partition
stringclasses 3
values | func_name
stringlengths 1
134
| docstring
stringlengths 1
46.9k
| path
stringlengths 4
223
| original_string
stringlengths 75
104k
| code
stringlengths 75
104k
| docstring_tokens
listlengths 1
1.97k
| repo
stringlengths 7
55
| language
stringclasses 1
value | url
stringlengths 87
315
| code_tokens
listlengths 19
28.4k
| sha
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|---|
test
|
GuppiRaw.read_next_data_block_int8
|
Read the next block of data and its header
Returns: (header, data)
header (dict): dictionary of header metadata
data (np.array): Numpy array of data, converted into to complex64.
|
blimpy/guppi.py
|
def read_next_data_block_int8(self):
""" Read the next block of data and its header
Returns: (header, data)
header (dict): dictionary of header metadata
data (np.array): Numpy array of data, converted into to complex64.
"""
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
# Read data and reshape
n_chan = int(header['OBSNCHAN'])
n_pol = int(header['NPOL'])
n_bit = int(header['NBITS'])
n_samples = int(int(header['BLOCSIZE']) / (n_chan * n_pol * (n_bit / 8)))
d = np.fromfile(self.file_obj, count=header['BLOCSIZE'], dtype='int8')
# Handle 2-bit and 4-bit data
if n_bit != 8:
d = unpack(d, n_bit)
d = d.reshape((n_chan, n_samples, n_pol)) # Real, imag
if self._d_x.shape != d[..., 0:2].shape:
self._d_x = np.ascontiguousarray(np.zeros(d[..., 0:2].shape, dtype='int8'))
self._d_y = np.ascontiguousarray(np.zeros(d[..., 2:4].shape, dtype='int8'))
self._d_x[:] = d[..., 0:2]
self._d_y[:] = d[..., 2:4]
return header, self._d_x, self._d_y
|
def read_next_data_block_int8(self):
""" Read the next block of data and its header
Returns: (header, data)
header (dict): dictionary of header metadata
data (np.array): Numpy array of data, converted into to complex64.
"""
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
# Read data and reshape
n_chan = int(header['OBSNCHAN'])
n_pol = int(header['NPOL'])
n_bit = int(header['NBITS'])
n_samples = int(int(header['BLOCSIZE']) / (n_chan * n_pol * (n_bit / 8)))
d = np.fromfile(self.file_obj, count=header['BLOCSIZE'], dtype='int8')
# Handle 2-bit and 4-bit data
if n_bit != 8:
d = unpack(d, n_bit)
d = d.reshape((n_chan, n_samples, n_pol)) # Real, imag
if self._d_x.shape != d[..., 0:2].shape:
self._d_x = np.ascontiguousarray(np.zeros(d[..., 0:2].shape, dtype='int8'))
self._d_y = np.ascontiguousarray(np.zeros(d[..., 2:4].shape, dtype='int8'))
self._d_x[:] = d[..., 0:2]
self._d_y[:] = d[..., 2:4]
return header, self._d_x, self._d_y
|
[
"Read",
"the",
"next",
"block",
"of",
"data",
"and",
"its",
"header"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/guppi.py#L208-L239
|
[
"def",
"read_next_data_block_int8",
"(",
"self",
")",
":",
"header",
",",
"data_idx",
"=",
"self",
".",
"read_header",
"(",
")",
"self",
".",
"file_obj",
".",
"seek",
"(",
"data_idx",
")",
"# Read data and reshape",
"n_chan",
"=",
"int",
"(",
"header",
"[",
"'OBSNCHAN'",
"]",
")",
"n_pol",
"=",
"int",
"(",
"header",
"[",
"'NPOL'",
"]",
")",
"n_bit",
"=",
"int",
"(",
"header",
"[",
"'NBITS'",
"]",
")",
"n_samples",
"=",
"int",
"(",
"int",
"(",
"header",
"[",
"'BLOCSIZE'",
"]",
")",
"/",
"(",
"n_chan",
"*",
"n_pol",
"*",
"(",
"n_bit",
"/",
"8",
")",
")",
")",
"d",
"=",
"np",
".",
"fromfile",
"(",
"self",
".",
"file_obj",
",",
"count",
"=",
"header",
"[",
"'BLOCSIZE'",
"]",
",",
"dtype",
"=",
"'int8'",
")",
"# Handle 2-bit and 4-bit data",
"if",
"n_bit",
"!=",
"8",
":",
"d",
"=",
"unpack",
"(",
"d",
",",
"n_bit",
")",
"d",
"=",
"d",
".",
"reshape",
"(",
"(",
"n_chan",
",",
"n_samples",
",",
"n_pol",
")",
")",
"# Real, imag",
"if",
"self",
".",
"_d_x",
".",
"shape",
"!=",
"d",
"[",
"...",
",",
"0",
":",
"2",
"]",
".",
"shape",
":",
"self",
".",
"_d_x",
"=",
"np",
".",
"ascontiguousarray",
"(",
"np",
".",
"zeros",
"(",
"d",
"[",
"...",
",",
"0",
":",
"2",
"]",
".",
"shape",
",",
"dtype",
"=",
"'int8'",
")",
")",
"self",
".",
"_d_y",
"=",
"np",
".",
"ascontiguousarray",
"(",
"np",
".",
"zeros",
"(",
"d",
"[",
"...",
",",
"2",
":",
"4",
"]",
".",
"shape",
",",
"dtype",
"=",
"'int8'",
")",
")",
"self",
".",
"_d_x",
"[",
":",
"]",
"=",
"d",
"[",
"...",
",",
"0",
":",
"2",
"]",
"self",
".",
"_d_y",
"[",
":",
"]",
"=",
"d",
"[",
"...",
",",
"2",
":",
"4",
"]",
"return",
"header",
",",
"self",
".",
"_d_x",
",",
"self",
".",
"_d_y"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
GuppiRaw.read_next_data_block_int8_2x
|
Read the next block of data and its header
Returns: (header, data)
header (dict): dictionary of header metadata
data (np.array): Numpy array of data, converted into to complex64.
|
blimpy/guppi.py
|
def read_next_data_block_int8_2x(self):
""" Read the next block of data and its header
Returns: (header, data)
header (dict): dictionary of header metadata
data (np.array): Numpy array of data, converted into to complex64.
"""
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
# Read data and reshape
n_chan = int(header['OBSNCHAN'])
n_pol = int(header['NPOL'])
n_bit = int(header['NBITS'])
n_samples = int(int(header['BLOCSIZE']) / (n_chan * n_pol * (n_bit / 8)))
d = np.fromfile(self.file_obj, count=header['BLOCSIZE'], dtype='int8')
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
d2 = np.fromfile(self.file_obj, count=header['BLOCSIZE'], dtype='int8')
# Handle 2-bit and 4-bit data
if n_bit != 8:
d = unpack(d, n_bit)
d = d.reshape((n_chan, n_samples, n_pol)) # Real, imag
d2 = d2.reshape((n_chan, n_samples, n_pol))
d = np.concatenate((d, d2), axis=1)
print(d.shape)
if self._d_x.shape != (n_chan, n_samples * 2, n_pol):
self._d_x = np.ascontiguousarray(np.zeros(d[..., 0:2].shape, dtype='int8'))
self._d_y = np.ascontiguousarray(np.zeros(d[..., 2:4].shape, dtype='int8'))
self._d_x[:] = d[..., 0:2]
self._d_y[:] = d[..., 2:4]
return header, self._d_x, self._d_y
|
def read_next_data_block_int8_2x(self):
""" Read the next block of data and its header
Returns: (header, data)
header (dict): dictionary of header metadata
data (np.array): Numpy array of data, converted into to complex64.
"""
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
# Read data and reshape
n_chan = int(header['OBSNCHAN'])
n_pol = int(header['NPOL'])
n_bit = int(header['NBITS'])
n_samples = int(int(header['BLOCSIZE']) / (n_chan * n_pol * (n_bit / 8)))
d = np.fromfile(self.file_obj, count=header['BLOCSIZE'], dtype='int8')
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
d2 = np.fromfile(self.file_obj, count=header['BLOCSIZE'], dtype='int8')
# Handle 2-bit and 4-bit data
if n_bit != 8:
d = unpack(d, n_bit)
d = d.reshape((n_chan, n_samples, n_pol)) # Real, imag
d2 = d2.reshape((n_chan, n_samples, n_pol))
d = np.concatenate((d, d2), axis=1)
print(d.shape)
if self._d_x.shape != (n_chan, n_samples * 2, n_pol):
self._d_x = np.ascontiguousarray(np.zeros(d[..., 0:2].shape, dtype='int8'))
self._d_y = np.ascontiguousarray(np.zeros(d[..., 2:4].shape, dtype='int8'))
self._d_x[:] = d[..., 0:2]
self._d_y[:] = d[..., 2:4]
return header, self._d_x, self._d_y
|
[
"Read",
"the",
"next",
"block",
"of",
"data",
"and",
"its",
"header"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/guppi.py#L241-L279
|
[
"def",
"read_next_data_block_int8_2x",
"(",
"self",
")",
":",
"header",
",",
"data_idx",
"=",
"self",
".",
"read_header",
"(",
")",
"self",
".",
"file_obj",
".",
"seek",
"(",
"data_idx",
")",
"# Read data and reshape",
"n_chan",
"=",
"int",
"(",
"header",
"[",
"'OBSNCHAN'",
"]",
")",
"n_pol",
"=",
"int",
"(",
"header",
"[",
"'NPOL'",
"]",
")",
"n_bit",
"=",
"int",
"(",
"header",
"[",
"'NBITS'",
"]",
")",
"n_samples",
"=",
"int",
"(",
"int",
"(",
"header",
"[",
"'BLOCSIZE'",
"]",
")",
"/",
"(",
"n_chan",
"*",
"n_pol",
"*",
"(",
"n_bit",
"/",
"8",
")",
")",
")",
"d",
"=",
"np",
".",
"fromfile",
"(",
"self",
".",
"file_obj",
",",
"count",
"=",
"header",
"[",
"'BLOCSIZE'",
"]",
",",
"dtype",
"=",
"'int8'",
")",
"header",
",",
"data_idx",
"=",
"self",
".",
"read_header",
"(",
")",
"self",
".",
"file_obj",
".",
"seek",
"(",
"data_idx",
")",
"d2",
"=",
"np",
".",
"fromfile",
"(",
"self",
".",
"file_obj",
",",
"count",
"=",
"header",
"[",
"'BLOCSIZE'",
"]",
",",
"dtype",
"=",
"'int8'",
")",
"# Handle 2-bit and 4-bit data",
"if",
"n_bit",
"!=",
"8",
":",
"d",
"=",
"unpack",
"(",
"d",
",",
"n_bit",
")",
"d",
"=",
"d",
".",
"reshape",
"(",
"(",
"n_chan",
",",
"n_samples",
",",
"n_pol",
")",
")",
"# Real, imag",
"d2",
"=",
"d2",
".",
"reshape",
"(",
"(",
"n_chan",
",",
"n_samples",
",",
"n_pol",
")",
")",
"d",
"=",
"np",
".",
"concatenate",
"(",
"(",
"d",
",",
"d2",
")",
",",
"axis",
"=",
"1",
")",
"print",
"(",
"d",
".",
"shape",
")",
"if",
"self",
".",
"_d_x",
".",
"shape",
"!=",
"(",
"n_chan",
",",
"n_samples",
"*",
"2",
",",
"n_pol",
")",
":",
"self",
".",
"_d_x",
"=",
"np",
".",
"ascontiguousarray",
"(",
"np",
".",
"zeros",
"(",
"d",
"[",
"...",
",",
"0",
":",
"2",
"]",
".",
"shape",
",",
"dtype",
"=",
"'int8'",
")",
")",
"self",
".",
"_d_y",
"=",
"np",
".",
"ascontiguousarray",
"(",
"np",
".",
"zeros",
"(",
"d",
"[",
"...",
",",
"2",
":",
"4",
"]",
".",
"shape",
",",
"dtype",
"=",
"'int8'",
")",
")",
"self",
".",
"_d_x",
"[",
":",
"]",
"=",
"d",
"[",
"...",
",",
"0",
":",
"2",
"]",
"self",
".",
"_d_y",
"[",
":",
"]",
"=",
"d",
"[",
"...",
",",
"2",
":",
"4",
"]",
"return",
"header",
",",
"self",
".",
"_d_x",
",",
"self",
".",
"_d_y"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
GuppiRaw.read_next_data_block
|
Read the next block of data and its header
Returns: (header, data)
header (dict): dictionary of header metadata
data (np.array): Numpy array of data, converted into to complex64.
|
blimpy/guppi.py
|
def read_next_data_block(self):
""" Read the next block of data and its header
Returns: (header, data)
header (dict): dictionary of header metadata
data (np.array): Numpy array of data, converted into to complex64.
"""
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
# Read data and reshape
n_chan = int(header['OBSNCHAN'])
n_pol = int(header['NPOL'])
n_bit = int(header['NBITS'])
n_samples = int(int(header['BLOCSIZE']) / (n_chan * n_pol * (n_bit / 8)))
d = np.ascontiguousarray(np.fromfile(self.file_obj, count=header['BLOCSIZE'], dtype='int8'))
# Handle 2-bit and 4-bit data
if n_bit != 8:
d = unpack(d, n_bit)
dshape = self.read_next_data_block_shape()
d = d.reshape(dshape) # Real, imag
if self._d.shape != d.shape:
self._d = np.zeros(d.shape, dtype='float32')
self._d[:] = d
return header, self._d[:].view('complex64')
|
def read_next_data_block(self):
""" Read the next block of data and its header
Returns: (header, data)
header (dict): dictionary of header metadata
data (np.array): Numpy array of data, converted into to complex64.
"""
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
# Read data and reshape
n_chan = int(header['OBSNCHAN'])
n_pol = int(header['NPOL'])
n_bit = int(header['NBITS'])
n_samples = int(int(header['BLOCSIZE']) / (n_chan * n_pol * (n_bit / 8)))
d = np.ascontiguousarray(np.fromfile(self.file_obj, count=header['BLOCSIZE'], dtype='int8'))
# Handle 2-bit and 4-bit data
if n_bit != 8:
d = unpack(d, n_bit)
dshape = self.read_next_data_block_shape()
d = d.reshape(dshape) # Real, imag
if self._d.shape != d.shape:
self._d = np.zeros(d.shape, dtype='float32')
self._d[:] = d
return header, self._d[:].view('complex64')
|
[
"Read",
"the",
"next",
"block",
"of",
"data",
"and",
"its",
"header"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/guppi.py#L281-L313
|
[
"def",
"read_next_data_block",
"(",
"self",
")",
":",
"header",
",",
"data_idx",
"=",
"self",
".",
"read_header",
"(",
")",
"self",
".",
"file_obj",
".",
"seek",
"(",
"data_idx",
")",
"# Read data and reshape",
"n_chan",
"=",
"int",
"(",
"header",
"[",
"'OBSNCHAN'",
"]",
")",
"n_pol",
"=",
"int",
"(",
"header",
"[",
"'NPOL'",
"]",
")",
"n_bit",
"=",
"int",
"(",
"header",
"[",
"'NBITS'",
"]",
")",
"n_samples",
"=",
"int",
"(",
"int",
"(",
"header",
"[",
"'BLOCSIZE'",
"]",
")",
"/",
"(",
"n_chan",
"*",
"n_pol",
"*",
"(",
"n_bit",
"/",
"8",
")",
")",
")",
"d",
"=",
"np",
".",
"ascontiguousarray",
"(",
"np",
".",
"fromfile",
"(",
"self",
".",
"file_obj",
",",
"count",
"=",
"header",
"[",
"'BLOCSIZE'",
"]",
",",
"dtype",
"=",
"'int8'",
")",
")",
"# Handle 2-bit and 4-bit data",
"if",
"n_bit",
"!=",
"8",
":",
"d",
"=",
"unpack",
"(",
"d",
",",
"n_bit",
")",
"dshape",
"=",
"self",
".",
"read_next_data_block_shape",
"(",
")",
"d",
"=",
"d",
".",
"reshape",
"(",
"dshape",
")",
"# Real, imag",
"if",
"self",
".",
"_d",
".",
"shape",
"!=",
"d",
".",
"shape",
":",
"self",
".",
"_d",
"=",
"np",
".",
"zeros",
"(",
"d",
".",
"shape",
",",
"dtype",
"=",
"'float32'",
")",
"self",
".",
"_d",
"[",
":",
"]",
"=",
"d",
"return",
"header",
",",
"self",
".",
"_d",
"[",
":",
"]",
".",
"view",
"(",
"'complex64'",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
GuppiRaw.find_n_data_blocks
|
Seek through the file to find how many data blocks there are in the file
Returns:
n_blocks (int): number of data blocks in the file
|
blimpy/guppi.py
|
def find_n_data_blocks(self):
""" Seek through the file to find how many data blocks there are in the file
Returns:
n_blocks (int): number of data blocks in the file
"""
self.file_obj.seek(0)
header0, data_idx0 = self.read_header()
self.file_obj.seek(data_idx0)
block_size = int(header0['BLOCSIZE'])
n_bits = int(header0['NBITS'])
self.file_obj.seek(int(header0['BLOCSIZE']), 1)
n_blocks = 1
end_found = False
while not end_found:
try:
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
self.file_obj.seek(header['BLOCSIZE'], 1)
n_blocks += 1
except EndOfFileError:
end_found = True
break
self.file_obj.seek(0)
return n_blocks
|
def find_n_data_blocks(self):
""" Seek through the file to find how many data blocks there are in the file
Returns:
n_blocks (int): number of data blocks in the file
"""
self.file_obj.seek(0)
header0, data_idx0 = self.read_header()
self.file_obj.seek(data_idx0)
block_size = int(header0['BLOCSIZE'])
n_bits = int(header0['NBITS'])
self.file_obj.seek(int(header0['BLOCSIZE']), 1)
n_blocks = 1
end_found = False
while not end_found:
try:
header, data_idx = self.read_header()
self.file_obj.seek(data_idx)
self.file_obj.seek(header['BLOCSIZE'], 1)
n_blocks += 1
except EndOfFileError:
end_found = True
break
self.file_obj.seek(0)
return n_blocks
|
[
"Seek",
"through",
"the",
"file",
"to",
"find",
"how",
"many",
"data",
"blocks",
"there",
"are",
"in",
"the",
"file"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/guppi.py#L315-L341
|
[
"def",
"find_n_data_blocks",
"(",
"self",
")",
":",
"self",
".",
"file_obj",
".",
"seek",
"(",
"0",
")",
"header0",
",",
"data_idx0",
"=",
"self",
".",
"read_header",
"(",
")",
"self",
".",
"file_obj",
".",
"seek",
"(",
"data_idx0",
")",
"block_size",
"=",
"int",
"(",
"header0",
"[",
"'BLOCSIZE'",
"]",
")",
"n_bits",
"=",
"int",
"(",
"header0",
"[",
"'NBITS'",
"]",
")",
"self",
".",
"file_obj",
".",
"seek",
"(",
"int",
"(",
"header0",
"[",
"'BLOCSIZE'",
"]",
")",
",",
"1",
")",
"n_blocks",
"=",
"1",
"end_found",
"=",
"False",
"while",
"not",
"end_found",
":",
"try",
":",
"header",
",",
"data_idx",
"=",
"self",
".",
"read_header",
"(",
")",
"self",
".",
"file_obj",
".",
"seek",
"(",
"data_idx",
")",
"self",
".",
"file_obj",
".",
"seek",
"(",
"header",
"[",
"'BLOCSIZE'",
"]",
",",
"1",
")",
"n_blocks",
"+=",
"1",
"except",
"EndOfFileError",
":",
"end_found",
"=",
"True",
"break",
"self",
".",
"file_obj",
".",
"seek",
"(",
"0",
")",
"return",
"n_blocks"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
GuppiRaw.print_stats
|
Compute some basic stats on the next block of data
|
blimpy/guppi.py
|
def print_stats(self):
""" Compute some basic stats on the next block of data """
header, data = self.read_next_data_block()
data = data.view('float32')
print("AVG: %2.3f" % data.mean())
print("STD: %2.3f" % data.std())
print("MAX: %2.3f" % data.max())
print("MIN: %2.3f" % data.min())
import pylab as plt
|
def print_stats(self):
""" Compute some basic stats on the next block of data """
header, data = self.read_next_data_block()
data = data.view('float32')
print("AVG: %2.3f" % data.mean())
print("STD: %2.3f" % data.std())
print("MAX: %2.3f" % data.max())
print("MIN: %2.3f" % data.min())
import pylab as plt
|
[
"Compute",
"some",
"basic",
"stats",
"on",
"the",
"next",
"block",
"of",
"data"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/guppi.py#L347-L358
|
[
"def",
"print_stats",
"(",
"self",
")",
":",
"header",
",",
"data",
"=",
"self",
".",
"read_next_data_block",
"(",
")",
"data",
"=",
"data",
".",
"view",
"(",
"'float32'",
")",
"print",
"(",
"\"AVG: %2.3f\"",
"%",
"data",
".",
"mean",
"(",
")",
")",
"print",
"(",
"\"STD: %2.3f\"",
"%",
"data",
".",
"std",
"(",
")",
")",
"print",
"(",
"\"MAX: %2.3f\"",
"%",
"data",
".",
"max",
"(",
")",
")",
"print",
"(",
"\"MIN: %2.3f\"",
"%",
"data",
".",
"min",
"(",
")",
")",
"import",
"pylab",
"as",
"plt"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
GuppiRaw.plot_histogram
|
Plot a histogram of data values
|
blimpy/guppi.py
|
def plot_histogram(self, filename=None):
""" Plot a histogram of data values """
header, data = self.read_next_data_block()
data = data.view('float32')
plt.figure("Histogram")
plt.hist(data.flatten(), 65, facecolor='#cc0000')
if filename:
plt.savefig(filename)
plt.show()
|
def plot_histogram(self, filename=None):
""" Plot a histogram of data values """
header, data = self.read_next_data_block()
data = data.view('float32')
plt.figure("Histogram")
plt.hist(data.flatten(), 65, facecolor='#cc0000')
if filename:
plt.savefig(filename)
plt.show()
|
[
"Plot",
"a",
"histogram",
"of",
"data",
"values"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/guppi.py#L360-L369
|
[
"def",
"plot_histogram",
"(",
"self",
",",
"filename",
"=",
"None",
")",
":",
"header",
",",
"data",
"=",
"self",
".",
"read_next_data_block",
"(",
")",
"data",
"=",
"data",
".",
"view",
"(",
"'float32'",
")",
"plt",
".",
"figure",
"(",
"\"Histogram\"",
")",
"plt",
".",
"hist",
"(",
"data",
".",
"flatten",
"(",
")",
",",
"65",
",",
"facecolor",
"=",
"'#cc0000'",
")",
"if",
"filename",
":",
"plt",
".",
"savefig",
"(",
"filename",
")",
"plt",
".",
"show",
"(",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
GuppiRaw.plot_spectrum
|
Do a (slow) numpy FFT and take power of data
|
blimpy/guppi.py
|
def plot_spectrum(self, filename=None, plot_db=True):
""" Do a (slow) numpy FFT and take power of data """
header, data = self.read_next_data_block()
print("Computing FFT...")
d_xx_fft = np.abs(np.fft.fft(data[..., 0]))
d_xx_fft = d_xx_fft.flatten()
# Rebin to max number of points
dec_fac_x = 1
if d_xx_fft.shape[0] > MAX_PLT_POINTS:
dec_fac_x = d_xx_fft.shape[0] / MAX_PLT_POINTS
d_xx_fft = rebin(d_xx_fft, dec_fac_x)
print("Plotting...")
if plot_db:
plt.plot(10 * np.log10(d_xx_fft))
plt.ylabel("Power [dB]")
else:
plt.plot(d_xx_fft)
plt.ylabel("Power")
plt.xlabel("Channel")
plt.title(self.filename)
if filename:
plt.savefig(filename)
plt.show()
|
def plot_spectrum(self, filename=None, plot_db=True):
""" Do a (slow) numpy FFT and take power of data """
header, data = self.read_next_data_block()
print("Computing FFT...")
d_xx_fft = np.abs(np.fft.fft(data[..., 0]))
d_xx_fft = d_xx_fft.flatten()
# Rebin to max number of points
dec_fac_x = 1
if d_xx_fft.shape[0] > MAX_PLT_POINTS:
dec_fac_x = d_xx_fft.shape[0] / MAX_PLT_POINTS
d_xx_fft = rebin(d_xx_fft, dec_fac_x)
print("Plotting...")
if plot_db:
plt.plot(10 * np.log10(d_xx_fft))
plt.ylabel("Power [dB]")
else:
plt.plot(d_xx_fft)
plt.ylabel("Power")
plt.xlabel("Channel")
plt.title(self.filename)
if filename:
plt.savefig(filename)
plt.show()
|
[
"Do",
"a",
"(",
"slow",
")",
"numpy",
"FFT",
"and",
"take",
"power",
"of",
"data"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/guppi.py#L371-L397
|
[
"def",
"plot_spectrum",
"(",
"self",
",",
"filename",
"=",
"None",
",",
"plot_db",
"=",
"True",
")",
":",
"header",
",",
"data",
"=",
"self",
".",
"read_next_data_block",
"(",
")",
"print",
"(",
"\"Computing FFT...\"",
")",
"d_xx_fft",
"=",
"np",
".",
"abs",
"(",
"np",
".",
"fft",
".",
"fft",
"(",
"data",
"[",
"...",
",",
"0",
"]",
")",
")",
"d_xx_fft",
"=",
"d_xx_fft",
".",
"flatten",
"(",
")",
"# Rebin to max number of points",
"dec_fac_x",
"=",
"1",
"if",
"d_xx_fft",
".",
"shape",
"[",
"0",
"]",
">",
"MAX_PLT_POINTS",
":",
"dec_fac_x",
"=",
"d_xx_fft",
".",
"shape",
"[",
"0",
"]",
"/",
"MAX_PLT_POINTS",
"d_xx_fft",
"=",
"rebin",
"(",
"d_xx_fft",
",",
"dec_fac_x",
")",
"print",
"(",
"\"Plotting...\"",
")",
"if",
"plot_db",
":",
"plt",
".",
"plot",
"(",
"10",
"*",
"np",
".",
"log10",
"(",
"d_xx_fft",
")",
")",
"plt",
".",
"ylabel",
"(",
"\"Power [dB]\"",
")",
"else",
":",
"plt",
".",
"plot",
"(",
"d_xx_fft",
")",
"plt",
".",
"ylabel",
"(",
"\"Power\"",
")",
"plt",
".",
"xlabel",
"(",
"\"Channel\"",
")",
"plt",
".",
"title",
"(",
"self",
".",
"filename",
")",
"if",
"filename",
":",
"plt",
".",
"savefig",
"(",
"filename",
")",
"plt",
".",
"show",
"(",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
GuppiRaw.generate_filterbank_header
|
Generate a blimpy header dictionary
|
blimpy/guppi.py
|
def generate_filterbank_header(self, nchans=1, ):
""" Generate a blimpy header dictionary """
gp_head = self.read_first_header()
fb_head = {}
telescope_str = gp_head.get("TELESCOP", "unknown")
if telescope_str in ('GBT', 'GREENBANK'):
fb_head["telescope_id"] = 6
elif telescope_str in ('PKS', 'PARKES'):
fb_head["telescop_id"] = 7
else:
fb_head["telescop_id"] = 0
# Using .get() method allows us to fill in default values if not present
fb_head["source_name"] = gp_head.get("SRC_NAME", "unknown")
fb_head["az_start"] = gp_head.get("AZ", 0)
fb_head["za_start"] = gp_head.get("ZA", 0)
fb_head["src_raj"] = Angle(str(gp_head.get("RA", 0.0)) + "hr")
fb_head["src_dej"] = Angle(str(gp_head.get("DEC", 0.0)) + "deg")
fb_head["rawdatafile"] = self.filename
# hardcoded
fb_head["machine_id"] = 20
fb_head["data_type"] = 1 # blio datatype
fb_head["barycentric"] = 0
fb_head["pulsarcentric"] = 0
fb_head["nbits"] = 32
# TODO - compute these values. Need to figure out the correct calcs
fb_head["tstart"] = 0.0
fb_head["tsamp"] = 1.0
fb_head["fch1"] = 0.0
fb_head["foff"] = 187.5 / nchans
# Need to be updated based on output specs
fb_head["nchans"] = nchans
fb_head["nifs"] = 1
fb_head["nbeams"] = 1
return fb_head
|
def generate_filterbank_header(self, nchans=1, ):
""" Generate a blimpy header dictionary """
gp_head = self.read_first_header()
fb_head = {}
telescope_str = gp_head.get("TELESCOP", "unknown")
if telescope_str in ('GBT', 'GREENBANK'):
fb_head["telescope_id"] = 6
elif telescope_str in ('PKS', 'PARKES'):
fb_head["telescop_id"] = 7
else:
fb_head["telescop_id"] = 0
# Using .get() method allows us to fill in default values if not present
fb_head["source_name"] = gp_head.get("SRC_NAME", "unknown")
fb_head["az_start"] = gp_head.get("AZ", 0)
fb_head["za_start"] = gp_head.get("ZA", 0)
fb_head["src_raj"] = Angle(str(gp_head.get("RA", 0.0)) + "hr")
fb_head["src_dej"] = Angle(str(gp_head.get("DEC", 0.0)) + "deg")
fb_head["rawdatafile"] = self.filename
# hardcoded
fb_head["machine_id"] = 20
fb_head["data_type"] = 1 # blio datatype
fb_head["barycentric"] = 0
fb_head["pulsarcentric"] = 0
fb_head["nbits"] = 32
# TODO - compute these values. Need to figure out the correct calcs
fb_head["tstart"] = 0.0
fb_head["tsamp"] = 1.0
fb_head["fch1"] = 0.0
fb_head["foff"] = 187.5 / nchans
# Need to be updated based on output specs
fb_head["nchans"] = nchans
fb_head["nifs"] = 1
fb_head["nbeams"] = 1
return fb_head
|
[
"Generate",
"a",
"blimpy",
"header",
"dictionary"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/guppi.py#L399-L439
|
[
"def",
"generate_filterbank_header",
"(",
"self",
",",
"nchans",
"=",
"1",
",",
")",
":",
"gp_head",
"=",
"self",
".",
"read_first_header",
"(",
")",
"fb_head",
"=",
"{",
"}",
"telescope_str",
"=",
"gp_head",
".",
"get",
"(",
"\"TELESCOP\"",
",",
"\"unknown\"",
")",
"if",
"telescope_str",
"in",
"(",
"'GBT'",
",",
"'GREENBANK'",
")",
":",
"fb_head",
"[",
"\"telescope_id\"",
"]",
"=",
"6",
"elif",
"telescope_str",
"in",
"(",
"'PKS'",
",",
"'PARKES'",
")",
":",
"fb_head",
"[",
"\"telescop_id\"",
"]",
"=",
"7",
"else",
":",
"fb_head",
"[",
"\"telescop_id\"",
"]",
"=",
"0",
"# Using .get() method allows us to fill in default values if not present",
"fb_head",
"[",
"\"source_name\"",
"]",
"=",
"gp_head",
".",
"get",
"(",
"\"SRC_NAME\"",
",",
"\"unknown\"",
")",
"fb_head",
"[",
"\"az_start\"",
"]",
"=",
"gp_head",
".",
"get",
"(",
"\"AZ\"",
",",
"0",
")",
"fb_head",
"[",
"\"za_start\"",
"]",
"=",
"gp_head",
".",
"get",
"(",
"\"ZA\"",
",",
"0",
")",
"fb_head",
"[",
"\"src_raj\"",
"]",
"=",
"Angle",
"(",
"str",
"(",
"gp_head",
".",
"get",
"(",
"\"RA\"",
",",
"0.0",
")",
")",
"+",
"\"hr\"",
")",
"fb_head",
"[",
"\"src_dej\"",
"]",
"=",
"Angle",
"(",
"str",
"(",
"gp_head",
".",
"get",
"(",
"\"DEC\"",
",",
"0.0",
")",
")",
"+",
"\"deg\"",
")",
"fb_head",
"[",
"\"rawdatafile\"",
"]",
"=",
"self",
".",
"filename",
"# hardcoded",
"fb_head",
"[",
"\"machine_id\"",
"]",
"=",
"20",
"fb_head",
"[",
"\"data_type\"",
"]",
"=",
"1",
"# blio datatype",
"fb_head",
"[",
"\"barycentric\"",
"]",
"=",
"0",
"fb_head",
"[",
"\"pulsarcentric\"",
"]",
"=",
"0",
"fb_head",
"[",
"\"nbits\"",
"]",
"=",
"32",
"# TODO - compute these values. Need to figure out the correct calcs",
"fb_head",
"[",
"\"tstart\"",
"]",
"=",
"0.0",
"fb_head",
"[",
"\"tsamp\"",
"]",
"=",
"1.0",
"fb_head",
"[",
"\"fch1\"",
"]",
"=",
"0.0",
"fb_head",
"[",
"\"foff\"",
"]",
"=",
"187.5",
"/",
"nchans",
"# Need to be updated based on output specs",
"fb_head",
"[",
"\"nchans\"",
"]",
"=",
"nchans",
"fb_head",
"[",
"\"nifs\"",
"]",
"=",
"1",
"fb_head",
"[",
"\"nbeams\"",
"]",
"=",
"1",
"return",
"fb_head"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
find_header_size
|
Script to find the header size of a filterbank file
|
blimpy/match_fils.py
|
def find_header_size(filename):
''' Script to find the header size of a filterbank file'''
# open datafile
filfile=open(filename,'rb')
# go to the start of the file
filfile.seek(0)
#read some region larger than the header.
round1 = filfile.read(1000)
headersize = round1.find('HEADER_END')+len('HEADER_END')
return headersize
|
def find_header_size(filename):
''' Script to find the header size of a filterbank file'''
# open datafile
filfile=open(filename,'rb')
# go to the start of the file
filfile.seek(0)
#read some region larger than the header.
round1 = filfile.read(1000)
headersize = round1.find('HEADER_END')+len('HEADER_END')
return headersize
|
[
"Script",
"to",
"find",
"the",
"header",
"size",
"of",
"a",
"filterbank",
"file"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/match_fils.py#L33-L44
|
[
"def",
"find_header_size",
"(",
"filename",
")",
":",
"# open datafile",
"filfile",
"=",
"open",
"(",
"filename",
",",
"'rb'",
")",
"# go to the start of the file",
"filfile",
".",
"seek",
"(",
"0",
")",
"#read some region larger than the header.",
"round1",
"=",
"filfile",
".",
"read",
"(",
"1000",
")",
"headersize",
"=",
"round1",
".",
"find",
"(",
"'HEADER_END'",
")",
"+",
"len",
"(",
"'HEADER_END'",
")",
"return",
"headersize"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
cmd_tool
|
Command line tool to make a md5sum comparison of two .fil files.
|
blimpy/match_fils.py
|
def cmd_tool(args=None):
""" Command line tool to make a md5sum comparison of two .fil files. """
if 'bl' in local_host:
header_loc = '/usr/local/sigproc/bin/header' #Current location of header command in GBT.
else:
raise IOError('Script only able to run in BL systems.')
p = OptionParser()
p.set_usage('matchfils <FIL_FILE1> <FIL_FILE2>')
opts, args = p.parse_args(sys.argv[1:])
file1 = args[0]
file2 = args[1]
#------------------------------------
#Create batch script
make_batch_script()
#------------------------------------
#First checksum
headersize1 = find_header_size(file1)
file_size1 = os.path.getsize(file1)
#Strip header from file, and calculate the md5sum of the rest.
#command=['tail','-c',str(file_size1-headersize1),file1,'|','md5sum']
command=['./tail_sum.sh',file1,str(file_size1-headersize1)]
print('[matchfils] '+' '.join(command))
proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = proc.communicate()
check_sum1 = out.split()[0]
print('[matchfils] Checksum is:', check_sum1)
if err:
raise Error('There is an error.')
#---
out,err = reset_outs()
command=[header_loc,file1]
print('[matchfils] Header information:')
proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = proc.communicate()
header1 = out
print(header1)
#------------------------------------
#Second checksum
out,err = reset_outs()
headersize2 = find_header_size(file2)
file_size2 = os.path.getsize(file2)
#Strip header from file, and calculate the md5sum of the rest.
command=['./tail_sum.sh',file2,str(file_size2-headersize2)]
print('[matchfils] '+' '.join(command))
proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = proc.communicate()
check_sum2 = out.split()[0]
print('[matchfils] Checksum is:', check_sum2)
if err:
raise Error('There is an error.')
#---
out,err = reset_outs()
command=[header_loc,file2]
print('[matchfils] Header information:')
proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = proc.communicate()
header2 = out
print(header2)
#------------------------------------
#check the checksums
if check_sum1 != check_sum2:
print('[matchfils] Booo! Checksum does not match between files.')
else:
print('[matchfils] Hooray! Checksum matches between files.')
#------------------------------------
#Remove batch script
os.remove('tail_sum.sh')
|
def cmd_tool(args=None):
""" Command line tool to make a md5sum comparison of two .fil files. """
if 'bl' in local_host:
header_loc = '/usr/local/sigproc/bin/header' #Current location of header command in GBT.
else:
raise IOError('Script only able to run in BL systems.')
p = OptionParser()
p.set_usage('matchfils <FIL_FILE1> <FIL_FILE2>')
opts, args = p.parse_args(sys.argv[1:])
file1 = args[0]
file2 = args[1]
#------------------------------------
#Create batch script
make_batch_script()
#------------------------------------
#First checksum
headersize1 = find_header_size(file1)
file_size1 = os.path.getsize(file1)
#Strip header from file, and calculate the md5sum of the rest.
#command=['tail','-c',str(file_size1-headersize1),file1,'|','md5sum']
command=['./tail_sum.sh',file1,str(file_size1-headersize1)]
print('[matchfils] '+' '.join(command))
proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = proc.communicate()
check_sum1 = out.split()[0]
print('[matchfils] Checksum is:', check_sum1)
if err:
raise Error('There is an error.')
#---
out,err = reset_outs()
command=[header_loc,file1]
print('[matchfils] Header information:')
proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = proc.communicate()
header1 = out
print(header1)
#------------------------------------
#Second checksum
out,err = reset_outs()
headersize2 = find_header_size(file2)
file_size2 = os.path.getsize(file2)
#Strip header from file, and calculate the md5sum of the rest.
command=['./tail_sum.sh',file2,str(file_size2-headersize2)]
print('[matchfils] '+' '.join(command))
proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = proc.communicate()
check_sum2 = out.split()[0]
print('[matchfils] Checksum is:', check_sum2)
if err:
raise Error('There is an error.')
#---
out,err = reset_outs()
command=[header_loc,file2]
print('[matchfils] Header information:')
proc = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
(out, err) = proc.communicate()
header2 = out
print(header2)
#------------------------------------
#check the checksums
if check_sum1 != check_sum2:
print('[matchfils] Booo! Checksum does not match between files.')
else:
print('[matchfils] Hooray! Checksum matches between files.')
#------------------------------------
#Remove batch script
os.remove('tail_sum.sh')
|
[
"Command",
"line",
"tool",
"to",
"make",
"a",
"md5sum",
"comparison",
"of",
"two",
".",
"fil",
"files",
"."
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/match_fils.py#L46-L142
|
[
"def",
"cmd_tool",
"(",
"args",
"=",
"None",
")",
":",
"if",
"'bl'",
"in",
"local_host",
":",
"header_loc",
"=",
"'/usr/local/sigproc/bin/header'",
"#Current location of header command in GBT.",
"else",
":",
"raise",
"IOError",
"(",
"'Script only able to run in BL systems.'",
")",
"p",
"=",
"OptionParser",
"(",
")",
"p",
".",
"set_usage",
"(",
"'matchfils <FIL_FILE1> <FIL_FILE2>'",
")",
"opts",
",",
"args",
"=",
"p",
".",
"parse_args",
"(",
"sys",
".",
"argv",
"[",
"1",
":",
"]",
")",
"file1",
"=",
"args",
"[",
"0",
"]",
"file2",
"=",
"args",
"[",
"1",
"]",
"#------------------------------------",
"#Create batch script",
"make_batch_script",
"(",
")",
"#------------------------------------",
"#First checksum",
"headersize1",
"=",
"find_header_size",
"(",
"file1",
")",
"file_size1",
"=",
"os",
".",
"path",
".",
"getsize",
"(",
"file1",
")",
"#Strip header from file, and calculate the md5sum of the rest.",
"#command=['tail','-c',str(file_size1-headersize1),file1,'|','md5sum']",
"command",
"=",
"[",
"'./tail_sum.sh'",
",",
"file1",
",",
"str",
"(",
"file_size1",
"-",
"headersize1",
")",
"]",
"print",
"(",
"'[matchfils] '",
"+",
"' '",
".",
"join",
"(",
"command",
")",
")",
"proc",
"=",
"subprocess",
".",
"Popen",
"(",
"command",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"stderr",
"=",
"subprocess",
".",
"PIPE",
")",
"(",
"out",
",",
"err",
")",
"=",
"proc",
".",
"communicate",
"(",
")",
"check_sum1",
"=",
"out",
".",
"split",
"(",
")",
"[",
"0",
"]",
"print",
"(",
"'[matchfils] Checksum is:'",
",",
"check_sum1",
")",
"if",
"err",
":",
"raise",
"Error",
"(",
"'There is an error.'",
")",
"#---",
"out",
",",
"err",
"=",
"reset_outs",
"(",
")",
"command",
"=",
"[",
"header_loc",
",",
"file1",
"]",
"print",
"(",
"'[matchfils] Header information:'",
")",
"proc",
"=",
"subprocess",
".",
"Popen",
"(",
"command",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"stderr",
"=",
"subprocess",
".",
"PIPE",
")",
"(",
"out",
",",
"err",
")",
"=",
"proc",
".",
"communicate",
"(",
")",
"header1",
"=",
"out",
"print",
"(",
"header1",
")",
"#------------------------------------",
"#Second checksum",
"out",
",",
"err",
"=",
"reset_outs",
"(",
")",
"headersize2",
"=",
"find_header_size",
"(",
"file2",
")",
"file_size2",
"=",
"os",
".",
"path",
".",
"getsize",
"(",
"file2",
")",
"#Strip header from file, and calculate the md5sum of the rest.",
"command",
"=",
"[",
"'./tail_sum.sh'",
",",
"file2",
",",
"str",
"(",
"file_size2",
"-",
"headersize2",
")",
"]",
"print",
"(",
"'[matchfils] '",
"+",
"' '",
".",
"join",
"(",
"command",
")",
")",
"proc",
"=",
"subprocess",
".",
"Popen",
"(",
"command",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"stderr",
"=",
"subprocess",
".",
"PIPE",
")",
"(",
"out",
",",
"err",
")",
"=",
"proc",
".",
"communicate",
"(",
")",
"check_sum2",
"=",
"out",
".",
"split",
"(",
")",
"[",
"0",
"]",
"print",
"(",
"'[matchfils] Checksum is:'",
",",
"check_sum2",
")",
"if",
"err",
":",
"raise",
"Error",
"(",
"'There is an error.'",
")",
"#---",
"out",
",",
"err",
"=",
"reset_outs",
"(",
")",
"command",
"=",
"[",
"header_loc",
",",
"file2",
"]",
"print",
"(",
"'[matchfils] Header information:'",
")",
"proc",
"=",
"subprocess",
".",
"Popen",
"(",
"command",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"stderr",
"=",
"subprocess",
".",
"PIPE",
")",
"(",
"out",
",",
"err",
")",
"=",
"proc",
".",
"communicate",
"(",
")",
"header2",
"=",
"out",
"print",
"(",
"header2",
")",
"#------------------------------------",
"#check the checksums",
"if",
"check_sum1",
"!=",
"check_sum2",
":",
"print",
"(",
"'[matchfils] Booo! Checksum does not match between files.'",
")",
"else",
":",
"print",
"(",
"'[matchfils] Hooray! Checksum matches between files.'",
")",
"#------------------------------------",
"#Remove batch script",
"os",
".",
"remove",
"(",
"'tail_sum.sh'",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
make_h5_file
|
Converts file to HDF5 (.h5) format. Default saves output in current dir.
|
blimpy/fil2h5.py
|
def make_h5_file(filename,out_dir='./', new_filename = None, max_load = None):
''' Converts file to HDF5 (.h5) format. Default saves output in current dir.
'''
fil_file = Waterfall(filename, max_load = max_load)
if not new_filename:
new_filename = out_dir+filename.replace('.fil','.h5').split('/')[-1]
if '.h5' not in new_filename:
new_filename = new_filename+'.h5'
fil_file.write_to_hdf5(new_filename)
|
def make_h5_file(filename,out_dir='./', new_filename = None, max_load = None):
''' Converts file to HDF5 (.h5) format. Default saves output in current dir.
'''
fil_file = Waterfall(filename, max_load = max_load)
if not new_filename:
new_filename = out_dir+filename.replace('.fil','.h5').split('/')[-1]
if '.h5' not in new_filename:
new_filename = new_filename+'.h5'
fil_file.write_to_hdf5(new_filename)
|
[
"Converts",
"file",
"to",
"HDF5",
"(",
".",
"h5",
")",
"format",
".",
"Default",
"saves",
"output",
"in",
"current",
"dir",
"."
