partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
ReferenceStore.store_references
Stores references to disk and may collect garbage.
pypet/utils/mpwrappers.py
def store_references(self, references): """Stores references to disk and may collect garbage.""" for trajectory_name in references: self._storage_service.store(pypetconstants.LIST, references[trajectory_name], trajectory_name=trajectory_name) self._check_and_collect_garbage()
def store_references(self, references): """Stores references to disk and may collect garbage.""" for trajectory_name in references: self._storage_service.store(pypetconstants.LIST, references[trajectory_name], trajectory_name=trajectory_name) self._check_and_collect_garbage()
[ "Stores", "references", "to", "disk", "and", "may", "collect", "garbage", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/utils/mpwrappers.py#L1048-L1052
[ "def", "store_references", "(", "self", ",", "references", ")", ":", "for", "trajectory_name", "in", "references", ":", "self", ".", "_storage_service", ".", "store", "(", "pypetconstants", ".", "LIST", ",", "references", "[", "trajectory_name", "]", ",", "trajectory_name", "=", "trajectory_name", ")", "self", ".", "_check_and_collect_garbage", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
parse_config
Decorator wrapping the environment to use a config file
pypet/utils/configparsing.py
def parse_config(init_func): """Decorator wrapping the environment to use a config file""" @functools.wraps(init_func) def new_func(env, *args, **kwargs): config_interpreter = ConfigInterpreter(kwargs) # Pass the config data to the kwargs new_kwargs = config_interpreter.interpret() init_func(env, *args, **new_kwargs) # Add parameters and config data from the `.ini` file config_interpreter.add_parameters(env.traj) return new_func
def parse_config(init_func): """Decorator wrapping the environment to use a config file""" @functools.wraps(init_func) def new_func(env, *args, **kwargs): config_interpreter = ConfigInterpreter(kwargs) # Pass the config data to the kwargs new_kwargs = config_interpreter.interpret() init_func(env, *args, **new_kwargs) # Add parameters and config data from the `.ini` file config_interpreter.add_parameters(env.traj) return new_func
[ "Decorator", "wrapping", "the", "environment", "to", "use", "a", "config", "file" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/utils/configparsing.py#L13-L23
[ "def", "parse_config", "(", "init_func", ")", ":", "@", "functools", ".", "wraps", "(", "init_func", ")", "def", "new_func", "(", "env", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "config_interpreter", "=", "ConfigInterpreter", "(", "kwargs", ")", "# Pass the config data to the kwargs", "new_kwargs", "=", "config_interpreter", ".", "interpret", "(", ")", "init_func", "(", "env", ",", "*", "args", ",", "*", "*", "new_kwargs", ")", "# Add parameters and config data from the `.ini` file", "config_interpreter", ".", "add_parameters", "(", "env", ".", "traj", ")", "return", "new_func" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
ConfigInterpreter._collect_section
Collects all settings within a section
pypet/utils/configparsing.py
def _collect_section(self, section): """Collects all settings within a section""" kwargs = {} try: if self.parser.has_section(section): options = self.parser.options(section) for option in options: str_val = self.parser.get(section, option) val = ast.literal_eval(str_val) kwargs[option] = val return kwargs except: raise
def _collect_section(self, section): """Collects all settings within a section""" kwargs = {} try: if self.parser.has_section(section): options = self.parser.options(section) for option in options: str_val = self.parser.get(section, option) val = ast.literal_eval(str_val) kwargs[option] = val return kwargs except: raise
[ "Collects", "all", "settings", "within", "a", "section" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/utils/configparsing.py#L47-L59
[ "def", "_collect_section", "(", "self", ",", "section", ")", ":", "kwargs", "=", "{", "}", "try", ":", "if", "self", ".", "parser", ".", "has_section", "(", "section", ")", ":", "options", "=", "self", ".", "parser", ".", "options", "(", "section", ")", "for", "option", "in", "options", ":", "str_val", "=", "self", ".", "parser", ".", "get", "(", "section", ",", "option", ")", "val", "=", "ast", ".", "literal_eval", "(", "str_val", ")", "kwargs", "[", "option", "]", "=", "val", "return", "kwargs", "except", ":", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
ConfigInterpreter._collect_config
Collects all info from three sections
pypet/utils/configparsing.py
def _collect_config(self): """Collects all info from three sections""" kwargs = {} sections = ('storage_service', 'trajectory', 'environment') for section in sections: kwargs.update(self._collect_section(section)) return kwargs
def _collect_config(self): """Collects all info from three sections""" kwargs = {} sections = ('storage_service', 'trajectory', 'environment') for section in sections: kwargs.update(self._collect_section(section)) return kwargs
[ "Collects", "all", "info", "from", "three", "sections" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/utils/configparsing.py#L61-L67
[ "def", "_collect_config", "(", "self", ")", ":", "kwargs", "=", "{", "}", "sections", "=", "(", "'storage_service'", ",", "'trajectory'", ",", "'environment'", ")", "for", "section", "in", "sections", ":", "kwargs", ".", "update", "(", "self", ".", "_collect_section", "(", "section", ")", ")", "return", "kwargs" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
ConfigInterpreter.interpret
Copies parsed arguments into the kwargs passed to the environment
pypet/utils/configparsing.py
def interpret(self): """Copies parsed arguments into the kwargs passed to the environment""" if self.config_file: new_kwargs = self._collect_config() for key in new_kwargs: # Already specified kwargs take precedence over the ini file if key not in self.kwargs: self.kwargs[key] = new_kwargs[key] if not use_simple_logging(self.kwargs) and 'log_config' not in self.kwargs: self.kwargs['log_config'] = self.config_file return self.kwargs
def interpret(self): """Copies parsed arguments into the kwargs passed to the environment""" if self.config_file: new_kwargs = self._collect_config() for key in new_kwargs: # Already specified kwargs take precedence over the ini file if key not in self.kwargs: self.kwargs[key] = new_kwargs[key] if not use_simple_logging(self.kwargs) and 'log_config' not in self.kwargs: self.kwargs['log_config'] = self.config_file return self.kwargs
[ "Copies", "parsed", "arguments", "into", "the", "kwargs", "passed", "to", "the", "environment" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/utils/configparsing.py#L69-L79
[ "def", "interpret", "(", "self", ")", ":", "if", "self", ".", "config_file", ":", "new_kwargs", "=", "self", ".", "_collect_config", "(", ")", "for", "key", "in", "new_kwargs", ":", "# Already specified kwargs take precedence over the ini file", "if", "key", "not", "in", "self", ".", "kwargs", ":", "self", ".", "kwargs", "[", "key", "]", "=", "new_kwargs", "[", "key", "]", "if", "not", "use_simple_logging", "(", "self", ".", "kwargs", ")", "and", "'log_config'", "not", "in", "self", ".", "kwargs", ":", "self", ".", "kwargs", "[", "'log_config'", "]", "=", "self", ".", "config_file", "return", "self", ".", "kwargs" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
ConfigInterpreter.add_parameters
Adds parameters and config from the `.ini` file to the trajectory
pypet/utils/configparsing.py
def add_parameters(self, traj): """Adds parameters and config from the `.ini` file to the trajectory""" if self.config_file: parameters = self._collect_section('parameters') for name in parameters: value = parameters[name] if not isinstance(value, tuple): value = (value,) traj.f_add_parameter(name, *value) config = self._collect_section('config') for name in config: value = config[name] if not isinstance(value, tuple): value = (value,) traj.f_add_config(name, *value)
def add_parameters(self, traj): """Adds parameters and config from the `.ini` file to the trajectory""" if self.config_file: parameters = self._collect_section('parameters') for name in parameters: value = parameters[name] if not isinstance(value, tuple): value = (value,) traj.f_add_parameter(name, *value) config = self._collect_section('config') for name in config: value = config[name] if not isinstance(value, tuple): value = (value,) traj.f_add_config(name, *value)
[ "Adds", "parameters", "and", "config", "from", "the", ".", "ini", "file", "to", "the", "trajectory" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/utils/configparsing.py#L81-L95
[ "def", "add_parameters", "(", "self", ",", "traj", ")", ":", "if", "self", ".", "config_file", ":", "parameters", "=", "self", ".", "_collect_section", "(", "'parameters'", ")", "for", "name", "in", "parameters", ":", "value", "=", "parameters", "[", "name", "]", "if", "not", "isinstance", "(", "value", ",", "tuple", ")", ":", "value", "=", "(", "value", ",", ")", "traj", ".", "f_add_parameter", "(", "name", ",", "*", "value", ")", "config", "=", "self", ".", "_collect_section", "(", "'config'", ")", "for", "name", "in", "config", ":", "value", "=", "config", "[", "name", "]", "if", "not", "isinstance", "(", "value", ",", "tuple", ")", ":", "value", "=", "(", "value", ",", ")", "traj", ".", "f_add_config", "(", "name", ",", "*", "value", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
convert_rule
Converts a rule given as an integer into a binary list representation. It reads from left to right (contrary to the Wikipedia article given below), i.e. the 2**0 is found on the left hand side and 2**7 on the right. For example: ``convert_rule(30)`` returns [0, 1, 1, 1, 1, 0, 0, 0] The resulting binary list can be interpreted as the following transition table: neighborhood new cell state 000 0 001 1 010 1 011 1 100 1 101 0 110 0 111 0 For more information about this rule see: http://en.wikipedia.org/wiki/Rule_30
examples/example_17_wrapping_an_existing_project/original.py
def convert_rule(rule_number): """ Converts a rule given as an integer into a binary list representation. It reads from left to right (contrary to the Wikipedia article given below), i.e. the 2**0 is found on the left hand side and 2**7 on the right. For example: ``convert_rule(30)`` returns [0, 1, 1, 1, 1, 0, 0, 0] The resulting binary list can be interpreted as the following transition table: neighborhood new cell state 000 0 001 1 010 1 011 1 100 1 101 0 110 0 111 0 For more information about this rule see: http://en.wikipedia.org/wiki/Rule_30 """ binary_rule = [(rule_number // pow(2,i)) % 2 for i in range(8)] return np.array(binary_rule)
def convert_rule(rule_number): """ Converts a rule given as an integer into a binary list representation. It reads from left to right (contrary to the Wikipedia article given below), i.e. the 2**0 is found on the left hand side and 2**7 on the right. For example: ``convert_rule(30)`` returns [0, 1, 1, 1, 1, 0, 0, 0] The resulting binary list can be interpreted as the following transition table: neighborhood new cell state 000 0 001 1 010 1 011 1 100 1 101 0 110 0 111 0 For more information about this rule see: http://en.wikipedia.org/wiki/Rule_30 """ binary_rule = [(rule_number // pow(2,i)) % 2 for i in range(8)] return np.array(binary_rule)
[ "Converts", "a", "rule", "given", "as", "an", "integer", "into", "a", "binary", "list", "representation", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/examples/example_17_wrapping_an_existing_project/original.py#L17-L46
[ "def", "convert_rule", "(", "rule_number", ")", ":", "binary_rule", "=", "[", "(", "rule_number", "//", "pow", "(", "2", ",", "i", ")", ")", "%", "2", "for", "i", "in", "range", "(", "8", ")", "]", "return", "np", ".", "array", "(", "binary_rule", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
make_initial_state
Creates an initial state for the automaton. :param name: Either ``'single'`` for a single live cell in the middle of the cell ring, or ``'random'`` for uniformly distributed random pattern of zeros and ones. :param ncells: Number of cells in the automaton :param seed: Random number seed for the ``#random'`` condition :return: Numpy array of zeros and ones (or just a one lonely one surrounded by zeros) :raises: ValueError if the ``name`` is unknown
examples/example_17_wrapping_an_existing_project/original.py
def make_initial_state(name, ncells, seed=42): """ Creates an initial state for the automaton. :param name: Either ``'single'`` for a single live cell in the middle of the cell ring, or ``'random'`` for uniformly distributed random pattern of zeros and ones. :param ncells: Number of cells in the automaton :param seed: Random number seed for the ``#random'`` condition :return: Numpy array of zeros and ones (or just a one lonely one surrounded by zeros) :raises: ValueError if the ``name`` is unknown """ if name == 'single': just_one_cell = np.zeros(ncells) just_one_cell[int(ncells/2)] = 1.0 return just_one_cell elif name == 'random': np.random.seed(seed) random_init = np.random.randint(2, size=ncells) return random_init else: raise ValueError('I cannot handel your initial state `%s`.' % name)
def make_initial_state(name, ncells, seed=42): """ Creates an initial state for the automaton. :param name: Either ``'single'`` for a single live cell in the middle of the cell ring, or ``'random'`` for uniformly distributed random pattern of zeros and ones. :param ncells: Number of cells in the automaton :param seed: Random number seed for the ``#random'`` condition :return: Numpy array of zeros and ones (or just a one lonely one surrounded by zeros) :raises: ValueError if the ``name`` is unknown """ if name == 'single': just_one_cell = np.zeros(ncells) just_one_cell[int(ncells/2)] = 1.0 return just_one_cell elif name == 'random': np.random.seed(seed) random_init = np.random.randint(2, size=ncells) return random_init else: raise ValueError('I cannot handel your initial state `%s`.' % name)
[ "Creates", "an", "initial", "state", "for", "the", "automaton", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/examples/example_17_wrapping_an_existing_project/original.py#L49-L75
[ "def", "make_initial_state", "(", "name", ",", "ncells", ",", "seed", "=", "42", ")", ":", "if", "name", "==", "'single'", ":", "just_one_cell", "=", "np", ".", "zeros", "(", "ncells", ")", "just_one_cell", "[", "int", "(", "ncells", "/", "2", ")", "]", "=", "1.0", "return", "just_one_cell", "elif", "name", "==", "'random'", ":", "np", ".", "random", ".", "seed", "(", "seed", ")", "random_init", "=", "np", ".", "random", ".", "randint", "(", "2", ",", "size", "=", "ncells", ")", "return", "random_init", "else", ":", "raise", "ValueError", "(", "'I cannot handel your initial state `%s`.'", "%", "name", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
plot_pattern
Plots an automaton ``pattern`` and stores the image under a given ``filename``. For axes labels the ``rule_number`` is also required.
examples/example_17_wrapping_an_existing_project/original.py
def plot_pattern(pattern, rule_number, filename): """ Plots an automaton ``pattern`` and stores the image under a given ``filename``. For axes labels the ``rule_number`` is also required. """ plt.figure() plt.imshow(pattern) plt.xlabel('Cell No.') plt.ylabel('Time Step') plt.title('CA with Rule %s' % str(rule_number)) plt.savefig(filename) #plt.show() plt.close()
def plot_pattern(pattern, rule_number, filename): """ Plots an automaton ``pattern`` and stores the image under a given ``filename``. For axes labels the ``rule_number`` is also required. """ plt.figure() plt.imshow(pattern) plt.xlabel('Cell No.') plt.ylabel('Time Step') plt.title('CA with Rule %s' % str(rule_number)) plt.savefig(filename) #plt.show() plt.close()
[ "Plots", "an", "automaton", "pattern", "and", "stores", "the", "image", "under", "a", "given", "filename", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/examples/example_17_wrapping_an_existing_project/original.py#L78-L91
[ "def", "plot_pattern", "(", "pattern", ",", "rule_number", ",", "filename", ")", ":", "plt", ".", "figure", "(", ")", "plt", ".", "imshow", "(", "pattern", ")", "plt", ".", "xlabel", "(", "'Cell No.'", ")", "plt", ".", "ylabel", "(", "'Time Step'", ")", "plt", ".", "title", "(", "'CA with Rule %s'", "%", "str", "(", "rule_number", ")", ")", "plt", ".", "savefig", "(", "filename", ")", "#plt.show()", "plt", ".", "close", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
cellular_automaton_1D
Simulates a 1 dimensional cellular automaton. :param initial_state: The initial state of *dead* and *alive* cells as a 1D numpy array. It's length determines the size of the simulation. :param rule_number: The update rule as an integer from 0 to 255. :param steps: Number of cell iterations :return: A 2D numpy array (steps x len(initial_state)) containing zeros and ones representing the automaton development over time.
examples/example_17_wrapping_an_existing_project/original.py
def cellular_automaton_1D(initial_state, rule_number, steps): """ Simulates a 1 dimensional cellular automaton. :param initial_state: The initial state of *dead* and *alive* cells as a 1D numpy array. It's length determines the size of the simulation. :param rule_number: The update rule as an integer from 0 to 255. :param steps: Number of cell iterations :return: A 2D numpy array (steps x len(initial_state)) containing zeros and ones representing the automaton development over time. """ ncells = len(initial_state) # Create an array for the full pattern pattern = np.zeros((steps, ncells)) # Pass initial state: pattern[0,:] = initial_state # Get the binary rule list binary_rule = convert_rule(rule_number) # Conversion list to get the position in the binary rule list neighbourhood_factors = np.array([1, 2, 4]) # Iterate over all steps to compute the CA all_cells = range(ncells) for step in range(steps-1): current_row = pattern[step, :] next_row = pattern[step+1, :] for irun in all_cells: # Get the neighbourhood neighbour_indices = range(irun - 1, irun + 2) neighbourhood = np.take(current_row, neighbour_indices, mode='wrap') # Convert neighborhood to decimal decimal_neighborhood = int(np.sum(neighbourhood * neighbourhood_factors)) # Get next state from rule book next_state = binary_rule[decimal_neighborhood] # Update next state of cell next_row[irun] = next_state return pattern
def cellular_automaton_1D(initial_state, rule_number, steps): """ Simulates a 1 dimensional cellular automaton. :param initial_state: The initial state of *dead* and *alive* cells as a 1D numpy array. It's length determines the size of the simulation. :param rule_number: The update rule as an integer from 0 to 255. :param steps: Number of cell iterations :return: A 2D numpy array (steps x len(initial_state)) containing zeros and ones representing the automaton development over time. """ ncells = len(initial_state) # Create an array for the full pattern pattern = np.zeros((steps, ncells)) # Pass initial state: pattern[0,:] = initial_state # Get the binary rule list binary_rule = convert_rule(rule_number) # Conversion list to get the position in the binary rule list neighbourhood_factors = np.array([1, 2, 4]) # Iterate over all steps to compute the CA all_cells = range(ncells) for step in range(steps-1): current_row = pattern[step, :] next_row = pattern[step+1, :] for irun in all_cells: # Get the neighbourhood neighbour_indices = range(irun - 1, irun + 2) neighbourhood = np.take(current_row, neighbour_indices, mode='wrap') # Convert neighborhood to decimal decimal_neighborhood = int(np.sum(neighbourhood * neighbourhood_factors)) # Get next state from rule book next_state = binary_rule[decimal_neighborhood] # Update next state of cell next_row[irun] = next_state return pattern
[ "Simulates", "a", "1", "dimensional", "cellular", "automaton", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/examples/example_17_wrapping_an_existing_project/original.py#L94-L146
[ "def", "cellular_automaton_1D", "(", "initial_state", ",", "rule_number", ",", "steps", ")", ":", "ncells", "=", "len", "(", "initial_state", ")", "# Create an array for the full pattern", "pattern", "=", "np", ".", "zeros", "(", "(", "steps", ",", "ncells", ")", ")", "# Pass initial state:", "pattern", "[", "0", ",", ":", "]", "=", "initial_state", "# Get the binary rule list", "binary_rule", "=", "convert_rule", "(", "rule_number", ")", "# Conversion list to get the position in the binary rule list", "neighbourhood_factors", "=", "np", ".", "array", "(", "[", "1", ",", "2", ",", "4", "]", ")", "# Iterate over all steps to compute the CA", "all_cells", "=", "range", "(", "ncells", ")", "for", "step", "in", "range", "(", "steps", "-", "1", ")", ":", "current_row", "=", "pattern", "[", "step", ",", ":", "]", "next_row", "=", "pattern", "[", "step", "+", "1", ",", ":", "]", "for", "irun", "in", "all_cells", ":", "# Get the neighbourhood", "neighbour_indices", "=", "range", "(", "irun", "-", "1", ",", "irun", "+", "2", ")", "neighbourhood", "=", "np", ".", "take", "(", "current_row", ",", "neighbour_indices", ",", "mode", "=", "'wrap'", ")", "# Convert neighborhood to decimal", "decimal_neighborhood", "=", "int", "(", "np", ".", "sum", "(", "neighbourhood", "*", "neighbourhood_factors", ")", ")", "# Get next state from rule book", "next_state", "=", "binary_rule", "[", "decimal_neighborhood", "]", "# Update next state of cell", "next_row", "[", "irun", "]", "=", "next_state", "return", "pattern" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
main
Main simulation function
examples/example_17_wrapping_an_existing_project/original.py
def main(): """ Main simulation function """ rules_to_test = [10, 30, 90, 110, 184] # rules we want to explore: steps = 250 # cell iterations ncells = 400 # number of cells seed = 100042 # RNG seed initial_states = ['single', 'random'] # Initial states we want to explore # create a folder for the plots and the data folder = os.path.join(os.getcwd(), 'experiments', 'ca_patterns_original') if not os.path.isdir(folder): os.makedirs(folder) filename = os.path.join(folder, 'all_patterns.p') print('Computing all patterns') all_patterns = [] # list containing the simulation results for idx, rule_number in enumerate(rules_to_test): # iterate over all rules for initial_name in initial_states: # iterate over the initial states # make the initial state initial_state = make_initial_state(initial_name, ncells, seed=seed) # simulate the automaton pattern = cellular_automaton_1D(initial_state, rule_number, steps) # keep the resulting pattern all_patterns.append((rule_number, initial_name, pattern)) # Print a progressbar, because I am always impatient # (ok that's already from pypet, but it's really handy!) progressbar(idx, len(rules_to_test), reprint=True) # Store all patterns to disk with open(filename, 'wb') as file: pickle.dump(all_patterns, file=file) # Finally print all patterns print('Plotting all patterns') for idx, pattern_tuple in enumerate(all_patterns): rule_number, initial_name, pattern = pattern_tuple # Plot the pattern filename = os.path.join(folder, 'rule_%s_%s.png' % (str(rule_number), initial_name)) plot_pattern(pattern, rule_number, filename) progressbar(idx, len(all_patterns), reprint=True)
def main(): """ Main simulation function """ rules_to_test = [10, 30, 90, 110, 184] # rules we want to explore: steps = 250 # cell iterations ncells = 400 # number of cells seed = 100042 # RNG seed initial_states = ['single', 'random'] # Initial states we want to explore # create a folder for the plots and the data folder = os.path.join(os.getcwd(), 'experiments', 'ca_patterns_original') if not os.path.isdir(folder): os.makedirs(folder) filename = os.path.join(folder, 'all_patterns.p') print('Computing all patterns') all_patterns = [] # list containing the simulation results for idx, rule_number in enumerate(rules_to_test): # iterate over all rules for initial_name in initial_states: # iterate over the initial states # make the initial state initial_state = make_initial_state(initial_name, ncells, seed=seed) # simulate the automaton pattern = cellular_automaton_1D(initial_state, rule_number, steps) # keep the resulting pattern all_patterns.append((rule_number, initial_name, pattern)) # Print a progressbar, because I am always impatient # (ok that's already from pypet, but it's really handy!) progressbar(idx, len(rules_to_test), reprint=True) # Store all patterns to disk with open(filename, 'wb') as file: pickle.dump(all_patterns, file=file) # Finally print all patterns print('Plotting all patterns') for idx, pattern_tuple in enumerate(all_patterns): rule_number, initial_name, pattern = pattern_tuple # Plot the pattern filename = os.path.join(folder, 'rule_%s_%s.png' % (str(rule_number), initial_name)) plot_pattern(pattern, rule_number, filename) progressbar(idx, len(all_patterns), reprint=True)
[ "Main", "simulation", "function" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/examples/example_17_wrapping_an_existing_project/original.py#L149-L192
[ "def", "main", "(", ")", ":", "rules_to_test", "=", "[", "10", ",", "30", ",", "90", ",", "110", ",", "184", "]", "# rules we want to explore:", "steps", "=", "250", "# cell iterations", "ncells", "=", "400", "# number of cells", "seed", "=", "100042", "# RNG seed", "initial_states", "=", "[", "'single'", ",", "'random'", "]", "# Initial states we want to explore", "# create a folder for the plots and the data", "folder", "=", "os", ".", "path", ".", "join", "(", "os", ".", "getcwd", "(", ")", ",", "'experiments'", ",", "'ca_patterns_original'", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "folder", ")", ":", "os", ".", "makedirs", "(", "folder", ")", "filename", "=", "os", ".", "path", ".", "join", "(", "folder", ",", "'all_patterns.p'", ")", "print", "(", "'Computing all patterns'", ")", "all_patterns", "=", "[", "]", "# list containing the simulation results", "for", "idx", ",", "rule_number", "in", "enumerate", "(", "rules_to_test", ")", ":", "# iterate over all rules", "for", "initial_name", "in", "initial_states", ":", "# iterate over the initial states", "# make the initial state", "initial_state", "=", "make_initial_state", "(", "initial_name", ",", "ncells", ",", "seed", "=", "seed", ")", "# simulate the automaton", "pattern", "=", "cellular_automaton_1D", "(", "initial_state", ",", "rule_number", ",", "steps", ")", "# keep the resulting pattern", "all_patterns", ".", "append", "(", "(", "rule_number", ",", "initial_name", ",", "pattern", ")", ")", "# Print a progressbar, because I am always impatient", "# (ok that's already from pypet, but it's really handy!)", "progressbar", "(", "idx", ",", "len", "(", "rules_to_test", ")", ",", "reprint", "=", "True", ")", "# Store all patterns to disk", "with", "open", "(", "filename", ",", "'wb'", ")", "as", "file", ":", "pickle", ".", "dump", "(", "all_patterns", ",", "file", "=", "file", ")", "# Finally print all patterns", "print", "(", "'Plotting all patterns'", ")", "for", "idx", ",", "pattern_tuple", "in", "enumerate", "(", "all_patterns", ")", ":", "rule_number", ",", "initial_name", ",", "pattern", "=", "pattern_tuple", "# Plot the pattern", "filename", "=", "os", ".", "path", ".", "join", "(", "folder", ",", "'rule_%s_%s.png'", "%", "(", "str", "(", "rule_number", ")", ",", "initial_name", ")", ")", "plot_pattern", "(", "pattern", ",", "rule_number", ",", "filename", ")", "progressbar", "(", "idx", ",", "len", "(", "all_patterns", ")", ",", "reprint", "=", "True", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
get_all_slots
Iterates through a class' (`cls`) mro to get all slots as a set.
pypet/slots.py
def get_all_slots(cls): """Iterates through a class' (`cls`) mro to get all slots as a set.""" slots_iterator = (getattr(c, '__slots__', ()) for c in cls.__mro__) # `__slots__` might only be a single string, # so we need to put the strings into a tuple. slots_converted = ((slots,) if isinstance(slots, str) else slots for slots in slots_iterator) all_slots = set() all_slots.update(*slots_converted) return all_slots
def get_all_slots(cls): """Iterates through a class' (`cls`) mro to get all slots as a set.""" slots_iterator = (getattr(c, '__slots__', ()) for c in cls.__mro__) # `__slots__` might only be a single string, # so we need to put the strings into a tuple. slots_converted = ((slots,) if isinstance(slots, str) else slots for slots in slots_iterator) all_slots = set() all_slots.update(*slots_converted) return all_slots
[ "Iterates", "through", "a", "class", "(", "cls", ")", "mro", "to", "get", "all", "slots", "as", "a", "set", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/slots.py#L6-L15
[ "def", "get_all_slots", "(", "cls", ")", ":", "slots_iterator", "=", "(", "getattr", "(", "c", ",", "'__slots__'", ",", "(", ")", ")", "for", "c", "in", "cls", ".", "__mro__", ")", "# `__slots__` might only be a single string,", "# so we need to put the strings into a tuple.", "slots_converted", "=", "(", "(", "slots", ",", ")", "if", "isinstance", "(", "slots", ",", "str", ")", "else", "slots", "for", "slots", "in", "slots_iterator", ")", "all_slots", "=", "set", "(", ")", "all_slots", ".", "update", "(", "*", "slots_converted", ")", "return", "all_slots" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
NodeProcessingTimer.signal_update
Signals the process timer. If more time than the display time has passed a message is emitted.
pypet/storageservice.py
def signal_update(self): """Signals the process timer. If more time than the display time has passed a message is emitted. """ if not self.active: return self._updates += 1 current_time = time.time() dt = current_time - self._last_time if dt > self._display_time: dfullt = current_time - self._start_time seconds = int(dfullt) % 60 minutes = int(dfullt) / 60 if minutes == 0: formatted_time = '%ds' % seconds else: formatted_time = '%dm%02ds' % (minutes, seconds) nodespersecond = self._updates / dfullt message = 'Processed %d nodes in %s (%.2f nodes/s).' % \ (self._updates, formatted_time, nodespersecond) self._logger.info(message) self._last_time = current_time
def signal_update(self): """Signals the process timer. If more time than the display time has passed a message is emitted. """ if not self.active: return self._updates += 1 current_time = time.time() dt = current_time - self._last_time if dt > self._display_time: dfullt = current_time - self._start_time seconds = int(dfullt) % 60 minutes = int(dfullt) / 60 if minutes == 0: formatted_time = '%ds' % seconds else: formatted_time = '%dm%02ds' % (minutes, seconds) nodespersecond = self._updates / dfullt message = 'Processed %d nodes in %s (%.2f nodes/s).' % \ (self._updates, formatted_time, nodespersecond) self._logger.info(message) self._last_time = current_time
[ "Signals", "the", "process", "timer", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L103-L127
[ "def", "signal_update", "(", "self", ")", ":", "if", "not", "self", ".", "active", ":", "return", "self", ".", "_updates", "+=", "1", "current_time", "=", "time", ".", "time", "(", ")", "dt", "=", "current_time", "-", "self", ".", "_last_time", "if", "dt", ">", "self", ".", "_display_time", ":", "dfullt", "=", "current_time", "-", "self", ".", "_start_time", "seconds", "=", "int", "(", "dfullt", ")", "%", "60", "minutes", "=", "int", "(", "dfullt", ")", "/", "60", "if", "minutes", "==", "0", ":", "formatted_time", "=", "'%ds'", "%", "seconds", "else", ":", "formatted_time", "=", "'%dm%02ds'", "%", "(", "minutes", ",", "seconds", ")", "nodespersecond", "=", "self", ".", "_updates", "/", "dfullt", "message", "=", "'Processed %d nodes in %s (%.2f nodes/s).'", "%", "(", "self", ".", "_updates", ",", "formatted_time", ",", "nodespersecond", ")", "self", ".", "_logger", ".", "info", "(", "message", ")", "self", ".", "_last_time", "=", "current_time" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._overview_group
Direct link to the overview group
pypet/storageservice.py
def _overview_group(self): """Direct link to the overview group""" if self._overview_group_ is None: self._overview_group_ = self._all_create_or_get_groups('overview')[0] return self._overview_group_
def _overview_group(self): """Direct link to the overview group""" if self._overview_group_ is None: self._overview_group_ = self._all_create_or_get_groups('overview')[0] return self._overview_group_
[ "Direct", "link", "to", "the", "overview", "group" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L696-L700
[ "def", "_overview_group", "(", "self", ")", ":", "if", "self", ".", "_overview_group_", "is", "None", ":", "self", ".", "_overview_group_", "=", "self", ".", "_all_create_or_get_groups", "(", "'overview'", ")", "[", "0", "]", "return", "self", ".", "_overview_group_" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_get_filters
Makes filters Pops filter arguments from `kwargs` such that they are not passed on to other functions also using kwargs.
pypet/storageservice.py
def _all_get_filters(self, kwargs=None): """Makes filters Pops filter arguments from `kwargs` such that they are not passed on to other functions also using kwargs. """ if kwargs is None: kwargs = {} complib = kwargs.pop('complib', None) complevel = kwargs.pop('complevel', None) shuffle = kwargs.pop('shuffle', None) fletcher32 = kwargs.pop('fletcher32', None) if complib is not None: self._filters = None else: complib = self._complib if complevel is not None: self._filters = None else: complevel = self._complevel if shuffle is not None: self._filters = None else: shuffle = self._shuffle if fletcher32 is not None: self._filters = None else: fletcher32 = self._fletcher32 if self._filters is None: # Recreate the filters if something was changed self._filters = pt.Filters(complib=complib, complevel=complevel, shuffle=shuffle, fletcher32=fletcher32) self._hdf5file.filters = self._filters self._hdf5store._filters = self._filters self._hdf5store._complevel = complevel self._hdf5store._complib = complib self._hdf5store._fletcher32 = fletcher32 return self._filters
def _all_get_filters(self, kwargs=None): """Makes filters Pops filter arguments from `kwargs` such that they are not passed on to other functions also using kwargs. """ if kwargs is None: kwargs = {} complib = kwargs.pop('complib', None) complevel = kwargs.pop('complevel', None) shuffle = kwargs.pop('shuffle', None) fletcher32 = kwargs.pop('fletcher32', None) if complib is not None: self._filters = None else: complib = self._complib if complevel is not None: self._filters = None else: complevel = self._complevel if shuffle is not None: self._filters = None else: shuffle = self._shuffle if fletcher32 is not None: self._filters = None else: fletcher32 = self._fletcher32 if self._filters is None: # Recreate the filters if something was changed self._filters = pt.Filters(complib=complib, complevel=complevel, shuffle=shuffle, fletcher32=fletcher32) self._hdf5file.filters = self._filters self._hdf5store._filters = self._filters self._hdf5store._complevel = complevel self._hdf5store._complib = complib self._hdf5store._fletcher32 = fletcher32 return self._filters
[ "Makes", "filters" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L702-L742
[ "def", "_all_get_filters", "(", "self", ",", "kwargs", "=", "None", ")", ":", "if", "kwargs", "is", "None", ":", "kwargs", "=", "{", "}", "complib", "=", "kwargs", ".", "pop", "(", "'complib'", ",", "None", ")", "complevel", "=", "kwargs", ".", "pop", "(", "'complevel'", ",", "None", ")", "shuffle", "=", "kwargs", ".", "pop", "(", "'shuffle'", ",", "None", ")", "fletcher32", "=", "kwargs", ".", "pop", "(", "'fletcher32'", ",", "None", ")", "if", "complib", "is", "not", "None", ":", "self", ".", "_filters", "=", "None", "else", ":", "complib", "=", "self", ".", "_complib", "if", "complevel", "is", "not", "None", ":", "self", ".", "_filters", "=", "None", "else", ":", "complevel", "=", "self", ".", "_complevel", "if", "shuffle", "is", "not", "None", ":", "self", ".", "_filters", "=", "None", "else", ":", "shuffle", "=", "self", ".", "_shuffle", "if", "fletcher32", "is", "not", "None", ":", "self", ".", "_filters", "=", "None", "else", ":", "fletcher32", "=", "self", ".", "_fletcher32", "if", "self", ".", "_filters", "is", "None", ":", "# Recreate the filters if something was changed", "self", ".", "_filters", "=", "pt", ".", "Filters", "(", "complib", "=", "complib", ",", "complevel", "=", "complevel", ",", "shuffle", "=", "shuffle", ",", "fletcher32", "=", "fletcher32", ")", "self", ".", "_hdf5file", ".", "filters", "=", "self", ".", "_filters", "self", ".", "_hdf5store", ".", "_filters", "=", "self", ".", "_filters", "self", ".", "_hdf5store", ".", "_complevel", "=", "complevel", "self", ".", "_hdf5store", ".", "_complib", "=", "complib", "self", ".", "_hdf5store", ".", "_fletcher32", "=", "fletcher32", "return", "self", ".", "_filters" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srvc_set_config
Sets a config value to the Trajectory or changes it if the trajectory was loaded a the settings no longer match
pypet/storageservice.py
def _srvc_set_config(self, trajectory): """Sets a config value to the Trajectory or changes it if the trajectory was loaded a the settings no longer match""" def _set_config(name, value, comment): if not trajectory.f_contains('config.'+name, shortcuts=False): trajectory.f_add_config(Parameter, name, value, comment=comment) for attr_name in HDF5StorageService.NAME_TABLE_MAPPING: table_name = HDF5StorageService.NAME_TABLE_MAPPING[attr_name] value = getattr(self, attr_name) _set_config('hdf5.overview.' + table_name, value, comment='Whether or not to have an overview ' 'table with that name') _set_config('hdf5.purge_duplicate_comments', self._purge_duplicate_comments, comment='Whether comments of results and' ' derived parameters should only' ' be stored for the very first instance.' ' Works only if the summary tables are' ' active.') _set_config('hdf5.results_per_run', self._results_per_run, comment='Expected number of results per run,' ' a good guess can increase storage performance') _set_config('hdf5.derived_parameters_per_run', self._derived_parameters_per_run, comment='Expected number of derived parameters per run,' ' a good guess can increase storage performance') _set_config('hdf5.complevel', self._complevel, comment='Compression Level (0 no compression ' 'to 9 highest compression)') _set_config('hdf5.complib', self._complib, comment='Compression Algorithm') _set_config('hdf5.encoding', self._encoding, comment='Encoding for unicode characters') _set_config('hdf5.fletcher32', self._fletcher32, comment='Whether to use fletcher 32 checksum') _set_config('hdf5.shuffle', self._shuffle, comment='Whether to use shuffle filtering.') _set_config('hdf5.pandas_format', self._pandas_format, comment='''How to store pandas data frames, either''' ''' 'fixed' ('f') or 'table' ('t').''') if trajectory.f_contains('config.hdf5', shortcuts=False): if trajectory.config.hdf5.v_comment == '': # If this has not happened yet, add a description of the hdf5 config group trajectory.config.hdf5.v_comment = 'Settings for the standard HDF5 storage service' trajectory.v_storage_service = self
def _srvc_set_config(self, trajectory): """Sets a config value to the Trajectory or changes it if the trajectory was loaded a the settings no longer match""" def _set_config(name, value, comment): if not trajectory.f_contains('config.'+name, shortcuts=False): trajectory.f_add_config(Parameter, name, value, comment=comment) for attr_name in HDF5StorageService.NAME_TABLE_MAPPING: table_name = HDF5StorageService.NAME_TABLE_MAPPING[attr_name] value = getattr(self, attr_name) _set_config('hdf5.overview.' + table_name, value, comment='Whether or not to have an overview ' 'table with that name') _set_config('hdf5.purge_duplicate_comments', self._purge_duplicate_comments, comment='Whether comments of results and' ' derived parameters should only' ' be stored for the very first instance.' ' Works only if the summary tables are' ' active.') _set_config('hdf5.results_per_run', self._results_per_run, comment='Expected number of results per run,' ' a good guess can increase storage performance') _set_config('hdf5.derived_parameters_per_run', self._derived_parameters_per_run, comment='Expected number of derived parameters per run,' ' a good guess can increase storage performance') _set_config('hdf5.complevel', self._complevel, comment='Compression Level (0 no compression ' 'to 9 highest compression)') _set_config('hdf5.complib', self._complib, comment='Compression Algorithm') _set_config('hdf5.encoding', self._encoding, comment='Encoding for unicode characters') _set_config('hdf5.fletcher32', self._fletcher32, comment='Whether to use fletcher 32 checksum') _set_config('hdf5.shuffle', self._shuffle, comment='Whether to use shuffle filtering.') _set_config('hdf5.pandas_format', self._pandas_format, comment='''How to store pandas data frames, either''' ''' 'fixed' ('f') or 'table' ('t').''') if trajectory.f_contains('config.hdf5', shortcuts=False): if trajectory.config.hdf5.v_comment == '': # If this has not happened yet, add a description of the hdf5 config group trajectory.config.hdf5.v_comment = 'Settings for the standard HDF5 storage service' trajectory.v_storage_service = self
[ "Sets", "a", "config", "value", "to", "the", "Trajectory", "or", "changes", "it", "if", "the", "trajectory", "was", "loaded", "a", "the", "settings", "no", "longer", "match" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L744-L801
[ "def", "_srvc_set_config", "(", "self", ",", "trajectory", ")", ":", "def", "_set_config", "(", "name", ",", "value", ",", "comment", ")", ":", "if", "not", "trajectory", ".", "f_contains", "(", "'config.'", "+", "name", ",", "shortcuts", "=", "False", ")", ":", "trajectory", ".", "f_add_config", "(", "Parameter", ",", "name", ",", "value", ",", "comment", "=", "comment", ")", "for", "attr_name", "in", "HDF5StorageService", ".", "NAME_TABLE_MAPPING", ":", "table_name", "=", "HDF5StorageService", ".", "NAME_TABLE_MAPPING", "[", "attr_name", "]", "value", "=", "getattr", "(", "self", ",", "attr_name", ")", "_set_config", "(", "'hdf5.overview.'", "+", "table_name", ",", "value", ",", "comment", "=", "'Whether or not to have an overview '", "'table with that name'", ")", "_set_config", "(", "'hdf5.purge_duplicate_comments'", ",", "self", ".", "_purge_duplicate_comments", ",", "comment", "=", "'Whether comments of results and'", "' derived parameters should only'", "' be stored for the very first instance.'", "' Works only if the summary tables are'", "' active.'", ")", "_set_config", "(", "'hdf5.results_per_run'", ",", "self", ".", "_results_per_run", ",", "comment", "=", "'Expected number of results per run,'", "' a good guess can increase storage performance'", ")", "_set_config", "(", "'hdf5.derived_parameters_per_run'", ",", "self", ".", "_derived_parameters_per_run", ",", "comment", "=", "'Expected number of derived parameters per run,'", "' a good guess can increase storage performance'", ")", "_set_config", "(", "'hdf5.complevel'", ",", "self", ".", "_complevel", ",", "comment", "=", "'Compression Level (0 no compression '", "'to 9 highest compression)'", ")", "_set_config", "(", "'hdf5.complib'", ",", "self", ".", "_complib", ",", "comment", "=", "'Compression Algorithm'", ")", "_set_config", "(", "'hdf5.encoding'", ",", "self", ".", "_encoding", ",", "comment", "=", "'Encoding for unicode characters'", ")", "_set_config", "(", "'hdf5.fletcher32'", ",", "self", ".", "_fletcher32", ",", "comment", "=", "'Whether to use fletcher 32 checksum'", ")", "_set_config", "(", "'hdf5.shuffle'", ",", "self", ".", "_shuffle", ",", "comment", "=", "'Whether to use shuffle filtering.'", ")", "_set_config", "(", "'hdf5.pandas_format'", ",", "self", ".", "_pandas_format", ",", "comment", "=", "'''How to store pandas data frames, either'''", "''' 'fixed' ('f') or 'table' ('t').'''", ")", "if", "trajectory", ".", "f_contains", "(", "'config.hdf5'", ",", "shortcuts", "=", "False", ")", ":", "if", "trajectory", ".", "config", ".", "hdf5", ".", "v_comment", "==", "''", ":", "# If this has not happened yet, add a description of the hdf5 config group", "trajectory", ".", "config", ".", "hdf5", ".", "v_comment", "=", "'Settings for the standard HDF5 storage service'", "trajectory", ".", "v_storage_service", "=", "self" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService.load
Loads a particular item from disk. The storage service always accepts these parameters: :param trajectory_name: Name of current trajectory and name of top node in hdf5 file. :param trajectory_index: If no `trajectory_name` is provided, you can specify an integer index. The trajectory at the index position in the hdf5 file is considered to loaded. Negative indices are also possible for reverse indexing. :param filename: Name of the hdf5 file The following messages (first argument msg) are understood and the following arguments can be provided in combination with the message: * :const:`pypet.pypetconstants.TRAJECTORY` ('TRAJECTORY') Loads a trajectory. :param stuff_to_load: The trajectory :param as_new: Whether to load trajectory as new :param load_parameters: How to load parameters and config :param load_derived_parameters: How to load derived parameters :param load_results: How to load results :param force: Force load in case there is a pypet version mismatch You can specify how to load the parameters, derived parameters and results as follows: :const:`pypet.pypetconstants.LOAD_NOTHING`: (0) Nothing is loaded :const:`pypet.pypetconstants.LOAD_SKELETON`: (1) The skeleton including annotations are loaded, i.e. the items are empty. Non-empty items in RAM are left untouched. :const:`pypet.pypetconstants.LOAD_DATA`: (2) The whole data is loaded. Only empty or in RAM non-existing instance are filled with the data found on disk. :const:`pypet.pypetconstants.OVERWRITE_DATA`: (3) The whole data is loaded. If items that are to be loaded are already in RAM and not empty, they are emptied and new data is loaded from disk. * :const:`pypet.pypetconstants.LEAF` ('LEAF') Loads a parameter or result. :param stuff_to_load: The item to be loaded :param load_data: How to load data :param load_only: If you load a result, you can partially load it and ignore the rest of the data. Just specify the name of the data you want to load. You can also provide a list, for example `load_only='spikes'`, `load_only=['spikes','membrane_potential']`. Issues a warning if items cannot be found. :param load_except: If you load a result you can partially load in and specify items that should NOT be loaded here. You cannot use `load_except` and `load_only` at the same time. * :const:`pypet.pyetconstants.GROUP` Loads a group a node (comment and annotations) :param recursive: Recursively loads everything below :param load_data: How to load stuff if ``recursive=True`` accepted values as above for loading the trajectory :param max_depth: Maximum depth in case of recursion. `None` for no limit. * :const:`pypet.pypetconstants.TREE` ('TREE') Loads a whole subtree :param stuff_to_load: The parent node (!) not the one where loading starts! :param child_name: Name of child node that should be loaded :param recursive: Whether to load recursively the subtree below child :param load_data: How to load stuff, accepted values as above for loading the trajectory :param max_depth: Maximum depth in case of recursion. `None` for no limit. :param trajectory: The trajectory object * :const:`pypet.pypetconstants.LIST` ('LIST') Analogous to :ref:`storing lists <store-lists>` :raises: NoSuchServiceError if message or data is not understood DataNotInStorageError if data to be loaded cannot be found on disk
pypet/storageservice.py
def load(self, msg, stuff_to_load, *args, **kwargs): """Loads a particular item from disk. The storage service always accepts these parameters: :param trajectory_name: Name of current trajectory and name of top node in hdf5 file. :param trajectory_index: If no `trajectory_name` is provided, you can specify an integer index. The trajectory at the index position in the hdf5 file is considered to loaded. Negative indices are also possible for reverse indexing. :param filename: Name of the hdf5 file The following messages (first argument msg) are understood and the following arguments can be provided in combination with the message: * :const:`pypet.pypetconstants.TRAJECTORY` ('TRAJECTORY') Loads a trajectory. :param stuff_to_load: The trajectory :param as_new: Whether to load trajectory as new :param load_parameters: How to load parameters and config :param load_derived_parameters: How to load derived parameters :param load_results: How to load results :param force: Force load in case there is a pypet version mismatch You can specify how to load the parameters, derived parameters and results as follows: :const:`pypet.pypetconstants.LOAD_NOTHING`: (0) Nothing is loaded :const:`pypet.pypetconstants.LOAD_SKELETON`: (1) The skeleton including annotations are loaded, i.e. the items are empty. Non-empty items in RAM are left untouched. :const:`pypet.pypetconstants.LOAD_DATA`: (2) The whole data is loaded. Only empty or in RAM non-existing instance are filled with the data found on disk. :const:`pypet.pypetconstants.OVERWRITE_DATA`: (3) The whole data is loaded. If items that are to be loaded are already in RAM and not empty, they are emptied and new data is loaded from disk. * :const:`pypet.pypetconstants.LEAF` ('LEAF') Loads a parameter or result. :param stuff_to_load: The item to be loaded :param load_data: How to load data :param load_only: If you load a result, you can partially load it and ignore the rest of the data. Just specify the name of the data you want to load. You can also provide a list, for example `load_only='spikes'`, `load_only=['spikes','membrane_potential']`. Issues a warning if items cannot be found. :param load_except: If you load a result you can partially load in and specify items that should NOT be loaded here. You cannot use `load_except` and `load_only` at the same time. * :const:`pypet.pyetconstants.GROUP` Loads a group a node (comment and annotations) :param recursive: Recursively loads everything below :param load_data: How to load stuff if ``recursive=True`` accepted values as above for loading the trajectory :param max_depth: Maximum depth in case of recursion. `None` for no limit. * :const:`pypet.pypetconstants.TREE` ('TREE') Loads a whole subtree :param stuff_to_load: The parent node (!) not the one where loading starts! :param child_name: Name of child node that should be loaded :param recursive: Whether to load recursively the subtree below child :param load_data: How to load stuff, accepted values as above for loading the trajectory :param max_depth: Maximum depth in case of recursion. `None` for no limit. :param trajectory: The trajectory object * :const:`pypet.pypetconstants.LIST` ('LIST') Analogous to :ref:`storing lists <store-lists>` :raises: NoSuchServiceError if message or data is not understood DataNotInStorageError if data to be loaded cannot be found on disk """ opened = True try: opened = self._srvc_opening_routine('r', kwargs=kwargs) if msg == pypetconstants.TRAJECTORY: self._trj_load_trajectory(stuff_to_load, *args, **kwargs) elif msg == pypetconstants.LEAF: self._prm_load_parameter_or_result(stuff_to_load, *args, **kwargs) elif msg == pypetconstants.GROUP: self._grp_load_group(stuff_to_load, *args, **kwargs) elif msg == pypetconstants.TREE: self._tree_load_sub_branch(stuff_to_load, *args, **kwargs) elif msg == pypetconstants.LIST: self._srvc_load_several_items(stuff_to_load, *args, **kwargs) else: raise pex.NoSuchServiceError('I do not know how to handle `%s`' % msg) except pt.NoSuchNodeError as exc: self._logger.error('Failed loading `%s`' % str(stuff_to_load)) raise pex.DataNotInStorageError(repr(exc)) except: self._logger.error('Failed loading `%s`' % str(stuff_to_load)) raise finally: self._srvc_closing_routine(opened)
def load(self, msg, stuff_to_load, *args, **kwargs): """Loads a particular item from disk. The storage service always accepts these parameters: :param trajectory_name: Name of current trajectory and name of top node in hdf5 file. :param trajectory_index: If no `trajectory_name` is provided, you can specify an integer index. The trajectory at the index position in the hdf5 file is considered to loaded. Negative indices are also possible for reverse indexing. :param filename: Name of the hdf5 file The following messages (first argument msg) are understood and the following arguments can be provided in combination with the message: * :const:`pypet.pypetconstants.TRAJECTORY` ('TRAJECTORY') Loads a trajectory. :param stuff_to_load: The trajectory :param as_new: Whether to load trajectory as new :param load_parameters: How to load parameters and config :param load_derived_parameters: How to load derived parameters :param load_results: How to load results :param force: Force load in case there is a pypet version mismatch You can specify how to load the parameters, derived parameters and results as follows: :const:`pypet.pypetconstants.LOAD_NOTHING`: (0) Nothing is loaded :const:`pypet.pypetconstants.LOAD_SKELETON`: (1) The skeleton including annotations are loaded, i.e. the items are empty. Non-empty items in RAM are left untouched. :const:`pypet.pypetconstants.LOAD_DATA`: (2) The whole data is loaded. Only empty or in RAM non-existing instance are filled with the data found on disk. :const:`pypet.pypetconstants.OVERWRITE_DATA`: (3) The whole data is loaded. If items that are to be loaded are already in RAM and not empty, they are emptied and new data is loaded from disk. * :const:`pypet.pypetconstants.LEAF` ('LEAF') Loads a parameter or result. :param stuff_to_load: The item to be loaded :param load_data: How to load data :param load_only: If you load a result, you can partially load it and ignore the rest of the data. Just specify the name of the data you want to load. You can also provide a list, for example `load_only='spikes'`, `load_only=['spikes','membrane_potential']`. Issues a warning if items cannot be found. :param load_except: If you load a result you can partially load in and specify items that should NOT be loaded here. You cannot use `load_except` and `load_only` at the same time. * :const:`pypet.pyetconstants.GROUP` Loads a group a node (comment and annotations) :param recursive: Recursively loads everything below :param load_data: How to load stuff if ``recursive=True`` accepted values as above for loading the trajectory :param max_depth: Maximum depth in case of recursion. `None` for no limit. * :const:`pypet.pypetconstants.TREE` ('TREE') Loads a whole subtree :param stuff_to_load: The parent node (!) not the one where loading starts! :param child_name: Name of child node that should be loaded :param recursive: Whether to load recursively the subtree below child :param load_data: How to load stuff, accepted values as above for loading the trajectory :param max_depth: Maximum depth in case of recursion. `None` for no limit. :param trajectory: The trajectory object * :const:`pypet.pypetconstants.LIST` ('LIST') Analogous to :ref:`storing lists <store-lists>` :raises: NoSuchServiceError if message or data is not understood DataNotInStorageError if data to be loaded cannot be found on disk """ opened = True try: opened = self._srvc_opening_routine('r', kwargs=kwargs) if msg == pypetconstants.TRAJECTORY: self._trj_load_trajectory(stuff_to_load, *args, **kwargs) elif msg == pypetconstants.LEAF: self._prm_load_parameter_or_result(stuff_to_load, *args, **kwargs) elif msg == pypetconstants.GROUP: self._grp_load_group(stuff_to_load, *args, **kwargs) elif msg == pypetconstants.TREE: self._tree_load_sub_branch(stuff_to_load, *args, **kwargs) elif msg == pypetconstants.LIST: self._srvc_load_several_items(stuff_to_load, *args, **kwargs) else: raise pex.NoSuchServiceError('I do not know how to handle `%s`' % msg) except pt.NoSuchNodeError as exc: self._logger.error('Failed loading `%s`' % str(stuff_to_load)) raise pex.DataNotInStorageError(repr(exc)) except: self._logger.error('Failed loading `%s`' % str(stuff_to_load)) raise finally: self._srvc_closing_routine(opened)
[ "Loads", "a", "particular", "item", "from", "disk", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L803-L963
[ "def", "load", "(", "self", ",", "msg", ",", "stuff_to_load", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "opened", "=", "True", "try", ":", "opened", "=", "self", ".", "_srvc_opening_routine", "(", "'r'", ",", "kwargs", "=", "kwargs", ")", "if", "msg", "==", "pypetconstants", ".", "TRAJECTORY", ":", "self", ".", "_trj_load_trajectory", "(", "stuff_to_load", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "LEAF", ":", "self", ".", "_prm_load_parameter_or_result", "(", "stuff_to_load", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "GROUP", ":", "self", ".", "_grp_load_group", "(", "stuff_to_load", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "TREE", ":", "self", ".", "_tree_load_sub_branch", "(", "stuff_to_load", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "LIST", ":", "self", ".", "_srvc_load_several_items", "(", "stuff_to_load", ",", "*", "args", ",", "*", "*", "kwargs", ")", "else", ":", "raise", "pex", ".", "NoSuchServiceError", "(", "'I do not know how to handle `%s`'", "%", "msg", ")", "except", "pt", ".", "NoSuchNodeError", "as", "exc", ":", "self", ".", "_logger", ".", "error", "(", "'Failed loading `%s`'", "%", "str", "(", "stuff_to_load", ")", ")", "raise", "pex", ".", "DataNotInStorageError", "(", "repr", "(", "exc", ")", ")", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed loading `%s`'", "%", "str", "(", "stuff_to_load", ")", ")", "raise", "finally", ":", "self", ".", "_srvc_closing_routine", "(", "opened", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService.store
Stores a particular item to disk. The storage service always accepts these parameters: :param trajectory_name: Name or current trajectory and name of top node in hdf5 file :param filename: Name of the hdf5 file :param file_title: If file needs to be created, assigns a title to the file. The following messages (first argument msg) are understood and the following arguments can be provided in combination with the message: * :const:`pypet.pypetconstants.PREPARE_MERGE` ('PREPARE_MERGE'): Called to prepare a trajectory for merging, see also 'MERGE' below. Will also be called if merging cannot happen within the same hdf5 file. Stores already enlarged parameters and updates meta information. :param stuff_to_store: Trajectory that is about to be extended by another one :param changed_parameters: List containing all parameters that were enlarged due to merging :param old_length: Old length of trajectory before merge * :const:`pypet.pypetconstants.MERGE` ('MERGE') Note that before merging within HDF5 file, the storage service will be called with msg='PREPARE_MERGE' before, see above. Raises a ValueError if the two trajectories are not stored within the very same hdf5 file. Then the current trajectory needs to perform the merge slowly item by item. Merges two trajectories, parameters are: :param stuff_to_store: The trajectory data is merged into :param other_trajectory_name: Name of the other trajectory :param rename_dict: Dictionary containing the old result and derived parameter names in the other trajectory and their new names in the current trajectory. :param move_nodes: Whether to move the nodes from the other to the current trajectory :param delete_trajectory: Whether to delete the other trajectory after merging. * :const:`pypet.pypetconstants.BACKUP` ('BACKUP') :param stuff_to_store: Trajectory to be backed up :param backup_filename: Name of file where to store the backup. If None the backup file will be in the same folder as your hdf5 file and named 'backup_XXXXX.hdf5' where 'XXXXX' is the name of your current trajectory. * :const:`pypet.pypetconstants.TRAJECTORY` ('TRAJECTORY') Stores the whole trajectory :param stuff_to_store: The trajectory to be stored :param only_init: If you just want to initialise the store. If yes, only meta information about the trajectory is stored and none of the nodes/leaves within the trajectory. :param store_data: How to store data, the following settings are understood: :const:`pypet.pypetconstants.STORE_NOTHING`: (0) Nothing is stored :const:`pypet.pypetconstants.STORE_DATA_SKIPPING`: (1) Data of not already stored nodes is stored :const:`pypet.pypetconstants.STORE_DATA`: (2) Data of all nodes is stored. However, existing data on disk is left untouched. :const:`pypet.pypetconstants.OVERWRITE_DATA`: (3) Data of all nodes is stored and data on disk is overwritten. May lead to fragmentation of the HDF5 file. The user is adviced to recompress the file manually later on. * :const:`pypet.pypetconstants.SINGLE_RUN` ('SINGLE_RUN') :param stuff_to_store: The trajectory :param store_data: How to store data see above :param store_final: If final meta info should be stored * :const:`pypet.pypetconstants.LEAF` Stores a parameter or result Note that everything that is supported by the storage service and that is stored to disk will be perfectly recovered. For instance, you store a tuple of numpy 32 bit integers, you will get a tuple of numpy 32 bit integers after loading independent of the platform! :param stuff_to_sore: Result or parameter to store In order to determine what to store, the function '_store' of the parameter or result is called. This function returns a dictionary with name keys and data to store as values. In order to determine how to store the data, the storage flags are considered, see below. The function '_store' has to return a dictionary containing values only from the following objects: * python natives (int, long, str, bool, float, complex), * numpy natives, arrays and matrices of type np.int8-64, np.uint8-64, np.float32-64, np.complex, np.str * python lists and tuples of the previous types (python natives + numpy natives and arrays) Lists and tuples are not allowed to be nested and must be homogeneous, i.e. only contain data of one particular type. Only integers, or only floats, etc. * python dictionaries of the previous types (not nested!), data can be heterogeneous, keys must be strings. For example, one key-value-pair of string and int and one key-value pair of string and float, and so on. * pandas DataFrames_ * :class:`~pypet.parameter.ObjectTable` .. _DataFrames: http://pandas.pydata.org/pandas-docs/dev/dsintro.html#dataframe The keys from the '_store' dictionaries determine how the data will be named in the hdf5 file. :param store_data: How to store the data, see above for a descitpion. :param store_flags: Flags describing how to store data. :const:`~pypet.HDF5StorageService.ARRAY` ('ARRAY') Store stuff as array :const:`~pypet.HDF5StorageService.CARRAY` ('CARRAY') Store stuff as carray :const:`~pypet.HDF5StorageService.TABLE` ('TABLE') Store stuff as pytable :const:`~pypet.HDF5StorageService.DICT` ('DICT') Store stuff as pytable but reconstructs it later as dictionary on loading :const:`~pypet.HDF%StorageService.FRAME` ('FRAME') Store stuff as pandas data frame Storage flags can also be provided by the parameters and results themselves if they implement a function '_store_flags' that returns a dictionary with the names of the data to store as keys and the flags as values. If no storage flags are provided, they are automatically inferred from the data. See :const:`pypet.HDF5StorageService.TYPE_FLAG_MAPPING` for the mapping from type to flag. :param overwrite: Can be used if parts of a leaf should be replaced. Either a list of HDF5 names or `True` if this should account for all. * :const:`pypet.pypetconstants.DELETE` ('DELETE') Removes an item from disk. Empty group nodes, results and non-explored parameters can be removed. :param stuff_to_store: The item to be removed. :param delete_only: Potential list of parts of a leaf node that should be deleted. :param remove_from_item: If `delete_only` is used, whether deleted nodes should also be erased from the leaf nodes themseleves. :param recursive: If you want to delete a group node you can recursively delete all its children. * :const:`pypet.pypetconstants.GROUP` ('GROUP') :param stuff_to_store: The group to store :param store_data: How to store data :param recursive: To recursively load everything below. :param max_depth: Maximum depth in case of recursion. `None` for no limit. * :const:`pypet.pypetconstants.TREE` Stores a single node or a full subtree :param stuff_to_store: Node to store :param store_data: How to store data :param recursive: Whether to store recursively the whole sub-tree :param max_depth: Maximum depth in case of recursion. `None` for no limit. * :const:`pypet.pypetconstants.DELETE_LINK` Deletes a link from hard drive :param name: The full colon separated name of the link * :const:`pypet.pypetconstants.LIST` .. _store-lists: Stores several items at once :param stuff_to_store: Iterable whose items are to be stored. Iterable must contain tuples, for example `[(msg1,item1,arg1,kwargs1),(msg2,item2,arg2,kwargs2),...]` * :const:`pypet.pypetconstants.ACCESS_DATA` Requests and manipulates data within the storage. Storage must be open. :param stuff_to_store: A colon separated name to the data path :param item_name: The name of the data item to interact with :param request: A functional request in form of a string :param args: Positional arguments passed to the reques :param kwargs: Keyword arguments passed to the request * :const:`pypet.pypetconstants.OPEN_FILE` Opens the HDF5 file and keeps it open :param stuff_to_store: ``None`` * :const:`pypet.pypetconstants.CLOSE_FILE` Closes an HDF5 file that was kept open, must be open before. :param stuff_to_store: ``None`` * :const:`pypet.pypetconstants.FLUSH` Flushes an open file, must be open before. :param stuff_to_store: ``None`` :raises: NoSuchServiceError if message or data is not understood
