it hasn't been provided in some other way yet, set input
# dimensionality based on the model.
if form == 'input' and 'shape' not in kwargs:
kwargs.setdefault('ndim', self.INPUT_NDIM)
# set some default layer parameters.
if form != 'input':
kwargs.setdefault('inputs', self.layers[-1].output_name)
kwargs.setdefault('rng', self._rng)
if form.lower() == 'tied' and 'partner' not in kwargs:
# we look backward through our list of layers for a partner.
# any "tied" layer that we find increases a counter by one,
# and any "untied" layer decreases the counter by one. our
# partner is the first layer we find with count zero.
#
# this is intended to handle the hopefully common case of a
# (possibly deep) tied-weights autoencoder.
tied = 1
partner = None
for l in self.layers[::-1]:
tied += 1 if isinstance(l, layers.Tied) else -1
if tied == 0:
partner = l.name
break
else:
raise util.ConfigurationError(
'cannot find partner for "{}"'.format(kwargs))
kwargs['partner'] = partner
layer = layers.Layer.build(form, **kwargs)
# check that graph inputs have unique names.
if isinstance(layer, layers.Input):
if any(layer.name == i.name for i in self.inputs):
raise util.ConfigurationError(
'"{}": duplicate input name!'.format(layer.name))
self.layers.append(layer)
|
[
"Add",
"a",
":",
"ref",
":",
"layer",
"<layers",
">",
"to",
"our",
"network",
"graph",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L101-L198
|
[
"def",
"add_layer",
"(",
"self",
",",
"layer",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"# if the given layer is a Layer instance, just add it and move on.",
"if",
"isinstance",
"(",
"layer",
",",
"layers",
".",
"Layer",
")",
":",
"self",
".",
"layers",
".",
"append",
"(",
"layer",
")",
"return",
"form",
"=",
"kwargs",
".",
"pop",
"(",
"'form'",
",",
"'ff'",
"if",
"self",
".",
"layers",
"else",
"'input'",
")",
".",
"lower",
"(",
")",
"if",
"isinstance",
"(",
"layer",
",",
"util",
".",
"basestring",
")",
":",
"if",
"not",
"layers",
".",
"Layer",
".",
"is_registered",
"(",
"layer",
")",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'unknown layer type: {}'",
".",
"format",
"(",
"layer",
")",
")",
"form",
"=",
"layer",
"layer",
"=",
"None",
"# if layer is a tuple/list of integers, assume it's a shape.",
"if",
"isinstance",
"(",
"layer",
",",
"(",
"tuple",
",",
"list",
")",
")",
"and",
"all",
"(",
"isinstance",
"(",
"x",
",",
"int",
")",
"for",
"x",
"in",
"layer",
")",
":",
"kwargs",
"[",
"'shape'",
"]",
"=",
"tuple",
"(",
"layer",
")",
"layer",
"=",
"None",
"# if layer is some other tuple/list, assume it's a list of:",
"# - the name of a layers.Layer class (str)",
"# - the name of an activation function (str)",
"# - the number of units in the layer (int)",
"if",
"isinstance",
"(",
"layer",
",",
"(",
"tuple",
",",
"list",
")",
")",
":",
"for",
"el",
"in",
"layer",
":",
"if",
"isinstance",
"(",
"el",
",",
"util",
".",
"basestring",
")",
"and",
"layers",
".",
"Layer",
".",
"is_registered",
"(",
"el",
")",
":",
"form",
"=",
"el",
"elif",
"isinstance",
"(",
"el",
",",
"util",
".",
"basestring",
")",
":",
"kwargs",
"[",
"'activation'",
"]",
"=",
"el",
"elif",
"isinstance",
"(",
"el",
",",
"int",
")",
":",
"if",
"'size'",
"in",
"kwargs",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'duplicate layer sizes! {}'",
".",
"format",
"(",
"kwargs",
")",
")",
"kwargs",
"[",
"'size'",
"]",
"=",
"el",
"layer",
"=",
"None",
"# if layer is a dictionary, try to extract a form for the layer, and",
"# override our default keyword arguments with the rest.",
"if",
"isinstance",
"(",
"layer",
",",
"dict",
")",
":",
"for",
"key",
",",
"value",
"in",
"layer",
".",
"items",
"(",
")",
":",
"if",
"key",
"==",
"'form'",
":",
"form",
"=",
"value",
".",
"lower",
"(",
")",
"else",
":",
"kwargs",
"[",
"key",
"]",
"=",
"value",
"layer",
"=",
"None",
"# if neither shape nor size have been specified yet, check that the",
"# \"layer\" param is an int and use it for \"size\".",
"if",
"'shape'",
"not",
"in",
"kwargs",
"and",
"'size'",
"not",
"in",
"kwargs",
"and",
"isinstance",
"(",
"layer",
",",
"int",
")",
":",
"kwargs",
"[",
"'size'",
"]",
"=",
"layer",
"# if it hasn't been provided in some other way yet, set input",
"# dimensionality based on the model.",
"if",
"form",
"==",
"'input'",
"and",
"'shape'",
"not",
"in",
"kwargs",
":",
"kwargs",
".",
"setdefault",
"(",
"'ndim'",
",",
"self",
".",
"INPUT_NDIM",
")",
"# set some default layer parameters.",
"if",
"form",
"!=",
"'input'",
":",
"kwargs",
".",
"setdefault",
"(",
"'inputs'",
",",
"self",
".",
"layers",
"[",
"-",
"1",
"]",
".",
"output_name",
")",
"kwargs",
".",
"setdefault",
"(",
"'rng'",
",",
"self",
".",
"_rng",
")",
"if",
"form",
".",
"lower",
"(",
")",
"==",
"'tied'",
"and",
"'partner'",
"not",
"in",
"kwargs",
":",
"# we look backward through our list of layers for a partner.",
"# any \"tied\" layer that we find increases a counter by one,",
"# and any \"untied\" layer decreases the counter by one. our",
"# partner is the first layer we find with count zero.",
"#",
"# this is intended to handle the hopefully common case of a",
"# (possibly deep) tied-weights autoencoder.",
"tied",
"=",
"1",
"partner",
"=",
"None",
"for",
"l",
"in",
"self",
".",
"layers",
"[",
":",
":",
"-",
"1",
"]",
":",
"tied",
"+=",
"1",
"if",
"isinstance",
"(",
"l",
",",
"layers",
".",
"Tied",
")",
"else",
"-",
"1",
"if",
"tied",
"==",
"0",
":",
"partner",
"=",
"l",
".",
"name",
"break",
"else",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'cannot find partner for \"{}\"'",
".",
"format",
"(",
"kwargs",
")",
")",
"kwargs",
"[",
"'partner'",
"]",
"=",
"partner",
"layer",
"=",
"layers",
".",
"Layer",
".",
"build",
"(",
"form",
",",
"*",
"*",
"kwargs",
")",
"# check that graph inputs have unique names.",
"if",
"isinstance",
"(",
"layer",
",",
"layers",
".",
"Input",
")",
":",
"if",
"any",
"(",
"layer",
".",
"name",
"==",
"i",
".",
"name",
"for",
"i",
"in",
"self",
".",
"inputs",
")",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'\"{}\": duplicate input name!'",
".",
"format",
"(",
"layer",
".",
"name",
")",
")",
"self",
".",
"layers",
".",
"append",
"(",
"layer",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.add_loss
|
Add a :ref:`loss function <losses>` to the model.
Parameters
----------
loss : str, dict, or :class:`theanets.losses.Loss`
A loss function to add. If this is a Loss instance, it will be added
immediately. If this is a string, it names a loss function to build
and add. If it is a dictionary, it should contain a ``'form'`` key
whose string value names the loss function to add. Other arguments
will be passed to :func:`theanets.losses.Loss.build`.
|
theanets/graph.py
|
def add_loss(self, loss=None, **kwargs):
'''Add a :ref:`loss function <losses>` to the model.
Parameters
----------
loss : str, dict, or :class:`theanets.losses.Loss`
A loss function to add. If this is a Loss instance, it will be added
immediately. If this is a string, it names a loss function to build
and add. If it is a dictionary, it should contain a ``'form'`` key
whose string value names the loss function to add. Other arguments
will be passed to :func:`theanets.losses.Loss.build`.
'''
if isinstance(loss, losses.Loss):
self.losses.append(loss)
return
form = loss or 'mse'
if 'form' in kwargs:
form = kwargs.pop('form').lower()
kw = dict(target=self.INPUT_NDIM, output_name=self.layers[-1].output_name)
kw.update(kwargs)
if isinstance(loss, dict):
loss = dict(loss)
if 'form' in loss:
form = loss.pop('form').lower()
kw.update(loss)
self.losses.append(losses.Loss.build(form, **kw))
|
def add_loss(self, loss=None, **kwargs):
'''Add a :ref:`loss function <losses>` to the model.
Parameters
----------
loss : str, dict, or :class:`theanets.losses.Loss`
A loss function to add. If this is a Loss instance, it will be added
immediately. If this is a string, it names a loss function to build
and add. If it is a dictionary, it should contain a ``'form'`` key
whose string value names the loss function to add. Other arguments
will be passed to :func:`theanets.losses.Loss.build`.
'''
if isinstance(loss, losses.Loss):
self.losses.append(loss)
return
form = loss or 'mse'
if 'form' in kwargs:
form = kwargs.pop('form').lower()
kw = dict(target=self.INPUT_NDIM, output_name=self.layers[-1].output_name)
kw.update(kwargs)
if isinstance(loss, dict):
loss = dict(loss)
if 'form' in loss:
form = loss.pop('form').lower()
kw.update(loss)
self.losses.append(losses.Loss.build(form, **kw))
|
[
"Add",
"a",
":",
"ref",
":",
"loss",
"function",
"<losses",
">",
"to",
"the",
"model",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L200-L229
|
[
"def",
"add_loss",
"(",
"self",
",",
"loss",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"isinstance",
"(",
"loss",
",",
"losses",
".",
"Loss",
")",
":",
"self",
".",
"losses",
".",
"append",
"(",
"loss",
")",
"return",
"form",
"=",
"loss",
"or",
"'mse'",
"if",
"'form'",
"in",
"kwargs",
":",
"form",
"=",
"kwargs",
".",
"pop",
"(",
"'form'",
")",
".",
"lower",
"(",
")",
"kw",
"=",
"dict",
"(",
"target",
"=",
"self",
".",
"INPUT_NDIM",
",",
"output_name",
"=",
"self",
".",
"layers",
"[",
"-",
"1",
"]",
".",
"output_name",
")",
"kw",
".",
"update",
"(",
"kwargs",
")",
"if",
"isinstance",
"(",
"loss",
",",
"dict",
")",
":",
"loss",
"=",
"dict",
"(",
"loss",
")",
"if",
"'form'",
"in",
"loss",
":",
"form",
"=",
"loss",
".",
"pop",
"(",
"'form'",
")",
".",
"lower",
"(",
")",
"kw",
".",
"update",
"(",
"loss",
")",
"self",
".",
"losses",
".",
"append",
"(",
"losses",
".",
"Loss",
".",
"build",
"(",
"form",
",",
"*",
"*",
"kw",
")",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.set_loss
|
Clear the current loss functions from the network and add a new one.
All parameters and keyword arguments are passed to :func:`add_loss`
after clearing the current losses.
|
theanets/graph.py
|
def set_loss(self, *args, **kwargs):
'''Clear the current loss functions from the network and add a new one.
All parameters and keyword arguments are passed to :func:`add_loss`
after clearing the current losses.
'''
self.losses = []
self.add_loss(*args, **kwargs)
|
def set_loss(self, *args, **kwargs):
'''Clear the current loss functions from the network and add a new one.
All parameters and keyword arguments are passed to :func:`add_loss`
after clearing the current losses.
'''
self.losses = []
self.add_loss(*args, **kwargs)
|
[
"Clear",
"the",
"current",
"loss",
"functions",
"from",
"the",
"network",
"and",
"add",
"a",
"new",
"one",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L231-L238
|
[
"def",
"set_loss",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"self",
".",
"losses",
"=",
"[",
"]",
"self",
".",
"add_loss",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.itertrain
|
Train our network, one batch at a time.
This method yields a series of ``(train, valid)`` monitor pairs. The
``train`` value is a dictionary mapping names to monitor values
evaluated on the training dataset. The ``valid`` value is also a
dictionary mapping names to values, but these values are evaluated on
the validation dataset.
Because validation might not occur every training iteration, the
validation monitors might be repeated for multiple training iterations.
It is probably most helpful to think of the validation monitors as being
the "most recent" values that have been computed.
After training completes, the network attribute of this class will
contain the trained network parameters.
Parameters
----------
train : :class:`Dataset <downhill.dataset.Dataset>` or list
A dataset to use when training the network. If this is a
``downhill.Dataset`` instance, it will be used directly as the
training datset. If it is a list of numpy arrays or a list of
callables, it will be converted to a ``downhill.Dataset`` and then
used as the training set.
valid : :class:`Dataset <downhill.dataset.Dataset>` or list, optional
If this is provided, it will be used as a validation dataset. If not
provided, the training set will be used for validation. (This is not
recommended!)
algo : str, optional
An optimization algorithm to use for training our network. If not
provided, :class:`RMSProp <downhill.adaptive.RMSProp>` will be used.
subalgo : str, optional
An optimization algorithm to use for a trainer that requires a
"sub-algorithm," sugh as an unsupervised pretrainer. Defaults to
:class:`RMSProp <downhill.adaptive.RMSProp>`.
save_every : int or float, optional
If this is nonzero and ``save_progress`` is not None, then the model
being trained will be saved periodically. If this is a float, it is
treated as a number of minutes to wait between savings. If it is an
int, it is treated as the number of training epochs to wait between
savings. Defaults to 0.
save_progress : str or file handle, optional
If this is not None, and ``save_progress`` is nonzero, then save the
model periodically during training. This parameter gives either (a)
the full path of a file to save the model, or (b) a file-like object
where the model should be saved. If it is a string and the given
name contains a "{}" format specifier, it will be filled with the
integer Unix timestamp at the time the model is saved. Defaults to
None, which does not save models.
Yields
------
training : dict
A dictionary of monitor values computed using the training dataset,
at the conclusion of training. This dictionary will at least contain
a 'loss' key that indicates the value of the loss function. Other
keys may be available depending on the trainer being used.
validation : dict
A dictionary of monitor values computed using the validation
dataset, at the conclusion of training.
|
theanets/graph.py
|
def itertrain(self, train, valid=None, algo='rmsprop', subalgo='rmsprop',
save_every=0, save_progress=None, **kwargs):
'''Train our network, one batch at a time.
This method yields a series of ``(train, valid)`` monitor pairs. The
``train`` value is a dictionary mapping names to monitor values
evaluated on the training dataset. The ``valid`` value is also a
dictionary mapping names to values, but these values are evaluated on
the validation dataset.
Because validation might not occur every training iteration, the
validation monitors might be repeated for multiple training iterations.
It is probably most helpful to think of the validation monitors as being
the "most recent" values that have been computed.
After training completes, the network attribute of this class will
contain the trained network parameters.
Parameters
----------
train : :class:`Dataset <downhill.dataset.Dataset>` or list
A dataset to use when training the network. If this is a
``downhill.Dataset`` instance, it will be used directly as the
training datset. If it is a list of numpy arrays or a list of
callables, it will be converted to a ``downhill.Dataset`` and then
used as the training set.
valid : :class:`Dataset <downhill.dataset.Dataset>` or list, optional
If this is provided, it will be used as a validation dataset. If not
provided, the training set will be used for validation. (This is not
recommended!)
algo : str, optional
An optimization algorithm to use for training our network. If not
provided, :class:`RMSProp <downhill.adaptive.RMSProp>` will be used.
subalgo : str, optional
An optimization algorithm to use for a trainer that requires a
"sub-algorithm," sugh as an unsupervised pretrainer. Defaults to
:class:`RMSProp <downhill.adaptive.RMSProp>`.
save_every : int or float, optional
If this is nonzero and ``save_progress`` is not None, then the model
being trained will be saved periodically. If this is a float, it is
treated as a number of minutes to wait between savings. If it is an
int, it is treated as the number of training epochs to wait between
savings. Defaults to 0.
save_progress : str or file handle, optional
If this is not None, and ``save_progress`` is nonzero, then save the
model periodically during training. This parameter gives either (a)
the full path of a file to save the model, or (b) a file-like object
where the model should be saved. If it is a string and the given
name contains a "{}" format specifier, it will be filled with the
integer Unix timestamp at the time the model is saved. Defaults to
None, which does not save models.
Yields
------
training : dict
A dictionary of monitor values computed using the training dataset,
at the conclusion of training. This dictionary will at least contain
a 'loss' key that indicates the value of the loss function. Other
keys may be available depending on the trainer being used.
validation : dict
A dictionary of monitor values computed using the validation
dataset, at the conclusion of training.
'''
if 'rng' not in kwargs:
kwargs['rng'] = self._rng
def create_dataset(data, **kwargs):
name = kwargs.get('name', 'dataset')
s = '{}_batches'.format(name)
return downhill.Dataset(
data,
name=name,
batch_size=kwargs.get('batch_size', 32),
iteration_size=kwargs.get('iteration_size', kwargs.get(s)),
axis=kwargs.get('axis', 0),
rng=kwargs['rng'])
# set up datasets ...
if valid is None:
valid = train
if not isinstance(valid, downhill.Dataset):
valid = create_dataset(valid, name='valid', **kwargs)
if not isinstance(train, downhill.Dataset):
train = create_dataset(train, name='train', **kwargs)
if 'algorithm' in kwargs:
warnings.warn(
'please use the "algo" keyword arg instead of "algorithm"',
DeprecationWarning)
algo = kwargs.pop('algorithm')
if isinstance(algo, (list, tuple)):
algo = algo[0]
# set up trainer ...
if isinstance(algo, util.basestring):
algo = algo.lower()
if algo == 'sample':
algo = trainer.SampleTrainer(self)
elif algo.startswith('layer') or algo.startswith('sup'):
algo = trainer.SupervisedPretrainer(subalgo, self)
elif algo.startswith('pre') or algo.startswith('unsup'):
algo = trainer.UnsupervisedPretrainer(subalgo, self)
else:
algo = trainer.DownhillTrainer(algo, self)
# set up check to save model ...
def needs_saving(elapsed, iteration):
if save_progress is None:
return False
if isinstance(save_every, float):
return elapsed > 60 * save_every
if isinstance(save_every, int):
return iteration % save_every == 0
return False
# train it!
start = time.time()
for i, monitors in enumerate(algo.itertrain(train, valid, **kwargs)):
yield monitors
now = time.time()
if i and needs_saving(now - start, i):
filename_or_handle = save_progress
if isinstance(filename_or_handle, util.basestring):
filename_or_handle = save_progress.format(int(now))
self.save(filename_or_handle)
start = now
|
def itertrain(self, train, valid=None, algo='rmsprop', subalgo='rmsprop',
save_every=0, save_progress=None, **kwargs):
'''Train our network, one batch at a time.
This method yields a series of ``(train, valid)`` monitor pairs. The
``train`` value is a dictionary mapping names to monitor values
evaluated on the training dataset. The ``valid`` value is also a
dictionary mapping names to values, but these values are evaluated on
the validation dataset.
Because validation might not occur every training iteration, the
validation monitors might be repeated for multiple training iterations.
It is probably most helpful to think of the validation monitors as being
the "most recent" values that have been computed.
After training completes, the network attribute of this class will
contain the trained network parameters.
Parameters
----------
train : :class:`Dataset <downhill.dataset.Dataset>` or list
A dataset to use when training the network. If this is a
``downhill.Dataset`` instance, it will be used directly as the
training datset. If it is a list of numpy arrays or a list of
callables, it will be converted to a ``downhill.Dataset`` and then
used as the training set.
valid : :class:`Dataset <downhill.dataset.Dataset>` or list, optional
If this is provided, it will be used as a validation dataset. If not
provided, the training set will be used for validation. (This is not
recommended!)
algo : str, optional
An optimization algorithm to use for training our network. If not
provided, :class:`RMSProp <downhill.adaptive.RMSProp>` will be used.
subalgo : str, optional
An optimization algorithm to use for a trainer that requires a
"sub-algorithm," sugh as an unsupervised pretrainer. Defaults to
:class:`RMSProp <downhill.adaptive.RMSProp>`.
save_every : int or float, optional
If this is nonzero and ``save_progress`` is not None, then the model
being trained will be saved periodically. If this is a float, it is
treated as a number of minutes to wait between savings. If it is an
int, it is treated as the number of training epochs to wait between
savings. Defaults to 0.
save_progress : str or file handle, optional
If this is not None, and ``save_progress`` is nonzero, then save the
model periodically during training. This parameter gives either (a)
the full path of a file to save the model, or (b) a file-like object
where the model should be saved. If it is a string and the given
name contains a "{}" format specifier, it will be filled with the
integer Unix timestamp at the time the model is saved. Defaults to
None, which does not save models.
Yields
------
training : dict
A dictionary of monitor values computed using the training dataset,
at the conclusion of training. This dictionary will at least contain
a 'loss' key that indicates the value of the loss function. Other
keys may be available depending on the trainer being used.
validation : dict
A dictionary of monitor values computed using the validation
dataset, at the conclusion of training.
'''
if 'rng' not in kwargs:
kwargs['rng'] = self._rng
def create_dataset(data, **kwargs):
name = kwargs.get('name', 'dataset')
s = '{}_batches'.format(name)
return downhill.Dataset(
data,
name=name,
batch_size=kwargs.get('batch_size', 32),
iteration_size=kwargs.get('iteration_size', kwargs.get(s)),
axis=kwargs.get('axis', 0),
rng=kwargs['rng'])
# set up datasets ...
if valid is None:
valid = train
if not isinstance(valid, downhill.Dataset):
valid = create_dataset(valid, name='valid', **kwargs)
if not isinstance(train, downhill.Dataset):
train = create_dataset(train, name='train', **kwargs)
if 'algorithm' in kwargs:
warnings.warn(
'please use the "algo" keyword arg instead of "algorithm"',
DeprecationWarning)
algo = kwargs.pop('algorithm')
if isinstance(algo, (list, tuple)):
algo = algo[0]
# set up trainer ...
if isinstance(algo, util.basestring):
algo = algo.lower()
if algo == 'sample':
algo = trainer.SampleTrainer(self)
elif algo.startswith('layer') or algo.startswith('sup'):
algo = trainer.SupervisedPretrainer(subalgo, self)
elif algo.startswith('pre') or algo.startswith('unsup'):
algo = trainer.UnsupervisedPretrainer(subalgo, self)
else:
algo = trainer.DownhillTrainer(algo, self)
# set up check to save model ...
def needs_saving(elapsed, iteration):
if save_progress is None:
return False
if isinstance(save_every, float):
return elapsed > 60 * save_every
if isinstance(save_every, int):
return iteration % save_every == 0
return False
# train it!
start = time.time()
for i, monitors in enumerate(algo.itertrain(train, valid, **kwargs)):
yield monitors
now = time.time()
if i and needs_saving(now - start, i):
filename_or_handle = save_progress
if isinstance(filename_or_handle, util.basestring):
filename_or_handle = save_progress.format(int(now))
self.save(filename_or_handle)
start = now
|
[
"Train",
"our",
"network",
"one",
"batch",
"at",
"a",
"time",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L240-L365
|
[
"def",
"itertrain",
"(",
"self",
",",
"train",
",",
"valid",
"=",
"None",
",",
"algo",
"=",
"'rmsprop'",
",",
"subalgo",
"=",
"'rmsprop'",
",",
"save_every",
"=",
"0",
",",
"save_progress",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"'rng'",
"not",
"in",
"kwargs",
":",
"kwargs",
"[",
"'rng'",
"]",
"=",
"self",
".",
"_rng",
"def",
"create_dataset",
"(",
"data",
",",
"*",
"*",
"kwargs",
")",
":",
"name",
"=",
"kwargs",
".",
"get",
"(",
"'name'",
",",
"'dataset'",
")",
"s",
"=",
"'{}_batches'",
".",
"format",
"(",
"name",
")",
"return",
"downhill",
".",
"Dataset",
"(",
"data",
",",
"name",
"=",
"name",
",",
"batch_size",
"=",
"kwargs",
".",
"get",
"(",
"'batch_size'",
",",
"32",
")",
",",
"iteration_size",
"=",
"kwargs",
".",
"get",
"(",
"'iteration_size'",
",",
"kwargs",
".",
"get",
"(",
"s",
")",
")",
",",
"axis",
"=",
"kwargs",
".",
"get",
"(",
"'axis'",
",",
"0",
")",
",",
"rng",
"=",
"kwargs",
"[",
"'rng'",
"]",
")",
"# set up datasets ...",
"if",
"valid",
"is",
"None",
":",
"valid",
"=",
"train",
"if",
"not",
"isinstance",
"(",
"valid",
",",
"downhill",
".",
"Dataset",
")",
":",
"valid",
"=",
"create_dataset",
"(",
"valid",
",",
"name",
"=",
"'valid'",
",",
"*",
"*",
"kwargs",
")",
"if",
"not",
"isinstance",
"(",
"train",
",",
"downhill",
".",
"Dataset",
")",
":",
"train",
"=",
"create_dataset",
"(",
"train",
",",
"name",
"=",
"'train'",
",",
"*",
"*",
"kwargs",
")",
"if",
"'algorithm'",
"in",
"kwargs",
":",
"warnings",
".",
"warn",
"(",
"'please use the \"algo\" keyword arg instead of \"algorithm\"'",
",",
"DeprecationWarning",
")",
"algo",
"=",
"kwargs",
".",
"pop",
"(",
"'algorithm'",
")",
"if",
"isinstance",
"(",
"algo",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"algo",
"=",
"algo",
"[",
"0",
"]",
"# set up trainer ...",
"if",
"isinstance",
"(",
"algo",
",",
"util",
".",
"basestring",
")",
":",
"algo",
"=",
"algo",
".",
"lower",
"(",
")",
"if",
"algo",
"==",
"'sample'",
":",
"algo",
"=",
"trainer",
".",
"SampleTrainer",
"(",
"self",
")",
"elif",
"algo",
".",
"startswith",
"(",
"'layer'",
")",
"or",
"algo",
".",
"startswith",
"(",
"'sup'",
")",
":",
"algo",
"=",
"trainer",
".",
"SupervisedPretrainer",
"(",
"subalgo",
",",
"self",
")",
"elif",
"algo",
".",
"startswith",
"(",
"'pre'",
")",
"or",
"algo",
".",
"startswith",
"(",
"'unsup'",
")",
":",
"algo",
"=",
"trainer",
".",
"UnsupervisedPretrainer",
"(",
"subalgo",
",",
"self",
")",
"else",
":",
"algo",
"=",
"trainer",
".",
"DownhillTrainer",
"(",
"algo",
",",
"self",
")",
"# set up check to save model ...",
"def",
"needs_saving",
"(",
"elapsed",
",",
"iteration",
")",
":",
"if",
"save_progress",
"is",
"None",
":",
"return",
"False",
"if",
"isinstance",
"(",
"save_every",
",",
"float",
")",
":",
"return",
"elapsed",
">",
"60",
"*",
"save_every",
"if",
"isinstance",
"(",
"save_every",
",",
"int",
")",
":",
"return",
"iteration",
"%",
"save_every",
"==",
"0",
"return",
"False",
"# train it!",
"start",
"=",
"time",
".",
"time",
"(",
")",
"for",
"i",
",",
"monitors",
"in",
"enumerate",
"(",
"algo",
".",
"itertrain",
"(",
"train",
",",
"valid",
",",
"*",
"*",
"kwargs",
")",
")",
":",
"yield",
"monitors",
"now",
"=",
"time",
".",
"time",
"(",
")",
"if",
"i",
"and",
"needs_saving",
"(",
"now",
"-",
"start",
",",
"i",
")",
":",
"filename_or_handle",
"=",
"save_progress",
"if",
"isinstance",
"(",
"filename_or_handle",
",",
"util",
".",
"basestring",
")",
":",
"filename_or_handle",
"=",
"save_progress",
".",
"format",
"(",
"int",
"(",
"now",
")",
")",
"self",
".",
"save",
"(",
"filename_or_handle",
")",
"start",
"=",
"now"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.train
|
Train the network until the trainer converges.
All arguments are passed to :func:`itertrain`.
Returns
-------
training : dict
A dictionary of monitor values computed using the training dataset,
at the conclusion of training. This dictionary will at least contain
a 'loss' key that indicates the value of the loss function. Other
keys may be available depending on the trainer being used.
validation : dict
A dictionary of monitor values computed using the validation
dataset, at the conclusion of training.
|
theanets/graph.py
|
def train(self, *args, **kwargs):
'''Train the network until the trainer converges.
All arguments are passed to :func:`itertrain`.
Returns
-------
training : dict
A dictionary of monitor values computed using the training dataset,
at the conclusion of training. This dictionary will at least contain
a 'loss' key that indicates the value of the loss function. Other
keys may be available depending on the trainer being used.
validation : dict
A dictionary of monitor values computed using the validation
dataset, at the conclusion of training.
'''
monitors = None
for monitors in self.itertrain(*args, **kwargs):
pass
return monitors
|
def train(self, *args, **kwargs):
'''Train the network until the trainer converges.
All arguments are passed to :func:`itertrain`.
Returns
-------
training : dict
A dictionary of monitor values computed using the training dataset,
at the conclusion of training. This dictionary will at least contain
a 'loss' key that indicates the value of the loss function. Other
keys may be available depending on the trainer being used.
validation : dict
A dictionary of monitor values computed using the validation
dataset, at the conclusion of training.
'''
monitors = None
for monitors in self.itertrain(*args, **kwargs):
pass
return monitors
|
[
"Train",
"the",
"network",
"until",
"the",
"trainer",
"converges",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L367-L386
|
[
"def",
"train",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"monitors",
"=",
"None",
"for",
"monitors",
"in",
"self",
".",
"itertrain",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"pass",
"return",
"monitors"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network._hash
|
Construct a string key for representing a computation graph.
This key will be unique for a given (a) network topology, (b) set of
losses, and (c) set of regularizers.
Returns
-------
key : str
A hash representing the computation graph for the current network.
|
theanets/graph.py
|
def _hash(self, regularizers=()):
'''Construct a string key for representing a computation graph.
This key will be unique for a given (a) network topology, (b) set of
losses, and (c) set of regularizers.
Returns
-------
key : str
A hash representing the computation graph for the current network.
'''
def add(s):
h.update(str(s).encode('utf-8'))
h = hashlib.md5()
for l in self.layers:
add('{}{}{}'.format(l.__class__.__name__, l.name, l.output_shape))
for l in self.losses:
add('{}{}'.format(l.__class__.__name__, l.weight))
for r in regularizers:
add('{}{}{}'.format(r.__class__.__name__, r.weight, r.pattern))
return h.hexdigest()
|
def _hash(self, regularizers=()):
'''Construct a string key for representing a computation graph.
This key will be unique for a given (a) network topology, (b) set of
losses, and (c) set of regularizers.
Returns
-------
key : str
A hash representing the computation graph for the current network.
'''
def add(s):
h.update(str(s).encode('utf-8'))
h = hashlib.md5()
for l in self.layers:
add('{}{}{}'.format(l.__class__.__name__, l.name, l.output_shape))
for l in self.losses:
add('{}{}'.format(l.__class__.__name__, l.weight))
for r in regularizers:
add('{}{}{}'.format(r.__class__.__name__, r.weight, r.pattern))
return h.hexdigest()
|
[
"Construct",
"a",
"string",
"key",
"for",
"representing",
"a",
"computation",
"graph",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L388-L408
|
[
"def",
"_hash",
"(",
"self",
",",
"regularizers",
"=",
"(",
")",
")",
":",
"def",
"add",
"(",
"s",
")",
":",
"h",
".",
"update",
"(",
"str",
"(",
"s",
")",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"h",
"=",
"hashlib",
".",
"md5",
"(",
")",
"for",
"l",
"in",
"self",
".",
"layers",
":",
"add",
"(",
"'{}{}{}'",
".",
"format",
"(",
"l",
".",
"__class__",
".",
"__name__",
",",
"l",
".",
"name",
",",
"l",
".",
"output_shape",
")",
")",
"for",
"l",
"in",
"self",
".",
"losses",
":",
"add",
"(",
"'{}{}'",
".",
"format",
"(",
"l",
".",
"__class__",
".",
"__name__",
",",
"l",
".",
"weight",
")",
")",
"for",
"r",
"in",
"regularizers",
":",
"add",
"(",
"'{}{}{}'",
".",
"format",
"(",
"r",
".",
"__class__",
".",
"__name__",
",",
"r",
".",
"weight",
",",
"r",
".",
"pattern",
")",
")",
"return",
"h",
".",
"hexdigest",
"(",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.build_graph
|
Connect the layers in this network to form a computation graph.
Parameters
----------
regularizers : list of :class:`theanets.regularizers.Regularizer`
A list of the regularizers to apply while building the computation
graph.
Returns
-------
outputs : list of Theano variables
A list of expressions giving the output of each layer in the graph.
updates : list of update tuples
A list of updates that should be performed by a Theano function that
computes something using this graph.
|
theanets/graph.py
|
def build_graph(self, regularizers=()):
'''Connect the layers in this network to form a computation graph.
Parameters
----------
regularizers : list of :class:`theanets.regularizers.Regularizer`
A list of the regularizers to apply while building the computation
graph.
Returns
-------
outputs : list of Theano variables
A list of expressions giving the output of each layer in the graph.
updates : list of update tuples
A list of updates that should be performed by a Theano function that
computes something using this graph.
'''
key = self._hash(regularizers)
if key not in self._graphs:
util.log('building computation graph')
for loss in self.losses:
loss.log()
for reg in regularizers:
reg.log()
outputs = {}
updates = []
for layer in self.layers:
out, upd = layer.connect(outputs)
for reg in regularizers:
reg.modify_graph(out)
outputs.update(out)
updates.extend(upd)
self._graphs[key] = outputs, updates
return self._graphs[key]
|
def build_graph(self, regularizers=()):
'''Connect the layers in this network to form a computation graph.
Parameters
----------
regularizers : list of :class:`theanets.regularizers.Regularizer`
A list of the regularizers to apply while building the computation
graph.
Returns
-------
outputs : list of Theano variables
A list of expressions giving the output of each layer in the graph.
updates : list of update tuples
A list of updates that should be performed by a Theano function that
computes something using this graph.
'''
key = self._hash(regularizers)
if key not in self._graphs:
util.log('building computation graph')
for loss in self.losses:
loss.log()
for reg in regularizers:
reg.log()
outputs = {}
updates = []
for layer in self.layers:
out, upd = layer.connect(outputs)
for reg in regularizers:
reg.modify_graph(out)
outputs.update(out)
updates.extend(upd)
self._graphs[key] = outputs, updates
return self._graphs[key]
|
[
"Connect",
"the",
"layers",
"in",
"this",
"network",
"to",
"form",
"a",
"computation",
"graph",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L410-L443
|
[
"def",
"build_graph",
"(",
"self",
",",
"regularizers",
"=",
"(",
")",
")",
":",
"key",
"=",
"self",
".",
"_hash",
"(",
"regularizers",
")",
"if",
"key",
"not",
"in",
"self",
".",
"_graphs",
":",
"util",
".",
"log",
"(",
"'building computation graph'",
")",
"for",
"loss",
"in",
"self",
".",
"losses",
":",
"loss",
".",
"log",
"(",
")",
"for",
"reg",
"in",
"regularizers",
":",
"reg",
".",
"log",
"(",
")",
"outputs",
"=",
"{",
"}",
"updates",
"=",
"[",
"]",
"for",
"layer",
"in",
"self",
".",
"layers",
":",
"out",
",",
"upd",
"=",
"layer",
".",
"connect",
"(",
"outputs",
")",
"for",
"reg",
"in",
"regularizers",
":",
"reg",
".",
"modify_graph",
"(",
"out",
")",
"outputs",
".",
"update",
"(",
"out",
")",
"updates",
".",
"extend",
"(",
"upd",
")",
"self",
".",
"_graphs",
"[",
"key",
"]",
"=",
"outputs",
",",
"updates",
"return",
"self",
".",
"_graphs",
"[",
"key",
"]"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.inputs
|
A list of Theano variables for feedforward computations.
|
theanets/graph.py
|
def inputs(self):
'''A list of Theano variables for feedforward computations.'''
return [l.input for l in self.layers if isinstance(l, layers.Input)]
|
def inputs(self):
'''A list of Theano variables for feedforward computations.'''
return [l.input for l in self.layers if isinstance(l, layers.Input)]
|
[
"A",
"list",
"of",
"Theano",
"variables",
"for",
"feedforward",
"computations",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L446-L448
|
[
"def",
"inputs",
"(",
"self",
")",
":",
"return",
"[",
"l",
".",
"input",
"for",
"l",
"in",
"self",
".",
"layers",
"if",
"isinstance",
"(",
"l",
",",
"layers",
".",
"Input",
")",
"]"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.variables
|
A list of Theano variables for loss computations.
|
theanets/graph.py
|
def variables(self):
'''A list of Theano variables for loss computations.'''
result = self.inputs
seen = set(i.name for i in result)
for loss in self.losses:
for v in loss.variables:
if v.name not in seen:
result.append(v)
seen.add(v.name)
return result
|
def variables(self):
'''A list of Theano variables for loss computations.'''
result = self.inputs
seen = set(i.name for i in result)
for loss in self.losses:
for v in loss.variables:
if v.name not in seen:
result.append(v)
seen.add(v.name)
return result
|
[
"A",
"list",
"of",
"Theano",
"variables",
"for",
"loss",
"computations",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L451-L460
|
[
"def",
"variables",
"(",
"self",
")",
":",
"result",
"=",
"self",
".",
"inputs",
"seen",
"=",
"set",
"(",
"i",
".",
"name",
"for",
"i",
"in",
"result",
")",
"for",
"loss",
"in",
"self",
".",
"losses",
":",
"for",
"v",
"in",
"loss",
".",
"variables",
":",
"if",
"v",
".",
"name",
"not",
"in",
"seen",
":",
"result",
".",
"append",
"(",
"v",
")",
"seen",
".",
"add",
"(",
"v",
".",
"name",
")",
"return",
"result"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.find
|
Get a parameter from a layer in the network.
Parameters
----------
which : int or str
The layer that owns the parameter to return.
If this is an integer, then 0 refers to the input layer, 1 refers
to the first hidden layer, 2 to the second, and so on.
If this is a string, the layer with the corresponding name, if any,
will be used.
param : int or str
Name of the parameter to retrieve from the specified layer, or its
index in the parameter list of the layer.
Raises
------
KeyError
If there is no such layer, or if there is no such parameter in the
specified layer.
Returns
-------
param : Theano shared variable
A shared parameter variable from the indicated layer.
|
theanets/graph.py
|
def find(self, which, param):
'''Get a parameter from a layer in the network.
Parameters
----------
which : int or str
The layer that owns the parameter to return.
If this is an integer, then 0 refers to the input layer, 1 refers
to the first hidden layer, 2 to the second, and so on.
If this is a string, the layer with the corresponding name, if any,
will be used.
param : int or str
Name of the parameter to retrieve from the specified layer, or its
index in the parameter list of the layer.
Raises
------
KeyError
If there is no such layer, or if there is no such parameter in the
specified layer.
Returns
-------
param : Theano shared variable
A shared parameter variable from the indicated layer.
'''
for i, layer in enumerate(self.layers):
if which == i or which == layer.name:
return layer.find(param)
raise KeyError(which)
|
def find(self, which, param):
'''Get a parameter from a layer in the network.
Parameters
----------
which : int or str
The layer that owns the parameter to return.
If this is an integer, then 0 refers to the input layer, 1 refers
to the first hidden layer, 2 to the second, and so on.
If this is a string, the layer with the corresponding name, if any,
will be used.
param : int or str
Name of the parameter to retrieve from the specified layer, or its
index in the parameter list of the layer.
Raises
------
KeyError
If there is no such layer, or if there is no such parameter in the
specified layer.
Returns
-------
param : Theano shared variable
A shared parameter variable from the indicated layer.
'''
for i, layer in enumerate(self.layers):
if which == i or which == layer.name:
return layer.find(param)
raise KeyError(which)
|
[
"Get",
"a",
"parameter",
"from",
"a",
"layer",
"in",
"the",
"network",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L467-L499
|
[
"def",
"find",
"(",
"self",
",",
"which",
",",
"param",
")",
":",
"for",
"i",
",",
"layer",
"in",
"enumerate",
"(",
"self",
".",
"layers",
")",
":",
"if",
"which",
"==",
"i",
"or",
"which",
"==",
"layer",
".",
"name",
":",
"return",
"layer",
".",
"find",
"(",
"param",
")",
"raise",
"KeyError",
"(",
"which",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.feed_forward
|
Compute a forward pass of all layers from the given input.
All keyword arguments are passed directly to :func:`build_graph`.
Parameters
----------
x : ndarray (num-examples, num-variables)
An array containing data to be fed into the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
Returns
-------
layers : list of ndarray (num-examples, num-units)
The activation values of each layer in the the network when given
input `x`. For each of the hidden layers, an array is returned
containing one row per input example; the columns of each array
correspond to units in the respective layer. The "output" of the
network is the last element of this list.
|
theanets/graph.py
|
def feed_forward(self, x, **kwargs):
'''Compute a forward pass of all layers from the given input.
All keyword arguments are passed directly to :func:`build_graph`.
Parameters
----------
x : ndarray (num-examples, num-variables)
An array containing data to be fed into the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
Returns
-------
layers : list of ndarray (num-examples, num-units)
The activation values of each layer in the the network when given
input `x`. For each of the hidden layers, an array is returned
containing one row per input example; the columns of each array
correspond to units in the respective layer. The "output" of the
network is the last element of this list.
'''
regs = regularizers.from_kwargs(self, **kwargs)
key = self._hash(regs)
if key not in self._functions:
outputs, updates = self.build_graph(regs)
labels, exprs = list(outputs.keys()), list(outputs.values())
util.log('compiling feed_forward function')
self._functions[key] = (labels, theano.function(
self.inputs, exprs, updates=updates))
labels, f = self._functions[key]
return dict(zip(labels, f(x)))
|
def feed_forward(self, x, **kwargs):
'''Compute a forward pass of all layers from the given input.
All keyword arguments are passed directly to :func:`build_graph`.
Parameters
----------
x : ndarray (num-examples, num-variables)
An array containing data to be fed into the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
Returns
-------
layers : list of ndarray (num-examples, num-units)
The activation values of each layer in the the network when given
input `x`. For each of the hidden layers, an array is returned
containing one row per input example; the columns of each array
correspond to units in the respective layer. The "output" of the
network is the last element of this list.
'''
regs = regularizers.from_kwargs(self, **kwargs)
key = self._hash(regs)
if key not in self._functions:
outputs, updates = self.build_graph(regs)
labels, exprs = list(outputs.keys()), list(outputs.values())
util.log('compiling feed_forward function')
self._functions[key] = (labels, theano.function(
self.inputs, exprs, updates=updates))
labels, f = self._functions[key]
return dict(zip(labels, f(x)))
|
[
"Compute",
"a",
"forward",
"pass",
"of",
"all",
"layers",
"from",
"the",
"given",
"input",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L501-L531
|
[
"def",
"feed_forward",
"(",
"self",
",",
"x",
",",
"*",
"*",
"kwargs",
")",
":",
"regs",
"=",
"regularizers",
".",
"from_kwargs",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
"key",
"=",
"self",
".",
"_hash",
"(",
"regs",
")",
"if",
"key",
"not",
"in",
"self",
".",
"_functions",
":",
"outputs",
",",
"updates",
"=",
"self",
".",
"build_graph",
"(",
"regs",
")",
"labels",
",",
"exprs",
"=",
"list",
"(",
"outputs",
".",
"keys",
"(",
")",
")",
",",
"list",
"(",
"outputs",
".",
"values",
"(",
")",
")",
"util",
".",
"log",
"(",
"'compiling feed_forward function'",
")",
"self",
".",
"_functions",
"[",
"key",
"]",
"=",
"(",
"labels",
",",
"theano",
".",
"function",
"(",
"self",
".",
"inputs",
",",
"exprs",
",",
"updates",
"=",
"updates",
")",
")",
"labels",
",",
"f",
"=",
"self",
".",
"_functions",
"[",
"key",
"]",
"return",
"dict",
"(",
"zip",
"(",
"labels",
",",
"f",
"(",
"x",
")",
")",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.predict
|
Compute a forward pass of the inputs, returning the network output.
All keyword arguments end up being passed to :func:`build_graph`.
Parameters
----------
x : ndarray (num-examples, num-variables)
An array containing data to be fed into the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
Returns
-------
y : ndarray (num-examples, num-variables)
Returns the values of the network output units when given input `x`.
Rows in this array correspond to examples, and columns to output
variables.
|
theanets/graph.py
|
def predict(self, x, **kwargs):
'''Compute a forward pass of the inputs, returning the network output.
All keyword arguments end up being passed to :func:`build_graph`.
Parameters
----------
x : ndarray (num-examples, num-variables)
An array containing data to be fed into the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
Returns
-------
y : ndarray (num-examples, num-variables)
Returns the values of the network output units when given input `x`.
Rows in this array correspond to examples, and columns to output
variables.
'''
return self.feed_forward(x, **kwargs)[self.layers[-1].output_name]
|
def predict(self, x, **kwargs):
'''Compute a forward pass of the inputs, returning the network output.
All keyword arguments end up being passed to :func:`build_graph`.
Parameters
----------
x : ndarray (num-examples, num-variables)
An array containing data to be fed into the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
Returns
-------
y : ndarray (num-examples, num-variables)
Returns the values of the network output units when given input `x`.
Rows in this array correspond to examples, and columns to output
variables.
'''
return self.feed_forward(x, **kwargs)[self.layers[-1].output_name]
|
[
"Compute",
"a",
"forward",
"pass",
"of",
"the",
"inputs",
"returning",
"the",
"network",
"output",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L533-L552
|
[
"def",
"predict",
"(",
"self",
",",
"x",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"self",
".",
"feed_forward",
"(",
"x",
",",
"*",
"*",
"kwargs",
")",
"[",
"self",
".",
"layers",
"[",
"-",
"1",
"]",
".",
"output_name",
"]"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.score
|
Compute R^2 coefficient of determination for a given labeled input.
Parameters
----------
x : ndarray (num-examples, num-inputs)
An array containing data to be fed into the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
y : ndarray (num-examples, num-outputs)
An array containing expected target data for the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
Returns
-------
r2 : float
The R^2 correlation between the prediction of this netork and its
target output.
|
theanets/graph.py
|
def score(self, x, y, w=None, **kwargs):
'''Compute R^2 coefficient of determination for a given labeled input.
Parameters
----------
x : ndarray (num-examples, num-inputs)
An array containing data to be fed into the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
y : ndarray (num-examples, num-outputs)
An array containing expected target data for the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
Returns
-------
r2 : float
The R^2 correlation between the prediction of this netork and its
target output.
'''
u = y - self.predict(x, **kwargs)
v = y - y.mean()
if w is None:
w = np.ones_like(u)
return 1 - (w * u * u).sum() / (w * v * v).sum()
|
def score(self, x, y, w=None, **kwargs):
'''Compute R^2 coefficient of determination for a given labeled input.
Parameters
----------
x : ndarray (num-examples, num-inputs)
An array containing data to be fed into the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
y : ndarray (num-examples, num-outputs)
An array containing expected target data for the network. Multiple
examples are arranged as rows in this array, with columns containing
the variables for each example.