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/fil2h5.py#L37-L48
|
[
"def",
"make_h5_file",
"(",
"filename",
",",
"out_dir",
"=",
"'./'",
",",
"new_filename",
"=",
"None",
",",
"max_load",
"=",
"None",
")",
":",
"fil_file",
"=",
"Waterfall",
"(",
"filename",
",",
"max_load",
"=",
"max_load",
")",
"if",
"not",
"new_filename",
":",
"new_filename",
"=",
"out_dir",
"+",
"filename",
".",
"replace",
"(",
"'.fil'",
",",
"'.h5'",
")",
".",
"split",
"(",
"'/'",
")",
"[",
"-",
"1",
"]",
"if",
"'.h5'",
"not",
"in",
"new_filename",
":",
"new_filename",
"=",
"new_filename",
"+",
"'.h5'",
"fil_file",
".",
"write_to_hdf5",
"(",
"new_filename",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
cmd_tool
|
Command line tool for converting guppi raw into HDF5 versions of guppi raw
|
blimpy/gup2hdf.py
|
def cmd_tool(args=None):
""" Command line tool for converting guppi raw into HDF5 versions of guppi raw """
from argparse import ArgumentParser
if not HAS_BITSHUFFLE:
print("Error: the bitshuffle library is required to run this script.")
exit()
parser = ArgumentParser(description="Command line utility for creating HDF5 Raw files.")
parser.add_argument('filename', type=str, help='Name of filename to read')
args = parser.parse_args()
fileroot = args.filename.split('.0000.raw')[0]
filelist = glob.glob(fileroot + '*.raw')
filelist = sorted(filelist)
# Read first file
r = GuppiRaw(filelist[0])
header, data = r.read_next_data_block()
dshape = data.shape #r.read_next_data_block_shape()
print(dshape)
n_blocks_total = 0
for filename in filelist:
print(filename)
r = GuppiRaw(filename)
n_blocks_total += r.n_blocks
print(n_blocks_total)
full_dshape = np.concatenate(((n_blocks_total,), dshape))
# Create h5py file
h5 = h5py.File(fileroot + '.h5', 'w')
h5.attrs['CLASS'] = 'GUPPIRAW'
block_size = 0 # This is chunk block size
dset = h5.create_dataset('data',
shape=full_dshape,
#compression=bitshuffle.h5.H5FILTER,
#compression_opts=(block_size, bitshuffle.h5.H5_COMPRESS_LZ4),
dtype=data.dtype)
h5_idx = 0
for filename in filelist:
print("\nReading %s header..." % filename)
r = GuppiRaw(filename)
h5 = h5py.File(filename + '.h5', 'w')
header, data = r.read_next_data_block()
for ii in range(0, r.n_blocks):
t0 = time.time()
print("Reading block %i of %i" % (h5_idx+1, full_dshape[0]))
header, data = r.read_next_data_block()
t1 = time.time()
t2 = time.time()
print("Writing block %i of %i" % (h5_idx+1, full_dshape[0]))
dset[h5_idx, :] = data
t3 = time.time()
print("Read: %2.2fs, Write %2.2fs" % ((t1-t0), (t3-t2)))
h5_idx += 1
# Copy over header information as attributes
for key, value in header.items():
dset.attrs[key] = value
h5.close()
t1 = time.time()
print("Conversion time: %2.2fs" % (t1- t0))
|
def cmd_tool(args=None):
""" Command line tool for converting guppi raw into HDF5 versions of guppi raw """
from argparse import ArgumentParser
if not HAS_BITSHUFFLE:
print("Error: the bitshuffle library is required to run this script.")
exit()
parser = ArgumentParser(description="Command line utility for creating HDF5 Raw files.")
parser.add_argument('filename', type=str, help='Name of filename to read')
args = parser.parse_args()
fileroot = args.filename.split('.0000.raw')[0]
filelist = glob.glob(fileroot + '*.raw')
filelist = sorted(filelist)
# Read first file
r = GuppiRaw(filelist[0])
header, data = r.read_next_data_block()
dshape = data.shape #r.read_next_data_block_shape()
print(dshape)
n_blocks_total = 0
for filename in filelist:
print(filename)
r = GuppiRaw(filename)
n_blocks_total += r.n_blocks
print(n_blocks_total)
full_dshape = np.concatenate(((n_blocks_total,), dshape))
# Create h5py file
h5 = h5py.File(fileroot + '.h5', 'w')
h5.attrs['CLASS'] = 'GUPPIRAW'
block_size = 0 # This is chunk block size
dset = h5.create_dataset('data',
shape=full_dshape,
#compression=bitshuffle.h5.H5FILTER,
#compression_opts=(block_size, bitshuffle.h5.H5_COMPRESS_LZ4),
dtype=data.dtype)
h5_idx = 0
for filename in filelist:
print("\nReading %s header..." % filename)
r = GuppiRaw(filename)
h5 = h5py.File(filename + '.h5', 'w')
header, data = r.read_next_data_block()
for ii in range(0, r.n_blocks):
t0 = time.time()
print("Reading block %i of %i" % (h5_idx+1, full_dshape[0]))
header, data = r.read_next_data_block()
t1 = time.time()
t2 = time.time()
print("Writing block %i of %i" % (h5_idx+1, full_dshape[0]))
dset[h5_idx, :] = data
t3 = time.time()
print("Read: %2.2fs, Write %2.2fs" % ((t1-t0), (t3-t2)))
h5_idx += 1
# Copy over header information as attributes
for key, value in header.items():
dset.attrs[key] = value
h5.close()
t1 = time.time()
print("Conversion time: %2.2fs" % (t1- t0))
|
[
"Command",
"line",
"tool",
"for",
"converting",
"guppi",
"raw",
"into",
"HDF5",
"versions",
"of",
"guppi",
"raw"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/gup2hdf.py#L16-L89
|
[
"def",
"cmd_tool",
"(",
"args",
"=",
"None",
")",
":",
"from",
"argparse",
"import",
"ArgumentParser",
"if",
"not",
"HAS_BITSHUFFLE",
":",
"print",
"(",
"\"Error: the bitshuffle library is required to run this script.\"",
")",
"exit",
"(",
")",
"parser",
"=",
"ArgumentParser",
"(",
"description",
"=",
"\"Command line utility for creating HDF5 Raw files.\"",
")",
"parser",
".",
"add_argument",
"(",
"'filename'",
",",
"type",
"=",
"str",
",",
"help",
"=",
"'Name of filename to read'",
")",
"args",
"=",
"parser",
".",
"parse_args",
"(",
")",
"fileroot",
"=",
"args",
".",
"filename",
".",
"split",
"(",
"'.0000.raw'",
")",
"[",
"0",
"]",
"filelist",
"=",
"glob",
".",
"glob",
"(",
"fileroot",
"+",
"'*.raw'",
")",
"filelist",
"=",
"sorted",
"(",
"filelist",
")",
"# Read first file",
"r",
"=",
"GuppiRaw",
"(",
"filelist",
"[",
"0",
"]",
")",
"header",
",",
"data",
"=",
"r",
".",
"read_next_data_block",
"(",
")",
"dshape",
"=",
"data",
".",
"shape",
"#r.read_next_data_block_shape()",
"print",
"(",
"dshape",
")",
"n_blocks_total",
"=",
"0",
"for",
"filename",
"in",
"filelist",
":",
"print",
"(",
"filename",
")",
"r",
"=",
"GuppiRaw",
"(",
"filename",
")",
"n_blocks_total",
"+=",
"r",
".",
"n_blocks",
"print",
"(",
"n_blocks_total",
")",
"full_dshape",
"=",
"np",
".",
"concatenate",
"(",
"(",
"(",
"n_blocks_total",
",",
")",
",",
"dshape",
")",
")",
"# Create h5py file",
"h5",
"=",
"h5py",
".",
"File",
"(",
"fileroot",
"+",
"'.h5'",
",",
"'w'",
")",
"h5",
".",
"attrs",
"[",
"'CLASS'",
"]",
"=",
"'GUPPIRAW'",
"block_size",
"=",
"0",
"# This is chunk block size",
"dset",
"=",
"h5",
".",
"create_dataset",
"(",
"'data'",
",",
"shape",
"=",
"full_dshape",
",",
"#compression=bitshuffle.h5.H5FILTER,",
"#compression_opts=(block_size, bitshuffle.h5.H5_COMPRESS_LZ4),",
"dtype",
"=",
"data",
".",
"dtype",
")",
"h5_idx",
"=",
"0",
"for",
"filename",
"in",
"filelist",
":",
"print",
"(",
"\"\\nReading %s header...\"",
"%",
"filename",
")",
"r",
"=",
"GuppiRaw",
"(",
"filename",
")",
"h5",
"=",
"h5py",
".",
"File",
"(",
"filename",
"+",
"'.h5'",
",",
"'w'",
")",
"header",
",",
"data",
"=",
"r",
".",
"read_next_data_block",
"(",
")",
"for",
"ii",
"in",
"range",
"(",
"0",
",",
"r",
".",
"n_blocks",
")",
":",
"t0",
"=",
"time",
".",
"time",
"(",
")",
"print",
"(",
"\"Reading block %i of %i\"",
"%",
"(",
"h5_idx",
"+",
"1",
",",
"full_dshape",
"[",
"0",
"]",
")",
")",
"header",
",",
"data",
"=",
"r",
".",
"read_next_data_block",
"(",
")",
"t1",
"=",
"time",
".",
"time",
"(",
")",
"t2",
"=",
"time",
".",
"time",
"(",
")",
"print",
"(",
"\"Writing block %i of %i\"",
"%",
"(",
"h5_idx",
"+",
"1",
",",
"full_dshape",
"[",
"0",
"]",
")",
")",
"dset",
"[",
"h5_idx",
",",
":",
"]",
"=",
"data",
"t3",
"=",
"time",
".",
"time",
"(",
")",
"print",
"(",
"\"Read: %2.2fs, Write %2.2fs\"",
"%",
"(",
"(",
"t1",
"-",
"t0",
")",
",",
"(",
"t3",
"-",
"t2",
")",
")",
")",
"h5_idx",
"+=",
"1",
"# Copy over header information as attributes",
"for",
"key",
",",
"value",
"in",
"header",
".",
"items",
"(",
")",
":",
"dset",
".",
"attrs",
"[",
"key",
"]",
"=",
"value",
"h5",
".",
"close",
"(",
")",
"t1",
"=",
"time",
".",
"time",
"(",
")",
"print",
"(",
"\"Conversion time: %2.2fs\"",
"%",
"(",
"t1",
"-",
"t0",
")",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
foldcal
|
Returns time-averaged spectra of the ON and OFF measurements in a
calibrator measurement with flickering noise diode
Parameters
----------
data : 2D Array object (float)
2D dynamic spectrum for data (any Stokes parameter) with flickering noise diode.
tsamp : float
Sampling time of data in seconds
diode_p : float
Period of the flickering noise diode in seconds
numsamps : int
Number of samples over which to average noise diode ON and OFF
switch : boolean
Use switch=True if the noise diode "skips" turning from OFF to ON once or vice versa
inds : boolean
Use inds=True to also return the indexes of the time series where the ND is ON and OFF
|
blimpy/calib_utils/fluxcal.py
|
def foldcal(data,tsamp, diode_p=0.04,numsamps=1000,switch=False,inds=False):
'''
Returns time-averaged spectra of the ON and OFF measurements in a
calibrator measurement with flickering noise diode
Parameters
----------
data : 2D Array object (float)
2D dynamic spectrum for data (any Stokes parameter) with flickering noise diode.
tsamp : float
Sampling time of data in seconds
diode_p : float
Period of the flickering noise diode in seconds
numsamps : int
Number of samples over which to average noise diode ON and OFF
switch : boolean
Use switch=True if the noise diode "skips" turning from OFF to ON once or vice versa
inds : boolean
Use inds=True to also return the indexes of the time series where the ND is ON and OFF
'''
halfper = diode_p/2.0
foldt = halfper/tsamp #number of time samples per diode switch
onesec = 1/tsamp #number of time samples in the first second
#Find diode switches in units of time samples and round down to the nearest int
ints = np.arange(0,numsamps)
t_switch = (onesec+ints*foldt)
t_switch = t_switch.astype('int')
ONints = np.array(np.reshape(t_switch[:],(numsamps/2,2)))
ONints[:,0] = ONints[:,0]+1 #Find index ranges of ON time samples
OFFints = np.array(np.reshape(t_switch[1:-1],(numsamps/2-1,2)))
OFFints[:,0] = OFFints[:,0]+1 #Find index ranges of OFF time samples
av_ON = []
av_OFF = []
#Average ON and OFF spectra separately with respect to time
for i in ONints:
if i[1]!=i[0]:
av_ON.append(np.sum(data[i[0]:i[1],:,:],axis=0)/(i[1]-i[0]))
for i in OFFints:
if i[1]!=i[0]:
av_OFF.append(np.sum(data[i[0]:i[1],:,:],axis=0)/(i[1]-i[0]))
#If switch=True, flip the return statement since ON is actually OFF
if switch==False:
if inds==False:
return np.squeeze(np.mean(av_ON,axis=0)), np.squeeze(np.mean(av_OFF,axis=0))
else:
return np.squeeze(np.mean(av_ON,axis=0)), np.squeeze(np.mean(av_OFF,axis=0)),ONints,OFFints
if switch==True:
if inds==False:
return np.squeeze(np.mean(av_OFF,axis=0)), np.squeeze(np.mean(av_ON,axis=0))
else:
return np.squeeze(np.mean(av_OFF,axis=0)), np.squeeze(np.mean(av_ON,axis=0)),OFFints,ONints
|
def foldcal(data,tsamp, diode_p=0.04,numsamps=1000,switch=False,inds=False):
'''
Returns time-averaged spectra of the ON and OFF measurements in a
calibrator measurement with flickering noise diode
Parameters
----------
data : 2D Array object (float)
2D dynamic spectrum for data (any Stokes parameter) with flickering noise diode.
tsamp : float
Sampling time of data in seconds
diode_p : float
Period of the flickering noise diode in seconds
numsamps : int
Number of samples over which to average noise diode ON and OFF
switch : boolean
Use switch=True if the noise diode "skips" turning from OFF to ON once or vice versa
inds : boolean
Use inds=True to also return the indexes of the time series where the ND is ON and OFF
'''
halfper = diode_p/2.0
foldt = halfper/tsamp #number of time samples per diode switch
onesec = 1/tsamp #number of time samples in the first second
#Find diode switches in units of time samples and round down to the nearest int
ints = np.arange(0,numsamps)
t_switch = (onesec+ints*foldt)
t_switch = t_switch.astype('int')
ONints = np.array(np.reshape(t_switch[:],(numsamps/2,2)))
ONints[:,0] = ONints[:,0]+1 #Find index ranges of ON time samples
OFFints = np.array(np.reshape(t_switch[1:-1],(numsamps/2-1,2)))
OFFints[:,0] = OFFints[:,0]+1 #Find index ranges of OFF time samples
av_ON = []
av_OFF = []
#Average ON and OFF spectra separately with respect to time
for i in ONints:
if i[1]!=i[0]:
av_ON.append(np.sum(data[i[0]:i[1],:,:],axis=0)/(i[1]-i[0]))
for i in OFFints:
if i[1]!=i[0]:
av_OFF.append(np.sum(data[i[0]:i[1],:,:],axis=0)/(i[1]-i[0]))
#If switch=True, flip the return statement since ON is actually OFF
if switch==False:
if inds==False:
return np.squeeze(np.mean(av_ON,axis=0)), np.squeeze(np.mean(av_OFF,axis=0))
else:
return np.squeeze(np.mean(av_ON,axis=0)), np.squeeze(np.mean(av_OFF,axis=0)),ONints,OFFints
if switch==True:
if inds==False:
return np.squeeze(np.mean(av_OFF,axis=0)), np.squeeze(np.mean(av_ON,axis=0))
else:
return np.squeeze(np.mean(av_OFF,axis=0)), np.squeeze(np.mean(av_ON,axis=0)),OFFints,ONints
|
[
"Returns",
"time",
"-",
"averaged",
"spectra",
"of",
"the",
"ON",
"and",
"OFF",
"measurements",
"in",
"a",
"calibrator",
"measurement",
"with",
"flickering",
"noise",
"diode"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/calib_utils/fluxcal.py#L6-L66
|
[
"def",
"foldcal",
"(",
"data",
",",
"tsamp",
",",
"diode_p",
"=",
"0.04",
",",
"numsamps",
"=",
"1000",
",",
"switch",
"=",
"False",
",",
"inds",
"=",
"False",
")",
":",
"halfper",
"=",
"diode_p",
"/",
"2.0",
"foldt",
"=",
"halfper",
"/",
"tsamp",
"#number of time samples per diode switch",
"onesec",
"=",
"1",
"/",
"tsamp",
"#number of time samples in the first second",
"#Find diode switches in units of time samples and round down to the nearest int",
"ints",
"=",
"np",
".",
"arange",
"(",
"0",
",",
"numsamps",
")",
"t_switch",
"=",
"(",
"onesec",
"+",
"ints",
"*",
"foldt",
")",
"t_switch",
"=",
"t_switch",
".",
"astype",
"(",
"'int'",
")",
"ONints",
"=",
"np",
".",
"array",
"(",
"np",
".",
"reshape",
"(",
"t_switch",
"[",
":",
"]",
",",
"(",
"numsamps",
"/",
"2",
",",
"2",
")",
")",
")",
"ONints",
"[",
":",
",",
"0",
"]",
"=",
"ONints",
"[",
":",
",",
"0",
"]",
"+",
"1",
"#Find index ranges of ON time samples",
"OFFints",
"=",
"np",
".",
"array",
"(",
"np",
".",
"reshape",
"(",
"t_switch",
"[",
"1",
":",
"-",
"1",
"]",
",",
"(",
"numsamps",
"/",
"2",
"-",
"1",
",",
"2",
")",
")",
")",
"OFFints",
"[",
":",
",",
"0",
"]",
"=",
"OFFints",
"[",
":",
",",
"0",
"]",
"+",
"1",
"#Find index ranges of OFF time samples",
"av_ON",
"=",
"[",
"]",
"av_OFF",
"=",
"[",
"]",
"#Average ON and OFF spectra separately with respect to time",
"for",
"i",
"in",
"ONints",
":",
"if",
"i",
"[",
"1",
"]",
"!=",
"i",
"[",
"0",
"]",
":",
"av_ON",
".",
"append",
"(",
"np",
".",
"sum",
"(",
"data",
"[",
"i",
"[",
"0",
"]",
":",
"i",
"[",
"1",
"]",
",",
":",
",",
":",
"]",
",",
"axis",
"=",
"0",
")",
"/",
"(",
"i",
"[",
"1",
"]",
"-",
"i",
"[",
"0",
"]",
")",
")",
"for",
"i",
"in",
"OFFints",
":",
"if",
"i",
"[",
"1",
"]",
"!=",
"i",
"[",
"0",
"]",
":",
"av_OFF",
".",
"append",
"(",
"np",
".",
"sum",
"(",
"data",
"[",
"i",
"[",
"0",
"]",
":",
"i",
"[",
"1",
"]",
",",
":",
",",
":",
"]",
",",
"axis",
"=",
"0",
")",
"/",
"(",
"i",
"[",
"1",
"]",
"-",
"i",
"[",
"0",
"]",
")",
")",
"#If switch=True, flip the return statement since ON is actually OFF",
"if",
"switch",
"==",
"False",
":",
"if",
"inds",
"==",
"False",
":",
"return",
"np",
".",
"squeeze",
"(",
"np",
".",
"mean",
"(",
"av_ON",
",",
"axis",
"=",
"0",
")",
")",
",",
"np",
".",
"squeeze",
"(",
"np",
".",
"mean",
"(",
"av_OFF",
",",
"axis",
"=",
"0",
")",
")",
"else",
":",
"return",
"np",
".",
"squeeze",
"(",
"np",
".",
"mean",
"(",
"av_ON",
",",
"axis",
"=",
"0",
")",
")",
",",
"np",
".",
"squeeze",
"(",
"np",
".",
"mean",
"(",
"av_OFF",
",",
"axis",
"=",
"0",
")",
")",
",",
"ONints",
",",
"OFFints",
"if",
"switch",
"==",
"True",
":",
"if",
"inds",
"==",
"False",
":",
"return",
"np",
".",
"squeeze",
"(",
"np",
".",
"mean",
"(",
"av_OFF",
",",
"axis",
"=",
"0",
")",
")",
",",
"np",
".",
"squeeze",
"(",
"np",
".",
"mean",
"(",
"av_ON",
",",
"axis",
"=",
"0",
")",
")",
"else",
":",
"return",
"np",
".",
"squeeze",
"(",
"np",
".",
"mean",
"(",
"av_OFF",
",",
"axis",
"=",
"0",
")",
")",
",",
"np",
".",
"squeeze",
"(",
"np",
".",
"mean",
"(",
"av_ON",
",",
"axis",
"=",
"0",
")",
")",
",",
"OFFints",
",",
"ONints"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
integrate_chans
|
Integrates over each core channel of a given spectrum.
Important for calibrating data with frequency/time resolution different from noise diode data
Parameters
----------
spec : 1D Array (float)
Spectrum (any Stokes parameter) to be integrated
freqs : 1D Array (float)
Frequency values for each bin of the spectrum
chan_per_coarse: int
Number of frequency bins per coarse channel
|
blimpy/calib_utils/fluxcal.py
|
def integrate_chans(spec,freqs,chan_per_coarse):
'''
Integrates over each core channel of a given spectrum.
Important for calibrating data with frequency/time resolution different from noise diode data
Parameters
----------
spec : 1D Array (float)
Spectrum (any Stokes parameter) to be integrated
freqs : 1D Array (float)
Frequency values for each bin of the spectrum
chan_per_coarse: int
Number of frequency bins per coarse channel
'''
num_coarse = spec.size/chan_per_coarse #Calculate total number of coarse channels
#Rearrange spectrum by coarse channel
spec_shaped = np.array(np.reshape(spec,(num_coarse,chan_per_coarse)))
freqs_shaped = np.array(np.reshape(freqs,(num_coarse,chan_per_coarse)))
#Average over coarse channels
return np.mean(spec_shaped[:,1:-1],axis=1)
|
def integrate_chans(spec,freqs,chan_per_coarse):
'''
Integrates over each core channel of a given spectrum.
Important for calibrating data with frequency/time resolution different from noise diode data
Parameters
----------
spec : 1D Array (float)
Spectrum (any Stokes parameter) to be integrated
freqs : 1D Array (float)
Frequency values for each bin of the spectrum
chan_per_coarse: int
Number of frequency bins per coarse channel
'''
num_coarse = spec.size/chan_per_coarse #Calculate total number of coarse channels
#Rearrange spectrum by coarse channel
spec_shaped = np.array(np.reshape(spec,(num_coarse,chan_per_coarse)))
freqs_shaped = np.array(np.reshape(freqs,(num_coarse,chan_per_coarse)))
#Average over coarse channels
return np.mean(spec_shaped[:,1:-1],axis=1)
|
[
"Integrates",
"over",
"each",
"core",
"channel",
"of",
"a",
"given",
"spectrum",
".",
"Important",
"for",
"calibrating",
"data",
"with",
"frequency",
"/",
"time",
"resolution",
"different",
"from",
"noise",
"diode",
"data"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/calib_utils/fluxcal.py#L68-L90
|
[
"def",
"integrate_chans",
"(",
"spec",
",",
"freqs",
",",
"chan_per_coarse",
")",
":",
"num_coarse",
"=",
"spec",
".",
"size",
"/",
"chan_per_coarse",
"#Calculate total number of coarse channels",
"#Rearrange spectrum by coarse channel",
"spec_shaped",
"=",
"np",
".",
"array",
"(",
"np",
".",
"reshape",
"(",
"spec",
",",
"(",
"num_coarse",
",",
"chan_per_coarse",
")",
")",
")",
"freqs_shaped",
"=",
"np",
".",
"array",
"(",
"np",
".",
"reshape",
"(",
"freqs",
",",
"(",
"num_coarse",
",",
"chan_per_coarse",
")",
")",
")",
"#Average over coarse channels",
"return",
"np",
".",
"mean",
"(",
"spec_shaped",
"[",
":",
",",
"1",
":",
"-",
"1",
"]",
",",
"axis",
"=",
"1",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
integrate_calib
|
Folds Stokes I noise diode data and integrates along coarse channels
Parameters
----------
name : str
Path to noise diode filterbank file
chan_per_coarse : int
Number of frequency bins per coarse channel
fullstokes : boolean
Use fullstokes=True if data is in IQUV format or just Stokes I, use fullstokes=False if
it is in cross_pols format
|
blimpy/calib_utils/fluxcal.py
|
def integrate_calib(name,chan_per_coarse,fullstokes=False,**kwargs):
'''
Folds Stokes I noise diode data and integrates along coarse channels
Parameters
----------
name : str
Path to noise diode filterbank file
chan_per_coarse : int
Number of frequency bins per coarse channel
fullstokes : boolean
Use fullstokes=True if data is in IQUV format or just Stokes I, use fullstokes=False if
it is in cross_pols format
'''
#Load data
obs = Waterfall(name,max_load=150)
data = obs.data
#If the data has cross_pols format calculate Stokes I
if fullstokes==False and data.shape[1]>1:
data = data[:,0,:]+data[:,1,:]
data = np.expand_dims(data,axis=1)
#If the data has IQUV format get Stokes I
if fullstokes==True:
data = data[:,0,:]
data = np.expand_dims(data,axis=1)
tsamp = obs.header['tsamp']
#Calculate ON and OFF values
OFF,ON = foldcal(data,tsamp,**kwargs)
freqs = obs.populate_freqs()
#Find ON and OFF spectra by coarse channel
ON_int = integrate_chans(ON,freqs,chan_per_coarse)
OFF_int = integrate_chans(OFF,freqs,chan_per_coarse)
#If "ON" is actually "OFF" switch them
if np.sum(ON_int)<np.sum(OFF_int):
temp = ON_int
ON_int = OFF_int
OFF_int = temp
#Return coarse channel spectrum of OFF and ON
return OFF_int,ON_int
|
def integrate_calib(name,chan_per_coarse,fullstokes=False,**kwargs):
'''
Folds Stokes I noise diode data and integrates along coarse channels
Parameters
----------
name : str
Path to noise diode filterbank file
chan_per_coarse : int
Number of frequency bins per coarse channel
fullstokes : boolean
Use fullstokes=True if data is in IQUV format or just Stokes I, use fullstokes=False if
it is in cross_pols format
'''
#Load data
obs = Waterfall(name,max_load=150)
data = obs.data
#If the data has cross_pols format calculate Stokes I
if fullstokes==False and data.shape[1]>1:
data = data[:,0,:]+data[:,1,:]
data = np.expand_dims(data,axis=1)
#If the data has IQUV format get Stokes I
if fullstokes==True:
data = data[:,0,:]
data = np.expand_dims(data,axis=1)
tsamp = obs.header['tsamp']
#Calculate ON and OFF values
OFF,ON = foldcal(data,tsamp,**kwargs)
freqs = obs.populate_freqs()
#Find ON and OFF spectra by coarse channel
ON_int = integrate_chans(ON,freqs,chan_per_coarse)
OFF_int = integrate_chans(OFF,freqs,chan_per_coarse)
#If "ON" is actually "OFF" switch them
if np.sum(ON_int)<np.sum(OFF_int):
temp = ON_int
ON_int = OFF_int
OFF_int = temp
#Return coarse channel spectrum of OFF and ON
return OFF_int,ON_int
|
[
"Folds",
"Stokes",
"I",
"noise",
"diode",
"data",
"and",
"integrates",
"along",
"coarse",
"channels"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/calib_utils/fluxcal.py#L92-L137
|
[
"def",
"integrate_calib",
"(",
"name",
",",
"chan_per_coarse",
",",
"fullstokes",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"#Load data",
"obs",
"=",
"Waterfall",
"(",
"name",
",",
"max_load",
"=",
"150",
")",
"data",
"=",
"obs",
".",
"data",
"#If the data has cross_pols format calculate Stokes I",
"if",
"fullstokes",
"==",
"False",
"and",
"data",
".",
"shape",
"[",
"1",
"]",
">",
"1",
":",
"data",
"=",
"data",
"[",
":",
",",
"0",
",",
":",
"]",
"+",
"data",
"[",
":",
",",
"1",
",",
":",
"]",
"data",
"=",
"np",
".",
"expand_dims",
"(",
"data",
",",
"axis",
"=",
"1",
")",
"#If the data has IQUV format get Stokes I",
"if",
"fullstokes",
"==",
"True",
":",
"data",
"=",
"data",
"[",
":",
",",
"0",
",",
":",
"]",
"data",
"=",
"np",
".",
"expand_dims",
"(",
"data",
",",
"axis",
"=",
"1",
")",
"tsamp",
"=",
"obs",
".",
"header",
"[",
"'tsamp'",
"]",
"#Calculate ON and OFF values",
"OFF",
",",
"ON",
"=",
"foldcal",
"(",
"data",
",",
"tsamp",
",",
"*",
"*",
"kwargs",
")",
"freqs",
"=",
"obs",
".",
"populate_freqs",
"(",
")",
"#Find ON and OFF spectra by coarse channel",
"ON_int",
"=",
"integrate_chans",
"(",
"ON",
",",
"freqs",
",",
"chan_per_coarse",
")",
"OFF_int",
"=",
"integrate_chans",
"(",
"OFF",
",",
"freqs",
",",
"chan_per_coarse",
")",
"#If \"ON\" is actually \"OFF\" switch them",
"if",
"np",
".",
"sum",
"(",
"ON_int",
")",
"<",
"np",
".",
"sum",
"(",
"OFF_int",
")",
":",
"temp",
"=",
"ON_int",
"ON_int",
"=",
"OFF_int",
"OFF_int",
"=",
"temp",
"#Return coarse channel spectrum of OFF and ON",
"return",
"OFF_int",
",",
"ON_int"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
get_calfluxes
|
Given properties of the calibrator source, calculate fluxes of the source
in a particular frequency range
Parameters
----------
calflux : float
Known flux of calibrator source at a particular frequency
calfreq : float
Frequency where calibrator source has flux calflux (see above)
spec_in : float
Known power-law spectral index of calibrator source. Use convention flux(frequency) = constant * frequency^(spec_in)
centerfreqs : 1D Array (float)
Central frequency values of each coarse channel
oneflux : boolean
Use oneflux to choose between calculating the flux for each core channel (False)
or using one value for the entire frequency range (True)
|
blimpy/calib_utils/fluxcal.py
|
def get_calfluxes(calflux,calfreq,spec_in,centerfreqs,oneflux):
'''
Given properties of the calibrator source, calculate fluxes of the source
in a particular frequency range
Parameters
----------
calflux : float
Known flux of calibrator source at a particular frequency
calfreq : float
Frequency where calibrator source has flux calflux (see above)
spec_in : float
Known power-law spectral index of calibrator source. Use convention flux(frequency) = constant * frequency^(spec_in)
centerfreqs : 1D Array (float)
Central frequency values of each coarse channel
oneflux : boolean
Use oneflux to choose between calculating the flux for each core channel (False)
or using one value for the entire frequency range (True)
'''
const = calflux/np.power(calfreq,spec_in)
if oneflux==False:
return const*np.power(centerfreqs,spec_in)
else:
return const*np.power(np.mean(centerfreqs),spec_in)
|
def get_calfluxes(calflux,calfreq,spec_in,centerfreqs,oneflux):
'''
Given properties of the calibrator source, calculate fluxes of the source
in a particular frequency range
Parameters
----------
calflux : float
Known flux of calibrator source at a particular frequency
calfreq : float
Frequency where calibrator source has flux calflux (see above)
spec_in : float
Known power-law spectral index of calibrator source. Use convention flux(frequency) = constant * frequency^(spec_in)
centerfreqs : 1D Array (float)
Central frequency values of each coarse channel
oneflux : boolean
Use oneflux to choose between calculating the flux for each core channel (False)
or using one value for the entire frequency range (True)
'''
const = calflux/np.power(calfreq,spec_in)
if oneflux==False:
return const*np.power(centerfreqs,spec_in)
else:
return const*np.power(np.mean(centerfreqs),spec_in)
|
[
"Given",
"properties",
"of",
"the",
"calibrator",
"source",
"calculate",
"fluxes",
"of",
"the",
"source",
"in",
"a",
"particular",
"frequency",
"range"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/calib_utils/fluxcal.py#L139-L163
|
[
"def",
"get_calfluxes",
"(",
"calflux",
",",
"calfreq",
",",
"spec_in",
",",
"centerfreqs",
",",
"oneflux",
")",
":",
"const",
"=",
"calflux",
"/",
"np",
".",
"power",
"(",
"calfreq",
",",
"spec_in",
")",
"if",
"oneflux",
"==",
"False",
":",
"return",
"const",
"*",
"np",
".",
"power",
"(",
"centerfreqs",
",",
"spec_in",
")",
"else",
":",
"return",
"const",
"*",
"np",
".",
"power",
"(",
"np",
".",
"mean",
"(",
"centerfreqs",
")",
",",
"spec_in",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
get_centerfreqs
|
Returns central frequency of each coarse channel
Parameters
----------
freqs : 1D Array (float)
Frequency values for each bin of the spectrum
chan_per_coarse: int
Number of frequency bins per coarse channel
|
blimpy/calib_utils/fluxcal.py
|
def get_centerfreqs(freqs,chan_per_coarse):
'''
Returns central frequency of each coarse channel
Parameters
----------
freqs : 1D Array (float)
Frequency values for each bin of the spectrum
chan_per_coarse: int
Number of frequency bins per coarse channel
'''
num_coarse = freqs.size/chan_per_coarse
freqs = np.reshape(freqs,(num_coarse,chan_per_coarse))
return np.mean(freqs,axis=1)
|
def get_centerfreqs(freqs,chan_per_coarse):
'''
Returns central frequency of each coarse channel
Parameters
----------
freqs : 1D Array (float)
Frequency values for each bin of the spectrum
chan_per_coarse: int
Number of frequency bins per coarse channel
'''
num_coarse = freqs.size/chan_per_coarse
freqs = np.reshape(freqs,(num_coarse,chan_per_coarse))
return np.mean(freqs,axis=1)
|
[
"Returns",
"central",
"frequency",
"of",
"each",
"coarse",
"channel"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/calib_utils/fluxcal.py#L165-L179
|
[
"def",
"get_centerfreqs",
"(",
"freqs",
",",
"chan_per_coarse",
")",
":",
"num_coarse",
"=",
"freqs",
".",
"size",
"/",
"chan_per_coarse",
"freqs",
"=",
"np",
".",
"reshape",
"(",
"freqs",
",",
"(",
"num_coarse",
",",
"chan_per_coarse",
")",
")",
"return",
"np",
".",
"mean",
"(",
"freqs",
",",
"axis",
"=",
"1",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
f_ratios
|
Calculate f_ON, and f_OFF as defined in van Straten et al. 2012 equations 2 and 3
Parameters
----------
calON_obs : str
Path to filterbank file (any format) for observation ON the calibrator source
calOFF_obs : str
Path to filterbank file (any format) for observation OFF the calibrator source
|
blimpy/calib_utils/fluxcal.py
|
def f_ratios(calON_obs,calOFF_obs,chan_per_coarse,**kwargs):
'''
Calculate f_ON, and f_OFF as defined in van Straten et al. 2012 equations 2 and 3
Parameters
----------
calON_obs : str
Path to filterbank file (any format) for observation ON the calibrator source
calOFF_obs : str
Path to filterbank file (any format) for observation OFF the calibrator source
'''
#Calculate noise diode ON and noise diode OFF spectra (H and L) for both observations
L_ON,H_ON = integrate_calib(calON_obs,chan_per_coarse,**kwargs)
L_OFF,H_OFF = integrate_calib(calOFF_obs,chan_per_coarse,**kwargs)
f_ON = H_ON/L_ON-1
f_OFF = H_OFF/L_OFF-1
return f_ON, f_OFF
|
def f_ratios(calON_obs,calOFF_obs,chan_per_coarse,**kwargs):
'''
Calculate f_ON, and f_OFF as defined in van Straten et al. 2012 equations 2 and 3
Parameters
----------
calON_obs : str
Path to filterbank file (any format) for observation ON the calibrator source
calOFF_obs : str
Path to filterbank file (any format) for observation OFF the calibrator source
'''
#Calculate noise diode ON and noise diode OFF spectra (H and L) for both observations
L_ON,H_ON = integrate_calib(calON_obs,chan_per_coarse,**kwargs)
L_OFF,H_OFF = integrate_calib(calOFF_obs,chan_per_coarse,**kwargs)
f_ON = H_ON/L_ON-1
f_OFF = H_OFF/L_OFF-1
return f_ON, f_OFF
|
[
"Calculate",
"f_ON",
"and",
"f_OFF",
"as",
"defined",
"in",
"van",
"Straten",
"et",
"al",
".",
"2012",
"equations",
"2",
"and",
"3"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/calib_utils/fluxcal.py#L181-L199
|
[
"def",
"f_ratios",
"(",
"calON_obs",
",",
"calOFF_obs",
",",
"chan_per_coarse",
",",
"*",
"*",
"kwargs",
")",
":",
"#Calculate noise diode ON and noise diode OFF spectra (H and L) for both observations",
"L_ON",
",",
"H_ON",
"=",
"integrate_calib",
"(",
"calON_obs",
",",
"chan_per_coarse",
",",
"*",
"*",
"kwargs",
")",
"L_OFF",
",",
"H_OFF",
"=",
"integrate_calib",
"(",
"calOFF_obs",
",",
"chan_per_coarse",
",",
"*",
"*",
"kwargs",
")",
"f_ON",
"=",
"H_ON",
"/",
"L_ON",
"-",
"1",
"f_OFF",
"=",
"H_OFF",
"/",
"L_OFF",
"-",
"1",
"return",
"f_ON",
",",
"f_OFF"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
diode_spec
|
Calculate the coarse channel spectrum and system temperature of the noise diode in Jy given two noise diode
measurements ON and OFF the calibrator source with the same frequency and time resolution
Parameters
----------
calON_obs : str
(see f_ratios() above)
calOFF_obs : str
(see f_ratios() above)
calflux : float
Known flux of calibrator source at a particular frequency
calfreq : float
Frequency where calibrator source has flux calflux (see above)
spec_in : float
Known power-law spectral index of calibrator source. Use convention flux(frequency) = constant * frequency^(spec_in)
average : boolean
Use average=True to return noise diode and Tsys spectra averaged over frequencies
|
blimpy/calib_utils/fluxcal.py
|
def diode_spec(calON_obs,calOFF_obs,calflux,calfreq,spec_in,average=True,oneflux=False,**kwargs):
'''
Calculate the coarse channel spectrum and system temperature of the noise diode in Jy given two noise diode
measurements ON and OFF the calibrator source with the same frequency and time resolution
Parameters
----------
calON_obs : str
(see f_ratios() above)
calOFF_obs : str
(see f_ratios() above)
calflux : float
Known flux of calibrator source at a particular frequency
calfreq : float
Frequency where calibrator source has flux calflux (see above)
spec_in : float
Known power-law spectral index of calibrator source. Use convention flux(frequency) = constant * frequency^(spec_in)
average : boolean
Use average=True to return noise diode and Tsys spectra averaged over frequencies
'''
#Load frequencies and calculate number of channels per coarse channel
obs = Waterfall(calON_obs,max_load=150)
freqs = obs.populate_freqs()
ncoarse = obs.calc_n_coarse_chan()
nchans = obs.header['nchans']
chan_per_coarse = nchans/ncoarse
f_ON, f_OFF = f_ratios(calON_obs,calOFF_obs,chan_per_coarse,**kwargs)
#Obtain spectrum of the calibrator source for the given frequency range
centerfreqs = get_centerfreqs(freqs,chan_per_coarse)
calfluxes = get_calfluxes(calflux,calfreq,spec_in,centerfreqs,oneflux)
#C_o and Tsys as defined in van Straten et al. 2012
C_o = calfluxes/(1/f_ON-1/f_OFF)
Tsys = C_o/f_OFF
#return coarse channel diode spectrum
if average==True:
return np.mean(C_o),np.mean(Tsys)
else:
return C_o,Tsys
|
def diode_spec(calON_obs,calOFF_obs,calflux,calfreq,spec_in,average=True,oneflux=False,**kwargs):
'''
Calculate the coarse channel spectrum and system temperature of the noise diode in Jy given two noise diode
measurements ON and OFF the calibrator source with the same frequency and time resolution
Parameters
----------
calON_obs : str
(see f_ratios() above)
calOFF_obs : str
(see f_ratios() above)
calflux : float
Known flux of calibrator source at a particular frequency
calfreq : float
Frequency where calibrator source has flux calflux (see above)
spec_in : float
Known power-law spectral index of calibrator source. Use convention flux(frequency) = constant * frequency^(spec_in)
average : boolean
Use average=True to return noise diode and Tsys spectra averaged over frequencies
'''
#Load frequencies and calculate number of channels per coarse channel
obs = Waterfall(calON_obs,max_load=150)
freqs = obs.populate_freqs()
ncoarse = obs.calc_n_coarse_chan()
nchans = obs.header['nchans']
chan_per_coarse = nchans/ncoarse
f_ON, f_OFF = f_ratios(calON_obs,calOFF_obs,chan_per_coarse,**kwargs)
#Obtain spectrum of the calibrator source for the given frequency range
centerfreqs = get_centerfreqs(freqs,chan_per_coarse)
calfluxes = get_calfluxes(calflux,calfreq,spec_in,centerfreqs,oneflux)
#C_o and Tsys as defined in van Straten et al. 2012
C_o = calfluxes/(1/f_ON-1/f_OFF)
Tsys = C_o/f_OFF
#return coarse channel diode spectrum
if average==True:
return np.mean(C_o),np.mean(Tsys)
else:
return C_o,Tsys
|
[
"Calculate",
"the",
"coarse",
"channel",
"spectrum",
"and",
"system",
"temperature",
"of",
"the",
"noise",
"diode",
"in",
"Jy",
"given",
"two",
"noise",
"diode",
"measurements",
"ON",
"and",
"OFF",
"the",
"calibrator",
"source",
"with",
"the",
"same",
"frequency",
"and",
"time",
"resolution"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/calib_utils/fluxcal.py#L202-L243
|
[
"def",
"diode_spec",
"(",
"calON_obs",
",",
"calOFF_obs",
",",
"calflux",
",",
"calfreq",
",",
"spec_in",
",",
"average",
"=",
"True",
",",
"oneflux",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"#Load frequencies and calculate number of channels per coarse channel",
"obs",
"=",
"Waterfall",
"(",
"calON_obs",
",",
"max_load",
"=",
"150",
")",
"freqs",
"=",
"obs",
".",
"populate_freqs",
"(",
")",
"ncoarse",
"=",
"obs",
".",
"calc_n_coarse_chan",
"(",
")",
"nchans",
"=",
"obs",
".",
"header",
"[",
"'nchans'",
"]",
"chan_per_coarse",
"=",
"nchans",
"/",
"ncoarse",
"f_ON",
",",
"f_OFF",
"=",
"f_ratios",
"(",
"calON_obs",
",",
"calOFF_obs",
",",
"chan_per_coarse",
",",
"*",
"*",
"kwargs",
")",
"#Obtain spectrum of the calibrator source for the given frequency range",
"centerfreqs",
"=",
"get_centerfreqs",
"(",
"freqs",
",",
"chan_per_coarse",
")",
"calfluxes",
"=",
"get_calfluxes",
"(",
"calflux",
",",
"calfreq",
",",
"spec_in",
",",
"centerfreqs",
",",
"oneflux",
")",
"#C_o and Tsys as defined in van Straten et al. 2012",
"C_o",
"=",
"calfluxes",
"/",
"(",
"1",
"/",
"f_ON",
"-",
"1",
"/",
"f_OFF",
")",
"Tsys",
"=",
"C_o",
"/",
"f_OFF",
"#return coarse channel diode spectrum",
"if",
"average",
"==",
"True",
":",
"return",
"np",
".",
"mean",
"(",
"C_o",
")",
",",
"np",
".",
"mean",
"(",
"Tsys",
")",
"else",
":",
"return",
"C_o",
",",
"Tsys"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
get_Tsys
|
Returns frequency dependent system temperature given observations on and off a calibrator source
Parameters
----------
(See diode_spec())
|
blimpy/calib_utils/fluxcal.py
|
def get_Tsys(calON_obs,calOFF_obs,calflux,calfreq,spec_in,oneflux=False,**kwargs):
'''
Returns frequency dependent system temperature given observations on and off a calibrator source
Parameters
----------
(See diode_spec())
'''
return diode_spec(calON_obs,calOFF_obs,calflux,calfreq,spec_in,average=False,oneflux=False,**kwargs)[1]
|
def get_Tsys(calON_obs,calOFF_obs,calflux,calfreq,spec_in,oneflux=False,**kwargs):
'''
Returns frequency dependent system temperature given observations on and off a calibrator source
Parameters
----------
(See diode_spec())
'''
return diode_spec(calON_obs,calOFF_obs,calflux,calfreq,spec_in,average=False,oneflux=False,**kwargs)[1]
|
[
"Returns",
"frequency",
"dependent",
"system",
"temperature",
"given",
"observations",
"on",
"and",
"off",
"a",
"calibrator",
"source"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/calib_utils/fluxcal.py#L245-L253
|
[
"def",
"get_Tsys",
"(",
"calON_obs",
",",
"calOFF_obs",
",",
"calflux",
",",
"calfreq",
",",
"spec_in",
",",
"oneflux",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"diode_spec",
"(",
"calON_obs",
",",
"calOFF_obs",
",",
"calflux",
",",
"calfreq",
",",
"spec_in",
",",
"average",
"=",
"False",
",",
"oneflux",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
"[",
"1",
"]"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
calibrate_fluxes
|
Produce calibrated Stokes I for an observation given a noise diode
measurement on the source and a diode spectrum with the same number of
coarse channels
Parameters
----------
main_obs_name : str
Path to filterbank file containing final data to be calibrated
dio_name : str
Path to filterbank file for observation on the target source with flickering noise diode
dspec : 1D Array (float) or float
Coarse channel spectrum (or average) of the noise diode in Jy (obtained from diode_spec())
Tsys : 1D Array (float) or float
Coarse channel spectrum (or average) of the system temperature in Jy
fullstokes: boolean
Use fullstokes=True if data is in IQUV format or just Stokes I, use fullstokes=False if
it is in cross_pols format
|
blimpy/calib_utils/fluxcal.py
|
def calibrate_fluxes(main_obs_name,dio_name,dspec,Tsys,fullstokes=False,**kwargs):
'''
Produce calibrated Stokes I for an observation given a noise diode
measurement on the source and a diode spectrum with the same number of
coarse channels
Parameters
----------
main_obs_name : str
Path to filterbank file containing final data to be calibrated
dio_name : str
Path to filterbank file for observation on the target source with flickering noise diode
dspec : 1D Array (float) or float
Coarse channel spectrum (or average) of the noise diode in Jy (obtained from diode_spec())
Tsys : 1D Array (float) or float
Coarse channel spectrum (or average) of the system temperature in Jy
fullstokes: boolean
Use fullstokes=True if data is in IQUV format or just Stokes I, use fullstokes=False if
it is in cross_pols format
'''
#Find folded spectra of the target source with the noise diode ON and OFF
main_obs = Waterfall(main_obs_name,max_load=150)
ncoarse = main_obs.calc_n_coarse_chan()
dio_obs = Waterfall(dio_name,max_load=150)
dio_chan_per_coarse = dio_obs.header['nchans']/ncoarse
dOFF,dON = integrate_calib(dio_name,dio_chan_per_coarse,fullstokes,**kwargs)
#Find Jy/count for each coarse channel using the diode spectrum
main_dat = main_obs.data
scale_facs = dspec/(dON-dOFF)
print(scale_facs)
nchans = main_obs.header['nchans']
obs_chan_per_coarse = nchans/ncoarse
ax0_size = np.size(main_dat,0)
ax1_size = np.size(main_dat,1)
#Reshape data array of target observation and multiply coarse channels by the scale factors
main_dat = np.reshape(main_dat,(ax0_size,ax1_size,ncoarse,obs_chan_per_coarse))
main_dat = np.swapaxes(main_dat,2,3)
main_dat = main_dat*scale_facs
main_dat = main_dat-Tsys
main_dat = np.swapaxes(main_dat,2,3)
main_dat = np.reshape(main_dat,(ax0_size,ax1_size,nchans))
#Write calibrated data to a new filterbank file with ".fluxcal" extension
main_obs.data = main_dat
main_obs.write_to_filterbank(main_obs_name[:-4]+'.fluxcal.fil')
print('Finished: calibrated product written to ' + main_obs_name[:-4]+'.fluxcal.fil')
|
def calibrate_fluxes(main_obs_name,dio_name,dspec,Tsys,fullstokes=False,**kwargs):
'''
Produce calibrated Stokes I for an observation given a noise diode
measurement on the source and a diode spectrum with the same number of
coarse channels
Parameters
----------
main_obs_name : str
Path to filterbank file containing final data to be calibrated
dio_name : str
Path to filterbank file for observation on the target source with flickering noise diode
dspec : 1D Array (float) or float
Coarse channel spectrum (or average) of the noise diode in Jy (obtained from diode_spec())
Tsys : 1D Array (float) or float
Coarse channel spectrum (or average) of the system temperature in Jy
fullstokes: boolean
Use fullstokes=True if data is in IQUV format or just Stokes I, use fullstokes=False if
it is in cross_pols format
'''
#Find folded spectra of the target source with the noise diode ON and OFF
main_obs = Waterfall(main_obs_name,max_load=150)
ncoarse = main_obs.calc_n_coarse_chan()
dio_obs = Waterfall(dio_name,max_load=150)
dio_chan_per_coarse = dio_obs.header['nchans']/ncoarse
dOFF,dON = integrate_calib(dio_name,dio_chan_per_coarse,fullstokes,**kwargs)
#Find Jy/count for each coarse channel using the diode spectrum
main_dat = main_obs.data
scale_facs = dspec/(dON-dOFF)
print(scale_facs)
nchans = main_obs.header['nchans']
obs_chan_per_coarse = nchans/ncoarse
ax0_size = np.size(main_dat,0)
ax1_size = np.size(main_dat,1)
#Reshape data array of target observation and multiply coarse channels by the scale factors
main_dat = np.reshape(main_dat,(ax0_size,ax1_size,ncoarse,obs_chan_per_coarse))
main_dat = np.swapaxes(main_dat,2,3)
main_dat = main_dat*scale_facs
main_dat = main_dat-Tsys
main_dat = np.swapaxes(main_dat,2,3)
main_dat = np.reshape(main_dat,(ax0_size,ax1_size,nchans))
#Write calibrated data to a new filterbank file with ".fluxcal" extension
main_obs.data = main_dat
main_obs.write_to_filterbank(main_obs_name[:-4]+'.fluxcal.fil')
print('Finished: calibrated product written to ' + main_obs_name[:-4]+'.fluxcal.fil')
|
[
"Produce",
"calibrated",
"Stokes",
"I",
"for",
"an",
"observation",
"given",
"a",
"noise",
"diode",
"measurement",
"on",
"the",
"source",
"and",
"a",
"diode",
"spectrum",
"with",
"the",
"same",
"number",
"of",
"coarse",
"channels"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/calib_utils/fluxcal.py#L255-L307
|
[
"def",
"calibrate_fluxes",
"(",
"main_obs_name",
",",
"dio_name",
",",
"dspec",
",",
"Tsys",
",",
"fullstokes",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"#Find folded spectra of the target source with the noise diode ON and OFF",
"main_obs",
"=",
"Waterfall",
"(",
"main_obs_name",
",",
"max_load",
"=",
"150",
")",
"ncoarse",
"=",
"main_obs",
".",
"calc_n_coarse_chan",
"(",
")",
"dio_obs",
"=",
"Waterfall",
"(",
"dio_name",
",",
"max_load",
"=",
"150",
")",
"dio_chan_per_coarse",
"=",
"dio_obs",
".",
"header",
"[",
"'nchans'",
"]",
"/",
"ncoarse",
"dOFF",
",",
"dON",
"=",
"integrate_calib",
"(",
"dio_name",
",",
"dio_chan_per_coarse",
",",
"fullstokes",
",",
"*",
"*",
"kwargs",
")",
"#Find Jy/count for each coarse channel using the diode spectrum",
"main_dat",
"=",
"main_obs",
".",
"data",
"scale_facs",
"=",
"dspec",
"/",
"(",
"dON",
"-",
"dOFF",
")",
"print",
"(",
"scale_facs",
")",
"nchans",
"=",
"main_obs",
".",
"header",
"[",
"'nchans'",
"]",
"obs_chan_per_coarse",
"=",
"nchans",
"/",
"ncoarse",
"ax0_size",
"=",
"np",
".",
"size",
"(",
"main_dat",
",",
"0",
")",
"ax1_size",
"=",
"np",
".",
"size",
"(",
"main_dat",
",",
"1",
")",
"#Reshape data array of target observation and multiply coarse channels by the scale factors",
"main_dat",
"=",
"np",
".",
"reshape",
"(",
"main_dat",
",",
"(",
"ax0_size",
",",
"ax1_size",
",",
"ncoarse",
",",
"obs_chan_per_coarse",
")",
")",
"main_dat",
"=",
"np",
".",
"swapaxes",
"(",
"main_dat",
",",
"2",
",",
"3",
")",
"main_dat",
"=",
"main_dat",
"*",
"scale_facs",
"main_dat",
"=",
"main_dat",
"-",
"Tsys",
"main_dat",
"=",
"np",
".",
"swapaxes",
"(",
"main_dat",
",",
"2",
",",
"3",
")",
"main_dat",
"=",
"np",
".",
"reshape",
"(",
"main_dat",
",",
"(",
"ax0_size",
",",
"ax1_size",
",",
"nchans",
")",
")",
"#Write calibrated data to a new filterbank file with \".fluxcal\" extension",
"main_obs",
".",
"data",
"=",
"main_dat",
"main_obs",
".",
"write_to_filterbank",
"(",
"main_obs_name",
"[",
":",
"-",
"4",
"]",
"+",
"'.fluxcal.fil'",
")",
"print",
"(",
"'Finished: calibrated product written to '",
"+",
"main_obs_name",
"[",
":",
"-",
"4",
"]",
"+",
"'.fluxcal.fil'",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
len_header
|
Return the length of the blimpy header, in bytes
Args:
filename (str): name of file to open
Returns:
idx_end (int): length of header, in bytes
|
blimpy/sigproc.py
|
def len_header(filename):
""" Return the length of the blimpy header, in bytes
Args:
filename (str): name of file to open
Returns:
idx_end (int): length of header, in bytes
"""
with open(filename, 'rb') as f:
header_sub_count = 0
eoh_found = False
while not eoh_found:
header_sub = f.read(512)
header_sub_count += 1
if b'HEADER_END' in header_sub:
idx_end = header_sub.index(b'HEADER_END') + len(b'HEADER_END')
eoh_found = True
break
idx_end = (header_sub_count -1) * 512 + idx_end
return idx_end
|
def len_header(filename):
""" Return the length of the blimpy header, in bytes
Args:
filename (str): name of file to open
Returns:
idx_end (int): length of header, in bytes
"""
with open(filename, 'rb') as f:
header_sub_count = 0
eoh_found = False
while not eoh_found:
header_sub = f.read(512)
header_sub_count += 1
if b'HEADER_END' in header_sub:
idx_end = header_sub.index(b'HEADER_END') + len(b'HEADER_END')
eoh_found = True
break
idx_end = (header_sub_count -1) * 512 + idx_end
return idx_end
|
[
"Return",
"the",
"length",
"of",
"the",
"blimpy",
"header",
"in",
"bytes"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/sigproc.py#L78-L99
|
[
"def",
"len_header",
"(",
"filename",
")",
":",
"with",
"open",
"(",
"filename",
",",
"'rb'",
")",
"as",
"f",
":",
"header_sub_count",
"=",
"0",
"eoh_found",
"=",
"False",
"while",
"not",
"eoh_found",
":",
"header_sub",
"=",
"f",
".",
"read",
"(",
"512",
")",
"header_sub_count",
"+=",
"1",
"if",
"b'HEADER_END'",
"in",
"header_sub",
":",
"idx_end",
"=",
"header_sub",
".",
"index",
"(",
"b'HEADER_END'",
")",
"+",
"len",
"(",
"b'HEADER_END'",
")",
"eoh_found",
"=",
"True",
"break",
"idx_end",
"=",
"(",
"header_sub_count",
"-",
"1",
")",
"*",
"512",
"+",
"idx_end",
"return",
"idx_end"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
is_filterbank
|
Open file and confirm if it is a filterbank file or not.
|
blimpy/sigproc.py
|
def is_filterbank(filename):
""" Open file and confirm if it is a filterbank file or not. """
with open(filename, 'rb') as fh:
is_fil = True
# Check this is a blimpy file
try:
keyword, value, idx = read_next_header_keyword(fh)
try:
assert keyword == b'HEADER_START'
except AssertionError:
is_fil = False
except KeyError:
is_fil = False
return is_fil
|
def is_filterbank(filename):
""" Open file and confirm if it is a filterbank file or not. """
with open(filename, 'rb') as fh:
is_fil = True
# Check this is a blimpy file
try:
keyword, value, idx = read_next_header_keyword(fh)
try:
assert keyword == b'HEADER_START'
except AssertionError:
is_fil = False
except KeyError:
is_fil = False
return is_fil
|
[
"Open",
"file",
"and",
"confirm",
"if",
"it",
"is",
"a",
"filterbank",
"file",
"or",
"not",
"."