pypet/storageservice.py
def store(self, msg, stuff_to_store, *args, **kwargs): """ Stores a particular item to disk. The storage service always accepts these parameters: :param trajectory_name: Name or current trajectory and name of top node in hdf5 file :param filename: Name of the hdf5 file :param file_title: If file needs to be created, assigns a title to the file. The following messages (first argument msg) are understood and the following arguments can be provided in combination with the message: * :const:`pypet.pypetconstants.PREPARE_MERGE` ('PREPARE_MERGE'): Called to prepare a trajectory for merging, see also 'MERGE' below. Will also be called if merging cannot happen within the same hdf5 file. Stores already enlarged parameters and updates meta information. :param stuff_to_store: Trajectory that is about to be extended by another one :param changed_parameters: List containing all parameters that were enlarged due to merging :param old_length: Old length of trajectory before merge * :const:`pypet.pypetconstants.MERGE` ('MERGE') Note that before merging within HDF5 file, the storage service will be called with msg='PREPARE_MERGE' before, see above. Raises a ValueError if the two trajectories are not stored within the very same hdf5 file. Then the current trajectory needs to perform the merge slowly item by item. Merges two trajectories, parameters are: :param stuff_to_store: The trajectory data is merged into :param other_trajectory_name: Name of the other trajectory :param rename_dict: Dictionary containing the old result and derived parameter names in the other trajectory and their new names in the current trajectory. :param move_nodes: Whether to move the nodes from the other to the current trajectory :param delete_trajectory: Whether to delete the other trajectory after merging. * :const:`pypet.pypetconstants.BACKUP` ('BACKUP') :param stuff_to_store: Trajectory to be backed up :param backup_filename: Name of file where to store the backup. If None the backup file will be in the same folder as your hdf5 file and named 'backup_XXXXX.hdf5' where 'XXXXX' is the name of your current trajectory. * :const:`pypet.pypetconstants.TRAJECTORY` ('TRAJECTORY') Stores the whole trajectory :param stuff_to_store: The trajectory to be stored :param only_init: If you just want to initialise the store. If yes, only meta information about the trajectory is stored and none of the nodes/leaves within the trajectory. :param store_data: How to store data, the following settings are understood: :const:`pypet.pypetconstants.STORE_NOTHING`: (0) Nothing is stored :const:`pypet.pypetconstants.STORE_DATA_SKIPPING`: (1) Data of not already stored nodes is stored :const:`pypet.pypetconstants.STORE_DATA`: (2) Data of all nodes is stored. However, existing data on disk is left untouched. :const:`pypet.pypetconstants.OVERWRITE_DATA`: (3) Data of all nodes is stored and data on disk is overwritten. May lead to fragmentation of the HDF5 file. The user is adviced to recompress the file manually later on. * :const:`pypet.pypetconstants.SINGLE_RUN` ('SINGLE_RUN') :param stuff_to_store: The trajectory :param store_data: How to store data see above :param store_final: If final meta info should be stored * :const:`pypet.pypetconstants.LEAF` Stores a parameter or result Note that everything that is supported by the storage service and that is stored to disk will be perfectly recovered. For instance, you store a tuple of numpy 32 bit integers, you will get a tuple of numpy 32 bit integers after loading independent of the platform! :param stuff_to_sore: Result or parameter to store In order to determine what to store, the function '_store' of the parameter or result is called. This function returns a dictionary with name keys and data to store as values. In order to determine how to store the data, the storage flags are considered, see below. The function '_store' has to return a dictionary containing values only from the following objects: * python natives (int, long, str, bool, float, complex), * numpy natives, arrays and matrices of type np.int8-64, np.uint8-64, np.float32-64, np.complex, np.str * python lists and tuples of the previous types (python natives + numpy natives and arrays) Lists and tuples are not allowed to be nested and must be homogeneous, i.e. only contain data of one particular type. Only integers, or only floats, etc. * python dictionaries of the previous types (not nested!), data can be heterogeneous, keys must be strings. For example, one key-value-pair of string and int and one key-value pair of string and float, and so on. * pandas DataFrames_ * :class:`~pypet.parameter.ObjectTable` .. _DataFrames: http://pandas.pydata.org/pandas-docs/dev/dsintro.html#dataframe The keys from the '_store' dictionaries determine how the data will be named in the hdf5 file. :param store_data: How to store the data, see above for a descitpion. :param store_flags: Flags describing how to store data. :const:`~pypet.HDF5StorageService.ARRAY` ('ARRAY') Store stuff as array :const:`~pypet.HDF5StorageService.CARRAY` ('CARRAY') Store stuff as carray :const:`~pypet.HDF5StorageService.TABLE` ('TABLE') Store stuff as pytable :const:`~pypet.HDF5StorageService.DICT` ('DICT') Store stuff as pytable but reconstructs it later as dictionary on loading :const:`~pypet.HDF%StorageService.FRAME` ('FRAME') Store stuff as pandas data frame Storage flags can also be provided by the parameters and results themselves if they implement a function '_store_flags' that returns a dictionary with the names of the data to store as keys and the flags as values. If no storage flags are provided, they are automatically inferred from the data. See :const:`pypet.HDF5StorageService.TYPE_FLAG_MAPPING` for the mapping from type to flag. :param overwrite: Can be used if parts of a leaf should be replaced. Either a list of HDF5 names or `True` if this should account for all. * :const:`pypet.pypetconstants.DELETE` ('DELETE') Removes an item from disk. Empty group nodes, results and non-explored parameters can be removed. :param stuff_to_store: The item to be removed. :param delete_only: Potential list of parts of a leaf node that should be deleted. :param remove_from_item: If `delete_only` is used, whether deleted nodes should also be erased from the leaf nodes themseleves. :param recursive: If you want to delete a group node you can recursively delete all its children. * :const:`pypet.pypetconstants.GROUP` ('GROUP') :param stuff_to_store: The group to store :param store_data: How to store data :param recursive: To recursively load everything below. :param max_depth: Maximum depth in case of recursion. `None` for no limit. * :const:`pypet.pypetconstants.TREE` Stores a single node or a full subtree :param stuff_to_store: Node to store :param store_data: How to store data :param recursive: Whether to store recursively the whole sub-tree :param max_depth: Maximum depth in case of recursion. `None` for no limit. * :const:`pypet.pypetconstants.DELETE_LINK` Deletes a link from hard drive :param name: The full colon separated name of the link * :const:`pypet.pypetconstants.LIST` .. _store-lists: Stores several items at once :param stuff_to_store: Iterable whose items are to be stored. Iterable must contain tuples, for example `[(msg1,item1,arg1,kwargs1),(msg2,item2,arg2,kwargs2),...]` * :const:`pypet.pypetconstants.ACCESS_DATA` Requests and manipulates data within the storage. Storage must be open. :param stuff_to_store: A colon separated name to the data path :param item_name: The name of the data item to interact with :param request: A functional request in form of a string :param args: Positional arguments passed to the reques :param kwargs: Keyword arguments passed to the request * :const:`pypet.pypetconstants.OPEN_FILE` Opens the HDF5 file and keeps it open :param stuff_to_store: ``None`` * :const:`pypet.pypetconstants.CLOSE_FILE` Closes an HDF5 file that was kept open, must be open before. :param stuff_to_store: ``None`` * :const:`pypet.pypetconstants.FLUSH` Flushes an open file, must be open before. :param stuff_to_store: ``None`` :raises: NoSuchServiceError if message or data is not understood """ opened = True try: opened = self._srvc_opening_routine('a', msg, kwargs) if msg == pypetconstants.MERGE: self._trj_merge_trajectories(*args, **kwargs) elif msg == pypetconstants.BACKUP: self._trj_backup_trajectory(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.PREPARE_MERGE: self._trj_prepare_merge(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.TRAJECTORY: self._trj_store_trajectory(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.SINGLE_RUN: self._srn_store_single_run(stuff_to_store, *args, **kwargs) elif msg in pypetconstants.LEAF: self._prm_store_parameter_or_result(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.DELETE: self._all_delete_parameter_or_result_or_group(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.GROUP: self._grp_store_group(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.TREE: self._tree_store_sub_branch(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.DELETE_LINK: self._lnk_delete_link(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.LIST: self._srvc_store_several_items(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.ACCESS_DATA: return self._hdf5_interact_with_data(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.OPEN_FILE: opened = False # Wee need to keep the file open to allow later interaction self._keep_open = True self._node_processing_timer.active = False # This might be open quite long # so we don't want to display horribly long opening times elif msg == pypetconstants.CLOSE_FILE: opened = True # Simply conduct the closing routine afterwards self._keep_open = False elif msg == pypetconstants.FLUSH: self._hdf5file.flush() else: raise pex.NoSuchServiceError('I do not know how to handle `%s`' % msg) except: self._logger.error('Failed storing `%s`' % str(stuff_to_store)) raise finally: self._srvc_closing_routine(opened)
def store(self, msg, stuff_to_store, *args, **kwargs): """ Stores a particular item to disk. The storage service always accepts these parameters: :param trajectory_name: Name or current trajectory and name of top node in hdf5 file :param filename: Name of the hdf5 file :param file_title: If file needs to be created, assigns a title to the file. The following messages (first argument msg) are understood and the following arguments can be provided in combination with the message: * :const:`pypet.pypetconstants.PREPARE_MERGE` ('PREPARE_MERGE'): Called to prepare a trajectory for merging, see also 'MERGE' below. Will also be called if merging cannot happen within the same hdf5 file. Stores already enlarged parameters and updates meta information. :param stuff_to_store: Trajectory that is about to be extended by another one :param changed_parameters: List containing all parameters that were enlarged due to merging :param old_length: Old length of trajectory before merge * :const:`pypet.pypetconstants.MERGE` ('MERGE') Note that before merging within HDF5 file, the storage service will be called with msg='PREPARE_MERGE' before, see above. Raises a ValueError if the two trajectories are not stored within the very same hdf5 file. Then the current trajectory needs to perform the merge slowly item by item. Merges two trajectories, parameters are: :param stuff_to_store: The trajectory data is merged into :param other_trajectory_name: Name of the other trajectory :param rename_dict: Dictionary containing the old result and derived parameter names in the other trajectory and their new names in the current trajectory. :param move_nodes: Whether to move the nodes from the other to the current trajectory :param delete_trajectory: Whether to delete the other trajectory after merging. * :const:`pypet.pypetconstants.BACKUP` ('BACKUP') :param stuff_to_store: Trajectory to be backed up :param backup_filename: Name of file where to store the backup. If None the backup file will be in the same folder as your hdf5 file and named 'backup_XXXXX.hdf5' where 'XXXXX' is the name of your current trajectory. * :const:`pypet.pypetconstants.TRAJECTORY` ('TRAJECTORY') Stores the whole trajectory :param stuff_to_store: The trajectory to be stored :param only_init: If you just want to initialise the store. If yes, only meta information about the trajectory is stored and none of the nodes/leaves within the trajectory. :param store_data: How to store data, the following settings are understood: :const:`pypet.pypetconstants.STORE_NOTHING`: (0) Nothing is stored :const:`pypet.pypetconstants.STORE_DATA_SKIPPING`: (1) Data of not already stored nodes is stored :const:`pypet.pypetconstants.STORE_DATA`: (2) Data of all nodes is stored. However, existing data on disk is left untouched. :const:`pypet.pypetconstants.OVERWRITE_DATA`: (3) Data of all nodes is stored and data on disk is overwritten. May lead to fragmentation of the HDF5 file. The user is adviced to recompress the file manually later on. * :const:`pypet.pypetconstants.SINGLE_RUN` ('SINGLE_RUN') :param stuff_to_store: The trajectory :param store_data: How to store data see above :param store_final: If final meta info should be stored * :const:`pypet.pypetconstants.LEAF` Stores a parameter or result Note that everything that is supported by the storage service and that is stored to disk will be perfectly recovered. For instance, you store a tuple of numpy 32 bit integers, you will get a tuple of numpy 32 bit integers after loading independent of the platform! :param stuff_to_sore: Result or parameter to store In order to determine what to store, the function '_store' of the parameter or result is called. This function returns a dictionary with name keys and data to store as values. In order to determine how to store the data, the storage flags are considered, see below. The function '_store' has to return a dictionary containing values only from the following objects: * python natives (int, long, str, bool, float, complex), * numpy natives, arrays and matrices of type np.int8-64, np.uint8-64, np.float32-64, np.complex, np.str * python lists and tuples of the previous types (python natives + numpy natives and arrays) Lists and tuples are not allowed to be nested and must be homogeneous, i.e. only contain data of one particular type. Only integers, or only floats, etc. * python dictionaries of the previous types (not nested!), data can be heterogeneous, keys must be strings. For example, one key-value-pair of string and int and one key-value pair of string and float, and so on. * pandas DataFrames_ * :class:`~pypet.parameter.ObjectTable` .. _DataFrames: http://pandas.pydata.org/pandas-docs/dev/dsintro.html#dataframe The keys from the '_store' dictionaries determine how the data will be named in the hdf5 file. :param store_data: How to store the data, see above for a descitpion. :param store_flags: Flags describing how to store data. :const:`~pypet.HDF5StorageService.ARRAY` ('ARRAY') Store stuff as array :const:`~pypet.HDF5StorageService.CARRAY` ('CARRAY') Store stuff as carray :const:`~pypet.HDF5StorageService.TABLE` ('TABLE') Store stuff as pytable :const:`~pypet.HDF5StorageService.DICT` ('DICT') Store stuff as pytable but reconstructs it later as dictionary on loading :const:`~pypet.HDF%StorageService.FRAME` ('FRAME') Store stuff as pandas data frame Storage flags can also be provided by the parameters and results themselves if they implement a function '_store_flags' that returns a dictionary with the names of the data to store as keys and the flags as values. If no storage flags are provided, they are automatically inferred from the data. See :const:`pypet.HDF5StorageService.TYPE_FLAG_MAPPING` for the mapping from type to flag. :param overwrite: Can be used if parts of a leaf should be replaced. Either a list of HDF5 names or `True` if this should account for all. * :const:`pypet.pypetconstants.DELETE` ('DELETE') Removes an item from disk. Empty group nodes, results and non-explored parameters can be removed. :param stuff_to_store: The item to be removed. :param delete_only: Potential list of parts of a leaf node that should be deleted. :param remove_from_item: If `delete_only` is used, whether deleted nodes should also be erased from the leaf nodes themseleves. :param recursive: If you want to delete a group node you can recursively delete all its children. * :const:`pypet.pypetconstants.GROUP` ('GROUP') :param stuff_to_store: The group to store :param store_data: How to store data :param recursive: To recursively load everything below. :param max_depth: Maximum depth in case of recursion. `None` for no limit. * :const:`pypet.pypetconstants.TREE` Stores a single node or a full subtree :param stuff_to_store: Node to store :param store_data: How to store data :param recursive: Whether to store recursively the whole sub-tree :param max_depth: Maximum depth in case of recursion. `None` for no limit. * :const:`pypet.pypetconstants.DELETE_LINK` Deletes a link from hard drive :param name: The full colon separated name of the link * :const:`pypet.pypetconstants.LIST` .. _store-lists: Stores several items at once :param stuff_to_store: Iterable whose items are to be stored. Iterable must contain tuples, for example `[(msg1,item1,arg1,kwargs1),(msg2,item2,arg2,kwargs2),...]` * :const:`pypet.pypetconstants.ACCESS_DATA` Requests and manipulates data within the storage. Storage must be open. :param stuff_to_store: A colon separated name to the data path :param item_name: The name of the data item to interact with :param request: A functional request in form of a string :param args: Positional arguments passed to the reques :param kwargs: Keyword arguments passed to the request * :const:`pypet.pypetconstants.OPEN_FILE` Opens the HDF5 file and keeps it open :param stuff_to_store: ``None`` * :const:`pypet.pypetconstants.CLOSE_FILE` Closes an HDF5 file that was kept open, must be open before. :param stuff_to_store: ``None`` * :const:`pypet.pypetconstants.FLUSH` Flushes an open file, must be open before. :param stuff_to_store: ``None`` :raises: NoSuchServiceError if message or data is not understood """ opened = True try: opened = self._srvc_opening_routine('a', msg, kwargs) if msg == pypetconstants.MERGE: self._trj_merge_trajectories(*args, **kwargs) elif msg == pypetconstants.BACKUP: self._trj_backup_trajectory(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.PREPARE_MERGE: self._trj_prepare_merge(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.TRAJECTORY: self._trj_store_trajectory(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.SINGLE_RUN: self._srn_store_single_run(stuff_to_store, *args, **kwargs) elif msg in pypetconstants.LEAF: self._prm_store_parameter_or_result(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.DELETE: self._all_delete_parameter_or_result_or_group(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.GROUP: self._grp_store_group(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.TREE: self._tree_store_sub_branch(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.DELETE_LINK: self._lnk_delete_link(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.LIST: self._srvc_store_several_items(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.ACCESS_DATA: return self._hdf5_interact_with_data(stuff_to_store, *args, **kwargs) elif msg == pypetconstants.OPEN_FILE: opened = False # Wee need to keep the file open to allow later interaction self._keep_open = True self._node_processing_timer.active = False # This might be open quite long # so we don't want to display horribly long opening times elif msg == pypetconstants.CLOSE_FILE: opened = True # Simply conduct the closing routine afterwards self._keep_open = False elif msg == pypetconstants.FLUSH: self._hdf5file.flush() else: raise pex.NoSuchServiceError('I do not know how to handle `%s`' % msg) except: self._logger.error('Failed storing `%s`' % str(stuff_to_store)) raise finally: self._srvc_closing_routine(opened)
[ "Stores", "a", "particular", "item", "to", "disk", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L965-L1337
[ "def", "store", "(", "self", ",", "msg", ",", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "opened", "=", "True", "try", ":", "opened", "=", "self", ".", "_srvc_opening_routine", "(", "'a'", ",", "msg", ",", "kwargs", ")", "if", "msg", "==", "pypetconstants", ".", "MERGE", ":", "self", ".", "_trj_merge_trajectories", "(", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "BACKUP", ":", "self", ".", "_trj_backup_trajectory", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "PREPARE_MERGE", ":", "self", ".", "_trj_prepare_merge", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "TRAJECTORY", ":", "self", ".", "_trj_store_trajectory", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "SINGLE_RUN", ":", "self", ".", "_srn_store_single_run", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "in", "pypetconstants", ".", "LEAF", ":", "self", ".", "_prm_store_parameter_or_result", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "DELETE", ":", "self", ".", "_all_delete_parameter_or_result_or_group", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "GROUP", ":", "self", ".", "_grp_store_group", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "TREE", ":", "self", ".", "_tree_store_sub_branch", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "DELETE_LINK", ":", "self", ".", "_lnk_delete_link", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "LIST", ":", "self", ".", "_srvc_store_several_items", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "ACCESS_DATA", ":", "return", "self", ".", "_hdf5_interact_with_data", "(", "stuff_to_store", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "msg", "==", "pypetconstants", ".", "OPEN_FILE", ":", "opened", "=", "False", "# Wee need to keep the file open to allow later interaction", "self", ".", "_keep_open", "=", "True", "self", ".", "_node_processing_timer", ".", "active", "=", "False", "# This might be open quite long", "# so we don't want to display horribly long opening times", "elif", "msg", "==", "pypetconstants", ".", "CLOSE_FILE", ":", "opened", "=", "True", "# Simply conduct the closing routine afterwards", "self", ".", "_keep_open", "=", "False", "elif", "msg", "==", "pypetconstants", ".", "FLUSH", ":", "self", ".", "_hdf5file", ".", "flush", "(", ")", "else", ":", "raise", "pex", ".", "NoSuchServiceError", "(", "'I do not know how to handle `%s`'", "%", "msg", ")", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed storing `%s`'", "%", "str", "(", "stuff_to_store", ")", ")", "raise", "finally", ":", "self", ".", "_srvc_closing_routine", "(", "opened", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srvc_load_several_items
Loads several items from an iterable Iterables are supposed to be of a format like `[(msg, item, args, kwarg),...]` If `args` and `kwargs` are not part of a tuple, they are taken from the current `args` and `kwargs` provided to this function.
pypet/storageservice.py
def _srvc_load_several_items(self, iterable, *args, **kwargs): """Loads several items from an iterable Iterables are supposed to be of a format like `[(msg, item, args, kwarg),...]` If `args` and `kwargs` are not part of a tuple, they are taken from the current `args` and `kwargs` provided to this function. """ for input_tuple in iterable: msg = input_tuple[0] item = input_tuple[1] if len(input_tuple) > 2: args = input_tuple[2] if len(input_tuple) > 3: kwargs = input_tuple[3] if len(input_tuple) > 4: raise RuntimeError('You shall not pass!') self.load(msg, item, *args, **kwargs)
def _srvc_load_several_items(self, iterable, *args, **kwargs): """Loads several items from an iterable Iterables are supposed to be of a format like `[(msg, item, args, kwarg),...]` If `args` and `kwargs` are not part of a tuple, they are taken from the current `args` and `kwargs` provided to this function. """ for input_tuple in iterable: msg = input_tuple[0] item = input_tuple[1] if len(input_tuple) > 2: args = input_tuple[2] if len(input_tuple) > 3: kwargs = input_tuple[3] if len(input_tuple) > 4: raise RuntimeError('You shall not pass!') self.load(msg, item, *args, **kwargs)
[ "Loads", "several", "items", "from", "an", "iterable" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1339-L1357
[ "def", "_srvc_load_several_items", "(", "self", ",", "iterable", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "for", "input_tuple", "in", "iterable", ":", "msg", "=", "input_tuple", "[", "0", "]", "item", "=", "input_tuple", "[", "1", "]", "if", "len", "(", "input_tuple", ")", ">", "2", ":", "args", "=", "input_tuple", "[", "2", "]", "if", "len", "(", "input_tuple", ")", ">", "3", ":", "kwargs", "=", "input_tuple", "[", "3", "]", "if", "len", "(", "input_tuple", ")", ">", "4", ":", "raise", "RuntimeError", "(", "'You shall not pass!'", ")", "self", ".", "load", "(", "msg", ",", "item", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srvc_check_hdf_properties
Reads out the properties for storing new data into the hdf5file :param traj: The trajectory
pypet/storageservice.py
def _srvc_check_hdf_properties(self, traj): """Reads out the properties for storing new data into the hdf5file :param traj: The trajectory """ for attr_name in HDF5StorageService.ATTR_LIST: try: config = traj.f_get('config.hdf5.' + attr_name).f_get() setattr(self, attr_name, config) except AttributeError: self._logger.debug('Could not find `%s` in traj config, ' 'using (default) value `%s`.' % (attr_name, str(getattr(self, attr_name)))) for attr_name, table_name in HDF5StorageService.NAME_TABLE_MAPPING.items(): try: if table_name in ('parameters', 'config'): table_name += '_overview' config = traj.f_get('config.hdf5.overview.' + table_name).f_get() setattr(self, attr_name, config) except AttributeError: self._logger.debug('Could not find `%s` in traj config, ' 'using (default) value `%s`.' % (table_name, str(getattr(self, attr_name)))) for attr_name, name in HDF5StorageService.PR_ATTR_NAME_MAPPING.items(): try: config = traj.f_get('config.hdf5.' + name).f_get() setattr(self, attr_name, config) except AttributeError: self._logger.debug('Could not find `%s` in traj config, ' 'using (default) value `%s`.' % (name, str(getattr(self, attr_name)))) if ((not self._overview_results_summary or not self._overview_derived_parameters_summary) and self._purge_duplicate_comments): raise RuntimeError('You chose to purge duplicate comments but disabled a summary ' 'table. You can only use the purging if you enable ' 'the summary tables.') self._filters = None
def _srvc_check_hdf_properties(self, traj): """Reads out the properties for storing new data into the hdf5file :param traj: The trajectory """ for attr_name in HDF5StorageService.ATTR_LIST: try: config = traj.f_get('config.hdf5.' + attr_name).f_get() setattr(self, attr_name, config) except AttributeError: self._logger.debug('Could not find `%s` in traj config, ' 'using (default) value `%s`.' % (attr_name, str(getattr(self, attr_name)))) for attr_name, table_name in HDF5StorageService.NAME_TABLE_MAPPING.items(): try: if table_name in ('parameters', 'config'): table_name += '_overview' config = traj.f_get('config.hdf5.overview.' + table_name).f_get() setattr(self, attr_name, config) except AttributeError: self._logger.debug('Could not find `%s` in traj config, ' 'using (default) value `%s`.' % (table_name, str(getattr(self, attr_name)))) for attr_name, name in HDF5StorageService.PR_ATTR_NAME_MAPPING.items(): try: config = traj.f_get('config.hdf5.' + name).f_get() setattr(self, attr_name, config) except AttributeError: self._logger.debug('Could not find `%s` in traj config, ' 'using (default) value `%s`.' % (name, str(getattr(self, attr_name)))) if ((not self._overview_results_summary or not self._overview_derived_parameters_summary) and self._purge_duplicate_comments): raise RuntimeError('You chose to purge duplicate comments but disabled a summary ' 'table. You can only use the purging if you enable ' 'the summary tables.') self._filters = None
[ "Reads", "out", "the", "properties", "for", "storing", "new", "data", "into", "the", "hdf5file" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1359-L1404
[ "def", "_srvc_check_hdf_properties", "(", "self", ",", "traj", ")", ":", "for", "attr_name", "in", "HDF5StorageService", ".", "ATTR_LIST", ":", "try", ":", "config", "=", "traj", ".", "f_get", "(", "'config.hdf5.'", "+", "attr_name", ")", ".", "f_get", "(", ")", "setattr", "(", "self", ",", "attr_name", ",", "config", ")", "except", "AttributeError", ":", "self", ".", "_logger", ".", "debug", "(", "'Could not find `%s` in traj config, '", "'using (default) value `%s`.'", "%", "(", "attr_name", ",", "str", "(", "getattr", "(", "self", ",", "attr_name", ")", ")", ")", ")", "for", "attr_name", ",", "table_name", "in", "HDF5StorageService", ".", "NAME_TABLE_MAPPING", ".", "items", "(", ")", ":", "try", ":", "if", "table_name", "in", "(", "'parameters'", ",", "'config'", ")", ":", "table_name", "+=", "'_overview'", "config", "=", "traj", ".", "f_get", "(", "'config.hdf5.overview.'", "+", "table_name", ")", ".", "f_get", "(", ")", "setattr", "(", "self", ",", "attr_name", ",", "config", ")", "except", "AttributeError", ":", "self", ".", "_logger", ".", "debug", "(", "'Could not find `%s` in traj config, '", "'using (default) value `%s`.'", "%", "(", "table_name", ",", "str", "(", "getattr", "(", "self", ",", "attr_name", ")", ")", ")", ")", "for", "attr_name", ",", "name", "in", "HDF5StorageService", ".", "PR_ATTR_NAME_MAPPING", ".", "items", "(", ")", ":", "try", ":", "config", "=", "traj", ".", "f_get", "(", "'config.hdf5.'", "+", "name", ")", ".", "f_get", "(", ")", "setattr", "(", "self", ",", "attr_name", ",", "config", ")", "except", "AttributeError", ":", "self", ".", "_logger", ".", "debug", "(", "'Could not find `%s` in traj config, '", "'using (default) value `%s`.'", "%", "(", "name", ",", "str", "(", "getattr", "(", "self", ",", "attr_name", ")", ")", ")", ")", "if", "(", "(", "not", "self", ".", "_overview_results_summary", "or", "not", "self", ".", "_overview_derived_parameters_summary", ")", "and", "self", ".", "_purge_duplicate_comments", ")", ":", "raise", "RuntimeError", "(", "'You chose to purge duplicate comments but disabled a summary '", "'table. You can only use the purging if you enable '", "'the summary tables.'", ")", "self", ".", "_filters", "=", "None" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srvc_store_several_items
Stores several items from an iterable Iterables are supposed to be of a format like `[(msg, item, args, kwarg),...]` If `args` and `kwargs` are not part of a tuple, they are taken from the current `args` and `kwargs` provided to this function.
pypet/storageservice.py
def _srvc_store_several_items(self, iterable, *args, **kwargs): """Stores several items from an iterable Iterables are supposed to be of a format like `[(msg, item, args, kwarg),...]` If `args` and `kwargs` are not part of a tuple, they are taken from the current `args` and `kwargs` provided to this function. """ for input_tuple in iterable: msg = input_tuple[0] item = input_tuple[1] if len(input_tuple) > 2: args = input_tuple[2] if len(input_tuple) > 3: kwargs = input_tuple[3] if len(input_tuple) > 4: raise RuntimeError('You shall not pass!') self.store(msg, item, *args, **kwargs)
def _srvc_store_several_items(self, iterable, *args, **kwargs): """Stores several items from an iterable Iterables are supposed to be of a format like `[(msg, item, args, kwarg),...]` If `args` and `kwargs` are not part of a tuple, they are taken from the current `args` and `kwargs` provided to this function. """ for input_tuple in iterable: msg = input_tuple[0] item = input_tuple[1] if len(input_tuple) > 2: args = input_tuple[2] if len(input_tuple) > 3: kwargs = input_tuple[3] if len(input_tuple) > 4: raise RuntimeError('You shall not pass!') self.store(msg, item, *args, **kwargs)
[ "Stores", "several", "items", "from", "an", "iterable" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1406-L1424
[ "def", "_srvc_store_several_items", "(", "self", ",", "iterable", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "for", "input_tuple", "in", "iterable", ":", "msg", "=", "input_tuple", "[", "0", "]", "item", "=", "input_tuple", "[", "1", "]", "if", "len", "(", "input_tuple", ")", ">", "2", ":", "args", "=", "input_tuple", "[", "2", "]", "if", "len", "(", "input_tuple", ")", ">", "3", ":", "kwargs", "=", "input_tuple", "[", "3", "]", "if", "len", "(", "input_tuple", ")", ">", "4", ":", "raise", "RuntimeError", "(", "'You shall not pass!'", ")", "self", ".", "store", "(", "msg", ",", "item", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srvc_opening_routine
Opens an hdf5 file for reading or writing The file is only opened if it has not been opened before (i.e. `self._hdf5file is None`). :param mode: 'a' for appending 'r' for reading Unfortunately, pandas currently does not work with read-only mode. Thus, if mode is chosen to be 'r', the file will still be opened in append mode. :param msg: Message provided to `load` or `store`. Only considered to check if a trajectory was stored before. :param kwargs: Arguments to extract file information from :return: `True` if file is opened `False` if the file was already open before calling this function
pypet/storageservice.py
def _srvc_opening_routine(self, mode, msg=None, kwargs=()): """Opens an hdf5 file for reading or writing The file is only opened if it has not been opened before (i.e. `self._hdf5file is None`). :param mode: 'a' for appending 'r' for reading Unfortunately, pandas currently does not work with read-only mode. Thus, if mode is chosen to be 'r', the file will still be opened in append mode. :param msg: Message provided to `load` or `store`. Only considered to check if a trajectory was stored before. :param kwargs: Arguments to extract file information from :return: `True` if file is opened `False` if the file was already open before calling this function """ self._mode = mode self._srvc_extract_file_information(kwargs) if not self.is_open: if 'a' in mode: (path, filename) = os.path.split(self._filename) racedirs(os.path.abspath(path)) self._hdf5store = HDFStore(self._filename, mode=self._mode, complib=self._complib, complevel=self._complevel, fletcher32=self._fletcher32) self._hdf5file = self._hdf5store._handle self._hdf5file.title = self._file_title if self._trajectory_name is not None: if not '/' + self._trajectory_name in self._hdf5file: # If we want to store individual items we we have to check if the # trajectory has been stored before if not msg == pypetconstants.TRAJECTORY: raise ValueError('Your trajectory cannot be found in the hdf5file, ' 'please use >>traj.f_store()<< ' 'before storing anything else.') else: # Keep a reference to the top trajectory node self._trajectory_group = self._hdf5file.get_node('/' + self._trajectory_name) else: raise ValueError('I don`t know which trajectory to load') self._logger.debug('Opening HDF5 file `%s` in mode `a` with trajectory `%s`' % (self._filename, self._trajectory_name)) elif mode == 'r': if self._trajectory_name is not None and self._trajectory_index is not None: raise ValueError('Please specify either a name of a trajectory or an index, ' 'but not both at the same time.') if not os.path.isfile(self._filename): raise ValueError('File `' + self._filename + '` does not exist.') self._hdf5store = HDFStore(self._filename, mode=self._mode, complib=self._complib, complevel=self._complevel, fletcher32=self._fletcher32) self._hdf5file = self._hdf5store._handle if self._trajectory_index is not None: # If an index is provided pick the trajectory at the corresponding # position in the trajectory node list nodelist = self._hdf5file.list_nodes(where='/') if (self._trajectory_index >= len(nodelist) or self._trajectory_index < -len(nodelist)): raise ValueError('Trajectory No. %d does not exists, there are only ' '%d trajectories in %s.' % (self._trajectory_index, len(nodelist), self._filename)) self._trajectory_group = nodelist[self._trajectory_index] self._trajectory_name = self._trajectory_group._v_name elif self._trajectory_name is not None: # Otherwise pick the trajectory group by name if not '/' + self._trajectory_name in self._hdf5file: raise ValueError('File %s does not contain trajectory %s.' % (self._filename, self._trajectory_name)) self._trajectory_group = self._hdf5file.get_node('/' + self._trajectory_name) else: raise ValueError('Please specify a name of a trajectory to load or its ' 'index, otherwise I cannot open one.') self._logger.debug('Opening HDF5 file `%s` in mode `r` with trajectory `%s`' % (self._filename, self._trajectory_name)) else: raise RuntimeError('You shall not pass!') self._node_processing_timer = NodeProcessingTimer(display_time=self._display_time, logger_name=self._logger.name) self._overview_group_ = None return True else: return False
def _srvc_opening_routine(self, mode, msg=None, kwargs=()): """Opens an hdf5 file for reading or writing The file is only opened if it has not been opened before (i.e. `self._hdf5file is None`). :param mode: 'a' for appending 'r' for reading Unfortunately, pandas currently does not work with read-only mode. Thus, if mode is chosen to be 'r', the file will still be opened in append mode. :param msg: Message provided to `load` or `store`. Only considered to check if a trajectory was stored before. :param kwargs: Arguments to extract file information from :return: `True` if file is opened `False` if the file was already open before calling this function """ self._mode = mode self._srvc_extract_file_information(kwargs) if not self.is_open: if 'a' in mode: (path, filename) = os.path.split(self._filename) racedirs(os.path.abspath(path)) self._hdf5store = HDFStore(self._filename, mode=self._mode, complib=self._complib, complevel=self._complevel, fletcher32=self._fletcher32) self._hdf5file = self._hdf5store._handle self._hdf5file.title = self._file_title if self._trajectory_name is not None: if not '/' + self._trajectory_name in self._hdf5file: # If we want to store individual items we we have to check if the # trajectory has been stored before if not msg == pypetconstants.TRAJECTORY: raise ValueError('Your trajectory cannot be found in the hdf5file, ' 'please use >>traj.f_store()<< ' 'before storing anything else.') else: # Keep a reference to the top trajectory node self._trajectory_group = self._hdf5file.get_node('/' + self._trajectory_name) else: raise ValueError('I don`t know which trajectory to load') self._logger.debug('Opening HDF5 file `%s` in mode `a` with trajectory `%s`' % (self._filename, self._trajectory_name)) elif mode == 'r': if self._trajectory_name is not None and self._trajectory_index is not None: raise ValueError('Please specify either a name of a trajectory or an index, ' 'but not both at the same time.') if not os.path.isfile(self._filename): raise ValueError('File `' + self._filename + '` does not exist.') self._hdf5store = HDFStore(self._filename, mode=self._mode, complib=self._complib, complevel=self._complevel, fletcher32=self._fletcher32) self._hdf5file = self._hdf5store._handle if self._trajectory_index is not None: # If an index is provided pick the trajectory at the corresponding # position in the trajectory node list nodelist = self._hdf5file.list_nodes(where='/') if (self._trajectory_index >= len(nodelist) or self._trajectory_index < -len(nodelist)): raise ValueError('Trajectory No. %d does not exists, there are only ' '%d trajectories in %s.' % (self._trajectory_index, len(nodelist), self._filename)) self._trajectory_group = nodelist[self._trajectory_index] self._trajectory_name = self._trajectory_group._v_name elif self._trajectory_name is not None: # Otherwise pick the trajectory group by name if not '/' + self._trajectory_name in self._hdf5file: raise ValueError('File %s does not contain trajectory %s.' % (self._filename, self._trajectory_name)) self._trajectory_group = self._hdf5file.get_node('/' + self._trajectory_name) else: raise ValueError('Please specify a name of a trajectory to load or its ' 'index, otherwise I cannot open one.') self._logger.debug('Opening HDF5 file `%s` in mode `r` with trajectory `%s`' % (self._filename, self._trajectory_name)) else: raise RuntimeError('You shall not pass!') self._node_processing_timer = NodeProcessingTimer(display_time=self._display_time, logger_name=self._logger.name) self._overview_group_ = None return True else: return False
[ "Opens", "an", "hdf5", "file", "for", "reading", "or", "writing" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1426-L1539
[ "def", "_srvc_opening_routine", "(", "self", ",", "mode", ",", "msg", "=", "None", ",", "kwargs", "=", "(", ")", ")", ":", "self", ".", "_mode", "=", "mode", "self", ".", "_srvc_extract_file_information", "(", "kwargs", ")", "if", "not", "self", ".", "is_open", ":", "if", "'a'", "in", "mode", ":", "(", "path", ",", "filename", ")", "=", "os", ".", "path", ".", "split", "(", "self", ".", "_filename", ")", "racedirs", "(", "os", ".", "path", ".", "abspath", "(", "path", ")", ")", "self", ".", "_hdf5store", "=", "HDFStore", "(", "self", ".", "_filename", ",", "mode", "=", "self", ".", "_mode", ",", "complib", "=", "self", ".", "_complib", ",", "complevel", "=", "self", ".", "_complevel", ",", "fletcher32", "=", "self", ".", "_fletcher32", ")", "self", ".", "_hdf5file", "=", "self", ".", "_hdf5store", ".", "_handle", "self", ".", "_hdf5file", ".", "title", "=", "self", ".", "_file_title", "if", "self", ".", "_trajectory_name", "is", "not", "None", ":", "if", "not", "'/'", "+", "self", ".", "_trajectory_name", "in", "self", ".", "_hdf5file", ":", "# If we want to store individual items we we have to check if the", "# trajectory has been stored before", "if", "not", "msg", "==", "pypetconstants", ".", "TRAJECTORY", ":", "raise", "ValueError", "(", "'Your trajectory cannot be found in the hdf5file, '", "'please use >>traj.f_store()<< '", "'before storing anything else.'", ")", "else", ":", "# Keep a reference to the top trajectory node", "self", ".", "_trajectory_group", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "'/'", "+", "self", ".", "_trajectory_name", ")", "else", ":", "raise", "ValueError", "(", "'I don`t know which trajectory to load'", ")", "self", ".", "_logger", ".", "debug", "(", "'Opening HDF5 file `%s` in mode `a` with trajectory `%s`'", "%", "(", "self", ".", "_filename", ",", "self", ".", "_trajectory_name", ")", ")", "elif", "mode", "==", "'r'", ":", "if", "self", ".", "_trajectory_name", "is", "not", "None", "and", "self", ".", "_trajectory_index", "is", "not", "None", ":", "raise", "ValueError", "(", "'Please specify either a name of a trajectory or an index, '", "'but not both at the same time.'", ")", "if", "not", "os", ".", "path", ".", "isfile", "(", "self", ".", "_filename", ")", ":", "raise", "ValueError", "(", "'File `'", "+", "self", ".", "_filename", "+", "'` does not exist.'", ")", "self", ".", "_hdf5store", "=", "HDFStore", "(", "self", ".", "_filename", ",", "mode", "=", "self", ".", "_mode", ",", "complib", "=", "self", ".", "_complib", ",", "complevel", "=", "self", ".", "_complevel", ",", "fletcher32", "=", "self", ".", "_fletcher32", ")", "self", ".", "_hdf5file", "=", "self", ".", "_hdf5store", ".", "_handle", "if", "self", ".", "_trajectory_index", "is", "not", "None", ":", "# If an index is provided pick the trajectory at the corresponding", "# position in the trajectory node list", "nodelist", "=", "self", ".", "_hdf5file", ".", "list_nodes", "(", "where", "=", "'/'", ")", "if", "(", "self", ".", "_trajectory_index", ">=", "len", "(", "nodelist", ")", "or", "self", ".", "_trajectory_index", "<", "-", "len", "(", "nodelist", ")", ")", ":", "raise", "ValueError", "(", "'Trajectory No. %d does not exists, there are only '", "'%d trajectories in %s.'", "%", "(", "self", ".", "_trajectory_index", ",", "len", "(", "nodelist", ")", ",", "self", ".", "_filename", ")", ")", "self", ".", "_trajectory_group", "=", "nodelist", "[", "self", ".", "_trajectory_index", "]", "self", ".", "_trajectory_name", "=", "self", ".", "_trajectory_group", ".", "_v_name", "elif", "self", ".", "_trajectory_name", "is", "not", "None", ":", "# Otherwise pick the trajectory group by name", "if", "not", "'/'", "+", "self", ".", "_trajectory_name", "in", "self", ".", "_hdf5file", ":", "raise", "ValueError", "(", "'File %s does not contain trajectory %s.'", "%", "(", "self", ".", "_filename", ",", "self", ".", "_trajectory_name", ")", ")", "self", ".", "_trajectory_group", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "'/'", "+", "self", ".", "_trajectory_name", ")", "else", ":", "raise", "ValueError", "(", "'Please specify a name of a trajectory to load or its '", "'index, otherwise I cannot open one.'", ")", "self", ".", "_logger", ".", "debug", "(", "'Opening HDF5 file `%s` in mode `r` with trajectory `%s`'", "%", "(", "self", ".", "_filename", ",", "self", ".", "_trajectory_name", ")", ")", "else", ":", "raise", "RuntimeError", "(", "'You shall not pass!'", ")", "self", ".", "_node_processing_timer", "=", "NodeProcessingTimer", "(", "display_time", "=", "self", ".", "_display_time", ",", "logger_name", "=", "self", ".", "_logger", ".", "name", ")", "self", ".", "_overview_group_", "=", "None", "return", "True", "else", ":", "return", "False" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srvc_closing_routine
Routine to close an hdf5 file The file is closed only when `closing=True`. `closing=True` means that the file was opened in the current highest recursion level. This prevents re-opening and closing of the file if `store` or `load` are called recursively.
pypet/storageservice.py
def _srvc_closing_routine(self, closing): """Routine to close an hdf5 file The file is closed only when `closing=True`. `closing=True` means that the file was opened in the current highest recursion level. This prevents re-opening and closing of the file if `store` or `load` are called recursively. """ if (not self._keep_open and closing and self.is_open): f_fd = self._hdf5file.fileno() self._hdf5file.flush() try: os.fsync(f_fd) try: self._hdf5store.flush(fsync=True) except TypeError: f_fd = self._hdf5store._handle.fileno() self._hdf5store.flush() os.fsync(f_fd) except OSError as exc: # This seems to be the only way to avoid an OSError under Windows errmsg = ('Encountered OSError while flushing file.' 'If you are using Windows, don`t worry! ' 'I will ignore the error and try to close the file. ' 'Original error: %s' % repr(exc)) self._logger.debug(errmsg) self._hdf5store.close() if self._hdf5file.isopen: self._logger.error('Could not close HDF5 file!') self._hdf5file = None self._hdf5store = None self._trajectory_group = None self._trajectory_name = None self._trajectory_index = None self._overview_group_ = None self._logger.debug('Closing HDF5 file') return True else: return False
def _srvc_closing_routine(self, closing): """Routine to close an hdf5 file The file is closed only when `closing=True`. `closing=True` means that the file was opened in the current highest recursion level. This prevents re-opening and closing of the file if `store` or `load` are called recursively. """ if (not self._keep_open and closing and self.is_open): f_fd = self._hdf5file.fileno() self._hdf5file.flush() try: os.fsync(f_fd) try: self._hdf5store.flush(fsync=True) except TypeError: f_fd = self._hdf5store._handle.fileno() self._hdf5store.flush() os.fsync(f_fd) except OSError as exc: # This seems to be the only way to avoid an OSError under Windows errmsg = ('Encountered OSError while flushing file.' 'If you are using Windows, don`t worry! ' 'I will ignore the error and try to close the file. ' 'Original error: %s' % repr(exc)) self._logger.debug(errmsg) self._hdf5store.close() if self._hdf5file.isopen: self._logger.error('Could not close HDF5 file!') self._hdf5file = None self._hdf5store = None self._trajectory_group = None self._trajectory_name = None self._trajectory_index = None self._overview_group_ = None self._logger.debug('Closing HDF5 file') return True else: return False
[ "Routine", "to", "close", "an", "hdf5", "file" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1541-L1583
[ "def", "_srvc_closing_routine", "(", "self", ",", "closing", ")", ":", "if", "(", "not", "self", ".", "_keep_open", "and", "closing", "and", "self", ".", "is_open", ")", ":", "f_fd", "=", "self", ".", "_hdf5file", ".", "fileno", "(", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")", "try", ":", "os", ".", "fsync", "(", "f_fd", ")", "try", ":", "self", ".", "_hdf5store", ".", "flush", "(", "fsync", "=", "True", ")", "except", "TypeError", ":", "f_fd", "=", "self", ".", "_hdf5store", ".", "_handle", ".", "fileno", "(", ")", "self", ".", "_hdf5store", ".", "flush", "(", ")", "os", ".", "fsync", "(", "f_fd", ")", "except", "OSError", "as", "exc", ":", "# This seems to be the only way to avoid an OSError under Windows", "errmsg", "=", "(", "'Encountered OSError while flushing file.'", "'If you are using Windows, don`t worry! '", "'I will ignore the error and try to close the file. '", "'Original error: %s'", "%", "repr", "(", "exc", ")", ")", "self", ".", "_logger", ".", "debug", "(", "errmsg", ")", "self", ".", "_hdf5store", ".", "close", "(", ")", "if", "self", ".", "_hdf5file", ".", "isopen", ":", "self", ".", "_logger", ".", "error", "(", "'Could not close HDF5 file!'", ")", "self", ".", "_hdf5file", "=", "None", "self", ".", "_hdf5store", "=", "None", "self", ".", "_trajectory_group", "=", "None", "self", ".", "_trajectory_name", "=", "None", "self", ".", "_trajectory_index", "=", "None", "self", ".", "_overview_group_", "=", "None", "self", ".", "_logger", ".", "debug", "(", "'Closing HDF5 file'", ")", "return", "True", "else", ":", "return", "False" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srvc_extract_file_information
Extracts file information from kwargs. Note that `kwargs` is not passed as `**kwargs` in order to also `pop` the elements on the level of the function calling `_srvc_extract_file_information`.
pypet/storageservice.py
def _srvc_extract_file_information(self, kwargs): """Extracts file information from kwargs. Note that `kwargs` is not passed as `**kwargs` in order to also `pop` the elements on the level of the function calling `_srvc_extract_file_information`. """ if 'filename' in kwargs: self._filename = kwargs.pop('filename') if 'file_title' in kwargs: self._file_title = kwargs.pop('file_title') if 'trajectory_name' in kwargs: self._trajectory_name = kwargs.pop('trajectory_name') if 'trajectory_index' in kwargs: self._trajectory_index = kwargs.pop('trajectory_index')
def _srvc_extract_file_information(self, kwargs): """Extracts file information from kwargs. Note that `kwargs` is not passed as `**kwargs` in order to also `pop` the elements on the level of the function calling `_srvc_extract_file_information`. """ if 'filename' in kwargs: self._filename = kwargs.pop('filename') if 'file_title' in kwargs: self._file_title = kwargs.pop('file_title') if 'trajectory_name' in kwargs: self._trajectory_name = kwargs.pop('trajectory_name') if 'trajectory_index' in kwargs: self._trajectory_index = kwargs.pop('trajectory_index')
[ "Extracts", "file", "information", "from", "kwargs", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1585-L1602
[ "def", "_srvc_extract_file_information", "(", "self", ",", "kwargs", ")", ":", "if", "'filename'", "in", "kwargs", ":", "self", ".", "_filename", "=", "kwargs", ".", "pop", "(", "'filename'", ")", "if", "'file_title'", "in", "kwargs", ":", "self", ".", "_file_title", "=", "kwargs", ".", "pop", "(", "'file_title'", ")", "if", "'trajectory_name'", "in", "kwargs", ":", "self", ".", "_trajectory_name", "=", "kwargs", ".", "pop", "(", "'trajectory_name'", ")", "if", "'trajectory_index'", "in", "kwargs", ":", "self", ".", "_trajectory_index", "=", "kwargs", ".", "pop", "(", "'trajectory_index'", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_backup_trajectory
Backs up a trajectory. :param traj: Trajectory that should be backed up :param backup_filename: Path and filename of backup file. If None is specified the storage service defaults to `path_to_trajectory_hdf5_file/backup_trajectory_name.hdf`.
pypet/storageservice.py
def _trj_backup_trajectory(self, traj, backup_filename=None): """Backs up a trajectory. :param traj: Trajectory that should be backed up :param backup_filename: Path and filename of backup file. If None is specified the storage service defaults to `path_to_trajectory_hdf5_file/backup_trajectory_name.hdf`. """ self._logger.info('Storing backup of %s.' % traj.v_name) mypath, _ = os.path.split(self._filename) if backup_filename is None: backup_filename = os.path.join('%s' % mypath, 'backup_%s.hdf5' % traj.v_name) backup_hdf5file = pt.open_file(filename=backup_filename, mode='a', title=backup_filename) if '/' + self._trajectory_name in backup_hdf5file: raise ValueError('I cannot backup `%s` into file `%s`, there is already a ' 'trajectory with that name.' % (traj.v_name, backup_filename)) backup_root = backup_hdf5file.root self._trajectory_group._f_copy(newparent=backup_root, recursive=True) backup_hdf5file.flush() backup_hdf5file.close() self._logger.info('Finished backup of %s.' % traj.v_name)
def _trj_backup_trajectory(self, traj, backup_filename=None): """Backs up a trajectory. :param traj: Trajectory that should be backed up :param backup_filename: Path and filename of backup file. If None is specified the storage service defaults to `path_to_trajectory_hdf5_file/backup_trajectory_name.hdf`. """ self._logger.info('Storing backup of %s.' % traj.v_name) mypath, _ = os.path.split(self._filename) if backup_filename is None: backup_filename = os.path.join('%s' % mypath, 'backup_%s.hdf5' % traj.v_name) backup_hdf5file = pt.open_file(filename=backup_filename, mode='a', title=backup_filename) if '/' + self._trajectory_name in backup_hdf5file: raise ValueError('I cannot backup `%s` into file `%s`, there is already a ' 'trajectory with that name.' % (traj.v_name, backup_filename)) backup_root = backup_hdf5file.root self._trajectory_group._f_copy(newparent=backup_root, recursive=True) backup_hdf5file.flush() backup_hdf5file.close() self._logger.info('Finished backup of %s.' % traj.v_name)
[ "Backs", "up", "a", "trajectory", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1607-L1639
[ "def", "_trj_backup_trajectory", "(", "self", ",", "traj", ",", "backup_filename", "=", "None", ")", ":", "self", ".", "_logger", ".", "info", "(", "'Storing backup of %s.'", "%", "traj", ".", "v_name", ")", "mypath", ",", "_", "=", "os", ".", "path", ".", "split", "(", "self", ".", "_filename", ")", "if", "backup_filename", "is", "None", ":", "backup_filename", "=", "os", ".", "path", ".", "join", "(", "'%s'", "%", "mypath", ",", "'backup_%s.hdf5'", "%", "traj", ".", "v_name", ")", "backup_hdf5file", "=", "pt", ".", "open_file", "(", "filename", "=", "backup_filename", ",", "mode", "=", "'a'", ",", "title", "=", "backup_filename", ")", "if", "'/'", "+", "self", ".", "_trajectory_name", "in", "backup_hdf5file", ":", "raise", "ValueError", "(", "'I cannot backup `%s` into file `%s`, there is already a '", "'trajectory with that name.'", "%", "(", "traj", ".", "v_name", ",", "backup_filename", ")", ")", "backup_root", "=", "backup_hdf5file", ".", "root", "self", ".", "_trajectory_group", ".", "_f_copy", "(", "newparent", "=", "backup_root", ",", "recursive", "=", "True", ")", "backup_hdf5file", ".", "flush", "(", ")", "backup_hdf5file", ".", "close", "(", ")", "self", ".", "_logger", ".", "info", "(", "'Finished backup of %s.'", "%", "traj", ".", "v_name", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_read_out_row
Reads out a row and returns a dictionary containing the row content. :param colnames: List of column names :param row: A pytables table row :return: A dictionary with colnames as keys and content as values
pypet/storageservice.py
def _trj_read_out_row(colnames, row): """Reads out a row and returns a dictionary containing the row content. :param colnames: List of column names :param row: A pytables table row :return: A dictionary with colnames as keys and content as values """ result_dict = {} for colname in colnames: result_dict[colname] = row[colname] return result_dict
def _trj_read_out_row(colnames, row): """Reads out a row and returns a dictionary containing the row content. :param colnames: List of column names :param row: A pytables table row :return: A dictionary with colnames as keys and content as values """ result_dict = {} for colname in colnames: result_dict[colname] = row[colname] return result_dict
[ "Reads", "out", "a", "row", "and", "returns", "a", "dictionary", "containing", "the", "row", "content", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1642-L1654
[ "def", "_trj_read_out_row", "(", "colnames", ",", "row", ")", ":", "result_dict", "=", "{", "}", "for", "colname", "in", "colnames", ":", "result_dict", "[", "colname", "]", "=", "row", "[", "colname", "]", "return", "result_dict" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_merge_trajectories
Merges another trajectory into the current trajectory (as in self._trajectory_name). :param other_trajectory_name: Name of other trajectory :param rename_dict: Dictionary with old names (keys) and new names (values). :param move_nodes: Whether to move hdf5 nodes or copy them :param delete_trajectory: Whether to delete the other trajectory
pypet/storageservice.py
def _trj_merge_trajectories(self, other_trajectory_name, rename_dict, move_nodes=False, delete_trajectory=False, other_filename=None): """Merges another trajectory into the current trajectory (as in self._trajectory_name). :param other_trajectory_name: Name of other trajectory :param rename_dict: Dictionary with old names (keys) and new names (values). :param move_nodes: Whether to move hdf5 nodes or copy them :param delete_trajectory: Whether to delete the other trajectory """ if other_filename is None or other_filename == self.filename: other_filename = self.filename other_file = self._hdf5file other_is_different = False else: other_file = pt.open_file(filename=other_filename, mode='r+') other_is_different = True try: if not '/' + other_trajectory_name in other_file: raise ValueError('Cannot merge `%s` and `%s`, because the second trajectory cannot ' 'be found in file: %s.' % (self._trajectory_name, other_trajectory_name, other_filename)) for old_name in rename_dict: new_name = rename_dict[old_name] # Iterate over all items that need to be merged split_name = old_name.split('.') old_location = '/' + other_trajectory_name + '/' + '/'.join(split_name) split_name = new_name.split('.') new_parent_location = '/' + self._trajectory_name + '/' + '/'.join(split_name[:-1]) new_short_name = split_name[-1] # Get the data from the other trajectory old_node = other_file.get_node(old_location) # Now move or copy the data if move_nodes: self._hdf5file.move_node( where=old_node, newparent=new_parent_location, newname=new_short_name, createparents=True) else: if other_is_different: new_parent_dot_location = '.'.join(split_name[:-1]) new_parent_or_loc, _ = self._all_create_or_get_groups( new_parent_dot_location) create_parents = False else: new_parent_or_loc = new_parent_location create_parents = True self._hdf5file.copy_node(where=old_node, newparent=new_parent_or_loc, newname=new_short_name, createparents=create_parents, recursive=True) if delete_trajectory: other_file.remove_node(where='/', name=other_trajectory_name, recursive=True) finally: if other_is_different: other_file.flush() other_file.close()
def _trj_merge_trajectories(self, other_trajectory_name, rename_dict, move_nodes=False, delete_trajectory=False, other_filename=None): """Merges another trajectory into the current trajectory (as in self._trajectory_name). :param other_trajectory_name: Name of other trajectory :param rename_dict: Dictionary with old names (keys) and new names (values). :param move_nodes: Whether to move hdf5 nodes or copy them :param delete_trajectory: Whether to delete the other trajectory """ if other_filename is None or other_filename == self.filename: other_filename = self.filename other_file = self._hdf5file other_is_different = False else: other_file = pt.open_file(filename=other_filename, mode='r+') other_is_different = True try: if not '/' + other_trajectory_name in other_file: raise ValueError('Cannot merge `%s` and `%s`, because the second trajectory cannot ' 'be found in file: %s.' % (self._trajectory_name, other_trajectory_name, other_filename)) for old_name in rename_dict: new_name = rename_dict[old_name] # Iterate over all items that need to be merged split_name = old_name.split('.') old_location = '/' + other_trajectory_name + '/' + '/'.join(split_name) split_name = new_name.split('.') new_parent_location = '/' + self._trajectory_name + '/' + '/'.join(split_name[:-1]) new_short_name = split_name[-1] # Get the data from the other trajectory old_node = other_file.get_node(old_location) # Now move or copy the data if move_nodes: self._hdf5file.move_node( where=old_node, newparent=new_parent_location, newname=new_short_name, createparents=True) else: if other_is_different: new_parent_dot_location = '.'.join(split_name[:-1]) new_parent_or_loc, _ = self._all_create_or_get_groups( new_parent_dot_location) create_parents = False else: new_parent_or_loc = new_parent_location create_parents = True self._hdf5file.copy_node(where=old_node, newparent=new_parent_or_loc, newname=new_short_name, createparents=create_parents, recursive=True) if delete_trajectory: other_file.remove_node(where='/', name=other_trajectory_name, recursive=True) finally: if other_is_different: other_file.flush() other_file.close()
[ "Merges", "another", "trajectory", "into", "the", "current", "trajectory", "(", "as", "in", "self", ".", "_trajectory_name", ")", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1657-L1719
[ "def", "_trj_merge_trajectories", "(", "self", ",", "other_trajectory_name", ",", "rename_dict", ",", "move_nodes", "=", "False", ",", "delete_trajectory", "=", "False", ",", "other_filename", "=", "None", ")", ":", "if", "other_filename", "is", "None", "or", "other_filename", "==", "self", ".", "filename", ":", "other_filename", "=", "self", ".", "filename", "other_file", "=", "self", ".", "_hdf5file", "other_is_different", "=", "False", "else", ":", "other_file", "=", "pt", ".", "open_file", "(", "filename", "=", "other_filename", ",", "mode", "=", "'r+'", ")", "other_is_different", "=", "True", "try", ":", "if", "not", "'/'", "+", "other_trajectory_name", "in", "other_file", ":", "raise", "ValueError", "(", "'Cannot merge `%s` and `%s`, because the second trajectory cannot '", "'be found in file: %s.'", "%", "(", "self", ".", "_trajectory_name", ",", "other_trajectory_name", ",", "other_filename", ")", ")", "for", "old_name", "in", "rename_dict", ":", "new_name", "=", "rename_dict", "[", "old_name", "]", "# Iterate over all items that need to be merged", "split_name", "=", "old_name", ".", "split", "(", "'.'", ")", "old_location", "=", "'/'", "+", "other_trajectory_name", "+", "'/'", "+", "'/'", ".", "join", "(", "split_name", ")", "split_name", "=", "new_name", ".", "split", "(", "'.'", ")", "new_parent_location", "=", "'/'", "+", "self", ".", "_trajectory_name", "+", "'/'", "+", "'/'", ".", "join", "(", "split_name", "[", ":", "-", "1", "]", ")", "new_short_name", "=", "split_name", "[", "-", "1", "]", "# Get the data from the other trajectory", "old_node", "=", "other_file", ".", "get_node", "(", "old_location", ")", "# Now move or copy the data", "if", "move_nodes", ":", "self", ".", "_hdf5file", ".", "move_node", "(", "where", "=", "old_node", ",", "newparent", "=", "new_parent_location", ",", "newname", "=", "new_short_name", ",", "createparents", "=", "True", ")", "else", ":", "if", "other_is_different", ":", "new_parent_dot_location", "=", "'.'", ".", "join", "(", "split_name", "[", ":", "-", "1", "]", ")", "new_parent_or_loc", ",", "_", "=", "self", ".", "_all_create_or_get_groups", "(", "new_parent_dot_location", ")", "create_parents", "=", "False", "else", ":", "new_parent_or_loc", "=", "new_parent_location", "create_parents", "=", "True", "self", ".", "_hdf5file", ".", "copy_node", "(", "where", "=", "old_node", ",", "newparent", "=", "new_parent_or_loc", ",", "newname", "=", "new_short_name", ",", "createparents", "=", "create_parents", ",", "recursive", "=", "True", ")", "if", "delete_trajectory", ":", "other_file", ".", "remove_node", "(", "where", "=", "'/'", ",", "name", "=", "other_trajectory_name", ",", "recursive", "=", "True", ")", "finally", ":", "if", "other_is_different", ":", "other_file", ".", "flush", "(", ")", "other_file", ".", "close", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_prepare_merge
Prepares a trajectory for merging. This function will already store extended parameters. :param traj: Target of merge :param changed_parameters: List of extended parameters (i.e. their names).