Returns
-------
r2 : float
The R^2 correlation between the prediction of this netork and its
target output.
'''
u = y - self.predict(x, **kwargs)
v = y - y.mean()
if w is None:
w = np.ones_like(u)
return 1 - (w * u * u).sum() / (w * v * v).sum()
|
[
"Compute",
"R^2",
"coefficient",
"of",
"determination",
"for",
"a",
"given",
"labeled",
"input",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L554-L578
|
[
"def",
"score",
"(",
"self",
",",
"x",
",",
"y",
",",
"w",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"u",
"=",
"y",
"-",
"self",
".",
"predict",
"(",
"x",
",",
"*",
"*",
"kwargs",
")",
"v",
"=",
"y",
"-",
"y",
".",
"mean",
"(",
")",
"if",
"w",
"is",
"None",
":",
"w",
"=",
"np",
".",
"ones_like",
"(",
"u",
")",
"return",
"1",
"-",
"(",
"w",
"*",
"u",
"*",
"u",
")",
".",
"sum",
"(",
")",
"/",
"(",
"w",
"*",
"v",
"*",
"v",
")",
".",
"sum",
"(",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.save
|
Save the state of this network to a pickle file on disk.
Parameters
----------
filename_or_handle : str or file handle
Save the state of this network to a pickle file. If this parameter
is a string, it names the file where the pickle will be saved. If it
is a file-like object, this object will be used for writing the
pickle. If the filename ends in ".gz" then the output will
automatically be gzipped.
|
theanets/graph.py
|
def save(self, filename_or_handle):
'''Save the state of this network to a pickle file on disk.
Parameters
----------
filename_or_handle : str or file handle
Save the state of this network to a pickle file. If this parameter
is a string, it names the file where the pickle will be saved. If it
is a file-like object, this object will be used for writing the
pickle. If the filename ends in ".gz" then the output will
automatically be gzipped.
'''
if isinstance(filename_or_handle, util.basestring):
opener = gzip.open if filename_or_handle.lower().endswith('.gz') else open
handle = opener(filename_or_handle, 'wb')
else:
handle = filename_or_handle
pickle.dump(self, handle, -1)
if isinstance(filename_or_handle, util.basestring):
handle.close()
util.log('saved model to {}', filename_or_handle)
|
def save(self, filename_or_handle):
'''Save the state of this network to a pickle file on disk.
Parameters
----------
filename_or_handle : str or file handle
Save the state of this network to a pickle file. If this parameter
is a string, it names the file where the pickle will be saved. If it
is a file-like object, this object will be used for writing the
pickle. If the filename ends in ".gz" then the output will
automatically be gzipped.
'''
if isinstance(filename_or_handle, util.basestring):
opener = gzip.open if filename_or_handle.lower().endswith('.gz') else open
handle = opener(filename_or_handle, 'wb')
else:
handle = filename_or_handle
pickle.dump(self, handle, -1)
if isinstance(filename_or_handle, util.basestring):
handle.close()
util.log('saved model to {}', filename_or_handle)
|
[
"Save",
"the",
"state",
"of",
"this",
"network",
"to",
"a",
"pickle",
"file",
"on",
"disk",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L588-L608
|
[
"def",
"save",
"(",
"self",
",",
"filename_or_handle",
")",
":",
"if",
"isinstance",
"(",
"filename_or_handle",
",",
"util",
".",
"basestring",
")",
":",
"opener",
"=",
"gzip",
".",
"open",
"if",
"filename_or_handle",
".",
"lower",
"(",
")",
".",
"endswith",
"(",
"'.gz'",
")",
"else",
"open",
"handle",
"=",
"opener",
"(",
"filename_or_handle",
",",
"'wb'",
")",
"else",
":",
"handle",
"=",
"filename_or_handle",
"pickle",
".",
"dump",
"(",
"self",
",",
"handle",
",",
"-",
"1",
")",
"if",
"isinstance",
"(",
"filename_or_handle",
",",
"util",
".",
"basestring",
")",
":",
"handle",
".",
"close",
"(",
")",
"util",
".",
"log",
"(",
"'saved model to {}'",
",",
"filename_or_handle",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.load
|
Load a saved network from disk.
Parameters
----------
filename_or_handle : str or file handle
Load the state of this network from a pickle file. If this parameter
is a string, it names the file where the pickle will be saved. If it
is a file-like object, this object will be used for reading the
pickle. If the filename ends in ".gz" then the output will
automatically be gunzipped.
|
theanets/graph.py
|
def load(cls, filename_or_handle):
'''Load a saved network from disk.
Parameters
----------
filename_or_handle : str or file handle
Load the state of this network from a pickle file. If this parameter
is a string, it names the file where the pickle will be saved. If it
is a file-like object, this object will be used for reading the
pickle. If the filename ends in ".gz" then the output will
automatically be gunzipped.
'''
assert not isinstance(cls, Network), \
'cannot load an instance! say instead: net = Network.load(source)'
if isinstance(filename_or_handle, util.basestring):
opener = gzip.open if filename_or_handle.lower().endswith('.gz') else open
handle = opener(filename_or_handle, 'rb')
else:
handle = filename_or_handle
model = pickle.load(handle)
if isinstance(filename_or_handle, util.basestring):
handle.close()
util.log('loaded model from {}', filename_or_handle)
return model
|
def load(cls, filename_or_handle):
'''Load a saved network from disk.
Parameters
----------
filename_or_handle : str or file handle
Load the state of this network from a pickle file. If this parameter
is a string, it names the file where the pickle will be saved. If it
is a file-like object, this object will be used for reading the
pickle. If the filename ends in ".gz" then the output will
automatically be gunzipped.
'''
assert not isinstance(cls, Network), \
'cannot load an instance! say instead: net = Network.load(source)'
if isinstance(filename_or_handle, util.basestring):
opener = gzip.open if filename_or_handle.lower().endswith('.gz') else open
handle = opener(filename_or_handle, 'rb')
else:
handle = filename_or_handle
model = pickle.load(handle)
if isinstance(filename_or_handle, util.basestring):
handle.close()
util.log('loaded model from {}', filename_or_handle)
return model
|
[
"Load",
"a",
"saved",
"network",
"from",
"disk",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L611-L634
|
[
"def",
"load",
"(",
"cls",
",",
"filename_or_handle",
")",
":",
"assert",
"not",
"isinstance",
"(",
"cls",
",",
"Network",
")",
",",
"'cannot load an instance! say instead: net = Network.load(source)'",
"if",
"isinstance",
"(",
"filename_or_handle",
",",
"util",
".",
"basestring",
")",
":",
"opener",
"=",
"gzip",
".",
"open",
"if",
"filename_or_handle",
".",
"lower",
"(",
")",
".",
"endswith",
"(",
"'.gz'",
")",
"else",
"open",
"handle",
"=",
"opener",
"(",
"filename_or_handle",
",",
"'rb'",
")",
"else",
":",
"handle",
"=",
"filename_or_handle",
"model",
"=",
"pickle",
".",
"load",
"(",
"handle",
")",
"if",
"isinstance",
"(",
"filename_or_handle",
",",
"util",
".",
"basestring",
")",
":",
"handle",
".",
"close",
"(",
")",
"util",
".",
"log",
"(",
"'loaded model from {}'",
",",
"filename_or_handle",
")",
"return",
"model"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.loss
|
Return a variable representing the regularized loss for this network.
The regularized loss includes both the :ref:`loss computation <losses>`
for the network as well as any :ref:`regularizers <regularizers>` that
are in place.
Keyword arguments are passed directly to
:func:`theanets.regularizers.from_kwargs`.
Returns
-------
loss : Theano expression
A Theano expression representing the loss of this network.
|
theanets/graph.py
|
def loss(self, **kwargs):
'''Return a variable representing the regularized loss for this network.
The regularized loss includes both the :ref:`loss computation <losses>`
for the network as well as any :ref:`regularizers <regularizers>` that
are in place.
Keyword arguments are passed directly to
:func:`theanets.regularizers.from_kwargs`.
Returns
-------
loss : Theano expression
A Theano expression representing the loss of this network.
'''
regs = regularizers.from_kwargs(self, **kwargs)
outputs, _ = self.build_graph(regs)
return sum(l.weight * l(outputs) for l in self.losses) + \
sum(r.weight * r.loss(self.layers, outputs) for r in regs)
|
def loss(self, **kwargs):
'''Return a variable representing the regularized loss for this network.
The regularized loss includes both the :ref:`loss computation <losses>`
for the network as well as any :ref:`regularizers <regularizers>` that
are in place.
Keyword arguments are passed directly to
:func:`theanets.regularizers.from_kwargs`.
Returns
-------
loss : Theano expression
A Theano expression representing the loss of this network.
'''
regs = regularizers.from_kwargs(self, **kwargs)
outputs, _ = self.build_graph(regs)
return sum(l.weight * l(outputs) for l in self.losses) + \
sum(r.weight * r.loss(self.layers, outputs) for r in regs)
|
[
"Return",
"a",
"variable",
"representing",
"the",
"regularized",
"loss",
"for",
"this",
"network",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L636-L654
|
[
"def",
"loss",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"regs",
"=",
"regularizers",
".",
"from_kwargs",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
"outputs",
",",
"_",
"=",
"self",
".",
"build_graph",
"(",
"regs",
")",
"return",
"sum",
"(",
"l",
".",
"weight",
"*",
"l",
"(",
"outputs",
")",
"for",
"l",
"in",
"self",
".",
"losses",
")",
"+",
"sum",
"(",
"r",
".",
"weight",
"*",
"r",
".",
"loss",
"(",
"self",
".",
"layers",
",",
"outputs",
")",
"for",
"r",
"in",
"regs",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.monitors
|
Return expressions that should be computed to monitor training.
Returns
-------
monitors : list of (name, expression) pairs
A list of named monitor expressions to compute for this network.
|
theanets/graph.py
|
def monitors(self, **kwargs):
'''Return expressions that should be computed to monitor training.
Returns
-------
monitors : list of (name, expression) pairs
A list of named monitor expressions to compute for this network.
'''
regs = regularizers.from_kwargs(self, **kwargs)
outputs, _ = self.build_graph(regs)
monitors = [('err', self.losses[0](outputs))]
def matching(pattern):
'''Yield all matching outputs or parameters from the graph.'''
for name, expr in util.outputs_matching(outputs, pattern):
yield name, expr
for name, expr in util.params_matching(self.layers, pattern):
yield name, expr
def parse_levels(levels):
'''Yield named monitor callables.'''
if isinstance(levels, dict):
levels = levels.items()
if isinstance(levels, (int, float)):
levels = [levels]
for level in levels:
if isinstance(level, (tuple, list)):
label, call = level
yield ':{}'.format(label), call
if isinstance(level, (int, float)):
def call(expr):
return (expr < level).mean()
yield '<{}'.format(level), call
inputs = kwargs.get('monitors', {})
if isinstance(inputs, dict):
inputs = inputs.items()
for pattern, levels in inputs:
for name, expr in matching(pattern):
for key, value in parse_levels(levels):
monitors.append(('{}{}'.format(name, key), value(expr)))
return monitors
|
def monitors(self, **kwargs):
'''Return expressions that should be computed to monitor training.
Returns
-------
monitors : list of (name, expression) pairs
A list of named monitor expressions to compute for this network.
'''
regs = regularizers.from_kwargs(self, **kwargs)
outputs, _ = self.build_graph(regs)
monitors = [('err', self.losses[0](outputs))]
def matching(pattern):
'''Yield all matching outputs or parameters from the graph.'''
for name, expr in util.outputs_matching(outputs, pattern):
yield name, expr
for name, expr in util.params_matching(self.layers, pattern):
yield name, expr
def parse_levels(levels):
'''Yield named monitor callables.'''
if isinstance(levels, dict):
levels = levels.items()
if isinstance(levels, (int, float)):
levels = [levels]
for level in levels:
if isinstance(level, (tuple, list)):
label, call = level
yield ':{}'.format(label), call
if isinstance(level, (int, float)):
def call(expr):
return (expr < level).mean()
yield '<{}'.format(level), call
inputs = kwargs.get('monitors', {})
if isinstance(inputs, dict):
inputs = inputs.items()
for pattern, levels in inputs:
for name, expr in matching(pattern):
for key, value in parse_levels(levels):
monitors.append(('{}{}'.format(name, key), value(expr)))
return monitors
|
[
"Return",
"expressions",
"that",
"should",
"be",
"computed",
"to",
"monitor",
"training",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L656-L698
|
[
"def",
"monitors",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"regs",
"=",
"regularizers",
".",
"from_kwargs",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
"outputs",
",",
"_",
"=",
"self",
".",
"build_graph",
"(",
"regs",
")",
"monitors",
"=",
"[",
"(",
"'err'",
",",
"self",
".",
"losses",
"[",
"0",
"]",
"(",
"outputs",
")",
")",
"]",
"def",
"matching",
"(",
"pattern",
")",
":",
"'''Yield all matching outputs or parameters from the graph.'''",
"for",
"name",
",",
"expr",
"in",
"util",
".",
"outputs_matching",
"(",
"outputs",
",",
"pattern",
")",
":",
"yield",
"name",
",",
"expr",
"for",
"name",
",",
"expr",
"in",
"util",
".",
"params_matching",
"(",
"self",
".",
"layers",
",",
"pattern",
")",
":",
"yield",
"name",
",",
"expr",
"def",
"parse_levels",
"(",
"levels",
")",
":",
"'''Yield named monitor callables.'''",
"if",
"isinstance",
"(",
"levels",
",",
"dict",
")",
":",
"levels",
"=",
"levels",
".",
"items",
"(",
")",
"if",
"isinstance",
"(",
"levels",
",",
"(",
"int",
",",
"float",
")",
")",
":",
"levels",
"=",
"[",
"levels",
"]",
"for",
"level",
"in",
"levels",
":",
"if",
"isinstance",
"(",
"level",
",",
"(",
"tuple",
",",
"list",
")",
")",
":",
"label",
",",
"call",
"=",
"level",
"yield",
"':{}'",
".",
"format",
"(",
"label",
")",
",",
"call",
"if",
"isinstance",
"(",
"level",
",",
"(",
"int",
",",
"float",
")",
")",
":",
"def",
"call",
"(",
"expr",
")",
":",
"return",
"(",
"expr",
"<",
"level",
")",
".",
"mean",
"(",
")",
"yield",
"'<{}'",
".",
"format",
"(",
"level",
")",
",",
"call",
"inputs",
"=",
"kwargs",
".",
"get",
"(",
"'monitors'",
",",
"{",
"}",
")",
"if",
"isinstance",
"(",
"inputs",
",",
"dict",
")",
":",
"inputs",
"=",
"inputs",
".",
"items",
"(",
")",
"for",
"pattern",
",",
"levels",
"in",
"inputs",
":",
"for",
"name",
",",
"expr",
"in",
"matching",
"(",
"pattern",
")",
":",
"for",
"key",
",",
"value",
"in",
"parse_levels",
"(",
"levels",
")",
":",
"monitors",
".",
"append",
"(",
"(",
"'{}{}'",
".",
"format",
"(",
"name",
",",
"key",
")",
",",
"value",
"(",
"expr",
")",
")",
")",
"return",
"monitors"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Network.updates
|
Return expressions to run as updates during network training.
Returns
-------
updates : list of (parameter, expression) pairs
A list of named parameter update expressions for this network.
|
theanets/graph.py
|
def updates(self, **kwargs):
'''Return expressions to run as updates during network training.
Returns
-------
updates : list of (parameter, expression) pairs
A list of named parameter update expressions for this network.
'''
regs = regularizers.from_kwargs(self, **kwargs)
_, updates = self.build_graph(regs)
return updates
|
def updates(self, **kwargs):
'''Return expressions to run as updates during network training.
Returns
-------
updates : list of (parameter, expression) pairs
A list of named parameter update expressions for this network.
'''
regs = regularizers.from_kwargs(self, **kwargs)
_, updates = self.build_graph(regs)
return updates
|
[
"Return",
"expressions",
"to",
"run",
"as",
"updates",
"during",
"network",
"training",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/graph.py#L700-L710
|
[
"def",
"updates",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"regs",
"=",
"regularizers",
".",
"from_kwargs",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
"_",
",",
"updates",
"=",
"self",
".",
"build_graph",
"(",
"regs",
")",
"return",
"updates"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.input_name
|
Name of layer input (for layers with one input).
|
theanets/layers/base.py
|
def input_name(self):
'''Name of layer input (for layers with one input).'''
if len(self._input_shapes) != 1:
raise util.ConfigurationError(
'expected one input for layer "{}", got {}'
.format(self.name, self._input_shapes))
return list(self._input_shapes)[0]
|
def input_name(self):
'''Name of layer input (for layers with one input).'''
if len(self._input_shapes) != 1:
raise util.ConfigurationError(
'expected one input for layer "{}", got {}'
.format(self.name, self._input_shapes))
return list(self._input_shapes)[0]
|
[
"Name",
"of",
"layer",
"input",
"(",
"for",
"layers",
"with",
"one",
"input",
")",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L134-L140
|
[
"def",
"input_name",
"(",
"self",
")",
":",
"if",
"len",
"(",
"self",
".",
"_input_shapes",
")",
"!=",
"1",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'expected one input for layer \"{}\", got {}'",
".",
"format",
"(",
"self",
".",
"name",
",",
"self",
".",
"_input_shapes",
")",
")",
"return",
"list",
"(",
"self",
".",
"_input_shapes",
")",
"[",
"0",
"]"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.input_size
|
Size of layer input (for layers with one input).
|
theanets/layers/base.py
|
def input_size(self):
'''Size of layer input (for layers with one input).'''
shape = self.input_shape
if shape is None:
raise util.ConfigurationError(
'undefined input size for layer "{}"'.format(self.name))
return shape[-1]
|
def input_size(self):
'''Size of layer input (for layers with one input).'''
shape = self.input_shape
if shape is None:
raise util.ConfigurationError(
'undefined input size for layer "{}"'.format(self.name))
return shape[-1]
|
[
"Size",
"of",
"layer",
"input",
"(",
"for",
"layers",
"with",
"one",
"input",
")",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L148-L154
|
[
"def",
"input_size",
"(",
"self",
")",
":",
"shape",
"=",
"self",
".",
"input_shape",
"if",
"shape",
"is",
"None",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'undefined input size for layer \"{}\"'",
".",
"format",
"(",
"self",
".",
"name",
")",
")",
"return",
"shape",
"[",
"-",
"1",
"]"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.output_size
|
Number of "neurons" in this layer's default output.
|
theanets/layers/base.py
|
def output_size(self):
'''Number of "neurons" in this layer's default output.'''
shape = self.output_shape
if shape is None:
raise util.ConfigurationError(
'undefined output size for layer "{}"'.format(self.name))
return shape[-1]
|
def output_size(self):
'''Number of "neurons" in this layer's default output.'''
shape = self.output_shape
if shape is None:
raise util.ConfigurationError(
'undefined output size for layer "{}"'.format(self.name))
return shape[-1]
|
[
"Number",
"of",
"neurons",
"in",
"this",
"layer",
"s",
"default",
"output",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L167-L173
|
[
"def",
"output_size",
"(",
"self",
")",
":",
"shape",
"=",
"self",
".",
"output_shape",
"if",
"shape",
"is",
"None",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'undefined output size for layer \"{}\"'",
".",
"format",
"(",
"self",
".",
"name",
")",
")",
"return",
"shape",
"[",
"-",
"1",
"]"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.connect
|
Create Theano variables representing the outputs of this layer.
Parameters
----------
inputs : dict of Theano expressions
Symbolic inputs to this layer, given as a dictionary mapping string
names to Theano expressions. Each string key should be of the form
"{layer_name}:{output_name}" and refers to a specific output from
a specific layer in the graph.
Returns
-------
outputs : dict
A dictionary mapping names to Theano expressions for the outputs
from this layer.
updates : sequence of (parameter, expression) tuples
Updates that should be performed by a Theano function that computes
something using this layer.
|
theanets/layers/base.py
|
def connect(self, inputs):
'''Create Theano variables representing the outputs of this layer.
Parameters
----------
inputs : dict of Theano expressions
Symbolic inputs to this layer, given as a dictionary mapping string
names to Theano expressions. Each string key should be of the form
"{layer_name}:{output_name}" and refers to a specific output from
a specific layer in the graph.
Returns
-------
outputs : dict
A dictionary mapping names to Theano expressions for the outputs
from this layer.
updates : sequence of (parameter, expression) tuples
Updates that should be performed by a Theano function that computes
something using this layer.
'''
outputs, updates = self.transform(inputs)
# transform the outputs to be a list of ordered pairs if needed.
if isinstance(outputs, dict):
outputs = sorted(outputs.items())
if isinstance(outputs, (TT.TensorVariable, SS.SparseVariable)):
outputs = [('out', outputs)]
outs = {self.full_name(name): expr for name, expr in outputs}
return outs, updates
|
def connect(self, inputs):
'''Create Theano variables representing the outputs of this layer.
Parameters
----------
inputs : dict of Theano expressions
Symbolic inputs to this layer, given as a dictionary mapping string
names to Theano expressions. Each string key should be of the form
"{layer_name}:{output_name}" and refers to a specific output from
a specific layer in the graph.
Returns
-------
outputs : dict
A dictionary mapping names to Theano expressions for the outputs
from this layer.
updates : sequence of (parameter, expression) tuples
Updates that should be performed by a Theano function that computes
something using this layer.
'''
outputs, updates = self.transform(inputs)
# transform the outputs to be a list of ordered pairs if needed.
if isinstance(outputs, dict):
outputs = sorted(outputs.items())
if isinstance(outputs, (TT.TensorVariable, SS.SparseVariable)):
outputs = [('out', outputs)]
outs = {self.full_name(name): expr for name, expr in outputs}
return outs, updates
|
[
"Create",
"Theano",
"variables",
"representing",
"the",
"outputs",
"of",
"this",
"layer",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L190-L217
|
[
"def",
"connect",
"(",
"self",
",",
"inputs",
")",
":",
"outputs",
",",
"updates",
"=",
"self",
".",
"transform",
"(",
"inputs",
")",
"# transform the outputs to be a list of ordered pairs if needed.",
"if",
"isinstance",
"(",
"outputs",
",",
"dict",
")",
":",
"outputs",
"=",
"sorted",
"(",
"outputs",
".",
"items",
"(",
")",
")",
"if",
"isinstance",
"(",
"outputs",
",",
"(",
"TT",
".",
"TensorVariable",
",",
"SS",
".",
"SparseVariable",
")",
")",
":",
"outputs",
"=",
"[",
"(",
"'out'",
",",
"outputs",
")",
"]",
"outs",
"=",
"{",
"self",
".",
"full_name",
"(",
"name",
")",
":",
"expr",
"for",
"name",
",",
"expr",
"in",
"outputs",
"}",
"return",
"outs",
",",
"updates"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.bind
|
Bind this layer into a computation graph.
This method is a wrapper for performing common initialization tasks. It
calls :func:`resolve`, :func:`setup`, and :func:`log`.
Parameters
----------
graph : :class:`Network <theanets.graph.Network>`
A computation network in which this layer is to be bound.
reset : bool, optional
If ``True`` (the default), reset the resolved layers for this layer.
initialize : bool, optional
If ``True`` (the default), initialize the parameters for this layer
by calling :func:`setup`.
Raises
------
theanets.util.ConfigurationError :
If an input cannot be resolved.
|
theanets/layers/base.py
|
def bind(self, graph, reset=True, initialize=True):
'''Bind this layer into a computation graph.
This method is a wrapper for performing common initialization tasks. It
calls :func:`resolve`, :func:`setup`, and :func:`log`.
Parameters
----------
graph : :class:`Network <theanets.graph.Network>`
A computation network in which this layer is to be bound.
reset : bool, optional
If ``True`` (the default), reset the resolved layers for this layer.
initialize : bool, optional
If ``True`` (the default), initialize the parameters for this layer
by calling :func:`setup`.
Raises
------
theanets.util.ConfigurationError :
If an input cannot be resolved.
'''
if reset:
for k in self._input_shapes:
self._input_shapes[k] = None
for k in self._output_shapes:
self._output_shapes[k] = None
self.resolve_inputs(graph.layers)
self.resolve_outputs()
self.activate = activations.build(
self.kwargs.get('activation', 'relu'), self)
if initialize:
self.setup()
self.log()
|
def bind(self, graph, reset=True, initialize=True):
'''Bind this layer into a computation graph.
This method is a wrapper for performing common initialization tasks. It
calls :func:`resolve`, :func:`setup`, and :func:`log`.
Parameters
----------
graph : :class:`Network <theanets.graph.Network>`
A computation network in which this layer is to be bound.
reset : bool, optional
If ``True`` (the default), reset the resolved layers for this layer.
initialize : bool, optional
If ``True`` (the default), initialize the parameters for this layer
by calling :func:`setup`.
Raises
------
theanets.util.ConfigurationError :
If an input cannot be resolved.
'''
if reset:
for k in self._input_shapes:
self._input_shapes[k] = None
for k in self._output_shapes:
self._output_shapes[k] = None
self.resolve_inputs(graph.layers)
self.resolve_outputs()
self.activate = activations.build(
self.kwargs.get('activation', 'relu'), self)
if initialize:
self.setup()
self.log()
|
[
"Bind",
"this",
"layer",
"into",
"a",
"computation",
"graph",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L237-L269
|
[
"def",
"bind",
"(",
"self",
",",
"graph",
",",
"reset",
"=",
"True",
",",
"initialize",
"=",
"True",
")",
":",
"if",
"reset",
":",
"for",
"k",
"in",
"self",
".",
"_input_shapes",
":",
"self",
".",
"_input_shapes",
"[",
"k",
"]",
"=",
"None",
"for",
"k",
"in",
"self",
".",
"_output_shapes",
":",
"self",
".",
"_output_shapes",
"[",
"k",
"]",
"=",
"None",
"self",
".",
"resolve_inputs",
"(",
"graph",
".",
"layers",
")",
"self",
".",
"resolve_outputs",
"(",
")",
"self",
".",
"activate",
"=",
"activations",
".",
"build",
"(",
"self",
".",
"kwargs",
".",
"get",
"(",
"'activation'",
",",
"'relu'",
")",
",",
"self",
")",
"if",
"initialize",
":",
"self",
".",
"setup",
"(",
")",
"self",
".",
"log",
"(",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.resolve_inputs
|
Resolve the names of inputs for this layer into shape tuples.
Parameters
----------
layers : list of :class:`Layer`
A list of the layers that are available for resolving inputs.
Raises
------
theanets.util.ConfigurationError :
If an input cannot be resolved.
|
theanets/layers/base.py
|
def resolve_inputs(self, layers):
'''Resolve the names of inputs for this layer into shape tuples.
Parameters
----------
layers : list of :class:`Layer`
A list of the layers that are available for resolving inputs.
Raises
------
theanets.util.ConfigurationError :
If an input cannot be resolved.
'''
resolved = {}
for name, shape in self._input_shapes.items():
if shape is None:
name, shape = self._resolve_shape(name, layers)
resolved[name] = shape
self._input_shapes = resolved
|
def resolve_inputs(self, layers):
'''Resolve the names of inputs for this layer into shape tuples.
Parameters
----------
layers : list of :class:`Layer`
A list of the layers that are available for resolving inputs.
Raises
------
theanets.util.ConfigurationError :
If an input cannot be resolved.
'''
resolved = {}
for name, shape in self._input_shapes.items():
if shape is None:
name, shape = self._resolve_shape(name, layers)
resolved[name] = shape
self._input_shapes = resolved
|
[
"Resolve",
"the",
"names",
"of",
"inputs",
"for",
"this",
"layer",
"into",
"shape",
"tuples",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L271-L289
|
[
"def",
"resolve_inputs",
"(",
"self",
",",
"layers",
")",
":",
"resolved",
"=",
"{",
"}",
"for",
"name",
",",
"shape",
"in",
"self",
".",
"_input_shapes",
".",
"items",
"(",
")",
":",
"if",
"shape",
"is",
"None",
":",
"name",
",",
"shape",
"=",
"self",
".",
"_resolve_shape",
"(",
"name",
",",
"layers",
")",
"resolved",
"[",
"name",
"]",
"=",
"shape",
"self",
".",
"_input_shapes",
"=",
"resolved"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.resolve_outputs
|
Resolve the names of outputs for this layer into shape tuples.
|
theanets/layers/base.py
|
def resolve_outputs(self):
'''Resolve the names of outputs for this layer into shape tuples.'''
input_shape = None
for i, shape in enumerate(self._input_shapes.values()):
if i == 0:
input_shape = shape
if len(input_shape) != len(shape) or any(
a is not None and b is not None and a != b
for a, b in zip(input_shape[:-1], shape[:-1])):
raise util.ConfigurationError(
'layer "{}" incompatible input shapes {}'
.format(self.name, self._input_shapes))
size = self.kwargs.get('size')
shape = self.kwargs.get('shape')
if shape is not None:
pass
elif size is not None:
shape = tuple(input_shape[:-1]) + (size, )
else:
raise util.ConfigurationError(
'layer "{}" does not specify a size'.format(self.name))
self._output_shapes['out'] = shape
|
def resolve_outputs(self):
'''Resolve the names of outputs for this layer into shape tuples.'''
input_shape = None
for i, shape in enumerate(self._input_shapes.values()):
if i == 0:
input_shape = shape
if len(input_shape) != len(shape) or any(
a is not None and b is not None and a != b
for a, b in zip(input_shape[:-1], shape[:-1])):
raise util.ConfigurationError(
'layer "{}" incompatible input shapes {}'
.format(self.name, self._input_shapes))
size = self.kwargs.get('size')
shape = self.kwargs.get('shape')
if shape is not None:
pass
elif size is not None:
shape = tuple(input_shape[:-1]) + (size, )
else:
raise util.ConfigurationError(
'layer "{}" does not specify a size'.format(self.name))
self._output_shapes['out'] = shape
|
[
"Resolve",
"the",
"names",
"of",
"outputs",
"for",
"this",
"layer",
"into",
"shape",
"tuples",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L291-L312
|
[
"def",
"resolve_outputs",
"(",
"self",
")",
":",
"input_shape",
"=",
"None",
"for",
"i",
",",
"shape",
"in",
"enumerate",
"(",
"self",
".",
"_input_shapes",
".",
"values",
"(",
")",
")",
":",
"if",
"i",
"==",
"0",
":",
"input_shape",
"=",
"shape",
"if",
"len",
"(",
"input_shape",
")",
"!=",
"len",
"(",
"shape",
")",
"or",
"any",
"(",
"a",
"is",
"not",
"None",
"and",
"b",
"is",
"not",
"None",
"and",
"a",
"!=",
"b",
"for",
"a",
",",
"b",
"in",
"zip",
"(",
"input_shape",
"[",
":",
"-",
"1",
"]",
",",
"shape",
"[",
":",
"-",
"1",
"]",
")",
")",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'layer \"{}\" incompatible input shapes {}'",
".",
"format",
"(",
"self",
".",
"name",
",",
"self",
".",
"_input_shapes",
")",
")",
"size",
"=",
"self",
".",
"kwargs",
".",
"get",
"(",
"'size'",
")",
"shape",
"=",
"self",
".",
"kwargs",
".",
"get",
"(",
"'shape'",
")",
"if",
"shape",
"is",
"not",
"None",
":",
"pass",
"elif",
"size",
"is",
"not",
"None",
":",
"shape",
"=",
"tuple",
"(",
"input_shape",
"[",
":",
"-",
"1",
"]",
")",
"+",
"(",
"size",
",",
")",
"else",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'layer \"{}\" does not specify a size'",
".",
"format",
"(",
"self",
".",
"name",
")",
")",
"self",
".",
"_output_shapes",
"[",
"'out'",
"]",
"=",
"shape"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.log
|
Log some information about this layer.
|
theanets/layers/base.py
|
def log(self):
'''Log some information about this layer.'''
inputs = ', '.join('"{0}" {1}'.format(*ns) for ns in self._input_shapes.items())
util.log('layer {0.__class__.__name__} "{0.name}" {0.output_shape} {1} from {2}',
self, getattr(self.activate, 'name', self.activate), inputs)
util.log('learnable parameters: {}', self.log_params())
|
def log(self):
'''Log some information about this layer.'''
inputs = ', '.join('"{0}" {1}'.format(*ns) for ns in self._input_shapes.items())
util.log('layer {0.__class__.__name__} "{0.name}" {0.output_shape} {1} from {2}',
self, getattr(self.activate, 'name', self.activate), inputs)
util.log('learnable parameters: {}', self.log_params())
|
[
"Log",
"some",
"information",
"about",
"this",
"layer",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L318-L323
|
[
"def",
"log",
"(",
"self",
")",
":",
"inputs",
"=",
"', '",
".",
"join",
"(",
"'\"{0}\" {1}'",
".",
"format",
"(",
"*",
"ns",
")",
"for",
"ns",
"in",
"self",
".",
"_input_shapes",
".",
"items",
"(",
")",
")",
"util",
".",
"log",
"(",
"'layer {0.__class__.__name__} \"{0.name}\" {0.output_shape} {1} from {2}'",
",",
"self",
",",
"getattr",
"(",
"self",
".",
"activate",
",",
"'name'",
",",
"self",
".",
"activate",
")",
",",
"inputs",
")",
"util",
".",
"log",
"(",
"'learnable parameters: {}'",
",",
"self",
".",
"log_params",
"(",
")",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.log_params
|
Log information about this layer's parameters.
|
theanets/layers/base.py
|
def log_params(self):
'''Log information about this layer's parameters.'''
total = 0
for p in self.params:
shape = p.get_value().shape
util.log('parameter "{}" {}', p.name, shape)
total += np.prod(shape)
return total
|
def log_params(self):
'''Log information about this layer's parameters.'''
total = 0
for p in self.params:
shape = p.get_value().shape
util.log('parameter "{}" {}', p.name, shape)
total += np.prod(shape)
return total
|
[
"Log",
"information",
"about",
"this",
"layer",
"s",
"parameters",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L325-L332
|
[
"def",
"log_params",
"(",
"self",
")",
":",
"total",
"=",
"0",
"for",
"p",
"in",
"self",
".",
"params",
":",
"shape",
"=",
"p",
".",
"get_value",
"(",
")",
".",
"shape",
"util",
".",
"log",
"(",
"'parameter \"{}\" {}'",
",",
"p",
".",
"name",
",",
"shape",
")",
"total",
"+=",
"np",
".",
"prod",
"(",
"shape",
")",
"return",
"total"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer._fmt
|
Helper method to format our name into a string.
|
theanets/layers/base.py
|
def _fmt(self, string):
'''Helper method to format our name into a string.'''
if '{' not in string:
string = '{}.' + string
return string.format(self.name)
|
def _fmt(self, string):
'''Helper method to format our name into a string.'''
if '{' not in string:
string = '{}.' + string
return string.format(self.name)
|
[
"Helper",
"method",
"to",
"format",
"our",
"name",
"into",
"a",
"string",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L334-L338
|
[
"def",
"_fmt",
"(",
"self",
",",
"string",
")",
":",
"if",
"'{'",
"not",
"in",
"string",
":",
"string",
"=",
"'{}.'",
"+",
"string",
"return",
"string",
".",
"format",
"(",
"self",
".",
"name",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer._resolve_shape
|
Given a list of layers, find the layer output with the given name.
Parameters
----------
name : str
Name of a layer to resolve.
layers : list of :class:`theanets.layers.base.Layer`
A list of layers to search in.
Raises
------
util.ConfigurationError :
If there is no such layer, or if there are more than one.
Returns
-------
name : str
The fully-scoped name of the desired output.
shape : tuple of None and/or int
The shape of the named output.
|
theanets/layers/base.py
|
def _resolve_shape(self, name, layers):
'''Given a list of layers, find the layer output with the given name.
Parameters
----------
name : str
Name of a layer to resolve.
layers : list of :class:`theanets.layers.base.Layer`
A list of layers to search in.
Raises
------
util.ConfigurationError :
If there is no such layer, or if there are more than one.
Returns
-------
name : str
The fully-scoped name of the desired output.
shape : tuple of None and/or int
The shape of the named output.
'''
matches = [l for l in layers if name.split(':')[0] == l.name]
if len(matches) != 1:
raise util.ConfigurationError(
'layer "{}" cannot resolve "{}" using {}'
.format(self.name, name, [l.name for l in layers]))
name = name if ':' in name else matches[0].output_name
return name, matches[0]._output_shapes[name.split(':')[1]]
|
def _resolve_shape(self, name, layers):
'''Given a list of layers, find the layer output with the given name.
Parameters
----------
name : str
Name of a layer to resolve.
layers : list of :class:`theanets.layers.base.Layer`
A list of layers to search in.
Raises
------
util.ConfigurationError :
If there is no such layer, or if there are more than one.
Returns
-------
name : str
The fully-scoped name of the desired output.
shape : tuple of None and/or int
The shape of the named output.
'''
matches = [l for l in layers if name.split(':')[0] == l.name]
if len(matches) != 1:
raise util.ConfigurationError(
'layer "{}" cannot resolve "{}" using {}'
.format(self.name, name, [l.name for l in layers]))
name = name if ':' in name else matches[0].output_name
return name, matches[0]._output_shapes[name.split(':')[1]]
|
[
"Given",
"a",
"list",
"of",
"layers",
"find",
"the",
"layer",
"output",
"with",
"the",
"given",
"name",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L340-L368
|
[
"def",
"_resolve_shape",
"(",
"self",
",",
"name",
",",
"layers",
")",
":",
"matches",
"=",
"[",
"l",
"for",
"l",
"in",
"layers",
"if",
"name",
".",
"split",
"(",
"':'",
")",
"[",
"0",
"]",
"==",
"l",
".",
"name",
"]",
"if",
"len",
"(",
"matches",
")",
"!=",
"1",
":",
"raise",
"util",
".",
"ConfigurationError",
"(",
"'layer \"{}\" cannot resolve \"{}\" using {}'",
".",
"format",
"(",
"self",
".",
"name",
",",
"name",
",",
"[",
"l",
".",
"name",
"for",
"l",
"in",
"layers",
"]",
")",
")",
"name",
"=",
"name",
"if",
"':'",
"in",
"name",
"else",
"matches",
"[",
"0",
"]",
".",
"output_name",
"return",
"name",
",",
"matches",
"[",
"0",
"]",
".",
"_output_shapes",
"[",
"name",
".",
"split",
"(",
"':'",
")",
"[",
"1",
"]",
"]"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.find
|
Get a shared variable for a parameter by name.
Parameters
----------
key : str or int
The name of the parameter to look up, or the index of the parameter
in our parameter list. These are both dependent on the
implementation of the layer.
Returns
-------
param : shared variable
A shared variable containing values for the given parameter.
Raises
------
KeyError
If a param with the given name does not exist.
|
theanets/layers/base.py
|
def find(self, key):
'''Get a shared variable for a parameter by name.
Parameters
----------
key : str or int
The name of the parameter to look up, or the index of the parameter
in our parameter list. These are both dependent on the
implementation of the layer.
Returns
-------
param : shared variable
A shared variable containing values for the given parameter.
Raises
------
KeyError
If a param with the given name does not exist.
'''
name = self._fmt(str(key))
for i, p in enumerate(self._params):
if key == i or name == p.name:
return p
raise KeyError(key)
|
def find(self, key):
'''Get a shared variable for a parameter by name.
Parameters
----------
key : str or int
The name of the parameter to look up, or the index of the parameter
in our parameter list. These are both dependent on the
implementation of the layer.
Returns
-------
param : shared variable
A shared variable containing values for the given parameter.
Raises
------
KeyError
If a param with the given name does not exist.
'''
name = self._fmt(str(key))
for i, p in enumerate(self._params):
if key == i or name == p.name:
return p
raise KeyError(key)
|
[
"Get",
"a",
"shared",
"variable",
"for",
"a",
"parameter",
"by",
"name",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L370-L394
|
[
"def",
"find",
"(",
"self",
",",
"key",
")",
":",
"name",
"=",
"self",
".",
"_fmt",
"(",
"str",
"(",
"key",
")",
")",
"for",
"i",
",",
"p",
"in",
"enumerate",
"(",
"self",
".",
"_params",
")",
":",
"if",
"key",
"==",
"i",
"or",
"name",
"==",
"p",
".",
"name",
":",
"return",
"p",
"raise",
"KeyError",
"(",
"key",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.add_weights
|
Helper method to create a new weight matrix.
Parameters
----------
name : str
Name of the parameter to add.
nin : int
Size of "input" for this weight matrix.
nout : int
Size of "output" for this weight matrix.
mean : float, optional
Mean value for randomly-initialized weights. Defaults to 0.
std : float, optional
Standard deviation of initial matrix values. Defaults to
:math:`1 / sqrt(n_i + n_o)`.
sparsity : float, optional
Fraction of weights to be set to zero. Defaults to 0.
diagonal : float, optional
Initialize weights to a matrix of zeros with this value along the
diagonal. Defaults to None, which initializes all weights randomly.
|
theanets/layers/base.py
|
def add_weights(self, name, nin, nout, mean=0, std=0, sparsity=0, diagonal=0):
'''Helper method to create a new weight matrix.
Parameters
----------
name : str
Name of the parameter to add.
nin : int
Size of "input" for this weight matrix.
nout : int
Size of "output" for this weight matrix.
mean : float, optional
Mean value for randomly-initialized weights. Defaults to 0.
std : float, optional
Standard deviation of initial matrix values. Defaults to
:math:`1 / sqrt(n_i + n_o)`.
sparsity : float, optional
Fraction of weights to be set to zero. Defaults to 0.
diagonal : float, optional
Initialize weights to a matrix of zeros with this value along the
diagonal. Defaults to None, which initializes all weights randomly.
'''
glorot = 1 / np.sqrt(nin + nout)
m = self.kwargs.get(
'mean_{}'.format(name), self.kwargs.get('mean', mean))
s = self.kwargs.get(
'std_{}'.format(name), self.kwargs.get('std', std or glorot))
p = self.kwargs.get(
'sparsity_{}'.format(name), self.kwargs.get('sparsity', sparsity))
d = self.kwargs.get(
'diagonal_{}'.format(name), self.kwargs.get('diagonal', diagonal))
self._params.append(theano.shared(
util.random_matrix(nin, nout, mean=m, std=s, sparsity=p,
diagonal=d, rng=self.rng),
name=self._fmt(name)))
|
def add_weights(self, name, nin, nout, mean=0, std=0, sparsity=0, diagonal=0):
'''Helper method to create a new weight matrix.
Parameters
----------
name : str
Name of the parameter to add.
nin : int
Size of "input" for this weight matrix.
nout : int
Size of "output" for this weight matrix.
mean : float, optional
Mean value for randomly-initialized weights. Defaults to 0.
std : float, optional
Standard deviation of initial matrix values. Defaults to
:math:`1 / sqrt(n_i + n_o)`.
sparsity : float, optional
Fraction of weights to be set to zero. Defaults to 0.
diagonal : float, optional
Initialize weights to a matrix of zeros with this value along the
diagonal. Defaults to None, which initializes all weights randomly.
'''
glorot = 1 / np.sqrt(nin + nout)
m = self.kwargs.get(
'mean_{}'.format(name), self.kwargs.get('mean', mean))
s = self.kwargs.get(
'std_{}'.format(name), self.kwargs.get('std', std or glorot))
p = self.kwargs.get(
'sparsity_{}'.format(name), self.kwargs.get('sparsity', sparsity))
d = self.kwargs.get(
'diagonal_{}'.format(name), self.kwargs.get('diagonal', diagonal))
self._params.append(theano.shared(
util.random_matrix(nin, nout, mean=m, std=s, sparsity=p,
diagonal=d, rng=self.rng),
name=self._fmt(name)))
|
[
"Helper",
"method",
"to",
"create",
"a",
"new",
"weight",
"matrix",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L396-L430
|
[
"def",
"add_weights",
"(",
"self",
",",
"name",
",",
"nin",
",",
"nout",
",",
"mean",
"=",
"0",
",",
"std",
"=",
"0",
",",
"sparsity",
"=",
"0",
",",
"diagonal",
"=",
"0",
")",
":",
"glorot",
"=",
"1",
"/",
"np",
".",
"sqrt",
"(",
"nin",
"+",
"nout",
")",
"m",
"=",
"self",
".",
"kwargs",
".",
"get",
"(",
"'mean_{}'",
".",
"format",
"(",
"name",
")",
",",
"self",
".",
"kwargs",
".",
"get",
"(",
"'mean'",
",",
"mean",
")",
")",
"s",
"=",
"self",
".",
"kwargs",
".",
"get",
"(",
"'std_{}'",
".",
"format",
"(",
"name",
")",
",",
"self",
".",
"kwargs",
".",
"get",
"(",
"'std'",
",",
"std",
"or",
"glorot",
")",
")",
"p",
"=",
"self",
".",
"kwargs",
".",
"get",
"(",
"'sparsity_{}'",
".",
"format",
"(",
"name",
")",
",",
"self",
".",
"kwargs",
".",
"get",
"(",
"'sparsity'",
",",
"sparsity",
")",
")",
"d",
"=",
"self",
".",
"kwargs",
".",
"get",
"(",
"'diagonal_{}'",
".",
"format",
"(",
"name",
")",
",",
"self",
".",
"kwargs",
".",
"get",
"(",
"'diagonal'",
",",
"diagonal",
")",
")",
"self",
".",
"_params",
".",
"append",
"(",
"theano",
".",
"shared",
"(",
"util",
".",
"random_matrix",
"(",
"nin",
",",
"nout",
",",
"mean",
"=",
"m",
",",
"std",
"=",
"s",
",",
"sparsity",
"=",
"p",
",",
"diagonal",
"=",
"d",
",",
"rng",
"=",
"self",
".",
"rng",
")",
",",
"name",
"=",
"self",
".",
"_fmt",
"(",
"name",
")",
")",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.add_bias
|
Helper method to create a new bias vector.
Parameters
----------
name : str
Name of the parameter to add.
size : int
Size of the bias vector.
mean : float, optional
Mean value for randomly-initialized biases. Defaults to 0.
std : float, optional
Standard deviation for randomly-initialized biases. Defaults to 1.
|
theanets/layers/base.py
|
def add_bias(self, name, size, mean=0, std=1):
'''Helper method to create a new bias vector.
Parameters
----------
name : str
Name of the parameter to add.
size : int
Size of the bias vector.
mean : float, optional
Mean value for randomly-initialized biases. Defaults to 0.
std : float, optional
Standard deviation for randomly-initialized biases. Defaults to 1.
'''
mean = self.kwargs.get('mean_{}'.format(name), mean)
std = self.kwargs.get('std_{}'.format(name), std)
self._params.append(theano.shared(
util.random_vector(size, mean, std, rng=self.rng),
name=self._fmt(name)))
|
def add_bias(self, name, size, mean=0, std=1):
'''Helper method to create a new bias vector.
Parameters
----------
name : str
Name of the parameter to add.
size : int
Size of the bias vector.
mean : float, optional
Mean value for randomly-initialized biases. Defaults to 0.
std : float, optional
Standard deviation for randomly-initialized biases. Defaults to 1.