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/sigproc.py#L143-L157
|
[
"def",
"is_filterbank",
"(",
"filename",
")",
":",
"with",
"open",
"(",
"filename",
",",
"'rb'",
")",
"as",
"fh",
":",
"is_fil",
"=",
"True",
"# Check this is a blimpy file",
"try",
":",
"keyword",
",",
"value",
",",
"idx",
"=",
"read_next_header_keyword",
"(",
"fh",
")",
"try",
":",
"assert",
"keyword",
"==",
"b'HEADER_START'",
"except",
"AssertionError",
":",
"is_fil",
"=",
"False",
"except",
"KeyError",
":",
"is_fil",
"=",
"False",
"return",
"is_fil"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
read_header
|
Read blimpy header and return a Python dictionary of key:value pairs
Args:
filename (str): name of file to open
Optional args:
return_idxs (bool): Default False. If true, returns the file offset indexes
for values
returns
|
blimpy/sigproc.py
|
def read_header(filename, return_idxs=False):
""" Read blimpy header and return a Python dictionary of key:value pairs
Args:
filename (str): name of file to open
Optional args:
return_idxs (bool): Default False. If true, returns the file offset indexes
for values
returns
"""
with open(filename, 'rb') as fh:
header_dict = {}
header_idxs = {}
# Check this is a blimpy file
keyword, value, idx = read_next_header_keyword(fh)
try:
assert keyword == b'HEADER_START'
except AssertionError:
raise RuntimeError("Not a valid blimpy file.")
while True:
keyword, value, idx = read_next_header_keyword(fh)
if keyword == b'HEADER_END':
break
else:
header_dict[keyword] = value
header_idxs[keyword] = idx
if return_idxs:
return header_idxs
else:
return header_dict
|
def read_header(filename, return_idxs=False):
""" Read blimpy header and return a Python dictionary of key:value pairs
Args:
filename (str): name of file to open
Optional args:
return_idxs (bool): Default False. If true, returns the file offset indexes
for values
returns
"""
with open(filename, 'rb') as fh:
header_dict = {}
header_idxs = {}
# Check this is a blimpy file
keyword, value, idx = read_next_header_keyword(fh)
try:
assert keyword == b'HEADER_START'
except AssertionError:
raise RuntimeError("Not a valid blimpy file.")
while True:
keyword, value, idx = read_next_header_keyword(fh)
if keyword == b'HEADER_END':
break
else:
header_dict[keyword] = value
header_idxs[keyword] = idx
if return_idxs:
return header_idxs
else:
return header_dict
|
[
"Read",
"blimpy",
"header",
"and",
"return",
"a",
"Python",
"dictionary",
"of",
"key",
":",
"value",
"pairs"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/sigproc.py#L160-L196
|
[
"def",
"read_header",
"(",
"filename",
",",
"return_idxs",
"=",
"False",
")",
":",
"with",
"open",
"(",
"filename",
",",
"'rb'",
")",
"as",
"fh",
":",
"header_dict",
"=",
"{",
"}",
"header_idxs",
"=",
"{",
"}",
"# Check this is a blimpy file",
"keyword",
",",
"value",
",",
"idx",
"=",
"read_next_header_keyword",
"(",
"fh",
")",
"try",
":",
"assert",
"keyword",
"==",
"b'HEADER_START'",
"except",
"AssertionError",
":",
"raise",
"RuntimeError",
"(",
"\"Not a valid blimpy file.\"",
")",
"while",
"True",
":",
"keyword",
",",
"value",
",",
"idx",
"=",
"read_next_header_keyword",
"(",
"fh",
")",
"if",
"keyword",
"==",
"b'HEADER_END'",
":",
"break",
"else",
":",
"header_dict",
"[",
"keyword",
"]",
"=",
"value",
"header_idxs",
"[",
"keyword",
"]",
"=",
"idx",
"if",
"return_idxs",
":",
"return",
"header_idxs",
"else",
":",
"return",
"header_dict"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
fix_header
|
Apply a quick patch-up to a Filterbank header by overwriting a header value
Args:
filename (str): name of file to open and fix. WILL BE MODIFIED.
keyword (stt): header keyword to update
new_value (long, double, angle or string): New value to write.
Notes:
This will overwrite the current value of the blimpy with a desired
'fixed' version. Note that this has limited support for patching
string-type values - if the length of the string changes, all hell will
break loose.
|
blimpy/sigproc.py
|
def fix_header(filename, keyword, new_value):
""" Apply a quick patch-up to a Filterbank header by overwriting a header value
Args:
filename (str): name of file to open and fix. WILL BE MODIFIED.
keyword (stt): header keyword to update
new_value (long, double, angle or string): New value to write.
Notes:
This will overwrite the current value of the blimpy with a desired
'fixed' version. Note that this has limited support for patching
string-type values - if the length of the string changes, all hell will
break loose.
"""
# Read header data and return indexes of data offsets in file
hd = read_header(filename)
hi = read_header(filename, return_idxs=True)
idx = hi[keyword]
# Find out the datatype for the given keyword
dtype = header_keyword_types[keyword]
dtype_to_type = {b'<l' : np.int32,
b'str' : bytes,
b'<d' : np.float64,
b'angle' : to_sigproc_angle}
value_dtype = dtype_to_type[dtype]
# Generate the new string
if isinstance(value_dtype, bytes):
if len(hd[keyword]) == len(new_value):
val_str = np.int32(len(new_value)).tostring() + new_value
else:
raise RuntimeError("String size mismatch. Cannot update without rewriting entire file.")
else:
val_str = value_dtype(new_value).tostring()
# Write the new string to file
with open(filename, 'rb+') as fh:
fh.seek(idx)
fh.write(val_str)
|
def fix_header(filename, keyword, new_value):
""" Apply a quick patch-up to a Filterbank header by overwriting a header value
Args:
filename (str): name of file to open and fix. WILL BE MODIFIED.
keyword (stt): header keyword to update
new_value (long, double, angle or string): New value to write.
Notes:
This will overwrite the current value of the blimpy with a desired
'fixed' version. Note that this has limited support for patching
string-type values - if the length of the string changes, all hell will
break loose.
"""
# Read header data and return indexes of data offsets in file
hd = read_header(filename)
hi = read_header(filename, return_idxs=True)
idx = hi[keyword]
# Find out the datatype for the given keyword
dtype = header_keyword_types[keyword]
dtype_to_type = {b'<l' : np.int32,
b'str' : bytes,
b'<d' : np.float64,
b'angle' : to_sigproc_angle}
value_dtype = dtype_to_type[dtype]
# Generate the new string
if isinstance(value_dtype, bytes):
if len(hd[keyword]) == len(new_value):
val_str = np.int32(len(new_value)).tostring() + new_value
else:
raise RuntimeError("String size mismatch. Cannot update without rewriting entire file.")
else:
val_str = value_dtype(new_value).tostring()
# Write the new string to file
with open(filename, 'rb+') as fh:
fh.seek(idx)
fh.write(val_str)
|
[
"Apply",
"a",
"quick",
"patch",
"-",
"up",
"to",
"a",
"Filterbank",
"header",
"by",
"overwriting",
"a",
"header",
"value"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/sigproc.py#L198-L240
|
[
"def",
"fix_header",
"(",
"filename",
",",
"keyword",
",",
"new_value",
")",
":",
"# Read header data and return indexes of data offsets in file",
"hd",
"=",
"read_header",
"(",
"filename",
")",
"hi",
"=",
"read_header",
"(",
"filename",
",",
"return_idxs",
"=",
"True",
")",
"idx",
"=",
"hi",
"[",
"keyword",
"]",
"# Find out the datatype for the given keyword",
"dtype",
"=",
"header_keyword_types",
"[",
"keyword",
"]",
"dtype_to_type",
"=",
"{",
"b'<l'",
":",
"np",
".",
"int32",
",",
"b'str'",
":",
"bytes",
",",
"b'<d'",
":",
"np",
".",
"float64",
",",
"b'angle'",
":",
"to_sigproc_angle",
"}",
"value_dtype",
"=",
"dtype_to_type",
"[",
"dtype",
"]",
"# Generate the new string",
"if",
"isinstance",
"(",
"value_dtype",
",",
"bytes",
")",
":",
"if",
"len",
"(",
"hd",
"[",
"keyword",
"]",
")",
"==",
"len",
"(",
"new_value",
")",
":",
"val_str",
"=",
"np",
".",
"int32",
"(",
"len",
"(",
"new_value",
")",
")",
".",
"tostring",
"(",
")",
"+",
"new_value",
"else",
":",
"raise",
"RuntimeError",
"(",
"\"String size mismatch. Cannot update without rewriting entire file.\"",
")",
"else",
":",
"val_str",
"=",
"value_dtype",
"(",
"new_value",
")",
".",
"tostring",
"(",
")",
"# Write the new string to file",
"with",
"open",
"(",
"filename",
",",
"'rb+'",
")",
"as",
"fh",
":",
"fh",
".",
"seek",
"(",
"idx",
")",
"fh",
".",
"write",
"(",
"val_str",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
fil_double_to_angle
|
Reads a little-endian double in ddmmss.s (or hhmmss.s) format and then
converts to Float degrees (or hours). This is primarily used to read
src_raj and src_dej header values.
|
blimpy/sigproc.py
|
def fil_double_to_angle(angle):
""" Reads a little-endian double in ddmmss.s (or hhmmss.s) format and then
converts to Float degrees (or hours). This is primarily used to read
src_raj and src_dej header values. """
negative = (angle < 0.0)
angle = np.abs(angle)
dd = np.floor((angle / 10000))
angle -= 10000 * dd
mm = np.floor((angle / 100))
ss = angle - 100 * mm
dd += mm/60.0 + ss/3600.0
if negative:
dd *= -1
return dd
|
def fil_double_to_angle(angle):
""" Reads a little-endian double in ddmmss.s (or hhmmss.s) format and then
converts to Float degrees (or hours). This is primarily used to read
src_raj and src_dej header values. """
negative = (angle < 0.0)
angle = np.abs(angle)
dd = np.floor((angle / 10000))
angle -= 10000 * dd
mm = np.floor((angle / 100))
ss = angle - 100 * mm
dd += mm/60.0 + ss/3600.0
if negative:
dd *= -1
return dd
|
[
"Reads",
"a",
"little",
"-",
"endian",
"double",
"in",
"ddmmss",
".",
"s",
"(",
"or",
"hhmmss",
".",
"s",
")",
"format",
"and",
"then",
"converts",
"to",
"Float",
"degrees",
"(",
"or",
"hours",
")",
".",
"This",
"is",
"primarily",
"used",
"to",
"read",
"src_raj",
"and",
"src_dej",
"header",
"values",
"."
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/sigproc.py#L242-L259
|
[
"def",
"fil_double_to_angle",
"(",
"angle",
")",
":",
"negative",
"=",
"(",
"angle",
"<",
"0.0",
")",
"angle",
"=",
"np",
".",
"abs",
"(",
"angle",
")",
"dd",
"=",
"np",
".",
"floor",
"(",
"(",
"angle",
"/",
"10000",
")",
")",
"angle",
"-=",
"10000",
"*",
"dd",
"mm",
"=",
"np",
".",
"floor",
"(",
"(",
"angle",
"/",
"100",
")",
")",
"ss",
"=",
"angle",
"-",
"100",
"*",
"mm",
"dd",
"+=",
"mm",
"/",
"60.0",
"+",
"ss",
"/",
"3600.0",
"if",
"negative",
":",
"dd",
"*=",
"-",
"1",
"return",
"dd"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
to_sigproc_keyword
|
Generate a serialized string for a sigproc keyword:value pair
If value=None, just the keyword will be written with no payload.
Data type is inferred by keyword name (via a lookup table)
Args:
keyword (str): Keyword to write
value (None, float, str, double or angle): value to write to file
Returns:
value_str (str): serialized string to write to file.
|
blimpy/sigproc.py
|
def to_sigproc_keyword(keyword, value=None):
""" Generate a serialized string for a sigproc keyword:value pair
If value=None, just the keyword will be written with no payload.
Data type is inferred by keyword name (via a lookup table)
Args:
keyword (str): Keyword to write
value (None, float, str, double or angle): value to write to file
Returns:
value_str (str): serialized string to write to file.
"""
keyword = bytes(keyword)
if value is None:
return np.int32(len(keyword)).tostring() + keyword
else:
dtype = header_keyword_types[keyword]
dtype_to_type = {b'<l' : np.int32,
b'str' : str,
b'<d' : np.float64,
b'angle' : to_sigproc_angle}
value_dtype = dtype_to_type[dtype]
if value_dtype is str:
return np.int32(len(keyword)).tostring() + keyword + np.int32(len(value)).tostring() + value
else:
return np.int32(len(keyword)).tostring() + keyword + value_dtype(value).tostring()
|
def to_sigproc_keyword(keyword, value=None):
""" Generate a serialized string for a sigproc keyword:value pair
If value=None, just the keyword will be written with no payload.
Data type is inferred by keyword name (via a lookup table)
Args:
keyword (str): Keyword to write
value (None, float, str, double or angle): value to write to file
Returns:
value_str (str): serialized string to write to file.
"""
keyword = bytes(keyword)
if value is None:
return np.int32(len(keyword)).tostring() + keyword
else:
dtype = header_keyword_types[keyword]
dtype_to_type = {b'<l' : np.int32,
b'str' : str,
b'<d' : np.float64,
b'angle' : to_sigproc_angle}
value_dtype = dtype_to_type[dtype]
if value_dtype is str:
return np.int32(len(keyword)).tostring() + keyword + np.int32(len(value)).tostring() + value
else:
return np.int32(len(keyword)).tostring() + keyword + value_dtype(value).tostring()
|
[
"Generate",
"a",
"serialized",
"string",
"for",
"a",
"sigproc",
"keyword",
":",
"value",
"pair"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/sigproc.py#L265-L296
|
[
"def",
"to_sigproc_keyword",
"(",
"keyword",
",",
"value",
"=",
"None",
")",
":",
"keyword",
"=",
"bytes",
"(",
"keyword",
")",
"if",
"value",
"is",
"None",
":",
"return",
"np",
".",
"int32",
"(",
"len",
"(",
"keyword",
")",
")",
".",
"tostring",
"(",
")",
"+",
"keyword",
"else",
":",
"dtype",
"=",
"header_keyword_types",
"[",
"keyword",
"]",
"dtype_to_type",
"=",
"{",
"b'<l'",
":",
"np",
".",
"int32",
",",
"b'str'",
":",
"str",
",",
"b'<d'",
":",
"np",
".",
"float64",
",",
"b'angle'",
":",
"to_sigproc_angle",
"}",
"value_dtype",
"=",
"dtype_to_type",
"[",
"dtype",
"]",
"if",
"value_dtype",
"is",
"str",
":",
"return",
"np",
".",
"int32",
"(",
"len",
"(",
"keyword",
")",
")",
".",
"tostring",
"(",
")",
"+",
"keyword",
"+",
"np",
".",
"int32",
"(",
"len",
"(",
"value",
")",
")",
".",
"tostring",
"(",
")",
"+",
"value",
"else",
":",
"return",
"np",
".",
"int32",
"(",
"len",
"(",
"keyword",
")",
")",
".",
"tostring",
"(",
")",
"+",
"keyword",
"+",
"value_dtype",
"(",
"value",
")",
".",
"tostring",
"(",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
generate_sigproc_header
|
Generate a serialzed sigproc header which can be written to disk.
Args:
f (Filterbank object): Filterbank object for which to generate header
Returns:
header_str (str): Serialized string corresponding to header
|
blimpy/sigproc.py
|
def generate_sigproc_header(f):
""" Generate a serialzed sigproc header which can be written to disk.
Args:
f (Filterbank object): Filterbank object for which to generate header
Returns:
header_str (str): Serialized string corresponding to header
"""
header_string = b''
header_string += to_sigproc_keyword(b'HEADER_START')
for keyword in f.header.keys():
if keyword == b'src_raj':
header_string += to_sigproc_keyword(b'src_raj') + to_sigproc_angle(f.header[b'src_raj'])
elif keyword == b'src_dej':
header_string += to_sigproc_keyword(b'src_dej') + to_sigproc_angle(f.header[b'src_dej'])
elif keyword == b'az_start' or keyword == b'za_start':
header_string += to_sigproc_keyword(keyword) + np.float64(f.header[keyword]).tostring()
elif keyword not in header_keyword_types.keys():
pass
else:
header_string += to_sigproc_keyword(keyword, f.header[keyword])
header_string += to_sigproc_keyword(b'HEADER_END')
return header_string
|
def generate_sigproc_header(f):
""" Generate a serialzed sigproc header which can be written to disk.
Args:
f (Filterbank object): Filterbank object for which to generate header
Returns:
header_str (str): Serialized string corresponding to header
"""
header_string = b''
header_string += to_sigproc_keyword(b'HEADER_START')
for keyword in f.header.keys():
if keyword == b'src_raj':
header_string += to_sigproc_keyword(b'src_raj') + to_sigproc_angle(f.header[b'src_raj'])
elif keyword == b'src_dej':
header_string += to_sigproc_keyword(b'src_dej') + to_sigproc_angle(f.header[b'src_dej'])
elif keyword == b'az_start' or keyword == b'za_start':
header_string += to_sigproc_keyword(keyword) + np.float64(f.header[keyword]).tostring()
elif keyword not in header_keyword_types.keys():
pass
else:
header_string += to_sigproc_keyword(keyword, f.header[keyword])
header_string += to_sigproc_keyword(b'HEADER_END')
return header_string
|
[
"Generate",
"a",
"serialzed",
"sigproc",
"header",
"which",
"can",
"be",
"written",
"to",
"disk",
"."
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/sigproc.py#L298-L324
|
[
"def",
"generate_sigproc_header",
"(",
"f",
")",
":",
"header_string",
"=",
"b''",
"header_string",
"+=",
"to_sigproc_keyword",
"(",
"b'HEADER_START'",
")",
"for",
"keyword",
"in",
"f",
".",
"header",
".",
"keys",
"(",
")",
":",
"if",
"keyword",
"==",
"b'src_raj'",
":",
"header_string",
"+=",
"to_sigproc_keyword",
"(",
"b'src_raj'",
")",
"+",
"to_sigproc_angle",
"(",
"f",
".",
"header",
"[",
"b'src_raj'",
"]",
")",
"elif",
"keyword",
"==",
"b'src_dej'",
":",
"header_string",
"+=",
"to_sigproc_keyword",
"(",
"b'src_dej'",
")",
"+",
"to_sigproc_angle",
"(",
"f",
".",
"header",
"[",
"b'src_dej'",
"]",
")",
"elif",
"keyword",
"==",
"b'az_start'",
"or",
"keyword",
"==",
"b'za_start'",
":",
"header_string",
"+=",
"to_sigproc_keyword",
"(",
"keyword",
")",
"+",
"np",
".",
"float64",
"(",
"f",
".",
"header",
"[",
"keyword",
"]",
")",
".",
"tostring",
"(",
")",
"elif",
"keyword",
"not",
"in",
"header_keyword_types",
".",
"keys",
"(",
")",
":",
"pass",
"else",
":",
"header_string",
"+=",
"to_sigproc_keyword",
"(",
"keyword",
",",
"f",
".",
"header",
"[",
"keyword",
"]",
")",
"header_string",
"+=",
"to_sigproc_keyword",
"(",
"b'HEADER_END'",
")",
"return",
"header_string"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
to_sigproc_angle
|
Convert an astropy.Angle to the ridiculous sigproc angle format string.
|
blimpy/sigproc.py
|
def to_sigproc_angle(angle_val):
""" Convert an astropy.Angle to the ridiculous sigproc angle format string. """
x = str(angle_val)
if '.' in x:
if 'h' in x:
d, m, s, ss = int(x[0:x.index('h')]), int(x[x.index('h')+1:x.index('m')]), \
int(x[x.index('m')+1:x.index('.')]), float(x[x.index('.'):x.index('s')])
if 'd' in x:
d, m, s, ss = int(x[0:x.index('d')]), int(x[x.index('d')+1:x.index('m')]), \
int(x[x.index('m')+1:x.index('.')]), float(x[x.index('.'):x.index('s')])
else:
if 'h' in x:
d, m, s = int(x[0:x.index('h')]), int(x[x.index('h')+1:x.index('m')]), \
int(x[x.index('m')+1:x.index('s')])
if 'd' in x:
d, m, s = int(x[0:x.index('d')]), int(x[x.index('d')+1:x.index('m')]), \
int(x[x.index('m')+1:x.index('s')])
ss = 0
num = str(d).zfill(2) + str(m).zfill(2) + str(s).zfill(2)+ '.' + str(ss).split(".")[-1]
return np.float64(num).tostring()
|
def to_sigproc_angle(angle_val):
""" Convert an astropy.Angle to the ridiculous sigproc angle format string. """
x = str(angle_val)
if '.' in x:
if 'h' in x:
d, m, s, ss = int(x[0:x.index('h')]), int(x[x.index('h')+1:x.index('m')]), \
int(x[x.index('m')+1:x.index('.')]), float(x[x.index('.'):x.index('s')])
if 'd' in x:
d, m, s, ss = int(x[0:x.index('d')]), int(x[x.index('d')+1:x.index('m')]), \
int(x[x.index('m')+1:x.index('.')]), float(x[x.index('.'):x.index('s')])
else:
if 'h' in x:
d, m, s = int(x[0:x.index('h')]), int(x[x.index('h')+1:x.index('m')]), \
int(x[x.index('m')+1:x.index('s')])
if 'd' in x:
d, m, s = int(x[0:x.index('d')]), int(x[x.index('d')+1:x.index('m')]), \
int(x[x.index('m')+1:x.index('s')])
ss = 0
num = str(d).zfill(2) + str(m).zfill(2) + str(s).zfill(2)+ '.' + str(ss).split(".")[-1]
return np.float64(num).tostring()
|
[
"Convert",
"an",
"astropy",
".",
"Angle",
"to",
"the",
"ridiculous",
"sigproc",
"angle",
"format",
"string",
"."
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/sigproc.py#L327-L347
|
[
"def",
"to_sigproc_angle",
"(",
"angle_val",
")",
":",
"x",
"=",
"str",
"(",
"angle_val",
")",
"if",
"'.'",
"in",
"x",
":",
"if",
"'h'",
"in",
"x",
":",
"d",
",",
"m",
",",
"s",
",",
"ss",
"=",
"int",
"(",
"x",
"[",
"0",
":",
"x",
".",
"index",
"(",
"'h'",
")",
"]",
")",
",",
"int",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'h'",
")",
"+",
"1",
":",
"x",
".",
"index",
"(",
"'m'",
")",
"]",
")",
",",
"int",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'m'",
")",
"+",
"1",
":",
"x",
".",
"index",
"(",
"'.'",
")",
"]",
")",
",",
"float",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'.'",
")",
":",
"x",
".",
"index",
"(",
"'s'",
")",
"]",
")",
"if",
"'d'",
"in",
"x",
":",
"d",
",",
"m",
",",
"s",
",",
"ss",
"=",
"int",
"(",
"x",
"[",
"0",
":",
"x",
".",
"index",
"(",
"'d'",
")",
"]",
")",
",",
"int",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'d'",
")",
"+",
"1",
":",
"x",
".",
"index",
"(",
"'m'",
")",
"]",
")",
",",
"int",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'m'",
")",
"+",
"1",
":",
"x",
".",
"index",
"(",
"'.'",
")",
"]",
")",
",",
"float",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'.'",
")",
":",
"x",
".",
"index",
"(",
"'s'",
")",
"]",
")",
"else",
":",
"if",
"'h'",
"in",
"x",
":",
"d",
",",
"m",
",",
"s",
"=",
"int",
"(",
"x",
"[",
"0",
":",
"x",
".",
"index",
"(",
"'h'",
")",
"]",
")",
",",
"int",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'h'",
")",
"+",
"1",
":",
"x",
".",
"index",
"(",
"'m'",
")",
"]",
")",
",",
"int",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'m'",
")",
"+",
"1",
":",
"x",
".",
"index",
"(",
"'s'",
")",
"]",
")",
"if",
"'d'",
"in",
"x",
":",
"d",
",",
"m",
",",
"s",
"=",
"int",
"(",
"x",
"[",
"0",
":",
"x",
".",
"index",
"(",
"'d'",
")",
"]",
")",
",",
"int",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'d'",
")",
"+",
"1",
":",
"x",
".",
"index",
"(",
"'m'",
")",
"]",
")",
",",
"int",
"(",
"x",
"[",
"x",
".",
"index",
"(",
"'m'",
")",
"+",
"1",
":",
"x",
".",
"index",
"(",
"'s'",
")",
"]",
")",
"ss",
"=",
"0",
"num",
"=",
"str",
"(",
"d",
")",
".",
"zfill",
"(",
"2",
")",
"+",
"str",
"(",
"m",
")",
".",
"zfill",
"(",
"2",
")",
"+",
"str",
"(",
"s",
")",
".",
"zfill",
"(",
"2",
")",
"+",
"'.'",
"+",
"str",
"(",
"ss",
")",
".",
"split",
"(",
"\".\"",
")",
"[",
"-",
"1",
"]",
"return",
"np",
".",
"float64",
"(",
"num",
")",
".",
"tostring",
"(",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
calc_n_ints_in_file
|
Calculate number of integrations in a given file
|
blimpy/sigproc.py
|
def calc_n_ints_in_file(filename):
""" Calculate number of integrations in a given file """
# Load binary data
h = read_header(filename)
n_bytes = int(h[b'nbits'] / 8)
n_chans = h[b'nchans']
n_ifs = h[b'nifs']
idx_data = len_header(filename)
f = open(filename, 'rb')
f.seek(idx_data)
filesize = os.path.getsize(filename)
n_bytes_data = filesize - idx_data
if h[b'nbits'] == 2:
n_ints = int(4 * n_bytes_data / (n_chans * n_ifs))
else:
n_ints = int(n_bytes_data / (n_bytes * n_chans * n_ifs))
return n_ints
|
def calc_n_ints_in_file(filename):
""" Calculate number of integrations in a given file """
# Load binary data
h = read_header(filename)
n_bytes = int(h[b'nbits'] / 8)
n_chans = h[b'nchans']
n_ifs = h[b'nifs']
idx_data = len_header(filename)
f = open(filename, 'rb')
f.seek(idx_data)
filesize = os.path.getsize(filename)
n_bytes_data = filesize - idx_data
if h[b'nbits'] == 2:
n_ints = int(4 * n_bytes_data / (n_chans * n_ifs))
else:
n_ints = int(n_bytes_data / (n_bytes * n_chans * n_ifs))
return n_ints
|
[
"Calculate",
"number",
"of",
"integrations",
"in",
"a",
"given",
"file"
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/sigproc.py#L350-L369
|
[
"def",
"calc_n_ints_in_file",
"(",
"filename",
")",
":",
"# Load binary data",
"h",
"=",
"read_header",
"(",
"filename",
")",
"n_bytes",
"=",
"int",
"(",
"h",
"[",
"b'nbits'",
"]",
"/",
"8",
")",
"n_chans",
"=",
"h",
"[",
"b'nchans'",
"]",
"n_ifs",
"=",
"h",
"[",
"b'nifs'",
"]",
"idx_data",
"=",
"len_header",
"(",
"filename",
")",
"f",
"=",
"open",
"(",
"filename",
",",
"'rb'",
")",
"f",
".",
"seek",
"(",
"idx_data",
")",
"filesize",
"=",
"os",
".",
"path",
".",
"getsize",
"(",
"filename",
")",
"n_bytes_data",
"=",
"filesize",
"-",
"idx_data",
"if",
"h",
"[",
"b'nbits'",
"]",
"==",
"2",
":",
"n_ints",
"=",
"int",
"(",
"4",
"*",
"n_bytes_data",
"/",
"(",
"n_chans",
"*",
"n_ifs",
")",
")",
"else",
":",
"n_ints",
"=",
"int",
"(",
"n_bytes_data",
"/",
"(",
"n_bytes",
"*",
"n_chans",
"*",
"n_ifs",
")",
")",
"return",
"n_ints"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
make_fil_file
|
Converts file to Sigproc filterbank (.fil) format. Default saves output in current dir.
|
blimpy/h52fil.py
|
def make_fil_file(filename,out_dir='./', new_filename=None, max_load = None):
''' Converts file to Sigproc filterbank (.fil) format. Default saves output in current dir.
'''
fil_file = Waterfall(filename, max_load = max_load)
if not new_filename:
new_filename = out_dir+filename.replace('.h5','.fil').split('/')[-1]
if '.fil' not in new_filename:
new_filename = new_filename+'.fil'
fil_file.write_to_fil(new_filename)
|
def make_fil_file(filename,out_dir='./', new_filename=None, max_load = None):
''' Converts file to Sigproc filterbank (.fil) format. Default saves output in current dir.
'''
fil_file = Waterfall(filename, max_load = max_load)
if not new_filename:
new_filename = out_dir+filename.replace('.h5','.fil').split('/')[-1]
if '.fil' not in new_filename:
new_filename = new_filename+'.fil'
fil_file.write_to_fil(new_filename)
|
[
"Converts",
"file",
"to",
"Sigproc",
"filterbank",
"(",
".",
"fil",
")",
"format",
".",
"Default",
"saves",
"output",
"in",
"current",
"dir",
"."
] |
UCBerkeleySETI/blimpy
|
python
|
https://github.com/UCBerkeleySETI/blimpy/blob/b8822d3e3e911944370d84371a91fa0c29e9772e/blimpy/h52fil.py#L37-L48
|
[
"def",
"make_fil_file",
"(",
"filename",
",",
"out_dir",
"=",
"'./'",
",",
"new_filename",
"=",
"None",
",",
"max_load",
"=",
"None",
")",
":",
"fil_file",
"=",
"Waterfall",
"(",
"filename",
",",
"max_load",
"=",
"max_load",
")",
"if",
"not",
"new_filename",
":",
"new_filename",
"=",
"out_dir",
"+",
"filename",
".",
"replace",
"(",
"'.h5'",
",",
"'.fil'",
")",
".",
"split",
"(",
"'/'",
")",
"[",
"-",
"1",
"]",
"if",
"'.fil'",
"not",
"in",
"new_filename",
":",
"new_filename",
"=",
"new_filename",
"+",
"'.fil'",
"fil_file",
".",
"write_to_fil",
"(",
"new_filename",
")"
] |
b8822d3e3e911944370d84371a91fa0c29e9772e
|
test
|
Traceback.to_dict
|
Convert a Traceback into a dictionary representation
|
src/tblib/__init__.py
|
def to_dict(self):
"""Convert a Traceback into a dictionary representation"""
if self.tb_next is None:
tb_next = None
else:
tb_next = self.tb_next.to_dict()
code = {
'co_filename': self.tb_frame.f_code.co_filename,
'co_name': self.tb_frame.f_code.co_name,
}
frame = {
'f_globals': self.tb_frame.f_globals,
'f_code': code,
}
return {
'tb_frame': frame,
'tb_lineno': self.tb_lineno,
'tb_next': tb_next,
}
|
def to_dict(self):
"""Convert a Traceback into a dictionary representation"""
if self.tb_next is None:
tb_next = None
else:
tb_next = self.tb_next.to_dict()
code = {
'co_filename': self.tb_frame.f_code.co_filename,
'co_name': self.tb_frame.f_code.co_name,
}
frame = {
'f_globals': self.tb_frame.f_globals,
'f_code': code,
}
return {
'tb_frame': frame,
'tb_lineno': self.tb_lineno,
'tb_next': tb_next,
}
|
[
"Convert",
"a",
"Traceback",
"into",
"a",
"dictionary",
"representation"
] |
ionelmc/python-tblib
|
python
|
https://github.com/ionelmc/python-tblib/blob/00be69aa97e1eb1c09282b1cdb72539c947d4515/src/tblib/__init__.py#L141-L160
|
[
"def",
"to_dict",
"(",
"self",
")",
":",
"if",
"self",
".",
"tb_next",
"is",
"None",
":",
"tb_next",
"=",
"None",
"else",
":",
"tb_next",
"=",
"self",
".",
"tb_next",
".",
"to_dict",
"(",
")",
"code",
"=",
"{",
"'co_filename'",
":",
"self",
".",
"tb_frame",
".",
"f_code",
".",
"co_filename",
",",
"'co_name'",
":",
"self",
".",
"tb_frame",
".",
"f_code",
".",
"co_name",
",",
"}",
"frame",
"=",
"{",
"'f_globals'",
":",
"self",
".",
"tb_frame",
".",
"f_globals",
",",
"'f_code'",
":",
"code",
",",
"}",
"return",
"{",
"'tb_frame'",
":",
"frame",
",",
"'tb_lineno'",
":",
"self",
".",
"tb_lineno",
",",
"'tb_next'",
":",
"tb_next",
",",
"}"
] |
00be69aa97e1eb1c09282b1cdb72539c947d4515
|
test
|
make_rr_subparser
|
Make a subparser for a given type of DNS record
|
blockstack_zones/parse_zone_file.py
|
def make_rr_subparser(subparsers, rec_type, args_and_types):
"""
Make a subparser for a given type of DNS record
"""
sp = subparsers.add_parser(rec_type)
sp.add_argument("name", type=str)
sp.add_argument("ttl", type=int, nargs='?')
sp.add_argument(rec_type, type=str)
for my_spec in args_and_types:
(argname, argtype) = my_spec[:2]
if len(my_spec) > 2:
nargs = my_spec[2]
sp.add_argument(argname, type=argtype, nargs=nargs)
else:
sp.add_argument(argname, type=argtype)
return sp
|
def make_rr_subparser(subparsers, rec_type, args_and_types):
"""
Make a subparser for a given type of DNS record
"""
sp = subparsers.add_parser(rec_type)
sp.add_argument("name", type=str)
sp.add_argument("ttl", type=int, nargs='?')
sp.add_argument(rec_type, type=str)
for my_spec in args_and_types:
(argname, argtype) = my_spec[:2]
if len(my_spec) > 2:
nargs = my_spec[2]
sp.add_argument(argname, type=argtype, nargs=nargs)
else:
sp.add_argument(argname, type=argtype)
return sp
|
[
"Make",
"a",
"subparser",
"for",
"a",
"given",
"type",
"of",
"DNS",
"record"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L32-L49
|
[
"def",
"make_rr_subparser",
"(",
"subparsers",
",",
"rec_type",
",",
"args_and_types",
")",
":",
"sp",
"=",
"subparsers",
".",
"add_parser",
"(",
"rec_type",
")",
"sp",
".",
"add_argument",
"(",
"\"name\"",
",",
"type",
"=",
"str",
")",
"sp",
".",
"add_argument",
"(",
"\"ttl\"",
",",
"type",
"=",
"int",
",",
"nargs",
"=",
"'?'",
")",
"sp",
".",
"add_argument",
"(",
"rec_type",
",",
"type",
"=",
"str",
")",
"for",
"my_spec",
"in",
"args_and_types",
":",
"(",
"argname",
",",
"argtype",
")",
"=",
"my_spec",
"[",
":",
"2",
"]",
"if",
"len",
"(",
"my_spec",
")",
">",
"2",
":",
"nargs",
"=",
"my_spec",
"[",
"2",
"]",
"sp",
".",
"add_argument",
"(",
"argname",
",",
"type",
"=",
"argtype",
",",
"nargs",
"=",
"nargs",
")",
"else",
":",
"sp",
".",
"add_argument",
"(",
"argname",
",",
"type",
"=",
"argtype",
")",
"return",
"sp"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
make_parser
|
Make an ArgumentParser that accepts DNS RRs
|
blockstack_zones/parse_zone_file.py
|
def make_parser():
"""
Make an ArgumentParser that accepts DNS RRs
"""
line_parser = ZonefileLineParser()
subparsers = line_parser.add_subparsers()
# parse $ORIGIN
sp = subparsers.add_parser("$ORIGIN")
sp.add_argument("$ORIGIN", type=str)
# parse $TTL
sp = subparsers.add_parser("$TTL")
sp.add_argument("$TTL", type=int)
# parse each RR
args_and_types = [
("mname", str), ("rname", str), ("serial", int), ("refresh", int),
("retry", int), ("expire", int), ("minimum", int)
]
make_rr_subparser(subparsers, "SOA", args_and_types)
make_rr_subparser(subparsers, "NS", [("host", str)])
make_rr_subparser(subparsers, "A", [("ip", str)])
make_rr_subparser(subparsers, "AAAA", [("ip", str)])
make_rr_subparser(subparsers, "CNAME", [("alias", str)])
make_rr_subparser(subparsers, "ALIAS", [("host", str)])
make_rr_subparser(subparsers, "MX", [("preference", str), ("host", str)])
make_txt_subparser(subparsers)
make_rr_subparser(subparsers, "PTR", [("host", str)])
make_rr_subparser(subparsers, "SRV", [("priority", int), ("weight", int), ("port", int), ("target", str)])
make_rr_subparser(subparsers, "SPF", [("data", str)])
make_rr_subparser(subparsers, "URI", [("priority", int), ("weight", int), ("target", str)])
return line_parser
|
def make_parser():
"""
Make an ArgumentParser that accepts DNS RRs
"""
line_parser = ZonefileLineParser()
subparsers = line_parser.add_subparsers()
# parse $ORIGIN
sp = subparsers.add_parser("$ORIGIN")
sp.add_argument("$ORIGIN", type=str)
# parse $TTL
sp = subparsers.add_parser("$TTL")
sp.add_argument("$TTL", type=int)
# parse each RR
args_and_types = [
("mname", str), ("rname", str), ("serial", int), ("refresh", int),
("retry", int), ("expire", int), ("minimum", int)
]
make_rr_subparser(subparsers, "SOA", args_and_types)
make_rr_subparser(subparsers, "NS", [("host", str)])
make_rr_subparser(subparsers, "A", [("ip", str)])
make_rr_subparser(subparsers, "AAAA", [("ip", str)])
make_rr_subparser(subparsers, "CNAME", [("alias", str)])
make_rr_subparser(subparsers, "ALIAS", [("host", str)])
make_rr_subparser(subparsers, "MX", [("preference", str), ("host", str)])
make_txt_subparser(subparsers)
make_rr_subparser(subparsers, "PTR", [("host", str)])
make_rr_subparser(subparsers, "SRV", [("priority", int), ("weight", int), ("port", int), ("target", str)])
make_rr_subparser(subparsers, "SPF", [("data", str)])
make_rr_subparser(subparsers, "URI", [("priority", int), ("weight", int), ("target", str)])
return line_parser
|
[
"Make",
"an",
"ArgumentParser",
"that",
"accepts",
"DNS",
"RRs"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L60-L94
|
[
"def",
"make_parser",
"(",
")",
":",
"line_parser",
"=",
"ZonefileLineParser",
"(",
")",
"subparsers",
"=",
"line_parser",
".",
"add_subparsers",
"(",
")",
"# parse $ORIGIN",
"sp",
"=",
"subparsers",
".",
"add_parser",
"(",
"\"$ORIGIN\"",
")",
"sp",
".",
"add_argument",
"(",
"\"$ORIGIN\"",
",",
"type",
"=",
"str",
")",
"# parse $TTL",
"sp",
"=",
"subparsers",
".",
"add_parser",
"(",
"\"$TTL\"",
")",
"sp",
".",
"add_argument",
"(",
"\"$TTL\"",
",",
"type",
"=",
"int",
")",
"# parse each RR",
"args_and_types",
"=",
"[",
"(",
"\"mname\"",
",",
"str",
")",
",",
"(",
"\"rname\"",
",",
"str",
")",
",",
"(",
"\"serial\"",
",",
"int",
")",
",",
"(",
"\"refresh\"",
",",
"int",
")",
",",
"(",
"\"retry\"",
",",
"int",
")",
",",
"(",
"\"expire\"",
",",
"int",
")",
",",
"(",
"\"minimum\"",
",",
"int",
")",
"]",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"SOA\"",
",",
"args_and_types",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"NS\"",
",",
"[",
"(",
"\"host\"",
",",
"str",
")",
"]",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"A\"",
",",
"[",
"(",
"\"ip\"",
",",
"str",
")",
"]",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"AAAA\"",
",",
"[",
"(",
"\"ip\"",
",",
"str",
")",
"]",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"CNAME\"",
",",
"[",
"(",
"\"alias\"",
",",
"str",
")",
"]",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"ALIAS\"",
",",
"[",
"(",
"\"host\"",
",",
"str",
")",
"]",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"MX\"",
",",
"[",
"(",
"\"preference\"",
",",
"str",
")",
",",
"(",
"\"host\"",
",",
"str",
")",
"]",
")",
"make_txt_subparser",
"(",
"subparsers",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"PTR\"",
",",
"[",
"(",
"\"host\"",
",",
"str",
")",
"]",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"SRV\"",
",",
"[",
"(",
"\"priority\"",
",",
"int",
")",
",",
"(",
"\"weight\"",
",",
"int",
")",
",",
"(",
"\"port\"",
",",
"int",
")",
",",
"(",
"\"target\"",
",",
"str",
")",
"]",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"SPF\"",
",",
"[",
"(",
"\"data\"",
",",
"str",
")",
"]",
")",
"make_rr_subparser",
"(",
"subparsers",
",",
"\"URI\"",
",",
"[",
"(",
"\"priority\"",
",",
"int",
")",
",",
"(",
"\"weight\"",
",",
"int",
")",
",",
"(",
"\"target\"",
",",
"str",
")",
"]",
")",
"return",
"line_parser"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
tokenize_line
|
Tokenize a line:
* split tokens on whitespace
* treat quoted strings as a single token
* drop comments
* handle escaped spaces and comment delimiters
|
blockstack_zones/parse_zone_file.py
|
def tokenize_line(line):
"""
Tokenize a line:
* split tokens on whitespace
* treat quoted strings as a single token
* drop comments
* handle escaped spaces and comment delimiters
"""
ret = []
escape = False
quote = False
tokbuf = ""
ll = list(line)
while len(ll) > 0:
c = ll.pop(0)
if c.isspace():
if not quote and not escape:
# end of token
if len(tokbuf) > 0:
ret.append(tokbuf)
tokbuf = ""
elif quote:
# in quotes
tokbuf += c
elif escape:
# escaped space
tokbuf += c
escape = False
else:
tokbuf = ""
continue
if c == '\\':
escape = True
continue
elif c == '"':
if not escape:
if quote:
# end of quote
ret.append(tokbuf)
tokbuf = ""
quote = False
continue
else:
# beginning of quote
quote = True
continue
elif c == ';':
if not escape:
# comment
ret.append(tokbuf)
tokbuf = ""
break
# normal character
tokbuf += c
escape = False
if len(tokbuf.strip(" ").strip("\n")) > 0:
ret.append(tokbuf)
return ret
|
def tokenize_line(line):
"""
Tokenize a line:
* split tokens on whitespace
* treat quoted strings as a single token
* drop comments
* handle escaped spaces and comment delimiters
"""
ret = []
escape = False
quote = False
tokbuf = ""
ll = list(line)
while len(ll) > 0:
c = ll.pop(0)
if c.isspace():
if not quote and not escape:
# end of token
if len(tokbuf) > 0:
ret.append(tokbuf)
tokbuf = ""
elif quote:
# in quotes
tokbuf += c
elif escape:
# escaped space
tokbuf += c
escape = False
else:
tokbuf = ""
continue
if c == '\\':
escape = True
continue
elif c == '"':
if not escape:
if quote:
# end of quote
ret.append(tokbuf)
tokbuf = ""
quote = False
continue
else:
# beginning of quote
quote = True
continue
elif c == ';':
if not escape:
# comment
ret.append(tokbuf)
tokbuf = ""
break
# normal character
tokbuf += c
escape = False
if len(tokbuf.strip(" ").strip("\n")) > 0:
ret.append(tokbuf)
return ret
|
[
"Tokenize",
"a",
"line",
":",
"*",
"split",
"tokens",
"on",
"whitespace",
"*",
"treat",
"quoted",
"strings",
"as",
"a",
"single",
"token",
"*",
"drop",
"comments",
"*",
"handle",
"escaped",
"spaces",
"and",
"comment",
"delimiters"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L97-L160
|
[
"def",
"tokenize_line",
"(",
"line",
")",
":",
"ret",
"=",
"[",
"]",
"escape",
"=",
"False",
"quote",
"=",
"False",
"tokbuf",
"=",
"\"\"",
"ll",
"=",
"list",
"(",
"line",
")",
"while",
"len",
"(",
"ll",
")",
">",
"0",
":",
"c",
"=",
"ll",
".",
"pop",
"(",
"0",
")",
"if",
"c",
".",
"isspace",
"(",
")",
":",
"if",
"not",
"quote",
"and",
"not",
"escape",
":",
"# end of token",
"if",
"len",
"(",
"tokbuf",
")",
">",
"0",
":",
"ret",
".",
"append",
"(",
"tokbuf",
")",
"tokbuf",
"=",
"\"\"",
"elif",
"quote",
":",
"# in quotes",
"tokbuf",
"+=",
"c",
"elif",
"escape",
":",
"# escaped space",
"tokbuf",
"+=",
"c",
"escape",
"=",
"False",
"else",
":",
"tokbuf",
"=",
"\"\"",
"continue",
"if",
"c",
"==",
"'\\\\'",
":",
"escape",
"=",
"True",
"continue",
"elif",
"c",
"==",
"'\"'",
":",
"if",
"not",
"escape",
":",
"if",
"quote",
":",
"# end of quote",
"ret",
".",
"append",
"(",
"tokbuf",
")",
"tokbuf",
"=",
"\"\"",
"quote",
"=",
"False",
"continue",
"else",
":",
"# beginning of quote",
"quote",
"=",
"True",
"continue",
"elif",
"c",
"==",
"';'",
":",
"if",
"not",
"escape",
":",
"# comment ",
"ret",
".",
"append",
"(",
"tokbuf",
")",
"tokbuf",
"=",
"\"\"",
"break",
"# normal character",
"tokbuf",
"+=",
"c",
"escape",
"=",
"False",
"if",
"len",
"(",
"tokbuf",
".",
"strip",
"(",
"\" \"",
")",
".",
"strip",
"(",
"\"\\n\"",
")",
")",
">",
"0",
":",
"ret",
".",
"append",
"(",
"tokbuf",
")",
"return",
"ret"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
serialize
|
Serialize tokens:
* quote whitespace-containing tokens
* escape semicolons
|
blockstack_zones/parse_zone_file.py
|
def serialize(tokens):
"""
Serialize tokens:
* quote whitespace-containing tokens
* escape semicolons
"""
ret = []
for tok in tokens:
if " " in tok:
tok = '"%s"' % tok
if ";" in tok:
tok = tok.replace(";", "\;")
ret.append(tok)
return " ".join(ret)
|
def serialize(tokens):
"""
Serialize tokens:
* quote whitespace-containing tokens
* escape semicolons
"""
ret = []
for tok in tokens:
if " " in tok:
tok = '"%s"' % tok
if ";" in tok:
tok = tok.replace(";", "\;")
ret.append(tok)
return " ".join(ret)
|
[
"Serialize",
"tokens",
":",
"*",
"quote",
"whitespace",
"-",
"containing",
"tokens",
"*",
"escape",
"semicolons"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L163-L179
|
[
"def",
"serialize",
"(",
"tokens",
")",
":",
"ret",
"=",
"[",
"]",
"for",
"tok",
"in",
"tokens",
":",
"if",
"\" \"",
"in",
"tok",
":",
"tok",
"=",
"'\"%s\"'",
"%",
"tok",
"if",
"\";\"",
"in",
"tok",
":",
"tok",
"=",
"tok",
".",
"replace",
"(",
"\";\"",
",",
"\"\\;\"",
")",
"ret",
".",
"append",
"(",
"tok",
")",
"return",
"\" \"",
".",
"join",
"(",
"ret",
")"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
remove_comments
|
Remove comments from a zonefile
|
blockstack_zones/parse_zone_file.py
|
def remove_comments(text):
"""
Remove comments from a zonefile
"""
ret = []
lines = text.split("\n")
for line in lines:
if len(line) == 0:
continue
line = serialize(tokenize_line(line))
ret.append(line)
return "\n".join(ret)
|
def remove_comments(text):
"""
Remove comments from a zonefile
"""
ret = []
lines = text.split("\n")
for line in lines:
if len(line) == 0:
continue
line = serialize(tokenize_line(line))
ret.append(line)
return "\n".join(ret)
|
[
"Remove",
"comments",
"from",
"a",
"zonefile"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L182-L195
|
[
"def",
"remove_comments",
"(",
"text",
")",
":",
"ret",
"=",
"[",
"]",
"lines",
"=",
"text",
".",
"split",
"(",
"\"\\n\"",
")",
"for",
"line",
"in",
"lines",
":",
"if",
"len",
"(",
"line",
")",
"==",
"0",
":",
"continue",
"line",
"=",
"serialize",
"(",
"tokenize_line",
"(",
"line",
")",
")",
"ret",
".",
"append",
"(",
"line",
")",
"return",
"\"\\n\"",
".",
"join",
"(",
"ret",
")"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
flatten
|
Flatten the text:
* make sure each record is on one line.