pypet/storageservice.py
def _trj_prepare_merge(self, traj, changed_parameters, old_length): """Prepares a trajectory for merging. This function will already store extended parameters. :param traj: Target of merge :param changed_parameters: List of extended parameters (i.e. their names). """ if not traj._stored: traj.f_store() # Update meta information infotable = getattr(self._overview_group, 'info') insert_dict = self._all_extract_insert_dict(traj, infotable.colnames) self._all_add_or_modify_row(traj.v_name, insert_dict, infotable, index=0, flags=(HDF5StorageService.MODIFY_ROW,)) # Store extended parameters for param_name in changed_parameters: param = traj.f_get(param_name) try: self._all_delete_parameter_or_result_or_group(param) except pt.NoSuchNodeError: pass # We are fine and the node did not exist in the first place # Increase the run table by the number of new runs run_table = getattr(self._overview_group, 'runs') actual_rows = run_table.nrows self._trj_fill_run_table(traj, actual_rows, len(traj)) # Extract parameter summary and if necessary create new explored parameter tables # in the result groups for idx in range(old_length, len(traj)): run_name = traj.f_idx_to_run(idx) run_info = traj.f_get_run_information(run_name) run_info['name'] = run_name traj._set_explored_parameters_to_idx(idx) run_summary = self._srn_summarize_explored_parameters(list( traj._explored_parameters.values())) run_info['parameter_summary'] = run_summary self._all_add_or_modify_row(run_name, run_info, run_table, index=idx, flags=(HDF5StorageService.MODIFY_ROW,)) traj.f_restore_default()
def _trj_prepare_merge(self, traj, changed_parameters, old_length): """Prepares a trajectory for merging. This function will already store extended parameters. :param traj: Target of merge :param changed_parameters: List of extended parameters (i.e. their names). """ if not traj._stored: traj.f_store() # Update meta information infotable = getattr(self._overview_group, 'info') insert_dict = self._all_extract_insert_dict(traj, infotable.colnames) self._all_add_or_modify_row(traj.v_name, insert_dict, infotable, index=0, flags=(HDF5StorageService.MODIFY_ROW,)) # Store extended parameters for param_name in changed_parameters: param = traj.f_get(param_name) try: self._all_delete_parameter_or_result_or_group(param) except pt.NoSuchNodeError: pass # We are fine and the node did not exist in the first place # Increase the run table by the number of new runs run_table = getattr(self._overview_group, 'runs') actual_rows = run_table.nrows self._trj_fill_run_table(traj, actual_rows, len(traj)) # Extract parameter summary and if necessary create new explored parameter tables # in the result groups for idx in range(old_length, len(traj)): run_name = traj.f_idx_to_run(idx) run_info = traj.f_get_run_information(run_name) run_info['name'] = run_name traj._set_explored_parameters_to_idx(idx) run_summary = self._srn_summarize_explored_parameters(list( traj._explored_parameters.values())) run_info['parameter_summary'] = run_summary self._all_add_or_modify_row(run_name, run_info, run_table, index=idx, flags=(HDF5StorageService.MODIFY_ROW,)) traj.f_restore_default()
[ "Prepares", "a", "trajectory", "for", "merging", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1721-L1771
[ "def", "_trj_prepare_merge", "(", "self", ",", "traj", ",", "changed_parameters", ",", "old_length", ")", ":", "if", "not", "traj", ".", "_stored", ":", "traj", ".", "f_store", "(", ")", "# Update meta information", "infotable", "=", "getattr", "(", "self", ".", "_overview_group", ",", "'info'", ")", "insert_dict", "=", "self", ".", "_all_extract_insert_dict", "(", "traj", ",", "infotable", ".", "colnames", ")", "self", ".", "_all_add_or_modify_row", "(", "traj", ".", "v_name", ",", "insert_dict", ",", "infotable", ",", "index", "=", "0", ",", "flags", "=", "(", "HDF5StorageService", ".", "MODIFY_ROW", ",", ")", ")", "# Store extended parameters", "for", "param_name", "in", "changed_parameters", ":", "param", "=", "traj", ".", "f_get", "(", "param_name", ")", "try", ":", "self", ".", "_all_delete_parameter_or_result_or_group", "(", "param", ")", "except", "pt", ".", "NoSuchNodeError", ":", "pass", "# We are fine and the node did not exist in the first place", "# Increase the run table by the number of new runs", "run_table", "=", "getattr", "(", "self", ".", "_overview_group", ",", "'runs'", ")", "actual_rows", "=", "run_table", ".", "nrows", "self", ".", "_trj_fill_run_table", "(", "traj", ",", "actual_rows", ",", "len", "(", "traj", ")", ")", "# Extract parameter summary and if necessary create new explored parameter tables", "# in the result groups", "for", "idx", "in", "range", "(", "old_length", ",", "len", "(", "traj", ")", ")", ":", "run_name", "=", "traj", ".", "f_idx_to_run", "(", "idx", ")", "run_info", "=", "traj", ".", "f_get_run_information", "(", "run_name", ")", "run_info", "[", "'name'", "]", "=", "run_name", "traj", ".", "_set_explored_parameters_to_idx", "(", "idx", ")", "run_summary", "=", "self", ".", "_srn_summarize_explored_parameters", "(", "list", "(", "traj", ".", "_explored_parameters", ".", "values", "(", ")", ")", ")", "run_info", "[", "'parameter_summary'", "]", "=", "run_summary", "self", ".", "_all_add_or_modify_row", "(", "run_name", ",", "run_info", ",", "run_table", ",", "index", "=", "idx", ",", "flags", "=", "(", "HDF5StorageService", ".", "MODIFY_ROW", ",", ")", ")", "traj", ".", "f_restore_default", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_load_trajectory
Loads a single trajectory from a given file. :param traj: The trajectory :param as_new: Whether to load trajectory as new :param load_parameters: How to load parameters and config :param load_derived_parameters: How to load derived parameters :param load_results: How to load results :param load_other_data: How to load anything not within the four subbranches :param recursive: If data should be loaded recursively :param max_depth: Maximum depth of loading :param with_run_information: If run information should be loaded :param with_meta_data: If meta data infor should be loaded :param force: Force load in case there is a pypet version mismatch You can specify how to load the parameters, derived parameters and results as follows: :const:`pypet.pypetconstants.LOAD_NOTHING`: (0) Nothing is loaded :const:`pypet.pypetconstants.LOAD_SKELETON`: (1) The skeleton including annotations are loaded, i.e. the items are empty. Non-empty items in RAM are left untouched. :const:`pypet.pypetconstants.LOAD_DATA`: (2) The whole data is loaded. Only empty or in RAM non-existing instance are filled with the data found on disk. :const:`pypet.pypetconstants.OVERWRITE_DATA`: (3) The whole data is loaded. If items that are to be loaded are already in RAM and not empty, they are emptied and new data is loaded from disk. If `as_new=True` the old trajectory is loaded into the new one, only parameters can be loaded. If `as_new=False` the current trajectory is completely replaced by the one on disk, i.e. the name from disk, the timestamp, etc. are assigned to `traj`.
pypet/storageservice.py
def _trj_load_trajectory(self, traj, as_new, load_parameters, load_derived_parameters, load_results, load_other_data, recursive, max_depth, with_run_information, with_meta_data, force): """Loads a single trajectory from a given file. :param traj: The trajectory :param as_new: Whether to load trajectory as new :param load_parameters: How to load parameters and config :param load_derived_parameters: How to load derived parameters :param load_results: How to load results :param load_other_data: How to load anything not within the four subbranches :param recursive: If data should be loaded recursively :param max_depth: Maximum depth of loading :param with_run_information: If run information should be loaded :param with_meta_data: If meta data infor should be loaded :param force: Force load in case there is a pypet version mismatch You can specify how to load the parameters, derived parameters and results as follows: :const:`pypet.pypetconstants.LOAD_NOTHING`: (0) Nothing is loaded :const:`pypet.pypetconstants.LOAD_SKELETON`: (1) The skeleton including annotations are loaded, i.e. the items are empty. Non-empty items in RAM are left untouched. :const:`pypet.pypetconstants.LOAD_DATA`: (2) The whole data is loaded. Only empty or in RAM non-existing instance are filled with the data found on disk. :const:`pypet.pypetconstants.OVERWRITE_DATA`: (3) The whole data is loaded. If items that are to be loaded are already in RAM and not empty, they are emptied and new data is loaded from disk. If `as_new=True` the old trajectory is loaded into the new one, only parameters can be loaded. If `as_new=False` the current trajectory is completely replaced by the one on disk, i.e. the name from disk, the timestamp, etc. are assigned to `traj`. """ # Some validity checks, if `as_new` is used correctly if (as_new and (load_derived_parameters != pypetconstants.LOAD_NOTHING or load_results != pypetconstants.LOAD_NOTHING or load_other_data != pypetconstants.LOAD_NOTHING)): raise ValueError('You cannot load a trajectory as new and load the derived ' 'parameters and results. Only parameters are allowed.') if as_new and load_parameters != pypetconstants.LOAD_DATA: raise ValueError('You cannot load the trajectory as new and not load the data of ' 'the parameters.') loadconstants = (pypetconstants.LOAD_NOTHING, pypetconstants.LOAD_SKELETON, pypetconstants.LOAD_DATA, pypetconstants.OVERWRITE_DATA) if not (load_parameters in loadconstants and load_derived_parameters in loadconstants and load_results in loadconstants and load_other_data in loadconstants): raise ValueError('Please give a valid option on how to load data. Options for ' '`load_parameter`, `load_derived_parameters`, `load_results`, ' 'and `load_other_data` are %s. See function documentation for ' 'the semantics of the values.' % str(loadconstants)) traj._stored = not as_new # Loads meta data like the name, timestamps etc. # load_data is only used here to determine how to load the annotations load_data = max(load_parameters, load_derived_parameters, load_results, load_other_data) if with_meta_data: self._trj_load_meta_data(traj, load_data, as_new, with_run_information, force) if (load_parameters != pypetconstants.LOAD_NOTHING or load_derived_parameters != pypetconstants.LOAD_NOTHING or load_results != pypetconstants.LOAD_NOTHING or load_other_data != pypetconstants.LOAD_NOTHING): self._logger.info('Loading trajectory `%s`.' % traj.v_name) else: self._logger.info('Checked meta data of trajectory `%s`.' % traj.v_name) return maximum_display_other = 10 counter = 0 for children in [self._trajectory_group._v_groups, self._trajectory_group._v_links]: for hdf5_group_name in children: hdf5_group = children[hdf5_group_name] child_name = hdf5_group._v_name load_subbranch = True if child_name == 'config': if as_new: loading = pypetconstants.LOAD_NOTHING else: # If the trajectory is loaded as new, we don't care about old config stuff # and only load the parameters loading = load_parameters elif child_name == 'parameters': loading = load_parameters elif child_name == 'results': loading = load_results elif child_name == 'derived_parameters': loading = load_derived_parameters elif child_name == 'overview': continue else: loading = load_other_data load_subbranch = False if loading == pypetconstants.LOAD_NOTHING: continue if load_subbranch: # Load the subbranches recursively self._logger.info('Loading branch `%s` in mode `%s`.' % (child_name, str(loading))) else: if counter < maximum_display_other: self._logger.info( 'Loading branch/node `%s` in mode `%s`.' % (child_name, str(loading))) elif counter == maximum_display_other: self._logger.info('To many branchs or nodes at root for display. ' 'I will not inform you about loading anymore. ' 'Branches are loaded silently ' 'in the background. Do not worry, ' 'I will not freeze! Pinky promise!!!') counter += 1 self._tree_load_sub_branch(traj, child_name, load_data=loading, with_links=True, recursive=recursive, max_depth=max_depth, _trajectory=traj, _as_new=as_new, _hdf5_group=self._trajectory_group)
def _trj_load_trajectory(self, traj, as_new, load_parameters, load_derived_parameters, load_results, load_other_data, recursive, max_depth, with_run_information, with_meta_data, force): """Loads a single trajectory from a given file. :param traj: The trajectory :param as_new: Whether to load trajectory as new :param load_parameters: How to load parameters and config :param load_derived_parameters: How to load derived parameters :param load_results: How to load results :param load_other_data: How to load anything not within the four subbranches :param recursive: If data should be loaded recursively :param max_depth: Maximum depth of loading :param with_run_information: If run information should be loaded :param with_meta_data: If meta data infor should be loaded :param force: Force load in case there is a pypet version mismatch You can specify how to load the parameters, derived parameters and results as follows: :const:`pypet.pypetconstants.LOAD_NOTHING`: (0) Nothing is loaded :const:`pypet.pypetconstants.LOAD_SKELETON`: (1) The skeleton including annotations are loaded, i.e. the items are empty. Non-empty items in RAM are left untouched. :const:`pypet.pypetconstants.LOAD_DATA`: (2) The whole data is loaded. Only empty or in RAM non-existing instance are filled with the data found on disk. :const:`pypet.pypetconstants.OVERWRITE_DATA`: (3) The whole data is loaded. If items that are to be loaded are already in RAM and not empty, they are emptied and new data is loaded from disk. If `as_new=True` the old trajectory is loaded into the new one, only parameters can be loaded. If `as_new=False` the current trajectory is completely replaced by the one on disk, i.e. the name from disk, the timestamp, etc. are assigned to `traj`. """ # Some validity checks, if `as_new` is used correctly if (as_new and (load_derived_parameters != pypetconstants.LOAD_NOTHING or load_results != pypetconstants.LOAD_NOTHING or load_other_data != pypetconstants.LOAD_NOTHING)): raise ValueError('You cannot load a trajectory as new and load the derived ' 'parameters and results. Only parameters are allowed.') if as_new and load_parameters != pypetconstants.LOAD_DATA: raise ValueError('You cannot load the trajectory as new and not load the data of ' 'the parameters.') loadconstants = (pypetconstants.LOAD_NOTHING, pypetconstants.LOAD_SKELETON, pypetconstants.LOAD_DATA, pypetconstants.OVERWRITE_DATA) if not (load_parameters in loadconstants and load_derived_parameters in loadconstants and load_results in loadconstants and load_other_data in loadconstants): raise ValueError('Please give a valid option on how to load data. Options for ' '`load_parameter`, `load_derived_parameters`, `load_results`, ' 'and `load_other_data` are %s. See function documentation for ' 'the semantics of the values.' % str(loadconstants)) traj._stored = not as_new # Loads meta data like the name, timestamps etc. # load_data is only used here to determine how to load the annotations load_data = max(load_parameters, load_derived_parameters, load_results, load_other_data) if with_meta_data: self._trj_load_meta_data(traj, load_data, as_new, with_run_information, force) if (load_parameters != pypetconstants.LOAD_NOTHING or load_derived_parameters != pypetconstants.LOAD_NOTHING or load_results != pypetconstants.LOAD_NOTHING or load_other_data != pypetconstants.LOAD_NOTHING): self._logger.info('Loading trajectory `%s`.' % traj.v_name) else: self._logger.info('Checked meta data of trajectory `%s`.' % traj.v_name) return maximum_display_other = 10 counter = 0 for children in [self._trajectory_group._v_groups, self._trajectory_group._v_links]: for hdf5_group_name in children: hdf5_group = children[hdf5_group_name] child_name = hdf5_group._v_name load_subbranch = True if child_name == 'config': if as_new: loading = pypetconstants.LOAD_NOTHING else: # If the trajectory is loaded as new, we don't care about old config stuff # and only load the parameters loading = load_parameters elif child_name == 'parameters': loading = load_parameters elif child_name == 'results': loading = load_results elif child_name == 'derived_parameters': loading = load_derived_parameters elif child_name == 'overview': continue else: loading = load_other_data load_subbranch = False if loading == pypetconstants.LOAD_NOTHING: continue if load_subbranch: # Load the subbranches recursively self._logger.info('Loading branch `%s` in mode `%s`.' % (child_name, str(loading))) else: if counter < maximum_display_other: self._logger.info( 'Loading branch/node `%s` in mode `%s`.' % (child_name, str(loading))) elif counter == maximum_display_other: self._logger.info('To many branchs or nodes at root for display. ' 'I will not inform you about loading anymore. ' 'Branches are loaded silently ' 'in the background. Do not worry, ' 'I will not freeze! Pinky promise!!!') counter += 1 self._tree_load_sub_branch(traj, child_name, load_data=loading, with_links=True, recursive=recursive, max_depth=max_depth, _trajectory=traj, _as_new=as_new, _hdf5_group=self._trajectory_group)
[ "Loads", "a", "single", "trajectory", "from", "a", "given", "file", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1776-L1927
[ "def", "_trj_load_trajectory", "(", "self", ",", "traj", ",", "as_new", ",", "load_parameters", ",", "load_derived_parameters", ",", "load_results", ",", "load_other_data", ",", "recursive", ",", "max_depth", ",", "with_run_information", ",", "with_meta_data", ",", "force", ")", ":", "# Some validity checks, if `as_new` is used correctly", "if", "(", "as_new", "and", "(", "load_derived_parameters", "!=", "pypetconstants", ".", "LOAD_NOTHING", "or", "load_results", "!=", "pypetconstants", ".", "LOAD_NOTHING", "or", "load_other_data", "!=", "pypetconstants", ".", "LOAD_NOTHING", ")", ")", ":", "raise", "ValueError", "(", "'You cannot load a trajectory as new and load the derived '", "'parameters and results. Only parameters are allowed.'", ")", "if", "as_new", "and", "load_parameters", "!=", "pypetconstants", ".", "LOAD_DATA", ":", "raise", "ValueError", "(", "'You cannot load the trajectory as new and not load the data of '", "'the parameters.'", ")", "loadconstants", "=", "(", "pypetconstants", ".", "LOAD_NOTHING", ",", "pypetconstants", ".", "LOAD_SKELETON", ",", "pypetconstants", ".", "LOAD_DATA", ",", "pypetconstants", ".", "OVERWRITE_DATA", ")", "if", "not", "(", "load_parameters", "in", "loadconstants", "and", "load_derived_parameters", "in", "loadconstants", "and", "load_results", "in", "loadconstants", "and", "load_other_data", "in", "loadconstants", ")", ":", "raise", "ValueError", "(", "'Please give a valid option on how to load data. Options for '", "'`load_parameter`, `load_derived_parameters`, `load_results`, '", "'and `load_other_data` are %s. See function documentation for '", "'the semantics of the values.'", "%", "str", "(", "loadconstants", ")", ")", "traj", ".", "_stored", "=", "not", "as_new", "# Loads meta data like the name, timestamps etc.", "# load_data is only used here to determine how to load the annotations", "load_data", "=", "max", "(", "load_parameters", ",", "load_derived_parameters", ",", "load_results", ",", "load_other_data", ")", "if", "with_meta_data", ":", "self", ".", "_trj_load_meta_data", "(", "traj", ",", "load_data", ",", "as_new", ",", "with_run_information", ",", "force", ")", "if", "(", "load_parameters", "!=", "pypetconstants", ".", "LOAD_NOTHING", "or", "load_derived_parameters", "!=", "pypetconstants", ".", "LOAD_NOTHING", "or", "load_results", "!=", "pypetconstants", ".", "LOAD_NOTHING", "or", "load_other_data", "!=", "pypetconstants", ".", "LOAD_NOTHING", ")", ":", "self", ".", "_logger", ".", "info", "(", "'Loading trajectory `%s`.'", "%", "traj", ".", "v_name", ")", "else", ":", "self", ".", "_logger", ".", "info", "(", "'Checked meta data of trajectory `%s`.'", "%", "traj", ".", "v_name", ")", "return", "maximum_display_other", "=", "10", "counter", "=", "0", "for", "children", "in", "[", "self", ".", "_trajectory_group", ".", "_v_groups", ",", "self", ".", "_trajectory_group", ".", "_v_links", "]", ":", "for", "hdf5_group_name", "in", "children", ":", "hdf5_group", "=", "children", "[", "hdf5_group_name", "]", "child_name", "=", "hdf5_group", ".", "_v_name", "load_subbranch", "=", "True", "if", "child_name", "==", "'config'", ":", "if", "as_new", ":", "loading", "=", "pypetconstants", ".", "LOAD_NOTHING", "else", ":", "# If the trajectory is loaded as new, we don't care about old config stuff", "# and only load the parameters", "loading", "=", "load_parameters", "elif", "child_name", "==", "'parameters'", ":", "loading", "=", "load_parameters", "elif", "child_name", "==", "'results'", ":", "loading", "=", "load_results", "elif", "child_name", "==", "'derived_parameters'", ":", "loading", "=", "load_derived_parameters", "elif", "child_name", "==", "'overview'", ":", "continue", "else", ":", "loading", "=", "load_other_data", "load_subbranch", "=", "False", "if", "loading", "==", "pypetconstants", ".", "LOAD_NOTHING", ":", "continue", "if", "load_subbranch", ":", "# Load the subbranches recursively", "self", ".", "_logger", ".", "info", "(", "'Loading branch `%s` in mode `%s`.'", "%", "(", "child_name", ",", "str", "(", "loading", ")", ")", ")", "else", ":", "if", "counter", "<", "maximum_display_other", ":", "self", ".", "_logger", ".", "info", "(", "'Loading branch/node `%s` in mode `%s`.'", "%", "(", "child_name", ",", "str", "(", "loading", ")", ")", ")", "elif", "counter", "==", "maximum_display_other", ":", "self", ".", "_logger", ".", "info", "(", "'To many branchs or nodes at root for display. '", "'I will not inform you about loading anymore. '", "'Branches are loaded silently '", "'in the background. Do not worry, '", "'I will not freeze! Pinky promise!!!'", ")", "counter", "+=", "1", "self", ".", "_tree_load_sub_branch", "(", "traj", ",", "child_name", ",", "load_data", "=", "loading", ",", "with_links", "=", "True", ",", "recursive", "=", "recursive", ",", "max_depth", "=", "max_depth", ",", "_trajectory", "=", "traj", ",", "_as_new", "=", "as_new", ",", "_hdf5_group", "=", "self", ".", "_trajectory_group", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_load_meta_data
Loads meta information about the trajectory Checks if the version number does not differ from current pypet version Loads, comment, timestamp, name, version from disk in case trajectory is not loaded as new. Updates the run information as well.
pypet/storageservice.py
def _trj_load_meta_data(self, traj, load_data, as_new, with_run_information, force): """Loads meta information about the trajectory Checks if the version number does not differ from current pypet version Loads, comment, timestamp, name, version from disk in case trajectory is not loaded as new. Updates the run information as well. """ metatable = self._overview_group.info metarow = metatable[0] try: version = metarow['version'].decode('utf-8') except (IndexError, ValueError) as ke: self._logger.error('Could not check version due to: %s' % str(ke)) version = '`COULD NOT BE LOADED`' try: python = metarow['python'].decode('utf-8') except (IndexError, ValueError) as ke: self._logger.error('Could not check version due to: %s' % str(ke)) python = '`COULD NOT BE LOADED`' self._trj_check_version(version, python, force) # Load the skeleton information self._grp_load_group(traj, load_data=load_data, with_links=False, recursive=False, _traj=traj, _as_new=as_new, _hdf5_group=self._trajectory_group) if as_new: length = int(metarow['length']) for irun in range(length): traj._add_run_info(irun) else: traj._comment = metarow['comment'].decode('utf-8') traj._timestamp = float(metarow['timestamp']) traj._trajectory_timestamp = traj._timestamp traj._time = metarow['time'].decode('utf-8') traj._trajectory_time = traj._time traj._name = metarow['name'].decode('utf-8') traj._trajectory_name = traj._name traj._version = version traj._python = python single_run_table = self._overview_group.runs if with_run_information: for row in single_run_table.iterrows(): name = row['name'].decode('utf-8') idx = int(row['idx']) timestamp = float(row['timestamp']) time_ = row['time'].decode('utf-8') completed = int(row['completed']) summary = row['parameter_summary'].decode('utf-8') hexsha = row['short_environment_hexsha'].decode('utf-8') # To allow backwards compatibility we need this try catch block try: runtime = row['runtime'].decode('utf-8') finish_timestamp = float(row['finish_timestamp']) except (IndexError, ValueError) as ke: runtime = '' finish_timestamp = 0.0 self._logger.debug('Could not load runtime, ' + repr(ke)) info_dict = {'idx': idx, 'timestamp': timestamp, 'finish_timestamp': finish_timestamp, 'runtime': runtime, 'time': time_, 'completed': completed, 'name': name, 'parameter_summary': summary, 'short_environment_hexsha': hexsha} traj._add_run_info(**info_dict) else: traj._length = single_run_table.nrows # Load explorations self._trj_load_exploration(traj) # Load the hdf5 config data: self._srvc_load_hdf5_settings()
def _trj_load_meta_data(self, traj, load_data, as_new, with_run_information, force): """Loads meta information about the trajectory Checks if the version number does not differ from current pypet version Loads, comment, timestamp, name, version from disk in case trajectory is not loaded as new. Updates the run information as well. """ metatable = self._overview_group.info metarow = metatable[0] try: version = metarow['version'].decode('utf-8') except (IndexError, ValueError) as ke: self._logger.error('Could not check version due to: %s' % str(ke)) version = '`COULD NOT BE LOADED`' try: python = metarow['python'].decode('utf-8') except (IndexError, ValueError) as ke: self._logger.error('Could not check version due to: %s' % str(ke)) python = '`COULD NOT BE LOADED`' self._trj_check_version(version, python, force) # Load the skeleton information self._grp_load_group(traj, load_data=load_data, with_links=False, recursive=False, _traj=traj, _as_new=as_new, _hdf5_group=self._trajectory_group) if as_new: length = int(metarow['length']) for irun in range(length): traj._add_run_info(irun) else: traj._comment = metarow['comment'].decode('utf-8') traj._timestamp = float(metarow['timestamp']) traj._trajectory_timestamp = traj._timestamp traj._time = metarow['time'].decode('utf-8') traj._trajectory_time = traj._time traj._name = metarow['name'].decode('utf-8') traj._trajectory_name = traj._name traj._version = version traj._python = python single_run_table = self._overview_group.runs if with_run_information: for row in single_run_table.iterrows(): name = row['name'].decode('utf-8') idx = int(row['idx']) timestamp = float(row['timestamp']) time_ = row['time'].decode('utf-8') completed = int(row['completed']) summary = row['parameter_summary'].decode('utf-8') hexsha = row['short_environment_hexsha'].decode('utf-8') # To allow backwards compatibility we need this try catch block try: runtime = row['runtime'].decode('utf-8') finish_timestamp = float(row['finish_timestamp']) except (IndexError, ValueError) as ke: runtime = '' finish_timestamp = 0.0 self._logger.debug('Could not load runtime, ' + repr(ke)) info_dict = {'idx': idx, 'timestamp': timestamp, 'finish_timestamp': finish_timestamp, 'runtime': runtime, 'time': time_, 'completed': completed, 'name': name, 'parameter_summary': summary, 'short_environment_hexsha': hexsha} traj._add_run_info(**info_dict) else: traj._length = single_run_table.nrows # Load explorations self._trj_load_exploration(traj) # Load the hdf5 config data: self._srvc_load_hdf5_settings()
[ "Loads", "meta", "information", "about", "the", "trajectory" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L1929-L2014
[ "def", "_trj_load_meta_data", "(", "self", ",", "traj", ",", "load_data", ",", "as_new", ",", "with_run_information", ",", "force", ")", ":", "metatable", "=", "self", ".", "_overview_group", ".", "info", "metarow", "=", "metatable", "[", "0", "]", "try", ":", "version", "=", "metarow", "[", "'version'", "]", ".", "decode", "(", "'utf-8'", ")", "except", "(", "IndexError", ",", "ValueError", ")", "as", "ke", ":", "self", ".", "_logger", ".", "error", "(", "'Could not check version due to: %s'", "%", "str", "(", "ke", ")", ")", "version", "=", "'`COULD NOT BE LOADED`'", "try", ":", "python", "=", "metarow", "[", "'python'", "]", ".", "decode", "(", "'utf-8'", ")", "except", "(", "IndexError", ",", "ValueError", ")", "as", "ke", ":", "self", ".", "_logger", ".", "error", "(", "'Could not check version due to: %s'", "%", "str", "(", "ke", ")", ")", "python", "=", "'`COULD NOT BE LOADED`'", "self", ".", "_trj_check_version", "(", "version", ",", "python", ",", "force", ")", "# Load the skeleton information", "self", ".", "_grp_load_group", "(", "traj", ",", "load_data", "=", "load_data", ",", "with_links", "=", "False", ",", "recursive", "=", "False", ",", "_traj", "=", "traj", ",", "_as_new", "=", "as_new", ",", "_hdf5_group", "=", "self", ".", "_trajectory_group", ")", "if", "as_new", ":", "length", "=", "int", "(", "metarow", "[", "'length'", "]", ")", "for", "irun", "in", "range", "(", "length", ")", ":", "traj", ".", "_add_run_info", "(", "irun", ")", "else", ":", "traj", ".", "_comment", "=", "metarow", "[", "'comment'", "]", ".", "decode", "(", "'utf-8'", ")", "traj", ".", "_timestamp", "=", "float", "(", "metarow", "[", "'timestamp'", "]", ")", "traj", ".", "_trajectory_timestamp", "=", "traj", ".", "_timestamp", "traj", ".", "_time", "=", "metarow", "[", "'time'", "]", ".", "decode", "(", "'utf-8'", ")", "traj", ".", "_trajectory_time", "=", "traj", ".", "_time", "traj", ".", "_name", "=", "metarow", "[", "'name'", "]", ".", "decode", "(", "'utf-8'", ")", "traj", ".", "_trajectory_name", "=", "traj", ".", "_name", "traj", ".", "_version", "=", "version", "traj", ".", "_python", "=", "python", "single_run_table", "=", "self", ".", "_overview_group", ".", "runs", "if", "with_run_information", ":", "for", "row", "in", "single_run_table", ".", "iterrows", "(", ")", ":", "name", "=", "row", "[", "'name'", "]", ".", "decode", "(", "'utf-8'", ")", "idx", "=", "int", "(", "row", "[", "'idx'", "]", ")", "timestamp", "=", "float", "(", "row", "[", "'timestamp'", "]", ")", "time_", "=", "row", "[", "'time'", "]", ".", "decode", "(", "'utf-8'", ")", "completed", "=", "int", "(", "row", "[", "'completed'", "]", ")", "summary", "=", "row", "[", "'parameter_summary'", "]", ".", "decode", "(", "'utf-8'", ")", "hexsha", "=", "row", "[", "'short_environment_hexsha'", "]", ".", "decode", "(", "'utf-8'", ")", "# To allow backwards compatibility we need this try catch block", "try", ":", "runtime", "=", "row", "[", "'runtime'", "]", ".", "decode", "(", "'utf-8'", ")", "finish_timestamp", "=", "float", "(", "row", "[", "'finish_timestamp'", "]", ")", "except", "(", "IndexError", ",", "ValueError", ")", "as", "ke", ":", "runtime", "=", "''", "finish_timestamp", "=", "0.0", "self", ".", "_logger", ".", "debug", "(", "'Could not load runtime, '", "+", "repr", "(", "ke", ")", ")", "info_dict", "=", "{", "'idx'", ":", "idx", ",", "'timestamp'", ":", "timestamp", ",", "'finish_timestamp'", ":", "finish_timestamp", ",", "'runtime'", ":", "runtime", ",", "'time'", ":", "time_", ",", "'completed'", ":", "completed", ",", "'name'", ":", "name", ",", "'parameter_summary'", ":", "summary", ",", "'short_environment_hexsha'", ":", "hexsha", "}", "traj", ".", "_add_run_info", "(", "*", "*", "info_dict", ")", "else", ":", "traj", ".", "_length", "=", "single_run_table", ".", "nrows", "# Load explorations", "self", ".", "_trj_load_exploration", "(", "traj", ")", "# Load the hdf5 config data:", "self", ".", "_srvc_load_hdf5_settings", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._tree_load_sub_branch
Loads data starting from a node along a branch and starts recursively loading all data at end of branch. :param traj_node: The node from where loading starts :param branch_name: A branch along which loading progresses. Colon Notation is used: 'group1.group2.group3' loads 'group1', then 'group2', then 'group3' and then finally recursively all children and children's children below 'group3' :param load_data: How to load the data :param with_links: If links should be loaded :param recursive: If loading recursively :param max_depth: The maximum depth to load the tree :param _trajectory: The trajectory :param _as_new: If trajectory is loaded as new :param _hdf5_group: HDF5 node in the file corresponding to `traj_node`.
pypet/storageservice.py
def _tree_load_sub_branch(self, traj_node, branch_name, load_data=pypetconstants.LOAD_DATA, with_links=True, recursive=False, max_depth=None, _trajectory=None, _as_new=False, _hdf5_group=None): """Loads data starting from a node along a branch and starts recursively loading all data at end of branch. :param traj_node: The node from where loading starts :param branch_name: A branch along which loading progresses. Colon Notation is used: 'group1.group2.group3' loads 'group1', then 'group2', then 'group3' and then finally recursively all children and children's children below 'group3' :param load_data: How to load the data :param with_links: If links should be loaded :param recursive: If loading recursively :param max_depth: The maximum depth to load the tree :param _trajectory: The trajectory :param _as_new: If trajectory is loaded as new :param _hdf5_group: HDF5 node in the file corresponding to `traj_node`. """ if load_data == pypetconstants.LOAD_NOTHING: return if max_depth is None: max_depth = float('inf') if _trajectory is None: _trajectory = traj_node.v_root if _hdf5_group is None: hdf5_group_name = traj_node.v_full_name.replace('.', '/') # Get child node to load if hdf5_group_name == '': _hdf5_group = self._trajectory_group else: try: _hdf5_group = self._hdf5file.get_node(where=self._trajectory_group, name=hdf5_group_name) except pt.NoSuchNodeError: self._logger.error('Cannot find `%s` the hdf5 node `%s` does not exist!' % (traj_node.v_full_name, hdf5_group_name)) raise split_names = branch_name.split('.') final_group_name = split_names.pop() current_depth = 1 for name in split_names: if current_depth > max_depth: return # First load along the branch _hdf5_group = getattr(_hdf5_group, name) self._tree_load_nodes_dfs(traj_node, load_data=load_data, with_links=with_links, recursive=False, max_depth=max_depth, current_depth=current_depth, trajectory=_trajectory, as_new=_as_new, hdf5_group=_hdf5_group) current_depth += 1 traj_node = traj_node._children[name] if current_depth <= max_depth: # Then load recursively all data in the last group and below _hdf5_group = getattr(_hdf5_group, final_group_name) self._tree_load_nodes_dfs(traj_node, load_data=load_data, with_links=with_links, recursive=recursive, max_depth=max_depth, current_depth=current_depth, trajectory=_trajectory, as_new=_as_new, hdf5_group=_hdf5_group)
def _tree_load_sub_branch(self, traj_node, branch_name, load_data=pypetconstants.LOAD_DATA, with_links=True, recursive=False, max_depth=None, _trajectory=None, _as_new=False, _hdf5_group=None): """Loads data starting from a node along a branch and starts recursively loading all data at end of branch. :param traj_node: The node from where loading starts :param branch_name: A branch along which loading progresses. Colon Notation is used: 'group1.group2.group3' loads 'group1', then 'group2', then 'group3' and then finally recursively all children and children's children below 'group3' :param load_data: How to load the data :param with_links: If links should be loaded :param recursive: If loading recursively :param max_depth: The maximum depth to load the tree :param _trajectory: The trajectory :param _as_new: If trajectory is loaded as new :param _hdf5_group: HDF5 node in the file corresponding to `traj_node`. """ if load_data == pypetconstants.LOAD_NOTHING: return if max_depth is None: max_depth = float('inf') if _trajectory is None: _trajectory = traj_node.v_root if _hdf5_group is None: hdf5_group_name = traj_node.v_full_name.replace('.', '/') # Get child node to load if hdf5_group_name == '': _hdf5_group = self._trajectory_group else: try: _hdf5_group = self._hdf5file.get_node(where=self._trajectory_group, name=hdf5_group_name) except pt.NoSuchNodeError: self._logger.error('Cannot find `%s` the hdf5 node `%s` does not exist!' % (traj_node.v_full_name, hdf5_group_name)) raise split_names = branch_name.split('.') final_group_name = split_names.pop() current_depth = 1 for name in split_names: if current_depth > max_depth: return # First load along the branch _hdf5_group = getattr(_hdf5_group, name) self._tree_load_nodes_dfs(traj_node, load_data=load_data, with_links=with_links, recursive=False, max_depth=max_depth, current_depth=current_depth, trajectory=_trajectory, as_new=_as_new, hdf5_group=_hdf5_group) current_depth += 1 traj_node = traj_node._children[name] if current_depth <= max_depth: # Then load recursively all data in the last group and below _hdf5_group = getattr(_hdf5_group, final_group_name) self._tree_load_nodes_dfs(traj_node, load_data=load_data, with_links=with_links, recursive=recursive, max_depth=max_depth, current_depth=current_depth, trajectory=_trajectory, as_new=_as_new, hdf5_group=_hdf5_group)
[ "Loads", "data", "starting", "from", "a", "node", "along", "a", "branch", "and", "starts", "recursively", "loading", "all", "data", "at", "end", "of", "branch", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2051-L2148
[ "def", "_tree_load_sub_branch", "(", "self", ",", "traj_node", ",", "branch_name", ",", "load_data", "=", "pypetconstants", ".", "LOAD_DATA", ",", "with_links", "=", "True", ",", "recursive", "=", "False", ",", "max_depth", "=", "None", ",", "_trajectory", "=", "None", ",", "_as_new", "=", "False", ",", "_hdf5_group", "=", "None", ")", ":", "if", "load_data", "==", "pypetconstants", ".", "LOAD_NOTHING", ":", "return", "if", "max_depth", "is", "None", ":", "max_depth", "=", "float", "(", "'inf'", ")", "if", "_trajectory", "is", "None", ":", "_trajectory", "=", "traj_node", ".", "v_root", "if", "_hdf5_group", "is", "None", ":", "hdf5_group_name", "=", "traj_node", ".", "v_full_name", ".", "replace", "(", "'.'", ",", "'/'", ")", "# Get child node to load", "if", "hdf5_group_name", "==", "''", ":", "_hdf5_group", "=", "self", ".", "_trajectory_group", "else", ":", "try", ":", "_hdf5_group", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "where", "=", "self", ".", "_trajectory_group", ",", "name", "=", "hdf5_group_name", ")", "except", "pt", ".", "NoSuchNodeError", ":", "self", ".", "_logger", ".", "error", "(", "'Cannot find `%s` the hdf5 node `%s` does not exist!'", "%", "(", "traj_node", ".", "v_full_name", ",", "hdf5_group_name", ")", ")", "raise", "split_names", "=", "branch_name", ".", "split", "(", "'.'", ")", "final_group_name", "=", "split_names", ".", "pop", "(", ")", "current_depth", "=", "1", "for", "name", "in", "split_names", ":", "if", "current_depth", ">", "max_depth", ":", "return", "# First load along the branch", "_hdf5_group", "=", "getattr", "(", "_hdf5_group", ",", "name", ")", "self", ".", "_tree_load_nodes_dfs", "(", "traj_node", ",", "load_data", "=", "load_data", ",", "with_links", "=", "with_links", ",", "recursive", "=", "False", ",", "max_depth", "=", "max_depth", ",", "current_depth", "=", "current_depth", ",", "trajectory", "=", "_trajectory", ",", "as_new", "=", "_as_new", ",", "hdf5_group", "=", "_hdf5_group", ")", "current_depth", "+=", "1", "traj_node", "=", "traj_node", ".", "_children", "[", "name", "]", "if", "current_depth", "<=", "max_depth", ":", "# Then load recursively all data in the last group and below", "_hdf5_group", "=", "getattr", "(", "_hdf5_group", ",", "final_group_name", ")", "self", ".", "_tree_load_nodes_dfs", "(", "traj_node", ",", "load_data", "=", "load_data", ",", "with_links", "=", "with_links", ",", "recursive", "=", "recursive", ",", "max_depth", "=", "max_depth", ",", "current_depth", "=", "current_depth", ",", "trajectory", "=", "_trajectory", ",", "as_new", "=", "_as_new", ",", "hdf5_group", "=", "_hdf5_group", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_check_version
Checks for version mismatch Raises a VersionMismatchError if version of loaded trajectory and current pypet version do not match. In case of `force=True` error is not raised only a warning is emitted.
pypet/storageservice.py
def _trj_check_version(self, version, python, force): """Checks for version mismatch Raises a VersionMismatchError if version of loaded trajectory and current pypet version do not match. In case of `force=True` error is not raised only a warning is emitted. """ curr_python = pypetconstants.python_version_string if (version != VERSION or curr_python != python) and not force: raise pex.VersionMismatchError('Current pypet version is %s used under python %s ' ' but your trajectory' ' was created with version %s and python %s.' ' Use >>force=True<< to perform your load regardless' ' of version mismatch.' % (VERSION, curr_python, version, python)) elif version != VERSION or curr_python != python: self._logger.warning('Current pypet version is %s with python %s but your trajectory' ' was created with version %s under python %s.' ' Yet, you enforced the load, so I will' ' handle the trajectory despite the' ' version mismatch.' % (VERSION, curr_python, version, python))
def _trj_check_version(self, version, python, force): """Checks for version mismatch Raises a VersionMismatchError if version of loaded trajectory and current pypet version do not match. In case of `force=True` error is not raised only a warning is emitted. """ curr_python = pypetconstants.python_version_string if (version != VERSION or curr_python != python) and not force: raise pex.VersionMismatchError('Current pypet version is %s used under python %s ' ' but your trajectory' ' was created with version %s and python %s.' ' Use >>force=True<< to perform your load regardless' ' of version mismatch.' % (VERSION, curr_python, version, python)) elif version != VERSION or curr_python != python: self._logger.warning('Current pypet version is %s with python %s but your trajectory' ' was created with version %s under python %s.' ' Yet, you enforced the load, so I will' ' handle the trajectory despite the' ' version mismatch.' % (VERSION, curr_python, version, python))
[ "Checks", "for", "version", "mismatch" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2150-L2172
[ "def", "_trj_check_version", "(", "self", ",", "version", ",", "python", ",", "force", ")", ":", "curr_python", "=", "pypetconstants", ".", "python_version_string", "if", "(", "version", "!=", "VERSION", "or", "curr_python", "!=", "python", ")", "and", "not", "force", ":", "raise", "pex", ".", "VersionMismatchError", "(", "'Current pypet version is %s used under python %s '", "' but your trajectory'", "' was created with version %s and python %s.'", "' Use >>force=True<< to perform your load regardless'", "' of version mismatch.'", "%", "(", "VERSION", ",", "curr_python", ",", "version", ",", "python", ")", ")", "elif", "version", "!=", "VERSION", "or", "curr_python", "!=", "python", ":", "self", ".", "_logger", ".", "warning", "(", "'Current pypet version is %s with python %s but your trajectory'", "' was created with version %s under python %s.'", "' Yet, you enforced the load, so I will'", "' handle the trajectory despite the'", "' version mismatch.'", "%", "(", "VERSION", ",", "curr_python", ",", "version", ",", "python", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_fill_run_table
Fills the `run` overview table with information. Will also update new information.
pypet/storageservice.py
def _trj_fill_run_table(self, traj, start, stop): """Fills the `run` overview table with information. Will also update new information. """ def _make_row(info_dict): row = (info_dict['idx'], info_dict['name'], info_dict['time'], info_dict['timestamp'], info_dict['finish_timestamp'], info_dict['runtime'], info_dict['parameter_summary'], info_dict['short_environment_hexsha'], info_dict['completed']) return row runtable = getattr(self._overview_group, 'runs') rows = [] updated_run_information = traj._updated_run_information for idx in range(start, stop): info_dict = traj._run_information[traj._single_run_ids[idx]] rows.append(_make_row(info_dict)) updated_run_information.discard(idx) if rows: runtable.append(rows) runtable.flush() # Store all runs that are updated and that have not been stored yet rows = [] indices = [] for idx in updated_run_information: info_dict = traj.f_get_run_information(idx, copy=False) rows.append(_make_row(info_dict)) indices.append(idx) if rows: runtable.modify_coordinates(indices, rows) traj._updated_run_information = set()
def _trj_fill_run_table(self, traj, start, stop): """Fills the `run` overview table with information. Will also update new information. """ def _make_row(info_dict): row = (info_dict['idx'], info_dict['name'], info_dict['time'], info_dict['timestamp'], info_dict['finish_timestamp'], info_dict['runtime'], info_dict['parameter_summary'], info_dict['short_environment_hexsha'], info_dict['completed']) return row runtable = getattr(self._overview_group, 'runs') rows = [] updated_run_information = traj._updated_run_information for idx in range(start, stop): info_dict = traj._run_information[traj._single_run_ids[idx]] rows.append(_make_row(info_dict)) updated_run_information.discard(idx) if rows: runtable.append(rows) runtable.flush() # Store all runs that are updated and that have not been stored yet rows = [] indices = [] for idx in updated_run_information: info_dict = traj.f_get_run_information(idx, copy=False) rows.append(_make_row(info_dict)) indices.append(idx) if rows: runtable.modify_coordinates(indices, rows) traj._updated_run_information = set()
[ "Fills", "the", "run", "overview", "table", "with", "information", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2177-L2220
[ "def", "_trj_fill_run_table", "(", "self", ",", "traj", ",", "start", ",", "stop", ")", ":", "def", "_make_row", "(", "info_dict", ")", ":", "row", "=", "(", "info_dict", "[", "'idx'", "]", ",", "info_dict", "[", "'name'", "]", ",", "info_dict", "[", "'time'", "]", ",", "info_dict", "[", "'timestamp'", "]", ",", "info_dict", "[", "'finish_timestamp'", "]", ",", "info_dict", "[", "'runtime'", "]", ",", "info_dict", "[", "'parameter_summary'", "]", ",", "info_dict", "[", "'short_environment_hexsha'", "]", ",", "info_dict", "[", "'completed'", "]", ")", "return", "row", "runtable", "=", "getattr", "(", "self", ".", "_overview_group", ",", "'runs'", ")", "rows", "=", "[", "]", "updated_run_information", "=", "traj", ".", "_updated_run_information", "for", "idx", "in", "range", "(", "start", ",", "stop", ")", ":", "info_dict", "=", "traj", ".", "_run_information", "[", "traj", ".", "_single_run_ids", "[", "idx", "]", "]", "rows", ".", "append", "(", "_make_row", "(", "info_dict", ")", ")", "updated_run_information", ".", "discard", "(", "idx", ")", "if", "rows", ":", "runtable", ".", "append", "(", "rows", ")", "runtable", ".", "flush", "(", ")", "# Store all runs that are updated and that have not been stored yet", "rows", "=", "[", "]", "indices", "=", "[", "]", "for", "idx", "in", "updated_run_information", ":", "info_dict", "=", "traj", ".", "f_get_run_information", "(", "idx", ",", "copy", "=", "False", ")", "rows", ".", "append", "(", "_make_row", "(", "info_dict", ")", ")", "indices", ".", "append", "(", "idx", ")", "if", "rows", ":", "runtable", ".", "modify_coordinates", "(", "indices", ",", "rows", ")", "traj", ".", "_updated_run_information", "=", "set", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_store_meta_data
Stores general information about the trajectory in the hdf5file. The `info` table will contain the name of the trajectory, it's timestamp, a comment, the length (aka the number of single runs), and the current version number of pypet. Also prepares the desired overview tables and fills the `run` table with dummies.