'''
mean = self.kwargs.get('mean_{}'.format(name), mean)
std = self.kwargs.get('std_{}'.format(name), std)
self._params.append(theano.shared(
util.random_vector(size, mean, std, rng=self.rng),
name=self._fmt(name)))
|
[
"Helper",
"method",
"to",
"create",
"a",
"new",
"bias",
"vector",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L432-L450
|
[
"def",
"add_bias",
"(",
"self",
",",
"name",
",",
"size",
",",
"mean",
"=",
"0",
",",
"std",
"=",
"1",
")",
":",
"mean",
"=",
"self",
".",
"kwargs",
".",
"get",
"(",
"'mean_{}'",
".",
"format",
"(",
"name",
")",
",",
"mean",
")",
"std",
"=",
"self",
".",
"kwargs",
".",
"get",
"(",
"'std_{}'",
".",
"format",
"(",
"name",
")",
",",
"std",
")",
"self",
".",
"_params",
".",
"append",
"(",
"theano",
".",
"shared",
"(",
"util",
".",
"random_vector",
"(",
"size",
",",
"mean",
",",
"std",
",",
"rng",
"=",
"self",
".",
"rng",
")",
",",
"name",
"=",
"self",
".",
"_fmt",
"(",
"name",
")",
")",
")"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
Layer.to_spec
|
Create a specification dictionary for this layer.
Returns
-------
spec : dict
A dictionary specifying the configuration of this layer.
|
theanets/layers/base.py
|
def to_spec(self):
'''Create a specification dictionary for this layer.
Returns
-------
spec : dict
A dictionary specifying the configuration of this layer.
'''
spec = dict(**self.kwargs)
spec.update(
form=self.__class__.__name__.lower(),
name=self.name,
activation=self.kwargs.get('activation', 'relu'),
)
return spec
|
def to_spec(self):
'''Create a specification dictionary for this layer.
Returns
-------
spec : dict
A dictionary specifying the configuration of this layer.
'''
spec = dict(**self.kwargs)
spec.update(
form=self.__class__.__name__.lower(),
name=self.name,
activation=self.kwargs.get('activation', 'relu'),
)
return spec
|
[
"Create",
"a",
"specification",
"dictionary",
"for",
"this",
"layer",
"."
] |
lmjohns3/theanets
|
python
|
https://github.com/lmjohns3/theanets/blob/79db9f878ef2071f2f576a1cf5d43a752a55894a/theanets/layers/base.py#L452-L466
|
[
"def",
"to_spec",
"(",
"self",
")",
":",
"spec",
"=",
"dict",
"(",
"*",
"*",
"self",
".",
"kwargs",
")",
"spec",
".",
"update",
"(",
"form",
"=",
"self",
".",
"__class__",
".",
"__name__",
".",
"lower",
"(",
")",
",",
"name",
"=",
"self",
".",
"name",
",",
"activation",
"=",
"self",
".",
"kwargs",
".",
"get",
"(",
"'activation'",
",",
"'relu'",
")",
",",
")",
"return",
"spec"
] |
79db9f878ef2071f2f576a1cf5d43a752a55894a
|
test
|
LogGabor.argmax
|
Returns the ArgMax from C by returning the
(x_pos, y_pos, theta, scale) tuple
>>> C = np.random.randn(10, 10, 5, 4)
>>> x_pos, y_pos, theta, scale = mp.argmax(C)
>>> C[x_pos][y_pos][theta][scale] = C.max()
|
LogGabor/LogGabor.py
|
def argmax(self, C):
"""
Returns the ArgMax from C by returning the
(x_pos, y_pos, theta, scale) tuple
>>> C = np.random.randn(10, 10, 5, 4)
>>> x_pos, y_pos, theta, scale = mp.argmax(C)
>>> C[x_pos][y_pos][theta][scale] = C.max()
"""
ind = np.absolute(C).argmax()
return np.unravel_index(ind, C.shape)
|
def argmax(self, C):
"""
Returns the ArgMax from C by returning the
(x_pos, y_pos, theta, scale) tuple
>>> C = np.random.randn(10, 10, 5, 4)
>>> x_pos, y_pos, theta, scale = mp.argmax(C)
>>> C[x_pos][y_pos][theta][scale] = C.max()
"""
ind = np.absolute(C).argmax()
return np.unravel_index(ind, C.shape)
|
[
"Returns",
"the",
"ArgMax",
"from",
"C",
"by",
"returning",
"the",
"(",
"x_pos",
"y_pos",
"theta",
"scale",
")",
"tuple"
] |
bicv/LogGabor
|
python
|
https://github.com/bicv/LogGabor/blob/dea9560d8752cc9aa040ac3fd895cf9bb72b61f4/LogGabor/LogGabor.py#L48-L59
|
[
"def",
"argmax",
"(",
"self",
",",
"C",
")",
":",
"ind",
"=",
"np",
".",
"absolute",
"(",
"C",
")",
".",
"argmax",
"(",
")",
"return",
"np",
".",
"unravel_index",
"(",
"ind",
",",
"C",
".",
"shape",
")"
] |
dea9560d8752cc9aa040ac3fd895cf9bb72b61f4
|
test
|
LogGabor.golden_pyramid
|
The Golden Laplacian Pyramid.
To represent the edges of the image at different levels, we may use a simple recursive approach constructing progressively a set of images of decreasing sizes, from a base to the summit of a pyramid. Using simple down-scaling and up-scaling operators we may approximate well a Laplacian operator. This is represented here by stacking images on a Golden Rectangle, that is where the aspect ratio is the golden section $\phi \eqdef \frac{1+\sqrt{5}}{2}$. We present here the base image on the left and the successive levels of the pyramid in a clockwise fashion (for clarity, we stopped at level $8$). Note that here we also use $\phi^2$ (that is $\phi+1$) as the down-scaling factor so that the resolution of the pyramid images correspond across scales. Note at last that coefficient are very kurtotic: most are near zero, the distribution of coefficients has long tails.
|
LogGabor/LogGabor.py
|
def golden_pyramid(self, z, mask=False, spiral=True, fig_width=13):
"""
The Golden Laplacian Pyramid.
To represent the edges of the image at different levels, we may use a simple recursive approach constructing progressively a set of images of decreasing sizes, from a base to the summit of a pyramid. Using simple down-scaling and up-scaling operators we may approximate well a Laplacian operator. This is represented here by stacking images on a Golden Rectangle, that is where the aspect ratio is the golden section $\phi \eqdef \frac{1+\sqrt{5}}{2}$. We present here the base image on the left and the successive levels of the pyramid in a clockwise fashion (for clarity, we stopped at level $8$). Note that here we also use $\phi^2$ (that is $\phi+1$) as the down-scaling factor so that the resolution of the pyramid images correspond across scales. Note at last that coefficient are very kurtotic: most are near zero, the distribution of coefficients has long tails.
"""
import matplotlib.pyplot as plt
opts= {'vmin':0., 'vmax':1., 'interpolation':'nearest', 'origin':'upper'}
N_X, N_Y = z.shape[0], z.shape[1]
if spiral:
phi = (np.sqrt(5)+1.)/2. # golden ratio
fig = plt.figure(figsize=(fig_width, N_X/N_Y*fig_width/phi), frameon=True)
xmin, ymin, size = 0, 0, 1.
else:
fig = plt.figure(figsize=(fig_width, N_X/N_Y*fig_width*self.n_levels), frameon=True)
axs = []
for i_sf_0 in range(len(self.sf_0)):
if spiral:
# https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.add_axes says:
# Add an axes at position rect [left, bottom, width, height] where all quantities are in fractions of figure width and height.
ax = fig.add_axes((xmin/phi, ymin, size/phi, size), facecolor='w')
else:
ax = fig.add_axes((0, i_sf_0/self.n_levels, 1, 1/self.n_levels), facecolor='w')
ax.axis(c='r', lw=1)
plt.setp(ax, xticks=[], yticks=[])
im_RGB = np.zeros((self.pe.N_X, self.pe.N_Y, 3))
for i_theta, theta_ in enumerate(self.theta):
im_abs = np.absolute(z[:, :, i_theta, i_sf_0])
RGB = np.array([.5*np.sin(2*theta_ + 2*i*np.pi/3)+.5 for i in range(3)])
im_RGB += im_abs[:,:, np.newaxis] * RGB[np.newaxis, np.newaxis, :]
im_RGB /= im_RGB.max()
ax.imshow(1-im_RGB, **opts)
#ax.grid(b=False, which="both")
if mask:
linewidth_mask = 1 #
from matplotlib.patches import Ellipse
circ = Ellipse((.5*self.pe.N_Y, .5*self.pe.N_X),
self.pe.N_Y-linewidth_mask, self.pe.N_X-linewidth_mask,
fill=False, facecolor='none', edgecolor = 'black', alpha = 0.5, ls='dashed', lw=linewidth_mask)
ax.add_patch(circ)
if spiral:
i_orientation = np.mod(i_sf_0, 4)
if i_orientation==0:
xmin += size
ymin += size/phi**2
elif i_orientation==1:
xmin += size/phi**2
ymin += -size/phi
elif i_orientation==2:
xmin += -size/phi
elif i_orientation==3:
ymin += size
size /= phi
axs.append(ax)
return fig, axs
|
def golden_pyramid(self, z, mask=False, spiral=True, fig_width=13):
"""
The Golden Laplacian Pyramid.
To represent the edges of the image at different levels, we may use a simple recursive approach constructing progressively a set of images of decreasing sizes, from a base to the summit of a pyramid. Using simple down-scaling and up-scaling operators we may approximate well a Laplacian operator. This is represented here by stacking images on a Golden Rectangle, that is where the aspect ratio is the golden section $\phi \eqdef \frac{1+\sqrt{5}}{2}$. We present here the base image on the left and the successive levels of the pyramid in a clockwise fashion (for clarity, we stopped at level $8$). Note that here we also use $\phi^2$ (that is $\phi+1$) as the down-scaling factor so that the resolution of the pyramid images correspond across scales. Note at last that coefficient are very kurtotic: most are near zero, the distribution of coefficients has long tails.
"""
import matplotlib.pyplot as plt
opts= {'vmin':0., 'vmax':1., 'interpolation':'nearest', 'origin':'upper'}
N_X, N_Y = z.shape[0], z.shape[1]
if spiral:
phi = (np.sqrt(5)+1.)/2. # golden ratio
fig = plt.figure(figsize=(fig_width, N_X/N_Y*fig_width/phi), frameon=True)
xmin, ymin, size = 0, 0, 1.
else:
fig = plt.figure(figsize=(fig_width, N_X/N_Y*fig_width*self.n_levels), frameon=True)
axs = []
for i_sf_0 in range(len(self.sf_0)):
if spiral:
# https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.add_axes says:
# Add an axes at position rect [left, bottom, width, height] where all quantities are in fractions of figure width and height.
ax = fig.add_axes((xmin/phi, ymin, size/phi, size), facecolor='w')
else:
ax = fig.add_axes((0, i_sf_0/self.n_levels, 1, 1/self.n_levels), facecolor='w')
ax.axis(c='r', lw=1)
plt.setp(ax, xticks=[], yticks=[])
im_RGB = np.zeros((self.pe.N_X, self.pe.N_Y, 3))
for i_theta, theta_ in enumerate(self.theta):
im_abs = np.absolute(z[:, :, i_theta, i_sf_0])
RGB = np.array([.5*np.sin(2*theta_ + 2*i*np.pi/3)+.5 for i in range(3)])
im_RGB += im_abs[:,:, np.newaxis] * RGB[np.newaxis, np.newaxis, :]
im_RGB /= im_RGB.max()
ax.imshow(1-im_RGB, **opts)
#ax.grid(b=False, which="both")
if mask:
linewidth_mask = 1 #
from matplotlib.patches import Ellipse
circ = Ellipse((.5*self.pe.N_Y, .5*self.pe.N_X),
self.pe.N_Y-linewidth_mask, self.pe.N_X-linewidth_mask,
fill=False, facecolor='none', edgecolor = 'black', alpha = 0.5, ls='dashed', lw=linewidth_mask)
ax.add_patch(circ)
if spiral:
i_orientation = np.mod(i_sf_0, 4)
if i_orientation==0:
xmin += size
ymin += size/phi**2
elif i_orientation==1:
xmin += size/phi**2
ymin += -size/phi
elif i_orientation==2:
xmin += -size/phi
elif i_orientation==3:
ymin += size
size /= phi
axs.append(ax)
return fig, axs
|
[
"The",
"Golden",
"Laplacian",
"Pyramid",
".",
"To",
"represent",
"the",
"edges",
"of",
"the",
"image",
"at",
"different",
"levels",
"we",
"may",
"use",
"a",
"simple",
"recursive",
"approach",
"constructing",
"progressively",
"a",
"set",
"of",
"images",
"of",
"decreasing",
"sizes",
"from",
"a",
"base",
"to",
"the",
"summit",
"of",
"a",
"pyramid",
".",
"Using",
"simple",
"down",
"-",
"scaling",
"and",
"up",
"-",
"scaling",
"operators",
"we",
"may",
"approximate",
"well",
"a",
"Laplacian",
"operator",
".",
"This",
"is",
"represented",
"here",
"by",
"stacking",
"images",
"on",
"a",
"Golden",
"Rectangle",
"that",
"is",
"where",
"the",
"aspect",
"ratio",
"is",
"the",
"golden",
"section",
"$",
"\\",
"phi",
"\\",
"eqdef",
"\\",
"frac",
"{",
"1",
"+",
"\\",
"sqrt",
"{",
"5",
"}}",
"{",
"2",
"}",
"$",
".",
"We",
"present",
"here",
"the",
"base",
"image",
"on",
"the",
"left",
"and",
"the",
"successive",
"levels",
"of",
"the",
"pyramid",
"in",
"a",
"clockwise",
"fashion",
"(",
"for",
"clarity",
"we",
"stopped",
"at",
"level",
"$8$",
")",
".",
"Note",
"that",
"here",
"we",
"also",
"use",
"$",
"\\",
"phi^2$",
"(",
"that",
"is",
"$",
"\\",
"phi",
"+",
"1$",
")",
"as",
"the",
"down",
"-",
"scaling",
"factor",
"so",
"that",
"the",
"resolution",
"of",
"the",
"pyramid",
"images",
"correspond",
"across",
"scales",
".",
"Note",
"at",
"last",
"that",
"coefficient",
"are",
"very",
"kurtotic",
":",
"most",
"are",
"near",
"zero",
"the",
"distribution",
"of",
"coefficients",
"has",
"long",
"tails",
"."
] |
bicv/LogGabor
|
python
|
https://github.com/bicv/LogGabor/blob/dea9560d8752cc9aa040ac3fd895cf9bb72b61f4/LogGabor/LogGabor.py#L61-L120
|
[
"def",
"golden_pyramid",
"(",
"self",
",",
"z",
",",
"mask",
"=",
"False",
",",
"spiral",
"=",
"True",
",",
"fig_width",
"=",
"13",
")",
":",
"import",
"matplotlib",
".",
"pyplot",
"as",
"plt",
"opts",
"=",
"{",
"'vmin'",
":",
"0.",
",",
"'vmax'",
":",
"1.",
",",
"'interpolation'",
":",
"'nearest'",
",",
"'origin'",
":",
"'upper'",
"}",
"N_X",
",",
"N_Y",
"=",
"z",
".",
"shape",
"[",
"0",
"]",
",",
"z",
".",
"shape",
"[",
"1",
"]",
"if",
"spiral",
":",
"phi",
"=",
"(",
"np",
".",
"sqrt",
"(",
"5",
")",
"+",
"1.",
")",
"/",
"2.",
"# golden ratio",
"fig",
"=",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"fig_width",
",",
"N_X",
"/",
"N_Y",
"*",
"fig_width",
"/",
"phi",
")",
",",
"frameon",
"=",
"True",
")",
"xmin",
",",
"ymin",
",",
"size",
"=",
"0",
",",
"0",
",",
"1.",
"else",
":",
"fig",
"=",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"fig_width",
",",
"N_X",
"/",
"N_Y",
"*",
"fig_width",
"*",
"self",
".",
"n_levels",
")",
",",
"frameon",
"=",
"True",
")",
"axs",
"=",
"[",
"]",
"for",
"i_sf_0",
"in",
"range",
"(",
"len",
"(",
"self",
".",
"sf_0",
")",
")",
":",
"if",
"spiral",
":",
"# https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure.add_axes says:",
"# Add an axes at position rect [left, bottom, width, height] where all quantities are in fractions of figure width and height.",
"ax",
"=",
"fig",
".",
"add_axes",
"(",
"(",
"xmin",
"/",
"phi",
",",
"ymin",
",",
"size",
"/",
"phi",
",",
"size",
")",
",",
"facecolor",
"=",
"'w'",
")",
"else",
":",
"ax",
"=",
"fig",
".",
"add_axes",
"(",
"(",
"0",
",",
"i_sf_0",
"/",
"self",
".",
"n_levels",
",",
"1",
",",
"1",
"/",
"self",
".",
"n_levels",
")",
",",
"facecolor",
"=",
"'w'",
")",
"ax",
".",
"axis",
"(",
"c",
"=",
"'r'",
",",
"lw",
"=",
"1",
")",
"plt",
".",
"setp",
"(",
"ax",
",",
"xticks",
"=",
"[",
"]",
",",
"yticks",
"=",
"[",
"]",
")",
"im_RGB",
"=",
"np",
".",
"zeros",
"(",
"(",
"self",
".",
"pe",
".",
"N_X",
",",
"self",
".",
"pe",
".",
"N_Y",
",",
"3",
")",
")",
"for",
"i_theta",
",",
"theta_",
"in",
"enumerate",
"(",
"self",
".",
"theta",
")",
":",
"im_abs",
"=",
"np",
".",
"absolute",
"(",
"z",
"[",
":",
",",
":",
",",
"i_theta",
",",
"i_sf_0",
"]",
")",
"RGB",
"=",
"np",
".",
"array",
"(",
"[",
".5",
"*",
"np",
".",
"sin",
"(",
"2",
"*",
"theta_",
"+",
"2",
"*",
"i",
"*",
"np",
".",
"pi",
"/",
"3",
")",
"+",
".5",
"for",
"i",
"in",
"range",
"(",
"3",
")",
"]",
")",
"im_RGB",
"+=",
"im_abs",
"[",
":",
",",
":",
",",
"np",
".",
"newaxis",
"]",
"*",
"RGB",
"[",
"np",
".",
"newaxis",
",",
"np",
".",
"newaxis",
",",
":",
"]",
"im_RGB",
"/=",
"im_RGB",
".",
"max",
"(",
")",
"ax",
".",
"imshow",
"(",
"1",
"-",
"im_RGB",
",",
"*",
"*",
"opts",
")",
"#ax.grid(b=False, which=\"both\")",
"if",
"mask",
":",
"linewidth_mask",
"=",
"1",
"#",
"from",
"matplotlib",
".",
"patches",
"import",
"Ellipse",
"circ",
"=",
"Ellipse",
"(",
"(",
".5",
"*",
"self",
".",
"pe",
".",
"N_Y",
",",
".5",
"*",
"self",
".",
"pe",
".",
"N_X",
")",
",",
"self",
".",
"pe",
".",
"N_Y",
"-",
"linewidth_mask",
",",
"self",
".",
"pe",
".",
"N_X",
"-",
"linewidth_mask",
",",
"fill",
"=",
"False",
",",
"facecolor",
"=",
"'none'",
",",
"edgecolor",
"=",
"'black'",
",",
"alpha",
"=",
"0.5",
",",
"ls",
"=",
"'dashed'",
",",
"lw",
"=",
"linewidth_mask",
")",
"ax",
".",
"add_patch",
"(",
"circ",
")",
"if",
"spiral",
":",
"i_orientation",
"=",
"np",
".",
"mod",
"(",
"i_sf_0",
",",
"4",
")",
"if",
"i_orientation",
"==",
"0",
":",
"xmin",
"+=",
"size",
"ymin",
"+=",
"size",
"/",
"phi",
"**",
"2",
"elif",
"i_orientation",
"==",
"1",
":",
"xmin",
"+=",
"size",
"/",
"phi",
"**",
"2",
"ymin",
"+=",
"-",
"size",
"/",
"phi",
"elif",
"i_orientation",
"==",
"2",
":",
"xmin",
"+=",
"-",
"size",
"/",
"phi",
"elif",
"i_orientation",
"==",
"3",
":",
"ymin",
"+=",
"size",
"size",
"/=",
"phi",
"axs",
".",
"append",
"(",
"ax",
")",
"return",
"fig",
",",
"axs"
] |
dea9560d8752cc9aa040ac3fd895cf9bb72b61f4
|
test
|
LogGabor.band
|
Returns the radial frequency envelope:
Selects a preferred spatial frequency ``sf_0`` and a bandwidth ``B_sf``.
|
LogGabor/LogGabor.py
|
def band(self, sf_0, B_sf, force=False):
"""
Returns the radial frequency envelope:
Selects a preferred spatial frequency ``sf_0`` and a bandwidth ``B_sf``.
"""
if sf_0 == 0.:
return 1.
elif self.pe.use_cache and not force:
tag = str(sf_0) + '_' + str(B_sf)
try:
return self.cache['band'][tag]
except:
if self.pe.verbose>50: print('doing band cache for tag ', tag)
self.cache['band'][tag] = self.band(sf_0, B_sf, force=True)
return self.cache['band'][tag]
else:
# see http://en.wikipedia.org/wiki/Log-normal_distribution
env = 1./self.f*np.exp(-.5*(np.log(self.f/sf_0)**2)/B_sf**2)
return env
|
def band(self, sf_0, B_sf, force=False):
"""
Returns the radial frequency envelope:
Selects a preferred spatial frequency ``sf_0`` and a bandwidth ``B_sf``.
"""
if sf_0 == 0.:
return 1.
elif self.pe.use_cache and not force:
tag = str(sf_0) + '_' + str(B_sf)
try:
return self.cache['band'][tag]
except:
if self.pe.verbose>50: print('doing band cache for tag ', tag)
self.cache['band'][tag] = self.band(sf_0, B_sf, force=True)
return self.cache['band'][tag]
else:
# see http://en.wikipedia.org/wiki/Log-normal_distribution
env = 1./self.f*np.exp(-.5*(np.log(self.f/sf_0)**2)/B_sf**2)
return env
|
[
"Returns",
"the",
"radial",
"frequency",
"envelope",
":"
] |
bicv/LogGabor
|
python
|
https://github.com/bicv/LogGabor/blob/dea9560d8752cc9aa040ac3fd895cf9bb72b61f4/LogGabor/LogGabor.py#L123-L143
|
[
"def",
"band",
"(",
"self",
",",
"sf_0",
",",
"B_sf",
",",
"force",
"=",
"False",
")",
":",
"if",
"sf_0",
"==",
"0.",
":",
"return",
"1.",
"elif",
"self",
".",
"pe",
".",
"use_cache",
"and",
"not",
"force",
":",
"tag",
"=",
"str",
"(",
"sf_0",
")",
"+",
"'_'",
"+",
"str",
"(",
"B_sf",
")",
"try",
":",
"return",
"self",
".",
"cache",
"[",
"'band'",
"]",
"[",
"tag",
"]",
"except",
":",
"if",
"self",
".",
"pe",
".",
"verbose",
">",
"50",
":",
"print",
"(",
"'doing band cache for tag '",
",",
"tag",
")",
"self",
".",
"cache",
"[",
"'band'",
"]",
"[",
"tag",
"]",
"=",
"self",
".",
"band",
"(",
"sf_0",
",",
"B_sf",
",",
"force",
"=",
"True",
")",
"return",
"self",
".",
"cache",
"[",
"'band'",
"]",
"[",
"tag",
"]",
"else",
":",
"# see http://en.wikipedia.org/wiki/Log-normal_distribution",
"env",
"=",
"1.",
"/",
"self",
".",
"f",
"*",
"np",
".",
"exp",
"(",
"-",
".5",
"*",
"(",
"np",
".",
"log",
"(",
"self",
".",
"f",
"/",
"sf_0",
")",
"**",
"2",
")",
"/",
"B_sf",
"**",
"2",
")",
"return",
"env"
] |
dea9560d8752cc9aa040ac3fd895cf9bb72b61f4
|
test
|
LogGabor.orientation
|
Returns the orientation envelope:
We use a von-Mises distribution on the orientation:
- mean orientation is ``theta`` (in radians),
- ``B_theta`` is the bandwidth (in radians). It is equal to the standard deviation of the Gaussian
envelope which approximate the distribution for low bandwidths. The Half-Width at Half Height is
given by approximately np.sqrt(2*B_theta_**2*np.log(2)).
# selecting one direction, theta is the mean direction, B_theta the spread
# we use a von-mises distribution on the orientation
# see http://en.wikipedia.org/wiki/Von_Mises_distribution
|
LogGabor/LogGabor.py
|
def orientation(self, theta, B_theta, force=False):
"""
Returns the orientation envelope:
We use a von-Mises distribution on the orientation:
- mean orientation is ``theta`` (in radians),
- ``B_theta`` is the bandwidth (in radians). It is equal to the standard deviation of the Gaussian
envelope which approximate the distribution for low bandwidths. The Half-Width at Half Height is
given by approximately np.sqrt(2*B_theta_**2*np.log(2)).
# selecting one direction, theta is the mean direction, B_theta the spread
# we use a von-mises distribution on the orientation
# see http://en.wikipedia.org/wiki/Von_Mises_distribution
"""
if B_theta is np.inf: # for large bandwidth, returns a strictly flat envelope
enveloppe_orientation = 1.
elif self.pe.use_cache and not force:
tag = str(theta) + '_' + str(B_theta)
try:
return self.cache['orientation'][tag]
except:
if self.pe.verbose>50: print('doing orientation cache for tag ', tag)
self.cache['orientation'][tag] = self.orientation(theta, B_theta, force=True)
return self.cache['orientation'][tag]
else: # non pathological case
# As shown in:
# http://www.csse.uwa.edu.au/~pk/research/matlabfns/PhaseCongruency/Docs/convexpl.html
# this single bump allows (without the symmetric) to code both symmetric
# and anti-symmetric parts in one shot.
cos_angle = np.cos(self.f_theta-theta)
enveloppe_orientation = np.exp(cos_angle/B_theta**2)
return enveloppe_orientation
|
def orientation(self, theta, B_theta, force=False):
"""
Returns the orientation envelope:
We use a von-Mises distribution on the orientation:
- mean orientation is ``theta`` (in radians),
- ``B_theta`` is the bandwidth (in radians). It is equal to the standard deviation of the Gaussian
envelope which approximate the distribution for low bandwidths. The Half-Width at Half Height is
given by approximately np.sqrt(2*B_theta_**2*np.log(2)).
# selecting one direction, theta is the mean direction, B_theta the spread
# we use a von-mises distribution on the orientation
# see http://en.wikipedia.org/wiki/Von_Mises_distribution
"""
if B_theta is np.inf: # for large bandwidth, returns a strictly flat envelope
enveloppe_orientation = 1.
elif self.pe.use_cache and not force:
tag = str(theta) + '_' + str(B_theta)
try:
return self.cache['orientation'][tag]
except:
if self.pe.verbose>50: print('doing orientation cache for tag ', tag)
self.cache['orientation'][tag] = self.orientation(theta, B_theta, force=True)
return self.cache['orientation'][tag]
else: # non pathological case
# As shown in:
# http://www.csse.uwa.edu.au/~pk/research/matlabfns/PhaseCongruency/Docs/convexpl.html
# this single bump allows (without the symmetric) to code both symmetric
# and anti-symmetric parts in one shot.
cos_angle = np.cos(self.f_theta-theta)
enveloppe_orientation = np.exp(cos_angle/B_theta**2)
return enveloppe_orientation
|
[
"Returns",
"the",
"orientation",
"envelope",
":",
"We",
"use",
"a",
"von",
"-",
"Mises",
"distribution",
"on",
"the",
"orientation",
":",
"-",
"mean",
"orientation",
"is",
"theta",
"(",
"in",
"radians",
")",
"-",
"B_theta",
"is",
"the",
"bandwidth",
"(",
"in",
"radians",
")",
".",
"It",
"is",
"equal",
"to",
"the",
"standard",
"deviation",
"of",
"the",
"Gaussian",
"envelope",
"which",
"approximate",
"the",
"distribution",
"for",
"low",
"bandwidths",
".",
"The",
"Half",
"-",
"Width",
"at",
"Half",
"Height",
"is",
"given",
"by",
"approximately",
"np",
".",
"sqrt",
"(",
"2",
"*",
"B_theta_",
"**",
"2",
"*",
"np",
".",
"log",
"(",
"2",
"))",
"."
] |
bicv/LogGabor
|
python
|
https://github.com/bicv/LogGabor/blob/dea9560d8752cc9aa040ac3fd895cf9bb72b61f4/LogGabor/LogGabor.py#L145-L175
|
[
"def",
"orientation",
"(",
"self",
",",
"theta",
",",
"B_theta",
",",
"force",
"=",
"False",
")",
":",
"if",
"B_theta",
"is",
"np",
".",
"inf",
":",
"# for large bandwidth, returns a strictly flat envelope",
"enveloppe_orientation",
"=",
"1.",
"elif",
"self",
".",
"pe",
".",
"use_cache",
"and",
"not",
"force",
":",
"tag",
"=",
"str",
"(",
"theta",
")",
"+",
"'_'",
"+",
"str",
"(",
"B_theta",
")",
"try",
":",
"return",
"self",
".",
"cache",
"[",
"'orientation'",
"]",
"[",
"tag",
"]",
"except",
":",
"if",
"self",
".",
"pe",
".",
"verbose",
">",
"50",
":",
"print",
"(",
"'doing orientation cache for tag '",
",",
"tag",
")",
"self",
".",
"cache",
"[",
"'orientation'",
"]",
"[",
"tag",
"]",
"=",
"self",
".",
"orientation",
"(",
"theta",
",",
"B_theta",
",",
"force",
"=",
"True",
")",
"return",
"self",
".",
"cache",
"[",
"'orientation'",
"]",
"[",
"tag",
"]",
"else",
":",
"# non pathological case",
"# As shown in:",
"# http://www.csse.uwa.edu.au/~pk/research/matlabfns/PhaseCongruency/Docs/convexpl.html",
"# this single bump allows (without the symmetric) to code both symmetric",
"# and anti-symmetric parts in one shot.",
"cos_angle",
"=",
"np",
".",
"cos",
"(",
"self",
".",
"f_theta",
"-",
"theta",
")",
"enveloppe_orientation",
"=",
"np",
".",
"exp",
"(",
"cos_angle",
"/",
"B_theta",
"**",
"2",
")",
"return",
"enveloppe_orientation"
] |
dea9560d8752cc9aa040ac3fd895cf9bb72b61f4
|
test
|
LogGabor.loggabor
|
Returns the envelope of a LogGabor
Note that the convention for coordinates follows that of matrices:
the origin is at the top left of the image, and coordinates are first
the rows (vertical axis, going down) then the columns (horizontal axis,
going right).
|
LogGabor/LogGabor.py
|
def loggabor(self, x_pos, y_pos, sf_0, B_sf, theta, B_theta, preprocess=True):
"""
Returns the envelope of a LogGabor
Note that the convention for coordinates follows that of matrices:
the origin is at the top left of the image, and coordinates are first
the rows (vertical axis, going down) then the columns (horizontal axis,
going right).
"""
env = np.multiply(self.band(sf_0, B_sf), self.orientation(theta, B_theta))
if not(x_pos==0.) and not(y_pos==0.): # bypass translation whenever none is needed
env = env.astype(np.complex128) * self.trans(x_pos*1., y_pos*1.)
if preprocess : env *= self.f_mask # retina processing
# normalizing energy:
env /= np.sqrt((np.abs(env)**2).mean())
# in the case a a single bump (see ``orientation``), we should compensate the fact that the distribution gets complex:
env *= np.sqrt(2.)
return env
|
def loggabor(self, x_pos, y_pos, sf_0, B_sf, theta, B_theta, preprocess=True):
"""
Returns the envelope of a LogGabor
Note that the convention for coordinates follows that of matrices:
the origin is at the top left of the image, and coordinates are first
the rows (vertical axis, going down) then the columns (horizontal axis,
going right).
"""
env = np.multiply(self.band(sf_0, B_sf), self.orientation(theta, B_theta))
if not(x_pos==0.) and not(y_pos==0.): # bypass translation whenever none is needed
env = env.astype(np.complex128) * self.trans(x_pos*1., y_pos*1.)
if preprocess : env *= self.f_mask # retina processing
# normalizing energy:
env /= np.sqrt((np.abs(env)**2).mean())
# in the case a a single bump (see ``orientation``), we should compensate the fact that the distribution gets complex:
env *= np.sqrt(2.)
return env
|
[
"Returns",
"the",
"envelope",
"of",
"a",
"LogGabor"
] |
bicv/LogGabor
|
python
|
https://github.com/bicv/LogGabor/blob/dea9560d8752cc9aa040ac3fd895cf9bb72b61f4/LogGabor/LogGabor.py#L178-L197
|
[
"def",
"loggabor",
"(",
"self",
",",
"x_pos",
",",
"y_pos",
",",
"sf_0",
",",
"B_sf",
",",
"theta",
",",
"B_theta",
",",
"preprocess",
"=",
"True",
")",
":",
"env",
"=",
"np",
".",
"multiply",
"(",
"self",
".",
"band",
"(",
"sf_0",
",",
"B_sf",
")",
",",
"self",
".",
"orientation",
"(",
"theta",
",",
"B_theta",
")",
")",
"if",
"not",
"(",
"x_pos",
"==",
"0.",
")",
"and",
"not",
"(",
"y_pos",
"==",
"0.",
")",
":",
"# bypass translation whenever none is needed",
"env",
"=",
"env",
".",
"astype",
"(",
"np",
".",
"complex128",
")",
"*",
"self",
".",
"trans",
"(",
"x_pos",
"*",
"1.",
",",
"y_pos",
"*",
"1.",
")",
"if",
"preprocess",
":",
"env",
"*=",
"self",
".",
"f_mask",
"# retina processing",
"# normalizing energy:",
"env",
"/=",
"np",
".",
"sqrt",
"(",
"(",
"np",
".",
"abs",
"(",
"env",
")",
"**",
"2",
")",
".",
"mean",
"(",
")",
")",
"# in the case a a single bump (see ``orientation``), we should compensate the fact that the distribution gets complex:",
"env",
"*=",
"np",
".",
"sqrt",
"(",
"2.",
")",
"return",
"env"
] |
dea9560d8752cc9aa040ac3fd895cf9bb72b61f4
|
test
|
LogGabor.loggabor_image
|
Returns the image of a LogGabor
Note that the convention for coordinates follows that of matrices:
the origin is at the top left of the image, and coordinates are first
the rows (vertical axis, going down) then the columns (horizontal axis,
going right).
|
LogGabor/LogGabor.py
|
def loggabor_image(self, x_pos, y_pos, theta, sf_0, phase, B_sf, B_theta):
"""
Returns the image of a LogGabor
Note that the convention for coordinates follows that of matrices:
the origin is at the top left of the image, and coordinates are first
the rows (vertical axis, going down) then the columns (horizontal axis,
going right).
"""
FT_lg = self.loggabor(x_pos, y_pos, sf_0=sf_0, B_sf=B_sf, theta=theta, B_theta=B_theta)
FT_lg = FT_lg * np.exp(1j * phase)
return self.invert(FT_lg, full=False)
|
def loggabor_image(self, x_pos, y_pos, theta, sf_0, phase, B_sf, B_theta):
"""
Returns the image of a LogGabor
Note that the convention for coordinates follows that of matrices:
the origin is at the top left of the image, and coordinates are first
the rows (vertical axis, going down) then the columns (horizontal axis,
going right).
"""
FT_lg = self.loggabor(x_pos, y_pos, sf_0=sf_0, B_sf=B_sf, theta=theta, B_theta=B_theta)
FT_lg = FT_lg * np.exp(1j * phase)
return self.invert(FT_lg, full=False)
|
[
"Returns",
"the",
"image",
"of",
"a",
"LogGabor"
] |
bicv/LogGabor
|
python
|
https://github.com/bicv/LogGabor/blob/dea9560d8752cc9aa040ac3fd895cf9bb72b61f4/LogGabor/LogGabor.py#L199-L212
|
[
"def",
"loggabor_image",
"(",
"self",
",",
"x_pos",
",",
"y_pos",
",",
"theta",
",",
"sf_0",
",",
"phase",
",",
"B_sf",
",",
"B_theta",
")",
":",
"FT_lg",
"=",
"self",
".",
"loggabor",
"(",
"x_pos",
",",
"y_pos",
",",
"sf_0",
"=",
"sf_0",
",",
"B_sf",
"=",
"B_sf",
",",
"theta",
"=",
"theta",
",",
"B_theta",
"=",
"B_theta",
")",
"FT_lg",
"=",
"FT_lg",
"*",
"np",
".",
"exp",
"(",
"1j",
"*",
"phase",
")",
"return",
"self",
".",
"invert",
"(",
"FT_lg",
",",
"full",
"=",
"False",
")"
] |
dea9560d8752cc9aa040ac3fd895cf9bb72b61f4
|
test
|
TextGrid.from_file
|
Read textgrid from stream.
:param file ifile: Stream to read from.
:param str codec: Text encoding for the input. Note that this will be
ignored for binary TextGrids.
|
pympi/Praat.py
|
def from_file(self, ifile, codec='ascii'):
"""Read textgrid from stream.
:param file ifile: Stream to read from.
:param str codec: Text encoding for the input. Note that this will be
ignored for binary TextGrids.
"""
if ifile.read(12) == b'ooBinaryFile':
def bin2str(ifile):
textlen = struct.unpack('>h', ifile.read(2))[0]
# Single byte characters
if textlen >= 0:
return ifile.read(textlen).decode('ascii')
# Multi byte characters have initial len -1 and then \xff bytes
elif textlen == -1:
textlen = struct.unpack('>h', ifile.read(2))[0]
data = ifile.read(textlen*2)
# Hack to go from number to unicode in python3 and python2
fun = unichr if 'unichr' in __builtins__ else chr
charlist = (data[i:i+2] for i in range(0, len(data), 2))
return u''.join(
fun(struct.unpack('>h', i)[0]) for i in charlist)
ifile.read(ord(ifile.read(1))) # skip oo type
self.xmin = struct.unpack('>d', ifile.read(8))[0]
self.xmax = struct.unpack('>d', ifile.read(8))[0]
ifile.read(1) # skip <exists>
self.tier_num = struct.unpack('>i', ifile.read(4))[0]
for i in range(self.tier_num):
tier_type = ifile.read(ord(ifile.read(1))).decode('ascii')
name = bin2str(ifile)
tier = Tier(0, 0, name=name, tier_type=tier_type)
self.tiers.append(tier)
tier.xmin = struct.unpack('>d', ifile.read(8))[0]
tier.xmax = struct.unpack('>d', ifile.read(8))[0]
nint = struct.unpack('>i', ifile.read(4))[0]
for i in range(nint):
x1 = struct.unpack('>d', ifile.read(8))[0]
if tier.tier_type == 'IntervalTier':
x2 = struct.unpack('>d', ifile.read(8))[0]
text = bin2str(ifile)
if tier.tier_type == 'IntervalTier':
tier.intervals.append((x1, x2, text))
elif tier.tier_type == 'TextTier':
tier.intervals.append((x1, text))
else:
raise Exception('Tiertype does not exist.')
else:
def nn(ifile, pat):
line = next(ifile).decode(codec)
return pat.search(line).group(1)
regfloat = re.compile('([\d.]+)\s*$', flags=re.UNICODE)
regint = re.compile('([\d]+)\s*$', flags=re.UNICODE)
regstr = re.compile('"(.*)"\s*$', flags=re.UNICODE)
# Skip the Headers and empty line
next(ifile), next(ifile), next(ifile)
self.xmin = float(nn(ifile, regfloat))
self.xmax = float(nn(ifile, regfloat))
# Skip <exists>
line = next(ifile)
short = line.strip() == b'<exists>'
self.tier_num = int(nn(ifile, regint))
not short and next(ifile)
for i in range(self.tier_num):
not short and next(ifile) # skip item[]: and item[\d]:
tier_type = nn(ifile, regstr)
name = nn(ifile, regstr)
tier = Tier(0, 0, name=name, tier_type=tier_type)
self.tiers.append(tier)
tier.xmin = float(nn(ifile, regfloat))
tier.xmax = float(nn(ifile, regfloat))
for i in range(int(nn(ifile, regint))):
not short and next(ifile) # skip intervals [\d]
x1 = float(nn(ifile, regfloat))
if tier.tier_type == 'IntervalTier':
x2 = float(nn(ifile, regfloat))
t = nn(ifile, regstr)
tier.intervals.append((x1, x2, t))
elif tier.tier_type == 'TextTier':
t = nn(ifile, regstr)
tier.intervals.append((x1, t))
|
def from_file(self, ifile, codec='ascii'):
"""Read textgrid from stream.
:param file ifile: Stream to read from.
:param str codec: Text encoding for the input. Note that this will be
ignored for binary TextGrids.
"""
if ifile.read(12) == b'ooBinaryFile':
def bin2str(ifile):
textlen = struct.unpack('>h', ifile.read(2))[0]
# Single byte characters
if textlen >= 0:
return ifile.read(textlen).decode('ascii')
# Multi byte characters have initial len -1 and then \xff bytes
elif textlen == -1:
textlen = struct.unpack('>h', ifile.read(2))[0]
data = ifile.read(textlen*2)
# Hack to go from number to unicode in python3 and python2
fun = unichr if 'unichr' in __builtins__ else chr
charlist = (data[i:i+2] for i in range(0, len(data), 2))
return u''.join(
fun(struct.unpack('>h', i)[0]) for i in charlist)
ifile.read(ord(ifile.read(1))) # skip oo type
self.xmin = struct.unpack('>d', ifile.read(8))[0]
self.xmax = struct.unpack('>d', ifile.read(8))[0]
ifile.read(1) # skip <exists>
self.tier_num = struct.unpack('>i', ifile.read(4))[0]
for i in range(self.tier_num):
tier_type = ifile.read(ord(ifile.read(1))).decode('ascii')
name = bin2str(ifile)
tier = Tier(0, 0, name=name, tier_type=tier_type)
self.tiers.append(tier)
tier.xmin = struct.unpack('>d', ifile.read(8))[0]
tier.xmax = struct.unpack('>d', ifile.read(8))[0]
nint = struct.unpack('>i', ifile.read(4))[0]
for i in range(nint):
x1 = struct.unpack('>d', ifile.read(8))[0]
if tier.tier_type == 'IntervalTier':
x2 = struct.unpack('>d', ifile.read(8))[0]
text = bin2str(ifile)
if tier.tier_type == 'IntervalTier':
tier.intervals.append((x1, x2, text))
elif tier.tier_type == 'TextTier':
tier.intervals.append((x1, text))
else:
raise Exception('Tiertype does not exist.')
else:
def nn(ifile, pat):
line = next(ifile).decode(codec)
return pat.search(line).group(1)
regfloat = re.compile('([\d.]+)\s*$', flags=re.UNICODE)
regint = re.compile('([\d]+)\s*$', flags=re.UNICODE)
regstr = re.compile('"(.*)"\s*$', flags=re.UNICODE)
# Skip the Headers and empty line
next(ifile), next(ifile), next(ifile)
self.xmin = float(nn(ifile, regfloat))
self.xmax = float(nn(ifile, regfloat))
# Skip <exists>
line = next(ifile)
short = line.strip() == b'<exists>'
self.tier_num = int(nn(ifile, regint))
not short and next(ifile)
for i in range(self.tier_num):
not short and next(ifile) # skip item[]: and item[\d]:
tier_type = nn(ifile, regstr)
name = nn(ifile, regstr)
tier = Tier(0, 0, name=name, tier_type=tier_type)
self.tiers.append(tier)
tier.xmin = float(nn(ifile, regfloat))
tier.xmax = float(nn(ifile, regfloat))
for i in range(int(nn(ifile, regint))):
not short and next(ifile) # skip intervals [\d]
x1 = float(nn(ifile, regfloat))
if tier.tier_type == 'IntervalTier':
x2 = float(nn(ifile, regfloat))
t = nn(ifile, regstr)
tier.intervals.append((x1, x2, t))
elif tier.tier_type == 'TextTier':
t = nn(ifile, regstr)
tier.intervals.append((x1, t))
|
[
"Read",
"textgrid",
"from",
"stream",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L49-L130
|
[
"def",
"from_file",
"(",
"self",
",",
"ifile",
",",
"codec",
"=",
"'ascii'",
")",
":",
"if",
"ifile",
".",
"read",
"(",
"12",
")",
"==",
"b'ooBinaryFile'",
":",
"def",
"bin2str",
"(",
"ifile",
")",
":",
"textlen",
"=",
"struct",
".",
"unpack",
"(",
"'>h'",
",",
"ifile",
".",
"read",
"(",
"2",
")",
")",
"[",
"0",
"]",
"# Single byte characters",
"if",
"textlen",
">=",
"0",
":",
"return",
"ifile",
".",
"read",
"(",
"textlen",
")",
".",
"decode",
"(",
"'ascii'",
")",
"# Multi byte characters have initial len -1 and then \\xff bytes",
"elif",
"textlen",
"==",
"-",
"1",
":",
"textlen",
"=",
"struct",
".",
"unpack",
"(",
"'>h'",
",",
"ifile",
".",
"read",
"(",
"2",
")",
")",
"[",
"0",
"]",
"data",
"=",
"ifile",
".",
"read",
"(",
"textlen",
"*",
"2",
")",
"# Hack to go from number to unicode in python3 and python2",
"fun",
"=",
"unichr",
"if",
"'unichr'",
"in",
"__builtins__",
"else",
"chr",
"charlist",
"=",
"(",
"data",
"[",
"i",
":",
"i",
"+",
"2",
"]",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"data",
")",
",",
"2",
")",
")",
"return",
"u''",
".",
"join",
"(",
"fun",
"(",
"struct",
".",
"unpack",
"(",
"'>h'",
",",
"i",
")",
"[",
"0",
"]",
")",
"for",
"i",
"in",
"charlist",
")",
"ifile",
".",
"read",
"(",
"ord",
"(",
"ifile",
".",
"read",
"(",
"1",
")",
")",
")",
"# skip oo type",
"self",
".",
"xmin",
"=",
"struct",
".",
"unpack",
"(",
"'>d'",
",",
"ifile",
".",
"read",
"(",
"8",
")",
")",
"[",
"0",
"]",
"self",
".",
"xmax",
"=",
"struct",
".",
"unpack",
"(",
"'>d'",
",",
"ifile",
".",
"read",
"(",
"8",
")",
")",
"[",
"0",
"]",
"ifile",
".",
"read",
"(",
"1",
")",
"# skip <exists>",
"self",
".",
"tier_num",
"=",
"struct",
".",
"unpack",
"(",
"'>i'",
",",
"ifile",
".",
"read",
"(",
"4",
")",
")",
"[",
"0",
"]",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"tier_num",
")",
":",
"tier_type",
"=",
"ifile",
".",
"read",
"(",
"ord",
"(",
"ifile",
".",
"read",
"(",
"1",
")",
")",
")",
".",
"decode",
"(",
"'ascii'",
")",
"name",
"=",
"bin2str",
"(",
"ifile",
")",
"tier",
"=",
"Tier",
"(",
"0",
",",
"0",
",",
"name",
"=",
"name",
",",
"tier_type",
"=",
"tier_type",
")",
"self",
".",
"tiers",
".",
"append",
"(",
"tier",
")",
"tier",
".",
"xmin",
"=",
"struct",
".",
"unpack",
"(",
"'>d'",
",",
"ifile",
".",
"read",
"(",
"8",
")",
")",
"[",
"0",
"]",
"tier",
".",
"xmax",
"=",
"struct",
".",
"unpack",
"(",
"'>d'",
",",
"ifile",
".",
"read",
"(",
"8",
")",
")",
"[",
"0",
"]",
"nint",
"=",
"struct",
".",
"unpack",
"(",
"'>i'",
",",
"ifile",
".",
"read",
"(",
"4",
")",
")",
"[",
"0",
"]",
"for",
"i",
"in",
"range",
"(",
"nint",
")",
":",
"x1",
"=",
"struct",
".",
"unpack",
"(",
"'>d'",
",",
"ifile",
".",
"read",
"(",
"8",
")",
")",
"[",
"0",
"]",
"if",
"tier",
".",
"tier_type",
"==",
"'IntervalTier'",
":",
"x2",
"=",
"struct",
".",
"unpack",
"(",
"'>d'",
",",
"ifile",
".",
"read",
"(",
"8",
")",
")",
"[",
"0",
"]",
"text",
"=",
"bin2str",
"(",
"ifile",
")",
"if",
"tier",
".",
"tier_type",
"==",
"'IntervalTier'",
":",
"tier",
".",
"intervals",
".",
"append",
"(",
"(",
"x1",
",",
"x2",
",",
"text",
")",
")",
"elif",
"tier",
".",
"tier_type",
"==",
"'TextTier'",
":",
"tier",
".",
"intervals",
".",
"append",
"(",
"(",
"x1",
",",
"text",
")",
")",
"else",
":",
"raise",
"Exception",
"(",
"'Tiertype does not exist.'",
")",
"else",
":",
"def",
"nn",
"(",
"ifile",
",",
"pat",
")",
":",
"line",
"=",
"next",
"(",
"ifile",
")",
".",
"decode",
"(",
"codec",
")",
"return",
"pat",
".",
"search",
"(",
"line",
")",
".",
"group",
"(",
"1",
")",
"regfloat",
"=",
"re",
".",
"compile",
"(",
"'([\\d.]+)\\s*$'",
",",
"flags",
"=",
"re",
".",
"UNICODE",
")",
"regint",
"=",
"re",
".",
"compile",
"(",
"'([\\d]+)\\s*$'",
",",
"flags",
"=",
"re",
".",
"UNICODE",
")",
"regstr",
"=",
"re",
".",
"compile",
"(",
"'\"(.*)\"\\s*$'",
",",
"flags",
"=",
"re",
".",
"UNICODE",
")",
"# Skip the Headers and empty line",
"next",
"(",
"ifile",
")",
",",
"next",
"(",
"ifile",
")",
",",
"next",
"(",
"ifile",
")",
"self",
".",
"xmin",
"=",
"float",
"(",
"nn",
"(",
"ifile",
",",
"regfloat",
")",
")",
"self",
".",
"xmax",
"=",
"float",
"(",
"nn",
"(",
"ifile",
",",
"regfloat",
")",
")",
"# Skip <exists>",
"line",
"=",
"next",
"(",
"ifile",
")",
"short",
"=",
"line",
".",
"strip",
"(",
")",
"==",
"b'<exists>'",
"self",
".",
"tier_num",
"=",
"int",
"(",
"nn",
"(",
"ifile",
",",
"regint",
")",
")",
"not",
"short",
"and",
"next",
"(",
"ifile",
")",
"for",
"i",
"in",
"range",
"(",
"self",
".",
"tier_num",
")",
":",
"not",
"short",
"and",
"next",
"(",
"ifile",
")",
"# skip item[]: and item[\\d]:",
"tier_type",
"=",
"nn",
"(",
"ifile",
",",
"regstr",
")",
"name",
"=",
"nn",
"(",
"ifile",
",",
"regstr",
")",
"tier",
"=",
"Tier",
"(",
"0",
",",
"0",
",",
"name",
"=",
"name",
",",
"tier_type",
"=",
"tier_type",
")",
"self",
".",
"tiers",
".",
"append",
"(",
"tier",
")",
"tier",
".",
"xmin",
"=",
"float",
"(",
"nn",
"(",
"ifile",
",",
"regfloat",
")",
")",
"tier",
".",
"xmax",
"=",
"float",
"(",
"nn",
"(",
"ifile",
",",
"regfloat",
")",
")",
"for",
"i",
"in",
"range",
"(",
"int",
"(",
"nn",
"(",
"ifile",
",",
"regint",
")",
")",
")",
":",
"not",
"short",
"and",
"next",
"(",
"ifile",
")",
"# skip intervals [\\d]",
"x1",
"=",
"float",
"(",
"nn",
"(",
"ifile",
",",
"regfloat",
")",
")",
"if",
"tier",
".",
"tier_type",
"==",
"'IntervalTier'",
":",
"x2",
"=",
"float",
"(",
"nn",
"(",
"ifile",
",",
"regfloat",
")",
")",
"t",
"=",
"nn",
"(",
"ifile",
",",
"regstr",
")",
"tier",
".",
"intervals",
".",
"append",
"(",
"(",
"x1",
",",
"x2",
",",
"t",
")",
")",
"elif",
"tier",
".",
"tier_type",
"==",
"'TextTier'",
":",
"t",
"=",
"nn",
"(",
"ifile",
",",
"regstr",
")",
"tier",
".",
"intervals",
".",
"append",
"(",
"(",
"x1",
",",
"t",
")",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
TextGrid.sort_tiers
|
Sort the tiers given the key. Example key functions:
Sort according to the tiername in a list:
``lambda x: ['name1', 'name2' ... 'namen'].index(x.name)``.