* remove parenthesis
|
blockstack_zones/parse_zone_file.py
|
def flatten(text):
"""
Flatten the text:
* make sure each record is on one line.
* remove parenthesis
"""
lines = text.split("\n")
# tokens: sequence of non-whitespace separated by '' where a newline was
tokens = []
for l in lines:
if len(l) == 0:
continue
l = l.replace("\t", " ")
tokens += filter(lambda x: len(x) > 0, l.split(" ")) + ['']
# find (...) and turn it into a single line ("capture" it)
capturing = False
captured = []
flattened = []
while len(tokens) > 0:
tok = tokens.pop(0)
if not capturing and len(tok) == 0:
# normal end-of-line
if len(captured) > 0:
flattened.append(" ".join(captured))
captured = []
continue
if tok.startswith("("):
# begin grouping
tok = tok.lstrip("(")
capturing = True
if capturing and tok.endswith(")"):
# end grouping. next end-of-line will turn this sequence into a flat line
tok = tok.rstrip(")")
capturing = False
captured.append(tok)
return "\n".join(flattened)
|
def flatten(text):
"""
Flatten the text:
* make sure each record is on one line.
* remove parenthesis
"""
lines = text.split("\n")
# tokens: sequence of non-whitespace separated by '' where a newline was
tokens = []
for l in lines:
if len(l) == 0:
continue
l = l.replace("\t", " ")
tokens += filter(lambda x: len(x) > 0, l.split(" ")) + ['']
# find (...) and turn it into a single line ("capture" it)
capturing = False
captured = []
flattened = []
while len(tokens) > 0:
tok = tokens.pop(0)
if not capturing and len(tok) == 0:
# normal end-of-line
if len(captured) > 0:
flattened.append(" ".join(captured))
captured = []
continue
if tok.startswith("("):
# begin grouping
tok = tok.lstrip("(")
capturing = True
if capturing and tok.endswith(")"):
# end grouping. next end-of-line will turn this sequence into a flat line
tok = tok.rstrip(")")
capturing = False
captured.append(tok)
return "\n".join(flattened)
|
[
"Flatten",
"the",
"text",
":",
"*",
"make",
"sure",
"each",
"record",
"is",
"on",
"one",
"line",
".",
"*",
"remove",
"parenthesis"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L198-L241
|
[
"def",
"flatten",
"(",
"text",
")",
":",
"lines",
"=",
"text",
".",
"split",
"(",
"\"\\n\"",
")",
"# tokens: sequence of non-whitespace separated by '' where a newline was",
"tokens",
"=",
"[",
"]",
"for",
"l",
"in",
"lines",
":",
"if",
"len",
"(",
"l",
")",
"==",
"0",
":",
"continue",
"l",
"=",
"l",
".",
"replace",
"(",
"\"\\t\"",
",",
"\" \"",
")",
"tokens",
"+=",
"filter",
"(",
"lambda",
"x",
":",
"len",
"(",
"x",
")",
">",
"0",
",",
"l",
".",
"split",
"(",
"\" \"",
")",
")",
"+",
"[",
"''",
"]",
"# find (...) and turn it into a single line (\"capture\" it)",
"capturing",
"=",
"False",
"captured",
"=",
"[",
"]",
"flattened",
"=",
"[",
"]",
"while",
"len",
"(",
"tokens",
")",
">",
"0",
":",
"tok",
"=",
"tokens",
".",
"pop",
"(",
"0",
")",
"if",
"not",
"capturing",
"and",
"len",
"(",
"tok",
")",
"==",
"0",
":",
"# normal end-of-line",
"if",
"len",
"(",
"captured",
")",
">",
"0",
":",
"flattened",
".",
"append",
"(",
"\" \"",
".",
"join",
"(",
"captured",
")",
")",
"captured",
"=",
"[",
"]",
"continue",
"if",
"tok",
".",
"startswith",
"(",
"\"(\"",
")",
":",
"# begin grouping",
"tok",
"=",
"tok",
".",
"lstrip",
"(",
"\"(\"",
")",
"capturing",
"=",
"True",
"if",
"capturing",
"and",
"tok",
".",
"endswith",
"(",
"\")\"",
")",
":",
"# end grouping. next end-of-line will turn this sequence into a flat line",
"tok",
"=",
"tok",
".",
"rstrip",
"(",
"\")\"",
")",
"capturing",
"=",
"False",
"captured",
".",
"append",
"(",
"tok",
")",
"return",
"\"\\n\"",
".",
"join",
"(",
"flattened",
")"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
remove_class
|
Remove the CLASS from each DNS record, if present.
The only class that gets used today (for all intents
and purposes) is 'IN'.
|
blockstack_zones/parse_zone_file.py
|
def remove_class(text):
"""
Remove the CLASS from each DNS record, if present.
The only class that gets used today (for all intents
and purposes) is 'IN'.
"""
# see RFC 1035 for list of classes
lines = text.split("\n")
ret = []
for line in lines:
tokens = tokenize_line(line)
tokens_upper = [t.upper() for t in tokens]
if "IN" in tokens_upper:
tokens.remove("IN")
elif "CS" in tokens_upper:
tokens.remove("CS")
elif "CH" in tokens_upper:
tokens.remove("CH")
elif "HS" in tokens_upper:
tokens.remove("HS")
ret.append(serialize(tokens))
return "\n".join(ret)
|
def remove_class(text):
"""
Remove the CLASS from each DNS record, if present.
The only class that gets used today (for all intents
and purposes) is 'IN'.
"""
# see RFC 1035 for list of classes
lines = text.split("\n")
ret = []
for line in lines:
tokens = tokenize_line(line)
tokens_upper = [t.upper() for t in tokens]
if "IN" in tokens_upper:
tokens.remove("IN")
elif "CS" in tokens_upper:
tokens.remove("CS")
elif "CH" in tokens_upper:
tokens.remove("CH")
elif "HS" in tokens_upper:
tokens.remove("HS")
ret.append(serialize(tokens))
return "\n".join(ret)
|
[
"Remove",
"the",
"CLASS",
"from",
"each",
"DNS",
"record",
"if",
"present",
".",
"The",
"only",
"class",
"that",
"gets",
"used",
"today",
"(",
"for",
"all",
"intents",
"and",
"purposes",
")",
"is",
"IN",
"."
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L244-L269
|
[
"def",
"remove_class",
"(",
"text",
")",
":",
"# see RFC 1035 for list of classes",
"lines",
"=",
"text",
".",
"split",
"(",
"\"\\n\"",
")",
"ret",
"=",
"[",
"]",
"for",
"line",
"in",
"lines",
":",
"tokens",
"=",
"tokenize_line",
"(",
"line",
")",
"tokens_upper",
"=",
"[",
"t",
".",
"upper",
"(",
")",
"for",
"t",
"in",
"tokens",
"]",
"if",
"\"IN\"",
"in",
"tokens_upper",
":",
"tokens",
".",
"remove",
"(",
"\"IN\"",
")",
"elif",
"\"CS\"",
"in",
"tokens_upper",
":",
"tokens",
".",
"remove",
"(",
"\"CS\"",
")",
"elif",
"\"CH\"",
"in",
"tokens_upper",
":",
"tokens",
".",
"remove",
"(",
"\"CH\"",
")",
"elif",
"\"HS\"",
"in",
"tokens_upper",
":",
"tokens",
".",
"remove",
"(",
"\"HS\"",
")",
"ret",
".",
"append",
"(",
"serialize",
"(",
"tokens",
")",
")",
"return",
"\"\\n\"",
".",
"join",
"(",
"ret",
")"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
add_default_name
|
Go through each line of the text and ensure that
a name is defined. Use '@' if there is none.
|
blockstack_zones/parse_zone_file.py
|
def add_default_name(text):
"""
Go through each line of the text and ensure that
a name is defined. Use '@' if there is none.
"""
global SUPPORTED_RECORDS
lines = text.split("\n")
ret = []
for line in lines:
tokens = tokenize_line(line)
if len(tokens) == 0:
continue
if tokens[0] in SUPPORTED_RECORDS and not tokens[0].startswith("$"):
# add back the name
tokens = ['@'] + tokens
ret.append(serialize(tokens))
return "\n".join(ret)
|
def add_default_name(text):
"""
Go through each line of the text and ensure that
a name is defined. Use '@' if there is none.
"""
global SUPPORTED_RECORDS
lines = text.split("\n")
ret = []
for line in lines:
tokens = tokenize_line(line)
if len(tokens) == 0:
continue
if tokens[0] in SUPPORTED_RECORDS and not tokens[0].startswith("$"):
# add back the name
tokens = ['@'] + tokens
ret.append(serialize(tokens))
return "\n".join(ret)
|
[
"Go",
"through",
"each",
"line",
"of",
"the",
"text",
"and",
"ensure",
"that",
"a",
"name",
"is",
"defined",
".",
"Use"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L272-L292
|
[
"def",
"add_default_name",
"(",
"text",
")",
":",
"global",
"SUPPORTED_RECORDS",
"lines",
"=",
"text",
".",
"split",
"(",
"\"\\n\"",
")",
"ret",
"=",
"[",
"]",
"for",
"line",
"in",
"lines",
":",
"tokens",
"=",
"tokenize_line",
"(",
"line",
")",
"if",
"len",
"(",
"tokens",
")",
"==",
"0",
":",
"continue",
"if",
"tokens",
"[",
"0",
"]",
"in",
"SUPPORTED_RECORDS",
"and",
"not",
"tokens",
"[",
"0",
"]",
".",
"startswith",
"(",
"\"$\"",
")",
":",
"# add back the name",
"tokens",
"=",
"[",
"'@'",
"]",
"+",
"tokens",
"ret",
".",
"append",
"(",
"serialize",
"(",
"tokens",
")",
")",
"return",
"\"\\n\"",
".",
"join",
"(",
"ret",
")"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
parse_line
|
Given the parser, capitalized list of a line's tokens, and the current set of records
parsed so far, parse it into a dictionary.
Return the new set of parsed records.
Raise an exception on error.
|
blockstack_zones/parse_zone_file.py
|
def parse_line(parser, record_token, parsed_records):
"""
Given the parser, capitalized list of a line's tokens, and the current set of records
parsed so far, parse it into a dictionary.
Return the new set of parsed records.
Raise an exception on error.
"""
global SUPPORTED_RECORDS
line = " ".join(record_token)
# match parser to record type
if len(record_token) >= 2 and record_token[1] in SUPPORTED_RECORDS:
# with no ttl
record_token = [record_token[1]] + record_token
elif len(record_token) >= 3 and record_token[2] in SUPPORTED_RECORDS:
# with ttl
record_token = [record_token[2]] + record_token
if record_token[0] == "TXT":
record_token = record_token[:2] + ["--ttl"] + record_token[2:]
try:
rr, unmatched = parser.parse_known_args(record_token)
assert len(unmatched) == 0, "Unmatched fields: %s" % unmatched
except (SystemExit, AssertionError, InvalidLineException):
# invalid argument
raise InvalidLineException(line)
record_dict = rr.__dict__
if record_token[0] == "TXT" and len(record_dict['txt']) == 1:
record_dict['txt'] = record_dict['txt'][0]
# what kind of record? including origin and ttl
record_type = None
for key in record_dict.keys():
if key in SUPPORTED_RECORDS and (key.startswith("$") or record_dict[key] == key):
record_type = key
if record_dict[key] == key:
del record_dict[key]
break
assert record_type is not None, "Unknown record type in %s" % rr
# clean fields
for field in record_dict.keys():
if record_dict[field] is None:
del record_dict[field]
current_origin = record_dict.get('$ORIGIN', parsed_records.get('$ORIGIN', None))
# special record-specific fix-ups
if record_type == 'PTR':
record_dict['fullname'] = record_dict['name'] + '.' + current_origin
if len(record_dict) > 0:
if record_type.startswith("$"):
# put the value directly
record_dict_key = record_type.lower()
parsed_records[record_dict_key] = record_dict[record_type]
else:
record_dict_key = record_type.lower()
parsed_records[record_dict_key].append(record_dict)
return parsed_records
|
def parse_line(parser, record_token, parsed_records):
"""
Given the parser, capitalized list of a line's tokens, and the current set of records
parsed so far, parse it into a dictionary.
Return the new set of parsed records.
Raise an exception on error.
"""
global SUPPORTED_RECORDS
line = " ".join(record_token)
# match parser to record type
if len(record_token) >= 2 and record_token[1] in SUPPORTED_RECORDS:
# with no ttl
record_token = [record_token[1]] + record_token
elif len(record_token) >= 3 and record_token[2] in SUPPORTED_RECORDS:
# with ttl
record_token = [record_token[2]] + record_token
if record_token[0] == "TXT":
record_token = record_token[:2] + ["--ttl"] + record_token[2:]
try:
rr, unmatched = parser.parse_known_args(record_token)
assert len(unmatched) == 0, "Unmatched fields: %s" % unmatched
except (SystemExit, AssertionError, InvalidLineException):
# invalid argument
raise InvalidLineException(line)
record_dict = rr.__dict__
if record_token[0] == "TXT" and len(record_dict['txt']) == 1:
record_dict['txt'] = record_dict['txt'][0]
# what kind of record? including origin and ttl
record_type = None
for key in record_dict.keys():
if key in SUPPORTED_RECORDS and (key.startswith("$") or record_dict[key] == key):
record_type = key
if record_dict[key] == key:
del record_dict[key]
break
assert record_type is not None, "Unknown record type in %s" % rr
# clean fields
for field in record_dict.keys():
if record_dict[field] is None:
del record_dict[field]
current_origin = record_dict.get('$ORIGIN', parsed_records.get('$ORIGIN', None))
# special record-specific fix-ups
if record_type == 'PTR':
record_dict['fullname'] = record_dict['name'] + '.' + current_origin
if len(record_dict) > 0:
if record_type.startswith("$"):
# put the value directly
record_dict_key = record_type.lower()
parsed_records[record_dict_key] = record_dict[record_type]
else:
record_dict_key = record_type.lower()
parsed_records[record_dict_key].append(record_dict)
return parsed_records
|
[
"Given",
"the",
"parser",
"capitalized",
"list",
"of",
"a",
"line",
"s",
"tokens",
"and",
"the",
"current",
"set",
"of",
"records",
"parsed",
"so",
"far",
"parse",
"it",
"into",
"a",
"dictionary",
"."
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L295-L359
|
[
"def",
"parse_line",
"(",
"parser",
",",
"record_token",
",",
"parsed_records",
")",
":",
"global",
"SUPPORTED_RECORDS",
"line",
"=",
"\" \"",
".",
"join",
"(",
"record_token",
")",
"# match parser to record type",
"if",
"len",
"(",
"record_token",
")",
">=",
"2",
"and",
"record_token",
"[",
"1",
"]",
"in",
"SUPPORTED_RECORDS",
":",
"# with no ttl",
"record_token",
"=",
"[",
"record_token",
"[",
"1",
"]",
"]",
"+",
"record_token",
"elif",
"len",
"(",
"record_token",
")",
">=",
"3",
"and",
"record_token",
"[",
"2",
"]",
"in",
"SUPPORTED_RECORDS",
":",
"# with ttl",
"record_token",
"=",
"[",
"record_token",
"[",
"2",
"]",
"]",
"+",
"record_token",
"if",
"record_token",
"[",
"0",
"]",
"==",
"\"TXT\"",
":",
"record_token",
"=",
"record_token",
"[",
":",
"2",
"]",
"+",
"[",
"\"--ttl\"",
"]",
"+",
"record_token",
"[",
"2",
":",
"]",
"try",
":",
"rr",
",",
"unmatched",
"=",
"parser",
".",
"parse_known_args",
"(",
"record_token",
")",
"assert",
"len",
"(",
"unmatched",
")",
"==",
"0",
",",
"\"Unmatched fields: %s\"",
"%",
"unmatched",
"except",
"(",
"SystemExit",
",",
"AssertionError",
",",
"InvalidLineException",
")",
":",
"# invalid argument ",
"raise",
"InvalidLineException",
"(",
"line",
")",
"record_dict",
"=",
"rr",
".",
"__dict__",
"if",
"record_token",
"[",
"0",
"]",
"==",
"\"TXT\"",
"and",
"len",
"(",
"record_dict",
"[",
"'txt'",
"]",
")",
"==",
"1",
":",
"record_dict",
"[",
"'txt'",
"]",
"=",
"record_dict",
"[",
"'txt'",
"]",
"[",
"0",
"]",
"# what kind of record? including origin and ttl",
"record_type",
"=",
"None",
"for",
"key",
"in",
"record_dict",
".",
"keys",
"(",
")",
":",
"if",
"key",
"in",
"SUPPORTED_RECORDS",
"and",
"(",
"key",
".",
"startswith",
"(",
"\"$\"",
")",
"or",
"record_dict",
"[",
"key",
"]",
"==",
"key",
")",
":",
"record_type",
"=",
"key",
"if",
"record_dict",
"[",
"key",
"]",
"==",
"key",
":",
"del",
"record_dict",
"[",
"key",
"]",
"break",
"assert",
"record_type",
"is",
"not",
"None",
",",
"\"Unknown record type in %s\"",
"%",
"rr",
"# clean fields",
"for",
"field",
"in",
"record_dict",
".",
"keys",
"(",
")",
":",
"if",
"record_dict",
"[",
"field",
"]",
"is",
"None",
":",
"del",
"record_dict",
"[",
"field",
"]",
"current_origin",
"=",
"record_dict",
".",
"get",
"(",
"'$ORIGIN'",
",",
"parsed_records",
".",
"get",
"(",
"'$ORIGIN'",
",",
"None",
")",
")",
"# special record-specific fix-ups",
"if",
"record_type",
"==",
"'PTR'",
":",
"record_dict",
"[",
"'fullname'",
"]",
"=",
"record_dict",
"[",
"'name'",
"]",
"+",
"'.'",
"+",
"current_origin",
"if",
"len",
"(",
"record_dict",
")",
">",
"0",
":",
"if",
"record_type",
".",
"startswith",
"(",
"\"$\"",
")",
":",
"# put the value directly",
"record_dict_key",
"=",
"record_type",
".",
"lower",
"(",
")",
"parsed_records",
"[",
"record_dict_key",
"]",
"=",
"record_dict",
"[",
"record_type",
"]",
"else",
":",
"record_dict_key",
"=",
"record_type",
".",
"lower",
"(",
")",
"parsed_records",
"[",
"record_dict_key",
"]",
".",
"append",
"(",
"record_dict",
")",
"return",
"parsed_records"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
parse_lines
|
Parse a zonefile into a dict.
@text must be flattened--each record must be on one line.
Also, all comments must be removed.
|
blockstack_zones/parse_zone_file.py
|
def parse_lines(text, ignore_invalid=False):
"""
Parse a zonefile into a dict.
@text must be flattened--each record must be on one line.
Also, all comments must be removed.
"""
json_zone_file = defaultdict(list)
record_lines = text.split("\n")
parser = make_parser()
for record_line in record_lines:
record_token = tokenize_line(record_line)
try:
json_zone_file = parse_line(parser, record_token, json_zone_file)
except InvalidLineException:
if ignore_invalid:
continue
else:
raise
return json_zone_file
|
def parse_lines(text, ignore_invalid=False):
"""
Parse a zonefile into a dict.
@text must be flattened--each record must be on one line.
Also, all comments must be removed.
"""
json_zone_file = defaultdict(list)
record_lines = text.split("\n")
parser = make_parser()
for record_line in record_lines:
record_token = tokenize_line(record_line)
try:
json_zone_file = parse_line(parser, record_token, json_zone_file)
except InvalidLineException:
if ignore_invalid:
continue
else:
raise
return json_zone_file
|
[
"Parse",
"a",
"zonefile",
"into",
"a",
"dict",
"."
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L362-L382
|
[
"def",
"parse_lines",
"(",
"text",
",",
"ignore_invalid",
"=",
"False",
")",
":",
"json_zone_file",
"=",
"defaultdict",
"(",
"list",
")",
"record_lines",
"=",
"text",
".",
"split",
"(",
"\"\\n\"",
")",
"parser",
"=",
"make_parser",
"(",
")",
"for",
"record_line",
"in",
"record_lines",
":",
"record_token",
"=",
"tokenize_line",
"(",
"record_line",
")",
"try",
":",
"json_zone_file",
"=",
"parse_line",
"(",
"parser",
",",
"record_token",
",",
"json_zone_file",
")",
"except",
"InvalidLineException",
":",
"if",
"ignore_invalid",
":",
"continue",
"else",
":",
"raise",
"return",
"json_zone_file"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
parse_zone_file
|
Parse a zonefile into a dict
|
blockstack_zones/parse_zone_file.py
|
def parse_zone_file(text, ignore_invalid=False):
"""
Parse a zonefile into a dict
"""
text = remove_comments(text)
text = flatten(text)
text = remove_class(text)
text = add_default_name(text)
json_zone_file = parse_lines(text, ignore_invalid=ignore_invalid)
return json_zone_file
|
def parse_zone_file(text, ignore_invalid=False):
"""
Parse a zonefile into a dict
"""
text = remove_comments(text)
text = flatten(text)
text = remove_class(text)
text = add_default_name(text)
json_zone_file = parse_lines(text, ignore_invalid=ignore_invalid)
return json_zone_file
|
[
"Parse",
"a",
"zonefile",
"into",
"a",
"dict"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/parse_zone_file.py#L385-L394
|
[
"def",
"parse_zone_file",
"(",
"text",
",",
"ignore_invalid",
"=",
"False",
")",
":",
"text",
"=",
"remove_comments",
"(",
"text",
")",
"text",
"=",
"flatten",
"(",
"text",
")",
"text",
"=",
"remove_class",
"(",
"text",
")",
"text",
"=",
"add_default_name",
"(",
"text",
")",
"json_zone_file",
"=",
"parse_lines",
"(",
"text",
",",
"ignore_invalid",
"=",
"ignore_invalid",
")",
"return",
"json_zone_file"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
make_zone_file
|
Generate the DNS zonefile, given a json-encoded description of the
zone file (@json_zone_file) and the template to fill in (@template)
json_zone_file = {
"$origin": origin server,
"$ttl": default time-to-live,
"soa": [ soa records ],
"ns": [ ns records ],
"a": [ a records ],
"aaaa": [ aaaa records ]
"cname": [ cname records ]
"alias": [ alias records ]
"mx": [ mx records ]
"ptr": [ ptr records ]
"txt": [ txt records ]
"srv": [ srv records ]
"spf": [ spf records ]
"uri": [ uri records ]
}
|
blockstack_zones/make_zone_file.py
|
def make_zone_file(json_zone_file_input, origin=None, ttl=None, template=None):
"""
Generate the DNS zonefile, given a json-encoded description of the
zone file (@json_zone_file) and the template to fill in (@template)
json_zone_file = {
"$origin": origin server,
"$ttl": default time-to-live,
"soa": [ soa records ],
"ns": [ ns records ],
"a": [ a records ],
"aaaa": [ aaaa records ]
"cname": [ cname records ]
"alias": [ alias records ]
"mx": [ mx records ]
"ptr": [ ptr records ]
"txt": [ txt records ]
"srv": [ srv records ]
"spf": [ spf records ]
"uri": [ uri records ]
}
"""
if template is None:
template = DEFAULT_TEMPLATE[:]
# careful...
json_zone_file = copy.deepcopy(json_zone_file_input)
if origin is not None:
json_zone_file['$origin'] = origin
if ttl is not None:
json_zone_file['$ttl'] = ttl
soa_records = [json_zone_file.get('soa')] if json_zone_file.get('soa') else None
zone_file = template
zone_file = process_origin(json_zone_file.get('$origin', None), zone_file)
zone_file = process_ttl(json_zone_file.get('$ttl', None), zone_file)
zone_file = process_soa(soa_records, zone_file)
zone_file = process_ns(json_zone_file.get('ns', None), zone_file)
zone_file = process_a(json_zone_file.get('a', None), zone_file)
zone_file = process_aaaa(json_zone_file.get('aaaa', None), zone_file)
zone_file = process_cname(json_zone_file.get('cname', None), zone_file)
zone_file = process_alias(json_zone_file.get('alias', None), zone_file)
zone_file = process_mx(json_zone_file.get('mx', None), zone_file)
zone_file = process_ptr(json_zone_file.get('ptr', None), zone_file)
zone_file = process_txt(json_zone_file.get('txt', None), zone_file)
zone_file = process_srv(json_zone_file.get('srv', None), zone_file)
zone_file = process_spf(json_zone_file.get('spf', None), zone_file)
zone_file = process_uri(json_zone_file.get('uri', None), zone_file)
# remove newlines, but terminate with one
zone_file = "\n".join(
filter(
lambda l: len(l.strip()) > 0, [tl.strip() for tl in zone_file.split("\n")]
)
) + "\n"
return zone_file
|
def make_zone_file(json_zone_file_input, origin=None, ttl=None, template=None):
"""
Generate the DNS zonefile, given a json-encoded description of the
zone file (@json_zone_file) and the template to fill in (@template)
json_zone_file = {
"$origin": origin server,
"$ttl": default time-to-live,
"soa": [ soa records ],
"ns": [ ns records ],
"a": [ a records ],
"aaaa": [ aaaa records ]
"cname": [ cname records ]
"alias": [ alias records ]
"mx": [ mx records ]
"ptr": [ ptr records ]
"txt": [ txt records ]
"srv": [ srv records ]
"spf": [ spf records ]
"uri": [ uri records ]
}
"""
if template is None:
template = DEFAULT_TEMPLATE[:]
# careful...
json_zone_file = copy.deepcopy(json_zone_file_input)
if origin is not None:
json_zone_file['$origin'] = origin
if ttl is not None:
json_zone_file['$ttl'] = ttl
soa_records = [json_zone_file.get('soa')] if json_zone_file.get('soa') else None
zone_file = template
zone_file = process_origin(json_zone_file.get('$origin', None), zone_file)
zone_file = process_ttl(json_zone_file.get('$ttl', None), zone_file)
zone_file = process_soa(soa_records, zone_file)
zone_file = process_ns(json_zone_file.get('ns', None), zone_file)
zone_file = process_a(json_zone_file.get('a', None), zone_file)
zone_file = process_aaaa(json_zone_file.get('aaaa', None), zone_file)
zone_file = process_cname(json_zone_file.get('cname', None), zone_file)
zone_file = process_alias(json_zone_file.get('alias', None), zone_file)
zone_file = process_mx(json_zone_file.get('mx', None), zone_file)
zone_file = process_ptr(json_zone_file.get('ptr', None), zone_file)
zone_file = process_txt(json_zone_file.get('txt', None), zone_file)
zone_file = process_srv(json_zone_file.get('srv', None), zone_file)
zone_file = process_spf(json_zone_file.get('spf', None), zone_file)
zone_file = process_uri(json_zone_file.get('uri', None), zone_file)
# remove newlines, but terminate with one
zone_file = "\n".join(
filter(
lambda l: len(l.strip()) > 0, [tl.strip() for tl in zone_file.split("\n")]
)
) + "\n"
return zone_file
|
[
"Generate",
"the",
"DNS",
"zonefile",
"given",
"a",
"json",
"-",
"encoded",
"description",
"of",
"the",
"zone",
"file",
"(",
"@json_zone_file",
")",
"and",
"the",
"template",
"to",
"fill",
"in",
"(",
"@template",
")"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/make_zone_file.py#L10-L69
|
[
"def",
"make_zone_file",
"(",
"json_zone_file_input",
",",
"origin",
"=",
"None",
",",
"ttl",
"=",
"None",
",",
"template",
"=",
"None",
")",
":",
"if",
"template",
"is",
"None",
":",
"template",
"=",
"DEFAULT_TEMPLATE",
"[",
":",
"]",
"# careful...",
"json_zone_file",
"=",
"copy",
".",
"deepcopy",
"(",
"json_zone_file_input",
")",
"if",
"origin",
"is",
"not",
"None",
":",
"json_zone_file",
"[",
"'$origin'",
"]",
"=",
"origin",
"if",
"ttl",
"is",
"not",
"None",
":",
"json_zone_file",
"[",
"'$ttl'",
"]",
"=",
"ttl",
"soa_records",
"=",
"[",
"json_zone_file",
".",
"get",
"(",
"'soa'",
")",
"]",
"if",
"json_zone_file",
".",
"get",
"(",
"'soa'",
")",
"else",
"None",
"zone_file",
"=",
"template",
"zone_file",
"=",
"process_origin",
"(",
"json_zone_file",
".",
"get",
"(",
"'$origin'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_ttl",
"(",
"json_zone_file",
".",
"get",
"(",
"'$ttl'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_soa",
"(",
"soa_records",
",",
"zone_file",
")",
"zone_file",
"=",
"process_ns",
"(",
"json_zone_file",
".",
"get",
"(",
"'ns'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_a",
"(",
"json_zone_file",
".",
"get",
"(",
"'a'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_aaaa",
"(",
"json_zone_file",
".",
"get",
"(",
"'aaaa'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_cname",
"(",
"json_zone_file",
".",
"get",
"(",
"'cname'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_alias",
"(",
"json_zone_file",
".",
"get",
"(",
"'alias'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_mx",
"(",
"json_zone_file",
".",
"get",
"(",
"'mx'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_ptr",
"(",
"json_zone_file",
".",
"get",
"(",
"'ptr'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_txt",
"(",
"json_zone_file",
".",
"get",
"(",
"'txt'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_srv",
"(",
"json_zone_file",
".",
"get",
"(",
"'srv'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_spf",
"(",
"json_zone_file",
".",
"get",
"(",
"'spf'",
",",
"None",
")",
",",
"zone_file",
")",
"zone_file",
"=",
"process_uri",
"(",
"json_zone_file",
".",
"get",
"(",
"'uri'",
",",
"None",
")",
",",
"zone_file",
")",
"# remove newlines, but terminate with one",
"zone_file",
"=",
"\"\\n\"",
".",
"join",
"(",
"filter",
"(",
"lambda",
"l",
":",
"len",
"(",
"l",
".",
"strip",
"(",
")",
")",
">",
"0",
",",
"[",
"tl",
".",
"strip",
"(",
")",
"for",
"tl",
"in",
"zone_file",
".",
"split",
"(",
"\"\\n\"",
")",
"]",
")",
")",
"+",
"\"\\n\"",
"return",
"zone_file"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
process_origin
|
Replace {$origin} in template with a serialized $ORIGIN record
|
blockstack_zones/record_processors.py
|
def process_origin(data, template):
"""
Replace {$origin} in template with a serialized $ORIGIN record
"""
record = ""
if data is not None:
record += "$ORIGIN %s" % data
return template.replace("{$origin}", record)
|
def process_origin(data, template):
"""
Replace {$origin} in template with a serialized $ORIGIN record
"""
record = ""
if data is not None:
record += "$ORIGIN %s" % data
return template.replace("{$origin}", record)
|
[
"Replace",
"{",
"$origin",
"}",
"in",
"template",
"with",
"a",
"serialized",
"$ORIGIN",
"record"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/record_processors.py#L4-L12
|
[
"def",
"process_origin",
"(",
"data",
",",
"template",
")",
":",
"record",
"=",
"\"\"",
"if",
"data",
"is",
"not",
"None",
":",
"record",
"+=",
"\"$ORIGIN %s\"",
"%",
"data",
"return",
"template",
".",
"replace",
"(",
"\"{$origin}\"",
",",
"record",
")"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
process_ttl
|
Replace {$ttl} in template with a serialized $TTL record
|
blockstack_zones/record_processors.py
|
def process_ttl(data, template):
"""
Replace {$ttl} in template with a serialized $TTL record
"""
record = ""
if data is not None:
record += "$TTL %s" % data
return template.replace("{$ttl}", record)
|
def process_ttl(data, template):
"""
Replace {$ttl} in template with a serialized $TTL record
"""
record = ""
if data is not None:
record += "$TTL %s" % data
return template.replace("{$ttl}", record)
|
[
"Replace",
"{",
"$ttl",
"}",
"in",
"template",
"with",
"a",
"serialized",
"$TTL",
"record"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/record_processors.py#L15-L23
|
[
"def",
"process_ttl",
"(",
"data",
",",
"template",
")",
":",
"record",
"=",
"\"\"",
"if",
"data",
"is",
"not",
"None",
":",
"record",
"+=",
"\"$TTL %s\"",
"%",
"data",
"return",
"template",
".",
"replace",
"(",
"\"{$ttl}\"",
",",
"record",
")"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
process_soa
|
Replace {SOA} in template with a set of serialized SOA records
|
blockstack_zones/record_processors.py
|
def process_soa(data, template):
"""
Replace {SOA} in template with a set of serialized SOA records
"""
record = template[:]
if data is not None:
assert len(data) == 1, "Only support one SOA RR at this time"
data = data[0]
soadat = []
domain_fields = ['mname', 'rname']
param_fields = ['serial', 'refresh', 'retry', 'expire', 'minimum']
for f in domain_fields + param_fields:
assert f in data.keys(), "Missing '%s' (%s)" % (f, data)
data_name = str(data.get('name', '@'))
soadat.append(data_name)
if data.get('ttl') is not None:
soadat.append( str(data['ttl']) )
soadat.append("IN")
soadat.append("SOA")
for key in domain_fields:
value = str(data[key])
soadat.append(value)
soadat.append("(")
for key in param_fields:
value = str(data[key])
soadat.append(value)
soadat.append(")")
soa_txt = " ".join(soadat)
record = record.replace("{soa}", soa_txt)
else:
# clear all SOA fields
record = record.replace("{soa}", "")
return record
|
def process_soa(data, template):
"""
Replace {SOA} in template with a set of serialized SOA records
"""
record = template[:]
if data is not None:
assert len(data) == 1, "Only support one SOA RR at this time"
data = data[0]
soadat = []
domain_fields = ['mname', 'rname']
param_fields = ['serial', 'refresh', 'retry', 'expire', 'minimum']
for f in domain_fields + param_fields:
assert f in data.keys(), "Missing '%s' (%s)" % (f, data)
data_name = str(data.get('name', '@'))
soadat.append(data_name)
if data.get('ttl') is not None:
soadat.append( str(data['ttl']) )
soadat.append("IN")
soadat.append("SOA")
for key in domain_fields:
value = str(data[key])
soadat.append(value)
soadat.append("(")
for key in param_fields:
value = str(data[key])
soadat.append(value)
soadat.append(")")
soa_txt = " ".join(soadat)
record = record.replace("{soa}", soa_txt)
else:
# clear all SOA fields
record = record.replace("{soa}", "")
return record
|
[
"Replace",
"{",
"SOA",
"}",
"in",
"template",
"with",
"a",
"set",
"of",
"serialized",
"SOA",
"records"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/record_processors.py#L26-L72
|
[
"def",
"process_soa",
"(",
"data",
",",
"template",
")",
":",
"record",
"=",
"template",
"[",
":",
"]",
"if",
"data",
"is",
"not",
"None",
":",
"assert",
"len",
"(",
"data",
")",
"==",
"1",
",",
"\"Only support one SOA RR at this time\"",
"data",
"=",
"data",
"[",
"0",
"]",
"soadat",
"=",
"[",
"]",
"domain_fields",
"=",
"[",
"'mname'",
",",
"'rname'",
"]",
"param_fields",
"=",
"[",
"'serial'",
",",
"'refresh'",
",",
"'retry'",
",",
"'expire'",
",",
"'minimum'",
"]",
"for",
"f",
"in",
"domain_fields",
"+",
"param_fields",
":",
"assert",
"f",
"in",
"data",
".",
"keys",
"(",
")",
",",
"\"Missing '%s' (%s)\"",
"%",
"(",
"f",
",",
"data",
")",
"data_name",
"=",
"str",
"(",
"data",
".",
"get",
"(",
"'name'",
",",
"'@'",
")",
")",
"soadat",
".",
"append",
"(",
"data_name",
")",
"if",
"data",
".",
"get",
"(",
"'ttl'",
")",
"is",
"not",
"None",
":",
"soadat",
".",
"append",
"(",
"str",
"(",
"data",
"[",
"'ttl'",
"]",
")",
")",
"soadat",
".",
"append",
"(",
"\"IN\"",
")",
"soadat",
".",
"append",
"(",
"\"SOA\"",
")",
"for",
"key",
"in",
"domain_fields",
":",
"value",
"=",
"str",
"(",
"data",
"[",
"key",
"]",
")",
"soadat",
".",
"append",
"(",
"value",
")",
"soadat",
".",
"append",
"(",
"\"(\"",
")",
"for",
"key",
"in",
"param_fields",
":",
"value",
"=",
"str",
"(",
"data",
"[",
"key",
"]",
")",
"soadat",
".",
"append",
"(",
"value",
")",
"soadat",
".",
"append",
"(",
"\")\"",
")",
"soa_txt",
"=",
"\" \"",
".",
"join",
"(",
"soadat",
")",
"record",
"=",
"record",
".",
"replace",
"(",
"\"{soa}\"",
",",
"soa_txt",
")",
"else",
":",
"# clear all SOA fields ",
"record",
"=",
"record",
".",
"replace",
"(",
"\"{soa}\"",
",",
"\"\"",
")",
"return",
"record"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
quote_field
|
Quote a field in a list of DNS records.
Return the new data records.
|
blockstack_zones/record_processors.py
|
def quote_field(data, field):
"""
Quote a field in a list of DNS records.
Return the new data records.
"""
if data is None:
return None
data_dup = copy.deepcopy(data)
for i in xrange(0, len(data_dup)):
data_dup[i][field] = '"%s"' % data_dup[i][field]
data_dup[i][field] = data_dup[i][field].replace(";", "\;")
return data_dup
|
def quote_field(data, field):
"""
Quote a field in a list of DNS records.
Return the new data records.
"""
if data is None:
return None
data_dup = copy.deepcopy(data)
for i in xrange(0, len(data_dup)):
data_dup[i][field] = '"%s"' % data_dup[i][field]
data_dup[i][field] = data_dup[i][field].replace(";", "\;")
return data_dup
|
[
"Quote",
"a",
"field",
"in",
"a",
"list",
"of",
"DNS",
"records",
".",
"Return",
"the",
"new",
"data",
"records",
"."
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/record_processors.py#L75-L88
|
[
"def",
"quote_field",
"(",
"data",
",",
"field",
")",
":",
"if",
"data",
"is",
"None",
":",
"return",
"None",
"data_dup",
"=",
"copy",
".",
"deepcopy",
"(",
"data",
")",
"for",
"i",
"in",
"xrange",
"(",
"0",
",",
"len",
"(",
"data_dup",
")",
")",
":",
"data_dup",
"[",
"i",
"]",
"[",
"field",
"]",
"=",
"'\"%s\"'",
"%",
"data_dup",
"[",
"i",
"]",
"[",
"field",
"]",
"data_dup",
"[",
"i",
"]",
"[",
"field",
"]",
"=",
"data_dup",
"[",
"i",
"]",
"[",
"field",
"]",
".",
"replace",
"(",
"\";\"",
",",
"\"\\;\"",
")",
"return",
"data_dup"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
process_rr
|
Meta method:
Replace $field in template with the serialized $record_type records,
using @record_key from each datum.
|
blockstack_zones/record_processors.py
|
def process_rr(data, record_type, record_keys, field, template):
"""
Meta method:
Replace $field in template with the serialized $record_type records,
using @record_key from each datum.
"""
if data is None:
return template.replace(field, "")
if type(record_keys) == list:
pass
elif type(record_keys) == str:
record_keys = [record_keys]
else:
raise ValueError("Invalid record keys")
assert type(data) == list, "Data must be a list"
record = ""
for i in xrange(0, len(data)):
for record_key in record_keys:
assert record_key in data[i].keys(), "Missing '%s'" % record_key
record_data = []
record_data.append( str(data[i].get('name', '@')) )
if data[i].get('ttl') is not None:
record_data.append( str(data[i]['ttl']) )
record_data.append(record_type)
record_data += [str(data[i][record_key]) for record_key in record_keys]
record += " ".join(record_data) + "\n"
return template.replace(field, record)
|
def process_rr(data, record_type, record_keys, field, template):
"""
Meta method:
Replace $field in template with the serialized $record_type records,
using @record_key from each datum.
"""
if data is None:
return template.replace(field, "")
if type(record_keys) == list:
pass
elif type(record_keys) == str:
record_keys = [record_keys]
else:
raise ValueError("Invalid record keys")
assert type(data) == list, "Data must be a list"
record = ""
for i in xrange(0, len(data)):
for record_key in record_keys:
assert record_key in data[i].keys(), "Missing '%s'" % record_key
record_data = []
record_data.append( str(data[i].get('name', '@')) )
if data[i].get('ttl') is not None:
record_data.append( str(data[i]['ttl']) )
record_data.append(record_type)
record_data += [str(data[i][record_key]) for record_key in record_keys]
record += " ".join(record_data) + "\n"
return template.replace(field, record)
|
[
"Meta",
"method",
":",
"Replace",
"$field",
"in",
"template",
"with",
"the",
"serialized",
"$record_type",
"records",
"using"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/record_processors.py#L91-L124
|
[
"def",
"process_rr",
"(",
"data",
",",
"record_type",
",",
"record_keys",
",",
"field",
",",
"template",
")",
":",
"if",
"data",
"is",
"None",
":",
"return",
"template",
".",
"replace",
"(",
"field",
",",
"\"\"",
")",
"if",
"type",
"(",
"record_keys",
")",
"==",
"list",
":",
"pass",
"elif",
"type",
"(",
"record_keys",
")",
"==",
"str",
":",
"record_keys",
"=",
"[",
"record_keys",
"]",
"else",
":",
"raise",
"ValueError",
"(",
"\"Invalid record keys\"",
")",
"assert",
"type",
"(",
"data",
")",
"==",
"list",
",",
"\"Data must be a list\"",
"record",
"=",
"\"\"",
"for",
"i",
"in",
"xrange",
"(",
"0",
",",
"len",
"(",
"data",
")",
")",
":",
"for",
"record_key",
"in",
"record_keys",
":",
"assert",
"record_key",
"in",
"data",
"[",
"i",
"]",
".",
"keys",
"(",
")",
",",
"\"Missing '%s'\"",
"%",
"record_key",
"record_data",
"=",
"[",
"]",
"record_data",
".",
"append",
"(",
"str",
"(",
"data",
"[",
"i",
"]",
".",
"get",
"(",
"'name'",
",",
"'@'",
")",
")",
")",
"if",
"data",
"[",
"i",
"]",
".",
"get",
"(",
"'ttl'",
")",
"is",
"not",
"None",
":",
"record_data",
".",
"append",
"(",
"str",
"(",
"data",
"[",
"i",
"]",
"[",
"'ttl'",
"]",
")",
")",
"record_data",
".",
"append",
"(",
"record_type",
")",
"record_data",
"+=",
"[",
"str",
"(",
"data",
"[",
"i",
"]",
"[",
"record_key",
"]",
")",
"for",
"record_key",
"in",
"record_keys",
"]",
"record",
"+=",
"\" \"",
".",
"join",
"(",
"record_data",
")",
"+",
"\"\\n\"",
"return",
"template",
".",
"replace",
"(",
"field",
",",
"record",
")"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
process_txt
|
Replace {txt} in template with the serialized TXT records
|
blockstack_zones/record_processors.py
|
def process_txt(data, template):
"""
Replace {txt} in template with the serialized TXT records
"""
if data is None:
to_process = None
else:
# quote txt
to_process = copy.deepcopy(data)
for datum in to_process:
if isinstance(datum["txt"], list):
datum["txt"] = " ".join(['"%s"' % entry.replace(";", "\;")
for entry in datum["txt"]])
else:
datum["txt"] = '"%s"' % datum["txt"].replace(";", "\;")
return process_rr(to_process, "TXT", "txt", "{txt}", template)
|
def process_txt(data, template):
"""
Replace {txt} in template with the serialized TXT records
"""
if data is None:
to_process = None
else:
# quote txt
to_process = copy.deepcopy(data)
for datum in to_process:
if isinstance(datum["txt"], list):
datum["txt"] = " ".join(['"%s"' % entry.replace(";", "\;")
for entry in datum["txt"]])
else:
datum["txt"] = '"%s"' % datum["txt"].replace(";", "\;")
return process_rr(to_process, "TXT", "txt", "{txt}", template)
|
[
"Replace",
"{",
"txt",
"}",
"in",
"template",
"with",
"the",
"serialized",
"TXT",
"records"
] |
blockstack/zone-file-py
|
python
|
https://github.com/blockstack/zone-file-py/blob/c1078c8c3c28f0881bc9a3af53d4972c4a6862d0/blockstack_zones/record_processors.py#L176-L191
|
[
"def",
"process_txt",
"(",
"data",
",",
"template",
")",
":",
"if",
"data",
"is",
"None",
":",
"to_process",
"=",
"None",
"else",
":",
"# quote txt",
"to_process",
"=",
"copy",
".",
"deepcopy",
"(",
"data",
")",
"for",
"datum",
"in",
"to_process",
":",
"if",
"isinstance",
"(",
"datum",
"[",
"\"txt\"",
"]",
",",
"list",
")",
":",
"datum",
"[",
"\"txt\"",
"]",
"=",
"\" \"",
".",
"join",
"(",
"[",
"'\"%s\"'",
"%",
"entry",
".",
"replace",
"(",
"\";\"",
",",
"\"\\;\"",
")",
"for",
"entry",
"in",
"datum",
"[",
"\"txt\"",
"]",
"]",
")",
"else",
":",
"datum",
"[",
"\"txt\"",
"]",
"=",
"'\"%s\"'",
"%",
"datum",
"[",
"\"txt\"",
"]",
".",
"replace",
"(",
"\";\"",
",",
"\"\\;\"",
")",
"return",
"process_rr",
"(",
"to_process",
",",
"\"TXT\"",
",",
"\"txt\"",
",",
"\"{txt}\"",
",",
"template",
")"
] |
c1078c8c3c28f0881bc9a3af53d4972c4a6862d0
|
test
|
parse_schema_string
|
Load and return a PySchema class from an avsc string
|
pyschema_extensions/avro_schema_parser.py
|
def parse_schema_string(schema_string):
"""
Load and return a PySchema class from an avsc string
"""
if isinstance(schema_string, str):
schema_string = schema_string.decode("utf8")
schema_struct = json.loads(schema_string)
return AvroSchemaParser().parse_schema_struct(schema_struct)
|
def parse_schema_string(schema_string):
"""
Load and return a PySchema class from an avsc string
"""
if isinstance(schema_string, str):
schema_string = schema_string.decode("utf8")
schema_struct = json.loads(schema_string)
return AvroSchemaParser().parse_schema_struct(schema_struct)
|
[
"Load",
"and",
"return",
"a",
"PySchema",
"class",
"from",
"an",
"avsc",
"string"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema_extensions/avro_schema_parser.py#L49-L57
|
[
"def",
"parse_schema_string",
"(",
"schema_string",
")",
":",
"if",
"isinstance",
"(",
"schema_string",
",",
"str",
")",
":",
"schema_string",
"=",
"schema_string",
".",
"decode",
"(",
"\"utf8\"",
")",
"schema_struct",
"=",
"json",
".",
"loads",
"(",
"schema_string",
")",
"return",
"AvroSchemaParser",
"(",
")",
".",
"parse_schema_struct",
"(",
"schema_struct",
")"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
to_python_package
|
This function can be used to build a python package representation of pyschema classes.