pypet/storageservice.py
def _trj_store_meta_data(self, traj): """ Stores general information about the trajectory in the hdf5file. The `info` table will contain the name of the trajectory, it's timestamp, a comment, the length (aka the number of single runs), and the current version number of pypet. Also prepares the desired overview tables and fills the `run` table with dummies. """ # Description of the `info` table descriptiondict = {'name': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_LOCATION_LENGTH, pos=0), 'time': pt.StringCol(len(traj.v_time), pos=1), 'timestamp': pt.FloatCol(pos=3), 'comment': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH, pos=4), 'length': pt.IntCol(pos=2), 'version': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_NAME_LENGTH, pos=5), 'python': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_NAME_LENGTH, pos=5)} # 'loaded_from' : pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_LOCATION_LENGTH)} infotable = self._all_get_or_create_table(where=self._overview_group, tablename='info', description=descriptiondict, expectedrows=len(traj)) insert_dict = self._all_extract_insert_dict(traj, infotable.colnames) self._all_add_or_modify_row(traj.v_name, insert_dict, infotable, index=0, flags=(HDF5StorageService.ADD_ROW, HDF5StorageService.MODIFY_ROW)) # Description of the `run` table rundescription_dict = {'name': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_NAME_LENGTH, pos=1), 'time': pt.StringCol(len(traj.v_time), pos=2), 'timestamp': pt.FloatCol(pos=3), 'idx': pt.IntCol(pos=0), 'completed': pt.IntCol(pos=8), 'parameter_summary': pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH, pos=6), 'short_environment_hexsha': pt.StringCol(7, pos=7), 'finish_timestamp': pt.FloatCol(pos=4), 'runtime': pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_RUNTIME_LENGTH, pos=5)} runtable = self._all_get_or_create_table(where=self._overview_group, tablename='runs', description=rundescription_dict) hdf5_description_dict = {'complib': pt.StringCol(7, pos=0), 'complevel': pt.IntCol(pos=1), 'shuffle': pt.BoolCol(pos=2), 'fletcher32': pt.BoolCol(pos=3), 'pandas_format': pt.StringCol(7, pos=4), 'encoding': pt.StringCol(11, pos=5)} pos = 7 for name, table_name in HDF5StorageService.NAME_TABLE_MAPPING.items(): hdf5_description_dict[table_name] = pt.BoolCol(pos=pos) pos += 1 # Store the hdf5 properties in an overview table hdf5_description_dict.update({'purge_duplicate_comments': pt.BoolCol(pos=pos + 2), 'results_per_run': pt.IntCol(pos=pos + 3), 'derived_parameters_per_run': pt.IntCol(pos=pos + 4)}) hdf5table = self._all_get_or_create_table(where=self._overview_group, tablename='hdf5_settings', description=hdf5_description_dict) insert_dict = {} for attr_name in self.ATTR_LIST: insert_dict[attr_name] = getattr(self, attr_name) for attr_name, table_name in self.NAME_TABLE_MAPPING.items(): insert_dict[table_name] = getattr(self, attr_name) for attr_name, name in self.PR_ATTR_NAME_MAPPING.items(): insert_dict[name] = getattr(self, attr_name) self._all_add_or_modify_row(traj.v_name, insert_dict, hdf5table, index=0, flags=(HDF5StorageService.ADD_ROW, HDF5StorageService.MODIFY_ROW)) # Fill table with dummy entries starting from the current table size actual_rows = runtable.nrows self._trj_fill_run_table(traj, actual_rows, len(traj._run_information)) # stop != len(traj) to allow immediate post-proc with QUEUE wrapping # Store the annotations and comment of the trajectory node self._grp_store_group(traj, store_data=pypetconstants.STORE_DATA, with_links=False, recursive=False, _hdf5_group=self._trajectory_group) # Store the list of explored paramters self._trj_store_explorations(traj) # Prepare the exploration tables # Prepare the overview tables tostore_tables = [] for name, table_name in HDF5StorageService.NAME_TABLE_MAPPING.items(): # Check if we want the corresponding overview table # If the trajectory does not contain information about the table # we assume it should be created. if getattr(self, name): tostore_tables.append(table_name) self._srvc_make_overview_tables(tostore_tables, traj)
def _trj_store_meta_data(self, traj): """ Stores general information about the trajectory in the hdf5file. The `info` table will contain the name of the trajectory, it's timestamp, a comment, the length (aka the number of single runs), and the current version number of pypet. Also prepares the desired overview tables and fills the `run` table with dummies. """ # Description of the `info` table descriptiondict = {'name': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_LOCATION_LENGTH, pos=0), 'time': pt.StringCol(len(traj.v_time), pos=1), 'timestamp': pt.FloatCol(pos=3), 'comment': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH, pos=4), 'length': pt.IntCol(pos=2), 'version': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_NAME_LENGTH, pos=5), 'python': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_NAME_LENGTH, pos=5)} # 'loaded_from' : pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_LOCATION_LENGTH)} infotable = self._all_get_or_create_table(where=self._overview_group, tablename='info', description=descriptiondict, expectedrows=len(traj)) insert_dict = self._all_extract_insert_dict(traj, infotable.colnames) self._all_add_or_modify_row(traj.v_name, insert_dict, infotable, index=0, flags=(HDF5StorageService.ADD_ROW, HDF5StorageService.MODIFY_ROW)) # Description of the `run` table rundescription_dict = {'name': pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_NAME_LENGTH, pos=1), 'time': pt.StringCol(len(traj.v_time), pos=2), 'timestamp': pt.FloatCol(pos=3), 'idx': pt.IntCol(pos=0), 'completed': pt.IntCol(pos=8), 'parameter_summary': pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH, pos=6), 'short_environment_hexsha': pt.StringCol(7, pos=7), 'finish_timestamp': pt.FloatCol(pos=4), 'runtime': pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_RUNTIME_LENGTH, pos=5)} runtable = self._all_get_or_create_table(where=self._overview_group, tablename='runs', description=rundescription_dict) hdf5_description_dict = {'complib': pt.StringCol(7, pos=0), 'complevel': pt.IntCol(pos=1), 'shuffle': pt.BoolCol(pos=2), 'fletcher32': pt.BoolCol(pos=3), 'pandas_format': pt.StringCol(7, pos=4), 'encoding': pt.StringCol(11, pos=5)} pos = 7 for name, table_name in HDF5StorageService.NAME_TABLE_MAPPING.items(): hdf5_description_dict[table_name] = pt.BoolCol(pos=pos) pos += 1 # Store the hdf5 properties in an overview table hdf5_description_dict.update({'purge_duplicate_comments': pt.BoolCol(pos=pos + 2), 'results_per_run': pt.IntCol(pos=pos + 3), 'derived_parameters_per_run': pt.IntCol(pos=pos + 4)}) hdf5table = self._all_get_or_create_table(where=self._overview_group, tablename='hdf5_settings', description=hdf5_description_dict) insert_dict = {} for attr_name in self.ATTR_LIST: insert_dict[attr_name] = getattr(self, attr_name) for attr_name, table_name in self.NAME_TABLE_MAPPING.items(): insert_dict[table_name] = getattr(self, attr_name) for attr_name, name in self.PR_ATTR_NAME_MAPPING.items(): insert_dict[name] = getattr(self, attr_name) self._all_add_or_modify_row(traj.v_name, insert_dict, hdf5table, index=0, flags=(HDF5StorageService.ADD_ROW, HDF5StorageService.MODIFY_ROW)) # Fill table with dummy entries starting from the current table size actual_rows = runtable.nrows self._trj_fill_run_table(traj, actual_rows, len(traj._run_information)) # stop != len(traj) to allow immediate post-proc with QUEUE wrapping # Store the annotations and comment of the trajectory node self._grp_store_group(traj, store_data=pypetconstants.STORE_DATA, with_links=False, recursive=False, _hdf5_group=self._trajectory_group) # Store the list of explored paramters self._trj_store_explorations(traj) # Prepare the exploration tables # Prepare the overview tables tostore_tables = [] for name, table_name in HDF5StorageService.NAME_TABLE_MAPPING.items(): # Check if we want the corresponding overview table # If the trajectory does not contain information about the table # we assume it should be created. if getattr(self, name): tostore_tables.append(table_name) self._srvc_make_overview_tables(tostore_tables, traj)
[ "Stores", "general", "information", "about", "the", "trajectory", "in", "the", "hdf5file", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2222-L2338
[ "def", "_trj_store_meta_data", "(", "self", ",", "traj", ")", ":", "# Description of the `info` table", "descriptiondict", "=", "{", "'name'", ":", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_LOCATION_LENGTH", ",", "pos", "=", "0", ")", ",", "'time'", ":", "pt", ".", "StringCol", "(", "len", "(", "traj", ".", "v_time", ")", ",", "pos", "=", "1", ")", ",", "'timestamp'", ":", "pt", ".", "FloatCol", "(", "pos", "=", "3", ")", ",", "'comment'", ":", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_COMMENT_LENGTH", ",", "pos", "=", "4", ")", ",", "'length'", ":", "pt", ".", "IntCol", "(", "pos", "=", "2", ")", ",", "'version'", ":", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_NAME_LENGTH", ",", "pos", "=", "5", ")", ",", "'python'", ":", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_NAME_LENGTH", ",", "pos", "=", "5", ")", "}", "# 'loaded_from' : pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_LOCATION_LENGTH)}", "infotable", "=", "self", ".", "_all_get_or_create_table", "(", "where", "=", "self", ".", "_overview_group", ",", "tablename", "=", "'info'", ",", "description", "=", "descriptiondict", ",", "expectedrows", "=", "len", "(", "traj", ")", ")", "insert_dict", "=", "self", ".", "_all_extract_insert_dict", "(", "traj", ",", "infotable", ".", "colnames", ")", "self", ".", "_all_add_or_modify_row", "(", "traj", ".", "v_name", ",", "insert_dict", ",", "infotable", ",", "index", "=", "0", ",", "flags", "=", "(", "HDF5StorageService", ".", "ADD_ROW", ",", "HDF5StorageService", ".", "MODIFY_ROW", ")", ")", "# Description of the `run` table", "rundescription_dict", "=", "{", "'name'", ":", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_NAME_LENGTH", ",", "pos", "=", "1", ")", ",", "'time'", ":", "pt", ".", "StringCol", "(", "len", "(", "traj", ".", "v_time", ")", ",", "pos", "=", "2", ")", ",", "'timestamp'", ":", "pt", ".", "FloatCol", "(", "pos", "=", "3", ")", ",", "'idx'", ":", "pt", ".", "IntCol", "(", "pos", "=", "0", ")", ",", "'completed'", ":", "pt", ".", "IntCol", "(", "pos", "=", "8", ")", ",", "'parameter_summary'", ":", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_COMMENT_LENGTH", ",", "pos", "=", "6", ")", ",", "'short_environment_hexsha'", ":", "pt", ".", "StringCol", "(", "7", ",", "pos", "=", "7", ")", ",", "'finish_timestamp'", ":", "pt", ".", "FloatCol", "(", "pos", "=", "4", ")", ",", "'runtime'", ":", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_RUNTIME_LENGTH", ",", "pos", "=", "5", ")", "}", "runtable", "=", "self", ".", "_all_get_or_create_table", "(", "where", "=", "self", ".", "_overview_group", ",", "tablename", "=", "'runs'", ",", "description", "=", "rundescription_dict", ")", "hdf5_description_dict", "=", "{", "'complib'", ":", "pt", ".", "StringCol", "(", "7", ",", "pos", "=", "0", ")", ",", "'complevel'", ":", "pt", ".", "IntCol", "(", "pos", "=", "1", ")", ",", "'shuffle'", ":", "pt", ".", "BoolCol", "(", "pos", "=", "2", ")", ",", "'fletcher32'", ":", "pt", ".", "BoolCol", "(", "pos", "=", "3", ")", ",", "'pandas_format'", ":", "pt", ".", "StringCol", "(", "7", ",", "pos", "=", "4", ")", ",", "'encoding'", ":", "pt", ".", "StringCol", "(", "11", ",", "pos", "=", "5", ")", "}", "pos", "=", "7", "for", "name", ",", "table_name", "in", "HDF5StorageService", ".", "NAME_TABLE_MAPPING", ".", "items", "(", ")", ":", "hdf5_description_dict", "[", "table_name", "]", "=", "pt", ".", "BoolCol", "(", "pos", "=", "pos", ")", "pos", "+=", "1", "# Store the hdf5 properties in an overview table", "hdf5_description_dict", ".", "update", "(", "{", "'purge_duplicate_comments'", ":", "pt", ".", "BoolCol", "(", "pos", "=", "pos", "+", "2", ")", ",", "'results_per_run'", ":", "pt", ".", "IntCol", "(", "pos", "=", "pos", "+", "3", ")", ",", "'derived_parameters_per_run'", ":", "pt", ".", "IntCol", "(", "pos", "=", "pos", "+", "4", ")", "}", ")", "hdf5table", "=", "self", ".", "_all_get_or_create_table", "(", "where", "=", "self", ".", "_overview_group", ",", "tablename", "=", "'hdf5_settings'", ",", "description", "=", "hdf5_description_dict", ")", "insert_dict", "=", "{", "}", "for", "attr_name", "in", "self", ".", "ATTR_LIST", ":", "insert_dict", "[", "attr_name", "]", "=", "getattr", "(", "self", ",", "attr_name", ")", "for", "attr_name", ",", "table_name", "in", "self", ".", "NAME_TABLE_MAPPING", ".", "items", "(", ")", ":", "insert_dict", "[", "table_name", "]", "=", "getattr", "(", "self", ",", "attr_name", ")", "for", "attr_name", ",", "name", "in", "self", ".", "PR_ATTR_NAME_MAPPING", ".", "items", "(", ")", ":", "insert_dict", "[", "name", "]", "=", "getattr", "(", "self", ",", "attr_name", ")", "self", ".", "_all_add_or_modify_row", "(", "traj", ".", "v_name", ",", "insert_dict", ",", "hdf5table", ",", "index", "=", "0", ",", "flags", "=", "(", "HDF5StorageService", ".", "ADD_ROW", ",", "HDF5StorageService", ".", "MODIFY_ROW", ")", ")", "# Fill table with dummy entries starting from the current table size", "actual_rows", "=", "runtable", ".", "nrows", "self", ".", "_trj_fill_run_table", "(", "traj", ",", "actual_rows", ",", "len", "(", "traj", ".", "_run_information", ")", ")", "# stop != len(traj) to allow immediate post-proc with QUEUE wrapping", "# Store the annotations and comment of the trajectory node", "self", ".", "_grp_store_group", "(", "traj", ",", "store_data", "=", "pypetconstants", ".", "STORE_DATA", ",", "with_links", "=", "False", ",", "recursive", "=", "False", ",", "_hdf5_group", "=", "self", ".", "_trajectory_group", ")", "# Store the list of explored paramters", "self", ".", "_trj_store_explorations", "(", "traj", ")", "# Prepare the exploration tables", "# Prepare the overview tables", "tostore_tables", "=", "[", "]", "for", "name", ",", "table_name", "in", "HDF5StorageService", ".", "NAME_TABLE_MAPPING", ".", "items", "(", ")", ":", "# Check if we want the corresponding overview table", "# If the trajectory does not contain information about the table", "# we assume it should be created.", "if", "getattr", "(", "self", ",", "name", ")", ":", "tostore_tables", ".", "append", "(", "table_name", ")", "self", ".", "_srvc_make_overview_tables", "(", "tostore_tables", ",", "traj", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_load_exploration
Recalls names of all explored parameters
pypet/storageservice.py
def _trj_load_exploration(self, traj): """Recalls names of all explored parameters""" if hasattr(self._overview_group, 'explorations'): explorations_table = self._overview_group._f_get_child( 'explorations') for row in explorations_table.iterrows(): param_name = row['explorations'].decode('utf-8') if param_name not in traj._explored_parameters: traj._explored_parameters[param_name] = None else: # This is for backwards compatibility for what in ('parameters', 'derived_parameters'): if hasattr(self._trajectory_group, what): parameters = self._trajectory_group._f_get_child(what) for group in parameters._f_walk_groups(): if self._all_get_from_attrs(group, HDF5StorageService.LENGTH): group_location = group._v_pathname full_name = '.'.join(group_location.split('/')[2:]) traj._explored_parameters[full_name] = None
def _trj_load_exploration(self, traj): """Recalls names of all explored parameters""" if hasattr(self._overview_group, 'explorations'): explorations_table = self._overview_group._f_get_child( 'explorations') for row in explorations_table.iterrows(): param_name = row['explorations'].decode('utf-8') if param_name not in traj._explored_parameters: traj._explored_parameters[param_name] = None else: # This is for backwards compatibility for what in ('parameters', 'derived_parameters'): if hasattr(self._trajectory_group, what): parameters = self._trajectory_group._f_get_child(what) for group in parameters._f_walk_groups(): if self._all_get_from_attrs(group, HDF5StorageService.LENGTH): group_location = group._v_pathname full_name = '.'.join(group_location.split('/')[2:]) traj._explored_parameters[full_name] = None
[ "Recalls", "names", "of", "all", "explored", "parameters" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2340-L2357
[ "def", "_trj_load_exploration", "(", "self", ",", "traj", ")", ":", "if", "hasattr", "(", "self", ".", "_overview_group", ",", "'explorations'", ")", ":", "explorations_table", "=", "self", ".", "_overview_group", ".", "_f_get_child", "(", "'explorations'", ")", "for", "row", "in", "explorations_table", ".", "iterrows", "(", ")", ":", "param_name", "=", "row", "[", "'explorations'", "]", ".", "decode", "(", "'utf-8'", ")", "if", "param_name", "not", "in", "traj", ".", "_explored_parameters", ":", "traj", ".", "_explored_parameters", "[", "param_name", "]", "=", "None", "else", ":", "# This is for backwards compatibility", "for", "what", "in", "(", "'parameters'", ",", "'derived_parameters'", ")", ":", "if", "hasattr", "(", "self", ".", "_trajectory_group", ",", "what", ")", ":", "parameters", "=", "self", ".", "_trajectory_group", ".", "_f_get_child", "(", "what", ")", "for", "group", "in", "parameters", ".", "_f_walk_groups", "(", ")", ":", "if", "self", ".", "_all_get_from_attrs", "(", "group", ",", "HDF5StorageService", ".", "LENGTH", ")", ":", "group_location", "=", "group", ".", "_v_pathname", "full_name", "=", "'.'", ".", "join", "(", "group_location", ".", "split", "(", "'/'", ")", "[", "2", ":", "]", ")", "traj", ".", "_explored_parameters", "[", "full_name", "]", "=", "None" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_store_explorations
Stores a all explored parameter names for internal recall
pypet/storageservice.py
def _trj_store_explorations(self, traj): """Stores a all explored parameter names for internal recall""" nexplored = len(traj._explored_parameters) if nexplored > 0: if hasattr(self._overview_group, 'explorations'): explorations_table = self._overview_group._f_get_child('explorations') if len(explorations_table) != nexplored: self._hdf5file.remove_node(where=self._overview_group, name='explorations') if not hasattr(self._overview_group, 'explorations'): explored_list = list(traj._explored_parameters.keys()) if explored_list: string_col = self._all_get_table_col('explorations', explored_list, 'overview.explorations') else: string_col = pt.StringCol(1) description = {'explorations': string_col} explorations_table = self._hdf5file.create_table(where=self._overview_group, name='explorations', description=description) rows = [(x.encode('utf-8'),) for x in explored_list] if rows: explorations_table.append(rows) explorations_table.flush()
def _trj_store_explorations(self, traj): """Stores a all explored parameter names for internal recall""" nexplored = len(traj._explored_parameters) if nexplored > 0: if hasattr(self._overview_group, 'explorations'): explorations_table = self._overview_group._f_get_child('explorations') if len(explorations_table) != nexplored: self._hdf5file.remove_node(where=self._overview_group, name='explorations') if not hasattr(self._overview_group, 'explorations'): explored_list = list(traj._explored_parameters.keys()) if explored_list: string_col = self._all_get_table_col('explorations', explored_list, 'overview.explorations') else: string_col = pt.StringCol(1) description = {'explorations': string_col} explorations_table = self._hdf5file.create_table(where=self._overview_group, name='explorations', description=description) rows = [(x.encode('utf-8'),) for x in explored_list] if rows: explorations_table.append(rows) explorations_table.flush()
[ "Stores", "a", "all", "explored", "parameter", "names", "for", "internal", "recall" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2359-L2383
[ "def", "_trj_store_explorations", "(", "self", ",", "traj", ")", ":", "nexplored", "=", "len", "(", "traj", ".", "_explored_parameters", ")", "if", "nexplored", ">", "0", ":", "if", "hasattr", "(", "self", ".", "_overview_group", ",", "'explorations'", ")", ":", "explorations_table", "=", "self", ".", "_overview_group", ".", "_f_get_child", "(", "'explorations'", ")", "if", "len", "(", "explorations_table", ")", "!=", "nexplored", ":", "self", ".", "_hdf5file", ".", "remove_node", "(", "where", "=", "self", ".", "_overview_group", ",", "name", "=", "'explorations'", ")", "if", "not", "hasattr", "(", "self", ".", "_overview_group", ",", "'explorations'", ")", ":", "explored_list", "=", "list", "(", "traj", ".", "_explored_parameters", ".", "keys", "(", ")", ")", "if", "explored_list", ":", "string_col", "=", "self", ".", "_all_get_table_col", "(", "'explorations'", ",", "explored_list", ",", "'overview.explorations'", ")", "else", ":", "string_col", "=", "pt", ".", "StringCol", "(", "1", ")", "description", "=", "{", "'explorations'", ":", "string_col", "}", "explorations_table", "=", "self", ".", "_hdf5file", ".", "create_table", "(", "where", "=", "self", ".", "_overview_group", ",", "name", "=", "'explorations'", ",", "description", "=", "description", ")", "rows", "=", "[", "(", "x", ".", "encode", "(", "'utf-8'", ")", ",", ")", "for", "x", "in", "explored_list", "]", "if", "rows", ":", "explorations_table", ".", "append", "(", "rows", ")", "explorations_table", ".", "flush", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srvc_make_overview_tables
Creates the overview tables in overview group
pypet/storageservice.py
def _srvc_make_overview_tables(self, tables_to_make, traj=None): """Creates the overview tables in overview group""" for table_name in tables_to_make: # Prepare the tables desciptions, depending on which overview table we create # we need different columns paramdescriptiondict = {} expectedrows = 0 # Every overview table has a name and location column paramdescriptiondict['location'] = pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_LOCATION_LENGTH, pos=0) paramdescriptiondict['name'] = pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_NAME_LENGTH, pos=1) paramdescriptiondict['comment'] = pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH) paramdescriptiondict['value'] = pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_VALUE_LENGTH, pos=2) if table_name == 'config_overview': if traj is not None: expectedrows = len(traj._config) if table_name == 'parameters_overview': if traj is not None: expectedrows = len(traj._parameters) if table_name == 'explored_parameters_overview': paramdescriptiondict['range'] = pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH) paramdescriptiondict['length'] = pt.IntCol() if traj is not None: expectedrows = len(traj._explored_parameters) if table_name.endswith('summary'): paramdescriptiondict['hexdigest'] = pt.StringCol(64, pos=10) # Check if the user provided an estimate of the amount of results per run # This can help to speed up storing if table_name == 'derived_parameters_overview': expectedrows = self._derived_parameters_per_run if traj is not None: expectedrows *= len(traj) expectedrows += len(traj._derived_parameters) if table_name == 'results_overview': expectedrows = self._results_per_run if traj is not None: expectedrows *= len(traj) expectedrows += len(traj._results) if expectedrows > 0: paramtable = self._all_get_or_create_table(where=self._overview_group, tablename=table_name, description=paramdescriptiondict, expectedrows=expectedrows) else: paramtable = self._all_get_or_create_table(where=self._overview_group, tablename=table_name, description=paramdescriptiondict) paramtable.flush()
def _srvc_make_overview_tables(self, tables_to_make, traj=None): """Creates the overview tables in overview group""" for table_name in tables_to_make: # Prepare the tables desciptions, depending on which overview table we create # we need different columns paramdescriptiondict = {} expectedrows = 0 # Every overview table has a name and location column paramdescriptiondict['location'] = pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_LOCATION_LENGTH, pos=0) paramdescriptiondict['name'] = pt.StringCol(pypetconstants.HDF5_STRCOL_MAX_NAME_LENGTH, pos=1) paramdescriptiondict['comment'] = pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH) paramdescriptiondict['value'] = pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_VALUE_LENGTH, pos=2) if table_name == 'config_overview': if traj is not None: expectedrows = len(traj._config) if table_name == 'parameters_overview': if traj is not None: expectedrows = len(traj._parameters) if table_name == 'explored_parameters_overview': paramdescriptiondict['range'] = pt.StringCol( pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH) paramdescriptiondict['length'] = pt.IntCol() if traj is not None: expectedrows = len(traj._explored_parameters) if table_name.endswith('summary'): paramdescriptiondict['hexdigest'] = pt.StringCol(64, pos=10) # Check if the user provided an estimate of the amount of results per run # This can help to speed up storing if table_name == 'derived_parameters_overview': expectedrows = self._derived_parameters_per_run if traj is not None: expectedrows *= len(traj) expectedrows += len(traj._derived_parameters) if table_name == 'results_overview': expectedrows = self._results_per_run if traj is not None: expectedrows *= len(traj) expectedrows += len(traj._results) if expectedrows > 0: paramtable = self._all_get_or_create_table(where=self._overview_group, tablename=table_name, description=paramdescriptiondict, expectedrows=expectedrows) else: paramtable = self._all_get_or_create_table(where=self._overview_group, tablename=table_name, description=paramdescriptiondict) paramtable.flush()
[ "Creates", "the", "overview", "tables", "in", "overview", "group" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2385-L2451
[ "def", "_srvc_make_overview_tables", "(", "self", ",", "tables_to_make", ",", "traj", "=", "None", ")", ":", "for", "table_name", "in", "tables_to_make", ":", "# Prepare the tables desciptions, depending on which overview table we create", "# we need different columns", "paramdescriptiondict", "=", "{", "}", "expectedrows", "=", "0", "# Every overview table has a name and location column", "paramdescriptiondict", "[", "'location'", "]", "=", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_LOCATION_LENGTH", ",", "pos", "=", "0", ")", "paramdescriptiondict", "[", "'name'", "]", "=", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_NAME_LENGTH", ",", "pos", "=", "1", ")", "paramdescriptiondict", "[", "'comment'", "]", "=", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_COMMENT_LENGTH", ")", "paramdescriptiondict", "[", "'value'", "]", "=", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_VALUE_LENGTH", ",", "pos", "=", "2", ")", "if", "table_name", "==", "'config_overview'", ":", "if", "traj", "is", "not", "None", ":", "expectedrows", "=", "len", "(", "traj", ".", "_config", ")", "if", "table_name", "==", "'parameters_overview'", ":", "if", "traj", "is", "not", "None", ":", "expectedrows", "=", "len", "(", "traj", ".", "_parameters", ")", "if", "table_name", "==", "'explored_parameters_overview'", ":", "paramdescriptiondict", "[", "'range'", "]", "=", "pt", ".", "StringCol", "(", "pypetconstants", ".", "HDF5_STRCOL_MAX_RANGE_LENGTH", ")", "paramdescriptiondict", "[", "'length'", "]", "=", "pt", ".", "IntCol", "(", ")", "if", "traj", "is", "not", "None", ":", "expectedrows", "=", "len", "(", "traj", ".", "_explored_parameters", ")", "if", "table_name", ".", "endswith", "(", "'summary'", ")", ":", "paramdescriptiondict", "[", "'hexdigest'", "]", "=", "pt", ".", "StringCol", "(", "64", ",", "pos", "=", "10", ")", "# Check if the user provided an estimate of the amount of results per run", "# This can help to speed up storing", "if", "table_name", "==", "'derived_parameters_overview'", ":", "expectedrows", "=", "self", ".", "_derived_parameters_per_run", "if", "traj", "is", "not", "None", ":", "expectedrows", "*=", "len", "(", "traj", ")", "expectedrows", "+=", "len", "(", "traj", ".", "_derived_parameters", ")", "if", "table_name", "==", "'results_overview'", ":", "expectedrows", "=", "self", ".", "_results_per_run", "if", "traj", "is", "not", "None", ":", "expectedrows", "*=", "len", "(", "traj", ")", "expectedrows", "+=", "len", "(", "traj", ".", "_results", ")", "if", "expectedrows", ">", "0", ":", "paramtable", "=", "self", ".", "_all_get_or_create_table", "(", "where", "=", "self", ".", "_overview_group", ",", "tablename", "=", "table_name", ",", "description", "=", "paramdescriptiondict", ",", "expectedrows", "=", "expectedrows", ")", "else", ":", "paramtable", "=", "self", ".", "_all_get_or_create_table", "(", "where", "=", "self", ".", "_overview_group", ",", "tablename", "=", "table_name", ",", "description", "=", "paramdescriptiondict", ")", "paramtable", ".", "flush", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._trj_store_trajectory
Stores a trajectory to an hdf5 file Stores all groups, parameters and results
pypet/storageservice.py
def _trj_store_trajectory(self, traj, only_init=False, store_data=pypetconstants.STORE_DATA, max_depth=None): """ Stores a trajectory to an hdf5 file Stores all groups, parameters and results """ if not only_init: self._logger.info('Start storing Trajectory `%s`.' % self._trajectory_name) else: self._logger.info('Initialising storage or updating meta data of Trajectory `%s`.' % self._trajectory_name) store_data = pypetconstants.STORE_NOTHING # In case we accidentally chose a trajectory name that already exist # We do not want to mess up the stored trajectory but raise an Error if not traj._stored and self._trajectory_group is not None: raise RuntimeError('You want to store a completely new trajectory with name' ' `%s` but this trajectory is already found in file `%s`.' 'Did you try to accidentally overwrite existing data? If ' 'you DO want to override existing data, use `overwrite_file=True`.' 'Note that this deletes the whole HDF5 file not just the particular ' 'trajectroy therein! ' % (traj.v_name, self._filename)) # Extract HDF5 settings from the trajectory self._srvc_check_hdf_properties(traj) # Store the trajectory for the first time if necessary: if self._trajectory_group is None: self._trajectory_group = self._hdf5file.create_group(where='/', name=self._trajectory_name, title=self._trajectory_name, filters=self._all_get_filters()) # Store meta information self._trj_store_meta_data(traj) # # Store recursively the config subtree # self._tree_store_recursively(pypetconstants.LEAF,traj.config,self._trajectory_group) if store_data in (pypetconstants.STORE_DATA_SKIPPING, pypetconstants.STORE_DATA, pypetconstants.OVERWRITE_DATA): counter = 0 maximum_display_other = 10 name_set = set(['parameters', 'config', 'derived_parameters', 'results']) for child_name in traj._children: if child_name in name_set: self._logger.info('Storing branch `%s`.' % child_name) else: if counter < maximum_display_other: self._logger.info('Storing branch/node `%s`.' % child_name) elif counter == maximum_display_other: self._logger.info('To many branches or nodes at root for display. ' 'I will not inform you about storing anymore. ' 'Branches are stored silently in the background. ' 'Do not worry, I will not freeze! Pinky promise!!!') counter += 1 # Store recursively the elements self._tree_store_sub_branch(traj, child_name, store_data=store_data, with_links=True, recursive=True, max_depth=max_depth, hdf5_group=self._trajectory_group) self._logger.info('Finished storing Trajectory `%s`.' % self._trajectory_name) else: self._logger.info('Finished init or meta data update for `%s`.' % self._trajectory_name) traj._stored = True
def _trj_store_trajectory(self, traj, only_init=False, store_data=pypetconstants.STORE_DATA, max_depth=None): """ Stores a trajectory to an hdf5 file Stores all groups, parameters and results """ if not only_init: self._logger.info('Start storing Trajectory `%s`.' % self._trajectory_name) else: self._logger.info('Initialising storage or updating meta data of Trajectory `%s`.' % self._trajectory_name) store_data = pypetconstants.STORE_NOTHING # In case we accidentally chose a trajectory name that already exist # We do not want to mess up the stored trajectory but raise an Error if not traj._stored and self._trajectory_group is not None: raise RuntimeError('You want to store a completely new trajectory with name' ' `%s` but this trajectory is already found in file `%s`.' 'Did you try to accidentally overwrite existing data? If ' 'you DO want to override existing data, use `overwrite_file=True`.' 'Note that this deletes the whole HDF5 file not just the particular ' 'trajectroy therein! ' % (traj.v_name, self._filename)) # Extract HDF5 settings from the trajectory self._srvc_check_hdf_properties(traj) # Store the trajectory for the first time if necessary: if self._trajectory_group is None: self._trajectory_group = self._hdf5file.create_group(where='/', name=self._trajectory_name, title=self._trajectory_name, filters=self._all_get_filters()) # Store meta information self._trj_store_meta_data(traj) # # Store recursively the config subtree # self._tree_store_recursively(pypetconstants.LEAF,traj.config,self._trajectory_group) if store_data in (pypetconstants.STORE_DATA_SKIPPING, pypetconstants.STORE_DATA, pypetconstants.OVERWRITE_DATA): counter = 0 maximum_display_other = 10 name_set = set(['parameters', 'config', 'derived_parameters', 'results']) for child_name in traj._children: if child_name in name_set: self._logger.info('Storing branch `%s`.' % child_name) else: if counter < maximum_display_other: self._logger.info('Storing branch/node `%s`.' % child_name) elif counter == maximum_display_other: self._logger.info('To many branches or nodes at root for display. ' 'I will not inform you about storing anymore. ' 'Branches are stored silently in the background. ' 'Do not worry, I will not freeze! Pinky promise!!!') counter += 1 # Store recursively the elements self._tree_store_sub_branch(traj, child_name, store_data=store_data, with_links=True, recursive=True, max_depth=max_depth, hdf5_group=self._trajectory_group) self._logger.info('Finished storing Trajectory `%s`.' % self._trajectory_name) else: self._logger.info('Finished init or meta data update for `%s`.' % self._trajectory_name) traj._stored = True
[ "Stores", "a", "trajectory", "to", "an", "hdf5", "file" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2453-L2525
[ "def", "_trj_store_trajectory", "(", "self", ",", "traj", ",", "only_init", "=", "False", ",", "store_data", "=", "pypetconstants", ".", "STORE_DATA", ",", "max_depth", "=", "None", ")", ":", "if", "not", "only_init", ":", "self", ".", "_logger", ".", "info", "(", "'Start storing Trajectory `%s`.'", "%", "self", ".", "_trajectory_name", ")", "else", ":", "self", ".", "_logger", ".", "info", "(", "'Initialising storage or updating meta data of Trajectory `%s`.'", "%", "self", ".", "_trajectory_name", ")", "store_data", "=", "pypetconstants", ".", "STORE_NOTHING", "# In case we accidentally chose a trajectory name that already exist", "# We do not want to mess up the stored trajectory but raise an Error", "if", "not", "traj", ".", "_stored", "and", "self", ".", "_trajectory_group", "is", "not", "None", ":", "raise", "RuntimeError", "(", "'You want to store a completely new trajectory with name'", "' `%s` but this trajectory is already found in file `%s`.'", "'Did you try to accidentally overwrite existing data? If '", "'you DO want to override existing data, use `overwrite_file=True`.'", "'Note that this deletes the whole HDF5 file not just the particular '", "'trajectroy therein! '", "%", "(", "traj", ".", "v_name", ",", "self", ".", "_filename", ")", ")", "# Extract HDF5 settings from the trajectory", "self", ".", "_srvc_check_hdf_properties", "(", "traj", ")", "# Store the trajectory for the first time if necessary:", "if", "self", ".", "_trajectory_group", "is", "None", ":", "self", ".", "_trajectory_group", "=", "self", ".", "_hdf5file", ".", "create_group", "(", "where", "=", "'/'", ",", "name", "=", "self", ".", "_trajectory_name", ",", "title", "=", "self", ".", "_trajectory_name", ",", "filters", "=", "self", ".", "_all_get_filters", "(", ")", ")", "# Store meta information", "self", ".", "_trj_store_meta_data", "(", "traj", ")", "# # Store recursively the config subtree", "# self._tree_store_recursively(pypetconstants.LEAF,traj.config,self._trajectory_group)", "if", "store_data", "in", "(", "pypetconstants", ".", "STORE_DATA_SKIPPING", ",", "pypetconstants", ".", "STORE_DATA", ",", "pypetconstants", ".", "OVERWRITE_DATA", ")", ":", "counter", "=", "0", "maximum_display_other", "=", "10", "name_set", "=", "set", "(", "[", "'parameters'", ",", "'config'", ",", "'derived_parameters'", ",", "'results'", "]", ")", "for", "child_name", "in", "traj", ".", "_children", ":", "if", "child_name", "in", "name_set", ":", "self", ".", "_logger", ".", "info", "(", "'Storing branch `%s`.'", "%", "child_name", ")", "else", ":", "if", "counter", "<", "maximum_display_other", ":", "self", ".", "_logger", ".", "info", "(", "'Storing branch/node `%s`.'", "%", "child_name", ")", "elif", "counter", "==", "maximum_display_other", ":", "self", ".", "_logger", ".", "info", "(", "'To many branches or nodes at root for display. '", "'I will not inform you about storing anymore. '", "'Branches are stored silently in the background. '", "'Do not worry, I will not freeze! Pinky promise!!!'", ")", "counter", "+=", "1", "# Store recursively the elements", "self", ".", "_tree_store_sub_branch", "(", "traj", ",", "child_name", ",", "store_data", "=", "store_data", ",", "with_links", "=", "True", ",", "recursive", "=", "True", ",", "max_depth", "=", "max_depth", ",", "hdf5_group", "=", "self", ".", "_trajectory_group", ")", "self", ".", "_logger", ".", "info", "(", "'Finished storing Trajectory `%s`.'", "%", "self", ".", "_trajectory_name", ")", "else", ":", "self", ".", "_logger", ".", "info", "(", "'Finished init or meta data update for `%s`.'", "%", "self", ".", "_trajectory_name", ")", "traj", ".", "_stored", "=", "True" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._tree_store_sub_branch
Stores data starting from a node along a branch and starts recursively loading all data at end of branch. :param traj_node: The node where storing starts :param branch_name: A branch along which storing progresses. Colon Notation is used: 'group1.group2.group3' loads 'group1', then 'group2', then 'group3', and then finally recursively all children and children's children below 'group3'. :param store_data: How data should be stored :param with_links: If links should be stored :param recursive: If the rest of the tree should be recursively stored :param max_depth: Maximum depth to store :param hdf5_group: HDF5 node in the file corresponding to `traj_node`
pypet/storageservice.py
def _tree_store_sub_branch(self, traj_node, branch_name, store_data=pypetconstants.STORE_DATA, with_links=True, recursive=False, max_depth=None, hdf5_group=None): """Stores data starting from a node along a branch and starts recursively loading all data at end of branch. :param traj_node: The node where storing starts :param branch_name: A branch along which storing progresses. Colon Notation is used: 'group1.group2.group3' loads 'group1', then 'group2', then 'group3', and then finally recursively all children and children's children below 'group3'. :param store_data: How data should be stored :param with_links: If links should be stored :param recursive: If the rest of the tree should be recursively stored :param max_depth: Maximum depth to store :param hdf5_group: HDF5 node in the file corresponding to `traj_node` """ if store_data == pypetconstants.STORE_NOTHING: return if max_depth is None: max_depth = float('inf') if hdf5_group is None: # Get parent hdf5 node location = traj_node.v_full_name hdf5_location = location.replace('.', '/') try: if location == '': hdf5_group = self._trajectory_group else: hdf5_group = self._hdf5file.get_node( where=self._trajectory_group, name=hdf5_location) except pt.NoSuchNodeError: self._logger.debug('Cannot store `%s` the parental hdf5 node with path `%s` does ' 'not exist on disk.' % (traj_node.v_name, hdf5_location)) if traj_node.v_is_leaf: self._logger.error('Cannot store `%s` the parental hdf5 ' 'node with path `%s` does ' 'not exist on disk! The child ' 'you want to store is a leaf node,' 'that cannot be stored without ' 'the parental node existing on ' 'disk.' % (traj_node.v_name, hdf5_location)) raise else: self._logger.debug('I will try to store the path from trajectory root to ' 'the child now.') self._tree_store_sub_branch(traj_node._nn_interface._root_instance, traj_node.v_full_name + '.' + branch_name, store_data=store_data, with_links=with_links, recursive=recursive, max_depth=max_depth + traj_node.v_depth, hdf5_group=self._trajectory_group) return current_depth = 1 split_names = branch_name.split('.') leaf_name = split_names.pop() for name in split_names: if current_depth > max_depth: return # Store along a branch self._tree_store_nodes_dfs(traj_node, name, store_data=store_data, with_links=with_links, recursive=False, max_depth=max_depth, current_depth=current_depth, parent_hdf5_group=hdf5_group) current_depth += 1 traj_node = traj_node._children[name] hdf5_group = getattr(hdf5_group, name) # Store final group and recursively everything below it if current_depth <= max_depth: self._tree_store_nodes_dfs(traj_node, leaf_name, store_data=store_data, with_links=with_links, recursive=recursive, max_depth=max_depth, current_depth=current_depth, parent_hdf5_group=hdf5_group)
def _tree_store_sub_branch(self, traj_node, branch_name, store_data=pypetconstants.STORE_DATA, with_links=True, recursive=False, max_depth=None, hdf5_group=None): """Stores data starting from a node along a branch and starts recursively loading all data at end of branch. :param traj_node: The node where storing starts :param branch_name: A branch along which storing progresses. Colon Notation is used: 'group1.group2.group3' loads 'group1', then 'group2', then 'group3', and then finally recursively all children and children's children below 'group3'. :param store_data: How data should be stored :param with_links: If links should be stored :param recursive: If the rest of the tree should be recursively stored :param max_depth: Maximum depth to store :param hdf5_group: HDF5 node in the file corresponding to `traj_node` """ if store_data == pypetconstants.STORE_NOTHING: return if max_depth is None: max_depth = float('inf') if hdf5_group is None: # Get parent hdf5 node location = traj_node.v_full_name hdf5_location = location.replace('.', '/') try: if location == '': hdf5_group = self._trajectory_group else: hdf5_group = self._hdf5file.get_node( where=self._trajectory_group, name=hdf5_location) except pt.NoSuchNodeError: self._logger.debug('Cannot store `%s` the parental hdf5 node with path `%s` does ' 'not exist on disk.' % (traj_node.v_name, hdf5_location)) if traj_node.v_is_leaf: self._logger.error('Cannot store `%s` the parental hdf5 ' 'node with path `%s` does ' 'not exist on disk! The child ' 'you want to store is a leaf node,' 'that cannot be stored without ' 'the parental node existing on ' 'disk.' % (traj_node.v_name, hdf5_location)) raise else: self._logger.debug('I will try to store the path from trajectory root to ' 'the child now.') self._tree_store_sub_branch(traj_node._nn_interface._root_instance, traj_node.v_full_name + '.' + branch_name, store_data=store_data, with_links=with_links, recursive=recursive, max_depth=max_depth + traj_node.v_depth, hdf5_group=self._trajectory_group) return current_depth = 1 split_names = branch_name.split('.') leaf_name = split_names.pop() for name in split_names: if current_depth > max_depth: return # Store along a branch self._tree_store_nodes_dfs(traj_node, name, store_data=store_data, with_links=with_links, recursive=False, max_depth=max_depth, current_depth=current_depth, parent_hdf5_group=hdf5_group) current_depth += 1 traj_node = traj_node._children[name] hdf5_group = getattr(hdf5_group, name) # Store final group and recursively everything below it if current_depth <= max_depth: self._tree_store_nodes_dfs(traj_node, leaf_name, store_data=store_data, with_links=with_links, recursive=recursive, max_depth=max_depth, current_depth=current_depth, parent_hdf5_group=hdf5_group)
[ "Stores", "data", "starting", "from", "a", "node", "along", "a", "branch", "and", "starts", "recursively", "loading", "all", "data", "at", "end", "of", "branch", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2527-L2627
[ "def", "_tree_store_sub_branch", "(", "self", ",", "traj_node", ",", "branch_name", ",", "store_data", "=", "pypetconstants", ".", "STORE_DATA", ",", "with_links", "=", "True", ",", "recursive", "=", "False", ",", "max_depth", "=", "None", ",", "hdf5_group", "=", "None", ")", ":", "if", "store_data", "==", "pypetconstants", ".", "STORE_NOTHING", ":", "return", "if", "max_depth", "is", "None", ":", "max_depth", "=", "float", "(", "'inf'", ")", "if", "hdf5_group", "is", "None", ":", "# Get parent hdf5 node", "location", "=", "traj_node", ".", "v_full_name", "hdf5_location", "=", "location", ".", "replace", "(", "'.'", ",", "'/'", ")", "try", ":", "if", "location", "==", "''", ":", "hdf5_group", "=", "self", ".", "_trajectory_group", "else", ":", "hdf5_group", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "where", "=", "self", ".", "_trajectory_group", ",", "name", "=", "hdf5_location", ")", "except", "pt", ".", "NoSuchNodeError", ":", "self", ".", "_logger", ".", "debug", "(", "'Cannot store `%s` the parental hdf5 node with path `%s` does '", "'not exist on disk.'", "%", "(", "traj_node", ".", "v_name", ",", "hdf5_location", ")", ")", "if", "traj_node", ".", "v_is_leaf", ":", "self", ".", "_logger", ".", "error", "(", "'Cannot store `%s` the parental hdf5 '", "'node with path `%s` does '", "'not exist on disk! The child '", "'you want to store is a leaf node,'", "'that cannot be stored without '", "'the parental node existing on '", "'disk.'", "%", "(", "traj_node", ".", "v_name", ",", "hdf5_location", ")", ")", "raise", "else", ":", "self", ".", "_logger", ".", "debug", "(", "'I will try to store the path from trajectory root to '", "'the child now.'", ")", "self", ".", "_tree_store_sub_branch", "(", "traj_node", ".", "_nn_interface", ".", "_root_instance", ",", "traj_node", ".", "v_full_name", "+", "'.'", "+", "branch_name", ",", "store_data", "=", "store_data", ",", "with_links", "=", "with_links", ",", "recursive", "=", "recursive", ",", "max_depth", "=", "max_depth", "+", "traj_node", ".", "v_depth", ",", "hdf5_group", "=", "self", ".", "_trajectory_group", ")", "return", "current_depth", "=", "1", "split_names", "=", "branch_name", ".", "split", "(", "'.'", ")", "leaf_name", "=", "split_names", ".", "pop", "(", ")", "for", "name", "in", "split_names", ":", "if", "current_depth", ">", "max_depth", ":", "return", "# Store along a branch", "self", ".", "_tree_store_nodes_dfs", "(", "traj_node", ",", "name", ",", "store_data", "=", "store_data", ",", "with_links", "=", "with_links", ",", "recursive", "=", "False", ",", "max_depth", "=", "max_depth", ",", "current_depth", "=", "current_depth", ",", "parent_hdf5_group", "=", "hdf5_group", ")", "current_depth", "+=", "1", "traj_node", "=", "traj_node", ".", "_children", "[", "name", "]", "hdf5_group", "=", "getattr", "(", "hdf5_group", ",", "name", ")", "# Store final group and recursively everything below it", "if", "current_depth", "<=", "max_depth", ":", "self", ".", "_tree_store_nodes_dfs", "(", "traj_node", ",", "leaf_name", ",", "store_data", "=", "store_data", ",", "with_links", "=", "with_links", ",", "recursive", "=", "recursive", ",", "max_depth", "=", "max_depth", ",", "current_depth", "=", "current_depth", ",", "parent_hdf5_group", "=", "hdf5_group", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._tree_create_leaf
Creates a new pypet leaf instance. Returns the leaf and if it is an explored parameter the length of the range.
pypet/storageservice.py
def _tree_create_leaf(self, name, trajectory, hdf5_group): """ Creates a new pypet leaf instance. Returns the leaf and if it is an explored parameter the length of the range. """ class_name = self._all_get_from_attrs(hdf5_group, HDF5StorageService.CLASS_NAME) # Create the instance with the appropriate constructor class_constructor = trajectory._create_class(class_name) instance = trajectory._construct_instance(class_constructor, name) return instance
def _tree_create_leaf(self, name, trajectory, hdf5_group): """ Creates a new pypet leaf instance. Returns the leaf and if it is an explored parameter the length of the range. """ class_name = self._all_get_from_attrs(hdf5_group, HDF5StorageService.CLASS_NAME) # Create the instance with the appropriate constructor class_constructor = trajectory._create_class(class_name) instance = trajectory._construct_instance(class_constructor, name) return instance
[ "Creates", "a", "new", "pypet", "leaf", "instance", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2632-L2645
[ "def", "_tree_create_leaf", "(", "self", ",", "name", ",", "trajectory", ",", "hdf5_group", ")", ":", "class_name", "=", "self", ".", "_all_get_from_attrs", "(", "hdf5_group", ",", "HDF5StorageService", ".", "CLASS_NAME", ")", "# Create the instance with the appropriate constructor", "class_constructor", "=", "trajectory", ".", "_create_class", "(", "class_name", ")", "instance", "=", "trajectory", ".", "_construct_instance", "(", "class_constructor", ",", "name", ")", "return", "instance" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._tree_load_nodes_dfs
Loads a node from hdf5 file and if desired recursively everything below :param parent_traj_node: The parent node whose child should be loaded :param load_data: How to load the data :param with_links: If links should be loaded :param recursive: Whether loading recursively below hdf5_group :param max_depth: Maximum depth :param current_depth: Current depth :param trajectory: The trajectory object :param as_new: If trajectory is loaded as new :param hdf5_group: The hdf5 group containing the child to be loaded
pypet/storageservice.py
def _tree_load_nodes_dfs(self, parent_traj_node, load_data, with_links, recursive, max_depth, current_depth, trajectory, as_new, hdf5_group): """Loads a node from hdf5 file and if desired recursively everything below :param parent_traj_node: The parent node whose child should be loaded :param load_data: How to load the data :param with_links: If links should be loaded :param recursive: Whether loading recursively below hdf5_group :param max_depth: Maximum depth :param current_depth: Current depth :param trajectory: The trajectory object :param as_new: If trajectory is loaded as new :param hdf5_group: The hdf5 group containing the child to be loaded """ if max_depth is None: max_depth = float('inf') loading_list = [(parent_traj_node, current_depth, hdf5_group)] while loading_list: parent_traj_node, current_depth, hdf5_group = loading_list.pop() if isinstance(hdf5_group, pt.link.SoftLink): if with_links: # We end up here when auto-loading a soft link self._tree_load_link(parent_traj_node, load_data=load_data, traj=trajectory, as_new=as_new, hdf5_soft_link=hdf5_group) continue name = hdf5_group._v_name is_leaf = self._all_get_from_attrs(hdf5_group, HDF5StorageService.LEAF) in_trajectory = name in parent_traj_node._children if is_leaf: # In case we have a leaf node, we need to check if we have to create a new # parameter or result if in_trajectory: instance = parent_traj_node._children[name] # Otherwise we need to create a new instance else: instance = self._tree_create_leaf(name, trajectory, hdf5_group) # Add the instance to the trajectory tree parent_traj_node._add_leaf_from_storage(args=(instance,), kwargs={}) self._prm_load_parameter_or_result(instance, load_data=load_data, _hdf5_group=hdf5_group) if as_new: instance._stored = False else: if in_trajectory: traj_group = parent_traj_node._children[name] if load_data == pypetconstants.OVERWRITE_DATA: traj_group.v_annotations.f_empty() traj_group.v_comment = '' else: if HDF5StorageService.CLASS_NAME in hdf5_group._v_attrs: class_name = self._all_get_from_attrs(hdf5_group, HDF5StorageService.CLASS_NAME) class_constructor = trajectory._create_class(class_name) instance = trajectory._construct_instance(class_constructor, name) args = (instance,) else: args = (name,) # If the group does not exist create it' traj_group = parent_traj_node._add_group_from_storage(args=args, kwargs={}) # Load annotations and comment self._grp_load_group(traj_group, load_data=load_data, with_links=with_links, recursive=False, max_depth=max_depth, _traj=trajectory, _as_new=as_new, _hdf5_group=hdf5_group) if recursive and current_depth < max_depth: new_depth = current_depth + 1 for children in (hdf5_group._v_groups, hdf5_group._v_links): for new_hdf5_group_name in children: new_hdf5_group = children[new_hdf5_group_name] loading_list.append((traj_group, new_depth, new_hdf5_group))
def _tree_load_nodes_dfs(self, parent_traj_node, load_data, with_links, recursive, max_depth, current_depth, trajectory, as_new, hdf5_group): """Loads a node from hdf5 file and if desired recursively everything below :param parent_traj_node: The parent node whose child should be loaded :param load_data: How to load the data :param with_links: If links should be loaded :param recursive: Whether loading recursively below hdf5_group :param max_depth: Maximum depth :param current_depth: Current depth :param trajectory: The trajectory object :param as_new: If trajectory is loaded as new :param hdf5_group: The hdf5 group containing the child to be loaded """ if max_depth is None: max_depth = float('inf') loading_list = [(parent_traj_node, current_depth, hdf5_group)] while loading_list: parent_traj_node, current_depth, hdf5_group = loading_list.pop() if isinstance(hdf5_group, pt.link.SoftLink): if with_links: # We end up here when auto-loading a soft link self._tree_load_link(parent_traj_node, load_data=load_data, traj=trajectory, as_new=as_new, hdf5_soft_link=hdf5_group) continue name = hdf5_group._v_name is_leaf = self._all_get_from_attrs(hdf5_group, HDF5StorageService.LEAF) in_trajectory = name in parent_traj_node._children if is_leaf: # In case we have a leaf node, we need to check if we have to create a new # parameter or result if in_trajectory: instance = parent_traj_node._children[name] # Otherwise we need to create a new instance else: instance = self._tree_create_leaf(name, trajectory, hdf5_group) # Add the instance to the trajectory tree parent_traj_node._add_leaf_from_storage(args=(instance,), kwargs={}) self._prm_load_parameter_or_result(instance, load_data=load_data, _hdf5_group=hdf5_group) if as_new: instance._stored = False else: if in_trajectory: traj_group = parent_traj_node._children[name] if load_data == pypetconstants.OVERWRITE_DATA: traj_group.v_annotations.f_empty() traj_group.v_comment = '' else: if HDF5StorageService.CLASS_NAME in hdf5_group._v_attrs: class_name = self._all_get_from_attrs(hdf5_group, HDF5StorageService.CLASS_NAME) class_constructor = trajectory._create_class(class_name) instance = trajectory._construct_instance(class_constructor, name) args = (instance,) else: args = (name,) # If the group does not exist create it' traj_group = parent_traj_node._add_group_from_storage(args=args, kwargs={}) # Load annotations and comment self._grp_load_group(traj_group, load_data=load_data, with_links=with_links, recursive=False, max_depth=max_depth, _traj=trajectory, _as_new=as_new, _hdf5_group=hdf5_group) if recursive and current_depth < max_depth: new_depth = current_depth + 1 for children in (hdf5_group._v_groups, hdf5_group._v_links): for new_hdf5_group_name in children: new_hdf5_group = children[new_hdf5_group_name] loading_list.append((traj_group, new_depth, new_hdf5_group))
[ "Loads", "a", "node", "from", "hdf5", "file", "and", "if", "desired", "recursively", "everything", "below" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2647-L2730
[ "def", "_tree_load_nodes_dfs", "(", "self", ",", "parent_traj_node", ",", "load_data", ",", "with_links", ",", "recursive", ",", "max_depth", ",", "current_depth", ",", "trajectory", ",", "as_new", ",", "hdf5_group", ")", ":", "if", "max_depth", "is", "None", ":", "max_depth", "=", "float", "(", "'inf'", ")", "loading_list", "=", "[", "(", "parent_traj_node", ",", "current_depth", ",", "hdf5_group", ")", "]", "while", "loading_list", ":", "parent_traj_node", ",", "current_depth", ",", "hdf5_group", "=", "loading_list", ".", "pop", "(", ")", "if", "isinstance", "(", "hdf5_group", ",", "pt", ".", "link", ".", "SoftLink", ")", ":", "if", "with_links", ":", "# We end up here when auto-loading a soft link", "self", ".", "_tree_load_link", "(", "parent_traj_node", ",", "load_data", "=", "load_data", ",", "traj", "=", "trajectory", ",", "as_new", "=", "as_new", ",", "hdf5_soft_link", "=", "hdf5_group", ")", "continue", "name", "=", "hdf5_group", ".", "_v_name", "is_leaf", "=", "self", ".", "_all_get_from_attrs", "(", "hdf5_group", ",", "HDF5StorageService", ".", "LEAF", ")", "in_trajectory", "=", "name", "in", "parent_traj_node", ".", "_children", "if", "is_leaf", ":", "# In case we have a leaf node, we need to check if we have to create a new", "# parameter or result", "if", "in_trajectory", ":", "instance", "=", "parent_traj_node", ".", "_children", "[", "name", "]", "# Otherwise we need to create a new instance", "else", ":", "instance", "=", "self", ".", "_tree_create_leaf", "(", "name", ",", "trajectory", ",", "hdf5_group", ")", "# Add the instance to the trajectory tree", "parent_traj_node", ".", "_add_leaf_from_storage", "(", "args", "=", "(", "instance", ",", ")", ",", "kwargs", "=", "{", "}", ")", "self", ".", "_prm_load_parameter_or_result", "(", "instance", ",", "load_data", "=", "load_data", ",", "_hdf5_group", "=", "hdf5_group", ")", "if", "as_new", ":", "instance", ".", "_stored", "=", "False", "else", ":", "if", "in_trajectory", ":", "traj_group", "=", "parent_traj_node", ".", "_children", "[", "name", "]", "if", "load_data", "==", "pypetconstants", ".", "OVERWRITE_DATA", ":", "traj_group", ".", "v_annotations", ".", "f_empty", "(", ")", "traj_group", ".", "v_comment", "=", "''", "else", ":", "if", "HDF5StorageService", ".", "CLASS_NAME", "in", "hdf5_group", ".", "_v_attrs", ":", "class_name", "=", "self", ".", "_all_get_from_attrs", "(", "hdf5_group", ",", "HDF5StorageService", ".", "CLASS_NAME", ")", "class_constructor", "=", "trajectory", ".", "_create_class", "(", "class_name", ")", "instance", "=", "trajectory", ".", "_construct_instance", "(", "class_constructor", ",", "name", ")", "args", "=", "(", "instance", ",", ")", "else", ":", "args", "=", "(", "name", ",", ")", "# If the group does not exist create it'", "traj_group", "=", "parent_traj_node", ".", "_add_group_from_storage", "(", "args", "=", "args", ",", "kwargs", "=", "{", "}", ")", "# Load annotations and comment", "self", ".", "_grp_load_group", "(", "traj_group", ",", "load_data", "=", "load_data", ",", "with_links", "=", "with_links", ",", "recursive", "=", "False", ",", "max_depth", "=", "max_depth", ",", "_traj", "=", "trajectory", ",", "_as_new", "=", "as_new", ",", "_hdf5_group", "=", "hdf5_group", ")", "if", "recursive", "and", "current_depth", "<", "max_depth", ":", "new_depth", "=", "current_depth", "+", "1", "for", "children", "in", "(", "hdf5_group", ".", "_v_groups", ",", "hdf5_group", ".", "_v_links", ")", ":", "for", "new_hdf5_group_name", "in", "children", ":", "new_hdf5_group", "=", "children", "[", "new_hdf5_group_name", "]", "loading_list", ".", "append", "(", "(", "traj_group", ",", "new_depth", ",", "new_hdf5_group", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._tree_load_link
Loads a link :param new_traj_node: Node in traj containing link :param load_data: How to load data in the linked node :param traj: The trajectory :param as_new: If data in linked node should be loaded as new :param hdf5_soft_link: The hdf5 soft link
pypet/storageservice.py
def _tree_load_link(self, new_traj_node, load_data, traj, as_new, hdf5_soft_link): """ Loads a link :param new_traj_node: Node in traj containing link :param load_data: How to load data in the linked node :param traj: The trajectory :param as_new: If data in linked node should be loaded as new :param hdf5_soft_link: The hdf5 soft link """ try: linked_group = hdf5_soft_link() link_name = hdf5_soft_link._v_name if (not link_name in new_traj_node._links or load_data==pypetconstants.OVERWRITE_DATA): link_location = linked_group._v_pathname full_name = '.'.join(link_location.split('/')[2:]) if not full_name in traj: self._tree_load_sub_branch(traj, full_name, load_data=pypetconstants.LOAD_SKELETON, with_links=False, recursive=False, _trajectory=traj, _as_new=as_new, _hdf5_group=self._trajectory_group) if (load_data == pypetconstants.OVERWRITE_DATA and link_name in new_traj_node._links): new_traj_node.f_remove_link(link_name) if not link_name in new_traj_node._links: new_traj_node._nn_interface._add_generic(new_traj_node, type_name=nn.LINK, group_type_name=nn.GROUP, args=(link_name, traj.f_get(full_name)), kwargs={}, add_prefix=False, check_naming=False) else: raise RuntimeError('You shall not pass!') except pt.NoSuchNodeError: self._logger.error('Link `%s` under `%s` is broken, cannot load it, ' 'I will ignore it, you have to ' 'manually delete it!' % (hdf5_soft_link._v_name, new_traj_node.v_full_name))
def _tree_load_link(self, new_traj_node, load_data, traj, as_new, hdf5_soft_link): """ Loads a link :param new_traj_node: Node in traj containing link :param load_data: How to load data in the linked node :param traj: The trajectory :param as_new: If data in linked node should be loaded as new :param hdf5_soft_link: The hdf5 soft link """ try: linked_group = hdf5_soft_link() link_name = hdf5_soft_link._v_name if (not link_name in new_traj_node._links or load_data==pypetconstants.OVERWRITE_DATA): link_location = linked_group._v_pathname full_name = '.'.join(link_location.split('/')[2:]) if not full_name in traj: self._tree_load_sub_branch(traj, full_name, load_data=pypetconstants.LOAD_SKELETON, with_links=False, recursive=False, _trajectory=traj, _as_new=as_new, _hdf5_group=self._trajectory_group) if (load_data == pypetconstants.OVERWRITE_DATA and link_name in new_traj_node._links): new_traj_node.f_remove_link(link_name) if not link_name in new_traj_node._links: new_traj_node._nn_interface._add_generic(new_traj_node, type_name=nn.LINK, group_type_name=nn.GROUP, args=(link_name, traj.f_get(full_name)), kwargs={}, add_prefix=False, check_naming=False) else: raise RuntimeError('You shall not pass!') except pt.NoSuchNodeError: self._logger.error('Link `%s` under `%s` is broken, cannot load it, ' 'I will ignore it, you have to ' 'manually delete it!' % (hdf5_soft_link._v_name, new_traj_node.v_full_name))
[ "Loads", "a", "link", ":", "param", "new_traj_node", ":", "Node", "in", "traj", "containing", "link", ":", "param", "load_data", ":", "How", "to", "load", "data", "in", "the", "linked", "node", ":", "param", "traj", ":", "The", "trajectory", ":", "param", "as_new", ":", "If", "data", "in", "linked", "node", "should", "be", "loaded", "as", "new", ":", "param", "hdf5_soft_link", ":", "The", "hdf5", "soft", "link" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2732-L2775
[ "def", "_tree_load_link", "(", "self", ",", "new_traj_node", ",", "load_data", ",", "traj", ",", "as_new", ",", "hdf5_soft_link", ")", ":", "try", ":", "linked_group", "=", "hdf5_soft_link", "(", ")", "link_name", "=", "hdf5_soft_link", ".", "_v_name", "if", "(", "not", "link_name", "in", "new_traj_node", ".", "_links", "or", "load_data", "==", "pypetconstants", ".", "OVERWRITE_DATA", ")", ":", "link_location", "=", "linked_group", ".", "_v_pathname", "full_name", "=", "'.'", ".", "join", "(", "link_location", ".", "split", "(", "'/'", ")", "[", "2", ":", "]", ")", "if", "not", "full_name", "in", "traj", ":", "self", ".", "_tree_load_sub_branch", "(", "traj", ",", "full_name", ",", "load_data", "=", "pypetconstants", ".", "LOAD_SKELETON", ",", "with_links", "=", "False", ",", "recursive", "=", "False", ",", "_trajectory", "=", "traj", ",", "_as_new", "=", "as_new", ",", "_hdf5_group", "=", "self", ".", "_trajectory_group", ")", "if", "(", "load_data", "==", "pypetconstants", ".", "OVERWRITE_DATA", "and", "link_name", "in", "new_traj_node", ".", "_links", ")", ":", "new_traj_node", ".", "f_remove_link", "(", "link_name", ")", "if", "not", "link_name", "in", "new_traj_node", ".", "_links", ":", "new_traj_node", ".", "_nn_interface", ".", "_add_generic", "(", "new_traj_node", ",", "type_name", "=", "nn", ".", "LINK", ",", "group_type_name", "=", "nn", ".", "GROUP", ",", "args", "=", "(", "link_name", ",", "traj", ".", "f_get", "(", "full_name", ")", ")", ",", "kwargs", "=", "{", "}", ",", "add_prefix", "=", "False", ",", "check_naming", "=", "False", ")", "else", ":", "raise", "RuntimeError", "(", "'You shall not pass!'", ")", "except", "pt", ".", "NoSuchNodeError", ":", "self", ".", "_logger", ".", "error", "(", "'Link `%s` under `%s` is broken, cannot load it, '", "'I will ignore it, you have to '", "'manually delete it!'", "%", "(", "hdf5_soft_link", ".", "_v_name", ",", "new_traj_node", ".", "v_full_name", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._tree_store_nodes_dfs
Stores a node to hdf5 and if desired stores recursively everything below it. :param parent_traj_node: The parental node :param name: Name of node to be stored :param store_data: How to store data :param with_links: If links should be stored :param recursive: Whether to store recursively the subtree :param max_depth: Maximum recursion depth in tree :param current_depth: Current depth :param parent_hdf5_group: Parent hdf5 group
pypet/storageservice.py
def _tree_store_nodes_dfs(self, parent_traj_node, name, store_data, with_links, recursive, max_depth, current_depth, parent_hdf5_group): """Stores a node to hdf5 and if desired stores recursively everything below it. :param parent_traj_node: The parental node :param name: Name of node to be stored :param store_data: How to store data :param with_links: If links should be stored :param recursive: Whether to store recursively the subtree :param max_depth: Maximum recursion depth in tree :param current_depth: Current depth :param parent_hdf5_group: Parent hdf5 group """ if max_depth is None: max_depth = float('inf') store_list = [(parent_traj_node, name, current_depth, parent_hdf5_group)] while store_list: parent_traj_node, name, current_depth, parent_hdf5_group = store_list.pop() # Check if we create a link if name in parent_traj_node._links: if with_links: self._tree_store_link(parent_traj_node, name, parent_hdf5_group) continue traj_node = parent_traj_node._children[name] # If the node does not exist in the hdf5 file create it if not hasattr(parent_hdf5_group, name): newly_created = True new_hdf5_group = self._hdf5file.create_group(where=parent_hdf5_group, name=name, filters=self._all_get_filters()) else: newly_created = False new_hdf5_group = getattr(parent_hdf5_group, name) if traj_node.v_is_leaf: self._prm_store_parameter_or_result(traj_node, store_data=store_data, _hdf5_group=new_hdf5_group, _newly_created=newly_created) else: self._grp_store_group(traj_node, store_data=store_data, with_links=with_links, recursive=False, max_depth=max_depth, _hdf5_group=new_hdf5_group, _newly_created=newly_created) if recursive and current_depth < max_depth: for child in traj_node._children.keys(): store_list.append((traj_node, child, current_depth + 1, new_hdf5_group))
def _tree_store_nodes_dfs(self, parent_traj_node, name, store_data, with_links, recursive, max_depth, current_depth, parent_hdf5_group): """Stores a node to hdf5 and if desired stores recursively everything below it. :param parent_traj_node: The parental node :param name: Name of node to be stored :param store_data: How to store data :param with_links: If links should be stored :param recursive: Whether to store recursively the subtree :param max_depth: Maximum recursion depth in tree :param current_depth: Current depth :param parent_hdf5_group: Parent hdf5 group """ if max_depth is None: max_depth = float('inf') store_list = [(parent_traj_node, name, current_depth, parent_hdf5_group)] while store_list: parent_traj_node, name, current_depth, parent_hdf5_group = store_list.pop() # Check if we create a link if name in parent_traj_node._links: if with_links: self._tree_store_link(parent_traj_node, name, parent_hdf5_group) continue traj_node = parent_traj_node._children[name] # If the node does not exist in the hdf5 file create it if not hasattr(parent_hdf5_group, name): newly_created = True new_hdf5_group = self._hdf5file.create_group(where=parent_hdf5_group, name=name, filters=self._all_get_filters()) else: newly_created = False new_hdf5_group = getattr(parent_hdf5_group, name) if traj_node.v_is_leaf: self._prm_store_parameter_or_result(traj_node, store_data=store_data, _hdf5_group=new_hdf5_group, _newly_created=newly_created) else: self._grp_store_group(traj_node, store_data=store_data, with_links=with_links, recursive=False, max_depth=max_depth, _hdf5_group=new_hdf5_group, _newly_created=newly_created) if recursive and current_depth < max_depth: for child in traj_node._children.keys(): store_list.append((traj_node, child, current_depth + 1, new_hdf5_group))
[ "Stores", "a", "node", "to", "hdf5", "and", "if", "desired", "stores", "recursively", "everything", "below", "it", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2777-L2830
[ "def", "_tree_store_nodes_dfs", "(", "self", ",", "parent_traj_node", ",", "name", ",", "store_data", ",", "with_links", ",", "recursive", ",", "max_depth", ",", "current_depth", ",", "parent_hdf5_group", ")", ":", "if", "max_depth", "is", "None", ":", "max_depth", "=", "float", "(", "'inf'", ")", "store_list", "=", "[", "(", "parent_traj_node", ",", "name", ",", "current_depth", ",", "parent_hdf5_group", ")", "]", "while", "store_list", ":", "parent_traj_node", ",", "name", ",", "current_depth", ",", "parent_hdf5_group", "=", "store_list", ".", "pop", "(", ")", "# Check if we create a link", "if", "name", "in", "parent_traj_node", ".", "_links", ":", "if", "with_links", ":", "self", ".", "_tree_store_link", "(", "parent_traj_node", ",", "name", ",", "parent_hdf5_group", ")", "continue", "traj_node", "=", "parent_traj_node", ".", "_children", "[", "name", "]", "# If the node does not exist in the hdf5 file create it", "if", "not", "hasattr", "(", "parent_hdf5_group", ",", "name", ")", ":", "newly_created", "=", "True", "new_hdf5_group", "=", "self", ".", "_hdf5file", ".", "create_group", "(", "where", "=", "parent_hdf5_group", ",", "name", "=", "name", ",", "filters", "=", "self", ".", "_all_get_filters", "(", ")", ")", "else", ":", "newly_created", "=", "False", "new_hdf5_group", "=", "getattr", "(", "parent_hdf5_group", ",", "name", ")", "if", "traj_node", ".", "v_is_leaf", ":", "self", ".", "_prm_store_parameter_or_result", "(", "traj_node", ",", "store_data", "=", "store_data", ",", "_hdf5_group", "=", "new_hdf5_group", ",", "_newly_created", "=", "newly_created", ")", "else", ":", "self", ".", "_grp_store_group", "(", "traj_node", ",", "store_data", "=", "store_data", ",", "with_links", "=", "with_links", ",", "recursive", "=", "False", ",", "max_depth", "=", "max_depth", ",", "_hdf5_group", "=", "new_hdf5_group", ",", "_newly_created", "=", "newly_created", ")", "if", "recursive", "and", "current_depth", "<", "max_depth", ":", "for", "child", "in", "traj_node", ".", "_children", ".", "keys", "(", ")", ":", "store_list", ".", "append", "(", "(", "traj_node", ",", "child", ",", "current_depth", "+", "1", ",", "new_hdf5_group", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._tree_store_link
Creates a soft link. :param node_in_traj: parental node :param store_data: how to store data :param link: name of link :param hdf5_group: current parental hdf5 group
pypet/storageservice.py
def _tree_store_link(self, node_in_traj, link, hdf5_group): """Creates a soft link. :param node_in_traj: parental node :param store_data: how to store data :param link: name of link :param hdf5_group: current parental hdf5 group """ if hasattr(hdf5_group, link): return linked_traj_node = node_in_traj._links[link] linking_name = linked_traj_node.v_full_name.replace('.','/') linking_name = '/' + self._trajectory_name + '/' + linking_name try: to_link_hdf5_group = self._hdf5file.get_node(where=linking_name) except pt.NoSuchNodeError: self._logger.debug('Could not store link `%s` under `%s` immediately, ' 'need to store `%s` first. ' 'Will store the link right after.' % (link, node_in_traj.v_full_name, linked_traj_node.v_full_name)) root = node_in_traj._nn_interface._root_instance self._tree_store_sub_branch(root, linked_traj_node.v_full_name, store_data=pypetconstants.STORE_DATA_SKIPPING, with_links=False, recursive=False, hdf5_group=self._trajectory_group) to_link_hdf5_group = self._hdf5file.get_node(where=linking_name) self._hdf5file.create_soft_link(where=hdf5_group, name=link, target=to_link_hdf5_group)
def _tree_store_link(self, node_in_traj, link, hdf5_group): """Creates a soft link. :param node_in_traj: parental node :param store_data: how to store data :param link: name of link :param hdf5_group: current parental hdf5 group """ if hasattr(hdf5_group, link): return linked_traj_node = node_in_traj._links[link] linking_name = linked_traj_node.v_full_name.replace('.','/') linking_name = '/' + self._trajectory_name + '/' + linking_name try: to_link_hdf5_group = self._hdf5file.get_node(where=linking_name) except pt.NoSuchNodeError: self._logger.debug('Could not store link `%s` under `%s` immediately, ' 'need to store `%s` first. ' 'Will store the link right after.' % (link, node_in_traj.v_full_name, linked_traj_node.v_full_name)) root = node_in_traj._nn_interface._root_instance self._tree_store_sub_branch(root, linked_traj_node.v_full_name, store_data=pypetconstants.STORE_DATA_SKIPPING, with_links=False, recursive=False, hdf5_group=self._trajectory_group) to_link_hdf5_group = self._hdf5file.get_node(where=linking_name) self._hdf5file.create_soft_link(where=hdf5_group, name=link, target=to_link_hdf5_group)
[ "Creates", "a", "soft", "link", ".", ":", "param", "node_in_traj", ":", "parental", "node", ":", "param", "store_data", ":", "how", "to", "store", "data", ":", "param", "link", ":", "name", "of", "link", ":", "param", "hdf5_group", ":", "current", "parental", "hdf5", "group" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2832-L2863
[ "def", "_tree_store_link", "(", "self", ",", "node_in_traj", ",", "link", ",", "hdf5_group", ")", ":", "if", "hasattr", "(", "hdf5_group", ",", "link", ")", ":", "return", "linked_traj_node", "=", "node_in_traj", ".", "_links", "[", "link", "]", "linking_name", "=", "linked_traj_node", ".", "v_full_name", ".", "replace", "(", "'.'", ",", "'/'", ")", "linking_name", "=", "'/'", "+", "self", ".", "_trajectory_name", "+", "'/'", "+", "linking_name", "try", ":", "to_link_hdf5_group", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "where", "=", "linking_name", ")", "except", "pt", ".", "NoSuchNodeError", ":", "self", ".", "_logger", ".", "debug", "(", "'Could not store link `%s` under `%s` immediately, '", "'need to store `%s` first. '", "'Will store the link right after.'", "%", "(", "link", ",", "node_in_traj", ".", "v_full_name", ",", "linked_traj_node", ".", "v_full_name", ")", ")", "root", "=", "node_in_traj", ".", "_nn_interface", ".", "_root_instance", "self", ".", "_tree_store_sub_branch", "(", "root", ",", "linked_traj_node", ".", "v_full_name", ",", "store_data", "=", "pypetconstants", ".", "STORE_DATA_SKIPPING", ",", "with_links", "=", "False", ",", "recursive", "=", "False", ",", "hdf5_group", "=", "self", ".", "_trajectory_group", ")", "to_link_hdf5_group", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "where", "=", "linking_name", ")", "self", ".", "_hdf5file", ".", "create_soft_link", "(", "where", "=", "hdf5_group", ",", "name", "=", "link", ",", "target", "=", "to_link_hdf5_group", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srn_store_single_run
Stores a single run instance to disk (only meta data)
pypet/storageservice.py
def _srn_store_single_run(self, traj, recursive=True, store_data=pypetconstants.STORE_DATA, max_depth=None): """ Stores a single run instance to disk (only meta data)""" if store_data != pypetconstants.STORE_NOTHING: self._logger.debug('Storing Data of single run `%s`.' % traj.v_crun) if max_depth is None: max_depth = float('inf') for name_pair in traj._new_nodes: _, name = name_pair parent_group, child_node = traj._new_nodes[name_pair] if not child_node._stored: self._tree_store_sub_branch(parent_group, name, store_data=store_data, with_links=True, recursive=recursive, max_depth=max_depth - child_node.v_depth, hdf5_group=None) for name_pair in traj._new_links: _, link = name_pair parent_group, _ = traj._new_links[name_pair] self._tree_store_sub_branch(parent_group, link, store_data=store_data, with_links=True, recursive=recursive, max_depth=max_depth - parent_group.v_depth - 1, hdf5_group=None)
def _srn_store_single_run(self, traj, recursive=True, store_data=pypetconstants.STORE_DATA, max_depth=None): """ Stores a single run instance to disk (only meta data)""" if store_data != pypetconstants.STORE_NOTHING: self._logger.debug('Storing Data of single run `%s`.' % traj.v_crun) if max_depth is None: max_depth = float('inf') for name_pair in traj._new_nodes: _, name = name_pair parent_group, child_node = traj._new_nodes[name_pair] if not child_node._stored: self._tree_store_sub_branch(parent_group, name, store_data=store_data, with_links=True, recursive=recursive, max_depth=max_depth - child_node.v_depth, hdf5_group=None) for name_pair in traj._new_links: _, link = name_pair parent_group, _ = traj._new_links[name_pair] self._tree_store_sub_branch(parent_group, link, store_data=store_data, with_links=True, recursive=recursive, max_depth=max_depth - parent_group.v_depth - 1, hdf5_group=None)
[ "Stores", "a", "single", "run", "instance", "to", "disk", "(", "only", "meta", "data", ")" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2867-L2895
[ "def", "_srn_store_single_run", "(", "self", ",", "traj", ",", "recursive", "=", "True", ",", "store_data", "=", "pypetconstants", ".", "STORE_DATA", ",", "max_depth", "=", "None", ")", ":", "if", "store_data", "!=", "pypetconstants", ".", "STORE_NOTHING", ":", "self", ".", "_logger", ".", "debug", "(", "'Storing Data of single run `%s`.'", "%", "traj", ".", "v_crun", ")", "if", "max_depth", "is", "None", ":", "max_depth", "=", "float", "(", "'inf'", ")", "for", "name_pair", "in", "traj", ".", "_new_nodes", ":", "_", ",", "name", "=", "name_pair", "parent_group", ",", "child_node", "=", "traj", ".", "_new_nodes", "[", "name_pair", "]", "if", "not", "child_node", ".", "_stored", ":", "self", ".", "_tree_store_sub_branch", "(", "parent_group", ",", "name", ",", "store_data", "=", "store_data", ",", "with_links", "=", "True", ",", "recursive", "=", "recursive", ",", "max_depth", "=", "max_depth", "-", "child_node", ".", "v_depth", ",", "hdf5_group", "=", "None", ")", "for", "name_pair", "in", "traj", ".", "_new_links", ":", "_", ",", "link", "=", "name_pair", "parent_group", ",", "_", "=", "traj", ".", "_new_links", "[", "name_pair", "]", "self", ".", "_tree_store_sub_branch", "(", "parent_group", ",", "link", ",", "store_data", "=", "store_data", ",", "with_links", "=", "True", ",", "recursive", "=", "recursive", ",", "max_depth", "=", "max_depth", "-", "parent_group", ".", "v_depth", "-", "1", ",", "hdf5_group", "=", "None", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._srn_summarize_explored_parameters
Summarizes the parameter settings. :param run_name: Name of the single run :param paramlist: List of explored parameters :param add_table: Whether to add the overview table :param create_run_group: If a group with the particular name should be created if it does not exist. Might be necessary when trajectories are merged.