Sort according to the number of annotations:
``lambda x: len(list(x.get_intervals()))``
:param func key: A key function. Default sorts alphabetically.
|
pympi/Praat.py
|
def sort_tiers(self, key=lambda x: x.name):
"""Sort the tiers given the key. Example key functions:
Sort according to the tiername in a list:
``lambda x: ['name1', 'name2' ... 'namen'].index(x.name)``.
Sort according to the number of annotations:
``lambda x: len(list(x.get_intervals()))``
:param func key: A key function. Default sorts alphabetically.
"""
self.tiers.sort(key=key)
|
def sort_tiers(self, key=lambda x: x.name):
"""Sort the tiers given the key. Example key functions:
Sort according to the tiername in a list:
``lambda x: ['name1', 'name2' ... 'namen'].index(x.name)``.
Sort according to the number of annotations:
``lambda x: len(list(x.get_intervals()))``
:param func key: A key function. Default sorts alphabetically.
"""
self.tiers.sort(key=key)
|
[
"Sort",
"the",
"tiers",
"given",
"the",
"key",
".",
"Example",
"key",
"functions",
":"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L132-L145
|
[
"def",
"sort_tiers",
"(",
"self",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
".",
"name",
")",
":",
"self",
".",
"tiers",
".",
"sort",
"(",
"key",
"=",
"key",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
TextGrid.add_tier
|
Add an IntervalTier or a TextTier on the specified location.
:param str name: Name of the tier, duplicate names is allowed.
:param str tier_type: Type of the tier.
:param int number: Place to insert the tier, when ``None`` the number
is generated and the tier will be placed on the bottom.
:returns: The created tier.
:raises ValueError: If the number is out of bounds.
|
pympi/Praat.py
|
def add_tier(self, name, tier_type='IntervalTier', number=None):
"""Add an IntervalTier or a TextTier on the specified location.
:param str name: Name of the tier, duplicate names is allowed.
:param str tier_type: Type of the tier.
:param int number: Place to insert the tier, when ``None`` the number
is generated and the tier will be placed on the bottom.
:returns: The created tier.
:raises ValueError: If the number is out of bounds.
"""
if number is None:
number = 1 if not self.tiers else len(self.tiers)+1
elif number < 1 or number > len(self.tiers):
raise ValueError('Number not in [1..{}]'.format(len(self.tiers)))
elif tier_type not in Tier.P_TIERS:
raise ValueError('tier_type has to be in {}'.format(self.P_TIERS))
self.tiers.insert(number-1,
Tier(self.xmin, self.xmax, name, tier_type))
return self.tiers[number-1]
|
def add_tier(self, name, tier_type='IntervalTier', number=None):
"""Add an IntervalTier or a TextTier on the specified location.
:param str name: Name of the tier, duplicate names is allowed.
:param str tier_type: Type of the tier.
:param int number: Place to insert the tier, when ``None`` the number
is generated and the tier will be placed on the bottom.
:returns: The created tier.
:raises ValueError: If the number is out of bounds.
"""
if number is None:
number = 1 if not self.tiers else len(self.tiers)+1
elif number < 1 or number > len(self.tiers):
raise ValueError('Number not in [1..{}]'.format(len(self.tiers)))
elif tier_type not in Tier.P_TIERS:
raise ValueError('tier_type has to be in {}'.format(self.P_TIERS))
self.tiers.insert(number-1,
Tier(self.xmin, self.xmax, name, tier_type))
return self.tiers[number-1]
|
[
"Add",
"an",
"IntervalTier",
"or",
"a",
"TextTier",
"on",
"the",
"specified",
"location",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L147-L165
|
[
"def",
"add_tier",
"(",
"self",
",",
"name",
",",
"tier_type",
"=",
"'IntervalTier'",
",",
"number",
"=",
"None",
")",
":",
"if",
"number",
"is",
"None",
":",
"number",
"=",
"1",
"if",
"not",
"self",
".",
"tiers",
"else",
"len",
"(",
"self",
".",
"tiers",
")",
"+",
"1",
"elif",
"number",
"<",
"1",
"or",
"number",
">",
"len",
"(",
"self",
".",
"tiers",
")",
":",
"raise",
"ValueError",
"(",
"'Number not in [1..{}]'",
".",
"format",
"(",
"len",
"(",
"self",
".",
"tiers",
")",
")",
")",
"elif",
"tier_type",
"not",
"in",
"Tier",
".",
"P_TIERS",
":",
"raise",
"ValueError",
"(",
"'tier_type has to be in {}'",
".",
"format",
"(",
"self",
".",
"P_TIERS",
")",
")",
"self",
".",
"tiers",
".",
"insert",
"(",
"number",
"-",
"1",
",",
"Tier",
"(",
"self",
".",
"xmin",
",",
"self",
".",
"xmax",
",",
"name",
",",
"tier_type",
")",
")",
"return",
"self",
".",
"tiers",
"[",
"number",
"-",
"1",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
TextGrid.remove_tier
|
Remove a tier, when multiple tiers exist with that name only the
first is removed.
:param name_num: Name or number of the tier to remove.
:type name_num: int or str
:raises IndexError: If there is no tier with that number.
|
pympi/Praat.py
|
def remove_tier(self, name_num):
"""Remove a tier, when multiple tiers exist with that name only the
first is removed.
:param name_num: Name or number of the tier to remove.
:type name_num: int or str
:raises IndexError: If there is no tier with that number.
"""
if isinstance(name_num, int):
del(self.tiers[name_num-1])
else:
self.tiers = [i for i in self.tiers if i.name != name_num]
|
def remove_tier(self, name_num):
"""Remove a tier, when multiple tiers exist with that name only the
first is removed.
:param name_num: Name or number of the tier to remove.
:type name_num: int or str
:raises IndexError: If there is no tier with that number.
"""
if isinstance(name_num, int):
del(self.tiers[name_num-1])
else:
self.tiers = [i for i in self.tiers if i.name != name_num]
|
[
"Remove",
"a",
"tier",
"when",
"multiple",
"tiers",
"exist",
"with",
"that",
"name",
"only",
"the",
"first",
"is",
"removed",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L167-L178
|
[
"def",
"remove_tier",
"(",
"self",
",",
"name_num",
")",
":",
"if",
"isinstance",
"(",
"name_num",
",",
"int",
")",
":",
"del",
"(",
"self",
".",
"tiers",
"[",
"name_num",
"-",
"1",
"]",
")",
"else",
":",
"self",
".",
"tiers",
"=",
"[",
"i",
"for",
"i",
"in",
"self",
".",
"tiers",
"if",
"i",
".",
"name",
"!=",
"name_num",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
TextGrid.get_tier
|
Gives a tier, when multiple tiers exist with that name only the
first is returned.
:param name_num: Name or number of the tier to return.
:type name_num: int or str
:returns: The tier.
:raises IndexError: If the tier doesn't exist.
|
pympi/Praat.py
|
def get_tier(self, name_num):
"""Gives a tier, when multiple tiers exist with that name only the
first is returned.
:param name_num: Name or number of the tier to return.
:type name_num: int or str
:returns: The tier.
:raises IndexError: If the tier doesn't exist.
"""
return self.tiers[name_num - 1] if isinstance(name_num, int) else\
[i for i in self.tiers if i.name == name_num][0]
|
def get_tier(self, name_num):
"""Gives a tier, when multiple tiers exist with that name only the
first is returned.
:param name_num: Name or number of the tier to return.
:type name_num: int or str
:returns: The tier.
:raises IndexError: If the tier doesn't exist.
"""
return self.tiers[name_num - 1] if isinstance(name_num, int) else\
[i for i in self.tiers if i.name == name_num][0]
|
[
"Gives",
"a",
"tier",
"when",
"multiple",
"tiers",
"exist",
"with",
"that",
"name",
"only",
"the",
"first",
"is",
"returned",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L180-L190
|
[
"def",
"get_tier",
"(",
"self",
",",
"name_num",
")",
":",
"return",
"self",
".",
"tiers",
"[",
"name_num",
"-",
"1",
"]",
"if",
"isinstance",
"(",
"name_num",
",",
"int",
")",
"else",
"[",
"i",
"for",
"i",
"in",
"self",
".",
"tiers",
"if",
"i",
".",
"name",
"==",
"name_num",
"]",
"[",
"0",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
TextGrid.to_file
|
Write the object to a file.
:param str filepath: Path of the fil.
:param str codec: Text encoding.
:param string mode: Flag to for write mode, possible modes:
'n'/'normal', 's'/'short' and 'b'/'binary'
|
pympi/Praat.py
|
def to_file(self, filepath, codec='utf-8', mode='normal'):
"""Write the object to a file.
:param str filepath: Path of the fil.
:param str codec: Text encoding.
:param string mode: Flag to for write mode, possible modes:
'n'/'normal', 's'/'short' and 'b'/'binary'
"""
self.tier_num = len(self.tiers)
if mode in ['binary', 'b']:
with open(filepath, 'wb') as f:
def writebstr(s):
try:
bstr = s.encode('ascii')
except UnicodeError:
f.write(b'\xff\xff')
bstr = b''.join(struct.pack('>h', ord(c)) for c in s)
f.write(struct.pack('>h', len(s)))
f.write(bstr)
f.write(b'ooBinaryFile\x08TextGrid')
f.write(struct.pack('>d', self.xmin))
f.write(struct.pack('>d', self.xmax))
f.write(b'\x01')
f.write(struct.pack('>i', self.tier_num))
for tier in self.tiers:
f.write(chr(len(tier.tier_type)).encode('ascii'))
f.write(tier.tier_type.encode('ascii'))
writebstr(tier.name)
f.write(struct.pack('>d', tier.xmin))
f.write(struct.pack('>d', tier.xmax))
ints = tier.get_all_intervals()
f.write(struct.pack('>i', len(ints)))
itier = tier.tier_type == 'IntervalTier'
for c in ints:
f.write(struct.pack('>d', c[0]))
itier and f.write(struct.pack('>d', c[1]))
writebstr(c[2 if itier else 1])
elif mode in ['normal', 'n', 'short', 's']:
with codecs.open(filepath, 'w', codec) as f:
short = mode[0] == 's'
def wrt(indent, prefix, value, ff=''):
indent = 0 if short else indent
prefix = '' if short else prefix
if value is not None or not short:
s = u'{{}}{{}}{}\n'.format(ff)
f.write(s.format(' '*indent, prefix, value))
f.write(u'File type = "ooTextFile"\n'
u'Object class = "TextGrid"\n\n')
wrt(0, u'xmin = ', self.xmin, '{:f}')
wrt(0, u'xmax = ', self.xmax, '{:f}')
wrt(0, u'tiers? ', u'<exists>', '{}')
wrt(0, u'size = ', self.tier_num, '{:d}')
wrt(0, u'item []:', None)
for tnum, tier in enumerate(self.tiers, 1):
wrt(4, u'item [{:d}]:'.format(tnum), None)
wrt(8, u'class = ', tier.tier_type, '"{}"')
wrt(8, u'name = ', tier.name, '"{}"')
wrt(8, u'xmin = ', tier.xmin, '{:f}')
wrt(8, u'xmax = ', tier.xmax, '{:f}')
if tier.tier_type == 'IntervalTier':
ints = tier.get_all_intervals()
wrt(8, u'intervals: size = ', len(ints), '{:d}')
for i, c in enumerate(ints):
wrt(8, 'intervals [{:d}]:'.format(i+1), None)
wrt(12, 'xmin = ', c[0], '{:f}')
wrt(12, 'xmax = ', c[1], '{:f}')
wrt(12, 'text = ', c[2].replace('"', '""'), '"{}"')
elif tier.tier_type == 'TextTier':
wrt(8, u'points: size = ', len(tier.intervals), '{:d}')
for i, c in enumerate(tier.get_intervals()):
wrt(8, 'points [{:d}]:'.format(i+1), None)
wrt(12, 'number = ', c[0], '{:f}')
wrt(12, 'mark = ', c[1].replace('"', '""'), '"{}"')
else:
raise Exception('Unknown mode')
|
def to_file(self, filepath, codec='utf-8', mode='normal'):
"""Write the object to a file.
:param str filepath: Path of the fil.
:param str codec: Text encoding.
:param string mode: Flag to for write mode, possible modes:
'n'/'normal', 's'/'short' and 'b'/'binary'
"""
self.tier_num = len(self.tiers)
if mode in ['binary', 'b']:
with open(filepath, 'wb') as f:
def writebstr(s):
try:
bstr = s.encode('ascii')
except UnicodeError:
f.write(b'\xff\xff')
bstr = b''.join(struct.pack('>h', ord(c)) for c in s)
f.write(struct.pack('>h', len(s)))
f.write(bstr)
f.write(b'ooBinaryFile\x08TextGrid')
f.write(struct.pack('>d', self.xmin))
f.write(struct.pack('>d', self.xmax))
f.write(b'\x01')
f.write(struct.pack('>i', self.tier_num))
for tier in self.tiers:
f.write(chr(len(tier.tier_type)).encode('ascii'))
f.write(tier.tier_type.encode('ascii'))
writebstr(tier.name)
f.write(struct.pack('>d', tier.xmin))
f.write(struct.pack('>d', tier.xmax))
ints = tier.get_all_intervals()
f.write(struct.pack('>i', len(ints)))
itier = tier.tier_type == 'IntervalTier'
for c in ints:
f.write(struct.pack('>d', c[0]))
itier and f.write(struct.pack('>d', c[1]))
writebstr(c[2 if itier else 1])
elif mode in ['normal', 'n', 'short', 's']:
with codecs.open(filepath, 'w', codec) as f:
short = mode[0] == 's'
def wrt(indent, prefix, value, ff=''):
indent = 0 if short else indent
prefix = '' if short else prefix
if value is not None or not short:
s = u'{{}}{{}}{}\n'.format(ff)
f.write(s.format(' '*indent, prefix, value))
f.write(u'File type = "ooTextFile"\n'
u'Object class = "TextGrid"\n\n')
wrt(0, u'xmin = ', self.xmin, '{:f}')
wrt(0, u'xmax = ', self.xmax, '{:f}')
wrt(0, u'tiers? ', u'<exists>', '{}')
wrt(0, u'size = ', self.tier_num, '{:d}')
wrt(0, u'item []:', None)
for tnum, tier in enumerate(self.tiers, 1):
wrt(4, u'item [{:d}]:'.format(tnum), None)
wrt(8, u'class = ', tier.tier_type, '"{}"')
wrt(8, u'name = ', tier.name, '"{}"')
wrt(8, u'xmin = ', tier.xmin, '{:f}')
wrt(8, u'xmax = ', tier.xmax, '{:f}')
if tier.tier_type == 'IntervalTier':
ints = tier.get_all_intervals()
wrt(8, u'intervals: size = ', len(ints), '{:d}')
for i, c in enumerate(ints):
wrt(8, 'intervals [{:d}]:'.format(i+1), None)
wrt(12, 'xmin = ', c[0], '{:f}')
wrt(12, 'xmax = ', c[1], '{:f}')
wrt(12, 'text = ', c[2].replace('"', '""'), '"{}"')
elif tier.tier_type == 'TextTier':
wrt(8, u'points: size = ', len(tier.intervals), '{:d}')
for i, c in enumerate(tier.get_intervals()):
wrt(8, 'points [{:d}]:'.format(i+1), None)
wrt(12, 'number = ', c[0], '{:f}')
wrt(12, 'mark = ', c[1].replace('"', '""'), '"{}"')
else:
raise Exception('Unknown mode')
|
[
"Write",
"the",
"object",
"to",
"a",
"file",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L218-L295
|
[
"def",
"to_file",
"(",
"self",
",",
"filepath",
",",
"codec",
"=",
"'utf-8'",
",",
"mode",
"=",
"'normal'",
")",
":",
"self",
".",
"tier_num",
"=",
"len",
"(",
"self",
".",
"tiers",
")",
"if",
"mode",
"in",
"[",
"'binary'",
",",
"'b'",
"]",
":",
"with",
"open",
"(",
"filepath",
",",
"'wb'",
")",
"as",
"f",
":",
"def",
"writebstr",
"(",
"s",
")",
":",
"try",
":",
"bstr",
"=",
"s",
".",
"encode",
"(",
"'ascii'",
")",
"except",
"UnicodeError",
":",
"f",
".",
"write",
"(",
"b'\\xff\\xff'",
")",
"bstr",
"=",
"b''",
".",
"join",
"(",
"struct",
".",
"pack",
"(",
"'>h'",
",",
"ord",
"(",
"c",
")",
")",
"for",
"c",
"in",
"s",
")",
"f",
".",
"write",
"(",
"struct",
".",
"pack",
"(",
"'>h'",
",",
"len",
"(",
"s",
")",
")",
")",
"f",
".",
"write",
"(",
"bstr",
")",
"f",
".",
"write",
"(",
"b'ooBinaryFile\\x08TextGrid'",
")",
"f",
".",
"write",
"(",
"struct",
".",
"pack",
"(",
"'>d'",
",",
"self",
".",
"xmin",
")",
")",
"f",
".",
"write",
"(",
"struct",
".",
"pack",
"(",
"'>d'",
",",
"self",
".",
"xmax",
")",
")",
"f",
".",
"write",
"(",
"b'\\x01'",
")",
"f",
".",
"write",
"(",
"struct",
".",
"pack",
"(",
"'>i'",
",",
"self",
".",
"tier_num",
")",
")",
"for",
"tier",
"in",
"self",
".",
"tiers",
":",
"f",
".",
"write",
"(",
"chr",
"(",
"len",
"(",
"tier",
".",
"tier_type",
")",
")",
".",
"encode",
"(",
"'ascii'",
")",
")",
"f",
".",
"write",
"(",
"tier",
".",
"tier_type",
".",
"encode",
"(",
"'ascii'",
")",
")",
"writebstr",
"(",
"tier",
".",
"name",
")",
"f",
".",
"write",
"(",
"struct",
".",
"pack",
"(",
"'>d'",
",",
"tier",
".",
"xmin",
")",
")",
"f",
".",
"write",
"(",
"struct",
".",
"pack",
"(",
"'>d'",
",",
"tier",
".",
"xmax",
")",
")",
"ints",
"=",
"tier",
".",
"get_all_intervals",
"(",
")",
"f",
".",
"write",
"(",
"struct",
".",
"pack",
"(",
"'>i'",
",",
"len",
"(",
"ints",
")",
")",
")",
"itier",
"=",
"tier",
".",
"tier_type",
"==",
"'IntervalTier'",
"for",
"c",
"in",
"ints",
":",
"f",
".",
"write",
"(",
"struct",
".",
"pack",
"(",
"'>d'",
",",
"c",
"[",
"0",
"]",
")",
")",
"itier",
"and",
"f",
".",
"write",
"(",
"struct",
".",
"pack",
"(",
"'>d'",
",",
"c",
"[",
"1",
"]",
")",
")",
"writebstr",
"(",
"c",
"[",
"2",
"if",
"itier",
"else",
"1",
"]",
")",
"elif",
"mode",
"in",
"[",
"'normal'",
",",
"'n'",
",",
"'short'",
",",
"'s'",
"]",
":",
"with",
"codecs",
".",
"open",
"(",
"filepath",
",",
"'w'",
",",
"codec",
")",
"as",
"f",
":",
"short",
"=",
"mode",
"[",
"0",
"]",
"==",
"'s'",
"def",
"wrt",
"(",
"indent",
",",
"prefix",
",",
"value",
",",
"ff",
"=",
"''",
")",
":",
"indent",
"=",
"0",
"if",
"short",
"else",
"indent",
"prefix",
"=",
"''",
"if",
"short",
"else",
"prefix",
"if",
"value",
"is",
"not",
"None",
"or",
"not",
"short",
":",
"s",
"=",
"u'{{}}{{}}{}\\n'",
".",
"format",
"(",
"ff",
")",
"f",
".",
"write",
"(",
"s",
".",
"format",
"(",
"' '",
"*",
"indent",
",",
"prefix",
",",
"value",
")",
")",
"f",
".",
"write",
"(",
"u'File type = \"ooTextFile\"\\n'",
"u'Object class = \"TextGrid\"\\n\\n'",
")",
"wrt",
"(",
"0",
",",
"u'xmin = '",
",",
"self",
".",
"xmin",
",",
"'{:f}'",
")",
"wrt",
"(",
"0",
",",
"u'xmax = '",
",",
"self",
".",
"xmax",
",",
"'{:f}'",
")",
"wrt",
"(",
"0",
",",
"u'tiers? '",
",",
"u'<exists>'",
",",
"'{}'",
")",
"wrt",
"(",
"0",
",",
"u'size = '",
",",
"self",
".",
"tier_num",
",",
"'{:d}'",
")",
"wrt",
"(",
"0",
",",
"u'item []:'",
",",
"None",
")",
"for",
"tnum",
",",
"tier",
"in",
"enumerate",
"(",
"self",
".",
"tiers",
",",
"1",
")",
":",
"wrt",
"(",
"4",
",",
"u'item [{:d}]:'",
".",
"format",
"(",
"tnum",
")",
",",
"None",
")",
"wrt",
"(",
"8",
",",
"u'class = '",
",",
"tier",
".",
"tier_type",
",",
"'\"{}\"'",
")",
"wrt",
"(",
"8",
",",
"u'name = '",
",",
"tier",
".",
"name",
",",
"'\"{}\"'",
")",
"wrt",
"(",
"8",
",",
"u'xmin = '",
",",
"tier",
".",
"xmin",
",",
"'{:f}'",
")",
"wrt",
"(",
"8",
",",
"u'xmax = '",
",",
"tier",
".",
"xmax",
",",
"'{:f}'",
")",
"if",
"tier",
".",
"tier_type",
"==",
"'IntervalTier'",
":",
"ints",
"=",
"tier",
".",
"get_all_intervals",
"(",
")",
"wrt",
"(",
"8",
",",
"u'intervals: size = '",
",",
"len",
"(",
"ints",
")",
",",
"'{:d}'",
")",
"for",
"i",
",",
"c",
"in",
"enumerate",
"(",
"ints",
")",
":",
"wrt",
"(",
"8",
",",
"'intervals [{:d}]:'",
".",
"format",
"(",
"i",
"+",
"1",
")",
",",
"None",
")",
"wrt",
"(",
"12",
",",
"'xmin = '",
",",
"c",
"[",
"0",
"]",
",",
"'{:f}'",
")",
"wrt",
"(",
"12",
",",
"'xmax = '",
",",
"c",
"[",
"1",
"]",
",",
"'{:f}'",
")",
"wrt",
"(",
"12",
",",
"'text = '",
",",
"c",
"[",
"2",
"]",
".",
"replace",
"(",
"'\"'",
",",
"'\"\"'",
")",
",",
"'\"{}\"'",
")",
"elif",
"tier",
".",
"tier_type",
"==",
"'TextTier'",
":",
"wrt",
"(",
"8",
",",
"u'points: size = '",
",",
"len",
"(",
"tier",
".",
"intervals",
")",
",",
"'{:d}'",
")",
"for",
"i",
",",
"c",
"in",
"enumerate",
"(",
"tier",
".",
"get_intervals",
"(",
")",
")",
":",
"wrt",
"(",
"8",
",",
"'points [{:d}]:'",
".",
"format",
"(",
"i",
"+",
"1",
")",
",",
"None",
")",
"wrt",
"(",
"12",
",",
"'number = '",
",",
"c",
"[",
"0",
"]",
",",
"'{:f}'",
")",
"wrt",
"(",
"12",
",",
"'mark = '",
",",
"c",
"[",
"1",
"]",
".",
"replace",
"(",
"'\"'",
",",
"'\"\"'",
")",
",",
"'\"{}\"'",
")",
"else",
":",
"raise",
"Exception",
"(",
"'Unknown mode'",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
TextGrid.to_eaf
|
Convert the object to an pympi.Elan.Eaf object
:param int pointlength: Length of respective interval from points in
seconds
:param bool skipempty: Skip the empty annotations
:returns: :class:`pympi.Elan.Eaf` object
:raises ImportError: If the Eaf module can't be loaded.
:raises ValueError: If the pointlength is not strictly positive.
|
pympi/Praat.py
|
def to_eaf(self, skipempty=True, pointlength=0.1):
"""Convert the object to an pympi.Elan.Eaf object
:param int pointlength: Length of respective interval from points in
seconds
:param bool skipempty: Skip the empty annotations
:returns: :class:`pympi.Elan.Eaf` object
:raises ImportError: If the Eaf module can't be loaded.
:raises ValueError: If the pointlength is not strictly positive.
"""
from pympi.Elan import Eaf
eaf_out = Eaf()
if pointlength <= 0:
raise ValueError('Pointlength should be strictly positive')
for tier in self.get_tiers():
eaf_out.add_tier(tier.name)
for ann in tier.get_intervals(True):
if tier.tier_type == 'TextTier':
ann = (ann[0], ann[0]+pointlength, ann[1])
if ann[2].strip() or not skipempty:
eaf_out.add_annotation(tier.name, int(round(ann[0]*1000)),
int(round(ann[1]*1000)), ann[2])
return eaf_out
|
def to_eaf(self, skipempty=True, pointlength=0.1):
"""Convert the object to an pympi.Elan.Eaf object
:param int pointlength: Length of respective interval from points in
seconds
:param bool skipempty: Skip the empty annotations
:returns: :class:`pympi.Elan.Eaf` object
:raises ImportError: If the Eaf module can't be loaded.
:raises ValueError: If the pointlength is not strictly positive.
"""
from pympi.Elan import Eaf
eaf_out = Eaf()
if pointlength <= 0:
raise ValueError('Pointlength should be strictly positive')
for tier in self.get_tiers():
eaf_out.add_tier(tier.name)
for ann in tier.get_intervals(True):
if tier.tier_type == 'TextTier':
ann = (ann[0], ann[0]+pointlength, ann[1])
if ann[2].strip() or not skipempty:
eaf_out.add_annotation(tier.name, int(round(ann[0]*1000)),
int(round(ann[1]*1000)), ann[2])
return eaf_out
|
[
"Convert",
"the",
"object",
"to",
"an",
"pympi",
".",
"Elan",
".",
"Eaf",
"object"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L297-L319
|
[
"def",
"to_eaf",
"(",
"self",
",",
"skipempty",
"=",
"True",
",",
"pointlength",
"=",
"0.1",
")",
":",
"from",
"pympi",
".",
"Elan",
"import",
"Eaf",
"eaf_out",
"=",
"Eaf",
"(",
")",
"if",
"pointlength",
"<=",
"0",
":",
"raise",
"ValueError",
"(",
"'Pointlength should be strictly positive'",
")",
"for",
"tier",
"in",
"self",
".",
"get_tiers",
"(",
")",
":",
"eaf_out",
".",
"add_tier",
"(",
"tier",
".",
"name",
")",
"for",
"ann",
"in",
"tier",
".",
"get_intervals",
"(",
"True",
")",
":",
"if",
"tier",
".",
"tier_type",
"==",
"'TextTier'",
":",
"ann",
"=",
"(",
"ann",
"[",
"0",
"]",
",",
"ann",
"[",
"0",
"]",
"+",
"pointlength",
",",
"ann",
"[",
"1",
"]",
")",
"if",
"ann",
"[",
"2",
"]",
".",
"strip",
"(",
")",
"or",
"not",
"skipempty",
":",
"eaf_out",
".",
"add_annotation",
"(",
"tier",
".",
"name",
",",
"int",
"(",
"round",
"(",
"ann",
"[",
"0",
"]",
"*",
"1000",
")",
")",
",",
"int",
"(",
"round",
"(",
"ann",
"[",
"1",
"]",
"*",
"1000",
")",
")",
",",
"ann",
"[",
"2",
"]",
")",
"return",
"eaf_out"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Tier.add_point
|
Add a point to the TextTier
:param int point: Time of the point.
:param str value: Text of the point.
:param bool check: Flag to check for overlap.
:raises Exception: If overlap or wrong tiertype.
|
pympi/Praat.py
|
def add_point(self, point, value, check=True):
"""Add a point to the TextTier
:param int point: Time of the point.
:param str value: Text of the point.
:param bool check: Flag to check for overlap.
:raises Exception: If overlap or wrong tiertype.
"""
if self.tier_type != 'TextTier':
raise Exception('Tiertype must be TextTier.')
if check and any(i for i in self.intervals if i[0] == point):
raise Exception('No overlap is allowed')
self.intervals.append((point, value))
|
def add_point(self, point, value, check=True):
"""Add a point to the TextTier
:param int point: Time of the point.
:param str value: Text of the point.
:param bool check: Flag to check for overlap.
:raises Exception: If overlap or wrong tiertype.
"""
if self.tier_type != 'TextTier':
raise Exception('Tiertype must be TextTier.')
if check and any(i for i in self.intervals if i[0] == point):
raise Exception('No overlap is allowed')
self.intervals.append((point, value))
|
[
"Add",
"a",
"point",
"to",
"the",
"TextTier"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L348-L360
|
[
"def",
"add_point",
"(",
"self",
",",
"point",
",",
"value",
",",
"check",
"=",
"True",
")",
":",
"if",
"self",
".",
"tier_type",
"!=",
"'TextTier'",
":",
"raise",
"Exception",
"(",
"'Tiertype must be TextTier.'",
")",
"if",
"check",
"and",
"any",
"(",
"i",
"for",
"i",
"in",
"self",
".",
"intervals",
"if",
"i",
"[",
"0",
"]",
"==",
"point",
")",
":",
"raise",
"Exception",
"(",
"'No overlap is allowed'",
")",
"self",
".",
"intervals",
".",
"append",
"(",
"(",
"point",
",",
"value",
")",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Tier.add_interval
|
Add an interval to the IntervalTier.
:param float begin: Start time of the interval.
:param float end: End time of the interval.
:param str value: Text of the interval.
:param bool check: Flag to check for overlap.
:raises Exception: If overlap, begin > end or wrong tiertype.
|
pympi/Praat.py
|
def add_interval(self, begin, end, value, check=True):
"""Add an interval to the IntervalTier.
:param float begin: Start time of the interval.
:param float end: End time of the interval.
:param str value: Text of the interval.
:param bool check: Flag to check for overlap.
:raises Exception: If overlap, begin > end or wrong tiertype.
"""
if self.tier_type != 'IntervalTier':
raise Exception('Tiertype must be IntervalTier')
if check:
if any(i for i in self.intervals if begin < i[1] and end > i[0]):
raise Exception('No overlap is allowed')
if begin > end:
raise Exception('Begin must be smaller then end')
self.intervals.append((begin, end, value))
|
def add_interval(self, begin, end, value, check=True):
"""Add an interval to the IntervalTier.
:param float begin: Start time of the interval.
:param float end: End time of the interval.
:param str value: Text of the interval.
:param bool check: Flag to check for overlap.
:raises Exception: If overlap, begin > end or wrong tiertype.
"""
if self.tier_type != 'IntervalTier':
raise Exception('Tiertype must be IntervalTier')
if check:
if any(i for i in self.intervals if begin < i[1] and end > i[0]):
raise Exception('No overlap is allowed')
if begin > end:
raise Exception('Begin must be smaller then end')
self.intervals.append((begin, end, value))
|
[
"Add",
"an",
"interval",
"to",
"the",
"IntervalTier",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L362-L378
|
[
"def",
"add_interval",
"(",
"self",
",",
"begin",
",",
"end",
",",
"value",
",",
"check",
"=",
"True",
")",
":",
"if",
"self",
".",
"tier_type",
"!=",
"'IntervalTier'",
":",
"raise",
"Exception",
"(",
"'Tiertype must be IntervalTier'",
")",
"if",
"check",
":",
"if",
"any",
"(",
"i",
"for",
"i",
"in",
"self",
".",
"intervals",
"if",
"begin",
"<",
"i",
"[",
"1",
"]",
"and",
"end",
">",
"i",
"[",
"0",
"]",
")",
":",
"raise",
"Exception",
"(",
"'No overlap is allowed'",
")",
"if",
"begin",
">",
"end",
":",
"raise",
"Exception",
"(",
"'Begin must be smaller then end'",
")",
"self",
".",
"intervals",
".",
"append",
"(",
"(",
"begin",
",",
"end",
",",
"value",
")",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Tier.remove_interval
|
Remove an interval, if no interval is found nothing happens.
:param int time: Time of the interval.
:raises TierTypeException: If the tier is not a IntervalTier.
|
pympi/Praat.py
|
def remove_interval(self, time):
"""Remove an interval, if no interval is found nothing happens.
:param int time: Time of the interval.
:raises TierTypeException: If the tier is not a IntervalTier.
"""
if self.tier_type != 'IntervalTier':
raise Exception('Tiertype must be IntervalTier.')
self.intervals = [i for i in self.intervals
if not(i[0] <= time and i[1] >= time)]
|
def remove_interval(self, time):
"""Remove an interval, if no interval is found nothing happens.
:param int time: Time of the interval.
:raises TierTypeException: If the tier is not a IntervalTier.
"""
if self.tier_type != 'IntervalTier':
raise Exception('Tiertype must be IntervalTier.')
self.intervals = [i for i in self.intervals
if not(i[0] <= time and i[1] >= time)]
|
[
"Remove",
"an",
"interval",
"if",
"no",
"interval",
"is",
"found",
"nothing",
"happens",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L380-L389
|
[
"def",
"remove_interval",
"(",
"self",
",",
"time",
")",
":",
"if",
"self",
".",
"tier_type",
"!=",
"'IntervalTier'",
":",
"raise",
"Exception",
"(",
"'Tiertype must be IntervalTier.'",
")",
"self",
".",
"intervals",
"=",
"[",
"i",
"for",
"i",
"in",
"self",
".",
"intervals",
"if",
"not",
"(",
"i",
"[",
"0",
"]",
"<=",
"time",
"and",
"i",
"[",
"1",
"]",
">=",
"time",
")",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Tier.remove_point
|
Remove a point, if no point is found nothing happens.
:param int time: Time of the point.
:raises TierTypeException: If the tier is not a TextTier.
|
pympi/Praat.py
|
def remove_point(self, time):
"""Remove a point, if no point is found nothing happens.
:param int time: Time of the point.
:raises TierTypeException: If the tier is not a TextTier.
"""
if self.tier_type != 'TextTier':
raise Exception('Tiertype must be TextTier.')
self.intervals = [i for i in self.intervals if i[0] != time]
|
def remove_point(self, time):
"""Remove a point, if no point is found nothing happens.
:param int time: Time of the point.
:raises TierTypeException: If the tier is not a TextTier.
"""
if self.tier_type != 'TextTier':
raise Exception('Tiertype must be TextTier.')
self.intervals = [i for i in self.intervals if i[0] != time]
|
[
"Remove",
"a",
"point",
"if",
"no",
"point",
"is",
"found",
"nothing",
"happens",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L391-L399
|
[
"def",
"remove_point",
"(",
"self",
",",
"time",
")",
":",
"if",
"self",
".",
"tier_type",
"!=",
"'TextTier'",
":",
"raise",
"Exception",
"(",
"'Tiertype must be TextTier.'",
")",
"self",
".",
"intervals",
"=",
"[",
"i",
"for",
"i",
"in",
"self",
".",
"intervals",
"if",
"i",
"[",
"0",
"]",
"!=",
"time",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Tier.get_intervals
|
Give all the intervals or points.
:param bool sort: Flag for yielding the intervals or points sorted.
:yields: All the intervals
|
pympi/Praat.py
|
def get_intervals(self, sort=False):
"""Give all the intervals or points.
:param bool sort: Flag for yielding the intervals or points sorted.
:yields: All the intervals
"""
for i in sorted(self.intervals) if sort else self.intervals:
yield i
|
def get_intervals(self, sort=False):
"""Give all the intervals or points.
:param bool sort: Flag for yielding the intervals or points sorted.
:yields: All the intervals
"""
for i in sorted(self.intervals) if sort else self.intervals:
yield i
|
[
"Give",
"all",
"the",
"intervals",
"or",
"points",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L401-L408
|
[
"def",
"get_intervals",
"(",
"self",
",",
"sort",
"=",
"False",
")",
":",
"for",
"i",
"in",
"sorted",
"(",
"self",
".",
"intervals",
")",
"if",
"sort",
"else",
"self",
".",
"intervals",
":",
"yield",
"i"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Tier.get_all_intervals
|
Returns the true list of intervals including the empty intervals.
|
pympi/Praat.py
|
def get_all_intervals(self):
"""Returns the true list of intervals including the empty intervals."""
ints = sorted(self.get_intervals(True))
if self.tier_type == 'IntervalTier':
if not ints:
ints.append((self.xmin, self.xmax, ''))
else:
if ints[0][0] > self.xmin:
ints.insert(0, (self.xmin, ints[0][0], ''))
if ints[-1][1] < self.xmax:
ints.append((ints[-1][1], self.xmax, ''))
p = ints[-1]
for index, i in reversed(list(enumerate(ints[:-1], 1))):
if p[0] - i[1] != 0:
ints.insert(index, (i[1], p[0], ''))
p = i
return ints
|
def get_all_intervals(self):
"""Returns the true list of intervals including the empty intervals."""
ints = sorted(self.get_intervals(True))
if self.tier_type == 'IntervalTier':
if not ints:
ints.append((self.xmin, self.xmax, ''))
else:
if ints[0][0] > self.xmin:
ints.insert(0, (self.xmin, ints[0][0], ''))
if ints[-1][1] < self.xmax:
ints.append((ints[-1][1], self.xmax, ''))
p = ints[-1]
for index, i in reversed(list(enumerate(ints[:-1], 1))):
if p[0] - i[1] != 0:
ints.insert(index, (i[1], p[0], ''))
p = i
return ints
|
[
"Returns",
"the",
"true",
"list",
"of",
"intervals",
"including",
"the",
"empty",
"intervals",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Praat.py#L414-L430
|
[
"def",
"get_all_intervals",
"(",
"self",
")",
":",
"ints",
"=",
"sorted",
"(",
"self",
".",
"get_intervals",
"(",
"True",
")",
")",
"if",
"self",
".",
"tier_type",
"==",
"'IntervalTier'",
":",
"if",
"not",
"ints",
":",
"ints",
".",
"append",
"(",
"(",
"self",
".",
"xmin",
",",
"self",
".",
"xmax",
",",
"''",
")",
")",
"else",
":",
"if",
"ints",
"[",
"0",
"]",
"[",
"0",
"]",
">",
"self",
".",
"xmin",
":",
"ints",
".",
"insert",
"(",
"0",
",",
"(",
"self",
".",
"xmin",
",",
"ints",
"[",
"0",
"]",
"[",
"0",
"]",
",",
"''",
")",
")",
"if",
"ints",
"[",
"-",
"1",
"]",
"[",
"1",
"]",
"<",
"self",
".",
"xmax",
":",
"ints",
".",
"append",
"(",
"(",
"ints",
"[",
"-",
"1",
"]",
"[",
"1",
"]",
",",
"self",
".",
"xmax",
",",
"''",
")",
")",
"p",
"=",
"ints",
"[",
"-",
"1",
"]",
"for",
"index",
",",
"i",
"in",
"reversed",
"(",
"list",
"(",
"enumerate",
"(",
"ints",
"[",
":",
"-",
"1",
"]",
",",
"1",
")",
")",
")",
":",
"if",
"p",
"[",
"0",
"]",
"-",
"i",
"[",
"1",
"]",
"!=",
"0",
":",
"ints",
".",
"insert",
"(",
"index",
",",
"(",
"i",
"[",
"1",
"]",
",",
"p",
"[",
"0",
"]",
",",
"''",
")",
")",
"p",
"=",
"i",
"return",
"ints"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
eaf_from_chat
|
Reads a .cha file and converts it to an elan object. The functions tries
to mimic the CHAT2ELAN program that comes with the CLAN package as close as
possible. This function however converts to the latest ELAN file format
since the library is designed for it. All CHAT headers will be added as
Properties in the object and the headers that have a similar field in an
Eaf file will be added there too. The file description of chat files can be
found `here <http://childes.psy.cmu.edu/manuals/CHAT.pdf>`_.
:param str file_path: The file path of the .cha file.
:param str codec: The codec, if the @UTF8 header is present it will choose
utf-8, default is ascii. Older CHAT files don't have their encoding
embedded in a header so you will probably need to choose some obscure
ISO charset then.
:param str extension: The extension of the media file.
:throws StopIteration: If the file doesn't contain a @End header, thus
inferring the file is broken.
|
pympi/Elan.py
|
def eaf_from_chat(file_path, codec='ascii', extension='wav'):
"""Reads a .cha file and converts it to an elan object. The functions tries
to mimic the CHAT2ELAN program that comes with the CLAN package as close as
possible. This function however converts to the latest ELAN file format
since the library is designed for it. All CHAT headers will be added as
Properties in the object and the headers that have a similar field in an
Eaf file will be added there too. The file description of chat files can be
found `here <http://childes.psy.cmu.edu/manuals/CHAT.pdf>`_.
:param str file_path: The file path of the .cha file.
:param str codec: The codec, if the @UTF8 header is present it will choose
utf-8, default is ascii. Older CHAT files don't have their encoding
embedded in a header so you will probably need to choose some obscure
ISO charset then.
:param str extension: The extension of the media file.
:throws StopIteration: If the file doesn't contain a @End header, thus
inferring the file is broken.