One module is created per namespace in a package matching the namespace hierarchy.
Args:
classes: A collection of classes to build the package from
target_folder: Root folder of the package
parent_package: Prepended on all import statements in order to support absolute imports.
parent_package is not used when building the package file structure
indent: Indent level. Defaults to 4 spaces
|
pyschema/source_generation.py
|
def to_python_package(classes, target_folder, parent_package=None, indent=DEFAULT_INDENT):
'''
This function can be used to build a python package representation of pyschema classes.
One module is created per namespace in a package matching the namespace hierarchy.
Args:
classes: A collection of classes to build the package from
target_folder: Root folder of the package
parent_package: Prepended on all import statements in order to support absolute imports.
parent_package is not used when building the package file structure
indent: Indent level. Defaults to 4 spaces
'''
PackageBuilder(target_folder, parent_package, indent).from_classes_with_refs(classes)
|
def to_python_package(classes, target_folder, parent_package=None, indent=DEFAULT_INDENT):
'''
This function can be used to build a python package representation of pyschema classes.
One module is created per namespace in a package matching the namespace hierarchy.
Args:
classes: A collection of classes to build the package from
target_folder: Root folder of the package
parent_package: Prepended on all import statements in order to support absolute imports.
parent_package is not used when building the package file structure
indent: Indent level. Defaults to 4 spaces
'''
PackageBuilder(target_folder, parent_package, indent).from_classes_with_refs(classes)
|
[
"This",
"function",
"can",
"be",
"used",
"to",
"build",
"a",
"python",
"package",
"representation",
"of",
"pyschema",
"classes",
".",
"One",
"module",
"is",
"created",
"per",
"namespace",
"in",
"a",
"package",
"matching",
"the",
"namespace",
"hierarchy",
"."
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/source_generation.py#L158-L170
|
[
"def",
"to_python_package",
"(",
"classes",
",",
"target_folder",
",",
"parent_package",
"=",
"None",
",",
"indent",
"=",
"DEFAULT_INDENT",
")",
":",
"PackageBuilder",
"(",
"target_folder",
",",
"parent_package",
",",
"indent",
")",
".",
"from_classes_with_refs",
"(",
"classes",
")"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
_class_source
|
Generate Python source code for one specific class
Doesn't include or take into account any dependencies between record types
|
pyschema/source_generation.py
|
def _class_source(schema, indent):
"""Generate Python source code for one specific class
Doesn't include or take into account any dependencies between record types
"""
def_pattern = (
"class {class_name}(pyschema.Record):\n"
"{indent}# WARNING: This class was generated by pyschema.to_python_source\n"
"{indent}# there is a risk that any modification made to this class will be overwritten\n"
"{optional_namespace_def}"
"{field_defs}\n"
)
if hasattr(schema, '_namespace'):
optional_namespace_def = "{indent}_namespace = {namespace!r}\n".format(
namespace=schema._namespace, indent=indent)
else:
optional_namespace_def = ""
field_defs = [
"{indent}{field_name} = {field!r}".format(field_name=field_name, field=field, indent=indent)
for field_name, field in schema._fields.iteritems()
]
if not field_defs:
field_defs = ["{indent}pass".format(indent=indent)]
return def_pattern.format(
class_name=schema._schema_name,
optional_namespace_def=optional_namespace_def,
field_defs="\n".join(field_defs),
indent=indent
)
|
def _class_source(schema, indent):
"""Generate Python source code for one specific class
Doesn't include or take into account any dependencies between record types
"""
def_pattern = (
"class {class_name}(pyschema.Record):\n"
"{indent}# WARNING: This class was generated by pyschema.to_python_source\n"
"{indent}# there is a risk that any modification made to this class will be overwritten\n"
"{optional_namespace_def}"
"{field_defs}\n"
)
if hasattr(schema, '_namespace'):
optional_namespace_def = "{indent}_namespace = {namespace!r}\n".format(
namespace=schema._namespace, indent=indent)
else:
optional_namespace_def = ""
field_defs = [
"{indent}{field_name} = {field!r}".format(field_name=field_name, field=field, indent=indent)
for field_name, field in schema._fields.iteritems()
]
if not field_defs:
field_defs = ["{indent}pass".format(indent=indent)]
return def_pattern.format(
class_name=schema._schema_name,
optional_namespace_def=optional_namespace_def,
field_defs="\n".join(field_defs),
indent=indent
)
|
[
"Generate",
"Python",
"source",
"code",
"for",
"one",
"specific",
"class"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/source_generation.py#L193-L224
|
[
"def",
"_class_source",
"(",
"schema",
",",
"indent",
")",
":",
"def_pattern",
"=",
"(",
"\"class {class_name}(pyschema.Record):\\n\"",
"\"{indent}# WARNING: This class was generated by pyschema.to_python_source\\n\"",
"\"{indent}# there is a risk that any modification made to this class will be overwritten\\n\"",
"\"{optional_namespace_def}\"",
"\"{field_defs}\\n\"",
")",
"if",
"hasattr",
"(",
"schema",
",",
"'_namespace'",
")",
":",
"optional_namespace_def",
"=",
"\"{indent}_namespace = {namespace!r}\\n\"",
".",
"format",
"(",
"namespace",
"=",
"schema",
".",
"_namespace",
",",
"indent",
"=",
"indent",
")",
"else",
":",
"optional_namespace_def",
"=",
"\"\"",
"field_defs",
"=",
"[",
"\"{indent}{field_name} = {field!r}\"",
".",
"format",
"(",
"field_name",
"=",
"field_name",
",",
"field",
"=",
"field",
",",
"indent",
"=",
"indent",
")",
"for",
"field_name",
",",
"field",
"in",
"schema",
".",
"_fields",
".",
"iteritems",
"(",
")",
"]",
"if",
"not",
"field_defs",
":",
"field_defs",
"=",
"[",
"\"{indent}pass\"",
".",
"format",
"(",
"indent",
"=",
"indent",
")",
"]",
"return",
"def_pattern",
".",
"format",
"(",
"class_name",
"=",
"schema",
".",
"_schema_name",
",",
"optional_namespace_def",
"=",
"optional_namespace_def",
",",
"field_defs",
"=",
"\"\\n\"",
".",
"join",
"(",
"field_defs",
")",
",",
"indent",
"=",
"indent",
")"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
no_auto_store
|
Temporarily disable automatic registration of records in the auto_store
Decorator factory. This is _NOT_ thread safe
>>> @no_auto_store()
... class BarRecord(Record):
... pass
>>> BarRecord in auto_store
False
|
pyschema/core.py
|
def no_auto_store():
""" Temporarily disable automatic registration of records in the auto_store
Decorator factory. This is _NOT_ thread safe
>>> @no_auto_store()
... class BarRecord(Record):
... pass
>>> BarRecord in auto_store
False
"""
original_auto_register_value = PySchema.auto_register
disable_auto_register()
def decorator(cls):
PySchema.auto_register = original_auto_register_value
return cls
return decorator
|
def no_auto_store():
""" Temporarily disable automatic registration of records in the auto_store
Decorator factory. This is _NOT_ thread safe
>>> @no_auto_store()
... class BarRecord(Record):
... pass
>>> BarRecord in auto_store
False
"""
original_auto_register_value = PySchema.auto_register
disable_auto_register()
def decorator(cls):
PySchema.auto_register = original_auto_register_value
return cls
return decorator
|
[
"Temporarily",
"disable",
"automatic",
"registration",
"of",
"records",
"in",
"the",
"auto_store"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L416-L435
|
[
"def",
"no_auto_store",
"(",
")",
":",
"original_auto_register_value",
"=",
"PySchema",
".",
"auto_register",
"disable_auto_register",
"(",
")",
"def",
"decorator",
"(",
"cls",
")",
":",
"PySchema",
".",
"auto_register",
"=",
"original_auto_register_value",
"return",
"cls",
"return",
"decorator"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
to_json_compatible
|
Dump record in json-encodable object format
|
pyschema/core.py
|
def to_json_compatible(record):
"Dump record in json-encodable object format"
d = {}
for fname, f in record._fields.iteritems():
val = getattr(record, fname)
if val is not None:
d[fname] = f.dump(val)
return d
|
def to_json_compatible(record):
"Dump record in json-encodable object format"
d = {}
for fname, f in record._fields.iteritems():
val = getattr(record, fname)
if val is not None:
d[fname] = f.dump(val)
return d
|
[
"Dump",
"record",
"in",
"json",
"-",
"encodable",
"object",
"format"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L502-L509
|
[
"def",
"to_json_compatible",
"(",
"record",
")",
":",
"d",
"=",
"{",
"}",
"for",
"fname",
",",
"f",
"in",
"record",
".",
"_fields",
".",
"iteritems",
"(",
")",
":",
"val",
"=",
"getattr",
"(",
"record",
",",
"fname",
")",
"if",
"val",
"is",
"not",
"None",
":",
"d",
"[",
"fname",
"]",
"=",
"f",
".",
"dump",
"(",
"val",
")",
"return",
"d"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
from_json_compatible
|
Load from json-encodable
|
pyschema/core.py
|
def from_json_compatible(schema, dct):
"Load from json-encodable"
kwargs = {}
for key in dct:
field_type = schema._fields.get(key)
if field_type is None:
raise ParseError("Unexpected field encountered in line for record %s: %s" % (schema.__name__, key))
kwargs[key] = field_type.load(dct[key])
return schema(**kwargs)
|
def from_json_compatible(schema, dct):
"Load from json-encodable"
kwargs = {}
for key in dct:
field_type = schema._fields.get(key)
if field_type is None:
raise ParseError("Unexpected field encountered in line for record %s: %s" % (schema.__name__, key))
kwargs[key] = field_type.load(dct[key])
return schema(**kwargs)
|
[
"Load",
"from",
"json",
"-",
"encodable"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L512-L522
|
[
"def",
"from_json_compatible",
"(",
"schema",
",",
"dct",
")",
":",
"kwargs",
"=",
"{",
"}",
"for",
"key",
"in",
"dct",
":",
"field_type",
"=",
"schema",
".",
"_fields",
".",
"get",
"(",
"key",
")",
"if",
"field_type",
"is",
"None",
":",
"raise",
"ParseError",
"(",
"\"Unexpected field encountered in line for record %s: %s\"",
"%",
"(",
"schema",
".",
"__name__",
",",
"key",
")",
")",
"kwargs",
"[",
"key",
"]",
"=",
"field_type",
".",
"load",
"(",
"dct",
"[",
"key",
"]",
")",
"return",
"schema",
"(",
"*",
"*",
"kwargs",
")"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
load_json_dct
|
Create a Record instance from a json-compatible dictionary
The dictionary values should have types that are json compatible,
as if just loaded from a json serialized record string.
:param dct:
Python dictionary with key/value pairs for the record
:param record_store:
Record store to use for schema lookups (when $schema field is present)
:param schema:
PySchema Record class for the record to load.
This will override any $schema fields specified in `dct`
|
pyschema/core.py
|
def load_json_dct(
dct,
record_store=None,
schema=None,
loader=from_json_compatible
):
""" Create a Record instance from a json-compatible dictionary
The dictionary values should have types that are json compatible,
as if just loaded from a json serialized record string.
:param dct:
Python dictionary with key/value pairs for the record
:param record_store:
Record store to use for schema lookups (when $schema field is present)
:param schema:
PySchema Record class for the record to load.
This will override any $schema fields specified in `dct`
"""
if schema is None:
if record_store is None:
record_store = auto_store
try:
schema_name = dct.pop(SCHEMA_FIELD_NAME)
except KeyError:
raise ParseError((
"Serialized record missing '{0}' "
"record identifier and no schema supplied")
.format(SCHEMA_FIELD_NAME)
)
try:
schema = record_store.get(schema_name)
except KeyError:
raise ParseError(
"Can't recognize record type %r"
% (schema_name,), schema_name)
# if schema is explicit, use that instead of SCHEMA_FIELD_NAME
elif SCHEMA_FIELD_NAME in dct:
dct.pop(SCHEMA_FIELD_NAME)
record = loader(schema, dct)
return record
|
def load_json_dct(
dct,
record_store=None,
schema=None,
loader=from_json_compatible
):
""" Create a Record instance from a json-compatible dictionary
The dictionary values should have types that are json compatible,
as if just loaded from a json serialized record string.
:param dct:
Python dictionary with key/value pairs for the record
:param record_store:
Record store to use for schema lookups (when $schema field is present)
:param schema:
PySchema Record class for the record to load.
This will override any $schema fields specified in `dct`
"""
if schema is None:
if record_store is None:
record_store = auto_store
try:
schema_name = dct.pop(SCHEMA_FIELD_NAME)
except KeyError:
raise ParseError((
"Serialized record missing '{0}' "
"record identifier and no schema supplied")
.format(SCHEMA_FIELD_NAME)
)
try:
schema = record_store.get(schema_name)
except KeyError:
raise ParseError(
"Can't recognize record type %r"
% (schema_name,), schema_name)
# if schema is explicit, use that instead of SCHEMA_FIELD_NAME
elif SCHEMA_FIELD_NAME in dct:
dct.pop(SCHEMA_FIELD_NAME)
record = loader(schema, dct)
return record
|
[
"Create",
"a",
"Record",
"instance",
"from",
"a",
"json",
"-",
"compatible",
"dictionary"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L541-L586
|
[
"def",
"load_json_dct",
"(",
"dct",
",",
"record_store",
"=",
"None",
",",
"schema",
"=",
"None",
",",
"loader",
"=",
"from_json_compatible",
")",
":",
"if",
"schema",
"is",
"None",
":",
"if",
"record_store",
"is",
"None",
":",
"record_store",
"=",
"auto_store",
"try",
":",
"schema_name",
"=",
"dct",
".",
"pop",
"(",
"SCHEMA_FIELD_NAME",
")",
"except",
"KeyError",
":",
"raise",
"ParseError",
"(",
"(",
"\"Serialized record missing '{0}' \"",
"\"record identifier and no schema supplied\"",
")",
".",
"format",
"(",
"SCHEMA_FIELD_NAME",
")",
")",
"try",
":",
"schema",
"=",
"record_store",
".",
"get",
"(",
"schema_name",
")",
"except",
"KeyError",
":",
"raise",
"ParseError",
"(",
"\"Can't recognize record type %r\"",
"%",
"(",
"schema_name",
",",
")",
",",
"schema_name",
")",
"# if schema is explicit, use that instead of SCHEMA_FIELD_NAME",
"elif",
"SCHEMA_FIELD_NAME",
"in",
"dct",
":",
"dct",
".",
"pop",
"(",
"SCHEMA_FIELD_NAME",
")",
"record",
"=",
"loader",
"(",
"schema",
",",
"dct",
")",
"return",
"record"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
loads
|
Create a Record instance from a json serialized dictionary
:param s:
String with a json-serialized dictionary
:param record_store:
Record store to use for schema lookups (when $schema field is present)
:param loader:
Function called to fetch attributes from json. Typically shouldn't be used by end users
:param schema:
PySchema Record class for the record to load.
This will override any $schema fields specified in `s`
:param record_class:
DEPRECATED option, old name for the `schema` parameter
|
pyschema/core.py
|
def loads(
s,
record_store=None,
schema=None,
loader=from_json_compatible,
record_class=None # deprecated in favor of schema
):
""" Create a Record instance from a json serialized dictionary
:param s:
String with a json-serialized dictionary
:param record_store:
Record store to use for schema lookups (when $schema field is present)
:param loader:
Function called to fetch attributes from json. Typically shouldn't be used by end users
:param schema:
PySchema Record class for the record to load.
This will override any $schema fields specified in `s`
:param record_class:
DEPRECATED option, old name for the `schema` parameter
"""
if record_class is not None:
warnings.warn(
"The record_class parameter is deprecated in favour of schema",
DeprecationWarning,
stacklevel=2
)
schema = record_class
if not isinstance(s, unicode):
s = s.decode('utf8')
if s.startswith(u"{"):
json_dct = json.loads(s)
return load_json_dct(json_dct, record_store, schema, loader)
else:
raise ParseError("Not a json record")
|
def loads(
s,
record_store=None,
schema=None,
loader=from_json_compatible,
record_class=None # deprecated in favor of schema
):
""" Create a Record instance from a json serialized dictionary
:param s:
String with a json-serialized dictionary
:param record_store:
Record store to use for schema lookups (when $schema field is present)
:param loader:
Function called to fetch attributes from json. Typically shouldn't be used by end users
:param schema:
PySchema Record class for the record to load.
This will override any $schema fields specified in `s`
:param record_class:
DEPRECATED option, old name for the `schema` parameter
"""
if record_class is not None:
warnings.warn(
"The record_class parameter is deprecated in favour of schema",
DeprecationWarning,
stacklevel=2
)
schema = record_class
if not isinstance(s, unicode):
s = s.decode('utf8')
if s.startswith(u"{"):
json_dct = json.loads(s)
return load_json_dct(json_dct, record_store, schema, loader)
else:
raise ParseError("Not a json record")
|
[
"Create",
"a",
"Record",
"instance",
"from",
"a",
"json",
"serialized",
"dictionary"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L589-L628
|
[
"def",
"loads",
"(",
"s",
",",
"record_store",
"=",
"None",
",",
"schema",
"=",
"None",
",",
"loader",
"=",
"from_json_compatible",
",",
"record_class",
"=",
"None",
"# deprecated in favor of schema",
")",
":",
"if",
"record_class",
"is",
"not",
"None",
":",
"warnings",
".",
"warn",
"(",
"\"The record_class parameter is deprecated in favour of schema\"",
",",
"DeprecationWarning",
",",
"stacklevel",
"=",
"2",
")",
"schema",
"=",
"record_class",
"if",
"not",
"isinstance",
"(",
"s",
",",
"unicode",
")",
":",
"s",
"=",
"s",
".",
"decode",
"(",
"'utf8'",
")",
"if",
"s",
".",
"startswith",
"(",
"u\"{\"",
")",
":",
"json_dct",
"=",
"json",
".",
"loads",
"(",
"s",
")",
"return",
"load_json_dct",
"(",
"json_dct",
",",
"record_store",
",",
"schema",
",",
"loader",
")",
"else",
":",
"raise",
"ParseError",
"(",
"\"Not a json record\"",
")"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
SchemaStore.add_record
|
Add record class to record store for retrieval at record load time.
Can be used as a class decorator
|
pyschema/core.py
|
def add_record(self, schema, _bump_stack_level=False):
""" Add record class to record store for retrieval at record load time.
Can be used as a class decorator
"""
full_name = get_full_name(schema)
has_namespace = '.' in full_name
self._force_add(full_name, schema, _bump_stack_level, _raise_on_existing=has_namespace)
if has_namespace and schema.__name__ not in self._schema_map:
self._force_add(schema.__name__, schema, _bump_stack_level)
return schema
|
def add_record(self, schema, _bump_stack_level=False):
""" Add record class to record store for retrieval at record load time.
Can be used as a class decorator
"""
full_name = get_full_name(schema)
has_namespace = '.' in full_name
self._force_add(full_name, schema, _bump_stack_level, _raise_on_existing=has_namespace)
if has_namespace and schema.__name__ not in self._schema_map:
self._force_add(schema.__name__, schema, _bump_stack_level)
return schema
|
[
"Add",
"record",
"class",
"to",
"record",
"store",
"for",
"retrieval",
"at",
"record",
"load",
"time",
"."
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L97-L107
|
[
"def",
"add_record",
"(",
"self",
",",
"schema",
",",
"_bump_stack_level",
"=",
"False",
")",
":",
"full_name",
"=",
"get_full_name",
"(",
"schema",
")",
"has_namespace",
"=",
"'.'",
"in",
"full_name",
"self",
".",
"_force_add",
"(",
"full_name",
",",
"schema",
",",
"_bump_stack_level",
",",
"_raise_on_existing",
"=",
"has_namespace",
")",
"if",
"has_namespace",
"and",
"schema",
".",
"__name__",
"not",
"in",
"self",
".",
"_schema_map",
":",
"self",
".",
"_force_add",
"(",
"schema",
".",
"__name__",
",",
"schema",
",",
"_bump_stack_level",
")",
"return",
"schema"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
SchemaStore.get
|
Will return a matching record or raise KeyError is no record is found.
If the record name is a full name we will first check for a record matching the full name.
If no such record is found any record matching the last part of the full name (without the namespace) will
be returned.
|
pyschema/core.py
|
def get(self, record_name):
"""
Will return a matching record or raise KeyError is no record is found.
If the record name is a full name we will first check for a record matching the full name.
If no such record is found any record matching the last part of the full name (without the namespace) will
be returned.
"""
if record_name in self._schema_map:
return self._schema_map[record_name]
else:
last_name = record_name.split('.')[-1]
return self._schema_map[last_name]
|
def get(self, record_name):
"""
Will return a matching record or raise KeyError is no record is found.
If the record name is a full name we will first check for a record matching the full name.
If no such record is found any record matching the last part of the full name (without the namespace) will
be returned.
"""
if record_name in self._schema_map:
return self._schema_map[record_name]
else:
last_name = record_name.split('.')[-1]
return self._schema_map[last_name]
|
[
"Will",
"return",
"a",
"matching",
"record",
"or",
"raise",
"KeyError",
"is",
"no",
"record",
"is",
"found",
"."
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L152-L164
|
[
"def",
"get",
"(",
"self",
",",
"record_name",
")",
":",
"if",
"record_name",
"in",
"self",
".",
"_schema_map",
":",
"return",
"self",
".",
"_schema_map",
"[",
"record_name",
"]",
"else",
":",
"last_name",
"=",
"record_name",
".",
"split",
"(",
"'.'",
")",
"[",
"-",
"1",
"]",
"return",
"self",
".",
"_schema_map",
"[",
"last_name",
"]"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
Field.repr_vars
|
Return a dictionary the field definition
Should contain all fields that are required for the definition of this field in a pyschema class
|
pyschema/core.py
|
def repr_vars(self):
"""Return a dictionary the field definition
Should contain all fields that are required for the definition of this field in a pyschema class"""
d = OrderedDict()
d["nullable"] = repr(self.nullable)
d["default"] = repr(self.default)
if self.description is not None:
d["description"] = repr(self.description)
return d
|
def repr_vars(self):
"""Return a dictionary the field definition
Should contain all fields that are required for the definition of this field in a pyschema class"""
d = OrderedDict()
d["nullable"] = repr(self.nullable)
d["default"] = repr(self.default)
if self.description is not None:
d["description"] = repr(self.description)
return d
|
[
"Return",
"a",
"dictionary",
"the",
"field",
"definition"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L243-L252
|
[
"def",
"repr_vars",
"(",
"self",
")",
":",
"d",
"=",
"OrderedDict",
"(",
")",
"d",
"[",
"\"nullable\"",
"]",
"=",
"repr",
"(",
"self",
".",
"nullable",
")",
"d",
"[",
"\"default\"",
"]",
"=",
"repr",
"(",
"self",
".",
"default",
")",
"if",
"self",
".",
"description",
"is",
"not",
"None",
":",
"d",
"[",
"\"description\"",
"]",
"=",
"repr",
"(",
"self",
".",
"description",
")",
"return",
"d"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
Field.mixin
|
Decorator for mixing in additional functionality into field type
Example:
>>> @Integer.mixin
... class IntegerPostgresExtensions:
... postgres_type = 'INT'
...
... def postgres_dump(self, obj):
... self.dump(obj) + "::integer"
Is roughly equivalent to:
>>> Integer.postgres_type = 'INT'
...
... def postgres_dump(self, obj):
... self.dump(obj) + "::integer"
...
... Integer.postgres_dump = postgres_dump
|
pyschema/core.py
|
def mixin(cls, mixin_cls):
"""Decorator for mixing in additional functionality into field type
Example:
>>> @Integer.mixin
... class IntegerPostgresExtensions:
... postgres_type = 'INT'
...
... def postgres_dump(self, obj):
... self.dump(obj) + "::integer"
Is roughly equivalent to:
>>> Integer.postgres_type = 'INT'
...
... def postgres_dump(self, obj):
... self.dump(obj) + "::integer"
...
... Integer.postgres_dump = postgres_dump
"""
for item_name in dir(mixin_cls):
if item_name.startswith("__"):
# don't copy magic properties
continue
item = getattr(mixin_cls, item_name)
if isinstance(item, types.MethodType):
# unbound method will cause problems
# so get the underlying function instead
item = item.im_func
setattr(cls, item_name, item)
return mixin_cls
|
def mixin(cls, mixin_cls):
"""Decorator for mixing in additional functionality into field type
Example:
>>> @Integer.mixin
... class IntegerPostgresExtensions:
... postgres_type = 'INT'
...
... def postgres_dump(self, obj):
... self.dump(obj) + "::integer"
Is roughly equivalent to:
>>> Integer.postgres_type = 'INT'
...
... def postgres_dump(self, obj):
... self.dump(obj) + "::integer"
...
... Integer.postgres_dump = postgres_dump
"""
for item_name in dir(mixin_cls):
if item_name.startswith("__"):
# don't copy magic properties
continue
item = getattr(mixin_cls, item_name)
if isinstance(item, types.MethodType):
# unbound method will cause problems
# so get the underlying function instead
item = item.im_func
setattr(cls, item_name, item)
return mixin_cls
|
[
"Decorator",
"for",
"mixing",
"in",
"additional",
"functionality",
"into",
"field",
"type"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L272-L306
|
[
"def",
"mixin",
"(",
"cls",
",",
"mixin_cls",
")",
":",
"for",
"item_name",
"in",
"dir",
"(",
"mixin_cls",
")",
":",
"if",
"item_name",
".",
"startswith",
"(",
"\"__\"",
")",
":",
"# don't copy magic properties",
"continue",
"item",
"=",
"getattr",
"(",
"mixin_cls",
",",
"item_name",
")",
"if",
"isinstance",
"(",
"item",
",",
"types",
".",
"MethodType",
")",
":",
"# unbound method will cause problems",
"# so get the underlying function instead",
"item",
"=",
"item",
".",
"im_func",
"setattr",
"(",
"cls",
",",
"item_name",
",",
"item",
")",
"return",
"mixin_cls"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
PySchema.from_class
|
Create proper PySchema class from cls
Any methods and attributes will be transferred to the
new object
|
pyschema/core.py
|
def from_class(metacls, cls, auto_store=True):
"""Create proper PySchema class from cls
Any methods and attributes will be transferred to the
new object
"""
if auto_store:
def wrap(cls):
return cls
else:
wrap = no_auto_store()
return wrap(metacls.__new__(
metacls,
cls.__name__,
(Record,),
dict(cls.__dict__)
))
|
def from_class(metacls, cls, auto_store=True):
"""Create proper PySchema class from cls
Any methods and attributes will be transferred to the
new object
"""
if auto_store:
def wrap(cls):
return cls
else:
wrap = no_auto_store()
return wrap(metacls.__new__(
metacls,
cls.__name__,
(Record,),
dict(cls.__dict__)
))
|
[
"Create",
"proper",
"PySchema",
"class",
"from",
"cls"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/core.py#L388-L405
|
[
"def",
"from_class",
"(",
"metacls",
",",
"cls",
",",
"auto_store",
"=",
"True",
")",
":",
"if",
"auto_store",
":",
"def",
"wrap",
"(",
"cls",
")",
":",
"return",
"cls",
"else",
":",
"wrap",
"=",
"no_auto_store",
"(",
")",
"return",
"wrap",
"(",
"metacls",
".",
"__new__",
"(",
"metacls",
",",
"cls",
".",
"__name__",
",",
"(",
"Record",
",",
")",
",",
"dict",
"(",
"cls",
".",
"__dict__",
")",
")",
")"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
get_schema_dict
|
Return a python dict representing the jsonschema of a record
Any references to sub-schemas will be URI fragments that won't be
resolvable without a root schema, available from get_root_schema_dict.
|
pyschema_extensions/jsonschema.py
|
def get_schema_dict(record, state=None):
"""Return a python dict representing the jsonschema of a record
Any references to sub-schemas will be URI fragments that won't be
resolvable without a root schema, available from get_root_schema_dict.
"""
state = state or SchemaGeneratorState()
schema = OrderedDict([
('type', 'object'),
('id', record._schema_name),
])
fields = dict()
for field_name, field_type in record._fields.iteritems():
fields[field_name] = field_type.jsonschema_type_schema(state)
required = set(fields.keys())
schema['properties'] = fields
schema['required'] = sorted(list(required))
schema['additionalProperties'] = False
state.record_schemas[record._schema_name] = schema
return schema
|
def get_schema_dict(record, state=None):
"""Return a python dict representing the jsonschema of a record
Any references to sub-schemas will be URI fragments that won't be
resolvable without a root schema, available from get_root_schema_dict.
"""
state = state or SchemaGeneratorState()
schema = OrderedDict([
('type', 'object'),
('id', record._schema_name),
])
fields = dict()
for field_name, field_type in record._fields.iteritems():
fields[field_name] = field_type.jsonschema_type_schema(state)
required = set(fields.keys())
schema['properties'] = fields
schema['required'] = sorted(list(required))
schema['additionalProperties'] = False
state.record_schemas[record._schema_name] = schema
return schema
|
[
"Return",
"a",
"python",
"dict",
"representing",
"the",
"jsonschema",
"of",
"a",
"record"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema_extensions/jsonschema.py#L116-L137
|
[
"def",
"get_schema_dict",
"(",
"record",
",",
"state",
"=",
"None",
")",
":",
"state",
"=",
"state",
"or",
"SchemaGeneratorState",
"(",
")",
"schema",
"=",
"OrderedDict",
"(",
"[",
"(",
"'type'",
",",
"'object'",
")",
",",
"(",
"'id'",
",",
"record",
".",
"_schema_name",
")",
",",
"]",
")",
"fields",
"=",
"dict",
"(",
")",
"for",
"field_name",
",",
"field_type",
"in",
"record",
".",
"_fields",
".",
"iteritems",
"(",
")",
":",
"fields",
"[",
"field_name",
"]",
"=",
"field_type",
".",
"jsonschema_type_schema",
"(",
"state",
")",
"required",
"=",
"set",
"(",
"fields",
".",
"keys",
"(",
")",
")",
"schema",
"[",
"'properties'",
"]",
"=",
"fields",
"schema",
"[",
"'required'",
"]",
"=",
"sorted",
"(",
"list",
"(",
"required",
")",
")",
"schema",
"[",
"'additionalProperties'",
"]",
"=",
"False",
"state",
".",
"record_schemas",
"[",
"record",
".",
"_schema_name",
"]",
"=",
"schema",
"return",
"schema"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
get_root_schema_dict
|
Return a root jsonschema for a given record
A root schema includes the $schema attribute and all sub-record
schemas and definitions.
|
pyschema_extensions/jsonschema.py
|
def get_root_schema_dict(record):
"""Return a root jsonschema for a given record
A root schema includes the $schema attribute and all sub-record
schemas and definitions.
"""
state = SchemaGeneratorState()
schema = get_schema_dict(record, state)
del state.record_schemas[record._schema_name]
if state.record_schemas:
schema['definitions'] = dict()
for name, sub_schema in state.record_schemas.iteritems():
schema['definitions'][name] = sub_schema
return schema
|
def get_root_schema_dict(record):
"""Return a root jsonschema for a given record
A root schema includes the $schema attribute and all sub-record
schemas and definitions.
"""
state = SchemaGeneratorState()
schema = get_schema_dict(record, state)
del state.record_schemas[record._schema_name]
if state.record_schemas:
schema['definitions'] = dict()
for name, sub_schema in state.record_schemas.iteritems():
schema['definitions'][name] = sub_schema
return schema
|
[
"Return",
"a",
"root",
"jsonschema",
"for",
"a",
"given",
"record"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema_extensions/jsonschema.py#L140-L153
|
[
"def",
"get_root_schema_dict",
"(",
"record",
")",
":",
"state",
"=",
"SchemaGeneratorState",
"(",
")",
"schema",
"=",
"get_schema_dict",
"(",
"record",
",",
"state",
")",
"del",
"state",
".",
"record_schemas",
"[",
"record",
".",
"_schema_name",
"]",
"if",
"state",
".",
"record_schemas",
":",
"schema",
"[",
"'definitions'",
"]",
"=",
"dict",
"(",
")",
"for",
"name",
",",
"sub_schema",
"in",
"state",
".",
"record_schemas",
".",
"iteritems",
"(",
")",
":",
"schema",
"[",
"'definitions'",
"]",
"[",
"name",
"]",
"=",
"sub_schema",
"return",
"schema"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
from_json_compatible
|
Load from json-encodable
|
pyschema_extensions/avro.py
|
def from_json_compatible(schema, dct):
"Load from json-encodable"
kwargs = {}
for key in dct:
field_type = schema._fields.get(key)
if field_type is None:
warnings.warn("Unexpected field encountered in line for record %s: %r" % (schema.__name__, key))
continue
kwargs[key] = field_type.avro_load(dct[key])
return schema(**kwargs)
|
def from_json_compatible(schema, dct):
"Load from json-encodable"
kwargs = {}
for key in dct:
field_type = schema._fields.get(key)
if field_type is None:
warnings.warn("Unexpected field encountered in line for record %s: %r" % (schema.__name__, key))
continue
kwargs[key] = field_type.avro_load(dct[key])
return schema(**kwargs)
|
[
"Load",
"from",
"json",
"-",
"encodable"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema_extensions/avro.py#L310-L321
|
[
"def",
"from_json_compatible",
"(",
"schema",
",",
"dct",
")",
":",
"kwargs",
"=",
"{",
"}",
"for",
"key",
"in",
"dct",
":",
"field_type",
"=",
"schema",
".",
"_fields",
".",
"get",
"(",
"key",
")",
"if",
"field_type",
"is",
"None",
":",
"warnings",
".",
"warn",
"(",
"\"Unexpected field encountered in line for record %s: %r\"",
"%",
"(",
"schema",
".",
"__name__",
",",
"key",
")",
")",
"continue",
"kwargs",
"[",
"key",
"]",
"=",
"field_type",
".",
"avro_load",
"(",
"dct",
"[",
"key",
"]",
")",
"return",
"schema",
"(",
"*",
"*",
"kwargs",
")"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
mr_reader
|
Converts a file object with json serialised pyschema records
to a stream of pyschema objects
Can be used as job.reader in luigi.hadoop.JobTask
|
pyschema_extensions/luigi.py
|
def mr_reader(job, input_stream, loads=core.loads):
""" Converts a file object with json serialised pyschema records
to a stream of pyschema objects
Can be used as job.reader in luigi.hadoop.JobTask
"""
for line in input_stream:
yield loads(line),
|
def mr_reader(job, input_stream, loads=core.loads):
""" Converts a file object with json serialised pyschema records
to a stream of pyschema objects
Can be used as job.reader in luigi.hadoop.JobTask
"""
for line in input_stream:
yield loads(line),
|
[
"Converts",
"a",
"file",
"object",
"with",
"json",
"serialised",
"pyschema",
"records",
"to",
"a",
"stream",
"of",
"pyschema",
"objects"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema_extensions/luigi.py#L21-L28
|
[
"def",
"mr_reader",
"(",
"job",
",",
"input_stream",
",",
"loads",
"=",
"core",
".",
"loads",
")",
":",
"for",
"line",
"in",
"input_stream",
":",
"yield",
"loads",
"(",
"line",
")",
","
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
mr_writer
|
Writes a stream of json serialised pyschema Records to a file object
Can be used as job.writer in luigi.hadoop.JobTask
|
pyschema_extensions/luigi.py
|
def mr_writer(job, outputs, output_stream,
stderr=sys.stderr, dumps=core.dumps):
""" Writes a stream of json serialised pyschema Records to a file object
Can be used as job.writer in luigi.hadoop.JobTask
"""
for output in outputs:
try:
print >> output_stream, dumps(output)
except core.ParseError, e:
print >> stderr, e
raise
|
def mr_writer(job, outputs, output_stream,
stderr=sys.stderr, dumps=core.dumps):
""" Writes a stream of json serialised pyschema Records to a file object
Can be used as job.writer in luigi.hadoop.JobTask
"""
for output in outputs:
try:
print >> output_stream, dumps(output)
except core.ParseError, e:
print >> stderr, e
raise
|
[
"Writes",
"a",
"stream",
"of",
"json",
"serialised",
"pyschema",
"Records",
"to",
"a",
"file",
"object"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema_extensions/luigi.py#L31-L42
|
[
"def",
"mr_writer",
"(",
"job",
",",
"outputs",
",",
"output_stream",
",",
"stderr",
"=",
"sys",
".",
"stderr",
",",
"dumps",
"=",
"core",
".",
"dumps",
")",
":",
"for",
"output",
"in",
"outputs",
":",
"try",
":",
"print",
">>",
"output_stream",
",",
"dumps",
"(",
"output",
")",
"except",
"core",
".",
"ParseError",
",",
"e",
":",
"print",
">>",
"stderr",
",",
"e",
"raise"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
ordereddict_push_front
|
Set a value at the front of an OrderedDict
The original dict isn't modified, instead a copy is returned
|
pyschema/types.py
|
def ordereddict_push_front(dct, key, value):
"""Set a value at the front of an OrderedDict
The original dict isn't modified, instead a copy is returned
"""
d = OrderedDict()
d[key] = value
d.update(dct)
return d
|
def ordereddict_push_front(dct, key, value):
"""Set a value at the front of an OrderedDict
The original dict isn't modified, instead a copy is returned
"""
d = OrderedDict()
d[key] = value
d.update(dct)
return d
|
[
"Set",
"a",
"value",
"at",
"the",
"front",
"of",
"an",
"OrderedDict"
] |
spotify/pyschema
|
python
|
https://github.com/spotify/pyschema/blob/7e6c3934150bcb040c628d74ace6caf5fcf867df/pyschema/types.py#L26-L34
|
[
"def",
"ordereddict_push_front",
"(",
"dct",
",",
"key",
",",
"value",
")",
":",
"d",
"=",
"OrderedDict",
"(",
")",
"d",
"[",
"key",
"]",
"=",
"value",
"d",
".",
"update",
"(",
"dct",
")",
"return",
"d"
] |
7e6c3934150bcb040c628d74ace6caf5fcf867df
|
test
|
gen_filter
|
Generates a single filter expression for ``filter[]``.
|
src/manageiq_client/filters.py
|
def gen_filter(name, op, value, is_or=False):
"""Generates a single filter expression for ``filter[]``."""
if op not in OPERATORS:
raise ValueError('Unknown operator {}'.format(op))
result = u'{} {} {}'.format(name, op, escape_filter(value))
if is_or:
result = u'or ' + result
return result
|
def gen_filter(name, op, value, is_or=False):
"""Generates a single filter expression for ``filter[]``."""
if op not in OPERATORS:
raise ValueError('Unknown operator {}'.format(op))
result = u'{} {} {}'.format(name, op, escape_filter(value))
if is_or:
result = u'or ' + result
return result
|
[
"Generates",
"a",
"single",
"filter",
"expression",
"for",
"filter",
"[]",
"."
] |
ManageIQ/manageiq-api-client-python
|
python
|
https://github.com/ManageIQ/manageiq-api-client-python/blob/e0c8884929e45766c2835bc7dcf4e78b0794248f/src/manageiq_client/filters.py#L7-L14
|
[
"def",
"gen_filter",
"(",
"name",
",",
"op",
",",
"value",
",",
"is_or",
"=",
"False",
")",
":",
"if",
"op",
"not",
"in",
"OPERATORS",
":",
"raise",
"ValueError",
"(",
"'Unknown operator {}'",
".",
"format",
"(",
"op",
")",
")",
"result",
"=",
"u'{} {} {}'",
".",
"format",
"(",
"name",
",",
"op",
",",
"escape_filter",
"(",
"value",
")",
")",
"if",
"is_or",
":",
"result",
"=",
"u'or '",
"+",
"result",
"return",
"result"
] |
e0c8884929e45766c2835bc7dcf4e78b0794248f
|
test
|
Q.from_dict
|
Creates a query (AND and =) from a dictionary.
|
src/manageiq_client/filters.py
|
def from_dict(cls, d):
"""Creates a query (AND and =) from a dictionary."""
if not d:
raise ValueError('Empty dictionary!')
items = list(d.items())
key, value = items.pop(0)
q = cls(key, u'=', value)
for key, value in items:
q = q & cls(key, u'=', value)
return q
|
def from_dict(cls, d):
"""Creates a query (AND and =) from a dictionary."""
if not d:
raise ValueError('Empty dictionary!')
items = list(d.items())
key, value = items.pop(0)
q = cls(key, u'=', value)
for key, value in items:
q = q & cls(key, u'=', value)
return q
|
[
"Creates",
"a",
"query",
"(",
"AND",
"and",
"=",
")",
"from",
"a",
"dictionary",
"."
] |
ManageIQ/manageiq-api-client-python
|
python
|
https://github.com/ManageIQ/manageiq-api-client-python/blob/e0c8884929e45766c2835bc7dcf4e78b0794248f/src/manageiq_client/filters.py#L37-L46
|
[
"def",
"from_dict",
"(",
"cls",
",",
"d",
")",
":",
"if",
"not",
"d",
":",
"raise",
"ValueError",
"(",
"'Empty dictionary!'",
")",
"items",
"=",
"list",
"(",
"d",
".",
"items",
"(",
")",
")",
"key",
",",
"value",
"=",
"items",
".",
"pop",
"(",
"0",
")",
"q",
"=",
"cls",
"(",
"key",
",",
"u'='",
",",
"value",
")",
"for",
"key",
",",
"value",
"in",
"items",
":",
"q",
"=",
"q",
"&",
"cls",
"(",
"key",
",",
"u'='",
",",
"value",
")",
"return",
"q"
] |
e0c8884929e45766c2835bc7dcf4e78b0794248f
|
test
|
Collection.query_string
|
Specify query string to use with the collection.
Returns: :py:class:`SearchResult`
|
src/manageiq_client/api.py
|
def query_string(self, **params):
"""Specify query string to use with the collection.
Returns: :py:class:`SearchResult`
"""
return SearchResult(self, self._api.get(self._href, **params))
|
def query_string(self, **params):
"""Specify query string to use with the collection.
Returns: :py:class:`SearchResult`
"""
return SearchResult(self, self._api.get(self._href, **params))
|
[
"Specify",
"query",
"string",
"to",
"use",
"with",
"the",
"collection",
"."
] |
ManageIQ/manageiq-api-client-python
|
python
|
https://github.com/ManageIQ/manageiq-api-client-python/blob/e0c8884929e45766c2835bc7dcf4e78b0794248f/src/manageiq_client/api.py#L332-L337
|
[
"def",
"query_string",
"(",
"self",
",",
"*",
"*",
"params",
")",
":",
"return",
"SearchResult",
"(",
"self",
",",
"self",
".",
"_api",
".",
"get",
"(",
"self",
".",
"_href",
",",
"*",
"*",
"params",
")",
")"
] |
e0c8884929e45766c2835bc7dcf4e78b0794248f
|
test
|
Collection.raw_filter
|
Sends all filters to the API.
No fancy, just a wrapper. Any advanced functionality shall be implemented as another method.
Args:
filters: List of filters (strings)
Returns: :py:class:`SearchResult`
|
src/manageiq_client/api.py
|
def raw_filter(self, filters):
"""Sends all filters to the API.
No fancy, just a wrapper. Any advanced functionality shall be implemented as another method.
Args:
filters: List of filters (strings)
Returns: :py:class:`SearchResult`
"""
return SearchResult(self, self._api.get(self._href, **{"filter[]": filters}))
|
def raw_filter(self, filters):
"""Sends all filters to the API.
No fancy, just a wrapper. Any advanced functionality shall be implemented as another method.
Args:
filters: List of filters (strings)
Returns: :py:class:`SearchResult`
"""
return SearchResult(self, self._api.get(self._href, **{"filter[]": filters}))
|
[
"Sends",
"all",
"filters",
"to",
"the",
"API",
"."
] |
ManageIQ/manageiq-api-client-python
|
python
|
https://github.com/ManageIQ/manageiq-api-client-python/blob/e0c8884929e45766c2835bc7dcf4e78b0794248f/src/manageiq_client/api.py#L339-L349
|
[
"def",
"raw_filter",
"(",
"self",
",",
"filters",
")",
":",
"return",
"SearchResult",
"(",
"self",
",",
"self",
".",
"_api",
".",
"get",
"(",
"self",
".",
"_href",
",",
"*",
"*",
"{",
"\"filter[]\"",
":",
"filters",
"}",
")",
")"
] |
e0c8884929e45766c2835bc7dcf4e78b0794248f
|
test
|
Collection.all_include_attributes
|
Returns all entities present in the collection with ``attributes`` included.
|
src/manageiq_client/api.py
|
def all_include_attributes(self, attributes):
"""Returns all entities present in the collection with ``attributes`` included."""
self.reload(expand=True, attributes=attributes)
entities = [Entity(self, r, attributes=attributes) for r in self._resources]
self.reload()
return entities
|
def all_include_attributes(self, attributes):
"""Returns all entities present in the collection with ``attributes`` included."""
self.reload(expand=True, attributes=attributes)
entities = [Entity(self, r, attributes=attributes) for r in self._resources]
self.reload()
return entities
|
[
"Returns",
"all",
"entities",
"present",
"in",
"the",
"collection",
"with",
"attributes",
"included",
"."
] |
ManageIQ/manageiq-api-client-python
|
python
|
https://github.com/ManageIQ/manageiq-api-client-python/blob/e0c8884929e45766c2835bc7dcf4e78b0794248f/src/manageiq_client/api.py#L393-L398
|
[
"def",
"all_include_attributes",
"(",
"self",
",",
"attributes",
")",
":",
"self",
".",
"reload",
"(",
"expand",
"=",
"True",
",",
"attributes",
"=",
"attributes",
")",
"entities",
"=",
"[",
"Entity",
"(",
"self",
",",
"r",
",",
"attributes",
"=",
"attributes",
")",
"for",
"r",
"in",
"self",
".",
"_resources",
"]",
"self",
".",
"reload",
"(",
")",
"return",
"entities"
] |
e0c8884929e45766c2835bc7dcf4e78b0794248f
|
test
|
Action._get_entity_from_href
|
Returns entity in correct collection.
If the "href" value in result doesn't match the current collection,
try to find the collection that the "href" refers to.
|
src/manageiq_client/api.py
|
def _get_entity_from_href(self, result):
"""Returns entity in correct collection.
If the "href" value in result doesn't match the current collection,
try to find the collection that the "href" refers to.
"""
href_result = result['href']
if self.collection._href.startswith(href_result):
return Entity(self.collection, result, incomplete=True)
href_match = re.match(r"(https?://.+/api[^?]*)/([a-z_-]+)", href_result)
if not href_match:
raise ValueError("Malformed href: {}".format(href_result))
collection_name = href_match.group(2)
entry_point = href_match.group(1)
new_collection = Collection(
self.collection.api,
"{}/{}".format(entry_point, collection_name),
collection_name
)
return Entity(new_collection, result, incomplete=True)
|
def _get_entity_from_href(self, result):
"""Returns entity in correct collection.
If the "href" value in result doesn't match the current collection,
try to find the collection that the "href" refers to.
"""
href_result = result['href']
if self.collection._href.startswith(href_result):
return Entity(self.collection, result, incomplete=True)
href_match = re.match(r"(https?://.+/api[^?]*)/([a-z_-]+)", href_result)
if not href_match:
raise ValueError("Malformed href: {}".format(href_result))
collection_name = href_match.group(2)
entry_point = href_match.group(1)
new_collection = Collection(
self.collection.api,
"{}/{}".format(entry_point, collection_name),
collection_name
)
return Entity(new_collection, result, incomplete=True)
|
[
"Returns",
"entity",
"in",
"correct",
"collection",
"."
] |
ManageIQ/manageiq-api-client-python
|
python
|
https://github.com/ManageIQ/manageiq-api-client-python/blob/e0c8884929e45766c2835bc7dcf4e78b0794248f/src/manageiq_client/api.py#L703-L724
|
[
"def",
"_get_entity_from_href",
"(",
"self",
",",
"result",
")",
":",
"href_result",
"=",
"result",
"[",
"'href'",
"]",
"if",
"self",
".",
"collection",
".",
"_href",
".",
"startswith",
"(",
"href_result",
")",
":",
"return",
"Entity",
"(",
"self",
".",
"collection",
",",
"result",
",",
"incomplete",
"=",
"True",
")",
"href_match",
"=",
"re",
".",
"match",
"(",
"r\"(https?://.+/api[^?]*)/([a-z_-]+)\"",
",",
"href_result",
")",
"if",
"not",
"href_match",
":",
"raise",
"ValueError",
"(",
"\"Malformed href: {}\"",
".",
"format",
"(",
"href_result",
")",
")",
"collection_name",
"=",
"href_match",
".",
"group",
"(",
"2",
")",
"entry_point",
"=",
"href_match",
".",
"group",
"(",
"1",
")",
"new_collection",
"=",
"Collection",
"(",
"self",
".",
"collection",
".",
"api",
",",
"\"{}/{}\"",
".",
"format",
"(",
"entry_point",
",",
"collection_name",
")",
",",
"collection_name",
")",
"return",
"Entity",
"(",
"new_collection",
",",
"result",
",",
"incomplete",
"=",
"True",
")"
] |
e0c8884929e45766c2835bc7dcf4e78b0794248f
|
test
|
give_another_quote
|
When you pass a quote character, returns you an another one if possible
|
src/manageiq_client/utils.py
|
def give_another_quote(q):
"""When you pass a quote character, returns you an another one if possible"""
for qc in QUOTES:
if qc != q:
return qc
else:
raise ValueError(u'Could not find a different quote for {}'.format(q))
|
def give_another_quote(q):
"""When you pass a quote character, returns you an another one if possible"""
for qc in QUOTES:
if qc != q:
return qc
else:
raise ValueError(u'Could not find a different quote for {}'.format(q))
|
[
"When",
"you",
"pass",
"a",
"quote",
"character",
"returns",
"you",
"an",
"another",
"one",
"if",
"possible"
] |
ManageIQ/manageiq-api-client-python
|
python
|
https://github.com/ManageIQ/manageiq-api-client-python/blob/e0c8884929e45766c2835bc7dcf4e78b0794248f/src/manageiq_client/utils.py#L7-L13
|
[
"def",
"give_another_quote",
"(",
"q",
")",
":",
"for",
"qc",
"in",
"QUOTES",
":",
"if",
"qc",
"!=",
"q",
":",
"return",
"qc",
"else",
":",
"raise",
"ValueError",
"(",
"u'Could not find a different quote for {}'",
".",
"format",
"(",
"q",
")",
")"
] |
e0c8884929e45766c2835bc7dcf4e78b0794248f
|
test
|
escape_filter
|
Tries to escape the values that are passed to filter as correctly as possible.