pypet/storageservice.py
def _srn_summarize_explored_parameters(self, paramlist): """Summarizes the parameter settings. :param run_name: Name of the single run :param paramlist: List of explored parameters :param add_table: Whether to add the overview table :param create_run_group: If a group with the particular name should be created if it does not exist. Might be necessary when trajectories are merged. """ runsummary = '' paramlist = sorted(paramlist, key=lambda name: name.v_name + name.v_location) for idx, expparam in enumerate(paramlist): # Create the run summary for the `run` overview if idx > 0: runsummary += ', ' valstr = expparam.f_val_to_str() if len(valstr) >= pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH: valstr = valstr[0:pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH - 3] valstr += '...' if expparam.v_name in runsummary: param_name = expparam.v_full_name else: param_name = expparam.v_name runsummary = runsummary + param_name + ': ' + valstr return runsummary
def _srn_summarize_explored_parameters(self, paramlist): """Summarizes the parameter settings. :param run_name: Name of the single run :param paramlist: List of explored parameters :param add_table: Whether to add the overview table :param create_run_group: If a group with the particular name should be created if it does not exist. Might be necessary when trajectories are merged. """ runsummary = '' paramlist = sorted(paramlist, key=lambda name: name.v_name + name.v_location) for idx, expparam in enumerate(paramlist): # Create the run summary for the `run` overview if idx > 0: runsummary += ', ' valstr = expparam.f_val_to_str() if len(valstr) >= pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH: valstr = valstr[0:pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH - 3] valstr += '...' if expparam.v_name in runsummary: param_name = expparam.v_full_name else: param_name = expparam.v_name runsummary = runsummary + param_name + ': ' + valstr return runsummary
[ "Summarizes", "the", "parameter", "settings", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2897-L2934
[ "def", "_srn_summarize_explored_parameters", "(", "self", ",", "paramlist", ")", ":", "runsummary", "=", "''", "paramlist", "=", "sorted", "(", "paramlist", ",", "key", "=", "lambda", "name", ":", "name", ".", "v_name", "+", "name", ".", "v_location", ")", "for", "idx", ",", "expparam", "in", "enumerate", "(", "paramlist", ")", ":", "# Create the run summary for the `run` overview", "if", "idx", ">", "0", ":", "runsummary", "+=", "', '", "valstr", "=", "expparam", ".", "f_val_to_str", "(", ")", "if", "len", "(", "valstr", ")", ">=", "pypetconstants", ".", "HDF5_STRCOL_MAX_COMMENT_LENGTH", ":", "valstr", "=", "valstr", "[", "0", ":", "pypetconstants", ".", "HDF5_STRCOL_MAX_COMMENT_LENGTH", "-", "3", "]", "valstr", "+=", "'...'", "if", "expparam", ".", "v_name", "in", "runsummary", ":", "param_name", "=", "expparam", ".", "v_full_name", "else", ":", "param_name", "=", "expparam", ".", "v_name", "runsummary", "=", "runsummary", "+", "param_name", "+", "': '", "+", "valstr", "return", "runsummary" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_store_param_or_result_table_entry
Stores a single row into an overview table :param instance: A parameter or result instance :param table: Table where row will be inserted :param flags: Flags how to insert into the table. Potential Flags are `ADD_ROW`, `REMOVE_ROW`, `MODIFY_ROW` :param additional_info: Dictionary containing information that cannot be extracted from `instance`, but needs to be inserted, too.
pypet/storageservice.py
def _all_store_param_or_result_table_entry(self, instance, table, flags, additional_info=None): """Stores a single row into an overview table :param instance: A parameter or result instance :param table: Table where row will be inserted :param flags: Flags how to insert into the table. Potential Flags are `ADD_ROW`, `REMOVE_ROW`, `MODIFY_ROW` :param additional_info: Dictionary containing information that cannot be extracted from `instance`, but needs to be inserted, too. """ # assert isinstance(table, pt.Table) location = instance.v_location name = instance.v_name fullname = instance.v_full_name if (flags == (HDF5StorageService.ADD_ROW,) and table.nrows < 2 and 'location' in table.colnames): # We add the modify row option here because you cannot delete the very first # row of the table, so there is the rare condition, that the row might already # exist. # We also need to check if 'location' is in the columns in order to avoid # confusion with the smaller explored parameter overviews flags = (HDF5StorageService.ADD_ROW, HDF5StorageService.MODIFY_ROW) if flags == (HDF5StorageService.ADD_ROW,): # If we are sure we only want to add a row we do not need to search! condvars = None condition = None else: # Condition to search for an entry condvars = {'namecol': table.cols.name, 'locationcol': table.cols.location, 'name': name, 'location': location} condition = """(namecol == name) & (locationcol == location)""" if HDF5StorageService.REMOVE_ROW in flags: # If we want to remove a row, we don't need to extract information insert_dict = {} else: # Extract information to insert from the instance and the additional info dict colnames = set(table.colnames) insert_dict = self._all_extract_insert_dict(instance, colnames, additional_info) # Write the table entry self._all_add_or_modify_row(fullname, insert_dict, table, condition=condition, condvars=condvars, flags=flags)
def _all_store_param_or_result_table_entry(self, instance, table, flags, additional_info=None): """Stores a single row into an overview table :param instance: A parameter or result instance :param table: Table where row will be inserted :param flags: Flags how to insert into the table. Potential Flags are `ADD_ROW`, `REMOVE_ROW`, `MODIFY_ROW` :param additional_info: Dictionary containing information that cannot be extracted from `instance`, but needs to be inserted, too. """ # assert isinstance(table, pt.Table) location = instance.v_location name = instance.v_name fullname = instance.v_full_name if (flags == (HDF5StorageService.ADD_ROW,) and table.nrows < 2 and 'location' in table.colnames): # We add the modify row option here because you cannot delete the very first # row of the table, so there is the rare condition, that the row might already # exist. # We also need to check if 'location' is in the columns in order to avoid # confusion with the smaller explored parameter overviews flags = (HDF5StorageService.ADD_ROW, HDF5StorageService.MODIFY_ROW) if flags == (HDF5StorageService.ADD_ROW,): # If we are sure we only want to add a row we do not need to search! condvars = None condition = None else: # Condition to search for an entry condvars = {'namecol': table.cols.name, 'locationcol': table.cols.location, 'name': name, 'location': location} condition = """(namecol == name) & (locationcol == location)""" if HDF5StorageService.REMOVE_ROW in flags: # If we want to remove a row, we don't need to extract information insert_dict = {} else: # Extract information to insert from the instance and the additional info dict colnames = set(table.colnames) insert_dict = self._all_extract_insert_dict(instance, colnames, additional_info) # Write the table entry self._all_add_or_modify_row(fullname, insert_dict, table, condition=condition, condvars=condvars, flags=flags)
[ "Stores", "a", "single", "row", "into", "an", "overview", "table" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2939-L2995
[ "def", "_all_store_param_or_result_table_entry", "(", "self", ",", "instance", ",", "table", ",", "flags", ",", "additional_info", "=", "None", ")", ":", "# assert isinstance(table, pt.Table)", "location", "=", "instance", ".", "v_location", "name", "=", "instance", ".", "v_name", "fullname", "=", "instance", ".", "v_full_name", "if", "(", "flags", "==", "(", "HDF5StorageService", ".", "ADD_ROW", ",", ")", "and", "table", ".", "nrows", "<", "2", "and", "'location'", "in", "table", ".", "colnames", ")", ":", "# We add the modify row option here because you cannot delete the very first", "# row of the table, so there is the rare condition, that the row might already", "# exist.", "# We also need to check if 'location' is in the columns in order to avoid", "# confusion with the smaller explored parameter overviews", "flags", "=", "(", "HDF5StorageService", ".", "ADD_ROW", ",", "HDF5StorageService", ".", "MODIFY_ROW", ")", "if", "flags", "==", "(", "HDF5StorageService", ".", "ADD_ROW", ",", ")", ":", "# If we are sure we only want to add a row we do not need to search!", "condvars", "=", "None", "condition", "=", "None", "else", ":", "# Condition to search for an entry", "condvars", "=", "{", "'namecol'", ":", "table", ".", "cols", ".", "name", ",", "'locationcol'", ":", "table", ".", "cols", ".", "location", ",", "'name'", ":", "name", ",", "'location'", ":", "location", "}", "condition", "=", "\"\"\"(namecol == name) & (locationcol == location)\"\"\"", "if", "HDF5StorageService", ".", "REMOVE_ROW", "in", "flags", ":", "# If we want to remove a row, we don't need to extract information", "insert_dict", "=", "{", "}", "else", ":", "# Extract information to insert from the instance and the additional info dict", "colnames", "=", "set", "(", "table", ".", "colnames", ")", "insert_dict", "=", "self", ".", "_all_extract_insert_dict", "(", "instance", ",", "colnames", ",", "additional_info", ")", "# Write the table entry", "self", ".", "_all_add_or_modify_row", "(", "fullname", ",", "insert_dict", ",", "table", ",", "condition", "=", "condition", ",", "condvars", "=", "condvars", ",", "flags", "=", "flags", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_get_or_create_table
Creates a new table, or if the table already exists, returns it.
pypet/storageservice.py
def _all_get_or_create_table(self, where, tablename, description, expectedrows=None): """Creates a new table, or if the table already exists, returns it.""" where_node = self._hdf5file.get_node(where) if not tablename in where_node: if not expectedrows is None: table = self._hdf5file.create_table(where=where_node, name=tablename, description=description, title=tablename, expectedrows=expectedrows, filters=self._all_get_filters()) else: table = self._hdf5file.create_table(where=where_node, name=tablename, description=description, title=tablename, filters=self._all_get_filters()) else: table = where_node._f_get_child(tablename) return table
def _all_get_or_create_table(self, where, tablename, description, expectedrows=None): """Creates a new table, or if the table already exists, returns it.""" where_node = self._hdf5file.get_node(where) if not tablename in where_node: if not expectedrows is None: table = self._hdf5file.create_table(where=where_node, name=tablename, description=description, title=tablename, expectedrows=expectedrows, filters=self._all_get_filters()) else: table = self._hdf5file.create_table(where=where_node, name=tablename, description=description, title=tablename, filters=self._all_get_filters()) else: table = where_node._f_get_child(tablename) return table
[ "Creates", "a", "new", "table", "or", "if", "the", "table", "already", "exists", "returns", "it", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L2998-L3015
[ "def", "_all_get_or_create_table", "(", "self", ",", "where", ",", "tablename", ",", "description", ",", "expectedrows", "=", "None", ")", ":", "where_node", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "where", ")", "if", "not", "tablename", "in", "where_node", ":", "if", "not", "expectedrows", "is", "None", ":", "table", "=", "self", ".", "_hdf5file", ".", "create_table", "(", "where", "=", "where_node", ",", "name", "=", "tablename", ",", "description", "=", "description", ",", "title", "=", "tablename", ",", "expectedrows", "=", "expectedrows", ",", "filters", "=", "self", ".", "_all_get_filters", "(", ")", ")", "else", ":", "table", "=", "self", ".", "_hdf5file", ".", "create_table", "(", "where", "=", "where_node", ",", "name", "=", "tablename", ",", "description", "=", "description", ",", "title", "=", "tablename", ",", "filters", "=", "self", ".", "_all_get_filters", "(", ")", ")", "else", ":", "table", "=", "where_node", ".", "_f_get_child", "(", "tablename", ")", "return", "table" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_get_node_by_name
Returns an HDF5 node by the path specified in `name`
pypet/storageservice.py
def _all_get_node_by_name(self, name): """Returns an HDF5 node by the path specified in `name`""" path_name = name.replace('.', '/') where = '/%s/%s' % (self._trajectory_name, path_name) return self._hdf5file.get_node(where=where)
def _all_get_node_by_name(self, name): """Returns an HDF5 node by the path specified in `name`""" path_name = name.replace('.', '/') where = '/%s/%s' % (self._trajectory_name, path_name) return self._hdf5file.get_node(where=where)
[ "Returns", "an", "HDF5", "node", "by", "the", "path", "specified", "in", "name" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3017-L3021
[ "def", "_all_get_node_by_name", "(", "self", ",", "name", ")", ":", "path_name", "=", "name", ".", "replace", "(", "'.'", ",", "'/'", ")", "where", "=", "'/%s/%s'", "%", "(", "self", ".", "_trajectory_name", ",", "path_name", ")", "return", "self", ".", "_hdf5file", ".", "get_node", "(", "where", "=", "where", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_set_attributes_to_recall_natives
Stores original data type to hdf5 node attributes for preserving the data type. :param data: Data to be stored :param ptitem: HDF5 node to store data types as attributes. Can also be just a PTItemMock. :param prefix: String prefix to label and name data in HDF5 attributes
pypet/storageservice.py
def _all_set_attributes_to_recall_natives(data, ptitem, prefix): """Stores original data type to hdf5 node attributes for preserving the data type. :param data: Data to be stored :param ptitem: HDF5 node to store data types as attributes. Can also be just a PTItemMock. :param prefix: String prefix to label and name data in HDF5 attributes """ # If `data` is a container, remember the container type if type(data) is tuple: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_TUPLE) elif type(data) is list: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_LIST) elif type(data) is np.ndarray: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_NDARRAY) elif type(data) is np.matrix: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_MATRIX) elif type(data) in pypetconstants.PARAMETER_SUPPORTED_DATA: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_SCALAR) strtype = type(data).__name__ if not strtype in pypetconstants.PARAMETERTYPEDICT: raise TypeError('I do not know how to handle `%s` its type is `%s`.' % (str(data), repr(type(data)))) HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.SCALAR_TYPE, strtype) elif type(data) is dict: if len(data) > 0: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_DICT) else: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_EMPTY_DICT) else: raise TypeError('I do not know how to handle `%s` its type is `%s`.' % (str(data), repr(type(data)))) if type(data) in (list, tuple): # If data is a list or tuple we need to remember the data type of the elements # in the list or tuple. # We do NOT need to remember the elements of `dict` explicitly, though. # `dict` is stored # as an `ObjectTable` and thus types are already conserved. if len(data) > 0: strtype = type(data[0]).__name__ if not strtype in pypetconstants.PARAMETERTYPEDICT: raise TypeError('I do not know how to handle `%s` its type is ' '`%s`.' % (str(data), strtype)) HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.SCALAR_TYPE, strtype) elif (type(data) in (np.ndarray, np.matrix) and np.issubdtype(data.dtype, str)): HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.SCALAR_TYPE, str.__name__)
def _all_set_attributes_to_recall_natives(data, ptitem, prefix): """Stores original data type to hdf5 node attributes for preserving the data type. :param data: Data to be stored :param ptitem: HDF5 node to store data types as attributes. Can also be just a PTItemMock. :param prefix: String prefix to label and name data in HDF5 attributes """ # If `data` is a container, remember the container type if type(data) is tuple: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_TUPLE) elif type(data) is list: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_LIST) elif type(data) is np.ndarray: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_NDARRAY) elif type(data) is np.matrix: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_MATRIX) elif type(data) in pypetconstants.PARAMETER_SUPPORTED_DATA: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_SCALAR) strtype = type(data).__name__ if not strtype in pypetconstants.PARAMETERTYPEDICT: raise TypeError('I do not know how to handle `%s` its type is `%s`.' % (str(data), repr(type(data)))) HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.SCALAR_TYPE, strtype) elif type(data) is dict: if len(data) > 0: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_DICT) else: HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.COLL_TYPE, HDF5StorageService.COLL_EMPTY_DICT) else: raise TypeError('I do not know how to handle `%s` its type is `%s`.' % (str(data), repr(type(data)))) if type(data) in (list, tuple): # If data is a list or tuple we need to remember the data type of the elements # in the list or tuple. # We do NOT need to remember the elements of `dict` explicitly, though. # `dict` is stored # as an `ObjectTable` and thus types are already conserved. if len(data) > 0: strtype = type(data[0]).__name__ if not strtype in pypetconstants.PARAMETERTYPEDICT: raise TypeError('I do not know how to handle `%s` its type is ' '`%s`.' % (str(data), strtype)) HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.SCALAR_TYPE, strtype) elif (type(data) in (np.ndarray, np.matrix) and np.issubdtype(data.dtype, str)): HDF5StorageService._all_set_attr(ptitem, prefix + HDF5StorageService.SCALAR_TYPE, str.__name__)
[ "Stores", "original", "data", "type", "to", "hdf5", "node", "attributes", "for", "preserving", "the", "data", "type", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3037-L3112
[ "def", "_all_set_attributes_to_recall_natives", "(", "data", ",", "ptitem", ",", "prefix", ")", ":", "# If `data` is a container, remember the container type", "if", "type", "(", "data", ")", "is", "tuple", ":", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "COLL_TYPE", ",", "HDF5StorageService", ".", "COLL_TUPLE", ")", "elif", "type", "(", "data", ")", "is", "list", ":", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "COLL_TYPE", ",", "HDF5StorageService", ".", "COLL_LIST", ")", "elif", "type", "(", "data", ")", "is", "np", ".", "ndarray", ":", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "COLL_TYPE", ",", "HDF5StorageService", ".", "COLL_NDARRAY", ")", "elif", "type", "(", "data", ")", "is", "np", ".", "matrix", ":", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "COLL_TYPE", ",", "HDF5StorageService", ".", "COLL_MATRIX", ")", "elif", "type", "(", "data", ")", "in", "pypetconstants", ".", "PARAMETER_SUPPORTED_DATA", ":", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "COLL_TYPE", ",", "HDF5StorageService", ".", "COLL_SCALAR", ")", "strtype", "=", "type", "(", "data", ")", ".", "__name__", "if", "not", "strtype", "in", "pypetconstants", ".", "PARAMETERTYPEDICT", ":", "raise", "TypeError", "(", "'I do not know how to handle `%s` its type is `%s`.'", "%", "(", "str", "(", "data", ")", ",", "repr", "(", "type", "(", "data", ")", ")", ")", ")", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "SCALAR_TYPE", ",", "strtype", ")", "elif", "type", "(", "data", ")", "is", "dict", ":", "if", "len", "(", "data", ")", ">", "0", ":", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "COLL_TYPE", ",", "HDF5StorageService", ".", "COLL_DICT", ")", "else", ":", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "COLL_TYPE", ",", "HDF5StorageService", ".", "COLL_EMPTY_DICT", ")", "else", ":", "raise", "TypeError", "(", "'I do not know how to handle `%s` its type is `%s`.'", "%", "(", "str", "(", "data", ")", ",", "repr", "(", "type", "(", "data", ")", ")", ")", ")", "if", "type", "(", "data", ")", "in", "(", "list", ",", "tuple", ")", ":", "# If data is a list or tuple we need to remember the data type of the elements", "# in the list or tuple.", "# We do NOT need to remember the elements of `dict` explicitly, though.", "# `dict` is stored", "# as an `ObjectTable` and thus types are already conserved.", "if", "len", "(", "data", ")", ">", "0", ":", "strtype", "=", "type", "(", "data", "[", "0", "]", ")", ".", "__name__", "if", "not", "strtype", "in", "pypetconstants", ".", "PARAMETERTYPEDICT", ":", "raise", "TypeError", "(", "'I do not know how to handle `%s` its type is '", "'`%s`.'", "%", "(", "str", "(", "data", ")", ",", "strtype", ")", ")", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "SCALAR_TYPE", ",", "strtype", ")", "elif", "(", "type", "(", "data", ")", "in", "(", "np", ".", "ndarray", ",", "np", ".", "matrix", ")", "and", "np", ".", "issubdtype", "(", "data", ".", "dtype", ",", "str", ")", ")", ":", "HDF5StorageService", ".", "_all_set_attr", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "SCALAR_TYPE", ",", "str", ".", "__name__", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_recall_native_type
Checks if loaded data has the type it was stored in. If not converts it. :param data: Data item to be checked and converted :param ptitem: HDf5 Node or Leaf from where data was loaded :param prefix: Prefix for recalling the data type from the hdf5 node attributes :return: Tuple, first item is the (converted) `data` item, second boolean whether item was converted or not.
pypet/storageservice.py
def _all_recall_native_type(self, data, ptitem, prefix): """Checks if loaded data has the type it was stored in. If not converts it. :param data: Data item to be checked and converted :param ptitem: HDf5 Node or Leaf from where data was loaded :param prefix: Prefix for recalling the data type from the hdf5 node attributes :return: Tuple, first item is the (converted) `data` item, second boolean whether item was converted or not. """ typestr = self._all_get_from_attrs(ptitem, prefix + HDF5StorageService.SCALAR_TYPE) colltype = self._all_get_from_attrs(ptitem, prefix + HDF5StorageService.COLL_TYPE) type_changed = False # Check what the original data type was from the hdf5 node attributes if colltype == HDF5StorageService.COLL_SCALAR: # Here data item was a scalar if isinstance(data, np.ndarray): # If we recall a numpy scalar, pytables loads a 1d array :-/ # So we have to change it to a real scalar value data = np.array([data])[0] type_changed = True if not typestr is None: # Check if current type and stored type match # if not convert the data if typestr != type(data).__name__: if typestr == str.__name__: data = data.decode(self._encoding) else: try: data = pypetconstants.PARAMETERTYPEDICT[typestr](data) except KeyError: # For compatibility with files from older pypet versions data = pypetconstants.COMPATPARAMETERTYPEDICT[typestr](data) type_changed = True elif (colltype == HDF5StorageService.COLL_TUPLE or colltype == HDF5StorageService.COLL_LIST): # Here data item was originally a tuple or a list if type(data) is not list and type is not tuple: # If the original type cannot be recalled, first convert it to a list type_changed = True data = list(data) if len(data) > 0: first_item = data[0] # Check if the type of the first item was conserved if not typestr == type(first_item).__name__: if not isinstance(data, list): data = list(data) # If type was not conserved we need to convert all items # in the list or tuple for idx, item in enumerate(data): if typestr == str.__name__: data[idx] = data[idx].decode(self._encoding) else: try: data[idx] = pypetconstants.PARAMETERTYPEDICT[typestr](item) except KeyError: # For compatibility with files from older pypet versions: data[idx] = pypetconstants.COMPATPARAMETERTYPEDICT[typestr](item) type_changed = True if colltype == HDF5StorageService.COLL_TUPLE: # If it was originally a tuple we need to convert it back to tuple if type(data) is not tuple: data = tuple(data) type_changed = True elif colltype == HDF5StorageService.COLL_EMPTY_DICT: data = {} type_changed = True elif isinstance(data, np.ndarray): if typestr == str.__name__: data = np.core.defchararray.decode(data, self._encoding) type_changed = True if colltype == HDF5StorageService.COLL_MATRIX: # Here data item was originally a matrix data = np.matrix(data) type_changed = True return data, type_changed
def _all_recall_native_type(self, data, ptitem, prefix): """Checks if loaded data has the type it was stored in. If not converts it. :param data: Data item to be checked and converted :param ptitem: HDf5 Node or Leaf from where data was loaded :param prefix: Prefix for recalling the data type from the hdf5 node attributes :return: Tuple, first item is the (converted) `data` item, second boolean whether item was converted or not. """ typestr = self._all_get_from_attrs(ptitem, prefix + HDF5StorageService.SCALAR_TYPE) colltype = self._all_get_from_attrs(ptitem, prefix + HDF5StorageService.COLL_TYPE) type_changed = False # Check what the original data type was from the hdf5 node attributes if colltype == HDF5StorageService.COLL_SCALAR: # Here data item was a scalar if isinstance(data, np.ndarray): # If we recall a numpy scalar, pytables loads a 1d array :-/ # So we have to change it to a real scalar value data = np.array([data])[0] type_changed = True if not typestr is None: # Check if current type and stored type match # if not convert the data if typestr != type(data).__name__: if typestr == str.__name__: data = data.decode(self._encoding) else: try: data = pypetconstants.PARAMETERTYPEDICT[typestr](data) except KeyError: # For compatibility with files from older pypet versions data = pypetconstants.COMPATPARAMETERTYPEDICT[typestr](data) type_changed = True elif (colltype == HDF5StorageService.COLL_TUPLE or colltype == HDF5StorageService.COLL_LIST): # Here data item was originally a tuple or a list if type(data) is not list and type is not tuple: # If the original type cannot be recalled, first convert it to a list type_changed = True data = list(data) if len(data) > 0: first_item = data[0] # Check if the type of the first item was conserved if not typestr == type(first_item).__name__: if not isinstance(data, list): data = list(data) # If type was not conserved we need to convert all items # in the list or tuple for idx, item in enumerate(data): if typestr == str.__name__: data[idx] = data[idx].decode(self._encoding) else: try: data[idx] = pypetconstants.PARAMETERTYPEDICT[typestr](item) except KeyError: # For compatibility with files from older pypet versions: data[idx] = pypetconstants.COMPATPARAMETERTYPEDICT[typestr](item) type_changed = True if colltype == HDF5StorageService.COLL_TUPLE: # If it was originally a tuple we need to convert it back to tuple if type(data) is not tuple: data = tuple(data) type_changed = True elif colltype == HDF5StorageService.COLL_EMPTY_DICT: data = {} type_changed = True elif isinstance(data, np.ndarray): if typestr == str.__name__: data = np.core.defchararray.decode(data, self._encoding) type_changed = True if colltype == HDF5StorageService.COLL_MATRIX: # Here data item was originally a matrix data = np.matrix(data) type_changed = True return data, type_changed
[ "Checks", "if", "loaded", "data", "has", "the", "type", "it", "was", "stored", "in", ".", "If", "not", "converts", "it", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3114-L3206
[ "def", "_all_recall_native_type", "(", "self", ",", "data", ",", "ptitem", ",", "prefix", ")", ":", "typestr", "=", "self", ".", "_all_get_from_attrs", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "SCALAR_TYPE", ")", "colltype", "=", "self", ".", "_all_get_from_attrs", "(", "ptitem", ",", "prefix", "+", "HDF5StorageService", ".", "COLL_TYPE", ")", "type_changed", "=", "False", "# Check what the original data type was from the hdf5 node attributes", "if", "colltype", "==", "HDF5StorageService", ".", "COLL_SCALAR", ":", "# Here data item was a scalar", "if", "isinstance", "(", "data", ",", "np", ".", "ndarray", ")", ":", "# If we recall a numpy scalar, pytables loads a 1d array :-/", "# So we have to change it to a real scalar value", "data", "=", "np", ".", "array", "(", "[", "data", "]", ")", "[", "0", "]", "type_changed", "=", "True", "if", "not", "typestr", "is", "None", ":", "# Check if current type and stored type match", "# if not convert the data", "if", "typestr", "!=", "type", "(", "data", ")", ".", "__name__", ":", "if", "typestr", "==", "str", ".", "__name__", ":", "data", "=", "data", ".", "decode", "(", "self", ".", "_encoding", ")", "else", ":", "try", ":", "data", "=", "pypetconstants", ".", "PARAMETERTYPEDICT", "[", "typestr", "]", "(", "data", ")", "except", "KeyError", ":", "# For compatibility with files from older pypet versions", "data", "=", "pypetconstants", ".", "COMPATPARAMETERTYPEDICT", "[", "typestr", "]", "(", "data", ")", "type_changed", "=", "True", "elif", "(", "colltype", "==", "HDF5StorageService", ".", "COLL_TUPLE", "or", "colltype", "==", "HDF5StorageService", ".", "COLL_LIST", ")", ":", "# Here data item was originally a tuple or a list", "if", "type", "(", "data", ")", "is", "not", "list", "and", "type", "is", "not", "tuple", ":", "# If the original type cannot be recalled, first convert it to a list", "type_changed", "=", "True", "data", "=", "list", "(", "data", ")", "if", "len", "(", "data", ")", ">", "0", ":", "first_item", "=", "data", "[", "0", "]", "# Check if the type of the first item was conserved", "if", "not", "typestr", "==", "type", "(", "first_item", ")", ".", "__name__", ":", "if", "not", "isinstance", "(", "data", ",", "list", ")", ":", "data", "=", "list", "(", "data", ")", "# If type was not conserved we need to convert all items", "# in the list or tuple", "for", "idx", ",", "item", "in", "enumerate", "(", "data", ")", ":", "if", "typestr", "==", "str", ".", "__name__", ":", "data", "[", "idx", "]", "=", "data", "[", "idx", "]", ".", "decode", "(", "self", ".", "_encoding", ")", "else", ":", "try", ":", "data", "[", "idx", "]", "=", "pypetconstants", ".", "PARAMETERTYPEDICT", "[", "typestr", "]", "(", "item", ")", "except", "KeyError", ":", "# For compatibility with files from older pypet versions:", "data", "[", "idx", "]", "=", "pypetconstants", ".", "COMPATPARAMETERTYPEDICT", "[", "typestr", "]", "(", "item", ")", "type_changed", "=", "True", "if", "colltype", "==", "HDF5StorageService", ".", "COLL_TUPLE", ":", "# If it was originally a tuple we need to convert it back to tuple", "if", "type", "(", "data", ")", "is", "not", "tuple", ":", "data", "=", "tuple", "(", "data", ")", "type_changed", "=", "True", "elif", "colltype", "==", "HDF5StorageService", ".", "COLL_EMPTY_DICT", ":", "data", "=", "{", "}", "type_changed", "=", "True", "elif", "isinstance", "(", "data", ",", "np", ".", "ndarray", ")", ":", "if", "typestr", "==", "str", ".", "__name__", ":", "data", "=", "np", ".", "core", ".", "defchararray", ".", "decode", "(", "data", ",", "self", ".", "_encoding", ")", "type_changed", "=", "True", "if", "colltype", "==", "HDF5StorageService", ".", "COLL_MATRIX", ":", "# Here data item was originally a matrix", "data", "=", "np", ".", "matrix", "(", "data", ")", "type_changed", "=", "True", "return", "data", ",", "type_changed" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_add_or_modify_row
Adds or changes a row in a pytable. :param item_name: Name of item, the row is about, only important for throwing errors. :param insert_dict: Dictionary of data that is about to be inserted into the pytables row. :param table: The table to insert or modify a row in :param index: Index of row to be modified. Instead of an index a search condition can be used as well, see below. :param condition: Condition to search for in the table :param condvars: Variables for the search condition :param flags: Flags whether to add, modify, or remove a row in the table
pypet/storageservice.py
def _all_add_or_modify_row(self, item_name, insert_dict, table, index=None, condition=None, condvars=None, flags=(ADD_ROW, MODIFY_ROW,)): """Adds or changes a row in a pytable. :param item_name: Name of item, the row is about, only important for throwing errors. :param insert_dict: Dictionary of data that is about to be inserted into the pytables row. :param table: The table to insert or modify a row in :param index: Index of row to be modified. Instead of an index a search condition can be used as well, see below. :param condition: Condition to search for in the table :param condvars: Variables for the search condition :param flags: Flags whether to add, modify, or remove a row in the table """ if len(flags) == 0: # No flags means no-op return # You can only specify either an index or a condition not both if index is not None and condition is not None: raise ValueError('Please give either a condition or an index or none!') elif condition is not None: row_iterator = table.where(condition, condvars=condvars) elif index is not None: row_iterator = table.iterrows(index, index + 1) else: row_iterator = None try: row = next(row_iterator) except TypeError: row = None except StopIteration: row = None # multiple_entries = [] if ((HDF5StorageService.MODIFY_ROW in flags or HDF5StorageService.ADD_ROW in flags) and HDF5StorageService.REMOVE_ROW in flags): # You cannot remove and modify or add at the same time raise ValueError('You cannot add or modify and remove a row at the same time.') if row is None and HDF5StorageService.ADD_ROW in flags: # Here we add a new row row = table.row self._all_insert_into_row(row, insert_dict) row.append() elif row is not None and HDF5StorageService.MODIFY_ROW in flags: # Here we modify an existing row self._all_insert_into_row(row, insert_dict) row.update() elif HDF5StorageService.REMOVE_ROW in flags: # Here we delete an existing row if row is not None: # Only delete if the row does exist otherwise we do not have to do anything row_number = row.nrow try: table.remove_rows(start=row_number, stop=row_number+1) except NotImplementedError: pass # We get here if we try to remove the last row of a table # there is nothing we can do but keep it :-( else: raise ValueError('Something is wrong, you might not have found ' 'a row, or your flags are not set appropriately') self._all_kill_iterator(row_iterator) table.flush() if HDF5StorageService.REMOVE_ROW not in flags and row is None: raise RuntimeError('Could not add or modify entries of `%s` in ' 'table %s' % (item_name, table._v_name))
def _all_add_or_modify_row(self, item_name, insert_dict, table, index=None, condition=None, condvars=None, flags=(ADD_ROW, MODIFY_ROW,)): """Adds or changes a row in a pytable. :param item_name: Name of item, the row is about, only important for throwing errors. :param insert_dict: Dictionary of data that is about to be inserted into the pytables row. :param table: The table to insert or modify a row in :param index: Index of row to be modified. Instead of an index a search condition can be used as well, see below. :param condition: Condition to search for in the table :param condvars: Variables for the search condition :param flags: Flags whether to add, modify, or remove a row in the table """ if len(flags) == 0: # No flags means no-op return # You can only specify either an index or a condition not both if index is not None and condition is not None: raise ValueError('Please give either a condition or an index or none!') elif condition is not None: row_iterator = table.where(condition, condvars=condvars) elif index is not None: row_iterator = table.iterrows(index, index + 1) else: row_iterator = None try: row = next(row_iterator) except TypeError: row = None except StopIteration: row = None # multiple_entries = [] if ((HDF5StorageService.MODIFY_ROW in flags or HDF5StorageService.ADD_ROW in flags) and HDF5StorageService.REMOVE_ROW in flags): # You cannot remove and modify or add at the same time raise ValueError('You cannot add or modify and remove a row at the same time.') if row is None and HDF5StorageService.ADD_ROW in flags: # Here we add a new row row = table.row self._all_insert_into_row(row, insert_dict) row.append() elif row is not None and HDF5StorageService.MODIFY_ROW in flags: # Here we modify an existing row self._all_insert_into_row(row, insert_dict) row.update() elif HDF5StorageService.REMOVE_ROW in flags: # Here we delete an existing row if row is not None: # Only delete if the row does exist otherwise we do not have to do anything row_number = row.nrow try: table.remove_rows(start=row_number, stop=row_number+1) except NotImplementedError: pass # We get here if we try to remove the last row of a table # there is nothing we can do but keep it :-( else: raise ValueError('Something is wrong, you might not have found ' 'a row, or your flags are not set appropriately') self._all_kill_iterator(row_iterator) table.flush() if HDF5StorageService.REMOVE_ROW not in flags and row is None: raise RuntimeError('Could not add or modify entries of `%s` in ' 'table %s' % (item_name, table._v_name))
[ "Adds", "or", "changes", "a", "row", "in", "a", "pytable", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3217-L3316
[ "def", "_all_add_or_modify_row", "(", "self", ",", "item_name", ",", "insert_dict", ",", "table", ",", "index", "=", "None", ",", "condition", "=", "None", ",", "condvars", "=", "None", ",", "flags", "=", "(", "ADD_ROW", ",", "MODIFY_ROW", ",", ")", ")", ":", "if", "len", "(", "flags", ")", "==", "0", ":", "# No flags means no-op", "return", "# You can only specify either an index or a condition not both", "if", "index", "is", "not", "None", "and", "condition", "is", "not", "None", ":", "raise", "ValueError", "(", "'Please give either a condition or an index or none!'", ")", "elif", "condition", "is", "not", "None", ":", "row_iterator", "=", "table", ".", "where", "(", "condition", ",", "condvars", "=", "condvars", ")", "elif", "index", "is", "not", "None", ":", "row_iterator", "=", "table", ".", "iterrows", "(", "index", ",", "index", "+", "1", ")", "else", ":", "row_iterator", "=", "None", "try", ":", "row", "=", "next", "(", "row_iterator", ")", "except", "TypeError", ":", "row", "=", "None", "except", "StopIteration", ":", "row", "=", "None", "# multiple_entries = []", "if", "(", "(", "HDF5StorageService", ".", "MODIFY_ROW", "in", "flags", "or", "HDF5StorageService", ".", "ADD_ROW", "in", "flags", ")", "and", "HDF5StorageService", ".", "REMOVE_ROW", "in", "flags", ")", ":", "# You cannot remove and modify or add at the same time", "raise", "ValueError", "(", "'You cannot add or modify and remove a row at the same time.'", ")", "if", "row", "is", "None", "and", "HDF5StorageService", ".", "ADD_ROW", "in", "flags", ":", "# Here we add a new row", "row", "=", "table", ".", "row", "self", ".", "_all_insert_into_row", "(", "row", ",", "insert_dict", ")", "row", ".", "append", "(", ")", "elif", "row", "is", "not", "None", "and", "HDF5StorageService", ".", "MODIFY_ROW", "in", "flags", ":", "# Here we modify an existing row", "self", ".", "_all_insert_into_row", "(", "row", ",", "insert_dict", ")", "row", ".", "update", "(", ")", "elif", "HDF5StorageService", ".", "REMOVE_ROW", "in", "flags", ":", "# Here we delete an existing row", "if", "row", "is", "not", "None", ":", "# Only delete if the row does exist otherwise we do not have to do anything", "row_number", "=", "row", ".", "nrow", "try", ":", "table", ".", "remove_rows", "(", "start", "=", "row_number", ",", "stop", "=", "row_number", "+", "1", ")", "except", "NotImplementedError", ":", "pass", "# We get here if we try to remove the last row of a table", "# there is nothing we can do but keep it :-(", "else", ":", "raise", "ValueError", "(", "'Something is wrong, you might not have found '", "'a row, or your flags are not set appropriately'", ")", "self", ".", "_all_kill_iterator", "(", "row_iterator", ")", "table", ".", "flush", "(", ")", "if", "HDF5StorageService", ".", "REMOVE_ROW", "not", "in", "flags", "and", "row", "is", "None", ":", "raise", "RuntimeError", "(", "'Could not add or modify entries of `%s` in '", "'table %s'", "%", "(", "item_name", ",", "table", ".", "_v_name", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_insert_into_row
Copies data from `insert_dict` into a pytables `row`.
pypet/storageservice.py
def _all_insert_into_row(self, row, insert_dict): """Copies data from `insert_dict` into a pytables `row`.""" for key, val in insert_dict.items(): try: row[key] = val except KeyError as ke: self._logger.warning('Could not write `%s` into a table, ' % key + repr(ke))
def _all_insert_into_row(self, row, insert_dict): """Copies data from `insert_dict` into a pytables `row`.""" for key, val in insert_dict.items(): try: row[key] = val except KeyError as ke: self._logger.warning('Could not write `%s` into a table, ' % key + repr(ke))
[ "Copies", "data", "from", "insert_dict", "into", "a", "pytables", "row", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3318-L3324
[ "def", "_all_insert_into_row", "(", "self", ",", "row", ",", "insert_dict", ")", ":", "for", "key", ",", "val", "in", "insert_dict", ".", "items", "(", ")", ":", "try", ":", "row", "[", "key", "]", "=", "val", "except", "KeyError", "as", "ke", ":", "self", ".", "_logger", ".", "warning", "(", "'Could not write `%s` into a table, '", "%", "key", "+", "repr", "(", "ke", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_extract_insert_dict
Extracts information from a given item to be stored into a pytable row. Items can be a variety of things here, trajectories, single runs, group node, parameters, results. :param item: Item from which data should be extracted :param colnames: Names of the columns in the pytable :param additional_info: (dict) Additional information that should be stored into the pytable row that cannot be read out from `item`. :return: Dictionary containing the data to be inserted into a row
pypet/storageservice.py
def _all_extract_insert_dict(self, item, colnames, additional_info=None): """Extracts information from a given item to be stored into a pytable row. Items can be a variety of things here, trajectories, single runs, group node, parameters, results. :param item: Item from which data should be extracted :param colnames: Names of the columns in the pytable :param additional_info: (dict) Additional information that should be stored into the pytable row that cannot be read out from `item`. :return: Dictionary containing the data to be inserted into a row """ insert_dict = {} if 'length' in colnames: insert_dict['length'] = len(item) if 'comment' in colnames: comment = self._all_cut_string(item.v_comment.encode('utf-8'), pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH, self._logger) insert_dict['comment'] = comment if 'location' in colnames: insert_dict['location'] = item.v_location.encode('utf-8') if 'name' in colnames: name = item._name if (not item.v_is_root or not item.v_is_run) else item._crun insert_dict['name'] = name.encode('utf-8') if 'class_name' in colnames: insert_dict['class_name'] = item.f_get_class_name().encode('utf-8') if 'value' in colnames: insert_dict['value'] = self._all_cut_string( item.f_val_to_str().encode('utf-8'), pypetconstants.HDF5_STRCOL_MAX_VALUE_LENGTH, self._logger) if 'hexdigest' in colnames: insert_dict['hexdigest'] = additional_info['hexdigest'] if 'idx' in colnames: insert_dict['idx'] = item.v_idx if 'time' in colnames: time_ = item._time insert_dict['time'] = time_.encode('utf-8') if 'timestamp' in colnames: timestamp = item._timestamp insert_dict['timestamp'] = timestamp if 'range' in colnames: third_length = pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH // 3 + 10 item_range = itools.islice(item.f_get_range(copy=False), 0, third_length) range_string = ', '.join([repr(x) for x in item_range]) insert_dict['range'] = self._all_cut_string( range_string.encode('utf-8'), pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH, self._logger) # To allow backwards compatibility if 'array' in colnames: third_length = pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH // 3 + 10 item_range = itools.islice(item.f_get_range(copy=False), 0, third_length) range_string = ', '.join([repr(x) for x in item_range]) insert_dict['array'] = self._all_cut_string( range_string.encode('utf-8'), pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH, self._logger) if 'version' in colnames: insert_dict['version'] = item.v_version.encode('utf-8') if 'python' in colnames: insert_dict['python'] = item.v_python.encode('utf-8') if 'finish_timestamp' in colnames: insert_dict['finish_timestamp'] = item._finish_timestamp_run return insert_dict
def _all_extract_insert_dict(self, item, colnames, additional_info=None): """Extracts information from a given item to be stored into a pytable row. Items can be a variety of things here, trajectories, single runs, group node, parameters, results. :param item: Item from which data should be extracted :param colnames: Names of the columns in the pytable :param additional_info: (dict) Additional information that should be stored into the pytable row that cannot be read out from `item`. :return: Dictionary containing the data to be inserted into a row """ insert_dict = {} if 'length' in colnames: insert_dict['length'] = len(item) if 'comment' in colnames: comment = self._all_cut_string(item.v_comment.encode('utf-8'), pypetconstants.HDF5_STRCOL_MAX_COMMENT_LENGTH, self._logger) insert_dict['comment'] = comment if 'location' in colnames: insert_dict['location'] = item.v_location.encode('utf-8') if 'name' in colnames: name = item._name if (not item.v_is_root or not item.v_is_run) else item._crun insert_dict['name'] = name.encode('utf-8') if 'class_name' in colnames: insert_dict['class_name'] = item.f_get_class_name().encode('utf-8') if 'value' in colnames: insert_dict['value'] = self._all_cut_string( item.f_val_to_str().encode('utf-8'), pypetconstants.HDF5_STRCOL_MAX_VALUE_LENGTH, self._logger) if 'hexdigest' in colnames: insert_dict['hexdigest'] = additional_info['hexdigest'] if 'idx' in colnames: insert_dict['idx'] = item.v_idx if 'time' in colnames: time_ = item._time insert_dict['time'] = time_.encode('utf-8') if 'timestamp' in colnames: timestamp = item._timestamp insert_dict['timestamp'] = timestamp if 'range' in colnames: third_length = pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH // 3 + 10 item_range = itools.islice(item.f_get_range(copy=False), 0, third_length) range_string = ', '.join([repr(x) for x in item_range]) insert_dict['range'] = self._all_cut_string( range_string.encode('utf-8'), pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH, self._logger) # To allow backwards compatibility if 'array' in colnames: third_length = pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH // 3 + 10 item_range = itools.islice(item.f_get_range(copy=False), 0, third_length) range_string = ', '.join([repr(x) for x in item_range]) insert_dict['array'] = self._all_cut_string( range_string.encode('utf-8'), pypetconstants.HDF5_STRCOL_MAX_RANGE_LENGTH, self._logger) if 'version' in colnames: insert_dict['version'] = item.v_version.encode('utf-8') if 'python' in colnames: insert_dict['python'] = item.v_python.encode('utf-8') if 'finish_timestamp' in colnames: insert_dict['finish_timestamp'] = item._finish_timestamp_run return insert_dict
[ "Extracts", "information", "from", "a", "given", "item", "to", "be", "stored", "into", "a", "pytable", "row", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3326-L3414
[ "def", "_all_extract_insert_dict", "(", "self", ",", "item", ",", "colnames", ",", "additional_info", "=", "None", ")", ":", "insert_dict", "=", "{", "}", "if", "'length'", "in", "colnames", ":", "insert_dict", "[", "'length'", "]", "=", "len", "(", "item", ")", "if", "'comment'", "in", "colnames", ":", "comment", "=", "self", ".", "_all_cut_string", "(", "item", ".", "v_comment", ".", "encode", "(", "'utf-8'", ")", ",", "pypetconstants", ".", "HDF5_STRCOL_MAX_COMMENT_LENGTH", ",", "self", ".", "_logger", ")", "insert_dict", "[", "'comment'", "]", "=", "comment", "if", "'location'", "in", "colnames", ":", "insert_dict", "[", "'location'", "]", "=", "item", ".", "v_location", ".", "encode", "(", "'utf-8'", ")", "if", "'name'", "in", "colnames", ":", "name", "=", "item", ".", "_name", "if", "(", "not", "item", ".", "v_is_root", "or", "not", "item", ".", "v_is_run", ")", "else", "item", ".", "_crun", "insert_dict", "[", "'name'", "]", "=", "name", ".", "encode", "(", "'utf-8'", ")", "if", "'class_name'", "in", "colnames", ":", "insert_dict", "[", "'class_name'", "]", "=", "item", ".", "f_get_class_name", "(", ")", ".", "encode", "(", "'utf-8'", ")", "if", "'value'", "in", "colnames", ":", "insert_dict", "[", "'value'", "]", "=", "self", ".", "_all_cut_string", "(", "item", ".", "f_val_to_str", "(", ")", ".", "encode", "(", "'utf-8'", ")", ",", "pypetconstants", ".", "HDF5_STRCOL_MAX_VALUE_LENGTH", ",", "self", ".", "_logger", ")", "if", "'hexdigest'", "in", "colnames", ":", "insert_dict", "[", "'hexdigest'", "]", "=", "additional_info", "[", "'hexdigest'", "]", "if", "'idx'", "in", "colnames", ":", "insert_dict", "[", "'idx'", "]", "=", "item", ".", "v_idx", "if", "'time'", "in", "colnames", ":", "time_", "=", "item", ".", "_time", "insert_dict", "[", "'time'", "]", "=", "time_", ".", "encode", "(", "'utf-8'", ")", "if", "'timestamp'", "in", "colnames", ":", "timestamp", "=", "item", ".", "_timestamp", "insert_dict", "[", "'timestamp'", "]", "=", "timestamp", "if", "'range'", "in", "colnames", ":", "third_length", "=", "pypetconstants", ".", "HDF5_STRCOL_MAX_RANGE_LENGTH", "//", "3", "+", "10", "item_range", "=", "itools", ".", "islice", "(", "item", ".", "f_get_range", "(", "copy", "=", "False", ")", ",", "0", ",", "third_length", ")", "range_string", "=", "', '", ".", "join", "(", "[", "repr", "(", "x", ")", "for", "x", "in", "item_range", "]", ")", "insert_dict", "[", "'range'", "]", "=", "self", ".", "_all_cut_string", "(", "range_string", ".", "encode", "(", "'utf-8'", ")", ",", "pypetconstants", ".", "HDF5_STRCOL_MAX_RANGE_LENGTH", ",", "self", ".", "_logger", ")", "# To allow backwards compatibility", "if", "'array'", "in", "colnames", ":", "third_length", "=", "pypetconstants", ".", "HDF5_STRCOL_MAX_RANGE_LENGTH", "//", "3", "+", "10", "item_range", "=", "itools", ".", "islice", "(", "item", ".", "f_get_range", "(", "copy", "=", "False", ")", ",", "0", ",", "third_length", ")", "range_string", "=", "', '", ".", "join", "(", "[", "repr", "(", "x", ")", "for", "x", "in", "item_range", "]", ")", "insert_dict", "[", "'array'", "]", "=", "self", ".", "_all_cut_string", "(", "range_string", ".", "encode", "(", "'utf-8'", ")", ",", "pypetconstants", ".", "HDF5_STRCOL_MAX_RANGE_LENGTH", ",", "self", ".", "_logger", ")", "if", "'version'", "in", "colnames", ":", "insert_dict", "[", "'version'", "]", "=", "item", ".", "v_version", ".", "encode", "(", "'utf-8'", ")", "if", "'python'", "in", "colnames", ":", "insert_dict", "[", "'python'", "]", "=", "item", ".", "v_python", ".", "encode", "(", "'utf-8'", ")", "if", "'finish_timestamp'", "in", "colnames", ":", "insert_dict", "[", "'finish_timestamp'", "]", "=", "item", ".", "_finish_timestamp_run", "return", "insert_dict" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_cut_string
Cuts string data to the maximum length allowed in a pytables column if string is too long. :param string: String to be cut :param max_length: Maximum allowed string length :param logger: Logger where messages about truncating should be written :return: String, cut if too long
pypet/storageservice.py
def _all_cut_string(string, max_length, logger): """Cuts string data to the maximum length allowed in a pytables column if string is too long. :param string: String to be cut :param max_length: Maximum allowed string length :param logger: Logger where messages about truncating should be written :return: String, cut if too long """ if len(string) > max_length: logger.debug('The string `%s` was too long I truncated it to' ' %d characters' % (string, max_length)) string = string[0:max_length - 3] + '...'.encode('utf-8') return string
def _all_cut_string(string, max_length, logger): """Cuts string data to the maximum length allowed in a pytables column if string is too long. :param string: String to be cut :param max_length: Maximum allowed string length :param logger: Logger where messages about truncating should be written :return: String, cut if too long """ if len(string) > max_length: logger.debug('The string `%s` was too long I truncated it to' ' %d characters' % (string, max_length)) string = string[0:max_length - 3] + '...'.encode('utf-8') return string
[ "Cuts", "string", "data", "to", "the", "maximum", "length", "allowed", "in", "a", "pytables", "column", "if", "string", "is", "too", "long", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3417-L3434
[ "def", "_all_cut_string", "(", "string", ",", "max_length", ",", "logger", ")", ":", "if", "len", "(", "string", ")", ">", "max_length", ":", "logger", ".", "debug", "(", "'The string `%s` was too long I truncated it to'", "' %d characters'", "%", "(", "string", ",", "max_length", ")", ")", "string", "=", "string", "[", "0", ":", "max_length", "-", "3", "]", "+", "'...'", ".", "encode", "(", "'utf-8'", ")", "return", "string" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_create_or_get_group
Creates or returns a group
pypet/storageservice.py
def _all_create_or_get_group(self, name, parent_hdf5_group=None): """Creates or returns a group""" if not name in parent_hdf5_group: new_hdf5_group = self._hdf5file.create_group(where=parent_hdf5_group, name=name, title=name, filters=self._all_get_filters()) return new_hdf5_group, True else: new_hdf5_group = parent_hdf5_group._f_get_child(name) return new_hdf5_group, False
def _all_create_or_get_group(self, name, parent_hdf5_group=None): """Creates or returns a group""" if not name in parent_hdf5_group: new_hdf5_group = self._hdf5file.create_group(where=parent_hdf5_group, name=name, title=name, filters=self._all_get_filters()) return new_hdf5_group, True else: new_hdf5_group = parent_hdf5_group._f_get_child(name) return new_hdf5_group, False
[ "Creates", "or", "returns", "a", "group" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3436-L3446
[ "def", "_all_create_or_get_group", "(", "self", ",", "name", ",", "parent_hdf5_group", "=", "None", ")", ":", "if", "not", "name", "in", "parent_hdf5_group", ":", "new_hdf5_group", "=", "self", ".", "_hdf5file", ".", "create_group", "(", "where", "=", "parent_hdf5_group", ",", "name", "=", "name", ",", "title", "=", "name", ",", "filters", "=", "self", ".", "_all_get_filters", "(", ")", ")", "return", "new_hdf5_group", ",", "True", "else", ":", "new_hdf5_group", "=", "parent_hdf5_group", ".", "_f_get_child", "(", "name", ")", "return", "new_hdf5_group", ",", "False" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_create_or_get_groups
Creates new or follows existing group nodes along a given colon separated `key`. :param key: Colon separated path along hdf5 file, e.g. `parameters.mobiles.cars`. :param start_hdf5_group: HDF5 group from where to start, leave `None` for the trajectory group. :return: Final group node, e.g. group node with name `cars`.
pypet/storageservice.py
def _all_create_or_get_groups(self, key, start_hdf5_group=None): """Creates new or follows existing group nodes along a given colon separated `key`. :param key: Colon separated path along hdf5 file, e.g. `parameters.mobiles.cars`. :param start_hdf5_group: HDF5 group from where to start, leave `None` for the trajectory group. :return: Final group node, e.g. group node with name `cars`. """ if start_hdf5_group is None: newhdf5_group = self._trajectory_group else: newhdf5_group = start_hdf5_group created = False if key == '': return newhdf5_group, created split_key = key.split('.') for name in split_key: newhdf5_group, created = self._all_create_or_get_group(name, newhdf5_group) return newhdf5_group, created
def _all_create_or_get_groups(self, key, start_hdf5_group=None): """Creates new or follows existing group nodes along a given colon separated `key`. :param key: Colon separated path along hdf5 file, e.g. `parameters.mobiles.cars`. :param start_hdf5_group: HDF5 group from where to start, leave `None` for the trajectory group. :return: Final group node, e.g. group node with name `cars`. """ if start_hdf5_group is None: newhdf5_group = self._trajectory_group else: newhdf5_group = start_hdf5_group created = False if key == '': return newhdf5_group, created split_key = key.split('.') for name in split_key: newhdf5_group, created = self._all_create_or_get_group(name, newhdf5_group) return newhdf5_group, created
[ "Creates", "new", "or", "follows", "existing", "group", "nodes", "along", "a", "given", "colon", "separated", "key", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3448-L3475
[ "def", "_all_create_or_get_groups", "(", "self", ",", "key", ",", "start_hdf5_group", "=", "None", ")", ":", "if", "start_hdf5_group", "is", "None", ":", "newhdf5_group", "=", "self", ".", "_trajectory_group", "else", ":", "newhdf5_group", "=", "start_hdf5_group", "created", "=", "False", "if", "key", "==", "''", ":", "return", "newhdf5_group", ",", "created", "split_key", "=", "key", ".", "split", "(", "'.'", ")", "for", "name", "in", "split_key", ":", "newhdf5_group", ",", "created", "=", "self", ".", "_all_create_or_get_group", "(", "name", ",", "newhdf5_group", ")", "return", "newhdf5_group", ",", "created" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._ann_store_annotations
Stores annotations into an hdf5 file.