"""
eafob = Eaf()
eafob.add_linguistic_type('parent')
eafob.add_linguistic_type(
'child', constraints='Symbolic_Association', timealignable=False)
participantsdb = {}
last_annotation = None
with open(file_path, 'r') as chatin:
while True:
line = chatin.readline().strip().decode(codec)
if line == '@UTF8': # Codec marker
codec = 'utf8'
continue
elif line == '@End': # End of file marker
break
elif line.startswith('@') and line != '@Begin': # Header marker
key, value = line.split(':\t')
eafob.add_property('{}:\t'.format(key), value)
if key == '@Languages':
for language in value.split(','):
eafob.add_language(language)
elif key == '@Participants':
for participant in value.split(','):
splits = participant.strip().split(' ')
splits = map(lambda x: x.replace('_', ' '), splits)
if len(splits) == 2:
participantsdb[splits[0]] = (None, splits[1])
elif len(splits) == 3:
participantsdb[splits[0]] = (splits[1], splits[2])
elif key == '@ID':
ids = map(lambda x: x.replace('_', ''), value.split('|'))
eafob.add_tier(ids[2], part=participantsdb[ids[2]][0],
language=ids[0])
elif key == '@Media':
media = value.split(',')
eafob.add_linked_file(
'file://{}.{}'.format(media[0], extension))
elif key == '@Transcriber:':
for tier in eafob.get_tier_names():
eafob.tiers[tier][2]['ANNOTATOR'] = value
elif line.startswith('*'): # Main tier marker
while len(line.split('\x15')) != 3:
line += chatin.readline().decode(codec).strip()
for participant in participantsdb.keys():
if line.startswith('*{}:'.format(participant)):
splits = ''.join(line.split(':')[1:]).strip()
utt, time, _ = splits.split('\x15')
time = map(int, time.split('_'))
last_annotation = (participant, time[0], time[1], utt)
eafob.add_annotation(*last_annotation)
elif line.startswith('%'): # Dependant tier marker
splits = line.split(':')
name = '{}_{}'.format(last_annotation[0], splits[0][1:])
if name not in eafob.get_tier_names():
eafob.add_tier(name, 'child', last_annotation[0])
eafob.add_ref_annotation(
name, last_annotation[0], sum(last_annotation[1:3])/2,
''.join(splits[1:]).strip())
return eafob
|
def eaf_from_chat(file_path, codec='ascii', extension='wav'):
"""Reads a .cha file and converts it to an elan object. The functions tries
to mimic the CHAT2ELAN program that comes with the CLAN package as close as
possible. This function however converts to the latest ELAN file format
since the library is designed for it. All CHAT headers will be added as
Properties in the object and the headers that have a similar field in an
Eaf file will be added there too. The file description of chat files can be
found `here <http://childes.psy.cmu.edu/manuals/CHAT.pdf>`_.
:param str file_path: The file path of the .cha file.
:param str codec: The codec, if the @UTF8 header is present it will choose
utf-8, default is ascii. Older CHAT files don't have their encoding
embedded in a header so you will probably need to choose some obscure
ISO charset then.
:param str extension: The extension of the media file.
:throws StopIteration: If the file doesn't contain a @End header, thus
inferring the file is broken.
"""
eafob = Eaf()
eafob.add_linguistic_type('parent')
eafob.add_linguistic_type(
'child', constraints='Symbolic_Association', timealignable=False)
participantsdb = {}
last_annotation = None
with open(file_path, 'r') as chatin:
while True:
line = chatin.readline().strip().decode(codec)
if line == '@UTF8': # Codec marker
codec = 'utf8'
continue
elif line == '@End': # End of file marker
break
elif line.startswith('@') and line != '@Begin': # Header marker
key, value = line.split(':\t')
eafob.add_property('{}:\t'.format(key), value)
if key == '@Languages':
for language in value.split(','):
eafob.add_language(language)
elif key == '@Participants':
for participant in value.split(','):
splits = participant.strip().split(' ')
splits = map(lambda x: x.replace('_', ' '), splits)
if len(splits) == 2:
participantsdb[splits[0]] = (None, splits[1])
elif len(splits) == 3:
participantsdb[splits[0]] = (splits[1], splits[2])
elif key == '@ID':
ids = map(lambda x: x.replace('_', ''), value.split('|'))
eafob.add_tier(ids[2], part=participantsdb[ids[2]][0],
language=ids[0])
elif key == '@Media':
media = value.split(',')
eafob.add_linked_file(
'file://{}.{}'.format(media[0], extension))
elif key == '@Transcriber:':
for tier in eafob.get_tier_names():
eafob.tiers[tier][2]['ANNOTATOR'] = value
elif line.startswith('*'): # Main tier marker
while len(line.split('\x15')) != 3:
line += chatin.readline().decode(codec).strip()
for participant in participantsdb.keys():
if line.startswith('*{}:'.format(participant)):
splits = ''.join(line.split(':')[1:]).strip()
utt, time, _ = splits.split('\x15')
time = map(int, time.split('_'))
last_annotation = (participant, time[0], time[1], utt)
eafob.add_annotation(*last_annotation)
elif line.startswith('%'): # Dependant tier marker
splits = line.split(':')
name = '{}_{}'.format(last_annotation[0], splits[0][1:])
if name not in eafob.get_tier_names():
eafob.add_tier(name, 'child', last_annotation[0])
eafob.add_ref_annotation(
name, last_annotation[0], sum(last_annotation[1:3])/2,
''.join(splits[1:]).strip())
return eafob
|
[
"Reads",
"a",
".",
"cha",
"file",
"and",
"converts",
"it",
"to",
"an",
"elan",
"object",
".",
"The",
"functions",
"tries",
"to",
"mimic",
"the",
"CHAT2ELAN",
"program",
"that",
"comes",
"with",
"the",
"CLAN",
"package",
"as",
"close",
"as",
"possible",
".",
"This",
"function",
"however",
"converts",
"to",
"the",
"latest",
"ELAN",
"file",
"format",
"since",
"the",
"library",
"is",
"designed",
"for",
"it",
".",
"All",
"CHAT",
"headers",
"will",
"be",
"added",
"as",
"Properties",
"in",
"the",
"object",
"and",
"the",
"headers",
"that",
"have",
"a",
"similar",
"field",
"in",
"an",
"Eaf",
"file",
"will",
"be",
"added",
"there",
"too",
".",
"The",
"file",
"description",
"of",
"chat",
"files",
"can",
"be",
"found",
"here",
"<http",
":",
"//",
"childes",
".",
"psy",
".",
"cmu",
".",
"edu",
"/",
"manuals",
"/",
"CHAT",
".",
"pdf",
">",
"_",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L1358-L1433
|
[
"def",
"eaf_from_chat",
"(",
"file_path",
",",
"codec",
"=",
"'ascii'",
",",
"extension",
"=",
"'wav'",
")",
":",
"eafob",
"=",
"Eaf",
"(",
")",
"eafob",
".",
"add_linguistic_type",
"(",
"'parent'",
")",
"eafob",
".",
"add_linguistic_type",
"(",
"'child'",
",",
"constraints",
"=",
"'Symbolic_Association'",
",",
"timealignable",
"=",
"False",
")",
"participantsdb",
"=",
"{",
"}",
"last_annotation",
"=",
"None",
"with",
"open",
"(",
"file_path",
",",
"'r'",
")",
"as",
"chatin",
":",
"while",
"True",
":",
"line",
"=",
"chatin",
".",
"readline",
"(",
")",
".",
"strip",
"(",
")",
".",
"decode",
"(",
"codec",
")",
"if",
"line",
"==",
"'@UTF8'",
":",
"# Codec marker",
"codec",
"=",
"'utf8'",
"continue",
"elif",
"line",
"==",
"'@End'",
":",
"# End of file marker",
"break",
"elif",
"line",
".",
"startswith",
"(",
"'@'",
")",
"and",
"line",
"!=",
"'@Begin'",
":",
"# Header marker",
"key",
",",
"value",
"=",
"line",
".",
"split",
"(",
"':\\t'",
")",
"eafob",
".",
"add_property",
"(",
"'{}:\\t'",
".",
"format",
"(",
"key",
")",
",",
"value",
")",
"if",
"key",
"==",
"'@Languages'",
":",
"for",
"language",
"in",
"value",
".",
"split",
"(",
"','",
")",
":",
"eafob",
".",
"add_language",
"(",
"language",
")",
"elif",
"key",
"==",
"'@Participants'",
":",
"for",
"participant",
"in",
"value",
".",
"split",
"(",
"','",
")",
":",
"splits",
"=",
"participant",
".",
"strip",
"(",
")",
".",
"split",
"(",
"' '",
")",
"splits",
"=",
"map",
"(",
"lambda",
"x",
":",
"x",
".",
"replace",
"(",
"'_'",
",",
"' '",
")",
",",
"splits",
")",
"if",
"len",
"(",
"splits",
")",
"==",
"2",
":",
"participantsdb",
"[",
"splits",
"[",
"0",
"]",
"]",
"=",
"(",
"None",
",",
"splits",
"[",
"1",
"]",
")",
"elif",
"len",
"(",
"splits",
")",
"==",
"3",
":",
"participantsdb",
"[",
"splits",
"[",
"0",
"]",
"]",
"=",
"(",
"splits",
"[",
"1",
"]",
",",
"splits",
"[",
"2",
"]",
")",
"elif",
"key",
"==",
"'@ID'",
":",
"ids",
"=",
"map",
"(",
"lambda",
"x",
":",
"x",
".",
"replace",
"(",
"'_'",
",",
"''",
")",
",",
"value",
".",
"split",
"(",
"'|'",
")",
")",
"eafob",
".",
"add_tier",
"(",
"ids",
"[",
"2",
"]",
",",
"part",
"=",
"participantsdb",
"[",
"ids",
"[",
"2",
"]",
"]",
"[",
"0",
"]",
",",
"language",
"=",
"ids",
"[",
"0",
"]",
")",
"elif",
"key",
"==",
"'@Media'",
":",
"media",
"=",
"value",
".",
"split",
"(",
"','",
")",
"eafob",
".",
"add_linked_file",
"(",
"'file://{}.{}'",
".",
"format",
"(",
"media",
"[",
"0",
"]",
",",
"extension",
")",
")",
"elif",
"key",
"==",
"'@Transcriber:'",
":",
"for",
"tier",
"in",
"eafob",
".",
"get_tier_names",
"(",
")",
":",
"eafob",
".",
"tiers",
"[",
"tier",
"]",
"[",
"2",
"]",
"[",
"'ANNOTATOR'",
"]",
"=",
"value",
"elif",
"line",
".",
"startswith",
"(",
"'*'",
")",
":",
"# Main tier marker",
"while",
"len",
"(",
"line",
".",
"split",
"(",
"'\\x15'",
")",
")",
"!=",
"3",
":",
"line",
"+=",
"chatin",
".",
"readline",
"(",
")",
".",
"decode",
"(",
"codec",
")",
".",
"strip",
"(",
")",
"for",
"participant",
"in",
"participantsdb",
".",
"keys",
"(",
")",
":",
"if",
"line",
".",
"startswith",
"(",
"'*{}:'",
".",
"format",
"(",
"participant",
")",
")",
":",
"splits",
"=",
"''",
".",
"join",
"(",
"line",
".",
"split",
"(",
"':'",
")",
"[",
"1",
":",
"]",
")",
".",
"strip",
"(",
")",
"utt",
",",
"time",
",",
"_",
"=",
"splits",
".",
"split",
"(",
"'\\x15'",
")",
"time",
"=",
"map",
"(",
"int",
",",
"time",
".",
"split",
"(",
"'_'",
")",
")",
"last_annotation",
"=",
"(",
"participant",
",",
"time",
"[",
"0",
"]",
",",
"time",
"[",
"1",
"]",
",",
"utt",
")",
"eafob",
".",
"add_annotation",
"(",
"*",
"last_annotation",
")",
"elif",
"line",
".",
"startswith",
"(",
"'%'",
")",
":",
"# Dependant tier marker",
"splits",
"=",
"line",
".",
"split",
"(",
"':'",
")",
"name",
"=",
"'{}_{}'",
".",
"format",
"(",
"last_annotation",
"[",
"0",
"]",
",",
"splits",
"[",
"0",
"]",
"[",
"1",
":",
"]",
")",
"if",
"name",
"not",
"in",
"eafob",
".",
"get_tier_names",
"(",
")",
":",
"eafob",
".",
"add_tier",
"(",
"name",
",",
"'child'",
",",
"last_annotation",
"[",
"0",
"]",
")",
"eafob",
".",
"add_ref_annotation",
"(",
"name",
",",
"last_annotation",
"[",
"0",
"]",
",",
"sum",
"(",
"last_annotation",
"[",
"1",
":",
"3",
"]",
")",
"/",
"2",
",",
"''",
".",
"join",
"(",
"splits",
"[",
"1",
":",
"]",
")",
".",
"strip",
"(",
")",
")",
"return",
"eafob"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
parse_eaf
|
Parse an EAF file
:param str file_path: Path to read from, - for stdin.
:param pympi.Elan.Eaf eaf_obj: Existing EAF object to put the data in.
:returns: EAF object.
|
pympi/Elan.py
|
def parse_eaf(file_path, eaf_obj):
"""Parse an EAF file
:param str file_path: Path to read from, - for stdin.
:param pympi.Elan.Eaf eaf_obj: Existing EAF object to put the data in.
:returns: EAF object.
"""
if file_path == '-':
file_path = sys.stdin
# Annotation document
try:
tree_root = etree.parse(file_path).getroot()
except etree.ParseError:
raise Exception('Unable to parse eaf, can you open it in ELAN?')
if tree_root.attrib['VERSION'] not in ['2.8', '2.7']:
sys.stdout.write('Parsing unknown version of ELAN spec... '
'This could result in errors...\n')
eaf_obj.adocument.update(tree_root.attrib)
del(eaf_obj.adocument['{http://www.w3.org/2001/XMLSchema-instance}noNamesp'
'aceSchemaLocation'])
tier_number = 0
for elem in tree_root:
# Licence
if elem.tag == 'LICENSE':
eaf_obj.licenses.append((elem.text, elem.attrib['LICENSE_URL']))
# Header
if elem.tag == 'HEADER':
eaf_obj.header.update(elem.attrib)
for elem1 in elem:
if elem1.tag == 'MEDIA_DESCRIPTOR':
eaf_obj.media_descriptors.append(elem1.attrib)
elif elem1.tag == 'LINKED_FILE_DESCRIPTOR':
eaf_obj.linked_file_descriptors.append(elem1.attrib)
elif elem1.tag == 'PROPERTY':
eaf_obj.properties.append(
(elem1.attrib['NAME'], elem1.text))
# Time order
elif elem.tag == 'TIME_ORDER':
for elem1 in elem:
tsid = elem1.attrib['TIME_SLOT_ID']
tsnum = int(''.join(filter(str.isdigit, tsid)))
if tsnum and tsnum > eaf_obj.maxts:
eaf_obj.maxts = tsnum
ts = elem1.attrib.get('TIME_VALUE', None)
eaf_obj.timeslots[tsid] = ts if ts is None else int(ts)
# Tier
elif elem.tag == 'TIER':
tier_id = elem.attrib['TIER_ID']
align = {}
ref = {}
for elem1 in elem:
if elem1.tag == 'ANNOTATION':
for elem2 in elem1:
if elem2.tag == 'ALIGNABLE_ANNOTATION':
annot_id = elem2.attrib['ANNOTATION_ID']
annot_num = int(''.join(
filter(str.isdigit, annot_id)))
if annot_num and annot_num > eaf_obj.maxaid:
eaf_obj.maxaid = annot_num
annot_start = elem2.attrib['TIME_SLOT_REF1']
annot_end = elem2.attrib['TIME_SLOT_REF2']
svg_ref = elem2.attrib.get('SVG_REF', None)
align[annot_id] = (annot_start, annot_end,
'' if not list(elem2)[0].text
else list(elem2)[0].text,
svg_ref)
eaf_obj.annotations[annot_id] = tier_id
elif elem2.tag == 'REF_ANNOTATION':
annot_ref = elem2.attrib['ANNOTATION_REF']
previous = elem2.attrib.get('PREVIOUS_ANNOTATION',
None)
annot_id = elem2.attrib['ANNOTATION_ID']
annot_num = int(''.join(
filter(str.isdigit, annot_id)))
if annot_num and annot_num > eaf_obj.maxaid:
eaf_obj.maxaid = annot_num
svg_ref = elem2.attrib.get('SVG_REF', None)
ref[annot_id] = (annot_ref,
'' if not list(elem2)[0].text else
list(elem2)[0].text,
previous, svg_ref)
eaf_obj.annotations[annot_id] = tier_id
eaf_obj.tiers[tier_id] = (align, ref, elem.attrib, tier_number)
tier_number += 1
# Linguistic type
elif elem.tag == 'LINGUISTIC_TYPE':
eaf_obj.linguistic_types[elem.attrib['LINGUISTIC_TYPE_ID']] =\
elem.attrib
# Locale
elif elem.tag == 'LOCALE':
eaf_obj.locales[elem.attrib['LANGUAGE_CODE']] =\
(elem.attrib.get('COUNTRY_CODE', None),
elem.attrib.get('VARIANT', None))
# Language
elif elem.tag == 'LANGUAGE':
eaf_obj.languages[elem.attrib['LANG_ID']] =\
(elem.attrib.get('LANG_DEF', None),
elem.attrib.get('LANG_LABEL', None))
# Constraint
elif elem.tag == 'CONSTRAINT':
eaf_obj.constraints[elem.attrib['STEREOTYPE']] =\
elem.attrib['DESCRIPTION']
# Controlled vocabulary
elif elem.tag == 'CONTROLLED_VOCABULARY':
cv_id = elem.attrib['CV_ID']
ext_ref = elem.attrib.get('EXT_REF', None)
descriptions = []
if 'DESCRIPTION' in elem.attrib:
eaf_obj.languages['und'] = (
'http://cdb.iso.org/lg/CDB-00130975-001',
'undetermined (und)')
descriptions.append(('und', elem.attrib['DESCRIPTION']))
entries = {}
for elem1 in elem:
if elem1.tag == 'DESCRIPTION':
descriptions.append((elem1.attrib['LANG_REF'], elem1.text))
elif elem1.tag == 'CV_ENTRY':
cve_value = (elem1.text, 'und',
elem1.get('DESCRIPTION', None))
entries['cveid{}'.format(len(entries))] = \
([cve_value], elem1.attrib.get('EXT_REF', None))
elif elem1.tag == 'CV_ENTRY_ML':
cem_ext_ref = elem1.attrib.get('EXT_REF', None)
cve_id = elem1.attrib['CVE_ID']
cve_values = []
for elem2 in elem1:
if elem2.tag == 'CVE_VALUE':
cve_values.append((elem2.text,
elem2.attrib['LANG_REF'],
elem2.get('DESCRIPTION', None)))
entries[cve_id] = (cve_values, cem_ext_ref)
eaf_obj.controlled_vocabularies[cv_id] =\
(descriptions, entries, ext_ref)
# Lexicon ref
elif elem.tag == 'LEXICON_REF':
eaf_obj.lexicon_refs[elem.attrib['LEX_REF_ID']] = elem.attrib
# External ref
elif elem.tag == 'EXTERNAL_REF':
eaf_obj.external_refs[elem.attrib['EXT_REF_ID']] = (
elem.attrib['TYPE'], elem.attrib['VALUE'])
|
def parse_eaf(file_path, eaf_obj):
"""Parse an EAF file
:param str file_path: Path to read from, - for stdin.
:param pympi.Elan.Eaf eaf_obj: Existing EAF object to put the data in.
:returns: EAF object.
"""
if file_path == '-':
file_path = sys.stdin
# Annotation document
try:
tree_root = etree.parse(file_path).getroot()
except etree.ParseError:
raise Exception('Unable to parse eaf, can you open it in ELAN?')
if tree_root.attrib['VERSION'] not in ['2.8', '2.7']:
sys.stdout.write('Parsing unknown version of ELAN spec... '
'This could result in errors...\n')
eaf_obj.adocument.update(tree_root.attrib)
del(eaf_obj.adocument['{http://www.w3.org/2001/XMLSchema-instance}noNamesp'
'aceSchemaLocation'])
tier_number = 0
for elem in tree_root:
# Licence
if elem.tag == 'LICENSE':
eaf_obj.licenses.append((elem.text, elem.attrib['LICENSE_URL']))
# Header
if elem.tag == 'HEADER':
eaf_obj.header.update(elem.attrib)
for elem1 in elem:
if elem1.tag == 'MEDIA_DESCRIPTOR':
eaf_obj.media_descriptors.append(elem1.attrib)
elif elem1.tag == 'LINKED_FILE_DESCRIPTOR':
eaf_obj.linked_file_descriptors.append(elem1.attrib)
elif elem1.tag == 'PROPERTY':
eaf_obj.properties.append(
(elem1.attrib['NAME'], elem1.text))
# Time order
elif elem.tag == 'TIME_ORDER':
for elem1 in elem:
tsid = elem1.attrib['TIME_SLOT_ID']
tsnum = int(''.join(filter(str.isdigit, tsid)))
if tsnum and tsnum > eaf_obj.maxts:
eaf_obj.maxts = tsnum
ts = elem1.attrib.get('TIME_VALUE', None)
eaf_obj.timeslots[tsid] = ts if ts is None else int(ts)
# Tier
elif elem.tag == 'TIER':
tier_id = elem.attrib['TIER_ID']
align = {}
ref = {}
for elem1 in elem:
if elem1.tag == 'ANNOTATION':
for elem2 in elem1:
if elem2.tag == 'ALIGNABLE_ANNOTATION':
annot_id = elem2.attrib['ANNOTATION_ID']
annot_num = int(''.join(
filter(str.isdigit, annot_id)))
if annot_num and annot_num > eaf_obj.maxaid:
eaf_obj.maxaid = annot_num
annot_start = elem2.attrib['TIME_SLOT_REF1']
annot_end = elem2.attrib['TIME_SLOT_REF2']
svg_ref = elem2.attrib.get('SVG_REF', None)
align[annot_id] = (annot_start, annot_end,
'' if not list(elem2)[0].text
else list(elem2)[0].text,
svg_ref)
eaf_obj.annotations[annot_id] = tier_id
elif elem2.tag == 'REF_ANNOTATION':
annot_ref = elem2.attrib['ANNOTATION_REF']
previous = elem2.attrib.get('PREVIOUS_ANNOTATION',
None)
annot_id = elem2.attrib['ANNOTATION_ID']
annot_num = int(''.join(
filter(str.isdigit, annot_id)))
if annot_num and annot_num > eaf_obj.maxaid:
eaf_obj.maxaid = annot_num
svg_ref = elem2.attrib.get('SVG_REF', None)
ref[annot_id] = (annot_ref,
'' if not list(elem2)[0].text else
list(elem2)[0].text,
previous, svg_ref)
eaf_obj.annotations[annot_id] = tier_id
eaf_obj.tiers[tier_id] = (align, ref, elem.attrib, tier_number)
tier_number += 1
# Linguistic type
elif elem.tag == 'LINGUISTIC_TYPE':
eaf_obj.linguistic_types[elem.attrib['LINGUISTIC_TYPE_ID']] =\
elem.attrib
# Locale
elif elem.tag == 'LOCALE':
eaf_obj.locales[elem.attrib['LANGUAGE_CODE']] =\
(elem.attrib.get('COUNTRY_CODE', None),
elem.attrib.get('VARIANT', None))
# Language
elif elem.tag == 'LANGUAGE':
eaf_obj.languages[elem.attrib['LANG_ID']] =\
(elem.attrib.get('LANG_DEF', None),
elem.attrib.get('LANG_LABEL', None))
# Constraint
elif elem.tag == 'CONSTRAINT':
eaf_obj.constraints[elem.attrib['STEREOTYPE']] =\
elem.attrib['DESCRIPTION']
# Controlled vocabulary
elif elem.tag == 'CONTROLLED_VOCABULARY':
cv_id = elem.attrib['CV_ID']
ext_ref = elem.attrib.get('EXT_REF', None)
descriptions = []
if 'DESCRIPTION' in elem.attrib:
eaf_obj.languages['und'] = (
'http://cdb.iso.org/lg/CDB-00130975-001',
'undetermined (und)')
descriptions.append(('und', elem.attrib['DESCRIPTION']))
entries = {}
for elem1 in elem:
if elem1.tag == 'DESCRIPTION':
descriptions.append((elem1.attrib['LANG_REF'], elem1.text))
elif elem1.tag == 'CV_ENTRY':
cve_value = (elem1.text, 'und',
elem1.get('DESCRIPTION', None))
entries['cveid{}'.format(len(entries))] = \
([cve_value], elem1.attrib.get('EXT_REF', None))
elif elem1.tag == 'CV_ENTRY_ML':
cem_ext_ref = elem1.attrib.get('EXT_REF', None)
cve_id = elem1.attrib['CVE_ID']
cve_values = []
for elem2 in elem1:
if elem2.tag == 'CVE_VALUE':
cve_values.append((elem2.text,
elem2.attrib['LANG_REF'],
elem2.get('DESCRIPTION', None)))
entries[cve_id] = (cve_values, cem_ext_ref)
eaf_obj.controlled_vocabularies[cv_id] =\
(descriptions, entries, ext_ref)
# Lexicon ref
elif elem.tag == 'LEXICON_REF':
eaf_obj.lexicon_refs[elem.attrib['LEX_REF_ID']] = elem.attrib
# External ref
elif elem.tag == 'EXTERNAL_REF':
eaf_obj.external_refs[elem.attrib['EXT_REF_ID']] = (
elem.attrib['TYPE'], elem.attrib['VALUE'])
|
[
"Parse",
"an",
"EAF",
"file"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L1436-L1577
|
[
"def",
"parse_eaf",
"(",
"file_path",
",",
"eaf_obj",
")",
":",
"if",
"file_path",
"==",
"'-'",
":",
"file_path",
"=",
"sys",
".",
"stdin",
"# Annotation document",
"try",
":",
"tree_root",
"=",
"etree",
".",
"parse",
"(",
"file_path",
")",
".",
"getroot",
"(",
")",
"except",
"etree",
".",
"ParseError",
":",
"raise",
"Exception",
"(",
"'Unable to parse eaf, can you open it in ELAN?'",
")",
"if",
"tree_root",
".",
"attrib",
"[",
"'VERSION'",
"]",
"not",
"in",
"[",
"'2.8'",
",",
"'2.7'",
"]",
":",
"sys",
".",
"stdout",
".",
"write",
"(",
"'Parsing unknown version of ELAN spec... '",
"'This could result in errors...\\n'",
")",
"eaf_obj",
".",
"adocument",
".",
"update",
"(",
"tree_root",
".",
"attrib",
")",
"del",
"(",
"eaf_obj",
".",
"adocument",
"[",
"'{http://www.w3.org/2001/XMLSchema-instance}noNamesp'",
"'aceSchemaLocation'",
"]",
")",
"tier_number",
"=",
"0",
"for",
"elem",
"in",
"tree_root",
":",
"# Licence",
"if",
"elem",
".",
"tag",
"==",
"'LICENSE'",
":",
"eaf_obj",
".",
"licenses",
".",
"append",
"(",
"(",
"elem",
".",
"text",
",",
"elem",
".",
"attrib",
"[",
"'LICENSE_URL'",
"]",
")",
")",
"# Header",
"if",
"elem",
".",
"tag",
"==",
"'HEADER'",
":",
"eaf_obj",
".",
"header",
".",
"update",
"(",
"elem",
".",
"attrib",
")",
"for",
"elem1",
"in",
"elem",
":",
"if",
"elem1",
".",
"tag",
"==",
"'MEDIA_DESCRIPTOR'",
":",
"eaf_obj",
".",
"media_descriptors",
".",
"append",
"(",
"elem1",
".",
"attrib",
")",
"elif",
"elem1",
".",
"tag",
"==",
"'LINKED_FILE_DESCRIPTOR'",
":",
"eaf_obj",
".",
"linked_file_descriptors",
".",
"append",
"(",
"elem1",
".",
"attrib",
")",
"elif",
"elem1",
".",
"tag",
"==",
"'PROPERTY'",
":",
"eaf_obj",
".",
"properties",
".",
"append",
"(",
"(",
"elem1",
".",
"attrib",
"[",
"'NAME'",
"]",
",",
"elem1",
".",
"text",
")",
")",
"# Time order",
"elif",
"elem",
".",
"tag",
"==",
"'TIME_ORDER'",
":",
"for",
"elem1",
"in",
"elem",
":",
"tsid",
"=",
"elem1",
".",
"attrib",
"[",
"'TIME_SLOT_ID'",
"]",
"tsnum",
"=",
"int",
"(",
"''",
".",
"join",
"(",
"filter",
"(",
"str",
".",
"isdigit",
",",
"tsid",
")",
")",
")",
"if",
"tsnum",
"and",
"tsnum",
">",
"eaf_obj",
".",
"maxts",
":",
"eaf_obj",
".",
"maxts",
"=",
"tsnum",
"ts",
"=",
"elem1",
".",
"attrib",
".",
"get",
"(",
"'TIME_VALUE'",
",",
"None",
")",
"eaf_obj",
".",
"timeslots",
"[",
"tsid",
"]",
"=",
"ts",
"if",
"ts",
"is",
"None",
"else",
"int",
"(",
"ts",
")",
"# Tier",
"elif",
"elem",
".",
"tag",
"==",
"'TIER'",
":",
"tier_id",
"=",
"elem",
".",
"attrib",
"[",
"'TIER_ID'",
"]",
"align",
"=",
"{",
"}",
"ref",
"=",
"{",
"}",
"for",
"elem1",
"in",
"elem",
":",
"if",
"elem1",
".",
"tag",
"==",
"'ANNOTATION'",
":",
"for",
"elem2",
"in",
"elem1",
":",
"if",
"elem2",
".",
"tag",
"==",
"'ALIGNABLE_ANNOTATION'",
":",
"annot_id",
"=",
"elem2",
".",
"attrib",
"[",
"'ANNOTATION_ID'",
"]",
"annot_num",
"=",
"int",
"(",
"''",
".",
"join",
"(",
"filter",
"(",
"str",
".",
"isdigit",
",",
"annot_id",
")",
")",
")",
"if",
"annot_num",
"and",
"annot_num",
">",
"eaf_obj",
".",
"maxaid",
":",
"eaf_obj",
".",
"maxaid",
"=",
"annot_num",
"annot_start",
"=",
"elem2",
".",
"attrib",
"[",
"'TIME_SLOT_REF1'",
"]",
"annot_end",
"=",
"elem2",
".",
"attrib",
"[",
"'TIME_SLOT_REF2'",
"]",
"svg_ref",
"=",
"elem2",
".",
"attrib",
".",
"get",
"(",
"'SVG_REF'",
",",
"None",
")",
"align",
"[",
"annot_id",
"]",
"=",
"(",
"annot_start",
",",
"annot_end",
",",
"''",
"if",
"not",
"list",
"(",
"elem2",
")",
"[",
"0",
"]",
".",
"text",
"else",
"list",
"(",
"elem2",
")",
"[",
"0",
"]",
".",
"text",
",",
"svg_ref",
")",
"eaf_obj",
".",
"annotations",
"[",
"annot_id",
"]",
"=",
"tier_id",
"elif",
"elem2",
".",
"tag",
"==",
"'REF_ANNOTATION'",
":",
"annot_ref",
"=",
"elem2",
".",
"attrib",
"[",
"'ANNOTATION_REF'",
"]",
"previous",
"=",
"elem2",
".",
"attrib",
".",
"get",
"(",
"'PREVIOUS_ANNOTATION'",
",",
"None",
")",
"annot_id",
"=",
"elem2",
".",
"attrib",
"[",
"'ANNOTATION_ID'",
"]",
"annot_num",
"=",
"int",
"(",
"''",
".",
"join",
"(",
"filter",
"(",
"str",
".",
"isdigit",
",",
"annot_id",
")",
")",
")",
"if",
"annot_num",
"and",
"annot_num",
">",
"eaf_obj",
".",
"maxaid",
":",
"eaf_obj",
".",
"maxaid",
"=",
"annot_num",
"svg_ref",
"=",
"elem2",
".",
"attrib",
".",
"get",
"(",
"'SVG_REF'",
",",
"None",
")",
"ref",
"[",
"annot_id",
"]",
"=",
"(",
"annot_ref",
",",
"''",
"if",
"not",
"list",
"(",
"elem2",
")",
"[",
"0",
"]",
".",
"text",
"else",
"list",
"(",
"elem2",
")",
"[",
"0",
"]",
".",
"text",
",",
"previous",
",",
"svg_ref",
")",
"eaf_obj",
".",
"annotations",
"[",
"annot_id",
"]",
"=",
"tier_id",
"eaf_obj",
".",
"tiers",
"[",
"tier_id",
"]",
"=",
"(",
"align",
",",
"ref",
",",
"elem",
".",
"attrib",
",",
"tier_number",
")",
"tier_number",
"+=",
"1",
"# Linguistic type",
"elif",
"elem",
".",
"tag",
"==",
"'LINGUISTIC_TYPE'",
":",
"eaf_obj",
".",
"linguistic_types",
"[",
"elem",
".",
"attrib",
"[",
"'LINGUISTIC_TYPE_ID'",
"]",
"]",
"=",
"elem",
".",
"attrib",
"# Locale",
"elif",
"elem",
".",
"tag",
"==",
"'LOCALE'",
":",
"eaf_obj",
".",
"locales",
"[",
"elem",
".",
"attrib",
"[",
"'LANGUAGE_CODE'",
"]",
"]",
"=",
"(",
"elem",
".",
"attrib",
".",
"get",
"(",
"'COUNTRY_CODE'",
",",
"None",
")",
",",
"elem",
".",
"attrib",
".",
"get",
"(",
"'VARIANT'",
",",
"None",
")",
")",
"# Language",
"elif",
"elem",
".",
"tag",
"==",
"'LANGUAGE'",
":",
"eaf_obj",
".",
"languages",
"[",
"elem",
".",
"attrib",
"[",
"'LANG_ID'",
"]",
"]",
"=",
"(",
"elem",
".",
"attrib",
".",
"get",
"(",
"'LANG_DEF'",
",",
"None",
")",
",",
"elem",
".",
"attrib",
".",
"get",
"(",
"'LANG_LABEL'",
",",
"None",
")",
")",
"# Constraint",
"elif",
"elem",
".",
"tag",
"==",
"'CONSTRAINT'",
":",
"eaf_obj",
".",
"constraints",
"[",
"elem",
".",
"attrib",
"[",
"'STEREOTYPE'",
"]",
"]",
"=",
"elem",
".",
"attrib",
"[",
"'DESCRIPTION'",
"]",
"# Controlled vocabulary",
"elif",
"elem",
".",
"tag",
"==",
"'CONTROLLED_VOCABULARY'",
":",
"cv_id",
"=",
"elem",
".",
"attrib",
"[",
"'CV_ID'",
"]",
"ext_ref",
"=",
"elem",
".",
"attrib",
".",
"get",
"(",
"'EXT_REF'",
",",
"None",
")",
"descriptions",
"=",
"[",
"]",
"if",
"'DESCRIPTION'",
"in",
"elem",
".",
"attrib",
":",
"eaf_obj",
".",
"languages",
"[",
"'und'",
"]",
"=",
"(",
"'http://cdb.iso.org/lg/CDB-00130975-001'",
",",
"'undetermined (und)'",
")",
"descriptions",
".",
"append",
"(",
"(",
"'und'",
",",
"elem",
".",
"attrib",
"[",
"'DESCRIPTION'",
"]",
")",
")",
"entries",
"=",
"{",
"}",
"for",
"elem1",
"in",
"elem",
":",
"if",
"elem1",
".",
"tag",
"==",
"'DESCRIPTION'",
":",
"descriptions",
".",
"append",
"(",
"(",
"elem1",
".",
"attrib",
"[",
"'LANG_REF'",
"]",
",",
"elem1",
".",
"text",
")",
")",
"elif",
"elem1",
".",
"tag",
"==",
"'CV_ENTRY'",
":",
"cve_value",
"=",
"(",
"elem1",
".",
"text",
",",
"'und'",
",",
"elem1",
".",
"get",
"(",
"'DESCRIPTION'",
",",
"None",
")",
")",
"entries",
"[",
"'cveid{}'",
".",
"format",
"(",
"len",
"(",
"entries",
")",
")",
"]",
"=",
"(",
"[",
"cve_value",
"]",
",",
"elem1",
".",
"attrib",
".",
"get",
"(",
"'EXT_REF'",
",",
"None",
")",
")",
"elif",
"elem1",
".",
"tag",
"==",
"'CV_ENTRY_ML'",
":",
"cem_ext_ref",
"=",
"elem1",
".",
"attrib",
".",
"get",
"(",
"'EXT_REF'",
",",
"None",
")",
"cve_id",
"=",
"elem1",
".",
"attrib",
"[",
"'CVE_ID'",
"]",
"cve_values",
"=",
"[",
"]",
"for",
"elem2",
"in",
"elem1",
":",
"if",
"elem2",
".",
"tag",
"==",
"'CVE_VALUE'",
":",
"cve_values",
".",
"append",
"(",
"(",
"elem2",
".",
"text",
",",
"elem2",
".",
"attrib",
"[",
"'LANG_REF'",
"]",
",",
"elem2",
".",
"get",
"(",
"'DESCRIPTION'",
",",
"None",
")",
")",
")",
"entries",
"[",
"cve_id",
"]",
"=",
"(",
"cve_values",
",",
"cem_ext_ref",
")",
"eaf_obj",
".",
"controlled_vocabularies",
"[",
"cv_id",
"]",
"=",
"(",
"descriptions",
",",
"entries",
",",
"ext_ref",
")",
"# Lexicon ref",
"elif",
"elem",
".",
"tag",
"==",
"'LEXICON_REF'",
":",
"eaf_obj",
".",
"lexicon_refs",
"[",
"elem",
".",
"attrib",
"[",
"'LEX_REF_ID'",
"]",
"]",
"=",
"elem",
".",
"attrib",
"# External ref",
"elif",
"elem",
".",
"tag",
"==",
"'EXTERNAL_REF'",
":",
"eaf_obj",
".",
"external_refs",
"[",
"elem",
".",
"attrib",
"[",
"'EXT_REF_ID'",
"]",
"]",
"=",
"(",
"elem",
".",
"attrib",
"[",
"'TYPE'",
"]",
",",
"elem",
".",
"attrib",
"[",
"'VALUE'",
"]",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
indent
|
Function to pretty print the xml, meaning adding tabs and newlines.
:param ElementTree.Element el: Current element.
:param int level: Current level.
|
pympi/Elan.py
|
def indent(el, level=0):
"""Function to pretty print the xml, meaning adding tabs and newlines.
:param ElementTree.Element el: Current element.
:param int level: Current level.
"""
i = '\n' + level * '\t'
if len(el):
if not el.text or not el.text.strip():
el.text = i+'\t'
if not el.tail or not el.tail.strip():
el.tail = i
for elem in el:
indent(elem, level+1)
if not el.tail or not el.tail.strip():
el.tail = i
else:
if level and (not el.tail or not el.tail.strip()):
el.tail = i
|
def indent(el, level=0):
"""Function to pretty print the xml, meaning adding tabs and newlines.
:param ElementTree.Element el: Current element.
:param int level: Current level.
"""
i = '\n' + level * '\t'
if len(el):
if not el.text or not el.text.strip():
el.text = i+'\t'
if not el.tail or not el.tail.strip():
el.tail = i
for elem in el:
indent(elem, level+1)
if not el.tail or not el.tail.strip():
el.tail = i
else:
if level and (not el.tail or not el.tail.strip()):
el.tail = i
|
[
"Function",
"to",
"pretty",
"print",
"the",
"xml",
"meaning",
"adding",
"tabs",
"and",
"newlines",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L1580-L1598
|
[
"def",
"indent",
"(",
"el",
",",
"level",
"=",
"0",
")",
":",
"i",
"=",
"'\\n'",
"+",
"level",
"*",
"'\\t'",
"if",
"len",
"(",
"el",
")",
":",
"if",
"not",
"el",
".",
"text",
"or",
"not",
"el",
".",
"text",
".",
"strip",
"(",
")",
":",
"el",
".",
"text",
"=",
"i",
"+",
"'\\t'",
"if",
"not",
"el",
".",
"tail",
"or",
"not",
"el",
".",
"tail",
".",
"strip",
"(",
")",
":",
"el",
".",
"tail",
"=",
"i",
"for",
"elem",
"in",
"el",
":",
"indent",
"(",
"elem",
",",
"level",
"+",
"1",
")",
"if",
"not",
"el",
".",
"tail",
"or",
"not",
"el",
".",
"tail",
".",
"strip",
"(",
")",
":",
"el",
".",
"tail",
"=",
"i",
"else",
":",
"if",
"level",
"and",
"(",
"not",
"el",
".",
"tail",
"or",
"not",
"el",
".",
"tail",
".",
"strip",
"(",
")",
")",
":",
"el",
".",
"tail",
"=",
"i"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
to_eaf
|
Write an Eaf object to file.
:param str file_path: Filepath to write to, - for stdout.
:param pympi.Elan.Eaf eaf_obj: Object to write.
:param bool pretty: Flag to set pretty printing.
|
pympi/Elan.py
|
def to_eaf(file_path, eaf_obj, pretty=True):
"""Write an Eaf object to file.
:param str file_path: Filepath to write to, - for stdout.
:param pympi.Elan.Eaf eaf_obj: Object to write.
:param bool pretty: Flag to set pretty printing.
"""
def rm_none(x):
try: # Ugly hack to test if s is a string in py3 and py2
basestring
def isstr(s):
return isinstance(s, basestring)
except NameError:
def isstr(s):
return isinstance(s, str)
return {k: v if isstr(v) else str(v) for k, v in x.items()
if v is not None}
# Annotation Document
ADOCUMENT = etree.Element('ANNOTATION_DOCUMENT', eaf_obj.adocument)
# Licence
for m in eaf_obj.licenses:
n = etree.SubElement(ADOCUMENT, 'LICENSE', {'LICENSE_URL': m[1]})
n.text = m[0]
# Header
HEADER = etree.SubElement(ADOCUMENT, 'HEADER', eaf_obj.header)
# Media descriptiors
for m in eaf_obj.media_descriptors:
etree.SubElement(HEADER, 'MEDIA_DESCRIPTOR', rm_none(m))
# Linked file descriptors
for m in eaf_obj.linked_file_descriptors:
etree.SubElement(HEADER, 'LINKED_FILE_DESCRIPTOR', rm_none(m))
# Properties
for k, v in eaf_obj.properties:
etree.SubElement(HEADER, 'PROPERTY', {'NAME': k}).text = str(v)
# Time order
TIME_ORDER = etree.SubElement(ADOCUMENT, 'TIME_ORDER')
for t in sorted(eaf_obj.timeslots.items(), key=lambda x: int(x[0][2:])):
etree.SubElement(TIME_ORDER, 'TIME_SLOT', rm_none(
{'TIME_SLOT_ID': t[0], 'TIME_VALUE': t[1]}))
# Tiers
for t in sorted(eaf_obj.tiers.items(), key=lambda x: x[1][3]):
tier = etree.SubElement(ADOCUMENT, 'TIER', rm_none(t[1][2]))
for a in t[1][0].items():
ann = etree.SubElement(tier, 'ANNOTATION')
alan = etree.SubElement(ann, 'ALIGNABLE_ANNOTATION', rm_none(
{'ANNOTATION_ID': a[0], 'TIME_SLOT_REF1': a[1][0],
'TIME_SLOT_REF2': a[1][1], 'SVG_REF': a[1][3]}))
etree.SubElement(alan, 'ANNOTATION_VALUE').text = a[1][2]
for a in t[1][1].items():
ann = etree.SubElement(tier, 'ANNOTATION')
rean = etree.SubElement(ann, 'REF_ANNOTATION', rm_none(
{'ANNOTATION_ID': a[0], 'ANNOTATION_REF': a[1][0],
'PREVIOUS_ANNOTATION': a[1][2], 'SVG_REF': a[1][3]}))
etree.SubElement(rean, 'ANNOTATION_VALUE').text = a[1][1]
# Linguistic types
for l in eaf_obj.linguistic_types.values():
etree.SubElement(ADOCUMENT, 'LINGUISTIC_TYPE', rm_none(l))
# Locales
for lc, (cc, vr) in eaf_obj.locales.items():
etree.SubElement(ADOCUMENT, 'LOCALE', rm_none(
{'LANGUAGE_CODE': lc, 'COUNTRY_CODE': cc, 'VARIANT': vr}))
# Languages
for lid, (ldef, label) in eaf_obj.languages.items():
etree.SubElement(ADOCUMENT, 'LANGUAGE', rm_none(
{'LANG_ID': lid, 'LANG_DEF': ldef, 'LANG_LABEL': label}))
# Constraints
for l in eaf_obj.constraints.items():
etree.SubElement(ADOCUMENT, 'CONSTRAINT', rm_none(
{'STEREOTYPE': l[0], 'DESCRIPTION': l[1]}))
# Controlled vocabularies
for cvid, (descriptions, cv_entries, ext_ref) in\
eaf_obj.controlled_vocabularies.items():
cv = etree.SubElement(ADOCUMENT, 'CONTROLLED_VOCABULARY',
rm_none({'CV_ID': cvid, 'EXT_REF': ext_ref}))
for lang_ref, description in descriptions:
des = etree.SubElement(cv, 'DESCRIPTION', {'LANG_REF': lang_ref})
if description:
des.text = description
for cveid, (values, ext_ref) in cv_entries.items():
cem = etree.SubElement(cv, 'CV_ENTRY_ML', rm_none({
'CVE_ID': cveid, 'EXT_REF': ext_ref}))
for value, lang_ref, description in values:
val = etree.SubElement(cem, 'CVE_VALUE', rm_none({
'LANG_REF': lang_ref, 'DESCRIPTION': description}))
val.text = value
# Lexicon refs
for l in eaf_obj.lexicon_refs.values():
etree.SubElement(ADOCUMENT, 'LEXICON_REF', rm_none(l))
# Exteral refs
for eid, (etype, value) in eaf_obj.external_refs.items():
etree.SubElement(ADOCUMENT, 'EXTERNAL_REF', rm_none(
{'EXT_REF_ID': eid, 'TYPE': etype, 'VALUE': value}))
if pretty:
indent(ADOCUMENT)
if file_path == '-':
try:
sys.stdout.write(etree.tostring(ADOCUMENT, encoding='unicode'))
except LookupError:
sys.stdout.write(etree.tostring(ADOCUMENT, encoding='UTF-8'))
else:
if os.access(file_path, os.F_OK):
os.rename(file_path, '{}.bak'.format(file_path))
etree.ElementTree(ADOCUMENT).write(
file_path, xml_declaration=True, encoding='UTF-8')
|
def to_eaf(file_path, eaf_obj, pretty=True):
"""Write an Eaf object to file.
:param str file_path: Filepath to write to, - for stdout.
:param pympi.Elan.Eaf eaf_obj: Object to write.
:param bool pretty: Flag to set pretty printing.