No standard way is followed, but at least it is simple.
|
src/manageiq_client/utils.py
|
def escape_filter(o):
"""Tries to escape the values that are passed to filter as correctly as possible.
No standard way is followed, but at least it is simple.
"""
if o is None:
return u'NULL'
if isinstance(o, int):
return str(o)
if not isinstance(o, six.string_types):
raise ValueError('Filters take only None, int or a string type')
if not o:
# Empty string
return u"''"
# Now enforce unicode
o = unicode_process(o)
if u'"' not in o:
# Simple case, just put the quote that does not exist in the string
return u'"' + o + u'"'
elif u"'" not in o:
# Simple case, just put the quote that does not exist in the string
return u"'" + o + u"'"
else:
# Both are there, so start guessing
# Empty strings are sorted out, so the string must contain something.
# String with length == 1 are sorted out because if they have a quote, they would be quoted
# with the another quote in preceeding branch. Therefore the string is at least 2 chars long
# here which allows us to NOT check the length here.
first_char = o[0]
last_char = o[-1]
if first_char in QUOTES and last_char in QUOTES:
# The first and last chars definitely are quotes
if first_char == last_char:
# Simple, just put another ones around them
quote = give_another_quote(first_char)
return quote + o + quote
else:
# I don't like this but the nature of the escape is like that ...
# Since now it uses both of the quotes, just pick the simple ones and surround it
return u"'" + o + u"'"
elif first_char not in QUOTES and last_char not in QUOTES:
# First and last chars are not quotes, so a simple solution
return u"'" + o + u"'"
else:
# One of the first or last chars is not a quote
if first_char in QUOTES:
quote = give_another_quote(first_char)
else:
# last_char
quote = give_another_quote(last_char)
return quote + o + quote
|
def escape_filter(o):
"""Tries to escape the values that are passed to filter as correctly as possible.
No standard way is followed, but at least it is simple.
"""
if o is None:
return u'NULL'
if isinstance(o, int):
return str(o)
if not isinstance(o, six.string_types):
raise ValueError('Filters take only None, int or a string type')
if not o:
# Empty string
return u"''"
# Now enforce unicode
o = unicode_process(o)
if u'"' not in o:
# Simple case, just put the quote that does not exist in the string
return u'"' + o + u'"'
elif u"'" not in o:
# Simple case, just put the quote that does not exist in the string
return u"'" + o + u"'"
else:
# Both are there, so start guessing
# Empty strings are sorted out, so the string must contain something.
# String with length == 1 are sorted out because if they have a quote, they would be quoted
# with the another quote in preceeding branch. Therefore the string is at least 2 chars long
# here which allows us to NOT check the length here.
first_char = o[0]
last_char = o[-1]
if first_char in QUOTES and last_char in QUOTES:
# The first and last chars definitely are quotes
if first_char == last_char:
# Simple, just put another ones around them
quote = give_another_quote(first_char)
return quote + o + quote
else:
# I don't like this but the nature of the escape is like that ...
# Since now it uses both of the quotes, just pick the simple ones and surround it
return u"'" + o + u"'"
elif first_char not in QUOTES and last_char not in QUOTES:
# First and last chars are not quotes, so a simple solution
return u"'" + o + u"'"
else:
# One of the first or last chars is not a quote
if first_char in QUOTES:
quote = give_another_quote(first_char)
else:
# last_char
quote = give_another_quote(last_char)
return quote + o + quote
|
[
"Tries",
"to",
"escape",
"the",
"values",
"that",
"are",
"passed",
"to",
"filter",
"as",
"correctly",
"as",
"possible",
"."
] |
ManageIQ/manageiq-api-client-python
|
python
|
https://github.com/ManageIQ/manageiq-api-client-python/blob/e0c8884929e45766c2835bc7dcf4e78b0794248f/src/manageiq_client/utils.py#L16-L66
|
[
"def",
"escape_filter",
"(",
"o",
")",
":",
"if",
"o",
"is",
"None",
":",
"return",
"u'NULL'",
"if",
"isinstance",
"(",
"o",
",",
"int",
")",
":",
"return",
"str",
"(",
"o",
")",
"if",
"not",
"isinstance",
"(",
"o",
",",
"six",
".",
"string_types",
")",
":",
"raise",
"ValueError",
"(",
"'Filters take only None, int or a string type'",
")",
"if",
"not",
"o",
":",
"# Empty string",
"return",
"u\"''\"",
"# Now enforce unicode",
"o",
"=",
"unicode_process",
"(",
"o",
")",
"if",
"u'\"'",
"not",
"in",
"o",
":",
"# Simple case, just put the quote that does not exist in the string",
"return",
"u'\"'",
"+",
"o",
"+",
"u'\"'",
"elif",
"u\"'\"",
"not",
"in",
"o",
":",
"# Simple case, just put the quote that does not exist in the string",
"return",
"u\"'\"",
"+",
"o",
"+",
"u\"'\"",
"else",
":",
"# Both are there, so start guessing",
"# Empty strings are sorted out, so the string must contain something.",
"# String with length == 1 are sorted out because if they have a quote, they would be quoted",
"# with the another quote in preceeding branch. Therefore the string is at least 2 chars long",
"# here which allows us to NOT check the length here.",
"first_char",
"=",
"o",
"[",
"0",
"]",
"last_char",
"=",
"o",
"[",
"-",
"1",
"]",
"if",
"first_char",
"in",
"QUOTES",
"and",
"last_char",
"in",
"QUOTES",
":",
"# The first and last chars definitely are quotes",
"if",
"first_char",
"==",
"last_char",
":",
"# Simple, just put another ones around them",
"quote",
"=",
"give_another_quote",
"(",
"first_char",
")",
"return",
"quote",
"+",
"o",
"+",
"quote",
"else",
":",
"# I don't like this but the nature of the escape is like that ...",
"# Since now it uses both of the quotes, just pick the simple ones and surround it",
"return",
"u\"'\"",
"+",
"o",
"+",
"u\"'\"",
"elif",
"first_char",
"not",
"in",
"QUOTES",
"and",
"last_char",
"not",
"in",
"QUOTES",
":",
"# First and last chars are not quotes, so a simple solution",
"return",
"u\"'\"",
"+",
"o",
"+",
"u\"'\"",
"else",
":",
"# One of the first or last chars is not a quote",
"if",
"first_char",
"in",
"QUOTES",
":",
"quote",
"=",
"give_another_quote",
"(",
"first_char",
")",
"else",
":",
"# last_char",
"quote",
"=",
"give_another_quote",
"(",
"last_char",
")",
"return",
"quote",
"+",
"o",
"+",
"quote"
] |
e0c8884929e45766c2835bc7dcf4e78b0794248f
|
test
|
makePlot
|
Make the plot with parallax performance predictions.
:argument args: command line arguments
|
examples/plotParallaxErrorsSkyAvg.py
|
def makePlot(args):
"""
Make the plot with parallax performance predictions.
:argument args: command line arguments
"""
gmag=np.linspace(5.7,20.0,101)
vminiB1V=vminiFromSpt('B1V')
vminiG2V=vminiFromSpt('G2V')
vminiM6V=vminiFromSpt('M6V')
vmagB1V=gmag-gminvFromVmini(vminiB1V)
vmagG2V=gmag-gminvFromVmini(vminiG2V)
vmagM6V=gmag-gminvFromVmini(vminiM6V)
sigparB1V=parallaxErrorSkyAvg(gmag,vminiB1V)
sigparB1Vmin=parallaxMinError(gmag,vminiB1V)
sigparB1Vmax=parallaxMaxError(gmag,vminiB1V)
sigparG2V=parallaxErrorSkyAvg(gmag,vminiG2V)
sigparG2Vmin=parallaxMinError(gmag,vminiG2V)
sigparG2Vmax=parallaxMaxError(gmag,vminiG2V)
sigparM6V=parallaxErrorSkyAvg(gmag,vminiM6V)
sigparM6Vmin=parallaxMinError(gmag,vminiM6V)
sigparM6Vmax=parallaxMaxError(gmag,vminiM6V)
fig=plt.figure(figsize=(10,6.5))
if (args['gmagAbscissa']):
plt.semilogy(gmag, sigparB1V, 'b', label='B1V')
plt.semilogy(gmag, sigparG2V, 'g', label='G2V')
plt.semilogy(gmag, sigparM6V, 'r', label='M6V')
plt.xlim((5,20))
plt.ylim((4,1000))
plt.legend(loc=4)
plt.xlabel('$G$ [mag]')
else:
ax=fig.add_subplot(111)
plt.semilogy(vmagB1V, sigparB1V, 'b', label='B1V')
#plt.semilogy(vmagG2V, sigparG2V, 'g', label='G2V')
plt.semilogy(vmagM6V, sigparM6V, 'r', label='M6V')
plt.fill_between(vmagB1V, sigparB1Vmin, sigparB1Vmax, color='b', alpha=0.3)
plt.fill_between(vmagM6V, sigparM6Vmin, sigparM6Vmax, color='r', alpha=0.3)
plt.xlim((5,22.5))
plt.ylim((4,1000))
plt.text(17.2,190,'B1V',color='b')
plt.text(18,20,'M6V',color='r')
plt.xlabel('$V$ [mag]')
plt.text(7,17,'calibration noise floor', size=12, bbox=dict(boxstyle="round,pad=0.3",
ec=(0.0, 0.0, 0.0),
fc=(1.0, 1.0, 1.0),
))
plt.text(14.75,80,'photon noise', rotation=45, size=12, bbox=dict(boxstyle="round,pad=0.3",
ec=(0.0, 0.0, 0.0),
fc=(1.0, 1.0, 1.0),
))
ax.annotate('non-uniformity\nover the sky', xy=(21.5, 320), xycoords='data',
xytext=(21.5,80), textcoords='data', ha='center', size='12',
bbox=dict(boxstyle="round,pad=0.3",ec=(0,0,0),fc=(1,1,1)),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,
headwidth=6),
horizontalalignment='right', verticalalignment='top',
)
ax.annotate('', xy=(21.5, 500), xycoords='data',
xytext=(21.5,950), textcoords='data', ha='center', size='12',
arrowprops=dict(facecolor='black', shrink=0.15, width=1,
headwidth=6),
horizontalalignment='right', verticalalignment='bottom',
)
plt.xticks(np.arange(6,24,2))
ax = plt.gca().yaxis
ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
plt.ticklabel_format(axis='y',style='plain')
plt.grid(which='both')
plt.ylabel('End-of-mission parallax standard error [$\mu$as]')
if (args['pdfOutput']):
plt.savefig('ParallaxErrors.pdf')
elif (args['pngOutput']):
plt.savefig('ParallaxErrors.png')
else:
plt.show()
|
def makePlot(args):
"""
Make the plot with parallax performance predictions.
:argument args: command line arguments
"""
gmag=np.linspace(5.7,20.0,101)
vminiB1V=vminiFromSpt('B1V')
vminiG2V=vminiFromSpt('G2V')
vminiM6V=vminiFromSpt('M6V')
vmagB1V=gmag-gminvFromVmini(vminiB1V)
vmagG2V=gmag-gminvFromVmini(vminiG2V)
vmagM6V=gmag-gminvFromVmini(vminiM6V)
sigparB1V=parallaxErrorSkyAvg(gmag,vminiB1V)
sigparB1Vmin=parallaxMinError(gmag,vminiB1V)
sigparB1Vmax=parallaxMaxError(gmag,vminiB1V)
sigparG2V=parallaxErrorSkyAvg(gmag,vminiG2V)
sigparG2Vmin=parallaxMinError(gmag,vminiG2V)
sigparG2Vmax=parallaxMaxError(gmag,vminiG2V)
sigparM6V=parallaxErrorSkyAvg(gmag,vminiM6V)
sigparM6Vmin=parallaxMinError(gmag,vminiM6V)
sigparM6Vmax=parallaxMaxError(gmag,vminiM6V)
fig=plt.figure(figsize=(10,6.5))
if (args['gmagAbscissa']):
plt.semilogy(gmag, sigparB1V, 'b', label='B1V')
plt.semilogy(gmag, sigparG2V, 'g', label='G2V')
plt.semilogy(gmag, sigparM6V, 'r', label='M6V')
plt.xlim((5,20))
plt.ylim((4,1000))
plt.legend(loc=4)
plt.xlabel('$G$ [mag]')
else:
ax=fig.add_subplot(111)
plt.semilogy(vmagB1V, sigparB1V, 'b', label='B1V')
#plt.semilogy(vmagG2V, sigparG2V, 'g', label='G2V')
plt.semilogy(vmagM6V, sigparM6V, 'r', label='M6V')
plt.fill_between(vmagB1V, sigparB1Vmin, sigparB1Vmax, color='b', alpha=0.3)
plt.fill_between(vmagM6V, sigparM6Vmin, sigparM6Vmax, color='r', alpha=0.3)
plt.xlim((5,22.5))
plt.ylim((4,1000))
plt.text(17.2,190,'B1V',color='b')
plt.text(18,20,'M6V',color='r')
plt.xlabel('$V$ [mag]')
plt.text(7,17,'calibration noise floor', size=12, bbox=dict(boxstyle="round,pad=0.3",
ec=(0.0, 0.0, 0.0),
fc=(1.0, 1.0, 1.0),
))
plt.text(14.75,80,'photon noise', rotation=45, size=12, bbox=dict(boxstyle="round,pad=0.3",
ec=(0.0, 0.0, 0.0),
fc=(1.0, 1.0, 1.0),
))
ax.annotate('non-uniformity\nover the sky', xy=(21.5, 320), xycoords='data',
xytext=(21.5,80), textcoords='data', ha='center', size='12',
bbox=dict(boxstyle="round,pad=0.3",ec=(0,0,0),fc=(1,1,1)),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,
headwidth=6),
horizontalalignment='right', verticalalignment='top',
)
ax.annotate('', xy=(21.5, 500), xycoords='data',
xytext=(21.5,950), textcoords='data', ha='center', size='12',
arrowprops=dict(facecolor='black', shrink=0.15, width=1,
headwidth=6),
horizontalalignment='right', verticalalignment='bottom',
)
plt.xticks(np.arange(6,24,2))
ax = plt.gca().yaxis
ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
plt.ticklabel_format(axis='y',style='plain')
plt.grid(which='both')
plt.ylabel('End-of-mission parallax standard error [$\mu$as]')
if (args['pdfOutput']):
plt.savefig('ParallaxErrors.pdf')
elif (args['pngOutput']):
plt.savefig('ParallaxErrors.png')
else:
plt.show()
|
[
"Make",
"the",
"plot",
"with",
"parallax",
"performance",
"predictions",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/examples/plotParallaxErrorsSkyAvg.py#L32-L116
|
[
"def",
"makePlot",
"(",
"args",
")",
":",
"gmag",
"=",
"np",
".",
"linspace",
"(",
"5.7",
",",
"20.0",
",",
"101",
")",
"vminiB1V",
"=",
"vminiFromSpt",
"(",
"'B1V'",
")",
"vminiG2V",
"=",
"vminiFromSpt",
"(",
"'G2V'",
")",
"vminiM6V",
"=",
"vminiFromSpt",
"(",
"'M6V'",
")",
"vmagB1V",
"=",
"gmag",
"-",
"gminvFromVmini",
"(",
"vminiB1V",
")",
"vmagG2V",
"=",
"gmag",
"-",
"gminvFromVmini",
"(",
"vminiG2V",
")",
"vmagM6V",
"=",
"gmag",
"-",
"gminvFromVmini",
"(",
"vminiM6V",
")",
"sigparB1V",
"=",
"parallaxErrorSkyAvg",
"(",
"gmag",
",",
"vminiB1V",
")",
"sigparB1Vmin",
"=",
"parallaxMinError",
"(",
"gmag",
",",
"vminiB1V",
")",
"sigparB1Vmax",
"=",
"parallaxMaxError",
"(",
"gmag",
",",
"vminiB1V",
")",
"sigparG2V",
"=",
"parallaxErrorSkyAvg",
"(",
"gmag",
",",
"vminiG2V",
")",
"sigparG2Vmin",
"=",
"parallaxMinError",
"(",
"gmag",
",",
"vminiG2V",
")",
"sigparG2Vmax",
"=",
"parallaxMaxError",
"(",
"gmag",
",",
"vminiG2V",
")",
"sigparM6V",
"=",
"parallaxErrorSkyAvg",
"(",
"gmag",
",",
"vminiM6V",
")",
"sigparM6Vmin",
"=",
"parallaxMinError",
"(",
"gmag",
",",
"vminiM6V",
")",
"sigparM6Vmax",
"=",
"parallaxMaxError",
"(",
"gmag",
",",
"vminiM6V",
")",
"fig",
"=",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"10",
",",
"6.5",
")",
")",
"if",
"(",
"args",
"[",
"'gmagAbscissa'",
"]",
")",
":",
"plt",
".",
"semilogy",
"(",
"gmag",
",",
"sigparB1V",
",",
"'b'",
",",
"label",
"=",
"'B1V'",
")",
"plt",
".",
"semilogy",
"(",
"gmag",
",",
"sigparG2V",
",",
"'g'",
",",
"label",
"=",
"'G2V'",
")",
"plt",
".",
"semilogy",
"(",
"gmag",
",",
"sigparM6V",
",",
"'r'",
",",
"label",
"=",
"'M6V'",
")",
"plt",
".",
"xlim",
"(",
"(",
"5",
",",
"20",
")",
")",
"plt",
".",
"ylim",
"(",
"(",
"4",
",",
"1000",
")",
")",
"plt",
".",
"legend",
"(",
"loc",
"=",
"4",
")",
"plt",
".",
"xlabel",
"(",
"'$G$ [mag]'",
")",
"else",
":",
"ax",
"=",
"fig",
".",
"add_subplot",
"(",
"111",
")",
"plt",
".",
"semilogy",
"(",
"vmagB1V",
",",
"sigparB1V",
",",
"'b'",
",",
"label",
"=",
"'B1V'",
")",
"#plt.semilogy(vmagG2V, sigparG2V, 'g', label='G2V')",
"plt",
".",
"semilogy",
"(",
"vmagM6V",
",",
"sigparM6V",
",",
"'r'",
",",
"label",
"=",
"'M6V'",
")",
"plt",
".",
"fill_between",
"(",
"vmagB1V",
",",
"sigparB1Vmin",
",",
"sigparB1Vmax",
",",
"color",
"=",
"'b'",
",",
"alpha",
"=",
"0.3",
")",
"plt",
".",
"fill_between",
"(",
"vmagM6V",
",",
"sigparM6Vmin",
",",
"sigparM6Vmax",
",",
"color",
"=",
"'r'",
",",
"alpha",
"=",
"0.3",
")",
"plt",
".",
"xlim",
"(",
"(",
"5",
",",
"22.5",
")",
")",
"plt",
".",
"ylim",
"(",
"(",
"4",
",",
"1000",
")",
")",
"plt",
".",
"text",
"(",
"17.2",
",",
"190",
",",
"'B1V'",
",",
"color",
"=",
"'b'",
")",
"plt",
".",
"text",
"(",
"18",
",",
"20",
",",
"'M6V'",
",",
"color",
"=",
"'r'",
")",
"plt",
".",
"xlabel",
"(",
"'$V$ [mag]'",
")",
"plt",
".",
"text",
"(",
"7",
",",
"17",
",",
"'calibration noise floor'",
",",
"size",
"=",
"12",
",",
"bbox",
"=",
"dict",
"(",
"boxstyle",
"=",
"\"round,pad=0.3\"",
",",
"ec",
"=",
"(",
"0.0",
",",
"0.0",
",",
"0.0",
")",
",",
"fc",
"=",
"(",
"1.0",
",",
"1.0",
",",
"1.0",
")",
",",
")",
")",
"plt",
".",
"text",
"(",
"14.75",
",",
"80",
",",
"'photon noise'",
",",
"rotation",
"=",
"45",
",",
"size",
"=",
"12",
",",
"bbox",
"=",
"dict",
"(",
"boxstyle",
"=",
"\"round,pad=0.3\"",
",",
"ec",
"=",
"(",
"0.0",
",",
"0.0",
",",
"0.0",
")",
",",
"fc",
"=",
"(",
"1.0",
",",
"1.0",
",",
"1.0",
")",
",",
")",
")",
"ax",
".",
"annotate",
"(",
"'non-uniformity\\nover the sky'",
",",
"xy",
"=",
"(",
"21.5",
",",
"320",
")",
",",
"xycoords",
"=",
"'data'",
",",
"xytext",
"=",
"(",
"21.5",
",",
"80",
")",
",",
"textcoords",
"=",
"'data'",
",",
"ha",
"=",
"'center'",
",",
"size",
"=",
"'12'",
",",
"bbox",
"=",
"dict",
"(",
"boxstyle",
"=",
"\"round,pad=0.3\"",
",",
"ec",
"=",
"(",
"0",
",",
"0",
",",
"0",
")",
",",
"fc",
"=",
"(",
"1",
",",
"1",
",",
"1",
")",
")",
",",
"arrowprops",
"=",
"dict",
"(",
"facecolor",
"=",
"'black'",
",",
"shrink",
"=",
"0.15",
",",
"width",
"=",
"1",
",",
"headwidth",
"=",
"6",
")",
",",
"horizontalalignment",
"=",
"'right'",
",",
"verticalalignment",
"=",
"'top'",
",",
")",
"ax",
".",
"annotate",
"(",
"''",
",",
"xy",
"=",
"(",
"21.5",
",",
"500",
")",
",",
"xycoords",
"=",
"'data'",
",",
"xytext",
"=",
"(",
"21.5",
",",
"950",
")",
",",
"textcoords",
"=",
"'data'",
",",
"ha",
"=",
"'center'",
",",
"size",
"=",
"'12'",
",",
"arrowprops",
"=",
"dict",
"(",
"facecolor",
"=",
"'black'",
",",
"shrink",
"=",
"0.15",
",",
"width",
"=",
"1",
",",
"headwidth",
"=",
"6",
")",
",",
"horizontalalignment",
"=",
"'right'",
",",
"verticalalignment",
"=",
"'bottom'",
",",
")",
"plt",
".",
"xticks",
"(",
"np",
".",
"arange",
"(",
"6",
",",
"24",
",",
"2",
")",
")",
"ax",
"=",
"plt",
".",
"gca",
"(",
")",
".",
"yaxis",
"ax",
".",
"set_major_formatter",
"(",
"matplotlib",
".",
"ticker",
".",
"ScalarFormatter",
"(",
")",
")",
"plt",
".",
"ticklabel_format",
"(",
"axis",
"=",
"'y'",
",",
"style",
"=",
"'plain'",
")",
"plt",
".",
"grid",
"(",
"which",
"=",
"'both'",
")",
"plt",
".",
"ylabel",
"(",
"'End-of-mission parallax standard error [$\\mu$as]'",
")",
"if",
"(",
"args",
"[",
"'pdfOutput'",
"]",
")",
":",
"plt",
".",
"savefig",
"(",
"'ParallaxErrors.pdf'",
")",
"elif",
"(",
"args",
"[",
"'pngOutput'",
"]",
")",
":",
"plt",
".",
"savefig",
"(",
"'ParallaxErrors.png'",
")",
"else",
":",
"plt",
".",
"show",
"(",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
plotBrightLimitInV
|
Plot the bright limit of Gaia in V as a function of (V-I).
Parameters
----------
gBright - The bright limit of Gaia in G
|
examples/brightLimitInVband.py
|
def plotBrightLimitInV(gBright, pdf=False, png=False):
"""
Plot the bright limit of Gaia in V as a function of (V-I).
Parameters
----------
gBright - The bright limit of Gaia in G
"""
vmini=np.linspace(0.0,6.0,1001)
gminv=gminvFromVmini(vmini)
vBright=gBright-gminv
fig=plt.figure(figsize=(10,6.5))
plt.plot(vmini,vBright,'b-')
plt.xlabel('$(V-I)$')
plt.ylabel('Bright limit of Gaia in $V$')
plt.xlim(0,6)
plt.ylim(5,11)
plt.grid(which='both')
plt.title("Bright limit in $G$: {0}".format(gBright))
if (pdf):
plt.savefig('VBandBrightLimit.pdf')
elif (png):
plt.savefig('VBandBrightLimit.png')
else:
plt.show()
|
def plotBrightLimitInV(gBright, pdf=False, png=False):
"""
Plot the bright limit of Gaia in V as a function of (V-I).
Parameters
----------
gBright - The bright limit of Gaia in G
"""
vmini=np.linspace(0.0,6.0,1001)
gminv=gminvFromVmini(vmini)
vBright=gBright-gminv
fig=plt.figure(figsize=(10,6.5))
plt.plot(vmini,vBright,'b-')
plt.xlabel('$(V-I)$')
plt.ylabel('Bright limit of Gaia in $V$')
plt.xlim(0,6)
plt.ylim(5,11)
plt.grid(which='both')
plt.title("Bright limit in $G$: {0}".format(gBright))
if (pdf):
plt.savefig('VBandBrightLimit.pdf')
elif (png):
plt.savefig('VBandBrightLimit.png')
else:
plt.show()
|
[
"Plot",
"the",
"bright",
"limit",
"of",
"Gaia",
"in",
"V",
"as",
"a",
"function",
"of",
"(",
"V",
"-",
"I",
")",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/examples/brightLimitInVband.py#L26-L53
|
[
"def",
"plotBrightLimitInV",
"(",
"gBright",
",",
"pdf",
"=",
"False",
",",
"png",
"=",
"False",
")",
":",
"vmini",
"=",
"np",
".",
"linspace",
"(",
"0.0",
",",
"6.0",
",",
"1001",
")",
"gminv",
"=",
"gminvFromVmini",
"(",
"vmini",
")",
"vBright",
"=",
"gBright",
"-",
"gminv",
"fig",
"=",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"10",
",",
"6.5",
")",
")",
"plt",
".",
"plot",
"(",
"vmini",
",",
"vBright",
",",
"'b-'",
")",
"plt",
".",
"xlabel",
"(",
"'$(V-I)$'",
")",
"plt",
".",
"ylabel",
"(",
"'Bright limit of Gaia in $V$'",
")",
"plt",
".",
"xlim",
"(",
"0",
",",
"6",
")",
"plt",
".",
"ylim",
"(",
"5",
",",
"11",
")",
"plt",
".",
"grid",
"(",
"which",
"=",
"'both'",
")",
"plt",
".",
"title",
"(",
"\"Bright limit in $G$: {0}\"",
".",
"format",
"(",
"gBright",
")",
")",
"if",
"(",
"pdf",
")",
":",
"plt",
".",
"savefig",
"(",
"'VBandBrightLimit.pdf'",
")",
"elif",
"(",
"png",
")",
":",
"plt",
".",
"savefig",
"(",
"'VBandBrightLimit.png'",
")",
"else",
":",
"plt",
".",
"show",
"(",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
sphericalToCartesian
|
Convert spherical to Cartesian coordinates. The input can be scalars or 1-dimensional numpy arrays.
Note that the angle coordinates follow the astronomical convention of using elevation (declination,
latitude) rather than its complement (pi/2-elevation), where the latter is commonly used in the
mathematical treatment of spherical coordinates.
Parameters
----------
r - length of input Cartesian vector.
phi - longitude-like angle (e.g., right ascension, ecliptic longitude) in radians
theta - latitide-like angle (e.g., declination, ecliptic latitude) in radians
Returns
-------
The Cartesian vector components x, y, z
|
pygaia/astrometry/vectorastrometry.py
|
def sphericalToCartesian(r, phi, theta):
"""
Convert spherical to Cartesian coordinates. The input can be scalars or 1-dimensional numpy arrays.
Note that the angle coordinates follow the astronomical convention of using elevation (declination,
latitude) rather than its complement (pi/2-elevation), where the latter is commonly used in the
mathematical treatment of spherical coordinates.
Parameters
----------
r - length of input Cartesian vector.
phi - longitude-like angle (e.g., right ascension, ecliptic longitude) in radians
theta - latitide-like angle (e.g., declination, ecliptic latitude) in radians
Returns
-------
The Cartesian vector components x, y, z
"""
ctheta=cos(theta)
x=r*cos(phi)*ctheta
y=r*sin(phi)*ctheta
z=r*sin(theta)
return x, y, z
|
def sphericalToCartesian(r, phi, theta):
"""
Convert spherical to Cartesian coordinates. The input can be scalars or 1-dimensional numpy arrays.
Note that the angle coordinates follow the astronomical convention of using elevation (declination,
latitude) rather than its complement (pi/2-elevation), where the latter is commonly used in the
mathematical treatment of spherical coordinates.
Parameters
----------
r - length of input Cartesian vector.
phi - longitude-like angle (e.g., right ascension, ecliptic longitude) in radians
theta - latitide-like angle (e.g., declination, ecliptic latitude) in radians
Returns
-------
The Cartesian vector components x, y, z
"""
ctheta=cos(theta)
x=r*cos(phi)*ctheta
y=r*sin(phi)*ctheta
z=r*sin(theta)
return x, y, z
|
[
"Convert",
"spherical",
"to",
"Cartesian",
"coordinates",
".",
"The",
"input",
"can",
"be",
"scalars",
"or",
"1",
"-",
"dimensional",
"numpy",
"arrays",
".",
"Note",
"that",
"the",
"angle",
"coordinates",
"follow",
"the",
"astronomical",
"convention",
"of",
"using",
"elevation",
"(",
"declination",
"latitude",
")",
"rather",
"than",
"its",
"complement",
"(",
"pi",
"/",
"2",
"-",
"elevation",
")",
"where",
"the",
"latter",
"is",
"commonly",
"used",
"in",
"the",
"mathematical",
"treatment",
"of",
"spherical",
"coordinates",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/astrometry/vectorastrometry.py#L19-L42
|
[
"def",
"sphericalToCartesian",
"(",
"r",
",",
"phi",
",",
"theta",
")",
":",
"ctheta",
"=",
"cos",
"(",
"theta",
")",
"x",
"=",
"r",
"*",
"cos",
"(",
"phi",
")",
"*",
"ctheta",
"y",
"=",
"r",
"*",
"sin",
"(",
"phi",
")",
"*",
"ctheta",
"z",
"=",
"r",
"*",
"sin",
"(",
"theta",
")",
"return",
"x",
",",
"y",
",",
"z"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
cartesianToSpherical
|
Convert Cartesian to spherical coordinates. The input can be scalars or 1-dimensional numpy arrays.
Note that the angle coordinates follow the astronomical convention of using elevation (declination,
latitude) rather than its complement (pi/2-elevation), which is commonly used in the mathematical
treatment of spherical coordinates.
Parameters
----------
x - Cartesian vector component along the X-axis
y - Cartesian vector component along the Y-axis
z - Cartesian vector component along the Z-axis
Returns
-------
The spherical coordinates r=sqrt(x*x+y*y+z*z), longitude phi, latitude theta.
NOTE THAT THE LONGITUDE ANGLE IS BETWEEN 0 AND +2PI. FOR r=0 AN EXCEPTION IS RAISED.
|
pygaia/astrometry/vectorastrometry.py
|
def cartesianToSpherical(x, y, z):
"""
Convert Cartesian to spherical coordinates. The input can be scalars or 1-dimensional numpy arrays.
Note that the angle coordinates follow the astronomical convention of using elevation (declination,
latitude) rather than its complement (pi/2-elevation), which is commonly used in the mathematical
treatment of spherical coordinates.
Parameters
----------
x - Cartesian vector component along the X-axis
y - Cartesian vector component along the Y-axis
z - Cartesian vector component along the Z-axis
Returns
-------
The spherical coordinates r=sqrt(x*x+y*y+z*z), longitude phi, latitude theta.
NOTE THAT THE LONGITUDE ANGLE IS BETWEEN 0 AND +2PI. FOR r=0 AN EXCEPTION IS RAISED.
"""
rCylSq=x*x+y*y
r=sqrt(rCylSq+z*z)
if any(r==0.0):
raise Exception("Error: one or more of the points is at distance zero.")
phi = arctan2(y,x)
phi = where(phi<0.0, phi+2*pi, phi)
return r, phi, arctan2(z,sqrt(rCylSq))
|
def cartesianToSpherical(x, y, z):
"""
Convert Cartesian to spherical coordinates. The input can be scalars or 1-dimensional numpy arrays.
Note that the angle coordinates follow the astronomical convention of using elevation (declination,
latitude) rather than its complement (pi/2-elevation), which is commonly used in the mathematical
treatment of spherical coordinates.
Parameters
----------
x - Cartesian vector component along the X-axis
y - Cartesian vector component along the Y-axis
z - Cartesian vector component along the Z-axis
Returns
-------
The spherical coordinates r=sqrt(x*x+y*y+z*z), longitude phi, latitude theta.
NOTE THAT THE LONGITUDE ANGLE IS BETWEEN 0 AND +2PI. FOR r=0 AN EXCEPTION IS RAISED.
"""
rCylSq=x*x+y*y
r=sqrt(rCylSq+z*z)
if any(r==0.0):
raise Exception("Error: one or more of the points is at distance zero.")
phi = arctan2(y,x)
phi = where(phi<0.0, phi+2*pi, phi)
return r, phi, arctan2(z,sqrt(rCylSq))
|
[
"Convert",
"Cartesian",
"to",
"spherical",
"coordinates",
".",
"The",
"input",
"can",
"be",
"scalars",
"or",
"1",
"-",
"dimensional",
"numpy",
"arrays",
".",
"Note",
"that",
"the",
"angle",
"coordinates",
"follow",
"the",
"astronomical",
"convention",
"of",
"using",
"elevation",
"(",
"declination",
"latitude",
")",
"rather",
"than",
"its",
"complement",
"(",
"pi",
"/",
"2",
"-",
"elevation",
")",
"which",
"is",
"commonly",
"used",
"in",
"the",
"mathematical",
"treatment",
"of",
"spherical",
"coordinates",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/astrometry/vectorastrometry.py#L44-L71
|
[
"def",
"cartesianToSpherical",
"(",
"x",
",",
"y",
",",
"z",
")",
":",
"rCylSq",
"=",
"x",
"*",
"x",
"+",
"y",
"*",
"y",
"r",
"=",
"sqrt",
"(",
"rCylSq",
"+",
"z",
"*",
"z",
")",
"if",
"any",
"(",
"r",
"==",
"0.0",
")",
":",
"raise",
"Exception",
"(",
"\"Error: one or more of the points is at distance zero.\"",
")",
"phi",
"=",
"arctan2",
"(",
"y",
",",
"x",
")",
"phi",
"=",
"where",
"(",
"phi",
"<",
"0.0",
",",
"phi",
"+",
"2",
"*",
"pi",
",",
"phi",
")",
"return",
"r",
",",
"phi",
",",
"arctan2",
"(",
"z",
",",
"sqrt",
"(",
"rCylSq",
")",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
normalTriad
|
Calculate the so-called normal triad [p, q, r] which is associated with a spherical coordinate system .
The three vectors are:
p - The unit tangent vector in the direction of increasing longitudinal angle phi.
q - The unit tangent vector in the direction of increasing latitudinal angle theta.
r - The unit vector toward the point (phi, theta).
Parameters
----------
phi - longitude-like angle (e.g., right ascension, ecliptic longitude) in radians
theta - latitide-like angle (e.g., declination, ecliptic latitude) in radians
Returns
-------
The normal triad as the vectors p, q, r
|
pygaia/astrometry/vectorastrometry.py
|
def normalTriad(phi, theta):
"""
Calculate the so-called normal triad [p, q, r] which is associated with a spherical coordinate system .
The three vectors are:
p - The unit tangent vector in the direction of increasing longitudinal angle phi.
q - The unit tangent vector in the direction of increasing latitudinal angle theta.
r - The unit vector toward the point (phi, theta).
Parameters
----------
phi - longitude-like angle (e.g., right ascension, ecliptic longitude) in radians
theta - latitide-like angle (e.g., declination, ecliptic latitude) in radians
Returns
-------
The normal triad as the vectors p, q, r
"""
sphi=sin(phi)
stheta=sin(theta)
cphi=cos(phi)
ctheta=cos(theta)
p=array([-sphi, cphi, zeros_like(phi)])
q=array([-stheta*cphi, -stheta*sphi, ctheta])
r=array([ctheta*cphi, ctheta*sphi, stheta])
return p, q, r
|
def normalTriad(phi, theta):
"""
Calculate the so-called normal triad [p, q, r] which is associated with a spherical coordinate system .
The three vectors are:
p - The unit tangent vector in the direction of increasing longitudinal angle phi.
q - The unit tangent vector in the direction of increasing latitudinal angle theta.
r - The unit vector toward the point (phi, theta).
Parameters
----------
phi - longitude-like angle (e.g., right ascension, ecliptic longitude) in radians
theta - latitide-like angle (e.g., declination, ecliptic latitude) in radians
Returns
-------
The normal triad as the vectors p, q, r
"""
sphi=sin(phi)
stheta=sin(theta)
cphi=cos(phi)
ctheta=cos(theta)
p=array([-sphi, cphi, zeros_like(phi)])
q=array([-stheta*cphi, -stheta*sphi, ctheta])
r=array([ctheta*cphi, ctheta*sphi, stheta])
return p, q, r
|
[
"Calculate",
"the",
"so",
"-",
"called",
"normal",
"triad",
"[",
"p",
"q",
"r",
"]",
"which",
"is",
"associated",
"with",
"a",
"spherical",
"coordinate",
"system",
".",
"The",
"three",
"vectors",
"are",
":"
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/astrometry/vectorastrometry.py#L73-L100
|
[
"def",
"normalTriad",
"(",
"phi",
",",
"theta",
")",
":",
"sphi",
"=",
"sin",
"(",
"phi",
")",
"stheta",
"=",
"sin",
"(",
"theta",
")",
"cphi",
"=",
"cos",
"(",
"phi",
")",
"ctheta",
"=",
"cos",
"(",
"theta",
")",
"p",
"=",
"array",
"(",
"[",
"-",
"sphi",
",",
"cphi",
",",
"zeros_like",
"(",
"phi",
")",
"]",
")",
"q",
"=",
"array",
"(",
"[",
"-",
"stheta",
"*",
"cphi",
",",
"-",
"stheta",
"*",
"sphi",
",",
"ctheta",
"]",
")",
"r",
"=",
"array",
"(",
"[",
"ctheta",
"*",
"cphi",
",",
"ctheta",
"*",
"sphi",
",",
"stheta",
"]",
")",
"return",
"p",
",",
"q",
",",
"r"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
elementaryRotationMatrix
|
Construct an elementary rotation matrix describing a rotation around the x, y, or z-axis.
Parameters
----------
axis - Axis around which to rotate ("x", "y", or "z")
rotationAngle - the rotation angle in radians
Returns
-------
The rotation matrix
Example usage
-------------
rotmat = elementaryRotationMatrix("y", pi/6.0)
|
pygaia/astrometry/vectorastrometry.py
|
def elementaryRotationMatrix(axis, rotationAngle):
"""
Construct an elementary rotation matrix describing a rotation around the x, y, or z-axis.
Parameters
----------
axis - Axis around which to rotate ("x", "y", or "z")
rotationAngle - the rotation angle in radians
Returns
-------
The rotation matrix
Example usage
-------------
rotmat = elementaryRotationMatrix("y", pi/6.0)
"""
if (axis=="x" or axis=="X"):
return array([[1.0, 0.0, 0.0], [0.0, cos(rotationAngle), sin(rotationAngle)], [0.0,
-sin(rotationAngle), cos(rotationAngle)]])
elif (axis=="y" or axis=="Y"):
return array([[cos(rotationAngle), 0.0, -sin(rotationAngle)], [0.0, 1.0, 0.0], [sin(rotationAngle),
0.0, cos(rotationAngle)]])
elif (axis=="z" or axis=="Z"):
return array([[cos(rotationAngle), sin(rotationAngle), 0.0], [-sin(rotationAngle),
cos(rotationAngle), 0.0], [0.0, 0.0, 1.0]])
else:
raise Exception("Unknown rotation axis "+axis+"!")
|
def elementaryRotationMatrix(axis, rotationAngle):
"""
Construct an elementary rotation matrix describing a rotation around the x, y, or z-axis.
Parameters
----------
axis - Axis around which to rotate ("x", "y", or "z")
rotationAngle - the rotation angle in radians
Returns
-------
The rotation matrix
Example usage
-------------
rotmat = elementaryRotationMatrix("y", pi/6.0)
"""
if (axis=="x" or axis=="X"):
return array([[1.0, 0.0, 0.0], [0.0, cos(rotationAngle), sin(rotationAngle)], [0.0,
-sin(rotationAngle), cos(rotationAngle)]])
elif (axis=="y" or axis=="Y"):
return array([[cos(rotationAngle), 0.0, -sin(rotationAngle)], [0.0, 1.0, 0.0], [sin(rotationAngle),
0.0, cos(rotationAngle)]])
elif (axis=="z" or axis=="Z"):
return array([[cos(rotationAngle), sin(rotationAngle), 0.0], [-sin(rotationAngle),
cos(rotationAngle), 0.0], [0.0, 0.0, 1.0]])
else:
raise Exception("Unknown rotation axis "+axis+"!")
|
[
"Construct",
"an",
"elementary",
"rotation",
"matrix",
"describing",
"a",
"rotation",
"around",
"the",
"x",
"y",
"or",
"z",
"-",
"axis",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/astrometry/vectorastrometry.py#L102-L132
|
[
"def",
"elementaryRotationMatrix",
"(",
"axis",
",",
"rotationAngle",
")",
":",
"if",
"(",
"axis",
"==",
"\"x\"",
"or",
"axis",
"==",
"\"X\"",
")",
":",
"return",
"array",
"(",
"[",
"[",
"1.0",
",",
"0.0",
",",
"0.0",
"]",
",",
"[",
"0.0",
",",
"cos",
"(",
"rotationAngle",
")",
",",
"sin",
"(",
"rotationAngle",
")",
"]",
",",
"[",
"0.0",
",",
"-",
"sin",
"(",
"rotationAngle",
")",
",",
"cos",
"(",
"rotationAngle",
")",
"]",
"]",
")",
"elif",
"(",
"axis",
"==",
"\"y\"",
"or",
"axis",
"==",
"\"Y\"",
")",
":",
"return",
"array",
"(",
"[",
"[",
"cos",
"(",
"rotationAngle",
")",
",",
"0.0",
",",
"-",
"sin",
"(",
"rotationAngle",
")",
"]",
",",
"[",
"0.0",
",",
"1.0",
",",
"0.0",
"]",
",",
"[",
"sin",
"(",
"rotationAngle",
")",
",",
"0.0",
",",
"cos",
"(",
"rotationAngle",
")",
"]",
"]",
")",
"elif",
"(",
"axis",
"==",
"\"z\"",
"or",
"axis",
"==",
"\"Z\"",
")",
":",
"return",
"array",
"(",
"[",
"[",
"cos",
"(",
"rotationAngle",
")",
",",
"sin",
"(",
"rotationAngle",
")",
",",
"0.0",
"]",
",",
"[",
"-",
"sin",
"(",
"rotationAngle",
")",
",",
"cos",
"(",
"rotationAngle",
")",
",",
"0.0",
"]",
",",
"[",
"0.0",
",",
"0.0",
",",
"1.0",
"]",
"]",
")",
"else",
":",
"raise",
"Exception",
"(",
"\"Unknown rotation axis \"",
"+",
"axis",
"+",
"\"!\"",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
phaseSpaceToAstrometry
|
From the given phase space coordinates calculate the astrometric observables, including the radial
velocity, which here is seen as the sixth astrometric parameter. The phase space coordinates are
assumed to represent barycentric (i.e. centred on the Sun) positions and velocities.
This function has no mechanism to deal with units. The velocity units are always assumed to be km/s,
and the code is set up such that for positions in pc, the return units for the astrometry are radians,
milliarcsec, milliarcsec/year and km/s. For positions in kpc the return units are: radians,
microarcsec, microarcsec/year, and km/s.
NOTE that the doppler factor k=1/(1-vrad/c) is NOT used in the calculations. This is not a problem for
sources moving at typical velocities of Galactic stars.
Parameters
----------
x - The x component of the barycentric position vector (in pc or kpc).
y - The y component of the barycentric position vector (in pc or kpc).
z - The z component of the barycentric position vector (in pc or kpc).
vx - The x component of the barycentric velocity vector (in km/s).
vy - The y component of the barycentric velocity vector (in km/s).
vz - The z component of the barycentric velocity vector (in km/s).
Returns
-------
phi - The longitude-like angle of the position of the source (radians).
theta - The latitude-like angle of the position of the source (radians).
parallax - The parallax of the source (in mas or muas, see above)
muphistar - The proper motion in the longitude-like angle, multiplied by cos(theta) (mas/yr or muas/yr,
see above)
mutheta - The proper motion in the latitude-like angle (mas/yr or muas/yr, see above)
vrad - The radial velocity (km/s)
|
pygaia/astrometry/vectorastrometry.py
|
def phaseSpaceToAstrometry(x, y, z, vx, vy, vz):
"""
From the given phase space coordinates calculate the astrometric observables, including the radial
velocity, which here is seen as the sixth astrometric parameter. The phase space coordinates are
assumed to represent barycentric (i.e. centred on the Sun) positions and velocities.
This function has no mechanism to deal with units. The velocity units are always assumed to be km/s,
and the code is set up such that for positions in pc, the return units for the astrometry are radians,
milliarcsec, milliarcsec/year and km/s. For positions in kpc the return units are: radians,
microarcsec, microarcsec/year, and km/s.
NOTE that the doppler factor k=1/(1-vrad/c) is NOT used in the calculations. This is not a problem for
sources moving at typical velocities of Galactic stars.
Parameters
----------
x - The x component of the barycentric position vector (in pc or kpc).
y - The y component of the barycentric position vector (in pc or kpc).
z - The z component of the barycentric position vector (in pc or kpc).
vx - The x component of the barycentric velocity vector (in km/s).
vy - The y component of the barycentric velocity vector (in km/s).
vz - The z component of the barycentric velocity vector (in km/s).
Returns
-------
phi - The longitude-like angle of the position of the source (radians).
theta - The latitude-like angle of the position of the source (radians).
parallax - The parallax of the source (in mas or muas, see above)
muphistar - The proper motion in the longitude-like angle, multiplied by cos(theta) (mas/yr or muas/yr,
see above)
mutheta - The proper motion in the latitude-like angle (mas/yr or muas/yr, see above)
vrad - The radial velocity (km/s)
"""
u, phi, theta = cartesianToSpherical(x, y, z)
parallax = _auMasParsec/u
p, q, r = normalTriad(phi, theta)
velocitiesArray=array([vx,vy,vz])
if isscalar(u):
muphistar=dot(p,velocitiesArray)*parallax/_auKmYearPerSec
mutheta=dot(q,velocitiesArray)*parallax/_auKmYearPerSec
vrad=dot(r,velocitiesArray)
else:
muphistar=zeros_like(parallax)
mutheta=zeros_like(parallax)
vrad=zeros_like(parallax)
for i in range(parallax.size):
muphistar[i]=dot(p[:,i],velocitiesArray[:,i])*parallax[i]/_auKmYearPerSec
mutheta[i]=dot(q[:,i],velocitiesArray[:,i])*parallax[i]/_auKmYearPerSec
vrad[i]=dot(r[:,i],velocitiesArray[:,i])
return phi, theta, parallax, muphistar, mutheta, vrad
|
def phaseSpaceToAstrometry(x, y, z, vx, vy, vz):
"""
From the given phase space coordinates calculate the astrometric observables, including the radial
velocity, which here is seen as the sixth astrometric parameter. The phase space coordinates are
assumed to represent barycentric (i.e. centred on the Sun) positions and velocities.
This function has no mechanism to deal with units. The velocity units are always assumed to be km/s,
and the code is set up such that for positions in pc, the return units for the astrometry are radians,
milliarcsec, milliarcsec/year and km/s. For positions in kpc the return units are: radians,
microarcsec, microarcsec/year, and km/s.
NOTE that the doppler factor k=1/(1-vrad/c) is NOT used in the calculations. This is not a problem for
sources moving at typical velocities of Galactic stars.
Parameters
----------
x - The x component of the barycentric position vector (in pc or kpc).
y - The y component of the barycentric position vector (in pc or kpc).
z - The z component of the barycentric position vector (in pc or kpc).
vx - The x component of the barycentric velocity vector (in km/s).
vy - The y component of the barycentric velocity vector (in km/s).
vz - The z component of the barycentric velocity vector (in km/s).