pypet/storageservice.py
def _ann_store_annotations(self, item_with_annotations, node, overwrite=False): """Stores annotations into an hdf5 file.""" # If we overwrite delete all annotations first if overwrite is True or overwrite == 'v_annotations': annotated = self._all_get_from_attrs(node, HDF5StorageService.ANNOTATED) if annotated: current_attrs = node._v_attrs for attr_name in current_attrs._v_attrnames: if attr_name.startswith(HDF5StorageService.ANNOTATION_PREFIX): delattr(current_attrs, attr_name) delattr(current_attrs, HDF5StorageService.ANNOTATED) self._hdf5file.flush() # Only store annotations if the item has some if not item_with_annotations.v_annotations.f_is_empty(): anno_dict = item_with_annotations.v_annotations._dict current_attrs = node._v_attrs changed = False for field_name in anno_dict: val = anno_dict[field_name] field_name_with_prefix = HDF5StorageService.ANNOTATION_PREFIX + field_name if field_name_with_prefix not in current_attrs: # Only store *new* annotations, if they already exist on disk, skip storage setattr(current_attrs, field_name_with_prefix, val) changed = True if changed: setattr(current_attrs, HDF5StorageService.ANNOTATED, True) self._hdf5file.flush()
def _ann_store_annotations(self, item_with_annotations, node, overwrite=False): """Stores annotations into an hdf5 file.""" # If we overwrite delete all annotations first if overwrite is True or overwrite == 'v_annotations': annotated = self._all_get_from_attrs(node, HDF5StorageService.ANNOTATED) if annotated: current_attrs = node._v_attrs for attr_name in current_attrs._v_attrnames: if attr_name.startswith(HDF5StorageService.ANNOTATION_PREFIX): delattr(current_attrs, attr_name) delattr(current_attrs, HDF5StorageService.ANNOTATED) self._hdf5file.flush() # Only store annotations if the item has some if not item_with_annotations.v_annotations.f_is_empty(): anno_dict = item_with_annotations.v_annotations._dict current_attrs = node._v_attrs changed = False for field_name in anno_dict: val = anno_dict[field_name] field_name_with_prefix = HDF5StorageService.ANNOTATION_PREFIX + field_name if field_name_with_prefix not in current_attrs: # Only store *new* annotations, if they already exist on disk, skip storage setattr(current_attrs, field_name_with_prefix, val) changed = True if changed: setattr(current_attrs, HDF5StorageService.ANNOTATED, True) self._hdf5file.flush()
[ "Stores", "annotations", "into", "an", "hdf5", "file", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3480-L3514
[ "def", "_ann_store_annotations", "(", "self", ",", "item_with_annotations", ",", "node", ",", "overwrite", "=", "False", ")", ":", "# If we overwrite delete all annotations first", "if", "overwrite", "is", "True", "or", "overwrite", "==", "'v_annotations'", ":", "annotated", "=", "self", ".", "_all_get_from_attrs", "(", "node", ",", "HDF5StorageService", ".", "ANNOTATED", ")", "if", "annotated", ":", "current_attrs", "=", "node", ".", "_v_attrs", "for", "attr_name", "in", "current_attrs", ".", "_v_attrnames", ":", "if", "attr_name", ".", "startswith", "(", "HDF5StorageService", ".", "ANNOTATION_PREFIX", ")", ":", "delattr", "(", "current_attrs", ",", "attr_name", ")", "delattr", "(", "current_attrs", ",", "HDF5StorageService", ".", "ANNOTATED", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")", "# Only store annotations if the item has some", "if", "not", "item_with_annotations", ".", "v_annotations", ".", "f_is_empty", "(", ")", ":", "anno_dict", "=", "item_with_annotations", ".", "v_annotations", ".", "_dict", "current_attrs", "=", "node", ".", "_v_attrs", "changed", "=", "False", "for", "field_name", "in", "anno_dict", ":", "val", "=", "anno_dict", "[", "field_name", "]", "field_name_with_prefix", "=", "HDF5StorageService", ".", "ANNOTATION_PREFIX", "+", "field_name", "if", "field_name_with_prefix", "not", "in", "current_attrs", ":", "# Only store *new* annotations, if they already exist on disk, skip storage", "setattr", "(", "current_attrs", ",", "field_name_with_prefix", ",", "val", ")", "changed", "=", "True", "if", "changed", ":", "setattr", "(", "current_attrs", ",", "HDF5StorageService", ".", "ANNOTATED", ",", "True", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._ann_load_annotations
Loads annotations from disk.
pypet/storageservice.py
def _ann_load_annotations(self, item_with_annotations, node): """Loads annotations from disk.""" annotated = self._all_get_from_attrs(node, HDF5StorageService.ANNOTATED) if annotated: annotations = item_with_annotations.v_annotations # You can only load into non-empty annotations, to prevent overwriting data in RAM if not annotations.f_is_empty(): raise TypeError('Loading into non-empty annotations!') current_attrs = node._v_attrs for attr_name in current_attrs._v_attrnames: if attr_name.startswith(HDF5StorageService.ANNOTATION_PREFIX): key = attr_name key = key.replace(HDF5StorageService.ANNOTATION_PREFIX, '') data = getattr(current_attrs, attr_name) setattr(annotations, key, data)
def _ann_load_annotations(self, item_with_annotations, node): """Loads annotations from disk.""" annotated = self._all_get_from_attrs(node, HDF5StorageService.ANNOTATED) if annotated: annotations = item_with_annotations.v_annotations # You can only load into non-empty annotations, to prevent overwriting data in RAM if not annotations.f_is_empty(): raise TypeError('Loading into non-empty annotations!') current_attrs = node._v_attrs for attr_name in current_attrs._v_attrnames: if attr_name.startswith(HDF5StorageService.ANNOTATION_PREFIX): key = attr_name key = key.replace(HDF5StorageService.ANNOTATION_PREFIX, '') data = getattr(current_attrs, attr_name) setattr(annotations, key, data)
[ "Loads", "annotations", "from", "disk", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3516-L3538
[ "def", "_ann_load_annotations", "(", "self", ",", "item_with_annotations", ",", "node", ")", ":", "annotated", "=", "self", ".", "_all_get_from_attrs", "(", "node", ",", "HDF5StorageService", ".", "ANNOTATED", ")", "if", "annotated", ":", "annotations", "=", "item_with_annotations", ".", "v_annotations", "# You can only load into non-empty annotations, to prevent overwriting data in RAM", "if", "not", "annotations", ".", "f_is_empty", "(", ")", ":", "raise", "TypeError", "(", "'Loading into non-empty annotations!'", ")", "current_attrs", "=", "node", ".", "_v_attrs", "for", "attr_name", "in", "current_attrs", ".", "_v_attrnames", ":", "if", "attr_name", ".", "startswith", "(", "HDF5StorageService", ".", "ANNOTATION_PREFIX", ")", ":", "key", "=", "attr_name", "key", "=", "key", ".", "replace", "(", "HDF5StorageService", ".", "ANNOTATION_PREFIX", ",", "''", ")", "data", "=", "getattr", "(", "current_attrs", ",", "attr_name", ")", "setattr", "(", "annotations", ",", "key", ",", "data", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._grp_store_group
Stores a group node. For group nodes only annotations and comments need to be stored.
pypet/storageservice.py
def _grp_store_group(self, traj_group, store_data=pypetconstants.STORE_DATA, with_links=True, recursive=False, max_depth=None, _hdf5_group=None, _newly_created=False): """Stores a group node. For group nodes only annotations and comments need to be stored. """ if store_data == pypetconstants.STORE_NOTHING: return elif store_data == pypetconstants.STORE_DATA_SKIPPING and traj_group._stored: self._logger.debug('Already found `%s` on disk I will not store it!' % traj_group.v_full_name) elif not recursive: if _hdf5_group is None: _hdf5_group, _newly_created = self._all_create_or_get_groups(traj_group.v_full_name) overwrite = store_data == pypetconstants.OVERWRITE_DATA if (traj_group.v_comment != '' and (HDF5StorageService.COMMENT not in _hdf5_group._v_attrs or overwrite)): setattr(_hdf5_group._v_attrs, HDF5StorageService.COMMENT, traj_group.v_comment) if ((_newly_created or overwrite) and type(traj_group) not in (nn.NNGroupNode, nn.ConfigGroup, nn.ParameterGroup, nn.DerivedParameterGroup, nn.ResultGroup)): # We only store the name of the class if it is not one of the standard groups, # that are always used. setattr(_hdf5_group._v_attrs, HDF5StorageService.CLASS_NAME, traj_group.f_get_class_name()) self._ann_store_annotations(traj_group, _hdf5_group, overwrite=overwrite) self._hdf5file.flush() traj_group._stored = True # Signal completed node loading self._node_processing_timer.signal_update() if recursive: parent_traj_group = traj_group.f_get_parent() parent_hdf5_group = self._all_create_or_get_groups(parent_traj_group.v_full_name)[0] self._tree_store_nodes_dfs(parent_traj_group, traj_group.v_name, store_data=store_data, with_links=with_links, recursive=recursive, max_depth=max_depth, current_depth=0, parent_hdf5_group=parent_hdf5_group)
def _grp_store_group(self, traj_group, store_data=pypetconstants.STORE_DATA, with_links=True, recursive=False, max_depth=None, _hdf5_group=None, _newly_created=False): """Stores a group node. For group nodes only annotations and comments need to be stored. """ if store_data == pypetconstants.STORE_NOTHING: return elif store_data == pypetconstants.STORE_DATA_SKIPPING and traj_group._stored: self._logger.debug('Already found `%s` on disk I will not store it!' % traj_group.v_full_name) elif not recursive: if _hdf5_group is None: _hdf5_group, _newly_created = self._all_create_or_get_groups(traj_group.v_full_name) overwrite = store_data == pypetconstants.OVERWRITE_DATA if (traj_group.v_comment != '' and (HDF5StorageService.COMMENT not in _hdf5_group._v_attrs or overwrite)): setattr(_hdf5_group._v_attrs, HDF5StorageService.COMMENT, traj_group.v_comment) if ((_newly_created or overwrite) and type(traj_group) not in (nn.NNGroupNode, nn.ConfigGroup, nn.ParameterGroup, nn.DerivedParameterGroup, nn.ResultGroup)): # We only store the name of the class if it is not one of the standard groups, # that are always used. setattr(_hdf5_group._v_attrs, HDF5StorageService.CLASS_NAME, traj_group.f_get_class_name()) self._ann_store_annotations(traj_group, _hdf5_group, overwrite=overwrite) self._hdf5file.flush() traj_group._stored = True # Signal completed node loading self._node_processing_timer.signal_update() if recursive: parent_traj_group = traj_group.f_get_parent() parent_hdf5_group = self._all_create_or_get_groups(parent_traj_group.v_full_name)[0] self._tree_store_nodes_dfs(parent_traj_group, traj_group.v_name, store_data=store_data, with_links=with_links, recursive=recursive, max_depth=max_depth, current_depth=0, parent_hdf5_group=parent_hdf5_group)
[ "Stores", "a", "group", "node", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3543-L3588
[ "def", "_grp_store_group", "(", "self", ",", "traj_group", ",", "store_data", "=", "pypetconstants", ".", "STORE_DATA", ",", "with_links", "=", "True", ",", "recursive", "=", "False", ",", "max_depth", "=", "None", ",", "_hdf5_group", "=", "None", ",", "_newly_created", "=", "False", ")", ":", "if", "store_data", "==", "pypetconstants", ".", "STORE_NOTHING", ":", "return", "elif", "store_data", "==", "pypetconstants", ".", "STORE_DATA_SKIPPING", "and", "traj_group", ".", "_stored", ":", "self", ".", "_logger", ".", "debug", "(", "'Already found `%s` on disk I will not store it!'", "%", "traj_group", ".", "v_full_name", ")", "elif", "not", "recursive", ":", "if", "_hdf5_group", "is", "None", ":", "_hdf5_group", ",", "_newly_created", "=", "self", ".", "_all_create_or_get_groups", "(", "traj_group", ".", "v_full_name", ")", "overwrite", "=", "store_data", "==", "pypetconstants", ".", "OVERWRITE_DATA", "if", "(", "traj_group", ".", "v_comment", "!=", "''", "and", "(", "HDF5StorageService", ".", "COMMENT", "not", "in", "_hdf5_group", ".", "_v_attrs", "or", "overwrite", ")", ")", ":", "setattr", "(", "_hdf5_group", ".", "_v_attrs", ",", "HDF5StorageService", ".", "COMMENT", ",", "traj_group", ".", "v_comment", ")", "if", "(", "(", "_newly_created", "or", "overwrite", ")", "and", "type", "(", "traj_group", ")", "not", "in", "(", "nn", ".", "NNGroupNode", ",", "nn", ".", "ConfigGroup", ",", "nn", ".", "ParameterGroup", ",", "nn", ".", "DerivedParameterGroup", ",", "nn", ".", "ResultGroup", ")", ")", ":", "# We only store the name of the class if it is not one of the standard groups,", "# that are always used.", "setattr", "(", "_hdf5_group", ".", "_v_attrs", ",", "HDF5StorageService", ".", "CLASS_NAME", ",", "traj_group", ".", "f_get_class_name", "(", ")", ")", "self", ".", "_ann_store_annotations", "(", "traj_group", ",", "_hdf5_group", ",", "overwrite", "=", "overwrite", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")", "traj_group", ".", "_stored", "=", "True", "# Signal completed node loading", "self", ".", "_node_processing_timer", ".", "signal_update", "(", ")", "if", "recursive", ":", "parent_traj_group", "=", "traj_group", ".", "f_get_parent", "(", ")", "parent_hdf5_group", "=", "self", ".", "_all_create_or_get_groups", "(", "parent_traj_group", ".", "v_full_name", ")", "[", "0", "]", "self", ".", "_tree_store_nodes_dfs", "(", "parent_traj_group", ",", "traj_group", ".", "v_name", ",", "store_data", "=", "store_data", ",", "with_links", "=", "with_links", ",", "recursive", "=", "recursive", ",", "max_depth", "=", "max_depth", ",", "current_depth", "=", "0", ",", "parent_hdf5_group", "=", "parent_hdf5_group", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._grp_load_group
Loads a group node and potentially everything recursively below
pypet/storageservice.py
def _grp_load_group(self, traj_group, load_data=pypetconstants.LOAD_DATA, with_links=True, recursive=False, max_depth=None, _traj=None, _as_new=False, _hdf5_group=None): """Loads a group node and potentially everything recursively below""" if _hdf5_group is None: _hdf5_group = self._all_get_node_by_name(traj_group.v_full_name) _traj = traj_group.v_root if recursive: parent_traj_node = traj_group.f_get_parent() self._tree_load_nodes_dfs(parent_traj_node, load_data=load_data, with_links=with_links, recursive=recursive, max_depth=max_depth, current_depth=0, trajectory=_traj, as_new=_as_new, hdf5_group=_hdf5_group) else: if load_data == pypetconstants.LOAD_NOTHING: return elif load_data == pypetconstants.OVERWRITE_DATA: traj_group.v_annotations.f_empty() traj_group.v_comment = '' self._all_load_skeleton(traj_group, _hdf5_group) traj_group._stored = not _as_new # Signal completed node loading self._node_processing_timer.signal_update()
def _grp_load_group(self, traj_group, load_data=pypetconstants.LOAD_DATA, with_links=True, recursive=False, max_depth=None, _traj=None, _as_new=False, _hdf5_group=None): """Loads a group node and potentially everything recursively below""" if _hdf5_group is None: _hdf5_group = self._all_get_node_by_name(traj_group.v_full_name) _traj = traj_group.v_root if recursive: parent_traj_node = traj_group.f_get_parent() self._tree_load_nodes_dfs(parent_traj_node, load_data=load_data, with_links=with_links, recursive=recursive, max_depth=max_depth, current_depth=0, trajectory=_traj, as_new=_as_new, hdf5_group=_hdf5_group) else: if load_data == pypetconstants.LOAD_NOTHING: return elif load_data == pypetconstants.OVERWRITE_DATA: traj_group.v_annotations.f_empty() traj_group.v_comment = '' self._all_load_skeleton(traj_group, _hdf5_group) traj_group._stored = not _as_new # Signal completed node loading self._node_processing_timer.signal_update()
[ "Loads", "a", "group", "node", "and", "potentially", "everything", "recursively", "below" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3590-L3617
[ "def", "_grp_load_group", "(", "self", ",", "traj_group", ",", "load_data", "=", "pypetconstants", ".", "LOAD_DATA", ",", "with_links", "=", "True", ",", "recursive", "=", "False", ",", "max_depth", "=", "None", ",", "_traj", "=", "None", ",", "_as_new", "=", "False", ",", "_hdf5_group", "=", "None", ")", ":", "if", "_hdf5_group", "is", "None", ":", "_hdf5_group", "=", "self", ".", "_all_get_node_by_name", "(", "traj_group", ".", "v_full_name", ")", "_traj", "=", "traj_group", ".", "v_root", "if", "recursive", ":", "parent_traj_node", "=", "traj_group", ".", "f_get_parent", "(", ")", "self", ".", "_tree_load_nodes_dfs", "(", "parent_traj_node", ",", "load_data", "=", "load_data", ",", "with_links", "=", "with_links", ",", "recursive", "=", "recursive", ",", "max_depth", "=", "max_depth", ",", "current_depth", "=", "0", ",", "trajectory", "=", "_traj", ",", "as_new", "=", "_as_new", ",", "hdf5_group", "=", "_hdf5_group", ")", "else", ":", "if", "load_data", "==", "pypetconstants", ".", "LOAD_NOTHING", ":", "return", "elif", "load_data", "==", "pypetconstants", ".", "OVERWRITE_DATA", ":", "traj_group", ".", "v_annotations", ".", "f_empty", "(", ")", "traj_group", ".", "v_comment", "=", "''", "self", ".", "_all_load_skeleton", "(", "traj_group", ",", "_hdf5_group", ")", "traj_group", ".", "_stored", "=", "not", "_as_new", "# Signal completed node loading", "self", ".", "_node_processing_timer", ".", "signal_update", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_load_skeleton
Reloads skeleton data of a tree node
pypet/storageservice.py
def _all_load_skeleton(self, traj_node, hdf5_group): """Reloads skeleton data of a tree node""" if traj_node.v_annotations.f_is_empty(): self._ann_load_annotations(traj_node, hdf5_group) if traj_node.v_comment == '': comment = self._all_get_from_attrs(hdf5_group, HDF5StorageService.COMMENT) if comment is None: comment = '' traj_node.v_comment = comment
def _all_load_skeleton(self, traj_node, hdf5_group): """Reloads skeleton data of a tree node""" if traj_node.v_annotations.f_is_empty(): self._ann_load_annotations(traj_node, hdf5_group) if traj_node.v_comment == '': comment = self._all_get_from_attrs(hdf5_group, HDF5StorageService.COMMENT) if comment is None: comment = '' traj_node.v_comment = comment
[ "Reloads", "skeleton", "data", "of", "a", "tree", "node" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3619-L3627
[ "def", "_all_load_skeleton", "(", "self", ",", "traj_node", ",", "hdf5_group", ")", ":", "if", "traj_node", ".", "v_annotations", ".", "f_is_empty", "(", ")", ":", "self", ".", "_ann_load_annotations", "(", "traj_node", ",", "hdf5_group", ")", "if", "traj_node", ".", "v_comment", "==", "''", ":", "comment", "=", "self", ".", "_all_get_from_attrs", "(", "hdf5_group", ",", "HDF5StorageService", ".", "COMMENT", ")", "if", "comment", "is", "None", ":", "comment", "=", "''", "traj_node", ".", "v_comment", "=", "comment" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_extract_missing_flags
Extracts storage flags for data in `data_dict` if they were not specified in `flags_dict`. See :const:`~pypet.storageservice.HDF5StorageService.TYPE_FLAG_MAPPING` for how to store different types of data per default.
pypet/storageservice.py
def _prm_extract_missing_flags(data_dict, flags_dict): """Extracts storage flags for data in `data_dict` if they were not specified in `flags_dict`. See :const:`~pypet.storageservice.HDF5StorageService.TYPE_FLAG_MAPPING` for how to store different types of data per default. """ for key, data in data_dict.items(): if not key in flags_dict: dtype = type(data) if (dtype is np.ndarray or dtype is dict) and len(data) == 0: # Empty containers are stored as an Array # No need to ask for tuple or list, because they are always # stored as arrays. flags_dict[key] = HDF5StorageService.ARRAY continue else: try: flags_dict[key] = HDF5StorageService.TYPE_FLAG_MAPPING[dtype] except KeyError: raise pex.NoSuchServiceError('I cannot store `%s`, I do not understand the' 'type `%s`.' % (key, str(dtype)))
def _prm_extract_missing_flags(data_dict, flags_dict): """Extracts storage flags for data in `data_dict` if they were not specified in `flags_dict`. See :const:`~pypet.storageservice.HDF5StorageService.TYPE_FLAG_MAPPING` for how to store different types of data per default. """ for key, data in data_dict.items(): if not key in flags_dict: dtype = type(data) if (dtype is np.ndarray or dtype is dict) and len(data) == 0: # Empty containers are stored as an Array # No need to ask for tuple or list, because they are always # stored as arrays. flags_dict[key] = HDF5StorageService.ARRAY continue else: try: flags_dict[key] = HDF5StorageService.TYPE_FLAG_MAPPING[dtype] except KeyError: raise pex.NoSuchServiceError('I cannot store `%s`, I do not understand the' 'type `%s`.' % (key, str(dtype)))
[ "Extracts", "storage", "flags", "for", "data", "in", "data_dict", "if", "they", "were", "not", "specified", "in", "flags_dict", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3632-L3654
[ "def", "_prm_extract_missing_flags", "(", "data_dict", ",", "flags_dict", ")", ":", "for", "key", ",", "data", "in", "data_dict", ".", "items", "(", ")", ":", "if", "not", "key", "in", "flags_dict", ":", "dtype", "=", "type", "(", "data", ")", "if", "(", "dtype", "is", "np", ".", "ndarray", "or", "dtype", "is", "dict", ")", "and", "len", "(", "data", ")", "==", "0", ":", "# Empty containers are stored as an Array", "# No need to ask for tuple or list, because they are always", "# stored as arrays.", "flags_dict", "[", "key", "]", "=", "HDF5StorageService", ".", "ARRAY", "continue", "else", ":", "try", ":", "flags_dict", "[", "key", "]", "=", "HDF5StorageService", ".", "TYPE_FLAG_MAPPING", "[", "dtype", "]", "except", "KeyError", ":", "raise", "pex", ".", "NoSuchServiceError", "(", "'I cannot store `%s`, I do not understand the'", "'type `%s`.'", "%", "(", "key", ",", "str", "(", "dtype", ")", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_meta_add_summary
Adds data to the summary tables and returns if `instance`s comment has to be stored. Also moves comments upwards in the hierarchy if purge_duplicate_comments is true and a lower index run has completed. Only necessary for *multiprocessing*. :return: Tuple * String specifying the subtree * Boolean whether to store the comment to `instance`s hdf5 node
pypet/storageservice.py
def _prm_meta_add_summary(self, instance): """Adds data to the summary tables and returns if `instance`s comment has to be stored. Also moves comments upwards in the hierarchy if purge_duplicate_comments is true and a lower index run has completed. Only necessary for *multiprocessing*. :return: Tuple * String specifying the subtree * Boolean whether to store the comment to `instance`s hdf5 node """ if instance.v_comment == '': return False where = instance.v_branch definitely_store_comment = True # Get the hexdigest of the comment to see if such a comment has been stored before bytes_comment = instance.v_comment.encode('utf-8') hexdigest = hashlib.sha1(bytes_comment).hexdigest() hexdigest = hexdigest.encode('utf-8') # Get the overview table table_name = where + '_summary' # Check if the overview table exists, otherwise skip the rest of # the meta adding if table_name in self._overview_group: table = getattr(self._overview_group, table_name) else: return definitely_store_comment try: condvars = {'hexdigestcol': table.cols.hexdigest, 'hexdigest': hexdigest} condition = """(hexdigestcol == hexdigest)""" row_iterator = table.where(condition, condvars=condvars) row = None try: row = next(row_iterator) except StopIteration: pass if row is None: self._all_store_param_or_result_table_entry(instance, table, flags=( HDF5StorageService.ADD_ROW,), additional_info={ 'hexdigest': hexdigest}) definitely_store_comment = True else: definitely_store_comment = False self._all_kill_iterator(row_iterator) except pt.NoSuchNodeError: definitely_store_comment = True return definitely_store_comment
def _prm_meta_add_summary(self, instance): """Adds data to the summary tables and returns if `instance`s comment has to be stored. Also moves comments upwards in the hierarchy if purge_duplicate_comments is true and a lower index run has completed. Only necessary for *multiprocessing*. :return: Tuple * String specifying the subtree * Boolean whether to store the comment to `instance`s hdf5 node """ if instance.v_comment == '': return False where = instance.v_branch definitely_store_comment = True # Get the hexdigest of the comment to see if such a comment has been stored before bytes_comment = instance.v_comment.encode('utf-8') hexdigest = hashlib.sha1(bytes_comment).hexdigest() hexdigest = hexdigest.encode('utf-8') # Get the overview table table_name = where + '_summary' # Check if the overview table exists, otherwise skip the rest of # the meta adding if table_name in self._overview_group: table = getattr(self._overview_group, table_name) else: return definitely_store_comment try: condvars = {'hexdigestcol': table.cols.hexdigest, 'hexdigest': hexdigest} condition = """(hexdigestcol == hexdigest)""" row_iterator = table.where(condition, condvars=condvars) row = None try: row = next(row_iterator) except StopIteration: pass if row is None: self._all_store_param_or_result_table_entry(instance, table, flags=( HDF5StorageService.ADD_ROW,), additional_info={ 'hexdigest': hexdigest}) definitely_store_comment = True else: definitely_store_comment = False self._all_kill_iterator(row_iterator) except pt.NoSuchNodeError: definitely_store_comment = True return definitely_store_comment
[ "Adds", "data", "to", "the", "summary", "tables", "and", "returns", "if", "instance", "s", "comment", "has", "to", "be", "stored", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3656-L3720
[ "def", "_prm_meta_add_summary", "(", "self", ",", "instance", ")", ":", "if", "instance", ".", "v_comment", "==", "''", ":", "return", "False", "where", "=", "instance", ".", "v_branch", "definitely_store_comment", "=", "True", "# Get the hexdigest of the comment to see if such a comment has been stored before", "bytes_comment", "=", "instance", ".", "v_comment", ".", "encode", "(", "'utf-8'", ")", "hexdigest", "=", "hashlib", ".", "sha1", "(", "bytes_comment", ")", ".", "hexdigest", "(", ")", "hexdigest", "=", "hexdigest", ".", "encode", "(", "'utf-8'", ")", "# Get the overview table", "table_name", "=", "where", "+", "'_summary'", "# Check if the overview table exists, otherwise skip the rest of", "# the meta adding", "if", "table_name", "in", "self", ".", "_overview_group", ":", "table", "=", "getattr", "(", "self", ".", "_overview_group", ",", "table_name", ")", "else", ":", "return", "definitely_store_comment", "try", ":", "condvars", "=", "{", "'hexdigestcol'", ":", "table", ".", "cols", ".", "hexdigest", ",", "'hexdigest'", ":", "hexdigest", "}", "condition", "=", "\"\"\"(hexdigestcol == hexdigest)\"\"\"", "row_iterator", "=", "table", ".", "where", "(", "condition", ",", "condvars", "=", "condvars", ")", "row", "=", "None", "try", ":", "row", "=", "next", "(", "row_iterator", ")", "except", "StopIteration", ":", "pass", "if", "row", "is", "None", ":", "self", ".", "_all_store_param_or_result_table_entry", "(", "instance", ",", "table", ",", "flags", "=", "(", "HDF5StorageService", ".", "ADD_ROW", ",", ")", ",", "additional_info", "=", "{", "'hexdigest'", ":", "hexdigest", "}", ")", "definitely_store_comment", "=", "True", "else", ":", "definitely_store_comment", "=", "False", "self", ".", "_all_kill_iterator", "(", "row_iterator", ")", "except", "pt", ".", "NoSuchNodeError", ":", "definitely_store_comment", "=", "True", "return", "definitely_store_comment" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_add_meta_info
Adds information to overview tables and meta information to the `instance`s hdf5 `group`. :param instance: Instance to store meta info about :param group: HDF5 group of instance :param overwrite: If data should be explicitly overwritten
pypet/storageservice.py
def _prm_add_meta_info(self, instance, group, overwrite=False): """Adds information to overview tables and meta information to the `instance`s hdf5 `group`. :param instance: Instance to store meta info about :param group: HDF5 group of instance :param overwrite: If data should be explicitly overwritten """ if overwrite: flags = () else: flags = (HDF5StorageService.ADD_ROW,) definitely_store_comment = True try: # Check if we need to store the comment. Maybe update the overview tables # accordingly if the current run index is lower than the one in the table. definitely_store_comment = self._prm_meta_add_summary(instance) try: # Update the summary overview table table_name = instance.v_branch + '_overview' table = getattr(self._overview_group, table_name) if len(table) < pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH: self._all_store_param_or_result_table_entry(instance, table, flags=flags) except pt.NoSuchNodeError: pass except Exception as exc: self._logger.error('Could not store information table due to `%s`.' % repr(exc)) if ((not self._purge_duplicate_comments or definitely_store_comment) and instance.v_comment != ''): # Only add the comment if necessary setattr(group._v_attrs, HDF5StorageService.COMMENT, instance.v_comment) # Add class name and whether node is a leaf to the HDF5 attributes setattr(group._v_attrs, HDF5StorageService.CLASS_NAME, instance.f_get_class_name()) setattr(group._v_attrs, HDF5StorageService.LEAF, True) if instance.v_is_parameter and instance.v_explored: # If the stored parameter was an explored one we need to mark this in the # explored overview table try: tablename = 'explored_parameters_overview' table = getattr(self._overview_group, tablename) if len(table) < pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH: self._all_store_param_or_result_table_entry(instance, table, flags=flags) except pt.NoSuchNodeError: pass except Exception as exc: self._logger.error('Could not store information ' 'table due to `%s`.' % repr(exc))
def _prm_add_meta_info(self, instance, group, overwrite=False): """Adds information to overview tables and meta information to the `instance`s hdf5 `group`. :param instance: Instance to store meta info about :param group: HDF5 group of instance :param overwrite: If data should be explicitly overwritten """ if overwrite: flags = () else: flags = (HDF5StorageService.ADD_ROW,) definitely_store_comment = True try: # Check if we need to store the comment. Maybe update the overview tables # accordingly if the current run index is lower than the one in the table. definitely_store_comment = self._prm_meta_add_summary(instance) try: # Update the summary overview table table_name = instance.v_branch + '_overview' table = getattr(self._overview_group, table_name) if len(table) < pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH: self._all_store_param_or_result_table_entry(instance, table, flags=flags) except pt.NoSuchNodeError: pass except Exception as exc: self._logger.error('Could not store information table due to `%s`.' % repr(exc)) if ((not self._purge_duplicate_comments or definitely_store_comment) and instance.v_comment != ''): # Only add the comment if necessary setattr(group._v_attrs, HDF5StorageService.COMMENT, instance.v_comment) # Add class name and whether node is a leaf to the HDF5 attributes setattr(group._v_attrs, HDF5StorageService.CLASS_NAME, instance.f_get_class_name()) setattr(group._v_attrs, HDF5StorageService.LEAF, True) if instance.v_is_parameter and instance.v_explored: # If the stored parameter was an explored one we need to mark this in the # explored overview table try: tablename = 'explored_parameters_overview' table = getattr(self._overview_group, tablename) if len(table) < pypetconstants.HDF5_MAX_OVERVIEW_TABLE_LENGTH: self._all_store_param_or_result_table_entry(instance, table, flags=flags) except pt.NoSuchNodeError: pass except Exception as exc: self._logger.error('Could not store information ' 'table due to `%s`.' % repr(exc))
[ "Adds", "information", "to", "overview", "tables", "and", "meta", "information", "to", "the", "instance", "s", "hdf5", "group", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3722-L3780
[ "def", "_prm_add_meta_info", "(", "self", ",", "instance", ",", "group", ",", "overwrite", "=", "False", ")", ":", "if", "overwrite", ":", "flags", "=", "(", ")", "else", ":", "flags", "=", "(", "HDF5StorageService", ".", "ADD_ROW", ",", ")", "definitely_store_comment", "=", "True", "try", ":", "# Check if we need to store the comment. Maybe update the overview tables", "# accordingly if the current run index is lower than the one in the table.", "definitely_store_comment", "=", "self", ".", "_prm_meta_add_summary", "(", "instance", ")", "try", ":", "# Update the summary overview table", "table_name", "=", "instance", ".", "v_branch", "+", "'_overview'", "table", "=", "getattr", "(", "self", ".", "_overview_group", ",", "table_name", ")", "if", "len", "(", "table", ")", "<", "pypetconstants", ".", "HDF5_MAX_OVERVIEW_TABLE_LENGTH", ":", "self", ".", "_all_store_param_or_result_table_entry", "(", "instance", ",", "table", ",", "flags", "=", "flags", ")", "except", "pt", ".", "NoSuchNodeError", ":", "pass", "except", "Exception", "as", "exc", ":", "self", ".", "_logger", ".", "error", "(", "'Could not store information table due to `%s`.'", "%", "repr", "(", "exc", ")", ")", "if", "(", "(", "not", "self", ".", "_purge_duplicate_comments", "or", "definitely_store_comment", ")", "and", "instance", ".", "v_comment", "!=", "''", ")", ":", "# Only add the comment if necessary", "setattr", "(", "group", ".", "_v_attrs", ",", "HDF5StorageService", ".", "COMMENT", ",", "instance", ".", "v_comment", ")", "# Add class name and whether node is a leaf to the HDF5 attributes", "setattr", "(", "group", ".", "_v_attrs", ",", "HDF5StorageService", ".", "CLASS_NAME", ",", "instance", ".", "f_get_class_name", "(", ")", ")", "setattr", "(", "group", ".", "_v_attrs", ",", "HDF5StorageService", ".", "LEAF", ",", "True", ")", "if", "instance", ".", "v_is_parameter", "and", "instance", ".", "v_explored", ":", "# If the stored parameter was an explored one we need to mark this in the", "# explored overview table", "try", ":", "tablename", "=", "'explored_parameters_overview'", "table", "=", "getattr", "(", "self", ".", "_overview_group", ",", "tablename", ")", "if", "len", "(", "table", ")", "<", "pypetconstants", ".", "HDF5_MAX_OVERVIEW_TABLE_LENGTH", ":", "self", ".", "_all_store_param_or_result_table_entry", "(", "instance", ",", "table", ",", "flags", "=", "flags", ")", "except", "pt", ".", "NoSuchNodeError", ":", "pass", "except", "Exception", "as", "exc", ":", "self", ".", "_logger", ".", "error", "(", "'Could not store information '", "'table due to `%s`.'", "%", "repr", "(", "exc", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_store_from_dict
Stores a `store_dict`
pypet/storageservice.py
def _prm_store_from_dict(self, fullname, store_dict, hdf5_group, store_flags, kwargs): """Stores a `store_dict`""" for key, data_to_store in store_dict.items(): # self._logger.log(1, 'SUB-Storing %s [%s]', key, str(store_dict[key])) original_hdf5_group = None flag = store_flags[key] if '.' in key: original_hdf5_group = hdf5_group split_key = key.split('.') key = split_key.pop() for inner_key in split_key: hdf5_group, newly_created = self._all_create_or_get_group(inner_key, hdf5_group) if newly_created: setattr(hdf5_group._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.NESTED_GROUP) else: store_type = self._all_get_from_attrs(hdf5_group, HDF5StorageService.STORAGE_TYPE) if store_type != HDF5StorageService.NESTED_GROUP: raise ValueError('You want to nested results but `%s` is already ' 'of type `%s`!' % (hdf5_group._v_name, store_type)) # Iterate through the data and store according to the storage flags if key in hdf5_group: # We won't change any data that is found on disk self._logger.debug( 'Found %s already in hdf5 node of %s, so I will ignore it.' % (key, fullname)) continue if flag == HDF5StorageService.TABLE: # self._logger.log(1, 'SUB-Storing %s TABLE', key) self._prm_write_into_pytable(key, data_to_store, hdf5_group, fullname, **kwargs) elif flag == HDF5StorageService.DICT: # self._logger.log(1, 'SUB-Storing %s DICT', key) self._prm_write_dict_as_table(key, data_to_store, hdf5_group, fullname, **kwargs) elif flag == HDF5StorageService.ARRAY: # self._logger.log(1, 'SUB-Storing %s ARRAY', key) self._prm_write_into_array(key, data_to_store, hdf5_group, fullname, **kwargs) elif flag in (HDF5StorageService.CARRAY, HDF5StorageService.EARRAY, HDF5StorageService.VLARRAY): self._prm_write_into_other_array(key, data_to_store, hdf5_group, fullname, flag=flag, **kwargs) elif flag in (HDF5StorageService.SERIES, HDF5StorageService.FRAME, # HDF5StorageService.PANEL ): # self._logger.log(1, 'SUB-Storing %s PANDAS', key) self._prm_write_pandas_data(key, data_to_store, hdf5_group, fullname, flag, **kwargs) elif flag == HDF5StorageService.SHARED_DATA: pass # Shared data needs to be explicitly created and is not stored on # the fly else: raise RuntimeError('You shall not pass!') if original_hdf5_group is not None: hdf5_group = original_hdf5_group
def _prm_store_from_dict(self, fullname, store_dict, hdf5_group, store_flags, kwargs): """Stores a `store_dict`""" for key, data_to_store in store_dict.items(): # self._logger.log(1, 'SUB-Storing %s [%s]', key, str(store_dict[key])) original_hdf5_group = None flag = store_flags[key] if '.' in key: original_hdf5_group = hdf5_group split_key = key.split('.') key = split_key.pop() for inner_key in split_key: hdf5_group, newly_created = self._all_create_or_get_group(inner_key, hdf5_group) if newly_created: setattr(hdf5_group._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.NESTED_GROUP) else: store_type = self._all_get_from_attrs(hdf5_group, HDF5StorageService.STORAGE_TYPE) if store_type != HDF5StorageService.NESTED_GROUP: raise ValueError('You want to nested results but `%s` is already ' 'of type `%s`!' % (hdf5_group._v_name, store_type)) # Iterate through the data and store according to the storage flags if key in hdf5_group: # We won't change any data that is found on disk self._logger.debug( 'Found %s already in hdf5 node of %s, so I will ignore it.' % (key, fullname)) continue if flag == HDF5StorageService.TABLE: # self._logger.log(1, 'SUB-Storing %s TABLE', key) self._prm_write_into_pytable(key, data_to_store, hdf5_group, fullname, **kwargs) elif flag == HDF5StorageService.DICT: # self._logger.log(1, 'SUB-Storing %s DICT', key) self._prm_write_dict_as_table(key, data_to_store, hdf5_group, fullname, **kwargs) elif flag == HDF5StorageService.ARRAY: # self._logger.log(1, 'SUB-Storing %s ARRAY', key) self._prm_write_into_array(key, data_to_store, hdf5_group, fullname, **kwargs) elif flag in (HDF5StorageService.CARRAY, HDF5StorageService.EARRAY, HDF5StorageService.VLARRAY): self._prm_write_into_other_array(key, data_to_store, hdf5_group, fullname, flag=flag, **kwargs) elif flag in (HDF5StorageService.SERIES, HDF5StorageService.FRAME, # HDF5StorageService.PANEL ): # self._logger.log(1, 'SUB-Storing %s PANDAS', key) self._prm_write_pandas_data(key, data_to_store, hdf5_group, fullname, flag, **kwargs) elif flag == HDF5StorageService.SHARED_DATA: pass # Shared data needs to be explicitly created and is not stored on # the fly else: raise RuntimeError('You shall not pass!') if original_hdf5_group is not None: hdf5_group = original_hdf5_group
[ "Stores", "a", "store_dict" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3782-L3846
[ "def", "_prm_store_from_dict", "(", "self", ",", "fullname", ",", "store_dict", ",", "hdf5_group", ",", "store_flags", ",", "kwargs", ")", ":", "for", "key", ",", "data_to_store", "in", "store_dict", ".", "items", "(", ")", ":", "# self._logger.log(1, 'SUB-Storing %s [%s]', key, str(store_dict[key]))", "original_hdf5_group", "=", "None", "flag", "=", "store_flags", "[", "key", "]", "if", "'.'", "in", "key", ":", "original_hdf5_group", "=", "hdf5_group", "split_key", "=", "key", ".", "split", "(", "'.'", ")", "key", "=", "split_key", ".", "pop", "(", ")", "for", "inner_key", "in", "split_key", ":", "hdf5_group", ",", "newly_created", "=", "self", ".", "_all_create_or_get_group", "(", "inner_key", ",", "hdf5_group", ")", "if", "newly_created", ":", "setattr", "(", "hdf5_group", ".", "_v_attrs", ",", "HDF5StorageService", ".", "STORAGE_TYPE", ",", "HDF5StorageService", ".", "NESTED_GROUP", ")", "else", ":", "store_type", "=", "self", ".", "_all_get_from_attrs", "(", "hdf5_group", ",", "HDF5StorageService", ".", "STORAGE_TYPE", ")", "if", "store_type", "!=", "HDF5StorageService", ".", "NESTED_GROUP", ":", "raise", "ValueError", "(", "'You want to nested results but `%s` is already '", "'of type `%s`!'", "%", "(", "hdf5_group", ".", "_v_name", ",", "store_type", ")", ")", "# Iterate through the data and store according to the storage flags", "if", "key", "in", "hdf5_group", ":", "# We won't change any data that is found on disk", "self", ".", "_logger", ".", "debug", "(", "'Found %s already in hdf5 node of %s, so I will ignore it.'", "%", "(", "key", ",", "fullname", ")", ")", "continue", "if", "flag", "==", "HDF5StorageService", ".", "TABLE", ":", "# self._logger.log(1, 'SUB-Storing %s TABLE', key)", "self", ".", "_prm_write_into_pytable", "(", "key", ",", "data_to_store", ",", "hdf5_group", ",", "fullname", ",", "*", "*", "kwargs", ")", "elif", "flag", "==", "HDF5StorageService", ".", "DICT", ":", "# self._logger.log(1, 'SUB-Storing %s DICT', key)", "self", ".", "_prm_write_dict_as_table", "(", "key", ",", "data_to_store", ",", "hdf5_group", ",", "fullname", ",", "*", "*", "kwargs", ")", "elif", "flag", "==", "HDF5StorageService", ".", "ARRAY", ":", "# self._logger.log(1, 'SUB-Storing %s ARRAY', key)", "self", ".", "_prm_write_into_array", "(", "key", ",", "data_to_store", ",", "hdf5_group", ",", "fullname", ",", "*", "*", "kwargs", ")", "elif", "flag", "in", "(", "HDF5StorageService", ".", "CARRAY", ",", "HDF5StorageService", ".", "EARRAY", ",", "HDF5StorageService", ".", "VLARRAY", ")", ":", "self", ".", "_prm_write_into_other_array", "(", "key", ",", "data_to_store", ",", "hdf5_group", ",", "fullname", ",", "flag", "=", "flag", ",", "*", "*", "kwargs", ")", "elif", "flag", "in", "(", "HDF5StorageService", ".", "SERIES", ",", "HDF5StorageService", ".", "FRAME", ",", "# HDF5StorageService.PANEL", ")", ":", "# self._logger.log(1, 'SUB-Storing %s PANDAS', key)", "self", ".", "_prm_write_pandas_data", "(", "key", ",", "data_to_store", ",", "hdf5_group", ",", "fullname", ",", "flag", ",", "*", "*", "kwargs", ")", "elif", "flag", "==", "HDF5StorageService", ".", "SHARED_DATA", ":", "pass", "# Shared data needs to be explicitly created and is not stored on", "# the fly", "else", ":", "raise", "RuntimeError", "(", "'You shall not pass!'", ")", "if", "original_hdf5_group", "is", "not", "None", ":", "hdf5_group", "=", "original_hdf5_group" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_store_parameter_or_result
Stores a parameter or result to hdf5. :param instance: The instance to be stored :param store_data: How to store data :param store_flags: Dictionary containing how to store individual data, usually empty. :param overwrite: Instructions how to overwrite data :param with_links: Placeholder because leaves have no links :param recursive: Placeholder, because leaves have no children :param _hdf5_group: The hdf5 group for storing the parameter or result :param _newly_created: If should be created in a new form
pypet/storageservice.py
def _prm_store_parameter_or_result(self, instance, store_data=pypetconstants.STORE_DATA, store_flags=None, overwrite=None, with_links=False, recursive=False, _hdf5_group=None, _newly_created=False, **kwargs): """Stores a parameter or result to hdf5. :param instance: The instance to be stored :param store_data: How to store data :param store_flags: Dictionary containing how to store individual data, usually empty. :param overwrite: Instructions how to overwrite data :param with_links: Placeholder because leaves have no links :param recursive: Placeholder, because leaves have no children :param _hdf5_group: The hdf5 group for storing the parameter or result :param _newly_created: If should be created in a new form """ if store_data == pypetconstants.STORE_NOTHING: return elif store_data == pypetconstants.STORE_DATA_SKIPPING and instance._stored: self._logger.debug('Already found `%s` on disk I will not store it!' % instance.v_full_name) return elif store_data == pypetconstants.OVERWRITE_DATA: if not overwrite: overwrite = True fullname = instance.v_full_name self._logger.debug('Storing `%s`.' % fullname) if _hdf5_group is None: # If no group is provided we might need to create one _hdf5_group, _newly_created = self._all_create_or_get_groups(fullname) # kwargs_flags = {} # Dictionary to change settings # old_kwargs = {} store_dict = {} # If the user did not supply storage flags, we need to set it to the empty dictionary if store_flags is None: store_flags = {} try: # Get the data to store from the instance if not instance.f_is_empty(): store_dict = instance._store() try: # Ask the instance for storage flags instance_flags = instance._store_flags().copy() # copy to avoid modifying the # original data except AttributeError: # If it does not provide any, set it to the empty dictionary instance_flags = {} # User specified flags have priority over the flags from the instance instance_flags.update(store_flags) store_flags = instance_flags # If we still have data in `store_dict` about which we do not know how to store # it, pick default storage flags self._prm_extract_missing_flags(store_dict, store_flags) if overwrite: if isinstance(overwrite, str): overwrite = [overwrite] if overwrite is True: to_delete = [key for key in store_dict.keys() if key in _hdf5_group] self._all_delete_parameter_or_result_or_group(instance, delete_only=to_delete, _hdf5_group=_hdf5_group) elif isinstance(overwrite, (list, tuple)): overwrite_set = set(overwrite) key_set = set(store_dict.keys()) stuff_not_to_be_overwritten = overwrite_set - key_set if overwrite!='v_annotations' and len(stuff_not_to_be_overwritten) > 0: self._logger.warning('Cannot overwrite `%s`, these items are not supposed to ' 'be stored by the leaf node.' % str(stuff_not_to_be_overwritten)) stuff_to_overwrite = overwrite_set & key_set if len(stuff_to_overwrite) > 0: self._all_delete_parameter_or_result_or_group(instance, delete_only=list( stuff_to_overwrite)) else: raise ValueError('Your value of overwrite `%s` is not understood. ' 'Please pass `True` of a list of strings to fine grain ' 'overwriting.' % str(overwrite)) self._prm_store_from_dict(fullname, store_dict, _hdf5_group, store_flags, kwargs) # Store annotations self._ann_store_annotations(instance, _hdf5_group, overwrite=overwrite) if _newly_created or overwrite is True: # If we created a new group or the parameter was extended we need to # update the meta information and summary tables self._prm_add_meta_info(instance, _hdf5_group, overwrite=not _newly_created) instance._stored = True #self._logger.debug('Finished Storing `%s`.' % fullname) # Signal completed node loading self._node_processing_timer.signal_update() except: # I anything fails, we want to remove the data of the parameter again self._logger.error( 'Failed storing leaf `%s`. I will remove the hdf5 data I added again.' % fullname) # Delete data for key in store_dict.keys(): if key in _hdf5_group: hdf5_child = _hdf5_group._f_get_child(key) hdf5_child._f_remove(recursive=True) # If no data left delete the whole parameter if _hdf5_group._v_nchildren == 0: _hdf5_group._f_remove(recursive=True) raise
def _prm_store_parameter_or_result(self, instance, store_data=pypetconstants.STORE_DATA, store_flags=None, overwrite=None, with_links=False, recursive=False, _hdf5_group=None, _newly_created=False, **kwargs): """Stores a parameter or result to hdf5. :param instance: The instance to be stored :param store_data: How to store data :param store_flags: Dictionary containing how to store individual data, usually empty. :param overwrite: Instructions how to overwrite data :param with_links: Placeholder because leaves have no links :param recursive: Placeholder, because leaves have no children :param _hdf5_group: The hdf5 group for storing the parameter or result :param _newly_created: If should be created in a new form """ if store_data == pypetconstants.STORE_NOTHING: return elif store_data == pypetconstants.STORE_DATA_SKIPPING and instance._stored: self._logger.debug('Already found `%s` on disk I will not store it!' % instance.v_full_name) return elif store_data == pypetconstants.OVERWRITE_DATA: if not overwrite: overwrite = True fullname = instance.v_full_name self._logger.debug('Storing `%s`.' % fullname) if _hdf5_group is None: # If no group is provided we might need to create one _hdf5_group, _newly_created = self._all_create_or_get_groups(fullname) # kwargs_flags = {} # Dictionary to change settings # old_kwargs = {} store_dict = {} # If the user did not supply storage flags, we need to set it to the empty dictionary if store_flags is None: store_flags = {} try: # Get the data to store from the instance if not instance.f_is_empty(): store_dict = instance._store() try: # Ask the instance for storage flags instance_flags = instance._store_flags().copy() # copy to avoid modifying the # original data except AttributeError: # If it does not provide any, set it to the empty dictionary instance_flags = {} # User specified flags have priority over the flags from the instance instance_flags.update(store_flags) store_flags = instance_flags # If we still have data in `store_dict` about which we do not know how to store # it, pick default storage flags self._prm_extract_missing_flags(store_dict, store_flags) if overwrite: if isinstance(overwrite, str): overwrite = [overwrite] if overwrite is True: to_delete = [key for key in store_dict.keys() if key in _hdf5_group] self._all_delete_parameter_or_result_or_group(instance, delete_only=to_delete, _hdf5_group=_hdf5_group) elif isinstance(overwrite, (list, tuple)): overwrite_set = set(overwrite) key_set = set(store_dict.keys()) stuff_not_to_be_overwritten = overwrite_set - key_set if overwrite!='v_annotations' and len(stuff_not_to_be_overwritten) > 0: self._logger.warning('Cannot overwrite `%s`, these items are not supposed to ' 'be stored by the leaf node.' % str(stuff_not_to_be_overwritten)) stuff_to_overwrite = overwrite_set & key_set if len(stuff_to_overwrite) > 0: self._all_delete_parameter_or_result_or_group(instance, delete_only=list( stuff_to_overwrite)) else: raise ValueError('Your value of overwrite `%s` is not understood. ' 'Please pass `True` of a list of strings to fine grain ' 'overwriting.' % str(overwrite)) self._prm_store_from_dict(fullname, store_dict, _hdf5_group, store_flags, kwargs) # Store annotations self._ann_store_annotations(instance, _hdf5_group, overwrite=overwrite) if _newly_created or overwrite is True: # If we created a new group or the parameter was extended we need to # update the meta information and summary tables self._prm_add_meta_info(instance, _hdf5_group, overwrite=not _newly_created) instance._stored = True #self._logger.debug('Finished Storing `%s`.' % fullname) # Signal completed node loading self._node_processing_timer.signal_update() except: # I anything fails, we want to remove the data of the parameter again self._logger.error( 'Failed storing leaf `%s`. I will remove the hdf5 data I added again.' % fullname) # Delete data for key in store_dict.keys(): if key in _hdf5_group: hdf5_child = _hdf5_group._f_get_child(key) hdf5_child._f_remove(recursive=True) # If no data left delete the whole parameter if _hdf5_group._v_nchildren == 0: _hdf5_group._f_remove(recursive=True) raise
[ "Stores", "a", "parameter", "or", "result", "to", "hdf5", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L3848-L3996
[ "def", "_prm_store_parameter_or_result", "(", "self", ",", "instance", ",", "store_data", "=", "pypetconstants", ".", "STORE_DATA", ",", "store_flags", "=", "None", ",", "overwrite", "=", "None", ",", "with_links", "=", "False", ",", "recursive", "=", "False", ",", "_hdf5_group", "=", "None", ",", "_newly_created", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "store_data", "==", "pypetconstants", ".", "STORE_NOTHING", ":", "return", "elif", "store_data", "==", "pypetconstants", ".", "STORE_DATA_SKIPPING", "and", "instance", ".", "_stored", ":", "self", ".", "_logger", ".", "debug", "(", "'Already found `%s` on disk I will not store it!'", "%", "instance", ".", "v_full_name", ")", "return", "elif", "store_data", "==", "pypetconstants", ".", "OVERWRITE_DATA", ":", "if", "not", "overwrite", ":", "overwrite", "=", "True", "fullname", "=", "instance", ".", "v_full_name", "self", ".", "_logger", ".", "debug", "(", "'Storing `%s`.'", "%", "fullname", ")", "if", "_hdf5_group", "is", "None", ":", "# If no group is provided we might need to create one", "_hdf5_group", ",", "_newly_created", "=", "self", ".", "_all_create_or_get_groups", "(", "fullname", ")", "# kwargs_flags = {} # Dictionary to change settings", "# old_kwargs = {}", "store_dict", "=", "{", "}", "# If the user did not supply storage flags, we need to set it to the empty dictionary", "if", "store_flags", "is", "None", ":", "store_flags", "=", "{", "}", "try", ":", "# Get the data to store from the instance", "if", "not", "instance", ".", "f_is_empty", "(", ")", ":", "store_dict", "=", "instance", ".", "_store", "(", ")", "try", ":", "# Ask the instance for storage flags", "instance_flags", "=", "instance", ".", "_store_flags", "(", ")", ".", "copy", "(", ")", "# copy to avoid modifying the", "# original data", "except", "AttributeError", ":", "# If it does not provide any, set it to the empty dictionary", "instance_flags", "=", "{", "}", "# User specified flags have priority over the flags from the instance", "instance_flags", ".", "update", "(", "store_flags", ")", "store_flags", "=", "instance_flags", "# If we still have data in `store_dict` about which we do not know how to store", "# it, pick default storage flags", "self", ".", "_prm_extract_missing_flags", "(", "store_dict", ",", "store_flags", ")", "if", "overwrite", ":", "if", "isinstance", "(", "overwrite", ",", "str", ")", ":", "overwrite", "=", "[", "overwrite", "]", "if", "overwrite", "is", "True", ":", "to_delete", "=", "[", "key", "for", "key", "in", "store_dict", ".", "keys", "(", ")", "if", "key", "in", "_hdf5_group", "]", "self", ".", "_all_delete_parameter_or_result_or_group", "(", "instance", ",", "delete_only", "=", "to_delete", ",", "_hdf5_group", "=", "_hdf5_group", ")", "elif", "isinstance", "(", "overwrite", ",", "(", "list", ",", "tuple", ")", ")", ":", "overwrite_set", "=", "set", "(", "overwrite", ")", "key_set", "=", "set", "(", "store_dict", ".", "keys", "(", ")", ")", "stuff_not_to_be_overwritten", "=", "overwrite_set", "-", "key_set", "if", "overwrite", "!=", "'v_annotations'", "and", "len", "(", "stuff_not_to_be_overwritten", ")", ">", "0", ":", "self", ".", "_logger", ".", "warning", "(", "'Cannot overwrite `%s`, these items are not supposed to '", "'be stored by the leaf node.'", "%", "str", "(", "stuff_not_to_be_overwritten", ")", ")", "stuff_to_overwrite", "=", "overwrite_set", "&", "key_set", "if", "len", "(", "stuff_to_overwrite", ")", ">", "0", ":", "self", ".", "_all_delete_parameter_or_result_or_group", "(", "instance", ",", "delete_only", "=", "list", "(", "stuff_to_overwrite", ")", ")", "else", ":", "raise", "ValueError", "(", "'Your value of overwrite `%s` is not understood. '", "'Please pass `True` of a list of strings to fine grain '", "'overwriting.'", "%", "str", "(", "overwrite", ")", ")", "self", ".", "_prm_store_from_dict", "(", "fullname", ",", "store_dict", ",", "_hdf5_group", ",", "store_flags", ",", "kwargs", ")", "# Store annotations", "self", ".", "_ann_store_annotations", "(", "instance", ",", "_hdf5_group", ",", "overwrite", "=", "overwrite", ")", "if", "_newly_created", "or", "overwrite", "is", "True", ":", "# If we created a new group or the parameter was extended we need to", "# update the meta information and summary tables", "self", ".", "_prm_add_meta_info", "(", "instance", ",", "_hdf5_group", ",", "overwrite", "=", "not", "_newly_created", ")", "instance", ".", "_stored", "=", "True", "#self._logger.debug('Finished Storing `%s`.' % fullname)", "# Signal completed node loading", "self", ".", "_node_processing_timer", ".", "signal_update", "(", ")", "except", ":", "# I anything fails, we want to remove the data of the parameter again", "self", ".", "_logger", ".", "error", "(", "'Failed storing leaf `%s`. I will remove the hdf5 data I added again.'", "%", "fullname", ")", "# Delete data", "for", "key", "in", "store_dict", ".", "keys", "(", ")", ":", "if", "key", "in", "_hdf5_group", ":", "hdf5_child", "=", "_hdf5_group", ".", "_f_get_child", "(", "key", ")", "hdf5_child", ".", "_f_remove", "(", "recursive", "=", "True", ")", "# If no data left delete the whole parameter", "if", "_hdf5_group", ".", "_v_nchildren", "==", "0", ":", "_hdf5_group", ".", "_f_remove", "(", "recursive", "=", "True", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_select_shared_pandas_data
Reads a DataFrame from dis. :param pd_node: hdf5 node storing the pandas DataFrame :param full_name: Full name of the parameter or result whose data is to be loaded :param kwargs: Arguments passed to pandas' select method
pypet/storageservice.py
def _prm_select_shared_pandas_data(self, pd_node, full_name, **kwargs): """Reads a DataFrame from dis. :param pd_node: hdf5 node storing the pandas DataFrame :param full_name: Full name of the parameter or result whose data is to be loaded :param kwargs: Arguments passed to pandas' select method """ try: pathname = pd_node._v_pathname pandas_store = self._hdf5store return pandas_store.select(pathname, **kwargs) except: self._logger.error('Failed loading `%s` of `%s`.' % (pd_node._v_name, full_name)) raise
def _prm_select_shared_pandas_data(self, pd_node, full_name, **kwargs): """Reads a DataFrame from dis. :param pd_node: hdf5 node storing the pandas DataFrame :param full_name: Full name of the parameter or result whose data is to be loaded :param kwargs: Arguments passed to pandas' select method """ try: pathname = pd_node._v_pathname pandas_store = self._hdf5store return pandas_store.select(pathname, **kwargs) except: self._logger.error('Failed loading `%s` of `%s`.' % (pd_node._v_name, full_name)) raise
[ "Reads", "a", "DataFrame", "from", "dis", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4035-L4057
[ "def", "_prm_select_shared_pandas_data", "(", "self", ",", "pd_node", ",", "full_name", ",", "*", "*", "kwargs", ")", ":", "try", ":", "pathname", "=", "pd_node", ".", "_v_pathname", "pandas_store", "=", "self", ".", "_hdf5store", "return", "pandas_store", ".", "select", "(", "pathname", ",", "*", "*", "kwargs", ")", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed loading `%s` of `%s`.'", "%", "(", "pd_node", ".", "_v_name", ",", "full_name", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_write_shared_array
Creates and array that can be used with an HDF5 array object
pypet/storageservice.py
def _prm_write_shared_array(self, key, data, hdf5_group, full_name, flag, **kwargs): """Creates and array that can be used with an HDF5 array object""" if flag == HDF5StorageService.ARRAY: self._prm_write_into_array(key, data, hdf5_group, full_name, **kwargs) elif flag in (HDF5StorageService.CARRAY, HDF5StorageService.EARRAY, HDF5StorageService.VLARRAY): self._prm_write_into_other_array(key, data, hdf5_group, full_name, flag=flag, **kwargs) else: raise RuntimeError('Flag `%s` of hdf5 data `%s` of `%s` not understood' % (flag, key, full_name)) self._hdf5file.flush()
def _prm_write_shared_array(self, key, data, hdf5_group, full_name, flag, **kwargs): """Creates and array that can be used with an HDF5 array object""" if flag == HDF5StorageService.ARRAY: self._prm_write_into_array(key, data, hdf5_group, full_name, **kwargs) elif flag in (HDF5StorageService.CARRAY, HDF5StorageService.EARRAY, HDF5StorageService.VLARRAY): self._prm_write_into_other_array(key, data, hdf5_group, full_name, flag=flag, **kwargs) else: raise RuntimeError('Flag `%s` of hdf5 data `%s` of `%s` not understood' % (flag, key, full_name)) self._hdf5file.flush()
[ "Creates", "and", "array", "that", "can", "be", "used", "with", "an", "HDF5", "array", "object" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4059-L4073
[ "def", "_prm_write_shared_array", "(", "self", ",", "key", ",", "data", ",", "hdf5_group", ",", "full_name", ",", "flag", ",", "*", "*", "kwargs", ")", ":", "if", "flag", "==", "HDF5StorageService", ".", "ARRAY", ":", "self", ".", "_prm_write_into_array", "(", "key", ",", "data", ",", "hdf5_group", ",", "full_name", ",", "*", "*", "kwargs", ")", "elif", "flag", "in", "(", "HDF5StorageService", ".", "CARRAY", ",", "HDF5StorageService", ".", "EARRAY", ",", "HDF5StorageService", ".", "VLARRAY", ")", ":", "self", ".", "_prm_write_into_other_array", "(", "key", ",", "data", ",", "hdf5_group", ",", "full_name", ",", "flag", "=", "flag", ",", "*", "*", "kwargs", ")", "else", ":", "raise", "RuntimeError", "(", "'Flag `%s` of hdf5 data `%s` of `%s` not understood'", "%", "(", "flag", ",", "key", ",", "full_name", ")", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_write_shared_table
Creates a new empty table
pypet/storageservice.py
def _prm_write_shared_table(self, key, hdf5_group, fullname, **kwargs): """Creates a new empty table""" first_row = None description = None if 'first_row' in kwargs: first_row = kwargs.pop('first_row') if not 'description' in kwargs: description = {} for colname in first_row: data = first_row[colname] column = self._all_get_table_col(key, [data], fullname) description[colname] = column if 'description' in kwargs: description = kwargs.pop('description') if 'filters' in kwargs: filters = kwargs.pop('filters') else: filters = self._all_get_filters(kwargs) table = self._hdf5file.create_table(where=hdf5_group, name=key, description=description, filters=filters, **kwargs) table.flush() if first_row is not None: row = table.row for key in description: row[key] = first_row[key] row.append() table.flush()
def _prm_write_shared_table(self, key, hdf5_group, fullname, **kwargs): """Creates a new empty table""" first_row = None description = None if 'first_row' in kwargs: first_row = kwargs.pop('first_row') if not 'description' in kwargs: description = {} for colname in first_row: data = first_row[colname] column = self._all_get_table_col(key, [data], fullname) description[colname] = column if 'description' in kwargs: description = kwargs.pop('description') if 'filters' in kwargs: filters = kwargs.pop('filters') else: filters = self._all_get_filters(kwargs) table = self._hdf5file.create_table(where=hdf5_group, name=key, description=description, filters=filters, **kwargs) table.flush() if first_row is not None: row = table.row for key in description: row[key] = first_row[key] row.append() table.flush()
[ "Creates", "a", "new", "empty", "table" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4075-L4108
[ "def", "_prm_write_shared_table", "(", "self", ",", "key", ",", "hdf5_group", ",", "fullname", ",", "*", "*", "kwargs", ")", ":", "first_row", "=", "None", "description", "=", "None", "if", "'first_row'", "in", "kwargs", ":", "first_row", "=", "kwargs", ".", "pop", "(", "'first_row'", ")", "if", "not", "'description'", "in", "kwargs", ":", "description", "=", "{", "}", "for", "colname", "in", "first_row", ":", "data", "=", "first_row", "[", "colname", "]", "column", "=", "self", ".", "_all_get_table_col", "(", "key", ",", "[", "data", "]", ",", "fullname", ")", "description", "[", "colname", "]", "=", "column", "if", "'description'", "in", "kwargs", ":", "description", "=", "kwargs", ".", "pop", "(", "'description'", ")", "if", "'filters'", "in", "kwargs", ":", "filters", "=", "kwargs", ".", "pop", "(", "'filters'", ")", "else", ":", "filters", "=", "self", ".", "_all_get_filters", "(", "kwargs", ")", "table", "=", "self", ".", "_hdf5file", ".", "create_table", "(", "where", "=", "hdf5_group", ",", "name", "=", "key", ",", "description", "=", "description", ",", "filters", "=", "filters", ",", "*", "*", "kwargs", ")", "table", ".", "flush", "(", ")", "if", "first_row", "is", "not", "None", ":", "row", "=", "table", ".", "row", "for", "key", "in", "description", ":", "row", "[", "key", "]", "=", "first_row", "[", "key", "]", "row", ".", "append", "(", ")", "table", ".", "flush", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_write_dict_as_table
Stores a python dictionary as pytable :param key: Name of data item to store :param data_to_store: Dictionary to store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors.