"""
def rm_none(x):
try: # Ugly hack to test if s is a string in py3 and py2
basestring
def isstr(s):
return isinstance(s, basestring)
except NameError:
def isstr(s):
return isinstance(s, str)
return {k: v if isstr(v) else str(v) for k, v in x.items()
if v is not None}
# Annotation Document
ADOCUMENT = etree.Element('ANNOTATION_DOCUMENT', eaf_obj.adocument)
# Licence
for m in eaf_obj.licenses:
n = etree.SubElement(ADOCUMENT, 'LICENSE', {'LICENSE_URL': m[1]})
n.text = m[0]
# Header
HEADER = etree.SubElement(ADOCUMENT, 'HEADER', eaf_obj.header)
# Media descriptiors
for m in eaf_obj.media_descriptors:
etree.SubElement(HEADER, 'MEDIA_DESCRIPTOR', rm_none(m))
# Linked file descriptors
for m in eaf_obj.linked_file_descriptors:
etree.SubElement(HEADER, 'LINKED_FILE_DESCRIPTOR', rm_none(m))
# Properties
for k, v in eaf_obj.properties:
etree.SubElement(HEADER, 'PROPERTY', {'NAME': k}).text = str(v)
# Time order
TIME_ORDER = etree.SubElement(ADOCUMENT, 'TIME_ORDER')
for t in sorted(eaf_obj.timeslots.items(), key=lambda x: int(x[0][2:])):
etree.SubElement(TIME_ORDER, 'TIME_SLOT', rm_none(
{'TIME_SLOT_ID': t[0], 'TIME_VALUE': t[1]}))
# Tiers
for t in sorted(eaf_obj.tiers.items(), key=lambda x: x[1][3]):
tier = etree.SubElement(ADOCUMENT, 'TIER', rm_none(t[1][2]))
for a in t[1][0].items():
ann = etree.SubElement(tier, 'ANNOTATION')
alan = etree.SubElement(ann, 'ALIGNABLE_ANNOTATION', rm_none(
{'ANNOTATION_ID': a[0], 'TIME_SLOT_REF1': a[1][0],
'TIME_SLOT_REF2': a[1][1], 'SVG_REF': a[1][3]}))
etree.SubElement(alan, 'ANNOTATION_VALUE').text = a[1][2]
for a in t[1][1].items():
ann = etree.SubElement(tier, 'ANNOTATION')
rean = etree.SubElement(ann, 'REF_ANNOTATION', rm_none(
{'ANNOTATION_ID': a[0], 'ANNOTATION_REF': a[1][0],
'PREVIOUS_ANNOTATION': a[1][2], 'SVG_REF': a[1][3]}))
etree.SubElement(rean, 'ANNOTATION_VALUE').text = a[1][1]
# Linguistic types
for l in eaf_obj.linguistic_types.values():
etree.SubElement(ADOCUMENT, 'LINGUISTIC_TYPE', rm_none(l))
# Locales
for lc, (cc, vr) in eaf_obj.locales.items():
etree.SubElement(ADOCUMENT, 'LOCALE', rm_none(
{'LANGUAGE_CODE': lc, 'COUNTRY_CODE': cc, 'VARIANT': vr}))
# Languages
for lid, (ldef, label) in eaf_obj.languages.items():
etree.SubElement(ADOCUMENT, 'LANGUAGE', rm_none(
{'LANG_ID': lid, 'LANG_DEF': ldef, 'LANG_LABEL': label}))
# Constraints
for l in eaf_obj.constraints.items():
etree.SubElement(ADOCUMENT, 'CONSTRAINT', rm_none(
{'STEREOTYPE': l[0], 'DESCRIPTION': l[1]}))
# Controlled vocabularies
for cvid, (descriptions, cv_entries, ext_ref) in\
eaf_obj.controlled_vocabularies.items():
cv = etree.SubElement(ADOCUMENT, 'CONTROLLED_VOCABULARY',
rm_none({'CV_ID': cvid, 'EXT_REF': ext_ref}))
for lang_ref, description in descriptions:
des = etree.SubElement(cv, 'DESCRIPTION', {'LANG_REF': lang_ref})
if description:
des.text = description
for cveid, (values, ext_ref) in cv_entries.items():
cem = etree.SubElement(cv, 'CV_ENTRY_ML', rm_none({
'CVE_ID': cveid, 'EXT_REF': ext_ref}))
for value, lang_ref, description in values:
val = etree.SubElement(cem, 'CVE_VALUE', rm_none({
'LANG_REF': lang_ref, 'DESCRIPTION': description}))
val.text = value
# Lexicon refs
for l in eaf_obj.lexicon_refs.values():
etree.SubElement(ADOCUMENT, 'LEXICON_REF', rm_none(l))
# Exteral refs
for eid, (etype, value) in eaf_obj.external_refs.items():
etree.SubElement(ADOCUMENT, 'EXTERNAL_REF', rm_none(
{'EXT_REF_ID': eid, 'TYPE': etype, 'VALUE': value}))
if pretty:
indent(ADOCUMENT)
if file_path == '-':
try:
sys.stdout.write(etree.tostring(ADOCUMENT, encoding='unicode'))
except LookupError:
sys.stdout.write(etree.tostring(ADOCUMENT, encoding='UTF-8'))
else:
if os.access(file_path, os.F_OK):
os.rename(file_path, '{}.bak'.format(file_path))
etree.ElementTree(ADOCUMENT).write(
file_path, xml_declaration=True, encoding='UTF-8')
|
[
"Write",
"an",
"Eaf",
"object",
"to",
"file",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L1601-L1706
|
[
"def",
"to_eaf",
"(",
"file_path",
",",
"eaf_obj",
",",
"pretty",
"=",
"True",
")",
":",
"def",
"rm_none",
"(",
"x",
")",
":",
"try",
":",
"# Ugly hack to test if s is a string in py3 and py2",
"basestring",
"def",
"isstr",
"(",
"s",
")",
":",
"return",
"isinstance",
"(",
"s",
",",
"basestring",
")",
"except",
"NameError",
":",
"def",
"isstr",
"(",
"s",
")",
":",
"return",
"isinstance",
"(",
"s",
",",
"str",
")",
"return",
"{",
"k",
":",
"v",
"if",
"isstr",
"(",
"v",
")",
"else",
"str",
"(",
"v",
")",
"for",
"k",
",",
"v",
"in",
"x",
".",
"items",
"(",
")",
"if",
"v",
"is",
"not",
"None",
"}",
"# Annotation Document",
"ADOCUMENT",
"=",
"etree",
".",
"Element",
"(",
"'ANNOTATION_DOCUMENT'",
",",
"eaf_obj",
".",
"adocument",
")",
"# Licence",
"for",
"m",
"in",
"eaf_obj",
".",
"licenses",
":",
"n",
"=",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'LICENSE'",
",",
"{",
"'LICENSE_URL'",
":",
"m",
"[",
"1",
"]",
"}",
")",
"n",
".",
"text",
"=",
"m",
"[",
"0",
"]",
"# Header",
"HEADER",
"=",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'HEADER'",
",",
"eaf_obj",
".",
"header",
")",
"# Media descriptiors",
"for",
"m",
"in",
"eaf_obj",
".",
"media_descriptors",
":",
"etree",
".",
"SubElement",
"(",
"HEADER",
",",
"'MEDIA_DESCRIPTOR'",
",",
"rm_none",
"(",
"m",
")",
")",
"# Linked file descriptors",
"for",
"m",
"in",
"eaf_obj",
".",
"linked_file_descriptors",
":",
"etree",
".",
"SubElement",
"(",
"HEADER",
",",
"'LINKED_FILE_DESCRIPTOR'",
",",
"rm_none",
"(",
"m",
")",
")",
"# Properties",
"for",
"k",
",",
"v",
"in",
"eaf_obj",
".",
"properties",
":",
"etree",
".",
"SubElement",
"(",
"HEADER",
",",
"'PROPERTY'",
",",
"{",
"'NAME'",
":",
"k",
"}",
")",
".",
"text",
"=",
"str",
"(",
"v",
")",
"# Time order",
"TIME_ORDER",
"=",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'TIME_ORDER'",
")",
"for",
"t",
"in",
"sorted",
"(",
"eaf_obj",
".",
"timeslots",
".",
"items",
"(",
")",
",",
"key",
"=",
"lambda",
"x",
":",
"int",
"(",
"x",
"[",
"0",
"]",
"[",
"2",
":",
"]",
")",
")",
":",
"etree",
".",
"SubElement",
"(",
"TIME_ORDER",
",",
"'TIME_SLOT'",
",",
"rm_none",
"(",
"{",
"'TIME_SLOT_ID'",
":",
"t",
"[",
"0",
"]",
",",
"'TIME_VALUE'",
":",
"t",
"[",
"1",
"]",
"}",
")",
")",
"# Tiers",
"for",
"t",
"in",
"sorted",
"(",
"eaf_obj",
".",
"tiers",
".",
"items",
"(",
")",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"1",
"]",
"[",
"3",
"]",
")",
":",
"tier",
"=",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'TIER'",
",",
"rm_none",
"(",
"t",
"[",
"1",
"]",
"[",
"2",
"]",
")",
")",
"for",
"a",
"in",
"t",
"[",
"1",
"]",
"[",
"0",
"]",
".",
"items",
"(",
")",
":",
"ann",
"=",
"etree",
".",
"SubElement",
"(",
"tier",
",",
"'ANNOTATION'",
")",
"alan",
"=",
"etree",
".",
"SubElement",
"(",
"ann",
",",
"'ALIGNABLE_ANNOTATION'",
",",
"rm_none",
"(",
"{",
"'ANNOTATION_ID'",
":",
"a",
"[",
"0",
"]",
",",
"'TIME_SLOT_REF1'",
":",
"a",
"[",
"1",
"]",
"[",
"0",
"]",
",",
"'TIME_SLOT_REF2'",
":",
"a",
"[",
"1",
"]",
"[",
"1",
"]",
",",
"'SVG_REF'",
":",
"a",
"[",
"1",
"]",
"[",
"3",
"]",
"}",
")",
")",
"etree",
".",
"SubElement",
"(",
"alan",
",",
"'ANNOTATION_VALUE'",
")",
".",
"text",
"=",
"a",
"[",
"1",
"]",
"[",
"2",
"]",
"for",
"a",
"in",
"t",
"[",
"1",
"]",
"[",
"1",
"]",
".",
"items",
"(",
")",
":",
"ann",
"=",
"etree",
".",
"SubElement",
"(",
"tier",
",",
"'ANNOTATION'",
")",
"rean",
"=",
"etree",
".",
"SubElement",
"(",
"ann",
",",
"'REF_ANNOTATION'",
",",
"rm_none",
"(",
"{",
"'ANNOTATION_ID'",
":",
"a",
"[",
"0",
"]",
",",
"'ANNOTATION_REF'",
":",
"a",
"[",
"1",
"]",
"[",
"0",
"]",
",",
"'PREVIOUS_ANNOTATION'",
":",
"a",
"[",
"1",
"]",
"[",
"2",
"]",
",",
"'SVG_REF'",
":",
"a",
"[",
"1",
"]",
"[",
"3",
"]",
"}",
")",
")",
"etree",
".",
"SubElement",
"(",
"rean",
",",
"'ANNOTATION_VALUE'",
")",
".",
"text",
"=",
"a",
"[",
"1",
"]",
"[",
"1",
"]",
"# Linguistic types",
"for",
"l",
"in",
"eaf_obj",
".",
"linguistic_types",
".",
"values",
"(",
")",
":",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'LINGUISTIC_TYPE'",
",",
"rm_none",
"(",
"l",
")",
")",
"# Locales",
"for",
"lc",
",",
"(",
"cc",
",",
"vr",
")",
"in",
"eaf_obj",
".",
"locales",
".",
"items",
"(",
")",
":",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'LOCALE'",
",",
"rm_none",
"(",
"{",
"'LANGUAGE_CODE'",
":",
"lc",
",",
"'COUNTRY_CODE'",
":",
"cc",
",",
"'VARIANT'",
":",
"vr",
"}",
")",
")",
"# Languages",
"for",
"lid",
",",
"(",
"ldef",
",",
"label",
")",
"in",
"eaf_obj",
".",
"languages",
".",
"items",
"(",
")",
":",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'LANGUAGE'",
",",
"rm_none",
"(",
"{",
"'LANG_ID'",
":",
"lid",
",",
"'LANG_DEF'",
":",
"ldef",
",",
"'LANG_LABEL'",
":",
"label",
"}",
")",
")",
"# Constraints",
"for",
"l",
"in",
"eaf_obj",
".",
"constraints",
".",
"items",
"(",
")",
":",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'CONSTRAINT'",
",",
"rm_none",
"(",
"{",
"'STEREOTYPE'",
":",
"l",
"[",
"0",
"]",
",",
"'DESCRIPTION'",
":",
"l",
"[",
"1",
"]",
"}",
")",
")",
"# Controlled vocabularies",
"for",
"cvid",
",",
"(",
"descriptions",
",",
"cv_entries",
",",
"ext_ref",
")",
"in",
"eaf_obj",
".",
"controlled_vocabularies",
".",
"items",
"(",
")",
":",
"cv",
"=",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'CONTROLLED_VOCABULARY'",
",",
"rm_none",
"(",
"{",
"'CV_ID'",
":",
"cvid",
",",
"'EXT_REF'",
":",
"ext_ref",
"}",
")",
")",
"for",
"lang_ref",
",",
"description",
"in",
"descriptions",
":",
"des",
"=",
"etree",
".",
"SubElement",
"(",
"cv",
",",
"'DESCRIPTION'",
",",
"{",
"'LANG_REF'",
":",
"lang_ref",
"}",
")",
"if",
"description",
":",
"des",
".",
"text",
"=",
"description",
"for",
"cveid",
",",
"(",
"values",
",",
"ext_ref",
")",
"in",
"cv_entries",
".",
"items",
"(",
")",
":",
"cem",
"=",
"etree",
".",
"SubElement",
"(",
"cv",
",",
"'CV_ENTRY_ML'",
",",
"rm_none",
"(",
"{",
"'CVE_ID'",
":",
"cveid",
",",
"'EXT_REF'",
":",
"ext_ref",
"}",
")",
")",
"for",
"value",
",",
"lang_ref",
",",
"description",
"in",
"values",
":",
"val",
"=",
"etree",
".",
"SubElement",
"(",
"cem",
",",
"'CVE_VALUE'",
",",
"rm_none",
"(",
"{",
"'LANG_REF'",
":",
"lang_ref",
",",
"'DESCRIPTION'",
":",
"description",
"}",
")",
")",
"val",
".",
"text",
"=",
"value",
"# Lexicon refs",
"for",
"l",
"in",
"eaf_obj",
".",
"lexicon_refs",
".",
"values",
"(",
")",
":",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'LEXICON_REF'",
",",
"rm_none",
"(",
"l",
")",
")",
"# Exteral refs",
"for",
"eid",
",",
"(",
"etype",
",",
"value",
")",
"in",
"eaf_obj",
".",
"external_refs",
".",
"items",
"(",
")",
":",
"etree",
".",
"SubElement",
"(",
"ADOCUMENT",
",",
"'EXTERNAL_REF'",
",",
"rm_none",
"(",
"{",
"'EXT_REF_ID'",
":",
"eid",
",",
"'TYPE'",
":",
"etype",
",",
"'VALUE'",
":",
"value",
"}",
")",
")",
"if",
"pretty",
":",
"indent",
"(",
"ADOCUMENT",
")",
"if",
"file_path",
"==",
"'-'",
":",
"try",
":",
"sys",
".",
"stdout",
".",
"write",
"(",
"etree",
".",
"tostring",
"(",
"ADOCUMENT",
",",
"encoding",
"=",
"'unicode'",
")",
")",
"except",
"LookupError",
":",
"sys",
".",
"stdout",
".",
"write",
"(",
"etree",
".",
"tostring",
"(",
"ADOCUMENT",
",",
"encoding",
"=",
"'UTF-8'",
")",
")",
"else",
":",
"if",
"os",
".",
"access",
"(",
"file_path",
",",
"os",
".",
"F_OK",
")",
":",
"os",
".",
"rename",
"(",
"file_path",
",",
"'{}.bak'",
".",
"format",
"(",
"file_path",
")",
")",
"etree",
".",
"ElementTree",
"(",
"ADOCUMENT",
")",
".",
"write",
"(",
"file_path",
",",
"xml_declaration",
"=",
"True",
",",
"encoding",
"=",
"'UTF-8'",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_annotation
|
Add an annotation.
:param str id_tier: Name of the tier.
:param int start: Start time of the annotation.
:param int end: End time of the annotation.
:param str value: Value of the annotation.
:param str svg_ref: Svg reference.
:raises KeyError: If the tier is non existent.
:raises ValueError: If one of the values is negative or start is bigger
then end or if the tiers already contains ref
annotations.
|
pympi/Elan.py
|
def add_annotation(self, id_tier, start, end, value='', svg_ref=None):
"""Add an annotation.
:param str id_tier: Name of the tier.
:param int start: Start time of the annotation.
:param int end: End time of the annotation.
:param str value: Value of the annotation.
:param str svg_ref: Svg reference.
:raises KeyError: If the tier is non existent.
:raises ValueError: If one of the values is negative or start is bigger
then end or if the tiers already contains ref
annotations.
"""
if self.tiers[id_tier][1]:
raise ValueError('Tier already contains ref annotations...')
if start == end:
raise ValueError('Annotation length is zero...')
if start > end:
raise ValueError('Annotation length is negative...')
if start < 0:
raise ValueError('Start is negative...')
start_ts = self.generate_ts_id(start)
end_ts = self.generate_ts_id(end)
aid = self.generate_annotation_id()
self.annotations[aid] = id_tier
self.tiers[id_tier][0][aid] = (start_ts, end_ts, value, svg_ref)
|
def add_annotation(self, id_tier, start, end, value='', svg_ref=None):
"""Add an annotation.
:param str id_tier: Name of the tier.
:param int start: Start time of the annotation.
:param int end: End time of the annotation.
:param str value: Value of the annotation.
:param str svg_ref: Svg reference.
:raises KeyError: If the tier is non existent.
:raises ValueError: If one of the values is negative or start is bigger
then end or if the tiers already contains ref
annotations.
"""
if self.tiers[id_tier][1]:
raise ValueError('Tier already contains ref annotations...')
if start == end:
raise ValueError('Annotation length is zero...')
if start > end:
raise ValueError('Annotation length is negative...')
if start < 0:
raise ValueError('Start is negative...')
start_ts = self.generate_ts_id(start)
end_ts = self.generate_ts_id(end)
aid = self.generate_annotation_id()
self.annotations[aid] = id_tier
self.tiers[id_tier][0][aid] = (start_ts, end_ts, value, svg_ref)
|
[
"Add",
"an",
"annotation",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L118-L143
|
[
"def",
"add_annotation",
"(",
"self",
",",
"id_tier",
",",
"start",
",",
"end",
",",
"value",
"=",
"''",
",",
"svg_ref",
"=",
"None",
")",
":",
"if",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
":",
"raise",
"ValueError",
"(",
"'Tier already contains ref annotations...'",
")",
"if",
"start",
"==",
"end",
":",
"raise",
"ValueError",
"(",
"'Annotation length is zero...'",
")",
"if",
"start",
">",
"end",
":",
"raise",
"ValueError",
"(",
"'Annotation length is negative...'",
")",
"if",
"start",
"<",
"0",
":",
"raise",
"ValueError",
"(",
"'Start is negative...'",
")",
"start_ts",
"=",
"self",
".",
"generate_ts_id",
"(",
"start",
")",
"end_ts",
"=",
"self",
".",
"generate_ts_id",
"(",
"end",
")",
"aid",
"=",
"self",
".",
"generate_annotation_id",
"(",
")",
"self",
".",
"annotations",
"[",
"aid",
"]",
"=",
"id_tier",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"0",
"]",
"[",
"aid",
"]",
"=",
"(",
"start_ts",
",",
"end_ts",
",",
"value",
",",
"svg_ref",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_cv_entry
|
Add an entry to a controlled vocabulary.
:param str cv_id: Name of the controlled vocabulary to add an entry.
:param str cve_id: Name of the entry.
:param list values: List of values of the form:
``(value, lang_ref, description)`` where description can be
``None``.
:param str ext_ref: External reference.
:throws KeyError: If there is no controlled vocabulary with that id.
:throws ValueError: If a language in one of the entries doesn't exist.
|
pympi/Elan.py
|
def add_cv_entry(self, cv_id, cve_id, values, ext_ref=None):
"""Add an entry to a controlled vocabulary.
:param str cv_id: Name of the controlled vocabulary to add an entry.
:param str cve_id: Name of the entry.
:param list values: List of values of the form:
``(value, lang_ref, description)`` where description can be
``None``.
:param str ext_ref: External reference.
:throws KeyError: If there is no controlled vocabulary with that id.
:throws ValueError: If a language in one of the entries doesn't exist.
"""
for value, lang_ref, description in values:
if lang_ref not in self.languages:
raise ValueError('Language not present: {}'.format(lang_ref))
self.controlled_vocabularies[cv_id][1][cve_id] = (values, ext_ref)
|
def add_cv_entry(self, cv_id, cve_id, values, ext_ref=None):
"""Add an entry to a controlled vocabulary.
:param str cv_id: Name of the controlled vocabulary to add an entry.
:param str cve_id: Name of the entry.
:param list values: List of values of the form:
``(value, lang_ref, description)`` where description can be
``None``.
:param str ext_ref: External reference.
:throws KeyError: If there is no controlled vocabulary with that id.
:throws ValueError: If a language in one of the entries doesn't exist.
"""
for value, lang_ref, description in values:
if lang_ref not in self.languages:
raise ValueError('Language not present: {}'.format(lang_ref))
self.controlled_vocabularies[cv_id][1][cve_id] = (values, ext_ref)
|
[
"Add",
"an",
"entry",
"to",
"a",
"controlled",
"vocabulary",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L154-L169
|
[
"def",
"add_cv_entry",
"(",
"self",
",",
"cv_id",
",",
"cve_id",
",",
"values",
",",
"ext_ref",
"=",
"None",
")",
":",
"for",
"value",
",",
"lang_ref",
",",
"description",
"in",
"values",
":",
"if",
"lang_ref",
"not",
"in",
"self",
".",
"languages",
":",
"raise",
"ValueError",
"(",
"'Language not present: {}'",
".",
"format",
"(",
"lang_ref",
")",
")",
"self",
".",
"controlled_vocabularies",
"[",
"cv_id",
"]",
"[",
"1",
"]",
"[",
"cve_id",
"]",
"=",
"(",
"values",
",",
"ext_ref",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_cv_description
|
Add a description to a controlled vocabulary.
:param str cv_id: Name of the controlled vocabulary to add the
description.
:param str lang_ref: Language reference.
:param str description: Description, this can be none.
:throws KeyError: If there is no controlled vocabulary with that id.
:throws ValueError: If the language provided doesn't exist.
|
pympi/Elan.py
|
def add_cv_description(self, cv_id, lang_ref, description=None):
"""Add a description to a controlled vocabulary.
:param str cv_id: Name of the controlled vocabulary to add the
description.
:param str lang_ref: Language reference.
:param str description: Description, this can be none.
:throws KeyError: If there is no controlled vocabulary with that id.
:throws ValueError: If the language provided doesn't exist.
"""
if lang_ref not in self.languages:
raise ValueError('Language not present: {}'.format(lang_ref))
self.controlled_vocabularies[cv_id][0].append((lang_ref, description))
|
def add_cv_description(self, cv_id, lang_ref, description=None):
"""Add a description to a controlled vocabulary.
:param str cv_id: Name of the controlled vocabulary to add the
description.
:param str lang_ref: Language reference.
:param str description: Description, this can be none.
:throws KeyError: If there is no controlled vocabulary with that id.
:throws ValueError: If the language provided doesn't exist.
"""
if lang_ref not in self.languages:
raise ValueError('Language not present: {}'.format(lang_ref))
self.controlled_vocabularies[cv_id][0].append((lang_ref, description))
|
[
"Add",
"a",
"description",
"to",
"a",
"controlled",
"vocabulary",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L171-L183
|
[
"def",
"add_cv_description",
"(",
"self",
",",
"cv_id",
",",
"lang_ref",
",",
"description",
"=",
"None",
")",
":",
"if",
"lang_ref",
"not",
"in",
"self",
".",
"languages",
":",
"raise",
"ValueError",
"(",
"'Language not present: {}'",
".",
"format",
"(",
"lang_ref",
")",
")",
"self",
".",
"controlled_vocabularies",
"[",
"cv_id",
"]",
"[",
"0",
"]",
".",
"append",
"(",
"(",
"lang_ref",
",",
"description",
")",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_external_ref
|
Add an external reference.
:param str eid: Name of the external reference.
:param str etype: Type of the external reference, has to be in
``['iso12620', 'ecv', 'cve_id', 'lexen_id', 'resource_url']``.
:param str value: Value of the external reference.
:throws KeyError: if etype is not in the list of possible types.
|
pympi/Elan.py
|
def add_external_ref(self, eid, etype, value):
"""Add an external reference.
:param str eid: Name of the external reference.
:param str etype: Type of the external reference, has to be in
``['iso12620', 'ecv', 'cve_id', 'lexen_id', 'resource_url']``.
:param str value: Value of the external reference.
:throws KeyError: if etype is not in the list of possible types.
"""
if etype not in self.ETYPES:
raise KeyError('etype not in {}'.format(self.ETYPES))
self.external_refs[eid] = (etype, value)
|
def add_external_ref(self, eid, etype, value):
"""Add an external reference.
:param str eid: Name of the external reference.
:param str etype: Type of the external reference, has to be in
``['iso12620', 'ecv', 'cve_id', 'lexen_id', 'resource_url']``.
:param str value: Value of the external reference.
:throws KeyError: if etype is not in the list of possible types.
"""
if etype not in self.ETYPES:
raise KeyError('etype not in {}'.format(self.ETYPES))
self.external_refs[eid] = (etype, value)
|
[
"Add",
"an",
"external",
"reference",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L185-L196
|
[
"def",
"add_external_ref",
"(",
"self",
",",
"eid",
",",
"etype",
",",
"value",
")",
":",
"if",
"etype",
"not",
"in",
"self",
".",
"ETYPES",
":",
"raise",
"KeyError",
"(",
"'etype not in {}'",
".",
"format",
"(",
"self",
".",
"ETYPES",
")",
")",
"self",
".",
"external_refs",
"[",
"eid",
"]",
"=",
"(",
"etype",
",",
"value",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_language
|
Add a language.
:param str lang_id: ID of the language.
:param str lang_def: Definition of the language(preferably ISO-639-3).
:param str lang_label: Label of the language.
|
pympi/Elan.py
|
def add_language(self, lang_id, lang_def=None, lang_label=None):
"""Add a language.
:param str lang_id: ID of the language.
:param str lang_def: Definition of the language(preferably ISO-639-3).
:param str lang_label: Label of the language.
"""
self.languages[lang_id] = (lang_def, lang_label)
|
def add_language(self, lang_id, lang_def=None, lang_label=None):
"""Add a language.
:param str lang_id: ID of the language.
:param str lang_def: Definition of the language(preferably ISO-639-3).
:param str lang_label: Label of the language.
"""
self.languages[lang_id] = (lang_def, lang_label)
|
[
"Add",
"a",
"language",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L198-L205
|
[
"def",
"add_language",
"(",
"self",
",",
"lang_id",
",",
"lang_def",
"=",
"None",
",",
"lang_label",
"=",
"None",
")",
":",
"self",
".",
"languages",
"[",
"lang_id",
"]",
"=",
"(",
"lang_def",
",",
"lang_label",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_lexicon_ref
|
Add lexicon reference.
:param str lrid: Lexicon reference internal ID.
:param str name: Lexicon reference display name.
:param str lrtype: Lexicon reference service type.
:param str url: Lexicon reference service location
:param str lexicon_id: Lexicon reference service id.
:param str lexicon_name: Lexicon reference service name.
:param str datacat_id: Lexicon reference identifier of data category.
:param str datacat_name: Lexicon reference name of data category.
|
pympi/Elan.py
|
def add_lexicon_ref(self, lrid, name, lrtype, url, lexicon_id,
lexicon_name, datcat_id=None, datcat_name=None):
"""Add lexicon reference.
:param str lrid: Lexicon reference internal ID.
:param str name: Lexicon reference display name.
:param str lrtype: Lexicon reference service type.
:param str url: Lexicon reference service location
:param str lexicon_id: Lexicon reference service id.
:param str lexicon_name: Lexicon reference service name.
:param str datacat_id: Lexicon reference identifier of data category.
:param str datacat_name: Lexicon reference name of data category.
"""
self.lexicon_refs[lrid] = {
'LEX_REF_ID': lrid,
'NAME': name,
'TYPE': lrtype,
'URL': url,
'LEXICON_ID': lexicon_id,
'LEXICON_NAME': lexicon_name,
'DATCAT_ID': datcat_id,
'DATCAT_NAME': datcat_name
}
|
def add_lexicon_ref(self, lrid, name, lrtype, url, lexicon_id,
lexicon_name, datcat_id=None, datcat_name=None):
"""Add lexicon reference.
:param str lrid: Lexicon reference internal ID.
:param str name: Lexicon reference display name.
:param str lrtype: Lexicon reference service type.
:param str url: Lexicon reference service location
:param str lexicon_id: Lexicon reference service id.
:param str lexicon_name: Lexicon reference service name.
:param str datacat_id: Lexicon reference identifier of data category.
:param str datacat_name: Lexicon reference name of data category.
"""
self.lexicon_refs[lrid] = {
'LEX_REF_ID': lrid,
'NAME': name,
'TYPE': lrtype,
'URL': url,
'LEXICON_ID': lexicon_id,
'LEXICON_NAME': lexicon_name,
'DATCAT_ID': datcat_id,
'DATCAT_NAME': datcat_name
}
|
[
"Add",
"lexicon",
"reference",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L207-L229
|
[
"def",
"add_lexicon_ref",
"(",
"self",
",",
"lrid",
",",
"name",
",",
"lrtype",
",",
"url",
",",
"lexicon_id",
",",
"lexicon_name",
",",
"datcat_id",
"=",
"None",
",",
"datcat_name",
"=",
"None",
")",
":",
"self",
".",
"lexicon_refs",
"[",
"lrid",
"]",
"=",
"{",
"'LEX_REF_ID'",
":",
"lrid",
",",
"'NAME'",
":",
"name",
",",
"'TYPE'",
":",
"lrtype",
",",
"'URL'",
":",
"url",
",",
"'LEXICON_ID'",
":",
"lexicon_id",
",",
"'LEXICON_NAME'",
":",
"lexicon_name",
",",
"'DATCAT_ID'",
":",
"datcat_id",
",",
"'DATCAT_NAME'",
":",
"datcat_name",
"}"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_linguistic_type
|
Add a linguistic type.
:param str lingtype: Name of the linguistic type.
:param str constraints: Constraint name.
:param bool timealignable: Flag for time alignable.
:param bool graphicreferences: Flag for graphic references.
:param str extref: External reference.
:param dict param_dict: TAG attributes, when this is not ``None`` it
will ignore all other options. Please only use
dictionaries coming from the
:func:`get_parameters_for_linguistic_type`
:raises KeyError: If a constraint is not defined
|
pympi/Elan.py
|
def add_linguistic_type(self, lingtype, constraints=None,
timealignable=True, graphicreferences=False,
extref=None, param_dict=None):
"""Add a linguistic type.
:param str lingtype: Name of the linguistic type.
:param str constraints: Constraint name.
:param bool timealignable: Flag for time alignable.
:param bool graphicreferences: Flag for graphic references.
:param str extref: External reference.
:param dict param_dict: TAG attributes, when this is not ``None`` it
will ignore all other options. Please only use
dictionaries coming from the
:func:`get_parameters_for_linguistic_type`
:raises KeyError: If a constraint is not defined
"""
if param_dict:
self.linguistic_types[lingtype] = param_dict
else:
if constraints:
self.constraints[constraints]
self.linguistic_types[lingtype] = {
'LINGUISTIC_TYPE_ID': lingtype,
'TIME_ALIGNABLE': str(timealignable).lower(),
'GRAPHIC_REFERENCES': str(graphicreferences).lower(),
'CONSTRAINTS': constraints}
if extref is not None:
self.linguistic_types[lingtype]['EXT_REF'] = extref
|
def add_linguistic_type(self, lingtype, constraints=None,
timealignable=True, graphicreferences=False,
extref=None, param_dict=None):
"""Add a linguistic type.
:param str lingtype: Name of the linguistic type.
:param str constraints: Constraint name.
:param bool timealignable: Flag for time alignable.
:param bool graphicreferences: Flag for graphic references.
:param str extref: External reference.
:param dict param_dict: TAG attributes, when this is not ``None`` it
will ignore all other options. Please only use
dictionaries coming from the
:func:`get_parameters_for_linguistic_type`
:raises KeyError: If a constraint is not defined
"""
if param_dict:
self.linguistic_types[lingtype] = param_dict
else:
if constraints:
self.constraints[constraints]
self.linguistic_types[lingtype] = {
'LINGUISTIC_TYPE_ID': lingtype,
'TIME_ALIGNABLE': str(timealignable).lower(),
'GRAPHIC_REFERENCES': str(graphicreferences).lower(),
'CONSTRAINTS': constraints}
if extref is not None:
self.linguistic_types[lingtype]['EXT_REF'] = extref
|
[
"Add",
"a",
"linguistic",
"type",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L239-L266
|
[
"def",
"add_linguistic_type",
"(",
"self",
",",
"lingtype",
",",
"constraints",
"=",
"None",
",",
"timealignable",
"=",
"True",
",",
"graphicreferences",
"=",
"False",
",",
"extref",
"=",
"None",
",",
"param_dict",
"=",
"None",
")",
":",
"if",
"param_dict",
":",
"self",
".",
"linguistic_types",
"[",
"lingtype",
"]",
"=",
"param_dict",
"else",
":",
"if",
"constraints",
":",
"self",
".",
"constraints",
"[",
"constraints",
"]",
"self",
".",
"linguistic_types",
"[",
"lingtype",
"]",
"=",
"{",
"'LINGUISTIC_TYPE_ID'",
":",
"lingtype",
",",
"'TIME_ALIGNABLE'",
":",
"str",
"(",
"timealignable",
")",
".",
"lower",
"(",
")",
",",
"'GRAPHIC_REFERENCES'",
":",
"str",
"(",
"graphicreferences",
")",
".",
"lower",
"(",
")",
",",
"'CONSTRAINTS'",
":",
"constraints",
"}",
"if",
"extref",
"is",
"not",
"None",
":",
"self",
".",
"linguistic_types",
"[",
"lingtype",
"]",
"[",
"'EXT_REF'",
"]",
"=",
"extref"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_linked_file
|
Add a linked file.
:param str file_path: Path of the file.
:param str relpath: Relative path of the file.
:param str mimetype: Mimetype of the file, if ``None`` it tries to
guess it according to the file extension which currently only works
for wav, mpg, mpeg and xml.
:param int time_origin: Time origin for the media file.
:param str ex_from: Extracted from field.
:raises KeyError: If mimetype had to be guessed and a non standard
extension or an unknown mimetype.
|
pympi/Elan.py
|
def add_linked_file(self, file_path, relpath=None, mimetype=None,
time_origin=None, ex_from=None):
"""Add a linked file.
:param str file_path: Path of the file.
:param str relpath: Relative path of the file.
:param str mimetype: Mimetype of the file, if ``None`` it tries to
guess it according to the file extension which currently only works
for wav, mpg, mpeg and xml.
:param int time_origin: Time origin for the media file.
:param str ex_from: Extracted from field.
:raises KeyError: If mimetype had to be guessed and a non standard
extension or an unknown mimetype.
"""
if mimetype is None:
mimetype = self.MIMES[file_path.split('.')[-1]]
self.media_descriptors.append({
'MEDIA_URL': file_path, 'RELATIVE_MEDIA_URL': relpath,
'MIME_TYPE': mimetype, 'TIME_ORIGIN': time_origin,
'EXTRACTED_FROM': ex_from})
|
def add_linked_file(self, file_path, relpath=None, mimetype=None,
time_origin=None, ex_from=None):
"""Add a linked file.
:param str file_path: Path of the file.
:param str relpath: Relative path of the file.
:param str mimetype: Mimetype of the file, if ``None`` it tries to
guess it according to the file extension which currently only works
for wav, mpg, mpeg and xml.
:param int time_origin: Time origin for the media file.
:param str ex_from: Extracted from field.
:raises KeyError: If mimetype had to be guessed and a non standard
extension or an unknown mimetype.
"""
if mimetype is None:
mimetype = self.MIMES[file_path.split('.')[-1]]
self.media_descriptors.append({
'MEDIA_URL': file_path, 'RELATIVE_MEDIA_URL': relpath,
'MIME_TYPE': mimetype, 'TIME_ORIGIN': time_origin,
'EXTRACTED_FROM': ex_from})
|
[
"Add",
"a",
"linked",
"file",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L268-L287
|
[
"def",
"add_linked_file",
"(",
"self",
",",
"file_path",
",",
"relpath",
"=",
"None",
",",
"mimetype",
"=",
"None",
",",
"time_origin",
"=",
"None",
",",
"ex_from",
"=",
"None",
")",
":",
"if",
"mimetype",
"is",
"None",
":",
"mimetype",
"=",
"self",
".",
"MIMES",
"[",
"file_path",
".",
"split",
"(",
"'.'",
")",
"[",
"-",
"1",
"]",
"]",
"self",
".",
"media_descriptors",
".",
"append",
"(",
"{",
"'MEDIA_URL'",
":",
"file_path",
",",
"'RELATIVE_MEDIA_URL'",
":",
"relpath",
",",
"'MIME_TYPE'",
":",
"mimetype",
",",
"'TIME_ORIGIN'",
":",
"time_origin",
",",
"'EXTRACTED_FROM'",
":",
"ex_from",
"}",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_locale
|
Add a locale.
:param str language_code: The language code of the locale.
:param str country_code: The country code of the locale.
:param str variant: The variant of the locale.
|
pympi/Elan.py
|
def add_locale(self, language_code, country_code=None, variant=None):
"""Add a locale.
:param str language_code: The language code of the locale.
:param str country_code: The country code of the locale.
:param str variant: The variant of the locale.
"""
self.locales[language_code] = (country_code, variant)
|
def add_locale(self, language_code, country_code=None, variant=None):
"""Add a locale.
:param str language_code: The language code of the locale.
:param str country_code: The country code of the locale.
:param str variant: The variant of the locale.
"""
self.locales[language_code] = (country_code, variant)
|
[
"Add",
"a",
"locale",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L289-L296
|
[
"def",
"add_locale",
"(",
"self",
",",
"language_code",
",",
"country_code",
"=",
"None",
",",
"variant",
"=",
"None",
")",
":",
"self",
".",
"locales",
"[",
"language_code",
"]",
"=",
"(",
"country_code",
",",
"variant",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_ref_annotation
|
Add a reference annotation.
.. note:: When a timepoint matches two annotations the new reference
annotation will reference to the first annotation. To circumvent this
it's always safer to take the middle of the annotation you want to
reference to.
:param str id_tier: Name of the tier.
:param str tier2: Tier of the referenced annotation.
:param int time: Time of the referenced annotation.
:param str value: Value of the annotation.
:param str prev: Id of the previous annotation.
:param str svg_ref: Svg reference.
:raises KeyError: If the tier is non existent.
:raises ValueError: If the tier already contains normal annotations or
if there is no annotation in the tier on the time to reference to.
|
pympi/Elan.py
|
def add_ref_annotation(self, id_tier, tier2, time, value='',
prev=None, svg=None):
"""Add a reference annotation.
.. note:: When a timepoint matches two annotations the new reference
annotation will reference to the first annotation. To circumvent this
it's always safer to take the middle of the annotation you want to
reference to.
:param str id_tier: Name of the tier.
:param str tier2: Tier of the referenced annotation.
:param int time: Time of the referenced annotation.
:param str value: Value of the annotation.
:param str prev: Id of the previous annotation.
:param str svg_ref: Svg reference.
:raises KeyError: If the tier is non existent.
:raises ValueError: If the tier already contains normal annotations or
if there is no annotation in the tier on the time to reference to.
"""
if self.tiers[id_tier][0]:
raise ValueError('This tier already contains normal annotations.')
ann = None
for aid, (begin, end, _, _) in self.tiers[tier2][0].items():
begin = self.timeslots[begin]
end = self.timeslots[end]
if begin <= time and end >= time:
ann = aid
break
if not ann:
raise ValueError('There is no annotation to reference to.')
aid = self.generate_annotation_id()
self.annotations[aid] = id_tier
self.tiers[id_tier][1][aid] = (ann, value, prev, svg)
|
def add_ref_annotation(self, id_tier, tier2, time, value='',
prev=None, svg=None):
"""Add a reference annotation.
.. note:: When a timepoint matches two annotations the new reference
annotation will reference to the first annotation. To circumvent this
it's always safer to take the middle of the annotation you want to
reference to.
:param str id_tier: Name of the tier.
:param str tier2: Tier of the referenced annotation.
:param int time: Time of the referenced annotation.
:param str value: Value of the annotation.
:param str prev: Id of the previous annotation.
:param str svg_ref: Svg reference.
:raises KeyError: If the tier is non existent.
:raises ValueError: If the tier already contains normal annotations or
if there is no annotation in the tier on the time to reference to.
"""
if self.tiers[id_tier][0]:
raise ValueError('This tier already contains normal annotations.')
ann = None
for aid, (begin, end, _, _) in self.tiers[tier2][0].items():
begin = self.timeslots[begin]
end = self.timeslots[end]
if begin <= time and end >= time:
ann = aid
break
if not ann:
raise ValueError('There is no annotation to reference to.')
aid = self.generate_annotation_id()
self.annotations[aid] = id_tier
self.tiers[id_tier][1][aid] = (ann, value, prev, svg)
|
[
"Add",
"a",
"reference",
"annotation",
".",
"..",
"note",
"::",
"When",
"a",
"timepoint",
"matches",
"two",
"annotations",
"the",
"new",
"reference",
"annotation",
"will",
"reference",
"to",
"the",
"first",
"annotation",
".",
"To",
"circumvent",
"this",
"it",
"s",
"always",
"safer",
"to",
"take",
"the",
"middle",
"of",
"the",
"annotation",
"you",
"want",
"to",
"reference",
"to",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L306-L337
|
[
"def",
"add_ref_annotation",
"(",
"self",
",",
"id_tier",
",",
"tier2",
",",
"time",
",",
"value",
"=",
"''",
",",
"prev",
"=",
"None",
",",
"svg",
"=",
"None",
")",
":",
"if",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"0",
"]",
":",
"raise",
"ValueError",
"(",
"'This tier already contains normal annotations.'",
")",
"ann",
"=",
"None",
"for",
"aid",
",",
"(",
"begin",
",",
"end",
",",
"_",
",",
"_",
")",
"in",
"self",
".",
"tiers",
"[",
"tier2",
"]",
"[",
"0",
"]",
".",
"items",
"(",
")",
":",
"begin",
"=",
"self",
".",
"timeslots",
"[",
"begin",
"]",
"end",
"=",
"self",
".",
"timeslots",
"[",
"end",
"]",
"if",
"begin",
"<=",
"time",
"and",
"end",
">=",
"time",
":",
"ann",
"=",
"aid",
"break",
"if",
"not",
"ann",
":",
"raise",
"ValueError",
"(",
"'There is no annotation to reference to.'",
")",
"aid",
"=",
"self",
".",
"generate_annotation_id",
"(",
")",
"self",
".",
"annotations",
"[",
"aid",
"]",
"=",
"id_tier",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
"[",
"aid",
"]",
"=",
"(",
"ann",
",",
"value",
",",
"prev",
",",
"svg",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_secondary_linked_file
|
Add a secondary linked file.
:param str file_path: Path of the file.
:param str relpath: Relative path of the file.
:param str mimetype: Mimetype of the file, if ``None`` it tries to
guess it according to the file extension which currently only works
for wav, mpg, mpeg and xml.
:param int time_origin: Time origin for the media file.
:param str assoc_with: Associated with field.
:raises KeyError: If mimetype had to be guessed and a non standard
extension or an unknown mimetype.
|
pympi/Elan.py
|
def add_secondary_linked_file(self, file_path, relpath=None, mimetype=None,
time_origin=None, assoc_with=None):
"""Add a secondary linked file.
:param str file_path: Path of the file.
:param str relpath: Relative path of the file.
:param str mimetype: Mimetype of the file, if ``None`` it tries to
guess it according to the file extension which currently only works
for wav, mpg, mpeg and xml.
:param int time_origin: Time origin for the media file.
:param str assoc_with: Associated with field.
:raises KeyError: If mimetype had to be guessed and a non standard
extension or an unknown mimetype.
"""
if mimetype is None:
mimetype = self.MIMES[file_path.split('.')[-1]]
self.linked_file_descriptors.append({
'LINK_URL': file_path, 'RELATIVE_LINK_URL': relpath,
'MIME_TYPE': mimetype, 'TIME_ORIGIN': time_origin,
'ASSOCIATED_WITH': assoc_with})
|
def add_secondary_linked_file(self, file_path, relpath=None, mimetype=None,
time_origin=None, assoc_with=None):
"""Add a secondary linked file.
:param str file_path: Path of the file.
:param str relpath: Relative path of the file.
:param str mimetype: Mimetype of the file, if ``None`` it tries to
guess it according to the file extension which currently only works
for wav, mpg, mpeg and xml.
:param int time_origin: Time origin for the media file.
:param str assoc_with: Associated with field.
:raises KeyError: If mimetype had to be guessed and a non standard
extension or an unknown mimetype.
"""
if mimetype is None:
mimetype = self.MIMES[file_path.split('.')[-1]]
self.linked_file_descriptors.append({
'LINK_URL': file_path, 'RELATIVE_LINK_URL': relpath,
'MIME_TYPE': mimetype, 'TIME_ORIGIN': time_origin,
'ASSOCIATED_WITH': assoc_with})
|
[
"Add",
"a",
"secondary",
"linked",
"file",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L339-L358
|
[
"def",
"add_secondary_linked_file",
"(",
"self",
",",
"file_path",
",",
"relpath",
"=",
"None",
",",
"mimetype",
"=",
"None",
",",
"time_origin",
"=",
"None",
",",
"assoc_with",
"=",
"None",
")",
":",
"if",
"mimetype",
"is",
"None",
":",
"mimetype",
"=",
"self",
".",
"MIMES",
"[",
"file_path",
".",
"split",
"(",
"'.'",
")",
"[",
"-",
"1",
"]",
"]",
"self",
".",
"linked_file_descriptors",
".",
"append",
"(",
"{",
"'LINK_URL'",
":",
"file_path",
",",
"'RELATIVE_LINK_URL'",
":",
"relpath",
",",
"'MIME_TYPE'",
":",
"mimetype",
",",
"'TIME_ORIGIN'",
":",
"time_origin",
",",
"'ASSOCIATED_WITH'",
":",
"assoc_with",
"}",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.add_tier
|
Add a tier. When no linguistic type is given and the default
linguistic type is unavailable then the assigned linguistic type will
be the first in the list.
:param str tier_id: Name of the tier.
:param str ling: Linguistic type, if the type is not available it will
warn and pick the first available type.
:param str parent: Parent tier name.
:param str locale: Locale, if the locale is not present this option is
ignored and the locale will not be set.
:param str part: Participant.
:param str ann: Annotator.
:param str language: Language , if the language is not present this
option is ignored and the language will not be set.
:param dict tier_dict: TAG attributes, when this is not ``None`` it
will ignore all other options. Please only use
dictionaries coming from the
:func:`get_parameters_for_tier`
:raises ValueError: If the tier_id is empty
|
pympi/Elan.py
|
def add_tier(self, tier_id, ling='default-lt', parent=None, locale=None,
part=None, ann=None, language=None, tier_dict=None):
"""Add a tier. When no linguistic type is given and the default
linguistic type is unavailable then the assigned linguistic type will
be the first in the list.
:param str tier_id: Name of the tier.
:param str ling: Linguistic type, if the type is not available it will
warn and pick the first available type.
:param str parent: Parent tier name.
:param str locale: Locale, if the locale is not present this option is
ignored and the locale will not be set.
:param str part: Participant.
:param str ann: Annotator.
:param str language: Language , if the language is not present this
option is ignored and the language will not be set.