Returns
-------
phi - The longitude-like angle of the position of the source (radians).
theta - The latitude-like angle of the position of the source (radians).
parallax - The parallax of the source (in mas or muas, see above)
muphistar - The proper motion in the longitude-like angle, multiplied by cos(theta) (mas/yr or muas/yr,
see above)
mutheta - The proper motion in the latitude-like angle (mas/yr or muas/yr, see above)
vrad - The radial velocity (km/s)
"""
u, phi, theta = cartesianToSpherical(x, y, z)
parallax = _auMasParsec/u
p, q, r = normalTriad(phi, theta)
velocitiesArray=array([vx,vy,vz])
if isscalar(u):
muphistar=dot(p,velocitiesArray)*parallax/_auKmYearPerSec
mutheta=dot(q,velocitiesArray)*parallax/_auKmYearPerSec
vrad=dot(r,velocitiesArray)
else:
muphistar=zeros_like(parallax)
mutheta=zeros_like(parallax)
vrad=zeros_like(parallax)
for i in range(parallax.size):
muphistar[i]=dot(p[:,i],velocitiesArray[:,i])*parallax[i]/_auKmYearPerSec
mutheta[i]=dot(q[:,i],velocitiesArray[:,i])*parallax[i]/_auKmYearPerSec
vrad[i]=dot(r[:,i],velocitiesArray[:,i])
return phi, theta, parallax, muphistar, mutheta, vrad
|
[
"From",
"the",
"given",
"phase",
"space",
"coordinates",
"calculate",
"the",
"astrometric",
"observables",
"including",
"the",
"radial",
"velocity",
"which",
"here",
"is",
"seen",
"as",
"the",
"sixth",
"astrometric",
"parameter",
".",
"The",
"phase",
"space",
"coordinates",
"are",
"assumed",
"to",
"represent",
"barycentric",
"(",
"i",
".",
"e",
".",
"centred",
"on",
"the",
"Sun",
")",
"positions",
"and",
"velocities",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/astrometry/vectorastrometry.py#L134-L186
|
[
"def",
"phaseSpaceToAstrometry",
"(",
"x",
",",
"y",
",",
"z",
",",
"vx",
",",
"vy",
",",
"vz",
")",
":",
"u",
",",
"phi",
",",
"theta",
"=",
"cartesianToSpherical",
"(",
"x",
",",
"y",
",",
"z",
")",
"parallax",
"=",
"_auMasParsec",
"/",
"u",
"p",
",",
"q",
",",
"r",
"=",
"normalTriad",
"(",
"phi",
",",
"theta",
")",
"velocitiesArray",
"=",
"array",
"(",
"[",
"vx",
",",
"vy",
",",
"vz",
"]",
")",
"if",
"isscalar",
"(",
"u",
")",
":",
"muphistar",
"=",
"dot",
"(",
"p",
",",
"velocitiesArray",
")",
"*",
"parallax",
"/",
"_auKmYearPerSec",
"mutheta",
"=",
"dot",
"(",
"q",
",",
"velocitiesArray",
")",
"*",
"parallax",
"/",
"_auKmYearPerSec",
"vrad",
"=",
"dot",
"(",
"r",
",",
"velocitiesArray",
")",
"else",
":",
"muphistar",
"=",
"zeros_like",
"(",
"parallax",
")",
"mutheta",
"=",
"zeros_like",
"(",
"parallax",
")",
"vrad",
"=",
"zeros_like",
"(",
"parallax",
")",
"for",
"i",
"in",
"range",
"(",
"parallax",
".",
"size",
")",
":",
"muphistar",
"[",
"i",
"]",
"=",
"dot",
"(",
"p",
"[",
":",
",",
"i",
"]",
",",
"velocitiesArray",
"[",
":",
",",
"i",
"]",
")",
"*",
"parallax",
"[",
"i",
"]",
"/",
"_auKmYearPerSec",
"mutheta",
"[",
"i",
"]",
"=",
"dot",
"(",
"q",
"[",
":",
",",
"i",
"]",
",",
"velocitiesArray",
"[",
":",
",",
"i",
"]",
")",
"*",
"parallax",
"[",
"i",
"]",
"/",
"_auKmYearPerSec",
"vrad",
"[",
"i",
"]",
"=",
"dot",
"(",
"r",
"[",
":",
",",
"i",
"]",
",",
"velocitiesArray",
"[",
":",
",",
"i",
"]",
")",
"return",
"phi",
",",
"theta",
",",
"parallax",
",",
"muphistar",
",",
"mutheta",
",",
"vrad"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
astrometryToPhaseSpace
|
From the input astrometric parameters calculate the phase space coordinates. The output phase space
coordinates represent barycentric (i.e. centred on the Sun) positions and velocities.
This function has no mechanism to deal with units. The code is set up such that for input astrometry
with parallaxes and proper motions in mas and mas/yr, and radial velocities in km/s, the phase space
coordinates are in pc and km/s. For input astrometry with parallaxes and proper motions in muas and
muas/yr, and radial velocities in km/s, the phase space coordinates are in kpc and km/s. Only positive
parallaxes are accepted, an exception is thrown if this condition is not met.
NOTE that the doppler factor k=1/(1-vrad/c) is NOT used in the calculations. This is not a problem for
sources moving at typical velocities of Galactic stars.
THIS FUNCTION SHOULD NOT BE USED WHEN THE PARALLAXES HAVE RELATIVE ERRORS LARGER THAN ABOUT 20 PER CENT
(see http://arxiv.org/abs/1507.02105 for example). For astrometric data with relatively large parallax
errors you should consider doing your analysis in the data space and use forward modelling of some
kind.
Parameters
----------
phi - The longitude-like angle of the position of the source (radians).
theta - The latitude-like angle of the position of the source (radians).
parallax - The parallax of the source (in mas or muas, see above)
muphistar - The proper motion in the longitude-like angle, multiplied by cos(theta) (mas/yr or muas/yr,
see above)
mutheta - The proper motion in the latitude-like angle (mas/yr or muas/yr, see above)
vrad - The radial velocity (km/s)
Returns
-------
x - The x component of the barycentric position vector (in pc or kpc).
y - The y component of the barycentric position vector (in pc or kpc).
z - The z component of the barycentric position vector (in pc or kpc).
vx - The x component of the barycentric velocity vector (in km/s).
vy - The y component of the barycentric velocity vector (in km/s).
vz - The z component of the barycentric velocity vector (in km/s).
|
pygaia/astrometry/vectorastrometry.py
|
def astrometryToPhaseSpace(phi, theta, parallax, muphistar, mutheta, vrad):
"""
From the input astrometric parameters calculate the phase space coordinates. The output phase space
coordinates represent barycentric (i.e. centred on the Sun) positions and velocities.
This function has no mechanism to deal with units. The code is set up such that for input astrometry
with parallaxes and proper motions in mas and mas/yr, and radial velocities in km/s, the phase space
coordinates are in pc and km/s. For input astrometry with parallaxes and proper motions in muas and
muas/yr, and radial velocities in km/s, the phase space coordinates are in kpc and km/s. Only positive
parallaxes are accepted, an exception is thrown if this condition is not met.
NOTE that the doppler factor k=1/(1-vrad/c) is NOT used in the calculations. This is not a problem for
sources moving at typical velocities of Galactic stars.
THIS FUNCTION SHOULD NOT BE USED WHEN THE PARALLAXES HAVE RELATIVE ERRORS LARGER THAN ABOUT 20 PER CENT
(see http://arxiv.org/abs/1507.02105 for example). For astrometric data with relatively large parallax
errors you should consider doing your analysis in the data space and use forward modelling of some
kind.
Parameters
----------
phi - The longitude-like angle of the position of the source (radians).
theta - The latitude-like angle of the position of the source (radians).
parallax - The parallax of the source (in mas or muas, see above)
muphistar - The proper motion in the longitude-like angle, multiplied by cos(theta) (mas/yr or muas/yr,
see above)
mutheta - The proper motion in the latitude-like angle (mas/yr or muas/yr, see above)
vrad - The radial velocity (km/s)
Returns
-------
x - The x component of the barycentric position vector (in pc or kpc).
y - The y component of the barycentric position vector (in pc or kpc).
z - The z component of the barycentric position vector (in pc or kpc).
vx - The x component of the barycentric velocity vector (in km/s).
vy - The y component of the barycentric velocity vector (in km/s).
vz - The z component of the barycentric velocity vector (in km/s).
"""
if any(parallax<=0.0):
raise Exception("One or more of the input parallaxes is non-positive")
x, y, z = sphericalToCartesian(_auMasParsec/parallax, phi, theta)
p, q, r = normalTriad(phi, theta)
transverseMotionArray = array([muphistar*_auKmYearPerSec/parallax, mutheta*_auKmYearPerSec/parallax,
vrad])
if isscalar(parallax):
velocityArray=dot(transpose(array([p, q, r])),transverseMotionArray)
vx = velocityArray[0]
vy = velocityArray[1]
vz = velocityArray[2]
else:
vx = zeros_like(parallax)
vy = zeros_like(parallax)
vz = zeros_like(parallax)
for i in range(parallax.size):
velocityArray = dot(transpose(array([p[:,i], q[:,i], r[:,i]])), transverseMotionArray[:,i])
vx[i] = velocityArray[0]
vy[i] = velocityArray[1]
vz[i] = velocityArray[2]
return x, y, z, vx, vy, vz
|
def astrometryToPhaseSpace(phi, theta, parallax, muphistar, mutheta, vrad):
"""
From the input astrometric parameters calculate the phase space coordinates. The output phase space
coordinates represent barycentric (i.e. centred on the Sun) positions and velocities.
This function has no mechanism to deal with units. The code is set up such that for input astrometry
with parallaxes and proper motions in mas and mas/yr, and radial velocities in km/s, the phase space
coordinates are in pc and km/s. For input astrometry with parallaxes and proper motions in muas and
muas/yr, and radial velocities in km/s, the phase space coordinates are in kpc and km/s. Only positive
parallaxes are accepted, an exception is thrown if this condition is not met.
NOTE that the doppler factor k=1/(1-vrad/c) is NOT used in the calculations. This is not a problem for
sources moving at typical velocities of Galactic stars.
THIS FUNCTION SHOULD NOT BE USED WHEN THE PARALLAXES HAVE RELATIVE ERRORS LARGER THAN ABOUT 20 PER CENT
(see http://arxiv.org/abs/1507.02105 for example). For astrometric data with relatively large parallax
errors you should consider doing your analysis in the data space and use forward modelling of some
kind.
Parameters
----------
phi - The longitude-like angle of the position of the source (radians).
theta - The latitude-like angle of the position of the source (radians).
parallax - The parallax of the source (in mas or muas, see above)
muphistar - The proper motion in the longitude-like angle, multiplied by cos(theta) (mas/yr or muas/yr,
see above)
mutheta - The proper motion in the latitude-like angle (mas/yr or muas/yr, see above)
vrad - The radial velocity (km/s)
Returns
-------
x - The x component of the barycentric position vector (in pc or kpc).
y - The y component of the barycentric position vector (in pc or kpc).
z - The z component of the barycentric position vector (in pc or kpc).
vx - The x component of the barycentric velocity vector (in km/s).
vy - The y component of the barycentric velocity vector (in km/s).
vz - The z component of the barycentric velocity vector (in km/s).
"""
if any(parallax<=0.0):
raise Exception("One or more of the input parallaxes is non-positive")
x, y, z = sphericalToCartesian(_auMasParsec/parallax, phi, theta)
p, q, r = normalTriad(phi, theta)
transverseMotionArray = array([muphistar*_auKmYearPerSec/parallax, mutheta*_auKmYearPerSec/parallax,
vrad])
if isscalar(parallax):
velocityArray=dot(transpose(array([p, q, r])),transverseMotionArray)
vx = velocityArray[0]
vy = velocityArray[1]
vz = velocityArray[2]
else:
vx = zeros_like(parallax)
vy = zeros_like(parallax)
vz = zeros_like(parallax)
for i in range(parallax.size):
velocityArray = dot(transpose(array([p[:,i], q[:,i], r[:,i]])), transverseMotionArray[:,i])
vx[i] = velocityArray[0]
vy[i] = velocityArray[1]
vz[i] = velocityArray[2]
return x, y, z, vx, vy, vz
|
[
"From",
"the",
"input",
"astrometric",
"parameters",
"calculate",
"the",
"phase",
"space",
"coordinates",
".",
"The",
"output",
"phase",
"space",
"coordinates",
"represent",
"barycentric",
"(",
"i",
".",
"e",
".",
"centred",
"on",
"the",
"Sun",
")",
"positions",
"and",
"velocities",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/astrometry/vectorastrometry.py#L188-L248
|
[
"def",
"astrometryToPhaseSpace",
"(",
"phi",
",",
"theta",
",",
"parallax",
",",
"muphistar",
",",
"mutheta",
",",
"vrad",
")",
":",
"if",
"any",
"(",
"parallax",
"<=",
"0.0",
")",
":",
"raise",
"Exception",
"(",
"\"One or more of the input parallaxes is non-positive\"",
")",
"x",
",",
"y",
",",
"z",
"=",
"sphericalToCartesian",
"(",
"_auMasParsec",
"/",
"parallax",
",",
"phi",
",",
"theta",
")",
"p",
",",
"q",
",",
"r",
"=",
"normalTriad",
"(",
"phi",
",",
"theta",
")",
"transverseMotionArray",
"=",
"array",
"(",
"[",
"muphistar",
"*",
"_auKmYearPerSec",
"/",
"parallax",
",",
"mutheta",
"*",
"_auKmYearPerSec",
"/",
"parallax",
",",
"vrad",
"]",
")",
"if",
"isscalar",
"(",
"parallax",
")",
":",
"velocityArray",
"=",
"dot",
"(",
"transpose",
"(",
"array",
"(",
"[",
"p",
",",
"q",
",",
"r",
"]",
")",
")",
",",
"transverseMotionArray",
")",
"vx",
"=",
"velocityArray",
"[",
"0",
"]",
"vy",
"=",
"velocityArray",
"[",
"1",
"]",
"vz",
"=",
"velocityArray",
"[",
"2",
"]",
"else",
":",
"vx",
"=",
"zeros_like",
"(",
"parallax",
")",
"vy",
"=",
"zeros_like",
"(",
"parallax",
")",
"vz",
"=",
"zeros_like",
"(",
"parallax",
")",
"for",
"i",
"in",
"range",
"(",
"parallax",
".",
"size",
")",
":",
"velocityArray",
"=",
"dot",
"(",
"transpose",
"(",
"array",
"(",
"[",
"p",
"[",
":",
",",
"i",
"]",
",",
"q",
"[",
":",
",",
"i",
"]",
",",
"r",
"[",
":",
",",
"i",
"]",
"]",
")",
")",
",",
"transverseMotionArray",
"[",
":",
",",
"i",
"]",
")",
"vx",
"[",
"i",
"]",
"=",
"velocityArray",
"[",
"0",
"]",
"vy",
"[",
"i",
"]",
"=",
"velocityArray",
"[",
"1",
"]",
"vz",
"[",
"i",
"]",
"=",
"velocityArray",
"[",
"2",
"]",
"return",
"x",
",",
"y",
",",
"z",
",",
"vx",
",",
"vy",
",",
"vz"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
makePlot
|
Make the plot with proper motion performance predictions. The predictions are for the TOTAL proper
motion under the assumption of equal components mu_alpha* and mu_delta.
:argument args: command line arguments
|
examples/plotProperMotionErrorsSkyAvg.py
|
def makePlot(args):
"""
Make the plot with proper motion performance predictions. The predictions are for the TOTAL proper
motion under the assumption of equal components mu_alpha* and mu_delta.
:argument args: command line arguments
"""
gmag=np.linspace(5.7,20.0,101)
vminiB1V=vminiFromSpt('B1V')
vminiG2V=vminiFromSpt('G2V')
vminiM6V=vminiFromSpt('M6V')
vmagB1V=gmag-gminvFromVmini(vminiB1V)
vmagG2V=gmag-gminvFromVmini(vminiG2V)
vmagM6V=gmag-gminvFromVmini(vminiM6V)
sigmualphaB1V, sigmudeltaB1V = properMotionErrorSkyAvg(gmag,vminiB1V)
sigmuB1V = np.sqrt(0.5*sigmualphaB1V**2+0.5*sigmudeltaB1V**2)
sigmualphaB1V, sigmudeltaB1V = properMotionMinError(gmag,vminiB1V)
sigmuB1Vmin = np.sqrt(0.5*sigmualphaB1V**2+0.5*sigmudeltaB1V**2)
sigmualphaB1V, sigmudeltaB1V = properMotionMaxError(gmag,vminiB1V)
sigmuB1Vmax = np.sqrt(0.5*sigmualphaB1V**2+0.5*sigmudeltaB1V**2)
sigmualphaG2V, sigmudeltaG2V = properMotionErrorSkyAvg(gmag,vminiG2V)
sigmuG2V = np.sqrt(0.5*sigmualphaG2V**2+0.5*sigmudeltaG2V**2)
sigmualphaG2V, sigmudeltaG2V = properMotionMinError(gmag,vminiG2V)
sigmuG2Vmin = np.sqrt(0.5*sigmualphaG2V**2+0.5*sigmudeltaG2V**2)
sigmualphaG2V, sigmudeltaG2V = properMotionMaxError(gmag,vminiG2V)
sigmuG2Vmax = np.sqrt(0.5*sigmualphaG2V**2+0.5*sigmudeltaG2V**2)
sigmualphaM6V, sigmudeltaM6V = properMotionErrorSkyAvg(gmag,vminiM6V)
sigmuM6V = np.sqrt(0.5*sigmualphaM6V**2+0.5*sigmudeltaM6V**2)
sigmualphaM6V, sigmudeltaM6V = properMotionMinError(gmag,vminiM6V)
sigmuM6Vmin = np.sqrt(0.5*sigmualphaM6V**2+0.5*sigmudeltaM6V**2)
sigmualphaM6V, sigmudeltaM6V = properMotionMaxError(gmag,vminiM6V)
sigmuM6Vmax = np.sqrt(0.5*sigmualphaM6V**2+0.5*sigmudeltaM6V**2)
fig=plt.figure(figsize=(10,6.5))
if (args['gmagAbscissa']):
plt.semilogy(gmag, sigmuB1V, 'b', label='B1V')
plt.semilogy(gmag, sigmuG2V, 'g', label='G2V')
plt.semilogy(gmag, sigmuM6V, 'r', label='M6V')
plt.xlim((5,20))
plt.ylim((1,500))
plt.legend(loc=4)
else:
ax=fig.add_subplot(111)
plt.semilogy(vmagB1V, sigmuB1V, 'b', label='B1V')
#plt.semilogy(vmagG2V, sigmuG2V, 'g', label='G2V')
plt.semilogy(vmagM6V, sigmuM6V, 'r', label='M6V')
plt.fill_between(vmagB1V, sigmuB1Vmin, sigmuB1Vmax, color='b', alpha=0.3)
plt.fill_between(vmagM6V, sigmuM6Vmin, sigmuM6Vmax, color='r', alpha=0.3)
plt.xlim((5,22.5))
plt.ylim((1,500))
plt.text(17.5,100,'B1V',color='b')
plt.text(18,10,'M6V',color='r')
plt.text(7,11,'calibration noise floor', size=12, bbox=dict(boxstyle="round,pad=0.3",
ec=(0.0, 0.0, 0.0),
fc=(1.0, 1.0, 1.0),
))
plt.text(14.75,50,'photon noise', rotation=45, size=12, bbox=dict(boxstyle="round,pad=0.3",
ec=(0.0, 0.0, 0.0),
fc=(1.0, 1.0, 1.0),
))
ax.annotate('non-uniformity\nover the sky', xy=(21.5, 80), xycoords='data',
xytext=(21.5,30), textcoords='data', ha='center', size='12',
bbox=dict(boxstyle="round,pad=0.3",ec=(0,0,0),fc=(1,1,1)),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,
headwidth=6),
horizontalalignment='right', verticalalignment='top',
)
ax.annotate('', xy=(21.5, 170), xycoords='data',
xytext=(21.5,380), textcoords='data', ha='center', size='12',
arrowprops=dict(facecolor='black', shrink=0.15, width=1,
headwidth=6),
horizontalalignment='right', verticalalignment='bottom',
)
plt.xticks(np.arange(6,24,2))
ax = plt.gca().yaxis
ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
plt.ticklabel_format(axis='y',style='plain')
plt.grid(which='both')
plt.xlabel('$V$ [mag]')
plt.ylabel('End-of-mission $\\sigma_\\mu$ [$\mu$as/yr]')
basename = 'ProperMotionErrors'
if (args['pdfOutput']):
plt.savefig(basename+'.pdf')
elif (args['pngOutput']):
plt.savefig(basename+'.png')
else:
plt.show()
|
def makePlot(args):
"""
Make the plot with proper motion performance predictions. The predictions are for the TOTAL proper
motion under the assumption of equal components mu_alpha* and mu_delta.
:argument args: command line arguments
"""
gmag=np.linspace(5.7,20.0,101)
vminiB1V=vminiFromSpt('B1V')
vminiG2V=vminiFromSpt('G2V')
vminiM6V=vminiFromSpt('M6V')
vmagB1V=gmag-gminvFromVmini(vminiB1V)
vmagG2V=gmag-gminvFromVmini(vminiG2V)
vmagM6V=gmag-gminvFromVmini(vminiM6V)
sigmualphaB1V, sigmudeltaB1V = properMotionErrorSkyAvg(gmag,vminiB1V)
sigmuB1V = np.sqrt(0.5*sigmualphaB1V**2+0.5*sigmudeltaB1V**2)
sigmualphaB1V, sigmudeltaB1V = properMotionMinError(gmag,vminiB1V)
sigmuB1Vmin = np.sqrt(0.5*sigmualphaB1V**2+0.5*sigmudeltaB1V**2)
sigmualphaB1V, sigmudeltaB1V = properMotionMaxError(gmag,vminiB1V)
sigmuB1Vmax = np.sqrt(0.5*sigmualphaB1V**2+0.5*sigmudeltaB1V**2)
sigmualphaG2V, sigmudeltaG2V = properMotionErrorSkyAvg(gmag,vminiG2V)
sigmuG2V = np.sqrt(0.5*sigmualphaG2V**2+0.5*sigmudeltaG2V**2)
sigmualphaG2V, sigmudeltaG2V = properMotionMinError(gmag,vminiG2V)
sigmuG2Vmin = np.sqrt(0.5*sigmualphaG2V**2+0.5*sigmudeltaG2V**2)
sigmualphaG2V, sigmudeltaG2V = properMotionMaxError(gmag,vminiG2V)
sigmuG2Vmax = np.sqrt(0.5*sigmualphaG2V**2+0.5*sigmudeltaG2V**2)
sigmualphaM6V, sigmudeltaM6V = properMotionErrorSkyAvg(gmag,vminiM6V)
sigmuM6V = np.sqrt(0.5*sigmualphaM6V**2+0.5*sigmudeltaM6V**2)
sigmualphaM6V, sigmudeltaM6V = properMotionMinError(gmag,vminiM6V)
sigmuM6Vmin = np.sqrt(0.5*sigmualphaM6V**2+0.5*sigmudeltaM6V**2)
sigmualphaM6V, sigmudeltaM6V = properMotionMaxError(gmag,vminiM6V)
sigmuM6Vmax = np.sqrt(0.5*sigmualphaM6V**2+0.5*sigmudeltaM6V**2)
fig=plt.figure(figsize=(10,6.5))
if (args['gmagAbscissa']):
plt.semilogy(gmag, sigmuB1V, 'b', label='B1V')
plt.semilogy(gmag, sigmuG2V, 'g', label='G2V')
plt.semilogy(gmag, sigmuM6V, 'r', label='M6V')
plt.xlim((5,20))
plt.ylim((1,500))
plt.legend(loc=4)
else:
ax=fig.add_subplot(111)
plt.semilogy(vmagB1V, sigmuB1V, 'b', label='B1V')
#plt.semilogy(vmagG2V, sigmuG2V, 'g', label='G2V')
plt.semilogy(vmagM6V, sigmuM6V, 'r', label='M6V')
plt.fill_between(vmagB1V, sigmuB1Vmin, sigmuB1Vmax, color='b', alpha=0.3)
plt.fill_between(vmagM6V, sigmuM6Vmin, sigmuM6Vmax, color='r', alpha=0.3)
plt.xlim((5,22.5))
plt.ylim((1,500))
plt.text(17.5,100,'B1V',color='b')
plt.text(18,10,'M6V',color='r')
plt.text(7,11,'calibration noise floor', size=12, bbox=dict(boxstyle="round,pad=0.3",
ec=(0.0, 0.0, 0.0),
fc=(1.0, 1.0, 1.0),
))
plt.text(14.75,50,'photon noise', rotation=45, size=12, bbox=dict(boxstyle="round,pad=0.3",
ec=(0.0, 0.0, 0.0),
fc=(1.0, 1.0, 1.0),
))
ax.annotate('non-uniformity\nover the sky', xy=(21.5, 80), xycoords='data',
xytext=(21.5,30), textcoords='data', ha='center', size='12',
bbox=dict(boxstyle="round,pad=0.3",ec=(0,0,0),fc=(1,1,1)),
arrowprops=dict(facecolor='black', shrink=0.15, width=1,
headwidth=6),
horizontalalignment='right', verticalalignment='top',
)
ax.annotate('', xy=(21.5, 170), xycoords='data',
xytext=(21.5,380), textcoords='data', ha='center', size='12',
arrowprops=dict(facecolor='black', shrink=0.15, width=1,
headwidth=6),
horizontalalignment='right', verticalalignment='bottom',
)
plt.xticks(np.arange(6,24,2))
ax = plt.gca().yaxis
ax.set_major_formatter(matplotlib.ticker.ScalarFormatter())
plt.ticklabel_format(axis='y',style='plain')
plt.grid(which='both')
plt.xlabel('$V$ [mag]')
plt.ylabel('End-of-mission $\\sigma_\\mu$ [$\mu$as/yr]')
basename = 'ProperMotionErrors'
if (args['pdfOutput']):
plt.savefig(basename+'.pdf')
elif (args['pngOutput']):
plt.savefig(basename+'.png')
else:
plt.show()
|
[
"Make",
"the",
"plot",
"with",
"proper",
"motion",
"performance",
"predictions",
".",
"The",
"predictions",
"are",
"for",
"the",
"TOTAL",
"proper",
"motion",
"under",
"the",
"assumption",
"of",
"equal",
"components",
"mu_alpha",
"*",
"and",
"mu_delta",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/examples/plotProperMotionErrorsSkyAvg.py#L31-L125
|
[
"def",
"makePlot",
"(",
"args",
")",
":",
"gmag",
"=",
"np",
".",
"linspace",
"(",
"5.7",
",",
"20.0",
",",
"101",
")",
"vminiB1V",
"=",
"vminiFromSpt",
"(",
"'B1V'",
")",
"vminiG2V",
"=",
"vminiFromSpt",
"(",
"'G2V'",
")",
"vminiM6V",
"=",
"vminiFromSpt",
"(",
"'M6V'",
")",
"vmagB1V",
"=",
"gmag",
"-",
"gminvFromVmini",
"(",
"vminiB1V",
")",
"vmagG2V",
"=",
"gmag",
"-",
"gminvFromVmini",
"(",
"vminiG2V",
")",
"vmagM6V",
"=",
"gmag",
"-",
"gminvFromVmini",
"(",
"vminiM6V",
")",
"sigmualphaB1V",
",",
"sigmudeltaB1V",
"=",
"properMotionErrorSkyAvg",
"(",
"gmag",
",",
"vminiB1V",
")",
"sigmuB1V",
"=",
"np",
".",
"sqrt",
"(",
"0.5",
"*",
"sigmualphaB1V",
"**",
"2",
"+",
"0.5",
"*",
"sigmudeltaB1V",
"**",
"2",
")",
"sigmualphaB1V",
",",
"sigmudeltaB1V",
"=",
"properMotionMinError",
"(",
"gmag",
",",
"vminiB1V",
")",
"sigmuB1Vmin",
"=",
"np",
".",
"sqrt",
"(",
"0.5",
"*",
"sigmualphaB1V",
"**",
"2",
"+",
"0.5",
"*",
"sigmudeltaB1V",
"**",
"2",
")",
"sigmualphaB1V",
",",
"sigmudeltaB1V",
"=",
"properMotionMaxError",
"(",
"gmag",
",",
"vminiB1V",
")",
"sigmuB1Vmax",
"=",
"np",
".",
"sqrt",
"(",
"0.5",
"*",
"sigmualphaB1V",
"**",
"2",
"+",
"0.5",
"*",
"sigmudeltaB1V",
"**",
"2",
")",
"sigmualphaG2V",
",",
"sigmudeltaG2V",
"=",
"properMotionErrorSkyAvg",
"(",
"gmag",
",",
"vminiG2V",
")",
"sigmuG2V",
"=",
"np",
".",
"sqrt",
"(",
"0.5",
"*",
"sigmualphaG2V",
"**",
"2",
"+",
"0.5",
"*",
"sigmudeltaG2V",
"**",
"2",
")",
"sigmualphaG2V",
",",
"sigmudeltaG2V",
"=",
"properMotionMinError",
"(",
"gmag",
",",
"vminiG2V",
")",
"sigmuG2Vmin",
"=",
"np",
".",
"sqrt",
"(",
"0.5",
"*",
"sigmualphaG2V",
"**",
"2",
"+",
"0.5",
"*",
"sigmudeltaG2V",
"**",
"2",
")",
"sigmualphaG2V",
",",
"sigmudeltaG2V",
"=",
"properMotionMaxError",
"(",
"gmag",
",",
"vminiG2V",
")",
"sigmuG2Vmax",
"=",
"np",
".",
"sqrt",
"(",
"0.5",
"*",
"sigmualphaG2V",
"**",
"2",
"+",
"0.5",
"*",
"sigmudeltaG2V",
"**",
"2",
")",
"sigmualphaM6V",
",",
"sigmudeltaM6V",
"=",
"properMotionErrorSkyAvg",
"(",
"gmag",
",",
"vminiM6V",
")",
"sigmuM6V",
"=",
"np",
".",
"sqrt",
"(",
"0.5",
"*",
"sigmualphaM6V",
"**",
"2",
"+",
"0.5",
"*",
"sigmudeltaM6V",
"**",
"2",
")",
"sigmualphaM6V",
",",
"sigmudeltaM6V",
"=",
"properMotionMinError",
"(",
"gmag",
",",
"vminiM6V",
")",
"sigmuM6Vmin",
"=",
"np",
".",
"sqrt",
"(",
"0.5",
"*",
"sigmualphaM6V",
"**",
"2",
"+",
"0.5",
"*",
"sigmudeltaM6V",
"**",
"2",
")",
"sigmualphaM6V",
",",
"sigmudeltaM6V",
"=",
"properMotionMaxError",
"(",
"gmag",
",",
"vminiM6V",
")",
"sigmuM6Vmax",
"=",
"np",
".",
"sqrt",
"(",
"0.5",
"*",
"sigmualphaM6V",
"**",
"2",
"+",
"0.5",
"*",
"sigmudeltaM6V",
"**",
"2",
")",
"fig",
"=",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"10",
",",
"6.5",
")",
")",
"if",
"(",
"args",
"[",
"'gmagAbscissa'",
"]",
")",
":",
"plt",
".",
"semilogy",
"(",
"gmag",
",",
"sigmuB1V",
",",
"'b'",
",",
"label",
"=",
"'B1V'",
")",
"plt",
".",
"semilogy",
"(",
"gmag",
",",
"sigmuG2V",
",",
"'g'",
",",
"label",
"=",
"'G2V'",
")",
"plt",
".",
"semilogy",
"(",
"gmag",
",",
"sigmuM6V",
",",
"'r'",
",",
"label",
"=",
"'M6V'",
")",
"plt",
".",
"xlim",
"(",
"(",
"5",
",",
"20",
")",
")",
"plt",
".",
"ylim",
"(",
"(",
"1",
",",
"500",
")",
")",
"plt",
".",
"legend",
"(",
"loc",
"=",
"4",
")",
"else",
":",
"ax",
"=",
"fig",
".",
"add_subplot",
"(",
"111",
")",
"plt",
".",
"semilogy",
"(",
"vmagB1V",
",",
"sigmuB1V",
",",
"'b'",
",",
"label",
"=",
"'B1V'",
")",
"#plt.semilogy(vmagG2V, sigmuG2V, 'g', label='G2V')",
"plt",
".",
"semilogy",
"(",
"vmagM6V",
",",
"sigmuM6V",
",",
"'r'",
",",
"label",
"=",
"'M6V'",
")",
"plt",
".",
"fill_between",
"(",
"vmagB1V",
",",
"sigmuB1Vmin",
",",
"sigmuB1Vmax",
",",
"color",
"=",
"'b'",
",",
"alpha",
"=",
"0.3",
")",
"plt",
".",
"fill_between",
"(",
"vmagM6V",
",",
"sigmuM6Vmin",
",",
"sigmuM6Vmax",
",",
"color",
"=",
"'r'",
",",
"alpha",
"=",
"0.3",
")",
"plt",
".",
"xlim",
"(",
"(",
"5",
",",
"22.5",
")",
")",
"plt",
".",
"ylim",
"(",
"(",
"1",
",",
"500",
")",
")",
"plt",
".",
"text",
"(",
"17.5",
",",
"100",
",",
"'B1V'",
",",
"color",
"=",
"'b'",
")",
"plt",
".",
"text",
"(",
"18",
",",
"10",
",",
"'M6V'",
",",
"color",
"=",
"'r'",
")",
"plt",
".",
"text",
"(",
"7",
",",
"11",
",",
"'calibration noise floor'",
",",
"size",
"=",
"12",
",",
"bbox",
"=",
"dict",
"(",
"boxstyle",
"=",
"\"round,pad=0.3\"",
",",
"ec",
"=",
"(",
"0.0",
",",
"0.0",
",",
"0.0",
")",
",",
"fc",
"=",
"(",
"1.0",
",",
"1.0",
",",
"1.0",
")",
",",
")",
")",
"plt",
".",
"text",
"(",
"14.75",
",",
"50",
",",
"'photon noise'",
",",
"rotation",
"=",
"45",
",",
"size",
"=",
"12",
",",
"bbox",
"=",
"dict",
"(",
"boxstyle",
"=",
"\"round,pad=0.3\"",
",",
"ec",
"=",
"(",
"0.0",
",",
"0.0",
",",
"0.0",
")",
",",
"fc",
"=",
"(",
"1.0",
",",
"1.0",
",",
"1.0",
")",
",",
")",
")",
"ax",
".",
"annotate",
"(",
"'non-uniformity\\nover the sky'",
",",
"xy",
"=",
"(",
"21.5",
",",
"80",
")",
",",
"xycoords",
"=",
"'data'",
",",
"xytext",
"=",
"(",
"21.5",
",",
"30",
")",
",",
"textcoords",
"=",
"'data'",
",",
"ha",
"=",
"'center'",
",",
"size",
"=",
"'12'",
",",
"bbox",
"=",
"dict",
"(",
"boxstyle",
"=",
"\"round,pad=0.3\"",
",",
"ec",
"=",
"(",
"0",
",",
"0",
",",
"0",
")",
",",
"fc",
"=",
"(",
"1",
",",
"1",
",",
"1",
")",
")",
",",
"arrowprops",
"=",
"dict",
"(",
"facecolor",
"=",
"'black'",
",",
"shrink",
"=",
"0.15",
",",
"width",
"=",
"1",
",",
"headwidth",
"=",
"6",
")",
",",
"horizontalalignment",
"=",
"'right'",
",",
"verticalalignment",
"=",
"'top'",
",",
")",
"ax",
".",
"annotate",
"(",
"''",
",",
"xy",
"=",
"(",
"21.5",
",",
"170",
")",
",",
"xycoords",
"=",
"'data'",
",",
"xytext",
"=",
"(",
"21.5",
",",
"380",
")",
",",
"textcoords",
"=",
"'data'",
",",
"ha",
"=",
"'center'",
",",
"size",
"=",
"'12'",
",",
"arrowprops",
"=",
"dict",
"(",
"facecolor",
"=",
"'black'",
",",
"shrink",
"=",
"0.15",
",",
"width",
"=",
"1",
",",
"headwidth",
"=",
"6",
")",
",",
"horizontalalignment",
"=",
"'right'",
",",
"verticalalignment",
"=",
"'bottom'",
",",
")",
"plt",
".",
"xticks",
"(",
"np",
".",
"arange",
"(",
"6",
",",
"24",
",",
"2",
")",
")",
"ax",
"=",
"plt",
".",
"gca",
"(",
")",
".",
"yaxis",
"ax",
".",
"set_major_formatter",
"(",
"matplotlib",
".",
"ticker",
".",
"ScalarFormatter",
"(",
")",
")",
"plt",
".",
"ticklabel_format",
"(",
"axis",
"=",
"'y'",
",",
"style",
"=",
"'plain'",
")",
"plt",
".",
"grid",
"(",
"which",
"=",
"'both'",
")",
"plt",
".",
"xlabel",
"(",
"'$V$ [mag]'",
")",
"plt",
".",
"ylabel",
"(",
"'End-of-mission $\\\\sigma_\\\\mu$ [$\\mu$as/yr]'",
")",
"basename",
"=",
"'ProperMotionErrors'",
"if",
"(",
"args",
"[",
"'pdfOutput'",
"]",
")",
":",
"plt",
".",
"savefig",
"(",
"basename",
"+",
"'.pdf'",
")",
"elif",
"(",
"args",
"[",
"'pngOutput'",
"]",
")",
":",
"plt",
".",
"savefig",
"(",
"basename",
"+",
"'.png'",
")",
"else",
":",
"plt",
".",
"show",
"(",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
parseCommandLineArguments
|
Set up command line parsing.
|
examples/plotProperMotionErrorsSkyAvg.py
|
def parseCommandLineArguments():
"""
Set up command line parsing.
"""
parser = argparse.ArgumentParser(description="Plot predicted Gaia sky averaged proper motion errors as a function of V")
parser.add_argument("-p", action="store_true", dest="pdfOutput", help="Make PDF plot")
parser.add_argument("-b", action="store_true", dest="pngOutput", help="Make PNG plot")
parser.add_argument("-g", action="store_true", dest="gmagAbscissa", help="Plot performance vs G instead of V")
args=vars(parser.parse_args())
return args
|
def parseCommandLineArguments():
"""
Set up command line parsing.
"""
parser = argparse.ArgumentParser(description="Plot predicted Gaia sky averaged proper motion errors as a function of V")
parser.add_argument("-p", action="store_true", dest="pdfOutput", help="Make PDF plot")
parser.add_argument("-b", action="store_true", dest="pngOutput", help="Make PNG plot")
parser.add_argument("-g", action="store_true", dest="gmagAbscissa", help="Plot performance vs G instead of V")
args=vars(parser.parse_args())
return args
|
[
"Set",
"up",
"command",
"line",
"parsing",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/examples/plotProperMotionErrorsSkyAvg.py#L127-L136
|
[
"def",
"parseCommandLineArguments",
"(",
")",
":",
"parser",
"=",
"argparse",
".",
"ArgumentParser",
"(",
"description",
"=",
"\"Plot predicted Gaia sky averaged proper motion errors as a function of V\"",
")",
"parser",
".",
"add_argument",
"(",
"\"-p\"",
",",
"action",
"=",
"\"store_true\"",
",",
"dest",
"=",
"\"pdfOutput\"",
",",
"help",
"=",
"\"Make PDF plot\"",
")",
"parser",
".",
"add_argument",
"(",
"\"-b\"",
",",
"action",
"=",
"\"store_true\"",
",",
"dest",
"=",
"\"pngOutput\"",
",",
"help",
"=",
"\"Make PNG plot\"",
")",
"parser",
".",
"add_argument",
"(",
"\"-g\"",
",",
"action",
"=",
"\"store_true\"",
",",
"dest",
"=",
"\"gmagAbscissa\"",
",",
"help",
"=",
"\"Plot performance vs G instead of V\"",
")",
"args",
"=",
"vars",
"(",
"parser",
".",
"parse_args",
"(",
")",
")",
"return",
"args"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
enum
|
Create a new enumeration type.
Code is copyright (c) Gabriel Genellina, 2010, MIT License.
Parameters
----------
typename - Name of the enumerated type
field_names - Names of the fields of the enumerated type
|
pygaia/utils.py
|
def enum(typename, field_names):
"""
Create a new enumeration type.
Code is copyright (c) Gabriel Genellina, 2010, MIT License.
Parameters
----------
typename - Name of the enumerated type
field_names - Names of the fields of the enumerated type
"""
if isinstance(field_names, str):
field_names = field_names.replace(',', ' ').split()
d = dict((reversed(nv) for nv in enumerate(field_names)), __slots__ = ())
return type(typename, (object,), d)()
|
def enum(typename, field_names):
"""
Create a new enumeration type.
Code is copyright (c) Gabriel Genellina, 2010, MIT License.
Parameters
----------
typename - Name of the enumerated type
field_names - Names of the fields of the enumerated type
"""
if isinstance(field_names, str):
field_names = field_names.replace(',', ' ').split()
d = dict((reversed(nv) for nv in enumerate(field_names)), __slots__ = ())
return type(typename, (object,), d)()
|
[
"Create",
"a",
"new",
"enumeration",
"type",
".",
"Code",
"is",
"copyright",
"(",
"c",
")",
"Gabriel",
"Genellina",
"2010",
"MIT",
"License",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/utils.py#L7-L23
|
[
"def",
"enum",
"(",
"typename",
",",
"field_names",
")",
":",
"if",
"isinstance",
"(",
"field_names",
",",
"str",
")",
":",
"field_names",
"=",
"field_names",
".",
"replace",
"(",
"','",
",",
"' '",
")",
".",
"split",
"(",
")",
"d",
"=",
"dict",
"(",
"(",
"reversed",
"(",
"nv",
")",
"for",
"nv",
"in",
"enumerate",
"(",
"field_names",
")",
")",
",",
"__slots__",
"=",
"(",
")",
")",
"return",
"type",
"(",
"typename",
",",
"(",
"object",
",",
")",
",",
"d",
")",
"(",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
construct_covariance_matrix
|
Take the astrometric parameter standard uncertainties and the uncertainty correlations as quoted in
the Gaia catalogue and construct the covariance matrix.
Parameters
----------
cvec : array_like
Array of shape (15,) (1 source) or (n,15) (n sources) for the astrometric parameter standard
uncertainties and their correlations, as listed in the Gaia catalogue [ra_error, dec_error,
parallax_error, pmra_error, pmdec_error, ra_dec_corr, ra_parallax_corr, ra_pmra_corr,
ra_pmdec_corr, dec_parallax_corr, dec_pmra_corr, dec_pmdec_corr, parallax_pmra_corr,
parallax_pmdec_corr, pmra_pmdec_corr]. Units are (mas^2, mas^2/yr, mas^2/yr^2).
parallax : array_like (n elements)
Source parallax (mas).
radial_velocity : array_like (n elements)
Source radial velocity (km/s, does not have to be from Gaia RVS!). If the radial velocity is not
known it can be set to zero.
radial_velocity_error : array_like (n elements)
Source radial velocity uncertainty (km/s). If the radial velocity is not know this can be set to
the radial velocity dispersion for the population the source was drawn from.
Returns
-------
Covariance matrix as a 6x6 array.
|
pygaia/utils.py
|
def construct_covariance_matrix(cvec, parallax, radial_velocity, radial_velocity_error):
"""
Take the astrometric parameter standard uncertainties and the uncertainty correlations as quoted in
the Gaia catalogue and construct the covariance matrix.
Parameters
----------
cvec : array_like
Array of shape (15,) (1 source) or (n,15) (n sources) for the astrometric parameter standard
uncertainties and their correlations, as listed in the Gaia catalogue [ra_error, dec_error,
parallax_error, pmra_error, pmdec_error, ra_dec_corr, ra_parallax_corr, ra_pmra_corr,
ra_pmdec_corr, dec_parallax_corr, dec_pmra_corr, dec_pmdec_corr, parallax_pmra_corr,
parallax_pmdec_corr, pmra_pmdec_corr]. Units are (mas^2, mas^2/yr, mas^2/yr^2).
parallax : array_like (n elements)
Source parallax (mas).
radial_velocity : array_like (n elements)
Source radial velocity (km/s, does not have to be from Gaia RVS!). If the radial velocity is not
known it can be set to zero.
radial_velocity_error : array_like (n elements)
Source radial velocity uncertainty (km/s). If the radial velocity is not know this can be set to
the radial velocity dispersion for the population the source was drawn from.
Returns
-------
Covariance matrix as a 6x6 array.
"""
if np.ndim(cvec)==1:
cmat = np.zeros((1,6,6))
nsources = 1
cv = np.atleast_2d(cvec)
else:
nsources = cvec.shape[0]
cmat = np.zeros((nsources,6,6))
cv = cvec
for k in range(nsources):
cmat[k,0:5,0:5] = cv[k,0:5]**2
iu = np.triu_indices(5,k=1)
for k in range(10):
i = iu[0][k]
j = iu[1][k]
cmat[:,i,j] = cv[:,i]*cv[:,j]*cv[:,k+5]
cmat[:,j,i] = cmat[:,i,j]
for k in range(nsources):
cmat[k,0:5,5] = cmat[k,0:5,2]*np.atleast_1d(radial_velocity)[k]/auKmYearPerSec
cmat[:,5,0:5] = cmat[:,0:5,5]
cmat[:,5,5] = cmat[:,2,2]*(radial_velocity**2 + radial_velocity_error**2)/auKmYearPerSec**2 + \
(parallax*radial_velocity_error/auKmYearPerSec)**2
return np.squeeze(cmat)
|
def construct_covariance_matrix(cvec, parallax, radial_velocity, radial_velocity_error):
"""
Take the astrometric parameter standard uncertainties and the uncertainty correlations as quoted in
the Gaia catalogue and construct the covariance matrix.
Parameters
----------
cvec : array_like
Array of shape (15,) (1 source) or (n,15) (n sources) for the astrometric parameter standard
uncertainties and their correlations, as listed in the Gaia catalogue [ra_error, dec_error,
parallax_error, pmra_error, pmdec_error, ra_dec_corr, ra_parallax_corr, ra_pmra_corr,
ra_pmdec_corr, dec_parallax_corr, dec_pmra_corr, dec_pmdec_corr, parallax_pmra_corr,
parallax_pmdec_corr, pmra_pmdec_corr]. Units are (mas^2, mas^2/yr, mas^2/yr^2).
parallax : array_like (n elements)
Source parallax (mas).
radial_velocity : array_like (n elements)
Source radial velocity (km/s, does not have to be from Gaia RVS!). If the radial velocity is not
known it can be set to zero.
radial_velocity_error : array_like (n elements)
Source radial velocity uncertainty (km/s). If the radial velocity is not know this can be set to
the radial velocity dispersion for the population the source was drawn from.
Returns
-------
Covariance matrix as a 6x6 array.
"""
if np.ndim(cvec)==1:
cmat = np.zeros((1,6,6))
nsources = 1
cv = np.atleast_2d(cvec)
else:
nsources = cvec.shape[0]
cmat = np.zeros((nsources,6,6))
cv = cvec
for k in range(nsources):
cmat[k,0:5,0:5] = cv[k,0:5]**2
iu = np.triu_indices(5,k=1)
for k in range(10):
i = iu[0][k]
j = iu[1][k]
cmat[:,i,j] = cv[:,i]*cv[:,j]*cv[:,k+5]
cmat[:,j,i] = cmat[:,i,j]
for k in range(nsources):
cmat[k,0:5,5] = cmat[k,0:5,2]*np.atleast_1d(radial_velocity)[k]/auKmYearPerSec
cmat[:,5,0:5] = cmat[:,0:5,5]
cmat[:,5,5] = cmat[:,2,2]*(radial_velocity**2 + radial_velocity_error**2)/auKmYearPerSec**2 + \
(parallax*radial_velocity_error/auKmYearPerSec)**2
return np.squeeze(cmat)
|
[
"Take",
"the",
"astrometric",
"parameter",
"standard",
"uncertainties",
"and",
"the",
"uncertainty",
"correlations",
"as",
"quoted",
"in",
"the",
"Gaia",
"catalogue",
"and",
"construct",
"the",
"covariance",
"matrix",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/utils.py#L57-L113
|
[
"def",
"construct_covariance_matrix",
"(",
"cvec",
",",
"parallax",
",",
"radial_velocity",
",",
"radial_velocity_error",
")",
":",
"if",
"np",
".",
"ndim",
"(",
"cvec",
")",
"==",
"1",
":",
"cmat",
"=",
"np",
".",
"zeros",
"(",
"(",
"1",
",",
"6",
",",
"6",
")",
")",
"nsources",
"=",
"1",
"cv",
"=",
"np",
".",
"atleast_2d",
"(",
"cvec",
")",
"else",
":",
"nsources",
"=",
"cvec",
".",
"shape",
"[",
"0",
"]",
"cmat",
"=",
"np",
".",
"zeros",
"(",
"(",
"nsources",
",",
"6",
",",
"6",
")",
")",
"cv",
"=",
"cvec",
"for",
"k",
"in",
"range",
"(",
"nsources",
")",
":",
"cmat",
"[",
"k",
",",
"0",
":",
"5",
",",
"0",
":",
"5",
"]",
"=",
"cv",
"[",
"k",
",",
"0",
":",
"5",
"]",
"**",
"2",
"iu",
"=",
"np",
".",
"triu_indices",
"(",
"5",
",",
"k",
"=",
"1",
")",
"for",
"k",
"in",
"range",
"(",
"10",
")",
":",
"i",
"=",
"iu",
"[",
"0",
"]",
"[",
"k",
"]",
"j",
"=",
"iu",
"[",
"1",
"]",
"[",
"k",
"]",
"cmat",
"[",
":",
",",
"i",
",",
"j",
"]",
"=",
"cv",
"[",
":",
",",
"i",
"]",
"*",
"cv",
"[",
":",
",",
"j",
"]",
"*",
"cv",
"[",
":",
",",
"k",
"+",
"5",
"]",
"cmat",
"[",
":",
",",
"j",
",",
"i",
"]",
"=",
"cmat",
"[",
":",
",",
"i",
",",
"j",
"]",
"for",
"k",
"in",
"range",
"(",
"nsources",
")",
":",
"cmat",
"[",
"k",
",",
"0",
":",
"5",
",",
"5",
"]",
"=",
"cmat",
"[",
"k",
",",
"0",
":",
"5",
",",
"2",
"]",
"*",
"np",
".",
"atleast_1d",
"(",
"radial_velocity",
")",
"[",
"k",
"]",
"/",
"auKmYearPerSec",
"cmat",
"[",
":",
",",
"5",
",",
"0",
":",
"5",
"]",
"=",
"cmat",
"[",
":",
",",
"0",
":",
"5",
",",
"5",
"]",
"cmat",
"[",
":",
",",
"5",
",",
"5",
"]",
"=",
"cmat",
"[",
":",
",",
"2",
",",
"2",
"]",
"*",
"(",
"radial_velocity",
"**",
"2",
"+",
"radial_velocity_error",
"**",
"2",
")",
"/",
"auKmYearPerSec",
"**",
"2",
"+",
"(",
"parallax",
"*",
"radial_velocity_error",
"/",
"auKmYearPerSec",
")",
"**",
"2",
"return",
"np",
".",
"squeeze",
"(",
"cmat",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
makePlot
|
Make a plot of a Mv vs (V-I) colour magnitude diagram containing lines of constant distance for stars
at G=20. This will give an idea of the reach of Gaia.