pypet/storageservice.py
def _prm_write_dict_as_table(self, key, data_to_store, group, fullname, **kwargs): """Stores a python dictionary as pytable :param key: Name of data item to store :param data_to_store: Dictionary to store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. """ if key in group: raise ValueError( 'Dictionary `%s` already exists in `%s`. Appending is not supported (yet).') if key in group: raise ValueError('Dict `%s` already exists in `%s`. Appending is not supported (yet).') temp_dict = {} for innerkey in data_to_store: val = data_to_store[innerkey] temp_dict[innerkey] = [val] # Convert dictionary to object table objtable = ObjectTable(data=temp_dict) # Then store the object table self._prm_write_into_pytable(key, objtable, group, fullname, **kwargs) new_table = group._f_get_child(key) # Remember that the Object Table represents a dictionary self._all_set_attributes_to_recall_natives(temp_dict, new_table, HDF5StorageService.DATA_PREFIX) setattr(new_table._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.DICT) self._hdf5file.flush()
def _prm_write_dict_as_table(self, key, data_to_store, group, fullname, **kwargs): """Stores a python dictionary as pytable :param key: Name of data item to store :param data_to_store: Dictionary to store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. """ if key in group: raise ValueError( 'Dictionary `%s` already exists in `%s`. Appending is not supported (yet).') if key in group: raise ValueError('Dict `%s` already exists in `%s`. Appending is not supported (yet).') temp_dict = {} for innerkey in data_to_store: val = data_to_store[innerkey] temp_dict[innerkey] = [val] # Convert dictionary to object table objtable = ObjectTable(data=temp_dict) # Then store the object table self._prm_write_into_pytable(key, objtable, group, fullname, **kwargs) new_table = group._f_get_child(key) # Remember that the Object Table represents a dictionary self._all_set_attributes_to_recall_natives(temp_dict, new_table, HDF5StorageService.DATA_PREFIX) setattr(new_table._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.DICT) self._hdf5file.flush()
[ "Stores", "a", "python", "dictionary", "as", "pytable" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4110-L4157
[ "def", "_prm_write_dict_as_table", "(", "self", ",", "key", ",", "data_to_store", ",", "group", ",", "fullname", ",", "*", "*", "kwargs", ")", ":", "if", "key", "in", "group", ":", "raise", "ValueError", "(", "'Dictionary `%s` already exists in `%s`. Appending is not supported (yet).'", ")", "if", "key", "in", "group", ":", "raise", "ValueError", "(", "'Dict `%s` already exists in `%s`. Appending is not supported (yet).'", ")", "temp_dict", "=", "{", "}", "for", "innerkey", "in", "data_to_store", ":", "val", "=", "data_to_store", "[", "innerkey", "]", "temp_dict", "[", "innerkey", "]", "=", "[", "val", "]", "# Convert dictionary to object table", "objtable", "=", "ObjectTable", "(", "data", "=", "temp_dict", ")", "# Then store the object table", "self", ".", "_prm_write_into_pytable", "(", "key", ",", "objtable", ",", "group", ",", "fullname", ",", "*", "*", "kwargs", ")", "new_table", "=", "group", ".", "_f_get_child", "(", "key", ")", "# Remember that the Object Table represents a dictionary", "self", ".", "_all_set_attributes_to_recall_natives", "(", "temp_dict", ",", "new_table", ",", "HDF5StorageService", ".", "DATA_PREFIX", ")", "setattr", "(", "new_table", ".", "_v_attrs", ",", "HDF5StorageService", ".", "STORAGE_TYPE", ",", "HDF5StorageService", ".", "DICT", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_write_pandas_data
Stores a pandas DataFrame into hdf5. :param key: Name of data item to store :param data: Pandas Data to Store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. :param flag: If it is a series, frame or panel
pypet/storageservice.py
def _prm_write_pandas_data(self, key, data, group, fullname, flag, **kwargs): """Stores a pandas DataFrame into hdf5. :param key: Name of data item to store :param data: Pandas Data to Store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. :param flag: If it is a series, frame or panel """ try: if 'filters' not in kwargs: filters = self._all_get_filters(kwargs) kwargs['filters'] = filters if 'format' not in kwargs: kwargs['format'] = self.pandas_format if 'encoding' not in kwargs: kwargs['encoding'] = self.encoding overwrite = kwargs.pop('overwrite', False) if key in group and not (overwrite or kwargs.get('append', False)): raise ValueError( 'DataFrame `%s` already exists in `%s`. ' 'To append pass ``append=`True```.' % (key, fullname)) else: self._logger.debug('Appending to pandas data `%s` in `%s`' % (key, fullname)) if data is not None and (kwargs['format'] == 'f' or kwargs['format'] == 'fixed'): kwargs['expectedrows'] = data.shape[0] name = group._v_pathname + '/' + key self._hdf5store.put(name, data, **kwargs) self._hdf5store.flush() self._hdf5file.flush() frame_group = group._f_get_child(key) setattr(frame_group._v_attrs, HDF5StorageService.STORAGE_TYPE, flag) self._hdf5file.flush() except: self._logger.error('Failed storing pandas data `%s` of `%s`.' % (key, fullname)) raise
def _prm_write_pandas_data(self, key, data, group, fullname, flag, **kwargs): """Stores a pandas DataFrame into hdf5. :param key: Name of data item to store :param data: Pandas Data to Store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. :param flag: If it is a series, frame or panel """ try: if 'filters' not in kwargs: filters = self._all_get_filters(kwargs) kwargs['filters'] = filters if 'format' not in kwargs: kwargs['format'] = self.pandas_format if 'encoding' not in kwargs: kwargs['encoding'] = self.encoding overwrite = kwargs.pop('overwrite', False) if key in group and not (overwrite or kwargs.get('append', False)): raise ValueError( 'DataFrame `%s` already exists in `%s`. ' 'To append pass ``append=`True```.' % (key, fullname)) else: self._logger.debug('Appending to pandas data `%s` in `%s`' % (key, fullname)) if data is not None and (kwargs['format'] == 'f' or kwargs['format'] == 'fixed'): kwargs['expectedrows'] = data.shape[0] name = group._v_pathname + '/' + key self._hdf5store.put(name, data, **kwargs) self._hdf5store.flush() self._hdf5file.flush() frame_group = group._f_get_child(key) setattr(frame_group._v_attrs, HDF5StorageService.STORAGE_TYPE, flag) self._hdf5file.flush() except: self._logger.error('Failed storing pandas data `%s` of `%s`.' % (key, fullname)) raise
[ "Stores", "a", "pandas", "DataFrame", "into", "hdf5", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4159-L4215
[ "def", "_prm_write_pandas_data", "(", "self", ",", "key", ",", "data", ",", "group", ",", "fullname", ",", "flag", ",", "*", "*", "kwargs", ")", ":", "try", ":", "if", "'filters'", "not", "in", "kwargs", ":", "filters", "=", "self", ".", "_all_get_filters", "(", "kwargs", ")", "kwargs", "[", "'filters'", "]", "=", "filters", "if", "'format'", "not", "in", "kwargs", ":", "kwargs", "[", "'format'", "]", "=", "self", ".", "pandas_format", "if", "'encoding'", "not", "in", "kwargs", ":", "kwargs", "[", "'encoding'", "]", "=", "self", ".", "encoding", "overwrite", "=", "kwargs", ".", "pop", "(", "'overwrite'", ",", "False", ")", "if", "key", "in", "group", "and", "not", "(", "overwrite", "or", "kwargs", ".", "get", "(", "'append'", ",", "False", ")", ")", ":", "raise", "ValueError", "(", "'DataFrame `%s` already exists in `%s`. '", "'To append pass ``append=`True```.'", "%", "(", "key", ",", "fullname", ")", ")", "else", ":", "self", ".", "_logger", ".", "debug", "(", "'Appending to pandas data `%s` in `%s`'", "%", "(", "key", ",", "fullname", ")", ")", "if", "data", "is", "not", "None", "and", "(", "kwargs", "[", "'format'", "]", "==", "'f'", "or", "kwargs", "[", "'format'", "]", "==", "'fixed'", ")", ":", "kwargs", "[", "'expectedrows'", "]", "=", "data", ".", "shape", "[", "0", "]", "name", "=", "group", ".", "_v_pathname", "+", "'/'", "+", "key", "self", ".", "_hdf5store", ".", "put", "(", "name", ",", "data", ",", "*", "*", "kwargs", ")", "self", ".", "_hdf5store", ".", "flush", "(", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")", "frame_group", "=", "group", ".", "_f_get_child", "(", "key", ")", "setattr", "(", "frame_group", ".", "_v_attrs", ",", "HDF5StorageService", ".", "STORAGE_TYPE", ",", "flag", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed storing pandas data `%s` of `%s`.'", "%", "(", "key", ",", "fullname", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_write_into_other_array
Stores data as carray, earray or vlarray depending on `flag`. :param key: Name of data item to store :param data: Data to store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. :param recall: If container type and data type for perfect recall should be stored :param flag: How to store: CARRAY, EARRAY, VLARRAY
pypet/storageservice.py
def _prm_write_into_other_array(self, key, data, group, fullname, flag, **kwargs): """Stores data as carray, earray or vlarray depending on `flag`. :param key: Name of data item to store :param data: Data to store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. :param recall: If container type and data type for perfect recall should be stored :param flag: How to store: CARRAY, EARRAY, VLARRAY """ try: if flag == HDF5StorageService.CARRAY: factory = self._hdf5file.create_carray elif flag == HDF5StorageService.EARRAY: factory = self._hdf5file.create_earray elif flag == HDF5StorageService.VLARRAY: factory = self._hdf5file.create_vlarray else: raise RuntimeError('You shall not pass!') if key in group: raise ValueError( 'CArray `%s` already exists in `%s`. Appending is not supported (yet).') if 'filters' in kwargs: filters = kwargs.pop('filters') else: filters = self._all_get_filters(kwargs) try: other_array = factory(where=group, name=key, obj=data, filters=filters, **kwargs) except (ValueError, TypeError) as exc: try: conv_data = data[:] conv_data = np.core.defchararray.encode(conv_data, self.encoding) other_array = factory(where=group, name=key, obj=conv_data, filters=filters, **kwargs) except Exception: # Re-raise original Error raise exc if data is not None: # Remember the types of the original data to recall them on loading self._all_set_attributes_to_recall_natives(data, other_array, HDF5StorageService.DATA_PREFIX) setattr(other_array._v_attrs, HDF5StorageService.STORAGE_TYPE, flag) self._hdf5file.flush() except: self._logger.error('Failed storing %s `%s` of `%s`.' % (flag, key, fullname)) raise
def _prm_write_into_other_array(self, key, data, group, fullname, flag, **kwargs): """Stores data as carray, earray or vlarray depending on `flag`. :param key: Name of data item to store :param data: Data to store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. :param recall: If container type and data type for perfect recall should be stored :param flag: How to store: CARRAY, EARRAY, VLARRAY """ try: if flag == HDF5StorageService.CARRAY: factory = self._hdf5file.create_carray elif flag == HDF5StorageService.EARRAY: factory = self._hdf5file.create_earray elif flag == HDF5StorageService.VLARRAY: factory = self._hdf5file.create_vlarray else: raise RuntimeError('You shall not pass!') if key in group: raise ValueError( 'CArray `%s` already exists in `%s`. Appending is not supported (yet).') if 'filters' in kwargs: filters = kwargs.pop('filters') else: filters = self._all_get_filters(kwargs) try: other_array = factory(where=group, name=key, obj=data, filters=filters, **kwargs) except (ValueError, TypeError) as exc: try: conv_data = data[:] conv_data = np.core.defchararray.encode(conv_data, self.encoding) other_array = factory(where=group, name=key, obj=conv_data, filters=filters, **kwargs) except Exception: # Re-raise original Error raise exc if data is not None: # Remember the types of the original data to recall them on loading self._all_set_attributes_to_recall_natives(data, other_array, HDF5StorageService.DATA_PREFIX) setattr(other_array._v_attrs, HDF5StorageService.STORAGE_TYPE, flag) self._hdf5file.flush() except: self._logger.error('Failed storing %s `%s` of `%s`.' % (flag, key, fullname)) raise
[ "Stores", "data", "as", "carray", "earray", "or", "vlarray", "depending", "on", "flag", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4217-L4289
[ "def", "_prm_write_into_other_array", "(", "self", ",", "key", ",", "data", ",", "group", ",", "fullname", ",", "flag", ",", "*", "*", "kwargs", ")", ":", "try", ":", "if", "flag", "==", "HDF5StorageService", ".", "CARRAY", ":", "factory", "=", "self", ".", "_hdf5file", ".", "create_carray", "elif", "flag", "==", "HDF5StorageService", ".", "EARRAY", ":", "factory", "=", "self", ".", "_hdf5file", ".", "create_earray", "elif", "flag", "==", "HDF5StorageService", ".", "VLARRAY", ":", "factory", "=", "self", ".", "_hdf5file", ".", "create_vlarray", "else", ":", "raise", "RuntimeError", "(", "'You shall not pass!'", ")", "if", "key", "in", "group", ":", "raise", "ValueError", "(", "'CArray `%s` already exists in `%s`. Appending is not supported (yet).'", ")", "if", "'filters'", "in", "kwargs", ":", "filters", "=", "kwargs", ".", "pop", "(", "'filters'", ")", "else", ":", "filters", "=", "self", ".", "_all_get_filters", "(", "kwargs", ")", "try", ":", "other_array", "=", "factory", "(", "where", "=", "group", ",", "name", "=", "key", ",", "obj", "=", "data", ",", "filters", "=", "filters", ",", "*", "*", "kwargs", ")", "except", "(", "ValueError", ",", "TypeError", ")", "as", "exc", ":", "try", ":", "conv_data", "=", "data", "[", ":", "]", "conv_data", "=", "np", ".", "core", ".", "defchararray", ".", "encode", "(", "conv_data", ",", "self", ".", "encoding", ")", "other_array", "=", "factory", "(", "where", "=", "group", ",", "name", "=", "key", ",", "obj", "=", "conv_data", ",", "filters", "=", "filters", ",", "*", "*", "kwargs", ")", "except", "Exception", ":", "# Re-raise original Error", "raise", "exc", "if", "data", "is", "not", "None", ":", "# Remember the types of the original data to recall them on loading", "self", ".", "_all_set_attributes_to_recall_natives", "(", "data", ",", "other_array", ",", "HDF5StorageService", ".", "DATA_PREFIX", ")", "setattr", "(", "other_array", ".", "_v_attrs", ",", "HDF5StorageService", ".", "STORAGE_TYPE", ",", "flag", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed storing %s `%s` of `%s`.'", "%", "(", "flag", ",", "key", ",", "fullname", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_write_into_array
Stores data as array. :param key: Name of data item to store :param data: Data to store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. :param recall: If container type and data type for perfect recall should be stored
pypet/storageservice.py
def _prm_write_into_array(self, key, data, group, fullname, **kwargs): """Stores data as array. :param key: Name of data item to store :param data: Data to store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. :param recall: If container type and data type for perfect recall should be stored """ try: if key in group: raise ValueError( 'Array `%s` already exists in `%s`. Appending is not supported (yet).') try: array = self._hdf5file.create_array(where=group, name=key, obj=data, **kwargs) except (TypeError, ValueError) as exc: try: if type(data) is dict and len(data) == 0: # We cannot store an empty dictionary, # but we can use an empty tuple as a dummy. conv_data = () elif isinstance(data, str): conv_data = data.encode(self._encoding) elif isinstance(data, int): conv_data = np.int64(data) else: conv_data = [] for string in data: conv_data.append(string.encode(self._encoding)) array = self._hdf5file.create_array(where=group, name=key, obj=conv_data, **kwargs) except Exception: # Re-raise original error raise exc if data is not None: # Remember the types of the original data to recall them on loading self._all_set_attributes_to_recall_natives(data, array, HDF5StorageService.DATA_PREFIX) setattr(array._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.ARRAY) self._hdf5file.flush() except: self._logger.error('Failed storing array `%s` of `%s`.' % (key, fullname)) raise
def _prm_write_into_array(self, key, data, group, fullname, **kwargs): """Stores data as array. :param key: Name of data item to store :param data: Data to store :param group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. :param recall: If container type and data type for perfect recall should be stored """ try: if key in group: raise ValueError( 'Array `%s` already exists in `%s`. Appending is not supported (yet).') try: array = self._hdf5file.create_array(where=group, name=key, obj=data, **kwargs) except (TypeError, ValueError) as exc: try: if type(data) is dict and len(data) == 0: # We cannot store an empty dictionary, # but we can use an empty tuple as a dummy. conv_data = () elif isinstance(data, str): conv_data = data.encode(self._encoding) elif isinstance(data, int): conv_data = np.int64(data) else: conv_data = [] for string in data: conv_data.append(string.encode(self._encoding)) array = self._hdf5file.create_array(where=group, name=key, obj=conv_data, **kwargs) except Exception: # Re-raise original error raise exc if data is not None: # Remember the types of the original data to recall them on loading self._all_set_attributes_to_recall_natives(data, array, HDF5StorageService.DATA_PREFIX) setattr(array._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.ARRAY) self._hdf5file.flush() except: self._logger.error('Failed storing array `%s` of `%s`.' % (key, fullname)) raise
[ "Stores", "data", "as", "array", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4291-L4354
[ "def", "_prm_write_into_array", "(", "self", ",", "key", ",", "data", ",", "group", ",", "fullname", ",", "*", "*", "kwargs", ")", ":", "try", ":", "if", "key", "in", "group", ":", "raise", "ValueError", "(", "'Array `%s` already exists in `%s`. Appending is not supported (yet).'", ")", "try", ":", "array", "=", "self", ".", "_hdf5file", ".", "create_array", "(", "where", "=", "group", ",", "name", "=", "key", ",", "obj", "=", "data", ",", "*", "*", "kwargs", ")", "except", "(", "TypeError", ",", "ValueError", ")", "as", "exc", ":", "try", ":", "if", "type", "(", "data", ")", "is", "dict", "and", "len", "(", "data", ")", "==", "0", ":", "# We cannot store an empty dictionary,", "# but we can use an empty tuple as a dummy.", "conv_data", "=", "(", ")", "elif", "isinstance", "(", "data", ",", "str", ")", ":", "conv_data", "=", "data", ".", "encode", "(", "self", ".", "_encoding", ")", "elif", "isinstance", "(", "data", ",", "int", ")", ":", "conv_data", "=", "np", ".", "int64", "(", "data", ")", "else", ":", "conv_data", "=", "[", "]", "for", "string", "in", "data", ":", "conv_data", ".", "append", "(", "string", ".", "encode", "(", "self", ".", "_encoding", ")", ")", "array", "=", "self", ".", "_hdf5file", ".", "create_array", "(", "where", "=", "group", ",", "name", "=", "key", ",", "obj", "=", "conv_data", ",", "*", "*", "kwargs", ")", "except", "Exception", ":", "# Re-raise original error", "raise", "exc", "if", "data", "is", "not", "None", ":", "# Remember the types of the original data to recall them on loading", "self", ".", "_all_set_attributes_to_recall_natives", "(", "data", ",", "array", ",", "HDF5StorageService", ".", "DATA_PREFIX", ")", "setattr", "(", "array", ".", "_v_attrs", ",", "HDF5StorageService", ".", "STORAGE_TYPE", ",", "HDF5StorageService", ".", "ARRAY", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed storing array `%s` of `%s`.'", "%", "(", "key", ",", "fullname", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._lnk_delete_link
Removes a link from disk
pypet/storageservice.py
def _lnk_delete_link(self, link_name): """Removes a link from disk""" translated_name = '/' + self._trajectory_name + '/' + link_name.replace('.','/') link = self._hdf5file.get_node(where=translated_name) link._f_remove()
def _lnk_delete_link(self, link_name): """Removes a link from disk""" translated_name = '/' + self._trajectory_name + '/' + link_name.replace('.','/') link = self._hdf5file.get_node(where=translated_name) link._f_remove()
[ "Removes", "a", "link", "from", "disk" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4356-L4360
[ "def", "_lnk_delete_link", "(", "self", ",", "link_name", ")", ":", "translated_name", "=", "'/'", "+", "self", ".", "_trajectory_name", "+", "'/'", "+", "link_name", ".", "replace", "(", "'.'", ",", "'/'", ")", "link", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "where", "=", "translated_name", ")", "link", ".", "_f_remove", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_delete_parameter_or_result_or_group
Removes a parameter or result or group from the hdf5 file. :param instance: Instance to be removed :param delete_only: List of elements if you only want to delete parts of a leaf node. Note that this needs to list the names of the hdf5 subnodes. BE CAREFUL if you erase parts of a leaf. Erasing partly happens at your own risk, it might be the case that you can no longer reconstruct the leaf from the leftovers! :param remove_from_item: If using `delete_only` and `remove_from_item=True` after deletion the data item is also removed from the `instance`. :param recursive: If a group node has children, you will can delete it if recursive is True.
pypet/storageservice.py
def _all_delete_parameter_or_result_or_group(self, instance, delete_only=None, remove_from_item=False, recursive=False, _hdf5_group=None): """Removes a parameter or result or group from the hdf5 file. :param instance: Instance to be removed :param delete_only: List of elements if you only want to delete parts of a leaf node. Note that this needs to list the names of the hdf5 subnodes. BE CAREFUL if you erase parts of a leaf. Erasing partly happens at your own risk, it might be the case that you can no longer reconstruct the leaf from the leftovers! :param remove_from_item: If using `delete_only` and `remove_from_item=True` after deletion the data item is also removed from the `instance`. :param recursive: If a group node has children, you will can delete it if recursive is True. """ split_name = instance.v_location.split('.') if _hdf5_group is None: where = '/' + self._trajectory_name + '/' + '/'.join(split_name) node_name = instance.v_name _hdf5_group = self._hdf5file.get_node(where=where, name=node_name) if delete_only is None: if instance.v_is_group and not recursive and len(_hdf5_group._v_children) != 0: raise TypeError('You cannot remove the group `%s`, it has children, please ' 'use `recursive=True` to enforce removal.' % instance.v_full_name) _hdf5_group._f_remove(recursive=True) else: if not instance.v_is_leaf: raise ValueError('You can only choose `delete_only` mode for leafs.') if isinstance(delete_only, str): delete_only = [delete_only] for delete_item in delete_only: if (remove_from_item and hasattr(instance, '__contains__') and hasattr(instance, '__delattr__') and delete_item in instance): delattr(instance, delete_item) try: _hdf5_sub_group = self._hdf5file.get_node(where=_hdf5_group, name=delete_item) _hdf5_sub_group._f_remove(recursive=True) except pt.NoSuchNodeError: self._logger.warning('Could not delete `%s` from `%s`. HDF5 node not found!' % (delete_item, instance.v_full_name))
def _all_delete_parameter_or_result_or_group(self, instance, delete_only=None, remove_from_item=False, recursive=False, _hdf5_group=None): """Removes a parameter or result or group from the hdf5 file. :param instance: Instance to be removed :param delete_only: List of elements if you only want to delete parts of a leaf node. Note that this needs to list the names of the hdf5 subnodes. BE CAREFUL if you erase parts of a leaf. Erasing partly happens at your own risk, it might be the case that you can no longer reconstruct the leaf from the leftovers! :param remove_from_item: If using `delete_only` and `remove_from_item=True` after deletion the data item is also removed from the `instance`. :param recursive: If a group node has children, you will can delete it if recursive is True. """ split_name = instance.v_location.split('.') if _hdf5_group is None: where = '/' + self._trajectory_name + '/' + '/'.join(split_name) node_name = instance.v_name _hdf5_group = self._hdf5file.get_node(where=where, name=node_name) if delete_only is None: if instance.v_is_group and not recursive and len(_hdf5_group._v_children) != 0: raise TypeError('You cannot remove the group `%s`, it has children, please ' 'use `recursive=True` to enforce removal.' % instance.v_full_name) _hdf5_group._f_remove(recursive=True) else: if not instance.v_is_leaf: raise ValueError('You can only choose `delete_only` mode for leafs.') if isinstance(delete_only, str): delete_only = [delete_only] for delete_item in delete_only: if (remove_from_item and hasattr(instance, '__contains__') and hasattr(instance, '__delattr__') and delete_item in instance): delattr(instance, delete_item) try: _hdf5_sub_group = self._hdf5file.get_node(where=_hdf5_group, name=delete_item) _hdf5_sub_group._f_remove(recursive=True) except pt.NoSuchNodeError: self._logger.warning('Could not delete `%s` from `%s`. HDF5 node not found!' % (delete_item, instance.v_full_name))
[ "Removes", "a", "parameter", "or", "result", "or", "group", "from", "the", "hdf5", "file", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4362-L4420
[ "def", "_all_delete_parameter_or_result_or_group", "(", "self", ",", "instance", ",", "delete_only", "=", "None", ",", "remove_from_item", "=", "False", ",", "recursive", "=", "False", ",", "_hdf5_group", "=", "None", ")", ":", "split_name", "=", "instance", ".", "v_location", ".", "split", "(", "'.'", ")", "if", "_hdf5_group", "is", "None", ":", "where", "=", "'/'", "+", "self", ".", "_trajectory_name", "+", "'/'", "+", "'/'", ".", "join", "(", "split_name", ")", "node_name", "=", "instance", ".", "v_name", "_hdf5_group", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "where", "=", "where", ",", "name", "=", "node_name", ")", "if", "delete_only", "is", "None", ":", "if", "instance", ".", "v_is_group", "and", "not", "recursive", "and", "len", "(", "_hdf5_group", ".", "_v_children", ")", "!=", "0", ":", "raise", "TypeError", "(", "'You cannot remove the group `%s`, it has children, please '", "'use `recursive=True` to enforce removal.'", "%", "instance", ".", "v_full_name", ")", "_hdf5_group", ".", "_f_remove", "(", "recursive", "=", "True", ")", "else", ":", "if", "not", "instance", ".", "v_is_leaf", ":", "raise", "ValueError", "(", "'You can only choose `delete_only` mode for leafs.'", ")", "if", "isinstance", "(", "delete_only", ",", "str", ")", ":", "delete_only", "=", "[", "delete_only", "]", "for", "delete_item", "in", "delete_only", ":", "if", "(", "remove_from_item", "and", "hasattr", "(", "instance", ",", "'__contains__'", ")", "and", "hasattr", "(", "instance", ",", "'__delattr__'", ")", "and", "delete_item", "in", "instance", ")", ":", "delattr", "(", "instance", ",", "delete_item", ")", "try", ":", "_hdf5_sub_group", "=", "self", ".", "_hdf5file", ".", "get_node", "(", "where", "=", "_hdf5_group", ",", "name", "=", "delete_item", ")", "_hdf5_sub_group", ".", "_f_remove", "(", "recursive", "=", "True", ")", "except", "pt", ".", "NoSuchNodeError", ":", "self", ".", "_logger", ".", "warning", "(", "'Could not delete `%s` from `%s`. HDF5 node not found!'", "%", "(", "delete_item", ",", "instance", ".", "v_full_name", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_write_into_pytable
Stores data as pytable. :param tablename: Name of the data table :param data: Data to store :param hdf5_group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors.
pypet/storageservice.py
def _prm_write_into_pytable(self, tablename, data, hdf5_group, fullname, **kwargs): """Stores data as pytable. :param tablename: Name of the data table :param data: Data to store :param hdf5_group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. """ datasize = data.shape[0] try: # Get a new pytables description from the data and create a new table description_dict, data_type_dict = self._prm_make_description(data, fullname) description_dicts = [{}] if len(description_dict) > ptpa.MAX_COLUMNS: # For optimization we want to store the original data types into another table # and split the tables into several ones new_table_group = self._hdf5file.create_group(where=hdf5_group, name=tablename, filters=self._all_get_filters(kwargs.copy())) count = 0 for innerkey in description_dict: val = description_dict[innerkey] if count == ptpa.MAX_COLUMNS: description_dicts.append({}) count = 0 description_dicts[-1][innerkey] = val count += 1 setattr(new_table_group._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.TABLE) setattr(new_table_group._v_attrs, HDF5StorageService.SPLIT_TABLE, 1) hdf5_group = new_table_group else: description_dicts = [description_dict] for idx, descr_dict in enumerate(description_dicts): if idx == 0: tblname = tablename else: tblname = tablename + '_%d' % idx table = self._hdf5file.create_table(where=hdf5_group, name=tblname, description=descr_dict, title=tblname, expectedrows=datasize, filters=self._all_get_filters(kwargs.copy())) row = table.row for n in range(datasize): # Fill the columns with data, note if the parameter was extended nstart!=0 for key in descr_dict: row[key] = data[key][n] row.append() # Remember the original types of the data for perfect recall if idx == 0 and len(description_dict) <= ptpa.MAX_COLUMNS: # We only have a single table and # we can store the original data types as attributes for field_name in data_type_dict: type_description = data_type_dict[field_name] self._all_set_attr(table, field_name, type_description) setattr(table._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.TABLE) table.flush() self._hdf5file.flush() if len(description_dict) > ptpa.MAX_COLUMNS: # We have potentially many split tables and the data types are # stored into an additional table for performance reasons tblname = tablename + '__' + HDF5StorageService.STORAGE_TYPE field_names, data_types = list(zip(*data_type_dict.items())) data_type_table_dict = {'field_name': field_names, 'data_type': data_types} descr_dict, _ = self._prm_make_description(data_type_table_dict, fullname) table = self._hdf5file.create_table(where=hdf5_group, name=tblname, description=descr_dict, title=tblname, expectedrows=len(field_names), filters=self._all_get_filters(kwargs)) row = table.row for n in range(len(field_names)): # Fill the columns with data for key in data_type_table_dict: row[key] = data_type_table_dict[key][n] row.append() setattr(table._v_attrs, HDF5StorageService.DATATYPE_TABLE, 1) table.flush() self._hdf5file.flush() except: self._logger.error('Failed storing table `%s` of `%s`.' % (tablename, fullname)) raise
def _prm_write_into_pytable(self, tablename, data, hdf5_group, fullname, **kwargs): """Stores data as pytable. :param tablename: Name of the data table :param data: Data to store :param hdf5_group: Group node where to store data in hdf5 file :param fullname: Full name of the `data_to_store`s original container, only needed for throwing errors. """ datasize = data.shape[0] try: # Get a new pytables description from the data and create a new table description_dict, data_type_dict = self._prm_make_description(data, fullname) description_dicts = [{}] if len(description_dict) > ptpa.MAX_COLUMNS: # For optimization we want to store the original data types into another table # and split the tables into several ones new_table_group = self._hdf5file.create_group(where=hdf5_group, name=tablename, filters=self._all_get_filters(kwargs.copy())) count = 0 for innerkey in description_dict: val = description_dict[innerkey] if count == ptpa.MAX_COLUMNS: description_dicts.append({}) count = 0 description_dicts[-1][innerkey] = val count += 1 setattr(new_table_group._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.TABLE) setattr(new_table_group._v_attrs, HDF5StorageService.SPLIT_TABLE, 1) hdf5_group = new_table_group else: description_dicts = [description_dict] for idx, descr_dict in enumerate(description_dicts): if idx == 0: tblname = tablename else: tblname = tablename + '_%d' % idx table = self._hdf5file.create_table(where=hdf5_group, name=tblname, description=descr_dict, title=tblname, expectedrows=datasize, filters=self._all_get_filters(kwargs.copy())) row = table.row for n in range(datasize): # Fill the columns with data, note if the parameter was extended nstart!=0 for key in descr_dict: row[key] = data[key][n] row.append() # Remember the original types of the data for perfect recall if idx == 0 and len(description_dict) <= ptpa.MAX_COLUMNS: # We only have a single table and # we can store the original data types as attributes for field_name in data_type_dict: type_description = data_type_dict[field_name] self._all_set_attr(table, field_name, type_description) setattr(table._v_attrs, HDF5StorageService.STORAGE_TYPE, HDF5StorageService.TABLE) table.flush() self._hdf5file.flush() if len(description_dict) > ptpa.MAX_COLUMNS: # We have potentially many split tables and the data types are # stored into an additional table for performance reasons tblname = tablename + '__' + HDF5StorageService.STORAGE_TYPE field_names, data_types = list(zip(*data_type_dict.items())) data_type_table_dict = {'field_name': field_names, 'data_type': data_types} descr_dict, _ = self._prm_make_description(data_type_table_dict, fullname) table = self._hdf5file.create_table(where=hdf5_group, name=tblname, description=descr_dict, title=tblname, expectedrows=len(field_names), filters=self._all_get_filters(kwargs)) row = table.row for n in range(len(field_names)): # Fill the columns with data for key in data_type_table_dict: row[key] = data_type_table_dict[key][n] row.append() setattr(table._v_attrs, HDF5StorageService.DATATYPE_TABLE, 1) table.flush() self._hdf5file.flush() except: self._logger.error('Failed storing table `%s` of `%s`.' % (tablename, fullname)) raise
[ "Stores", "data", "as", "pytable", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4422-L4542
[ "def", "_prm_write_into_pytable", "(", "self", ",", "tablename", ",", "data", ",", "hdf5_group", ",", "fullname", ",", "*", "*", "kwargs", ")", ":", "datasize", "=", "data", ".", "shape", "[", "0", "]", "try", ":", "# Get a new pytables description from the data and create a new table", "description_dict", ",", "data_type_dict", "=", "self", ".", "_prm_make_description", "(", "data", ",", "fullname", ")", "description_dicts", "=", "[", "{", "}", "]", "if", "len", "(", "description_dict", ")", ">", "ptpa", ".", "MAX_COLUMNS", ":", "# For optimization we want to store the original data types into another table", "# and split the tables into several ones", "new_table_group", "=", "self", ".", "_hdf5file", ".", "create_group", "(", "where", "=", "hdf5_group", ",", "name", "=", "tablename", ",", "filters", "=", "self", ".", "_all_get_filters", "(", "kwargs", ".", "copy", "(", ")", ")", ")", "count", "=", "0", "for", "innerkey", "in", "description_dict", ":", "val", "=", "description_dict", "[", "innerkey", "]", "if", "count", "==", "ptpa", ".", "MAX_COLUMNS", ":", "description_dicts", ".", "append", "(", "{", "}", ")", "count", "=", "0", "description_dicts", "[", "-", "1", "]", "[", "innerkey", "]", "=", "val", "count", "+=", "1", "setattr", "(", "new_table_group", ".", "_v_attrs", ",", "HDF5StorageService", ".", "STORAGE_TYPE", ",", "HDF5StorageService", ".", "TABLE", ")", "setattr", "(", "new_table_group", ".", "_v_attrs", ",", "HDF5StorageService", ".", "SPLIT_TABLE", ",", "1", ")", "hdf5_group", "=", "new_table_group", "else", ":", "description_dicts", "=", "[", "description_dict", "]", "for", "idx", ",", "descr_dict", "in", "enumerate", "(", "description_dicts", ")", ":", "if", "idx", "==", "0", ":", "tblname", "=", "tablename", "else", ":", "tblname", "=", "tablename", "+", "'_%d'", "%", "idx", "table", "=", "self", ".", "_hdf5file", ".", "create_table", "(", "where", "=", "hdf5_group", ",", "name", "=", "tblname", ",", "description", "=", "descr_dict", ",", "title", "=", "tblname", ",", "expectedrows", "=", "datasize", ",", "filters", "=", "self", ".", "_all_get_filters", "(", "kwargs", ".", "copy", "(", ")", ")", ")", "row", "=", "table", ".", "row", "for", "n", "in", "range", "(", "datasize", ")", ":", "# Fill the columns with data, note if the parameter was extended nstart!=0", "for", "key", "in", "descr_dict", ":", "row", "[", "key", "]", "=", "data", "[", "key", "]", "[", "n", "]", "row", ".", "append", "(", ")", "# Remember the original types of the data for perfect recall", "if", "idx", "==", "0", "and", "len", "(", "description_dict", ")", "<=", "ptpa", ".", "MAX_COLUMNS", ":", "# We only have a single table and", "# we can store the original data types as attributes", "for", "field_name", "in", "data_type_dict", ":", "type_description", "=", "data_type_dict", "[", "field_name", "]", "self", ".", "_all_set_attr", "(", "table", ",", "field_name", ",", "type_description", ")", "setattr", "(", "table", ".", "_v_attrs", ",", "HDF5StorageService", ".", "STORAGE_TYPE", ",", "HDF5StorageService", ".", "TABLE", ")", "table", ".", "flush", "(", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")", "if", "len", "(", "description_dict", ")", ">", "ptpa", ".", "MAX_COLUMNS", ":", "# We have potentially many split tables and the data types are", "# stored into an additional table for performance reasons", "tblname", "=", "tablename", "+", "'__'", "+", "HDF5StorageService", ".", "STORAGE_TYPE", "field_names", ",", "data_types", "=", "list", "(", "zip", "(", "*", "data_type_dict", ".", "items", "(", ")", ")", ")", "data_type_table_dict", "=", "{", "'field_name'", ":", "field_names", ",", "'data_type'", ":", "data_types", "}", "descr_dict", ",", "_", "=", "self", ".", "_prm_make_description", "(", "data_type_table_dict", ",", "fullname", ")", "table", "=", "self", ".", "_hdf5file", ".", "create_table", "(", "where", "=", "hdf5_group", ",", "name", "=", "tblname", ",", "description", "=", "descr_dict", ",", "title", "=", "tblname", ",", "expectedrows", "=", "len", "(", "field_names", ")", ",", "filters", "=", "self", ".", "_all_get_filters", "(", "kwargs", ")", ")", "row", "=", "table", ".", "row", "for", "n", "in", "range", "(", "len", "(", "field_names", ")", ")", ":", "# Fill the columns with data", "for", "key", "in", "data_type_table_dict", ":", "row", "[", "key", "]", "=", "data_type_table_dict", "[", "key", "]", "[", "n", "]", "row", ".", "append", "(", ")", "setattr", "(", "table", ".", "_v_attrs", ",", "HDF5StorageService", ".", "DATATYPE_TABLE", ",", "1", ")", "table", ".", "flush", "(", ")", "self", ".", "_hdf5file", ".", "flush", "(", ")", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed storing table `%s` of `%s`.'", "%", "(", "tablename", ",", "fullname", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_make_description
Returns a description dictionary for pytables table creation
pypet/storageservice.py
def _prm_make_description(self, data, fullname): """ Returns a description dictionary for pytables table creation""" def _convert_lists_and_tuples(series_of_data): """Converts lists and tuples to numpy arrays""" if isinstance(series_of_data[0], (list, tuple)): # and not isinstance(series_of_data[0], np.ndarray): # If the first data item is a list, the rest must be as well, since # data has to be homogeneous for idx, item in enumerate(series_of_data): series_of_data[idx] = np.array(item) descriptiondict = {} # dictionary containing the description to build a pytables table original_data_type_dict = {} # dictionary containing the original data types for key in data: val = data[key] # remember the original data types self._all_set_attributes_to_recall_natives(val[0], PTItemMock(original_data_type_dict), HDF5StorageService.FORMATTED_COLUMN_PREFIX % key) _convert_lists_and_tuples(val) # get a pytables column from the data col = self._all_get_table_col(key, val, fullname) descriptiondict[key] = col return descriptiondict, original_data_type_dict
def _prm_make_description(self, data, fullname): """ Returns a description dictionary for pytables table creation""" def _convert_lists_and_tuples(series_of_data): """Converts lists and tuples to numpy arrays""" if isinstance(series_of_data[0], (list, tuple)): # and not isinstance(series_of_data[0], np.ndarray): # If the first data item is a list, the rest must be as well, since # data has to be homogeneous for idx, item in enumerate(series_of_data): series_of_data[idx] = np.array(item) descriptiondict = {} # dictionary containing the description to build a pytables table original_data_type_dict = {} # dictionary containing the original data types for key in data: val = data[key] # remember the original data types self._all_set_attributes_to_recall_natives(val[0], PTItemMock(original_data_type_dict), HDF5StorageService.FORMATTED_COLUMN_PREFIX % key) _convert_lists_and_tuples(val) # get a pytables column from the data col = self._all_get_table_col(key, val, fullname) descriptiondict[key] = col return descriptiondict, original_data_type_dict
[ "Returns", "a", "description", "dictionary", "for", "pytables", "table", "creation" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4544-L4575
[ "def", "_prm_make_description", "(", "self", ",", "data", ",", "fullname", ")", ":", "def", "_convert_lists_and_tuples", "(", "series_of_data", ")", ":", "\"\"\"Converts lists and tuples to numpy arrays\"\"\"", "if", "isinstance", "(", "series_of_data", "[", "0", "]", ",", "(", "list", ",", "tuple", ")", ")", ":", "# and not isinstance(series_of_data[0], np.ndarray):", "# If the first data item is a list, the rest must be as well, since", "# data has to be homogeneous", "for", "idx", ",", "item", "in", "enumerate", "(", "series_of_data", ")", ":", "series_of_data", "[", "idx", "]", "=", "np", ".", "array", "(", "item", ")", "descriptiondict", "=", "{", "}", "# dictionary containing the description to build a pytables table", "original_data_type_dict", "=", "{", "}", "# dictionary containing the original data types", "for", "key", "in", "data", ":", "val", "=", "data", "[", "key", "]", "# remember the original data types", "self", ".", "_all_set_attributes_to_recall_natives", "(", "val", "[", "0", "]", ",", "PTItemMock", "(", "original_data_type_dict", ")", ",", "HDF5StorageService", ".", "FORMATTED_COLUMN_PREFIX", "%", "key", ")", "_convert_lists_and_tuples", "(", "val", ")", "# get a pytables column from the data", "col", "=", "self", ".", "_all_get_table_col", "(", "key", ",", "val", ",", "fullname", ")", "descriptiondict", "[", "key", "]", "=", "col", "return", "descriptiondict", ",", "original_data_type_dict" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._all_get_table_col
Creates a pytables column instance. The type of column depends on the type of `column[0]`. Note that data in `column` must be homogeneous!
pypet/storageservice.py
def _all_get_table_col(self, key, column, fullname): """ Creates a pytables column instance. The type of column depends on the type of `column[0]`. Note that data in `column` must be homogeneous! """ val = column[0] try: # # We do not want to loose int_ if type(val) is int: return pt.IntCol() if isinstance(val, (str, bytes)): itemsize = int(self._prm_get_longest_stringsize(column)) return pt.StringCol(itemsize) if isinstance(val, np.ndarray): if (np.issubdtype(val.dtype, str) or np.issubdtype(val.dtype, bytes)): itemsize = int(self._prm_get_longest_stringsize(column)) return pt.StringCol(itemsize, shape=val.shape) else: return pt.Col.from_dtype(np.dtype((val.dtype, val.shape))) else: return pt.Col.from_dtype(np.dtype(type(val))) except Exception: self._logger.error('Failure in storing `%s` of Parameter/Result `%s`.' ' Its type was `%s`.' % (key, fullname, repr(type(val)))) raise
def _all_get_table_col(self, key, column, fullname): """ Creates a pytables column instance. The type of column depends on the type of `column[0]`. Note that data in `column` must be homogeneous! """ val = column[0] try: # # We do not want to loose int_ if type(val) is int: return pt.IntCol() if isinstance(val, (str, bytes)): itemsize = int(self._prm_get_longest_stringsize(column)) return pt.StringCol(itemsize) if isinstance(val, np.ndarray): if (np.issubdtype(val.dtype, str) or np.issubdtype(val.dtype, bytes)): itemsize = int(self._prm_get_longest_stringsize(column)) return pt.StringCol(itemsize, shape=val.shape) else: return pt.Col.from_dtype(np.dtype((val.dtype, val.shape))) else: return pt.Col.from_dtype(np.dtype(type(val))) except Exception: self._logger.error('Failure in storing `%s` of Parameter/Result `%s`.' ' Its type was `%s`.' % (key, fullname, repr(type(val)))) raise
[ "Creates", "a", "pytables", "column", "instance", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4577-L4608
[ "def", "_all_get_table_col", "(", "self", ",", "key", ",", "column", ",", "fullname", ")", ":", "val", "=", "column", "[", "0", "]", "try", ":", "# # We do not want to loose int_", "if", "type", "(", "val", ")", "is", "int", ":", "return", "pt", ".", "IntCol", "(", ")", "if", "isinstance", "(", "val", ",", "(", "str", ",", "bytes", ")", ")", ":", "itemsize", "=", "int", "(", "self", ".", "_prm_get_longest_stringsize", "(", "column", ")", ")", "return", "pt", ".", "StringCol", "(", "itemsize", ")", "if", "isinstance", "(", "val", ",", "np", ".", "ndarray", ")", ":", "if", "(", "np", ".", "issubdtype", "(", "val", ".", "dtype", ",", "str", ")", "or", "np", ".", "issubdtype", "(", "val", ".", "dtype", ",", "bytes", ")", ")", ":", "itemsize", "=", "int", "(", "self", ".", "_prm_get_longest_stringsize", "(", "column", ")", ")", "return", "pt", ".", "StringCol", "(", "itemsize", ",", "shape", "=", "val", ".", "shape", ")", "else", ":", "return", "pt", ".", "Col", ".", "from_dtype", "(", "np", ".", "dtype", "(", "(", "val", ".", "dtype", ",", "val", ".", "shape", ")", ")", ")", "else", ":", "return", "pt", ".", "Col", ".", "from_dtype", "(", "np", ".", "dtype", "(", "type", "(", "val", ")", ")", ")", "except", "Exception", ":", "self", ".", "_logger", ".", "error", "(", "'Failure in storing `%s` of Parameter/Result `%s`.'", "' Its type was `%s`.'", "%", "(", "key", ",", "fullname", ",", "repr", "(", "type", "(", "val", ")", ")", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_get_longest_stringsize
Returns the longest string size for a string entry across data.