:param dict tier_dict: TAG attributes, when this is not ``None`` it
will ignore all other options. Please only use
dictionaries coming from the
:func:`get_parameters_for_tier`
:raises ValueError: If the tier_id is empty
"""
if not tier_id:
raise ValueError('Tier id is empty...')
if ling not in self.linguistic_types:
ling = sorted(self.linguistic_types.keys())[0]
if locale and locale not in self.locales:
locale = None
if language and language not in self.languages:
language = None
if tier_dict is None:
self.tiers[tier_id] = ({}, {}, {
'TIER_ID': tier_id,
'LINGUISTIC_TYPE_REF': ling,
'PARENT_REF': parent,
'PARTICIPANT': part,
'DEFAULT_LOCALE': locale,
'LANG_REF': language,
'ANNOTATOR': ann}, len(self.tiers))
else:
self.tiers[tier_id] = ({}, {}, tier_dict, len(self.tiers))
|
def add_tier(self, tier_id, ling='default-lt', parent=None, locale=None,
part=None, ann=None, language=None, tier_dict=None):
"""Add a tier. When no linguistic type is given and the default
linguistic type is unavailable then the assigned linguistic type will
be the first in the list.
:param str tier_id: Name of the tier.
:param str ling: Linguistic type, if the type is not available it will
warn and pick the first available type.
:param str parent: Parent tier name.
:param str locale: Locale, if the locale is not present this option is
ignored and the locale will not be set.
:param str part: Participant.
:param str ann: Annotator.
:param str language: Language , if the language is not present this
option is ignored and the language will not be set.
:param dict tier_dict: TAG attributes, when this is not ``None`` it
will ignore all other options. Please only use
dictionaries coming from the
:func:`get_parameters_for_tier`
:raises ValueError: If the tier_id is empty
"""
if not tier_id:
raise ValueError('Tier id is empty...')
if ling not in self.linguistic_types:
ling = sorted(self.linguistic_types.keys())[0]
if locale and locale not in self.locales:
locale = None
if language and language not in self.languages:
language = None
if tier_dict is None:
self.tiers[tier_id] = ({}, {}, {
'TIER_ID': tier_id,
'LINGUISTIC_TYPE_REF': ling,
'PARENT_REF': parent,
'PARTICIPANT': part,
'DEFAULT_LOCALE': locale,
'LANG_REF': language,
'ANNOTATOR': ann}, len(self.tiers))
else:
self.tiers[tier_id] = ({}, {}, tier_dict, len(self.tiers))
|
[
"Add",
"a",
"tier",
".",
"When",
"no",
"linguistic",
"type",
"is",
"given",
"and",
"the",
"default",
"linguistic",
"type",
"is",
"unavailable",
"then",
"the",
"assigned",
"linguistic",
"type",
"will",
"be",
"the",
"first",
"in",
"the",
"list",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L360-L400
|
[
"def",
"add_tier",
"(",
"self",
",",
"tier_id",
",",
"ling",
"=",
"'default-lt'",
",",
"parent",
"=",
"None",
",",
"locale",
"=",
"None",
",",
"part",
"=",
"None",
",",
"ann",
"=",
"None",
",",
"language",
"=",
"None",
",",
"tier_dict",
"=",
"None",
")",
":",
"if",
"not",
"tier_id",
":",
"raise",
"ValueError",
"(",
"'Tier id is empty...'",
")",
"if",
"ling",
"not",
"in",
"self",
".",
"linguistic_types",
":",
"ling",
"=",
"sorted",
"(",
"self",
".",
"linguistic_types",
".",
"keys",
"(",
")",
")",
"[",
"0",
"]",
"if",
"locale",
"and",
"locale",
"not",
"in",
"self",
".",
"locales",
":",
"locale",
"=",
"None",
"if",
"language",
"and",
"language",
"not",
"in",
"self",
".",
"languages",
":",
"language",
"=",
"None",
"if",
"tier_dict",
"is",
"None",
":",
"self",
".",
"tiers",
"[",
"tier_id",
"]",
"=",
"(",
"{",
"}",
",",
"{",
"}",
",",
"{",
"'TIER_ID'",
":",
"tier_id",
",",
"'LINGUISTIC_TYPE_REF'",
":",
"ling",
",",
"'PARENT_REF'",
":",
"parent",
",",
"'PARTICIPANT'",
":",
"part",
",",
"'DEFAULT_LOCALE'",
":",
"locale",
",",
"'LANG_REF'",
":",
"language",
",",
"'ANNOTATOR'",
":",
"ann",
"}",
",",
"len",
"(",
"self",
".",
"tiers",
")",
")",
"else",
":",
"self",
".",
"tiers",
"[",
"tier_id",
"]",
"=",
"(",
"{",
"}",
",",
"{",
"}",
",",
"tier_dict",
",",
"len",
"(",
"self",
".",
"tiers",
")",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.clean_time_slots
|
Clean up all unused timeslots.
.. warning:: This can and will take time for larger tiers.
When you want to do a lot of operations on a lot of tiers please unset
the flags for cleaning in the functions so that the cleaning is only
performed afterwards.
|
pympi/Elan.py
|
def clean_time_slots(self):
"""Clean up all unused timeslots.
.. warning:: This can and will take time for larger tiers.
When you want to do a lot of operations on a lot of tiers please unset
the flags for cleaning in the functions so that the cleaning is only
performed afterwards.
"""
ts = ((a[0], a[1]) for t in self.tiers.values() for a in t[0].values())
for a in {a for b in ts for a in b} ^ set(self.timeslots):
del(self.timeslots[a])
|
def clean_time_slots(self):
"""Clean up all unused timeslots.
.. warning:: This can and will take time for larger tiers.
When you want to do a lot of operations on a lot of tiers please unset
the flags for cleaning in the functions so that the cleaning is only
performed afterwards.
"""
ts = ((a[0], a[1]) for t in self.tiers.values() for a in t[0].values())
for a in {a for b in ts for a in b} ^ set(self.timeslots):
del(self.timeslots[a])
|
[
"Clean",
"up",
"all",
"unused",
"timeslots",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L409-L420
|
[
"def",
"clean_time_slots",
"(",
"self",
")",
":",
"ts",
"=",
"(",
"(",
"a",
"[",
"0",
"]",
",",
"a",
"[",
"1",
"]",
")",
"for",
"t",
"in",
"self",
".",
"tiers",
".",
"values",
"(",
")",
"for",
"a",
"in",
"t",
"[",
"0",
"]",
".",
"values",
"(",
")",
")",
"for",
"a",
"in",
"{",
"a",
"for",
"b",
"in",
"ts",
"for",
"a",
"in",
"b",
"}",
"^",
"set",
"(",
"self",
".",
"timeslots",
")",
":",
"del",
"(",
"self",
".",
"timeslots",
"[",
"a",
"]",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.copy_tier
|
Copies a tier to another :class:`pympi.Elan.Eaf` object.
:param pympi.Elan.Eaf eaf_obj: Target Eaf object.
:param str tier_name: Name of the tier.
:raises KeyError: If the tier doesn't exist.
|
pympi/Elan.py
|
def copy_tier(self, eaf_obj, tier_name):
"""Copies a tier to another :class:`pympi.Elan.Eaf` object.
:param pympi.Elan.Eaf eaf_obj: Target Eaf object.
:param str tier_name: Name of the tier.
:raises KeyError: If the tier doesn't exist.
"""
if tier_name in eaf_obj.get_tier_names():
eaf_obj.remove_tier(tier_name)
eaf_obj.add_tier(tier_name,
tier_dict=self.get_parameters_for_tier(tier_name))
for ann in self.get_annotation_data_for_tier(tier_name):
eaf_obj.insert_annotation(tier_name, ann[0], ann[1], ann[2])
|
def copy_tier(self, eaf_obj, tier_name):
"""Copies a tier to another :class:`pympi.Elan.Eaf` object.
:param pympi.Elan.Eaf eaf_obj: Target Eaf object.
:param str tier_name: Name of the tier.
:raises KeyError: If the tier doesn't exist.
"""
if tier_name in eaf_obj.get_tier_names():
eaf_obj.remove_tier(tier_name)
eaf_obj.add_tier(tier_name,
tier_dict=self.get_parameters_for_tier(tier_name))
for ann in self.get_annotation_data_for_tier(tier_name):
eaf_obj.insert_annotation(tier_name, ann[0], ann[1], ann[2])
|
[
"Copies",
"a",
"tier",
"to",
"another",
":",
"class",
":",
"pympi",
".",
"Elan",
".",
"Eaf",
"object",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L422-L434
|
[
"def",
"copy_tier",
"(",
"self",
",",
"eaf_obj",
",",
"tier_name",
")",
":",
"if",
"tier_name",
"in",
"eaf_obj",
".",
"get_tier_names",
"(",
")",
":",
"eaf_obj",
".",
"remove_tier",
"(",
"tier_name",
")",
"eaf_obj",
".",
"add_tier",
"(",
"tier_name",
",",
"tier_dict",
"=",
"self",
".",
"get_parameters_for_tier",
"(",
"tier_name",
")",
")",
"for",
"ann",
"in",
"self",
".",
"get_annotation_data_for_tier",
"(",
"tier_name",
")",
":",
"eaf_obj",
".",
"insert_annotation",
"(",
"tier_name",
",",
"ann",
"[",
"0",
"]",
",",
"ann",
"[",
"1",
"]",
",",
"ann",
"[",
"2",
"]",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.create_gaps_and_overlaps_tier
|
Create a tier with the gaps and overlaps of the annotations.
For types see :func:`get_gaps_and_overlaps`
:param str tier1: Name of the first tier.
:param str tier2: Name of the second tier.
:param str tier_name: Name of the new tier, if ``None`` the name will
be generated.
:param int maxlen: Maximum length of gaps (skip longer ones), if ``-1``
no maximum will be used.
:param bool fast: Flag for using the fast method.
:returns: List of gaps and overlaps of the form:
``[(type, start, end)]``.
:raises KeyError: If a tier is non existent.
:raises IndexError: If no annotations are available in the tiers.
|
pympi/Elan.py
|
def create_gaps_and_overlaps_tier(self, tier1, tier2, tier_name=None,
maxlen=-1, fast=False):
"""Create a tier with the gaps and overlaps of the annotations.
For types see :func:`get_gaps_and_overlaps`
:param str tier1: Name of the first tier.
:param str tier2: Name of the second tier.
:param str tier_name: Name of the new tier, if ``None`` the name will
be generated.
:param int maxlen: Maximum length of gaps (skip longer ones), if ``-1``
no maximum will be used.
:param bool fast: Flag for using the fast method.
:returns: List of gaps and overlaps of the form:
``[(type, start, end)]``.
:raises KeyError: If a tier is non existent.
:raises IndexError: If no annotations are available in the tiers.
"""
if tier_name is None:
tier_name = '{}_{}_ftos'.format(tier1, tier2)
self.add_tier(tier_name)
ftos = []
ftogen = self.get_gaps_and_overlaps2(tier1, tier2, maxlen) if fast\
else self.get_gaps_and_overlaps(tier1, tier2, maxlen)
for fto in ftogen:
ftos.append(fto)
if fto[1]-fto[0] >= 1:
self.add_annotation(tier_name, fto[0], fto[1], fto[2])
self.clean_time_slots()
return ftos
|
def create_gaps_and_overlaps_tier(self, tier1, tier2, tier_name=None,
maxlen=-1, fast=False):
"""Create a tier with the gaps and overlaps of the annotations.
For types see :func:`get_gaps_and_overlaps`
:param str tier1: Name of the first tier.
:param str tier2: Name of the second tier.
:param str tier_name: Name of the new tier, if ``None`` the name will
be generated.
:param int maxlen: Maximum length of gaps (skip longer ones), if ``-1``
no maximum will be used.
:param bool fast: Flag for using the fast method.
:returns: List of gaps and overlaps of the form:
``[(type, start, end)]``.
:raises KeyError: If a tier is non existent.
:raises IndexError: If no annotations are available in the tiers.
"""
if tier_name is None:
tier_name = '{}_{}_ftos'.format(tier1, tier2)
self.add_tier(tier_name)
ftos = []
ftogen = self.get_gaps_and_overlaps2(tier1, tier2, maxlen) if fast\
else self.get_gaps_and_overlaps(tier1, tier2, maxlen)
for fto in ftogen:
ftos.append(fto)
if fto[1]-fto[0] >= 1:
self.add_annotation(tier_name, fto[0], fto[1], fto[2])
self.clean_time_slots()
return ftos
|
[
"Create",
"a",
"tier",
"with",
"the",
"gaps",
"and",
"overlaps",
"of",
"the",
"annotations",
".",
"For",
"types",
"see",
":",
"func",
":",
"get_gaps_and_overlaps"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L436-L464
|
[
"def",
"create_gaps_and_overlaps_tier",
"(",
"self",
",",
"tier1",
",",
"tier2",
",",
"tier_name",
"=",
"None",
",",
"maxlen",
"=",
"-",
"1",
",",
"fast",
"=",
"False",
")",
":",
"if",
"tier_name",
"is",
"None",
":",
"tier_name",
"=",
"'{}_{}_ftos'",
".",
"format",
"(",
"tier1",
",",
"tier2",
")",
"self",
".",
"add_tier",
"(",
"tier_name",
")",
"ftos",
"=",
"[",
"]",
"ftogen",
"=",
"self",
".",
"get_gaps_and_overlaps2",
"(",
"tier1",
",",
"tier2",
",",
"maxlen",
")",
"if",
"fast",
"else",
"self",
".",
"get_gaps_and_overlaps",
"(",
"tier1",
",",
"tier2",
",",
"maxlen",
")",
"for",
"fto",
"in",
"ftogen",
":",
"ftos",
".",
"append",
"(",
"fto",
")",
"if",
"fto",
"[",
"1",
"]",
"-",
"fto",
"[",
"0",
"]",
">=",
"1",
":",
"self",
".",
"add_annotation",
"(",
"tier_name",
",",
"fto",
"[",
"0",
"]",
",",
"fto",
"[",
"1",
"]",
",",
"fto",
"[",
"2",
"]",
")",
"self",
".",
"clean_time_slots",
"(",
")",
"return",
"ftos"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.extract
|
Extracts the selected time frame as a new object.
:param int start: Start time.
:param int end: End time.
:returns: class:`pympi.Elan.Eaf` object containing the extracted frame.
|
pympi/Elan.py
|
def extract(self, start, end):
"""Extracts the selected time frame as a new object.
:param int start: Start time.
:param int end: End time.
:returns: class:`pympi.Elan.Eaf` object containing the extracted frame.
"""
from copy import deepcopy
eaf_out = deepcopy(self)
for t in eaf_out.get_tier_names():
for ab, ae, value in eaf_out.get_annotation_data_for_tier(t):
if ab > end or ae < start:
eaf_out.remove_annotation(t, (start-end)//2, False)
eaf_out.clean_time_slots()
return eaf_out
|
def extract(self, start, end):
"""Extracts the selected time frame as a new object.
:param int start: Start time.
:param int end: End time.
:returns: class:`pympi.Elan.Eaf` object containing the extracted frame.
"""
from copy import deepcopy
eaf_out = deepcopy(self)
for t in eaf_out.get_tier_names():
for ab, ae, value in eaf_out.get_annotation_data_for_tier(t):
if ab > end or ae < start:
eaf_out.remove_annotation(t, (start-end)//2, False)
eaf_out.clean_time_slots()
return eaf_out
|
[
"Extracts",
"the",
"selected",
"time",
"frame",
"as",
"a",
"new",
"object",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L466-L480
|
[
"def",
"extract",
"(",
"self",
",",
"start",
",",
"end",
")",
":",
"from",
"copy",
"import",
"deepcopy",
"eaf_out",
"=",
"deepcopy",
"(",
"self",
")",
"for",
"t",
"in",
"eaf_out",
".",
"get_tier_names",
"(",
")",
":",
"for",
"ab",
",",
"ae",
",",
"value",
"in",
"eaf_out",
".",
"get_annotation_data_for_tier",
"(",
"t",
")",
":",
"if",
"ab",
">",
"end",
"or",
"ae",
"<",
"start",
":",
"eaf_out",
".",
"remove_annotation",
"(",
"t",
",",
"(",
"start",
"-",
"end",
")",
"//",
"2",
",",
"False",
")",
"eaf_out",
".",
"clean_time_slots",
"(",
")",
"return",
"eaf_out"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.filter_annotations
|
Filter annotations in a tier using an exclusive and/or inclusive
filter.
:param str tier: Name of the tier.
:param str tier_name: Name of the output tier, when ``None`` the name
will be generated.
:param list filtin: List of strings to be included, if None all
annotations all is included.
:param list filtex: List of strings to be excluded, if None no strings
are excluded.
:param bool regex: If this flag is set, the filters are seen as regex
matches.
:param bool safe: Ignore zero length annotations(when working with
possible malformed data).
:returns: Name of the created tier.
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def filter_annotations(self, tier, tier_name=None, filtin=None,
filtex=None, regex=False, safe=False):
"""Filter annotations in a tier using an exclusive and/or inclusive
filter.
:param str tier: Name of the tier.
:param str tier_name: Name of the output tier, when ``None`` the name
will be generated.
:param list filtin: List of strings to be included, if None all
annotations all is included.
:param list filtex: List of strings to be excluded, if None no strings
are excluded.
:param bool regex: If this flag is set, the filters are seen as regex
matches.
:param bool safe: Ignore zero length annotations(when working with
possible malformed data).
:returns: Name of the created tier.
:raises KeyError: If the tier is non existent.
"""
if tier_name is None:
tier_name = '{}_filter'.format(tier)
self.add_tier(tier_name)
func = (lambda x, y: re.match(x, y)) if regex else lambda x, y: x == y
for begin, end, value in self.get_annotation_data_for_tier(tier):
if (filtin and not any(func(f, value) for f in filtin)) or\
(filtex and any(func(f, value) for f in filtex)):
continue
if not safe or end > begin:
self.add_annotation(tier_name, begin, end, value)
self.clean_time_slots()
return tier_name
|
def filter_annotations(self, tier, tier_name=None, filtin=None,
filtex=None, regex=False, safe=False):
"""Filter annotations in a tier using an exclusive and/or inclusive
filter.
:param str tier: Name of the tier.
:param str tier_name: Name of the output tier, when ``None`` the name
will be generated.
:param list filtin: List of strings to be included, if None all
annotations all is included.
:param list filtex: List of strings to be excluded, if None no strings
are excluded.
:param bool regex: If this flag is set, the filters are seen as regex
matches.
:param bool safe: Ignore zero length annotations(when working with
possible malformed data).
:returns: Name of the created tier.
:raises KeyError: If the tier is non existent.
"""
if tier_name is None:
tier_name = '{}_filter'.format(tier)
self.add_tier(tier_name)
func = (lambda x, y: re.match(x, y)) if regex else lambda x, y: x == y
for begin, end, value in self.get_annotation_data_for_tier(tier):
if (filtin and not any(func(f, value) for f in filtin)) or\
(filtex and any(func(f, value) for f in filtex)):
continue
if not safe or end > begin:
self.add_annotation(tier_name, begin, end, value)
self.clean_time_slots()
return tier_name
|
[
"Filter",
"annotations",
"in",
"a",
"tier",
"using",
"an",
"exclusive",
"and",
"/",
"or",
"inclusive",
"filter",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L482-L512
|
[
"def",
"filter_annotations",
"(",
"self",
",",
"tier",
",",
"tier_name",
"=",
"None",
",",
"filtin",
"=",
"None",
",",
"filtex",
"=",
"None",
",",
"regex",
"=",
"False",
",",
"safe",
"=",
"False",
")",
":",
"if",
"tier_name",
"is",
"None",
":",
"tier_name",
"=",
"'{}_filter'",
".",
"format",
"(",
"tier",
")",
"self",
".",
"add_tier",
"(",
"tier_name",
")",
"func",
"=",
"(",
"lambda",
"x",
",",
"y",
":",
"re",
".",
"match",
"(",
"x",
",",
"y",
")",
")",
"if",
"regex",
"else",
"lambda",
"x",
",",
"y",
":",
"x",
"==",
"y",
"for",
"begin",
",",
"end",
",",
"value",
"in",
"self",
".",
"get_annotation_data_for_tier",
"(",
"tier",
")",
":",
"if",
"(",
"filtin",
"and",
"not",
"any",
"(",
"func",
"(",
"f",
",",
"value",
")",
"for",
"f",
"in",
"filtin",
")",
")",
"or",
"(",
"filtex",
"and",
"any",
"(",
"func",
"(",
"f",
",",
"value",
")",
"for",
"f",
"in",
"filtex",
")",
")",
":",
"continue",
"if",
"not",
"safe",
"or",
"end",
">",
"begin",
":",
"self",
".",
"add_annotation",
"(",
"tier_name",
",",
"begin",
",",
"end",
",",
"value",
")",
"self",
".",
"clean_time_slots",
"(",
")",
"return",
"tier_name"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.generate_annotation_id
|
Generate the next annotation id, this function is mainly used
internally.
|
pympi/Elan.py
|
def generate_annotation_id(self):
"""Generate the next annotation id, this function is mainly used
internally.
"""
if not self.maxaid:
valid_anns = [int(''.join(filter(str.isdigit, a)))
for a in self.timeslots]
self.maxaid = max(valid_anns + [1])+1
else:
self.maxaid += 1
return 'a{:d}'.format(self.maxaid)
|
def generate_annotation_id(self):
"""Generate the next annotation id, this function is mainly used
internally.
"""
if not self.maxaid:
valid_anns = [int(''.join(filter(str.isdigit, a)))
for a in self.timeslots]
self.maxaid = max(valid_anns + [1])+1
else:
self.maxaid += 1
return 'a{:d}'.format(self.maxaid)
|
[
"Generate",
"the",
"next",
"annotation",
"id",
"this",
"function",
"is",
"mainly",
"used",
"internally",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L514-L524
|
[
"def",
"generate_annotation_id",
"(",
"self",
")",
":",
"if",
"not",
"self",
".",
"maxaid",
":",
"valid_anns",
"=",
"[",
"int",
"(",
"''",
".",
"join",
"(",
"filter",
"(",
"str",
".",
"isdigit",
",",
"a",
")",
")",
")",
"for",
"a",
"in",
"self",
".",
"timeslots",
"]",
"self",
".",
"maxaid",
"=",
"max",
"(",
"valid_anns",
"+",
"[",
"1",
"]",
")",
"+",
"1",
"else",
":",
"self",
".",
"maxaid",
"+=",
"1",
"return",
"'a{:d}'",
".",
"format",
"(",
"self",
".",
"maxaid",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.generate_ts_id
|
Generate the next timeslot id, this function is mainly used
internally
:param int time: Initial time to assign to the timeslot.
:raises ValueError: If the time is negative.
|
pympi/Elan.py
|
def generate_ts_id(self, time=None):
"""Generate the next timeslot id, this function is mainly used
internally
:param int time: Initial time to assign to the timeslot.
:raises ValueError: If the time is negative.
"""
if time and time < 0:
raise ValueError('Time is negative...')
if not self.maxts:
valid_ts = [int(''.join(filter(str.isdigit, a)))
for a in self.timeslots]
self.maxts = max(valid_ts + [1])+1
else:
self.maxts += 1
ts = 'ts{:d}'.format(self.maxts)
self.timeslots[ts] = time
return ts
|
def generate_ts_id(self, time=None):
"""Generate the next timeslot id, this function is mainly used
internally
:param int time: Initial time to assign to the timeslot.
:raises ValueError: If the time is negative.
"""
if time and time < 0:
raise ValueError('Time is negative...')
if not self.maxts:
valid_ts = [int(''.join(filter(str.isdigit, a)))
for a in self.timeslots]
self.maxts = max(valid_ts + [1])+1
else:
self.maxts += 1
ts = 'ts{:d}'.format(self.maxts)
self.timeslots[ts] = time
return ts
|
[
"Generate",
"the",
"next",
"timeslot",
"id",
"this",
"function",
"is",
"mainly",
"used",
"internally"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L526-L543
|
[
"def",
"generate_ts_id",
"(",
"self",
",",
"time",
"=",
"None",
")",
":",
"if",
"time",
"and",
"time",
"<",
"0",
":",
"raise",
"ValueError",
"(",
"'Time is negative...'",
")",
"if",
"not",
"self",
".",
"maxts",
":",
"valid_ts",
"=",
"[",
"int",
"(",
"''",
".",
"join",
"(",
"filter",
"(",
"str",
".",
"isdigit",
",",
"a",
")",
")",
")",
"for",
"a",
"in",
"self",
".",
"timeslots",
"]",
"self",
".",
"maxts",
"=",
"max",
"(",
"valid_ts",
"+",
"[",
"1",
"]",
")",
"+",
"1",
"else",
":",
"self",
".",
"maxts",
"+=",
"1",
"ts",
"=",
"'ts{:d}'",
".",
"format",
"(",
"self",
".",
"maxts",
")",
"self",
".",
"timeslots",
"[",
"ts",
"]",
"=",
"time",
"return",
"ts"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_annotation_data_at_time
|
Give the annotations at the given time. When the tier contains
reference annotations this will be returned, check
:func:`get_ref_annotation_data_at_time` for the format.
:param str id_tier: Name of the tier.
:param int time: Time of the annotation.
:returns: List of annotations at that time.
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_annotation_data_at_time(self, id_tier, time):
"""Give the annotations at the given time. When the tier contains
reference annotations this will be returned, check
:func:`get_ref_annotation_data_at_time` for the format.
:param str id_tier: Name of the tier.
:param int time: Time of the annotation.
:returns: List of annotations at that time.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_at_time(id_tier, time)
anns = self.tiers[id_tier][0]
return sorted([(self.timeslots[m[0]], self.timeslots[m[1]], m[2])
for m in anns.values() if
self.timeslots[m[0]] <= time and
self.timeslots[m[1]] >= time])
|
def get_annotation_data_at_time(self, id_tier, time):
"""Give the annotations at the given time. When the tier contains
reference annotations this will be returned, check
:func:`get_ref_annotation_data_at_time` for the format.
:param str id_tier: Name of the tier.
:param int time: Time of the annotation.
:returns: List of annotations at that time.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_at_time(id_tier, time)
anns = self.tiers[id_tier][0]
return sorted([(self.timeslots[m[0]], self.timeslots[m[1]], m[2])
for m in anns.values() if
self.timeslots[m[0]] <= time and
self.timeslots[m[1]] >= time])
|
[
"Give",
"the",
"annotations",
"at",
"the",
"given",
"time",
".",
"When",
"the",
"tier",
"contains",
"reference",
"annotations",
"this",
"will",
"be",
"returned",
"check",
":",
"func",
":",
"get_ref_annotation_data_at_time",
"for",
"the",
"format",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L545-L561
|
[
"def",
"get_annotation_data_at_time",
"(",
"self",
",",
"id_tier",
",",
"time",
")",
":",
"if",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
":",
"return",
"self",
".",
"get_ref_annotation_at_time",
"(",
"id_tier",
",",
"time",
")",
"anns",
"=",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"0",
"]",
"return",
"sorted",
"(",
"[",
"(",
"self",
".",
"timeslots",
"[",
"m",
"[",
"0",
"]",
"]",
",",
"self",
".",
"timeslots",
"[",
"m",
"[",
"1",
"]",
"]",
",",
"m",
"[",
"2",
"]",
")",
"for",
"m",
"in",
"anns",
".",
"values",
"(",
")",
"if",
"self",
".",
"timeslots",
"[",
"m",
"[",
"0",
"]",
"]",
"<=",
"time",
"and",
"self",
".",
"timeslots",
"[",
"m",
"[",
"1",
"]",
"]",
">=",
"time",
"]",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_annotation_data_after_time
|
Give the annotation before a given time. When the tier contains
reference annotations this will be returned, check
:func:`get_ref_annotation_data_before_time` for the format. If an
annotation overlaps with ``time`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation before.
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_annotation_data_after_time(self, id_tier, time):
"""Give the annotation before a given time. When the tier contains
reference annotations this will be returned, check
:func:`get_ref_annotation_data_before_time` for the format. If an
annotation overlaps with ``time`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation before.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_after_time(id_tier, time)
befores = self.get_annotation_data_between_times(
id_tier, time, self.get_full_time_interval()[1])
if befores:
return [min(befores, key=lambda x: x[0])]
else:
return []
|
def get_annotation_data_after_time(self, id_tier, time):
"""Give the annotation before a given time. When the tier contains
reference annotations this will be returned, check
:func:`get_ref_annotation_data_before_time` for the format. If an
annotation overlaps with ``time`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation before.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_after_time(id_tier, time)
befores = self.get_annotation_data_between_times(
id_tier, time, self.get_full_time_interval()[1])
if befores:
return [min(befores, key=lambda x: x[0])]
else:
return []
|
[
"Give",
"the",
"annotation",
"before",
"a",
"given",
"time",
".",
"When",
"the",
"tier",
"contains",
"reference",
"annotations",
"this",
"will",
"be",
"returned",
"check",
":",
"func",
":",
"get_ref_annotation_data_before_time",
"for",
"the",
"format",
".",
"If",
"an",
"annotation",
"overlaps",
"with",
"time",
"that",
"annotation",
"will",
"be",
"returned",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L563-L580
|
[
"def",
"get_annotation_data_after_time",
"(",
"self",
",",
"id_tier",
",",
"time",
")",
":",
"if",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
":",
"return",
"self",
".",
"get_ref_annotation_after_time",
"(",
"id_tier",
",",
"time",
")",
"befores",
"=",
"self",
".",
"get_annotation_data_between_times",
"(",
"id_tier",
",",
"time",
",",
"self",
".",
"get_full_time_interval",
"(",
")",
"[",
"1",
"]",
")",
"if",
"befores",
":",
"return",
"[",
"min",
"(",
"befores",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"0",
"]",
")",
"]",
"else",
":",
"return",
"[",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_annotation_data_before_time
|
Give the annotation before a given time. When the tier contains
reference annotations this will be returned, check
:func:`get_ref_annotation_data_before_time` for the format. If an
annotation overlaps with ``time`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation before.
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_annotation_data_before_time(self, id_tier, time):
"""Give the annotation before a given time. When the tier contains
reference annotations this will be returned, check
:func:`get_ref_annotation_data_before_time` for the format. If an
annotation overlaps with ``time`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation before.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_before_time(id_tier, time)
befores = self.get_annotation_data_between_times(id_tier, 0, time)
if befores:
return [max(befores, key=lambda x: x[0])]
else:
return []
|
def get_annotation_data_before_time(self, id_tier, time):
"""Give the annotation before a given time. When the tier contains
reference annotations this will be returned, check
:func:`get_ref_annotation_data_before_time` for the format. If an
annotation overlaps with ``time`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation before.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_before_time(id_tier, time)
befores = self.get_annotation_data_between_times(id_tier, 0, time)
if befores:
return [max(befores, key=lambda x: x[0])]
else:
return []
|
[
"Give",
"the",
"annotation",
"before",
"a",
"given",
"time",
".",
"When",
"the",
"tier",
"contains",
"reference",
"annotations",
"this",
"will",
"be",
"returned",
"check",
":",
"func",
":",
"get_ref_annotation_data_before_time",
"for",
"the",
"format",
".",
"If",
"an",
"annotation",
"overlaps",
"with",
"time",
"that",
"annotation",
"will",
"be",
"returned",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L582-L598
|
[
"def",
"get_annotation_data_before_time",
"(",
"self",
",",
"id_tier",
",",
"time",
")",
":",
"if",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
":",
"return",
"self",
".",
"get_ref_annotation_before_time",
"(",
"id_tier",
",",
"time",
")",
"befores",
"=",
"self",
".",
"get_annotation_data_between_times",
"(",
"id_tier",
",",
"0",
",",
"time",
")",
"if",
"befores",
":",
"return",
"[",
"max",
"(",
"befores",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"0",
"]",
")",
"]",
"else",
":",
"return",
"[",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_annotation_data_between_times
|
Gives the annotations within the times.
When the tier contains reference annotations this will be returned,
check :func:`get_ref_annotation_data_between_times` for the format.
:param str id_tier: Name of the tier.
:param int start: Start time of the annotation.
:param int end: End time of the annotation.
:returns: List of annotations within that time.
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_annotation_data_between_times(self, id_tier, start, end):
"""Gives the annotations within the times.
When the tier contains reference annotations this will be returned,
check :func:`get_ref_annotation_data_between_times` for the format.
:param str id_tier: Name of the tier.
:param int start: Start time of the annotation.
:param int end: End time of the annotation.
:returns: List of annotations within that time.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_data_between_times(
id_tier, start, end)
anns = ((self.timeslots[a[0]], self.timeslots[a[1]], a[2])
for a in self.tiers[id_tier][0].values())
return sorted(a for a in anns if a[1] >= start and a[0] <= end)
|
def get_annotation_data_between_times(self, id_tier, start, end):
"""Gives the annotations within the times.
When the tier contains reference annotations this will be returned,
check :func:`get_ref_annotation_data_between_times` for the format.
:param str id_tier: Name of the tier.
:param int start: Start time of the annotation.
:param int end: End time of the annotation.
:returns: List of annotations within that time.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_data_between_times(
id_tier, start, end)
anns = ((self.timeslots[a[0]], self.timeslots[a[1]], a[2])
for a in self.tiers[id_tier][0].values())
return sorted(a for a in anns if a[1] >= start and a[0] <= end)
|
[
"Gives",
"the",
"annotations",
"within",
"the",
"times",
".",
"When",
"the",
"tier",
"contains",
"reference",
"annotations",
"this",
"will",
"be",
"returned",
"check",
":",
"func",
":",
"get_ref_annotation_data_between_times",
"for",
"the",
"format",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L600-L616
|
[
"def",
"get_annotation_data_between_times",
"(",
"self",
",",
"id_tier",
",",
"start",
",",
"end",
")",
":",
"if",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
":",
"return",
"self",
".",
"get_ref_annotation_data_between_times",
"(",
"id_tier",
",",
"start",
",",
"end",
")",
"anns",
"=",
"(",
"(",
"self",
".",
"timeslots",
"[",
"a",
"[",
"0",
"]",
"]",
",",
"self",
".",
"timeslots",
"[",
"a",
"[",
"1",
"]",
"]",
",",
"a",
"[",
"2",
"]",
")",
"for",
"a",
"in",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"0",
"]",
".",
"values",
"(",
")",
")",
"return",
"sorted",
"(",
"a",
"for",
"a",
"in",
"anns",
"if",
"a",
"[",
"1",
"]",
">=",
"start",
"and",
"a",
"[",
"0",
"]",
"<=",
"end",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_annotation_data_for_tier
|
Gives a list of annotations of the form: ``(begin, end, value)``
When the tier contains reference annotations this will be returned,
check :func:`get_ref_annotation_data_for_tier` for the format.
:param str id_tier: Name of the tier.
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_annotation_data_for_tier(self, id_tier):
"""Gives a list of annotations of the form: ``(begin, end, value)``
When the tier contains reference annotations this will be returned,
check :func:`get_ref_annotation_data_for_tier` for the format.
:param str id_tier: Name of the tier.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_data_for_tier(id_tier)
a = self.tiers[id_tier][0]
return [(self.timeslots[a[b][0]], self.timeslots[a[b][1]], a[b][2])
for b in a]
|
def get_annotation_data_for_tier(self, id_tier):
"""Gives a list of annotations of the form: ``(begin, end, value)``
When the tier contains reference annotations this will be returned,
check :func:`get_ref_annotation_data_for_tier` for the format.
:param str id_tier: Name of the tier.
:raises KeyError: If the tier is non existent.
"""
if self.tiers[id_tier][1]:
return self.get_ref_annotation_data_for_tier(id_tier)
a = self.tiers[id_tier][0]
return [(self.timeslots[a[b][0]], self.timeslots[a[b][1]], a[b][2])
for b in a]
|
[
"Gives",
"a",
"list",
"of",
"annotations",
"of",
"the",
"form",
":",
"(",
"begin",
"end",
"value",
")",
"When",
"the",
"tier",
"contains",
"reference",
"annotations",
"this",
"will",
"be",
"returned",
"check",
":",
"func",
":",
"get_ref_annotation_data_for_tier",
"for",
"the",
"format",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L618-L630
|
[
"def",
"get_annotation_data_for_tier",
"(",
"self",
",",
"id_tier",
")",
":",
"if",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
":",
"return",
"self",
".",
"get_ref_annotation_data_for_tier",
"(",
"id_tier",
")",
"a",
"=",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"0",
"]",
"return",
"[",
"(",
"self",
".",
"timeslots",
"[",
"a",
"[",
"b",
"]",
"[",
"0",
"]",
"]",
",",
"self",
".",
"timeslots",
"[",
"a",
"[",
"b",
"]",
"[",
"1",
"]",
"]",
",",
"a",
"[",
"b",
"]",
"[",
"2",
"]",
")",
"for",
"b",
"in",
"a",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_child_tiers_for
|
Give all child tiers for a tier.
:param str id_tier: Name of the tier.
:returns: List of all children
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_child_tiers_for(self, id_tier):
"""Give all child tiers for a tier.
:param str id_tier: Name of the tier.
:returns: List of all children
:raises KeyError: If the tier is non existent.
"""
self.tiers[id_tier]
return [m for m in self.tiers if 'PARENT_REF' in self.tiers[m][2] and
self.tiers[m][2]['PARENT_REF'] == id_tier]
|
def get_child_tiers_for(self, id_tier):
"""Give all child tiers for a tier.
:param str id_tier: Name of the tier.
:returns: List of all children
:raises KeyError: If the tier is non existent.
"""
self.tiers[id_tier]
return [m for m in self.tiers if 'PARENT_REF' in self.tiers[m][2] and
self.tiers[m][2]['PARENT_REF'] == id_tier]
|
[
"Give",
"all",
"child",
"tiers",
"for",
"a",
"tier",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L632-L641
|
[
"def",
"get_child_tiers_for",
"(",
"self",
",",
"id_tier",
")",
":",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"return",
"[",
"m",
"for",
"m",
"in",
"self",
".",
"tiers",
"if",
"'PARENT_REF'",
"in",
"self",
".",
"tiers",
"[",
"m",
"]",
"[",
"2",
"]",
"and",
"self",
".",
"tiers",
"[",
"m",
"]",
"[",
"2",
"]",
"[",
"'PARENT_REF'",
"]",
"==",
"id_tier",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_full_time_interval
|
Give the full time interval of the file. Note that the real interval
can be longer because the sound file attached can be longer.
:returns: Tuple of the form: ``(min_time, max_time)``.
|
pympi/Elan.py
|
def get_full_time_interval(self):
"""Give the full time interval of the file. Note that the real interval
can be longer because the sound file attached can be longer.
:returns: Tuple of the form: ``(min_time, max_time)``.
"""
return (0, 0) if not self.timeslots else\
(min(self.timeslots.values()), max(self.timeslots.values()))
|
def get_full_time_interval(self):
"""Give the full time interval of the file. Note that the real interval
can be longer because the sound file attached can be longer.
:returns: Tuple of the form: ``(min_time, max_time)``.
"""
return (0, 0) if not self.timeslots else\
(min(self.timeslots.values()), max(self.timeslots.values()))
|
[
"Give",
"the",
"full",
"time",
"interval",
"of",
"the",
"file",
".",
"Note",
"that",
"the",
"real",
"interval",
"can",
"be",
"longer",
"because",
"the",
"sound",
"file",
"attached",
"can",
"be",
"longer",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L643-L650
|
[
"def",
"get_full_time_interval",
"(",
"self",
")",
":",
"return",
"(",
"0",
",",
"0",
")",
"if",
"not",
"self",
".",
"timeslots",
"else",
"(",
"min",
"(",
"self",
".",
"timeslots",
".",
"values",
"(",
")",
")",
",",
"max",
"(",
"self",
".",
"timeslots",
".",
"values",
"(",
")",
")",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_gaps_and_overlaps
|
Give gaps and overlaps. The return types are shown in the table
below. The string will be of the format: ``id_tiername_tiername``.
.. note:: There is also a faster method: :func:`get_gaps_and_overlaps2`
For example when a gap occurs between tier1 and tier2 and they are
called ``speakerA`` and ``speakerB`` the annotation value of that gap
will be ``G12_speakerA_speakerB``.
| The gaps and overlaps are calculated using Heldner and Edlunds
method found in:
| *Heldner, M., & Edlund, J. (2010). Pauses, gaps and overlaps in
conversations. Journal of Phonetics, 38(4), 555–568.
doi:10.1016/j.wocn.2010.08.002*
+-----+---------------------------------------------+
| id | Description |
+=====+=============================================+
| O12 | Overlap from tier1 to tier2 |
+-----+---------------------------------------------+
| O21 | Overlap from tier2 to tier1 |
+-----+---------------------------------------------+
| G12 | Between speaker gap from tier1 to tier2 |
+-----+---------------------------------------------+
| G21 | Between speaker gap from tier2 to tier1 |
+-----+---------------------------------------------+
| W12 | Within speaker overlap from tier2 in tier1 |
+-----+---------------------------------------------+
| W21 | Within speaker overlap from tier1 in tier2 |
+-----+---------------------------------------------+
| P1 | Pause for tier1 |
+-----+---------------------------------------------+
| P2 | Pause for tier2 |
+-----+---------------------------------------------+
:param str tier1: Name of the first tier.
:param str tier2: Name of the second tier.
:param int maxlen: Maximum length of gaps (skip longer ones), if ``-1``
no maximum will be used.
:yields: Tuples of the form ``[(start, end, type)]``.
:raises KeyError: If a tier is non existent.
:raises IndexError: If no annotations are available in the tiers.
|
pympi/Elan.py
|
def get_gaps_and_overlaps(self, tier1, tier2, maxlen=-1):
"""Give gaps and overlaps. The return types are shown in the table
below. The string will be of the format: ``id_tiername_tiername``.
.. note:: There is also a faster method: :func:`get_gaps_and_overlaps2`
For example when a gap occurs between tier1 and tier2 and they are
called ``speakerA`` and ``speakerB`` the annotation value of that gap
will be ``G12_speakerA_speakerB``.
| The gaps and overlaps are calculated using Heldner and Edlunds
method found in:
| *Heldner, M., & Edlund, J. (2010). Pauses, gaps and overlaps in
conversations. Journal of Phonetics, 38(4), 555–568.
doi:10.1016/j.wocn.2010.08.002*
+-----+---------------------------------------------+
| id | Description |
+=====+=============================================+
| O12 | Overlap from tier1 to tier2 |
+-----+---------------------------------------------+
| O21 | Overlap from tier2 to tier1 |
+-----+---------------------------------------------+
| G12 | Between speaker gap from tier1 to tier2 |
+-----+---------------------------------------------+
| G21 | Between speaker gap from tier2 to tier1 |
+-----+---------------------------------------------+
| W12 | Within speaker overlap from tier2 in tier1 |
+-----+---------------------------------------------+
| W21 | Within speaker overlap from tier1 in tier2 |
+-----+---------------------------------------------+
| P1 | Pause for tier1 |
+-----+---------------------------------------------+
| P2 | Pause for tier2 |
+-----+---------------------------------------------+
:param str tier1: Name of the first tier.
:param str tier2: Name of the second tier.
:param int maxlen: Maximum length of gaps (skip longer ones), if ``-1``
no maximum will be used.
:yields: Tuples of the form ``[(start, end, type)]``.
:raises KeyError: If a tier is non existent.
:raises IndexError: If no annotations are available in the tiers.
"""
spkr1anns = sorted((self.timeslots[a[0]], self.timeslots[a[1]])
for a in self.tiers[tier1][0].values())
spkr2anns = sorted((self.timeslots[a[0]], self.timeslots[a[1]])
for a in self.tiers[tier2][0].values())
line1 = []
def isin(x, lst):
return False if\
len([i for i in lst if i[0] <= x and i[1] >= x]) == 0 else True
minmax = (min(spkr1anns[0][0], spkr2anns[0][0]),
max(spkr1anns[-1][1], spkr2anns[-1][1]))
last = (1, minmax[0])
for ts in range(*minmax):
in1, in2 = isin(ts, spkr1anns), isin(ts, spkr2anns)
if in1 and in2: # Both speaking
if last[0] == 'B':
continue
ty = 'B'
elif in1: # Only 1 speaking
if last[0] == '1':
continue
ty = '1'
elif in2: # Only 2 speaking
if last[0] == '2':
continue
ty = '2'
else: # None speaking
if last[0] == 'N':
continue
ty = 'N'
line1.append((last[0], last[1], ts))
last = (ty, ts)
line1.append((last[0], last[1], minmax[1]))
for i in range(len(line1)):
if line1[i][0] == 'N':
if i != 0 and i < len(line1) - 1 and\
line1[i-1][0] != line1[i+1][0]:
t = ('G12', tier1, tier2) if line1[i-1][0] == '1' else\
('G21', tier2, tier1)
if maxlen == -1 or abs(line1[i][1]-line1[i][2]) < maxlen:
yield (line1[i][1], line1[i][2]-1, '_'.join(t))
else:
t = ('P1', tier1) if line1[i-1][0] == '1' else\
('P2', tier2)
if maxlen == -1 or abs(line1[i][1]-line1[i][2]) < maxlen:
yield (line1[i][1], line1[i][2]-1, '_'.join(t))
elif line1[i][0] == 'B':
if i != 0 and i < len(line1) - 1 and\
line1[i-1][0] != line1[i+1][0]:
t = ('O12', tier1, tier2) if line1[i-1][0] == '1' else\
('O21', tier2, tier1)
yield (line1[i][1], line1[i][2]-1, '_'.join(t))
else:
t = ('W12', tier1, tier2) if line1[i-1][0] == '1' else\
('W21', tier2, tier1)
yield (line1[i][1], line1[i][2]-1, '_'.join(t))
|
def get_gaps_and_overlaps(self, tier1, tier2, maxlen=-1):
"""Give gaps and overlaps. The return types are shown in the table
below. The string will be of the format: ``id_tiername_tiername``.
.. note:: There is also a faster method: :func:`get_gaps_and_overlaps2`
For example when a gap occurs between tier1 and tier2 and they are
called ``speakerA`` and ``speakerB`` the annotation value of that gap
will be ``G12_speakerA_speakerB``.
| The gaps and overlaps are calculated using Heldner and Edlunds
method found in:
| *Heldner, M., & Edlund, J. (2010). Pauses, gaps and overlaps in
conversations. Journal of Phonetics, 38(4), 555–568.
doi:10.1016/j.wocn.2010.08.002*
+-----+---------------------------------------------+
| id | Description |
+=====+=============================================+
| O12 | Overlap from tier1 to tier2 |
+-----+---------------------------------------------+
| O21 | Overlap from tier2 to tier1 |
+-----+---------------------------------------------+
| G12 | Between speaker gap from tier1 to tier2 |
+-----+---------------------------------------------+
| G21 | Between speaker gap from tier2 to tier1 |
+-----+---------------------------------------------+
| W12 | Within speaker overlap from tier2 in tier1 |
+-----+---------------------------------------------+
| W21 | Within speaker overlap from tier1 in tier2 |
+-----+---------------------------------------------+
| P1 | Pause for tier1 |
+-----+---------------------------------------------+
| P2 | Pause for tier2 |
+-----+---------------------------------------------+
:param str tier1: Name of the first tier.
:param str tier2: Name of the second tier.
:param int maxlen: Maximum length of gaps (skip longer ones), if ``-1``
no maximum will be used.
:yields: Tuples of the form ``[(start, end, type)]``.
:raises KeyError: If a tier is non existent.
:raises IndexError: If no annotations are available in the tiers.