Parameters
----------
args - command line arguments
|
examples/plotDistanceLimitsInMvVmini.py
|
def makePlot(gmag, pdf=False, png=False, rvs=False):
"""
Make a plot of a Mv vs (V-I) colour magnitude diagram containing lines of constant distance for stars
at G=20. This will give an idea of the reach of Gaia.
Parameters
----------
args - command line arguments
"""
vmini = np.linspace(-0.5,4.0,100)
if (rvs):
gminv = -vminGrvsFromVmini(vmini)
else:
gminv = gminvFromVmini(vmini)
mvlimit100pc = gmag-5.0*np.log10(100.0)+5.0-gminv
mvlimit1kpc = gmag-5.0*np.log10(1000.0)+5.0-gminv
mvlimit10kpc = gmag-5.0*np.log10(10000.0)+5.0-gminv
fig=plt.figure(figsize=(8,8))
plt.plot(vmini,mvlimit100pc,'b')
plt.text(vmini[50]-0.4,mvlimit100pc[50],"$d=100$ pc", horizontalalignment='right', va='top')
plt.plot(vmini,mvlimit1kpc,'r')
plt.text(vmini[50]-0.4,mvlimit1kpc[50],"$d=1000$ pc", horizontalalignment='right', va='top')
plt.plot(vmini,mvlimit10kpc,'g')
plt.text(vmini[50]-0.4,mvlimit10kpc[50],"$d=10000$ pc", horizontalalignment='right', va='top')
ax=plt.gca()
ax.set_ylim(ax.get_ylim()[::-1])
plt.xlabel("$(V-I)$")
plt.ylabel("$M_V$")
if (rvs):
plt.title("Distance limits for $G_\\mathrm{RVS}"+"={0}$".format(gmag))
else:
plt.title("Distance limits for $G={0}$".format(gmag))
if (args['pdfOutput']):
plt.savefig('GaiaSurveyLimits.pdf')
elif (args['pngOutput']):
plt.savefig('GaiaSurveyLimits.png')
else:
plt.show()
|
def makePlot(gmag, pdf=False, png=False, rvs=False):
"""
Make a plot of a Mv vs (V-I) colour magnitude diagram containing lines of constant distance for stars
at G=20. This will give an idea of the reach of Gaia.
Parameters
----------
args - command line arguments
"""
vmini = np.linspace(-0.5,4.0,100)
if (rvs):
gminv = -vminGrvsFromVmini(vmini)
else:
gminv = gminvFromVmini(vmini)
mvlimit100pc = gmag-5.0*np.log10(100.0)+5.0-gminv
mvlimit1kpc = gmag-5.0*np.log10(1000.0)+5.0-gminv
mvlimit10kpc = gmag-5.0*np.log10(10000.0)+5.0-gminv
fig=plt.figure(figsize=(8,8))
plt.plot(vmini,mvlimit100pc,'b')
plt.text(vmini[50]-0.4,mvlimit100pc[50],"$d=100$ pc", horizontalalignment='right', va='top')
plt.plot(vmini,mvlimit1kpc,'r')
plt.text(vmini[50]-0.4,mvlimit1kpc[50],"$d=1000$ pc", horizontalalignment='right', va='top')
plt.plot(vmini,mvlimit10kpc,'g')
plt.text(vmini[50]-0.4,mvlimit10kpc[50],"$d=10000$ pc", horizontalalignment='right', va='top')
ax=plt.gca()
ax.set_ylim(ax.get_ylim()[::-1])
plt.xlabel("$(V-I)$")
plt.ylabel("$M_V$")
if (rvs):
plt.title("Distance limits for $G_\\mathrm{RVS}"+"={0}$".format(gmag))
else:
plt.title("Distance limits for $G={0}$".format(gmag))
if (args['pdfOutput']):
plt.savefig('GaiaSurveyLimits.pdf')
elif (args['pngOutput']):
plt.savefig('GaiaSurveyLimits.png')
else:
plt.show()
|
[
"Make",
"a",
"plot",
"of",
"a",
"Mv",
"vs",
"(",
"V",
"-",
"I",
")",
"colour",
"magnitude",
"diagram",
"containing",
"lines",
"of",
"constant",
"distance",
"for",
"stars",
"at",
"G",
"=",
"20",
".",
"This",
"will",
"give",
"an",
"idea",
"of",
"the",
"reach",
"of",
"Gaia",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/examples/plotDistanceLimitsInMvVmini.py#L27-L67
|
[
"def",
"makePlot",
"(",
"gmag",
",",
"pdf",
"=",
"False",
",",
"png",
"=",
"False",
",",
"rvs",
"=",
"False",
")",
":",
"vmini",
"=",
"np",
".",
"linspace",
"(",
"-",
"0.5",
",",
"4.0",
",",
"100",
")",
"if",
"(",
"rvs",
")",
":",
"gminv",
"=",
"-",
"vminGrvsFromVmini",
"(",
"vmini",
")",
"else",
":",
"gminv",
"=",
"gminvFromVmini",
"(",
"vmini",
")",
"mvlimit100pc",
"=",
"gmag",
"-",
"5.0",
"*",
"np",
".",
"log10",
"(",
"100.0",
")",
"+",
"5.0",
"-",
"gminv",
"mvlimit1kpc",
"=",
"gmag",
"-",
"5.0",
"*",
"np",
".",
"log10",
"(",
"1000.0",
")",
"+",
"5.0",
"-",
"gminv",
"mvlimit10kpc",
"=",
"gmag",
"-",
"5.0",
"*",
"np",
".",
"log10",
"(",
"10000.0",
")",
"+",
"5.0",
"-",
"gminv",
"fig",
"=",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"8",
",",
"8",
")",
")",
"plt",
".",
"plot",
"(",
"vmini",
",",
"mvlimit100pc",
",",
"'b'",
")",
"plt",
".",
"text",
"(",
"vmini",
"[",
"50",
"]",
"-",
"0.4",
",",
"mvlimit100pc",
"[",
"50",
"]",
",",
"\"$d=100$ pc\"",
",",
"horizontalalignment",
"=",
"'right'",
",",
"va",
"=",
"'top'",
")",
"plt",
".",
"plot",
"(",
"vmini",
",",
"mvlimit1kpc",
",",
"'r'",
")",
"plt",
".",
"text",
"(",
"vmini",
"[",
"50",
"]",
"-",
"0.4",
",",
"mvlimit1kpc",
"[",
"50",
"]",
",",
"\"$d=1000$ pc\"",
",",
"horizontalalignment",
"=",
"'right'",
",",
"va",
"=",
"'top'",
")",
"plt",
".",
"plot",
"(",
"vmini",
",",
"mvlimit10kpc",
",",
"'g'",
")",
"plt",
".",
"text",
"(",
"vmini",
"[",
"50",
"]",
"-",
"0.4",
",",
"mvlimit10kpc",
"[",
"50",
"]",
",",
"\"$d=10000$ pc\"",
",",
"horizontalalignment",
"=",
"'right'",
",",
"va",
"=",
"'top'",
")",
"ax",
"=",
"plt",
".",
"gca",
"(",
")",
"ax",
".",
"set_ylim",
"(",
"ax",
".",
"get_ylim",
"(",
")",
"[",
":",
":",
"-",
"1",
"]",
")",
"plt",
".",
"xlabel",
"(",
"\"$(V-I)$\"",
")",
"plt",
".",
"ylabel",
"(",
"\"$M_V$\"",
")",
"if",
"(",
"rvs",
")",
":",
"plt",
".",
"title",
"(",
"\"Distance limits for $G_\\\\mathrm{RVS}\"",
"+",
"\"={0}$\"",
".",
"format",
"(",
"gmag",
")",
")",
"else",
":",
"plt",
".",
"title",
"(",
"\"Distance limits for $G={0}$\"",
".",
"format",
"(",
"gmag",
")",
")",
"if",
"(",
"args",
"[",
"'pdfOutput'",
"]",
")",
":",
"plt",
".",
"savefig",
"(",
"'GaiaSurveyLimits.pdf'",
")",
"elif",
"(",
"args",
"[",
"'pngOutput'",
"]",
")",
":",
"plt",
".",
"savefig",
"(",
"'GaiaSurveyLimits.png'",
")",
"else",
":",
"plt",
".",
"show",
"(",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
vradErrorSkyAvg
|
Calculate radial velocity error from V and the spectral type. The value of the error is an average over
the sky.
Parameters
----------
vmag - Value of V-band magnitude.
spt - String representing the spectral type of the star.
Returns
-------
The radial velocity error in km/s.
|
pygaia/errors/spectroscopic.py
|
def vradErrorSkyAvg(vmag, spt):
"""
Calculate radial velocity error from V and the spectral type. The value of the error is an average over
the sky.
Parameters
----------
vmag - Value of V-band magnitude.
spt - String representing the spectral type of the star.
Returns
-------
The radial velocity error in km/s.
"""
return _vradCalibrationFloor + _vradErrorBCoeff[spt]*exp(_vradErrorACoeff[spt]*(vmag-_vradMagnitudeZeroPoint))
|
def vradErrorSkyAvg(vmag, spt):
"""
Calculate radial velocity error from V and the spectral type. The value of the error is an average over
the sky.
Parameters
----------
vmag - Value of V-band magnitude.
spt - String representing the spectral type of the star.
Returns
-------
The radial velocity error in km/s.
"""
return _vradCalibrationFloor + _vradErrorBCoeff[spt]*exp(_vradErrorACoeff[spt]*(vmag-_vradMagnitudeZeroPoint))
|
[
"Calculate",
"radial",
"velocity",
"error",
"from",
"V",
"and",
"the",
"spectral",
"type",
".",
"The",
"value",
"of",
"the",
"error",
"is",
"an",
"average",
"over",
"the",
"sky",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/errors/spectroscopic.py#L12-L28
|
[
"def",
"vradErrorSkyAvg",
"(",
"vmag",
",",
"spt",
")",
":",
"return",
"_vradCalibrationFloor",
"+",
"_vradErrorBCoeff",
"[",
"spt",
"]",
"*",
"exp",
"(",
"_vradErrorACoeff",
"[",
"spt",
"]",
"*",
"(",
"vmag",
"-",
"_vradMagnitudeZeroPoint",
")",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
_orderGridlinePoints
|
This code takes care of ordering the points (x,y), calculated for a sky map parallel or merdian, such
that the drawing code can start at one end of the curve and end at the other (so no artifacts due to
connecting the disjoint ends occur).
Parameters
----------
x - Set of x coordinates
y - Set of y coordinates
Returns
-------
x, y: Order set of (x,y) points
|
pygaia/plot/sky.py
|
def _orderGridlinePoints(x, y):
"""
This code takes care of ordering the points (x,y), calculated for a sky map parallel or merdian, such
that the drawing code can start at one end of the curve and end at the other (so no artifacts due to
connecting the disjoint ends occur).
Parameters
----------
x - Set of x coordinates
y - Set of y coordinates
Returns
-------
x, y: Order set of (x,y) points
"""
xroll=roll(x,1)
yroll=roll(y,1)
distance=(xroll-x)**2+(yroll-y)**2
indexmax=argmax(distance)
return roll(x,-indexmax), roll(y,-indexmax)
|
def _orderGridlinePoints(x, y):
"""
This code takes care of ordering the points (x,y), calculated for a sky map parallel or merdian, such
that the drawing code can start at one end of the curve and end at the other (so no artifacts due to
connecting the disjoint ends occur).
Parameters
----------
x - Set of x coordinates
y - Set of y coordinates
Returns
-------
x, y: Order set of (x,y) points
"""
xroll=roll(x,1)
yroll=roll(y,1)
distance=(xroll-x)**2+(yroll-y)**2
indexmax=argmax(distance)
return roll(x,-indexmax), roll(y,-indexmax)
|
[
"This",
"code",
"takes",
"care",
"of",
"ordering",
"the",
"points",
"(",
"x",
"y",
")",
"calculated",
"for",
"a",
"sky",
"map",
"parallel",
"or",
"merdian",
"such",
"that",
"the",
"drawing",
"code",
"can",
"start",
"at",
"one",
"end",
"of",
"the",
"curve",
"and",
"end",
"at",
"the",
"other",
"(",
"so",
"no",
"artifacts",
"due",
"to",
"connecting",
"the",
"disjoint",
"ends",
"occur",
")",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/plot/sky.py#L10-L31
|
[
"def",
"_orderGridlinePoints",
"(",
"x",
",",
"y",
")",
":",
"xroll",
"=",
"roll",
"(",
"x",
",",
"1",
")",
"yroll",
"=",
"roll",
"(",
"y",
",",
"1",
")",
"distance",
"=",
"(",
"xroll",
"-",
"x",
")",
"**",
"2",
"+",
"(",
"yroll",
"-",
"y",
")",
"**",
"2",
"indexmax",
"=",
"argmax",
"(",
"distance",
")",
"return",
"roll",
"(",
"x",
",",
"-",
"indexmax",
")",
",",
"roll",
"(",
"y",
",",
"-",
"indexmax",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
plotCoordinateTransformationOnSky
|
Produce a sky-plot in a given coordinate system with the meridians and paralles for another
coordinate system overlayed. The coordinate systems are specified through the
pygaia.coordinates.Transformations enum. For example for Transformations.GAL2ECL the sky plot will be
in Ecliptic coordinates with the Galactic coordinate grid overlayed.
Keywords
--------
transformation - The coordinate transformation for which to make the plot (e.g.,
Transformations.GAL2ECL)
outfile - Save plot to this output file (default is to plot on screen). Make sure an extension
(.pdf, .png, etc) is included.
myProjection - Use this map projection (default is 'hammer', see basemap documentation)
noTitle - If true do not include the plot title.
noLabels - If true do not include plot labels.
returnPlotObject - If true return the matplotlib object used for plotting. Further plot elements can
then be added.
|
pygaia/plot/sky.py
|
def plotCoordinateTransformationOnSky(transformation, outfile=None, myProjection='hammer',
noTitle=False, noLabels=False, returnPlotObject=False):
"""
Produce a sky-plot in a given coordinate system with the meridians and paralles for another
coordinate system overlayed. The coordinate systems are specified through the
pygaia.coordinates.Transformations enum. For example for Transformations.GAL2ECL the sky plot will be
in Ecliptic coordinates with the Galactic coordinate grid overlayed.
Keywords
--------
transformation - The coordinate transformation for which to make the plot (e.g.,
Transformations.GAL2ECL)
outfile - Save plot to this output file (default is to plot on screen). Make sure an extension
(.pdf, .png, etc) is included.
myProjection - Use this map projection (default is 'hammer', see basemap documentation)
noTitle - If true do not include the plot title.
noLabels - If true do not include plot labels.
returnPlotObject - If true return the matplotlib object used for plotting. Further plot elements can
then be added.
"""
ct = CoordinateTransformation(transformation)
parallels=arange(-80.0,90.0,10.0)
meridians=arange(0.0,375.0,15.0)
meridianMax=degreesToRadians(85.0)
parallelsMax=degreesToRadians(179.0)
fig=plt.figure(figsize=(12,6))
basemapInstance=Basemap(projection=myProjection,lon_0=0, celestial=True)
basemapInstance.drawmapboundary()
for thetaDeg in parallels:
phi=linspace(-pi,pi,1001)
theta=zeros_like(phi)+degreesToRadians(thetaDeg)
phirot, thetarot = ct.transformSkyCoordinates(phi, theta)
x ,y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
indices=(phirot>=0.0)
xplot=x[indices]
yplot=y[indices]
if any(indices):
xplot, yplot = _orderGridlinePoints(xplot, yplot)
plt.plot(xplot,yplot,'b-')
indices=(phirot<0.0)
xplot=x[indices]
yplot=y[indices]
if any(indices):
xplot, yplot = _orderGridlinePoints(xplot, yplot)
plt.plot(xplot,yplot,'b-')
for phiDeg in meridians:
theta=linspace(-meridianMax,meridianMax,1001)
phi=zeros_like(theta)+degreesToRadians(phiDeg)
phirot, thetarot = ct.transformSkyCoordinates(phi, theta)
x ,y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
indices=(phirot>=0.0)
xplot=x[indices]
yplot=y[indices]
if any(indices):
xplot, yplot = _orderGridlinePoints(xplot, yplot)
plt.plot(xplot,yplot,'b-')
indices=(phirot<0.0)
xplot=x[indices]
yplot=y[indices]
if any(indices):
xplot, yplot = _orderGridlinePoints(xplot, yplot)
plt.plot(xplot,yplot,'b-')
if (not noTitle):
plt.title("Sky projection in " + ct.transformationStrings[1] + " coordinates with the corresponding " + ct.transformationStrings[0] + " grid overlayed")
if (not noLabels):
for theta in arange(-60,90,30):
phirot, thetarot=ct.transformSkyCoordinates(0.0,degreesToRadians(theta))
x, y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
plt.text(x,y,"${0}$".format(theta),fontsize=16,va='bottom',ha='center',color='r')
for phi in arange(-180,0,30):
phirot, thetarot=ct.transformSkyCoordinates(degreesToRadians(phi),0.0)
x, y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
plt.text(x,y,"${0}$".format(phi),fontsize=16,va='bottom',ha='center',color='r')
for phi in arange(30,180,30):
phirot, thetarot=ct.transformSkyCoordinates(degreesToRadians(phi),0.0)
x, y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
plt.text(x,y,"${0}$".format(phi),fontsize=16,va='bottom',ha='center',color='r')
if (outfile != None):
plt.savefig(outfile)
elif (returnPlotObject):
return plt.gca(), basemapInstance
else:
plt.show()
|
def plotCoordinateTransformationOnSky(transformation, outfile=None, myProjection='hammer',
noTitle=False, noLabels=False, returnPlotObject=False):
"""
Produce a sky-plot in a given coordinate system with the meridians and paralles for another
coordinate system overlayed. The coordinate systems are specified through the
pygaia.coordinates.Transformations enum. For example for Transformations.GAL2ECL the sky plot will be
in Ecliptic coordinates with the Galactic coordinate grid overlayed.
Keywords
--------
transformation - The coordinate transformation for which to make the plot (e.g.,
Transformations.GAL2ECL)
outfile - Save plot to this output file (default is to plot on screen). Make sure an extension
(.pdf, .png, etc) is included.
myProjection - Use this map projection (default is 'hammer', see basemap documentation)
noTitle - If true do not include the plot title.
noLabels - If true do not include plot labels.
returnPlotObject - If true return the matplotlib object used for plotting. Further plot elements can
then be added.
"""
ct = CoordinateTransformation(transformation)
parallels=arange(-80.0,90.0,10.0)
meridians=arange(0.0,375.0,15.0)
meridianMax=degreesToRadians(85.0)
parallelsMax=degreesToRadians(179.0)
fig=plt.figure(figsize=(12,6))
basemapInstance=Basemap(projection=myProjection,lon_0=0, celestial=True)
basemapInstance.drawmapboundary()
for thetaDeg in parallels:
phi=linspace(-pi,pi,1001)
theta=zeros_like(phi)+degreesToRadians(thetaDeg)
phirot, thetarot = ct.transformSkyCoordinates(phi, theta)
x ,y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
indices=(phirot>=0.0)
xplot=x[indices]
yplot=y[indices]
if any(indices):
xplot, yplot = _orderGridlinePoints(xplot, yplot)
plt.plot(xplot,yplot,'b-')
indices=(phirot<0.0)
xplot=x[indices]
yplot=y[indices]
if any(indices):
xplot, yplot = _orderGridlinePoints(xplot, yplot)
plt.plot(xplot,yplot,'b-')
for phiDeg in meridians:
theta=linspace(-meridianMax,meridianMax,1001)
phi=zeros_like(theta)+degreesToRadians(phiDeg)
phirot, thetarot = ct.transformSkyCoordinates(phi, theta)
x ,y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
indices=(phirot>=0.0)
xplot=x[indices]
yplot=y[indices]
if any(indices):
xplot, yplot = _orderGridlinePoints(xplot, yplot)
plt.plot(xplot,yplot,'b-')
indices=(phirot<0.0)
xplot=x[indices]
yplot=y[indices]
if any(indices):
xplot, yplot = _orderGridlinePoints(xplot, yplot)
plt.plot(xplot,yplot,'b-')
if (not noTitle):
plt.title("Sky projection in " + ct.transformationStrings[1] + " coordinates with the corresponding " + ct.transformationStrings[0] + " grid overlayed")
if (not noLabels):
for theta in arange(-60,90,30):
phirot, thetarot=ct.transformSkyCoordinates(0.0,degreesToRadians(theta))
x, y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
plt.text(x,y,"${0}$".format(theta),fontsize=16,va='bottom',ha='center',color='r')
for phi in arange(-180,0,30):
phirot, thetarot=ct.transformSkyCoordinates(degreesToRadians(phi),0.0)
x, y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
plt.text(x,y,"${0}$".format(phi),fontsize=16,va='bottom',ha='center',color='r')
for phi in arange(30,180,30):
phirot, thetarot=ct.transformSkyCoordinates(degreesToRadians(phi),0.0)
x, y = basemapInstance(radiansToDegrees(phirot), radiansToDegrees(thetarot))
plt.text(x,y,"${0}$".format(phi),fontsize=16,va='bottom',ha='center',color='r')
if (outfile != None):
plt.savefig(outfile)
elif (returnPlotObject):
return plt.gca(), basemapInstance
else:
plt.show()
|
[
"Produce",
"a",
"sky",
"-",
"plot",
"in",
"a",
"given",
"coordinate",
"system",
"with",
"the",
"meridians",
"and",
"paralles",
"for",
"another",
"coordinate",
"system",
"overlayed",
".",
"The",
"coordinate",
"systems",
"are",
"specified",
"through",
"the",
"pygaia",
".",
"coordinates",
".",
"Transformations",
"enum",
".",
"For",
"example",
"for",
"Transformations",
".",
"GAL2ECL",
"the",
"sky",
"plot",
"will",
"be",
"in",
"Ecliptic",
"coordinates",
"with",
"the",
"Galactic",
"coordinate",
"grid",
"overlayed",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/plot/sky.py#L33-L127
|
[
"def",
"plotCoordinateTransformationOnSky",
"(",
"transformation",
",",
"outfile",
"=",
"None",
",",
"myProjection",
"=",
"'hammer'",
",",
"noTitle",
"=",
"False",
",",
"noLabels",
"=",
"False",
",",
"returnPlotObject",
"=",
"False",
")",
":",
"ct",
"=",
"CoordinateTransformation",
"(",
"transformation",
")",
"parallels",
"=",
"arange",
"(",
"-",
"80.0",
",",
"90.0",
",",
"10.0",
")",
"meridians",
"=",
"arange",
"(",
"0.0",
",",
"375.0",
",",
"15.0",
")",
"meridianMax",
"=",
"degreesToRadians",
"(",
"85.0",
")",
"parallelsMax",
"=",
"degreesToRadians",
"(",
"179.0",
")",
"fig",
"=",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"12",
",",
"6",
")",
")",
"basemapInstance",
"=",
"Basemap",
"(",
"projection",
"=",
"myProjection",
",",
"lon_0",
"=",
"0",
",",
"celestial",
"=",
"True",
")",
"basemapInstance",
".",
"drawmapboundary",
"(",
")",
"for",
"thetaDeg",
"in",
"parallels",
":",
"phi",
"=",
"linspace",
"(",
"-",
"pi",
",",
"pi",
",",
"1001",
")",
"theta",
"=",
"zeros_like",
"(",
"phi",
")",
"+",
"degreesToRadians",
"(",
"thetaDeg",
")",
"phirot",
",",
"thetarot",
"=",
"ct",
".",
"transformSkyCoordinates",
"(",
"phi",
",",
"theta",
")",
"x",
",",
"y",
"=",
"basemapInstance",
"(",
"radiansToDegrees",
"(",
"phirot",
")",
",",
"radiansToDegrees",
"(",
"thetarot",
")",
")",
"indices",
"=",
"(",
"phirot",
">=",
"0.0",
")",
"xplot",
"=",
"x",
"[",
"indices",
"]",
"yplot",
"=",
"y",
"[",
"indices",
"]",
"if",
"any",
"(",
"indices",
")",
":",
"xplot",
",",
"yplot",
"=",
"_orderGridlinePoints",
"(",
"xplot",
",",
"yplot",
")",
"plt",
".",
"plot",
"(",
"xplot",
",",
"yplot",
",",
"'b-'",
")",
"indices",
"=",
"(",
"phirot",
"<",
"0.0",
")",
"xplot",
"=",
"x",
"[",
"indices",
"]",
"yplot",
"=",
"y",
"[",
"indices",
"]",
"if",
"any",
"(",
"indices",
")",
":",
"xplot",
",",
"yplot",
"=",
"_orderGridlinePoints",
"(",
"xplot",
",",
"yplot",
")",
"plt",
".",
"plot",
"(",
"xplot",
",",
"yplot",
",",
"'b-'",
")",
"for",
"phiDeg",
"in",
"meridians",
":",
"theta",
"=",
"linspace",
"(",
"-",
"meridianMax",
",",
"meridianMax",
",",
"1001",
")",
"phi",
"=",
"zeros_like",
"(",
"theta",
")",
"+",
"degreesToRadians",
"(",
"phiDeg",
")",
"phirot",
",",
"thetarot",
"=",
"ct",
".",
"transformSkyCoordinates",
"(",
"phi",
",",
"theta",
")",
"x",
",",
"y",
"=",
"basemapInstance",
"(",
"radiansToDegrees",
"(",
"phirot",
")",
",",
"radiansToDegrees",
"(",
"thetarot",
")",
")",
"indices",
"=",
"(",
"phirot",
">=",
"0.0",
")",
"xplot",
"=",
"x",
"[",
"indices",
"]",
"yplot",
"=",
"y",
"[",
"indices",
"]",
"if",
"any",
"(",
"indices",
")",
":",
"xplot",
",",
"yplot",
"=",
"_orderGridlinePoints",
"(",
"xplot",
",",
"yplot",
")",
"plt",
".",
"plot",
"(",
"xplot",
",",
"yplot",
",",
"'b-'",
")",
"indices",
"=",
"(",
"phirot",
"<",
"0.0",
")",
"xplot",
"=",
"x",
"[",
"indices",
"]",
"yplot",
"=",
"y",
"[",
"indices",
"]",
"if",
"any",
"(",
"indices",
")",
":",
"xplot",
",",
"yplot",
"=",
"_orderGridlinePoints",
"(",
"xplot",
",",
"yplot",
")",
"plt",
".",
"plot",
"(",
"xplot",
",",
"yplot",
",",
"'b-'",
")",
"if",
"(",
"not",
"noTitle",
")",
":",
"plt",
".",
"title",
"(",
"\"Sky projection in \"",
"+",
"ct",
".",
"transformationStrings",
"[",
"1",
"]",
"+",
"\" coordinates with the corresponding \"",
"+",
"ct",
".",
"transformationStrings",
"[",
"0",
"]",
"+",
"\" grid overlayed\"",
")",
"if",
"(",
"not",
"noLabels",
")",
":",
"for",
"theta",
"in",
"arange",
"(",
"-",
"60",
",",
"90",
",",
"30",
")",
":",
"phirot",
",",
"thetarot",
"=",
"ct",
".",
"transformSkyCoordinates",
"(",
"0.0",
",",
"degreesToRadians",
"(",
"theta",
")",
")",
"x",
",",
"y",
"=",
"basemapInstance",
"(",
"radiansToDegrees",
"(",
"phirot",
")",
",",
"radiansToDegrees",
"(",
"thetarot",
")",
")",
"plt",
".",
"text",
"(",
"x",
",",
"y",
",",
"\"${0}$\"",
".",
"format",
"(",
"theta",
")",
",",
"fontsize",
"=",
"16",
",",
"va",
"=",
"'bottom'",
",",
"ha",
"=",
"'center'",
",",
"color",
"=",
"'r'",
")",
"for",
"phi",
"in",
"arange",
"(",
"-",
"180",
",",
"0",
",",
"30",
")",
":",
"phirot",
",",
"thetarot",
"=",
"ct",
".",
"transformSkyCoordinates",
"(",
"degreesToRadians",
"(",
"phi",
")",
",",
"0.0",
")",
"x",
",",
"y",
"=",
"basemapInstance",
"(",
"radiansToDegrees",
"(",
"phirot",
")",
",",
"radiansToDegrees",
"(",
"thetarot",
")",
")",
"plt",
".",
"text",
"(",
"x",
",",
"y",
",",
"\"${0}$\"",
".",
"format",
"(",
"phi",
")",
",",
"fontsize",
"=",
"16",
",",
"va",
"=",
"'bottom'",
",",
"ha",
"=",
"'center'",
",",
"color",
"=",
"'r'",
")",
"for",
"phi",
"in",
"arange",
"(",
"30",
",",
"180",
",",
"30",
")",
":",
"phirot",
",",
"thetarot",
"=",
"ct",
".",
"transformSkyCoordinates",
"(",
"degreesToRadians",
"(",
"phi",
")",
",",
"0.0",
")",
"x",
",",
"y",
"=",
"basemapInstance",
"(",
"radiansToDegrees",
"(",
"phirot",
")",
",",
"radiansToDegrees",
"(",
"thetarot",
")",
")",
"plt",
".",
"text",
"(",
"x",
",",
"y",
",",
"\"${0}$\"",
".",
"format",
"(",
"phi",
")",
",",
"fontsize",
"=",
"16",
",",
"va",
"=",
"'bottom'",
",",
"ha",
"=",
"'center'",
",",
"color",
"=",
"'r'",
")",
"if",
"(",
"outfile",
"!=",
"None",
")",
":",
"plt",
".",
"savefig",
"(",
"outfile",
")",
"elif",
"(",
"returnPlotObject",
")",
":",
"return",
"plt",
".",
"gca",
"(",
")",
",",
"basemapInstance",
"else",
":",
"plt",
".",
"show",
"(",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
calcParallaxError
|
Calculate the parallax error for the given input source magnitude and colour.
:argument args: command line arguments
|
examples/parallax_errors.py
|
def calcParallaxError(args):
"""
Calculate the parallax error for the given input source magnitude and colour.
:argument args: command line arguments
"""
gmag=float(args['gmag'])
vmini=float(args['vmini'])
sigmaPar=parallaxErrorSkyAvg(gmag, vmini)
gminv=gminvFromVmini(vmini)
print("G = {0}".format(gmag))
print("V = {0}".format(gmag-gminv))
print("(V-I) = {0}".format(vmini))
print("(G-V) = {0}".format(gminv))
print("standard error = {0} muas".format(sigmaPar))
|
def calcParallaxError(args):
"""
Calculate the parallax error for the given input source magnitude and colour.
:argument args: command line arguments
"""
gmag=float(args['gmag'])
vmini=float(args['vmini'])
sigmaPar=parallaxErrorSkyAvg(gmag, vmini)
gminv=gminvFromVmini(vmini)
print("G = {0}".format(gmag))
print("V = {0}".format(gmag-gminv))
print("(V-I) = {0}".format(vmini))
print("(G-V) = {0}".format(gminv))
print("standard error = {0} muas".format(sigmaPar))
|
[
"Calculate",
"the",
"parallax",
"error",
"for",
"the",
"given",
"input",
"source",
"magnitude",
"and",
"colour",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/examples/parallax_errors.py#L17-L31
|
[
"def",
"calcParallaxError",
"(",
"args",
")",
":",
"gmag",
"=",
"float",
"(",
"args",
"[",
"'gmag'",
"]",
")",
"vmini",
"=",
"float",
"(",
"args",
"[",
"'vmini'",
"]",
")",
"sigmaPar",
"=",
"parallaxErrorSkyAvg",
"(",
"gmag",
",",
"vmini",
")",
"gminv",
"=",
"gminvFromVmini",
"(",
"vmini",
")",
"print",
"(",
"\"G = {0}\"",
".",
"format",
"(",
"gmag",
")",
")",
"print",
"(",
"\"V = {0}\"",
".",
"format",
"(",
"gmag",
"-",
"gminv",
")",
")",
"print",
"(",
"\"(V-I) = {0}\"",
".",
"format",
"(",
"vmini",
")",
")",
"print",
"(",
"\"(G-V) = {0}\"",
".",
"format",
"(",
"gminv",
")",
")",
"print",
"(",
"\"standard error = {0} muas\"",
".",
"format",
"(",
"sigmaPar",
")",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
parseCommandLineArguments
|
Set up command line parsing.
|
examples/parallax_errors.py
|
def parseCommandLineArguments():
"""
Set up command line parsing.
"""
parser = argparse.ArgumentParser(description="Calculate parallax error for given G and (V-I)")
parser.add_argument("gmag", help="G-band magnitude of source", type=float)
parser.add_argument("vmini", help="(V-I) colour of source", type=float)
args=vars(parser.parse_args())
return args
|
def parseCommandLineArguments():
"""
Set up command line parsing.
"""
parser = argparse.ArgumentParser(description="Calculate parallax error for given G and (V-I)")
parser.add_argument("gmag", help="G-band magnitude of source", type=float)
parser.add_argument("vmini", help="(V-I) colour of source", type=float)
args=vars(parser.parse_args())
return args
|
[
"Set",
"up",
"command",
"line",
"parsing",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/examples/parallax_errors.py#L33-L42
|
[
"def",
"parseCommandLineArguments",
"(",
")",
":",
"parser",
"=",
"argparse",
".",
"ArgumentParser",
"(",
"description",
"=",
"\"Calculate parallax error for given G and (V-I)\"",
")",
"parser",
".",
"add_argument",
"(",
"\"gmag\"",
",",
"help",
"=",
"\"G-band magnitude of source\"",
",",
"type",
"=",
"float",
")",
"parser",
".",
"add_argument",
"(",
"\"vmini\"",
",",
"help",
"=",
"\"(V-I) colour of source\"",
",",
"type",
"=",
"float",
")",
"args",
"=",
"vars",
"(",
"parser",
".",
"parse_args",
"(",
")",
")",
"return",
"args"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
gMagnitudeError
|
Calculate the single-field-of-view-transit photometric standard error in the G band as a function
of G. A 20% margin is included.
Parameters
----------
G - Value(s) of G-band magnitude.
Returns
-------
The G band photometric standard error in units of magnitude.
|
pygaia/errors/photometric.py
|
def gMagnitudeError(G):
"""
Calculate the single-field-of-view-transit photometric standard error in the G band as a function
of G. A 20% margin is included.
Parameters
----------
G - Value(s) of G-band magnitude.
Returns
-------
The G band photometric standard error in units of magnitude.
"""
z=calcZ(G)
return 1.0e-3*sqrt(0.04895*z*z + 1.8633*z + 0.0001985) * _scienceMargin
|
def gMagnitudeError(G):
"""
Calculate the single-field-of-view-transit photometric standard error in the G band as a function
of G. A 20% margin is included.
Parameters
----------
G - Value(s) of G-band magnitude.
Returns
-------
The G band photometric standard error in units of magnitude.
"""
z=calcZ(G)
return 1.0e-3*sqrt(0.04895*z*z + 1.8633*z + 0.0001985) * _scienceMargin
|
[
"Calculate",
"the",
"single",
"-",
"field",
"-",
"of",
"-",
"view",
"-",
"transit",
"photometric",
"standard",
"error",
"in",
"the",
"G",
"band",
"as",
"a",
"function",
"of",
"G",
".",
"A",
"20%",
"margin",
"is",
"included",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/errors/photometric.py#L20-L36
|
[
"def",
"gMagnitudeError",
"(",
"G",
")",
":",
"z",
"=",
"calcZ",
"(",
"G",
")",
"return",
"1.0e-3",
"*",
"sqrt",
"(",
"0.04895",
"*",
"z",
"*",
"z",
"+",
"1.8633",
"*",
"z",
"+",
"0.0001985",
")",
"*",
"_scienceMargin"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
gMagnitudeErrorEoM
|
Calculate the end of mission photometric standard error in the G band as a function
of G. A 20% margin is included.
Parameters
----------
G - Value(s) of G-band magnitude.
Keywords
--------
nobs - Number of observations collected (default 70).
Returns
-------
The G band photometric standard error in units of magnitude.
|
pygaia/errors/photometric.py
|
def gMagnitudeErrorEoM(G, nobs=70):
"""
Calculate the end of mission photometric standard error in the G band as a function
of G. A 20% margin is included.
Parameters
----------
G - Value(s) of G-band magnitude.
Keywords
--------
nobs - Number of observations collected (default 70).
Returns
-------
The G band photometric standard error in units of magnitude.
"""
return sqrt( (power(gMagnitudeError(G)/_scienceMargin,2) +
_eomCalibrationFloorG*_eomCalibrationFloorG)/nobs ) * _scienceMargin
|
def gMagnitudeErrorEoM(G, nobs=70):
"""
Calculate the end of mission photometric standard error in the G band as a function
of G. A 20% margin is included.
Parameters
----------
G - Value(s) of G-band magnitude.
Keywords
--------
nobs - Number of observations collected (default 70).
Returns
-------
The G band photometric standard error in units of magnitude.
"""
return sqrt( (power(gMagnitudeError(G)/_scienceMargin,2) +
_eomCalibrationFloorG*_eomCalibrationFloorG)/nobs ) * _scienceMargin
|
[
"Calculate",
"the",
"end",
"of",
"mission",
"photometric",
"standard",
"error",
"in",
"the",
"G",
"band",
"as",
"a",
"function",
"of",
"G",
".",
"A",
"20%",
"margin",
"is",
"included",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/errors/photometric.py#L38-L59
|
[
"def",
"gMagnitudeErrorEoM",
"(",
"G",
",",
"nobs",
"=",
"70",
")",
":",
"return",
"sqrt",
"(",
"(",
"power",
"(",
"gMagnitudeError",
"(",
"G",
")",
"/",
"_scienceMargin",
",",
"2",
")",
"+",
"_eomCalibrationFloorG",
"*",
"_eomCalibrationFloorG",
")",
"/",
"nobs",
")",
"*",
"_scienceMargin"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
bpMagnitudeError
|
Calculate the single-field-of-view-transit photometric standard error in the BP band as a function
of G and (V-I). Note: this refers to the integrated flux from the BP spectrophotometer. A margin of 20%
is included.
Parameters
----------
G - Value(s) of G-band magnitude.
vmini - Value(s) of (V-I) colour.
Returns
-------
The BP band photometric standard error in units of magnitude.
|
pygaia/errors/photometric.py
|
def bpMagnitudeError(G, vmini):
"""
Calculate the single-field-of-view-transit photometric standard error in the BP band as a function
of G and (V-I). Note: this refers to the integrated flux from the BP spectrophotometer. A margin of 20%
is included.
Parameters
----------
G - Value(s) of G-band magnitude.
vmini - Value(s) of (V-I) colour.
Returns
-------
The BP band photometric standard error in units of magnitude.
"""
z=calcZBpRp(G)
a = -0.000562*power(vmini,3) + 0.044390*vmini*vmini + 0.355123*vmini + 1.043270
b = -0.000400*power(vmini,3) + 0.018878*vmini*vmini + 0.195768*vmini + 1.465592
c = +0.000262*power(vmini,3) + 0.060769*vmini*vmini - 0.205807*vmini - 1.866968
return 1.0e-3*sqrt(power(10.0,a)*z*z+power(10.0,b)*z+power(10.0,c))
|
def bpMagnitudeError(G, vmini):
"""
Calculate the single-field-of-view-transit photometric standard error in the BP band as a function
of G and (V-I). Note: this refers to the integrated flux from the BP spectrophotometer. A margin of 20%
is included.
Parameters
----------
G - Value(s) of G-band magnitude.
vmini - Value(s) of (V-I) colour.
Returns
-------
The BP band photometric standard error in units of magnitude.
"""
z=calcZBpRp(G)
a = -0.000562*power(vmini,3) + 0.044390*vmini*vmini + 0.355123*vmini + 1.043270
b = -0.000400*power(vmini,3) + 0.018878*vmini*vmini + 0.195768*vmini + 1.465592
c = +0.000262*power(vmini,3) + 0.060769*vmini*vmini - 0.205807*vmini - 1.866968
return 1.0e-3*sqrt(power(10.0,a)*z*z+power(10.0,b)*z+power(10.0,c))
|
[
"Calculate",
"the",
"single",
"-",
"field",
"-",
"of",
"-",
"view",
"-",
"transit",
"photometric",
"standard",
"error",
"in",
"the",
"BP",
"band",
"as",
"a",
"function",
"of",
"G",
"and",
"(",
"V",
"-",
"I",
")",
".",
"Note",
":",
"this",
"refers",
"to",
"the",
"integrated",
"flux",
"from",
"the",
"BP",
"spectrophotometer",
".",
"A",
"margin",
"of",
"20%",
"is",
"included",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/errors/photometric.py#L61-L82
|
[
"def",
"bpMagnitudeError",
"(",
"G",
",",
"vmini",
")",
":",
"z",
"=",
"calcZBpRp",
"(",
"G",
")",
"a",
"=",
"-",
"0.000562",
"*",
"power",
"(",
"vmini",
",",
"3",
")",
"+",
"0.044390",
"*",
"vmini",
"*",
"vmini",
"+",
"0.355123",
"*",
"vmini",
"+",
"1.043270",
"b",
"=",
"-",
"0.000400",
"*",
"power",
"(",
"vmini",
",",
"3",
")",
"+",
"0.018878",
"*",
"vmini",
"*",
"vmini",
"+",
"0.195768",
"*",
"vmini",
"+",
"1.465592",
"c",
"=",
"+",
"0.000262",
"*",
"power",
"(",
"vmini",
",",
"3",
")",
"+",
"0.060769",
"*",
"vmini",
"*",
"vmini",
"-",
"0.205807",
"*",
"vmini",
"-",
"1.866968",
"return",
"1.0e-3",
"*",
"sqrt",
"(",
"power",
"(",
"10.0",
",",
"a",
")",
"*",
"z",
"*",
"z",
"+",
"power",
"(",
"10.0",
",",
"b",
")",
"*",
"z",
"+",
"power",
"(",
"10.0",
",",
"c",
")",
")"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
bpMagnitudeErrorEoM
|
Calculate the end-of-mission photometric standard error in the BP band as a function of G and (V-I).
Note: this refers to the integrated flux from the BP spectrophotometer. A margin of 20% is included.
Parameters
----------
G - Value(s) of G-band magnitude.
vmini - Value(s) of (V-I) colour.
Keywords
--------
nobs - Number of observations collected (default 70).
Returns
-------
The BP band photometric standard error in units of magnitude.
|
pygaia/errors/photometric.py
|
def bpMagnitudeErrorEoM(G, vmini, nobs=70):
"""
Calculate the end-of-mission photometric standard error in the BP band as a function of G and (V-I).
Note: this refers to the integrated flux from the BP spectrophotometer. A margin of 20% is included.
Parameters
----------
G - Value(s) of G-band magnitude.
vmini - Value(s) of (V-I) colour.
Keywords
--------
nobs - Number of observations collected (default 70).
Returns
-------
The BP band photometric standard error in units of magnitude.
"""
return sqrt( (power(bpMagnitudeError(G, vmini)/_scienceMargin,2) +
_eomCalibrationFloorBP*_eomCalibrationFloorBP)/nobs ) * _scienceMargin
|
def bpMagnitudeErrorEoM(G, vmini, nobs=70):
"""
Calculate the end-of-mission photometric standard error in the BP band as a function of G and (V-I).
Note: this refers to the integrated flux from the BP spectrophotometer. A margin of 20% is included.
Parameters
----------
G - Value(s) of G-band magnitude.
vmini - Value(s) of (V-I) colour.
Keywords
--------
nobs - Number of observations collected (default 70).
Returns
-------
The BP band photometric standard error in units of magnitude.
"""
return sqrt( (power(bpMagnitudeError(G, vmini)/_scienceMargin,2) +
_eomCalibrationFloorBP*_eomCalibrationFloorBP)/nobs ) * _scienceMargin
|
[
"Calculate",
"the",
"end",
"-",
"of",
"-",
"mission",
"photometric",
"standard",
"error",
"in",
"the",
"BP",
"band",
"as",
"a",
"function",
"of",
"G",
"and",
"(",
"V",
"-",
"I",
")",
".",
"Note",
":",
"this",
"refers",
"to",
"the",
"integrated",
"flux",
"from",
"the",
"BP",
"spectrophotometer",
".",
"A",
"margin",
"of",
"20%",
"is",
"included",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/errors/photometric.py#L84-L106
|
[
"def",
"bpMagnitudeErrorEoM",
"(",
"G",
",",
"vmini",
",",
"nobs",
"=",
"70",
")",
":",
"return",
"sqrt",
"(",
"(",
"power",
"(",
"bpMagnitudeError",
"(",
"G",
",",
"vmini",
")",
"/",
"_scienceMargin",
",",
"2",
")",
"+",
"_eomCalibrationFloorBP",
"*",
"_eomCalibrationFloorBP",
")",
"/",
"nobs",
")",
"*",
"_scienceMargin"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
test
|
rpMagnitudeErrorEoM
|
Calculate the end-of-mission photometric standard error in the RP band as a function of G and (V-I).
Note: this refers to the integrated flux from the RP spectrophotometer. A margin of 20% is included.
Parameters
----------
G - Value(s) of G-band magnitude.
vmini - Value(s) of (V-I) colour.
Keywords
--------
nobs - Number of observations collected (default 70).
Returns
-------
The RP band photometric standard error in units of magnitude.
|
pygaia/errors/photometric.py
|
def rpMagnitudeErrorEoM(G, vmini, nobs=70):
"""
Calculate the end-of-mission photometric standard error in the RP band as a function of G and (V-I).
Note: this refers to the integrated flux from the RP spectrophotometer. A margin of 20% is included.
Parameters
----------
G - Value(s) of G-band magnitude.
vmini - Value(s) of (V-I) colour.
Keywords
--------
nobs - Number of observations collected (default 70).
Returns
-------
The RP band photometric standard error in units of magnitude.
"""
return sqrt( (power(rpMagnitudeError(G, vmini)/_scienceMargin,2) +
_eomCalibrationFloorRP*_eomCalibrationFloorRP)/nobs ) * _scienceMargin
|
def rpMagnitudeErrorEoM(G, vmini, nobs=70):
"""
Calculate the end-of-mission photometric standard error in the RP band as a function of G and (V-I).
Note: this refers to the integrated flux from the RP spectrophotometer. A margin of 20% is included.
Parameters
----------
G - Value(s) of G-band magnitude.
vmini - Value(s) of (V-I) colour.
Keywords
--------
nobs - Number of observations collected (default 70).
Returns
-------
The RP band photometric standard error in units of magnitude.
"""
return sqrt( (power(rpMagnitudeError(G, vmini)/_scienceMargin,2) +
_eomCalibrationFloorRP*_eomCalibrationFloorRP)/nobs ) * _scienceMargin
|
[
"Calculate",
"the",
"end",
"-",
"of",
"-",
"mission",
"photometric",
"standard",
"error",
"in",
"the",
"RP",
"band",
"as",
"a",
"function",
"of",
"G",
"and",
"(",
"V",
"-",
"I",
")",
".",
"Note",
":",
"this",
"refers",
"to",
"the",
"integrated",
"flux",
"from",
"the",
"RP",
"spectrophotometer",
".",
"A",
"margin",
"of",
"20%",
"is",
"included",
"."
] |
agabrown/PyGaia
|
python
|
https://github.com/agabrown/PyGaia/blob/ae972b0622a15f713ffae471f925eac25ccdae47/pygaia/errors/photometric.py#L131-L153
|
[
"def",
"rpMagnitudeErrorEoM",
"(",
"G",
",",
"vmini",
",",
"nobs",
"=",
"70",
")",
":",
"return",
"sqrt",
"(",
"(",
"power",
"(",
"rpMagnitudeError",
"(",
"G",
",",
"vmini",
")",
"/",
"_scienceMargin",
",",
"2",
")",
"+",
"_eomCalibrationFloorRP",
"*",
"_eomCalibrationFloorRP",
")",
"/",
"nobs",
")",
"*",
"_scienceMargin"
] |
ae972b0622a15f713ffae471f925eac25ccdae47
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.