pypet/storageservice.py
def _prm_get_longest_stringsize(string_list): """ Returns the longest string size for a string entry across data.""" maxlength = 1 for stringar in string_list: if isinstance(stringar, np.ndarray): if stringar.ndim > 0: for string in stringar.ravel(): maxlength = max(len(string), maxlength) else: maxlength = max(len(stringar.tolist()), maxlength) else: maxlength = max(len(stringar), maxlength) # Make the string Col longer than needed in order to allow later on slightly larger strings return int(maxlength * 1.5)
def _prm_get_longest_stringsize(string_list): """ Returns the longest string size for a string entry across data.""" maxlength = 1 for stringar in string_list: if isinstance(stringar, np.ndarray): if stringar.ndim > 0: for string in stringar.ravel(): maxlength = max(len(string), maxlength) else: maxlength = max(len(stringar.tolist()), maxlength) else: maxlength = max(len(stringar), maxlength) # Make the string Col longer than needed in order to allow later on slightly larger strings return int(maxlength * 1.5)
[ "Returns", "the", "longest", "string", "size", "for", "a", "string", "entry", "across", "data", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4611-L4626
[ "def", "_prm_get_longest_stringsize", "(", "string_list", ")", ":", "maxlength", "=", "1", "for", "stringar", "in", "string_list", ":", "if", "isinstance", "(", "stringar", ",", "np", ".", "ndarray", ")", ":", "if", "stringar", ".", "ndim", ">", "0", ":", "for", "string", "in", "stringar", ".", "ravel", "(", ")", ":", "maxlength", "=", "max", "(", "len", "(", "string", ")", ",", "maxlength", ")", "else", ":", "maxlength", "=", "max", "(", "len", "(", "stringar", ".", "tolist", "(", ")", ")", ",", "maxlength", ")", "else", ":", "maxlength", "=", "max", "(", "len", "(", "stringar", ")", ",", "maxlength", ")", "# Make the string Col longer than needed in order to allow later on slightly larger strings", "return", "int", "(", "maxlength", "*", "1.5", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_load_into_dict
Loads into dictionary
pypet/storageservice.py
def _prm_load_into_dict(self, full_name, load_dict, hdf5_group, instance, load_only, load_except, load_flags, _prefix = ''): """Loads into dictionary""" for node in hdf5_group: load_type = self._all_get_from_attrs(node, HDF5StorageService.STORAGE_TYPE) if _prefix: load_name = '%s.%s' % (_prefix, node._v_name) else: load_name = node._v_name if load_type == HDF5StorageService.NESTED_GROUP: self._prm_load_into_dict(full_name=full_name, load_dict=load_dict, hdf5_group=node, instance=instance, load_only=load_only, load_except=load_except, load_flags=load_flags, _prefix=load_name) continue if load_only is not None: if load_name not in load_only: continue else: load_only.remove(load_name) elif load_except is not None: if load_name in load_except: load_except.remove(load_name) continue # Recall from the hdf5 node attributes how the data was stored and reload accordingly if load_name in load_flags: load_type = load_flags[load_name] if load_type == HDF5StorageService.DICT: to_load = self._prm_read_dictionary(node, full_name) elif load_type == HDF5StorageService.TABLE: to_load = self._prm_read_table(node, full_name) elif load_type in (HDF5StorageService.ARRAY, HDF5StorageService.CARRAY, HDF5StorageService.EARRAY, HDF5StorageService.VLARRAY): to_load = self._prm_read_array(node, full_name) elif load_type in (HDF5StorageService.FRAME, HDF5StorageService.SERIES, # HDF5StorageService.PANEL ): to_load = self._prm_read_pandas(node, full_name) elif load_type.startswith(HDF5StorageService.SHARED_DATA): to_load = self._prm_read_shared_data(node, instance) else: raise pex.NoSuchServiceError('Cannot load %s, do not understand the hdf5 file ' 'structure of %s [%s].' % (full_name, str(node), str(load_type))) if to_load is None: raise RuntimeError('You shall not pass!') load_dict[load_name] = to_load
def _prm_load_into_dict(self, full_name, load_dict, hdf5_group, instance, load_only, load_except, load_flags, _prefix = ''): """Loads into dictionary""" for node in hdf5_group: load_type = self._all_get_from_attrs(node, HDF5StorageService.STORAGE_TYPE) if _prefix: load_name = '%s.%s' % (_prefix, node._v_name) else: load_name = node._v_name if load_type == HDF5StorageService.NESTED_GROUP: self._prm_load_into_dict(full_name=full_name, load_dict=load_dict, hdf5_group=node, instance=instance, load_only=load_only, load_except=load_except, load_flags=load_flags, _prefix=load_name) continue if load_only is not None: if load_name not in load_only: continue else: load_only.remove(load_name) elif load_except is not None: if load_name in load_except: load_except.remove(load_name) continue # Recall from the hdf5 node attributes how the data was stored and reload accordingly if load_name in load_flags: load_type = load_flags[load_name] if load_type == HDF5StorageService.DICT: to_load = self._prm_read_dictionary(node, full_name) elif load_type == HDF5StorageService.TABLE: to_load = self._prm_read_table(node, full_name) elif load_type in (HDF5StorageService.ARRAY, HDF5StorageService.CARRAY, HDF5StorageService.EARRAY, HDF5StorageService.VLARRAY): to_load = self._prm_read_array(node, full_name) elif load_type in (HDF5StorageService.FRAME, HDF5StorageService.SERIES, # HDF5StorageService.PANEL ): to_load = self._prm_read_pandas(node, full_name) elif load_type.startswith(HDF5StorageService.SHARED_DATA): to_load = self._prm_read_shared_data(node, instance) else: raise pex.NoSuchServiceError('Cannot load %s, do not understand the hdf5 file ' 'structure of %s [%s].' % (full_name, str(node), str(load_type))) if to_load is None: raise RuntimeError('You shall not pass!') load_dict[load_name] = to_load
[ "Loads", "into", "dictionary" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4628-L4689
[ "def", "_prm_load_into_dict", "(", "self", ",", "full_name", ",", "load_dict", ",", "hdf5_group", ",", "instance", ",", "load_only", ",", "load_except", ",", "load_flags", ",", "_prefix", "=", "''", ")", ":", "for", "node", "in", "hdf5_group", ":", "load_type", "=", "self", ".", "_all_get_from_attrs", "(", "node", ",", "HDF5StorageService", ".", "STORAGE_TYPE", ")", "if", "_prefix", ":", "load_name", "=", "'%s.%s'", "%", "(", "_prefix", ",", "node", ".", "_v_name", ")", "else", ":", "load_name", "=", "node", ".", "_v_name", "if", "load_type", "==", "HDF5StorageService", ".", "NESTED_GROUP", ":", "self", ".", "_prm_load_into_dict", "(", "full_name", "=", "full_name", ",", "load_dict", "=", "load_dict", ",", "hdf5_group", "=", "node", ",", "instance", "=", "instance", ",", "load_only", "=", "load_only", ",", "load_except", "=", "load_except", ",", "load_flags", "=", "load_flags", ",", "_prefix", "=", "load_name", ")", "continue", "if", "load_only", "is", "not", "None", ":", "if", "load_name", "not", "in", "load_only", ":", "continue", "else", ":", "load_only", ".", "remove", "(", "load_name", ")", "elif", "load_except", "is", "not", "None", ":", "if", "load_name", "in", "load_except", ":", "load_except", ".", "remove", "(", "load_name", ")", "continue", "# Recall from the hdf5 node attributes how the data was stored and reload accordingly", "if", "load_name", "in", "load_flags", ":", "load_type", "=", "load_flags", "[", "load_name", "]", "if", "load_type", "==", "HDF5StorageService", ".", "DICT", ":", "to_load", "=", "self", ".", "_prm_read_dictionary", "(", "node", ",", "full_name", ")", "elif", "load_type", "==", "HDF5StorageService", ".", "TABLE", ":", "to_load", "=", "self", ".", "_prm_read_table", "(", "node", ",", "full_name", ")", "elif", "load_type", "in", "(", "HDF5StorageService", ".", "ARRAY", ",", "HDF5StorageService", ".", "CARRAY", ",", "HDF5StorageService", ".", "EARRAY", ",", "HDF5StorageService", ".", "VLARRAY", ")", ":", "to_load", "=", "self", ".", "_prm_read_array", "(", "node", ",", "full_name", ")", "elif", "load_type", "in", "(", "HDF5StorageService", ".", "FRAME", ",", "HDF5StorageService", ".", "SERIES", ",", "# HDF5StorageService.PANEL", ")", ":", "to_load", "=", "self", ".", "_prm_read_pandas", "(", "node", ",", "full_name", ")", "elif", "load_type", ".", "startswith", "(", "HDF5StorageService", ".", "SHARED_DATA", ")", ":", "to_load", "=", "self", ".", "_prm_read_shared_data", "(", "node", ",", "instance", ")", "else", ":", "raise", "pex", ".", "NoSuchServiceError", "(", "'Cannot load %s, do not understand the hdf5 file '", "'structure of %s [%s].'", "%", "(", "full_name", ",", "str", "(", "node", ")", ",", "str", "(", "load_type", ")", ")", ")", "if", "to_load", "is", "None", ":", "raise", "RuntimeError", "(", "'You shall not pass!'", ")", "load_dict", "[", "load_name", "]", "=", "to_load" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_load_parameter_or_result
Loads a parameter or result from disk. :param instance: Empty parameter or result instance :param load_data: How to load stuff :param load_only: List of data keys if only parts of a result should be loaded :param load_except: List of data key that should NOT be loaded. :param load_flags: Dictionary to determine how something is loaded :param with_links: Placeholder, because leaves have no links :param recursive: Dummy variable, no-op because leaves have no children :param max_depth: Dummy variable, no-op because leaves have no children :param _hdf5_group: The corresponding hdf5 group of the instance
pypet/storageservice.py
def _prm_load_parameter_or_result(self, instance, load_data=pypetconstants.LOAD_DATA, load_only=None, load_except=None, load_flags=None, with_links=False, recursive=False, max_depth=None, _hdf5_group=None,): """Loads a parameter or result from disk. :param instance: Empty parameter or result instance :param load_data: How to load stuff :param load_only: List of data keys if only parts of a result should be loaded :param load_except: List of data key that should NOT be loaded. :param load_flags: Dictionary to determine how something is loaded :param with_links: Placeholder, because leaves have no links :param recursive: Dummy variable, no-op because leaves have no children :param max_depth: Dummy variable, no-op because leaves have no children :param _hdf5_group: The corresponding hdf5 group of the instance """ if load_data == pypetconstants.LOAD_NOTHING: return if _hdf5_group is None: _hdf5_group = self._all_get_node_by_name(instance.v_full_name) if load_data == pypetconstants.OVERWRITE_DATA: if instance.v_is_parameter and instance.v_locked: self._logger.debug('Parameter `%s` is locked, I will skip loading.' % instance.v_full_name) return instance.f_empty() instance.v_annotations.f_empty() instance.v_comment = '' self._all_load_skeleton(instance, _hdf5_group) instance._stored = True # If load only is just a name and not a list of names, turn it into a 1 element list if isinstance(load_only, str): load_only = [load_only] if isinstance(load_except, str): load_except = [load_except] if load_data == pypetconstants.LOAD_SKELETON: # We only load skeleton if asked for it and thus only # signal completed node loading self._node_processing_timer.signal_update() return elif load_only is not None: if load_except is not None: raise ValueError('Please use either `load_only` or `load_except` and not ' 'both at the same time.') elif instance.v_is_parameter and instance.v_locked: raise pex.ParameterLockedException('Parameter `%s` is locked, ' 'I will skip loading.' % instance.v_full_name) self._logger.debug('I am in load only mode, I will only load %s.' % str(load_only)) load_only = set(load_only) elif load_except is not None: if instance.v_is_parameter and instance.v_locked: raise pex.ParameterLockedException('Parameter `%s` is locked, ' 'I will skip loading.' % instance.v_full_name) self._logger.debug('I am in load except mode, I will load everything except %s.' % str(load_except)) # We do not want to modify the original list load_except = set(load_except) elif not instance.f_is_empty(): # We only load data if the instance is empty or we specified load_only or # load_except and thus only # signal completed node loading self._node_processing_timer.signal_update() return full_name = instance.v_full_name self._logger.debug('Loading data of %s' % full_name) load_dict = {} # Dict that will be used to keep all data for loading the parameter or # result if load_flags is None: load_flags = {} try: # Ask the instance for load flags instance_flags = instance._load_flags().copy() # copy to avoid modifying the # original data except AttributeError: # If it does not provide any, set it to the empty dictionary instance_flags = {} # User specified flags have priority over the flags from the instance instance_flags.update(load_flags) load_flags = instance_flags self._prm_load_into_dict(full_name=full_name, load_dict=load_dict, hdf5_group=_hdf5_group, instance=instance, load_only=load_only, load_except=load_except, load_flags=load_flags) if load_only is not None: # Check if all data in `load_only` was actually found in the hdf5 file if len(load_only) > 0: self._logger.warning('You marked %s for load only, ' 'but I cannot find these for `%s`' % (str(load_only), full_name)) elif load_except is not None: if len(load_except) > 0: self._logger.warning(('You marked `%s` for not loading, but these were not part ' 'of `%s` anyway.' % (str(load_except), full_name))) # Finally tell the parameter or result to load the data, if there was any ;-) if load_dict: try: instance._load(load_dict) if instance.v_is_parameter: # Lock parameter as soon as data is loaded instance.f_lock() except: self._logger.error( 'Error while reconstructing data of leaf `%s`.' % full_name) raise # Signal completed node loading self._node_processing_timer.signal_update()
def _prm_load_parameter_or_result(self, instance, load_data=pypetconstants.LOAD_DATA, load_only=None, load_except=None, load_flags=None, with_links=False, recursive=False, max_depth=None, _hdf5_group=None,): """Loads a parameter or result from disk. :param instance: Empty parameter or result instance :param load_data: How to load stuff :param load_only: List of data keys if only parts of a result should be loaded :param load_except: List of data key that should NOT be loaded. :param load_flags: Dictionary to determine how something is loaded :param with_links: Placeholder, because leaves have no links :param recursive: Dummy variable, no-op because leaves have no children :param max_depth: Dummy variable, no-op because leaves have no children :param _hdf5_group: The corresponding hdf5 group of the instance """ if load_data == pypetconstants.LOAD_NOTHING: return if _hdf5_group is None: _hdf5_group = self._all_get_node_by_name(instance.v_full_name) if load_data == pypetconstants.OVERWRITE_DATA: if instance.v_is_parameter and instance.v_locked: self._logger.debug('Parameter `%s` is locked, I will skip loading.' % instance.v_full_name) return instance.f_empty() instance.v_annotations.f_empty() instance.v_comment = '' self._all_load_skeleton(instance, _hdf5_group) instance._stored = True # If load only is just a name and not a list of names, turn it into a 1 element list if isinstance(load_only, str): load_only = [load_only] if isinstance(load_except, str): load_except = [load_except] if load_data == pypetconstants.LOAD_SKELETON: # We only load skeleton if asked for it and thus only # signal completed node loading self._node_processing_timer.signal_update() return elif load_only is not None: if load_except is not None: raise ValueError('Please use either `load_only` or `load_except` and not ' 'both at the same time.') elif instance.v_is_parameter and instance.v_locked: raise pex.ParameterLockedException('Parameter `%s` is locked, ' 'I will skip loading.' % instance.v_full_name) self._logger.debug('I am in load only mode, I will only load %s.' % str(load_only)) load_only = set(load_only) elif load_except is not None: if instance.v_is_parameter and instance.v_locked: raise pex.ParameterLockedException('Parameter `%s` is locked, ' 'I will skip loading.' % instance.v_full_name) self._logger.debug('I am in load except mode, I will load everything except %s.' % str(load_except)) # We do not want to modify the original list load_except = set(load_except) elif not instance.f_is_empty(): # We only load data if the instance is empty or we specified load_only or # load_except and thus only # signal completed node loading self._node_processing_timer.signal_update() return full_name = instance.v_full_name self._logger.debug('Loading data of %s' % full_name) load_dict = {} # Dict that will be used to keep all data for loading the parameter or # result if load_flags is None: load_flags = {} try: # Ask the instance for load flags instance_flags = instance._load_flags().copy() # copy to avoid modifying the # original data except AttributeError: # If it does not provide any, set it to the empty dictionary instance_flags = {} # User specified flags have priority over the flags from the instance instance_flags.update(load_flags) load_flags = instance_flags self._prm_load_into_dict(full_name=full_name, load_dict=load_dict, hdf5_group=_hdf5_group, instance=instance, load_only=load_only, load_except=load_except, load_flags=load_flags) if load_only is not None: # Check if all data in `load_only` was actually found in the hdf5 file if len(load_only) > 0: self._logger.warning('You marked %s for load only, ' 'but I cannot find these for `%s`' % (str(load_only), full_name)) elif load_except is not None: if len(load_except) > 0: self._logger.warning(('You marked `%s` for not loading, but these were not part ' 'of `%s` anyway.' % (str(load_except), full_name))) # Finally tell the parameter or result to load the data, if there was any ;-) if load_dict: try: instance._load(load_dict) if instance.v_is_parameter: # Lock parameter as soon as data is loaded instance.f_lock() except: self._logger.error( 'Error while reconstructing data of leaf `%s`.' % full_name) raise # Signal completed node loading self._node_processing_timer.signal_update()
[ "Loads", "a", "parameter", "or", "result", "from", "disk", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4691-L4846
[ "def", "_prm_load_parameter_or_result", "(", "self", ",", "instance", ",", "load_data", "=", "pypetconstants", ".", "LOAD_DATA", ",", "load_only", "=", "None", ",", "load_except", "=", "None", ",", "load_flags", "=", "None", ",", "with_links", "=", "False", ",", "recursive", "=", "False", ",", "max_depth", "=", "None", ",", "_hdf5_group", "=", "None", ",", ")", ":", "if", "load_data", "==", "pypetconstants", ".", "LOAD_NOTHING", ":", "return", "if", "_hdf5_group", "is", "None", ":", "_hdf5_group", "=", "self", ".", "_all_get_node_by_name", "(", "instance", ".", "v_full_name", ")", "if", "load_data", "==", "pypetconstants", ".", "OVERWRITE_DATA", ":", "if", "instance", ".", "v_is_parameter", "and", "instance", ".", "v_locked", ":", "self", ".", "_logger", ".", "debug", "(", "'Parameter `%s` is locked, I will skip loading.'", "%", "instance", ".", "v_full_name", ")", "return", "instance", ".", "f_empty", "(", ")", "instance", ".", "v_annotations", ".", "f_empty", "(", ")", "instance", ".", "v_comment", "=", "''", "self", ".", "_all_load_skeleton", "(", "instance", ",", "_hdf5_group", ")", "instance", ".", "_stored", "=", "True", "# If load only is just a name and not a list of names, turn it into a 1 element list", "if", "isinstance", "(", "load_only", ",", "str", ")", ":", "load_only", "=", "[", "load_only", "]", "if", "isinstance", "(", "load_except", ",", "str", ")", ":", "load_except", "=", "[", "load_except", "]", "if", "load_data", "==", "pypetconstants", ".", "LOAD_SKELETON", ":", "# We only load skeleton if asked for it and thus only", "# signal completed node loading", "self", ".", "_node_processing_timer", ".", "signal_update", "(", ")", "return", "elif", "load_only", "is", "not", "None", ":", "if", "load_except", "is", "not", "None", ":", "raise", "ValueError", "(", "'Please use either `load_only` or `load_except` and not '", "'both at the same time.'", ")", "elif", "instance", ".", "v_is_parameter", "and", "instance", ".", "v_locked", ":", "raise", "pex", ".", "ParameterLockedException", "(", "'Parameter `%s` is locked, '", "'I will skip loading.'", "%", "instance", ".", "v_full_name", ")", "self", ".", "_logger", ".", "debug", "(", "'I am in load only mode, I will only load %s.'", "%", "str", "(", "load_only", ")", ")", "load_only", "=", "set", "(", "load_only", ")", "elif", "load_except", "is", "not", "None", ":", "if", "instance", ".", "v_is_parameter", "and", "instance", ".", "v_locked", ":", "raise", "pex", ".", "ParameterLockedException", "(", "'Parameter `%s` is locked, '", "'I will skip loading.'", "%", "instance", ".", "v_full_name", ")", "self", ".", "_logger", ".", "debug", "(", "'I am in load except mode, I will load everything except %s.'", "%", "str", "(", "load_except", ")", ")", "# We do not want to modify the original list", "load_except", "=", "set", "(", "load_except", ")", "elif", "not", "instance", ".", "f_is_empty", "(", ")", ":", "# We only load data if the instance is empty or we specified load_only or", "# load_except and thus only", "# signal completed node loading", "self", ".", "_node_processing_timer", ".", "signal_update", "(", ")", "return", "full_name", "=", "instance", ".", "v_full_name", "self", ".", "_logger", ".", "debug", "(", "'Loading data of %s'", "%", "full_name", ")", "load_dict", "=", "{", "}", "# Dict that will be used to keep all data for loading the parameter or", "# result", "if", "load_flags", "is", "None", ":", "load_flags", "=", "{", "}", "try", ":", "# Ask the instance for load flags", "instance_flags", "=", "instance", ".", "_load_flags", "(", ")", ".", "copy", "(", ")", "# copy to avoid modifying the", "# original data", "except", "AttributeError", ":", "# If it does not provide any, set it to the empty dictionary", "instance_flags", "=", "{", "}", "# User specified flags have priority over the flags from the instance", "instance_flags", ".", "update", "(", "load_flags", ")", "load_flags", "=", "instance_flags", "self", ".", "_prm_load_into_dict", "(", "full_name", "=", "full_name", ",", "load_dict", "=", "load_dict", ",", "hdf5_group", "=", "_hdf5_group", ",", "instance", "=", "instance", ",", "load_only", "=", "load_only", ",", "load_except", "=", "load_except", ",", "load_flags", "=", "load_flags", ")", "if", "load_only", "is", "not", "None", ":", "# Check if all data in `load_only` was actually found in the hdf5 file", "if", "len", "(", "load_only", ")", ">", "0", ":", "self", ".", "_logger", ".", "warning", "(", "'You marked %s for load only, '", "'but I cannot find these for `%s`'", "%", "(", "str", "(", "load_only", ")", ",", "full_name", ")", ")", "elif", "load_except", "is", "not", "None", ":", "if", "len", "(", "load_except", ")", ">", "0", ":", "self", ".", "_logger", ".", "warning", "(", "(", "'You marked `%s` for not loading, but these were not part '", "'of `%s` anyway.'", "%", "(", "str", "(", "load_except", ")", ",", "full_name", ")", ")", ")", "# Finally tell the parameter or result to load the data, if there was any ;-)", "if", "load_dict", ":", "try", ":", "instance", ".", "_load", "(", "load_dict", ")", "if", "instance", ".", "v_is_parameter", ":", "# Lock parameter as soon as data is loaded", "instance", ".", "f_lock", "(", ")", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Error while reconstructing data of leaf `%s`.'", "%", "full_name", ")", "raise", "# Signal completed node loading", "self", ".", "_node_processing_timer", ".", "signal_update", "(", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_read_dictionary
Loads data that was originally a dictionary when stored :param leaf: PyTables table containing the dictionary data :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to be loaded
pypet/storageservice.py
def _prm_read_dictionary(self, leaf, full_name): """Loads data that was originally a dictionary when stored :param leaf: PyTables table containing the dictionary data :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to be loaded """ try: # Load as Pbject Table temp_table = self._prm_read_table(leaf, full_name) # Turn the ObjectTable into a dictionary of lists (with length 1). temp_dict = temp_table.to_dict('list') innder_dict = {} # Turn the dictionary of lists into a normal dictionary for innerkey, vallist in temp_dict.items(): innder_dict[innerkey] = vallist[0] return innder_dict except: self._logger.error('Failed loading `%s` of `%s`.' % (leaf._v_name, full_name)) raise
def _prm_read_dictionary(self, leaf, full_name): """Loads data that was originally a dictionary when stored :param leaf: PyTables table containing the dictionary data :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to be loaded """ try: # Load as Pbject Table temp_table = self._prm_read_table(leaf, full_name) # Turn the ObjectTable into a dictionary of lists (with length 1). temp_dict = temp_table.to_dict('list') innder_dict = {} # Turn the dictionary of lists into a normal dictionary for innerkey, vallist in temp_dict.items(): innder_dict[innerkey] = vallist[0] return innder_dict except: self._logger.error('Failed loading `%s` of `%s`.' % (leaf._v_name, full_name)) raise
[ "Loads", "data", "that", "was", "originally", "a", "dictionary", "when", "stored" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4848-L4879
[ "def", "_prm_read_dictionary", "(", "self", ",", "leaf", ",", "full_name", ")", ":", "try", ":", "# Load as Pbject Table", "temp_table", "=", "self", ".", "_prm_read_table", "(", "leaf", ",", "full_name", ")", "# Turn the ObjectTable into a dictionary of lists (with length 1).", "temp_dict", "=", "temp_table", ".", "to_dict", "(", "'list'", ")", "innder_dict", "=", "{", "}", "# Turn the dictionary of lists into a normal dictionary", "for", "innerkey", ",", "vallist", "in", "temp_dict", ".", "items", "(", ")", ":", "innder_dict", "[", "innerkey", "]", "=", "vallist", "[", "0", "]", "return", "innder_dict", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed loading `%s` of `%s`.'", "%", "(", "leaf", ".", "_v_name", ",", "full_name", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_read_shared_data
Reads shared data and constructs the appropraite class. :param shared_node: hdf5 node storing the pandas DataFrame :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to load
pypet/storageservice.py
def _prm_read_shared_data(self, shared_node, instance): """Reads shared data and constructs the appropraite class. :param shared_node: hdf5 node storing the pandas DataFrame :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to load """ try: data_type = self._all_get_from_attrs(shared_node, HDF5StorageService.SHARED_DATA_TYPE) constructor = shared.FLAG_CLASS_MAPPING[data_type] name = shared_node._v_name result = constructor(name=name, parent=instance) return result except: self._logger.error('Failed loading `%s` of `%s`.' % (shared_node._v_name, instance.v_full_name)) raise
def _prm_read_shared_data(self, shared_node, instance): """Reads shared data and constructs the appropraite class. :param shared_node: hdf5 node storing the pandas DataFrame :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to load """ try: data_type = self._all_get_from_attrs(shared_node, HDF5StorageService.SHARED_DATA_TYPE) constructor = shared.FLAG_CLASS_MAPPING[data_type] name = shared_node._v_name result = constructor(name=name, parent=instance) return result except: self._logger.error('Failed loading `%s` of `%s`.' % (shared_node._v_name, instance.v_full_name)) raise
[ "Reads", "shared", "data", "and", "constructs", "the", "appropraite", "class", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4881-L4907
[ "def", "_prm_read_shared_data", "(", "self", ",", "shared_node", ",", "instance", ")", ":", "try", ":", "data_type", "=", "self", ".", "_all_get_from_attrs", "(", "shared_node", ",", "HDF5StorageService", ".", "SHARED_DATA_TYPE", ")", "constructor", "=", "shared", ".", "FLAG_CLASS_MAPPING", "[", "data_type", "]", "name", "=", "shared_node", ".", "_v_name", "result", "=", "constructor", "(", "name", "=", "name", ",", "parent", "=", "instance", ")", "return", "result", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed loading `%s` of `%s`.'", "%", "(", "shared_node", ".", "_v_name", ",", "instance", ".", "v_full_name", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_read_pandas
Reads a DataFrame from dis. :param pd_node: hdf5 node storing the pandas DataFrame :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to load
pypet/storageservice.py
def _prm_read_pandas(self, pd_node, full_name): """Reads a DataFrame from dis. :param pd_node: hdf5 node storing the pandas DataFrame :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to load """ try: name = pd_node._v_name pathname = pd_node._v_pathname pandas_store = self._hdf5store pandas_data = pandas_store.get(pathname) return pandas_data except: self._logger.error('Failed loading `%s` of `%s`.' % (pd_node._v_name, full_name)) raise
def _prm_read_pandas(self, pd_node, full_name): """Reads a DataFrame from dis. :param pd_node: hdf5 node storing the pandas DataFrame :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to load """ try: name = pd_node._v_name pathname = pd_node._v_pathname pandas_store = self._hdf5store pandas_data = pandas_store.get(pathname) return pandas_data except: self._logger.error('Failed loading `%s` of `%s`.' % (pd_node._v_name, full_name)) raise
[ "Reads", "a", "DataFrame", "from", "dis", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4909-L4933
[ "def", "_prm_read_pandas", "(", "self", ",", "pd_node", ",", "full_name", ")", ":", "try", ":", "name", "=", "pd_node", ".", "_v_name", "pathname", "=", "pd_node", ".", "_v_pathname", "pandas_store", "=", "self", ".", "_hdf5store", "pandas_data", "=", "pandas_store", ".", "get", "(", "pathname", ")", "return", "pandas_data", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed loading `%s` of `%s`.'", "%", "(", "pd_node", ".", "_v_name", ",", "full_name", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_read_table
Reads a non-nested PyTables table column by column and created a new ObjectTable for the loaded data. :param table_or_group: PyTables table to read from or a group containing subtables. :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to be loaded
pypet/storageservice.py
def _prm_read_table(self, table_or_group, full_name): """Reads a non-nested PyTables table column by column and created a new ObjectTable for the loaded data. :param table_or_group: PyTables table to read from or a group containing subtables. :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to be loaded """ try: result_table = None if self._all_get_from_attrs(table_or_group, HDF5StorageService.SPLIT_TABLE): table_name = table_or_group._v_name data_type_table_name = table_name + '__' + HDF5StorageService.STORAGE_TYPE data_type_table = table_or_group._v_children[data_type_table_name] data_type_dict = {} for row in data_type_table: fieldname = row['field_name'].decode('utf-8') data_type_dict[fieldname] = row['data_type'].decode('utf-8') for sub_table in table_or_group: sub_table_name = sub_table._v_name if sub_table_name == data_type_table_name: continue for colname in sub_table.colnames: # Read Data column by column col = sub_table.col(colname) data_list = list(col) prefix = HDF5StorageService.FORMATTED_COLUMN_PREFIX % colname for idx, data in enumerate(data_list): # Recall original type of data data, type_changed = self._all_recall_native_type(data, PTItemMock( data_type_dict), prefix) if type_changed: data_list[idx] = data else: break # Construct or insert into an ObjectTable if result_table is None: result_table = ObjectTable(data={colname: data_list}) else: result_table[colname] = data_list else: for colname in table_or_group.colnames: # Read Data column by column col = table_or_group.col(colname) data_list = list(col) prefix = HDF5StorageService.FORMATTED_COLUMN_PREFIX % colname for idx, data in enumerate(data_list): # Recall original type of data data, type_changed = self._all_recall_native_type(data, table_or_group, prefix) if type_changed: data_list[idx] = data else: break # Construct or insert into an ObjectTable if result_table is None: result_table = ObjectTable(data={colname: data_list}) else: result_table[colname] = data_list return result_table except: self._logger.error( 'Failed loading `%s` of `%s`.' % (table_or_group._v_name, full_name)) raise
def _prm_read_table(self, table_or_group, full_name): """Reads a non-nested PyTables table column by column and created a new ObjectTable for the loaded data. :param table_or_group: PyTables table to read from or a group containing subtables. :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to be loaded """ try: result_table = None if self._all_get_from_attrs(table_or_group, HDF5StorageService.SPLIT_TABLE): table_name = table_or_group._v_name data_type_table_name = table_name + '__' + HDF5StorageService.STORAGE_TYPE data_type_table = table_or_group._v_children[data_type_table_name] data_type_dict = {} for row in data_type_table: fieldname = row['field_name'].decode('utf-8') data_type_dict[fieldname] = row['data_type'].decode('utf-8') for sub_table in table_or_group: sub_table_name = sub_table._v_name if sub_table_name == data_type_table_name: continue for colname in sub_table.colnames: # Read Data column by column col = sub_table.col(colname) data_list = list(col) prefix = HDF5StorageService.FORMATTED_COLUMN_PREFIX % colname for idx, data in enumerate(data_list): # Recall original type of data data, type_changed = self._all_recall_native_type(data, PTItemMock( data_type_dict), prefix) if type_changed: data_list[idx] = data else: break # Construct or insert into an ObjectTable if result_table is None: result_table = ObjectTable(data={colname: data_list}) else: result_table[colname] = data_list else: for colname in table_or_group.colnames: # Read Data column by column col = table_or_group.col(colname) data_list = list(col) prefix = HDF5StorageService.FORMATTED_COLUMN_PREFIX % colname for idx, data in enumerate(data_list): # Recall original type of data data, type_changed = self._all_recall_native_type(data, table_or_group, prefix) if type_changed: data_list[idx] = data else: break # Construct or insert into an ObjectTable if result_table is None: result_table = ObjectTable(data={colname: data_list}) else: result_table[colname] = data_list return result_table except: self._logger.error( 'Failed loading `%s` of `%s`.' % (table_or_group._v_name, full_name)) raise
[ "Reads", "a", "non", "-", "nested", "PyTables", "table", "column", "by", "column", "and", "created", "a", "new", "ObjectTable", "for", "the", "loaded", "data", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L4935-L5023
[ "def", "_prm_read_table", "(", "self", ",", "table_or_group", ",", "full_name", ")", ":", "try", ":", "result_table", "=", "None", "if", "self", ".", "_all_get_from_attrs", "(", "table_or_group", ",", "HDF5StorageService", ".", "SPLIT_TABLE", ")", ":", "table_name", "=", "table_or_group", ".", "_v_name", "data_type_table_name", "=", "table_name", "+", "'__'", "+", "HDF5StorageService", ".", "STORAGE_TYPE", "data_type_table", "=", "table_or_group", ".", "_v_children", "[", "data_type_table_name", "]", "data_type_dict", "=", "{", "}", "for", "row", "in", "data_type_table", ":", "fieldname", "=", "row", "[", "'field_name'", "]", ".", "decode", "(", "'utf-8'", ")", "data_type_dict", "[", "fieldname", "]", "=", "row", "[", "'data_type'", "]", ".", "decode", "(", "'utf-8'", ")", "for", "sub_table", "in", "table_or_group", ":", "sub_table_name", "=", "sub_table", ".", "_v_name", "if", "sub_table_name", "==", "data_type_table_name", ":", "continue", "for", "colname", "in", "sub_table", ".", "colnames", ":", "# Read Data column by column", "col", "=", "sub_table", ".", "col", "(", "colname", ")", "data_list", "=", "list", "(", "col", ")", "prefix", "=", "HDF5StorageService", ".", "FORMATTED_COLUMN_PREFIX", "%", "colname", "for", "idx", ",", "data", "in", "enumerate", "(", "data_list", ")", ":", "# Recall original type of data", "data", ",", "type_changed", "=", "self", ".", "_all_recall_native_type", "(", "data", ",", "PTItemMock", "(", "data_type_dict", ")", ",", "prefix", ")", "if", "type_changed", ":", "data_list", "[", "idx", "]", "=", "data", "else", ":", "break", "# Construct or insert into an ObjectTable", "if", "result_table", "is", "None", ":", "result_table", "=", "ObjectTable", "(", "data", "=", "{", "colname", ":", "data_list", "}", ")", "else", ":", "result_table", "[", "colname", "]", "=", "data_list", "else", ":", "for", "colname", "in", "table_or_group", ".", "colnames", ":", "# Read Data column by column", "col", "=", "table_or_group", ".", "col", "(", "colname", ")", "data_list", "=", "list", "(", "col", ")", "prefix", "=", "HDF5StorageService", ".", "FORMATTED_COLUMN_PREFIX", "%", "colname", "for", "idx", ",", "data", "in", "enumerate", "(", "data_list", ")", ":", "# Recall original type of data", "data", ",", "type_changed", "=", "self", ".", "_all_recall_native_type", "(", "data", ",", "table_or_group", ",", "prefix", ")", "if", "type_changed", ":", "data_list", "[", "idx", "]", "=", "data", "else", ":", "break", "# Construct or insert into an ObjectTable", "if", "result_table", "is", "None", ":", "result_table", "=", "ObjectTable", "(", "data", "=", "{", "colname", ":", "data_list", "}", ")", "else", ":", "result_table", "[", "colname", "]", "=", "data_list", "return", "result_table", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed loading `%s` of `%s`.'", "%", "(", "table_or_group", ".", "_v_name", ",", "full_name", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
HDF5StorageService._prm_read_array
Reads data from an array or carray :param array: PyTables array or carray to read from :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to load
pypet/storageservice.py
def _prm_read_array(self, array, full_name): """Reads data from an array or carray :param array: PyTables array or carray to read from :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to load """ try: result = self._svrc_read_array(array) # Recall original data types result, dummy = self._all_recall_native_type(result, array, HDF5StorageService.DATA_PREFIX) return result except: self._logger.error('Failed loading `%s` of `%s`.' % (array._v_name, full_name)) raise
def _prm_read_array(self, array, full_name): """Reads data from an array or carray :param array: PyTables array or carray to read from :param full_name: Full name of the parameter or result whose data is to be loaded :return: Data to load """ try: result = self._svrc_read_array(array) # Recall original data types result, dummy = self._all_recall_native_type(result, array, HDF5StorageService.DATA_PREFIX) return result except: self._logger.error('Failed loading `%s` of `%s`.' % (array._v_name, full_name)) raise
[ "Reads", "data", "from", "an", "array", "or", "carray" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/storageservice.py#L5044-L5069
[ "def", "_prm_read_array", "(", "self", ",", "array", ",", "full_name", ")", ":", "try", ":", "result", "=", "self", ".", "_svrc_read_array", "(", "array", ")", "# Recall original data types", "result", ",", "dummy", "=", "self", ".", "_all_recall_native_type", "(", "result", ",", "array", ",", "HDF5StorageService", ".", "DATA_PREFIX", ")", "return", "result", "except", ":", "self", ".", "_logger", ".", "error", "(", "'Failed loading `%s` of `%s`.'", "%", "(", "array", ".", "_v_name", ",", "full_name", ")", ")", "raise" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
load_trajectory
Helper function that creates a novel trajectory and loads it from disk. For the parameters see :func:`~pypet.trajectory.Trajectory.f_load`. ``new_name`` and ``add_time`` are only used in case ``as_new`` is ``True``. Accordingly, they determine the new name of trajectory.
pypet/trajectory.py
def load_trajectory(name=None, index=None, as_new=False, load_parameters=pypetconstants.LOAD_DATA, load_derived_parameters=pypetconstants.LOAD_SKELETON, load_results=pypetconstants.LOAD_SKELETON, load_other_data=pypetconstants.LOAD_SKELETON, recursive=True, load_data=None, max_depth=None, force=False, dynamic_imports=None, new_name='my_trajectory', add_time=True, wildcard_functions=None, with_run_information=True, storage_service=storage.HDF5StorageService, **kwargs): """Helper function that creates a novel trajectory and loads it from disk. For the parameters see :func:`~pypet.trajectory.Trajectory.f_load`. ``new_name`` and ``add_time`` are only used in case ``as_new`` is ``True``. Accordingly, they determine the new name of trajectory. """ if name is None and index is None: raise ValueError('Please specify either a name or an index') elif name is not None and index is not None: raise ValueError('Please specify either a name or an index') traj = Trajectory(name=new_name, add_time=add_time, dynamic_imports=dynamic_imports, wildcard_functions=wildcard_functions) traj.f_load(name=name, index=index, as_new=as_new, load_parameters=load_parameters, load_derived_parameters=load_derived_parameters, load_results=load_results, load_other_data=load_other_data, recursive=recursive, load_data=load_data, max_depth=max_depth, force=force, with_run_information=with_run_information, storage_service=storage_service, **kwargs) return traj
def load_trajectory(name=None, index=None, as_new=False, load_parameters=pypetconstants.LOAD_DATA, load_derived_parameters=pypetconstants.LOAD_SKELETON, load_results=pypetconstants.LOAD_SKELETON, load_other_data=pypetconstants.LOAD_SKELETON, recursive=True, load_data=None, max_depth=None, force=False, dynamic_imports=None, new_name='my_trajectory', add_time=True, wildcard_functions=None, with_run_information=True, storage_service=storage.HDF5StorageService, **kwargs): """Helper function that creates a novel trajectory and loads it from disk. For the parameters see :func:`~pypet.trajectory.Trajectory.f_load`. ``new_name`` and ``add_time`` are only used in case ``as_new`` is ``True``. Accordingly, they determine the new name of trajectory. """ if name is None and index is None: raise ValueError('Please specify either a name or an index') elif name is not None and index is not None: raise ValueError('Please specify either a name or an index') traj = Trajectory(name=new_name, add_time=add_time, dynamic_imports=dynamic_imports, wildcard_functions=wildcard_functions) traj.f_load(name=name, index=index, as_new=as_new, load_parameters=load_parameters, load_derived_parameters=load_derived_parameters, load_results=load_results, load_other_data=load_other_data, recursive=recursive, load_data=load_data, max_depth=max_depth, force=force, with_run_information=with_run_information, storage_service=storage_service, **kwargs) return traj
[ "Helper", "function", "that", "creates", "a", "novel", "trajectory", "and", "loads", "it", "from", "disk", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L34-L72
[ "def", "load_trajectory", "(", "name", "=", "None", ",", "index", "=", "None", ",", "as_new", "=", "False", ",", "load_parameters", "=", "pypetconstants", ".", "LOAD_DATA", ",", "load_derived_parameters", "=", "pypetconstants", ".", "LOAD_SKELETON", ",", "load_results", "=", "pypetconstants", ".", "LOAD_SKELETON", ",", "load_other_data", "=", "pypetconstants", ".", "LOAD_SKELETON", ",", "recursive", "=", "True", ",", "load_data", "=", "None", ",", "max_depth", "=", "None", ",", "force", "=", "False", ",", "dynamic_imports", "=", "None", ",", "new_name", "=", "'my_trajectory'", ",", "add_time", "=", "True", ",", "wildcard_functions", "=", "None", ",", "with_run_information", "=", "True", ",", "storage_service", "=", "storage", ".", "HDF5StorageService", ",", "*", "*", "kwargs", ")", ":", "if", "name", "is", "None", "and", "index", "is", "None", ":", "raise", "ValueError", "(", "'Please specify either a name or an index'", ")", "elif", "name", "is", "not", "None", "and", "index", "is", "not", "None", ":", "raise", "ValueError", "(", "'Please specify either a name or an index'", ")", "traj", "=", "Trajectory", "(", "name", "=", "new_name", ",", "add_time", "=", "add_time", ",", "dynamic_imports", "=", "dynamic_imports", ",", "wildcard_functions", "=", "wildcard_functions", ")", "traj", ".", "f_load", "(", "name", "=", "name", ",", "index", "=", "index", ",", "as_new", "=", "as_new", ",", "load_parameters", "=", "load_parameters", ",", "load_derived_parameters", "=", "load_derived_parameters", ",", "load_results", "=", "load_results", ",", "load_other_data", "=", "load_other_data", ",", "recursive", "=", "recursive", ",", "load_data", "=", "load_data", ",", "max_depth", "=", "max_depth", ",", "force", "=", "force", ",", "with_run_information", "=", "with_run_information", ",", "storage_service", "=", "storage_service", ",", "*", "*", "kwargs", ")", "return", "traj" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
make_set_name
Creates a run set name based on ``idx``
pypet/trajectory.py
def make_set_name(idx): """Creates a run set name based on ``idx``""" GROUPSIZE = 1000 set_idx = idx // GROUPSIZE if set_idx >= 0: return pypetconstants.FORMATTED_SET_NAME % set_idx else: return pypetconstants.SET_NAME_DUMMY
def make_set_name(idx): """Creates a run set name based on ``idx``""" GROUPSIZE = 1000 set_idx = idx // GROUPSIZE if set_idx >= 0: return pypetconstants.FORMATTED_SET_NAME % set_idx else: return pypetconstants.SET_NAME_DUMMY
[ "Creates", "a", "run", "set", "name", "based", "on", "idx" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L83-L90
[ "def", "make_set_name", "(", "idx", ")", ":", "GROUPSIZE", "=", "1000", "set_idx", "=", "idx", "//", "GROUPSIZE", "if", "set_idx", ">=", "0", ":", "return", "pypetconstants", ".", "FORMATTED_SET_NAME", "%", "set_idx", "else", ":", "return", "pypetconstants", ".", "SET_NAME_DUMMY" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.f_add_wildcard_functions
#TODO
pypet/trajectory.py
def f_add_wildcard_functions(self, func_dict): """#TODO""" for wildcards, function in func_dict.items(): if not isinstance(wildcards, tuple): wildcards = (wildcards,) for wildcard in wildcards: if wildcard in self._wildcard_keys: raise ValueError('Your wildcard `%s` is used twice1' % wildcard) self._wildcard_keys[wildcard] = wildcards self._wildcard_functions[wildcards] = function self._logger.debug('Added wildcard function `%s`.' % str(wildcards))
def f_add_wildcard_functions(self, func_dict): """#TODO""" for wildcards, function in func_dict.items(): if not isinstance(wildcards, tuple): wildcards = (wildcards,) for wildcard in wildcards: if wildcard in self._wildcard_keys: raise ValueError('Your wildcard `%s` is used twice1' % wildcard) self._wildcard_keys[wildcard] = wildcards self._wildcard_functions[wildcards] = function self._logger.debug('Added wildcard function `%s`.' % str(wildcards))
[ "#TODO" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L356-L366
[ "def", "f_add_wildcard_functions", "(", "self", ",", "func_dict", ")", ":", "for", "wildcards", ",", "function", "in", "func_dict", ".", "items", "(", ")", ":", "if", "not", "isinstance", "(", "wildcards", ",", "tuple", ")", ":", "wildcards", "=", "(", "wildcards", ",", ")", "for", "wildcard", "in", "wildcards", ":", "if", "wildcard", "in", "self", ".", "_wildcard_keys", ":", "raise", "ValueError", "(", "'Your wildcard `%s` is used twice1'", "%", "wildcard", ")", "self", ".", "_wildcard_keys", "[", "wildcard", "]", "=", "wildcards", "self", ".", "_wildcard_functions", "[", "wildcards", "]", "=", "function", "self", ".", "_logger", ".", "debug", "(", "'Added wildcard function `%s`.'", "%", "str", "(", "wildcards", ")", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.f_wildcard
#TODO
pypet/trajectory.py
def f_wildcard(self, wildcard='$', run_idx=None): """#TODO""" if run_idx is None: run_idx = self.v_idx wildcards = self._wildcard_keys[wildcard] try: return self._wildcard_cache[(wildcards, run_idx)] except KeyError: translation = self._wildcard_functions[wildcards](run_idx) self._wildcard_cache[(wildcards, run_idx)] = translation return translation
def f_wildcard(self, wildcard='$', run_idx=None): """#TODO""" if run_idx is None: run_idx = self.v_idx wildcards = self._wildcard_keys[wildcard] try: return self._wildcard_cache[(wildcards, run_idx)] except KeyError: translation = self._wildcard_functions[wildcards](run_idx) self._wildcard_cache[(wildcards, run_idx)] = translation return translation
[ "#TODO" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L368-L378
[ "def", "f_wildcard", "(", "self", ",", "wildcard", "=", "'$'", ",", "run_idx", "=", "None", ")", ":", "if", "run_idx", "is", "None", ":", "run_idx", "=", "self", ".", "v_idx", "wildcards", "=", "self", ".", "_wildcard_keys", "[", "wildcard", "]", "try", ":", "return", "self", ".", "_wildcard_cache", "[", "(", "wildcards", ",", "run_idx", ")", "]", "except", "KeyError", ":", "translation", "=", "self", ".", "_wildcard_functions", "[", "wildcards", "]", "(", "run_idx", ")", "self", ".", "_wildcard_cache", "[", "(", "wildcards", ",", "run_idx", ")", "]", "=", "translation", "return", "translation" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.v_full_copy
Sets full copy mode of trajectory and (!) ALL explored parameters!
pypet/trajectory.py
def v_full_copy(self, val): """ Sets full copy mode of trajectory and (!) ALL explored parameters!""" self._full_copy = bool(val) for param in self._explored_parameters.values(): if param is not None: param.v_full_copy = bool(val)
def v_full_copy(self, val): """ Sets full copy mode of trajectory and (!) ALL explored parameters!""" self._full_copy = bool(val) for param in self._explored_parameters.values(): if param is not None: param.v_full_copy = bool(val)
[ "Sets", "full", "copy", "mode", "of", "trajectory", "and", "(", "!", ")", "ALL", "explored", "parameters!" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L526-L531
[ "def", "v_full_copy", "(", "self", ",", "val", ")", ":", "self", ".", "_full_copy", "=", "bool", "(", "val", ")", "for", "param", "in", "self", ".", "_explored_parameters", ".", "values", "(", ")", ":", "if", "param", "is", "not", "None", ":", "param", ".", "v_full_copy", "=", "bool", "(", "val", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.f_set_properties
Sets properties like ``v_fast_access``. For example: ``traj.f_set_properties(v_fast_access=True, v_auto_load=False)``
pypet/trajectory.py
def f_set_properties(self, **kwargs): """Sets properties like ``v_fast_access``. For example: ``traj.f_set_properties(v_fast_access=True, v_auto_load=False)`` """ for name in kwargs: val = kwargs[name] if not name.startswith('v_'): name = 'v_' + name if not name in self._nn_interface._not_admissible_names: raise AttributeError('Cannot set property `%s` does not exist.' % name) else: setattr(self, name, val)
def f_set_properties(self, **kwargs): """Sets properties like ``v_fast_access``. For example: ``traj.f_set_properties(v_fast_access=True, v_auto_load=False)`` """ for name in kwargs: val = kwargs[name] if not name.startswith('v_'): name = 'v_' + name if not name in self._nn_interface._not_admissible_names: raise AttributeError('Cannot set property `%s` does not exist.' % name) else: setattr(self, name, val)
[ "Sets", "properties", "like", "v_fast_access", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L544-L557
[ "def", "f_set_properties", "(", "self", ",", "*", "*", "kwargs", ")", ":", "for", "name", "in", "kwargs", ":", "val", "=", "kwargs", "[", "name", "]", "if", "not", "name", ".", "startswith", "(", "'v_'", ")", ":", "name", "=", "'v_'", "+", "name", "if", "not", "name", "in", "self", ".", "_nn_interface", ".", "_not_admissible_names", ":", "raise", "AttributeError", "(", "'Cannot set property `%s` does not exist.'", "%", "name", ")", "else", ":", "setattr", "(", "self", ",", "name", ",", "val", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.f_add_to_dynamic_imports
Adds classes or paths to classes to the trajectory to create custom parameters. :param dynamic_imports: If you've written custom parameter that needs to be loaded dynamically during runtime, this needs to be specified here as a list of classes or strings naming classes and there module paths. For example: `dynamic_imports = ['pypet.parameter.PickleParameter',MyCustomParameter]` If you only have a single class to import, you do not need the list brackets: `dynamic_imports = 'pypet.parameter.PickleParameter'`
pypet/trajectory.py
def f_add_to_dynamic_imports(self, dynamic_imports): """Adds classes or paths to classes to the trajectory to create custom parameters. :param dynamic_imports: If you've written custom parameter that needs to be loaded dynamically during runtime, this needs to be specified here as a list of classes or strings naming classes and there module paths. For example: `dynamic_imports = ['pypet.parameter.PickleParameter',MyCustomParameter]` If you only have a single class to import, you do not need the list brackets: `dynamic_imports = 'pypet.parameter.PickleParameter'` """ if not isinstance(dynamic_imports, (list, tuple)): dynamic_imports = [dynamic_imports] for item in dynamic_imports: if not (isinstance(item, str) or inspect.isclass(item)): raise TypeError('Your dynamic import `%s` is neither a class nor a string.' % str(item)) self._dynamic_imports.extend(dynamic_imports)
def f_add_to_dynamic_imports(self, dynamic_imports): """Adds classes or paths to classes to the trajectory to create custom parameters. :param dynamic_imports: If you've written custom parameter that needs to be loaded dynamically during runtime, this needs to be specified here as a list of classes or strings naming classes and there module paths. For example: `dynamic_imports = ['pypet.parameter.PickleParameter',MyCustomParameter]` If you only have a single class to import, you do not need the list brackets: `dynamic_imports = 'pypet.parameter.PickleParameter'` """ if not isinstance(dynamic_imports, (list, tuple)): dynamic_imports = [dynamic_imports] for item in dynamic_imports: if not (isinstance(item, str) or inspect.isclass(item)): raise TypeError('Your dynamic import `%s` is neither a class nor a string.' % str(item)) self._dynamic_imports.extend(dynamic_imports)
[ "Adds", "classes", "or", "paths", "to", "classes", "to", "the", "trajectory", "to", "create", "custom", "parameters", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L560-L583
[ "def", "f_add_to_dynamic_imports", "(", "self", ",", "dynamic_imports", ")", ":", "if", "not", "isinstance", "(", "dynamic_imports", ",", "(", "list", ",", "tuple", ")", ")", ":", "dynamic_imports", "=", "[", "dynamic_imports", "]", "for", "item", "in", "dynamic_imports", ":", "if", "not", "(", "isinstance", "(", "item", ",", "str", ")", "or", "inspect", ".", "isclass", "(", "item", ")", ")", ":", "raise", "TypeError", "(", "'Your dynamic import `%s` is neither a class nor a string.'", "%", "str", "(", "item", ")", ")", "self", ".", "_dynamic_imports", ".", "extend", "(", "dynamic_imports", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.f_set_crun
Can make the trajectory behave as during a particular single run. It allows easier data analysis. Has the following effects: * `v_idx` and `v_crun` are set to the appropriate index and run name * All explored parameters are set to the corresponding value in the exploration ranges, i.e. when you call :func:`~pypet.parameter.Parameter.f_get` (or fast access) on them you will get in return the value at the corresponding `v_idx` position in the exploration range. * If you perform a search in the trajectory tree, the trajectory will only search the run subtree under *results* and *derived_parameters* with the corresponding index. For instance, if you use `f_set_crun('run_00000007')` or `f_set_crun(7)` and search for `traj.results.z` this will search for `z` only in the subtree `traj.results.run_00000007`. Yet, you can still explicitly name other subtrees, i.e. `traj.results.run_00000004.z` will still work.
pypet/trajectory.py
def f_set_crun(self, name_or_idx): """Can make the trajectory behave as during a particular single run. It allows easier data analysis. Has the following effects: * `v_idx` and `v_crun` are set to the appropriate index and run name * All explored parameters are set to the corresponding value in the exploration ranges, i.e. when you call :func:`~pypet.parameter.Parameter.f_get` (or fast access) on them you will get in return the value at the corresponding `v_idx` position in the exploration range. * If you perform a search in the trajectory tree, the trajectory will only search the run subtree under *results* and *derived_parameters* with the corresponding index. For instance, if you use `f_set_crun('run_00000007')` or `f_set_crun(7)` and search for `traj.results.z` this will search for `z` only in the subtree `traj.results.run_00000007`. Yet, you can still explicitly name other subtrees, i.e. `traj.results.run_00000004.z` will still work. """ if (name_or_idx is None or name_or_idx == self.f_wildcard('$', -1) or name_or_idx == -1): self.f_restore_default() else: if isinstance(name_or_idx, str): self._idx = self.f_idx_to_run(name_or_idx) self._crun = name_or_idx else: self._crun = self.f_idx_to_run(name_or_idx) self._idx = name_or_idx self._set_explored_parameters_to_idx(self.v_idx)
def f_set_crun(self, name_or_idx): """Can make the trajectory behave as during a particular single run. It allows easier data analysis. Has the following effects: * `v_idx` and `v_crun` are set to the appropriate index and run name * All explored parameters are set to the corresponding value in the exploration ranges, i.e. when you call :func:`~pypet.parameter.Parameter.f_get` (or fast access) on them you will get in return the value at the corresponding `v_idx` position in the exploration range. * If you perform a search in the trajectory tree, the trajectory will only search the run subtree under *results* and *derived_parameters* with the corresponding index. For instance, if you use `f_set_crun('run_00000007')` or `f_set_crun(7)` and search for `traj.results.z` this will search for `z` only in the subtree `traj.results.run_00000007`. Yet, you can still explicitly name other subtrees, i.e. `traj.results.run_00000004.z` will still work. """ if (name_or_idx is None or name_or_idx == self.f_wildcard('$', -1) or name_or_idx == -1): self.f_restore_default() else: if isinstance(name_or_idx, str): self._idx = self.f_idx_to_run(name_or_idx) self._crun = name_or_idx else: self._crun = self.f_idx_to_run(name_or_idx) self._idx = name_or_idx self._set_explored_parameters_to_idx(self.v_idx)
[ "Can", "make", "the", "trajectory", "behave", "as", "during", "a", "particular", "single", "run", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L586-L623
[ "def", "f_set_crun", "(", "self", ",", "name_or_idx", ")", ":", "if", "(", "name_or_idx", "is", "None", "or", "name_or_idx", "==", "self", ".", "f_wildcard", "(", "'$'", ",", "-", "1", ")", "or", "name_or_idx", "==", "-", "1", ")", ":", "self", ".", "f_restore_default", "(", ")", "else", ":", "if", "isinstance", "(", "name_or_idx", ",", "str", ")", ":", "self", ".", "_idx", "=", "self", ".", "f_idx_to_run", "(", "name_or_idx", ")", "self", ".", "_crun", "=", "name_or_idx", "else", ":", "self", ".", "_crun", "=", "self", ".", "f_idx_to_run", "(", "name_or_idx", ")", "self", ".", "_idx", "=", "name_or_idx", "self", ".", "_set_explored_parameters_to_idx", "(", "self", ".", "v_idx", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.f_iter_runs
Makes the trajectory iterate over all runs. :param start: Start index of run :param stop: Stop index, leave ``None`` for length of trajectory :param step: Stepsize :param yields: What should be yielded: ``'name'`` of run, ``idx`` of run or ``'self'`` to simply return the trajectory container. You can also pick ``'copy'`` to get **shallow** copies (ie the tree is copied but no leave nodes except explored ones.) of your trajectory, might lead to some of overhead. Note that after a full iteration, the trajectory is set back to normal. Thus, the following code snippet :: for run_name in traj.f_iter_runs(): # Do some stuff here... is equivalent to :: for run_name in traj.f_get_run_names(sort=True): traj.f_set_crun(run_name) # Do some stuff here... traj.f_set_crun(None) :return: Iterator over runs. The iterator itself will return the run names but modify the trajectory in each iteration and set it back do normal in the end.
pypet/trajectory.py
def f_iter_runs(self, start=0, stop=None, step=1, yields='name'): """Makes the trajectory iterate over all runs. :param start: Start index of run :param stop: Stop index, leave ``None`` for length of trajectory :param step: Stepsize :param yields: What should be yielded: ``'name'`` of run, ``idx`` of run or ``'self'`` to simply return the trajectory container. You can also pick ``'copy'`` to get **shallow** copies (ie the tree is copied but no leave nodes except explored ones.) of your trajectory, might lead to some of overhead. Note that after a full iteration, the trajectory is set back to normal. Thus, the following code snippet :: for run_name in traj.f_iter_runs(): # Do some stuff here... is equivalent to :: for run_name in traj.f_get_run_names(sort=True): traj.f_set_crun(run_name) # Do some stuff here... traj.f_set_crun(None) :return: Iterator over runs. The iterator itself will return the run names but modify the trajectory in each iteration and set it back do normal in the end. """ if stop is None: stop =len(self) elif stop > len(self): raise ValueError('Stop cannot be larger than the trajectory lenght.') yields = yields.lower() if yields == 'name': yield_func = lambda x: self.f_idx_to_run(x) elif yields == 'idx': yield_func = lambda x: x elif yields == 'self': yield_func = lambda x: self elif yields == 'copy': yield_func = lambda x: self.__copy__() else: raise ValueError('Please choose yields among: `name`, `idx`, or `self`.') for idx in range(start, stop, step): self.f_set_crun(idx) yield yield_func(idx) self.f_set_crun(None)
def f_iter_runs(self, start=0, stop=None, step=1, yields='name'): """Makes the trajectory iterate over all runs. :param start: Start index of run :param stop: Stop index, leave ``None`` for length of trajectory :param step: Stepsize :param yields: What should be yielded: ``'name'`` of run, ``idx`` of run or ``'self'`` to simply return the trajectory container. You can also pick ``'copy'`` to get **shallow** copies (ie the tree is copied but no leave nodes except explored ones.) of your trajectory, might lead to some of overhead. Note that after a full iteration, the trajectory is set back to normal. Thus, the following code snippet :: for run_name in traj.f_iter_runs(): # Do some stuff here... is equivalent to :: for run_name in traj.f_get_run_names(sort=True): traj.f_set_crun(run_name) # Do some stuff here... traj.f_set_crun(None) :return: Iterator over runs. The iterator itself will return the run names but modify the trajectory in each iteration and set it back do normal in the end. """ if stop is None: stop =len(self) elif stop > len(self): raise ValueError('Stop cannot be larger than the trajectory lenght.') yields = yields.lower() if yields == 'name': yield_func = lambda x: self.f_idx_to_run(x) elif yields == 'idx': yield_func = lambda x: x elif yields == 'self': yield_func = lambda x: self elif yields == 'copy': yield_func = lambda x: self.__copy__() else: raise ValueError('Please choose yields among: `name`, `idx`, or `self`.') for idx in range(start, stop, step): self.f_set_crun(idx) yield yield_func(idx) self.f_set_crun(None)
[ "Makes", "the", "trajectory", "iterate", "over", "all", "runs", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L626-L693
[ "def", "f_iter_runs", "(", "self", ",", "start", "=", "0", ",", "stop", "=", "None", ",", "step", "=", "1", ",", "yields", "=", "'name'", ")", ":", "if", "stop", "is", "None", ":", "stop", "=", "len", "(", "self", ")", "elif", "stop", ">", "len", "(", "self", ")", ":", "raise", "ValueError", "(", "'Stop cannot be larger than the trajectory lenght.'", ")", "yields", "=", "yields", ".", "lower", "(", ")", "if", "yields", "==", "'name'", ":", "yield_func", "=", "lambda", "x", ":", "self", ".", "f_idx_to_run", "(", "x", ")", "elif", "yields", "==", "'idx'", ":", "yield_func", "=", "lambda", "x", ":", "x", "elif", "yields", "==", "'self'", ":", "yield_func", "=", "lambda", "x", ":", "self", "elif", "yields", "==", "'copy'", ":", "yield_func", "=", "lambda", "x", ":", "self", ".", "__copy__", "(", ")", "else", ":", "raise", "ValueError", "(", "'Please choose yields among: `name`, `idx`, or `self`.'", ")", "for", "idx", "in", "range", "(", "start", ",", "stop", ",", "step", ")", ":", "self", ".", "f_set_crun", "(", "idx", ")", "yield", "yield_func", "(", "idx", ")", "self", ".", "f_set_crun", "(", "None", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.f_shrink
Shrinks the trajectory and removes all exploration ranges from the parameters. Only possible if the trajectory has not been stored to disk before or was loaded as new. :param force: Usually you cannot shrink the trajectory if it has been stored to disk, because there's no guarantee that it is actually shrunk if there still exist explored parameters on disk. In case you are certain that you did not store explored parameters to disk set or you deleted all of them from disk set `force=True`. :raises: TypeError if the trajectory was stored before.
pypet/trajectory.py
def f_shrink(self, force=False): """ Shrinks the trajectory and removes all exploration ranges from the parameters. Only possible if the trajectory has not been stored to disk before or was loaded as new. :param force: Usually you cannot shrink the trajectory if it has been stored to disk, because there's no guarantee that it is actually shrunk if there still exist explored parameters on disk. In case you are certain that you did not store explored parameters to disk set or you deleted all of them from disk set `force=True`. :raises: TypeError if the trajectory was stored before. """ if self._stored and not force: raise TypeError('Your trajectory is already stored to disk or database, shrinking is ' 'not allowed.') for param in self._explored_parameters.values(): param.f_unlock() try: param._shrink() except Exception as exc: self._logger.error('Could not shrink `%s` because of:`%s`' % (param.v_full_name, repr(exc))) # If we shrink, we do not have any explored parameters left and we can erase all # run information, and the length of the trajectory is 1 again. self._explored_parameters = {} self._run_information = {} self._single_run_ids = {} self._add_run_info(0) self._test_run_addition(1)
def f_shrink(self, force=False): """ Shrinks the trajectory and removes all exploration ranges from the parameters. Only possible if the trajectory has not been stored to disk before or was loaded as new. :param force: Usually you cannot shrink the trajectory if it has been stored to disk, because there's no guarantee that it is actually shrunk if there still exist explored parameters on disk. In case you are certain that you did not store explored parameters to disk set or you deleted all of them from disk set `force=True`. :raises: TypeError if the trajectory was stored before. """ if self._stored and not force: raise TypeError('Your trajectory is already stored to disk or database, shrinking is ' 'not allowed.') for param in self._explored_parameters.values(): param.f_unlock() try: param._shrink() except Exception as exc: self._logger.error('Could not shrink `%s` because of:`%s`' % (param.v_full_name, repr(exc))) # If we shrink, we do not have any explored parameters left and we can erase all # run information, and the length of the trajectory is 1 again. self._explored_parameters = {} self._run_information = {} self._single_run_ids = {} self._add_run_info(0) self._test_run_addition(1)
[ "Shrinks", "the", "trajectory", "and", "removes", "all", "exploration", "ranges", "from", "the", "parameters", ".", "Only", "possible", "if", "the", "trajectory", "has", "not", "been", "stored", "to", "disk", "before", "or", "was", "loaded", "as", "new", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L696-L729
[ "def", "f_shrink", "(", "self", ",", "force", "=", "False", ")", ":", "if", "self", ".", "_stored", "and", "not", "force", ":", "raise", "TypeError", "(", "'Your trajectory is already stored to disk or database, shrinking is '", "'not allowed.'", ")", "for", "param", "in", "self", ".", "_explored_parameters", ".", "values", "(", ")", ":", "param", ".", "f_unlock", "(", ")", "try", ":", "param", ".", "_shrink", "(", ")", "except", "Exception", "as", "exc", ":", "self", ".", "_logger", ".", "error", "(", "'Could not shrink `%s` because of:`%s`'", "%", "(", "param", ".", "v_full_name", ",", "repr", "(", "exc", ")", ")", ")", "# If we shrink, we do not have any explored parameters left and we can erase all", "# run information, and the length of the trajectory is 1 again.", "self", ".", "_explored_parameters", "=", "{", "}", "self", ".", "_run_information", "=", "{", "}", "self", ".", "_single_run_ids", "=", "{", "}", "self", ".", "_add_run_info", "(", "0", ")", "self", ".", "_test_run_addition", "(", "1", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory._preset
Generic preset function, marks a parameter or config for presetting.
pypet/trajectory.py
def _preset(self, name, args, kwargs): """Generic preset function, marks a parameter or config for presetting.""" if self.f_contains(name, shortcuts=False): raise ValueError('Parameter `%s` is already part of your trajectory, use the normal' 'accessing routine to change config.' % name) else: self._changed_default_parameters[name] = (args, kwargs)
def _preset(self, name, args, kwargs): """Generic preset function, marks a parameter or config for presetting.""" if self.f_contains(name, shortcuts=False): raise ValueError('Parameter `%s` is already part of your trajectory, use the normal' 'accessing routine to change config.' % name) else: self._changed_default_parameters[name] = (args, kwargs)
[ "Generic", "preset", "function", "marks", "a", "parameter", "or", "config", "for", "presetting", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L731-L737
[ "def", "_preset", "(", "self", ",", "name", ",", "args", ",", "kwargs", ")", ":", "if", "self", ".", "f_contains", "(", "name", ",", "shortcuts", "=", "False", ")", ":", "raise", "ValueError", "(", "'Parameter `%s` is already part of your trajectory, use the normal'", "'accessing routine to change config.'", "%", "name", ")", "else", ":", "self", ".", "_changed_default_parameters", "[", "name", "]", "=", "(", "args", ",", "kwargs", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.f_preset_config
Similar to func:`~pypet.trajectory.Trajectory.f_preset_parameter`
pypet/trajectory.py
def f_preset_config(self, config_name, *args, **kwargs): """Similar to func:`~pypet.trajectory.Trajectory.f_preset_parameter`""" if not config_name.startswith('config.'): config_name = 'config.' + config_name self._preset(config_name, args, kwargs)
def f_preset_config(self, config_name, *args, **kwargs): """Similar to func:`~pypet.trajectory.Trajectory.f_preset_parameter`""" if not config_name.startswith('config.'): config_name = 'config.' + config_name self._preset(config_name, args, kwargs)
[ "Similar", "to", "func", ":", "~pypet", ".", "trajectory", ".", "Trajectory", ".", "f_preset_parameter" ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L740-L746
[ "def", "f_preset_config", "(", "self", ",", "config_name", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "not", "config_name", ".", "startswith", "(", "'config.'", ")", ":", "config_name", "=", "'config.'", "+", "config_name", "self", ".", "_preset", "(", "config_name", ",", "args", ",", "kwargs", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826
test
Trajectory.f_preset_parameter
Presets parameter value before a parameter is added. Can be called before parameters are added to the Trajectory in order to change the values that are stored into the parameter on creation. After creation of a parameter, the instance of the parameter is called with `param.f_set(*args,**kwargs)` with `*args`, and `**kwargs` provided by the user with `f_preset_parameter`. Before an experiment is carried out it is checked if all parameters that were marked were also preset. :param param_name: The full name (!) of the parameter that is to be changed after its creation. :param args: Arguments that will be used for changing the parameter's data :param kwargs: Keyword arguments that will be used for changing the parameter's data Example: >>> traj.f_preset_parameter('groupA.param1', data=44) >>> traj.f_add_parameter('groupA.param1', data=11) >>> traj.parameters.groupA.param1 44
pypet/trajectory.py
def f_preset_parameter(self, param_name, *args, **kwargs): """Presets parameter value before a parameter is added. Can be called before parameters are added to the Trajectory in order to change the values that are stored into the parameter on creation. After creation of a parameter, the instance of the parameter is called with `param.f_set(*args,**kwargs)` with `*args`, and `**kwargs` provided by the user with `f_preset_parameter`. Before an experiment is carried out it is checked if all parameters that were marked were also preset. :param param_name: The full name (!) of the parameter that is to be changed after its creation. :param args: Arguments that will be used for changing the parameter's data :param kwargs: Keyword arguments that will be used for changing the parameter's data Example: >>> traj.f_preset_parameter('groupA.param1', data=44) >>> traj.f_add_parameter('groupA.param1', data=11) >>> traj.parameters.groupA.param1 44 """ if not param_name.startswith('parameters.'): param_name = 'parameters.' + param_name self._preset(param_name, args, kwargs)
def f_preset_parameter(self, param_name, *args, **kwargs): """Presets parameter value before a parameter is added. Can be called before parameters are added to the Trajectory in order to change the values that are stored into the parameter on creation. After creation of a parameter, the instance of the parameter is called with `param.f_set(*args,**kwargs)` with `*args`, and `**kwargs` provided by the user with `f_preset_parameter`. Before an experiment is carried out it is checked if all parameters that were marked were also preset. :param param_name: The full name (!) of the parameter that is to be changed after its creation. :param args: Arguments that will be used for changing the parameter's data :param kwargs: Keyword arguments that will be used for changing the parameter's data Example: >>> traj.f_preset_parameter('groupA.param1', data=44) >>> traj.f_add_parameter('groupA.param1', data=11) >>> traj.parameters.groupA.param1 44 """ if not param_name.startswith('parameters.'): param_name = 'parameters.' + param_name self._preset(param_name, args, kwargs)
[ "Presets", "parameter", "value", "before", "a", "parameter", "is", "added", "." ]
SmokinCaterpillar/pypet
python
https://github.com/SmokinCaterpillar/pypet/blob/97ad3e80d46dbdea02deeb98ea41f05a19565826/pypet/trajectory.py#L749-L786
[ "def", "f_preset_parameter", "(", "self", ",", "param_name", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "not", "param_name", ".", "startswith", "(", "'parameters.'", ")", ":", "param_name", "=", "'parameters.'", "+", "param_name", "self", ".", "_preset", "(", "param_name", ",", "args", ",", "kwargs", ")" ]
97ad3e80d46dbdea02deeb98ea41f05a19565826