"""
spkr1anns = sorted((self.timeslots[a[0]], self.timeslots[a[1]])
for a in self.tiers[tier1][0].values())
spkr2anns = sorted((self.timeslots[a[0]], self.timeslots[a[1]])
for a in self.tiers[tier2][0].values())
line1 = []
def isin(x, lst):
return False if\
len([i for i in lst if i[0] <= x and i[1] >= x]) == 0 else True
minmax = (min(spkr1anns[0][0], spkr2anns[0][0]),
max(spkr1anns[-1][1], spkr2anns[-1][1]))
last = (1, minmax[0])
for ts in range(*minmax):
in1, in2 = isin(ts, spkr1anns), isin(ts, spkr2anns)
if in1 and in2: # Both speaking
if last[0] == 'B':
continue
ty = 'B'
elif in1: # Only 1 speaking
if last[0] == '1':
continue
ty = '1'
elif in2: # Only 2 speaking
if last[0] == '2':
continue
ty = '2'
else: # None speaking
if last[0] == 'N':
continue
ty = 'N'
line1.append((last[0], last[1], ts))
last = (ty, ts)
line1.append((last[0], last[1], minmax[1]))
for i in range(len(line1)):
if line1[i][0] == 'N':
if i != 0 and i < len(line1) - 1 and\
line1[i-1][0] != line1[i+1][0]:
t = ('G12', tier1, tier2) if line1[i-1][0] == '1' else\
('G21', tier2, tier1)
if maxlen == -1 or abs(line1[i][1]-line1[i][2]) < maxlen:
yield (line1[i][1], line1[i][2]-1, '_'.join(t))
else:
t = ('P1', tier1) if line1[i-1][0] == '1' else\
('P2', tier2)
if maxlen == -1 or abs(line1[i][1]-line1[i][2]) < maxlen:
yield (line1[i][1], line1[i][2]-1, '_'.join(t))
elif line1[i][0] == 'B':
if i != 0 and i < len(line1) - 1 and\
line1[i-1][0] != line1[i+1][0]:
t = ('O12', tier1, tier2) if line1[i-1][0] == '1' else\
('O21', tier2, tier1)
yield (line1[i][1], line1[i][2]-1, '_'.join(t))
else:
t = ('W12', tier1, tier2) if line1[i-1][0] == '1' else\
('W21', tier2, tier1)
yield (line1[i][1], line1[i][2]-1, '_'.join(t))
|
[
"Give",
"gaps",
"and",
"overlaps",
".",
"The",
"return",
"types",
"are",
"shown",
"in",
"the",
"table",
"below",
".",
"The",
"string",
"will",
"be",
"of",
"the",
"format",
":",
"id_tiername_tiername",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L652-L751
|
[
"def",
"get_gaps_and_overlaps",
"(",
"self",
",",
"tier1",
",",
"tier2",
",",
"maxlen",
"=",
"-",
"1",
")",
":",
"spkr1anns",
"=",
"sorted",
"(",
"(",
"self",
".",
"timeslots",
"[",
"a",
"[",
"0",
"]",
"]",
",",
"self",
".",
"timeslots",
"[",
"a",
"[",
"1",
"]",
"]",
")",
"for",
"a",
"in",
"self",
".",
"tiers",
"[",
"tier1",
"]",
"[",
"0",
"]",
".",
"values",
"(",
")",
")",
"spkr2anns",
"=",
"sorted",
"(",
"(",
"self",
".",
"timeslots",
"[",
"a",
"[",
"0",
"]",
"]",
",",
"self",
".",
"timeslots",
"[",
"a",
"[",
"1",
"]",
"]",
")",
"for",
"a",
"in",
"self",
".",
"tiers",
"[",
"tier2",
"]",
"[",
"0",
"]",
".",
"values",
"(",
")",
")",
"line1",
"=",
"[",
"]",
"def",
"isin",
"(",
"x",
",",
"lst",
")",
":",
"return",
"False",
"if",
"len",
"(",
"[",
"i",
"for",
"i",
"in",
"lst",
"if",
"i",
"[",
"0",
"]",
"<=",
"x",
"and",
"i",
"[",
"1",
"]",
">=",
"x",
"]",
")",
"==",
"0",
"else",
"True",
"minmax",
"=",
"(",
"min",
"(",
"spkr1anns",
"[",
"0",
"]",
"[",
"0",
"]",
",",
"spkr2anns",
"[",
"0",
"]",
"[",
"0",
"]",
")",
",",
"max",
"(",
"spkr1anns",
"[",
"-",
"1",
"]",
"[",
"1",
"]",
",",
"spkr2anns",
"[",
"-",
"1",
"]",
"[",
"1",
"]",
")",
")",
"last",
"=",
"(",
"1",
",",
"minmax",
"[",
"0",
"]",
")",
"for",
"ts",
"in",
"range",
"(",
"*",
"minmax",
")",
":",
"in1",
",",
"in2",
"=",
"isin",
"(",
"ts",
",",
"spkr1anns",
")",
",",
"isin",
"(",
"ts",
",",
"spkr2anns",
")",
"if",
"in1",
"and",
"in2",
":",
"# Both speaking",
"if",
"last",
"[",
"0",
"]",
"==",
"'B'",
":",
"continue",
"ty",
"=",
"'B'",
"elif",
"in1",
":",
"# Only 1 speaking",
"if",
"last",
"[",
"0",
"]",
"==",
"'1'",
":",
"continue",
"ty",
"=",
"'1'",
"elif",
"in2",
":",
"# Only 2 speaking",
"if",
"last",
"[",
"0",
"]",
"==",
"'2'",
":",
"continue",
"ty",
"=",
"'2'",
"else",
":",
"# None speaking",
"if",
"last",
"[",
"0",
"]",
"==",
"'N'",
":",
"continue",
"ty",
"=",
"'N'",
"line1",
".",
"append",
"(",
"(",
"last",
"[",
"0",
"]",
",",
"last",
"[",
"1",
"]",
",",
"ts",
")",
")",
"last",
"=",
"(",
"ty",
",",
"ts",
")",
"line1",
".",
"append",
"(",
"(",
"last",
"[",
"0",
"]",
",",
"last",
"[",
"1",
"]",
",",
"minmax",
"[",
"1",
"]",
")",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"line1",
")",
")",
":",
"if",
"line1",
"[",
"i",
"]",
"[",
"0",
"]",
"==",
"'N'",
":",
"if",
"i",
"!=",
"0",
"and",
"i",
"<",
"len",
"(",
"line1",
")",
"-",
"1",
"and",
"line1",
"[",
"i",
"-",
"1",
"]",
"[",
"0",
"]",
"!=",
"line1",
"[",
"i",
"+",
"1",
"]",
"[",
"0",
"]",
":",
"t",
"=",
"(",
"'G12'",
",",
"tier1",
",",
"tier2",
")",
"if",
"line1",
"[",
"i",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"'1'",
"else",
"(",
"'G21'",
",",
"tier2",
",",
"tier1",
")",
"if",
"maxlen",
"==",
"-",
"1",
"or",
"abs",
"(",
"line1",
"[",
"i",
"]",
"[",
"1",
"]",
"-",
"line1",
"[",
"i",
"]",
"[",
"2",
"]",
")",
"<",
"maxlen",
":",
"yield",
"(",
"line1",
"[",
"i",
"]",
"[",
"1",
"]",
",",
"line1",
"[",
"i",
"]",
"[",
"2",
"]",
"-",
"1",
",",
"'_'",
".",
"join",
"(",
"t",
")",
")",
"else",
":",
"t",
"=",
"(",
"'P1'",
",",
"tier1",
")",
"if",
"line1",
"[",
"i",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"'1'",
"else",
"(",
"'P2'",
",",
"tier2",
")",
"if",
"maxlen",
"==",
"-",
"1",
"or",
"abs",
"(",
"line1",
"[",
"i",
"]",
"[",
"1",
"]",
"-",
"line1",
"[",
"i",
"]",
"[",
"2",
"]",
")",
"<",
"maxlen",
":",
"yield",
"(",
"line1",
"[",
"i",
"]",
"[",
"1",
"]",
",",
"line1",
"[",
"i",
"]",
"[",
"2",
"]",
"-",
"1",
",",
"'_'",
".",
"join",
"(",
"t",
")",
")",
"elif",
"line1",
"[",
"i",
"]",
"[",
"0",
"]",
"==",
"'B'",
":",
"if",
"i",
"!=",
"0",
"and",
"i",
"<",
"len",
"(",
"line1",
")",
"-",
"1",
"and",
"line1",
"[",
"i",
"-",
"1",
"]",
"[",
"0",
"]",
"!=",
"line1",
"[",
"i",
"+",
"1",
"]",
"[",
"0",
"]",
":",
"t",
"=",
"(",
"'O12'",
",",
"tier1",
",",
"tier2",
")",
"if",
"line1",
"[",
"i",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"'1'",
"else",
"(",
"'O21'",
",",
"tier2",
",",
"tier1",
")",
"yield",
"(",
"line1",
"[",
"i",
"]",
"[",
"1",
"]",
",",
"line1",
"[",
"i",
"]",
"[",
"2",
"]",
"-",
"1",
",",
"'_'",
".",
"join",
"(",
"t",
")",
")",
"else",
":",
"t",
"=",
"(",
"'W12'",
",",
"tier1",
",",
"tier2",
")",
"if",
"line1",
"[",
"i",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"'1'",
"else",
"(",
"'W21'",
",",
"tier2",
",",
"tier1",
")",
"yield",
"(",
"line1",
"[",
"i",
"]",
"[",
"1",
"]",
",",
"line1",
"[",
"i",
"]",
"[",
"2",
"]",
"-",
"1",
",",
"'_'",
".",
"join",
"(",
"t",
")",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_gaps_and_overlaps2
|
Faster variant of :func:`get_gaps_and_overlaps`. Faster in this case
means almost 100 times faster...
:param str tier1: Name of the first tier.
:param str tier2: Name of the second tier.
:param int maxlen: Maximum length of gaps (skip longer ones), if ``-1``
no maximum will be used.
:yields: Tuples of the form ``[(start, end, type)]``.
:raises KeyError: If a tier is non existent.
|
pympi/Elan.py
|
def get_gaps_and_overlaps2(self, tier1, tier2, maxlen=-1):
"""Faster variant of :func:`get_gaps_and_overlaps`. Faster in this case
means almost 100 times faster...
:param str tier1: Name of the first tier.
:param str tier2: Name of the second tier.
:param int maxlen: Maximum length of gaps (skip longer ones), if ``-1``
no maximum will be used.
:yields: Tuples of the form ``[(start, end, type)]``.
:raises KeyError: If a tier is non existent.
"""
ad = sorted(((a, i+1) for i, t in enumerate([tier1, tier2]) for a in
self.get_annotation_data_for_tier(t)), reverse=True)
if ad:
last = (lambda x: (x[0][0], x[0][1], x[1]))(ad.pop())
def thr(x, y):
return maxlen == -1 or abs(x-y) < maxlen
while ad:
(begin, end, _), current = ad.pop()
if last[2] == current and thr(begin, last[1]):
yield (last[1], begin, 'P{}'.format(current))
elif last[0] < begin and last[1] > end:
yield (begin, end, 'W{}{}'.format(last[2], current))
continue
elif last[1] > begin:
yield (begin, last[1], 'O{}{}'.format(last[2], current))
elif last[1] < begin and thr(begin, last[1]):
yield (last[1], begin, 'G{}{}'.format(last[2], current))
last = (begin, end, current)
|
def get_gaps_and_overlaps2(self, tier1, tier2, maxlen=-1):
"""Faster variant of :func:`get_gaps_and_overlaps`. Faster in this case
means almost 100 times faster...
:param str tier1: Name of the first tier.
:param str tier2: Name of the second tier.
:param int maxlen: Maximum length of gaps (skip longer ones), if ``-1``
no maximum will be used.
:yields: Tuples of the form ``[(start, end, type)]``.
:raises KeyError: If a tier is non existent.
"""
ad = sorted(((a, i+1) for i, t in enumerate([tier1, tier2]) for a in
self.get_annotation_data_for_tier(t)), reverse=True)
if ad:
last = (lambda x: (x[0][0], x[0][1], x[1]))(ad.pop())
def thr(x, y):
return maxlen == -1 or abs(x-y) < maxlen
while ad:
(begin, end, _), current = ad.pop()
if last[2] == current and thr(begin, last[1]):
yield (last[1], begin, 'P{}'.format(current))
elif last[0] < begin and last[1] > end:
yield (begin, end, 'W{}{}'.format(last[2], current))
continue
elif last[1] > begin:
yield (begin, last[1], 'O{}{}'.format(last[2], current))
elif last[1] < begin and thr(begin, last[1]):
yield (last[1], begin, 'G{}{}'.format(last[2], current))
last = (begin, end, current)
|
[
"Faster",
"variant",
"of",
":",
"func",
":",
"get_gaps_and_overlaps",
".",
"Faster",
"in",
"this",
"case",
"means",
"almost",
"100",
"times",
"faster",
"..."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L753-L782
|
[
"def",
"get_gaps_and_overlaps2",
"(",
"self",
",",
"tier1",
",",
"tier2",
",",
"maxlen",
"=",
"-",
"1",
")",
":",
"ad",
"=",
"sorted",
"(",
"(",
"(",
"a",
",",
"i",
"+",
"1",
")",
"for",
"i",
",",
"t",
"in",
"enumerate",
"(",
"[",
"tier1",
",",
"tier2",
"]",
")",
"for",
"a",
"in",
"self",
".",
"get_annotation_data_for_tier",
"(",
"t",
")",
")",
",",
"reverse",
"=",
"True",
")",
"if",
"ad",
":",
"last",
"=",
"(",
"lambda",
"x",
":",
"(",
"x",
"[",
"0",
"]",
"[",
"0",
"]",
",",
"x",
"[",
"0",
"]",
"[",
"1",
"]",
",",
"x",
"[",
"1",
"]",
")",
")",
"(",
"ad",
".",
"pop",
"(",
")",
")",
"def",
"thr",
"(",
"x",
",",
"y",
")",
":",
"return",
"maxlen",
"==",
"-",
"1",
"or",
"abs",
"(",
"x",
"-",
"y",
")",
"<",
"maxlen",
"while",
"ad",
":",
"(",
"begin",
",",
"end",
",",
"_",
")",
",",
"current",
"=",
"ad",
".",
"pop",
"(",
")",
"if",
"last",
"[",
"2",
"]",
"==",
"current",
"and",
"thr",
"(",
"begin",
",",
"last",
"[",
"1",
"]",
")",
":",
"yield",
"(",
"last",
"[",
"1",
"]",
",",
"begin",
",",
"'P{}'",
".",
"format",
"(",
"current",
")",
")",
"elif",
"last",
"[",
"0",
"]",
"<",
"begin",
"and",
"last",
"[",
"1",
"]",
">",
"end",
":",
"yield",
"(",
"begin",
",",
"end",
",",
"'W{}{}'",
".",
"format",
"(",
"last",
"[",
"2",
"]",
",",
"current",
")",
")",
"continue",
"elif",
"last",
"[",
"1",
"]",
">",
"begin",
":",
"yield",
"(",
"begin",
",",
"last",
"[",
"1",
"]",
",",
"'O{}{}'",
".",
"format",
"(",
"last",
"[",
"2",
"]",
",",
"current",
")",
")",
"elif",
"last",
"[",
"1",
"]",
"<",
"begin",
"and",
"thr",
"(",
"begin",
",",
"last",
"[",
"1",
"]",
")",
":",
"yield",
"(",
"last",
"[",
"1",
"]",
",",
"begin",
",",
"'G{}{}'",
".",
"format",
"(",
"last",
"[",
"2",
"]",
",",
"current",
")",
")",
"last",
"=",
"(",
"begin",
",",
"end",
",",
"current",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_ref_annotation_at_time
|
Give the ref annotations at the given time of the form
``[(start, end, value, refvalue)]``
:param str tier: Name of the tier.
:param int time: Time of the annotation of the parent.
:returns: List of annotations at that time.
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_ref_annotation_at_time(self, tier, time):
"""Give the ref annotations at the given time of the form
``[(start, end, value, refvalue)]``
:param str tier: Name of the tier.
:param int time: Time of the annotation of the parent.
:returns: List of annotations at that time.
:raises KeyError: If the tier is non existent.
"""
bucket = []
for aid, (ref, value, _, _) in self.tiers[tier][1].items():
begin, end, rvalue, _ = self.tiers[self.annotations[ref]][0][ref]
begin = self.timeslots[begin]
end = self.timeslots[end]
if begin <= time and end >= time:
bucket.append((begin, end, value, rvalue))
return bucket
|
def get_ref_annotation_at_time(self, tier, time):
"""Give the ref annotations at the given time of the form
``[(start, end, value, refvalue)]``
:param str tier: Name of the tier.
:param int time: Time of the annotation of the parent.
:returns: List of annotations at that time.
:raises KeyError: If the tier is non existent.
"""
bucket = []
for aid, (ref, value, _, _) in self.tiers[tier][1].items():
begin, end, rvalue, _ = self.tiers[self.annotations[ref]][0][ref]
begin = self.timeslots[begin]
end = self.timeslots[end]
if begin <= time and end >= time:
bucket.append((begin, end, value, rvalue))
return bucket
|
[
"Give",
"the",
"ref",
"annotations",
"at",
"the",
"given",
"time",
"of",
"the",
"form",
"[",
"(",
"start",
"end",
"value",
"refvalue",
")",
"]"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L877-L893
|
[
"def",
"get_ref_annotation_at_time",
"(",
"self",
",",
"tier",
",",
"time",
")",
":",
"bucket",
"=",
"[",
"]",
"for",
"aid",
",",
"(",
"ref",
",",
"value",
",",
"_",
",",
"_",
")",
"in",
"self",
".",
"tiers",
"[",
"tier",
"]",
"[",
"1",
"]",
".",
"items",
"(",
")",
":",
"begin",
",",
"end",
",",
"rvalue",
",",
"_",
"=",
"self",
".",
"tiers",
"[",
"self",
".",
"annotations",
"[",
"ref",
"]",
"]",
"[",
"0",
"]",
"[",
"ref",
"]",
"begin",
"=",
"self",
".",
"timeslots",
"[",
"begin",
"]",
"end",
"=",
"self",
".",
"timeslots",
"[",
"end",
"]",
"if",
"begin",
"<=",
"time",
"and",
"end",
">=",
"time",
":",
"bucket",
".",
"append",
"(",
"(",
"begin",
",",
"end",
",",
"value",
",",
"rvalue",
")",
")",
"return",
"bucket"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_ref_annotation_data_after_time
|
Give the ref annotation after a time. If an annotation overlaps
with `ktime`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation after.
:returns: Annotation after that time in a list
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_ref_annotation_data_after_time(self, id_tier, time):
"""Give the ref annotation after a time. If an annotation overlaps
with `ktime`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation after.
:returns: Annotation after that time in a list
:raises KeyError: If the tier is non existent.
"""
befores = self.get_ref_annotation_data_between_times(
id_tier, time, self.get_full_time_interval())
if befores:
return [min(befores, key=lambda x: x[0])]
else:
return []
|
def get_ref_annotation_data_after_time(self, id_tier, time):
"""Give the ref annotation after a time. If an annotation overlaps
with `ktime`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation after.
:returns: Annotation after that time in a list
:raises KeyError: If the tier is non existent.
"""
befores = self.get_ref_annotation_data_between_times(
id_tier, time, self.get_full_time_interval())
if befores:
return [min(befores, key=lambda x: x[0])]
else:
return []
|
[
"Give",
"the",
"ref",
"annotation",
"after",
"a",
"time",
".",
"If",
"an",
"annotation",
"overlaps",
"with",
"ktime",
"that",
"annotation",
"will",
"be",
"returned",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L895-L909
|
[
"def",
"get_ref_annotation_data_after_time",
"(",
"self",
",",
"id_tier",
",",
"time",
")",
":",
"befores",
"=",
"self",
".",
"get_ref_annotation_data_between_times",
"(",
"id_tier",
",",
"time",
",",
"self",
".",
"get_full_time_interval",
"(",
")",
")",
"if",
"befores",
":",
"return",
"[",
"min",
"(",
"befores",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"0",
"]",
")",
"]",
"else",
":",
"return",
"[",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_ref_annotation_data_before_time
|
Give the ref annotation before a time. If an annotation overlaps
with ``time`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation before.
:returns: Annotation before that time in a list
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_ref_annotation_data_before_time(self, id_tier, time):
"""Give the ref annotation before a time. If an annotation overlaps
with ``time`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation before.
:returns: Annotation before that time in a list
:raises KeyError: If the tier is non existent.
"""
befores = self.get_ref_annotation_data_between_times(id_tier, 0, time)
if befores:
return [max(befores, key=lambda x: x[0])]
else:
return []
|
def get_ref_annotation_data_before_time(self, id_tier, time):
"""Give the ref annotation before a time. If an annotation overlaps
with ``time`` that annotation will be returned.
:param str id_tier: Name of the tier.
:param int time: Time to get the annotation before.
:returns: Annotation before that time in a list
:raises KeyError: If the tier is non existent.
"""
befores = self.get_ref_annotation_data_between_times(id_tier, 0, time)
if befores:
return [max(befores, key=lambda x: x[0])]
else:
return []
|
[
"Give",
"the",
"ref",
"annotation",
"before",
"a",
"time",
".",
"If",
"an",
"annotation",
"overlaps",
"with",
"time",
"that",
"annotation",
"will",
"be",
"returned",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L911-L924
|
[
"def",
"get_ref_annotation_data_before_time",
"(",
"self",
",",
"id_tier",
",",
"time",
")",
":",
"befores",
"=",
"self",
".",
"get_ref_annotation_data_between_times",
"(",
"id_tier",
",",
"0",
",",
"time",
")",
"if",
"befores",
":",
"return",
"[",
"max",
"(",
"befores",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
"[",
"0",
"]",
")",
"]",
"else",
":",
"return",
"[",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_ref_annotation_data_between_times
|
Give the ref annotations between times of the form
``[(start, end, value, refvalue)]``
:param str tier: Name of the tier.
:param int start: End time of the annotation of the parent.
:param int end: Start time of the annotation of the parent.
:returns: List of annotations at that time.
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def get_ref_annotation_data_between_times(self, id_tier, start, end):
"""Give the ref annotations between times of the form
``[(start, end, value, refvalue)]``
:param str tier: Name of the tier.
:param int start: End time of the annotation of the parent.
:param int end: Start time of the annotation of the parent.
:returns: List of annotations at that time.
:raises KeyError: If the tier is non existent.
"""
bucket = []
for aid, (ref, value, _, _) in self.tiers[id_tier][1].items():
begin, end, rvalue, _ = self.tiers[self.annotations[ref]][0][ref]
begin = self.timeslots[begin]
end = self.timeslots[end]
if begin <= end and end >= begin:
bucket.append((begin, end, value, rvalue))
return bucket
|
def get_ref_annotation_data_between_times(self, id_tier, start, end):
"""Give the ref annotations between times of the form
``[(start, end, value, refvalue)]``
:param str tier: Name of the tier.
:param int start: End time of the annotation of the parent.
:param int end: Start time of the annotation of the parent.
:returns: List of annotations at that time.
:raises KeyError: If the tier is non existent.
"""
bucket = []
for aid, (ref, value, _, _) in self.tiers[id_tier][1].items():
begin, end, rvalue, _ = self.tiers[self.annotations[ref]][0][ref]
begin = self.timeslots[begin]
end = self.timeslots[end]
if begin <= end and end >= begin:
bucket.append((begin, end, value, rvalue))
return bucket
|
[
"Give",
"the",
"ref",
"annotations",
"between",
"times",
"of",
"the",
"form",
"[",
"(",
"start",
"end",
"value",
"refvalue",
")",
"]"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L926-L943
|
[
"def",
"get_ref_annotation_data_between_times",
"(",
"self",
",",
"id_tier",
",",
"start",
",",
"end",
")",
":",
"bucket",
"=",
"[",
"]",
"for",
"aid",
",",
"(",
"ref",
",",
"value",
",",
"_",
",",
"_",
")",
"in",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
".",
"items",
"(",
")",
":",
"begin",
",",
"end",
",",
"rvalue",
",",
"_",
"=",
"self",
".",
"tiers",
"[",
"self",
".",
"annotations",
"[",
"ref",
"]",
"]",
"[",
"0",
"]",
"[",
"ref",
"]",
"begin",
"=",
"self",
".",
"timeslots",
"[",
"begin",
"]",
"end",
"=",
"self",
".",
"timeslots",
"[",
"end",
"]",
"if",
"begin",
"<=",
"end",
"and",
"end",
">=",
"begin",
":",
"bucket",
".",
"append",
"(",
"(",
"begin",
",",
"end",
",",
"value",
",",
"rvalue",
")",
")",
"return",
"bucket"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_ref_annotation_data_for_tier
|
Give a list of all reference annotations of the form:
``[(start, end, value, refvalue)]``
:param str id_tier: Name of the tier.
:raises KeyError: If the tier is non existent.
:returns: Reference annotations within that tier.
|
pympi/Elan.py
|
def get_ref_annotation_data_for_tier(self, id_tier):
""""Give a list of all reference annotations of the form:
``[(start, end, value, refvalue)]``
:param str id_tier: Name of the tier.
:raises KeyError: If the tier is non existent.
:returns: Reference annotations within that tier.
"""
bucket = []
for aid, (ref, value, prev, _) in self.tiers[id_tier][1].items():
refann = self.get_parent_aligned_annotation(ref)
bucket.append((self.timeslots[refann[0]],
self.timeslots[refann[1]], value, refann[2]))
return bucket
|
def get_ref_annotation_data_for_tier(self, id_tier):
""""Give a list of all reference annotations of the form:
``[(start, end, value, refvalue)]``
:param str id_tier: Name of the tier.
:raises KeyError: If the tier is non existent.
:returns: Reference annotations within that tier.
"""
bucket = []
for aid, (ref, value, prev, _) in self.tiers[id_tier][1].items():
refann = self.get_parent_aligned_annotation(ref)
bucket.append((self.timeslots[refann[0]],
self.timeslots[refann[1]], value, refann[2]))
return bucket
|
[
"Give",
"a",
"list",
"of",
"all",
"reference",
"annotations",
"of",
"the",
"form",
":",
"[",
"(",
"start",
"end",
"value",
"refvalue",
")",
"]"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L945-L958
|
[
"def",
"get_ref_annotation_data_for_tier",
"(",
"self",
",",
"id_tier",
")",
":",
"bucket",
"=",
"[",
"]",
"for",
"aid",
",",
"(",
"ref",
",",
"value",
",",
"prev",
",",
"_",
")",
"in",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
".",
"items",
"(",
")",
":",
"refann",
"=",
"self",
".",
"get_parent_aligned_annotation",
"(",
"ref",
")",
"bucket",
".",
"append",
"(",
"(",
"self",
".",
"timeslots",
"[",
"refann",
"[",
"0",
"]",
"]",
",",
"self",
".",
"timeslots",
"[",
"refann",
"[",
"1",
"]",
"]",
",",
"value",
",",
"refann",
"[",
"2",
"]",
")",
")",
"return",
"bucket"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_parent_aligned_annotation
|
Give the aligment annotation that a reference annotation belongs to directly, or indirectly through other
reference annotations.
:param str ref_id: Id of a reference annotation.
:raises KeyError: If no annotation exists with the id or if it belongs to an alignment annotation.
:returns: The alignment annotation at the end of the reference chain.
|
pympi/Elan.py
|
def get_parent_aligned_annotation(self, ref_id):
"""" Give the aligment annotation that a reference annotation belongs to directly, or indirectly through other
reference annotations.
:param str ref_id: Id of a reference annotation.
:raises KeyError: If no annotation exists with the id or if it belongs to an alignment annotation.
:returns: The alignment annotation at the end of the reference chain.
"""
parentTier = self.tiers[self.annotations[ref_id]]
while "PARENT_REF" in parentTier[2] and len(parentTier[2]) > 0:
ref_id = parentTier[1][ref_id][0]
parentTier = self.tiers[self.annotations[ref_id]]
return parentTier[0][ref_id]
|
def get_parent_aligned_annotation(self, ref_id):
"""" Give the aligment annotation that a reference annotation belongs to directly, or indirectly through other
reference annotations.
:param str ref_id: Id of a reference annotation.
:raises KeyError: If no annotation exists with the id or if it belongs to an alignment annotation.
:returns: The alignment annotation at the end of the reference chain.
"""
parentTier = self.tiers[self.annotations[ref_id]]
while "PARENT_REF" in parentTier[2] and len(parentTier[2]) > 0:
ref_id = parentTier[1][ref_id][0]
parentTier = self.tiers[self.annotations[ref_id]]
return parentTier[0][ref_id]
|
[
"Give",
"the",
"aligment",
"annotation",
"that",
"a",
"reference",
"annotation",
"belongs",
"to",
"directly",
"or",
"indirectly",
"through",
"other",
"reference",
"annotations",
".",
":",
"param",
"str",
"ref_id",
":",
"Id",
"of",
"a",
"reference",
"annotation",
".",
":",
"raises",
"KeyError",
":",
"If",
"no",
"annotation",
"exists",
"with",
"the",
"id",
"or",
"if",
"it",
"belongs",
"to",
"an",
"alignment",
"annotation",
".",
":",
"returns",
":",
"The",
"alignment",
"annotation",
"at",
"the",
"end",
"of",
"the",
"reference",
"chain",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L960-L972
|
[
"def",
"get_parent_aligned_annotation",
"(",
"self",
",",
"ref_id",
")",
":",
"parentTier",
"=",
"self",
".",
"tiers",
"[",
"self",
".",
"annotations",
"[",
"ref_id",
"]",
"]",
"while",
"\"PARENT_REF\"",
"in",
"parentTier",
"[",
"2",
"]",
"and",
"len",
"(",
"parentTier",
"[",
"2",
"]",
")",
">",
"0",
":",
"ref_id",
"=",
"parentTier",
"[",
"1",
"]",
"[",
"ref_id",
"]",
"[",
"0",
"]",
"parentTier",
"=",
"self",
".",
"tiers",
"[",
"self",
".",
"annotations",
"[",
"ref_id",
"]",
"]",
"return",
"parentTier",
"[",
"0",
"]",
"[",
"ref_id",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.get_tier_ids_for_linguistic_type
|
Give a list of all tiers matching a linguistic type.
:param str ling_type: Name of the linguistic type.
:param str parent: Only match tiers from this parent, when ``None``
this option will be ignored.
:returns: List of tiernames.
:raises KeyError: If a tier or linguistic type is non existent.
|
pympi/Elan.py
|
def get_tier_ids_for_linguistic_type(self, ling_type, parent=None):
"""Give a list of all tiers matching a linguistic type.
:param str ling_type: Name of the linguistic type.
:param str parent: Only match tiers from this parent, when ``None``
this option will be ignored.
:returns: List of tiernames.
:raises KeyError: If a tier or linguistic type is non existent.
"""
return [t for t in self.tiers if
self.tiers[t][2]['LINGUISTIC_TYPE_REF'] == ling_type and
(parent is None or self.tiers[t][2]['PARENT_REF'] == parent)]
|
def get_tier_ids_for_linguistic_type(self, ling_type, parent=None):
"""Give a list of all tiers matching a linguistic type.
:param str ling_type: Name of the linguistic type.
:param str parent: Only match tiers from this parent, when ``None``
this option will be ignored.
:returns: List of tiernames.
:raises KeyError: If a tier or linguistic type is non existent.
"""
return [t for t in self.tiers if
self.tiers[t][2]['LINGUISTIC_TYPE_REF'] == ling_type and
(parent is None or self.tiers[t][2]['PARENT_REF'] == parent)]
|
[
"Give",
"a",
"list",
"of",
"all",
"tiers",
"matching",
"a",
"linguistic",
"type",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L978-L989
|
[
"def",
"get_tier_ids_for_linguistic_type",
"(",
"self",
",",
"ling_type",
",",
"parent",
"=",
"None",
")",
":",
"return",
"[",
"t",
"for",
"t",
"in",
"self",
".",
"tiers",
"if",
"self",
".",
"tiers",
"[",
"t",
"]",
"[",
"2",
"]",
"[",
"'LINGUISTIC_TYPE_REF'",
"]",
"==",
"ling_type",
"and",
"(",
"parent",
"is",
"None",
"or",
"self",
".",
"tiers",
"[",
"t",
"]",
"[",
"2",
"]",
"[",
"'PARENT_REF'",
"]",
"==",
"parent",
")",
"]"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.insert_annotation
|
.. deprecated:: 1.2
Use :func:`add_annotation` instead.
|
pympi/Elan.py
|
def insert_annotation(self, id_tier, start, end, value='', svg_ref=None):
""".. deprecated:: 1.2
Use :func:`add_annotation` instead.
"""
return self.add_annotation(id_tier, start, end, value, svg_ref)
|
def insert_annotation(self, id_tier, start, end, value='', svg_ref=None):
""".. deprecated:: 1.2
Use :func:`add_annotation` instead.
"""
return self.add_annotation(id_tier, start, end, value, svg_ref)
|
[
"..",
"deprecated",
"::",
"1",
".",
"2"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L998-L1003
|
[
"def",
"insert_annotation",
"(",
"self",
",",
"id_tier",
",",
"start",
",",
"end",
",",
"value",
"=",
"''",
",",
"svg_ref",
"=",
"None",
")",
":",
"return",
"self",
".",
"add_annotation",
"(",
"id_tier",
",",
"start",
",",
"end",
",",
"value",
",",
"svg_ref",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.insert_ref_annotation
|
.. deprecated:: 1.2
Use :func:`add_ref_annotation` instead.
|
pympi/Elan.py
|
def insert_ref_annotation(self, id_tier, tier2, time, value='',
prev=None, svg=None):
""".. deprecated:: 1.2
Use :func:`add_ref_annotation` instead.
"""
return self.add_ref_annotation(id_tier, tier2, time, value, prev, svg)
|
def insert_ref_annotation(self, id_tier, tier2, time, value='',
prev=None, svg=None):
""".. deprecated:: 1.2
Use :func:`add_ref_annotation` instead.
"""
return self.add_ref_annotation(id_tier, tier2, time, value, prev, svg)
|
[
"..",
"deprecated",
"::",
"1",
".",
"2"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L1005-L1011
|
[
"def",
"insert_ref_annotation",
"(",
"self",
",",
"id_tier",
",",
"tier2",
",",
"time",
",",
"value",
"=",
"''",
",",
"prev",
"=",
"None",
",",
"svg",
"=",
"None",
")",
":",
"return",
"self",
".",
"add_ref_annotation",
"(",
"id_tier",
",",
"tier2",
",",
"time",
",",
"value",
",",
"prev",
",",
"svg",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.merge_tiers
|
Merge tiers into a new tier and when the gap is lower then the
threshhold glue the annotations together.
:param list tiers: List of tier names.
:param str tiernew: Name for the new tier, if ``None`` the name will be
generated.
:param int gapt: Threshhold for the gaps, if the this is set to 10 it
means that all gaps below 10 are ignored.
:param str sep: Separator for the merged annotations.
:param bool safe: Ignore zero length annotations(when working with
possible malformed data).
:returns: Name of the created tier.
:raises KeyError: If a tier is non existent.
|
pympi/Elan.py
|
def merge_tiers(self, tiers, tiernew=None, gapt=0, sep='_', safe=False):
"""Merge tiers into a new tier and when the gap is lower then the
threshhold glue the annotations together.
:param list tiers: List of tier names.
:param str tiernew: Name for the new tier, if ``None`` the name will be
generated.
:param int gapt: Threshhold for the gaps, if the this is set to 10 it
means that all gaps below 10 are ignored.
:param str sep: Separator for the merged annotations.
:param bool safe: Ignore zero length annotations(when working with
possible malformed data).
:returns: Name of the created tier.
:raises KeyError: If a tier is non existent.
"""
if tiernew is None:
tiernew = u'{}_merged'.format('_'.join(tiers))
self.add_tier(tiernew)
aa = [(sys.maxsize, sys.maxsize, None)] + sorted((
a for t in tiers for a in self.get_annotation_data_for_tier(t)),
reverse=True)
l = None
while aa:
begin, end, value = aa.pop()
if l is None:
l = [begin, end, [value]]
elif begin - l[1] >= gapt:
if not safe or l[1] > l[0]:
self.add_annotation(tiernew, l[0], l[1], sep.join(l[2]))
l = [begin, end, [value]]
else:
if end > l[1]:
l[1] = end
l[2].append(value)
return tiernew
|
def merge_tiers(self, tiers, tiernew=None, gapt=0, sep='_', safe=False):
"""Merge tiers into a new tier and when the gap is lower then the
threshhold glue the annotations together.
:param list tiers: List of tier names.
:param str tiernew: Name for the new tier, if ``None`` the name will be
generated.
:param int gapt: Threshhold for the gaps, if the this is set to 10 it
means that all gaps below 10 are ignored.
:param str sep: Separator for the merged annotations.
:param bool safe: Ignore zero length annotations(when working with
possible malformed data).
:returns: Name of the created tier.
:raises KeyError: If a tier is non existent.
"""
if tiernew is None:
tiernew = u'{}_merged'.format('_'.join(tiers))
self.add_tier(tiernew)
aa = [(sys.maxsize, sys.maxsize, None)] + sorted((
a for t in tiers for a in self.get_annotation_data_for_tier(t)),
reverse=True)
l = None
while aa:
begin, end, value = aa.pop()
if l is None:
l = [begin, end, [value]]
elif begin - l[1] >= gapt:
if not safe or l[1] > l[0]:
self.add_annotation(tiernew, l[0], l[1], sep.join(l[2]))
l = [begin, end, [value]]
else:
if end > l[1]:
l[1] = end
l[2].append(value)
return tiernew
|
[
"Merge",
"tiers",
"into",
"a",
"new",
"tier",
"and",
"when",
"the",
"gap",
"is",
"lower",
"then",
"the",
"threshhold",
"glue",
"the",
"annotations",
"together",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L1013-L1047
|
[
"def",
"merge_tiers",
"(",
"self",
",",
"tiers",
",",
"tiernew",
"=",
"None",
",",
"gapt",
"=",
"0",
",",
"sep",
"=",
"'_'",
",",
"safe",
"=",
"False",
")",
":",
"if",
"tiernew",
"is",
"None",
":",
"tiernew",
"=",
"u'{}_merged'",
".",
"format",
"(",
"'_'",
".",
"join",
"(",
"tiers",
")",
")",
"self",
".",
"add_tier",
"(",
"tiernew",
")",
"aa",
"=",
"[",
"(",
"sys",
".",
"maxsize",
",",
"sys",
".",
"maxsize",
",",
"None",
")",
"]",
"+",
"sorted",
"(",
"(",
"a",
"for",
"t",
"in",
"tiers",
"for",
"a",
"in",
"self",
".",
"get_annotation_data_for_tier",
"(",
"t",
")",
")",
",",
"reverse",
"=",
"True",
")",
"l",
"=",
"None",
"while",
"aa",
":",
"begin",
",",
"end",
",",
"value",
"=",
"aa",
".",
"pop",
"(",
")",
"if",
"l",
"is",
"None",
":",
"l",
"=",
"[",
"begin",
",",
"end",
",",
"[",
"value",
"]",
"]",
"elif",
"begin",
"-",
"l",
"[",
"1",
"]",
">=",
"gapt",
":",
"if",
"not",
"safe",
"or",
"l",
"[",
"1",
"]",
">",
"l",
"[",
"0",
"]",
":",
"self",
".",
"add_annotation",
"(",
"tiernew",
",",
"l",
"[",
"0",
"]",
",",
"l",
"[",
"1",
"]",
",",
"sep",
".",
"join",
"(",
"l",
"[",
"2",
"]",
")",
")",
"l",
"=",
"[",
"begin",
",",
"end",
",",
"[",
"value",
"]",
"]",
"else",
":",
"if",
"end",
">",
"l",
"[",
"1",
"]",
":",
"l",
"[",
"1",
"]",
"=",
"end",
"l",
"[",
"2",
"]",
".",
"append",
"(",
"value",
")",
"return",
"tiernew"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.remove_all_annotations_from_tier
|
remove all annotations from a tier
:param str id_tier: Name of the tier.
:raises KeyError: If the tier is non existent.
|
pympi/Elan.py
|
def remove_all_annotations_from_tier(self, id_tier, clean=True):
"""remove all annotations from a tier
:param str id_tier: Name of the tier.
:raises KeyError: If the tier is non existent.
"""
for aid in self.tiers[id_tier][0]:
del(self.annotations[aid])
for aid in self.tiers[id_tier][1]:
del(self.annotations[aid])
self.tiers[id_tier][0].clear()
self.tiers[id_tier][1].clear()
if clean:
self.clean_time_slots()
|
def remove_all_annotations_from_tier(self, id_tier, clean=True):
"""remove all annotations from a tier
:param str id_tier: Name of the tier.
:raises KeyError: If the tier is non existent.
"""
for aid in self.tiers[id_tier][0]:
del(self.annotations[aid])
for aid in self.tiers[id_tier][1]:
del(self.annotations[aid])
self.tiers[id_tier][0].clear()
self.tiers[id_tier][1].clear()
if clean:
self.clean_time_slots()
|
[
"remove",
"all",
"annotations",
"from",
"a",
"tier"
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L1049-L1063
|
[
"def",
"remove_all_annotations_from_tier",
"(",
"self",
",",
"id_tier",
",",
"clean",
"=",
"True",
")",
":",
"for",
"aid",
"in",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"0",
"]",
":",
"del",
"(",
"self",
".",
"annotations",
"[",
"aid",
"]",
")",
"for",
"aid",
"in",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
":",
"del",
"(",
"self",
".",
"annotations",
"[",
"aid",
"]",
")",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"0",
"]",
".",
"clear",
"(",
")",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
".",
"clear",
"(",
")",
"if",
"clean",
":",
"self",
".",
"clean_time_slots",
"(",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.remove_annotation
|
Remove an annotation in a tier, if you need speed the best thing is
to clean the timeslots after the last removal. When the tier contains
reference annotations :func:`remove_ref_annotation` will be executed
instead.
:param str id_tier: Name of the tier.
:param int time: Timepoint within the annotation.
:param bool clean: Flag to clean the timeslots afterwards.
:raises KeyError: If the tier is non existent.
:returns: Number of removed annotations.
|
pympi/Elan.py
|
def remove_annotation(self, id_tier, time, clean=True):
"""Remove an annotation in a tier, if you need speed the best thing is
to clean the timeslots after the last removal. When the tier contains
reference annotations :func:`remove_ref_annotation` will be executed
instead.
:param str id_tier: Name of the tier.
:param int time: Timepoint within the annotation.
:param bool clean: Flag to clean the timeslots afterwards.
:raises KeyError: If the tier is non existent.
:returns: Number of removed annotations.
"""
if self.tiers[id_tier][1]:
return self.remove_ref_annotation(id_tier, time, clean)
removed = 0
for b in [a for a in self.tiers[id_tier][0].items() if
self.timeslots[a[1][0]] <= time and
self.timeslots[a[1][1]] >= time]:
del(self.tiers[id_tier][0][b[0]])
del(self.annotations[b[0]])
removed += 1
if clean:
self.clean_time_slots()
return removed
|
def remove_annotation(self, id_tier, time, clean=True):
"""Remove an annotation in a tier, if you need speed the best thing is
to clean the timeslots after the last removal. When the tier contains
reference annotations :func:`remove_ref_annotation` will be executed
instead.
:param str id_tier: Name of the tier.
:param int time: Timepoint within the annotation.
:param bool clean: Flag to clean the timeslots afterwards.
:raises KeyError: If the tier is non existent.
:returns: Number of removed annotations.
"""
if self.tiers[id_tier][1]:
return self.remove_ref_annotation(id_tier, time, clean)
removed = 0
for b in [a for a in self.tiers[id_tier][0].items() if
self.timeslots[a[1][0]] <= time and
self.timeslots[a[1][1]] >= time]:
del(self.tiers[id_tier][0][b[0]])
del(self.annotations[b[0]])
removed += 1
if clean:
self.clean_time_slots()
return removed
|
[
"Remove",
"an",
"annotation",
"in",
"a",
"tier",
"if",
"you",
"need",
"speed",
"the",
"best",
"thing",
"is",
"to",
"clean",
"the",
"timeslots",
"after",
"the",
"last",
"removal",
".",
"When",
"the",
"tier",
"contains",
"reference",
"annotations",
":",
"func",
":",
"remove_ref_annotation",
"will",
"be",
"executed",
"instead",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L1065-L1088
|
[
"def",
"remove_annotation",
"(",
"self",
",",
"id_tier",
",",
"time",
",",
"clean",
"=",
"True",
")",
":",
"if",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"1",
"]",
":",
"return",
"self",
".",
"remove_ref_annotation",
"(",
"id_tier",
",",
"time",
",",
"clean",
")",
"removed",
"=",
"0",
"for",
"b",
"in",
"[",
"a",
"for",
"a",
"in",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"0",
"]",
".",
"items",
"(",
")",
"if",
"self",
".",
"timeslots",
"[",
"a",
"[",
"1",
"]",
"[",
"0",
"]",
"]",
"<=",
"time",
"and",
"self",
".",
"timeslots",
"[",
"a",
"[",
"1",
"]",
"[",
"1",
"]",
"]",
">=",
"time",
"]",
":",
"del",
"(",
"self",
".",
"tiers",
"[",
"id_tier",
"]",
"[",
"0",
"]",
"[",
"b",
"[",
"0",
"]",
"]",
")",
"del",
"(",
"self",
".",
"annotations",
"[",
"b",
"[",
"0",
"]",
"]",
")",
"removed",
"+=",
"1",
"if",
"clean",
":",
"self",
".",
"clean_time_slots",
"(",
")",
"return",
"removed"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
test
|
Eaf.remove_cv_description
|
Remove a controlled vocabulary description.
:param str cv_id: Name of the controlled vocabulary.
:paarm str cve_id: Name of the entry.
:throws KeyError: If there is no controlled vocabulary with that name.
|
pympi/Elan.py
|
def remove_cv_description(self, cv_id, lang_ref):
"""Remove a controlled vocabulary description.
:param str cv_id: Name of the controlled vocabulary.
:paarm str cve_id: Name of the entry.
:throws KeyError: If there is no controlled vocabulary with that name.
"""
for i, (l, d) in reversed(enumerate(
self.controlled_vocabularies[cv_id][1])):
if l == lang_ref:
del(self.controlled_vocabularies[cv_id][1][i])
|
def remove_cv_description(self, cv_id, lang_ref):
"""Remove a controlled vocabulary description.
:param str cv_id: Name of the controlled vocabulary.
:paarm str cve_id: Name of the entry.
:throws KeyError: If there is no controlled vocabulary with that name.
"""
for i, (l, d) in reversed(enumerate(
self.controlled_vocabularies[cv_id][1])):
if l == lang_ref:
del(self.controlled_vocabularies[cv_id][1][i])
|
[
"Remove",
"a",
"controlled",
"vocabulary",
"description",
"."
] |
dopefishh/pympi
|
python
|
https://github.com/dopefishh/pympi/blob/79c747cde45b5ba203ed93154d8c123ac9c3ef56/pympi/Elan.py#L1108-L1118
|
[
"def",
"remove_cv_description",
"(",
"self",
",",
"cv_id",
",",
"lang_ref",
")",
":",
"for",
"i",
",",
"(",
"l",
",",
"d",
")",
"in",
"reversed",
"(",
"enumerate",
"(",
"self",
".",
"controlled_vocabularies",
"[",
"cv_id",
"]",
"[",
"1",
"]",
")",
")",
":",
"if",
"l",
"==",
"lang_ref",
":",
"del",
"(",
"self",
".",
"controlled_vocabularies",
"[",
"cv_id",
"]",
"[",
"1",
"]",
"[",
"i",
"]",
")"
] |
79c747cde45b5ba203ed93154d8c123ac9c3ef56
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.